
Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Landwirtschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn
Institut für Geodäsie und Geoinformation

Robot Mapping with 3D LiDARs

von

Ignacio Martin Vizzo
aus

Ciudad Autónoma de Buenos Aires, Argentina

Bonn 2024

Referent:
Prof. Dr. Cyrill Stachniss, University of Bonn, Germany

Korreferent:
Prof. Dr. Giorgio Grisetti, La Sapienza University of Rome

Tag der mündlichen Prüfung: 01. December 2023

Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn

Zusammenfassung

R oboter sind in der Lage, Menschen auf unterschiedliche Arten zu
unterstützen. Zum Beispiel können sie für uns Menschen unlieb-
same Aufgaben übernehmen, wie das tägliche Staubsaugen im eigenen
Haushalt. Sie führen Kraftfahrzeuge, bei denen menschliche Fehler fa-

tale Auswirkungen haben. Roboter ermöglichen uns, viele unserer heutigen Auf-
gaben effizienter und akkurater zu lösen. Ein Roboter kann zum Beispiel ununter-
brochen große Lagerhäuser scannen und Informationen für eine optimierte nach-
folgende Logistik liefern. Wir können Roboter auch auf anderen Planeten einset-
zen, beispielsweise auf dem Mars, wo Bodenfahrzeuge das Gelände durchkämmen,
Daten sammeln und zurück zur Erde schicken und uns somit Informationen über
potenzielles Leben zugänglich machen.

Durch die hohe Komplexität der einzelnen Komponenten eines Robotersys-
tems stellen uns diese Aufgaben vor große Herausforderungen. Ein Roboter
ohne jegliches Vorwissen über seine Umgebung muss gleichzeitig ein Modell der
Umgebung erstellen, seine Position innerhalb dieser bestimmen, sein Umfeld
analysieren und eine effiziente Route zur Erkundung der teils noch unbekannten
Umgebung entwickeln. Oft dient eine Karte als Repräsentation der Umgebung
und liefert eine räumliche Darstellung des Gebiets, in der Hindernisse, Wege
und andere wichtige Merkmale verzeichnet sind. Mit diesem Wissen kann ein
Roboter effektiv navigieren, Kollisionen vermeiden und die oben genannten Auf-
gaben sicher ausführen.

Eine wesentliche Herausforderung stellt die dreidimensionale Welt dar, in der
ein Roboter sich bewegt. Der Einsatz moderner Sensoren, wie zum Beispiel 3D-
LiDARs, ist daher für reale Anwendungen in der Robotik unerlässlich. Durch die
Nutzung von dreidimensionalen Daten können wir die Fähigkeiten und Anwen-
dungsmöglichkeiten von mobilen Robotern erweitern und über die Grenzen des
Möglichen hinaus verschieben.

Die zentrale Frage dieser Arbeit lautet: “Können wir anhand der Daten von
3D-LiDAR Sensoren abschätzen, wie unsere Umgebung aussieht?” Um diese
Frage zu beantworten, entwickeln wir eine umfassende Pipeline für die 3D
Kartierung. Wir präsentieren zunächst eine zuverlässige Strategie zur Erfassung

iii

von Sensordaten aus der Umgebung. Dann stellen wir eine Methode vor, um die
räumliche Bewegung der Sensoren in der Umgebung zu bestimmen. Schließlich
untersuchen wir unterschiedliche Repräsentationen der Welt, die für
verschiedene nachgelagerte Aufgaben wie z.B. Navigation, Lokalisierung oder
Interpretation der Umgebung verwendet werden können. Mit den in dieser
Arbeit vorgestellten Ideen können mobile Roboter selbständig 3D Karten
erstellen, mit denen sie die Welt besser verstehen und in ihr navigieren können.

Die in dieser Arbeit beschriebenen Methoden leisten mehrere wichtige
Beiträge zur Kartierung mit 3D-LiDAR Sensoren und erweitern den aktuellen
Stand der Technik in Bezug auf Robustheit und Effizienz. Alle Beiträge wurden
mit realen Datensätzen validiert und in Konferenzbeiträgen und
Zeitschriftenartikeln nach dem Peer Review Verfahren veröffentlicht. Darüber
hinaus wurden die Arbeiten als freie Software öffentlich zugänglich gemacht, um
Transparenz zu gewährleisten und zukünftige Forschung zu erleichtern.

iv

Abstract

R obots can assist humans in a multitude of ways. For example, robots
can handle tedious tasks that humans prefer not to do, such as vac-
uum cleaning daily to keep a house clean. They can tackle challenging
problems that, when attempted by humans, might result in fatal er-

rors, such as driving a car. Furthermore, robots can perform tasks we already do
but with greater efficiency and accuracy. An example of this could be a robot
that constantly scans large warehouses, providing insights on optimizing logistics
worldwide. Additionally, robots can be deployed to foreign planets like Mars,
where rovers can traverse the terrain, collect data, and send it back to Earth,
giving us insights into the potential viability of human habitation there.

Addressing these tasks effectively is a significant challenge due to the complex
nature of each component that constitutes a robotics system. A robot without
prior knowledge about its environment must simultaneously create a map, de-
termine its location within that map, analyze its surroundings, and devise an
efficient route to explore an unfamiliar environment. Often, a map serves as
the robot’s foundational understanding of its surroundings and provides a spa-
tial representation of the area, identifying obstacles, paths, and other significant
features. This knowledge is essential for the robot to effectively navigate, avoid
collisions, and perform the aforementioned tasks strategically and safely.

In addition to these challenges, robots exist and navigate within a three-
dimensional world. Consequently, using and exploiting modern sensors, such as
3D LiDARs, become essential in tackling real-world robot applications. By relying
on 3D data, we can expand mobile robots capabilities and potential applications,
pushing the boundaries of what they can accomplish.

The central question of this thesis is: “Can we estimate what the world looks
like based on sensor data from 3D LiDARs?” To answer this question, we develop
a comprehensive 3D mapping pipeline. We first propose a reliable mechanism to
collect data from the real world. Second, we introduce a method to understand
the spatial movement of the sensors within the world. Finally, we investigate di-
verse world representations for different downstream robotic tasks, such as navi-
gation, localization, scene understanding, and others. The ideas presented in this

v

thesis empower mobile robots to create 3D maps on their own, allowing them to
understand and navigate the world more effectively.

The work described in this thesis makes several significant contributions to
robot mapping using 3D LiDARs. As a result, this work advances the current
state of the art regarding robustness and efficiency in robot mapping with 3D
LiDARs. All contributions have been validated with tests on real-world datasets,
undergone rigorous scientific review, and published in conference papers, work-
shop papers, and journal articles, all subject to peer review. Furthermore, these
contributions have been made publicly available as open-source software to pro-
mote transparency and facilitate further research.

vi

Acknowledgements

E mbarking on the path toward a Ph.D. is unquestionably a challenging
endeavor. Only those unfamiliar with its intricacies might think such
a monumental task could be accomplished alone. In this chapter, I
would like to thank everyone who has accompanied me during the last

five years, making this thesis possible.
First and foremost, I would like to express my gratitude to my advisor, Prof.

Dr. Cyrill Stachniss, for his unconditional support, insightful guidance, and con-
stant encouragement throughout my journey. His deep understanding of the
subject matter, together with his meticulousness, helped shape my academic per-
spective. He not only offered me academic wisdom but also taught me to persist
and never give up in the face of challenges. Without any doubt, he is the academic
advisor I wish everyone had.

I also want to thank those who paved the way for me to embark on my Ph.D.
journey. I thank Mario Munich for giving me my first opportunity in robotics and
Vittorio Ziparo for being a great leader and friend during this time. I would also
like to thank Andres Milioto for helping me in all possible ways at the beginning
of my Ph.D. career, making his home mine, and for countless mate [129] sessions,
where every possible topic in life was for debate.

Sharing an office with someone like myself poses an equally challenging ex-
perience as pursuing a Ph.D. For this, I would like to thank all those who have
tolerated my screams and curses in four languages during the last few years. I
thank my friend Lorenzo Nardi for being supportive during the beginning of my
Ph.D. I thank Irvin Aloise for teaching me many ways to express my deepest
thoughts in Italian during his short stay in Bonn. And lastly, Benedikt Mersch,
for his exceptional patience, countless academic and non-academic discussions we
shared in the office, for blossoming into a true friend, and for being my go-to
person for anything related to German matters.

I also want to thank all my colleagues and lab mates. I am incredibly fortu-
nate to be surrounded by such remarkable individuals, each unique, who provide
unconditional support and motivation in my professional and personal life. Al-
though the list of names should be longer, I would like to mainly express my grat-

vii

itude for the moments I have shared with Daniel Casado, Elias Marks, Federico
Magistri, Hyungtae Lim, Louis Wiesmann, Luca Lobefaro, Lucas Nunes, Meher
Malladi, Nived Chebrolu, Olga Vysotska, Rodrigo Marcuzzi, Xieyuanli (Rhiney)
Chen, and Yue (Linn) Chong. I would also like to thank Igor Bogoslavskyi for
being a remarkable Ph.D-uncle and always being supportive and ready for help,
especially during the last time of my Ph.D. In addition to all my colleagues, I
want to thank Jens Behley for the uncountable late nights of writing scientific
papers together, for his invaluable help in thoroughly reviewing and improving
the manuscripts before submission, and for consistently serving as reviewer two. I
also express my sincere appreciation to Birgit Klein, whose invaluable assistance
with administrative matters has spared me from the potential difficulties and
frustrations that often accompany such tasks.

Over the past five years, I have had the opportunity and the challenge of
teaching many students. What I did not anticipate was the immense amount of
knowledge and wisdom I would acquire from my students. I thank in particular
the now friends Alessandro Riccardi, Andrzej Reinke, Dhagash Desai, Saurabh
Gupta, Sumanth Nagulavancha, Vardeep Singh Sandhu, Lukas Arzoumanidis,
Preetham Guruprasad Yashoda, and Yash Goel for always being proactive and
pushing the barriers of what I can teach further. Thank you for being my fuel to
keep running and keeping me motivated on my academic path when everything
seemed to fall apart.

Living in Germany for an extended period has blessed me with numerous new
friendships and a sense of belonging, similar to having an extended family. In
addition to the people mentioned above, I would like to thank all my German
friends, Aurélie Lehmann and FabianWaser, Angelika Schmitz, Alice Matheis and
Christian Kunze, Leonardo and Sol Everling, Stefan Nelles and Joana Dionisio,
and Xavier and Mariele Donoso Olave. Additionally, I would like specially express
my gratitude to Violette Schmidt for making me and my wife part of her family. I
also would like to thank all the friends of the large Spanish-speaking community
of Bonn. In particular, I would like to thank Nàdia Villacampa and Martin
Cándido Tejeda, Maria Vicente and Rodrigo Ariza, Clara Lucía Urbina, and
Alvaro Peralta. Without this extended family in Germany, life outside of work
would have been unfortunate. Their friendship made my journey even more
vibrant and meaningful.

I also want to thank my family for their support and guidance. Thanks to
their constant encouragement and advice, I have been able to seize the opportu-
nities that have led me to where I am today. Words cannot adequately transmit
the depth of my gratitude for the countless possibilities they enabled me, allowing
me to embrace and enjoy my Ph.D. journey. I also want to extend this acknowl-
edgment to all my friends from Argentina, who constantly supported me despite

viii

the enormous distance and never let me down.
Despite not being a conventional acknowledgment, I must express my grat-

itude to my therapist, Mariano Scarone. His guidance and support have been
instrumental in helping me navigate the challenges of my Ph.D. journey and
preventing burnout. I am immensely grateful for his spiritual guidance and its
profound impact on my well-being and overall success.

This section would not be complete without mentioning “il mio fratello”,
Tiziano Guadagnino, who became my close friend, mentor, and guide over the
last few years. Thank you for teaching me to trust myself again once everyone else
convinced me of the opposite. Without his constant drive for scientific excellence
and his relentless push to challenge my limits, a significant portion of the work I
have accomplished for this thesis would not have been possible.

Lastly, I want to express my deepest gratitude to my beloved wife Mailén
Raposo, who has been by my side throughout this long and challenging journey
we call life. Words cannot adequately capture my immense appreciation and
love for her support, understanding, and patience. If I were to dedicate one
page for each page written in this thesis, it still wouldn’t be enough to convey
the depth of my gratitude. She often says she could write a book on “How to
Accompany a Ph.D. Student Without Losing Your Mind”, given her incredible
support and understanding throughout this journey. Additionally, I would like to
thank her for generously designing the city-like CAD model used to generate the
MaiCity dataset. This dataset has played an essential role in numerous recent
research endeavors, particularly in evaluating robot mapping techniques. Still,
many researchers in the field have yet to discover that the name of the dataset is
inspired by her first name, precisely for this reason.

The work presented in this thesis is partially supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy, EXC-2070 – 390732324 – PhenoRob, by the European
Union’s HORIZON research and innovation programme under grant agreement
No 101070405 (Digiforest) and by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101017008 (Harmony).
The financial support is gratefully acknowledged.

ix

For my father, may he rest in peace.

xi

Contents

Zusammenfassung iii

Abstract v

Contents xiii

1 Introduction 1
1.1 Map Representations in Robotics 4
1.2 Main Contributions . 6
1.3 Thesis Organization . 7
1.4 Publications . 8
1.5 Further Scientific Contributions 9
1.6 Open Source Contributions . 10

2 Related Work 13
2.1 Point Cloud Registration in Robotics 14
2.2 Map Building in Robotics . 17

2.2.1 Exploiting Maps for Robot Localization 21

3 A Modern Infrastructure for Reliable Data Collection 23
3.1 Reproducible Version-Controlled Perception Platforms 24
3.2 The Meta-Workspace Concept . 26
3.3 Building Blocks of a Version-Controlled Perception Platform . . . 27

3.3.1 Docker Registry . 28
3.3.2 Sensor Drivers . 28
3.3.3 Time Synchronization . 29
3.3.4 Networking . 31
3.3.5 Documentation . 31
3.3.6 Unified Robotics Description Format (unified robotics de-

scription format (URDF)) Models 32
3.3.7 Continuous Integration/Continuous Deployment Continu-

ous integration/continuous deployment (CI/CD) 32

xiii

Contents

3.4 Building a Version-Controlled Platform – A Concrete Use Case
Example . 32
3.4.1 The IPB-Car Platform . 33
3.4.2 Step 1: Identify System git Components 34
3.4.3 Step 2: Containerize All Components 34
3.4.4 Step 3: Create a Meta-Workspace Repository 35

3.5 Practical Applications of Our Method 35
3.5.1 How to Reliably Record Data 35
3.5.2 How to Retrieve System State From Data Recordings . . . 36
3.5.3 How to Work on Different Hardware Configurations 36
3.5.4 How to Run the System on Different Machines 36
3.5.5 How to Migrate between ROS 1 and ROS 2 37

3.6 Conclusion . 37

4 LiDAR-Based Pose Estimation 39
4.1 KISS-ICP – Keep It Small and Simple 40

4.1.1 3D Point Cloud Registration for Pose Estimation 41
4.1.2 Motion Prediction and Scan Deskewing 42
4.1.3 Point Cloud Subsampling 43
4.1.4 Local Map and Correspondence Estimation 44
4.1.5 Adaptive Threshold for Data Association 45
4.1.6 Alignment Through Robust Optimization 46
4.1.7 Parameters . 48

4.2 Experimental Evaluation . 48
4.2.1 Experimental Setup . 49
4.2.2 Performance on the KITTI-Odometry Benchmark 49
4.2.3 Comparison to State-of-the-Art Systems 49
4.2.4 Ablation Studies . 52

4.2.4.1 Motion Compensation 52
4.2.4.2 Adaptive Data-Association Threshold 53
4.2.4.3 Impact of Using a Robust Kernel 53

4.3 Conclusion . 54

5 Offline Mapping Using Poisson Surface Reconstruction 57
5.1 Poisson Surface Reconstruction for 3D Mapping 58

5.1.1 Approach Overview . 59
5.1.2 Normal Computation . 60
5.1.3 Point Cloud Registration Between Scans and Triangle Mesh 60
5.1.4 Meshing Algorithm . 62
5.1.5 Local and Global Map . 63

5.2 Experimental Evaluation . 63

xiv

Contents

5.2.1 Datasets . 63
5.2.2 Mapping Accuracy . 64
5.2.3 Memory Efficiency . 66
5.2.4 Odometry and Localization Accuracy 67
5.2.5 Registration . 69
5.2.6 Runtime . 70

5.3 Conclusion . 70

6 Localization Using Mesh Maps 71
6.1 Range Image-based LiDAR Localization 72

6.1.1 Range Image Generation 74
6.1.2 Mesh Map Representation 75
6.1.3 Rendering Synthetic Range Images 76
6.1.4 Monte Carlo Localization 76
6.1.5 Range Image-based Observation Model 77
6.1.6 Tiled Map Representation 78

6.2 Experimental Evaluation . 79
6.2.1 Implementation Details 79
6.2.2 Datasets . 79
6.2.3 Baselines . 79
6.2.4 Localization Performance 80
6.2.5 Generalization . 82
6.2.6 Runtime . 84

6.3 Conclusion . 84

7 Online Mapping Using VDBs 85
7.1 3D Online Volumetric Mapping Using OpenVDB 86
7.2 The VDB Data Structure . 87
7.3 The VDBFusion Library . 90

7.3.1 System Overview . 90
7.3.2 Integration Pipeline Implementation 91
7.3.3 Space Carving . 94
7.3.4 Weighting . 94
7.3.5 Mapping Parameters . 95
7.3.6 Meshing . 96
7.3.7 The Online Mapping Library 96

7.3.7.1 The C++ API . 96
7.3.7.2 The Python API 97

7.4 Experiments . 98
7.4.1 Runtime . 99
7.4.2 Memory Efficiency . 100

xv

Contents

7.4.3 Disk Usage . 101
7.4.4 Mapping Accuracy . 102
7.4.5 User Study on the Ease-of-Use 105
7.4.6 Qualitative Results . 106

7.4.6.1 KITTI Odometry Dataset 107
7.4.6.2 Newer College Dataset 107
7.4.6.3 nuScenes Dataset 107
7.4.6.4 Apollo Dataset 107
7.4.6.5 ICL-NUIM Dataset 107
7.4.6.6 TUM Dataset 108

7.5 Conclusions . 108

8 Dense Mapping Using Low-Resolution Sensors 113
8.1 Geometric Scan Completion . 114
8.2 Make it Dense . 115

8.2.1 Scan Integration Using TSDF 115
8.2.2 Geometric Scan Completion 116
8.2.3 Architecture . 117
8.2.4 Multi-Resolution Loss . 117
8.2.5 Self-Supervised Training 119
8.2.6 Global Map Update . 120

8.3 Experimental Evaluation . 121
8.3.1 Experimental Setup . 121
8.3.2 Geometric Scan Completion Completeness 122
8.3.3 Improving Existing SLAM Systems 124
8.3.4 Qualitative Evaluation on Scan Sequences 124

8.4 Conclusion . 126

9 Conclusion 129
9.1 Summary of the Key Contributions 130
9.2 Open Source Contributions . 132

xvi

Acronyms

CAD computer-aided design

CI continuous integration

CI/CD continuous integration/continuous deployment

CNN convolutional neural network

DDA differential digital analyzer

fps frames per second

GbE Gigabit Ethernet

GNSS global navigation satellite system

GPIO general-purpose input/output

GPS global positioning system

GPU graphics processing unit

HD high-definition

ICP iterative closest point

IMU inertial measurement unit

LiDAR laser imaging, detection, and ranging

LIO LiDAR-Inertial odometry

LOAM LiDAR odometry and mapping

MCL Monte Carlo localization

OS operating system

PSR Poisson surface reconstruction

xvii

Acronyms

PTP precise time protocol

RADAR radio detection and ranging

RMSE root mean square error

ROS robot operating system

RTK real-time kinematic

SDF signed distance field

SDK software development kit

SLAM simultaneous localization and mapping

TSDF truncated signed distance field

UAV unmanned aerial vehicle

URDF unified robotics description format

xviii

Chapter 1

Introduction

M any tasks humans perform regularly are mundane, repetitive, or
dangerous. Typical examples of such tasks range from driving a car
to keeping a house clean daily. Mobile robots have the potential
to assist or even substitute humans in such tasks. For example,

they can be deployed on distant planets such as Mars, where rovers can traverse
the terrain, gather data, and transmit the gathered information back to Earth.
This type of robot could provide valuable insights into the feasibility of human
settlement outside our planet. Moreover, robots can perform mundane tasks
that humans generally find unappealing, such as cleaning the house daily. They
can also handle complex challenges that, if attempted by humans, may result in
fatal errors, such as driving a vehicle. Furthermore, robots can perform tasks we
already know how to do, but they can excel in efficiency, precision, and the ability
to carry out these tasks continuously without any breaks. For example, consider
a robot that constantly scans large warehouses without interruption. This type of
robot can provide valuable information to optimize space utilization and increase
warehouse logistics efficiency on a global scale. An illustration of how real-world
robots look today is shown in Fig. 1.1.

A crucial requirement for accomplishing all these tasks is having a map of
the environment that allows the system to determine its location accurately and
facilitates other robotic tasks such as navigation, exploration, and others. These
downstream tasks build upon/use the map learned by the robot. Therefore, map-
ping is one of the canonical problems that a mobile robot must solve to navigate
the surrounding environment safely. Take, for example, the autonomous car
shown in Fig. 1.1 (c) moving from one location to another. An accurate map
of the environment allows the vehicle to understand the spatial layout, identify
possible paths, and calculate the optimal route to a destination. This is par-
ticularly crucial in real-world applications such as autonomous driving, where
vehicles must safely navigate through complex environments. Therefore, robots

1

(a) Mars Rover Explorer1 (b) Vaccum Cleaner2

(c) Autonomous Car (d) Warehouse Robot3

Figure 1.1: Examples of modern mobile robots in action. In (a), we can see a Mars rover de-
signed to explore foreign planets, (b) shows the trajectory traversed by an autonomous vacuum
cleaner within a house after a completed cleaning mission, (c) depicts the sensory platform used
by a modern autonomous car, and (d) shows an autonomous warehouse robot that scans a large
warehouse non-stop.

that can create accurate maps of their surroundings are crucial to achieve genuine
autonomy, thus making robot mapping a relevant and essential field of study.

Robots are typically equipped with different exteroceptive sensors, such as
cameras, RADARs, and LiDARs. These sensors are used by robots to learn how
the world looks. In this thesis, our focus is solely on 3D laser imaging, detec-
tion, and ranging (LiDAR) sensors, as such sensors exhibit many advantages for
mapping. For instance, these sensors provide precise long-distance range mea-
surements of the surrounding environment, surpassing other ranging technologies
such as radio detection and ranging (RADAR) sensors or RGB-D cameras. In ad-
dition, modern 3D LiDARs offer a 360-degree view of the environment at high fre-
quency. Furthermore, the sensor output directly represents the three-dimensional
world, eliminating the need for additional steps required with cameras. Moreover,
LiDAR sensors are illumination invariant.

Building robot maps using sensor data is a complex task that involves sev-
1Image courtesy of NASA – https://photojournal.jpl.nasa.gov/jpegMod/PIA04413_modest.jpg.
2Image courtesy of Chris Bartle – https://www.flickr.com/photos/13963375@N00/3533146556.
3Image courtesy of Dexory – https://www.dexory.com.

2

https://photojournal.jpl.nasa.gov/jpegMod/PIA04413_modest.jpg
https://www.flickr.com/photos/13963375@N00/3533146556
https://www.dexory.com

Chapter 1. Introduction

eral challenges. Some of these challenges include accurately capturing data and
figuring out how to combine it into a unified representation of the surrounding en-
vironment. Moreover, it requires significant computational resources, but robots
often have limited processing power, memory, and energy constraints. Therefore,
efficient algorithms and techniques need to be developed to optimize available
resources and operate minimizing delays. In this thesis, we introduce several
techniques to overcome the challenges that arise when a robot maps the world
with LiDAR sensors. We introduce a new methodology to build reliable per-
ception platforms to capture sensor data and develop techniques for generating
various map representations.

In modern robotics systems, maps are constructed either offline or online.
Offline mapping systems learn the map after a data collection phase and can
afford higher computation times. These maps typically have a higher level of
detail and are used for other robotic tasks, such as place recognition and localiza-
tion. Online mapping techniques require the creation of a map while the robot is
performing a mission. Therefore, the map must be made available in (near) real-
time to support other downstream tasks, such as path planning and exploration.
As a consequence, the choice of the mapping approach depends on the specific
requirements of the task at hand.

A common thread connecting the methods explored in our work is the need for
information about their environment in the form of a map. However, no single
map representation satisfies all the tasks’ requirements. For example, in the
context of pose estimation, a point cloud map representation allows to accurately
estimate the position and orientation of the sensor within its environment. A
mesh representation allows for complex surface representations, which is beneficial
when dealing with localization tasks. Furthermore, a voxel-based map is helpful
for autonomous navigation, as it allows to represent distances from obstacles.

This thesis presents different techniques that we developed for mobile robots
to autonomously produce accurate models of the environment from sensor data
in both online and offline scenarios. Our approach to solving these problems
is unique in that, unlike the standard practice in current research, we focus on
systems capable of operating in previously unseen situations. Take, for example,
the Mars rover shown in Fig. 1.1 (a). Most of the environment it needs to map
remains unexplored by humans, leaving little information regarding its specific
characteristics and appearance. Consequently, this thesis emphasizes the gener-
alization of the techniques presented. A fundamental approach to accomplishing
this generalization capability is to create functional robot software that extends
beyond the scope of scientific papers. Thus, this thesis incorporates meticulously
designed open-source and freely available software alongside this manuscript.

In sum, this work presents a methodology for autonomously creating 3D mod-

3

1.1. Map Representations in Robotics

els of the environment using robots. Our approach enables us to create efficient
3D maps for various robotic tasks. In this context, we showcase advancements in
robot mapping with 3D LiDAR sensors.

1.1 Map Representations in Robotics
Our work explores different map representations, including point clouds, triangle
meshes, and voxel grids. Each map representation poses distinct advantages and
disadvantages that we exploit accordingly to solve various robotic tasks. These
map representations are visually illustrated in Fig. 1.2.

Point clouds are typically constructed by merging sensor data into a common
reference frame. An illustration of such a point cloud map is shown in the upper-
most image of Fig. 1.2. This map representation is straightforward to implement,
as it directly aggregates input scans. Modern 3D LiDAR sensors produce high-
resolution point clouds with reduced noise compared to RGB-D sensors, and as a
result, these maps capture fine-grained geometric details of the surrounding envi-
ronment. Additionally, the model resolution is only limited by the floating-point
precision of the computing platform. However, these maps require significant
memory resources and cannot encode occupancy information.

Triangle meshes, as depicted in the middle section of Fig. 1.2, are well suited
to represent complex surfaces and can improve memory efficiency by eliminat-
ing redundant measurements found in point clouds. Furthermore, they provide a
smooth, potentially watertight model of the environment. However, their compu-
tation often requires significant computational resources. Additionally, updating
the current model with recent scans is not straightforward: Recomputing the
entire mesh is typically required for updating the map. This operation is compu-
tationally expensive and cannot be used for real-time applications.

Voxel grids, shown at the bottom of Fig. 1.2, provide a 3D grid-based model
that facilitates spatial reasoning and enables efficient access, making this repre-
sentation attractive for various robotic tasks. This map representation enables
more varied usages, as it can store occupancy information, signed distance to the
closest surface, semantic information, or other feature types. However, it is essen-
tial to note that voxel grids can consume more memory than point cloud maps
and triangle meshes if not implemented properly, and they can also introduce
discretization errors in the representation.

In essence, each representation has strengths and weaknesses regarding mem-
ory usage, resolution, and computational complexity. These factors should be
taken into account according to the specific task requirements. This thesis works
with different map representations for various robotic tasks. In Chapter 4, we
employ point cloud maps to address the registration problem. In Chapter 5, we

4

Chapter 1. Introduction

leverage triangle meshes to generate high-resolution 3D offline maps, which can
be used to tackle robot localization, as we demonstrate in Chapter 6. Finally,
in Chapter 7, we utilize voxel grids to generate 3D online maps, a representation
that we further extend for operation with low-resolution sensors in Chapter 8.

(a) Point Cloud Map

(b) Triangle Mesh Map

(c) Voxel Grid Map

Figure 1.2: Different map representations of the facade of the “Anatomisches Institut der
Universität Bonn” in Germany. (a) The topmost illustration employs a point cloud map as
the primary map representation for the robot. It exhibits a high level of geometric detail.
(b) In the middle, we showcase the triangle mesh representation of the same building. This
model shows smoother contours and eliminates redundant measurements, improving memory
efficiency. Finally, in (c) at the bottom, a voxel grid serves as the map representation. Each voxel
stores the signed distance to the closest surface on the map, allowing for clear differentiation
between explored and unexplored space.

5

1.2. Main Contributions

1.2 Main Contributions

This thesis presents novel solutions to robot mapping using 3D LiDARs. It con-
tributes to multiple aspects of 3D mapping tasks, data collection, pose estimation,
data representation, and surface reconstruction. This section summarizes the the-
sis’ significant achievements and practices contributing to the state of the art in
robotics.

The first contribution of this thesis is a systematic and practical approach
that improves existing perception platforms used for data collection [192]. In
essence, the creation of reliable 3D maps for robotics heavily depends on the
reliability of the perception platform in use. Any errors or inconsistencies in the
data-gathering process can lead to inaccuracies in the representation of the 3D
space. We present our method to achieve reliable data recordings in Chapter 3.
Our system can record data while logging the exact state of the sensor platform,
used software, and parameter settings simultaneously, making the setup and the
data generated reliable and reproducible.

The second contribution of this thesis is in the context of pose estimation. Our
method [191] advances state of the art by systematically analyzing the required
components and focusing on reducing them to their bare minimum essentials. In
contrast to recent developments in the field, we build on top of the first publica-
tion in the point cloud registration domain: the classical iterative closest point
(ICP) algorithm, introduced more than 30 years ago by Besl and McKay [11].
Our system performs extraordinarily well in various real-world scenarios without
requiring us to make assumptions about the sensor in use or the environment.
The proposed registration method is presented in-depth in Chapter 4.

The third contribution of this thesis is an offline 3D mapping method that
produces high-resolution triangle meshes [188]. Building on the foundations of
another computer graphics technique, we extend the Poisson surface reconstruc-
tion (PSR) approach to the robotics domain. Our system produces a high level
of detail in 3D maps. Furthermore, we present a novel registration approach to
register point clouds to triangle meshes to refine the pose estimates. Our ap-
proach to offline 3D mapping is described in detail in Chapter 5. We also show
how to exploit the generated maps to build a global localization pipeline based
on triangle meshes in Chapter 6.

The fourth contribution of this thesis targets 3D online mapping. Our
method [190] extends traditional volumetric fusion pipelines [44] to large
outdoor environments. To achieve this, we exploit an existing technique used in
the filmmaking industry that is yet to be fully discovered by the robotics
community, the VDB data structure [125]. Using VDBs, we build an efficient
3D online mapping system for mobile robots. Our approach stands out from the

6

Chapter 1. Introduction

state of the art as it eliminates the need to impose spatial restrictions due to
memory limitations. Additionally, we do not require prior knowledge of the
volume to be mapped, a common limitation in previous works [61, 187]. Our
method is strictly geometric and operates at the frame rate of the sensor,
enabling deployment in real-world applications. Details on exploiting this data
structure to build 3D online mapping systems are described in Chapter 7.

Our fifth contribution is based on the system introduced in Chapter 7 and
expands our contributions to 3D mapping when using low-resolution sensors.
By exploiting a 3D convolutional neural network (CNN) to perform geometric
completion, we obtain dense 3D maps even when employing such sensors [189].
This novel work enables the capabilities of 3D mapping systems for robots that
use low-cost sensors. The method is described in-depth in Chapter 8.

Our last contribution is a set of open-source software tools that represent
the practical manifestation of the research findings. A clear message resonates
throughout this thesis: robots are driven by software, not merely equations. Our
focus shifts from purely theoretical formulations to the practical implementa-
tion and execution of algorithms. Recognizing that robots are complex systems
operating in real-world environments, our work emphasizes developing robust,
efficient, and adaptable software frameworks to enable their functionality. This
shift in perspective acknowledges the importance of software as the backbone
of robotic systems. By embracing this understanding, the thesis highlights the
importance of software development in unlocking the true potential of robots.
Moreover, considerable effort has been invested in ensuring that the open-source
contributions are user-friendly, as accessibility and ease of use are paramount for
pushing the boundaries of research and fostering wider adoption and innovation
in the field.

In sum, this thesis presents five contributions, each of which targets an essen-
tial part of the robot mapping pipeline. All the methods presented in this thesis
have been published in peer-reviewed international conferences, workshops, and
journals, all of them are open-source software, and all the methods presented
here are tested on real-world data. In addition, the methods introduced are also
capable of processing data from modern 3D LiDARs at the sensor frame rate.

1.3 Thesis Organization
This thesis is organized as follows. In Chapter 2, we present an overview of the
current state of the art in 3D robot mapping. In Chapter 3, we introduce a mod-
ern infrastructure for reliable data collection, a prerequisite for any mobile robot
that aims to gather sensor data. In Chapter 4, we focus on efficiently solving the
point cloud registration problem and demonstrate that our solution can provide

7

1.4. Publications

Perception Platform

(Chapter 3)

- Place Recogintion

- Localization (Chapter 6)
Offline Mapping

(Chapter 5)

- Navigation

- Scene Completion

 (Chapter 8)

Online Mapping

(Chapter 7)

Pose Estimation

(Chapter 4)

Figure 1.3: Overview of different techniques explored in this thesis. We start providing a
methodology for reliable data collection in Chapter 3, following that, in Chapter 4, we introduce
an efficient and generic pose estimation approach. By relying on this method, we explore
different mapping approaches. In Chapter 5, we investigate how to create offline maps that
can be consumed by tasks such as place recognition or localization (Chapter 6). Furthermore,
in Chapter 7, we introduce an online mapping system for a mobile robot while navigating the
environment. We later extend this system with low-resolution sensors in Chapter 8.

accurate pose estimates for different robots and scenarios. By providing a gen-
eral solution to the pose estimation problem, we can rely on this component to
independently create 3D maps of the environment by integrating sensor data into
different map representations. Therefore, we demonstrate how to take advantage
of these poses to build 3D maps in both offline (Chapter 5) and online (Chapter 7)
settings. Furthermore, we show in Chapter 6 an application on how to exploit
offline maps to solve the global localization problem. Furthermore, in Chapter 8,
we show how to extend online mapping techniques to operate with low-resolution
LiDAR sensors.

1.4 Publications
Parts of this thesis have been published in peer-reviewed journals, conferences,
and workshop papers.

• I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson Surface
Reconstruction for LiDAR Odometry and Mapping. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021

• X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss. Range Image-
based LiDAR Localization for Autonomous Vehicles. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021

• I. Vizzo, B. Mersch, R. Marcuzzi, L. Wiesmann, , J. Behley, and C. Stach-
niss. Make It Dense: Self-Supervised Geometric Scan Completion of Sparse
3D Lidar Scans in Large Outdoor Environments. IEEE Robotics and Au-
tomation Letters (RA-L), 7(3):8534–8541, 2022

8

Chapter 1. Introduction

• I. Vizzo, T. Guadagnino, J. Behley, and C. Stachniss. VDBFusion: Flexible
and Efficient TSDF Integration of Range Sensor Data. Sensors, 22(3):1296,
2022

• I. Vizzo, B. Mersch, L. Nunes, L. Wiesmann, T. Guadagnino, and C. Stach-
niss. Toward Reproducible Version-Controlled Perception Platforms: Em-
bracing Simplicity in Autonomous Vehicle Dataset Acquisition. In Worshop
on Building Reliable Ratasets for Autonomous Vehicles, IEEE Intl. Conf. on
Intelligent Transportation Systems (ITSC), 2023

• I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stach-
niss. KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and
Robust Registration If Done the Right Way. IEEE Robotics and Automa-
tion Letters (RA-L), 8(2):1029–1036, 2023

1.5 Further Scientific Contributions
The following peer-reviewed journal and conference publications in which I was
involved during my doctorate as a collaborator are not part of this thesis.

