L

UNIVERSITAT

Social-aware Robot Navigation based on
Deep Reinforcement Learning

DISSERTATION
zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultit

der Rheinischen Friedrich—Wilhelms—Universitiat, Bonn

vorgelegt von

YANYING ZHOU

aus Liaoning, China

Bonn, 2024

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultdt der
Rheinischen Friedrich—Wilhelms—Universitdt Bonn

1. Gutachter / 1% Advisor: Prof. Dr. Jochen Garcke

2. Gutachter / 2" Advisor: Prof. Dr. Ira Neitzel

Tag der Promotion / Day of Promotion: April 15th 2024
Erscheinungsjahr / Year of Publication: 2024

Abstract
by Yanying Zhou
for the degree of

Doctor rerum naturalium

With the increase of applications involving autonomous mobile robots, there is a grow-
ing need for them to navigate safely and effectively in environments shared with humans.
In recent years, social-aware robot navigation has received a lot of attention as it enables
robots to understand and follow human social norms, thereby avoiding potential conflicts
and dangers. Although several methods have been proposed for environment modeling and
motion planning to guide robot behavior, these methods often tend to ignore social rules and
focus mainly on motion control and path planning. To address this issue and enhance robot
navigation efficiency and safety in dense crowds, this thesis introduces social-aware robot
navigation algorithms based on Deep Reinforcement Learning (DRL) to capture crowd in-
teractions and group motion characteristics.

To this end, we first propose a novel Foresighted Social-Aware Reinforcement Learning
(FSRL) framework aimed at enabling mobile robots to achieve collision-free navigation.
Due to the sparsity of traditional reward signals, it is difficult for robots to learn effective
strategies from complex environments. Such sparse rewards may lead to extremely inef-
ficient learning for the robot, requiring a significant amount of time and attempts to learn
useful strategies. To address this problem, we employ reward shaping techniques to pro-
vide additional reward signals to guide the robot’s learning process. Compared to previ-
ous learning-based methods, our approach, supported by rich reward mechanisms, is fore-
sighted. It considers not only the current human-robot interactions to avoid immediate col-
lisions but also estimates upcoming social interactions to maintain an appropriate distance.
Additionally, our method introduces efficiency constraints, significantly reducing navigation
time. Comparative experiments are conducted to validate the effectiveness and efficiency of
our proposed method in more realistic and challenging simulated environments.

To further enhance the generalization performance of the navigation method, we then
present a novel deep graph learning architecture based on the attention mechanism. While
previous works have demonstrated the effectiveness of using reinforcement learning frame-
works to train efficient navigation strategies, their performance deteriorates when crowd
configurations change (i.e., become larger or more complex). Therefore, it is crucial to fully
understand the complex, dynamic interactions of the crowd in order to bring proactive and
foresighted behaviors to robot navigation. Our method utilizes spatial-temporal graphs to
augment robot navigation, using spatial graphs to capture current spatial interactions, and
integrating with RNNs, temporal graphs employ past trajectory information to infer the fu-
ture intentions of each agent. The reasoning capability of spatial-temporal graphs enables
robots to better understand and interpret the relationships between agents over time and
space, thereby making wiser decisions. Compared to previous state-of-the-art methods, our
approach exhibits exceptional robustness in safety, efficiency, and generalization across var-

vi

ious challenging scenarios.

Lastly, this paper considers the challenge posed by the limited perception range of sen-
sors for robot navigation, which leads to incomplete and uncertain information about the
observed environment. To achieve collision avoidance in crowded and partially observable
environments, we propose a novel deep reinforcement learning architecture. The architec-
ture combines spatial graphs and attention reasoning to enhance the modeling of relation-
ships among moving robots, static obstacles, and surrounding individuals. In this way, our
method significantly outperforms state-of-the-art methods in crowded scenarios with limited
robot sensor range, particularly in reducing collisions and improving navigation efficiency.
Additionally, the adoption of parallel double deep Q-learning significantly reduces training
time.

In conclusion, by employing advanced deep learning techniques and effective model de-
sign, this thesis has made significant advancements in robot navigation. It provides valuable
insights for real-time navigation and interaction of robots in complex crowd environments.

Keywords: deep reinforcement learning, social-aware robot navigation, crowd interaction,
graph neural network

Acknowledgements

This work would not have been possible without the love, support, and companionship of my friends,
family, and professors over these four years.

During my Ph.D. journey, I have often said how fortunate I am. I was lucky to meet my professor,
Prof. Dr. Jochen Garcke, fortunate to work with many outstanding individuals, blessed to pursue my
Ph.D. with my loved ones in the same city and even the same university, and lucky to have met so
many kind and wonderful people in my life.

First and foremost, I would like to express my deepest gratitude to my professor, Prof. Dr. Jochen
Garcke, for his continuous support and guidance throughout my Ph.D. studies. Over these past years,
he has provided me with opportunities to explore and develop my ideas and offered guidance and mo-
tivation when I needed it most. I am thankful for his assistance and crucial support at key moments.
I will always cherish the good times after completing work, as well as the countless valuable lessons
in scientific writing and presentations. I am grateful to the entire Numerical Simulation team; I am
thrilled to have had the opportunity to come to Bonn and work with so many distinguished individu-
als. I would like to thank Jannik Schurg for familiarizing me with the environment on my first visit
to the office, allowing me to quickly integrate into the team. I would like to express my gratitude
to Karen Petersen and Stephanie Zacharias. It’s always been delightful to have conversations with
them. I would also like to thank Paolo, who has solved many difficult problems for me and provided
a lot of help. Working in the same office with him has been a pleasure. I’m also thankful to other
colleagues, such as Arno Feiden, Sara Hahner, and David Ebert, for their insightful discussions and
enjoyable conversations.

Additionally, I am grateful to my friends, who have given me tremendous support and encour-
agement in both life and work. I would like to express my heartfelt thanks to my best friend, He
Li. When I reminisce about the days of laughter and tears we shared during our Ph.D. journey, my
heart is filled with nostalgia. I am also grateful for the close companionship of my colleague Liu
Le, who is like a sister to me. My gratitude also extends to Xieyuanli Chen, an amazing friend from
whom I have learned a lot and who has been immensely helpful. Special thanks to my best friend in
Japan pursuing a medical Ph.D., Yaojia Ma, who has always been there to offer advice and comfort
whenever I fell ill, I appreciate your patient companionship throughout. Additionally, I would like to
thank Jinhui Yi, Yanan Luo, and Jingjing Li for their support and encouragement during my Ph.D.
studies.

Lastly, I wish to mention my family. I am grateful for my parents’ unwavering support and
patience. Although far from home, they have always kept me in their thoughts, providing the greatest
emotional support and being my strongest pillar. Most importantly, I want to thank my husband,
Shijie Li. His kindness, patience, and love have been my driving force. He is my world, making
everything I do meaningful.

Contents

Contents

1 Introduction

2 Related Work

2.1 Traditional Robot Navigation,
2.2 Social-aware Robot Navigation
2.2.1 Reaction-based Navigation
2.2.2 Trajectory-based Navigation
2.2.3 Learning-based Robot Navigation
Preliminaries
3.1 Reinforcement Learning (RL),
3.1.1 Markov Decision Process MDP)
3.1.2 Policy and Value Functions
3.1.3 Temporal Difference (TD) Learning
314 QULearning e
31,5 MonteCarlo
3.2 DeepLearning (DL)
3.2.1 Neural Networks (NNS) i i
3.2.2 Convolutional Neural Network (CNN)
3.2.3 Recurrent Neural Networks (RNNs)
3.2.4 Graph Neural Networks (GNNs)
3.3 Deep Reinforcement Learning (DRL)
3.3.1 Value-based Learning,
3.3.2 Policy-based Learning,
DRL-based Social-aware Robot Navigation
4.1 Framework
4.2 Problem Formulation
4.2.1 States Space and Parametrization
422 Action Spaceo e e e
423 RewardFunction
424 State Transition Model L oo
425 ValueFunction
4.3 Simulation Environment oL o
43.1 Simulation Setup
432 Trainingand Testing
433 MEtriCS . . . v v i e e e e e e e

4.4 Challenges in Social-aware Robot Navigation

11
11
12
13

17
17
18
19
20
20
21
22
22
26
27
31
34
34
36

iv Contents
5 Foresight Reinforcement Learning for Social-Aware Robot Navigation 51
5.1 Introduction L 52
5.2 Foresight Socially Aware Reinforcement Learning 53
5.2.1 Social Attention-based Deep Reinforcement Learning method (SARL) . .. 54

5.22 SparseReward 56

5.2.3 Foresight Reward Augmentation 56

5.2.4 Efficiency Reward Augmentation 59

5.2.5 Augmented Reward Function 59

5.3 EXperiments e e e e e e e e 60
5.3.1 Simulation Setup e 60

5.3.2 Trainingand Testing 60

5.3.3 Comparison with State-of-the-art Methods 61

5.3.4 AblationStudy 64

5.3.5 Qualitative Evaluation 66

5.3.6 Parameters Choosen 67

54 Summary e e e e e e 71
6 Generalization on Social-Aware Robot Navigation Behaviors 73
6.1 Introduction L 73
6.2 A General Graph Learning Navigation Method 75
6.2.1 Problem Formulation 75

6.2.2 Attention-based Spatial-Temporal Graph Learning (ASTG) 76

6.3 EXperiments 80
6.3.1 SimulationSetup 80

6.3.2 Trainingand Testing 80

6.3.3 Quantitative Evaluation 81

6.3.4 AblationStudy L 84

6.3.5 Qualitative Evaluation 85

6.3.6 Comparisonwith FSRL 89

6.4 Summary e e e e e e e e 93
7 Social-Aware Robot Navigation in Partially Observable Environments 95
7.1 Introduction e e 95
7.2 Social-Aware Navigation with Partial Observation 98
7.2.1 Problem Formulation o 98

7.2.2 Enhanced Spatial Attention (ESA) Graph Struture 98

7.3 EXperiments e e e e e e e 101
7.3.1 Environment Setup e 101

7.3.2 Trainingand Testing 102

7.3.3 Quantitative Evaluation, 103

7.34 AblationStudy 106

7.3.5 Qualitative Evaluation, 106

T4 Summary e e e e e e e 109

Contents

8 Conclusion
8.1 Summary .
8.2 Future Work

Bibliography

111
111
112

115

1.1
1.2

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12

3.13

4.1
4.2
4.3
4.4

5.1
52
53
54
5.5
5.6
5.7
5.8
59

5.10
5.11
5.12
5.13

5.14

List of Figures

Classification for the autonomous mobile robots.
Deep reinforcement learning structure.

Reinforcement learning model for autonomous driving.
A feed-forward neural network with three hidden layers.
The model of biological neuron and artificial neuron.
Different activation functions.
The network architecture of LeNet-5 (LeCun et al., 1998).
The structure of a vanilla RNN unfolded in time.
The tanh function and its derivation function tanh’.
The structure of (a) gateand (b) LSTM.
The structure of GRU. e
Left: Image in Euclidean space. Right: Graph in non-Euclidean space.
Structure of Graph Convolution Networks (GCNs) with multi-layer.
Left: Attention mechanism. Right: Illustration of multi-head attention with head(k)

S T
Actor-Critic (AC) architecture shown in Sutton and Barto (2018).

DRL-based navigation system e e
Holonomic kinematics and non-holonomic kinematics.
Circle-crossing scenario and square-crossing scenario.
Architecture of main content of thisthesis.

Motivation for thiswork. oL
The proposed FSRL foresight method.
Overview of SARL method. (Chen etal.,2019)
An illustration of the effective range r. of therobot.
The scenarios with stationary humans or dynamic humans.
Three increasingly challenging simulation environments.
Quantitative evaluation on three environments under the invisible setting.
Quantitative evaluation on three environments under the visible setting.
Average quantitative results under three environments of ablation experiments. (In-

visible setting) L e e e
Average "Nav. Time" and "Disc(%)" results under three environments of ablation

experiments. (Invisible setting)
Qualitative results.
Value estimations by different methods for the complex scenein (1).
Value estimations and Environments for SARL and our FSRL with the same episode

atdifferent timestep. L e
Performance Comparison under Different Settings of Reward Function Parameters. .

58
59

viii List of Figures
6.1 Ilustrationofourwork. o o L 74
6.2 Network architecture. o L 76
6.3 Simple and complex scenarios for testing phases. 80
6.4 Quantitative evaluation on simple scenarios with different numbers of humans. . . . 82
6.5 Quantitative evaluation on complex scenarios with 5 dynamic humans plus other 5

dynamic humans or different groups comprised by 5 static humans. 82
6.6 Simulation trajectories on the same testingcase. 85
6.7 Trajectory comparisons of different methods under simple and complex scenarios. . . 86
6.8 Value estimations by different methods for the complex scenein (1). 87
6.9 Valueestimations. 88
6.10 Quantative results comparison for a nonholonomic robot under FSRL method, ASTG

method, and the combination method ASTG+FSRL. 90
6.11 Quantative results comparison for a holonomic robot under FSRL method, ASTG

method, and the combination method ASTG+FSRL. 92
7.1 Motivationof our work.o 96
7.2 Overview of our ESA graph architecture. 97
7.3 Structure of the spatial graph. o oo 99
7.4 Structure of the LSTM unfolded to show eachinput. 100
7.5 Quantitative evaluation of three methods in scenarios with varying numbers of dy-

namic humans. 103
7.6 Quantitative evaluation on scenarios with 5 dynamic humans and varying numbers

of statichumans. L 103
7.7 Average navigation time for the episodes in different scenarios. 105
7.8 Average rewards on 1,000 test episodes with varying human numbers. 106
7.9 Illustration of the resulting trajectories. 107
7.10 Value estimations. e e e e 108

5.1
5.2

6.1
6.2

6.3
6.4
6.5

7.1

7.2

List of Tables

"Nav. Time" quantitative results in 3 environments under invisible and visible settings. 62
"Disc. (%)" quantitative results in 3 environments under invisible and visible settings. 62

Evaluation performance comparison in the simple scenarios. 83
Evaluation performance comparison in the complex scenarios with 5 dynamic hu-
mans and different static groups (DS (distributed), RO (row3and2), and CO (concave)). 83

Average reward in simple and complex scenarios. 83
Evaluation performance comparison on different scenarios. 91
Evaluation performance comparison in the simple scenarios. 93

Average rewards across 1,000 test cases in simple scenarios only with varying num-
bers of dynamic humans. Our ESA achieves the highest average rewards. 104
Average rewards across 1,000 test cases in complex scenarios with 5 dynamic hu-
mans and varying numbers of static humans. Similarly, our ESA outperforms the
other two e 104

Abbreviations

An alphabetically sorted list of abbreviations used in the thesis:

APF
CE
CNN
DDPG
DDQN
DL
DNN
DP
DQN
DRL
FCN
FRP
GAN
GAT
GCN
GD
GNN
GRU
HRVO
LSTM
MDP
MLP
MSE
NN
ORCA
RelLLU
RL
RNN
RVO
SFM
SGD
TD
VFH
VO

Artificial Potential Field

Cross Entropy

Convolutional Neural Network
Deep Deterministic Policy Gradient
Double Deep Q Network

Deep Learning

Deep Neural Network

Dynamic Programming

Deep Q-Network

Deep Reinforcement Learning
Fully Connected Network
Freezing Robot Problem
Generative Adversarial Network
Graph Attention Network

Graph Convolutional Network
Gradient Descent

Graph Neural Network

Gated Recurrent Unit

Hybrid Reciprocal Velocity Obstacle
Long Short-Term Memory
Markov Decision Process
Multi-Layer perceptron

Mean Square Error

Neural Network

Optimal Reciprocal Collision Avoidance
Rectified Linear Unit
Reinforcement Learning
Recurrent Neural Network
Reciprocal Velocity Obstacle
Social Force Model

Stochastic Gradient Descent
Temporal Difference

Vector Field Histogram

Velocity Obstacle

Nomenclature

List of Publications

The thesis is based on the following publications:

* Foresight Social-aware Reinforcement Learning for Robot Navigation
Yanying Zhou, Shijie Li, Jochen Garcke
Chinese Control and Decision Conference (CCDC), 2023.

* Learning Crowd Behaviors in Navigation with Attention-based Spatial-Temporal
Graphs
Yanying Zhou and Jochen Garcke
IEEE International Conference on Robotics and Automation (ICRA), 2024, accepted.

* Enhanced Spatial Attention Graph for Motion Planning in Crowded, Partially Observ-
able Environments
Weixian Shi, Yanying Zhou, Xiangyu Zeng, Shijie Li, Maren Bennewitz
IEEE International Conference on Robotics and Automation (ICRA), 2021.

The following publications are not covered by this thesis:

» Spatial-Temporal Consistency Network for Low-Latency Trajectory Forecasting
Shilie Li, Yanying Zhou, Jinhui Yi, Juergen Gall
International Conference on Computer Vision (ICCV), 2021.

» Aggregation-Interaction Transformer for Efficient Trajectory Forecasting
Shijie Li, Yanying Zhou, and Juergen Gall
Submitted

CHAPTER 1

Introduction

Motivation

Upon observing our surroundings, it becomes evident that robots have become an integral part of our
households and everyday lives, as illustrated in Figure 1.1. Home assistant devices such as automatic
vacuum cleaners and other smart home gadgets have become common companions, aiding individ-
uals in daily cleaning and maintenance tasks. Healthcare robots are engineered to assist the elderly
and individuals with disabilities, enhancing their quality of life by providing physical assistance or
monitoring health conditions. In modern society, the role of robots is dramatically evolving and
expanding, no longer confined to repetitive tasks in industrial settings. Moreover, industrial robots
continue to play a pivotal role in the manufacturing sector, performing a range of tasks from sim-
ple assembly line work to complex welding and painting assignments, thus boosting efficiency and
reducing hazards.

In recent years, we have witnessed the rapid advancement of autonomous vehicle technology,
marking a significant breakthrough in robotics for transportation and road safety. These autonomous

Industrial Robots Service Robots Field Robots

=g \

https://www.kuka.com/en-us/products/robotics

https://www.3blmedia.com/news/ripe-robots

-systems/good-to-know-industrial-robots

. . https://mobilerobotguide.com/2022/06/17/small-
https://mobilerobotguide.com/2022/04 robot-company-to-launch-robots-at-50-farms

https://www.moveelectric.com/e-world/hyundai-
20/what-is-an-industrial-mobile-robot, 4

unveils-autonomous-room-service-robot

https://www.ivtinternational.com/features,

field-robots-an-answer-to-covid-19.html

https://blog.technavio.org/blog/major- https://www.cnbc.com/2018/04/02/working-in-
types-of-industrial-robots Jjapan-robots-might-solve-labor-problems.html

Figure 1.1: Classification for the autonomous mobile robots.

2 Chapter 1. Introduction

systems, leveraging sophisticated sensors and Al algorithms, have not only addressed issues of traffic
congestion and safety but have also pioneered a brand-new self-driving experience. Concurrently,
we have observed robots becoming increasingly autonomous, with their interactions with humans
growing more intimate and complex. They have evolved not just into tools for performing tasks,
but also into entities capable of sensing environment changes and, to a certain extent, interpreting
human needs and emotions. It’s not hard to envision that interactions between robots and humans
will become more familiar, becoming an indispensable part of our lives. This transition has not
only propelled the advancement of robotics but also opened a new dimension of interaction and
collaboration for humanity.

Meanwhile, Deep Reinforcement Learning (DRL) has emerged as a hot topic in the machine
learning domain in recent years, amalgamating the representation learning capabilities of deep learn-
ing with the decision-making mechanisms of reinforcement learning. Following the tremendous
success of deep learning in tasks such as image recognition and natural language processing, re-
searchers began exploring its potential in more complex decision-making tasks, where reinforcement
learning became a natural choice. The advent of DRL has provided an effective methodology for
handling high-dimensional, continuous state and action space problems, overcoming the limitations
traditionally associated with reinforcement learning in these realms.

Against the backdrop of continuous advancements in robotic technology, the issues faced by
autonomous mobile robots navigating in environments shared with humans have become particu-
larly significant. Navigation refers to the ability of mobile robots to perceive their environment and
their own state through sensors, achieving autonomous movement toward a target amidst obstacles.
Whether on bustling streets, in shopping centers, or on public transportation, robots need to be able
to move safely, smoothly, and in accordance with social conventions. This not only entails technical
challenges, such as how to identify, predict, and avoid obstacles but also encompasses understanding
and adapting to human behavioral patterns and expectations.

Traditional robotic navigation systems often rely on fixed rules and simple sensor feedback to
avoid obstacles or reach specific targets. However, when robots enter human social spaces, these
rules become inapplicable. For instance, robots might "freeze" in crowded places or appear overly
rigid and unnatural when interacting with humans. Such mistakes and failures can not only lead to
physical collisions and accidents but may also evoke distrust and fear towards robots among people.
Moreover, the challenges of social navigation go far beyond physical obstacle avoidance. People’s
behaviors in public places are complex, dynamic, and variable. They might suddenly stop, turn, or
change speed. Furthermore, their behaviors are influenced by culture, customs, and the current con-
text. For example, in a culture where people are accustomed to yielding, robots might need to take
actions more assertively; whereas in another culture, robots might need to be more passive. Deep
Reinforcement Learning (DRL), with its ability to automatically extract environmental features, of-
fers a new direction for tackling navigation issues. Through interaction with the environment, DRL
can autonomously learn effective navigation strategies without the need for explicit programming.
More importantly, DRL can help robots learn these complex social interaction rules and make ap-
propriate decisions in practical applications. For instance, robots can learn how to adjust their speed
and direction in crowded scenarios to avoid collisions with humans while not appearing too abrupt
or unnatural.

Addressing the aforementioned issues, designing and implementing an advanced robotic nav-
igation algorithm to enable robots to reach their destinations safely and efficiently in crowds and

complex social environments is crucial. To achieve this goal, this first needs to delve into the interac-
tion patterns among individuals in groups. Only with a genuine understanding of the dynamics and
interactions within crowds can robots truly blend in, avoiding misunderstandings of human behavior
and possible collisions. Additionally, to ensure the effectiveness of robotic navigation in social envi-
ronments, it is essential to capture and simulate the core features of group movements. The patterns
and laws of group behavior are the cornerstone of navigation decisions.

In this thesis, by employing Deep Reinforcement Learning (DRL) methods combined with Graph
Learning Networks and attention mechanisms, I have significantly enhanced the capability of robots
to navigate with social awareness in crowds, especially in partially observable environments, ef-
fectively addressing navigation performance issues stemming from sensor perception limitations
through optimizing foresighted predictions of group movements and processing of local spatial in-
formation.

Problem Statement

In recent years, Deep Reinforcement Learning (DRL) has emerged in the field of machine learning,
allowing new research directions and possible solutions for numerous complex problems. As a fusion
of deep learning and reinforcement learning, DRL allows models to automatically extract and learn
meaningful features from raw data, and combine trial-and-error approaches in decision-making to
find the optimal strategy in a given task.

The objective of Socially Aware Robot Navigation based on DRL is to amalgamate the robust
representational learning capabilities of deep learning with the decision optimization characteristics
of reinforcement learning. This fusion enables robots to autonomously navigate in crowds or social
settings, while understanding and anticipating the behaviors and intentions of the people around
them. This ensures safe, efficient, and socially pleasant interactions and maneuvers.

As illustrated in Figure 1.2, a state s; depicts the robot and its surrounding environment, an action
a; represents the possible behaviors of the robot, and a reward function r; reflects the social benefits
and costs of the robot interacting with the crowd. By training a deep neural network, I aim to obtain
a policy 7* that guides the robot’s actions in a way that maximizes an expected cumulative reward,
thereby ensuring efficient and socially-compliant navigation through crowds. I will discuss the spe-
cific details of the socially-aware robot navigation method based on deep reinforcement learning in
Chapter 4.

Challenges

Social-aware robot navigation based on deep reinforcement learning faces many challenges. In this
section, I discuss some of these challenges and open questions that need to be addressed for building
models that can effectively navigate through human crowds while exhibiting a social understanding.

Learning from Interaction

When required to navigate through crowds, robots need to understand human social signals and be-
haviors. Through interaction, robots can collect data, extract useful information, and then update
their knowledge or strategies based on this information. The purpose of learning is to enhance the

4 Chapter 1. Introduction

Reward T

/Agent policy "\ 4 A

Deep Neural Network 7'('9(8 a)

Take action @)
Environment

k parameter @ / L)
Observe state S

Figure 1.2: Deep reinforcement learning structure.

robot’s performance, enabling it to better accomplish specific tasks, such as navigating safely and ef-
ficiently through crowds. If the robot cannot accurately understand and adapt to human social norms,
it may lead to low navigation efficiency or even collide accidents. Therefore, utilizing technologies
of deep learning and reinforcement learning to assist robots in learning and understanding human
social behavior from a vast amount of interaction data is crucial.

Human Behavior Understanding

Human behavior is diverse and complex, potentially influenced by various factors such as individual
emotions, experiences, and cultural backgrounds. In crowds, the interactions between individuals
and collective behavioral patterns escalate the difficulty of understanding human behavior. If robots
cannot accurately comprehend human behavior and intentions, they might fail to make optimal nav-
igation decisions, not only compromising the safety and efficiency of navigation but also affecting
people’s trust in robots. Therefore, it is crucial to integrate deep learning models with reinforcement
learning to process and analyze unstructured data, capture the features and patterns of human be-
havior, and enable robots to continuously learn and enhance their understanding of human behavior
through interactions with humans and the environment.

Sparse Reward

In many practical scenarios, a robot may only receive reward signals upon reaching a destination or
completing a specific task, while for most of the time, it receives no reward signals. This sparsity of
reward signals makes it challenging for the robot to learn effective strategies from the environment.
Such sparse rewards may result in extremely low learning efficiency for the robot, necessitating a
substantial amount of time and trials to learn useful strategies. Therefore, employing reward shaping
techniques to provide additional reward signals for guiding the robot’s learning process is crucial.

Generalization to Different Environments

The real-world environment exhibits extremely high diversity and uncertainty, encompassing differ-
ent spatial layouts, dynamic obstacles, and human behavioral patterns. If a robot navigation system
cannot generalize well to new environments, its usability and reliability will be significantly reduced.
Therefore, effectively capturing and understanding the structure and relational information in data is
crucial to assist robots in better comprehending and adapting to new environments.

Partial Observation

In complex social settings, robots, limited by the range of their sensors, typically can only observe
local information. For instance, they might only be able to see the dynamics of a small area of the
crowd around them, without access to the global environmental information. This local observability
hinders the robots from making accurate decisions. Since robots cannot obtain complete environmen-
tal information, they may need more time and attempts to learn effective navigation strategies. More
importantly, this may degrade the navigation performance of robots, making it difficult for them to
respond to environmental changes in a timely manner, which might lead to collisions or going off
route. Therefore, enhancing the understanding and capture of environmental dynamics is crucial.

Contributions

In this thesis, I propose approaches to address the challenges discussed above. First, I propose a
model to enhance robot navigation by assessing real-time and estimated future interactions. Then,
I propose a method to capture and aggregate spatial-temporal interactions to enhance the robot’s
reasoning capabilities and robustness in navigation across diverse challenging scenarios. Finally, I
propose a method to model the interactions between the robot and humans by combining spatial
graphs and attention reasoning in partially observed environments.

Reward Reshaping for Sparse Reward
The first contribution is

a reward reshaping struc- discomfort
ture for improving sparse
e T
s

functions. In this struc- % v
ture, I enrich the re- collision s \\ x
/ N
\\

ward mechanism, grant- " ol safe w - o
ing the framework fore- e -7 N -7
o < <o
sight, which allows not
only for consideration of (a) A scenario with standing humans (b) A scenario with dynamic humans

current human-machine interactions to prevent immediate collisions but also the prediction of fu-
ture social interactions to maintain a proper distance. This is particularly crucial for navigation
within dynamic crowds as the robot needs to predict the movements of individuals to avoid colli-
sions. To capture the varying kinematics of humans, different constraints are applied to individuals
based on their states. To enhance navigation efficiency, I introduce an efficiency parameter that can
significantly shorten navigation time, which is especially critical for navigating in environments with

6 Chapter 1. Introduction

both dynamic and static crowds. By optimizing navigation paths and reducing collisions, the robot
can reach its destination faster while maintaining social awareness. I demonstrate that the proposed
method reduces navigation collisions and navigation time in complex simulated scenarios encom-
passing both static and dynamic obstacles, showcasing efficiency and effectiveness.

Graph Neural Network for Navigation Generalization

Although the reward
shaping framework
discussed above is par-
ticularly successful in
enhancing the foresight
abilities of robot nav-

igation, the training
strategies rely on the
training environment.

Given the dynamics and

uncertainties within crowds, re-training the robot every time it enters a new environment would
significantly increase time and costs. Recent approaches suggest that Graph Neural Networks
(GNNs) can capture and understand structural and relational information in data, with knowledge
being transferable and contributable across different parts within the graph, aiding robots in better
understanding and adapting to new environments. As the second contribution, I propose employing
Graph Neural Networks to overcome the limitations of previous methods. For this purpose, I suggest
introducing Graph Attention Networks to capture spatial and temporal interactions within crowds.
The attention weights can be adaptively adjusted based on the features of nodes within the graph,
capturing multi-scale features and relationships. Simultaneously, to enhance predictive reasoning
capabilities, I integrate Recurrent Neural Networks to capture past states and interactions, which
helps the robot obtain temporal dependencies, thereby better understanding the current scenario and
predicting future situations. The proposed method offers a comprehensive understanding of crowds
and enhances reasoning abilities. I demonstrate that employing Graph Attention Neural Networks
contributes to improved navigation performance in varying crowd configurations.

Graph-Attention Reasoning for Partial Observation

Considering further the

limited perception range s N
of sensors, robots can E, :\ D@(@
only observe partial and O : 0
incomplete information 6 & o
locally. As the final - ‘é -
contribution, I propose a ol o E’D &8
framework to understand : : . : : &l

B& sos” 4% -] —¥)—P—+#
and capture the dynam- oot - ? i

ics of the surrounding
environment based on

partially observed information. I perform spatial and attention reasoning on the partially observable
environmental information separately. Spatial reasoning is employed to understand the spatial
relationships between the robot and other objects in the environment (such as people or other obsta-
cles), encouraging prediction and interpretation of dynamic changes in its surrounding environment.
Attention reasoning allows the robot to focus on relatively crucial objects in the partially observed
environment. Subsequently, I adopt a parallel double DQN for network training, which accelerates
the training process. I demonstrate that even in highly crowded environments, under the application
of a restricted sensor perception range, the proposed method possesses a higher success rate and a
lower collision rate, significantly reducing the navigation time.

Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2 provides an overview of the related work on social-aware robot navigation and
deep reinforcement learning techniques.

Chapter 3 gives a brief overview of the concepts that are used throughout the thesis. It starts
with a quick introduction to reinforcement learning. Then, it describes the deep learning methods,
including convolutional, recurrent and graph neural networks. Finally, it introduces deep rein-
forcement learning techniques, including value-based learning and policy-based learning methods.
provides a formal definition of the evaluation metrics that are used to evaluate the performance of
the proposed approaches.

Chapter 4 provides an overview of the fundamental aspects of research on DRL-based social-aware
robot navigation. First, it introduces the basic framework of DRL-based social-aware robot
navigation. Then, it formulates the problem and discusses its essential components. Finally, it
briefly described the current simulation experiments’ environmental settings, experimental setup,
and performance metrics for evaluation.

Chapter 5 proposes a reward-reshaping-based method, called Foresight Socially-aware Rein-
forcement Learning (FSRL), which is very efficient and accurate. This chapter is based on Zhou
et al. (2023). Shijie Li contributed to the writing. Jochen Garcke supervised the project and he
contributed with discussion and writing.

Chapter 6 proposes a novel deep graph learning framework, called attention-based spatial-
temporal graph learning framework (ASTG). It combines graph attention networks and recurrent
neural networks to capture and integrate high-order spatial and temporal interactions between
entities in crowds, facilitating socially-aware robot navigation in complex environments. Jochen
Garcke supervised the project and he contributed with discussion and writing.

Chapter 7 proposes a deep-learning-based robotic navigation method, called Enhanced Spa-
tial Attention (ESA). It integrates LSTM to encode spatial information and a social attention
mechanism to analyze and learn from the motion patterns of surrounding individuals, aiming to

8 Chapter 1. Introduction

predict their future positions and facilitate collision-free navigation in crowded environments. This
work is based on Shi et al. (2022). I presented the main idea of the paper and developed the whole
model architecture. Weixian Shi performed the experiments with different reinforcement learning
methods and contributed to the implementation of the spatial graph with social LSTM. Shijie Li
contributed to participate in the discussion.

Finally, conclusions are given in Chapter 8 along with suggested directions for future work.

CHAPTER 2

Related Work

In this chapter, I discuss the related work for this thesis. First, I provide an overview of robot navi-
gation. Second, I discuss approaches for social-aware robot navigation. Finally, I review the devel-
opment of deep reinforcement learning methods.

Contents
2.1 Traditional Robot Navigationttt 9
2.2 Social-aware Robot Navigation 11
2.2.1 Reaction-based Navigation 11
2.2.2 Trajectory-based Navigation 12
2.2.3 Learning-based Robot Navigation 13

2.1 Traditional Robot Navigation

Robot technology has undergone a significant development from early attempts to create humanoid
robots to modern intelligent robots. Initially, robots were dependent on human assistance to carry
out simple tasks. However, with the rapid advancement of technology, modern robots have evolved
to possess increasingly sophisticated structures and powerful processing capabilities, featuring au-
tonomous navigation, speech recognition, and visual perception. For example, Boston Dynamics’s
robots (BostonDynamics), including "Atlas", "Spot" and "Handle", can move and manipulate objects
in various complex environments. Besides, Laboratories has developed humanoid robots, such as
"Geminoid HI" and "Erica", which have realistic appearances and limb movements that allow them
to explore interaction and communication between humans and robots. Without the need for human
control, intelligent robots can improve their performance and adaptability by learning and optimizing
algorithms, thereby increasing efficiency and productivity. Therefore, intelligent robots are increas-
ingly used in various industries, including search and rescue, transportation, medical surgery, and
other fields.

Navigation is a basic skill for autonomous intelligent robots. The development of robot naviga-
tion technology enables robots to independently identify and avoid obstacles, plan suitable routes,
and reach their destinations in unmanned environments. For example, in airports, intelligent robots
guide pedestrians to specific locations such as security checkpoints and assist them in carrying lug-
gage; in logistics and warehousing such as JD in China and Amazon in the United States, parcel
delivery intelligent robots can complete package delivery tasks through autonomous navigation; in
rescue scenarios, rescue robots can autonomously search for and rescue trapped people at disaster
sites. In the last decade, intelligent robot navigation has been one of the hot research topics, which
is key for achieving robot autonomous movement and completing tasks. Therefore, I provide a brief
overview of the advances in robot navigation technology research.

