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Abstract
“Investigation of the Resonance-like 𝑎1(1420) Signal and

First Partial-Wave Decomposition of the 𝜋−K0
S K0

S Final State at COMPASS”

In 2014, a supernumerous light-meson state was found by the COMPASS collaboration. This
discovery bore similarities to some of the 𝑋𝑌𝑍 states in the heavy-meson sector, discovered at 𝑒+𝑒−

colliders, that did not fit the expectations from the quark model and hence were called exotic states.
The partial-wave decomposition of the COMPASS data for the 𝜋−𝜋+𝜋− final state, which is employing
an isobar model, revealed a narrow signal with axial-vector quantum numbers in the 𝑓0(980)𝜋 P-wave.
Since it was found at an energy of 1.4 GeV by a resonance-model fit with a relativistic Breit-Wigner
model, it was called 𝑎1(1420). This thesis investigates the nature of the signal, following two avenues.
In the first part, it is shown how a rescattering of final-state particles can produce such a signal

by explicitly performing a projection of a K∗K intermediate state to the 𝑓0(980)𝜋 final state. The
resulting theoretical model is fitted to the COMPASS data and the quality is compared to a fit using a
conventional relativistic Breit-Wigner model. Several systematic studies are performed. This includes
a fit to each of the systematic studies of the underlying partial-wave decomposition, as well as a
bootstrap analysis and modifications of the theoretical model. In all cases except one, the rescattering
interpretation shows a better compatibility with the data.
In the second part, an event selection of the complementary 𝜋−K0

S K0
S final state is performed, where

the optimal vertex separation for the K0
S mesons is determined by means of a significance study to

reduce background coming from a possible 5𝜋 final state. A total of ∼ 240 000 exclusive events
are selected, superseding the statistics of previous experiments of diffractive 𝜋−K0

S K0
S production by

a factor of ∼ 240. Based on the selected data set, a first partial-wave decomposition is performed,
revealing strong evidence for the 𝑎1(1420) signal in the 𝑓0(980)𝜋 P-wave of the 𝜋−K0

S K0
S final state

in form of an enhancement in the intensity and a phase motion in the relative phase to other waves,
even for both resonance-spin projections 𝑀 = 0 and 𝑀 = 1. At the same time, no resonance-like
signal is visible at ∼ 1.4 GeV in the K∗(892)K0

S S-wave, which agrees well with the interpretation of a
rescattering effect. The spin-exotic 𝜋1(1600), a candidate for the lightest hybrid meson, manifests itself
as a broad peak in the K∗(892)K0

S P-wave, however, no significant evidence for a relative phase motion
with other partial waves is observed. Another hybrid candidate with ordinary quantum numbers, the
pseudoscalar 𝜋(1800), shows up as a clean narrow peak in the 𝑓0(980)𝜋 S-wave. It is accompanied by
a narrow resonance-like signal at 1.4 GeV, i.e. an enhancement in the intensity together with phase
motion in the relative phase to other partial waves. This could be the first observation of a “𝜋(1420)”
rescattering effect, similar to the 𝑎1(1420), but with pseudoscalar resonance quantum numbers.





Contents

1 Introduction / Motivation 1
1.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Quark Model and Exotic States . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation and Outline: Exotic Mesons at COMPASS . . . . . . . . . . . . . . . . 4

2 The COMPASS Experiment 7
2.1 The Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Analysis Framework of COMPASS . . . . . . . . . . . . . . . . . . . . . . . . 9

3 (Re-)Scattering and Partial-Wave Decomposition 11
3.1 Scattering Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Complex Analysis with Branch Points . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Discontinuity, Schwarz Reflection Principle and Dispersion Relations . . . . 16
3.2.2 Complex Square Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Complex Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Complex Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Breit-Wigner Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Breit-Wigner with Energy-Dependent Width . . . . . . . . . . . . . . . . . 28
3.3.2 Flatté Parametrization of the Decay Width . . . . . . . . . . . . . . . . . . . 30
3.3.3 Chew-Mandelstam Decay Width . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Partial-Wave Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Quantum Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Differential Cross Section of Diffractive Scattering at COMPASS . . . . . . 37
3.4.3 Isobar Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.4 Decay Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5 Fit Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Dalitz Plots for the 1++ Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Definition of Dalitz Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Dalitz-Plot-Prediction Method . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Production of Dalitz Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Partial-Wave Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.1 Dealing with Kinematic Singularities . . . . . . . . . . . . . . . . . . . . . 60
3.6.2 Iteration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



4 The Curious Case of the 𝒂1(1420) 63
4.1 The Signal in 3𝜋 at COMPASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Possible Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 New Genuine Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 K∗K Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Tetraquark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Unitary Coupled Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.5 Triangle Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Rescattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Scalar Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Dispersive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Application of the Partial-Wave Projection . . . . . . . . . . . . . . . . . . . 73
4.3.4 Calculation of the Triangle Amplitude . . . . . . . . . . . . . . . . . . . . . 76
4.3.5 Triangle-Amplitude Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.6 Other Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Fit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 General Fit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.2 Phenomenological Deck-Background Model . . . . . . . . . . . . . . . . . 86
4.4.3 1++0+ 𝜌(770)𝜋 S Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.4 1++0+ 𝑓0(980)𝜋 P Signal Model . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.5 2++1+ 𝜌(770)𝜋D Signal Model . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.6 𝑎1(1420) Breit-Wigner Model . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.7 Fitting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.8 Fit Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Systematic Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.1 Variation of the Fit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.2 K∗ Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6.3 Variation of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6.4 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6.5 Summary of Systematic Studies . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6.6 𝑡

′ Dependence of the Signal Amplitude . . . . . . . . . . . . . . . . . . . . 102
4.7 The Signal in Other Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7.1 𝜏 Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.2 The 𝜋KK Final State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



5 Kaons at COMPASS 105
5.1 Possibilities at the COMPASS Experiment . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Final States with Charged Kaons . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.2 The 𝜋−K0K0 Final State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.3 The Physical 𝜋−K0

S K0
S Final State . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.4 Final States with K0
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Event Selection of 𝜋−K0
S K0

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.1 Skimming for K0

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.2 Preselection for 𝜋−K0

S K0
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.3 Fine Selection of 𝜋−K0
S K0

S . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.4 𝑡

′ Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Invariant-Mass Distributions and Dalitz Plots . . . . . . . . . . . . . . . . . . . . . 142

5.3.1 Identifying possible Resonances . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.2 Invariant-Mass Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.3 Dalitz Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4 Hints for the 𝑎1(1420) in 𝜋−K0
S K0

S . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.5 Momentum Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 PWD of the 𝝅−K0
SK0

S Final State 157
6.1 Monte Carlo Production with TGEANT . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.1 Fine Selection of the MC Data . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2 Wave Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2.1 Isobar Line Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.2 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2.3 Wave-Selection Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2.4 Final Adjustment of the Wave Set . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Partial-Wave Decomposition of the 𝜋−K0
S K0

S Final State . . . . . . . . . . . . . . . . 175
6.3.1 Evidence for the 𝑎1(1420) in 𝜋−K0

S K0
S . . . . . . . . . . . . . . . . . . . . . 179

6.3.2 The Pseudoscalar Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3.3 The Spin-Exotic 𝜋1(1600) in 𝜋−K0

S K0
S . . . . . . . . . . . . . . . . . . . . . 182

6.4 The 𝜋(1420) as a Triangle Singularity . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5.1 Possibilities with AMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Summary, Conclusion and Outlook 191

Bibliography 197

ix



A Further Details on Kinematics 207
A.1 Kinematics of Two-Body Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.1.1 CMS Energy and Break-Up Momentum . . . . . . . . . . . . . . . . . . . . 207
A.1.2 Two-Body Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.1.3 Phase Space Recursion Relation . . . . . . . . . . . . . . . . . . . . . . . . 209
A.1.4 Quasi-Two-Body Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.2 Blatt-Weisskopf Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
A.3 Wigner-𝐷 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.3.1 Definitions and Basic Relations . . . . . . . . . . . . . . . . . . . . . . . . 211
A.3.2 Relations for Angular Functions 𝑍𝑤 . . . . . . . . . . . . . . . . . . . . . . 212
A.3.3 Wigner-𝐷 Functions in Reflectivity Basis . . . . . . . . . . . . . . . . . . . 213
A.3.4 Derivation of Clebsch-Gordan Orthogonality . . . . . . . . . . . . . . . . . 215

A.4 Calculation of the Dalitz-Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
A.5 Flatness of Dalitz Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A.6 Additional Isobar Line Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.6.1 Line Shape of the Broad (𝜋𝜋)S . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.6.2 [𝜋𝜋]P and [KK]P Isobars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B Additional Plots for Complex Structures 221
B.1 𝑀 instead of 𝑠 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

C Further Details on the 𝒂1(1420) 225
C.1 Regge Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.1.1 Simple Regge Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
C.2 Young Tableaux for Tetraquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.3 Remaining 𝑡 ′ Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
C.4 Remaining Plots for Systematic Studies . . . . . . . . . . . . . . . . . . . . . . . . 234

C.4.1 Variation of K∗ Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
C.4.2 Variation of the Underlying PWD . . . . . . . . . . . . . . . . . . . . . . . 236

C.5 Remaining 𝑡 ′ Slices for the Bootstrap Fit . . . . . . . . . . . . . . . . . . . . . . . . 238

D Further Details of the 𝝅−K0
SK0

S Event Selection 243
D.1 𝜋

−K0
S K0

S with K0
S → 𝜋

0
𝜋

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
D.2 Event Selection with 𝑁BPVout ≤ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
D.3 Kinematic Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

D.3.1 General Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
D.3.2 Adjustments for K0

S -Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
D.3.3 Success Rate of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 249

D.4 Planarity Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
D.5 Beam Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
D.6 Simple Phase-Space Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

x



E Bonn Event Selection Tool 257
E.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
E.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
E.3 Definition of Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
E.4 Event Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
E.5 Discard Events Earlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
E.6 Save Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
E.7 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
E.8 The Inner Workings of BEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

F Further Results of the 𝝅−K0
SK0

S PWD 269
F.1 Rank Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
F.2 𝑎1(1420) in Spin Projection 𝑀 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
F.3 Remaining Partial Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
F.4 Results with Finer Mass Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
F.5 Full Plot of all Partial Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

List of Figures 287

List of Tables 291

Glossary 293

Acronyms 297

xi





CHAPTER 1

Introduction / Motivation

1.1 The Standard Model of Particle Physics

One of the biggest and most successful models in physics is the standard model of particle physics. It
not only covers the unification of electromagnetic (em) and weak interaction into the electro-weak
interaction, but it also incorporates our current understanding of the strong force. The latter one is
responsible for the binding of protons and neutrons inside the nucleus – mostly pion-exchange-induced
– as well as for the binding of the constituents inside of the nucleons themselves, where gluon-exchange
is the relevant mechanism.
Force carriers, such as photons for the em interaction, gluons and even pions1 for the strong

interaction, as well as 𝑊± and 𝑍0 bosons for the weak interaction, all carry integer spin and, thus,
they are bosons. On the other hand, the constituents of matter are fermions, i.e. half-integer-spin
particles. Examples are electrons, protons and neutrons that make up all atoms on the periodic table,
as well as quarks that are the constituents of the nuclei. Figure 1.1 shows nicely which force carriers
interact with which fermions by encircling them accordingly. The fermions can be grouped into pairs,

for example the up and down quark build a doublet
(
𝑢

𝑑

)
according to the electro-weak model2 with

their weak charge – also known as flavor charge – defined by their identity. Since they carry color
charge (for each quark there exist three versions, a red (𝑅), a green (𝐺) and a blue one (𝐵)), em charge
(+2

3 for up-type quarks and −
1
3 for down-type quarks) and flavor charge, they can interact with all

previously mentioned elementary force carriers. The gluon, as the elementary force carrier of the
strong interaction, also carries color charge, which enables self-interactions between the force carriers
themselves making the strong force behave very differently compared to em interactions.

The leptonic doublet3
(
𝜈𝑒
𝑒

)
is the electron combined with the electron-neutrino, of which the latter

was first introduced as the missing piece in the explanation of nuclear 𝛽 decays. Carrying em charge
and flavor charge, the electron does not interact with the gluon. Neutrinos, on the other hand, only

1 While all others are considered to be elementary, the pion itself is made up of quarks and gluons.
2 Things are a bit more complicated, because according to the electro-weak model we have a doublet of left-chiral quarks
and two singlets of right-chiral quarks.
3 Also here we have a left-chiral doublet and two right-chiral singlets of which the neutrino singlet would not interact with
anything, therefore, making its existence questionable.
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Chapter 1 Introduction / Motivation

Figure 1.1: Depiction of the particles described by the Standard Model of Particle Physics (and the graviton), [1]

have flavor charge, enabling them to solely interact weakly via𝑊 and 𝑍 exchange.
All these pairs turn out to come in three copies, so-called particle generations, differentiated by their

increase in mass. In addition to every of these fermions, there exists the corresponding antifermion4

that has the same mass and opposite em/color/flavor charge.
The graviton, as so far hypothetical force carrier of gravitation, is not part of the standard model.

This leads to the fact that the mass-interaction of (elementary) particles with each other is not described.
It can also be safely neglected with respect to the other forces, because for example the em force
between an electron and a positron at a distance of 𝑟 = 1 m is 𝐹em = 𝑒

2

4𝜋𝜀0𝑟
2 = 2.3 × 10−28 N while the

gravitation between the two at the same distance amounts to 𝐹𝐺 = 𝐺
𝑚

2
𝑒

𝑟
2 = 5.54 × 10−71 N. This is 43

magnitudes smaller and, thus, safely negligible within all experimental uncertainties.
However, there is a particle in the standard model that has to do with mass, the Higgs boson. This

particle gives mass to the elementary fermions5 as well as the𝑊 and 𝑍 bosons by making particles
heavier the stronger they interact with it.

4 One exception could be the neutrino. There exists an extension for the standard model according to which the neutrino
could be its own antiparticle 𝜈̄𝑒 ≡ 𝜈𝑒 and proof for this is searched for in neutrino-less double-𝛽 decays, where the two
antineutrinos of each 𝛽 decay could annihilate although they would have the same flavor charge.
5 All fermions except the neutrinos obtain their mass through the Higgs mechanism. We know that neutrinos have mass due
to the observation of neutrino oscillations, however, this mass has to be produced by a different mechanism. According to
the standard model of particle physics neutrinos are massless.
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1.2 The Quark Model and Exotic States

1.2 The Quark Model and Exotic States

Although originally only intended to group found states and predict new ones, it later turned out
that there is a lot of truth behind defining mesons as quark-antiquark pairs and baryons as 3-quark
states. At the beginning, only the light up quark 𝑢, down quark 𝑑 and strange quark 𝑠 were known.
Their masses were assumed to be of the order of 300 MeV for 𝑢 and 𝑑 quarks and 450 MeV for the
𝑠 quark. Two 𝑢 and one 𝑑 quark produce a proton, and one 𝑢 and two 𝑑 quarks produce a neutron,
both of approximately 900 MeV mass. Replacing one of the 𝑢 quarks of the proton by an 𝑠 quark,
we obtain 1 050 MeV, which is close to the mass of the Λ baryon. Now, these masses are known
as constituent-quark masses and are highly model-dependent. However, if one includes corrections
due to spin interactions of the quarks, they work surprisingly well to estimate the masses of baryons.
Also for mesons, constituent-quark models exist and work to predict the masses of most of the light
pseudoscalar and vector mesons.
Nowadays, we know that quarks do not actually have their constituent-quark mass as stated above,

but are a lot lighter. The biggest part of the meson and baryon mass is created through the strong
interaction that is responsible for the binding by allowing for the creation of so-called sea quarks
and gluons. The former are temporary fluctuations of internal gluons into a pair of a virtual quark
and virtual antiquark of the same flavor and immediate annihilation of these ones. Thus, the Higgs
mechanism only explains a small fraction of the mass of mesons and baryons, specifically the
contribution from the bare “current”-quark mass.
The reason, why quarks were just considered a theoretical classification concept at first, is

“confinement”. This means that nature exclusively allows for “white” combinations, more precisely
color singlets. We have (anti)quarks as color-(anti)triplet states, because they can have one of three
different (anti)colors. Gluons, on the other hand, are color-octet states having a combination of a color
and an anticolor. Therefore, neither quarks nor gluons can exist freely.
All physical states, like hadrons, have to be color-neutral and color-singlet states. This means

that all colors are contributing to them equally. In the case of baryons, we also have to make sure
that this combination is completely antisymmetric under exchange of any two spin-12 constituents
in order to satisfy Fermi statistics. A wave function for a color singlet can be obtained by taking a
color and the corresponding anticolor forming mesonic states with Ψmesoncolor = 1√

3

(
𝑅𝑅̄ + 𝐺𝐺̄ + 𝐵𝐵̄

)
.

Another combination is three (anti)quarks having three different (anti)colors forming an (anti)baryon.
The color wave function of a baryon Ψbaryoncolor = 1√

6
(𝑅𝐺𝐵 − 𝑅𝐵𝐺 + 𝐺𝐵𝑅 − 𝐺𝑅𝐵 + 𝐵𝑅𝐺 − 𝐵𝐺𝑅) is

antisymmetric under exchange of any two quarks. Confinement does not forbid combinations of more
quarks, like tetraquarks with two quarks and two antiquarks, pentaquarks with four quarks and one
antiquark, and so on. Also, some combination of quarks with additional “constituent gluons” could
be possible, called hybrids, the simplest case of which could be expressed as a 𝑞𝑞′𝑔 state. More
precisely, it would rather be a state where the “color string” connecting the two quarks can be excited.
Another possibility is a state entirely made up of constituent gluons, called glueball. Although in the
past, it seemed as if only simple meson and baryon states were present in nature, now, more and more
additional states appear that could not be explainable as one of these simple combinations.
The best way to search for these states is in places where one does not expect to find any simple

mesons or baryons. For example in the case of mesons, this can be done with a combination of
internal Quantum Numbers (QNs) that could not be created by a 𝑞𝑞 state. Such states are termed
spin-exotic and they specifically are the combinations 𝐽𝑃𝐶 ∈

{
0−−, even+−, odd−+

}
. However, also in
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Chapter 1 Introduction / Motivation

the “normal”-spin sector tetraquarks, pentaquarks, glueballs and hybrids are expected. But since they
have the same QNs, they will mix and interfere with the ordinary mesons and baryons. To disentangle
these states, one has to find different strategies that will have to be determined on a case-by-case
basis. One way to predict where such states could be found, is lattice-QCD (ℓQCD). Here, one uses
numerical calculations in order to calculate physics on a discretized space-time lattice using constraints
from first principles.
The group of exotic states does not only incorporate objects built by combining different amounts

of (anti)quarks and gluons. One can also think of meson and baryon molecules that are formed by
constituent mesons and baryons. Their concept is not at all unknown, since all chemical elements
– heavier than plain hydrogen – are nothing else than baryon molecules consisting of protons and
neutrons. Instead of gluon exchange, the binding is created by meson exchange, resulting in objects
with slightly larger volumes than tetraquarks and pentaquarks. In addition, kinematic effects, such
as rescattering of the decay products of well-known mesons and baryons, can produce experimental
signatures similar to the ones of ordinary states.

1.3 Motivation and Outline: Exotic Mesons at COMPASS

While theoretical explorations of exotic states already took place before, their experimental story
started in 2002. A resonance was found by the Belle collaboration [2], which had QNs inconsistent
with an interpretation as an ordinary meson according to the simplest quark model, the so-called
𝑋 (3872), now renamed as 𝜒𝑐1(3872). Soon after, other states 𝑌 (4260) ([3]) and 𝑍𝑐 (3900) ([4, 5])
were found that also did not find a place in the expected meson spectrum obtained by combining a
quark and an antiquark. These states together formed a new class of heavy mesons called 𝑋𝑌𝑍 states.
But not only in the heavy quark sector unexpected new discoveries were made. In 2014, the

COMPASS experiment at CERN found a signal at 1.4 GeV in diffractive pion-proton scattering [6]
that also did not meet the expectations of an ordinary meson. Its mass – determined by a fit with a
conventional relativistic Breit-Wigner model – and its QNs gave it the name 𝑎1(1420), and while
being nothing extraordinary at first sight, it was one state too much in the line of radially-excited
axial-vector states, a so-called supernumerous state. Although being too close to the ground state
and even narrower, the signal was very persistent throughout all systematic studies of the underlying
partial-wave decomposition of the 𝜋−𝜋+𝜋− final state, therefore, it had to be there and it had to be
something different.
Many of the heavy exotics are discussed as a molecular state of two meson or a tetraquark. For

the supernumerous 𝑎1(1420) decaying into 𝑓0(980)𝜋, there exists a different possibility, a so-called
triangle singularity. Such a mathematical logarithmic singularity can mimic the behavior of a pole,
which corresponds to an ordinary resonance. However, it is a kinematic effect that occurs when the
products of a decay interact again to perform a rescattering. In this case the ground state 𝑎1(1260)
will decay to K∗(892)K, first. Then, the K∗(892) will decay to K𝜋. Now, this K and theK from the
initial decay meet to form the 𝑓0(980), which, finally, will decay into the investigated 𝜋−𝜋+𝜋− final
state. Calculating the corresponding Feynman-like diagram, it turns out that such a singularity can
also show up as a peak in the invariant mass of the final-state system. Additionally, it even creates a
strong phase motion in the interference with other resonances. Both are usually signs for a resonance,
for example described by a commonly used relativistic Breit-Wigner model.
To further strengthen this interpretation as a rescattering effect, one has to look at other reactions
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1.3 Motivation and Outline: Exotic Mesons at COMPASS

and other final states where it can appear. One promising place is the decay of a 𝜏 lepton that can
have a 𝜋−𝜋+𝜋− final-state subsystem. The advantage over the diffractive production, is that there is no
background coming from the non-resonant Deck-like process, which provides a strong contribution
to the COMPASS data. The Belle experiment is currently investigating in this direction [7], already
seeing the 𝑎1(1420) signal in preliminary results of a partial-wave decomposition [8]. But also at
COMPASS, we have other accessible final states that we can search in, one of which is the 𝜋KK final
state. In the past, an event selection of the 𝜋−K+K− final state was performed [9], however, the detector
acceptance became finite only above 1.5 GeV, due to kinematic limitations of the RICH detector in
the particle identification. This leads to the idea of looking at the 𝜋−K0

S K0
S final state, since neutral K

0
S

can be detected via their decay into a 𝜋+𝜋− pair with a displaced vertex from the original interaction
inside of the target.

In this thesis, we focus on the COMPASS Experiment to search for exotic mesons. Due to its wide
variety of accessible final states – from both pion and kaon beams diffractively scattered off of a fixed
hydrogen target – it allows for the investigation of states in different decay modes. The experimental
setup is introduced in chapter 2 together with a description of the COMPASS analysis framework
(section 2.2).
Chapter 3 introduces general concepts of scattering theory (section 3.1) and how to construct Breit-

Wigner models (section 3.3), where their complex structures are investigated in detail. Furthermore,
the concept of partial-wave decompositions is explained (section 3.4) and a method is presented that
allows to calculate Dalitz plots from a theoretical model (section 3.5). Next, a more sophisticated way
to calculate the amplitude of a rescattering process is discussed. It involves performing a projection
of one partial wave onto another, which allows for the proper inclusion of spins and orbital angular
momenta of the involved particles and decays (sections 3.6 and 4.3.3). In chapter 4, we apply this
method to the case at COMPASS and we discuss the fit of this new model to the results of the
partial-wave decomposition of the 𝜋−𝜋+𝜋− data from the COMPASS experiment. It is compared to a
second fit with the previously mentioned Breit-Wigner model (section 4.4) and several systematic
studies are performed (section 4.6).
Chapter 5 of this thesis deals with the event selection of the 𝜋−K0

S K0
S final state (section 5.2), which

enables the search for the 𝑎1(1420) in a second final state at COMPASS. In chapter 6, a first attempt
at the subsequent partial-wave decomposition is performed that is needed to separate contributions
of different QNs from each other (section 6.3). Not only gives this access to a possible sign of the
𝑎1(1420) in the 𝜋−K0

S K0
S sector, but it also allows us to look for the same resonances as in the already

analyzed 𝜋−𝜋+𝜋− final state at COMPASS. This includes the lightest spin-exotic candidate 𝜋1(1600),
whose decay into K∗K is predicted by ℓQCD [10].
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CHAPTER 2

The COMPASS Experiment

2.1 The Experimental Setup

The COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), see Figure 2.1
and [11], is located in the North Area of the European Council for Nuclear Research (CERN). It
obtains its proton beam from the Super Proton Synchrotron (SPS) at a beam energy of approximately
400 GeV. This primary proton beam is shot on a thin beryllium target inside the beam tunnel at the M2
beam line, producing all kinds of particles. With a system of magnets these particles can be focussed
and selected according to their momentum and charge.
This thesis focusses on data collected with a negative hadron beam with a momentum of roughly

190 GeV, which consists to 96.8 % out of 𝜋−, to 2.4 % out of K− and to 0.8 % out of p (Table 2 of [11]).
Two ChErenkov Detectors with Achromatic Ring focus (CEDARs), which allow for the identification
of these hadronic beam particles, are located inside the beam tunnel. The beam trajectory1 is precisely
measured with the beam telescope consisting of several Silicon microstrip detectors (Silicons) and
Scintillating Fibers (SciFis). The former are placed directly around the COMPASS target and are
very important for vertex reconstruction.
The COMPASS target is located at the entrance to the experimental hall and can be changed

depending on the physics of interest. For diffractive scattering, a lead target was used in 2004. To
minimize multiple scattering, it was changed to a liquid-hydrogen target (ℓH2) for the data taking in
2008 and 2009.
In transversal direction to the beam axis, the target is surrounded by the Recoil-Proton Detector

(RPD). It is a time-of-flight detector that consists out of two barrels of scintillating slabs (cf. Figure 5.1)
and measures the velocity of particles that are hit out of the target at large angles. It is specifically
calibrated to identify recoiling protons and – depending on which slab is hit – it provides a rough
determination of their azimuthal angle. Since each slab is read out from both sides, it also allows for a
measurement of the polar angle by determining the time difference between the arrival of the signals
on both sides. However, this information is mostly used for calibration purposes.
A trigger system is put in place in order to select for different types of events. For this thesis, the

so-called Diffractive Trigger (DT0) is of importance. It is a combination of the alternative Beam
Trigger (aBT) and the previously mentioned RPD as well as a system of veto detectors, see section 5.2.2
for more details on them.
1 The Beam Momentum Station (BMS) that can measure the momentum of the beam, is only used for muon beams.
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Chapter 2 The COMPASS Experiment

Figure 2.1: COMPASS Setup for the hadron runs in 2008 and 2009, from [11].

In order to identify particles that leave the target in longitudinal beam direction, a Ring-Imaging
CHerenkov detector (RICH) is used. With its help, one can distinguish pions from kaons and
(anti)protons. For this project, it is mainly used as veto detector due to its limitations in the
identification power for large particle momenta.
The COMPASS spectrometer has two big dipole magnets – called Spectrometer Magnet 1 (SM1)

and Spectrometer Magnet 2 (SM2) – that separate its setup into two areas. The area between SM1
and SM2 is called Large-Angle Spectrometer (LAS) since only particles with small momenta or large
initial angles are detected here. Accordingly, the area behind SM2 is called Small-Angle Spectrometer
(SAS) because the second magnet separates particles further, which are closer to the beam line and
have higher momenta. Besides of this separation from the beam axis, the bending of the trajectory
of charged particles by the magnets, together with the information of several (mostly gaseous)
tracking detectors of various sizes and with different resolution depending on their location and
purpose, enable a precise momentum measurement. Small-Area Trackers (SATs) like Silicons,
Micro MEsh GAseous Structures (MicroMEGAS), Gas Electron Multipliers (GEMs) and Pixel Gas
Electron Multipliers (PixelGEMs) are located around the beam trajectory and Large-Area Trackers
(LATs) like Drift Chambers (DCs), Wire chambers (W45), Multi-Wire Proportional Chambers (MWPCs)
and Straw Tube Trackers (Straws), including the so-called “RICH wall”, cover the rest. Details on the
individual detector types can be found in [11].
In both LAS and SAS, we have an Electromagnetic CALorimeter (ECAL) and a Hadronic CALorimeter

(HCAL) to measure the energy of particles, especially neutrals. The calorimeters in the LAS – namely
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2.2 The Analysis Framework of COMPASS

ECAL1 and HCAL1 – have a huge hole in the center allowing neutrals at small angles to pass through
and being detected in the calorimeters in the SAS, ECAL2 and HCAL2. Also every other detector has a
hole in the center, because otherwise, due to the high beam rates, they would drown in signals from
unscattered beam particles and would be blind for other particles. Only some special detectors, like
Silicons and PixelGEMs2, can handle these high data rates. Additionally, especially for the LATs, a
separation of clusters would be very challenging in the center due to the high track density.
After each HCAL are Muon Walls (MWs), which are drift tube detectors surrounding thick absorber

walls, also known as Muon Filters. Only muons can pass through these absorbers3 and, therefore, a
track that is followed by a signal in one of the MWs after the absorbers, can only be originating from a
muon.
This two-staged spectrometer setup provides a good angular and kinematic acceptance with a

precise momentum determination and particle tracking, making it very versatile. Hadron beams can
be employed for the study of diffractive 𝜋 + 𝑝 or K + 𝑝 scattering, the Drell-Yan process [12] and a
measurement of the pion polarizability [13, 14] as well as of the chiral anomaly [15] via the Primakoff
process. In addition, a muon beam is available that allows for the investigation of generalized-parton-
distribution functions via deeply-virtual compton scattering [16, 17] and Semi-Inclusive Deep Inelastic
Scattering [18].

Besides of other interesting physics programs, the Apparatus for Meson and Baryon Experimental
Research (AMBER) [19] – the successor of COMPASS – has planned a diffractive scattering run
with increased kaon or antiproton fractions in the beam. This would enable AMBER to do the
same for kaon spectroscopy as what COMPASS did for pion spectroscopy: precisely measure the
hadron spectrum and find “exotic” particles (𝜋1(1600)) and unexpected signals (𝑎1(1420)) that lead
to exciting conclusions. But more on that in the chapters 4 and 6.

2.2 The Analysis Framework of COMPASS

The Data AcQuisition (DAQ) of the COMPASS experiment stores the raw detector information in files
which are read and processed by the COmpass Reconstruction ALgorithm (CORAL) that itself stores
the reconstructed events in so-called Data Storage Trees (DST). These files are ROOT trees containing
the geometry4 of the COMPASS detector as well as all information needed for further analyses.
The next step in the analysis chain is a preselection on the data for a specific final state or a set of

possible final states, see section 5.2.1 for an example. Its main purpose is to reduce the combined
file sizes and the run time of further selections such that the individual analysts can work on them
without the need for large computer clusters. Here, one defines rough cuts on the data that reduce the
background without removing desired events. Like this, one can drastically cut down the amount of
data that has to be analyzed in the following steps and, therefore, these data files are called mini DSTs
(mDST). The PHysics Analysis Software Tools (PHAST) can be used to perform the preselection

2 For normal GEMs the centers are deactivated by turning off their high-voltage and, thus, disabling their electron
multiplication feature. This is not needed for PixelGEM, since they have a pixelized readout for the central area allowing
tracking also for high particle densities and high beam intensities.
3 Also the absorber in the LAS has a large hole in the center to allow charged particles, which are close to the beam trajectory,
to enter SAS and be detected there.
4 The geometry is created with TGEANT and provided to CORAL.
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and all further event selections. PHAST reads the data tree on an event-by-event basis and allows the
user to write UserEvents, where one can fill histograms and specify cuts that events have to fullfil in
order to be stored for further analyses. After the final event selection stage, the results can once more
be stored in DSTs which are usually called micro DST (𝜇DST), since they are even smaller.
Once an event selection for a specific final state of interest is performed (see section 5.2.3), usually,

one wants to analyze the results with a “mass-independent” Partial-Wave Decomposition (PWD) (see
section 3.4) and a subsequent “mass-dependent” resonance-model fit (see section 4.4) to search for
peaks in the invariant-mass spectra of the final-state particles. But no experiment can provide full
geometric and kinematic coverage. In addition no detector is doing its job perfectly. This is especially
true if it is composed out of so many individual elements with their own efficiencies, as it is the case
for the COMPASS setup. Therefore, another step is necessary before one can dive deep into the depths
of the data: the Monte-Carlo (MC) simulation. The COMPASS collaboration created a program
based on the C++ library GEometry ANd Tracking (GEANT). The previous version of this software
was based on GEANT3 and was called COMGEANT, and its successor TGEANT uses GEANT4
as a base. This tool contains a detailed geometry description of all involved detectors together with
their holding structures and is able to virtually track particles through the detector setup simulating
detector hits and energy depositions on their way. Also particle decays, multiple scattering and any
other physics process in matter are emulated.
The results of this simulation are fed through CORAL as well, where the actual detector response is

simulated and the events are reconstructed in exactly the same way as Real Data (RD) events. Like
this, one can directly relate every generated MC (gMC) event to its corresponding reconstructed MC
(rMC) event. A stronger deviation between the two for a specific set of kinematic variables can hint
towards a general detection inefficiency or can show the necessity of additional detectors to cover
holes in the geometrical coverage of the complete COMPASS setup.
For one specific final state of interest, one can create gMC events with the four-vectors of the

final-state particles distributed according to phase space, so-called “signal” MC. On these, one
performs the event reconstruction, as just mentioned, to obtain the corresponding rMC events. Finally,
one performs the same event selection as for RD to determine the accepted MC (aMC) events, i.e.
the events that survive all selection criteria. From this, the detector acceptance for this specific final
state is defined as the ratio aMC/gMC. And since we know exactly which aMC event corresponds to
which gMC event, we can calculate such an acceptance not only for everything combined, but also as
a function of a specific kinematic variable, such as the invariant mass of the final-state system or its
subsystems.
Such an acceptance function can be used to rescale the RD in order to obtain acceptance-corrected

spectra. A better way of performing such an acceptance correction, is to feed these aMC events
into a PWD to perform the acceptance correction on an event-by-event basis, while at the same time
separating the contributions from different intermediate-state QNs. An application of such a procedure
for one specific final state can be found in chapter 6.
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CHAPTER 3

(Re-)Scattering and Partial-Wave Decomposition

Scattering theory (or reaction theory) is a good tool to describe physical reactions of 𝑀 → 𝑁 body
scattering. From an experimental view only decays (𝑀 = 1) and scattering between two particles
(𝑀 = 2) make sense due to the nature of particle interaction and the difficulty in creating crossing
beams of more than two particles at exactly the same point in space-time. For a final state, it is possible
to consider any positive number, but the experiment becomes a lot more challenging with increasing
𝑁 . Although, for example, 3 → 3 scattering might not be directly accessible via an experimental
setup, it still plays a role in rescattering effects of final states with at least 3 particles. Also crossing
symmetry would allow us to relate it to a 2→ 4 scattering. That is why we will not constrain us to
any specific case, yet. For the next section, we loosely follow chapter 3 of [20], but most – if not all –
of the discussed relations and formulas can be found in any text book about scattering theory as well,
e.g. [21, 22].

3.1 Scattering Theory

The operator 𝑺 represents all possible interactions. A priori, it contains all scattering information for
all possible initial and final states, all particle resonances, kinematic thresholds, and all intermediate
interactions. Applying it on an initial state |𝑖⟩ and looking for a specific final state | 𝑓 ⟩ will result in
one specific element 𝑆 𝑓 𝑖 of the 𝑺-matrix:

⟨ 𝑓 | 𝑺 |𝑖⟩ = 𝑆 𝑓 𝑖 , 𝑃𝑖→ 𝑓 =
��𝑆 𝑓 𝑖 ��2 , (3.1)

where the second expression describes the probability of such a process to occur. By determining
how the 𝑺-operator acts on every possible pair of initial state and final state basis functions |𝑖⟩ and
| 𝑓 ⟩, respectively, we can calculate the full matrix representation of this operator for the given basis.
Therefore, the concept of an operator and a matrix are strongly coupled and in the following, we will
call it the 𝑺-matrix operator or simply the 𝑺-matrix with a specific element 𝑆 𝑓 𝑖 when evaluated on the
states as in equation (3.1).
If we do not look for one specific final state | 𝑓 ⟩, but add up the probability of |𝑖⟩ going to any final
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state | 𝑓 ′⟩, we should end up at a probability of 1, meaning

1 =
∑︁
𝑓
′

��𝑆 𝑓 ′𝑖 ��2 =
∑︁
𝑓
′

��⟨ 𝑓 ′ | 𝑺 |𝑖⟩��2 =
∑︁
𝑓
′
⟨𝑖 | 𝑺† | 𝑓 ′⟩ ⟨ 𝑓 ′ | 𝑺 |𝑖⟩ = ⟨𝑖 | 𝑺†

∑︁
𝑓
′

(
| 𝑓 ′⟩ ⟨ 𝑓 ′ |

)
𝑺 |𝑖⟩ = ⟨𝑖 | 𝑺†𝑺 |𝑖⟩ ,

where we use the fact that the sum over a full set of final states yields the unit-matrix operator,∑
𝑓
′ | 𝑓 ′⟩ ⟨ 𝑓 ′ | = 1. Since this has to be true for any possible initial state |𝑖⟩, the 𝑺-matrix has to be

unitary as a direct consequence of probability conservation, giving us the unitarity relation:

𝑺†𝑺 = 𝑺𝑺† = 1. (3.2)

𝑻-Matrix and 𝑲-Matrix

Usually, we are just interested in events where something happens between the involved particles,
therefore, we can split off the identity and define the 𝑻-matrix operator via

𝑺 =: 1 + 2i𝑻. (3.3)

Inserting this into equation (3.2) yields the unitarity relation for the 𝑻-matrix

𝑻 − 𝑻† = 2i𝑻𝑻†. (3.4)

By multiplying this equation with 𝑻−1 from the left and with (𝑻†)−1 from the right, and afterwards
rearranging things a bit, we obtain

(𝑻†)−1 − 𝑻−1
= 2i 1 ⇔ (𝑻−1 + i 1)† = (𝑻−1 + i 1),

which lets us define a hermitian matrix operator 𝑲−1 := 𝑻−1 + i 1, allowing us to put the 𝑻-matrix in a
different form

𝑻 = (𝑲−1 − i 1)−1
= 𝑲 (1 − i 𝑲)−1

. (3.5)

Like this, we can guarantee unitarity of the model by simply creating a hermitian operator 𝑲, for
example by making its corresponding matrix symmetric and real.

Cross Section

As for the 𝑺-matrix, we can also evaluate the 𝑻-matrix operator on an initial state |𝑖⟩ and a final state
| 𝑓 ⟩ to connect it to experimental observations. These states are 𝑀 and 𝑁 body states, respectively,
where every particle is parametrized by its four-momentum 𝑝 and spin 𝑠

|𝑖⟩ = |𝑝 (𝑖)1 , 𝑠
(𝑖)
1 ⟩ ⊗ ... ⊗ |𝑝

(𝑖)
𝑀
, 𝑠
(𝑖)
𝑀
⟩ , | 𝑓 ⟩ = |𝑝 ( 𝑓 )1 , 𝑠

( 𝑓 )
1 ⟩ ⊗ ... ⊗ |𝑝

( 𝑓 )
𝑁
, 𝑠
( 𝑓 )
𝑁
⟩ ,

where the wave function of each state

|𝑝, 𝑠⟩ :=
𝑘 (𝑝, 𝑠)
√

2𝐸
exp(𝑝 · 𝑥) (3.6)
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3.1 Scattering Theory

satisfies the Klein-Gordan equation (□ +𝑚2) |𝑝, 𝑠⟩ = 0. For scalar particles we have 𝑘 ≡ 1, for spin-12
we have Dirac spinors 𝑘 = 𝑢𝛼 and for spin-1 we have the polarization vector 𝑘 = 𝜖𝜇. With this, we
can define elements of the 𝑻-matrix in the same way as for the 𝑺-matrix:

𝑇 𝑓 𝑖 := ⟨ 𝑓 | 𝑻 |𝑖⟩ .

By taking out the 1√
2𝐸
factors from the particle wave functions in (3.6) and by explicitly enforcing

four-momentum conservation between initial and final state, we arrive at the Lorentz-invariant matrix
elementM

𝑇 𝑓 𝑖 =: (2𝜋)4𝛿 (4)

𝑀∑︁
𝑗=1

𝑝
(𝑖)
𝑗
−

𝑁∑︁
𝑘=1

𝑝
( 𝑓 )
𝑘

 ·
𝑀∏
𝑗=1

1√︃
2𝐸 (𝑖)

𝑗

𝑁∏
𝑘=1

1√︃
2𝐸 ( 𝑓 )

𝑘

· M 𝑓 𝑖 . (3.7)

Next, we want to take the squared magnitude of this expression, which will yield the square of a
𝛿-distribution. For this, we can use equation (2.10) of [23][

𝛿
(4) (𝑥)

]2
=

𝑉𝑡

(2𝜋)4
𝛿
(4) (𝑥), (3.8)

for a unit time 𝑡 and a unit volume 𝑉 . If we further compare equation (2.17) of [23], giving
𝑁𝑛 =

√︁
2𝐸𝑛𝑉

−1 as the normalization of the wave functions, with the one we use here in equation (3.6),
we see that – for the case at hand – it follows 𝑉 = 1. So taking the squared magnitude of the 𝑻-matrix
element per unit time, we obtain��𝑇 𝑓 𝑖 ��2

𝑡
= (2𝜋)4𝛿 (4)


𝑀∑︁
𝑗=1

𝑝
(𝑖)
𝑗
−

𝑁∑︁
𝑘=1

𝑝
( 𝑓 )
𝑘

 ·
𝑀∏
𝑗=1

1

2𝐸 (𝑖)
𝑗

𝑁∏
𝑘=1

1

2𝐸 ( 𝑓 )
𝑘

·
��M 𝑓 𝑖

��2 .
Now, we are constraining us to a 2→ 𝑁 scattering, however, we do not care about differentiating

the probability for each and every momentum configuration of these 𝑁 final state particles. Therefore,
we sum over all possible momentum configurations, or rather integrate over them since the momentum
is continuously distributed:

∑︁
𝑝 (𝑁 -body)

∼
∫ 𝑁∏

𝑘=1

d3 ®𝑝 ( 𝑓 )
𝑘

(2𝜋)3
{ dΓ 𝑓 𝑖 :=

∑︁
𝑝 (𝑁 -body)

��𝑇 𝑓 𝑖 ��2
𝑡

=
1

4𝐸 (𝑖)1 𝐸
(𝑖)
2

·
��M 𝑓 𝑖

��2 dΦ( 𝑓 )
𝑁
, (3.9)

with the definition of the Lorentz-invariant 𝑁-body phase space

dΦ( 𝑓 )
𝑁

= (2𝜋)4𝛿 (4)
[
𝑃 −

𝑁∑︁
𝑘=1

𝑝
( 𝑓 )
𝑘

]
𝑁∏
𝑘=1

d3 ®𝑝 ( 𝑓 )
𝑘

(2𝜋)32𝐸 ( 𝑓 )
𝑘

with 𝑃 =

𝑀∑︁
𝑗=1

𝑝
(𝑖)
𝑗
, (3.10)

where 𝑃 is the full four-momentum of the reaction as given by the initial state. We will omit the
superscript where the final state is unambiguous. For a two-body system, a calculation of dΦ2 can
be found in appendix A.1, equation (A.8). For any other case the phase-space-recursion formula of
equation (A.9) can help.
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

Finally, the cross section is defined as the transition rate Γ 𝑓 𝑖 divided by the incident particle flux
𝜙
(𝑖)

= 𝑣
(𝑖)
𝑛
(𝑖) , so the relative velocity 𝑣 (𝑖) times the particle density 𝑛(𝑖) . This can be simplified for

one particle per unit volume to 𝜙 (𝑖) = 𝑣 (𝑖)/𝑉 = 𝑣
(𝑖) , resulting in

d𝜎𝑖→𝑁 =
dΓ 𝑓 𝑖
𝑣
(𝑖) =

1
𝐹

��M 𝑓 𝑖

��2 dΦ𝑁 , (3.11)

with the so-called flux factor 𝐹 that contains all kinematics of the initial state (we drop the (𝑖)
superscript)

𝐹 = 4𝐸1𝐸2𝑣 = 4
√︃
(𝑝1 · 𝑝2)

2 − 𝑚2
1𝑚

2
2. (3.12)

The last equality can be shown by inserting 𝑣 =
�� ®𝑝1

�� /𝐸1 +
�� ®𝑝2

�� /𝐸2 for the relative velocity of a
collinear collision of two particles on the left-hand side and 𝑝1 · 𝑝2 = 𝐸1𝐸2 +

�� ®𝑝1
�� �� ®𝑝2

�� as well as
𝑚

2
𝑖 = 𝐸

2
𝑖 −

�� ®𝑝1
��2 on the right-hand side. The final expression is Lorentz-invariant, therefore, it holds

for any frame of reference.
In general, we have to constrain 𝑁 four-momenta of the final state, this gives 4𝑁 degrees of

freedom. By assuming all final-state particles to be on mass shell, we get 𝑁 constraints of the form
𝑚

2
= 𝐸

2 − | ®𝑝 |2, reducing the number of degrees of freedom to 3𝑁 . Four-momentum conservation
between initial and final state reduces this number additionally by 4. Therefore, in total we have

𝑁dof = 3𝑁 − 4 (3.13)

degrees of freedom in a reaction with fully known initial state and 𝑁 final-state particles on mass
shell. This can be seen as well in the differential phase space in equation (3.10), where we have 3𝑁
integrations from the three-momenta, of which four integrations are removed by the 𝛿-distribution.
Note that for every off-shell final-state particle, we get an additional degree of freedom, i.e. its
invariant mass.

Unitarity Relation for M in 2 → 2 Scattering

Evaluating the unitarity relation for 𝑻 in equation (3.4) on an initial state |𝑖⟩ and final state | 𝑓 ⟩ yields

𝑇 𝑓 𝑖 − 𝑇
∗
𝑖 𝑓 = 2i ⟨ 𝑓 |𝑻

(∑︁
𝑓
′ | 𝑓 ′⟩ ⟨ 𝑓 ′ |

)
︸              ︷︷              ︸

≡1

𝑻† |𝑖⟩ =
∑︁
𝑓
′
𝑇 𝑓 𝑓 ′𝑇

∗
𝑖 𝑓
′,

by using ⟨ 𝑓 ′ |𝑇† |𝑖⟩ = 𝑇∗
𝑖 𝑓
′ and inserting a full set 𝑓 ′ of intermediate states. For a 2 → 2 scattering,

we can exploit time-reversal symmetry1 of 𝑻 on the second term of the left-hand side, i.e. 𝑇∗𝑖 𝑓 = 𝑇
∗
𝑓 𝑖 .

For the right-hand side, we split off the sum over all momentum configurations from
∑
𝑓
′ as of

1 As stated by Olive [24], time-reversal symmetry – or rather 𝑃𝑇-invariance in case of an arbitrary 2→ 2 scattering – is
not necessary to show 𝑇∗𝑖 𝑓 = 𝑇

∗
𝑓 𝑖 . He demonstrates that unitarity – or equivalently the 𝐶𝑃𝑇-theorem – are sufficient to

make such a statement, independent of the number of particles involved in the scattering.
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3.1 Scattering Theory

equation (3.9):

2i Im(𝑇 𝑓 𝑖) = 𝑇 𝑓 𝑖 − 𝑇
∗
𝑓 𝑖 = 2i

∑︁
𝑓
′

∫ 𝑁
𝑓
′∏

ℓ=1

d3 ®𝑝 ( 𝑓
′)

ℓ

(2𝜋)3
𝑇 𝑓 𝑓 ′𝑇

∗
𝑖 𝑓
′ . (3.14)

Inserting the definition ofM from equation (3.7) everywhere, we see that we can cancel the energy
products of the external states |𝑖⟩ and | 𝑓 ⟩ on both sides2, while the energy product over the internal
states | 𝑓 ′⟩ appears twice, resulting in∏𝑁

𝑓
′

ℓ
1

2𝐸 ( 𝑓
′)

ℓ

. Regarding the product of the 𝛿-distributions, we

can rewrite it as

𝛿
(4)
𝑓
′
𝑖
· 𝛿 (4)

𝑓
′
𝑓
= 𝛿
(4)
𝑓 𝑖
· 𝛿 (4)

𝑓
′
𝑓
= 𝛿
(4)
𝑓 𝑖
· 𝛿 (4)

𝑓
′
𝑖
, with 𝛿 (4)𝑥𝑦 = 𝛿

(4)

𝑁𝑥∑︁
𝑗=1

𝑝
(𝑥)
𝑗
−
𝑁𝑦∑︁
𝑘=1

𝑝
(𝑦)
𝑘

 ,
of which we can omit 𝛿 (4)

𝑓 𝑖
since it also appears on the left-hand side. This brings us to the unitarity

condition for the matrix element:

Im(M 𝑓 𝑖) =
∑︁
𝑓
′

∫
dΦ( 𝑓

′)
𝑁
𝑓
′M 𝑓 𝑓

′M∗
𝑖 𝑓
′ . (3.15)

Here, we could combine all remaining terms into the differential phase space, equation (3.10).
One quick application of this unitarity relation is the optical theorem. One obtains it by evaluating

this equation for equal initial and final states, i.e. elastic scattering. This yields

Im(M𝑖𝑖) =
∑︁
𝑓

∫
dΦ( 𝑓 )

𝑁 𝑓

��M𝑖 𝑓

��2 = 𝐹 ·
∑︁
𝑓

𝜎𝑖→ 𝑓 = 𝐹 · 𝜎𝑖,tot, (3.16)

which shows that the total cross section – as the sum over all cross sections from a specific initial state
to any final state – is proportional to the imaginary part of the elastic scattering amplitude of the given
initial state.
We will see another application of this unitarity relation in section 3.4 when discussing a simple

example for a partial-wave decomposition.

From causality follows3 one important property of the 𝑺-matrix (section 2.1 of [21]), namely its
(complex) analyticity in 𝑠 = 𝑃2, the full squared four-momentum of the intermediate reaction. For a
complex-analytic function, its Taylor expansion converges in the close neighborhood of every point
of its domain. This means that it fulfills the Schwarz Reflection Principle (see next section 3.2.1
equation (3.18)) and also makes it a holomorphic function, i.e. a complex-differentiable function and,
thus, an infinitely often continuously-differential function. However, this property is constrained to the
complex plane away from the real axis. From its definition in equation (3.3), we immediately see that
𝑻 inherits this analyticity (as well asM). On the real axis itself, we can still have poles and branch
points, with the latter opening up gates to different Riemann sheets, where additional singularities can

2 All prefactors ofM in equation (3.7) are real, therefore, they can be pulled out of the Im-function.
3 [22] states that analyticity is rather a postulate (section 4.1).
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

occur. All these complex structures are propagated from the 𝑺-matrix to 𝑻 andM. To get a better
understanding of what this implies, let us start with a look at these mathematical concepts in the next
section.

3.2 Complex Analysis with Branch Points

In physics, we are very often dealing with complex numbers, however, their introduction usually only
covers the very basics. Especially in scattering theory, we are dealing with branch cuts, discontinuities
and Riemann sheets, therefore, we will review these topics here.
We know that we have two basic representations of an arbitrary complex number 𝑧 ∈ C using two

independent real numbers, the Cartesian one and the polar one, showing the direct connection of C
with R2:

𝑧 = 𝑥 + i 𝑦, with 𝑥, 𝑦 ∈ R, 𝑧 = 𝑟ei 𝜑
, with 𝑟 > 0, 𝜑 ∈ (−𝜋, 𝜋] .

We gave one possible choice for the range of the angle 𝜑 that is used by Mathematica ([25]), calling
it the Mathematica convention. Another common possibility is 𝜑 ∈ [0, 2𝜋) which we will call the
physics convention, however, throughout this section 3.2 we will use the former one in the formulas.

3.2.1 Discontinuity, Schwarz Reflection Principle and Dispersion Relations

For real valued functions, one can sometimes obtain a jump in the function, a point where the function
is not continuous anymore. One simple example would be 1

𝑥
which jumps from −∞ to +∞ at 𝑥 = 0.

Although this is also some kind of “discontinuity”, we usually mean something different if we speak of
discontinuities for complex-valued functions. Normally, they appear if the corresponding real-valued
function has a point at which it cannot be continued, like the square root or the logarithm for values
𝑥 < 0. Such a point is called a branch point and it is the starting point for a (complex) discontinuity in
the complex analogue of the function.
Mathematically, one can define the discontinuity of a function via

Disc[ 𝑓 ] (𝑧) = lim
𝜀→0

(
𝑓 (𝑧 + i 𝜀) − 𝑓 (𝑧 − i 𝜀)

)
. (3.17)

More general is the discontinuity defined as the value of a function on one side of a branch cut
minus the value on the other side, not necessarily in direction of the imaginary axis (±i 𝜀) as in
equation (3.17). Everywhere, where the function 𝑓 itself is continuous, its discontinuity will simply
vanish. But if there is a point or usually a line where – when crossed – we experience a jump in either
the real part or the imaginary part of the function, the definition of a discontinuity makes sense. We
will discuss the two previously mentioned examples in the following, the square root in section 3.2.2
and the logarithm in section 3.2.4.

Schwarz Reflection Principle

In case a function fulfills the “Schwarz Reflection Principle”

𝑓 (𝑧∗) =
(
𝑓 (𝑧)

)∗
(3.18)
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3.2 Complex Analysis with Branch Points

and the discontinuity is located on the real axis (𝑧 = 𝑥), we can express it through the imaginary part
of the function in the following way

Disc[ 𝑓 ] (𝑥) = lim
𝜀→0

(
𝑓 (𝑥 + i 𝜀) − 𝑓

(
(𝑥 + i 𝜀)∗

) )
= lim
𝜀→0

(
𝑓 (𝑥 + i 𝜀) −

(
𝑓 (𝑥 + i 𝜀)

)∗)
= lim

𝜀→0
2i Im

(
𝑓 (𝑥 + i 𝜀)

)
= 2i Im

(
𝑓 (𝑥)

)
. (3.19)

Although this seems to be a very specific feature for a function, it is actually quite common since the
complex conjugation can be distributed in a sum (𝑎 + 𝑏)∗ = 𝑎∗ + 𝑏∗ and in a product (𝑎 · 𝑏)∗ = 𝑎∗ · 𝑏∗.
As a direct consequence, complex polynomials fulfill it since they are just a specific combination of
multiplications and additions. The same is true for differences, fractions, and even chains of functions
if each function separately fulfills the principle:

𝑓

(
𝑔(𝑧∗)

)
= 𝑓

( (
𝑔(𝑧)

)∗)
=

(
𝑓
(
𝑔(𝑧)

) )∗
.

For the exponential function we have to do a bit of work to see it:

exp(𝑧∗) = exp(𝑥 − i 𝑦) = exp(𝑥)︸ ︷︷ ︸
∈R

·
(
cos(𝑦) − i sin(𝑦)

)
=

(
exp(𝑥) ·

(
cos(𝑦) + i sin(𝑦)

) )∗
=

(
exp(𝑧)

)∗
.

Effectively, this principle says that the values that a function takes on the upper half of the complex
plane ( 𝑓 (𝑥 + i 𝑦), 𝑦 > 0), completely determine its values on the lower half ( 𝑓 (𝑥 − i 𝑦) = 𝑓

∗(𝑥 + i 𝑦)).
Any analytic function – as the ones discussed above – which satisfies equation (3.18), automatically

has to take real values on the real axis, because for 𝑧 = 𝑥 = 𝑧∗ we will have 𝑓 (𝑥) = 𝑓
∗(𝑥) ∈ R. If the

discussed function is not real on the real axis, but fulfills equation (3.18), it must have a discontinuity
on the real axis, what can also be seen immediately from equation (3.19). The complex square root
and the complex logarithm are such functions, since they become purely imaginary on the negative
real axis for the Mathematica convention, but more details on that later.
One prominent example in particle physics for a function fulfilling the Schwarz Reflection Principle,

is the complex amplitudeM describing a scattering process and since it is expected to be analytic
in the complex plane, it can only have poles, branch points and discontinuities on the real axis [22].
ThatM has to have a discontinuity on the real axis, can directly be see in equation (3.15), since its
imaginary part for real values of 𝑠 does not vanish.

Dispersion Relations

Although these discontinuities do not seem to be very useful, they actually are. The reason is that one
completely knows an analytic function if one knows its discontinuity on the real axis. Such a relation
is called a “dispersion relation” and it is a direct consequence of the Cauchy Theorem:

𝑓 (𝑠) = 1
2𝜋i

∮
𝐶

𝑓 (𝑠′)
𝑠
′ − 𝑠

d𝑠′, (3.20)

which holds for all values 𝑠 inside of the closed contour 𝐶 if the function 𝑓 is analytic inside of 𝐶. By
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

Re(𝑠)

Im(𝑠)

𝛾1

𝛾3

𝛾2

𝑠thr

𝑅 →∞

Figure 3.1: Integration contour used in equation (3.20) with 𝑠thr = 4, modified from [26].

using the contour from Figure 3.1 we obtain the dispersion relation

𝑓 (𝑠) = 1
2𝜋i

∞∫
𝑠thr

Disc[ 𝑓 ] (𝑠′)
𝑠
′ − 𝑠

d𝑠′, (3.21)

where we require 𝑓 (𝑠)
|𝑠 |→∞
−→ 0 such that the integral over the circular path 𝛾2 vanishes when extending

it to infinity. The discontinuity is obtained from 𝛾1 and −𝛾3 integrated from 𝑠thr →∞.
If the function 𝑓 does not drop fast enough for |𝑠 | → ∞, we can introduce a temporary pole to the

function by looking at 𝑔(𝑠) = 𝑓 (𝑠)/(𝑠 − 𝑠0). If this function has the required behavior at complex
infinity, we can perform the contour integral with a slightly adjusted contour to avoid the newly
introduced pole. For this, we integrate from the outer circle 𝛾2 to the pole position at 𝑠 = 𝑠0, clock-wise
around this pole resulting in minus the residual of 𝑔(𝑠′)/(𝑠′ − 𝑠), i.e. 𝑓 (𝑠0)/(𝑠 − 𝑠0), and back on the
path from the pole to where we started on 𝛾2, exactly cancelling out the first additional path integral.
The result is

𝑓 (𝑠; 𝑠0) = 𝑓 (𝑠0) +
(𝑠 − 𝑠0)

2𝜋i

∫ ∞

𝑠thr

Disc[ 𝑓 ] (𝑠′)
(𝑠′ − 𝑠) (𝑠′ − 𝑠0)

d𝑠′

𝑓 (𝑠; 0) = 𝑓 (0) + 𝑠

2𝜋i

∫ ∞

𝑠thr

Disc[ 𝑓 ] (𝑠′)
(𝑠′ − 𝑠)𝑠′

d𝑠′, (3.22)

which is known as a subtraction. This procedure can be repeated as often as needed, until the integrand
has the required limiting behavior. The more subtractions one has to perform, the more so-called
subtraction constants, as the 𝑓 (0) above, will appear. These subtraction constants are free parameters
of the model and have to be fixed by the experiment.
By using equation (3.19), we can rewrite the dispersion relation as

𝑓 (𝑠) = 1
𝜋

∞∫
𝑠thr

Im
(
𝑓 (𝑠′)

)
𝑠
′ − 𝑠

d𝑠′. (3.23)
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3.2.2 Complex Square Root

Let us discuss a very important function for particle physics in more detail, the complex square-root
function. Here, we can see the impact of the choice of the 𝜑 range mentioned in the introduction of
this section 3.2, when having a look at the square root for complex arguments

√
𝑧 =
√
𝑟ei 𝜑2 , Disc𝑧<0 [

√
𝑧] = 2i

√
𝑟, sqrt(𝑧; 𝜙) = ei 𝜙2

√︃
𝑧e−i 𝜙

. (3.24)

For the chosen range 𝜑 ∈ (−𝜋, 𝜋], we will experience a jump – the discontinuity as introduced in the
previous section 3.2.1 – when going from√︃

𝑟ei (𝜋−𝜀)
=
√
𝑟ei (𝜋−𝜀)/2 ≈ i

√
𝑟 to

√︃
𝑟ei (−𝜋+𝜀)

=
√
𝑟ei (−𝜋+𝜀)/2 ≈ −i

√
𝑟,

although the input arguments are both close to −𝑟, i.e. slightly on opposite sides of the negative
real axis. With the mathematical definition of a discontinuity in equation (3.17), this gives us the
expression as stated in equation (3.24). The strength and the starting point 𝑧 = 0 of this discontinuity –
the so-called branch point – will not change no matter how we choose the 𝜑-range, however, the path
it takes can be different. In our case, we have a discontinuity only for negative real values as indicated
by the subscript Disc𝑧<0 in equation (3.24).
Since the direction of the branch cut is depended on the convention you are choosing, any statements

or physics arguments have to be independent on its direction. Having said that, other derived statements
might have to be reformulated if the convention is a different one. For example, the statement that
there are no poles, singularities or branch cuts allowed on the first Riemann sheet of the scattering
amplitude outside of the real axis, only holds for the physics convention. It is not true anymore if
the direction of the square-root branch cut is chosen to follow iR for whatever reason. And it can
also be beneficial to rotate the branch cuts such that we can use easier integration paths like a straight
line, instead of a circle around the branch point. Because if we carelessly cross a branch cut with an
integration path, we will pick up the corresponding discontinuity and, as a consequence, we will obtain
wrong and discontinuous integration results. Such a cut rotation can be obtained in Mathematica by
modifying the default square-root function to sqrt as given in equation (3.24). We simply rotate the
complex number 𝑧 by an angle −𝜙 before applying the square root, and afterwards we compensate
this additional rotation by rotating half the angle in the opposite direction. Like this we effectively
change the allowed range to 𝜑 ∈ (−𝜋 + 𝜙, 𝜋 + 𝜙]. We can obtain the physics convention from the
Mathematica convention by using sqrt(𝑧; 𝜋), or more precisely sqrt(𝑧; 𝜋 − 𝜀) since otherwise
the range would be 𝜑 ∈ (0, 2𝜋] instead of 𝜑 ∈ [0, 2𝜋). However, this 𝜀 is only important if we are
evaluating the function exactly on the positive real axis, therefore, for most of the following discussions
an angle of 𝜙 = 𝜋 is sufficient. For the formulas, the square-root symbol √. will still correspond to the
Mathematica convention or equivalently to sqrt(𝑧; 0).
The effect of such a rotation can be seen in Figure 3.2. We see that at the beginning, for 𝜙 = 0,

the imaginary part has a jump at the negative real axis as we calculated before, while the real part
is continuous, but not smooth! If we rotate the cut more and more, the jump in the imaginary part
gets smaller and the real part develops a discontinuity as well. In the center of Figure 3.2, we have
the physics convention with 𝜙 = 𝜋, and if we do the rotation until 𝜙 = 2𝜋, we obtain the plot in the
bottom-right corner. This plot shows a completely different real and imaginary part, which brings us to
the concept of Riemann sheets. If we would glue the orange plot (real part) of the bottom-right-corner
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

Figure 3.2: Square root “sqrt” of equation (3.24) as a function of a complex argument 𝑧 = 𝑥 + i 𝑦 for different
rotations 𝜙 ∈ {0, 𝜋4 , ..., 2𝜋} (row-by-row from left to right). Plotted is the real part in yellow and the imaginary
part in blue. The Mathematica convention is the top left plot and the physics convention is the central plot.

plot to the one of the top-left-corner plot, we would obtain a completely continuous transition both
coming from above the negative real axis and coming from below. If we would walk smoothly
along this newly constructed functional plane in a circle around the branch point at zero, we would
have to run around it twice, before we end up at the same place. The same is true for the blue plot
(imaginary part). Therefore, we say that the square-root function has two Riemann sheets, giving us
effectively two different square-root functions

√
𝑧 = sqrt(𝑧; 0) and II

√
𝑧 = sqrt(𝑧; 2𝜋) = −√𝑧. Here,

we directly see why we have exactly two Riemann sheets, since after two rotations 𝜙 = 4𝜋 we are back
at sqrt(𝑧; 4𝜋) = √𝑧. A similar depiction of the square-root function, now with both Riemann sheets
plotted, can be found in Figure 3.3. We see that we always have a smooth transition from the first
Riemann sheet (yellow to green, and blue to red) for all rotation angles 𝜙.
As mentioned before, the complex square root fulfills the Schwarz Reflection Principle for the

Mathematica convention, which we can immediately see from its definition in equation (3.24) and
the fact that the exponential function fulfills the principle. However, if we change to the physics
convention, this is not the case anymore since complex conjugation

(√
𝑟ei 𝜙

)∗
=
√
𝑟e−i 𝜙 will always

leave the allowed range for 𝜙 ∈ [0, 2𝜋). Another way to see this, is in the central plot of Figure 3.2,
where the imaginary part (blue surface) does not vanish on the negative real axis, although this would
be a direct requirement from equation (3.18) for a continuous function. By performing the complex
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3.2 Complex Analysis with Branch Points

Figure 3.3: Square root sqrt of equation (3.24) as a function of a complex argument 𝑧 = 𝑥 + i 𝑦 for different
rotations 𝜙 ∈ {0, 𝜋4 , ..., 2𝜋} (row-by-row from left to right). Plotted is the real part of the first Riemann sheet in
yellow, the second Riemann sheet in green, and the imaginary part on the first Riemann sheet in blue, on the
second Riemann sheet in red.

conjugation, we effectively jump on the second Riemann sheet, i.e. rotate the cut in the opposite
direction when starting from the Mathematica convention:

sqrt(𝑧∗; 𝜋) = ei 𝜋2

√︃
𝑧
∗e−i 𝜋

=

(
e−i 𝜋2

√︃
𝑧ei 𝜋

)∗
=

(
sqrt(𝑧;−𝜋)

)∗
= −

(
sqrt(𝑧; 𝜋)

)∗
, (3.25)

where we applied the Schwarz Reflection Principle on √. in the definition of sqrt(𝑧; 𝜋). Replacing
𝜋 by an arbitrary rotation angle 𝜙 again, we see immediately that this generalizes to sqrt(𝑧∗; 𝜙) =(
sqrt(𝑧;−𝜙)

)∗
, which shows that the Schwarz Reflection Principle will only hold for 𝜙 = −𝜙 = 0, the

Mathematica convention. However still, there exists a simple relation between 𝐹 (𝑧∗) and
(
𝐹 (𝑧)

)∗
which can lead to the generalization of the Schwarz Reflection Principle and the introduction of the
Schwarz function that performs such a mapping of the reflection (complex conjugation) on a curve in
complex plane (the branch cut of 𝐹 (𝑧)).

Putting that aside for now, let us come back to the physical application of the complex square root.
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

Figure 3.4: Real part (orange, top) and imaginary part (blue, bottom) of the numerator of the two-body phase
space for 𝐾∗0 (892) → K+𝜋− with Γ̃K∗ = 0.1 GeV for complex argument 𝑠 for the Mathematica convention
(left) and the physics convention (right). The middle column is obtained by using 𝜙 = 𝜋/8 for sqrt in
equation (3.24).

3.2.3 Complex Phase Space

The first application of such a complex square-root function in physics comes, when we talk about the
two-body phase space as of equation (A.8). If we simply plot it for complex arguments, we can see
the result for the two conventions in Figure 3.5 for a neutral K∗ with artificially increased decay width
of Γ̃K∗ = 0.1 GeV decaying into K+ and 𝜋−. To fully understand what we are seeing, we write it in the
following way

Φ2(𝑠, 𝑚
2
1, 𝑚

2
2) =

1
8𝜋

√︃
(𝑠 − 𝑠thr) (𝑠 − 𝑠pth)

𝑠
, with 𝑠thr = (𝑚1 + 𝑚2)

2
, 𝑠pth = (𝑚1 − 𝑚2)

2
,

defining the threshold 𝑠thr and the pseudo-threshold 𝑠pth. Next, we break it down into separate pieces
by starting only with the numerator, which is plotted in Figure 3.4.
Here, we observe something strange for the Mathematica convention (left column): we have a

branch cut connecting the two thresholds as expected, since the product under the square root is negative
there. However, we also have a cut along 𝑠+ ± i 𝑦 for 𝑦 ∈ R where we defined 𝑠± = (𝑠thr ± 𝑠pth)/2.
Although it is mathematically possible to define the square root4 such that it only has the connecting
branch cut on the real axis, we can still easily understand why Mathematica is doing what it is doing
by inserting 𝑠 = 𝑠+ + i 𝑦 ± 𝜀 into the numerator of the phase space. These are values slightly on the left
(−𝜀) and slightly on the right (+𝜀) of the suspicious branch cuts. If there is a branch cut, we expect to

4 This is usually demonstrated with the function
√︃
𝑧

2 − 1. If we substitute 𝑠→ 𝑠 + 𝑠+, resulting under the square root in
−(𝑠 − 𝑠−) (𝑠 + 𝑠−) = −𝑠

2
− (𝑧

2 − 1) with 𝑧 = 𝑠/𝑠−, we obtain a similar complex structure.
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3.2 Complex Analysis with Branch Points

see a jump from one side to the other. And indeed, the argument of the square-root function√︃
(𝑠 − 𝑠thr) (𝑠 − 𝑠pth)

�����
𝑠=𝑠++i 𝑦±𝜀

=

√√√
− (𝑦2 + 𝑠2

−)︸    ︷︷    ︸
>0

±2𝜀𝑦i +𝜀2︸︷︷︸
≈0

is once slightly above (+2𝜀𝑦i ) and once slightly below (−2𝜀𝑦i ) the negative real axis, where the
Mathematica convention defines the branch cut of the square root. As indicated by the middle
column of Figure 3.4 where we replace the √. symbol by the sqrt function of equation (3.24) and
rotate the cut a tiny bit by an angle 𝜙 = 𝜋/8, the vertical branch cuts along the imaginary direction split
at the real axis and rotate together with the respective half of the connecting branch cut in opposite
directions, until we reach the physics convention with 𝜙 = 𝜋 on the right column. One can easily
convince oneself that, mathematically, such a rotation is equal to sqrt(𝑠 − 𝑠thr; 𝜋)

√︃
𝑠 − 𝑠pth , meaning

that we rotate the cut, starting at the threshold, towards the right and keeping the cut at the pseudo
threshold pointing towards the left.
This discussion shows the importance of correctly and consciously rotated cuts, because otherwise,

it is very easy to cross such branch cuts when integrating in complex plane. The advantage of the
physics convention over the Mathematica convention is that we have a fully connected complex
plane, meaning that we can find a continuous path from every point of the complex plane to every
other point without having to cross branch cuts. This can be achieved by first walking in a straight line
to the middle point 𝑠+ between the two thresholds on the real axis and, then again, in a straight line to
the destination. Although this path is overly complicated for points on the same half plane, it is still
valid and the integral along this path will be the same as for the direct connection, since the integrands
are usually analytic function.
To arrive at the full complex phase space in Figure 3.5, we only have to include the 1/𝑠 factor,

which introduces an unphysical pole at 𝑠 = 0. But although this sounds problematic, we will see that
this barely affects us in the end. As a side node, this pole only appears for unequal daughter masses
𝑚1 ≠ 𝑚2. For equal masses, the pseudo threshold vanishes and, therefore, we obtain a

√
𝑠 from the

numerator that transforms the pole in a 1/
√
𝑠 branch point.

3.2.4 Complex Logarithm

Another important function, especially for this thesis, is the logarithm. Similar to the square root, also
the real-valued logarithm creates problems when being evaluated on the negative real axis. This also
leads to a branch cut if one extends its definition to the complex plane. Taking the logarithm of a
complex number 𝑧 = 𝑟 exp(i 𝜑) results in log(𝑧) = log(𝑟) + log(exp(i 𝜑)) = log(𝑟) + i 𝜑 if we simply
apply the logarithm rules that we know from real-valued mathematics. But here, we directly see the
problem, again arising from the 2𝜋i -periodicity of the exponential function, since 𝑧 will not change if
we rotate the complex number by an angle of 2𝜋 in complex plane. However, the value on the right
hand side will gain an extra 2𝜋i changing the imaginary part of the complex logarithm if we stick to
the same rules as for real arguments. While for the square root, we saw that rotating by a total of 4𝜋
gave us back the original value, here, the imaginary part will keep increasing with every 2𝜋 rotation.
Similarly to before and starting from the Mathematica convention, we can manually rotate the
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

Figure 3.5: Real part (orange, top) and imaginary part (blue, bottom) of the two-body phase space for
𝐾
∗0 (892) → K+𝜋− with Γ̃K∗ = 0.1 GeV for complex argument 𝑠 for the Mathematica convention (left) and
the physics convention (right).

branch cut of the logarithm to any other direction by using

log(𝑧) = log(𝑟) + i 𝜑, Disc𝑧<0 [log] (𝑧) = 2𝜋i , log(𝑧; 𝜙) = log
(
𝑧e−i 𝜙

)
+ i 𝜙. (3.26)

This can be seen in action in Figure 3.6. We see that the imaginary part spirals upwards for increasing
𝜙, while the real part stays where it is, only its white line rotates, where Mathematica expects a
possible branch cut. The diagonal shows three different Riemann sheets of the complex logarithm
that – glued together – will result in a continuous upwards spiral around 𝑧 = 0. Like this, we see
immediately that we do not only have two Riemann sheets as a result, but an infinite amount of them,
each separated by 2𝜋i 𝑛 for any 𝑛 ∈ Z.
As for the square root, also the complex logarithm fulfills the Schwarz Reflection Principle

for the Mathematica convention as one can directly see from its definition in equation (3.26):
log(𝑧∗) = log(𝑟) − i 𝜙 =

(
log(𝑟) + i 𝜙

)∗
.

In reaction theory, we define particles and resonances as poles in the complex energy plane below
the real axis on the second Riemann sheet. On the real axis itself – where experiments are performed –
the well-known Breit-Wigner (BW) shape corresponds to such a pole in the case of an isolated and
narrow resonance. One has to analytically continue such a real-valued model to the complex 𝑠-plane
and has to evaluate it slightly above the real axis, at 𝑠 + i 𝜀, to avoid other poles and branch cuts
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3.3 Breit-Wigner Model

Figure 3.6: Real part (orange) and imaginary part (blue) of the “normalized” logarithm for complex arguments
𝑧 = 𝑥 + i 𝑦. Row-by-row is plotted log(𝑧; 𝜙)/𝜋 for values 𝜙 ∈ {0, 𝜋/2, ..., 4𝜋}.

that might and will be located there. See the next section 3.3 for some details on building a more
sophisticated Breit-Wigner Model (BWM).

3.3 Breit-Wigner Model

As just mentioned, a resonance is defined as a pole in the complex energy plane. However, an
experiment can only measure values on the real axis, thus, what one can actually observe, is only the
tail of that pole. Its maximum will appear at the mass of the resonance. The broader a signal is, the
further the pole is away from the real axis. Therefore, the width of the measured peak is directly
related to the imaginary part of the pole position.
One function that fulfills these conditions is the relativistic BW:

BWconst(𝑠;𝑚, Γ) =
𝑚Γ

𝑚
2 − 𝑠 − i𝑚Γ

, with pole at 𝑠𝑝 = 𝑚
2 − i𝑚Γ. (3.27)

The normalization in the numerator is chosen such that
���BW (

𝑠 = 𝑚
2
)���2 = 1, meaning that the height

of the intensity is normalized to 1. When fitting to data, one needs an additional parameter 𝐴 that
scales the BW to match the strength of the data. With such a normalization, it makes it easier to guess
the starting parameter and it decouples the signal strength from the mass and width parameters during
a fit.
Usually,

√
𝑠 is plotted on the 𝑥-axis and one defines the pole mass as real part and the pole width as

25



Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

half of the imaginary part of the pole in
√
𝑠, respectively:√︁
𝑠𝑝 =: 𝑚𝑝 − i

Γ𝑝

2
. (3.28)

Squaring this expression and comparing it to equation (3.27) gives simple relations between the
BW mass and width and the pole mass and width as follows:

𝑚
2
= 𝑚

2
𝑝 −

Γ
2
𝑝

4
, 𝑚 = 𝑚𝑝

√√√
1 −

Γ
2
𝑝

4𝑚2
𝑝

, Γ =
𝑚𝑝Γ𝑝

𝑚
=

Γ𝑝√︂
1 − Γ

2
𝑝

4𝑚2
𝑝

. (3.29)

The bigger 𝑚𝑝 and the smaller Γ𝑝, the closer these two masses and widths are to each other, which
means that the BW parameters are a good approximation for a narrow or heavy resonance.
The other direction is a bit more difficult to find if one wants to express the pole parameters in

terms of the BW parameters. For this, one starts with the first equation in equation (3.29), multiplies
it by 𝑚2

𝑝 and replaces 𝑚
2
𝑝Γ

2
𝑝 = 𝑚

2
Γ

2, as can also be seen on the right in equation (3.29). This is a

quadratic equation in 𝑚2
𝑝 and its solutions are 𝑚𝑝 = 𝑚√

2

√︂
1 ±

√︃
1 + Γ

2

𝑚
2 of which only the one with

the plus sign yields a real number. The expression for Γ𝑝 can be obtained in a similar manner by
multiplying Γ2

𝑝 to the first equation in (3.29) and again using 𝑚
2
𝑝Γ

2
𝑝 = 𝑚

2
Γ

2, but this time to get rid

of 𝑚2
𝑝. Now, we have a quadratic equation in Γ

2
𝑝 with the two solutions Γ𝑝 = 𝑚

√
2
√︂
−1 ∓

√︃
1 + Γ

2

𝑚
2 .

Here, the sign inside the outer square root has to be positive as well, in order to give a real number for
Γ𝑝, resulting in the final expressions:

𝑚𝑝 =
𝑚
√

2

√√√
1 +

√︄
1 + Γ

2

𝑚
2 , Γ𝑝 = 𝑚

√
2

√√√
−1 +

√︄
1 + Γ

2

𝑚
2 . (3.30)

Once more, we get equal masses if we take the limit Γ/𝑚 → 0, but for the width doing so simply
results in 0. This means that we have to perform a Taylor expansion of the inner square root
√

1 + 𝑥 = 1 + 𝑥
2 − O

(
𝑥

2
)
with 𝑥 = Γ

2/𝑚2 first, resulting in Γ𝑝 = Γ

√︂
1 − O

(
Γ

2

𝑚
2

)
. Then, we also

obtain equal widths as expected from the previous direction.

There are two ways, how such a complex function is usually visualized for real-valued arguments.
Firstly, one can plot the squared magnitude and the complex argument also known as phase. And
secondly, one can plot the imaginary part against the real part in a so-called Argand diagram. For
such a BWM, the phase will rise from 0° up to 180° and it will cross 90° for 𝑠 = 𝑚2. On the Argand
diagram, this corresponds to a full circle on the upper half of the complex plane. Some examples for
the following more advanced BWM can be found in section 6.2.1.
If we plot the relativistic BW of equation (3.27) for complex arguments, we obtain Figure 3.7.

Here – additionally to real (orange) and imaginary part (blue) – we plot the squared magnitude of the
amplitude (green) as this would be what we observe e.g. for the cross section (cf. equation (3.11)). In
the corresponding contour plots on the lower row one can see the position of the pole as expected at
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3.3 Breit-Wigner Model

Figure 3.7: Relativistic BW of equation (3.27) for a 𝐾∗0 (892) → K+𝜋− with Γ̃K∗ = 0.1 GeV. Plotted are the
real part (left, orange), the imaginary part (middle, blue) and the squared magnitude (right, green) for complex
values of 𝑠. The lower row shows contour plots where lines of equal height are plotted and the color indicates
the average height of the corresponding function in between those lines.

𝑠𝑝 = 𝑚
2
K∗ − i𝑚K∗ Γ̃K∗ ≈ (0.8 − i 0.1) GeV2.

But as always, things are not that easy in reality. Interference with other resonances can disturb the
shape of the peaks and shift the position of the peaks, or even make resonances appear as dips in the
spectrum, as it is the case for the 𝑓0(980) in the [𝜋𝜋]S spectrum

5 for example. Adding BWMs with a
complex phase between them can cope with this, however, this is not a good option, since it violates
unitarity. But due to its simplicity over more sophisticated unitary models, like the K-matrix approach
as presented in equation (3.5), it is still common practice. Also a BWM is very intuitive, since a
good estimate for the mass and width of a resonance can easily be read off directly from the shape of
the data, while for models using the previously introduced 𝑲-matrix, its parameters only indirectly
correlate with the pole mass and width of the resonance. One always has to analytically continue the
model into the complex plane to find the actual pole on the second Riemann sheet of the 𝑻-matrix.
Another possibility is the opening of additional decay thresholds within the close proximity of a

resonance mass. This can create cusps or asymmetries where the resonance has a broader high-mass
tail than low-mass tail.
And also from theory side, we have a problem with such a simple model, since from analyticity of

the decay amplitude it follows that it cannot have poles in the complex plane away from the real axis –
more precisely on the first Riemann sheet – which the simple BWM does have, as equation (3.30)
clearly shows. This is, however, only an issue if one needs to do something with the model besides of

5 Looking at low-energetic 𝜋+ + 𝜋− → 𝜋
+ + 𝜋− scattering with involved orbital angular momentum 𝐿 = 0, we have three

resonances 𝑓0 (500), 𝑓0 (980) and 𝑓0 (1500) appearing. The first one has a very broad width extending it over a large mass
range and creating interference with especially the 𝑓0 (980) (Fig. 13 of [27]).
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

evaluating it slightly above the real axis as during a simple fit to real data for example.

