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Abstract/Zusammenfassung 

Abstract 

Microorganisms play a critical role in promoting plant growth and performance, especially 

under environmental stresses. Specific root-associated microbes have been demonstrated to 

influence root system development, regulate plant nutrient homeostasis and protect hosts 

against biotic and abiotic stresses. Utilization of microbiomes has been proposed as a strategy 

to improve food production and support sustainable agroecosystems. However, the question 

how the genetic framework underlying maize root development influences its microbiome 

assembly across different environmental conditions and to what extent the microbiome 

influences host performance remains largely unknown, especially at the population level. In 

particular, the degree to which the host function affects the abundance and enrichment of 

specific microbes remains obscure. Better understanding the genetic basis and environmental 

regulation of host-microbe interactions may promote crop performance and resilience in the 

context of climate change. 

In the first part of this thesis, we characterized the root and rhizosphere microbiome 

composition of 129 diverse Zea accessions (teosintes, landraces, inbred lines and hybrids) 

grown under control, nitrogen-, phosphorus- and water-limited conditions. Biostatistics and co-

variant analyses demonstrated that the genotype had a larger impact on the rhizosphere than 

root microbiome under abiotic stresses. Genomic and environmental prediction models 

indicated that environmental factors of the native region where the maize genotypes are 

originally from improved the prediction accuracy of specific microbiome abundances under 

phytochamber conditions. The allelic variation of one of significant SNPs S4_10445603 

identified by environmental genome-wide association analyses was linked to both the predicted 

abundance of the keystone bacteria Massilia and the availability of total soil nitrogen in their 

source environments where the maize landrace germplasm was collected. Moreover, we 

identified a novel gene (Zm00001d048945) encoding microtubule organization processes near 

the SNP S4_10445603 and validated it with independent Mu-transposon insertion mutants with 

lateral root defects, reflecting a causal linkage of lateral root development and enrichment of 

Massilia in two independent nitrogen-poor soil experiments. Furthermore, root inoculation 

experiments using specific bacterial isolates demonstrated that Massilia alone contributed to 

lateral root development, and shoot biomass promotion under low nitrogen conditions.  

In the second part of this thesis, to better understand whether gene expression is associated with 
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enrichment of specific microbes underlying lateral root development, we characterized host 

transcriptome and bacterial community composition across different root compartments using 

a diverse panel of root type mutants (e.g. lateral root and root hair mutants) in maize. Integrated 

transcriptomic and microbial data analyses demonstrated that mutations affecting lateral root 

development had the largest effect on host gene expression and microbiome assembly, as 

compared to mutations affecting other root types. Further network association analyses 

demonstrated that the keystone bacteria Massilia in lateral roots are associated with root 

functional genes involved in flowering and overall plant biomass production. A further 

experiment validated that the interactions of Massilia with genes functioning in reproduction 

was driven by developmental stages. Taking advantage of microbial inoculation experiments 

using a maize early flowering mutant, we confirmed that Massilia-driven maize growth 

promotion indeed depends on flowering time.  

In conclusion, specifically selected microbes by host genotype and environmental factors can 

establish beneficial interactions with their host plants. These beneficial microbes altered root 

architecture at early stages and later stages of development e.g. flowering time to promote plant 

growth and performance especially when facing nitrogen deficient stresses. These coherent 

findings provide strong genetic linkage and breeding potential to improve plant performance 

and resilience in future low-input agroecosystems. 
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Zusammenfassung 

Mikroorganismen spielen eine entscheidende Rolle bei der Förderung des Pflanzenwachstums 

und der Pflanzenleistung, insbesondere unter biotischem und abiotischem Stress. Es wurde 

gezeigt, dass bestimmte wurzelassoziierte Mikroorganismen die Entwicklung des 

Wurzelsystems beeinflussen, die Nährstoffhomöostase der Pflanze regulieren und den Wirt vor 

biotischem und abiotischen Stress schützen. Die Verwendung von Mikrobiomen gilt als 

Strategie zur Verbesserung der Lebensmittelproduktion und zur Unterstützung nachhaltiger 

Agrarökosysteme. Allerdings ist die Frage, wie der genetische Rahmen, der der 

Maiswurzelentwicklung zugrunde liegt, den Aufbau des Mikrobioms unter verschiedenen 

Umweltbedingungen beeinflusst und inwieweit das Mikrobiom die Leistung des Wirts 

beeinflusst, noch weitgehend unbekannt, insbesondere auf Populationsebene.Vor allem ist 

unklar, inwieweit der Wirt die Häufigkeit und Anreicherung bestimmter Mikroorganismen 

beeinflussen kann. Ein besseres Verständnis der genetischen Grundlagen und der 

Umweltregulierung der Wechselwirkungen zwischen Wirt und Mikroorganismen kann künftig 

die Leistung und Widerstandsfähigkeit von Nutzpflanzen im Kontext des Klimawandels 

fördern. 

Im ersten Teil dieser Arbeit wurde die Zusammensetzung des Wurzel- und Rhizosphären-

Mikrobioms von 129 verschiedenen Maislinien (Teosinte, Landrassen, Inzuchtlinien und 

Hybriden) charakterisiert, die unter kontrollierten, Stickstoff- und Phosphormangel sowie unter 

wasserlimitierten Bedingungen angezogen wurden. Biostatistik- und Kovariantenanalysen 

zeigten, dass der Mais Genotyp unter abiotischem Stress einen größeren Einfluss auf die 

Rhizosphäre hat als das Wurzelmikrobiom. Genom- und Umweltvorhersagemodelle zeigten, 

dass Umweltfaktoren  der Region, aus der die Maisgenotypen ursprünglich stammen, die 

Vorhersagegenauigkeit der spezifischen Mikrobiomhäufigkeit unter kontrollierten 

Bedingungen verbesserten. Die durch umweltbezogene genomweite Assoziationsanalyse 

identifizierte allelische Variation des Top-SNP steht in Zusammenhang sowohl mit der 

vorhergesagten Häufigkeit des Schlüsselbakteriums Massilia, als auch mit der Verfügbarkeit 

des Gesamtstickstoffs im Boden in der Ursprungsumgebung des gesammelten Keimplasmas 

von Mais-Landrassen. Darüber hinaus haben wir ein neues Gen (Zm00001d048945) 

identifiziert, das für Prozesse der Mikrotubuli-Organisation in der Nähe des SNP S4_10445603 

kodiert, und es mit unabhängigen Mu-Transposon-Insertionsmutanten mit 

Seitenwurzeldefekten validiert, was einen kausalen Zusammenhang zwischen 

Seitenwurzelentwicklung und Anreicherung von Massilia in zwei unabhängigen Experimenten 

mit stickstoffarmen Böden widerspiegelt. Darüber hinaus zeigten Inokulierungsversuche von 



Abstract/Zusammenfassung 

XVI 

 

Wurzeln mit spezifischen Bakterienisolaten, dass allein Massilia zur Lateralwurzelentwicklung 

und zur Förderung der Sprossbiomasse unter Bedingungen mit niedrigem Stickstoffgehalt 

beitrug. 

Um besser zu verstehen, ob die Genexpression mit der Anreicherung spezifischer Mikroben, 

die der Seitenwurzelentwicklung zugrunde liegen, zusammenhängt, haben wir im zweiten Teil 

dieser Arbeit das Wirts-Transkriptom und die Zusammensetzung der bakteriellen Gemeinschaft 

in verschiedenen Wurzelkompartimenten unter Verwendung einer Reihe von Wurzeltyp-

Mutanten (z. B. Seitenwurzel- und Wurzelhaarmutanten) in Mais charakterisiert. Integrierte 

transkriptomische und mikrobielle Datenanalysen zeigten, dass Mutationen, die die 

Lateralwurzelentwicklung beeinflussen, im Vergleich zu Mutationen, die andere Wurzeltypen 

betreffen, den größten Einfluss auf die Genexpression und den Aufbau des Mikrobioms des 

Wirtes hatten. Weitere Netzwerkassoziationsanalysen ergaben, dass die Schlüsselbakterien 

Massilia in Lateralwurzeln mit Wurzelfunktionsgenen assoziiert sind, die an der 

Blütenentwicklung und der Produktion Pflanzenbiomasse beteiligt sind. Es konnte gezeigt 

werden, dass die Interaktionen von Massilia mit Genen, die eine Rolle in der Reproduktion 

spielen, durch das Entwicklungsstadium bestimmt werden. Durch mikrobielle 

Inokulationsexperimente einer frühblühenden Maismutante konnte bestätigt werden, dass die 

Massilia-gesteuerte Förderung des Maiswachstums tatsächlich von der Blütezeit abhängt. 

Zusammenfassend lässt sich sagen, dass speziell nach Wirtsgenotyp und Umweltfaktoren 

selektierte Mikroorganismen vorteilhafte Wechselwirkungen mit ihren Wirtspflanzen aufbauen 

können. Diese nützlichen Mikroorganismen veränderten die Wurzelarchitektur im frühen 

Stadium und die Blütenentwicklung im späteren Stadium, um das Pflanzenwachstum und die 

Leistung zu fördern, insbesondere bei Stress durch Stickstoffmangel. Diese kohärenten 

Ergebnisse zeigen eine starke genetische Verknüpfung und ein Züchtungspotenzial zur 

Verbesserung der Pflanzenleistung und Widerstandsfähigkeit in zukünftigen 

Agrarökosystemen mit geringem Input. 
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1 Introduction 

1.1 Zea mays − a crop model plant 

1.1.1 Maize is a main crop feeding the world 

Maize (Zea mays L.) is reported as the highest yielding of all crops with 1,21 billion tons of 

grain yield in 2021 (FAOSTAT, http://faostat.fao.org). It is widely used for human consumption 

as a staple food in many regions of the world due to its different varieties including waxy corn, 

popcorn and sweet corn. Especially in Latin America, the Caribbean and Sub-Saharan Africa, 

maize provides about one-third of the calorie intake for the local population 

(https://www.croptrust.org). Maize is also grown for feeding animals and producing industry 

material such as alcohol, sweeteners, and syrup products (https://www.croptrust.org). 

Furthermore, maize is increasingly used for the production of bio-ethanol fuel, which is an 

environment-friendly energy source (Baeyens et al., 2015). Nevertheless, it is necessary to 

improve maize performance and productivity for future low-input agricultural system under the 

pressure of population growth, limited resources and global climate change.  

1.1.2 Maize is an important genetic model 

Maize is a monocotyledonous plant that belongs to the grass family Gramineae (Poaceae) 

(Strable & Scanlon, 2009). The initial domestication of maize, began 9,000 years ago in the 

Balsas river valley in Mexico when farmers started to collect the seeds of the wild grass teosinte 

(Zea mays ssp. parviglumis; Matsuoka et al., 2002). After hybridization with another wild grass 

teosinte (Zea mays ssp. mexicana) in the highlands of central Mexico, the admixed maize 

rapidly spread across South America and North America  (Yang et al., 2023), growing under 

diverse environmental and climatic conditions, ranging from tropical forests to dry cold areas, 

from sea level to highlands >3,000 meters. Maize is now grown across a wider area than any 

other crops (Hake & Ross-Ibarra, 2015) due to its diverse usage and flexible adaptation to local 

environments.  

During maize domestication, diverse open-pollinated maize varieties designated “landraces” 

were selected either by local environments or by farmers looking for desirable seeds and grain 

characteristics (Cleveland & Soleri, 2007). In Mexico and Central America, and the Caribbean, 

most farmers still grow their own landrace populations (Bellon & Hellin, 2011). Repeated 

human and natural selection within a given environment could contribute to adaptation of 

landrace populations to local climates (Mercer et al., 2008). Modern inbred varieties are derived 

from landraces by self-pollinating maize plants for multiple generations (Shull, 1908). However, 
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inbred varieties showed depressed phenotypic traits, while cross-pollinated maize (hybrids) 

displayed vigorous growth and performance (Darwin, 1876). The superior performance of 

hybrid maize makes it the dominant form of maize grown in modern agriculture (Duvick, 2001).  

Maize has been positioned as an ideal model crop for genetic and genomic research due to its 

easy growth, controlled pollination, extensive nucleotide diversity, a vast collections of mutant 

stocks and genic collinearity with related grasses (Hake & Ross-Ibarra, 2015; Nannas &  Dawe, 

2015). Maize is easy to grow in the paper roll system, in the phytochamber, in the greenhouses 

and agricultural fields. The floral development in maize is monoecious, where male flowers 

develop in the tassel and female flowers are in the ear, making it easy to perform self- or 

controlled cross-pollinations (Hake & Ross-Ibarra, 2015). Moreover, the genetic architecture of 

maize is very complex and diverse due to its naturally outcrossing mode of inheritance, which 

provides valuable material for studies of genome evolution (Rafalski & Morgante, 2004; 

Wallace et al., 2014). In addition, maize genetics research has been well established and 

substantially promoted by a broad collection of genetic mutants (Neuffer et al., 1997). Since the 

1990’s, high-throughput mutagenesis programs have been launched to develop collections of 

maize mutants (Strable & Scanlon, 2009). Previous studies have determined candidate genes 

associated with complex phenotypes, such as flowering time (Thornsberry et al., 2001), kernel 

starch biosynthesis (Wilson et al., 2004), and seed carotenoid content (Harjes et al., 2008) by 

using quantitative trait locus (QTL) mapping and maize mutants. Furthermore, various genetic 

loci have been identified associated with root architectural traits (Burton et al., 2014), resistance 

to pathogens (Ding et al., 2008), a subset of the phyllosphere microbiome (Wallace et al., 2018), 

and a specific rhizosphere microbiome (Meier et al., 2022). Better understanding the 

environmental regulation and genetic basis of host plant control of their phenotypes will 

promote the identification of important plant genes in enhancing crop resilience in the context 

of sustainable agriculture. 

1.2 Maize root system 

1.2.1 Complexity of the root system 

The root system of maize is composed of multiple root types, which are formed and play 

important functions at different growth stages (Hochholdinger et al., 2004). Maize root system 

consists of embryonic and post-embryonic roots. Embryonic roots include a single primary root 

and a variable number of seminal roots, which initiate endogenously from the embryo (Figure 

1.1 A; Feldman, 1994; Hochholdinger, 2009) and play a major role in the acquisition of water 

and nutrients from the soil during the early stage after gemination (Hochholdinger et al., 2004; 
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Lynch, 1995). Post-embryonic roots are composed of aboveground brace roots and underground 

crown roots, which are responsible for the majority of water and nutrient uptake during late 

development, meanwhile contribute to anchorage of the maize plant (Hochholdinger et al., 2004; 

McCully & Canny, 1988). All these different root types are able to form lateral roots, which are 

also post-embryonic roots and further substantially increase the absorbing surface of the overall 

root system (McCully & Canny, 1988).  

 

Figure 1.1 The root system of maize. A: Root types of maize. B: Anatomical structure of maize roots. For details 

see text. Note that brace roots are visible at the adult stage. 

All mature roots show a similar anatomical structure (Hochholdinger, 2009) as illustrated in 

Figure 1.1 B. Radially from inside to outside, the tissues are: central cylinder (stele), endodermis, 

cortex, and epidermis which can form root hairs in connection with a narrow region soil 

surrounding the roots named as “rhizosphere” (Marschner, 2012). The central cylinder is 

responsible for longitudinally transporting water and nutrients to the shoot, while the major 

function of the cortex is a radial flow of water and nutrients and provides consistent protection 

against environmental stresses (Hochholdinger, 2009). From the apical part to the basal part of 

a single root, the root is longitudinally divided into the root cap, meristematic zone, elongation 

zone and maturation zone (Hochholdinger, 2009). Root hairs and lateral roots are formed in the 

maturation zone. 

1.2.2 Maize root mutants and encoded genes 

Several classical maize mutants have been identified in association with growth defects in 

different root types in the last decades. These genes and their molecular functions have been 

identified based on their mutant phenotypes (Hochholdinger et al., 2018). Figures of different 

root mutants used in this thesis are shown in Figure 1.2. 
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Figure 1.2 Maize root mutants. For details see text. 

The rtcs (rootless concerning crown and seminal roots) mutant only contains a primary root 

and its lateral roots without any other root types (Hetz et al., 1996). Map-based cloning 

demonstrated that the rtcs gene encodes a member of the plant-specific family of LBD 

transcription factors involved in auxin signal transduction controlling shoot-borne and seminal 

root initiation (Taramino et al., 2007). The lrt1 (lateral rootless 1) mutant has no lateral roots 

on all embryonic roots and lacks the first tier of crown roots at the early stage, and this defect 

can not be induced by auxin (Hochholdinger & Feix, 1998). A recent study indicates that the 

lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) 

subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus (Baer 

et al., 2023). Interestingly, the lateral root defect in lrt1 can be rescued by inoculation with the 

arbuscular mycorrhizal fungus, Glomus mosseae or growth in high phosphate environment 

(Paszkowski & Boller, 2002). In contrast, the rum1 (rootless with undetectable meristems 1) 

mutant is defective in seminal roots and lateral roots on the primary root (Woll et al., 2005). 

Map-based cloning demonstrated that rum1 encodes a canonical Aux/IAA protein that is a 

central regulator of auxin signaling (Von Behrens et al., 2011). Root hairs are tubular extensions 

of trichoblast cells of the epidermis and are instrumental for nutrient and water uptake. In the 

past, several mutants which lack root hairs or display reduced root hair length have been 

identified in maize (Hochholdinger et al., 2018). The proteins encoded by the genes rth3, rth5, 

and rth6 are functionally linked during maize root hair formation. RTH5 produces apoplastic 
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superoxide (Nestler et al., 2014), which results in cell wall loosening via hydroxyl radicals and 

also controls the expression of cellulose biosynthesis genes. After cell wall loosening, the 

transmembrane cell wall protein RTH6 (Li et al., 2016), which corresponds to cellulose 

synthase-like D5 (CSLD5), is arranged in rosettes and synthesizes cellulose at the plasma 

membrane that is extruded to the inner side of the cell wall in the root hair tip and thus reinforces 

the tubular shaft. Finally, the GPI-anchored COBRA-like cell wall protein RTH3 

(Hochholdinger et al., 2008) is involved in the organization of the synthesized cellulose. 

The complex root system of maize is essential for its high productivity because it can efficiently 

extract water and nutrients from soil and transport them to the cobs (Lynch, 2013). Researchers 

have put a lot of effort to improve plant growth and resistance to biotic and abiotic stresses 

through genetic engineering (Hochholdinger, 2016; Meister et al., 2014) or microbial 

manipulation (Angelard et al., 2010) to modify root traits. However, the genetic basis of the 

root system and its association with beneficial microorganisms is largely unexplored, thus 

providing a great potential to improve maize productivity especially under stress conditions.  

1.3 The root-associated microbiome is essential for plant performance 

Soil serves as the major source of microorganisms in terrestrial ecosystems, thus soil 

microorganisms are crucial in the one health concept because they contribute to plant, animal 

and human health (Banerjee & van der Heijden, 2023). In plants, the root is the major interface 

influenced by soil microorganisms. The root-associated microbiome plays an important role in 

promoting plant performance and health under biotic and abiotic stresses (Cheng et al., 2019; 

Oldroyd & Leyser, 2020). Specific root-associated microorganisms have been shown to have 

causal impacts on root development (Finkel et al., 2020; Hodge et al., 2009; Yu & 

Hochholdinger, 2018), and nutrient uptake (Almario et al., 2017; Poole et al., 2018; Salas-

González et al., 2021; Yu et al., 2021) in different plant species. 

1.3.1 The microbiome influences root development 

Although root systems are genetically determined, their architecture can be strongly changed 

by soil microorganisms, particularly beneficial rhizobacteria and arbuscular mycorrhizal fungi 

(AMF) (Yu & Hochholdinger, 2018). Specific bacteria have been shown effects on the 

alteration of root biomass and architecture in different plant species after inoculating with plant 

growth-promoting rhizobacteria (PGPR) (Carvalho et al., 2014; Zamioudis et al., 2013). There 

are also a number of studies reporting increased root branching and volume in response to AMF 

(Fusconi, 2014; Gutjahr et al., 2009; Hodge et al., 2009) and non-mycorrhizal fungi (Hiruma et 
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al., 2016) in plants. 

The most common effect of PGPR on root architecture is the proliferation of lateral roots and 

root hairs but inhibition of primary root growth, which results in increment in root weight 

(Dahmani et al., 2020; El Zemrany et al., 2007; Jochum et al., 2019; Walker et al., 2012), shoot 

weight (Asari et al., 2017; Cassán et al., 2009; Etesami & Alikhani, 2016) and yield (Çakmakçi 

et al., 2001; Fallik & Okon, 1996). In maize, Azospirillum brasilense inoculated plants have 

increased root and shoot dry weight (Cassán et al., 2009) as well as increased yield at low levels 

of nitrogen in field experiments (Fallik & Okon, 1996). Azospirillum lipoferum inoculated 

maize plants had longer primary root length, higher root fresh weight and plant height (El 

Zemrany et al., 2007; Jacoud et al., 1998). A recent study demonstrated that both Bacillus and 

Enterobacter isolates significantly increased root length, root surface area and the number of 

root tips of maize and wheat plants under drought stress (Jochum et al., 2019). Bacillus 

megaterium was reported to cause substantial alterations of the root architecture in Arabidopsis 

thaliana (López-Bucio et al., 2007) and significantly improve the yield in maize (Efthimiadou 

et al., 2020).  

Previous studies have shown that AMF preferentially colonized lateral roots and had negligible 

effects on primary roots of dicots or crown roots of monocots (Gutjahr et al., 2009; Yu & 

Hochholdinger, 2018). The most dramatic influence of AMF colonization on root system 

architecture was observed in the mutant lrt1 of maize, resulting in the induction of very bushy 

lateral roots under low phosphate conditions (Paszkowski & Boller, 2002). However, the AMF 

effect on the root system is different across different maize or soybean genotypes (Wang et al., 

2011; Zhu et al., 2005), thus suggesting that part of the response is due to genetic variation 

(Gutjahr et al., 2009). In addition, the non-mycorrhizal fungus Colletotrichum tofieldia was 

reported to promote root elongation under low phosphorus conditions in Arabidopsis (Hiruma 

et al., 2016). 

1.3.2 The microbiome facilitates nutrient uptake 

Nitrogen and phosphorus are the main nutrients that plants require from soil to support growth 

and reproduction. However, nitrogen is easily lost in the soil by leaching or denitrification 

(Vance, 2001), while phosphorus is usually insoluble and cannot be directly acquired by plants 

(Vance et al., 2003). Previous studies have shown that the plant-associated microbiome strongly 

influences nutrient use efficiency by mineralizing organic nutrients and transforming inorganic 

nutrients (Marschner, 2012; Zhang et al., 2019). There are a vast number of microorganisms 

with nitrogen-fixing and phosphate-solubilizing properties that include bacterial members 



Chapter 1 Introduction 

7 

 

belonging to the taxa Azorhizobium, Bradyrhizobium¸ Burkholderia, Cupriavidus, 

Mesorhizobium, Pseudomonas, Rhizobium and Sinorhizobium (Pham et al., 2017; Poole et al., 

2018) and fungal members belonging to the mycorrhizal taxon (Etesami et al., 2021), and the 

non-mycorrhizal taxon Helotiale (Almario et al., 2017) from diverse crop species. 

One of the best characterized nitrogen-fixing bacteria is the rhizobia in legumes. In this 

symbiosis between rhizobia and legumes, plants provide carbon and energy in the form of 

dicarboxylic acids, and in return, the rhizobia secrete ammonium from gaseous nitrogen that 

the plant uses to synthesize amino acids (Poole et al., 2018). Previous studies showed that 

nitrogen-fixing bacteria contributed to a large portion of nitrogen supply in sugarcane (Mirza et 

al., 2001). Moreover, cooperation between mycorrhizal fungi and soil microbial communities 

doubled nitrogen acquisition in the model grass Brachypodium distachyon (Hestrin et al., 2019). 

In maize, Yu et al. (2021) reported that maize roots secreted more flavonoids to attract members 

of the bacterial taxon Massilia that induced lateral root growth as well as improved shoot 

biomass and nitrogen accumulation in lrt1 mutants under low nitrogen conditions.  

Phosphorus is the second macronutrient that plants acquire from soil. Microorganisms in soil 

can solubilize inorganic phosphate or mineralize organic phosphate to make it available for 

plants through the release of organic acids (Gyaneshwar et al., 2002). The best example of 

microorganism-driven phosphorus uptake is AMF (Behie & Bidochka, 2014; Wang et al., 2017). 

The phosphorus status of plant tissues grown with AMF is higher than that of tissues grown 

without AMF under the same condition (Fusconi et al., 2005). Non-mycorrhizal fungi can also 

promote plant growth and phosphorus uptake in Arabis alpine (Almario et al., 2017).  

1.4 Host genetics influence on microbial community assembly 

The soil type is the main driver of the composition of the bacterial community in both the 

rhizosphere and the endosphere of different plant species (Bulgarelli et al., 2012; Peiffer et al., 

2013; Schreiter et al., 2014; Thiergart et al., 2020). Soil type and climate had a comparable 

influence on fungal community composition of roots in Arabidopsis thaliana (Thiergart et al., 

2020). However, under identical soil and climate conditions, the plant genotype drives the 

structure and function of root microbial community, thus demonstrating that roots are able to 

filter their microbiomes in a defined environment (Haney et al., 2015; Lundberg et al., 2012). 

Furthermore, root microbial community composition can be divergent at the level of subspecies, 

e.g. different cultivars of sorghum (Schlemper et al., 2017) and rice (Singh et al., 2022).  

An investigation of 18 plant species including maize suggests that the dissimilarity of bacterial 
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communities in the root endosphere strongly correlates with host phylogenetic distance (Naylor 

et al., 2017). Similarly, domestication also strongly shaped microbial diversity in the 

rhizosphere of various plant species (Pérez-Jaramillo et al., 2016). A distinct microbiome 

composition and functions were shown in domesticated barley (Hordeum vulgare) compared to 

its wild accession (Bulgarelli et al., 2015). Some gene families affecting host-microbe 

interactions showed the evidence of positive selection in domesticated barley (Bulgarelli et al., 

2015). A study on domestication of wheat showed that the rhizosphere microbiome was shifted 

from a slow growing and fungi dominated community to a fast growing and bacteria dominated 

community (Yue et al., 2023).  

In maize, recent studies demonstrated that the maize rhizosphere microbial community has also 

been substantially affected by domestication (Brisson et al., 2019; Szoboszlay et al., 2015) and 

modern hybrid breeding (Favela et al., 2021; Wagner et al., 2020). The maize progenitor 

teosinte showed significantly higher bacterial abundance and diversity in the rhizosphere 

compared to modern maize, sweet corn and popcorn inbred lines (Szoboszlay et al., 2015). 

Brisson et al. (2019) reported that the microbial community composition in hybrids was more 

different from teosinte and inbred lines. Similar observations were shown in the rhizosphere 

between inbred lines and hybrids, even some microbial features showed a heterosis effect like 

normal phenotypes (Wagner et al., 2020). Moreover, a recent study demonstrated that 

rhizosphere bacteria differed among different varieties released from 1949 to 1986, while fungi 

did not significantly change (Favela et al., 2021). These results indicate that root-associated 

microbial assembly may have co-evolved with host genetic variation, domestication and 

modern breeding. 