10 Chapter 2. Related Work

Traditional navigation systems were mainly based on sensory perceptions and computer vision
technology (Mur-Artal et al., 2015; Zhang and Singh, 2014; Engel et al., 2014; Levinson and Thrun,
2010). These robots typically used cameras and laser sensors (LiDAR), such as LSD-SLAM (En-
gel et al., 2014), ORB-SLAM (Mur-Artal et al., 2015) and LOAM (Zhang and Singh, 2014) to
detect their surrounding environment and used algorithms to determine their position and direction.
LSD-SLAM and ORB-SLAM are notable instances of visual SLAM (Simultaneous Localization
and Mapping) systems in the scope of camera-based sensing. Upon establishing an understanding
of their environment, these navigation systems could then use pre-built maps or real-time created
maps to plan their actions and navigate to the specified target. Additionally, various algorithms were
deployed for the dual purposes of map construction and path planning. Map construction primarily
adopts two approaches: grid maps (Thrun and Biicken, 1996; Batalin et al., 2004) and probabilistic
maps (Levinson and Thrun, 2010; Wurm et al., 2010). Grid maps divide the environment into a grid
of cells, each representing whether the region is occupied, free, or unknown. Probabilistic maps,
conversely, are commonly utilized in Simultaneous Localization and Mapping (SLAM) techniques,
where they estimate the likelihood of occupancy for each cell, thereby offering a more nuanced de-
piction of the environment.

Although traditional approaches for motion planning and control in mobile robot navigation have
been successful, reliable navigation systems require extensive engineering effort, such as manually
adjusting parameters when modeling the environment to meet specific scene requirements (Xiao
et al., 2022). Recent research indicates that by employing machine learning techniques, particularly
neural networks and deep learning, the engineering effort required for robot navigation in complex
environments can be alleviated. Neural networks (Rosenblatt, 1958) have the capacity to automat-
ically learn and infer effective navigation strategies from a vast amount of robot data. This ability
for automatic learning and inference reduces the need for manual design and adjustment of naviga-
tion algorithms, thereby lightening the engineering workload. Thrun (1995) is one of the pioneering
efforts to utilize end-to-end machine learning for robot navigation, serving as an initial proof-of-
concept for completely replacing the traditional architecture "sense-plan-act" with a single learned
policy. Pfeiffer et al. (2017) presents a model capable of learning the complex mapping from raw
2D-laser range findings and a target position to the required steering commands for robot collision
avoidance navigation. Chen et al. (2022) presents a neural network-based algorithm trained on hu-
man decisions for navigating a mobile robot in scenarios with various obstacle features, achieving
close to 90% accuracy in replicating human decision-making process for navigation

In addition to the evolution of navigation algorithms, the focus of robot navigation is continuously
changing and evolving. As robots become more prevalent and share physical space with humans, it is
crucial to establish rules for social order. Therefore, while focusing on issues such as motion control
and path planning, robot navigation technology has also started to pay attention to the interaction
and integration of robots and human society. This includes considering factors such as human com-
fort (Sisbot et al., 2010), naturalness (Shi et al., 2011), and sociality (Pacchierotti et al., 2007) during
the navigation process, namely social awareness (Rios-Martinez et al., 2015). It refers to a robot’s
ability to recognize and understand the comfort and social rules of surrounding humans (Ge, 2007)
and adjust its behavior and performance accordingly (Lindner and Eschenbach, 2011). Social-aware
robot navigation preserves a comfortable interaction with humans, resulting in behavior predictable,
adaptable, and easily understood by humans (Kuderer et al., 2012).

2.2. Social-aware Robot Navigation 11

2.2 Social-aware Robot Navigation

The work of C.L. Breazeal pioneered the concept of social robots and this concept has been extended
to other areas, which aim to social learning and interaction (Breazeal, 2004). The American Asso-
ciation for Artificial Intelligence (AAAI) has proposed a series of robotics challenges that have led
to several large-scale projects for robot navigation in human environments, such as Maxwell (2007),
Michaud et al. (2007). These studies attempted to consider situations where robots encounter humans
and navigate around them, but largely still modeled humans as obstacles or targets and had only ba-
sic concern for social interactions (Thomaz et al., 2016). However, as the field of social robotics
evolved, so did the understanding of the importance of socially-aware navigation. Robots operat-
ing in human-centric environments need to adhere to social norms and exhibit behavior perceived
as natural and intuitive. This includes understanding personal spaces, navigating in a predictable
and non-intrusive manner, and being able to interpret and respond to human social cues (Gao and
Huang, 2022). Existing works on social-aware robot navigation can be roughly grouped into three
categories (Guillén-Ruiz et al., 2023): (1) reaction-based methods; (2) prediction-based methods; (3)
learning-based methods.

2.2.1 Reaction-based Navigation

In dynamic or unknown environments, navigating robots need to respond quickly to avoid dynamic
obstacles while performing path planning. This kind of reactive method has become the most basic
approach in social-aware robot navigation. In reaction-based methods, robots react to other mobile
agents using one-step interaction strategies (Chen et al., 2021). They may not consider prediction or
learning and are mostly based on rules such as Velocity Obstacles (VOs) (Fiorini and Shiller, 1993;
Shiller et al., 2001; Van Den Berg et al., 2011; Van den Berg et al., 2008; Snape et al., 2011), Social
Force Models (SFMs) (Helbing and Molnar, 1995; Reddy et al., 2021; Ferrer et al., 2017; Truong
and Ngo, 2017), Vector Field Histograms (VFHs) (Borenstein et al., 1991; Babinec et al., 2018), or
Artificial Potential Fields (APFs) (Khatib, 1985; Yao et al., 2020).

The concept of VO was originally proposed by Fiorini and Shiller (1993) and has been widely
utilized in navigation, such as in the works of Shiller et al. (2001); Van Den Berg et al. (2011); Van den
Berg et al. (2008); Snape et al. (2011), and others. Considering a moving agent A within the motion
range of a robot R, VO means the set of all velocities of R that can collide with A. Thus, the robot
can select a velocity vector different from the VO to ensure collision-free navigation. In the context
of multiple agents operating independently but in the same environment, under the assumption that
all agents use the same navigation technique, Reciprocal Velocity Obstacle (RVO) Van den Berg
et al. (2008) avoids potential oscillations that may arise when approaching or crossing paths with
one other. Optimal Reciprocal Collision Avoidance (ORCA) (Van Den Berg et al., 2011) improved
RVO by introducing a cost function and an optimization method to select an optimal velocity. The
Hybrid Reciprocal Velocity Obstacle (HRVO) (Snape et al., 2011) extends RVO by set priorities in
the interaction between robots.

APFs were first introduced by Khatib (1985) based on virtual potential fields. It views the en-
vironment around the robot as an energy field, in which the potential energy between the robot and
obstacles, attraction and repulsion forces with the robot generated by the goal point and obstacles,
define the direction of the robot’s motion. Yao et al. (2020) introduced reinforcement learning on

12 Chapter 2. Related Work

dealing with dynamic scenes to improve traditional APFs. VFHs (Borenstein et al., 1991) construct
a two-dimensional histogram to model environmental information. Babinec et al. (2018) propose the
VFH* to handle dynamic obstacles.

In addition, SFMs (Helbing and Molnar, 1995) is a physics-based method that infers the direction
and speed of mobile agents’ movement for collision-avoidance behavior by simulating the interac-
tion forces between individuals, such as attraction and forces. Ferrer et al. (2017) extends SFM to
present a robot companion and uses interactive learning to adjust the parameters of the model. By
taking advantage of both the extended SFM and the HRVO, Truong and Ngo (2017) takes the socio-
spatio-temporal into account and proposes Proactive SFM (PSFM) to achieve efficient and proactive
collision-avoidance navigation. It considers not only the human states relative to the robot (position,
motion, and hand pose) but also the social interaction information of human obstacles and human
group interactions.

However, the above methods heavily rely on the accuracy of deterministic motion models and
can only capture simple interactions, making it difficult to extend to complex scenarios. Moreover,
because robots only take actions for the next step based on the one-step rule and the current state,
the planning path is shortsighted and unnatural. This may lead to a failure to adhere to social norms,
especially in complex or crowded environments.

2.2.2 Trajectory-based Navigation

Unlike reaction-based methods, rather than using pre-defined rules, trajectory-based methods first
attempt to forecast other humans’ trajectories and behaviors from large-scale datasets (Prediction
Motion Model) and then plan a proper path for the robot accordingly (Path Planning). By anticipating
human actions, these methods aim to achieve smoother interactions and more socially compliant
navigation.

Approaches such as the Kalman filter can predict the positions of moving agents around the
robot by accounting for various uncertainties and noise in the measurements. However, when there
are multiple moving agents, handling uncertainty becomes very challenging, possibly leading to an
uncertainty explosion (Trautman et al., 2015) which might prevent the robot from safely navigating
to its destination. Thus, various human motion models have been proposed to try to control the
growth of uncertainty. Mixing Dirichlet Process (DP) (Teh et al., 2010) and Gaussian Process (GP)
(Wang et al., 2005) were used to simulate target motion patterns in Joseph et al. (2011). Aoude et al.
(2013) combined Rapidly-exploring Random Trees (RRT) (LaValle et al., 2001) with GP (RR-GP)
to improve Gaussian predictions and identify probabilistically feasible paths.

In scenarios where a robot shares the environment with multiple moving agents, it is crucial for
the robot to avoid collisions. Additionally, the robot should maintain a safe distance to prevent inter-
ference with the agents’ activities, taking into account their interactions within the model. Therefore,
the robot must be able to predict how each agent’s behavior evolves over time, understanding and
adapting to human social norms. Common methods for predicting trajectories include Kalman fil-
ters (Kalman, 1960; Choset et al., 2005; Welch et al., 1995) or Particle filters (Doucet et al., 2001;
Liu and Chen, 1998; Pitt and Shephard, 1999), but goal-based policy methods might provide more
suitable and effective solutions for social navigation, achieving more natural and socially compliant
navigation behavior. They assume that the behaviors of agents are captured in previously observed
trajectories, determining which trajectory group the current trajectory belongs to by simulating hu-

2.2. Social-aware Robot Navigation 13

man goal-oriented trajectories. Bennewitz et al. (2002) applied the expectation maximization (EM)
algorithm (Moon, 1996) to cluster similar behaviors into single motion patterns to learn motion mod-
els. Ziebart et al. (2009) introduced maximum entropy inverse optimal control to simulate human
future trajectories. These predictive models incorporated dimensions of uncertainty to predict the
positions of moving agents.

Furthermore, considering interactions with static and dynamic obstacles, data-driven methods
have also been proposed to capture agent motion. Inspired by the success of Long Short-Term
Memory networks (LSTM) (Hochreiter and Schmidhuber, 1997), a data-driven architecture called
Social-LSTM is proposed by Alahi et al. (2016) to predict future human trajectories. It introduces
a social pooling layer to capture the dependencies between multiple related sequences. Consider-
ing implicit cooperations between different agents in collision-free navigation, Vemula et al. (2018)
proposed Social Attention to capture the relative importance of each mobile agent while navigating,
without emphasizing the distance between them.

After establishing the human motion model, trajectory-based methods define a planner that can
find the optimal navigation policy. Based on consolidated and discretized human model, Co-MDP
(Smith et al., 2021) is proposed to generate obstacle avoidance behavior, but also to be robust and
natural. Svenstrup et al. (2010) proposes a path planner based on RRT to avoid unforeseen pedestri-
ans. Moreover, in order to respect people’s personal space while avoiding collisions, Rios-Martinez
et al. (2011) designed the Risk-RRT method, which uses Gaussian Process learning to estimate the
O-space of people.

In dense crowds, the computational cost and time required for explicitly calculating the evolution
of joint paths are incredibly high, especially if the state space expands rapidly as the crowd group
becomes large. Additionally, due to the adoption of overly conservative strategies by robots, there is
limited navigation space available for planning. Consequently, the robots are more prone to experi-
encing the "freezing robot problem" (FRP) (Trautman and Krause, 2010), where the planner predicts
that all feasible routes are deemed unsafe, resulting in the robot being stuck and unable to move.

2.2.3 Learning-based Robot Navigation

In recent years, there has been a growing trend in combining machine learning or deep learning
algorithms with Reinforcement Learning (RL), using these learning-based methods to learn how to
achieve improved navigation performance in complex environments. Deep Reinforcement Learning
(DRL) is most classically used to learn excellent navigation strategies, which introduce deep neural
networks to solve reinforcement learning problems. DRL methods explore efficient interaction rules
through pre-training a value function, which enables the robot to determine the optimal action based
on the currently observed states. As a result, the robot can avoid collisions while trajectory planning.

In the last decade, a number of DRL-based collision avoidance training methods have been pro-
posed, some of which take social awareness into account. CADRL (Collision Avoidance with DRL)
(Chen et al., 2017b) was the earliest work replacing handcraft techniques with DRL and achieving
success in multi-agent scenarios. It is based on the reciprocal assumption, which means that when
two or more agents attempt to avoid collisions, they assume that others are also taking collision avoid-
ance actions. Considering humans and social norms, this work was extended in Chen et al. (2017a)
(Social Aware-CADRL, SA-CADRL). Specifically, SA-CADRL learns socially compliant behav-
iors, such as passing on the right, by incorporating a reward function that depends on the dynamics

14 Chapter 2. Related Work

of the scenarios. However, an over-reliance on reciprocal assumption can lead to overly conserva-
tive behavior, and their effectiveness is limited when dealing with complex decentralized scenarios.
Everett et al. (2018) (LSTM-RL) improved it by using Long-Short Term Memory (LSTM) cells to
encode other agents and model the collective impact of the crowd. LSTM-RL processes the states
of each neighbor sequentially in reverse order of the distance to the robot. To improve the comfort
of people sharing the crowd with a robot, Hu et al. (2022) introduced the social stress index in a
deep reinforcement learning framework, which extracts local features and calculates social-attention
scores through a multilayer perceptron. Gil et al. (2021) introduced a method that combines robot
velocities learned from an RL model (AutoRL (Francis et al., 2020)) with robot velocities calculated
using an SFM to determine robot actions.

Although these methods have successfully addressed multi-agent navigation, they fall short in
accounting for the complex interactions among humans (Samsani and Muhammad, 2021). Robots
primarily rely on their perception and reasoning capabilities to interpret human behavior and predict
future human actions, yet lack feedback from the crowd. These methods often treat robot navigation
in crowded environments as a one-way human-robot interaction problem, which could pose chal-
lenges as the size of the crowd increases. To overcome these limitations, Chen et al. (2019) proposed
a Social Attention Reinforcement Learning (SARL) approach, explicitly modeling the interactions
between the robot and the crowd. By considering both human-robot and human-human interactions,
self-attention is utilized to discover the collective influence of the crowd. Furthermore, SOADRL
(Liu et al., 2020) extended SARL by separately handling information associated with static and dy-
namic objects, addressing the challenge of navigating with sensors providing only a limited field
of view in crowds. Additionally, Chen et al. (2020b) suggested enabling the system to identify the
most critical individuals for navigation within a crowd. Gao et al. (2019) considers partial observ-
ability issues (e.g., due to sensor limitations, occlusions, or perceptual uncertainties). To achieve
this, it leverages Recurrent Neural Networks (RNNs), specifically Gated Recurrent Units (GRUs), to
infer unobservable states. For the real-time response to human behavior, Samsani and Muhammad
(Samsani and Muhammad, 2021) proposed modeling dangerous zones for the robot. These zones are
defined by considering real-time human behavior and then encoding all possible actions that people
could take at a given time. The robot is trained to avoid these dangerous zones, aiming for safe and
reliable navigation.

To address the challenge of handling large-scale crowds, some methods are proposed to identify
the most critical individuals for navigation within the crowd. They utilize graph representations to
learn the optimal policy, encoding information about the crowd to predict human attention scores
during the navigation tasks. Chen et al. (2020b) employs a method based on human gaze data to
train a Graph Convolutional Network (GCN), accurately predicting human attention towards different
agents within the crowd during navigation. They then integrated the learned attention into a graph-
based reinforcement learning framework (Gaze-GCN based RL, G-GCNRL). Since the dynamic
relations in a crowd produce non-Euclidean data, Graph Neural Networks (GNNs) can be used to
extract efficient representations in crowd navigation. GNNs inherit the complementary strengths of
graphs, which possess powerful representation capabilities, and neural networks, which have end-to-
end learning power. In GNNs, problems are formulated by representing components as nodes and
relationships as edges in a graph. These models typically propagate local information throughout
the graph, explicitly capturing the relationships between nodes. This has been proven effective in
dealing with a variety of structured tasks, especially where the structured nature of the problem

2.2. Social-aware Robot Navigation 15

plays a significant role. There are two typical types of GNNs: Graph Attention Networks (GATs)
Zhou et al. (2022) and Graph Convolutional Networks (GCNs) Chen et al. (2020a,b). Chen et al.
(2020a) introduces two-layer GCNs to model a Relation Graph Learning (RGL) structure to learn
the agents’ interactions. In contrast to GCNs, which utilize fixed weights in convolution operations,
GATs employ learnable attention mechanisms to dynamically weigh the importance of each neighbor
during the information aggregation process. Zhou et al. (2022) improves two-layer GAT's to extract
efficient graph representation, modeling Social Graph-based Double Dueling Deep Q-Network (SG-
D3QN). The social attention mechanism in GATs allows them to dynamically emphasize the crucial
neighbors of each node, thereby granting these networks higher flexibility to handle graphs with
various structures.

Additionally, some methods also employ supervised learning schemes to mimic expert demon-
strations for enhancing learning efficiency, such as Imitation Learning (IL) (Hussein et al., 2017; Osa
et al.,2018). IL is sample-efficient and can quickly find a navigation model based on the training data
(Pfeiffer et al., 2017). Tai et al. (2018); Long et al. (2017); Liu et al. (2018) developed navigation
strategies that map various inputs (such as depth images, LIDAR measurements, and local maps)
to control actions by directly mimicking expert demonstrations. 7ai et al. (2018) proposes a real-
time, socially compliant navigation method for mobile robots among pedestrians using raw depth
inputs and Generative Adversarial Imitation Learning (GAIL). This approach improves safety and
efficiency in real-world deployments, also offering a simulation plugin for modeling pedestrian be-
haviors. Pfeiffer et al. (2018) combined IL and Reinforcement Learning (RL) for single-goal-driven
navigation in mapless scenarios. The Reinforced Imitation Learning (R-IL) utilizes expert demon-
strations to pre-train navigation strategies and then applies Constrained Policy Optimization (CPO)
(Achiam et al., 2017) to incorporate constraints during the RL training phase. It demonstrated that
this method could reduce training time to achieve performance levels comparable to standard RL.
Pfeiffer et al. (2017, 2018) tested their solutions in static environments.

CHAPTER 3

Preliminaries

In this chapter, I briefly discuss essential concepts that are relevant to this thesis. I start with an
introduction to reinforcement learning, markov decision process, policy and value function, temporal
difference learning and Q learning. Then I introduce the knowledge related to deep learning, such as
neural networks, recurrent neural networks, and graph neural networks. Finally, I present some deep
reinforcement learning methods, which are classified into value-based methods and policy-based
methods.

Contents
3.1 Reinforcement Learning (RL)ttt nns 17
3.1.1 Markov Decision Process MDP) 18
3.1.2 Policy and Value Functions 19
3.1.3 Temporal Difference (TD) Learning 20
3.14 QULearning 20
3.1.5 MonteCarlo 21
32 DeepLearning (DL) 0 i i i it i it ittt ettt et v o 22
3.2.1 Neural Networks (NNs) 22
3.2.2 Convolutional Neural Network (CNN) 26
3.2.3 Recurrent Neural Networks (RNNs) 27
3.24 Graph Neural Networks (GNNs) 31
3.3 Deep Reinforcement Learning(DRL) 34
3.3.1 Value-basedLearning, 34
3.3.2 Policy-based Learning 36

3.1 Reinforcement Learning (RL)

Reinforcement Learning (RL) (Sutton and Barto, 2018; Wiering and Van Otterlo, 2012), which is
inspired by behaviorist psychology, interacts with the environment in a trial-and-error mechanism,
learning from these experiences to optimize strategies.

In reinforcement learning, the decision-maker is defined as an agent that receives state informa-
tion from the environment and performs specific actions based on the current state, thereby influ-
encing the environment and receiving corresponding reward or punishment signals. The goal of the
agent is to learn a behavioral policy by iteratively adjusting strategies through trial and error in the in-
teraction with the environment, aiming to maximize the long-term cumulative reward. For example,
in the context of autonomous driving, the agent represents the vehicle itself, while the environment
encompasses the physical world beyond the vehicle, including roads, other vehicles, and pedestrians.

18 Chapter 3. Preliminaries

B - ou—

Environment

Reward R;

Observation S}

Figure 3.1: Reinforcement learning model for autonomous driving.

The reward serves as feedback from the environment to evaluate the quality of the agent’s actions.
The autonomous vehicle (agent) needs to select appropriate actions, such as deceleration, accelerat-
ing, and steering, based on the current state information like speed and position. The environment
then provides corresponding punishments or rewards based on the vehicle’s actions, guiding the ve-
hicle to drive safely, smoothly, and efficiently toward its destination. More specifically, when the
autonomous vehicle reaches the destination safely and smoothly, the agent receives positive rewards,
indicating that the actions taken by the agent align with expectations and provide positive feedback.
Conversely, if the agent encounters accidents or violates traffic rules, it receives punishments, which
is negative feedback. Similarly, in the case of a Go-playing algorithm, the robot (agent) has to decide
how to move to win the game based on the current game state (environment).

3.1.1 Markov Decision Process (MDP)

The sequential decision problem in the RL framework can be modeled as a Markov Decision
Process (MDP) (Sutton and Barto, 2018; Bellman, 1966; Howard, 1960), which are defined by
<S8, A,P,R,v > comprising by the key elements states S, actions .A, transition probability P,
rewards R and discount factor 7. S represents the environment’s state , A is the action taken by
the agent. P(S;4+1|St, A¢) describes the probability that the agent transfer from one state to another
after performing a particular action. R(S;, Ay, Si+1) is the immediate numerical reward that the
agent receives at each state. The discount factor v determines the importance of future rewards when
calculating the total return of a current decision. A lower discount factor indicates less emphasis on
future rewards, whereas a higher discount factor implies that future rewards are almost as significant
as immediate rewards. The agent’s policy m(A;|S;) can be viewed as a mapping function that maps
the current state S; € S to the corresponding action A; € A. When the current state is S, the agent
takes an action A; according to the policy 7 and then move transfers to the next state .Sy based on
‘P and receives a reward signal I?; € R from the environment. The generated sequence is

SOvA07R15SlvA17R27SZaA2aR3"' (31)

3.1. Reinforcement Learning (RL) 19

The expected cumulative reward G, is defined as:

Gt = Rit1 + YRiio + V*Reyz + ... = Z YRy ki1 (3.2)
k=0

where y € [0, 1] and T is co or a finite value for infinite horizon or finite problems, respectively.
The objective of RL is to find the opitmal policy that maximizes the expected cumulative reward:

* = argmax E[G{] (3.3)

3.1.2 Policy and Value Functions

The value function V. (s) and the action value function Q- (s, a) are utilized as a measure of the long-
term cumulative reward expectation for each state or state-action pair. These values can evaluate the
strategy and guide the agent’s decision-making under different states.

VTK‘(S) = Eﬂ[Gt|St = S]a (3.4)
Qr(s,a) = Ex[G¢|St = s, Ay = al, 3.5

can be shown to satisfy the recursive relationship (Sutton, 1988):

Vz(s) Z s,a Z o+ Ve(s)], (3.6)
Z 7Y Qx(sa)], (3.7)

where

§ = Stasl = St-i-lya = At,(l/ = At+17

Ry = E[Ri11|S; = 5, S141 = §', Ay = a],
Pss’ = (Sprl =S |St = S, At)

Eq. 3.6 and Eq. 3.7 can be calculated by the value function or action-value function of the successor
state. They are known as Bellman Equations, where approximate solutions are obtained through
Dynamic Programming (DP) (Bellman, 1966). Through iterative calculations, the optimal value
function of the states can be gradually updated. This process begins with an initial estimate of the
value for all states, followed by adjustments using the Bellman equation to more accurately reflect
expected returns. In each iteration, the value of each state is adjusted based on the potential rewards
from all possible subsequent states. Once the value function stabilizes, the optimal policy 7* that
provides the maximum expected reward for each state can be identified:

7 = argmax V*(s), (3.8)

a

V*(s) = max Ry +72P“/V* (s'), (3.9)

s’

20 Chapter 3. Preliminaries

or
7 = argmax Q* (s, a), (3.10)

Q*(s,a) = R + VZ Py max Q*(s',a’), (3.11)

Due to the unavailability of state transfer probabilities for all states required for DP, researchers
have proposed two learning algorithms: Monte Carlo (Hastings, 1970; Sutton and Barto, 2018) and
Temporal Difference (TD) learning (Sutton, 1988).

3.1.3 Temporal Difference (TD) Learning

Temporal Difference (TD) (Sutton, 1988; Sutton and Barto, 2018) is a central role in RL. It is used
to estimate the value function and is capable of evaluating the value function after performing an
action. TD learning is based on Temporal Difference (TD) error, which is the difference between the
estimated value of the current state and the estimated value of the next state. This error is utilized
to update the state value function in order to better reflect the actual returns. Through continuous
iterations, TD learning gradually converges to the optimal value function, enabling the agent to make
optimal decisions. Its update rule is:

V(s) < V(s)+alr+~V(s) —V(s)] (3.12)

where r + vV (s") — V(s) is the TD error, and « is a learning rate. Its pseudo-code is presented in
Algorithm 1 to clearly describe and share the implementation method of the TD learning algorithm.

Algorithm 1 TD learning
Input: the policy 7 to be evaluated
Output: value function V
Initialize V(s) arbitrarily
for each episode do
initialize state s

for each step of episode, state s is not terminal do
a < action given by 7 for s
take action a, observe r, s’
V(s) < V(s)+a[r+~V(s) —V(s)]
s« s
end for
end for

3.1.4 Q Learning

Q-learning (Watkins and Dayan, 1992) and SARSA (Rummery and Niranjan, 1994) are the two
typical TD learning methods. This thesis is primarily based on Q-learning which learns the action
value function with the following update rule to find the optimal policy:

Q(s,a) — Q(s,a) + afr + ’)’HlEILXQ(S/, a’) — Q(s,a)] (3.13)

3.1. Reinforcement Learning (RL) 21

Algorithm 2 Q-learning
Input: the policy 7 to be evaluated
Output: action value function Q
Initialize Q(s,a) arbitrarily
for each episode do
initialize state s
for each step of episode, state s is not terminal do
a < action for s derived by @), e.g., e-greedy
take action a, observe r, s’
Q(s,a) < Q(s,a) + afr + ymaxy Q(s',a") — Q(s,a)]

s «— s

end for
end for

It estimates the maximum value of the value function of each action, and the optimal strategy can be
determined by iteratively finding the extreme value of the Q-function directly. The pseudo code of
Q-learning is presented in Algorithm 2. Here, ¢ is the exploration rate, determining the frequency
of taking unknown actions during the learning process. A higher exploration rate means trying new
actions more frequently, while a lower exploration rate tends to repeat actions known to yield better
results. In general, in the early stages of learning, a higher exploration rate helps the algorithm to
understand the environment more comprehensively. As learning progresses, the exploration rate is
typically reduced gradually to make more use of the knowledge already acquired.

3.1.5 Monte Carlo

The Monte Carlo method plays a significant role in reinforcement learning as well, utilizing sampling
to estimate value functions. Unlike Temporal Difference (TD) learning methods, the Monte Carlo
approach does not rely on estimating the value of the next state but rather updates the value function
based on actual returns.

In Monte Carlo learning, the update of the value function occurs at the end of a complete episode.
The algorithm records all states, actions, and rewards during the episode, and at the end of the
episode, it uses the accumulated rewards obtained to update the value estimates of all previously ex-
perienced states. This method is particularly suitable for episodic tasks, which have a clear beginning
and end.

The update rule for the Monte Carlo method can be represented as follows:

V(s) < V(s) +a[G: — V(s)] (3.14)

where G is the cumulative discounted reward from time ¢ to the end of the episode, « is the learning
rate, and V' (s) is the current value estimate of state s. In this algorithm, the value of each state is
calculated based on the average of the accumulated rewards in all episodes that pass through that
state. As more episodes are completed, the value estimates gradually stabilize. A major advantage of
this method is that it does not require a model of the environment, meaning it does not need to know
the specific probabilities of state transitions and rewards.

22 Chapter 3. Preliminaries

Input Layer Hidden Layer Output Layer

Figure 3.2: A feed-forward neural network with three hidden layers. Each layer consists of multiple
neurons, which are represented by circular nodes. The arrow between neurons represents the flow
direction of information.

3.2 Deep Learning (DL)

Combining Bellman’s equation and TD learning has led to significant breakthroughs in reinforce-
ment learning research. However, the above methods rely on storing value functions or policies in
a 2D tabular form, which cannot be stored in an array when the state and/or action space is large
or continuous. Even traditional reinforcement learning algorithms face the curse of dimensionality,
where the amount of computation increases dramatically with the number of dimensions of the state
space. Here the powerful representation capabilities of Deep Learning (DL) methods (LeCun et al.,
2015; Goodfellow et al., 2016) make RL advance again. DL approximates non-linear functions by
training Deep Neural Networks (DNNs) and learns the intrinsic laws and essential features of the
input data.

3.2.1 Neural Networks (NNs)

A neural network is a computational model composed of artificial neurons that simulates information
processing and learning capabilities through layer-by-layer linking and weight adjustment. Neural
networks (NNs) (Schmidhuber, 2015) usually consist of multiple layers, including an input layer,
hidden layers, and an output layer. The input and output layer are the first and the last layer, respec-
tively, and there are one or more hidden layers in between. Each layer uses the output of the previous
layer as its input. If the information in a neural network flows in a forward manner without form-
ing cyclic connections, then this neural network model is called a feed-forward neural network or
Multilayer Perceptron (MLP). Feed-forward neural network (or MLP) is a very widely used neural
network model.

NNs are a powerful tool for approximating functions due to their highly flexible struture and
parameter tuning capabilities. Deep NNs (DNNs) (with multiple hidden layers) are particularly good
at approximating complex nonlinear functional relationships. In the following, I will give a brief

3.2. Deep Learning (DL) 23

) Bias b
Dendrites
)
— . Wa
Axon - Output
Wn Linear Activation
Nucleus @/ function function
Inputs

Figure 3.3: The model of biological neuron and artificial neuron. Left: A biological neuron (for
inspiration). Right: An artificial neuron. It has n inputs (z1, z2, ...,), weights (wy, wa, ..., wy,), a
bias b and an activation function f.

description of the different components that make up a neural network.
Neuron

Artificial neurons are the basic processing units of neural networks. Inspired by biological neurons,
the mathematical model of artificial neurons was proposed in 1943 (McCulloch and Pitts, 1943). An
artificial neuron, similar in function to its biological counterpart, takes inputs, performs computa-
tions, and generates outputs. Unlike biological neurons, which consist of dendrites, axons, and a
nucleus, artificial neurons are simplified computational units designed to process and transmit in-
formation. Figure 3.3 illustrates the basic model of both biological neurons (for inspiration) and
artificial neurons, emphasizing the fundamental idea of information processing in artificial neural
networks.
The neuron computes a weighted sum of the inputs Its mathematical function is as shown:

y = fb+) wixy) (3.15)

where f is an activation function. For MLP, the neural network consists of multiple layers of neurons
with unidirectional signalling. Each neuron takes the output of the previous layer as input to compute
the weighted sum, and applies some non-transformation to the computed result to produce the output
of this layer as follows:

k
S;l) _ bgl) n Z wg)ygl_l), (3.16)
i=1

V= £(s1), (3.17)

z(l) is the output of neuron at layer /. ngl.) is

the weight value from ith neuron at layer [— 1 to jth neuron at layer . b;l) is the bias. sg.l) is the
weighted sum of inputs from layer [— 1. f is a nonlinear activation function to add nonlinearity in
the output. Otherwise, the results we get are just a linear combination of the inputs.

where k is the total number of neurons at layer [— 1. y

Output Layer

24 Chapter 3. Preliminaries

. 10
44 —— Linear —— Tanh
5] z 05
o £
1o 2 00
= I
= =
21 = 0.5
_a
104
T T i T T : T T T T
-4 -2 2 4 -4 -2 4
X x
1.0 - - 0.10
—— Sigmoid 3 —— Softmax
Z 081 = 0.08 1
< £
v 06 | 5 0.06 1
i -
S 04 % 0.04
1 o
% 02 1 0.02 |
- >
=
0.0 0.00
. T T T T : T T T T
-4 -2 2 4 -4 -2 2 4
% 54
—— RelU S —— LeakyRelU
E EN
3
[=] H
=) S 3
=5
iz Jal
= g
Z] gt
I o4
0 E
=

Figure 3.4: Different activation functions.

The output layer represents the final layer in the network, responsible for producing the ultimate
prediction corresponding to the given input. Activation functions are utilized in neural networks to
accept input signals and generate output signals in output layers. These functions can be classified
into two types: linear and nonlinear activation functions, with the choice depending on the specific
task at hand. Figure 3.4 shows some of the most commonly used activation functions which are also
applied in this thesis.

When dealing with linear regression problems, linear activation functions are the always choice.

flinear($) = Z, (3.18)

where a linear activation function directly allows for straightforward prediction results. However, it’s

important to note that the input-output relationship of linear activation functions is limited to simple

linear transformations. As a result, this can restrict the expressive capacity of deep neural networks.
In contrast, for the majority of tasks, nonlinear activation functions are favored, such as Sigmoid,

ReLU, Softmax and so on. These functions enable more complex input-output mappings, thereby

allowing deep neural networks to learn and represent intricate patterns and relationships effectively.
In the binary classification tasks, the sigmoid function is commonly used:

1

= 3.19
1+e® ()

fsigmoid (CC)

that restricts the output within the range of O to 1, representing the corresponding probability.

3.2. Deep Learning (DL) 25

Similarly, the softmax function is well-suited for multi-class classification tasks to assign proba-

bilities to multiple classes:
e’

fsoftmaa:(si) = W (3.20)
¥)

where s; is the output of the i-th neuron. The softmax function takes the input values and transforms
them into probability distributions for various classes, ensuring that the sum of all its output values
is equal to 1.