3.3.1 Breit-Wigner with Energy-Dependent Width

Before it gets too complicated, let us start with the concept of an energy-dependent width. This is
a simple and common method (e.g. described in [28]) to directly incorporate some dependence on
the decay channel into the parametrization of the resonance, and additionally as we will see, it also
solves the problem with the pole on the first Riemann sheet. For a two-body decay of a resonance with
mass 𝑀 into two daughter particles with masses 𝑚1 and 𝑚2, we can calculate the decay width using
Fermi’s Golden Rule6:

Γ(𝑠;𝑀,𝑚1, 𝑚2) =
1

2𝑀
|M|2 Φ2(𝑠, 𝑚

2
1, 𝑚

2
2), (3.31)

with the two-body phase space Φ2 calculated in appendix A.1 and given in equation (A.8). The
simplest model for the matrix elementM – in case of a spinless resonance decaying into two scalar
particles – is a constant, the coupling 𝑔 of the decay vertex. Since this coupling is in general not
known or has to be taken from experiment or ℓQCD, one can normalize Γ with Γ0 := Γ(𝑠 = 𝑀2) as
given by the Particle Data Group [29] (PDG) and look at the ratio, resulting in:

Γ(𝑠;𝑀, Γ0, 𝑚1, 𝑚2) = Γ0
Φ2(𝑠, 𝑚

2
1, 𝑚

2
2)

Φ2(𝑀
2
, 𝑚

2
1, 𝑚

2
2)

= Γ0
𝑀
√
𝑠

𝑞

𝑞0
,

with the break-up momentum 𝑞 as given in equation (A.2), and 𝑞0 = 𝑞(𝑠 = 𝑀2).
In case the two-body resonance has spin (still decaying into two scalars), this spin appears as orbital

angular momentum in the decay and a constant matrix element is not a good model anymore. One can
show ([20]) that close to the threshold 𝑠 ≳ 𝑠thr the expected behavior of the matrix element would
rather be

M ∼ 𝑞𝐿 , for a decay with orbital angular momentum 𝐿, (3.32)

however, for large values it has to be damped again to not rise infinitely. Therefore, phenomenological
barrier factors ℎ𝐿 are introduced that combine these requirements resulting in

M ≈ 𝑔 · ℎ𝐿 (𝑞). (3.33)

In this thesis, we use the parametrization derived by Blatt and Weisskopf [28, 30] in the version as it is
defined in appendix D of [20]. The functional forms are given in appendix A.2 for direct reference.
Applying this adjustment to the energy-dependent width results in

Γ(𝑠;𝑀, Γ0, 𝑚1, 𝑚2) = Γ0
Φ2(𝑠, 𝑚

2
1, 𝑚

2
2)

Φ2(𝑀
2
, 𝑚

2
1, 𝑚

2
2)
ℎ

2
𝐿 (𝑞)

ℎ
2
𝐿 (𝑞0)

= Γ0
𝑀
√
𝑠

𝑞

𝑞0

ℎ
2
𝐿 (𝑞)

ℎ
2
𝐿 (𝑞0)

. (3.34)

Note that this width will only be used in the denominator of equation (3.27), while the numerator
keeps Γ0:

BW(𝑠;𝑀, Γ0, 𝑚1, 𝑚2) =
𝑀Γ0

𝑀
2 − 𝑠 − i𝑀Γ(𝑠;𝑀, Γ0, 𝑚1, 𝑚2)

(3.35)

6 Compare this with equation (3.9) for a decay, i.e. a 1→ 𝑁 reaction. One obtains only (2𝐸 (𝑖)1 )
−1 as a prefactor, which is

evaluated in the rest frame of the decaying resonance to (2𝑀)−1 as in Fermi’s Golden Rule.
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3.3 Breit-Wigner Model

Figure 3.8: BW with energy-dependent width for complex argument 𝑠 for the decay 𝐾∗0 (892) → K+𝜋− with
Γ̃K∗ = 0.1 GeV. Plotted are real part (orange, top row), imaginary part (blue, middle row) and squared magnitude
(green, bottom row) for Mathematica convention (left), 𝜙 = 7𝜋/8 (middle left), physics convention (middle
right), and the second Riemann sheet of the physics convention with 𝜙 = −𝜋 (right).

The normalization of the BW function will not be affected, because – by construction – the energy-
dependent width becomes Γ0 for 𝑠 = 𝑀

2.

By introducing the phase space in the denominator of the BW, we are able to “hide” the pole on
the second Riemann sheet created by the square-root function inside the phase space if we rotate
the branch cut according to the physics convention. This is made visible in Figure 3.8. Note that
it is very important to only rotate the cut of the energy-dependent term Φ2(𝑠, 𝑚

2
1, 𝑚

2
2), keeping

the normal √. for the constant normalization Φ2(𝑀
2
, 𝑚

2
1, 𝑚

2
2), which will always be a real number

anyways. Otherwise a rotation by 𝜙 = 𝜋 will result in the same complex structures as a rotation by
𝜙 = −𝜋 although they should not, since they uncover a different part of the other Riemann sheet.
We see that the pole starts to vanish for a rotation of 𝜙 = 7𝜋/8 (middle left) and is gone for the

physics convention (middle right). However, looking at the second Riemann sheet of the physics
convention (right) obtained by a rotation of 𝜙 = 3𝜋 or equivalently 𝜙 = −𝜋, we suddenly see two poles
instead of only one. The second pole is created by the square-root function II

√
. = −√. on the second

Riemann sheet. If we use the Mathematica convention, we will have one pole on the first Riemann
sheet from Φ2 at approximately 𝑚

2 − i𝑚Γ0, and on the second Riemann sheet from Φ
II
2 = −Φ2

at approximately 𝑚2 + i𝑚Γ0. Rotating the cut to the physics convention will still hide both poles,
however, if the resonance appears very close to the threshold we can also feel the effect of this artificial
second pole on the real axis. Additionally, the unphysical pole of the phase space that, now, is moved
away from 𝑠 = 0 into the complex plane, is hidden for the physics convention.
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

3.3.2 Flatté Parametrization of the Decay Width

If the resonance has two or more possible decay channels 𝑖, its decay width in the denominator of
equation (3.35) is the sum of all partial widths Γ0 =

∑
𝑖 Γ𝑖. We will focus on two possible channels,

however, the discussed method can easily be adapted for more than two. If the coupling strengths 𝑔𝑖
to each of these decays are known, one can employ equation (3.31) for each of the Γ𝑖 and insert the
respective coupling for the matrix elementM𝑖 = 𝑔𝑖ℎ𝐿 (𝑞𝑖):

ΓFlatté(𝑠;𝑀, 𝑔𝑖 , 𝑚𝑖 𝑗) =
1

2𝑀

[
𝑔

2
1Φ2(𝑠, 𝑚

2
11, 𝑚

2
12)ℎ

2
𝐿 (𝑞1) + 𝑔

2
2Φ2(𝑠, 𝑚

2
21, 𝑚

2
22)ℎ

2
𝐿 (𝑞2)

]
=

1
𝑀

𝑔
2
1

16𝜋

(
2𝑞1√
𝑠
ℎ

2
𝐿 (𝑞1) +

𝑔
2
2

𝑔
2
1

2𝑞2√
𝑠
ℎ

2
𝐿 (𝑞2)

)
, (3.36)

where 𝑞𝑖 denotes the break-up momentum of decay channel 𝑖 ∈ {1, 2} into two daughters 𝑗 ∈ {1, 2}
with masses 𝑚𝑖 𝑗 . This is called the Flatté parametrization and a less phenomenological derivation of
it can be found in [20], where one deduces it from the 𝑲-matrix and, thus, can proof that it satisfies
unitarity.
In the case of unknown couplings, we can use the energy-dependent width of equation (3.34) for

both partial widths Γ𝑖, as it is also presented in equations (2.6) and (2.7) of [28]. If we define the
branching fraction 𝑟 = Γ1

Γ0
and (1 − 𝑟) = Γ2

Γ0
, we can pull Γ0 out and obtain

ΓFlatté(𝑠;𝑀, Γ0, 𝑟, 𝑚𝑖 𝑗) = Γ0

(
𝑟

Φ2(𝑠, 𝑚
2
11, 𝑚

2
12)

Φ2(𝑀
2
, 𝑚

2
11, 𝑚

2
12)

ℎ
2
𝐿 (𝑞1)

ℎ
2
𝐿 (𝑞0,1)

+ (1 − 𝑟) Φ2(𝑠, 𝑚
2
21, 𝑚

2
22)

Φ2(𝑀
2
, 𝑚

2
21, 𝑚

2
22)

ℎ
2
𝐿 (𝑞2)

ℎ
2
𝐿 (𝑞0,2)

)
= Γ0

(
𝑟
𝑀
√
𝑠

𝑞1
𝑞0,1

ℎ
2
𝐿 (𝑞1)

ℎ
2
𝐿 (𝑞0,1)

+ (1 − 𝑟) 𝑀√
𝑠

𝑞2
𝑞0,2

ℎ
2
𝐿 (𝑞2)

ℎ
2
𝐿 (𝑞0,2)

)
, (3.37)

where we use the same nomenclature as above, with the addition of 𝑞0,𝑖 = 𝑞𝑖 (𝑠 = 𝑀
2). Without loss

of generality, we can assume a higher mass threshold for decay 2, meaning 𝑚thr,2 = 𝑚21 + 𝑚22 >

𝑚11 + 𝑚12 = 𝑚thr,1. Below the threshold of the second decay, we can simply drop the second term.
This will give us only a fraction of the full width, Γ0 · 𝑟 = Γ1. But this is also expected, since below
the threshold of the second decay, the partial width of the first decay should correspond to the total
width of the resonance. And the width will increase, once the other channel starts to open up, creating
some asymmetry in the process.
Another way to deal with thresholds, is to make the break-up momentum imaginary below threshold7,

i.e. 𝑞(𝑠 < 𝑠thr) = i |𝑞 |. This effectively increases the mass of the isobar, as one can see by inserting
this imaginary phase space into equation (3.34). One example where this finds its application is
the Flatté parametrization of the 𝑓0(980) used at COMPASS [31] and described in section 6.2.1,
Figure 6.7(a), since a better agreement with the data could be achieved that way.
In the end both threshold handlings are equally correct and wrong, since they are both just ways to

give more freedom to the shape of the BW. What effectively happens is that the pole is moved around
as a function of 𝑠, basically contradicting the idea of a resonance being a static pole in the complex
plane.

7 This is the result if one takes the complex square root in equation (A.2), meaning
√
−𝑥 = i

√
𝑥.
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3.3 Breit-Wigner Model

3.3.3 Chew-Mandelstam Decay Width

If one is concerned about the complex structure of the BWM, for example if it appears inside of an
integrand, one can express the energy-dependent width with the Chew-Mandelstam function CM. It is
obtained by calculating the amplitude for a loop diagram of the resonance decaying to the two daughter
particles, which rejoin to form the original resonance again, [32]. The following parametrization from
equation (2.30) of [33] is used in this thesis

CM(𝑠, 𝑚2
1, 𝑚

2
2) =

1
16𝜋2

( 𝐴(𝑠)=︷              ︸︸              ︷
𝜆

1/2(𝑠, 𝑚2
1, 𝑚

2
2)

𝑠
log

[ 𝐵(𝑠)=︷                                  ︸︸                                  ︷
𝑚

2
1 + 𝑚

2
2 − 𝑠 + 𝜆

1/2(𝑠, 𝑚2
1, 𝑚

2
2)

2𝑚1𝑚2

]
− 𝑚

2
1 − 𝑚

2
2

𝑠
log

[
𝑚1
𝑚2

]
︸                  ︷︷                  ︸

=𝐶 (𝑠)

+ 𝑚
2
1 + 𝑚

2
2

𝑚
2
1 − 𝑚

2
2

log
[
𝑚1
𝑚2

]
− 1︸                         ︷︷                         ︸

=𝐷

)
(3.38)

=
1

16𝜋2

(
𝐴(𝑠) log

[
𝐵(𝑠)

]
− 𝐶 (𝑠) + 𝐷

)
.

Plotting this as well in the complex plane for different values of 𝜙, reveals that its complex structure is
independent on which convention we choose for the square root (see Figure B.1). We see the effect
of the rotation of the square-root cut by the white lines that Mathematica draws, where it expects a
possible jump simply due to the appearance of the square-root function. However only on the real
axis, starting at the threshold, we see a jump in the imaginary part, while the Chew-Mandelstam BW
is smooth everywhere else. The reason for this, is the logarithmic term which introduces another
branch cut that is hiding the pole on the second Riemann sheet, this time not the second sheet of the
square-root function, but of the logarithm.
Now, let us apply the knowledge gained on the complex logarithm in section 3.2.4 to understand the

complex structure of the Chew-Mandelstam function by breaking it into separate parts 𝐴, 𝐵, 𝐶 and 𝐷
as introduced in equation (3.38).
Although 𝐷 seems to diverge in the limit 𝑚1 → 𝑚2 at first glance, its first product will actually

converge to 1, resulting in 𝐷 → 0. In this limit, also 𝐶 (𝑠) will vanish, leaving us only with the first
row. For the further steps, we will only consider the case of unequal masses, since this is also the
case that we actually encounter for its application in this thesis, specifically as before, the decay of
𝐾
∗0(892) → K+ + 𝜋−.
Let us address the shortcomings of the two-body phase space and how they are cured here. 𝐴(𝑠)

is – apart from its normalization – the two-body phase space and, as previously discussed, it has a
pole at 𝑠 = 0 for unequal daughter masses. This pole, however, gets exactly cancelled by 𝐶 (𝑠), which
expressed mathematically means 𝐴(𝑠) log[𝐵(𝑠)] − 𝐶 (𝑠) 𝑠→0→ 0. To show this, one can simply insert
𝑠 = 0 into the numerators of 𝐴 and 𝐵, and use 𝜆1/2(0, 𝑚2

1, 𝑚
2
2) = 𝑚

2
1 − 𝑚

2
2 and 𝐵(0) = 𝑚1/𝑚2 for

𝑚1 > 𝑚2. If 𝑚2 > 𝑚1, we obtain 𝜆
1/2

= 𝑚
2
2 − 𝑚

2
1, but also the fraction in 𝐵(0) will be flipped giving

us another minus sign, which means that the limit for 𝑠→ 0 still vanishes.
We want to see how the Chew-Mandelstam function behaves in the physical region, meaning for

𝑠 > 𝑠thr. There, the terms 𝐶 (𝑠) and 𝐷 are always real, and exactly at threshold we can see that
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

𝐵(𝑠 = 𝑠thr) = −1 < 0. Expressing 𝐵 in terms of 𝑥 := 𝑠 − 𝑠thr ≥ 0 we can transform it into

𝐵(𝑥) =
𝑚

2
1 + 𝑚

2
2 − 𝑠thr − 𝑥 +

√︃
𝑥(𝑥 + 𝑠thr − 𝑠pth)

2𝑚1𝑚2
= −1 + 𝑥

2𝑚1𝑚2

>0︷                        ︸︸                        ︷(
− 1 +

√︂
1 + 4𝑚1𝑚2

𝑥︸           ︷︷           ︸
>1

)
. (3.39)

This is a monotonously rising function, which approaches 0 as its limit8 for 𝑥 → ∞, thus, being
negative for every 𝑠 > 𝑠thr. As a consequence, we can write the logarithm

9 as log( |𝐵(𝑠) |) + i 𝜋, which
shows that the imaginary part of the Chew-Mandelstam function is half of the two-body phase space
above threshold, Im(CM(𝑠 > 𝑠thr)) = 1

16𝜋 𝐴(𝑠) =
1
2Φ2(𝑠). Therefore, we can perform the metioned

replacement in equations (3.34) and (3.37) as detailed later in equation (3.40).
Since 𝐵(𝑠 > 𝑠thr) is negative, we sit exactly on the branch cut of the logarithm. This means that

shifting the argument of the logarithm slightly above the real axis (𝑥 + i 𝜀 or equivalently 𝑠 + i 𝜀) will
result in approximately10 log( |𝐵(𝑠) |) + i 𝜋 and shifting it slightly below (𝑥 − i 𝜀 or 𝑠 − i 𝜀) will result
in a jump of −2𝜋i to approximately log( |𝐵(𝑠) |) − i 𝜋. Hence, we just located a branch cut starting at
threshold and extending to infinity where Im(CM(𝑠)) will change its sign, exactly as intended. At least
if we use the Mathematica convention for the square root inside of 𝐴(𝑠). For the physics convention,
we would also expect such a jump from 𝐴(𝑠 + i 𝜀) to 𝐴(𝑠 − i 𝜀), so could they cancel each other out or
enhance each other? No they do neither, and the reason is that we also have a square root inside of
𝐵(𝑠) which will cancel the effect of the outer square root11, leaving us still with only the cut from the
logarithm.
This leaves us only with the problem of the unphysical pseudo-threshold branch cut. Let us focus on

the physics convention where this cut extends from the pseudo-threshold to the left. This means that
we are looking at values 𝑠 < 𝑠pth. We can do the same as before, but using 𝑦 := 𝑠pth − 𝑠 ≥ 0, resulting
in

𝐵(𝑦) = 1 + 𝑦

2𝑚1𝑚2

(
1 +

√︄
1 + 4𝑚1𝑚2

𝑦︸           ︷︷           ︸
>1

)
.

If the sign of the inner square root flips due to the corresponding branch cut, this expression will stay
positive for all 𝑠 < 𝑠pth, however, it will change from 𝐵(𝑠 + i 𝜀) > 1 to 𝐵(𝑠 − i 𝜀) < 1 which means

8 To calculate this limit, one can perform a Taylor expansion of the square root giving 1 + 2𝑚1𝑚2
𝑥 − O

(
1
𝑥

2

)
. Inserting this

yields 0 − O
(

1
𝑥

)
, which also shows that it is approaching 0 from below.

9 We take the principle value of the complex logarithm that has its complex argument inside the interval (−𝜋, 𝜋].
10 Weestablished that 𝐵(𝑥) ismonotonously rising, thuswith Taylor expansionwe see 𝐵(𝑥+i 𝜀) = 𝐵(𝑥)+𝐵′(𝑥)︸︷︷︸

>0

i 𝜀 ≈ 𝐵(𝑥)+i 𝜀.

11 Here are more details: Evaluating equation (3.39) at 𝑥 ± i 𝜀 and looking at the square root, we can Taylor-expand
1 + 4𝑚1𝑚2

𝑥±i 𝜀 ≈ 1 + 4𝑚1𝑚2
𝑥 ∓ i 𝜀 4𝑚1𝑚2

𝑥
2 . This shows that, with the physics convention, the square root will change sign since

its argument is once slightly below and once slightly above the positive real axis, which means that the whole bracket
will become negative changing the sign of the 𝑥 ± i 𝜀 in front of it as well. Thus, we flip the imaginary part inside the
logarithm resulting in a flipped imaginary part outside. The square root inside of 𝐴(𝑠) will also flip sign when changing
from 𝑠 + i 𝜀 to 𝑠 − i 𝜀, therefore, we end up with the same result as for the Mathematica convention.
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3.3 Breit-Wigner Model

Figure 3.9: Plotted are real part (orange) and imaginary part (blue) of the Chew-Mandelstam function (left),
the Chew-Mandelstam phase space (middle left), the two-body phase space (middle right), and the difference
of the last two (right). All plots describe the decay 𝐾∗0 (892) → K+𝜋− with Γ̃K∗ = 0.1 GeV using the physics
convention.

that the logarithm flips its sign. This sign flip will compensate the sign flip of the square root inside of
𝐴(𝑠), leaving the whole function unchanged. As a result, the branch cut extending from the pseudo
threshold will not be present for the Chew-Mandelstam function.
The final square-root branch cut that one could investigate, is the one for 𝑠pth < 𝑠 < 𝑠thr for the
Mathematica convention. Here we can define 𝑧 := 𝑠thr − 𝑠 > 0, where the other limit of 𝑠 yields the
requirement 𝑧 < 𝑠thr − 𝑠pth = 2𝑚1𝑚2. Once again, one expresses 𝐵(𝑧) in a similar fashion as before
and can show that the branch cut of 𝐴(𝑠) will be compensated by the logarithm.
With this, we can fully understand why the Chew-Mandelstam BW in Figure B.1 does not change for

the two conventions. Figure 3.9 shows the Chew-Mandelstam function (left), the Chew-Mandelstam
phase space according to equation (3.40) (middle left), the normal two-body phase space (middle
right) and the difference between the two plots in the middle (right), using the physics convention
for all of them. The last column shows that the real part of the Chew-Mandelstam phase space is,
above threshold, indeed equal to the real part of the two-body phase space. This means that one can
continue to use the simpler two-body phase space if one is only interested in this region on the real
axis. However, if one needs to analytically continue the phase space into the complex plane or even
integrate, one should always use the Chew-Mandelstam phase space, since its complex structure is
simpler and does not have unphysical features, like the pole at 𝑠 = 0 and the pseudo-threshold branch
cut.
All this allows us to perform the following replacement in equations (3.34) and (3.37):

Φ(𝑠, 𝑚2
1, 𝑚

2
2) → ΦCM(𝑠, 𝑚

2
1, 𝑚

2
2) := 2i ·

(
Re

[
CM(𝑀2

, 𝑚
2
1, 𝑚

2
2)

]
− CM(𝑠, 𝑚2

1, 𝑚
2
2)

)
. (3.40)

Like this we still ensure that ΦCM(𝑀
2
, 𝑚

2
1, 𝑚

2
2) = Φ(𝑀2

, 𝑚
2
1, 𝑚

2
2) and, thus, Γ(𝑠 = 𝑀

2) = Γ0. We will
call a BWM with such a replacement a Chew-Mandelstam BW.
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

This concludes the segment on the BWMs. How the complex structures of the previous models
change if we take the invariant mass of the two-body system 𝑀 =

√
𝑠 as an argument, will be discussed

briefly in appendix B.1. This model is suited well as long as we are dealing with isolated resonances.
As soon as this is not the case anymore and we have to start adding BWs for the different resonances,
we will violate unitarity and, therefore, it might be better to search for a different model like the
𝑲-matrix approach mentioned in section 3.1, where unitarity is fulfilled by construction.

3.4 Partial-Wave Decomposition

We have introduced models to describe the behavior of resonances as a function of the invariant mass
of the system of their corresponding decay particles. However, before one can start to fit BWMs or
other amplitude models to the data, one has to disentangle resonances with different QNs. So let us
take a step back and have a look at the PWD that can help with this. As a first introduction to the idea,
we start with the simplest example possible.

Simple Example

The simplest case is 2→ 2 scattering of two scalar particles without intrinsic spin, which – according
to equation (3.13) – gives us two independent variables that fully describe the process. We can
choose the Mandelstam variables 𝑠 := (𝑝1 + 𝑝2)

2 and 𝑡 := (𝑝1 − 𝑝3)
2. For even more simplicity, we

assume equal masses 𝑚𝑖 ≡ 𝑚 of all four participants and a collider experiment, meaning we are in
the Center-of-Momentum System (CMS) with ®𝑝1 = − ®𝑝2, ®𝑝3 = − ®𝑝4, and due to equal masses also�� ®𝑝𝑖 �� ≡ 𝑞, the break-up momentum. This gives 𝑠 = 4𝐸2 and 𝑡 = −2𝑞2(1 − cos 𝜃), with the energy
𝐸𝑖 ≡ 𝐸 of the involved particles and the scattering angle 𝜃 between particles 1 and 3.
The total spin 𝐽𝑋 of the resonance is completely transferred into the orbital angular momentum

𝐿 between the two scalar particles and the full amplitude can be decomposed into the Legendre
polynomials 𝑃𝐿 in the following way

𝐴
(
𝑠, 𝑡 (𝜃)

)
=

∞∑︁
𝐿=0
(2𝐿 + 1)𝑎𝐿 (𝑠)𝑃𝐿 (cos 𝜃), (3.41)

where we split off the known angular dependence of the amplitude giving us access to the mass-
dependent partial-wave amplitudes 𝑎𝐿 that, now, only contain information from resonances with
𝐽𝑋 = 𝐿.
Since the Legendre polynomials form a basis of linearly-independent functions, one can find a

unique separation of the given full amplitude spectrum 𝐴(𝑠, 𝑡). However, this is only true for an infinite
amount of data without experimental uncertainties. Additionally, it is computationally impossible to
extend this sum to infinity. Therefore, one has to define an accepted 𝐿max up to which one performs
this separation. Everything with higher 𝐿 will leak into the other partial-wave amplitudes. Another
problem is that not only scattering through a resonance can occur. Especially with more than two
final-state particles, also other background processes might be present that do not have a specific
angular dependence according to the separation that we are performing. These background events will
also leak into all partial waves.
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3.4 Partial-Wave Decomposition

Coupled-Channel 𝑲-Matrix

Considering the case where not all particles are identical12 in the 2→ 2 scattering, we can couple
different decay channels to each other by using the unitarity relation ofM in equation (3.15). When
inserting 𝐴 from equation (3.41) forM, we can employ orthogonality of the Legendre polynomials to
perform the integration over the angular integrals of the differential phase space. This yields∑︁

𝐿

(2𝐿 + 1)Im
[
𝑎
( 𝑓 𝑖)
𝐿

]
𝑃𝐿 (cos 𝜃) =

∑︁
𝑓
′
Φ
( 𝑓 ′)
2 𝑎

( 𝑓 𝑓 ′)
𝐿

𝑎
(𝑖 𝑓 ′)∗
𝐿

.

By only considering two different intermediate states for the sum over 𝑓 ′, one can combine 𝑎 (𝑖 𝑗)
𝐿
and

Φ
( 𝑗)
2 into matrices to obtain

Im
[
𝑎𝐿

]
= 2𝑎†

𝐿
𝜌𝑎𝐿 , (3.42)

defining the diagonal half-phase-space matrix

𝜌 =

(
𝜌1 0
0 𝜌2

)
:=

1
2

(
Φ
(1)
2 0
0 Φ

(2)
2

)
. (3.43)

This can easily be confirmed by calculating the individual components of the 2 × 2 matrices on both
sides of the equal sign. Using 2i Im

[
𝑎𝐿

]
= 𝑎𝐿 − 𝑎

†
𝐿
in equation (3.42) – and like this reverting

the made assumption on time-reveral symmetry13 by using the dagger instead of just the complex
conjugate, making it valid not only for 2→ 2 scattering – we obtain

(𝑎†
𝐿
)−1 − 𝑎−1

𝐿 = 4i 𝜌 (3.44)

by multiplying from the left with (𝑎†
𝐿
)−1 and from the right with 𝑎−1

𝐿 . If we want to evaluate the
partial-wave amplitude 𝑎𝐿 in the physical regime, we have to do this at 𝑠+ := 𝑠 + i 𝜀. Using the
Schwarz Reflection Principle for the daggered matrix gives 𝑎†

𝐿
(𝑠+) = 𝑎

𝑇
𝐿 (𝑠−). Since the phase space

is basically a square-root function, we will have 𝜌(𝑠+) − 𝜌(𝑠−) = 2𝜌(𝑠) for its discontinuity14 along
the real axis. With this, we can write equation (3.42) in the following way:

𝐾
−1
𝐿 (𝑠+) := 𝑎−1

𝐿 (𝑠+) + 2i 𝜌(𝑠+) = (𝑎
𝑇
𝐿)
−1(𝑠−) + 2i 𝜌(𝑠−) =

(
𝑎
−1
𝐿 (𝑠+) + 2i 𝜌(𝑠+)

)†
, (3.45)

making 𝐾𝐿 (𝑠) a Hermitian matrix
15 with

𝑎𝐿 (𝑠) =
(
𝐾
−1
𝐿 (𝑠) − 2i 𝜌(𝑠)

)−1
=

(
1 − 2i𝐾𝐿 (𝑠)𝜌(𝑠)

)−1
𝐾𝐿 (𝑠). (3.46)

12 This only alters the formulas for 𝑠 and 𝑡, otherwise, the expansion in Legendre polynomials does not change.
13 as it was applied in equation (3.14)
14 We have to calculate the discontinuity of the square root in equation (3.24) for 𝑧 > 0 in the physics convention. For this,
we use sqrt(−𝑧; 𝜋 − 𝜀) instead of √𝑧, evaluating it at −𝑧 since the cut will point in the other direction. This minus sign
will cancel the exponential factor under the square-root symbol and the outer exponential factor yields an extra i on the
left-hand side, resulting in Disc𝑧>0 [sqrt(𝑧; 𝜋 − 𝜀)] = 2

√
𝑟 .

15 In the last step, we make use that square root is following a slightly modified Schwarz Reflection Principle for the physics
convention, equation (3.25).
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For example, by parametrizing a real and symmetric matrix 𝐾𝐿 , we can incorporate several
resonances and background contributions into the scattering amplitude 𝑎𝐿 while still obeying unitarity.
Additionally, this concept allows for the coupling of different decay channels to each other and, thus, a
more general description of the involved physics not only taking information from single channels into
account that might lead to slightly different pole positions for the same resonance in different channels.

So much for the simple case, but before jumping into the more complicated case at COMPASS, let
us review on the basic QNs that define a resonance. Table 3.1 lists formulas to calculate them for
some specific cases.

3.4.1 Quantum Numbers

First of all, we have the QNs that define a resonance 𝑋 in addition to its mass 𝑚𝑋 and its decay width
Γ𝑋 or equivalently its lifetime 𝜏𝑋 = ℏ

Γ𝑋
. Additionally, there are the total spin 𝐽𝑋 of the resonance and

its projection 𝑀𝑋 ∈ {−𝐽𝑋, . . . , 𝐽𝑋} to the polarization axis. A similar QN to the spin is the isospin,
which has the same transformation properties. Up and down quark as well as their antiparticles all
have isospin 1

2 , the strange quark and the other heavy quarks (𝑐, 𝑏, 𝑡) have isospin 0. The isospin
projection on the third axis 𝐼3 is + 1

2 for 𝑢 and 𝑑, and −
1
2 for 𝑑 and 𝑢̄, and is an additive QN.

Next is the parity QN 𝑃, which is the eigenvalue of the wave function under total space inversion.
The 𝐶-parity or charge conjugation turns every particle in its antiparticle. While elementary fermions
such as quarks and (charged) leptons will always change their identity and, therefore, cannot be
eigenstates of this operation, a pair of a quark and its own antiquark, such as the 𝜋0, can have 𝐶 as a
good QN. An extension to the charged partners of the corresponding isospin multiplet, e.g. the 𝜋± in
case of the 𝜋0, is the 𝐺-parity, which combines 𝐶 with a rotation in isospin space. It can be calculated
via 𝐺 = 𝐶 (−1)𝐼 , where 𝐼 is the total isospin of the particle.
By using a specific basis for the parametrization of the decay amplitude, the reflectivity basis, one

can introduce the reflectivity number 𝜖 = ±1 which separates positive and negative spin projections
resulting only in positive 𝑀 𝜖 ∈ {1±, . . . , 𝐽±𝑋}. The case 𝑀 = 0 is special as we will either have only
𝑀
𝜖
= 0+ if 𝜖𝑃(−1)𝐽 = 1, or 𝑀 𝜖

= 0− if 𝜖𝑃(−1)𝐽 = −1. This number is also the eigenvalue of
reflections on the production plane and in the high-energy limit it is equal to the naturality of the
exchange particle in a 2→ 2 scattering ([34], section 2.3). The naturality is +1 for scalars 𝐽𝑃 = 0+,
vectors 𝐽𝑃 = 1−, tensors 𝐽𝑃 = 2+ and so on, and −1 for pseudoscalars 𝐽𝑃 = 0−, pseudo-vectors
𝐽
𝑃
= 1+, pseudo-tensors 𝐽𝑃 = 2−. This means the naturality – and with this also the reflectivity –

can be written as 𝜖 = 𝑃𝐼𝑅 (−1)𝐽𝐼𝑅 with the QNs of the exchange Reggeon 𝐼𝑅. It allows to incorporate
parity conservation into the scattering amplitude, see section 2.2 of [34].
In general, the allowed total spin 𝐽 of the resonance depends on the orbital angular momentum 𝐿

between the decay products and the spins of the daughter particles. In this thesis, we are experimentally
dealing with the three-body final states 𝜋−𝜋+𝜋− and 𝜋−K0

S K0
S which consist both of only pseudoscalar

particles with QNs 𝐽𝑃 = 0−. Combining 𝜋−𝜋+, 𝜋−K0
S or K

0
S K0

S to intermediate two-body resonances 𝜉,
called isobars, this isobar-spin 𝑆𝜉 is equal to the orbital angular momentum of their corresponding
decay. The total spin 𝐽𝑋 of the resonance 𝑋 is obtained by combining this isobar-spin with the orbital
angular momentum 𝐿 that appears in the decay of 𝑋 to the isobar 𝜉 and the bachelor particle 𝜁 ,
which is the remaining one of the three final-state particles 𝜁 ∈ {𝜋−,K0

S } that was not part in the
two-body resonance. Such a model with an intermediate two-body resonance is called the isobar
model and is motivated by experimentally seen resonance structures in the corresponding Dalitz plots
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3.4 Partial-Wave Decomposition

Table 3.1: Collection of QNs that are described in the text. Total spin 𝐽, spin projection 𝑀 , isospin 𝐼, isospin
projection 𝐼3, orbital angular momentum 𝐿, intrinsic spin 𝑆, parity 𝑃, charge conjugation 𝐶, and 𝐺-parity. The
different rows show systems of particles or decays and list the corresponding values and formulas to calculate
the respective QN. “–” means that this QN is not well defined for a general “two-body system” or is not that easy
to calculate in case of “𝑁 × 𝜋”. The possible values for 𝐴 ⊕ 𝐵 are |𝐴 − 𝐵 | , . . . , 𝐴 + 𝐵, in full integer steps, with
their respective strength or likelihood given by the corresponding Clebsch-Gordan coefficient. The combination(
|𝑢𝑢̄⟩ − |𝑑𝑑⟩

)
/
√

2 corresponds to the neutrally charged component of 𝜋𝐽 , 𝜌𝐽 , 𝑎𝐽 and 𝑏𝐽 mesons, [35]. The
isospin-0 component would result in

(
|𝑢𝑢̄⟩ + |𝑑𝑑⟩

)
/
√

2 and would mix with a possible |𝑠𝑠⟩ component.
QN 𝐽 𝐼 𝐼3

𝑢/𝑑/𝑠/𝑢̄/𝑑/𝑠 1
2

1
2 · (1/1/0/1/1/0)

1
2 · (1/−1/0/−1/1/0)

two-body system 𝐿 ⊕ 𝑆1 ⊕ 𝑆2 𝐼1 ⊕ 𝐼2 𝐼3,1 + 𝐼3,2
𝜋
+ + 𝜋− 𝐿 0, 1, (2) 0(
|𝑢𝑢̄⟩ − |𝑑𝑑⟩

)
/
√

2 𝐿 ⊕ (0, 1) 1 0

QN 𝑃 𝐶 𝐺

𝑢/𝑑/𝑠/𝑢̄/𝑑/𝑠 +1/+1/+1/−1/−1/−1 – –
two-body system 𝑃1𝑃2(−1)𝐿 – –
two eigenstates of 𝐶 or 𝐺 𝑃1𝑃2(−1)𝐿 𝐶1𝐶2 𝐺1𝐺2
𝜋
+ + 𝜋− (−1)𝐿 𝑃 +1(
|𝑢𝑢̄⟩ − |𝑑𝑑⟩

)
/
√

2 (−1)𝐿+1 (−1)𝐿+𝑆 𝐶 (−1)𝐼

𝑁 × 𝜋 – – (−1)𝑁

(see section 5.3.3 for examples) and will be discussed in the section 3.4.3.
So far, the label for a decay chain would be 𝐼𝐺 (𝐽𝑃𝐶)𝑀 𝜀

𝜉𝜁 𝐿, which incorporates all QNs of the
isobar into its name. We will simplify it further in section 3.4.3, once we discussed a few more details
on the scattering process.

3.4.2 Differential Cross Section of Diffractive Scattering at COMPASS

At COMPASS, we are interested in diffractive scattering via Pomeron exchange, see Figure 3.10(a).
The Pomeron can be interpreted as a gluon ladder and is the dominant exchange “particle” for 𝑡-channel
scattering with high beam energies. Here, the beam particle 𝑏 interacts with the target 𝑡 and gets
excited into some resonance 𝑋 kicking out the target particle creating a recoil 𝑟. The target particle
stays in tact which means that target and recoil are the same particle species. COMPASS used an
unpolarized fixed ℓH2 target, thus, the target and the recoil are protons. In this thesis, we consider
only negative pions for the beam particles although also hadron beams with kaons and (anti)proton
beams are possible. The 2 → 2 scattering happens in the 𝑡-channel and reads 𝑏 + 𝑡 → 𝑋 + 𝑟, i.e.
𝜋
− + 𝑝target → 𝑋 + 𝑝recoil. In a second process, the resonance 𝑋 decays further into an 𝑁-body
final state in general, however, in this thesis we are only dealing with 𝑁 = 3. The first process can
be described by the Mandelstam variables 𝑠0 and 𝑡. Since COMPASS is a fixed-target experiment
with a beam energy 𝐸𝑏 of 191 GeV, the variable 𝑠0 = (𝑝𝑏 + 𝑝𝑡 )

2
= 𝑚

2
𝑏 + 𝑚

2
𝑡 + 2𝐸𝑏𝑚𝑡 ≈ (19 GeV)2

is the same for all events. Instead of the Mandelstam 𝑡, it is more convenient to use the reduced
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four-momentum transfer
𝑡
′ := |𝑡 | − |𝑡 |min. (3.47)

We can calculate it using the CMS kinematics of the 2→ 2 scattering:

|𝑡 | = −𝑡 = 2𝐸𝑏𝐸𝑋 − 𝑚
2
𝑏 − 𝑚

2
𝑋 − 2

�� ®𝑝𝑏�� �� ®𝑝𝑋�� cos 𝜃

|𝑡 |min = 2𝐸𝑏𝐸𝑋 − 𝑚
2
𝑏 − 𝑚

2
𝑋 − 2

�� ®𝑝𝑏�� �� ®𝑝𝑋�� , since 𝜃 = 0 is possible in CMS

𝑡
′

= 2
�� ®𝑝𝑏�� �� ®𝑝𝑋�� (1 − cos 𝜃) =

𝜆
1
2 (𝑠0, 𝑚

2
𝑏, 𝑚

2
𝑡 )𝜆

1
2 (𝑠0, 𝑚

2
𝑋, 𝑚

2
𝑟 )

2𝑠0
(1 − cos 𝜃). (3.48)

One can observe that 𝑡 ′ has only a weak dependence on the mass of the resonance 𝑚𝑋, since the
second 𝜆-function is dominated by the much larger 𝑠0 component. It only drops by roughly 2.5 % from
𝑚𝑋 = 0 GeV to 𝑚𝑋 = 3 GeV. What is also interesting to point out, is the similarity of this expression
for 𝑡 ′ to the one of 𝑡 in the simple example with equal masses at the beginning of this section 3.4.

One ingredient in the expression of the differential cross section d𝜎, equation (3.11), that is

unspecified so far, is the flux factor of equation (3.12). Since 𝐹 = 4
√︃
(𝑝𝑏 · 𝑝𝑡 )

2 − 𝑚2
𝑏𝑚

2
𝑡 is Lorentz-

invariant, its value is the same in every reference frame. However, the calculation in the CMS is the
simplest, since we already know the formulas to calculate the energies and momenta of the involved
particles (cf. equations (A.1) and equation (A.2), respectively). Inserting them and simplifying the
expression yields

𝐹 = 2
�� ®𝑝𝑏��√𝑠0 = 𝜆

1
2 (𝑠0, 𝑚

2
𝑏, 𝑚

2
𝑡 ) ≈ 360 GeV2

. (3.49)

The full reaction is of the type 2→ 3 + 1, so the differential phase space factor is dΦ4. Using the
recursion formula for phase spaces derived in appendix A.1.3, we can rewrite this as

dΦ4(𝑃; 𝑝1, 𝑝2, 𝑝3, 𝑝𝑟 ) =
∫

d𝑚2
𝑋

2𝜋
𝑑Φ3(𝑝𝑋; 𝑝1, 𝑝2, 𝑝3)dΦ2(𝑃; 𝑝𝑋, 𝑝𝑟 ), (3.50)

with 𝑃 = 𝑝𝑏 + 𝑝𝑡 .

By taking the derivative of equation (3.48) with respect to the CMS scattering angle cos 𝜃, yielding
d cos 𝜃 = −d𝑡 ′/(2

�� ®𝑝𝑏�� �� ®𝑝𝑋��), we can express the differential two-body phase space from the initial
2→ 2 reaction in equation (3.50) in terms of 𝑡 ′:

dΦ2(𝑃; 𝑝𝑋, 𝑝𝑟 ) =
1

8𝜋
2
�� ®𝑝𝑋��√
𝑠0

d cos 𝜃d𝜙
4𝜋

=
1

8𝜋
1

2
�� ®𝑝𝑏��√𝑠0

d𝑡 ′, (3.51)

where the minus sign in the substitution is used to correct the integration direction of 𝑡 ′, since it goes
in the opposite direction as the one of cos 𝜃. Additionally, we do not measure the polarization of
the target and the recoil particle, therefore, the squared matrix element is averaged (an additional
factor of 1/2 appears for two possible proton polarizations) and summed over their spin projection,
respectively. This makes the squared matrix element independent of the azimuthal angle 𝜙 of the
resonance 𝑋 (below equation (142) of [20]), which allowed us to take out the integration over d𝜙 in
equation (3.51). Using d𝑚2

𝑋 = 2𝑚𝑋d𝑚𝑋 as well, we can put everything together by inserting this
together with equation (3.51) into equation (3.50). This result, together with equation (3.49) entered
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into equation (3.11), yields

d𝜎 =

averaging︷︸︸︷
1
2

1
2
�� ®𝑝𝑏��√𝑠0︸     ︷︷     ︸
𝐹=

|M|2

d𝑚2
𝑋=︷     ︸︸     ︷

2𝑚𝑋d𝑚𝑋
2𝜋

dΦ3(𝑝𝑋; 𝑝1, 𝑝2, 𝑝3)
1

8𝜋
1

2
�� ®𝑝𝑏��√𝑠0

d𝑡 ′︸               ︷︷               ︸
dΦ2

.

Cleaning things up and pulling all differentials on the left-hand side of the equation results in the
intensity distribution (cf. equations (142) and (143) of [20])

I(𝑡 ′, 𝑚𝑋, 𝜏) :=
d𝑁

d𝑚𝑋d𝑡 ′dΦ3(𝑚𝑋, 𝜏)
∝ d𝜎

d𝑚𝑋d𝑡 ′dΦ3(𝑚𝑋, 𝜏)
=

1
16𝜋2

1
𝜆(𝑠0, 𝑚

2
𝑏, 𝑚

2
𝑡 )
𝑚𝑋

��M(𝑡 ′, 𝑚𝑋, 𝜏)��2
∝𝑚𝑋

��M(𝑡 ′, 𝑚𝑋, 𝜏)��2 , (3.52)

where𝑁 = 𝜎Lint is the number of produced events, given a constant integrated luminosityLint =
∫
Ld𝑡.

𝜏 denotes the independent kinematic variables that parametrize the 3-body phase space.

We already saw that with equation (3.13), we have two independent variables to describe the 2→ 2
production reaction, which we chose as 𝑠0 and 𝑡

′. We omitted the former in the dependence of 𝐼, since
it has the same value for all considered processes. Due to the resonance 𝑋 being off-shell, we have its
mass 𝑚𝑋 as an additional parameter. For the remaining 1→ 3 decay, we have an additional set of
3 · 3 − 4 = 5 independent variables 𝜏 that are needed to fully describe the matrix element. We will
discuss a possible choice for 𝜏 in the next section. This amounts to 8 variables in total, perfectly fitting
the expectations from a 2→ 4 reaction with fully known initial state and all final-state particles on
mass shell according to equation (3.13). To account for the unmeasured luminosity, we will use a
strength parameter for fitting the measured intensity. This will also take care of all proportionality
constants and, therefore, we can omit them here.

Finally, we factor out the production component P of the matrix elementM. It contains all 𝑡 ′
dependence and it is independent of the variables 𝜏.

M(𝑡 ′, 𝑚𝑋, 𝜏) = P(𝑡
′
, 𝑚𝑋) · 𝐴(𝑚𝑋, 𝜏) (3.53)

The remainder 𝐴 is the three-body decay amplitude and we will discuss its construction in the next
section such that it allows us to separate resonances with different QNs from each other. This will also
bring us to the isobar model.

3.4.3 Isobar Model

In this thesis, wewant to study two different decay channels, the 3𝜋-channel 𝜋−+𝑝 → 𝑋
− → 𝜋

−
𝜋
+
𝜋
−+𝑝

and the 𝜋KK-channel 𝜋− + 𝑝 → 𝑋
− → 𝜋

−K0
S K0

S + 𝑝. In both cases we have two identical bosons,
in 3𝜋 we have two 𝜋− and in 𝜋KK we have two K0

S , therefore, the full decay amplitude has to be
symmetric under exchange of these two. This symmetry can be enforced by averaging the amplitude
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with exchanged 4-momenta in the following way:

𝐴
sym
3𝜋

(
𝑝
(1)
𝜋
− , 𝑝

(2)
𝜋
+ , 𝑝

(3)
𝜋
−
)

=
1
√

2

(
𝐴3𝜋

(
𝑝
(1)
𝜋
− , 𝑝

(2)
𝜋
+ , 𝑝

(3)
𝜋
−
)
+ 𝐴3𝜋

(
𝑝
(3)
𝜋
− , 𝑝

(2)
𝜋
+ , 𝑝

(1)
𝜋
−
) )

𝐴
sym
𝜋KK

(
𝑝
(1)
𝜋
− , 𝑝

(2)
K0

S
, 𝑝
(3)
K0

S

)
=

1
√

2

(
𝐴
𝜋KK

(
𝑝
(1)
𝜋
− , 𝑝

(2)
K0

S
, 𝑝
(3)
K0

S

)
+ 𝐴

𝜋KK
(
𝑝
(1)
𝜋
− , 𝑝

(3)
K0

S
, 𝑝
(2)
K0

S

) )
. (3.54)

Such Bose symmetrization can be applied at the end after the full construction of the model, so for the
moment, we do not have to worry about it and will treat all particles as distinct.
Similar to the previously discussed separation of the four-body phase space into a three-body and a

two-body phase space, we can mathematically split the remaining three-body phase space into two
two-body phase spaces with the same recursion formula as derived in appendix A.1.3. As mentioned
before by looking at Dalitz plots for a resonance decaying into three particles, experimentally, one
sees bands of increased intensity appearing in the two-body subsystems that correspond to two-body
resonances, called isobars. So, by applying the phase-space recursion formula, we not only have a
simpler way to calculate the three-body phase space, but it additionally allows us to incorporate these
isobars into the physics model easier, see appendix A.1.4. Such a model is called an isobar model.
While being practical and comparably simple, it comes with the disadvantage of neglecting final-state

interactions, meaning interactions of the final-state particles with each other before being detected in
the experimental setup. A way to incorporate this into the isobar model will be discussed in section 3.6.
Two further issues are the omission of direct three-body decays into the final-state particles as well as
the strong model dependence on the isobar line shapes that have to be put in. While the first point
seems to be of lower importance as data clearly shows a bias towards these isobar decay modes, the
second point was recently addressed successfully by [36] with a so-called freed-isobar PWD. Here,
one not only bins in the three-body invariant mass 𝑚𝑋 and four-momentum transfer 𝑡

′, but also in the
two-body invariant mass of the isobar subsystems 𝑚 𝜉 . However, this is only possible for huge data
sets, for example as they are available for the 𝜋−𝜋+𝜋− final state at COMPASS of ∼ 46 × 106 events.
A visual representation of such an isobar decay can be found in Figure 3.10(b). As discussed in

section 3.4.1, we can label the decay chain with 𝐼𝐺 (𝐽𝑃𝐶)𝑀 𝜀
𝜉𝜁 𝐿. However, since the beam particle

has isospin 𝐼beam = 1 and the exchanged Pomeron is an iso-scalar, also the resonance has to have
isospin 𝐼 = 1. Similarly, also its 𝐺-parity has to be negative as for the beam pion. Thus, the resonance
𝑋 has to have 𝐼𝐺 = 1−, therefore, these QNs are omitted in the notation. The resonance is negatively
charged, therefore, it cannot be an eigenstate of the charge conjugation. But since we know its isospin
and𝐺-parity, we can deduce the𝐶-parity of the corresponding neutral iso-triplet state via𝐶 = 𝐺 (−1)𝐼
(cf. Table 3.1). For us, it will always be positive, however, to allow for easier identification of the
possible resonances, we will still keep it inside the label. The resulting label for the partial waves is
𝐽
𝑃𝐶
𝑀
𝜀
𝜉𝜁 𝐿, with 𝜁 being the remaining final-state particle that is not part of the isobar decay. For

the 3𝜋 decay channel we only have isobars 𝜉𝜋𝜋 in the 𝜋
+
𝜋
− subsystem with 𝜁𝜋𝜋 = 𝜋

−. On the other
hand for the 𝜋KK decay channel, we expect isobars 𝜉

𝜋K in the 𝜋
−K0

S subsystem with 𝜁𝜋K = K0
S and

isobars 𝜉KK in the K0
S K0

S subsystem with 𝜁KK = 𝜋
−.

We will go into more details on the question of which 𝜉
𝜋K and 𝜉KK isobars can appear, when we

discuss the corresponding event selection in section 5.1.2. For the 3𝜋 channel, the total spin 𝐽𝜉 as
well as 𝑃𝜉 and 𝐶𝜉 of the isobar 𝜉𝜋𝜋 are fully determined by the orbital angular momentum 𝑆 between
the two spinless daughter pions, 𝐽𝜉 = 𝑆 and 𝑃𝜉 = 𝐶𝜉 = (−1)𝑆 , cf. Table 3.1. This gives us access to
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𝜋
−

𝑋
−

𝑝 𝑝

𝐼𝑃
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𝑋
𝐽
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𝑀
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𝜁3

𝐿

𝑆

(b)

Figure 3.10: Sketch of diffractive 𝜋− + 𝑝 scattering via Pomeron exchange (left) and the subsequent three-body
decay of a resonance 𝑋 with QNs 𝐽𝑃𝐶𝑀 𝜀 via the isobar model into three pseudoscalars 𝜁 𝑗 (right). 𝐿 and 𝑆
denote the orbital angular momentum between the daughter particles at the corresponding decay vertex.
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Figure 3.11: GJ frame (left) and helicity frame (right) with the definition of the relevant angles for these frames.
Here, the isobar appears in the subsystem of (𝜁2𝜁3). (Figure 5.3 from [33] with modified labels, the source files
were kindly provided by the author).

𝐽
𝑃𝜉𝐶𝜉

𝜉
∈ {0++, 1−−, 2++, 3−−, . . .}. The isospin can be either zero or one, however, the 𝐺-parity has to

be positive due to the decay into two pions. This eliminates the iso-scalar 𝜔𝐽 and the iso-vector 𝑎𝐽
particles, resulting in only 𝜉𝜋𝜋 ∈ { 𝑓even, 𝜌odd} as possible isobars in the 3𝜋 channel.

3.4.4 Decay Amplitudes

A derivation of the decay amplitudes that are used in this thesis, can be found in appendix C of [33].
To understand them, we first have to define two reference frames, the Gottfried-Jackson (GJ) frame
and the isobar helicity frame. A depiction of both frames can be found in Figure 3.11. Let us for
now assume that we have an isobar in the (23) subsystem. But we do not have to constrain ourselves
to this, since we can simply cycle the indices 1 → 2 → 3 → 1 or 1 → 3 → 2 → 1 to obtain the
corresponding reference frames and angles for the other subsystems (31) and (12), respectively.
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

Gottfried-Jackson Frame

The GJ frame is a CMS of the resonance 𝑋 . It is chosen such that the spin projection 𝑀 of the total
spin 𝐽 of the resonance is a good QN. The 𝑧-axis is defined in the direction of the beam after boosting
it into the GJ frame, 𝑧GJ = 𝑝𝑏. One obtains the 𝑦-axis by taking the cross product of the boosted target
with the boosted beam 𝑦̂GJ =

®𝑝𝑡× ®𝑝𝑏
| ®𝑝𝑡× ®𝑝𝑏 | . Finally, the 𝑥-axis is defined by the right-handed Cartesian

coordinate system 𝑥GJ = 𝑦̂GJ × 𝑧GJ. The angles used to describe the particle directions in this frame
are Ω1 = (𝜃1, 𝜙1), being the polar and azimuthal angles, respectively, of the momentum vector of the
isobar in the (23) subsystem ®𝑝23 = ®𝑝2 + ®𝑝3.

Isobar Helicity Frame

The isobar helicity frame is also a CMS, but this time of the isobar, for example in the (23) subsystem.
The 𝑧-axis is defined as the direction of the isobar in the GJ frame before the boost or equivalently as
𝑧𝐻 = −𝑝1 after boosting into the helicity frame. Once more, we define the 𝑦-axis via a cross product,
this time of the boosted momentum of particle 1 and the boosted beam, 𝑦̂𝐻 =

®𝑝1× ®𝑝𝑏
| ®𝑝1× ®𝑝𝑏 | , and again

𝑥𝐻 = 𝑦̂𝐻 × 𝑧𝐻 . In this frame, the spin projection 𝜆 of total spin 𝑆 of the isobar is a well-defined QN.
We choose the angles Ω23 = (𝜃23, 𝜙23) to describe the momenta in this frame, which are the polar and
azimuthal angles, respectively, of ®𝑝2 = − ®𝑝3.

Set of Independent Variables

We still need a set of independent variables 𝜏 of which we will use the previously defined four angles
Ω1 and Ω23. For the last one, let us consider the fact that cos 𝜃23 can be expressed as a function of the
invariant masses of the two-body subsystems as derived in appendix A.4, equation (A.40).
By defining

𝜎𝑖 = (𝑝 𝑗 + 𝑝𝑘)
2
, with cyclic indices (𝑖 𝑗 𝑘) ∈ {(123), (231), (312)} (3.55)

as the squared invariant masse of the respective two-body subsystem ( 𝑗 𝑘), we can easily relate 𝜎2
to the other two squared invariant masses, see equation (A.36), showing that only two of them are
independent variables. Since we can express cos 𝜃23 via the 𝜎𝑖 as well, we see that we can choose, for
example, the angle 𝜃23 instead of 𝜎3 that can be calculated from the angle via

𝜎3 =
1

2𝜎1

(√︁
𝜆1𝜆𝑠1 cos 𝜃23 + (𝑚

2
2 − 𝑚

2
3) (𝑠 − 𝑚

2
1)

)
+ 1

2

(
𝑠 +

∑︁
𝑚

2
𝑖 − 𝜎1

)
, (3.56)

which is obtained by inserting equation (A.36) into equation (A.40) and solving for 𝜎3. Here, we define
𝑠 = 𝑚

2
𝑋 since we can view the reaction as an 𝑠-channel scattering of 𝜋

− + 𝐼𝑃→ 𝑋 → 𝜁1 + 𝜁2 + 𝜁3 and
the resonance mass would correspond to the square root of the corresponding Mandelstam variable,
while 𝑚𝑖 are the masses of the final-state particles 𝜁𝑖 . The factor in front of the cos 𝜃23 is defined using
the Källén function, equation (A.3), evaluated at two specific sets of masses:

𝜆𝑖 := 𝜆(𝜎𝑖 , 𝑚
2
𝑗 , 𝑚

2
𝑘), 𝜆𝑠𝑖 = 𝜆(𝑠, 𝜎𝑖 , 𝑚

2
𝑖 ), (3.57)

with cyclic indices.
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3.4 Partial-Wave Decomposition

So the final set of parameters to describe the full 2→ 4 reaction is (𝑠0, 𝑡
′
, 𝑚𝑋, 𝜎𝑖 ,Ω𝑖 ,Ω 𝑗𝑘︸       ︷︷       ︸

=:𝜏𝑖

) with

cyclic indices for 𝜏𝑖 depending on which isobar-channel ( 𝑗 𝑘) is currently of interest. Since in principle
any set of 𝜏𝑖 can be used as parameters and one can transform them into each other, we will drop the
index 𝑖 and simply use 𝜏, where it does not really matter which one to choose.

Defintion of Angular Functions

To obtain the decay amplitude, we describe the decay of the resonance 𝑋 in the GJ frame and the
decay of the isobar in the corresponding helicity frame. As shown in equation (3.4) of [33], we can
expand the full decay amplitude into different partial waves depending on their QNs 𝑤 = (𝐽, 𝑀, 𝐿, 𝑆)
and the reflectivity 𝜖 :

𝐴
𝜖 (𝑡 ′, 𝑚𝑋, 𝜏) =

∑︁
𝑤

𝐹
𝜖
𝑤 (𝑡
′
, 𝑚𝑋)Ψ

𝜖
𝑤 (𝜏). (3.58)

Since different waves with different reflectivity do not interfere with each other ([20]), we can sum
them up later incoherently on intensity level. Here, we also see that we can factorize the known
angular dependence from the so-far unknown mass dependence. The angular term will be split in
three parts according to the isobar model in the following way

Ψ
𝜖
𝑤 (𝜏) =

3∑︁
𝑖=1

𝐶
(𝑖)
𝐼
𝑍
𝜖
𝑤 (Ω𝑖 ,Ω 𝑗𝑘)ℎ𝐿 (𝑠, 𝜎𝑖) 𝑓𝑆 (𝜎𝑖), (3.59)

cf. equation (3.15) of [33]. Note that in [33] it explicitly only contains two terms, since specifically
there, the 3𝜋 channel is discussed where one does not expect an isobar in the (31) channel with two
𝜋
− as daughters. However in the case of the 𝜋KK channel, isobars can occur in all three subsystems.
Let us start with the coefficient 𝐶 (𝑖)

𝐼
, which is the Clebsch-Gordan coefficient of the isospin coupling

of the resonance to the isobar-bachelor system. Next, the ℎ𝐿 are the Blatt-Weisskopf factors, already
discussed in section 3.3 and explicitly given in appendix A.2. Technically, these factors introduce
some 𝑠 or 𝑚𝑋 dependence, however, since this dependence is known

16, it is factored out from the
mass-dependent terms 𝐹 𝜖𝑤 and omitted from the argument of the Ψ

𝜖
𝑤 . The factor 𝑓𝑆 is the actual isobar

parametrization where, usually, a BWM is used. Finally, the angular function is given by

𝑍
𝜖
𝑤 (Ω𝑖 ,Ω 𝑗𝑘) := √𝑛𝐿𝑛𝑆

∑︁
𝜆

⟨𝐿0, 𝑆𝜆 |𝐽𝜆⟩ 𝜖𝐷𝐽∗𝑀𝜆(Ω𝑖) 𝐷
𝑆∗
𝜆0 (Ω 𝑗𝑘), with 𝑛𝑥 = 2𝑥 + 1 (3.60)

with cyclic indices, cf. equation (3.9) of [33], where 𝜖𝐷𝐽𝑀𝜆(Ω) is the reflectivity representation of the
Wigner-𝐷 functions as detailed in appendix A.3.2, equation (A.27).

3.4.5 Fit Procedure

With equations (3.58), (3.59) and (3.60) we have a complete basis that we could use to decompose the
data into its contributions from different partial waves. For this, one performs a binning of the data in
𝑡
′ and 𝑚𝑋. For each of these (𝑡

′
, 𝑚𝑋)-bins one assumes a constant 𝐹

𝜖
𝑤 (𝑡
′
, 𝑚𝑋) and performs such a

16 or maybe more precise: phenomenologically modeled
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

decomposition. However, to do so, one has to normalize the Ψ𝜖
𝑤 (𝜏) correctly. This normalization

is a free parameter of the model and has to be fixed by the data. Otherwise, fit results of separate
(𝑡 ′, 𝑚𝑋)-bins do not have the correct relative strength.

Normalization

The normalization factor can be extracted from the 𝐹 𝜖𝑤 (𝑡
′
, 𝑚𝑋) and the procedure is derived in detail

in section 5.2.4 of [20]. We will summarize the end result in the following. For this, we first introduce
the integral matrices

𝐼
𝜖

𝑤𝑤
′ (𝑚𝑋) :=

∫
dΦ3(𝜏;𝑚𝑋)Ψ

𝜖
𝑤 (𝜏;𝑚𝑋)Ψ

𝜖 ∗
𝑤
′ (𝜏;𝑚𝑋) (3.61)

between two partial waves 𝑤 and 𝑤′. These integrals can best be calculated by drawing events
distributed according to flat three-body phase space, so-called flat MC, and evaluating the Ψ on these
events. Like this one can also directly and properly include the Bose symmetrization by boosting the
final-state four-vectors of each flat MC event 𝑖 into the corresponding GJ frame and the isobar helicity
frame in order to calculate the variables 𝜏𝑖 of this event. Then, according to equation (3.54), one
switches the two four-vectors of the particles that one wants to symmetrize and repeats the boosting
and the calculation of the new 𝜏𝑖 variables. Finally, the symmetrized integral matrices are given by

𝐼
𝜖

𝑤𝑤
′ (𝑚𝑋) :=

1
2

𝑁
flat
MC∑︁
𝑖

(
Ψ
𝜖
𝑤 (𝜏𝑖;𝑚𝑋) + Ψ

𝜖
𝑤 (𝜏𝑖;𝑚𝑋)

) (
Ψ
𝜖
𝑤 (𝜏𝑖;𝑚𝑋) + Ψ

𝜖
𝑤 (𝜏𝑖;𝑚𝑋)

)∗
. (3.62)

With this, the normalized basis functions read

Ψ
𝜖

𝑤 (𝜏;𝑚𝑋) :=
Ψ
𝜖
𝑤 (𝜏;𝑚𝑋)√︁
𝐼
𝜖
𝑤𝑤 (𝑚𝑋)

, (3.63)

which results in ∫
dΦ3(𝜏;𝑚𝑋)

���Ψ𝜖

𝑤 (𝜏;𝑚𝑋)
���2 = 1

and for the interferences in∫
dΦ3(𝜏;𝑚𝑋)Ψ

𝜖

𝑤 (𝜏;𝑚𝑋)Ψ
𝜖 ∗
𝑤
′ (𝜏;𝑚𝑋) =

𝐼
𝜖

𝑤𝑤
′ (𝑚𝑋)√︁

𝐼
𝜖
𝑤𝑤 (𝑚𝑋)

√︃
𝐼
𝜖

𝑤
′
𝑤
′ (𝑚𝑋)

.

As mentioned before, this normalization is taken from the mass-dependent factor 𝐹 (𝑡 ′, 𝑚𝑋) from
equation (3.58) to keep the full decay amplitude 𝐴𝜖 unchanged. This brings us to the definition of the
transition amplitudes

T 𝜖𝑤 := √𝑚𝑋 · P(𝑡
′
, 𝑚𝑋) · 𝐹

𝜖
𝑤 (𝑡
′
, 𝑚𝑋) ·

√︃
𝐼
𝜖
𝑤𝑤 (𝑚𝑋). (3.64)

They include the 𝑚𝑋 of equation (3.52) pulled into the squared magnitude of the matrix element, as
well as the so far omitted production amplitude P of equation (3.53) that differentiates the matrix
element M of equation (3.52) from the full decay amplitude 𝐴 from equation (3.58) and should
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3.4 Partial-Wave Decomposition

parametrize the 𝑡 ′ and 𝑚𝑋 dependence of the 2→ 2 production reaction.

Spin-Density Matrix

Putting everything together, we can write the intensity from equation (3.52) as17

I(𝑡 ′, 𝑚𝑋, 𝜏) =
∑︁
𝜖=±

�����∑︁
𝑤

T 𝜖𝑤 (𝑡
′
, 𝑚𝑋)Ψ

𝜖

𝑤 (𝜏;𝑚𝑋)
�����2 + ���Tflat(𝑡 ′, 𝑚𝑋)Ψflat(𝑚𝑋)���2 , (3.65)

where we introduced another incoherently added wave that is “flat” in the three-body phase space to
account for events with uncorrelated final-state particles, for example from other background processes.
It is also a good measure for the completeness of the chosen wave set, with a large flat-wave component
indicating the insufficiency of the wave set. Its basis function is

Ψflat(𝑚𝑋) ≡ Ψflat(𝜏;𝑚𝑋) =
1√︁

𝐼flat(𝑚𝑋)
, with 𝐼flat(𝑚𝑋) :=

∫
dΦ3(𝜏;𝑚𝑋).

With this normalization, we can write down the expected number of events per (𝑡 ′, 𝑚𝑋)-bin by
integrating the intensity I over the three-body phase space:

d2
𝑁expected

d𝑚𝑋d𝑡 ′
=

∫
dΦ3(𝜏;𝑚𝑋)I(𝑡

′
, 𝑚𝑋, 𝜏) (3.66)

=
∑︁
𝜖=±

©­­«
∑︁
𝑤

��T 𝜖𝑤 ��2 +∑︁
𝑤

∑︁
𝑤
′
≠𝑤

T 𝜖𝑤 T
𝜖 ∗
𝑤
′

𝐼
𝜖

𝑤𝑤
′√︃

𝐼
𝜖
𝑤𝑤 𝐼

𝜖

𝑤
′
𝑤
′

ª®®¬ +
��Tflat��2 , (3.67)

=
∑︁
𝜖=±

©­­«
𝑁
𝜖
waves∑︁
𝑖=1

𝜌
𝜖
𝑖𝑖 +

𝑁
𝜖
waves∑︁
𝑖=1

𝑁
𝜖
waves∑︁
𝑗=𝑖+1

2Re
[
𝜌
𝜖
𝑖 𝑗

𝐼
𝜖
𝑖 𝑗√︃
𝐼
𝜖
𝑖𝑖 𝐼

𝜖
𝑗 𝑗

]ª®®¬ +
��Tflat��2 (3.68)

where the arguments are omitted for brevity, but they should be clear from the definitions above.
In the last row, we explicitly require a certain sorting and a limitation on the considered number
𝑁
𝜖
waves of partial waves per reflectivity, and we introduced the Hermitian Spin-Density Matrix (SDM)
accordingly via

𝜚
𝜖
𝑖 𝑗 (𝑡
′
, 𝑚𝑋) = T

𝜖
𝑖 (𝑡

′
, 𝑚𝑋)T

𝜖 ∗
𝑗 (𝑡

′
, 𝑚𝑋), 𝜚

𝜖
= ®T 𝜖 ·

(
®T 𝜖

)†
. (3.69)

On its diagonal it has the (phase-space-integrated) intensity of each partial-wave, i.e. the expected
number of events for a certain combination of QNs, and the complex argument of its off-diagonal
elements is the relative phase between partial waves 𝑖 and 𝑗 .

17 All omitted proportionality factors from equation (3.52) can simply be absorbed in the unknown transition amplitudes T ,
therefore we can write “=” instead of “∝”.
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Chung-Trueman Vector and Rank

The vector ®T 𝜖 of transition amplitudes is called Chung-Trueman vector and one can generalize it to a
matrix T 𝜖 of dimension (𝑁 𝜖waves, 𝑅) where each additional column ®T

𝜖 ,𝑟 contains one “zero” more
at the top, such that the resulting SDM has rank 𝑅, see appendix E of [20] for details. This is the
resulting structure of the Chung-Trueman matrix for rank-3 with 5 waves as an example

{T 𝜖 ,𝑟𝑤 } =

©­­­­­­«

T 𝜖 ,11 0 0
T 𝜖 ,12 𝑇

𝜖 ,2
2 0

T 𝜖 ,13 𝑇
𝜖 ,2

3 𝑇
𝜖 ,3

3
T 𝜖 ,14 𝑇

𝜖 ,2
4 𝑇

𝜖 ,3
4

T 𝜖 ,15 𝑇
𝜖 ,2

5 𝑇
𝜖 ,3

5

ª®®®®®®¬
(3.70)

Calculating the SDM from this via equation (3.69) gives

𝜌
𝜖

=

©­­­­­­­­«

���𝑇 𝜖 ,11

���2 𝑇
𝜖 ,1

1 𝑇
𝜖 ,1∗

2 𝑇
𝜖 ,1

1 𝑇
𝜖 ,1∗

3 𝑇
𝜖 ,1

1 𝑇
𝜖 ,1∗

4 𝑇
𝜖 ,1

1 𝑇
𝜖 ,1∗

5

𝑇
𝜖 ,1

2 𝑇
𝜖 ,1∗

1

���𝑇 𝜖 ,12

���2 𝑇
𝜖 ,1

2 𝑇
𝜖 ,1∗

3 𝑇
𝜖 ,1

2 𝑇
𝜖 ,1∗

4 𝑇
𝜖 ,1

2 𝑇
𝜖 ,1∗

5

𝑇
𝜖 ,1

3 𝑇
𝜖 ,1∗

1 𝑇
𝜖 ,1

3 𝑇
𝜖 ,1∗

3

���𝑇 𝜖 ,13

���2 𝑇
𝜖 ,1

3 𝑇
𝜖 ,1∗

4 𝑇
𝜖 ,1

3 𝑇
𝜖 ,1∗

5
...

. . .
. . .

. . .
...

ª®®®®®®®®¬
+

©­­­­­­­«

0 0 0 0 0

0
���𝑇 𝜖 ,22

���2 𝑇
𝜖 ,2

2 𝑇
𝜖 ,2∗

3 𝑇
𝜖 ,2

2 𝑇
𝜖 ,2∗

4 𝑇
𝜖 ,2

2 𝑇
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𝜖 ,3

3 𝑇
𝜖 ,3∗
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. . .
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ª®®®®®¬
, (3.71)

where we see that it can be decomposed into the sum of one matrix per rank with each following
matrix having one line and column of zeroes more than the previous one. It also demonstrates that the
®T 𝜖 ,𝑟 of different ranks do not interfere with each other and due to this, it allows for the incorporation
of additional incoherences into the PWD model that might come from background processes besides
diffractive resonance production.
This generalization introduces many additional (complex) parameters T 𝜖 ,𝑟𝑤 , with a total18 amount

of 𝑁 𝜖waves𝑅 − (𝑅 − 1)𝑅/2, and with this, it delivers a more flexible model. In principle, all of these
parameters are complex, resulting in twice as many real-valued fit parameters, 2𝑁 𝜖waves𝑅 − 𝑅

2 + 𝑅.
However, the global phase is unobservable, therefore, the diagonal19 of the Chung-Trueman matrix is

18 We add another 𝑅 − 1 columns of size 𝑁 𝜖waves. Then, we fix 0 + 1 + ... + (𝑅 − 1) entries to zero, resulting in a subtraction
of (𝑅 − 1)𝑅/2 entries.

19 i.e. the first non-zero element of each column and, thus, one element for each additional incoherent sector
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3.4 Partial-Wave Decomposition

chosen to be real and positive, resulting in 𝑅 real-valued parameters less. In total, this amounts to
2𝑁 𝜖waves𝑅 − 𝑅

2 real-valued parameters.

Extended Log-Likelihood Fit

In order to fit the model for the total intensity in equation (3.68) to the experimental data of the
COMPASS experiment, we start by binning the data in (𝑡 ′, 𝑚𝑋) as already mentioned at the beginning
of this section. Then, we need to find a procedure that allows for event-based fitting, since we need
to evaluate the model on the individual kinematic variables of the events. Also, we need a way to
correct for the detector acceptance 𝛼, which is a measure for the probability that an event inside a
given volume element of the phase space is detected. Such a procedure is the extended log-likelihood
fit, see section 5.2.5 of [20] for a proof of the working principle and more details. In the following, we
give the general idea of the concept.
The probability to measure exactly 𝑁 events follows the Poisson distribution:

𝑃(𝑁; 𝑁pred) =

(
𝑁pred

)𝑁
𝑁!

e−𝑁pred , (3.72)

where
𝑁pred(T

𝜖 ) =
∫

dΦ3(𝜏) 𝛼(𝜏)I(𝜏;T 𝜖 ) (3.73)

is the number of predicted events given the limited detector acceptance 𝛼(𝜏) that provides the
probability that an event with kinematic variables 𝜏 is detected by the experimental setup.
On the other hand, the probability to obtain 𝑁 events with exactly the kinematic variables 𝜏𝑘 as

measured by the experiment – given a certain set of parameters T 𝜖 – will be the product of the
phase-space-integrated intensities normalized by the number of predicted events:

𝑃(𝜏𝑘 ;T
𝜖 ; 𝑁) =

𝑁∏
𝑘=1

Φ3(𝜏𝑘)𝐼 (𝜏𝑘 ;T
𝜖 )

𝑁pred(T
𝜖 )

. (3.74)

The denominator cancels exactly with the factor
(
𝑁pred

)𝑁
if we build the product of equations (3.72)

and (3.74).
Since these numbers will be very small, it is numerically better to take the logarithm of the resulting

expression which also changes from a product over all events to a sum. The logarithm is a monotonous
function and, thus, leaves the position of the maximum invariant. Additionally, computers usually are
used to minimize rather than maximize, therefore, we take the negative logarithm:

− lnLext = �
���HH
HH

ln(𝑁!) + 𝑁pred(T
𝜖 ) −

𝑁∑︁
𝑘=1

ln
[
Φ3(𝜏𝑘)I(𝜏𝑘 ;T

𝜖 )
]
. (3.75)

The first term is equal for all sets of parameters T 𝜖 and, as a consequence, will not change the position
of the minimum allowing us to drop it. The number of predicted events as of equation (3.73) will be
calculated using MC data. For this, one generates flat MC distributed according to three-body phase
space and tracks the generated final-state particles through a virtual detector setup that describes the
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

actual COMPASS experiment as detailed as possible using TGEANT. Afterwards, one simulates the
detector responses and reconstructs the events with CORAL in the same way as one would do it with
RD. In a final step, the events go through the same PHAST event selection as RD. MC events with
kinematic variables 𝜏MC𝑘 that pass this step are called aMC and will be assigned 𝛼

(
𝜏
MC
𝑘

)
= 1. For all

other generated MC events we set 𝛼
(
𝜏
MC
𝑘

)
= 0, which results in an omission from equation (3.73).

However, since the integral matrices 𝐼 𝜖
𝑤𝑤

′ in equation (3.61) – that are needed for the normalization
of the basis functions in equation (3.63) – are calculated without acceptance effects, they can be
calculated numerically using the full MC sample. An execution of this procedure can be seen in
chapter 6.

3.5 Dalitz Plots for the 1++ Sector

The Pomeron 𝐼𝑃 – as the exchange particle of diffractive scattering – has QNs 𝐽𝑃𝐶 = 2++ and, thus,
positive naturality. This means that positive reflectivity 𝜖 = + is expected to be dominant for diffractive
scattering. Additionally for this section, we only consider axial-vector resonances 𝑎1 with QNs
𝐽
𝑃𝐶
𝑀
𝜖
= 1++0+. The reason is that 𝑎0 with 𝐽

𝑃𝐶
= 0++ cannot be produced20 and 𝑎2 with 𝐽

𝑃𝐶
= 2++

can only appear21 with spin projection 𝑀 ≥ 1, which is suppressed. Since no 𝜋(1300) was observed
in the 𝜋−𝜋+𝜋− final state by COMPASS, we can also neglect contributions from 0−+ for low resonance
masses 𝑚𝑋 ⪅ 1.5 GeV. The 𝐽𝑃𝐶 combinations 1−+ and 2−+ as well as 𝐽 > 2 have their ground-state
resonances at masses above 1.6 GeV, which means that the 1++ sector clearly dominates this region.
Since all the final-state particles are spinless, the orbital angular momentum 𝑆 between the isobar

daughters corresponds to the total spin of the isobar. 𝐿 denotes the orbital angular momentum
between the isobar and the bachelor particle. The parity of the three-body system can be calculated
via 𝑃 = 𝑃𝜉 (−1)𝐿+1 = (−1)𝐿+𝑆+1 and since we want positive parity (𝐽𝑃𝐶 = 1++) for our resonance,
𝐿 + 𝑆 has to be odd. We will only consider the two possibilities 𝐿𝑆 = 10 and 𝐿𝑆 = 01 corresponding
to e.g. a [𝜋𝜋]S 𝜋 P-wave and [𝜋𝜋]P 𝜋 S-wave, respectively, in case of the 3𝜋 system. We will do this,
since higher orbital angular momenta in the subsystems yield isobars with higher masses and, thus,
smaller available phase space, making them less likely to occur especially in the low-mass region. To
avoid confusion with the variable 𝑆 for the orbital angular momentum in the decay of the isobar, we
will use spectral notation for its values with upright characters (S, P, D, ...).

3.5.1 Definition of Dalitz Plots

After splitting off the initial 2→ 2 reaction as discussed in section 3.4.2, we remain with a three-body
decay which, for fixed values of 𝑡 ′ and 𝑚𝑋, has two degrees of freedom. This is often depicted in
form of a Dalitz plot and, apart from this context, it has many use-cases such as 𝜔 and 𝜙 decays to
3𝜋 or weak decays of e.g. 𝐷 mesons and Λ𝑐 baryons. A different application for a partial-wave
decomposition is the prediction of such Dalitz plots for specific final-state systems, but let us revise its
definition first.
20 A beam pion with 𝐽𝑃𝐶 = 0−+ and an exchange 𝐼𝑃 with 𝐽𝑃𝐶 = 2++ need orbital angular momentum 𝐿 = 2 to form a
resonance 𝑋− with 𝐽𝑋 = 0. This results in a parity of 𝑃𝑋 = (−1) (+1) (−1)2 = −1.

21 For 𝑀 = 0 and even resonance spin 𝐽, the corresponding Wigner-𝐷 function will vanish for positive reflectivity and
positive parity, cf. equation (A.27). This is another reason, why 0++ resonances cannot contribute, since they can only
have 𝑀 = 0.
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3.5 Dalitz Plots for the 1++ Sector

If we have a resonance22 of mass 𝑚𝑋 decaying into three particles of masses 𝑚1, 𝑚2 and 𝑚3, then,
one can show that the differential three-body phase space d2

Φ3
d𝜎1d𝜎3

= const is flat (see appendix A.5).
One often also writes 𝜎3 = (𝑝1 + 𝑝2)

2
=: 𝑚2

12 and 𝜎1 = (𝑝2 + 𝑝3)
2
=: 𝑚2

23.
If we plot the measured events in a two-dimensional histogram with these two squared invariant

masses on the 𝑥 and 𝑦 axis, respectively, any deviation from a flat distribution has to come from the
matrix elementM in the relation 𝑁 ∝ 𝜎 ∼ |M|2 Φ3. If the decay of a resonance can occur via an
isobar 𝜉12 in the (12)-subsystem, it would manifest itself as an enhancement in form of a vertical line
at the value 𝑚2

12 = 𝑚
2
𝜉12
. Vice versa, an isobar 𝜉23 in the (23)-subsystem would appear as a horizontal

line at the value 𝑚2
23 = 𝑚

2
𝜉23
.

The third combination 𝑚2
13 = (𝑝1 + 𝑝3)

2 could replace any of the above as a possible axis for the
Dalitz plot and isobars 𝜉13 in the 13-subsystem would appear as enhancements at the value 𝑚2

13 = 𝑚
2
𝜉13
.

Since all three squared invariant masses are related in the following way

𝑚
2
13 + 𝑚

2
12 + 𝑚

2
23 = 𝑚

2
𝑋 + 𝑚

2
1 + 𝑚

2
2 + 𝑚

2
3, (cf. equation (A.36))

we can see isobars in the respectively third subsystem as diagonal lines in the Dalitz plot. For an
isobar mass of 𝑚2

13 = 𝑚
2
𝜉13
, these lines can be parameterized in the following way

𝑚
2
23(𝑚

2
12) = 𝑚

2
𝑋 + 𝑚

2
1 + 𝑚

2
2 + 𝑚

2
3 − 𝑚

2
𝜉13
− 𝑚2

12.

Experimentally, we usually have to allow for a certain window around the resonance mass when
creating the Dalitz plot. Therefore, these diagonal lines will be washed out by the size of this chosen
window, since the position of the diagonal line depends on the allowed values of 𝑚2

𝑋.

3.5.2 Dalitz-Plot-Prediction Method

For fixed values of 𝑡 ′ we can rewrite the partial-wave expansion in equation (3.58) in the following way

𝐴
𝜖 (𝑚𝑋, 𝜏) =

∑︁
𝑤

(
𝐹𝑤 (𝑚𝑋, 𝜎1)𝑍

𝜖
𝑤 (Ω1,Ω23) +𝐹𝑤 (𝑚𝑋, 𝜎2)𝑍

𝜖
𝑤 (Ω2,Ω31) +𝐹𝑤 (𝑚𝑋, 𝜎3)𝑍

𝜖
𝑤 (Ω3,Ω12)

)
.

(3.76)
Here, we collect everything other than 𝑍 𝜖𝑤 from equation (3.59) and combine it with the existing 𝐹𝑤
of equation (3.58), allowing to distinguish them via the extra 𝜎𝑖 dependence

𝐹𝑤 (𝑚𝑋, 𝜎𝑖) = 𝐹𝑤 (𝑚𝑋)𝐶
(𝑖)
𝐼
ℎ𝐿 (𝑠, 𝜎𝑖) 𝑓𝑆 (𝜎𝑖). (3.77)

In the specific case at hand, namely 𝐽𝑃𝐶𝑀 𝜖
= 1++0+, one can easily convince oneself by looking

at the definitions in equations (3.60) and (A.23) that 𝑍+10𝐿𝑆 ≡ 𝑍10𝐿𝑆 , since 𝜖𝑃(−1)𝐽−𝑀 = −1 in
equation (A.27). While, for now, we still keep general 𝐽 and 𝑀 in the equations, we will already drop
the 𝜖 index.
We will omit the contributions from the production amplitude P(𝑡 ′, 𝑚𝑋), since we will only create

Dalitz plots for fixed value of 𝑡 ′. A correct relative strength between different 𝑚𝑋-bins is, therefore,
only given if P(𝑡 ′, 𝑚𝑋) ≡ P(𝑡

′). According to equation (3.53), this makes M equal to the full

22 or any three-body system with fixed invariant mass
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

amplitude 𝐴 from equation (3.76):��M(𝑚𝑋, 𝜏)��2 =
∑︁

𝐽,𝐽
′
,𝑀,𝑀

′
𝐴
𝐽∗
𝑀 (𝑚𝑋, 𝜏) · 𝐴

𝐽
′

𝑀
′ (𝑚𝑋, 𝜏) , (3.78)

where we explicitly write out the sum over 𝑀 and 𝐽 for the full amplitude 𝐴.

