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Abstract
by Mohsen Fayyaz

for the degree of

Doctor rerum naturalium

Video understanding, a subset of computer vision, has gained significant attention due to
the increasing consumption of video data. In particular, action recognition, the task of classi-
fying human actions depicted in trimmed video clips, has seen substantial progress with the
advent of deep neural networks. 3D convolutional neural networks (CNNs), which exploit
temporal cues in addition to spatial cues, have demonstrated promising results. However,
these networks have limitations in capturing hidden information in both spatial and temporal
correlations between channels, leading to decreased performance. To address this issue, we
introduce a novel network architecture block that efficiently captures both spatial-channel
and temporal-channel correlation information throughout the network layers.

Additionally, training 3D CNNs requires extensive labeled datasets, increasing compu-
tational cost and time, and limiting the performance of these architectures. To mitigate this
problem, we propose an effective supervision transfer method that allows a 2D CNN pre-
trained on ImageNet to act as a "teacher" for the stable weight initialization of a randomly
initialized 3D CNN, avoiding the need for extensive training from scratch.

The lack of established video benchmarks that integrate the joint recognition of multiple
semantic aspects in dynamic scenes remains a challenge in the field of video understanding.
To address this, we propose the "Holistic Video Understanding" (HVU) dataset, a hierar-
chical, multi-label, multi-task, large-scale video benchmark with comprehensive tasks and
annotations for video analysis and understanding. Furthermore, motivated by the goal of
holistic representation learning, we introduce a new spatio-temporal architecture for the task
of video classification. Our architecture focuses on multi-label, multi-task learning, jointly
solving multiple spatio-temporal problems simultaneously by fusing 2D and 3D architec-
tures in order to capture both spatial and temporal information.

The field of video processing has seen significant growth with the advent of 3D convolu-
tional neural networks (3D CNNs), which are highly effective for action classification tasks.
However, these networks are often resource-intensive to train and deploy for inference. In
this work, we present an approach that aims to improve the efficiency of 3D CNNs for both
training and inference by dynamically adapting the temporal resolution of the network to the
input frames. By exploiting the redundancy within temporal features, our method allows the
3D CNN to select the most valuable and informative temporal features for the action classifi-
cation task, while avoiding the waste of computational resources on redundant information.
In addition to 3D CNNs, vision transformers have recently demonstrated effectiveness in
image and video classification tasks. However, the high computational cost of their trans-
former blocks can be prohibitive for deployment on edge devices. To address this issue, we
present a method for efficiently reducing the number of tokens in a vision transformer by
automatically selecting an appropriate number of tokens at each stage based on the content
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of the image or video. Through this approach, we aim to enable transformers to dynamically
adapt their computational resources to efficiently process each input image or video.

Despite the numerous methods that have achieved state-of-the-art results in video under-
standing on trimmed video clips, real-world scenarios often involve untrimmed videos with
multiple actions requiring recognition at each frame. This task, referred to as temporal ac-
tion segmentation, involves not only recognizing actions within untrimmed videos but also
determining their order and duration. While there has been a surge of interest in temporal
action segmentation, annotating each frame of a video is a tedious and costly process. As
a result, weakly supervised approaches have been developed to learn temporal action seg-
mentation from videos that are only weakly labeled. In such cases, the set of actions present
in a video is obtained as weak supervision, providing a cost-effective means of annotating a
video. Given a set of actions in which only the list of actions occurring in the video is known,
but not when, how often, or in which order they occur, we propose an end-to-end trainable
approach to train a temporal action segmentation model with such weak supervision. Our
approach divides the video into smaller temporal regions and predicts for each region the
action label and its length, as well as estimating action labels for each frame. By measur-
ing the consistency of the frame-wise predictions with respect to the temporal regions and
annotated action labels, the network learns to divide the video into class-consistent regions.
We evaluate our approach on three datasets and achieve state-of-the-art results. In spite of
the cost-effectiveness of utilizing a set of actions for training a model, using it as proper
supervision for temporal action segmentation models presents a daunting challenge. Given
the limitations of approaches with weak actions set supervision, methods that can leverage
stronger forms of supervision are of great importance. One such type of weak supervision is
transcripts, which are ordered lists of actions indicating the order in which actions occur in a
training video, but not when they occur. As a culminating contribution, we propose a novel
end-to-end framework for weakly supervised action segmentation using a two-branch neural
network. The network’s dual branches independently predict redundant yet distinct action
segmentation representations, and we incorporate a mutual consistency loss term to enforce
consistency between these redundant representations. Our approach attains the accuracy of
state-of-the-art methods while exhibiting marked improvements in efficiency.

Keywords: video understanding, action recognition, efficient spatio-temporal convolutional
neural networks, efficient vision transformers, temporal action segmentation
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1.1 Motivation

As humans continue to strive for automation in various fields, the development of intelligent agents
capable of performing complex tasks has become increasingly important. In order to teach machines
to function in a manner similar to humans, it is necessary to find efficient methods of training them.
LeCun (2022) has emphasized the importance of good perception, particularly through vision, in the
development of intelligent agents. Given the vital role that vision plays in our own understanding
of the world, it is no surprise that computer vision has become a key focus in the field of machine
learning. The increasing availability and consumption of video data has led to a significant interest
in the field of video understanding within the research community. The ability to analyze, monitor,
annotate, and learn from videos is crucial for the development of machine learning systems that can
effectively perceive and understand the world.

The field of video understanding has long been preoccupied with classifying human actions de-
picted in trimmed video clips, also referred to as action recognition (Poppe, 2010). In the era of deep
neural networks, significant advancements have been made in the performance of action recognition
techniques. Initially, these techniques struggled to match the performance of hand-crafted features
for video classification (Karpathy et al., 2014a). However, this changed with the introduction of the
two-stream network (Simonyan and Zisserman, 2014), which marked a turning point in the field, as
deep learning models began to achieve performance on par with state-of-the-art hand-crafted fea-
tures. This architecture consists of two parallel convolutional neural networks (CNNs) processing
RGB frames and stacks of optical flow frames, respectively, which then fuse their outputs and pass
them to a classifier. This marked a turning point in the field, as deep learning models began to achieve
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performance on par with state-of-the-art hand-crafted features. Subsequent methods have built upon
this two-stream architecture, resulting in further improvements. To address the challenges of design-
ing and training 3D CNNs from scratch, Carreira and Zisserman (2017) proposed the I3D network,
which inflates a successful 2D CNN architecture into 3D and initializes the 3D CNN weights using
pre-trained weights from the ImageNet dataset (Deng et al., 2009). The exploitation of temporal cues
rather than merely spatial cues has been shown to have compelling advantages for video classifica-
tion (Diba et al., 2017; Tran et al., 2015; Yue-Hei Ng et al., 2015), and recent works have focused
on improving the modeling of spatio-temporal correlations. However, 3D CNNs have limitations
in capturing hidden information in both spatial and temporal correlations between channels, leading
to decreased performance. To address this issue, we propose a new network architecture block that
efficiently captures both spatial-channel and temporal-channel correlation information throughout
network layers. In addition to these technical challenges, another major issue in the use of 3D CNNs
is the need for extra large labeled datasets for training. This not only increases the computational
cost and time required but also limits the performance of these architectures. To address this issue,
we propose an effective supervision transfer method that allows a 2D CNN pre-trained on ImageNet
to act as a teacher for the stable weight initialization of a randomly initialized 3D CNN, avoiding the
need for extensive training from scratch.

Despite significant progress in spatio-temporal models for video understanding, most of these
models primarily focus on action recognition. Consequently, video understanding as a more generic
problem, which encompasses the recognition of multiple semantic aspects such as scenes or envi-
ronments, objects, actions, events, attributes, and concepts remains a challenging issue in computer
vision. This challenge stems from the absence of established video benchmarks that integrate the
joint recognition of multiple semantic aspects in dynamic scenes. Although deep neural networks
have facilitated substantial advancements in various sub-fields of computer vision, a common draw-
back when training these networks for video understanding with a single label per task is the inability
to adequately describe the content of a video. This limitation hampers neural networks’ potential to
learn a generic feature representation for comprehensive and complex video analysis. To address
this issue, this thesis proposes recasting the video understanding problem as multi-task classification,
where multiple labels are assigned to a video from multiple semantic aspects. This approach allows
for the learning of a generic feature representation for video analysis and understanding, similar to
the way that image classification deep neural networks trained on ImageNet facilitate the learning of
a generic feature representation for various vision tasks. To this end, we introduce the "Holistic Video
Understanding" dataset (HVU), a hierarchical, multi-label, multi-task, large-scale video benchmark
with comprehensive tasks and annotations for video analysis and understanding. Motivated by the
goal of holistic representation learning, we also propose a new spatio-temporal architecture for the
task of video classification. Our architecture focuses on multi-label, multi-task learning to jointly
solve multiple spatio-temporal problems simultaneously, fusing 2D and 3D architectures into one by
combining intermediate representations of appearance and temporal cues to achieve a robust spatio-
temporal representation.

Although extending the capabilities of 3D CNNs beyond action recognition enhances video rep-
resentation and understanding, these networks are often resource-intensive for both training and de-
ployment. To address this issue, some researchers have proposed using multiple CNNs with different
levels of complexity to process different parts of the video (Korbar et al., 2019; Zhu et al., 2020).
While these approaches can reduce the number of floating point operations (FLOPs) during inference,
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they increase training time and do not address the inherent inefficiency of 3D CNNs in processing
certain types of input. In this thesis, we present an approach that aims to make 3D CNNs more
efficient for both training and inference. Our approach is based on the observation that the computa-
tional cost of a 3D CNN depends on the temporal resolution at which it operates at each stage of the
network. While the temporal resolution can vary at different stages, the schemes that define how it is
reduced are hard-coded and apply the same to all videos. However, it is unlikely that a single scheme
will be optimal for all videos, as a low temporal resolution may discard important information for
some videos, while a high temporal resolution may result in redundant feature maps and increased
computational time. To address this issue, we propose a method for dynamically adapting the tempo-
ral resolution of a 3D CNN to the input video content. By exploiting the redundancy within temporal
features, our method allows the 3D CNN to process and select the most valuable and informative tem-
poral features for the action classification task while avoiding the waste of computational resources
on redundant information. In contrast to previous approaches, our method dynamically adapts the
temporal resolution within the network, ensuring that important information is not discarded and
computational resources are used efficiently.

Following the success of the CNNs in image and video understanding, recently vision transform-
ers have demonstrated their effectiveness in image classification tasks compared to traditional CNNs
(Dosovitskiy et al., 2021; Touvron et al., 2021; Jiang et al., 2021; Wu et al., 2021). These models
have also shown promise in action recognition tasks (Bertasius et al., 2021; Liu et al., 2021; Bulat
et al., 2021). While vision transformers have a higher representation power, the computational cost
of their transformer blocks can be prohibitively high for deployment on edge devices. To mitigate
the high computational cost, DynamicViT (Rao et al., 2021a) employs a token scoring neural net-
work to predict which tokens are redundant, keeping a fixed ratio of tokens at each stage. However,
this approach introduces additional computational overhead, requiring the training of an additional
network and modification of the loss function with additional hyperparameters. To alleviate these
limitations, EViT (Liang et al., 2022) utilizes attention weights as tokens’ importance scores. Both
DynamicViT and EViT require re-training when the fixed target ratios need to be changed, which
restricts their flexibility in deployment. In this thesis, following our study on the efficiency of 3D
CNNs, we present a method for efficiently reducing the number of tokens in a vision transformer
without the aforementioned limitations. Our approach is motivated by the observation that in image
and action classification tasks, not all parts of the input image or video contribute equally to the final
classification scores and some parts may contain redundant or irrelevant information. The amount
of relevant information varies based on the content of the image or video. To address this issue, we
propose a method that automatically selects an appropriate number of tokens at each stage based on
the content of the image or video, allowing the number of selected tokens at each stage to vary for
different images or videos. Through this approach, we aim to address the question of how a trans-
former can dynamically adapt its computational resources to efficiently process each input image or
video.

Despite the numerous methods that have achieved state-of-the-art results in video understanding
on trimmed video clips, real-world scenarios often involve untrimmed videos containing multiple
actions, requiring the recognition of actions for every given frame. This task is known as tempo-
ral action segmentation, which involves the recognition of actions within untrimmed videos in ad-
dition to their order and duration. Temporal action segmentation is critical for effectively analyzing
untrimmed videos frame-by-frame to identify and classify actions within them. It has numerous prac-
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tical applications, including in robotics, search engines, and factory assembly line quality control. In
recent years, several state-of-the-art models have been proposed for this task (Kuehne et al., 2016b;
Lea et al., 2017; Abu Farha and Gall, 2019), which have achieved impressive results by leveraging
techniques such as multi-scale sliding window processing, Markov models, and temporal convolu-
tions to capture long-range temporal dependencies. However, these models are typically trained in
a fully supervised setting, requiring each training video to be fully annotated with frame-wise labels
indicating the action classes present at each frame. This annotation approach, while effective, is often
impractical due to the cost and time required for such extensive annotation. As a result, there is a
need for methods that can handle the challenges of limited or noisy annotations and can be trained in
a more efficient and scalable manner. In this thesis, we aim to address this issue by exploring meth-
ods for temporal action segmentation that can handle various forms of weak supervision, including
ordered sequence of actions without the actions’ duration, and even set of actions without orders or
duration of the actions.

Temporal action segmentation in untrimmed videos is highly sought after in real-world scenarios.
While fully annotating video frames can be a straightforward way to train temporal action segmen-
tation models, it is also time-consuming and costly. As a more cost-effective alternative, obtaining a
set of actions present in a video can be used for annotation; however, this approach makes training a
traditional temporal action segmentation model challenging due to the lack of supervision. Richard
et al. (2018a) proposed learning temporal action segmentation solely from a set of action labels pro-
vided for a complete video spanning several minutes. In this scenario, the actions that occur are
known, but not their timing, order, or frequency, making the task notably more difficult compared to
learning from ordered action sequences, also known as transcripts, or fully supervised learning. To
tackle this challenge, Richard et al. (2018a) suggests generating hypothesized transcripts that include
each action label of a video at least once and then inferring frame-level labeling through alignment
with these hypothesized transcripts. Although this approach demonstrates the feasibility of learning
from weak annotations, even for lengthy videos, it does not directly solve the problem. Instead, it
transforms it into a weakly supervised learning problem with multiple hypothesized transcripts per
video. This method is inefficient, as aligning all possible transcripts generated from a set of action
labels is infeasible, and it does not utilize the provided annotations directly for learning. To address
these limitations, we propose a method that directly incorporates the action labels given for each
training video into the loss function, enabling end-to-end training of the model.

While obtaining a set of actions occurring in a video is among the most economical means of
annotating videos, using it as proper supervision for temporal action segmentation models is highly
challenging. As a result, approaches utilizing only a set of actions as a source of supervision are still
in their infancy in terms of performance. Given the immaturity of approaches with weak supervision,
methods that can utilize stronger forms of supervision are of significant importance. In particular,
ordered lists of actions known as transcripts, which describe the order in which actions occur in
a training video but not when they occur, are a popular type of weak supervision (Huang et al.,
2016; Richard et al., 2017, 2018b; Ding and Xu, 2018; Chang et al., 2019; Li et al., 2019). To
learn from transcripts, previous approaches have attempted to align transcripts with training videos,
inferring frame-wise labels for each video based on the provided transcripts, which are then used as
pseudo ground truth for training. The Viterbi algorithm is commonly employed for this alignment
process, which takes the estimated frame-wise class probabilities for a video and determines the
optimal sequence of frame labels that does not violate the action order specified in the transcript.
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While Richard et al. (2017) and Ding and Xu (2018) perform alignment after each epoch for all
training videos, Richard et al. (2018b) and Li et al. (2019) apply it at each iteration to a single video.
During inference, previous approaches, with the exception of ISBA (Ding and Xu, 2018), rely on
segmentation through alignment, searching over all transcripts in the training set to identify the one
that best aligns with the test video, resulting in inefficient performance as the number of transcripts in
the training set increases. In contrast, ISBA is fast but does not achieve the accuracy of state-of-the-
art approaches. This means that currently, one must choose between accurate or fast approaches, but
cannot have both. In this thesis, we make contributions to the field of temporal action segmentation
with a focus on weak supervision and training and testing efficiency, proposing a novel approach
for efficient, end-to-end weakly supervised temporal action segmentation. We address the gap in
previous works by proposing an approach that is nearly as fast as ISBA and nearly as accurate as
state-of-the-art methods. Instead of optimizing over all possible transcripts during inference, our
approach directly predicts the transcript for a video as well as the frame-wise class probabilities,
allowing for the direct prediction of the optimal label sequence from the estimated transcript and
frame-wise class probabilities without dependence on the number of transcripts used for training.

1.2 Contributions

In this thesis, we present a suite of approaches that address the complex and multifaceted challenges
of video understanding discussed above. Our contributions, outlined below, focus on addressing the
difficulties inherent in modeling spatio-temporal dependencies within video data, creating a large
scale holistic video understanding dataset, making video understanding models more efficient, and
training models with less supervision. By tackling these challenges, we aim to advance the field of
video understanding and enable the more efficient and effective utilization of large video datasets for
the development and evaluation of advanced deep learning models.

1.2.1 Spatio-Temporal Channel Correlation for Action Classification
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Our first contribution is a new block,
called ‘Spatio-Temporal Channel Correlation’
(STC), which models correlations between
channels of a 3D CNN with respect to tem-
poral and spatial features. By integrating this
block into existing state-of-the-art architec-
tures such as ResNet and ResNext (Hara et al.,
2018), we observe performance improvements
of 2-3%. In addition to this contribution,
we also present a technique for transferring
knowledge from pre-trained 2D CNNs to ran-
domly initialized 3D CNNs, allowing for the
efficient fine-tuning of 3D CNNs with signif-
icantly reduced amounts of training data. Our approach outperforms both generic and preceding
methods in the field, demonstrating the effectiveness of our proposed techniques for improving the
performance of 3D CNNs in video understanding tasks.
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1.2.2 Holistic Video Understanding

Attribute:
Day, Blue

Event:
Entertainment

Concept:
Fun, Joy

Action:
Jet-Skiing

Scene:
Sea, Jungle

Object:
Person, Boat

HVU DataSet

HATNet

In previous research, we
concentrated on tech-
niques for enhancing the
performance of 3D CNNs
in the realm of action
recognition. However,
video understanding - a
field encompassing the
recognition of multiple
semantic aspects, such as scene or environment, objects, actions, events, attributes, and concepts
- remains a challenging problem. This is despite the notable progress made in action recognition.
One contributing factor is the absence of well-established video benchmarks that integrate the
simultaneous recognition of various semantic aspects within dynamic scenes. To address this gap,
we introduce the "Holistic Video Understanding" Dataset (HVU), a large-scale dataset organized
in a semantic taxonomy that focuses on multi-label and multi-task video understanding as a
comprehensive problem. HVU contains approximately 572k videos with 9 million annotations
spanning 3142 labels, encompassing categories of scenes, objects, actions, events, attributes, and
concepts that capture real-world scenarios. We demonstrate the generalization capabilities of HVU
on three challenging tasks: video classification, video captioning, and video clustering. For video
classification, we propose the "Holistic Appearance and Temporal Network" (HATNet), a novel
spatio-temporal deep neural network architecture that fuses 2D and 3D architectures by combining
intermediate representations of appearance and temporal cues, and is trained in an end-to-end
manner for multi-label and multi-task learning.

1.2.3 Adaptive Spatio-Temporal Convolutional Neural Networks for Efficient Video
Classification
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Despite efforts made in prior re-
search to improve the performance
and generalizability of video under-
standing models, deep video mod-
els are often computationally expen-
sive to train and also for inference.
While the computation cost of a 3D
CNN can be reduced by decreas-
ing the temporal feature resolution
within the network, there is no set-
ting that is optimal for all input clips. In light of this, we introduce a differentiable Similarity Guided
Sampling (SGS) module that can be integrated into any existing 3D CNN architecture. The SGS
module empowers 3D CNNs by learning the similarity between temporal features and grouping sim-
ilar features together, resulting in an adaptive temporal feature resolution (ATFR) that varies for
each input video clip. By integrating the SGS module into current 3D CNNs, we can convert them
into more efficient 3D CNNs with ATFR. Our evaluations demonstrate that the proposed module
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improves upon the state-of-the-art by decreasing computational cost (GFLOPs) by 50% while pre-
serving or even improving accuracy. We evaluate the effectiveness of the SGS module by adding it
to multiple state-of-the-art 3D CNNs.

1.2.4 Adaptive Vision Transformers for Efficient Video Classification

In previous work, we in-
troduced a method for im-
proving the efficiency of
3D CNNs. More recently,
vision transformers have demonstrated their effectiveness in image and video classification tasks,
following the successes of CNNs in image and video understanding. While state-of-the-art vision
transformer models achieve impressive results in image and video classification, they tend to be
computationally expensive and have a high computation cost. While the computation cost of a vi-
sion transformer can be reduced by decreasing the number of tokens within the network, there is no
setting that is optimal for all input images. Therefore, we present a differentiable, parameter-free
Adaptive Token Sampler (ATS) module that can be integrated into any existing vision transformer
architecture. The ATS module enhances vision transformers by scoring and adaptively sampling sig-
nificant tokens, resulting in an adaptive number of tokens that varies for each input image or video.
By incorporating the ATS module into current transformer blocks, we can convert them into more
efficient vision transformers with an adaptive number of tokens. The ATS module is parameter-free,
making it easy to add to off-the-shelf, pre-trained vision transformers as a plug-and-play module,
reducing their computation cost without any additional training. Additionally, due to its differen-
tiable design, a vision transformer equipped with ATS can be trained. We evaluate the efficiency of
the ATS module in both image and video classification tasks by adding it to multiple state-of-the-
art vision transformers. Our proposed module improves upon the state-of-the-art by reducing their
computational costs by a factor of 2 while maintaining accuracy.

1.2.5 Weakly Supervised Temporal Action Segmentation from Action Sets
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Despite the numerous methods that
have achieved state-of-the-art re-
sults in video understanding on
trimmed video clips, real-world
scenarios often involve untrimmed
videos with multiple actions requir-
ing recognition at each frame. This
task, referred to as temporal action
segmentation, involves not only rec-
ognizing actions within untrimmed
videos but also determining their or-
der and duration. While there has
been a surge of interest in temporal action segmentation, annotating each frame of a video is a tedious
and costly process. As a result, weakly supervised approaches have been developed to learn tempo-
ral action segmentation from videos that are only weakly labeled. In such cases, the set of actions
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present in a video is obtained as weak supervision, providing a cost-effective means of annotating a
video. Given a set of actions in which only the list of actions occurring in the video is known, but not
when, how often, or in which order they occur, we propose an end-to-end trainable approach to train
a temporal action segmentation model with such weak supervision. Our approach divides the video
into smaller temporal regions and predicts for each region the action label and its length, as well as
estimating action labels for each frame. By measuring the consistency of the frame-wise predictions
with respect to the temporal regions and annotated action labels, the network learns to divide the
video into class-consistent regions. We evaluate our approach on two datasets and achieve superior
results over the preceding methods.

1.2.6 Weakly Supervised Temporal Action Segmentation from Action Transcripts

In spite of the cost-
effectiveness of uti-
lizing a set of actions
as a means of an-
notating videos, us-
ing it as proper su-
pervision for tempo-
ral action segmenta-
tion models presents
a complicated chal-
lenge. As a result,
approaches that utilize only a set of actions as supervision are still in the early stages of develop-
ment in terms of performance. Given the limitations of approaches with weak supervision, methods
that can leverage stronger forms of supervision are of great importance. One such type of weak su-
pervision is transcripts, which are ordered lists of actions indicating the order in which actions occur
in a training video, but not when they occur. As a culminating contribution, we propose a novel
end-to-end framework for weakly supervised action segmentation using a two-branch neural net-
work. The network’s dual branches independently predict redundant yet distinct action segmentation
representations, and we incorporate a mutual consistency loss term, denoted as MuCon, to enforce
consistency between these redundant representations. By integrating the MuCon loss with a loss
function for transcript prediction, our approach achieves comparable accuracy to previous methods
while demonstrating significant improvements in efficiency, exhibiting a 14-fold decrease in training
time and a 20-fold increase in inference speed. Moreover, the effectiveness of the MuCon loss is also
showcased in a fully supervised setting.

1.3 Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2 provides a concise overview of the key concepts that are central to the present
thesis. It starts with a brief introduction to various types of neural networks, including convolutional,
recurrent, and transformer networks. It then describes the video representations that serve as inputs
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to our proposed temporal segmentation approaches. Following this, it presents a formal definition of
the evaluation metrics employed to assess the performance of the proposed approaches. Finally, it
presents a summary of the datasets used to evaluate the proposed approaches.

Chapter 3 provides an overview of the existing literature on action recognition and temporal
action segmentation.

Chapter 4 proposes the STC block for 3D CNNs. It also proposes a transfer learning ap-
proach for transferring the knowledge of a pretrained 2D CNN to a 3D CNN. This chapter is based
on Diba et al. (2018).

Chapter 5 introduces the novel benchmark of holistic video understanding dataset for the
novel task of multi-label video classification. Furthermore, it introduces HATNet, a novel video
classification model. This chapter is based on Diba et al. (2020).

Chapter 6 proposes the SGS module for 3D CNNs. It shows that by adding SGS to 3D
CNNs, we can make them more efficient. This chapter is based on Fayyaz et al. (2021).

Chapter 7 extends the idea of adaptive 3D CNNs proposed in Chapter 6, to vision trans-
formers, by introducing the Adaptive Token Sampling module (ATS). It shows that by adding ATS
to vision transformers, we can make them more efficient. This chapter is based on Fayyaz et al.
(2022).

Chapter 8 proposes an approach for temporal action segmentation with extremely weak su-
pervision of actions sets. This chapter is based on Fayyaz and Gall (2020).

Chapter 9 proposes the MuCon approach for temporal action segmentation with weak super-
vision of actions transcripts. This chapter is based on Souri et al. (2022).

Finally, conclusions are given in Chapter 10 along with suggested directions for future work.





CHAPTER 2

Background

In this chapter, we provide an overview of the foundational concepts that are central to the research
presented in this thesis. Specifically, we begin by introducing the various types of neural networks
that serve as the basis for our proposed methods. Following this, we provide a succinct overview of
video representations, highlighting their importance in the context of our work. We then outline the
evaluation metrics employed in our experiments, highlighting their appropriateness for evaluating the
efficacy of our approaches. Finally, we introduce the datasets utilized in this study, highlighting their
relevance to our research goals.
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2.1 Neural Networks

Artificial neural networks (ANNs), also known simply as neural networks, are a prevalent class of
machine learning models that have been widely employed in various tasks. Inspired by the architec-
ture of biological neural networks, these models can be represented as a function gθpX q that maps
an input X to an output Y via learnable parameters θ. In essence, neural networks are learnable
models that can approximate functions to a certain degree. A basic form of neural network is the
feed-forward neural network, which consists of interconnected layers of processing units known as
neurons. Each neuron applies a transformation to the output of the previous layer, with the final
output of the network representing the result of the function approximation.

In the following, we provide a brief overview of the various components that make up a neu-
ral network, as well as a description of the training procedure utilized to optimize the network’s
performance.

2.1.1 Neuron

A neuron serves as the fundamental processing unit of a neural network, computing a weighted
sum of its inputs and applying a bias to produce an output. This output is then transformed via an
activation function, as follows

a “ fpb `

K
ÿ

i“1

wixiq, (2.1)

where a represents the activation, wj is the weight, xi is the input, K is the total number of inputs,
and fp.q is the activation function. In a feed-forward network, the activations of the neurons in a
given layer serve as the inputs to the neurons in the subsequent layer. Figure 2.1 illustrates a neuron.
The simplest form of neural network is the perceptron, which consists of a single neuron.

2.1.2 Activation Function

In artificial neural networks, the activation function of a neuron serves to transform the output of that
neuron’s given set of inputs, often leading to the activation or deactivation of the neuron. To model
more complex tasks, it is essential to employ a non-linear activation function, as a deep network with
many layers but without non-linear activation function would be equivalent to a single-layer network.
There exists a range of activation functions that can be utilized in neural networks, with the linear
function serving as one of the simplest. This function maps a real number x to itself, as described
below

flinearpxq “ x. (2.2)



2.1. Neural Networks 13

The use of a linear function is often reserved for the activation of the final output neuron in a regres-
sion model.

Another widely utilized activation function is the sigmoid function, which is characterized by
an S-shaped curve in mathematics. There exist various sigmoid functions, with the logistic sigmoid
function, described in Equation 2.3, being a popular choice in neural networks.

fsigmoidpxq “
1

1 ` e´x
. (2.3)

This function, often referred to simply as the sigmoid function in machine learning, maps any given
real value to the range p0, 1q. As such, it is often employed in neural network architectures for
modeling probabilities on top of the final model outputs.

The sigmoid function was once a popular choice for use as an activation function in neural net-
works. However, due to its characteristics, it vanishes the gradients while optimizing the neural
network using back-propagation. Therefore, sigmoid functions cannot be used in deep neural net-
works. To alleviate this issue, Rectified Linear Unit (ReLU) has been introduced. This function
defined in Equation 2.4 is a piece-wise linear function that maps a real value x to the maximum of x
and 0.

fReLU pxq “ maxpx, 0q (2.4)

The derivative of the ReLU function is constant and equal to 1 for the positive range of its domain,
leading to a low computation cost for training deep neural networks equipped with ReLU activation
functions. Additionally, the constant derivative of the ReLU function helps to mitigate the vanishing
gradient issue of sigmoid activation functions. As a result, ReLU has become a popular activation
function in modern deep neural networks.

2.1.3 Network Training

As mentioned before, a neural network is a function that maps the inputs to the desired outputs using
some learnable parameters. The parameters of the neural network, are learned through an optimiza-
tion process over the given training data to meet the objective of the neural network. The objective
of a neural network is defined as an objective function that is minimized during the optimization
process. A common set of algorithms for optimizing neural networks are based on gradient descent.
In a gradient decent-based algorithm, given a set of initial network parameters, the gradients of the
objective function with respect to the parameters are computed. The parameters are then iteratively
updated in the opposite direction of the gradients

θi`1 “ θi ´ η∇Lpθiq, (2.5)

where θi are the parameters of the network at the i ´ th iteration, L is the objective function, and
η P R` is the learning rate that controls the updating rate of the parameters. The computation of
gradients for the parameters of a deep neural network is a challenging problem. The backpropagation
algorithm is used for computing the gradients. The backpropagation algorithm (Rumelhart et al.,
1986) uses chain rule to recursively compute the gradients of the parameters at each layer based on
the gradients at the following layer.
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Figure 2.1: A neuron composed of K weights pw1, . . . , wKq, inputs px1, . . . , xKq, a bias pbq and an
activation function f . The weights, inputs, and bias term are used to compute a linear combination
of the inputs, which is then passed through the activation function to produce the neuron’s output.
The activation function is typically chosen to introduce non-linearity into the network, allowing it to
learn complex mappings between inputs and outputs.

2.1.4 Objective Function

The objective function quantitatively differentiates between the outputs of a neural network and the
desired training data. In other words, an objective function can quantitatively measure the perfor-
mance of a neural network. Therefore, it is also called a loss function. For a multi-class classification
task where the outputs of the network are one-hot vectors, the cross-entropy loss is used

Lcepθq “ ´
1

N

N
ÿ

n“1

logpycpxn, θqq, (2.6)

where N is the number of classes, ycpxn, θq is the output of the network for the target class c.

2.2 Multi Layer Perceptron (MLP)

Multi-layer perception is one of the earliest forms of artificial neural networks. MLP is a fully
connected neural network with multiple layers. As shown in Fig.2.2, MLP has 3 different types
of layers. The input layer consists of many neurons that are connected to all of the neurons of
the following layer. The input data to the network is fed to the input layer. The activations of the
input layer are fed to the following hidden layer and similarly, the activations of the hidden layer
are fed to the output layer. This process of forwarding data to the following layers is called forward
propagation. The output activations of the output layer are indeed the outputs of the neural network.
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Input Layer Hidden Layer Output Layer

Figure 2.2: A feed-forward artificial neural network composed of two intermediary layers, each
comprising a multitude of perceptrons, with each perceptron being fully connected to the entirety
of the perceptrons in the preceding layer. This architecture is commonly used in various computer
vision tasks such as object classification and detection, due to its ability to extract high-level features
from the input data through the non-linear activation functions in the hidden layers.

2.3 Recurrent Neural Networks (RNNs)

As previously mentioned, feedforward neural networks are a class of artificial neural networks char-
acterized by connections between neurons in different layers, but not within the same layer. These
networks are highly effective at approximating functions, but are not equipped to represent functions
with temporal components. In contrast, recurrent neural networks (RNNs) feature connections that
form a directed cycle, allowing them to retain information from previous input and output sequences.
This property makes RNNs particularly useful for tasks such as language modeling, time series pre-
diction, and video understanding. For an input sequence X1:T “ px1, . . . , xT q, the RNN updates its
state ht at step t based on the previous state ht´1 and the current input xt. A vanilla RNN combines
ht´1 and xt linearly using the following equation:

ht “ fpWhht´1 ` Wxxt ` bq, (2.7)

where Wh and Wx are the weight matrices that determine the influence of the previous state and
the current input on the current state, respectively, and b is the bias term. The function f is a non-
linear activation function, that is used to introduce non-linearity into the model. This allows the
RNN to learn more complex patterns in the data. Figure 2.3 depicts a vanilla RNN. The parameters
Wh, Wx, and b are shared across all time steps and are applied recursively to the inputs from the
sequence. This allows RNNs to handle input sequences of arbitrary length. To train RNNs, the back-
propagation through time (BPTT) algorithm is commonly used. This involves first unfolding the
network in time, using the same parameters at each time step, and then using the back-propagation
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Figure 2.3: A vanilla recurrent neural network (RNN) architecture, wherein the hidden state ht at
each time step t is a function of both the state from the previous time step ht´1 and the input xt at
the current step. The parameters Wx, Wh, and b, which govern the dynamics of the hidden state, are
shared over time.
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Figure 2.4: A vanilla recurrent neural network (RNN) architecture, unfolded in time, wherein the
hidden state ht at each time step t is a function of both the state from the previous time step ht´1 and
the input xt at the current step. The parameters Wx, Wh, and b, which govern the dynamics of the
hidden state, are shared over time.

algorithm to update the network parameters. Figure 2.4 illustrates an unfolded vanilla RNN through
time. The use of gradient descent-based training methods for RNNs can suffer from problems such
as vanishing or exploding gradients (Bengio et al., 1994), which can limit the performance of the
network on long-term dependencies and complex sequential data. These problems arise due to the
backpropagation of error gradients through time, which can result in gradients that either vanish to
zero or explode to large values, making it difficult for the network to learn effectively. To address this
issue, several RNN variants, such as long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) networks and gated recurrent units (GRUs) (Cho et al., 2014a), have been developed that
incorporate multiplicative gates in the RNN update rule. These gates act as trainable "forget" and
"input" filters, allowing the network to selectively retain or discard information from previous time
steps. This helps to prevent the error gradients from vanishing, allowing the network to learn more
effectively from long sequences.
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2.3.1 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) networks are a type of recurrent neural network (RNN) that was
introduced by Hochreiter and Schmidhuber (1997) to overcome the limitations of traditional RNNs.
LSTM networks are equipped with a memory cell that is updated by multiplicative gates, enabling
them to selectively retain or discard information from previous time steps. This makes LSTM net-
works more effective and stable when dealing with long-term dependencies and complex sequential
data. An LSTM cell is a computational unit that takes as input the previous hidden state, the current
input, and a set of learned weights. It can be defined as follows. Let xt be the input at time step t,
ht´1 be the previous hidden state, and ct´1 be the previous cell state. The cell computes the current
cell state ct and hidden state ht using the following equations:

it “ σpWxixt ` Whiht´1 ` biq,

ft “ σpWxfxt ` Whfht´1 ` Wcfct´1 ` bf q,

ct “ ft d ct´1 ` it d tanhpWxcxt ` Whcht´1 ` bcq,

ot “ σpWxoxt ` Whoht´1 ` Wcoct ` boq,

ht “ ot tanhpctq,

(2.8)

where, W˚i, W˚f , W˚c, and W˚o are the weight matrices for the input gate, forget gate, cell state,
and output gate, respectively, and bi, bf , bc, and bo are the corresponding biases, σ is the sigmoid
function, and it, ft, and ot are the input, forget, and output gate, respectively.

The forget gate of an LSTM unit plays a critical role in determining the evolution of the memory
cell at each time step. By assessing the relevance of the information stored in the memory cell, the
forget gate determines what should be discarded, allowing the LSTM to selectively retain only the
most pertinent information. Meanwhile, the input gate assesses the incoming data and decides what
should be incorporated into the updated memory cell. Finally, the output is computed by multiplying
the contents of the memory cell by the output gate, which serves as a filter to produce the final
output of the LSTM unit. This mechanism allows the LSTM to selectively retain and access relevant
information, enabling it to effectively model long-term dependencies in sequential data.

2.4 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are a type of neural networks that has been successfully ap-
plied to a wide range of tasks, including image and video classification, and object detection. CNNs
are composed of convolutional layers, which are designed to learn spatial hierarchies of features in
the input data. In contrast to traditional neural networks, which use fully-connected layers where
each neuron receives connections from all neurons in the previous layer, convolutional layers exhibit
sparse connectivity, where each neuron is connected to a local region of the previous layer. This
allows the network to be translation invariant, meaning that it is robust to small translations and
deformations of the input. Additionally, the use of shared weights across the spatial dimensions of
the input reduces the number of parameters in the model and improves its generalization, leading to
better performance on unseen data.

Convolutional layers use a fixed-size kernel, also known as a filter, to scan the input and compute
a set of feature maps. The kernel is convolved with the input, element-wise multiplying and summing
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the values in the input region defined by the kernel. The resulting output is passed through a nonlinear
activation function, such as a rectified linear unit (ReLU), to introduce nonlinearities and improve the
expressiveness of the model. The use of convolutional layers allows CNNs to have several desirable
properties. First, the learned filters can be interpreted as local feature detectors, such as edges,
corners, and textures, which can be composed to form more complex structures. This provides a
compact representation of the input. Second, the use of shared weights across the spatial dimensions
of the input reduces the number of parameters in the model and improves generalization, leading
to better performance on unseen data. Convolutional layers are characterized by the use of shared
weights across the spatial dimensions of the input. This allows the network to learn multiple kernels,
or filters, using a relatively small number of parameters. The convolutional layer is then simply
a convolution operation between the input image I and the learned kernel W . Formally, a two-
dimensional convolution is defined as follows:

pI ˚ W qpi, jq “
ÿ

m

ÿ

n

Ipi ´ m, j ´ nq ¨ W pm,nq, (2.9)

here, pI ˚ W qpi, jq denotes the output of the convolution at location pi, jq in the input, and Ipi ´

m, j ´ nq and W pm,nq denote the values of the input and kernel at spatial offsets pm,nq relative
to the origin of the receptive field. This operation allows the network to learn local patterns in the
input data, which can be composed to form more complex structures. The use of shared weights
and the convolution operation enable convolutional layers to be highly efficient in terms of both
computation and the number of parameters, making them a key component of convolutional neural
networks (CNNs).

In addition to convolutional layers, CNNs typically include pooling layers, which are used to
downsample the spatial dimensions of the input. This helps reduce the computational complexity of
the model and improves its ability to learn spatial hierarchies. It also helps make the model invariant
to small translations and deformations of the input. The output of the convolutional and pooling
layers is typically fed into one or more fully-connected layers, which perform the final classification
or regression task. Overall, the use of convolutional layers enables CNNs to learn powerful feature
representations of the input, leading to their success in various applications.

There have been many successful convolutional neural network architectures. One of the earliest
2D CNNs is LeNet-5 (Lecun et al., 1998), which was applied to recognize handwritten digits. Other
popular and widely used architectures include AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan
and Zisserman, 2015), which have been applied to tasks such as image classification and object de-
tection. More recently, many architectures are based on ResNet (He et al., 2016b), which has proven
to be highly effective for various tasks. Overall, the continued development of CNN architectures
has enabled significant progress in the field of machine learning, with many successful applications
in diverse domains.

2.5 Spatio-Temporal Convolutional Neural Networks (3D-CNNs)

Spatio-temporal convolutional neural networks (3D-CNNs) have garnered significant attention in the
realm of video analysis, specifically for tasks such as action recognition and object tracking. These
networks diverge from traditional convolutional neural networks (CNNs) in their aptitude to extract
both spatial and temporal features from video sequences.
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A standard CNN processes each frame independently, extracting spatial features through a series
of convolutional layers. Conversely, an 3D-CNN captures both spatial and temporal information
by applying 3D convolutions across the spatial and temporal dimensions of the input tensor. The
convolutional layer is then simply a convolution operation between the input video V and the learned
kernel W . Formally, a three-dimensional convolution is defined as follows:

pV ˚ W qpi, j, kq “
ÿ

m

ÿ

n

ÿ

p

V pi ´ m, j ´ n, k ´ pq ¨ W pm,n, pq, (2.10)

where pV ˚ W qpi, j, kq denotes the output of the convolution at location pi, j, kq in the input, and
V pi ´ m, j ´ n, k ´ pq and W pm,n, pq denote the values of the input and kernel at spatial offsets
pm,n, pq relative to the origin of the receptive field. The utilization of 3D convolutions enables
3D-CNNs to capture both spatial and temporal dependencies in the input video, allowing them to
effectively model dynamic processes such as human actions.