In addition, to alleviate the problem of vanishing gradient, ReLU is used:

z ,x=0
frerv(z) = (3.21)
0 ,z<0,

that is able to keep the gradient from decaying when z > 0. Further, LeakyReL U is used to mitigate
the problem of dead ReL.U:

zr ,r>0

fLeakyReLU (l') = (322)
yr L,z <0,
where 7 is a very small postive value.
Furthermore, a tanh activation could restricts the output in the range of -1 to 1:

Framn(z) = (3.23)

et e %

Objective Function

The objective function, also known as the loss function or cost function, is used to measure the
discrepancy or error between the output of a neural network and the desired value. It guides the
network’s parameter learning and updates by back-propagating the measurement error, aiming to
minimize the objective function. As the neural network’s parameters gradually adjust, the network
can better fit the training data, thereby improving model performance and generalization ability.

A widely used objective function is the mean squared error (MSE):

1

Luse(0) = N (yi — (2i,0))%, (3.24)

gk

where the objective function £y;gg is parameterized with the network parameters 6, which denotes
the biases and weights of the network. N is the number of training samples. y; is the desired value
for i-th training sample. g is the predicted value of the sample z; given by the neural network.

For multi-class classification tasks with C' classes, cross-entropy (CE) is often employed:

C
Lcp(0) Z vi.jlog(g;(xi, 0)), (3.25)

an

where y; j denotes the desired value of the sample x; belonging to the class j. §;(z;, 6) is predicted
probability of the sample x; belonging to the class j.

26 Chapter 3. Preliminaries

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
o5 6@28x28

S2: f. maps
6@14x14

Full conrllection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 3.5: The network architecture of LeNet-5 (LeCun et al., 1998).

Generally, any function capable of quantifying the discrepancy between the network’s output and
a target value can serve as an objective function for training a neural network, provided that it exhibits
differentiability concerning the network parameters.

Network Training

Training of a neural network is the process of tuning the parameters of the network so that it can
learn from the input data and gradually fit the desired output. The main common neural network
training methods are Gradient Descent (GD), Stochastic Gradient Descent (SGD), Adam (Kingma
and Ba, 2014), etc.

GD is one of the most common optimisation algorithms. It gradually decreases the objective
function by calculating the gradient of the objective function with respect to the parameters and
updating the values of the parameters along the descent direction of the gradient

0t+1 = Ot - aVﬁ(@t) (326)

where 6, is the parameters at the ¢-th iteration. £ is the objective function and V.£(#;) is the gradient
of objective function £ with respect to parameter 6. « is the learning rate that controls the step size
of each parameter update in the negative gradient direction. The size of the learning rate directly
affects the effectiveness and speed of training. If « is too small, the step size of each parameter
update is small, the training process will become very slow and may take a long time to converge to
the optimal solution. On the contrary, if « is set too large, the training may become unstable, and
may even lead to the objective function constantly jumping or even diverging.

In addition to this, GD has several variants such as Batch Gradient Descent (BGD), Stochastic
Gradient Descent (SGD) and Mini-Batch Gradient Descent (MBGD). Among them, SGD applies the
gradient of only one sample at each update, which can lead to faster convergence. Further, Adam
is an optimization algorithm that combines momentum and adaptive learning rate, which adaptively
adjusts on the first-order moment estimates and second-order moment estimates of the gradient.

3.2.2 Convolutional Neural Network (CNN)

Traditional neural networks are structured with fully connected layers, wherein every neuron is con-
nected to all neurons from the preceding layer. In this setup, each layer’s representation is derived
from the matrix multiplication between a weight matrix and an activation vector from the earlier

3.2. Deep Learning (DL) 27

bo Wy, b 0 W

Wi unfold > 1% ;,ﬁ—” h@'

Figure 3.6: The structure of a vanilla RNN unfolded in time. The hidden state h, relies on the current
input x; and the previous hidden state h;_1. W, Wy, W}, b; and b, are shared over time.

layer. On the other hand, convolutional networks distinguish themselves by having at least one con-
volutional layer. Unlike the dense connectivity in fully connected layers, convolutional layers feature
sparse connectivity, where each neuron is linked to only a localized region of the previous layer. Ad-
ditionally, a hallmark of convolutional layers is the parameter sharing among neurons within the
same layer, which significantly trims down the number of parameters, making them more parameter-
efficient compared to fully connected layers.

Convolutional Neural Networks (CNNs) (LeCun et al., 1998; He et al., 2016) have found exten-
sive application in image processing tasks, demonstrating remarkable success in image classification
and recognition. Each layer in a CNN can be envisioned as a learned filter or kernel that sifts through
the input image to extract local features. Thanks to parameter sharing among neurons working on
different regions, multiple kernels can be learned with a relatively modest parameter count. The core
operation in a convolutional layer boils down to a convolution operation between the input image
and the learned kernel WW. The formula for a two-dimensional convolution is described as follows:

(I =W)(Zu—zg— m)W (1, m). (3.27)

Typically, convolutional networks comprise a sequence of convolutional layers, which is followed
by fully connected layers towards the end. A non-linear transformation is employed after the convo-
lutional layer using activation functions such as ReLU to introduce non-linearity. In some cases, a
pooling layer is introduced where the activations of multiple neurons are formed into a single value.
Utilizing layers like max pooling offers the benefit of imparting invariance to minor translations,
making the network more robust to slight variations in the input.

3.2.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of neural network models designed for processing
sequential data. Unlike traditional feedforward neural networks, which have one-to-one correspon-
dence between inputs and outputs (i.e., one input corresponds to one output with no connection
between different inputs), RNNs consist of artificial neurons and one or more feedback loops. By
introducing state variables to store past information and using them along with the current input to

28 Chapter 3. Preliminaries

L0 1 —— tanh(x)
tanh'(x) /

0.5 1

—-1.0 4

Figure 3.7: The tanh function and its derivation function tanh’.

determine the current output, information can be passed within the network, and weights can be
shared as each sequence element is processed. The left part of Figure 3.6 shows the structure of
RNN, where z is the input layer, y is the output layer and A is the hidden layer with the loop. For an
input sequence ..., Xy—1, T¢, L+1, .-, the right part of Figure 3.6 shows the network structure when
the loop is unfolded. RNN updates its hidden state h; based on the current input z; and the previous
state h;—1. A vanilla RNN is shown as follows:

Y = g(Wyhe + b,), (3.28)
he = f(Waay + Wihi—1 + b;), (3.29)

where b, is a bias vector. W, W, and W), are weight matrices. f and g are non-linear activation
functions. RNNs share the weight parameters and bias vectors on the time axis, which allows mod-
els to handle sequence data of variable length. A common activation function f in RNNs is the
hyperbolic tangent function.

In general, the training of neural networks is achieved through back-propagation. For RNN,
its back-propagation becomes Back-Propagation Through Time (BPTT) due to its special structure.
Since the output at each time step ¢ is iteratively calculated based on the computations from time step
0 to t — 1, a large concatenated multiplication term actually arises in the back-propagation. Let £;
represent the loss function, the formula for calculating the partial derivative of £; for W, at time ¢ is
as follows:

L Loy [T4 by)\ ok

= - P 3.30
an e (7yt (?ht k41 ah]‘_l an, ()
Similarly, (%}h is shown as:
OL; A 0Ly | 4 Ohy | Ohy
= 5 Pt (3.31)
(9Wh kZ_JO 8yt 6ht k41 8hj_1 6Wh

3.2. Deep Learning (DL) 29

hy
Q) & 2
O
[hi-1
). 1 ht
w Forget gate I;p_u; ;atc ()l‘lt-p-ll[-:;ltc
(a) (b)
Figure 3.8: The structure of (a) gate and (b) LSTM.
In this case, when an activation function is present, the following equation is satisfied:
t t
Ohj y
= hi—1)W, 3.32
H&hj_l Hf(jl)h (3.32)

j=k+1 j=k+1

If the activation function of f is the Tanh function, it has 0 < tanh’ < 1. From Figure 3.7
which shows the Tanh function and its derivative function Tanh’, we can see: When ¢ is large,
H;: i1 S (hj—1)W), tends to 0, resulting in a vanishing gradient problem. In addition, when W),
is large resulting H;z w41 J (hj—1)W}, tends to infinity, the gradient explosion problem arises (Ben-
gio et al., 1994). In order to overcome these problems, researchers have proposed many improved
models based on RNN, two typical models are Long-Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014).

3.2.3.1 Long-Short Term Memory (LSTM)

In vanilla RNNs, the long temporal dependency problem often leads to gradient vanishing or gradi-
ent explosion, making it difficult for the network to capture long temporal sequence dependencies.
LSTM’s improvement lies in the introduction of gate mechanisms, allowing the network to selec-
tively pass or forget information, thereby better handling long sequential data. A gate is a component
that selectively allows information to pass through, composed of a layer with Sigmoid activation
function and an element-wise multiplication operation, as shown in Figure 3.8(a).

LSTM introduces three gate functions: the input gate, the forget gate, and the output gate, to

30 Chapter 3. Preliminaries

Reset gate Update gate

1|
L
I
h
h
I
h
h
1]
1
h
h
1
h
h
I
]
"
1
1

&
N

\

Figure 3.9: The structure of GRU.

control input values, memory values, and output values. The updated rules are as follows:

fr = U(Wmfl‘t + thht—l + bf), (3.33)
it = o(Wyixy + Whrihi—1 + b;), (3.34)
or = 0(Waoxy + Wiohi—1 + bo), (3.35)
& = tanh(Waezs + Whehi—1 + be), (3.36)
= fi®Oc-1+ 1 O, (3.37)
hy = oy tanh(c;), (3.38)

where © is the Hadamard product, and o is the sigmoid function. W, are weights of LSTM, b, are
bias vectors. x; and h; are the input and hidden state at time ¢, respectively. ¢; is the memory cell. i;
is the input gate, f; is the forget gate, and o, is the output gate.

At each time step, the forget gate determines which information to be forgotten from the memory
cell, while the input gate selects which information to be added and updates the current information
in the memory cell. Finally, the output gate decides which information from the memory will be
output as the current time step’s output by multiplying it with the memory cell.

3.2.3.2 Gated Recurrent Unit (GRU)

GRU is a variant of LSTM with a simpler structure and fewer gate mechanisms. It retains the advan-
tages of LSTM, such as effectively capturing long temporal dependencies. However, it is easier to
optimize during the training process, and it is less prone to issues like vanishing or exploding gradi-
ents. The main feature of GRU is the introduction of two gate mechanisms: the update gate and the
reset gate. These gate mechanisms help GRU determine how to process input data and the previous

3.2. Deep Learning (DL) 31

' _____ social networks

S [N

N ! |

Z ' o |

Z : 4 4 \ R

¥ \, / A I

\\]
2D grids ‘_

B/

Figure 3.10: Left: Image in Euclidean space. Right: Graph in non-Euclidean space.

hidden state. The update rules for GRU at each time step are as follows:

2zt =o0(Woay + Ushy—1 + b2), (3.39)
re = o(Wexy + Uphy—1 + by), (3.40)
hi = tanh(Wyay + Up(r: © he—1) + by), (3.41)
he = (1—2) @1 + 2. O hy, (3.42)

where W, and U, are weight matrices of GRU, b, are bias vectors. x; and h; are the input and hidden
state at time ¢, respectively. hy is denoted as the candidate state at time ¢. © is the Hadamard product.
o is the sigmoid function. z¢, 74 are the update gate and reset gate, respectively.

In GRU, the reset gate controls how much past information should be forgotten, while the update
gate decides how much information from the previous time step and the current time step should be
propagated to the next time step.

3.2.4 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) (Kipf and Welling, 2016; Velickovic et al., 2017) are a class of deep
learning models specifically designed for handling graph-structured data. They can handle data with
irregular spatial structures commonly found in real-life scenarios, i.e., data in non-Euclidean spaces.
For example, abstracted graphs from electronic transactions and recommendation systems, where
each node is connected to others without fixed patterns. Figure 3.10 shows examples of the data in
Euclidean space and the data in non-Euclidean space. In order to facilitate understanding, I have
summarized some definitions related to graphs.

Definition 1 A graph is composed of nodes and edges, usually denoted as G = (V, E, A), where V
represents the set of nodes, E represents the set of edges, and A represents the adjacency matrix of
the graph. v; € V is the ith node, and e;; € E is the edge between ith node and jth node. If there
exists e;; € I, then A;j = w;; > 0, otherwise A;; = 0ife;; ¢ E.

Definition 2 An undirected graph is a graph in which all edges have no direction, and A;; = Aj;.
For the directed graph, all edges point from one node to another one, and A;j # Aj;.

32 Chapter 3. Preliminaries

Hidden layer Hidden layer
SR)
Input Output
ReLU ReLU

e b

~__ /o

Figure 3.11: Structure of Graph Convolution Networks (GCNs) with multi-layer.

The goal of GNNss is to learn feature representations between nodes and graphs. For example,
given a graph G, where x, represents the feature of node v, and x, , represents the feature of the
edge between nodes v and u. The v node’s hidden state h, is calculated based on its own feature x,,,
the features of connected edges x,[,], the features of its neighboring nodes z,,[,] and the hidden
states of its neighbors h,,.[,:

hy = f(x’ua Leo[v]s hne[v]7xne[v]) (3.43)

where f is a parametric function that is called local transition function and shared through all nodes.
Graph neural networks model data in non-Euclidean spaces by propagating information between
nodes in the network, capturing internal dependencies within the graph data. They can update and
integrate features for nodes and edges, effectively utilizing the global information within the graph.
Two typical models of GNNs are Graph Convolutional Graphs (GCNs) and Graph Attention Net-
works (GATS).

3.2.4.1 Graph Convolution Networks (GCNs)

Graph Convolution Networks (GCNs) (Kipf and Welling, 2016) generalize convolutional operations
from traditional data to graph data. Specifically, for each node, GCN computes the weighted average
of its neighboring node features and integrates this average feature with the node’s own feature, re-
sulting in a new feature representation for the node. This aggregation process enables nodes to prop-
agate and share information on the graph, thereby acquiring more enriched feature representations.
As shown in Figure 3.11, the general equation in GCN used to propagate feature representations to
the next layer is as follows:

H'T = f(H A) (3.44)

where L is the number of layers, A is the adjacency matrix. H is the set of hidden state of each layer,
HY = X which X is the input, and H' = Z which Z is the output. In Kipf and Welling (2016), it is
defined as:

H = (ﬁ_l/QAﬁ_l/QHlWl> (3.45)

3.2. Deep Learning (DL) 33

concat/avg @
hy

Figure 3.12: Left: Attention mechanism. Right: Illustration of multi-head attention with head(k) =
3. Different colors of lines indicate independent attention computations. (Velickovic et al., 2017)

where A = A + I is an adjacency matrix after adding self-loops and and [is an identity matrix.
Dii =2 Ayj is a diagonal degree matrix. D~/2AD~1/2 is a normalized adjacency matrix that
represents the structure of the graph. W' is a weight matrix for I-th neural network layer. H'T¥/!
gives a linear transformation to the embedding of all nodes in layer [. o(.) is a non-linear activation
function.

3.2.4.2 Graph Attention Network (GAT)

Graph Attention Networks (GATs) (Velickovic et al., 2017) introduce the attention mechanism for
handling graph-structured data. Specifically, GATs dynamically aggregate neighboring node fea-
tures by calculating attention weights between nodes and their neighbors as shown in Figure 3.12,
allowing for node feature updates and learning. Unlike fixed neighbor weights in traditional GNNss,
this attention function considers the relationship and feature similarity between nodes, assigning ap-
propriate weights to different neighbors. Through the calculation of attention weights, GATs can
adaptively learn the importance of nodes, leading to a more effective aggregation of neighboring
node information.

First, in order to enhance the expressive power and transform the input features into higher-level
representations, GAT performs self-attention on the given set of node feature vectors. For vertex
1, the attention weights (or the similarity coefficients) are calculated between itself and each of its
neighbors (5 € N;) one by one:

eij = a([Whi|[Why]),j € N; (3.46)

where N indicates the number of the neighborhood of node i, W is the weight matrix and || is the
concatenation operation. e;; indicates the importance of the features of j-th node to i-th node. a(-) is

34 Chapter 3. Preliminaries

a mapping function that projects the concatenated high-dimensional features to a real number, such
as a feedforward neural network. It allocates attention only to the neighboring node set of node .
Then, the softmax function is used to normalize all the attention weights:

_ exp(LeakyReLU(e;;))
— ZkeNi exp(LeakyReLU(e;))

Qi (3.47)
where «;; is called normalized attention coefficients. LeakyReLU denotes the LeakyReLU nonlin-
earity function.

Finally, the attention weights are applied to weight and average the neighboring nodes’ features,
resulting in a new aggregated feature representation h; for node i:

hy =0 (Z aijWhj> : (3.48)

JEN;

where o is the activation function. In addition, GATs utilize a multi-head attention mechanism with
K heads to further enhance the model’s capacity for fitting:

hi(k) = |liey0 (Z ai%“”%) : (3.49)

JEN;

where || indicates the concatenation operation. The multi-head attention enables parallel computation
since the computation for each head is independent.

3.3 Deep Reinforcement Learning (DRL)

As described earlier, in order to overcome the limitations of classical reinforcement learning methods
due to the curse of dimensionality and poor training performance on large datasets, deep reinforce-
ment learning methods train deep neural networks to approximate any nonlinear function, thereby
extracting the inherent features of input data and generalizing to unknown states. DRL integrates the
powerful understanding capabilities of deep learning in perceptual tasks like vision with the decision-
making capabilities of reinforcement learning, enabling end-to-end learning. DRL can be classified
into two categories: value-based methods and policy-based methods.

3.3.1 Value-based Learning

Building on the classical temporal-difference methods discussed in section 3.1.3, value-based DRL,
unlike querying value tables, approximates values using deep neural networks. Value-based methods
then indirectly obtain the agent’s policy by iteratively updating the value function. When the value
function reaches its optimal value, the agent’s optimal policy is obtained through the optimal value
function.

3.3.1.1 Deep Q-Network (DQN)

Value-based deep reinforcement learning, exemplified by Deep Q-Network (DQN) (Mnih et al.,
2013, 2015) introduced by DeepMind in 2015. DQN extends the principles of Q-learning to handle

3.3. Deep Reinforcement Learning (DRL) 35

high-dimensional raw scene data, such as game images, as its input, by using deep neural networks
to approximate the Q-function. The Q-network’s output represents the Q-function values for various
actions in the given state, enabling the selection of the action with the maximum Q-value at each time
step for decision-making and action. Additionally, DQN introduces two mechanisms, "experience
replay" and "target network."

Experience replay is used to store the agent’s previous experiences. At each time step, the ex-
periences (s, a,r,s’) are stored in an experience replay buffer, and a random sample of experiences
from the experience replay buffer is used for training. Experience replay helps remove the correlation
between data sequences and smooths out the variation in data distribution, thus enhancing training
stability.

The target network in DQN, is an independent neural network used to calculate the target Q-
values and stabilize the training process. The parameter 6, of the target Q-network Q(s’,a’;6,")
is periodically copied from the current Q-network Q(s, a; 6;) with a certain frequency. Because the
target Q-network’s parameter 6, is fixed for a certain period, the training network’s update targets
remain relatively stable. This helps avoid the problem of value estimation bias caused by continuous
target updates and improves the stability and efficiency of DQN training.

In DQN, the network parameters are updated based on Gradient Descent (GD), and the loss
function is defined as follows:

2
L;=E [(r + 7 max Q(s',d;67) — Q(s, a; 01)>] (3.50)

If we choose to optimize V-value rather than the more common choice Q-value, it is called Deep
V-Learning (Deep Value Learning). Similar to the classical DQN algorithm, Deep V-Learning also
performs incremental updates to the values.

3.3.1.2 Double Deep Q Network (DDQN)

In DQN, we use Q-values to estimate the value of each action, where higher Q-values imply a higher
likelihood of yielding greater rewards. However, when we employ deep neural networks to estimate
Q-values, a problem known as overestimation arises. This means that the network may overestimate
the Q-values for certain actions, leading to training instability and convergence difficulties.

Definition 3 "Overestimate" refers to the process of first taking the maximum value from a se-
ries of numbers {X1, Xo, ..., XN} and then calculating the average, typically resulting in a value
that is greater than or equal to the result obtained by first calculating the average and then find-
ing the maximum value. This can be mathematically expressed as: E(max(Xi, Xo,...,Xn)) =

max (E(X1), E(Xs), ..., E(Xy)).

To address the issue of overestimation of Q-values in DQN, Double Deep Q Network (DDQN)
was introduced in Van Hasselt et al. (2016) as an improvement. DDQN utilizes two separate Q-
networks, where one is used for action selection, and the other is used for action evaluation. Specifi-
cally, DQN is to directly select the maximum Q-value among the Q values corresponding to the next
state’s various actions in the target Q-network, which is shown as:

YRR oy 'ymE}XQ(s/,a'; 0:7) (3.51)

target —

36 Chapter 3. Preliminaries

In contrast, DDQN uses the estimated Q-network to select the optimal action corresponding to the
maximum Q-value and then uses the target Q-network to evaluate the selected optimal action, which
can be shown as follows:

selection: a™*(s',0;) = argmax Q(s',d’; 6;), (3.52)
a/
evaluation: Y;E,]?g%f =7 +~Q(s,arg max Q(s',d;0;), (3.53)
a

Through this approach, even if one network overestimates the value of certain actions, the other
network provides a more accurate evaluation, reducing the impact of overestimation. DDQN then
does a GD step with a loss function which is defined as follows:

2
L;=F [(r +Q(s', argmax Q(s,d'; 6;): ;) — Q(s, a; 0»)] (3.54)

By minimizing the loss function, the model learns how to adjust its policy to maximize the cumulative
rewards in reinforcement learning tasks. Meanwhile, the parameters of the target Q-network 6,
are periodically copied from the estimated Q-network 6;, aiming at maintaining the stability of the
training process, as having a fixed target prevents the instability caused by continuously changing
targets during training. This strategy effectively resolves the overestimation issue found in DQN,
making DDQN more effective and stable across various reinforcement learning tasks.

3.3.2 Policy-based Learning

Compared to value-based methods, which are primarily designed for discrete and low-dimensional
action spaces, policy-based algorithms are typically more suitable for tasks with continuous and
high-dimensional state spaces, and they perform better in exploring complex environments.

In Policy-based algorithms, neural networks are commonly used to represent the policy function,
which maps environmental states to probability distributions over actions, shown as 7 (a|s, #). Such
networks are called policy networks, and their parameters are trained to maximize the cumulative
reward. Unlike value-function methods (such as DQN), Policy-based algorithms learn how to choose
optimal actions directly by optimizing the policy, rather than learning a value function and selecting
actions based on it (e.g., e-greedy strategy).

Depending on whether they rely on Gradient Descent (GD) method, Policy-based algorithms can
be divided into two categories. The ones based on GD are known as policy gradient methods. In
general, such methods update the parameters of the policy network using the GD method. Defining
the policy objective function as J(6), the goal of policy gradient methods is to find the maximum of
the objective function:

0, = arg max J(6) (3.55)
0
Policy gradient methods perform parameter updates to update the parameter:

0 — 0+ aVeJ(0) (3.56)

where « is the learning rate and Vy.J(0) is the policy gradient.

3.3. Deep Reinforcement Learning (DRL) 37

Actor
Policy

TD error
Critic
Function
Reward

—[Environment j‘—

Figure 3.13: Actor-Critic (AC) architecture shown in Sutton and Barto (2018).

3.3.2.1 Actor-Critic (AC) Architectures

Actor-Critic (AC) Architecture (Sutton et al., 1999; Mnih et al., 2016) combines the Actor (policy
network) from the Policy Gradient method and the Critic (value function network) from the Value-
based method. The Actor is used to learn the policy in the environment and find the optimal actions
of given states. The Critic is used to estimate the value of states or state-action pairs and provides
feedback to the Actor, helping it update the policy for better exploration and exploitation of the
environment.

3.3.2.2 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) method (Lillicrap et al., 2015) is an Actor-Critic based
approach suitable for continuous action spaces, where the obtained policy is a deterministic policy
(i.e., ay = p(s¢]0*)). Additionally, it utilizes two important mechanisms from DQN, namely Ex-
perience Replay and Target Network, to enhance training stability and convergence. N samples are
randomly selected in the experience replay buffer, and the Q-network Q(s, a|6?) is updated using
gradient descent. The Q-network’s loss function is shown as follows:

1
L= N;(yi — Q(si,ai]09))? (3.57)
where y; indicates the Critic target network with y; = r; + YQ (8i41, u/(siﬂ\ﬁ“,)\@@'). And the

parameters of target networks are updated by:

0 — 70* + (1 —7)0* (3.58)

CHAPTER 4

DRL-based Social-aware Robot
Navigation

In this chapter, I provide an overview of the fundamental aspects of research on DRL-based social-
aware robot navigation. First, I introduce the basic framework of DRL-based social-aware robot
navigation. Next, I formulate the problem and discuss its essential components. Finally, I briefly
describe the current simulation experiments’ environmental settings, experimental setup, and perfor-
mance metrics for evaluation.

Contents
41 Framework i i i i e e e e e e 39
4.2 Problem Formulation0. .00, 41
4.2.1 States Space and Parametrization 41
422 ActionSpace 42
423 RewardFunction 43
4.2.4 State Transition Model 44
425 ValueFunction 44
4.3 Simulation Environment 0 00, 44
43.1 SimulationSetup 44
4.3.2 Trainingand Testing 46
433 MEriCs . . . v i e e e e e 47
4.4 Challenges in Social-aware Robot Navigation 47

4.1 Framework

Mobile robots move in two-dimensional or three-dimensional space, such as autonomous vehicles
navigating city roads and aircraft flying in two-dimensional space. Many real-world applications
only require navigation in two dimensions. The purpose of their navigation is to find an optimal path
from the starting point to the destination that is safe and efficient. These robots only need to handle
motion and obstacle avoidance in a two-dimensional plane, which significantly simplifies the model
and problem complexity. As a result, the majority of current research focuses on navigation problems
in two dimensions, making the problems easier to model and address.

As mentioned above, mobile robot navigation can be seen as a combination of Point-to-Point
(P2P) movement and obstacle avoidance behavior. P2P requires obtaining the position of the target
point relative to the starting point. The mobile robot can achieve this by using a global positioning
system such as GPS or ultra-wideband localization system to obtain its absolute position on the map,

40 Chapter 4. DRL-based Social-aware Robot Navigation

or by knowing the absolute coordinates of the target point in advance and calculating the coordi-
nate difference between the target point and its current position, thus obtaining the relative position
information. Additionally, the robot can also use visual sensors or other sensors to perceive the sur-
rounding environment and estimate relative position information. For obstacles in the environment,
they can be classified into static, dynamic, and structurally continuous or discontinuous obstacles,
which can be sensed using cameras or various comprehensive perception sensors. In this work, I
mainly focus on obstacles composed of static or dynamic agents, as their positions and shapes may
vary with time and changes in the environment. These obstacles may require the mobile robot to
make real-time decisions based on real-time perception information to avoid collisions or choose the
optimal path.

Currently, navigation based on DRL has been used to replace or integrate into traditional naviga-
tion frameworks, as shown in Figure 4.1 depicting the interaction between the DRL-based agent and
the environment. DRL-based agents often apply and extend various well-known DRL algorithms,
such as DQN and DDPG, by modeling the navigation process as an MDP. They typically utilize sen-
sor observations as states in an attempt to maximize the expected rewards, although it’s important to
note that the suitability of the MDP model may vary depending on the specific navigation environ-
ment and its characteristics. Overall, DRL-based navigation algorithms exhibit strong adaptability,
high learning capability, and efficiency. In particular, when mobile agents (e.g., robots or intelligent
vehicles) navigate in crowded environments like airports or shopping malls, they not only need to
interact socially with other pedestrians but also efficiently reach their destination while adhering to
social norms. This is known as social-aware robot navigation. For mobile agents in social navigation,
the challenges are even greater: (1) the higher density of dynamic obstacles in crowded environments,
and (2) the randomness of human behavior makes adhering to social norms in navigation more diffi-
cult. The purpose of using DRL algorithms for social navigation is to enable agents to autonomously
learn and optimize navigation strategies, empowering robots with enhanced decision-making capa-
bilities and adaptability to cope with the complexity and uncertainty in crowded environments with
human presence.

[

L Perception

\
)

State

Environment

P—
{ Start point]

k7 -------- \ Reward

{ obstacles ‘]
\

1 Deep Neural Network

Action

[Control }

Figure 4.1: DRL-based navigation system

4.2. Problem Formulation 41

4.2 Problem Formulation

Based on existing papers like Chen et al. (2019, 2017b); Everett et al. (2018), social-aware robot
navigation in a 2D Euclidean space can be formulated as a sequential decision-making problem
within an RL framework, wherein the robot learns to make optimal actions at each time step to reach
a goal while navigating through a crowd of n humans. I model the interactions between the robot
and other humans as an MDP, defined by the tuple < S, A, P, R,y >. P is the probability transition
function and ~y is the discount factor. The state space S, the action space A, and the reward function
‘R are the three key elements. These elements together form the foundation for the agent’s decision-
making and learning within the environment, directly influencing the performance and application
scenarios of the DRL algorithm. By optimizing the agent to select the most advantageous actions in
a given state, aiming to maximize cumulative rewards, the navigation system steadily improves its
performance and becomes applicable to various navigation tasks.

4.2.1 States Space and Parametrization

The state space in robot navigation tasks consists of two main components: the robot’s self-state
and the obstacle (e.g., dynamic or static humans) state. The robot’s self-state s includes its current
position p” = [p}, py], target position pg” = [py,, Py,], speed v" = [vf, vy], orientation ¢, and
radius r, which aid in perceiving its own movement and location. On the other hand, the obstacle
states comprise information about obstacles in the environment, such as the current position p’ =
[P, pg], speed v¢ = [vl, v;], and radius r? of the 4-th human, which influence the robot’s navigation
decisions. Notably, for an agent (robot or human), its position p”/p*, speed v" /v’, and radius r/r"
can be observed by others. However, the robot’s target position pg, preferred speed vp,.r, and

orientation ¢ are unobservable and known only to the robot itself. Let s denote the robot state and

s = [s},s?,...,s7] be the observable state of humans at timestep ¢. Thus, the joint state for robot
navigation is s}" = [s},s?].

To simplify calculations, researchers transformed the global Cartesian coordinates into local polar
coordinates and introduced a new coordinate system that sets the robot as the center of the coordinate
system. In the original global coordinate system, the representation of the robot’s position and target
point is absolute, which might lead to coordinate transformations or rotations that do not affect the
optimal decisions. For example, the robot’s facing direction in the global coordinate system may vary,
but its decision goals and strategies remain the same, as such directional information is unnecessary.
By introducing the agent-centric local coordinate system, the robot’s current position becomes the
origin, and the x-axis points toward the robot’s target. The representation of the target point is then
converted into relative coordinates with respect to the robot’s position. This transformation eliminates
uncertainty and redundancy in the global coordinate system, simplifying and enhancing the robot’s
decision-making process. Furthermore, agent-centric parameterization streamlines the representation
of the robot’s state and action selection, reducing computational complexity and enhancing efficiency.
For simplicity, after omitting the timestep ¢, the transformed state of the robot and pedestrians is
represented as follows:

ro_ ror
s = [dgvvxvvyvvprefer

s = [pmﬂpy7va;’vy’r’d’,r +T];

4.1

42 Chapter 4. DRL-based Social-aware Robot Navigation

1 ,
vy v | @
@y .
®E /)| ___L.
a»- D
(a) Holonomic kinematics (b) Non-holonomic kinematics

Figure 4.2: Holonomic kinematics and non-holonomic kinematics. (a) Left: The robot that has
holonomic kinematics can take any possible action (velocity vector) without motion constraints. (b)
Right: The set of permissible velocity vectors for the robot that has non-holonomic kinematics.

where d, = ||p” — py||2 is the distance from the current position of the robot to its goal position and
d' = ||p” — p'||2 denotes the distance from the robot’s current position to the position of i-th human.

4.2.2 Action Space

The action space contains all possible actions that a robot can take, which depends on the robot’s
motion ability and the requirements of the navigation task. The robot’s motion can be classified into
holonomic and non-holonomic motion, as shown in the Figure 4.2.

The robot with holonomic kinematics refers to its ability to move freely on a plane and in any
direction without motion constraints. In this case, the action space is typically continuous, allowing
the robot to select any combination of speed and direction for smooth and unrestricted movement. On
the other hand, non-holonomic motion imposes certain constraints on the robot’s motion, limiting its
movement to specific directions while facing constraints in other directions. When the robot has non-
holonomic kinematics, its action space is usually discrete, restricting the robot’s action choices based
on specific motion constraints. These constraints may lead to more restricted turning and movement,
resulting in a larger turning radius or requiring more action combinations to complete turns, which
could affect the smoothness of motion. To achieve smoother motion, for robots with non-holonomic
motion, appropriate action planning and control strategies may be needed to enable smooth turning
and movement in feasible directions, avoiding sudden changes in direction or jitter.

In social-aware robot navigation, the action space consists of allowed velocity vectors. If we
assume that the robot’s velocity can be immediately reached after receiving the action command,
then v = a. When the robot has holonomic kinematics, ||v"||2 < vprer. When the robot has
non-holonomic kinematics, it means it has rotation constraints:

a = [v,w],for v < vpef, |w— 0] < ¢, 4.2)
|0t+1 - 9t| < At- Uprefs (43)

4.2. Problem Formulation 43

where v is the linear velocity and vp,.; = 1m/s. w is the angular velocity and ¢ is the angular
value of the rotation constraint. Eq. 4.2 restricts the agent’s possible directions of motion. In Eq. 4.3,
the relationship is defined between the maximum turning rate and the minimum turning radius of
1.0m. This equation establishes the maximum rate at which the robot can turn while ensuring that it
achieves a minimum turning radius of 1.0m.

Overall, the size of the action space impacts the flexibility and efficiency of robot navigation.
A larger action space may increase computational complexity, but the robot can have more flexible
action choices. A smaller action space may reduce the computational burden, but the robot’s action
choices may be more limited.

4.2.3 Reward Function

The reward function in DRL-based social-aware robot navigation is used to evaluate the effectiveness
of specific actions taken by the agent (robot) in a given state. The design of the reward function plays
a crucial role in RL, as it encourages the agent to take beneficial actions by providing positive rewards
and punishes harmful actions with negative rewards. Consequently, the agent aims to maximize the
long-term accumulated rewards through learning and optimizing its strategies, thereby achieving
improved navigation behavior.