In total, we consider the following five similar three-body final-state systems (𝑠), namely (𝜋−𝜋+𝜋−),
(𝜋−𝜋0

𝜋
0), (𝜋−K+K−), (𝜋−K0K0) and (K−𝜋0K0). The reason is that they are all pseudoscalar mesons

and can produce exactly the same combinations of QNs, i.e. resonances. For each of them, we can
calculate the respective differential cross section via

d(𝑠)𝜎
d𝑚𝑋 d𝜎1 d𝜎3

∼ 1
𝑚𝑋

∫ d𝜙1 d cos 𝜃1 d𝜙23

8𝜋2

���(𝑠)M(𝜏)���2 , (3.79)

cf. equation (3.52) together with equation (A.46), which leads to the new set of independent variables
𝜏 = (𝑚𝑋, 𝜃1, 𝜙1, 𝜙23, 𝜎1, 𝜎3). As before, the angles (𝜃1, 𝜙1) are the angles of the isobar system (23)
in the GJ frame and 𝜙23 is the azimuthal angle of particle 2 in the helicity frame of the just mentioned
isobar.

We cannot directly perform the angular integrals in equation (3.79), since each isobar contribution
has a different set of angles. However, equation (A.22) allows us to relate the angles (𝜙𝑖 , 𝜃𝑖 , 𝜙 𝑗𝑘)
from the other two isobar systems to the specific angles chosen for 𝜏 which we can apply to the pairs
of Wigner-𝐷 matrices inside of the angular 𝑍 functions. Factoring out the now common Wigner-𝐷
matrix 𝐷𝐽𝑀,𝜈 (𝜙1, 𝜃1, 𝜙23) yields

(𝑠)
𝐴
𝐽
𝑀 (𝜏) =

∑︁
𝜈

𝐷
𝐽
𝑀,𝜈 (𝜙1, 𝜃1, 𝜙23)

∑︁
𝑆

(𝑠)
𝐴
𝐽
𝑆𝜈 (𝜏) , (3.80)

where we introduce the remainder 𝜏 = (𝑚𝑋, 𝜎1, 𝜎3) together with the sum over the angular momentum
𝑆 in the isobar decay and

(𝑠)
𝐴
𝐽
𝑆𝜈 (𝜏) =

√
𝑛𝐽𝑛𝑆

∑︁
𝜆

[
(𝑠)
𝐹
𝐽
𝑆𝜆(𝜎1)

=𝛿𝜈𝜆︷       ︸︸       ︷
𝑑
𝐽
𝜈,𝜆(𝜃

∗
1(1) ) 𝑑

𝑆
𝜆,0(𝜃23) +

(𝑠)
𝐹
𝐽
𝑆𝜆(𝜎2)𝑑

𝐽
𝜈,𝜆(𝜃

∗
2(1) ) 𝑑

𝑆
𝜆,0(𝜃31)

+ (𝑠)𝐹𝐽𝑆𝜆(𝜎3)𝑑
𝐽
𝜈,𝜆(𝜃

∗
3(1) ) 𝑑

𝑆
𝜆,0(𝜃12)

]
. (3.81)

The angle 𝜃∗𝑗 (𝑖) is the angle between particles 𝑗 and 𝑖 in the GJ frame, see equation (A.37) for its
dependence on 𝜏, and we use the abbreviation 𝑛𝑥 = (2𝑥 + 1). The (𝑠)𝐹𝐽𝑆𝜈 are the isobar amplitudes
in the helicity basis for a given final-state system (𝑠), and 𝑑𝐽𝜆1,𝜆2

is the Wigner-𝑑 function. For the
amplitude 𝐴𝐽𝑆𝜈 , the spin of the system is quantized with respect to the direction of the particle 1,
therefore, the trivial angle appears for the first decay chain (𝜃∗1(1) = 0), hence, the Wigner-𝑑 function
can be reduced to a Kronecker-𝛿.
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We can simplify the notation by introducing vectors:

(𝑠)
𝐴
𝐽
𝑆𝜈 (𝜏) =

√
𝑛𝐽𝑛𝑆

∑︁
𝜆

(𝑠)®𝐹𝐽𝑆𝜆(®𝜎) · ®Ω
𝐽𝑆
𝜈𝜆 ( ®𝜃

∗
, ®𝜃) (3.82)

introducing (𝑠)®𝐹𝐽𝑆𝜈 (®𝜎) = {
(𝑠)
𝐹
𝐽
𝑆𝜈 (𝜎𝑖)}𝑖 and

®Ω𝐽𝑆𝜈𝜆 ( ®𝜃
∗
, ®𝜃) = {𝛿𝜈𝜆𝑑

𝑆
𝜈,0(𝜃23), 𝑑

𝐽
𝜈,𝜆(𝜃

∗
2(1) ) 𝑑

𝑆
𝜆,0(𝜃31), 𝑑

𝐽
𝜈,𝜆(𝜃

∗
3(1) ) 𝑑

𝑆
𝜆,0(𝜃12)}

Inserting equation (3.80) for each factor into equation (3.78) and this into equation (3.79)23, we
can use the orthogonality relation for Wigner-𝐷 matrices in equation (A.19) to perform the angular
integral over the product 𝐷𝐽∗𝑀,𝜈 (𝜙1, 𝜃1, 𝜙23)𝐷

𝐽
′

𝑀
′
,𝜈
′ (𝜙1, 𝜃1, 𝜙23) which removes the sums over 𝐽

′, 𝑀 ′

and 𝜈′:
d(𝑠)𝜎

d𝑚𝑋 d𝜎1 d𝜎3
=

1
𝑚𝑋

∑︁
𝐽,𝑀,𝜈

1
𝑛𝐽

∑︁
𝑆,𝑆

′

(𝑠)
𝐴
𝐽∗
𝑆𝜈 (𝜏) ·

(𝑠)
𝐴
𝐽

𝑆
′
𝜈
(𝜏). (3.83)

To enforce parity constraints, we change for the isobar amplitudes from the helicity eigenfunctions to
𝐿𝑆 functions with the following linear transformation given by a set of Clebsch-Gordan coefficients

(𝑠)®𝐹𝐽𝑆𝜆(®𝜎) =
∑︁
𝐿

√︂
𝑛𝐿

𝑛𝐽
⟨𝐿, 0; 𝑆, 𝜆 |𝐽, 𝜆⟩ (𝑠)®𝐹𝐽𝐿,𝑆 (®𝜎). (3.84)

For the rest of this section, we only consider the case mentioned in the introduction of this section 3.5,
specifically 𝐽 = 1 and we will omit the corresponding index everywhere, e.g. 𝐹1

𝐿,𝑆 ≡ 𝐹𝐿,𝑆 . As well,
we will take only 𝑀 = 0 as mentioned before. This brings us to

d(𝑠)𝜎𝐽=1,𝑀=0

d𝑚𝑋 d𝜎1 d𝜎3
=

∑︁
𝜈

�����∑︁
𝑆,𝐿

√︂
𝑛𝑆𝑛𝐿

3

∑︁
𝜆

⟨𝐿, 0; 𝑆, 𝜆 |1, 𝜆⟩ (𝑠)®𝐹𝐿,𝑆 (®𝜎) · ®Ω
𝑆
𝜈𝜆( ®𝜃

∗
, ®𝜃)

�����2 (3.85)

In the considered case with (𝐿𝑆) = (10) or (𝐿𝑆) = (01), we can write 𝐿 = 1−𝑆making the sum over
𝐿 unnecessary and the prefactor √𝑛𝐿𝑛𝑆 will always be

√
3. For 𝑆 = 0 we have ⟨1, 0; 0, 𝜆 |1, 𝜆⟩ = 𝛿𝜆0,

and for 𝑆 = 1 the Clebsch-Gordan coefficient from the transformation is ⟨0, 0; 1, 𝜆 |1, 𝜆⟩ = 1 for every
value of 𝜆. This means, equation (3.85) can be written as

d(𝑠)𝜎𝐽=1,𝑀=0

d𝑚𝑋 d𝜎1 d𝜎3
=

∑︁
𝜈

�����(𝑠)®𝐹1,0(®𝜎) · ®Ω
0
𝜈0( ®𝜃

∗
, ®𝜃) +

∑︁
𝜆

(𝑠)®𝐹0,1(®𝜎) · ®Ω
1
𝜈𝜆( ®𝜃

∗
, ®𝜃)

�����2 (3.86)

Using a specific ordering for the final-state systems (𝑠), we can arrange the different isobar
amplitudes (𝑠)𝐹𝐿,𝑆 in a matrix F𝐿,𝑆 together with their Clebsch-Gordan coefficients from combining
the isospins of the involved particles accordingly, showing which partial waves are relevant in which

23 We omit all constant prefactors since we normalize the Dalitz plots anyways.
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subchannels:

F𝐿,𝑆 = (3.87)(23) (31) (12)
↓ ↓ ↓

©­­­­­­­­­­­­«

ª®®®®®®®®®®®®¬

(√︃
1
3 [𝜋𝜋]

𝐼=0
𝑆 − 1

2 [𝜋𝜋]
𝐼=1
𝑆

)
𝜋 𝐿 0,

(√︃
1
3 [𝜋𝜋]

𝐼=0
𝑆 + 1

2 [𝜋𝜋]
𝐼=1
𝑆

)
𝜋 𝐿 ← (𝜋−𝜋+𝜋−)

−
√︃

1
3 [𝜋𝜋]

𝐼=0
𝑆 𝜋 𝐿 1

2 [𝜋𝜋]
𝐼=1
𝑆 𝜋 𝐿 − 1

2 [𝜋𝜋]
𝐼=1
𝑆 𝜋 𝐿 ← (𝜋−𝜋0

𝜋
0)(√︃

1
2 [KK] 𝐼=0

𝑆 + 1
2 [KK] 𝐼=1

𝑆

)
𝜋 𝐿 0, −

√︃
2
3 [𝜋K] 𝐼=1/2

𝑆
K 𝐿 ← (𝜋−K+K−)(√︃

1
2 [KK] 𝐼=0

𝑆 + 1
2 [KK] 𝐼=1

𝑆

)
𝜋 𝐿 0, −

√︃
2
3 [𝜋K]

𝐼=1/2
𝑆

K 𝐿 ← (𝜋−K0K0)√︃
1
3 [𝜋K] 𝐼=1/2

𝑆
K 𝐿

√︃
1
2 [KK] 𝐼=1

𝑆 𝜋 𝐿 −
√︃

1
3 [K𝜋]

𝐼=1/2
𝑆

𝐾 𝐿 ← (K−𝜋0K0)

Each row corresponds to24 the vector (𝑠)®𝐹𝐿,𝑆 (®𝜎) for the corresponding final-state system (𝑠), which
means that each column will be evaluated on 𝜎1, 𝜎2 or 𝜎3, respectively. Note that we omitted 𝜋

−K0

and 𝜋−K− combinations as well as isospins 𝐼 = 3
2 since they would manifestly involve four-quark

states. Additionally, the order inside the square brackets is as presented to make an identification
of particles and the determination of the corresponding Clebsch-Gordan coefficients easier. Since
the correct isobar couplings are already incorporated into equation (3.87), it will not matter for the
line-shape parametrization. This means for example, we will use the same one for [𝜋K]S and [K𝜋]S,
only adjusting the masses of the involved particles accordingly depending on their charge.

We do not25 expect isobars for [𝜋𝜋] 𝐼=1
S , [𝜋𝜋]

𝐼=0
P , [KK] 𝐼=1

S and [KK] 𝐼=0
P . This makes the isospin

index unambiguous (𝐼 = 𝑆), so we omit it. In addition the first kinematically allowed isobar in [KK]P
would be 𝜌(1450) which is heavier than the considered mass range and will be neglected. This

24 modulo the 𝑚𝑋-dependent three-body-resonance amplitude contribution 𝑅𝜈 (𝑚𝑋) as it is factored out and appears later in
equation (3.90)

25 The 𝐺-parity of the listed isobars has to be positive, since the resonance as well as the bachelor pion both have negative
𝐺-parity. This means the isobars have to fulfill the condition 𝐶 = (−1)𝐼 . For [𝜋𝜋] 𝐼=1

S , we need 𝐶 = − which is already
violated for a (𝜋0

𝜋
0)-pair. For a (𝜋+𝜋−)-pair, the 𝐶-parity is equal to the involved orbital angular momentum. So also

here with 𝐿 = 0, we have a contradiction. For [𝜋𝜋] 𝐼=0
P , we need 𝐶 = + which is contradicted for a (𝜋+𝜋−)-pair since they

would have 𝐶 = − for 𝐿 = 1. It would work for a (𝜋0
𝜋

0)-pair, however here, Bose symmetrization makes odd isobar
spins impossible, compare with section 5.1.3.
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simplifies the matrix F𝐿,𝑆 for specific values of 𝑆:

F1,0 =

(23) (31) (12)
↓ ↓ ↓©­­­­­­­­­­«

ª®®®®®®®®®®¬

√︃
1
3 [𝜋𝜋]S 𝜋 P 0

√︃
1
3 [𝜋𝜋]S 𝜋 P ← (𝜋−𝜋+𝜋−)

−
√︃

1
3 [𝜋𝜋]S 𝜋 P 0 0 ← (𝜋−𝜋0

𝜋
0)√︃

1
2 [KK]S 𝜋 P 0 −

√︃
2
3 [𝜋K]SK P ← (𝜋−K+K−)√︃

1
2 [KK]S 𝜋 P 0 −

√︃
2
3 [𝜋K]S K P ← (𝜋−K0K0)√︃

1
3 [𝜋K]SK P 0 −

√︃
1
3 [K𝜋]S 𝐾 P ← (K−𝜋0K0)

(3.88)

F0,1 =

(23) (31) (12)
↓ ↓ ↓©­­­­­­­­«

ª®®®®®®®®¬

−1
2 [𝜋𝜋]P 𝜋 S 0 1

2 [𝜋𝜋]P 𝜋 S ← (𝜋−𝜋+𝜋−)
0 1

2 [𝜋𝜋]P 𝜋 S − 1
2 [𝜋𝜋]P 𝜋 S ← (𝜋−𝜋0

𝜋
0)

0 0 −
√︃

2
3 [𝜋K]PK S ← (𝜋−K+K−)

0 0 −
√︃

2
3 [𝜋K]P K S ← (𝜋−K0K0)√︃

1
3 [𝜋K]PK S 0 −

√︃
1
3 [K𝜋]P 𝐾 S ← (K−𝜋0K0)

(3.89)

Inserting these matrix expressions for F𝐿,𝑆 into equation (3.86), we see that we can simply perform
a matrix multiplication and directly obtain d𝝈 = {d(𝑠)𝜎} (𝑠) for all final-state systems at once. However,
we have to define a component-wise absolute value | ®𝑥 |⊙ = {

��𝑥𝑖 ��}𝑖:
d𝝈𝐽=1,𝑀=0

d𝑚𝑋 d𝜎1 d𝜎3
=

∑︁
𝜈

��𝑅𝜈 (𝑚𝑋)��2 �����F1,0(®𝜎) · ®Ω
0
𝜈0( ®𝜃

∗
, ®𝜃) +

∑︁
𝜆

F0,1(®𝜎) · ®Ω
1
𝜈𝜆( ®𝜃

∗
, ®𝜃)

�����2
⊙

, (3.90)

where we include the three-body-resonance amplitude 𝑅𝜈 (𝑚𝑋) that can be pulled out of the squared
magnitude since it is independent of ®𝜎 (cf. footnote 24).

As a next step, we have to express the angles ®𝜃∗ and ®𝜃 through the kinematic invariants 𝜎1, 𝜎3 and 𝑠
(see appendix A.4) which requires us to expand ®Ω𝑆𝜈𝜆 to a matrix 𝛀

𝑆
𝜈𝜆 = {(

(𝑠) ®Ω𝑆𝜈𝜆)
T} (𝑠) as well where

we have the vector for each system in the corresponding row. The reason is that the expressions for the
angles contain the final-state-particle masses and, therefore, are different for the individual systems.
This brings us to the final result:

d𝝈𝐽=1,𝑀=0

d𝑚𝑋 d𝜎1 d𝜎3
=

��𝑅𝜈 (𝑚𝑋)��2 ∑︁
𝜈

�����F1,0(®𝜎) ⊙ 𝛀0
𝜈0(®𝜎) +

∑︁
𝜆

F0,1(®𝜎) ⊙ 𝛀1
𝜈𝜆(®𝜎)

�����2
⊙

. (3.91)

where we define a row-wise scalar product for two matrices 𝐴 ⊙ 𝐵 = {∑ 𝑗 𝐴𝑖 𝑗𝐵𝑖 𝑗}𝑖 resulting in a
vector.
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3.5.3 Production of Dalitz Plots

We can use equation (3.91) to calculate Dalitz plots. For this, we choose a fixed value for 𝑚𝑋 and
pick two of the three two-body invariant masses, e.g. 𝜎1 and 𝜎3, on a grid. The remaining two-body
invariant mass can be calculated using relation (A.36). To obtain the correct border of the Dalitz plot,
we can use the Kibble function in equation (A.35), since it is zero on the border and positive inside of
the physical decay region.
We limited ourselves to 𝐽𝑃𝐶 = 1++ and 𝑆 ∈ {0, 1}, therefore, the accessible isobars are limited as

well. Using the notation from equations (3.88) and (3.89), we constrain ourselves to a broad (𝜋𝜋)S
(also known as 𝜎 or 𝑓0(500)) and 𝑓0(980) for the [𝜋𝜋]S component and the 𝜌(770) for the [𝜋𝜋]P,
while due to the higher mass threshold only the 𝑓0(980) will be used for the [KK]S. The [K𝜋]S will be
the (K𝜋)S component (also known as 𝜅 or K

∗
0(700)) and the [K𝜋]P will be modeled using the K∗(892).

Their line shapes are presented in section 6.2.1 and normalized such that the maximum lies at 1.
We have two experimental 𝜋−𝜋+𝜋− Dalitz plots ([31], FIG. 6) that we can compare the predictions

with in order to validate the algorithm, one at 𝑚𝑋 = 1.318 GeV (Figure 3.12(b)) and one at
𝑚𝑋 = 1.672 GeV (Figure 3.13(b)), each with a mass window of ±100 MeV. The strength for each
(𝜋𝜋)-isobar can be estimated by looking at the intensities of the respective partial waves at the given
resonance mass. For the Dalitz plots at 𝑚𝑋 = 1.318 GeV we use the values

���𝐴(𝜋𝜋)S ���2 = 0.16 × 106

(FIG 25(f) of [31]),
���𝐴 𝑓0 (980)

���2 = 1 × 103 (FIG 25(e) of [31]),
��𝐴𝜌��2 = 1.2 × 106 (FIG 14(a) of [31]).

The phase of the 𝜌 is fixed to 𝜙𝜌 = 0, while the phases of the other two isobars can be taken from the
relative phases extracted by the PWD, namely 𝜙 (𝜋𝜋)S = −420° and 𝜙 𝑓0 (980) = 270° ([31]).
In order to take the 𝑚𝑋 window into account that was used for the COMPASS data, one has to

integrate the prediction over all included values. Otherwise the top-right border of the Dalitz plot will
be wrong, since its position – and with this also the size of the physically accessible area – depend
on 𝑚𝑋, see equation (A.36). We perform this integration numerically by calculating the Dalitz plots
in steps of 1 MeV for 𝑚𝑋 ∈ [1.218 GeV, 1.418 GeV] and adding them all up. Finally, we normalize
this integrated prediction to its maximum. The result can be found in Figure 3.12(a). Here, we made
the assumption of a mass-independent production amplitude P(𝑡 ′, 𝑚𝑋) ≡ P(𝑡

′) that we mentioned
already at the beginning, since otherwise the normalization between different 𝑚𝑋 values is not correct.
A bigger problem is that we neglect an 𝑚𝑋 dependence ofM due to the line shape of the three-body
resonance within the integrated resonance mass window of the Dalitz plot, i.e. we set 𝑅𝜈 (𝑚𝑋) = const
in equation (3.91). This latter assumption is the weakest link in the prediction, since for a simple
BWM with constant width (cf. equation (3.27)) of an 𝑎1(1260) resonance26 one can expect a drop
of 15 % in intensity towards the left border of the interval and almost 30 % towards the right border.
Luckily, this can be incorporated easily into the model during the integration by weighting the Dalitz
plots with the intensity of the corresponding resonance model, but for a first proof-of-principle this is
not necessary.
Figure 3.12 shows a very good agreement between the model calculation and the experimental data

despite its simplifications. In both cases, we see a very strong 𝜌(770) band and even the enhancement
towards the top-right of the central maximum is reproduced. Due to the performed integration of the
mass window, also the borders of the Dalitz plot match. This integration also explains the diagonal
band that mimics an isobar in the forbidden (𝜋−𝜋−)-system. The line appears where the Dalitz plot for

26 Using 𝑚𝑎1 (1260) = 1.299 GeV and Γ𝑎1 (1260) = 280 MeV as determined by COMPASS in [37].
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(a) Prediction
(b) COMPASS data, FIG. 6(a) of [31]

Figure 3.12: Comparison between the Dalitz-plot prediction for 𝜋−𝜋+𝜋− (left) integrated over the mass range as
indicated in the plot of the COMPASS data (right) for a resonance mass of 𝑚𝑋 = 1.318 GeV.

the smallest included 𝑚𝑋 = 1.218 GeV would end. From this point on, only higher mass bins can
contribute, which creates a continuous drop in intensity towards the top-right resulting in this diagonal
edge.
To summarize, the proof-of-principle was very successful, especially since the model only considers

resonance QNs 𝐽𝑃𝐶𝑀 𝜖
= 1++0+. There might also be contributions from higher 𝑀, although this

is less likely due to their reduction in production strength. This might also be the reason why the
𝑎2(1320) resonance, which also lies in this window, does not create too much disturbance, since it
can only be produced in an 𝑀 ≥ 1 wave for positive reflectivity as discussed at the beginning of this
section 3.5.
In order to test the limits of this model, we do the same for the Dalitz plots at 𝑚𝑋 = 1.672 GeV

using the values
���𝐴(𝜋𝜋)S ���2 = 0.03 × 106,

���𝐴 𝑓0 (980)

���2 = 4.0 × 103,
��𝐴𝜌��2 = 0.1 × 106, and phases

𝜙 (𝜋𝜋)S = −400° and 𝜙 𝑓0 (980) = 500°, again extracted from the COMPASS PWD in [31]. Similarly,
we sum the calculated Dalitz plots for 𝑚𝑋 ∈ [1.572 GeV, 1.772 GeV] in steps of 1 MeV. We obtain
Figure 3.13, where we seem to overestimate the contribution from the (𝜋𝜋)S isobar indicated by the
local maxima at low 𝑚2

𝜋
+
𝜋
− of the 𝜌-bands. On the other hand, we see a small effect of the 𝑓0(980) at

roughly 𝑚2
𝜋
+
𝜋
− = 1 GeV, which is a bit more enhanced in the COMPASS data. Since we constrain

the model to isobar spins of 𝑆 < 2, we do not see the contributions from the 𝑓2(1270) which makes
the shortcomings of this simplified model and its restrictions to low resonance masses very obvious.
Especially here, other 𝐽𝑃𝐶 than the considered 1++ will contribute, since we are sitting at the mass of
the 𝜋2(1670) with QNs 𝐽𝑃𝐶 = 2−+ (producible in an 𝑀 = 0 wave). This can and will lead to different
isobar fractions and different relative phases and, now, it will be especially important to incorporate
a proper description of the three-body-resonance line shape. One interesting feature that could be
reproduced, is the diagonal line which connects the two maxima created by the 𝑓2(1270) in the
COMPASS data. As before, such a line would hint to an isobar in the (𝜋−𝜋−) subsystem, impossible
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(a) Prediction
(b) COMPASS data, FIG. 6(b) of [31]

Figure 3.13: Comparison between the Dalitz-plot prediction for 𝜋−𝜋+𝜋− (left) integrated over the mass range as
indicated in the plot of the COMPASS data (right) for a resonance mass of 𝑚𝑋 = 1.672 GeV.

for a simple 𝑞𝑞 state. And again, the reason for this line is the intensity drop at the top-right border due
to the integration over the experimental three-body mass window. Due to its clear spatial separation
from the existing isobar lines, it is better visible than it was in Figure 3.12.
As part of the analysis27 of [39], a Dalitz plot for 𝜋−𝜋0

𝜋
0 at 𝑚𝑋 = 1.318 GeV was produced. Using

the same values for the relative strengths and phases as for the low-mass 𝜋−𝜋+𝜋− Dalitz plot, we obtain
Figure 3.14, where we adjust the color scale to be equal to the one of [39] for easier comparison.
Once more, the calculated Dalitz plots are added for 𝑚𝑋 ∈ [1.211 GeV, 1.425 GeV] in steps of 1 MeV.
One slight difference compared to the final state with three charged pions in Figure 3.12(b) is the tilt
in the 𝜌 band at the lower and the left border of the Dalitz plot towards higher squared masses. The
Dalitz-plot calculation also exhibits this feature showing fair agreement in general. However, looking
a bit more closely, we see that the 𝜌 bands appear at slightly higher squared invariant masses and are a
bit less pronounced, which could hint to a difference in the relative phase between interfering 𝜌 and
(𝜋𝜋)S waves. Some difference might also come from the fact that the COMPASS data plot on the
right is not acceptance-corrected, meaning that some regions might be underpopulated due to having
a smaller probability of being detected in the first place. For such a final state with neutral particles,
the acceptance is usually also a lot worse than for a case with only charged particles like the 𝜋−𝜋+𝜋−

final state. The main reason is that the photons from the 𝜋0-decay can be directly detected only in one
detector, the ECAL, while the track of the charged particles is obtained from many small and also more
precise measurements from a whole array of tracking detectors. Additionally, if a photon at these
energies (∼ GeV) interacts with matter, it produces an 𝑒+𝑒−-pair, i.e. it is “gone”. On the other hand,
a charged particle will most likely only perform multiple scattering just leading to a slightly larger
uncertainty on its track definition.
Having seen the power, but also the restrictions that this model brings, we can still use it to plot

27 It is also presented in Figure 5.2 of [38].

56



3.5 Dalitz Plots for the 1++ Sector

0.0 0.5 1.0 1.5

m2
π0π− / GeV2

0.0

0.5

1.0

1.5

m
2 π
−
π
0
/
G
eV

2

π−π0π0

0.2

0.4

0.6

0.8

1.0

In
te
n
si
ty

/
a.
u
.

(a) Prediction (b) COMPASS data, [39]

Figure 3.14: Comparison between the Dalitz-plot prediction for 𝜋−𝜋0
𝜋

0 (left) integrated over the mass range as
indicated in the plot of the COMPASS data (right) for a resonance mass of 𝑚𝑋 = 1.318 GeV.

the other three final states. However, since they are involving kaons, we will slightly increase the
three-body invariant mass to 𝑚𝑋 = 1.41 GeV in order to still have a sufficiently large Dalitz plot.
Regarding the relative strengths, we make the assumption that the ratio between (𝜋𝜋)S and 𝜌(770) is
the same as between (K𝜋)S and K∗(892) (we use the same for both charge configurations 𝐾∗0 and 𝐾∗−
despite the slightly different mass), since in both cases we are dealing with a pseudoscalar meson and
the corresponding vector meson in the meson octets, additionally exhibiting a similar mass difference
of roughly ∼ 200 MeV. But for the 𝑓0(980) production, we cannot simply use the same relative
strength, since it is known that the 𝑓0(980) couples stronger to KK than to 𝜋𝜋. Here, we simply set it
to equal strength as the K∗(892) for a very first look, also setting all relative phases to zero. In the end
all these values are free parameters of the model that have to be determined by experiments.
The resulting distribution can be found in Figure 3.15. As expected, we see a clear K∗(892) band

in the 𝜋−K+ (top left), 𝜋−K0 (top right), K−𝜋0 and 𝜋0K0 (bottom left) squared invariant masses. By
construction it is absent in the 𝜋−K− and 𝜋−K0 systems (no diagonal bands in the top row plots). In
Figure 3.15(a) we can barely see the 𝑓0(980) as a horizontal band right at threshold. In Figure 3.15(b)
this is even harder due to the very slightly higher mass of the neutral kaons and, thus, a slightly higher
threshold for the Dalitz plot.
Since the 𝜋−K0K0 final state is experimentally not observable, we have to somehow change it to the

physical 𝜋−K0
S K0

S final state (or one involving K0
L). If we also allow the third two-body configuration

𝜋
−K0 to form isobars by effectively replacing the K0 by a K0 where it is needed28, we can mimic
𝜋
−K0

S K0
S without changing the discussed model too drastically. The only adjustments are in the fourth

row and second column of the matrices in equations (3.88) and (3.89), entry
(
F𝐿,𝑆

)
4,2. We simply

28 Both K0
S and K0

L consist to 50 % of K0 and K0, therefore, such a replacement makes sense. One should consider this
percentage as well in the overall strength of the final state, but since we normalize the Dalitz plots to their maximum
here, anyways, this is not needed. Also in a K0

S K0
S or K0

LK0
L system, no isobars with odd spin are allowed due to Bose

symmetrization, see section 5.1.3. Fortunately, we did not include an isobar for [K0K0]P.
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Figure 3.15: Predictions for the final states 𝜋−K0K0 (top left), 𝜋−K0K0 (top right) and K−𝜋0K0 (bottom left) at a
fixed resonance mass of 𝑚𝑋 = 1.41 GeV. The plot on the bottom right is an approximation to the 𝜋−K0

S K0
S final

state as discussed in the main text.
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3.6 Partial-Wave Projection

replace the 0 by the entry on the right,
(
F𝐿,𝑆

)
4,3, with flipped sign due to the change from 𝜋

−K0 to
K0
𝜋
− in the Clebsch-Gordan coefficients for the isospin coupling29 from channel (12) (third column)

to channel (31) (second column). The result can be found in Figure 3.15(d). Both K∗(892) bands are
overlapping exactly where the 𝑓0(980) band will be, making a PWD inevitable to disentangle these
contributions in an experiment. We will compare this model calculation with COMPASS data for the
𝜋
−K0

S K0
S final state (Figure 5.36) later in section 5.4.

Keep inmind that, especially in the last case involving kaons, a lot of not fully justified simplifications
entered. This should merely yield as a first look and demonstrate that the model can calculate these
Dalitz plots. If an actual comparison to real data is the goal, one has to estimate or determine the free
model parameters in a more sophisticated manner.

3.6 Partial-Wave Projection

So far we only considered independent final-state systems. The method of partial-wave projections as
introduced in [33] allows us not only to include rescattering within a final-state system (𝑠), but also from
one final-state system to another. In the course of the here presented studies, the derivations of [33]
were generalized from the there mainly discussed 3𝜋 final-state system with equal final-state-particle
masses to a final-state system where all particles might have different masses. For this, we start once
more from equation (3.76). And since we will also mainly focus on 𝐽𝑃𝐶𝑀 𝜖

= 1++0+ QNs later,
the 𝜖 index is omitted. The only used feature of the angular functions is their orthogonality, and
since this relation also holds for 𝑍 𝜖𝑤 (see section A.3.3), the following is also true when using the
reflectivity basis. But one should not sum over 𝜖 , since this sum has to be performed incoherently. The
Partial-wave-projection method in this form only applies for projection to waves with equal reflectivity.
Now, projecting the full amplitude 𝐴(𝑠, 𝜏) from equation (3.76) onto a single partial wave with QNs
𝑤 = (𝐽, 𝑀, 𝐿, 𝑆) in the (𝑖) isobar channel with cyclic indices via the integral

d𝑍 (𝑖)𝑤 :=
dΩ𝑖
4𝜋

dΩ 𝑗𝑘

4𝜋
𝑍
(𝑖)
𝑤
∗
, with 𝑍 (𝑖)𝑤 := 𝑍𝑤 (Ω𝑖 ,Ω 𝑗𝑘) (3.93)

we obtain a single partial-wave amplitude

𝐴𝑤 (𝑠, 𝜎𝑖) =

∫
d𝑍 (𝑖)𝑤 𝐴(𝑠, 𝜏) = 𝐹𝑤 (𝑠, 𝜎𝑖) + 𝐹̂𝑤 (𝑠, 𝜎𝑖), with (3.94)

𝐹̂𝑤 (𝑠, 𝜎𝑖) :=
∫

d𝑍 (𝑖)𝑤
∑︁
𝑤
′

(
𝐹𝑤′ (𝑠, 𝜎𝑗)𝑍

( 𝑗)
𝑤
′ + 𝐹𝑤′ (𝑠, 𝜎𝑘)𝑍

(𝑘)
𝑤
′

)
. (3.95)

Due to orthogonality
∫

d𝑍 (𝑖)𝑤 𝑍
(𝑖)
𝑤
′ = 𝛿𝑤𝑤′ for different QNs 𝑤 and 𝑤

′ as given in equation (A.24), of
isobar channel (𝑖) in equation (3.94) only the 𝐹𝑤 (𝑠, 𝜎𝑖) with the projected QNs 𝑤 remains of the (in
principle infinite) sum of partial waves in equation (3.76). For the angular functions of the other two
isobar channels ( 𝑗) and (𝑘) this orthogonality is not given since the integration happens via different

29 According to the PDG, the formula for an exchange of the involved particles inside a Clebsch-Gordan coefficient is

⟨ 𝑗1𝑚1, 𝑗2𝑚2 |𝐽𝑀⟩ = (−1)𝐽− 𝑗1− 𝑗2 ⟨ 𝑗2𝑚2, 𝑗1𝑚1 |𝐽𝑀⟩ , (3.92)

which gives an extra −1 factor when applied to the here discussed combination of isospins 𝐼 = 1
2 , 𝐼1 = 1 and 𝐼2 = 1

2 .
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Chapter 3 (Re-)Scattering and Partial-Wave Decomposition

angles than the relevant ones for the specific isobar channel. Therefore, we still have the full sum over
all 𝑤′ and we simply summarize the terms from the isobar cross channels into 𝐹̂𝑤 in equation (3.95).
It will still be a function of 𝜎𝑖 though, since the angular integral over d𝑍 (𝑖)𝑤 will integrate out all 𝜎𝑗
and 𝜎𝑘 dependence of 𝑍

( 𝑗)
𝑤
′ and 𝑍 (𝑘)

𝑤
′ , respectively.

Note that we can also introduce contributions from other final-state systems through 𝐹̂ by effectively
performing the projection on the partial-wave sum of the other system. This will become more clear
once we actually calculate the projection integral (cf. equation (A.26)) and apply it to the physics case
of interest in section 4.3.4.

By employing unitarity, [33] derived in equation (4.25) that the discontinuity of the partial-wave
amplitude with respect to 𝜎𝑖, denoted by Disc𝜎𝑖 [𝐴𝑤] (𝑠, 𝜎𝑖), is dependent on the amplitude itself in
the following way

Disc𝜎𝑖 [𝐴𝑤] (𝑠, 𝜎𝑖) = i 𝑓 †
𝑆
(𝜎𝑖)𝜌(𝜎𝑖)𝐴𝑤 (𝑠, 𝜎𝑖),

where 𝑓𝑆 is again the two-body scattering amplitude of the corresponding isobar channel (𝑖) and
𝜌 = 1

2Φ2 is half of the respective two-body phase space, cf. equation (A.8). Inserting equation (3.94)
into this and making the assumption that 𝐹̂𝑤 (𝑠, 𝜎𝑖) does not have a discontinuity in 𝜎𝑖 , we obtain

Disc𝜎𝑖𝐹𝑤 (𝑠, 𝜎𝑖) = i 𝑓 †
𝑆
(𝜎𝑖)𝜌(𝜎𝑖)

(
𝐹𝑤 (𝑠, 𝜎𝑖) + 𝐹̂𝑤 (𝑠, 𝜎𝑖)

)
, (3.96)

which is known as the inhomogeneous Omnès problem [40] and it has the following formal solution
(equation (4.26) of [33])

𝐹𝑤 (𝑠, 𝜎𝑖) = 𝑓𝑆 (𝜎𝑖)
(
𝐶𝑤 (𝑠, 𝜎𝑖) +

1
2𝜋

∫ ∞

(𝑚 𝑗+𝑚𝑘)
2

𝜌(𝜎)𝐹̂𝑤 (𝜎)
𝜎 − 𝜎𝑖

d𝜎

)
, (3.97)

where 𝐶𝑤 (𝑠, 𝜎𝑖) is an entire function in 𝜎𝑖, meaning a function that is holomorphic for all possible
complex values 𝜎𝑖 . Additional assumptions needed for this result are according to [33]

1. 𝑓𝑆 (𝜎𝑖) cannot have a left-hand cut
{ use Chew-Mandelstam BW as detailed in section 3.3.3,

2. 𝐹̂𝑤 (𝑠, 𝜎𝑖) · 𝜎𝑖
𝜎𝑖→∞−→ 0

{ one can perform so-called subtractions (cf. equation (3.22)) if needed,

3. 𝐹𝑤 (𝑠, 𝜎𝑖) as well as 𝑓𝑆 (𝜎𝑖) do not have kinematic singularities
{ see equation (3.99) in the next section 3.6.1 for a method to deal with them.

3.6.1 Dealing with Kinematic Singularities

Previously we mentioned that 𝐹𝑤 can have kinematic singularities, but this would be a problem
for the derivation of equation (3.97). Let us assume that the angular functions 𝑍 (𝑖)𝑤 have kinematic
singularities in the form of 1/𝐾 (𝑠, 𝜎𝑖) with the additional condition that 𝐾

2(𝑠, 𝜎𝑖) does not have a
discontinuity in 𝜎𝑖 .
Looking back at the very beginning, equation (3.76), we have 𝐴(𝑠, 𝜏) ∼ 𝐹𝑤 (𝑠, 𝜎𝑖)𝑍

(𝑖)
𝑤 . But the

full amplitude 𝐴 cannot have kinematic singularities, therefore, 𝐹𝑤 has to cancel the ones of 𝑍
(𝑖)
𝑤 ,
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3.6 Partial-Wave Projection

meaning 𝐹𝑤 (𝑠, 𝜎𝑖) ∼ 𝐾 (𝑠, 𝜎𝑖). This cancellation of singularities will always happen when they
appear together, e.g. for the cross-channel contributions inside of 𝐹̂𝑤 , but this imposes a problem
once we try to separate 𝐹𝑤 and 𝑍

(𝑖)
𝑤 from each other as it happens during the definition of the

partial-wave projected amplitude 𝐴𝑤 (𝑠, 𝜎𝑖) in equation (3.94), where we see that also 𝐴𝑤 inherits
these kinematic singularities from 𝐹𝑤 . But luckily this can be solved quite easily by simply defining
𝐺𝑤 (𝑠, 𝜎𝑖) = 𝐹𝑤 (𝑠, 𝜎𝑖)/𝐾 (𝑠, 𝜎𝑖) and accordingly 𝐺̂𝑤 (𝑠, 𝜎𝑖) = 𝐹̂𝑤 (𝑠, 𝜎𝑖)/𝐾 (𝑠, 𝜎𝑖), and using them
instead of the 𝐹𝑤 and 𝐹̂𝑤 in equation (3.94):

𝐴̃𝑤 (𝑠, 𝜎𝑖) :=
𝐴𝑤 (𝑠, 𝜎𝑖)
𝐾 (𝑠, 𝜎𝑖)

= 𝐺𝑤 (𝑠, 𝜎𝑖) + 𝐺̂𝑤 (𝑠, 𝜎𝑖).

Like this, 𝐴̃𝑤 and 𝐺𝑤 are kinematic-singularity-free in 𝜎𝑖 . However, 𝐺̂𝑤 will have a 𝐾
−2 dependence,

one coming from this substitution and the other one from the 𝑍 (𝑖)𝑤
∗ of the projection integral d𝑍 (𝑖)𝑤 in

the definition30 of 𝐹̂𝑤 , equation (3.95). Here, the additional condition enters that 𝐾
2 does not have a

discontinuity and, thus, 𝐺̂𝑤 will not have one as well, allowing us to reach the corresponding version
of equation (3.96). Solving this equation will result in

𝐺𝑤 (𝑠, 𝜎𝑖) = 𝑓𝑆 (𝜎𝑖)
(
𝐶𝑤 (𝑠, 𝜎𝑖) +

1
2𝜋

∫ ∞

(𝑚 𝑗+𝑚𝑘)
2

𝜌(𝜎′𝑖 )𝐺̂𝑤 (𝜎
′
𝑖 )

𝜎
′
𝑖 − 𝜎𝑖

d𝜎′𝑖

)
. (3.98)

Now, we only have to replace 𝐺𝑤 and 𝐺̂𝑤 back to 𝐹𝑤 and 𝐹̂𝑤 , respectively, resulting in a corrected
formula

𝐹𝑤 (𝑠, 𝜎𝑖) = 𝐾 (𝑠, 𝜎𝑖) 𝑓𝑆 (𝜎𝑖)
(
𝐶𝑤 (𝑠, 𝜎𝑖) +

1
2𝜋

∫ ∞

(𝑚 𝑗+𝑚𝑘)
2

𝜌(𝜎′𝑖 )𝐹̂𝑤 (𝜎
′
𝑖 )/𝐾 (𝜎

′
𝑖 )

𝜎
′
𝑖 − 𝜎𝑖

d𝜎′𝑖

)
. (3.99)

This formula can also be used if no kinematic singularities would be present, since one can simply
set 𝐾 (𝑠, 𝜎𝑖) ≡ 1 which brings us back to equation (3.97). An example for a determination of this
kinematic factor 𝐾 will be discussed in section 4.3.4.

3.6.2 Iteration Procedure

Inspecting equation (3.99), we see that 𝐹𝑤 depends on 𝐹̂𝑤 and while looking at the definition of 𝐹̂𝑤
in equation (3.95), we observe that, in return, it depends on 𝐹𝑤 (of the isobar cross channels). This
means that we have to solve an integral equation in order to actually calculate 𝐹𝑤 .

The zeroth-order approximation is obtained by setting (0)𝐹̂𝑤 ≡ 0 and choosing 𝐶𝑤 (𝑠, 𝜎𝑖) ≡ 𝐶𝑤 (𝑠)
constant in 𝜎𝑖. This allows us to view

(0)
𝐹𝑤 = 𝑓𝑆 (𝜎𝑖)𝐶𝑤 (𝑠) as simply the product of the resonance

propagator 𝐶𝑤 (𝑠) multiplied by the isobar propagator 𝑓𝑆 (𝜎𝑖), the simplest model for a decay via the
isobar model. Having the iteration start 𝑛 = 0 fixed, we can write down the iteration steps 𝑛→ 𝑛 + 1

30 As mentioned before, the kinematic singularities in the products of 𝐹𝑤 · 𝑍𝑤 in the integrand cancel.
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next:

(𝑛+1)
𝐹̂𝑤 (𝑠, 𝜎𝑖) =

∫
d𝑍 (𝑖)𝑤

∑︁
𝑤
′

(
(𝑛)
𝐹𝑤′ (𝑠, 𝜎𝑗)𝑍

( 𝑗)
𝑤
′ + (𝑛)𝐹𝑤′ (𝑠, 𝜎𝑘)𝑍

(𝑘)
𝑤
′

)
, (3.100)

(𝑛+1)
𝐹𝑤 (𝑠, 𝜎𝑖) = 𝐾 (𝑠, 𝜎𝑖) 𝑓𝑆 (𝜎𝑖)

©­­­«𝐶𝑤 (𝑠) +
1

2𝜋

∞∫
(𝑚 𝑗+𝑚𝑘)

2

𝜌(𝜎) (𝑛+1)𝐹̂𝑤 (𝜎)
/
𝐾 (𝑠, 𝜎)

𝜎 − 𝜎𝑖 − i 𝜀
d𝜎

ª®®®¬ .(3.101)
By introducing the i 𝜀 in the denominator of the integral, we ensure that we do not encounter a pole
on the integration path. Its sign convention, i.e. 𝜎𝑖 + i 𝜀, ensures that we stay in the physical regime
slightly above the real axis (also see [22] on additional reasons for the +i 𝜀 prescription than the more
phenomenological one given here).
In principle, this iteration procedure allows for corrections of the simplest model up to arbitrary

order from every final-state to the other as long as they share an isobar. Therefore, it can be applied on
the Dalitz-plot prediction method from section 3.5.2 to incorporate rescattering and cross-channel
effects. An explicit application of this partial-wave projection will be performed in section 4.3.3,
however already after the first iteration, we stop after projecting the 𝜋KK final state onto the 3𝜋 channel.
Higher orders would modify the K∗ parametrization in the triangular loop, however, they are expected
to be small.
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CHAPTER 4

The Curious Case of the 𝒂1(1420)

Already using only a simple Constituent-Quark Model (CQM) and looking at the excitation spectrum
of a 𝑞𝑞′-pair1 yields a huge amount of possible states. Many of these were already found and could
be assigned to these CQM states. However, there are some states still experimentally missing in this
simple picture and some supernumerous states were found, that do not match with the predictions.
The latter might be a bit more interesting, because they directly point to the short-comings of this
simple model.
There are different possibilities to extend this model which enables us to explain more particles,

one of which is the introduction of more than 𝑞𝑞 within a Meson. If we allow for constituent gluons2

(𝑞𝑞𝑔) the resulting particle would be called “hybrid” and if we allow for additional (anti)quarks we
would classify them as tetraquarks (𝑞𝑞𝑞𝑞) or pentaquarks (𝑞𝑞𝑞𝑞𝑞) bound by color-force. The former
would be expected to appear in meson spectroscopy due to its integer spin and baryon number B = 0
and the latter in baryon spectroscopy with half-integer spin and baryon number B = 1. Another option
is a molecule built from two color-neutral mesons or baryons and bound by light-meson exchange,
similar to the deuteron where the biggest contribution to its binding of the constituent proton and
neutron originates from pion-exchange.
While molecules are more likely to appear in the heavy-quark sector due to the stronger binding

potential, some of the light mesons are already discussed as tetraquarks. In addition to new particles
there also exist some kinematic phenomena that can create resonance-like signals.
This chapter will focus on one of the resonance-like signals that does not fit the CQM, the 𝑎1(1420).

Why this is the case will be discussed in the following sections.

4.1 The Signal in 3𝝅 at COMPASS

In 2015 the COMPASS experiment observed a narrow structure with QNs 𝐼𝐺 (𝐽𝑃𝐶) = 1−(1++) in the
decay to 𝑓0(980)𝜋− in a 𝑃-wave, [6]. Being found at a mass of roughly 1.42 GeV and due to its QNs it
was assigned the name 𝑎1(1420). In Figure 4.1 on the left you can see a fit with a simple BWM to the
intensity of this partial wave. Here, the blue line represents the signal contribution from a relativistic
Breit-Wigner, the green line a phenomenological background model and the red line is the coherent

1 For simplicity of the notation I leave away the ′ from now on, but in principle all (anti)quarks could be of different flavor.
2 Or one should rather say that one allows for excitations of the gluonic string that connects the two constituent quarks.
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Figure 4.1: The left plot shows the intensity of the 1++0+ 𝑓0 (980)𝜋 𝑃 wave and on the right you see its interference
with the 1++0+ 𝜌(770)𝜋 𝑆 wave published in [6]. The data points come from a PWD with 88 waves (statistic
uncertainties only). On the left plot, the data of the full 𝑡 ′ range of the analysis is combined, while the right
plot shows three sub-ranges. On the left plot, the full model curve is displayed in red. It is constructed as the
coherent sum of a BWM (blue) together with a non-resonant background (green). The data is grayed out and
the fit lines are dotted outside of the fit region.

sum of both. As we see, we do not only have a signal in the intensity spectrum, but also a very sharp
phase motion in the interference with the 𝐼𝐺 (𝐽𝑃𝐶) = 1−(1++) 𝜌(770)𝜋 𝑆-wave on the right plot, both
of which are usually a very good argument for a resonance. This strong phase motion is also visible
throughout all slices in the 𝑡 ′ range (of which three are displayed here) showing the robustness of the
signal. The next section will deal with possible explanations for such kind of signal.

4.2 Possible Explanations

We need to find explanations for not only the peak in the intensity spectrum, but also for the rapid
phase motion in the relative phase. In the following, several options will be discussed.

4.2.1 New Genuine Resonance

Let us start with the most straight forward one: a narrow intensity peak with rapid phase motion
speaks for the interpretation as a resonance. The problem with this interpretation is that the CQM does
not predict a state here. The ground state with 𝐼𝐺 (𝐽𝑃𝐶) = 1−(1++) is the well-established 𝑎1(1260)
with a width of roughly 300 MeV. This means that the 𝑎1(1420) still lies within one width of the
ground state. In addition the width of the 𝑎1(1420) is actually only half as big with 150 MeV which
would be very unusual for a radial excitation.
The next candidate for such a radial excitation of the 𝑎1(1260) is the 𝑎1(1640). Not only is the mass

difference of ∼ 420 MeV closer to expectations from other resonances, e.g. in the 𝐼𝐺 (𝐽𝑃𝐶) = 1−(2++)
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sector3, but also their width is comparable, the heavier one being 250 MeV wide.
From theory it is expected that radial and orbital excitations lie on straight lines, so-called Regge

trajectories, with either the intrinsic orbital-angular-momentum QN 𝐿 or the radial-excitation QN 𝑛.
A simple derivation of the first dependence 𝐿 ∼ 𝑀2 can be found in appendix C.1.1. In [41], they
derive the mentioned functional dependence as given in equation (C.3), which we can reformulate for
the following as

𝑛 + 𝐿 = slope · 𝑀2 − 1
2
. (4.1)

Since we are interested in 𝑎𝐽 resonances with QNs 𝐽
𝑃𝐶

= 𝐽
++, we need odd orbital angular momentum

due to 𝑃 = (−1)𝐿+1 !
= +1 for a 𝑞𝑞 pair and, therefore, also odd intrinsic spin as follows from

𝐶 = (−1)𝐿+𝑆 !
= +1 with odd 𝐿, cf. Table 3.1. With two spin- 12 particles, odd intrinsic spin means

𝑆 = 1. With this, we can determine 𝐿 of the 𝑎𝐽 resonances. We obtain 𝐿 = 1 for 𝑎0, 𝑎1 and 𝑎2. The
latter one could also be constructed with 𝐿 = 3, however usually, higher orbital angular momenta
have a reduced likelihood. A small admixture of an 𝐿 = 3 component to the 𝑎2 could actually be
responsible for the slightly heavier mass than the 𝑎1 ground state. The 𝑎3 and 𝑎4 involve 𝐿 = 3, while
we need at least 𝐿 = 5 for the 𝑎6.
If we plot the Regge trajectories, one for each total spin 𝐽, we expect to see the lines for the 𝑎0,

𝑎1 and 𝑎2 to be closer together, since they should share a similar offset according to equation (4.1).
Afterwards, we expect a gap before the lines of 𝑎3 and 𝑎4, and another one till the 𝑎6.
All resonances are also listed in Table 4.1 with a proposed assignment for the radial-excitation

QN 𝑛. The 𝑎1(1420) is the signal in question and only 𝑛 = 2 makes sense here, since the ground
state 𝑎1(1260) is very well established. For the heavier 𝑎1 resonances we consider two assignments,
one excluding the 𝑎1(1420) and continuing with 𝑛 = 2 for the 𝑎1(1640) (Table 4.1 and light blue
solid line in Figure 4.2), and one including the 𝑎1(1420) as 𝑛 = 2 and continuing with 𝑛 = 3 for the
𝑎1(1640) (red dotted line in Figure 4.2). Since the masses of the 𝑎2(1950), 𝑎2(1990) and 𝑎2(2030)
all lie within 80 MeV – and they also have a similar decay width – they are grouped together to 𝑛 = 3.
Having experimental uncertainty of 20 to 70 MeV on their mass, makes using three separate states for
this simplified picture unreasonable.
The lightest 𝑎0 resonances are currently discussed as a candidates for tetraquarks [42] and, therefore,

we do not include them in Figure 4.2.
Note that this assignment of the radial-excitation QNs is most likely wrong and by far not the

only possibility. In general, experimental uncertainties, missing undiscovered states and also the
fluctuations in masses where different experiments see these resonances make a final statement on the
assignment of radial-excitation QNs hard if not impossible. A more detail study regarding the Regge
trajectories was performed in [43], showing how well it works, also for other QN combinations than
the here discussed 𝑎𝐽 states.

Let us now have a closer look at the Regge-trajectory plot in Figure 4.2. The lines are a linear fit to
the respective group of the same color. In the legend, one can see the corresponding linear fit function
describing the dependence of 𝑛(𝑀2) for fixed 𝐽 and, thus, also fixed 𝐿.
Resonances with equal 𝐽 are depicted in the same color, while same 𝐿 assignment as discussed

before uses similar colors. All solid-line fits exhibit a slope of ∼ 1 GeV−2, qualitatively agreeing with

3 The ground state 𝑎2 (1320) and the first radial excitation 𝑎2 (1700) have a mass difference of ∼ 380 MeV.
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Table 4.1: Particle masses and their uncertainties were taken from PDG. If statistical and systematic uncertainty
were given, the larger one is shown here. If no official average was stated although there was more than one
experiment, the range of values is listed here. The assignment of the radial-excitation QN 𝑛 is a proposal based
on the expected distance from and the proximity to previous/later states. The corresponding particles are listed
in the column comment with arrows pointing to the other states. The column established shows if they are
included by the PDG in “Particle Listings” under “Light Unflavored Mesons” (✓) or in the section “Other
Mesons” under “Further States” (✗).

resonance 𝑀/GeV 𝐽 𝑛 established comment
𝑎0(980) 0.980 ± 0.020 0 1 ✓ tetraquark candidate, see 4.2.3
𝑎0(1450) 1.474 ± 0.019 0 2 ✓ tetraquark candidate, see 4.2.3
𝑎0(1950) 1.931 ± 0.022 0 3 ✓

𝑎0(2020) 2.025 ± 0.030 0 4 ✗

𝑎1(1260) 1.230 ± 0.040 1 1 ✓

𝑎1(1420) 1.411 ± 0.005 1 2? ✗ resonance-like signal in question
𝑎1(1640) 1.655 ± 0.016 1 2 ✓

𝑎1(1930) 1.930 ± 0.070 1 3 ✗

𝑎1(2095) 2.096 ± 0.131 1 4 ✗

𝑎1(2270) 2.270 ± 0.055 1 5 ✗

𝑎2(1320) 1.318 ± 0.001 2 1 ✓

𝑎2(1700) 1.698 ± 0.044 2 2 ✓

𝑎2(1950) 1.950 ± 0.070 2 3 ✗ close to 𝑎2(1990) ↓ and 𝑎2(2030) ⇓
𝑎2(1990) 2.003 − 2.050 2 3 ✗ close to 𝑎2(1950) ↑ and 𝑎2(2030) ↓
𝑎2(2030) 2.030 ± 0.020 2 3 ✗ close to 𝑎2(1950) ⇑ and 𝑎2(1990) ↑
𝑎2(2175) 2.175 ± 0.040 2 4 ✗

𝑎2(2255) 2.255 ± 0.020 2 5 ✗

𝑎3(1875) 1.874 ± 0.096 3 1 ✗

𝑎3(2030) 2.031 ± 0.012 3 2 ✗

𝑎3(2275) 2.275 ± 0.035 3 3 ✗

𝑎4(1970) 1.967 ± 0.016 4 1 ✓

𝑎4(2255) 2.237 − 2.255 4 2 ✗

𝑎6(2450) 2.450 ± 0.130 6 1 ✗
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Figure 4.2: Plot with Regge trajectories for the 𝑎𝐽 resonances. The relation from equation (4.1) with the
radial-excitation QN 𝑛 is plotted. The lines are a fit to all resonances of the same group, indicated by the same
color. The legend shows the fit function, where the slopes are given in the unit GeV−2. The red dotted line
shows the case where we assume the 𝑎1 (1420) to be an ordinary radial excitation with 𝑛 = 2 and heavier 𝑎1
resonances shown in red with their 𝑛 accordingly increased by 1.

the value of 0.84 GeV−2 as estimated at the end of appendix C.1.1. Also the ordinates of the two
blue 𝐿 = 1 lines and the two green 𝐿 = 3 lines are close to the expectation of −1.5 and −3.5 from
equation (4.1), respectively. The red dotted line on the other hand shows a 40 % larger slope raising
strong doubts to the adjusted assignment of 𝑛.
While we see that these Regge trajectories are not perfect4, we can definitely conclude that seeing the

𝑎1(1420) as the first radial excitation of the 𝑎1(1260) would make matters a lot worse. Additionally,
there would be no direct reason for an ordinary CQM resonance to appear in the 𝑓0(980)𝜋 𝑃-wave,
while being absent in the 𝜌(770)𝜋 𝑆 or the (𝜋𝜋)S𝜋 𝑃 waves as it is the case in the COMPASS data.

4.2.2 K∗K Molecule

Meson molecules are always a possibility when a decay threshold is close by. In the case of the
𝑎1(1420) this would be the K∗K threshold at ∼ 1.39 GeV. Here appears already the first problem with
this interpretation, because usually the mass of a molecule is slightly below the threshold5 which
increases the lifetime of the molecular state due to its inability to decay immediately via this channel.
The reason is that a higher molecule mass 𝑚K∗K > 𝑚K∗ +𝑚K corresponds to a positive binding energy
𝐸bind := 𝑚K∗K − 𝑚K∗ − 𝑚K = +22 MeV using 𝑚K∗K = 𝑚𝑎1 (1420) , so basically no binding at all.
In [44], the hypothesis of a hadronic molecule is compared to a diquark-antidiquark structure

(tetraquark). They state that the former explanation provides a better agreement with the COMPASS
results. However, they also mention that the branching of 𝑎1(1420) → 𝑓0(980)𝜋 is significantly
4 Also by considering the fact that many of these resonances are not yet fully established.
5 Most prominent example is the deuteron as a proton-neutron molecule.
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suppressed in comparison to 𝑎1(1420) → K∗K modes by one order of magnitude. In chapter 6,
section 6.3.1, we compare the partial waves of a resonance with 𝐽𝑃𝐶 = 1++ decaying into K∗(892)K0

S
and into 𝑓0(980)𝜋. We see a strong 𝑎1(1420) signal in the 𝑓0(980)𝜋 wave while there is almost no
intensity at 1.4 GeV for the K∗(892)K0

S wave. This stands in contradiction with the expectations from
a hadronic molecule, making this interpretation unlikely.
Additionally, [44] do not give reasons for the absence of the 𝑎1(1420) → 𝜌𝜋 or 𝑎1(1420) → (𝜋𝜋)S𝜋

decay channels. These decay modes come with a larger phase space than 𝑓0(980)𝜋 since these isobars
are lighter, thus, something would have to prevent these specific decays, which is simply not given in a
molecular description.

4.2.3 Tetraquark

While a meson molecule consists of two color-singlet states that would be bound by meson exchange,
e.g. by pion exchange as for the deuteron, a tetraquark will be bound by color force. [42] introduces
the concept of [𝑞𝑞′] diquarks with two versions, a spin-0 diquark being a color-antitriplet with
antialigned quark spins and a spin-1 diquark being a color-sextuplet with aligned quark spins, both
being a flavor-antitriplet.
As derived by [42] as well as in appendix C.2, combining a spin-0 diquark with a spin-0 antidiquark

results in a scalar tetraquark nonet, and combining a spin-1 diquark with a spin-1 antidiquark yields a
tetraquark nonet as well, however this time with three possible spins 0, 1 or 2.
According to [42], the ground-state scalar tetraquark nonet built by a spin-0 diquark and spin-0

antidiquark can be filled by three 𝑎0(980) mesons, four K∗0(700) mesons also known as 𝜅, the 𝑓0(500)
also known as 𝜎, and finally the 𝑓0(980). While the 𝑎0(980) and the 𝑓0(980) have quite small widths
of less than 100 MeV, 𝜅 and 𝜎 are a lot broader despite their small mass. This can be understood if
we look at the assumed quark content in the diquark-antidiquark picture. 𝑓0(500) and 𝑓0(980) are
assumed to be mixed from the pure diquark-antidiquark states, similar to the 𝑞𝑞 equivalent of 𝜂 and
𝜂
′ that come from the corresponding singlet and octet states. Assuming ideal mixing, one can infer
𝑓0(500) to be made up of [𝑢𝑑] [𝑢̄𝑑] and, thus, being very light while the heavier partner 𝑓0(980)
consists of 1√

2

(
[𝑑𝑠] [𝑑𝑠] + [𝑠𝑢] [𝑠𝑢̄]

)
. On one hand, this can explain the strong coupling of the 𝑓0(980)

to kaons due to its inherent 𝑠𝑠 content. And on the other hand this also can help to understand the
broadness of the 𝑓0(500), since it consists only of 𝑢 and 𝑑 quarks and it is expected that tetraquarks
with heavier quarks are more strongly bound. The K∗0(700) is composed out of [𝑛𝑛′] [𝑛̄𝑠] and its
complex conjugate (c.c.) for different combinations of 𝑛, 𝑛′ ∈ {𝑢, 𝑑} with 𝑛 ≠ 𝑛′, e.g. [𝑑𝑢] [𝑑𝑠] for
the K∗+0 . Having only one strange quark also makes it broader than the heavier particles of the nonet.
Both 𝑓0(980) and 𝑎0(980) have two strange quarks inside resulting in a stronger expected binding and,
therefore, a smaller width.
There would also be a heavier nonet of scaler tetraquarks involving spin-1 (anti)diquarks coupling to

total spin 0, which can be assigned to three 𝑎0(1450) states, four K∗0(1430) mesons and the 𝑓0(1370)
mixing again with the 𝑓0(1500).

For the case of the 𝑎1(1420), the more interesting candidates are, however, the tetraquarks with
total spin 1. Here, [42] showed from considerations of the diquark-antidiquark wave functions that the
expected QNs would be 𝐽𝑃 (𝐶) = 1+(−) , which would narrow it down to 𝐾1, 𝑏1 and ℎ1 mesons. This
would actively render the 𝑎1(1420) impossible to be a tetraquark within this framework.
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But so far, only states with no intrinsic orbital angular momentum were considered. Bringing a
non-vanishing 𝐿 into the mix can certainly open up to other QNs. However, this should come with
increased masses and, therefore, also broader states while the 𝑎1(1420) signal is very narrow compared
to similarly heavy resonances, e.g. the 𝑎1(1260). Additionally, it would introduce a huge amount
of new possible states that are simply not observed, creating more problems than it would actually
solve. And as mentioned before, [44] showed that, actually, the experimental data prefers a molecular
interpretation over the one of a tetraquark, making the tetraquark interpretation even more unlikely.

4.2.4 Unitary Coupled Channel

Another possibility is an interference effect of background processes with the existing resonance
𝑎1(1260). In [45] and [46], Basdevant and Berger investigated the 𝜌(770)𝜋 and 𝑓0(980)𝜋 final states
in a coupled-channel analysis. They showed that one can obtain a peak at the 𝑎1(1420) mass in the
𝑓0(980)𝜋 channel if one incorporates unitarity properly, while combining the 𝑎1(1260) decay with the
so-called Deck process. This process is a 𝑡-channel exchange instead of the production of a resonance,
see Figure 4.15, and it is known for its leakage into almost all partial waves of the 3𝜋 channel as
demonstrated by [47].
However, the argument that speaks against this model as the cause for the 𝑎1(1420), is the fact that

this model produces a phase motion at the ground-state 𝑎1(1260) mass only, but not at 1.4 GeV where
we see it in the data (compare Figure 4.1 with the purple line in Figure 4.12(b), which corresponds to
FIG. 4 of [45]). Another new argument against this interpretation, is the fact that, meanwhile, first
hints of the 𝑎1(1420) signal were observed in 𝜏 decays [8]. If this turns out to be true, it excludes the
interpretation as a dynamic effect of the Deck-like background, since this background is not present
there. Although this effect might not be the actual cause for the 𝑎1(1420) signal, nevertheless, this
study shows the importance of incorporating background processes in a unitary way when fitting
models to mass distributions.

4.2.5 Triangle Singularity

The last possibility, and the one that we will focus on for the rest of this chapter, is a rescattering
effect at the origin of the 𝑎1(1420). Here, starting with the ground-state meson 𝑎1(1260) as a source,
one considers it decaying into K∗K or its c.c. Subsequently, the K∗ will decay into K + 𝜋 and this
K together with theK from the initial decay will meet to rescatter through an 𝑓0(980) isobar into
two pions. If such a rescattering process is kinematically possible with involved particles on mass
shell, Landau showed that this will produce a singularity close to the physical region [48]. Since the
involved process has a diagram in shape of a triangle (see Figure 4.3), such a singularity is called
Triangle Singularity (TS). In this case, it is a logarithmic branch point ([21]) that can create a peaking
structure together with a phase motion mimicking a resonance behavior. It was first proposed as an
explanation by [49], where they also estimated its strength from the involved couplings compared to
the decay 𝑎1(1260) → 𝜌(770)𝜋, finding good agreement with the experimental results. Details on
the calculations can be found in the next section. A fit of an earlier version of this theoretical model to
the COMPASS data was already published in [50].
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Figure 4.3: Triangle diagram with particles (left) and their momenta and masses (right). Arrows indicate the
flow of momentum, and double lines indicate unstable particles.

4.3 Rescattering

There are several ways how to calculate the amplitude of a rescattering process. We will start with
the simplest case, where we assume all particles to be spinless and use Feynman rules with scalar
propagators for all involved internal particle lines. Since the data that we are analyzing, is the result of
a PWD, the contributions from different isobars were already separated from each other. Thus, we
are dealing with only a single isobar decay – meaning 𝑋− → 𝑓0(980)𝜋− – and, therefore, we will
treat the 𝑓0(980) as a quasi-stable particle and set it on mass shell. Its comparably narrow width of
roughly Γ 𝑓0 = 50 MeV allows for this as well, since mathematically a BW becomes a 𝛿-distribution for

vanishing width, BW(𝑠;𝑚, Γ) Γ→0−→ 𝛿(𝑠 − 𝑚2). Also we will simply call it 𝑓0, removing its mass from
the name. To avoid confusions with the other states from the rich [𝜋𝜋]S spectrum, the 𝑓0(500) will be
named 𝜎 and heavier 𝑓0 will keep their mass in the name, e.g. the 𝑓0(1500).
The rescattering process is depicted in Figure 4.3 on the left. It takes the 𝑎1(1260) as a source

which decays into 𝐾∗𝐾̄ . The 𝐾∗ further decays into 𝐾𝜋. Now, the rescattering happens where the 𝐾̄
from the initial decay fuses with the 𝐾 from the second decay to form the 𝑓0 isobar that can finally
decay into two pions, resulting in the observed 3𝜋 final state. This triangle can have two different
charge modes 𝐾∗0K−K+ and 𝐾∗−K0K0 that come with the same Clebsch-Gordan coefficients on the
vertices. Therefore, the overall relative strength for these amplitudes will be equal, only the masses of
the involved particles will change slightly. The Clebsch-Gordan coefficients will be omitted since they
can be absorbed by the strength parameter used during fitting.

4.3.1 Scalar Case

This case was first studied in [51], where the authors also gave ideas on how to incorporate the width
and the spins. Detailed calculations can be found in [26], so we will only discuss the recipe here
and present the results for later comparison. The notation used for this calculation can be found in
Figure 4.3 on the right.
The steps of the calculation are as follows:

1. Construct the matrix elementM consisting of three scalar propagators and an integration over
the momentum inside the triangular loop: MΔ ∼

∫
d4
𝑘
∏3
𝑖=1

1
𝑚

2
𝑖−𝑘

2−i 𝜀

2. Use the Feynman trick to replace 1
𝐴𝐵𝐶

= 2
∭ 1

0
𝛿 (𝑥+𝑦+𝑧−1)
(𝐴𝑥+𝐵𝑦+𝐶𝑧)3

d𝑥 d𝑦 d𝑧

3. Perform a linear substitution 𝐾 = 𝑘 − 𝑦𝑝3 + 𝑧𝑝2 to remove terms linear in 𝑘 .
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4. Change from the Minkowski integral of the four-momentum 𝐾 to an Euclidean integral by
performing a Wick rotation, effectively replacing 𝐾2 → −𝐾2 and d4

𝐾 → i d4
𝐾 .

5. Solve the 𝐾-integral by changing to 4-dimensional spherical coordinates.

6. Solve the 𝑧-integral by using the 𝛿 distribution and write the integrand as 1
𝑠 (𝑦−𝑦+) (𝑦−𝑦−)

, with 𝑦±
as in equation (4.3).

7. Split the product of fractions into a sum of fractions via partial fraction decomposition, leading
to the sum of logarithms after solving the 𝑦-integral.

8. Solve the remaining 𝑥-integral numerically by replacing 𝑠→ 𝑠 + i 𝜀 to be in the physical regime
slightly above the real axis and to avoid possible singularities on the integration path.

The final expressions read as follows:

MΔ ∼ 1
𝑠

∫ 1

0
d𝑥

1
𝑦+ − 𝑦−

[
log

(
1 − 𝑥 − 𝑦+
−𝑦+

)
− log

(
1 − 𝑥 − 𝑦−
−𝑦−

)]
, with (4.2)

𝑦± = 𝐴𝑦 ±
√︃
𝐴

2
𝑦 + 𝐵𝑦 (4.3)

𝐴𝑦 =
(𝑚2

3 − 𝑚
2
2 + 𝑠) − (𝑠 + 𝑚

2
𝜋 − 𝑚

2
𝑓0
)𝑥

2𝑠

𝐵𝑦 =
𝑚

2
3 + (𝑚

2
1 − 𝑚

2
3 − 𝑚

2
𝜋)𝑥 + 𝑚

2
𝜋𝑥

2

𝑠
.

Note that 𝑦± is dependent on 𝑥 and 𝑠 making the final integration highly non-trivial, therefore, we
perform it numerically. However already before, we can extract some interesting information from it,
namely the position of the TS.
For this, we see that the integrand has a pole when 𝑦+ = 𝑦− =: 𝑦𝑠. This happens for two different

values of 𝑥:

𝑥± = 𝐴𝑥 ±
√︃
𝐴

2
𝑥 − 𝐵𝑥 (4.4)

𝐴𝑥 =
2𝑠(𝑚2

1 − 𝑚
2
3 − 𝑚

2
𝜋) − (𝑚

2
3 − 𝑚

2
2 + 𝑠) (𝑚

2
𝑓0
− 𝑠 − 𝑚2

𝜋)

𝜆(𝑠, 𝑚2
𝜋 , 𝑚

2
𝑓0
)

𝐵𝑥 =
𝜆(𝑠, 𝑚2

2, 𝑚
2
3)

𝜆(𝑠, 𝑚2
𝜋 , 𝑚

2
𝑓0
)
.

Now, the TS occurs when these two poles meet in a so-called pinch singularity. This means that for
some specific values of the incoming squared invariant mass 𝑠 we have 𝑥+ = 𝑥− =: 𝑥𝑠. Here, one finds
two points

√
𝑠 = 1.4168 GeV and

√
𝑠 = 1.4699 GeV, of which only the first one fulfills 𝑥𝑠 + 𝑦𝑠 < 1

(and both 𝑥𝑠 and 𝑦𝑠 being positive), which is a requirement coming for the original 𝛿(𝑥 + 𝑦 + 𝑧 − 1).
As a result, we expect some enhancement at 1.4168 GeV coinciding well with the position where the
𝑎1(1420) was found.
From this result we can also infer some information on the type of the TS. In equation (4.2) we

see that we are basically dealing with a first-order pole when viewing the integrand as a function of

71



Chapter 4 The Curious Case of the 𝑎1(1420)

Figure 4.4: Real part (blue), imaginary part (orange) and absolute value (green) of the matrix elementMΔ for
the triangle diagram, calculated using equation (4.2). Taken from [26] (Figure 3.8), with √𝑠1 being equivalent
to
√
𝑠 as mentioned in this work.

𝑥, in a very simplified manner we have something like ∼ 1
𝑥
. Integrating this will result in ∼ log(𝑥),

which has a logarithmic singularity where the integrand has a pole. This means that the TS will be a
logarithmic branch point, at least in the case of only scalar particles. That it really is a logarithmic
branch point also in the physically correct configuration was shown by Gribov (section 2.4.5 of [21]).
The resulting complex amplitude as a function of

√
𝑠 is presented in Figure 4.4. We see some

enhancement at the calculated position of the TS, however, the function is not very smooth. The
reason for this is, that we did not include the finite width of the 𝐾∗ into the calculations. We will see a
method to do this in a mathematically sound way in the next section 4.3.2.

4.3.2 Dispersive Approach

So far we treated everything as scalar particles with infinitesimally small decay width Γ. We will
address now the latter simplification by showing a way to incorporate the width of the unstable 𝐾∗ that
appears inside the triangle loop. This procedure was also already presented in [26], thus once more,
we will only sketch the calculations. The general idea is, to add another loop in the 𝐾∗ propagator to
accommodate for its decay into 𝐾𝜋, as can be seen in Figure 4.5.
The steps to calculate the amplitude of the triangle diagram are:

1. Cut the diagram along the dashed line in Figure 4.5 and write down the matrix elements for the
left and right side of the line, respectively namedMleft andMright.

2. Use a BW with energy-dependent width according to equation (3.34) as the propagator6 in the
scalar propagator (𝑚2

3 − 𝑘
2
3 − i 𝜀)−1 for the 𝐾∗. In principle one would have to use a Flatté

6 This means, we replace 𝜀 = 𝑚3Γ3 (𝑘3).
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Figure 4.5: Triangle diagram as it is used for the dispersive calculation. The dashed line indicates where the
diagram will be cut during the calculation of the discontinuity of the triangle amplitude.

parametrization (cf. equation (3.37)) since the 𝐾∗ has two different decay modes7. But since
their masses are similar and since they have equal Clebsch-Gordon coefficients for the isospin
couplings, we can take the average mass 𝜇𝐾 for the kaons and 𝜇𝜋 for the pions, and the full
decay width of the 𝐾∗ to simplify the expressions.

3. Use the cutting rules developed by Cutkosky [52] and specifically derived for this case in [26]
to write down the formula to calculate the discontinuity of the triangle amplitude via

DiscMΔ ∼ i
∫
MleftM

∗
rightdΦ3,

where we integrate over the phase space of the three cut propagator lines.

4. Replace dΦ3 according to the phase-space recursion formula (see appendix A.1.3) by an integral
over intermediate 𝐾∗ squared invariant mass

∫
d𝑘2

3 and the product of the corresponding two
two-body phase spaces.

5. Calculate the d𝑘2
3 integral inside the expression of the discontinuity numerically.

6. Insert the result into a dispersion relationM(𝑠) = 1
2𝜋i

∫ ∞

𝑠th

DiscM(𝑠′)
𝑠
′ − 𝑠 − i 𝜀

d𝑠′ and calculate the

integral numerically.

The resulting triangle amplitude of the dispersive approach is shown in Figure 4.6. It turns out that
the result is very similar to the case discussed in section 4.3.1 if we replace there 𝑚2

3 → 𝑚
2
3 − i𝑚3Γ3,

showing that this simple way of incorporating a width of a particle is a good approximation.

4.3.3 Application of the Partial-Wave Projection

There is one simplification left that could create some changes in the resulting triangle amplitude,
and this is the proper inclusion of spin and orbital angular momentum. For this, we will employ the
7 The decays 𝐾∗− → K0 + 𝜋− and 𝐾∗− → K− + 𝜋0 exist, or in case of the neutral one, we have 𝐾∗0 → K0 + 𝜋0 and
𝐾
∗0 → K+ + 𝜋−.
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Chapter 4 The Curious Case of the 𝑎1(1420)

Figure 4.6: Real part (blue), imaginary part (orange) and absolute value (green) of the triangle amplitude
calculated using the dispersive approach with a proper inclusion of the finite width of the K∗. Taken from [26]
(Figure 3.12), with √𝑠1 being equivalent to

√
𝑠 as mentioned in this work

partial-wave-projection mechanism introduced in section 3.6. We start with the iteration procedure
from equations (3.100) and (3.101). As mentioned in the text above these equations, we will start the
iteration 𝑛 = 0 by setting (0)𝐹̂𝑤 ≡ 0.
For the function 𝐶𝑤 (𝑠) we use a BWM with energy-dependent width according to equation (3.34)

as it is used as well by COMPASS during mass-dependent fits after the PWD. We give it the name
BW𝑎1
(𝑠).
The two-body scattering amplitude will be the one of the 𝐾∗ in the (12) isobar channel8, see

Figure 4.7(a). We label it with 𝑓𝐾∗ (𝜎3) and use a Chew-Mandelstam BW as introduced in section 3.3.3.
This will make sure that we have the correct complex structure, since every additional branch cut, as
it is present for the normal two-body phase space due to the pseudo threshold, will create problems
during integrations in the complex plane. This wave has the QNs 𝑤′ = (𝐽 ′𝑀 ′𝐿 ′𝑆′) = (1001) and
with this we can write down the expression for 𝐹:

(0)
𝐹(1001) (𝑠, 𝜎3) = 𝑓𝐾∗ (𝜎3)BW𝑎1

(𝑠). (4.5)

Now, this partial wave will be projected onto the 𝑓0𝜋 P wave (see Figure 4.7(b)) where we observe the
𝑎1(1420) signal, neglecting all other possible waves. This reduces the sum over 𝑤′ in equation (3.100)
to only the wave with QNs 𝑤 = (𝐽𝑀𝐿𝑆) = (1010). Since we do not expect to see any contributions
coming from isobars in the 𝜋−𝜋− subsystem, we only consider the term dependent on 𝜎1 and drop the
one with 𝜎2. This gives us the final expression for

(1)
𝐹̂:

(1)
𝐹̂1010(𝑠, 𝜎1) =

∫
d𝑍 (1)(1010)

(0)
𝐹(1001) (𝑠, 𝜎3)𝑍

(3)
(1001) , (4.6)

8 This means the index on the left-hand side of equation (3.100) is 𝑖 = 3 and, therefore, 𝑗 = 1 and 𝑘 = 2.
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−
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+
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𝜋
−

𝑓0

𝜋
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𝜋
−

𝜎1

(c)

Figure 4.7: Diagrams to visualize the partial-wave-projection method. One starts with the partial wave indicated
by diagram 4.7(a) and projects it on the partial wave indicated by diagram 4.7(b). The result is the diagram 4.7(c).

where d𝑍 (𝑖)𝑤 was defined in equation (3.93).
Coming to equation (3.101), we choose 𝐶 (𝑠) ≡ 0 this time, which means that we neglect a direct

production of the 𝑓0𝜋 P wave. The two-body scattering amplitude will be the one of the 𝑓0, where we
stick to the COMPASS convention and use a Flatté parametrization as in equation (3.36) and detailed
in section 6.2.1. However, this choice does not matter at this point, since we will see later that this
factor can be absorbed into a quasi-two-body phase space. This gives us the final expression for 𝐹:

(1)
𝐹(1010) (𝑠, 𝜎1) = 𝐾 (𝑠, 𝜎1) 𝑓 𝑓0 (𝜎1)

1
2𝜋

∫ ∞

4𝑚2
𝜋

𝜌 𝑓0
(𝜎′1)

(1)
𝐹̂(1010) (𝑠, 𝜎

′
1)

/
𝐾 (𝑠, 𝜎′1)

𝜎
′
1 − 𝜎1 − i 𝜀

d𝜎′1. (4.7)

Inserting now equation (4.5) into equation (4.6), and the result of that into equation (4.7), we
see that we can simply pull out the BW𝑎1

(𝑠), since it does not depend on the integration variables.
This shows that we can view the triangle calculation just as a modification of the decay vertex for
𝑎1(1260) → 𝑓0𝜋:

𝐹(1010) (𝑠, 𝜎1) = BW𝑎1
(𝑠) 𝑓 𝑓0 (𝜎1) ·

𝐾 (𝑠, 𝜎1)
2𝜋

∞∫
4𝑚2

𝜋

𝜌 𝑓0
(𝜎′1)

∫
d𝑍 (1)(1010) 𝑓𝐾∗ (𝜎3)𝑍

(3)
(1001)

/
𝐾 (𝑠, 𝜎′1)

𝜎
′
1 − 𝜎1 − i 𝜀

d𝜎′1.

(4.8)
The next step will be the actual calculation of the double integral.
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Chapter 4 The Curious Case of the 𝑎1(1420)

4.3.4 Calculation of the Triangle Amplitude

We have to start with the inner integral of equation (4.8). Some general transformations using properties
of the Wigner-𝐷 functions are performed in appendix A.3.2 and we will apply equation (A.26) to our
case.

𝐵
𝜆𝜆
′

1,10,01 = 1 · ⟨10, 0𝜆 |1𝜆⟩︸        ︷︷        ︸
=𝛿𝜆0

⟨00, 1𝜆′ |1𝜆′⟩︸          ︷︷          ︸
=1

d𝑍 (1)(1010) · 𝑍
(3)
(1001) =

d cos 𝜃23
2

∑︁
𝜆
′
𝑑

0
00(𝜃23)︸   ︷︷   ︸

=1

𝑑
1
0𝜆′ (𝜃3(1) )𝑑

1
𝜆
′0(𝜃12)

=
d cos 𝜃23

2
cos(𝜃3(1) + 𝜃12),

where the last step is obtained by explicitly writing out the sum9 over 𝜆′ ∈ {−1, 0, 1} and inserting
the respective Wigner-𝑑 functions. Now, the remaining angles have to be expressed in terms of 𝜎𝑖 in
order to perform the final integral. The corresponding formulas are derived in appendix A.4.
Looking back at equation (4.8) the projection integral also contained the isobar propagator 𝑓𝐾∗ (𝜎3),

however, this is independent of the three angles that we already integrated out. We have to perform a
substitution of the final angle cos 𝜃23 to 𝜎3 in order to be able to integrate 𝑓𝐾∗ , see equation (A.45).
We get cos(𝜃3(1) + 𝜃12) from equation (A.43), giving us the full inner integral to solve:

𝐹̂(1010) (𝑠, 𝜎1) =
∫

d𝑍 (1)(1010) · 𝑍
(3)
(1001) 𝑓𝐾∗ (𝜎3) =

∫ 𝜎
+
3 (𝑠,𝜎1)

𝜎
−
3 (𝑠,𝜎1)

d𝜎3
𝜎1 ·𝑊 (

√
𝑠,
√
𝜎1,
√
𝜎3) · 𝑓𝐾∗ (𝜎3)(

(
√
𝑠 + √𝜎3)

2 − 𝑚2
3

)
𝜆𝑠1

√︁
𝜆1𝜆3

,

(4.9)
with𝑊 as defined in equation (A.42) and the integration limits given by

𝜎
±
3 (𝑠, 𝜎1) =

1
2

(
𝑠 +

∑︁
𝑚

2
𝑖 − 𝜎1 +

(𝑚2
2 − 𝑚

2
3) (𝑠 − 𝑚

2
1)

𝜎1
±

√︁
𝜆1𝜆𝑠1

𝜎1

)
, (4.10)

which is obtained by inserting the limits cos 𝜃23 = ±1 into equation (3.56).