Spatio-temporal convolutional neural networks (3D-CNNs) have garnered widespread use for a
variety of video analysis tasks due to their ability to extract both spatial and temporal features from
the input data. One of the earliest 3D CNNs, C3D (Tran et al., 2015), was used for the classifica-
tion of human action videos and comprises a series of 3D convolutional and pooling layers followed
by fully-connected layers. Other notable 3D-CNN architectures include I3D (Carreira and Zisser-
man, 2017), which combines 3D convolutions with different kernels for enhanced performance, and
R(2+1)D (Tran et al., 2018b), which employs 2D convolutions in the spatial dimensions and 1D
convolutions in the temporal dimension.

Despite the challenges associated with the implementation of spatio-temporal convolutional neu-
ral networks (3D-CNNs), such as the requirement for a significant amount of annotated training data
and the computational intensity of training and deployment, these networks have demonstrated their
effectiveness in video analysis tasks. In this thesis, we propose the incorporation of novel modules,
architectures, and datasets in an effort to enhance the capabilities of 3D-CNNs. Despite the chal-
lenges inherent to 3D-CNNs, their efficacy as a formidable tool for video analysis tasks has been
demonstrated.

2.6 Temporal Convolutional Networks (TCNs)

In contrast to spatio-temporal convolutional neural networks (3D-CNNs), temporal convolutional
neural networks (TCNs) utilize temporal convolutional layers that exclusively capture temporal in-
formation. TCNs are particularly well-suited for tasks involving sequential data, such as video un-
derstanding, due to their ability to capture long-range dependencies in the input data.

TCNs, as a specialized variant of traditional CNNs, have the ability to incorporate pooling lay-
ers and utilize CNN-related concepts such as padding, strided convolution, and dilated convolutions.
Specifically, dilated convolutions with dilation factor d involve the insertion of d ´ 1 zeros between
consecutive kernel elements, resulting in an expanded kernel capable of effectively extracting tempo-
ral features from sequential data. The ability of TCNs to adapt these techniques from CNNs makes
them a valuable asset in video understanding tasks. In 2019, Abu Farha and Gall (2019) intro-
duced MS-TCN, a temporal convolutional neural network that demonstrated exceptional capabilities
in temporal video segmentation. Building upon the success of van den Oord et al. (2016), this work
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also employs dilated temporal convolutional neural networks for temporal video segmentation tasks.
Formally, the one-dimensional dilated temporal convolution is defined as follows:

pX ˚ W qpiq “
ÿ

j

Xpi ´ jdq ¨ W pjq, (2.11)

where pX ˚ W qpiq denotes the output of the convolution at position i in the input sequence, and
Xpi ´ jdq and W pjq denote the values of the input and kernel at temporal offsets j relative to the
origin of the receptive field, with a dilation factor of d.

Temporal convolutional networks (TCNs) present several advantages over recurrent neural net-
works (RNNs) for tasks involving sequential data. Unlike RNNs, TCNs are able to handle input
sequences of arbitrary length and do not suffer from the vanishing and exploding gradients prob-
lems that can occur in RNNs when the sequence is lengthy. This makes TCNs a suitable choice for
tasks such as language translation, speech recognition, and video understanding that involve long
sequences. In addition, TCNs can be trained using standard backpropagation techniques, without the
need for specialized algorithms such as truncated backpropagation through time (BPTT) or teacher
forcing, which are required for training RNNs. This simplifies the training process and makes it eas-
ier to implement TCNs in practice. Furthermore, the output of TCNs at time t is dependent solely on
the input sequence and does not incorporate the output at previous time steps, enabling the parallel
computation of the output at all time steps and significantly increasing the efficiency of TCNs com-
pared to RNNs, particularly for long sequences. The parallelizability of TCNs is achieved through
the use of temporal convolutional layers, which capture long-range dependencies in the input data
through the sharing of kernel weights across time steps. This allows TCNs to model temporal depen-
dencies without the need for recurrence, making them more efficient and easier to parallelize than
RNNs.

Temporal convolutional networks (TCNs) offer a number of benefits over recurrent neural net-
works (RNNs) for tasks involving sequential data, including their capacity to process input sequences
of arbitrary length, the absence of vanishing and exploding gradients problems, and the ability to be
trained using standard backpropagation techniques. Despite these advantages, TCNs may require a
significant amount of annotated training data and can be computationally intensive to train and de-
ploy. To address this issue, this thesis introduces methods for training TCNs on video data with weak
annotations.

2.7 Vision Transformers

The Transformer neural network architecture, introduced in 2017 (Vaswani et al., 2017), has proven
to be a highly innovative and influential approach for processing sequential data. Its core is com-
posed of a series of self-attention blocks, which allow for efficient and effective processing through
the use of dot-product attention mechanisms. These mechanisms enable the network to compute the
relevance of each element in the input sequence to every other element, producing attention weights
that are utilized to compute a weighted sum of value vectors representing the input elements. This
process is repeated for each head in the multi-headed attention mechanism, with the outputs being
concatenated and transformed to generate the final self-attention output. In addition to self-attention
mechanisms, the Transformer architecture also incorporates feed-forward neural network layers, im-
plemented using multi-layer perceptrons, to further process the self-attention output. These layers
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are designed to learn more complex relationships within the data. The integration of self-attention
mechanisms and feed-forward layers enables the Transformer network to effectively capture both
short-range and long-range dependencies within sequential data.

Following the successful implementation of the Transformer neural network architecture in nat-
ural language processing, Vision Transformers (Dosovitskiy et al., 2021) have gained widespread
usage in the field of computer vision. The emergence of the Vision Transformer (ViT) marked a
significant shift in the field of computer vision, as it presented a competitive alternative to the cur-
rently state-of-the-art convolutional neural networks (CNNs) that dominate the domain of image
recognition tasks. At its core, ViT utilizes a transformer architecture, which consists of a series of
self-attention blocks that are used to process sequential data in an efficient and effective manner. In
the context of ViT, the input image is first divided into a set of non-overlapping patches, which are
then fed to feed-forward neural networks to be represented as patch embeddings of lower dimension-
ality. These vector embeddings, or tokens, are then merged with positional encodings, which serve
to preserve the relative spatial relationships between the patches in the original image. Positional
encodings are typically implemented through the use of sinusoidal functions, which are added to the
embedding vectors. The resulting embeddings are then concatenated with an auxiliary token called
the classification token, and fed to the first transformer block. Each transformer block in a ViT con-
sists of multiple linear layers for encoding the input tokens to keys, queries, and values. These are
then fed to the multi-headed self-attention mechanism. Self-attention mechanisms are implemented
through the use of dot-product attention, which allows the network to compute the relevance of each
element in the input sequence to every other element. This is achieved through the use of dot-product
attention equations, which compute the dot-product between the query Q and key K vectors for each
element in the sequence:

AttentionpQ,K,Vq “ softmax
ˆ

QKJ

?
dk

˙

V (2.12)

where V represents the value vectors, which represent the input elements, and dk is the dimensionality
of the key vectors. The resulting attention weights are then used to compute a weighted sum of the
value vectors, which is the self-attention output. This process is repeated for each head in the multi-
headed attention mechanism, with the outputs being concatenated and transformed to produce the
final self-attention output. The output of the self-attention mechanism is then fed to a fully connected
network, which serves to further process the self-attention output and provide the final output of the
transformer block. In a ViT, multiple transformer blocks are typically stacked on top of each other,
with the output of one block serving as the input to the next. This allows the network to capture
increasingly complex relationships within the data as it progresses through the transformer blocks.
Finally, the final classification output token from the final transformer block of the ViT is fed to a
classification head, which is a fully connected network. The class probabilities are then calculated
via a softmax operation on top of the output logits of the classification head. This allows the network
to output a probability distribution over the different classes in the dataset, indicating the likelihood
that the input image belongs to each class.

Vision transformers are highly effective neural network architectures for image classification
tasks due to their ability to capture increasingly complex relationships through multiple transformer
blocks. However, their computational intensity can pose challenges during training and deployment.
In this work, we introduce a method to make vision transformers more efficient in order to address
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this issue.

2.8 Video Vision Transformers

Building upon the successes of Vision Transformer in image classification, TimeSformer (Bertasius
et al., 2021) proposed a transformer-based architecture for video understanding by extending the self-
attention mechanism of standard transformer models to video data. As previously mentioned, a ViT
takes as input a set of tokens that represent 3-dimensional patches (p P RWˆHˆC) of an input image,
where W , H , and C represent the width, height, and number of channels of the patches, respectively.
To process a video, the video can be divided into 4-dimensional patches (p P RT 1ˆWˆHˆC), where
T 1 is the temporal dimension. These patches can then be represented as input tokens I P RTˆS ,
where T is the number of temporal locations and S is the number of spatial locations. In trans-
former models, self-attention allows each element in a sequence to attend to all other elements in the
sequence, enabling the network to capture relationships between elements that are far apart in the
sequence. This is in contrast to convolutional neural networks, which are limited to capturing rela-
tionships between nearby elements. In the context of video understanding, the self-attention mecha-
nism is applied to both temporal and spatial locations in the video data. However, the application of
self-attention to both temporal and spatial locations in video data can result in a computational com-
plexity of OpT 2S2q, which may be infeasible for long video sequences or high-resolution video data.
To address this issue, TimeSformer introduced a complexity of OpT 2S ` TS2q for the self-attention
mechanism, which although still computationally intensive, significantly reduces the complexity of
the original self-attention mechanism. In an effort to further improve the efficiency of video trans-
former models, X-ViT (Bulat et al., 2021) proposed an efficient video transformer that reduces the
complexity of the self-attention mechanism to OpTS2q. This represents a significant advancement
in the field of video understanding, as it allows for the application of transformer-based models to a
wider range of video data.

Despite these efforts to make video vision transformers more efficient, they are still expensive to
train and deploy. In this thesis, we propose a method that not only makes image classification vision
transformers more efficient, but also makes video vision transformers more efficient.

2.9 Video Representation

Video data is typically represented as a 4-dimensional tensor i.e. v P RTˆWˆHˆC , with dimensions
corresponding to the number of frames T , spatial resolution W ˆ H , and color channels C. While
this raw video data is often fed directly into deep learning models for action recognition task, it is not
feasible to do so for tasks such as temporal action segmentation due to the large number of frames in
some videos. To overcome this issue, video frames are usually preprocessed using a feature extraction
algorithm, resulting in an D-dimensional vector representation for each frame. This results in a video
representation that is a tensor of size T ˆ D, where T is the number of frames, which serves as the
input for tasks such as temporal action segmentation.

Traditionally, video representation has relied on hand-crafted features, such as improved dense
trajectories (Wang and Schmid, 2013), which are designed to capture specific spatial and temporal
patterns in the input data. However, these hand-crafted features have limited performance due to their
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Figure 2.5: A pipeline for extracting dense trajectories from a video is presented. The pipeline
comprises of three stages: dense sampling of feature points on a grid for different spatial scales (left),
tracking of these points in each spatial scale for L frames based on a dense optical flow field (middle),
and computation of histograms of oriented gradients (HOG), histograms of optical flow (HOF), and
motion boundary histograms (MBH) along the trajectory in a N ˆ N pixels neighborhood, which is
divided into nσ ˆnσ ˆnτ cells (right). The feature points are densely sampled on a grid, at different
spatial scales, to ensure comprehensive coverage of the video frames. These points are then tracked
in each scale for L frames, based on a dense optical flow field, to obtain dense trajectories. The
histograms of oriented gradients (HOG), histograms of optical flow (HOF), and motion boundary
histograms (MBH) are computed along the trajectory in a N ˆ N pixels neighborhood, which is
divided into nσ ˆ nσ ˆ nτ cells to capture the spatio-temporal information of the trajectories. The
figure is taken from Wang et al. (2013)

simplicity and lack of generalization ability.
To address these limitations, recent works have proposed the use of deep learned features, which

are extracted from convolutional neural networks (CNNs) trained on large-scale video datasets.
These deep learned features have demonstrated superior performance on a wide range of video anal-
ysis tasks. In this thesis, we consider using two types of feature representations for temporal action
segmentation tasks: features based on improved dense trajectories and features extracted using 3D
CNNs.

2.9.1 Improved Dense Trajectories (IDT)

Improved Dense Trajectories (IDT) is a hand-crafted approach for video feature representation, ini-
tially proposed for action recognition tasks (Wang and Schmid, 2013). IDT involves the computation
of dense optical flow, which is pre-processed to smooth out noise and compensate for camera mo-
tion. Subsequent to this, feature points are densely sampled at multiple scales and tracked using the
dense optical flow, resulting in the formation of trajectories. These trajectories are then encoded us-
ing histograms of oriented gradients (HOG), histograms of optical flow (HOF), and motion boundary
histograms (MBH), providing a rich descriptor for each frame of the video. Figure 2.5 illustrates the
the process of extracting IDT features from video.

Kuehne et al. (2016a) extended the use of IDT features to the task of temporal action segmen-
tation, where they are further processed using Principal Component Analysis (PCA) to reduce their
dimensionality to 64. Fisher vectors (Perronnin et al., 2010) are then applied to produce the final rep-
resentation, which is power and l2 normalized according to the method proposed by Sánchez et al.
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(2013). This results in a 64-dimensional feature representation for each frame of the input video,
yielding a tensor of size x P RTˆ64, where T is the number of frames in the video.

It is worth noting that IDT, while effective at the time of its proposal, has since been surpassed
by more recent approaches based on deep learning. Deep learning methods learn feature represen-
tations automatically from the data, often yielding improved performance compared to hand-crafted
features such as IDT. Additionally, deep learning approaches are more flexible, as they can learn com-
plex feature hierarchies and adapt to various tasks and datasets. As a result, deep learning features
have become the de facto choice for many computer vision tasks. In this study, we employ IDT fea-
tures, introduced by Kuehne et al. (2016a), for temporal action segmentation tasks and compare their
performance to deep learning-based features. By doing so, we aim to gain a deeper understanding of
the influence of video representations on downstream tasks such as temporal action segmentation.

2.9.2 Deep Learned Features

The efficacy of deep learning approaches in learning feature representations from data in the field
of computer vision has been well-established. In particular, it has been demonstrated that the output
of the penultimate layer of a deep neural network can serve as a robust feature representation for
an input when the weights of the network are fixed (Sharif Razavian et al., 2014). Additionally, the
utilization of pre-trained deep neural networks - specifically those trained on the ImageNet dataset
(Deng et al., 2009) - can be effectively leveraged as feature extractors for a range of visual recog-
nition tasks. Initially, convolutional neural networks (CNNs) struggled to match the performance of
IDT-based features for video classification (Karpathy et al., 2014a). However, the introduction of
the two-stream network (Simonyan and Zisserman, 2014) marked a turning point, as deep learning
models began to achieve performance on par with state-of-the-art hand-crafted features. A two-
stream network comprises of two parallel CNNs, including the spatial or appearance stream, which
processes RGB frames of videos, and the temporal stream, which processes stacks of optical flow
frames. The outputs of these two streams are fused and passed to a classifier. Subsequent methods
have built upon this two-stream architecture, resulting in significant improvements. To address the
challenges of designing and training 3D CNNs from scratch, Carreira and Zisserman (2017) pro-
posed the I3D network, which inflates a successful 2D CNN architecture into 3D and initializes the
3D CNN weights using pre-trained weights from the ImageNet dataset (Deng et al., 2009). As a
popular choice for input representation in temporal action segmentation, the I3D network (Carreira
and Zisserman, 2017) - which has been pre-trained on the kinetics dataset (Kay et al., 2017) for the
task of action recognition - has gained widespread adoption (Abu Farha and Gall, 2019; Fayyaz and
Gall, 2020; Souri et al., 2022; Li et al., 2020a; Yi et al., 2021). Specifically, both the RGB and optical
flow variants of the I3D network are utilized, with the representations from each modality being con-
catenated. In this scenario, a video with length T is represented as v P RTˆ2048, where 2048 is the
feature dimension of the final convolutional layer of the I3D network, doubled to accommodate the
concatenation of the RGB and optical flow representations. In this thesis, we utilize the I3D model,
which has been pre-trained on the Kinetics-400 dataset (Kay et al., 2017), as a means of extracting
frame-level features. To generate a feature vector xt P R1ˆ2048 for a specific video frame vt, we
process a window of 21 frames centered on that frame through the pre-trained I3D model, including
both RGB frames and optical flow frames. The output of the penultimate layer from each stream
is then obtained, and the final feature vector for the frame is obtained by concatenating the output
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from both the appearance and temporal streams. This approach allows us to effectively utilize the
pre-trained I3D model for the task of frame-level feature extraction.

2.10 Evaluation Metrics

In the following section, we outline the procedures for calculating evaluation metrics for action recog-
nition, multi-class video classification, and temporal action segmentation. Specifically, we detail the
methodologies used to assess the performance of the suggested methods in this thesis.

2.10.1 Accuracy

Accuracy in machine learning refers to the percentage of predictions made by a model that are correct.
It is commonly used as a metric for evaluating the performance of action recognition models, and is
defined as:

Accuracy “
Number of Correct Predictions

Total Number of Predictions
. (2.13)

In simpler terms, accuracy gauges the ability of a model to correctly predict the outcome of a given
input. It is a vital consideration in the design and training of machine learning models as high
accuracy can translate to improved performance and increased confidence in the results. In this
thesis, we utilize this metric to evaluate the action recognition tasks and determine the suitability of
the methods for classifying the specified video clips.

2.10.2 Mean Average Precision (mAP)

Mean average precision (mAP) is a commonly used evaluation metric in the field of machine learning,
particularly in the context of multi-label classification tasks. It is a measure of the average precision
achieved across a set of test examples, and is computed as the mean of the average precision scores
of each class in the dataset. In the context of multi-label classification, mAP is used to evaluate the
performance of the model on the task of predicting the presence or absence of multiple labels for a
given input example. It is a useful metric for evaluating the performance of multi-label classification
algorithms, as it provides a comprehensive assessment of the model’s performance across all label
classes in the dataset. The mAP metric is typically computed using the mean of the average precision
scores of each class, as follows:

mAP “
1

C

C
ÿ

c“1

APc (2.14)

where C is the number of classes in the dataset, and APc is the average precision score for class
c. The average precision score for a particular class is defined as the area under the precision-recall
curve for that class. The precision-recall curve is a plot of the precision of the model on the y-axis
and the recall on the x-axis, and is obtained by varying the decision threshold of the model. The
area under the curve is computed using the trapezoidal rule, and is a measure of the model’s ability
to achieve high precision at high recall levels. In this thesis mAP is used as an evaluation metric
to measure the performance of models on the task of predicting multiple labels for each video in
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our novel Holistic Video Understanding dataset (HVU). As the HVU dataset consists of videos with
multiple labels, mAP provides a comprehensive assessment of the model’s performance across all
label classes in the dataset.

2.10.3 Mean Over Frame Accuracy (MoF)

The mean over frames accuracy (MoF) is a metric widely used to evaluate the performance of ma-
chine learning models on the task of video action segmentation. MoF is defined as the ratio of
correctly predicted frames to the total number of frames in the dataset. This metric has been widely
adopted in the literature (Abu Farha and Gall, 2019; Kuehne et al., 2016a; Richard et al., 2017,
2018b,a). More precisely, MoF is defined as:

MoF “

řV
i“1Ci

ři“V
i Fi

(2.15)

where V is the number of videos, Ci is the number of correct predicted frames for video i, and Fi

is the number of frames of the video i. In this thesis we use MoF to evaluate the temporal action
segmentation tasks.

2.10.4 Matching Score

The matching score is another metric that is widely used to evaluate the performance of machine
learning models on the task of video action segmentation. The matching score (Lambert, 2019)
measures the similarity of the predicted transcript compared to the ground truth transcript:

Matching Score “ 2 ˆ
number of matches

|A| ` |Â|
(2.16)

where |A| is the length of the predicted transcript and |Â| is the length of the ground truth transcript.

2.10.5 Intersection Over Detection (IoD)

Another metric that is widely used for the task of action segmentation is the Intersection Over De-
tection (IoD). IoD is only defined for the alignment task since the transcript and number of segments
are known for this task. This provides a one to one matching between the predicted and ground truth
segments. The IoD is then computed by the average intersection of a ground truth segment with an
associated predicted segment divided by the length of the predicted segment, i.e., |S X Ŝ|{|S|. In this
thesis, we adopt the same definition and code as that employed by Ding and Xu (2018) and Li et al.
(2019).

2.10.6 F1 Score

The F1 Score bears a resemblance to the matching score in that it is computed over segments while
also taking into account the temporal position of predicted and ground truth segments. However,
it remains unaffected by minor deviations in temporal boundaries. The IoU for a given predicted
segment and ground truth segment is determined as
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IoU “
predictedsegment X groundtruthsegment

predictedsegment Y groundtruthsegment
. (2.17)

A mapping is initially established between ground truth segments and predicted segments based
on their respective IoUs. Each ground truth segment is assigned to the predicted segment with the
highest IoU. If a predicted segment shares the same label as the corresponding ground truth segment
and the IoU ratio exceeds k, it is classified as a true positive (TP). Otherwise, it is deemed a false
positive (FP). When a ground truth segment lacks a mapped predicted segment, it is considered a
false negative (FN).

To compute the F1 Score for a given threshold of k, precision and recall are first determined using

Precision “
TP

TP ` FP
, (2.18)

Recall “
TP

TP ` FN
. (2.19)

Finally, F1 score is subsequently calculated via

F1@k “ 2.
P recision.Recall

Precision ` Recall
. (2.20)

2.11 Datasets

In this section, we outline the datasets utilized in our study. These datasets have been selected for
their relevance and representativeness in the domain of our investigation, and have played a crucial
role in informing our analysis and evaluation of the proposed methodologies. We provide a brief
overview of each dataset, highlighting any pertinent characteristics or features that are relevant to the
current work.

2.11.1 UCF101

UCF-101 (Soomro et al., 2012) is a widely used benchmark dataset for the task of action recognition,
containing a total of 13,000 videos divided into 101 action classes. The dataset is traditionally split
into three subsets, each containing approximately 9,500 videos, and the reported accuracy for the
UCF-101 dataset is typically calculated as the average performance across all three splits. The UCF-
101 dataset has played a crucial role in the development and evaluation of various action recognition
methods.

2.11.2 HMDB51

The HMDB-51 (Kuehne et al., 2011) dataset is a benchmark dataset commonly used for the task of
action recognition, containing approximately 7,000 videos divided into 51 action classes. The dataset
is divided into three splits for the purposes of training and validation, and the reported accuracy is
calculated as the average performance across all three splits. Similar to the UCF-101 dataset, the
HMDB-51 dataset has been widely utilized in the development and evaluation of various action
recognition methods and serves as a valuable resource for researchers in the field.
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2.11.3 Kinetics

The Kinetics dataset (Kay et al., 2017) is a seminal resource within the domain of computer vision,
specifically in the realm of action recognition. Comprised of over 400/600/700 action categories,
the Kinetics dataset presents a diverse yet formidable dataset for the development and assessment
of action recognition models. The videos contained within the Kinetics dataset were sourced from
YouTube, with an average duration of 10 seconds, and showcase a wide range of sources, lighting
conditions, backgrounds, and camera angles, providing a realistic representation of real-world sce-
narios. These video clips depict a broad spectrum of human-object interactions, such as playing
instruments, as well as human-human interactions, such as shaking hands and hugging. Each video
clip is human-annotated with a single action class. The Kinetics dataset has played a crucial role
in the advancement of action recognition research, with the I3D network (Carreira and Zisserman,
2017) being pre-trained on the dataset and achieving enhanced performance on various action recog-
nition tasks. The Kinetics dataset continues to be extensively utilized within the research community
and is a pivotal resource for the development of state-of-the-art action recognition models.

2.11.4 Breakfast

The Breakfast dataset (Kuehne et al., 2014) is a comprehensive collection of videos showcasing vari-
ous cooking activities, specifically those related to the preparation of breakfast dishes. Comprised of
over 1.7k videos, this dataset spans 10 distinct categories of breakfast preparation, including prepar-
ing cereal and coffee, each of which comprises 48 finer-grained actions, including background. These
activities were carried out by 52 different subjects and captured in 18 different kitchens. The activi-
ties depicted in the Breakfast dataset are composed of sequences of more fine-grained actions, such as
taking a bowl and pouring cereals. The Breakfast dataset was captured using multiple synchronized
cameras in a multi-view setting, which allowed for cost-effective annotation through the synchro-
nization of recordings. The average duration of the videos in this dataset is 2.3 minutes, with the
longest video exceeding 10 minutes and the shortest video just over 12 seconds. On average, each
video contains 6.9 segments. In our temporal action segmentation experiments, we utilized the 4
train/test splits provided with the Breakfast dataset and report the mean results. This dataset is a
valuable resource for the task of temporal action segmentation, due to the rich temporal structure of
the videos and the availability of detailed annotations.

2.11.5 Hollywood Extended

The Hollywood extended dataset (Bojanowski et al., 2014) is a collection of 937 video sequences
drawn from Hollywood films, depicting 16 diverse action classes such as answering the phone and
driving a car. Comprised of roughly 800,000 frames, this dataset exhibits a comparatively high pro-
portion of background frames, with approximately 61% of the frames classified as such. This char-
acteristic distinguishes the Hollywood extended dataset from numerous other datasets. In contrast to
the Breakfast dataset (Kuehne et al., 2014), the non-background actions in this dataset are relatively
scarce. In our experiments, we adopt the train/test split strategy utilized in previous research (Richard
et al., 2017, 2018b,a).
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Related Work

In this chapter, we provide a literature review of the action recognition and temporal segmentation
field. We first discuss action recognition approaches. Then we overview the efficient action recog-
nition method. Finally, we discuss fully supervised and weakly supervised approaches for temporal
action segmentation.

Contents
3.1 Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Efficient Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Temporal Action Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Action Recognition

Action recognition and video classification have been the focus of research efforts for an extended
period, leading to the development of numerous techniques aimed at generating efficient spatio-
temporal feature representations that capture both the appearance and motion propagation within
videos. Examples of such techniques include HOG3D (Klaser et al., 2008), SIFT3D (Scovanner
et al., 2007), HOF (Laptev et al., 2008), ESURF (Willems et al., 2008), MBH (Dalal et al., 2006), and
IDTs (Wang and Schmid, 2013). While these approaches have demonstrated promising results, they
suffer from the drawback of being manually designed, which can be time-consuming and may not
always result in optimal performance. In particular, IDTs, which have achieved the best performance
among these techniques, are computationally intensive and lack scalability in terms of capturing
semantic concepts. More recently, several other techniques have been proposed (Fernando et al.,
2015) to efficiently model temporal structure in video data.

The application of Convolutional Neural Networks (CNNs) in the field of computer vision has
resulted in significant progress in a number of challenging tasks, particularly in action recogni-
tion, where the use of end-to-end deep CNNs for video classification has outperformed hand-crafted
and pre-defined representations by a substantial margin. Examples of such approaches include the
two-stream 2D CNN model proposed by Simonyan and Zisserman (2014), which utilizes RGB
and optical-flow frames to exploit spatial and temporal information, and Temporal Segment Net-
works (Wang et al., 2016), which achieved notable results by considering longer temporal informa-
tion from video clips. While the two-stream model introduced by Simonyan and Zisserman (2014)
was not fully end-to-end trainable, it outperformed the majority of non-deep learning based meth-
ods. Other notable 2D CNN-based models for video classification introduced by Feichtenhofer et al.
(2016); Karpathy et al. (2014b); Lin et al. (2019); Diba et al. (2017).

Despite their computational efficiency and speed, 2D convolutional neural network (CNN) mod-
els struggle to infer complex temporal patterns within video clips. This is due to their lack of a
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temporal or sequential handling module, such as memory blocks or spatial-temporal kernels. To ad-
dress this issue, 3D CNNs have been introduced (Tran et al., 2015; Carreira and Zisserman, 2017;
Wang et al., 2018c; Stroud et al., 2018), which can learn both spatial and temporal representation
within a single neural network stream. For instance, Tran et al. (2015) and Carreira and Zisserman
(2017) propose 3D versions of the VGG and Inception architectures for large-scale action recognition
tasks on the Sports-1M (Karpathy et al., 2014c) and Kinetics (Kay et al., 2017) datasets, respectively.
These methods are able to achieve superior performance without relying on pre-extracted motion in-
formation, such as Optical-flow, due to the ability of 3D kernels to extract temporal relations between
sequential frames. More recently, methods such as SlowFast Networks (Feichtenhofer et al., 2019),
DynamoNet (Diba et al., 2019), and X3D (Feichtenhofer, 2020) have made significant strides in more
efficiently managing spatial-temporal correlations or learning more accurate motion representation
for videos.

Recently, the transformer architecture, which was originally introduced in the natural language
processing community (Vaswani et al., 2017), has recently demonstrated promising performance on
various computer vision tasks (Dosovitskiy et al., 2021; Touvron et al., 2021; Liu et al., 2021; Zhou
et al., 2021; Rao et al., 2021b; Carion et al., 2020; Zheng et al., 2021; Cheng et al., 2021; Yu et al.,
2021; Zhao et al., 2021). The field of image classification has seen significant progress with the
advent of transformers, as demonstrated by ViT (Dosovitskiy et al., 2021), which applies the stan-
dard transformer architecture to images by dividing them into a set of non-overlapping patches and
generating patch embeddings of lower dimensionality. These embeddings are then augmented with
positional embeddings and processed through multiple transformer blocks, with the addition of a
learnable class embedding for classification. While ViT has achieved promising results in image
classification, it requires a large amount of data for effective generalization. DeiT (Touvron et al.,
2021) addresses this limitation through the incorporation of a distillation token that allows the model
to learn from a teacher network, resulting in performance superior to that of ViT. LV-ViT (Jiang et al.,
2021) proposes a novel objective function for training vision transformers, leading to improved per-
formance. The success of transformers in image classification has led to the development of video
vision transformers, such as TimeSformer (Bertasius et al., 2021), which introduces a new archi-
tecture for video understanding by extending the self-attention mechanism of standard transformer
models to video, with a complexity of OpT 2S ` TS2q, where T and S denote temporal and spatial
locations, respectively. X-ViT (Bulat et al., 2021) reduces this complexity to OpTS2q through the
proposal of an efficient video transformer. The state-of-the-art approach of Yan et al. (2022) achieves
top-1 classification accuracy of 89% on the 400 classes of the Kinetics dataset (Kay et al., 2017).
The success of transformers has resulted in the development of unified architectures for both video
and image classification (Fan et al., 2021a; Li et al., 2022), a notable achievement in the field.

In spite of prior research efforts to enhance the performance and generalizability of video under-
standing models, deep video models are frequently computationally expensive to both train and use
for inference.

3.2 Efficient Action Recognition

There has been a good effort to propose more efficient methods based on 2D and 3D CNNs (Lin
et al., 2019; Lee et al., 2018; Tran et al., 2018a; Xie et al., 2018a; Zolfaghari et al., 2018). Lin et al.
(2019) have introduced a new temporal shift module (TSM) to enhance 2D-ResNet CNN for video
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classification. TSM has achieved comparable performances with more complex 3D CNN methods
but with fewer computations, complexity and made it possible to run action recognition on low-
power hardware. In works by Tran et al. (2018a) and Xie et al. (2018a) authors have proposed
different 2D/3D mixture architectures with different setups in ordering the layers. The work of
SlowFast (Feichtenhofer et al., 2019) has investigated the resolution trade-offs between the temporal,
spatial, and channel axes, and has employed a hybrid approach in order to reduce computation cost.
Specifically, SlowFast utilizes a lightweight pathway with high temporal resolution for temporal
information modeling, and a more resource-intensive pathway with lower temporal resolution for
spatial information modeling. X3D (Feichtenhofer, 2020) builds upon this concept by examining the
necessity of the lightweight and heavy pathways, and presents a family of efficient video networks
as a solution. Several previous works (Wu et al., 2019a,b; Korbar et al., 2019; Zhu et al., 2020) have
attempted to reduce the inference time of existing networks through the use of big-little architecture
design. In the context of 2D CNNs, Wu et al. (2019a) and Wu et al. (2019b) employ expensive
models to process salient frames, while utilizing lightweight models to process the remaining frames.
In contrast, Korbar et al. (2019) and Zhu et al. (2020) utilize 3D CNNs to process short chunks of
frames rather than single frames. Korbar et al. (2019) train a secondary, lightweight network to
determine which chunks of input frames should be processed by the more expensive 3D CNN. Zhu
et al. (2020) utilize a fixed scheme in which a subset of input chunks are processed by an expensive
3D CNN, while the remaining chunks are processed by a less resource-intensive 3D CNN, and an
RNN is subsequently employed to fuse the outputs of the different 3D CNNs. While these approaches
are effective at reducing GFLOPs during inference, they do not reduce the computational cost of the
3D CNNs themselves, and also result in increased training time due to the need to train two networks
instead of one.

In addition to efforts to accelerate the inference of convolutional neural networks, research has
also been conducted on improving the efficiency of transformer-based models. In the field of natural
language processing, Star-Transformer (Guo et al., 2019) reduces the number of connections from
the typical n2 to a more efficient 2n by replacing the fully-connected topology with a star-shaped
structure. TinyBERT (Jiao et al., 2020) improves efficiency through the distillation of knowledge
from a large "teacher" BERT model into a smaller "student" network. PoWER-BERT (Goyal et al.,
2020) speeds up the inference process of the BERT model by identifying and eliminating redundant
or less-informative tokens based on their estimated importance scores derived from the self-attention
weights of the transformer blocks. To reduce the number of FLOPs in character-level language mod-
eling, Sukhbaatar et al. (2019) propose a new self-attention mechanism with adaptive attention span.
Scaling Transformers (Jaszczur et al., 2021) introduce a novel transformer architecture equipped
with sparse variants of standard transformer layers, enabling fast unbatched decoding performance
and improved scalability.

To enhance the efficiency of vision transformers, a number of approaches have been proposed.
Sparse factorization of the dense attention matrix (Child et al., 2019) reduces its complexity to
Opn

?
nq for the task of autoregressive image generation, while Roy et al. (2021) sparsify the atten-

tion matrix through the use of clustering to only consider the similarities between keys and queries
that belong to the same cluster. DynamicViT (Rao et al., 2021a) introduces a prediction module
that determines the importance of tokens and discards those that are uninformative for image clas-
sification tasks. Hierarchical Visual Transformer (HVT) (Pan et al., 2021b) employs token pooling,
similar to the down-sampling of feature maps in convolutional neural networks, to remove redun-
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dant tokens. PS-ViT (Yue et al., 2021) utilizes a progressive sampling module to iteratively learn to
sample distinctive input tokens, which are then fed into a vision transformer module with fewer en-
coder layers than ViT. TokenLearner (Ryoo et al., 2021) introduces a learnable tokenization module
that can reduce computational cost by learning a small number of important tokens conditioned on
the input, and has demonstrated applicability to both image and video understanding tasks. Token
Pooling (Marin et al., 2021) down-samples tokens by grouping them into clusters and returning the
cluster centers, while a concurrent work (Liang et al., 2022) utilizes a token reorganization method
that first identifies the top-k important tokens through computation of token attentiveness, and then
fuses less informative tokens. IA-RED2 (Pan et al., 2021a) presents an interpretability-aware redun-
dancy reduction framework for vision transformers that discards less informative patches in the input
data. Many of these approaches improve the efficiency of vision transformers through the incorpora-
tion of architectural changes or additional learnable modules that add extra learnable parameters to
the networks.

3.3 Temporal Action Segmentation

Temporal action segmentation is a key problem in video understanding that involves the recognition
and ordering of multiple actions within untrimmed videos. This is particularly relevant in real-world
scenarios, where trimmed video clips are insufficient for understanding the full context of a video.
Despite significant progress in the field, the annotation of each frame in a video remains a labor-
intensive and expensive task. To address this issue, weakly supervised approaches have been devel-
oped for temporal action segmentation that can learn from videos that are only weakly labeled. These
methods leverage weak supervision, in the form of the set of actions present in a video, to provide a
cost-effective means of annotation. In this review, we first consider fully supervised approaches to
temporal action segmentation and then examine methods that utilize weaker levels of supervision.
Fully Supervised Approaches: The task of action segmentation in videos has garnered signifi-
cant attention in the field, with numerous works addressing the issue (Spriggs et al., 2009; Kuehne
et al., 2016b; Lea et al., 2017; Zhao et al., 2017; Abu Farha and Gall, 2019). Early approaches
for action segmentation utilized techniques such as multi-scale sliding window processing (Spriggs
et al., 2009; Gaidon et al., 2013; Rohrbach et al., 2012; Karaman et al., 2014) or Markov models on
top of frame-classifiers (Kuehne et al., 2016b; Lea et al., 2016), but these methods often lack strong
temporal modeling and have slow inference times. More recent fully-supervised action segmentation
approaches have sought to capture long-range temporal dependencies using temporal convolutional
networks (TCN) (Abu Farha and Gall, 2019; Lea et al., 2017; Li et al., 2020a). There have also been
efforts to enhance TCN predictions through the use of graph convolutional networks (Huang et al.,
2020), boundary-aware pooling (Wang et al., 2020c; Ishikawa et al., 2021), or hierarchical model-
ing (Ahn and Lee, 2021). In the work by Gao et al. (2021), a neural network architecture search
approach was employed to determine optimal dilation factors for TCN layers. More recently, the
success of transformer-based models in image and video classification motivated Yi et al. (2021) to
propose a transformer-based architecture for temporal action segmentation.
Weakly Supervised Approaches: The use of action sets as a form of supervision in video labeling
has garnered attention in recent years (Richard et al., 2018a; Li and Todorovic, 2020, 2021). While
Richard et al. (2018a) attempted to tackle the problem by assuming the existence of transcripts anno-
tated with all action labels in a video and using alignment to infer frame-wise labeling, this approach
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is limited in its effectiveness due to the impracticality of aligning all potential transcripts and the fact
that it does not utilize the provided annotations directly for learning.

Set supervision provides only the set of actions that occur in the videos without any information
regarding the order or how many times each action occurs. However, the performance of these ap-
proaches is still inferior compared to transcript supervision. In contrast to set supervision, transcripts
provide the ordered list of actions that occur in the video. Transcript based weakly-supervised action
segmentation has garnered increasing attention in recent years. Bojanowski et al. (2014) introduced
the Hollywood extended dataset and proposed a discriminative clustering-based method for action
alignment. Huang et al. (2016) proposed an extended version of the connectionist temporal classi-
fication loss that considers the similarity of frames within the same action. Inspired by techniques
used in speech processing, Kuehne et al. (2017) introduced a hidden Markov model-based approach
and employed a Gaussian mixture model as the observation model. This method iteratively gen-
erates pseudo ground truth for videos at the beginning of each epoch, refining it at the end of the
epoch. Richard et al. (2017); Ding and Xu (2018) and Kuehne et al. (2020) built upon this work by
replacing the Gaussian mixture model with a recurrent neural network for short-range temporal mod-
eling, but retained the iterative nature involving the generation of pseudo ground truth at each epoch.
While these methods rely on iterative approaches with two-step optimization that do not permit direct
end-to-end training, Richard et al. (2018b) introduced the Neural Network Viterbi (NNV) method,
which generates pseudo ground truth for each iteration rather than each epoch but requires an ad-
ditional buffer, thereby increasing training time. NNV also employs a heuristically updated global
length model for actions. Recently, Li et al. (2019) proposed an extension of NNV that outperformed
existing approaches in terms of accuracy on standard benchmarks. They introduced a constrained dis-
criminative loss that discriminates between the energy of valid and invalid segmentations of training
videos, resulting in a significant improvement in accuracy compared to NNV.
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In this chapter, we introduce a new block that models correlations between channels of a 3D CNN
with respect to temporal and spatial features. This new block can be added as a residual unit to dif-
ferent parts of 3D CNNs. We name our novel block ‘Spatio-Temporal Channel Correlation’ (STC).
By embedding this block to the architectures such as ResNext and ResNet (Hara et al., 2018), we
improve the performance on the Kinetics-400Ù HMDB51 (Kuehne et al., 2011), UCF101 (Soomro
et al., 2012) and Kinetics (Kay et al., 2017) datasets. The other issue in training 3D CNNs is about
training them from scratch with a huge labeled dataset to get reasonable performance. So the knowl-
edge learned in 2D CNNs is completely ignored. Another contribution in this chapter is a simple and
effective technique to transfer knowledge from a pre-trained 2D CNN to a randomly initialized 3D
CNN for stable weight initialization. This allows us to significantly reduce the number of training
samples for 3D CNNs. Thus, by fine-tuning this network, we beat the performance of methods that
were trained on large video datasets, e.g. Sports-1M (Karpathy et al., 2014c), and fine-tuned on the
target datasets, e.g. HMDB51/UCF101.