Genome-wide association study (GWAS) is a powerful approach to identify genetic loci that 

associate with complex traits. Recently, GWAS was widely used for microbial traits in 

Arabidopsis (Bergelson et al., 2019; Horton et al., 2014), sorghum (Deng et al., 2021), and 

maize (Meier et al., 2022; Wallace et al., 2018). In sorghum, 49 rhizosphere OTUs belonging 

to diverse orders were identified in associations with host genetic loci (Deng et al., 2021). In 

maize, only two Methylobacteria OTUs on leaf were identified associating with host genetic 

loci (Wallace et al., 2018), while Meier et al. (2022) identified 622 genetic loci that were 

significantly linked to 104 microbial traits in the maize rhizosphere. Moreover, recent studies 

demonstrated that host genetics has a potential regulation on microbiome assembly from the 

rhizosphere to the root (Edwards et al., 2015; Thiergart et al., 2020).  
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1.5 Aims of this study 

This thesis aims to investigate how host plant genetics and environmental factors regulate the 

root-microbiome association, how plants gain benefits from microbiome under stress conditions 

and to what extent some specific taxa can be beneficial for improving performance and 

resilience under abiotic stresses in maize. The following objectives are examined in this thesis:  

1. Examine genotype effects on the overall microbial community of rhizosphere and root 

using a large maize population. 

2. Identify root-associated microbial taxa that are heritable and associated with host 

genomic regions. 

3. Investigate the plant source environmental impacts on the root-associated microbiome 

assembly through domestication of maize. 

4. Identify specific microbial taxa that can improve plant performance under different 

stress conditions. 

5. Explore the associations between beneficial microbial taxa and host gene functions in 

different root types or tissues. 
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Abstract 

Beneficial interactions with microorganisms are pivotal for crop performance and resilience. 

However, it remains unclear how heritable the microbiome is with respect to the host plant 

genotype and to what extent host genetic mechanisms can modulate plant-microbiota 

interactions in the face of environmental stresses. Here, we surveyed 3,168 root and rhizosphere 

microbiome samples from 129 Zea accessions, sourced from diverse habitats and grown under 

control and different soil stress conditions. We quantified soil treatment and host genotype 

effects on the microbiome. Plant genotype and source environment were predictive of 

microbiome abundance. Genome wide association analysis identified host genetic variants 

linked to both rhizosphere microbiome abundance and source environments. We identified 

transposon insertions in a candidate gene linked to both the abundance of a keystone bacterium 

Massilia in our controlled experiments and total soil nitrogen at source environments. Isolation 

and controlled inoculation of Massilia alone can contribute to lateral root development, whole 

plant biomass production and adaptation to low nitrogen availability. We conclude that locally 

adapted maize varieties exert patterns of genetic control on their root and rhizosphere 

microbiomes that follow variation in their home environments, consistent with a role in 

tolerance to prevailing stress. 
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Introduction 

Microorganisms that colonize the rhizosphere surrounding plant roots, root surfaces and 

internal tissues play an important role in promoting plant health and fitness under biotic and 

abiotic stresses1,2. Specific features of the root microbiome have been shown to modify root 

architecture3, regulate nutrient homeostasis4, protect against stress1 and impact ecosystem 

function5. Although the overall root microbiome is largely shaped by soil properties6, small 

host-mediated changes in microbiome composition can have large effects on plant fitness7-9. 

Modification of crop microbiomes has been proposed as a strategy to promote food security 

while supporting sustainable agroecosystems10,11. However, the extent to which host genetic 

mechanisms can modulate the microbiome under different environmental conditions and the 

mechanistic basis of any such control remains poorly characterized.  

The diversity of traditional crop varieties (landraces) provides a powerful resource to 

investigate heritable adaptive variation in crops12-14. Long term selection in diverse, and often 

challenging environments can reveal subtle signals linking plant genetic and phenotypic 

variation to local conditions. Maize (Zea mays. ssp. mays) is an excellent model for 

investigating the genetic basis and environmental signature of plant-microbe interactions due 

to the extensive climatic and edaphic variation across its range15. The domestication of maize 

began 9,000 years ago when Mexican farmers started to collect the seeds of the wild grass 

teosinte16 (Zea mays ssp. parviglumis). During maize domestication and improvement, the root 

system expanded its functionality and complexity17,18. Recent studies have highlighted that the 

maize rhizosphere microbial community has been significantly impacted by domestication19,20 

and, more recently, by modern hybrid breeding21,22. Similarly, wheat and barley domestication 

have been shown to have reshaped the community structure and metabolic functions of the 

rhizosphere microbiome23,24. These studies highlight the impact of indirect selection on plant-

microbe interactions during domestication and selective breeding. Nonetheless, better 

understanding the genetic basis and environmental regulation of host-microbiota associations 

under abiotic stresses may promote crop resilience in the context of more sustainable agronomic 

practices. 

Here, we profiled 3,168 root and rhizosphere microbiome samples from 129 diverse Zea 

accessions grown under control, nitrogen-, phosphorus- and water-limited conditions using 16S 

rRNA gene and ITS1 gene sequencing. We assessed how the native habitats (source) of 

traditional varieties was predictive of root and rhizosphere microbiota assembly under our soil 

treatments. Understanding how plant traits modulate their microbiome to enhance tolerance to 
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environmental constraints, the extent to which this plant trait-microbe association is heritable 

under abiotic stresses, and how this association is encoded in the genetic program provides 

novel insights into establishment of beneficial host-microbiome associations. Such insights are 

a prerequisite for the generation of environment-tailored cultivars that recruit favourable 

microbial consortia for increasing agricultural productivity, resilience to climate change, and 

sustainability. 

Results 

The maize microbiome responds strongly to abiotic stresses 

Our goal was to investigate how plant genotype impacts host-microbiome associations and their 

capacity to influence plant performance under soil stress conditions. We used 16S rRNA gene 

and ITS1 gene sequencing to characterize the root and rhizosphere microbiome of 129 Zea 

accessions (11 teosintes, 97 landraces, 11 maize inbred lines and 10 maize hybrids) 

(Supplementary Fig. 1) grown in control-, low phosphorous-, low nitrogen-, and drought-

treatments in a soil sourced from a long-term field experimental station located in Dikopshof 

(50˚48′21′′N, 6˚59′9′′E) and representative of local maize growing areas (See Methods; 

Supplementary Fig. 2). We sampled root and rhizosphere compartments from the first whorl of 

shoot-borne crown roots (Supplementary Fig. 3), in addition to collecting bulk soil. Microbial 

community composition differed across samples for both bacteria and fungi, with compartment 

(bacteria: R2 = 0.756, P = 1.0e−4; fungi: R2 = 0.402, P = 1.0e−4) explaining the largest 

proportion of the variation followed by stress treatment (bacteria: R2 = 0.052, P = 1.0e−4; fungi: 

R2 = 0.021, P = 1.0e−4) (Supplementary Fig. 4). Among all samples, plant genotype (bacteria: 

R2 = 0.010, P = 7.0e−4; fungi: R2 = 0.050, P = 1.0e−4) was less important than either 

compartment or treatment (Supplementary Fig. 4). Within each compartment, treatment had a 

larger effect on bacteria (R2 = 0.32, R2 = 0.26, P <0.001) than fungi (R2 = 0.13, R2 = 0.11, P 

<0.001), in both rhizosphere and root (Fig. 1a and b). In contrast, genotype had a larger effect 

on fungi (R2 = 0.12, R2 = 0.098, P <0.001) than bacteria (R2 = 0.064, R2 = 0.058, P <0.001) in 

both rhizosphere and root. In the rhizosphere and roots, we observed significantly (Kruskal-

Wallis test, Dunn’s post-hoc test with BH adjusted, P <0.05) lower bacterial α-diversity under 

drought stress and nitrogen deficiency compared to control conditions (Supplementary Fig. 5a). 

A significant effect of phosphorus on bacterial α-diversity was seen in the rhizosphere but not 

in the root compartment (Supplementary Fig. 5a). For fungal α-diversity, the only significant 

treatment difference was (Kruskal-Wallis test, Dunn’s post-hoc test with BH adjusted P <0.05) 

lower diversity under nitrogen deficiency than control conditions in the root (Supplementary 
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Fig. 5b). Interestingly, we only detected a significant (R2 = 0.21, P <0.01) interaction effect 

between treatment and genotype for rhizosphere bacteria (Fig. 1a). Such detected interaction 

effect between treatment and genotype indicates that there may be specific genotypes with 

adaptive role on bacterial microbiota in the rhizosphere. 
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Figure 1. Overall diversity and heritability of the microbiome under abiotic stresses. a, Constrained analysis 

of principal coordinate (CAP) ordination using Bray–Curtis dissimilarity with permutational analysis of variance 

(PERMANOVA) was applied to visualize significant bacterial microbiota differences in the rhizosphere and root 

across four treatments and genotypes (n = 129). Compartments are shape coded. Only ASVs with reads >10 in ≥6 

samples were included in the dataset. b, Constrained analysis of principal coordinate (CAP) ordination using Bray–

Curtis dissimilarity with permutational analysis of variance (PERMANOVA) was applied to visualize significant 

fungal microbiota differences in the rhizosphere and root across four treatments and genotypes (n = 129). 

Datapoints for bacteria (n = 3,138) and fungi (n = 3,168) are color coded according to the four treatments. 

Compartments are shape coded. Only ASVs with reads >10 in ≥6 samples were included in the dataset. Ellipses 

represent an 90% confidence level. ***, P <0.001, **, P <0.01, ns, not significant. c, Heritability estimates of 

individual families under four treatments for both bacteria and fungi. The broad-sense heritability (H2) was 

calculated using highly abundant bacterial (n = 131) and fungal (n = 59) families across all samples. CK, control; 

D, drought; LN, low nitrogen; LP, low phosphorus. Significances are indicated among treatment groups for each 

compartment with Benjamini-Hochberg adjusted P <0.05 (Kruskal-Wallis test, Dunn’s post-hoc test). Boxes span 

from the first to the third quartiles, centre lines represent the median values and whiskers show data lying within 

1.5× interquartile range of the lower and upper quartiles. Data points at the ends of whiskers represent outliers. 

The pie charts indicate the proportional distributions of heritability frequencies. 

Keystone genera define the major differences in the microbiome 

Overall, we identified 815 bacterial amplicon sequence variants (ASVs) and 248 fungal ASVs 

with high quality after removing the chimeric and organelle sequences (Supplementary Datasets 

1−2). Bacterial and fungal ASVs which expressed ≤0.05% relative abundance within ≤5% 

samples were removed from downstream analysis (Supplemental datasets 3−4). Keystone 

microbial taxa or ASVs are defined as the drivers of microbiome structure and function5. We 

identified putative keystone microbes among the highly abundant ASVs using co-occurrence 

network analysis of relative abundance data (See Methods and Supplementary Datasets 5−7). 

Overall, the number of associations and accumulative weights of ASVs were largely positive 

within the bacterial or fungal networks, but negative in the inter-kingdom network 

(Supplementary Fig. 6; Supplementary Dataset 5). This is consistent with previous reports that 

inter-kingdom interactions determine the overall assembly, stability, and fitness of the root 

microbiome in Arabidopsis25. We also observed that a high proportion of the negative inter-

kingdom associations were conserved across the stress treatments (Supplementary Fig. 7; 

Supplementary Dataset 6). Among interacting ASVs, keystone taxa or ASVs were defined as 

those with a hub score greater than 0.1. In the rhizosphere compartment, we identified 20 

keystone genera across all treatments, from which the bacterial genera Sphingomonas, Massilia 

and Lysobacter were the most represented at the ASV level (Supplementary Fig. 8a). In the root 

compartment, we detected 5 keystone ASVs that belong to Massilia, which is the only genus 

conserved across control and low nitrogen treatments, while 19 keystone ASVs belonging to 

Streptomyces were conserved across control and drought stress treatments (Supplementary Fig. 

7 and 8b; Supplementary Dataset 7). Functional prediction indicated that these bacterial genera 

are involved in ureolysis (Massilia) and aerobic chemoheterotrophy (Streptomyces) 

(Supplementary Dataset 8). The fungal keystone taxa were mainly predicted to be decomposers 
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(37%) and pathogens (25%; Supplementary Dataset 9). Overall, our co-occurrence network 

analyses revealed strong negative correlations between bacterial and fungal ASVs in maize 

rhizosphere and roots, while only specific keystone bacterial members such as Massilia are 

enriched as drivers of microbiota composition in the roots in nitrogen deficient soil. 

Stress treatments result in a less diverse but more heritable microbiome 

We first investigated whether abiotic stresses will influence maize performance by estimation 

of shoot dry biomass and relative chlorophyll content (SPAD). As shown in Supplementary Fig. 

9, drought and nutrients deficiency significantly inhibit maize growth (Supplementary Fig. 9a, 

One-Way ANOVA, Tukey’s HSD, P <0.05), while drought and nitrogen deficiency 

significantly reduce the relative leaf greenness (Supplementary Fig. 9b, One-Way ANOVA, 

Tukey’s HSD, P <0.05), but not under phosphorus deficiency. These shoot phenotype analyses 

indicate that maize plants undergone a stressed situation under our well-controlled conditions. 

To estimate the overall influence of the plant genotype on microbiome composition, we 

estimated the correlation between the plant genetic distance matrix and the microbiome distance 

matrix using 97 plant genotypes, for both root and rhizosphere. There was a significant 

correlation (Mantel’s statistics) between the bacterial communities and plant genotypes in both 

compartments (Rhizosphere: R = 0.32, P = 1.0e−4; Root: R = 0.16, P = 0.0079). Fungi only 

displayed a significant correlation with the plant genotype in the rhizosphere (R = 0.23, P = 

1.0e−4; Supplementary Fig. 10). We estimated the broad-sense heritability (H2) for the 

microbiome at different microbial taxonomic levels and for individual ASVs across the 

experiment, and then separately for each compartment and treatment combination 

(Supplementary Dataset 10; see Methods). Across treatments, the average H2 was higher for the 

rhizosphere microbiome (Family: H2 = 0.15; Genus: H2 = 0.14; ASV: H2 = 0.16) than the root 

microbiome (Family: H2 = 0.052; Genus: H2 = 0.049; ASV: H2 = 0.052) at the level of family 

(Fig. 1c), genus (Supplementary Fig. 11a) and ASV (Supplementary Fig. 11b). Nutrient stress 

significantly (Kruskal-Wallis test, Dunn’s post-hoc test with BH adjusted P <0.05) increased 

the average H2 (control, H2 = 0.078; low nitrogen, H2 = 0.16; low phosphorus, H2 = 0.18) of the 

bacterial rhizosphere microbiome, but not of the fungal microbiome (Fig. 1c). To identify 

specific plant genetic loci affecting the microbiome, we performed genome-wide association 

analysis (GWA) for the most heritable (H2 >0.1) microbes at the level of α-diversity, family, 

genus and individual ASV (Supplementary Dataset 11). We did not recover significant markers 

in association with overall measures of microbial α-diversity (Shannon index) (Supplementary 

Dataset 12). We did, however, identify significant (BH adjusted P <0.05) associations with 

individual ASVs and taxa at the family and genus levels in both root and rhizosphere 
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compartments (Supplementary Dataset 11). We detected a total of 533 (Supplementary Fig. 12a) 

marker-trait associations (MTAs) with bacteria, and 283 MTAs with fungi (Supplementary Fig. 

12b; MTAs with the proportion of explained phenotypic variance higher than 5%). We 

extracted a list of 567 genes linked to these significant markers (Supplementary Dataset 13) and 

assigned them to functionally classes using gene ontology (GO) analysis (Supplementary 

Dataset 14). We found six GO terms to be enriched: “nuclear export”, “RNA transport”, 

“mRNA export from nucleus”, “purine ribonucleotide catabolic process”, “regulation of 

organelle organization” and “purine ribonucleoside catabolic process” (Supplementary Dataset 

14). Overall in our experiment, these data indicate the heritable impact of the host genotype on 

bacterial communities is conserved under both control and stress conditions. 

Plant source environments predict the root and rhizosphere microbiome 

To address the hypothesis that variation in the plant microbiome reflects adaptation to the native 

environment, we assessed the potential of climatic and edaphic descriptors of source 

environments to predict the microbial abundance in our standardized phytochamber 

experiments (Supplementary Fig. 2; Supplementary Dataset 15). To reduce the complexity of 

the microbiome data, we first applied a modified use of unbiased weighted correlation network 

analysis (WGCNA)26 and identified network associations clustered into fourteen distinct 

modules of highly correlated microbial ASVs in the root (Supplementary Fig. 13a; 

Supplementary Dataset 16). We next assigned a relative “eigentaxa” score27 to each sample and 

determined the biological relevance between microbial modules and shoot phenotypic traits i.e. 

shoot dry biomass, shoot nitrogen concentration and shoot nitrogen content. In particular, six 

of the identified modules were positively associated with shoot dry biomass and nitrogen 

content (Supplementary Fig. 13b). Interestingly, the taxa of the “darkred” module (P = 3e−6) 

were specifically enriched in Massilia (Oxalobacteraceae) (Supplementary Fig. 13c). We then 

sought evidence of covariation among microbial modules and environmental descriptors i.e. 

total nitrogen, phosphorus retention rate and annual precipitation in the places of origin for 

maize varieties. Notably, the “darkred” module that was enriched in Massilia was significantly 

negatively (R = −0.28, P = 0.0039) correlated with total soil nitrogen of the original sites of 

collection, exclusively in the low nitrogen treatment of the controlled experiment 

(Supplementary Fig. 14), thus reflecting the potentially selectiveness of Massilia when the soil 

nitrogen is limited in the natural habitats. 

We used structural equation modeling to quantify the cumulative effects of source environments, 

plant genetic diversity, stress treatments, domestication status and biomass on the “darkred” 
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module. These analyses demonstrated an impact of plant genotype and source environments on 

specific assemblies of microbiome. Low nitrogen treatment (3.4% standardized total effect), 

source mean annual temperature (2.9% standardized total effect), source precipitation (−10.9% 

standardized total effect) and plant genotype (10.8% standardized total effect) significantly 

correlated with the microbiome assemblage, notably with the abundance of the keystone genus 

Massilia (Supplementary Fig. 15). We next compared the predictive ability of a genomic model, 

an environmental model and a combined genomic-environmental model on ASV abundance 

(See Methods). Overall, prediction was better for bacterial data than for fungal data, and better 

for rhizosphere than root (Fig. 2a; Supplementary Fig. 16). Interestingly, microbial abundance 

could be predicted more accurately with descriptors of source environments or a combination 

of these with plant genetic markers than with genetic markers alone at the level of family, genus, 

and ASV (Fig. 2a; Supplementary Fig. 17−19), which is consistent with the scenario that 

environment plays an influential role in determining microbiome composition through its 

impact on host genetics. Under the conditions of our experiment, ecological modelling and 

prediction analyses show potential effects of source environments of locally adapted maize on 

the abundance of the rhizosphere bacterial community. Therefore, such local environments 

together with the plant genomic information will largely play positive effect on understanding 

the structure and function of the rhizosphere microbiome even grown under a new environment. 
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Figure 2. Genomic, environmental and microbial prediction of host-microbe interactions and plant traits. 

a, Microbiome traits prediction using genetic markers and environmental characters. Inner pie charts describe the 

proportion of ASVs with four different magnitudes of prediction accuracies from different treatments across 

compartments. Outer circles define the best prediction patterns observed by applying the genetic markers (G_best) 

alone, environmental characters (E_best) alone or combined genetic markers and environmental characters 

(G+E_best). The numbers denote the average prediction accuracies for microbial ASVs from different treatments 
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across compartments. Only ASVs with heritability (H2) >0.1 were considered in prediction analysis. PA, prediction 

accuracy. Bar plots indicate the proportions of predictable (PA >0.1) and unpredictable (PA <0.1) ASVs from the 

total predictions. CK, control; D, drought; LN, low nitrogen; LP, low phosphorus. b, Plant traits prediction using 

genetic markers and microbiome traits. Different colour dots indicate genetic markers (blue) or different 

microbiome traits e.g. root fungi (brown), root bacteria (dark brown), rhizosphere fungi (grey) and rhizosphere 

bacteria (red). Combinations of different dots indicate integration of several data matrix. A curved line describes 

the average prediction accuracy for plant traits using microbiome data alone, genomic data alone or combined 

genomic and microbiome traits data. A heatmap illustrates the standardized prediction accuracy for fitness traits 

across different microbiome features combined with genetic markers. Shoot traits include the biomass, leaf area 

and chlorophyll measured by SPAD value. Nutrient uptake properties include the concentration and content of 

macronutrients (nitrogen, phosphorus, potassium, calcium, magnesium and sulfur), micronutrients (iron, 

manganese, zinc and boron) and beneficial elements (aluminium and sodium). 

Consideration of the root-associated microbiome improves prediction of plant traits 

To assess the relationship between the microbiome and plant growth and physiology, we used 

a two-step strategy combining genomic prediction and Random Forest models based on source 

environment descriptors. First, we compared the genomic prediction ability on plant growth 

and nutrient accumulation traits by using plant genetic markers alone or in combination with 

microbiome ASVs abundance. The combination of plant genetic markers and rhizosphere 

bacterial community composition provided the highest average prediction ability (29%) (Fig. 

2b; Supplementary Datasets 17 and 18). We confirmed this result by employing an alternative 

approach to fit a ridge regression mixed model, observing ~10%−15% increase of prediction 

accuracy when using both genetic and microbiome data (Supplementary Fig. 20). As has been 

previously seen in foxtail millet28, we found that the rhizosphere microbiome combined with 

genetic data increased the average prediction accuracy ~7% of 11 agronomic traits compared 

to genetic markers alone (Supplementary Fig. 21). We then explored relationships among 

source environments, genetic differentiation and specific microbial taxa. As a measure for the 

pattern of similarity among samples, we calculated matrices of pairwise distance using the 

observed microbiome ASVs in different treatments, and two source environmental descriptors 

(elevation and geographical distance). Mantel tests were used to study the correlations between 

different distance matrices. On average, the correlations of inter-treatment and treatment-

environment similarity patterns for bacterial communities were higher than for fungal 

communities (Supplementary Fig. 22). We observed that the correlation between the 

rhizosphere bacteria and source environments was significantly (one-tailed Student’s t-test, P 

= 0.047) higher than that between the root bacteria and environments, although we did not 

detect any significant difference between such environment and rhizosphere or root fungi. To 

reduce dimensionality, we extracted the first five principal components (PCs) from the 

microbiome ASV data. We then used a Random Forest (RF) approach to predict these PCs 

using different environmental descriptors as explanatory variables (Supplementary Dataset 15). 

We observed the highest accuracy for the rhizosphere bacteria PC2 (Supplementary Fig. 23a) 
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using the nine most important environment predictors including photosynthetically active 

radiation and potential evapotranspiration (Supplementary Fig. 23b). Prediction of individual 

ASVs was less successful (Supplementary Fig. 24), although significant predictors were 

identified for specific taxa belonging to the Oxalobacteraceae, including Massilia 

(Supplementary Fig. 25). Based on these results, we hypothesize that a footprint of 

environmental adaptation on the genomes of the material tested is sufficiently constitutive to 

modulate plant and microbial traits when those are measured under different environmental 

conditions. 

A candidate gene linked to source environments, Massilia abundance, and root branching  

Across our samples, we detected four highly abundant (relative abundance >5%) bacterial 

families Streptomycetaceae, Oxalobacteraceae, Pseudonocardiaceae and Chitinophagaceae 

(Fig. 3a), and three highly abundant fungal families Aspergillaceae, Trichocomaceae and 

Nectriaceae (Supplementary Fig. 26). In particular, the bacterial taxon Oxalobacteraceae 

showed the highest heritability among all the families under nitrogen limitation in our 

experiment (Fig. 3b). Oxalobacteraceae have been previously proposed to play an important 

role in maize tolerance to nitrogen limitation when grown in nitrogen-deficient soils29. To 

investigate evidence for adaptive host effects on Oxalobacteraceae abundance, we used our 

existing environmental RF model to predict Oxalobacteraceae ASV abundance for 1,781 

previously genotyped traditional maize varieties sourced from diverse environments across 

Mexico15 with the 129 accessions as the training set (Fig. 4a). Among the Oxalobacteraceae 

ASVs, the best predicted (RF model R2 = 0.28) was ASV37, belonging to the genus Massilia 

(Oxalobacteraceae), in the root under low nitrogen treatment (Supplementary Fig. 27). We ran 

GWA using the predicted ASV37 abundance values of the 1,781 varieties and compared the 

results to GWA of the 129 accessions in the training set, finding more overlap between the two 

than predicted by chance (Fig. 4b). Our RF predictions are derived from non-linear 

combinations of environmental descriptors. As such, the predicted ASV abundance GWA is 

essentially an analysis of genotype-environment association, with the training set defining the 

cline most appropriate to the trait in question. The top GWA hit for predicted ASV37 root 

abundance under low nitrogen (SNP S4_10445603) fell within the gene Zm00001d048945 on 

chromosome 4 (Fig. 4a and c; Supplementary Dataset 20). Across the 1,781 panel, the minor 

allele at SNP S4_10445603 was more abundant at higher predicted ASV37 abundance but 

lower source soil nitrogen content (Fig. 4d), suggesting the hypothesis that allelic variation in 

Zm00001d048945 contributes to adaptation to nitrogen-poor soil by enhancing association with 

Massilia29 (Supplementary Fig. 28).  
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Figure 3. Dominating and heritable bacterial families in the maize root and rhizosphere microbiome under 

abiotic stresses. a, Maximum-likelihood phylogeny of dominant bacterial families (n >5). Circle sizes along the 

branches of the tree indicate the number of ASVs observed in association with microbial families. Colour coded 

families are clustered at the phylum level. Bar plots describe the prevalence according to the proportional sample 

size. The heatmaps illustrate the standardized mean relative abundance and the estimated heritability of microbial 

families from the rhizosphere to the root. Left and right oriented triangles represent the enrichment or depletion of 

microbial families from the rhizosphere to the root. Up and down oriented triangles represent the increase or 

decrease on heritability from the rhizosphere to the root. The significance levels were controlled at two levels (*: 

P <0.05; **: P <0.01). b, Phylogenetic tree of dominant bacterial ASVs (n = 67) of roots grown under nitrogen-

poor condition. Dot size corresponds to relative abundance. Inner heatmap from outside to inside indicates 

heritability (H2 >0.1) of individual ASVs and their annotated taxa at the genus and family levels. Red bar plots 
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describe the explained variance (R2) by GWAS. The outer heatmap indicates the predictions by genomic best linear 

unbiased prediction (GBLUP), or based on the environmental best linear unbiased prediction (EBLUP) or 

prediction based on both genomics and environment (EGBLUP). Triangles indicate significant associations with 

the presence/absence (P/A) GWAS. Color coded tree branches of ASVs are clustered at the family level. Box plot 

indicates significantly higher heritability of Oxalobacteraceae compared to other families. 