In general, in social-aware robot navigation, the reward function typically encourages the robot
to move toward the target direction and reach the designated goal. For instance, significant positive
rewards may be given upon reaching the goal, motivating the robot to successfully complete the nav-
igation task. Furthermore, to avoid collisions with obstacles, the reward function may offer positive
rewards for actions that avoid collisions, and negative rewards for actions that result in collisions or
getting close to obstacles. Additionally, in certain scenarios, energy conservation becomes a crucial
objective. The reward function may encourage the robot to navigate in an energy-efficient manner,
such as by choosing a more energy-saving path. In conclusion, the design of the reward function
needs to consider various factors, including task objectives, environmental characteristics, and the
robot’s motion capabilities.

A well-designed reward function can enhance the learning efficiency and navigation performance
of the reinforcement learning algorithm. However, designing the reward function may also present
challenges, as it requires balancing trade-offs between different objectives and avoiding adverse re-
ward signals that could lead to unstable training or getting stuck in local optima. In most of the
social-aware navigation works, the common reward function is sparse which only rewards when
reaching the goal position and penalizes when having a collision or being discomfort, while most of
the time in navigation, it does not receive any reward signals. As shown in Chen et al. (2017b), the
common sparse reward function is given:

—0.25 if dpin <0
; —0.1 + dmin/2 elseif dpin <
R(si" &) = min/ " Gmin = Te 4.4)
1 elseif p = py
0 otherwise,

where d,,;, represents the minimum distance between the robot and other humans within a duration
of At. r. represents the comfort distance, which indicates the minimum distance at which the agent
prefers to keep from others to maintain comfort and safety. It serves as a measure of the personal

44 Chapter 4. DRL-based Social-aware Robot Navigation

space or safety buffer that the agent desires to have while navigating or interacting with its surround-
ing environment. The comfort distance may vary depending on the specific agent and its operating
context, which is set 0.2m in Chen et al. (2017b).

4.2.4 State Transition Model
The state transition model P(sﬁl, s{"|at) defines the possible next states and their corresponding
transition probabilities given the current state and a specific action taken by the robot. In social-aware
robot navigation, the state transition model is typically determined by the environment’s dynamics or
motion rules, which may depend on factors such as the robot’s motion capabilities, the distribution
of obstacles in the environment, and the positions of other robots. The state transition model is often
unknown in practice, primarily due to the complexity and dynamic nature of the environment, which
makes accurate modeling challenging. However, it’s important to note that in simulated environ-
ments, although the state transition model may start as unknown, it often becomes known over time
as the training progresses. Additionally, interactions with other agents, such as pedestrians or other
robots, introduce uncertainty into the state transitions.

As a result, model-free reinforcement learning methods, such as Deep Q Network (DQN), are
commonly used. These methods do not rely on prior knowledge of the state transition model. In-
stead, they collect sample data through interactions with the environment and use this data for policy
optimization and value function estimation. This enables the robot to learn and optimize navigation
strategies, adapting to unknown state transition models and complex navigation environments.

4.2.5 Value Function

The value function V; or action value function (s, a) represents the expected cumulative reward of
an agent taking specific actions in a given state. It measures the desirability of various actions in the
current state to assist the agent in making optimal decisions. Therefore, in social-aware crowd naviga-
tion, the objective is to find the optimal value function V*(aJ") or action-value function Q*(al", a,).
Based on Section 3.1.2, the optimal value function V* (si”) is:

T
V(s = Z fyt/.'UprefR(S.Z,n’ w*(siM), 4.5)

t'=t

where v € (0, 1) is a discount factor and vy, s here is utilized as a normalization factor according to
numerical reasons, as otherwise, the value function of slowly moving agents may become very small.
Then, the optimal policy 7*(s]") can be determined from the optimal value function V*(s]"):

m*(s{") = argmax R(s{", ay) + 7"’ f P an s A VIS A) dSlan (46)
S

at T+ At

4.3 Simulation Environment

4.3.1 Simulation Setup

In the real world, conducting experiments on social-aware robot navigation may involve complex
environments and dynamic interactions, which can lead to collisions or other safety issues among

4.3. Simulation Environment 45

O Dynamic obstacle
iﬁj\/‘ Goal of obstacle

* Goal of robot

A * Left side * Right side
: o
: . _//\\‘ r/\l : ,O
i é - j)f ’\37 AN i 4 =
A ~Xa -7]l B (
< Saiz- Q Q X [
*

A
P
N

Circle-crossing Square-crossing
Environment Environment

Figure 4.3: Circle-crossing scenario and square-crossing scenario.

robots. Using a simulation platform provides a safe virtual environment, allowing researchers to
conduct experiments without real risks. In the simulation platform, researchers have full control over
the environment parameters and settings, such as the number and speed of robots, the positions of
obstacles, etc., enabling better observation and analysis of the effectiveness of navigation strategies.
Moreover, experiments based on the simulation platform can be easily repeated multiple times for
the same scenario, verifying the stability and consistency of navigation algorithms, and ensuring the
reliability of research results. For diverse navigation scenarios, researchers can quickly test different
navigation algorithms and strategies to find optimal navigation solutions. In summary, the simulation
platform is designed to offer a safe, controllable, and flexible research environment to accelerate the
development and optimization of navigation algorithms and provide valuable guidance and reference
for practical applications.

Training and testing of socially aware robot crowd navigation algorithms based on simulation
platforms typically involve two key components: the simulation environment and collision avoidance
algorithms. The simulation environment creates a virtual setting with robots and other agents (like
pedestrians) and simulates sensors (such as LIDAR, cameras, or sonar) that a robot might use to
gather information about its surroundings. This environment provides state information (s”/%) of the
agents (like their positions p'/%, speeds v"/?) and a standardized data interface, enabling algorithms to
read the environmental state (such as the positions p/* and speeds v"/* of agents) and make decisions
(like movement commands a). Meanwhile, the collision avoidance algorithms continuously receive
and analyze the state information of agents (s"/%) from the simulation environment, calculating and
updating decisions to plan the best paths or speeds to avoid collisions, and adapting to the dynamic
changes in the environment.

46 Chapter 4. DRL-based Social-aware Robot Navigation

As demonstrated in the work of Chen et al. (2019), a simulation environment for social-aware
robot navigation can be built based on Python, incorporating Gym (Brockman et al., 2016) and RVO
(Van den Berg et al., 2008). These environments simulate complex robot crowd navigation scenar-
ios in the real world, challenging the robot’s intelligent decision-making and avoidance abilities in
crowded environments. Typically, the environment consists of n + 1 agents, including one robot
and n humans controlled by certain unknown policies. The humans’ behaviors in the environment
usually follow the ORCA policy (Van Den Berg et al., 2011), with parameters sampled from a Gaus-
sian distribution to introduce behavioral diversity. The circle-crossing scenarios and square-crossing
scenarios are two common simulation scenarios for robot crowd navigation, shown in Figure 4.3.
these circle-crossing scenarios are usually set with a radius of 4m for both training and testing, and
square-crossing scenarios are with a width of 10m. In the circle-crossing scenarios (square-crossing
scenarios) scene, the robot’s starting position is set to (0, —4) and its goal position to (0,4). The
initial positions of dynamic humans are randomly placed on the circle (square), and their goals are
on the opposite side of the same circle (square). Conversely, static humans have their initial positions
randomly scattered within the circle (square) and maintain a velocity v = Om/s during training or
testing, ensuring their positions remain unchanged. This configuration can lead to paths where agents
converge towards the center, resulting in strong interactions near the center. Additionally, random
perturbations are added to the =, y coordinates of the initial and target positions to make the RL
algorithm more robust and capable of generalization.

Human groups are typically composed of individuals who are simultaneously walking and sta-
tionary. To simulate and understand human group behavior more realistically and facilitate better
interaction and navigation with humans, the simulation environment can include both dynamic and
stationary humans. Dynamic humans refer to individuals in the simulation environment who exhibit
motion behaviors with v* < 1m/s. These dynamic humans may move over time, such as walking or
running, and can influence the navigation behavior of the robot. On the other hand, stationary humans
are individuals in the simulation environment who do not exhibit motion behaviors (v* = Om /s); they
are typically fixed at specific positions or remain stationary. Although these stationary humans do
not move during navigation, they can still impact the robot’s path planning and obstacle avoidance
behavior, as the robot needs to avoid collisions with them. By considering both dynamic and sta-
tionary humans, the simulation environment can better simulate human group behaviors in the real
world, leading to more realistic and effective robot navigation.

In addition, to thoroughly evaluate the effectiveness of the proposed model, existing work usually
explores two simulation settings: invisible and visible. In the former, the robot is set not visible to
humans. This means that the simulated humans could not react to the robot’s actions, such as giving
way. This setting allows studying the robot’s ability to interact with both humans and other robots
without affecting human behavior. In the latter setting, known as the visible setting, human-robot
interactions introduce more uncertainty in the environment, resembling real-world situations where
robots and humans interact with each other.

4.3.2 Training and Testing

During the training stage, RL algorithms such as DRL are utilized to train the robot’s navigation
policy. Throughout this process, the robot interacts with the simulation environment, collecting sam-
ple data, and continuously updating value functions, policy networks, or other learning parameters

4.4. Challenges in Social-aware Robot Navigation 47

through this interaction. As a result, the robot gradually learns the optimal strategies for different
actions in various states to maximize long-term cumulative rewards.

In the testing stage, the trained robot navigation policy is evaluated and validated. During this
phase, a set of new or previously unseen test scenarios is commonly employed to assess the robot’s
navigation performance in unknown environments. These test scenarios may involve different envi-
ronmental parameters, initial positions, and target locations, allowing for a comprehensive evaluation
of the robot’s generalization capability and adaptability.

The benefit of conducting both training and testing in simulations is the significant reduction in
experiment costs and risks. Within the simulation environment, extensive training and testing can
be swiftly performed, parameter adjustments can be made, and various strategies can be explored,
thereby accelerating the optimization process of the algorithms

4.3.3 Metrics

Evaluating the protocol for social-aware robot navigation typically involves multiple metrics to assess
navigation performance and social interaction effects. Based on Wang et al. (2022), some common
evaluation metrics include both basic performance metrics and socially conformity-focused metrics.

Basic performance metrics include success rate ("Succ.(%)"), collision rate ("Coll.(%)"), timeout
rate ("Timeout(%)"), and average navigation time of the robot ("t,,4,").

(1) "Succ.(%)": the rate of success cases that the robot reaches the specified target position without
collision within the maximum allowed time %;;,,,;¢.

(2) "Coll.(%)": the rate of collision cases that the robot collides with other agents.

(3) "Timeout(%)": the rate of timeout cases that the robot neither reaches the target nor collides with
others within the maximum allowed time ¢;;,,,¢-

(4) "tnay'": the average navigation time for the above success cases which is measured in seconds.

Regarding socially conformity-focused metrics, the typical one is comfort which is defined as
the absence of annoyance and stress for humans during interaction with the robot. Specifically, to
increase the comfort of surrounding humans, the robot must create a sense of safety. To provide this
sense of safety, the robot should avoid entering the personal space of pedestrians, steer clear of their
anticipated paths, and plan paths with minimal impact on pedestrians. Therefore, social comfort can
be measured by the following metric, which is called discomfort frequency ("Disc. (%)"):

(5) "Disc.(%)": average frequency of duration when the robot’s distance to any other agents is less
than the comfort distance.

By incorporating these metrics, a more comprehensive evaluation and objective comparison of
crowd navigation algorithms can be facilitated.

4.4 Challenges in Social-aware Robot Navigation

In the following chapters, I conduct an in-depth study of the challenges in crowd navigation methods
based on reinforcement learning with social awareness. The architecture of the following chapters
are shown in Figure 4.4.

48 Chapter 4. DRL-based Social-aware Robot Navigation

(Chapter 4)
DRL-based Social-aware
Robot Navigation

T Challenges and Methods
4 N
[Framework j Sparse Chapter 5
Reward FSRL method

Key Element Poor Chapter 6
y S Generalization ASTG method
[Partial Chapter 7 J
Simulation Set Observation] [ESA method /

-
—

Figure 4.4: Architecture of main content of this thesis.

Firstly, I noticed that the reward functions in these navigation methods are usually sparse. This
is due to the complexity and unpredictability of the scenarios, making it difficult to obtain continu-
ous and clear feedback, resulting in a lack of reward signals at most decision points. For instance,
successfully navigating to a destination in a crowd without collisions might be the only significant
reward event, and before reaching the destination, the robot might receive little or no reward. This
leads to the robot’s behavior lacking direct feedback to guide its learning most of the time. To ad-
dress this challenge, in Chapter 5, I used reward shaping techniques to make the reward function
denser, thus providing more continuous and intuitive learning signals to help the robot more effec-
tively learn complex crowd navigation strategies, which is Foresight Socially-aware Reinforcement
Learning (FSRL) framework. The FSRL introduces additional rewards and penalties for more con-
tinuous learning signals. This enhancement allows the robot to adapt more quickly to complex envi-
ronments and social rules, improving navigation efficiency in crowded settings. The FSRL method
predicts future interactions and potential collisions, enabling smoother and more efficient naviga-
tion in dynamically changing and challenging environments. This foresight in navigation, combined
with enhanced learning signals from the enriched reward function, significantly improves the robot’s
ability to navigate safely and effectively in socially complex environments.

Secondly, considering the lack of diversity in environmental and crowd configurations in training
data, I found that existing DRL-based social-aware methods exhibit limited generalization capability
in social-aware crowd navigation problems. This shortfall in generalization primarily stems from the
fact that the datasets used during training often fail to comprehensively cover all possible environ-
ments and crowd interaction scenarios. For instance, certain specific crowd densities or behavioral
patterns might be underrepresented in training data, leading to suboptimal performance when the
learned strategies encounter unseen scenarios. To address this issue, Chapter 6 introduces the con-
cept of Attention-based Spatial-Temporal Graphs (ASTG). The core idea of ASTG is to utilize DL
technology to capture the complex dynamic relationships between robots, crowds, and the environ-
ment. By applying attention mechanisms to spatial-temporal graphs, the model can focus more on
important social dynamics and environmental changes. The advantage of this approach lies in its
enhanced ability to understand and predict human behavior, thereby improving the robot’s naviga-
tion strategies in complex environments. Moreover, the introduction of ASTG not only enhances the

4.4. Challenges in Social-aware Robot Navigation 49

model’s understanding of the current environmental state but also enables it to predict future crowd
dynamics based on past experiences. This capability of remembering past behaviors and predicting
future situations significantly boosts the model’s generalizability. In this way, ASTG enhances the
robot’s adaptability and decision-making ability in various scenarios, including those not encountered
in the training set.

Furthermore, I particularly emphasize the importance of observation data. In social-aware nav-
igation tasks, the information observed includes not only the physical attributes of the environment
but also the behaviors, intentions, and actions of other static/dynamic entities, such as humans. This
information is crucial for understanding and predicting the dynamic changes within a crowd. Since
navigation in a crowd is decentralized, it means that agents cannot fully understand the strategies and
goals of other entities. Thus, there is a significant reliance on observed information to predict and
comprehend the trajectories of other agents, enabling safe and efficient navigation in social environ-
ments. In the context of DRL, these depth-based observations are key inputs for the policy-learning
neural networks. Depth information aids in training models to encapsulate complex navigation pat-
terns, integrate social behaviors, and make context-aware decisions. This is especially important in
crowded or dynamic environments, where accurate depth-based observations are critical for adapt-
ing to unforeseen circumstances, ensuring safe navigation, and facilitating smooth interactions with
human counterparts. Considering the special cases of partially observable environments, Chapter 7
introduces the method of Enhanced Spatial Attention Graph (ESA). The ESA method is designed
to address the limitations that traditional observation methods may encounter in complex environ-
ments. In partially observable settings, a robot’s perception range is limited, and it might not be
able to acquire comprehensive information about the environment and crowd. ESA, by conducting
more in-depth analysis and utilization of the limited sensory information, enables the robot to make
effective navigation decisions even when its field of view is restricted. This not only enhances the
robot’s navigation performance in partially observable environments but also improves its adaptabil-
ity and flexibility in the face of constantly changing social dynamics. For instance, ESA can help
the robot better identify and predict sudden events or changes in behavioral patterns within a crowd,
allowing for swift adjustments when necessary to ensure safety and smooth navigation. Through
this approach, ESA greatly enhances the robot’s capability to navigate in complex and uncertain
environments, opening new possibilities for more intelligent and flexible robot navigation.

CHAPTER 5
Foresight Reinforcement Learning for
Social-Aware Robot Navigation

In this chapter, based on Chen et al. (2019), I introduce an innovative Foresight Socially-aware Re-
inforcement Learning (FSRL) framework for achieving collision-free navigation in mobile robots.
Prior learning-based methods have shown subpar performance when robots navigate congested and
intricate environments, where they must simultaneously evade collisions and accomplish navigation
tasks. This contrasts with their better performance in stable and uniform settings. Such discrepancies
often lead to reduced success rates and inefficiencies. However, the proposed FSRL approach, em-
powered by an enriched reward mechanism, possesses foresight capabilities. It takes into account not
just the present human-robot interactions to prevent immediate collisions, but also anticipates future
social interactions to sustain appropriate distancing. Moreover, the proposed FSRL method intro-
duces efficiency parameters, which notably curtail navigation time. To validate the efficiency and
effectiveness of the FSRL method in more lifelike and challenging simulated scenarios, I conduct
comparative experiments with three methods across three progressively demanding environments.

Contents
50 Introductionttt eeeennneeeeas 52
5.2 Foresight Socially Aware Reinforcement Learning 53
5.2.1 Social Attention-based Deep Reinforcement Learning method (SARL) . . 54
522 SparseReward 56
5.2.3 Foresight Reward Augmentation 56
5.24 Efficiency Reward Augmentation 59
5.2.5 Augmented Reward Function 59
53 EXperimentso v vt vt ittt ittt e 60
5.3.1 SimulationSetup 60
5.3.2 Training and Testing 60
5.3.3 Comparison with State-of-the-art Methods 61
534 AblationStudy 64
5.3.5 Qualitative Evaluation 66
5.3.6 Parameters Choosen 67

L B 1111111 | 2 71

52 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

Figure 5.1: In a realistic scenario, a mixture of dynamic (grey) and stationary (blue) objects coexist.
Unlike the overly simplified scenarios in prior methods, which consider only dynamic objects, the
presence of both types results in the more frequent formation of traps and blind spots that persist over
time. Consequently, the robot is more prone to being ensnared within the crowd.

5.1 Introduction

Designing navigation algorithms for mobile robots is of significant importance for enabling robots to
autonomously navigate and move in human environments, especially in complex and unknown set-
tings. While there have been successful efforts in the field of mobile robot navigation, the challenge
remains in designing navigation algorithms that consider social interactions, such as following social
norms, giving way, and maintaining comfortable distances, when robots interact with humans.

As mentioned in Section 2.2, traditional robot navigation methods often treat moving agents as
static obstacles (Borenstein and Koren, 1989, 1990; Borenstein et al., 1991) or react to them one
step ahead (Van den Berg et al., 2008; Van Den Berg et al., 2011; Snape et al., 2011), leading to
shortsighted, unsafe, and unnatural behaviors. To navigate densely populated environments in a
socially normative way, robots need to understand human behaviors and follow cooperative rules
(Fong et al., 2003; Kruse et al., 2013; Kretzschmar et al., 2016). As a result, some works (Everett
et al., 2018; Chen et al., 2019; Liu et al., 2021) combine deep learning (DL) and reinforcement
learning (RL) for socially aware robot navigation. In these methods, an effective policy is learned that
implicitly models agents’ complex interactions and cooperation. Specifically, deep neural networks
(DNN) are used to approximate value functions, and optimal actions are chosen based on these
value functions. Despite the superiority of learning-based methods over non-learning approaches,
these methods still face limitations when navigating mobile robots in more realistic and complex
environments.

A major issue in previous robot navigation works is the oversimplification of the environment by
considering only avoidance of dynamic objects. In such cases, robots tend to adopt a simple strategy

5.2. Foresight Socially Aware Reinforcement Learning 53

of avoiding all dynamic objects to reach their goals. Firstly, these previous methods can be short-
sighted, as they make decisions based solely on current interactions, ignoring future possibilities,
and limiting their navigation capabilities in complex crowds. Additionally, these methods implicitly
penalize inefficient strategies. Hence, they often lack the ability to navigate effectively in complex
crowds, often inefficiently bypassing the crowd to avoid collisions. In more realistic scenarios with
stationary objects, these issues are exacerbated, as shown in Figure 5.1.

Another limitation in many existing studies is the assumption that robots have holonomic kine-
matics. This simplifies robot navigation tasks as robots can move freely in any direction at any time.
Holonomic autonomous robots can execute large-angle rotations to smoothly reach their destinations
along non-smooth navigation paths. However, most robots in real-life scenarios are non-holonomic
(Gao et al., 2021), such as delivery and service robots. This restricts robots to move smoothly, exac-
erbating the aforementioned challenges. For example, a trapped non-holonomic robot may struggle
to escape.

Given these limitations, I propose a novel deep reinforcement learning (DRL) approach for
collision-avoiding robot navigation. Building upon the framework proposed in Chen et al. (2019),
the proposed FSRL approach enhances the RL method by predicting potential future interactions
based on the current state, endowing the robot with foresight, as depicted in Figure 5.2. The robot
can make decisions by considering both current and predicted interactions, allowing it to react earlier
before potential collisions occur. Therefore, smooth movement between consecutive time steps is
feasible regardless of the environment’s complexity. Furthermore, the proposed FSRL approach ex-
plicitly accounts for stationary objects. Specifically, unlike methods that neglect different kinematics
of objects, the proposed FSRL approach applies different constraints to obstacles based on their mo-
tion status. The FSRL approach can detect potential unsafe situations and take action preemptively,
as depicted in Figure 5.2. Additionally, the FSRL approach incorporates constraints on navigation
time, enabling the learning of more efficient strategies. Due to its ability to predict future collisions
(foresight), I term the FSRL approach Foresight Socially Aware Reinforcement Learning (FSRL)
algorithm.

In summary, the core of the FSRL approach lies in its ability to predict potential future colli-
sions and take actions to avoid them, significantly enhancing the quality and efficiency of navigation.
Furthermore, by explicitly considering the constraints on navigation time, the FSRL method im-
proves the efficiency of strategy learning. Lastly, I conducted extensive experimental validation of
this method in complex environments, including dynamic and stationary humans. It achieves optimal
performance across different environments, demonstrating its effectiveness and robustness.

5.2 Foresight Socially Aware Reinforcement Learning

Based on the problem formulation outlined in Section 4.2, where the joint state is denoted as
s" = [s},sP'] and s} and s represent the robot state and the observable state of humans at time
t respectively. The objective is to find the optimal navigation policy 7* : s!" — a;, which assigns

actions to each state, aiming to maximize the expected cumulative reward of future actions until the

54 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

Figure 5.2: Previous methods (depicted in brown) only identify collisions at time ¢y, resulting in
abrupt maneuvers to evade collisions, a shortsighted strategy. Conversely, the FSRL approach (il-
lustrated in green) can anticipate potential collisions as early as time ¢; within the time window At
(highlighted in red), allowing for preemptive actions to smoothly avoid collisions, reflecting a fore-
sighted approach. This foresight is especially critical for nonholonomic robots, as they encounter
difficulties extricating themselves from traps.

goal is achieved. The value function network and optimal policy are formulated as follows:

= s R 7)), 5.1)
t—t
(s{n) = arg;nax R(S{n, a;) + At pre jjn P(s{ ,ay, s§+At)V* (St+At) dst+At, (5.2)
t St+At

Building upon the SARL framework from Chen et al. (2019), I advance the enhancement of
safety and efficiency in navigation by refining the sparse reward function. Firstly, I provide an
overview of the SARL framework in Section 5.2.1, followed by the introduction of the fundamental
sparse reward function in Section 5.2.2. In Section 5.2.3, I present the predictive constraint reward
function. Distinct foresight penalties are devised for diverse obstacle motion statuses, encompassing
dynamic and stationary scenarios. These penalties serve to penalize potential future collisions or
discomfort effectively. Moreover, in Section 5.2.4, I introduce a reward function that operates under
time constraints, contributing to the enhancement of navigation efficiency.

5.2.1 Social Attention-based Deep Reinforcement Learning method (SARL)

SARL achieves socially compliant navigation by computing relative importance and encoding the
collective impact of neighboring agents. SARL consists of three modules: the Interaction Module,
the Pooling Module, and the Planning Module.

5.2. Foresight Socially Aware Reinforcement Learning 55

Overall method

Interaction

|
IL ™ Interaction : EEELE
x S

1
Interaction : i

Jif

i) Explicitly model the Human-Robot Interaction by a
multi-layer perceptron and preserve the Human-

ii) Aggregate interactions by a self-attention pooling
module that learns the relative importance of each

Human Interaction with coarse-grained local maps neighbor and the collective impact of the crowd

h; -(%
[

a4
o/ ———fz—]

O

{ L J
~ueapy
l ™
3
4N |
K]
XEWos

Interaction Module

Figure 5.3: Overview of SARL method. (Chen et al., 2019)

Based on the state space shown in Section 4.2.1, the Interaction Module (Figure 5.3 i)) explicitly
models human-robot interactions h; by a multi-layer perceptron (MLP) and encodes these interac-
tions through coarse-grained local maps:

ei = (be(srysiaMi; We)y
h' = 1 (e's W),

5.3)
5.4)

where €’ is an embedding vector for the states of agents (s” and s') and the map tensor M*. h’ is the
pairwise human-robot interaction feature. ¢., 1y, are different MLP with ReLU nonlinear activations
and W, W}, are the network weights. M Z'(a, b,:)isa L x L x 3 map tensor centered at each human
1 with a neighborhood of size L, which is used to encode the presence and velocities of neighbors.

M'(a,b,:) = Z Sap[? — ' y? — y'lw"
jJEN?

(5.5)

where w7 = (v,;, vyi, 1) is alocal state vector for human j, and 6, [27 — 2%, y7 — '] is an indicator
function which equals to 1 only if the relative position (Ax, Ay) is located in the cell (a,b), N* is
the set of neighboring humans around the ¢th person. The Interaction Module jointly models both
human-robot and human-human interactions within the deep reinforcement learning framework.

Subsequently, the Pooling Module aggregates interactions into fixed-length embedding vectors ¢
through self-attention mechanisms. Specifically, the Pooling Module employs MLPs to compute at-
tention scores ' for each individual based on their embedding vectors ¢ and the average embedding
vector e,

1 n k
m 5.6
e ==];:1@) (5.6)

al =1y, e™; W), (5.7

56 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

where v, is the MLP with nonlinear ReL.U activations and weights W,. The final joint representation
c is a weighted sum of pairwise interactions.

c= Z softmax ()R, (5.8)
i=1

Lastly, the Planning Module is utilized to present the value v of joint states (s”, ¢) between the
robot and the crowd for social navigation as shown:

v = fu(s", c; Wy) 5.9

where f,(-) is an MLP which has ReLU nonlinear activations and the network weights are W,,. The
value network is trained by the temporal-difference method (Section 3.1.3) with standard experience
replay and fixed target network techniques (Section 3.3.1.1) to accurately approximate the optimal
value function V*.

5.2.2 Sparse Reward

As illustrated in Section 4.2.3, the common sparse reward function, as introduced in prior works such
as Chen et al. (2019, 2017b), relies on the decision at each time step ¢, which is only determined by
the present state. The formulation of the sparse reward function R.(s]", a;) is as follows:

—0.25 if dpin <0

Rc(sgn, a) = 0.5 % (dpin —1c) else if dpin < e (5.10)
1 elseif p = py
0 otherwise,

where dn = mz’n{di —r— ri} represents the shortest distance between the robot and the other
humans at time ¢. The term r. = 0.2m signifies the comfort distance, defined as the minimal distance
ensuring comfort between humans and the robot.

5.2.3 Foresight Reward Augmentation

One reason for the poor performance of prior approaches in intricate environments is often attributed
to their susceptibility to entrapment, largely due to their inability to anticipate collisions in the future.
This issue is exacerbated when adopting more realistic nonholonomic kinematics, which restricts
sharp large-angle movements. To address this, I propose a foresighted approach that anticipates
actions in advance.

First, the prediction involves projecting the movement of both the robot and the humans forward
in time, considering their current velocities and directions v"/? = [v;/ i, v;/ l] to anticipate the future
locations of the robot and the i-th human

prA/{leuture = pr/i + ’Ur/i * ATfuture (5.11)

where AT'typure is a timeframe. Essentially, the robot uses its current state information to estimate
where it and the dynamic humans will be positioned after several seconds have elapsed. This is due to

5.2. Foresight Socially Aware Reinforcement Learning 57

Standing humans

the Robot -~ -
1€ RODO re

Dynamic humans

Figure 5.4: An illustration of the effective range r. of the robot. The grey and blue circles respec-
tively represent the dynamic and stationary humans, each having a radius of 7%, with arrows indicating
their movement direction.

that although the constrained rotational capacity of nonholonomic kinematics, the robot’s movements
within a limited timeframe exhibit smoothness and can be approximated as linear motion. Thus, this
characteristic enables us to estimate the positions of agents at a certain time in the future based
on their current state to gain insights into future scenarios. Then, I introduce a foresight penalty,
denoted as Ry, that discourages potential future collisions. Moreover, in a realistic environment,
both dynamic and stationary objects coexist, necessitating differentiation — unlike previous methods.
The FSRL method categorizes them according to their velocities and handles them distinctively,
treating objects with non-zero velocities as dynamic and those with zero velocity as static. This
allows for a tailored approach where dynamic objects, which may require real-time responsiveness
due to their changing state, are handled differently from static objects, which remain constant over
time. By doing so, FSRL optimizes the learning strategy.

The foresight penalty Ry is now formulated as:
R(s]", a;) = Ray(s]™,a;) + Ru(s]", ay), (5.12)

where R4, and Ry correspond to dynamic and stationary objects, respectively, and are introduced in
the subsequent context.

Taking into account that objects located farther away have negligible influence on the current
decisions, I restrict the focus to objects within the effective range of r. = 2m, as illustrated in
Figure 5.4.

Regarding stationary objects within the effective range r., the robot’s viable option is to navigate
to bypass them, given that these objects remain stationary and will not disappear over time. If the
robot identifies the likelihood of potential collisions with stationary objects within a timeframe of
ATy = 2s based on its current decision, a penalty is enforced. This penalty is directly proportional
to the count of potential collisions with stationary objects, revealing the degree of congestion, and is

58 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

discomfort

e - - y A, |
—_— <

- / LN
collision / 7/

Ve
/ /AT safe 7
s> y; * _ - oo y < ATy, comfort
@ N J
&5 >
(a) A scenario with stationary humans (b) A scenario with dynamic humans

Figure 5.5: (a) It shows a scenario with stationary humans. The robot can anticipate and prevent
collisions by identifying potential interactions with stationary objects within A7s; shown in the green
line. This proactive behavior is incentivized by the reward factor Rg;. (b) It shows a scenario with
dynamic humans. According to the comfortable distance 7. within ATy, the robot chooses to detour
the crowd (the green line) instead of going through it (the red line), which would annoy humans.
This is achieved by the reward component Rg,,.

mathematically represented as follows:

N, col

Nstatic

Ry (s]",a;) = —a = , (5.13)
where o = 0.15. Here, Ng 4 refers to the count of stationary humans located within the robot’s
effective range r.. Within the timeframe ATy, a potential collision is considered to have occurred
if the shortest distance dar,, between the robot and any stationary objects is less than zero, and
N, denotes the number of such potential collisions detected within the effective range r., where
dar, = min{||pAr,, — Par,|l2 — 7 — '} with setting ATtypype as ATy in Equation 5.11. The
implementation of this reward penalty encourages the avoidance of potential collisions, while the
forward-looking nature of this penalty encourages the robot to take proactive actions in order to
prevent sharp movements. This contributes to a smoother navigation path, as depicted in Figure
5.5(a).

Regarding dynamic objects within the effective range r., they easily tend to cluster together,
leading to collisions. Unlike the previous scenario with stationary objects, these clusters disperse
over time. Consequently, the robot faces the decision of whether to wait and then proceed to go
through or bypass the clusters. Moreover, in real-world applications, the robot and humans should
not disrupt each other. Hence, beyond achieving successful navigation, the perceived navigation
quality is also a concern. Given that dynamic humans adjust their positions for comfort, an additional
penalty is imposed if the robot disrupts people by breaching the comfortable distance. This can be
formulated as:

Ray(s]",ay) = B = (dar,, —1¢), (5.14)
where § = 0.5. Here, dar,, represents the minimum distance between the robot and dynamic

humans after a time period of ATy, = 1s, where dat,, = min {Hp’”ATdy —Pary,ll2 =7~ ri}.

5.2

Foresight Socially Aware Reinforcement Learning

59

[Robot [Robot [Robot
4 * * Goal 4 * * Goal 4 * * Goal
2 Oo O 2 © O | © O
O o O
_ o O _ _ O
g0 £ O £ O o
o0
2 -2 o O @) -2
©o O o ®
= o ® = o = o
-4 -2 0 4 -4 2 0 2 4 4 2 0 2 4
X(m) x(m) x(m)
(a) Env.1 (b) Env.2 (c) Env.3

Figure 5.6: Three increasingly challenging simulation environments. Solid grey circles depict static
stationary agents, while hollow circles represent dynamic objects. (a) Environment 1 (Env.1) consists
of 10 dynamic objects. (b) Environment 2 (Env.2) features 5 randomly positioned stationary objects,
while the remaining are dynamic objects. (c) Environment 3 (Env.3) is characterized by two clusters
of barriers, each containing 2 and 3 stationary objects respectively, alongside other dynamic objects.
In comparison to the preceding environment, the subsequent two environments present scenarios
where robots are more prone to entrapment and face increased difficulty in maneuvering around
different obstacles.

ATy, = 1sis half the duration of AT; in R due to the mobility of dynamic objects, necessitating
a shorter time window. Through this reward penalty, the robot is encouraged to avoid aggressive
navigation, effectively reducing instances of disturbing people, as illustrated in Fig. 5.5(b).

5.2.4 Efficiency Reward Augmentation

In addition to assessing the navigation’s success rate, I also incorporate efficiency into the reward
framework, a factor often overlooked in prior approaches. To accomplish this, I introduce a naviga-
tion time constraint and encourage the adoption of efficient strategies by:

—0.1% —t

tiimit lfp - pg
—0.2

) (5.15)
else if t >= t;mit,

Ry(s]" &) = {

where t;;,,,;; 1s the maximum navigation time, which is set as ¢;;,,;; = 25s in experiments. By adding
this term, detours will be discouraged.