4.1 Introduction

It has been well established that leveraging temporal information in addition to spatial cues can
greatly benefit video classification tasks (Diba et al., 2017; Tran et al., 2015; Yue-Hei Ng et al.,
2015). In recent years, researchers have focused on improving the modeling of spatio-temporal
correlations in 3D CNNs. However, these architectures, like their 2D counterparts, only attempt to
learn local correlations within input channels and ignore correlations between channels in both spatial
and temporal dimensions, which can hinder their performance. Additionally, training 3D CNNs often
requires an abundance of labeled data, which can be computationally expensive and time-consuming.
To address these limitations, we propose a new network architecture block that effectively captures
both spatial-channel and temporal-channel correlations throughout all layers of the network. We
also propose an effective supervision transfer method that enables the transfer of knowledge between
different architectures, obviating the need for training the networks from scratch. These contributions
significantly improve the computational cost and performance of 3D CNNs for video classification
tasks.

In light of the above considerations, we introduce the spatio-temporal channel correlation (STC)
block for simultaneous consideration of inter-channel correlations across both spatial and temporal
features. The STC block can be incorporated into any set of transformations within a network, such
as convolutional layers, for performing spatio-temporal channel correlation feature learning. The
STC block consists of two branches: a spatial correlation branch (SCB) and a temporal correlation
branch (TCB). The SCB analyzes spatial channel-wise information while the TCB analyzes tempo-
ral channel-wise information. The input features I P RHˆWˆTˆC are fed into the SCB and TCB,
where they undergo global pooling operations to generate representations of the global receptive
field. These representations serve two primary purposes: (i) considering global correlations in I by
aggregating global features over the input, and (ii) providing a channel-wise descriptor for analyzing
inter-channel correlations. The resulting channel-wise feature vectors are then passed through bot-
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tleneck fully connected layers to learn dependencies between channels. Output features from both
branches are then combined and returned as the output of the STC block, which can be concatenated
with the output features of the corresponding layer(s). By leveraging these enriched features in con-
junction with traditional features within 3D CNNs, we enhance their representation capabilities. As
a result, 3D CNNs equipped with STC blocks are capable of learning channel-wise dependencies
and better represent videos. We have applied the STC block to 3D CNN architectures such as 3D-
ResNext and 3D-ResNet (Hara et al., 2018), inserting it after each residual block of these networks.
Our experiments demonstrate that the use of STC blocks significantly improves the performance of
these networks on various video classification tasks.

As previously mentioned, training 3D CNNs from scratch requires a large labeled dataset and
can be computationally intensive, taking up to two months to learn a good feature representation
on a large-scale dataset such as Sports-1M, which is then fine-tuned on target datasets to improve
performance (Tran et al., 2017). To address this issue, we present a method for supervision trans-
fer across architectures, allowing us to avoid the need for training 3D CNNs from scratch altogether.
Specifically, we demonstrate that a 2D CNN pre-trained on ImageNet can serve as a "teacher" for su-
pervision transfer to a randomly initialized 3D CNN, providing stable weight initialization. Through
this transfer learning approach, we outperform the performance of generic 3D CNNs (C3D Tran et al.
(2015)) trained on Sports-1M and fine-tuned on the HMDB51 and UCF101 datasets. This not only
reduces computational workload and training time but also allows us to take advantage of the rich
information learned by the 2D CNN on the ImageNet dataset.

4.2 Spatio-Temporal Channel Correlation

The spatio-temporal channel correlation (STC) block is a computational block that can be easily
incorporated into any 3D CNN architecture. We demonstrate this by adding the STC block to the
ResNet and ResNext 3D CNNs introduced by Hara et al. (2018). The STC blocks are inserted after
each convolutional block in these architectures to enrich the feature representation. As previously
mentioned, the STC block leverages both spatial and temporal information by considering correla-
tions between filters in both dimensions. The input to the STC block consists of feature maps from
previous convolution layers.

The STC block has a dual path structure that represents different levels of concepts and informa-
tion. Each path consists of various modules for embedding and capturing dependencies of channels
or filters. Our approach is inspired by the Squeeze-and-Excitation (Hu et al., 2017) method, which
uses global average pooling (spatial and temporal) followed by two bottleneck fully connected layers
and sigmoid activation function. However, unlike Hu et al. (2017), the STC block has two branches,
or dual paths: one that analyzes pure channel-wise information and the other that analyzes temporal
channel-wise information. Given that we are addressing the task of video classification, it is benefi-
cial to extract meaningful representations in both spatial and temporal dimensions. The STC block
captures channel dependency information based on this principle. In the following, we describe both
branches and their integration into well-known 3D architectures such as 3D-ResNet (Hara et al.,
2018).

Notation. The output feature-maps of the 3D convolutions and pooling kernels at the lth layer
extracted for an input video is a tensor X P RHˆWˆTˆC where H , W , T and C are the height,
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Figure 4.1: STC-ResNet. Our STC block is applied to the 3D ResNet. The 3D network uses video
clips as input. The 3D feature-maps from the clips are densely propagated throughout the network.
The STC operates on the different levels of feature maps in the network to extract spatial and temporal
channel relations as new source of information. The output of the network is a video-level prediction.

width, temporal depth and number of channels of the feature maps, respectively. The 3D convolution
and pooling kernels are of size (s ˆ s ˆ d), where d is the temporal depth and s is the spatial size of
the kernels.

Temporal Correlation Branch (TCB): In this path the feature map will be squeezed by both
spatial and temporal dimensions to extract channel descriptors. If we consider X as the input to STC,
the output of the first stage, which is a global spatio-temporal pooling is:

ztcb “
1

W ˆ H ˆ T

W
ÿ

i

H
ÿ

j

T
ÿ

t

xijt . (4.1)

To obtain the filters non-linear relations, we apply two fully connected layers. The feature di-
mension is reduced in the first FC layer to C{r (r is reduction ratio) and is increased again to C by
the second FC layer. Since we used global spatial-temporal pooling over all dimensions of receptive
fields, in the next operation, channel-wise information will be extracted. Right after the sigmoid
function, the output of the temporal branch (xtcb) will be calculated by rescaling X using the stcb
vector. So stcb, output of the bottleneck layers, and xtcb, the branch output, are calculated in this
way:
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stcb “ Ftcbpztcb,W q “ W2pW1ztcbq (4.2)

xtcb “ stcb ¨ X . (4.3)

W is the parameter set for the bottleneck layers, including W1 P R
C
r

ˆC , W2 P RCˆC
r which are FC

layers parameters respectively. Ftcb is the symbol of fully-connected functions to calculate the stcb.

Spatial Correlation Branch (SCB): The main difference in this branch compared to the tem-
poral branch is in the aggregation method. The spatial branch shrinks the channel-wise information
with respect to the temporal dimension and does global spatial pooling on the input feature map.
Therefore this branch is considering the temporal-channel information extraction to enrich the repre-
sentation in each layer. The calculation of the first operation of the branch comes as following:

zscb “
1

W ˆ H

W
ÿ

i

H
ÿ

j

xijT (4.4)

After the pooling layer, we obtain zscb which is a vector with size of T ˆC. Afterward, there are
the fully connected layers to extract the temporal based channel relations. In this branch the first FC
layer size is pT ˆ Cq{r and the second FC size is C. Here is the computation description:

sscb “ Fscbpzscb,W q “ W2pW1zscbq (4.5)

xscb “ sscb ¨ X (4.6)

with W1 P R
pTˆCq

r
ˆpTˆCq and W2 P RCˆTˆC

r . By considering both of the branches, the final output
of the block (xstc) is computed by averaging over xtcb and xscb.

xstc “ avgpxtcb, xscbq (4.7)

In the case of 3D ResNet or ResNext, this output will be added to the residual layer to have the final
output of the Convolution (Conv) blocks.

4.3 Knowledge Transfer

In this section, we propose a method for supervision transfer across architectures, enabling us to
circumvent the necessity of training 3D CNNs from scratch. Specifically, we demonstrate that a
2D CNN pre-trained on ImageNet can serve as a "teacher" for supervision transfer to a randomly
initialized 3D CNN, providing stable weight initialization. Through this transfer learning approach,
we are able to take advantage of the rich information learned by the 2D CNN on the ImageNet
dataset, while also avoiding the computational intensity and lengthy training time associated with
training 3D CNNs from scratch.

Let I denote a pre-trained 2D CNN that has learned a rich representation from a labeled image
dataset, and let V be a randomly initialized 3D CNN using the method of He et al. (2015). Our
goal is to transfer the knowledge of the representation from I to V in order to provide a stable
weight initialization for V . This allows us to avoid the need for training V from scratch, which
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Layers Output Size 3D-ResNet101 3D STC-ResNet101 3D STC-ResNext101

3D Convolution 56 ˆ 56 ˆ 8 7 ˆ 7 ˆ 7 conv, stride 2
3D Pooling 56 ˆ 56 ˆ 8 3 ˆ 3 ˆ 3 max pool, stride 1

Res1 28 ˆ 28 ˆ 8

»

–

conv, 1 ˆ 1 ˆ 1, 64

conv, 3 ˆ 3 ˆ 3, 64

conv, 1 ˆ 1 ˆ 1, 256

fi

fl ˆ 3

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 64

conv, 3 ˆ 3 ˆ 3, 64

conv, 1 ˆ 1 ˆ 1, 256

fc, r16, 256s

fi

ffi

ffi

fl

ˆ 3

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 128

conv, 3 ˆ 3 ˆ 3, 128 C “ 32

conv, 1 ˆ 1 ˆ 1, 256

fc, r16, 256s

fi

ffi

ffi

fl

ˆ 3

Res2 14 ˆ 14 ˆ 4

»

–

conv, 1 ˆ 1 ˆ 1, 128

conv, 3 ˆ 3 ˆ 3, 128

conv, 1 ˆ 1 ˆ 1, 512

fi

fl ˆ 4

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 128

conv, 3 ˆ 3 ˆ 3, 128

conv, 1 ˆ 1 ˆ 1, 512

fc, r32, 512s

fi

ffi

ffi

fl

ˆ 4

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 256

conv, 3 ˆ 3 ˆ 3, 256 C “ 32

conv, 1 ˆ 1 ˆ 1, 512

fc, r32, 512s

fi

ffi

ffi

fl

ˆ 4

Res3 7 ˆ 7 ˆ 2

»

–

conv, 1 ˆ 1 ˆ 1, 256

conv, 3 ˆ 3 ˆ 3, 256

conv, 1 ˆ 1 ˆ 1, 1024

fi

fl ˆ 23

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 256

conv, 3 ˆ 3 ˆ 3, 256

conv, 1 ˆ 1 ˆ 1, 1024

fc, r64, 1024s

fi

ffi

ffi

fl

ˆ 23

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 512

conv, 3 ˆ 3 ˆ 3, 512 C “ 32

conv, 1 ˆ 1 ˆ 1, 1024

fc, r64, 1024s

fi

ffi

ffi

fl

ˆ 23

Res4 4 ˆ 4 ˆ 1

»

–

conv, 1 ˆ 1 ˆ 1, 512

conv, 3 ˆ 3 ˆ 3, 512

conv, 1 ˆ 1 ˆ 1, 2048

fi

fl ˆ 3

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 512

conv, 3 ˆ 3 ˆ 3, 512

conv, 1 ˆ 1 ˆ 1, 2048

fc, r128, 2048s

fi

ffi

ffi

fl

ˆ 3

»

—

—

–

conv, 1 ˆ 1 ˆ 1, 512

conv, 3 ˆ 3 ˆ 3, 512 C “ 32

conv, 1 ˆ 1 ˆ 1, 2048

fc, r128, 2048s

fi

ffi

ffi

fl

ˆ 3

Classification 1 ˆ 1 ˆ 1 4 ˆ 4 ˆ 1 avg pool
Layer 400D softmax

Table 4.1: 3D ResNet vs. STC-ResNet and STC-ResNext. All the proposed architectures incorporate
3D filters and pooling kernels. Each convolution layer shown in the table corresponds the composite
sequence BN-ReLU-Conv operations.

would require a large computational workload and months of training time (Tran et al., 2017). In our
proposed method, I serves as a "teacher" for transferring knowledge to the V architecture.

Intuitively, our method uses correspondence between frames and video clips available by the
virtue of them appearing together at the same time. Given a pair of X frames and video clip for the
same time stamp, the visual information in both frames and video are the same. We leverage this for
learning mid-level feature representations by an image-video correspondence task between the 2D
and 3D CNN architecture, as depicted in Figure 4.2. We use 2D ResNet (He et al., 2016a) pre-trained
on ImageNet (Deng et al., 2009) as I , and the STC-ResNet network as V . The 2D ResNet CNN has
4 convolution blocks and one fully connected layer at the end, while our 3D architecture has 4 3D-
convolution blocks with an STC block and we add a fully-connected layer after the last block. We
concatenate the last fc layers of both architectures, and connect them with the 2048-dimensional fc
layer which is in turn connected to two fully connected layers with 512 and 128 sizes (fc1 , fc2)
and to the final binary classifier layer. We use a binary matching classifier: given X frames and a
video clip, decide whether the pairs belong to each other or not. For a given pair, X frames are fed
sequentially into the network I and we average the last 2D fc features over the X frames, resulting in
a 1024-D feature representation. In parallel the video clip is fed to the network V , and we extract the
3D fc features (1024-D), and concatenate them, which is then passed to the fully connected layers
for classification. For training, we use a binary classification loss.

During the training, the model parameters of I are frozen, while the task is to effectively learn the
model parameters of V without any additional supervision than correspondences between frames and
video. The pairs belonging to the same time stamp from the same video are positive pairs, while the
pairs coming from two different videos by randomly sampling X frames and video clips from two
different videos is a negative pair. Note that, during back-propagation, only the model parameters for
V are updated, i.e., transferring the knowledge from I to V . In our experiments we show that a stable
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Figure 4.2: Architecture for knowledge transfer from a pre-trained 2D CNN to a 3D CNN.
The 2D network operates on RGB frames, and the 3D network operates on video clips for the same
time stamp. The 2D CNN acts as a teacher for knowledge transfer to the 3D CNN, by teaching the
3D CNN to learn mid-level feature representation by solving an image-video correspondence task.
The model parameters of the 2D CNN are frozen, while the task is to effectively learn the model
parameters of the 3D CNN only.

weight initialization of V is achieved, and when fine-tuned on the target dataset, it adapts quickly,
thus avoiding training the model from scratch. We also show that by using our proposed knowledge
transfer method, 3D CNNs can be trained directly on small datasets like UCF101 and achieve a better
performance than training from scratch.

Since our transfer learning approach is unsupervised and does not require video labels, we have
applied it to a collection of unlabeled videos. Our experiments in Section 9.4 show that our pro-
posed transfer learning approach using STC-ResNext significantly outperforms generic 3D CNNs
trained on a large video dataset (e.g. Sports-1M) and fine-tuned on target datasets (e.g. HMDB51 or
UCF101). This demonstrates the effectiveness of our unsupervised transfer learning approach for
improving the performance of 3D CNNs on video classification tasks.

4.4 Experiments

In this section, we first introduce the datasets and implementation details of our proposed approach.
Afterwards, we provide an extensive study on the architecture of the proposed STC-ResNet and STC-
ResNext, which are 3D CNNs. Following, we evaluate and compare our proposed methods with the
baselines and other state-of-the-art methods. Finally, we compare our transfer learning: 2D Ñ 3D

CNN performance with generic state-of-the-art 3D CNN methods.

4.4.1 Datasets

We evaluate our proposed method on three challenging video datasets with human actions, namely
HMDB51 (Kuehne et al., 2011), UCF101 (Soomro et al., 2012), and Kinetics (Kay et al., 2017). Ta-
ble 4.2 shows the details of the datasets. For all of these datasets, we use the standard training/testing
splits and protocols provided by the datasets. For HMDB51 and UCF101, we report the average
accuracy over the three splits, and for Kinetics, we report the performance on the validation and test
set.

Kinetics: Kinetics is a new challenging human action recognition dataset introduced by Kay
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et al. (2017), which contains 400 action classes. There are two versions of this dataset: untrimmed
and trimmed. The untrimmed videos contain the whole video in which the activity is included in
a short period of it. However, the trimmed videos contain the activity part only. We evaluate our
models on the trimmed version. We use all training videos for training our models from scratch.

UCF101: For evaluating our STC-Nets architectures, we first trained them on the Kinetics
dataset, and then fine-tuned them on UCF101. Furthermore, we also evaluate our models by training
them from scratch on UCF101 using randomly initialized weights to be able to investigate the effect
of pre-training on a huge dataset, such as Kinetics.

HMDB51: Same as UCF101 evaluation we fine-tune the models on HMDB51, which were pre-
trained from scratch on Kinetics. Also, we similarly evaluate our models by training them from
scratch on HMDB51 using randomly initialized weights.

Data-set # Clips # Videos # Classes

HMDB51 Kuehne et al. (2011) 6,766 3,312 51
UCF101 Soomro et al. (2012) 13,320 2,500 101
Kinetics Kay et al. (2017) 306,245 306,245 400

Table 4.2: Details of the datasets used for evaluation. The ‘Clips’ shows the total number of short
video clips extracted from the ‘Videos’ available in the dataset.

4.4.2 Implementation Details

We use the PyTorch framework for the implementation and all the networks are trained on 8 Tesla
P100 NVIDIA GPUs. Here, we describe the implementation details of our two schemes, 3D CNN
architectures and knowledge transfer from 2D to 3D CNNs for stable weight initialization.

STC-Nets.
Training: We train our STC-Nets (STC-ResNet/ResNext) from scratch on Kinetics. Our STC-

Net operates on a stack of 16/32/64 RGB frames. We resize the video to 122px when smaller, and
then randomly apply 5 crops (and their horizontal flips) of size 112 ˆ 112. For the network weight
initialization, we adopt the same technique proposed in He et al. (2015). For the network training,
we use SGD, Nesterov momentum of 0.9, weight decay of 10´4 and batch size of 128. The initial
learning rate is set to 0.1, and reduced by a factor of 10 manually when the validation loss is saturated.
The maximum number of epochs for the whole Kinetics dataset is set to 200. Batch normalization
also has been applied. The reduction parameter in STC blocks, r, is set to 4.

Testing: For video prediction, we decompose each video into non-overlapping clips of 16/32/64
frames. The STC-Net is applied over the video clips by taking a 112 ˆ 112 center-crop, and finally
we average the predictions over all clips to make a video-level prediction.

Knowledge Transfer: 2D Ñ 3D CNNs. We employ 2D ResNet architecture, pre-trained on
ImageNet (Deng et al., 2009), while the 3D CNN is our STC-ResNet network. To the 2D CNN, 16
RGB frames are fed as input. The input RGB images are randomly cropped to the size 112ˆ112, and
then mean-subtracted for the network training. To supervise transfer to the STC-ResNet, we replace
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the previous classification layer of the 2D CNN with a 2-way softmax layer to distinguish between
positive and negative pairs. We use stochastic gradient descent (SGD) with mini-batch size of 32 with
a fixed weight decay of 10´4 and Nesterov momentum of 0.9. For network training, we start with
a learning rate set to 0.1 and decrease it by a factor of 10 every 30 epochs. The maximum number
of epochs is set to 150. For training data, we use approx. 500K unlabeled videos from YouTube8m
dataset (Abu-El-Haija et al., 2016).

4.4.3 Ablation Study on Architecture Design

To evaluate our STC block on 3D CNNs model, we conducted an architecture study and evaluated
different configurations. For this work, we mainly focused on 3D versions for ResNet and ResNext
with different input size and depth. Our choice is based on the recently presented good performance
of these networks in video classification (Hara et al., 2018).

Model Depth: We first analyze the impact of the architecture depth with 3D-ResNet and 3D-
ResNext and we have done a series of evaluations on the network size. For the architecture study, the
model weights were initialized using the method of He et al. (2015).

We employ three different sizes of 3D STC-ResNet; 18, 50, 101 with STC blocks. Evaluations re-
sults of these 3D STC-ResNet models are reported in the Table 4.3. As it can be observed, by adding
small overhead of STC blocks, STC-Nets can achieve reasonable performance even in a smaller
version of ResNet, since our STC-ResNet50 is comparable in accuracy with a regular ResNet101.

Model Depth Accuracy %

3D-ResNet 101 46.7
STC-ResNet 18 42.8
STC-ResNet 50 46.2

STC-ResNet 101 47.9

Table 4.3: Evaluation results of 3D STC-ResNet model with network sizes of 18, 50, and 101 on
UCF101 split 1. All models were trained from scratch.

Temporal Input Size: The number of input frames plays a key role in activity recognition. There-
fore, we have reported the performance of our 3D STC-ResNet and 3D STC-ResNext with different
number of input frames in Table 4.4. Our evaluation shows that longer clips as input will yield better
performance, which confirms the observations made in works by Hara et al. (2018) and Carreira
and Zisserman (2017).

TCB vs SCB: We also have studied the impact of the TCB and SCB branches in our STC-Nets.
Since each of them considers a different concept in the branch, we evaluated the performance for
three settings: SCB only, TCB only, and SCB-TCB combination (STC). In Table 4.5, the importance
of the channel correlation branches is shown. As it is shown, incorporating both branches to capture
different types of correlations is performing better than SCB or TCB alone.
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Model UCF101 HMDB51

STC-ResNet 101 (16 frames) 90.1 62.6
STC-ResNet 101 (32 frames) 93.2 68.9
STC-ResNet 101 (64 frames) 93.7 70.5

STC-ResNext 101 (16 frames) 92.3 65.4
STC-ResNext 101 (32 frames) 95.8 72.6
STC-ResNext 101 (64 frames) 96.5 74.9

Table 4.4: Evaluation results of STC-ResNet and 3D STC-ResNext models with temporal depths of
16, 32, and 64 frames for all three splits of UCF101 and HMDB51.

Channel Correlation Branch Accuracy %

SCB 46.1
TCB 47.2

TCB + SCB 47.9

Table 4.5: Performance comparison using different channel correlation blocks (TCB vs SCB) for
UCF101 split 1.

Frame Sampling Rate: Finding the right configuration of input-frames which are fed to the CNNs
for capturing the appearance and temporal information plays a very critical role in temporal CNNs.
For this reason, we investigated the impact of the frame sampling rate for the input stream. The
STC-ResNet101 has been used for the ablation study on frame sampling rate for training and testing.
We evaluate the model by varying the temporal stride of the input frames in the following set {1, 2
,4, 16}. Table 4.6 presents the accuracy of STC-ResNet101 trained on inputs with different sampling
rates. The best results are obtained with a sampling rate of 2, which we also used for other 3D CNNs
in the rest of the experiments.

Input Stride 1 2 4 16
Accuracy % 44.6% 47.9% 46.8% 40.3%

Table 4.6: Evaluation results of different frame sampling rates for the STC-ResNet101 model.
Trained and tested on UCF101 split 1.

4.4.4 Knowledge Transfer

To apply our proposed supervision transfer, we have tested 2D ResNet as basic pre-trained model on
ImageNet, while 3D-ResNet and our STC-ResNet are randomly initialized using the method of He
et al. (2015) and used as target 3D CNNs. We show that a stable weight initialization via transfer
learning is possible for 3D CNN architectures, which can be used as a good starting model for training
on small datasets like UCF101 or HMDB51. Since the transfer learning pipeline for 3D CNNs have
been tested with two different deep architectures (3D-ResNet and STC-Nets), we clearly show the
generalization capacity of our method in deep architectures, which can be easily adapted for other
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deep networks and tasks which use the similar architectures.

3D CNNs UCF101 HMDB51
3D-ResNet-Baseline 88.9 61.7
3D-ResNet-Inflation 90.4 62.6
3D-ResNet-Transfered 91.3 64.2

STC-ResNet-Baseline 90.1 62.6
STC-ResNet-Transfered 92.6 66.1

Table 4.7: Transfer learning results for 3D CNNs by 2D CNNs over all three splits of UCF101 and
HMDB51. All models have the same depth of 101.

Table 4.7 shows the results. The baseline is trained from scratch using random initialization. As
it is shown, our transfer method performs better than the baseline for the standard 3D-ResNet as well
as for our proposed STC-ResNet. Using inflation also improves the baseline, but it is outperformed
by our approach. Note that inflation can only be used if the structure of the 2D and 3D network are
the same, while our approach allows to transfer the knowledge from any 2D CNN to a 3D CNN, e.g.,
from 2D-ResNet to the 3D STC-ResNet as in Table 4.7, which is not possible by inflation.

Method Top1-Val Top5-Val
DenseNet3D 59.5 -
Inception3D 58.9 -
C3D* Hara et al. (2018) 55.6 -
3D ResNet101 Hara et al. (2018) 62.8 83.9
3D ResNext101 Hara et al. (2018) 65.1 85.7
RGB-I3D Carreira and Zisserman (2017) 68.4 88

STC-ResNet101 (16 frames) 64.1 85.2
STC-ResNext101 (16 frames) 66.2 86.5
STC-ResNext101 (32 frames) 68.7 88.5

SlowFast 8ˆ8 R101+NL Feichtenhofer et al. (2019) 78.7 93.5
SlowFast 16ˆ8 R101+NL Feichtenhofer et al. (2019) 79.8 93.9
X3D-XXL Feichtenhofer (2020) 80.4 94.6
TimeSformer-L Bertasius et al. (2021) 80.7 94.7
ViViT-L/16ˆ2 Bertasius et al. (2021) 80.6 94.7
MViT-B, 64ˆ3 Fan et al. (2021b) 81.2 95.1
X-ViT (16ˆ) Bulat et al. (2021) 80.2 94.7
TokenLearner 16at12 (L/16) Ryoo et al. (2021) 82.1 -

Table 4.8: Comparison results of our models with other state-of-the-art methods on Kinetics-400
dataset. * denotes the pre-trained version of C3D on the Sports-1M. It is important to note that the
work discussed in this chapter has been published in ECCV 2018 Diba et al. (2018). To provide a
comprehensive overview and better visibility of the trends in the field, we have also included recent
state-of-the-art methods that have been published subsequent to the publication date of this chapter.
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Method UCF101 HMDB51
DT+MVSM Cai et al. (2014) 83.5 55.9
iDT+FV Wang and Schmid (2013) 85.9 57.2
C3D Tran et al. (2015) 82.3 56.8
Conv Fusion Feichtenhofer et al. (2016) 82.6 56.8
Two Stream Simonyan and Zisserman (2014) 88.6 ´

TDD+FV Wang et al. (2015) 90.3 63.2
RGB+Flow-TSN Wang et al. (2016) 94.0 68.5
P3D Qiu et al. (2017) 88.6 ´

RGB-I3D Carreira and Zisserman (2017) 95.6 74.8
RGB+Flow-I3D Carreira and Zisserman (2017) 98.0 80.7
Inception3D 87.2 56.9
3D ResNet 101 (16 frames) 88.9 61.7
3D ResNet 101-Transfered Knowledge 91.3 64.2
3D ResNext 101 (16 frames) 90.7 63.8
STC-ResNext 101 (16 frames) 92.3 65.4
STC-ResNext 101 (64 frames) 96.5 74.9

Table 4.9: Accuracy (%) performance comparison of STC-Nets (STC-ResNet/ResNext) with state-
of-the-art methods over all three splits of UCF101 and HMDB51.

4.4.5 Comparison with the state-of-the-art

Finally, after exploring and studying on STC-Net architectures and the configuration of input data
and architecture, we compare our STC-ResNet and STC-ResNext with the state-of-the-art methods
by pre-training on Kinetics and finetuning on all three splits of the UCF101 and HMDB51 datasets.
For UCF101 and HMDB51, we report the average accuracy over all three splits. The results of the
supervision transfer technique experiments were reported in the previous part of the experiments.

Table 4.8 shows the result on the Kinetics dataset for STC-Nets compared with state-of-the-art
methods. The STC-ResNext101 with 32 frames input depth achieves higher accuracies than RGB-
I3D which has an input size of 64 frames.

Table 4.9 shows the results on the UCF101 and HMDB51 datasets for comparison of STC-Nets
with other RGB based action recognition methods. Our STC-ResNext101 (64 frames) model out-
performs the 3D-ResNet (Tran et al., 2017), Inception3D, RGB-I3D (Carreira and Zisserman, 2017)
and C3D (Tran et al., 2015) on both UCF101 and HMDB51 and achieves 96.5% and 74.9% accuracy
respectively. We also trained Inception3D, a similar architecture to the I3D (Carreira and Zisserman,
2017), without using ImageNet on Kinetics and fine-tuned it on UCF101 and HMDB51 to be able to
have a fair comparison. As shown in Table 4.9, STC-ResNext performs better than 3D-ResNext by
almost 2% on UCF101. Moreover, we note that the state-of-the-art CNNs (Carreira and Zisserman,
2017; Wang et al., 2016) use expensive optical-flow maps in addition to RGB input-frames, as in I3D
which obtains a performance of 98% on UCF101 and 80% on HMDB51. Because of such high com-
putation needs, we are not able to run similar experiments, but as it can be concluded from Table 4.9,
our best RGB model has superior performance than the other RGB based models.

Note that in our work we have not used dense optical-flow maps, and still achieving comparable
performance to the state-of-the-art methods Wang et al. (2016). This shows the effectiveness of our
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STC-Nets to exploit temporal information and spatio-temporal channel correlation in deep CNNs for
video clips. This calls for efficient methods like ours instead of computing the expensive optical-flow
information (beforehand) which is very computationally demanding, and therefore difficult to obtain
for large scale datasets.

4.5 Summary

In this chapter, we introduced a new ‘Spatio-Temporal Channel Correlation’ (STC) block that mod-
els correlations between the channels of a 3D CNN. We clearly show the benefit of exploiting
spatio-temporal channel correlation features using the STC block. We equipped 3D-ResNet and
3D-ResNext with our STC block and improved the accuracies by 2-3% on the Kinetics dataset. Our
STC blocks are added as a residual unit to other parts of networks and learned in an end-to-end
manner. The STC feature-maps model the feature interaction in a more expressive and efficient way
without an undesired loss of information throughout the network. Our STC-Nets are evaluated on
three challenging action recognition datasets, namely HMDB51, UCF101, and Kinetics. The STC-
Net architectures achieve state-of-the-art performance on HMDB51, UCF101 and comparable results
on Kinetics hen contrasted with prior or concurrent temporal deep neural network models. We ex-
pect that the proposed STC blocks will also improve other 3D CNNs. Further, we show the benefit of
transfer learning between cross architectures, specifically supervision transfer from 2D to 3D CNNs.
This provides a valuable and stable weight initialization for 3D CNNs instead of training them from
scratch which is also very expensive. Our transfer learning approach is not limited to transfer su-
pervision between RGB models only, as our approach for transfer learning can be easily adapted for
transfer across modalities.
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In this chapter, we present the Holistic Video Understanding (HVU) dataset, a large-scale dataset for
multi-label, multi-task video understanding. While current benchmarks for video recognition have
advanced the field significantly, they tend to focus on highly specific tasks such as human action or
sports recognition, leaving a gap in the ability to describe the overall content of a video. The HVU
dataset aims to address this gap by organizing its annotations hierarchically in a semantic taxonomy,
encompassing multiple semantic aspects of dynamic scenes. With approximately 572k videos and 9
million annotations spanning over 3142 labels, the HVU dataset captures a wide range of real-world
scenarios, including scenes, objects, actions, events, attributes, and concepts.

To demonstrate the generalization capability of the HVU dataset, we apply it to three challeng-
ing tasks: video classification, video captioning, and video clustering. For video classification, we
introduce a novel spatio-temporal deep neural network architecture called the Holistic Appearance
and Temporal Network (HATNet), which combines 2D and 3D architectures and is trained in an
end-to-end manner to address the multi-label, multi-task learning problem. Our experiments vali-
date the idea that holistic representation learning can play a crucial role in enabling many real-world
applications.

5.1 Introduction

Video understanding is a complex problem that involves the recognition of various semantic aspects,
including the scene or environment, objects, actions, events, attributes, and concepts. Despite signif-
icant progress in video recognition, it remains largely limited to action recognition due to the lack
of an established video benchmark that integrates the joint recognition of multiple semantic aspects
in a dynamic scene. The use CNNs has greatly advanced several subfields of computer vision, how-
ever, the training of CNNs for video understanding using a single label per task has been found to
be inadequate for describing the content of a video. This limitation hinders the ability of CNNs to
learn a generic feature representation for comprehensive video analysis. To address this issue, it is
possible to recast the video understanding problem as a multi-task classification task, where multiple
labels are assigned to a video from various semantic aspects. This approach is similar to the use
of CNNs trained on ImageNet for image classification, which facilitated the learning of a generic
feature representation for various vision tasks. Therefore, training CNNs on a dataset comprising
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Attribute:
Day, Blue

Event:
Entertainment
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Fun, Joy
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Sea, Jungle

Object:
Person, Boat
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Figure 5.1: Holistic Video Understanding Dataset: A multi-label and multi-task fully annotated
dataset and HATNet as a new deep ConvNet for video classification.

multiple semantic aspects can be applied to the holistic recognition and understanding of concepts in
video data, enabling a more comprehensive description of video content.

In this work, we introduce the “Holistic Video Understanding Dataset"(HVU). HVU is a multi-
label, multi-task video benchmark that aims to provide a comprehensive list of tasks and annotations
for video analysis and understanding. The dataset is organized hierarchically in a semantic taxonomy
and consists of approximately 572k videos, with 476k, 31k, and 65k samples in the train, validation,
and test sets, respectively. This makes HVU a sufficiently large dataset, approaching the scale of
image datasets. HVU includes approximately 7.5M annotations for the training set, 600K for the
validation set, and 1.3M for the test set, spanning over 3142 labels. The recognition of multiple
semantic aspects is supported by rich annotations with an average of 2112 annotations per label,
including 248 categories for scenes, 1678 for objects, 739 for actions, 69 for events, 117 for attributes,
and 291 for concepts. These tasks are based on action recognition datasets (Gu et al., 2018; Kay
et al., 2017; Kuehne et al., 2011; Soomro et al., 2012; Zhao et al., 2019) and further extended by
incorporating labels for scenes, objects, events, attributes, and concepts in a video. This thorough
annotation enables the development of strong algorithms for holistic video understanding that can
accurately describe the content of a video. The dataset statistics are summarized in Table 5.1.

To illustrate the significance of holistic representation learning, we demonstrate the impact of
HVU on three challenging tasks: video classification, video captioning, and video clustering. To
address the task of video classification, we propose a new spatio-temporal architecture called the
“Holistic Appearance and Temporal Network" (HATNet). HATNet is designed for multi-label and
multi-task learning, enabling the joint solution of multiple spatio-temporal problems simultaneously.
HATNet fuses 2D and 3D architectures by combining intermediate representations of appearance
and temporal cues, leading to a robust spatio-temporal representation. We evaluate HATNet on the
challenging video classification datasets HMDB51, UCF101, and Kinetics, and demonstrate its su-
perior performance. In addition, we show the positive effect of training models using more semantic
concepts on transfer learning. Specifically, we demonstrate that pre-training the model on HVU
with more semantic concepts improves fine-tuning results on other datasets and tasks compared to
pre-training on single semantic category datasets such as Kinetics. This highlights the value of our
dataset and the importance of multi-task learning. Furthermore, our experiments on video caption-
ing and video clustering demonstrate the generalization capability of HVU on other tasks, achieving
promising results compared to the state-of-the-art. Figure 5.1 shows an overview of our HATNet and
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Figure 5.2: Left: Average number of samples per label in each of main categories. Middle: Number
of labels for each main category. Right: Number of samples per the main category.

Task Category Scene Object Action Event Attribute Concept Total

#Labels 248 1678 739 69 117 291 3142

#Annotations 672,622 3,418,198 1,473,216 245,868 581,449 1,108,552 7,499,905

#Videos 251,794 471,068 479,568 164,924 316,040 410,711 481,417

Table 5.1: Statistics of the HVU training set for different categories. The category with the highest
number of labels and annotations is the object category.

HVU dataset.

5.2 Holistic Video Understanding Dataset

The HVU dataset is organized hierarchically in a semantic taxonomy of holistic video understanding.
While many real-world conditioned video datasets are primarily focused on human action recogni-
tion, video content encompasses more than just actions, providing a human-centric description of the
video. By focusing solely on human-centric descriptions, we neglect important information about the
scene, objects, events, and attributes present in the video. While the SOA dataset (Ray et al., 2018)
includes categories for scenes, objects, and actions, to our knowledge it is not publicly available. In
comparison, HVU includes a larger number of categories, as shown in Table 5.2. One of the key
research questions that has not been adequately addressed in recent works on action recognition is
how to leverage other contextual information in a video. The HVU dataset enables the evaluation
of the effect of learning and knowledge transfer between tasks, such as enabling transfer learning of
object recognition in videos to action recognition and vice versa. In summary, HVU can contribute to
the vision community and facilitate more comprehensive solutions for holistic video understanding.
Our dataset focuses on the recognition of scenes, objects, actions, attributes, events, and concepts
in user-generated videos. The definitions of the scene, object, action, and event categories are con-
sistent with those used in other image and video datasets. The attribute labels describe attributes of
scenes, actions, objects, or events. The concept category refers to any noun that presents a grouping
definition or higher-level relation in the taxonomy tree for labels of other categories.
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Dataset Scene Object Action Event Attribute Concept #Videos Year

HMDB51 Kuehne et al. (2011) - - 51 - - - 7K ’11
UCF101 Soomro et al. (2012) - - 101 - - - 13K ’12
ActivityNet Caba Heilbron et al. (2015) - - 200 - - - 20K ’15
AVA Gu et al. (2018) - - 80 - - - 57.6K ’18
Something-Something Goyal et al. (2017b) - - 174 - - - 108K ’17
HACS Zhao et al. (2019) - - 200 - - - 140K ’19
Kinetics Smaira et al. (2020) - - 700 - - - 650K ’20
Moments in Time Monfort et al. (2019) - - 339 - - - 835K ’19
AViD Piergiovanni and Ryoo (2020) - - 887 - - - 450K ’20
EPIC-KITCHEN Damen et al. (2018) - 323 149 - - - 39.6K ’18
SOA Ray et al. (2018) 49 356 148 - - - 562K ’18
HVU (Ours) 248 1678 739 69 117 291 572K ’20

Table 5.2: Comparison of the HVU dataset with other publicly available video recognition datasets
in terms of #labels per category. Note that SOA is not publicly available.

5.2.1 HVU Statistics

HVU is comprised of 572k videos, with 481k, 31k, and 65k video clips in the train, validation, and
test sets, respectively. The dataset includes trimmed video clips with durations ranging up to 10 sec-
onds. HVU has 6 main categories: scene, object, action, event, attribute, and concept, totaling 3142

labels with approximately 7.5M annotations for the train, validation, and test sets. On average, there
are approximately 2112 annotations per label. The distribution of categories in terms of annotations,
labels, and annotations per label is depicted in Figure 5.2. It can be observed that the object cate-
gory has the highest number of labels and annotations, which is due to the abundance of objects in
video. While the object category has the highest number of labels and annotations, it does not have
the highest ratio of annotations per label. The average of 2112 annotations per label is a reasonable
amount of training data for each label. The scene and action categories have relatively lower numbers
of labels and annotations due to the trimmed videos and short durations of the videos in the dataset.
The dataset statistics for each category in the training set are shown in Table 5.1.

5.2.2 Collection and Annotation

Constructing a large-scale video understanding dataset is a labor-intensive process, primarily due to
the two main tasks involved: data collection and data annotation. Many popular datasets, such as
ActivityNet, Kinetics, and YouTube-8M, are collected from sources like YouTube and are annotated
using a semi-automatic crowdsourcing strategy in which a human manually verifies the videos. We
adopted a similar approach with technical differences in order to reduce the cost of data collection and
annotation. To ensure diversity in the taxonomy of HVU, we used YouTube-8M (Abu-El-Haija et al.,
2016), Kinetics-600 (Carreira et al., 2018), and HACS (Zhao et al., 2019) as the main sources for our
dataset. This also allowed us to avoid copyright and privacy issues, enabling us to publicly release the
dataset. Additionally, using these datasets as sources ensured that none of the test videos from these
datasets were included in the training set of HVU. It is worth noting that all of the aforementioned
datasets are action recognition datasets.

Manually annotating a large number of videos with multiple semantic categories (e.g., thousands
of concepts and tags) is prone to error and is a time-consuming task due to the volume and duration
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of the videos. To address these issues, we developed a two-stage framework for HVU annotation.
In the first stage, we used the Google Vision API (goo) and Sensifai Video Tagging API (sen) to
obtain rough annotations of the videos. These APIs predicted 30 tags per video, with the probability
threshold set relatively low (approximately 30%) to avoid false rejections of tags. The tags were
chosen from a dictionary of approximately 8k words. This process resulted in almost 18 million tags
for the entire dataset. In the second stage, we performed human verification to remove any potentially
mislabeled noisy tags and also added any missing tags that were missed by the APIs, based on the
recommended tags of similar videos. This human annotation step resulted in 9 million tags for the
entire dataset, with approximately 3500 different tags.

5.2.3 Human Annotation Details

The present study utilized human annotators to validate machine-generated annotations. The initial
set of machine-generated annotations comprised approximately 8k labels, which were subsequently
refined through multiple stages of human verification. In the first stage, 4378 labels were retained,
and in the final stage of the annotation process, an additional 80 labels were added by human anno-
tators, resulting in a total of 3142 labels. It is worth noting that the human annotation process not
only served to verify the accuracy of the machine-generated labels but also afforded the opportunity
to enrich the dataset through the introduction of novel labels.