Kinematic Factor

We have to determine the kinematic factor 𝐾 (𝑠, 𝜎1) that is introduced in section 3.6.1. For this, we
have to think where it actually comes from. Although the argument 𝜎1 might suggest that it comes
from 𝐹(1010) (𝑠, 𝜎1) this is not the case. We have to remove the kinematic factor from the first 𝐹(1001) ,
since this enters in the derivations of the partial-wave projection formula. This means that we have to
determine the part of 𝑍 (3)(1001) that is singular in 𝜎1.

9 From a conceptual point of view such a sum over the product of two Wigner-𝑑 functions – each corresponding to a
specific rotation matrix – is equivalent to the Wigner-𝑑 function corresponding to the product of these rotation matrices,
thus, the sum of their rotation angles.
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4.3 Rescattering

Proceeding exactly as in the derivation of equation (A.26) we obtain

𝑍
(3)
(1001) = 𝑍 (1001) (Ω3,Ω12) =

√
3
∑︁
𝜆,𝜈

𝐷
1∗
0𝜈 (𝜙1, 𝜃1, 𝜙23) 𝑑

1
𝜈𝜆(𝜃

∗
3(1) )︸      ︷︷      ︸

∼ 1√
𝜆𝑠1𝜆𝑠3

𝑑
1
𝜆0(𝜃12)︸    ︷︷    ︸
∼ 1√

𝜆3𝜆𝑠3

. (4.11)

The dependencies below are obtained from the fact that 𝑑1
𝜈𝜆 is simply a first-order polynomial in sine

or cosine of the argument. These are calculated in appendix A.4 and have equal denominators for a
specific angle as indicated in the equation above. Of these dependencies, only one factor is dependent
on 𝜎1 and exhibits square-root branch-point singularities. Therefore, we can identify

𝐾 (𝑠, 𝜎1) =
√︁
𝜆𝑠1. (4.12)

Note that this kinematic factor also fulfills the required condition – as detailed in the text before
equation (3.98) – that 𝐾2(𝑠, 𝜎1) = 𝜆𝑠1 does not exhibit a discontinuity. Inserting it into equation (4.8)
yields

𝐹(1010) (𝑠, 𝜎1) = BW𝑎1
(𝑠) 𝑓 𝑓0 (𝜎1)𝑞 𝑓0 (𝑠, 𝜎1) ·

2𝑠
2𝜋

∫ ∞

4𝑚2
𝜋

𝜌 𝑓0
(𝜎′1)

∫
d𝑍 (1)(1010) 𝑓K∗ (𝜎3)𝑍

(3)
(1001)/

√︁
𝜆
′
𝑠1

𝜎
′
1 − 𝜎1 − i 𝜀

d𝜎′1︸                                                                  ︷︷                                                                  ︸
=:MΔ

,

(4.13)
where we define 𝜆′𝑠𝑖 = 𝜆(𝑠, 𝜎

′
𝑖 , 𝑚

2
𝑖 ). Here, we introduced an extra 2𝑠 factor in order to transform the√︁

𝜆𝑠1 into the corresponding break-up momentum 𝑞 𝑓0
of the decay 𝑎1 → 𝑓0𝜋. This dependence is

also expected as we are dealing with a P-wave decay that should come with one additional power
in the break-up momentum, see equation (3.32). Another benefit of this kinematic factor is that the
integrand gets additional damping from the (𝜆′𝑠1)

− 1
2 ∼ (𝜎′1)

−1 that helps with the convergence of the
outer 𝜎′1-integral.

Limit Behavior of the Inner Integral

The next step is the actual calculation of the triangle amplitudeMΔ that modifies the decay vertex of
𝑎1 → 𝑓0𝜋. For this, we look how the integration limits 𝜎

±
3 in equation (4.10) of the inner integral (cf.

equation (4.9)) behave for fixed 𝑠 = (1.4168 GeV)2 as a function of the integration variable 𝜎1 of the
outer integral. In general 𝜎±3 are complex quantities, thus, an integration will have to happen along
a path in the complex plane. Figure 4.8 shows their behavior as functions of 𝜎1. The blue circles
indicate the pseudo-threshold and the threshold of the K∗ decay. Using a Chew-Mandelstam BW, we
only expect to have one branch cut extending from the threshold to infinity along the real axis. By
adding some small imaginary quantity i 𝜀 to

√
𝑠, we can uncover on which side of this branch cut the

integration paths lie. Now, we have to make sure that the integration path does not cross this branch
cut, therefore, simply using straight lines connecting the two limiting values 𝜎±3 is not an option, since
they will cross the branch cut for some values of 𝜎1 as can best be seen in Figure 4.8(b). The simplest
solution to this problem is, that we always go in a straight line from 𝜎−3 to some midpoint between the
pseudo-threshold and the threshold – e.g. 0.2 GeV2 – and, then, continue to 𝜎+3 . The advantage of the
Chew-Mandelstam parametrization over a simple energy-dependent width using the two-body phase
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Chapter 4 The Curious Case of the 𝑎1(1420)

space (cf. equation (3.34)) is that it does not have the cut starting at the pseudo-threshold which could
be crossed by accident if one does not take care of rotating the branch cuts of the phase space properly
as discussed and derived in section 3.3.3. The absence of a left-hand cut is also a requirement for the
derivation of the partial-wave projection method.
Such a linear integration path from point 𝑎 to point 𝑏 in the complex plane can be parametrized in

the following way
ℓ(𝑡; 𝑎, 𝑏) = 𝑎 + 𝑡 (𝑏 − 𝑎), with 𝑡 ∈ [0, 1] (4.14)

with the complex integration being calculated accordingly via∫
ℓ (𝑎→𝑏)

𝑓 (𝑧)d𝑧 :=
∫ 1

0
𝑓 (ℓ(𝑡; 𝑎, 𝑏)) ¤ℓ(𝑡; 𝑎, 𝑏)d𝑡 =

∫ 1

0
𝑓 (ℓ(𝑡; 𝑎, 𝑏)) (𝑏 − 𝑎)d𝑡. (4.15)

K∗ Scattering Amplitude

As mentioned already, we use a Chew-Mandelstam BW in order to have the correct complex structure
with only the relevant branch cuts for the BWM. Since the K∗ has spin 𝑆K∗ = 1 and both daughters
are scalars, we will have orbital angular momentum 𝐿 = 1 in the decay. This would mean that the
barrier factors are non-trivial, but this would introduce more complex structures that would complicate
the integration process. Therefore, we only take the 𝑝𝐿-dependence to have the correct behavior at
threshold as mentioned in section 3.3.1, equation (3.32). This means the used expression is

𝑓K∗ (𝜎3) = 𝑝3 𝑓K∗ (𝜎3), with

𝑓K∗ (𝜎3) = 𝑚K∗ΓK∗

/ ©­«𝑚2
K∗ − 𝜎3 + 𝑚K∗ΓK∗

Re[2CM(𝑚2
K∗ , 𝑚

2
𝐾 , 𝑚

2
𝜋)] − 2CM(𝜎3, 𝑚

2
𝐾 , 𝑚

2
𝜋)

Φ2(𝑚
2
K∗ , 𝑚

2
𝐾 , 𝑚

2
𝜋)

ª®¬ .
The

√︁
𝜆3 of 𝑝3 =

√︁
𝜆3/(2

√
𝜎3) will cancel with the corresponding factor in the denominator of the

integrand in equation (4.9) removing its branch cuts as a direct consequence, which keeps the complex
structure in 𝜎3 simple. We can rewrite equation (4.9) slightly, pulling everything independent of 𝜎3
out of the integral:

𝐹̂(1010) (𝑠, 𝜎1) =
𝜎1

𝜆𝑠1
√︁
𝜆1

∫ 𝜎
+
3 (𝑠,𝜎1)

𝜎
−
3 (𝑠,𝜎1)

d𝜎3
𝑊 (
√
𝑠,
√
𝜎1,
√
𝜎3) · 𝑓𝐾∗ (𝜎3)(

(
√
𝑠 + √𝜎3)

2 − 𝑚2
3

)
· 2√𝜎3︸                               ︷︷                               ︸

=:𝑔 (𝑠,𝜎1,𝜎3)

.

Splitting the integration path into two linear paths 𝜎−3 → 𝜎
𝑚
3 and 𝜎

𝑚
3 → 𝜎

+
3 via some midpoint

between pseudo-threshold and threshold, e.g 𝜎𝑚3 = 0.2 GeV2, and employing equation (4.15), we have
to calculate∫

𝑔(𝑠, 𝜎1) =
∫ 1

0
d𝑡

[
𝑔
(
𝑠, 𝜎1, ℓ(𝜎3;𝜎−3 , 𝜎

𝑚
3 )

)
(𝜎𝑚3 − 𝜎

−
3 ) + 𝑔

(
𝑠, 𝜎1, ℓ(𝜎3;𝜎𝑚3 , 𝜎

+
3 )

)
(𝜎+3 − 𝜎

𝑚
3 )

]
.
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Figure 4.8: Parametric plot of 𝜎−3 (green) and 𝜎
+
3 (red) as a function of 𝜎1 for fixed 𝑠 = (1.4168 GeV + i 𝜀)2 for

different values of 𝜀 as indicated in the corresponding captions. Both curves start on the right where they touch
for 𝜎1 = 4𝑚2

𝐾 (best visible in Figure 4.8(c)). The gray dots in the lower two plots indicate steps of 0.2 GeV2

in 𝜎1 and the points for equal values are connected by a straight gray line. The two blue points indicate the
pseudo-threshold (𝑚𝐾 − 𝑚𝜋)

2 and threshold (𝑚𝐾 + 𝑚𝜋)
2 for the decay of a K∗. This plot was created with

Mathematica.
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This lets us write down the expression forMΔ in the following way:

MΔ(𝑠, 𝜎1) =
𝑠

𝜋

∞∫
4𝑚2

𝜋

𝜌 𝑓0
(𝜎′1)

𝐹̂(1010)=︷                   ︸︸                   ︷
𝜎
′
1

𝜆
′
𝑠1
√︁
𝜆
′
1

∫
𝑔(𝑠, 𝜎′1)

/√︁
𝜆
′
𝑠1

𝜎
′
1 − 𝜎1 − i 𝜀

d𝜎′1 =
𝑠

16𝜋2

∞∫
4𝑚2

𝜋

(𝜆′𝑠1)
−3/2 ∫

𝑔(𝑠, 𝜎′1)
𝜎
′
1 − 𝜎1 − i 𝜀

d𝜎′1,

where inserting the half-phase-space factor 𝜌 𝑓0 (𝜎
′
1) = 1

16𝜋

√
𝜆
′
1

𝜎
′
1
canceled some terms in the second

step.
One can precalculate the inner integral on a two-dimensional (𝑠, 𝜎1) grid and interpolate it between

these grid points in order to calculate the outer 𝜎′1 integral ofMΔ later. However, this outer integral
goes up to infinity, therefore, we have to perform a substitution to a finite interval in order for the
precalculations to work. We choose the following

𝜎
′
1

1 GeV2 = tan(𝑦), d𝜎′1
1 GeV2 =

(
1 + tan2(𝑦)

)
d𝑦,

𝑦− = 𝑦(𝜎
′
1 = 4𝑚2

𝜋) = arctan

(
4𝑚2

𝜋

1 GeV2

)
, 𝑦+ = 𝑦(𝜎

′
1 = ∞) = 𝜋

2

and evaluate
∫
𝑔(𝑠, tan(𝑦)) already during the precalculations for values 𝑦 ∈ [𝑦−, 𝑦+] for equidistant

steps of 0.001. Inserting this substitution results in the final expression

MΔ(𝑠, 𝜎1) =
𝑠

16𝜋2

∫ 𝑦+

𝑦−

(
𝜆
′
𝑠1
��
𝜎
′
1=tan(𝑦)

)−3/2 [ ∫
𝑔(𝑠, tan(𝑦))

] (
1 + tan2(𝑦)

)
tan(𝑦) − 𝜎1 − i 𝜀

d𝑦.

The whole numerator of the integrand is independent of the actual value of 𝜎1, therefore, we can
also include the other two factors into the precalculation of

∫
𝑔 for different values of 𝑠. Afterwards,

we can perform the outer integration numerically for each of these values 𝑠 and 𝜎1 = 𝑚
2
𝑓0
.

4.3.5 Triangle-Amplitude Result

The result can be found in Figure 4.9 (solid lines) together with a comparison of the scalar case
(dashed lines) from the dispersive approach, section 4.3.2. We see that the peak is at the same place as
expected, but that the shape of the partial-wave-projected amplitude is slightly different. The left plot
shows the calculations for a rescattering via a triangle with 𝐾∗0K+K−, while the right plot displays the
result for a triangle with 𝐾∗−K0K0. Since both these triangles come with the same Clebsch-Gordan
coefficients10 on the vertices, we will simply add them up for the theoretical model of the rescattering
process.
Figure 4.10 shows the effect of slightly adjusting 𝜎1 by using different 𝑓0(980) masses. The

result using the nominal PDG mass is plotted with solid lines. For simplicity we only show the

10 Both the 𝐾∗0 and the 𝐾∗− are the lower component of the respective isospin doublets, containing a 𝑑-quark and a 𝑢̄-quark,
respectively.
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Figure 4.9: Comparison of the scalar triangle amplitude from the dispersive approach (dashed) to the result
for the partial-wave projection approach including all spins and orbital angular momenta (solid). The colors
indicate which function is applied on the triangle amplitude as detailed in the top-left legend. On the left the
result is plotted for neutral 𝐾∗0 (892) and on the right for negatively charged 𝐾∗− (892). The calculations and
the creation of this plot are done with Mathematica.
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Figure 4.10: Comparison of the squared magnitude (green) and the complex phase (red) of the triangle amplitude
MΔ for different 𝑓0 (980) masses as indicated by the legend inside the plot. The calculations and the creation of
this plot are done with Mathematica.

squared magnitude (green) and the complex phase (red) of the triangle amplitudeMΔ. Everything is
normalized to the maximum of the nominal-mass amplitude.
Finally, we can have a look at the Argand diagram in Figure 4.11. We see that both the scalar model

from the dispersive approach (dashed) and the one coming from the partial wave projection (solid)
describe almost a full circle as it is the case for a normal resonance (dot-dashed green). This is true for
the triangle amplitude alone (blue) and especially true for the full amplitude including the propagator
of the source (red), here, a BWM for the 𝑎1(1260).

4.3.6 Other Triangles

The rescattering via a triangle diagram can create a signal that is very similar to an ordinary resonance.
But the question arises, why this triangle involving kaons is so special. One can create such a
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Figure 4.11: Argand diagrams of the scalar triangle amplitude from the dispersive approach (dashed) and the
result for the partial-wave-projection approach including all spins and orbital angular momenta (solid), once
alone (blue) and once multiplied by a BWM for the 𝑎1 (1260) source (red). They are compared to the Argand
diagram of a BWM for a hypothetical 𝑎1 (1420) resonance (dot-dashed green). For easier comparison, rotations
are applied to the Argand diagrams such that they all lie approximately at the same place. On the left the result
is plotted for neutral 𝐾∗0 (892) and on the right for negatively charged 𝐾∗− (892). The calculations and the
creation of this plot are done with Mathematica.

rescattering process with any isobar 𝜉 that the 𝑎1(1260) can decay into. First, we have the decay
𝑎
−
1 (1260) → 𝜉𝜋

−, subsequently follows the decay 𝜉 → 𝜋
+
𝜋
−, and finally, the initial 𝜋− can merge

with the 𝜋+ from the decay of the isobar to form the 𝑓0(980) of the final state, leaving the 𝜋− of the
isobar-decay as the bachelor particle.
Since calculations with the partial-wave-projection method are different if the spin of the isobar

changes, we calculate their amplitudes with the method from the scalar case from section 4.3.1. There,
we incorporate the width of the intermediate isobar via the replacement 𝑚2

𝜉 → 𝑚
2
𝜉 − i𝑚 𝜉Γ𝜉 , as it was

mentioned at the end of section 4.3.2. In Figure 4.12, the resulting amplitudes (various grey dashed
lines) are compared to the kaonic triangle (blue). In all cases we multiply the corresponding triangle
amplitude with a BWM for the initial 𝑎1(1260) propagator. In case of the intensity (Figure 4.12(a)),
we take the squared magnitude of the amplitude and multiply it by the corresponding two-body phase
space. All triangles are compared to a simple model for the direct decay 𝑎1(1260) → 𝑓0𝜋 (red) and
to a non-resonant background model (green) as it will be discussed in section 4.4.2. One observes
that all other triangles as well as the direct decay show a similar behavior in the intensity as can be
modeled by the non-resonant contribution. In the complex phase (Figure 4.12(b)), only the triangle
involving kaons has a phase motion at 1.4 GeV. All other triangles obtain their phase motion from
the multiplied 𝑎1(1260) propagator, which already starts to level off at the location of the 𝑎1(1420).
Therefore, the non-resonant background model – that itself does not have a phase motion – should be
able to take these other effects into account.
One important feature is the normalization. All triangles11 are divided by the height of the scalar

triangle involving kaons. Therefore, the 𝑦-axis shows the relative strength of these other triangles

11 All, except the one calculated with the partial-wave-projection method. It is normalized to 1, since its model is quite
different while the other triangles are all calculated with the same model and, therefore, the same prefactors.
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Figure 4.12: Comparison of different triangles as indicated by the legend, always listing the initial decay before
the rescattering. The left plot shows the expected intensity, i.e. the quasi-two-body phase space of the 𝑓0 (980)𝜋
channel times the squared magnitude of the product of a BWM with energy-dependent width for the 𝑎1 (1260)
with the triangle amplitude of the respective channel. It is compared to the direct decay (red), i.e. the same
quantity just without the triangle amplitude, and a phenomenological model for the non-resonant background
(green), see equation (4.19). The right plot shows the complex phase of the respective amplitudes. The purple
line indicates the predictions from the Basdevant-Berger model discussed in section 4.2.4 (FIG. 4 of [45]).

compared to the kaonic triangle. We see that one has to divide the kaonic triangle by a factor of 20 to
be able to plot all of them at the same time. This factor will come in addition to the product of involved
couplings in the triangle diagram if one wants to estimate the branchings of the different contributions.
If we want to understand, why the other triangles behave so differently, we have to investigate the

complex structure of such a triangle amplitude, see Figure 4.13. First, we can use the definition of
𝑥± in equation (4.4) for the scalar triangle in section 4.3.1 and calculate the position of the triangle
singularities by finding the two values

√
𝑠 such that 𝑥+ = 𝑥− =: 𝑥𝑝. Note that these singularities move

downwards into the complex plane if the intermediate isobar has a finite width Γ𝜉 > 0. One can
calculate the complex position of the singularity, by performing the replacement 𝑚2

𝜉 → 𝑚
2
𝜉 − i𝑚 𝜉Γ𝜉 ,

affecting the real part of it only slightly.
Since they are logarithmic branch points (empty and filled circles), we know that they must

have branch cuts (dotted and zigzag lines), which we can choose such that they connect the
branch points to each other. To find out on which Riemann sheet they live, we can calculate the
corresponding 𝑦+ = 𝑦− =: 𝑦𝑝 with equation (4.3) for each given singularity and check the conditions
𝑥𝑝 > 0, 𝑦𝑝 > 0, 𝑥𝑝 + 𝑦𝑝 < 1. Only if all three conditions are met, we will have a pinch singularity
during the final integration and, thus, a singularity on the second Riemann sheet (filled circle). This
only happens for one of the singularities of the kaonic triangle. Otherwise it has to be located on a
higher Riemann sheet (empty circle) and, therefore, its tail has to propagate around the corresponding
branch point of the two-body phase space of the initial decay, whose branch cut creates the higher
Riemann sheets.
Speaking of phase spaces, we have to consider several ones here. First of all, we have the unitarity

cut starting at the 3𝜋 threshold 3𝑚𝜋 . This splits the complex plane and opens a gate to the second
Riemann sheet, where the pole of the 𝑎1(1260) resonance lies. When using a BWM with energy-
dependent width for the 𝑎1(1260) or a Chew-Mandelstam BW, we have the two-body phase space of
its decay into the isobar-bachelor system appearing in its denominator, which creates a branch point at
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Figure 4.13: Sketch of the location of the singularities from triangle diagrams. Different colors represent
complex structures coming from the indicated initial decay of a rescattering to 𝑓0𝜋. Points and lines are
explained in the main text.

𝑚 𝜉 + 𝑚𝜁 . However, if the isobar is an unstable particle, this branch point moves downwards into the
complex plane, similar to the singularities before. One can calculate the position again by replacing
𝑚

2
𝜉 → 𝑚

2
𝜉 − i𝑚 𝜉Γ𝜉 and finding the zero of the Källén function inside the two-body phase space,

equation (A.7). The location of these branch points is indicated by crossed circles in Figure 4.13
and the corresponding branch cuts (thin zigzag lines) are rotated downwards to reduce the amount of
overlapping lines in the picture.
Figure 4.13 only provides an artistic view of the complex structures, but indeed, when comparing

with the squared magnitude of the triangle amplitudes for the different rescattering processes, see
Figure 4.14, we see that the other triangles all peak slightly left of where their corresponding phase-
space branch point lies (crossed circles in Figure 4.13 correspond to vertical lines in Figure 4.14). The
only exception is the kaonic triangle that peaks on the right, where the real part of its singularities lies.
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Figure 4.14: Comparison of the squared magnitude of the bare triangle amplitude calculated for scalar triangles
according to section 4.3.1 for different involved particles as indicated by the legend.

4.4 Fit Model

Now, we want to fit the previously calculated theoretical model to the COMPASS data to see if it can
describe the observed resonance-like 𝑎1(1420) signal. Such a fit with a slightly different model was
already published in [50]. Fitting the complete set of all 88 waves extracted by the corresponding 3𝜋
PWD would be not advisable, since we would drown in systematic uncertainties from fitting all other
waves. Therefore, we have to make a selection with as few waves as possible, one of which definitely
has to be the 1++0+ 𝑓0(980)𝜋 P wave where the 𝑎1(1420) signal was found, using the labelling of
partial waves as introduced in section 3.4.3. Since the 𝑎1(1260) is the source for the rescattering, we
also need a wave that contains this resonance, namely the 1++0+ 𝜌(770)𝜋 S wave. However, this wave
also contains a huge amount of background coming from Deck-like processes, where no resonance
is produced and instead a 𝑡-channel exchange of the isobar or a pion takes place (see Figure 4.15).
This means that we need another wave which can serve as an interferometer to fix the relative phases
between signal and background. We choose the 2++1+ 𝜌(770)𝜋D wave containing a very clean signal
of the 𝑎2(1320) resonance with very little background contamination.

4.4.1 General Fit Model

According to equation (3.52), the number of events in a partial wave (𝑤) for a given (𝑚𝑋, 𝑡
′) slice can

be calculated via
d𝑁 (𝑤)
d𝑚𝑋d𝑡 ′

∝ 𝑚𝑋
∫

d𝜏
��M (𝑤) ��2 Φ3(𝜏). (4.16)

Employing the isobar model allows us to split off the two-body scattering amplitude 𝑓𝜉 of the isobar
from the matrix elementM which makes the remainder M̃ independent of the kinematic variables 𝜏.
Therefore, we can perform the 𝜏-integral beforehand, resulting in the quasi-two-body phase space Φ̃2
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(see appendix A.1.4 for details)

d𝑁 (𝑤)
d𝑚𝑋d𝑡 ′

∝ 𝑚𝑋
��M̃ (𝑤) ��2 ∫

d𝜏
�� 𝑓𝜉 ��2 Φ3(𝜏)︸                ︷︷                ︸
=:Φ̃2

=: F(𝑤) (𝑚𝑋, 𝑡
′), (4.17)

where one can also already incorporate the Bose symmetrization due to having two identical bosons
in the final state.
But the advantage of a PWD is that it does not only provide us with intensities of partial waves,

but also with interferences between different partial waves. Let us assume that we have interference
between wave (𝑤1) and wave (𝑤2). Than we can model this interference with

F (𝑤2)
(𝑤1)
(𝑚𝑋, 𝑡

′) := 𝑚𝑋M̃
∗
(𝑤1)M̃ (𝑤2)

√︃
Φ̃
(𝑤1)
2 Φ̃

(𝑤2)
2 , (4.18)

where we use the same models for M̃ (𝑤𝑖) as for the intensities of the respective partial waves.
This means that in total we can fit one intensity for each wave and one real and one imaginary part

for each pair of waves. Therefore, for the chosen set of three partial waves we will have a total of 9
data sets to fit. And this for each of the 11 𝑡 ′ slices.
As for the model of the remaining matrix element M̃ =Msig +Mbgd, we can further split this into

a signal componentMsig and a background componentMbgd that will be added coherently, allowing
for constructive and destructive interference. In the following we will specify the models that are used
for the three selected partial waves.

Nomenclature and Jargon

The quantity F(𝑤) as defined in equation (4.17) is technically the phase-space-integrated intensity as
of equation (3.66) and corresponds to the diagonal elements of the SDM of equation (3.69). However,
in reality the prefix “phase-space-integrated” is usually dropped and we will do so from now on as
well simply calling it intensity.
Additionally, F (𝑤1)

(𝑤2)
of equation (4.18) that corresponds to the off-diagonal elements of the SDM

sometimes is referred to as “relative phase” since one usually plots only its complex argument to see
the relative phase motion between two partial waves.
Considering the transition amplitude T 𝜖𝑤 as defined in equation (3.64), we see that the quasi-two-

body phase space Φ̃(𝑤)2 of partial wave (𝑤) directly corresponds to the respective diagonal element
of the integral matrix 𝐼 𝜖𝑤𝑤 as defined in equation (3.61). This equation also highlights once more
the connection between the matrix element M̃ (𝑤) and the product of the production amplitude P
with the mass-dependent part of the decay amplitude 𝐹 𝜖𝑤 . As before, we will however neglect the
𝑚𝑋 dependence of the production amplitude P and take its 𝑡

′ dependence into account by using
independent fit parameters for the signal strength of each 𝑡 ′ slice.

4.4.2 Phenomenological Deck-Background Model

Before we go into detail on the specific amplitude model for each wave, let us discuss the general
structure of the background model. The so-called Deck process is depicted in Figure 4.15 and also
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Figure 4.15: Two diagrams for a Deck-like background for the 𝜋−𝜋+𝜋− final state without an intermediate
three-body resonance.

appears for a 𝜋−𝜋+𝜋− final state, but instead of producing a three-body resonance, we will have a
𝑡-channel exchange of either the pion that absorbs the Pomeron from the proton target producing the
isobar at the upper vertex, or the pion continues at the upper vertex and we exchange the isobar that
absorbs the Pomeron.
It is not possible to kinematically separate this process from the resonance production that we are

interested in. Additionally, it was shown by [47] that this background contributes to almost all partial
waves. Therefore, a phenomenological description is used as it is described in [53] (section 3.4.1). It
has the following parametrization that is flexible enough to capture the effect, but not too flexible to be
able to describe the waves without resonances:

Bgd(𝑚𝑋; 𝑎, 𝑏, {𝑐𝑛}) = 𝑎(𝑡
′)

(
𝑚𝑋 − 𝑚thr
𝑚thr

)𝑏
exp

(
−𝑞2

∑︁
𝑛

𝑐𝑛 · (𝑡
′)𝑛

)
. (4.19)

First, we have a complex parameter 𝑎 that provides the possibility to scale the amplitude, while also
allowing to change the interference of the background with the signal. For each 𝑡 ′ slice we will have a
different set of two real parameters, magnitude and phase of 𝑎. The second factor serves as a threshold
term, where 𝑚thr = 0.5 GeV is fixed to a value slightly higher than the 𝑚3𝜋 threshold at 0.42 GeV, and
𝑏 being a and positive real fit parameter (∼ 1), equal for all 𝑡 ′ slices. The last term has the purpose
of damping the background amplitude at higher masses, which is achieved by the squared break-up
momentum 𝑞 calculated from the quasi-two-body phase space of the current partial wave. It gets
multiplied to a polynomial in 𝑡 ′, of which the fit parameters 𝑐𝑖 are real valued and the same for all 𝑡

′

slices. It allows for the background shape to change with 𝑡 ′, while the signal models are independent
of it.

4.4.3 1++0+ 𝝆(770)𝝅 S Signal Model

This wave, which we will call 𝜌𝜋 S-wave from now on, contains the 𝑎1(1260) as the main resonance.
We model this with a BWM with energy-dependent width using the quasi-two-body phase space of
the 𝜌(770)𝜋 𝑆 decay channel in the denominator of the BW. This model comes with two real-valued
parameters, the mass and the width of the resonance. Additionally, a strength parameter 𝐴(𝑡 ′) enters
as a different set of two parameters for each 𝑡 ′ slice, the magnitude and the complex argument of 𝐴.
For the background we use a second order polynomial in 𝑡 ′ meaning we have in total four parameters
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that are independent of 𝑡 ′, specifically 𝑏, 𝑐0, 𝑐1 and 𝑐2. For each 𝑡
′ slice we have two real parameters

from 𝑎.
In total we will have 2 + 2 · 11 = 24 signal parameters and 4 + 2 · 11 = 26 background parameters

for this wave.

4.4.4 1++0+ 𝒇0(980)𝝅 P Signal Model

In the following, we will call this one the 𝑓0𝜋 P-wave, and we use the same 𝑎1(1260) BWM for the
source of the rescattering as for the 𝜌𝜋 S-wave. Since the 𝜌𝜋 S-wave has a much stronger intensity
– and with this also a lot smaller error bars – the 𝑎1(1260) mass and width will mostly be fixed
by that wave. Therefore, we will not count them as parameters for the 𝑓0𝜋 𝑃-wave. This BWM
will be multiplied by the theoretical amplitude calculated in section 4.3.3 (the sum of both charge
configurations in the loop, since the involved isospin couplings are equal) that by itself comes without
parameters12. Since the possible fit range of this wave is smaller and we still need eleven complex
strength parameters 𝐴(𝑡 ′) for each 𝑡 ′ slice, we will simplify the background model to only contain the
exponential factor constant in 𝑡 ′, meaning only the forced-positive parameter 𝑐0 > 0 besides of the
complex 𝑎(𝑡 ′).
This wave will add 2 · 11 = 22 signal parameters and 1 + 2 · 11 = 23 background parameters.

4.4.5 2++1+ 𝝆(770)𝝅 D Signal Model

This wave will be simply called 𝜌𝜋D-wave and due to the fact that the global complex phase of the
full amplitude is unobservable, we will fix the strength parameters 𝐴(𝑡 ′) of the signal to be positive
real. Other than that the signal will be a Flatté BWM as described in section 3.3.2, with 𝑎2(1320)
mass and width as free parameters, where we will use the 𝜌𝜋D channel with a fixed branching of
𝑟 = 80 % and the 𝜂𝜋 𝐷 channel with the remaining fraction of (1 − 𝑟) = 20 % in equation (3.37). The
quasi-two-body phase space appears for the first component of the width and for the 𝜂𝜋 𝐷-channel
component we will use the normal two-body phase space together with a Blatt-Weisskopf factor for
𝐿 = 2.
The background will be the full model as for the 𝜌𝜋 S-wave. This brings us to a total of 2+1 ·11 = 13

signal parameters and 4 + 2 · 11 = 26 background parameters.

All three waves together amount to 50 + 45 + 39 = 134 real-valued fit parameters.

4.4.6 𝒂1(1420) Breit-Wigner Model

Since we need a second fit model to be able to compare it with the rescattering interpretation in form
of the previously defined Triangle-Singularity Model (TSM), we will replace the 𝑓0𝜋 P-wave signal
parametrization by a BWM for the 𝑎1(1420). Since we do not want to imply any knowledge on the
possible decay channels of a hypothetical new resonance 𝑎1(1420), we will use a BW with fixed width.
This means we will have two parameters more compared to the rescattering model, the mass and the
width of the 𝑎1(1420), giving us a total of 136 real-valued fit parameters. The background models as
well as the signal models for the other two waves will not be changed.

12 The masses and widths of the particles in the loop are taken from the PDG and all omitted couplings will be absorbed by
the strength parameter of the BWM.
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4.4.7 Fitting Procedure

We will use the usual definition of a 𝜒2 for the fitting procedure, since it provides us with a simple
way of comparing a model to the data while incorporating the uncertainty of the data as well:

𝜒
2
=

∑︁
𝑖

(F (𝑥𝑖) − 𝑦𝑖
𝜎𝑖

)2
. (4.20)

The sum will go over all data points (𝑥𝑖 , 𝑦𝑖) of the previously discussed 9 data sets, where 𝑥𝑖 is given
by the corresponding (𝑚𝑋, 𝑡

′)-bin of the PWD results and 𝑦𝑖 denotes the corresponding value of the
intensity or the real and imaginary part of the interference with its experimental uncertainty 𝜎𝑖 . F is
the model of the corresponding data set evaluated for a given set of fit parameters.
We use the minimizer MINUIT2 to find the optimal solution for F that minimizes the 𝜒2. Since

during this procedure we might run in a local minimum, it is common practice to perform the fit
several times with random starting parameters and take the minimum with the smallest 𝜒2 as the best
fit. However, we have a lot of fit parameters which makes convergence of the fit unlikely. We solve
this by using the following fit strategy:

1. We fit only the first 𝑡 ′ slice using random starting parameters for the common parameters of all
𝑡
′ slices (𝑚, Γ, 𝑏, {𝑐𝑖}) as well as the parameters specific for this slice (𝐴 and 𝑎).

2. We temporarily fix the common parameters of all 𝑡 ′ slices (𝑚, Γ, 𝑏, {𝑐𝑖}).

3. We fit the other 𝑡 ′ slices one-by-one, always using the slice-specific parameters of the previous
slice as starting parameters.

4. After fitting all slices separately like this, we release all fit parameters and do a final fit over all
𝑡
′ slices combined.

If at any point during this procedure the 𝜒2 value get larger than the arbitrarily set limit of 1010, or
any of the fit parameters results in “not a number” (NaN), the fit attempt will be discarded and a new
attempt with new random starting parameters will be started.
Usually, one would expect the 𝜒2

red = 𝜒
2/𝑁dof of a fit to reach 1 at the end of a fit. However, this

is only true for independent data points which is not the case here, since the three interferences are
dependent on each other and on the intensities via

F (2)(1) + F
(3)
(2) + F

(1)
(3) = 0 and

���F ( 𝑗)(𝑖) ���2 = F(𝑖) · F( 𝑗) .

Additionally, looking at the data itself and the provided statistical uncertainties coming from the
previously performed PWD,we see some places where these uncertainties are obviously underestimated
resulting in a too large 𝜒2

red. Let us slightly jump ahead and shortly discuss two regions in the first 𝑡
′

slice where this is very obvious. For this, we have a look at Figure 4.16, where so far only the black
data points coming from the PWD are of interest for us.
The first one appears in the complex phase of the interference between the 𝜌𝜋 S wave and the 𝑓0𝜋 P

wave, i.e. the plot in the first row and second column of Figure 4.16. In the region 𝑚3𝜋 ≤ 1.5 GeV we
see a continuously rising relative phase. Then, in the range between 1.5 GeV and 1.6 GeV, we see
that the relative phase starts to drop for two data points and suddenly jumps up again continuing its

89



Chapter 4 The Curious Case of the 𝑎1(1420)

rise. This jump corresponds to ∼ 33 deg or ∼ 9.7𝜎, where 𝜎 denotes the uncertainty of the data point
before the jump.
The second location can be found in the plot directly to the left, the intensity of the 𝜌𝜋 S wave,

directly at the peak. The data points at 1.13 GeV and 1.17 GeV lie both approximately at 215 k events.
The point in between, at 1.15 GeV, as well as the two points to the left and right of this region lie at
∼ 205 k events. The uncertainty of these points is given as roughly 𝜎 ∼ 1.6 k events, which means
that we jump up by 10 k events or 6.3𝜎, then, down by the same amount, and up and down again. A fit
model might be able to describe the outer four points, however the central point will always be far
away from a continuous model curve.

4.4.8 Fit Quality

Since we want to compare two competing models, we need to define something that quantifies the
goodness of the fit. For this, we will use a similar construction to the 𝜒2 as defined in the previous
section 4.4.7. However, since both fit models are very similar, it does not make sense to include all
data points here. Therefore, we will restrict the sum in equation (4.20) only to the data points directly
related to the 𝑎1(1420) signal, meaning the intensity of the 𝑓0𝜋 P-wave and the interference of it
with the 𝜌𝜋 S-wave. In principle also the interference between 𝑓0𝜋 P-wave and 𝜌𝜋D-wave contains
information of the 𝑎1(1420) signal. But the sum of all three interferences is zero by construction
and since the interference between the 𝜌𝜋 S-wave and the 𝜌𝜋D-wave can be assumed to be almost
completely fixed by their respective models due to the smaller experimental uncertainties, we will not
gain extra information by including both 𝑓0𝜋 P interferences. Also we will not use real and imaginary
part of the interference, but instead only the complex phase13, since this is what we use for plotting of
the fit results and, thus, only what we display will be used to determine the quality of the fit.
Since the rescattering model has two parameters less than the 𝑎1(1420) BWM, we will divide the

quantity by the number of degrees of freedom 𝑁
𝑎1 (1420)
dof , specifically the number of included data

points minus the number of fit parameters related directly to the 𝑓0𝜋 P-wave as defined in sections 4.4.4
and 4.4.6. Here is the final expression of the reduced-𝜒2 equivalent:

R2
red :=

1

𝑁
𝑎1 (1420)
dof

∑︁
𝑎1 (1420)

(F (𝑚𝑋, 𝑡 ′) − 𝑦𝑖 (𝑚𝑋, 𝑡 ′)
𝜎𝑖

)2

. (4.21)

We still should not expect this number to be equal to 1, however its size will provide a good measure
of compatibility and we can consider a model to fit the data better than another model if its R2

red is
smaller.
Considering only the two mentioned data sets, we have a total of 2 × 25 × 11 = 550 fitted data

points. Reducing them by 45 or 47 fit parameters for the TSM and the BWM, respectively, leads to
𝑁
TSM
dof = 505 and 𝑁BWMdof = 503.

13 Since the complex phase is periodic, the points at +180 deg and −180 deg are close to each other. To take this into account,
we will always calculate the contribution from a data point 𝑦𝑖 to R

2
red with the values 𝑦𝑖 , 𝑦𝑖 + 360 deg and 𝑦𝑖 − 360 deg,

and use the minimum.
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4.5 Fit Results

We will now discuss the results of the model fit as described in the previous section. A comparison of
the TSM (solid lines) with the BWM (dashed lines) for the first of the eleven 𝑡 ′ slices can be found in
Figure 4.16, the remaining ten in appendix C.3. The signal contribution (blue) is obtained by setting
the strength parameter of the background to zero. On the other hand, the non-resonant background
contribution (green) is obtained by setting the strength parameter of the signal function to zero. The
full fit model (red) is the coherent sum of these two contributions. Therefore – due to interference
– it can be in some regions larger than the separate contributions and in other regions smaller. The
diagonal plots show the intensities F(𝑤) and on the off-diagonal one can find the complex phase of the
interference F (𝑤2)

(𝑤1)
.

As a first observation, we can see that the fit models do not differ much for the 𝜌𝜋 S and 𝜌𝜋D
waves. This shows that the assumption was valid according to which the resonance parameters of the
𝑎1(1260) are almost fully determined by the fit to the 𝜌𝜋 S wave and can, therefore, be omitted during
the determination of the number of degrees of freedom for equation (4.21).
Secondly, we see that both models describe the 𝑓0𝜋 P wave similarly well by eye. Calculating the
R2
red according to equation (4.21) yields R

2
red,TSM = 4.59 for the TSM and R2

red,BWM = 4.87 for the
BWM. Remember that these values also include the contributions from the central column of plots of
the other ten 𝑡 ′ slices in appendix C.3. This means that the TSM shows a slightly better compatibility
with the data than the opposing BWM. This is even more striking since the TSM does not have a fit
parameter that lets us adjust the position and width of the signal peak (solid blue line). It is completely
determined by the particles involved in the triangular loop. On the other hand, the peak of the BWM
signal (dashed blue line) can be shifted by adjusting the mass parameter and broadened or narrowed
by its width parameter.
Having a look at the other 𝑡 ′ slices we see that especially in the third one (the central pad of the

second Figure in appendix C.3) the peak in the 𝑓0𝜋 P intensity is not very well described by the TSM.
Not even the BWM describes it very well despite its capability of shifting the position of the peak
freely (although not differently for each 𝑡 ′ slice) which could indicate the presence of systematic
problems of the underlying PWD as already discussed with the two regions in the first 𝑡 ′ slice at the
end of section 4.4.7. Having said that, the fit – and with this the R2

red – is mainly dominated by the
corresponding relative phase with the 𝜌𝜋 S wave, since it has much smaller uncertainties than the

𝑓0𝜋 P intensity due to its relation to the 𝜌𝜋 S intensity:
���F 𝑓0𝜋 P
𝜌𝜋 S

���2 = F𝜌𝜋 SF𝑓0𝜋 P. Thus, although the

deviation at the peak seems to be striking, it only contributes minorly to the overall R2
red.

In the following, we discuss some performed systematic studies in order to confirm that the
slightly favored TSM is not just a coincidence due to systematic uncertainties of the PWD or the
resonance-model fit.
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Figure 4.16: Result of the main fit as described in 4.4. The TSM (solid) is compared to the BWM (dashed). The
signal and background separation of the BWM is indicated by the same colors as for the TSM. Displayed are
the coherently added contributions of the signal (blue) and the non-resonant background (green). The full fit
function is displayed with the red curve. The diagonal plots show the intensities of the respective waves as
indicated by the labels. The off-diagonal plots show the relative phase between the corresponding waves on the
corresponding row and column. The transparent lines indicate the extrapolation of the fit function outside of the
fit range.
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4.6 Systematic Studies

Since the 𝜌𝜋 S and 𝜌𝜋D waves are very similar for the two competing models, we will only focus
on the central column of plots in Figure 4.16 and will only compare the competing models via these
two plots. For easier comparison, we will only display the 𝑓0𝜋 P intensity of the first 𝑡 ′ slice due to
it having the smallest uncertainties and, thus, having a higher impact on R2

red. We do not split the
relative phase into its separate model components because the non-resonant background does not have
a mass-dependent phase. So we will show a selection of three 𝑡 ′ slices, specifically slices 1, 4 and 7.
This style is inspired by the original publication of the 𝑎1(1420) signal, see [6] and Figure 4.1.
For the intensity plot, we use the same color code as before: red for the full fit model, blue for the

signal contribution, and green for the non-resonant background. Its legend indicates which model
corresponds to the solid lines and which to the dashed lines. We either compare the main TSM with a
slightly modified version of it, or we compare the TSM to the BWM after changing the general fit
model or the underlying fitted data. For the relative phase the different colors always indicate the data
points as well as the full fit model for one of the three displayed 𝑡 ′ slices. To make them more visible,
the first slice is shifted up by 45 deg and the last displayed slice is shifted down by 45 deg as also
indicated by the legend.

Figure 4.17 shows how this representation looks like for the comparison of the main fit with the
TSM and the BWM as presented in the previous section.
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Figure 4.17: Compact representation of Figure 4.16 and the plots in appendix C.3. For explanations on the color
code and what is plotted refer to the plot legends as well as the main text.

The comparison of the R2
red values for the different models can be found in Figure 4.24 at the end of

this section, as well as in Table C.1 in appendix C.4.
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Figure 4.18: Comparison between main TSM (solid) and scalar TSM (dashed).

4.6.1 Variation of the Fit Model

In this section, we vary the fit model slightly to see how it affects the fit quality. The resulting R2
red

comparisons of these models are depicted as green points in Figure 4.24.

Dispersive Scalar Triangle Model

As a first study, we perform the resonance-model fit using the scalar model from the dispersive
approach, section 4.3.2, and compare it to the main TSM, see Figure 4.18. A similar fit was already
performed in [26] as a first test of the rescattering interpretation.
We see that both fit models show very similar agreement with the data. This demonstrates that the

much easier calculable scalar model provides a good approximation for first investigations. However,
we see that the proper model, which includes the involved spins and orbital angular momenta, moves
the needed background contribution slightly further to lower resonance masses outside of the peak
region. This is possible due to the slower fall-off of the high-mass tail of the triangle amplitude.
Regarding the phase motion, no major differences between the two models can be observed.

Include Direct Decay

As a next study, we also include the so far neglected direct decay of 𝑎1(1260) → 𝑓0𝜋 without
intermediate rescattering. However, this comes with an increase in the amount of fit parameters, since
each 𝑡 ′ slice brings two more real parameters, the strength of the direct production and its complex
phase. Although it brings a reduction in the R2

red value compared to the main fit simply due to the
bigger flexibility of the model, it also comes with a reduction in fit stability.
The comparison between the TSM (solid lines) and the BWM (dashed lines) each with an added

direct-decay component in the 𝑓0𝜋 P wave can be found in Figure 4.19. There, the two signal
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Figure 4.19: Comparison between TSM (solid) and BWM (dashed) where both include an extra component for
the direct decay 𝑎1 (1260) → 𝑓0𝜋. The thinner blue lines correspond to the two components of the signal as
discussed in the main text.

components are depicted with the thinner blue lines and the thick line corresponds to their coherent
sum. In case of the TSM (solid lines), the line close to zero corresponds to the direct decay
𝑎1(1260) → 𝑓0𝜋 and the stronger one to the component including the rescattering. On the other hand
for the BWM (dashed lines) the direct-decay component behaves very similar to the non-resonant
background component (dashed green) and the full signal component is only twice as large, indicating
strong destructive interference between the very strong 𝑎1(1420) component and the 𝑎1(1260)
component.
While the TSM model does not change drastically compared to the main model in Figure 4.17, the

BWM does. It gets more similar to the TSM (red lines are overlapping strongly) and the background
peak moves inside of the fit region. This indicates that the fit has troubles separating the signal
from the background, showing that the initial assumption was accurate that the background can also
incorporate the direct decay.

Non-Symmetrized Phase Space

This is a simplification of the fit model and it was done in order to see how important a proper treatment
of the quasi-two-body phase space is. Here, we calculate the quasi-two-body phase space according to
appendix A.1.4 without symmetrization of the amplitude with respect to the exchange of the two 𝜋− of
the final state, instead of normally taking the integral matrices as introduced in section 3.4.5.
Comparing Figure 4.20 with the main fit in Figure 4.17, we see that with the non-symmetrized

phase space both TSM and BWM get very slightly closer to each other. Although the R2
red increases

slightly for the non-symmetrized approximation, the general differences compared to the symmetrized
case is not very big, thus, it can serve as a good approximation for first tests.
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Figure 4.20: Comparison between TSM (solid) and BWM (dashed) where both use a non-symmetrized
quasi-two-body phase space as a simplification.

More Flexible Background

The simplified parametrization for the non-resonant background of the main fit was chosen in order
to have a similar fit model compared to the initial 𝑎1(1420) publication [6]. So as an additional
systematic study we also use the full background parametrization as described in section 4.4.2 for the
𝑓0𝜋 P wave. This increases the amount of fit parameters and, thus, decreases the amount of degrees of
freedom by three while giving the background model and with this also the whole fit model an explicit
𝑡
′ dependence besides the complex strength parameters of the separate components.
The R2

red decreases in both cases, we see however in Figure 4.21 that the background of the BWM
changes stronger compared to the previous studies and its relative phase exhibits an additional motion
towards zero when the model is extrapolated towards lower resonance masses. Also the high-mass
region experiences some stronger deviations of the relative phase from the data points, in general
hinting towards an instability of the BWM.

Include Excited States

As a final modification of the general fit model, we include the first radial excitations 𝑎1(1640) and
𝑎2(1700) in the models of the 𝜌𝜋 S and 𝜌𝜋D wave, respectively. With this introduction, we also
increase the fit range of the 𝜌𝜋D wave until 1.9 GeV.
Since we do not want to extract resonance parameters of these excitations with this study, we fix

their mass and width to values as they were extracted by the COMPASS collaboration in [37] in order
to stabilize the fit. The inclusion of these excitations introduces 44 new fit parameters to the complete
fit, however, the number of parameters for the 𝑓0𝜋 P wave and thus the number of degrees of freedom
for the determination of R2

red do not change. But its value gets significantly smaller due to a better
description of the high-mass region for the relative phase, see Figure 4.22.
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Figure 4.21: Comparison between TSM (solid) and BWM (dashed) where both use a more flexible model for
the non-resonant background.
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Figure 4.22: Comparison between TSM (solid) and BWM (dashed) where the 𝑎1 (1640) and the 𝑎2 (1700) are
included as additional resonances into the 𝜌𝜋 S and 𝜌𝜋D wave models, respectively.
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4.6.2 K∗ Parameters

A small modification of the K∗ resonance parameters, i.e. its mass and width, can give a measure for
the impact of higher-order rescattering. For this, we have a look at the measurements that are taken
into account by the PDG in the determination of the average mass and width. Different production
mechanisms could all contribute in some way or form in such a rescattering of the K∗ and, therefore,
we take the maximum and minimum of these measurements. This means that once, we increase the
mass of the charged 𝐾∗− to 𝑚𝐾∗− + 3.8 MeV, and once we decrease it to 𝑚𝐾∗− − 5.1 MeV. Similary
for the width, we take a slightly broader 𝐾∗− with Γ𝐾∗− + 3.0 MeV and, then, a slightly narrower one
with Γ𝐾∗− − 5.6 MeV. Accordingly, the mass of the neutral 𝐾∗0 in the other charge combination of the
triangle diagram is adjusted to 𝑚

𝐾
∗0 + 2.9 MeV and 𝑚

𝐾
∗0 − 1.9 MeV, and its width to Γ

𝐾
∗0 + 8.5 MeV

and Γ
𝐾
∗0 − 3.3 MeV.

We study in total four cases, where both K∗ are made heavier, both are made lighter, both are made
wider, and both are made narrower. The resulting fits can be found in appendix C.4.1. They show only
minor differences. The fit quality is compared with the main BWM and depicted as yellow diamonds in
Figure 4.24, from left to right heavier, narrower, wider and lighter K∗. One can observe that changing
the width of the K∗ does not affect the R2

red strongly (the two inner points), while changing the mass
does (the two outer points). In summary, a narrower and heavier K∗ seems to be of advantage to the fit
quality.

4.6.3 Variation of the Data

Blue crosses indicate the R2
red comparison for the following studies in Figure 4.24. They are systematic

studies of the underlying PWD as they were published in [31] and more details on them can be found
there. Here is a short summary of what distinguishes each of them from the main PWD:

• Coarse event selection, i.e. use more relaxed cuts during the selection of the 𝜋−𝜋+𝜋− final state

• No negative-reflectivity waves were used during the fit

• Smaller wave set with only 53 waves

• Change (𝜋𝜋)S parametrization from the modified 𝑀-parametrization (see appendix A.6.1) to
the 𝐾1-parametrization of [54]

• Use a BW instead of a Flatté for the line shape of the 𝑓0(980)

• Allow for more incoherent contributions by changing to a rank-2 fit

For all except one, we see a better fit quality for the TSM over the BWM. The outlier is the one with
the changed (𝜋𝜋)S parametrization. That this one has the biggest impact is also to be expected, since
it directly affects the way how the PWD can separate its contributions from the 𝑓0(980) isobar due
to having exactly the same QNs and therefore interfering strongly with each other. Also changing
the parametrization of the 𝑓0(980) from a Flatté to a simple BW negatively impacts the fit quality of
the TSM. This is however also problematic in of itself, since the simple BW neglects the decay of
𝑓0(980) → KK which is an active requirement for the TSM to allow for the KK → 𝜋𝜋 rescattering.
The comparison plots for all these studies can be found in appendix C.4.2.
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4.6.4 Bootstrap

Bootstrapping is a good numerical method to estimate the statistical uncertainties of a complicated
functional dependence. As a basis for this bootstrap study, a reanalysis of the COMPASS PWD for 3𝜋
was performed by [55]. Afterwards the underlying selected events that enter the PWD are reshuffled
in such a way that some events are used more than once and other events are discarded, effectively
changing the weight that each event carries during the fit. 500 of such shuffled data sets were created
and the PWD was performed for all of these. Taking the Root Mean Square, i.e. the square root of
the arithmetic mean of the squares (RMS), of the resulting PWD data points can be used to obtain
asymmetric 68 % quantiles as uncertainties. The study showed that the uncertainties increase, however,
the jumps in the data as mentioned at the end of section 4.4.7 can still not completely be explained by
them. [55] concluded from this study that most likely a production of a larger MC data set for the
acceptance correction is needed.
Nevertheless, we can use these results as a systematic study of the TSM fit. In the following, we

deal with the asymmetric uncertainties in a rather phenomenological way. If the experimental data
point lies below the fit model, we use its upper error and if it lies above the fit model, we instead use
its lower uncertainty limit. The result of this fit can be found in Figure 4.23 for the first 𝑡 ′ slice and in
appendix C.5. Again, we fit with the TSM and the BWM and can compare their R2

red values, the red
point in Figure 4.24. But we can even go one step further. Using the fit parameters of this new main
bootstrap result as a starting point, we can fit each of the 500 bootstrap PWDs with the two models and
compare their R2

red values as well. They correspond to the tiny gray points
14 in Figure 4.24. The red

ellipse corresponds to their 68 % confidence ellipse (1𝜎) and the green one to their 95 % confidence
ellipse (2𝜎). All of these fits show a systematic preference of the TSM model regarding their fit
quality.

4.6.5 Summary of Systematic Studies

In the previous sections we discussed the origin of every point in Figure 4.24. The grey dashed line
indicates the points where both the TSM and the BWM have an equal fit quality. As mentioned before,
only one single systematic study lies on the bottom right of this grey line, therefore, we can state a
general systematic preference of the TSM over the BWM.
Considering the values of the determined R2

red for each of the systematic studies, we can determine
a systematic uncertainty for this quantity. Since we see a clear tendency towards lower values for both
the TSM and the BWM, we want to do it in an asymmetric manner as well. For this we split the R2

red
values of the systematic studies in two groups: all values above the value of the main fit model and all
values below. For each of these groups, we determine the RMS of their difference to the main fit model.
The RMS of the first group defines the upper systematic uncertainty and the RMS of the second group
yields the lower systematic uncertainty. This results in R2

red,TSM = 4.59+0.13
−0.40 and R

2
red,BWM = 4.87+0.09

−0.48.
Counting how many studies lie inside of this interval yields for the TSM 11

16 = 68.8 %. For a 2𝜎
interval we have 15

16 = 93.8 %. Both findings agree well with the interpretation of Gaussian errors that
amount to 68.3 % and 95.4 %, respectively. For the BWM we obtain 6

11 = 54.5 % for a 1𝜎 interval

14 The fits to the bootstrap attempts experience a systematic shift of roughly the number of degrees of freedom of the fit
towards a higher 𝜒2 compared to the main bootstrap fit. In order to be able to compare these results, all gray points were
shifted such that their mean coincides with the value of the main bootstrap result.
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Figure 4.23: First 𝑡 ′ slice of the reanalysis of the COMPASS PWD with asymmetric uncertainties fitted by the
main fit model.
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Figure 4.24: Comparison of the fit quality of all systematic studies described in section 4.6. Plotted is always
the R2

red value of the BWM against the one of the corresponding TSM. The red plus indicates the main fit
model, blue crosses correspond to systematic studies with variation of the underlying PWDs, green points label
systematic studies of the fit model, and orange diamonds show the impact of modified K∗ parameters during the
calculation of the triangle amplitude (from left to right with heavier, narrower, wider and lighter K∗). The red
circle corresponds to the main minimum of a reanalysis of the PWD. For this analysis, a bootstrap study with
500 attempts (small grey dots) was performed. The red ellipse indicates the 68 % (1𝜎) and the green ellipse the
95 % (2𝜎) quantiles. The grey dashed line shows the points where TSM and BWM would have equal fit quality.
The values are given in Table C.1.
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and 11
11 = 100 % for a 2𝜎 interval. This does not fit as nicely as for the TSM, but we also have less

studies to evaluate, therefore, this was expected.
In general, we see that these two uncertainty intervals overlap, making a definite statement difficult

from this data alone. However, we observe that all systematic studies of the TSM are better than
the main fit model of the BWM. This, together with the general bias towards the TSM, are strong
arguments in favor of the rescattering interpretation.
Occam’s razor principle states: if two theories explain a situation equally well, the easier one that

uses fewer assumptions should always be preferred. In this case this is definitely the TSM, since we
do not need additional resonance parameters to describe the 𝑎1(1420) signal, and we also know from
scattering theory that the rescattering has to be present. While on the other hand, the introduction of a
new resonant state modeled by a BWM, let it be a new genuine resonance, a hadronic molecule or a
tetraquark, comes with additional problems as stated in section 4.2 that have to be addressed.
Since the resonant contributions cannot be completely ruled out, also a fit with the TSM together

with a coherently added BWM for the 𝑎1(1420) was tested. But no stable minimum could be found.

4.6.6 𝒕′ Dependence of the Signal Amplitude

For diffractive production one expects the strength of a resonance to follow an exponential decay law as
a function of 𝑡 ′ of the following form (compare to equation (46) in [31], but with only one exponential
component, since we do not want to account for the coherently-added non-resonant background):��𝐴(𝑡 ′)��2 ∼ (𝑡 ′)𝑀 exp(−𝑏𝑡 ′), (4.22)

with 𝐴 being the strength parameter of the signal model for a given partial wave, and 𝑏 being a
characteristic slope parameter for a given resonance. Note that after proper normalization the 𝑡 ′

dependence is approximately equal for the squared fit parameter, for the maximal height of the signal,
as well as for the 𝑚𝑋-integral of the signal model, since the signal model itself does not have an
explicit 𝑡 ′ dependence besides the one of the strength parameter.
As a result of the resonance-model fit of 14 partial waves by the COMPASS collaboration in [37],

it was found that the 𝑎1(1260) signal component and the 𝑎1(1420) signal component have similar
slope parameters. This would also be expected for an interpretation as a rescattering effect, since the
origin is the same resonance. However, due to deviations of the fit curve from the data for some of the
higher 𝑡 ′ slices as mentioned earlier, such a slope determination was not possible for this fit. In future
studies one has to adjust the fit model such that a consistent description of all 𝑡 ′ slices is obtained and
a reliable 𝑡 ′-dependence of the signal strength can be determined.
One possible idea could be the combination of a TSM with a unitary-coupled-channel treatment

of the non-resonant background as it was proposed by Basdevant and Berger [45, 46] and is shortly
discussed in section 4.2.4. A second ingredient for a better description could be the introduction
of the 𝑎1(1640) into the 𝑓0𝜋 P wave which should also come with a rescattering component: it has
the same QNs as the ground state 𝑎1(1260), its width also extends down to 1.42 GeV where the
triangle-singularity amplitude peaks, and in chapter 6 we see clear evidence for the necessary K∗K
decay channel.
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4.7 The Signal in Other Channels

The rescattering interpretation of the 𝑎1(1420) signal does not forbid the presence of an additional
resonance pole in form of an 𝑎1(1420) resonance. In order to find more clues on the actual nature of
the 𝑎1(1420) one has to look for it also in other final states.

4.7.1 𝝉 Decays

One of them is again the 3𝜋 final state, but this time in the decay of 𝜏 leptons. The 𝑎1(1260) resonance
as a source of the rescattering can also be produced in these decays ([56]) and, thus, a rescattering
from its 𝜋KK decay mode to the 3𝜋 final state should also be possible there. While the 𝜏 decays come
with a decreased kinematically available range due to the finite mass of the mother lepton, they have
the big advantage that there are no other background reactions. This means that the explanation as
a unitary-coupled-channel effect (see section 4.2.4) is definitely off the table if the 𝑎1(1420) signal
would be observed in the 𝑓0𝜋 P wave of the 𝐽𝑃𝐶 = 1++ sector in 𝜏 decays. The reason is that there
does not exist a Deck-like process as in Figure 4.15 that the 𝜌𝜋 S wave could couple to in order
to create a peak at 1.4 GeV. Since 𝜏 decays happen via the weak interaction, they provide a very
gluon-poor environment (in contrast to the gluon-rich diffractive production at COMPASS) which
makes productions of meson molecules or tetraquarks probably unlikely as well.
These very promising 𝜏-decays are currently investigated by the BELLE collaboration [7], already

presenting hints for the 𝑎1(1420) in preliminary results of a partial-wave analysis [8].

4.7.2 The 𝝅KK Final State

If the rescattering interpretation is correct, the 𝑎1(1420) should also appear in the 𝐽𝑃𝐶 = 1++ 𝑓0𝜋 P
wave of the 𝜋KK final state, since the 𝑓0(980) can not only rescatter to 2𝜋 as it was needed for the
3𝜋 final state, but also back to KK. Here, we would also have the opportunity to directly observe the
impact of such a rescattering on the source channel, the K∗K partial wave. Since events from the K∗K
final state rescatter to the 𝑓0(980)𝜋 final state, we should expect some decrease in the intensity at
1.4 GeV of the 𝐽𝑃𝐶 = 1++K∗K S wave. Having said that, interference with the ground state 𝑎1(1260)
and its radial excitation 𝑎1(1640) also play an important role, making an exact statement very difficult
at this stage.
The COMPASS experiment is the perfect place to study this final state, therefore, the next chapter 5

will discuss the event selection of the 𝜋KK final state and chapter 6 will provide a first look at the
subsequent PWD.

4.8 Conclusion

To conclude this chapter, let us summarize the results again. First, we demonstrated that interpretations
of the 𝑎1(1420) as a radial excitation, a hadronic molecule, a tetraquark, or an effect from a unitary
incorporation of the Deck background all come with problems, making them unlikely. We discuss the
interpretation as a triangle singularity from a rescattering process through the intermediate K∗K state
and present different methods to calculate the corresponding amplitude. We successfully demonstrated
that the resulting TSM shows a better fit quality compared to a BWM of a hypothetical new 𝑎1(1420)
resonance. This is true for all but one of the systematic studies, despite the fact that the BWM has
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two parameters more that can directly modify the actual line shape of the resonance, while for the
TSM, this line shape is completely determined by the particles involved in the rescattering process. At
the same time, all systematic studies of the TSM are performing better than the main fit model of
the BWM. We estimate the systematic uncertainties for the two models to be R2

red,TSM = 4.59+0.13
−0.40

and R2
red,BWM = 4.87+0.09

−0.48. The asymmetric uncertainties are obtained by calculating the RMS of the
difference to the main fit model of all systematic studies with larger R2

red value than the main fit model
for the upper uncertainty and all systematic studies with a lower value for the lower uncertainty.
The experimental uncertainties and the nature of the problem itself make it impossible to prove

the origin of the signal with certainty from this decay channel alone, therefore, other reactions like
𝜏 decays or the 𝜋−K0

S K0
S final state have to be investigated. Following Occam’s razor principle, we

should favor the explanation as a triangle singularity, since it does not need extra assumptions and
describes the data even slightly better than competing models. Due to the recent publication of an
earlier stage of these studies [50], the 𝑎1(1420) is now omitted from the particle listings of the PDG
since it is interpreted as the manifestation of the 𝑎1(1260) in the 𝑓0(980)𝜋 decay channel.
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CHAPTER 5

Kaons at COMPASS

The COMPASS experiment gives access to many different final states. The biggest dataset for
diffractive 𝜋− + 𝑝 scattering was obtained in the 𝜋−𝜋+𝜋− + 𝑝 final state1 [31] and some results were
already discussed in the previous chapter. In the past, also investigations of the 𝜋−𝜋0

𝜋
0 final state

were performed [39, 57], coming with a strong reduction in the number of selected events due to
shortcomings in the photon-detection acceptance. But in addition to purely pionic final states, also
many studies with final-state kaons (some with pion beam and some with kaon beam) were already
performed, such as K−𝜋+𝜋− [58], 𝜋−K+K− [9], 𝜋−K0

S and K−K0
S [59]. The last two use the same

skimming for events with K0
S that is described in section 5.2.1. But also a first look at the here discussed

𝜋
−K0

S K0
S final state was already performed in [9]. Note that we consider only strong interaction at the

production vertex. The effects from em and weak interaction are only relevant for the decays of the
mentioned final-state particles, i.e. the decay of the 𝜋0 and the kaons, respectively, since they cannot
decay strongly.

5.1 Possibilities at the COMPASS Experiment

The COMPASS experiment provides huge amounts of data containing many different final states.
Most of them originate from a pion beam, where this beam pion is excited to some resonance by
exchanging a Pomeron with the target proton. However, since COMPASS uses a secondary beam,
some small fraction of 2.4 % is kaons ([11], Table 2), providing access to excited kaons as well, though
with drastically reduced statistics. Another way on how to access kaon resonances is by looking at
final states with two kaons and a pion. Here, the beam is also required to be a pion beam due to the
zero net-strangeness in the final state.

5.1.1 Final States with Charged Kaons

Already analyzed was the final state with two oppositely charged kaons and a negative pion. However,
the accessible resonance mass region only starts at roughly 1.5 GeV ([9], FIGURE 4), so one will
not be able to look for the 𝑎1(1420) in this final state. The main reason is the necessity to positively
identify at least one of the negatively charged particles as a kaon, but the RICH only allows for the
1 The final states discussed in this chapter all include the recoil proton, which is vital for the determination of the reaction.
But since it is the same for all final states, we will omit it from now on for brevity.
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identification of kaons in a very restricted momentum range. Here, the idea came up to look for neutral
kaons instead and by this circumventing the restrictions of the RICH detector.
Neutral kaons have a finite life time, therefore, they can be detected as a displaced Secondary Vertex

(SV) of two charged tracks, a so-called 𝑉0 particle2

5.1.2 The 𝝅−K0K0 Final State

This final state is very similar to the huge 3𝜋 data set that was analyzed thoroughly by the COMPASS
collaboration some of which’s results were published in [31]. In both cases we deal with three
pseudoscalar particles.

Possible Resonances

The beam pion has isospin 𝐼𝜋 = 1 and since the exchanged Pomeron 𝐼𝑃 does not have quark content3 –
and with this no isospin, 𝐼𝐼𝑃 = 0 – the resonance 𝑋− is required to have isospin 𝐼𝑋 = 1 as well.
Since the Pomeron has isospin 𝐼𝐼𝑃 = 0, it would have to decay into at least two pions, resulting in a𝐺-

parity𝐺 𝐼𝑃 = +. Thismeans for the resonance 𝑋− follows𝐺𝑋 = −. From thiswe can extrapolate to the𝐶-
parity of the neutral isospin-triplet partner of the resonance via 𝐺 := 𝐶 (−1)𝐼 ⇒ 𝐶𝑋 = 𝐺𝑋 (−1)𝐼𝑋 = +.
QNsn summarize some of the possible QNs of the resonance:

𝐼
𝐺 [𝐽𝑃𝐶] (𝑋) = 1− [𝐽𝑃+] .

For positive parity this results in 𝑎𝐽 := 1− [𝐽++] and for negative parity we obtain 𝜋𝐽 := 1− [𝐽−+].
Before we can make any statements on possible decay chains, let us first have a look at the two-body
subsystems.

Possible Isobars

We have the following QNs for the final-state particles 𝜋−K0K0:

𝐼
𝐺 [𝐽𝑃] (𝜋−) = 1− [0−], 𝐼

𝐺 [𝐽𝑃] (K0) = 𝐼𝐺 [𝐽𝑃] (K0) = 1
2
[0−] .

Combining the isospins of the two kaons yields

K0 ⊗ K0
=

��1
2 , +

1
2
〉
⊗

�� 1
2 ,−

1
2
〉
=

1
√

2

��1, 0〉 ⊕ 1
√

2

��0, 0〉,
2 “𝑉”, since its visible decay topology has the shape of the letter “V”: no visible incoming track, but two visible outgoing
tracks. And “0”, because the particle must have no charge, otherwise it would leave a track in the detectors and could not
decay into two charged particles that create tracks (no doubly-charged mesons were found, yet, and they would contradict
the simple 𝑞𝑞′ quark model, requiring at least an extension to tetraquarks).
3 In first order approximation the Pomeron can be understood as a two-gluon exchange, or for higher order as a gluon ladder.
This “state” is possible to achieve, because gluons can interact with each other, since they carry color charge themselves
unlike their Quantum Electro Dynamics (QED) equivalent, the photon.
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and of the pion with one of the kaons yields

𝜋
− ⊗ K0

=
��1,−1

〉
⊗

��1
2 , +

1
2
〉
=

1
√

3�
���HHHH

�� 3
2 ,−

1
2
〉
⊕

(
−
√︂

2
3

) �� 1
2 ,−

1
2
〉
,

or
𝜋
− ⊗ K0

=
��1,−1

〉
⊗

��1
2 ,−

1
2
〉
=
�

���HHHH

�� 3
2 ,−

3
2
〉
,

of which in both cases the 𝐼 = 3
2 states will not contribute, since a simple 𝑞𝑞-meson can only have

𝐼 ≤ 1. It follows that only the K0 can form an isobar resonance together with the pion.
For the total spin 𝐽, we have to combine the spins 𝑆1 and 𝑆2 of the daughter particles with the orbital

angular momentum 𝐿 between the two. Since all three particles are pseudoscalars, their combined
spin is 𝑆 = 0 in both possible isobar subsystems K0K0 and 𝜋−K0, resulting in 𝐽 = 𝐿. For the parity we
obtain the expression 𝑃 = 𝑃1𝑃2(−1)𝐿 = (−1)𝐿 , since all three particles have negative parity.
For the 𝐶-parity we can first note that the 𝜋−K0 system is not an eigenstate of this QN, simply due

to its negative net charge. For K0K0 we have to use a trick, similar to a 𝜋+𝜋− system. Switching the
places of the two particles, i.e. acting with the parity operator on them, does exactly the same as
turning each particle into its antiparticle, i.e. acting with the charge-conjugation operator on them4,
thus, 𝐶 = 𝑃 = (−1)𝐿 .

𝐽
𝑃𝐶 (K0K0) = [even]++ or [odd]−− 𝐽

𝑃𝐶 (𝜋−K0) = [even]+ or [odd]−.

Now, we have to combine these 𝐽𝑃𝐶 states with the possible isospin states from above. In the case
of 𝜋−K0 we only have one possibility, giving us:

𝐼 [𝐽𝑃𝐶] (𝜋−K0) = 1
2 [even]

+ or 1
2 [odd]

−
=: K∗−𝐽 .

For K0K0 we have four possible combinations. Here, the 𝐺-parity QN helps to decide which ones
are possible. Since the resonance has 𝐺𝑋 = − and the bachelor particle is a 𝜋− with 𝐺 𝜋 = − as well,
we know that the 𝐺-parity of the isobar system has to be positive, 𝐺 = +. For isospin 𝐼 = 1 it follows
now 𝐶 = 𝐺 (−1)𝐼 = − and for 𝐼 = 0 we obtain in the same way 𝐶 = +, leaving only two of the four
combinations:

𝐼
𝐺 [𝐽𝑃𝐶] (K0K0) = 1+ [odd−−] or 0+ [even++] = 𝜌odd or 𝑓even.

We will constrain ourselves for now to a total spin of 𝑆𝜉 ≤ 4 for the isobar 𝜉 and, therefore, to the
particles:

𝜉
K0K0 ∈ { 𝑓0, 𝑓2, 𝑓4, 𝜌, 𝜌3} and 𝜉

𝜋
−K0 ∈ {K∗−0 ,K

∗−
,K∗−2 ,K

∗−
3 ,K

∗−
4 }.

Possible Decay Channels

Now, we have to figure out which of the possible resonances can decay to which possible isobars
and with which orbital angular momentum. For this, we constrain ourselves to an orbital angular
momentum 𝐿 ≤ 4. The procedure to determine the possible final states is the following:
We start with the decay channel 𝜉𝜁 , where 𝜉 is the isobar K0K0 or 𝜋−K0 and 𝜁 is the bachelor

4 None of them has spin, which would have to be swapped as well
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Table 5.1: Possible resonances for the channels 𝑓even𝜋
− and K∗−evenK

0 (left) and 𝜌odd𝜋
− and K∗−oddK

0 (right) for
any possible 𝐿 ≤ 4.
Note: The channels 𝜌odd𝜋

− are not possible within the final state 𝜋−K0
S K0

S , see section 5.1.3 for an explanation.

𝜉𝜁 𝑆𝜉
𝑃𝜉 𝐿 𝑃𝑋 𝐽𝑋 𝑋

−

0 − 0 𝜋

1 + 1 𝑎1
𝑓0𝜋
− 0+ 2 − 2 𝜋2

K∗−0 K0 3 + 3 𝑎3
4 − 4 𝜋4
0 − 2 𝜋2
1 + 1, 2, 3 𝑎1, 𝑎2, 𝑎3

𝑓2𝜋
− 2+ 2 − 0, ..., 4 𝜋, ..., 𝜋4

K∗−2 K0 3 + 1, ..., 5 𝑎1, ..., 𝑎5
4 − 2, ..., 6 𝜋2, ..., 𝜋6
0 − 4 𝜋4
1 + 3, 4, 5 𝑎3, 𝑎4, 𝑎5

𝑓4𝜋
− 4+ 2 − 2, ..., 6 𝜋2, ..., 𝜋6

K∗−4 K0 3 + 1, ..., 7 𝑎1, ..., 𝑎7
4 − 0, ..., 8 𝜋, ..., 𝜋8

𝜉𝜁 𝑆𝜉
𝑃𝜉 𝐿 𝑃𝑋 𝐽𝑋 𝑋

−

0 + 1 𝑎1
1 − 0, 1, 2 𝜋, 𝜋1, 𝜋2

(𝜌𝜋−) 1− 2 + 1, 2, 3 𝑎1, 𝑎2, 𝑎3
K∗−K0 3 − 2, 3, 4 𝜋2, 𝜋3, 𝜋4

4 + 3, 4, 5 𝑎3, 𝑎4, 𝑎5
0 + 3 𝑎3
1 − 2, 3, 4 𝜋2, 𝜋3, 𝜋4

(𝜌3𝜋
−) 3− 2 + 1, ..., 5 𝑎1, ..., 𝑎5

K∗−3 K0 3 − 0, ..., 6 𝜋, ..., 𝜋6
4 + 1, ..., 7 𝑎1, ..., 𝑎7

particle 𝜋− or K0, respectively. Here, we take the total spin of the isobar 𝑆𝜉 and its parity 𝑃𝜉 and use
them to calculate the parity 𝑃𝑋 for any possible orbital angular momentum 𝐿 via 𝑃𝑋 = −𝑃𝜉 (−1)𝐿 .
Then, we combine 𝑆𝜉 and 𝐿 to any possible combination of 𝐽𝑋 using the fact that the bachelor spin is
always 0. And finally, we can identify the resulting resonance from the list of the possible resonances.
Table 5.1 shows the results of these calculations for all possible decay channels.
This table is nice, because one can directly read off where and how each resonance can be produced.

However, it might be more useful to invert this table and show for all resonances how their respective
decay channels look like. This can be found in table 5.2, where we use the spectral notation for the
orbital angular momentum. We again constrain ourselves to 𝐿 ≤ 4 and also 𝐽 ≤ 4.
We see that this data set is very rich and would allow for a detailed investigation of these resonances

in several different decay channels as well as a direct extraction of the relative branching-fraction
ratios of all these channels.
Sadly, the 𝑎0 resonance is not accessible via this reaction, but on the other hand the explicitly

spin-exotic candidate 𝜋1 is.

The higher the orbital angular momentum, the more suppressed the corresponding decay channel
will be. Therefore, in the Dalitz plots we will most likely only be able to see 𝑆 and 𝑃 waves. Also
the ground states in the radial excitation spectra of K∗−3 , K

∗−
4 and 𝑓4 will most likely be already too

heavy to be observed as an isobar in the decay of a resonance. The lightest 𝑓4 meson would be the
𝑓4(2050) according to the PDG making it visible as an 𝑓4(2050)𝜋− isobar decay only for resonances
with masses ≳ 2.2 GeV. For 𝐾∗−3 we would see the 𝐾

∗−
3 (1780)K0

S isobar decay only for resonances
with masses ≳ 2.28 GeV and for 𝐾∗−4 it would be the 𝐾

∗−
4 (2045)K0

S isobar decay for resonances with
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Table 5.2: Resonances with their respective decay channels. Each column corresponds to an isobar-bachelor
pair and each entry of the matrix corresponds to the allowed orbital angular momentum 𝐿 ≤ 4 in spectroscopic
notation 𝑆, 𝑃, 𝐷, 𝐹, 𝐺.
Note: The channels 𝜌odd𝜋

− are not possible within the final state 𝜋−K0
S K0

S , see section 5.1.3 for an explanation.

𝑋
− → 𝜉𝜁 𝑓0𝜋

−, K∗−0 K0 (𝜌𝜋−,) K∗−K0
𝑓2𝜋
−, K∗−2 K0 (𝜌3𝜋

−,) K∗−3 K0
𝑓4𝜋
−, K∗−4 K0

𝑎1 𝑃 𝑆, 𝐷 𝑃, 𝐹 𝐷, 𝐺 𝐹

𝑎2 −− 𝐷 𝑃, 𝐹 𝐷, 𝐺 𝐹

𝑎3 𝐹 𝐷,𝐺 𝑃, 𝐹 𝑆, 𝐷, 𝐺 𝑃, 𝐹

𝑎4 −− 𝐺 𝐹 𝐷,𝐺 𝑃, 𝐹

𝜋 𝑆 𝑃 𝐷 𝐹 𝐺

𝜋1 −− 𝑃 𝐷 𝐹 𝐺

𝜋2 𝐷 𝑃, 𝐹 𝑆, 𝐷, 𝐺 𝑃, 𝐹 𝐷, 𝐺

𝜋3 −− 𝐹 𝐷,𝐺 𝑃, 𝐹 𝐷, 𝐺

𝜋4 𝐺 𝐹 𝐷,𝐺 𝑃, 𝐹 𝑆, 𝐷, 𝐺

masses ≳ 2.55 GeV. For these reasons we will strengthen the constraint on the isobar spin to 𝑆𝜉 ≤ 2.

5.1.3 The Physical 𝝅−K0
SK0

S Final State

So far we only considered the pure isospin states K0 and K0. However, in nature theses are not the
states that are actually observed. They mix to form the physical states K0

S and K0
L which consist each to

50 % out of K0 and K0. So by requiring both final state kaons to be a K0
S we have a 50 % chance for the

K0 to be a K0
S and another 50 % for the K0 to be a K0

S , as stated by the PDG. Therefore, only 25 % of
the 𝜋−K0K0 final state result in the physically observed state of interest, 𝜋−K0

S K0
S . Similarly, one would

obtain the 𝜋−K0
LK0

L final state in 25 % of all cases and the 𝜋−K0
S K0

L final state in the remaining 50 %.

No 𝝆𝑱 Isobars

Since the final-state kaons are identical, they have to follow the Bose statistics. This means that the
full wave function has to be symmetric under exchange of these two particles. We start with the
symmetrized wave function

1
√

2

(
|𝑝1, 𝑝2

〉
+ |𝑝2, 𝑝1

〉)
,

where 𝑝𝑖 denotes the four-momentum of the corresponding K0
S . If we expand each component into its

partial waves, we obtain

|𝑝1, 𝑝2
〉

=
∑︁
𝐽,𝑀

√
2𝐽 + 1𝐷𝐽𝑀,0(𝜙1, 𝜃1, 0) |𝐽, 0

〉
,

|𝑝2, 𝑝1
〉

=
∑︁
𝐽,𝑀

√
2𝐽 + 1𝐷𝐽𝑀,0(𝜙2, 𝜃2, 0) |𝐽, 0

〉
,

where 𝐷𝐽𝑀,0 denotes the Wigner-𝐷 matrices as detailed in appendix A.3.

109



Chapter 5 Kaons at COMPASS

Since both daughters are scalars and the spin projection 𝑀 is an additive QN, it has to be 𝑀 = 0
for the 𝜌𝐽 meson. This simplifies the expression because the 𝜙𝑖 dependence drops out due to
𝐷
𝐽
0,0(𝜙𝑖 , 𝜃𝑖 , 0) ≡ 𝑑

𝐽
0,0(𝜃𝑖). Now, we can relate the two 𝜃𝑖 angles via 𝜃2 = 𝜋 − 𝜃1, since they are

produced back-to-back in the helicity frame where this partial-wave decomposition is performed.
Using the following property of the 𝑑-function 𝑑𝐽0,0(𝜋 − 𝜃) = (−1)𝐽𝑑𝐽0,0(𝜃) brings us to

𝐷
𝐽
0,0(𝜙2, 𝜃2, 0) = 𝑑

𝐽
0,0(𝜃2) = 𝑑

𝐽
0,0(𝜋 − 𝜃1) = (−1)𝐽𝑑𝐽0,0(𝜃1).

For the symmetrized wave function follows accordingly

1
√

2

(
|𝑝1, 𝑝2

〉
+ |𝑝2, 𝑝1

〉)
=

1
√

2

∑︁
𝐽

√
2𝐽 + 1

(
1 + (−1)𝐽

)
︸         ︷︷         ︸

0 for odd 𝐽

𝑑
𝐽
0,0(𝜃1) |𝐽, 0

〉
.

This expression shows that for odd total spin 𝐽 the corresponding partial wave vanishes. Therefore,
the decay 𝜌odd → K0

S K0
S is forbidden.