 

Figure 4. Source habitats facilitate microbiome-driven root phenotypic association with nitrogen 

availability. a, Manhattan plots showing environmental GWAS of specific predicted abundance of Massilia 

ASV37 by Random Forest model. b, Permutation test results showing significantly lower median P value for SNPs 
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from the phenotypic GWAS that are around 200kb of the top 100 SNPs of predicted GWAS (red vertical line) than 

the median P value of random selected SNPs of phenotypic GWAS, based on 10000 permutations. c, Linkage 

disequilibrium (LD) plot for SNPs within 2.5kb of gene Zm00001d048945. Exons in the gene model are indicated 

by black bins. All significant SNPs are linked (red) to the LD plot (P <1.0 × 10−7). Arrows indicate the positions 

of the peak SNPs. The colour key (grey to red) represents linkage disequilibrium values (r2). Blue triangles indicate 

the transposon insertion positions of the two mutant alleles D−0170 and F−0598. d, Pearson correlation coefficient 

analysis of allele frequency (S4_10445603) with soil total nitrogen content (purple) and predicted relative 

abundance of ASV37_Root_LN (orange) across 1,781 geographical locations worldwide. e, Tissue-specific 

expression of gene Zm00001d048945 according to the eFP Browser database. f, Pearson correlation coefficient 

analysis of lateral root density with relative abundance of ASV37_Root_LN (orange) among 97 maize landraces. 

Scatter plots show best fit (solid line) and 95% confidence interval (colour shading) for linear regression. g and h, 

Root phenotypes and lateral root density of two independent Mu-transposon insertion mutant alleles (D−0170 and 

F−0598) in comparison to the corresponding wild types (B73 and F7) grown under the paper-roll system. 

Significances are indicated between wild type and mutant for different genetic backgrounds (two-tailed Student’s 

t-tests). Boxes span from the first to the third quartiles, centre lines represent the median values and whiskers show 

data lying within 1.5× interquartile range of the lower and upper quartiles. Data points at the ends of whiskers 

represent outliers. 

The gene Zm00001d048945 is most strongly expressed in the root cortex (Fig. 4e; 

https://www.maizegdb.org/gene_center/gene/Zm00001d048945) and is predicted to encode a 

TPX2 domain containing protein related to the WAVE-DAMPENED2 microtubule binding 

protein that functions in Arabidopsis root development30 and lateral root initiation31. Using root 

architectural data available for the training set, we found a significant positive correlation 

between lateral root density and ASV37 abundance (R = 0.2, P = 0.03; Fig. 4f), suggesting 

recruitment of Massilia might be linked to root development. To functionally test for an effect 

of Zm00001d048945 on root architecture and Massilia abundance, we identified transposon 

insertional mutants in two different genetic backgrounds (Inbred: B73 and F7; Supplementary 

Fig. 29). Plants homozygous for transposon insertions in Zm00001d048945 showed a 

significant reduction in lateral root density in a paper-roll system (Fig. 4g and h). To then 

determine an effect on Massilia, we grew wild-type and mutant plants in high and low nitrogen 

treatments using the same soil as for our initial screen and characterized the root microbial 

community. In general, nitrogen limitation significantly increased the α-diversity of the root 

microbiome (Fig. 5a), meanwhile compartment (PERMANOVA, R2 = 0.37, P <0.001) plays 

larger effect on the microbiome composition than the treatment (PERMANOVA, R2 = 0.27, P 

<0.001) (Fig. 5b), which is consistent with the result of our initial screen. Interestingly, we only 

detected three bacterial taxa Massilia, Muribaculaceae and Pseudomonas – that differed in 

relative abundance between wild type and mutant plants in nitrogen-poor soil, and both mutants 

recruited significantly (two-tailed Wilcoxon rank-sum test, P <0.05) less of the genus Massilia 

in the root than wild type plants although the overall microbial diversity did not differ (R2 = 

0.030, not significant; Fig. 5b and c). No difference was seen in Massilia abundance between 

wild type and mutant plants in the well fertilized soil (Supplementary Dataset 21). Taken 

together, we interpret these results to support a role for Zm00001d048945 in the modulation of 

https://www.maizegdb.org/gene_center/gene/Zm00001d048945
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lateral root development and Massilia abundance in nitrogen deficient soil.  

 

Figure 5. Massilia alone can modulate lateral root development and growth performance in nitrogen-poor 

soil. a, Root bacterial α-diversity (Shannon’s diversity index) from mutants (D−0170 and F−0598) and wild type 

plants (B73 and F7) under low (LN) and high (HN) nitrogen conditions. The bulk soil collected from the unplanted 

pots are the control. Significances were indicated among treatments and compartments by different letters at P 

<0.05 (Kruskal-Wallis test, Dunn’s post-hoc test). Boxes span from the first to the third quartiles, centre lines 

represent median values and whiskers show data lying within 1.5× interquartile range of lower and upper quartiles. 

Data points at the ends of whiskers represent outliers. Bulk soil, n = 4; Root, n = 16. b, Principal coordinate analysis 

(PCoA) showing the dissimilarity of bacterial β-diversity between mutants and wild type plants under low (LN) 



Chapter 2 Heritable microbiome variation is correlated with maize source environments 

27 

 

and high (HN) nitrogen conditions. The explained variance (R2) by compartment (R2 = 0.37, P <0.001), treatment 

(R2 = 0.27, P <0.001), genotype (R2 = 0.030, not significant) and treatment:genotype interaction (R2 = 0.072, P 

<0.05) were assessed by permutational analysis of variance (PERMANOVA, P <0.01). Bulk soil, n = 4; Root, n = 

16. c, Significantly differential abundant taxa between mutants and wild type plants. Significances were indicated 

by asterisk at P <0.05 (two-tailed Wilcoxon rank-sum test). n = 4. d, Targeted metabolite profiling indicates that 

the lateral root defective mutants produce more flavone than their respective wild type plants. For the extracts, n 

= 6 biologically replicates. e, Specific Massilia ASV37 is able to promote lateral root formation of lateral root 

defected mutants (D−0170 and F−0598) by root inoculation of different synthetic communities (SynCom). B73 

and F7 are wild type plants. Representative images of 1st whorl of crown roots illustrate the more emerged lateral 

roots by Massilia strains. Different letters indicate significantly different groups (ANOVA, Tukey’s HSD, 

P <0.05). n = 4 biologically replicates. Scale bar = 1 cm. Massilia inoculations are able to alleviate the nitrogen 

deficient phenotype for leaf chlorophyll concentration (f) and shoot nitrogen concentration (g). Nitrogen deficient 

phenotype was evaluated by relative leaf chlorophyll concentration measured by the SPAD value of the last fully 

expanded leaf. Each individual leaf was measured 10 times. Different letters indicate significantly different groups 

(ANOVA, Tukey’s HSD, P <0.05). n = 4 biologically replicates. Data are mean ± s.e.m. Scale bar = 1 cm. Prior 

to ANOVA analysis, the observed values were checked for normal distribution and the homogeneous variance 

among the groups.  

Inoculations of the bacterial keystone taxon Massilia alone is sufficient to promote root 

and shoot growth 

Our previous study has shown that root-derived flavones i.e. apigenin and luteolin are important 

drivers for mediating the beneficial association of Massilia with lateral root development in 

maize29. We quantified apigenin and luteolin in the Zm00001d048945 mutants and found that 

the mutants accumulated significantly more apigenin and luteolin in comparison to wild type 

plants (Fig. 5d). Thus, together with our published work and this study, we confirmed that the 

potential linkage between lateral root development and Massilia depends on root exudation of 

flavones in maize. To characterize the specificity of the impact of Massilia on maize root and 

shoot growth, we performed controlled inoculation experiments with Massilia Isolate13 (100% 

sequence similarity with ASV37) alone, with a 12-member synthetic bacterial community 

(SynCom12) of Massilia isolates that did not include Isolate13, and with a 13-member Massilia 

(SynCom13) including SynCom12 and Isolate 13 (Supplementary Dataset 22). We quantified 

root and shoot growth in wild type and Zm00001d048945 transposon inserted mutants in 

nitrogen-poor soil. We found that Isolate 13 alone significantly promoted lateral root formation 

in Zm00001d048945 mutants (Fig. 5e). However, beneficial effect of Massilia is not necessary 

for the growth of wild type plants with well-developed lateral roots (Fig. 5e). These data 

together with previous finding29 suggest that lateral root promotion might depend more on 

specific functions of Massilia even at the individual strain level. Moreover, single inoculation 

of Massilia Isolate13 significantly increased the content of chlorophyll in freshly formed leaves 

(Fig. 5f) and shoot nitrogen concentration (Fig. 5g) in Zm00001d048945 mutants under 

nitrogen deficient condition. More importantly, we confirmed that the growth promotion 

mediated by Massilia was consistent across two distinct nitrogen-poor soils, albeit fine-tuned 

by edaphic factors alone and/or interacting with specific inoculants (Supplementary Fig. 30). 
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Significantly, the microbial hub taxon Massilia alone can contribute to lateral root formation, 

biomass production and nitrogen tolerance of maize, indicating the potential value of root trait 

interactions with keystone microbial taxa when breeding for crop resilience. Nevertheless, 

further characterization of inoculated specimens may reveal the impact of strain variation on 

the Massilia’s plant growth-promoting potential. Overall, our experimentally and 

computationally guided analyses (Supplementary Fig. 31) of host root and rhizosphere 

microbiome association identified maize genetic variation modulating bacterial microbiota 

through specific gene regulation, which facilitates synergistic interaction between root 

development and nitrogen deficiency (Fig. 6). Such causal association mirrored a footprint of 

environmental adaptation on maize genome, which confers to selective advantage and specified 

function of rhizosphere microbiota in the future climate constraint.     

 
Figure 6. Schematic illustration of the role of host plant genetic variation and gene regulation on bacterial 

microbiota-mediated lateral root development in maize. Large-scale experimental and computational analyses 

identified genetic variation largely explain microbiome abundance and heritability under abiotic stresses, mirroring 

a footprint of local adaptation on the differentiation of the host genome that facilitates the modulation of plant 

microbiome. Genomic and environmental prediction guided genome-wide scan demonstrated specific gene 

regulation underlying lateral root development and recruitment of specific bacteria Massilia, which boost root 

development and plant nitrogen uptake in nitrogen-poor soil. The concept of the model is modified from90. 

Discussion 

During domestication plants have developed high productivity and environmental resilience, 

but may have also lost beneficial microbiome-associated traits compared with their wild 

relatives9,10. Thus, bringing back important plant traits supporting beneficial microbes from 

wild relatives and broader crop diversity may contribute to adaptation of crops to future climatic 
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challenges. In this study, we investigated the host-microbiome association and tried to 

understand whether and how source environments of traditional varieties relate to microbiome 

assembly under multiple abiotic stresses in maize. Examination of microbiomes across diverse 

germplasm demonstrated that plant genotype significantly impacts the microbiome, more so 

under abiotic stresses. Our genetic and environmental analyses support the hypothesis that plant 

genetic variation impacts microbiome assembly in crops28,32-35. Bacterial composition and 

structure support important functions in the rhizosphere under harsh environments36,37 and is a 

heritable trait across environments38,39. Overall, it seems a conserved pattern of heritable taxa 

in cereal species such as maize34,40, sorghum32 and foxtail millet28, suggesting host selection of 

their associated microbiota during evolution. We report here a significant improvement in plant 

trait prediction when combining rhizosphere microbiome with plant genetic data. Binominal 

regression and correlation analyses between microbial traits and source environmental variables 

among traditional varieties suggest that microbiome assemblage may contribute to beneficial 

plant trait-microbe associations underlying stress-resilience. Nonetheless, such local 

environmental information together with the plant genomic markers largely deepen our 

understanding the structure and function of the rhizosphere microbiome even in a new stress 

environment. 

Although environmental conditions were dominant drivers of the crop microbiome, we found 

certain microbial taxa that were consistently influenced by genetic variability in maize, and 

whose abundance was correlated with plant traits. Given the plant genotypic variation and high 

affinity to local microbiota39,41, we therefore hypothesize that a footprint of local adaptation on 

the differentiation of the host genome that facilitates the modulation of rhizosphere microbial 

assemblage. The endogenous genetic program that underlies root development can coordinate 

microbiome assembly42 and plant mineral nutrient homeostasis4. Notably, we found that 

environment-associated alleles may promote root differentiation and microbiome-driven 

nitrogen deficiency tolerance in controlled conditions. These results provide strong support for 

a genetic basis of variation in the abundance of the bacterial taxon Massilia (Oxalobacteraceae) 

under nitrogen deficiency, illustrating the importance of specific bacteria for root development3, 

nitrogen nutrition43 and reciprocal interaction29 at the strain level. Interestingly, a study in 

tomato identified a QTL region significantly associated with Massilia with larger effect size 

than other genera in the rhizosphere35. Taken together, this study advances the current 

understanding of the plant-trait-microbiome interactions that connect genetic variation to 

microbiome composition among a broad array of maize and their relatives in multiple 

environmental treatments, as well as identifying a specific gene with a compelling association 
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with both the environment and a bacterial taxon Massilia. Our results confirm that host genetic 

variation impacts keystone microbes in a consistent way across different environments. These 

findings help to close the knowledge gap between how plants impact the soil microbiome and 

how this functional interaction of the microbiome can be translated into crop resilience to 

nutrient limitation.  
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Material and Methods 

Plant material, soil collection and growth conditions 

The germplasm used in this study was selected to represent a broad diversity ranging from the 

maize progenitor teosinte to local open pollinating landraces and modern inbred lines and 

hybrids (Supplementary Dataset 23; Supplementary Fig. 1). We obtained the 11 geographically 

diverse teosinte accessions from the North Central Regional Plant Introduction Station 

(NCRPIS) and the International Maize and Wheat Improvement Center (CIMMYT). Moreover, 

we received the 97 landrace accessions from NCRPIS and these accessions were derived from 

the ten American countries which cover the major domestication areas of maize (Supplementary 

Fig. 1a). The modern breeding germplasm includes seven genetically diverse inbred lines44 

covering the major heterotic groups stiff-stalk and non-stiff stalk and four additional tropical 

inbred lines (Supplementary Fig. 1b). We have produced the ten hybrids by crossing the ten 

inbred lines with the reference inbred line B73 as the common mother plant (Supplementary 

Fig. 1c). Soil used for phytochamber pot experiments was dug from the Dikopshof long-term 

fertilizer field experiment established in 1904 near Cologne, Germany (50˚48′21′′N, 6˚59′9′′E) 

(Supplementary Fig. 2a). In this study, we collected soil subjected to three different fertilization 

managements including control soil fertilized with all nutrients, low nitrogen soil fertilized 

without nitrogen and low phosphorus soil fertilized without phosphorus as defined by45. The 

general soil type is classified as a Haplic Luvisol derived from loess above sand. Approximately 

the first 0-20 cm of the soil were collected and placed in a clean plastic bag. Subsequently, 

collected soil was dried at room temperature in clean plastic trays for about one week and sieved 

with a 4 mm analytical sieve (Retsch, Haan, Germany) to remove stones and vegetative debris. 

The sieved soil for the whole experiment was then homogenized with a MIX125 concrete mixer 

(Scheppach, Ichenhausen, Germany) (Supplementary Fig. 2a). The air-dried soil was ground 

into powder for the analysis of carbon, nitrogen, phosphorus and five metal elements (K, Fe, 

Mn, Cu, Zn). Soil pH was measured in deionized water (soil: solution ratio, 1:2.5 w/v) using a 

pH-meter 766 (Knick, Berlin, Germany). The basic physical and chemical properties of these 

soils are provided in Supplementary Table 1. 

Local landraces used in this study were collected from local farmer fields or home gardens or 

natural habitats from the year 1954 to year 1994. The climate conditions and soil properties of 

the regeneration fields are typically representative of the natural habitats. Local landraces are 

open-pollinated varieties and can vary largely on seed traits. Therefore, we covered a broad 

geographic area but also confirmed the homogeneity of the 97 landraces concerning seed size, 
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seed color, and seed quality prior our phytochamber experiments (Supplementary Fig. 2b). 

Seeds were washed for 5 min with sterile water, followed by surface-sterilized for 2 min with 

70% (v/v) ethanol, and incubated with a bleach solution (29 ml of sterile water, 15 ml of NaClO 

12–13% (v/v) stock solution of 1 ml Tween 20), and rinsed 3 times with sterile deionized 

water29. Such sterilization procedure can well remove the seed-borne microbes and a certain 

number of seed endophytes. The sterilized seeds were pre-germinated for 3 days in a paper roll 

system using germination paper (Anchor Paper Co., St. Paul, MN, USA) with sterile deionized 

water. Then seedlings with primary roots of ca. 1–2 cm length were transferred to soil-filled 

pots (7 × 7 × 20 cm3) in a 16/8-h light/dark, 26/18 °C cycle and were grown for 4 weeks in a 

walk-in phytochamber. A detailed sowing and transfer plan is provided in Supplementary Fig. 

2c. No additional fertilizer was added.  

Experimental design and treatments 

The experiment was performed in a split plot design with three replications comprising four 

stress treatments on the main plots (trays) (Supplementary Fig. 32), e.g. fully fertilized control 

(CK) soil, no nitrogen fertilized low nitrogen (LN) soil, no phosphorus fertilized low phosphate 

(LP) and CK soil with drought (D) treatment. As controls, we used six pots without plants as 

‘bulk soil’ samples (B), which were distributed across the main plots. Each tray contained a 

similar number of pots (subplots) with the different genotypes and bulk soil. The three replicates 

were performed at three different periods in the same phytochamber (Supplementary Fig. 32). 

For each stress treatment, we generated an alpha design for the genotypes and controls with 

three replicates and four incomplete blocks per replicate. The incomplete blocks were assigned 

to trays and replicates corresponded to the three replications of the experiment in time. To 

facilitate watering, pots subjected to the same treatment were allocated on the same tray. These 

trays were further randomized in the chamber. Distribution of all pots in each tray were 

randomized using a true random generator (excel function “RAND”), and trays were reshuffled 

every week in the phytochamber without paying attention to the pot labels. Since soil water 

availability will significantly affect the harvest of the rhizosphere and initiation of crown roots, 

we have performed a preliminary experiment with different water regimes (i.e. 33%, 22%, 17% 

water holding capacity) to ensure the establishment of suitable drought conditions and to 

facilitate rhizosphere harvesting and the optimal formation of the different whorls of crown 

roots (Supplementary Fig. 2c and 33). In brief, different volumes of sterilized water e.g. 60 ml, 

40 ml, 30 ml were mixed with 500 g dry soil by spraying water and were then homogenized 

with a 4 mm sieve (Retsch). Each water regime was maintained by spraying water to the soil 

surface according to the weight loss of water during the 4-week culture. Plant height, total leaf 



Chapter 2 Heritable microbiome variation is correlated with maize source environments 

33 

 

area, shoot and root fresh biomass from the representative genotypes B73 and Mo17 were 

recorded. Moreover, the multifunctional device COMBI 5000 (STEP Systems, Nuremberg, 

Germany) was used to measure soil variables e.g. soil moisture and electronic conductivity 

directly in each soil pot during each experimental run. The covariates including sample harvest 

time, ID of person performing DNA extraction together with the determined soil variables were 

collected and used for downstream data analysis (Supplementary Dataset 24). 

Characterization of native collection sites of maize landraces  

Geographical coordinates and elevation information of the collection sites for maize landraces 

were retrieved from the public database of the U.S. National Plant Germplasm System 

(https://www.grin-global.org/) and provided in Supplementary Dataset 23. Most of the 

landraces were received in the years 1980-1994 and were maintained by NCRPIS. To get the 

climate and soil variables based on the geographical coordinates for each site, we first compiled 

climatic and soil descriptors representative of the long-term averages of their point of origin, 

following methods in46. All used databases are publicly available and have global coverage. 

Data was collected from WorldClim47, the NCEP/NCAR reanalysis project 

(https://psl.noaa.gov/data/reanalysis/reanalysis.shtml)48, NASA SRB 

(https://asdc.larc.nasa.gov/project/SRB), Climate Research Unit (CRU)49,  SoilGrids50  and the 

Global Soil Dataset (GSD)51. All 156 bioclimatic and soil variables were merged with the maize 

germplasm identity into the Supplementary Dataset 15. The related information of total soil 

nitrogen, available phosphorus, and annual precipitation are provided in the Supplementary Fig. 

34. 

Determination of shoot phenotypic traits and ionome profile 

Aboveground phenotypic traits were determined for all 129 genotypes on the day of harvest in 

the phytochamber. The leaf area and chlorophyll index as measured by SPAD were determined 

as described accordingly29 and are provided in Supplementary Dataset 25. The complete 

aboveground part of maize plants excluding the seed was harvested and heat treated at 105 °C 

for 30 min, dried at 70 °C to constant weight, weighed as the shoot dry biomass and then ground 

into powder. Approximately 6 mg of ground material was used to determine total nitrogen 

concentration in an elemental analyzer (Euro-EA, HEKAtech). Data were then calculated into 

peak areas by the software Callidus, providing quantitative results using reference material as 

a calibration standard. The same plant material was used to determine the concentrations of 13 

additional mineral nutrients. In brief, approximately 200 mg of same ground material was 

weighed into polytetrafluoroethylene digestion tubes, and concentrated nitric acid (5 ml, 67–

https://psl.noaa.gov/data/reanalysis/reanalysis.shtml
https://asdc.larc.nasa.gov/project/SRB
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69%; Bernd Kraft) was added to each tube. After 4 h of incubation, samples were digested 

under pressure using a high-performance microwave reactor (Ultraclave 4, MLS). Digested 

samples were transferred to Greiner centrifuge tubes and diluted with deionized (Milli-Q) water 

to a final volume of 8 ml. Element analysis was carried out by Inductively Coupled Plasma-

Optical Emission Spectroscopy (iCAP 7400 duo; Thermo Fisher Scientific). For sample 

introduction a SC-4 DX autosampler with prepFAST Auto-Dilution System (ESI, Elemental 

Scientific) was used. A three-point external calibration curve was set from a certified multiple-

standards solution (Custom Multi-Element Standard_PlasmaCAL, S-prep GmbH). The element 

Yttrium (ICP Standard Certipur®, Merck) was infused online and used as internal standard for 

matrix correction. All ionome data including concentrations and contents of all mineral 

nutrients are provided in the Supplementary Dataset 26. 

Root and rhizosphere samples harvest for microbiome analysis 

The root and rhizosphere samples collection were performed from 4-week-old maize plants as 

previously described29. In brief, whole root systems were carefully taken out from each pot and 

vigorously shaken to remove all soil not firmly attached to the roots. During this stage, most 

genotypes have consistently started to form the 2nd whorl of shoot-borne crown roots with a 

length of 3-10 cm. To synchronize the harvest for precise comparisons among genotypes, we 

collected the fully developed 1st whorl of shoot-borne crown roots initiated from the coleoptilar 

node for all maize genotypes (Supplementary Fig. 3a). These crown roots were identified 

similarly developmental status with mature lateral roots. Two dissected crown roots with tightly 

attached soil were placed into a 15 ml Falcon (Sarstedt) tube and immediately frozen in liquid 

nitrogen and stored at -80 °C before extraction of rhizosphere soil. The rhizosphere samples 

were defined and extracted into PowerBead tubes (Mo Bio Laboratories) as described 

previously29. The root samples were harvested from another crown root from the same plant 

that immediately washed by tap water and rinsed with three times of sterilized water followed 

by tissue drying and placed in PowerBead tubes (Supplementary Fig. 3b). Sample processing 

steps for root and rhizosphere have been performed by a designated person to avoid systematic 

errors. The bulk soil samples were also collected from the unplanted pots. DNA extractions 

were performed soon after root and rhizosphere samples were harvested, following the 

PowerSoil DNA isolation kit (Mo Bio Laboratories) protocol.  

Amplicon library preparation and sequencing 

Amplicon library construction was processed with a similar workflow as previously described29 

(Supplementary Fig. 3c). In brief, for bacterial 16S rRNA gene libraries, the V4 region was 
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amplified using the universal primers F515 (5′ GTGCCAGCMGCCGCGGTAA 3′) and R806 

(5′ GGACTACHVGGGTWTCTAAT 3′) (Caporaso et al., 2011). For fungal amplicon 

sequencing, the ITS1 gene was amplified by the primer pair F (5′ 

CTTGGTCATTTAGAGGAAGTAA 3′) and R (5′ GCTGCGTTCTTCATCGATGC 3′). PCR 

reactions were performed with Phusion High-Fidelity PCR Master Mix (New England Biolabs) 

according to the manufacturer’s instructions. Subsequently, only PCR products with the 

brightest bands at 400-450 base pairs (bp) were chosen for library preparation. Equal density 

ratios of the PCR products were mixed and purified with the Qiagen Gel Extraction Kit. 

Sequencing libraries were generated using the NEBNext Ultra DNA Library Pre Kit for 

Illumina, following the manufacturer’s recommendations and with the addition of sequence 

indices. The library quality was checked on a Qubit 2.0 Fluorometer (Thermo Scientific) and 

Agilent Bioanalyzer 2100 system. Finally, the qualified libraries were sequenced by 250-bp 

paired-end reads on a MiSeq platform (Illumina). 

16S rRNA gene and ITS1 gene sequence processing 

Raw sequencing reads were processed following a similar workflow as previously described29. 

Briefly, paired-end 16S rRNA amplicon sequencing reads were assigned to samples based on 

their unique barcode and truncated by cutting off the barcode and primer sequence. Paired-end 

reads were merged using FLASH (v1.2.7)52 and the splicing sequences were called raw tags. 

Sequence analyses were performed by QIIME 2 software (v2020.6)53. Raw sequence data were 

demultiplexed and quality filtered using the q2‐demux plugin followed by denoising with 

DADA254 (via q2‐dada2). Sequences were truncated at position 250 and each unique sequence 

was assigned to a different ASV. Taxonomy was assigned to ASVs using the q2‐feature‐

classifier55 and the classify‐sklearn naïve Bayes taxonomy classifier against the SSUrRNA 

SILVA 99% OTUs reference sequences (v138)56 at each taxonomic rank (kingdom, phylum, 

class, order, family, genus, species). Mitochondria- and chloroplast-assigned ASVs were 

eliminated. Out of the remaining sequences (only features with >10 reads in ≥2 samples) were 

kept to build an ASV table. In order to study phylogenetic relationships of different ASVs, 

multiple sequence alignments were conducted using mafft (via q2‐alignment)57 and the 

phylogenetic tree was built using fasttree2 (via q2‐phylogeny)58 in QIIME 2. Those sequences 

that did not align were removed. ITS1 amplicon data were processed the same as 16S amplicon 

data except that used the UNITE 99% ASVs reference sequences (v10.05.2021)59 to annotate 

the taxonomy.  
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Statistical analyses for microbial community assembly 

In consideration of experimental design, here we treated the trays as the main plots for different 

treatments as a random effect. There were four trays per period/replicate, and a replicate effect 

was considered to account for differences between the three replicates. All downstream 

analyses were performed in R (v4.1.0)60. Briefly, ASV tables were filtered with ≥10 reads in 

≥2samples. For α-diversity indices, Shannon index was calculated using ASV tables rarefied to 

1,000 reads. For all the following analyses ASVs which express ≤0.05% relative abundance 

within ≤5% samples were filtered. After filtering taxa, the samples with ≤1000 reads were also 

removed. Bray–Curtis distances between samples were calculated using ASV tables that were 

normalized using ‘varianceStabilizingTransformation’ function from DESeq2 (v1.34.0) 

package61 in R. Constrained ordination analyses were performed using the ‘capscale’ function 

in R package vegan (v2.5-7)62. To test the effects of compartment, treatment and genotype on 

the microbial composition community, variance partitioning was performed using Bray–Curtis 

distance matrix between pairs of samples with a permutation-based PERMANOVA test using 

‘adonis’ function in R package vegan62.  