In specific for the HVU human verification task, we employed three different teams (Team-A,
Team-B and Team-C) of 55 human annotators. Team-A focused on constructing a taxonomy for
the dataset based on the visual meaning and definitions of the tags provided by APIs. Team-B and
Team-C were responsible for verifying the tags and videos through four tasks: (a) flagging false tags
by watching each video, (b) reviewing the tags by watching the videos for each tag and flagging any
incorrect videos, (c) adding missing tags to the videos, and (d) suggesting modifications to the tags,
such as renaming or merging.

To ensure that Team-B and Team-C had a thorough understanding of the tags and correspond-
ing videos, they were provided with the tag definitions from Team-A. Team-B first performed the
aforementioned tasks on all videos and provided the initial round of clean annotations, which were
subsequently reviewed by Team-C to ensure accuracy. Finally, suggestions from tasks (c) and (d)
were reviewed by Team-A and applied to the dataset as necessary. The verification process takes
„100 seconds on average per video clip for a trained worker. It took about 8500 person-hours to
firstly clean the machine-generated tags and remove errors and secondly add any possible missing
labels from the dictionary. By incorporating the machine generated tags and human annotation, the
HVU dataset covers a diverse set of tags with clean annotations. Using machine generated tags in
the first step helps us to cover a larger number of tags than a human can remember and label them in
a reasonable time. To maintain a balanced distribution of samples per tag, a minimum of 50 samples
per tag were required.

In order to provide a more comprehensive overview of the HVU human annotation process, we
present the statistics of the various stages of the annotation process in Table 5.3. It is worth noting
that the labels and categories listed in the table are the results of the initial human annotation process
on the validation set of the dataset. As can be seen in the table, the category with the highest number
of labels and annotations is the object category, while the concept category has the lowest number of
labels.
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Figure 5.3: Left: Average number of samples per label in each of main categories. Middle: Number
of labels for each main category. Right: Number of samples per the main category. All statistics are
for the machine generated tags of the HVU training set.

Figure 5.4: Coverage of different subsets of the 6 main semantic categories in videos. 16.4% of
the videos have annotations of all categories. All statistics are for the machine generated tags of the
HVU training set.

To further illustrate the distribution of categories, we depict the number of annotations, labels,
and annotations per label for each category in Figure 5.3. As expected, the object category exhibits
the highest number of labels and annotations due to the abundance of objects in the videos. However,
it is worth noting that the object category does not have the highest ratio of annotations per label.

In Figure 5.4, we present the percentage of videos belonging to each subset of the main cate-
gories. In total, there are 50 different subsets of videos based on the assigned semantic categories.
Approximately 36% of the videos belong to all of the categories. We present some samples of videos
and their corresponding tags in Fig 5.7 and Fig 5.8.

5.2.4 Taxonomy

As previously mentioned, the Google and Sensifai APIs were utilized to predict tags for the videos in
the dataset, resulting in a preliminary set of approximately 8K tags. These tags covered a wide range
of categories, including scenes, objects, events, attributes, concepts, logos, emotions, and actions.
In order to clean and refine this set of tags, we employed the WordNet ontology (Miller, 1995) and
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Task Category Scene Object Action Event Attribute Concept Total

#Labels 419 2651 877 149 160 122 4378

#Annotations 1,485,154 5,944,277 1,552,920 918,696 1,036,308 965,077 11,902,432

#Videos 366,941 480,821 481,418 320,428 368,668 375,664 481,418

Table 5.3: Statistics of machine generated tags of HVU training set for different categories. The
category with the highest number of labels and annotations is the object category.

Figure 5.5: Coverage of different subsets of the 6 main semantic categories in videos. 16.6% of the
videos have annotations of all categories.

removed tags with imbalanced distribution. The refinement and pruning process aimed to preserve
the true distribution of labels and resulted in the final taxonomy. This taxonomy was subsequently
classified into six main semantic categories (scenes, objects, actions, events, attributes, and concepts)
by human annotators.

It is worth noting that each video may be assigned to multiple semantic categories. In fact, nearly
100K of the videos in the HVU dataset belong to all of the semantic categories. In comparison to
SOA, almost half of HVU videos have labels for scene, object, and action together. The distribution
of videos among the various subsets of the main categories is depicted in Figure 5.5.

5.3 Holistic Appearance And Temporal Network

In this section, we first provide a brief overview of state-of-the-art 3D CNNs for video classification.
We then introduce our proposed "Holistic Appearance and Temporal Network" (HATNet) for multi-
task and multi-label video classification.
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Figure 5.6: HATNet: A new 2D/3D deep neural network with 2DConv, 3DConv blocks and merge
and reduction (M&R) block to fuse 2D and 3D feature maps in intermediate stages of the network.
HATNet combines the appearance and temporal cues with the overall goal to compress them into a
more compact representation.

5.3.1 3D-CNNs Baselines

3D CNNs are designed to capture temporal cues in video and have demonstrated efficient perfor-
mance for video classification tasks. These networks simultaneously process spatial and temporal
information. In this study, we utilize 3D-ResNet (Tran et al., 2017) and STCnet (chapter 4) as our
3D CNN baselines, which have achieved competitive results on the Kinetics and UCF101 datasets.
To evaluate the performance of these methods on the multi-label HVU dataset, we employ mean
average precision (mAP) across all labels and report individual performance for each category. The
results of these methods are presented in Table 5.5 and were obtained using binary cross entropy loss.

5.3.2 Multi-Task Learning 3D-CNNs

Another approach that is studied in this work to tackle the HVU dataset is to have the problem solved
with multi-task learning or a joint training method. As we know the HVU dataset consists of high-
level categories like objects, scenes, events, attributes, and concepts, so each of these categories can
be dealt like separate tasks. In our experiments, we have defined six tasks, scene, object, action,
event, attribute, and concept classification. So our multi-task learning network is trained with six
objective functions, that is with multi-label classification for each task. The trained network is a
3D-CNN which has separate Conv layers as separate heads for each of the tasks at the end of the
network. For each head we use the binary cross entropy loss since it is a multi-label classification for
each of the categories.

5.3.3 2D/3D HATNet

Our proposed HATNet is a novel spatio-temporal neural network designed to efficiently handle multi-
task and multi-label video classification by maximally engaging both temporal and appearance in-
formation. The motivation for HATNet arises from the need for a deep neural network capable of
recognizing different levels of concepts in holistic video recognition, including still objects, dynamic
scenes, various attributes, and human activities. HATNet employs a flexible approach, utilizing both
a 2D pre-trained model trained on a large image dataset such as ImageNet and a 3D pre-trained
model trained on video datasets such as Kinetics to accelerate the training process. However, HAT-
Net can also be trained from scratch, as demonstrated in our experiments. HATNet possesses the
ability to learn a hierarchical spatio-temporal feature representation through the use of appearance
and temporal neural modules.
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Appearance Neural Module. In the design of HATNet, we employ 2D CNNs with 2D convo-
lutional (2DConv) blocks to extract static visual cues from individual frames in a video clip. The
inclusion of this module in the network is crucial for our goal of recognizing objects, scenes, and
attributes alongside actions within the video. Specifically, the 2DConv blocks are utilized to capture
the spatial structure present in the frame, enabling the network to handle the aforementioned concepts
more effectively.

Temporal Neural Module. In HATNet architecture, the 3D Convolutions (3DConv) module
handles temporal cues dealing with interaction in a batch of frames. 3DConv aims to capture the
relative temporal information between frames. It is crucial to have 3D convolutions in the network to
learn relational motion cues for efficiently understanding dynamic scenes and human activities. We
use ResNet18/50 for both the 3D and 2D modules, so that they have the same spatial kernel sizes,
and thus we can combine the output of the appearance and temporal branches at any intermediate
stage of the network.

Figure 5.6 shows how we combine the 2DConv and 3DConv branches and use merge and reduc-
tion blocks to fuse feature maps at the intermediate stages of HATNet. Intuitively, combining the
appearance and temporal features are complementary for video understanding and this fusion step
aims to compress them into a more compact and robust representation. In the experiment section, we
discuss in more detail the HATNet design and how we apply merge and reduction modules between
2D and 3D neural modules. Supported by our extensive experiments, we show that HATNet comple-
ments holistic video recognition, including understanding the dynamic and static aspects of a scene
and also human action recognition. In our experiments, we have also performed tests on HATNet
based multi-task learning similar to 3D-CNNs based multi-task learning discussed in Section (5.3.2).
HATNet has some similarities to the SlowFast (Feichtenhofer et al., 2019) network but there are ma-
jor differences. SlowFast uses two 3D-CNN networks for a slow and a fast branch. HATNet has
one 3D-CNN branch to handle motion and dynamic information and one 2D-CNN to handle static
information and appearance. HATNet also has skip connections with M&R blocks between 3D and
2D convolutional blocks to exploit more information.

2D/3D HATNet Design. The HATNet architecture includes two branches: a 3D convolutional
(3DConv) branch and a 2D convolutional (2DConv) branch. Following each block in the 3DConv
and 2DConv branches, a merging and reduction block is applied. This involves concatenating the
feature maps produced by the block and performing channel reduction via a 1 ˆ 1 ˆ 1 convolution.
For example, given the feature maps produced by the first block in both the 3DConv and 2DConv
branches, each with 64 channels, the maps are first concatenated to result in 128 channels. A 1ˆ1ˆ1

convolution is then applied using 64 kernels, resulting in an output with 64 channels. This merging
and reduction process is independently performed within both the 3DConv and 2DConv branches,
continuing until the final merging of the two branches.

We employ 3D-ResNet and STCnet (chapter 4) with ResNet18/50 as the HATNet backbone in
our experiments. The STCnet is a model of 3D networks with spatio-temporal channel correlation
modules which improves 3D networks performance significantly. We also had to make a small
change to the 2D branch and remove pooling layers right after the first 2D Conv to maintain a similar
feature map size between the 2D and 3D branches since we use 112ˆ112 as input-size.
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Dataset Scene Object Action Event Attribute Concept HVU Overall %

Machine-Generated HVU 46.3 22.4 43.8 31.4 25.3 20.1 31.6

Human-Annotation HVU 50.1 27.9 46.7 35.7 29.2 23.2 35.4

Table 5.4: mAP (%) Performance comparison between machine generated and human-verified tags
of HVU. This evaluation shows how the human annotation process is crucial to have a more efficient
dataset. The CNN model which is used for this experiment is 3D-ResNet18.

Model Scene Object Action Event Attribute Concept HVU Overall %

3D-ResNet 50.6 28.6 48.2 35.9 29 22.5 35.8

3D-STCNet 51.9 30.1 50.3 35.8 29.9 22.7 36.7

HATNet 55.8 34.2 51.8 38.5 33.6 26.1 40

Table 5.5: mAP (%) performance of different architecture on the HVU dataset. The backbone CNN
for all models is ResNet18.

5.4 Experiments

In this section, we demonstrate the effectiveness of HVU on three tasks: video classification, video
captioning, and video clustering. First, we present the implementation details and evaluate the per-
formance of HVU on multi-label video recognition. We then compare the transfer learning ability
of HVU to that of Kinetics. As an additional experiment, we demonstrate the importance of in-
corporating categories such as scenes and objects for video classification. Finally, we examine the
generalization capability of HVU on the video captioning and clustering tasks. For each task, we
compare our method to state-of-the-art techniques on benchmark datasets. In all experiments, we
utilize RGB frames as input to the CNN and employ PyTorch for implementation. For training, we
use 16 or 32 frame-long video clips as a single input and train the networks on a machine equipped
with 8 V100 NVIDIA GPUs.

5.4.1 Effect of Human Annotation

To present the impact of the human annotation process, we have evaluated both versions of the HVU
with machine-generated tags and human-annotated tags. We have trained two 3D-ResNet18 for each
set and the comparison came in Table 5.4.

5.4.2 HVU Results

Table 5.5 presents the overall performance of various simpler or multi-task learning baselines and
HATNet on the HVU validation set, measured in terms of mean average precision on all labels/tags.
HATNet, which jointly considers both appearance and temporal information, achieves the best per-
formance due to its incorporation of an appearance module not present in the other baselines. The
success of HATNet demonstrates the utility of combining 3D (temporal) and 2D (appearance) con-
volutional blocks for learning a more robust reasoning ability.
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Model Scene Object Action Event Attribute Concept Overall

3D-ResNet (Standard) 50.6 28.6 48.2 35.9 29 22.5 35.8
HATNet (Standard) 55.8 34.2 51.8 38.5 33.6 26.1 40
3D-ResNet (Multi-Task) 51.7 29.6 48.9 36.6 31.1 24.1 37
HATNet (Multi-Task) 57.2 35.1 53.5 39.8 34.9 27.3 41.3

Table 5.6: Multi-task learning performance (mAP (%) comparison of 3D-ResNet18 and HATNet,
when trained on HVU with all categories in the multi-task pipeline. The backbone CNN for all
models is ResNet18.

Pre-Training Dataset UCF101 HMDB51 Kinetics

From Scratch 65.2 33.4 65.6
Kinetics 89.8 62.1 -
HVU 90.5 65.1 67.8

Table 5.7: Performance (mAP (%)) comparison of HVU and Kinetics datasets for transfer learning
generalization ability when evaluated on different action recognition datasets. The trained model for
all of the datasets is 3D-ResNet18.

5.4.3 Multi-Task Learning on HVU

Since the HVU is a multi-task classification dataset, it is interesting to compare the performance of
different deep neural networks in the multi-task learning paradigm as well. For this, we have used
the same architecture as in the previous experiment, but with a different last layer of convolutions to
observe multi-task learning performance. We have targeted six tasks: scene, object, action, event,
attribute, and concept classification. In Table 5.6, we have compared standard training without multi-
task learning heads versus multi-task learning networks.

As expected, the simple baseline multi-task learning methods achieve higher performance on
individual tasks as expected, in comparison to standard networks learning for all categories as a single
task. Therefore this initial result on a real-world multi-task video dataset motivates the investigation
of more multi-task learning methods for video classification.

5.4.4 Transfer Learning: HVU vs Kinetics

In this experiment, we study the ability of transfer learning with the HVU dataset. We compare
the results of pre-training 3D-ResNet18 using Kinetics versus using HVU and then fine-tuning on
UCF101, HMDB51, and Kinetics. Obviously, there is a large benefit from pre-training of deep 3D-
CNNs and then fine-tune them on smaller datasets (i.e. HVU, Kinetics ñ UCF101 and HMDB51).
As it can be observed in Table 5.7, models pre-trained on our HVU dataset performed notably better
than models pre-trained on the Kinetics dataset. Moreover, pre-training on HVU can improve the
results on Kinetics also.
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Training Labels Action Recognition Performance

Action Only 65.6
Action, Scene, Object, Event, Attribute, Concept 68.8

Table 5.8: Evaluation of training a 3D-ResNet18 model on Kinetics with HVU labels.

5.4.5 Benefit of Multiple Semantic Categories

In this experiment, we investigate the impact of training models with multiple semantic categories,
as opposed to using only a single category such as Kinetics, which focuses exclusively on action.
To this end, we design an experiment in which the model is trained in multiple steps, with different
categories of tags added one by one. Specifically, we first train 3D-ResNet18 with action tags from
HVU, followed by object tags in the second step and scene tags in the final step. To evaluate perfor-
mance, we consider the action category of HVU. In the first step, the achieved accuracy was 43.6%,
which increased to 44.5% in the second step and 45.6% in the final step. These results demonstrate
that the inclusion of high-level categories in the training process boosts the performance for action
recognition at each step. As shown in Table 5.6, training all categories together yields 47.5% accu-
racy for the action category, a gain of approximately 4% over training with only the action category.
This suggests that incorporating additional categories allows for the learning of an effective feature
representation and facilitates a more comprehensive understanding of the video.

To further understand the effect of multiple semantic categories on action recognition perfor-
mance, we compare the performance of a 3D-ResNet18 trained on Kinetics-600 videos using two
different annotation setups. In the first setup, we use the human action recognition labels of the
Kinetics-600 dataset. Since Kinetics-600 is a subset of HVU, in the second setup we utilize the HVU
annotations, which include five additional categories in addition to the human action category. We
then evaluate the models on Kinetics human action recognition labels. As shown in Table 5.8, in-
corporating more semantic labels in the training for Kinetics leads to improved action classification
performance. This can be attributed to the fact that HVU provides additional capabilities for deep
models to learn new visual features and gain a deeper understanding of videos.

5.4.6 Comparison on UCF, HMDB, Kinetics

In Table 5.9, we compare the HATNet performance with the state-of-the-art on UCF101, HMDB51,
and Kinetics. For our baselines and HATNet, we employ pre-training in two separate setups: one
with HVU and another with Kinetics, and then fine-tune on the target datasets. For UCF101 and
HMDB51, we report the average accuracy over all three splits. We have used ResNet18/50 as the
backbone model for all of our networks with 16 and 32 input frames. HATNet pre-trained on HVU
with 32 frames input achieved superior performance on all three datasets with standard network
backbones. Note that on Kinetics, HATNet even with ResNet18 as a backbone CNN performs al-
most comparable to SlowFast which is trained by dual 3D-ResNet50. In Table 5.9, however, while
SlowFast has better performance using dual 3D-ResNet101 architecture, HATNet obtains compara-
ble results with a much smaller backbone.
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Method Pre-Trained Dataset Backbone UCF101 HMDB51 Kinetics-400 Kinetics-600
Two Stream (spatial stream) Simonyan and Zisserman (2014) Imagenet VGG-M 73 40.5 -

RGB-I3D Carreira and Zisserman (2017) Imagenet Inception v1 84.5 49.8 -

C3D Tran et al. (2015) Sport1M VGG11 82.3 51.6 -
TSN Wang et al. (2016) Imagenet,Kinetics Inception v3 93.2 - 72.5
RGB-I3D Carreira and Zisserman (2017) Imagenet,Kinetics Inception v1 95.6 74.8 72.1

3D ResNext 101 (16 frames) Hara et al. (2018) Kinetics ResNext101 90.7 63.8 65.1
STC-ResNext 101 (64 frames) (chapter 4) Kinetics ResNext101 96.5 74.9 68.7
ARTNet Wang et al. (2018b) Kinetics ResNet18 93.5 67.6 69.2
R(2+1)D Tran et al. (2018b) Kinetics ResNet50 96.8 74.5 72
ir-CSN-101 Tran et al. (2019) Kinetics ResNet101 - - 76.7
DynamoNet Diba et al. (2019) Kinetics ResNet101 - - 76.8
SlowFast 4ˆ16 Feichtenhofer et al. (2019) Kinetics ResNet50 - - 75.6 78.8
SlowFast 16ˆ8* Feichtenhofer et al. (2019) Kinetics ResNet101 - - 78.9* 81.1
HATNet (32 frames) Kinetics ResNet50 96.8 74.8 77.2 80.2

X3D-XL Feichtenhofer (2020) Kinetics X3D - - 79.1 81.9
TimeSformer-L Bertasius et al. (2021) ImageNet-21K ViT - - 80.7 82.2
ViViT-L/16ˆ2 Arnab et al. (2021) Kinetics ViT - - 80.6 82.9
MViT-B, 32ˆ3 Fan et al. (2021b) Kinetics ViT - - 80.2 83.4
X-ViT (16ˆ) Bulat et al. (2021) Kinetics ViT - - 80.2 84.5
TokenLearner 16at12 (L/16) Ryoo et al. (2021) Kinetics ViT - - 82.1 84.4
HATNet (32 frames) HVU ResNet18 96.9 74.5 74.2 77.4
HATNet (16 frames) HVU ResNet50 96.5 73.4 76.3 79.4
HATNet (32 frames) HVU ResNet50 97.8 76.5 79.3 81.6

Table 5.9: State-of-the-art performance comparison on UCF101, HMDB51 test sets and Kinetics
validation set. The results on UCF101 and HMDB51 are average mAP over three splits, and for Ki-
netics(400,600) is Top-1 mAP on the validation set. For a fair comparison, we report the performance
of methods that utilize only RGB frames as input. It is important to note that the work discussed in
this chapter has been published in ECCV 2020 Diba et al. (2020). To provide a comprehensive
overview and better visibility of the trends in the field, we have also included recent state-of-the-art
methods that have been published subsequent to the publication date of this chapter. *SlowFast uses
multiple branches of 3D-ResNet with bigger backbones.

5.4.7 Video Captioning

We present a second task that showcases the effectiveness of our HVU dataset, we evaluate the
effectiveness of HVU for the video captioning task. We conduct experiments on a large-scale video
captioning dataset, namely MSR-VTT (Xu et al., 2016). We follow the standard training/testing
splits and protocols provided originally in the work by Xu et al. (2016). For video captioning, the
performance is measured using the BLEU metric.

Method and Results: Most of the state-of-the-art video captioning methods use models pre-trained
on Kinetics or other video recognition datasets. With this experiment, we intend to show another gen-
eralization capability of the HVU dataset where we evaluate the performance of pre-trained models
trained on HVU against Kinetics. For our experiment, we use the Controllable Gated Network (Wang
et al., 2019) method, which is to the best of our knowledge the state-of-the-art for captioning task.

For comparison, we considered two models of 3D-ResNet50, pre-trained on (i) Kinetics and
(ii) HVU. Table 5.10 shows that the model trained on HVU obtained better gains in comparison
to Kinetics. This shows HVU helps to learn more generic video representation to achieve better
performance in other tasks.
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Model Pre-Training Dataset BLEU@4

SA(VGG+C3D) Xu et al. (2016) ImageNet+Sports1M 36.6
M3(VGG+C3D) Wang et al. (2018a) ImageNet+Sports1M 38.1
SibNet(GoogleNet) Liu et al. (2018) ImageNet 40.9

MGSA(Inception+C3D) Chen and Jiang (2019) ImageNet+Sports1M 42.4
I3D+M Wang et al. (2019) Kinetics 41.7

3D-ResNet50+M Kinetics 41.8
3D-ResNet50+M HVU 42.7

Table 5.10: Captioning performance comparisons of the method by Wang et al. (2019) with different
models and pre-training datasets. M denotes the motion features from optical flow extracted as in the
original paper.

Model Pre-Training Dataset Clustering Accuracy (%)

3D-ResNet50 Kinetics 50.3
3D-ResNet50 HVU 53.5

HATNet HVU 54.8

Table 5.11: Video clustering performance: an evaluation based on extracted features from networks
pre-trained on Kinetics and HVU datasets.

5.4.8 Video Clustering

With this experiment, we evaluate the effectiveness of generic features learned using HVU when
compared to Kinetics.
Dataset: We conduct experiments on ActivityNet-100 (Caba Heilbron et al., 2015) dataset. For this
experiment, we provide results when considering 20 action categories with 1500 test videos. We
have selected the ActivityNet dataset to make sure there are no same videos in HVU and Kinetics
training set. For clustering, the performance is measured using clustering accuracy (Sharma et al.,
2019).
Method and Results: We extract features using 3D-ResNet50 and HATNet pre-trained on Kinetics-
600 and HVU for the test videos and then cluster them with KMeans clustering algorithm with the
given number of action categories. Table 5.11 clearly shows that the features learned using HVU are
far more effective compared to features learned using Kinetics.

5.5 Summary

In this chapter, we introduced the Holistic Video Understanding (HVU) dataset, a large-scale multi-
task, multi-label video benchmark dataset with comprehensive tasks and annotations. The HVU
dataset consists of 572k videos and 9M annotations, covering a wide range of labels including scenes,
objects, actions, events, attributes, and concepts. Through our experiments, we demonstrated the
potential of the HVU dataset in learning a generic video representation by applying it to three real-
world tasks: video classification, video captioning, and video clustering.

Additionally, we proposed a novel network architecture, HATNet, which combines 2D and 3D
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ConvNets to learn a robust spatio-temporal feature representation via multi-task and multi-label
learning in an end-to-end manner. Our findings suggest that the HVU dataset and HATNet archi-
tecture hold great promise for the advancement of holistic video understanding research.
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nstruments,music,tapping_guitar,bass,musical_instrument
_accessory,performance,string_instrument_accessory,elec
tric_guitar,sitting,monochrome_photography,musical_instru
ment,guitar_accessory,resonator

sport_venue,shoe,outdoor_shoe,joint,foot,ball,grass,knee,
human_leg,fun,football_player,ball_game,green,footwear,f
ootball,player,sports_equipment,juggling_soccer_ball,socc
er,plant,soccer_ball,sports,play

opening_bottle_not_wine_,joint,muscle,service,finger,distill
ed_beverage,fun,taste,standing,arm,t_shirt,glass,alcohol,d
rink,hand,bottle,photograph,cooking

smile,nose,textile,cheek,thigh,mouth,girl,diaper,finger,baby
_products,human_leg,fun,playing_xylophone,infant,toy,faci
al_expression,skin,child,hand,sitting,human_hair_color,day
time,play,toddler

coast,watercourse,plant,wetland,terrain,floodplain,marsh,w
ading_through_mud,boulder,tree,water,natural_resources,r
iver,rock,waterway,outcrop,shore,creek

Figure 5.7: Video frame samples from HVU with corresponding tags of different categories.
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mopping_floor,wood_stain,sleeve,design,man,wood,wood
_flooring,gentleman,standing,swab,facial_hair,shirt,outerw
ear,tartan,flooring,laminate_flooring,floor,dress_shirt,plaid,
angle

individual_sports,indoor_games_and_sports,joint,games,c
ombat_sport,weapon_combat_sports,leisure,net,fun,recrea
tion,martial_arts,epee,striking_combat_sports,fencing,com
petition,contact_sport,fencing_sport_,flooring,fencing_wea
pon,floor,sports,play

italian_food,food,pizza,making_pizza,appetizer,cuisine,piz
za_cheese,prosciutto,vegetable,darkness,sicilian_pizza,re
cipe,rectangle,european_food,flatbread

charcoal,campfire,shovel,smoke,outdoor_grill,fire,animal_s
ource_foods,barbecue_grill,grilling,winter,fun,ice,meat,coo
king_on_campfire,roasting,grass,barbequing

hand,multimedia,server,electronics,electronic_device,finge
r,computer_hardware,technology,assembling_computer,co
mputer_case,arm,magenta,text

bee_keeping,human,grass,backyard,outdoor_structure,wo
od,tree,forest,human_behavior,beekeeper,leaf,garden,bee,
yard,apiary,t_shirt,plant,beehive,male

Figure 5.8: More examples of video frame samples from HVU with corresponding tags of different
categories.
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In previous chapters, we explored various approaches to enhance model performance in video under-
standing by introducing innovative spatio-temporal modeling techniques, novel knowledge transfer
methods, and state-of-the-art architectures. However, the high computational cost and GFLOP re-
quirements often limit the effectiveness of advanced 3D Convolutional Neural Networks (CNNs).
To address this challenge, we propose a novel approach to reduce the computational complexity of
3D CNNs. In this chapter, we introduce a differentiable Similarity Guided Sampling (SGS) module
that can seamlessly integrate into existing 3D CNN architectures, enabling the utilization of adaptive
temporal feature resolutions (ATFR). The SGS module is designed to learn the similarity of temporal
features and group them accordingly, resulting in a variable temporal feature resolution optimized
for each specific input video clip. By incorporating the SGS module into 3D CNNs, we can sub-
stantially decrease their computational requirements while maintaining or even enhancing accuracy.
To demonstrate the effectiveness of our proposed SGS module, we conducted evaluations on various
datasets, including Kinetics-600, Kinetics-400, Mini-Kinetics, Something-Something V2, UCF101,
and HMDB51. By integrating the SGS module into multiple state-of-the-art 3D CNNs, we achieved
an average reduction in GFLOPs of approximately 50% while preserving high performance across
these diverse datasets.

6.1 Introduction

In recent years, there has been tremendous progress in video processing in the light of new and com-
plex deep learning architectures, which are based on variants of 3D Convolutional Neural Networks
(CNNs) (Tran et al., 2015; Feichtenhofer et al., 2019; Diba et al., 2017, 2018, 2019; Tran et al.,
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Figure 6.1: The difficulty of recognizing actions varies largely across videos. For videos with slow
motion (top), the temporal features that are processed within a 3D CNN can be highly redundant.
However, there are also very challenging videos where all features are required to understand the
content (bottom). While previous 3D CNNs use fix down-sampling schemes that are independent
of the input video, we propose a similarity guided sampler that groups and aggregates redundant
information of temporal features into B1 ď T feature maps. The core aspect is that this process
adapts the internal temporal resolution to the input video such that B1 is small if the input features
are redundant (top) and large (bottom) if most of the features are required.

2017; Feichtenhofer, 2020). They are trained for a specific number of input frames, typically be-
tween 16 to 64 frames. For classifying a longer video, they slide over the video and the outputs are
then aggregated. These networks, however, are often costly to train and heavy to deploy for inference
tasks. In order to reduce the inference time, Korbar et al. (2019) and Zhu et al. (2020) proposed to
process not all parts of a video with the same 3D CNN. While Korbar et al. (2019) train a second
network that decides for each chunk of input frames if it should be processed by the more expensive
3D CNN, Zhu et al. (2020) use a fixed scheme where a subset of the input chunks are processed by
an expensive 3D CNN and the other chunks by a less expensive 3D CNN. The latter then uses an
RNN to fuse the outputs of the different 3D CNNs. Although both approaches effectively reduce the
GFLOPS during inference, they increase the training time since two instead of one network need to
be trained. Furthermore, they do not reduce the computational cost of the 3D CNNs themselves.

In this work, we propose an approach that makes 3D CNNs more efficient for training and infer-
ence. Our proposal is based on the observation that the computational cost of a 3D CNN depends
on the temporal resolution it operates on at each stage of the network. While the temporal resolution
can be different at different stages, the schemes that define how the temporal resolution is reduced
are hard-coded and thus the same for all videos. However, it is impossible to define a scheme that
is optimal for all videos. If the temporal resolution is too much reduced, the network is forced to
discard important information for some videos. This results in a decrease in the action recognition
accuracy performance. Vice versa, a high temporal resolution results in highly redundant feature
maps and increases the computational time, which makes the 3D CNN highly inefficient for most
videos. In this work, we, therefore, address the question of how a 3D CNN can dynamically adapt
its computational resources in a way such that not more resources than necessary are used for each
input chunk.

In order to address this question, we propose to exploit the redundancy within temporal features
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such that 3D CNNs process and select the most valuable and informative temporal features for the ac-
tion classification task. In contrast to previous works, we propose to dynamically adapt the temporal
feature resolution within the network to the input frames such that on one hand important informa-
tion is not discarded and on the other hand no computational resources are wasted for processing
redundant information. To this end, we propose a Similarity Guided Sampling (SGS) mechanism that
measures the similarity of temporal feature maps, groups similar feature maps together, and aggre-
gates the grouped feature maps into a single output feature map. The similarity guided sampling is
designed such that it is differentiable and number of output feature maps varies depending on the
redundancy of the temporal input feature maps as shown in Fig. 6.1. By integrating the similarity
guided sampling as an additional module within any 3D CNN, we convert the 3D CNN with fixed
temporal feature resolutions into a much more efficient dynamic 3D CNN with adaptive temporal
feature resolutions (ATFR). Note that this approach is complementary to the works by Korbar et al.
(2019) and Zhu et al. (2020), and the two static 3D CNNs used in these works can be replaced by
adaptive 3D CNNs. However, even with just a single 3D CNN with adaptive temporal feature resolu-
tions, we already achieve a higher accuracy and lower GFLOPs performance compared to the works
by Korbar et al. (2019) and Zhu et al. (2020).

We demonstrate the efficiency of 3D CNNs with adaptive temporal feature resolutions by
integrating the similarity guided sampler into the current state-of-the-art 3D CNNs, such as
R(2+1)D (Tran et al., 2018b), I3D (Carreira and Zisserman, 2017), and X3D (Feichtenhofer, 2020).
Our approach drastically decreases the GFLOPs by about half on average while the accuracy re-
mains nearly the same or gains improvements. In summary, the similarity guided sampler is capable
of significantly scaling down the computational cost of off-the-shelf 3D CNNs and therefore plays a
crucial role in real-world video-based applications.

6.2 Adaptive Temporal Feature Resolutions

Current state-of-the-art 3D CNNs operate at a static temporal resolution at all levels of the network.
Due to the redundancy of neighboring frames, traditional 3D CNN methods often down-sample
the temporal resolution inside the network. This helps the model to operate at a lower temporal
resolution and hence reduces the computation cost. The down-sampling, however, is static which has
disadvantages in two ways. First, a fixed down-sampling rate can discard important information, in
particular for videos with very fast motion as is for instance the case for ice hockey games. Second, a
fixed down-sampling rate might still include many redundant temporal features that do not contribute
to the classification accuracy as it is for instance the case for a video showing a stretching exercise.
We, therefore, propose a module that dynamically adapts the temporal feature resolution within the
network to the input video such that on one hand important information is not discarded and on the
other hand no computational resources are wasted for processing redundant information.

Fig. 6.1 illustrates a 3D CNN with adaptive temporal feature resolutions (ATFR). The core aspect
of ATFR is to fuse redundant information from a temporal sequence of features and extract only the
most relevant information in order to reduce the computational cost for processing a video. An
important aspect is that this approach is not static, i.e., the amount of information that is extracted
varies for each video as illustrated in Fig. 6.1. In order to achieve this, we propose a novel Similarity
Guided Sampling (SGS) mechanism that will be described in Sec. 6.3.

In principle, any 3D CNN can be converted into a CNN with adaptive temporal feature resolutions
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Figure 6.2: To learn the similarity of the feature maps, we map each temporal feature map It using
fspIq into an L-dimensional similarity space. After the mapping, Z P RTˆL contains all of the
feature maps represented as vectors in the similarity space. Afterward, we group similar vectors by
creating B similarity bins. Using the similarity bins, the sampler aggregates the similar feature maps
of each bin into the output feature map Ob.

by using our SGS module. Since the module is designed to control the temporal resolution within
the network for each video, it should be added to the early stages of a network in order to get the best
reduction of computational cost. For R(2+1)D (Tran et al., 2018b), for example, we recommend to
add SGS after the second ResNet block. This means that the temporal resolution is constant for all
videos before SGS, but it dynamically changes after SGS. We discuss different 3D CNNs with SGS
in Sec. 6.4.1.

6.3 Similarity Guided Sampling

The SGS is a differentiable module to sample spatially similar feature maps over the temporal dimen-
sion and aggregate them into one feature map. Since the number of output feature maps is usually
lower than the input feature maps, i.e., B1 ă T , redundant information is removed as illustrated in
Figure 6.2. The important aspect is that B1 is not constant, but it varies for each video. In this way,
we do not remove any information if there is no redundancy among the input feature maps.

This means that we need to a) learn the similarity of feature maps, b) group similar feature
maps, and c) aggregate the grouped feature maps. Furthermore, all these operations need to be
differentiable. We denote an input feature map for frame t by It P RCˆHˆW , where C, H , and W

denote the number of channels, height, and width, respectively. To learn the similarity of the feature
maps, we map each feature map It into an L-dimensional similarity space. This mapping fspItq is
described in Sec. 6.3.1. After the mapping, Z P RTˆL contains all feature maps in the similarity
space, which are then grouped and aggregated into B1 feature maps. The grouping of Zt is described
in Sec. 6.3.2 and the aggregation of the grouped features in Sec. 6.3.3.
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6.3.1 Similarity Space

The similarity space is a L dimensional vector space where each temporal input feature map is
represented by a vector Zt. The mapping is performed by the similarity network fspIq that consists
of a global average pooling layer and two convolutional layers. The pooling is applied over the
spatial dimension of the feature map while keeping the temporal dimension. Afterward two 1D

convolutional layers are applied with kernel sizes of 1 and output channel sizes C and L, respectively.

6.3.2 Similarity Bins

To group similar feature maps It, we use the magnitude of each vector Zt, i.e.,

∆t “ ||Zt|| (6.1)

and we consider two feature maps It and It1 similar if the value of ∆t and ∆t1 lie inside a similarity
bin. To make the grouping very efficient and differentiable, we propose a binning approach with
B similarity bins. We set B “ T such that no information is discarded if there is no redundancy
between the feature maps of all frames. For most videos, a subset of bins remain empty and will be
discarded such that the remaining bins, B1, will be less than B as it is described in Sec. 6.3.3.

We first estimate the half of the width of each similarity bin γ, by computing the maximum
magnitude ∆max and dividing it by the number of the desired bins B:

∆max “ maxp∆1, . . . ,∆T q, γ “
∆max

2B
. (6.2)

Having the width of the similarity bins, the center of each bin βb is estimated as follows:

βb “ p2b ´ 1qγ @b P p1, . . . , Bq. (6.3)

6.3.3 Differentiable Bins Sampling

The grouping and aggregation of all feature maps It based on the bins B will be done jointly by
sampling temporal feature maps which belong to the same similarity bin and add them together.
We denote the aggregated feature maps for each bin b by Ob P RCˆHˆW . To make the process
differentiable, we use generic differentiable sampling kernels Ψp., βbq that are defined such that a
sampler only samples from the input temporal feature map It if ∆t lies in the similarity bin b. This
can be written as:

Ob “

T
ÿ

t“1

ItΨp∆t, βbq. (6.4)

Theoretically, any differentiable sampling kernel that has defined gradients or sub-gradients with
respect to ∆t can be used. In our experiments, we evaluate two sampling kernels. The first kernel is
based on the Kronecker-Delta function δ:

Ob “
1

řT
t“1 δ

´Y

|∆t´βb|

γ

]¯

T
ÿ

t“1

Itδ
ˆZ

|∆t ´ βb|

γ

^˙

. (6.5)
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The kernel averages the feature maps that end in the same bin. As second kernel, we use a linear
sampling kernel:

Ob “

T
ÿ

t“1

Itmax

ˆ

0, 1 ´
|∆t ´ βb|

γ

˙

. (6.6)

The kernel gives a higher weight to feature maps that are closer to βb and less weights to feature
maps that are at the boundary of a bin. While we evaluate both kernels, we use the linear kernel by
default.

After the sampling, some bins remain empty, i.e., Ob “ 0. We drop the empty bins and denote
by B1 the bins that remain. Note that B1 varies for each video as illustrated in Fig. 6.1. In our
experiments we show that the similarity guided sampling can reduce the GFLOPS of a 3D CNN by
over 47% in average, making 3D CNNs suitable for applications where they are computationally
expensive.

6.3.4 Backpropagation

Using differentiable kernels for sampling, gradients can be backpropagated through both O and ∆,
where ∆ is the magnitude of the similarity vectors Z which are the outputs of fsp.q. Therefore, we
can backpropagate through fsp.q. For the linear kernel (6.6), which we use if not otherwise specified,
the gradient with respect to It is given by

BOb

BIt
“ max

ˆ

0, 1 ´
|∆t ´ βb|

γ

˙

(6.7)

and the gradient with respect to ∆t is given by

BOb

B∆t
“ It

$

’

’

&

’

’

%

0 |βb ´ ∆t| ě γ
1
γ βb ´ γ ă ∆t ď βb

´ 1
γ βb ă ∆t ă βb ` γ

. (6.8)

Note that for computing the sub-gradients (6.8) only the kernel support region for each output bin
needs to be considered. The sampling mechanism can therefore be efficiently implemented on GPUs.

6.4 Experiments

We evaluate our proposed method on the action recognition benchmarks Mini-Kinetics (Xie et al.,
2018b), Kinetics-400 (Kay et al., 2017), Kinetics-600 (Carreira et al., 2018), Something-Something-
V2 (Goyal et al., 2017b), UCF-101 (Soomro et al., 2012), and HMDB-51 (Kuehne et al., 2011). For
these datasets, we use the standard training/testing splits and protocols provided by the datasets.

6.4.1 Implementation Details

3D CNNs with ATFR. Similarity guided sampling (SGS) is a differentiable module that can be easily
implemented in current deep learning frameworks. We have implemented our SGS module as a new
layer in PyTorch which can be easily added to any 3D CNN architecture. To better evaluate the SGS,
we have added it to various backbones, such as R(2+1)D (Tran et al., 2018b), I3D (Carreira and
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Zisserman, 2017), X3D (Feichtenhofer, 2020), and a modified 3DResNet. We place our SGS layer
on the second stage of the backbone models. For all of the X3D based models, we follow the training,
testing, and measurement setting by Feichtenhofer (2020) unless mentioned otherwise. Additional
details and codes are available online.1

Training. Our models on Mini-Kinetics, Kinetics-400, and Kinetics-600 are trained from scratch
using randomly initialized weights without any pre-training. However, we fine-tune on Something-
Something-V2, UCF-101, and HMDB-51 with models pre-trained on Kinetics-400. We trained our
models using SGD with momentum 0.9 and a weight decay of 0.0001 following the setting of Fe-
ichtenhofer et al. (2019). For Kinetics and Mini-Kinetics, we use a half-period cosine schedule
(Loshchilov and Hutter, 2017) with a linear warm-up strategy (Goyal et al., 2017a) to adapt the
learning rate over 196 epochs of training. During training, we randomly sample 32 frames from a
video with input stride 2. For spatial transformations, we first scale the shorter side of each frame
with a random integer from the interval between 256 and 320 (Wang et al., 2018c; Feichtenhofer
et al., 2019; Simonyan and Zisserman, 2015) then we apply a random cropping with size 224 ˆ 224

to each frame. Furthermore, each frame is horizontally flipped with the probability of 0.5.
Testing. We follow Wang et al. (2018c) and Feichtenhofer et al. (2019), and uniformly sample

10 clips from each video for inference. The shorter side of each clip is resized to 256 and we extract
3 random crops of size 256 ˆ 256 from each clip. For the final prediction, we average the softmax
scores of all clips.