• A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2019

• X. Chen, B. Mersch, L. Nunes, R. Marcuzzi, I. Vizzo, J. Behley, and
C. Stachniss. Automatic Labeling to Generate Training Data for Online
LiDAR-Based Moving Object Segmentation. IEEE Robotics and Automa-
tion Letters (RA-L), 7(3):6107–6114, 2022

• F. Magistri, E. Marks, S. Nagulavancha, I. Vizzo, T. Läbe, J. Behley,
M. Halstead, C. McCool, and C. Stachniss. Contrastive 3D Shape Com-
pletion and Reconstruction for Agricultural Robots using RGB-D Frames.
IEEE Robotics and Automation Letters (RA-L), 7(4):10120–10127, 2022

• R. Marcuzzi, L. Nunes, L. Wiesmann, I. Vizzo, J. Behley, and C. Stach-
niss. Contrastive Instance Association for 4D Panoptic Segmentation for
Sequences of 3D LiDAR Scans. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2022

• B. Mersch, X. Chen, I. Vizzo, L. Nunes, J. Behley, and C. Stachniss. Re-
ceding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D
Convolutions. IEEE Robotics and Automation Letters (RA-L), 7(3):7503–
7510, 2022

9

1.6. Open Source Contributions

• B. Mersch, T. Guadagnino, X. Chen, Tiziano, I. Vizzo, J. Behley, and
C. Stachniss. Building Volumetric Beliefs for Dynamic Environments Ex-
ploiting Map-Based Moving Object Segmentation. IEEE Robotics and Au-
tomation Letters (RA-L), 8(8):5180–5187, 2023

• L. Wiesmann, T. Guadagnino, I. Vizzo, G. Grisetti, J. Behley, and C. Stach-
niss. DCPCR: Deep Compressed Point Cloud Registration in Large-Scale
Outdoor Environments. IEEE Robotics and Automation Letters (RA-L),
7(3):6327–6334, 2022

• L. Wiesmann, T. Guadagnino, I. Vizzo, N. Zimmerman, Y. Pan, H. Kuang,
J. Behley, and C. Stachniss. LocNDF: Neural Distance Field Mapping
for Robot Localization. IEEE Robotics and Automation Letters (RA-L),
8(8):4999–5006, 2023

1.6 Open Source Contributions
This thesis resulted in the release of several open-source packages and datasets.
Additionally, parts of the modules developed for the methods and the experi-
ments were made open source not as stand-alone packages but as contributions
to existing open-source libraries, such as CARLA, NVdiffrast, ONXX-tensorrt,
Open3D, Open3D-ML, OpenVDB, PyMeshFix, Sophus, and others. Some high-
lighted contributions are:

• KISS-ICP C++, Python, and ROS 1/2 package, presented in Chapter 4:
https://github.com/PRBonn/kiss-icp

• VDBFusion C++ and Python library, presented in Chapter 7:
https://github.com/PRBonn/vdbfusion

• VDBFusion ROS 1 package, presented in Chapter 7:
https://github.com/PRBonn/vdbfusion_ros

• make-it-dense scene completion network, presented in Chapter 8:
https://github.com/PRBonn/make_it_dense

• PUMA 3D offline mapping pipeline, presented in Chapter 5:
https://github.com/PRBonn/puma

• range-mcl Range image localization code, presented in Chapter 6
https://github.com/PRBonn/range-mcl

• Mai City Synthetic Dataset, presented in Chapter 5:
https://www.ipb.uni-bonn.de/data/mai-city-dataset/

10

https://github.com/PRBonn/kiss-icp
https://github.com/PRBonn/vdbfusion
https://github.com/PRBonn/vdbfusion_ros
https://github.com/PRBonn/make_it_dense
https://github.com/PRBonn/puma
https://github.com/PRBonn/range-mcl
https://www.ipb.uni-bonn.de/data/mai-city-dataset/

Chapter 1. Introduction

• lidar_visualizer, Visualization tool for LiDAR data:
https://github.com/PRBonn/lidar-visualizer

• vdb_to_numpy, Python bindings to work with VDBs:
https://github.com/PRBonn/vdb_to_numpy

• voxblox_pybind, Python bindings for the Voxblox library
https://github.com/PRBonn/voxblox_pybind

• voxblox_pybind, Python bindings for the Voxblox library
https://github.com/PRBonn/voxblox_pybind

• manifold_python, Python bindings for the Manifold library
https://github.com/PRBonn/manifold_python

• ros_in_docker, Container library to use with ROS
https://github.com/nachovizzo/ros_in_docker

• Open3D C++, and Python Robust Kernel Library:
http://www.open3d.org/docs/release/tutorial/pipelines/robust_
kernels.html

• Open3D C++, and Python Generalized ICP:
https://github.com/isl-org/Open3D/pull/3181

11

https://github.com/PRBonn/lidar-visualizer
https://github.com/PRBonn/vdb_to_numpy
https://github.com/PRBonn/voxblox_pybind
https://github.com/PRBonn/voxblox_pybind
https://github.com/PRBonn/manifold_python
 https://github.com/nachovizzo/ros_in_docker
http://www.open3d.org/docs/release/tutorial/pipelines/robust_kernels.html
http://www.open3d.org/docs/release/tutorial/pipelines/robust_kernels.html
https://github.com/isl-org/Open3D/pull/3181

Chapter 2

Related Work

R obot mapping typically comprises two main components: pose estima-
tion and, map building and updating. Pose estimation determines the
robot’s position and orientation within an environment. Map building
and updating involves modifying the current environment represen-

tation using newly acquired sensor data, assuming the current pose is already
known. This thesis mainly focuses on the map update part using 3D LiDAR
sensors. However, we also provide a widely applicable pose estimation method
to relax the requirement of knowing the robot poses a priori.

The techniques investigated in this thesis build upon established methods
widely recognized in robotics; therefore, we do not delve into the basics exten-
sively. Instead, we rely on the following literature sources to satisfy the require-
ments for understanding the text: (i) For simultaneous localization and mapping
(SLAM), readers can refer to an introduction to robotic exploration and mapping
provided by Stachniss [68, 168], (ii) Pomerlau et al. [141] reviewed point cloud
registration algorithms in the context of pose estimation, and (iii) Berger et
al. [10] surveyed 3D surface reconstruction, presenting a thorough task descrip-
tion. While not strictly necessary, readers can also refer to a brief introduction
to convolutional neural networks by O’Shea et al. [131] to better understand the
concepts and techniques discussed in Chapter 8 of this thesis. By consulting these
key sources, the reader can grasp the methods presented without needing explicit
coverage of the basic techniques.

In this chapter, we provide an overview of the current advancements in 3D
mapping within the field of robotics. Specifically, in Sec. 2.1, the latest de-
velopments in pose estimation through point cloud registration techniques are
presented. Following that, in Sec. 2.2, we briefly explore various data representa-
tions and their use in mapping systems and analyze recent advances in 3D surface
reconstruction. Lastly, Sec. 2.2.1, explores related approaches that exploit robot
maps to solve the localization task.

13

2.1. Point Cloud Registration in Robotics

20

40

60

80

100

120

140

160

180

200

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

IEEE Xplore Database

Scopus Database
N

u
m

b
e
r
 o

f
P

a
p

e
r
s

Years

Figure 2.1: The progression of publication numbers over the years was examined, explicitly
focusing on publications containing the keywords “iterative closest point”, “ICP”, or “point
cloud registration” in either the title, abstract, or keyword. The dark blue area represents data
gathered from the IEEE Xplore database, while the light green area represents data from the
Scopus database. This figure can be considered an extension, ten years later, of an analysis
presented by Pomerlau et al. [142].

2.1 Point Cloud Registration in Robotics

Point cloud registration has been an active area of research for the last decades [11,
41, 76, 141] and is still relevant today [49, 52, 53, 102, 133, 134, 145, 158, 163,
205, 219]. In Fig. 2.1 we examined the progression of the number of publications
over the years, specifically those that include words such as “iterative closest
point”, “ICP”, or “Point Cloud Registration” in their titles, abstracts or key-
words. Fig. 2.1 extends a previous analysis conducted by Pomerlau et al. [141]
a decade ago. The figure illustrates the increasing interest of the research com-
munity in point cloud registration, thereby highlighting that even three decades
after its initial publication [11], point cloud registration remains a vibrant field
of study.

The ICP algorithm [11] can solve the problem of finding a transformation
that brings two different point clouds into a common reference frame, and it is a
particular case of the absolute orientation problem in photogrammetry [59]. ICP
typically consists of two parts. The first one is to find correspondences between
the point clouds. The second one computes the transformation that minimizes
an objective function defined on the correspondences from the first step. This
process is repeated until a convergence criterion is met. Most ICP variants [6, 52,
53, 133, 163, 219] utilize a maximum distance threshold in the data association
module in addition to a robust kernel [2, 29] and a maximum number of iterations.

14

Chapter 2. Related Work

In contrast, in this thesis, we propose a threshold estimation method that adapts
to changing scenarios by reasoning about the system kinematics and the nature of
the data in combination with a robust kernel. Additionally, we avoid controlling
the number of iterations of the ICP to achieve better generalization.

Computing the relative transformation between two successive LiDAR scans
through ICP allows us to employ this technique as an odometry source. Therefore,
ICP and LiDAR odometry are used somewhat interchangeably in this thesis. In
the LiDAR sensing domain, current odometry pipelines typically use some form
of ICP to estimate poses incrementally [52, 122, 163, 188, 219]. Although LiDAR
odometry has been an active area of research for the last three decades [72, 103,
104, 105, 181], the design of current systems is generally coupled with assumptions
about robot motion [52] and the structure of the environment [165] to achieve
accurate and robust alignment results. To the best of our knowledge, no existing
3D LiDAR odometry approach is free of parameter tuning and works out of the
box in different scenarios, using arbitrary LiDAR sensors, supporting different
motion profiles, and consequently, types of robots, such as ground and aerial
robots.

The majority of modern SLAM systems build on top of odometry algorithms.
Zhang et al. [219] proposed LiDAR odometry and mapping (LOAM) that com-
putes the robot’s odometry by registering the planar and edge features to a sparse
feature map. LOAM inspired numerous other works [164, 194], such as Lego-
LOAM [165], which adds ground constraints to improve accuracy, and recently
F-LOAM [194], which revised the original method with a more efficient opti-
mization technique enabling faster operation. However, these methods rely on
hand-tuned feature extraction, which typically requires tedious parameter tun-
ing that depends on sensor resolution, environment structure, etc. In contrast,
our method relies only on point coordinates, which removes this data-dependent
parameter adaptation.

Behley and Stachniss [6] propose the surfel-based method SuMa to achieve
LiDAR odometry estimation and mapping. It has also been extended to consider
semantics [38] and explicitly handle dynamic objects [36]. In contrast to surfel-
based mapping, Deschaud [53] introduced IMLS-SLAM [53] selecting an implicit
moving least squares surface [92] as the representation of the map. Along a sim-
ilar research line, we present an approach to register point clouds to 3D maps
as triangle meshes in Sec. 5.2.4. Compared to our main contribution to LiDAR
odometry (Sec. 4.1), this method does not run in real-time. These approaches are
based on a point-to-plane [154] metric to register consecutive scans. This requires
normal estimation, which introduces additional data-dependent parameters. Fur-
thermore, noisy 3D information can negatively impact normal computation and
registration. By minimizing a more straightforward point-to-point metric, we will

15

2.1. Point Cloud Registration in Robotics

show that our method obtains on-par or better odometry performance. More-
over, this design choice enables us to represent the internal map as a voxelized,
downsampled point cloud, simplifying the implementation.

Several new approaches [52, 133, 164] have been proposed to solve the odom-
etry estimation problem. Most of these works focus on the runtime operation
of the system and its accuracy. Pan et al. [133] propose a multi-metric ap-
proach (MULLS) that obtains good results in many challenging scenarios at the
cost of tuning many parameters for each run. Dellenbach et al. [52] introduced
CT-ICP, incorporating motion un-distortion into the registration, showing excel-
lent results but adding more complexity. Additionally, the robots’ motion profile
must be known a priori. We challenge the need for sophisticated optimization
techniques to cope with motion distortion that requires only the constant velocity
model [182]. Furthermore, our system is based only on a few parameters, and we
do not need to know the motion profile in advance.

A current trend in LiDAR odometry is to incorporate information from in-
ertial measurement units (IMUs) [3, 32, 33, 99, 164, 198, 210, 212, 214, 220],
a technique commonly referred to as LiDAR-Inertial odometry (LIO). An early
contribution to this field is the work of Ye et al. [214], who introduced a tightly
coupled LiDAR-IMU fusion method to minimize the cost derived from LiDAR
and IMU measurements jointly. A more recent advancement in the field is the
development of LIO-SAM [164], which employs a tightly-coupled, factor-graph
optimized LIO framework to deliver superior odometry accuracy, particularly in
challenging dynamic environments. In contrast to these trends, this thesis re-
frains explicitly from incorporating data from IMUs, as it focuses solely on the
principles of LiDAR-based odometry, rendering the use of IMUs outside the scope
and intent of the present investigation.

Many state-of-the-art systems [6, 52, 133, 164] also rely on pose graph op-
timization [51, 68, 83, 95] to achieve better alignment. In contrast, we do not
exploit such techniques and state that pose graph optimization is orthogonal to
the concepts presented in this thesis. If desired, the registration algorithm intro-
duced in this thesis can be seamlessly integrated into a pose graph framework.

In sum, we step back from the common mainstream work on LiDAR odometry
and propose a system that does not employ pose graph optimization or rely on any
other external source such as IMUs. Our approach in Chapter 4 relies on point-
to-point ICP combined with adaptive thresholding for correspondence matching,
a robust kernel, a simple but widely applicable motion compensation approach,
and a point cloud subsampling strategy. This yields a system with only a few
parameters that, in most cases, do not have to be tuned to a specific LiDAR
sensor. The proposed method runs online on mobile robots, handheld devices,
and other platforms without fine-tuning the system for a particular application.

16

Chapter 2. Related Work

2.2 Map Building in Robotics

3D surface reconstruction is a field in photogrammetry, computer vision, and
robotics and has been an active area of research for the last three decades [10].
3D scene reconstruction involves techniques for interpreting different types of
data, including 2D images, depth images, or point clouds gathered from multiple
viewpoints or sensors to generate a comprehensive and geometrically accurate
three-dimensional model of the environment.

The classical volumetric integration method introduced by Curles and
Levoy [44] made truncated signed distance functions popular in computer
graphics, computer vision, and robotics applications. More than a decade later,
Newcombe massively popularized 3D surface reconstruction as a mapping
technique [126] and established a new standard for 3D robotics mapping, mainly
for indoor scenes and employing RGB-D sensors [17, 21, 22, 57, 87, 94, 113, 121,
130, 132, 134, 146, 157, 161, 177, 179, 187, 203, 204]. Although numerous
systems have been proposed to extend KinectFusion, few address the problem of
mapping environments larger than an office-sized room. Notable exceptions are
the approach introduced by Whelan et al. [202, 203] and recent work exploiting
octrees [61, 187].

LiDARs are more precise and less noisy than RGB-D sensors. Neverthe-
less, two challenges remain open to building efficient 3D maps with such sensors.
First, the existing 3D mapping systems are typically hand-crafted for a particular
sensor, such as Microsoft’s Kinect, often rendering the implementation unusable
for other kinds of sensor modalities. Second, extending RGB-D mapping sys-
tems to the LiDAR domain might seem straightforward, however, in practice,
a significant refactoring process is required to adapt the system to this type of
sensor. For that, consider that it is not trivial to project a 360◦ LiDAR scan
using a pinhole camera model. In addition, despite the publicly available main-
stream open-source libraries for computer vision and 3D data processing, such
as OpenCV [15] or Open3D [221], the provided implementations for volumetric
integration do not work out of the box with LiDAR data. At the same time, a
simple and naïve implementation using a dense voxel grid as for RGB-D [126] is
simply not possible due to memory constraints. Second, most of these techniques
rely on GPUs, which improves the effectiveness of the mapping method but also
leads to increased computational and energy demands. Although this is generally
not an issue for desktop computers, it poses a limitation for power-constrained
mobile robots. These robots typically need to run the mapping system simultane-
ously alongside tasks such as localization, obstacle detection, and path planning.
Consequently, even if the mapping system can utilize the available computing
resources on a mobile platform, it remains essential to address the requirements

17

2.2. Map Building in Robotics

of other tasks. Thus, the need for desktop-style GPUs still represents a strong
constraint in robotics today.

To expand KinectFustion capabilities to larger scenes, Whelan et al. [202, 203]
introduced one of the first methods that dealt with larger environments by em-
ploying a rolling grid that streams out a triangle mesh when exiting the volume
being mapped. In this line, sparse data structures have also been explored to
build such systems, for example, octrees [61, 174, 187, 197] or voxel hashing ap-
proaches [121, 128, 130, 132]. More recently, due to developments in LiDAR
technology, numerous other mapping systems have been proposed in the SLAM
community [6, 43, 70, 81, 160, 219]. To cope with the lack of GPUs on mobile
platforms, OpenChisel [90] provides an effective solution to the problem of volu-
metric reconstruction on the CPU, but is limited to depth sensors. OpenChisel
was later extended by Oleynikova et al. [130] to Voxblox. To the best of our
knowledge, Voxblox was considered the state-of-the-art open-source system for
building volumetric maps on a CPU and is used effectively in numerous methods
based on it [67, 121, 146]. Our VDBFusion method [190] is challenging this sta-
tus of Voxblox. More recently, Wang et al. [197] proposed a system that extends
SuperEight [61, 187] using LiDARs that exploit the octree data structure instead
of relying on voxel grids, but to the best of our knowledge, the implementation
is not publicly available.

Despite achieving promising results in 3D robot mapping, unresolved chal-
lenges still need to be addressed. The extension of SuperEight [61] makes many
assumptions, such as knowing the map size in advance and truncating the LiDAR
measurements’ range to a specific range (60m) to cope with memory and runtime
requirements. In addition to these assumptions, the system runs at 3 frames per
second (fps) and is, therefore, slower than the LiDAR sensor frame rate. Further-
more, Voxblox [130] is the approach most similar to the online mapping system
presented in this thesis (Sec. 7.3.7) since it is the first of its kind to process point
clouds instead of raw depth measurements. However, Voxblox can be difficult to
use and virtually impossible to employ outside the ROS 1 ecosystem. This the-
sis looks at generic mapping systems that can be deployed in different robotics
architectures without necessarily relying on a particular framework.

In contrast to 3D surface reconstruction, there are mapping systems built
on top of other techniques [182], such as Octomap [31, 75, 211]. Octomap sig-
nificantly improves memory consumption compared to TSDF-based mapping ap-
proaches. However, the runtime of its mapping pipeline prohibits the deployment
of this method for 3D LiDARs in the real world, as it is only capable of integrating
such data at 1 fps.

In summary, building a 3D mapping system that is memory efficient and fast
at the same time remains a challenge. In this thesis, we aim to fill this gap with the

18

Chapter 2. Related Work

aid of the VDB data structure [125], designed to model and render photorealistic
scenes in movie animation. We develop a robust open-source 3D volumetric
integration library that can work with any 3D sensor modality. The complete
details of our online mapping approach are discussed in detail in Chapter 7. Our
system is easy to use and extensible for various applications. We built our online
mapping approach using the VDB data structure [125].

Related to this thesis, Macenski et al. [108] developed a spatio-temporal voxel
system for 3D mapping using VDBs [125]. This system encodes sensor observa-
tions into an occupancy grid map that implements voxel decay and decay accel-
eration [108]. More recently, Besselmann et al. [12] have also shown promising
results using the VDB data structure to implement an octree-inspired represen-
tation similar to Octomap [75]. Although both works are closely related to our
system, a key difference is that we represent the environment as a smooth trun-
cated signed distance field (TSDF) surface, and the other works represent it as
an occupancy grid.

The system presented in Sec. 7.3.7 can fuse data from LiDARs, RGB-D cam-
eras, or any other 3D sensor that produces point clouds. Experiments show that
our system runs at 20 fps on average for a 64-beam LiDAR and at 10 fps for RGB-
D sensors without using GPUs. Our system runs entirely on a single core of a
CPU, making our system applicable to being deployed in mobile robots, where
power consumption and CPU resources are limited. At the same time, it is highly
memory efficient.

Despite the advances this thesis brings in accelerating the construction of
TSDF-based maps for robotics applications, there may be underperformance.
Specifically, in scenarios where time is not a critical factor, the effectiveness of
these techniques might be reduced. It is important to note that these volumet-
ric maps are usually utilized for downstream tasks like path planning, obstacle
avoidance, and overall robot exploration and navigation. Therefore, an accu-
rate description of the surface or visual quality of the map may not always be a
prerequisite to effectively accomplishing such tasks.

Broadening the scope of this thesis’s contributions, we also introduce in Chap-
ter 5 a technique for 3D mapping that capitalizes on the ability to operate at
speeds slower than the sensor frame rate. For generating high-fidelity maps, we
employ Poisson surface reconstruction [85] in Sec. 5.1. In this line, traditional
approaches determine an implicit function modeling the underlying surface, for
example, using tangent planes [74], radial basis functions [24], TSDF [44], or poly-
nomial representations [92]. Poisson surface reconstruction [84, 85, 86] provides
a geometrically accurate reconstruction based on this principle. The method we
propose in Sec. 5.1 of this thesis produces 3D maps in the form of triangle meshes.

The use of 3D triangle meshes in robotics has gained significant attention

19

2.2. Map Building in Robotics

due to its potential to provide detailed and accurate environmental representa-
tions. Several previous works have explored this representation of the map. For
example, Marton used triangle meshes for fast surface reconstruction methods
for noisy and large point clouds et al. [112]. In recent years, such represen-
tations have also been explored for visual-inertial systems [152], LiDAR-based
approaches [39, 153], and purely vision-based systems [139]. More recently, the
work by Niedźwiedzki et al. [127] presents an incremental algorithm to generate
triangle meshes from LiDAR data that produce a triangle mesh directly from
the LiDAR scans without storing a dense point cloud to create a high-quality
triangle mesh. In contrast to our work, these approaches typically compute a
sparse reconstruction of the traversed environment, while we aim to reconstruct
a continuous triangle surface capturing geometric details.

By relying on higher computational times, it is possible to use triangle meshes
as the primary representation and achieve a more detailed description of the
environment. While such precision may appear excessive for tasks such as ob-
stacle avoidance, where robots plan to circumvent obstacles with a substantial
safety margin, other tasks can significantly benefit from meticulous surface re-
construction of the environment. For example, localization tasks, as we will show
in Chapter 6, can substantially benefit from highly detailed environmental recon-
structions.

Recent work has shown the importance of obtaining a dense observation of the
environment without accumulating multiple frames [195]. The ability to predict
how the environment looks beyond current observations can be exploited for
robotic tasks such as navigation [195]. Thus, being able to complete the geometry
of single observations is also a relevant (and interesting) research question.

With the recent developments in deep learning [65], many approaches have
been developed to solve 3D reconstruction [118, 135, 137, 147] and scene com-
pletion [45, 47]. However, most approaches only consider relatively small objects
(from ShapeNet [27]) and do not apply to our target setting, namely large outdoor
scenes.

More recently, learning-based approaches for RBG-D sensors have been pro-
posed that improve volumetric aggregation in a TSDF [199] or learn to complete
or improve the appearance of the generated reconstruction [47, 119, 123]. The
work we present in Chapter 8 is related to the work of Dai et al. [47] and At-
las [123]. In contrast to these methods, which work on aggregated volumes, we
target the single scan setting to avoid the time-consuming buffering of scans.

With the availability of large annotated LiDAR datasets [5], new approaches
have been proposed for semantic scene completion. Typically, these approaches
require a relatively large amount of training data to produce good results [148,
150]. Additionally, adapting such systems to target geometry-only predictions

20

Chapter 2. Related Work

is not straightforward due to the complexity of the network architectures. In-
stead, in our work, our objective is to produce a smooth surface representation
of the map. Furthermore, our geometric scan completion does not require la-
bels (Sec. 8.2.5), allowing our system to be trained from pure real-world data.

Furthermore, semantic scene completion systems typically require that the
input data be fit to a fixed volume to cope with memory limitations, typi-
cally 256×256×32 voxels [148, 150]. One common drawback of this design choice
is that all information on the negative x axis is discarded, which is essential for
mapping applications but of little relevance for semantic scene completion. Ad-
ditionally, such methods use only a voxel size of 0.2m, while we can produce a
higher resolution model by picking 0.1m, instead. In contrast to those works,
we do not assume the size or volume to be processed, allowing us to complete a
full outdoor-like TSDF entirely volume. Seeing our approach as a subset of the
semantic scene completion task might be tempting at first sight. However, this
is not the case, as we explain in Sec. 8.2. Our contribution is to produce denser,
semantic-free geometric models using low-resolution scanners without making any
assumption on the input data size.

2.2.1 Exploiting Maps for Robot Localization
For localization, given a map, one often distinguishes between pose tracking and
global localization. In pose tracking, the vehicle starts from a known pose, and
the pose is updated over time. In global localization, no pose prior is available. In
this thesis, we address global localization using 3D LiDAR data without assuming
any pose prior from global navigation satellite system (GNSS), global position-
ing system (GPS), or other sensors. Therefore, we concentrate here mainly on
LiDAR-based approaches.

In the context of autonomous cars, many approaches were proposed for ac-
curate pose tracking using multiple sensor modalities and high-definition (HD)
maps. Levinson et al. [97] utilize GPS, IMU, and LiDAR scans to build HD
maps for localization. They generate a 2D surface image of ground reflectivity
in the infrared spectrum and define an observation model that uses these inten-
sities. The uncertainty in intensity values has been handled by building a prior
map [209]. Barsan et al. [79] use a fully CNN together with HD maps to per-
form online-to-map matching to improve the robustness of dynamic objects and
eliminate the need for LiDAR intensity calibration. Merfels and Stachniss [115]
present an efficient chain-like pose graph for vehicle localization that takes ad-
vantage of graph optimization techniques and different sensing modalities. Based
on this work, Wilbers et al. [208] propose a LiDAR-based localization system per-
forming a combination of local data association between laser scans and HD map
features, temporal data association smoothing, and a map matching approach for

21

2.2. Map Building in Robotics

robustification. The approaches above show good performance for tracking vehi-
cles’ poses but require GNSS information to operate on HD maps. In contrast,
our approach addresses global localization using only 3D LiDAR data without
assuming any pose prior.

To achieve global localization, traditional approaches rely on probabilistic
state estimation techniques [182]. A popular framework is Monte Carlo localiza-
tion [50, 60, 183], which uses a particle filter to estimate the robot’s pose and is
widely used in robot localization systems [8, 35, 96, 178, 213].

Several approaches have been proposed exploiting deep neural networks and
semantic information for 3D LiDAR localization. For example, Ma et al. [107]
combine semantic information such as lanes and traffic signs in a Bayesian fil-
tering framework to achieve accurate and robust localization within sparse HD
maps. Yan et al. [213] takes advantage of information about buildings and inter-
sections from a LiDAR-based semantic segmentation system [120] to localize in
OpenStreetMap data. Schaefer et al. [159] detects and extracts pole landmarks
from 3D LiDAR scans for long-term urban vehicle localization, whereas Tinchev
et al. [184] propose a learning-based method to match tree segments and localize
in both urban and natural environments. Sun et al. [178] use a deep-probabilistic
model to accelerate the initialization of the Monte Carlo localization and achieve
a fast localization in outdoor environments. In our previous work [34, 35], we
also use semantic CNNs to predict the overlap between LiDAR scans and their
yaw angle offset and use this information to build a learning-based observation
model for Monte Carlo localization. The learning-based methods perform well
in trained environments, while they usually cannot generalize well in different
environments or LiDAR sensors.

In sum, our method only uses LiDAR data to achieve global localization out-
doors without using any GNSS. Furthermore, our approach uses range informa-
tion directly without exploiting neural networks, semantics, or extracting land-
marks. Therefore, it generalizes well to different environments and LiDAR sensors
and does not require new training data when moving to different environments.

22

Chapter 3

A Modern Infrastructure for
Reliable Data Collection

B uilding reliable perception platforms for autonomous vehicles have be-
come an essential element of robotics research. Perception platforms
serve as the robot’s sensory system, collecting information about its
environment, much like how humans use their senses to understand

the world around them. Working with and thus recording real-world sensor data
is vital for developing robust estimation algorithms. Naturally, reliable percep-
tion platforms are a prerequisite for creating 3D robot maps. Failures in the
sensory system, such as missing data in LiDAR frames or synchronization issues,
could introduce significant and often irreversible errors in the final map represen-
tation. Attempting to construct a map without a fully operational and reliable
perception platform can compromise the map’s usability and reliability.

This chapter investigates building reliable perception platforms that capture
sensor data, ensuring the integrity and quality of the datasets generated across
multiple runs. We propose using version control systems to enhance dataset ac-
quisition’s efficiency, reliability, and scalability. We present a method that can
launch the system and record data while logging the exact state of the system,
making the setup and the data generated with it reliable and reproducible. Our
method is based solely on standard tools, independent of the chosen sensor suite
or host system, and therefore applies to existing perception platforms. We also
provide a step-by-step tutorial for existing systems to replicate the ideas intro-
duced in this chapter. Additionally, we demonstrate its practical implications
through various use cases, showcasing the value of incorporating version con-
trol systems into perception platform operation. Furthermore, we illustrate how
the concepts introduced here are applied to a real-world scenario, the IPB-Car
perception platform.

23

3.1. Reproducible Version-Controlled Perception Platforms

3.1 Reproducible Version-Controlled
Perception Platforms

Version control tools such as git [100] or SVN [140] track file changes over time,
allowing multiple developers to collaborate efficiently and manage code revisions.
Git has revolutionized software development by simplifying collaboration among
team members, enabling easy rollbacks, and facilitating the management of com-
plex projects. To uniquely identify a specific commit (a snapshot of the codebase),
git uses a commit hash. The commit hash is a unique alphanumeric identifier
that version control systems generate to track changes and manage the reposi-
tory’s history. Although version control has drastically changed the way software
is developed in many areas of computer science, little attention has been paid to
applying these concepts to perception systems, where other devices, such as sen-
sors, are also part of the software stack. In this chapter, we investigate how to
transfer version control practices that are standard in software engineering to use
when developing robotics perception platforms.

Validation and testing algorithms performance is crucial in robotics research
and ensures safety when deploying robotic systems in the real world. This re-
quires the availability of large, diverse, and reliable datasets. Building datasets in
robotics [5, 16, 19, 28, 63, 144, 196, 215] has taken research forward, allowing easy
comparison between approaches for different robotic tasks such as odometry esti-
mation, object detection, semantic segmentation, localization, etc. Nevertheless,
properly recording data, mainly if multiple sensors are used, is a significant effort
in robotics. Although various datasets have been developed, there is relatively
limited literature on how to build a good perception platform.

The main contribution of this section is a systematic and practical method
that will improve existing perception platforms used for data collection in most
research labs. Our method implements version control across the entire system
and uses docker containers. By referencing the commit hash in the logs, the
configurations, software, and recording sessions of the datasets can be retrieved
precisely. Our method not only simplifies the setup process but also increases the
accessibility of the platform for users who may not have specialized equipment or
knowledge. This facilitates collaboration among researchers and ensures the use
of up-to-date software for the perception platform.

One of the first data collection platforms for autonomous vehicles [63, 64]
comprised two color and grayscale cameras, a Velodyne LiDAR, and a GNSS with
IMU and real-time kinematic (RTK) correction. This platform was used to record
the popular KITTI dataset. To synchronize the sensors, the LiDAR is used as a
reference to trigger the cameras after each rotation. For each LiDAR-triggered
time, the closest GNSS/IMU measurement is taken since the localization system

24

Chapter 3. A Modern Infrastructure for Reliable Data Collection

Figure 3.1: After recording data at different points in time using different driver versions or
configurations, our proposed version-controlled perception platform allows to checkout at a
recording’s unique hash describing the state of the full system at that moment.

runs at a higher frequency than the other sensors.
Following KITTI, other datasets were proposed [16, 88, 109, 144, 196, 215].

However, since those works focused on collecting datasets, their data collection
platform was often not discussed in detail, which kept the challenge of developing
a system able to collect synchronized data continuously. To the best of our
knowledge, only the ApolloScape dataset [77] released a software architecture for
data collection. However, unlike our work, many specific hardware requirements
must be met.

Moreover, in robotics research, an equally challenging aspect is the ability
to reproduce software code, which is crucial for validating research findings and
promoting collaboration within the community [25, 26, 58, 93, 185, 201]. Soft-
ware in research labs is rarely in the final state, and researchers continuously test,
use, discard, and deploy new developments, configurations, and setups. Addition-
ally, the tools used to record datasets often lack reproducibility due to scattered
software, hardware descriptions, and documentation. This makes it difficult to
determine the system’s state for a specific recording. In addition, system docu-
mentation is often maintained separately and not as part of the main software,
leading to potential errors in the recording phase due to outdated instructions.

One solution to these challenges is what we call version-controlled percep-
tion platforms. These platforms allow the creation of datasets by exploiting

25

3.2. The Meta-Workspace Concept

version control beyond the software, enabling tracking changes in the configura-
tion, setup, sensor drivers, documentation, hardware description, and operating
system configuration. Our method simplifies the setup process and enhances the
accessibility of the such platforms. As illustrated in Fig. 3.1, we integrate the
entire description of the system into a version-controlled environment, in which
each recording generated with the platform is associated with a commit hash that
captures the complete system’s state at the time of recording. In addition, we
provide a straightforward networking approach by specifying the network setup
in a configuration file. This eliminates the need to manually configure complex
network settings, making the deployment and communication of the perception
platform more efficient and user-friendly and transforming the platform into a
plug-and-play solution, as no manual intervention on the host machine is required.

To implement our version-controlled perception platform, we utilize stan-
dard tools available in most modern operating systems, namely git [100] and
docker [14]. We propose a method to easily install and launch the system on a
new machine, reliably record data, and simultaneously log the exact state of the
system. Furthermore, we introduce a sensor synchronization setup that minimizes
hardware intervention using a single network cable, such as Ethernet or Thunder-
bolt. This unique network interface is sufficient to capture the complete sensor
stream. This approach facilitates the creation of experimental branches for devel-
opment and testing. Furthermore, our methodology uses a time-synchronization
scheme that enables the synchronization of different sensors solely through net-
work cables, eliminating the need for additional hardware triggering systems,
enhancing the system’s simplicity, and avoiding the complexities and costs asso-
ciated with external triggering mechanisms.

3.2 The Meta-Workspace Concept
An essential component of our system is what we call the meta-workspace. It
is a git repository containing only two files sufficient to describe, build, and run
the entire system: .gitmodules and launch.yaml. This implies that cloning it into
an empty directory on the host system is sufficient to download all components,
initiate the build process, launch the system, and record data.

The launch.yaml is a docker-compose description file, which specifies the net-
work configuration of the host machine, the docker services to run, the IP ad-
dresses of all sensors, and the network interface used to stream data. The .git-
modules file lists all the components our system needs. This requires utilizing git-
submodules and docker, nowadays standard tools included in every GNU/Linux
distribution. Encoding the network configuration in the launch.yaml file and the
container specifications are crucial components that enable development on a host

26

Chapter 3. A Modern Infrastructure for Reliable Data Collection

machine completely decoupled from the operating system used to run the sensor
suite. Furthermore, by listing all the required components in the .gitmodules, we
can have different configurations for continuous integration (CI), issue trackers,
and potentially separate git servers for each module.

Using a monorepo1 to store all the software components is also common.
However, it does have a significant drawback: the loss of individual version control
for modules. This makes updating specific modules with newly released code
from sensor vendors difficult. Additionally, a monorepo environment lacks the
transparency to change individual module configurations. These limitations can
hinder the flexibility and efficiency of managing and updating modules within the
perception platform, especially when larger systems are built and modern sensors
are used. Therefore, we opt against a monorepo for our setup.

A significant benefit of our system is that, unlike other robotics platforms
with more specific requirements, our platform only needs a computer running
any GNU/Linux distribution and a network interface to connect to the setup.
The meta-workspace handles all other dependencies and configurations. This
approach not only simplifies the setup process but also increases the accessibility
of the platform for users who may not have specialized equipment or knowledge.

Employing git for all components in our perception platform brings the in-
herent benefits of version control, such as checking out, tracing back changes
(blaming), branching, and others. This ensures the reliability of the datasets cre-
ated with the system since the perception platform state at the time of dataset
recording is preserved through the associated git hash. As a result, users can have
confidence in the datasets, knowing that all components’ states can be accurately
recovered. Furthermore, reproducing the platform state is simple by checking the
hash associated with a specific recording, as illustrated in Fig. 3.1.

3.3 Building Blocks of a Version-Controlled
Perception Platform

In the following sections, we outline the essential components required to realize
a version-controlled perception platform, regardless of the chosen sensor suite
or the host machine. Our approach is not tied to a specific platform, but we
will give a practical example of how to implement the concepts discussed here
in a real-world case study. Unless explicitly stated otherwise, each subsection
refers to one or more git repositories that are part of our meta-workspace. The
meta-workspace is illustrated in Fig. 3.2.

1In version-control systems, a monorepo is a software-development strategy in which the
code for several projects is stored in the same repository.

27

3.3. Building Blocks of a Version-Controlled Perception Platform

launch.yaml.gitmodules

Networking
C

I/
C

D D
o

ck
e

r

R
e

g
is

tr
y

Sensor Drivers

Time Synchronization

URDF Models

Documentation

Figure 3.2: Main components of a version-controlled perception platform. Our meta-workspace
is defined by two files, .gitmodules, and launch.yaml. As shown in this illustration, the
launch.yaml file specifies all the necessary network configurations to operate the system. The
.gitmodules file, instead, specifies all the necessary components to build and run the system.

3.3.1 Docker Registry

We containerize all software components required to operate the sensor suite to
decouple the host system from the perception platform. Furthermore, we main-
tain a private docker registry on our git server that provides pre-built docker
images for all the containers required to run our system. The docker files used
to build these containers are also included in our meta-workspace, allowing us to
have a local copy of the files used to generate these containers in our registry. Ad-
ditionally, this approach enables us to modify the containers locally, as necessary,
for example, in the early stages of development or for debugging purposes.

3.3.2 Sensor Drivers

Our perception platform uses the robot operating system (ROS) to launch the
sensors and log data. However, we do not enforce a specific ROS version, and
other robotic frameworks can also be used. We containerize all required sensor
drivers and custom ROS nodes. Adding a new sensor is as simple as adding the
sensor-specific driver to our git submodules list. If a specific software development
kit (SDK) or system package is required to operate the sensor, then the Dockerfile
can be updated without affecting the development on the host machine.

28

Chapter 3. A Modern Infrastructure for Reliable Data Collection

Network
Host Machine

Trigger

tcam

tlidar

tPTP

Sensor Triggering

PTP Synchronization

Network
Host Machine

Figure 3.3: Difference between synchronized sensor triggering (top) and time synchroniza-
tion (bottom). Traditional sensor hardware triggering relies on external hardware sources to
capture data from sensors within the network. Our approach to time synchronization using
PTP eliminates the need for additional hardware components. Instead, it synchronizes the
internal clocks of the sensors themselves, ensuring precise and coordinated data acquisition
without reliance on external triggers.

An important benefit of this design choice is that the sensor suite can be oper-
ated independently with different ROS versions, such as ROS 1 or ROS 2, simply
by changing the meta-workspace definition. A possible realization could be main-
taining separate git branches for each ROS version, with modified git submodules
and Dockerfiles. This enables switching between ROS versions without changing
the host machine or its operating system, hardware, or sensor configuration.

3.3.3 Time Synchronization

Ensuring time-synchronized sensor data is a crucial requirement for modern per-
ception platforms. It is important to distinguish between two concepts: sensor
time synchronization and synchronized sensor triggering, which are often misun-
derstood and (wrongly) used interchangeably. We discuss both setups in Fig. 3.3.

Sensor time synchronization refers to the use of a shared master clock by
all sensors in a running system that allows them to report timestamps relative
to the same clock, and often, it is possible to also trigger sensors via software,
for example, to take images at a specific point in time. However, it does not
necessarily mean that the sensors will capture data frames in perfect sync as a
hardware trigger would do.

29

3.3. Building Blocks of a Version-Controlled Perception Platform

On the other hand, synchronized sensor triggering refers to the use of a par-
ticular signal, often generated by a hardware trigger or another sensor general-
purpose input/output (GPIO), to capture the sensor data frames in a coordinated
fashion. This approach is often used for stereo cameras or overlapping multi-
camera systems. For example, in the KITTI odometry dataset [63], the Velodyne
LiDAR triggers the cameras at the end of each laser sweep. Although this ap-
proach can ensure that data frames from different sensors can be associated, it
has some limitations. For example, it enforces additional hardware modifications,
such as wiring the GPIO pins from one sensor to another, and some sensors are
hard to trigger, such as rotating 3D LiDARs. This makes the platform setup more
challenging to reproduce in scenarios where hardware engineers are unavailable.
It also limits the flexibility of triggering by the LIDAR hardware. Furthermore,
some sensors, such as a 3D LiDAR, cannot be actively triggered. They can only
generate a trigger output in specific configurations. Additionally, this approach
does not scale well as the number of sensors in the suite grows.