5.2.5 Augmented Reward Function

Together, the whole reward function R is defined as:

R(Sgn’ at) = RC(S{H> at) + Rf(sgn7 at) + Rt(sgn’ at)- (5.16)

60 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

5.3 Experiments

5.3.1 Simulation Setup

As mentioned in Section 4.3.1, I construct the simulation environment using Gym (Brockman et al.,
2016) and RVO (Van den Berg et al., 2008) as outlined in Chen et al. (2019). The environment
consists of 1 single robot and 10 dynamic/stationary humans. The objective is to develop an optimal
strategy for the robot to navigate to its destination efficiently and safely. In experiments, I set circle-
crossing scenarios where the robot’s starting position is set to (0, —4) and its goal position to (0, 4).
However, this kind of scenario is overly simplistic, allowing easy bypassing of obstacles, which
deviates from real-world complexity. Consequently, it fails to comprehensively assess the navigation
capabilities of algorithms.

To comprehensively demonstrate the navigation capabilities, I train and test all methods on three
increasingly challenging environments, as depicted in Figure 5.6.

* Environment 1 (Env.1) replicates the conditions of prior studies, featuring only dynamic
agents.

* Environment 2 (Env.2) introduces 5 dynamic and 5 stationary agents. The positions of the
stationary agents are randomly distributed throughout the entire environment. Notably, this
setup more easily gives rise to the formation of traps and blind spots.

* Environment 3 (Env.3) represents an intensified version of Environment 2. The only differ-
ence lies in the fixed positioning of the stationary agents, resulting in two permanent traps and
blind spots that persist over time.

I conduct a comparative analysis involving the proposed FSRL method and three state-of-the-art
approaches: ORCA (Van Den Berg et al., 2011), a representative reaction-based method; LSTM-
RL (Everett et al., 2018) and SARL (Chen et al., 2019), both being DRL methods. Meanwhile, I also
perform experiments in two settings: invisible and visible setting, which are discussed in Section
4.3.1. Thus, for the three environments and the two settings for each environment (6 environments
in total), I train the unicycle rotation-constrained robot with all four algorithms separately and then
obtain the corresponding test results. To reduce the influence of randomness, 3 experiments are
conducted for each method on each environment and report the average performance.

5.3.2 Training and Testing

Training:
To ensure a fair comparison, all other parameters are set the same as in Chen et al. (2019), except
for the augmented reward function. This can reveal FSRL’s capacity for performance enhancement.

Testing:

For each scenario, model evaluation involves 500 random test cases. Distinct random seeds are
assigned for various episodes. Consequently, in a given test episode, the scenarios for all methods
feature the same environment’s state, like the start and goal positions of robots and humans. However,

there are variations in the humans’ start and end positions due to re-randomization across episodes.
The metrics used in the quantitative evaluation are presented in Section 4.3.3.

5.3. Experiments 61

Env. 1 Env. 2 Env. 3
100
80
604 49
98
86
a0 4
17
201 BN Success 34
m Collision 24
Timeout
o ORCA LSTM-RL SARL FSRL(Ours) ORCA LSTM-RL SARL FSRL(Ours) ORCA LSTM-RL SARL FSRL(Ours)
(a) Env.1 (b) Env.2 (c) Env.3

Figure 5.7: Quantitative evaluation on three environments under the invisible setting. Out of the
four methods, FSRL consistently exhibits the highest success rate and the lowest collision rate. In
comparison to the other three approaches, LSTM-RL (Everett et al., 2018) displays the highest rate
of timeout cases. Meanwhile, ORCA (Van Den Berg et al., 2011) has the most collision cases. For
SARL (Chen et al., 2019), the rate of timeout cases increases significantly with the growing challenge
of the environment (from Env. 1 to Env. 3).

Env. 1 Env. 2 Env. 3
100 4
a4
801 21
e 12
60
98 98 98
m 97
a0
68 67 63
204 I Success
B Collision
Timeout
ol
ORCA LSTM-RL SARL FSRL(Ours) ORCA LSTM-RL SARL FSRL(Ours) ORCA LSTM-RL SARL FSRL(Ours)
(a) Env.1 (b) Env.2 (c) Env.3

Figure 5.8: Quantitative evaluation on three environments under the visible setting. FSRL performs
as well as the SARL (Chen et al., 2019) method. Meanwhile, it outperforms the other two methods,
namely ORCA (Van Den Berg et al., 2011) and LSTM-RL (Everett et al., 2018).

5.3.3 Comparison with State-of-the-art Methods

I present a performance comparison between FSRL and state-of-the-art approaches in Figures 5.7
and 5.8, and Tables 5.1 and 5.2, considering both invisible and visible settings. It’s evident that
FSRL outperforms other methods in almost all scenarios.

62 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

Nav Time (invisible) Nav Time (visible)

Env.1 | Env.2 | Env.3 | AVG | Env.1 | Env.2 | Env.3 | AVG

Methods

ORCA (Van Den Berg et al.,2011) | 12.49 | 11.98 | 12.04 | 12.14 | 11.99 | 1097 | 10.74 | 11.23
LSTM-RL (Everett et al., 2018) 15.52 | 14.12 | 12.81 | 14.15 | 11.01 | 10.96 | 12.32 | 11.29
SARL (Chen et al., 2019) 12.25 | 11.39 | 11.15 | 11.60 | 9.85 | 10.33 | 10.01 | 10.06
FSRL(ours) 10.90 | 10.92 | 11.69 | 11.04 | 11.08 | 10.32 | 11.60 | 11.00

Table 5.1: "Nav. Time" quantitative results in 3 environments under invisible and visible settings.
Under the invisible setting, FSRL exhibits the shortest average navigation times, whereas, under the
visible setting, it requires slightly longer navigation times, averaging less than 1 second.

Disc(%) (invisible) Disc(%) (visible)
Env.l | Env.2 | Env.3 | AVG | Env.l1 | Env.2 | Env.3 | AVG

Methods

ORCA (Van Den Berg et al.,2011) | 039 | 038 | 043 | 040 | 041 041 045 | 042
LSTM-RL (Everett et al., 2018) 0.07 | 028 | 0.16 | 0.17 | 0.11 | 0.35 | 0.39 | 0.20
SARL (Chen et al., 2019) 0.01 | 0.06 | 0.06 | 0.04 | 0.09 | 0.11 | 0.10 | 0.10
FSRL(ours) 0.01 | 0.07 | 0.04 | 0.04 | 0.06 | 0.08 | 0.07 | 0.07

Table 5.2: "Disc. (%)" quantitative results in 3 environments under invisible and visible settings.
Under both settings, FSRL has the lowest discomfort rate on average.

The success, collision, and timeout rates are visualized in Figure 5.7 and Figure 5.8. Whether
in the visible or invisible setting, FSRL consistently attains the highest success rates and the lowest
collision and timeout rates. The learning-based methods, like LSTM-RL or SARL, typically rely
only on the present states for making optimal decisions, rendering them short-sighted. This limitation
becomes pronounced with nonholonomic robots that are constrained in rotations. As they are unable
to rotate widely when encountering obstacles, such robots might experience prolonged navigation
times, a greater likelihood of entrapment, or even mission failure. As depicted in Figure 5.7 and
Figure 5.8, these methods exhibit more instances of timeouts and collisions. As anticipated, FSRL
outperforms the others due to its foresight capability, which not only takes into account the present
state but also predicts future situations. Consequently, the nonholonomic robot can proactively take
appropriate actions to ensure smooth and safe movement.

In each environment, the deep V-learning algorithm (Chen et al., 2019) referred in Section 3.3.1.1
is utilized along with the proposed augmented reward function (Equation 5.16) to train the FSRL
method. The training process comprises two stages. Firstly, the policy is initialized via imita-
tion learning (Section 2.2.3), involving the collection of 3000 demonstration episodes based on the
ORCA (Van Den Berg et al., 2011) policy. This initial policy is trained by employing the Adam
optimizer (Kingma and Ba, 2014) for 50 epochs, with a learning rate of 0.01. Subsequently, the
policy is enhanced through the utilization of the proposed augmented reward functions, employing
a learning rate of 0.0001. Additionally, the discount factor -y (Section 3.1.1) is set to 0.9. In terms

5.3. Experiments 63

of exploration, greedily, the exploration rate (Section 3.1.4) decreases linearly from 0.5 to 0.1 during
the initial 4000 episodes and then maintains a level of 0.1 for the following 6000 episodes. FSRL
assumes nonholonomic kinematics for the robot, implying constraints on the rotation angle. The
robot’s velocity is discretized into 5 exponential speeds within the range of (0, V), f], accompanied
by 10 headings distributed evenly between [—7 /8, 7/8].

5.3.3.1 Invisible Robot

In the invisible setting, as expected, the ORCA method experiences significant failures due to the
violation of the reciprocal assumption which is introduced in Section 2.2.3. Interestingly, the ORCA
robot exhibits notably improved performance under Env.2 and Env.3 compared to Env.1. This obser-
vation can be attributed to the fact that non-learning-based approaches like ORCA are more sensitive
to dynamic humans. Consequently, a reduced presence of dynamic humans correlates with improved
performance.

In contrast, there is a noticeable decline in the performance of learning-based methods (LSTM-
RL, SARL) when transitioning from Env.1 to Env.2 and Env.3. This can be attributed to their struggle
in acquiring a robust representation for a complex environment containing both static and dynamic
objects, in contrast to a simpler scenario where only one type of object exists. This highlights that
prior learning-based methods are better suited for straightforward scenarios but struggle in more com-
plex environments. Furthermore, the LSTM-RL method exhibits a more cautious behavior, resulting
in a sharp increase in timeout cases (Figure 5.7) and longer navigation times in successful scenarios
(Table 5.1). In contrast, FSRL demonstrates the shortest navigation times and the lowest discomfort
rates. These outcomes underscore the foresighted nature of FSRL, enabling a more optimal balance
between safety and efficiency.

5.3.3.2 Visible robot

Under the visible setting, even though the robot can navigate through the crowd more easily due to
the cooperative behaviors of humans, it needs to be more adept at understanding human interactions
to deal with the increased uncertainty. This includes scenarios where humans exhibiting coopera-
tive behavior, like give-way behavior, might enter the robot’s comfort zone. Moreover, due to the
bidirectional interaction between humans and the robot, the robot might take riskier actions in or-
der to achieve better navigation outcomes. Consequently, in contrast to the invisible setting, the
performance of all methods generally improves except for the discomfort rate.

For LSTM-RL and ORCA methods, their shortsight leads them to disregard stationary agents in
Emv.2 and Env.3. Consequently, their navigation tends to be both unsafe and inefficient, resulting
in lower success rates, longer navigation times, and higher discomfort rates. As illustrated in Figure
5.8, FSRL achieves comparable performance to the SARL method. While the navigation time of
FSRL takes slightly longer (averaging less than 1 second), it effectively reduces the discomfort rate
by 3% through safer robot movements (Table 5.2) in comparison to SARL.

The performance metrics of FSRL remain consistent in both visible and invisible scenarios. In
a comprehensive comparison to previous methods, FSRL emerges as more effective, efficient, and
robust.

64 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

Average Quantitative Results

Rc+ Rt

B Success

R. +R; I Collision
+R¢ Timeout
75 900 925 . 5

80.0 82.5 85.0 8

100.0

Figure 5.9: Average quantitative results under three environments of ablation experiments. (Invisible
setting)

11.8 9.5
—— nav time 11.65 ~—— Disc(%)
11.6
11.6
8.0
11.4
w —_
£ S
= L <
> 11.2 6.5 é
g 11.04 [a]
11.0 1
F5.0
10.8 1
10.6 —— T T — 3.5
Rc R:+ R¢ Rc+R¢ Ours(Rc + Rs+ R¢)

Figure 5.10: Average "Nav. Time" and "Disc(%)" results under three environments of ablation
experiments. (Invisible setting)

5.3.4 Ablation Study

I present the impact of each component of proposed novel reward R function in Figure 5.9 and 5.10.
These components include ., the reward that considers only the current state (Equation 5.10); Ry,
the foresight penalty (Equation 5.12); and Ry, the efficiency constraint (Equation 5.15). For clarity, I
average the quantitative results across three environments for comparison.

In Figure 5.9, it is evident that both the foresight penalty (25) and the efficiency constraint (f2;)
significantly enhance the success rate (Succ.(%)). Notably, the improvement is more pronounced

5.3. Experiments 65

. * = e . 5 =
’ 000 ’ 000 17@/®
E o e E 0 9@@
- O
-24 C) -2 C)
—4 O —4 O

X(m)

(1) SARL (t = 6)

x(m)

(2) SARL (t = 14.25)

. * = e s 5 = e
: OCO ’ o0 @ A/®
. o | . oo
s ° £o Lo—3
o ° o sl
-2 -2
® ®
-4 O -4 O
-4 -2 0 2 4 -4 -2 0 2 4
x(m) x(m)

(3) FSRL (t=6) (4) FSRL (t=11.50)

Figure 5.11: Qualitative results. In a complex environment containing both stationary (grey solid
circles) and dynamic (hollow circles of other colors) objects, the proposed method (FSRL) enables
the robot (orange solid circle) to navigate more smoothly and efficiently compared to SARLChen
et al. (2019).

in complex environments (Env.2 and Env.3). Additionally, the efficiency constraint ([2;) primarily
contributes to a reduction in navigation time, as shown in Figure 5.10. This implies that improved
efficiency leads to the avoidance of some timeout cases, resulting in shorter navigation times. How-
ever, this efficiency enhancement comes at the cost of more aggressive navigation, leading to a higher
discomfort rate (Disc.(%)). This indicates that the robot may disturb people more frequently to save
navigation time. On the other hand, the foresight penalty (12¢) enhances the success rate (Succ.(%))
by focusing on maintaining a comfortable distance and thus causing less disturbance. By combining
both the foresight penalty (12y) and efficiency constraints (12;), FSRL achieves the highest success
rate (Succ.(%)), effectively balancing efficiency and user comfort (less disturbance). This showcases
the efficacy of the designed reward components.

66 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

5.3.5 Qualitative Evaluation

In Figure 5.11, I present qualitative results for Env.2 under the invisible setting. At time { = 6,
SARL executes a sharp turn while being close to individuals. This is a consequence that SARL only
relies on the present state, disregarding potential future collisions. Consequently, SARL takes more
navigation time (14.25s) to reach the goal position. In contrast, the navigation trajectory of FSRL is
notably smoother. This can be attributed to the capability of FSRL to anticipate potential collisions
ahead of time and take preemptive measures. Furthermore, FSRL achieves a shorter navigation time
(t = 11.50), underscoring its efficiency.

In summary, FSRL’s ability to forecast future interactions and proactively respond results in a
more effective and efficient navigation strategy compared to SARL.

Given that the ultimate goal of our model is the accurate estimation of the state value, I compare
the state values estimated by different methods under the same environment in Figure 5.12. Consid-
ering that dynamic humans #7 and #8 are likely to cross the robot’s straight path to the target, the
robot should either move to the side or slow down to avoid them. At the same time, the robot also
needs to consider a row of stationary humans #1, #0, and #2 obstructing the robot’s straight path to
the goal; unlike dynamic humans, they will not disperse over time, so the robot needs to anticipate
danger and take actions in advance. A more effective approach would be to smoothly navigate around
the right side of the stationary humans.

LSTM-RL model prefers to move full speed straight towards the destination, but its shortsight-
edness leads to a disregard for the potential collision risk with stationary humans #0 and #2 directly
ahead at 0°. SARL model considers the repulsion of dynamic humans, predicting significantly lower
full-speed values in the dangerous direction from 0° to 22.5°, leading to a rightward movement to
avoid collisions. However, unlike the SARL model, our FSRL predicts the inevitable potential colli-
sions in the dangerous direction from 0° to 22.5° and strictly avoids danger in this direction. It takes
a smart action at -20°, laying the foundation for subsequent smooth navigation. This demonstrates
our FSRL’s ability to predict and avoid potential collisions.

Furthermore, I compared the value estimations and environment states at different time steps (t =
3s,4s and 5s) within the same episode for different methods, to gain a clearer understanding of the
reasons behind the trajectory formation of different approaches and to compare their performances.

From the LSTM-RL trajectory in the first row and (a) of Figure 5.13, it is evident that due
to the shortsightedness of LSTM-RL, the robot initially opts to deviate to the right to avoid the
dynamic crowd, only considering evading when it is about to encounter stationary humans #3 and
#4. However, at this point, the limitation on the rotation angle means that while the robot successfully
avoids obstacles, it is unable to make immediate large-angle adjustments towards the destination and
even deviates at a greater angle away from the destination, resulting in a timeout case. Similarly,
SARL takes a risky behavior towards the destination and, due to its shortsightedness, is forced to
make a complete right turn and circle around when it is about to encounter an obstacle formed by
dynamic and static humans. SARL waits for the gathered crowd to disperse, consequently requiring
more time to reach the destination. In contrast, our FSRL predicts potential future collisions and opts
to initially slow down and wait safely, thereby navigating to the destination safely and efficiently.

5.3. Experiments 67

human 0: 0.11 Time: 0.00 30 Robot
human 1: 0.15 * Goal
44{ human 2:0.08 *
human 3: &85
human 4: 5
human 5: 0.10 1.0
21 human 6;0.09
human(@)0.19 1 o 2
human 8: 0.14 0.8
- human 9: 0.05 3 4 ’
S
= ° @
® 0.6
—2 @
®© 0.4
-4
0.2
-6
—6 -4 -2 0 2 4 6 0.0
x(m)
(1) Dense scene (2) LSTM-RL
1.0
0.8
0.6
0.4
0.2
0.0

(3) SARL (4) FSRL

Figure 5.12: Value estimations by different methods for the dense scene (1). (1) shows attention
scores in a complex scene (Env.3). Our FSRL assigns high important scores to dynamic human #7
and gives sub-high important scores to dynamic human #8 and #5 and static human #1 and #3. Above
humans are most likely to get close to the robot and have potential interaction in the future, so the
robot needs to pay more attention to them. However, our FSRL assigns the lowest weight to dynamic
#9 and stationary #3 and #4 are far from the robot. (2) shows that LSTM-RL predicts high values for
high speeds toward the goal, which is dangerous because of the existence of stationary humans #0
and #2. (3) and (4) show that our FSRL, compared to SARL, not only prefers to turn right to —25° to
avoid dynamic humans but also strictly avoids the possibility of potential collisions with stationary
humans #1 and #0.

5.3.6 Parameters Choosen

I trained the system with different values set for the parameters of the reward function term Rg; and
R4y to analyze the impact of parameter selection on performance, and to show the reason behind our
chosen parameters. The comparison of the success rate, navigation time, and cumulative rewards are
shown in Figure 5.14.

On one hand, I fixed the value of « = 0.15 in R, and examined training with § =
0.10,0.25,0.35,0.40,0.45,0.50, 0.60, 1.00 separately. Figure 5.14(a) shows that our chosen value
of 5 = 0.50 converges fastest in terms of navigation time and cumulative rewards, yielding the short-

68

Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

y(m)

-4

[Robot

y(m)

-4

= Robot

y(m)

-4

0 Robot

-4 -2 0 2 4 -4 -2 0 4 -4 -2 0 2 4
x(m) x(m) x(m)
LSTM-RL SARL FSRL (Ours)
6 6 6
Time: 3.00 [Robot Time: 4.00 [Robot Time: 5.00 [Robot
* Goal * Goal * Goal
4 * 4 * 4 *
®
2 2 @ 2
102 102 1002
34 34 34
Eo @ Eo oe Eo o
= ® o = o) = ® ®
@
-2 @ -2 -2
-4 -4 -4
-6 -6 -6
—6 -4 -2 0 2 4 —6 -4 -2 0 2 4 —6 -4 -2 0 2 4

x(m)

x(m)

270°

(a) LSTM-RL: Value estimations and Environments at ¢ = 3s,4s and 5s, separately.

Figure 5.13: Value estimations and Environments for SARL and our FSRL with the same episode
at different timestep. The first row shows the trajectories of different methods. (a) shows that LSTM
is shortsighted and more inclined to choose right-turning actions to bypass dynamic and stationary
humans with a large angle, ultimately resulting in overtime outcomes. (Continued on next page)

5.3. Experiments

69

y(m)
°
Q

Time: 3.00

Robot
* Goal

270°

human 0: 0.09 Time: 4.00 Robot
n 1:0.08 * Goal
uman 2: 0.
4 08 ¥
.07
.09
2 11
human 7:0.151 0 2
Euman g: 8.13
P uman 9: 0.11 34
Eo @e
> ®
(6]
-2
-4
-6
-6 -4 -2 0 2 4
x(m)

y(m)
o

human 0: 0.07 Time: 5.00 Robot
human 1: 0.06 * Goal
human 2: 0.08 *
human 3: 0.09
human 4: 0.08
human 5: 0.10
human 6: 0.09 ®
human 7:0.20 1 0 2
human 8: 0.18
human 9: 0.05 ® 34

g

®

@
-6 -4 -2 0 2 4
x(m)

(b) SARL: Value estimations and Environments at ¢ = 3s, 4s and 5s, separately.

6
human 0: 0.12 Time: 3.00 Robot
human 1: 0.11 * Goal
44 human 2:0.10 *
human 3: 0.06
human 4: 0.06
human 5: 0.06 (5)
2/ human 6: 0.06
human 7: 0.09 1 0 2
human 8: 0.1,
- human 9: 0.1 4
E o @
=
® 0
-2
©)
-4
-6
-6 -4 -2 0 4
x(m)

y(m)

human 0: 0.13 Time: 4.00 Robot
human 1: 0.13 * Goal
41 human 2 0:10 *
human 3: 0.06
human 4: 0.05
human 5: 0.06
24 human 6: 0.05
human 7: 0.06 1 0 2
human 8: 0.11
human 9: 0.25 ® 34
0 Q0
-2 ®
-4
-6
-6 -4 -2 2 4
x(m)

270°

y(m)

-4

1.0
0.8
0.6
0.4
0.2
0.0
human 0:0.18 Time: 5.00 Robot
human 1: 0.16 * Goal
human 2: 0.15 *
human 3: 0.06
human 4: 0.06
human 5: 0.06
human 6: 0.05 ®
human 7:0.051 0 2
human 8: 0.14
human 9: 0.09 ® 34
&
®
©)
6 -4 2 0 2 2
x(m)
1.0
0.8
0.6
0.4
0.2
0.0

(c) FSRL (Ours): Value estimations and Environments at ¢ = 3s, 4s and 5s, separately.

Figure 5.13: (Continued from previous page) Value estimations and Environments for SARL and
our FSRL with the same episode at different timestep. SARL, also shortsighted, initially navigates
riskily towards the destination, but then encounters a convergence of dynamic crowds and stationary
humans forming an obstacle, forcing it to opt for a full right rotation to wait for the dynamic crowd
to disperse, thereby taking more time to reach the destination. In contrast, our FSRL opts to initially
slow down and wait safely.

70 Chapter 5. Foresight Reinforcement Learning for Social-Aware Robot Navigation

Success rate Success rate
1.0 1.0

0.8 0.8

e
o

0.6 1

Success Rate
Success Rate

o
=

0.4 4

0.2 1 0.2

[2000 4000 6000 8000 0 2000 4000 6000 8000
Episodes Episodes

Robot's Time to Reach Goal Robot's Time to Reach Goal

& | — =010
E — B=025
— B=0.35
1 — B=0.490
— B=0.45
144 — $=0.50
B=0.60
12{ — B=100

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Episodes Episodes

Cumulative Discounted Reward Cumulative Discounted Reward

0.2

0.1

Reward
Reward

0.0

-0.1

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Episodes Episodes

(a) Dynamic Parameter (b) Static Parameter

Figure 5.14: Performance Comparison under Different Settings of Reward Function Parameters.

est navigation time and the highest cumulative rewards. Although the convergence speed is slightly
slower than 5 = 1.00 regarding the success rate, the final convergence value is the highest. Addi-
tionally, I observed that when the values are too small, like 8 = 0.10, 0.20, the performance is poor,
and as the values increase, the larger the difference between the chosen 8 and 0.5, the worse the
performance will become.

On the other hand, I fixed the value of 3 = 0.50 in R4y, and examined training with @ =
0.01,0.05,0.10,0.15,0.20, 0.25, 0.30 separately. Figure 5.14(b) demonstrates that our chosen value
of a = 0.15 converges noticeably faster than other values during training. It also achieves the
shortest navigation time and the highest cumulative reward. Additionally, it shows that when the
values are too low, such as a = 0.01, the performance is the poorest. When chosen around o = 0.15,
whether the value of « increases or decreases, the performance declines within a certain range, and
the convergence rate slows down.

5.4. Summary 71

5.4 Summary

In this chapter, I introduce a novel Foresight Social-Aware Reinforcement Learning (FSRL) frame-
work designed for navigating robotic systems. Unlike conventional methods that solely rely on the
current state for decision-making, FSRL approach excels by anticipating potential collisions in the
future and acting preemptively to avert them. FSRL method can estimate potential collisions in the
future and hence takes action in advance to avoid collisions. In contrast, previous methods only make
the decision according to the current state and thus perform not well when the environment becomes
complex. Furthermore, I address the efficiency aspect by incorporating an efficiency constraint into
FSRL methodology, leading to a substantial reduction in navigation time. The experimental study
encompassed three progressively challenging environments, and the results indicate that FSRL ap-
proach enhances the effectiveness and efficiency of navigation methods.

CHAPTER 6
Generalization on Social-Aware Robot
Navigation Behaviors

In the previous chapter, I introduced a complex environment comprising dynamic and static humans.
The robot is enhanced with foresight capabilities through an augmented reward function. However,
the trained policies by existing methods are heavily dependent on the training environment. When
crowd configurations change, such as variations in crowd size or more intricate human state compo-
sitions, navigation performance deteriorates. In this chapter, I present a novel deep graph learning ar-
chitecture to capture the relationships between different entities. Specifically, I (1) introduce a graph
attention network to extract higher-order spatial and temporal interactions within the crowd based on
the agent’s state, (2) incorporate an RNN to encode historical information, and (3) jointly aggregate
paired spatial-temporal interactions into a social attention mechanism to capture crowd representa-
tion. By capturing direct and indirect spatial and temporal interactions, the proposed method offers
a comprehensive understanding of the crowd and enhances reasoning capabilities. When compared
to state-of-the-art methods, my approach demonstrates remarkable robustness in terms of safety, ef-
ficiency, and generalization across various challenging scenarios.

Contents
6.1 Introductionttt iiiiieeeeennneeeeas 73
6.2 A General Graph Learning Navigation Method 75
6.2.1 Problem Formulation 75
6.2.2 Attention-based Spatial-Temporal Graph Learning (ASTG) 76
6.3 ExXperiments i v ittt tnneneetoonnenoeees 80
6.3.1 SimulationSetup 80
6.3.2 Trainingand Testing 80
6.3.3 Quantitative Evaluation 81
6.3.4 AblationStudy 84
6.3.5 Qualitative Evaluation 85
6.3.6 Comparison with FSRL 89
6.4 SUMMATY . ¢ ¢ v v v v vt e v e o e v o o e o oo oo oo s oo oo oo s oo s oo 93

6.1 Introduction

In social-aware robot navigation, it is a significant challenge for robots to generalize or transfer
learned navigation strategies or knowledge from training to unknown environments. One of the
goals of social-aware robot navigation is to cooperate and coordinate in various social environments,

74 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

GOAL

*

---== robot actions
.’ —— spatial graph
,, \ . temporal graph
AN ” human motion
---- historical information

Figure 6.1: Illustration of our work. When navigating, I consider each spatial information as a node
in the spatial graph and each human’s historical information as a node in the temporal graph. By
aggregating spatial-temporal pairwise relationships with social attention weights, the robot evaluates
the values of all actions with deep V-learning and generates the best decisions that are robust and
predictive.

such as densely populated cities, shopping centers, hospitals, etc. If robots are learned only in limited
simulated scenarios, they might overly adapt to those scenarios, leading to poor performance in new
scenarios. Enhancing generalization enables robots to avoid overfitting issues, and interact more uni-
versally with diverse types of crowds, not just limited to training scenarios, thereby better achieving
social interaction goals. Additionally, in crowd navigation, robots need to predict and adapt to hu-
man behaviors. Robots with strong generalization capabilities can reliably predict human behaviors
in different situations, reducing collision risks and enhancing navigation safety. Particularly, when
facing novel, unfamiliar scenarios, robots can draw from prior experiences to adapt effectively. Thus,
enhancing model generalization is crucial for social-aware robot navigation.

While our proposed FSRL (Foresight Socially Aware Reinforcement Learning) methods achieved
success shown in the previous chapter, like most learning-based methods, they heavily rely on sim-
ulated environments. It leads to the algorithm overfitting to specific conditions in simulation and
hinders its ability to adapt to new situations or changes in the real world, thereby reducing the al-
gorithm’s generalization capability. Navigation methods based on Deep Reinforcement Learning
(DRL) essentially train policies to select actions with maximum cumulative rewards in their training
simulated environments, which implicitly encode interactions between agents, capturing the collec-
tive impact of the crowd by incorporating pairwise interactions through LSTMs (Graves and Graves,
2012) or the maximin operator. However, interactions vary significantly across different simula-
tion environments, rendering navigation policies trained in one environment unsuitable for another.
This is because there exist uncertainties in the dynamic crowd, which affects the way and impact of
interactions in it. Specifically, as the density of crowds increases, it leads to increased mutual in-
fluence and interference among individuals, which in turn increases the difficulty and complexity of
human-robot interaction in such environments. Therefore, robots need to timely adjust their behavior

6.2. A General Graph Learning Navigation Method 75

strategies according to changes in crowd behavior, in order to better adapt to different scenarios and
improve the quality of human-robot interaction.

From another perspective, robots need to encode interaction information more effectively to com-
prehensively perceive and understand social interactions within the crowd, accurately capturing cru-
cial features and patterns, such as dynamic changes in crowd behavior. By learning these patterns
from interactions, robots can generalize these patterns to unfamiliar scenarios, thus better adapting
to new social interactions. Graph Neural Networks (GNNs) offer an effective means of capturing
intricate interaction patterns. GNNs achieve this by propagating and aggregating local information,
resulting in richer node representations. This aids models in better comprehending distinct individ-
uals within the crowd and their relationships, ultimately facilitating navigation decisions. Further-
more, when facing various crowd environments, even those previously unseen, GNNs can enhance
generalization by adapting to different graph topologies (different crowd simulation environments).

As introduced in the last paragraph and Section 3.2.4, graph networks, by learning the complex
relationships between nodes and the global distribution of graph structures, can capture the deep fea-
tures of different graph structures, allowing them to effectively generalize and predict when faced
with different and unseen graph data. Moreover, in dealing with diverse and dynamically changing
crowd environments, the Graph Attention Network (GAT) can adaptively determine node feature
representations by learning the attention weights between nodes. Therefore, in this chapter, I pro-
pose an attention-based spatial-temporal graph learning framework for crowd navigation trained with
Deep Reinforcement Learning (DRL), named "ASTG". First, leveraging the strong generalization
ability of graph networks, the Graph Attention Network is introduced to fully model both the spatial
relations (such as spatial positioning) and temporal relations (such as trajectory intent inference) of
agents in crowd navigation scenarios separately. Furthermore, before modeling the temporal relation
interactions, Recurrent Neural Networks (RNNs) (Medsker and Jain, 2001) are combined to encode
each agent’s historical trajectory information as input for the temporal graph, thus implicitly inferring
the intentions of all humans. Then, I aggregate the pairwise spatial-temporal features of each agent
into a social attention mechanism to capture the relative importance of each individual. Together, a
comprehensive understanding of crowd behaviors can facilitate efficient robot navigation strategies,
adaptable to various crowded scenarios.

In summary, the core of the ASTG method lies in utilizing the spatial-temporal graph’s inferential
capabilities to enable robots to better understand and interpret the relationships between agents in
both time and space, thereby making wiser decisions in dynamically changing crowd environments.
Here, the spatial graph is used to capture current spatial interactions, and through integration with
RNNSs, the temporal graph utilizes past trajectory information to infer the future intentions of each
agent. Finally, I conducted extensive experimental validations of this method in various unknown
and challenging scenarios. It achieved better performance in dynamically changing environments
compared with other methods, demonstrating its robustness and generalizability.

6.2 A General Graph Learning Navigation Method

6.2.1 Problem Formulation

As outlined in Section 4.2, the joint state s{ " of the robot state s and the humans’ states s’ is denoted

as s{n = [sl,s!']. As before in Section 5.2, the objective is to maximize the cumulative reward for

76 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

(c) Social Attention Module

=¥ s’ ds —

: :
: :
n ' n
SR s os" -
Robot-Human 1+] e e
Interaction Pairs

150 100 100 1

Action Value

Human States (b) Temporal Graph

Figure 6.2: Network architecture. (a) The spatial graph utilizes the GAT to encode direct and indirect
spatial interactions between agents. (b) The temporal graph incorporates an RNN to reason about
the temporal interactions based on historical information. (c) The social attention mechanism jointly
aggregates the pairwise spatial-temporal interactions to capture the crowd representation in the crowd
feature, which is then used to estimate the action values.

each state and thereby to find the optimal policy 7* : s{ " ay:

T
V* (Sgn) _ Z ’}/tl'vprefR(Sg/n, ¥ (Si/")% (6.1)
t'=t
T (s]") = argmax R(s]" ap) + 20 rres fjn P(s{n’atvsﬁm)‘/*(sﬁm) dSzZAt’ (6.2)
t St+at

where At is the time step and v € (0,1) is a discount factor that is normalized by the preferred
velocity vpre .

I utilize the sparse reward function (Equation 5.10) formulated as in Chen et al. (2019) which
is also outlined in Section 4.2.3. It provides rewards for task accomplishment while simultane-
ously imposing penalties for collisions or uncomfortable distances. Unlike the augmented reward
function (Equation 5.16) in Chapter 5, I chose the sparse reward function (Equation 5.10) in this
chapter because inferring the intentions of agents through the adoption of graph structures can also
endow the algorithm with foresight, which can replace the forward-looking aspect of FSRL meth-
ods. Furthermore, for a better explanation, I conducted experiments to verify the effectiveness and
generalizability of FSRL and/or ASTG methods in different dynamic crowd environments, which is
shown in Section 6.3.6.

6.2.2 Attention-based Spatial-Temporal Graph Learning (ASTG)

I propose a novel framework for social-aware robot navigation tasks, depicted in Figure 6.2. Graph
structures are more flexible for environments with varying numbers of agents, as they can adapt to

6.2. A General Graph Learning Navigation Method 77

graphs of varying sizes through information exchange between nodes. Especially compared to using
only a feed-forward neural network to reason about crowd interactions, graph neural networks do not
require input data of a fixed size, but instead operate iteratively by exchanging information among the
nodes of the graph, handling an arbitrary number of nodes with shared parameters like the weights
of the adjacency matrix.