Measurements. We report top-1 and top-5 accuracy. To measure the computational efficiency
of our models, we report the complexity of the models in GFLOPS based on a single input video
sequence of 32 frames and spatial size 224 ˆ 224 for validation and 256 ˆ 256 for testing. As shown
in Fig. 6.3, 3D CNNs with ATFR adapt the temporal feature resolutions and the GFLOPs vary for
different clips. For ATFR models, we therefore report the average GFLOPs.

6.4.2 Ablation Experiments

We first analyze different setups for our SGS module. Then, we analyze the efficiency and effect of
using our SGS module in different 3D CNN models. If not otherwise specified, we use 3DResNet-18
as 3D CNNs backbones and report the results on the Mini-Kinetics validation set.

6.4.2.1 Different Similarity Measurements

As mentioned in Sec. 6.3.2, we use the magnitude of the embedding vectors as the similarity mea-
surement to create the similarity bins. The embedding vectors are represented in an L dimensional
space. Instead of magnitudes, we can use other measures such as the directions of the vectors. To
better study this, we convert the Cartesian coordinates of the vectors to spherical coordinates. In an L

dimensional space, a vector is represented by 1 radial coordinate and L ´ 1 angular coordinates. To
use the spherical coordinates of the vectors for creating the similarity bins, we use multi-dimensional
bins and sampling kernels.

We report the results in Table 6.1. As can be seen, using the magnitudes of the vectors results in
a better accuracy compared to angular coordinates or spherical coordinates. We believe that due to
the similarity of the neighboring video frames using only magnitudes of the vectors for the similarity

1https://SimilarityGuidedSampling.github.io

https://SimilarityGuidedSampling.github.io
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Figure 6.3: Histogram of active bins for 3DResNet-50 + ATFR on the Mini-Kinetics validation set.
The y-axis corresponds to the number of clips and the x-axis to the number of active bins B1.

Similarity Magnitude Angular Spherical
top1 69.6 68.5 68.7
top5 88.8 87.8 88.1

Table 6.1: Impact of the similarity measure for 3DResNet-18 + ATFR on Mini-Kinetics with linear
sampling kernel. We show top-1 and top-5 classification accuracy (%).

measurement is enough and angular or spherical coordinates add too much of complexity to the
model. In all of the experiments, the number of bins B is equal to 32. For the angular coordinates,
we divide the angles into 4 and 8 bins p4 ˆ 8q. For the spherical coordinates, we divide the radial
coordinate into 2 and the angular coordinates into 4 and 4 bins p2 ˆ 4 ˆ 4q.

6.4.2.2 Different Sampling Kernels

As mentioned in Sec. 6.3.3, we can use different differentiable sampling kernels (6.4). We evalu-
ate two different sampling kernels, namely the Kronecker-Delta sampling kernel (6.5) and the lin-
ear sampling kernel (6.6). As can be seen in Table 6.2, the linear kernel performs better than the
Kronecker-Delta kernel. The slight superiority of the linear kernel is due to the higher weighting of
the temporal feature maps that are closer to the center of the bins. We use the linear kernel for the
rest of the paper.
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Kernel Linear Kronecker
top1 69.6 68.9
top5 88.8 88.6

Table 6.2: Impact of the sampling kernel.

L 1 4 8 16
top1 67.3 68.4 69.6 64.7
top5 87.7 88.1 88.8 86.1

Table 6.3: Impact of the dimensionality L of the similarity space.

6.4.2.3 Embedding Dimension

As mentioned in Sec. 6.3.1, we map the temporal feature maps into an L-dimensional similarity
space. In Table 6.3, we quantify the effect of L. The accuracy increases as L increases until L “ 8.
For L “ 16 the dimensionality is too large and the similarity space tends to overfit. The model with
L “ 1 is a special case since it can be considered as a direct prediction of ∆t (6.1) without mapping
the temporal features into a similarity space Zt. The results show that using a one dimensional
embedding space results in a lower accuracy, which demonstrates the benefit of the similarity space.

6.4.2.4 Different Input Frame-rates

It is an interesting question to ask how a 3D CNN with ATFR performs when the number of input
frames or the stride changes for inference. To answer this question, we train two 3D CNNs with
ATFR and two without ATFR using 32 input frames and a sampling stride of 2, which corresponds
to a temporal receptive field of 64 frames. For inference, we then change the number of frames to 64
and/or the stride to 1.

As it can be seen in Table 6.4, increasing the input frames from 32 to 64 improves the accuracy
of all models. This improvement in accuracy is due to the increase in the temporal receptive field
over the input frames while keeping the temporal input resolution. However, the computation cost
of the models without ATFR increases as expected by factor 2. If ATFR is used, the increase is
only by 1.7 and 1.5 for R(2+1)D+ATFR and 3DResNet-18+ATFR. By comparing R(2+1)D with
R(2+1)D+ATFR, we see how ATFR drastically reduces the GFLOPS from 46.5 to 32.3 for 32 frames
and from 93.1 to 54.9 for 64 frames. This shows that more frames also increase the redundancy
and ATFR efficiently discards this redundancy. Furthermore, it demonstrates that ATFR is robust to
changes of the frame-rate and number of input frames.

It is also interesting to compare the results for 32 frames with stride 2 to the results for 64 frames
with stride 1. In both cases, the temporal receptive field is 64. We can see the efficiency of our method
in adapting the temporal resolution compared to the traditional static frame-rate sampling methods,
i.e., 3DResNet-18+ATFR operates on average with 21.1 GFLOPs for 64 input frames compared to
SlowFast with GFLOPs of 30.9 (32) and 61.8 (64), and R(2+1)D with GFLOPs of 46.5 (32) and 93.1
(64).
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model input frames GFLOPs
top1 top5

stride
1 2 1 2

SlowFast-8x8-ResNet18
32 30.9 67.5 69.7 87.1 89.1
64 61.8 (2.0) 72.1 74.6 89.9 91.9

R(2+1)D
32 46.5 67.4 69.3 86.2 87.5
64 93.1 (2.0) 70.8 73.7 88.8 91.5

R(2+1)D+ATFR
32 32.3 67.4 69.3 86.4 87.6
64 54.9 (1.7) 71.4 73.8 88.6 90.7

3DResNet-18+ATFR
32 14.0 67.3 69.6 87.1 88.8
64 21.1 (1.5) 72.1 74.8 89.8 91.4

Table 6.4: Impact of the stride and number of input frames during inference. All models are trained
with 32 frames and stride 2.

Lowest Temporal Resolution Highest Temporal Resolution
presenting weather forecast passing American football (in game)
stretching leg swimming breast stroke
playing didgeridoo playing ice hockey
playing clarinet pushing cart
golf putting gymnastics tumbling

Table 6.5: The 5 action classes with lowest and highest required adaptive temporal resolution for
3DResNet-50 + ATFR on Mini-Kinetics.

6.4.2.5 Adaptive Temporal Feature Resolutions

As shown in Fig. 6.3, the temporal feature resolutions vary for different clips. In order to analyze how
the temporal feature resolution relates to the content of a video, we report in Table 6.5 the 5 action
classes with lowest adaptive temporal feature resolution (ă12) and highest adaptive temporal feature
resolution (ą20). As in Fig. 6.3, the results are for the 3DResNet-50+ATFR on the Mini-Kinetics
validation set. As it can be seen, the actions with less movements like ‘presenting weather forecast’
result in a low temporal resolution while actions with fast (camera) motions like ‘passing American
football (in game)’ result in a high temporal resolution.

6.4.2.6 SGS Placement

To evaluate the effect of the location of our SGS module within a 3D CNN, we add it to different
stages of X3D-S (Feichtenhofer, 2020) and train it on Mini-Kinetics. As it can be seen in Table
6.6, adding SGS to the first stage of X3D-S drastically reduces the GFLOPs by 52.6% (2.1ˆ) while
getting slightly lower accuracy. On the other hand, adding SGS after the 2nd stage results in a 42.1%
reduction of GFLOPs and slightly higher accuracy. The same accuracy and growth in GFLOPs occurs
when SGS is added after the 3rd stage.
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Stage No SGS First Conv Res2 Res3
top1 77.9 77.8 78.0 78.0

GFLOPs 1.9 0.9 1.1 1.3

Table 6.6: Evaluating the result of adding our SGS layer to different stages of a X3D-S network on
Mini-Kinetics.

model backbone GFLOPs top1 top5
Fast-S3D Xie et al. (2018b) - 43.5 78.0 -
SlowFast 8x8 ResNet18 40.4 77.5 93.3
SlowFast 8x8 ResNet50 65.7 79.3 94.2

R(2+1)D ResNet50 101.8 78.7 93.4
R(2+1)D+ATFR ResNet50 67.3 78.2 92.9
I3D ResNet50 148.4 79.3 94.4
I3D+ATFR ResNet50 105.2 78.8 93.6
X3D-S - 1.9 77.9 93.4
X3D-S+ATFR - 1.1 78.0 93.5
3DResNet ResNet50 40.8 79.2 94.6
3DResNet+ATFR ResNet50 23.4 79.3 94.6

Table 6.7: Comparison with state-of-the-art methods on Mini-Kinetics. The accuracy for Fast-S3D
(Xie et al., 2018b) is reported with 64 frames.

6.4.3 Mini-Kinetics

Mini-Kinetics is a smaller dataset compared to the full Kinetics-400 dataset (Kay et al., 2017) and
consists of 200 categories. Since some videos on YouTube are not accessible, the training and vali-
dation set contain 144,132 and 9182 video clips, respectively. Table 6.7 shows the results on Mini-
Kinetics. We add the SGS module to four 3D CNNs R(2+1)D (Tran et al., 2018b), I3D (Carreira
and Zisserman, 2017), X3D (Feichtenhofer, 2020), and 3DResNet. In all cases, ATFR drastically
reduces the GFLOPS while the accuracy remains nearly the same. For X3D, the accuracy even
increases marginally.

6.4.4 Kinetics-400

We also evaluate ATFR with state-of-the-art 3D CNNs on Kinetics-400 (Kay et al., 2017), which
contains „240k training and „20k validation videos of 400 human action categories. Table 6.8
shows the comparison with the state-of-the-art. We add the SGS module to the state-of-the-art 3D
CNNs SlowFast (Feichtenhofer et al., 2019) and three versions of X3D (Feichtenhofer, 2020).

As it can be seen, our SGS module drastically decreases the GFLOPs of all 3D CNNs. In contrast
to Mini-Kinetics, it even improves the accuracy for all 3D CNNs. We will see that this is the case
for all large datasets. For X3D-XL (Feichtenhofer, 2020), we observe a „45% reduction in GFLOPs
and 0.2% improvement in accuracy. We can see that X3D-XL+ATFRβ requires similar GFLOPs
compared to X3D-Lβ (Feichtenhofer, 2020) while providing a higher accuracy by 1.8%. We can
also see that X3D-XL+ATFRα requires drastically less GFLOPs compared to X3D-Lβ (Feichten-
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Figure 6.4: Accuracy vs. GFLOPs for the Kinetics-400 validation set.

hofer, 2020) while getting a higher accuracy by 1.1%. In comparison to the computational heavy
SlowFast16ˆ8,R101+NL (Feichtenhofer et al., 2019), X3D-XL+ATFRβ gets comparable top-1 ac-
curacy while having 8.9ˆ less GFLOPs.

Comparing the 3D CNNs with ATFR to SCSampler (Korbar et al., 2019) and FASTER (Zhu
et al., 2020), which require training two networks, our approach with a single adaptive 3D CNN
achieves a higher accuracy and lower GFLOPs. Note that our approach is complementary to the
methods by Korbar et al. (2019) and Zhu et al. (2020), and the two static 3D CNNs used in these
works can be replaced by adaptive 3D CNNs. Nevertheless, our approach outperforms these works
already with a single 3D CNN. Fig. 6.4 shows the accuracy/GFLOPs trade-off for a few 3D CNNs
with and without ATFR.

6.4.5 Kinetics-600

We also evaluate our approach on the Kinetics-600 dataset (Carreira et al., 2018). As shown in
Table 6.9, ATFR shows a similar performance as on Kinetics-400. Our SGS module drastically
decreases the GFLOPs of all 3D CNNs while improving their accuracy. For X3D-XL (Feichtenhofer,
2020), we observe a „47.1% reduction of GFLOPs and a slight improvement in accuracy. The
best model X3D-XL+ATFR achieves state-of-the-art accuracy. Note that the average GFLOPs of
X3D-XL+ATFR are even lower on Kinetics-600 compared to Kinetics-400. This shows that the
additional videos of Kinetics-600 are less challenging in terms of motion, which is also reflected
by the higher classification accuracy. Compared to SlowFast16ˆ8, R101+NL (Feichtenhofer et al.,
2019), it requires about 9ˆ less GFLOPs.

6.4.6 Something-Something-V2

We finally provide results for the Something-Something V2 dataset (Goyal et al., 2017b). It contains
169K training and 25K validation videos of 174 action classes that require more temporal modeling
compared to Kinetics. Following Wu et al. (2020), we use a R50-SlowFast model pre-trained on
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Kinetics-400 with 64 frames for the fast pathway, the speed ratio of α “ 4, and channel ratio β “ 1{8.
Similar to Kinetics, the SGS module reduces the GFLOPs by 33.9% while keeping the accuracy
almost the same.

6.4.7 UCF101 and HMDB51 Results

UCF-101 (Soomro et al., 2012) contains 13K videos with 101 action classes. It is split into 3 splits
with around 9.5K videos in each. For this dataset, we report the average accuracy over three splits.

HMDB-51 (Kuehne et al., 2011) has about 7000 videos with 51 action classes. It contains 3 splits
for training and validation. Similar to UCF-101, we report the average accuracy over three splits.
Table 6.11 shows the results on UCF-101 and HMDB51. The GFLOPs of our 3DResNet-R50+ATFR
on UCF-101 and HMDB-51 are 22.2 and 23.1, respectively. As it can be seen, 3DResNet+ATFR gets
comparable results compared to other 3D CNNs while having less GFLOPs as discussed in the paper.

6.4.8 Implementation Details

Modified 3DResNet-18 The architecture of our modified 3DResNet-18 is shown in Table 6.12. In
the case of 3DResNet-18+ATFR, we place SGS after the ResBlock 2.
SlowFast-8x8-R50+ATFR Following Wu et al. (2020) for training on the Something-Something-V2
dataset, the input temporal length to the SlowFast-8x8-R50+ATFR is set to 64. Due to the intensive
size of the temporal domain, we limit the the temporal domain size of the SGS for each path-way.
For the fast path-way we set the temporal domain size to 8. In other words, SGS is applied over
temporal blocks with temporal length of 8 and temporal stride of 8. For the slow path-way we set the
temporal domain size to 2. Since we drop zero bins in SGS, this may cause size mismatch for fusion
in lateral connections. We therefore zero pad the smaller size tensors to the bigger ones.

6.4.9 Runtime

To evaluate the runtime, we use X3D-S as the base model and report the runtimes for training and
inference. As shown in Table 6.13, SGS reduces the training time on Kinetics by 10h. The ATFR
equipped model processes almost 51% more frames per second (fps) during inference. Our approach
also requires less memory and we can use a larger batch size (BS), namely 256 instead of 208. This
shows that the proposed approach substantially reduces GFLOPs, training and inference time, and
memory usage.

6.4.10 Different number of bins

The number of sampling bins B controls the maximum number of possible output feature maps of
the SGS module. By setting B “ T , the SGS module can keep all feature maps in case it is needed.
To study the effect of changing B, we have evaluated the model performance by changing B during
training and inference. The base model is the 3DResNet-18 (Fig. 6.12) trained on Mini-Kinetics.
As it can be seen in Table 6.14, reducing B decreases the accuracy, but also the GFLOPS. This is
expected since SGS is forced to discard information for each video if B ă T even if there is no
redundancy among the feature maps.

As a second experiment, we change the number of bins only for inference while we train the
model with B “ 32. This setting is interesting since it shows how flexible the approach is and if
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GFLOPS can be reduced at inference time without the need to retrain the model. The results are
shown in Table 6.15. If we compare the results with Table 6.14, we observe that the accuracy for
training with B “ 32 and testing with B “ 16 is only slightly lower than training and testing with
B “ 16. This shows that the GFLOPS can be reduced on the fly if it is required. However, if
the difference between the number of bins during training and during inference is getting larger, the
accuracy drops.

6.4.11 Cartesian/Spherical Coordinates

As mentioned in Sec. 5.2.1, we use the magnitude of the embedding vectors as the similarity mea-
surement to create the similarity bins. Instead of magnitudes, we can use other measures. While the
results are reported in Table 1, we describe how the approach works with spherical coordinates.

To use the spherical coordinates of the vectors for creating the similarity bins, we use multi-
dimensional bins and sampling kernels. In an L dimensional spherical coordinate system, we can use
different subsets of coordinates for ∆k

t with the varying number of elements K to create similarity
bins, e.g., K “ L when using all of the coordinates, K “ L ´ 1 when using angular coordinates, or
K “ 1 when using the radial coordinate only. Therefore, similar to Eq. (2) and (3) of the paper, we
can estimate βk

b for every ∆k.
By using a sampling kernel Ψp∆k

t , β
k
b q as in Eq. (4) of the paper but for each k, a differentiable

multi-dimensional sampling operation can be defined by

Ob “

T
ÿ

t“1

It
K

ź

k“1

Ψp∆k
t , β

k
b q. (6.9)

6.4.12 Similarity Guided Sampling Visualization

The SGS layer aggregates similar input temporal feature maps into the same output feature map. To
better understand such aggregation operation, we have visualized the input and output feature maps
of the SGS layer in Figure 6.5. We have used a 3DResNet-50+ATFR trained on the Mini-Kinetics
dataset. The sampling kernel used in this experiment is the linear kernel and the number of bins is
set to 32. As it can be seen in Figure 6.5, the input temporal feature maps are aggregated to 4 output
feature maps. The aggregated feature maps contain both the spatial and temporal information. In this
example, the 4th channel of the aggregated feature maps capture some motion flow that can be seen
in the visualization.

6.4.13 Comparison to Attention/Gating Mechanisms

To better analyze the effect of our similarity guided sampling mechanism, we add attention modules
to the base model and compare the final accuracy and GFLOPs to the base model and the ATFR
model. To this end, we use a temporal attention mechanism following Chen et al. (2018). Similar
to our SGS module, we add this attention module on top of the ResBlock2. As it can be seen in
Table 6.16, the model equipped with the attention module achieves similar accuracy while requiring
higher GFLOPs compared to the model equipped with SGS. The reason for such a great difference in
GFLOPs is that attention modules perform a weighting of the features, while our approach clusters
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and reduces features. If all features are the same, the attention module should weight them equally
while our approach reduces them to one feature.

6.5 Summary

Designing computationally efficient deep 3D convolutional neural networks for video understanding
is a challenging task. In this chapter, we proposed a novel trainable module called Similarity Guided
Sampling (SGS) to increase the efficiency of 3D CNNs for action recognition. The new SGS module
selects the most informative and distinctive temporal features within a network such that as many
temporal features as needed but not more than necessary are used for each input clip. By integrating
SGS as an additional layer within current 3D CNNs, which use static temporal feature resolutions,
we can convert them into much more efficient 3D CNNs with adaptive temporal feature resolutions
(ATFR). We evaluated our approach on six action recognition datasets and integrated SGS into five
different state-of-the-art 3D CNNs. The results demonstrate that SGS drastically decreases the com-
putation cost (GFLOPS) between 33% and 53% without compromising accuracy.
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model GFLOPs top1
I3D˚ Carreira and Zisserman (2017) 108ˆ N/A 71.1
I3D+SCSampler˚ Korbar et al. (2019) 108ˆ10+N/A 75.1
Two-Stream I3D˚ Carreira and Zisserman (2017) 216ˆN/A 75.7
Two-Stream S3D-G˚ Xie et al. (2018b) 143ˆN/A 77.2
TSM R50˚ Lin et al. (2019) 65ˆ10 74.4

Two-Stream I3D Carreira and Zisserman (2017) 216ˆN/A 75.7
R(2+1)D Tran et al. (2018b) 152ˆ115 72.0
Two-Stream R(2+1)D Tran et al. (2018b) 304ˆ115 73.9
FASTER32 Zhu et al. (2020) 67.7ˆ8 75.3
SlowFast8ˆ8,R101+NL Feichtenhofer et al. (2019) 116ˆ30 78.7
SlowFast16ˆ8,R101+NL Feichtenhofer et al. (2019) 234ˆ30 79.8
X3D-Lα Feichtenhofer (2020) 18.3ˆ10 76.8
X3D-Lβ Feichtenhofer (2020) 24.8ˆ30 77.5

SlowFast4ˆ16,R50 Feichtenhofer et al. (2019) 36.1ˆ30 75.6
SlowFast4ˆ16,R50+ATFR 20.8 ˆ 30 pÓ 42%q 75.8
X3D-Sα Feichtenhofer (2020) 1.9ˆ10 72.9
X3D-S+ATFRα 1.0 ˆ 10 pÓ 47%q 73.5
X3D-XLα Feichtenhofer (2020) 35.8ˆ10 78.4
X3D-XL+ATFRα 20 ˆ 10 pÓ 44%q 78.6
X3D-XLβ Feichtenhofer (2020) 48.4ˆ30 79.1
X3D-XL+ATFRβ 26.3 ˆ 30 pÓ 45%q 79.3
HATNET (chapter 5) 45.8ˆ10 79.3
HATNET+ATFR 28.8 ˆ 10pÓ 37%q 79.3

Swin-L (384) Liu et al. (2022) 2107ˆ50 84.9
TokenLearner 16at18 (L/10) Ryoo et al. (2021) 4076ˆ12 85.4

Table 6.8: Comparison to the state-of-the-art on Kinetics-400. Following Feichtenhofer (2020),
we apply two testing strategies: α samples uniformly 10 clips; β takes additionally 3 spatial crops
for each sampled clip. For both setups, spatial scaling and cropping settings are as in the work by
Feichtenhofer (2020). ˚ denotes models pretrained on ImageNet. It is essential to highlight that the
research presented in this chapter has been published in CVPR 2021 (Fayyaz et al., 2021). To offer
a comprehensive overview and enhanced understanding of the current trends in the field, we have
incorporated recent state-of-the-art methods published after the publication date of this chapter.
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model pretrain GFLOPs top1
Oct-I3D+NL Carreira and Zisserman (2017) ImageNet 25.6ˆ30 76.0
I3D Carreira and Zisserman (2017) - 108ˆ N/A 71.9
SlowFast16ˆ8,R101+NL Feichtenhofer et al. (2019) - 234ˆ30 81.8
SlowFast4ˆ16,R50 Feichtenhofer et al. (2019) - 36.1ˆ30 78.8

HATNET (chapter 5) - 45.8ˆ10 81.6
HATNET+ATFR - 28.8 ˆ 10pÓ 37%q 81.6
X3D-M Feichtenhofer (2020) - 6.2ˆ30 78.8
X3D-M+ATFR - 3.3 ˆ 30 pÓ 46%q 79.0
X3D-XL Feichtenhofer (2020) - 48.4ˆ30 81.9
X3D-XL+ATFR - 25.6 ˆ 30 pÓ 47%q 82.1

Swin-L (384) Liu et al. (2022) ImageNet-21K 2107ˆ50 86.1
TokenLearner 16at18 (L/10) Ryoo et al. (2021) JFT 4076ˆ12 86.1

Table 6.9: Comparison to the state-of-the-art on Kinetics-600. It is essential to highlight that the
research presented in this chapter has been published in CVPR 2021 (Fayyaz et al., 2021). To offer
a comprehensive overview and enhanced understanding of the current trends in the field, we have
incorporated recent state-of-the-art methods published after the publication date of this chapter.

model pretrain GFLOPs top1 top5
SlowFast-R50 Wu et al. (2020) Kinetics400 132.8 61.7 87.8
SlowFast-R50+ATFR Kinetics400 87.8 (Ó 33%) 61.8 87.9

Table 6.10: Results for the Something-Something-V2 dataset.

model backbone UCF101 HMDB51
C3D Tran et al. (2015) RenNet18 89.8 62.1
RGB-I3D Carreira and Zisserman (2017) Inception V1 95.6 74.8
R(2+1)D Tran et al. (2018b) ResNet50 96.8 74.5
DynamoNet Diba et al. (2019) ResNet101 96.6 74.9
HATNet Diba et al. (2020) ResNet50 97.8 76.5
3DResNet+ATFR ResNet50 97.9 76.7

Table 6.11: Comparison with other methods on UCF101 and HMDB51.
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stage layer output size

raw - 32 ˆ 244 ˆ 224
conv1 5 ˆ 7 ˆ 7, 8, stride 1, 2, 2 32 ˆ 112 ˆ 112
pool1 1 ˆ 3 ˆ 3, max, stride 1, 2, 2 32 ˆ 56 ˆ 56

res2

»

–

3 ˆ 1 ˆ 1, 8

1 ˆ 3 ˆ 3, 8

1 ˆ 1 ˆ 1, 32

fi

fl ˆ 2 32 ˆ 56 ˆ 56

res3

»

—

–

1 ˆ 1 ˆ 1, 64

1 ˆ 3 ˆ 3, 64

1 ˆ 1 ˆ 1, 256

fi

ffi

fl

ˆ 2 32 ˆ 28 ˆ 28

res4

»

—

–

1 ˆ 1 ˆ 1, 128

1 ˆ 3 ˆ 3, 128

1 ˆ 1 ˆ 1, 512

fi

ffi

fl

ˆ 2 32 ˆ 14 ˆ 14

res5

»

—

–

3 ˆ 1 ˆ 1, 256

1 ˆ 3 ˆ 3, 256

1 ˆ 1 ˆ 1, 1024

fi

ffi

fl

ˆ 2 32 ˆ 7 ˆ 7

global average pool, fc 1 ˆ 1 ˆ 1

Table 6.12: Modified 3DResNet-18

Model Train Inference (fps)
X3D-S 131h 2834
X3D-S+ATFR 121h 4295

Table 6.13: Runtime on Kinetics-400.

B 4 8 16 32
top1 61.4 64.7 64.7 69.6
top5 86.3 85.8 86.2 88.8

GFLOPs 3.5 4.2 5.5 14.0

Table 6.14: Ablations on the effect of changing the numbers of bins B for 3DResNet-18+ATFR on
Mini-Kinetics. The model is trained and validated for different number of bins. We show top-1 and
top-5 classification accuracy (%).

B 4 8 16 32
top1 51.1 61.4 64.4 69.6
top5 75.1 83.5 85.5 88.8

GFLOPs 3.5 5.0 8.0 14.0

Table 6.15: Ablations on the effect of changing the numbers of bins B only during inference for
3DResNet-18+ATFR on Mini-Kinetics. The model is trained with 32 bins, but inference is performed
with a different number of bins. We show top-1 and top-5 classification accuracy (%).
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32 Input 
Frames

Feature-maps 
0 to 4 before 
the SGS

Aggregated 
feature-maps 
0 to 4 after 
the SGS

t=2 t=5 t=10 t=13 t=18 t=23 t=26 t=29

Convolutional layers 
before the SGS

Convolutional layers after the SGS

Figure 6.5: Visualization of the feature maps of 3DResNet-50+ATFR with linear kernel. In the
first row, 8 frames out of 32 input frames are shown. The corresponding temporal feature maps of
ResBlock 2 are depicted in the second row. The third row shows the aggregated feature maps after
the SGS. Note that we only show the first 4 channels of the feature maps for better visualization.
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Model top1 GFLOPs
X3D-S 77.9 1.9
X3D-S+ATFR 78.0 1.1
X3D-S+Temporal Attention 78.3 1.9

Table 6.16: Comparison with attention modules. The models are trained and tested on the Mini-
Kinetics dataset.
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In the previous chapter, we demonstrated the effectiveness of adaptively adjusting temporal feature
resolutions in 3D Convolutional Neural Networks (CNNs) for improved efficiency. In this chapter,
we present a method for similarly optimizing the efficiency of state-of-the-art vision transformers
through the use of an Adaptive Token Sampler (ATS) module. Vision transformer models have
achieved impressive results on a range of vision tasks, including image and video classification, but
their high computational demands and GFLOP requirements can be limiting. While the GFLOPs of a
vision transformer can be reduced by decreasing the number of tokens within the network, there is no
optimal setting that applies to all input images or videos. The proposed ATS module addresses this
issue by scoring and adaptively sampling significant tokens, resulting in a variable number of tokens
that is optimized for each individual input image. By integrating the ATS module into transformer
blocks, we are able to significantly improve the efficiency of vision transformers without sacrificing
accuracy. Importantly, the ATS module is parameter-free and can be easily incorporated into pre-
trained vision transformers as a plug-and-play module, enabling the reduction of GFLOPs without
the need for additional training. Additionally, the differentiable design of the ATS module allows for
the training of a vision transformer equipped with the module. In our evaluations on the ImageNet,
Kinetics-400, and Kinetics-600 datasets, we demonstrate the effectiveness of the ATS module in
both image and video classification tasks by integrating it into multiple state-of-the-art vision trans-
formers, achieving a reduction in GFLOPs of approximately a factor of 2 while preserving strong
performance.

7.1 Introduction

Over the last ten years, there has been a tremendous progress on image and video understanding in
the light of new and complex deep learning architectures, which are based on the variants of 2D (He
et al., 2016a; Simonyan and Zisserman, 2015; Krizhevsky et al., 2012) and 3D (Tran et al., 2015;
Feichtenhofer et al., 2019; Diba et al., 2018, 2019; Tran et al., 2017; Feichtenhofer, 2020) Convo-
lutional Neural Networks (CNNs). Recently, vision transformers have shown promising results in
image classification (Dosovitskiy et al., 2021; Touvron et al., 2021; Jiang et al., 2021; Wu et al.,
2021) and action recognition (Bertasius et al., 2021; Liu et al., 2021; Bulat et al., 2021) compared to
CNNs. Although vision transformers have a superior representation power, the high computational
cost of their transformer blocks make them unsuitable for many edge devices. The computational
cost of a vision transformer grows quadratically with respect to the number of tokens it uses. To
reduce the number of tokens and thus the computational cost of a vision transformer, DynamicViT
(Rao et al., 2021a) proposes a token scoring neural network to predict which tokens are redundant.
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Figure 7.1: The Adaptive Token Sampler (ATS) can be integrated into the self-attention layer of
any transformer block of a vision transformer model (left). The ATS module takes at each stage a
set of input tokens I. The first token is considered as the classification token in each block of the
vision transformer. The attention matrix A is then calculated by the dot product of the queries Q and
keys K, scaled by

?
d. We use the attention weights A1,2, . . . ,A1,N`1 of the classification token as

significance scores S P RN for pruning the attention matrix A. To reflect the effect of values V on
the output tokens O, we multiply the A1,j by the magnitude of the corresponding value Vj . We select
the significant tokens using inverse transform sampling over the cumulative distribution function of
the scores S. Having selected the significant tokens, we then sample the corresponding attention
weights (rows of the attention matrix A) to get As. Finally, we softly downsample the input tokens
I to output tokens O using the dot product of As and V .

The approach then keeps a fixed ratio of tokens at each stage. Although DynamicViT reduces the
GFLOPs of a given network, its scoring network introduces an additional computational overhead.
Furthermore, the scoring network needs to be trained together with the vision transformer and it re-
quires to modify the loss function by adding additional loss terms and hyper-parameters. To alleviate
such limitations, EViT (Liang et al., 2022) employs the attention weights as the tokens’ importance
scores. A further limitation of both EViT and DynamicViT is that they need to be re-trained if the
fixed target ratios need to be changed (e.g. due to deployment on a different device). This strongly
limits their applications.

In this work, we propose a method to efficiently reduce the number of tokens in any given vision
transformer without the mentioned limitations. Our approach is motivated by the observation that
in image/action classification, all parts of an input image/video do not contribute equally to the final
classification scores and some parts contain irrelevant or redundant information. The amount of rele-
vant information varies depending on the content of an image or video. For instance, in Figure 7.10,
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we can observe examples in which only a few or many patches are required for correct classification.
The same holds for the number of tokens used at each stage, as illustrated in Figure 7.2. Therefore,
we propose an approach that automatically selects an adequate number of tokens at each stage based
on the image content, i.e. the number of the selected tokens at all network’s stages varies for different
images, as shown in Figure 7.9. It is in contrast to the works by Rao et al. (2021a) and Liang et al.
(2022), where the ratio of the selected tokens needs to be specified for each stage and is constant
after training. However, selecting a static number of tokens will on the one hand discard important
information for challenging images/videos, which leads to a classification accuracy drop. On the
other hand, it will use more tokens than necessary for the easy cases and thus waste computational
resources. In this work, we address the question of how a transformer can dynamically adapt its
computational resources in a way that not more resources than necessary are used for each input
image/video.

To this end, we introduce a novel Adaptive Token Sampler (ATS) module. ATS is a differen-
tiable parameter-free module that adaptively down-samples input tokens. To do so, we first assign
significance scores to the input tokens by employing the attention weights of the classification token
in the self-attention layer and then select a subset of tokens using inverse transform sampling over
the scores. Finally, we softly down-sample the output tokens to remove redundant information with
the least amount of information loss. In contrast to Rao et al. (2021a), our approach does not add
any additional learnable parameters to the network. While the ATS module can be added to any
off-the-shelf pre-trained vision transformer without any further training, the network equipped with
the differentiable ATS module can also be further fine-tuned. Moreover, one may train a model only
once and then adjust a maximum limit for the ATS module to adapt it to the resources of different
edge devices at the inference time. This eliminates the need of training separate models for different
levels of computational resources.

We demonstrate the efficiency of our proposed adaptive token sampler for image classification
by integrating it into the current state-of-the-art vision transformers such as DeiT (Touvron et al.,
2021), CvT (Wu et al., 2021), and PS-ViT (Yue et al., 2021). As shown in Figure 7.5, our approach
significantly reduces the GFLOPs of vision transformers of various sizes without significant loss
of accuracy. We evaluate the effectiveness of our method by comparing it with other methods de-
signed for reducing the number of tokens, including DynamicViT (Rao et al., 2021a), EViT (Liang
et al., 2022), and Hierarchical Pooling (Pan et al., 2021b). Extensive experiments on the ImageNet
dataset show that our method outperforms existing approaches and provides the best trade-off be-
tween computational cost and classification accuracy. We also demonstrate the efficiency of our
proposed module for action recognition by adding it to the state-of-the-art video vision transformers
such as XViT (Bulat et al., 2021) and TimeSformer (Bertasius et al., 2021). Extensive experiments
on the Kinetics-400 and Kinetics-600 datasets show that our method surpasses the performance of
existing approaches and leads to the best computational cost/accuracy trade-off. In a nutshell, the
adaptive token sampler can significantly scale down the off-the-shelf vision transformers’ computa-
tional costs and it is therefore very useful for real-world vision-based applications.

7.2 Adaptive Token Sampler

State-of-the-art vision transformers are computationally expensive since their computational costs
grow quadratically with respect to the number of tokens, which is static at all stages of the network
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and corresponds to the number of input patches. Convolutional neural networks deal with the com-
putational cost by reducing the resolution within the network using various pooling operations. It
means that the spatial or temporal resolution decreases at the later stages of the network. However,
applying such simple strategies, i.e. pooling operations with fixed kernels, to vision transformers is
not straightforward since the tokens are permutation invariant. Moreover, such static down-sampling
approaches are not optimal. On the one hand, a fixed down-sampling method discards important
information at some locations of the image or video, like details of the object. On the other hand,
it still includes many redundant features that do not contribute to the classification accuracy, for in-
stance, when dealing with an image with a homogeneous background. Therefore, we propose an
approach that dynamically adapts the number of tokens at each stage of the network based on the in-
put data such that important information is not discarded and no computational resources are wasted
for processing redundant information.

To this end, we propose our novel Adaptive Token Sampler (ATS) module. ATS is a parameter-
free differentiable module to sample significant tokens over the input tokens. In our ATS module, we
first assign significance scores to the N input tokens and then select a subset of these tokens based on
their scores. The upper bound of GFLOPs can be set by defining a maximum limit for the number of
tokens sampled, denoted by K. Since the sampling procedure can sample some input tokens several
times, we only keep one instance of a token. The number of sampled tokens K 1 is thus usually lower
than K and varies among input images or videos (Figure 7.9). Figure 7.1 gives an overview of our
proposed approach.

7.2.1 Token Scoring

Let I P RpN`1qˆd be the input tokens of a self-attention layer with N ` 1 tokens. Before forwarding
the input tokens through the model, ViT concatenates a classification token to the input tokens. The
corresponding output token at the final transformer block is then fed to the classification head to
get the class probabilities. Practically, this token is placed as the first token in each block and it is
considered as a classification token. While we keep the classification token, our goal is to reduce the
output tokens O P RpK1`1qˆd such that K 1 is dynamically adapted based on the input image or video
and K 1 ď K ď N , where K is a parameter that controls the maximum number of sampled tokens.
Figure 7.9 shows how the number of sampled tokens K 1 varies for different input data and stages of
a network. We first describe how each token is scored.

In a standard self-attention layer (Vaswani et al., 2017), the queries Q P RpN`1qˆd, keys K P

RpN`1qˆd, and values V P RpN`1qˆd are computed from the input tokens I P RpN`1qˆd. The
attention matrix A is then calculated by the dot product of the queries and keys, scaled by

?
d:

A “

´

QKT {
?
d

¯

. (7.1)

Due to the function, each row of A P RpN`1qˆpN`1q sums up to 1. The output tokens are then
calculated using a combination of the values weighted by the attention weights:

O “ AV. (7.2)

Each row of A contains the attention weights of an output token. The weights indicate the con-
tributions of all input tokens to the output token. Since A1,: contains the attention weights of the
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classification token, A1,j represents the importance of the input token j for the output classification
token. Thus, we use the weights A1,2, . . . ,A1,N`1 as significance scores for pruning the attention
matrix A, as illustrated in Figure 7.1. Note that A1,1 is not used since we keep the classification
token. As the output tokens O depend on both A and V (7.2), we also take into account the norm
of Vj for calculating the jth token’s significance score. The motivation is that values having a norm
close to zero have a low impact and their corresponding tokens are thus less significant. In our ex-
periments, we show that multiplying A1,j with the norm of Vj improves the results. The significance
score of a token j is thus given by

Sj “
A1,j ˆ ||Vj ||

ř

i“2A1,i ˆ ||Vi||
(7.3)

where i, j P t2 . . . Nu. For a multi-head attention layer, we calculate the scores for each head
and then sum the scores over all heads.

7.2.2 Token Sampling

Having computed the significance scores of all tokens, we can prune their corresponding rows from
the attention matrix A. To do so, a naive approach is to select K tokens with the highest significance
scores (top-K selection). However, this approach does not perform well, as we show in our experi-
ments and it can not adaptively select K 1 ď K tokens. is that it discards all tokens with lower scores.
Some of these tokens, however, can be useful in particular at the earlier stages when the features
are less discriminative. For instance, having multiple tokens with similar keys, which may occur in
the early stages, will lower their corresponding attention weights due to the function. Although one
of these tokens would be beneficial at the later stages, taking the top-K tokens might discard all of
them. Therefore, we suggest sampling tokens based on their significance scores. In this case, the
probability of sampling one of the several similar tokens is equal to the sum of their scores. We also
observe that the proposed sampling procedure selects more tokens at the earlier stages than the later
stages as shown in Figure 7.2.

For the sampling step, we suggest using inverse transform sampling to sample tokens based
on their significance scores S (7.3). Since the scores are normalized, they can be interpreted as
probabilities and we can calculate the cumulative distribution function () of S:

i“

j“i
ÿ

j“2

Sj . (7.4)

Note that we start with the second token since we keep the first token. Having the cumulative distri-
bution function, we obtain the sampling function by taking the inverse of the :

Ψpkq “´1 pkq (7.5)

where k P r0, 1s. In other words, the significance scores are used to calculate the mapping function
between the indices of the original tokens and the sampled tokens. To obtain K samples, we can
sample K-times from the uniform distribution U r0, 1s. While such randomization might be desirable
for some applications, deterministic inference is in most cases preferred. Therefore, we use a fixed
sampling scheme for training and inference by choosing k “ t 1

2K , 3
2K . . . , 2K´1

2K u. Since Ψp.q P R,
we consider the indices of the tokens with the nearest significant scores as the sampling indices.
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If a token is sampled more than once, we only keep one instance. As a consequence, the number
of unique indices K 1 is often lower than K as shown in Figure 7.9. In fact, K 1 ă K if there is at
least one token with a score Sj ě 2{K. In the two extreme cases, either only one dominant token
is selected and K 1 “ 1 or K 1 “ K if the scores are more or less balanced. Interestingly, more
tokens are selected at the earlier stages, where the features are less discriminative and the attention
weights are more balanced, and less at the later stages, as shown in Figure 7.2. The number and
locations of tokens also vary for different input images, as shown in Figure 7.10. For images with
a homogeneous background that covers a large part of the image, only a few tokens are sampled.
In this case, the tokens cover the object in the foreground and are sparsely but uniformly sampled
from the background. In cluttered images, many tokens are required. It illustrates the importance of
making the token sampling procedure adaptive.