In contrast, we advocate building a sensor suite entirely configurable by soft-
ware and not requiring additional hardware intervention. To achieve this, we
use the IEEE 1588 precise time protocol (PTP) [55], a widely adopted standard
for clock synchronization in networked measurement and control systems today.
PTP provides accurate clock synchronization across multiple sensors and other
devices, which is critical to obtaining reliable measurements. Note that the PTP
protocol can be established through standard plug-and-play network connectors,
but it enforces the requirement that the sensor must come with PTP support
from the vendor. Although our time synchronization setup drastically simplifies
the hardware connections, stereo cameras or multi-sensor arrays with overlapping
fields of views used for point triangulations may still require a hardware trigger
if exactly synchronized exposure is essential.

PTP Grandmaster Clock. Our approach to network-synchronized sen-
sors requires a precise Grandmaster node in the PTP network [55]. In some
scenarios, any sensor or device on the network can act as this master clock. Nev-
ertheless, we design and control the Grandmaster clock as part of the sensor suite
to achieve reliability and absolute timestamps for each sensor. We propose using
an onboard computing system like a Raspberry Pi or Intel NUC with additional
GNSS hardware to synchronize time via the GNSS satellites.

Although not strictly required for realizing a version-controlled system, we uti-
lize a GPS-disciplined host to develop our synchronization setup. The GPS satel-
lite time initially adjusts the Grandmaster’s internal clock and is subsequently
synchronized with a pulse-per-second (PPS) signal from the GPS sensor once per
second. Once the Grandmaster clock is synchronized with the GPS satellites, all
PTP-enabled sensors in the network will synchronize to this Grandmaster clock,

30

Chapter 3. A Modern Infrastructure for Reliable Data Collection

eliminating the need for user intervention or hardware configuration. Moreover,
each sensor’s timestamps will contain absolute timestamp information, as the
PTP Grandmaster clock receives its time from the GPS satellites. Therefore,
all datasets recorded with this synchronization setup will store the exact time a
particular data frame was recorded.

This choice might introduce an additional vulnerability that could disrupt the
functioning of the perception platform. Once the Grandmaster clock machine is
set, it becomes crucial to ensure that any interventions or modifications to the
system do not compromise its internal configuration. To address this weak point,
we have developed a custom operating system (OS) distribution for the Grand-
master clock computer, incorporating an additional monitoring layer. Before
launching our system, we conduct a sanity check to verify that the configura-
tion of the Grandmaster clock computer aligns precisely with the specifications
outlined in the current working environment. This enables us to identify any
potential mismatches or discrepancies that may arise promptly.

3.3.4 Networking
Our methodology introduces a minimal requirement for the sensors, specifically
an Ethernet connection with support for PTP, which is now commonly available.
In contrast to the traditional approach in the robotics community, our system
simplifies network configurations by specifying all essential details, such as IP
addresses, within the launch.yaml file. Consequently, no modifications to the
host machine are needed, resulting in a streamlined and portable setup. Another
advantage is the ease of transferring and running our perception platform on
another host machine without any changes or adjustments. Importantly, our
setup does not override any local configuration on the host machine, making it a
non-invasive approach.

Depending on the sensor configuration, it might also be necessary to ensure
the network is 10 Gigabit Ethernet (GbE) instead of more traditional 1 GbE
setups for fast and collision-free routing, an option we chose to handle multiple
cameras and 3D LiDARs in our setup.

3.3.5 Documentation
Traditionally, the documentation for perception platforms is stored in a separate
repository or documentation system, independent of the system’s main codebase.
While this separation may have benefits, we have experienced that including
the documentation repository in the main codebase of our system has several
advantages. Firstly, it ensures that the documentation is always tightly coupled
with the codebase. Second, it allows developers to search for source code and

31

3.4. Building a Version-Controlled Platform – A Concrete Use Case
Example

documentation consistently. Third, it allows one to check the documentation
even when no internet connection is available. Lastly, it provides a comprehensive
system overview by bringing together all relevant information in one place. We
strongly recommend this approach, especially for university research labs with
changing personnel.

3.3.6 Unified Robotics Description Format (URDF)
Models

In our meta-workspace, we also incorporate the calibration of the sensors utilized
in our system. Our system’s URDF models are included in our meta-workspace,
which completes the description of the current working setup. By storing the
calibration in the URDF git submodule, any changes to the calibration parameters
can be tracked and visually inspected when launching the system.

3.3.7 Continuous Integration/Continuous Deployment
CI/CD

CI/CD is a software development practice that relies on a build server or similar
infrastructure to automatically integrate code changes, build software artifacts,
run tests, and deploy applications in a streamlined and continuous manner. The
stability of our proposed system is highly dependent on our CI/CD infrastructure.
We use our CI/CD to pull new changes from the stable branches into the meta-
workspace definition to keep it up to date. In addition, the CI/CD is in charge
of building all the ROS nodes, docs, URDF models, and more on each commit of
each git submodule. We use the same containers to run the perception platform
and the CI/CD infrastructure to ensure we can build the components locally.
Furthermore, the CI/CD performs nightly builds and deploys the docker images,
ensuring the docker containers are up-to-date. Lastly, our CI/CD infrastructure
builds our custom operating system for the Grandmaster clock computer, mean-
ing that at any point in time, we can use the build artifacts and start from a new
and known state.

3.4 Building a Version-Controlled Platform –
A Concrete Use Case Example

This section details a three-step process for implementing the principles outlined
in this chapter to an existing perception platform. Although the concepts de-
scribed in our work apply to virtually any hardware configuration, we illustrate

32

Chapter 3. A Modern Infrastructure for Reliable Data Collection

LiDARs

Cameras

E-bikebattery

W
at

er
-p

ro
of

sw
itc

h
ca

bi
ne

t GNSS

Figure 3.4: The IPB-Car platform: a practical example of a version-controlled approach.

how to follow these steps using our platform called IPB-Car, the perception plat-
form we use to record datasets for research on autonomous driving.

3.4.1 The IPB-Car Platform
The sensor setup of the IPB-Car platform is shown in Fig. 3.4. It consists of the
following sensors:

• 1 x 3D LiDAR Ouster OS1-128

• 1 x 3D LiDAR Ouster OS1-32

• 4 x industrial-grade cameras, Basler ACA2040-35GC

• 1x navigation system (GNSS/IMU), SBG Ellipse-D

• 1 xPTP Grandmaster computer, based on a Raspberry Pi 4 with an addi-
tional GPS receiver

• 1 xQNAP WSW-M2108-2C 10GbE network switch

• 1 xQNAP QNA-T310G1T 10GbE, thunderbolt converter

Our platform is designed with a single network cable to allow the seamless
flow of the entire sensor stream from the platform to the host machine. For
this, we use a 10-Gigabit Ethernet setup. This requires that all sensors have
available Ethernet ports, but not necessarily 10GbE capable ones. In our setup,

33

3.4. Building a Version-Controlled Platform – A Concrete Use Case
Example

meta-workspace @ f4ck7c6

raspbian @ 666cf7z6
docker_images @ 54c17c6

wiki @ 7e30a33
hardware @ caff7fe2

ipb_car_launch @ 7e30a3f
ouster_lidar @ 3f01e1d
dragonbot_common @ ss0ae9d
pylon-ros-camera @ 5f3de1d
sbg_ros_driver @ af0fe4d

launch.yaml

.gitmodules

.gitmodules launch.yaml

Figure 3.5: An example of our IPB-Car meta-workspace. All the necessary components are
described within the .gitmodules file. Additionally, sensor IP addresses and additional network
configurations are defined in the launch.yaml file on the right of the picture.

for example, all cameras are 1GbE cameras connected to the network switch,
and 1GbE streams are automatically integrated into the 10GbE network. We
connect all Ethernet sensors to a network switch, which is then connected to
an Ethernet-to-thunderbolt converter. As a result, a single thunderbolt cable is
the only cable required to connect to the host machine to record data from the
platform.

In what follows, we describe the steps to implement the method described
in Sec. 3.3.

3.4.2 Step 1: Identify System git Components
The most crucial aspect of version control of a new platform is creating git
repositories for each system component. This is a common practice in robotics
nowadays. However, we push this technique further by creating repositories for
non-software components, such as the URDF models describing the system, the
documentation, etc. The reasoning behind this design choice is to enable us to
take a snapshot of the entire system with a simple git hash. Because of this
design choice, the first step is identifying all the components required to run the
perception platform and ensuring the selected components are accessible through
the git repositories.

3.4.3 Step 2: Containerize All Components
Once all components have been identified, a container must be provided for each
component. There are two approaches to solving this step. The first is to create
one container for each service, for example, one for the cameras, one for the
LiDARs, and so on. The second approach is to create one unique container

34

Chapter 3. A Modern Infrastructure for Reliable Data Collection

for all the services in the system. We chose the second option since we found
that, in practice, it is easier to maintain and adapt to different types of sensor
configurations.

3.4.4 Step 3: Create a Meta-Workspace Repository

Assuming all system components can be used in docker containers and the infor-
mation where each git repository is already gathered, the next step is to create the
meta-workspace repository, introduced in Sec. 3.2. This is a regular git repository
that contains the two files sufficient to describe, build, and run the perception sys-
tem: the files .gitmodules and the launch.yaml. The file .gitmodules contains all
the necessary repositories that describe the perception platform. The containers
identified in the previous stage should be added to the file launch.yaml. Addition-
ally, all network configurations, such as the host machine’s subnet, mask, and IP
address, should be included in the launch.yaml. An example is shown in Fig. 3.5.

3.5 Practical Applications of Our Method

This section exemplifies how using our method simplifies everyday tasks encoun-
tered in the data collection process in robotic research labs.

3.5.1 How to Reliably Record Data

We can ensure consistency across multiple datasets by generating a git tag for
the meta-workspace when the system is known to be in a functional state. This
tag represents the exact setup, configuration, and code for recording the datasets.
Consequently, it is easy to reproduce the same conditions and maintain a reli-
able and consistent environment for dataset generation, even over long recording
periods.

In practice, even small changes in the codebase can result in non-working
system configurations. With our framework, as long as we can identify a func-
tioning commit within the git infrastructure, we can utilize standard tools like
git-bisect to reproduce the problem, pinpoint the introduction of the bug, and fi-
nally eliminate it. It enables us to restore the last known working system state and
effectively debug the issue. Furthermore, by using development branches, other
team members can continue their work without disrupting the main recording
setup. This allows for parallel development efforts while ensuring the stability
and integrity of the system.

35

3.5. Practical Applications of Our Method

3.5.2 How to Retrieve System State From Data
Recordings

Backtracing the state of the perception platform for a previously recorded dataset
is usually challenging. Our approach allows us to checkout the entire system’s
state with the git hash associated to the recording. This enables us to know
precisely how data was recorded and gives valuable insights, for example, if any
pre-processing or filtering was applied or what a specific sensor configuration was.
This increases trust in the collected data and allows fair comparisons between
different recordings.

3.5.3 How to Work on Different Hardware
Configurations

When deployed in practice, our methodology facilitates using the perception plat-
form in various types of robots, considering their specific constraints. For exam-
ple, customization of the meta-workspace becomes necessary for a wheeled mobile
robot that cannot accommodate a laptop for data recording. Consequently, the
sensor drivers and the corresponding SDK associated with the cameras could be
removed. In that case, the build time and system footprint can be significantly
reduced, allowing for the use of the system on a more resource-constrained plat-
form. This adaptability allows the perception platform to be tailored to different
robot configurations and requirements, ensuring its applicability across a wide
range of robotic applications. It is also important to note that calibration pro-
cedures may need to be adjusted accordingly, which are also tracked when using
our methodology.

3.5.4 How to Run the System on Different Machines

In practice, it is highly advantageous to have the ability to operate the system
using different computers within a team. Sharing a single laptop can become a
bottleneck, affecting productivity and flexibility. Our methodology enables de-
velopers to have individual copies of the meta-workspace, allowing them to build,
launch, and test the system independently without relying on a shared machine
or coordination. Furthermore, the only requirement for the host operating sys-
tem is to run any GNU/Linux distribution. This allows for the operation of
the perception platform using an OS that may not support parts of the stack,
such as ROS 1. As a result, team members can work independently on different
requirements while maintaining a consistent and efficient development environ-
ment. This eliminates the challenges of sharing a single machine and allows for

36

Chapter 3. A Modern Infrastructure for Reliable Data Collection

seamless collaboration and progress on different requirements within the percep-
tion platform.

3.5.5 How to Migrate between ROS 1 and ROS 2
Migrating to ROS 2 can be challenging, as existing systems may not work seam-
lessly, and installing ROS 1 and ROS 2 on the same operating system can be
problematic. One possible solution is to dedicate a separate computer solely for
ROS 2 migration. Our framework offers a more elegant approach. By creating
a new branch of the meta-workspace, developers can change the base image of
the Docker containers and work towards achieving a functional ROS 2 setup.
Once the migration goal is achieved, the team can decide whether to merge the
ROS 2 branch into the main development branch or keep it separate. Impor-
tantly, even if the ROS 2 branch is merged, the older ROS 1-compatible branch
remains accessible at any time through git tags or releases, so previously used
recording setups can be reproduced on demand easily. This allows developers to
switch between ROS versions without changing the host operating system, com-
puter, or other configurations. Our framework simplifies the migration process,
reduces associated challenges, and allows us to quickly revert to previous working
configurations.

3.6 Conclusion
This chapter presented a novel methodology to develop version-controlled per-
ception platforms. Our approach to building a sensor suite enhances the repro-
ducibility of the system’s state and is easily adapted to any existing perception
platform. Our methodology relies only on standard tools in any modern operating
system, namely git and docker. It is, from our point of view, key when building
a complex robot or sensing infrastructure. This allows us to successfully build
a containerized software stack that can run on multiple host machines without
setting the host to a particular state. All the software and tools used to de-
velop our perception platform are open-source for the benefit of the community.
We envision this work as a step toward building more reliable perception plat-
forms. Relying on such platforms can accelerate the research of new algorithms
for robots.

37

Chapter 4

LiDAR-Based Pose Estimation

R obust and accurate pose estimation of a robotic platform from sensor
data, the so-called sensor-based odometry, is essential for any robotic
mapping application. Knowing the robot’s pose allows us to describe
its position and orientation in the environment accurately. A small

error in the pose estimates can lead to significant inaccuracies in the resulting
map, affecting the overall quality and usability for navigation, localization, and
other tasks. Consequently, computing the robot’s pose before integrating new
measurements into the map is often a prerequisite. This chapter presents an
effective solution to the pose estimation problem from sensor data that different
mapping applications can use. The method presented in this chapter is transversal
to the rest of the concepts presented in this thesis.

Our approach relies on point-to-point ICP combined with adaptive threshold-
ing for correspondence matching, a robust kernel, a simple but widely applicable
motion compensation approach, and a point cloud subsampling strategy. This
yields a system with only a few parameters that, in most cases, do not even
have to be tuned to a specific LiDAR sensor. Our system performs on par with
state-of-the-art methods under various operating conditions using different plat-
forms and the same parameters: automotive platforms, unmanned aerial vehicles
(UAVs), self-stabilizing vehicles such as segways, or handheld LiDARs. We do not
require integrating IMU data and solely rely on 3D point clouds obtained from
a wide range of 3D LiDAR sensors, thus enabling a broad spectrum of different
applications and operating conditions.

This chapter builds on the assumption that the robot can autonomously col-
lect sensor data reliably, as explained in Chapter 3. However, the data obtained
with the perception platform introduced in Sec. 3.4.1 is currently not accessible to
the public. Therefore, to demonstrate the effectiveness of our method and make
comparisons with existing approaches, we conduct experiments using publicly
available real-world datasets.

39

4.1. KISS-ICP – Keep It Small and Simple

Figure 4.1: Point cloud maps (blue) generated by our proposed odometry pipeline on different
datasets with the same set of parameters. We depict the latest scan in yellow. The scans
are recorded using different sensors with different point densities, orientations, and shooting
patterns. The automotive example stems from the MulRan dataset [80]. The drone of the
Voxgraph dataset [146] and the segway robot used in the NCLT dataset [23] show a high
acceleration motion profile. The handheld Livox LiDAR [98] has a completely different shooting
pattern than the commonly used rotating mechanical LiDAR.

4.1 KISS-ICP – Keep It Small and Simple

The main contribution of this chapter is a simple yet highly effective approach for
building LiDAR odometry systems that can accurately compute a robot’s pose
online while navigating through an environment. It does so in a setup as general
as possible and with a small set of parameters.

Although many sensor odometry systems made progress by adding more com-
plexity to the ego-motion estimation process, we move in the opposite direction.
We identify the core components and adequately evaluate the impact of different
modules on such systems. By removing most parts and focusing on the core ele-
ments, we obtain a surprisingly effective system that is simple to realize and can
operate under various environmental conditions using different LiDAR sensors.

This chapter returns to the roots: classical point-to-point ICP, introduced 30
years ago by Besl and McKay [11]. We aim to tackle the inherent problems of se-
quentially operating LiDAR odometry systems that prohibit current approaches
from generalizing to different environments, sensor resolutions, and motion pro-
files using a single configuration. We present simple yet effective reasoning about
the robot kinematics exploiting and an effective downsampled point cloud repre-
sentation that allows us to minimize the need for parameter tuning.

40

Chapter 4. LiDAR-Based Pose Estimation

Our system challenges even extensively hand-tuned existing SLAM systems.
Our design uses neither sophisticated feature extraction techniques nor learning
methods. The same parameter set works in various challenging scenarios, such as
highway drives of robot cars with many dynamic objects, drone flights, handheld
devices, segways, etc. Thus, we take a step back from mainstream research
in LiDAR odometry estimation and focus on reducing the components to their
essentials. This makes our system perform extraordinarily well in various real-
world scenarios, see Fig. 4.1 for a qualitative evaluation of our approach.

We show that we obtain competitive odometry results with the proper use
of ICP that builds on basic reasoning about the system’s physics and the nature
of the sensor data. In addition to motion prediction, spatial scan downsampling,
and a robust kernel, we introduce an adaptive threshold approach for ICP in the
context of robot motion estimation that makes our approach effective and, at the
same time, generalizes easily.

We make three key claims: Our “keep it small and simple” approach exploiting
point-to-point ICP is (i) on par with state-of-the-art odometry systems, (ii) can
accurately compute the robot’s odometry in a large variety of environments and
motion profiles with the same system configuration, and (iii) provides an effective
solution to motion distortion without relying on IMUs or wheel odometers. In
sum, “good old point-to-point ICP” is a surprisingly powerful tool, and there is
little need to move to more sophisticated approaches if the essential components
are done well. We provide an open-source implementation that follows precisely
the description of this chapter1 .

4.1.1 3D Point Cloud Registration for Pose Estimation

Our approach aims to compute the trajectory of a moving LiDAR sensor incre-
mentally. This is achieved by sequentially aligning the captured point clouds
from the scanner and determining the sensor’s position and orientation relative
to a global coordinate system, which defines the robot’s six degrees of freedom.

For each 3D scan in the form of a local, egocentric point
cloud P = {pi |pi ∈R

3}, we perform the following four steps to obtain a global
pose estimate Tt ∈SE(3) at time t. First, we apply sensor motion prediction
and motion compensation, often called deskewing, to undo the distortions of the
3D data caused by the sensor’s motion during scanning. Second, to accelerate
the computation, we subsample the current scan. Third, we estimate the
correspondences between the input point cloud and a reference point cloud,
which we call the local map. We use an adaptive thresholding scheme for
correspondence estimation, restricting possible data associations, and filtering

1https://github.com/PRBonn/kiss-icp

41

https://github.com/PRBonn/kiss-icp

4.1. KISS-ICP – Keep It Small and Simple

out potential outliers. Fourth, we register the input point cloud to the local
map using a robust point-to-point ICP algorithm. Finally, we update the local
map with a downsampled version of the registered scan. Below, we describe
these components in detail.

4.1.2 Motion Prediction and Scan Deskewing

We advocate for rethinking point cloud registration in the context of mobile
robots, which continuously stream data. One should think of it as something
other than registering arbitrary pairs of 3D point clouds. Instead, one should
phrase it as estimating how much the robot’s actual motion deviates from its
expected motion by registering consecutive scans.

Different approaches can be used to compute the robot’s expected motion
before considering the LiDAR data. The three most popular choices are the
constant velocity model, wheel odometry obtained through encoders, and IMU-
based motion estimation. The constant velocity [182] model assumes that a robot
moves with the same translational and rotational velocity as in the previous time
step. It requires no additional sensors, wheel encoder, or IMU and, thus, is the
most widely applicable option.

Our approach uses the constant velocity model for two reasons: first, it is
generally applicable, requires no additional sensors, and avoids the need for time
synchronization between sensors. Second, as we will show in our experimental
evaluation, it works well enough to provide a solid initial guess when searching for
data associations and deskewing 3D scans. This follows from the fact that robotic
LiDAR sensors commonly record and stream point clouds at 10Hz to 20Hz, i.e.,
every 0.05 s to 0.1 s. In most cases, the acceleration or deceleration, i.e., the
deviations from the constant velocity model that occurs within such short time
intervals, are relatively small. If the robot accelerates or decelerates, the constant
velocity estimation of the robot’s pose will be slightly off, and therefore, we need
to correct this estimate through registration. These accelerations determine the
possible displacements of the (static) 3D points.

The constant velocity model approximates the translational and angular ve-
locities, denoted as vt ∈R

3 and ωt ∈R
3 at time t respectively, by using the pre-

vious pose estimates Tt−1 =(Rt−1, tt−1) and Tt−2 =(Rt−2, tt−2), represented by a
rotation matrix Rt ∈SO(3) and a translation vector tt ∈R

3 for the time step t.
We first compute the relative pose Tpred,t that we will use as motion prediction
as:

Tpred,t =

[

R⊤
t−2 Rt−1 R⊤

t−2 (tt−1 − tt−2)

0 1

]

, (4.1)

42

Chapter 4. LiDAR-Based Pose Estimation

then derive the corresponding velocities as:

vt =
R⊤
t−2 (tt−1 − tt−2)

∆t
, (4.2)

ωt =
Log(R⊤

t−2 Rt−1)

∆t
, (4.3)

where ∆t is the acquisition time of one LiDAR sweep, typically 0.05 s or 0.1 s,
and Log: SO(3)→R

3 extracts the axis-angle representation.
Note that wheel odometry or an IMU-based motion prediction approach can

be used instead to compute vt and ωt for each time step. However, we use
constant velocity as a generally applicable approach.

Within the acquisition time ∆t of one LiDAR sweep, multiple 3D points are
measured by the scanner. The relative timestamp ιi ∈ [0,∆t] for each point pi ∈P

describes the recording time relative to the scan’s first measurement. This relative
timestamp allows us to compute the motion compensation resulting in a deskewed
point p∗

i ∈P
∗ of the corrected scan P∗ reading by

p∗
i = Exp(ιiωt)pi + ιivt, (4.4)

where Exp: R3→SO(3) computes a rotation matrix from an axis-angle represen-
tation. Note that Exp(ιiωt) is equivalent to performing SLERP in the axis-angle
domain.

This form of scan deskewing, especially with the constant velocity model, is
easy to implement, generally applicable, and does not require additional sensors,
high-precision time synchronization between sensors, or IMU biases to be esti-
mated. As we show in Sec. 4.2, this approach often performs even better than
more complex compensation systems [52], at least as long as the motion between
the start and end of the sweep is small, as it is for most robotics applications.

4.1.3 Point Cloud Subsampling
Identifying a set of keypoints in the point cloud is a common approach for scan
registration [71, 154, 219]. It is typically done to achieve faster convergence and
higher robustness in the data association. However, complex filtering of the point
cloud usually comes with an extra layer of complexity and parameters that often
need to be tuned.

Rather than extracting 3D keypoints, which often require
environment-dependent parameter tuning, we propose to compute only a
spatially downsampled version P̂∗ of the deskewed scan P∗. Downsampling is
done using a voxel grid. As we explain in Sec. 4.1.4 below in more detail, we use
a voxel grid as our local map, where each voxel cell has a size of
vsize× vsize× vsize and each cell only stores a certain number of points. Each

43

4.1. KISS-ICP – Keep It Small and Simple

time we process an incoming scan, we first downsample the point cloud of the
scan to an intermediate point cloud P∗

merge, which is later used to update the
map when the relative motion of the robot has been determined with ICP. To
obtain the points in P∗

merge, we use the voxel size α vsize with α∈ (0.0, 1.0] and
keep only one point per voxel.

For ICP registration, an even lower resolution scan is beneficial. Therefore, we
compute a further reduced point cloud P̂∗ by downsampling P∗

merge again using a
voxel size of β vsize with β ∈ [1.0, 2.0] keeping only a single point per voxel. This
further reduces the number of points processed during registration and allows for
a fast and highly effective alignment. The idea of this “double downsampling”
stems from CT-ICP [52], a top-performing open-source LiDAR odometry system
on KITTI.

However, most voxelization approaches select the center of each occupied
voxel to downsample the point cloud [155, 221]. Instead, we found it advanta-
geous to maintain the original point coordinates, select only one point per voxel
for a single scan, and keep its coordinates to avoid discretization errors. This
means the reduced cloud is a subset of the deskewed one, i.e., P̂∗⊆P∗. In our
implementation, we keep only the first point inserted into the voxel.

4.1.4 Local Map and Correspondence Estimation

In line with prior work [6, 52, 126, 219], we register the deskewed and subsampled
scan P̂∗ to the point cloud built so far, i.e., a local map, to compute an incremental
pose estimate ∆Ticp,t at timestamp t. We use frame-to-map registration as it
proves more reliable and robust than the frame-to-frame alignment [6, 126]. To
do that effectively, we must define a data structure representing the previously
registered scans.

Modern approaches have used very different types of representations for this
local map. Popular approaches are voxel grids [219], triangle meshes [188], surfel
representations [6], or implicit representations [53]. As mentioned in Sec. 4.1.3,
we utilize a voxel grid to store a subset of 3D points. We use a grid with a voxel
size of vsize× vsize× vsize and store up to Nmax points per voxel. After registration,
we update the voxel grid by adding the points {Tt pi | pi ∈P

∗
merge} from the new

scan using the global pose estimate Tt. Voxels containing Nmax points are not
updated anymore. Given the current pose estimate, we remove voxels outside the
maximum range rmax. Thus, the size of the map will stay bounded.

Instead of a 3D array, we use a hash table to store the voxels, allowing
a memory-efficient representation and a fast nearest neighbor search [52, 128].
However, the data structure used can be easily replaced with VDBs [125, 190],
Octrees [187, 216], or KD-Trees [9].

44

Chapter 4. LiDAR-Based Pose Estimation

4.1.5 Adaptive Threshold for Data Association
ICP typically performs a nearest neighbor data association to find corresponding
points between two point clouds [11]. When searching for associations, it is
common to impose a maximum distance between the corresponding points, often
using a value of 1m or 2m [6, 188, 219]. This maximum distance threshold can be
seen as an outlier rejection scheme, as all correspondences with a distance larger
than this threshold are considered outliers and are ignored.

The required value for this threshold τ depends on the expected initial pose
error, the number, the type of dynamic objects in the scene, and, to some degree,
the sensor noise. It is typically selected heuristically. Based on the considerations
about the constant velocity motion prediction in Sec. 4.1.2, we can, however,
estimate a likely limit from the data by analyzing how much the odometry may
deviate from the motion prediction over time. This deviation ∆T in the pose
corresponds precisely to the local ICP correction to be applied to the predicted
pose (but it is unknown beforehand). Intuitively, we can observe the robot’s
acceleration in the ∆T magnitude. If the robot does not accelerate, then ∆T
will have a small magnitude, often around zero, which means that the constant
velocity assumption holds and no correction has to be done by ICP.

We integrate this information into our data association search by exploiting
the so-far successful ICP executions. We can estimate the possible point dis-
placement between corresponding points in successive scans in the presence of a
potential acceleration expressed through ∆T as:

δ(∆T) = δrot(∆R) + δtrans(∆t), (4.5)

where ∆R∈SO(3) and ∆t∈R3 refer to the rotational and translational compo-
nent of the deviation, given by

δrot(∆R) = 2 rmax sin
(

1

2
arccos

(
tr(∆R)− 1

2

)

︸ ︷︷ ︸

θ

)

, (4.6)

δtrans(∆t) = ∥∆t∥2, (4.7)

where the trace operator tr is defined as the sum of elements on the main diagonal
of the square matrix ∆R.

The term δrot(∆R) represents the displacement that occurs for a range reading
with maximum range rmax subject to the rotation ∆R, see also Fig. 4.2. Note
that Eq. (4.5) constitutes an upper bound for the point displacement as

∥∆Rp+∆t− p∥2 ≤ δrot(∆R) + δtrans(∆t), (4.8)

which follows from the triangle inequality.

45

4.1. KISS-ICP – Keep It Small and Simple

θ rmax
p

∆R

∆t

rmax

∆Rp+∆t

δtrans(∆t) δrot(∆R)

δ(
∆

T)

Figure 4.2: Exemplary computation of the maximum point displacement δ(∆T) caused by a
rotational and translational deviation (∆R,∆t) from the predicted motion.

For obtaining δrot, other approaches could be considered, such as considering
individual ranges for the adaptive threshold computation [13]. In our tests, we did
not see any difference in the results but a 3-fold increase of the overall runtime;
thus, we use rmax instead of the individual range of each point to calculate δrot.

To compute the threshold τt at time t, we consider a Gaussian distribution
over δ using the values of Eq. (4.5) over the trajectory computed so far whenever
the deviation was larger than a minimum distance δmin, i.e., situations where
the robot motion was deviating from the constant velocity model. Its standard
deviation is

σt =

√

1

|Jt|

∑

i∈Jt

δ(∆Ti)2, (4.9)

where the index set Jt of deviations up to t is given by

Jt = {i | i < t ∧ δ(∆Ti) > δmin}. (4.10)

This avoids reducing the value of σt too much when the robot is not moving
or moving at a constant velocity for a long time. In our experiments, we set this
threshold δmin to 0.1m. We then compute the threshold τt as the three-sigma
bound τt =3 σt, which we use in the next section for data association.

4.1.6 Alignment Through Robust Optimization
We base our registration on point-to-point ICP [11]. The advantage of this choice
is that we do not need to compute data-dependent features such as normals, curva-
ture, or other descriptors, which may depend on the scanner or the environment.
Furthermore, with noisy or sparse LiDAR scanners, features such as normals are

46

Chapter 4. LiDAR-Based Pose Estimation

often unreliable. Thus, neglecting quantities such as normals in the alignment
process is an explicit design decision that allows our system to generalize well to
different sensor resolutions.

To obtain the global estimation of the pose Tt of the robot, we start by
applying our prediction model Tpred,t to the scan P̂∗ in the local frame. Succes-
sively, we transform it into the global coordinate frame using the previous pose
estimate Tt−1, resulting in the source points

S =
{

si = Tt−1Tpred,t pi

∣
∣ pi ∈ P̂

∗
}

. (4.11)

For each iteration j of ICP, we obtain a set of correspondences between the
point cloud S and the local map Q= {qi | qi ∈R

3} through nearest neighbor
search over the voxel grid (Sec. 4.1.4) considering only correspondences with a
point-to-point distance below τt. To compute the current pose correction ∆Test,j,
we perform a robust optimization minimizing the sum of point-to-point residuals

∆Test,j = argmin
T

∑

(s,q)∈C(τt)

ρ
(∥
∥Ts− q

∥
∥
2

)

, (4.12)

where C(τt) is the set of nearest neighbor correspondences with a distance smaller
than τt and ρ is the Geman-McClure robust kernel [2, 29], i.e., an M-estimator
with a strong outlier rejection property, given by

ρ(e) =
e2/2

σt/3
︸︷︷︸

κt

+ e2
, (4.13)

where the scale parameter κt of the kernel is adapted online using σt. Lastly, we
update the points si, i.e.,

{si ← ∆Test,j si | si ∈ S} , (4.14)

and repeat the process until the convergence criterion is met.
As a result of this process, we obtain the transformation

Tt =∆Ticp,tTt−1Tpred,t, where ∆Ticp,t =
∏

j ∆Test,j. While we apply the
prediction model Tpred,t (i.e., the constant velocity prediction) to the local
coordinate frame of the scan, we perform the ICP correction ∆Ticp,t in the global
reference frame of the robot. This is done for efficiency reasons as it allows us to
transform the source points S only once per ICP iteration. With this, the local
pose deviation ∆Tt at time t used in the Eq. (4.5) can be expressed as

∆Tt = (Tt−1Tpred,t)
−1 ∆Ticp,tTt−1Tpred,t. (4.15)

A standard termination criterion for ICP is to control the number of iterations.
Most approaches also have a further criterion based on the minimum change in

47

4.2. Experimental Evaluation

Parameter Value

Initial threshold τ0 2m
Min. deviation threshold δmin 0.1m
Max. points per voxel Nmax 20

Voxel size map vsize 0.01 rmax

Factor voxel size map merge α 0.5

Factor voxel size registration β 1.5

ICP convergence criterion γ 10−4

Table 4.1: All seven parameters of our approach. rmax is the maximum range of the sensor.

the solution. On the contrary, we found that controlling the number of iterations
does not allow the algorithm to always find a solution. Therefore, we only employ
the termination criterion based on the applied correction being smaller than γ,
without imposing a maximum number of iterations.

Finally, the ICP correction is applied to the point cloud P∗
merge, and the points

are integrated into the local map.

4.1.7 Parameters
Our implementation depends on a small set of seven parameters. All are shown
in Tab. 4.1. We used the same parameters for all experiments. Most other
approaches use a substantially larger set of parameters: MULLS [133] has 107

parameters, SuMa [6] has 49 parameters, and CT-ICP [52] has 30 parameters
in their respective configuration files. In contrast, our approach only has two
parameters for the correspondence search (τ0 and δmin), four for the map rep-
resentation (Nmax, vsize, α, and β) and scan subsampling, and one for the ICP
termination (γ). Note that the maximum range of a scanner is a value that
depends on the specific sensor in use. As such, we do not consider it a system
parameter. However, for some scenarios, the value of rmax might also be adapted
to the specific environment in which the system operates, e.g., not considering
far away measurements that are usually less accurate.

4.2 Experimental Evaluation
Our approach provides a simple yet effective LiDAR odometry pipeline with a
small set of parameters. We present our experiments to show the capabilities
of our method. The results of our experiments support our key claims, namely
that our approach (i) is on par with more complex state-of-the-art odometry
systems, (ii) can accurately compute the robot’s odometry in a large variety

48

Chapter 4. LiDAR-Based Pose Estimation

of environments and motion profiles with the same system configuration, and
(iii) provides an effective solution to motion distortion without relying on IMUs
or wheel odometers.

4.2.1 Experimental Setup
We use numerous datasets and common evaluation methods. We start with
the KITTI odometry dataset [63] to evaluate our system against state-of-the-art
approaches to LiDAR odometry. To investigate how we perform in other datasets
of autonomous driving that employ a different sensor, we evaluated our approach
in the MulRan dataset [80]. Furthermore, we show that our approach can be
used in different scenarios, such as the one present in the NCLT dataset [23], a
segway dataset, and the Newer College dataset [144] recorded using a handheld
device. We also analyze our method’s different components, such as the motion-
compensation scheme and the adaptive threshold.

4.2.2 Performance on the KITTI-Odometry Benchmark
This experiment evaluates the performance of different odometry pipelines on the
popular KITTI benchmark dataset. Since most systems do not do motion com-
pensation, we use the already compensated KITTI scans for a fair comparison
and turn off motion compensation for our approach and for CT-ICP [52], the per-
formance of the motion compensation module will be studied later in Sec. 4.2.4.1.
Tab. 4.2 exhibits how our system challenges most state-of-the-art systems, which
are typically more sophisticated than our point-to-point ICP. Based on the offi-
cial KITTI benchmark, at the time of submission of KISS-ICP [191] on January
2023, we rank second among the open-source approaches (behind CT-ICP) and
ninth among all submissions. This indicates that our comparably simple system
performs better than all publicly available systems, except CT-ICP. Note that
CT-ICP is a complete SLAM system, and it uses loop closures to correct for the
accumulated drift of the odometry estimation. We, in contrast, obtain our results
using only open-loop registration without any loop closing.

4.2.3 Comparison to State-of-the-Art Systems
We proceed to analyze the performance of our system on different datasets, sce-
narios, and types of robots. For that, we use the MulRan dataset [80], a handheld
device [144], and a segway dataset [23]. Odometry pipelines typically deal with
those challenging scenarios but employ IMUs [164] or a different system configu-
ration [52]. Our system performs on par with state-of-the-art systems using the
same parameter values for all experiments and datasets. For this experiment,

49

4.2. Experimental Evaluation

Method Seq. 00-10 Seq. 11-21

SL
A
M SuMa++ [6] 0.70 1.06

MULLS [133] 0.52 -
CT-ICP [52] 0.53 0.59

O
do

m
et
ry

IMLS-SLAM [53] 0.55 0.69
MULLS [133] 0.55 0.65
F-LOAM [194] 0.84 1.87

SuMa [6] 0.80 1.39
KISS-ICP [191] 0.50 0.61

Table 4.2: KITTI Benchmark results with motion compensated data. We report the average
relative translational error in % [64]. These results are then averaged across all sequences being
studied. We compare across SLAM methods employing pose-graph optimization for improved
results (top) and odometry methods (bottom). We omit the relative rotational error, but these
results are available at https://www.cvlibs.net/datasets/kitti/eval_odometry.php.

we compare with the state-of-the-art odometry systems, namely MULLS [133],
SuMa [6], F-LOAM [194], and CT-ICP [52]. Note that we do not provide an
evaluation of CT-ICP for the MulRan dataset since CT-ICP does not provide
support for this dataset.

For the MulRan dataset [80], we tested the systems under evaluation on all
available public sequences. Since the dataset provides three similar runs for each
sequence, we report the average number of each sequence in Tab. 4.3. Our method
outperforms all state-of-the-art approaches by a large margin in relative and
absolute error.

We used both available sequences to evaluate the Newer College dataset and
achieved similar results in the short experiment compared to CT-ICP. For the long
experiment, the performance gap can be explained by the additional loop closing
module of CT-ICP, a complete SLAM system. For the NCLT dataset experiment,
we used the sequence evaluated in the original work of CT-ICP. We could not
reproduce the results reported in CT-ICP and, therefore, report the results in
the original manuscript [52] in Tab. 4.4. We achieve similar results than CT-
ICP. However, we observed errors in the GPS ground-truth poses and missing
frames. Therefore, the numbers reported for the NCLT dataset should be taken
with a grain of salt and only serve as an estimate of how the systems perform.
We discourage using NCLT to evaluate odometry systems: misalignments in the
ground-truth poses, missing frames, and inconsistencies in the data turn the
evaluation of odometry systems on such a dataset not a good evaluation tool
from our perspective. However, we provide the results for completeness.

We show qualitative results in Fig. 4.1 generated using our KISS-ICP poses.

50

https://www.cvlibs.net/datasets/kitti/eval_odometry.php

Chapter 4. LiDAR-Based Pose Estimation

Sequence Method Avg.
tra.

Avg.
rot.

ATE
tra.

ATE
rot.