Average Flight Distance of Neutral Kaons

We observe this final state through diffractive scattering of a 190 GeV 𝜋
− beam off of a fixed liquid-

hydrogen target. The recoiling proton only takes a few hundred MeV of energy, leaving each of
the three remaining final-state particles on average with roughly 60 GeV. A lot of simplifications
play inside here, but at this stage we are only interested in a rough estimate for the flight path of
the neutral kaons. For a Lorentz-boosted particle one can calculate its average flight path in the
LAB system via ℓ = 𝛽𝛾𝑐𝜏, however this is a statistical process following an exponential decay law.
According to the PDG for K0

S we have 𝑐𝜏 = 2.6844 cm, therefore, at the given energy it will fly
a distance of approximately 3.24 m on average before decaying and creating a SV. Evaluating the
Cumulative Distribution Function (CDF) of the exponential distribution for a mean of 3.24 m gives us
approximately 95.4 % of all K0

S decaying within ≤ 10 m. Already at 40 m there are basically no K0
S left

making it very unlikely that one of them might escape the detector setup in longitudinal direction5.
For the K0

L we have 𝑐𝜏 = 15.34 m resulting in an average flight length of 1.8 km for the given
energy, while the COMPASS detector spans roughly 50 m from the target to the last tracking detector.
Using this as a mean value for the CDF, only ≤ 3 % of all K0

L will decay within the whole COMPASS
spectrometer rendering it basically impossible to detect them via the presence of a SV.

K0
S Decays

Constraining us to K0
S gives us another restriction on the detectability: According to the PDG a K0

S
will decay in ∼ 70 % of all cases into a pair of charged pions, 𝜋+𝜋−, the other ∼ 30 % will be 𝜋0

𝜋
0

5 The center of the target cell is located at approximately −48 cm in the COMPASS reference system. The first tracking
detector after the target is the silicon detector SI04 and lies at roughly −12 cm and the last tracking detector is the GEM
GM11 at roughly 48 m or, more likely, the MWPC PB06 at roughly 46.3 m due to its generally larger areal coverage. It is also
centered on the beam while GM11 was placed away from the beam and, thus, only covers a small asymmetric range in the
azimuthal angle.
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which immediately6 decay each into a pair of photons. Since neither the K0
S nor the photons leave a

track in the tracking detectors, it is nearly impossible to find the position of the SV.
In case of exactly one K0

S decaying to two neutral pions, one would require exactly four photon
clusters coming from the same SV. Then, one would have to guess the correct position of the SV such
that two pairs of photons would result in an invariant mass of a 𝜋0, and the combined invariant mass
of these two 𝜋0 would be the mass of a K0

S . The position of the SV has three unknowns (𝑥, 𝑦 and
𝑧 position) which can be fixed by the mass constraints for twice 𝑚2𝛾 = 𝑚

𝜋
0 and once 𝑚4𝛾 = 𝑚

K0
S
.

However, this would obviously work for all three combinations of combining four photons to two pairs.
So one will have to do this calculation for all combinations. The correct one could be determined by
the remaining constraint that the resulting K0

S momentum direction has to cross with the Primary Vertex
(PV). This makes the system of equations overdetermined and allows to reject false combinations.
More details on how this procedure would mathematically work can be found in appendix D.1.
In case both K0

S would decay to neutral pions, the situation would be even more complicated because
now, one has to deal with eight photon clusters. This would be a combinatorial nightmare.

Requiring both K0
S to decay into charged pions reduces the detectible 𝜋

−K0K0 events further to
49 %. Taking one charged and one neutral decay mode would yield 42 %, leaving the remaining 9 %
for twice the neutral mode. Therefore, by selecting only 𝜋−K0

S K0
S where both K0

S decay into charged
pions, we have a total reduction down to approximately 12.25 % of all 𝜋−K0K0 events.
Although it seems that one could gain a lot more data by including these other possibilities, the

unification of all of them into one big data set is highly questionable. While the last case with eight
photons is definitely not worth the effort, already using the final state with only one K0

S decaying via
its neutral charge mode would change the detector acceptance drastically by requiring information
from ECALs, most likely making it worse. One would also have to create two different samples of MC
data for the acceptance determination, and in addition the background processes would be completely
different.

5.1.4 Final States with K0
L

The 𝜋−K0
S K0

L final state would yield additional 35 % of 𝜋−K0K0 events (50 % for the 𝜋−K0
S K0

L final
state itself and of this 70 % by looking only for the charged decay mode of the K0

S .) One could try to
use the HCALs in order to identify K0

L as a cluster of deposited energy without a track leading to it.
However, the energy resolution of the HCAL is not very good7 leading to a bad determination of the K0

L
energy and momentum.
However, using the HCALs only as a trigger (one cluster without assigned track) one could determine

the K0
L momentum from the missing momentum of a well-reconstructed 𝜋

−K0
S subsystem. Its

momentum direction could be obtained, similarly to the case of photons, by taking the connecting line
of the HCAL cluster with the PV. This could be used as a crosscheck for the direction of the missing
momentum. Its energy would be obtained from its momentum by assuming the nominal K0

L mass, since

6 The PDG lists 𝑐𝜏 = 25.3 nm for the 𝜋0, resulting in an average flight path of ∼ 19 µm for an energy of 100 GeV. With a
vertex resolution in the order of a few mm along the beam direction, this becomes impossible to resolve. Therefore, it can
be assumed that the decay vertex of the 𝜋0 is located directly at its creation point for all practical purposes.
7 For a particle with energy of 60 GeV, the uncertainty of the measurement would be ∼ 9 GeV for HCAL1 and ∼ 8 GeV for
HCAL2, according to [11].
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a single neutron8 in the final state would basically be impossible. It would have to be accompanied
by an antiproton9 (negatively charged particle from the PV) to fulfill baryon-number conservation,
however, antiprotons are quite well identified by the RICH detector over a large momentum range
(within 18 GeV < 𝑝p < 100 GeV) and can be excluded almost completely by performing a veto cut on
the required negatively charged primary track. Also, final states with baryons come with a very high
mass threshold of ∼ 2.4 GeV reducing their likelihood even further.
This final state would start with roughly three times more events than 𝜋−K0

S K0
S (only considering

charged decay modes for K0
S in both cases), however, its acceptance and purity will most likely be

worse. Similarly to the 𝜋−K0
S K0

S events with neutral K0
S decay mode, also here the event topology

would be quite different requiring also different MC data with different background contributions.
Additionally, this final state would allow for the 𝜌odd𝜋

− decay channels, since the neutral kaons are now
distinguishable and the argument with Bose symmetrization does apply here anymore. A combined
treatment of 𝜋−K0

S K0
L events with 𝜋

−K0
S K0

S events will therefore be questionable, however, it could be
an interesting project on its own.
The final state 𝜋−K0

LK0
L cannot be studied without direct energy measurements from the HCALs,

because both K0
L would only appear as missing energy and missing momentum, rendering it impossible

to assign an individual value to each of them.

5.2 Event Selection of 𝝅−K0
SK0

S

At COMPASS, the data taking is split into runs, each consisting of at most 200 spills. One such
spill is a short period of roughly 5 s where the COMPASS experiment receives beam from the SPS.
During each spill in the order of 105 triggered diffractive events are recorded. The data taking is, then,
separated into periods of two consecutive weeks where no work on the setup was allowed in between
the runs to ensure consistent data. During the years 2008 and 2009, there were recorded six such
periods with negatively charged secondary hadron beam in total: 2008_W33, 2008_W35, 2008_W37,
2009_W25, 2009_W27 and 2009_W35.
Then, the production of the data is done in an iterative procedure, where one checks the quality of

the resulting events, identifies issues and reproduces all data again. Such a production at COMPASS
is called Slot and it performs tracking, vertexing, clustering and so forth, such that the user does
not have to deal with the individual detector responses and their caveats during the event selection,
but can focus on the specifics of the final state of interest. The first one for hadron beam on a proton
target that was used for analyses leading to publications was Slot3. From this the big analysis of
the 𝜋−𝜋+𝜋− final state was performed, e.g. see [31]. Looking at final states with neutral pions, one
identified problems with the calibrations of the ECALs, therefore, a reproduction Slot4 was performed.
However, when repeating the analysis of the 𝜂 (′)𝜋− final state, more issues were found and fixed,
leading to the current Slot5 production with the following additional changes:

• The 𝜋0-calibration of the ECALs was improved where one adjusts the response of individual
calorimeter cells such that the 𝜋0 peak in the 𝛾𝛾 invariant-mass spectrum is centered at the
nominal 𝜋0 mass.

8 This is the lightest neutral hadron next to the K0
L that lives long enough to reach the HCALs before decaying.

9 Also an antineutron would be possible, however, this could be excluded by requiring only one HCAL cluster without
assigned track.
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• The first few runs showed a shift in the trigger timing. In Slot4 analyses, this could be cured
by shifting the beam time for the first few runs accordingly during the event selection and
before applying any cuts on it. Before performing the new reproduction, the trigger timing was
recalibrated such that a beam-time shift is not necessary anymore.

• A run-by-run time calibration of the RPD was performed and a new procedure to cut on “good”
proton track was implemented [60].

In order to make the enormous amount of data easier accessible, the usual practice is to perform
a rough skimming of the data, where one focusses on a specific trait of the events, e.g. the number
of charged tracks coming from the PV. For the selection of 𝜋−K0

S K0
S such a trait is the existence of a

SV, which in PHAST is defined as any crossing of a positive and negative track. The decision on
which cuts to apply during the skimming was still done on Slot4. The skimming itself and also the
following studies and selection steps were repeated for the new Slot5 production. This analysis is the
first to use this new Slot5 production and a comparison with the new and the old production was
performed during the internal COMPASS release procedure, see appendix D of [61]. Besides an
increase of roughly 10 % in selected events due to the improved RPD treatment, no major difference in
the kinematic distributions could be found.

5.2.1 Skimming for K0
S

To determine the best set of cuts for the skimming, two runs of 2008 were chosen, run 6959510 and
run 69754. As mentioned in the introduction of this section, this decision was made on the Slot4
production. However, since the cuts are very basic and they only serve for a first reduction of the data,
the main statements still hold. In total the file size of these two runs is 77 GB and the total file size for
the year 2008 amounts to 34.6 TB, approximately double for both years 2008 and 2009 combined. To
reach the goal of a reduction to ∼ 6 TB for both years combined, similar to the skimming for three
charged hadrons that was used for the 𝜋−𝜋+𝜋− and 𝜂 (′)𝜋− final states, one needs a reduction down to
∼ 6.7 GB for the two analyzed runs.
The final requirements of the skimming are the following:

• It has to exist a Best Primary Vertex (BPV) in the event, which is defined in PHAST as the PV
with the lowest 𝜒2 during the vertex fitting. A PV is any crossing of the beam with an arbitrary
amount of charged tracks measured by the COMPASS spectrometer.

• The BPV has to lie roughly within the target region, specifically between −100 cm and 0 cm in
the COMPASS reference system where the 40 cm long target cell is centered at −48 cm.

• At least one negatively charged track has to leave the BPV. This is needed in order to have the
primary 𝜋− from the 𝜋−K0

S K0
S final state.

• At most five charged tracks leave the BPV. Five tracks would correspond to the case where the
two K0

S decay almost immediately after creation and still within the vertexing resolution of the
BPV.

10 Only the first 10 files of this run were taken.
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• At least one SV has to exist, which is any crossing of a positively charged track with a negatively
charged one (excluding beam tracks, i.e. tracks with an assigned detector hit upstream of
the target). Assigning the mass of a pion to the daughter particles, the invariant mass of the
two-pion system has to lie within 50 MeV of the nominal K0

S mass as stated by the PDG. This
big window still leaves the possibility to fit the mass spectrum and obtain a good separation of
the K0

S signal and the underlying background. By only requiring “at least one” SV, one also
allows for subsequent selection of final states with exactly one K0

S , e.g. [59], or more than two
K0

S , making the skimming more versatile.

The usage of these requirements yielded a reduction to 7.7 GB and a resulting estimate of 3.5 TB for
the year 2008. The actual file size after the skimming on Slot4 data amounts to 3.4 TB for 2008,
showing that the estimation worked quite well. For the skimming of Slot5 the full file size for both
years combined is 6.7 TB. The total amount of events remaining after the skimming is 1.07 × 109.

5.2.2 Preselection for 𝝅−K0
SK0

S

First, a preselection is performed, where we try to reduce the background by applying all cuts that
do not require a good definition of a K0

S . The resulting events can, then, be used to determine the
requirements on the SVs. A subsequent fine selection will ensure the quality of the data, meaning
correct particle ID, exclusivity and four-momentum conservation.
During the studies it turned out that the inclusion of events with more than two charged tracks

leaving the BPV resulted in only few events and in addition a distorted shape of the invariant-mass
spectra, see appendix D.2. Therefore, it was decided to already cut accordingly during the preselection.

Styles for Histograms

There are two ways to show the impact of a cut on an event selection. For one of them one applies the
cuts one after another and directly sees the impact of each of them. In the following, this style will be
called “Waterfall-Style” and has the advantage that it follows the natural flow of how one develops an
event selection. One starts with everything, looks at a specific distribution, e.g. the 𝑧BPV-position of
the BPV inside the target, and cuts on it. The disadvantage is that for the decision on how to actually
perform the cut one might be biased from the huge amount of background that is still present in the
data.
The second way is to look at a given spectrum after applying all cuts that do not influence the

spectrum directly. In the example of the position of the BPV one would look at the corresponding
𝑧BPV-distribution after applying all other cuts – e.g. on the number of charged tracks and exclusivity
of the event – and, then, decide on where to put the cut ranges on 𝑧BPV accordingly. Like this one has
the lowest possible background when making a decision on where to place the cuts. However, events
that are thrown by more than one cut will never appear in any of the histograms. This can hide some
problems with the detectors that might still be solvable otherwise. Also the determination of a cut
depends on the definition of all other cuts, therefore, one will need to perform it iteratively to find the
optimum for all cuts. For previous analyses at the Technical University of Munich (TUM) a tool
called Antok was created. In order to be able to perform independent crosschecks, the idea was to
implement such a Bonn Event Selection Tool (BEST) for Bonn. But since the implementation of the
ongoing event selections at Bonn was quite different, everybody at Bonn created their own version
of it and an “official” BEST was not created. A description on the working principle of the version
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Figure 5.1: Schematic view of the RPD, [63]

implemented for this project can be found in appendix E. It also serves as a guide on how to transform
an existing Waterfall-Style selection into a BEST-Style selection. Accordingly, the corresponding
histograms will be labeled with “BEST-Style”.
A summary of all cuts can be found at the end of this section 5.2.2.

Trigger

First, we want to make sure that the physics of interest is present in the data. For this, the DT0 trigger
was created as a coincidence of several different detector signals, with a detailed description in [62].

• The aBT has to trigger, which ensures that a particle of the beam is coming towards the target
and a scattering event happened. It is a coincidence of the SciFi FI01X and the Beam Counter
(BC). The latter is a small scintillating disc of 32 mm diameter directly placed in the beam.

• The RPD, used for tracking and identification of recoil protons, has to have a coincidence between
one slab of the inner ring and one of three outer slabs that could be hit afterwards from a particle
flying in a straight line from the target through the hit slab of the inner ring as depicted in
Figure 5.1.

• The veto system, which consists of several detectors, should not trigger. First, no hit in the
hodoscope veto system is allowed, which ensures that we do not have particles from hadronic
interactions in the beam line or particles that are too far away from the actual beam line. Next is
the sandwich veto, which is a calorimeter with a circular hole in the center situated downstream
of the RPD. It guarantees that no particles leave the angular acceptance of the COMPASS
spectrometer. Finally, no coincidence in the two Beam Killers (BKs) is allowed. They are two
scintillating discs located after SM2, separated by a few meters, and similar in design to the BC.
We do not want to select events in which the beam did not interact with the target, which would
be the case if it passes through both of the BKs. The coincidence is important, since otherwise
events would also be discarded where one final-state particle hits one of the BKs by chance.
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Figure 5.2: Beam-time distribution. The gray band denotes the accepted range.

Beam Properties

In order to avoid overlapping events one has to perform a cut on the beam time, meaning the main
trigger time of the event to which all other detectors are tuned to during the beginning of a time
period. This beam time has to be around zero and in the corresponding spectrum in Figure 5.2 one
can clearly identify the main peak and in addition some smaller local maxima in both directions. In
order to already cut most of these pile-up events away, we perform a very rough cut of

��𝑡beam�� ≤ 7 ns
symmetrically around zero. A more refined cut will be performed later during the fine selection, see
section 5.2.3.

For the final state we want to ensure that the beam is a pion in order to be able to employ strangeness
conservation at the PV and, thus, deduce the identity of the charged particle leaving from there
without the kinematic constraints coming from the RICH detector (more on these in section 5.2.3). For
this, we use the CEDARs that are placed in the beam line a few meters in front of the target, which
were calibrated using a likelihood approach, see [64] for details. They also provide a C++ library
(PaCEDARDetector and PaCEDARLikelihood) to extract the relevant information from the PHAST
event tree.

First, we want to make sure that the calibration of the CEDARs exists for the given run. Therefore,
we cut events away where either the current run number does not appear in the calibration file, or if
one or both of the detector-IDs are missing (equal 0) in the calibration file for the given run. This can
either be because there was not enough data in the given run to perform the calibrations, or due to one
or both of the CEDARs not working properly or being excluded from the data taking for the given run.

After this, one can obtain the likelihood L𝑖𝑋 for a given particle species 𝑋 ∈ {𝜋, 𝐾} and each of the
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Figure 5.3: Particle IDentification (PID) of the beam particle as determined by the CEDARs. Only pions are
accepted.

two CEDARs 𝑖 ∈ {1, 2}. These likelihoods are, then, combined to

R = log10

(
L1
𝐾 · L

2
𝐾

L1
𝜋 · L

2
𝜋

)
.

From this definition it is obvious that R < 0 corresponds to a higher pion likelihood while R > 0
corresponds to a higher kaon likelihood. In the end, adjusting these thresholds will always be a
compromise between efficiency, how well a real pion is actually identified as such, and impurity, how
often a real kaon is misidentified as a pion. Therefore, it might be better to cut a bit stronger to achieve
a better purity. In [64] this was studied and it was found out that with the cut R < 0 we obtain a pion
efficiency of roughly 99 % with an impurity of 0.005 %. With roughly 240 000 selected events in
the end, this results in only 12 events where the beam was actually a kaon. Although this is already
very small, the actual number will most likely be even smaller if not zero, since also other cuts like
exclusivity and the RICH veto on the identity of the primary particle (that has to have the same identity
as the beam if exclusivity holds and strangeness conservation is applied) during the fine selection will
also help to throw these “bad” events.

For kaons we would set the cut at R > 4 resulting in an efficiency of roughly 85 % while having an
impurity of 3 %. For everything in between these two cut values no ID will be assigned to the beam
particle. The distribution of beam-particle IDs can be found in Figure 5.3. Besides of a reduction in
the total number of events not much changes between the two selection-styles.
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Figure 5.4: 𝑧-position of the BPV. The gray band denotes the accepted range.

Properties of the BPV

As mentioned in the introduction of this section, we decided to discard events with more than two
outgoing charged tracks from the BPV, requiring 𝑁BPVout ≤ 2. This cut reduces the amount of data
drastically, but also the amount of background that might come from e.g. events with five charged
pions in the final state.
Next we want to make sure that the BPV actually lies within the target cell and, therefore, a scattering

of the pion off a proton took place during the event. This cut is purely driven by the geometry of the
target cell and, therefore, no further fine tuning is needed. For this, we require

−66 cm < 𝑧BPV < −29 cm.

Like this we cut a bit tighter than actually necessary in order to avoid the inclusion of events where a
scattering happened at the windows of the target cell that are smeared out due to the resolution of the
vertexing.
Another condition is put on the transversal distance of the BPV from the beam axis

𝑟BPV :=
√︃
𝑥

2
BPV + 𝑦

2
BPV < 1.55 cm.

These cuts are in accordance with previous selections [59, 65]. The corresponding histograms can
be found in Figures 5.4 and 5.5.
One can see a small dip in the 𝑧-distribution right in the middle of the broad peak representing the

target cell. [66] showed with MC studies that it can be reproduced by including small Light-Emitting
Diode (LED)s placed in the center of each RPD-slab that were used for the calibration of the detector
during the data taking.
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Figure 5.5: (𝑥, 𝑦)-position of the BPV. Everything inside the red circle is accepted.

Number of Proton Tracks

For the reaction of interest we require exactly one “good” track measured by the RPD. Also for the RPD
a corresponding C++ library exists (RPD_Helper by [63]). The RPD measures the azimuthal angle 𝜙𝑝
of the proton track through the slabs that are hit. The angular uncertainty depends on which outer
slab is hit, since for every odd outer slab half of it lies in a straight line with one inner slab and the
other half with the neighboring inner slab, see Figure 5.1. This reduces the possible size of the slab in
which a hit could have occurred by a factor 2. More on this in the fine selection during the description
of the planarity cut, section 5.2.3.
Since the slabs are read out with Photo-Multiplier Tube (PMT) on both sides, one can obtain the

polar angle 𝜃𝑝 of the proton track by measuring the time difference in which the signal arrives at both
ends. A run-by-run t0-calibration was performed and is described here [60]. This calibrates the RPD
for signals coming from proton tracks. In the note the feature EnableCutOnSlapZPos(-120, 20,
-140, 70) is recommended. If a fake hit e.g. created by noise in the readout of a single slab occurs,
it can create a reconstructed hit position that actually would lie outside of the physical position of the
RPD slabs. Such hits are thrown away by enabling this cut which reduces the number of events with
more than one possible recoil-proton track. All remaining hits are, then, combined to recoil-proton
tracks. For this, we require that every track has one hit in the inner and one hit in one of the three
geometrically-possible outer-ring slabs that lie on a straight line with the PV, see Figure 5.1. These
tracks are called goodProtonTracks and, now, we require the events to have exactly one such track.
If it has zero or more than one, we discard the event. The amount of goodProtonTracks is displayed
in Figure 5.6, where we obtain a strong maximum at 1 with a sharp drop afterwards. Surprisingly, we
have quite a lot of events at the %-level with more than 3 proton tracks for both selection styles.

K0
S Candidates

The final cut of the preselection will reduce a huge amount of unwanted data by requiring at least two
K0

S -candidates. Such candidates are defined as a SV where the invariant mass of the two daughter
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Figure 5.6: Number of goodProtonTracks measured by the RPD. Only events with exactly one are accepted.

particles, each with mass hypothesis of a charged pion, lies within ±50 MeV around the nominal PDG
mass of a K0

S . This window is still broad enough to separate the contributions for the actual K
0
S and

the underlying background during later detailed studies. The number of K0
S -candidates is depicted in

Figure 5.7(a), which shows a very rapid drop-off. Next to it in Figure 5.7(b) one can see the resulting
invariant mass of the K0

S -candidates after the preselection. It has a very sharp peak that is very slightly
shifted to higher masses. But we also still see quite a substantial background contribution below.

Cut-Flow Diagram

Finally, a summary of all of the mentioned cuts is presented in Figure 5.8 in a cut-flow diagram, also
known as waterfall plot since it shows the flow of the selection and one can directly see how many
events are successively removed by each cut.
We see that the biggest impact comes from the cut on 𝑁BPVout ≤ 2, but this is also expected since a

lot more “background” final states become available if we allow for a bigger number. This was one of
the reasons why it was decided to cut on this number already here. The cut on the PID of the beam
reduces the amount of events by ∼ 8 %. This is a bit more than the ∼ 2.4 % of kaons in the beam,
however, this number is obviously impacted by other quantities as well, like the presence of a K0

S in
the final state that is required by the previously discussed skimming. This increases the chance of
beam-kaons, since with at least one kaon in the final state this either means we have another kaon in
the final state or the beam needs to contain an 𝑠-quark as well to conserve strangeness. The final heavy
hitter is the cut on at least two K0

S which is split in two parts, first cutting on at least two SVs and,
then, on at least two K0

S -candidates, which makes the previous cut obsolete, but shows that there is a
substantial amount of SVs that come from other 𝑉0 particles e.g. photons producing an 𝑒+𝑒−-pair in
the close proximity of detector material or are just coincidental crossings of oppositely charged tracks.
However, this style of representing the reduction of events might also lead to slightly wrong
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Figure 5.7: Left: Number of K0
S -candidates before the cut on the number of SVs. The gray area shows

the accepted events. Right: Invariant-mass distribution of the K0
S -candidates at the end of the preselection

(including the cut on at least two K0
S -candidates)

conclusions, especially since cuts at the beginning might seem to remove a lot, but the removed events
could also haven been removed by some other cuts later down the line. Therefore, one can also look at
the BEST-Style version of this plot in Figure 5.9, where we display only the events that are exclusively
removed by a specific cut, in other words the number of events that would still be there if we would
not apply the corresponding cut. Also here we see immediately that the cut on 𝑁BPVout has as expected
the biggest impact, followed by the cut on requiring more than one K0

S -candidate. We do not see any
entries for the cut on the number of SVs because it is a requirement for the cut on K0

S -candidates.
Similarly, the existence of a CEDAR calibration is needed for the cut on the beam PID, therefore, its
entry is zero as well.

5.2.3 Fine Selection of 𝝅−K0
SK0

S

Before we continue with the selection, we have to properly define the criteria when we want to accept
a SV as a K0

S .

K0
S Selection

First, we have a look at different criteria in order to classify the SVs. Initially, we included events with
five outgoing charged particles from the BPV, in order to allow for a selection of the case where both
K0

S decay within the vertexing resolution. Such a class will be called “close” K0
S . An even amount

of charged particles coming from the BPV cannot conserve the negative charge of the beam particle
and, therefore, it is forbidden. However, if the extrapolated trajectory of one of the two daughters of
the K0

S is closely passing by the BPV within the vertexing resolution, this charge conservation can
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Figure 5.8: Cut-flow diagram of the preselection.

still be achieved. This defines the second class of “shared” K0
S , where one of the daughter tracks is

also associated with BPV by PHAST. The third and final class are the “far” K0
S , where none of the

daughters comes from the BPV. Depending on 𝑁BPVout , we have to require a certain amount of each of
the three different classes to accommodate for all outgoing tracks from the BPV:

𝑁
BPV
out = 1: two “far” K0

S

𝑁
BPV
out = 2: one “far” K0

S and one “shared” K0
S

𝑁
BPV
out = 3: one “far” K0

S and one “close” K0
S

or: two “shared” K0
S

𝑁
BPV
out = 4: one “shared” K0

S and one “close” K0
S

𝑁
BPV
out = 5: two “close” K0

S

Let us have a look at two quantities that let us differentiate between the three classes. First in mind
comes the separation of the SV from the BPV. Using the simple picture from above, one would expect
a “close” K0

S to also be geometrically close to the BPV in order to be able to have both daughter
particles in common. Similarly for the “shared” K0

S one also needs some closeness in order for one
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Figure 5.9: Number of events that are cut by only the respective cut during the preselection.

of them to be able to pass by the BPV within the vertexing resolution. However, for “far” K0
S one

expects some distance to the BPV. Since the vertex resolution in transversal direction only amounts to
∼ 10 µm, while in longitudinal direction11 we have something in the order of 10 mm, we will only
look at the difference between the 𝑧 coordinates of the BPV and the SV instead of calculating the
actual distance. If we perform the same preselection as described in section 5.2.2, just leaving away
the cut on 𝑁BPVout ≤ 2, we obtain Figure 5.10(a). Here, we see a clear separation of the three classes.
There are substantially more “far” K0

S with large Δ𝑧 := 𝑧SV − 𝑧BPV than for the other two classes. For
both “shared” K0

S and “close” K0
S we see a sharp peak at Δ𝑧 = 0 cm, with a slightly slower drop-off for

“shared” K0
S .

Let us shortly discuss the other peaking structures in Figure 5.10(a). The first peak at Δ𝑧 ≈ −260 cm
most likely corresponds to scattering or the production of secondary particles in the Silicons
SI02 and SI03. The detector thickness is broadened by not only the vertexing resolution, but more
dominantly due to the size of the target cell in which the BPV is located. This creates a ∼ 20 cm
window around the actual detector position making an exact statement impossible at this stage of

11 In [11] values are stated for a 5𝜋 final state of 13 − 16 µm transversal vertexing resolution and 0.75 − 4.7 mm longitudinal
vertexing resolution, but it is expected that these values worsen drastically if one reduces the amount of outgoing tracks to
1 as in our case. However, the order of magnitude should still be valid, especially the big difference between transversal
and longitudinal resolution.
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Figure 5.10: Separation of “far” K0
S (blue), “shared” K0

S (green) and “close” K0
S (red) visualized for the vertex

separation Δ𝑧 = 𝑧SV − 𝑧BPV (left) and the collinearity angle (right). This plot was produced after the preselection
using Slot4 data without the cut on 𝑁BPVout ≤ 2.

the selection12. The structures on the other side of the main peak at ∼ 200 cm could originate from
scattering on the MicroMEGAS MM01 and the DC00.
Secondly, we can compare the direction of the reconstructed K0

S momentum with its expected flight
direction determined from the connecting line between the BPV and its SV. The angle between these
two quantities is called the collinearity angle:

𝛼coll = ∠( ®𝑝K0
S
, ®𝑟SV − ®𝑟BPV). (5.1)

The corresponding distribution can be found in Figure 5.10(b). Here, we see that the angle is generally
a lot smaller for “far” K0

S . This can be understood, since for larger distances Δ𝑧 the resolution of the
vertexing has a smaller impact on the definition of the connecting line between BPV and SV, resulting
also in a smaller effect on the collinearity angle.
These two quantities show that such a classification makes sense, at least the “far” K0

S are behaving
quite different than the other two classes. Now, we have to determine the optimal cut criteria for these
quantities. As always, one has to find a compromise between quantity and quality, therefore, we can
perform a significance study. The significance is defined by

S =
𝑆

√
𝑆 + 𝐵

= 𝑠 ·
√
𝑁, where 𝑁 = 𝑆 + 𝐵, (5.2)

with 𝑆 denoting the amount of signal events, 𝐵 is the background and 𝑠 = 𝑆
𝑁
is the relative signal

strength. The advantage of optimizing the significance over an optimization of the signal-to-background
12 One would have to cut stronger on the BPV position, in order to see the full tomography of the spectrometer.
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ratio is, that the significance rises linearly with the relative signal strength, S ∝ 𝑠, and additionally
with the square root of the total amount of data, S ∝

√
𝑁 . During this optimization we try to

reduce the background as much as possible. Therefore, estimating its value results in bigger relative
uncertainties and, thus, more fluctuations in the determination of the quantity 𝐵 and accordingly in the
signal-to-background ratio 𝑆/𝐵. On the other hand, we try to keep as much as possible of the signal
component. With this, 𝑠 will be big and with small relative uncertainty, resulting in a very stable
determination of the significance S.
The different components 𝑆 and 𝐵 can only be determined with a fit to the K0

S -mass spectrum.
Looking at Figure 5.7(b), we see that we still have a huge amount of background left after the
preselection. Therefore, it was decided to perform the fine selection with different cut-off values for
Δ𝑧min and 𝛼coll and perform a significance study with the results of all these fine selections, always
looking at the K0

S -mass spectrum at the very end after all cuts are applied. The signal component is
modeled with a double-Gaussian

DG(𝑥; 𝐴, 𝑟, 𝜇, 𝜎1, 𝜎2) = 𝐴 ·
[
𝑟 · N (𝑥; 𝜇, 𝜎1) + (1 − 𝑟) · N (𝑥; 𝜇, 𝜎2)

]
, (5.3)

with

N(𝑥; 𝜇, 𝜎) :=
1√︁

2𝜋𝜎2
exp

(
− (𝑥 − 𝜇)

2

2𝜎2

)
. (5.4)

The background on the other hand is simply modeled by a polynomial, since its real functional form is
unknown. We determine the cut values for the K0

S invariant mass as 3𝜎 intervals around the mean 𝜇,
where we combine the two widths in the following weighted way

𝜎 = 𝑟 · 𝜎1 + (1 − 𝑟) · 𝜎2, (5.5)

where 𝑟 is the fraction of the first Gaussian with width 𝜎1, and accordingly (1 − 𝑟) is the fraction of
the second Gaussian with width 𝜎2. Then, the signal contributions is obtained from an integral of the
double-Gaussian

𝑆 =

∫ 𝜇+3𝜎

𝜇−3𝜎
DG(𝑥)d𝑥.

The background contribution 𝐵 is obtained from the integral over the same range of the corresponding
polynomial model.
It turned out that it was not possible to perform the significance study for “close” K0

S , since the
background was too huge and the fit could not reliably extract a signal component. Also when simply
using Δ𝑧min = 0 for all classes of K0

S , the resulting invariant-mass distribution of the 𝜋
−K0

S K0
S system

looked quite different when including cases with 𝑁BPVout > 2 which always involve “close” K0
S , see

appendix D.2. This lead to the decision of excluding these cases in the preselection, already.
Therefore, we will focus only on the two classes of “far” K0

S and “shared” K0
S .

At first, a one-dimensional significance study was performed, where we change Δ𝑧farmin and Δ𝑧
shared
min

simultaneously in steps of 0.5 cm, without cut on the collinearity angle. Separately, also the collinearity
cut-off angles 𝛼farcoll,max and 𝛼

shared
coll,max are simultaneously changed in steps of 0.05 mrad. The resulting

mass distributions are fitted with the previously described model and the significance is calculated.
The result can be found in Figures 5.11 and 5.12.
In Figure 5.12 we see that the significance is steadily increasing with increasing maximally allowed
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Figure 5.11: Result of the one-dimensional significance study, varying Δ𝑧min. The solid vertical line corresponds
to the position of the maximum, while the dashed vertical line is the chosen limit from the two-dimensional
significance (cf. Figure 5.13). The red curve together with the axis on the right side of each plot shows the
integral of the full fit function (signal + background) and is an indication for the total number of events 𝑁 .
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Figure 5.12: Result of the one-dimensional significance study, varying 𝛼maxcoll . The solid vertical line corresponds
to the position of the maximum, while the dashed vertical line is the chosen limit from the two-dimensional
significance (cf. Figure 5.13).
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Figure 5.13: Result of the two-dimensional significance study, varying Δ𝑧farmin independently of Δ𝑧
shared
min .

𝛼coll. Since also the spectrum of the collinearity angle does not show any structures besides a strong
peak at 0 mrad, it was decided to not cut on this quantity. For the study on Δ𝑧min however, Figure 5.11,
we see a steady drop-off for “far” K0

S and even a peak at ∼ 0 cm for “shared” K0
S . Both classes of K0

S
have their maximal significance for values below 0 cm, which is obviously unphysical for a K0

S coming
from the BPV.
Even if we would put this fact aside by trying to explain it with a bad vertexing resolution, the so far

presented way of performing the significance study has a problem. The criterion on choosing “far” K0
S

directly affects the amount of allowed “shared” K0
S and vice versa, since we always require exactly two

K0
S in the final state during the fine selection. Therefore, a two-dimensional significance study is the
correct way of determining the final cut criteria. Here, we combine each tested value of Δ𝑧farmin with
each value of Δ𝑧sharedmin , basically using a grid of values. The resulting significance can be found in
Figure 5.13.
On Figure 5.13(b) we see that the significance of “shared” K0

S is constant in Δ𝑧
far
min. Therefore, we

can choose the value Δ𝑧sharedmin = 0.5 cm at the place where the significance starts to drop, indicated by
the horizontal red line. If we now look at Figure 5.13(a), we see some dependence on both cut-off
values. Since we fixed the value of Δ𝑧sharedmin with Figure 5.13(b), we can choose Δ𝑧farmin = 3.5 cm now
again as the value where the significance starts to drop at the given horizontal red line. The chosen
value is indicated by a vertical red line.
From the corresponding fit of the K0

S mass spectrum, we can also obtain the cut-values for the K0
S

invariant mass, see Figure 5.14. The values are

− 15.00 MeV ≤ (𝑚far𝜋𝜋 −𝑚
PDG
K0

S
) ≤ 16.50 MeV, −18.24 MeV ≤ (𝑚shared𝜋𝜋 −𝑚PDG

K0
S
) ≤ 17.15 MeV.

(5.6)
A K0

S -candidate fulfilling these stronger mass requirements of equation (5.6), which also has a vertex
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Figure 5.14: Invariant-mass spectrum of K0
S -candidates at the determined cut-off values for Δ𝑧min. The red

dashed vertical lines indicate the cut interval. The full fit function is depicted as a red solid curve, the signal
contributions from the double-Gaussian are the red dashed curves and the background is the red dotted curve.

separation of
Δ𝑧
far ≥ Δ𝑧

far
min = 3.5 cm, Δ𝑧

shared ≥ Δ𝑧
shared
min = 0.5 cm (5.7)

according to its classification, is considered a “true” K0
S . For the cut on exactly two K0

S , now we
demand exactly two “true” “far” K0

S for 𝑁
BPV
out = 1, and exactly one “true” “far” K0

S together with
exactly one “true” “shared” K0

S for 𝑁
BPV
out = 2. This is also a hard cut, meaning that all other cuts

are automatically set to “failed” if this requirement is not met. The reason is, that for most of the
following cuts, we need to have a well-defined final state with one primary track and two “true” K0

S .
Not only can a SV share outgoing particles with the BPV, but it can also do so with any other SV.

Therefore, we have to make sure that we actually have five distinct tracks in our event, two from each
“true” K0

S and one negatively charged track from the BPV. In the case of 𝑁
BPV
out = 2 we have to make

sure that the one track of the BPV that is not part of the “shared” K0
S , has negative charge. We assign

the mass of a pion to this negatively charged track and call the resulting particle primary pion 𝜋−prim,
because it originates from a PV. Accordingly, the daughters of the “true” K0

S are called secondary
pions 𝜋±sec. The cut on a “healthy” BPV takes care of all this. Figure 5.15 shows the number of unique
tracks for such a selected 𝜋−K0

S K0
S event.

RICH-Veto Cuts

So far we simply assumed that all outgoing tracks are pions. However, also other final states might
contribute such as ΛK0

S p, where not only the primary particle would be an antiproton, but additionally
one of the SV would be a Λ baryon. Also ΛΛ̄𝜋− would be possible where both SV would be baryons.
The (anti-)Λ baryon would decay into an (anti-)proton and an oppositely charged pion. Due to the
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Figure 5.15: Number of unique tracks in the 𝜋−K0
S K0

S event. We require exactly five unique tracks and in addition
the remaining outgoing track from the BPV needs to have negative charge.

different masses of the daughter particles the invariant mass with pion assumption for both daughters
could be within the window of equation (5.6), whilst assuming pion and proton mass for the daughters
might also be close to the Λ mass. Due to the high mass of the involved baryons, these final states
have a very high mass threshold of > 2 GeV, but the slightly longer lifetime of the Λ baryon compared
to the K0

S also allows for a displaced vertex, mimicking a very similar event topology.
Although the RICH detector only has a very limited momentum range in which it can distinguish

the long-lived charged particles, we can still use it as a veto if it identifies any of the outgoing tracks as
either kaons or (anti-)protons. The following procedure was developed and calibrated by [58]. The
momentum ranges, where the RICH detector can positively identify particles are:

𝜋: 3 GeV ≤ 𝑝@𝑅𝐼𝐶𝐻
track ≤ 60 GeV

𝐾: 10 GeV ≤ 𝑝@𝑅𝐼𝐶𝐻
track ≤ 60 GeV

𝑝: 18 GeV ≤ 𝑝@𝑅𝐼𝐶𝐻
track ≤ 100 GeV

For this we extrapolate the tracks to the position of the RICH detector at 𝑧RICH = 615.5 cm in the
COMPASS reference system. In addition to these momentum constraints, we also have to make sure
that the tracks actually go through the active volume of the detector. This means that the transversal
distance of the track from the beam axis has to be 𝑟@𝑅𝐼𝐶𝐻

track > 5 cm and the polar angle of the track has
to fulfill 0 rad < 𝜃@𝑅𝐼𝐶𝐻

track < 0.25 rad.
If these requirements are met, we can extract the likelihood of each particle species L𝑋 with

𝑋 ∈ {𝜋, 𝐾, 𝑝, bgd} and define a likelihood-ratio R :=
L𝑋

max𝑌≠𝑋 LY
. If R𝑋 > 1.15, we assign the PID

𝑋 to the particle. For the edge cases L𝑋 ≤ 0, meaning no likelihood could be determined for PID 𝑋 ,
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Figure 5.16: Cherenkov angle 𝜃RICH plotted against the momentum of the 𝜋
−
prim.
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(a) Before the RICH-veto cuts.
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(b) At the end of the fine selection

Figure 5.17: Cherenkov angle 𝜃RICH plotted against the momentum of the 𝜋
±
sec.

we assign R𝑋 = −1 definitely resulting in a non-𝑋 PID. And if L𝑋 > 0, but max𝑌≠𝑋 L𝑌 ≤ 0, we set
R𝑋 = 10 leading to a positive identification as 𝑋 .
If we plot the Cherenkov angle 𝜃RICH measured by the RICH detector against the momentum of the

track at the position of the RICH, we should be able to see three different bands, corresponding from
left to right to 𝜋, 𝐾 and 𝑝. We can do this for the 𝜋−prim, see Figure 5.16, as well as for the 𝜋

±
sec, see

Figure 5.17.
In Figures 5.16(a) and 5.17(a) we see that there are three distinct bands visible as expected. However,

at the end of the fine selection in Figures 5.16(b) and 5.17(b) the two rightmost ones corresponding to
𝐾 and 𝑝 are gone. These two bands were already a lot less visible for the 𝜋±sec due to the mass-constraint
that is applied to the “true” K0

S . Looking at the number of different particles before the RICH-veto cuts
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Figure 5.18: Number of positively identified pions, kaons and (anti-)protons before the RICH-veto cuts.

in Figure 5.18, we see that the number of (anti-)protons is bigger for the 𝜋±sec than for the 𝜋
−
prim, which

hints to the presence of (anti-)Λ baryons before the RICH-veto cuts.
We can test this by simply assigning a proton mass to one and a pion mass to the other of the

secondary tracks of the “true” K0
S . If we assign the proton mass to the positively charged track, we

should see a peak for the Λ baryon, while assigning it to the negatively charged track making it a
p, we have access to the Λ̄ baryon. The corresponding invariant-mass distributions can be found
in Figure 5.19, where we clearly can see a peak in each spectrum at the (anti-)Λ mass before the
RICH-veto cuts, and at the end of the fine selection this peak is gone without strongly disturbing the
“background” shape.
The peak of the Λ candidates in Figure 5.19(a) is slightly higher than the one of the Λ̄ candidates in

Figure 5.19(b), which might be explained by the fact that the Λ̄ can only be created in the final state
Λ̄Λ𝜋

− while the Λ can additionally appear in ΛK0
S p. Looking at the “charge-conjugated” final state

Λ̄K0
S 𝑝 the primary proton has the wrong charge, therefore, this final state is not possible, making the

Λ more likely to occur.

Tight Beam-Time Cut

We already performed a rough cut on the beam time 𝑡beam during the preselection to cut away all events
that are definitely out-of-time. This cut will now be refined in the fine selection. Since the triggers
are very sensitive, it is very likely that the timing will change slightly between different data-taking
periods. Therefore, a fit to the BEST-Style distribution of the beam time was done period-by-period
for all six data-taking periods. The signal was modeled with a single-Gaussian

G(𝑥; 𝐴, 𝜇, 𝜎) = 𝐴 · N (𝑥; 𝜇, 𝜎), (5.8)
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Figure 5.19: Invariant-mass distributions of “true” K0
S , while assigning the proton mass to one of the two

daughter tracks and the pion mass to the other daughter track. The distribution before the RICH-veto cuts (red)
is compared to the one after the fine selection (green). The latter is scaled by a factor of 3.7 to facilitate the
comparison.

Table 5.3: Cut values for the beam time for the different data-taking periods with 𝑡± = 𝜇± 3𝜎. They are obtained
via a fit to the data, see Figure 5.20.

Period 𝐴 𝜇 / ns 𝜎 / ns 𝑡− / ns 𝑡+ / ns
all 11895.35 0.00658 0.69404 -2.07553 2.0887

2008_W33 1476.54 0.01585 0.70377 -2.09545 2.12714
2008_W35 2364.5 0.06414 0.67785 -1.9694 2.09769
2008_W37 3598.84 0.10065 0.67337 -1.91946 2.12076
2009_W25 700.89 -0.20865 0.64451 -2.14218 1.72488
2009_W27 945.87 0.39336 0.75605 -1.87478 2.66149
2009_W35 3316.71 -0.19586 0.73719 -2.40744 2.01572

where N is the normal distribution as defined in equation (5.4). Again, the background shape is
unknown, therefore, a second-order polynomial is used. In Figure 5.20, we can see that the determined
mean values differ strongly13 between the different data-taking periods, therefore, each of them has a
slightly different accepted timing window as listed in Table 5.3.

13 The maximal difference of the mean values 𝜇 is similar to the width 𝜎 of the distribution.
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Figure 5.20: Fit to the beam time with a single-Gaussian as a model for the signal and a second-order polynomial
for the background. Different colors correspond to different data-taking periods as indicated in the legend, while
black corresponds to the combined data set. The colored vertical lines correspond to the mean 𝜇 (solid) and the
3𝜎 intervals (dashed) of the respective period.

Kinematic Fit

At the end of the fine selection the invariant-mass distribution in Figure 5.21 has a lot smaller
background compared to the one after the preselection in Figure 5.7(b), however, the mass of the
“true” K0

S still deviates slightly from their nominal mass as stated by the PDG. This deviation purely
comes from the detector resolution, since the decay width of the K0

S is negligible. We can correct for
this resolution by performing a kinematic fit, which is a special case of constrained fitting [67]. To
summarize it in one sentence, it is an iterative procedure that modifies the 4-vectors of the daughter
particles slightly within their experimental uncertainties such that the invariant mass of the two-body
system is exactly the nominal PDG K0

S mass. Details on the procedure can be found in appendix D.3.

Exclusivity and 4-Momentum Conservation

So far we did not ensure that the final state is complete, especially since we only throw events, where
we have more or less than two “true” K0

S . This does not exclude the possibility that there might be
other V0 particles that do not fulfill the requirements as discussed at the beginning of this section 5.2.3.
We would simply miss these particles, but still would consider it a good event. However, this would
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Figure 5.21: Invariant-mass distribution of “true” K0
S at the end of the fine selection, but without applying the

kinematic fit. It has to be successful though and the exclusivity cuts have to be fulfilled for final state with the
kinematically fit K0

S .

result in missing momentum and missing energy, thus, we perform the following two cuts to make
sure that everything is conserved and the event is exclusive, meaning that no final-state particles are
lost. In both calculations the kinematically fit 4-momenta of the “true” K0

S enter.
First, we have the planarity cut. For both recoil momentum and resonance momentum we determine

the components transverse to the direction of the beam, ®𝑝⊥recoil and ®𝑝
⊥
X respectively. The planarity

angle 𝜙recoil is the angle between these two transverse momentum components. More details on how
to calculate it can be found in appendix D.4.
The expectation for an exclusive event is 180°, since the transverse components of the recoil

momentum and the resonance momentum have to be back-to-back in order to be able to cancel each
other out. Therefore, we look at Δ𝜙recoil = 𝜙recoil − 180° instead to obtain a spectrum centered around
0°, see Figure 5.22. In accordance with previous event selections at COMPASS and as determined
by [68], we use

��Δ𝜙evenrecoil�� ≤ 8.432° and
���Δ𝜙oddrecoil��� ≤ 5.377° as cut intervals for the planarity angle,

respectively for even and odd RPD-slabs. These values are obtained by not only taking into account the
dimensions of the slabs, but also multiple scattering in the scintillator material.
For the second cut to ensure exclusivity, we reconstruct the beam energy from our final-state

particles 𝜋−K0
S K0

S . This can be achieved by equating 𝑡 = (𝑝target− 𝑝recoil)
2
= (𝑝beam− 𝑝𝑋)

2, employing
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Figure 5.22: Deviation from the expectation of the planarity angle. The full spectrum is plotted in black, but no
cuts were performed directly on this spectrum. Instead, a separation of the two different cases is plotted, where
either an “even” (green) or an “odd” slab (blue) of the outer RPD-ring was hit. The corresponding cut intervals
are highlighted with the same color code.

energy conservation to replace 𝐸recoil by the other involved energies
14 and solving for

�� ®𝑝beam��. From
this we can calculate the beam energy via 𝐸beam =

√︃�� ®𝑝beam��2 + 𝑚2
beam. The details on the calculation

can be found in appendix D.5.
In order to extract meaningful cut ranges, the resulting beam-energy spectrum is fitted with a

single-Gaussian, see equation (5.8), for the signal and a second-order polynomial for the background.
Events with a reconstructed beam energy within a 3𝜎 interval around the mean value are accepted.
The fit to the BEST-Style distribution can be found in Figure 5.23 and the resulting fit parameters
are presented in Table 5.4. Similarly to the beam time, a separate fit for all data-taking periods was
performed. However, the spread is not that big15, which means, in the end, the values extracted from
the fit over all periods combined are used.

Bad Runs

During previous event selections it was found out that some runs have differences in kinematic
distributions that most likely come from malfunctioning detector equipment. An extensive bad-run
analysis was performed by Simon Havemann and is described in appendix C of [65]. There, simple
quantities like mean and standard deviation of kinematic distributions are taken and a run-by-run

14 The energy resolution of the RPD is not very good, therefore, we do not use it for these calculations.
15 The maximal difference of the mean values 𝜇 is ∼ 200 MeV, while the width 𝜎 of the distribution is almost one order of
magnitude bigger with ∼ 1.7 GeV.
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Figure 5.23: Fit to reconstructed beam-energy distribution

Table 5.4: Possible cut values for the beam energy for the different data-taking periods with 𝐸± = 𝜇 ± 3𝜎. They
are obtained via a fit to the data, see Figure 5.23. In the end, the values in the first row are taken for all periods.

Period 𝐴 𝜇 / GeV 𝜎 / GeV 𝐸− / GeV 𝐸+ / GeV
all 11047.85 191.248 1.688 186.184 196.312

2008_W33 1345.24 191.021 1.691 185.95 196.093
2008_W35 1897.09 191.267 1.694 186.185 196.348
2008_W37 2858.84 191.271 1.676 186.242 196.3
2009_W25 651.71 191.264 1.621 186.4 196.129
2009_W27 986.0 191.25 1.666 186.252 196.248
2009_W35 3323.01 191.304 1.704 186.191 196.416
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comparison was performed16. Outliers of this comparison were investigated in more detail. Also the
logbook of the data taking was consulted to find reasons for these outliers. The opposite direction was
also done, i.e. if the logbook lists problems with detectors, a more detailed look at the distributions
affected by these detectors were checked for problems. Then, the problems are categorized, since not
all selections might be affected by problems of a specific detector type.
For this selection, all runs that show up in the categories “General”, “RICH” and “CEDAR” are

excluded by this bad-run cut. Since we do not use the information of the ECALs, problems of the
corresponding category should not directly impact the selection at hand and therefore, they are still
accepted.
In Figure 5.26 we see that the selection in general is quite good in excluding these runs, since only

roughly 5 000 events are excluded only due to this cut. However, this also shows that such a bad-run
analysis is an important step during such a selection, since without it we would most likely have
roughly 2 % more background in the final data sample.

True Primary Vertex

The final cut is about the number of PVs in the event. In principle, we should have only one PV to be
sure that this is the place, where the beam interacted with the target. But especially in the case where
we have displaced SVs in the final state, a coincidental crossing of one of the corresponding daughter
particles with the direction of the beam can occur. Therefore, we will not cut on the number of PV
directly, but define a “true” PV, instead.
First of all, we define the BPV as a “true” PV. For all other PV-candidates of the event as provided

by PHAST, we compare their outgoing charged tracks with the final-state tracks, meaning the tracks of
the 𝜋−prim and the 𝜋

±
sec. If all outgoing tracks of the PV under investigation are also part of the final-state

tracks, the PV is discarded. Now, if all other PVs than the BPV can be discarded accordingly, the
event will be accepted. But if at least one of the other PVs has a track that is not part of the final state,
this PV is considered a “true” PV and the event will be discarded. Figure 5.24 shows the amount
of such “true” PVs. Since we consider the BPV as “true”, only all events with exactly one “true”
PV are accepted. Since this is the last cut of the fine selection, both Waterfall-Style and BEST-Style
histograms are the same. The difference in the bin “1” is 1 143, which means we gain this amount of
events at the end of the selection compared to when simply cutting on the number of all PVs.

Cut-Flow Diagram

In the cut-flow diagram of the fine selection in Figure 5.25 we can clearly see that the biggest impact
comes from the first cut on the two K0

S . This is understandable since it requires a much tighter mass
cut compared to the preselection, as well as a cut on the minimal vertex separation. This cut is also a
hard requirement for all other cuts, therefore, its entry in Figure 5.26 is zero, since all other cuts will
be set to “failed” once we do not have exactly two K0

S .
After the “healthy” BPV cut, the set of final-state particles is complete and the following cuts

guarantee the quality of the events. The subsequent RICH-cuts do not have a big impact, since they are
just vetoes. The cut on the beam time exclusively removes roughly 6 600 events, showing that there is

16 If a run showed differences with respect to the other ones, a spill-by-spill analysis was performed for this run to see if
parts of it were recoverable.
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Figure 5.24: Number of “true” PVs (green) compared to number of all PVs (red). Only events with exactly one
“true” PV are accepted. Since the corresponding cut is the last one, BEST-Style and Waterfall-Style are the same
for this distribution.

still quite some overlap of events present that has to be removed. On the other hand, the kinematic fit
only fails for 8 events, showing the stability of the fit procedure.
A big impact comes from the planarity cut as well as from the cut on the beam energy. Figure 5.25

suggests that the planarity cut has a much stronger effect, however, Figure 5.26 indicates that both cuts
are of similar order. Since not many other cuts come afterwards, we can deduce that many events also
fail to fulfill the requirements on the planarity angle when they violate the cut on the beam energy and
vice versa. This shows that these two cuts are strongly connected to each other.
At the end of the fine selection we are left with 243 722 exclusive 𝜋−K0

S K0
S events.

5.2.4 𝒕′ Distribution

Before we discuss the results of the event selection, let us have a look at the reduced four-momentum
transfer 𝑡 ′. Figure 5.27 shows an exponential drop as it is expected from theory. A fit with the sum of
two exponential functions was performed. This parametrization can later be used in order to optimize
the generation of MC data that is needed to determine the acceptance of the COMPASS spectrometer
for the 𝜋−K0

S K0
S final state.

138



5.2 Event Selection of 𝜋−K0
S K0

S

0 1 2 3 4 5 6 7 8

Events ×106

1 true PV

Bad Run

Ebeam

Planarity

Kinematic Fit

tbeam

RICH sec p-veto

RICH sec K-veto

RICH prim p-veto

RICH prim K-veto

Healthy BPV

2 K0
S

Preselection

243 722

247 417

252 323

306 853

858 828

858 941

889 126

896 877

905 657

909 836

926 513

1 125 557

8 021 671

Cut Flow - Fine Selection

Figure 5.25: Cut-flow diagram of the fine selection.
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5.3 Invariant-Mass Distributions and Dalitz Plots

Before we finally can discuss the results of the event selection, let us define our expectations on what
we could and should see on the mass distributions and the Dalitz plots.

5.3.1 Identifying possible Resonances

From Table 5.2 we can read off the dominant decay modes for each resonance. Usually, decays with
higher orbital angular momentum are suppressed, which means that we most likely will only see
𝑆-waves if their decay modes are kinematically possible. This is obviously a simplification since a
stronger coupling to an isobar candidate could compensate this effect. Anyways, let us now have a look
at each resonance one by one and discuss the likelihood of identifying it on the Dalitz plots by eye.

𝑱𝑷𝑪 = 1++: 𝒂1

The dominant 𝑆-channel decay goes via 𝐾∗−K0
S . Therefore, the PDG-established states 𝑎1(1260) and

𝑎1(1640) should have the 𝐾∗(892) as the dominant isobar contribution, with the former sitting right
at threshold. For the heavier PDG-listed states 𝑎1(1930), 𝑎1(2095) and 𝑎1(2270) also the heavier
𝐾
∗(1410) could be contributing, additionally. The heaviest one could even have 𝐾∗(1680) as an
isobar. However, heavier states corresponding mostly to higher radial excitations usually come with a
reduction in intensity.

𝑱𝑷𝑪 = 2++: 𝒂2

The 𝑎2 resonances cannot decay via an 𝑆-channel, making them very unlikely to be visible by eye on
the Dalitz plots. On top of that they require 𝑀 ≥ 1, reducing their strength even further.

𝑱𝑷𝑪 = 3++: 𝒂3

The PDG does not list any established 𝑎3 resonances, however there are some listings that we will
discuss now. The 𝑎3 resonances would dominantly decay via the 𝐾

∗−
3 K0

S 𝑆-channel. The lightest
PDG-established isobar candidate would be the 𝐾∗3 (1780) making this decay mode kinematically
impossible for the 𝑎3(1875) and the 𝑎3(2030). The 𝑎3(2275) would, however, sit right at the threshold.
In any case, an observation will only be possible with a PWD by also looking at other decay channels
with higher orbital angular momentum.

𝑱𝑷𝑪 = 4++: 𝒂4

Similar to the 𝑎2 resonances also the 𝑎4 resonances cannot decay via an 𝑆-channel and require 𝑀 ≥ 1,
therefore, one will need to look at the results of the PWD to identify any contributions here.

𝑱𝑷𝑪 = 0−+: 𝝅

Here, the 𝑓0𝜋
− and the 𝐾∗−0 K0

S channels would be dominant 𝑆-wave decays. This gives us a big quantity
of possible isobars namely the 𝑓0(980), 𝑓0(1500) and 𝑓0(1710) on one side and the 𝐾∗0 (700) and
𝐾
∗
0 (1430) on the other. The lightest 𝐾∗0 is very broad, therefore, we do not expect to see it by eye. The
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PDG also lists the 𝑓0(1370), but we do not see it in the K0
S K0

S invariant-mass spectrum and it was also
not seen in the 𝜋−𝜋+𝜋− final state of COMPASS [31]. The non-strange cousin of the 𝐾∗0 (700), the
𝑓0(500) also known as 𝜎, is too light to decay into two kaons. However, it is quite broad such that its
high-mass tail could actually contribute, which still does not make it very likely to be visible.
Let us now come to the resonances. The 𝜋(1300) could only decay to the lightest isobar of each

channel, but it sits right at threshold. The next candidate is the 𝜋(1800), where only the 𝑓0(1710) and
the 𝐾∗0 (1430) are too heavy to appear as possible isobars. Further listings include the 𝜋(2070) and the
𝜋(2369) that could decay via all isobar channels listed above.

𝑱𝑷𝑪 = 1−+: 𝝅1

These QNs are spin-exotic, meaning that they cannot be produced by a simple 𝑞𝑞-pair making them a
candidate for a so-called hybrid meson, where in addition also a constituent gluon contributes to its
QNs. Sadly, no 𝑆-wave decay will be possible and similarly to the 𝑎even resonances only 𝑀 ≥ 1 is
allowed, therefore, we have to wait for the PWD to see its contributions.

𝑱𝑷𝑪 = 2−+: 𝝅2

Isobar candidates for 𝑆-channel decays with a mass below 2 GeV are 𝑓2(1270), 𝑓 ′2 (1525) and 𝑓2(1950),
as well as 𝐾∗2 (1430) and 𝐾∗2 (1980). For the lightest resonance 𝜋2(1670) only the 𝑓2(1270) would be
possible. The 𝜋2(1880) could additionally have contributions from the 𝑓 ′2 (1525). The PDG-listed
𝜋2(2285) would also allow for the 𝑓2(1950)𝜋− channel.

𝑱𝑷𝑪 = 3−+: 𝝅3

This case is similar to the 𝜋1, however, the PDG does not list any resonance candidates so far.

𝑱𝑷𝑪 = 4−+: 𝝅4

The dominant 𝑆-wave decay would go via the 𝑓4𝜋
− and K∗−4 K0

S channels. But for the listed 𝜋4(2250),
only the 𝑓4(2050) would be light enough to be an isobar in the decay. The 𝐾∗4 (2045) would require a
mass of more than 2.5 GeV to become possible.

Summary

To summarize, only the decay channels 𝑎1(1640) → 𝐾
∗(892)K0

S , 𝜋2(1670) → 𝑓2(1270)𝜋, 𝜋(1800) →
𝑓0(980)𝜋 and maybe 𝜋(1800) → 𝑓0(1500)𝜋 might be visible by eye when looking at the Dalitz plots.
For the rest, a PWD has to be performed to separate the different contributions by using the angular
information between the final-state particles.

5.3.2 Invariant-Mass Distributions

Now, we can finally look at the invariant-mass distributions and see if we can confirm our expectations
from section 5.3.1.
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Two-Body Subchannels

Let us start with the two-body subsystems. One can find the invariant-mass distributions in Figure 5.28.
We see some peaking structure right at threshold in theK0

S K0
S -invariant-mass spectrum in Figure 5.28(b)

that could be related to the high-mass tail of the 𝑓0(980) meson. Also, there is a very strong peak
at the mass of the 𝑓2(1270) suggesting its presence in the data. At roughly 1.5 GeV we have the
𝑓0(1500) and the 𝑓 ′2 (1525) that could be contributing to the visible structure. At 1.7 GeV we see a
clear shoulder that might come from the 𝑓0(1710). However, we do not see any structure at the mass
of the 𝑓0(1370) indicating its absence in the data, as it is also the case for the 𝜋−𝜋+𝜋− final state at
COMPASS [31].
As discussed in section 5.1.3, we do not expect 𝜌𝐽 isobars to appear. And indeed, there is no sign

of a 𝜌(1450) or a 𝜌3(1670).
Looking at the 𝜋−K0

S subsystem in Figure 5.28(a), we see a very broad bump below the narrow
K∗(892) peak. Besides of background from e.g. the cross-channel decay via 𝑓𝐽𝜋

−, also the very broad
K∗0(700) could contribute here. However, one will only be able to extract its contributions with a PWD.
We see a second peak at the mass of the K∗(1410), the K∗0(1430) and the K∗2(1430). Disentangling
which of these resonances contributes how much will also only be possible with a PWD.
These isobar spectra are integrated over all three-body invariant masses, therefore, a lot of additional

information is lost when looking at them. A better way to represent them is, by showing their evolution
as a function of 𝑚

𝜋
−K0

S K0
S
, see Figure 5.29. Here, we see the strong K∗(892) peak starting to appear at

𝑚
𝜋
−K0

S K0
S
= 1.4 GeV, loosing its strength around 𝑚

𝜋
−K0

S K0
S
= 1.8 GeV, where the 𝜋(1800) would be
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Figure 5.29: Invariant-mass spectra for the two-body subsystems 𝜋−K0
S (left) and K0

S K0
S (right) for different bins

of 𝑚
𝜋
−K0

S K0
S
as indicated by the axis on the right. Note that for the 𝜋−K0

S system, the combinations with both K0
S

are filled with a weight of 0.5 in order to have comparable hights on both isobar spectra.

expected to decay predominantly into 𝑓0 isobars. And indeed, at that three-body invariant mass, peaks at
the masses of the 𝑓0(980) and the 𝑓0(1500) appear on the right column. Around 𝑚

𝜋
−K0

S K0
S
= 1.68 GeV,

we see a peak at the 𝑓2(1270) mass which could hint towards the 𝜋2(1670) → 𝑓2(1270)𝜋 decay in an
S-wave. Regarding higher resonance masses, no dominating peak structures emerge for the K0

S K0
S

subsystem, however, in the 𝜋−K0
S system a second peak at the mass of the heavier K∗𝐽 isobars appears

at 𝑚
𝜋
−K0

S K0
S
≥ 2 GeV.
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Figure 5.30: Two-body invariant mass of the 𝜋−K0
S (left) and the K0

S K0
S subsystems (right) plotted against the

three-body invariant mass. Red lines indicate established states according to the PDG and orange lines label
states that still need confirmation. Note that on the left plot, both 𝜋−K0

S combinations are filled, therefore, the
total amount of entries is double of the ones on the right.

A different visualization of this evolution can be found in Figure 5.30 leading to similar conclusions.
We see a strong K∗(892) band on the left that looses its strength at 𝑚

𝜋
−K0

S K0
S
= 1.8 GeV. At that mass

we see an enhancement on the right at the bottom, where the 𝑓0(980) lies.

𝝅−K0
SK0

S Invariant-Mass Spectrum

If we have a look at the three-body invariant-mass spectrum in Figure 5.31(a), we see a broad bump
at ∼ 1.75 GeV and a shoulder at ∼ 2.2 GeV. If we draw lines for all allowed resonances in this final
state, we see that they are all very close to each other. This also becomes obvious if we look at
Figure 5.31(b). There we see that the resonances overlap heavily within their decay widths. This will
make it difficult to cut on the three-body invariant mass to look for possible decay channels on the
Dalitz plots. However, we can still try to confirm our expectations from the summary of section 5.3.1.

5.3.3 Dalitz Plots

The concept of Dalitz plots was introduced in section 3.5.1. Applying it to our specific final state,
we choose 𝑚2

𝜋
−K0

S
on the 𝑥-axis resulting in K∗𝐽 isobars appearing as vertical bands, and 𝑚

2
K0

S K0
S
on

the 𝑦-axis which gives us 𝑓𝐽 isobars as horizontal lines. Diagonal lines will correspond to the other
𝜋
−K0

S combination meaning that K∗𝐽 isobars will also appear as diagonal lines. Since we cannot
distinguish the two K0

S from each other, we will symmetrize the Dalitz plot by filling it with both 𝜋
−K0

S
combinations. As a result, we will have two entries per event.
In order to test the hypotheses of the summary of section 5.3.1, we have a look at the Dalitz plots

with a 20 MeV window around the PDG value of the 𝑎1(1640) (band “2” in Figure 5.31(b)) and the
𝜋(1800) (band “3” in Figure 5.31(b)). As mentioned at the end of section 3.5.1, this mass window
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Figure 5.31: The left plot shows the resonance-mass spectrum for the 𝜋−K0
S K0

S final state. The plot on the right
plots the mass of all allowed resonances according to the PDG. The horizontal lines correspond to the decay
width of the corresponding resonance. The vertical yellow bands indicate the regions for which we will create
Dalitz plots.

will wash out the diagonal bands slightly, which is why we choose it that narrow.
Let us begin with the Dalitz plot around the 𝑎1(1640) mass. Our expectation was to have the

dominant decay via 𝑎1(1640) → K∗(892)K0
S , and indeed we see a very strong vertical and diagonal

K∗(892) band in the Dalitz plot in Figure 5.32. In principle, the mentioned 𝜋2(1670) → 𝑓2(1270)𝜋
decay channel should also be dominant, however, due to the strong and overlapping K∗(892) bands in
this region, it is hard to tell by eye if there is a horizontal line present in the Dalitz plot.
The next Dalitz plot around the 𝜋(1800) mass in Figure 5.33 should have a dominant decay via

𝜋(1800) → 𝑓0𝜋, and indeed, we can see that the K∗(892) band is strongly suppressed coming along
with an enhancement at the lower 𝑚2

K0
S K0

S
threshold, indicating the presence of the 𝑓0(980) isobar. We

also see a hint for a horizontal line at the 𝑓0(1500) mass, however, the vertical and diagonal K∗(892)
bands overlap at this position which makes a definitive statement on its presence impossible. There
might also be a very faint line coming from the 𝑓2(1270) which could be a hint towards the presence of
the decay 𝜋2(1880) → 𝑓2(1270)𝜋− or it also could simply be the high-mass tail of the decay from the
𝜋2(1670) → 𝑓2(1270)𝜋− that was not hardly visible in Figure 5.32 due to the overlapping K∗(892)
bands.
In order to also explore the broad high-mass shoulder in the 𝜋−K0

S K0
S spectrum, we also look

at two higher-mass regions (bands “4” and “5” in Figure 5.31(b)). They are centered around the
𝜋(2070) and the 𝑎2(2255). However, there are many very broad resonances that all contribute to these
regions, thus, predicting dominant decay channels is very difficult. The Dalitz plots can be found in
Figures 5.34 and 5.35, respectively. Since the Dalitz plots become bigger, we also have to increase the
resonance-mass window to 40 MeV to have sufficiently populated distributions.
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Figure 5.32: The left plot shows the invariant-mass distribution of the 𝜋−K0
S K0

S final state. The yellow band
indicates the mass region that was used to create the Dalitz plot on the right. The mass region around the
𝑎1 (1640) mass is spelled out in the title of the Dalitz plot and corresponds to band number 2 in Figure 5.31(b).
The Dalitz plot has two entries per selected event.
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Figure 5.33: The left plot shows the invariant-mass distribution of the 𝜋−K0
S K0

S final state. The yellow band
indicates the mass region that was used to create the Dalitz plot on the right. The mass region around the
𝜋(1800) mass is spelled out in the title of the Dalitz plot and corresponds to band number 3 in Figure 5.31(b).
The Dalitz plot has two entries per selected event.
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Figure 5.34: The left plot shows the invariant-mass distribution of the 𝜋−K0
S K0

S final state. The yellow band
indicates the mass region that was used to create the Dalitz plot on the right. The mass region around the
𝜋(2070) mass is spelled out in the title of the Dalitz plot and corresponds to band number 4 in Figure 5.31(b).
The Dalitz plot has two entries per selected event.
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Figure 5.35: The left plot shows the invariant-mass distribution of the 𝜋−K0
S K0

S final state. The yellow band
indicates the mass region that was used to create the Dalitz plot on the right. The mass region around the
𝜋2 (2255) mass is spelled out in the title of the Dalitz plot and corresponds to band number 4 in Figure 5.31(b).
The Dalitz plot has two entries per selected event.
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In addition to the vertical and diagonal K∗(892) band, for the first time we also see an enhancement
at the higher K∗𝐽 mass region with three candidates as discussed for Figure 5.28(a). In the horizontal
direction, we can more clearly see a band at the 𝑓0(1500) and 𝑓 ′2 (1525) mass region. The reduction in
intensity at the 𝑓0(1370) mass where no diagonal lines are passing through, highlights its absence
again while hinting stronger to the presence of the 𝑓2(1270) at the same time.

5.4 Hints for the 𝒂1(1420) in 𝝅−K0
SK0

S

Since we are partly doing these investigations in order to see if the 𝑎1(1420) is present in the 𝜋−K0
S K0

S
final state, it is just fair to ask how the Dalitz plot looks like in the expected resonance-mass region.
For this, refer to Figure 5.36. Here we see very strong vertical and diagonal bands of the K∗(892).
These most likely come from the high-mass tail of the 𝑎1(1260) decaying to K∗(892)K0

S . However,
this makes it impossible to see if the isobar 𝑓0(980) is present in the Dalitz plot, since the two K∗(892)
bands cross exactly at the location where the horizontal line of the 𝑓0(980) would be. Therefore, it is
also impossible to select for the 𝑓0(980)𝜋 decay channel by cutting away the K∗(892) bands. Only
with a PWD it might be possible to disentangle the corresponding distributions.
Comparing the theoretical calculation of the Dalitz plot in Figure 3.15(d), which was discussed in

section 3.5.2, to the Dalitz plot in Figure 5.36, we see some similarity in form of two K∗(892) bands
that overlap at the expected position of the 𝑓0(980). But, the enhancement at the overlap of these
bands is stronger in the predictions than in the data, which shows instead more homogeneous isobar
bands. We perform another model calculation of the Dalitz plot, but this time without the 𝑓0(980)
and the (K𝜋)S isobars. The enhancement at the lower right corner is still present, as can be seen in
Figure 5.37 when comparing it directly to the real data. This means that either one of the removed
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Figure 5.36: The left plot shows the invariant-mass distribution of the 𝜋−K0
S K0

S final state. The yellow band
indicates the mass region that was used to create the Dalitz plot on the right. The mass region around the
𝑎1 (1420) mass is spelled out in the title of the Dalitz plot and corresponds to band number 1 in Figure 5.31(b).
The Dalitz plot has two entries per selected event.
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(a) Prediction with only K∗ (892).
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(b) Result of this event selection.

Figure 5.37: Left: Dalitz-plot prediction as described in section 3.5.2. The difference to Figure 3.15(d) besides
the adjusted binning is the removal of the (K𝜋)S as well as the 𝑓0 (980) isobar. Additionally, the prediction is
obtained by adding the Dalitz plots for all values 𝑚𝑋 ∈ [1.39 GeV, 1.43 GeV] in steps of 1 MeV in order to
account for the finite mass window of the data on the right.
Right: Dalitz plot for the indicated mass region around the 𝑎1 (1420) as written in the title. The Dalitz plot has
two entries per selected event and is the same as in Figure 5.36, just with adjusted axes and removed isobar lines.

isobars, or both, have to be present to allow for destructive interference.

5.5 Momentum Distributions

Up to this point, the event selection was crosschecked by Julien Beckers, documented in [61], and
released by the COMPASS collaboration. Before continuing with the PWD and the subsequent
resonance-model fit we still want to try to reduce the background from other non-resonant reactions as
much as possible. For this, we have a look at Figure 5.38(a), where we see that the momentum of the
𝜋
−
prim peaks at roughly 10 GeV and again at 170 GeV. Figure 5.38(b) also shows a peak for the K0

S
momentum at roughly 10 GeV and, then, a broad shoulder at ∼ 60 GeV.
Appendix D.6 presents some simple phase-space MC, where we can see that the low-momentum

peak of the 𝜋−prim and the broad shoulder of the K0
S can be explained with resonance production.

Using specific isobar masses for the two-body subsystems, one can see that the distributions can be
shifted to slightly higher masses, however, they cannot produce the high-momentum peak in the 𝜋−prim
spectrum or the low-momentum peak in the K0

S spectrum. These most likely come from a different
process, where the pion keeps almost all its momentum and the K0

S -pair is centrally produced with
very low momentum, e.g. from double-Pomeron, double-Reggeon or Pomeron-Reggeon fusion (see
Figure 5.39).
If we have a look at the momentum distributions in Figure 5.38 once more, we see that the

high-momentum peak of the 𝜋−prim and the low-momentum peak of the K0
S vanish if we cut on the

three-body invariant mass. We expect the resonance production to be dominant at small masses,
therefore, it confirms that these additional peaks are coming from non-resonant backgrounds.
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Figure 5.38: Momentum distributions at the end of the full selection (solid) for different number of outgoing
particles from the BPV as indicated by the legend. The additional transparent lines indicate the distributions for
cuts on the maximal three-body invariant mass.
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Figure 5.40: Distribution of the 𝑥prim
𝐹
of the 𝜋−prim (left) and the rapidity gap calculated from the rapidity-difference

between 𝜋−prim and the (K
0
S ,K

0
S ) system. Different colors show the distributions after a cut on the three-body

invariant mass as indicated by the legend. Dashed red lines display the conservative cuts and solid red lines
indicate the strong cuts on these quantities.

Following the idea of [69] (Section 5.1.7), we will try to exclude this background with a cut on the
“centrality” of the event. For this, we introduce two variables, the rapidity

𝑦 =
1
2

ln
𝐸 + 𝑝𝑧
𝐸 − 𝑝𝑧

(5.9)

and the Feynman-𝑥

𝑥𝐹 ≈
2𝑝𝑧√
𝑠
, (5.10)

where the kinematic variables 𝐸 and 𝑝𝑧 are determined in the GJ frame. The corresponding
distributions can be found in Figure 5.40. We see that the events with high three-body invariant mass
dominantly have high values for 𝑥prim

𝐹
and the rapidity gap Δ𝑦 := 𝑦prim − 𝑦K0

S K0
S
, which confirms the

difference in the production mechanism and gives us a method to remove the background.
In order to find the optimal cut values for 𝑥prim

𝐹
and Δ𝑦, we perform a simple flat MC simulation.

Here, we draw 10 M values for the resonance mass according to the RD distribution (cf. solid black
line in Figure 5.41(c)), give it 190 GeVmomentum in 𝑧-direction, and let it decay into the 𝜋−K0

S K0
S final

state distributed according to flat three-body phase space. The resulting distributions are normalized
such that they match the falling edge of the K0

S -momentum distribution, since it is neither affected
by a cut on 𝑚𝑋 (see Figure 5.38) nor on 𝑥

prim
𝐹
and Δ𝑦 (see Figure 5.41). Interestingly, with this

normalization we match almost exactly with the 𝑁BPVout = 1 case in the resonance-mass distribution,
Figure 5.41(c), but this just shows how similar it is to the combined resonance-mass spectrum for both
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(a) 𝜋−prim momentum
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(c) Invariant mass of the resonance

Figure 5.41: Momentum distributions for 𝜋−prim (left) and both K0
S (middle) of the final state, as well as the

resonance-mass distribution (right) for the three 𝑁BPVout cases differentiated by color and for three different
combinations of cuts on 𝑥prim

𝐹
and Δ𝑦, differentiated by transparency as indicated by the legends.
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Figure 5.42: 𝑥prim
𝐹
plotted against the rapidity gap Δ𝑦 for all events (left), for events with resonance mass below

(middle) and above 3 GeV (right). Dashed red lines indicate the conservative cuts and solid red lines display the
strong cuts. Accepted is the bottom left box enclosed by these lines.

𝑁
BPV
out cases. In the end the normalization is just a global factor multiplied to the spectrum, where the
amount of additional events from the central production approximately matches with the fraction of
events in the 𝑁BPVout = 2 case, coincidentally.
We plot the momentum distributions of the final-state particles (Figures 5.41(a) and 5.41(b)) with

various cuts on 𝑥prim
𝐹
and Δ𝑦. One conservative cut was chosen with Δ𝑦 < 10 and 𝑥prim

𝐹
< 0.8 where

the respective distributions for 𝑚𝑋 ≤ 3 GeV are almost zero, and a stronger cut with Δ𝑦 < 8 and
𝑥
prim
𝐹

< 0.65 where the distributions for 𝑚𝑋 ≤ 3 GeV and 𝑚𝑋 > 3 GeV are approximately equal. A
two-dimensional representation of these cuts can be found in Figure 5.42.
While the conservative cut already shows a reduction of the unwanted peaks, we see that the strong

cut removes them completely, making the flat MC match the momentum distributions almost perfectly.
At the same time the resonance-mass spectrum almost stays the same, especially for low masses.

Although this study does not change much, since we cut away the high-mass region for the PWD,
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anyways, it demonstrates the separation power of these two quantities nicely. As a starting point for
the PWD, we use the strong cuts on 𝑥prim

𝐹
< 0.65 and Δ𝑦 < 8, and we constrain 𝑚𝑋 ≤ 3 GeV and

0.1 GeV2 ≤ 𝑡 ′ ≤ 1.0 GeV2, since the latter is the acceptance17 of the RPD. After these additional cuts,
we are left with 150 153 exclusive events to enter the PWD that is discussed in the next chapter.

5.6 Conclusion

In this chapter, we started with a look at the possibilities for final states with kaons in diffractive
pion-proton scattering at COMPASS that could give access to the 𝑎1(1420) signal in the 𝜋KK
sector. The 𝜋−K+K− final state cannot be detected below 1.5 GeV due to shortcomings in the PID
of high-momentum charged particles by the RICH detector. This renders a search for the 𝑎1(1420)
impossible in this final state. Going to neutral kaons circumvents this problem, due to the identification
via a displaced decay vertex from the initial interaction inside of the target. Since, K0

L live too long to
decay within the dimensions of the spectrometer, we focus on the 𝜋−K0

S K0
S final state.

For this, a first rough skimming for the existence of K0
S -candidates in the COMPASS data was

developed, which can and already was used for other final states involving K0
S . Next, the event selection

of the 𝜋−K0
S K0

S final state was performed, where the optimal minimal vertex separation of the displaced
K0

S decay vertices was determined by means of a significance study. At the end of this event selection,
roughly 240 000 exclusive 𝜋−K0

S K0
S events were selected, which is more than 240 times the amount of

the, up to now, largest data set of 𝜋−K0
S K0

S from diffractive scattering collected by the E580 experiment
at Fermilab [71].
When looking at the isobar subsystems, we see in the 𝜋−K0

S invariant mass a clear K
∗(892) peak and

another enhancement at the mass of the K∗(1410) that could have contributions from the K∗0(1430)
and the K∗2(1430). The K0

S K0
S subsystem shows clear evidence for the 𝑓0(980) and the 𝑓2(1270) as

well an enhancement at the mass of the 𝑓0(1500) and the 𝑓 ′2 (1525). The three-body invariant mass
shows a broad peak at 1.7 GeV with a shoulder at 2.1 GeV. We discussed possible resonances and their
isobar-decay channels. By looking at the Dalitz plots for narrow windows in the three-body invariant
mass, we can identify evidence for the decay channels 𝑎1(1640) → K∗(892)K0

S , 𝜋(1800) → 𝑓0(980)𝜋
and 𝜋2(1670) → 𝑓2(1270)𝜋. Additionally, we observe a well populated Dalitz plot at a resonance
mass around 1.4 GeV. By only looking at the data, we cannot confirm the presence of the 𝑓0(980)𝜋
decay channel due to overlapping K∗(892) bands in the cross-channels. However, by performing a
theoretical calculation of the Dalitz plot with only K∗(892) as a possible isobar, we see clear deviations
from the experimental findings. This demonstrates that the 𝑓0(980) or the (K𝜋)S isobars have to be
present as well.
By comparing the momentum distributions of the selected 𝜋−K0

S K0
S events with a simple MC

simulation, we are able to identify contributions from centrally produced K0
S -pairs from double-Regge

exchange. Cutting on the Feynman-𝑥 of the 𝜋−prim as well as on its rapidity-difference to the K0
S K0

S
subsystem, we are able to reduce this background to the resonance-production process. This yields in
total roughly 150 000 exclusive 𝜋−K0

S K0
S events that can be used for the subsequent PWD.