Having indices of the sampled tokens, we refine the attention matrix A P RpN`1qˆpN`1q by
selecting the rows that correspond to the sampled K 1 ` 1 tokens. We denote the refined attention
matrix by As P RpK1`1qˆpN`1q. To obtain the output tokens O P RpK1`1qˆd, we thus replace the
attention matrix A by the refined one As in (7.2) such that:

O “ AsV. (7.6)

These output tokens are then taken as input for the next stage. In our experimental evaluation, we
demonstrate the efficiency of the proposed adaptive token sampler, which can be added to any vision
transformer.

7.3 Experiments

In this section, we analyze the performance of our ATS module by adding it to different backbone
models and evaluating them on ImageNet (Deng et al., 2009), Kinetics-400 (Kay et al., 2017), and
Kinetics-600 (Carreira et al., 2018), which are large-scale image and video classification datasets,
respectively. In addition, we perform several ablation studies to better analyze our method. For
the image classification task, we evaluate our proposed method on the ImageNet (Deng et al., 2009)
dataset with 1.3M images and 1K classes. For the action classification task, we evaluate our approach
on the Kinetics-400 (Kay et al., 2017) and Kinetics-600 (Carreira et al., 2018) datasets with 400 and
600 human action classes, respectively. We use the standard training/testing splits and protocols
provided by the ImageNet and Kinetics datasets. If not otherwise stated, the number of output tokens
of the ATS module are limited by the number of its input tokens. For example, we set K “ 197 in
case of DeiT-S (Touvron et al., 2021). For the image classification task, we follow the fine-tuning
setup of (Rao et al., 2021a) if not mentioned otherwise. The fine-tuned models are initialized by
their backbones’ pre-trained weights and trained for 30 epochs using PyTorch AdamW optimizer
(lr= 5´4, batch size = 8 ˆ 96). We use the cosine scheduler for training the networks. For more
implementation details and also information regarding action classification models, please refer to
the supplementary materials.

7.3.1 Ablation Experiments

First, we analyze different setups for our ATS module. Then, we investigate the efficiency and effects
of our ATS module when incorporated in different models. If not otherwise stated, we use the pre-
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Figure 7.2: Visualization of the gradual token sampling procedure in the multi-stage DeiT-S+ATS
model. As it can be seen, at each stage, those tokens that are considered to be less significant to
the classification are masked and the ones that have contributed the most to the model’s prediction
are sampled. We also visualize the token sampling results with Top-K selection to have a better
comparison to our Inverse Transform Sampling.

trained DeiT-S (Touvron et al., 2021) model as the backbone and we do not fine-tune the model after
adding the ATS module. We integrate the ATS module into stage 3 of the DeiT-S (Touvron et al.,
2021) model. We report the results on the ImageNet-1K validation set in all of our ablation studies.

7.3.1.1 Significance Scores

As mentioned in Sec. 7.2.1, we use the attention weights of the classification token as significance
scores for selecting our candidate tokens. In this experiment, we evaluate different approaches for
calculating significance scores. Instead of directly using the attention weights of the classification
token, we sum over the attention weights of all tokens (rows of the attention matrix) to find tokens
with highest significance over other tokens. We show the results of this method in Figure 7.4 labeled
as Self-Attention score. As it can be seen, using the attention weights of the classification token
performs better specially in lower FLOPs regimes. The results show that the attention weights of the
classification token are a much stronger signal for selecting the candidate tokens. The reason for this
is that the classification token will later be used to predict the class probabilities in the final stage of
the model. Thus, its corresponding attention weights show which tokens have more impact on the
output classification token. Whereas summing over all attention weights only shows us the tokens
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Figure 7.3: Visualization of the gradual token sampling procedure in the multi-stage DeiT-S+ATS
model. We integrate our ATS module into the stages 3 to 11 of the DeiT-S model. The tokens that are
sampled at each stage of the network are shown for images that are ordered by their complexity (from
low complexity to high complexity). We visualize the tokens, which are discarded, as masks over the
input images. As it can be seen, a higher number of tokens are sampled for more cluttered images
while a lower number of tokens are required when the images contain less details. Additionally, we
can see that the sampled tokens are more focused and less scattered in images with less details.

with highest attention from all other tokens, which may not necessarily be useful for the classification
token. To better investigate this observation, we also randomly select another token rather than the
classification token and use its attention weights for the score assignment. As shown, this approach
performs much worse than the other ones both in high and low FLOPs regimes. We also investigate
the impact of using the L2 norm of the values in (7.3). As it can be seen in Figure 7.4, it improves
the results by about 0.2%.

In all of the above mentioned experiments, we suggested keeping the classification token since
the loss is defined on this token and discarding it may negatively affect the performance. To represent
the importance of this token experimentally, we sum over the attention weights of all tokens (rows
of the attention matrix) to find the most significant tokens. We show this in Figure 7.11 as Self-
Attention Score (CLS Enforced). In contrast to our previous experiments, we allow ATS to remove
the classification token when it is of low importance based on the significance scores S. We show
the results of this experiment in Figure 7.11 as Self-Attention Score (CLS Not Enforced). As it can
be seen in Figure 7.11, discarding the classification token reduces the top-1 accuracy.
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Figure 7.4: Impact of different score assignment methods. To achieve different GFLOPs levels, we
bound the value of K from above such that the average GFLOPs of our adaptive models over the
ImageNet validation set reaches the desired level.

Figure 7.5: Performance comparison on the ImageNet validation set. Our proposed adaptive token sampling
method achieves a state-of-the-art trade-off between accuracy and GFLOPs. We can reduce the GFLOPs of
DeiT-S by 37% while almost maintaining the accuracy.

7.3.1.2 Candidate Tokens Selection

As mentioned in Sec. 7.2.2, we employ the inverse transform sampling approach to softly downsam-
ple the input tokens. To better investigate this approach, we also evaluate the model’s performance
when picking the top K tokens with highest significance scores S. As it can be seen in Figure 7.6, our
inverse transform sampling approach outperforms the Top-K selection both in high and low GFLOPs
regimes. As discussed earlier, our inverse transform sampling approach based on the CDF of the
scores does not hardly discard all tokens with lower significance scores and hence provides a more
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Figure 7.6: Impact of token sampling approaches. For the model with Top-K selection (fixed-rate sampling),
we set K such that the model operates at a desired GFLOPs level. We control the GFLOPs level of our adaptive
models as in Figure 7.4. We use DeiT-S (Touvron et al., 2021) for these experiments.

Figure 7.7: Impact of finetuning on ATS+Deit-S. We control the GFLOPs level of our adaptive models as in
Figure 7.4. We use DeiT-S (Touvron et al., 2021) for these experiments.

diverse set of tokens for the following layers. Since earlier transformer blocks are more prone to
predict noisier attention weights for the classification token, such a diversified set of tokens can bet-
ter contribute to the output classification token of the final transformer block. Moreover, the Top-K
selection method will result in a fixed token selection rate at every stage that limits the performance
of the backbone model. This is shown by the examples in Figure 7.2. For a cluttered image (bottom),
inverse transform sampling keeps a higher number of tokens across all transformer blocks compared
to the Top-K selection and hence preserves the accuracy. On the other hand, for a less detailed image
(top), inverse transform sampling will retain less tokens, which results in less computation cost.
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Figure 7.8: Impact of using ATS in multiple stages. We control the GFLOPs level of our adaptive models as
in Figure 7.4. We use DeiT-S (Touvron et al., 2021) for these experiments.

We also evaluate the performance of our trained multi-stage DeiT-S+ATS model when picking
the top K tokens with the highest significance scores S. To this end, we trained our DeiT-S+ATS net-
work with the top-K selection approach and compared it to our DeiT-S+ATS model with the inverse
transform sampling method. As it can be seen in Table 7.1, our inverse transform sampling approach
outperforms the top-K selection with and without training (Figure 7.6). As discussed earlier, our in-
verse transform sampling approach does not hardly discard all tokens with lower significance scores
and hence provides a more diverse set of tokens for the following layers. This sampling strategy
also helps the model to gain a better performance after training, thanks to a more diversified token
selection.

7.3.1.3 Model Scaling

Another common approach for changing the GFLOPs/accuracy trade-off of networks is to change the
channel dimension. To demonstrate the efficiency of our adaptive token sampling method, we thus
vary the dimensionality. To this end, we first train several DeiT models with different embedding
dimensions. Then, we integrate our ATS module into the stages 3 to 11 of these DeiT backbones
and fine-tune the networks. In Figure 7.5, we can observe that our approach can reduce GFLOPs
by 37% while maintaining the DeiT-S backbone’s accuracy. We can also observe that the GFLOPs
reduction rate gets higher as we increase the embedding dimensions from 192 (DeiT-Ti) to 384 (DeiT-
S). The results show that our ATS module can reduce the computation cost of the models with larger
embedding dimensions to their variants with smaller embedding dimensions.

7.3.1.4 Visualizations

To better understand the way our ATS module operates, we visualize our token sampling procedure
(Inverse Transform Sampling) in Figure 7.2. We have incorporated our ATS module in the stages 3 to
11 of the DeiT-S network. The tokens that are discarded at each stage are represented as a mask over
the input image. We observe that our DeiT-S+ATS model has gradually removed irrelevant tokens
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Figure 7.9: Histogram of the number of sampled tokens at each ATS stage of our multi-stage DeiT-
S+ATS model on the ImageNet validation set. The y-axis corresponds to the number of images and
the x-axis to the number of sampled tokens.

and sampled those tokens which are more significant to the model’s prediction. In both examples, our
method identified the tokens that are related to the target objects as the most informative tokens. We
show more visual results in Figure 7.3. We select several images of the ImageNet validation set with
various amounts of detail and complexity. We visualize the progressive token sampling procedure of
our multi-stage DeiT-S+ATS model for the selected images. The number of output tokens of each
ATS module in the multi-stage DeiT-S+ATS model is limited by the number of its input tokens,
which is 197. Our adaptive model samples a higher number of tokens when the input images are
more cluttered. We can also observe that the sampled tokens are more scattered in images with more
details compared to more plain images.

7.3.1.5 Adaptive Sampling

In this experiment, we investigate the adaptivity of our token sampling approach. We evaluate our
multi-stage DeiT-S+ATS model on the ImageNet validation set. In Figure 7.9, we visualize his-
tograms of the number of sampled tokens at each ATS stage. We can observe that the number of
selected tokens varies at all stages and for all images. We also qualitatively analyze this nice prop-
erty of our ATS module in Figs. 7.2 and 7.10. We can observe that our ATS module selects a higher
number of tokens when it deals with detailed and complex images while it selects a lower number of
tokens for less detailed images.
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Figure 7.10: ATS samples less tokens for images with fewer details (top), and a higher number of
tokens for more detailed images (bottom). We show the token downsampling results after all ATS
stages. For this experiment, we use a multi-stage Deit-S+ATS model.

7.3.1.6 Fine-tuning

To explore the influence of fine-tuning on the performance of our approach, we fine-tune a DeiT-
S+ATS model on the ImageNet training set. We compare the model with and without fine-tuning.
As shown in Figure 7.7, fine-tuning can improve the accuracy of the model. In this experiment, we
fine-tune the model with K “ 197 but test it with different K values to reach the desired GFLOPs
levels.

7.3.1.7 ATS Stages

In this experiment, we explore the effect of single-stage and multi-stage integration of the ATS block
into vision transformer models. In the single-stage model, we integrate our ATS module into the
stage 3 of DeiT-S. In the multi-stage model, we integrate our ATS module into the stages 3 to 11
of DeiT-S. As it can be seen in Figure 7.8, the multi-stage DeiT-S+ATS performs better than the
single-stage DeiT-S+ATS. This is due to the fact that a multi-stage DeiT-S+ATS model can gradually
decrease the GFLOPs by discarding fewer tokens in earlier stages, while a single-stage DeiT-S+ATS
model has to discard more tokens in earlier stages to reach the same GFLOPs level.

7.3.1.8 ATS Placement

To evaluate the effect of our ATS module’s location within a vision transformer model, we add it to
different stages of the DeiT-S network and evaluate it on the ImageNet validation set without finetun-
ing the model. To have a better comparison, we set the average computation costs of all experiments
to 3 GFLOPs. As it can be seen in Table 7.2, integrating the ATS module into the first stage of the
DeiT-S model results in a poor top-1 accuracy of 73.1%. On the other hand, integrating the ATS
module into stage 3 results in a 78.5% top-1 accuracy. As mentioned before, earlier transformer
blocks are more prone to predict noisier attention weights for the classification token. Therefore,
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Method Top-1 acc GFLOPs

Top-K 78.9 2.9
Inverse Transform Sampling 79.7 2.9

Table 7.1: Comparison of the inverse transform sampling approach with the top-K selection. We
finetune and test two different versions of the multi-stage DeiT-S+ATS model: with (1) top-K token
selection and (2) inverse transform token sampling. We report the top-1 accuracy of both networks
on the ImageNet validation set. For the model with the top-K selection approach, we set Kn “

0.865 ˆ #InputTokensn where n is the stage index. For example, K3 “ 171 in stage 3.

Figure 7.11: Impact of allowing ATS to discard the classification token on the network’s accuracy.
The model is a single stage DeiT-S+ATS without finetuning.

integrating our ATS module into the first stage performs worse than incorporating it into the stage 3.
Although the attention weights of the stage 6 are less noisy, we have to discard more tokens to reach
the desired GFLOPs level of 3. For example in stages 0, 3, and 6, we set K to 130, 108, and 56, re-
spectively. The highest accuracy is obtained when we integrate the ATS module into multiple stages
of the DeiT-S model. This is because of the progressive token sampling that occurs in a multi-stage
DeiT-S+ATS model. In other words, a multi-stage DeiT-S+ATS network can gradually decrease the
GFLOPs by discarding fewer tokens in the earlier stages, while a single-stage DeiT-S+ATS model
has to discard more tokens in the earlier stages to reach the same GFLOPs level. We also added the
ATS module into all stages, yielding average GFLOPs of 2.6 and 76.9% top-1 accuracy.

Stage(s) 0 3 6 3-11

Top-1 Accuracy 73.1 78.5 77.4 79.2

Table 7.2: Evaluating the integration of the ATS module into different stages of DeiT-S (Touvron
et al., 2021).
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7.3.1.9 Adding ATS to Models with Other Token Pruning Approaches

To better evaluate the performance of our adaptive token sampling approach, we also add our module
to the state-of-the-art efficient vision transformer EViT-DeiT-S (Liang et al., 2022). EViT (Liang
et al., 2022) introduces a token reorganization method that first identifies the top-K important tokens
by computing token attentiveness between the tokens and the classification token and then fuses less
informative tokens. Interestingly, our ATS module can also be added to the EViT-DeiT-S model and
further decrease the GFLOPs, as shown in Table 7.3. These results demonstrate the superiority of
our adaptive token sampling approach compared to static token pruning methods. We integrate our
ATS module into stages 4, 5, 7, 8, 10, and 11 of the EViT-DeiT-S backbone and fine-tune them for
10 epochs following our fine-tuning setups on the ImageNet dataset discussed earlier.

Model Top-1 acc GFLOPs

EViT-DeiT-S (30 Epochs) Liang et al. (2022) 79.5 3.0
EViT-DeiT-S (30 Epochs)+ATS 79.5 2.5
EViT-DeiT-S (100 Epochs) Liang et al. (2022) 79.8 3.0
EViT-DeiT-S (100 Epochs)+ATS 79.8 2.5

Table 7.3: Evaluating the EViT-DeiT-S (Liang et al., 2022) model’s performance when integrating
the ATS module into it with Kn “ 0.7 ˆ #InputTokensn where n is the stage index.

7.3.1.10 The Effect of K

In Figures 7.6, 7.7, and 7.8 we varied the value of K to achieve different GFLOPs levels (Top-1
Accuracy vs. GFLOPs). In Figure 7.12, we study the effect of varying K in the ATS module of
the single-stage DeiTS+ATS model with fine-tuning. Interestingly, even sampling only 48 tokens (2
GFLOPs) achieves 75% accuracy.

Figure 7.12: We varied the value of K in the ATS module to study the effect of K on the top-1
accuracy. K=48 corresponds to 2 GFLOPs. The backbone model is DeiT-S pre-trained on ImageNet-
1K.
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Model Params (M) GFLOPs Throughput Top-1

Deit-S Touvron et al. (2021) 22.05 4.6 1010 79.8

Deit-S+ATS 22.05 2.9 1403 79.7

Table 7.4: We run the models on a single RTX6000 GPU (CUDA 11.0, PyTorch 1.8, image size:
224ˆ224). We average the value of throughput over 20 runs. We add ATS to multiple stages of the
DeiT-S model and fine-tune the network on the ImageNet dataset.

Model Top-1 GFLOPs

XViT+ATS Not-Finetuned(16ˆ) 83.4 521
XViT+ATS Finetuned(16ˆ) 84.4 521
XViT(16ˆ) 84.5 850

Table 7.5: Our ATS module is added to XViT Bulat et al. (2021) pre-trained on Kinetics-600.

7.3.1.11 ATS Integration Without Further Training

One of the most important aspects of our approach is that it can be added to any pre-trained off-the-
shelf vision transformer. For example, our not fine-tuned multi-stage DeiT-S+ATS model (Figure
7.8) has only a 0.6% (Table 7.6) top-1 accuracy drop while it has improved the efficiency by about
1.6 GFLOPs without any further training of the backbone model. We also observe the same per-
formance on video data. As reported in Table 7.5, our not fine-tuned XViT+ATS model has only a
1.1% top-1 accuracy drop while it has improved the efficiency by about 329 GFLOPs without any
further training of the backbone model. This capability of our ATS module roots back in its adaptive
inverse transform sampling strategy. Our ATS module samples informative tokens based on their
contributions to the classification token. Uninformative tokens that only slightly contribute to the
final prediction receive lower attention weights for the classification token. Therefore, the output
classification token will be only marginally affected by removing such redundant tokens. On the
other hand, the redundant tokens are less similar to the informative tokens and receive lower atten-
tion weights for those tokens in the attention matrix. Consequently, they do not contribute much to
the value of informative tokens and eliminating them does not change the way informative tokens are
contributing to the output classification token.

7.3.1.12 Attention Map Visualization

As shown in Figure 7.13, the attention maps become more focused on the birds and less on the
background at the later stages, which is aligned with our observations on the sampled tokens at each
stage.

7.3.1.13 Integrating ATS into a Transformer Block

Unlike a standard transformer block in vision transformers, we assign a score to each token and use
inverse transform sampling to prune the rows of the attention matrix A to get As. Next, we get the
output O “ AsV and forward it to the Feed-Forward Network (FFN) of the transformer block. We
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Figure 7.13: Visualization of the sampled tokens and attention maps of a not fine-tuned multi-stage
DeiT-S+ATS.

Figure 7.14: The Adaptive Token Sampler (ATS) can be integrated into the self-attention layer of
any transformer block of a vision transformer model (top). The ATS module takes at each stage a set
of input tokens I. The first token is considered as the classification token in each block of the vision
transformer. The attention matrix A is then calculated by the dot product of the queries Q and keys
K, scaled by

?
d. Having selected the significant tokens, we then sample the corresponding attention

weights (rows of the attention matrix A) to get As. Finally, we softly downsample the input tokens I
to output tokens O using the dot product of As and V . Next, we forward the output tokens O through
a Feed-Forward Network (FFN) to get the output of the transformer block.

visualize the details of our ATS module, which is integrated into a standard self-attention layer in
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Figure 7.14.

7.3.2 Comparison with state-of-the-art

We compare the performances of our adaptive models, which are equipped with the ATS module,
with state-of-the-art vision transformers for image and video classification on the ImageNet-1K Deng
et al. (2009) and Kinetics Kay et al. (2017); Carreira et al. (2018) datasets, respectively. Tables 7.6-
7.8 show the results of this comparison. For the image classification task, we incorporate our ATS
module into the stages 3 to 11 of the DeiT-S (Touvron et al., 2021) model. We also integrate our
ATS module into the 1st to 9th blocks of the 3rd stage of CvT-13 and CvT-21 (Wu et al., 2021), and
into stages 1-9 of the transformer module of PS-ViT (Yue et al., 2021). We fine-tune the models on
the ImageNet-1K training set. We also evaluate our ATS module for action recognition. To this end,
we add our module to the XViT (Bulat et al., 2021) and TimeSformer (Bertasius et al., 2021) video
vision transformers. For more details, please refer to the supplementary materials.
Image Classification As it can be seen in Table 7.6, our ATS module decreases the GFLOPs of all
vision transformer models without adding any extra parameters to the backbone models. For the
DeiT-S+ATS model, we observe a 37% GFLOPs reduction with only 0.1% reduction of the top-1
accuracy. For the CvT+ATS models, we can also observe a GFLOPs reduction of about 30% with
0.1´0.2% reduction of the top-1 accuracy. More details on the efficiency of our ATS module can be
found in the supplementary materials (e.g. throughput). Comparing ATS to DynamicViT (Rao et al.,
2021a) and HVT (Pan et al., 2021b), which add additional parameters to the model, our approach
achieves a better trade-off between accuracy and GFLOPs. Our method also outperforms the EViT-
DeiT-S (Liang et al., 2022) model trained for 30 epochs without adding any extra trainable parameters
to the model. We note that the EViT-DeiT-S model can improve its top-1 accuracy by around 0.3%
when it is trained for much more training epochs (e.g. 100 epochs). For a fair comparison, we have
considered the 30 epochs training setup used by Dynamic-ViT (Rao et al., 2021a). We have also
added our ATS module to the PS-ViT network (Yue et al., 2021). As it can be seen in Table 7.6,
although PS-ViT has drastically lower GFLOPs compared to its counterparts, its GFLOPs can be
further decreased by incorporating ATS in it.
Action Recognition As it can be seen in Tables 7.7 and 7.8, our ATS module drastically decreases
the GFLOPs of all video vision transformers without adding any extra parameters to the backbone
models. For the XViT+ATS model, we observe a 39% GFLOPs reduction with only 0.2% reduction
of the top-1 accuracy on Kinetics-400 and a 38.7% GFLOPs reduction with only 0.1% drop of the
top-1 accuracy on Kinetics-600. We observe that XViT+ATS achieves similar accuracy as Token-
Learner (Ryoo et al., 2021) on Kinetics-600 while requiring 17.6ˆ less GFLOPs. For TimeSformer-
L+ATS, we can observe 50.8% GFLOPs reduction with only 0.2% drop of the top-1 accuracy on
Kinetics-400. These results demonstrate the generality of our approach that can be applied to both
image and video representations.

7.3.3 Runtime

Throughput: While ATS is a super-light module, there is still a small cost associated with I/O
operations. For a DeiT-S network with a single ATS stage, the sampling overhead is about 1.5%
of the overall computation which is negligible compared to the large savings due to the dropped
tokens. To further elaborate on this, we have reported the throughput (images/s) of the DeiT-S model
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with/without our ATS module in Table 7.4. As it can be seen, the speed-up of our module is aligned
with its GFLOPs reduction.

Batch Processing: While for most applications the inference is performed for a single image or
video, ATS can also be used for inference with a mini-batch. To this end, we rearrange the tokens
of each image so that the sampled tokens are in the lower indices. Then, we remove the last tokens
completely to reduce the computation. This way, we only process m tokens, where m “ maxipK

1
i `

1q over all images i of the mini-batch. In the worst case scenario (e.g. a very large minibatch), we
will keep all K ` 1 first tokens after rearrangement. This will still reduce the computation by a
factor of N`1

K`1 . For example, using a mini-batch of size 512 on the ImageNet validation set, m is
129 in Stage 7 of the DeiT-S+ATS model, which is smaller than the total number of tokens (197).
Therefore, we discard at least 68 tokens in stage 7 even in a mini-batch setting. Moreover, for the
fully connected layers in a transformer block, which requires most of the computation (Marin et al.,
2021), we can flatten the mini-batch dimension and forward only non-zero tokens of the whole mini-
batch in parallel through the fully connected layers.

7.3.4 Implementation Details

In our experiments for image classification, we use the ImageNet (?) dataset with 1.28M training
images and 1K classes. We evaluate our adaptive models, which are equipped with the ATS module,
on 50K validation images of this dataset. In our experiments for action recognition, we use the
Kinetics-400 (Kay et al., 2017) and Kinetics-600 (Carreira et al., 2018) datasets containing short
clips (typically 10 seconds long) sampled from YouTube. Kinetics-400 and Kinetics-600 consist of
400 and 600 classes, respectively. The versions of Kinetics-400 and Kinetics-600 used in this work
consist of approximately 261k and 457k clips, respectively. Note that these numbers are lower than
the original datasets due to the removal of certain videos from YouTube. Our networks for image
classification are trained on 8 NVIDIA Quadro RTX 6000 GPUs and for action recognition on 8
NVIDIA A100 GPUs.

7.3.4.1 DeiT + ATS

Training To fine-tune our adaptive models, we follow the DynamicViT (Rao et al., 2021a) training
settings. We use the DeiT model’s pre-trained weights to initialize the backbones of our adaptive
network and train it for 30 epochs using AdamW optimizer. The learning rate and batch size are set
to 5e-4 and 8 ˆ 96, respectively. We use the cosine scheduler to train the networks. For both multi
and single stage models, we set K “ 197 during training.

Evaluation We use the same setup as (Touvron et al., 2021) for evaluating our adaptive models.
To evaluate the performance of our multi-stage DeiT-S+ATS model with different average GFLOPs
levels of 3, 2.5, and 2, we set Kn “ maxpρ ˆ #InputTokensn, 8q in which ρ is set to 1, 0.87, 0.72,
respectively, and n is the stage index. For the single-stage model, we set K “ 108, 78, 48 to evaluate
the model with different average GFLOPs levels of 3, 2.5, and 2.
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7.3.4.2 CvT + ATS

We integrate our ATS module into the 1st to 9th blocks of the 3rd stage of the CvT-13 and CvT-21
(Wu et al., 2021) networks. For both CvT models, we do not use any convolutional projection layers
in the transformer blocks of stage 3.
Training To train our adaptive models, we follow most of the CvT (Wu et al., 2021) network’s
training settings. We use the CvT model’s pre-trained weights to initialize the backbones of our
adaptive networks and train them for 30 epochs using AdamW optimizer. The learning rate and
batch size are set to 1.5e-6 and 128, respectively. We use the cosine scheduler to train the networks.
Evaluation To evaluate our CvT+ATS model, we use the same setup as Wu et al. (2021).

7.3.4.3 PS-ViT + ATS

Training To fine-tune our adaptive models, we follow the PS-ViT (Yue et al., 2021) training settings.
We use the PS-ViT model’s pre-trained weights to initialize the backbones of our adaptive network
and train it for 30 epochs using AdamW optimizer. The learning rate and batch size are set to 5e-4
and 8 ˆ 96, respectively. We use the cosine scheduler to train the networks.
Evaluation To evaluate our CvT+ATS model, we use the same setup as Yue et al. (2021).

7.3.4.4 XViT + ATS

We integrate our ATS module into the stages 3 to 11 of the XViT (Bulat et al., 2021) network.
Training To train our adaptive model, we follow most of the XViT (Bulat et al., 2021) network’s
training settings. We use the XViT model’s pre-trained weights to initialize the backbone of our
adaptive network and train it for 10 epochs using SGD optimizer. The learning rate and batch size
are set to 1.5e-6 and 64, respectively. We use the cosine scheduler to train the networks.
Evaluation To evaluate our XViT+ATS model, we use the same setup as Bulat et al. (2021).

7.3.4.5 TimeSformer + ATS

We integrate our ATS module into the stages 3 to 5 of the TimeSformer (Bertasius et al., 2021)
network.
Training To train our adaptive model, we follow most of the TimeSformer (Bertasius et al., 2021)
network’s training settings. We use the TimeSformer model’s pre-trained weights to initialize the
backbones of our adaptive networks and train it for 5 epochs using SGD optimizer. The learning rate
and batch size are set to 5e-6 and 32, respectively. We use the cosine scheduler to train the networks.
Evaluation To evaluate our TimeSformer-HR+ATS and TimeSformer-L+ATS models, we use the
same setup as Bertasius et al. (2021).

7.4 Summary

In this dissertation, we initially proposed an innovative spatio-temporal modeling approach to en-
hance the accuracy of 3D Convolutional Neural Networks (CNNs) for action recognition. Further-
more, we demonstrated that the performance of 3D CNNs can be augmented by utilizing effective
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pre-training via knowledge transfer from pre-trained models on image classification tasks. We ex-
panded our exploration of video understanding methodologies by broadening the problem scope
beyond action recognition. We illustrated that incorporating additional categories besides human ac-
tions into the training data not only is feasible, but also enhances the representation learning capacity
of the video understanding model. We delved deeper into the study of 3D CNN models by examining
their efficiency. To this end, we introduced a novel approach for making 3D CNNs more efficient
by adaptively adjusting their computational complexity according to the intricacy of the input video.
We substantiate the efficacy of adaptively modifying temporal feature resolutions in 3D CNNs for
improved efficiency.

In this chapter, we presented an alternative innovative method aimed at optimizing the efficiency
of video understanding models, specifically for vision transformers. To achieve this, we proposed
a novel differentiable parameter-free module called the Adaptive Token Sampler (ATS) to enhance
the efficiency of vision transformers for image and video classification. The innovative ATS module
identifies the most informative and distinctive tokens within the stages of a vision transformer model,
ensuring that an optimal number of tokens are utilized for each input image or video clip. By integrat-
ing our ATS module into the attention layers of existing vision transformers, which employ a static
number of tokens, we can transform them into considerably more efficient vision transformers with
an adaptive token count. We demonstrated that our ATS module can be added to off-the-shelf pre-
trained vision transformers as a plug-and-play module, subsequently reducing their GFLOPs without
necessitating additional training. Moreover, it is feasible to train a vision transformer equipped with
the ATS module due to its differentiable design. We evaluated our approach on the ImageNet-1K
image recognition dataset and incorporate our ATS module into three distinct state-of-the-art vision
transformers. Furthermore, we validated the generality of our approach by incorporating it into var-
ious state-of-the-art video vision transformers and assessing their performance on the Kinetics-400
and Kinetics-600 datasets. The results reveal that the ATS module decreases the computational cost
(GFLOPs) between 27% and 50.8%, with only a negligible loss in accuracy. Although our experi-
ments predominantly focus on image and video vision transformers, we posit that our approach may
also be applicable in other domains, such as audio.

Despite the multitude of methods achieving state-of-the-art results in video understanding on
trimmed video clips, real-world scenarios frequently involve untrimmed videos containing multiple
actions that necessitate recognition at each frame. This task, known as temporal action segmentation,
entails not only identifying actions within untrimmed videos but also ascertaining their sequence and
duration. While interest in temporal action segmentation has grown significantly, annotating each
frame of a video remains a laborious and expensive process. Consequently, weakly supervised ap-
proaches have been developed to learn temporal action segmentation from videos that possess only
weak labels. In the subsequent chapters, we investigate weakly supervised temporal action segmen-
tation and propose two novel approaches for temporal action segmentation with varying degrees of
weak supervision.
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Model Params (M) GFLOPs Resolution Top-1

ViT-Base/16 Dosovitskiy et al. (2021) 86.6 17.6 224 77.9

HVT-S-1 Pan et al. (2021b) 22.09 2.4 224 78.0
IA-RED2 Pan et al. (2021a) - 2.9 224 78.6
DynamicViT-DeiT-S (30 Epochs) Rao et al. (2021a) 22.77 2.9 224 79.3
EViT-DeiT-S (30 epochs) Liang et al. (2022) 22.1 3.0 224 79.5
DeiT-S+ATS (Ours) 22.05 2.9 224 79.7
DeiT-S Touvron et al. (2021) 22.05 4.6 224 79.8

PVT-Small Wang et al. (2021) 24.5 3.8 224 79.8
CoaT Mini Xu et al. (2021) 10.0 6.8 224 80.8
CrossViT-S Chen et al. (2021) 26.7 5.6 224 81.0
PVT-Medium Wang et al. (2021) 44.2 6.7 224 81.2
Swin-T Liu et al. (2021) 29.0 4.5 766 81.3
T2T-ViT-14 Yuan et al. (2021) 22.0 5.2 224 81.5
CPVT-Small-GAP Chu et al. (2021) 23.0 4.6 817 81.5

CvT-13 Wu et al. (2021) 20.0 4.5 224 81.6
CvT-13+ATS (Ours) 20.0 3.2 224 81.4

PS-ViT-B/14 Yue et al. (2021) 21.3 5.4 224 81.7
PS-ViT-B/14+ATS (Ours) 21.3 3.7 224 81.5

RegNetY-8G Radosavovic et al. (2020) 39.0 8.0 224 81.7
DeiT-Base/16 Touvron et al. (2021) 86.6 17.6 224 81.8
CoaT-Lite Small Xu et al. (2021) 20.0 4.0 224 81.9
T2T-ViT-19 Yuan et al. (2021) 39.2 8.9 224 81.9
CrossViT-B Chen et al. (2021) 104.7 21.2 224 82.2
T2T-ViT-24 Yuan et al. (2021) 64.1 14.1 224 82.3

PS-ViT-B/18 Yue et al. (2021) 21.3 8.8 224 82.3
PS-ViT-B/18+ATS (Ours) 21.3 5.6 224 82.2

CvT-21 Wu et al. (2021) 32.0 7.1 224 82.5
CvT-21+ATS (Ours) 32.0 5.1 224 82.3

TNT-B Han et al. (2021) 66.0 14.1 224 82.8
RegNetY-16G Radosavovic et al. (2020) 84.0 16.0 224 82.9
Swin-S Liu et al. (2021) 50.0 8.7 224 83.0

CvT-13384 Wu et al. (2021) 20.0 16.3 384 83.0
CvT-13384+ATS (Ours) 20.0 11.7 384 82.9

Swin-B Liu et al. (2021) 88.0 15.4 224 83.3
LV-ViT-S Jiang et al. (2021) 26.2 6.6 224 83.3

CvT-21384 Wu et al. (2021) 32.0 24.9 384 83.3
CvT-21384+ATS (Ours) 32.0 17.4 384 83.1

Table 7.6: Comparison of the multi-stage ATS models with state-of-the-art image classification mod-
els with comparable GFLOPs on the ImageNet validation set. We equip DeiT-S (Touvron et al.,
2021), PS-ViT (Yue et al., 2021), and variants of CvT (Wu et al., 2021) with our ATS module and
fine-tune them on the ImageNet training set.
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Model Top-1 Top-5 Views GFLOPs

bLVNet Fan et al. (2019) 73.5 91.2 3ˆ3 840
STM Jiang et al. (2019) 73.7 91.6 - -
TEA Li et al. (2020b) 76.1 92.5 10ˆ3 2,100
TSM R50 Lin et al. (2019) 74.7 - 10ˆ3 650
I3D NL Wang et al. (2018c) 77.7 93.3 10ˆ3 10,800
CorrNet-101 Wang et al. (2020a) 79.2 - 10ˆ3 6,700
ip-CSN-152 Tran et al. (2019) 79.2 93.8 10ˆ3 3,270
HATNet (chapter 5) 79.3 - 10 458
HATNet+ATFR (chapter 6) 79.3 - 10 288
SlowFast 16ˆ8 R101+NL Feichtenhofer et al. (2019) 79.8 93.9 10ˆ3 7,020
X3D-XXL Feichtenhofer (2020) 80.4 94.6 10ˆ3 5,823

TimeSformer-L Bertasius et al. (2021) 80.7 94.7 1ˆ3 7,140
TimeSformer-L+ATS (Ours) 80.5 94.6 1ˆ3 3,510

ViViT-L/16ˆ2 Arnab et al. (2021) 80.6 94.7 4ˆ3 17,352
MViT-B, 64ˆ3 Fan et al. (2021b) 81.2 95.1 3ˆ3 4,095

X-ViT (16ˆ) Bulat et al. (2021) 80.2 94.7 1ˆ3 425
X-ViT+ATS (16ˆ) (Ours) 80.0 94.6 1ˆ3 259

Swin-L(384) Liu et al. (2022) 84.9 96.6 10ˆ5 25,284
TokenLearner 16at18 (L/10) Ryoo et al. (2021) 85.4 - 12 49,200

Table 7.7: Comparison with state-of-the-art on Kinetics-400. In accordance with Bulat et al. (2021),
GFLOPs are calculated as the product of the backbone GFLOPs and the number of views. It is
crucial to emphasize that the research presented in this chapter has been published in ECCV 2022
(Fayyaz et al., 2022). To provide a thorough overview and foster a deeper understanding of the
prevailing trends in the field, we have integrated contemporary state-of-the-art methods published at
or subsequent to the publication date of this chapter.
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Model Top-1 Top-5 Views GFLOPs

AttentionNAS Wang et al. (2020b) 79.8 94.4 - 1,034
LGD-3D R101 Qiu et al. (2019) 81.5 95.6 10ˆ3 -
HATNET (chapter 5) 81.6 - 10 458
HATNET+ATFR (chapter 6) 81.6 - 10 288
SlowFast R101+NL Feichtenhofer et al. (2019) 81.8 95.1 10ˆ3 3,480
X3D-XL Feichtenhofer (2020) 81.9 95.5 10ˆ3 1,452
X3D-XL+ATFR (chapter 6) 82.1 95.6 10ˆ3 768

TimeSformer-HR Bertasius et al. (2021) 82.4 96 1ˆ3 5,110
TimeSformer-HR+ATS (Ours) 82.2 96 1ˆ3 3,103

ViViT-L/16x2 Arnab et al. (2021) 82.5 95.6 4ˆ3 17,352
MViT-B-24, 32ˆ3 Fan et al. (2021b) 84.1 96.5 1ˆ5 7,080
TokenLearner 16at12(L/16) Ryoo et al. (2021) 84.4 96.0 4ˆ3 9,192

X-ViT (16ˆ) Bulat et al. (2021) 84.5 96.3 1ˆ3 850
X-ViT+ATS (16ˆ) (Ours) 84.4 96.2 1ˆ3 521

Swin-L(384) Liu et al. (2022) 85.9 97.1 4ˆ3 25,284
TokenLearner 16at18 w. Fuser (L/16) Ryoo et al. (2021) 86.3 97.0 12 49,200

Table 7.8: Comparison with state-of-the-art on Kinetics-600. In accordance with Bulat et al. (2021),
GFLOPs are calculated as the product of the backbone GFLOPs and the number of views. It is
crucial to emphasize that the research presented in this chapter has been published in ECCV 2022
(Fayyaz et al., 2022). To provide a thorough overview and foster a deeper understanding of the
prevailing trends in the field, we have integrated contemporary state-of-the-art methods published at
or subsequent to the publication date of this chapter.





CHAPTER 8

Weakly Supervised Temporal Action
Segmentation from Action Sets

This chapter is based on the following publication:
SCT: Set Constrained Temporal Transformer for Set Supervised Action Segmentation
Mohsen Fayyaz and Juergen Gall
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writing, and funding the project were essential to the completion of this work.
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In the preceding chapters, we presented methods that achieved cutting-edge results in video
understanding for trimmed video clips. Nonetheless, real-world situations frequently involve
untrimmed videos containing multiple actions, necessitating recognition at each frame. This chal-
lenge, known as temporal action segmentation, entails not only identifying actions within untrimmed
videos but also ascertaining their sequence and duration. Despite the growing interest in this area,
annotating each frame of a video remains a laborious and expensive endeavor. Consequently, weakly
supervised techniques have emerged to learn temporal action segmentation from videos with only
minimal labeling. In such instances, identifying the set of actions present in a video serves as weak
supervision, offering a cost-effective alternative for video annotation. In this chapter, we propose an
end-to-end trainable approach to train a temporal action segmentation model with such weak super-
vision. Given a set of actions in which only the list of actions occurring in the video is known, but not
when, how often, or in which order they occur, our approach divides the video into smaller temporal
regions and predicts for each region the action label and its length, as well as estimating action labels
for each frame. By measuring the consistency of the frame-wise predictions with respect to the tem-
poral regions and annotated action labels, the network learns to divide the video into class-consistent
regions. To demonstrate the efficacy of our method, we evaluate our approach on two datasets and
attain superior performance in comparison to previous approaches.

8.1 Introduction

For many applications, a large amount of video data needs to be analyzed. This includes temporal
action segmentation, which requires labeling each frame in a long video by an action class. In
the last years, several strong models for temporal action segmentation have been proposed (Kuehne
et al., 2016b; Lea et al., 2017; Abu Farha and Gall, 2019). These models are, however, trained in
a fully supervised setting, i.e., each training video needs to be fully annotated by frame-wise labels.
Since acquiring such annotations is very expensive, several works investigated methods to learn the
models with less supervision. An example of weakly annotated training data are videos where only
transcripts are provided (Kuehne et al., 2017; Huang et al., 2016; Richard et al., 2017, 2018b; Ding
and Xu, 2018; Chang et al., 2019; Souri et al., 2022; Li et al., 2019). While transcripts of videos can
be obtained from scripts or subtitles, they are still costly to obtain. Richard et al. (2018a) therefore
proposed to learn temporal action segmentation only from a set of action labels that are provided for
a complete video of several minutes. In this case, it is only known which actions occur, but not when,
in which order, or how often. This makes the task much more challenging compared to learning from
transcripts or fully supervised learning.