KAIST

MULLS [133] 2.94 0.86 37.24 0.11
SuMa [6] 5.59 1.73 43.61 0.14

F-LOAM [194] 3.43 0.99 46.17 0.15
KISS-ICP [191] 2.28 0.68 17.40 0.06

DCC

MULLS [133] 2.96 0.98 38.35 0.12
SuMa [6] 5.20 1.71 36.22 0.11

F-LOAM [194] 3.83 1.14 42.70 0.13
KISS-ICP [191] 2.34 0.64 15.16 0.05

Riverside

MULLS [133] 5.42 2.21 91.16 0.16
SuMa [6] 13.86 2.13 227.24 0.38

F-LOAM [194] 5.47 1.18 138.09 0.22
KISS-ICP [191] 2.89 0.64 49.02 0.08

Sejong*

MULLS [133] 5.93 0.84 2151.00 0.49
F-LOAM [194] 7.87 1.20 3448.97 0.82
KISS-ICP [191] 4.69 0.70 1369.54 0.33

Table 4.3: Quantitative results on the MulRan dataset. We report the relative translational
error and the relative rotational error using the KITTI [64] metrics. Additionally, we show the
absolute trajectory error for translation in m and for rotation in rad. As the dataset provides
three similar runs for each sequence, we report the average number of each sequence.

Method NCD
01-short

NCD
02-long

NCLT
2012-01-8

MULLS [133] 0.82 1.23 -
F-LOAM [194] 2.02 fails -
CT-ICP [52] 0.48 0.58 1.17

KISS-ICP [191] 0.51 0.96 1.27

Table 4.4: Quantitative results for Newer College and NCLT. We report the relative transla-
tional error in % [64].

Using a single system configuration, we can produce consistent maps on differ-
ent sensor setups (Velodyne/Ouster vs. Livox) and different motion profiles (car,
drone, segway, handheld) with the same parameters.

51

4.2. Experimental Evaluation

Method Avg. tra Avg. rot Avg. freq.

MULLS [133] 1.41 - 12Hz
IMLS-SLAM [53] 0.71 - 1Hz

CT-ICP [52] 0.55 - 15Hz
KISS-ICP [191] without deskewing 0.91 0.27 51Hz

Ours+Deskewing (IMU) 0.51 0.19 38 Hz
Ours+Deskewing (CV) 0.49 0.16 38 Hz

Table 4.5: Results of evaluating different state-of-the-art systems on KITTI-raw dataset (with-
out motion compensation). We report the relative translational error and the relative rotational
error using the KITTI [64] metrics. Additionally, we report the runtime operation of the systems
being in consideration for this experiment.

4.2.4 Ablation Studies

To understand how each component of our system impacts the odometry perfor-
mance, we perform ablation studies on the different components of our approach,
namely, the motion compensation scheme, the adaptive threshold, and the robust
kernel. To carry out these studies, we use KITTI odometry dataset [63] as it is
probably the best-known one.

4.2.4.1 Motion Compensation

To assess the impact of our motion compensation scheme, we utilize the raw
LiDAR point clouds without any compensation applied. Note that the KITTI
odometry benchmark point cloud data [63] is already compensated for and, there-
fore, cannot be used for this study. Thus, we use the KITTI raw dataset [64].
We present the results in a familiar fashion, selecting only the sequences cor-
responding to those in the motion-compensated dataset [63]. As we can see
in Tab. 4.5, our motion compensation scheme can produce state-of-the-art results
and is on par with substantially more sophisticated and thus complex compen-
sation techniques such as the one introduced by CT-ICP [52]. Additionally, we
study how our system performs without applying motion compensation, as shown
in Tab. 4.5. We also evaluate the performance of our constant velocity model for
motion compensation. To assess this, we compare the same compensation strat-
egy but replace the velocity estimation with sensor data taken by the IMU. The
results show that our velocity estimation is on par or even slightly better with
the IMU.

Besides the fact that CT-ICP’s elastic formulation yields good results, our sim-
pler approach produces even better results. This result shows that the constant
velocity model employed in our approach for compensating motion distortion is

52

Chapter 4. LiDAR-Based Pose Estimation

Dataset Data-Association Threshold τ

0.3m 0.5m 1.0m 2.0m Ours

KITTI Seq. 00 0.54 0.51 0.53 0.55 0.51
KITTI Seq. 04 0.39 0.41 0.37 0.39 0.36

KITTI Avg. Seq. 00-10 0.53 0.51 0.51 0.53 0.50

Table 4.6: Comparison of different fixed thresholds vs. our proposed adaptive threshold on the
KITTI dataset. We report the relative translational error in % [64].

sufficient to cope with the slight reduction in performance when no compensation
is applied. Consequently, we believe that more sophisticated techniques are un-
necessary for odometry estimation for most robotic vehicles. In contrast, devices
operating under extreme accelerations could benefit from an IMU here.

4.2.4.2 Adaptive Data-Association Threshold

We finally assess how the adaptive threshold τt impacts the performance of our
system by comparing it to a different set of fixed thresholds commonly used in
open-source systems. To conduct this experiment, we identify the two KITTI
sequences with the largest (00) and the smallest (04) average acceleration, indi-
cating different motion profiles as we can see in Tab. 4.6, the best-fixed threshold
for sequence 00 is 0.5m and 1.0m for sequence 04. This means that a fixed thresh-
old has to be tuned depending on the motion profile and, thus, to the dataset to
achieve top performance. In contrast, our adaptive algorithm exploits the motion
profile to estimate the threshold online, resulting in on-par or better performance
without finding a new fixed threshold for each sequence. Finally, our proposed
adaptive threshold strategy achieves the best average result in the KITTI train-
ing sequences. Please note that all the experiments from this ablation study use
the robust kernel.

4.2.4.3 Impact of Using a Robust Kernel

In this subsection, we assess the impact of the selected outlier rejection technique
in the registration pipeline. To carry out this ablation study, we disable the robust
kernel entirely from the optimization loop and run the system on all the train
sequences of the KITTI dataset. The results are shown in Tab. 4.7. We show the
metrics for each dataset sequence to allow for a more fine-grain level of detail.
As observed, using a robust kernel in the optimization significantly improves the
odometry performance. We can see in the results averaged over the sequences
that not using the kernel produces 0.67% for the translational error and 0.25%
for the rotational error [64] compared to 0.50% and 0.15% respectively.

53

4.3. Conclusion

Figure 4.3: Left, registration results using a Livox LiDAR [98] with the robust kernel, and right,
results on the same datasets without the robust kernel.

Translational error results using KITTI Metrics [64]

Method avg. 00 01 02 03 04 05 06 07 08 09 10

w kernel 0.50 0.51 0.63 0.51 0.66 0.35 0.31 0.26 0.33 0.82 0.50 0.56
w/o kernel 0.67 0.74 0.66 0.75 0.63 0.41 0.42 0.28 0.50 1.06 0.89 1.02

Rotational error results using KITTI Metrics [64]

Method avg. 00 01 02 03 04 05 06 07 08 09 10

w kernel 0.15 0.18 0.15 0.15 0.16 0.15 0.14 0.08 0.17 0.18 0.13 0.19
w/o kernel 0.25 0.30 0.13 0.28 0.22 0.13 0.28 0.10 0.37 0.29 0.30 0.45

Table 4.7: Ablation study on the use of a robust kernel for the optimization of the training
sequence of the KITTI Odometry dataset. We use the adaptive threshold we propose in our
approach for both runs. We report the relative translational and rotational errors using the
KITTI [64] metrics.

Upon examining urban sequences like 00 or 07, we observe a significant degra-
dation in pose estimates when robust kernels are not utilized. Contrary to popular
belief [36, 38, 40], applying robust kernels doesn’t drastically alter the outcomes
on highway sequences with dynamic objects, such as 01 or 04.

Additionally, we show a qualitative result in Fig. 4.3 of one of the sequences of
the handheld Livox LiDAR [98] dataset, where KISS-ICP completely fails when
we turn off the robust kernel.

4.3 Conclusion
This chapter presents a simple yet highly effective approach to LiDAR odometry
and shows that point-to-point ICP works well – when used properly. Our ap-
proach operates solely on point clouds and does not require an IMU, even when
dealing with high-frequency driving profiles. Our approach exploits the classi-
cal point-to-point ICP to build a generic odometry system that can be used in
different challenging environments, such as highway runs, and for different types

54

Chapter 4. LiDAR-Based Pose Estimation

of robotics systems, such as handheld devices, segways, and drones. Moreover,
our system operates efficiently with reliance on just a few parameters and can
use different range-sensing technologies and scanning patterns. We only assume
that point clouds are generated sequentially as the robot moves through the en-
vironment. We implemented and evaluated our approach on different datasets,
provided comparisons with other existing techniques, supported all claims made
in this chapter, and released our code. The experiments suggest that our ap-
proach is on par with substantially more sophisticated state-of-the-art LiDAR
odometry systems and performs well on various datasets under different condi-
tions with the same parameter set. Finally, our system operates faster than the
sensor frame rate in all presented datasets. We believe this work will be a new
baseline for future sensor odometry systems and a solid, high-performance start-
ing point for future approaches. Our open-source code is robust, simple, easy to
extend, and performs well, pushing the state-of-the-art LiDAR odometry to its
limits and challenging the most sophisticated systems.

55

Chapter 5

Offline Mapping Using Poisson
Surface Reconstruction

O ffline mapping systems can enhance robotics tasks such as localization
or place recognition. Consider a localization scenario as an example.
The preliminary step to facilitate a robot to localize within a map is
to build that map. This map-building step typically happens after

a data collection phase using, for example, a perception platform such as the
IPB-Car, described in Chapter 3. Intuitively, the more accurate these maps are,
the more precise the localization will be.

This chapter presents a novel approach to offline 3D LiDAR mapping, focusing
on improving mapping quality. Note that since the map’s construction occurs
offline, there are no hard runtime constraints, which we exploit to enhance the
level of detail in the produced maps. We represent the map as a triangle mesh
computed via Poisson surface reconstruction. This enables us to build a 3D map
showing more geometric details than standard mapping approaches that rely on
a truncated signed distance function or surfels. Our experimental evaluation
indicates quantitatively and qualitatively that our maps offer higher geometric
accuracies than other map representations.

In addition, achieving precise scan registration may be necessary to enhance
the quality of the model. For example, when external sources of odometry are
used, such as KISS-ICP, discussed in Chapter 4, the scans are not guaranteed to
align accurately with the generated mesh map. This is because KISS-ICP utilizes
a point cloud map representation and operates independently of the mapping al-
gorithm proposed in this chapter. To address this issue, this chapter presents a
novel frame-to-mesh ICP technique for registering new scans in the mesh. This
approach utilizes a ray-casting-based data association, which facilitates the align-
ment of scans to the mesh. Additionally, we show how this method can be used
for LiDAR-based odometry estimations even without any other odometry source.

57

5.1. Poisson Surface Reconstruction for 3D Mapping

Figure 5.1: Qualitative comparison between the different mapping techniques for sequence 00

of the KITTI odometry benchmark [63].

5.1 Poisson Surface Reconstruction for 3D
Mapping

The main contribution of this chapter is a novel LiDAR odometry and mapping
system that builds upon a surface reconstruction method providing accurate ge-
ometrical maps. Most autonomous systems cannot navigate effectively without
a map of the environment and knowledge of their pose. Thus, localization, map-
ping, and SLAM [18, 171] are essential building blocks of autonomous systems.

Here, we investigate the use of an alternative scene representation for map-
ping and registration. Scene representation is essential since it is used to register

58

Chapter 5. Offline Mapping Using Poisson Surface Reconstruction

incoming scans. To obtain accurate relative pose estimates and compelling map-
ping results, a scene representation must capture and represent the environment
with a high level of detail.

This chapter aims to improve the geometrical accuracy of LiDAR-based map-
ping while simultaneously estimating the vehicle’s pose with low drift over time.
We achieve this using a triangle mesh representation computed using the Poisson
surface reconstruction technique [85]. This is in contrast to other state-of-the-
art approaches, which often use either surfels [6] or a truncated signed distance
function [44, 126] as a representation, that usually provides a relatively low re-
construction quality, at least for large outdoor scenes. With our approach, we
reconstruct meshes from 3D LIDAR data for outdoor environments with a qual-
ity previously common only at the object level, for indoor settings, by using
terrestrial scanners, or by aggregating multiple passes over the same scene.

We aggregate individual scans into a local point cloud and use these to re-
construct a triangular scene mesh. Our experimental evaluation shows that such
a triangle mesh is well-suited for registering 3D LiDAR scans. It is comparably
compact, preserves rather detailed structures, and allows for accurate frame-to-
mesh registration. This yields a new 3D LiDAR-based mapping approach that
provides geometrically accurate maps and can be used for pose estimation, as
shown in Fig. 5.1. We show that the proposed map representation (i) is a ge-
ometrically accurate representation of the environment, (ii) has better memory
efficiency compared to other map representations, and (iii) allows for accurate
registration of incoming scans with the model using a novel frame-to-mesh reg-
istration algorithm. We support these claims through experimental evaluation
on synthetic and real-world data. The work described in this chapter has been
published in a peer-review conference [188], and the source code of our approach
is open source as a software package called PUMA1.

5.1.1 Approach Overview

We perform the following three steps for each scan: First, we compute per-point
normals, second, we register the scan to the local map, and third, we fuse the
registered scan into a global map. We furthermore propose a novel frame-to-mesh
registration strategy that exploits the fact that the map is a mesh.

Our approach distinguishes between a local map and a global map. The local
map is used for the odometry estimation and is built from the last N localized
scans. The global map is the aggregated mesh of the entire environment.

1https://github.com/PRBonn/puma

59

https://github.com/PRBonn/puma

5.1. Poisson Surface Reconstruction for 3D Mapping

5.1.2 Normal Computation
The Poisson surface reconstruction algorithm requires an oriented point cloud,
thus requiring normals for all the points in the input cloud. For computing this,
we project the point cloud into the vertex map VD : R2→R

3 mapping a 2D coor-
dinate (u, v) ∈ R

2 to a point (x, y, z) ∈ R
3. We estimate the normal vectors using

the cross product of neighboring pixels [6]. Although this is sometimes less accu-
rate than estimating normals via principal component analysis on the covariance
of a point neighborhood, it is far more efficient as it does not need to determine a
point neighborhood. The normal map ND is calculated for each coordinate (u, v)
using cross products over forward differences of the corresponding vertex map
pixel, i.e.,

ND((u, v)) = (VD((u+ 1, v))− VD((u, v)))

× (VD((u, v + 1))− VD((u, v))) . (5.1)

5.1.3 Point Cloud Registration Between Scans and
Triangle Mesh

For point cloud registration, we perform data association of the point cloud with
the triangle mesh and determine pose increments to minimize an error metric.

For the data association between point clouds, the closest point association
found via neighbor search is a common choice [154]. However, as we show in the
experimental evaluation, this is suboptimal. We propose to use ray-casting to
determine ray-triangle intersections. For each intersection, we extract the point
and associated normal of the intersected triangle. To this end, we first apply the
last estimated pose at time t − 1, i.e., Tt−1∈SE(3), to the current scan as an
initial alignment. We then create a set of rays R= {ri | ri ∈R

3}. Each ray ri is
defined by:

ri(γ) = oi + γ
di

∥di∥2
, (5.2)

with the origin oi = tt at the currently estimated sensor position and directions
di = Ttpi, passing through all points pi of the current scan. Here, Tt is the
estimated pose, and tt ∈ R

3 is the translational part of Tt.
The intersection of each ray ri ∈ R with the mesh results in the correspon-

dence for point pi, denoted as qi, and the normal of the intersected triangle is the
corresponding normal ni. To compute the relative transformation between the
scan and the mesh, we can now use different error metrics, such as the point-to-
point metric investigated for KISS-ICP in Chapter 4 [191], point-to-plane [154],
or plane-to-plane error [162].

The data association step can also result in wrong correspondences, where a
given point from a surface is associated with an intersected point in the mesh

60

Chapter 5. Offline Mapping Using Poisson Surface Reconstruction

13

8

4

density

Figure 5.2: Cross-section view of the vertex densities for an urban scene reconstruction, where
the colors represent the density of the vertices, as shown in the color bar. We trim away the
lower 10% of the vertices based on the density threshold ζ(ν).

from another surface. This typically happens when the ray does not hit any
nearby surface and hits a faraway triangle. Therefore as outlier rejection, we
remove correspondences (pi, qi) ∈ C from the set of correspondences C that satisfy
∥pi − qi∥2 > τ . In our implementation, we use τ = 1m. The reason for using
such a fixed threshold is that this work was done before KISS-ICP [191]. In a
new implementation, one would probably investigate an adaptive threshold.

Similar to Eq. (4.12), we obtain the incremental pose estimation by iteratively
optimizing the following objective:

∆Test,j = argmin
T

∑

(s,q)∈C

ρ
(∥
∥(Ts− q).n)

∥
∥
2

)

, (5.3)

but considering now a point-to-plane metric [154] between correspondent points.
The choice of point-to-plane metric over point-to-point was determined empir-
ically due to its best performance for this particular registration problem. To
reduce the influence of outliers that were not filtered, we use a Huber weighting
kernel ρ(e) [78] instead of the previously used German-McClure in Sec. 4.1.6. As
a result of this process, we obtain the pose of the vehicle Tt =∆Ticp,tTt−1, where
∆Ticp,t =

∏

j ∆Test,j, and j is the current iteration.

The main advantage of the proposed data association is that it does not need
to compute nearest neighbors. Instead, the association step exploits the map
representation, which, as we show later in the experiments, turns out to be faster,
especially when dealing with high-resolution meshes. Nevertheless, this approach
must handle large rotational motions properly and requires a reasonable initial
estimate to converge, even though this also holds for nearest-neighbor methods.

61

5.1. Poisson Surface Reconstruction for 3D Mapping

5.1.4 Meshing Algorithm

A common technique for performing 3D surface reconstruction is to build an
implicit function to recover the underlying surface of the input data [74]. Such
implicit function f is usually defined as a scalar field in R

3, i.e., f : R
3→R,

where typically the zero-level set of f represents the surface we aim at modeling.
A popular technique in robotics and SLAM is to approximate f by the signed
distance function [44], i.e., the projected distance from the sensor to the surface.

Our work, in contrast, explores the use of PSR [84, 85] to build high-quality,
smooth, consistent maps for mobile robots, particularly autonomous vehicles.
We refer to the original publications [84, 85] for details of the reconstruction
algorithm. Our goal is to investigate the use of triangle meshes in SLAM in
addition to the particular choice of the algorithm used for reconstruction2.

Next, we explain mesh post-processing. The aforementioned Poisson recon-
struction is designed to recover the closed surfaces of a single object in 3D, as
illustrated in Fig. 5.2. Our 3D world, especially outside environments, is not
composed of closed surfaces. Therefore, we need to refine the reconstructed sur-
face and perform a post-processing step, which involves removing low-density
vertices. The density ζ(ν) of a vertex ν on the mesh measures how many points
from the input point cloud support the vertex ν. Intuitively, a low value means
that the vertex is only supported by a low number of points and, therefore, is
not densely measured in the original LiDAR scan or not measured at all (since
the Poisson surface reconstruction algorithm will also extrapolate points where
there is no data). After reconstructing the mesh, we compute the distribution of
the per-vertex densities, as illustrated by the histogram in Fig. 5.2, right to the
legend. The vertices of interest have a high density, i.e. those closer in space to
point cloud data, and are colored yellow to red in the figure. We trim away the
low-density vertices independently of the size of the mesh triangles. We make
this decision only based on a vertex’s density ζ(ν). We consider the cumulative
histogram of densities starting with the highest density values and trim those
vertices that belong to the last 10%. This means that we remove 10% of the
vertices with the smallest density values.

This post-processing produces a tighter reconstruction of the input data,
showing little artifacts, allowing us to incrementally build the global mesh as
described in Sec. 5.1.5. Without this step, creating a global map of the environ-
ment is impossible due to the artifacts shown in blue in Fig. 5.2.

Note that, as an interesting side effect, this density-based filtering also tends
to eliminate most of the moving objects in the scene since 3D points on the

2We only consider horizontally placed LiDAR sensors. Therefore, we do not examine LiDARs
shooting towards the sky, like profile scanners.

62

Chapter 5. Offline Mapping Using Poisson Surface Reconstruction

surface of moving objects often only support a small number of triangles as the
position of the surface changes in every scan. This leads to low-density triangles
on moving objects, and thus, no surface will be reconstructed at these locations.

5.1.5 Local and Global Map
In our approach, we distinguish between a local and a global map. The local
map is built from the last N aggregated scans. The global map is only used for
visualization and reporting the final output but is not used inside our approach,
which will change when adding loop closure. A new mesh is reconstructed from
the local map each time a new LiDAR frame has been registered to the local map.
This produces a rolling grid-like mesh that moves with the estimated pose of the
vehicle and stores enough information for the registration of new incoming scans.
During the initial N scans, we turn off the mesh reconstruction module and rely
on the standard point-to-plane ICP for estimating the vehicle’s pose. After M
scans have been registered, the last generated local mesh is integrated into the
global mesh map. This means the global mesh will be updated only after M
scans have arrived and registered (in contrast to the local mesh updated every
time a new scan comes). To do so, we add all the triangles in the local mesh to
the global one and then remove the duplicated triangles that can occur due to
overlaps in the local map region. In our implementation, we use N =M = 30.

5.2 Experimental Evaluation
We implemented our approach on top of the Open3D library [221] and use the
Embree library [193] for efficient ray-to-triangle intersection queries. Our algo-
rithm was tested on an Intel Xeon W-2145 CPU with 8 cores and 32GB RAM.

For all of our experiments, we used the default SuMa settings and a voxel size
of 0.10m for TSDF. For our approach, we set the depth of the octree used in the
Poisson surface reconstruction [84] to ∆tree = 10.

5.2.1 Datasets
We use simulated and real-world data for our evaluation. To assess the accuracy of
our map, we need ground truth data, and thus, we generate synthetic sensor data
for the virtual urban environment shown in Fig. 5.33. To obtain ground truth
data, we sample points from the computer-aided design (CAD) model using a
virtual LiDAR sensor model with the same field of view and properties as the
one used to obtain the scans but using 320 beams instead of 64. This way, we

3The data is available at http://www.ipb.uni-bonn.de/data/mai-city-dataset.

63

http://www.ipb.uni-bonn.de/data/mai-city-dataset

5.2. Experimental Evaluation

(a) Birds eye view (b) First person view

Figure 5.3: The Mai City dataset CAD model utilized for evaluating the mapping results, where
virtual sensors were placed on the model to obtain LiDAR scans through ray-casting techniques.
This dataset was used to evaluate the mapping accuracy of different approaches by providing
realistic ground truth LiDAR data for comparison.

TSDF [121] Surfels [6] Our Approach

Figure 5.4: Qualitative examples showing the map accuracy. The first row exhibits the three
map representations, TSDF, surfels, and our approach, respectively. The second row depicts the
dense ground truth point clouds used to compute the metrics in Tab. 5.1. Along with the ground
truth clouds, we highlight in yellow the points in the ground truth model whose distances to the
closest point in the built models shown in the first row are greater than ϵd = 3 cm. Intuitively,
the greater the number of yellow points, the more mistakes or gaps a model contains.

obtain a dense ground-truth point cloud but only from the parts of the scene
that can be observed with the sensor, which is crucial to a fair comparison of the
built 3D model. The final ground truth point cloud contains 62.5 million points
and is shown in the second row of Fig. 5.4. Additionally, we use the odometry
benchmark from the KITTI dataset [63] for real-world experiments.

5.2.2 Mapping Accuracy

The first set of experiments analyses the geometric accuracy of our map represen-
tation. We compare our mesh generation pipeline with two commonly used map
representations: surfels [6] and TSDF [121]. To decouple errors in the resulting
map caused by the representation itself and the pose estimation accuracy, we use

64

Chapter 5. Offline Mapping Using Poisson Surface Reconstruction

Chamfer Distance Precision Recall F-score
Method dCD(F ,G) P (ϵd) R(ϵd) F (ϵd)

TSDF [121] 0.66 79.96 85.42 82.6
Surfels [6] 0.11 75.54 98.43 85.48

Ours 0.05 93.28 98.69 95.91

Table 5.1: Distance evaluation metrics for mapping accuracy. In all experiments ϵd = 0.03m.

the same ground truth poses for all representations.
For a quantitative evaluation of the accuracy of the mapping systems, we

densely sample the map representations with a density of 1,000 points per cm2.
Sampling the evaluated map representation allows a fair comparison between each
approach and the ground truth model using standard point-cloud metrics [56, 91].

For our evaluation, we used the following metrics. Let F be the point cloud
sampled from the map and let G be the ground truth point cloud. For a
point l ∈ F , we define the distance to the ground truth model as:

d(l,G) = min
g∈G
∥l− g∥2, (5.4)

where ∥ ·∥2 is the L2 norm. Analogously, we define the distance for a point g ∈ G
to the reconstructed map as d(g,F) = minl∈F ∥g− l∥2. For computing precision,
recall, and f-score metrics, we follow exactly the work of Knapitsch et al. [91].

We also employ the Chamfer distance [56]:

dCD(F ,G) =
1

2|F|

∑

l∈F

d(l,G)2 +
1

2|G|

∑

g∈G

d(g,F)2. (5.5)

The results of the mapping accuracy are shown in Tab. 5.1. We are especially
interested in the areas where the 3D models deviate from the ground truth.
Therefore, we highlight all points that have an error of ϵd ≥ 3 cm in yellow (second
row of Fig. 5.4).

We can see that the TSDF-based approach fails to reconstruct important
distinctive objects of the scene, such as trees, pedestrians, or poles. It is important
to note that this is a limitation of the method, as the framework used [121] does
not drop any input scans. The surfel-based approach often provides more accurate
reconstructions. However, it also adds spurious artifacts to the reconstructed
scene. Our method outperforms both in terms of accuracy and correctness of the
model since it does not miss important features and does not add artifacts at the
same time.

65

5.2. Experimental Evaluation

0 50 100 150 200 250

of frames

0

200

400

600

800

S
iz

e
 (

in
 M

B
)

Point clouds

Surfel map

TSDF

Our approach

0 200 400 600 800 1000

of frames

0

1000

2000

3000

S
iz

e
 (

in
 M

B
)

Point clouds

TSDF

Our approach

Sequence 04

Sequence 07

Surfel map

(72 MB)

(306 MB)

Figure 5.5: Memory consumption for different map representations for two KITTI sequences.
On the left, we show the triangle mesh maps built by our approach and their final size. Se-
quence 04 is a country environment, and sequence 07 was recorded in an urban scenario. We see
that point clouds and surfels result in higher memory usage. TSDF performs similarly to our
approach regarding memory usage, but as seen in Fig. 5.4, our approach outperforms TSDFs
in terms of geometrical accuracy.

5.2.3 Memory Efficiency

To use these high-definition maps in practice, it is necessary to be able to represent
this map efficiently. The second evaluation investigates the memory requirements
of different map representations. We show that our map representation, based
on triangle meshes, is a good choice regarding a trade-off between geometrical
accuracy and the corresponding memory footprint. We evaluated the amount
of memory needed to represent a given map using our approach, TSDFs [121],
surfels [6], and the LiDAR point clouds, only considering the raw geometric model,
not any other additional information (such as normals, color information, etc.)
that could be stored. The voxel size of vsize = 0.1m for the TSDF-based [121]
approach is chosen such that the resultant spatial resolution of the extracted
mesh results is similar to the one built with our approach. SuMa [6] does not
provide a mechanism to control its map size.

For a mesh-based map representation, the minimum amount of memory
needed to represent a triangle mesh is given by Nv νsize + Nf fsize, where Nv

and Nf are the numbers of vertices and faces in the model respectively and νsize

and fsize are the size of a vertex and a triangular face respectively.
In the case of a TSDF-based map representation, Whelan et al. [202] show that

storing the TSDF volume as a map representation for large outdoor environments

66

Chapter 5. Offline Mapping Using Poisson Surface Reconstruction

is not directly feasible. In practice, we must extract the triangle mesh from
the TSDF volume to store these maps. As a result, while comparing the memory
footprint of the TSDF approach, we use the size of the extracted mesh instead of
the TSDF volume. For a surfel, we need to represent the center position of the
surfel, the normal, and the radius. Therefore, the size of a surfel map is given
by NS (csize + nsize + rsize), where NS is the number of surfels, csize is the size of
the center position, nsize is the size of the normal vector, and rsize is the radius
size. For the case of a point cloud map, the size of the map is given by NP psize,
where NP is the number of points and psize is the size of a point.

Fig. 5.5 shows the memory consumption of the different approaches over time
for two different sequences of the KITTI odometry benchmark. Our approach
scales well with the number of input scans. On the other hand, surfel-based
maps or point cloud maps require much more memory, making running on mo-
bile platforms challenging. However, TSDF-based maps exhibit similar memory
consumption with a reduced mapping accuracy, as shown in Sec. 5.2.2.

5.2.4 Odometry and Localization Accuracy
In this experiment, we illustrate that our approach is well-suited for estimating
the vehicle’s pose by registering the LiDAR scans using a triangle mesh as a map.
The primary objective of this experiment is to investigate how the suggested map
representation can be utilized to determine the robot’s pose without any other
odometry source. However, KISS-ICP (Chapter 4) significantly surpasses the
scan-to-mesh registration performance. Despite this, we retain the experiment
for the sake of completeness.

We evaluate our performance on the KITTI dataset [63]. We compare our ap-
proach to commonly used registration algorithms based on ICP, point-to-plane
ICP [154], and generalized-ICP [162]. For these approaches, we use the same
optimization framework described in Sec. 5.1.3, including a Huber loss [78] func-
tion to reject outliers. As we do with our approach, we also initialize the ICP
with the last increment estimate obtained at time t − 1. Additionally, we con-
sider a different scenario for these methods. Instead of frame-to-frame ICP, we
perform frame-to-model ICP, where the model is the last N aggregated scans.
This is represented as a point cloud map in Tab. 5.2. In this way, we can evalu-
ate the benefits of running the reconstruction algorithm on this local map. We
employ the nearest-neighbor (NN) search to perform data associations on all the
variants. We also show the results from KISS-ICP as a reference. This method
exploits a point cloud map with the past scans (Sec. 4.1.4). It is important to
notice that KISS-ICP [191] was developed later than the work introduced in this
chapter [188].

Lastly, we also consider a different data-association scenario, the projective

67

5.
2.

E
xp

er
im

en
ta

l
E

va
lu

at
io

n Map Method DA avg. 00 01 02 03 04 05 06 07 08 09 10

N
on

e
point-to-plane ICP [154] NN 7.60 9.12 10.00 6.19 6.04 4.51 7.69 8.24 5.53 8.70 9.37 8.18

3.49 3.89 1.53 2.42 3.05 2.65 3.79 4.10 4.17 3.97 3.50 5.29

GICP [162] NN 14.35 7.35 73.10 14.40 9.37 13.60 5.23 2.23 6.40 7.27 10.90 8.00
4.78 3.00 24.10 4.04 2.85 2.15 2.14 1.06 2.87 3.17 3.78 3.38

SuMa [6] Proj. 2.93 2.09 4.05 2.30 1.43 11.90 1.46 0.95 1.75 2.53 1.92 1.81
0.92 0.93 1.22 0.79 0.75 1.06 0.79 0.64 1.17 0.96 0.78 0.97

Po
in
t
cl
ou

d

point-to-plane ICP [154] NN 18.92 9.99 77.10 11.70 2.31 70.00 2.62 1.84 1.79 3.67 17.40 9.70
4.01 4.29 17.60 2.70 1.01 5.21 1.17 0.84 1.16 1.47 5.47 3.15

GICP [162] NN 20.43 4.34 93.10 10.70 2.21 83.70 1.56 1.42 1.19 2.33 21.80 2.37
2.76 0.94 17.20 2.25 1.19 1.81 0.73 0.68 0.78 0.95 2.91 0.90

M
es
h Ours (∆tree = 10) NN 2.15 3.14 4.32 1.91 1.34 2.09 1.56 1.41 1.88 1.97 1.80 2.21

1.14 1.49 1.04 0.73 1.07 1.46 1.07 0.72 1.36 1.10 0.82 1.67

Ours (∆tree = 10) RC 1.55 1.46 3.38 1.86 1.60 1.63 1.20 0.88 0.72 1.44 1.51 1.38
(2021) 0.74 0.68 1.00 0.72 1.10 0.92 0.61 0.42 0.55 0.61 0.66 0.84

KISS-ICP (Chapter 4) NN 0.50 0.51 0.63 0.51 0.66 0.35 0.31 0.26 0.33 0.82 0.50 0.5
(2022/2023) 0.15 0.18 0.15 0.15 0.16 0.15 0.14 0.08 0.17 0.18 0.13 0.19

Table 5.2: Odometry estimation results for the KITTI Odometry benchmark [62]. The rows highlighted in gray correspond to the translational error, and
the row below to the rotational error. All errors are averaged over trajectories of 100 to 800m length. The translational error is in %, and the relative
rotational error is in degrees per 100m. DA for data association, RC for ray casting, and NN for nearest neighbor. The numbers in bold indicate the best
approach for the given sequence, and the numbers in blue indicate the second best performing approach.

68

Chapter 5. Offline Mapping Using Poisson Surface Reconstruction

Mesh vertex-sampling Mesh ray-casting
∆tree Vertices terr rerr runtime terr rerr runtime

8 30K 2.82 1.23 682 1.73 0.90 395
9 100K 2.05 1.08 645 1.53 0.74 418
10 300K 2.14 1.17 789 1.56 0.74 535

Table 5.3: Ray-casting vs mesh-sampling registration evaluation in the full KITTI [63] training
sequences. Relative errors are averaged over trajectories of 100 to 800m length. Relative
translational error (terr) is in % and relative rotational error (rerr) is in degrees per 100m. The
runtime values are expressed in milliseconds.

data association. For this, we compare our approach to frame-to-frame SuMA [6].
The TSDF [121] framework does not provide pose estimates and, therefore, is
omitted in this experiment. It is important to note that to compare all methods,
we use the exact normal computation for all the approaches described in Sec. 5.1.2.

In terms of estimation performance, we can see in Tab. 5.2 that our approach
provides solid pose estimate performance when compared to the GNSS/IMU poses
provided by KITTI. However, it is noteworthy that KISS-ICP performs better.

5.2.5 Registration

We briefly show that the novel registration scheme depicted in Sec. 5.1.3 is supe-
rior in terms of accuracy and speed. We compare our registration pipeline with a
standard point-to-plane ICP [154], where the source in both cases is the incoming
scan from the LiDAR sensor, and the target is set to be the triangle mesh built
for our approach. We compare two different registration algorithms, one that
samples all vertices and normals of the mesh to obtain a point cloud and the
second that uses our novel data association algorithm based on ray-casting (RC)
as explained in Sec. 5.1.3. While traditional ICP uses nearest-neighbor searches,
we perform ray-casting through the mesh to obtain the target correspondences
and the normal information. The registration is evaluated by running our reg-
istration algorithm in the full KITTI training sequences, registering all LiDAR
scans to the local mesh-map (Sec. 5.1.5), using different map resolutions, i.e., by
setting different resolutions of the ∆tree on the Poisson surface reconstruction [85].
To investigate the accuracy of the registration method, we compute the average
translational and rotational errors in the overall training sequences of the dataset.
We see that the proposed registration algorithm scales better when the size of
the input mesh increases. The results of this experiment are shown in Tab. 5.3.

69

5.3. Conclusion

5.2.6 Runtime
The pre-processing and the normal estimation take 45ms on average per scan, and
the scan-matching algorithm takes another extra 500ms. However, the bottleneck
is the meshing algorithm, which takes on average 5 s when executed on a CPU.
This makes our approach infeasible for online operation on autonomous vehicles.

5.3 Conclusion
In this chapter, we presented a novel approach for creating 3D maps from LiDAR
data offline. We represent the map as a triangle mesh estimated using Poisson
surface reconstruction in a sliding window over past scans. The main contribu-
tion of this chapter is a novel LiDAR odometry and mapping system that builds
surface reconstruction method accurate geometrical maps. Additionally, we re-
lease the source code of our approach as an open-source package, PUMA. Our
approach can operate independently of other sources of odometry by performing
a novel frame-to-mesh registration method. We obtain high-quality local meshes
that show more details than standard alternative methods, such as state-of-the-
art TSDF or surfel representations. We also show that our map representation
is well-suited for incremental scan registration for pose estimation. Although the
registration results of our approach are promising, KISS-ICP remains a better
option for robot pose estimation. Our mapping system cannot operate online
but can serve other robotics tasks, such as localization or place recognition. Fur-
thermore, in the following chapter, we show how the high-detail level can help
improve localization accuracy when using such triangle mesh maps generated by
our approach. In this chapter, we have focused primarily on using triangle meshes
in developing mapping pipelines and show that the reconstruction quality and the
pose estimation accuracy are promising.

70

Chapter 6

Localization Using Mesh Maps

R obust and accurate map-based localization is crucial for autonomous
mobile systems as it allows to localize the robot in previously built
maps. In this chapter, we build on top of PUMA, the method previ-
ously introduced in Chapter 5, for generating a mesh map and tackling

a localization problem. By exploiting such map representation, we can determine
the precise location and orientation of autonomous vehicles within large-scale
outdoor environments. Using range images generated from the current LiDAR
scan and synthetic rendered views from the mesh, we propose a new observa-
tion model to be integrated into a Monte Carlo localization framework, achieving
better localization performance and generalization to different environments. We
test the proposed localization approach on multiple publicly available datasets
collected in different environments with different LiDAR scanners. Additionally,
we employ the IPB-Car perception platform described in Sec. 3.4.1 to record a
new localization dataset. The dataset contains LiDAR sensor data in different
seasons with multiple sequences, repeatedly navigating through the same crowded
urban area in Bonn, Germany. The experimental results show that our method
can reliably and accurately localize a mobile system in different environments
and operate online at the LiDAR sensor frame rate to track the vehicle pose.

The content of this chapter is part of a joint work with Dr. Xieyuanli Chen,
who was the lead researcher on this work. My contribution in this context regards
the meshing algorithm to create the map presented in Sec. 6.1.2 and part of the
experimental evaluation. The remaining parts belong to Dr. Xieyuanli Chen.
For completeness, we present the overall contribution in the following sections.

71

6.1. Range Image-based LiDAR Localization

Mesh map

Synthetic range image Current range image

Current Scan

Figure 6.1: Visualization of range images, a triangle mesh map, and a single LiDAR scan.
On the left, we show the mesh used as the map and the rendered synthetic range image from
the mesh. In the mesh map, red parts correspond to ground planes, and blue parts represent
non-ground structures. On the right, we show the LiDAR point cloud at the same location and
the corresponding range image generated from the LiDAR scan.