Inter-kingdom associations by co-occurrence network analysis 

The method SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association 

Inference) implemented in SpiecEasi (v1.1.2) R package was used to construct the inter-

kingdom microbial co-occurrence network associations63 using relative abundance of ASVs 

data and network was visualized by Cytoscape (v3.9.1). For this network inference, only ASVs 

with relative abundance >0.05% in ≥10% samples were used. The filtered bacterial and fungal 

ASV table were combined as the input followed by the default centered log-ratio (CLR) 

transformation. The neighborhood selection measured by the Meinshausen and Bühlmann (MB) 

method64 was selected as the inference approach. The number of subsamples for the Stability 

Approach to Regularization Selection (StARS) was set to 99. The keystone taxa or ASVs were 

defined as those with a hub score greater than 0.1 within the co-occurrence network associations. 

Functional prediction of microbial ASVs 

FAPROTAX (v1.2.4)65 was used to predict metabolic functions of bacteria given their 

taxonomy and ASV table. Python script collapse_table.py was performed to obtain the function 

report. FUNGuild (v1.1)66 was used by FUNGuild.py Python script through providing 

taxonomy information. Functional results were extracted by matching the provided taxonomy 

to the FUNGuild database. 
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Genotyping of 129 maize genotypes 

Genomic DNA was extracted from leaves of bulked maize seedlings subjected to different 

treatments and replicates for each genotype (Supplementary Fig. 3). The genetic variation 

across the maize genotypes was characterized using a GenoBaits Maize40K chip containing 

40 K SNP markers, which was developed using a genotyping by target sequencing (GBTS) 

platform in maize67. In brief, DNA fragmentation, end-repair and adding A-tail, adapter ligation 

and probe hybridization were performed. After ligation of the adapters and clean up, fragment 

size selection was done with Beckman AMPureBeads and a PCR step to enrich the library. 

Quantity and quality of the libraries were determined via Qubit™ 4 Fluorometer (Invitrogen) 

and Agilent 2100 Bioanalyzer, respectively. In total, 129 qualified and enriched libraries were 

sequenced as 250-400 bp on an MGISEQ-2000 (MGI, Shenzhen, China). The quality of raw 

sequencing reads was assessed and filtered by fastp (version0.20.0, 

www.bioinformatics.babraham.ac.uk/projects/fastqc/) with the parameters (-n 10 -q 20 -u 40). 

The clean reads were then aligned to the maize B73 reference genome v4 using the Burrows-

Wheeler Aligner (BWA) (v0.7.13, bio-bwa.sourceforge.net) with the MEM alignment 

algorithm. The SNPs were then called using the UnifiedGenotyper tool from Genome Analysis 

Toolkit (GATK, v3.5-0-g36282e4, software.broadinstitute.org/gatk) SNP caller. The genetic 

distance matrix was calculated based on pairwise Rogers’ distance68. A principal component 

analysis (PCA) was performed based on the filtered SNPs by GCTA software69. A phylogenetic 

tree (Supplementary Fig. 35) was generated using the neighbour-joining method as 

implemented in Mega 10.0.4 with 1,000 bootstraps using MEGA-X70. 

Analyses of phenotypic data 

For the three plant phenotypes (SPAD, leaf area and biomass), we first performed the outlier 

test using the following model for a given stress treatment: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛽𝑡(𝑖) + 𝑔𝑖 + 𝑟𝑗 + 𝑏𝑗𝑘 + 𝑒𝑖𝑗𝑘, (1) 

where 𝑦𝑖𝑗𝑘 is the observation of the i-th genotype in the k-th block of the j-th complete replicate. 

𝜇  is the general mean, 𝛽𝑡(𝑖)  is the effect of the t(i)-th subpopulation (t(i) indicates the 

subpopulation that the i-th genotype belongs to. There are four subpopulations: teosinte, 

landraces, inbred lines and hybrids.), 𝑔𝑖 is the effect of the i-th genotype, 𝑟𝑗 is the effect of the 

j-th replicate, 𝑏𝑗𝑘 is the effect of the k-th block nested within the j-th replicate and 𝑒𝑖𝑗𝑘 is the 

residual term. All effects except the general mean were assumed to be random and follow an 

independent normal distribution. 
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After fitting the model, the residuals were standardized by the rescaled median of absolute 

deviation from the median (MAD) and then a Bonferroni-Holm test was applied to flag the 

outliers71. 

For all traits including fitness phenotypes and microbial traits, we estimated the broad-sense 

heritability (also referred as repeatability in this case) in each treatment. The following model 

was used to estimate the heritability: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝑔𝑖 + 𝑟𝑗 + 𝑏𝑗𝑘 + 𝑒𝑖𝑗𝑘, (2) 

where all notations were the same as in (1).  

The heritability was calculated using the following formula:             

𝐻2 =
𝜎𝑔

2

𝜎𝑔
2 + 𝜎𝑒

2 𝑅⁄
, (3) 

where 𝜎𝑔
2  and 𝜎𝑒

2  are the estimated genotypic and residual variance, R is the number of 

replications. 

The best linear unbiased estimations (BLUEs) of all genotypes for each trait in each treatment 

were obtained by fitting Model (2) once more, assuming the general mean and genotypic effects 

are fixed and all other effects are random. All linear mixed models were fitted using the software 

ASReml-R 4.072.  

Statistical framework for GWAS 

Prior to GWAS, we first performed quality control for the genotypic data. In brief, the missing 

genotypic values were imputed using the software Beagle 5.273. After imputation, we removed 

the markers with minor allele frequency (MAF) <0.05. As heterozygous loci were very common 

in our data set, we also removed markers whose maximum genotype frequency is >0.95. In 

total, 157,785 SNP markers were used for GWAS. For all traits, GWAS was performed 

separately for each treatment (i.e., using the BLUEs within the treatment as the response 

variable). For microbiome ASVs and alpha-diversity traits, only those with a heritability >0.1 

were used for GWAS. 

A standard “Q+K” linear mixed model74 was used in GWAS. More precisely, the model is of 

the following form: 

𝒚 = 𝑿𝜷 + 𝒎𝑎 + 𝒈 + 𝒆, (4) 

where 𝒚  is the n-dimensional vector of phenotypic records (i.e. BLUEs within a certain 

treatment, n is the number of genotypes), 𝜷 is the k-dimensional vector of fixed covariates 
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including the common intercept and the subpopulation effects. 𝑿 is the corresponding n × k 

design matrix allocating each genotype to the subpopulation it belongs to. 𝑎 is the additive 

effect of the marker being tested, 𝒎 is the n-dimensional vector of marker profiles for all 

individuals. The elements in 𝒎 are coded as 0, 1 or 2, which is the number of minor alleles at 

the SNP. 𝒈 is an n-dimensional random vector representing the genetic background effects. We 

assume that 𝒈~𝑁(0, 𝑮𝜎𝑔
2), where 𝜎𝑔

2 is the genetic variance component, 𝑮 is the VanRaden 

genomic relationship matrix75. 𝒆 is the residual term and 𝑒~𝑁(0, 𝑰𝜎𝑒
2), where 𝜎𝑒

2 is the residual 

variance component and 𝑰 is the n × n identity matrix. After solving the linear mixed model, 

the marker effect was tested using the Wald test statistic 𝑊 = 𝑎̂2 var(𝑎̂)⁄ , which approximately 

follows a 𝜒2-distribution with one degree of freedom. 

Strictly, the model needs to be fitted once for each marker to get the precise test statistic for 

each marker. But to reduce the computational load, we implemented a commonly used 

approximate approach, namely the “population parameters previously determined” (P3D) 

method76. That is, we only fit the model once without any marker effect (the so-called “null 

model”), and then we fixed the estimated the variance parameters 𝜎𝑔
2 and 𝜎𝑒

2 throughout the 

testing procedure. Then, the test statistic for each marker can be efficiently calculated. GWAS 

was implemented using R codes developed by ourselves. The variance parameters were 

estimated by the Bayesian method using the package BGLR77.  

For microbial traits, the significant marker-trait association (MTA) was identified with a 

threshold of P <0.05 after Bonferroni-Holm correction for multiple test78. For fitness 

phenotypes and alpha-diversity, we used a more liberal threshold of P <0.1 after Benjamini-

Hochberg correction79. For each trait, the proportion of phenotypic variance explained by each 

MTA (𝑅2) was calculated as follows: A liner regression model was fitted with all MTAs 

identified for the trait under consideration. Then, the sum of squares for each MTA as well as 

the total sum of squares was calculated by ANOVA. The 𝑅2 for each MTA was estimated as 

the sum of squares of the MTA divided by the total sum of squares. Finally, the genes associated 

with these MTAs were extracted and further functionally annotated and classified according to 

gene ontology terms using agriGO v.2 (http://systemsbiology.cau.edu.cn/agriGOv2/). 

GWAS for the presence/absence mode 

For microbial traits, we performed in addition a GWAS based on the presence/absence mode 

(PA-GWAS) in each treatment. Each ASV or taxonomy is considered as present if it is present 

in two or more replicates. As in the GWAS for abundance, ASVs and taxa with repeatability 

below 0.1 were filtered out. Those with a presence rate above 95% or below 5% were 
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considered as non-segregated and were also excluded from the analysis. The model for PA-

GWAS is a logistic linear mixed model80. Briefly, the model can be described as follows. 

logit(𝝅) = 𝑿𝜷 + 𝒎𝑎 + 𝒈, (5) 

where 𝑿, 𝜷, 𝒎, 𝑎 and 𝒈 are the same as in (6). 𝝅 is the vector of conditional probabilities given 

the covariates, marker effects and the genetic background effects. More precisely, for the i-th 

individual, 𝝅𝑖 = 𝑃(𝑦𝑖 = 1|𝑿𝑖, 𝑚𝑖, 𝑔𝑖), where 𝑦𝑖 is the binary variable indicating the presence 

(𝑦𝑖 = 1) and absence (𝑦𝑖 = 0), 𝑿𝑖 is the i-th row of the matrix 𝑿, 𝑚𝑖 is the i-th entry of the vector 

𝒎  and 𝑔𝑖  is the i-th component of the random vector 𝒈 . The logit function is defined as 

logit(𝑥) = ln (𝑥/(1 − 𝑥)). 

Similar to the P3D approach, a null logistic linear mixed model logit(𝝅0) = 𝑿𝜷 + 𝒈  was fitted 

using the penalized quasi-likelihood method81. The estimated variance components were then 

fixed throughout the test procedure. A score test was applied to assess the significance of the 

marker effects. 

The PA-GWAS was conducted using the R package GMMAT80. 

Prediction for microbial traits using the genomic data and environmental descriptors 

To see the correlation between host genetics and microbiome assemblage, Mantel test was first 

performed between Rogers’ genetic distance matrix and microbial composition distance matrix 

only for landraces. After removing the treatment effect using linear model for  

normalized microbial abundances, the mean value of the residual for each  

genotype was used to calculate the Euclidean distance. Spearman correlation  

method was used in mantel function in R. Permutations = 9999.  

Next, we investigated the prediction abilities for all microbial traits within each treatment using 

both the genomic data and the environmental characters. The following three models were 

implemented. To eliminate the noise of subpopulation effects, we only used the 97 landraces 

for this part of analysis. 

Model 1 (genomic prediction). We applied the genomic best linear unbiased prediction 

(GBLUP)75 which is the most commonly used model in genomic prediction. The model can be 

described as follows. 

𝒚 = 𝑿𝜷 + 𝒈 + 𝒆, (6) 

where the notations are the same as in (4). Note that by the use of the VanRaden genomic 

relationship matrix as the covariance matrix of 𝒈, it implicitly modeled the additive effects of 
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all markers. 

Model 2 (prediction purely based on the environmental characters). In this model, the genetic 

effects were replaced by the effects of the environmental characters, which were modeled in a 

similar way to the GBLUP. More precisely, the model has the following form: 

𝒚 = 𝑿𝜷 + 𝒍 + 𝒆, (7) 

where 𝒍  is the n-dimensional random vector representing the E-determined values for all 

individuals. We assume that 𝒍~𝑁(0, 𝜮𝜎𝑙
2) where 𝜎𝑙

2 is the corresponding variance component, 

𝜮 is a covariance matrix. Assuming that 𝑳 is the n × s matrix of standardized environmental 

character records (s is the number of environmental characters), we have 𝜮 = 𝑳𝑳′/𝑐 where 𝑐 is 

the mean of all diagonal elements in the matrix 𝑳𝑳′. 

Model 3 (prediction based on both genomics and environmental characters). In this approach, 

we combined the genomic data and the Es in a multi-kernel model, which is of the following 

form: 

𝒚 = 𝑿𝜷 + 𝒈 + 𝒍 + 𝒆, (8) 

where the notations were inherited from (6) and (7). 

The prediction abilities of the above three models were assessed in a leave-one-out cross-

validation scenario. That is, each individual was predicted once using a training set consisting 

of all other individuals. Thus, for each trait the prediction model was fitted n times. After we 

obtained the predicted values of all individuals, the prediction ability was calculated as the 

correlation between the predicted and observed values. The standard error was estimated using 

the bootstrap approach82. 

All prediction models were implemented using the R package BGLR77 and rrBLUP83. 

Prediction for plant phenotypes using the genomic and microbiome data 

We explored the possibility of predicting the three fitness phenotypes and ionome traits in each 

treatment using the genomic data and microbiomes. As in the last subsection, we focused on 

the subpopulation of 97 landraces. 

Scenario 1 (prediction based on microbiomes only). In this scenario, we considered 9 cases, in 

which the phenotypes were predicted using bacteria in the root sample (BA_RO), in the 

rhizosphere sample (BA_RH), fungi in the root sample (FU_RO), in the rhizosphere sample 

(FU_RH), bacteria in both samples (BA), fungi in both samples (FU), both types of 

microbiomes in the root sample (RO), in the rhizosphere sample (RH), and both types of 
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microbiomes in both samples (ALL). The model can be uniformly described as follows: 

𝒚 = 𝟏𝑛𝜇 + ∑ 𝒎𝑖

𝑘

𝑖=1
+ 𝒆, (9) 

where 𝒎𝑖 is an n-dimensional trait values for all individuals determined by a certain type of 

microbiome in a specific sample, k can be 1 (BA_RO, BA_RH, FU_RO, FU_RH), 2 (BA, FU, 

RO, RH), or 4 (ALL), other notations are the same as in (8). We assume that 𝒎𝑖~𝑁(0, 𝑽𝑖𝜎𝑚𝑖

2 ), 

where 𝜎𝑚𝑖

2  is the corresponding variance component, 𝑽𝑖 is a covariance matrix derived from the 

microbiome ASVs. Assuming that 𝑴𝑖 is the n × t matrix of standardized records of microbiome 

ASVs (t is the number of different ASVs), we have 𝑽𝑖 = 𝑴𝑖𝑴𝑖
′/𝑐𝑖 where 𝑐𝑖 is the mean of all 

diagonal elements in the matrix 𝑴𝑖𝑴𝑖
′. 

Scenario 2 (prediction based on both microbiomes and genomic data). In this scenario, the 9 

cases in Scenario 1 were combined with genomic data (G_BA_RO, G_BA_RH, G_FU_RO, 

G_FU_RH, G_BA, G_FU, G_RO, G_RH, G_ALL). The models are of the following form: 

𝒚 = 𝟏𝑛𝜇 + 𝒈 + ∑ 𝒎𝑖

𝑘

𝑖=1
+ 𝒆, (10) 

where the notations were adopted from (8) and (11). 

As in the last subsection, the prediction abilities were evaluated in a leave-one-out cross-

validation scenario. Prediction models were implemented using the R package BGLR. 

Effects of source environmental factors on specific microbial assemblies 

To better characterize different microbial assemblies and taxonomic shifts among variables, we 

applied a modified use of unbiased weighted correlation network analysis (WGCNA) to 

understand the biological relevance between microbial compositions and phenotypic traits26,27. 

WGCNA is a data-driven method that clusters ASVs to different modules based on weighted 

correlations between ASVs. First, we used WGCNA (1.72.1) in R to identify different microbial 

modules of bacterial ASVs whose differential representation was correlated across treatment 

groups and genotypes within root or rhizosphere compartment. For robust construction of co-

expressed microbial networks, we filtered and normalized ASVs table as described above. The 

soft thresholding power β was automatically selected and used to calculate adjacency matrix. 

To minimize the effects of noise and false associations, we transformed the adjacency matrix 

into a topological overlap matrix (TOM) with selected power and calculated the corresponding 

dissimilarities (dissTOM) as 1 – TOM. For hierarchical clustering of ASVs, we used dissTOM 

as a distance measure and set the minimum module size (number of ASVs to 5) to detect 
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modules. Next, we quantified the similarities of entire modules and their “eigentaxa”27 were 

calculated and subsequently used to associate with phenotypic traits (shoot dry biomass, shoot 

nitrogen concentration and content). We chose modules that have a Spearman correlation 

coefficient >0.1 and P value <0.05 with different traits as significant associated modules. 

Network visualization was performed in Cytoscape (3.8.0) only for significant modules. Width 

and transparency of edges are proportional to weight exported from WGCNA. 

To further explore the relationship between source environment of native habitats and specific 

microbial modules among landraces, we performed network association analyses between these 

microbial modules and sourced environment factors i.e. total nitrogen, phosphorus retention 

and annual precipitation. We then conducted a correlation network conformed by taxa 

associated with the root and rhizosphere microbiomes. We calculated all pairwise Spearman 

correlation coefficients among these microbial eigentaxa and sourced environmental factors, 

and kept all positive or negative correlations (R >0.1 or R <−0.1, P <0.05). Total nitrogen, 

phosphorus retention and mean annual precipitation were obtained from the WorldClim 

database (https://www.worldclim.org/) as explained above. Structural equation modelling 

(SEM) was conducted to provide a system-level understanding on the direct and indirect 

associations between environmental factors, the proportion of modules and that of selected taxa 

from above-explained analyses. Because some of the variables introduced were not normally 

distributed, we used bootstrap tests in these SEMs. We evaluated the fit of these models using 

the model χ2-test, the root mean squared error of approximation and the Bollen–Stine bootstrap 

test. 

Environmentally adaptive loci and microbiome relatedness across abiotic stresses 

To determine if the environmentally associated loci are contributing to microbiome adaptation 

to abiotic stresses, we used a representative set of natural varieties e.g. 97 landraces accessions 

covering typical geographical range. Prior to analysis, PCA was conducted based on the BLUEs 

for each treatment and compartment to extract major sources of variance from bacterial and 

fungal microbial community data. The first five PCs were obtained for downstream analyses. 

PCA was performed using the prcomp function in R. In addition, we selected 18 individual 

ASVs belonging to Oxalobacteraceae to be predicted by Random Forest models. To improve 

model accuracy, feature selection was conducted prior to model building to eliminate 

unimportant or redundant environmental variables by identifying those with significant 

associations to an outcome variable. The feature selection method Boruta was employed to 

identify environmental aspects that describe significant variation in the PCs and ASVs using 
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Boruta::boruta() (v7.0.0)84.  

The subset of boruta-identified environmental variables (Supplementary Dataset 15) for each 

ASV were used for Random Forest model construction. This model works under the expectation 

that a response variable can be described by several explanatory variables through the 

construction of decision trees. Thus, each Random Forest model is representative of the non-

linear, unique combination of explanatory variables that describe variation in a response 

variable. Random Forest models were built using RandomForest::randomForest() function 

under default parameters, 5000 trees were built and one third of the number of explanatory 

variables were tried at each split85. Random Forest models were trained with 80% of the data 

and validated with the remaining 20% test set. Model success was evaluated with percent error 

explained, Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), and mean squared 

error (MSE). Using constructed Random Forest models, ASVs were predicted for 1,781 

genotyped landraces in Mexico. These landraces were genotyped as a part of the Seeds of 

Discovery project (SeeD).   

We conducted genome wide association studies (GWAS) to measure the associations between 

SNPs of landrace genotypes and predicted microbial traits, as well as the associations between 

SNPs and the environmental variables used to predict the microbial traits. SNPs were filtered 

for minor allele frequency >1%. We applied the method as previously described86, using a linear 

model to fit the genotypic data and each microbial trait and environmental variable for Mexican 

landrace accessions. The first five eigenvectors of the genetic relationship matrix were included 

in the model to control for population structure. To control for the number of false positive tests, 

we re-calibrated the p-values using the false discovery rate (FDR) control algorithm87  and 

selected significant SNPs based on the calibrated results. To test if GWA hits based on the 

prediction is significantly better in capturing top GWA hits of observed data than random, we 

conducted a permutation test and compared the median p-value of GWA hits of observed data 

that are around 200kb of the top 100 prediction-based GWA hits and the median p-value of 

random selected GWA hits based on 10000 permutations.    

Association of allele frequency with soil nitrogen and microbial taxa 

To identify whether the microbiome is associated with environment and maize phenotypes, we 

performed allelic variation analysis of Zm00001d048945 using an SNP dataset of CIMMYT 

landraces accessions obtained from a previous study15. We extracted the genotypic information 

of top SNPs of the target gene Zm00001d048945 for all tested landraces. We divided maize 

landraces into 20 groups based on the total soil nitrogen content (%) of their sampling sites51. 
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We calculated the mean total nitrogen, the minor allele frequencies (MAF) of the target SNPs, 

and the mean predicted ASV abundance for each group of landraces. Pearson correlation was 

conducted to test the correlations between MAF and total nitrogen content, and between MAF 

and ASV abundance.    

Candidate gene validation by independent transposon insertion alleles 

Gene expression for Zm00001d048945 was explored in qTeller (https://qteller.maizegdb.org/), 

which allows to compare gene expression across different tissues from multiple data sources. 

Gene expression data was extracted from different organs (seed, root, tassel/silk, internodes and 

leaf) and specific tissues such as the root meristematic zone, elongation zone, stele and cortex. 

The gene encoded protein annotation was inferred from UniProt database 

(https://www.uniprot.org/). We next identified potential loss-of-function mutations by 

exploring the sequence indexed collection BonnMu88. Induced maize mutants of the BonnMu 

resource derive from Mutator-tagged F2−families in various genetic backgrounds, such as B73 

and F7. We identified two insertion lines, BonnMu−8−D−0170 (B73) and 

BonnMu−F7−2−F−0598 (F7), harboring insertions 1,264 bp upstream of the start codon ATG 

and in the second exon of Zm00001d048945, respectively. These two families were phenotyped 

in paper-roll culture29 and the seedling plants were scanned using the scanner Expression 

12000XL (Epson, Suwa, Japan). Lateral roots were counted and the density was normalized 

with the measure number of lateral roots per cm length of primary root. Statistical analyses 

were performed by pair-wise Students t test with F statistics. 

Association of relative abundance of Massilia with lateral root density 

To understand the relationship between Massilia and the formation of lateral roots, root system 

architecture and morphology of 97 maize landraces was scanned with an Epson Expression 

12000XL scanner. Lateral root density was determined by manual calculation as the number of 

emerged lateral roots per length (cm) of the main root. The linear correlation was plotted 

between lateral root density and relative abundance data of Massilia ASVs using R (v4.1.0). 

Microbiome community and targeted metabolites profiling in lateral root mutants and 

wild types 

To explore how the gene Zm00001d048945 mutation altered the abundance of Massilia, we 

have grown these transposon mutants and wild types in the soil pots as described in previous 

screen experiment and performed the 16S rRNA amplicon sequencing for the crown roots. Prior 

to the soil pot experiment, we genotyped for the target transposon insertion for these mutants 
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and wild types. In detail, approximate 200 mg of leaf sample from each individual plant was 

harvested and immediately frozen in liquid nitrogen, and ground to fine powder for DNA 

extraction. DNA was extracted using the CTAB method. The primers were designed using 

Primer 3 and BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) based on B73 

reference genome 5.0. Plants carrying the mutant allele were identified by genotyping with an 

outward-facing primer recognizing the terminal inverted repeat (TIR) of the Mutator transposon, 

TIR6 (5′-AGAGAAGCCAACGCCAWCGCCTCYATTTCGTC-3′) and the 

Zm00001d048945 gene-specific primer (Forward, 5'-CGT CGG ATG AAA GCC TCA AG-3'; 

Reverse, 5'-AAA CCT GAA GCG AGC GTG TA-3'). The seedlings that confirmed 

homozygous positive for the insertion were used for samples harvest and sequencing. The 

microbial community analyse and bioinformatic pipeline was applied according to our previous 

analysis. Moreover, we profiled the targeted metabolite analysis for flavones i.e. apigenin and 

luteolin using the same root type based on our in-house established protocol29. 

Synthetic community, root bacterial inoculation and plant biomass, root architecture and 

nitrogen tolerance assay 

Bacterial strains were isolated using R2A media supplemented with 100 µg mL-1 

Cyclohexamid from the rhizosphere or rhizoplane of maize roots in the soil column 

experiment89. Isolates were picked randomly from plates with colony forming units (CFUs) 

range between 30-100 CFUs. Among 480 isolates, only strains affiliated to Massilia were used 

in the present study. To explore effects of specific Massilia ASV37 mapped on the gene 

Zm00001d048945 on root development and nitrogen uptake, a growth promotion assay by 

inoculation with either a single inoculation or a synthetic community of Massilia isolates 

(Supplementary Dataset 16) was performed on two maize wild types (B73 and F7) and their 

mutants (D−0170 and F−0598) in nitrogen-poor soil pots. Before inoculation of these Massilia 

strains, we first mapped the sequences of in total 13 Massilia strains (~1000 bp) to the 16S 

sequence of the GWAS mapped ASV37 (250 bp) using BLASTn (v2.6.0) with default 

parameters and we chose the 100% alignment Isolate13 as the candidate used in the following 

experiment. We applied three different inoculation strategies e.g. single inoculation using 

Isolate13 which has 100% identity with Massilia ASV37 (SynCom1), 12 Massilia isolates 

excluding Isolate13 and all 13 Massilia isolates including of Isolate13 (SynCom2) under 

nitrogen-poor condition. We performed inoculation experiments using two different soil types, 

one is the soil from Dikopshof as described in the large cultivation experiment and another 

natural soil was dug from a natural field at Campus Klein-Altendorf (University of Bonn), then 

sieved, homogenized and mixed with 50% quartz sand (WF 33, Quarzwerke Weferlingen, 
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Germany) to reduce the nitrogen content of the recipient soil. Prior to establishment of soil pot 

experiment, the soil mixture was sterilized with detailed protocol to ensure the best effect of 

removal of soil microbes. In brief, the soil was moistened with sterilized water and autoclaved 

in a liquid cycle for 25 min at 121 °C, then leave the soil at room temperature for at least 24 

hours for a rest. Then moist the soil again if it looks dry with sterilized water and autoclave a 

second time in a liquid cycle for 25min 121 °C followed by incubation in the oven for 24 hours. 