In the study conducted by Richard et al. (2018a), the problem has been addressed by hypothe-
sizing transcripts that contain each action label of a video at least once and then infer a frame-wise
labeling of the video by aligning the hypothesized transcripts. While the approach showed that it is
possible to learn from such weak annotation even for long videos, the approach does not solve the
problem directly but converts it into a weakly supervised learning problem where multiple hypoth-
esized transcripts per video are given. This is, however, ineffective since it is infeasible to align all
transcripts that can be generated from a set of action labels and it uses the provided annotations not
directly for learning.

In this work, we propose a method that uses the action labels that are given for each training
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video directly for the loss function. In this way, we can train the model in an end-to-end fashion.
The main idea is to divide a video into smaller temporal regions as illustrated in Figure 8.1. For each
region, we estimate its length and the corresponding action label. Since for each training video the
set of actions is known, we can directly apply a set loss to the predicted action labels of the temporal
regions, which penalizes the network if it predicts actions that are not present in the video or if it
misses an action. The problem, however, is that we cannot directly apply a loss to the prediction
of the region lengths. While a regularizer for the predicted length that penalizes if the lengths of
the regions get too large improves the results, it is insufficient as we show in our experiments. We
therefore introduce a second branch to make frame-wise predictions and measure how consistent the
frame-wise predictions are with respect to the temporal regions and the annotated action labels. Using
our differentiable Set Constrained Temporal Transformation (SCT), this loss affects the lengths of
the regions, which substantially improves the accuracy of the model.

In our experimental evaluation on three datasets, we show that the proposed approach achieves
superior results. We furthermore thoroughly evaluate the impact of each component.

8.2 Weakly Supervised Temporal Action Segmentation

Action segmentation requires to temporally segment all frames of a given video, i.e., predicting the
action in each frame of a video. The task can be formulated as follows. Given an input sequence
of D-dimensional features X1:T “ px1, . . . , xT q, xt P RD, the task is to infer the sequence of
framewise action labels Ŷ1:T “ pŷ1, . . . , ŷT q where there are C classes C “ t1, . . . , Cu and ŷt P C.

In the case of fully supervised learning, the labels Ŷ1:T are provided for each training sequence. In
this study, we delve into the weakly supervised paradigm as explored in the seminal work by Richard
et al. (2018a). In this setting, only the actions Â “ tâ1, . . . , âMu that occur in a long video are given
where âm P C and M ď C. In contrast to other weakly supervised settings where transcripts are
given, this is a much more difficult task since not only the lengths of the actions are unknown for
the training sequences, but also the order of the actions and the number of the occurrences of each
action.

8.3 Set Supervised Temporal Action Segmentation

In order to address weakly supervised action segmentation, we propose a network that divides a tem-
poral sequence into temporal regions and that estimates for each region the action and the length as
illustrated in Figure 8.1. This representation is between a frame-wise representation where the length
of each region is just one frame and an action segment representation where a region contains all
neighboring frames that have the same action label.
Figure 9.2 illustrates our proposed network, which consists of three components. The first com-
ponent fepXq, which is described in Section 8.3.1, maps the input video features X P RTˆD

to a temporal embedding Z P RT 1ˆD1

where T 1 ă T and D1 ă D. The second component
frpZq, which is described in Section 8.3.2, takes Z as input and estimates for K temporal regions
the actions probabilities A1:K “ pa1, . . . , aKq, ak P RC , and the temporal lengths of the regions
L1:K “ pℓ1, . . . , ℓKq, ℓk P R. In order to obtain the frame-wise class probabilities Y P RTˆC from
L and A, the third component fupA,Lq, which is discussed in Section 8.3.3, upsamples the estimated
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Figure 8.1: Our model estimates for K temporal regions the actions probabilities A1:K “

pa1, . . . , aKq, ak P RC , and the temporal lengths of the regions L1:K “ pℓ1, . . . , ℓKq, ℓk P R. In
this example, K “ 10. Since temporal regions are not aligned with the action segments, the model
estimates the temporal lengths to refine the corresponding temporal region of the predicted action.

regions such that there are T regions of length 1.

8.3.1 Temporal Embedding

Given the input video features X P RTˆD the temporal embedding component fepXq outputs the
hidden video representation Z P RT 1ˆD1

. Our temporal embedding is a fully convolutional network.
In this network we first apply a 1-d convolution with kernel size 1 to reduce the input feature dimen-
sion from D to D1. On top of this layer we have used B temporal convolution blocks (TCB) with
B “ 6. Each TCB contains a dilated 1-d convolution layer with kernel size 3 for conducting the
temporal structure. We increase the dilation rates as t2b|b P Z`, 0 ď b ď Bu where b is the index
of the TCBs. Then a ReLU activation function is applied on top of the convolutional layer. On top
of this combination, a 1-d convolution layer with kernel size 1 and a residual connection is used. Fi-
nally, a dropout with a probability of 0.25 is applied on top. The TCB is modeled after the WaveNet
architecture (van den Oord et al., 2016). To reduce the temporal dimension of the representation, we
perform temporal max poolings with a kernel size of 2 on top of the TCBs with b “ t1, 2, 4u. Using
the TCBs and max poolings, we get large receptive fields on the input data X . Having such large
receptive fields provides the capability of modeling long and short range temporal relations between
the input frames.

8.3.2 Temporal Regions

On top of the temporal embedding, we use the temporal region estimator network frpZq to esti-
mate the action probabilities and the temporal lengths for K temporal regions. frpZq outputs the
hidden representation Z 1

1:K “ pz1
1, . . . , z

1
Kq, z1

k P RD1

, for the temporal regions. To have a bet-
ter representation for estimating the actions probabilities A and region lengths L, we increase the
receptive field size and decrease the temporal dimension. This network mostly follows the same
architecture design as fepXq. It has B1 TCBs with B1 “ 4. The dilation rates of the TCBs are set
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Figure 8.2: Overview of the proposed network with loss functions. The network gets a sequence of
features X1:T as input. A temporal model fepXq maps these features to a latent space Z with lower
temporal resolution. The lower branch frpZq divides the temporal sequence into temporal regions
Z 1
1:K and estimates for each region the action probabilities ak and the length lk. Since the temporal

resolution has been decreased, the upsampling module fupA,Lq uses the lengths L1:K and the action
probabilities A1:K of all regions to obtain estimates of the framewise probabilities Y1:T . While L1:K

is regularized by the length regularizer RL, A1:K is trained to minimize LS , LR, LC , and RI . Since
besides of the regularizer RL, there is no loss term that provides supervision for L, we use a second
branch fspZq to provide an additional supervisory signal. Using SCT, we transform the temporal
representations Y1:T and S1:T to a set representation V1:M for the self supervision loss LT .

as t2b
1

|b1 P Z`, B ă b1 ď B ` B1u. To reduce the temporal dimension of the representation, we
perform temporal max poolings with kernel size 2 on top of the TCBs with indices 2 and 4. On top
of the final TCB, we have two different heads fc and fl. fcpZ 1q predicts the class probabilities A. It
consists of a 1-d convolution layer with a kernel size of 1 and an output channel size of C. A softmax
function is applied on top of the convolution layer to get the action probabilities A. flpZ 1q predicts
the lengths L for the corresponding temporal regions. It consists of two 1-d convolution layers with
kernel sizes 1 and output channels D1{2 and 1, respectively.

8.3.3 Region Upsampling

fcpZ
1q estimates the action probabilities A1:K for temporal regions. To get probabilities for temporal

action segmentation, we need to upsample A1:K to Y1:T . Since flpZ
1q predicts the corresponding

lengths L1:K , we can use theses lengths to upsample the probabilities A. To do so, we first project
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the predicted lengths L1:K to absolute lengths L1
1:K “ pℓ1

1, ..., ℓ
1
Kq, ℓ1

k P Z`, by:

ℓ1
k “ T

eℓk
řK

i“1 e
ℓi
. (8.1)

In other words, we apply the softmax function on L to get the relative lengths, which sum up to 1

and then multiply them by T to get the absolute lengths. Therefore, the absolute lengths sum up to
T , which is our desired final temporal size for Y . Given the absolute lengths L1, we upsample A in a
differentiable way such that ak P RC becomes a1

k P Rℓ1
kˆC .

8.3.3.1 Temporal Sampling

Although it is possible to obtain a1
k by just copying ℓ1

k times the probabilities ak, this operation is not
differentiable with respect to ℓ1

k. However, we need a differentiable operation in order to update the
parameters of fl, which predicts L, during training.

We first generate our target matrix a1
k P RHˆC where H “ maxk ℓ

1
k, i.e., the matrix is set such

that the size is constant for all k. For a better temporal sampling, we also expand the source by
copying j times ak, where J is a canonical value equal to 100. Although ak has been expanded to
RJˆC , we still keep the notation ak.

The idea is to fill the matrix a1
k by backward warping and a bilinear kernel. Similar to Jaderberg

et al. (2015), we use normalized element indices, such that ´1 ď iarjs ď 1 when j P r1 . . . Js and
´1 ď ia1rhs ď 1 when h P r1 . . . Hs. This means if we just interpolate the values for each column c,
the operation is defined by

a1
krh, cs “

J
ÿ

j“1

akrj, csmax p0, 1 ´ |ia1rhs ´ iarjs|q (8.2)

for h P r1 . . . Hs.
However, we do not want to fill the entire row but only until ℓ1

k. We therefore apply a 1D affine
transformation to the index function

Tℓ1
k
pia1rhsq “

H

ℓ1
k

ia1rhs `
H

ℓ1
k

´ 1. (8.3)

This means that Tℓ1
k
pia1r1sq “ ´1 and Tℓ1

k
pia1rℓ1

ksq “ 1. By integrating (8.3) into (8.2), we obtain
the upsampling operation

a1
krh, cs “

J
ÿ

j“1

akrj, csmax
´

0, 1 ´

ˇ

ˇ

ˇ
Tℓ1

k
pia1rhsq ´ iarjs

ˇ

ˇ

ˇ

¯

(8.4)

that is differentiable with respect to ℓ1
k.

Finally, the matrix is cropped to a1
k P Rℓ1

kˆC and we obtain Y P RTˆC by concatenating the a1
ks

for k “ 1, . . . ,K.

8.4 Training

In Section 8.3 we proposed a model that is capable of dividing a temporal sequence into temporal
regions and predicting corresponding action probabilities A and lengths L. We now discuss the loss
functions and regularizers for training the model.
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8.4.1 Set Loss

In a set supervised problem we already have the set supervision. So we use a simple set prediction
loss LS to use the given set of actions Â. We apply a global max pooling over the temporal dimension
of A to output amc P RC . Then we use the binary cross entropy loss for multiclass classification as

LS “ ´
1

C

¨

˝

ÿ

mPÂ

log pamcrmsq `
ÿ

mRÂ

log p1 ´ amcrmsq

˛

‚. (8.5)

This loss encourages the model to assign at least one region to one of the classes in Â and none to
the other classes.

8.4.2 Region Loss

The set loss only enforces that there is one region with a high probability for each class. It can,
however, happen that the other regions have a uniform distribution for the classes in Â. Since it is
unlikely that all actions occur at the same time, we introduce the region loss, which encourages the
model to predict only one action from Â per region. Since we know that only actions from Â can
occur, we first discard the unrelated actions from A P RKˆC and denote it by AS P RKˆM , where
each column belongs to one of the given action set members âm. We now prefer a prediction where
for each k the probability is close to 1 for one action âm. Due to the softmax, this means that the
probability is close to zero for the other actions.

This is achieved by applying a global max pooling over the m dimension of AS P RKˆM to
obtain amk P RK and using the cross entropy loss:

LR “ ´
1

K

K
ÿ

k“1

log
´

amkrks

¯

. (8.6)

8.4.3 Inverse Sparsity Regularization

The set loss and the region loss ensure that (i) all actions that are not in the set Â have a low proba-
bility, (ii) for each temporal region there is exactly one action âm P Â with high probability, and (iii)
for each action âm there is at least one region k where ark,ms is high. This, however, can result in
unlikely solutions where for M ´1 actions there is only one region with high probability whereas the
other regions are assigned to a single action class. To prevent such a sparse distribution of regions for
some action classes, we introduce an inverse sparsity regularization term RI , which prefers a more
balanced class distribution averaged over all regions:

RI “
1

M

ÿ

mPÂ

˜

1 ´
1

K

K
ÿ

k“1

ark,ms

¸

. (8.7)

This regularizer encourages that the action classes compete for maximizing the number of temporal
regions they are being predicted for.
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8.4.4 Temporal Consistency Loss

As illustrated in Figure 8.1, the temporal regions are usually smaller than the action segments in the
video and a single action often spans several regions. The likelihood of observing the same action
in the neighboring temporal regions is therefore usually higher than observing a different action. We
therefore introduce the temporal consistency loss LC , that encourages the model to predict similar
action labels for neighboring temporal regions:

LC “
1

M

ÿ

mPÂ

1

K

K
ÿ

k“2

|ark,ms ´ ark ´ 1,ms|. (8.8)

More precisely, LC encourages the model to have less prediction changes over the temporal dimen-
sion of AS .

8.4.5 Self Supervision Loss

The aforementioned losses and regularizers only affect the class probabilities A of the temporal re-
gions, but do not backpropagate gradients through the subnetwork fl. This means that the network
does not learn the corresponding lengths of the regions during training. In order to provide an aux-
iliary supervision signal to train L, we employ a self supervision technique which relies on using
two different representations. The first representation Y is obtained by estimating the actions prob-
abilities A and lengths L for K temporal regions as described in Section 8.3.2. Due to the temporal
sampling, the representation Y is differentiable with respect to L.

To have another representation, we use a second branch fspZq. This branch consists of a sub-
network that has a single 1-d convolution with kernel size 1 and output channel size C. It predicts
frame-wise class probabilities for the temporal size T 1. We linearly interpolate it to S P RTˆC along
the temporal dimension, which corresponds to a setting where K “ T 1 and ℓk “ T

T 1 , i.e., all regions
have a constant length.

Since we do not know the ground-truth lengths L but only the set of present actions Â, we
combine Y and S to compute class probabilities V1:M “ pv1, ...vM q, vm P RC , for each element in
the set Â. This is done by the Set Constrained Temporal Transformer module (SCT).

8.4.6 Set Constrained Temporal Transformer

As it is illustrated in Figure 9.2, we produce for each action class âm P Â masks wm from Y . The
masks indicate the temporal locations where the action âm occurs in the video. We use these masks
to sample from S:

vm “
1

T

T
ÿ

t“1

wmrtsSrts. (8.9)

If S and Y are consistent, vmrâms should be high and vmrâns should be close to zero for n ‰ m.
To exploit this, we apply a softmax on vm to get the predicted probabilities for the given action

and use the cross entropy loss:

LTmpvm, âmq “ ´ log

˜

evmrâms

řC
c“1 e

vmrcs

¸

. (8.10)
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Since wm is differentiable with respect to am and lm, the loss affects both.
As a more efficient way, we can apply all of the masks W on S using:

V “
W TS

T
(8.11)

where V P RMˆC and W T P RMˆT denotes the transposed version of W . Therefore, we can define
the loss for V and the given actions set Â as

LT pV, Âq “ ´
1

M

M
ÿ

m“1

log

˜

eV rm,âms

řC
c“1 e

V rm,cs

¸

. (8.12)

8.4.6.1 Backpropagation

Using the LT loss, the gradient can backpropagate through both S and Y . Y is the output of fupA,Lq

which is a differential function over L and A. Therefore, we can update the fl weights using the
backpropagated gradients. To be able to backpropagate through the a1

ks we define the gradients with
respect to the sampling indices Tℓ1

k
pia1rhsq as

Ba1
krh, cs

BTℓ1
k
pia1rhsq

“

J
ÿ

j“1

akrj, cs

$

’

’

&

’

’

%

0 |iarjs ´ Tℓ1
k
pia1rhsq| ě 1

1 iarjs ´ 1 ă Tℓ1
k
pia1rhsq ď iarjs

´1 iarjs ă Tℓ1
k
pia1rhsq ă iarjs ` 1

. (8.13)

Since the sampling indices Tℓ1
k
pia1rhsq are a function of the predicted lengths L1:M , the loss gradients

are backpropagated to the predicted lengths

8.4.6.2 Region Length Regularization

Learning the lengths based on LT may result in degenerated lengths which are close to zero. There-
fore, we use a length regularizer RL to prevent such circumstances. We define RL as

RL “
1

K

K
ÿ

t“1

pReLUpℓt ´ δq ` ReLUp´ℓt ´ δqq (8.14)

where δ is a canonical value equal to 1. This regularization term penalizes the lengths which are
bigger or smaller than the length width of δ.

8.4.7 Overall Loss

All of the loss functions and regularizers that we mentioned in this section encourage the model to
exploit the given weak supervision and also characteristics of actions to train the model for action
segmentation. Therefore, the final loss function for the model is the weighted sum of the above
mentioned losses and regularizers. In Section 9.4 we study the impact of all loss functions and
regularizers.
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Figure 8.3: Comparing the segmentation quality of our method to the ActionSet method. Our method
has predicted the right order of actions occurring in this video. Our approach also estimates the
actions lengths better.

8.5 Experiments

In this section, we analyze the components of our approach. We first analyze the model design. Then
we evaluate the effect of using different loss functions and regularizers. Finally, we compare our
method with the preceding approaches.

8.5.1 Setup

Datasets. We evaluate our method on two popular datasets, namely the Breakfast dataset (Kuehne
et al., 2014), and Hollywood Extended Bojanowski et al. (2014).

The Breakfast dataset contains 1, 712 videos of different cooking activities, corresponding to
about 67 hours of videos and 3.6 million frames. The videos belong to 10 different types of breakfast
activities like fried egg or coffee which consist of 48 different fine-grained actions. The actions are
densely annotated and only 7% of the frames are background. We report the average frame accuracy
(MoF) metric over the predefined train/test splits following Richard et al. (2018a).

Hollywood Extended contains 937 video sequences with roughly 800, 000 frames. About 61%
of the frames are background, which is comparably large compared to other datasets. The videos
contain 16 different action classes. We report the Jaccard index (intersection over union) metric over
the predefined train/test splits following Richard et al. (2018a).

Feature Extraction. In this study, we employ RGB+flow I3D representations as detailed in Car-
reira and Zisserman (2017), in addition to the XViT(16ˆ) and XViT+ATS(16ˆ) networks pretrained
on the Kinetics dataset Kay et al. (2017), to extract features from each frame of the video. To enable
a fair comparison, we also utilize the same IDT features as conducted by Richard et al. (2018a) and
assess the influence of utilizing various features.

Implementation Details. We train all modules of our network together. The hidden size of the
temporal embedding module is 128. We use SGD optimizer with weight decay 0.005. The initial
learning rate is set to 0.01. Additional details and code are available online.1

1http://mohsenfayyaz89.github.io
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#max poolings 0 1 2 3 4 5 6

MoF 12.3 15.4 20.8 28.1 27.2 21.3 18.2

Table 8.1: Evaluating the effect of changing the numbers of max pooling operations in the temporal
embedding module. Experiments are run on Breakfast split 1.

8.5.2 Ablation Experiments

In this section we first analyze the model design. Then we analyze the effect of our loss functions
and regularizers on training the model.

8.5.2.1 Effect of different downsampling levels

As mentioned in Section 8.3.1, we downsample the input by applying temporal max pooling with
kernel size 2. We evaluate the effect of downsampling by changing the numbers of temporal max
pooling operations in the temporal embedding module. It should be mentioned that we apply each
max pooling on top of each temporal convolution block (TCB). As can be seen in Table 8.1, a small
number of max pooling operations results in a relatively low frame-wise accuracy. This is due to
high number of temporal regions, which may result in an over-segmentation problem. Furthermore,
a drop in performance can be observed when the number of max pooling operations is too large. In
this case, there are not enough temporal regions and a temporal region covers multiple actions. For
the rest of the experiments, we use 3 max pooling operations in our temporal modeling module. It
should be noted that we use 3 max pooling operations after the TCBs with indices t1, 2, 4u, while in
this experiment 3 max pooling operations are applied after the TCBs with indices t1, 2, 3u.

8.5.2.2 Effect of using different loss functions and regularizers

As mentioned in Section 8.4, we use different loss functions and regularizers to train our model. To
quantify the effect of using these loss functions and regularizers, we train our model with different
settings in which we can evaluate the effect of them for training. We train our model on split 1 of the
Breakfast dataset and report the results in Table 8.2.

As mentioned in Section 8.4.1, the Set Loss LS encourages the model to have at least one tem-
poral region with a high class probability for each action in the target action set. Therefore, this loss
does not affect the frame-wise prediction performance of the model. As it can be seen in Table 8.2,
using only LS the model achieves MoF of 8.1%.

By adding the Region Loss LR, we encourage the model to only predict one action per temporal
region. Using this auxiliary supervision, the MoF slightly improves to 9.9% which is still relatively
low.

As mentioned in Section 8.4.3, adding the Inverse Sparsity Regularizer RI helps the method
to prevent a sparse distribution of regions for some action classes. Therefore, by adding RI to the
overall loss, the MoF improves to 19.2%, which is significantly better than predicting every frame as
background which covers about 7% of the frames.

We further add the Temporal Consistency Loss LC to encourage the model to predict similar
actions for neighboring temporal regions. LC improves the result to 21.9%.

As mentioned in Section 8.4.5, all of the aforementioned losses and regularizers only affect the
class probabilities A of the temporal regions and do not backpropagate gradients through the length
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LS LR RI LC LT RL LJ MoF

✓ - - - - - - 8.1
✓ ✓ - - - - - 9.9
✓ ✓ ✓ - - - - 19.2
✓ ✓ ✓ ✓ - - - 21.9
✓ ✓ ✓ ✓ ✓ - - 29.9
✓ ✓ ✓ ✓ ✓ ✓ - 30.8
✓ ✓ ✓ ✓ - ✓ - 22.2
✓ ✓ ✓ ✓ - ✓ ✓ 25.3

Table 8.2: Evaluating the effect of using different losses and regularizers. Experiments are run on
Breakfast split 1.

estimator head fl. We therefore add the Self Supervision Loss LT to evaluate the effect of learning
lengths during training. Adding LT significantly improves the accuracy to 29.9%. This improvement
shows the effect of refining the temporal regions using the predicted lengths.

We also evaluate the effect of using the Region Length Regularization RL. As mentioned in
Section 8.4.6.2, learning the lengths only based on LT may result in too diverse estimated lengths for
temporal regions. Therefore, we evaluate the effect of RL by adding it to the overall loss. By adding
this regularizer the accuracy improves to 30.8%. Since LT and RL are the only loss function and
regularizer which affect the lengths L, we also evaluate the effect of only using RL as an effective
regularizer on the lengths without LT . This setting results in an MoF of 22.2%. The reason for such
a significant drop in performance is that RL only encourages the model to not estimate too diverse
lengths. This shows that the proposed self supervision loss based on the set constrained temporal
transformer is important to learn proper lengths for the temporal regions.

To have a better understanding of the Self Supervision Loss, we also try to train the temporal
regions’ length estimator head fl in a different way. Instead of using LT , we use the Jensen Shannon
Divergence loss which is a symmetric and smoothed version of the KullbackâLeibler divergence to
match both representations Y and S as follows:

LJ “
1

2
DpY ∥ Mq ` DpS ∥ Mq, (8.15)

DpP ∥ Qq “
ÿ

xPX

P pxq logp
P pxq

Qpxq
q (8.16)

where M “ 1
2pY ` Sq. Using LJ instead of LT results in an MoF of 25.3%, which shows the

superiority of our self supervision loss.

8.5.2.3 Effect of using different features

As previously stated, we leverage I3D features (Carreira and Zisserman, 2017) as input for our
model. To assess the impact of the input video features, we also train our model using IDT,
XViT(16ˆ) (Bulat et al., 2021), and XViT+ATS(16ˆ) (Fayyaz et al., 2022) features and present
the results in Table 8.3. To provide a fair comparison with the method of Richard et al. (2018a), we
also train this method using I3D, XViT(16ˆ), and XViT+ATS(16ˆ) features utilizing the publicly
available code. Our results demonstrate that our method achieves superior performance by utilizing
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Method XViT XViT+ATS I3D IDT

ActionSet Richard et al. (2018a) 19.2* 19.0* 20.1* 23.3
Ours 27.9 27.4 30.4 26.6

Table 8.3: A comparison of our method with that of Richard et al. (2018a) for various features is
presented. The experiments were conducted on the Breakfast dataset, and the MoF metric was used
to evaluate performance. Our method demonstrates superior results using both types of features.
*The source code of the paper has been used for this experiment.

Dataset Break Fast Holl. Ext.
MoF jacc. idx

ActionSet-monte-carlo Richard et al. (2018a) 23.3 9.3
ActionSet-text-based Richard et al. (2018a) 23.2 9.2
SCV Li and Todorovic (2020) 30.2 17.7
SCT (Ours) 30.4 17.7
POC Lu and Elhamifar (2022) 42.4 33.5

Table 8.4: Comparison of our method to state-of-the-art methods for weakly supervised temporal
segmentation. It is crucial to emphasize that the research presented in this chapter has been pub-
lished in CVPR 2020 (Fayyaz and Gall, 2020). To provide a thorough overview and foster a deeper
understanding of the prevailing trends in the field, we have integrated contemporary state-of-the-art
methods published at or subsequent to the publication date of this chapter

both types of features. The ActionSet method (Richard et al., 2018a) does not perform well on I3D
features, which may be attributed to limitations in its temporal architecture design that is not capable
of effectively learning a temporal embedding from I3D features. We also observe that our method
performs better using I3D features compared to XViT(16ˆ) and XViT+ATS(16ˆ). This superior
performance may be attributed to the multimodal nature of I3D features, which are extracted by a
model that incorporates both optical flows and RGB frames. In long untrimmed instructional videos,
such as those found in the BreakFast dataset, motion modeling is crucial for understanding actions. In
these videos, the scene, actors, and objects are typically consistent and do not change much over time.
In contrast, hand and object movements are often the discriminative factors of actions. Thus, we posit
that incorporating optical flows as input for the feature extraction model enables the representation
of more discriminative features, resulting in improved temporal action segmentation performance.

8.5.3 Comparison to Other methods

The task of learning temporal action segmentation using action sets as weak supervision had been
addressed only by Richard et al. (2018a) to the publication date of this chapter (Fayyaz and Gall,
2020). We compare our approach to this method and the concurrent works on two datasets. As it can
be seen in Table 8.4, our method achieves superior results on all datasets compared to its preceding
and concurrent methods. Figure 8.3 shows a qualitative result of our method for a video from the
Breakfast dataset.
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8.6 Summary

In this chapter, we presented a network specifically designed for temporal action segmentation. The
network is trained on extended videos, which are solely annotated with the set of present actions.
During the training process, the videos are divided into temporal regions containing only one action
class, adhering to the set of annotated actions. We extensively evaluated the approach on two datasets,
and for each dataset, the proposed network surpasses the performance of prior work. This summary
highlights the key contributions and findings of the chapter, demonstrating the effectiveness of the
proposed method in the domain of temporal action segmentation.
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In the preceding chapter, we introduced a weakly supervised temporal action segmentation ap-
proach that leverages merely a set of actions for training purposes. While employing a set of actions
for model training is cost-effective, using it as adequate supervision for temporal action segmentation
models presents a considerable challenge. Considering the constraints of techniques utilizing weak
action set supervision, it is crucial to explore methods that can capitalize on more robust forms of
supervision. Transcripts serve as one such example of weak supervision, providing ordered lists of
actions that denote the sequence in which actions transpire within a training video, albeit without
specifying their temporal occurrence. As a final contribution, in this chapter, we present a novel
end-to-end framework for weakly supervised action segmentation using a two-branch neural net-
work. The network’s dual branches independently predict redundant yet distinct action segmentation
representations, and we incorporate a mutual consistency loss term to enforce consistency between
these redundant representations. Our approach attains the accuracy of state-of-the-art methods while
demonstrating marked improvements in efficiency.

9.1 Introduction

As previously discussed, the process of annotating precise temporal boundaries of actions in exten-
sive videos can be both time-consuming and expensive. Therefore, action segmentation approaches
that can leverage weaker forms of supervision are of considerable importance. One such approach
involves the use of ordered lists of actions, referred to as "transcripts." These transcripts, which in-
clude sequences such as spoon powder - pour milk - stir milk, provide information about the order in
which actions occur within a training video, but do not specify their exact timing. Consequently, this
type of weak supervision has gained popularity in the field of computer vision (Huang et al., 2016;
Richard et al., 2017, 2018b; Ding and Xu, 2018; Chang et al., 2019; Li et al., 2019).

To learn from transcripts, previous approaches try to align the transcripts to the training videos,
i.e., they infer frame-wise labels of each training video based on the provided transcripts. This align-
ment is then used as the pseudo ground truth for training. For the transcript alignment, the Viterbi
algorithm is commonly used. It takes the estimated frame-wise class probabilities of a video and
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Figure 9.1: Average inference time per video (seconds) vs. average mean over frames (MoF) ac-
curacy (%) for weakly supervised action segmentation approaches on the Breakfast dataset (Kuehne
et al., 2014). The average MoF is calculated over 5 training/inference iterations. The proposed ap-
proach (MuCon-full) provides the best trade-off between inference time and accuracy. More details
are provided in Section 9.4.4.

finds the best sequence of frame labels that does not violate the action order of the given transcript.
While Richard et al. (2017) and Ding and Xu (2018) perform the alignment after each epoch for all
training videos, Richard et al. (2018b) and Li et al. (2019) apply it at each iteration to a single video.

During inference, previous approaches except ISBA (Ding and Xu, 2018) rely on segmentation
through alignment. This means that given an unseen video from the test set, the methods search over
all transcripts of the training set and take the transcript that best aligns with the test video. This is
highly undesirable since the inference time increases in this case as the number of different transcripts
in the training set increases. As a result, these approaches are inefficient as shown in Figure 9.1.

In contrast to segmentation through alignment approaches, ISBA is fast, but it does not achieve
the accuracy of state-of-the-art approaches. This means that at the moment one can only choose
between accurate or fast approaches, but one cannot have both.

In this work, we therefore fill this gap and propose an approach that is nearly as fast as ISBA
and nearly as accurate as the state-of-the-art as shown in Figure 9.1. Instead of optimizing over
all possible transcripts during inference, our approach directly predicts the transcript for a video
as well as the frame-wise class probabilities using two branches as illustrated in Figure 9.2. This
means that the inference time does not depend on the number of transcripts used for training and that
the best label sequence can be directly predicted from the estimated transcript and frame-wise class
probabilities.

In addition, the proposed approach has also two major advantages during training. First, the
branch, which predicts the transcripts, is directly trained with the type of supervision that is provided,
namely transcripts. Second, the branch not only predicts the transcripts, but also the length of each
action in the transcript. This means that the branch predicts already a full segmentation of the video
without the need for the Viterbi algorithm, which also reduces the training time. Nevertheless, we
need an additional loss to learn the action lengths. In contrast to previous works, we do not generate
pseudo ground truth with hard labels during training, but we propose a novel differentiable mutual
consistency (MuCon) loss that enforces that the representations estimated by the two branches are
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mutually consistent and match each other. Furthermore, we show that the approach can be trained
using weak supervision, full supervision, or a mixture of the two, where only few videos are fully
annotated.

We provide a thorough analysis of the proposed approach including a detailed statistical analysis.
We show that the proposed network with the mutual consistency loss achieves an accuracy that is ei-
ther on par or better than existing approaches. At the same time, it is 20 times faster during inference
compared to the most accurate approach by Li et al. (2019) as shown in Figure 9.1.

9.2 Weakly Supervised Action Segmentation

As mentioned in the previous section, action segmentation is the task of predicting the action class
for each frame of a video. More formally, given an input sequence of T D-dimensional frame-level
features X1:T “ px1, . . . , xT q, xt P RD, the goal is to predict the output sequence of frame-level
action labels Ŷ1:T “ pŷ1, . . . , ŷT q, where ŷt P C and C is the set of action classes. The frame-level
action labels Ŷ1:T can also be represented as an ordered sequence of M segments Ŝ1:M where each
segment ŝm is defined as an action label âm P C and its corresponding length ℓ̂m P R`.

For fully supervised action segmentation, the target labels for every frame ŷt are known during
training. This means that the target lengths ℓ̂m are known. However, in weakly supervised action
segmentation, the only supervisory signal is the ordered sequence of actions Â1:M “ râ1, . . . , âms,
often called video transcript, while the action lengths L̂1:M “ rℓ̂1, . . . , ℓ̂M s are unknown.

In order to estimate L1:M , we exploit the fact that the two unknown target representations Ŷ1:T
and Ŝ1:M for action segmentation are redundant and it is possible to generate one given the other.
The main idea is therefore to predict both representations Y1:T and S1:M by different branches of
the network such that they can supervise each other. In the ideal case, both predicted representations
converge to the same solution during training. In order to train the model, however, we have to
face the challenging problem that the mapping from one representation to the other needs to be
differentiable, such that the loss that measures the mutual consistency of both representations is
differentiable with respect to the predicted frame-wise class probabilities Y1:T and the predicted
segment lengths L1:M . Since the transcript Â1:M is given, it does not need to be differentiable with
respect to A1:M .

9.3 Proposed Method

During training, we have for each video the input video features X1:T and its corresponding transcript
Â1:M . Since only weak labels in form of the transcripts are provided for training, we propose a) to
use the weak labels directly for training a transcript prediction subnetwork and b) exploit the two
representations discussed in Section 9.2 as mutual supervision.

The proposed network is illustrated in Figure 9.2. The network consists of two branches that
share the same backbone ftpXq, which is a temporal convolutional network that maps the input
video features X P RTˆD to a latent video representation Z P RT 1ˆD1

. The backbone architecture
is described in Section 9.3.1. After the shared backbone, the network has two branches. The top
branch fcpZq is a standard frame classification branch that estimates the class probabilities of each
frame Y P RTˆN , where N is the number of classes. The branch will be described in Section 9.3.2.
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Figure 9.2: Our proposed network consists of three subnetworks (gray). The temporal backbone ft
embeds the input features in the hidden representation Z which is used for two branches. While the
frame classification branch fc predicts framewise class probabilities Y for action segmentation, the
segment generation branch fs predicts the segment representation S for action segmentation. We
train our network using two loss functions. While the transcript prediction loss Lt enforces that
the predicted transcript A matches the ground-truth transcript Â, our proposed mutual consistency
(MuCon) loss Lµ enforces that the two representations are consistent.

The novelty of the network is the lower branch and the mutual consistency loss Lµ, which will be
described in Sections 9.3.3 and 9.3.4, respectively.

In contrast to previous works that commonly use a network to predict Y and Viterbi decoding
on top of it for computing the loss based on the given transcript Â, we use a second branch that
predicts the segment representation S, i.e. A and L. This has two advantages during training. First,
we can compare the predicted transcript A and the ground-truth transcript Â for each video directly,
i.e., the network is directly trained with the type of supervision that is provided. The corresponding
loss is denoted by Lt. Second, the network has two branches that supervise each other and we do not
need an additional Viterbi decoding step. Since the two branches predict different representations,
the novel mutual consistency (MuCon) loss Lµ requires a differentiable mask generator such that the
loss is differentiable with respect to Y and L; otherwise we could not train the network.

After training, we need to infer the action class for each frame of an unseen test video. In case of
action segmentation, no additional transcripts are given for the test videos. As shown in Figure 9.1,
we can use three different approaches for inference, which are denoted by MuCon-Y, MuCon-S,
and MuCon-full. In case of MuCon-Y and MuCon-S, we use the predicted Y or S representation,
respectively. While these settings are as fast but more accurate than ISBA (Ding and Xu, 2018),
the accuracy is lower compared to the state-of-the-art. For the model MuCon-full, we use therefore
the predictions of both branches. To this end, we use the predicted framewise class probabilities Y
and the predicted transcript A to find the best sequence of action labels using Viterbi decoding as
described in Section 9.3.8. Note that the approach is still much faster than other methods except of
ISBA since we do not need to optimize over all possible transcripts. We now provide more details
for each part of the network.
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9.3.1 Temporal Backbone

The temporal backbone ftpXq, which is a temporal convolutional network (van den Oord et al.,
2016; Fayyaz and Gall, 2020; Abu Farha and Gall, 2019; Lea et al., 2017; Li et al., 2020a), outputs
the latent video representation Z P RT 1ˆD1

of the input video features X P RTˆD. This hidden
representation has a smaller temporal resolution due to temporal pooling. Similar to the chapter 8
our temporal backbone consists of a set of 1-dimensional dilated convolutional layers with increasing
dilation sizes. More specifically, we first apply a 1-d convolution with kernel size 1 to perform
dimensionality reduction. Then a set of 11 layers with increasing dilation rates are applied, followed
by a single 1-d convolution with kernel size 1 that generates the output. The amount of dilation for
each layer is 2i. We perform temporal max pooling with a kernel size of 2 after the layers 1, 2, 4,
and 8. Additional details are given in Section 9.4.2. The design is similar to a single stage TCN (Abu
Farha and Gall, 2019), but it includes additional pooling layers.

9.3.2 Frame Classification Branch

The classification branch takes the shared latent video representation Z P RT 1ˆD1

as input and
predicts the class probabilities Y P RTˆN where N is the number of actions in the dataset. Due to
the temporal pooling of the temporal backbone, Z has a lower temporal resolution compared to the
input features. To compensate for this, we first upsample Z using nearest-neighbor interpolation to
the desired temporal size T . Then we use a single 1-d convolution with kernel size 1, which takes as
input the upsampled Z P RTˆD1

and outputs Y P RTˆN .

9.3.3 Segment Generation Branch

The second branch on top of Z is the segment generation subnetwork which predicts the segments S.
Each segment sm consists of predicted action probabilities am and the estimated relative log length
ℓm of that segment. By predicting the log length, we implicitly enforce that the segment lengths are
positive. We will discuss in Section 9.3.5.1 how the relative log length is mapped to the absolute
length. The subnetwork and the transcript prediction loss Lt are illustrated in Figure 9.3a.

We employ a conventional sequence to sequence network with attention (Bahdanau et al., 2015).
Given the hidden video representation Z, we use a bidirectional LSTM encoder to encode it. Our
decoder is an LSTM recurrent neural network with MLP attention. Although these networks on their
own struggle to learn a temporal model for long input sequences (Cho et al., 2014b; Singh et al.,
2016), the temporal backbone, which encodes temporal relations at higher resolution, makes it easier
for the segment generation subnetwork to learn temporal dependencies as shown by our ablation
experiments.

As illustrated in Figure 9.3a, the decoding starts with the starting symbol âstart. At each step
of the decoding process, the ground truth action label âm´1 from the previous step is added to the
encoded input sequence by concatenating it to the result of the attention. The concatenated vector is
then given as input to the LSTM decoder cell, which estimates probability scores am using a fully
connected MLP with two layers. Given these probability scores and the ground truth action label
âm, we compute the action prediction loss Ltm per segment using cross-entropy. The final transcript
prediction loss is defined as the sum of the action prediction losses, i.e., Lt “

řM`1
m“1 Ltm . Note

that we have M ` 1 terms since we add the end symbol âend to the ground-truth transcripts, which
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(a)

(b)

Figure 9.3: Visualization of the segment generation branch and the loss functions. (a) Segment
generation branch fs and the transcript prediction loss Lt. Given the hidden video representation Z,
we use a sequence to sequence network with attention. The transcript prediction loss Lt compares the
predicted action class probabilities am with the ground-truth action label âm. (b) Mutual consistency
loss Lµ. Given the predicted lengths L, a set of masks wm are generated using differentiable sampling
by the mask generation module (MG). The loss then measures for each segment the consistency of
the estimated framewise class probabilities Y with the ground-truth action âm.



136 Chapter 9. Weakly Supervised Temporal Action Segmentation from Action Transcripts

needs to be predicted by the network as well. During training we use teacher forcing ?, i.e., we do
not sample from the predicted action probabilities to feed the decoder, but we use the ground truth
action labels âm.

Given the probability scores am and the hidden state of the decoder, we use another fully con-
nected MLP with two layers to predict ℓm, which corresponds to the logarithm of the relative length
of the segment. Notice that the parameters of this MLP are not updated based on the transcript
prediction loss, but based on the mutual consistency loss Lµ.

9.3.4 Mutual Consistency Loss

Using the frame classification and the segment generation branches, two representations Y and S for
the action segmentation are produced. However, so far we have only defined a loss for the predicted
transcript A of the segment representation S, which we compare directly with the ground-truth tran-
script Â, but not for the predicted lengths of the actions L and the framewise class probabilities Y .
We therefore propose the mutual consistency (MuCon) loss, which enforces that the two representa-
tions match each other and are mutually consistent. As shown in Figure 9.2, the mutual consistency
loss takes the ground-truth transcript Â, the predicted segment lengths L, and framewise class prob-
abilities Y as input. Since the loss is used to train both branches, it needs to be differentiable with
respect to L and Y .