6.1 Range Image-based LiDAR Localization

In this chapter, we tackle the problem of vehicle localization based on 3D LiDAR
sensors. The main contribution of this chapter is a novel observation model for
3D LiDAR-based localization. Precise localization is a fundamental capability re-
quired by most autonomous mobile systems. With a localization system, a mobile
robot or an autonomous car can estimate its pose on a map based on observations
obtained with onboard sensors. Precise and reliable LiDAR-based global local-
ization is needed for autonomous driving, especially in GPS-denied environments
or situations where GPS cannot provide accurate localization results.

Our approach is based on range images generated from both the real LiDAR
scans and synthetic renderings of the mesh map. We use the difference between
them to formulate the observation model for a Monte Carlo localization (MCL) for
updating the importance weights of the particles. Based on our novel observation
model, our approach provides (x, y, θ)-pose estimates for the vehicle and achieves
global localization using 3D LiDAR scans. Furthermore, our approach generalizes
well to different environments collected with different LiDAR scanners.

Probabilistic state estimation techniques are used in most localization systems
today. In particular, particle filters are versatile, as they do not need to restrict
the motion or observation model to follow a specific distribution, such as a Gaus-

72

Chapter 6. Localization Using Mesh Maps

sian. When using particle filters, we need to design an appropriate observation
model in line with the map representation. Frequently used observation models
for LiDARs are the beam-end point model, also called the likelihood field [182],
the ray-casting model [50], or models based on hand-crafted features [172, 218].
These methods either only work efficiently with 2D LiDAR scanners or require
carefully designed features to work correctly. Recently, researchers have also fo-
cused on data-driven learning of such observation models [35, 79, 200], which
provide accurate and reliable results as long as the environment is close to the
environment used to learn the model.

Instead of using raw point clouds obtained from a 3D LiDAR sensor or fea-
tures generated or learned from the point clouds, we investigate range images
for 3D LiDAR-based localization for autonomous vehicles. As shown in Fig. 6.1,
we project the point clouds into range images and localize the robot with ren-
dered views from a map represented as a triangle mesh. There are several rea-
sons for using these representations. The cylindrical range image is a natural
and lightweight scan representation from a rotating 3D LiDAR. Additionally, as
shown Sec. 5.2.3, a mesh map is a more compact representation than a large
point cloud. Those properties enable our approach to achieve global localization
in large-scale environments. Furthermore, rendering range images from a mesh
map can be performed efficiently using computer graphics techniques. Therefore,
range images and mesh maps are a perfect match for achieving LiDAR-based
global localization.

In sum, we make three key claims: Our approach is able to (i) achieve global
localization accurately and reliably using 3D LiDAR data, (ii) be used for different
types of LiDAR sensors, and, (iii) generalize well over different environments.
These claims are supported in our experimental evaluation. The implementation
of our approach is open source1.

In our work, we propose a probabilistic global localization system for au-
tonomous vehicles using a 3D LiDAR sensor; see Fig. 6.2 for an illustration. To
this end, we project the LiDAR point cloud into a range image (see Sec. 6.1.1)
and compare it to synthetic range images rendered at each particle location from
a map represented by a triangle mesh (see Sec. 6.1.2 and Sec. 6.1.3). Based on
the range images, we propose a new observation model for LiDAR-based localiza-
tion (see Sec. 6.1.5) and integrate it into a Monte Carlo localization system (see
Sec. 6.1.4). Furthermore, we employ a tile map to accelerate the rendering and
decide when the system converges (see Sec. 6.1.6). Using an OpenGL-based ren-
dering pipeline, the proposed system operates online at the frame rate of the
LiDAR sensor after convergence.

1https://github.com/PRBonn/range-mcl

73

https://github.com/PRBonn/range-mcl

6.1. Range Image-based LiDAR Localization

Figure 6.2: Overview of our approach. We project the LiDAR point cloud into a range image
and compare it to synthetic range images rendered at each particle location from a mesh map.
Based on the range images, we propose a new observation model for localization and integrate
it into a Monte Carlo localization system to estimate the pose posterior of the vehicle.

6.1.1 Range Image Generation

The key idea of the proposed method is to use range images generated from
LiDAR scans and rendered from the triangle mesh map for robot localization. To
generate range images, we use a spherical projection [6, 34, 38, 120]. We project
the point cloud P onto the so-called vertex map VD : R2→R

3, where each pixel
contains the nearest 3D point. Each point pi = (x, y, z) ∈ P is converted via the
function Π : R3→R

2 to spherical coordinates and finally to image coordinates
(u, v)⊤, i.e.,

(

u

v

)

=

(
1
2
[1− arctan(y, x)π−1]w

[1− (arcsin(zr−1) + fup) f−1]h

)

, (6.1)

where r = ∥pi∥2 is the range, f = fup + fdown is the vertical field-of-view of the
sensor, and w, h are the width and height of the resulting vertex map VD. Given
the vertex map VD and the range r of points at each coordinate (u, v), we generate
the corresponding range image RD, on which the subsequent computations are
based upon.

74

Chapter 6. Localization Using Mesh Maps

6.1.2 Mesh Map Representation

We represent the model of the environment as a triangle mesh M. As shown
in Sec. 5.2.3, a triangle mesh provides a memory-efficient representation that
enables us to render the aforementioned range images at the frame rate of the
LiDAR sensor.

To generate the map, we build on top of PUMA (Chapter 5) to obtain the map
representation as a triangle mesh from the LiDAR scans. As the PSR algorithm
used in PUMA requires an oriented point cloud, we use the method described
in Sec. 5.1.2 to estimate the surface normals. Note that our approach does not
need to use the same LiDAR sensor for map generation and localization.

The PSR algorithm provides a global solution that considers all input data at
once without resorting to heuristic partitioning [24] or blending [1, 166]. There-
fore, instead of building the map incrementally as done previously in Sec. 5.1.5,
we aggregate all the oriented point clouds into a global reference frame using a
system such as KISS-ICP (Chapter 4), or GNSS/IMU poses. This cloud map is
directly fed to the PSR algorithm, yielding a globally consistent triangle mesh of
the environment.

We use a ground segmentation algorithm to decrease the storage size of the
map further. First, we compute the empirical covariance matrix Σ of all points
in the cloud. We then compute the normalized Eigenvectors of Σ : e1, e2, e3 with
corresponding Eigenvalues λ1 ≥ λ2 ≥ λ3. We use a simple yet effective approach
to label a point pi = (x, y, z) and its corresponding normal ni as ground point. A
point pi is considered to belong to the ground surface if it satisfies the following
criteria: ni ·e3 > cos(αthres) and z < zthres. Note that this imposes the limitation
of assuming a flat map.

After all ground points have been labeled, we run the meshing
algorithm (Sec. 5.1.4) and retain the labels encoded as two different colors of
the vertices in the map. We split the full mesh into the non-ground and ground
mesh to simplify the final model. For the ground mesh, we contract all vertices
to a single vertex inside a voxel of a given size vsize.

Then, we filter the ground vertices using an average filter by replacing each
vertex νi with ν∗

i averaging all adjacent vertices ν̂n ∈ N :

ν∗
i =

νi +
∑

n∈N ν̂n

|N |+ 1
. (6.2)

After averaging, invalid edges are removed. Once the ground surface has been
simplified, it is combined with the rest of the mesh without further processing.
This simplification allows us to decrease the size of the mesh model to about 50%
of its original size.

75

6.1. Range Image-based LiDAR Localization

Point rendering Mesh rendering

Figure 6.3: rendering example. In contrast to a map represented by a point cloud, triangle
meshes are smoother and more compact. For each triangle, only three vertices need to be
projected. Moreover, triangles can better represent the occlusion relationship between different
objects.

6.1.3 Rendering Synthetic Range Images

Given a particle j with its state vector (x, y, θ)j and the triangle mesh map
M, we use OpenGL to render a synthetic range image for that particle. Using
the spherical projection cf. Eq. (6.1), we project vertices of the triangles from
the given particle pose and let OpenGL shade the triangle surface considering
the occlusion, as shown in Fig. 6.3. To further accelerate rendering, we render
batches of range images for multiple particles using instancing of the map. This
prevents us from reading the vertex positions multiple times and minimizes the
number of draw calls.

6.1.4 Monte Carlo Localization

MCL is a popular, particle filte-=based localization approach [50]. In our case,
each particle represents a hypothesis for the autonomous vehicle’s 2D pose xt =

(x, y, θ)t at time t. When the robot moves, the pose of each particle is updated
based on a motion model with the control input ut. The expected observation
from the predicted pose of each particle in the map M is then compared to
the actual observation zt acquired by the robot to update the particle’s weight
based on an observation model. The particles are sampled according to their
weight distribution, and resampling is triggered whenever the effective number
of particles drops below a specific threshold [69]. After several iterations of this
procedure, the particles eventually converge around the true pose.

MCL realizes a recursive Bayesian filter estimating a probability
density p(xt | z1:t,u1:t) over the pose xt given all observations z1:t up to time t

76

Chapter 6. Localization Using Mesh Maps

(a) Location heatmap

−40 −20 0 20 40

yaw angle [deg]

0.00

0.25

0.50

0.75

1.00

(b) Heading likelihood

(c) Scene used to generate the heatmap

Figure 6.4: Range image-based observation model. (a) A local heatmap shows the location
likelihood of the scan at the car’s position with respect to the map with the same heading. Red
shades correspond to higher weights. (b) Heading likelihood of the observation model when
changing the yaw angle with the same location. (c) A top-down view of the Carla scene used
in this example.

and motion controls u1:t up to time t. This posterior is updated as follows:

p(xt | z1:t,u1:t) = η p(zt | xt,M)·
∫

p(xt | ut,xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1, (6.3)

where η is a normalization constant, p(xt | ut,xt−1) is the motion model,
p(zt | xt,M) is the observation model, and p(xt−1 | z1:t−1,u1:t−1) is the
probability distribution for the prior state xt−1.

Our work focuses on the observation model and employs a standard motion
model for vehicles [182].

6.1.5 Range Image-based Observation Model
We design an observation model based on the generated range image from the
current LiDAR scan and the rendered synthetic range images for all particles.

77

6.1. Range Image-based LiDAR Localization

Each particle j represents a pose hypothesis xj
t = (x, y, θ)jt at time t. Given

the corresponding synthetic rendered range image zj for the j-th particle rendered
at the particle’s pose hypothesis, we compare it to the current range image zt

generated from the LiDAR point cloud. The likelihood p (zt | xt,M) of the j-th
particle is then approximated using a Gaussian distribution:

p (zt | xt,M) ∝ exp
(

−
1

2

d (zt, z
j)

2

σ2
d

)

, (6.4)

where d corresponds to the difference between or similarity of the range images
zt and zj and σd is the standard deviation of the distribution.

There are several ways to calculate this similarity. For example, we could
directly compare two range images at pixel level with absolute differences or use
a cross-correlation. One could also generate features and compare two images in
the feature space. Recently, many deep learning-based algorithms have also been
proposed [35, 79, 178, 200].

Our goal is to investigate the use of range images generated from LiDAR scans
and triangle meshes for a Monte Carlo localization system, and the particular
choice of similarity computation is application-dependent. To keep the whole
system fast and easy to use, we opted for a fast and effective method and used
d = N−1

∑
|zt − zj|, i.e., the mean of the absolute pixel-wise differences, where

N is the number of valid pixels in the current range image. Our results show
that this choice is effective and generalizes well to datasets collected in different
environments with different types of LiDAR sensors (see Sec. 6.2.5).

Fig. 6.4 shows the probabilities in a local area calculated by our proposed
observation model and shows that it encodes the pose hypotheses very well. In
contrast to previous work [34], which decouples the observation model into two
parts, location likelihood and heading likelihood, the proposed observation model
can estimate the likelihood for the whole state space xt = (x, y, θ)t at once using
one model, which is elegant and fast.

6.1.6 Tiled Map Representation

We divide the global mesh into smaller, regular-shaped tiles [205, 206, 207], to
accelerate Monte Carlo localization by more efficient rendering. We only use parts
of the mesh associated with a tile close to the particle position. In addition to
more efficient rendering, we also use tiles to determine when the localization has
converged. If all particles are localized in, at most, Nconv tiles, we assume that
the localization has converged and reduced the number of particles to track the
pose. Tiles also enable the runtime of our method to be independent of the size
of the whole environment after converging.

78

Chapter 6. Localization Using Mesh Maps

6.2 Experimental Evaluation
We present our experiments to show the capabilities of our method and to support
our claims that our approach is able to: (i) achieve global localization accurately
and reliably using 3D LiDAR data, (ii) be used for different types of LiDAR
scanners, and, (iii) generalize well to different environments without changing
parameters.

6.2.1 Implementation Details
We implement our code based on Python and OpenGL. We use a modified version
of PUMA, introduced in Chapter 5, to generate a triangle mesh map. For ground
point extraction, we use αthres = 30◦ and zthres as the sensor mounted height and
employ a voxel grid with voxel size vsize = 1.0m. We use tiles of size 100×100m2,
and we reduce the number of particles from initially 10, 000 to 100 particles after
convergence, i.e., only Nconv = 1 tile is covered by particles. The size of the
tile map and the reduced number of particles are trade-offs between runtime and
accuracy. We set σd = 5 in Eq. (6.4), and only update the weights of the particles
when the car moves. All parameters are tuned with one dataset (IPB-Car) and
kept the same for all other experiments with different datasets and sensors.

6.2.2 Datasets
We evaluate the generalization ability of our method using multiple datasets,
including Carla [54], IPB-Car [35], MulRan (KAIST) [88] and Apollo (Columbia-
Park) [222]. These datasets are collected in different environments with different
types of LiDAR scanners at different times, see Tab. 6.1 for more details. For the
Carla simulator, we added objects for the test sequences, which are not present
in the map, to simulate a changing environment like in real datasets. For all
experiments on different datasets, we only changed the intrinsic and extrinsic
calibration parameters of the LiDAR sensors to generate the range images. We
kept all other parameters, especially those of the MCL, the same.

6.2.3 Baselines
We use the same MCL framework in the following experiments and only change
the observation models. We compare our method with three baseline observation
models: the typical beam-end model [182], a histogram-based model derived from
the work of Röhling et al. [149], and a deep learning-based model [35].

The beam-end observation model is often used for 2D LiDAR data. For 3D
LiDAR scans, many more particles must be added to ensure that they converge

79

6.2. Experimental Evaluation

Dataset Sensor Sequence Acquisition Length

Carla (Simulator) 8 - 128 LiDARs map (0.2Gb) n/a 3.5 km
00 n/a 0.7 km

IPB-Car (Germany) Ouster 64
map (0.8Gb) 02/2020 6.2 km

00 09/2019 1.7 km
01 11/2019 1.9 km

MulRan (Korea) Ouster 64 map (0.5Gb) 08/2019 6.0 km
00 06/2019 6.1 km

Apollo (U.S.) Velodyne 64 map (5.4Gb) 09/2018 44.8 km
00 10/2018 8.8 km

Table 6.1: Dataset overview.

to the correct pose, which causes the computation time to increase substantially.
We implement the beam-end model with a downsampled point cloud map using
voxelization with a resolution of 10 cm.

Our second baseline for comparison is inspired by Röhling et al. [149], which
exploits the use of similarity measures in histograms extracted from 3D LiDARs.

The third baseline is the overlap-based localization [35]. It uses a deep neural
network to estimate the overlap and yaw angle offset between a query scan and
map data and, on top of this, builds an observation model for MCL. The overlap-
based method uses a grid map and stores virtual frames for each grid cell. We
refer to the corresponding manuscript [35] for more details.

6.2.4 Localization Performance

The experiment presented in this section investigates the localization performance
of our approach. It supports our claim that we achieve global localization accu-
rately and reliably using 3D LiDAR data. For qualitative results, we show the
trajectories of the localization results tested on the IPB-Car dataset in Fig. 6.5.
The results illustrate that the proposed method localizes well in the map using
only LiDAR data collected in dynamic environments at different times. The
proposed method tracks the pose with more accuracy than the baseline methods.

For quantitative results, we first calculate the success rate for different meth-
ods with different numbers of particles, comparing our approach to the methods
above, see Fig. 6.6. We tested the methods using five different numbers of parti-
cles N = {1000, 5000, 10000, 50000, 100000}. For each setup, we sample 10 tra-
jectories and perform global localization. The x-axis represents the number of
particles, while the y-axis is the success rate of different setups. The success rate

80

Chapter 6. Localization Using Mesh Maps

Ours

Overlap

Ground truth

200 m

Figure 6.5: Localization results using 10, 000 particles on the IPB-Car dataset. Shown are the
mesh map, the ground truth trajectory (black), the overlap-based result (blue), and the result
of our proposed method (orange).

for a specific setup of one method is calculated using the number of success cases
divided by the total number of tests. To decide whether one test is successful, we
check the location error by every 100 frames after convergence. If the location
error is smaller than 5m, we count this run as a success. The success rate of our
approach is slightly lower than the Overlap-based method, but we require fewer
particles for convergence. Compared to the histogram or beam-end models, our
method outperforms them independently of the number of particles.

Quantitative results of localization accuracy are shown in Tab. 6.2. The upper
part shows the location error of all methods tested with both sequences. The
location error is defined as the root mean square error (RMSE) of each test
in terms of (x, y) Euclidean error with respect to the ground truth poses. It
shows the mean and standard deviation of the error for each observation model.
Note that the location error is only calculated for success cases with 10, 000

particles. The lower part shows the yaw angle error with respect to the ground
truth poses. As before, the yaw angle error is only calculated for cases where the
global localization converges with 10, 000 particles.

The quantitative results show that our method outperforms all baseline meth-
ods in localization accuracy while achieving a similar heading accuracy. The rea-
son is that our method uses online rendered range images and does not rely on

81

6.2. Experimental Evaluation

Histogram Beam-end Overlap Ours

10
3

10
4

10
5

Number of particles

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
ra
te

10
3

10
4

10
5

Number of particles

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
ra
te

Figure 6.6: Success rate of the different observation models for 10 globalization runs. Here, we
use sequence 00 (left) and sequence 01 (right) to localize in the map of the IPB-Car dataset.

Location error [m]
Sequence Beam-end Histogram-based Overlap-based Ours

00 0.92 ± 0.27 1.85 ± 0.34 0.81 ± 0.13 0.66± 0.12
01 0.67 ± 0.11 1.86 ± 0.34 0.88 ± 0.07 0.44± 0.03

Yaw angle error [deg]
Sequence Beam-end Histogram-based Overlap-based Ours

00 1.87 ± 0.47 3.10 ± 3.07 1.74 ± 0.11 1.69± 0.11
01 2.10 ± 0.59 3.11 ± 3.08 1.88± 0.09 2.53 ± 0.79

Table 6.2: Localization results on the IPB-Car dataset.

discrete grids. Therefore, our method will not be affected by the resolution of the
grid. However, our method requires more particles to achieve the same success
rate. Thus, we use a large number of particles for initialization. It will achieve a
high success rate without influencing the runtime after convergence due to using
tiles, see Sec. 6.2.6.

6.2.5 Generalization

This experiment supports the claim that our method can use different types of
LiDAR to localize on the same mesh map. We tested 5 different sensors in the
Carla simulator, including Quanergy MQ-8, Velodyne Puck, Velodyne HDL-32E,
Velodyne HDL-64E, and Ouster OS1-128. We used the parameters of the LiDAR
mentioned above, including the number of beams and the field of view. As shown
in Tab. 6.3, our method works well with all types of sensors. It achieves good

82

Chapter 6. Localization Using Mesh Maps

Dataset Scanner Location RMSE [m] Yaw angle RMSE [deg]

Carla

8-beams 0.48 3.87

16-beams 0.43 3.87

32-beams 0.42 3.40

64-beams 0.36 3.46

128-beams 0.33 3.31

MulRan Velodyne 64 0.83 3.14

Apollo Ouster 64 0.57 3.40

Table 6.3: Localization results on datasets using different sensors.

0 1000 2000 3000 4000 5000 6000 7000 8000

Time index

−2

0

2

L
a
ti
tu
d
e
er
ro
r
[m

]

RMSE = 0.46 m

0 1000 2000 3000 4000 5000 6000 7000 8000

Time index

−2

0

2

L
o
n
g
it
u
d
e
er
ro
r
[m

]

RMSE = 0.7 m

0 1000 2000 3000 4000 5000 6000 7000 8000

Time index

−5

0

5

10

H
ea
d
in
g
er
ro
r
[d
eg

re
e]

RMSE = 2.14 deg

Figure 6.7: Localization results on the MulRan dataset w.r.t. provided GPS locations. The top
figure shows the latitude error, the middle figure shows the longitude error, and the bottom
figure shows the heading error.

83

6.3. Conclusion

localization results even with relatively sparse scans (location RMSE of 0.48m
with the 8-beam LiDAR).

Tab. 6.3 and Fig. 6.7 also verify the claim that our method generalizes well
over different environments. We tested our method on the MulRan and Apollo
datasets with the same parameters used in the Carla and IPB-Car datasets. Our
method also works well in Korean and U.S. urban environments.

6.2.6 Runtime
Here, we show that our approach runs fast enough to support online processing on
the robot at the sensor frame rate. We tested our method on a regular computer
with an Intel i7-8700 with 3.2 GHz and an Nvidia GeForce GTX 1080 Ti with
11 GB of memory. After convergence, the average frame rate of our method is
21.8Hz with 100 particles and the tile maps size of 100× 100m2.

6.3 Conclusion
This chapter presented a novel range image-based online LiDAR localization ap-
proach. The main contribution of this chapter is a novel observation model for
3D LiDAR-based localization. Our method exploits range images generated from
LiDAR scans and the offline mapping approach presented in the previous chap-
ter. We show that exploiting a triangle mesh as the map representation allows us
to localize autonomous systems in the given map successfully. We implemented
and evaluated our approach on different datasets and provided comparisons with
other existing techniques. Furthermore, we evaluate our localization approach on
a self-collected dataset with the IPB-Car perception platform introduced in Chap-
ter 3. The experiments suggest that our method can achieve global localization
reliably and accurately. Moreover, our method generalizes well to different envi-
ronments and can be used with different LiDAR sensors. After the convergence
of the localization, our method runs online at the sensor frame rate. Additionally,
we show that the offline mapping method presented is well-suited for solving the
localization task and that the lack of real-time operation of the mapping system
does not impact the localization performance.

84

Chapter 7

Online Mapping Using VDBs

O nline mapping is a crucial task for robots deployed in the real world
without prior knowledge about the environment. The requirements
for online mapping differ from those for offline mapping, primarily
because it must operate at a minimum of the sensor frame rate and

must be able to provide the map built so far at any point in time. In this
context, PUMA, introduced in Chapter 5 is unsuitable because it does not run at
the sensor frame rate. This chapter showcases a practical approach to 3D online
mapping based on TSDF. We revisit the basics of this mapping technique and
offer a method for building an effective and efficient real-world mapping system.
In contrast to most state-of-the-art mapping approaches, we make no assumptions
about the size of the environment or the employed range sensor.

To build indoor 3D maps, dense data structures, like a regular voxel grid,
are typically employed due to their easy implementation and use. However, it
becomes highly impractical when dealing with large-scale outdoor environments.
The reason is that the amount of data collected by modern sensors, like a 64-
beam LiDAR, is extraordinarily voluminous. To illustrate, generating the TSDF
representation of a single scan from such a sensor, with a voxel resolution of
10 cm, consumes 1GB of memory. Thus, building 3D mapping systems on top of
such data structures is impractical in real-world applications.

By employing sparse data structures, we can selectively store and process only
those voxels that contain meaningful information. However, implementing such
data structures is a challenging task. Our approach avoids reinventing the wheel
by exploiting the OpenVDB library1. We adopt this library used mainly in the
film-making industry and employ it for a robot mapping system: VDBFusion.
Using a single-core CPU, our method can effectively manage large-scale outdoor
environments and integrate point clouds from 3D LiDARs at 20 fps.

1VDB is just the name of the data structure and has no particular meaning: https://www.
openvdb.org/documentation/doxygen/faq.html#sMeaningOfVDB

85

https://www.openvdb.org/documentation/doxygen/faq.html#sMeaningOfVDB
https://www.openvdb.org/documentation/doxygen/faq.html#sMeaningOfVDB

7.1. 3D Online Volumetric Mapping Using OpenVDB

Apollo Newer College TUM RGB-D ICL

KITTI Vision Benchmark nuScenes Cow and Lady Stanford Bunny

Figure 7.1: Results of our mapping approach on publicly available datasets showing the ver-
satility of our proposed fusion pipeline. The models colored in light blue correspond to 3D
LiDAR datasets, while the red ones correspond to RGB-D datasets.

7.1 3D Online Volumetric Mapping Using
OpenVDB

Robots that are expected to navigate autonomously through real-world environ-
ments need maps to orient themselves and to plan trajectories [61, 66, 138, 143,
170]. These maps are typically built from sensor data, and thus, robotic systems
typically rely on some form of mapping system. Nowadays, robots are equipped
with various sensors, depending on the size of the environment, application, pay-
load constraints, and budget available. Typically, 3D sensors are a part of such
a sensor suite; popular examples are RGB-D cameras or LiDARs. Creating de-
tailed 3D maps from such data sources can be challenging due to the size of a
detailed world representation, especially when building high-resolution maps of
large areas.

The main contribution of this chapter is an effective mapping system [190]
that also comes as an open-source TSDF library2 and does not require making
assumptions about the size of the environment to be mapped. Our system has
been tested on range sensor datasets using different 3D LiDARs and RGB-D
cameras but can easily be adapted to other range-sensing modalities. The core
algorithm of our system is based on the seminal work by Curless and Levoy [44],
and our system is accessible to others through our library using a few lines of
C++ code. Our implementation provides excellent results when employed in 3D
mapping applications (see Fig. 7.1) while running two to three times faster than
state-of-the-art implementations using only a CPU, consuming less memory, and

2https://github.com/PRBonn/vdbfusion

86

https://github.com/PRBonn/vdbfusion

Chapter 7. Online Mapping Using VDBs

producing compressed map files. Moreover, our system is easy to use, which we
showcase by conducting a user study.

Numerous data structures to realize effective map representations have been
proposed [48, 66, 75, 126, 136, 156, 169, 173, 175, 186]. Most of these systems
make assumptions about the specific sensor setup and do not provide systems that
tackle the problem from a generic point of view. For example, commonly made
assumptions about the sensor modality often render these systems unsuitable
for other sensors. Furthermore, several TSDF fusion systems rely on hardware
accelerators, such as graphics processing unit (GPU), that may not be available
on mobile robots. In this chapter, we revisit the problem of creating a 3D map of
the environment, trying to minimize the implicit and explicit assumptions about
the sensing modality or the spatial bounds of the environment. We argue that
working directly with point clouds, instead of raw sensor data such as RGB-D
images or LiDAR range images, makes it possible to realize a mapping system
that can handle different range sensors.

To this end, we base our system on top of the OpenVDB library [125]. Open-
VDB is an open-source C++ library implementing a hierarchical data structure
paired with a rich set of tools for the efficient storage and manipulation of sparse
volumetric data. The library was originally developed by Museth and colleagues
at DreamWorks Animation for rendering films. It offers unbounded volumetric
space access, compact storage, and fast I/O operations. Building a robotic map-
ping system on top of OpenVDB enables us to provide a simple but effective and
fast 3D volumetric fusion pipeline without reinventing the wheel.

We release a well-designed and carefully crafted C++ implementation with a
rich and powerful Python API for rapid prototyping of mapping pipelines. The
terminal command pip install vdbfusion is the only command needed to get
started. We designed the Python API of VDBFusion to take numpy arrays as
input and produce numpy arrays as output, making the library easy to plug into
any existing robotics system without dealing with custom data structures. It also
supports user-defined data loaders to parse already existing datasets as well as
potential future data streams. We also provide a variety of usage examples in
both programming languages, C++ and Python.

7.2 The VDB Data Structure
When dealing with 3D data such as point clouds in robotics, it is common to
employ tree structures, such as octrees [7, 30, 61, 143, 187, 197, 216]. One of the
key reasons behind using such structures is to have a virtually unbounded sparse
representation of the scene that can be efficiently deployed on robotics systems
where memory and CPU resources are constrained. Such data structures do not

87

7.2. The VDB Data Structure

VDB tree structure Octree

Figure 7.2: The VDB data structure [125] compared to octrees [114]. A conventional octree
subdivides the space increasingly by a factor of 2 on each spatial dimension, starting at a single
root node until it reaches leaf nodes (shown as squares) that contain a predefined number of
points or size of the octant. In contrast, VDB has multiple root nodes (shown as green circles)
and a fixed depth with leaf nodes comprising 8 × 8 × 8 voxels. Due to the fixed depth, access
in a VDB data structure is highly efficient compared to traversal in an octree.

require knowing in advance the size of the environment to be mapped.
In line with this, other domains have similar needs. For example, when com-

puting fluid simulations, the volume of the simulation space is not known a priori,
as the fluids can virtually expand infinitely. To provide an efficient solution for
such applications, the VDB data structure was proposed in the computer graph-
ics community targeting unbounded volumetric data manipulation in the context
of creating animated movies.

The VDB representation is a sparse collection of blocks of voxels (typically
8 × 8 × 8 = 512 voxels) that can be accessed through a hierarchical tree structure
with two internal levels, i.e., a fixed height of the involved trees. This height-
balanced construction of the VDB results in a shallow and wide representation
compared to the deep octrees that only have a small branching factor of two
on each spatial dimension, see Fig. 7.2 for an illustration. The fixed height of
the involved trees allows the use of random access algorithms that operate in
constant time. Additionally, the representation mimics modern CPU memory
architectures with a fixed number of cache levels (L1, L2, etc.) of decreasing size
and increasing random-access performance. We invite the curious reader to read
more about VDBs and the difference to octrees in the original publication by
Museth et al. [125].

The OpenVDB library [124, 125] is an open-source implementation of VDB
and has been used in numerous movie production applications over the last
decade. OpenVDB is supported by the Academic Software Foundation, which

88

Chapter 7. Online Mapping Using VDBs

OpenVDB Robotics

Level Set Signed Distance Field: The zero-level crossing
represents the iso-surface.

Narrow-band Truncation region close to the surface.
Half-width Half width of the narrow-band or truncation dis-

tance (typically 3 voxels).
Background-value Implicit value associated with empty voxels (typ-

ically the truncation distance).
Transformation Representing the voxel size, or resolution, but

extended to Affine transformation in general.
Differential Digital Analyzer Similar to Bresenham’s line algorithm applied to

a 3D ray intersecting voxels.

Table 7.1: Terminology used in OpenVDB [125] and corresponding terms commonly used in
robotics.

ensures the project’s longevity. Moreover, the fact that the library is well main-
tained and accepts community contributions allowed us to make modifications to
OpenVDB to make this work possible345. Another advantage of using OpenVDB
is the large set of tools developed for the library that can be used out of the box.
Examples are the OpenVDB visualizer employed to generate the grid plots shown
in this chapter, out-of-core storage of grid values, or compression of grids.

To the best of our knowledge, OpenVDB is the only well-supported,
open-source library dedicated to volumetric data applications. Although
OpenVDB [125] has been open source for almost a decade, the robotics
community paid little attention to it [12, 108] in relation to the benefits that
the library provides. Potentially, this is rooted in the lack of common
vocabulary between communities. For example, the term TSDF does not appear
in the original publication [125] nor the word “truncated”. To cope with the
difference in terminology, we introduce a table of translations, see Tab. 7.1,
between the common keywords found in VDB applications and robotics. We
recommend the reader to inspect the original publication [125] with the table in
hand or when inspecting our implementation. In sum, we invite the robotics
community to take advantage of the suite of tools associated with VDB that
highly match the needs of 3D robotic applications.

To build mapping applications using volumetric data structures, one could
potentially adapt existing voxel-hashing systems [61, 128, 187]. Nevertheless,

3https://github.com/AcademySoftwareFoundation/openvdb/pull/1048
4https://github.com/AcademySoftwareFoundation/openvdb/pull/1055
5https://github.com/AcademySoftwareFoundation/openvdb/pull/1105

89

https://github.com/AcademySoftwareFoundation/openvdb/pull/1048
https://github.com/AcademySoftwareFoundation/openvdb/pull/1055
https://github.com/AcademySoftwareFoundation/openvdb/pull/1105

7.3. The VDBFusion Library

most existing methods focus on the implementation details of the voxel-hashing
approach and require substantial time to develop a custom application. Addition-
ally, the publications associated with such systems often focus on how the data
structures have been implemented, not how to use them. When using our library
that builds on top of OpenVDB, the application developer can safely ignore the
underlying data structure implementation and use the structure as if it would be
a dense voxel grid. The details are handled transparently under the hood.

7.3 The VDBFusion Library
In this section, we describe our system for volumetric mapping using truncated
signed distance functions [44, 126] that exploit VDB via OpenVDB [125]. We de-
scribe our design decisions and provide details on the implementation and usage.
We kept our system as a mapping library and decoupled it from a SLAM system
to be flexible and easy to use in various applications.

7.3.1 System Overview
Our fusion library aims to realize TSDF-based mapping [44], allowing us to in-
crementally fuse incoming point clouds from an arbitrary 3D sensor into a map
representation. We should not be required to know the size of the map a priori,
and the representation should be memory-efficient, fast to access, and easy to
use.

We designed our system to process 3D point clouds to achieve this goal. In-
stead of working with the raw sensor output or a specific sensor model, such as
the pinhole model for depth cameras, we base our system on 3D point clouds. For
every point, we use the location of that point, either in the global or a local coor-
dinate frame, plus the pose of the sensor (position and rotation) when taking the
measurement. This pose is available for every 3D point (or point clouds in case
no motion distortion occurs). This approach allows us to build a sensor-agnostic
mapping system.

The input to our system is a set of N points P = {p1, . . . ,pN}, where pi ∈ R
3.

We assume to have an estimate of the current pose of the sensor Tt∈SE(3)

available from KISS-ICP (Chapter 4) or from a GPS/IMU combination. To
simplify the description of this section, we assume here that all points pi ∈ P are
expressed in the global coordinate frame. In our library, however, the user can
provide the points in global coordinates or individual sensor viewpoints together
with 3D points in the local sensor frame.

An overview of the high-level design of our system is shown in Fig. 7.3. The
data loader module carries out any projection, pre-processing, or noise filtering

90

Chapter 7. Online Mapping Using VDBs

,

,

,

Mesh

VDB

VDBFusion

Figure 7.3: High-level overview of VDBFusion. Our system only takes as input point clouds
Pi with their corresponding poses Ti. Based on this information, VDBFusion integrates the
sensor data into a sparse TSDF representation, which can be used to compute a triangle mesh
representation and to access the underlying VDB representation.

as desired. Its implementation is not of relevance to our system. We require the
data loader module to output the point clouds in the form of numpy.ndarray or
std::vector<Eigen::Vector3d> for the Python and C++ APIs, respectively;
analogously, the sensor origin ti ∈ R

3 must also be a numpy.ndarray or a
Eigen::Vector3d. This assumption is the key ingredient towards a more generic
system. Given such point clouds and sensor locations, we can now integrate the
data into the TSDF, exploiting the VDB data structure via the VDBFusion ap-
proach. After integrating the scans, we can extract a triangle mesh, individual
TSDF values, or the underlying VDB data structure.

To the best of our knowledge, only Voxblox [130] offers a similar fusion
pipeline. In contrast to Voxblox, we move all pre-processing to the sensor/dataset-
dependent data loader, which performs all pre-processing steps such as minimum
range filtering, maximum range filtering, motion undistortion, bilateral filtering,
etc. We keep the sensor-data-specific operations in the data loader and outside
VDBFusion. This allows us to realize a more elegant fusion pipeline and mini-
mize the data-dependent parameters that depend on the employed sensor. As a
comparison, our system has only three parameters, while Voxblox requires setting
14 parameters for the mapping algorithm.

7.3.2 Integration Pipeline Implementation

We follow the approach of Curless and Levoy [44] to integrate point clouds with
known sensor location into the current internal map representation represented
by a VDB volume.

To integrate a new measurement, P , we must first compute the voxels to be
updated in the global grid. To compute the voxel locations x ∈ Z

3 in the VDB

91

7.3. The VDBFusion Library

Figure 7.4: Integration of a measurement (red point) into the global grid representation by
ray casting to determine which voxels are passed by the given ray. Only voxels (highlighted in
orange) are updated inside the truncation distance (shown in red).

grid, we raycast a set of rays R = {r1, . . . , rN}. Each ray ri is defined by:

ri(γ) = oi + γ
di

∥di∥2
, (7.1)

with the origins oi and directions di = pi−oi. All the rays are at the sensor origin
in the global coordinate frame, i.e., oi = ti. In line with traditional methods [44,
126], we truncate the rays by considering only γ ∈

[
∥di∥2 − ψTD, ∥di∥2 + ψTD

]
for

fast integration, where ψTD is the truncation distance. This process is depicted
in Fig. 7.4 and expressed in lines 19-21 of the fusion algorithm shown in Fig. 7.5.

We determine the voxel locations x by the ray–voxel intersections determined
via differential digital analyzer (DDA) available in the OpenVDB library. Using
the DDA allows us to significantly shrink the length of our integration code and
keep it clean using a less error-prone implementation than our own handcrafted
voxel traversal. The use of the DDA is shown in lines 24, 26, and 39 of the code
snippet in Fig. 7.5. In Fig. 7.4, the voxel locations x that must be updated are
highlighted in orange.

Once the voxels to be updated have been determined, we compute the pro-
jective signed distance, dt−1(x) (line 28 in Fig. 7.5), from the point to the center
of each voxel. These signed distance values are then weighted with a weighting
function wt(x), we implement this function in the form of a lambda expression
passed at runtime (line 31 in Fig. 7.5). The weighted measurements are then
integrated into two distinct VDB grids, Dt(x) : R

3 → R, which is a sparse volu-
metric scalar field representing the signed distances values for each voxel location

92

Chapter 7. Online Mapping Using VDBs

Figure 7.5: A complete fusion pipeline coded in C++ with a few lines of code.

x, and the weight values Wt(x) : R
3 → R

+, also in the form of a sparse volumet-
ric scalar field. The integration of these measurements is performed by following
the equations introduced by Curless and Levoy [44] representing the TSDF (lines
25–39 in Fig. 7.5):

Dt(x) =
Wt−1(x) ·Dt−1(x) + wt(x) · dt(x)

Wt−1(x) + wt(x)
(7.2)

Wt(x) = Wt−1(x) + wt(x) (7.3)

The zero set of the scalar field D−1
t (0) represents the reconstructed surface.

It can be computed from the TSDF representation Dt(x) employing techniques
based on the popular marching cubes algorithm [101] or by raycasting the TSDF
representation Dt(x) [126].

Reading and writing values in sparse data structures are usually the most
expensive and hard-to-implement steps for these mapping pipelines. Levering
the VDB data structure, we efficiently carry out read/write operations in our
global map grid.

93

7.3. The VDBFusion Library

Figure 7.6: Difference between integration without space carving (left) and with space carving
(right). Without space carving, only voxels inside the truncation region are updated. Space
carving updates all voxels along the ray (colored in orange).