Repeat the autoclaving steps if the soil still looks dry. Meanwhile, took samples at each 

autoclaving step to make sure not only that the soil was sterile, but also to rule out 

contaminations. However, the effect of autoclaving soil-derived byproducts on microbiota is 

not known, we therefore leave the autoclaved soil rest for at least 1 week.  The seed sterilization, 

isolates preparation, root inoculation and growth assay were done according as previously 

reported29. Different genotypes were grown in the phytochamber (16/8 h light/dark and 

26/18 °C) for 1 month and plants were harvested, and the length and weight of crown root, 

lateral root density and shoot fresh weight were determined. Chlorophyll content was 

determined as the average of 10 measurements with a SPAD-502 chlorophyll metre (Konica 

Minolta) in the middle third of the newest expanded leaf in the longitudinal direction. The whole 

experiment was done using two different soil types. The linear correlation was plotted between 

different root traits and shoot fresh weight and chlorophyll content using R (v4.1.0).  

Data availability 

All raw maize genotyping data, bacterial 16S and fungal ITS1 gene data in this paper were 

deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under the 

BioProject ID PRJNA889703 and PRJNA1015142. The SSUrRNA database from SILVA 

database (release 138, 2020, https://www.arb-silva.de/) and UNITE database (v8.3, 2021, 

https://unite.ut.ee/) were used for analysing the bacterial 16S and fungal ITS1 gene sequences, 

respectively. We deposited customized scripts in the following GitHub repository: 

https://github.com/Danning16/MaizeMicrobiome2022. All statistical data are provided with 

this paper.    
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Abstract 

Beneficial interactions between plants and soil microorganisms are critical for crop fitness and 

resilience. However, it remains obscure how microorganisms are enriched across different root 

compartments and to what extent such recruited microbiomes determine crop performance. 

Here, we surveyed the root transcriptome via RNA sequencing, and the root and rhizosphere 

microbiome via full-length (V1−V9) 16S rRNA gene sequencing of genetically distinct 

monogenic root mutants of maize (Zea mays L.) under different nutrient-limiting conditions. 

Integrated transcriptomic and microbial analyses demonstrated that mutations affecting lateral 

root development had the largest effect on host gene expression and microbiome assembly, as 

compared to mutations affecting other root types. Cooccurrence and trans-kingdom network 

interactions analysis demonstrated that the keystone bacterial taxon Massilia 

(Oxalobacteraceae) in lateral roots is associated with root functional genes involved in 

flowering development and overall plant biomass. We further observed that the developmental 

stage drives the differentiation of the rhizosphere microbial assembly, especially the 

interactions of the keystone bacteria Massilia with functional genes in reproduction. Taking 

advantage of microbial inoculation experiments using a maize early flowering mutant, we 

confirmed that Massilia-driven maize growth promotion indeed depends on flowering time. We 

conclude that specific microbiota supporting lateral root formation could enhance crop 

performance by mediating functional gene expression underlying plant flowering time in maize.  
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Introduction 

The complex root system of cereals is essential for the efficient uptake of water and minerals 

and thus for their productivity (Lynch, 2013). Therefore, root systems offer great potential for 

crop improvement in unfavorable environments (Lynch, 2022). Root system architecture is 

shaped by intrinsic genetically encoded regulators and an enormous developmental plasticity 

that allows continuous adjustment of the root stock to fluctuating environmental conditions 

(Gruber et al., 2013; Motte et al., 2019; Yu & Hochholdinger, 2023). Mutant analyses have 

revealed that root-type-specific genetic regulators determine root system architecture in cereals 

(Coudert et al., 2010; Hochholdinger et al., 2018). A plethora of studies have highlighted lateral 

roots and root hairs as the major determinants of root system architecture (Rogers & Benfey, 

2015). They substantially increase the root surface and are therefore instrumental for foraging 

nutrients and water resources in crops (Marzec et al., 2015; Yu et al., 2016) and have great 

potential in adaptation to unfavorable conditions such as nutrient-deficient soil. 

Lateral roots are initiated post-embryonically from pericycle cells deep inside of all root types, 

while root hairs are tubular extensions of epidermal cells at the root surface (Hochholdinger et 

al., 2004; Yu et al., 2016). Molecular cloning of genes underlying maize root formation has 

demonstrated that key elements of auxin signal transduction, such as LOB domain and 

Aux/IAA proteins, are instrumental for seminal, shoot-borne, and lateral roots initiation 

(Hochholdinger et al., 2018). Moreover, genetic analyses have demonstrated that genes related 

to exocytotic vesicle docking, cell wall loosening, and cellulose synthesis and organization 

control root hair elongation and/or initiation (Hochholdinger et al., 2018).  

Emerging lateral roots and root hairs are important sites for the release of exudates to the 

rhizosphere. A broad range of substrates and signaling molecules are secreted by roots to 

communicate with rhizosphere-inhabiting microorganisms (Aira et al., 2010; Bouffaud et al., 

2012; Haichar et al., 2014; Peiffer et al., 2013). The release of easily decomposable exudates 

by roots leads to higher microbial density and activity in the rhizosphere compared to the bulk 

soil (Marschner, 2012). Thus, root hairs are also a major determinant of both rhizosphere 

formation, i.e., the proportion of soil modified by the roots (Delhaize et al., 2015) and function, 

i.e., the metabolic reactions taking place at the root-soil interface (Pausch et al., 2016). Several 

publications indicate that plant growth-promoting rhizobacteria are able to manipulate primary 

root development (Garrido-Oter et al., 2018; Poitout et al., 2017) and lateral root formation 

(Gutiérrez-Luna et al., 2010; López-Bucio et al., 2007; Zamioudis et al., 2013) in Arabidopsis 

thaliana. In crops, root- and rhizosphere-associated microbiota contribute to alleviate overall 
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plant nutrient stress (Yu et al., 2021; Zhang et al., 2019). Nevertheless, the cross-kingdom 

interplay between plants and microbes at the root-soil interface for structuring rhizosphere-

associated microbial communities and their potential impact on plant growth and nutrient 

acquisition has so far received little attention in crops.  

In this study, we elucidated whether and how consistent patterns between root development and 

associated microbiome have emerged by employing genetically distinct monogenic root 

mutants in a model crop maize (Zea mays L.). We profiled root transcriptome using RNA 

sequencing, and root-and rhizosphere-associated microbiome community assemblage using 

full-length (V1−V9) 16S rRNA gene sequencing. We assessed trans-kingdom network 

associations and how specific bacteria are assembled spatially through different root types by 

interacting with root genes. Understanding how root traits modulate their microbiome, and how 

plant-microbe associations influence plant development provides novel insights into 

establishment of beneficial host–microbiome associations in enhancing tolerance to 

environmental constraints. 

Results 

The root transcriptome synchronizes with bacterial community assemblage across root 

compartments 

To understand whether and how root development affects microbiome assembly across 

different compartments along a single root, we examined different root and rhizosphere 

compartments in the primary root (Fig. 1A). The root compartments included the primary root 

without lateral roots, lateral roots, as well as separated cortex and stele tissues of the root 

differentiation zone (Fig. 1A). Moreover, we also extracted the closely attached rhizospheres 

from both primary and lateral roots separately, and the bulk soil from the unplanted pot as the 

control. These compartments were sampled from genetically diverse monogenic maize root 

mutants (rum1, lrt1, rtcs, rth3, rth5, and rth6) and their respective wild type B73. We conducted 

the study in four biological replicates and under three nutrient conditions of natural soil: control 

soil with sufficient nutrients, low nitrogen soil, and low phosphorus soil. We performed 

transcriptome analysis via RNA sequencing for root compartments and conducted bacterial 

microbiome analysis via 16S full-length (V1−V9) rRNA gene sequencing for both the root and 

rhizosphere compartments (Fig. 1A). We kept the OTUs with relative abundance (RA) >0.1% 

in at least two samples. Samples with <200 reads were removed from downstream analysis. 

After filtering, there were in total 1098 abundant OTUs from 388 samples (Table S1). For maize 

genes, there were 29335 genes after keeping genes expressed >10 reads in >4 samples. Among 
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them, only 239 OTUs (22%) were conserved for all different compartments (Fig. S1A), while 

most genes (99%) displayed overlapping expression (Fig. S1B). Bacterial richness (measured 

by α-diversity Shannon’s index) varied significantly among different compartments 

(Benjamini-Hochberg adjusted P <0.05, Kruskal-Wallis test, Dunn’s post-hoc test) and reduced 

from bulk soil, to the rhizosphere and roots, and further to different tissues (Fig. 1B). However, 

neither genotype (Fig. S2A) nor soil nutrient conditions (Fig. S2B) had consistent effects on 

the α-diversity within compartments, except for the rtcs mutant with respect to the rhizosphere 

extracted from lateral roots (Fig. S2A) and except for the rhizosphere obtained from lateral 

roots and primary roots of all possible genotypes under low phosphorus (Fig. S2B). Such 

divergence might be explained by the substantial differences in the bacterial community of bulk 

soil under different nutrient conditions (Fig. S2B). To investigate the impact of different 

compartments, genotypes and nutrient conditions on bacterial community composition, we 

performed a principal coordinate analysis (PCoA) for bacterial abundance. Regardless of the 

mutants and nutrient conditions, a strong shift in bacterial community composition was 

observed in different spatial compartments (PERMANOVA, R2 = 0.53, P = 0.0001) along a 

single root (Fig. 1C). Genotype (PERMANOVA, R2 = 0.02, P = 0.0001) and nutrient treatment 

(PERMANOVA, R2 = 0.01, P = 0.0001) explained a small part but still significant variance of 

bacterial community composition (Fig. 1C). Similarly, a principal component analysis (PCA) 

illustrated the highest transcriptomic dissimilarity among different compartments 

(PERMANOVA, R2 = 0.40, P = 0.0001, Fig. 1D). Notably, the genotype was responsible for a 

much stronger variance (PERMANOVA, R2 = 0.17, P = 0.0001) of gene expression than of 

bacterial community composition. Primary root and lateral root differed substantially from the 

cortex and stele tissues for both the transcriptomes and bacterial assemblies (Fig. 1C, 1D). 

These data suggest that root transcriptomic changes specifically synchronize with spatial 

patterns of microbiome assembly during root development. 
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Figure 1. Overall bacterial diversity and gene expression patterns across the rhizosphere and root 

compartments. A, Schematic illustration of maize seedling root system consisting of different root types and 

tissue (cortex and stele) patterning along the primary root. The cloned genes with known functions affecting root 

phenotypes are highlighted in brackets. The meristematic and elongation zone were removed during the sampling. 

The differentiation zone with root hairs and lateral root primordia were physically peeled off to separate the stele 

and cortex tissue. The differentiation zone with emerged lateral roots was dissected and separated as the lateral 

roots and primary root without lateral roots. rum1, rootless with undetectable meristem 1; rtcs, rootless concerning 

crown and seminal roots; lrt1, lateral rootless 1; rth, roothairless. B, Spatial shift of bacterial α-diversity 

(Shannon’s diversity index) across the rhizosphere and root compartments along the primary root. Significances 

were indicated among different compartments by different letters (Benjamini-Hochberg adjusted P <0.05, Kruskal-

Wallis test, Dunn’s post-hoc test). Boxes span from the first to the third quartiles, centre lines represent median 

values and whiskers show data lying within 1.5× interquartile range of lower and upper quartiles. Data points at 
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the ends of whiskers represent outliers. C, Principal coordinate analysis (PCoA) showing the dissimilarity of 

bacterial β-diversity across the rhizosphere and root compartments. D, Principal component analysis (PCA) 

illustrating the transcriptomic shift across different root compartments along the primary root. For both bacterial 

and transcriptomic dissimilarity matrix data, the explained variance by compartments, genotypes and treatments 

were assessed by permutational analysis of variance (PERMANOVA, P <0.001). The sample sizes are indicated 

as below: Bulk soil (n = 42); Rhizosphere from PR (n = 78); Rhizosphere from LR (n = 57); Primary root (n = 84); 

Lateral root (n = 60); Cortex tissue (n = 33); Stele tissue (n = 34). 

Lateral roots dramatically influence host gene expression and bacterial community 

composition  

We then examined, within each compartment, the impact of the genotype and nutrient treatment 

on host gene expression and bacterial abundance. Using a PERMANOVA test, we observed 

that the genotype had consistently more impact (R2 = 0.27−0.52) on gene expression for each 

compartment than soil nutrient condition (R2 = 0.08−0.12) (Fig. S3 and S5B, Table S2). In 

contrast, both the genotype and soil nutrient condition had comparable impact on bacterial 

composition (Fig. S4 and S5A, Table S2). More specifically, the genotype explained more of 

the variance of bacterial composition of the primary root rhizosphere as well as of the primary 

root, cortex and stele (R2 = 0.14−0.27) than the soil nutrient status (R2 = 0.08−0.16). In contrast, 

for lateral roots and their rhizosphere, the soil nutrient condition (R2 = 0.16−0.27) explained 

more variance of the bacterial composition than the genotype (R2 = 0.11−0.13).  

To compare the mutation effects of root hairs and lateral roots on transcriptomic changes and 

microbiome assemblage within each compartment, we classified all genotypes into three groups: 

group 1 (WT and rtcs) with lateral roots and root hairs, group 2 (rum1 and lrt1) with root hairs 

but no lateral roots and group 3 (rth3, rth5 and rth6) with lateral roots but no root hairs. As 

shown by PCoA and PCA, mutations that lead to lateral root defects (PERMANOVA, R2 = 

0.2−0.25, P = 5e−04) have much stronger effects on the microbiome community composition 

and transcriptomic changes than mutations that result in impaired root hairs (PERMANOVA, 

R2 = 0.045−0.1, P = 5e−04) (Fig. 2A-C). We further performed pair-wise differential 

abundance/expression analyses for both bacteria and host genes between each mutant and wild 

type B73.  
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Figure 2. Lateral roots determine microbiome assemblage and transcriptomic changes across different 

compartments. Principal coordinate analysis (PCoA) showing the effects of root hairs and lateral roots defects on 

the dissimilarity of bacterial β-diversity across the rhizosphere (A) and root (B) compartments. C, Principal 
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component analysis (PCA) illustrating the effects of root hairs and lateral roots defects on transcriptomic shift 

across different root compartments along the primary root. For both, the bacterial and transcriptomic dissimilarity 

matrix data, the explained variance by the effects from root hair and lateral roots were assessed by permutational 

analysis of variance (PERMANOVA, P <0.001). D, Pair-wise comparison of differentially abundant OTUs (DAOs) 

and differentially expressed genes (DEGs) between each monogenic mutant and wild type (WT). The triangles 

and dots indicated the microbiome and transcriptome features respectively. Rh_PR, Rhizosphere from primary 

root; Rh_LR, Rhizosphere from lateral root; PR, Primary root; LR, Lateral root. OTU, operational taxonomic unit. 

E, Prediction of the functional potential of the bacterial microbiota using the PICRUSt tool from the lateral root 

mutants in comparison to the wild type plants. Gradient colors of the edges indicate the significance degree. The 

sizes of triangles indicate the relative abundance. Directions of triangles indicate up- and down-regulation in wild 

type B73. F, Prediction of root metabolism using the KEGG pathway analysis from the lateral root mutants in 

comparison to the wild type plants. The size of the triangles indicates the significance degree. The purple and 

orange color indicates the lrt1 and rum1 compared with wild type B73 respectively. 

For the microbiome of primary roots and their rhizosphere, the genotypes rum1 and lrt1, both 

are defective in lateral root formation, displayed 100−300 more differentially abundant OTUs 

(operational taxonomic units) in comparison to the wild type. In contrast, genotypes that are 

defective in root hair formation (rth3, rth5 and rth6) showed much less changes (10−20 OTUs) 

(Fig. 2D). With respect to gene expression in the primary root, the lateral rootless mutants 

showed 2000−4300 differentially expressed genes in comparison to the wild type, while root 

hairless mutants displayed <500 differentially expressed genes (Fig. 2D). In particular, we 

identified >1800 and >3000 differentially expressed genes in the cortex and stele tissue of the 

lrt1 mutant in comparison to the wild type (Fig. 2D). Functional prediction of these 

differentially abundant OTUs demonstrated enrichment of a substantial proportion of metabolic 

pathways in cortex tissue of the lrt1 mutant (Fig. 2E, Table S3). Among the secondary 

metabolites, flavone and flavonol biosynthesis were the most differentially regulated metabolic 

pathways (Fig. 2E). Moreover, the indole alkaloid biosynthesis pathway was significantly 

enriched in the rum1 mutant (Fig. 2E), which is consistent with the function of RUM1 as an 

Aux/IAA protein involved in auxin signaling. We also annotated the differentially expressed 

genes according to the KEGG pathways to understand the metabolic differences between the 

studied root compartments, which highlight the importance of nitrogen and cyanoamino acid 

metabolism pathways enriched in the primary root of both lateral rootless mutants (Fig. 2F, 

Table S4). Together, these analyses highlight the enrichment of maize transcripts associated 

with nitrogen metabolism and potential roles of microbial flavonoids driven root–microbe 

interactions along spatial root compartments. This also may explain the unexpectedly strong 

effect of the lateral root mutations on rhizospheric community composition. 
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Lateral roots and their rhizosphere recruit highly complex bacterial networks 

Next, we explored the co-occurrence networks between bacterial OTUs within each 

compartment. To reduce the impact of rare OTUs, only OTUs with a relative abundance of >0.1% 

in ≥10% of samples were kept for network construction. Networks were built using SparCC 

algorithm for each compartment. Network correlation was calculated using the default centered 

log-ratio (CLR) transformed filtered bacterial table based on 100 bootstraps. Among these co-

occurrence networks, the complexity of networks, total number of interactions and interacted 

OTUs decreased from soil, via the rhizosphere, to the root, and to the tissues (Fig. S6 and S7). 

We then calculated the hub score for each OTU in each network and nodes which were ranked 

in the top 10 were considered as keystone OTUs. We found that keystone OTUs belonging to 

phyla Gemmatimodadetes, Planctomycetes, and Bacteroidetes in the soil, keystone OTUs 

belonging to phylum Proteobacteria in the rhizosphere and primary root and keystone OTUs 

belonging to phyla Proteobacteria and Bacteroidetes in the lateral root and cortex tissue (Table 

S5). Interestingly, we detected the two hubs OTU3535 (Massilia) and OTU5737 

(Pseudoduganella) belonging to Oxalobacteraceae in both lateral roots and cortex tissue (Fig. 

S6E, F).  

We also examined the 10 most abundant bacterial families for each compartment. Some 

families belonging to Gemmatimonadaceae, Acidobacteriaceae, Geobacteraceae and 

Planctomycetaceae were most abundant in soil and gradually decreased from the rhizosphere 

to root, cortex and stele (Fig. S8; Table S6). The highly abundant families Sphingomonadaceae 

(RA = 0.07) and Xanthomonadaceae (RA = 0.04) were detected as the indicator taxa in the 

rhizosphere from the primary and lateral roots (Fig. S8; Table S6). Chitinophagaceae were 

enriched in both roots (RA = 0.20) and rhizosphere (RA = 0.18) (Fig. S8). Sinobacteraceae and 

Polyangiaceae were specifically enriched in both lateral roots (RA = 0.06; RA = 0.07) and 

primary roots (RA = 0.05; RA = 0.07) (Fig. 3A). Streptomycetaceae were specifically enriched 

in lateral roots (RA = 0.11), which is significantly higher than the abundance in primary roots 

(RA = 0.07) and cortex (RA = 0.06) (Fig. 3A). Interestingly, Comamonadaceae (RA = 0.02) 

were highly enriched in all root tissues but not in soil, while Burkholderiaceae were highly 

enriched in cortex (RA = 0.45) and stele (RA = 0.83) as the indicator species (Fig. S8; Table 

S6). In particular, Oxalobacteraceae were significantly enriched in primary roots (RA = 0.05), 

lateral roots (RA = 0.04) and cortex (RA = 0.08), and were also detected as an indicator taxon 

in the cortex (Fig. 3A, Table S6). These network and enrichment analyses demonstrate that 

different compartments recruit distinguished bacterial communities and that only specific 

bacteria inhabit distinct root tissues in maize. 
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Figure 3. Trans-kingdom interactions between root genes and bacterial OTUs in root microbiota. A, 

Selective enrichment of different bacterial families from the bulk soil, to the rhizosphere, root and root tissues. 

Significances were indicated among different compartments by different letters for each family (Benjamini-
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Hochberg adjusted P <0.05, Kruskal-Wallis test, Dunn’s post-hoc test). Spearman correlations between plant genes 

and bacterial OTUs in the primary root (B) and lateral roots (C). The triangles and dots indicated the bacterial 

OTUs and gene features respectively. The size of the triangles indicates the hub score. Red and blue solid lines 

indicate positive and negative correlations respectively. Only the hub OTUs connected with genes with significant 

plant gene ontology (GO) terms are labelled accordingly. Scatter plots illustrating the hub OTUs interacting with 

functional genes enriched in specific plant GO terms in the primary root (D) and lateral roots (E). Different color 

dots indicate different plant GO terms, referring to the network relationships.  The size of the dots indicates the 

number of genes enriched in specific plant GO terms. Red and blue dots indicate positive and negative associations 

respectively. 

Keystone bacteria interact with host functional genes in the root 

To construct potential causal associations between bacterial OTUs and host expressed genes, 

we performed Spearman correlation analyses (rho >0.7 or < −0.7 with FDR adjusted P <0.05) 

for OTUs and genes expressed in ≥10 samples for rhizosphere, root, cortex and stele samples. 

Among those, the lateral root rhizosphere had the most complex network with 1196 nodes and 

3820 edges (Fig. S9B and S10), while the primary root rhizosphere displayed the least complex 

network with only 544 nodes and 774 edges (Fig. S9A and S10). We identified the hub OTUs 

by selecting nodes that have a high hub score and where the associated genes have enriched 

functions. There were 25 hub OTUs from the orders Burkholderiales, Chitinophagales and 

Gemmatimonadales in the lateral root rhizosphere, but only one OTU from Anaerolineales in 

the primary root rhizosphere (Table S7). In the primary root, the hub OTUs (OTU7217, 

OTU7209, OTU4981, OTU3312 and OTU3358) belong to Burkholderiales, 

Anaeroplasmatales and Clostridiales, while in lateral roots OTU3535, OTU3311 and 

OTU3185 belong to Burkholderiales and Chitinophagales. To understand the functional genes 

associated with hub OTUs, we examined the gene ontology (GO) terms of those interacting 

genes which have positive or negative significant correlations with each hub OTU, respectively. 

The genes positively correlated to hub OTU6622 (Anaerolineaceae) in the primary root 

rhizosphere have functions enriched in “cellular response to auxin stimulus” (Table S7). The 

genes positively correlated to hubs OTU7217, OTU7209, OTU4981 in the primary root have 

functions enriched in “proteolysis” and “response to abiotic stimulus” (Fig. 3B, D). The genes 

positively correlated to hub OTU3312 (Acidovorax) in the primary root have enriched functions 

in “lipid oxidation”, while genes negatively correlated to it have a function in “RNA 

biosynthetic processes”. Finally, genes positively correlated to OTU3358 

(Roseateles_depolymerans) are enriched in “carboxylic acid metabolic processes” (Fig. 3B, D). 

In lateral roots, genes positively correlated to OTU3535 (Massilia) are enriched in “tryptophan 

biosynthetic process”, while negatively correlated genes have functions enriched in “rhythmic 
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process” and “RNA biosynthetic processes” (Fig. 3C, E). In particular, we did not detect any 

significant (FDR adjusted P <0.05) associations between genes and OTUs in the cortex or stele 

tissue. These data indicate that specific keystone bacteria may play an important role in 

interacting with functionally different host genes within specified compartments. 

Keystone bacteria Massilia in lateral roots associated with plant phenology and flowering 

development 

To identify whether keystone bacteria in association with host genes influence the maize 

phenotypes, we performed weighted correlation network analyses (WGCNA) between host 

genes and phenotypic traits as well as between bacteria and phenotypic traits across different 

nutrient treatments and genotypes followed by Spearman correlation analyses between 

identified phenotypic traits related genes and bacteria (see Methods). Overall, low nutrient 

treatments significantly (Benjamini-Hochberg adjusted P <0.05, Kruskal-Wallis test, Dunn’s 

post-hoc test) reduced the shoot dry biomass (Fig. S11A), while low nitrogen and low 

phosphorus treatment significantly (Benjamini-Hochberg adjusted P <0.05, Kruskal-Wallis test, 

Dunn’s post-hoc test) reduced the nitrogen (Fig. S11B) and phosphorus (Fig. S11C) 

concentration, respectively. We performed this integrative analyses using the data in the 

rhizosphere and root since we did not detect any significant correlations between host genes 

and bacteria in the cortex or stele tissue. Genes in the primary root were clustered into 21 

modules and five (MEgreen, MEyellow, MEskyblue3, MEdarkmagenta and MEsienna3) of 

them were significantly (P <0.05) correlated with dry biomass, four (MEgreen, MEskyblue3, 

MEdarkmagenta and MEsienna3) of them were significantly correlated with nitrogen 

concentration, three (MEturquoise, MEskyblue3 and MEred) of them were significantly 

correlated with phosphorus concentration (Fig. S12A). In lateral roots we identified 20 modules 

and four (MElightgreen, MEtan, MEblack and MEgreenyellow) of them were significantly 

correlated with dry biomass and only module MEdarkmagenta was significantly correlated with 

nitrogen concentration and phosphorus concentration (Fig. S12B). For bacteria, there were 11 

modules in the rhizosphere of the primary root, and five of them were significantly correlated 

with dry biomass, four with nitrogen concentration, three with phosphorus concentration (Fig. 

S13A). In the rhizosphere of lateral roots, there were also 11 modules, and four of them were 

significantly correlated with dry biomass, two with nitrogen concentration, and three with 

phosphorus concentration (Fig. S13B). In the primary root, there were only five modules, and 

two of them were significantly correlated with dry biomass and nitrogen concentration, while 

only one with phosphorus concentration (Fig. S13C). In lateral roots, there were only seven 

modules, and only the module MEturquoise was significantly correlated with dry biomass, 
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MEgreen with nitrogen concentration and MEyellow with phosphorus concentration (Fig. 

S13D). In total, we identified the most significant correlations between host genes and bacteria 

related to shoot dry biomass in the rhizosphere of lateral roots with 243 nodes and 1202 edges 

(rho >0.7 or < −0.7 and FDR <0.05) (Fig. 4B, Table S8), while the primary root rhizosphere 

had the least complex network with only 19 nodes and 34 edges (Fig. 4A, Table S8). Moreover, 

there were more significant (rho >0.7 or < −0.7 and FDR <0.05) correlations between host 

genes and bacterial OTUs in the lateral roots than in the primary root (Fig. 4D and C, Table S8). 