17 [70] states that 𝑡 ′ ≥ 0.07 GeV2 is the smallest four-momentum transfer at which a recoiling proton can be detected by the
RPD. But still, we see an increase of the selected number of events up to roughly 0.1 GeV2, although an exponential drop
is expected. This hints towards an inhomogeneous acceptance. For values larger than 1.0 GeV2 also inhomogeneities in
the acceptance are observed as stated by [70].
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CHAPTER 6

PWD of the 𝝅−K0
SK0

S Final State

In this chapter, we will take the event selection of the previous chapter 5 as a starting point. Since a
full-fledged PWD is a thesis project on its own, this chapter will only provide a first look, highlighting
the performed simplifications in each step and discussing a method in order to address them in the
future. In the end, we will give a summary of these next steps that have to be performed in order to
finalize the project.

6.1 Monte Carlo Production with TGEANT

As a first step after an event selection, a MC production has to be performed. This process was already
introduced in section 2.2 and we see its application in the following section. On one hand, it is needed
to correct for the detector acceptance and is entering the PWD on an event-by-event basis, specifically
in the calculation of 𝑁pred in equation (3.73) as it appears in equation (3.75). And on the other hand
the gMC can be used to precalculate the integral matrices of equation (3.61) that are needed for the
correct normalization.
We produce so-called “signal MC”, since we want to know how many physics events of the reaction

of interest with certain kinematic variables are detected by the experiment. For this, we start by
taking the four-momentum of a beam particle from the TGEANT beam file. This file contains
reconstructed beam particles from the 𝜋−𝜋+𝜋− final state, since it has very large statistics and a good
detector acceptance. This beam particle is extrapolated by TGEANT to the virtual ℓH2 target and a
random position inside the target cell is drawn where the interaction with the target is supposed to
happen. As well, a random resonance mass is chosen (we discuss details on this later) and a reduced
four-momentum transfer 𝑡 ′ is generated according to the distribution1 as extracted by the fit to the RD,
see section 5.2.4. They are used to determine the four-momenta of the recoil proton and the resonance.
Now, the “signal” part of the MC comes into play, since we are artificially producing the 𝜋−K0

S K0
S final

state by distributing the final-state four-momenta according to flat three-body phase space in the rest
frame of the resonance. In a next step, these are boosted into the lab frame by using the previously
determined four-momentum of the resonance. And finally, the three final-state particles and the recoil
proton are handed over to GEANT, which handles their extrapolation through the virtual COMPASS

1 The only reason for this is that we do not want to create too much MC in kinematic regions where one does not expect
many events anyways.
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spectrometer and the interaction with material.
There is one caveat regarding the two K0

S , since they will decay within the COMPASS detector.
This decay will also be handled by GEANT, however, since the K0

S decays to two charged pions only
in 70 % of all cases, we artificially set its probability to 100 %, at the same time disabling the decay
mode into two neutral pions. All of these simulated events are called gMC.
The deposited energy in the active detector material is fed to CORAL, where the response of the

single detectors is simulated and the event reconstruction is performed in the same way as for RD.
Then, these rMC events are send through the same event selection2 as the one discussed in the previous
chapter, and the events that pass all selection criteria make up the aMC. The ratio #aMC#gMC defines the
overall acceptance of the COMPASS detector for a given final state. In case of the 𝜋−K0

S K0
S final

state this total acceptance amounts to 5959481
45392059 = 13.1 %, determined with ∼ 45 M gMC events in a

non-uniformly distributed mass range from 1.2 to 3.5 GeV. This is also the reason why this overall
acceptance is not a very useful quantity. It only serves as a first rough estimate on how many gMC
have to be produced to reach a certain amount of aMC.
For the 𝜋−𝜋+𝜋−, PWD approximately ten times as many aMC events were produced than RD events

of this final state. In section 4.4.7 we already mentioned some problematic regions, where the resulting
data points from the PWD were jumping strongly from bin to bin. With a statistical reanalysis of
the data in form of a bootstrap study as discussed in section 4.6.4, slightly bigger uncertainties were
obtained. However, the observed jumps in the data are still not explainable as statistical fluctuations.
In the bootstrap analysis of [55], they concluded that the origin of these fluctuations might lie in not
sufficient aMC. Since we have a lot less data for the 𝜋−K0

S K0
S final state compared to the 𝜋

−
𝜋
+
𝜋
− final

state, we can directly produce twenty times as many aMC than RD events. To see if this is sufficient is
already the first point that should be studied in more detail when finalizing the project.
Some regions of the three-body invariant mass are stronger populated than others, as one can see in

Figure 5.31(a), therefore, we will divide it in sections containing roughly equal amounts of events and,
there, produce MC data with uniformly distributed 𝑚

𝜋
−K0

S K0
S
. Since the detector acceptance might

vary for different values of 𝑚
𝜋
−K0

S K0
S
, we will plot this acceptance as well as the amount of aMC to

identify regions of too few MC. For these regions, we produce more MC and repeat the process until
the whole 𝑚

𝜋
−K0

S K0
S
spectrum is covered with at least twenty times as much aMC data.

This is presented in Figure 6.1, where the blue histogram corresponds to the RD distribution of
Figure 5.31(a), but now with the additionally applied cuts as discussed at the end of section 5.5. The
red line indicates the acceptance as a function of 𝑚

𝜋
−K0

S K0
S
, i.e. as the previously discussed ratio of

aMC over gMC for all events that fall in the corresponding resonance-mass bin of the RD histogram.
And finally, the grey transparent histogram indicates the amount of aMC divided by a factor of twenty.
This means that if the gray histogram is above the blue histogram we have at least the required multiple
of aMC. We see that the acceptance is slowly and very smoothly increasing over the whole mass range
and ranges from 9 % at 1.2 GeV up to 17 % at 3.5 GeV.
This plot cannot only be created for the invariant mass of the full 𝜋−K0

S K0
S system, but also for the

two subsystems 𝜋−K0
S and K0

S K0
S , see Figure 6.2. Here, we see that most of the spectra are covered by

the gray histogram. Only the K∗ peak and the high-mass region in the 𝜋−K0
S spectrum as well as the

2 There are only some differences regarding particle-identification detectors such as the RICH and the CEDARs. For each
of them, an efficiency study was performed in [58] and [64], respectively, and the MC particles are identified as pions
according to the corresponding experimental efficiency for the given kinematics.
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Figure 6.1: RD distribution of the 𝜋−K0
S K0

S invariant mass (blue histogram) overlaid with the amount of aMC
divided by twenty (gray histogram). The acceptance as the ratio of aMC over gMC in each of the histogram
bins is plotted as the red line with a 1𝜎 uncertainty band.

low mass threshold of the K0
S K0

S spectrum are not fully covered. This is the second point that should
be addressed before a publication, for example by simply producing more MC data, but for now this
coverage is sufficient. Also here, it is important that the acceptance is smooth and rather constant
in the two-body-subsystem invariant masses, such that we cannot produce artifacts in certain partial
waves due to artificially increasing the importance of an isobar as an effect of an increased acceptance
correction in its mass range.
A last thing that we can check is, how this acceptance behaves for the Dalitz plots. This can be seen

in Figure 6.3 for two different three-body mass ranges, one where the 𝑎1(1420) is expected to appear
and one around the mass of the 𝜋(1800). In general also there, the acceptance function is very smooth.
We see a lower acceptance for smaller invariant masses of the (K0

S K0
S ) subsystem, which is the case for

lower particle momenta in the LAB System (LAB). A K0
S with a low momentum is expected to decay

closer to the PV, thus, this acceptance drop is most likely related to the cut on the required minimal
vertex separation of the SVs from the PV. At the other borders of the Dalitz plot only one of the K0

S
has a small LAB momentum. Here, the inclusion of “shared” K0

S could be the reason why not such a
strong acceptance drop is observed. To solve the problems at the lower border, the final state would
need two “shared” K0

S , which is excluded during the event selection, so far. These are interesting
studies that could also be addressed when working towards a publication.
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Figure 6.2: Acceptance with a 1𝜎 uncertainty band (red line) plotted for the 𝜋−K0
S two-body system (left) and the

K0
S K0

S two-body system (right). The RD is depicted by the blue histogram, while the gray transparent histogram
shows the amount of produces aMC divided by twenty.

6.1.1 Fine Selection of the MC Data

Not only the acceptance is an interesting quantity to look at for MC data. We can also compare the
histograms obtained during the event selection of the MC data with the ones from RD. However, we
have to keep in mind that we have slightly different distributions for the kinematics due to a different
shape of the resonance-mass distribution in MC.
One quantity that is not directly affected by this, is the invariant-mass distribution of the secondary

pions. During the creation of the gMC, we created the 𝜋−K0
S K0

S final state according to phase space.
The propagation and the decay of the K0

S are than handled by GEANT, thus, a comparison of the
vertex separation and the vertexing resolution in form of the width of the K0

S peak is very interesting.
Let us start with the latter. In Figure 6.4, we see a comparison of the K0

S peak before the kinematic
fit for MC (left) and RD (right). For MC, the peak is perfectly centered on the nominal K0

S mass, which
shows that the shift towards higher masses in RD does not originate from artifacts in the vertexing or
the track reconstruction. The width of the peak is a bit narrower for MC, demonstrating that there is
not much background contributing to the K0

S peak. Otherwise the resolution in MC should be better,
since there, we know for sure that we have K0

S .
Figure 6.5 shows the vertex separation between SVs and the BPV. In both cases we see a falling

distribution with changes in the slope at 100 cm and 300 cm.
Next, we have a look at the momentum distributions of the final-state particles, see Figure 6.6. One

has to compare with the corresponding RD distributions in Figure 5.41 that have the strongest cuts on
centrality and the rapidity gap, since they have no background from central production which does not
follow the used flat-three-body-phase space distributions. We not only see a similar shape between
MC and RD, but we also have a similar ratio of the compared cases 𝑁BPVout = 1 and 𝑁BPVout = 2. This not
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Figure 6.3: RD Dalitz plot (left column) for two different three-body mass ranges as indicated by the captions
(rows). The right column shows the corresponding acceptance in each of the Dalitz-plot bins. Outliers of very
high (red) or very low (dark blue) acceptance on the border of the MC Dalitz plot originate from the small
number of gMC events that enter these bins.
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Figure 6.4: Invariant-mass distribution of pairs of 𝜋±sec for MC (left) and RD (right).
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Figure 6.5: Vertex separation between SV and BPV for MC (left) and RD (right).
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Figure 6.6: Momentum distributions for the 𝜋−prim momentum (left) and K0
S momentum (right). To be compared

with the most transparent lines in Figure 5.41.

only confirms the existence of “shared” K0
S in MC, but also that their inclusion is possible and useful.

6.2 Wave Selection

As mentioned already when discussing the simplest possible example of a PWD in section 3.4, one has
to cut off the sum over all partial waves 𝑤 in equation (3.65) due to the finite amount of available RD.
As a first simplification, we restrict ourselves to only positive reflectivity 𝜀 = +1, since it is expected
to strongly dominate the total intensity at these large beam energies and as it is confirmed by the
𝜋
−
𝜋
+
𝜋
− analysis of COMPASS. This removes the outer incoherent sum and for the inner sum we allow

for a maximum of total resonance spin 𝐽 ≤ 6, resonance spin projection 𝑀 ≤ 2 and orbital angular
momentum 𝐿 ≤ 6 in the resonance decay. With these, we take all physically allowed combinations of
the isobar spin 𝑆 such that |𝐿 − 𝑆 | ≤ 𝐽 ≤ 𝐿 + 𝑆. As discussed in section 3.4.1, 𝑀 = 0 is only possible
if 𝜀𝑃(−1)𝐽 = 1, which means for positive reflectivity that 𝑃 = (−1)𝐽 . This removes the zero spin
projections for resonances with 𝐽𝑃𝐶 ∈

{
(odd)−+, (even)++

}
. Allowing for the [KK]𝑆 isobars 𝑓0(980),

𝑓2(1270), 𝑓0(1500), 𝑓 ′2 (1525) and 𝑓0(1710) as well as for the [K𝜋]𝑆 isobars (K𝜋)S, (K𝜂)S, K
∗(892),

K∗(1410) and K∗2(1430), with their parametrization as detailed in section 6.2.1, results in a wave set
of 365 waves in total, plus one flat wave.

All of the following analysis was performed with the PWD program Wave Analysis Software
Tool [72] (WASP) developed by our working group in Bonn. Details of the working principle and the
implementation will be presented in the theses of my coworkers [66, 73].
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6.2.1 Isobar Line Shapes

In the following, the line shapes of the isobars are presented as they are entering the PWD model.
Resonance parameters as well as information about the dominant decay channels are taken from the
PDG. Isobars in the (KK) subsystem will be grouped together into [KK]𝑆 indicating the isobar spin 𝑆,
and with this also the orbital angular momentum in its decay, as an index in spectral notation (upright
letters). Similarly, isobars in the (K𝜋) subsystem will be grouped together into [K𝜋]𝑆 .

[KK]S Isobars

Note that we do not include a broad (𝜋𝜋)S component into the isobar model. A parametrization that
could be use in the future to study its effect on the PWD is presented in appendix A.6.1, but due to its
broad shape extending far below the KK threshold, it is omitted from [KK]S. And an additional reason
is that during the PWD many isobars are contributing to the 𝐽𝑃𝐶 = 0−+ sector, so an inclusion would
mean a lot more possibilities for strong interferences, making it harder for the fit to converge.

The 𝑓0(980) is modeled using a Flatté width for its decay modes to 𝜋𝜋 and KK as in equation (3.36)
with 𝑔

2
1

16𝜋 = 0.165 GeV2 and 𝑔
2
2
𝑔

2
1
= 4.21 as determined3 by the BES collaboration [74]. It is analytically

continued below threshold, i.e. 𝑞 → i |𝑞 | is used for the KK phase-space term below 𝑠 < 4𝑚𝐾 .

Both 𝑓0(1500) and 𝑓0(1710) are described with a BWM with energy-dependent width according to
equations (3.34) and (3.35). For the 𝑓0(1500), we only use the 2𝜋 phase space in its energy-dependent
width, since this is the strongest two-body contribution with ∼ 35 %. It is only surpassed by the 4𝜋
contribution with ∼ 50 %, which is hard to include into the energy-dependent-width formalism. In the
case of the 𝑓0(1710), we use its decay to KK in the denominator of the BWM. However at these isobar
masses, we are far away from the corresponding thresholds, therefore, the BW with energy-dependent
width will not differ that much from the one with constant width due to Φ2(𝑠)

𝑠→∞−→ const < ∞.

All line shapes and their complex phase, as well as the corresponding Argand diagram, can be
found in Figure 6.7.

3 Note that in the cited article 𝑔1 and 𝑔2 are defined differently, but converting their notation to the one that is used here, we
obtain the detailed expressions.
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(a) 𝑓0 (980) Flatté parametrization
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(b) 𝑓0 (1500) BWM with energy-dependent width
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(c) 𝑓0 (1710) BWM with energy-dependent width

Figure 6.7: Each row represents the parametrization of the line shape of one isobar as indicated in the caption.
The left plot shows the line shape (black) and the complex phase (red), while the right shows the Argand diagram
of the complex amplitude. The dots indicate steps in 0.1 GeV. For an easier relation of the plots to each other,
multiples of 0.5 GeV are indicated with a blue dot.
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[KK]D Isobars

Here, we model the 𝑓2(1270) and the 𝑓 ′2 (1525) with an energy-dependent width according to
equations (3.34) and (3.35) using the 2𝜋 channel for the energy-dependent width of the former and the
KK channel for the latter, since these are their respective dominant decay modes. The line shapes are
presented in Figure 6.8.
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(a) 𝑓2 (1270) BWM with energy-dependent width
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(b) 𝑓 ′2 (1525) BWM with energy-dependent width

Figure 6.8: Each row represents the parametrization of the line shape of one isobar as indicated in the caption.
The left plot shows the line shape (black) and the complex phase (red), while the right shows the Argand diagram
of the complex amplitude. The dots indicate steps in 0.1 GeV. For an easier relation of the plots to each other,
multiples of 0.5 GeV are indicated with a blue dot.

[K𝝅]S Isobars

Similar to the [𝜋𝜋]S sector, we have a very broad state here at low masses, the K∗0(700) aka 𝜅. Here, a
coupled-channel 𝑲-matrix fit was performed by [75] including three poles, i.e. resonances. We use
two “isobars”, the matrix elements 𝑇11 for the K𝜋 → K𝜋 channel, called (K𝜋)S, and 𝑇12 coming from
the K𝜂→ K𝜋 channel, called (K𝜂)S. Although in principle both could contribute to the PWD model,
the (K𝜋)S was removed during the automatic wave selection due to its strong destructive interference
with the other waves. Figure 6.9 displays their line shape. Their implementation is described in detail
in section 5.1.4 of [58], therefore, it is omitted here.
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(a) (K𝜋)S Palano-Pennington parametrization
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(b) (K𝜂)S Palano-Pennington parametrization

Figure 6.9: Each row represents the parametrization of the line shape of one isobar as indicated in the caption.
The left plot shows the line shape, while the right shows the Argand diagram of the complex amplitude. The dots
indicate steps in 0.1 GeV. For an easier relation of the plots to each other, multiples of 0.5 GeV are indicated
with a blue dot.

[K𝝅]P Isobars

Here, we only consider the K∗(892) and the K∗(1410), both modeled with a BWM with energy-
dependent width, see Figure 6.10.

[K𝝅]D Isobars

The only candidate for this isobar in the mass range of interest is the K∗2(1430) modeled with a BWM
with energy-dependent width, see Figure 6.11.

6.2.2 Thresholding

In order to reduce this huge amount of waves, an automatic thresholding procedure was developed by
Florian Kaspar4 for the 𝜋−𝜋+𝜋− final state and already implemented in the 𝜔𝜋−𝜋0 analysis of [77].

4 Details of the procedure will be published in the PhD thesis of [76].
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(a) K∗ (892) BWM with energy-dependent width
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(b) K∗ (1410) BWM with energy-dependent width

Figure 6.10: Each row represents the parametrization of the line shape of one isobar as indicated in the caption.
The left plot shows the line shape (black) and the complex phase (red), while the right shows the Argand diagram
of the complex amplitude. The dots indicate steps in 0.1 GeV. For an easier relation of the plots to each other,
multiples of 0.5 GeV are indicated with a blue dot.
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Figure 6.11: Parametrization of the line shape of the K∗2 (1430). The left plot shows the line shape (black) and
the complex phase (red), while the right shows the Argand diagram of the complex amplitude. The dots indicate
steps in 0.1 GeV. For an easier relation of the plots to each other, multiples of 0.5 GeV are indicated with a blue
dot.
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Figure 6.12: Integral matrix for the 4−+0+ 𝑓0 (980)𝜋G wave as a function of the resonance mass 𝑚𝑋 (blue solid
line) plotted together with an extrapolation of the steepest slope down to the 𝑥-axis (red dashed line). The rough
threshold of this wave is set to a value 0.3 GeV more to the left of the zero-crossing of the red dashed line.

We will follow this recipe by starting with a rough thresholding of the partial waves.

Rough Thresholding

For this, we calculate the diagonal elements of the integral matrix of equation (3.61) for different
values of 𝑚𝑋 via the MC-integration method as described below that equation. The resulting function
of 𝑚𝑋 will start rising when the phase space for this specific partial wave starts to open up. The
maximal slope of this rising edge is extrapolated down to the 𝑥-axis and the threshold of this particular
wave is set to this axis crossing minus 0.3 GeV to give it a bit of a safety margin. The execution of this
procedure can be seen for the 4−+0+ 𝑓0(980)𝜋G wave in Figure 6.12.

Tight Thresholding

Next, a stronger thresholding is performed to remove waves that strongly interfere destructively. For
this, the partial waves are sorted according to the previously determined rough thresholding. Then,
one starts from the highest mass bin (at this moment set to 3 GeV) going bin-by-bin downwards to
the lowest mass bin at 1.2 GeV. During each step, one adds partial waves one-by-one according to
their sorting and for each such set of partial waves one determines the acceptance integral matrix 𝐼acc𝑖 𝑗 ,
i.e. the MC-integrated Ψ𝑖Ψ

∗
𝑗 only using accepted MC events. Then, this complex integral matrix is

169



Chapter 6 PWD of the 𝜋−K0
S K0

S Final State

normalized via 𝐼acc𝑖 𝑗 =
𝐼
acc
𝑖 𝑗√︃
𝐼
acc
𝑖𝑖 𝐼

acc
𝑗 𝑗

and inverted via the algorithm described in [78]. According to [76, 77],

the maximal diagonal entry 𝐼−1
max := max𝑖{

��� (𝐼acc𝑖𝑖 )−1
���} of this inverse matrix is a measure for the largest

overlap between the so far included waves. If this value fulfills 𝐼−1
max ≥ 2, the last-added wave will be

removed from the wave set of this current mass bin and all smaller mass bins. This means that the
wave set can only increase for increasing resonance mass.
The result of this tight thresholding is summarized in Figure 6.13. Looking first at the black line

that corresponds to all waves and is equal in both plots, we see a jump in the amount of added partial
waves happening at ∼ 2.4 GeV and another jump shortly before the end of the plot at 3 GeV. It jumps
from ∼ 15 % of all waves to ∼ 30 % and, then, to ∼ 50 % defining three distinct regions where the
number of waves is rather constant. At the end we will constrain the resonance-mass bins to values up
to 2.5 GeV and, thus, only the ∼ 60 first partial waves will remain. But at this stage we will not cut on
the number of waves, yet. Everything that remains after this step will enter in the next wave-selection
stage.
But before we continue with this, let us have a more detailed look at the results. On the left, in

Figure 6.13(a), one can see that partial waves with isobars 𝑓0(1710) and K∗2(1430) are basically
removed from the wave pool, since they only start to contribute at the position of the second jump.
The isobars 𝑓0(1500), 𝑓 ′2 (1525) and K∗(1410) start in the central region, only the 2−+2+ 𝑓 ′2 (1525)𝜋 S
wave starts already at ∼ 1.6 GeV. The corresponding 𝑀 = 0 and 𝑀 = 1 waves and the also possible
D-waves and G-waves start later, showing that there would be a lot of destructive interference between
the 𝑓 (′)2 -waves. The same is also true for the partial waves with the K∗ isobars, basically removing the
K∗(1410) due to strong interference otherwise.
A second not so obvious problem of this kind appears regarding the spin-0 isobars. While the heavy

𝑓0(1500) and 𝑓0(1710) are completely removed below 2.4 GeV as already mentioned, also the other
spin-0 isobars are strongly suppressed. Only the 𝑓0(980)𝜋 channels start strong with a 50 % survival
rate. The two kaonic isobars (K𝜋)S and (K𝜂)S start with 2 and 4 partial waves, respectively. A jump
occurs at 1.94 GeV which is directly correlated with the jump in the 1++ sector in Figure 6.13(b). And
slightly later we see a jump in the 0−+ sector coinciding with an inclusion of a corresponding (K𝜋)S
wave. And indeed looking at the actual resulting list of partial waves, both kaonic spin-0 isobars only
contribute to partial waves with 𝐽 ≥ 2. All of this is most likely related to the Bose symmetrization that
is affecting both 𝜋−K0

S and K0
S K0

S isobars, effectively doubling the number of partial-waves amplitudes
that can interfere with each other.
Looking more closely at Figure 6.13(b), we see that the 𝐽𝑃𝐶 spin sector 6++ is completely removed,

and 5−+ as well as 6−+ only start to contribute in the final region. At the first jump in the total amount of
waves the spin sectors 4++, 4−+ and 5++ kick in, with the last two only having few waves starting already
very early. This means in conclusion that for a PWD up to only 2.5 GeV almost only resonances with
𝐽 ≤ 3 will be accessible when using these thresholds. But as mentioned earlier, we will continue with
this complete mass range entering into the following “automatic” part of the wave-selection procedure.

6.2.3 Wave-Selection Fit

So far we did not use the actual PWD formalism, but this will change now. By introducing an extra
penalty term into the likelihood function [58] demonstrated for the K−𝜋−𝜋+ final state and [77] for the
𝜔𝜋
−
𝜋

0 final state that the PWD framework will be able to actively set certain partial waves to zero, if
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Figure 6.13: Result of the tight thresholding, the partial waves are grouped according to the decay channel (left)
and the 𝐽𝑃𝐶 sector (right). The number behind each component in the legends is the total amount of waves for
this group and defines the 100 % for the corresponding colored line.

they are not needed to describe the full intensity. The procedure is also described in [20, 79]. The
corresponding term, that will be added to the negative-log-likelihood function, is

− lnLCauchy =
∑︁
𝑤

ln

(
1 +

��𝑇𝑤𝑤 ��2 𝐼acc𝑤𝑤
𝛾

2

)
, (6.1)

where the sum extends over all partial waves and all incoherent sectors, i.e. positive-reflectivity waves,
negative-reflectivity waves (which we neglect here) and the flat wave. The parameter 𝛾 or rather its
inverse is a measure for the wave-suppression power of this additional term5 and is chosen as 𝛾 = 0.3,
the smaller 𝛾 the more low-intensity waves will be set to zero. This is definitely another place where
additional studies could be performed to find the optimal value.
Since normally, all mass bins are fitted separately during a PWDwithout any knowledge of each other,

such a wave-selection fit could result in only single isolated bins for a specific partial-wave being present
in a certain mass range. This is not very helpful and, therefore following [\cite {wallner:phdthesis}],
an additional term can be added to the negative-log-likelihood function which allows to incorporate a
continuity condition between neighboring bins for each partial wave 𝑤:

(− lnLcomb)𝑤 (𝑚 𝑗) =
𝑁 1

2
−1∑︁

𝑖=−𝑁 1
2

��T𝑤𝑤 (𝑚 𝑗+𝑖) − T𝑤𝑤 (𝑚 𝑗+𝑖+1)
��2 , with 𝑁 1

2
:= (𝑁comb − 1)/2 (6.2)

5 [58] writes that each wave would need its own 𝛾𝑤 as they have different acceptances. He suggests to use the acceptance
integral matrix to incorporate this difference and to allow for the usage of just one common hyperparameter for all partial
waves.
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where 𝑁comb is the number of bins to combine
6. Increasing 𝑁comb increases the runtime of a fit

drastically, thus, for now we choose 𝑁comb = 7, i.e. we always fit each mass bin together with the three
previous and the three following mass bins. If the specific partial wave 𝑤 does not exist in the wave
set of a mass bin, the corresponding terms, where it appears, will be omitted. Otherwise, we would
always force the amplitudes to start at zero from their corresponding threshold.
For one mass bin 𝑚 𝑗 , the full negative-log-likelihood for this automatic wave selection is given by

(− lnLfull) (𝑚 𝑗) =
𝑁 1

2∑︁
𝑖=−𝑁 1

2

(
(− lnL)(𝑚 𝑗+𝑖) + (− lnLCauchy) (𝑚 𝑗+𝑖)

)
+ 𝛽

∑︁
𝑤

(− lnLcomb)𝑤 (𝑚 𝑗), (6.3)

with the strength 𝛽 of this additional continuity constraint, which we set to 𝛽 = 0.2 for this first test
study. For each of such a fit, only the transition amplitudes T of the central mass bin 𝑚 𝑗 are saved, the
rest is discarded. In the future, the parameters 𝛽 and 𝑁comb should be studied together with the choice
of 𝛾 in order to see how they affect the resulting wave set.
Usually, one sorts the waves according to their intensity, separately for each mass bin. Plotting this

intensity against the position of the wave in this sorting results, by construction, in a falling curve.
This curve will experience a sudden drop at some wave index from where on the intensities of the
partial waves become small. This defines a cut-off value for the intensities of this mass bin. Only
waves with an intensity larger than this cut-off value would be added to the wave set of this particular
mass bin. However, using this automatic wave selection can result in holes in the intensity spectrum
for some partial waves, thus, we change here to a more hands-on method. We look at partial-wave
intensity plots and discard waves completely if

• they contribute with less than 0.05 % to the full intensity,

• only few subsequent mass bins have non-vanishing intensity (⪅ 7),

• the threshold of a wave, roughly defined as the mass bin where the intensity consistently does
not vanish for several subsequent mass bins, lies above 1.9 GeV.

The last requirement is not really necessary, but for the moment we want to focus on small resonance
masses. For the high-mass region more heavy isobars and higher total spins as well as orbital angular
momenta start to contribute which increases the amount of allowed QN combinations drastically,
making the wave selection more involved. These criteria result in the wave set as detailed in Table 6.1.
The extracted intensities and interferences of the wave-selection fit are only useful to find the

thresholds for partial waves, since the penalty factor together with the combined-bins term can strongly
affect the position and shape of peaks in the intensity. Thus, we summarize the results in words.
Firstly, one can observe that all waves with isobars 𝑓0(1500), 𝑓0(1710), 𝑓 ′2 (1525), (K𝜋)S, K

∗(1410)
and K∗2(1430) are completely excluded from the wave pool due to either a too high threshold, in case
of the (K𝜋)S, or no intensity at all, for the other ones. Regarding the 𝐽

𝑃𝐶 QNs of the resonance,
we notice consistently dominant contributions from the 0−+, 1++ and 2−+ spin sectors. The sectors
with QNs 1−+, 2++ and 3++ are small. All other sectors are negligible. The only exception is the
4−+0+ (K𝜂)SK0

S G wave, but more on that later.

6 We only consider odd values of 𝑁comb in order to have symmetric intervals around the central bin.
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Table 6.1: Wave set determined by the wave-selection method as described in section 6.2.3. Partial waves with
grey text are separately discussed in section 6.2.4.

𝐽
𝑃𝐶

𝑀
𝜖

𝜉𝜁 𝐿 rel. intensity threshold / GeV
1++ 0+ 𝑓0(980)𝜋 P 11.8 % 1.28
0−+ 0+ 𝑓0(980)𝜋 S 11.0 % 1.20
2−+ 0+ (K𝜂)SK0

S D 5.2 % 1.36
1++ 0+ K∗(892)K0

S S 4.8 % 1.36
2−+ 0+ 𝑓0(980)𝜋D 4.3 % 1.48
2−+ 0+ K∗(892)K0

S P 3.0 % 1.40
2−+ 1+ K∗(892)K0

S P 2.1 % 1.48
1++ 1+ K∗(892)K0

S S 1.8 % 1.44
1++ 1+ 𝑓0(980)𝜋 P 1.7 % 1.36
2++ 1+ K∗(892)K0

S D 1.6 % 1.48
2−+ 1+ 𝑓0(980)𝜋D 1.5 % 1.48
1−+ 1+ K∗(892)K0

S P 1.4 % 1.40
3++ 0+, 1+ 𝑓0(980)𝜋 F 0.5 %, 0.7 % 1.48
3++ 0+, 1+ (K𝜂)SK0

S F 0.7 %, 0.5 % 1.48
4−+ 0+ (K𝜂)SK0

S G 1.0 % 1.44
0−+ 0+ 𝑓2(1270)𝜋D 0.9 % 1.32
3++ 0+, 1+ K∗(892)K0

S D 0.4 %, 0.4 % 1.60
2−+ 1+ K∗(892)K0

S F 0.7 % 1.52
1−+ 1+ 𝑓2(1270)𝜋D 0.6 % 1.40
2−+ 1+ (K𝜋)SK0

S D 0.6 % 1.40
2−+ 0+ 𝑓2(1270)𝜋 S 0.5 % 1.56
2++ 1+ 𝑓2(1270)𝜋 P 0.07 % 1.48

flat wave 31.5 % 1.36

However, the biggest contribution comes from the flat wave, which has the shape of the acceptance-
corrected total intensity, see Figure 6.14. This shows that the fit is not able to separate the contributions
properly. It turns out that this problem can be solved by increasing the rank of the PWD model as
introduced in section 3.4.5. Higher rank introduces additional incoherences into the model and can
help to disentangle contributions from different production processes. Due to the event topology of
displaced vertices for the two K0

S in the final state, also other backgrounds might still be present in the
data, one of which might be for example a 5𝜋 final state. This has to be studied in the future, e.g. by
producing signal MC for these background processes and performing the 𝜋−K0

S K0
S event selection on

them to see how big their contribution to the current data set is.

6.2.4 Final Adjustment of the Wave Set

The determined thresholds of the previously detailed wave set (see Table 6.1) are all relatively small.
Since a change in the amount of waves impacts all other partial waves and can create artifacts in the
resulting resonance-mass distributions, we let all selected waves start at the minimal value of 1.2 GeV.
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Figure 6.14: Flat wave as extracted by the wave-selection fit.

In order to see if this has a negative effect on the stability of the fit, we start with the strongest waves
with a relative intensity above 4 % as determined by the wave-selection fit and add the following waves
one-by-one in the order as they are listed in Table 6.1.
Also similar to the wave-selection fit, we observe a strong contribution from the flat wave in shape

of the total intensity during the standard PWD fit. Increasing the rank shows that the threshold of the
flat wave increases as well, together with an overall decrease in its relative intensity. Also the fit results
become a lot more stable, therefore, we use a rank-3 fit for this next step. It turns out that the fit model
is very stable when it comes to adding new partial waves. This impacts the shape of the previously
already included partial waves only weakly. In the following we discuss the problematic cases.
For the three 3++ waves only the theoretically most dominant 𝑀 = 0 partial wave is added to reduce

the amount of waves. Additionally, the two waves, whose 𝑀 = 0 component was removed by the
automatic wave selection but the 𝑀 = 1 component survived, are excluded as well. These are the
K∗(892)K0

S F-wave and the (K𝜋)SK0
S D-wave of the 𝐽𝑃𝐶 = 2−+ sector.

When including the partial wave 4−+0+ (K𝜂)SK0
S G to the wave pool, it develops an unphysical peak

at 1.65 GeV that seems to be leakage from the 2−+ sector where the 𝜋2(1670) is expected to contribute
strongly at this resonance mass. This 2−+ sector is also heavily impacted by the inclusion of this wave.
One could give this wave a higher threshold to solve this issue, but since we are focussing only on the
low-mass region, we simply exclude the wave.
The inclusion of the 0−+0+ 𝑓2(1270)𝜋D-wave has a very strong impact on all waves with 𝑓0(980)

as an isobar. The reason is probably that, so far, 𝑓0(980) was the only isobar in the (K0
S K0

S ) system.
The wave was excluded for the moment, but we will address it again later.
The K∗(892)K0

S D-wave of the 3++ sector develops an unphysical peak starting already at 1.45 GeV,
thus, we do not include it.
Next in line is the spin-exotic 1−+1+ 𝑓2(1270)𝜋D wave. This partial wave has a two-peak structure

with an enhancement at 1.65 GeV, a dip down to zero at 1.9 GeV and another peak at 2 GeV. This
structure is expected for the 2−+ sector where the 𝜋2(1670), the 𝜋2(1880) and the 𝜋2(2005) should
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appear. This indicates that these structure might simply be leakage from the not yet included
2−+0+ 𝑓2(1270)𝜋 S-wave. But even after its inclusion this structure still remains in the corresponding
1−+ wave. Since the 𝜋1(1600) hybrid candidate is not predicted to decay into this specific final state
according to ℓQCD, at least not with a substantial strength ([10], FIG. 16), we exclude the wave for
now.
When adding the just mentioned 2−+0+ 𝑓2(1270)𝜋 S-wave to the wave set, we see the previously

described two-peak structure. Its inclusion affects the 0−+0+ 𝑓0(980)𝜋 S-wave by introducing some
overall background, but not as strongly as the respective 0−+ wave with the 𝑓2(1270) isobar did. Since
the 𝜋2 resonances are expected to decay to 𝑓2(1270)𝜋, we include this wave nevertheless.
Incorporating the 2++1+ 𝑓2(1270)𝜋 P-wave into the wave set does not affect the other waves, thus,

we keep it inside.
When using the resulting wave set, we experience a lot of bin-wise jumps in the relative phases with

the 0−+0+ 𝑓0(980)𝜋 S-wave indicating the presence of mathematical ambiguities in the fit model. This
means that there are different solutions that result in the same negative log-likelihood value and, thus,
the fit cannot distinguish which of them is the correct one. However, if we try to add single waves
to the 0−+ sector, this always creates strong destructive interference between these two 0−+ waves,
especially when adding the (K𝜋)S isobar. If we add two waves, namely the 𝑓2(1270)𝜋D-wave and
the K∗(892)K0

S P wave, the destructive interference is strongly reduced and it even reduces again the
background that the inclusion of the 2−+0+ 𝑓2(1270)𝜋 S-wave created in the 0−+0+ 𝑓0(980)𝜋 S-wave.
The resulting resonance-mass spectra of these two additionally included partial waves are not very
convincing, however, it gives stability to the relative phases involving the 𝑓0(980)𝜋 S-wave. Therefore,
we keep them even though the K∗K0

S P-wave was originally already excluded by the tight thresholding
discussed in section 6.2.2. Additionally, the inclusion of these two waves reduces the relative intensity
of the flat wave drastically to 7.9 % and its intensity starts to rise at 1.78 GeV.
The final wave set is listed in Table 6.2 (without the greyed out rows) and we will discuss the results

of the corresponding PWD in the next section.

6.3 Partial-Wave Decomposition of the 𝝅−K0
SK0

S Final State

For the final PWD fit to the data, a rank-4 model was used in order to smoothen the complex phase of
the interference terms further. Each additional rank allows for another incoherent sector. This can
be necessary if there are different final states contributing, for example due to misidentification of
final-state particles. The biggest contribution will most likely come from a 5𝜋 final state with charged
pions. Such a final state could be reduced by requiring a larger vertex separation between the BPV and
the SVs of the K0

S , however, at the cost of signal events as well. This should be studied in the future by
create signal MC for such a 𝜋−𝜋−𝜋−𝜋+𝜋+ final state and determining the leakage through the 𝜋−K0

S K0
S

event selection discussed in chapter 5.2. Similarly, also a final state with three charged pions together
with two charged kaons could be possible, where the kaons are not correctly identified by the RICH cut.
They could originate from a 𝜙-meson decaying in close proximity of the BPV and being identified as
a “shared” K0

S , where the invariant mass of the kaon pair lies in the accepted mass range of the K0
S

when applying the wrong pion-hypothesis. Furthermore, final states with soft 𝜋0 could contribute,
where the missing momentum and energy are small enough for the event to pass the exclusivity cuts
discussed in section 5.2.3, e.g. the 𝐺-parity violating 6𝜋 final state originating from the 𝐺-parity
allowed 3𝜋𝜂. According to [34] (section 2.2), also an integration over a large 𝑡 ′ range – as we are
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doing it here – can make a higher rank necessary. Lastly, we observe a strong flat wave for smaller
rank. This could indicate the insufficiency of the chosen set of partial waves. When increasing the
rank (see appendix F.1), we observe a reduction of the relative intensity of the flat wave, as well as an
increase of its threshold. With these reasons, a rank-4 fit can be justified for a first attempt, however,
we note that this is definitely a point that should be investigated further in the future.
The used wave set is detailed in Table 6.2. The last column shows which of the waves were used

during the resonance-model fit of the 𝜋−𝜋+𝜋− analysis of COMPASS as described in reference [37]
together with the respective relative intensity of that wave. If these waves were excluded by the
previously discussed wave-selection procedure for this 𝜋−K0

S K0
S analysis, they have the entry “–” and

the lines are greyed out.
Note that the 𝜌(770)𝜋 waves from the 𝜋−𝜋+𝜋− analysis are listed in the corresponding row of

the K∗(892)K0
S wave in this analysis solely due to the similarity of the involved QNs. However, a

comparison of the relative intensities is not useful since the coupling ratio of the decays 𝜌(770) → 𝜋
+
𝜋
−

and 𝑓0(980) → 𝜋
+
𝜋
− is different than the one of the decays K∗(892) → K0

S K0
S and 𝑓0(980) → K0

S K0
S .

The 0−+0+ 𝑓0(980)𝜋 S obtains intensity over a large range of the resonance mass, thus, it is chosen
as the reference wave. This means that its transition amplitude is chosen to be positive real and fixes
the free global phase. Future studies should test the effect that this choice has on the wave selection
procedure and the stability of the PWD.
In order to find the correct minimum for each of the separate 𝑚𝑋-bin fits, for each of these bins, we

perform 500 fit attempts with random starting parameters and take the one with the lowest negative
log-likelihood. To test for ambiguities, we plot all results with a negative log-likelihood close to
the minimal value at the same time. Ambiguous solutions should manifest themselves as separated
continuous lines in the spectra, however, in each intensity and relative phase only one such line was
observed. This does not completely exclude the existence of ambiguities, since it could be the case
that it is simply more likely for the fitter to end up in one specific solution or that they have a slightly
higher negative-log-likelihood value, however, it definitely confirms the stability of the procedure.
Additionally, the same model is used for a fit where the binning in the resonance mass is made finer.

Again, the best of 500 attempts for each of these mass bins is plotted and the results can be found in
appendix F.4. The pots will be cross-referenced for easier comparison.

Since the heavier isobars were excluded by the wave-selection procedure, we can omit the mass
from their names, i.e. 𝑓0(980) ≡ 𝑓0, K

∗(892) ≡ K∗ and finally 𝑓2(1270) ≡ 𝑓2. Additionally, we will
shorten the wave label, by giving the name of the expected resonance 𝑋 as a subscript to the orbital
angular momentum 𝐿 in the decay. And if it is necessary to distinguish the spin projections 𝑀, the
higher ones will be given as a superscript to 𝐿. For direct reference, this short notation is given in
Table 6.2.
To summarize the fit results beforehand, we can have a look at the overview plots once more, where

contributions to the different decay channels or 𝐽𝑃𝐶 sectors are added coherently. These can be found
in Figure 6.15. The first observation is that some error bars extend below zero. We use the Gaussian
approximation, what means that we are determining the Covariance matrix from the analytically
calculated inverse Hessian matrix of the fit model. This covariance matrix is then propagated to
the uncertainty of the coherent sum of all contributions to the corresponding isobar or spin sectors,
according appendix C of to [80]. It seems as if this approximation is not completely valid, therefore,
the uncertainties are slightly overestimated. In Figure 6.15(a), we observe a broad peak at 1.6 GeV in
the K∗K0

S channels (blue), which indicates the presence of the 𝑎1(1640), since this is its dominant
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Table 6.2: Final wave set for the PWD. The last colum indicates if the corresponding partial wave was used
for the resonance-model fit in the 𝜋−𝜋+𝜋− final state together with the respective relative intensity as listed
in Table 2 of [37]. The 𝜌(770)𝜋 waves of the 𝜋−𝜋+𝜋− final state are listed in the row of the corresponding
K∗ (892)K0

S wave. Grey text indicates that the corresponding wave is not used and is just listed for comparison
with the 𝜋−𝜋+𝜋− analysis.

full wave label short notation rel. intensity 3𝜋 rel. intensity
𝐽
𝑃𝐶

𝑀
𝜖

𝜉𝜁 𝐿 𝜉𝜁 𝐿
(𝑀)
𝑋

0−+ 0+ 𝑓0(980)𝜋 S 𝑓0𝜋 S𝜋 12.9 % ✓ 2.4 %
0−+ 0+ K∗(892)K0

S P K∗K0
S P𝜋 9.6 % ✗

0−+ 0+ 𝑓2(1270)𝜋D 𝑓2𝜋D𝜋 4.4 % ✗

1++ 0+ 𝑓0(980)𝜋 P 𝑓0𝜋 P𝑎1
9.1 % ✓ 0.3 %

1++ 1+ 𝑓0(980)𝜋 P 𝑓0𝜋 P1
𝑎1

3.5 % ✗

1++ 0+ K∗(892)K0
S S K∗K0

S S𝑎1
5.0 % ✓ 32.7 %

1++ 1+ K∗(892)K0
S S K∗K0

S S1
𝑎1

2.2 % ✗

1++ 0+ 𝑓2(1270)𝜋 P – – ✓ 0.4 %
1−+ 1+ K∗(892)K0

S P K∗K0
S P𝜋1

3.0 % ✓ 0.8 %
2++ 1+ K∗(892)K0

S D K∗K0
S D𝑎2

3.3 % ✓ 7.7 %
2++ 2+ K∗(892)K0

S D – – ✓ 0.3 %
2++ 1+ 𝑓2(1270)𝜋 P 𝑓2𝜋 P𝑎2

1.6 % ✓ 0.5 %
2−+ 0+ 𝑓0(980)𝜋D 𝑓0𝜋D𝜋2

8.4 % ✗

2−+ 1+ 𝑓0(980)𝜋D 𝑓0𝜋D1
𝜋2

2.2 % ✗

2−+ 0+ (K𝜂)SK0
S D (K𝜂)SK0

S D𝜋2
11.3 % ✗

2−+ 0+ K∗(892)K0
S P K∗K0

S P𝜋2
5.5 % ✓ 2.2 %

2−+ 1+ K∗(892)K0
S P K∗K0

S P1
𝜋2

2.4 % ✗

2−+ 0+ 𝑓2(1270)𝜋 S 𝑓2𝜋 S𝜋2
2.1 % ✓ 6.7 %

2−+ 1+ 𝑓2(1270)𝜋 S – – ✓ 0.9 %
2−+ 0+ 𝑓2(1270)𝜋D – – ✓ 0.9 %
3++ 0+ 𝑓0(980)𝜋 F 𝑓0𝜋 F𝑎3

2.5 % ✗

3++ 0+ (K𝜂)SK0
S F (K𝜂)SK0

S F𝑎3
5.5 % ✗

4++ 1+ K∗(892)K0
S G – – ✓ 0.8 %

4++ 1+ 𝑓2(1270)𝜋 F – – ✓ 0.2 %
flat wave, starts at 1.78 GeV – 7.9 % ✗
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Figure 6.15: Overview of which decay channels (left) and which 𝐽𝑃𝐶 sectors (right) contribute during the main
fit. Displayed is the coherent sum of all partial waves that belong to the sectors as indicated by the legend. The
same result for the fit with finer mass binning can be found in Figure F.6. The colored data points are slightly
shifted sideways in order to make the error bars visible. All colored points actually lie where the corresponding
black dot is located. Note that some uncertainty bands extend below zero. This is unphysical and shows that the
used Gaussian approximation to propagate the uncertainties from the fit parameters to the intensities is not
completely valid.

S-wave decay channel. A shoulder on the falling edge at 1.9 GeV could originate from the 𝑎1(1930).
Next, we see a bump at 1.6 GeV in the 𝑓2𝜋 channels (dark green), where the 𝜋2(1670) has its dominant
S-wave decay. Then, we see a dip at ∼ 1.8 GeV with another rise afterwards, which could indicate a
𝜋2(1880), interfering destructively, and a 𝜋2(2005). The (K𝜂)S channel also behaves similarly, where
one should note that it is only included with 𝐽 ≥ 2 partial waves. Finally, the 𝑓0𝜋 channels (red) have
a strong peak at 1.8 GeV coming most likely from the 𝜋(1800). In addition, we see an enhancement at
1.4 GeV already hinting strongly to the presence of the 𝑎1(1420).
Figure 6.15(b) shows a small enhancement at 1.8 GeV in the 0−+ sector (red) on top of a very broad

hill. This broad component could originate from a Deck-like non-resonant background. A similarly
broad hill is observed in the 1++ sector (orange), probably containing non-resonant background as
well. The 2−+ sector (dark blue) shows a clear but also broad peak at 1.7 GeV that should come from
the 𝜋2(1670). The remaining 𝐽𝑃𝐶-sectors are only contributing weakly.

Before we start to look at the results in detail, let us discuss their presentation first. We will use a
similar style as for the display of the TSM and BWM fit discussed in section 4.5, Figure 4.16. This
means that we select a subset of the full list of fitted waves and plot the intensities of these waves on the
diagonal, while the off-diagonal shows the interference terms. There, we always display the relative
phase between the partial wave in the row and the one in the column. This means that resonances in
the intensity on the left side should appear as rising phases, while resonances in the intensity below
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should fall. The reason is that the complex phase of a pole in form of a BWM always rises (row) and
its complex conjugate always drops (column). If a resonance appears in both partial waves, the relative
phase should rather stay constant. Having said that this is only true for an isolated resonance without
background contribution. As soon as one adds two or more components coherently in one partial
wave, things can change drastically and even change the phase motion to go in the other direction7,
making predictions from the data alone is difficult without performing a resonance-model fit.
We draw vertical lines at the resonance masses where resonances are expected to appear, in order

to indicate where peaks in the intensity and rapid motion in the phase would be expected. Each
combination of 𝐽𝑃𝐶 gets its own color as indicated by the respective legends. In the 0−+ sector, we
draw lines for the 𝜋(1300), the 𝜋(1800) and the 𝜋(2070) in blue. The indicated 1++ resonances
are 𝑎1(1260), 𝑎1(1670) and 𝑎1(1930). For 2−+, we show lines for the 𝜋2(1670), 𝜋2(1880) and the
𝜋2(2005). And in the case of 2++, we expect the 𝑎2(1320), the 𝑎2(1700) and the 𝑎2(1950). For the
spin-exotic QNs 1−+, we give the location of the 𝜋1(1600) and the 𝜋1(2015). Finally for 3++, we
only show the 𝑎3(1875). If available, we use their mass values as determined by COMPASS in [37],
otherwise, the values are taken from the PDG.
In the top-left corner of each diagonal plot, we will show the relative intensity that this partial

wave obtained from the acceptance-corrected total intensity. While this relative intensity refers to
the complete fitted mass range 𝑚

𝜋
−K0

S K0
S
from 1.2 to 2.5 GeV, we will restrict the range for plotting

to 1.25 to 2.05 GeV, since outside, the amount of RD decreases drastically, resulting in very large
uncertainties. In addition the PWD model is definitely incomplete for higher masses. Heavier isobars
as well as higher resonance spins would start to contribute there, thus, the results are not reliable.
This is also the reason, why we do not discuss the 2−+ and 3++ waves in the main part of the thesis.
A short discussion and the corresponding plots can be found in appendix F.3. A compilation of all
extracted partial waves is presented in appendix F.5, however, this is probably only readable in the
digital version of this thesis.
Since the relative phase is periodic, points slightly below 180° and points slightly above −180° are

close to each other. To facilitate the identification of a phase motion, we additionally plot all data
points of the relative phases shifted by ±360° in grey.

6.3.1 Evidence for the 𝒂1(1420) in 𝝅−K0
SK0

S

Let us start the result discussion with a look at the 𝑎1(1420) partial wave, i.e. the 1++0+ 𝑓0(980)𝜋 P-
wave or for short the 𝑓0𝜋 P𝑎1

-wave. To show the similarity to the 𝜋−𝜋+𝜋− analysis, we compare it to
the K∗K0

S S𝑎1
-wave as a second component. And as a third component we choose the strongest 𝑎2

wave, namely K∗K0
S D𝑎2

. With all three together, we can recreate Figure 4.16 for this analysis and the
result can be found in Figure 6.16.
The top-left plot corresponds to the intensity of the K∗K0

S S𝑎1
-wave and exhibits a broad peak at

roughly 1.6 GeV. This peak is at slightly below the mass of the 𝑎1(1640) resonance indicated by the
second green line. However, this could easily explained by a background component that interferes
constructively with the 𝑎1(1640) on its low-mass tail and destructively on its high-mass tail. In order
to explain the full peak, we need a large background component which can drastically change the
behavior of the relative phases in this region. We do not see a distinct peak neither for the 𝑎1(1260)
7 This is even true for a background without own phase motion as the phenomenological Deck background described in
section 4.19.
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nor for the 𝑎1(1930). The former sits right at the threshold of the 𝜋−K0
S K0

S final state and, thus, is
kinematically suppressed. The latter is expected to be less pronounced than the 𝑎1(1640), since it is a
radial excitation.
The 𝑓0𝜋 P𝑎1

-wave in the central pad of Figure 6.16 shows a two-peak structure. One where the
𝑎1(1420) should show up, indicated by the dashed green line, and one between the 𝑎1(1640) and the
𝑎1(1930). The second peak could be created by two comparably strong BWM that are subtracted
from each other, i.e. with a relative phase of 180°, since this would change the interference such
that the two contributions interfere coherently in the range between their maxima. We see a strong
falling phase slightly before the position of the 𝑎1(1420) and afterwards a small rise. Since the phase
is changing there, it indicates that there has to be something other than background. Otherwise the
phase would be constant.
Now, looking at the third partial wave, the K∗K0

S D𝑎2
-wave at the bottom-right pad, we see two small

bumps in the data where the 𝑎2(1700) and the 𝑎2(1950) are expected. However, the uncertainties are
very large, thus, a definitive statement is impossible to make. The ground state, the 𝑎2(1320), has the
same problem as the 𝑎1(1260) in the 1++ sector that it sits directly at the threshold. At the position of
the 𝑎2(1700), we see a rise when looking at the relative phase with the K∗K0

S S𝑎1
-wave. However,

this would rather indicate the presence of the 𝑎1(1640) in the latter wave. On the other hand, there is
almost no relative phase motion with the 𝑓0𝜋 P𝑎1

-wave, which could indicate the presence of either
none or both of the resonances. Their resonance parameters are similar, therefore, their phase motion
could simply cancel out.
Only with a full-fledged resonance-model fit, one will be able to see if the resonances are present

in the data or if it can be solely described by a non-resonant background. And especially the
K∗K0

S D𝑎2
-wave demonstrates that more data is necessary to make stronger claims of the presence of

resonances.
Appendix F.2 shows the 𝑓0𝜋 P1

𝑎1
-wave with spin projection 𝑀 = 1, where we also see a small bump

at 1.4 GeV together with phase motion in the relative phase to the K∗K0
S S𝑎1

-wave and the K∗K0
S D𝑎2

.
Throughout all test, there was always a clear peaking structure at 1.4 GeV. Since it appears in both

spin projections and does not appear in the other 1++ waves, we can affirm evidence for the presence
of the 𝑎1(1420) consistent with the interpretation as a rescattering effect.

6.3.2 The Pseudoscalar Sector

As a second subset, we want to focus on the 0−+ waves. Here, we choose again the same format as
before, just with all spins reduced by one. This means that we take the K∗K0

S P𝜋-wave, the reference
wave 𝑓0𝜋 S𝜋 and once more the K∗K0

S S𝑎1
-wave in order to have a known component that helps to

relate the additional plots to the already discussed ones.
In the first panel of Figure 6.17, we again see a similar structure in the K∗K0

S P𝜋-wave as we already
had for the K∗K0

S S𝑎1
-wave (here as well presented in the bottom-right plot): We see a broad bump

slightly before the location where the 𝜋(1800) would be expected. This indicates that, also here, a
large background contribution is present that could interfere with a possible resonant signal.
The 𝑓0𝜋 S𝜋-wave in the central pad, however, shows a clear peak at 1.8 GeV for the 𝜋(1800). But

only a slight phase motion is visible in the relative phase with the other two waves. While the 𝜋(1800)
as a hybrid candidate is also very interesting, we observe a new peaking signal at 1.4 GeV. And in
the two corresponding relative phases, we also see a strong motion of the phase in the surrounding
bins. A peak with a phase motion are usually strong hints for a resonance, but here it could be
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Figure 6.16: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text. Displayed are the partial
waves K∗K0

S S𝑎1
(first row/column), 𝑓0𝜋 P𝑎1

(second row/column) and K∗K0
S D𝑎2

(third row/column). The same
result for the fit with finer mass binning can be found in Figure F.7.
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something different. It shows many similarities to the 𝑎1(1420), for example also the fact that we
see neither a peak in the corresponding K∗K0

S P𝜋-wave nor a phase motion in its relative phase with
the K∗K0

S S𝑎1
-wave. Could this be another triangle singularity causing this effect? Or maybe even

the same one? We will elaborate on that later in section 6.4. Due to its similarities, we will call it
𝜋(1420) from now on.
While the 𝑎1(1420) signal was persisting and strong throughout all performed fits, this new 𝜋(1420)

was sometimes not that strongly visible and vanished in the destructive interference with the other
0−+ waves that was mentioned in section 6.2.4. Especially when only including the 𝑓2𝜋D𝜋-wave, the
dip between the two peaks in the central panel of Figure 6.17 is filled up. As mentioned earlier, this
is most likely coming from destructive interference between the two waves, which gets cured or at
least reduced when add the K∗K0

S P𝜋-wave. Keeping this in mind, it is still possible that this peaking
structure is only an artifact of the wave selection, however, this artifact would also have to create a
phase motion in almost all relative phases. See also appendix F.5 for a complete presentation of all
discussed partial waves together, where the first row of all plots corresponds to the reference wave
𝑓0𝜋 S𝜋 .

6.3.3 The Spin-Exotic 𝝅1(1600) in 𝝅−K0
SK0

S

The final partial-wave that we will discuss, is the spin-exotic K∗K0
S P𝜋1

-wave where we hope to see the
𝜋1(1600). This wave only obtains 3 % of the full intensity. This means it is similar in strength than
the already discussed K∗K0

S D𝑎2
-wave. And also here, see the top-left panel in Figure 6.18, we have

large uncertainties that make a clear statement impossible. We observe a broad peak extending from
1.4 to 1.9 GeV and the relative phases are nearly constant at 1.6 GeV. In case of the relative phase to
the K∗K0

S P𝜋-wave we see a hint of a slow rising phase which turns into a drop where the 𝜋(1800)
lies. In the interference with the K∗K0

S S𝑎1
-wave, no phase motion is observed. The reason could be

that the phase motions of the 𝜋1(1600) and the 𝑎1(1640) compensate each other. A similar behavior
was observed during the analysis of the 𝜂𝜋+ ± 𝜋− final state by the E852 collaboration (see Figure 4e
of [81]). This is also the case for the results with finer binning in the resonance mass, see Figure F.10.
This together does not give convincing arguments for the presence of a 𝜋1(1600). But given the small
amount of data, as well as maybe an insufficient wave set to properly select waves with such small
relative intensities, we can neither make a definite statement on its absence. If a large background
contribution would be present in this partial wave, it could strongly reduce the visibility of the phase
motion.
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Figure 6.17: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text. Displayed are the partial
waves K∗K0

S P𝜋 (first row/column), 𝑓0𝜋 S𝜋 (second row/column) and K∗K0
S D𝑎1

(third row/column). The same
result for the fit with finer mass binning can be found in Figure F.9.
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Figure 6.18: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text. Displayed are the partial
waves K∗K0

S P𝜋 (first row/column), K
∗K0

S P𝜋 (second row/column) and K∗K0
S D𝑎1

(third row/column). The same
result for the fit with finer mass binning can be found in Figure F.10.

184



6.4 The 𝜋(1420) as a Triangle Singularity

6.4 The 𝝅(1420) as a Triangle Singularity

As already discussed, the new 𝜋(1420) signal shows many similarities to the 𝑎1(1420). To summarize
them again we have

• a narrow peak in the intensity of the 𝑓0𝜋 S𝜋 wave,

• a phase motion in the relative phase with all other waves,

• no peak at 1.4 GeV of the other 0−+ partial waves and also no phase motion with other
waves except with the 𝑓0𝜋 S𝜋-wave and the 𝑓0𝜋 P𝑎1

-wave (which would rather come from the
𝑎1(1420)).

The QNs of the resonance do not enter directly in the calculations of the triangle amplitude.
Especially the scalar case does not require any input other than the masses and decay widths of the
particles involved in the triangular loop. This means for the triangle singularity that it should also
manifest itself for other resonance QNs than 1++. In principle not even a resonance has to be present.
The difference is here now that we start from a K∗K0

S P wave and go to a 𝑓0𝜋 S wave which means
that we start from the QNs 𝑤 = (𝐽𝑀𝐿𝑆) = (0011) and go to 𝑤 = (𝐽𝑀𝐿𝑆) = (0000). This simplifies
the equations for a partial-wave projection. Following section 4.3.3 for the case at hand, we can set

(0)
𝐹(0011) (𝑠, 𝜎3) = 𝑓𝐾∗ (𝜎3)BW𝜋 (𝑠). (6.4)

As a source for the rescattering, the 𝜋(1300) comes to mind. But so far, no decay channel involving
kaons was observed for this resonance and also here, we do not see direct evidence for it. Nevertheless,
we can continue with the calculations and think of possible source resonances later.
Comparing with equation (4.8), the final expression changes here to

𝐹(1010) (𝑠, 𝜎1) = BW𝜋 (𝑠) 𝑓 𝑓0 (𝜎1) ·
𝐾 (𝑠, 𝜎1)

2𝜋

∞∫
4𝑚2

𝐾

𝜌 𝑓0
(𝜎′1)

∫
d𝑍 (1)(0000) 𝑓𝐾∗ (𝜎3)𝑍

(3)
(0011)

/
𝐾 (𝑠, 𝜎′1)

𝜎
′
1 − 𝜎1 − i 𝜀

d𝜎′1.

(6.5)
Next, we want to determine the kinematic factor. For this, we look at

𝑍
(3)
(0011) = 𝑍 (0011) (Ω3,Ω12) = 3

∑︁
𝜆,𝜈

𝐷
0∗
0𝜈 (𝜙1, 𝜃1, 𝜙23) 𝑑

0
𝜈𝜆(𝜃

∗
3(1) )︸      ︷︷      ︸

=𝛿𝜈0 𝛿𝜆0

𝑑
1
𝜆0(𝜃12) = 3 cos(𝜃12) ∼

1√︁
𝜆3𝜆𝑠3

,

which is a lot simpler than the corresponding version for the 1++ sector in equation (4.11). Additionally,
the argument of the square root in the denominator does not depend on 𝜎1, therefore, we can set the
kinematic factor to K (𝑠, 𝜎1) ≡ 1.
Also the projection integral becomes a lot simpler with 𝐵𝜆𝜆

′

0,00,11 = 3𝛿𝜆0𝛿𝜆′0 from equation (A.26):

d𝑍 (1)(0000)𝑍
(3)
(0011) =

d cos 𝜃23
2

3 cos 𝜃12.

The rest of the calculations work in a similar manner to section 4.3.4. But the final dispersive integral
in 𝜎′1 will not converge. Therefore, one has to perform a subtraction as introduced in equation (3.22).

185



Chapter 6 PWD of the 𝜋−K0
S K0

S Final State

With this, the final expression is

𝐹(0000) (𝑠, 𝜎1) = BW𝜋 (𝑠) 𝑓 𝑓0 (𝜎1)
𝐶 (𝑠) +

𝜎1
2𝜋

∫ ∞

4𝑚2
𝐾

𝜌 𝑓0
(𝜎′1)

∫
d𝑍 (1)(0000) 𝑓K∗ (𝜎3)𝑍

(3)
(0011)

𝜎
′
1(𝜎

′
1 − 𝜎1 − i 𝜀)

d𝜎′1

︸                                                                       ︷︷                                                                       ︸
=:MΔ, 𝜋

, (6.6)

where 𝐶 (𝑠) is the subtraction constant that could still be a function of 𝑠.
Performing the numerical integrations, we obtain Figure 6.19 for 𝜎1 = 𝑚

2
𝑓0
after adjusting the

(complex) subtraction constant 𝐶 (𝑠) ≡ const ∈ C to receive a similar signal compared to the 𝑎1(1420)
case. We see a similar peaking structure with an asymmetry in the opposite direction than for the 1++

case, i.e. a steeper fall off of the high-mass tail. The subtraction constant would be a free parameter of
the theoretical model if one decides to fit this amplitude to the results of the PWD.
In conclusion, such a rescattering could be the origin of this new signal, however, the question of

the source has to be answered still. The 𝜋(1800) would be an obvious candidate since we clearly see it
in the data, but this signal would be 1.8Γ𝜋 (1800) away from the peak. This means that the triangle have
only ∼ 9 % of its maximal strength due to sitting on the tail of the 𝜋(1800) propagator8 that would
have to be multiplied to the triangle amplitude. Using a 𝜋(1300) with a width of 400 MeV as central
value of the interval provided by the PDG, we would get ∼ 72 %, but we do not see a convincing sign
of the 𝜋(1300) in the data. This reduction is only part of the story, since one would obviously have to
include all the involved couplings for a proper estimation of the relative strength. Future studies have
to investigate this by performing a resonance-model fit to the results of the presented PWD.

8 We use a relativistic BW with constant width for this simple estimation.
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Figure 6.19: Comparison of the scalar triangle amplitude from the dispersive approach (dashed) to the result
for the partial-wave projection approach including all spins and orbital angular momenta for 1++ (solid) and
0−+ (dotted). The colors indicate which function is applied on the triangle amplitude as detailed in the top-left
legend. Calculations are performed for 𝐾∗0 (892),K+ and K− involved in the rescattering. The calculations and
the creation of this plot are done with Mathematica.

6.5 Next Steps

As already mentioned several times throughout this chapter, the here presented results are only a first
attempt. In order to draw final conclusions, there are many things on the agenda. Let us summarize
them here.

• Perform the event selection with different cuts on the vertex separation to see how this impacts
the background in the partial waves.

• Test, how the exclusion of “shared” K0
S or the inclusion of events with two “shared” K0

S affect
the results of the PWD.

• Produce more aMC in the regions of the K∗ and the 𝑓0(980), where we do not have twenty
times as much aMC as RD.

• Test if the amount of produced aMC is sufficient by slowly decreasing it to find out when the
jumps in the data become too large. If a small reduction shows an immediate effect, we can be
sure that we need more aMC.

• Create signal-MC for other processes, such as 5𝜋, 3𝜋 + 2K, 3𝜋𝜂,...Perform the 𝜋−K0
S K0

S event
selection on them. Like this, one can determine the size of the background coming from these
processes. One can also perform the PWD on these results, to see which partial waves are
affected the strongest.
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• Similarly to [47], one can produce MC events distributed according to the intensity of the Deck
amplitude and feed it through the whole analysis chain to see where the strongest contribution
from the Deck background is observed.

• Vary the parameterization of the isobar line shapes described in section 6.2.1 to estimate their
impact on the partial-wave decomposition.

– Especially the K∗(892) might profit strongly from a change in its parametrization. The
reason is that it has very large uncertainties at the tips of the peaks in all its partial waves,
where one would usually expect the smallest uncertainties due to the larger amount of
available data.

– [75] provides different options for the parametrization of the (K𝜋)S and the (K𝜂)S that
could be tested here. Maybe this could also reduce the destructive interference that we
observe regarding the (K𝜋)S partial waves, especially with the 𝑓0𝜋 S𝜋-wave.

• With an optimized wave set, one can try to fit with lower rank.

• Include negative-reflectivity waves to test their importance.

• Try different values for the free parameters of the automatic wave selection as discussed in
section 6.2.3. Also, try to follow the automatic-wave-selection procedure till the end, for
example by allowing for gaps in the mass distribution.

• Perform weighting of the MC data with the obtained fit result and compare the resulting
kinematic and angular distributions to RD in order to see how well the fit was able to separate
the contributions.

• Perform a bootstrap analysis similar to the one discussed in section 4.6.4 to get a better estimate
on the uncertainties. This is needed, since we see uncertainties extending below zero in the
intensity. This happens if there is not enough data and, therefore, the Gaussian uncertainties are
not a good approximation anymore.

• Extend the PWD to higher resonance masses and include heavier isobars. This could be relevant,
since we see, for example, bands in the Dalitz plots where the heavier K∗ isobars start to
contribute, see Figures 5.34 and 5.35.

• Try to bin as well in 𝑡 ′ in order to be able to separate signal from background better during a
resonance-model fit. However, due to the already large uncertainties, it is very unlikely that
such an additional binning would work. We already observe that the uncertainties are huge if we
double the amount of bins in 𝑚𝑋, especially for the partial waves with small relative intensity.
It seems as if the available data is simply not sufficient.

We see that there is still a lot of work needed, but the current status of the PWD already gives the
opportunity for a resonance-model fit in the low-mass region. This would allow to test the rescattering
interpretation for the 𝑎1(1420) similarly to chapter 4 and as well for the newly observed 𝜋(1420), a
resonance-model fit could give further insights on its origin.
From such a resonance-model fit, one can not only extract the mass and the decay width of the

resonances, but one will also be able to compare with the results obtained by the 𝜋−𝜋+𝜋− analysis
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in [37]. This allows to determine branching-fraction ratios, once the relative normalization is fixed.
Since the coupling of 𝑋 → 𝑓𝐽𝜋 is independent on the decay of 𝑓𝐽 , one can select an isobar whose
branching to 𝜋𝜋 and KK is known (e.g. the 𝑓0(980)) for which follows

M𝑋→3𝜋
M

𝑋→𝜋KK

!
=
𝑔𝑋→ 𝑓0𝜋

𝑔 𝑓0→𝜋𝜋

𝑔𝑋→ 𝑓0𝜋
𝑔
𝑓0→KK

. (6.7)

With equation (3.52), we can relate the number of events, or equivalently the height of the resonance
signal, to the squared magnitude of the matrix element. By measuring one resonance-height ratio, we
can determine the unknown ratio of proportionality constants in equation (3.52) and, thus, can correct
all other branching-fraction ratios with this.

6.5.1 Possibilities with AMBER

We discussed that the data might not be sufficient to extend the PWD to higher resonance masses
or to perform an additional binning in 𝑡 ′. Therefore, it would be good to increase the amount of
available data. The AMBER experiment is one candidate that can provide this additional data with the
planned spectroscopy run. The focus will lie on a kaon beam, however, there will still always be a
large beam-pion fraction that one can select as well. This would allow for an increase of the 𝜋−K0

S K0
S

data set if it is possible to combine it with the current one. Differences in the experimental setup can
affect the acceptance, which can make a merging of the data sets difficult.
A more promising path is the 𝜋−K+K− final state though. At COMPASS, the acceptance of this

final state was zero for low resonance masses and even for higher masses it was non-uniform due to
the limited momentum range, in which the RICH detector can distinguish pions from kaons. AMBER
tries to improve the PID before and after the target, which means that this final state might become
reasonable again. Some reasons why this final state is better than the 𝜋−K0

S K0
S final state once the PID

is guaranteed, are

• a better constrained PV due to three outgoing charged particles,

• no necessity for additional vertexing for SVs

• a smaller chance of particles escaping the geometrical acceptance of the spectrometer.

Currently, MC studies are ongoing that try to optimize the setup for the spectroscopy program of
AMBER.

6.6 Conclusion

To summarize this chapter, we presented the signal-MC production for the 𝜋−K0
S K0

S final state at
COMPASS including its fine selection and comparison to the RD. We obtained an overall acceptance
of roughly 13 %, rather uniformly distributed as a function of the three-body invariant mass as well as
the invariant mass of the two-body subsystems. Also, the Dalitz plots around 1.4 GeV and 1.8 GeV
showed a flat acceptance.
As a next step, a wave selection was performed with a final wave set of 18 partial waves and a flat

wave. Here, the focus was put to the low-mass region to search for the 𝑎1(1420) in 𝜋−K0
S K0

S , thus,
the wave set for higher masses needs to be refurbished if one wants to extend the fit range to values
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above 1.9 GeV. Having a look at the results of a rank-4 fit with the determined wave set, we see a
clear signal of the 𝑎1(1420) in both 1++𝑀+ 𝑓0(980)𝜋 P-waves with 𝑀 ∈ {0, 1}. It also shows phase
motion in the interference with other waves, while at the same time, no intensity peak as well as
no phase motion is observed at 1.4 GeV for the 1++0+ K∗(892)K0

S S. This makes an interpretation of
the 𝑎1(1420) as a hadronic molecule unlikely, since then, it should have a dominant decay via K∗K
according to [44]. On the other hand, we see a broad peak in the 1++0+ K∗(892)K0

S S-wave where
the 𝑎1(1640) sits, strengthening the indications of the 𝑎1(1640) → K∗(892)K0

S decay mode that we
observed in the corresponding Dalitz plot.
Looking at the 0−+ sector, we see a clear peak for the 𝜋(1800) decaying to 𝑓0(980)𝜋 as expected

from the analysis of the Dalitz plot around a resonance mass of 1.8 GeV. Additionally to the 𝜋(1800),
we see a new and narrow peak at 1.4 GeV that comes with phase motion in the relative phases to other
partial waves. No signal is observed in the corresponding K∗(892)K0

S P-wave at this mass. While we
cannot exclude that this is an artifact of the PWD, it bares many similarities to the case of the 𝑎1(1420),
therefore, we explore the possibilities of a triangle singularity in the 0−+ sector. And indeed, when
calculating the corresponding amplitude, we observe a peak with phase motion at 1.4 GeV. However,
the source of the rescattering is unclear, since the 𝜋(1800) might be too far away and no convincing
sign of the 𝜋(1300) is observed at COMPASS, neither in the 𝜋−K0

S K0
S final state discussed here, nor in

the 𝜋−𝜋+𝜋− final state investigated in the past.
While we see a clear signal for the 𝜋2(1670) in the corresponding partial waves, we cannot make a

clear statement on the existence of the 𝜋2(1880) hybrid candidate due to apparent insufficiencies of
the current wave set at higher masses.
Finally, the spin-exotic 𝜋1(1600) is expected to make an appearance in the 1−+1+ K∗(892)K0

S P-wave.
This partial wave takes roughly 3 % of the total intensity and we see a broad peak extending from
1.4 to 1.9 GeV. The relative phase to other waves does not exhibit a strong phase motion, therefore, a
conclusive statement on the presence of the 𝜋1(1600) cannot be made, yet.
Besides of many studies that can still be performed on the PWD, the next step is a resonance-model

fit. This can shed light on some of the remaining open questions.
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CHAPTER 7

Summary, Conclusion and Outlook

In this work, we try to answer the question for the origin of the supernumerous 𝑎1(1420) signal
that was discovered by the COMPASS collaboration in 2014. For this, we started in chapter 1 with
a short description of the standard model of particle physics and the quark model, introducing as
well the concept of exotic mesons. Chapter 2 was dedicated to the COMPASS experiment and its
analysis framework, focussing on diffractive pion-proton scattering. An introduction to scattering
theory followed in chapter 3, together with a detailed look on Breit-Wigner Models (BWMs) and their
complex structures. The principle of Partial-Wave Decompositions (PWDs) was summarized and a
method to calculate Dalitz plots from isobar parametrizations was discussed. The end of the chapter
was dedicated to partial-wave projections that allow the incorporation of resonance spins and orbital
angular momenta into a rescattering model.
At the beginning of chapter 4, several different interpretations for the 𝑎1(1420) signal are discussed.

The interpretation as a triangle singularity, originating from a rescattering of theK∗(892)K intermediate
state to the 𝑓0(980)𝜋 final state, was the focus of the rest of the chapter, introducing several methods
to calculate the corresponding triangle amplitude, one of which was the application of the previously
introduced partial-wave-projection method. The obtained Triangle-Singularity Model (TSM) was
fitted to the COMPASS data from the 𝜋−𝜋+𝜋− PWD and its fit quality was compared to the one of a
BWM of a hypothetical new 𝑎1(1420) resonance. Finally, several systematic studies were performed.
In the next chapter 5, the event selection of the 𝜋−K0

S K0
S final state was presented, discussing general

possibilities for diffractive pion-proton scattering with kaons in the final state first. A skimming for
events with at least one K0

S -candidate was developed and the optimal vertex separation for a K0
S from

the primary interaction vertex was determined with a significance study. After the fine selection of the
𝜋
−K0

S K0
S final state, which ensured exclusivity of the events, the results of the event selection were

discussed by looking at invariant-mass spectra of the two-body systems and the Dalitz plots for certain
resonance masses. In the end, a method to reduce background coming from central production via
double-Regge exchange was executed.
The final chapter 6 started by determining the acceptance of the COMPASS detector for the

𝜋
−K0

S K0
S final state via the production and processing of signal Monte-Carlo (MC) data. Next, a

wave-selection procedure was introduced and executed. The resulting set of partial waves was used
to perform a rank-4 Partial-Wave Decomposition (PWD). In the end, the extracted partial-wave
intensities and their interference with other partial waves were examined. Here, the focus was put
on waves containing the 𝑎1(1420), the 𝜋(1800) and the 𝜋1(1600). A possible interpretation of a
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newly found signal in the pseudoscalar sector as a triangle singularity similar to the 𝑎1(1420) was
discussed and further steps towards a resonance-model fit were listed together with a short outlook to
the possibilities that the AMBER experiment can provide in the future for spectroscopy involving kaons.