We highlight that even when possible, we decided to avoid low-level optimiza-
tions of the implementation to make our code more readable for the community.
Nevertheless, our not necessarily optimized but clean implementation is on par
or even faster and more memory efficient than state-of-the-art.

7.3.3 Space Carving
Some mapping applications need to be aware of the free space in the vicinity
of the sensor or must distinguish free from unobserved regions. To enable such
applications, we also provide space carving on demand. Our approach to space
carving modifies the voxels along the ray ri until the measured distance plus the
truncation distance is reached, as shown in Fig. 7.6. We truncate it only after the
surface by considering voxels in the truncation region, i.e., γ ∈ [0, ∥di∥2 + ψTD].
This will mark all visited voxels as active in the VDB grid with a value that is
the same as the truncated value (background value).

Although this might be relevant for mapping applications, it will highly impact
the system’s runtime performance. Some valuable conclusions and implementa-
tion details about the use of space carving and dynamic object removal are also
explored in the experiments.

Note that we do not employ any probabilistic framework, such as occupancy
probabilities used in Octomap [75]. We made this design choice with simplicity in
mind, envisioning a clean implementation that allows other application developers
to extend our system easily.

7.3.4 Weighting
The choice of the weighting functions wt(x) is not trivial and is extrinsically
dependent on the sensor noise and the range of the measurement. Different

94

Chapter 7. Online Mapping Using VDBs

weighting functions have been extensively studied in the work of Bylow et al. [17].
Existing implementations have tried to cope with this by providing abstract func-
tions modeling a fixed family of weighting functions [90] or by picking among a
variety of hand-picked functions with configuration flags [130]. Virtual functions
typically impact the application’s runtime, and the weighting functions provided
at compilation time [130] might not be required for a given application.

We revise this design choice and employ functional programming, letting the
library user pick any arbitrary weighting function at runtime without recom-
piling the whole library. The user only needs to provide a lambda expression
indicating how to compute the weighting function wt(x). This enables the faster
operation of the integration method and more flexibility when designing a new
mapping pipeline for a given sensor modality. For more details on how to use
this functionality of our library, see Sec. 7.3.7.

7.3.5 Mapping Parameters
As motivated in Sec. 7.3.1, we only need a small set of three parameters for map-
ping since all the sensor-specific pre-processing is performed in the data loader.
Therefore, we only have the following three parameters to parameterize the fusion
pipeline:

• Voxel size (vsize) as a floating-point number: The voxels’ side length de-
termines the map’s resolution. The bigger the voxel size, the smaller the
map, which comes at the cost of losing high-level details. Analogously, the
smaller the voxel size, the higher the level of detail that will be obtained
for the final map at the cost of more memory usage and slower runtime
operation.

• Truncation distance (ψTD) as a floating-point number represents the
narrow band close to the surface we aim at modeling with the TSDF, i.e.,
the number of voxels to update in close to the surface. Large truncation
distances allow for better smoothing of noise effects of the sensor but make
the reconstruction of thin surfaces challenging due to thickening artifacts
and lead to slower runtime operation because it requires more voxel visits.
On the other hand, small truncation distances will lead to a faster runtime
operation but are heavily impacted by the sensor’s noise.

• Space carving as a boolean value indicates if space carving should be
performed or not. Space carving can effectively remove dynamic objects
from the map but comes at the cost of high computational time. In contrast,
not performing space carving will lead to higher runtime speeds to the cost
of having some dynamic objects artifacts on the map.

95

7.3. The VDBFusion Library

7.3.6 Meshing
To extract a triangle mesh from the grid map, we adapted the marching
cubes [101] implementation from the Open3D [221] library to work with the
VDB data structure. We also extended the implementation to allow filling
holes, using the hole-filling algorithm described in the work by Curless et
al. [44]. Moreover, we introduce an optional min_weight threshold to extract
triangles from the grid only if this matches a given density. For the standard
meshing algorithm typically employed with TSDFs, the user can set this
threshold to 0. We empirically discovered that similar to what we have explored
in the meshing algorithm introduced in Sec. 5.1.4, this simple modification
enables an out-of-the-box dynamic object removal from the map. The library
user can also select the value of the min_weight at runtime.

7.3.7 The Online Mapping Library
We implement our system entirely in C++ and provide a robust yet transparent set
of Python bindings for efficient and easy usage. In the remainder of this section,
we introduce code snippets that serve as starting points for writing a new mapping
pipeline using our library. For a complete implementation, we invite the reader
to check our MIT-licensed open-source implementation on GitHub6.

Most existing approaches require a significant effort to get the mapping system
up and running. In contrast, we aim to provide an easy-to-use interface. More-
over, we also facilitate an easy library installation using a simple pip install
vdbfusion terminal command. The only Python dependency for the installation
is numpy, making our Python package widely portable to different systems.

Below is a draft snippet on using our system for both C++ and Python API.
We also provide a rich set of examples together with the source code of our library.

7.3.7.1 The C++ API

Our C++ API only consists of roughly 200 lines of code that enable a powerful
yet efficient 3D mapping system. To get started with the library, the user only
needs a dataset containing some form of 3D sensor or point cloud data. Although
not required, we recommend creating a data loader module like the one shown
in Fig. 7.7. Once the data are ready to be used for our system, a simple C++ or
Python application can be written following the structure depicted in Fig. 7.8.

As described in Sec. 7.3.4, if the weighting strategy needs to be changed,
one must pass a function to the integrate method, specifying how to compute
the operation. As an example of how to achieve this, we demonstrate how to

6https://github.com/PRBonn/vdbfusion

96

https://github.com/PRBonn/vdbfusion

Chapter 7. Online Mapping Using VDBs

realize the exponential weighting function introduced by the work of Bylow [17]
in Fig. 7.9. We realize the code in the form of a lambda expression.

7.3.7.2 The Python API

Python has become the most popular programming language for prototyping
nowadays. To leverage this popularity to expose our framework to a larger com-
munity, we provide a transparent and easy-to-use Python API, which reflects the
same functionality as the C++ API. Our experiments show that choosing Python
instead of C++ does not impact the performance. Thus, we are making the selec-
tion of Python or C++ a matter of preference without any drawbacks concerning
the functionality or runtime performance of the mapping pipeline. As shown in
previous snippets, both APIs are highly similar.

C++ Python

Figure 7.7: C++ and Python code snippets that implements the suggested 3D data loader code.

C++ Python

Figure 7.8: C++ and Python code snippets that implement a fusion pipeline including meshing.

C++ Python

Figure 7.9: C++ and Python code snippets showing how to change the weighting function
wt(x) for TSDF integration. In the example, we implement the exponential weighting function
proposed by Bylow et al. [17].

97

7.4. Experiments

Like the C++ case, the user only needs a 3D dataset in the form of numpy
arrays when using Python. We also recommend (but do not require) defining a
data loader similar to the one shown in Fig. 7.7.

7.4 Experiments

The experiments are designed to illustrate the abilities and flexibility of our ap-
proach. They showcase that our mapping pipeline is easy to use, flexible, fast,
and memory- as well as disk-efficient. We further provide comparisons to exist-
ing open-source mapping systems. We only compare our system against existing
methods that can process LiDAR and RGB-D data.

We run all the experiments on a CPU without multithreading. The motivation
behind this choice is to analyze the system’s performance besides the threading
model implemented. We tested all methods on a GNU/Linux 64 bits system with
GCC 9.3.0, the processor was an Intel Xeon W-2145 with 8 cores @3.70GHz, and
the system had 32GB RAM.

To evaluate our system, we pick two datasets, one containing LiDAR data
and one with RGB-D data. For the LiDAR dataset, we use the KITTI Odometry
benchmark [63], and for the RGB-D, we choose the Cow and Lady dataset [130].
From the KITTI benchmark, we sample sequence 07, a small urban-like sequence
with few dynamic objects. The reason behind this choice is that some baselines
cannot map bigger sequences efficiently and thus make some experiments not
executable.

For KITTI, we use a voxel size of vsize = 10 cm for all integration methods.
The maximum usable LiDAR range is 70m, and the minimum range is 2m. For
the experiments using RGB-D data, we process all points within the range of
0.1m and 5m and use a voxel size of vsize = 2mm. The truncation distance is
three times the voxel size in all cases.

As baselines, we use the popular Voxblox [130] and Octomap [75] approaches.
To the best of our knowledge, these are the only two systems with an implemen-
tation available that can effectively map both LiDAR and RGB-D data without
modifying the implementation. Unless explicitly stated, all methods are evalu-
ated using their C++ implementations. We compile both baseline methods from
the source with all optimizations enabled. We do not make use of potentially
provided ROS wrappers.

The main idea of this section is to put all three systems under test and bench-
mark runtime performance, memory usage, disk usage, and mapping accuracy.
We run the experiments independently of the sensor modality of the dataset.
Additionally, we conducted an experiment to show the ease of use of our system.

98

Chapter 7. Online Mapping Using VDBs

Dataset
w/o Space Carving w/ Space Carving

Voxblox Ours Octomap Voxblox Ours

KITTI [63] 10.11 fps 19.57 fps 0.42 fps 0.60 fps 1.37 fps
Cow [130] 4.76 fps 14.14 fps 1.05 fps 0.42 fps 0.84 fps

Table 7.2: Runtime results for the Kitti Odometry dataset Sequence 07 [63] and the Cow and
Lady Dataset [130]. All values are expressed in frames per second (higher is better). The best
numbers are highlighted in bold font.

Implementation KITTI 07 Cow and Lady

VDBFusion Python 18.93 fps 13.28 fps
VDBFusion C++ 19.57 fps 14.14 fps

Table 7.3: Python vs. C++ runtime results for VDBFusion, expressed in average frames per
second. The best numbers are highlighted in bold font.

7.4.1 Runtime
The first experiment is designed to evaluate the runtime performance. It is a com-
mon practice to evaluate this experiment iteratively, integrating synthetic scans
and analyzing the statistics of the results. For this evaluation, we use a sequence
from the KITTI Odometry Benchmark dataset. Sequence 07 is an urban driving
sequence. We integrate all the scans on all the internal map representations and
then average the runtime of the whole sequence to estimate the results.

We use the Google benchmark suite to compute the results. We explicitly stop
the timers when data are being loaded or some data conversion is being performed.
This provides a fair comparison and guarantees that all results reflect how long
the systems take to integrate new scans into the internal map representation.
We also distinguish between the mapping approaches, running with and without
space carving.

The baseline methods evaluated in this experiment are Voxblox and Octomap.
Since Octomap does not support an integration method without performing space
carving, we skip this baseline when considering no space carving.

Depending on the mapping application, space carving may be required. As we
show in this experiment, including space carving will heavily impact the runtime
of the mapping system. A simple integration method with no space carving could
also yield good results with the additional benefit of having a faster runtime,
although not without losing the empty vs. unseen space information in the map.

As seen in Tab. 7.2, our system can integrate LiDAR data at roughly two
times the standard sensor frame rate, making it a ready-to-use system in real
applications. Additionally, we are 2–3 times faster than the baselines. While

99

7.4. Experiments

Dataset PCD DVG Octomap Voxblox Ours

KITTI [63] 2.95GB 30.6GB 1.12GB n/a 847.0 MB
Cow [130] 8.57GB 363.5MB 124.5MB n/a 122.9 MB

Table 7.4: Memory consumption of different investigated variants (lower is better). The best
numbers are highlighted in bold font. PCD stands for point cloud maps, and DVG for Dense
Voxel Grid.

Octomap can effectively cope with dynamic objects in the scene, its runtime
makes it challenging to deploy on real-world applications requiring high sensor
frame rate integration.

While Python is commonly thought of as a slow language, for our implementa-
tion, we spent extra effort to make the interoperability between C++ and Python
as transparent and efficient as possible. The motivation behind this choice is
that nowadays, Python is a common choice for prototyping systems and gives a
fast entry point to the library. To assess the runtime performance of our Python
API, we use the same datasets as before. As seen in Tab. 7.3, our Python API
is on par with the C++ implementation regarding integration speed. The other
baselines do not provide official Python implementations, so we skipped Octomap
and Voxblox for this experiment.

7.4.2 Memory Efficiency

The second experiment analyzes memory usage during mapping. It illustrates
that our system does not consume excessive memory, even for mapping large
scenes. Note that the VDB data structure also provides other out-of-the-box
possibilities to cope with even larger environments than the ones we study in this
chapter, including out-of-core value storage, where the grid’s topology is stored in
RAM. However, the values can be offloaded to a hard drive. We do not consider
such memory optimizations in this experiment since none of the baselines have
similar capabilities. Voxblox does not provide any means to compute the memory
usage of the internal map representation, and therefore, we skip this baseline for
evaluation. To carry on this experiment, we proceed as in Sec. 7.4.1 and process
the entire sequence 07 of the KITTI Dataset and the Cow and Lady dataset.
We also provide the in-RAM consumption of more naïve mapping approaches,
namely, point clouds and dense voxel grids. We do not conduct any particular
experiment to obtain these values but compute the memory usage since it is
deterministic. For point clouds, each point consumes three times the size of a
floating-point value, and for dense voxel grids, we compute the bounding box of
the resulting map and then fit a regular dense voxel grid.

100

Chapter 7. Online Mapping Using VDBs

As shown in the Tab. 7.4, for the case of the LiDAR sensor modality, the
usage of point clouds or dense voxel grids as the map representation is virtually
impossible. In contrast, Octomap requires less memory to represent the map,
but VDBFusion shows an overall smaller memory footprint. When using RGB-
D data, the difference between the memory footprint of the dense voxel grids,
Octomap, and VDBFusion is less pronounced.

7.4.3 Disk Usage

One aspect of a mapping pipeline is its capability to store the map efficiently,
and in this experiment, we evaluate the disk footprint of VDBFusion compared
to other options. We compare the size of a point cloud map, which is still a
popular choice despite its file size requirements. For this, we aggregate all the
point clouds into a global coordinate frame and export the result to a binary
file format using the Open3D library. Storing the raw point clouds is the upper
bound in disk space consumption.

The VDB data structure also supports lossless compression out-of-the-box.
This allows for an efficient reduction in the size on the disk, which is especially
attractive for very large scenes. Likewise, Octomap also supports an optimized
serialization protocol, which we use here for comparison. Contrarily, Voxblox
does not provide any serialization mechanism; therefore, we use the triangle mesh
provided by Voxblox as the map representation on disk. We also report the mesh
size that can be extracted from VDBFusion to better compare with Voxblox.

Tab. 7.5 shows the size on the disk of the different options above when the
resulting maps are serialized and stored. Here, storing the raw point clouds is
not a viable option. To store its representation, Octomap discards the per-node
probabilities and keeps only the maximum likelihood estimate of the map. In
the resulting file, each node occupies only 16 bits of memory. Although this
is a highly compressed map, the reconstruction details, as shown in Fig. 7.10,
are not on par with our results. Furthermore, Octomap cannot integrate new
measurements into an existing map once this has been serialized to the disk. The
VDB file size is less efficient to store compared to Octomap because it requires a
floating-point value for each voxel in D(x) and one floating-point value for each
voxel in the weight grid W(x). However, the VDB representation on disk enables
us to update the map even after storing it on the disk.

Compared to Voxblox, the mesh representation of VDBFusion is much smaller
as it contains fewer artifacts, as shown in Fig. 7.11. Due to the additional artifacts
produced by Voxblox, the serialized mesh size tends to be higher than the triangle
mesh extracted from VDBFusion. Analogously to the Octomap case, the mesh
representation can not be updated after the map has been stored on disk.

101

7.4. Experiments

7.4.4 Mapping Accuracy

In this experiment, we evaluate the mapping accuracy of Voxblox, Octomap, and
our mapping pipeline. To this end, we densely sample the maps generated by
Voxblox and VDBFusion into a point cloud. Octomap provides an out-of-the-box
method for converting the map representation to point clouds, so we use this

Dataset PCD
Octomap Voxblox Ours Ours

0/1
Output

Mesh
Export

Mesh
Export

TSDF
Volume

KITTI 07 3.0 GB 17.0 MB 672.0 MB 254.0 MB 170.0 MB
Cow 8.6 GB 1.6 MB 208.0 MB 15.0 MB 47.0 MB

Table 7.5: Disk usage of the serialized representation of different approaches (lower is better).

Figure 7.10: Qualitative comparison between Octomap and VDBFusion. While Octomap clearly
models the scene, it does not achieve a high level of detail. Our fusion pipeline shows a higher
level of detail on the surface when compared with Octomap.

VDBFusionVoxblox

Figure 7.11: Qualitative comparison between Voxblox and VDBFusion, where we compute
a triangle mesh from the TSDF volumes [101]. While Voxblox shows many artifacts in the
background, our fusion pipeline shows a much cleaner surface reconstruction, recovering fine
details of the scanned scene.

102

Chapter 7. Online Mapping Using VDBs

Without Space Carving
Voxblox Ours

KITTI 07 failed 0.031 ± 0.102 m
Cow 0.236 ± 0.298 m 0.049 ± 0.065 m

With Space Carving
Octomap Voxblox Ours

KITTI 07 0.033 ± 0.035 m 0.497 ± 1.991 m 0.023 ± 0.022 m
Cow 0.195 ± 0.262 m 0.319 ± 0.398 m 0.045 ± 0.062 m

Table 7.6: Mapping accuracy comparisons. We report the mean and standard deviation of
the point-to-point distance (in meters) between the estimated and ground truth map (lower is
better). The best numbers are highlighted in bold font.

one instead for the evaluation. This sampled point cloud is then compared to the
reference point cloud. For the case of the KITTI dataset [63], we aggregate all the
points in the sequence without downsampling, and we further remove all dynamic
objects by using manual annotations from the SemanticKITTI dataset [5]. The
Cow and Lady reference point cloud was obtained with a high-resolution scanner
and is provided along with the original dataset [130]. We use a uniform sampling
strategy to sample the point clouds from the mapping baselines. In the case of
the KITTI, we sample 100.000.000 points, and we sample 1.000.000 points for
the Cow and Lady dataset. The motivation behind the choice of the number of
points to be sampled is to match the density of the reference point clouds used
for the evaluation. To assess the performance of the obtained map, we compute
the point-to-point distance in meters between the reference point cloud and the
sampled models under evaluation. We report the mean average distance between
reference-model clouds and standard deviation. A lower metric corresponds to
a model that closely models the reference point cloud, while a large point–point
distance indicates that the map deviates from the reference point cloud.

Tab. 7.6 shows the mapping accuracy results with and without space carving
for the different datasets. Generally, the results with space carving are more ac-
curate as it remove dynamics and can further clean up the free space of erroneous
measurements or noise.

On the KITTI dataset, we see that our mapping pipeline can produce more
accurate maps than Octomap and Voxblox, while the quantitative difference be-
tween Voxblox and our pipeline is striking. Fig. 7.12 qualitatively shows the
point-wise difference between the ground truth map and the mapping result of our
pipeline. Note that mapping without space carving includes dynamics caused by
cars and pedestrians (shown by the green/red traces). In contrast, the map with

103

7.4. Experiments

(a) Without space carving (b) With space carving

Figure 7.12: Mapping accuracy results for the KITTI Dataset. In (a), we show the results
without space carving. The reconstructed dynamic objects can be seen by the red color corre-
sponding to a large error (red circles). (b), shows the results with space carving, removing the
dynamics and parts of the static scene, as visible at the boundaries of the cars.

(a) Without space carving (b) With space carving

Figure 7.13: Mapping accuracy results for the Cow and Lady dataset. In (a), we show the
results without space carving with some visible errors on the wall in the back. (b) shows the
results without space carving, these artifacts are effectively removed, and the resulting map is
more accurate.

space carving effectively removes the parts corresponding to dynamics. Overall,
the point-wise error is very low, i.e., the reconstructed map is very accurate, as
indicated by the blue color of the distances.

On the Cow and Lady dataset, we can observe that the mapping results of
our pipeline are an order of magnitude more accurate than the results produced
by Octomap and Voxblox. Fig. 7.11 shows the extracted meshes from Voxblox
and our pipeline. We can observe much more artifacts in the extracted mesh of
Voxblox. These artifacts explain why the Voxblox map less accurately represents
the environment compared to our reconstructed surface. Fig. 7.13 shows qual-
itatively the attained point-wise reconstruction accuracy, where we again note

104

Chapter 7. Online Mapping Using VDBs

1 min 28 min 8 min 3 min

Install VDBFusion
library

Program an own point
cloud data loader

Implement a fusion
pipeline

Visualize your results

Step 1
Part of VDBFusion

Step3
Part of VDBFusion

Step 4
Existing tools

Step 2
Data/sensor-specific

20

40

60

80

T
im

e
 s

p
e

n
t
in

 m
in

u
te

s

Install
vdbfusion library

Program an own dataloader
that outputs point clouds

Implement a fusion pipeline
using vdbfusion

Visualize your
results

0

Figure 7.14: Results of our user study. Here, we show the essential steps and the time needed
to perform them as timed by the participants. As can be seen, the most time-consuming part
is writing a data loader. Top: average time spent per task; lower: plot distribution of collected
results that highlights the data distribution and the outliers. The diamonds indicate the outliers
of the distribution.

that the overall blue color shows the highly accurate reconstruction results of our
pipeline.

Overall, the provided quantitative evaluation of the mapping accuracy on
indoor and outdoor data shows that our pipeline can reconstruct the different
datasets accurately.

Please note that, for the experiments, we used the C++ Voxblox library, al-
though the results do not correlate with the ones shown in the original publica-
tion [130]. We suspect that is due to a numeric error in the internal non-standard
transformation library. We contacted the authors to investigate a solution but
could not arrive at one. We also remind the reader that although it would be
possible to use the ROS interface, we aim at investigating framework-independent
systems; in addition, it requires converting publicly available datasets into ROS7.

7.4.5 User Study on the Ease-of-Use
While other approaches claim that they are easy to use or provide a generic and
extensive library, we investigate this property by conducting a user case study on
using our VDBFusion library to provide a quantitative evaluation.

For this, we sampled people from a group of Master’s and Ph.D. students.
They all took a robotics lecture at university in the past, but most participants

7https://github.com/ethz-asl/voxblox/issues/373

105

https://github.com/ethz-asl/voxblox/issues/373

7.4. Experiments

had no prior experience writing volumetric integration pipelines.
We only provided the participants with the pip package (Python API) and a

small set of instructions for using it. We did not instruct them on which dataset
to use nor which sensor modality, and we also did not enforce any third-party
library since our library only requires numpy to work. We asked the participants
to record the times for different steps in generating a map model from the data of
their choice. More specifically, we identified the following essential steps needed
to get our pipeline running: (1) installing the library, (2) coding the data loader
to read the data from disk and provide point clouds as numpy arrays, (3) setting
up the fusion pipeline to fuse the data, and, finally, (4) visualizing the generated
maps using the provided tools. The instructions provided to the participants
while conducting this study are publicly available8.

Fig. 7.14 shows the times reported by the participants with the mean and
standard deviation. We notice in this experiment that the most time-consuming
task is to write the data loader for the pipeline, i.e., turning the data that the
participants have on disk into a point cloud as a numpy array as required by
our pipeline. We also highlight that this step is independent of our system; we
also note that this step is nowadays a common task for any computer vision
and mobile robotics application, meaning that existing data loaders should be
available or can be adapted to our system easily.

As our library is distributed via pip, the installation of the library is only
limited by the quality of the internet connection. The installation is achieved via
running a single terminal command. Setting up the pipeline is a simple for loop
that obtains data from the data loader and calls the integration method. Finally,
the visualization of the results is also achieved with a couple of lines of code.

As indicated by the user study, we can attest that the claim of ease-of-use of
the provided fusion pipeline is well supported. All participants were able to write
a complete mapping pipeline, including their data loaders, in less than 1 h, on
average 40 min, without any external assistance. We could speed up the process
by providing data loaders for the most commonly used mapping datasets.

7.4.6 Qualitative Results

In this section, we aim to showcase multiple usages of our system (see Fig-
ures 7.15–7.20 on pages 109–111). We do not include extensive explanations
for the experiments for brevity. We only mention the parameters used for the
results and some qualitative numbers such as memory consumption, dense grid
equivalent, the size on disk, etc. In this section, we do not aim to compare

8https://www.ipb.uni-bonn.de/html/software/vdbfusion/vdbfusion_user_case_
study.pdf

106

https://www.ipb.uni-bonn.de/html/software/vdbfusion/vdbfusion_user_case_study.pdf
https://www.ipb.uni-bonn.de/html/software/vdbfusion/vdbfusion_user_case_study.pdf

Chapter 7. Online Mapping Using VDBs

against any other baseline but rather show that our system can be applied to
multiple domains and sensors. All necessary codes for these experiments are part
of the open-source release. Most examples require around 30 lines of Python
code, similar to the snippets in Sec. 7.3.7.

7.4.6.1 KITTI Odometry Dataset

In Fig. 7.15, we present qualitative results on sequence 00 of the KITTI Odom-
etry Dataset [63]. The dataset uses a 64-beam rotating Velodyne LiDAR sensor
mounted on the roof of a car. The dataset provides outdoor scenes of urban,
country, and highway environments in Germany. The loop-closed poses used
to build the map shown in Fig. 7.15 are the output of the 3D-SLAM system
SuMa [6].

7.4.6.2 Newer College Dataset

The newer college dataset was obtained using a hand-held device through New
College, Oxford. For our experiments, we only use the LiDAR data from the 64-
beam Ouster sensor used in the system. We use the poses provided as a reference
with the dataset, which are not globally optimized. In Fig. 7.16, we present the
results of our system using the short experiment sequence.

7.4.6.3 nuScenes Dataset

The nuScenes dataset is a large-scale public dataset that includes LiDAR data
from a 32-beam Velodyne LiDAR scanner mounted on the roof of a car. The
dataset was recorded in urban environments in Boston and Singapore. We exhibit
the results of our fusion pipeline on sequence scene-0061 in Fig. 7.17. We use the
ground-truth poses provided by the dataset.

7.4.6.4 Apollo Dataset

The Apollo-SouthBay Dataset [106] is a dataset that was collected by driving
through different areas in the southern San Francisco Bay Area. The point clouds
are obtained with a Velodyne HDL-64E LiDAR mounted on the roof of a car, and
the ground-truth poses used for the experiment are obtained with the integrated
navigation system for data collection. We show the results of our system on the
Columbia Park sequence of the dataset in Fig. 7.18.

7.4.6.5 ICL-NUIM Dataset

The ICL-NUIM dataset is a synthetic RGB-D dataset. It consists of two different
scenes with ground truths. We use the Living room scene without the simulated

107

7.5. Conclusions

noise to obtain the result shown in Fig. 7.19. This scene has the depth maps used
in our system after converting it to point clouds, together with ground truth
camera poses.

7.4.6.6 TUM Dataset

The TUM Dataset [176] is a large dataset containing RGB-D and ground-truth
data. The dataset contains the color and depth images of a Microsoft Kinect
sensor along the ground-truth trajectory of the sensor. The data were recorded at
a full frame rate of 30 Hz and a sensor resolution of 640x480. We test our system
on the TUM dataset and display the qualitative results of the freiburg1_xyz
sequence in Fig. 7.20.

7.5 Conclusions
In this chapter, we proposed an approach for volumetric mapping based on TSDF
representation that exploits a readily available efficient and sparse data structure
called VDB. The main contribution of this chapter is an effective mapping sys-
tem: VDBFusion, which also comes as an open-source library and does not re-
quire making assumptions about the size of the environment to be mapped. We
described our practical implementation that provides an easy-to-use mapping
framework that can be used for various sensors providing 3D measurements, such
as RGB-D or LiDAR sensors. To handle different kinds of data, we argue that
working directly with point clouds makes it possible to use a standard mapping
pipeline. To this end, we use sensor/dataset-specific data loaders that prepare
the data so that our mapping pipeline can consume it. Experiments on runtime
and memory efficiency show that our implementation is more efficient than other
open-source mapping frameworks supporting LiDAR and RGB-D data and pro-
viding high-quality maps. The evaluation of the mapping accuracy reveals that
our approach is more accurate than another TSDF-based pipeline. Lastly, we
conducted a user study to verify our claim of easy usage. Our library is provided
as open source under the MIT license and available in C++ and Python. We hope
our open-source library opens the door for further research by providing a sane
starting point for TSDF-based mapping. Our system can be used in practice
to build high-resolution mapping systems for mobile robots. The deployment of
such systems in the real world is only possible due to the high speed of execution
of the integration pipeline implemented in combination with the low memory
requirements.

108

Chapter 7. Online Mapping Using VDBs

voxel size 0.1 m
truncation 3 voxels

space carving False
frame rate 18.51
Mapping parameter

#scans 4541
points/scan 124,323
min. range 2.0 m
max. range 70.0 m

Dataset statistics

extent [m] 627 × 661 × 40
memory size 3,302.96 MB

dense size 122.01 GB
disk size 760 MB

Dataset size

Figure 7.15: Qualitative results on the KITTI Vision Benchmark [63] with given parameters,
dataset statistics, and size of the dataset in respect to the spatial extent and memory.

voxel size 0.1 m
truncation 3 voxels

space carving False
frame rate 32.18
Mapping parameter

#scans 15,301
points/scan 25,377
min. range 1.0 m
max. range 200.0 m

Dataset statistics

extent [m] 387 × 412 × 90
memory size 1470.9 MB

dense size 106.29 GB
disk size 591.83 MB

Dataset size

Figure 7.16: Qualitative results on the Newer College Dataset [144] with given parameters,
dataset statistics, and size of the dataset in respect to the spatial extent and memory.

109

7.5. Conclusions

voxel size 0.1 m
truncation 3 voxels

space carving False
frame rate 64.06
Mapping parameter

#scans 389
points/scan 20,311
min. range 2.0 m
max. range 100.0 m

Dataset statistics

extent [m] 198 × 311 × 41
memory size 277.54 MB

dense size 18.63 GB
disk size 51.43 MB

Dataset size

Figure 7.17: Qualitative results on the nuScenes dataset [20] with given parameters, dataset
statistics, and size of the dataset in respect to the spatial extent and memory.

voxel size 0.01 m
truncation 3 voxels

space carving False
frame rate 18.33
Mapping parameter

#scans 20,801
points/scan 105,287
min. range 1 m
max. range 100 m

Dataset statistics

extent [m] 945 × 567 × 58
memory size 2886.92 MB

dense size 228.50 GB
disk size 574.54 MB

Dataset size

Figure 7.18: Qualitative results on the Apollo dataset [106] with given parameters, dataset
statistics, and size of the dataset with respect to the spatial extent and memory.

110

Chapter 7. Online Mapping Using VDBs

voxel size 0.01 m
truncation 3 voxels

space carving False
frame rate 7.83
Mapping parameter

#scans 1,240
points/scan 307,200
min. range unspecified
max. range unspecified

Dataset statistics

extent [m] 7 × 7 × 10
memory size 115.33 MB

dense size 1.14 GB
disk size 33.63 MB

Dataset size

Figure 7.19: Qualitative results on the ICL-NUIM dataset [73] with given parameters, dataset
statistics, and size of the dataset in respect to the spatial extent and memory.

voxel size 0.01 m
truncation 8 voxels

space carving False
frame rate 4.33
Mapping parameter

#scans 798
points/scan 229,875
min. range unspecified
max. range unspecified

Dataset statistics

extent [m] 7 × 6 × 5
memory size 57.94 MB

dense size 1.14 GB
disk size 20.55 MB

Dataset size

Figure 7.20: Qualitative results on the TUM RGB-D dataset [176] with given parameters,
dataset statistics, and size of the dataset in respect to the spatial extent and memory.

111

Chapter 8

Dense Mapping Using
Low-Resolution Sensors

T he price for a robotic LiDAR sensor scales roughly linearly with the
number of beams and thus the vertical resolution of the scanner. In
general, the cheaper the sensors, the sparser the point cloud. This
chapter addresses the problem of building dense models using sparse

range data. Instead of requiring the vehicle to move slowly through the en-
vironment or traverse the scene multiple times to cover the space densely, we
investigate geometric scan completion through a learning-based approach. We
revisit VDBFusion, introduced in Chapter 7, and propose a neural network to
aid 3D reconstruction frame-by-frame by completing each scan towards a dense
TSDF volume. We propose a geometric scan completion network trained self-
supervised without manually annotated datasets. Our experiments illustrate that
such frame-wise completion leads to maps that are on par or better than maps
generated using a higher-resolution LiDAR sensor. We also show that our system
improves the performance of existing SLAM systems when low-resolution LiDARs
are used.

This chapter presents our approach to solving the problem of completing
sparse 3D LiDAR scans in a frame-to-frame fashion for TSDF mapping using
deep learning. Fig. 8.1 illustrates our central question: “Based on data obtained
from a single scan of a 16-beam LiDAR, can we estimate and hallucinate how the
scene looks like?” To investigate this, we revisit the proposed volumetric mapping
system introduced in Chapter 7 and combine it with a learning approach. We
aim to exploit the best of geometric and deep learning worlds. In contrast to
recent works on scan completion [47, 123, 195], we target single geometric scan
completion in large outdoor environments where existing completion approaches
fail to operate because of the memory limitations of commonly used GPUs.

113

8.1. Geometric Scan Completion

Our

Make it Dense16-beam LiDAR

 approach

Figure 8.1: A TSDF-based surface model from a single 16-beam LiDAR scan (left) turned into a
denser, completed TSDF-based surface model (right) by the learning-based approach proposed
in this chapter.

8.1 Geometric Scan Completion

Most autonomous vehicles rely on some form of mapping. Modern outdoor robots
and self-driving cars are equipped with 3D sensors such as RGB-D cameras or
LiDARs to perceive their surroundings. Volumetric mapping has shown to be an
effective approach to creating models of the surrounding environment [44, 126,
190]. Most of the existing volumetric mapping works rely on the fact that they
integrate dense 3D data at a relatively high frame rate into a model, often at
10 fps to 30 fps.

Outdoor robots often use 3D LiDARs such as Velodyne or Ouster scanners,
which have between 16 and 128 beams. Their price scales roughly linearly with
their number of beams and, thus, the vertical resolution of the scans. The denser
a single scan, the more expensive the scanner. Thus, it is a relevant research
question whether we can build a mapping or SLAM system that generates dense
models but only requires sensors with a low vertical (or horizontal) resolution.

The main contribution of this chapter is a self-supervised approach for turn-
ing a sparse 3D LiDAR scan into a comparably dense TSDF representation. We
propose a 3D CNN trained in a self-supervised manner that completes the re-
constructed scene on a frame-to-frame basis. We aim at completing single scans
instead of completing a scene created from aggregated scans offline. In our ap-
proach, we process the 3D LiDAR data and pass it to our CNN. The network
output is a TSDF representation that encodes the most recent observation plus
synthetically completed data fused into a global map.

Our experiments show that our approach can complete sparse LiDAR scans
and improve mapping results, as well as the performance of existing SLAM sys-
tems [6]. We see this as a step towards getting better representations with cheaper
scanners, thus reducing hardware costs through more intelligent software. We also

114

Chapter 8. Dense Mapping Using Low-Resolution Sensors

publish our code with the pre-trained models1.
In sum, we propose a geometry-driven system that integrates sparse LiDAR

scans into volumetric maps by completing each scan using a 3D CNN. Our ap-
proach aims at taking the best of both worlds: classical mapping and deep learn-
ing.

8.2 Make it Dense
Our approach creates a dense reconstruction of single LiDAR scans recorded with
a low vertical resolution, meaning few (e.g., 16) beams, to obtain results similar
to those recorded with a larger number of beams (e.g., 64). We target processing
every single scan as it gets recorded and we do not target a post-processing
solution as Dai et al. [47] for RGB-D mapping or PUMA, the offline mapping
system presented in Chapter 5.

Fig. 8.2 shows an overview of our processing pipeline that combines classical
mapping with a learning-based refinement to generate high-fidelity representa-
tions from sparse LiDAR measurements. We first generate a TSDF-based volu-
metric representation of a single scan, which we denote asDt(x), and (optionally)
corresponding weights, denoted as Wt(x). Here, x refers to the voxel location in
the grids. Then, we use Dt(x) to predict a new volume of TSDF values, denoted
as DP

t (x) using a fully convolutional network. The network is trained to fill in
values in a self-supervised way as if the data would have been recorded with a
high-resolution LiDAR.

As the grids are globally aligned, we integrate the scan-based predicted grid,
DP

t (x), into a global grid DG
t (x). From the global signed distance fields, we can

determine a surface representation using marching cubes [101]. In the following
sections, we describe the individual processing steps in more detail.

8.2.1 Scan Integration Using TSDF
The LiDAR generates a point cloud Pt = {p1, . . . ,pN} of N points pi ∈ R

3 at
time t. We assume to have an estimate of the current pose of the sensor Tt∈SE(3)

available from KISS-ICP (Chapter 4) or from a GPS/IMU combination.
To obtain the TSDF representation of the scan, we employ VDBFusion with

voxel size of vsize, truncation distance of ψTD and no space carving enabled,
see Sec. 7.3.2 and Sec. 7.3.3 for further details. We then extract the truncated
signed distance field Dt(x) and the weight grid Wt(x) from the mapping system.
As a result of this step, we end up with a volumetric scalar field Dt(x) : R

3 → R

representing the TSDF.
1https://github.com/PRBonn/make_it_dense

115

https://github.com/PRBonn/make_it_dense

8.2. Make it Dense

DG
t (x), WG

t (x)

Global TSDF Fusion

Dt(x), Wt(x) DP
t (x), W P

t (x)Make it Dense

TSDF

η 1− η

P...

Pt

Pt−1

Figure 8.2: Overview of our approach. We first generate a TSDF volume Dt(x) of a single scan
Pt at time t. We then apply our geometric scan completion network in a strided fashion, such
that missing values are added to the single-scan TSDF, giving a more complete TSDF volume
DP

t (x). The predicted TSDF values are then used to update the global TSDF representation
DG

t (x) using a weighting term η to avoid integrating the same observation twice into the
map. The colored boxes highlight different areas of the input scans and their corresponding
reconstruction in the final fusion results.

8.2.2 Geometric Scan Completion

The TSDF grid Dt(x) encodes the surface representation of the single scan and is
then passed through our CNN architecture that predicts a new TSDF grid DP

t (x)

with the exact dimensions as Dt(x) to create the dense information. This is done
for each incoming scan individually.

Network input. Instead of learning to regress a TSDF value directly from
raw sensor data, we input a batch of TSDF volumes to the network and train
it to improve its quality towards a more expensive sensor with more LiDAR
beams. To input these volumes to our network, the TSDF representation Dt(x),
is split into non-overlapping regions. These volumes are batched into a dense
multidimensional tensor and then fed to our network. By storing the coordinates
of the origin of each of these volumes, we can later reconstruct the original scene
once the network has completed the TSDF values. Instead of using point-wise
operations [150, 180], we can directly use 3D convolutions on these volumes. Since
we operate on smaller sub-volumes from a single scan instead of a whole scene,
our network architecture is small and fast to train, making it relatively compact
and deployable on mobile robots. The fully convolutional design and the small
number of parameters also make it hard for the network to overfit to a particular
dataset [131, 217].