Interestingly, the relative abundance of hub OTU3535 (Massilia) in the lateral root was 

significantly positively correlated with shoot dry biomass (R2
adj = 0.49, P = 0.0022, Fig. S14) 

and had significant associations with 103 genes expressed in lateral roots (Fig. 4D). We further 

examined the GO terms of these dry biomass-associated genes which are enriched in the GO 

term “circadian rhythm” (Fig. 4D). In particular, we observed the gene night light-inducible 

and clock-regulated 1 (lnk1), which functions in response to abiotic stimulus and the gene 

timing of cab expression 1 (toc1) which functions in flower development. For the primary root 

and its rhizosphere, functions of enriched GO terms were “iron transport” and “cell wall 

organization”, respectively (Fig. 4A, C). Similarly, we performed network integration analyses 

for host genes, microbial OTUs, shoot nitrogen and phosphorus concentration. We found only 

significant correlations between host gene expression and bacterial abundance related to 

nutrient uptake in the rhizosphere (Fig. S15; Table S8). In the rhizosphere of primary roots, 

genes with GO functions in “cell wall organization” and “glucose metabolic process” had 

significant correlations with some keystone bacteria related to nitrogen concentration (Fig. 

S15A), while in the rhizosphere of lateral roots significantly enriched GO terms were e.g. 

“phosphate starvation”, “phosphate transport” and “response to cold” for host genes, which 

were correlated with some keystone bacteria in association with nitrogen concentration (Fig. 

S15B). We also observed phosphorus concentration related genes with GO functions in 

“phosphate ion homeostasis” and “phosphate starvation” significantly correlated with keystone 

bacteria in the rhizosphere of lateral roots (Fig. S15C). These integrative results may indicate 

that Massilia in lateral roots dramatically influence maize biomass through interactions with 

circadian rhythm and flowering development of host genes.  
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Figure 4. Bacterial hubs prioritize the causal association with plant rhythmic process and biomass 

accumulation. Spearman correlation relationships between gene expression, OTU abundance and shoot biomass 

in the rhizosphere from primary root (A), rhizosphere from lateral roots (B), primary root (C) and lateral roots (D). 

The triangles, dots and cubes indicated the microbiome, transcriptome and biomass features respectively. Red and 

blue solid lines indicate positive and negative correlations respectively. The size of the triangles indicates the hub 

score. Different color dots indicate specific plant gene ontology (GO) terms. The genus name of the hub OTUs 

and specific genes with GO annotation were labelled. toc, timing of cab expression; shmt1, Serine 

hydroxymethyltransferase 1; lnk, night light-inducible and clock-regulated; hsftf, heat stress transcription factor. 
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Genetic validation of Massilia function in early flowering by mutant analysis in maize 

The circadian rhythm in plants refers to physiologically relevant activity cycles of various 

biological processes regulated by an innate circadian clock, including growth, leaf development 

and flowering transition. To explore whether Massilia is involved in maize flowering time, we 

performed a soil experiment using the wild type B73 and the rtcs mutant which contains both 

lateral roots and root hairs and performed 16S amplicon (V3−V4) sequencing for the whole 

primary root with lateral roots at two different growth stages, i.e. at seedling stage (three weeks) 

and at flowering stage (ten weeks). Bacterial α-diversity analysis showed microbiome richness 

significantly increased from seedling to flowering stage (P <0.01, Wilcoxon rank-sum test) (Fig. 

5A). In PCoA analysis, the developmental stage explained the large variance (R2 = 0.30, P 

<0.01, PERMANOVA) of bacterial community composition (Fig. 5B). To investigate whether 

Massilia abundance changes during maize development, we compared the relative abundance 

of each dominant genus in the root in control soil. In total, we detected three differentially 

abundant bacterial genera between stages, from which Massilia was the most abundant genus. 

Notably, its relative abundance significantly (P <0.01, Wilcoxon rank-sum test) decreased from 

seedling to flowering stage (Fig. 5C). We next examined the root transcriptome and observed 

that the developmental stage effect can significantly separate the pattern of gene expression as 

shown by the PCA plot (Fig. S16A). We determined differential gene expression between 

seedling and flowering stages and discovered that 2837 genes were differentially expressed 

between developmental stages (Fig. S16B). To investigate whether some bacterial ASVs have 

significant associations with plant genes across developmental stages, Spearman correlation 

analysis was performed between highly abundant ASVs and differentially expressed genes. 

Interestingly, four hub ASVs (ASV83, ASV97, ASV102 and ASV134) that belong to the 

bacterial genus Massilia were identified significantly in association with genes annotated in 

functional categories such as primary and secondary metabolic processes, defense responses 

and flowering related pathways (Fig. 5D). We next further narrowed down the GO terms by 

removing the redundant ones and only highlighted the driver GO terms (Table S9). Specifically, 

we identified two driver terms in “recognition of pollen” and “detoxification” among the GO 

terms derived from ASV83 and ASV97 (Fig. 5D; Table S9). These integrated microbiome and 

transcriptome results suggest that hub Massilia might be associated with plant genes involved 

in maize flowering.  
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Figure 5. The bacterial hub Massilia associates with maize flowering and biomass production. A, Root 

bacterial α-diversity (Shannon’s diversity index) at seedling and flowering stage. Significances are indicated 

between different stages by asterisk at P <0.01 (two-tailed Wilcoxon rank-sum test). Boxes span from the first to 

the third quartiles, centre lines represent median values and whiskers show data lying within 1.5× interquartile 

range of lower and upper quartiles. Data points at the ends of whiskers represent outliers. n = 6. B, Principal 

coordinate analysis (PCoA) showing the dissimilarity of bacterial β-diversity between seedling and flowering stage. 

The explained variance (R2) by different stages were assessed by permutational analysis of variance 

(PERMANOVA, P <0.01). n = 6. C, Significantly differential abundant genera between seeding and flowering 

stage. Significances were indicated among different stages by asterisk at P <0.01 (two-tailed Wilcoxon rank-sum 

test). D, Spearman correlation between high abundant ASVs and root differential genes between seedling and 

flowering stages. The triangles and dots indicated the bacterial OTUs and gene features respectively. Red and blue 
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solid lines indicate positive and negative correlations respectively. The size of the triangles indicates the hub score. 

Different color dots indicate specific plant gene ontology (GO) terms. Effects of single inoculation of Massilia 

OTU3535 and Synthetic Community (SynCom) on the biomass production (E) and number of leaves (F) of maize 

wild type N28 and its isogenic early flowering mutant C22-4. SynCom 1 is composed of 12 different bacterial 

isolates without OTU3535, while SynCom 2 is composed of 13 different bacterial isolates including of OTU3535. 

To investigate whether the function of Massilia is associated with flowering time as a possible 

consequence of altered rhythmicity, we performed Massilia inoculation experiments for wild 

type N28 and the corresponding early flowering mutant C22-4 in the greenhouse. We first 

performed alignment analysis using previously identified OTU3535 with these four hub ASVs 

and confirmed with >97% sequence identity based on the BLAST alignment (Table S10). We 

then performed inoculation with the single OTU3535, the synthetic community with 12-

member isolates derived from Oxalobacteraceae (SynCom 1), and a 13-member isolates 

including of OTU3535 (SynCom 2). Interestingly, only the inoculation of single Massilia 

OTU3535 significantly promoted maize dry biomass (Fig. 5E) and the number of leaves (Fig. 

5F) in the early flowering mutant, whereas we did not observe any effects on these traits in the 

wild type plants. Taken together, the function of Massilia in promoting maize biomass and leaf 

number might depend on flowering time in maize.  
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Discussion 

Cereal root systems comprise diverse root types and specified organs such as lateral roots and 

root hairs supporting the high demand for water and nutrients of these plants in agricultural 

production (Hochholdinger et al., 2018; Yu et al., 2016). The root system determines the main 

chemical messengers with causal interactions with microorganisms in the root-soil interface e.g. 

rhizosphere (Yu et al., 2016). The structure and function of the microbiome associated with 

rhizosphere and root influence the health and nutrition of the host plants (Mendes et al., 2013). 

Thus, plant selectiveness and recruitment of soil microbes into the host through separated 

rhizocompartments (rhizosphere, rhizoplane and endosphere) is the critical step for initiation of 

such causal interactions (Attia et al., 2022; Edwards et al., 2015; Edwards et al., 2018). 

Nevertheless, little is known on how specific root types or root tissues selectively recruit 

microorganisms in space and time, and what role such enriched microorganisms play in crop 

performance.  

In this study, we systemically dissected different root organs and rhizosphere compartments 

(Fig. 1) along a single root at longitudinal and transversal resolution, and subjected these 

samples to host-microbiome associations by investigating the root transcriptome and associated 

microbiome using diverse maize root mutants. Examination of microbiomes across diverse 

mutants demonstrated that genotypes defective in lateral root formation displayed the largest 

changes in overall root gene expression and bacterial community composition in both the 

rhizosphere and the endosphere (Fig. 2). This is in agreement with earlier observations  that 

lateral roots largely reshaped specific gene expression and microbial colonization in crops 

(Gutjahr, et al., 2015; Yu & Hochholdinger, 2018).  

Integrative trans-kingdom network association analyses demonstrated that the keystone 

bacterial taxon Massilia (Oxalobacteraceae) was highly associated with plant genes involved 

in plant circadian rhythm, tryptophan and RNA biosynthetic processes in lateral roots (Fig. 3). 

Notably, in maize, the keystone bacterial taxon Massilia is significantly associated with the trait 

biomass and confers to a substantial enrichment of genes related to the circadian rhythm e.g. 

flower development of plants (Fig. 4). Here, we demonstrated that lateral root specific 

recruitment of Massilia might contribute to the association with maize growth and the flowering 

time phenotype (Fig. 5), thus being the potential linkage between plant rhythmicity and 

variation of rhizosphere microbiome (Hubbard et al., 2018; Lu et al., 2018; Newman et al., 

2022). The abundance of the specific bacterial taxon Massilia driven by root-derived flavonoids 

can modulate lateral root development and overall maize performance under nitrogen 
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deprivation (Yu et al., 2021) and such causal interaction between root and rhizosphere is 

genetically regulated (He et al., 2023). More importantly, the abundance of Massilia is highly 

heritable in comparison to other bacterial taxa in the root under nitrogen limited conditions (He 

et al., 2023), thus suggesting a great potential to breed stress-resilient crop root systems that 

more readily accommodate beneficial keystone bacteria. Overall, the identification of important 

root traits supporting beneficial microbes might contribute to the adaptation of crops to future 

climatic challenges. 
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Materials and Methods  

Maize mutants, soil preparation and experimental design 

Genetically distinct root mutants and wild type B73 were used in this study. Among them, the 

rtcs mutant displays crown and seminal root defects; rum1 displays seminal and lateral root 

defects; lrt1 and rth3-rth6 display lateral root and root hair defects respectively (Hochholdinger 

et al., 2018). C22-4 is a nearly isogenic line of wild type N28. C22-4 carries Gaspe Flint 

introgressions on Chromosome 8 and shows an early flowering phenotype (Salvi et al., 2007). 

We used the soil that was dug from a long-term fertilizer field experiment in Dikopshof 

(50˚48′21′′N, 6˚59′9′′E). We have collected three different soils e. g. the control soil with fully 

fertilized nutrients (CK), low nitrogen soil fertilized without nitrogen (LN) and low phosphorus 

soil fertilized without phosphorus (LP) as described by He et al. (2023). The freshly dug soil 

was air-dried and sieved through a 4 mm sieve ready for use. The soil pot (7cm × 7cm × 19cm) 

experiment was carried out in a complete randomized design and comprised seven genotypes 

and three nutrient treatments. We prepared additional empty soil pots without plants grown as 

the “bulk soil” samples. All pots in each culture tray were completely randomized using a true 

random generator (excel function “RAND”) and trays were reshuffled every week in the 

phytochamber without paying attention to the pot labels. Specifically, we maintained the soil 

water content by weighing the soil pots according to the loss of water every two days. For the 

whole 4-week culture, only sterilized water was applied to avoid the potential contamination. 

Sample collection and tissue separation 

The root and rhizosphere samples were harvested from 4-week-old maize plants for all 

genotypes grown under different nutrient treatments. In detail, the whole root systems were 

carefully taken out from each pot and vigorously shaken to remove all soil not firmly attached 

to the roots. To synchronize the harvest for precise comparison among different maize mutants, 

we specifically focused on the primary root which is present in all mutants. We separately 

dissected the lateral roots from the primary root as previously described (Yu & Hochholdinger, 

2018). Moreover, we carefully removed all big particles from these primary or lateral roots to 

avoid the contamination. Only the root organs with tightly attached soil were placed into a 15 

ml Falcon (Sarstedt) tube and immediately frozen in liquid nitrogen and stored at -80 °C before 

extraction of rhizosphere soil. The rhizosphere samples were defined and extracted into 

PowerBead tubes (MP Biomedical) as described previously (Yu et al., 2021). The root samples 

were harvested from a separate plant and the attached soil were washed immediately by tap 

water and rinsed with three times of sterilized water followed by tissue drying and placed in 
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PowerBead tubes. Moreover, the stele and cortex tissue from the differentiation zone of the 

primary root were peeled off separately by hand as previously described (Yu et al., 2015). 

Please note that we were not be able to separate these two tissues in the zone with emerged 

lateral roots. We collected the bulk soil samples from the unplanted pots as the control. 

RNA sequencing and bacterial 16S rRNA gene sequencing 

The frozen rhizosphere samples were extracted from the primary root and lateral roots 

respectively as described  previously (Yu et al., 2021). DNA extractions were performed soon 

after root and rhizosphere samples were harvested, following the FastDNA™ SPIN Kit for Soil 

(MP Biomedical) protocol. Total RNA was isolated from the primary root, lateral root, cortex 

and stele tissues samples using the RNeasy Plus Universal Mini Kit (Qiagen). Both DNA and 

RNA were qualified and quantified via Agilent RNA or DNA Chips (Agilent Technologies). 

The complementary DNA libraries for RNA-seq were constructed with the MGIEasy RNA 

library construction kit. Cluster preparation and PE150 read sequencing were performed on a 

DNBSEQ-G400 system. Amplicon library construction was processed with a similar workflow 

as previously described (Yu et al., 2021). In brief, the full length (V1−V9 region) of the 16S 

rRNA genes was sequenced on a Pacbio Sequel II (PacBio Biosciences Inc.) using the forward 

primer (27F) with anchor sequence 5′-

TTTCTGTTGGTGCTGATATTGCAGRGTTYGATYMTGGCTCAG-3′ and reverse primer 

(1492R) with anchor sequence 5′-

ACTTGCCTGTCGCTCTATCTTCCGRGYTACCTTGTTACGACTT-3′ (Klindworth et al., 

2013).  For validation experiments, the amplicon libraries were sequenced at the V3-V4 regions 

of the 16S rRNA gene were amplified using a 16S (V3–V4) Metagenomic Library Construction 

Kit for NGS (Takara Bio Inc., Kusatsu, Japan). The following primers were used: 341F with 

overhang adapter 5′-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and 

806R with overhang adapter 5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT-

3′. The second PCR was performed using the Nextera® XT Index Kit (Illumina, San Diego, 

CA, USA) for sample multiplexing with index adapters. The libraries were sequenced on the 

MiSeq™ platform using the MiSeq™ Reagent Kit v3 (2 × 250 bp; Illumina). 

Transcriptome data analysis 

Processing and trimming of raw RNA-seq reads was performed as described previously (Yu et 

al., 2021). In brief, the low-quality sequences and low-complexity polyA tails were eliminated. 
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Subsequently, we built the reference genome index and mapped the sequences to the maize 

reference genome sequence v.5 

(http://ftp.ensemblgenomes.org/pub/plants/current/fasta/zea_mays/dna/Zea_mays.Zm-B73-

REFERENCE-NAM-5.0.dna.toplevel.fa.gz) by HISAT2 (v2.1.0) software (Kim et al., 2019). 

All commands and default parameters were used in HISAT2. All downstream analyses were 

performed in R (v4.2.2) (R Core Team, 2022). Then all bam files generated by HISAT2 were 

input to ‘featureCounts’ function (Liao et al., 2014) in R package Rsubread (v2.12.3) using 

maize reference annotation v.5 

(http://ftp.ensemblgenomes.org/pub/plants/current/gtf/zea_mays/Zea_mays.Zm-B73-

REFERENCE-NAM-5.0.53.chr.gtf.gz) to generate the gene expression table. Chimeric reads 

and reads mapped to more than one position in the genome were removed. Only genes 

represented by a minimum of ten mapped reads in ≥4 samples were declared as expressed and 

considered for downstream analyses. Before statistical analyses, data were normalized by 

library size using the DESeq2 (v1.38.3) package (Love et al., 2014) in R. A principal component 

analysis was performed using the ‘prcomp’ function in base R (v4.2.2). To test the marginal 

effects of compartment, treatment and genotype on the transcriptome, a permutation-based 

PERMANOVA test was performed with the Euclidean distance matrix between pairs of 

transcriptomic samples using ‘adonis2’ function in R package vegan (v2.6.4) (Oksanen et al., 

2020). All plots were produced using R package ggplot2 (v3.4.2) (Wickham, 2016). 

Bacteria full length 16S rRNA gene sequence processing and data analysis 

16S rRNA gene (V1−V9) raw sequencing reads were processed as following steps. Sequencing 

reads were assigned to samples based on their unique barcode and truncated by cutting off the 

barcode and primer sequence which were called raw tags. Raw sequence data were quality 

filtered and deduplicated using Usearch fastx_uniques command. OTUs (Operational 

taxonomic units) were generated by UPARSE (Edgar, 2013) algorithm in the Usearch software 

(v11.0.667) with parameters for full-length sequences. Sequences were clustered based on 97% 

identity and assigned to a different OTU using Usearch cluster_otus. Taxonomy was assigned 

to OTUs using the BLCA software (v2.2) (Gao et al., 2017) against the NCBI 99% OTUs 

reference sequences (20170709) at each taxonomic rank (kingdom, phylum, class, order, family, 

genus, species). During the clustering process, the chimeric sequences were removed using 

UCHIME to filter the final OTU sequences using the RDP “gold” sequences (Edgar et al., 2011). 

Mitochondria, chloroplast and phylum-unassigned OTUs were eliminated. 

All downstream statistical analyses were performed in R (v4.2.2) (R Core Team 2022). Briefly, 

https://en.wikipedia.org/wiki/Operational_taxonomic_unit
https://en.wikipedia.org/wiki/Operational_taxonomic_unit
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OTU tables were filtered with ≥0.1% relative abundance in ≥2 samples. For α-diversity indices, 

Shannon index was calculated using OTU tables rarefied to 200 reads. The OTUs which 

expressed ≤0.1% relative abundance within ≤5% samples and the samples with ≤200 reads were 

removed. Bray–Curtis distances between samples were calculated using OTU tables that were 

normalized using ‘varianceStabilizingTransformation’ function from DESeq2 (v1.38.3) 

package (Love et al., 2014) in R. If not specified, the following data analysis is based on the 

normalized OTU table. Principal coordinate analyses were performed using the ‘ordinate’ 

function in R package phyloseq (v1.42.0) (McMurdie & Holmes, 2013). To test the marginal 

effects of compartment, treatment and genotype on the microbial composition community, a 

permutation-based PERMANOVA test was performed using Bray–Curtis distance matrix 

between pairs of bacterial samples using ‘adonis2’ function in R package vegan (v2.6.4) 

(Oksanen et al., 2020). All plots were produced using R package ggplot2 (v3.4.2) (Wickham, 

2016). 

Differential gene expression and functional characterization 

We determined differential gene expression between each mutant and wild type (B73) using 

the ‘DESeq’ function in DESeq2 R package (v1.38.3). Subsequently, we determined the 

number of differentially expressed genes for each comparison by controlling the FDR adjusted 

P values of pairwise t-tests <0.05 and a fold change of >2. We then functionally classified 

differential gene expression patterns according to GO terms using g:Profiler (Raudvere et al., 

2019). The GO annotation system is based on four structured vocabularies that describe gene 

products in terms of their associated biological processes, cellular components, molecular 

functions and KEGG pathways in a species-independent manner. Subsequently, we performed 

a gene set enrichment analysis to discover significantly overrepresented functional categories.  

Functional prediction of bacterial OTUs 

PICRUSt2 (v2.5.2) (Douglas et al., 2020) was used to predict functional pathways present in 

bacterial community from the 16S rRNA marker gene. KEGG orthology (KO) abundance table 

was predicted through the PICRUSt2 pipeline with input of OTU-table and OTUs sequences. 

To keep only abundant KOs, KOs which express >0.01% relative abundance in >5% samples 

were kept. After filtering, individual KOs were summarized at KEGG pathway level 3 using 

the categorize_by_function_l3 function and KEGG mapping file provided by PICRUSt group.  

KEGG pathway level 2 and level 1 were manually curated from the KEGG website 

(https://www.genome.jp/kegg). Then we identified differential KEGG pathways between each 

mutant and wild type (B73) using the ‘DESeq’ function in DESeq2 R package (v1.38.3). 
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Subsequently, we determined the number of differentially abundance pathways for each 

comparison by controlling the FDR adjusted P values of pairwise t-tests <0.05 and a log2 fold 

change of >0.5.  

Construction of bacterial cooccurrence networks 

To explore the potential associations among different bacterial OTUs, we constructed bacterial 

cooccurrence networks within each compartment using the high abundant OTUs >0.1% in at 

least 10% samples. These filtered OTUs were used as the input for SparCC algorithm (Friedman 

& Alm, 2012). This analysis was performed with default parameters and 100 bootstraps were 

used to infer P values. The correlations >0.4 or <−0.4 (P <0.05) were kept for network 

construction. Networks were visualized using spring embedded layout with weight in 

Cytoscape (v3.8.0) (Shannon et al., 2003).  

Trans-kingdom interactions between root genes and bacterial OTUs 

We next built the causal interactions between root expressed genes and root/rhizosphere 

abundant OTUs. To reduce false positive correlations, only genes expressed >5 reads in at least 

10 samples were used as gene input table and only OTUs expressed in at least 10 samples were 

kept for OTU input table. After normalization using ‘varianceStabilizingTransformation’ 

function from DESeq2 package for both gene table and OTU table, spearman correlation was 

calculated by ‘corr.test’ function from psych package (v2.3.3) (Revelle, 2023) in R for each 

compartment. This function provides the correlation coefficient and the corresponding FDR 

adjusted P values. Spearman correlations with rho value >0.7 or <−0.7 and adjusted P values 

<0.05 were kept as significant correlations. The above significant correlations were input to 

Cytoscape (v3.8.0) (Shannon et al., 2003) for network visualization. Node hub scores were 

calculated using the ‘hub_score’ function from igraph package (v1.4.2) (Csárdi et al., 2023) in 

R. 

Integration of host transcriptome, bacterial community and phenotypic traits 

Network-based analysis is the most biologically interpretable tool available to analyze 

association among variables, such as relationships between microbial compositions, gene 

expression and phenotypic traits (Wang et al., 2019). Weighted correlation network analysis 

(WGCNA) is a data-driven method that clusters genes to different modules based on weighted 

correlations between gene transcripts (Langfelder & Horvath, 2008). To identify keystone 

bacteria which significantly associate with phenotypic traits and also with host transcriptome 

in each compartment, we performed WGCNA for both bacteria OTUs and host root expressed 
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genes in R: (1) cluster gene/OTU co-expression modules among different genotypes across 

three nutrient conditions; (2) associate module eigengene/eigenOTU with phenotypic traits; (3) 

select genes/OTUs with high membership value from modules which significantly associate 

with phenotypic traits and high correlation coefficient with phenotypic traits; (4) correlate the 

selected genes and OTUs to determine key OTUs and genes.  

For robust construction of co-expression networks, we filtered and normalized genes/OTUs 

table as described above. The soft thresholding power β was automatically selected and used to 

calculate adjacency matrix. To minimize the effects of noise and false associations, we 

transformed the adjacency matrix into a topological overlap matrix (TOM) with selected power 

and calculated the corresponding dissimilarities (dissTOM) as 1 – TOM. For hierarchical 

clustering of genes/OTUs we used dissTOM as a distance measure and set the minimum module 

size (number of genes) to 30 (number of OTUs to 3) to detect modules. To quantify the co-

expression similarities of entire modules, their eigengenes/eigenOTUs were calculated and 

subsequently used to associate with phenotypic traits. We chose modules with P values <0.05 

as significantly associated modules. Then we calculated Spearman correlation between 

normalized genes/OTUs expression and phenotypic traits as well as gene/OTU membership 

value using ‘signedKME’ function from WGCNA package in above selected significant 

modules. The key genes/OTUs were determined by selecting the overlapping genes/OTUs 

between genes/OTUs which have Spearman correlation coefficients >0.7 or < −0.7 and P values 

<0.05 and genes/OTUs which have membership value >0.7 or <−0.7. Then we did Spearman 

correlation between the key genes and OTUs to find significant associations by selecting 

rho >0.7 or <−0.7 and FDR adjusted P values <0.05. Network visualization was performed in 

Cytoscape as described above. For each keystone OTU, we functionally classified the interacted 

root genes that enriched into different GO terms using g:Profiler (Raudvere et al., 2019). 

Validation experiment 1: comparison of different growth stages 

To verify if Massilia is associated with maize developmental stages, we grew wild type B73 in 

control soil and harvested their root samples at seedling stage and flowering stage. RNA and 

DNA extractions were performed as described above. We then performed the RNAseq and 16S 

rRNA (V3−V4) gene sequencing for the root samples. Raw reads were processed following a 

similar workflow as previously described (Yu et al., 2021). Briefly, paired-end 16S rRNA 

amplicon sequencing reads were assigned to samples based on their unique barcode and 

truncated by cutting off the barcode and primer sequence. Sequence analyses were performed 

by QIIME 2 software (v2020.6)(Bolyen et al., 2019). Raw sequence data were demultiplexed 
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and quality filtered using the q2‐demux plugin followed by denoising with DADA2 (Callahan 

et al., 2016) (via q2‐dada2). Sequences were truncated at position 250 and each unique sequence 

was assigned to a different ASV. Taxonomy was assigned to ASVs using the q2‐feature‐

classifier (Bokulich et al., 2018) and the classify‐sklearn naïve Bayes taxonomy classifier 

against the SSUrRNA SILVA 99% OTUs reference sequences (v138) (Quast et al., 2013) at 

each taxonomic rank (kingdom, phylum, class, order, family, genus, species). Mitochondria- 

and chloroplast-assigned ASVs were eliminated. Out of the remaining sequences (only ASVs 

with >5 reads in ≥2 samples) were kept to build an ASV table.  