Thus, here, I construct the spatial graph and temporal graph both are fully-connected graphs. The
number of nodes is the number of humans n and the edges are weighted by attention mechanism in
GAT. It allows me could use GATs to efficiently extract not only the spatial graph representation but
also the temporal graph representation. Unlike in Chen et al. (2019), attention weights in GATs are
computed for all agents, and the interactions in the graph can be modeled using the same graph con-
volutional operation. Then, a social attention mechanism is utilized to encode the collective influence
of neighbors based on the spatial and temporal graphs. Finally, the value function is estimated.

6.2.2.1 Spatial Graph Representation

The spatial-temporal graph network calculates the spatial attention and temporal attention separately
from the environment state matrix, which is used to represent the edges of the spatio-temporal graph.
In the spatial graph, I input rough combined spatial interactions to calculate agents’ spatial depen-
dencies. For each human, I initially aggregate its state at the current moment with that of the robot
to compute rough spatial interactions. Then, I calculate spatial attention maps through graph atten-
tion network layers, representing the importance of adjacent interactions, and encode spatial features
such as distance and relative direction between agents in pairwise interactions. For instance, for the
ith interaction (node), its influence with other interactions (nodes) makes them connected, and the
greater the influence, the higher the attention weight. Simultaneously, the ith (node) interaction ag-
gregates spatial information from its surroundings (all connected (nodes) interactions) through the
influence of spatial edges, capturing the impact of interactions within the crowd on ith node. This
impact not only considers explicitly modeled pairwise human-robot interactions but also implicitly
captures indirect human-human interactions and crowd-robot interactions through edge weights.

As shown in the upper part of Figure 6.2(a), in the spatial graph, I use the states of the robot and
the ith human at time ¢ to derive a node feature via a multilayer perception (MLP):

eé = fspatial(sga Sé; We)a (6.3)

where W, are the network weights and fgpqsiqi(-) is an MLP with a ReLU activation function. The
rectified linear unit (ReLU) activation function used in the framework aims to capture non-linear
features in the feedforward network.

I then use the graph convolution operation in a GAT (Section 3.2.4.2) to model spatial interactions
in a crowd. The input at time ¢ is denoted by E = [e}, ..., el'], where n is the number of nodes and
e’ = e for short. The normalized spatial coefficients afj in the attention mechanism can be computed
by:

exp(LeakyRelu(a[We'|[We']))

D ke exp(LeakyRelu(a[We?|[Wek]))’

i _
CYS -

(6.4)

where O/Sj represents the importance of node j to node i. W(+) is the weight matrix and || is the
concatenation operation, while A" indicates the neighborhood of node i in the graph. After passing

78 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

through a fully connected network (FCN) a(-), a LeakyReLU activation follows. Finally, a softmax
function is used to normalize the spatial attention coefficients aisj.
Thus, the output node features of the graph attention layer at time ¢ are:

&l = o Z ad Wel), E =&}, ...,e", (6.5)
JENT

In this work, through the graph attention layer, the ¢th interaction feature is transformed into
a higher-level spatial feature that models indirect robot-human and human-human interactions in a
crowd. Additionally, residual connections are employed in the spatial and temporal graph networks to
accelerate convergence and stabilize the framework (He et al., 2016). Thus, the final spatial features
Hpatiar 1s described by:

Hi=¢"+¢&", Hgpatiat = [He, ..., HY]. (6.6)

6.2.2.2 Temporal Graph Representation

Due to the high motion-dependency of the temporal dimension, I introduced an RNN for each agent
to capture the dynamics of its trajectory. Then, in the temporal graph, I treat the motion feature of
each human as a node of the graph, and the edges signify the relationships between humans’ motions.
The weight of each edge quantifies the significance of the relationship it represents. Since motion
is continuous, I can predict future actions based on the current motion information. To achieve
this, I utilize graph attention network layers to compute a temporal attention map, estimating the
mutual influence of neighboring agents’ motion behaviors and aggregating these influences to form
temporal features. These temporal features encompass both the current trajectory information of
humans and predictions of future trajectories, allowing the robot to better understand human behavior
and intentions.

First, I take the ¢-th human’s state s}; as an input through an MLP f;cy,porq to obtain the temporal
latent state gf:

gti = ftemporal(szz;; Wg)v (6.7)

where W, are the embedding weights. As before, fiemporai(-) is an MLP with ReLU activation
function.
Then, I process the temporal latent state g/ with an RNN cell:

hy = RNN(h;_,, g}), (6.8)

where h! is the hidden state at time ¢, which changes over time, reflecting the evolution of ith agent’s
state.

The hidden states h} are then fed into the graph attention layer to model temporal interactions.
GAT learns the attention distribution between nodes adaptively, enabling it to weigh the information
from different nodes based on their relationship. This implies that GAT facilitates the propagation of
temporal interaction information between nodes. Similar to the spatial graph, the input at time ¢ is
H = [h},...,h?], where N is the number of humans and h* = h! for short. The normalized temporal
coefficients ag; in the attention mechanism can be described by:

ol exp(LeakyRelu(a[WR!||[WhI]))
T = D keNi exp(LeakyRelu(a[Whi||[WhE]))’

6.9)

6.2. A General Graph Learning Navigation Method 79

Combining RNN and GAT allows for a more accurate capture of the evolving states and in-
teractive changes of agents in a social environment over time. While RNN captures the temporal
variations in agents’ states, GAT, through its attention mechanism, considers interactions with other
nodes, leading to a finer-grained temporal dynamic modeling. By integrating the state of each agent
and the evolution of their social interactions, robots are enabled to more accurately predict future hu-
man behaviors and intentions, and even assist in analyzing collective behavior patterns within groups.
Hence, the final temporal graph feature with a one-layer GAT can be described as follows:

W =o() of Whi), H=I[h' .. ;" (6.10)
JEN

Similar to the spatial graph network, a residual connection structure is also deployed in the frame-
work to obtain the final temporal features Ht¢mrorel;

H% = h' + iLia Htemporal = [H71“7 7H%] (6.11)

6.2.2.3 Social Attention Mechanism

In order to capture the uncertainty of crowd movements, I build a social attention module that fuses
the heterogeneous spatial and temporal features of each agent and captures dependencies among
agents. Inspired by (Chen et al., 2019), I build a self-attention network to assign attention weights
w' for each agent’s aggregated spatial-temporal combined feature ST* = [HY%, H%] and encode the
collective impact of a crowd.

First, our combined feature ST'? is transformed into an attention score w':

1 ¢ : :
ST™ == ST, w' = fo(ST', ST™ W), (6.12)
nkzl

where W, is the weight and f,, is nonlinear transformation.
I then obtain the final crowd representation c by the product sum of each spatial-temporal pairwise
feature ST'? and attention weights w;:

c= Z softmaz(w) ST (6.13)
i=1

6.2.2.4 Graph-based Planning

The crowd representation c is the input to an MLP f, to estimate the state value V' for planning:
V = fu(s",c; Wy) (6.14)

where W, denotes the weights.

Similar to Chapter 5, I also use Deep V-Learning which is referred in Section 3.3.1.1for policy
and value function learning. The training process is also the same as in Chapter 5.

Based on the above, when the trained algorithm is tested in environments with varying numbers
of people, our algorithm demonstrates exceptional adaptability and generalization capability. This
is because, although the number of nodes changes in the temporal and spatial graphs, GAT adapts

80 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

(a) BASE (10 dynamic) (b) DS (distributed) (c) RO (row3and2) (d) CO (concave5)

Figure 6.3: Simple and complex scenarios for testing phases. Solid grey circles depict static standing
agents, while hollow circles represent dynamic objects. I show the example of 10 humans in the
environment: (a) BASE are with all dynamic humans. (b) DS (distributed) features 5 scattered
static humans, while the remaining are dynamic humans. (c) RO (row3and?2) is with two clusters of
barriers, each containing 2 and 3 standing humans respectively, alongside other dynamic humans. (d)
CO (concave)) is characterized by a concave composed of five static humans, while other humans
are dynamic.

to different graph sizes through its dynamic attention mechanism. It assigns appropriate importance
weights to each node, ensuring efficient and relevant information exchange even with changes in
crowd size. Unlike MLPs, which typically require a fixed structure for input data and need ad-
justments for different data sizes, GAT dynamically adjusts. Furthermore, in the social attention
mechanism stage, the algorithm aggregates features from the spatial and temporal graphs to cap-
ture complex interactions among agents, forming a comprehensive representation of the crowd. This
method adapts to varying numbers of agents, maintaining the algorithm’s efficiency and accuracy,
and showcasing its strong generalization capability in diverse environments.

6.3 Experiments

6.3.1 Simulation Setup

I build our 2D simulation environment for crowd robot navigation following Chen et al. (2019). 1
keep the invisible setting for the robot to prevent humans from overreacting to the robot and thus
avoid learning an aggressive navigation policy that moves too directly to the goal position and gets
too close to humans. I use circle crossing scenarios with a radius of 4m in our simulation. All
humans are controlled by the ORCA policy. Dynamic humans are randomly positioned on the circle
and will move to opposite positions on the same circle, while static humans are randomly located in
the same circle and do not move. To fully analyse the effectiveness of the proposed model, I evaluate
all models for 1000 random test cases in both simple and complex scenarios.

6.3.2 Training and Testing

I compare the performance of our model with three state-of-the-art methods: SARL (Chen et al.,
2019), RGL (Chen et al., 2020a) and SG-DQN (Zhou et al., 2022). SARL is a baseline for Deep
V-learning. In addition, RGL and SG-DQN are used as baselines for graph-based learning methods.

6.3. Experiments 81

6.3.2.1 Training

I train all methods in an environment that consists of 5 dynamic and 2 scattered static humans using
data from 10k episodes. For a fair comparison, the network architectures of all baselines are trained
as stated in the original papers.

6.3.2.2 Testing

I evaluate the generalization capability of the policy of each method, learned in the above training
scenario, in both simple and complex scenarios with 1k episodes. To vary the start and end positions
of agents over the episodes I use different random seeds, where each (random) episode configuration
is evaluated for all methods. As evaluation metrics, I use the percentage of success, collision, and
timeout cases, respectively, which is defined in Section 4.3.3. I also present navigation time-related
metrics for better comparison.

Simple scenarios are set up with different numbers of distributed dynamic and/or static humans
(like Figure 6.3(a) and (b)), such as scenarios with only N = 5,10, 15 dynamic humans, and scenar-
ios with 5 dynamic humans or M = 2,4, 8 scattered static humans. In addition, based on 5 dynamic
humans, the complex scenario has 5 static humans with different group combinations (distributed,
line group or concave group, like Figure 6.3(b),(c) and (d)), whose positions are randomly set in the
circle.

6.3.3 Quantitative Evaluation

To show the effectiveness of our method, I compare our method with SARL (Chen et al., 2019), RGL
(Chen et al., 2020a) and SG-DQN (Zhou et al., 2022). Figure 6.4, Figure 6.5, Table 6.3, Table 6.1
and Table 6.2 show the results of all methods under simple and complex environments. Due to
the difference in the reward function used by the SG-DQN method compared to other methods, I
have decided to retain its original reward function design to ensure SG-DQN performs at its best.
Consequently, in Table 6.3, I do not directly compare the reward function values of SG-DQN with
those of other methods, to ensure fairness and validity in the experimental results. No matter whether
evaluated in simple scenarios or complex scenarios, it can be seen from the data that my model is the
best one with the highest success rate (Figure 6.4, Figure 6.5), the lowest comfort rates (Table 6.1,
Table 6.2) and the highest reward (Table 6.3).

82 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

5 dynamic and 0 static

I Success
W Collision
Timeout

10 dynamic and 0 static

15 dynamic and 0 static

SARL RGL SG-D3QN Ours i SARL RGL SG-D3QN Ours SARL RGL SG-D3QN Ours

(a) Scenarios with different numbers of dynamic humans and no static humans.

5 dynamic and 2 static 5 dynamic and 4 static

100 4
9
804 20
60
100 98 98 99
40 1
71

W Success 20
e Collision
Timeout

5 dynamic and 8 static

100 4

5

SARL RGL SG-D3QN Qurs SARL RGL SG-D3QN Ours SARL RGL SG-D3QN OQurs

(b) Scenarios with 5 dynamic humans plus the different numbers of static humans.

Figure 6.4: Quantitative evaluation on simple scenarios with different numbers of humans. Among
the four methods, our ASTG always has the highest success rate and lowest collision rate.

10 dynamic and 0 static 5 dynamic and 5 random static

5 dynamic and row3and2 5 dynamic and concave 5
100 100
3
9 9 12 o
80 23 80
60 60
99
96
95 & 90
40 40
68
20 20 S Success
- Collision
Timeout
o o
SARL RGL SG-D3QN Ours SARL RGL SG-D3QN Ours SARL RGL SG-D3QN Ours SARL RGL SG-D3QN Ours

Figure 6.5: Quantitative evaluation on complex scenarios with 5 dynamic humans plus other 5 dy-
namic humans or different groups comprised by 5 static humans.

6.3. Experiments 83

Metrics Disc. (%) tsuce.nav tweight@d.nav
N dynamic humans without static humans
N(dynamic)) 10 15) 10 15) 10 15
SARL 0.02 0.11 0.22 10.58 11.64 12.33 1091 14.18 17.80
RGL 0.21 042 0.53 1023 1143 12.51 12.57 17.65 21.60
SG-DQN 0.05 0.08 0.09 10.03 11.24 1341 10.63 13.71 16.56
Ours 0.01 0.04 0.08 11.40 12.65 13.28 1145 1297 14.13
N static humans with 5 dynamic humans
N(static) 2 4 8 2 4 8 2 4 8
SARL 0.05 0.09 0.15 10.51 10.64 11.16 11.10 11.71 13.52
RGL 0.34 043 0.57 10.59 1097 12.06 13.88 15.53 18.41
SG-DQN 0.04 0.06 0.09 10.07 11.24 12.07 1042 11.79 13.62
Ours 0.03 0.06 0.10 11.09 11.22 11.97 11.25 11.56 12.83

Table 6.1: Evaluation performance comparison in the simple scenarios. "Disc. (%)" is the average
frequency of duration that the human invades the comfort area of the robot. "tgycc.nav' 1S the average
navigation time of success cases. "tyeighted.nav” (Equation 6.15 is a novel weighted navigation time
metric considering the impact of the discomfort steps and collision cases.

Metrics Disc. (%) tsuce.nav tweighted.nav
5 dynamic humans with different static groups
Groups DS RO CO DS RO CcO DS RO cO
SARL 0.11 0.10 0.05 10.83 11.08 11.54 12.18 12.31 13.21
RGL 0.44 0.56 0.59 11.25 11.37 11.27 1622 16.50 18.58
SG-DQN 0.07 0.07 0.06 1096 11.25 11.15 11.93 1220 13.06
Ours 0.06 0.06 0.03 11.35 11.34 11.05 11.75 11.76 12.21

Table 6.2: Evaluation performance comparison in the complex scenarios with 5 dynamic humans
and different static groups (DS (distributed), RO (row3and2), and CO (concave)).

Scenarios N Dynamic Humans M Static Humans Group Static
5 10 15 2 4 8 DS RO co
SARL 0.3319 0.2390 0.1205 0.3324 0.3171 0.2521 0.3041 0.2951 0.2414
RGL 0.2420 0.0425 0.0015 0.1664 0.0957 0.0006 0.0667 0.0294 0.0034
Ours 0.3101 0.2665 0.2352 0.3179 0.3174 0.2599 0.3017 0.3001 0.2714

Table 6.3: Average reward in simple and complex scenarios.

84 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

In Figure 6.4 and Figure 6.5, as a previous learning-based social-aware navigation method, SARL
(Chen et al., 2019) has exhibited limited performance and social compliance, as it fails to capture
deeper and comprehensive social interactions. Furthermore, compared to other baselines that also
utilize GNN to model human-robot interactions, RGL (Chen et al., 2020a) has not demonstrated
strong generalization performance. This may be attributed to the fact that GCN employed in RGL
performs simple convolutional operations on interaction/human features encoded with fixed rule-
based weights, lacking the flexibility to generalize to different environment structures. This leads to
a sharp increase in collision rates for RGL (Chen et al., 2020a) as the number of obstacles increases.
In contrast, GAT can assign different weights based on the importance of these features, thereby
better capturing critical environmental characteristics. Therefore, as shown in Figure 6.4 and Figure
6.5, SG-DQN (Zhou et al., 2022), also based on GAT, is competitive with our ASTG. However,
SG-DQN (Zhou et al., 2022) lacks the ability to capture time-varying motion features, thus reducing
predictive accuracy. In comparison, our ASTG exhibits significantly slower increases in collision
rates and navigation times in pure dynamic environments and environments containing both dynamic
and static humans, demonstrating excellent generalization performance.

From Table 6.1 and Table 6.2, they show that the baselines enjoy a better performance in ¢ycc.nqv»
which is defined as the average navigation time of the successful cases in seconds. However, overall,
they have either a higher discomfort frequency or higher collision rate, which means, to achieve a
shorter navigation time, the robot takes a lot of aggressive actions, badly affecting human comfort or
even having collisions. To better measure and analyze the behavior, I propose a weighted navigation
time metric £yeighted.nav that penalizes aggressive policies:

tdnav + Ncoll * Llimit

tweighted.ncw = Nsucc TN p s (615)
co

where Ngyc. and N, are the number of success and collision cases, respectively. fjmq 1S the
maximum navigation time, which set as 25s in our simulations. £ 4,4, is extended from the original
navigation time ¢,,4,, to penalize the impact of discomfort. Specifically, if a step is causing discomfort,
I add half of a time step to tsycc.nav, Which equals tgnae = Nsuce * tsuce.nav + Ndise * 0.5 % At and
Nyisc 1s the number of discomfort steps in success cases. Thus, when considering collision cases and
the discomfort frequency, our method shows a shorter weighted navigation time £.eighted.nav-

Overall, our method outperforms the baseline because it more effectively captures the evolving
relationships in the environment, including changes in positional information and inferences about
crowd intentions. Combined with spatial and temporal GATs, our method is able to better adapt to
dense and partially observable scenarios with dynamic varying numbers of humans.

6.3.4 Ablation Study

To assess the individual contributions of the different components in our model, I conduct an ablation
study where I independently train and test the spatial and temporal branches with the same conditions
as before. Fig. 6.6 shows that the spatial graph and ASTG learn to navigate a safer side away,
while the spatial graph has a longer navigation time. Furthermore, the temporal graph and ASTG
are good at reasoning about the dynamics of the crowd, while ASTG demonstrates better social
norm compliance. These findings suggest that incorporating the spatial and temporal graph can
significantly improve the performance and better adapt to dense scenarios with dynamic varying
numbers of humans.

6.3. Experiments 85

Eo Eo

—24 -2

-4 -4

—4 -2 0 2 4 —4 -2 0 2 4
x(m) x(m)
(a) Only spatial graph (b) Only temporal graph

n
2,
Eo

—4

(c) Full ASTG

Figure 6.6: Simulation trajectories on the same testing case.
6.3.5 Qualitative Evaluation

To qualitatively evaluate the effectiveness of our method, I show in Figure 6.7 the robot’s trajectories
for different methods under simple and complex scenarios. In the simple scenario with ten dynamic
humans, Figure 6.7(left), SARL (Chen et al., 2019) collides with humans, while SG-DQN (Zhou
et al., 2022) detours largely to achieve the goal. In contrast, our method slightly detours at first and
then directly reaches the goal, resulting in a shorter path.

When the scenarios are extended from simple to complex, Figure 6.7(right) shows SARL (Chen
et al., 2019) and RGL (Chen et al., 2020b) are having timeouts in the static group scenario. Com-
bined with Figure 6.5, I can find that SARL (Chen et al., 2019) and RGL (Chen et al., 2020b) have
high timeout rates for all static group scenarios, where the rates increase significantly as the group
becomes more complex. This indicates that the freezing robot problem is prevalent for these two
methods. As shown in Figure 6.7(f), our ASTG outperforms these two methods by slowing down at
first and then going through the crowd. This is because our method is far-sighted when exploring the

86 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

[Robot 3 Robot

Eo Eo
> >
—2 —2
-4 -4
-4 -2 0 2 4
x(m)
(d) SARL
3 Robot
4 41
24 24
£ o £ o
> >
—2 —2
—4 1 —4 4
-4 -2 0 2 4
x(m)
(e) RGL
[Robot
44 4+
24 24
£ o £ o
> >
21 -2
—4 1 —4 1
—4 -2 0 2 4 —4 -2 0 2 4
x(m) x(m)
(c) Ours (f) Ours

Figure 6.7: Trajectory comparisons of different methods under simple and complex scenarios.
(a)(b)(c) The left pictures show the trajectories of SARL, SG-DQN and our ASTG in the scenar-
ios with 10 dynamic humans. (d)(e)(f) The right pictures show the trajectories of SARL, RGL and
our ASTG in the scenario with group (row3and2) static humans. The red star denotes the robot’s
goal. The filled orange circle denotes the robot. The hollow circles are dynamic humans while the
filled gray circles are static humans.

6.3. Experiments 87

Time: 0.00 = Robot
* Goal
4 *

® %@
®® O

y(m)
o

0.0

(3) SARL (4) ASTG

Figure 6.8: Value estimations by different methods for the dense scene (1). The dense scene (1) is
formed by 10 dynamic humans and one robot. SARL model prefers to take full speed at 67°, while
SG-D3QN model and SARL model achieve the high value for high speeds on the rotation of 90°,
preparing to pass behind dynamic humans #3 and #8.

environment. Also in the example of qualitative trajectories, I see the advantages of spatial-temporal
graph reasoning, which helps to understand relationships between agents over time and space and
use that to make more informed decisions. Our ASTG method thus is able to better adapt to dense
and complex situations in uncertain environments.

In the following, I also compare the state values estimated by different methods under the same
environment in Figure 6.8. Considering that dynamic humans in dense crowds tend to gather on
the robot’s linear path to its target, it’s crucial to note that these aggregations spread out over time.
Therefore, the robot should opt for paths with lower crowd density to minimize the risk of collisions.
SARL model, taking into account the current spatial position, predicts danger from 135° to 180° (hu-
mans #3 and #8), thus choosing to move at full speed in the 67° direction to avoid collisions. It is also
observed that the SARL model’s likelihood of choosing other actions is almost zero. Similarly, both
the SG-D3QN model and the ASTG model tend to turn towards 90° taking full speed, moving behind
dynamic humans #3 and #8, and they effectively bypass the congregated crowd. However, unlike the
ASTG model, the SG-D3QN model predicts taking full-speed values from 45° to 90°, with almost

88 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

=3 Robot 3 Robot [Robot
4 * (@ = 4 *x @ = 4 = * =
CRCIS CINC R o
2 W b o SR 2 Wy @
Eacrcul CacNTY -

y(m)
o
y(m)
=)
y(m)
o

> 3
Gag_ (s 7
EN B cf;’g .
09 (& "f‘,’,

;

o
7 %
f# = o
e

1.0

0.8

0.6

0.4

0.2

0.0

270° 270°

(1) SG-D3QN (t=4) (2) SARL (t=4) (3) ASTG (t=4)
A . 7 * @ [Robot . " % 8 Robot
. . \ T & - @
_ _ €N
-4 -2 o 2 4 -4 -2 x(?n) 2 4
0.8
0.6
0.4
0.2
0.0
(4) SG-D3QN (t=8) (5) SARL (collision) (6) ASTG (t=8)

Figure 6.9: Value estimations and environments for SG-D3QN, SARL and our ASTG with the same
episode at different timestep (f = 4 and ¢ = 8). The first row and the third rows show the trajectories
of different methods at ¢ = 4 and ¢ = 8, separately. The second and fourth rows correspond the
value estimations at ¢ = 4 and ¢ = 8, separately. The full trajectories of each method are depicted
in Figure 6.7 (a), (b), (c). (1) and (4) show that SG-D3QN is overly conservative, choosing to turn
right at a large angle to avoid the dynamic dense crowd aggregation, creating a timeout. (2) and (5)
show that SARL was too risky in rushing to its destination at full speed, resulting in a collision. In
contrast, (3) and (6) show that our ASTG would initially slow down from left to right to avoid the
approaching dynamic humans and then navigate past the gathered crowd at a small angle, balancing
efficiency and safety.

6.3. Experiments 89

zero likelihood of choosing actions in other directions. From this, I can infer that with increasing
crowd density, both SG-D3QN and SARL models are likely to struggle to take wise actions, leading
to the "freezing robot problem".

In addition, I compare the value estimation and environment’s states of different methods at
different time steps (f = 4 and ¢ = 8) in the same episodes in Figure 6.9. By combining the complete
trajectories in the Figure 6.7 (a), (b) and (c), I can compare the different methods more clearly. The
SARL model based on attention reasoning is very short-sighted, it is too risky to move towards the
destination at full speed, resulting in a collision with the dynamic crowd. SG-D3QN model and
ASTG model are both based on spatial reasoning and choose to deviate from rightward/leftward to
avoid dense crowd gatherings. However, compared to the small-angle arc trajectory of ASTG, the
trajectory generated by SG-D3QN, which lacks the intention reasoning of the dynamic crowd, is too
conservative, and thus a timeout occurs. Therefore, combined with spatial graph and temporal graph,
ASTG could reason about both spatial information and the intention of dynamic humans.

6.3.6 Comparison with FSRL

Further, I conducted comparative experiments involving the standalone ASTG method, the FSRL
method, and their combination - the ASTG+FSRL method. In the ASTG+FSRL method, I adopted a
dense reward function Equation (5.16) to replace the original sparse reward function (Equation 5.10).
The experiments were conducted separately for two different types of robots: non-holonomic robots
and holonomic robots (Figure 4.2).

According to the Figure 6.10and Figure 6.11, in almost all test environments, the stan-
dalone ASTG method demonstrated significant advantages over both the FSRL method and the
ASTG+FSRL method, regardless of whether the robots were non-holonomic or holonomic. The
ASTG method not only showed a higher success rate but also significantly fewer timeout cases, re-
sulting in a shorter overall weighted navigation time. This outcome highlights the strong advantage
of the ASTG method in integrating spatial and temporal graphs, particularly in understanding and
adapting to dynamic crowd behaviors in various environments.

However, for non-holonomic robots, the ASTG+FSRL method exhibited the lowest discomfort
rates. This could be due to the more complex movement and control constraints faced by non-
holonomic robots, such as the inability to move or turn freely in all directions. In these situations,
the ASTG+FSRL method adapts better to these specific movement and control constraints of the
robots, effectively reducing discomfort instances. On the other hand, for holonomic robots, which
can move freely in any direction, showing greater spatial flexibility, the standalone ASTG method
alone suffices for effective navigation, especially in dealing with complex crowd dynamics and social
norms. This advantage of the ASTG method is particularly important for freely moving holonomic
robots, making it perform best in terms of discomfort rates.

90 Chapter 6. Generalization on Social-Aware Robot Navigation Behaviors

5 dynamic and 0 static 10 dynamic and 0 static 15 dynamic and 0 static
1001 1004
801 801
60 1 60
100
401 404
201 201
mmm Success
mmm Collision
Timeout
| oA oA
FSRL ASTG ASTG + FSRL FSRL ASTG ASTG + FSRL FSRL ASTG ASTG + FSRL
5 dynamic and 2 static 5 dynamic and 4 static 5 dynamic and 8 static
1004 1004
()
801 801
60 - 60 -
99 99 98 93 98 97
401 404
201 201
1 04 0
FSRL ASTG ASTG + FSRL FSRL ASTG ASTG + FSRL FSRL ASTG ASTG + FSRL
5 dynamic and 5 static 5 dynamic and row3and2 5 dynamic and concave5
1001 1004 100 A
5
10 /
801 801 801
60 - 60 - 60 -
96
89 95
404 404 40 1
201 201 201
| oA oA
FSRL ASTG ASTG + FSRL FSRL ASTG ASTG + FSRL FSRL ASTG ASTG + FSRL

Figure 6.10: Quantative results comparison for a nonholonomic robot under FSRL method, ASTG
method, and the combination method ASTG+FSRL.

6.3. Experiments 91

Metrics DiSC.(%) tsuce.nav tweighted.nav

N dynamic humans without static humans

N(dynamic)) 10 15 5 10 15) 10 15
FSRL 0.03 0.13 0.25 10.68 12.02 12.98 11.02 1397 18.29
ASTG 0.01 0.07 0.18 11.11 12.15 12.78 11.15 13.03 15.20

ASTG + FSRL 0.01 0.05 0.14 11.37 1251 13.38 11.47 13.86 15.40

N static humans with 5 dynamic humans

N(static) 2 4 8 2 4 8 2 4 8
FSRL 0.07 0.10 0.22 10.53 1049 10.80 11.13 11.87 13.88
ASTG 0.03 0.06 0.19 1095 11.16 1195 11.11 11.69 13.37

ASTG +FSRL 0.03 0.05 0.10 11.18 11.68 12.79 11.40 12.08 13.75

5 dynamic humans with different static groups

N(static) DS RO CO DS RO co DS RO CO
FSRL 0.13 0.11 0.15 10.56 10.94 10.66 12.66 12.50 12.65
ASTG 0.09 0.08 0.07 11.19 11.30 11.23 12.01 11.99 12.57

ASTG +FSRL 0.07 0.06 0.07 11.99 11.59 11.69 12.56 12.19 12.90

Table 6.4: Evaluation performance comparison on different scenarios.. "Disc. (%)" is the average
frequency of duration that the human invades the comfort area of the robot. "tsycc.nav' 1S the average
navigation time of success cases. "tyeighted.nav” (Equation 6.15 is a novel weighted navigation time
metric considering the impact of the discomfort steps and collision cases.

92

Chapter 6.

Generalization on Social-Aware Robot Navigation Behaviors

5 dynamic and 0 static

100 -

80 -

60 -

40 -

20 A

mmm Success
mmm Collision
Timeout

FSRL

ASTG ASTG + FSRL

5 dynamic and 2 static

100 -

80 -

60

40 -

20 A

100 99

FSRL ASTG ASTG + FSRL

5 dynamic and 5 static

100 -

80 -

60

40 -

20 A

Figure 6.11: Quantative results comparison for a holonomic robot under FSRL method, ASTG

FSRL ASTG ASTG + FSRL

10 dynamic and 0 static

1004
15
801
60
g9 99
a0 55
201
FSRL ASTG ASTG + FSRL
5 dynamic and 4 static
1004
801
60 -
97 929 98
404
201
FSRL ASTG ASTG + FSRL
5 dynamic and row3and2
1004
801
60 -
98 9 926
40 4
201
FSRL ASTG ASTG + FSRL

method, and the combination method ASTG+FSRL.

15 dynamic and 0 static

100 A
32
801
60
97 98
40
68
201
oA
FSRL ASTG ASTG + FSRL
5 dynamic and 8 static
100 A 5 & 9
801
60 -
93 93 90
40 4
201
0
FSRL ASTG ASTG + FSRL

o4
FSRL

5 dynamic and concave5

ASTG ASTG + FSRL

6.4. Summary 93

Metrics DiSC.(%) tsuce.nav tweighted.nav

N dynamic humans without static humans

N(dynamic)) 10 15) 10 15) 10 15
FSRL 0.01 0.08 0.17 11.34 12.32 13.08 1146 14.58 17.58
ASTG 0.01 0.04 0.08 1140 12.65 13.28 1145 1297 14.13

ASTG +FSRL 0.01 0.06 0.11 11.66 1325 14.23 11.73 13.72 15.18

N static humans with 5 dynamic humans

N(static) 2 4 8 2 4 8 2 4 8
FSRL 0.04 0.09 0.16 10.78 10.88 11.36 11.25 11.56 12.83
ASTG 0.03 0.06 0.10 11.09 11.22 11.97 11.06 11.56 12.61

ASTG +FSRL 0.03 0.07 0.13 11.54 12.16 13.83 11.74 1298 14.80

5 dynamic humans with different static groups

N(static) DS RO CO DS RO co DS RO CO
FSRL 0.10 0.08 0.04 10.88 11.09 10.77 11.75 11.76 12.21
ASTG 0.06 0.06 0.03 1135 11.30 11.05 11.65 11.75 12.07

ASTG +FSRL 0.07 0.05 0.03 12.88 12.33 12.49 1298 12.68 13.66

Table 6.5: Evaluation performance comparison in the simple scenarios. "Disc. (%)" is the average
frequency of duration that the human invades the comfort area of the robot. "tsycc.nav" 1S the average
navigation time of success cases. "tyeighted.nav” (Equation 6.15 is a novel weighted navigation time
metric considering the impact of the discomfort steps and collision cases.

6.4 Summary

In this chapter, I proposed a novel attention-based spatial-temporal graph learning model (ASTG)
for crowd robot navigation. By formulating spatial and temporal graphs with GATs, I implicitly
compute both direct and indirect spatial interactions and temporal crowd features so that our model
can reason for decision-making under changing scenarios. Integrating an RNN, our model implicitly
incorporates the past trajectories into the temporal graph to also reason about the future intentions of
each agent. In the experiments, I showed our model outperforms baseline methods and can handle
both uncertain simple, and complex environments. Based on the promising results, I intend in future
work to further analyse and extend the GAT-module, for example using multiple graph layers, which
can help to extract deeper information from the crowd

CHAPTER 7
Social-Aware Robot Navigation in
Partially Observable Environments

In the previous chapter, I introduced a novel attention-based spatial-temporal graph learning model
(ASTG). While this method demonstrated excellent performance in social-aware robot navigation,
it is not entirely applicable in scenarios with limited sensor perception range. This is because the
limited range of sensors can lead to incomplete and even highly uncertain environmental information.
Therefore, navigating robots in partially observable environments remains a significant challenge.
To achieve collision avoidance in congested, partially observable environments, I propose a novel
deep reinforcement learning architecture in this chapter. This approach combines spatial graphs
and attentional reasoning to address this issue. Human-observed relative positions and velocities
are treated as nodes in the spatial graph. At the same time, interactions between the robot and
humans are modeled as nodes in the attention graph, capturing the spatial relationships between the
robot and humans. In this manner, the proposed approach enhances the modeling of relationships
between the mobile robot, static obstacles, and surrounding individuals. Consequently, in congested
scenarios where the robot has limited sensor range, the proposed navigation framework significantly
outperforms state-of-the-art methods in collision reduction. Additionally, the application of parallel
Double Deep Q-learning substantially reduces training time.