We try to make a case for the interpretation of the 𝑎1(1420) as a rescattering effect. For this, we
start by finding arguments against possible other explanations. The first one is the interpretation as a
radial excitation of the 𝑎1(1260). The resulting Regge trajectory shows a slope of (1.40± 0.05) GeV−2

when including the 𝑎1(1420) as a first radial excitation, while the slope without the 𝑎1(1420) yields
(1.05 ± 0.05) GeV−2 which is in agreement with the slopes from the other 𝑎𝐽 trajectories. The second
possibility is a hadronic K∗(892)K molecule, which is problematic since the mass of the 𝑎1(1420) is
larger than sum of the constituent masses. Additionally according to [44], this interpretation predicts a
larger branching ratio for the decay to K∗(892)K than for the decay to 𝑓0(980)𝜋 – by one order of
magnitude. When looking at the results of the 𝜋−K0

S K0
S PWD, we see a clear signal for the 𝑎1(1420)

in the 𝑓0(980)𝜋 P-wave while the intensity is almost 0 at 1.4 GeV for the K∗(892)K0
S S-wave. This

makes the hadronic-molecule interpretation very unlikely. In [44], the tetraquark-hypothesis was
tested against the molecule-hypothesis, showing a better compatibility with the COMPASS data for
the latter one. This makes the interpretation as a tetraquark even less likely than the one as a hadronic
molecule. It was demonstrated by [42] that a diquark-antidiquark pair without involved orbital angular
momentum would yield the Quantum Numbers (QNs) 1+− for spin-1 tetraquarks. Therefore, higher
orbital angular momentum would be needed in this model to allow for the 𝑎1(1420) as a tetraquark,
which would increase the amount of possible states drastically. This stands in contradiction with
the number of presently known states. Lastly, an interference effect with the Deck background was
proposed by Basdevant and Berger in [45]. They could demonstrate that a unitary treatment of
the Deck amplitude in a coupled-channel analysis of the 𝜌(770)𝜋 and the 𝑓0(980)𝜋 channels can
reproduce both intensity distributions. However, the relative phase between the two partial waves has
its strongest rise at the mass of the 𝑎1(1260) and not at 1.4 GeV, where we observe it in the COMPASS
data. In the meantime, first results from the PWD of the 𝜏 decays at Belle [8] were presented that show
a clear 𝑎1(1420) signal. This exclude the explanation via interference with the Deck-background,
since this background is not present in 𝜏 decays.
Now, we come to the interpretation as a triangle singularity originating from a rescattering of the

intermediate K∗(892)K channel to the observed 𝑓0(980)𝜋 channel. We demonstrated that a fit with
the TSM shows a better fit quality compared to a BWM of a hypothetical new 𝑎1(1420) resonance,
manifested by a smaller R2

red value that is conceptionally similar to a reduced 𝜒
2. All but one of

the performed systematic studies show this tendency and all systematic studies of the TSM describe
the COMPASS data better than the main fit model of the 𝑎1(1420) BWM. Determining systematic
uncertainties from these studies by taking the RMS of the difference to the main model of all systematic
studies with larger R2

red than the main model as the upper uncertainty and the one of all studies with
smaller R2

red as the lower uncertainty, we obtain R
2
red,TSM = 4.59+0.13

−0.40 and R
2
red,BWM = 4.87+0.09

−0.48. Since
these uncertainty intervals are overlapping, one cannot make a definite statement with this fit alone,
but one needs information from other channels to strengthen the case of the rescattering interpretation.
One such channel is the 𝜋−K0

S K0
S final state of which we performed an event selection in the course of

this work, resulting in the worlds largest data set of diffractively produced 𝜋−K0
S K0

S . We could confirm
the findings of the E580 experiment at Fermilab [71] and greatly expand on them due to more than
240 times the amount of exclusive events. We see clear evidence for the isobars 𝑓0(980) and 𝑓2(1270)
in the K0

S K0
S subsystem that could be confirmed with the subsequent PWD. Additionally, we see a peak
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at 1.5 GeV, where the 𝑓0(1500) and the 𝑓 ′2 (1525) are located, and a shoulder at 1.7 GeV where the
𝑓0(1710) is expected. During the PWD, the focus was put on low resonance masses, therefore, no
conclusive statement on the existence of these heavier isobars can be made, since the threshold of their
decay channels starts only at ∼ 1.7 GeV. In the 𝜋−K0

S subsystem we see a strong and narrow K∗(892)
peak, as well as another peak at 1.4 GeV where the K∗(1410), the K∗0(1430) and the K∗2(1430) are
expected. Here, only the lightest K∗ could be confirmed with the PWD since the thresholds of the
other channels are even higher than for the heavier 𝑓𝐽 isobars. The K∗0(700) could contribute to
the broad underground, however, due to strong destructive interference, especially with the 𝑓0(980)
channels, it could not be included in the current PWD model. By looking at the Dalitz plots, we
could predict the presence of the decay channels 𝑎1(1640) → K∗(892)K0

S , 𝜋(1800) → 𝑓0(980)𝜋 and
𝜋2(1670) → 𝑓2(1270)𝜋, which could all be confirmed by the PWD. By calculating the Dalitz plot
around 1.4 GeV for a model with only the K∗(892) isobar and comparing it to the COMPASS data, we
could argue for the presence of one or both of the 𝑓0(980) and the K∗0(700) due to strong deviations of
the distributions.
Enough signal MC data was produced to obtain at least twenty times as many accepted MC events

as we have real data in each resonance-mass bin. For the 𝜋−𝜋+𝜋− final state, only ten times as much
accepted MC was produced. Artifacts in the resulting PWD could be attributed to this insufficiency
of the MC sample, therefore, we produced twice as much here. In the future, it should be studied if
the amount is sufficient. However, the kinematic distributions of these accepted MC events show, in
general, a fair agreement with the real-data distributions. More importantly, it could be demonstrated
that the detector acceptance is smooth and uniformly distributed as a function of the three-body
invariant mass and as a function of the invariant mass of the two-body subsystems. The acceptance
displayed on the Dalitz plots around 1.4 GeV and 1.8 GeV also shows no structures. This demonstrates
that no artifacts should be introduced into the PWD due to the acceptance correction of the data.
By employing an automatic wave-selection procedure, we were able to select a wave set of 18

partial waves plus one flat wave. The procedure guaranteed low destructive interference between
partial waves, removing in the process the (K𝜋)S and (K𝜂)S isobars – which represent the K∗0 isobars –
for resonance spins of 𝐽 < 2 and masses below 2 GeV. And indeed, including these by hand, results
in unphysically1 large 𝑓0(980)𝜋 and (K𝜋)SK0

S intensities, hinting to the presence of mathematical
ambiguities in the model. Future studies should investigate this behavior further and one has to find a
method to resolve these ambiguities if one wants to include these additional isobars. Coming now to
the results, we observe clear signal of the 𝑎1(1420) in both 𝑓0(980)𝜋 P-waves with 𝑀 ∈ {0, 1}. As
already mentioned before, no intensity peak – or rather almost no intensity at all – was observed for
the K∗(892)K0

S S-wave at 1.4 GeV. This could indicate that, due to the rescattering, the events from
the K∗(892)K0

S S-wave were redistributed into the 𝑓0(980)𝜋 P-waves. Additionally to this signal in
the intensity of the 𝑓0(980)𝜋 P-wave, also a rapid change in the relative phase to other partial waves
is observed. All of this agrees well with the interpretation of the 𝑎1(1420) signal as a rescattering
effect, therefore, it strengthens the case for it. With a resonance-model fit, one will be able to test if
the triangle amplitude can describe the 𝜋−K0

S K0
S data as well. The K∗(892)K0

S S-wave for 𝐽𝑃𝐶 = 1++

exhibits a broad peak around the mass of the 𝑎1(1640). The broadness indicates the presence of some
possible non-resonant background that interferes, similar as it is the case for the 𝜌(770)𝜋 S-wave in
the 𝜋−𝜋+𝜋− final state. Also here, a resonance-model fit will provide clarity. Next, having a look at the
0−+ sector, we observe a strong peak for the 𝜋(1800) in the 𝑓0(980)𝜋 S-wave as expected from looking

1 Each of them approximately twice as large as the total intensity
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at the corresponding Dalitz plot after the event selection. Additionally, a first sighting of a small and
narrow peak is located at 1.4 GeV. It does not appear in the corresponding K∗(892)K0

S P-wave for 0−+

and also its relative phase to other waves shows resonant behavior. Since this resonance-like signal has
a very similar signature compared to the 𝑎1(1420), we call it 𝜋(1420) and investigate the possibility
for a triangle singularity as the origin. Calculating the corresponding triangle amplitude with the
partial-wave-projection method, we indeed see a peak and a rising phase at 1.4 GeV. However, as
for the 𝑎1(1420), we need a source for the rescattering in form of, for example, a resonance. The
𝜋(1800) could be too far a way and we do not see a sign of a possible 𝜋(1300) resonance in the
COMPASS data. The Deck-process could serve as a source of such a rescattering as well, but at
this stage of the analysis, we cannot exclude the possibility of an artifact of the PWD due to the
absence of the (K𝜋)SK0

S waves. The 1−+1+K∗(892)K0
S is – with only roughly 3 % of the total intensity

– definitely one of the weaker partial waves. It has a broad peak extending from 1.4 to 1.9 GeV, which
could inhabit the spin-exotic 𝜋1(1600). However, no striking motion in the relative phase to other
waves is observed. In case of the interference with 1++ partial waves containing the 𝑎1(1640), this
could be explainable by a compensation of their phase motion, as it was also observed by the E852
collaboration [81]. Another reason for a reduced phase motion could be the presence of a strong
non-resonant-background component inside of the broad peak, since such an interference can reduce
the strength of the phase motion of the resonance. Again, with a resonance-model fit, one will be able
to test its presence. While we see strong indications for a 𝜋2(1670) in the 2−+ partial waves, we have
to refurbish the wave set for higher masses with the inclusion of heavier isobars in order to allow for
statements on the presence of the hybrid candidate 𝜋2(1880) or heavier states.
Regarding the origin of the 𝑎1(1420), this work could provide a lot more arguments in favor of the
rescattering interpretation. Additionally, a contradiction to the expectation for a hadronic molecule
to appear dominantly in the K∗K channel, could be demonstrated. First signs of the 𝑎1(1420) in 𝜏
decays by [8] give further arguments against the interpretation as an interference effect with the Deck
background beside the wrong location of the resonant behavior of the relative phase. But final results
of the corresponding PWD with a resonance-model fit using the TSM are highly anticipated and are
needed to strengthen the already strong case of the 𝑎1(1420) as a rescattering effect further. Not
only in 𝜏 decays but also in diffractive scattering, there are more final states that could allow for the
rescattering of K∗K to 𝑓0𝜋. The AMBER experiment could allow for the detection of the 𝜋

−K+K−

final state if its particle identification is improved compared to COMPASS. But also with COMPASS
data, we can look into the 𝜋−K0

S K0
L final state by following the recipe described in this thesis. All of

these additional puzzle pieces can provide further insight into the identity of the 𝑎1(1420).
But the 𝑎1(1420) does not need to be the only triangle singularity. For each of the pentaquark-

candidates from [82] discovered by LHCb, a triangle singularity is present and close to the physical sheet.
However, when incorporating the decay width of the involved particles, the triangle amplitudes become
too broad to yield a satisfying description of the data. At lower energies, in the reaction 𝛾𝑝 → 𝑝𝜋

0
𝜂,

the CBELSA/TAPS collaboration found a peculiar structure in the𝑀𝑝𝜂 invariant mass distribution [83].
Here, the involvement of a triangle singularity through the reaction chain 𝛾𝑝 → 𝑝𝑎0 → 𝑝𝜋

0
𝜂 was

able to provide a good description of the data. The BGOOD experiment also could successfully apply
the concept of a triangle singularity in the reaction chain 𝛾𝑝 → K+Λ(1405) → K+𝜋0

Σ
0 where the

𝑁
∗(2030) was the source for such a rescattering [84].
Regarding the presented PWD of the 𝜋−K0

S K0
S final state, there are many additional studies needed,

some of which were already mentioned. The most important problem to solve, is the strong unphysical
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interference of the partial waves involving the (K𝜋)S isobar for which we gave a mathematical
ambiguity as one possible origin. But the effect of its parametrization has to be tested as well, since
this can change the way how the isobar interferes with other partial waves. An investigation of
background processes via MC production could help to rework some of the selection criteria in order
to have a cleaner data sample. This might allow for a reduction of the rank of the PWD model, since
we observe an increase in the experimental uncertainties if we increase the rank. Once a complete
model of the PWD is obtained, one can perform a resonance-model fit. It can directly provide
branching-fraction ratios of the decay channels 𝑓𝐽𝜋 and K∗𝐽K

0
S . By comparing the obtained signal

strengths of a resonance with equal isobar-decay mode between the 𝜋−K0
S K0

S and the 𝜋
−
𝜋
+
𝜋
− final

state, e.g. the 𝜋(1800) → 𝑓0(980)𝜋 or the 𝜋2(1670) → 𝑓2(1270)𝜋 decays, one can obtain a global
relative normalization constant that allows to relate the strengths of all other resonances to each other.
This would give access to the branching-fraction ratios of 𝜋1(1600) → K∗K and 𝜋1(1600) → 𝜌𝜋

which can be compared to the predictions of ℓQCD. This could provide valuable information for the
model that is used to calculate the hybrid-meson spectrum.

To conclude, this work provided strong new evidence for the 𝑎1(1420) as a triangle singularity
by presenting its first observation in the 𝜋−K0

S K0
S final state. It pioneers in the field of partial-wave

projections by using the obtained model for a first time in a fit to data, showing even better compatibility
with the data than a more flexible BWM. This can serve as a recipe for other occurrences of triangle
singularities in order to incorporate spins and orbital angular momenta in a sophisticated manner.
With the event selection of the 𝜋−K0

S K0
S final state, many new and exciting paths open up to extract

resonance parameters, branching fraction ratios, and more insights to hybrid candidates such as the
𝜋1(1600) and the 𝜋(1800). Finally, the first observation of a narrow resonance-like signal in the
0−+0+ 𝑓0(980)𝜋 S-wave was observed that could originate from the same triangle singularity as the
𝑎1(1420) which provides even more arguments in favor of the rescattering interpretation.
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APPENDIX A

Further Details on Kinematics

A.1 Kinematics of Two-Body Decays

For a decay of some resonance it usually makes sense to do the calculations in the CMS where the
resonance is at rest, meaning ®𝑃 = 0. If needed, one can perform a Lorentz boost afterwards to go back
to the LAB. In the following, an asterisk (∗) will denote quantities that are calculated in the CMS of
the resonance.

A.1.1 CMS Energy and Break-Up Momentum

If a resonance decays in two particles with momenta ®𝑝∗1 = − ®𝑝∗2, one can derive expressions for their
respective energies and momenta in the following way:

𝑚
2
2 = 𝑝

2
2 = (𝑃 − 𝑝1)

2
= 𝑠 + 𝑚2

1 − 2
√
𝑠𝐸
∗
1,

which we can easily solve for the energy

𝐸
∗
1 =

𝑠 − 𝑚2
2 + 𝑚

2
1

2
√
𝑠

, 𝐸
∗
2 =

𝑠 − 𝑚2
1 + 𝑚

2
2

2
√
𝑠

, (A.1)

where the formula for the second energy can be obtained by exchanging all indices 1 ↔ 2 in the

expression. The momentum can be obtained using
�� ®𝑝∗𝑖 �� = √︃

𝐸
∗2
𝑖 − 𝑚

2
𝑖 and can be shortened to

𝑞 ≡
�� ®𝑝∗𝑖 �� = 𝜆

1
2 (𝑠, 𝑚2

1, 𝑚
2
2)

2
√
𝑠

, (A.2)

by using the Källén function

𝜆(𝑥, 𝑦, 𝑧) = 𝑥
2 + 𝑦2 + 𝑧2 − 2𝑥𝑦 − 2𝑥𝑧 − 2𝑦𝑧 (A.3)

=

(
𝑥 − (√𝑦 +

√
𝑧)2

) (
𝑥 − (√𝑦 −

√
𝑧)2

)
(A.4)

= (𝑥 + 𝑦 − 𝑧)2 − 4𝑥𝑦 (A.5)
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Appendix A Further Details on Kinematics

Note that this expression has to be symmetric in the indices 1 and 2, since this so-called break-up
momentum has to be equal for both particles. This symmetric nature of the Källén function under
exchange of any two arguments can be best seen in its first form in equation (A.3), while from its
second form in equation (A.4) one can immediately identify the regions where it is positive, where
it is negative, and the two points where it vanishes. For the break-up momentum in equation (A.2)
these two points are called threshold 𝑠th := (𝑚1 + 𝑚2)

2 and pseudo threshold 𝑠pth := (𝑚1 − 𝑚2)
2. Its

third form (A.5) is useful for numeric calculations, since it involves the least amount of arithmetic
operations.

A.1.2 Two-Body Phase Space

The two-body phase space can be calculated in the following way. We start at the definition

Φ2 = (2𝜋)4
∫

d3 ®𝑝1

(2𝜋)32𝐸1

d3 ®𝑝2

(2𝜋)32𝐸2
𝛿
(4) (𝑃 − 𝑝1 − 𝑝2),

which is a Lorentz-invariant quantity. Therefore, we can perform the calculations in the CMS. In the
first step, we use the three-dimensional 𝛿 (3) ( ®𝑝∗1 + ®𝑝

∗
2) to get rid of one of the integrals:

Φ2 =
1

16𝜋2

∫
d3 ®𝑝∗1

𝐸
∗
1 · 𝐸

∗
2 ( ®𝑝
∗
1)
𝛿(𝑀 − 𝐸∗1 − 𝐸

∗
2 ( ®𝑝
∗
1)).

Be aware that we have to replace ®𝑝∗2 by − ®𝑝
∗
1 in the calculation of the energy resulting in 𝐸

∗
2 ( ®𝑝
∗
1) =√︃

𝑚
2
2 +

�� ®𝑝∗1��2. We can go over to spherical coordinates d3 ®𝑝∗1 = 𝑝
2d𝑝 d cos 𝜃 d𝜙 and since everything

only depends on the magnitude of the momenta, we can perform the angular integral resulting in a
factor of 4𝜋:

Φ2 =
1

4𝜋

∫
𝑝

2d𝑝
𝐸
∗
1 · 𝐸

∗
2 (𝑝)

𝛿(𝑀 − 𝐸∗1 − 𝐸
∗
2 (𝑝)).

From 2𝐸 d𝐸
d𝑝 = d

d𝑝𝐸
2
= d

d𝑝 (𝑝
2 + 𝑚2) = 2𝑝, we deduce d𝑝

𝐸
= d𝐸

𝑝
and replace 𝑝 =

√︃
𝐸
∗2
1 − 𝑚

2
1, which

gives

Φ2 =
1

4𝜋

∫
𝑝d𝐸∗1
𝐸
∗
2 (𝐸

∗
1)
𝛿

(
𝑀 − 𝐸∗1 −

√︃
𝑚

2
2 + 𝐸

∗2
1 − 𝑚

2
1

)
.

Since inside the 𝛿-distribution we have a slightly more complicated function of 𝐸∗1 , we have to use the
following property1 of the 𝛿-distribution

𝛿( 𝑓 (𝑥)) =
∑︁
𝑥 𝑗

𝛿(𝑥 − 𝑥 𝑗)�� 𝑓 ′(𝑥 𝑗)�� , 𝑥 𝑗 : first order zeroes of 𝑓 . (A.6)

1 We will not provide a detailed proof of this property, but here is the general idea: We have to integrate a function with full
support together with this expression – this is how distributions work. Then, we split this integral into small intervals
𝑥 𝑗 ± 𝜀 around the zeroes of 𝑓 – which explains the sum – since in between these intervals, the integral is zero due to the 𝛿.
Finally, we perform a substitution 𝑢 = 𝑓 (𝑥), 𝑥 = 𝑓

−1 (𝑢), d𝑥 = d𝑢/ 𝑓 ′(𝑥), which explains the fraction. The absolute value
in the denominator appears due to the change of the direction of integration after the substitution in case of 𝑓 ′(𝑥) < 0,
because for this, we have 𝑓 (𝑥 + 𝜀) < 𝑓 (𝑥 − 𝜀). All of this works, since 𝑥 𝑗 are first order zeroes and, therefore, 𝑓

′ . 0 in
close proximity of 𝑥 𝑗 , resulting in a monotonous 𝑓 that has a unique inverse 𝑓

−1.
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A.1 Kinematics of Two-Body Decays

The zero of the expression inside the 𝛿-distribution is exactly the CMS energy as given in equation (A.1),
and the derivative corresponds to

���−1 − 𝐸
∗
1
𝐸
∗
2

��� = 𝑀

𝐸
∗
2 (𝐸

∗
1 )
. Inserting this leads to

Φ2 =
1

4𝜋

∫
𝑝 d𝐸
𝑀

𝛿(𝐸 − 𝐸∗1),

and the application of the final 𝛿-distribution makes out of 𝑝 the break-up momentum from equa-
tion (A.2):

Φ2(𝑀
2
, 𝑚

2
1, 𝑚

2
2) =

1
8𝜋

2𝑞
𝑀

=
1

8𝜋
𝜆

1
2 (𝑀2

, 𝑚
2
1, 𝑚

2
2)

𝑀
2 , (A.7)

or we can recover the angles dΩ = d cos 𝜃 d𝜙 and write it in its differential form

dΦ2(𝑀
2
, 𝑚

2
1, 𝑚

2
2) =

1
8𝜋

2𝑞
𝑀

dΩ
4𝜋
. (A.8)

A.1.3 Phase Space Recursion Relation

We want to prove the phase space recursion formula as it is given in equation (3.50), but we do the
slightly more general case of splitting Φ𝑁+1 into Φ𝑁 and Φ2, allowing us to use the relation also for
values other than 𝑁 = 3:

Φ𝑁+1(𝑃; 𝑝1, ..., 𝑝𝑁 , 𝑝𝑟 ) =
∫

d𝑚2
𝑋

2𝜋
𝑑Φ𝑁 (𝑝𝑋; 𝑝1, ..., 𝑝𝑁 )dΦ2(𝑃; 𝑝𝑋, 𝑝𝑟 ). (A.9)

For this, we start on the right-hand side and simply insert the definition of the 𝑁-body and 2-body
phase spaces according to equation (3.10). We can immediately see that already everything of the
(𝑁 + 1)-body phase space is present:∫

d𝑚2
𝑋

2𝜋
𝑑Φ𝑁 (𝑝𝑋; 𝑝1, ..., 𝑝𝑁 )dΦ2(𝑃; 𝑝𝑋, 𝑝𝑟 )

= (2𝜋)4𝛿 (4)
[
𝑝𝑋 −

𝑁∑︁
𝑘=1

𝑝𝑘

]
𝑁∏
𝑘=1

d3 ®𝑝𝑘
(2𝜋)32𝐸𝑘

· d3 ®𝑝𝑟
(2𝜋)32𝐸𝑟︸                                                              ︷︷                                                              ︸

=Φ𝑁+1 (𝑃;𝑝1,..., 𝑝𝑁 , 𝑝𝑟 )

∫
d𝑚2

𝑋

2𝜋
d3 ®𝑝𝑋
(2𝜋)32𝐸𝑋

(2𝜋)4𝛿 (4)
[
𝑃 − 𝑝𝑋 − 𝑝𝑟

]

= Φ𝑁+1(𝑃; 𝑝1, ..., 𝑝𝑁 , 𝑝𝑟 )
∫

d𝑚2
𝑋

2
√︂
𝑚

2
𝑋 +

��� ®𝑃 − ®𝑝𝑟 ���2 𝛿
[
𝐸 −

√︂
𝑚

2
𝑋 +

��� ®𝑃 − ®𝑝𝑟 ���2 − 𝐸𝑟 ]

= Φ𝑁+1(𝑃; 𝑝1, ..., 𝑝𝑁 , 𝑝𝑟 )
∫

d𝑚2
𝑋 𝛿

[
𝑚

2
𝑋 − 𝑚

2
𝑋,0

]
︸                        ︷︷                        ︸

=1

.

In the first step, we replace 𝑝𝑋 by 𝑃 − 𝑝𝑟 in the first 𝛿
(4) -distribution which is allowed because

of the second 𝛿 (4) -distribution. In the second step we use the 𝛿 (3) component of the remaining
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distribution to remove the d3 ®𝑝𝑋 integration, replacing ®𝑝𝑋 by ®𝑃 − ®𝑝𝑟 inside 𝐸𝑋 =

√︃
𝑚

2
𝑋 +

�� ®𝑝𝑋��2. Then,
we use (A.6), where the inner derivative exactly cancels the denominator and the zero is given by

𝑚
2
𝑋,0 = (𝐸 − 𝐸𝑟 )

2 −
��� ®𝑃 − ®𝑝𝑟 ���2. Finally, we use the new 𝛿 to get rid of the final integration, concluding

the proof.

A.1.4 Quasi-Two-Body Phase Space

With the just defined recursion formula, one can express any phase space as a factor of two-body phase
spaces always integrating over the squared-invariant mass of the respective two-body system that was
split off in each step. Executed for the three-body phase space in the isobar model, we can define the
quasi-two-body phase space as a simplification of this. Let us start with the formula for the differential
decay width of a decay 𝑋 → 𝜉 + 𝜁1 parametrized by the matrix elementM𝑋 and 𝜉 → 𝜁2 + 𝜁3 with the
line shapeM𝜉 . Factorizing the full matrix element in equation (3.31) accordingly, we can rewrite it as

dΓ(𝑠) = 1
𝑚𝑋
|M|2 dΦ3(𝑠) =

1
𝑚𝑋

��M𝑋

��2 d𝜎𝜉
2𝜋

��M𝜉

��2 dΦ2(𝑠, 𝜎𝜉 , 𝑚
2
1)dΦ2(𝜎𝜉 , 𝑚

2
2, 𝑚

2
3).

Integrating everything out gives us

Γ(𝑠) =
1
𝑀

��M𝑋

��2 Φ̃2(𝑠), with

Φ̃2(𝑠) :=
∫ (

√
𝑠−𝑚1)

2

(𝑚2+𝑚3)
2

d𝜎𝜉
2𝜋

��M𝜉

��2 Φ2(𝑠, 𝜎𝜉 , 𝑚
2
1)Φ2(𝜎𝜉 , 𝑚

2
2, 𝑚

2
3), (A.10)

which has the same structure as the formula we started from, equation (3.31). For a narrow isobar with
Γ𝜉 ≈ 0, its line shape becomes approximately a 𝛿-distribution,

��M𝜉

��2 { 𝛿(𝜎𝜉 − 𝑚
2
𝜉 ) and, therefore,

we would obtain the simple two-body phase space for the decay 𝑋 → 𝜉 + 𝜁1, at least modulo some
normalization. The proper normalization would be

𝑁𝜉 (𝑠) =
∫ (

√
𝑠−𝑚1)

2

(𝑚2+𝑚3)
2

d𝜎𝜉
2𝜋

��M𝜉

��2 Φ2(𝜎𝜉 , 𝑚
2
2, 𝑚

2
3).

It depends on 𝑠 and would have to be done for every value that one evaluates the quasi-two-body phase
space at, therefore, it is highly unpractical. Instead, a simpler normalization with the integral over the
complete isobar line shape up to infinity can be performed

𝑁𝜉 =

∫ ∞

(𝑚2+𝑚3)
2

d𝜎𝜉
2𝜋

��M𝜉

��2 .
In case of Bose symmetrization one would have to add the corresponding isobar line shapes

on amplitude level, evaluated on the respective two-body invariant masses. However, the integral
has to be performed only over one of the invariant masses and the angles in the helicity frame of
the corresponding isobar system. Here, the angles calculated in appendix A.4, equations (A.39)
and (A.40), can help to provide the necessary dependencies.
Another easier way to calculate the quasi-two-body phase space is by using the MC-integration
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A.2 Blatt-Weisskopf Factors

method, where we draw MC events distributed flat in the three-body phase space and evaluate the
expression for the quasi-two-body phase space on all of them, always boosting the event in the
respective rest frames as needed. This corresponds to the integral matrices that are needed for the
acceptance correction during the PWD, see section 3.4.5.

A.2 Blatt-Weisskopf Factors

Here is the used parametrization of the Blatt-Weisskopf barrier factors as they appear e.g. in
equation (3.34):

ℎ
2
0(𝑧) = 1, (A.11)

ℎ
2
1(𝑧) =

2𝑧
𝑧 + 1

, (A.12)

ℎ
2
2(𝑧) =

13𝑧2

𝑧
2 + 3𝑧 + 9

, (A.13)

ℎ
2
3(𝑧) =

277𝑧3

𝑧
3 + 6𝑧2 + 45𝑧 + 225

, (A.14)

ℎ
2
4(𝑧) =

12746𝑧4

𝑧
4 + 10𝑧3 + 135𝑧2 + 1575𝑧 + 11025

, (A.15)

ℎ
2
5(𝑧) =

998881𝑧5

𝑧
5 + 15𝑧4 + 315𝑧3 + 6300𝑧2 + 99225𝑧 + 893025

, (A.16)

ℎ
2
6(𝑧) =

118394977𝑧6

𝑧
6 + 21𝑧5 + 630𝑧4 + 18900𝑧3 + 496125𝑧2 + 9823275𝑧 + 108056025

, (A.17)

with 𝑧 = (𝑞𝑅)2 being the squared product of the break-up momentum of equation (A.2) with some
range parameter 𝑅 = 5 GeV−1≈̂1 fm, which is chosen to be of the order of the range of the strong
interaction. Note that in the main text, usually only ℎ2

𝐿 (𝑞) is written, however, this is done to show the
dependence on the break-up momentum and to indicate which value to insert in case there is more
than one possible decay involved. In the end, 𝑧 = (𝑞𝑅)2 has to be inserted always.

A.3 Wigner-𝑫 Functions

A.3.1 Definitions and Basic Relations

We take the definitions and relations from [85]. For direct reference, we detail the relevant information
in the following.
First of all, we can relate the Wigner-𝐷 functions to the small Wigner-𝑑 functions as follows:

𝐷
𝑗
𝑚𝑛 (𝛼, 𝛽, 𝛾) = e−i𝑚𝛼

𝑑
𝑗
𝑚𝑛 (𝛽)e

−i 𝑛𝛾
. (A.18)
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They fulfill the following orthogonality relation∫
d𝛼
2𝜋

d cos 𝛽
2

d𝛾
2𝜋
𝐷
𝑗∗
𝑚𝑛 (𝛼, 𝛽, 𝛾)𝐷

𝑗
′

𝑚
′
𝑛
′ (𝛼, 𝛽, 𝛾) =

𝛿𝑚𝑚′𝛿 𝑗 𝑗′𝛿𝑛𝑛′

2 𝑗 + 1
. (A.19)

Usually, we deal with angles Ω = (𝜙, 𝜃) where we introduce a short-hand notation

𝐷
𝑗
𝑚𝑛 (Ω) := 𝐷 𝑗

𝑚𝑛 (𝜙, 𝜃, 0),
∫

dΩ
4𝜋
𝐷
𝑗∗
𝑚𝑛 (Ω)𝐷

𝑗
′

𝑚
′
𝑛
(Ω) =

𝛿 𝑗 𝑗′𝛿𝑚𝑚′

2 𝑗 + 1
. (A.20)

Note that the third index (𝑛) has to be equal for both of the Wigner-𝐷 function for the orthogonality
relation to hold, since the third angle is zero.
Using the definition in equation (A.18), we see that

𝐷
𝐽
𝑀𝜆(Ω)𝐷

𝑆
𝜆0(Ω

′) = 𝐷𝐽𝑀𝜆(𝜙, 𝜃, 𝜙
′)𝑑𝑆𝜆0(𝜃

′). (A.21)

During the partial-wave-projection procedure as introduced in section 3.6 we have to integrate the
product of two angular functions of different isobar channels. However, the angles are not the same,
which is why we cannot use the orthogonality relation, yet. Equation (C.31) of [33] transforms the
Wigner-𝐷 function such that one can relate the angles (Ω𝑘 ,Ω𝑖 𝑗) of isobar channel (𝑖 𝑗) to the angles
(Ω𝑖 ,Ω 𝑗𝑘) of isobar channel ( 𝑗 𝑘) (using cyclic indices):

𝐷
𝐽
𝑀𝜆(Ω𝑘)𝐷

𝑆
𝜆0(Ω𝑖 𝑗) =

∑︁
𝜈

𝐷
𝐽
𝑀𝜈 (𝜙𝑖 , 𝜃𝑖 , 𝜙 𝑗𝑘)𝑑

𝐽
𝜈𝜆(𝜃

∗
𝑘 (𝑖) )𝑑

𝑆
𝜆0(𝜃𝑖 𝑗), (A.22)

where the angle 𝜃∗𝑗 (𝑖) is defined as the angle between the momentum vectors ®𝑝 𝑗 and ®𝑝𝑖 in the GJ frame.

A.3.2 Relations for Angular Functions 𝒁𝒘

The angular functions for a three-body decay are given by

𝑍𝑤 (Ω,Ω
′) := √𝑛𝐿𝑛𝑆

∑︁
𝜆

⟨𝐿0, 𝑆𝜆 |𝐽𝜆⟩ 𝐷𝐽∗𝑀𝜆(Ω) 𝐷
𝑆∗
𝜆0 (Ω

′), with 𝑤 = (𝐽𝑀𝐿𝑆) (A.23)

and fulfill the following orthogonality relation:∫
dΩ
4𝜋

dΩ′

4𝜋
𝑍𝑤 (Ω,Ω

′)𝑍𝑤′ (Ω,Ω
′) = 𝛿𝑤𝑤′ = 𝛿𝐽𝐽′𝛿𝑀𝑀′𝛿𝐿𝐿′𝛿𝑆𝑆′ . (A.24)

This can be seen by employing orthogonality of equation (A.20) on the second Wigner-𝐷 function
with the dΩ′ integral, which already gives 𝛿𝑆𝑆′ and removes the sum over 𝜆

′ with the 𝛿𝜆𝜆′, so only
a single sum over 𝜆 remains. The 𝑛𝑆 factor also cancels. Now, the second lower index of the first
Wigner-𝐷 functions is equal and we can also employ orthogonality with the dΩ integral leading to 𝛿𝐽𝐽′
and 𝛿𝑀𝑀′ with an additional 𝑛

−1
𝐽 . The still missing 𝛿𝐿𝐿′ is obtained via the following orthogonality

relation for the Clebsch-Gordan coefficients (derived in section A.3.4):
√
𝑛𝐿𝑛𝐿′

∑︁
𝜆

⟨𝐿0, 𝑆𝜆 |𝐽𝜆⟩ ⟨𝐿 ′0, 𝑆𝜆 |𝐽𝜆⟩ = 𝑛𝐽𝛿𝐿𝐿′, (A.25)
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which eats the remaining prefactor involving 𝐿 and 𝐿 ′ and cancels the previously obtained 𝑛−1
𝐽 factor

as well, leaving us only with the Kronecker-𝛿 product as stated in equation (A.24).

Next, we want to simplify the projection integral d𝑍 (𝑖)𝑤 𝑍
(𝑘)
𝑤
′ defined via equation (3.93). For this,

we use equation (A.21) inside of 𝑍 (𝑖)∗𝑤 and equation (A.22) inside of 𝑍 (𝑘)
𝑤
′ :

d𝑍 (𝑖)𝑤 𝑍
(𝑘)
𝑤
′ =

dΩ𝑖
4𝜋

dΩ 𝑗𝑘

4𝜋

∑︁
𝜆,𝜆
′
,𝜈

𝐵
𝜆𝜆
′

𝑤𝑤
′ 𝐷

𝐽∗
𝑀𝜆(𝜙𝑖 , 𝜃𝑖 , 𝜙 𝑗𝑘)𝐷

𝐽
′

𝑀
′
𝜈
(𝜙𝑖 , 𝜃𝑖 , 𝜙 𝑗𝑘)︸                                        ︷︷                                        ︸∫

dΩ𝑖d𝜙 𝑗𝑘 { 𝑛
−1
𝐽 𝛿𝐽𝐽′ 𝛿𝑀𝑀′ 𝛿𝜆𝜈

𝑑
𝑆∗
𝜆0 (𝜃 𝑗𝑘)𝑑

𝐽
′

𝜈𝜆
′ (𝜃∗𝑘 (𝑖) )𝑑

𝑆
′

𝜆
′0(𝜃𝑖 𝑗)

with 𝐵
𝜆𝜆
′

𝑤𝑤
′ =
√
𝑛𝐿𝑛𝐿′𝑛𝑆𝑛𝑆′ ⟨𝐿0, 𝑆𝜆 |𝐽𝜆⟩ ⟨𝐿 ′0, 𝑆′𝜆′ |𝐽 ′𝜆′⟩

= 𝛿𝐽𝐽′𝛿𝑀𝑀′
d cos 𝜃 𝑗𝑘

2

∑︁
𝜆𝜆
′
𝐵
𝜆𝜆
′

𝐽,𝐿𝑆,𝐿
′
𝑆
′𝑑
𝑆
𝜆0(𝜃 𝑗𝑘)𝑑

𝐽

𝜆𝜆
′ (𝜃∗𝑘 (𝑖) )𝑑

𝑆
′

𝜆
′0(𝜃𝑖 𝑗) (A.26)

with 𝐵
𝜆𝜆
′

𝐽,𝐿𝑆,𝐿
′
𝑆
′ =

√
𝑛𝐿𝑛𝐿′𝑛𝑆𝑛𝑆′

𝑛𝐽
⟨𝐿0, 𝑆𝜆 |𝐽𝜆⟩ ⟨𝐿 ′0, 𝑆′𝜆′ |𝐽𝜆′⟩ ,

where we used the orthogonality of the full Wigner-𝐷 functions from equation (A.19) to perform three
of the four integrations. We also removed the complex conjugation of the little Wigner-𝑑 function,
since they are all real-valued functions. The two Kronecker-𝛿s show that the partial-wave projection
will only affect single 𝐽 and 𝑀, meaning that a resonance can only be affected by its own cross
channels and not by other resonances as expected for a rescattering. For the remaining integral one
has to express all angles in terms of squared two-body invariant masses 𝜎𝑖, which can be found in
appendix A.4.

A.3.3 Wigner-𝑫 Functions in Reflectivity Basis

As derived in [20], the Wigner-𝐷 functions expressed in the reflectivity basis read as follows:

𝜖
𝐷
𝐽

𝑀𝑀
′ (Ω) = 𝑁𝑀

(
𝐷
𝐽

𝑀𝑀
′ (Ω) − 𝜖𝑃(−1)𝐽−𝑀𝐷𝐽(−𝑀)𝑀′ (Ω)

)
, with 𝑁𝑀 :=


1√
2
, 𝑀 > 0

1
2 , 𝑀 = 0
0, 𝑀 < 0

. (A.27)

From this equation we can see that the case 𝑀 = 0 will only be non-zero if 𝜖𝑃(−1)𝐽 = −1. For
positive reflectivity this will be the case if 𝑃 = (−1)𝐽+1, which means that resonances with QNs
𝐽
𝑃𝐶 ∈ {odd−+, even++} will not have partial waves with 𝑀 = 0 reducing their likelihood compared to
the other 𝐽𝑃𝐶 combinations.
The angular functions in this reflectivity basis as discussed in section 3.4.4 and defined in

equation (3.60) also fulfill the orthogonality relation (A.24) with an additional 𝛿𝜖 𝜖 ′. To see this, we
multiply out the term from equation (A.27) in the product of angular functions – assuming equal
arguments (Ω,Ω′) and omitting them – to obtain

𝑍
𝜖 ∗
𝐽𝑀𝐿𝑆𝑍

𝜖
′

𝐽
′
𝑀
′
𝐿
′
𝑆
′ = 𝑁𝑀𝑁𝑀′

(
𝑍
∗
𝐽𝑀𝐿𝑆𝑍𝐽′𝑀′𝐿′𝑆′ + 𝜖𝜖

′
𝑃𝑃
′
𝑍
∗
𝐽 (−𝑀)𝐿𝑆𝑍𝐽′ (−𝑀′)𝐿′𝑆′

− 𝜖𝑃(−1)𝐽−𝑀𝑍∗𝐽 (−𝑀)𝐿𝑆𝑍𝐽′𝑀′𝐿′𝑆′ − 𝜖
′
𝑃
′(−1)𝐽

′−𝑀′
𝑍
∗
𝐽𝑀𝐿𝑆𝑍𝐽′ (−𝑀′)𝐿′𝑆′

)
.
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Performing the integral over all four angles, we can use the orthogonality relation for “normal” angular
functions (A.24) on each of the terms separately. This yields the common factor 𝛿𝐽𝐽′𝛿𝐿𝐿′𝛿𝑆𝑆′ . Due to
the last two Kronecker-𝛿s, we know that the parities will be equal due to 𝑃 = (−1)𝐿+𝑆+1 simplifying
things even further to∫
(...)𝑍 𝜖 ∗𝐽𝑀𝐿𝑆𝑍

𝜖
′

𝐽
′
𝑀
′
𝐿
′
𝑆
′ = 𝑁𝑀𝑁𝑀′𝛿𝐽𝐽′𝛿𝐿𝐿′𝛿𝑆𝑆′

(
𝛿𝑀𝑀′ (1 + 𝜖𝜖

′) − 𝑃(−1)𝐽+𝑀𝛿 (−𝑀)𝑀′ (𝜖 + 𝜖
′)︸  ︷︷  ︸

𝜖 (1+𝜖 𝜖 ′)

)
,

(A.28)
where we inserted a 𝜖2

= 1 in the last bracket to factor out one 𝜖 . We know that

(1 + 𝜖𝜖 ′) = 2𝛿𝜖 𝜖 ′, since 𝜖 = ±1. (A.29)

To finish, we have to study the cases 𝑀 = 0 and 𝑀 ≠ 0 separately.

Starting with 𝑀 ≠ 0, we see that 𝛿 (−𝑀)𝑀′ = 1 if – and only if – one of them is negative which
automatically means that either 𝑁𝑀 or 𝑁𝑀′ will be zero. Thus, the second term vanishes and the
𝑁𝑀𝑁𝑀′ =

1
2 prefactor cancels with the 2 from equation (A.29), giving us the expected result∫

dΩ
4𝜋

dΩ′

4𝜋
𝑍
𝜖 ∗
𝐽𝑀𝐿𝑆 (Ω,Ω

′)𝑍 𝜖
′

𝐽
′
𝑀
′
𝐿
′
𝑆
′ (Ω,Ω′) = 𝛿𝑤𝑤′𝛿𝜖 𝜖 ′ . (A.30)

On the other hand, for 𝑀 = 0 we know that 𝜖𝑃(−1)𝐽 = −1 since otherwise equation (A.27) would
simply be zero and the orthogonality is automatically fulfilled. Inserting this into equation (A.28)
gives us equation (A.29) twice and this factor of 4 will be cancelled by the 𝑁2

0 = 1
4 . This shows that

equation (A.30) is also valid for 𝑀 = 0.

Special Case for Scalar Isobars

For scalar isobars (𝑆 = 0) we can simplify the angular functions in reflectivity basis of equation (3.60)
in the following way:

𝑍
𝜖
𝑤,𝑆=0(Ω,Ω

′) =
√
𝑛𝐿

∑︁
𝜆

⟨𝐿0, 0𝜆 |𝐽𝜆⟩︸        ︷︷        ︸
𝛿𝜆0 𝛿𝐽𝐿

𝜖
𝐷
𝐽∗
𝑀𝜆(Ω)𝐷

0∗
𝜆0(Ω

′)

= 𝛿𝐽𝐿
√
𝑛𝐽

𝜖
𝐷
𝐽∗
𝑀0(Ω) 𝑑

0∗
00 (𝜃

′)︸  ︷︷  ︸
≡1

.
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A.3 Wigner-𝐷 Functions

Inserting the definition of the Wigner-𝐷 function of equation (A.18), we see

𝜖
𝐷
𝐽
𝑀0(Ω) = 𝑁𝑀

©­­­­­«
e−i𝑀𝜙

𝑑
𝐽
𝑀0(𝜃) − 𝜖𝑃(−1)𝐽−𝑀ei𝑀𝜙

𝑑
𝐽
(−𝑀)0(𝜃)︸      ︷︷      ︸

(−1)𝑀𝑑𝐽𝑀0 (𝜃)

ª®®®®®¬
= 𝑁𝑀

(
e−i𝑀𝜙 − 𝜖𝑃(−1)𝐽ei𝑀𝜙

)
𝑑
𝐽
𝑀0(𝜃)

𝑍
𝜖
𝑤,𝑆=0(Ω,Ω

′) = 𝛿𝐽𝐿
√
𝑛𝐽𝑁𝑀

(
ei𝑀𝜙 − 𝜖𝑃(−1)𝐽e−i𝑀𝜙

)
𝑑
𝐽
𝑀0(𝜃).

For a three-body decay into pseudoscalars, the parity of the resonance will be 𝑃 = (−1)3(−1)𝐿+𝑆 =

(−1)𝐽+1 for scalar isobars. Inserting this yields

𝑍
𝜖
𝑤,𝑆=0(Ω,Ω

′) = 𝛿𝐽𝐿
√
𝑛𝐽𝑁𝑀

(
ei𝑀𝜙 + 𝜖e−i𝑀𝜙

)
𝑑
𝐽
𝑀0(𝜃)

= 2𝛿𝐽𝐿
√
𝑛𝐽𝑁𝑀𝑑

𝐽
𝑀0(𝜃) ·

{
cos(𝑀𝜙), 𝜖 = +1
i sin(𝑀𝜙), 𝜖 = −1. (A.31)

This means that the angular functions will be purely real for positive reflectivity and purely imaginary
for negative reflectivity.

A.3.4 Derivation of Clebsch-Gordan Orthogonality

We use the 3 𝑗-symbols and their relations as they are given by [86] in order to prove the orthogonality
relation in equation (A.25). For this, we make it a bit more complicated by introducing another sum
first:
√
𝑛𝐿𝑛𝐿′

∑︁
𝜆

⟨𝐿0, 𝑆𝜆 |𝐽𝜆⟩ ⟨𝐿 ′0, 𝑆𝜆 |𝐽𝜆⟩ = √𝑛𝐿𝑛𝐿′
∑︁
𝜆,𝜇

⟨𝐿0, 𝑆𝜆 |𝐽 (−𝜇)⟩ ⟨𝐿 ′0, 𝑆𝜆 |𝐽 (−𝜇)⟩ 𝛿𝜆(−𝜇) .

(A.32)
Here we see that the Kronecker-𝛿 at the end can be omitted since, anyways, the Clebsch-Gordan
coefficient will be zero if 𝜆 ≠ −𝜇. Next, we transform the Clebsch-Gordan coefficients into the
3 𝑗-symbols using their definition in equation (106.10) of [86] and their behaviour under exchange of
columns in equation (106.5) which gives an additional (−1)𝐿+𝑆+𝐽 :

⟨𝐿0, 𝑆𝜆 |𝐽 (−𝜇)⟩ = (−1)𝐿−𝑆−𝜇√𝑛𝐽
(
𝐿 𝑆 𝐽

0 𝜆 𝜇

)
= (−1)𝐽−𝜇√𝑛𝐽

(
𝐽 𝑆 𝐿

𝜇 𝜆 0

)
. (A.33)

Doing this for both coefficients in equation (A.32) gives us

(A.32) = 𝑛𝐽
√
𝑛𝐿𝑛𝐿′

∑︁
𝜆,𝜇

(
𝐽 𝑆 𝐿

𝜇 𝜆 0

) (
𝐽 𝑆 𝐿

′

𝜇 𝜆 0

)
= 𝑛𝐽
√
𝑛𝐿𝑛𝐿′

1
𝑛𝐿
𝛿𝐿𝐿′, (A.34)

where we used the orthogonality relation of the 3 𝑗-symbols from equation (106.12) of [86] in the last
step. The 𝑛−1

𝐿 together with the Kronecker-𝛿 cancels the
√
𝑛𝐿𝑛𝐿′, giving us the expected 𝑛𝐽𝛿𝐿𝐿′ as a

final result.
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A.4 Calculation of the Dalitz-Angles

Before we start, let us define the Kibble function

𝜙(𝑠;𝜎1, 𝜎3) = 𝜎1𝜎2𝜎3 − 𝜎1(𝑚
2
2𝑚

2
3 + 𝑠𝑚

2
1) − 𝜎2(𝑚

2
3𝑚

2
1 + 𝑠𝑚

2
2) − 𝜎3(𝑚

2
1𝑚

2
2 + 𝑠𝑚

2
3) (A.35)

+2(𝑚2
1𝑚

2
2𝑚

2
3 + 𝑠𝑚

2
1𝑚

2
2 + 𝑠𝑚

2
2𝑚

2
3 + 𝑠𝑚

2
3𝑚

2
1),

with 𝜎2 = 𝑠 +
∑︁
𝑖

𝑚
2
𝑖 − 𝜎1 − 𝜎3. (A.36)

The border of the Dalitz plot is given by the points that fulfill 𝜙 ≡ 0. We are inside the Dalitz region,
where 𝜙 > 0. This function was originally introduced in [87], but a form more similar to the one given
here, is derived in [88]2.

Calculation of cos 𝜽∗3(1)

The angle cos 𝜃∗3(1) is defined in the CMS of a three-body resonance 𝑋 with mass
√
𝑠 as the angle

of particle 3 with respect to particle 1, see Figure A.1(a). Thus, 𝑠 = 𝑝
2
𝑋 = (𝑝∗1 + 𝑝

∗
2 + 𝑝

∗
3)

2 and
®𝑝∗1 + ®𝑝

∗
2 + ®𝑝

∗
3 = 0. We can interpret this as a two-body decay with particle 𝑖 with mass 𝑚𝑖 and

momentum ®𝑝𝑖 , and particle ( 𝑗 𝑘) with squared mass 𝜎𝑖 = (𝑝 𝑗 + 𝑝𝑘)
2 and momentum − ®𝑝𝑖 = ( ®𝑝 𝑗 + ®𝑝𝑘)

as daughters3. Therefore, we can employ equations (A.1) and (A.2) and simply replace one of the
masses by the invariant mass of the respective two-body subsystem:

𝐸
∗
𝑖 =

𝑠 − 𝜎𝑖 + 𝑚
2
𝑖

2
√
𝑠

, and
�� ®𝑝∗𝑖 �� = 𝜆

1
2 (𝑠, 𝜎𝑖 , 𝑚

2
𝑖 )

2
√
𝑠

=:
√︁
𝜆𝑠𝑖

2
√
𝑠
.

Using
𝜎2 = (𝑝1 + 𝑝3)

2
= 𝑚

2
1 + 𝑚

2
3 + 2𝐸∗1𝐸

∗
3 − 2

�� ®𝑝∗1�� �� ®𝑝∗3�� cos 𝜃∗3(1) ,

we can solve for the angle and, after inserting all energies and momenta, obtain

cos 𝜃∗3(1) =
2𝑠(𝑚2

1 + 𝑚
2
3 − 𝜎2) + (𝑠 + 𝑚

2
1 − 𝜎1) (𝑠 + 𝑚

2
3 − 𝜎3)√︁

𝜆𝑠1𝜆𝑠3
. (A.37)

In the same way by starting with 𝜎3 we can obtain cos 𝜃∗2(1) , effectively replacing 3↔ 2 everywhere.
Since sin 𝜃∗3(1) ≥ 0 because 𝜃∗3(1) ∈ [0, 𝜋], we can calculate it via:

sin 𝜃∗3(1) =
√︃

1 − cos2
𝜃
∗
3(1) =

2
√
𝑠
√
𝜙√︁

𝜆𝑠1𝜆𝑠3
, (A.38)

2 There, it is given in equation (2.15). To obtain the version in equation (A.35) of this thesis, one has to replace 𝑠→ 𝜎3,
𝑡 → 𝜎1, 𝑢 → 𝜎2 and 𝑝

2 → 𝑠.
3 We use distinct, cyclic indices (𝑖 𝑗 𝑘) ∈ {(123), (231), (312)} and all following equations are cyclic in these indices as
well, e.g. by performing the replacement 1 → 2 → 3 → 1 we obtain a valid formula. However, be aware that this
will also change the considered CMS accordingly, transforming the (12)-subsystem into a (23)-subsystem in the given
example. Only the rest frame of the resonance (123) stays invariant under such a replacement.
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𝑋

2 (13)

1

3
(a) 𝜃∗3(1) in CMS of 𝑋

(12)
𝑋 −3

1

2
(b) 𝜃12 in CMS of (12)

Figure A.1: Depiction of the angles that are calculated in this section A.4 and are needed for the partial-wave
projection. Each caption shows the angle that is depicted in the respective diagram.

where the last equality is by far not trivial to show. The easiest way is to use some algebraic tool, like
Mathematica. Here, one has to replace 𝜎2 everywhere via equation (A.36), square equation (A.38),
multiply it by the denominator, and look at the difference of both sides of the equal-sign:

𝜆𝑠1𝜆𝑠3 − Numerator
[
cos 𝜃∗3(1)

]2
− 4𝑠𝜙 = 0

This expression can be simplified by Mathematica and will result in 0, showing that equation (A.38)
holds.

Calculation of cos 𝜽12

𝜃12 is the angle of particle 𝑝1 with respect to −𝑝3 = 𝑝𝑋 in the CMS of the (12)-subsystem, meaning
the corresponding helicity frame, with invariant mass 𝜎3, as depicted in Figure A.1(b). We are in
some rest frame, but not the one of the resonance 𝑋 , therefore, we do not use the asterisk for the
quantities involved to differentiate them from the previous case. Instead, the two indices denote the
CMS while the first index gives the reference particle for the angle with respect to the particle of the
third index which is not appearing. Equivalently, cos 𝜃31 would be the angle of particle 3 with respect
to −2 in the CMS of the (31)-subsystem.
We can use equations (A.1) and (A.2) once more to calculate the involved energies and momenta in

such a systems. For the CMS of system ( 𝑗 𝑘) with invariant mass 𝜎𝑖 follows:

𝐸 𝑗/𝑘 =
𝜎𝑖 + 𝑚

2
𝑗/𝑘 − 𝑚

2
𝑘/ 𝑗

2√𝜎𝑖
,

�� ®𝑝 𝑗 �� = �� ®𝑝𝑘 �� = 𝜆
1
2 (𝜎𝑖 , 𝑚

2
𝑗 , 𝑚

2
𝑘)

2√𝜎𝑖
=:

√︁
𝜆𝑖

2√𝜎𝑖
.

The remaining final-state energy can be obtained from 𝑠 = 𝑝2
𝑋 = (𝑝𝑖 + [𝑝 𝑗 + 𝑝𝑘])

2
= 𝑚

2
𝑖 +𝜎𝑖 +2𝐸𝑖

√
𝜎𝑖

by using that ®𝑝 𝑗 + ®𝑝𝑘 = 0, resulting in

𝐸𝑖 =
𝑠 − 𝜎𝑖 − 𝑚

2
𝑖

2√𝜎𝑖
,

�� ®𝑝𝑋�� = �� ®𝑝𝑖 �� = √︁
𝜆𝑠𝑖

2√𝜎𝑖
.

Again starting from 𝜎2 = (𝑝1 + 𝑝3)
2
= 𝑚

2
1 + 𝑚

2
3 + 2𝐸1𝐸3 + 2

�� ®𝑝1
�� �� ®𝑝3

�� cos 𝜃12, we have to be careful
with the sign in front of the cosine, since ®𝑝3 points in the opposite direction compared to the previous
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case. Solving for the angle and inserting all involved energies and momenta, we end up at

cos 𝜃12 =
2𝜎3(𝜎2 − 𝑚

2
1 − 𝑚

2
3) − (𝜎3 + 𝑚

2
1 − 𝑚

2
2) (𝑠 − 𝜎3 − 𝑚

2
3)√︁

𝜆3𝜆𝑠3

=
𝜎3(𝜎2 − 𝜎1) − (𝑚

2
1 − 𝑚

2
2) (𝑠 − 𝑚

2
3)√︁

𝜆3𝜆𝑠3
. (A.39)

The second equality can be obtained by multiplying out both 𝜎3 terms from the product of the second
term, already giving us the second term in the final expression. To obtain the first term, we factor
out 𝜎3 of all remaining expressions and replace 𝑠 according to equation (A.36). Now, we just have
to simplify everything, resulting in the first term 𝜎3(𝜎2 − 𝜎1). This expression especially is nice,
since we can directly see the property cos 𝜃21 = cos(𝜋 − 𝜃12) = − cos(𝜃12), where we calculate the
angle between 𝑝2 and −𝑝3 instead, which is also achieved by the replacement 𝑝1 ↔ 𝑝2 and, therefore,
as well 𝑚1 ↔ 𝑚2 and 𝜎1 = (𝑝2 + 𝑝3)

2 ↔ (𝑝1 + 𝑝3)
2
= 𝜎2 leaving 𝜎3 = (𝑝1 + 𝑝2)

2 untouched. By
accordingly cycling the indices we can obtain the angles of the other helicity frames

cos 𝜃23 =
𝜎1(𝜎3 − 𝜎2) − (𝑚

2
2 − 𝑚

2
3) (𝑠 − 𝑚

2
1)√︁

𝜆1𝜆𝑠1
, cos 𝜃31 =

𝜎2(𝜎1 − 𝜎3) − (𝑚
2
3 − 𝑚

2
1) (𝑠 − 𝑚

2
2)√︁

𝜆2𝜆𝑠2
.

(A.40)
Similarly to before, we can also calculate the sine of the angle

sin 𝜃12 =

√︃
1 − cos2

𝜃12 =
2√𝜎3

√
𝜙√︁

𝜆3𝜆𝑠3
. (A.41)

The derivation of the second equality is very complicated again, however, we can show its validity
with Mathematica once more.

Calculation of cos
(

𝜽∗3(1) + 𝜽12
)

Finally, we have all ingredients that are needed to calculate the expression of interest

cos
(
𝜃
∗
3(1) + 𝜃12

)
= cos 𝜃∗3(1) cos 𝜃12 − sin 𝜃∗3(1) sin 𝜃12.

After inserting the trigonometric functions from equations (A.37), (A.38), (A.39) and (A.41), we have
𝜆𝑠3

√︁
𝜆𝑠1

√︁
𝜆3 as common denominator. The first factor 𝜆𝑠3 has two zeroes, corresponding to two poles

in the cosine, one of which lies in the region of integration. The zeroes of the other Källén functions
appear under a square root, not resulting in poles but in branch points instead. With equation (A.4) we
can write 2

√
𝑠𝜆𝑠3 =

(
(
√
𝑠 − √𝜎3)

2 − 𝑚2
3

)
·
(
(
√
𝑠 + √𝜎3)

2 − 𝑚2
3

)
. The second factor of this expression

will always be positive, since
√
𝑠 + √𝜎3 > 𝑚3. Therefore, possible zeroes can only come from the first

factor which, surprisingly4, can be factored out of the numerator of the cosine, cancelling them out

4 Or actually not surprisingly, since we would not expect the cosine to have poles in the first place, meaning that they have
to cancel out.
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A.5 Flatness of Dalitz Plot

completely. The remaining expression in the numerator is as follows:

𝜆𝑠3
√︁
𝜆𝑠1𝜆3 cos

(
𝜃
∗
3(1) + 𝜃12

)
=

(
(
√
𝑠 − √𝜎3)

2 − 𝑚2
3

)
·𝑊 (
√
𝑠,
√
𝜎1,
√
𝜎3),

𝑊
(√
𝑠,
√
𝜎1,
√
𝜎3

)
= 2√𝜎3

√
𝑠

(
𝑚

2
1𝑤
+
2 + 𝑚

2
2𝑤
+
1 + 𝑚

2
1𝑤
−
3 − 𝜎3𝑤

+
1

)
,

−2𝑠𝜆3 − 𝑤
+
1
(
𝜎3(𝜎2 − 𝜎1) − (𝑚

2
1 − 𝑚

2
2) (𝑠 − 𝑚

2
3)

)
with 𝑤

±
𝑖 = 𝑠 ± 𝑚2

𝑖 ∓ 𝜎𝑖 . (A.42)

Since this expression is even more complicated, one can use Mathematica again, in order to
confirm the equality.
The final expression reads

cos
(
𝜃
∗
3(1) + 𝜃12

)
=

𝑊 (
√
𝑠,
√
𝜎1,
√
𝜎3)(

(
√
𝑠 + √𝜎3)

2 − 𝑚2
3

) √︁
𝜆𝑠1𝜆3

. (A.43)

A.5 Flatness of Dalitz Plot

We want to show that d2
Φ3

d𝜎1d𝜎3
is flat, i.e. does not depend on 𝜎1 and 𝜎3. Since Φ3 is Lorentz-invariant,

we can perform the calculations in any frame. We will choose the helicity frame of the (23) system.
Now, we start with the phase-space recursion formula of equation (A.9) for 𝑁 = 2:

Φ3(𝑝𝑋; 𝑝1, 𝑝2, 𝑝3) =
∫

d𝜎1
2𝜋

dΦ2(𝑚
2
𝑋, 𝜎1, 𝑚

2
1)dΦ2(𝜎1, 𝑚

2
2, 𝑚

2
3),

where we can insert the differential two-body phase spaces from equation (A.8) and integrate out both
angles of the first one and 𝜙23 of the second one, keeping only d cos 𝜃23. Additionally, we already pull
the d𝜎1 on the other side:

dΦ3
d𝜎1

=
1

2𝜋(8𝜋)2

√︁
𝜆𝑠1

𝑠

√︁
𝜆1

𝜎1

d cos 𝜃23
2

, (A.44)

where 𝜆𝑠1 and 𝜆1 are defined in equation (3.57).
Next, we have to perform a substitution of cos 𝜃23 to 𝜎3. This substitution can be calculated from

the left equation of (A.40) and reads

d cos 𝜃23 =
2𝜎1√︁
𝜆1𝜆𝑠1

d𝜎3. (A.45)

Note that the factor of 2 comes about because we have to replace 𝜎2 with equation (A.36).
Inserting this substitution into equation (A.44) shows that almost everything cancels out, and after

moving d𝜎3 on the other side we get the final expression:

d2
Φ3

d𝜎1d𝜎3
=

1
2𝜋(8𝜋)2𝑠

. (A.46)
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Appendix A Further Details on Kinematics
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Figure A.2: Modified Au-Morgan-Pennington parametrization of the line shape of the (𝜋𝜋)S. On the left, the
line shape (black) and the phase (red) are plotted, while the right plot shows the complex amplitude in an Argand
diagram.

A.6 Additional Isobar Line Shapes

A.6.1 Line Shape of the Broad (𝝅𝝅)S

For the 𝑓0(500) aka𝜎 aka (𝜋𝜋)S parametrizationwe use the𝑀-solution from [54]with itsmodifications
as detailed in [89]. It is obtained from a 𝜋𝜋 − KK coupled-channel 𝑲-matrix fit and modified in order
to remove contributions from the 𝑓0(980) and 𝑓0(1500). The resulting formula reads

𝑓𝜎 (𝑠) =
(
𝑀11(𝑠) − i 𝜌1(𝑠)

)−1
, 𝑀11(𝑠) =

𝑎11
𝑠 − 𝑠0

+
3∑︁
𝑛=0

𝑐
(𝑛)
11

(
𝑠

4𝑚2
𝐾

− 1

)𝑛
, (A.47)

with the average kaon mass 𝑚𝐾 , the constants 𝑠0 = −0.0074 GeV2, 𝑎11 = 0.1131 GeV2, 𝑐 (0)11 = 0.0337,
𝑐
(1)
11 = −0.3185, 𝑐 (2)11 = −0.0942, 𝑐 (3)11 = −0.5927, and 𝜌1(𝑠) being the average of the phase space
(equation (A.7) without prefactor) over both charge modes 𝜋+𝜋− and 𝜋0

𝜋
0.

Note that in this modified parametrization all 𝜋𝜋 → KK and KK → KK contributions are removed.
Its squared magnitude, complex phase and the corresponding Argand diagram are shown in Figure A.2.

A.6.2 [𝝅𝝅]P and [KK]P Isobars

For the [𝜋𝜋]P sector the only considered isobar is the 𝜌(770) modeled with a BWM with energy-
dependent width according to equations (3.34) and (3.35). Since we only consider K0

S K0
S , no [KK]P

isobars are allowed, see section 5.1.3.
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APPENDIX B

Additional Plots for Complex Structures

Figure B.1: Chew-Mandelstam BW for complex arguments 𝑠 for the decay 𝐾∗0 (892) → K+𝜋− with Γ̃K∗ =
0.1 GeV. Plotted are real part (orange), imaginary part (blue) and squared magnitude (green) for Mathematica
convention (top) and physics convention (bottom).
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Appendix B Additional Plots for Complex Structures

B.1 𝑴 instead of 𝒔

In section 3.3, we only look at the functions with 𝑠 as an argument. However, usually the mother mass
𝑀 =

√
𝑠 is used. For a simple BW, this already creates problems, since we will obtain a second pole

at −𝑚𝑝 + i Γ𝑝/2 making everything symmetric with respect of a rotation by the angle 𝜋 around the
point 𝑀 = 0. Here, we use the definition of pole mass and pole width in equation (3.28). The lower
contour plots of Figure B.2 shows this nicely.
Looking at the BW with energy-dependent width as a function of 𝑀 in Figure B.3 reveals that we

do not only double the amount of poles, but also the branch cuts and the unphysical poles from the
phase space. Additionally, the cuts are curved for the Mathematica convention (left). Still, using the
physics convention (middle) gives the simplest complex structure by hiding all poles on the second
Riemann sheet. However, we obtain a small discontinuity of the imaginary part on the real axis
between −√𝑠pth < 𝑀 <

√
𝑠pth. The second Riemann sheet of the physics convention shows the full

extend of the nightmare, we have four branch cuts (two of them merging at 𝑀 = 0 and extending to
±i∞), four BW poles and four unphysical poles.
Finally, evaluating the Chew-MandelstamBWon𝑀 instead of 𝑠 results in Figure B.4. We see that the

logarithmic branch cut is still able to hide the poles and all unphysical features are removed, although
Mathematica shows white lines at all four possible square-root branch-cut locations. However, when
integrating in complex plane one would usually do this in 𝑠 and not 𝑀 , therefore, these plots are only
presented for completeness.

Figure B.2: Relativistic BW as a function of complex-valued 𝑀 =
√
𝑠 for the decay 𝐾∗0 (892) → K+𝜋− with

Γ̃K∗ = 0.1 GeV. Plotted are real part (orange, left), imaginary part (blue, middle) and squared magnitude (green,
right) with the corresponding contour plots in the second row.
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B.1 𝑀 instead of 𝑠

Figure B.3: BW with energy-dependent width as a function of complex-valued 𝑀 =
√
𝑠 for the decay

𝐾
∗0 (892) → K+𝜋− with Γ̃K∗ = 0.1 GeV. Plotted are real part (orange), imaginary part (blue) and squared
magnitude (green) of the Mathematica convention (left), the physics convention (middle), and the second
Riemann sheet of the physics convention (right) obtained by a rotation of 𝜙 = −𝜋.
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Appendix B Additional Plots for Complex Structures

Figure B.4: Chew-Mandelstam BW as a function of complex-valued 𝑀 =
√
𝑠 for the decay 𝐾∗0 (892) → K+𝜋−

with Γ̃K∗ = 0.1 GeV. Plotted are real part (orange), imaginary part (blue) and squared magnitude (green) for
Mathematica convention (top) and physics convention (bottom).
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APPENDIX C

Further Details on the 𝒂1(1420)

C.1 Regge Trajectories

C.1.1 Simple Regge Model

We try to derive the relation ℓ ∼ 𝑀2 as stated in section 4.2.1. Any textbook about particle physics
(e.g. equation (10.40) of [90]) will tell you that the non-relativistic potential of Quantum Chromo
Dynamics (QCD) follows the form

𝑉𝑞𝑞̄ (𝑟) = −
4
3
𝛼𝑆

𝑟
+ 𝑘𝑟, (C.1)

where the constant in front of the linear term is basically the energy density between the two bound
quarks, similar to the linear potential of a classical spring. With a value of 𝑘 ∼ 1 GeV

fm , the predicted
charmonium (𝑐𝑐 mesons) and bottomonium (𝑏𝑏̄ mesons) excitation spectra show a fairly good
agreement with the measured meson masses.
The linear term in equation (C.1) has its origin in the following simplified model, which also allows

us to obtain a simple relation between the mass of the meson 𝑀 and its intrinsic orbital angular
momentum 𝐿. For this, we assume that we have two massless quarks at a distance 2𝑟0 rotating around
each other at the speed of light1. They are attached to each other by a string with constant energy
density 𝑘 . The angular velocity of the whole string is fixed by this to 𝜔 = 𝑐

𝑟0
. The speed 𝑣(𝑟) of the

string at a given distance 𝑟 from the center will be accordingly 𝑣(𝑟) = 𝜔𝑟 and, thus, 𝛽(𝑟) = 𝑣 (𝑟)
𝑐

= 𝑟
𝑟0
.

In order to calculate the full energy stored in the binding, we have to integrate the constant energy
density 𝑘 over the full length of the string. However, the further away we get from the center, the more
non-relativistic the system gets, resulting in the inclusion of a factor 𝛾(𝑟) = 1√

1−𝛽2 (𝑟)
:

𝐸tot = 2
∫ 𝑟0

0
𝑘𝛾(𝑟)d𝑟 𝑟=𝑟0 sin(𝑥)

= 2
∫ 𝜋

2

0
𝑘
𝑟0 cos(𝑥)d𝑥√︃

1 − sin2(𝑥)
= 2𝑘𝑟0𝑥

��� 𝜋2
𝑥=0

= 𝜋𝑘𝑟0 (C.2)

Since the meson is at rest, the full energy has to amount to its rest mass 𝐸tot = 𝑀𝑐
2. This relates the

1 In order to make the quantities in the following calculations more obvious, we will keep all 𝑐 factors in the equations
throughout this section.
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Appendix C Further Details on the 𝑎1(1420)

radius of the meson to its mass via 𝑟0 = 𝑀𝑐
2

𝜋𝑘
.

Classically, we have ®𝐿 = ®𝑟 × ®𝑝. ®𝑟 and ®𝑝 are always orthogonal, simplifying things to 𝐿 = 𝑟 𝑝, where
we have to include proper Lorentz factors by replacing 𝑝 → 𝛽(𝑟)𝛾(𝑟)𝑚𝑐. The mass density in this
expression can be substituted by the energy density via 𝑚 → 𝑘

𝑐
2 . In order to obtain a dimensionless

QN, we furthermore extract ℏ from the orbital angular momentum 𝐿. Putting everything together
results in the following integral

𝐿ℏ = 2
∫ 𝑟0

0
𝑟𝛽(𝑟)𝛾(𝑟) 𝑘

𝑐
2 𝑐d𝑟 = 2

𝑘

𝑐

∫ 𝜋
2

0
𝑟

2
0 sin2(𝑥)d𝑥 = 2

𝑘

𝑐
𝑟

2
0

1
2
(
𝑥 − sin(𝑥) cos(𝑥)

) ��� 𝜋2
𝑥=0

=
𝜋𝑘𝑟

2
0

2𝑐
,

where we used the same substitution as in (C.2), but now we have a factor 𝑟
2

𝑟0
more resulting in a

slightly more complicated but known integral of sin2(𝑥).
Replacing now 𝑟0 with the help of (C.2), we finally obtain 𝐿 = 𝑀

2
𝑐

4

𝜋𝑘ℏ𝑐
∼ 𝑀2.

The problem with this relation is that 𝐿 = 0 corresponds to a radius 𝑟0 = 0. This results in 𝑀 = 0,
which is not what we observe in nature. One of the reasons is that we fully ignored the spin of
the quarks. If one properly includes all involved spins as well as other QCD corrections into the
calculations, [41] showed that one obtains 𝐿 + 1

2 ∼ 𝑀
2 for mesons with both 𝑆 = 0 and 𝑆 = 1 intrinsic

spin, moreover they state also the linear dependence on the radial excitation number 𝑛 and argument
for a common slope for all mesons:

𝑀
2
= 4𝜆2

(
𝑛 + 𝐿 + 1

2

)
. (C.3)

They estimate the value for 𝜆 from the mass of the 𝜌 meson via this relation, inserting 𝑛 = 𝐿 = 0
and obtaining 𝜆 = 𝑀𝜌/

√
2 ≈ 0.55 GeV. This will result in a slope of (4𝜆2)−1

= 0.83 GeV−2 in
equation (4.1) of 𝑛(𝑀2) and 𝐿 (𝑀2) in Figure 4.2.

C.2 Young Tableaux for Tetraquarks

We can use Young tableaux to derive the relations as discussed in section 4.2.3. For this, we note
that a quark in 𝑆𝑈 𝑓 (3)-flavor corresponds to and an antiquark to . In the (𝑝, 𝑞) notation they

correspond to (1, 0) and (0, 1), respectively, where 𝑝 is the number of boxes that row #1 has more
than row #2, and 𝑞 the number of boxes that row #2 has more than row #3. If 𝑝 > 𝑞 we are dealing
with a multiplet and if 𝑝 < 𝑞 it is an antimultiplet denoted by the bar over the bold number. The
number of elements represented by a Young tableau can be calculated with

𝑁 (𝑝, 𝑞) = (𝑝 + 1) (𝑞 + 1) 𝑝 + 𝑞 + 2
2

. (C.4)

So for the quark, we obtain 𝑁 (1, 0) = 3, i.e. a triplet 3 𝑓 , and for the antiquark we get 𝑁 (0, 1) = 3 as
well, but an antitriplet 3 𝑓 . According to the rules of [91], we can combine two quarks into a diquark
via

⊗ = ⊕ = (0, 1) ⊕ (2, 0) = 3 𝑓 ⊕ 6 𝑓 ,
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C.2 Young Tableaux for Tetraquarks

and similarly for the antidiquark two antiquarks via

⊗ = ⊕ = (1, 0) ⊕ (0, 2) = 3 𝑓 ⊕ 6 𝑓 .

Note that the vertical column of three boxes (the dimension of the 𝑆𝑈 (3) group) in the antidiquark
case can be crossed out leaving only ⊕ . With this we see that the diquark has a 3 𝑓 component

similar to an antiquark and the antidiquark has a 3 𝑓 component similar to a quark. For the diquark,
the 3̄ 𝑓 will have an antisymmetric flavor wave function (only vertical boxes) and the 6 𝑓 will have a
symmetric one (only horizontal boxes). With this symmetry we can identify the diquark-triplet states
as [𝑢𝑠]asym, [𝑢𝑑]asym and [𝑠𝑑]asym, and the diquark sextuplet as [𝑢𝑠]sym, [𝑢𝑑]sym, [𝑠𝑑]sym, [𝑢𝑢],
[𝑑𝑑] and [𝑠𝑠], with

[𝑞𝑞′]asym =
1
√

2
(𝑞𝑞′ − 𝑞′𝑞) and [𝑞𝑞′]sym =

1
√

2
(𝑞𝑞′ + 𝑞′𝑞).

The 𝑆𝑈 (3)-color composition of the diquark can be determined exactly the same way. Combining
two color-triplets yields as well 3𝑐 ⊗ 3𝑐 = 3𝑐 ⊕ 6𝑐 with the same symmetry behavior.

Looking at ground states with 𝐿 = 0 and, therefore, a symmetric spatial wave function, we can
combine an antisymmetric flavor wave function with an antisymmetric color wave function and an
antisymmetric spin wave function, such that the wave function is antisymmetric under exchange of
two fermions. As introduced in [42], we will call this a spin-0 diquark (3 𝑓 , 3𝑐, 1𝑠). On the other hand,
combining the antisymmetric flavor triplet with the symmetric color sextuplet and the symmetric spin
triplet also yields an antisymmetric wave function with respect to the exchange of two fermions. This
is called a spin-1 diquark (3 𝑓 , 6𝑐, 3𝑠).

To form tetraquarks, we need the diquark-antidiquark in a color-singlet configuration. Luckily for
both the 3𝑐 ⊗ 3𝑐 and the 6𝑐 ⊗ 6𝑐 combinations we obtain a singlet:

3 ⊗ 3 = ⊗ = ⊕ = (1, 1) ⊕ (0, 0) = 8 ⊕ 1

6 ⊗ 6 = ⊗ = ⊕ ⊕ = (2, 2) ⊕ (1, 1) ⊕ (0, 0) = 27 ⊕ 8 ⊕ 1.

The first row also applies to the flavor component of the diquark-antidiquark combination. Therefore,
we get a nonet in form of an octet and a singlet in both cases when combining a spin-0 diquark
with a spin-0 antidiquark and when combining a spin-1 diquark with a spin-1 antidiquark. While
combining two spin-0 (anti)diquarks will always result in scalar (spin-0) tetraquarks, with two spin-1
(anti)diquarks we can additionally also create vector (spin-1) and tensor (spin-2) tetraquarks.

One could try to also combine a spin-0 diquark with a spin-1 antidiquark and vice versa, however,
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Appendix C Further Details on the 𝑎1(1420)

the combination of their color-components will not form the needed singlet

3 ⊗ 6 = ⊗ = ⊕ = (0, 3) ⊕ (1, 1) = 10 ⊕ 8

3 ⊗ 6 = ⊗ = ⊕ = (3, 0) ⊕ (1, 1) = 10 ⊕ 8,

making it unphysical.
With the arguments above, we expect nine scalar tetraquarks coming from spin-0 (anti)diquarks,

and nine scalar tetraquarks from spin-1 (anti)diquarks. In [42] they derive that these tetraquarks will
have 𝐽𝑃𝐶 = 0++ leading to the particle assignment with the particles 𝑎0, 𝑓0 and K∗0 as mentioned in
section 4.2.3. For the nonet of spin-1 tetraquarks from combining spin-1 (anti)diquarks, [42] derives
𝐽
𝑃𝐶

= 1+− for the spin-1 tetraquarks, resulting in 𝑏1, ℎ1 and K1 as candidates. And for the nonet of
spin-2 tetraquarks they find 𝐽𝑃𝐶 = 2++, which means 𝑎2, 𝑓2 and K∗2. While their assignment for the
scalar nonets works very well including the predicted mass hierarchy, [42] states problems for the
spin-1 tetraquarks while also giving a possible solution. For the spin-2 tetraquarks there are many
candidates making an assignment somewhat arbitrary according to [42].

So far we only used the diquark flavor-antitriplet, but one might also think of using the diquark
flavor-sextuplet. This would introduce a second kind spin-1 diquark with (6 𝑓 , 3𝑐, 3𝑠). In order to
obtain a color-singlet, one has to combine it with a spin-0 antidiquark (and vice versa). However, this
would very drastically increase the amount of expected tetraquark candidates, therefore, we do not
continue this path. Another reason is that according to section 2.9.4 of [92] such flavor-sextuplet
diquarks would have a smaller binding energy than the flavor-antitriplet diquarks.
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C.3 Remaining 𝑡 ′ Slices

C.3 Remaining 𝒕′ Slices
An explanation of the following plots can be found in section 4.5 and the first 𝑡 ′ slice in Figure 4.16,
therefore, we omit the captions to save space.
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C.4 Remaining Plots for Systematic Studies

The structure of the following plots in this appendix are described in detail in section 4.6, therefore,
we omit the captions to save space.

Table C.1: Comparison of the fit quality for the different systematic studies as described in section 4.6 and
depicted in Figure 4.24.

Study TSM BWM
𝜒

2 R2 #dof R2
red 𝜒

2 R2 #dof R2
red

main 19831 2319 505 4.59 19977 2448 503 4.87
scalar triangle 19942 2327 505 4.61 same as main
direct decay 19063 1911 483 3.96 19239 2024 481 4.21
flexible bgd 19478 2196 502 4.37 19639 2271 500 4.54
excited states 18298 2027 505 4.01 18419 2075 503 4.13
non-sym. ph. sp. 18470 2349 505 4.65 18624 2462 503 4.89
wider K∗ 19909 2357 505 4.67 same as main
narrower K∗ 19799 2298 505 4.55 same as main
heavier K∗ 19671 2298 505 4.40 same as main
lighter K∗ 20053 2444 505 4.84 same as main
53 waves 21903 2146 505 4.35 21911 2373 503 4.72
no neg.-refl. waves 20843 2300 505 4.56 20985 2442 503 4.85
coarse ev. sel. 21653 2322 505 4.60 21910 2508 503 4.99
rank-2 17328 2008 505 3.98 17739 2286 503 4.54
(𝜋𝜋)S K1 19812 2262 505 4.48 19563 2159 503 4.29
𝑓0(980) Breit-Wigner 20494 2157 505 4.27 20341 2156 503 4.29
bootstrap 16501 1990 505 3.94 16807 2291 503 4.55
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C.4.2 Variation of the Underlying PWD
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C.4 Remaining Plots for Systematic Studies
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Appendix C Further Details on the 𝑎1(1420)

C.5 Remaining 𝒕′ Slices for the Bootstrap Fit
An explanation of the following plots can be found in section 4.6.4 and the first 𝑡 ′ slice in Figure 4.23,
therefore, we omit the captions to save space.
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APPENDIX D

Further Details of the 𝝅−K0
SK0

S Event Selection

D.1 𝝅−K0
SK0

S with K0
S → 𝝅0𝝅0

In order to obtain more events, one could think of trying to also include the neutral decay mode of
K0

S → 𝜋
0
𝜋

0. However, as mentioned in section 5.1.3 this comes with some obstacles. Let us derive the
relations that one would have to fulfill in order to obtain a K0

S vector from four photon clusters. First, we
define the known position of the photon clusters with respect to the PV by ®𝑟𝑖 , where the index denotes
one possible arrangement of the four photons. In the end one would have to try all three possible
permutations to create two pairs out of four indices: {((1, 2), (3, 4)), ((1, 3), (2, 4)), ((1, 4), (2, 3))}.
Also we denote the measured energy of the photons with 𝐸𝑖 . The unknown quantity to extract is the
position of the SV relative to the PV denoted by ®𝑅.

The 3-vector of the photons will be obtained by

®𝑝𝑖 = 𝐸𝑖
®𝑟𝑖 − ®𝑅���®𝑟𝑖 − ®𝑅��� = 𝐸𝑖

®𝛿𝑖
𝛿𝑖

with ®𝛿𝑖 := ®𝑟𝑖 − ®𝑅 and 𝛿𝑖 :=
���®𝑟𝑖 − ®𝑅��� ,

where we already incorporated the mass condition 𝑚2
𝛾 = 𝐸

2
𝑖 −

�� ®𝑝𝑖 ��2 = 0. The Minkowski product of
the photon 4-vectors yields

𝑝1 · 𝑝2 = 𝐸1𝐸2

[
1 −
®𝛿1 · ®𝛿2
𝛿1𝛿2

]
= 𝐸1𝐸2(1 − cos 𝜃12), cos 𝜃12 :=

®𝛿1 · ®𝛿2
𝛿1𝛿2

(D.1)

with 𝜃12 being the opening angle between the photon pair. Requiring the photon pair to come from a
𝜋

0, meaning (𝑝1 + 𝑝2)
2 !
= 𝑚

2
𝜋

0 , completely constrains the opening angle to

cos 𝜃12 = 1 −
𝑚

2
𝜋

0

2𝐸1𝐸2
. (D.2)
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Now, we take two photon pairs fulfilling this constraint and combine them to a K0
S :

𝑚
2
K0

S
=

(
𝑝
(1)
𝜋

0 + 𝑝
(2)
𝜋

0

)2
= 2𝑚2

𝜋
0 + 2𝑝 (1)

𝜋
0 · 𝑝

(2)
𝜋

0

= 2𝑚2
𝜋

0 + 2(𝑝1 + 𝑝2) · (𝑝3 + 𝑝4) = 2𝑚2
𝜋

0 + 2
∑︁
(𝑖, 𝑗)

𝑝𝑖 · 𝑝 𝑗 ,

where the sum goes over the index pairs {(1, 3), (1, 4), (2, 3), (2, 4)}. We can write the first summand
with equation (D.1) as

𝑝1 · 𝑝3 = 𝐸1𝐸3

[
1 −
®𝛿1 · ( ®𝛿2 + ®𝛿3 − ®𝛿2)

𝛿1𝛿3

]
= 𝐸1𝐸3

[
1 − 𝛿2

𝛿3
cos 𝜃12 −

®𝛿1
𝛿1
·
®𝑟3 − ®𝑟2
𝛿3

]
.

Since most of the photons are measured inside the second electromagnetic calorimeter ECAL2, we
can make some simplifications by assuming that all of them are measured there. The geometrical
dimension of ECAL2 is 2.44 m × 1.83 m [11]. Therefore, to be able to detect a pair of photons, the
transverse distance of the cluster to the SV (situated approximately in the middle of the two photons)
is maximally half of this, meaning 𝑥𝑖 − 𝑋 < 1.22 m and 𝑦𝑖 −𝑌 < 0.92 m. For the longitudinal distance
we can look at the expected maximal flight distance of a K0

S . As discussed in section 5.1.3, most of
them will decay already within 10 m, however, ECAL2 is located roughly 34 m behind the target, giving
us a lower limit of 𝑧 − 𝑍 > 24 m. Therefore, the magnitudes 𝛿𝑖 can be approximated by only taking
the 𝑧 directions:

𝛿𝑖 =

√︃
(𝑥𝑖 − 𝑋)

2 + (𝑦𝑖 − 𝑌 )
2 + (𝑧𝑖 − 𝑍)

2 ≈ (𝑧𝑖−𝑍) ≡ (𝑧−𝑍) with ®𝑟𝑖 := ©­«
𝑥𝑖
𝑦𝑖
𝑧𝑖

ª®¬ and ®𝑅 := ©­«
𝑋

𝑌

𝑍

ª®¬ ,
where, in the last step, we use the fact that all photons are measured inside ECAL2, resulting in equal
𝑧𝑖 – the distance to the PV – for all of them. Using the limiting values from above, we get a relative
difference of only 2 ‰.

This simplifies the products of 4-momenta:

𝑝1 · 𝑝3 ≈ 𝐸1𝐸3

[
1 − cos 𝜃12 −

®𝛿1 · (®𝑟3 − ®𝑟2)
(𝑧 − 𝑍)2

]
=

𝐸3
2𝐸2

𝑚
2
𝜋

0 − 𝐸1𝐸3
(𝑥1 − 𝑋) (𝑥3 − 𝑥2) + (𝑦1 − 𝑌 ) (𝑦3 − 𝑦2)

(𝑧 − 𝑍)2
.

Here, we use equation (D.2) and the fact that the 𝑧 component of ®𝑟3 − ®𝑟2 vanishes if all photon clusters
are located in ECAL2.

We can obtain the corresponding equations for 𝑝2 · 𝑝3, 𝑝1 · 𝑝4 and 𝑝2 · 𝑝4 by replacing the indices
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1↔ 2 and 3↔ 4 as needed. Collecting all terms yields

𝑚
2
K0

S
= 𝑚

2
𝜋

0

(
2 +

𝐸3
𝐸2
+
𝐸3
𝐸1
+ 𝐸4
𝐸2
+ 𝐸4
𝐸1

)
− 𝑓 (𝑋,𝑌 )
(𝑧 − 𝑍)2

, (D.3)

where 𝑓 (𝑋,𝑌 ) is a long, but well-defined function of the transversal SV position. We can also apply
the simplifications to the constraint from the 𝜋0 mass, meaning equations (D.1) and (D.2):

1−
𝑚

2
𝜋

0

2𝐸1𝐸2
=
®𝛿1 · ( ®𝛿1 + ®𝛿2 − ®𝛿1)

𝛿1𝛿2
=
𝛿1
𝛿2
+
®𝛿1 · (®𝑟2 − ®𝑟1)

𝛿1𝛿2
≈ 1+ (𝑥1 − 𝑋) (𝑥2 − 𝑥1) + (𝑦1 − 𝑌 ) (𝑦2 − 𝑦1)

(𝑧 − 𝑍)2
.

The numerator on the right-hand side is always negative, because 𝑋 and 𝑌 have to lie between the 𝑥𝑖
and 𝑦𝑖 , respectively. Therefore, always one of the two brackets is negative.