All downstream analyses were performed in R (v4.2.2) (R Core Team, 2022). For α-diversity 

indices, the Shannon index was calculated using ASV table rarefied to 1000 reads. For all 

following analyses abundant ASVs were used, so ASVs which express ≤0.05% relative 

abundance within ≤5% samples were removed. After filtering taxa, the samples with ≤1000 

reads were also removed. Bray-Curtis distances between samples were calculated using the 

ASV table that was normalized using the ‘varianceStabilizingTransformation’ function from 

DESeq2 (v1.38.3) package (Love et al., 2014) in R. If not specified, the following data analysis 

is based on the normalized ASV table. Principal coordinate analyses were performed using the 

‘ordinate’ function in R package phyloseq (v1.42.0) (McMurdie & Holmes, 2013). To test the 

marginal effects of treatment and genotype on the microbial composition community, a 

permutation-based PERMANOVA test was performed using Bray–Curtis distance matrix 

between pairs of bacterial samples using ‘adonis2’ function in R package vegan (v2.6.4) 

(Oksanen et al., 2020). To identify genera differentially expressed between stages, ASVs were 

grouped by genus and unidentified genera were removed. Only genera that express >0.1% in 

≥3 samples were kept. Then relative abundance of each genus was compared between stages 

using Wilcoxon rank sum test (Haynes, 2013). All plots were produced using R package ggplot2 

(v3.4.2) (Wickham, 2016). To the end, we performed similar Spearman correlation analyses 

using the differentially expressed genes and differentially abundant OTUs for seedling and 

flowering stage. Network visualization, definition of keystone OTU and functional 

classification of GO terms were performed as described above.  

Validation experiment 2: Massilia inoculation in early flowering maize mutants 

To explore the potential effects of Massilia on plant performance, we carried out a growth 

promotion assay for wild type N28 and its early flowering time mutant C22-4 by inoculation 

with a single Massilia isolate, or synthetic communities with different members of isolates e.g. 

SynCom 1 with 12 members, SynCom 2 with 13 members. Before the inoculation experiment, 



Chapter 3 Enrichment of Massilia in lateral roots is associated with flowering in maize 

82 

 

we first aligned the sequences of different Massilia strains to the 16S (V1−V9) sequence of the 

hub OTU3535 using BLASTn (v2.6.0) (Camacho et al., 2009) with default parameters. We 

used the same soil as in the previous soil pot experiment and sterilized it according to an 

established protocol (Yu et al., 2021). Seed sterilization, isolates preparation, root inoculation 

and growth assay were performed as previously reported (He et al., 2023). The wild type plants 

and mutants were grown in the greenhouse (16/8 h light/dark and 26/18 °C) for 1 month. Then 

plants were harvested, and the shoot dry biomass and number of fully developed leaves was 

determined.  

Data availability 

All raw plant RNA-seq data, bacterial 16S sequencing data reported in this paper were 

deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession no. 

PRJNA1018308. RNA-seq reads were mapped to the maize reference genome sequence v.5 

(http://ftp.ensemblgenomes.org/pub/plants/current/fasta/zea_mays/dna/Zea_mays.Zm-B73-

REFERENCE-NAM-5.0.dna.toplevel.fa.gz) and were annotated based on the reference gene 

models v.5 (http://ftp.ensemblgenomes.org/pub/plants/current/gtf/zea_mays/Zea_mays.Zm-

B73-REFERENCE-NAM-5.0.53.chr.gtf.gz).  The GO terms were annotated using g:Profiler 

(https://biit.cs.ut.ee/gprofiler/gost). We deposited all raw OTU table, OTU taxonomy, gene 

table and customized scripts including all downstream analysis and the association of gene, 

bacteria and phenotypic traits in the following GitHub 

repository:https://github.com/Danning16/Integrated-analysis-of-bacteria-and-transcriptome-

along-the-primary-root-in-maize. 
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4 Discussion 

The microorganisms living in soil are the main source of the root and rhizosphere microbiome 

in plants. The relationship between microorganisms and plants can be mutually beneficial. 

Microorganisms facilitate plants to acquire mineral nutrients (Salas-González et al., 2021), and 

protect against biotic and abiotic stresses (Cheng et al., 2019; Oldroyd & Leyser, 2020), while 

plants provide nutrient-rich resources such as carbohydrates, amino acids, and vitamins as 

energy source for microorganisms (Lanfranco et al., 2018; Poole et al., 2018). Soil type and 

environmental factors are the main drivers of the composition and structure of microbial 

communities in the rhizosphere. Previous studies have shown that the genotype had a strong 

impact on its microbial community composition with small sample size experiments in maize 

(Brisson et al., 2019; Favela et al., 2021; Wagner et al., 2020; Wallace et al., 2018; Walters et 

al., 2018). However, how the maize genotype and its source environmental factors influence its 

microbiome assembly and to what extent the microbiome improves the host performance under 

abiotic stresses is largely unknown, especially at the population level. In particular, what host 

functional genes affect the abundance and enrichment of specific microbes remains obscure. 

In this thesis, we investigated the genotype and plant source environmental effects on the 

microbial diversity and specific microbial members in the rhizosphere and root by employing 

a large number of genotypes in maize with different domestication status under different abiotic 

stresses. We also explored how much the root and rhizosphere microbiome variation is 

attributed to host genetics, and which specific microbes are associated with host genomic 

variation underlying root development. Through diverse root type mutants in maize and 

validation experiments, we demonstrated that the keystone bacterial taxon Massilia may play 

an important role in associating with lateral root development as well as promoting plant 

performance and tolerance to nitrogen deficiency. 

4.1 Significant impact of the plant genotype on microbiome composition and 

structure  

To discover host genotype effects on the root and rhizosphere microbiome in maize, we 

employed two different strategies including permutational multi-variate analysis of variance 

(PERMANOVA) and correlation analyses between host genetic distance and microbiome 

composition. In chapter 2, principal coordinate analyses followed by PERMANOVA indicated 

that the genotype had a small but significant influence, and larger effect on fungi (R2 = 0.12, R2 

= 0.098, P <0.001) than bacteria (R2 = 0.064, R2 = 0.058, P <0.001) in both rhizosphere and 



Chapter 4 Discussion 

90 

 

root across different soil treatments. Several studies in maize have also shown that the genotype 

has a small impact on the bacterial or fungal community composition in the rhizosphere (Lund 

et al., 2022; Peiffer et al., 2013; Wagner et al., 2020). Specifically, Peiffer et al. (2013) 

demonstrated a ~5% genotype effect on the rhizosphere bacterial community using 27 inbred 

lines grown in 5 fields, while they observed a ~18% genotype effect within each field. Lund et 

al. (2022) detected a ~30% genotype effect on the rhizosphere bacterial community using 6 

landraces under a single controlled condition. Wagner et al. (2020) reported that the genotype 

has similar effects on bacteria (R2 = 0.066, P = 0.001) and fungi (R2 = 0.063, P = 0.001) of the 

maize rhizosphere using 7 inbred lines and 11 hybrids in two fields. The highly variable 

genotypes, sample size, sampling time and different environments made it very difficult to 

compare the genotype effect on microbial community, which might be hidden by different soil 

and climate conditions. Alternatively, we detected only a significant soil treatment and 

genotype interaction effect on the rhizosphere bacteria, demonstrating that some specific 

genotypes have a stronger influence on rhizosphere bacteria under specific stress conditions 

than under control conditions.  

At the population level, we detected a stronger correlation between the host genetic distance 

and the rhizosphere than that with the root in both bacteria and fungi respectively, using the 

Mantel statistical test after controlling soil treatments. However, there was no significant 

correlation between the maize kinship matrix and bacterial composition in the rhizosphere 

(Peiffer et al., 2013). One possible explanation is that the rhizosphere microbiome is indirectly 

influenced by host genotype which may be hindered by environmental effects. Nevertheless, 

recent studies in maize showed that the host genetic distance was correlated with the 

rhizosphere microbiome dissimilarity (Deng et al., 2021; Lund et al., 2022; Wagner et al., 2020), 

which is consistent with our results.  

Moreover, our results in chapter 3 demonstrated that the genotype explained more of the 

variance of bacterial composition of the primary root rhizosphere, the primary root, cortex and 

stele (R2 = 0.14−0.27) than that of the lateral root rhizosphere and the lateral roots (R2 = 

0.11−0.13). All these data indicate that the genotype effect is small but significant, which may 

depend on different environments, compartments and specific root tissues.  

4.2 Stresses increased broad-sense heritability in the rhizosphere bacteria 

Broad-sense heritability is defined as the proportion of phenotypic variability that is attributable 

to genetic factors (Klug et al., 2016). Higher heritability estimates suggest that genetic 
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variability has a larger influence on the variability of microbial abundance. Our results in 

chapter 2 showed, in general, that heritability in the rhizosphere is higher than in the root at 

family, genus and amplicon sequence variant (ASV) level, which is consistent with our above 

PERMANOVA and correlation test results showing stronger effects between host genetics and 

the rhizosphere than the root. In our study, the maximum heritability of bacteria at ASV level 

was 0.63 in the rhizosphere under control soil and 0.76 in the root under low phosphorus soil. 

In previous studies in maize the maximum heritability was 0.25 across five fields and 0.54 in 

one field (Walters et al., 2018), whereas the maximum heritability was 0.76 under high nitrogen 

and 0.84 under low nitrogen in one field (Meier et al., 2022). The maximum heritability of fungi 

at ASV level in our experiment was 0.88 in the rhizosphere under control soil and 0.83 in the 

root under drought soil. The reason for a relatively higher heritability compared to previous 

studies can be due to the controlled climate conditions and homogenous soil property in our 

phytochamber. Thus, reduced environmental variance may result in higher heritability (Peiffer 

et al., 2013).  

Furthermore, both of our results and Meier et al. (2022) showed that heritability varies 

considerably within family, genus and ASV levels. At the family level, the heritability of 

Oxalobacteraceae is significantly higher than that of other families in roots under low nitrogen 

soil. This suggests that specific taxa may have very strong associations with host genetics 

(Peiffer et al., 2013). In addition, nutrient stresses increased heritability especially in the 

rhizosphere bacteria in chapter 2. However, this is not the same scenario in fungi. Similarly, 

Meier et al. (2022) found that bacteria were comparatively more heritable under low nitrogen 

than high nitrogen conditions. These two population studies coherently demonstrate a much 

stronger selectiveness of host genetics on the rhizosphere bacteria than other compartments 

under stress conditions. A potential explanation is that the function of the rhizosphere confers 

to a major defense layer to stresses and may be substantially adjusted by plants through root 

exudation when they face stresses (Yu et al., 2021).  

4.3 Amplicon sequence variants from Massilia showed high associations with 

host genomic loci 

Based on the causality of microbiome heritability (H2 >0.1), we performed GWAS to elucidate 

the associations between host genomic regions and specific microbial abundance at the family, 

genus, and ASV level under each soil condition. We detected a total of 42 significant 

associations between 32 bacterial traits and 35 QTLs in the rhizosphere, 491 associations 

between 227 bacterial traits and 193 QTLs in the root, 170 associations between 121 fungal 
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traits and 107 QTLs in the rhizosphere, and 113 associations between 51 fungal traits and 81 

QTLs in the root. While Wallace et al. (2018) only identified two Methylobacteria OTUs 

associating with host genetic loci in maize leaf, Meier et al. (2022) identified 622 genetic loci 

that were significantly linked to 104 bacterial ASVs in maize rhizosphere. These results 

highlight that host genetics confers to a much stronger selectiveness on microbial assembly in 

the rhizosphere/root than in the leaf. One potential explanation could be a direct pathway for 

plant-microbe interactions via root exudation (Doornbos et al., 2012), while the leaf microbiota 

is mainly mediated by the indirect pathway of stomata openness (Sohrabi et al., 2023). 

Furthermore, a study in tomato identified a QTL region significantly associated with Massilia 

in the rhizosphere with a larger effect size than other genera (Oyserman et al., 2022). Their 

findings support our data that several ASVs that belong to Massilia had higher heritability and 

larger explained variance by host genomic loci than other ASVs in the root under low nitrogen 

condition. This may suggest that some microbes belonging to Massilia have co-evolved with 

maize during domestication and their abundances are genetically controlled by host genomic 

regions.  

4.4 The keystone bacterial taxon Massilia drives the structure and function 

of the microbial community in maize roots 

In chapter 2, we identified the bacterial genus Massilia as one of the most represented keystone 

taxa within bacteria-fungi trans-kingdom networks across different soil treatments in both 

rhizosphere and root compartments. In addition, in chapter 3, we also identified Massilia as the 

keystone taxon within bacterial networks in the lateral root and cortex compartments. The 

bacterial taxon Oxalobacteraceae to which Massilia belongs was significantly enriched in 

primary roots (RA = 0.05), lateral roots (RA = 0.04) and cortex (RA = 0.08), and was detected 

as an indicator taxon in the cortex. This may indicate that Massilia plays a key role in driving 

the structure of the microbial community in the whole maize root system. Furthermore, in lateral 

roots, host genes significantly correlated with Massilia were enriched in functions “tryptophan 

biosynthetic process”, “rhythmic process” and “RNA biosynthetic processes”. We further 

detected significant correlations between some ASVs belonging to Massilia and genes in 

associations with maize developmental stages in chapter 3. These data further indicate that 

Massilia may influence host plant metabolism, growth and performance during its whole life 

cycle. In plants, various members belonging to the Rhizobiales and Burkholderiales orders (to 

which Massilia belongs to) were identified as keystone taxa in different studies (Banerjee et al., 

2018). Two recent studies in maize identified several potential keystone taxa which had 
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significant associations with yield and nutrient level (Lang et al., 2021; Wang et al., 2022), 

however, there is no overlap with our keystone taxa since they used different soil types from 

diverse origins in experiments and different strategies to define keystone taxa. Nevertheless, 

Massilia has been identified as a keystone taxon in crops (Lewin et al., 2021), played key role 

in protecting against pathogens in rice (Li et al., 2021), and improved salt tolerance in maize 

(Krishnamoorthy et al., 2016). Therefore, functional validation experiments are necessary to 

verify the key role of the potential keystone taxa. 

4.5 Plant source environmental factors improved the genomic prediction 

accuracy of microbial abundance 

To address the hypothesis that variation in the plant microbiome reflects local adaptation to the 

native environment, we assessed the potential effect of climatic and edaphic descriptors of the 

source environment on the microbiome in our phytochamber experiments. Firstly, we clustered 

the microbial ASVs into different co-abundant modules and investigated the correlations 

between microbial modules and source environmental factors using weighted correlation 

network analysis (WGCNA, Langfelder & Horvath, 2008). Interestingly, we found that a 

specific Massilia enriched module was significantly negatively (R = −0.28, P = 0.0039) 

correlated with total soil nitrogen content of the original sites of collection, exclusively in the 

low nitrogen soil condition, thus mirroring a potential selectiveness of Massilia when soil 

nitrogen is limited in the natural habitats. Future studies need to address the abundance of 

Massilia taxon and its relationship with the availability of soil nitrogen when plants are grown 

in their native environments. Nevertheless, our finding highlights great potential correlations 

between microbial diversity and environmental legacy effects using the natural population.  

To further understand the importance of environmental factors on the explanation of microbial 

abundance, we applied the genomic prediction strategy and compared the prediction ability of 

a genomic model, an environment model as well as a combined genomic and environment 

model on the variation of microbial abundance. Our results in chapter 2 demonstrated that 

microbial abundance could be predicted more accurately with source environmental factors or 

a combination of these with plant genetic markers than with genetic markers alone. Although 

there are no comparable studies available currently, Edwards et al. (2023) demonstrated that 

microbes tend to colonize their host plants when they are grown in their native environments 

(Edwards et al., 2023). This supports our result that the native environment of maize improved 

the prediction accuracy of microbial abundance, which may suggest that the environment plays 

an influential role in determining microbiome composition through its impact on host genetics. 
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4.6 Environmental genome-wide association study facilitates the 

identification of genetic loci associated with the keystone taxon Massilia 

To deepen the understanding of potential host adaptive genome in association with specific 

microbes, we specifically focused on the bacterial family Oxalobacteraceae due to its high 

abundance and prevalence, its highest heritability in low nitrogen soil, and its important role in 

maize tolerance to nitrogen deficiency (Yu et al., 2021). We applied our existing environmental 

Random Forest (RF) model with the 129 accessions as a training set to predict the abundance 

of ASVs in Oxalobacteraceae for 1,781 previously genotyped traditional maize varieties 

sourced from diverse environments across Mexico ( Romero Navarro et al., 2017). Among all 

predicted ASVs, the best predicted (RF model R2 = 0.28) was ASV37, belonging to the genus 

Massilia, in the root under low nitrogen treatment. Then we identified significant associations 

between the predicted abundance of ASV37 and host genetic loci using the 1,781 varieties via 

GWAS, with a top association at SNP S4_10445603 near the gene Zm00001d048945. 

Moreover, across the 1,781 panel, the minor allele frequency at SNP S4_10445603 was 

positively correlated with the predicted abundance of ASV37 but negatively correlated with 

source soil nitrogen content. This may indicate that the abundance of Massilia is genetically 

controlled by the host through its native environmental impact. Moreover, this gene 

Zm00001d048945 is predicted to encode TPX2 domain containing protein related to the 

WAVE-DAMPENED2 microtubule binding protein which was recently demonstrated to 

involve in lateral root initiation in Arabidopsis (Qian et al., 2023). Consistently, maize mutants 

for transposon insertions in the gene Zm00001d048945 in our experiments showed a significant 

reduction in lateral root density. This data supports the hypothesis that allelic variation in the 

gene Zm00001d048945 contributes to adaptation to nitrogen-poor soil by enhancing 

associations with Massilia. 

4.7 A lateral root mutation dramatically influences host gene expression and 

bacterial community composition 

To investigate the effect of specific root phenotypes on microbiome assembly, we used lateral 

root mutants, root hair mutants and wild types to compare the mutation effects of lateral roots 

and root hairs on transcriptome and microbiome assemblage. As shown by PCoA and PCA in 

chapter 3, mutations that lead to lateral root defects (R2 = 0.2−0.25, P = 5e−04) had much 

stronger effects on the bacterial community composition and transcriptomic changes than 

mutations that result in impaired root hairs (R2 = 0.045−0.1, P = 5e−04). This observation was 



Chapter 4 Discussion 

95 

 

in line with the differential expression/abundance analyses between each mutant and wild type. 

There were about ten times more differentially expressed genes (DEGs) / differentially 

abundant OTUs (DAOs) in lateral root mutants than in other mutants compared to wild types. 

Our co-occurrence network analysis also supports the notion that lateral root related bacterial 

communities had the most complex co-abundance network. This is consistent with the most 

complex connections between prokaryotes and protists on lateral roots in maize (Rüger et al., 

2021) as well as the finding that AMF preferentially colonize large lateral roots in rice (Gutjahr 

et al., 2015). One possible explanation is that lateral roots are the most active area of exudation 

which attracts more microorganisms from soil, and that lateral root primordia provide space for 

microbiome invasion (Baudoin et al., 2002; Park et al., 2004). Both functional prediction 

analysis and KEGG pathways of DEGs in chapter 3 demonstrated that a substantial proportion 

of metabolic pathways were enriched in lateral root mutants. Furthermore, the correlation 

analyses in chapter 3 suggested that there were more associations between host gene expression 

and bacterial abundance in lateral roots than in primary roots. This supports the notion that 

lateral roots may drive the function of microbial community to facilitate the host to uptake 

nutrients from soil.  

4.8 The bacterial taxon Massilia alone can contribute to lateral root 

formation, biomass production and nitrogen tolerance in maize  

We next tried to explore the direct evidence of gene-encoded root trait variation and specific 

microbiome assembly. Using Zm00001d048945 transposon-insertion mutants from two 

different genetic backgrounds, we compared the bacterial relative abundance between wild type 

and mutant plants, and detected that Massilia was the most abundant genus that significantly 

decreased in both mutants in comparison to the wild type plants in nitrogen-poor soil. These 

results together with the above suggest that the gene Zm00001d048945 modules lateral root 

development meanwhile contributes to variation of Massilia abundance in nitrogen deficient 

soil. Our previous study has shown that root-derived flavones i.e. apigenin and luteolin are 

important drivers for mediating the beneficial association of Massilia with lateral root 

development in maize (Yu et al., 2021). Therefore, we quantified apigenin and luteolin in the 

Zm00001d048945 mutants and found that the mutants accumulated significantly more apigenin 

and luteolin in comparison to wild type plants. Thus, we confirmed that the potential linkage 

between lateral root development and Massilia depends on root exudation of flavones in maize. 

A recent study demonstrated the importance of the bacteria genus Variovorax for root 

development in Arabidopsis by manipulating plant hormone level (Finkel et al., 2020). Another 
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study demonstrated that Pseudomonas promoted lateral root formation by stimulating both 

lateral root initiation and lateral root outgrowth through auxin signaling pathway in Arabidopsis 

(Zamioudis et al., 2013). Their results together with our findings demonstrate that specific 

bacterial taxa may affect root development and architecture by interacting with specific 

metabolic pathways of host plants. Furthermore, our two separate inoculation experiments in 

chapter 2 provided a strong support for the promotion of lateral root formation and improved 

growth performance via inoculation of single Massilia in mutants in nitrogen-poor soil, thus 

highlighting a great potential value of root trait interactions with keystone microbial taxa 

underlying plant fitness under abiotic stresses.  

Moreover, in chapter 3, we demonstrated that Massilia had significant associations with 103 

genes expressed in lateral roots, meanwhile was strongly associated with shoot biomass through 

an integrated network analysis. The enriched GO term of those genes was “circadian rhythm” 

and the gene timing of cab expression 1 (toc1) functioning in flower development was identified. 

Previous studies in Arabidopsis demonstrated that rhizosphere microbiota modulated flowering 

time by IAA production and can also promote plant growth by improving nitrogen availability 

in soil (Lu et al., 2018; Panke-Buisse et al., 2015). This supports our results that tryptophan 

metabolic processes or IAA biosynthesis may drive the causal interactions with specific 

beneficial microbes to improve plant growth in nitrogen limited soil. In addition, Lu et al. (2018) 

showed that addition of IAA resulted in delayed flowering time and downregulated gene 

expression of flowering related genes including toc1 gene. Similarly, our further experiment 

verified that specific ASVs that belong to Massilia had significant correlations with genes 

functioning in flowering related pathways such as pollen recognition. Through Massilia 

inoculation experiments, we detected a single inoculation of Massilia significantly promoted 

maize dry biomass and the number of leaves in the early flowering mutants, whereas we did 

not observe any effects on these traits in the wild type plants. This may suggest that the function 

of Massilia in promoting biomass and leaf number might depend on flowering time in maize. 

Taken together, we found that environmentally-adapted alleles during domestication of maize 

may promote root development and associated microbiomes to improve the plant performance. 

Our results confirm that host genetics impacts keystone microbe assembly and root 

development under soil nitrogen stress conditions to achieve optimal plant growth. These 

findings help to close the knowledge gap between how plants select and enrich the soil 

microbiome, and how this functional interaction between host plants and their microbiomes can 

be translated into crop resilience to nutrient limitation. These results also provide new insights 
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to the relationship between plant genetics, root development, associated microbiomes and plant 

fitness. 

4.9 Future perspectives 

Overall, the aim of this doctoral thesis was to investigate the beneficial interactions between 

host genetics and its microbial community that further promote plant growth and performance 

especially under stress conditions. The major finding of this thesis was that there are specific 

bacterial taxa which promote root development and also shoot biomass under low nitrogen 

conditions, but that this promotion is only specific to some maize genotypes. The mechanism 

behind this still remains unclear. To better understand the causal relationships between host 

genetics, microbial community and host performance, future experiments are needed by using 

specific plant mutants, microbe mutants and integrative analyses of multi-omics data including 

host gene expression, host metabolomes, and microbial pan-genomics.  

The most challenging part to identify the causal relationship between host plants and their 

associated microbiome is that the microbiome does not only interact with host plants and 

environments, but also with other microbial members. To verify the specific influence of some 

taxa, a collection of microbial strains needs to be isolated from maize root systems and form a 

synthetic community to perform inoculation experiments. Until now our lab only has 17 strains 

from the genus Massilia. Therefore, using these taxa to construct a community and verify the 

function of some taxa is limited. Moreover, the mechanism underlying the association between 

flowering related genes and Massilia is still unclear. To elucidate the causal relationship, the 

whole genomic information and biochemical properties of Massilia need to be investigated at 

the molecular level.  

Our finding that linkage between host genetic loci and variation of Massilia abundance 

underlying root development is encouraging. However, our experiments were performed in our 

phytochamber with homogenous soil and climatic conditions using maize genotypes mostly 

from landraces. Therefore, translational work using more maize genotypes from inbred lines 

and hybrids is necessary to comprehensively investigate this relationship in different fields. 
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6 Appendix 

6.1 Supporting figures for Chapter 2 

 

Supplementary Figure 1. Germplasm used in this study. a, Geographical coordinates of the 97 collected maize 

landraces are highlighted by green circles. b, Seed phenotypes of 97 landraces, 11 teosinte accessions, 11 inbred 

lines and 10 hybrids. c, Design of crosses of 10 inbred lines with the recurrent mother plant B73 to generate hybrids. 

The parental lines can be divided into three sub-populations (stiff stalk, non-stiff stalk, tropical/sub-tropical).  
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Supplementary Figure 2. Soil pot experiments. a, Natural soils with different nutrient levels were dug from 

Dikopshof long-term experimental station (see Methods). The soils were then sieved with a 4 mm sieve, air-dried 

and homogenized. b, Seed sterilization and germination. Only seeds with similar phenotypes were sterilized and 

germinated in a paper-roll system until the primary root had a length of 1-2 cm. c, Transfer to the soil-filled pots. 

The germinated seeds were transferred to the soil-filled pots with sterilized water. Drought was established by 

suspending watering for one week and maintenance of low soil water moisture at mild stress level described in 

Supplementary Figure 33. The plants were grown in the soil-filled pots for 4 weeks. And the soil for the drought 

treatment was used from the control soil.  
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Supplementary Figure 3. Sample harvest and sequencing strategy. a, Harvesting of shoot, rhizosphere and 

root samples. Fresh leaf tip samples were dissected and pooled from several maize plants grown under different 

treatment conditions. Rhizosphere sample was extracted from the 1st shoot-borne crown root with tightly attached 

soil. The same whorl of shoot-borne roots was separately dissected and immediately washed, dried with clean 

tissue, followed by flash freezing in liquid nitrogen. b, Extraction of genomic DNA from leaf, rhizosphere and 

root samples. c, Next-generation sequencing. The genomic DNA from pooled leaf samples was genotyped by 

genotyping by target sequencing (see Methods). The genomic DNA from rhizosphere and root samples was 

sequenced by 16 rRNA (V4 region) gene and ITS1 gene sequencing for bacterial and fungal community analyses. 
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Supplementary Figure 4. Overall diversity of the microbiome under abiotic stresses across different 

compartments. Constrained analysis of principal coordinate (CAP) ordination using Bray–Curtis dissimilarity 

with permutational analysis of variance (PERMANOVA) was applied to visualize significant microbiome 

differences across three compartments, four treatments and 129 genotypes. Compartments are shape coded. Only 

ASVs with reads >10 in ≥6 samples were included in the dataset.  
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Supplementary Figure 5. Microbial diversity across treatments in different compartments. Changes in 

bacterial (a) and fungal (b) α-diversity estimated by Shannon’s diversity index. Compartment significances were 

calculated using a two-tailed Kruskal-Wallis test with post-hoc Wilcoxon (Benjamini-Hochberg adjusted). 