Contents
701 Introductionttt ittt eeeeennneeeeas 95
7.2 Social-Aware Navigation with Partial Observation 98
7.2.1 Problem Formulation, 98
7.2.2 Enhanced Spatial Attention (ESA) Graph Struture 98
7.3 EXperiments oo v vt v v vttt nneneetoonnenoeeos 101
7.3.1 EnvironmentSetup 101
7.3.2 Trainingand Testing 102
7.3.3 Quantitative Evaluation 103
734 Ablation Study 106
7.3.5 Qualitative Evaluation 106
A T 1111111) 2 109

7.1 Introduction

In reinforcement learning, observed information holds primary importance as the foundation for ef-
fective decision-making. The information an agent acquires from the environment directly influences

96 Chapter 7. Social-Aware Robot Navigation in Partially Observable Environments

7 Ve
& 7
- - X
- T8 -7 oo
R A — -
o @® D
e ‘. .i
< ~. [a3 LLIR S
a

y A
-
'.f

Figure 7.1: Motivation of our work. In the navigation process, the robot’s observation is limited
to humans within the specified sensor range. I represent the relationship between the robot and
the observed humans using two distinct graphs. Initially, I consider the positions and velocities of
humans relative to the robot as nodes in a spatial graph. Subsequently, I treat each robot-human pair
as a node within the attention graph. By integrating these two graphs within a deep reinforcement
learning framework, the robot’s navigation behavior is notably enhanced compared to the current
state of the art.

its actions taken to maximize cumulative rewards over time. Accurate and relevant observations en-
able the agent to establish a robust understanding of its surrounding environment, leading to more
effective strategy learning and action selection.

In the previous chapters, it was assumed that all human states could be observed throughout
the navigation process. While the proposed methods have achieved success, they rely entirely on
fully observable environmental information. Specifically, this assumption implies that the robot can
acquire complete, accurate, and real-time information, enabling it to perceive and understand all
environmental elements relevant to the navigation task. By leveraging these comprehensive obser-
vational inputs, socially aware robots can create a comprehensive representation of the environment,
identify potential collision risks, and optimize their paths while respecting social norms and mini-
mizing interference.

However, this assumption is not feasible under real-world conditions. Typically, depth-based
observations are obtained from sensors such as LiDAR or depth cameras. Due to limitations in the
perceptual range of sensors, whether visual or laser-based, they cannot cover the vast environment
entirely, preventing the robot from obtaining information about all human states. This leads to the
realization that learning methods based on this idealized assumption are not universally applicable
across different sensor setups. Furthermore, since the environment often comprises both static and
dynamic agents, and an agent’s dynamics may change at any moment due to individual awareness
and implicit social interactions, the uncertainty within the crowd increases. This heightened uncer-

7.1. Introduction 97

oo}
o T
g 5 e i
5 g el H Z
5 g &
< g D; DE Rz
S e c]
= g E <
° 3 = s B
A : :
Human States S
8 @
T
S
Robot State
.
. .
. .
°
r
’9' ﬁ s @s
Robot-Human

State Pairs

Figure 7.2: Overview of our ESA graph architecture. It illustrates three key components: (a) The
upper spatial graph shows our utilization of an LSTM (Hochreiter and Schmidhuber, 1997) for en-
coding spatial relationships between the robot and other agents. Here, I first arrange each observed
human in descending order according to the weighted sum of their present distance and potential
future distance. And then, I utilize their states (comprising positions and velocities) as inputs for the
LSTM. (b) The below attention graph involves combining the robot’s state and the state of the ¢-th
human, channeling this through the embedding network MLP, and the attention network MLP, to
formulate human-robot interactions. (c) At last, the final network combines the outputs from both
modules to generate action values for guiding decision-making.

tainty in modeling the environment under partial observability contributes to increased navigation
complexity.

To address these challenges, in this chapter, I propose a novel approach named Enhanced Spa-
tial Attention (ESA) graph for robot navigation in crowded, partially observable scenes. I model
high-level relationships using Spatial Long Short-Term Memory (LSTM) and attention mechanisms
Given that agents cannot access complete information about the entire environment state in partially
observable settings, this limits their comprehensive understanding of the current state, leading to state
value estimations in Deep V Learning (Section 3.3.1.1) based on incomplete or biased information.
Therefore, in such special cases, I prefer to choose Deep Q Learning (Section 3.1.4) over Deep V
Learning (Section 3.3.1.1) for training the network. Additionally, to mitigate the issue of overesti-
mation, I opt for training the network using Double Deep Q Learning (DDQN) (Van Hasselt et al.,
2016; Fujita et al., 2021) (Section 3.3.1.2). I first model the crowd navigation scene as a distributed
spatial graph to encode spatial relationships between the robot and other agents. Moreover, I capture
the significance of each robot’s interaction with humans to form an attention graph. Lastly, I combine
these two graphs to generate the robot’s next action. Moreover, due to the high parallelizability of
DQN, which allows training on high-performance hardware like GPUs, DDQN significantly shortens
the time required for value estimation.

98 Chapter 7. Social-Aware Robot Navigation in Partially Observable Environments

7.2 Social-Aware Navigation with Partial Observation

7.2.1 Problem Formulation

Based on the general problem formulation of DRL-based social-aware navigation presented in Sec-
tion 4.2, s} represents the robot’s state and s: represents the state of the i-th human at timestep .
Different from previous chapters, I define the partially observed state s{ = [s},s?,s},...,sN] € S as
a joint state that is composed of the robot’s state s} and the states of N humans who are scanned by
the robot’s limited sensors at time step ¢, where N (> 0) may vary at each time step.

When navigating in a new episode, the robot starts from the initialized observed state s§ € S. At
each time step ¢, based on the unknown state transition function P(s?, ;|s?,a;), the robot samples
an action from the learning policy m(a;|s?), transitioning to its next state s} ;. Meanwhile, all other
agents take their actions and move to their next states s¢ according to their respective policies. At
the end of an episode, I employ Monte Carlo value estimation (Kroese et al., 2013) (Section 3.1.5) to
estimate the state-action values for each time step within the episode. Finally, the optimal policy 7*
can be expressed as follows:

7 (s7,a;) = argmax [R(sf, ag) + v max Q" (s?y o a/)] (7.1)
at a
where Q* refers to the optimal action-state value function from DDQN (Van Hasselt et al., 2016),
and At represents the duration of each time step.

I adopt the reward function formulation as defined in Chen et al. (2019) outlined in Section 4.2.3,
which provides rewards for task accomplishment while simultaneously imposing penalties for colli-
sions or uncomfortable distances.

7.2.2 Enhanced Spatial Attention (ESA) Graph Struture

As illustrated in Figure 7.2, a novel framework ESA is presented for social-aware robot navigation
under a partially observed environment. It comprises two primary pipelines, processing three distinct
types of inputs:

(1) the states of static and dynamic humans observed within the robot’s sensor range,
(i) the own state of the robot
(iii) the concatenation of the robot’s state and the states of observed humans.

In the following subsections, I introduce the architecture and formulations of each pipeline, namely
the spatial graph and the attention graph, both focused on the observed humans. These graphs are
in the form of fully connected graphs, where the number of nodes corresponds to the number of
observed people. In these graphs, each node represents an individual, and the edges between nodes
are weighted based on spatial or attention relationships. This structure allows us to precisely capture
and analyze the interactions and relationships between agents, providing a comprehensive perspective
for understanding and addressing human behavior. For simplicity, I omit the time index ¢ in the
subsequent discussions.

7.2. Social-Aware Navigation with Partial Observation 99

Figure 7.3: Structure of the spatial graph. The states of the robot and humans denote the nodes
and the spatial relationship between the robot and its neighbor denote the edges of the graph. The
light-grey dashed circle signifies the sensor range of the robot, within which the robot can perceive
the positions and velocities of the humans and establish spatial relationships with those within the
sensor range. When evaluating the significance of each human to the robot, I consider not only
current positions but also future positions estimated by observed velocities. The importance level is
indicated by the width of the line, where closer distances correspond to greater importance, resulting
in wider lines. The states are then fed into the LSTM, ordered in descending distance.

7.2.2.1 Spatial Graph on Observed Humans

In order to handle the spatial features of humans, I treat each sensored agent (the robot or humans)
as a node of the graph, while the edges signify the spatial relationships, as illustrated in Figure 7.3.
Most of the learning-based methods for local obstacle avoidance have traditionally employed feed-
forward neural networks to encode these spatial relationships (Chen et al., 2017b,a). However, such
approaches often necessitate fixing the input size or converting spatial relations into occupancy grid
maps, followed by the utilization of CNNs (LeCun et al., 2010) and pooling techniques. Grid maps
can prove to be either coarse or computationally demanding when aiming for high precision. In
our case, as shown in Figure 7.4, I leverage an LSTM to manage the various quantities of observed
humans and designate each human state s}’ at the current time ¢ as the input for LSTM cells, ordered
inversely according to their balanced distance from the robot:

h' = LSTM(h'™},s}), (7.2)

where h; refers to the ¢-th hidden state of the LSTM. For simplicity, from now on sg/ " will be dentoed
as "7

100 Chapter 7. Social-Aware Robot Navigation in Partially Observable Environments

LSTM

Cell Cell oo Cell

Figure 7.4: Structure of the LSTM unfolded to show each input. At each step, the detected human
feeds its states into an LSTM cell sequentially, which stores the related information in the hidden
states h’. The final hidden state h"V encodes the entire state of all detected humans into a fixed-
length vector. The order of humans is sorted by decreasing the balanced distance (Equation 7.4) so
that the closest human has the most latest effect on h?V.

As shown in Chapter 4.2.1, the transformed states of the robot and humans are:

ro_ ror
s = [dgvva:avyvvaefvr]a

i VRN S R A A (7.3)
8" = [Pl Dy» Vg vy, 75 ' 7"+ 7],
where d, and d’ represent the robot’s distance to the goal and to its i-th neighbor respectively.
For humans, I balance their current distance (the distance between the human’s current position
and the robot) and the estimated next distance (the distance between the position where the human
is expected to move and the robot) to establish a new distance as the criterion for sorting the input
data for the LSTM. The predicted future position is determined based on their current moving speed.
With the above notions, for each human ¢, it balanced distance is computed as:

dist’ = we(p,” + p;z)l/2 + (1= we) (P + v A1) + (p), + v;At)2)1/2 , (7.4)

where p/, 1y = Py — Py, and v,)y = Uppy — Uy, The hyper-parameter w, € [0,1] is used to

determine the significance of the current distance to the robot and the potential future distance. In
our experimental setup, I assign a value of 0.8 to w,.

Furthermore, I enable the LSTM network to retain information about all human states by main-
taining a high-dimensional output hidden state, without significantly increasing the time overhead.
As depicted in the upper module of Figure 7.2, I initially feed the states of humans and the robot’s
own state into a multi-layer perception (MLP):

i, = MLP,(h’,s"), (7.5)

which ultimately yields encoded spatial relationships i between the robot and the observed humans.

7.2.2.2 Attention Graph on Observed Humans

In addition, drawing inspiration from Chen et al. (2019), I establish an attention graph that encodes
the interactions between the robot and observable humans in pairs.

7.3. Experiments 101

In order to deal with the variable amounts of scanned humans during each observation, I first em-
ploy a non-linear transformation, such as ReLU activation function, to each robot-human interaction
pair to obtain preliminary embedding features:

e! = MLP,(s",s'), (7.6)

Each embedding vector e; is subsequently fed into another MLP and transformed into its corre-
sponding attention weight:
w' = MLP,(e"), 7.7

Here, please be aware that the final layer of MLP,, lacks a layer of ReL.U activation. Additionally,
both MLP, and MLP,, utilize the same parameters during the calculation of each interaction. In
comparison to SARL (Chen et al., 2019), our ESA network architecture is simplified by dropping
the mean pooling module in Figure 5.3 and deeper embedding. This adjustment allows us to achieve
comparable performance in less time.

Subsequently, I obtain the interaction representation a of all pairs through a weighted sum of
pairwise interaction vector e’ and the corresponding attention weight w’:

N . .
a=> we, (7.8)
)

Finally, I feed both the interaction representation a and the robot’s state into an additional MLP
to get the encoded attention feature:
i, = MLP;(a,s") (7.9)

7.2.2.3 Final Output

Upon independently processing information through the attention branch and the spatial graph
branch, I construct an extra non-linear transformation. This transformation incorporates ReLU ac-
tivations and utilizes the spatial feature i and attention feature i, as inputs. The resulting output is
estimated action value q, serving as the learned indicator for cooperative path planning:

q= MLPv(iSaia) (7-10)

It can be observed that when the number of people in the environment changes, ESA algorithm’s
spatial graph processes a variable number of observed humans using LSTM, outputting fixed-length
spatial vectors. Meanwhile, the attention graph aggregates interaction features between pairs through
a pooling mechanism. Ultimately, ESA combines features from both the spatial and attention graphs
as inputs for value function estimation. This integration of spatial and attention information enhances
the flexibility and adaptability of the ESA algorithm in partially observable environments, allowing
it to effectively manage diverse crowd sizes.

7.3 Experiments

7.3.1 Environment Setup

In line with the preceding chapters, I establish the simulation environment with Gym (Brockman
et al., 2016) and RVO (Van den Berg et al., 2008) as detailed in Chen et al. (2019). In partially

102 Chapter 7. Social-Aware Robot Navigation in Partially Observable Environments

observable environments, my primary focus is on testing and validating the effectiveness and fea-
sibility of new navigation algorithms. Robots with non-holonomic dynamics face more movement
constraints, which can significantly increase the complexity of training. Therefore, my experiments
have only considered the robot with holonomic dynamics. Navigation of robots with non-holonomic
dynamics in crowded settings is one of our future research directions.

The behavior of all agents, except the robot, adheres to the ORCA policy (Van Den Berg et al.,
2011). Throughout all experiments, the robot remains in an invisible setting to prevent excessive
human reactions. This approach ensures that the robot learns a policy primarily focused on direct
goal-reaching, rather than adopting an overly aggressive strategy. For the conducted experiments, |
configure scenarios involving circle-crossing, with the robot’s initial position set at (0, —4) and its
goal position set at (0, 4). These circle-crossing scenarios have a radius of 5m for both training and
testing. To maintain a realistic representation of real-world conditions, I restrict the robot’s sensor
range to 2.5m. This means that the robot’s observations are limited to humans within this radius,
rather than encompassing all humans in the environment at all times.

7.3.2 Training and Testing
7.3.2.1 Training

I employed the parallel Double DQN algorithm (Section 3.3.1.2) to train our ESA, utilizing PyTorch
(Paszke et al., 2017) and a deep reinforcement learning library, PFRL (Fujita et al., 2021) for imple-
mentation. The batch size was set to 32, and I utilized the Adam optimizer (Kingma and Ba, 2014).
To assess performance, I conducted a comparative analysis between our ESA method and GA3C-
CADRL (Everett et al., 2018) as well as SARL (Chen et al., 2019). All three methods were trained
using 10k episodes in the environment featuring 5 dynamic humans and 2 static humans. To ensure
a fair comparison, I standardize the reward function, optimizer, training batch size, and learning rate
across all methods. Unlike the approach presented in Chen et al. (2019), I abandon the utilization of
imitation learning. This decision was based on the poor performance of ORCA (Van Den Berg et al.,
2011) in partially observable environments. ORCA relies heavily on the accurate perception of sur-
rounding agents to compute collision-free trajectories. In partially observable environments, where a
robot or agent’s sensors cannot detect the entire environment, this could lead to inadequate or incor-
rect collision avoidance decisions. This renders it unsuitable as a qualified expert for demonstration
in partially observable environments. Importantly, our modifications led to a significant reduction in
training time. On a Mac Mini equipped with the M1 chip, I was able to achieve this reduction from
approximately 10 hours to around 2 hours, as compared to the findings reported in Chen et al. (2019)

7.3.2.2 Testing

For testing phases, I configured scenarios with varying numbers of static humans and dynamic hu-
mans that different scenarios are the mostly same as Chapter 6. During training, I established a
timeout limit of 60 seconds, ensuring adequate exploration for the agent. However, this limit was
reduced to 24 seconds for testing. Across both the training and testing phases, distinct random seeds
were assigned to different episodes. Consequently, within a given test episode, all approaches en-
countered scenarios with identical robot start and goal positions, maximum velocity, and humans’
start and goal positions. However, the humans’ start and goal positions differ in the episodes by

7.3. Experiments 103

5 dynamic + 0 static 10 dynamic + 0 static 15 dynamic + 0 static 20 dynamic + 0 static
100 4
5
14 11
14
80 1 41 30
28 66
60
40
94
86 86
40 1 79
65
59
53
20 1 BN Success 31 34
B Collision
Timeout
04
GA3C-CADRL SARL ESA(Ours) GA3C-CADRL SARL ESA(Ours) GA3C-CADRL SARL ESA(Ours) GA3C-CADRL SARL ESA(Ours)

Figure 7.5: Quantitative evaluation of three methods in scenarios with varying numbers of dynamic
humans. It shows that our ESA consistently exhibited the highest success rate and the lowest collision
rate among these three methods. Compared to the other two approaches, GA3C-CADRL (Everett
et al., 2018) had the highest timeout rate and experienced more collisions than our ESA. In contrast,
SARL (Chen et al., 2019) never reached a timeout, but as the number of humans increased, its
collision rate sharply rose.

5 dynamic + 2 static 5 dynamic + 3 static 5 dynamic + 4 static 5 dynamic + 5 static
100 4
0 9
8 16
80 11
60
100 5 96
86 84 88
1 75
204 N Success
B Collision
Timeout
04
GA3C-CADRL SARL ESA(Ours) GA3C-CADRL SARL ESA(Ours) GA3C-CADRL SARL ESA(Qurs) GA3C-CADRL SARL ESA(Qurs)

Figure 7.6: Quantitative evaluation on scenarios with 5 dynamic humans and varying numbers of
static humans.

re-randomization. The metrics used in the testing phases are presented in Section 4.3.3.

7.3.3 Quantitative Evaluation

I conducted a comprehensive comparison across various metrics, including success rate, collision
rate, timeout rate, average navigation and the average reward across all tested episodes. The results
for the three methods in scenarios featuring different combinations of dynamic and static humans
are illustrated in Figure 7.5, Figure 7.6, and Figure 7.7. Comparatively, SARL (Chen et al., 2019)
demonstrates a more aggressive behavior, resulting in shorter navigation time. However, it becomes

104 Chapter 7. Social-Aware Robot Navigation in Partially Observable Environments

Numbers of dynamic humans

Methods

5 10 15 20
SARL 0.949 0.795 0.425 0.1
GA3C-CADRL 0.891 0.737 0.438 0.204
ESA 0.972 0909 0.800 0.531

Table 7.1: Average rewards across 1,000 test cases in simple scenarios only with varying numbers
of dynamic humans. Our ESA achieves the highest average rewards. SARL outperforms GA3C-
CADRL in the first two scenarios but performs less effectively in scenarios involving 15 and 20
humans due to the much higher collision rate.

5 dynamic + additional number of static humans

Methods

1 2 3 4 5
SARL 0.953 0944 0.902 0.876 0.770
GA3C-CADRL 0930 0.889 0.828 0.781 0.696
ESA 0981 0.956 0.945 0.912 0.837

Table 7.2: Average rewards across 1,000 test cases in complex scenarios with 5 dynamic humans
and varying numbers of static humans. Similarly, our ESA outperforms the other two

more prone to collisions as the number of obstacles increases. On the other hand, GA3C-CADRL
(Everett et al., 2018) adopts a more conservative approach, leading to a higher frequency of timeouts
and longer navigation time, even in successful episodes. In contrast, our approach shows effective
obstacle avoidance while maintaining navigation times comparable to SARL (Chen et al., 2019) as
the number of humans increases. The collision rate and navigation time of our method exhibit slower
increments in both scenarios: pure dynamic environments and those featuring both dynamic and
static humans. I also collected data on the average navigation time. SARL (Chen et al., 2019) main-
tains a steady navigation time across various numbers of humans, whereas GA3C-CADRL (Everert
et al., 2018) and our ESA show slight increases as the human count grows. Despite a slight increase
in our inference time, the maximum difference remains only 0.0003ms.

Furthermore, the average episode rewards for the various test scenarios are presented in Table 7.1
and Table 7.2. It is evident that our ESA outperforms the other two methods, particularly as the
number of humans increases. Statistical analysis through paired t-tests confirms that the differences
in success rate, collision rate, and average rewards are statistically significant. This reaffirms the
robustness of our approach compared to others, especially considering that collision rate is a crucial
metric in crowd navigation.

Although both Chapter 6 and this Chapter focus on testing the proposed method in scenarios
different from the training environment, their core emphases are distinct. The former concentrates
on verifying the method’s robustness and generality in fully observable environments, while the
latter focuses on its effectiveness in unknown environments with limited sensor perception. This
difference highlights the various aspects of adaptability and effectiveness of the proposed methods

7.3. Experiments 105

GA3C-CADRL
21 A SARL
—— ESA(Ours)

= e
U o~ @
1 1 1

Average navigation time

=
=y
L

=
w

5 10 15 20
Number of dynamic humans

(a) Simple scenarios only with different numbers of dynamic humans.

22

GA3C-CADRL
21 - SARL
—— ESA(Ours)

[y
(e}
L

=

Average navigation time
e =
un [=}] ~J

1

[y
=9
L

13 T T T T
2 3 4 5

5 dynamic + additional number of static humans
(b) Scenarios with 5 dynamic humans plus different numbers of static humans as indicated.

Figure 7.7: Average navigation time for the episodes in different scenarios.

106 Chapter 7. Social-Aware Robot Navigation in Partially Observable Environments

1.01
0.8
2
©
=
o
W
&
§ 0.4 A
<
0.2 1
Full ESA
Only Spatial
0.0 4 Only Attention
5 10 15 20

Number of dynamic humans

Figure 7.8: Average rewards on 1,000 test episodes with varying human numbers. I can clearly see
that the attention graph outperforms the spatial graph when the number of humans is low, but its
performance significantly deteriorates as the human count increases. However, when both graphs are
combined for reasoning, our model excels across nearly all test scenarios.

under different conditions.

7.3.4 Ablation Study

In order to assess the relative contributions of different components to the overall performance, I di-
vided the spatial and attention branches into two distinct parts. I conducted training and testing using
identical conditions as before. The results of the ablation study, presented in Figure 7.8, demonstrate
that our ESA leverages the strengths of both branches, resulting in the most optimal performance.

7.3.5 Qualitative Evaluation

I further investigated the enhanced performance of our model through qualitative outcomes. All three
RL-based methods can successfully navigate to the goal in scenarios containing just a few humans.
However, GA3C-CADRL (Everett et al., 2018) tries to keep conservative and waits for humans to
move away. Figure 7.9 illustrates two representative scenarios involving obstacle avoidance while
navigating through human crowds. When confronted with an environment containing five dynamic
huamns, the robot controlled by GA3C-CADRL (Everett et al., 2018) initially moves, but then dras-
tically slows down and alternates between left and right movements from 5.0s to 16.0s, resulting
in a timeout case. In contrast, our ESA robot initially hesitates, but subsequently identifies a more
favorable path through the center, resulting in a shorter navigation time. As the number of dynamic
humans increases to 15, SARL (Chen et al., 2019) becomes more risk of moving directly into crowds,
resulting in collisions. In contrast, our ESA robot first reduces its speed and then selects a shorter
path toward the goal.

7.3. Experiments 107

Robot 0.0 Robot 182 50
18.0 18.0
4 4
25.0 6.0
240 |00 o0
N 80 5 8.0
4.0 1240
4.0 12800 4.0 12f02
~ 20.0 _
E 0| BOS-O-O@usa, caxarSEDo E 0| @PSCO @ o s EDa
= B LD < % = I\ ‘{\%C‘al'o/
0.0 40 0.0 48 ’
80 4D 0 150 80 40
=21 8.0 : -2 g0
89 80 4o 1) &°
—41 oo —4 0o
18.0 0.0 1a.0 0.0
—a 2 0 2 4 —a 2 0 2 2
(m) x(m)
(a) GA3C-CADRL (b) ESA

y(m)
y(m)

(c) SARL (d) ESA

Figure 7.9: Illustration of the resulting trajectories. Fig. (a) and (b) show the navigation behavior
over time in the scenario with five dynamic humans. ESA takes the shorter time to reach the goal,
while GA3C-CADRL meets the timeout case. Fig. (c) and (d) show how the robot navigates in the
environment with 15 dynamic humans. Although the robot’s observed states are limited in crowded

environments, the ESA is still able to find a safe navigation path, while SARL collides with the crowd
on its way.

108 Chapter 7. Social-Aware Robot Navigation in Partially Observable Environments

-2

x(m) 270°

(c) GA3C-CADRL (d) ESA

Figure 7.10: Value estimations by different methods for the dense scene (a). The dense scene (a)
is formed by 5 dynamic humans, 4 static humans and one robot. The light dashed blue circle is the
robot’s sensor range with a radius of 2.5m, where the humans could be observed by the robot. SARL
model prefers to take full speed at 90°, while GA3C-CADRL model prefers to take less speed at
135°. ESA model achieves the high value for high speeds on the rotation of 135°, preparing to pass
behind dynamic humans #0.

7.4. Summary 109

In the following, I also compared the value estimations of several different methods in the same
simulation environment Figure 7.10. It’s important to note that the robot can only observe the state of
humans within a circle centered on itself, defined by the radius of its sensor range, and not the state
of all humans in the simulation environment. This requires the robot to utilize incomplete environ-
ment observation information to understand the environment more accurately and comprehensively
for safe and effective navigation. Among these methods, the SARL model’s attention mechanism
significantly focuses on stationary humans at 225° and 0°. This focus might lead the robot to choose
more risky behaviors, such as moving full speed at a 90-degree angle, increasing the risk of conflicts
with static humans outside the sensor detection range. In contrast, both GA3C-CADRL and ESA
consider spatial position information, thus tending to turn towards 135° to bypass dynamic human
#0. However, GA3C-CADRL does not move at full speed, adopting a more conservative behavior
to prevent potential collisions. Conversely, ESA can understand the environment more accurately
based on the current partial observations, strengthening its focus on the stationary human at 0° and
dynamic human #0. It chooses to avoid the 90° direction, which is the riskiest area (potential human
gathering spot) and infers that the 135° direction poses less risk, thereby choosing to move full speed
in that direction to avoid potential obstacles.

7.4 Summary

In this chapter, I introduce an efficient method called Enhanced Spatial and Attention Graph (ESA)
for crowded and partially observable environments. While robots can only perceive human states
within a short range of sensors, ESA integrates spatial and attention reasoning for effective naviga-
tion. Spatial graphs capture the spatial relationships between the robot and its environment, including
dynamic and static objects, aiding in understanding and predicting environmental dynamics. The at-
tention mechanism enhances the focus on key environmental information, enabling more accurate
identification and response within limited perception. Parallel Double DQN is used for network
training. Experiment results show that ESA outperforms state-of-the-art baselines in challenging
simulated environments with various dynamic and static human numbers, maintaining low collision
rates even in high-density scenarios.

CHAPTER 8

Conclusion

In this chapter, I summarize the contributions of the thesis for social-aware robot navigation. Further-
more, I discuss future directions for research to advance state-of-the-art approaches for social-aware
robot navigation.

8.1 Summary

In this thesis, I introduced new contributions to the field of socially aware robot navigation. I pro-
pose several methods based on deep reinforcement learning to overcome the limitations of current
learning-based navigation approaches, such as poor generalizability, short-sightedness, and reduced
performance due to incomplete observational information in partially observable environments, par-
ticularly in crowded and complex human environments. Our developed methods prioritize optimiz-
ing human-robot social interactions. I aim to devise navigation algorithms that facilitate intent-aware
and socially compliant robot motions, enhancing human comfort and safety while reducing instabil-
ity in human social dynamics. The proposed methods augment exploration capabilities by extending
sparse reward functions. They leverage graph attention networks to encode the temporal and spa-
tial dimensions of crowd interactions and employ attention mechanisms for planning and enhancing
robot navigation in partially observable environments. Consequently, robot navigation is improved,
enabling faster target reach and minimizing collisions, all while maintaining a high level of robust-
ness. In the following, I will discuss these contributions in detail.

Previous robot navigation approaches only rely on the current state to make decisions, resulting
in shortsighted actions that may exhibit inflexibility or even become trapped when encountering sud-
den events or increasing environmental complexity. For instance, traditional methods might struggle
to respond promptly when other individuals suddenly change direction, or they might freeze in place
when faced with group obstacles. In Chapter 5, I address this limitation through the development
of an extended reward function and the introduction of a novel foresight social-aware reinforcement
learning (FSRL) framework. On one hand, the new reward function incorporates the ability to fore-
see potential future collisions, enhancing its responsiveness to sudden events. The FSRL operates by
predicting potential future collisions and taking proactive measures to avoid them, thereby increas-
ing navigational safety. On the other hand, by introducing efficiency constraints into the new reward
function, I have significantly reduced navigation time. Moreover, the synergistic incorporation of
foresight penalties and efficiency constraints enables the robot to reduce collisions while effectively
balancing efficiency and user comfort (minimizing disturbances). Our model has demonstrated supe-
rior performance across three progressively challenging simulated environments. It not only delivers
smoother and safer navigation trajectories but also accomplishes navigation in a relatively shorter
time frame, substantially improving the efficacy and efficiency of the navigation methods.

To enhance the generalizability of robot navigation strategies, I introduce an Attention-based

112 Chapter 8. Conclusion

Spatial-Temporal Graph (ASTG) learning model in Chapter 6. This model leverages graph attention
networks (GAT) to capture and understand complex interactions and relationships between agents,
utilizing a self-attention mechanism to propagate and aggregate information from neighbors. With
the incorporation of GAT, I can implicitly calculate both direct and indirect spatial interactions and
temporal group features, empowering the model to make informed decisions in dynamically chang-
ing scenarios. ASTG further integrates recurrent neural networks (RNN) to incorporate past trajec-
tory information, enabling more precise predictions of each agent’s future intentions. This approach
goes beyond making decisions based solely on the current environmental state, offering a more fore-
sighted decision-making process by deeply analyzing spatial-temporal graphs to anticipate future
changes and potential challenges. This significantly boosts the robot’s navigation abilities in a va-
riety of complex environments, enhancing its adaptability and universality. To better measure and
analyze behaviors, I introduce a new performance metric called "weighted navigation time," which
effectively penalizes situations involving collision risks or inappropriate strategies, thereby offering
a more comprehensive and practical assessment standard for robot navigation. In our experiments,
ASTG demonstrated superior performance, not only significantly reducing collision rates compared
to baseline methods but also maintaining efficient navigation speeds. This showcases remarkable
robustness and reliability, ensuring that robots can effectively navigate in a range of environments,
from simple to complex.

Finally, the limitations imposed by sensors present a significant challenge, as the restricted per-
ception range can lead to incomplete and uncertain environment data. In response to this, I devised
an advanced deep reinforcement learning architecture called the "Enhanced Spatial Attention Graph
(ESA)" based on graph learning methodologies, detailed in Chapter 7, aiming to optimize robot navi-
gation strategies. This system unites spatial and attention reasoning, facilitating improved navigation
in crowded and partially observable environments. On one hand, it focuses on analyzing the spatial
relationships and layouts of both static and dynamic elements present in the environment; on the
other hand, it lays emphasis on determining action strategies for the robot by analyzing the signifi-
cance of different entities that interact with the robot. To mitigate issues of overfitting and learning
biases, enhancing both efficiency and performance of the learning process, I employed a parallel
Double Deep Q-Network (DQN) strategy for training the network. Our experiments indicate that,
compared to other advanced methods, the ESA method not only significantly reduces training time
but also exhibits higher success rates and lower collision rates in a variety of test scenarios. This
method can effectively avoid obstacles while maintaining a navigation time similar to that of SARL,
especially in cases of increased human presence, its growth rate of collision rate and navigation time
is slower than other methods.

8.2 Future Work

While a variety of methods addressing social-aware crowd navigation have achieved success, it is
imperative to acknowledge and address their respective limitations for practical, real-world deploy-
ment. In this section, I intend to briefly discuss some open challenges and possible extensions of the
method proposed in this paper.

Adaptive Reward Function. In the field of robot crowd navigation using deep reinforcement
learning, a key future research direction is the development of adaptive reward functions. These func-

8.2. Future Work 113

tions could adjust according to the dynamic complexities of the environment, thereby enhancing the
algorithm’s generalizability and adaptability in varied social settings. Traditionally, reinforcement
learning depends on effective reward signals to guide agent learning. Typically, an agent receives a
positive reward for achieving goals and a negative one for colliding with obstacles. However, these
rewards are often generated only at the end of each training epoch, leading to sparsity in reward
signals. Sparse rewards can exacerbate data inefficiency, resulting in insufficient training conver-
gence and prolonged training times. To address this, reward shaping techniques were introduced
in Chapter 5, where a comprehensive reward function was constructed by setting multiple objec-
tives such as safety, efficiency, and comfort. This approach allows robots to consider other social
factors while achieving their primary navigation goals. Additionally, developing reward functions
that adapt to complex environmental changes is another effective method for mitigating the issue
of sparse rewards. This could potentially be achieved by integrating meta-learning techniques, en-
abling robots to dynamically adjust their reward functions based on the current environment and
context. Such a strategy is expected to reduce overfitting and enhance adaptability across diverse
social environments. However, introducing such adaptive reward functions adds complexity to rein-
forcement learning, which could impact the algorithm’s stability and convergence. Thus, realizing a
self-adaptive reward function capable of navigating through varied and unknown situations without
compromising the stability and efficiency of the learning process is a highly challenging task. In the
context of robot crowd navigation, such a reward system must not only consider the effectiveness of
navigation but also how to adapt to complex social dynamics while maintaining algorithmic stability
and efficiency.

Enhancing Generalization Ability. In Chapter 6, I introduced an attention-based spatial-temporal
graph learning model to address social-aware robot navigation tasks in crowded scenarios. This
model can effectively capture and analyze complex crowd interactions, thereby aiding robots in com-
prehending the underlying behaviors and intentions of each agent. The attention mechanism plays a
pivotal role, encouraging learning across diverse simulation environments by weighing the interac-
tive influences amongst various agents. However, despite the method achieving good generalization
performance in simulated environments, it encounters some challenges when transitioning to physi-
cal environments. In real environments, the system needs to handle more uncertainties and dynamic
changes, making the direct transition from simulated to real environments very difficult. To overcome
this, researchers have begun exploring various solutions. Zhang et al. (2017) initiated the agent from
a random position and utilized four various maze environments in training phases. Long et al. (2018)
devised a multi-scenario training framework to learn optimal strategies, employing numerous robots
for concurrent training in rich, complex scenarios. Only a small amount of fine-tuning is needed to
transfer the model from the simulated environment to the real environment. This demonstrates that
adding randomness to the simulated environment to expand the sample space is an effective way to
solve the generalization problem. Incorporating elements of randomness - be it through sensor noise,
random target positions, or unpredictable obstacles - expands the sample space, enhancing data diver-
sity across various scenarios and facilitating a smoother transition between simulated environments.
I believe that a promising approach to enhancing the model’s generalization performance further is to
broaden the sample space through introducing randomness into the simulated environments. This can
be achieved by incorporating various elements such as random sensor noise, random target positions,
and random obstacles, building a richer and more diverse training dataset. In this way, the model can

114 Chapter 8. Conclusion

be trained in an environment closer to the real-world dynamics, enhancing its generalization ability
and effectiveness in practical applications.