116

Chapter 8. Dense Mapping Using Low-Resolution Sensors

8.2.3 Architecture
Our architecture is based on a 3D convolutional encoder-decoder architecture with
skip connections between each encoder stage’s output and the decoder stage’s
input with the exact feature map dimensions. Our model is very similar to the
architecture proposed by Dai et al. [47], with the difference that our architecture
can process directly dense volumes. Therefore, there is no need to convert back
and forth between dense and sparse tensors. Analogously, our architecture is
also similar to the Atlas [123] architecture, but in contrast, we do not fix the
volume size but allow the scene to be arbitrarily large. In essence, our model
reassembles a 3D-UNet [42, 151] architecture. More specifically, we first compute
volumetric features using standard, dense 3D convolutions to increase the number
of channels. For each subsequent encoder step, we increase the number of output
channels by a factor of 2 using standard 3D convolutions and subsequently reduce
the volumetric resolution with strided 3D convolutions. For upsampling, we use
transposed convolutions to regain resolution in the output. Each convolution is
followed by batch normalization and a ReLU activation.

Overall, we have a symmetrical encoder-decoder structure with S = 3 stages
to achieve the exact spatial resolution in the output as with the input voxel
grid. Let Di be the ith decoder stage of a transposed convolution followed by a
convolutional layer with an output dimension M ×M ×M of the corresponding
scalar field. Consequently, the output of the Di−1 stage isM/2×M/2×M/2 and
therefore D1 denotes the first decoder stage after the last encoder stage, which
corresponds to a strided convolution followed by a convolutional layer.

We not only predict a scalar field after the final decoder stage, i.e., DS, but also
generate intermediate outputs of the intermediate decoder stages D1, . . . ,DS−1.
To transform the output of each decoder stage at every resolution level, we use
convolutions with kernel size 1 to reduce the number of channels to 1 (the scalar
field) and use tanh as an activation function to predict both positive and negative
values.

8.2.4 Multi-Resolution Loss
We optimize our network end-to-end with a masked multi-resolution ℓ1 loss be-
tween the predicted TSDF values (at all decoder stages, i.e., D1, . . . ,DS) and the
target TSDF values. In line with prior work [46, 47, 123, 177], we log-transform
the predicted and target values before applying the ℓ1 loss. This enables us to
obtain better predictions near the surface [46, 47]. In contrast to recent works
in scene completion [47, 195], we do not add any classification layer to predict
invalid or occlusions.

At each decoder stage Di, we mask out regions where the predicted TSDF val-

117

8.2. Make it Dense

Figure 8.3: Illustration of how the log transformation function changes the originally signed
distance values, close to the origin (and thus, close to the surface) the values are not much
affected, but when the signed distance value increase, the log transformation will decrease the
value, meaning that it will have less influence when computing the ℓ1 loss.

ues are equal to the background value ψTD. The following decoder stages will skip
the loss computation on those voxels and focus more on the fine-grained TSDF
predictions at surface boundaries. Furthermore, we mask all the planes in the
target volumes equal to the background value [123], which avoids artifacts on the
predicted scalar field.

We denote by Xi all locations relevant for computation of the loss at decoder
stage Di, since they are not already predicted by stage i − 1 or masked out.
Therefore, we use the following loss for the i-th resolution:

L(D̂i, Di) =
∑

x∈Xi

∥ϕ(D̂i(x))− ϕ(Di(x))∥1, (8.1)

where D̂i ∈ R
M×M×M and Di ∈ R

M×M×M correspond to the target TSDF volume
and the predicted TSDF volume at the decoder stage i, respectively, and ϕ(x) :
R→ R is the log transform, defined as

ϕ(x) = sgn(x) log(|x|+ 1) (8.2)

sgn(x) =

−1 if x < 0

0 if x = 0

1 if x > 0

(8.3)

An illustration of how the log-transform modifies the signed distance values
is illustrated in Fig. 8.3.

118

Chapter 8. Dense Mapping Using Low-Resolution Sensors

Figure 8.4: Data pipeline flow of our approach. We extract the training samples and batch
them together, forming a tensor of dimension [N, 32, 32, 32]. In this figure, we show how the
volumes pass through our network and which are the sizes of the intermediate representation
of the environment obtained by the network. At the end of the network, we have a tensor with
the same dimensions as the input but with completed TSDF values.

In sum, to obtain better predictions close to the surface, we log-transform the
TSDF values of the network output and the supervision data before applying the
ℓ1 loss. Overall, we, therefore, minimize the following loss:

L =
∑

i∈{1,...,S}

L(D̂i, Di). (8.4)

8.2.5 Self-Supervised Training
We train our geometric scan completion network self-supervised by running VDB-
Fusion presented in Chapter 7 on the scans of the KITTI odometry dataset [63].
An overview of our training pipeline is depicted in Fig. 8.4. To achieve self-
supervision, we take the sequential scans with known poses and build the follow-
ing TSDF representations. First, we generate the desired input for our network
using a subset of beams of the Velodyne HDL-64E sensor. To this end, we keep
every 4th row from a range-image representation of the original scan. While this
input scan does not represent the exact sensor characteristics of a low-cost LiDAR
sensor, e.g., a Velodyne VLP-16, it is close to it in terms of density.

Next, we generate the multi-resolution targets, i.e., D̂1, . . . , D̂S, by applying
the TSDF pipeline on the original scan without dropping beams. To increase the
density of the targets, we aggregate npast=25 scans in the past and nfuture=25

scans in the future for the current frame. Furthermore, to avoid dynamic objects
corrupting the supervision data, we use SemanticKITTI labels [5] and remove

119

8.2. Make it Dense

dynamic objects from aggregated scans.
To train the network efficiently, we split the generated target TSDF repre-

sentations into non-overlapping volumes of 32×32×32, 16×16×16, and 8×8×8

voxels, respectively. Due to the different voxel sizes for the three representations,
each extracted volume spans a total of 3.2m3 in the volumetric space. At test
time, we use non-overlapping contiguous volumes of 32×32×32 voxels since this
empirically provided the best results.

8.2.6 Global Map Update
Once we have the two observations, one based on sensor data and the other based
on the geometric scan completion network, we integrate this information into our
global volumetric grid DG

t (x).
It is important to note that we need to provide a way to combine the two data

sources without integrating the same observation twice. The real TSDF measure-
ments are sparse and incomplete but do not contain reconstruction artifacts. In
contrast, the predicted TSDF volumes are denser and more complete, but they
hold reconstruction artifacts due to prediction errors in the network. To fuse
these two sources, we introduce a weighting term η ∈ [0, 1]. The term η specifies
how much more we want to trust an actual measurement over a predicted value.

In TSDF mapping using RGB-D cameras, one may use the weight matrix
Wt(x) to control the update of the TSDF grid [17, 126, 130] and, for example,
down-weight certain measurements within a single image. This, however, is much
less relevant for LiDAR scans where measurements have similar accuracy. Thus,
we generally set Wt(x) = 1 for all cells next to the truncation distance ψTD

and 0 otherwise. We do the same for the weight for the predicted scan W P
t (x).

One can introduce different weights here if more knowledge about uncertainties
is available.

We use the factor η to weigh the actual observations and the predicted ones
consistently, making sure information is not incorporated multiple times. We can
effectively fuse both data sources without duplicating the observation at every
timestamp by:

∆D(x) = ηWt(x)Dt(x) + (1− η)W P
t (x)DP

t (x) (8.5)
∆W(x) = ηWt(x) + (1− η)W P

t (x). (8.6)

Intuitively choosing a η factor close to 1 will completely discard the prediction
of the network while keeping the real TSDF values, producing fewer artifacts on
the output but having a sparse and incomplete model of the scene. In contrast,
picking η close to 0 will entirely reject the real TSDF measurements and keep only
the prediction of the network, producing a dense map representation but with

120

Chapter 8. Dense Mapping Using Low-Resolution Sensors

more artifacts on the reconstruction. In our work, we find empirically that a good
compromise is to set η=0.7. Once we have the aggregated signed distance field
(SDF) values ∆D(x) for the two sources and their respective weights ∆W(x),
we fuse both analogously to Curless and Levoy [44] for all voxels at location x as
follows:

DG
t (x) =

WG
t−1(x) ·D

G
t−1(x) + ∆D(x)

WG
t−1(x) + ∆W(x)

(8.7)

WG
t (x) = WG

t−1(x) + ∆W(x). (8.8)

8.3 Experimental Evaluation
The main focus of our work is to complete sparse LiDAR scans to aid in mapping
the environment while navigating through it. The experiments are designed to
showcase the capabilities of our geometric scan completion approach. We will
see that we can estimate comparably dense TSDF representations from a single
16-beam LiDAR scan using purely self-supervised training for our network. We
obtain improved maps fusing real observations and observations produced by a
CNN. Furthermore, we also show that our approach improves the accuracy of
existing SLAM systems [6] when low-resolution scanners are employed.

8.3.1 Experimental Setup

We tested our method on a regular computer with an Intel i7-8700 with 3.2 GHz
and an Nvidia GeForce ground truthX 1080 Ti with 11 GB of memory. We opti-
mized our network with the Adam optimizer [89] and with an adaptive learning
rate of 0.001. Our network has about 1.4M parameters and already shows promis-
ing results after 1 hour of training. Nevertheless, we keep training for as long as
8 hours for fine-tuning some details. We use the KITTI odometry dataset [63]
for evaluation and use labels provided by the SemanticKITTI dataset [4] to filter
dynamic objects for the evaluation of the mapping results. We train our network
on sequence 07 and report quantitative results on sequences 00 to 06 and 08 to
10. We use the GPS/IMU poses provided by the KITTI dataset. For all our
experiments, we used a voxel size of vsize=0.10m at the finest resolution. The
truncated distance, also known as the background value, is set to ψTD=3 voxels.

For quantitative evaluation, we use the standard scene completion metric
proposed by Song et al. [167], which measures the intersection-over-union (IoU)
between a ground truth voxel grid of occupied voxels and the predicted occupan-
cies. Note that, as explained in Sec. 8.3.2, we account for areas that are never
observed and occluded and ignore these voxels.

121

8.3. Experimental Evaluation

PSRTSDF

Our ApproachTSDF + Interpolation

TSDF + Morph. Operation Reference Point Cloud

Figure 8.5: Illustration of the results obtained through different geometric scan completion
approaches. All representations were built with just one 16-beam LiDAR point cloud except
for the ground truth point cloud used for evaluation.

8.3.2 Geometric Scan Completion Completeness

The first experiment evaluates the performance of our approach for geometric
scan completion. It shows we can predict a local scene in an urban environment
using a single 16-beam LiDAR scan. As baselines for comparison, we use three
other geometric approaches. First, a combination of morphological operations [82]
such as opening and closing plus smoothing. Second, we use the meshing algo-
rithm from PUMA, introduced in Chapter 5, based on PSR. For further details
on the modified PSR [84] algorithm, see Sec. 5.1.4. Third, we apply tri-linear
interpolation on the range-image representation of the 16-beam LiDAR scanner
to up-sample the point cloud to a 64-beam scan. This experiment is vital to
evaluate the performance of our approach as the neural network processes each
scan and is immediately incorporated into the mapping pipeline.

To use scene completion metrics [167] we need to obtain ground truth voxel
grids that contain only occupancy information. To this end, we follow the ap-

122

Chapter 8. Dense Mapping Using Low-Resolution Sensors

10
sc
an

s
50

sc
an

s
Our ApproachTSDF [190]

Figure 8.6: Results of TSDF-based mapping (left) and our approach (right) after aggregating
and subsequently fusing 10 (top row) and 50 (bottom row) scans from a 16-beam LiDAR. As
can be seen, our approach yields a more complete model than standard TSDF mapping. The
LiDAR frames are taken from sequence 03 of the KITTI odometry benchmark [63].

proach of Behley et al. [5], and for each input scan at timestamp t, we aggregate
2L + 1 full-resolution scans (L before, L after, and the current scan) into a ref-
erence point cloud. We use the labels from SemanticKITTI [5] and filter out
dynamic objects in this reference point cloud. Lastly, we crop the reference point
cloud with the bounding box of the input scan under evaluation. We then deter-
mine the occluded voxels by raycasting the point cloud from the known poses,
such that never observed voxels, i.e., voxels that the raycasting cannot reach,
are marked as occluded. We then proceed to obtain occupancy voxel grids for
the methods under consideration. To ensure that the IoU is not affected by the
density of the point sampling [206], we first obtain a triangle mesh representation
for each method. We then sample a dense point cloud on these meshes and use it
to obtain an occupancy voxel grid as described above. A qualitative illustration
of this process is depicted in Fig. 8.5, and all methods visible in this figure will
be compared to the reference point cloud. For the evaluation, we use every 500th

scans from each test sequence and average errors across each sequence. The rea-
soning behind this decision is based on our experimental observations. We found
that utilizing more scans for evaluation did not significantly affect the metrics.
Consequently, this approach enables us to speed up the system evaluation.

The results of this experiment are shown in Tab. 8.1. The first row of Tab. 8.1
provides the quantitative results for all methods under consideration when using
a single 16-beam LiDAR scan. This is the most relevant experiment for our
work, as it shows how well we can complete a single 16-beam LiDAR observation.
Nevertheless, we also run all the methods using a single 64-beam scan. Our

123

8.3. Experimental Evaluation

approach outperforms all baselines in all the testing sequences for both sensor
resolutions. It shows that we can complete sparse as well as dense scans.

To illustrate what such numbers mean, Fig. 8.5 shows a single scan and the
completion results. The traditional TSDF-based method VDBFusion, presented
in Chapter 7, can reconstruct the surfaces only where observations are available.
Even when trying to augment the results of a traditional TSDF pipeline with
morphological operations and upsampling, the results are not on par with our
approach. PSR [85] showed overall the best performance among the baselines, but
as seen on Fig. 8.5, the method tends to over-smooth the reconstruction results.
Our approach outperforms all baselines and provides accurate reconstructions
close to the observations, plus smooth and complete results for areas without
measured points.

8.3.3 Improving Existing SLAM Systems
This experiment showcases how our approach improves existing 3D LiDAR SLAM
pipelines, e.g. SuMa [6]. To conduct this experiment, we compare the pose esti-
mates from the SLAM system using the standard KITTI metrics [63] with and
without our network. As a baseline, we run SuMa with the 16-beam LiDAR
using the default parameters. For our approach, we first complete each scan indi-
vidually and then project the completed scan into the vertex and normals maps
needed for SuMa [6]. Note that given the high resolution of the completed scan,
we can choose any vertical resolution for the projection. For our experiments, we
choose to use a vertical resolution of 64.

As shown in Tab. 8.2 the original SLAM system performs relatively poorly
when employing low-resolution LiDAR scanners. We overcome the sparseness of
the data by employing our geometric scan completion network, and, as a result,
we can improve the pose estimation on all evaluated sequences, and our results
show to be almost three times better than the baseline2.

8.3.4 Qualitative Evaluation on Scan Sequences
16 beams. The next experiment illustrates how the presented self-supervised
approach can aid a traditional volumetric reconstruction pipeline when consider-
ing whole scan sequences and not only individual scans. To do so, we illustrate
the resulting local maps obtained when combining 10 and 50 consecutive 16-beam
scans. We compare our results against VDBFusion (Chapter 7). As can be seen
in Fig. 8.6, the traditional TSDF pipeline creates consistent maps, but the results
are by far less complete when compared to our results. For example, the scene’s
street, sidewalks, cars, and other major shapes are properly reconstructed.

2Sequences 01 and 02 are excluded from the evaluation since both methods fail

124

C
hapter

8.
D

ense
M

apping
U

sing
Low

-R
esolution

Sensors

Approach / Sequence 00 01 02 03 04 05 06 08 09 10 Avg.

16
-b
ea
m
s

Voxblox [130] 0.74 0.75 0.81 0.76 0.74 0.71 0.74 0.74 0.68 0.71 0.75
TSDF [190] 7.01 7.20 7.83 6.93 7.03 7.02 7.25 6.84 6.75 7.05 7.20

TSDF [190] + Upsample 14.08 14.10 15.83 13.97 14.12 14.21 14.65 13.66 13.76 14.55 14.10
TSDF [190] + Morphological 13.39 13.68 14.32 13.11 13.33 13.76 13.81 13.14 13.72 13.67 13.68

PSR [85] 15.38 15.19 16.09 15.20 15.27 15.37 15.60 14.98 14.94 15.67 15.19
Our approach 24.57 24.95 25.71 24.11 24.57 24.52 25.36 24.01 24.33 24.73 24.95

64
-b
ea
m
s

Voxblox [130] 13.35 13.88 14.66 13.30 13.52 13.54 14.07 12.84 12.89 13.72 13.88
TSDF [190] 23.27 24.17 25.34 23.07 23.37 23.69 24.30 22.54 23.06 23.93 24.17

TSDF [190] + Morphological 14.16 14.46 14.76 14.18 13.97 14.44 14.72 13.99 15.25 14.67 14.46
PSR [85] 25.22 25.57 26.12 24.87 25.19 25.24 26.06 24.48 25.01 25.59 25.57

Our approach 33.44 33.70 34.31 33.09 33.29 33.53 34.64 32.79 33.78 33.58 33.70

Table 8.1: Intersection-over-union results of the single geometric scan completion experiment. The first row exhibits the IoU for a 16-beam sensor, while
the second row shows the results for a 64-beam one. Sequences are taken for the KITTI odometry benchmark [63].

125

8.4. Conclusion

Method Error 00 03 04 05 06 07 08 09 10 Avg.

SuMa trans. 3.39 8.83 8.25 3.27 4.37 2.03 4.60 6.18 6.60 5.28
(16 beams) rot. 1.62 4.53 1.32 1.53 2.10 1.66 2.10 2.52 2.32 2.19

Ours trans. 1.45 4.99 1.05 0.66 0.87 1.06 1.52 2.52 2.87 1.89
(16 beams) rot. 0.63 1.60 0.85 0.37 0.44 0.83 0.73 0.73 1.08 0.81

Table 8.2: Pose estimates results on the KITTI dataset [63]. The relative translational er-
ror (trans.) is in % and the relative rotational error (rot.) in degrees per 100m. All errors are
averaged over trajectories of 100 to 800m length. Bold numbers indicate the best approach for
the given sequence. Sequences 01 and 02 are not reported due to failure in both methods.

64 beams. The following experiment evaluates qualitatively how our system
can improve the mapping results in cases where the frame rate of the scanner
is relatively low or when driving at high speeds. We generate synthetic data
from an urban sequence by dropping frames but keeping the full resolution of the
scanner. We choose sequence 00 from the KITTI dataset [63] and run VDBFusion
presented in Chapter 7 as baseline. As shown in Fig. 8.7, traditional integration
methods fail to reconstruct a dense map of the environment when the number of
frames is relatively low. Our approach to geometric scan completion can help to
cope with this type of situation, improving the results of the mapping pipeline as
well as its completeness.

8.4 Conclusion
In this chapter, we proposed a novel mapping approach that builds dense 3D
models from sparse LiDAR data. The main contribution of this chapter is a self-
supervised approach for turning a sparse 3D LiDAR scan into a comparably dense
TSDF representation. We propose a 3D CNN trained in a self-supervised manner
that completes the reconstructed scene on a frame-to-frame basis. We investi-
gate sparse 3D geometric scan completion through a learning-based approach.
We combine traditional TSDF-based volumetric mapping with 3D convolutional
neural networks to aid reconstruction on a frame-to-frame basis. From a sin-
gle sparse scan, we can generate comparably dense TSDF surface models. Our
completion network is trained in a fully self-supervised fashion. Our experiments
suggest that maps built with 16 LiDAR beams are on par or even better than
traditionally built TSDF maps generated using 64-LiDAR beams. Additionally,
our results suggest that in modern robotics applications, it is beneficial to mix
methods from two different worlds: deep-learning techniques, such as deep neural
networks, combined with traditional geometric techniques, such as TSDF.

126

Chapter 8. Dense Mapping Using Low-Resolution Sensors

TSDF [190]

Our Approach

64
be

am
s
(1
0
sc
an

s)
64

be
am

s
(1
0
sc
an

s)

Figure 8.7: Qualitative results of a high-speed/low frame rate LiDAR sequence. The LiDAR
used for this experiment uses 64 beams. Nevertheless, classical integration methods [190] (top
row) cannot properly map the environment. Our geometric scan completion approach (bottom
row) can aid the reconstruction system, enabling a more complete scene representation.

127

Chapter 9

Conclusion

R obots are valuable tools that can significantly assist humans in vari-
ous fields. They can explore and gather data on remote planets like
Mars or handle mundane or tedious tasks, such as daily housecleaning,
which humans often find uninteresting. They also excel in managing

complex situations where human errors could lead to severe consequences, such
as driving vehicles. Additionally, robots enhance efficiency, precision, and conti-
nuity in tasks that we already do, like scanning large logistics warehouses. Their
uninterrupted operation offers valuable insights for improving global logistical op-
erations. However, facilitating these tasks comes with significant challenges. For
example, a robot must collect data about its surroundings, interpret the sensor
readings, create a map, and accurately determine its position and orientation in
that environment. This entire process must happen in real time, reflecting the
current conditions of the surroundings.

In this thesis, we addressed various challenges related to robot mapping using
3D LiDARs. Specifically, we introduced an approach to reliably and consistently
record sensor data, which is crucial for robots navigating the real world. Addi-
tionally, we presented a technique for estimating the robot’s current position and
orientation in real-time as it moves through its surroundings. Furthermore, we
tackled two different mapping scenarios and their practical applications. Firstly,
we proposed an algorithm for creating 3D maps represented as triangle meshes.
This representation was later utilized to solve a localization task. Second, we
developed a technique for generating online 3D models of the environment as the
robot processes new data. We leveraged data structures commonly used in the
film industry for this purpose. In addition, this map representation was further
utilized to extend the results to work effectively with low-resolution sensors. We
conducted experiments using both real-world and synthetic data to validate our
approaches. Additionally, we designed our algorithms to operate online on a
robotic platform equipped with readily available sensors for consumer use.

129

9.1. Summary of the Key Contributions

9.1 Summary of the Key Contributions

We initially focused on developing a perception platform incorporating version
control to enhance the reproducibility and reliability of the data recordings. To
achieve this, we rely on widely used tools in modern operating systems, specifically
git and docker. These tools are crucial for constructing complex robots or sensing
platforms. By employing them, we have successfully created a containerized
software stack that can operate on various host machines without requiring the
host to be in a specific state. We view this work as a significant advancement in
developing more reliable perception platforms for mobile robots, which, in turn,
can accelerate research on new algorithms for autonomous vehicles.

The second problem we addressed is pose estimation using sensor data. We
developed a simple yet highly effective approach to LiDAR odometry. Our ap-
proach operates exclusively on point clouds, eliminating the need for an IMU
or other external odometry sources. By leveraging the classical point-to-point
ICP, we created a versatile odometry system that can be used in various chal-
lenging environments, including highway runs, cars, handheld devices, segways,
and drones. Furthermore, our system is compatible with different range-sensing
technologies and scanning patterns. We implemented and evaluated our approach
on various datasets, providing comparisons with other existing techniques. The
experiments demonstrate that our system is on par with substantially more com-
plex state-of-the-art LiDAR odometry systems. It achieves this by relying on
only a few parameters and performing well on different datasets under various
conditions using the same parameter set. Our system operates faster than the
sensor frame rate in all the tested datasets. This work establishes a new baseline
for future sensor odometry systems, offering a robust and high-performance start-
ing point for future approaches and pushing the boundaries of state-of-the-art by
challenging even the most sophisticated systems available.

The third problem we tackled involved the construction of high-resolution
models of the environment. We introduced a novel approach for offline creation of
3D maps using LiDAR data. Our method represents the map as a triangle mesh,
estimated using Poisson surface reconstruction within a sliding window that con-
siders past scans. Our approach operates independently from other odometry
sources while incorporating a novel frame-to-mesh registration method. The re-
sulting local meshes exhibit higher detail levels than conventional methods like
TSDF or surfel representations. Additionally, we demonstrate that our map rep-
resentation is well suited for incremental scan registration, facilitating accurate
pose estimation. Although our mapping system does not operate in real-time, it
can be employed for other robotics tasks such as localization or place recognition.
Furthermore, we explored how the high level of detail in our triangle mesh maps

130

Chapter 9. Conclusion

can contribute to improved localization accuracy.
The fourth problem we addressed was building online 3D maps for robot op-

eration. Our proposed approach utilizes a TSDF representation and leverages a
sparse and efficient data structure from the filmmaking industry called VDB. We
outlined a practical implementation that offers a user-friendly mapping frame-
work suitable for various 3D sensing modalities, including RGB-D and LiDAR.
Our experiments assessing runtime and memory efficiency demonstrate that our
implementation surpasses other open-source mapping frameworks in terms of
efficiency while still delivering high-quality maps. Through mapping accuracy
evaluations, we established that our approach outperforms other TSDF-based
pipelines. Additionally, we conducted a user study to validate our claim of ease
of use. Our open-source library is a solid starting point for further research in
TSDF-based mapping, opening doors for future advancements. Furthermore, our
system can be practically deployed to construct high-resolution mapping systems
for mobile robots. The high execution speed of the integration pipeline, com-
bined with low memory requirements, enables the deployment of such systems in
real-world scenarios.

Finally, we targeted the challenge of extending our online mapping pipeline
to operate effectively with low-resolution LiDAR sensors. To tackle this, we pro-
posed a novel mapping approach focusing on building dense 3D models from
sparse LiDAR data. We explored the concept of sparse 3D geometric scan com-
pletion using a learning-based approach. By combining traditional TSDF-based
volumetric mapping with 3D convolutional neural networks, we facilitate recon-
struction on a frame-to-frame basis. This allows us to generate denser TSDF
surface models from a single sparse scan. The completion network is trained in a
fully self-supervised manner. Our experiments showed that the maps generated
using 16 LiDAR beams using our approach are comparable to or even better than
traditionally built TSDF maps generated using 64 LiDAR beams.

In summary, we have presented solutions to several significant problems within
the field of robot mapping, from how to capture data from a robotics platform
and compute the precise location and orientation of the robot within a given
environment to produce different types of map representation that can be used
for various robotics tasks. This thesis advances state-of-the-art robot mapping
significantly, enabling a mapping pipeline with 3D LiDARs that spawn from
data collection and pose estimation to map building. Building on top of our
contributions, one can build a perception platform equipped with 3D LiDARs
and operate this platform effectively. At the same time, simultaneously estimate
the pose of the sensors and create a map of the world as the robot navigates
through the environment. Furthermore, thanks to the easy-to-use open-source
software we release as part of this thesis, even non-roboticists can record data and

131

9.2. Open Source Contributions

build 3D maps in simple steps. Through experiments on real-world and synthetic
datasets, we have shown the effectiveness of our methods, often exceeding the
current state of the art. While it is essential to acknowledge that the challenges
we addressed are not exhaustive in the context of this thesis topic, the algorithms
we have proposed are fundamental components of a comprehensive autonomous
robot. These algorithms can be seamlessly integrated into the complete system
pipeline, contributing to developing a fully functional and autonomous system.
All the software and tools we utilized in developing our methods are open-source.

9.2 Open Source Contributions
We strongly believe that besides sharing scientific findings in papers, sharing code
is vital to advance the state of the art effectively, thus, this thesis resulted in the
release of several open-source packages and datasets. Additionally, parts of the
modules developed for the methods and the experiments were made open source
not as stand-alone packages but as contributions to existing open-source libraries,
such as CARLA, NVdiffrast, ONXX-tensorrt, Open3D, Open3D-ML, OpenVDB,
PyMeshFix, Sophus, and others. Some highlighted contributions are:

• KISS-ICP C++, Python, and ROS 1/2 package, presented in Chapter 4:
https://github.com/PRBonn/kiss-icp

• VDBFusion C++ and Python library, presented in Chapter 7:
https://github.com/PRBonn/vdbfusion

• VDBFusion ROS 1 package, presented in Chapter 7:
https://github.com/PRBonn/vdbfusion_ros

• make-it-dense scene completion network, presented in Chapter 8:
https://github.com/PRBonn/make_it_dense

• PUMA 3D offline mapping pipeline, presented in Chapter 5:
https://github.com/PRBonn/puma

• range-mcl Range image localization code, presented in Chapter 6
https://github.com/PRBonn/range-mcl

• Mai City Synthetic Dataset, presented in Chapter 5:
https://www.ipb.uni-bonn.de/data/mai-city-dataset/

• lidar_visualizer, Visualization tool for LiDAR data:
https://github.com/PRBonn/lidar-visualizer

132

https://github.com/PRBonn/kiss-icp
https://github.com/PRBonn/vdbfusion
https://github.com/PRBonn/vdbfusion_ros
https://github.com/PRBonn/make_it_dense
https://github.com/PRBonn/puma
https://github.com/PRBonn/range-mcl
https://www.ipb.uni-bonn.de/data/mai-city-dataset/
https://github.com/PRBonn/lidar-visualizer

Chapter 9. Conclusion

• vdb_to_numpy, Python bindings to work with VDBs:
https://github.com/PRBonn/vdb_to_numpy

• voxblox_pybind, Python bindings for the Voxblox library
https://github.com/PRBonn/voxblox_pybind

• voxblox_pybind, Python bindings for the Voxblox library
https://github.com/PRBonn/voxblox_pybind

• manifold_python, Python bindings for the Manifold library
https://github.com/PRBonn/manifold_python

• ros_in_docker, Container library to use with ROS
https://github.com/nachovizzo/ros_in_docker

• Open3D C++, and Python Robust Kernel Library:
http://www.open3d.org/docs/release/tutorial/pipelines/robust_
kernels.html

• Open3D C++, and Python Generalized ICP:
https://github.com/isl-org/Open3D/pull/3181

133

https://github.com/PRBonn/vdb_to_numpy
https://github.com/PRBonn/voxblox_pybind
https://github.com/PRBonn/voxblox_pybind
https://github.com/PRBonn/manifold_python
 https://github.com/nachovizzo/ros_in_docker
http://www.open3d.org/docs/release/tutorial/pipelines/robust_kernels.html
http://www.open3d.org/docs/release/tutorial/pipelines/robust_kernels.html
https://github.com/isl-org/Open3D/pull/3181

Bibliography

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva.
Point Set Surfaces. In Proc. of the IEEE Visualization (VIS), 2001.

[2] P. Babin, P. Giguere, and F. Pomerleau. Analysis of Robust Functions for
Registration Algorithms. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2019.

[3] C. Bai, T. Xiao, Y. Chen, H. Wang, F. Zhang, and X. Gao. Faster-
LIO: Lightweight Tightly Coupled Lidar-Inertial Odometry Using Parallel
Sparse Incremental Voxels. IEEE Robotics and Automation Letters (RA-L),
7(2):4861–4868, 2022.

[4] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, J. Gall, and
C. Stachniss. Towards 3D LiDAR-based Semantic Scene Understanding of
3D Point Cloud Sequences: The SemanticKITTI Dataset. Intl. Journal of
Robotics Research (IJRR), 40(8–9):959–967, 2021.

[5] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall. SemanticKITTI: A Dataset for Semantic Scene Understanding
of LiDAR Sequences. In Proc. of the IEEE/CVF Intl. Conf. on Computer
Vision (ICCV), 2019.

[6] J. Behley and C. Stachniss. Efficient Surfel-Based SLAM using 3D Laser
Range Data in Urban Environments. In Proc. of Robotics: Science and
Systems (RSS), 2018.

[7] J. Behley, V. Steinhage, and A.B. Cremers. Efficient Radius Neigh-
bor Search in Three-dimensional Point Clouds. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2015.

[8] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric Localiza-
tion with Scale-Invariant Visual Features using a Single Perspective Cam-
era. In European Robotics Symposium 2006, 2006.

[9] J. Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9):509–517, 1975.

135

Bibliography

[10] M. Berger, A.Tagliasacchi, L. Seversky, P. Alliez, G. Guennebaud,
J. Levine, A. Sharf, and C. Silva. A Survey of Surface Reconstruction
from Point Clouds. Computer Graphics Forum, 36(1):301–329, 2017.

[11] P. Besl and N. McKay. A Method for Registration of 3D Shapes. IEEE
Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 14(2):239–
256, 1992.

[12] M.G. Besselmann, L. Puck, L. Steffen, A. Roennau, and R. Dillmann. VDB-
Mapping: A High Resolution and Real-Time Capable 3D Mapping Frame-
work for Versatile Mobile Robots. In Proc. of the International Conf. on
Automation Science and Engineering (CASE), 2021.

[13] J.L. Blanco-Claraco. Mobile Robot Programming Toolkit (MRPT). URL:
http://www. mrpt. org/, 2014.

[14] C. Boettiger. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review, 49(1):71–79, 2015.

[15] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
120:122–125, 2000.

[16] G. Brostow, J. Fauqueur, and R. Cipolla. Semantic Object Classes in Video:
A High-Definition Ground Truth Database. Pattern Recognition Letters,
30(2):88–97, 2008.

[17] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-Time Cam-
era Tracking and 3D Reconstruction Using Signed Distance Functions. In
Proc. of Robotics: Science and Systems (RSS), 2013.

[18] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. Leonard. Past, Present, and Future of Simultaneous Localiza-
tion And Mapping: Towards the Robust-Perception Age. IEEE Trans. on
Robotics (TRO), 32(6):1309–1332, 2016.

[19] H. Caesar, V. Bankiti, A. Lang, S. Vora, V. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom. nuScenes: A multimodal dataset for
autonomous driving. arXiv preprint, arXiv:1903.11027, 2019.

[20] H. Caesar, V. Bankiti, A. Lang, S. Vora, V. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom. nuScenes: A Multimodal Dataset
for Autonomous Driving. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020.

136

Bibliography

[21] D. Canelhas, T. Stoyanov, and A. Lilienthal. SDF Tracker: A Parallel
Algorithm for On-Line Pose Estimation and Scene Reconstruction from
Depth Images. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2013.

[22] D. Canelhas, T. Stoyanov, and A. Lilienthal. From Feature Detection in
Truncated Signed Distance Fields to Sparse Stable Scene Graphs. IEEE
Robotics and Automation Letters (RA-L), 1(2):1148–1155, 2016.

[23] N. Carlevaris-Bianco, A. Ushani, and R. Eustice. University of Michigan
North Campus long-term vision and lidar dataset. Intl. Journal of Robotics
Research (IJRR), 35(9):1023–1035, 2016.

[24] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum, and
T. Evans. Reconstruction and Representation of 3D Objects With Radial
Basis Functions. In Proc. of the Intl. Conf. on Computer Graphics and
Interactive Techniques (SIGGRAPH), 2001.

[25] E. Cervera. Try to Start It! The Challenge of Reusing Code in Robotics
Research. IEEE Robotics and Automation Letters (RA-L), 4(1):49–56, 2019.

[26] E. Cervera and A.P. Del Pobil. Roslab: Sharing Ros Code Interactively
With Docker and Jupyterlab. IEEE Robotics and Automation Magazine
(RAM), 26(3):64–69, 2019.

[27] A. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report
arXiv:1512.03012 [cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015.

[28] M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang,
P. Carr, S. Lucey, D. Ramanan, and J. Hays. Argoverse: 3D Tracking and
Forecasting with Rich Maps. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

[29] N. Chebrolu, T. Läbe, O. Vysotska, J. Behley, and C. Stachniss. Adaptive
Robust Kernels for Non-Linear Least Squares Problems. IEEE Robotics
and Automation Letters (RA-L), 6(2):2240–2247, 2021.

[30] J. Chen, D. Bautembach, and S. Izadi. Scalable Real-Time Volumetric
Surface Reconstruction. ACM Trans. on Graphics, 32(4):113, 2013.

137

Bibliography

[31] J. Chen and S. Shen. Improving Octree-Based Occupancy Maps Using
Environment Sparsity with Application to Aerial Robot Navigation. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017.

[32] K. Chen, R. Nemiroff, and B.T. Lopez. Direct LiDAR-Inertial Odom-
etry and Mapping: Perceptive and Connective SLAM. arXiv preprint,
arXiv:2305.01843, 2023.

[33] K. Chen, R. Nemiroff, and B.T. Lopez. Direct lidar-inertial odometry:
Lightweight lio with continuous-time motion correction. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2023.

[34] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley,
and C. Stachniss. OverlapNet: Loop Closing for LiDAR-based SLAM. In
Proc. of Robotics: Science and Systems (RSS), 2020.

[35] X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss. Learning an
Overlap-based Observation Model for 3D LiDAR Localization. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

[36] X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stach-
niss. Moving Object Segmentation in 3D LiDAR Data: A Learning-based
Approach Exploiting Sequential Data. IEEE Robotics and Automation Let-
ters (RA-L), 6(4):6529–6536, 2021.

[37] X. Chen, B. Mersch, L. Nunes, R. Marcuzzi, I. Vizzo, J. Behley, and
C. Stachniss. Automatic Labeling to Generate Training Data for Online
LiDAR-Based Moving Object Segmentation. IEEE Robotics and Automa-
tion Letters (RA-L), 7(3):6107–6114, 2022.

[38] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[39] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss. Range Image-
based LiDAR Localization for Autonomous Vehicles. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021.

[40] X. Chen. LiDAR-Based Semantic Perception for Autonomous Vehicles.
PhD thesis, University of Bonn, 2022.

[41] Y. Chen and G. Medioni. Object Modelling by Registration of Multiple
Range Images. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 1991.

138

Bibliography

[42] Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, and O. Ronneberger. 3D
U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.
In Medical Image Computing and Computer-Assisted Intervention, 2016.

[43] M. Colosi, I. Aloise, T. Guadagnino, D. Schlegel, B. Corte, K. Arras, and
G. Grisetti. Plug-And-Play SLAM A Unified SLAM Architecture for Mod-
ularity and Ease of Use. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2020.

[44] B. Curless and M. Levoy. A Volumetric Method for Building Complex Mod-
els from Range Images. In Proc. of the Intl. Conf. on Computer Graphics
and Interactive Techniques (SIGGRAPH), 1996.

[45] A. Dai, A. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner.
ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[46] A. Dai, C.R. Qi, and M. Niessner. Shape Completion Using 3D-Encoder-
Predictor CNNs and Shape Synthesis. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[47] A. Dai, C. Diller, and M. Nießner. SG-NN: Sparse Generative Neural Net-
works for Self-Supervised Scene Completion of RGB-D Scans. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2020.

[48] N. Dalmedico, M.A. Simões Teixeira, H. Barbosa Santos, R.d.C.M.
Nogueira, L.V. Ramos de Arruda, F. Neves, D. Rodrigues Pipa, J. En-
dress Ramos, and A. Schneider de Oliveira. Sliding Window Mapping for
Omnidirectional RGB-D Sensors. Sensors, 19(23), 2019.