Different letters indicate significance between different treatments (p <0.05). CK, control; D, drought; LN, low 

nitrogen; LP, low phosphorus. ns, not significant. Box plots include the median (the horizontal line inside the 

boxes), 95% confidence intervals (the black vertical lines) and the distribution of frequency (width of the 

differently colored zones). For a and b, n = 18 for soil under each treatment, n = 387 for rhizosphere and root 

under each treatment. All samples are biologically independent.  
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Supplementary Figure 6. Intra- and inter-kingdom network analysis. a, 3-way Venn diagram indicates the 

overlapping patterns of bacterial and fungal interacting ASVs across the compartments. The first and second 

number in the brackets indicate the bacterial and fungal ASVs respectively. b, Bar plot indicates the network 

associations measured by proportion of edges and cumulative weights within and between different microbial 

kingdoms. b-b, bacterial-bacterial interactions; f-f, fungal-fungal interactions; b-f, bacterial-fungal interactions. c, 

4-way Venn diagram indicating the overlapping patterns of bacterial and fungal interacting ASVs across treatments 

in the root. The first and second number in the bracket indicate the bacterial and fungal ASVs respectively. 
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Supplementary Figure 7. Intra- and inter-kingdom root network associations under different stress 

treatments. A sparse inverse covariance estimation for ecological association inference (SPIEC-EASI) based 

network association analysis of root-associated microbial ASVs (RA >0.05%; Prevalence >10%) across different 

treatments. Each node corresponds to an ASV and was color coded according to the family taxa. The size of nodes 

reflects the relative abundance in the root. Edges between nodes correspond to either positive (solid lines) or 

negative (dotted lines) associations and color codes of edges indicate inter- or intra-kingdom associations between 

ASVs. Connectiveness between nodes corresponds to the degree of associations. Keystone ASVs in microbial 

networks were reflected by hub scores corresponding to the thickness of the nodes. 
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Supplementary Figure 8. Identification of bacterial keystone ASVs in the rhizosphere (a) and root (b). 

Among those ASVs interacting within the network, keystone ASVs were defined based on a hub score >0.1. 
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Supplementary Figure 9. Shoot phenotype analyses measured by shoot dry biomass (a) and leaf chlorophyll 

content (SPAD) (b) under different stress conditions. Different letters indicate significant differences controlled 

by One-Way ANOVA (Tukey’s HSD, P <0.05). 

 

 

 

Supplementary Figure 10. Mantel’s statistic tests for correlation between host genotypic distance and 

microbiome distance. The exact p values are indicated.  
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Supplementary Figure 11. Heritability estimation of microbial traits. Heritability of all microbial genera (a) 

and ASVs (b) under four treatments for both bacteria and fungi (Supplemental Dataset 9). The broad-sense 

heritability (H2) was calculated using highly abundant bacterial (n = 815) and fungal (n = 248) ASVs across all 

samples. Significant differences are indicated for each compartment among treatment groups at p <0.05 after 

Benjamini-Hochberg adjustment (Kruskal-Wallis test, Dunn’s post-hoc test). Boxes span from the first to the third 

quartiles, centre lines represent the median values and whiskers show data lying within the 1.5× interquartile range 

of the lower and upper quartiles. Data points at the ends of whiskers represent outliers. The pie chats indicate the 

proportional distribution of heritability frequencies. CK, control; D, drought; LN, low nitrogen; LP, low 

phosphorus. 

  



Chapter 6 Appendix 

121 

 

 

 

Supplementary Figure 12. Circular plot summarizing the results of GWAS for bacterial (a) and fungal (b) 

traits. Results for bacterial and fungal ASVs, families and genera are shown in three different tracks, respectively. 

In each track, the −log10 (P) values of all significant marker-trait associations (MTAs) for all traits were plotted 

together. Only those MTAs explaining more than 5% of the phenotypic variance were included. MTAs for traits 

under different treatment and compartment are indicated by different colors and symbols. CK, control; D, drought; 

LN, low nitrogen; LP, low phosphorus. 
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Supplementary Figure 13. Correlation network including independent bacterial assemblies conformed by 

taxa associated with the root microbiomes. a, Identification of different root bacterial assemblies represented 

by co-expressed modules by weighted co-expression network analysis (WGCNA). Here the module eigen (ME) 

ASV was used to correlate with different shoot phenotypes e.g. shoot dry biomass, shoot nitrogen concentration 

and content. The numbers in the brackets indicate the correlation significance. b, Modules correlation network 

considering only microbial modules positively associated with shoot phenotypes. c, Different module assemblies 

represent taxa within the ecological network including bacterial ASVs highly co-occurring with each other. To 

plot the composition of ASVs in each significant module at genus level, only ASVs with frequency >=2 were 

colored. Other ASVs were all labeled as other.  
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Supplementary Figure 14. Spearman correlations between source environmental factors and different 

independent root bacterial assemblies in Supplementary Figure 13. Total nitrogen, retention potential of soil 

phosphorus and mean annual precipitation natural availability of soil nutrients and precipitation conditions in the 

places of origin for maize varieties. These source environmental factors are included for correlation as indirect 

climatic effects as our microbiomes were determined in phytochamber experiments under different water and 

nutrient treatments.  
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Supplementary Figure 15. Structural equation modeling exploring the direct and indirect effects of climatic 

legacies, genotype diversity, treatments, domestication and biomass on the microbial “darkred” module and 

keystone bacteria Massilia. Plant genetic diversity 1 (Gdiv#1) and 2 (Gdiv#2) are determined as the axes of a 

NMDS (Non-metric Multidimensional Scaling) analysis including maize genetic variability. Mean annual 

precipitation (MAP) and mean annual temperature (MAT) represent field temperature and precipitation conditions 

in the places of origin for maize varieties. They are included in our model as climatic legacies as our microbiomes 

were determined in phytochamber experiments under controlled conditions. CK, control; D, drought; LN, low 

nitrogen; LP, low phosphorus. Values indicate positive or negative Spearman correlation coefficients. Numbers 

adjacent to arrows are indicative of the effect size of the relationship. Only significant relationships (P <0.05) are 

included.  Climate legacy, genetic diversity and treatments are included in our models as independent observable 

variables; however, we group them in the same box in the model for graphical simplicity. All predictors within 

each are allowed to co-vary. This does not apply to the model in which only one predictor for a given group is 

included. In this case, the name of the predictor stands alone (e.g. domestication). All models showed a good model 

fit. The standardized total effect (STE) of low nitrogen, source mean annual temperature, source precipitation and 

plant genotype (genetic diversity 2) are calculated.  
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Supplementary Figure 16. Genomic and environmental prediction of microbial ASVs. ASV traits prediction 

using genetic markers and environmental characters. The numbers denote the average prediction accuracies for 

microbial ASVs from different treatments across compartments. Only ASVs with heritability (H2) >0.1 were 

considered in prediction analyses. Boxes span from the first to the third quartiles, centre lines represent the median 

values and whiskers show data lying within 1.5× interquartile range of the lower and upper quartiles. Data points 

outside of whiskers represent outliers. CK, control; D, drought; LN, low nitrogen; LP, low phosphorus. G_BLUP 

model refers to genetic model; E_BLUP model refers to environmental model; G+E_BLUP model refers to 

combined genetic and environmental model.  
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Supplementary Figure 17. Prediction accuracy of microbial families. a, Number of highly heritable (H2 >0.1) 

microbial families. b, Degree of prediction accuracies of microbial families from different treatments across 

compartments. Only families with heritability (H2) >0.1 were considered in prediction analyses. PA, prediction 

accuracy; CK, control; D, drought; LN, low nitrogen; LP, low phosphorus.  
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Supplementary Figure 18. Prediction accuracy of microbial genera. a, Number of highly heritable (H2 >0.1) 

microbial genera. b, Degree of prediction accuracies of microbial genera from different treatments across 

compartments. Only genera with heritability (H2) >0.1 were considered in prediction analyses. PA, prediction 

accuracy; CK, control; D, drought; LN, low nitrogen; LP, low phosphorus.  
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Supplementary Figure 19. Best prediction patterns of microbial taxa. G_best indicates best prediction by 

genetic makers alone. E_best indicates best prediction by environmental characters alone. G+E_best indicates best 

prediction by combined genetic markers and environmental characters. Only microbial families and genera with 

heritability (H2) >0.1 were considered in prediction analyses. CK, control; D, drought; LN, low nitrogen; LP, low 

phosphorus.  
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Supplementary Figure 20. Fitness traits prediction results using host genetics data alone (rrBLUP) and both 

genetic and microbiome data. In the figure, different fitness traits were aggregated into one boxplot. In addition 

to the SNP marker data, the following microbiome data were incorporated into the prediction models: 1) all the 

microbiomes, including bacteria and fungi from both rhizosphere and root compartments, 2) bacteria from both 

rhizosphere and root compartments, 3) fungi from both compartments, 4) bacterial and fungi from the rhizosphere, 

and 5) bacteria and fungi from the root.  
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Supplementary Figure 21. Agronomic trait prediction using genetic markers and microbiome traits in 

foxtail millet. a, Prediction accuracy for different agronomic traits using genetic (G) markers alone or combined 

genetic and microbiome traits (G+M). b, Proportional increase of prediction accuracy for different agronomic 

traits using G+M mode over G mode. 12 agronomic traits were extracted from the publication by Wang et al. 2022 

and predicted using genetic markers or combined markers and microbiome traits.  
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Supplementary Figure 22. Correlation between microbial communities and local environments. Mantel’s 

statistical tests were performed between microbiome features and environmental characters (elevation and 

geographical distance). Significances were indicated by exact p values based on 999 permutations.  
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Supplementary Figure 23. Prediction of rhizosphere bacteria PC2. a, Random forest approach can well predict 

the microbiome PC2 in the rhizosphere under different conditions. b, Heatmap indicates the importance of 

environmental variables in PC2 predictions across treatments.  
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Supplementary Figure 24. Microbiome prediction. a, Prediction of microbial abundance by using individual 

Massilia ASVs. b, Prediction of microbial abundance by using the whole microbiome (top 5 PCs).  



Chapter 6 Appendix 

134 

 

 

 

Supplementary Figure 25. Random forest modelling correlation of testing taxa. The environmental characters 

can be referred to from Supplementary Dataset 12.    
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Supplementary Figure 26. Maximum-likelihood phylogeny of dominant fungal families (n > 5). Circle sizes 

along the branches of the tree indicate the number of ASVs observed in association with microbial families. Colour 

coded families are clustered at the phylum level. Bar plots describe the prevalence according to the proportional 

sample size. The heatmaps illustrate the standardized mean relative abundance and the estimated heritability of 

microbial families from the root to the rhizosphere. Triangles represent the enrichment or depletion of microbial 

families, and increased or decreased heritability from the root to the rhizosphere. The significance levels were 

controlled at two levels (*: p <0.05; **: p <0.01). 
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Supplementary Figure 27. Random forest modelling correlation of ASV37 in root under nitrogen-poor 

conditions. The environmental characters can be referred to from Supplementary Dataset 12.     
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Supplementary Figure 28. Maps showing the spatial variation of targeted ASV and total soil nitrogen 

contents based on 1,781 landraces. Top panel: Predicted relative abundance of ASV37 in roots under low 

nitrogen; Bottom panel: Distribution of total nitrogen content in soils. Green shades correspond to higher values, 

whereas yellow shades correspond to lower values.   
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Supplementary Figure 29. Transposon-tagged mutations of gene Zm00001d048945 (version 4). Induced 

maize mutants of the BonnMu resource derive from Mutator-tagged F2-families in the genetic backgrounds B73 

and F7. We identified two insertion lines, BonnMu-8-D-0170 (B73) and BonnMu-F7-2-F-0598 (F7), harboring 

insertions 1,264 bp upstream of the start codon ATG and in the second exon of Zm00001eb167670 (version 5), 

respectively.  
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Supplementary Figure 30. Inoculation of Massilia can modulate lateral root development and growth 

performance of lateral root defective mutants in another nitrogen-poor soil. Massilia inoculations are able to 

enhance shoot dry weight (a, b) and lateral root development (c, d). Representative images of the whole shoot and 

1st whorl of crown roots illustrate the shoot performance and more emerged lateral roots by Massilia strains. 

Nitrogen deficient phenotype (e, f) and shoot nitrogen concentration (g) was evaluated by relative leaf chlorophyll 

concentration measured by the SPAD value of the last fully expanded leaf. Each individual leaf was measured 10 

times as the average value. D−0170 and F−0598 are the lateral root defective mutants in comparison to their 

respective wild type plants B73 and F7. Different letters indicate significantly different groups (ANOVA, Tukey’s 

HSD, P <0.05). n = 5 biologically independent samples and the error bars indicate the standard errors. Scale bars 

are indicated in the images. Prior to ANOVA analysis, the observed values were checked for normal distribution 

and the homogeneous variance among the groups.  
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Supplemental Fig 31. Graphic illustration of experimentally and computationally guided analyses of host 

root and rhizosphere microbiome association in maize. a, Different maize locally adapted varieties (teosinte 

and landraces) and the environmental (soil and climate) data of their source habitats were collected from the 

databases. Meanwhile, these local varieties together with another modern varieties were grown under the 

controlled conditions with different abiotic stress treatments (control, drought, low nitrogen and low phosphorus) 

in the phytochamber pot experiment. The microbiome was sequenced in the compartment rhizosphere and root for 

both bacterial and fungal community. b, The normalized ASVs table was used for microbial cooccurrence network 

and WGCNA analyses to identify the keystone and eigentaxa, which were used to correlate with plant traits and 

sourced environments e.g. total nitrogen, phosphorus retention rate and annual precipitation, which corresponds 

to our experimental treatment. The heritability and genomic predictions using different models e.g. G_BLUP, 

E_BLUP, G+E_BLUP were performed to understand how the genetic and environmental variation affect the 

relative abundance of microbial ASVs, followed by plant trait prediction using genetic and microbiome 

information. c, RandomForest machine learning approach was used to integrate the local environmental data and 

genomic markers to predict the microbial abundance, which was further used for GWAS analysis based on the 

highly heritable microbial taxa e.g. Oxalobacteraceae. d, We finally identified the genetic variation and gene-

encoded mutant defected on lateral root formation, which are negatively associated with sourced total nitrogen 

availability. To the end, we verified the gene regulated lateral root formation and its reciprocal interaction with 

specific microbial taxon Massilia (Oxalobacteraceae) by 16S rRNA sequencing and root inoculation experiments. 
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Supplementary Figure 32. Experimental design. The experiment was laid out in a split plot design comprising 

four treatments: (1) fully fertilized control soil, (2) low nitrogen (LN) soil with no nitrogen fertilizer applied, (3) 

low phosphate (LP) soil with no phosphate fertilizer applied and (4) control soil with drought (D) treatment. 

Different numbers were allocated to the different genotypes: landraces (1-97), inbred lines (98-108), hybrids (109-

118) and teosinte (119-129). Six pots (130-135) without plants were set up as ‘bulk soil’ samples. Each tray 

comprises 35 pots with different germplasm groups and bulk soil pots. The pot distribution in each tray was 

randomized. The whole set-up was repeated three times as three biological replicates.  
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Supplementary Figure 33. Preliminary drought experiment. The left panel indicates the three drought 

experiments with different water levels. The right panel indicates the shoot and root phenotypes grown under three 

different drought levels.  
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Supplementary Figure 34. Availability of nutrients and precipitation for landraces collected in their natural 

habitats. The original data is provided in Supplementary Dataset 12.  
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Supplementary Figure 35. Phylogenetic relationship of the 129 maize genotypes used in this study. A 

neighbour-joining tree was produced using SNP markers. Different colours correspond to different germplasm 

groups. Different shades of blue represent different sources of local landraces. 

 

Supplementary Table 1 Determination of soil nitrogen, phosphorus, pH and total organic carbon. 

The values presented are mean ± standard error of all samples for three nutrient treatments collected from 

Dikopshof in 2019. Means followed by the same letter are not significantly different at p <0.05 according to LSD 

(ANOVA, turkey HSD, n = 5). Note that we used the soil from long-term experimental station, and thus the pH 

value in the low nitrogen soil is a bit lower than control and low phosphorus soil. 

 

Soil properties Control Low nitrogen Low phosphorus 

Total N (%) 0.094 ± 0.0027a 0.076 ± 0.00088b 0.087 ± 0.00053a 

Conc. P (mg/kg) 69.23 ± 1.61a 67.55 ± 1.06a 24.50 ± 1.39b 

pH  6.74 ± 0.08b 7.23 ± 0.07a 6.97 ± 0.07ab 

Total organic carbon (%)  0.60 ± 0.062a 0.56 ± 0.043a 0.69 ± 0.010a 
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6.2 Supporting figures for Chapter 3 

 

 

Fig. S1. Overlapped OTUs (A) and genes (B) among all compartments. Rh_PR, Rhizosphere from primary 

roots; Rh_LR, Rhizosphere from lateral roots; PR, Primary roots; LR, Lateral roots. Expressed OTUs are defined 

as relative abundance >0.1% in at least 5% samples. Expressed genes are defined as reads >5 in at least 4 samples. 

 

 

Fig. S2. Bacterial α-diversity among genotypes (A) and treatments (B) across rhizosphere and root 

compartments. α-diversity was estimated by Shannon’s diversity index. Compartment significances were 

calculated using a Kruskal-Wallis test with post-hoc Dunn’s test (Benjamini-Hochberg adjusted P <0.05). 

Different letters indicate significance among different genotypes or treatments (Benjamini-Hochberg adjusted P 

<0.05). Rh_PR, Rhizosphere from primary root; Rh_LR, Rhizosphere from lateral root; PR, Primary root; LR, 

Lateral root. rum1, rootless with undetectable meristem 1; rtcs, rootless concerning crown and seminal roots; lrt1, 

lateral rootless 1; rth, roothairless. B73 is the wild type plant. Boxes span from the first to the third quartiles, 

centre lines represent median values and whiskers show data lying within 1.5× interquartile range of lower and 

upper quartiles. Data points at the ends of whiskers represent outliers.  
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Fig. S3. Principal component analysis (PCA) illustrating the transcriptomic dissimilarity between genotypes 

and treatments for each compartment. A, Primary root; B, Lateral root; C, Cortex tissue; D, Stele. rum1, 

rootless with undetectable meristem 1; rtcs, rootless concerning crown and seminal roots; lrt1, lateral rootless 1; 

rth, roothairless. 
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Fig. S4. Principal coordinate analysis (PCoA) showing the dissimilarity of bacterial β-diversity for each 

compartment. A, Rhizosphere from primary root; B, Rhizosphere from lateral root; C, Primary root; D, Lateral 

root; E, Cortex tissue; F, Stele tissue. rum1, rootless with undetectable meristem 1; rtcs, rootless concerning crown 

and seminal roots; lrt1, lateral rootless 1; rth, roothairless.  
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Fig. S5. PERMANOVA results for PCoA of bacterial community composition and PCA of gene expression. 

Rh_PR, Rhizosphere from primary root; Rh_LR, Rhizosphere from lateral root; PR, Primary root; LR, Lateral 

root. 
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Fig. S6. OTU-OTU co-occurrence network in soil (A), rhizosphere of primary root (B), rhizosphere of lateral 

root (C), primary root (D), lateral roots (E), cortex (F) and stele (G). Nodes color represents phylum, node 

size is proportional to hub score and node border width is proportional to mean relative abundance. Key OTUs are 

labeled by OTU id. Red and blue solid lines indicate positive and negative correlations respectively. 
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Fig. S7. Number of nodes and edges of the OTU-OTU SparCC network within each compartment. Rh_PR, 

Rhizosphere from primary root; Rh_LR, Rhizosphere from lateral root; PR, Primary root; LR, Lateral root. 

 

 

Fig. S8. Relative abundance of the top ten enriched families across different compartments. Rh_PR, 

Rhizosphere from primary root; Rh_LR, Rhizosphere from lateral root; PR, Primary root; LR, Lateral root. 

Significances were indicated among different compartments by different letters for each family (Benjamini-

Hochberg adjusted P < 0.05, Kruskal-Wallis test, Dunn’s post-hoc test). 
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Fig. S9. Network associations between plant genes and microbial OTUs in the rhizosphere from primary 

root (A) and lateral root (B). The triangles and dots indicated the bacterial OTUs and gene features respectively. 

The size of the circles indicates the hub score. Red and blue solid lines indicate positive and negative correlations 

respectively. Only the genes with significant plant gene ontology (GO) terms connected with hub OTUs are colored 

accordingly. 
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Fig. S10. Number of edges, genes, and OTUs for each OTU-gene network. Rh_PR, Rhizosphere from primary 

root; Rh_LR, Rhizosphere from lateral root; PR, Primary root; LR, Lateral root. 

 

 

 

Fig. S11. Maize phenotypic traits under different treatments. A, Shoot dry biomass; B, Nitrogen concentration; 

C, Phosphorus concentration. N, nitrogen; P, phosphorus. rum1, rootless with undetectable meristem 1; rtcs, 

rootless concerning crown and seminal roots; lrt1, lateral rootless 1; rth, roothairless. 
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Fig. S12. Gene WGCNA modules and their correlations with plant traits. A, Primary root; B, Lateral root. 

The color bar represents the correlation coefficient. Correlation coefficient and its P-value in bracket are also 

displayed on the heatmap. 
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Fig. S13. Bacterial WGCNA modules and their correlations with plant traits. A, Rhizosphere from primary 

roots; B, Rhizosphere from lateral roots; C, Primary roots; D, Lateral roots. The color bar represents the correlation 

coefficient. Correlation coefficient and its P-value in bracket are also displayed on the heatmap. 
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Fig. S14. Linear correlation between shoot dry biomass and OTU3535 relative abundance (%). Linear model 

was fitted using lm() function. 
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Fig. S15. Trans-kingdom interaction network between bacterial OTUs and root genes in association with 

plant nutrients concentration. A, Root gene expression, bacterial OTUs in the rhizosphere from primary root 

and nitrogen concentration; B, Root gene expression, bacterial OTUs in the rhizosphere from lateral root and 

nitrogen concentration; C, Root gene expression, bacterial OTUs in the rhizosphere from lateral root and 

phosphorus concentration. The triangles, dots and squares indicated the bacterial OTUs, gene features and plant 

phenotypic traits respectively. The size of the nodes indicates the hub score. Red and blue solid lines indicate 

positive and negative correlations respectively. Only the genes with significant plant gene ontology (GO) terms 

connected with hub OTUs are colored accordingly. 
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Fig. S16. PCA plot and differentially expressed genes between flowering stage and seedling stage. 

PERMANOVA test was performed to calculate the variance explained by stage in gene expression (permutations 

= 1999).  Differentially expressed genes were determined by setting absolute value of log2Foldchange >2 and FDR 

adjusted P <0.01, colored in blue points. 
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7 Publications 

7.1 Publications related to this thesis 

• Heritable microbiome variation is correlated with source environment in locally 

adapted maize varieties. 

Xiaoming He#, Danning Wang#, Yong Jiang#, Meng Li#, Manuel Delgado-Baquerizo#, 

Chloee McLaughlin, Caroline Marcon, Li Guo, Marcel Baer, Yudelsy A.T. Moya, 

Nicolaus von Wirén, Marion Deichmann, Gabriel Schaaf, Hans-Peter Piepho, Zhikai 

Yang, Jinliang Yang, Bunlong Yim, Kornelia Smalla, Sofie Goormachtig, Franciska T. 

de Vries, Hubert Hüging, Mareike Baer, Ruairidh J. H. Sawers, Jochen C. Reif, Frank 

Hochholdinger, Xinping Chen, Peng Yu. (#: co-first authors). 

Nature Plants, 2024, 10, 598–617. DOI: https://doi.org/10.1038/s41477-024-01654-7. 

The published version is reproduced in Chapter 2 of the thesis. 

Own contribution: I processed and mapped the 16S rRNA gene reads and conducted 

the downstream analyses of the microbiome data, performed the statistical analyses and 

interpreted the related results. I wrote the part of manuscript for which I performed the 

analyses, and designed and plotted the figures.  

• Enrichment of the bacterial taxon Massilia in lateral roots is associated with 

flowering in maize. 

Danning Wang, Xiaoming He, Marcel Baer, Klea Lami, Baogang Yu, Alberto 

Tassinari, Silvio Salvi, Gabriel Schaaf, Frank Hochholdinger, and Peng Yu. 

Microbiome (2023). (In revision). 

The submitted version is reproduced in Chapter 3 of the thesis. 

Own contribution: I processed and mapped the 16S rRNA gene reads, RNA-seq reads 

and conducted all downstream analyses of the microbiome data, transcriptome data, 

network integration analysis, statistical analyses and interpreted the results. I wrote the 

whole manuscript, and designed and plotted the figures.  

7.2 Publications unrelated to this thesis 

• Root system adaptation to water availability during maize domestication and 

global expansion. 

Peng Yu#, Chunhui Li#, Meng Li#, Xiaoming He#, Danning Wang, Hongjie Li, 

Caroline Marcon, Yu Li, Sergio Perez-Limón, Xinping Chen, Manuel Delgado-

Baquerizo, Robert Koller, Ralf Metzner, Dagmar van Dusschoten, Ljudmilla Borisjuk, 

https://www.sciencedirect.com/science/article/abs/pii/S0048969722016606#!
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Iaroslav Plutenko, Audrey Mahon, Marcio F.R. Resende Jr., Silvio Salvi, Asegidew 

Akale, Mohanned Abdalla, Mutez Ali Ahmed, Felix Maximilian Bauer, Andrea 

Schnepf, Guillaume Lobet, Adrien Heymans, Kiran Suresh, Lukas Schreiber, Chloee 

M. McLaughlin, Chunjian Li, Manfred Mayer, Chris-Carolin Schön, Vivian Bernau, 

Nicolaus von Wirén, Ruairidh J. H. Sawers, Tianyu Wang, Frank Hochholdinger. 

Nature Genetics (2024). (Accepted).   

• Epidermis-specific transcriptomic responses reveal that cold mediates root hair 

plasticity of maize via dreb2.1. 

Yaping Zhou, Annika Meyer, Danning Wang, Alina Klaus, Tyll Stöcker, Caroline 

Marcon, Heiko Schoof, Georg Haberer, Chris-Carolin Schön, Peng Yu, and Frank 

Hochholdinger.  

Plant Physiology (2023). (Submitted). 

7.3 Presentations at conferences 

• Eco-evolutionary signature of root–microbiome association in maize.  

International Conference of the German Society for Plant Sciences. Aug 28 – Sep 1, 

2022. Bonn, Germany. (Poster presentation). 

• Maize domestication contributes to microbiome-driven root branching and 

nitrogen stress resilience.  

10th International Symposium on Root Development. May 15 – 18, 2023.  

Ghent, Belgium. (Oral presentation). 
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