𝑚
2
𝜋

0

2𝐸1𝐸2
=
(𝑥1 − 𝑋) (𝑥1 − 𝑥2) + (𝑦1 − 𝑌 ) (𝑦1 − 𝑦2)

(𝑧 − 𝑍)2
and with indices (1, 2) → (3, 4) (D.4)

With equations (D.3) and (D.4), now we have three constraints which in principle allow us to determine
𝑋 , 𝑌 and 𝑍 . The problem is that this will work for all three possible permutations as mentioned at the
beginning, yielding three candidates for a SV.
To solve this dilemma, one can use the collinearity angle as discussed in section 5.2.3, which is

enclosed by the line that connects the SV with the PV and the momentum direction of the reconstructed
K0

S . In the case of the charged decay mode, this angle was very small, however, here one would expect
some distribution and would have to determine a cut-off value with a significance study.

Although technically possible, this final state is not very useful to consider. Reasons beside the
difficulty are given in the main text at the end of section 5.1.3.

D.2 Event Selection with 𝑵BPV
out ≤ 5

The plots in Figure D.1 were obtained at the end of the fine selection with an earlier development
stage of the event selection on Slot4 data, where the cut on 𝑁BPVout ≤ 2 was not performed during the
preselection. Also, no vertex separation was required for the SVs. One can see in Figure D.1(a) that
the distributions of the resonance mass for 𝑁BPVout ≥ 3 develop a peak at higher masses hinting towards
a less homogeneous detector acceptance, or simply a stronger background from a different reaction.
Figure D.1(b) shows the number of selected events for each 𝑁BPVout class. All together the number of
selected events for 𝑁BPVout ≥ 3 only amounts to roughly 10 %, therefore, including them would rather
increase the background than actually being beneficial.
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Figure D.1: In the left plot, the resonance-mass distribution after the fine selection of Slot4 data is shown for
different values of 𝑁BPVout as indicated by the legend. The distribution is normalized to an integral of 1 for easier
comparison. The right plot shows the amount of selected “good” events at the end of the selection.

D.3 Kinematic Fit

As mentioned in section 5.2.3, the kinematic fit is a special case of constraint fitting described in [67].
It was implemented for COMPASS by Tobias Schlüter [93] in order to fit two photon clusters to the
mass of a 𝜋0 coming from the BPV. Since photons are massless, some adjustments to the minimization
condition have to be made for fitting of K0

S decaying to two charged pions. Also, the way how we
obtain the detector uncertainty for the daughter tracks is different, since here, we are dealing with
charged tracks. We will start with a short summary of the general procedure and follow up with the
changes for K0

S -fitting compared to 𝜋
0-fitting. We conclude with a simple estimation of the success

rate of the algorithm.

D.3.1 General Procedure

Since the Gaussian width of ∼ 5 MeV of the K0
S that we observe during the event selection (cf.

Figure 5.14) is coming only from detector uncertainties, we can “correct” the K0
S momentum with the

constraint that it has to have the nominal K0
S mass as given by the PDG. The constraint reads as

𝐹 (𝑣) = (𝑝1 + 𝑝2)
2 − 𝑚2

K0
S
= 0, with 𝑣 =

(
𝑝1𝑥�� ®𝑝1

�� , 𝑝1𝑦�� ®𝑝1
�� , 𝐸1,

𝑝2𝑥�� ®𝑝2
�� , 𝑝2𝑦�� ®𝑝2

�� , 𝐸2

)
. (D.5)

With this we can numerically minimize 𝜒2 := 𝜖𝑇𝐶−1
𝜖 with the condition 𝐹 (𝑣 + 𝜖) = 0 defining the

𝜖-vector, and 𝐶 being the covariance matrix of 𝑣.
The program of Tobias Schlüter described in [93] uses the following three variables per particle for

the minimization

𝐸, 𝑥 :=
𝑝𝑥

| ®𝑝 | , 𝑦 :=
𝑝𝑦

| ®𝑝 | , with 𝑧 :=
𝑝𝑧

| ®𝑝 | =
√︃

1 − 𝑥2 − 𝑦2
.

Since the program was created to specifically fit neutral mesons decaying into photon pairs (e.g. 𝜋0

and 𝜂), some adjustments have to be made.
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D.3 Kinematic Fit

D.3.2 Adjustments for K0
S-Fitting

One can use the code from [93] as a base and has to adjust some of the functions as described in the
following. The C++ function massdiff, corresponding to 𝐹 (𝑣) from equation (D.5) to calculate the
difference between the actual and the required mass, changes from

massdiff = 2 · 𝐸1 · 𝐸2 · (1 − 𝑥1 · 𝑥2 − 𝑦1 · 𝑦2 − 𝑧1 · 𝑧2) − 𝑚
2
𝜋

0

to

𝑑 := massdiff = 2 ·
(
𝐸1 · 𝐸2 −

�� ®𝑝1
�� · �� ®𝑝2

�� · (𝑥1 · 𝑥2 + 𝑦1 · 𝑦2 + 𝑧1 · 𝑧2)
)
+ 𝑚2

𝜋 + 𝑚
2
𝜋 − 𝑚

2
K0

S
(D.6)

with | ®𝑝𝑖 | =
√︃
𝐸

2
𝑖 − 𝑚

2
𝑖 , because now we have non-vanishing rest masses of the daughters as well as a

non-zero difference between 𝐸 and | ®𝑝 |.
Also derivatives in dmassdiff have to be changed accordingly

dmassdiff = ®grad(𝑑) =

©­­­­­­­­­­­­­­­­­­­­«

𝜕𝑑

𝜕𝑥1
𝜕𝑑

𝜕𝑦1
𝜕𝑑

𝜕𝐸1
𝜕𝑑

𝜕𝑥2
𝜕𝑑

𝜕𝑦2
𝜕𝑑

𝜕𝐸2

ª®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­­­«

2
�� ®𝑝1

�� �� ®𝑝2
�� (−𝑥2 + 𝑧2

𝑥1
𝑧1
)

2
�� ®𝑝1

�� �� ®𝑝2
�� (−𝑦2 + 𝑧2

𝑦1
𝑧1
)

2

(
𝐸2 −

�� ®𝑝2
�� 𝐸1�� ®𝑝1

�� (𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2)
)

2
�� ®𝑝1

�� �� ®𝑝2
�� (−𝑥1 + 𝑧1

𝑥2
𝑧2
)

2
�� ®𝑝1

�� �� ®𝑝2
�� (−𝑦1 + 𝑧1

𝑦2
𝑧2
)

2

(
𝐸1 −

�� ®𝑝1
�� 𝐸2�� ®𝑝2

�� (𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2)
)

ª®®®®®®®®®®®®®®®®®®®®¬

. (D.7)

Before, the inputs to the equations (D.6) and (D.7) were the ®𝑝𝛾 directions obtained from ®𝑟Cluster−®𝑟BPV,
and the photon energy as determined by the ECALs. Now, we can simply use the ®𝑝𝜋 directions
and calculate the energy 𝐸𝑖 from their measured momentum while making a pion-mass hypothesis
𝑚𝑖 = 𝑚𝜋 .
We also need a covariance matrix of the input variables for the minimization procedure. For

the old code the uncertainties were taken from the covariance matrix of the calorimeter cluster
PaCaloClus cl as provided by PHAST. For the K0

S -fitting, we can use the uncertainties from the
covariance matrix of the tracks of the daughter pions (PaTPar), but there is no direct access to the
momentum vector ®𝑝.
In PHASTa track is defined by the “helix” parameters at a given 𝑧 position: (xpos, ypos, dx/dz, dy/dz, q/|p|).

We can obtain the momentum ratios from dx/dz and dy/dz and redefine

𝑎 :=
𝑝𝑥

𝑝𝑧
= dx/dz, 𝑏 :=

𝑝𝑦

𝑝𝑧
= dy/dz, 𝑐 :=

1
| ®𝑝 | = q/|p| (D.8)

Note that for neutral particle the last helix component is always set positive with q = 1 in PHAST. We
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can obtain the needed covariance matrix with the following basis transformation:

©­­­­­«
xpos
ypos
𝑎

𝑏

𝑐

ª®®®®®¬
→

©­­­­­«
𝑝𝑥 = 𝑎 · 𝑝𝑧
𝑝𝑦 = 𝑏 · 𝑝𝑧

𝑝𝑧 = 1
/ (
𝑐
√︁
𝑎

2 + 𝑏2 + 1
)

𝐸 =

√︃
𝑚

2 + 1/𝑐2

ª®®®®®¬
,

where one can calculate 𝑝𝑧 first and, then, 𝑝𝑥 and 𝑝𝑦 using 𝑝𝑧 .
Taking its Jacobian

𝐵 =

©­­­­­­­­­­­«

0 0
d𝑝𝑥
d𝑎

d𝑝𝑥
d𝑏

d𝑝𝑥
d𝑐

0 0
d𝑝𝑦
d𝑎

d𝑝𝑦
d𝑏

d𝑝𝑦
d𝑐

0 0
d𝑝𝑧
d𝑎

d𝑝𝑧
d𝑏

d𝑝𝑧
d𝑐

0 0
d𝐸
d𝑎

d𝐸
d𝑏

d𝐸
d𝑐

ª®®®®®®®®®®®¬
=

©­­­­­­­­­­­­«

0 0 𝑝𝑧 + 𝑎 ·
d𝑝𝑧
d𝑎

𝑎 ·
d𝑝𝑧
d𝑏

𝑎 ·
d𝑝𝑧
d𝑐

0 0 𝑎 ·
d𝑝𝑧
d𝑎

𝑝𝑧 + 𝑏 ·
d𝑝𝑧
d𝑏

𝑏 ·
d𝑝𝑧
d𝑐

0 0 −𝑎 · 𝑐2 · 𝑝3
𝑧 −𝑏 · 𝑐2 · 𝑝3

𝑧

−𝑝𝑧
𝑐

0 0 0 0
1
𝐸

∑︁
𝑖∈{𝑥,𝑦,𝑧 }

𝑝𝑖
d𝑝𝑖
d𝑐

ª®®®®®®®®®®®®¬
(D.9)

we can calculate the transformed covariance matrix via:

𝐶 ®𝑝,𝐸 = 𝐵 · 𝐶helix · 𝐵
T
. (D.10)

At first, one should calculate the third row of the matrix, then, the first and second row, and finally, the
last row, always using the already determined entries.

In the C++ code, the first argument of the function cov_mat has to be changed from type
const PaCaloClus &cl to const PaTPar &pars and set the values for x, y and z to pars.Px(),
pars.Py() and pars.Pz(), respectively. The correct normalization will be performed later.
After creating the transformation matrix A

A =

©­­­­­­­«

𝑝
2
𝑦 + 𝑝

2
𝑧

| ®𝑝 |3
−
𝑝𝑥 𝑝𝑦

| ®𝑝 |3
−
𝑝𝑥 𝑝𝑧

| ®𝑝 |3
0

−
𝑝𝑥 𝑝𝑦

| ®𝑝 |3
𝑝

2
𝑥 + 𝑝

2
𝑧

| ®𝑝 |3
−
𝑝𝑦 𝑝𝑧

| ®𝑝 |3
0

0 0 0 1

ª®®®®®®®¬
,

which deals with the change from (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝐸) to (𝑥, 𝑦, 𝐸), one has to obtain the matrix 𝐵 according
to equation (D.9). Then, one applies the similarity equation (D.10) with the transformation matrix 𝐵
on 𝐶helix first and on the result 𝐶 ®𝑝,𝐸 the same relation with 𝐴 instead of 𝐵 to obtain 𝐶𝑥,𝑦,𝐸 . The full
covariance matrix for the fitter can be built using the 𝐶𝑥,𝑦,𝐸 of each daughter particle as sub-matrices
in the full 6 × 6 matrix for the input vector 𝑣, assuming independence of the two particles in their
tracking and momentum reconstruction (i.e. by setting the remaining off-diagonal entries to 0).
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D.4 Planarity Angle

The PaTPar pars for each daughter track are obtained after extrapolating the track to the
corresponding SV position.
Providing all the necessary information to the function kinfit, which are the input vector

𝑣 = (𝑥1, 𝑦1, 𝐸1, 𝑥2, 𝑦2, 𝐸2), the correctly transformed covariance matrix according to the above recipe,
the minimizer function massdiff and its gradient dmassdiff, it will start the fitting procedure.
During this procedure it will iteratively determine the small adjustments Δ𝑣 to the input vector, such
that 𝑣new = 𝑣 + Δ𝑣 results in a smaller massdiff. Therefore, the fit has 6 parameters that it can tune,
one so-called pull per input parameter.
The fitting procedure is stopped successfully if the value obtained from massdiff in equation (D.6)

divided by the squared mother mass is smaller than the chosen precision goal 𝜖 = 10−10:������� 𝑑

𝑚
2
K0

S

������� < 𝜖.
It fails if a negative squared momentum (| ®𝑝 |2 = 𝐸

2 − 𝑚2) is obtained for the daughters during the
fitting procedure or if the number of maximal iterations (by default 10) is reached.
The function kinfit provides the resulting pulls that are needed to calculate the new parameters

by adding them to the old ones. Here, one has to calculate the new | ®𝑝 | from the new energy first and
one has to make sure that one scales the obtained new 𝑥 and 𝑦 with this new momentum instead of the
new energy, as it was done for the di-photon decays.

D.3.3 Success Rate of the Algorithm

To summarize, it could be confirmed by looking at the kinematically-fitted invariant mass of the K0
S

particles that the procedure works: it shifts all K0
S to the nominal mass resulting in a 𝛿-distribution.

Both K0
S of all events that surpass the “2 K0

S” cut (see Figure 5.25) enter the kinematic fit. From these,
we can estimate the failure rate of the fit by dividing the amount of failed fits by the total amount of
performed fits. This results in a failure rate of only 0.0079 % for “far” K0

S and a slightly higher one of
0.0211 % for “shared” K0

S . The event is discarded if at least one of the two K0
S -fits fails.

D.4 Planarity Angle

To summarize the following calculation in one sentence, the planarity angle 𝜙recoil is defined as the
angle between the transverse1 momentum components of the resonance 𝑋 and the recoil proton.
Therefore, we need a way to calculate the transverse momentum with respect to the beam direction.

Let us start with the longitudinal component ®𝑝 ∥ , since it is easier to calculate. If we draw the
corresponding right-angled triangle, we see that the magnitude of this parallel momentum component,
𝑝
∥ := | ®𝑝 ∥ |, can be obtained from the scattering angle 𝜃 via

𝑝
∥
= 𝑝 · cos 𝜃 = 𝑝 ·

( ®𝑝 · ®𝑝beam)
𝑝 · 𝑝beam

= ®𝑝 · ®̂𝑝beam,

1 transverse relative to the beam axis
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where the second equality is just the mathematical relation between the cosine of the angle between
two vectors and their scalar product, and the “hat” in the final expression denotes the corresponding
unit vector. With this, we have a simple way to calculate the magnitude of the parallel component. On
the other hand, the direction is – by definition – the same as the beam direction. Therefore, we obtain
the parallel momentum component with

®𝑝 ∥ = ( ®𝑝 · ®̂𝑝beam) ®̂𝑝beam.

The transverse component is the remainder after subtracting the parallel component from the full
momentum

®𝑝⊥ = ®𝑝 − ®𝑝 ∥ = ®𝑝 − ( ®𝑝 · ®̂𝑝beam) ®̂𝑝beam.

With this, we can calculate the recoil and resonance momentum components transverse to the
direction of the beam, and construct the normal vector to the plane spanned by these two transverse
momenta

®𝑝⊥recoil = ®𝑝recoil − ( ®𝑝recoil · ®̂𝑝beam) ®̂𝑝beam
®𝑝⊥X = ®𝑝X − ( ®𝑝X · ®̂𝑝beam) ®̂𝑝beam
®𝑛 = ®𝑝⊥X × ®𝑝

⊥
recoil, (scale ®𝑛 by −1 if 𝑛𝑧 > 0),

where ®𝑝𝑋 denotes the 𝜋
−K0

S K0
S momentum (after the kinematic fitting of the K0

S ). With this we can
finally calculate the planarity angle:

𝑥 = cos 𝜙recoil = ®̂𝑝
⊥
X · ®̂𝑝

⊥
recoil

𝑦 = sin 𝜙recoil =
(®𝑛 × ®𝑝⊥X)��(®𝑛 × ®𝑝⊥X)�� · ®̂𝑝⊥recoil

𝜙recoil = atan2(𝑦, 𝑥) shift 𝜙recoil by 360° if 𝜙recoil < 0.

D.5 Beam Energy

Let us use the indices 𝑏 for beam, 𝑡 for target, 𝑟 for recoil and 𝑋 for the combined final-state particles.
On one hand, we obtain

𝑡 = (𝑝𝑡 − 𝑝𝑟 )
2
= 𝑚

2
𝑡 + 𝑚

2
𝑟 − 2𝐸𝑡𝐸𝑟 = 2𝑚2

𝑝 − 2𝑚𝑝 (𝐸𝑏 + 𝑚𝑝 − 𝐸𝑋) = −2𝑚𝑝 (𝐸𝑏 − 𝐸𝑋),

where we use the fact that the target is at rest and the same particle as the recoil, resulting in
𝐸𝑡 = 𝑚𝑡 = 𝑚𝑟 = 𝑚𝑝 and ®𝑝𝑡 = 0, as well as energy conservation 𝐸𝑟 = 𝐸𝑏 + 𝐸𝑡 − 𝐸𝑋.
On the other hand, we get

𝑡 = (𝑝𝑏 − 𝑝𝑋)
2
= 𝑚

2
𝑏 + 𝑚

2
𝑋 − 2𝐸𝑏𝐸𝑋 + 2

�� ®𝑝𝑏�� �� ®𝑝𝑋�� cos 𝜃𝑏𝑋 .

Combining both equations for 𝑡, we can solve for 𝐸𝑏 =

√︃�� ®𝑝𝑏��2 + 𝑚2
𝑏, square the equation and get a

quadratic equation in
�� ®𝑝𝑏��:

2(𝐸𝑋 − 𝑚𝑝)𝐸𝑏 = 𝑚
2
𝑏 + 𝑚

2
𝑋 − 2𝑚𝑝𝐸𝑋 + 2

�� ®𝑝𝑏�� �� ®𝑝𝑋�� cos 𝜃𝑏𝑋 { 0 = 𝑎
�� ®𝑝𝑏��2 + 𝑏 �� ®𝑝𝑏�� + 𝑐,
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with

𝑎 = 4
�� ®𝑝𝑋��2 cos 𝜃𝑏𝑋 − 4(𝐸𝑥 − 𝑚𝑝)

2

𝑏 = 4(𝑚2
𝑏 + 𝑚

2
𝑋 − 2𝑚𝑝𝐸𝑋)

�� ®𝑝𝑋�� cos 𝜃𝑏𝑋
𝑐 = (𝑚2

𝑏 + 𝑚
2
𝑋 − 2𝑚𝑝𝐸𝑋)

2 − 4𝑚2
𝑏 (𝐸𝑥 − 𝑚𝑝)

2
.

Solving the quadratic equation we can obtain
�� ®𝑝𝑏�� and from it finally 𝐸𝑏:

�� ®𝑝𝑏�� = −𝑏 + √︁
𝑏

2 − 4𝑎𝑐
2𝑎

, 𝐸𝑏 =

√︃�� ®𝑝𝑏��2 + 𝑚2
𝑏 .

D.6 Simple Phase-Space Monte Carlo

In order to have an idea what to expect for the final-state momentum distributions, we perform a
very simple phase-space MC. For this, we give all the 190 GeV beam energy to the resonance 𝑋
and let it also fly in 𝑧-direction2. Then, we use the ROOT function TGenPhaseSpace to generate a
three-dimensional phase space with 𝑋 as the mother particle of uniformly distributed mass within
1.2 GeV and 3.5 GeV, and 𝜋−K0

S K0
S as daughter particles. Like this we generate 1 × 106 MC-events

and fill the corresponding momentum histograms and invariant-mass distributions of the possible
two-body subsystems. The result can be found in Figure D.2, where we clearly see a peak at ∼ 20 GeV
for the 𝜋−prim momentum and a broader peak at ∼ 70 GeV for the K0

S momenta. The invariant-mass
distributions of the two-body subsystems show a rapid drop.
This simulation can explain the low-momentum peak of the 𝜋−prim and the broad shoulder of the K0

S
in the event selection (see Figure 5.38), but it cannot explain the high-momentum peak of the 𝜋−prim
and the low-momentum peak of the K0

S .
One could suspect these to come from specific intermediate two-body resonances that result in an

enhancement in specific momentum ranges. For this, we perform a second MC simulation, where
we look at two subsequent two-body decays 𝑋 → K∗(892) + K0

S and K∗(892) → 𝜋 + K0
S , fixing the

invariant mass of the K∗(892) to its nominal PDG value. The lower limit for the 𝑋-mass is increased to
1.4 GeV. The result in Figure D.3 shows a small shift to lower values of the momentum distributions
compared to Figure D.2, however, it does not create a low-momentum peak for the K0

S and definitely
not a high-momentum peak fo the 𝜋−prim. Also, the spectra look a lot less smooth compared to the real
three-body phase-space MC in Figure D.2, especially in the invariant-mass spectra of the two-body
subsystems, which makes sense since two-body decays are a lot more restricted in their available
kinematics. The momentum in the CMS is fixed and can only be shifted by the boost into the LAB,
and in addition the momentum of the resonance is fixed to 190 GeV making the boost only dependent
on the decay angle in the CMS and the uniformly-distributed resonance mass.
Doing the same, but with an 𝑓2(1270) in the K0

S K0
S subsystem and a lower limit of 1.6 GeV for

the 𝑋-mass yields a similar effect, as can be seen in Figure D.4. The K0
S -momentum peak moves to

40 GeV and the 𝜋−prim-momentum peak moves to 70 GeV.

2 If we only want to extract the magnitudes of the involved momenta, the direction of the resonance is not important. It
would be important if we would want to extract the direction of the daughter particles to see if they hit active detector
material or end up outside of the detector acceptance.
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Figure D.2: Momentum distribution for the 𝜋−prim (top left) and the K0
S (top right, two entries per event) for a

simple phase-space MC production with uniformly distributed resonance mass between 1.2 GeV and 3.5 GeV.
In the second row, the invariant-mass distributions of the 𝜋−K0

S (bottom left, two entries per event) and K0
S K0

S
(bottom right) are shown.
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Figure D.3: Momentum distribution for the 𝜋−prim (top left) and the K0
S (top right, two entries per event) for a

simple phase-space MC production with uniformly distributed resonance mass between 1.4 GeV and 3.5 GeV,
and 𝝅−K0

S fixed to the mass of a K∗
(892). In the second row, the invariant-mass distributions of the 𝜋−K0

S
(bottom left, two entries per event) and K0

S K0
S (bottom right) are shown.
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Figure D.4: Momentum distribution for the 𝜋−prim (top left) and the K0
S (top right, two entries per event) for a

simple phase-space MC production with uniformly distributed resonance mass between 1.6 GeV and 3.5 GeV,
and K0

SK0
S fixed to the mass of a 𝒇2(1270). In the second row, the invariant-mass distributions of the 𝜋−K0

S
(bottom left, two entries per event) and K0

S K0
S (bottom right) are shown.
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This leads to the conclusion that this specific momentum configuration, i.e. high-momentum (“fast”)
𝜋
−
prim together with low-momentum (“slow”) K0

S , has to come from a different kind of physics process
other than a diffractive resonance production. A fast 𝜋−prim hints towards a 𝑡-channel scattering at the
PV, instead of being the decay product of a produced resonance. This means the K0

S pair has to be
centrally produced and we have a double Pomeron or more general a double Reggeon exchange as
depicted in Figure 5.39.
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APPENDIX E

Bonn Event Selection Tool

Event selections at COMPASS are usually performed with PHAST. The tool Antok is used at TUM
in order to facilitate these selections and the creation of corresponding plots. In order to perform
independent crosschecks of such selections, the idea to create a similar tool for Bonn, the Bonn Event
Selection Tool (BEST), came up. However, since the currently ongoing event selections used a very
different style, each of them created their own “BEST”-version. The one created in the course of this
work will be described in the following. This description should explain the implementation principle
and can also serve as a guideline on how to use it.
Its implementation and structure is intended to be used in order to transform a classical imple-

mentation of a Waterfall-Style event selection into a BEST-Style event selection, without having to
severely modify the basic structure of the code. For the first time, it was used for the crosscheck of
the 𝜋− + 𝑝 → K0

S𝜋
− + 𝑝, 𝐾− + 𝑝 → K0

S𝐾
− + 𝑝 and 𝐾− + 𝑝 → Λ𝑝 + 𝑝 event selections performed

with Antok and described in [59]. Now, it is also used for the 𝜋− + 𝑝 → 𝜋
−K0

S K0
S + 𝑝 event selection

described in section 5.2 and in the release note [61], where the successful independent crosscheck was
performed by Julien Beckers using Antok.
In principle one can divide it into four sections, the preamble, the initialization stage, the definition

of histograms, and the event loop.

E.1 Preamble

The only prerequisites to use BEST are the presence of the best.h and best.cc files (or symbolic
links to them) in the PHAST user folder, where all the UserEvents are created. And one has to
include the header file with

#include "best.h"

at the top of the file that contains your UserEvent.
At the beginning of the UserEvent function one should define an enumerator:

enum Cuts : int {
cNONE = -1,
cAll,
cDT0,
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cBeamTime,
cTargetR,
...,
cCOUNT

};
static vector<std::string> cutlabels = {
"All",
"Is DT0",
"-7 < Beam Time / ns < 7",
"0 < r_{Target} / cm < 1.55",
...

};

Here, you can give the cuts meaningful names, where it is recommended to start with a small “c” and to
use camel style for the cut description as a convention. The enumerator should start with cNONE = -1
which can be used as an error bit, directly followed by cAll filling the index 0. The final entry should
be cCOUNT, since it will automatically contain the number of cuts that are defined. The advantage of
using an enumerator instead of a simple counting integer is, that we can directly understand which cut
we are dealing with, and it is easy to change the order of cuts for the Waterfall-Style plots. One simply
has to change the order of the corresponding elements in the two lists above. Having said that, it is
still possible to use such a counter, since internally BEST uses simple ints to differentiate cuts.
In order to have access to all the functionality that BEST provides, one needs the line:

BEST &b = BEST::Ref();

E.2 Initialization

Although BEST will check if it was already initialized and will skip the following functions, it still
makes sense to pack it inside a “static-first” block

static bool first = true;
if (first) {
first = false;
// do the initialization things

}

since one saves on several unnecessary function calls during the execution of the UserEvent and one
can make sure that these things are only called once. Inside this initialization block one should call
the function

b.Initialize(cCOUNT, Phast::Ref().h_file);

which has two mandatory arguments, the number of cuts cCOUNT and the TFile* pointer to the root
file that should contain the outputs. Using the implementation as given above will save them to the
normal histogram-output file as defined by the PHAST flag -h during the execution of the program. If
a string different from the empty string "" is provided as a third argument, it will ignore the TFile*
pointer (so you can use the nullptr). Instead, it will create a new root file using the provided string
as the file name and it will write all histograms to this file, but only if you have defined the function
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E.3 Definition of Histograms

void UserJobEndXXX(){
BEST &b = BEST::Ref();
b.SaveAllHistograms();
// maybe some other code as well

}

below your UserEvent, where XXX stands for the same number as it appears in your actual UserEvent
function in void UserEventXXX(PaEvent &e). BEST will warn you during execution that you
have to call SaveAllHistograms to make you aware of it, in case you are wondering where your
output files ended up. However, if you forget this function call, the histograms still should be booked
in the histogram file of PHAST due to “ROOT magic”. In order to have a consistent result as expected,
one should try to avoid this though and directly provide the reference to the phast file as in the example
above. The forth optional argument is an unsigned integer (uint) that gives the approximate number
of events processed by the function. This will reserve the respective memory for all internally used
vectors such that they do not have to be reallocated so often. However, this only makes sense if one
also calls

b.DeactivateImmediateFillHistograms();

since otherwise every event will be filled directly at the end of the UserEvent. Deactivating this
immediate filling can be useful in case one wants to fill several times per actual PHAST event and to
only decide which of these fills should actually be used afterwards. For example, this was used in the
crosscheck of the K0

S𝜋
−, K0

S𝐾
− and Λ𝑝 event selections since each SV was treated as its separate event

and only after all SVs were processed, the event was discarded if more than one fulfilled all required
cuts. To fill all events in the current buffer, one has to actively call

b.FillAllHistograms();

If the immediate filling is kept active, the filling will be automatically performed during the EndEvent
call, but more on that later.
Next in the initialization stage is the call of

b.SetCutLabels("Waterfall Title", cutlabels);

where the first argument is the title of the created waterfall plot that displays how many events survived
all up to a respective cut, and the second one is a vector of strings with the labels for the cuts, as
defined in the preamble, section E.1. If too many labels are provided, the overflow will be discarded,
and if too few are given, they will be filled up with the corresponding cut numbers. BEST will print a
warning during execution if this happens.
Although the next part about defining histograms is still part of the initialization, it has to be done

outside of the “static-first” block, since the declared variables are needed during the UserEvent.

E.3 Definition of Histograms

There are two ways to define a histogram with BEST. If possible, we will apply all following examples
to the one of the preamble, section E.1, with two additional unspecified cuts in the enum Cuts. One
can define a single histogram that can be saved in a simple static uint variable, or one can create a
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whole group of histograms by providing a static std::vector<uint>. The former one was only
used at the beginning, so it cannot be guaranteed that it is still compatible with other features that were
developed later. Therefore, the latter is the recommended way, since it can more easily be adapted to
create more or less histograms of the requested type and we will focus on it in this section. One can
define a one-dimensional or two-dimensional histogram in the following way:

static std::vector<uint> hBeamTime; // 1d histogram
b.DefineHistogram(hBeamTime,

{b.CreateDefaultMask(cBeamTime, true),
b.CreateDefaultMask(cBeamTime, false)},
"BeamTime",
"Beam time;t_{Beam} / ns;#events / (0.1 ns)",
400, -20, 20
);

static std::vector<uint> hTargetXY; // 2d histogram
b.DefineHistogram(hTargetXY,

{b.CreateDefaultMask(cTargetR, true),
b.CreateDefaultMask(cTargetR, false)},
"TargetXY",
"xy-position of BPV;x_{BPV} / cm;y_{BPV} / cm;

#events / (0.1 cm)",
100, -5, 5, 100, -5, 5
);

As just mentioned, the uint-vectors will be used to reference these histograms in the future. It is
very important that they are made static, otherwise every new event will create a new (empty!)
vector of indices and the previously defined histograms are lost. However, the DefineHistogram
function calls will only be executed for the first event. If the provided vector is not empty (e.g. because
something went wrong during the first event or the event was not properly closed, more on that later),
BEST will give a warning during execution.
The second argument to the DefineHistogram function is a list of strings, namely the bit mask

of the histograms. This bit mask has the form of e.g. "101011" where each digit corresponds to a
cut as defined by the enum Cuts in the preamble, starting from the right. The first digit on the right
corresponds to the cAll cut, which will always be fulfilled. A 1 means that we require the cut to
be fulfilled and a 0 means that we do not care about this cut (it can still be, but does not have to be
fulfilled). Since this type of defining a bit mask is very tedious, error prone, and not very flexible in
case the order of cuts changes, BEST provides the function CreateDefaultMask. One can provide it
with the corresponding integer of a cut (i.e. cBeamTime in the example above) and a boolean. If the
boolean is true, it will put in a 1 for all cuts except the provided one (e.g. "111011"). If the boolean
is false, it will put in a 1 for all cuts before the provided one (e.g. "000011"). These two cases are the
most common cases for an event selection, BEST-Style and the Waterfall-Style, respectively.
All following arguments to DefineHistogram are the constructor arguments of a TH1D or TH2D of

ROOT, namely the identifier of the histogram, the title (with x-label and y-label separated by a “;”),
the number of bins, the minimal value and the maximal value. BEST will decide on the dimension
of the defined histogram depending on the amount of provided arguments. For a two-dimensional
histogram, the last three arguments have to be repeated for the second axis.
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BEST will always create a histogram with no cuts required ("000000" which is equivalent to
"000001", since the last digit corresponds to cAll) and with all cuts required ("111111"). If this is
not wanted, one can provide DefineHistogram with an additional boolean false as a final argument.
If more than one cut is under investigation, for example if one is interested in the beam time of the
event without restricting the allowed radial distance 𝑟 of the PV from the beam line, one can provide
CreateDefaultMask with a vector of Cuts, i.e. uints:

static std::vector<uint> hBeamTimeNoTargetR;
b.DefineHistogram(hBeamTimeNoTargetR,

{CreateDefaultMask({cBeamTime, cTargetR})},
...
);

Here, always the corresponding BEST-Style histogram will be defined ("110011"), so no additional
boolean is possible to change it to Waterfall-Style. Since the general histogram definition most likely
will not change (labels, variables to be filled with), one can also simply add this additional bit mask to
the list provided in the example before. This reduces the need for repetition of axes labels and so on,
and one can also not forget to fill both uint-vectors with the beam time of the event.
Sometimes one has a list of integers on the 𝑥-axis of a histogram that should represent something

different than the respective integer, e.g. a list of possible particle identities or a simple “yes” or “no”
in case of a boolean. For the labels to reflect this, the function SetHistogramLabels1D can be used:

static vector<uint> hDT0;
b.DefineHistogram(hDT0,

{b.CreateDefaultMask(cDT0, true),
b.CreateDefaultMask(cDT0, false)},
"DT0", "Is DT0 event;;#events", 2, -0.5, 1.5
);

b.SetHistogramLabels1D(hDT0, {"no", "yes"});

If this is not enough and more detailed changes to the defined histograms are required, one can obtain
the pointer to the underlying TH1D with the function Get1DHist. However, this function is not very
refined, yet. It requests the index of a single histogram, which means one would have to manually
call it in a loop over the histogram-index vector. BEST does not (and it actually cannot) check if the
provided index comes from a one-dimensional histogram, so this functionality should be used with
special care from the user.
If one does not like the calls of DefineHistogram to happen outside of the “static-first” block,

one can move all vector declarations above the block and the corresponding histogram definitions
inside of it. While improving the runtime very slightly, this will make things a bit more complicated
since removal or addition of new histograms has to be done always at two different places, then.
Such a “static-first” block can also be created by using the BEST function IsFirstEvent. It will

return true until the EndEvent or EmergencyEndEvent function was called for the first time. More
details on that follow in the next sections.

E.4 Event Loop

The event loop should always start with these following two lines:
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b.InitializeNextEvent(e);
b.SetCut(cAll, false);

The first function call is crucial, since it prepares the event for the filling of the histograms and many
more things. The argument, the current PaEvent e, is optional and only needed if one wants to save
the event numbers for event-by-event comparisons, see section E.6. The second function call is needed
in order to be able to count all analyzed events, the first entry in the cut-flow diagram. This is also the
function that one has to call for every following cut. It takes the cut index as first argument and a
boolean false if the cut is fulfilled by the event and true if not. This might seem counter-intuitive at
first, but it follows the classic event selection style where one asks

if(!<cut fulfilled>)
return;

Another example to clarify this is

b.SetCut(cDT0, !isDT0);
b.FillHistogram(hDT0, (double)isDT0);

provided that the boolean isDT0 is only true if the DT0 trigger bit is set. Here, we specifically show
how to fill a histogram with a boolean. One has to explicitly perform a type cast into a double giving
1 for true and 0 for false. A slightly more involved cut would be

double rBPV = sqrt(pow(BPV.X(), 2) + pow(BPV.Y(), 2));
b.FillHistogram(hTargetXY, BPV.X(), BPV.Y());
b.SetCut(cTargetR, rBPV >= 1.55);

where we cut the event if 𝑟 ≥ 1.55 cm and accept it for 𝑟 < 1.55 cm. Here we also see how the filling
of a two-dimensional histogram works, we simply provide both values after the histogram vector.
It also demonstrates that the order of function calls does not matter, since the actual filling of the
histogram as well as the performance of the cut will only happen at the very end of the event loop (see
section E.8 for more details). It is also possible to fill the same histogram vector several times with
different values, for example when histogramming the momentum of all final state particles. One
simply calls FillHistogram for each of the values successively.
The final line of the event loop should be

b.EndEvent(e);

It will call e.TagToSave() if all cuts were fulfilled and it will call BESTs FillAllHistograms
function. It also saves some additional info, butmore on that in sectionE.6. Finally, it will set the internal
_first_event boolean of BEST to false, which disables all future calls of DefineHistogram and
other initialization functions. From now on, the BEST function IsFirstEvent will return false as
well.
Note that BEST will keep track of which cuts were performed and will warn you during the call

of EndEvent if not all defined cuts were actually performed. By default, all cuts are set to true,
therefore, the user should make sure that all SetCut calls happen. It is also the responsibility of the
user to make sure that each cut is only performed once. BEST will not prevent from performing the
same cut twice, but this will result in unexpected and most likely wrong results (it will not warn you).
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E.5 Discard Events Earlier

As just mentioned, the _first_event boolean will only be set to false inside the EndEvent
function. This means that one should not have a return statement during the UserEvent, since this
could result in a redefinition of all histograms besides of other additional problems. However, if one
has a cut that needs to be fulfilled for the rest of the UserEvent to work, e.g. in the case of the 𝜋−K0

S K0
S

final state the existence of exactly two K0
S , BEST provides the function EmergencyEndEvent. It

sets _first_event = false, all cuts to “failed” (except for cAll), and calls FillAllHistograms
(if intermediate filling is not disabled) to fill the histograms with no requirements on fulfilled cuts
("000000"). If one does not wish the histograms to be filled with possibly already provided entries,
one can empty the buffer with a call of ResetHistogramsOfCurrentEvent, however, it can also be
useful to create a specific histogram for these exit cases that has a bit mask full of zeros. An example
of such an emergency is

if(emergency_condition){
b.ResetHistogramsOfCurrentEvent();
// maybe fill some "000000" histograms with info on the emergency
b.EmergencyEndEvent();
return;

}

E.6 Save Additional Information

BEST provides several options on additional information that should be saved.

Save Event Numbers

One can save a unique event identifier in form of three integers, the run number, the spill number, and
the event-in-spill number. The activation of such a saving can be done during the initialization stage of
the UserEvent, somewhere between Initialize and InitializeNextEvent. If one only wants
to know all events that were processed, one can use

b.ActivateSaveEventNumbersStart();

which will create a TTree with name “EventNumbersStart” containing the branches “RunNumber”,
“SpillNumber”, and “EvInSpill”. This tree will be filled during InitializeNextEvent if one calls
it with the current PaEvent e as an argument.
If a bit more information is needed, one can instead use

b.ActivateSaveEventNumbersEnd();

which will create the TTree “EventNumbersEnd” that additionally contains a branch “Bitmask” that
encodes which cuts were fulfilled for the event and which of them were not. This tree will be filled
during EndEvent if the PaEvent e is given as an argument. Note that any intermediate return
(hopefully in combination with EmergencyEndEvent) will result in the event being missing from the
tree. However, they would be included in “EventNumbersStart”.
If one is only interested in the event number of events that passed the full selection, one can give an

optional boolean
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b.ActivateSaveEventNumbersEnd(false);

The function ActivateSaveEventNumbersAll will simply activate both savings and one can pass a
boolean to change the behavior of ActivateSaveEventNumbersEnd as just discussed.

Save Lorentz Vectors

Usually, one performs an event selection in order to extract the Lorentz vectors of the final-state
particles. This can also be done with BEST by using
b.ActivateSaveLV({"beam", "recoil", "pion", "Kshort1", "Kshort2"});

Two optional arguments are the ROOT identifying name for the resulting TTree (default is “TreeParti-
cles”) and the title of the tree (default is the same as the previous argument). Each provided string
in the list will result in a branch for a TLorentzVector of the respective string and an additional
branch for an integer with the added suffix “_flag” that allows for an optional differentiation. For the
𝜋
−K0

S K0
S event selection this was used to differentiate “far” K0

S from “shared” K0
S .

During the event loop one has to set the corresponding Lorentz vectors by using their position in
the provided vector of strings. Therefore, it is recommended to create another enumerator
enum FinalStateParticles : int {
pBeam, pRecoil, pPion, pKshort1, pKshort2,

};

Then, the actual saving will be done with
TLorentzVector lPion = ...;
int pion_flag = ...;
b.SaveParticleLV(pPion, lPion, pion_flag);
...

where a third optional argument (default is 0) can be provided to set the flag of the respective particle.
The actual filling of the TTree will happen during EndEvent, but only if one provides the PaEvent

e as an argument. BEST will print a warning if the amount of SaveParticleLV calls is not equal to
the expected number of TLorentzVectors from the initialization.

Save MC Truth

The saving of the MC truth (MCt) information works in a similar way as for the final-state particles in
the previous section. One can activate it during the initialization stage with
b.SaveMCTruth({"MCbeam", "MCrecoil", "MCpion", "MCKshort1", "MCKshort2"});

comingwith two optional strings as arguments exactly as before (default is this time “MCTreeParticles”).
It will prepare a TTree with one TLorentzVector branch per string in the provided vector, always
using the string for the branch name. The size of the provided vector has to match the amount of MC
particles coming from the first MC-PV, MCPV.NMCtrack(), that BEST can find. It extracts them in
order of how they were saved during the MC production. The user has to make sure that their order in
the UserEvent is the same.
As before, the filling of the TTree will happen during EndEvent if one provides the PaEvent e as

an argument. This also means that the MCt information will not be saved in case of an intermediate
return.
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E.7 Classification

A versatile feature of BEST is the possibility to create classifications of events. For example, this can
be done with the number of outgoing particles from the BPV as presented in section 5.2.3 on the K0

S
selection procedure. It can be activated in the initialization stage with

b.ActivateClassification("Nout", {"1", "2", "3", "4", "5"});

where the first argument is the common label of all classifications, and the second argument is a vector
of labels for each separate class that will be concatenated with the common label to form the class
label, i.e. "Nout1", "Nout2" and so on. Let us call the amount of created classes determined by
the length of the provided vector Nclasses, then, BEST will create each histogram in Nclasses+1
variants, one for each class and one with all of them combined, called "Noutall" (the common
label plus "all"). For a better overview, they will be stored in separate folders (labeled with the
corresponding class label) inside the histogram file.
The stage for the definition and the filling of histograms will not change and one only has to set the

class for the current event in the event loop (at an arbitrary point between InitializeNextEvent
and EndEvent):

b.SetClassForEvent(NoutBPV - 1);

Note that the class indices start at zero. For more complicated cases than this example it might be
better to use an enumerator as for the cuts and the final-state particles. Make sure that this function is
called at least once per event and that the provided index is smaller than Nclasses, otherwise the first
class (index 0) will be assigned and in the latter case a warning will be printed.
This gives the opportunity though to create an additional “garbage collector” class ">5" at the first

position and to use

if (NoutBPV <= 5)
b.SetClassForEvent(NoutBPV);

instead1, however, in our case we already restrict ourselves to ≤ 5 outgoing particles from the BPV
during the skimming (see section 5.2.1) making it irrelevant for this specific case, but maybe a useful
tool for other selections.
For the user, there are no further changes, however, during the call of FillAllHistograms (or

inside of b.EndEvent(e)) BEST will also fill two classification-specific additional histograms (stored
outside the classification folder in the histogram file). One filled with the classifications of all events
and one filled with the classifications of accepted events that fulfill all cuts.

E.8 The Inner Workings of BEST

In order to operate BEST, the previously discussed information should be sufficient. However, if one
wishes to implement a new feature, a deeper understanding of the inner workings of BEST might be
necessary. Therefore, this section will dive a bit deeper and explain what happens inside of BEST.
1 Simply always filling it with NoutBPV is not advised, since a hypothetical value ≥ 5 would always result in a printed
warning.
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The Header File and the Event Buffer

Since BEST can work with a buffer for several events, most quantities are actually saved in vectors that
are resized to zero at each call of FillAllHistograms. Inside of best.h a comment explains after
each vector how big it is expected to be, also indicating what will actually be stored. For example the
line

std::vector<std::vector<TH1D*>> _h1d; // <Nclasses+1<Nh1d>>

means that one will have one vector for each of the classes that contains the Nh1d defined one-
dimensional histograms. The previously mentioned event buffer is indicated by Nevents as in the
case of

std::vector<std::vector<std::vector<double>>>
_h1dvalues; // <Nevents<Nh1d<NentriesInEvent>>>

where for each of the Nevents in the buffer, we have a vector for each of the Nh1d one-dimensional
histograms that contains a vector of all values to be filled into the respective histogram. This outer vector
will be emptied at the end of FillAllHistograms and a newelement (std::vector<std::vector<double»)
of size Nh1d will be “emplaced” back2 during InitializeNextEvent. The same is true for the
two-dimensional histograms that are handled exactly the same, and in a simplified version also for
the _classification vector and the _mask vector which contains the bit masks for each event as
discussed in the next segment.

Bit Mask

The fulfilled cuts (or rather the not-fulfilled cuts) of each event are saved in a (bit) mask similar to the
one discussed for histograms in section E.3. But since a handling of strings would be quite slow on an
event-by-event basis (and not only once during the definition of a histogram), this will be done with
the separate bits of an integer. For this, the type bits is defined. It is nothing more than an unsigned
long long giving space for (at least3) a maximum of 64 cuts, since each actual bit (the digit in the
binary representation of the decimal number) will tell us if the corresponding cut will actually “cut”
the event, represented by a 1 in the binary representation of the mask at the position of the cut, or it
will let it through, corresponding to a 0. This means that an event has fulfilled all cut criteria only if
its mask is exactly 0.
During the function call of SetCut, this mask is modified by simply adding (bits)1 << iCut if

the event does not fulfill the cut requirement. Here, iCut denotes the index of the corresponding cut
from the Cuts enumerator and the operator << shifts the bits of the number on the left of it by the
number on the right of it to the left, effectively multiplying the number by 2iCut. For example, taking
iCut=3 will shift the binary number 000001 (1) to 001000 (23

= 8). This is the reason why calling

2 This means that the constructor is called with the argument Nh1d, resulting in a vector of size Nh1d where the default
constructor will be called for each element, in this specific case an empty std::vector<double>.
3 It depends on the used computer architecture, how many bits are used for an unsigned long long. According to [94],
in C++ it is guaranteed to have at least 64 bits. While an unsigned long would also usually have 64 bits on a 64-bit
Unix-like machine, it only guarantees 32 bits of length. This is actually the case for 32-bit systems (and 64-bit Windows),
thus, we directly use unsigned long long to make it a bit more system-independent. In hindsight, the usage of the
C++ class std::bitset would have been a better option.
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SetCut for the same iCut twice (and trying to cut the event both times) will result in a wrong outcome,
because instead of performing the actual cut one performs the next cut (001000 + 001000 = 010000).
If SetCut is called with the boolean false, nothing will be added to the mask, since all cut criteria
are initially assumed to be fulfilled.

Filling of Histograms

After the event was processed and the function FillAllHistograms was called (e.g. inside of
EndEvent), BEST will loop over all histograms and try to fill the saved values for each of them. Here,
it will compare the bit mask of the event with each of the bit masks of the histogram using the “bit-wise
and” operator “&”.
In order to visualize this, we will use the example of the following histogram bit mask 011011,

which requires the first, third and forth cut to be fulfilled (remember that the digit on the very right
corresponds to cAll and its “cut” is always fulfilled). If the event fulfills exactly and only the required
cuts, its bit mask will be 100100. Therefore, the “bit-wise and” will result in 000000, even if one or
both of the remaining two cuts would also be fulfilled. However, if a single cut of the required ones
would not be fulfilled, e.g. 101100, we would get 001000. Therefore, we simply fill the value into a
specific histogram if the “bit-wise and” between the bit mask of the histogram and the one of the event
yields exactly 0.
In case classification is activated (see section E.7), we will only fill the histogram at the current

class index defined by the call to SetClassForEvent during the event loop, as well as the histogram
of the XXXall class at index Nclasses.
If ResetHistogramsOfCurrentEvent was called, the classification of this specific event was set

to UINT_MAX and it will be skipped during the filling.

This concludes the segment on the implementation of BEST. Although it provides a rudimentary
plotting of histograms, they were read in afterwards and beautified with a python script to create the
plots in chapter 5.
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APPENDIX F

Further Results of the 𝝅−K0
SK0

S PWD

F.1 Rank Study

As mentioned in section 6.3, we use the final set of partial waves of Table 6.2 and perform a PWD
fit with different ranks. The results for the flat wave are displayed in F.1, where we see a decrease
in relative intensity and an increase in its threshold. On the other hand, the overview plot, where
contributions from partial waves with equal isobars are added coherently, shows no major differences,
see Figure F.2.
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Figure F.1: Comparison of the Flat wave as extracted by a fit with the main wave set as presented in Table 6.2
for different rank as indicated by the individual captions.
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Figure F.2: Coherent sum of the contributions from decay channels involving a certain isobar as indicated by the
legends. The results are obtained by a fit with the main wave set as presented in Table 6.2 for different rank as
indicated by the individual captions. The colored data points are slightly shifted sideways in order to make the
error bars visible. All colored points actually lie where the corresponding black dot is located. Note that some
uncertainty bands extend below zero. This is unphysical and shows that the used Gaussian approximation to
propagate the uncertainties from the fit parameters to the intensities is not completely valid.
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F.2 𝒂1(1420) in Spin Projection 𝑴 = 1

Only replacing the 𝑓0𝜋 P𝑎1
by its corresponding 𝑀 = 1 wave, 𝑓0𝜋 P1

𝑎1
, we also see phase motion at

1.4 GeV in the corresponding relative phases to the other two waves, see Figure F.3 and for the finer
binning Figure F.8.
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Figure F.3: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text in section 6.3. Displayed are
the partial waves K∗K0

S S𝑎1
(first row/column), 𝑓0𝜋 P1

𝑎1
(second row/column) and K∗K0

S D𝑎2
(third row/column).

The same result for the fit with finer mass binning can be found in Figure F.8.
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F.3 Remaining Partial Waves

The resulting spectra for 2−+ and 3++ have large uncertainties. We also did not take special care of
these waves when performing the wave selection, therefore, we omitted them from the main part of the
thesis. However, there is clear evidence for the 𝜋2(1670) in form of a peak in the intensity and phase
motion in the relative phases to 𝑓0𝜋 S𝜋 , see Figure F.5. The 𝜋2(1880) appeared as a dip in 𝜋−𝜋+𝜋−
and it seems to be the case here, too.

For the 𝑎3(1875), there is no direct visible evidence in Figure F.4.
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Figure F.4: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text in section 6.3. Displayed are
the partial waves (K𝜂)SK0

S F𝑎3
(first row/column), 𝑓0𝜋 F𝑎3

(second row/column) and K∗K0
S S𝑎1

(third column,
intensity omitted). The same result for the fit with finer mass binning can be found in Figure F.11.

273



Appendix F Further Results of the 𝜋−K0
S K0

S PWD

1.4
1
.6

1
.8

2.0

m
π
−
K

0S
K

0S
/
G
eV

0

2000

4000

6000

8000

Intensity of
2−+0+f0πD-wave

Number of events / (40MeV)

(8.4%
)

1
.4

1
.6

1.8
2.0

m
π
−
K

0S
K

0S
/
G
eV

0

1000

2000

3000

4000

5000

Intensity of
2−+0+K∗K0

S P-wave
Number of events / (40MeV)

(5.5%
)

1
.4

1
.6

1.8
2
.0

m
π
−
K

0S
K

0S
/
G
eV

0

1000

2000

3000

Intensity of
2−+0+f2π S-wave

Number of events / (40MeV)

(2.1%
)

1
.4

1.6
1.8

2
.0

m
π
−
K

0S
K

0S
/
G
eV

−
18

0

−
90

0 9
0

1
80

Relative phase / deg

−
18

0

−
90

0 9
0

1
80

Relative phase / deg

1
.4

1.6
1.8

2
.0

In
terferen

ce
of

(2 −
+
0
+
f
0 π

D
)−

(0 −
+
0
+
f
0 π

S
)

m
π
−
K

0S
K

0S
/
G
eV

−
18

0

−
90

0 9
0

1
80

Relative phase / deg

1
.4

1
.6

1.8
2.0

In
terferen

ce
of

(2 −
+
0
+
f
0 π

D
)−

(2 −
+
0
+
K

∗K
0S
P
)

m
π
−
K

0S
K

0S
/
G
eV

1
.4

1
.6

1.8
2
.0

In
terferen

ce
of

(2 −
+
0
+
f
0 π

D
)−

(2 −
+
0
+
f
2 π

S
)

m
π
−
K

0S
K

0S
/
G
eV

C
O
M
P
A
S
S
2008

&
2009

0.100
<

t ′/G
eV

2
<

1.000

m
ass-in

d
ep
en
d
ent

fit

ππ
2

Figure F.5: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text in section 6.3. Displayed are
the partial waves 𝑓0𝜋D1

𝜋2
(first row/column), K∗K0

S P𝜋2
(second row/column), 𝑓2𝜋 S𝜋2

(third row/column) and
𝑓0𝜋 S𝜋 (forth column, intensity omitted). Note that the figure is rotated by 90°. The same result for the fit with
finer mass binning can be found in Figure F.12.
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F.4 Results with Finer Mass Binning
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Figure F.6: Overview of which decay channels (left) and which 𝐽𝑃𝐶 sectors (right) contribute during the main
fit. Displayed is the coherent sum of all partial waves that belong to the sectors as indicated by the legend. The
same result for the fit with 40 MeV mass bins can be found in Figure 6.15. The colored data points are slightly
shifted sideways in order to make the error bars visible. All colored points actually lie where the corresponding
black dot is located. Note that some uncertainty bands extend below zero. This is unphysical and shows that the
used Gaussian approximation to propagate the uncertainties from the fit parameters to the intensities is not
completely valid.
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Figure F.7: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text. Displayed are the partial waves
K∗K0

S S𝑎1
(first row/column), 𝑓0𝜋 P𝑎1

(second row/column) and K∗K0
S D𝑎2

(third row/column). The same result
for the fit with 40 MeV mass bins can be found in Figure 6.16.
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Figure F.8: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text in section 6.3. Displayed are
the partial waves K∗K0

S S𝑎1
(first row/column), 𝑓0𝜋 P1

𝑎1
(second row/column) and K∗K0

S D𝑎2
(third row/column).

The same result for the fit with 40 MeV mass bins can be found in Figure F.3.
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Figure F.9: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text. Displayed are the partial waves
K∗K0

S P𝜋 (first row/column), 𝑓0𝜋 S𝜋 (second row/column) and K∗K0
S D𝑎1

(third row/column). The same result
for the fit with 40 MeV mass bins can be found in Figure 6.17.
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Figure F.10: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text. Displayed are the partial
waves K∗K0

S P𝜋 (first row/column), K
∗K0

S P𝜋 (second row/column) and K∗K0
S D𝑎1

(third row/column). The same
result for the fit with 40 MeV mass bins can be found in Figure 6.18.
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Figure F.11: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text in section 6.3. Displayed are
the partial waves (K𝜂)SK0

S F𝑎3
(first row/column), 𝑓0𝜋 F𝑎3

(second row/column) and K∗K0
S S𝑎1

(third column,
intensity omitted). The same result for the fit with 40 MeV mass bins can be found in Figure F.4.
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Figure F.12: Result of the 𝜋−K0
S K0

S PWD presented as described in the main text in section 6.3. Displayed are
the partial waves 𝑓0𝜋D1
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(first row/column), K∗K0

S P𝜋2
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S PWD

F.5 Full Plot of all Partial Waves

The following plots are intended for the digital version of this thesis, where one can zoom.
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Figure F.13: Full plot with all discussed partial waves in the main text and some additional waves from the
appendix. Plot intended for the digital version of this thesis.
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F.5 Full Plot of all Partial Waves
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Figure F.14: Full plot with all discussed partial waves in the main text and some additional waves from the
appendix. Fit with finer resonance mass binning. Plot intended for the digital version of this thesis.
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Appendix F Further Results of the 𝜋−K0
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Figure F.15: The reference wave 0−+0+ 𝑓0 (980)𝜋 S together with all remaining waves not included in Figure F.13.
Plot intended for the digital version of this thesis.
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F.5 Full Plot of all Partial Waves
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Figure F.16: The reference wave 0−+0+ 𝑓0 (980)𝜋 S together with all remaining waves not included in Figure F.14.
Fit with finer resonance mass binning. Plot intended for the digital version of this thesis.

285





List of Figures

1.1 Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 COMPASS Setup for the hadron runs in 2008 and 2009 . . . . . . . . . . . . . . . . 8

3.1 Integration contour for dispersion relation . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Complex square root for rotations of its branch cut . . . . . . . . . . . . . . . . . . . 20
3.3 Complex square root for rotations of branch cut with both Riemann sheets . . . . . . 21
3.4 Numerator of two-body phase space for complex argument . . . . . . . . . . . . . . 22
3.5 Full two-body phase space for complex argument . . . . . . . . . . . . . . . . . . . 24
3.6 Complex logarithm for rotations of its branch cut . . . . . . . . . . . . . . . . . . . 25
3.7 Relativistic BW for complex argument . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 BW with energy-dependent width for complex argument . . . . . . . . . . . . . . . 29
3.9 CM function; CM phase space, two-body phase space and their difference . . . . . . . 33
3.10 Diagram of diffractive 𝜋− + 𝑝 scattering with subsequent three-body-resonance decay 41
3.11 Visualization of GJ frame and helicity frame . . . . . . . . . . . . . . . . . . . . . . 41
3.12 Comparison of Dalitz-plot prediction with COMPASS data – 𝜋−𝜋+𝜋− with 𝑚𝑋 =

1,318 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.13 Comparison of Dalitz-plot prediction with COMPASS data – 𝜋−𝜋+𝜋− with 𝑚𝑋 =

1,672 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.14 Comparison of Dalitz-plot prediction with COMPASS data – 𝜋−𝜋0

𝜋
0 with 𝑚𝑋 =

1,318 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.15 Dalitz-plot predictions for 𝜋−K0K0, 𝑝𝑖𝑚K0K0, K−𝜋0K0 and 𝜋−K0

S K0
S at 𝑚𝑋 = 1,41 GeV 58

4.1 COMPASS fit of the discovery of the 𝑎1(1420) . . . . . . . . . . . . . . . . . . . . 64
4.2 Regge trajectories for 𝑎𝐽 resonances . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Triangle diagram for scalar calculation . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Triangle diagram for dispersive calculation . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Triangle amplitude for the dispersive approach . . . . . . . . . . . . . . . . . . . . . 74
4.7 Diagrams to visualize the partial-wave-projection method . . . . . . . . . . . . . . . 75
4.8 Behavior of the integration borders 𝜎±3 as a function of 𝜎1 . . . . . . . . . . . . . . 79
4.9 Comparison of scalar triangle from dispersive approach with result from partial-wave

projection approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.10 Comparison of triangle amplitude for different 𝑓0(980) masses . . . . . . . . . . . . 81
4.11 Comparison of Argand diagrams for dispersive and partial-wave-projected triangle

amplitude with BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.12 Comparison of different triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.13 Location of singularities from triangle diagrams . . . . . . . . . . . . . . . . . . . . 84

287



List of Figures

4.14 Comparison of triangle amplitudes for different triangle diagrams . . . . . . . . . . 85
4.15 Deck-like background for the 𝜋−𝜋+𝜋− final state . . . . . . . . . . . . . . . . . . . . 87
4.16 Result of main fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.17 Compact representation of main fit result . . . . . . . . . . . . . . . . . . . . . . . . 93
4.18 Comparison between main TSM and scalar TSM . . . . . . . . . . . . . . . . . . . 94
4.19 Comparison between TSM and BWM with direct decay . . . . . . . . . . . . . . . . 95
4.20 Comparison between TSM and BWM with non-symmetrized quasi-two-body phase

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.21 Comparison between TSM and BWM with more flexible background model . . . . . 97
4.22 Comparison between TSM and BWM with included radial excitations . . . . . . . . 97
4.23 First 𝑡 ′ slice of the bootstrap reanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.24 Systematic studies of the comparison of TSM and BWM . . . . . . . . . . . . . . . 101

5.1 Schematic view of the RPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Beam-time distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 PID of the beam particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 z-position of the BPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 (x,y)-position of the BPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6 Number of good proton tracks measured by the RPD . . . . . . . . . . . . . . . . . 120
5.7 Number of K0

S -candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8 Cut-flow diagram of preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.9 Cut-relevance diagram of preselection . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.10 Separation of far, shared and close K0

S . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.11 Result of one-dimensional significance study on Δ𝑧min . . . . . . . . . . . . . . . . 126
5.12 Result of one-dimensional significance study on 𝛼maxcoll . . . . . . . . . . . . . . . . . 126
5.13 Result of two-dimensional significance study on Δ𝑧farmin and Δ𝑧

shared
min . . . . . . . . . . 127

5.14 Invariant-mass spectrum of K0
S -candidates at determined cut-off values for Δ𝑧min . . . 128

5.15 Number of unique tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.16 Cherenkov angle plotted against momentum of primary pion . . . . . . . . . . . . . 130
5.17 Cherenkov angle plotted against momentum of secondary pions . . . . . . . . . . . . 130
5.18 Number of positively identified pions, kaons and (anti-)protons before the RICH-veto

cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.19 Λ and Λ̄ in SV-invariant-mass distributions . . . . . . . . . . . . . . . . . . . . . . 132
5.20 Fit to beam time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.21 Invariant-mass distribution of true-K0

S without kinematic fit . . . . . . . . . . . . . . 134
5.22 Planarity-angle distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.23 Fit to reconstructed beam-energy distribution . . . . . . . . . . . . . . . . . . . . . 136
5.24 Number of true-PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.25 Cut-flow diagram of fine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.26 Cut-relevance diagram of fine selection . . . . . . . . . . . . . . . . . . . . . . . . 140
5.27 𝑡 ′ distribution after the fine selection . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.28 Isobar invariant-mass spectra of two-body subsystems K0

S K0
S and 𝜋

−K0
S . . . . . . . . 144

5.29 Evolution of isobar invariant-mass spectra . . . . . . . . . . . . . . . . . . . . . . . 145
5.30 𝑚𝑋 vs isobar invariant mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.31 Resonance-mass spectrum for 𝜋−K0

S K0
S and overlap of resonances . . . . . . . . . . . 147

288



List of Figures

5.32 Dalitz plot around 𝑎1(1640) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.33 Dalitz plot around 𝜋(1800) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.34 Dalitz plot around 𝜋(2070) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.35 Dalitz plot around 𝜋2(2255) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.36 Dalitz plot around 𝑎1(1420) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.37 Comparison of Dalitz-plot prediction with only K∗(892) with RD Dalitz plot . . . . 151
5.38 RD momentum distributions for cuts on the resonance mass . . . . . . . . . . . . . . 152
5.39 Diagram of central pair production of slow K0

S . . . . . . . . . . . . . . . . . . . . . 152
5.40 Distributions of Feynman-x and rapidity gap . . . . . . . . . . . . . . . . . . . . . . 153
5.41 Momentum distributions with cuts on Feynman-x and rapidity gap . . . . . . . . . . 154
5.42 Feynman-x plotted against rapidity gap . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1 Acceptance as a function of the 𝜋−K0
S K0

S invariant mass . . . . . . . . . . . . . . . . 159
6.2 Acceptance as a function of the 𝜋−K0

S and K0
S K0

S invariant masses . . . . . . . . . . . 160
6.3 Acceptance on the Dalitz plots around 𝑎1(1420) and 𝜋(1800) . . . . . . . . . . . . . 161
6.4 Comparison of MC to RD of invariant-mass distribution of K0

S . . . . . . . . . . . . 162
6.5 Comparison of MC to RD of vertex separation between SV and BPV . . . . . . . . . 162
6.6 Momentum distributions for primary pions and K0

S in MC simulation . . . . . . . . . 163
6.7 Line shapes of 𝑓0 isobars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.8 Line shapes of 𝑓2 isobars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.9 Line shapes of (K𝜋)S and (K𝜂)S isobars . . . . . . . . . . . . . . . . . . . . . . . . 167
6.10 Line shapes of K∗ isobars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.11 Line shapes of the K∗2(1430) isobar . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.12 Example for tight-thresholding procedure . . . . . . . . . . . . . . . . . . . . . . . 169
6.13 Result of tight thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.14 Flat wave of the wave-selection fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.15 Overview plots 𝜋−K0

S K0
S PWD result . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.16 𝜋
−K0

S K0
S PWD result with 𝑎1(1420) . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.17 𝜋
−K0

S K0
S PWD result with 𝜋(1420) . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.18 𝜋
−K0

S K0
S PWD result with 𝜋1(1600) . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.19 Comparison of triangle amplitudes for 0−+ and 1++ . . . . . . . . . . . . . . . . . . 187

A.1 Depiction of the definition of the Dalitz angles . . . . . . . . . . . . . . . . . . . . . 217
A.2 Modified Au-Morgan-Pennington parametrization of the line shape of the (𝜋𝜋)S . . . 220

B.1 CMBW for complex arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
B.2 Relativistic BW as a function of complex 𝑀 . . . . . . . . . . . . . . . . . . . . . . 222
B.3 BW with energy-dependent width as a function of complex 𝑀 . . . . . . . . . . . . 223
B.4 CMBW as a funcion of complex 𝑀 . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D.1 Resonance-mass distribution and number of selected events after fine selection for
different 𝑁BPVout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

D.2 MC simulation of momentum distribution for primary pions and K0
S . . . . . . . . . 252

D.3 MC simulation of momentum distribution for primary pions and K0
S – K∗(892) isobar 253

D.4 MC simulation of momentum distribution for primary pions and K0
S – 𝑓2(1270) isobar 254

289



List of Figures

F.1 Flat wave for different rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
F.2 Overview plot for different rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
F.3 𝜋

−K0
S K0

S PWD result with 𝑎1(1420), 𝑀 = 1 . . . . . . . . . . . . . . . . . . . . . . 272
F.4 𝜋

−K0
S K0

S PWD result with 𝑎3(1875) . . . . . . . . . . . . . . . . . . . . . . . . . . 273
F.5 𝜋

−K0
S K0

S PWD result with 𝜋2 resonances . . . . . . . . . . . . . . . . . . . . . . . . 274
F.6 Overview plots for 𝜋−K0

S K0
S PWD result – finer mass binning . . . . . . . . . . . . . 275

F.7 𝜋
−K0

S K0
S PWD result with 𝑎1(1420) – finer mass binning . . . . . . . . . . . . . . . 276

F.8 𝜋
−K0

S K0
S PWD result with 𝑎1(1420), 𝑀 = 1 – finer mass binning . . . . . . . . . . . 277

F.9 𝜋
−K0

S K0
S PWD result with 𝜋(1420) – finer mass binning . . . . . . . . . . . . . . . . 278

F.10 𝜋
−K0

S K0
S PWD result with 𝜋1(1600) – finer mass binning . . . . . . . . . . . . . . . 279

F.11 𝜋
−K0

S K0
S PWD result with 𝑎3(1875) – finer mass binning . . . . . . . . . . . . . . . 280

F.12 𝜋
−K0

S K0
S PWD result with 𝜋2 resonances – finer mass binning . . . . . . . . . . . . . 281

F.13 𝜋
−K0

S K0
S PWD result for all discussed partial waves . . . . . . . . . . . . . . . . . . 282

F.14 𝜋
−K0

S K0
S PWD result for all discussed partial waves – finer mass binning . . . . . . . 283

F.15 𝜋
−K0

S K0
S PWD result for all omitted partial waves . . . . . . . . . . . . . . . . . . . 284

F.16 𝜋
−K0

S K0
S PWD result for all omitted partial waves – finer mass binning . . . . . . . . 285

290



List of Tables

3.1 Formulas for calculation of QNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Masses of 𝑎𝐽 resonances from PDG . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Possible resonances for allowed isobar chanels . . . . . . . . . . . . . . . . . . . . . 108
5.2 Decay channels listed for resonances . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Cut values for beam time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4 Cut values for beam energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 Wave set determined by the wave-selection fit . . . . . . . . . . . . . . . . . . . . . 173
6.2 Final wave set for the PWD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.1 Comparison of the fit quality for different systematic studies . . . . . . . . . . . . . 234

291





Glossary

K0
S-candidate A SV where the two daughters, with assigned pion-mass hypothesis, have an invariant

mass within ±50 MeV of the nominal K0
S mass. 119–121, 127, 128, 155, 191, 293

BEST-Style Plots created with BEST, where all cuts of the event selection are applied except the one
on the discussed spectrum. 114–121, 129, 131, 135, 137, 138, 257, 260, 261

“ROOT magic” Obviously there is no magic involved, but sometimes root can create interesting or
unexpected results due to its global pointers, object ownerships and clean-up functionalities,
which will be referred to as “ROOT magic”. 259, 293

“close” K0
S SV with both daughter particles also coming from the BPV. 121–125

“far” K0
S SV with none of the two daughter particles coming from the BPV. 122–128, 264, 293

“healthy” BPV A BPV is considered “healthy” if the event contains exactly five distinct charged
tracks, two from each “true” K0

S and one negatively charged track from the BPV. In the case of
𝑁
BPV
out = 2 the one outgoing track of the BPV that is not part of the “shared” K0

S , has negative
charge. 128, 137

“shared” K0
S SV with one of the two daughter particles also coming from the BPV. 122–128, 159,

163, 175, 187, 264, 293

“true” K0
S AK0

S -candidate with stronger invariant-mass requirement, see equation (5.6) and sufficiently
large vertex separation, see equation (5.7) according to its classification as “far” K0

S or “shared”
K0

S . 128, 130–134, 293, 297

“true” PV The BPV or a different PV that has at least one track that is not part of the final state. 137,
138

GJ frame A specific CMS of the resonance, where the 𝑧-axis points in the direction of the boosted
beam 𝑧GJ = 𝑝beam and the 𝑦-axis is given by 𝑦̂GJ ∥ ®𝑝target × ®𝑝beam, cf. section 3.4.4 and
Figure 3.11 on the left. 41–44, 50, 153, 212

Mathematica convention Complex numbers are defined in polar coordinates using the range
𝜑 ∈ (−𝜋, 𝜋] for the polar angle. This is the convention used by Mathematica and it
corresponds to sqrt(𝑧; 0) of equation (3.24). 16, 17, 19–24, 29, 32, 33, 221–224

acceptance Probability to detect a specific final state with an experimental setup for a given set of
kinematic variables. 9, 10, 47, 48, 56, 99, 105, 111, 112, 115, 138, 155, 157–161, 169, 171,
173, 179, 189, 191, 193, 211, 245, 251
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Glossary

Antok Tool developed at TUM to perform event selections on COMPASS data and inspiration of
BEST. 114, 257

Argand diagram For a three-body decay, the number of events (usually in a small window of the
three-body invariant mass) is plotted against two squared invariant masses of the three possible
two-body subsystems. See section 3.5.1 for more details. 26, 81, 82, 164–168, 220

bachelor The third particle in a three-body decay that is not part of the intermediate two-body
resonance, the isobar. 36, 43, 83

BPV The PV with the smallest 𝜒2 during the vertex fitting. 113

break-up momentum Momentum of the daughter particles in a two-body decay of a resonance in its
rest frame, which can be calculated via equation (A.2). 28, 30, 34, 87, 208, 209

camel style Style for naming variables in a coding language, where every new word for a variable or
function name starts with a capital letter. 258

Chew-Mandelstam Function as defined by equation (3.38) that can be used instead of a two-body
phase space, cf. equation (3.40). Its complex structure is discussed in section 3.3.3. 31–33

Chew-Mandelstam BW BWwith an energy-dependent width as of equations (3.35) and (3.34), where
we perform the replacement specified in equation (3.40). 31, 33, 60, 74, 77, 78, 83, 221, 222,
224

collinearity Angle between the reconstructed momentum direction of a K0
S and the connecting line

between the BPV and its SV, see equation (5.1). 124, 125, 127, 245

COMGEANT Previous MC generator of the COMPASS collaboration based on GEANT3. 10

cyclic indices A set of indices (𝑖 𝑗 𝑘) ∈ {(123), (231), (312)}, usually occurring when the indices of
an expression stays valid via replacements 1→ 2→ 3→ 1 and 1→ 3→ 2→ 1. 42, 43, 59,
212

Dalitz plot For a three-body decay, the number of events (usually in a small window of the three-body
invariant mass) is plotted against two squared invariant masses of the three possible two-body
subsystems. See section 3.5.1 for more details. 5, 36, 40, 48, 49, 51, 54–57, 59, 108, 142,
146–151, 155, 161, 188–191, 193, 194, 216

diffractive A beam particle is excited via Pomeron exchange with the target and decays “diffractively”
while keeping the target particle in tact. A depiction of such a process can be found in
Figure 3.10(a). 5, 7, 9, 37, 41, 46, 48, 102, 103, 105, 110, 112, 155, 191, 194, 255

diquark A [𝑞𝑞′] pair is called a diquark, similarly a [𝑞𝑞′] is called the corresponding antidiquark.
They can appear in two forms, as spin-0 diquark in form of color-antitriplets and as spin-1
diquarks in form of color-sextuplets. In both cases they are flavor-antitriplets. Due to the
antisymmetric flavor wave function, the quarks in a diquark cannot be equal. More details can
be found in appendix C.2 and [42]. 68
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Glossary

dispersion relation A method to recover the full amplitude from its discontinuity or its imaginary
part, for more details see equation (3.21). 17, 18, 73, 296

downstream With this, one means “in the direction of the beam”. 115

Flatté Parametrization of an energy-depending width in the case of two possible decay channels, see
equation (3.37). 30, 98, 164, 165

helicity frame A specific CMS of the isobar, without loss of generality in the (23) system, where
the 𝑧-axis points in the opposite direction of the boosted particle 1, 𝑧𝐻 = −𝑝1 and the 𝑦-axis is
given by 𝑦̂𝐻 ∥ ®𝑝1 × ®𝑝beam, cf. section 3.4.4 and Figure 3.11 on the right. 41–44, 50, 110, 210,
217–219

isobar Intermediate resonance in one of the two-body subsystems of a three-body decay. 36, 37,
40–43, 48, 50–52, 54, 55, 57, 59–62, 70, 74, 76, 82–84, 144, 145, 150, 151, 155, 159, 163–168,
170, 172, 174–176, 179, 188, 189, 192, 193, 195, 212, 220, 294, 295

isobar model Model for a three-body decay, which assumes a cascade of two two-body decays with
an intermediate isobar resonance in one of the two-body subsystems, e.g. 𝑋 → 𝜉𝜁1, 𝜉 → 𝜁2𝜁3.
Shortcomings of this model are the neglect of direct three-body decays without intermediate
resonances like e.g. 𝜔 → 3𝜋, as well as the omission of final-state interactions e.g. the
rescattering process discussed as the origin of the 𝑎1(1420) signal. 36, 39–41, 43, 85, 210

naturality It is +1 for scalars 𝐽𝑃 = 0+, vectors 𝐽𝑃 = 1−, tensors 𝐽𝑃 = 2+ and so on, and −1 for
pseudoscalars 𝐽𝑃 = 0−, pseudo-vectors 𝐽𝑃 = 1+, pseudo-tensors 𝐽𝑃 = 2−, therefore, it can be
calculated via 𝑃(−1)𝐽 . 36, 48, 295

physics convention Complex numbers are defined in polar coordinates using the range 𝜑 ∈ [0, 2𝜋)
for the polar angle. The square-root function in Mathematica corresponds to sqrt(𝑧; 𝜋 − 𝜀)
of equation (3.24). The 𝜀 is only necessary when one wants to evaluate the function exactly on
the positive real axis. 16, 19, 20, 22–24, 29, 32, 33, 35, 221–224

Pomeron Hypothetical 𝑡-channel exchange particle – dominant in scattering with high beam energies
– that can be interpreted as a gluon ladder, in first order approximation by a double-gluon
exchange. 37, 40, 41, 48, 87, 105, 106, 151, 255, 294

PV A crossing of the beam track with an arbitrary number of tracks measured by the spectrometer
downstream of the target. 111

reflectivity corresponds to the eigenvalue of the decay amplitude under reflection on the production
plane and in the high-energy limit it is equal to the naturality of the exchange particle
𝜖 = 𝑃𝐼𝑅 (−1)𝐽𝐼𝑅 . 36, 43, 45, 48, 55, 213–215

Reggeon General 𝑡-channel exchange particle, mostly dominated by pions. 36, 151, 255
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Riemann sheet Branch cuts, e.g. from functions like the square root and the logarithm, open up gates
to different sheets of the complex plane where we obtain different versions of these functions.
Examples can be found in section 3.2 . 15, 16, 19–21, 24, 27–29, 31, 83, 222, 223

ROOT Object-oriented library developed at CERN and designed for data analysis in particle physics.
It is not an acronym, but could be interpreted as “Rapid Object-Oriented Technology”. 9, 251,
260, 264

Schwarz Reflection Principle A function fulfills 𝑓 ∗(𝑧) = 𝑓 (𝑧∗), for more details see section 3.2.1.
15–17, 20, 21, 24, 35

significance Quantity that allows for an optimization of certain cut criteria. It provides a reasonable
compromise between quality and quantity and is defined in equation (5.2). 124–127

subtraction Method needed to obtain a dispersion relation for a function that does not vanish at
complex infinity, see equation (3.22). 18, 60

SV A crossing of a positively and a negatively charged track. 106

TGEANT Current MC generator of the COMPASS collaboration based on GEANT4. 9, 10, 48, 157

upstream With this, one means “in the opposite direction of the beam”. 114

Waterfall-Style The event selection follows the given cut flow as defined in the corresponding
“cut-flow diagram” and only cuts before the discussed spectrum are applied. 114–120, 129, 135,
137, 138, 257, 258, 260, 261
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Acronyms

ℓH2 liquid-hydrogen target. 7, 37, 157

𝝁DST micro DST. 10

𝝅−
prim Negatively charged outgoing track from the BPV that is not part of any “true” K0

S of the final
state. The mass of a pion is assigned to this track. 128, 130, 131, 137, 151–155, 163, 251–255

𝝅±
sec Daughter tracks from the “true” K0

S . The mass of a pion is assigned to these tracks. 128, 130,
131, 137, 162

BEST Bonn Event Selection Tool described in appendix E. 114, 257–267, 293, 294, Glossary:
BEST-Style

DT0 Diffractive Trigger. 7, 115, 262

ℓQCD lattice-QCD. 4, 5, 28, 175, 195

BC Beam Counter. 115

BK Beam Killer. 115

BMS Beam Momentum Station. 7

CEDAR ChErenkov Detector with Achromatic Ring focus. 7, 116, 117, 121, 158

DC Drift Chamber. 8, 124

ECAL Electromagnetic CALorimeter. 8, 9, 56, 111, 112, 137, 244, 247

GEM Gas Electron Multiplier. 8, 9, 110

HCAL Hadronic CALorimeter. 8, 9, 111, 112

LAS Large-Angle Spectrometer. 8, 9

LAT Large-Area Tracker. 8, 9

MWPC Multi-Wire Proportional Chamber. 8, 110

MW Muon Wall. 9

MicroMEGAS Micro MEsh GAseous Structures. 8, 124

NaN “not a number”. 89
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Acronyms

PMT Photo-Multiplier Tube. 119

PixelGEM Pixel Gas Electron Multiplier. 8, 9

RICH Ring-Imaging CHerenkov detector. 8, 105, 106, 112, 116, 117, 129–132, 137, 155, 158, 175,
189

RPD Recoil-Proton Detector. 7, 113, 115, 118–120, 134, 135, 155

SAS Small-Angle Spectrometer. 8, 9

SAT Small-Area Tracker. 8

SM1 Spectrometer Magnet 1. 8

SM2 Spectrometer Magnet 2. 8, 115

SciFi Scintillating Fiber. 7, 115

Silicon Silicon microstrip detector. 7–9, 123

Straws Straw Tube Trackers. 8

W45 Wire chambers. 8

WASP Wave Analysis Software Tool [72]. 163

aBT alternative Beam Trigger. 7, 115

AMBER Apparatus for Meson and Baryon Experimental Research. 9, 189, 192, 194

aMC accepted MC. 10, 48, 158–160, 187

BPV Best Primary Vertex. 113, 114, 118, 119, 121–124, 127–129, 137, 152, 160, 162, 175, 246, 265,
293, 294, 297, Glossary: BPV

BW Breit-Wigner. 24–27, 29–31, 33, 34, 60, 70, 72, 74, 77, 78, 83, 87, 88, 98, 164, 186, 221–224,
294

BWM Breit-Wigner Model. 25–27, 31, 33, 34, 43, 54, 63, 64, 74, 78, 81–83, 87, 88, 90–99, 101–104,
164–168, 178–180, 191, 192, 195, 220

c.c. complex conjugate. 68, 69

CDF Cumulative Distribution Function. 110

CERN European Council for Nuclear Research. 7, 296

CMS Center-of-Momentum System. 34, 38, 42, 207–209, 216, 217, 251, 293, 295
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Acronyms

COMPASS COmmon Muon Proton Apparatus for Structure and Spectroscopy. 7–10, 37, 40, 47, 48,
54, 56, 63, 69, 85, 99, 100, 103, 105, 106, 110, 112, 113, 115, 129, 134, 138, 143, 144, 151,
155, 157, 158, 163, 176, 179, 189–194, 246, 294, 296

CORAL COmpass Reconstruction ALgorithm. 9, 10, 48, 158

CQM Constituent-Quark Model. 63, 64, 67

DAQ Data AcQuisition. 9

DST Data Storage Trees. 9, 10, 297, 299

em electromagnetic. 1, 2, 105

GEANT GEometry ANd Tracking. 10, 157, 158, 160, 294, 296

GJ Gottfried-Jackson. 41–44, 50, 153, 212, 293

gMC generated MC. 10, 157–161

LAB LAB System. 159, 207, 251

LED Light-Emitting Diode. 118

MC Monte-Carlo. 10, 44, 47, 48, 99, 111, 112, 118, 138, 151, 153–155, 157–163, 169, 173, 175,
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