[49] B. Della Corte, I. Bogoslavskyi, C. Stachniss, and G. Grisetti. A General
Framework for Flexible Multi-Cue Photometric Point Cloud Registration.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018.

[50] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localiza-
tion for Mobile Robots. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 1999.

[51] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous Localization
and Mapping Via Square Root Information Smoothing. Intl. Journal of
Robotics Research (IJRR), 25(12):1181–1203, 2006.

139

Bibliography

[52] P. Dellenbach, J. Deschaud, B. Jacquet, and F. Goulette. CT-ICP Real-
Time Elastic LiDAR Odometry with Loop Closure. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2022.

[53] J. Deschaud. IMLS-SLAM: scan-to-model matching based on 3D data. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018.

[54] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA:
An Open Urban Driving Simulator. In Proc. of the Conf. on Robot Learning
(CoRL), 2017.

[55] J.C. Eidson, M. Fischer, and J. White. Ieee-1588™ standard for a precision
clock synchronization protocol for networked measurement and control sys-
tems. In Proc. of the Annual Precise Time and Time Interval Systems and
Applications Meeting, 2002.

[56] H. Fan, H. Su, and L. Guibas. A Point Set Generation Network for 3D
Object Reconstruction from a Single Image. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[57] M. Fehr, F. Furrer, I. Dryanovski, J. Sturm, I. Gilitschenski, R. Siegwart,
and C. Lerma. TSDF-Based Change Detection for Consistent Long-Term
Dense Reconstruction and Dynamic Object Discovery. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2017.

[58] T. Fischer, W. Vollprecht, S. Traversaro, S. Yen, C. Herrero, and M. Mil-
ford. A RoboStack Tutorial: Using the Robot Operating System Alongside
the Conda and Jupyter Data Science Ecosystems. IEEE Robotics and Au-
tomation Magazine (RAM), 29(2):65–74, 2021.

[59] W. Förstner and B. Wrobel. Photogrammetric Computer Vision – Statistics,
Geometry, Orientation and Reconstruction. Springer Verlag, 2016.

[60] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots. In Proc. of the National
Conf. on Artificial Intelligence (AAAI), 1999.

[61] N. Funk, J. Tarrio, S. Papatheodorou, M. Popović, P.F. Alcantarilla, and
S. Leutenegger. Multi-Resolution 3D Mapping With Explicit Free Space
Representation for Fast and Accurate Mobile Robot Motion Planning.
IEEE Robotics and Automation Letters (RA-L), 6(2):3553–3560, 2021.

[62] M. Gehrig, E. Stumm, T. Hinzmann, and R. Siegwart. Visual Place Recog-
nition with Probabilistic Voting. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2017.

140

Bibliography

[63] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driv-
ing? The KITTI Vision Benchmark Suite. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2012.

[64] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets Robotics: The
KITTI Dataset. Intl. Journal of Robotics Research (IJRR), 32(11):1231–
1237, 2013.

[65] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[66] D. Gregorio and L. Stefano. SkiMap: An Efficient Mapping Framework
for Robot Navigation. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2017.

[67] M. Grinvald, F. Furrer, T. Novkovic, J.J. Chung, C. Cadena, R. Siegwart,
and J. Nieto. Volumetric Instance-Aware Semantic Mapping and 3D Object
Discovery. IEEE Robotics and Automation Letters (RA-L), 4(3):3037–3044,
2019.

[68] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on
graph-based SLAM. IEEE Trans. on Intelligent Transportation Systems
Magazine, 2(4):31–43, 2010.

[69] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for Grid
Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. on Robotics
(TRO), 23(1):34–46, 2007.

[70] G. Grisetti, T. Guadagnino, I. Aloise, M. Colosi, B. Della Corte, and
D. Schlegel. Least Squares Optimization: From Theory to Practice.
Robotics, 9(3), 2020.

[71] T. Guadagnino, X. Chen, M. Sodano, J. Behley, G. Grisetti, and C. Stach-
niss. Fast Sparse LiDAR Odometry Using Self-Supervised Feature Selec-
tion on Intensity Images. IEEE Robotics and Automation Letters (RA-L),
7(3):7597–7604, 2022.

[72] J.S. Gutmann and C. Schlegel. AMOS: comparison of scan matching ap-
proaches for self-localization in indoor environments. In Proc. of the Eu-
romicro Workshop on Advanced Mobile Robots (EUROBOT), 1996.

[73] A. Handa, T. Whelan, J. McDonald, and A. Davison. A benchmark for
RGB-D visual odometry, 3D reconstruction and SLAM. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2014.

141

Bibliography

[74] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface
Reconstruction from Unorganized Points. In Proc. of the Intl. Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH), 1992.

[75] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
toMap: An Efficient Probabilistic 3D Mapping Framework Based on Oc-
trees. Autonomous Robots, 34(3):189–206, 2013.

[76] X. Huang, G. Mei, J. Zhang, and R. Abbas. A Comprehensive Survey on
Point Cloud Registration. arXiv preprint, arXiv:2103.02690, 2021.

[77] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and
R. Yang. The ApolloScape Dataset for Autonomous Driving. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops,
2018.

[78] P.J. Huber. Robust Statistics. Wiley, 1981.

[79] I.A. I.A. Barsan, S. Wang, A. Pokrovsky, and R. Urtasun. Learning to
Localize Using a LiDAR Intensity Map. In Proc. of the Conf. on Robot
Learning (CoRL), 2018.

[80] J. Jeong, Y. Cho, Y. Shin, H. Roh, and A. Kim. Complex Urban LiDAR
Data Set. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2018.

[81] J. Jeong, T. Yoon, and J. Park. Towards a Meaningful 3D Map Using a 3D
Lidar and a Camera. Sensors, 18(8):2571, 2018.

[82] M.W. Jones, J.A. Baerentzen, and M. Sramek. 3D distance fields: A survey
of techniques and applications. IEEE Trans. on Visualization and Computer
Graphics, 12(4):581–599, 2006.

[83] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing
and mapping. IEEE Trans. on Robotics (TRO), 24(6):1365–1378, 2008.

[84] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson Surface Reconstruction.
In Proc. of the Eurographics Symposium on Geometry Processing, 2006.

[85] M. Kazhdan and H. Hoppe. Screened Poisson Surface Reconstruction. ACM
Trans. on Graphics, 32(3):1–13, 2013.

[86] M. Kazhdan, M. Chuang, S. Rusinkiewicz, and H. Hoppe. Poisson surface
reconstruction with envelope constraints. In Computer Graphics Forum,
2020.

142

Bibliography

[87] M. Keller, D. Lefloch, M. Lambers, and S. Izadi. Real-time 3D Recon-
struction in Dynamic Scenes using Point-based Fusion. In Proc. of the
Intl. Conf. on 3D Vision (3DV), 2013.

[88] G. Kim, Y. Park, Y. Cho, J. Jeong, and A. Kim. Mulran: Multi-
modal Range Dataset for Urban Place Recognition. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020.

[89] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In
Proc. of the Int. Conf. on Learning Representations (ICLR), 2015.

[90] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao. Chisel: Real
Time Large Scale 3D Reconstruction Onboard a Mobile Device Using Spa-
tially Hashed Signed Distance Fields. In Proc. of Robotics: Science and
Systems (RSS), 2015.

[91] A. Knapitsch, J. Park, Q. Zhou, and V. Koltun. Tanks and Temples:
Benchmarking Large-Scale Scene Reconstruction. ACM Trans. on Graph-
ics, 36(4):1–13, 2017.

[92] R. Kolluri. Provably Good Moving Least Squares. ACM Transactions on
Algorithms (TALG), 4(2):18, 2008.

[93] A. Koubâa et al. Robot Operating System (ROS), volume 1. Springer, 2017.

[94] T. Kühner and J. Kümmerle. Large-Scale Volumetric Scene Reconstruction
using LiDAR. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2020.

[95] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2011.

[96] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. Au-
tonomous Robot Navigation in Highly Populated Pedestrian Zones. Journal
of Field Robotics (JFR), 34(4):565–589, 2014.

[97] J. Levinson, M. Montemerlo, and S. Thrun. Map-Based Precision Vehicle
Localization in Urban Environments. In Proc. of Robotics: Science and
Systems (RSS), 2007.

[98] J. Lin and F. Zhang. Loam_livox A Robust LiDAR Odemetry and Mapping
LOAM Package for Livox LiDAR. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2019.

143

Bibliography

[99] J. Lin and F. Zhang. R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-
Inertial-Visual tightly-coupled state Estimation and mapping package. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2022.

[100] J. Loeliger and M. McCullough. Version Control with Git: Powerful tools
and techniques for collaborative software development. ” O’Reilly Media,
Inc.”, 2012.

[101] W. Lorensen and H. Cline. Marching Cubes: a High Resolution 3D Surface
Construction Algorithm. In Proc. of the Intl. Conf. on Computer Graphics
and Interactive Techniques (SIGGRAPH), 1987.

[102] F. Lu, G. Chen, Y. Liu, L. Zhang, S. Qu, S. Liu, and R. Gu. Hregnet: A
Hierarchical Network for Large-Scale Outdoor Lidar Point Cloud Registra-
tion. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV),
2021.

[103] F. Lu and Milios. Robot pose estimation in unknown environments by
matching 2D range scans. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 1994.

[104] F. Lu and E. Milios. Optimal global pose estimation for consistent sensor
data registration. In Proc. of the IEEE Intl. Conf. on Robotics & Automa-
tion (ICRA), 1995.

[105] F. Lu and E. Milios. Robot pose estimation in unknown environments
by matching 2d range scans. Journal of Intelligent and Robotic Systems
(JIRS), 18:249–275, 1997.

[106] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song. L3-Net: Towards Learn-
ing Based Lidar Localization for Autonomous Driving. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[107] W. Ma, I. Tartavull, I.A. Bârsan, S. Wang, M. Bai, G. Mattyus, N. Homay-
ounfar, S.K. Lakshmikanth, A. Pokrovsky, and R. Urtasun. Exploiting
Sparse Semantic HD Maps for Self-Driving Vehicle Localization. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[108] S. Macenski, D. Tsai, and M. Feinberg. Spatio-Temporal Voxel Layer: A
View on Robot Perception for the Dynamic World. Intl. Journal of Ad-
vanced Robotic Systems, 17(2), 2020.

144

Bibliography

[109] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 Year, 1000 Km:
The Oxford Robotcar Dataset. Intl. Journal of Robotics Research (IJRR),
36(1):3–15, 2017.

[110] F. Magistri, E. Marks, S. Nagulavancha, I. Vizzo, T. Läbe, J. Behley,
M. Halstead, C. McCool, and C. Stachniss. Contrastive 3D Shape Com-
pletion and Reconstruction for Agricultural Robots using RGB-D Frames.
IEEE Robotics and Automation Letters (RA-L), 7(4):10120–10127, 2022.

[111] R. Marcuzzi, L. Nunes, L. Wiesmann, I. Vizzo, J. Behley, and C. Stach-
niss. Contrastive Instance Association for 4D Panoptic Segmentation for
Sequences of 3D LiDAR Scans. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2022.

[112] Z. Marton, R. Rusu, and M. Beetz. On Fast Surface Reconstruction Meth-
ods for Large and Noisy Point Clouds. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2009.

[113] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger. Fu-
sion++: Volumetric Object-Level SLAM. In Proc. of the Intl. Conf. on 3D
Vision (3DV), 2018.

[114] D. Meagher. Octree Encoding: A New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer. Techni-
cal Report, Image Processing Laboratory, Rensselaer Polytechnic Institute
(IPL-TR-80-111), 1980.

[115] C. Merfels and C. Stachniss. Pose Fusion With Chain Pose Graphs for
Automated Driving. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2016.

[116] B. Mersch, X. Chen, I. Vizzo, L. Nunes, J. Behley, and C. Stachniss. Re-
ceding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D
Convolutions. IEEE Robotics and Automation Letters (RA-L), 7(3):7503–
7510, 2022.

[117] B. Mersch, T. Guadagnino, X. Chen, Tiziano, I. Vizzo, J. Behley, and
C. Stachniss. Building Volumetric Beliefs for Dynamic Environments Ex-
ploiting Map-Based Moving Object Segmentation. IEEE Robotics and Au-
tomation Letters (RA-L), 8(8):5180–5187, 2023.

[118] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In
Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

145

Bibliography

[119] M. Mihajlovic, S. Weder, M. Pollefeys, and M.R. Oswald. Deepsurfels:
Learning Online Appearance Fusion. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2021.

[120] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[121] A. Millane, Z. Taylor, H. Oleynikova, J. Nieto, R. Siegwart, and C. Cadena.
C-Blox: A Scalable and Consistent TSDF-based Dense Mapping Approach.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2018.

[122] F. Moosmann and C. Stiller. Velodyne SLAM. In Proc. of the IEEE Vehicles
Symposium (IV), 2011.

[123] Z. Murez, T. van As, J. Bartolozzi, A. Sinha, V. Badrinarayanan, and
A. Rabinovich. Atlas: End-to-End 3D Scene Reconstruction from Posed
Images. In Proc. of the Europ. Conf. on Computer Vision (ECCV), 2020.

[124] K. Museth. Nanovdb: A GPU-Friendly and Portable VDB Data Struc-
ture For Real-Time Rendering And Simulation. In ACM SIGGRAPH 2021
Talks, 2021.

[125] K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden,
P. Cucka, D. Hill, and A. Pearce. OpenVDB: An Open-source Data Struc-
ture and Toolkit for High-resolution Volumes. In ACM SIGGRAPH 2013
courses, 2013.

[126] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion:
Real-Time Dense Surface Mapping and Tracking. In Proc. of the Intl. Sym-
posium on Mixed and Augmented Reality (ISMAR), 2011.

[127] J. Niedźwiedzki, P. Lipinski, and L. Podsedkowski. IDTMM: Incremental
Direct Triangle Mesh Mapping. IEEE Robotics and Automation Letters
(RA-L), 8(9):5416–5423, 2023.

[128] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D
Reconstruction at Scale using Voxel Hashing. In Proc. of the SIGGRAPH
Asia, 2013.

[129] N.C. of Argentina. Argentinean Law 26.871. Declaration of Mate as Na-
tional Infusion, 2013.

146

Bibliography

[130] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwar, and J. Nieto. Voxblox: Incre-
mental 3D Euclidean Signed Distance Fields for on-Board Mav Planning.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2017.

[131] K. O’Shea and R. Nash. An Introduction to Convolutional Neural Networks.
arXiv preprint, arXiv:1511.08458, 2015.

[132] E. Palazzolo, J. Behley, P. Lottes, P. Giguere, and C. Stachniss. ReFu-
sion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras
Exploiting Residuals. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2019.

[133] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li. MULLS: Versatile LiDAR SLAM
Via Multi-Metric Linear Least Square. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2021.

[134] J. Park, Q. Zhou, and V. Koltun. Colored Point Cloud Registration Re-
visited. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
2017.

[135] J.J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove.
DeepSDF: Learning Continuous Signed Distance Functions for Shape Rep-
resentation. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[136] C.W. Peng, C.C. Hsu, and W.Y. Wang. Cost Effective Mobile Mapping
System for Color Point Cloud Reconstruction. Sensors, 20(22), 2020.

[137] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger. Convo-
lutional Occupancy Networks. In Proc. of the Europ. Conf. on Computer
Vision (ECCV), 2020.

[138] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Siegwart.
Towards Mapping of Cities. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2007.

[139] E. Piazza, A. Romanoni, and M. Matteucci. Real-Time CPU-Based Large-
Scale 3D Mesh Reconstruction. arXiv preprint, arXiv:1801.05230, 2018.

[140] C.M. Pilato, B. Collins-Sussman, and B.W. Fitzpatrick. Version control
with subversion: next generation open source version control. ” O’Reilly
Media, Inc.”, 2008.

147

Bibliography

[141] F. Pomerleau, F. Colas, and R. Siegwart. A Review of Point Cloud Registra-
tion Algorithms for Mobile Robotics. Foundations and Trends in Robotics,
4:1–104, 2015.

[142] F. Pomerleau, F. Colas, F. Ferland, and F. Michaud. Relative Motion
Threshold for Rejection in ICP Registration. In Field and Service Robotics,
2010.

[143] M. Popović, F. Thomas, S. Papatheodorou, N. Funk, T. Vidal-Calleja, and
S. Leutenegger. Volumetric Occupancy Mapping With Probabilistic Depth
Completion for Robotic Navigation. IEEE Robotics and Automation Letters
(RA-L), 6(3):5072–5079, 2021.

[144] M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and M. Fal-
lon. The Newer College Dataset: Handheld Lidar, Inertial and Vision With
Ground Truth. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2020.

[145] C. Raposo and J. Barreto. Using 2 Point+Normal Sets for Fast Registration
of Point Clouds With Small Overlap. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2017.

[146] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and
J. Nieto. Voxgraph: Globally Consistent, Volumetric Mapping Using Signed
Distance Function Submaps. IEEE Robotics and Automation Letters (RA-
L), 5(1):227–234, 2019.

[147] G. Riegler, A.O. Ulusoy, H. Bischof, and A. Geiger. OctNetFusion: Learn-
ing Depth Fusion from Data. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[148] C. Rist, D. Emmerichs, M. Enzweiler, and D. Gavrila. Semantic Scene Com-
pletion Using Local Deep Implicit Functions on Lidar Data. IEEE Trans. on
Pattern Analysis and Machine Intelligence (TPAMI), 44(10):7205–7218,
2021.

[149] T. Röhling, J. Mack, and D. Schulz. A Fast Histogram-Based Similarity
Measure for Detecting Loop Closures in 3-D LIDAR Data. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[150] L. Roldão, R. de Charette, and A. Verroust-Blondet. LMSCNet:
Lightweight Multiscale 3D Semantic Completion. In Proc. of the
Intl. Conf. on 3D Vision (3DV), 2020.

148

Bibliography

[151] O. Ronneberger, P.Fischer, and T. Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In Proc. of the Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), 2015.

[152] A. Rosinol, T. Sattler, M. Pollefeys, and L. Carlone. Incremental Visual-
Inertial 3D Mesh Generation With Structural Regularities. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[153] F. Ruetz, E. Hernández, M. Pfeiffer, H. Oleynikova, M. Cox, T. Lowe, and
P. Borges. OVPC Mesh: 3D Free-Space Representation for Local Ground
Vehicle Navigation. In Proc. of the IEEE Intl. Conf. on Robotics & Au-
tomation (ICRA), 2019.

[154] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In
Proc. of Int. Conf. on 3-D Digital Imaging and Modeling, 2001.

[155] R.B. Rusu and S. Cousins. 3D Is Here: Point Cloud Library (Pcl). In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2011.

[156] J. Saarinen, T. Stoyanov, H. Andreasson, and A. Lilienthal. Fast 3D Map-
ping in Highly Dynamic Environments Using Normal Distributions Trans-
form Occupancy Maps. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2013.

[157] R.F. Salas-Moreno, B. Glocker, P.H.J. Kelly, and A.J. Davison. Dense
Planar SLAM. In Proc. of the Intl. Symposium on Mixed and Augmented
Reality (ISMAR), 2014.

[158] V. Sarode, X. Li, H. Goforth, Y. Aoki, R.A. Srivatsan, S. Lucey, and
H. Choset. PCRNet: Point Cloud Registration Network using PointNet
Encoding. arXiv preprint, arXiv:1908.07906, 2019.

[159] A. Schaefer, D. Büscher, J. Vertens, L. Luft, and W. Burgard. Long-term
urban vehicle localization using pole landmarks extracted from 3-D lidar
scans. In Proc. of the Europ. Conf. on Mobile Robotics (ECMR), 2019.

[160] D. Schlegel, M. Colosi, and G. Grisetti. ProSLAM: Graph SLAM from a
Programmer’s Perspective. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2018.

[161] L. Schmid, J. Delmerico, J. Schönberger, J. Nieto, M. Pollefeys, R. Sieg-
wart, and C. Cadena. Panoptic Multi-Tsdfs: a Flexible Representation
for Online Multi-Resolution Volumetric Mapping and Long-Term Dynamic
Scene Consistency. In Proc. of the IEEE Intl. Conf. on Robotics & Au-
tomation (ICRA), 2022.

149

Bibliography

[162] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Proc. of Robotics:
Science and Systems (RSS), 2009.

[163] J. Serafin and G. Grisetti. NICP: Dense Normal Based Point Cloud Reg-
istration. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2015.

[164] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. LIO-
SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Map-
ping. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2020.

[165] T. Shan and B. Englot. LeGO-LOAM: Lightweight and Ground-Optimized
Lidar Odometry and Mapping on Variable Terrain. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[166] C. Shen, J. O’Brien, and J. Shewchuk. Interpolating and Approximating
Implicit Surfaces from Polygon Soup. In Proc. of the Intl. Conf. on Com-
puter Graphics and Interactive Techniques (SIGGRAPH), 2004.

[167] S. Song, F. Yu, A. Zeng, A. Chang, M. Savva, and T. Funkhouser. Semantic
Scene Completion from a Single Depth Image. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[168] C. Stachniss. Robotic Mapping and Exploration. Springer Verlag, 2009.

[169] C. Stachniss and W. Burgard. Mapping and Exploration with Mobile
Robots using Coverage Maps. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2003.

[170] C. Stachniss, G. Grisetti, and W. Burgard. Information Gain-based Ex-
ploration Using Rao-Blackwellized Particle Filters. In Proc. of Robotics:
Science and Systems (RSS), 2005.

[171] C. Stachniss, J. Leonard, and S. Thrun. Springer Handbook of Robotics,
2nd edition, chapter Chapt. 46: Simultaneous Localization and Mapping.
Springer Verlag, 2016.

[172] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard. Place Recognition in
3D Scans Using a Combination of Bag of Words and Point Feature Based
Relative Pose Estimation. In Proc. of the IEEE/RSJ Intl. Conf. on Intel-
ligent Robots and Systems (IROS), 2011.

[173] F. Steinbrucker, C. Kerl, and D. Cremers. Large-Scale Multi-Resolution
Surface Reconstruction from RGB-D Sequences. In Proc. of the IEEE
Intl. Conf. on Computer Vision (ICCV), 2013.

150

Bibliography

[174] F. Steinbrücker, J. Sturm, and D. Cremers. Volumetric 3D Mapping in
Real-Time on a CPU. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2014.

[175] J. Stückler and S. Behnke. Multi-Resolution Surfel Maps for Efficient Dense
3D Modeling and Tracking. Journal of Visual Communication and Image
Representation (JVCIR), 25(1):137–147, 2014.

[176] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
Benchmark for the Evaluation of RGB-D SLAM Systems. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2012.

[177] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao. NeuralRecon: Real-
Time Coherent 3D Reconstruction From Monocular Video. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[178] L. Sun, D. Adolfsson, M. Magnusson, H. Andreasson, I. Posner, and
T. Duckett. Localising Faster: Efficient and precise lidar-based robot lo-
calisation in large-scale environments. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2020.

[179] M. Tanner, P. Pinies, L. Paz, and P. Newman. What Lies Behind: Recov-
ering Hidden Shape in Dense Mapping. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2016.

[180] H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and L. Guibas.
KPConv: Flexible and Deformable Convolution for Point Clouds. In
Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2019.

[181] S. Thrun, W. Burgard, and D. Fox. A Real-Time Algorithm for Mobile
Robot Mapping With Applications to Multi-Robot and 3D Mapping. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2000.

[182] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[183] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo
Localization for Mobile Robots. Artificial Intelligence, 128(1-2), 2001.

[184] G. Tinchev, A. Penate-Sanchez, and M. Fallon. Learning to see the wood
for the trees: Deep laser localization in urban and natural environments on
a CPU. IEEE Robotics and Automation Letters (RA-L), 4(2):1327–1334,
2019.

151

Bibliography

[185] P. Triantafyllou, R. Afonso Rodrigues, S. Chaikunsaeng, D. Almeida,
G. Deacon, J. Konstantinova, and G. Cotugno. A Methodology for
Approaching the Integration of Complex Robotics Systems: Illustration
Through a Bimanual Manipulation Case Study. IEEE Robotics and Au-
tomation Magazine (RAM), 28(2):88–100, 2021.

[186] R. Triebel, P. Pfaff, and W. Burgard. Multi-Level Surface Maps for Out-
door Terrain Mapping and Loop Closing. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2006.

[187] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. Kelly, and S. Leuteneg-
ger. Efficient Octree-Based Volumetric SLAM Supporting Signed-Distance
and Occupancy Mapping. IEEE Robotics and Automation Letters (RA-L),
3(2):1144–1151, 2018.

[188] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson Surface
Reconstruction for LiDAR Odometry and Mapping. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021.

[189] I. Vizzo, B. Mersch, R. Marcuzzi, L. Wiesmann, , J. Behley, and C. Stach-
niss. Make It Dense: Self-Supervised Geometric Scan Completion of Sparse
3D Lidar Scans in Large Outdoor Environments. IEEE Robotics and Au-
tomation Letters (RA-L), 7(3):8534–8541, 2022.

[190] I. Vizzo, T. Guadagnino, J. Behley, and C. Stachniss. VDBFusion: Flexible
and Efficient TSDF Integration of Range Sensor Data. Sensors, 22(3):1296,
2022.

[191] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stach-
niss. KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and
Robust Registration If Done the Right Way. IEEE Robotics and Automa-
tion Letters (RA-L), 8(2):1029–1036, 2023.

[192] I. Vizzo, B. Mersch, L. Nunes, L. Wiesmann, T. Guadagnino, and C. Stach-
niss. Toward Reproducible Version-Controlled Perception Platforms: Em-
bracing Simplicity in Autonomous Vehicle Dataset Acquisition. In Worshop
on Building Reliable Ratasets for Autonomous Vehicles, IEEE Intl. Conf. on
Intelligent Transportation Systems (ITSC), 2023.

[193] I. Wald, S. Woop, C. Benthin, G. Johnson, and M. Ernst. Embree: a Ker-
nel Framework for Efficient CPU Ray Tracing. ACM Trans. on Graphics,
33(4):1–8, 2014.

152

Bibliography

[194] H. Wang, C. Wang, C. Chen, and L. Xie. F-LOAM: Fast LiDAR Odometry
and Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2021.

[195] L. Wang, H. Ye, Q. Wang, Y. Gao, C. Xu, and F. Gao. Learning-Based
3D Occupancy Prediction for Autonomous Navigation in Occluded Envi-
ronments. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2021.

[196] R. Wang, M. Schwörer, and D. Cremers. Stereo DSO: Large-Scale Direct
Sparse Visual Odometry with Stereo Cameras. In Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), 2017.

[197] Y. Wang, N. Funk, M. Ramezani, S. Papatheodorou, M. Popovic, M. Ca-
murri, S. Leutenegger, and M. Fallon. Elastic and Efficient LiDAR Re-
construction for Large-Scale Exploration Tasks. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021.

[198] Z. Wang, L. Zhang, Y. Shen, and Y. Zhou. D-LIOM: Tightly-coupled Direct
LiDAR-Inertial Odometry and Mapping. IEEE Trans. on Muultimedia,
pages 1–1, 2022.

[199] S. Weder, J.L. Schonberger, M. Pollefeys, and M.R. Oswald. Neuralfusion:
Online Depth Fusion in Latent Space. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2021.

[200] X. Wei, I.A. Bârsan, S. Wang, J. Martinez, and R. Urtasun. Learning to
Localize Through Compressed Binary Maps. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[201] A. Wendt and T. Schüppstuhl. Proxying ROS communications–enabling
containerized ROS deployments in distributed multi-host environments. In
Proc. of the Intl. Symp. on System Integration (SII), 2022.

[202] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDon-
ald. Kintinuous: Spatially Extended KinectFusion. In Proc. RSS Workshop
on RGB-D: Advanced Reasoning with Depth Cameras, 2012.

[203] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J.J. Leonard, and J. Mc-
Donald. Real-time large scale dense RGB-D SLAM with volumetric fusion.
Intl. Journal of Robotics Research (IJRR), 34(4-5):598–626, 2014.

[204] T. Whelan, S. Leutenegger, R.S. Moreno, B. Glocker, and A. Davison.
ElasticFusion: Dense SLAM Without A Pose Graph. In Proc. of Robotics:
Science and Systems (RSS), 2015.

153

Bibliography

[205] L. Wiesmann, T. Guadagnino, I. Vizzo, G. Grisetti, J. Behley, and C. Stach-
niss. DCPCR: Deep Compressed Point Cloud Registration in Large-Scale
Outdoor Environments. IEEE Robotics and Automation Letters (RA-L),
7(3):6327–6334, 2022.

[206] L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, and J. Behley. Deep
Compression for Dense Point Cloud Maps. IEEE Robotics and Automation
Letters (RA-L), 6(2):2060–2067, 2021.

[207] L. Wiesmann, T. Guadagnino, I. Vizzo, N. Zimmerman, Y. Pan, H. Kuang,
J. Behley, and C. Stachniss. LocNDF: Neural Distance Field Mapping
for Robot Localization. IEEE Robotics and Automation Letters (RA-L),
8(8):4999–5006, 2023.

[208] D. Wilbers, C. Merfels, and C. Stachniss. Localization with Sliding Window
Factor Graphs on Third-Party Maps for Automated Driving. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[209] R. Wolcott and R. Eustice. Fast lidar localization using multiresolution
gaussian mixture maps. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2015.

[210] W. Wu, X. Zhong, D. Wu, B. Chen, X. Zhong, and Q. Liu. LIO-Fusion:
Reinforced LiDAR Inertial Odometry by Effective Fusion With GNSS/Re-
localization and Wheel Odometry. IEEE Robotics and Automation Letters
(RA-L), 8(3):1571–1578, 2023.

[211] K. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
toMap: A Probabilistic, Flexible, and Compact 3D Map Representation for
Robotic Systems. In Workshop on Best Practice in 3D Perception and Mod-
eling for Mobile Manipulation, IEEE Int. Conf. on Robotics & Automation
(ICRA), 2010.

[212] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang. FAST-LIO2: Fast Direct
LiDAR-Inertial Odometry. IEEE Trans. on Robotics (TRO), 38(4):2053–
2073, 2022.

[213] F. Yan, O. Vysotska, and C. Stachniss. Global Localization on Open-
StreetMap Using 4-bit Semantic Descriptors. In Proc. of the Eu-
rop. Conf. on Mobile Robotics (ECMR), 2019.

[214] H. Ye, Y. Chen, and M. Liu. Tightly Coupled 3D Lidar Inertial Odometry
and Mapping. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2019.

154

Bibliography

[215] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and
T. Darrell. BDD100K: A Diverse Driving Dataset for Heterogeneous Mul-
titask Learning. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[216] M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-Based Fusion for Realtime
3D Reconstruction. Graphical Models, 75(3):126–136, 2013.

[217] A. Zhang, Z.C. Lipton, M. Li, and A.J. Smola. Dive into Deep Learning.
arXiv preprint, arXiv:2106.11342, 2021.

[218] C. Zhang, M.H. Ang, and D. Rus. Robust lidar localization for autonomous
driving in rain. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2018.

[219] J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time.
In Proc. of Robotics: Science and Systems (RSS), 2014.

[220] C. Zheng, Q. Zhu, W. Xu, X. Liu, Q. Guo, and F. Zhang. FAST-LIVO:
Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2022.

[221] Q. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data
processing. arXiv preprint, arXiv:1801.09847, 2018.

[222] Y. Zhou, G. Wan, S. Hou, L. Yu, G. Wang, X. Rui, and S. Song. DA4AD:
End-to-End Deep Attention-Based Visual Localization for Autonomous
Driving. In Proc. of the Europ. Conf. on Computer Vision (ECCV), 2020.

155

List of Figures

1.1 Example of Modern Robots in Action 2
1.2 Comparison between different map representations 5
1.3 Thesis Overview . 8

2.1 Point Cloud Registration Evolution Over the Years 14

3.1 A realization of a version-controlled perception platform 25
3.2 Version-controlled perception platform building blocks 28
3.3 Synchronized sensor triggering vs time synchronization 29
3.4 The IPB-Car perception platform 33
3.5 Meta-workspace example of the IPB-Car platform 34

4.1 Qualitative results of the registration system 40
4.2 Adaptive Threshold Computation 46
4.3 Results of Using Robust Kernels in Livox datasets 54

5.1 Qualitative comparison between offline mapping systems 58
5.2 Meshing algorithm description . 61
5.3 The Mai City Dataset . 64
5.4 Mapping accuracy qualitative evaluation 64
5.5 Memory consumption experiments 66

6.1 Mesh map and its range image representation 72
6.2 Range image-based LiDAR localization Approach 74
6.3 Mesh map rendering example . 76
6.4 Range image-based observation model 77
6.5 Localization results on the ipb-car Dataset 81
6.6 Success rate of different observation Models 82
6.7 Localization results on the Mulran dataset 83

7.1 Qualitative results of the 3D Mapping system 86
7.2 Comparison between the VDB and octree data structures 88
7.3 3D mapping system overview . 91

157

List of Figures

7.4 TSDF integration method . 92
7.5 TSDF Fusion pipeline implemented in C++ 93
7.6 Space carving scheme . 94
7.7 C++ and Python dataloaders . 97
7.8 C++ and Python fusion pipeline 97
7.9 C++ and Python weighting . 97
7.10 Octomap vs VDBFusion qualitative comparison 102
7.11 Voxblox vs VDBFusion qualitative comparison 102
7.12 Mapping accuracy results for the Cow and Lady dataset 104
7.13 Mapping accuracy results for the KITTI Odometry dataset 104
7.14 User study results . 105
7.15 Mapping qualitative results on the KITTI dataset 109
7.16 Mapping qualitative results on the Newer College dataset 109
7.17 Mapping qualitative results on the nuScenes dataset 110
7.18 Mapping qualitative results on the Apollo dataset 110
7.19 Mapping qualitative results on the ICL-NUIM dataset 111
7.20 Mapping qualitative results on the TUM RGB-D dataset 111

8.1 Geometric scan completion qualitative results 114
8.2 Geometric scan completion system overview 116
8.3 How the log-transform affects the signed distance values 118
8.4 Training data pipeline . 119
8.5 Scan completion baseline study 122
8.6 Mapping accuracy of the scan completion system 123
8.7 Qualitative results for a high-speed scenario 127

158

List of Tables

4.1 Registration system parameters 48
4.2 Registration results for the KITTI Odometry benchmark 50
4.3 Registration results on MulRan dataset [80] 51
4.4 Registration results for the Newer College and NCLT datasets . . 51
4.5 Motion compensation results . 52
4.6 Ablation study on the adaptive threshold 53
4.7 Ablation study on the use of a robust kernel for the optimization 54

5.1 Mapping accuracy experiments 65
5.2 Odometry estimation results . 68
5.3 Ray-casting vs mesh-sampling registration results 69

6.1 Dataset overview. 80
6.2 Localization results on the IPB-Car dataset. 82
6.3 Localization results on datasets using different sensors. 83

7.1 Terminology conversion between computer graphics and robotics . 89
7.2 Runtime evaluation of the mapping system 99
7.3 Python vs C++ runtime comparison 99
7.4 Memory consumption experiments 100
7.5 Disk usage experiments . 102
7.6 Mapping accuracy experiments 103

8.1 IoU experiments . 125
8.2 SLAM experiment using geometric scan completion 126

159

	Zusammenfassung
	Abstract
	Contents
	Introduction
	Map Representations in Robotics
	Main Contributions
	Thesis Organization
	Publications
	Further Scientific Contributions
	Open Source Contributions

	Related Work
	Point Cloud Registration in Robotics
	Map Building in Robotics
	Exploiting Maps for Robot Localization

	A Modern Infrastructure for Reliable Data Collection
	Reproducible Version-Controlled Perception Platforms
	The Meta-Workspace Concept
	Building Blocks of a Version-Controlled Perception Platform
	Docker Registry
	Sensor Drivers
	Time Synchronization
	Networking
	Documentation
	Unified Robotics Description Format (urdf) Models
	Continuous Integration/Continuous Deployment cicd

	Building a Version-Controlled Platform – A Concrete Use Case Example
	The IPB-Car Platform
	Step 1: Identify System git Components
	Step 2: Containerize All Components
	Step 3: Create a Meta-Workspace Repository

	Practical Applications of Our Method
	How to Reliably Record Data
	How to Retrieve System State From Data Recordings
	How to Work on Different Hardware Configurations
	How to Run the System on Different Machines
	How to Migrate between ROS 1 and ROS 2

	Conclusion

	LiDAR-Based Pose Estimation
	KISS-ICP – Keep It Small and Simple
	3D Point Cloud Registration for Pose Estimation
	Motion Prediction and Scan Deskewing
	Point Cloud Subsampling
	Local Map and Correspondence Estimation
	Adaptive Threshold for Data Association
	Alignment Through Robust Optimization
	Parameters

	Experimental Evaluation
	Experimental Setup
	Performance on the KITTI-Odometry Benchmark
	Comparison to State-of-the-Art Systems
	Ablation Studies
	Motion Compensation
	Adaptive Data-Association Threshold
	Impact of Using a Robust Kernel

	Conclusion

	Offline Mapping Using Poisson Surface Reconstruction
	Poisson Surface Reconstruction for 3D Mapping
	Approach Overview
	Normal Computation
	Point Cloud Registration Between Scans and Triangle Mesh
	Meshing Algorithm
	Local and Global Map

	Experimental Evaluation
	Datasets
	Mapping Accuracy
	Memory Efficiency
	Odometry and Localization Accuracy
	Registration
	Runtime

	Conclusion

	Localization Using Mesh Maps
	Range Image-based LiDAR Localization
	Range Image Generation
	Mesh Map Representation
	Rendering Synthetic Range Images
	Monte Carlo Localization
	Range Image-based Observation Model
	Tiled Map Representation

	Experimental Evaluation
	Implementation Details
	Datasets
	Baselines
	Localization Performance
	Generalization
	Runtime

	Conclusion

	Online Mapping Using VDBs
	3D Online Volumetric Mapping Using OpenVDB
	The VDB Data Structure
	The VDBFusion Library
	System Overview
	Integration Pipeline Implementation
	Space Carving
	Weighting
	Mapping Parameters
	Meshing
	The Online Mapping Library
	The C++ API
	The Python API

	Experiments
	Runtime
	Memory Efficiency
	Disk Usage
	Mapping Accuracy
	User Study on the Ease-of-Use
	Qualitative Results
	KITTI Odometry Dataset
	Newer College Dataset
	nuScenes Dataset
	Apollo Dataset
	ICL-NUIM Dataset
	TUM Dataset

	Conclusions

	Dense Mapping Using Low-Resolution Sensors
	Geometric Scan Completion
	Make it Dense
	Scan Integration Using TSDF
	Geometric Scan Completion
	Architecture
	Multi-Resolution Loss
	Self-Supervised Training
	Global Map Update

	Experimental Evaluation
	Experimental Setup
	Geometric Scan Completion Completeness
	Improving Existing SLAM Systems
	Qualitative Evaluation on Scan Sequences

	Conclusion

	Conclusion
	Summary of the Key Contributions
	Open Source Contributions