Prediction on Partially Observable Environments I delved into navigation models in partially
observable environments in Chapter 7. Leveraging LSTM to distinguish and encode the spatial dy-
namics between robots and other agents has fundamentally enhanced robots’ comprehension of their
environments, establishing a solid foundation for navigation adapted to social cues. An interesting
future direction is to further explore the potential of recurrent neural networks (RNN), especially their
powerful memory functions, to enhance agents’ autonomous memory and ability to process previous
observable information. For instance, adopting Bidirectional LSTM (Bi-LSTM) can simultaneously
capture past and future information to better understand and predict the surrounding environment and
pedestrian behavior. Additionally, by integrating features from different sources, such as visual infor-
mation, LiDAR data, or other sensor data, a more comprehensive understanding of the environment
can be provided, thereby assisting LSTM in making more accurate predictions. Such advancements
promise not just heightened adaptability to diverse environments but also smooth and natural navi-
gation in complex social scenarios. Moreover, although I have explored the application of RNNs in
processing temporal information in navigation tasks based on deep reinforcement learning (DRL) in
Chapter 6, there are still many unexplored possibilities in this field. I recognize that RNNs and its
variants (such as LSTM and GRU) may have long-term dependency issues, making the choice and
design of network architecture particularly important.

Learning the Interactions in Crowds Human behavior is diverse at the individual level, but it be-
comes more complex in terms of group structure and dynamics. An interesting research direction in
future is delve deeper into how to design a social interaction model that not only considers pairwise
interactions between agents but also accounts for group-level interactions. By deeply understanding
group dynamics, robots can more effectively predict the movement trends and potential changes of
crowds, which is crucial for improving obstacle avoidance and path planning accuracy. In certain sce-
narios, such as emergency situations, robots may also need to coordinate or cooperate with crowds to
guide evacuation. Such a model can provide a comprehensive and multifaceted perspective, helping
robots better understand and interpret social environments, thereby offering more precise and flexible
navigation solutions. Previous studies have explored methods to capture inter-group differences (for
instance, Shao et al. (2014)) in dynamic groups and intra-group coherence (for instance, Taylor et al.
(2020); Luber and Arras (2013)), but group properties may differ between static and dynamic set-
tings. Future research could explore how to construct models capable of handling multi-level social
interactions, including interactions among individuals, small groups, and large crowds. Moreover,
combining deep learning techniques with social science theories can provide robots with a deeper
understanding of social environments. This combination can help robots navigate more effectively
and naturally in complex crowd navigation tasks. Understanding aspects such as cultural differences,
psychological factors, and group psychology will significantly impact the robots’ social adaptability
and decision-making abilities. Overall, this multi-level, multi-angle research approach will propel
future studies on different structural levels of interaction within crowd environments, bringing new
breakthroughs in the field of robot crowd navigation based on deep reinforcement learning.

Bibliography

Achiam, Joshua; Held, David; Tamar, Aviv, and Abbeel, Pieter. Constrained policy optimization. In
International conference on machine learning, pages 22-31. PMLR, 2017. (Cited on page 15.)

Alahi, Alexandre; Goel, Kratarth; Ramanathan, Vignesh; Robicquet, Alexandre; Fei-Fei, Li, and
Savarese, Silvio. Social Istm: Human trajectory prediction in crowded spaces. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 961-971, 2016. (Cited on
page 13.)

Aoude, Georges S; Luders, Brandon D; Joseph, Joshua M; Roy, Nicholas, and How, Jonathan P.
Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns.
Autonomous Robots, 35:51-76, 2013. (Cited on page 12.)

Babinec, Andrej; Duchon, Frantisek; Dekan, Martin; Mikulova, Zuzana, and Jurisica, Ladislav.
Vector field histogram* with look-ahead tree extension dependent on time variable environment.
Transactions of the Institute of Measurement and Control, 40(4):1250-1264, 2018. (Cited on
pages 11 and 12.)

Batalin, Maxim A; Sukhatme, Gaurav S, and Hattig, Myron. Mobile robot navigation using a sensor
network. In IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 1, pages 636—641. IEEE, 2004. (Cited on page 10.)

Bellman, Richard. Dynamic programming. Science, 153(3731):34-37, 1966. (Cited on pages 18
and 19.)

Bengio, Yoshua; Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gra-
dient descent is difficult. IEEE transactions on neural networks, 5(2):157-166, 1994. (Cited on
page 29.)

Bennewitz, Maren; Burgard, Wolfram, and Thrun, Sebastian. Learning motion patterns of persons
for mobile service robots. In Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No. 02CH37292), volume 4, pages 3601-3606. IEEE, 2002. (Cited on page 13.)

Borenstein, Johann and Koren, Yoram. Real-time obstacle avoidance for fast mobile robots. /EEE
Transactions on Systems, Man, and Cybernetics, 19(5):1179-1187, 1989. (Cited on page 52.)

Borenstein, Johann and Koren, Yoram. Real-time obstacle avoidance for fast mobile robots in clut-
tered environments. In Proceedings., IEEE International Conference on Robotics and Automation,
pages 572-577. IEEE, 1990. (Cited on page 52.)

Borenstein, Johann; Koren, Yoram, and others, . The vector field histogram-fast obstacle avoidance
for mobile robots. IEEE transactions on robotics and automation, 7(3):278-288, 1991. (Cited on
pages 11, 12 and 52.)

BostonDynamics, . URL https://bostondynamics.com/. (Cited on page 9.)

https://bostondynamics.com/

116 Bibliography

Breazeal, Cynthia. Designing sociable robots. MIT press, 2004. (Cited on page 11.)

Brockman, Greg; Cheung, Vicki; Pettersson, Ludwig; Schneider, Jonas; Schulman, John; Tang, Jie,
and Zaremba, Wojciech. Openai gym. arXiv preprint arXiv:1606.01540, 2016. (Cited on pages 46,
60 and 101.)

Chen, Changan; Liu, Yuejiang; Kreiss, Sven, and Alahi, Alexandre. Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement learning. In 2019 interna-
tional conference on robotics and automation (ICRA), pages 6015-6022. IEEE, 2019. (Cited on
pages vii, 14, 41, 46, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 76,77, 79, 80, 81, 84, 85, 98, 100, 101,
102, 103, 104 and 106.)

Chen, Changan; Hu, Sha; Nikdel, Payam; Mori, Greg, and Savva, Manolis. Relational graph learning
for crowd navigation. In IROS, pages 10007-10013, 2020a. (Cited on pages 15, 80, 81 and 84.)

Chen, Yiyang; Cheng, Chuanxin; Zhang, Yueyuan; Li, Xinlin, and Sun, Lining. A neural network-
based navigation approach for autonomous mobile robot systems. Applied Sciences, 12(15):7796,
2022. (Cited on page 10.)

Chen, Yu Fan; Everett, Michael; Liu, Miao, and How, Jonathan P. Socially aware motion plan-
ning with deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1343—1350. IEEE, 2017a. (Cited on pages 13 and 99.)

Chen, Yu Fan; Liu, Miao; Everett, Michael, and How, Jonathan P. Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 285-292. IEEE, 2017b. (Cited on pages 13,
41, 43,44, 56 and 99.)

Chen, Yujing; Zhao, Fenghua, and Lou, Yunjiang. Interactive model predictive control for robot
navigation in dense crowds. [EEE Transactions on Systems, Man, and Cybernetics: Systems, 52
(4):2289-2301, 2021. (Cited on page 11.)

Chen, Yuying; Liu, Congcong; Shi, Bertram E, and Liu, Ming. Robot navigation in crowds by graph
convolutional networks with attention learned from human gaze. IEEE Robotics and Automation
Letters, 5(2):2754-2761, 2020b. (Cited on pages 14, 15 and 85.)

Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi;
Schwenk, Holger, and Bengio, Yoshua. Learning phrase representations using rnn encoder—
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), page 1724. Association for Computational
Linguistics, 2014. (Cited on page 29.)

Choset, Howie; Lynch, Kevin M; Hutchinson, Seth; Kantor, George A, and Burgard, Wolfram. Prin-
ciples of robot motion: theory, algorithms, and implementations. MIT press, 2005. (Cited on
page 12.)

Doucet, Arnaud; De Freitas, Nando; Gordon, Neil James, and others, . Sequential Monte Carlo
methods in practice, volume 1. Springer, 2001. (Cited on page 12.)

Bibliography 117

Engel, Jakob; Schops, Thomas, and Cremers, Daniel. Lsd-slam: Large-scale direct monocular slam.
In European conference on computer vision, pages 834—849. Springer, 2014. (Cited on page 10.)

Everett, Michael; Chen, Yu Fan, and How, Jonathan P. Motion planning among dynamic, decision-
making agents with deep reinforcement learning. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3052-3059. IEEE, 2018. (Cited on pages 14, 41, 52,
60, 61, 62, 102, 103, 104 and 106.)

Ferrer, Gonzalo; Zulueta, Anais Garrell; Cotarelo, Fernando Herrero, and Sanfeliu, Alberto. Robot
social-aware navigation framework to accompany people walking side-by-side. Autonomous
robots, 41(4):775-793, 2017. (Cited on pages 11 and 12.)

Fiorini, Paolo and Shiller, Zvi. Motion planning in dynamic environments using the relative velocity
paradigm. In [1993] Proceedings IEEE International Conference on Robotics and Automation,
pages 560-565. IEEE, 1993. (Cited on page 11.)

Fong, Terrence; Nourbakhsh, Illah, and Dautenhahn, Kerstin. A survey of socially interactive robots.
Robotics and autonomous systems, 42(3-4):143-166, 2003. (Cited on page 52.)

Francis, Anthony; Faust, Aleksandra; Chiang, Hao-Tien Lewis; Hsu, Jasmine; Kew, J Chase; Fiser,
Marek, and Lee, Tsang-Wei Edward. Long-range indoor navigation with prm-rl. IEEE Transac-
tions on Robotics, 36(4):1115-1134, 2020. (Cited on page 14.)

Fujita, Yasuhiro; Nagarajan, Prabhat; Kataoka, Toshiki, and Ishikawa, Takahiro. Chainerrl: A deep
reinforcement learning library. The Journal of Machine Learning Research, 22(1):3557-3570,
2021. (Cited on pages 97 and 102.)

Gao, Xingyuan; Sun, Shiying; Zhao, Xiaoguang, and Tan, Min. Learning to navigate in human
environments via deep reinforcement learning. In International Conference on Neural Information
Processing, pages 418—429. Springer, 2019. (Cited on page 14.)

Gao, Xueshan; Gao, Rui; Liang, Peng; Zhang, Qingfang; Deng, Rui, and Zhu, Wei. A hybrid track-
ing control strategy for nonholonomic wheeled mobile robot incorporating deep reinforcement
learning approach. IEEE Access, 9:15592-15602, 2021. (Cited on page 53.)

Gao, Yuxiang and Huang, Chien-Ming. Evaluation of socially-aware robot navigation. Frontiers in
Robotics and Al 8:721317, 2022. (Cited on page 11.)

Ge, Shuzhi Sam. Social robotics: Integrating advances in engineering and computer science. In The
4th annual international conference organized by Electrical Engineering/Electronics, Computer,
Telecommunication and Information Technology, page 2007, 2007. (Cited on page 10.)

Gil, Oscar; Garrell, Anafs, and Sanfeliu, Alberto. Social robot navigation tasks: Combining machine
learning techniques and social force model. Sensors, 21(21):7087, 2021. (Cited on page 14.)

Goodfellow, Ian; Bengio, Yoshua, and Courville, Aaron. Deep learning. MIT press, 2016. (Cited on
page 22.)

Graves, Alex and Graves, Alex. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pages 37-45, 2012. (Cited on page 74.)

118 Bibliography

Guillén-Ruiz, Silvia; Bandera, Juan Pedro; Hidalgo-Paniagua, Alejandro, and Bandera, Antonio.
Evolution of socially-aware robot navigation. Electronics, 12(7):1570, 2023. (Cited on page 11.)

Hastings, W Keith. Monte carlo sampling methods using markov chains and their applications. 1970.
(Cited on page 20.)

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing, and Sun, Jian. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016. (Cited on pages 27 and 78.)

Helbing, Dirk and Molnar, Peter. Social force model for pedestrian dynamics. Physical review E, 51
(5):4282, 1995. (Cited on pages 11 and 12.)

Hochreiter, Sepp and Schmidhuber, Jiirgen. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997. (Cited on pages 13, 29 and 97.)

Howard, Ronald A. Dynamic programming and markov processes. 1960. (Cited on page 18.)

Hu, Zhengxi; Zhao, Yingli; Zhang, Sen; Zhou, Lei, and Liu, Jingtai. Crowd-comfort robot navigation
among dynamic environment based on social-stressed deep reinforcement learning. International
Journal of Social Robotics, 14(4):913-929, 2022. (Cited on page 14.)

Hussein, Ahmed; Gaber, Mohamed Medhat; Elyan, Eyad, and Jayne, Chrisina. Imitation learning:
A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017. (Cited on
page 15.)

Joseph, Joshua; Doshi-Velez, Finale; Huang, Albert S, and Roy, Nicholas. A bayesian nonparamet-
ric approach to modeling motion patterns. Autonomous Robots, 31:383—400, 2011. (Cited on
page 12.)

Kalman, Rudolph Emil. A new approach to linear filtering and prediction problems. 1960. (Cited on
page 12.)

Khatib, Oussama. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings.
1985 IEEFE international conference on robotics and automation, volume 2, pages 500-505. IEEE,
1985. (Cited on page 11.)

Kingma, Diederik P and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. (Cited on pages 26, 62 and 102.)

Kipf, Thomas N and Welling, Max. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016. (Cited on pages 31 and 32.)

Kretzschmar, Henrik; Spies, Markus; Sprunk, Christoph, and Burgard, Wolfram. Socially compliant
mobile robot navigation via inverse reinforcement learning. The International Journal of Robotics
Research, 35(11):1289-1307, 2016. (Cited on page 52.)

Kroese, Dirk P; Taimre, Thomas, and Botev, Zdravko 1. Handbook of monte carlo methods. John
Wiley & Sons, 2013. (Cited on page 98.)

Bibliography 119

Kruse, Thibault; Pandey, Amit Kumar; Alami, Rachid, and Kirsch, Alexandra. Human-aware robot
navigation: A survey. Robotics and Autonomous Systems, 61(12):1726-1743, 2013. (Cited on
page 52.)

Kuderer, Markus; Kretzschmar, Henrik; Sprunk, Christoph, and Burgard, Wolfram. Feature-based
prediction of trajectories for socially compliant navigation. In Robotics: science and systems,
2012. (Cited on page 10.)

Laboratories, Hiroshi Ishiguro. URL http://www.geminoid. jp/en/robots.html. (Cited
on page 9.)

LaValle, Steven M; Kuffner, James J; Donald, BR, and others, . Rapidly-exploring random trees:
Progress and prospects. Algorithmic and computational robotics: new directions, 5:293-308,
2001. (Cited on page 12.)

LeCun, Yann; Bottou, Léon; Bengio, Yoshua, and Haffner, Patrick. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. (Cited on pages vii,
26 and 27.)

LeCun, Yann; Kavukcuoglu, Koray, and Farabet, Clément. Convolutional networks and applications
in vision. In Proceedings of 2010 IEEE international symposium on circuits and systems, pages
253-256. IEEE, 2010. (Cited on page 99.)

LeCun, Yann; Bengio, Yoshua, and Hinton, Geoffrey. Deep learning. nature, 521(7553):436—444,
2015. (Cited on page 22.)

Levinson, Jesse and Thrun, Sebastian. Robust vehicle localization in urban environments using
probabilistic maps. In 2010 IEEE international conference on robotics and automation, pages
4372-4378. IEEE, 2010. (Cited on page 10.)

Lillicrap, Timothy P; Hunt, Jonathan J; Pritzel, Alexander; Heess, Nicolas; Erez, Tom; Tassa, Yuval;
Silver, David, and Wierstra, Daan. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015. (Cited on page 37.)

Lindner, Felix and Eschenbach, Carola. Towards a formalization of social spaces for socially aware
robots. In Spatial Information Theory: 10th International Conference, COSIT 2011, Belfast, ME,
USA, September 12-16, 201 1. Proceedings 10, pages 283-303. Springer, 2011. (Cited on page 10.)

Liu, Jun S and Chen, Rong. Sequential monte carlo methods for dynamic systems. Journal of the
American statistical association, 93(443):1032-1044, 1998. (Cited on page 12.)

Liu, Lucia; Dugas, Daniel; Cesari, Gianluca; Siegwart, Roland, and Dubé, Renaud. Robot navigation
in crowded environments using deep reinforcement learning. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5671-5677. IEEE, 2020. (Cited on
page 14.)

Liu, Shuijing; Chang, Peixin; Liang, Weihang; Chakraborty, Neeloy, and Driggs-Campbell, Kather-
ine. Decentralized structural-rnn for robot crowd navigation with deep reinforcement learning.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 3517-3524.
IEEE, 2021. (Cited on page 52.)

http://www.geminoid.jp/en/robots.html

120 Bibliography

Liu, Yuejiang; Xu, An, and Chen, Zichong. Map-based deep imitation learning for obstacle avoid-
ance. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
8644-8649. IEEE, 2018. (Cited on page 15.)

Long, Pinxin; Liu, Wenxi, and Pan, Jia. Deep-learned collision avoidance policy for distributed
multiagent navigation. IEEE Robotics and Automation Letters, 2(2):656-663, 2017. (Cited on
page 15.)

Long, Pinxin; Fan, Tingxiang; Liao, Xinyi; Liu, Wenxi; Zhang, Hao, and Pan, Jia. Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learning. In 2018 IEEE in-
ternational conference on robotics and automation (ICRA), pages 6252-6259. IEEE, 2018. (Cited
on page 113.)

Luber, Matthias and Arras, Kai Oliver. Multi-hypothesis social grouping and tracking for mobile
robots. In Robotics: Science and Systems, 2013. (Cited on page 114.)

Maxwell, Bruce A. Building robot systems to interact with people in real environments. Autonomous
Robots, 22:353-367, 2007. (Cited on page 11.)

McCulloch, Warren S and Pitts, Walter. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5:115-133, 1943. (Cited on page 23.)

Medsker, Larry R and Jain, LC. Recurrent neural networks. Design and Applications, 5:64—67, 2001.
(Cited on page 75.)

Michaud, Frangois; Co6té, Carle; Létourneau, Dominic; Brosseau, Yannick; Valin, J-M; Beaudry,
Eric; Raievsky, Clément; Ponchon, Arnaud; Moisan, Pierre; Lepage, Pierre, and others, . Spartacus
attending the 2005 aaai conference. Autonomous Robots, 22:369-383, 2007. (Cited on page 11.)

Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Graves, Alex; Antonoglou, loannis; Wierstra,
Daan, and Riedmiller, Martin. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. (Cited on page 34.)

Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A; Veness, Joel; Bellemare,
Marc G; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K; Ostrovski, Georg, and others,
. Human-level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.
(Cited on page 34.)

Mnih, Volodymyr; Badia, Adria Puigdomenech; Mirza, Mehdi; Graves, Alex; Lillicrap, Timothy;
Harley, Tim; Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928-1937. PMLR, 2016.
(Cited on page 37.)

Moon, Todd K. The expectation-maximization algorithm. IEEE Signal processing magazine, 13(6):
47-60, 1996. (Cited on page 13.)

Mur-Artal, Raul; Montiel, Jose Maria Martinez, and Tardos, Juan D. Orb-slam: a versatile and
accurate monocular slam system. IEEE transactions on robotics, 31(5):1147-1163, 2015. (Cited
on page 10.)

Bibliography 121

Osa, Takayuki; Pajarinen, Joni; Neumann, Gerhard; Bagnell,] Andrew; Abbeel, Pieter; Peters, Jan,
and others, . An algorithmic perspective on imitation learning. Foundations and Trends® in
Robotics, 7(1-2):1-179, 2018. (Cited on page 15.)

Pacchierotti, Elena; Jensfelt, Patric, and Christensen, Henrik 1. Tasking everyday interaction. Au-
tonomous Navigation in Dynamic Environments, pages 151-168, 2007. (Cited on page 10.)

Paszke, Adam; Gross, Sam; Chintala, Soumith; Chanan, Gregory; Yang, Edward; DeVito, Zachary;
Lin, Zeming; Desmaison, Alban; Antiga, Luca, and Lerer, Adam. Automatic differentiation in
pytorch. 2017. (Cited on page 102.)

Pfeiffer, Mark; Schaeuble, Michael; Nieto, Juan; Siegwart, Roland, and Cadena, Cesar. From percep-
tion to decision: A data-driven approach to end-to-end motion planning for autonomous ground
robots. In 2017 ieee international conference on robotics and automation (icra), pages 1527-1533.
IEEE, 2017. (Cited on pages 10 and 15.)

Pfeiffer, Mark; Shukla, Samarth; Turchetta, Matteo; Cadena, Cesar; Krause, Andreas; Siegwart,
Roland, and Nieto, Juan. Reinforced imitation: Sample efficient deep reinforcement learning for
mapless navigation by leveraging prior demonstrations. /EEE Robotics and Automation Letters, 3
(4):4423-4430, 2018. (Cited on page 15.)

Pitt, Michael K and Shephard, Neil. Filtering via simulation: Auxiliary particle filters. Journal of
the American statistical association, 94(446):590-599, 1999. (Cited on page 12.)

Reddy, Arun Kumar; Malviya, Vaibhav, and Kala, Rahul. Social cues in the autonomous navigation
of indoor mobile robots. International Journal of Social Robotics, 13:1335-1358, 2021. (Cited on

page 11.)

Rios-Martinez, Jorge; Spalanzani, Anne, and Laugier, Christian. Understanding human interaction
for probabilistic autonomous navigation using risk-rrt approach. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2014-2019. IEEE, 2011. (Cited on page 13.)

Rios-Martinez, Jorge; Spalanzani, Anne, and Laugier, Christian. From proxemics theory to socially-
aware navigation: A survey. International Journal of Social Robotics, 7:137-153, 2015. (Cited on
page 10.)

Rosenblatt, Frank. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958. (Cited on page 10.)

Rummery, Gavin A and Niranjan, Mahesan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994. (Cited on
page 20.)

Samsani, Sunil Srivatsav and Muhammad, Mannan Saeed. Socially compliant robot navigation in
crowded environment by human behavior resemblance using deep reinforcement learning. /EEE
Robotics and Automation Letters, 6(3):5223-5230, 2021. (Cited on page 14.)

Schmidhuber, Jiirgen. Deep learning in neural networks: An overview. Neural networks, 61:85-117,
2015. (Cited on page 22.)

122 Bibliography

Shao, Jing; Change Loy, Chen, and Wang, Xiaogang. Scene-independent group profiling in crowd.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2219—
2226, 2014. (Cited on page 114.)

Shi, Chao; Shimada, Michihiro; Kanda, Takayuki; Ishiguro, Hiroshi, and Hagita, Norihiro. Spatial
formation model for initiating conversation. Proceedings of robotics: Science and systems VII,
pages 305-313, 2011. (Cited on page 10.)

Shi, Weixian; Zhou, Yanying; Zeng, Xiangyu; Li, Shijie, and Bennewitz, Maren. Enhanced spatial
attention graph for motion planning in crowded, partially observable environments. In 2022 Inter-
national Conference on Robotics and Automation (ICRA), pages 4750-4756. IEEE, 2022. (Cited
on page 8.)

Shiller, Zvi; Large, Frederic, and Sekhavat, Sepanta. Motion planning in dynamic environments:
Obstacles moving along arbitrary trajectories. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164), volume 4, pages 3716-3721.
IEEE, 2001. (Cited on page 11.)

Sisbot, Emrah Akin; Marin-Urias, Luis F; Broquere, Xavier; Sidobre, Daniel, and Alami, Rachid.
Synthesizing robot motions adapted to human presence: A planning and control framework for
safe and socially acceptable robot motions. International Journal of Social Robotics, 2(3):329—
343, 2010. (Cited on page 10.)

Smith, Trevor; Chen, Yuhao; Hewitt, Nathan; Hu, Boyi, and Gu, Yu. Socially aware robot obstacle
avoidance considering human intention and preferences. International journal of social robotics,
pages 1-18, 2021. (Cited on page 13.)

Snape, Jamie; Van Den Berg, Jur; Guy, Stephen J, and Manocha, Dinesh. The hybrid reciprocal
velocity obstacle. [EEE Transactions on Robotics, 27(4):696-706, 2011. (Cited on pages 11
and 52.)

Sutton, Richard S. Learning to predict by the methods of temporal differences. Machine learning, 3:
9-44, 1988. (Cited on pages 19 and 20.)

Sutton, Richard S and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
(Cited on pages vii, 17, 18, 20 and 37.)

Sutton, Richard S; McAllester, David; Singh, Satinder, and Mansour, Yishay. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information pro-
cessing systems, 12, 1999. (Cited on page 37.)

Svenstrup, Mikael; Bak, Thomas, and Andersen, Hans Jgrgen. Trajectory planning for robots in
dynamic human environments. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4293-4298. IEEE, 2010. (Cited on page 13.)

Tai, Lei; Zhang, Jingwei; Liu, Ming, and Burgard, Wolfram. Socially compliant navigation through
raw depth inputs with generative adversarial imitation learning. In 2018 IEEE ICRA, pages 1111-
1117, 2018. (Cited on page 15.)

Bibliography 123

Taylor, Angelique; Chan, Darren M, and Riek, Laurel D. Robot-centric perception of human groups.
ACM Transactions on Human-Robot Interaction (THRI), 9(3):1-21, 2020. (Cited on page 114.)

Teh, Yee Whye and others, . Dirichlet process. Encyclopedia of machine learning, 1063:280-287,
2010. (Cited on page 12.)

Thomaz, Andrea; Hoffman, Guy; Cakmak, Maya, and others, . Computational human-robot interac-
tion. Foundations and Trends® in Robotics, 4(2-3):105-223, 2016. (Cited on page 11.)

Thrun, Sebastian. An approach to learning mobile robot navigation. Robotics and Autonomous
systems, 15(4):301-319, 1995. (Cited on page 10.)

Thrun, Sebastian and Biicken, Arno. Integrating grid-based and topological maps for mobile robot
navigation. In Proceedings of the national conference on artificial intelligence, pages 944-951,
1996. (Cited on page 10.)

Trautman, Pete; Ma, Jeremy; Murray, Richard M, and Krause, Andreas. Robot navigation in dense
human crowds: Statistical models and experimental studies of human—robot cooperation. The
International Journal of Robotics Research, 34(3):335-356, 2015. (Cited on page 12.)

Trautman, Peter and Krause, Andreas. Unfreezing the robot: Navigation in dense, interacting crowds.
In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 797-803.
IEEE, 2010. (Cited on page 13.)

Truong, Xuan-Tung and Ngo, Trung Dung. Toward socially aware robot navigation in dynamic
and crowded environments: A proactive social motion model. IEEE Transactions on Automation
Science and Engineering, 14(4):1743-1760, 2017. (Cited on pages 11 and 12.)

Van den Berg, Jur; Lin, Ming, and Manocha, Dinesh. Reciprocal velocity obstacles for real-time
multi-agent navigation. In 2008 IEEE international conference on robotics and automation, pages
1928-1935. Ieee, 2008. (Cited on pages 11, 46, 52, 60 and 101.)

Van Den Berg, Jur; Guy, Stephen J; Lin, Ming, and Manocha, Dinesh. Reciprocal n-body collision
avoidance. In Robotics Research: The 14th International Symposium ISRR, pages 3—19. Springer,
2011. (Cited on pages 11, 46, 52, 60, 61, 62 and 102.)

Van Hasselt, Hado; Guez, Arthur, and Silver, David. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016. (Cited
on pages 35, 97 and 98.)

Velickovic, Petar; Cucurull, Guillem; Casanova, Arantxa; Romero, Adriana; Lio, Pietro; Bengio,
Yoshua, and others, . Graph attention networks. stat, 1050(20):10-48550, 2017. (Cited on pages 31
and 33.)

Vemula, Anirudh; Muelling, Katharina, and Oh, Jean. Social attention: Modeling attention in human
crowds. In 2018 IEEE international Conference on Robotics and Automation (ICRA), pages 4601—
4607. IEEE, 2018. (Cited on page 13.)

Wang, Jack; Hertzmann, Aaron, and Fleet, David J. Gaussian process dynamical models. Advances
in neural information processing systems, 18, 2005. (Cited on page 12.)

124 Bibliography

Wang, Junxian; Chan, Wesley P; Carreno-Medrano, Pamela; Cosgun, Akansel, and Croft, Elizabeth.
Metrics for evaluating social conformity of crowd navigation algorithms. In 2022 IEEE Interna-
tional Conference on Advanced Robotics and Its Social Impacts (ARSO), pages 1-6. IEEE, 2022.
(Cited on page 47.)

Watkins, Christopher JCH and Dayan, Peter. Q-learning. Machine learning, 8:279-292, 1992. (Cited
on page 20.)

Welch, Greg; Bishop, Gary, and others, . An introduction to the kalman filter. 1995. (Cited on
page 12.)

Wiering, Marco A and Van Otterlo, Martijn. Reinforcement learning. Adaptation, learning, and
optimization, 12(3):729, 2012. (Cited on page 17.)

Wurm, Kai M; Hornung, Armin; Bennewitz, Maren; Stachniss, Cyrill, and Burgard, Wolfram. Oc-
tomap: A probabilistic, flexible, and compact 3d map representation for robotic systems. In Proc.
of the ICRA 2010 workshop on best practice in 3D perception and modeling for mobile manipula-
tion, volume 2, page 3, 2010. (Cited on page 10.)

Xiao, Xuesu; Liu, Bo; Warnell, Garrett, and Stone, Peter. Motion planning and control for mobile
robot navigation using machine learning: a survey. Autonomous Robots, 46(5):569-597, 2022.
(Cited on page 10.)

Yao, Qingfeng; Zheng, Zeyu; Qi, Liang; Yuan, Haitao; Guo, Xiwang; Zhao, Ming; Liu, Zhi, and
Yang, Tianji. Path planning method with improved artificial potential fieldaa reinforcement learn-
ing perspective. IEEE access, 8:135513-135523, 2020. (Cited on page 11.)

Zhang, Ji and Singh, Sanjiv. Loam: Lidar odometry and mapping in real-time. In Robotics: Science
and systems, volume 2, pages 1-9. Berkeley, CA, 2014. (Cited on page 10.)

Zhang, Jingwei; Springenberg, Jost Tobias; Boedecker, Joschka, and Burgard, Wolfram. Deep re-
inforcement learning with successor features for navigation across similar environments. In 2077
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2371-2378.
IEEE, 2017. (Cited on page 113.)

Zhou, Yanying; Li, Shijie, and Garcke, Jochen. Foresight social-aware reinforcement learning for
robot navigation. In 2023 35th Chinese Control and Decision Conference (CCDC), pages 3501—
3507. IEEE, 2023. (Cited on page 7.)

Zhou, Zhigian; Zhu, Pengming; Zeng, Zhiwen; Xiao, Junhao; Lu, Huimin, and Zhou, Zongtan.
Robot navigation in a crowd by integrating deep reinforcement learning and online planning. Ap-
plied Intelligence, pages 1-17, 2022. (Cited on pages 15, 80, 81, 84 and 85.)

Ziebart, Brian D; Ratliff, Nathan; Gallagher, Garratt; Mertz, Christoph; Peterson, Kevin; Bagnell,
J Andrew; Hebert, Martial; Dey, Anind K, and Srinivasa, Siddhartha. Planning-based prediction
for pedestrians. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3931-3936. IEEE, 2009. (Cited on page 13.)

	Introduction
	Related Work
	Traditional Robot Navigation
	Social-aware Robot Navigation
	Reaction-based Navigation
	Trajectory-based Navigation
	Learning-based Robot Navigation

	Preliminaries
	Reinforcement Learning (RL)
	Markov Decision Process (MDP)
	Policy and Value Functions
	Temporal Difference (TD) Learning
	Q Learning
	Monte Carlo

	Deep Learning (DL)
	Neural Networks (NNs)
	Convolutional Neural Network (CNN)
	Recurrent Neural Networks (RNNs)
	Graph Neural Networks (GNNs)

	Deep Reinforcement Learning (DRL)
	Value-based Learning
	Policy-based Learning

	DRL-based Social-aware Robot Navigation
	Framework
	Problem Formulation
	States Space and Parametrization
	Action Space
	Reward Function
	State Transition Model
	Value Function

	Simulation Environment
	Simulation Setup
	Training and Testing
	Metrics

	Challenges in Social-aware Robot Navigation

	Foresight Reinforcement Learning for Social-Aware Robot Navigation
	Introduction
	Foresight Socially Aware Reinforcement Learning
	Social Attention-based Deep Reinforcement Learning method (SARL)
	Sparse Reward
	Foresight Reward Augmentation
	Efficiency Reward Augmentation
	Augmented Reward Function

	Experiments
	Simulation Setup
	Training and Testing
	Comparison with State-of-the-art Methods
	Ablation Study
	Qualitative Evaluation
	Parameters Choosen

	Summary

	Generalization on Social-Aware Robot Navigation Behaviors
	Introduction
	A General Graph Learning Navigation Method
	Problem Formulation
	Attention-based Spatial-Temporal Graph Learning (ASTG)

	Experiments
	Simulation Setup
	Training and Testing
	Quantitative Evaluation
	Ablation Study
	Qualitative Evaluation
	Comparison with FSRL

	Summary

	Social-Aware Robot Navigation in Partially Observable Environments
	Introduction
	Social-Aware Navigation with Partial Observation
	Problem Formulation
	Enhanced Spatial Attention (ESA) Graph Struture

	Experiments
	Environment Setup
	Training and Testing
	Quantitative Evaluation
	Ablation Study
	Qualitative Evaluation

	Summary

	Conclusion
	Summary
	Future Work

	Bibliography