In principle, there are two choices: either we map Y to S or S to Y . The first approach, however,
is not practical since it would need to detect consistent segments within Y . While this could be done
using Viterbi decoding, it would make our network as expensive as segmentation through alignment
approaches. Our goal, however, is to propose an approach that is fast and accurate. An explicit
mapping from S to Y followed by the computation of a framewise loss, however, is also inefficient.
We therefore combine the mapping and loss computation. Furthermore, we use Â instead of A since
we have already a loss that enforces that A is close to Â. Like teacher forcing, it also stabilizes the
training since it guides the mutual consistency loss by Â from the beginning of the training when
A is still noisy. In our experiments, we show that this reduces the standard deviation over different
runs.

The computation of the mutual consistency loss is illustrated in Figure 9.3b. We start with the
estimated relative log length ℓm for each segment sm. The relative log length ℓm is then converted
into the absolute length ℓ1

m and for each segment we compute its absolute starting position p1
m within

the video. This step is described in Section 9.3.5.1. Given ℓ1
m and p1

m, for each segment we generate
a mask wm using the differentiable mask generation module, which is described in Section 9.3.5. As
mentioned before, for each segment we use the ground-truth action label âm instead of the estimated
class probabilities.

Finally, we can compare the consistency of the predicted frame-wise class probabilities Y with
each segment defined by the mask wm and the label âm. To this end, we first compute the average of
Y for each segment based on the mask wm:

gpY,wmq “

řT
t“1 ytwmrts

ℓ1
m

(9.1)

where gpY,wmq P RN , wmrts is the value of the mask at frame t, and ℓ1
m is the absolute length of
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Figure 9.4: Examples of different masks for three consecutive action segments. The top row shows
regular masks with different shapes while the bottom row shows masks generated with added 10%

overlap. The left, middle and right figures depict box, bell, and trapezoid shaped masks.

the segment. Then, we compute the cross-entropy for each segment:

LµmpY,wm, âmq “ ´ log

˜

egpY,wmqrâms

řN
n“1 e

gpY,wmqrns

¸

(9.2)

where we use the softmax function to normalize the class probabilities per segment and the ground-
truth label âm. Since we normalize per segment using the softmax function, we use the estimates of
Y before the softmax layer of the frame classification branch in (9.1). The final mutual consistency
loss Lµ is defined as the sum of all segment losses:

Lµ “

M
ÿ

m“1

LµmpY,wm, âmq. (9.3)

The mutual consistency loss (9.3) is a differentiable function of the masks wm and the frame-
wise class probabilities Y . Due to the definition of the differentiable mask generation, which we will
describe in the following section, the masks are differentiable with respect to the estimated segment
lengths L. This means that the gradients of the mutual consistency loss are backpropagated through
both branches as it is required to train the network.

9.3.5 Differentiable Mask Generation

In order to compute the mutual consistency loss, we need to generate the masks wm that act like
gating functions that only allow information from the predicted temporal regions to pass through.
The masks wm are functions of the predicted absolute length ℓ1

m and predicted starting position p1
m

of each segment such that

wmrts »

#

1 p1
m ď t ď p1

m ` ℓ1
m

0 otherwise
, t P r1 . . . T s. (9.4)



138 Chapter 9. Weakly Supervised Temporal Action Segmentation from Action Transcripts

Examples of generated masks are shown in Figure 9.4.

9.3.5.1 Localization

In order to obtain the predicted absolute length ℓ1
m and the predicted starting position p1

m for each
segment, we first calculate the absolute length values L1

1:M “ pℓ1
1, . . . , ℓ

1
M q for a video with T

frames such that
řM

m“1 ℓ
1
m “ T , i.e., the absolute lengths sum up to be equal to the length of the

video. Having the absolute length ℓ1
m of each segment, we can also compute the absolute starting

position p1
m for each segment:

ℓ1
m “ T

eℓm
řM

k“1 e
ℓk
, p1

1 “ 0, p1
m “

m´1
ÿ

k“1

ℓ1
k. (9.5)

9.3.5.2 Temporal Transformation

For generating the masks, we transform a reference template tensor U P r0, 1sJ to wm P r0, 1sT

where J is a canonical value equal to 100. The reference template tensor can be of any shape and we
evaluate three shapes, namely box, bell, and trapezoid which are depicted in Figure 9.4. By adjusting
the absolute lengths ℓ1

m and starting positions p1
m, it is also possible to introduce an overlap for the

masks.
We transform U to wm by scaling and translating it using ℓ1

m and p1
m, respectively. Therefore,

we use a 1D affine transformation matrix Tθ such that

iurts “ Tθptq “ rθ0 θ1s

ˆ

t

1

˙

@t P r1, . . . , T s (9.6)

where iurts are the sampling points over U . As a result of the affine transformation (9.6), the element
indices of the sampling points in the template iurts can be outside the valid range of r1, . . . , Js.
In such cases, the indices will be ignored in the sampling process (9.8). The affine transformation
parameters are

θ0 “
J

ℓ1
m

, θ1 “
´Jp1

m

ℓ1
m

(9.7)

where θ0 scales the reference template U to the estimated length ℓ1
m and θ1 translates it to the esti-

mated position p1
m.

9.3.5.3 Temporal Sampling

To perform the aforementioned temporal transformation, we should sample from U using the sam-
pling points iurts and produce the sampled mask wm. Each index iurts refers to the element in U

where a sampling kernel must be applied to get the value at the corresponding element wmrts in the
output mask. Similar to Jaderberg et al. (2015), we perform this operation as follows

wmrts “

J
ÿ

j“1

U rjsΨpiurts ´ jq @t P r1, . . . , T s (9.8)
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where Ψ is the sampling kernel. Since we use a linear kernel, it can be written as

wmrts “

J
ÿ

j“1

U rjsmaxp0, 1 ´ |iurts ´ j|q @t P r1, . . . , T s. (9.9)

9.3.5.4 Backpropagation

To be able to backpropagate through the generated masks wm, we define the gradients with respect
to the sampling indices iurts as

Bwmrts

Biurts
“

J
ÿ

j“1

Uj

$

’

’

&

’

’

%

0 |iurts ´ j| ě 1

1 j ´ 1 ă iurts ď j

´1 j ă iurts ă j ` 1

. (9.10)

Since the sampling indices iurts are a function of the predicted lengths ℓ1
m, the loss gradients are

backpropagated to the segment generation branch.

9.3.6 Regularization

To prevent degenerate solutions, i.e., solutions where the lengths of some segments are large and the
length of the other segments are almost zero, we add a regularization term for the predicted relative
log lengths L:

Lℓ “

M
ÿ

m“1

maxp0,´ℓm ´ wq ` maxp0, ℓm ´ wq. (9.11)

The proposed length regularizer adds a penalty if ℓm ă ´w or ℓm ą w. Note that the relative
log lengths can be negative and are later converted into the absolute length as described in Section
9.3.5.1.

We also use the smoothing loss introduced by Abu Farha and Gall (2019) for the frame classifi-
cation branch:

Ls “
1

TN

ÿ

t,n

∆̂2
t,n, (9.12)

∆̂t,n “ minpτ, | log yt,n ´ log yt´1,n|q, (9.13)

with τ “ 4 following Abu Farha and Gall (2019).

9.3.7 Fully Supervised and Mixed Training

Although our approach is designed for weakly supervised action segmentation, we can easily adapt
it to a setting where all or some videos of the training set are fully annotated, i.e., they are annotated
not by the transcript Â but by the framewise labels Ŷ .

In this case, we have two additional losses for our network shown in Figure 9.2. We use the
cross-entropy loss for the frame classification branch to compare the predicted class probabilities Y
with the framewise labels Ŷ , and we use the mean squared error loss for the segment generation
branch to compare the estimated relative log lengths L with the ground truth segment lengths. To
this end, we convert the absolute ground-truth lengths into relative log lengths.
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Although the mutual consistency loss is only necessary in case of weakly supervised learning
or in a setting where only a subset of the videos is fully annotated, we show that using the mutual
consistency loss also improves the accuracy when the network is trained in a fully supervised way.

9.3.8 Inference

As discussed at the beginning of Section 9.3, we can either use the frame classification branch, which
predicts the framewise class probabilities Y , or the segment generation branch, which predicts the
segments S. In the later case, we start with the start symbol astart and the decoder generates new
segments until the special end symbol aend is predicted as illustrated in Figure 9.3a. The estimated
relative log segment lengths are then converted into absolute lengths as described in Section 9.3.5.1.
The two approaches for inference are denoted by MuCon-Y and MuCon-S, respectively.

However, as it is shown in Figure 9.1, we achieve the highest accuracy at a small increase in
inference time if we use the predictions of both branches. We denote this approach by MuCon-full.
For simplicity, we use L instead of L1 to denote the estimated absolute lengths of the segments in
this section. In order to fuse both predictions, we keep the inferred transcript A, but reestimate the
lengths of the segments L using Y :

L˚ “ argmax
L̃

ppL̃|Y,A,Lq. (9.14)

Similar to Richard et al. (2018b), we can factorize the term ppL̃|Y,A,Lq yielding

L˚ “ argmax
L̃

T
ź

t“1

ytraαpt,L̃q
s

M
ź

m“1

Pℓmpℓ̃mq (9.15)

where Pℓmpℓ̃mq denotes a Poisson distribution with expected mean ℓm, which corresponds to the
absolute segment length that has been estimated by the segment generation branch. Depending on L̃,
the segment number changes for a frame t and it is denoted by αpt, Lq. Although L˚ is obtained by
dynamic programming as described by Richard et al. (2018b), we do not need to optimize over all
possible transcripts as in the methods of Li et al. (2019) and Richard et al. (2018b). While Li et al.
(2019) and Richard et al. (2018b) align each transcript of the training set to the test video and take
the training transcript that best aligns to the test video, our approach infers the transcript A directly
from the test video and only aligns A to the test video. MuCon-full is therefore still much faster than
the methods of Li et al. (2019) and Richard et al. (2018b) as shown in Figure 9.1.

9.4 Experiments

We evaluate our approach for two tasks, namely action segmentation as described in Section 9.2 and
action alignment. In contrast to action segmentation, the transcripts are also given for the test videos
in case of action alignment. Besides of the weakly supervised setting, we also evaluate the approach
when it is trained fully supervised or in a mixed setting where some videos are fully annotated and the
other videos are only weakly annotated by transcripts. Before we evaluate the approach, we discuss
the evaluation protocols and further implementation details1.

1Source code is available at: github.com/MohsenFayyaz89/MuCon

https://github.com/MohsenFayyaz89/MuCon
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9.4.1 Evaluation Protocols and Datasets

We evaluate our method on two popular datasets, the Breakfast dataset (Kuehne et al., 2014) and
the Hollywood extended dataset (Bojanowski et al., 2014). The Breakfast dataset contains more
than 1.7k videos of different cooking activities. The videos contain 10 different types of breakfast
activities such as prepare cereal or prepare coffee which consists of 48 different fine-grained actions.
In our experiments, we follow the 4 train/test splits provided with the dataset and report the average.
The Hollywood extended dataset contains 937 video sequences taken from Hollywood movies. The
videos contain 16 different action classes. We follow the train/test split strategy of Richard et al.
(2017), Richard et al. (2018b), and Li et al. (2019).

The main performance metric used for the action segmentation task is the mean over frames
(MoF) accuracy (Abu Farha and Gall, 2019; Kuehne et al., 2016b; Richard et al., 2017, 2018b). We
also report the F1 score that has been used by fully supervised approaches (Abu Farha and Gall,
2019; Li et al., 2020a). For action segmentation, we also directly evaluate the performance of the
predicted transcripts, which is measured by the matching score or edit distance (Lambert, 2019).
For action alignment, we use the intersection over detection (IoD) metric following Bojanowski et al.
(2014), Richard et al. (2017), Richard et al. (2018b), Ding and Xu (2018), Chang et al. (2019), and
Li et al. (2019).

9.4.2 Implementation Details

We train the entire network end-to-end after initializing it with Gaussian random weights. In each
iteration, we use only a single video, i.e., the batch size is 1. We use a single group norm (Wu and
He, 2018) layer with 32 groups after the final layer of the temporal backbone ft. The dimensionality
of the shared latent video representation Z is D1 “ 128. Unless otherwise stated, we apply temporal
max pooling with kernel size 2 after the convolutional layers 1, 2, 4, and 8 for all experiments on the
Breakfast dataset. For the experiments on the Hollywood Extended dataset, we omit the last temporal
max pooling after the convolutional layer 8 since the videos in the Hollywood extended dataset are
relatively short. The size of the hidden states of the bidirectional LSTM encoder and the LSTM
decoder in our segment generation module are set to 128. We also employ an input embedding for
the LSTM decoder of size 128 with 0.25 dropout.

In the weakly supervised setting, the training loss is defined as L “ Lµ ` Lt ` αLℓ ` βLs. We
use α “ β “ 0.1 unless otherwise specified. Since most of the frames in the Hollywood extended
dataset are annotated by background, which increases the possibility of degenerate solutions, we set
α to 1 for the Hollywood extended dataset. We use w “ 2 in (9.11). The initial learning rate is set
to 0.01 and is lowered by a factor of 10 after 70 epochs for the Breakfast dataset and after 60 epochs
for the Hollywood extended dataset. We train our network for 150 epochs for all weakly supervised
experiments. In the fully supervised and mixed supervision experiments, we train for 110 epochs
since convergence is faster with full supervision.

As input features for the Breakfast and Hollywood extended datasets, we use RGB+flow
I3D (Carreira and Zisserman, 2017) features extracted from a network that was pretrained on the
Kinetics dataset (Kay et al., 2017). These features have been previously used for fully supervised
approaches (Abu Farha and Gall, 2019; Li et al., 2020a). A recent study found that current weakly
supervised approaches perform better with IDT features than I3D features (Souri et al., 2020). We
therefore report the results for the features where the corresponding methods perform best, i.e., I3D
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ft Lµ Mat Score
single 1-d conv ✗ 0.691

fixed dilation ✗ 0.696
increasing dilation, linear ✗ 0.727

increasing dilation, exponential ✗ 0.729
increasing dilation, exponential ✓ 0.774

Table 9.1: Transcript prediction accuracy on split 1 of the Breakfast dataset. The first four rows
show the matching score of the segment generation branch for different dilation factors used for the
temporal backbone. In these settings, the mutual consistency loss Lµ is not used. The last row shows
the proposed setting with the mutual consistency loss.

Shape Overlap MoF Mat Score F1@{10,25,50}
box ✗ 49.0 0.774 67.9 59.5 40.2
bell ✗ 43.6 0.777 65.1 55.5 35.4

trapezoid ✗ 48.7 0.773 67.3 59.0 39.4
box 10% 48.8 0.787 68.3 59.6 39.8
bell 10% 43.5 0.779 64.8 55.3 34.7

trapezoid 10% 48.0 0.780 67.7 59.1 39.5

Table 9.2: Impact of mask generation. As shown in Figure 9.4, different shapes with or without
overlap can be used for the mask generation. We report the MoF accuracy, matching score, and F1
score.

for Abu Farha and Gall (2019) and Li et al. (2020a) and IDT for Ding and Xu (2018), Richard et al.
(2018b), and Li et al. (2019).

9.4.3 Ablation Experiments

In this section, we quantitatively examine different components in our method. For each metric, We
report the average and standard deviation over 5 runs on split 1 of the Breakfast dataset (Kuehne
et al., 2014).

9.4.3.1 Transcript Prediction

We first analyze how well the proposed approach predicts the transcripts, which is measured by the
matching score. If we only use the segment generation branch, the network achieves a matching score
of 0.729 as shown in row 4 of Table 9.1. If we add the frame classification branch and the mutual
consistency loss Lµ, the matching score increases to 0.774. This shows that the mutual consistency
loss also improves the transcript prediction.

In the first four rows of Table 9.1, we furthermore evaluate the impact of the dilation factors
for the temporal backbone ft. If we replace the temporal backbone by a single 1-d convolution, the
matching score decreases from 0.729 to 0.691. If we use as in the proposed network 11 layers with
1-d convolutions but with fixed dilation factor of 1, the matching score does not significantly increase
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Regularizer MoF Mat Score F1@{10,25,50}
none 47.4 0.787 68.1 59.3 39.7
Ls 47.5 0.780 67.8 59.0 39.5
Lℓ 48.3 0.777 67.8 59.0 40.3

Lℓ + Ls 49.0 0.774 67.9 59.5 40.2

Table 9.3: Impact of regularizers. The first three rows denote settings where the length regularizer
Lℓ for the segment generation branch, the smoothing loss Ls for the frame classification branch, or
both are omitted.

Inference variant MoF F1@{10,25,50}
MuCon-Y 44.7 28.1 22.6 13.3
MuCon-S 43.6 65.6 57.2 33.8

MuCon-full 49.0 67.9 59.5 40.2

Table 9.4: Impact of fusing both branches. While MuCon-Y and MuCon-S use either the frame
classification branch or the segment generation branch for inference, MuCon-full fuses both branches
for inference.

since it does not substantially increase the receptive field. Only when we linearly or exponentially
increase the dilation factors for each layer, we observe an improvement of the matching score.

9.4.3.2 Mask Generation Settings

As described in Section 9.3.5, different shapes of mask templates can be used for the mutual con-
sistency loss. We evaluated three shapes, namely box, bell, and trapezoid, and added an optional
overlap of 10% as depicted in Figure 9.4. The results reported in Table 9.2 show that the shape of the
mask has little impact on the quality of the predicted transcript, but that the bell shape has the worst
performance. In general, having hard boundaries for the masks without any overlap performs best.
For all other experiments, we therefore use the box shape without any overlap.

9.4.3.3 Effect of Regularizers

As described in Section 9.3.6, we also use two additional regularizers during training, namely the
length loss Lℓ and the smoothing loss Ls. We evaluate the impact of each term in Table 9.3 by
removing Lℓ, Ls, or both. Without any regularizer, the MoF accuracy decreases from 49.0 to 47.4 and
F1@50 from 40.2 to 39.7. While adding only the smoothing loss does not result in an improvement,
the length regularizer and the combination of both improves MoF.

9.4.3.4 Different Variants for Inference

As described in Section 9.3.8, we have three options for inference. We can use the frame classification
branch, the segment generation branch, or both. The three approaches are denoted by MuCon-Y,
MuCon-S, and MuCon-full, respectively. The results in Table 9.4 show that fusing the two branches
improves the MoF accuracy compared to MuCon-S by more than 5% and F1@50 by more than 6% at
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Teacher forcing MoF Mat Score F1@{10,25,50}
None 48.7 0.779 68.2 59.5 40.3

70 epochs 48.9 0.783 68.2 59.5 39.8
All epochs 49.0 0.774 67.9 59.5 40.2

Table 9.5: Impact of teacher forcing. The first row denotes a setting where teacher forcing is not
used for training. The second row denotes a setting where teacher forcing is used only for the first 70
epochs. The last row denotes a setting where teacher forcing is used for all epochs.

Approach Avg MoF Avg Mat Score Training (hours) Inference
(seconds)

ISBA Ding and Xu (2018) 36.4 - 12.75 0.01
NNV Richard et al. (2018b) 39.7 0.686 11.23 56.25
CDFL Li et al. (2019) 48.1 0.712 66.73 62.37
MuCon-Y 44.2 - 4.57 0.02
MuCon-S 43.9 0.785 4.57 0.04
MuCon-full 48.5 0.785 4.57 3.03

Table 9.6: Comparison of accuracy, training, and inference time. We report the average and standard
deviation of MoF and matching score for 5 runs on the entire Breakfast dataset (Kuehne et al., 2014).
For ISBA and MuCon-Y, the matching score is not calculated as they predict frame-wise labels and
not the transcript. Training and inference time is measured as wall clock time. The training time is
measured for training on split 1 of the Breakfast dataset (Kuehne et al., 2014). The inference time is
measured as the average inference time for a video from the test set of split 1.

a small increase in inference time as shown in Figure 9.1. Since MuCon-Y predicts only frame-wise
labels and not segments, the F1 scores are very low for MuCon-Y.

9.4.3.5 Effect of Teacher Forcing

As described in Sections 9.3.3 and 9.3.4, we use the ground truth transcript while predicting the
transcript and calculating the MuCon loss in order to stabilize the training at the beginning. In
Table 9.5, we evaluate the impact of teacher forcing where we also include a setting that uses teacher
forcing only for the first 70 epochs of training. The results show that teacher forcing does not impact
the average accuracy but it reduces the standard deviation, which is an indicator of a stable training
procedure.

9.4.4 Training and Inference Time

Besides of the accuracy, we also compare the training and inference time of our approach with
CDFL (Li et al., 2019), NNV (Richard et al., 2018b), and ISBA (Ding and Xu, 2018). For a fair
comparison, we always used the same hardware. For training, we used a machine with an Nvidia
GeForce GTX 1080Ti GPU, 188 GB of RAM, and an Intel(R) Xeon(R) Gold 5120 (2.20GHz) CPU.
For testing, we used a machine with an Nvidia GeForce GTX Titan X GPU, 32 GB of RAM, and
an Intel(R) Core(TM) i7-4930K (3.40GHz) CPU. We only calculate the wall time for training and
deactivated for all methods any unnecessary operations like saving intermediate results. Since we
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Figure 9.5: Using beam search to reduce the inference time of CDFL. The blue squares show the
performance of CDFL with different values for the beam size. The x-axis is the total inference time
for split 1 of the Breakfast dataset in log scale.

used pre-computed features for all experiments, the time measurement includes the time to load the
features but not the time to compute the features. In average, computing the features takes 92 seconds
per video for the Breakfast dataset where 72.5 seconds are spent for calculating the optical flow.

The results are reported in Table 9.6. We observe that our approach is 14 times faster to train and
20 times faster during inference compared to the state-of-the-art approach CDFL (Li et al., 2019).
As mentioned before, our approach does not perform any Viterbi decoding during training, which
makes it faster during training. Also and most importantly, our approach only performs one Viterbi
decoding step for the estimated transcript during inference as compared to CDFL and NNV which
need to optimize over all possible transcripts. This shows that our approach offers by far the best
trade-off between accuracy and runtime as it is also illustrated in Figure 9.1.

In order to avoid the full alignment of all transcripts of the training set to a test video, beam search
can be used. Beam search limits the maximum number of hypotheses and removes hypotheses with
low probability at an early stage. The smaller the beam size, i.e., the number of hypotheses, is, the
faster is the inference. This, however, comes at the cost of reducing the accuracy. In order to evaluate
how much runtime reduction can be achieved by beam search, we evaluate CDFL with beam search.
Figure 9.5 shows the MoF accuracy and inference time for different beam sizes. In contrast to
Figure 9.1, we report the accuracy for only one run and only split 1 of the Breakfast dataset. We
furthermore plot the inference time of the entire test set in log scale for better visualization. We
observe that beam search reduces the inference time of CDFL by multiple orders of magnitude but
also its accuracy. When we compare a setting where CDFL with beam search is as fast as MuCon,
we observe that MuCon achieves a much higher accuracy.

9.4.5 Further Comparisons

We therefore compare our method with state-of-the-art methods based on the reported numbers on
the Breakfast dataset (Kuehne et al., 2014) in Table 9.7 and on the Hollywood extended dataset (Bo-
janowski et al., 2014) in Table 9.8 for weakly supervised action segmentation and alignment. Our
approach outperforms all other methods except of CDFL for both tasks and datasets. As already
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Approach MoF - Action Segmentation IoD - Action Alignment
ECTC Huang et al. (2016) 27.7 45.0
HMM/RNN Richard et al. (2017) 33.3 47.3
ISBA Ding and Xu (2018) 38.4 52.3
NNV Richard et al. (2018b) 43.0 -
D3TW Chang et al. (2019) 45.7 56.3
CDFL Li et al. (2019) 50.2 63.9
Ghoddoosian et al. (2022) 51.4 -
MuCon 48.5 66.2

Table 9.7: Comparison to the state-of-the-art on the Breakfast dataset. It is crucial to emphasize
that the research presented in this chapter has been published in TPAMI 2022 (Souri et al., 2022).
To provide a thorough overview and foster a deeper understanding of the prevailing trends in the
field, we have integrated contemporary state-of-the-art methods published at or subsequent to the
publication date of this chapter.

Approach MoF-BG - Action Segmentation IoD - Action Alignment
ECTC Huang et al. (2016) - 41.0
HMM/RNN Richard et al. (2017) - 46.3
ISBA Ding and Xu (2018) 34.5 39.6
NNV Richard et al. (2018b) - 48.7
D3TW Chang et al. (2019) 33.6 50.9
CDFL Li et al. (2019) 40.6 52.9
MuCon 41.6 52.3

Table 9.8: Comparison to the state-of-the-art on the Hollywood extended dataset. The highest score
is indicated by a bold font and the second highest is underlined.

discussed in Section 9.4.4, our approach achieves either an accuracy that is comparable to CDFL or
significantly better. Furthermore, our approach is 20 times faster during inference and provides thus
a much better trade-off between accuracy and runtime.

9.4.5.1 Fully Supervised

As mentioned in Section 9.3.7, we can apply our approach to the fully supervised setting as well.
For comparison, we use the same metrics of Abu Farha and Gall (2019) and Li et al. (2020a) namely
MoF (termed accuracy by Abu Farha and Gall (2019)), Edit which measures predicted transcript
similarity (similar to the matching score), and F1 score at different overlaps.

We first evaluate whether the mutual consistency loss Lµ also improves the accuracy in a fully
supervised setting. For this ablation experiment, we use split 1 of the Breakfast dataset. As it is
shown in Table 9.9, the proposed mutual consistency loss improves the accuracy for all metrics. This
shows that the mutual consistency loss is not only useful for weakly supervised learning, but also for
fully supervised learning.

We furthermore compare our approach to other fully supervised action segmentation approaches
in Table 9.10. Although our approach was designed for weakly supervised learning, it outperforms
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Breakfast F1@{10,25,50} Edit MoF

MuCon w/o Lµ 71.6 64.8 49.1 75.6 63.7
MuCon 73.1 66.3 50.7 76.4 64.1

Table 9.9: Effect of the MuCon loss on the accuracy in the fully supervised setting. The results are
reported for split 1 of the Breakfast dataset.

Breakfast F1@{10,25,50} Edit MoF

ED-TCN Lea et al. (2017)* - - - - 43.3
HTK Kuehne et al. (2017) - - - - 50.7
TCFPN Ding and Xu (2018) - - - - 52.0
HTK(64) Kuehne et al. (2016b) - - - - 56.3
GRU Richard et al. (2017)* - - - - 60.6
GRU+length prior Kuehne et al. (2020) - - - - 61.3
MS-TCN Abu Farha and Gall (2019) 52.6 48.1 37.9 61.7 66.3
MS-TCN++ Li et al. (2020a) 64.1 58.6 45.9 65.6 67.6

MuCon 73.2 66.1 48.4 76.3 62.8

Table 9.10: Comparison with the state-of-the-art for fully supervised action segmentation on the
Breakfast dataset. (* obtained from Ding and Xu (2018)).

the state-of-the-art for most metrics. Only for the MoF accuracy, Abu Farha and Gall (2019) and Li
et al. (2020a) perform better, but these networks use multiple stages and thus more layers.

9.4.5.2 Mixed Supervision

Since our network can be trained in a weakly as well in a fully supervised setting, we can train the
network also in a mixed setting where a small percentage of the videos is fully annotated and the
remaining videos are only weakly annotated by transcripts. As before, we report the average and
standard deviation over 5 runs where we randomly sample the videos with frame-wise annotations
for each run. The results for a varying percentage of fully annotated videos are reported in Table 9.11
and visualized in Figure 9.6. In case of 0%, the setting corresponds to weakly supervised learning
and 100% corresponds to fully supervised learning. The difference in accuracy between the weakly
and fully supervised cases is about 15%. While there is no significant improvement if only 1-2%
of the videos are fully annotated, the accuracy increases when at least 5% of the videos are fully
annotated. Having 10% of the videos fully annotated, the accuracy gap between the mixed setting
and the fully supervised setting is already reduced by about 50%.
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Figure 9.6: MoF accuracy (%) for training with mixed supervision. The x-axis denotes the percent-
age of videos that are fully annotated. The accuracy on split 1 of the Breakfast dataset is reported.

Percentage of fully supervised data p% 0% 1% 2% 5% 10% 20% 50% 100%
Accuracy % 49.0 51.0 50.4 52.3 56.2 58.2 59.9 64.1

Table 9.11: Training with mixed supervision. The average MoF accuracy on split 1 of the Breakfast
dataset is reported.
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(a) c1 background - c2 spoon powder - c3 pour milk - c4 stir milk - c5 take cup

GT

MuCon

NNV

CDFL

(b) c1 background - c2 pour cereals - c3 pour milk - c4 take bowl - c5 stir cereals
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MuCon
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(c) c1 background - c2 pour coffee - c3 pour milk - c4 take cup - c5 add teabag - c6 pour water -
c7 spoon sugar

GT

MuCon
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CDFL

(d) c1 background - c2 take plate - c3 take knife - c4 cut orange - c5 squeeze orange - c6 take glass -
c7 pour juice

Figure 9.7: Qualitative examples for weakly supervised action segmentation on the Breakfast dataset.
Each figure visualizes a different video from the test set of split 1. We compare the results from
MuCon, NNV, and CDFL with the ground truth (GT). Each row shows the result for the entire
duration of a video and the colored segments show when the actions occur in the video.
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(b) c1 background - c2 pour oil - c3 crack egg - c4 fry egg - c5 add salt and pepper - c6 put egg to plate

Figure 9.8: Qualitative examples for different levels of supervision on the Breakfast dataset. Each
figure visualizes a different video from the test set of split 1. GT visualizes the ground truth segmen-
tation and Weak, Mixed, and Full visualize the output of MuCon trained with weak, mixed (10%), or
full supervision, respectively.

9.4.6 Qualitative Evaluation

We provide some qualitative results for four different test videos of the Breakfast dataset in Fig-
ure 9.7. Figure 9.7a shows a video where NNV, CDFL, and MuCon perform well. Only NNV
hallucinates the action take cup, which is not present in the video. The hallucination of actions oc-
curs due to the alignment of the transcripts of the training set to the test video. In this example, there
is a very high uncertainty among the class probabilities estimated by NNV at the beginning of the
video. Since the probabilities for take cup are low but slightly higher than for spoon powder or back-
ground, the transcript take cup - spoon powder - pour milk - stir milk achieves a higher alignment
score than the correct transcript spoon powder - pour milk - stir milk. Figures 9.7b and 9.7c show
examples where also CDFL hallucinates actions that are plausible based on the transcripts but that do
not occur in the video. In contrast, MuCon does not suffer from hallucinating actions since it infers
the transcript directly from the test video and it does not search the training transcript that best aligns
to the test video. Figure 9.7d visualizes a failure case where all approaches fail to infer the take plate
action at the beginning of the video. In this example, CDFL provides a better estimate than MuCon.

Figure 9.8 shows qualitative examples for comparing the different types of supervision, namely
weak, mixed (10%), and full supervision. Figure 9.8a shows the result for a test video where MuCon
is able to infer the actions correctly using weak, mixed, or full supervision. However, the action
boundaries are more accurately estimated if MuCon is trained with more supervision. Figure 9.8b
shows a very difficult video where even the fully supervised approach makes a mistake.
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9.5 Summary

In the preceding chapter, we introduced a weakly supervised temporal action segmentation approach
that leverages merely a set of actions for training purposes. In a set of actions, only the list of actions
occurring in the video is known, but not when, how often, or in which order they occur, which makes
the annotation task more accessible and cost-effective. While employing a set of actions for model
training is cost-effective, using it as adequate supervision for temporal action segmentation models
presents a significant challenge. Considering the constraints of techniques utilizing weak action set
supervision, it is crucial to explore methods that can capitalize on more robust forms of supervision.
Transcripts serve as one such example of weak supervision, providing ordered lists of actions that
denote the sequence in which actions transpire within a training video, albeit without specifying their
temporal occurrence.

As a final contribution, in this chapter, we presented a novel approach for weakly supervised
action segmentation from transcripts. The approach is based on a two-branch neural network that
independently predicts two representations for action segmentation. To train the network, we in-
troduced a new mutual consistency loss (MuCon) that enforces consistency between these two rep-
resentations during training. With the use of MuCon and a transcript prediction loss, our network
can be trained end-to-end without the need for additional steps. We demonstrate that the proposed
network, with the mutual consistency loss, attains an accuracy that is either on par with or superior
to the state-of-the-art methods. Additionally, it exhibits a marked improvement in terms of compu-
tational efficiency, offering the best trade-off between accuracy and inference time. Furthermore,
our experiments demonstrate that the mutual consistency loss increases accuracy even in fully super-
vised learning and that the network can be applied to a mixed setting, where a few videos are fully
annotated and the others are weakly annotated.





CHAPTER 10

Concolusion

In this chapter, we summarize the key contributions of this thesis. Additionally, we offer insights on
promising avenues for future endeavors within this field. It is our belief that continued investigation
in the realm of machine learning and computer vision will yield significant progress in the realm
of video understanding. As such, we propose several potential directions for future investigation,
including the incorporation of representation learning techniques and the exploration of novel spatio-
temporal methods. As the field of computer vision continues to evolve, we are confident that these
efforts will prove instrumental in driving further advancement.
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10.1 Concolusion

In this thesis, we presented a suite of approaches that address the complex and multifaceted chal-
lenges of video understanding. Our contributions focused on addressing the difficulties inherent in
modeling spatio-temporal dependencies within video data, creating a large-scale holistic video un-
derstanding dataset, making video understanding models more efficient, and training models with
less supervision.

We proposed a new block, called ‘Spatio-Temporal Channel Correlation’ (STC), which models
correlations between channels of a 3D CNN with respect to temporal and spatial features. By inte-
grating this block into existing state-of-the-art architectures such as ResNext and ResNet (Tran et al.,
2017), we observed performance improvements of 2-3%. In addition to this contribution, we also
presented a technique for transferring knowledge from pre-trained 2D CNNs to randomly initialized
3D CNNs, allowing for the efficient fine-tuning of 3D CNNs with significantly reduced amounts of
training data. Our approach outperformed both generic and recent methods in the field, demonstrat-
ing the effectiveness of our proposed techniques for improving the performance of 3D CNNs in video
understanding tasks.

We further focused on filling the gap of having well-established video benchmarks that integrate
the simultaneous recognition of various semantic aspects within dynamic scenes. To address this gap,
we introduced the "Holistic Video Understanding" Dataset (HVU), a large-scale dataset organized in
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a semantic taxonomy that focuses on multi-label and multi-task video understanding as a compre-
hensive problem. HVU contains approximately 572k videos with 9 million annotations spanning
3142 labels, encompassing categories of scenes, objects, actions, events, attributes, and concepts that
capture real-world scenarios. We demonstrated the generalization capabilities of HVU on three chal-
lenging tasks: video classification, video captioning, and video clustering. For video classification,
we proposed the "Holistic Appearance and Temporal Network" (HATNet), a novel spatio-temporal
deep neural network architecture that fuses 2D and 3D architectures by combining intermediate rep-
resentations of appearance and temporal cues, and is trained in an end-to-end manner for multi-label
and multi-task learning. Our experiments validate the idea that holistic representation learning can
enable many real-world applications.

Afterward, we focused on the intensive complexity of deep video models. To make 3D CNNs
more efficient, we introduced a differentiable Similarity Guided Sampling (SGS) module that can be
integrated into any existing 3D CNN architecture. The SGS module empowers 3D CNNs by learning
the similarity between temporal features and grouping similar features together, resulting in an adap-
tive temporal feature resolution (ATFR) that varies for each input video clip. By integrating the SGS
module into current 3D CNNs, we converted them into more efficient 3D CNNs with ATFR. Our
evaluations demonstrated that the proposed module improves upon the state-of-the-art by decreasing
computational cost (GFLOPs) by 50% while preserving or even improving accuracy. We evaluated
the effectiveness of the SGS module by adding it to multiple state-of-the-art 3D CNNs.

Following our achievements in making 3D CNNs more efficient, we proposed a method for
making vision transformers more efficient. To this end, we presented a differentiable, parameter-free
Adaptive Token Sampler (ATS) module that can be integrated into any existing vision transformer
architecture. The ATS module enhances vision transformers by scoring and adaptively sampling
significant tokens, resulting in an adaptive number of tokens that varies for each input image or video.
By incorporating the ATS module into current transformer blocks, we can convert them into more
efficient vision transformers with an adaptive number of tokens. The ATS module is parameter-free,
making it easy to add to off-the-shelf, pre-trained vision transformers as a plug-and-play module,
reducing their computation cost without any additional training. Additionally, due to its differentiable
design, a vision transformer equipped with ATS can be trained. We evaluated the efficiency of
the ATS module in both image and video classification tasks by adding it to multiple state-of-the-
art vision transformers. Our proposed module improved upon the state-of-the-art by reducing their
computational costs by a factor of 2 while maintaining accuracy.

Finally, we tried to address the problem of video understanding beyond the low-level trimmed
video understanding. To this end, we proposed two methods for temporal action segmentation with
different levels of supervision. In our first method, we focused on actions set supervision. We
proposed an approach that divides the video into smaller temporal regions and predicts for each
region the action label and its length, as well as estimating action labels for each frame. By measuring
the consistency of the frame-wise predictions with respect to the temporal regions and annotated
action labels, the network learns to divide the video into class-consistent regions. We evaluated our
approach on three datasets and achieve state-of-the-art results.

Despite the cost-effectiveness of utilizing a set of actions as a means of annotating videos, using
it as proper supervision for temporal action segmentation models presents a daunting challenge. As
a result, approaches that utilize only a set of actions as supervision are still in the early stages of de-
velopment in terms of performance. As a culminating contribution, we proposed a novel end-to-end
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framework for weakly supervised action segmentation using transcript supervision. Our approach
contains a two-branch neural network. The network’s dual branches independently predict redundant
yet distinct action segmentation representations, and we incorporate a mutual consistency loss term,
denoted as MuCon, to enforce consistency between these redundant representations. By combining
the MuCon loss with a loss function for transcript prediction, our approach attains the accuracy of
state-of-the-art methods while exhibiting marked improvements in efficiency, with a factor of 14 de-
crease in training time and a factor of 20 increase in inference speed. Furthermore, the efficacy of
the MuCon loss is also demonstrated in a fully supervised setting.

10.2 Future Work

We believe that the field of video understanding is replete with opportunities for pioneering research,
particularly in the domains of spatio-temporal modeling, holistic video representation learning, ef-
ficient video processing, and long-term video understanding. In the subsequent discourse, we shall
elaborate on some of these burgeoning areas of inquiry.

10.2.1 Spatio-Temporal Modeling

In this thesis, we demonstrated the effectiveness of spatio-temporal modeling by introducing our
STC block, which led to improved accuracy in 3D CNNs. We posit that similar techniques can be
extended to video vision transformers with the aim of enhancing their performance. Moreover, we
believe that exploring alternative approaches to approximating the desired spatio-temporal model
holds significant potential for advancing this research field. The majority of state-of-the-art methods
focus on either convolutional neural networks or transformer neural networks with self-attention for
spatio-temporal modeling. However, as demonstrated in our recent publication (Pourheydari et al.,
2022), we proposed a novel approach to temporal modeling through the utilization of Taylor series
expansions. In this approach, we showcase that a spatio-temporal neural network, reformulated as a
Taylor expansion, can better approximate the temporal dynamics in a given video compared to tra-
ditional spatio-temporal neural networks. This innovative technique resulted in enhanced outcomes
for future video frame prediction, and more importantly, exhibited a higher degree of generalization.
We believe that the generalization capabilities of this technique have the potential to be employed in
other video understanding tasks, leading to valuable advancements in this field.

10.2.2 Holistic Video Representation

As we have demonstrated in this thesis, video understanding, which encompasses the recognition
of multiple semantic aspects such as scene or environment, objects, actions, events, attributes, and
concepts, remains a challenging problem in computer vision despite the significant progress made
in action recognition. The lack of established video benchmarks that integrate the joint recognition
of multiple semantic aspects in dynamic scenes has been identified as a major contributing factor to
this challenge. To address this limitation, we presented our Holistic Video Understanding (HVU)
dataset, which has been designed to alleviate this limitation by providing a comprehensive and di-
verse dataset that supports the joint recognition of multiple semantic aspects. Our experimental
results have demonstrated that training a video understanding model on such a dataset with richer
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annotations improves the quality of the model’s representation, which can also be beneficial for other
downstream tasks, such as multi-label video classification. Recently, there has been a new line of
research that focuses on self-supervised video representation methods, which have been shown to
improve representation quality by evaluating the methods on downstream tasks such as action recog-
nition. However, these methods have failed to provide empirical evidence to support their claims
and motivations. In light of this, we believe that our HVU dataset can play a vital role in these self-
supervised video representation methods. By using the HVU dataset, these methods can evaluate
their representation learning techniques not only on action recognition but also on other categories
available in our dataset. Thus, providing a comprehensive and diverse benchmark that can support
the evaluation of these methods. Furthermore, we believe that the research community can benefit
from our dataset not only for studying different aspects of richer annotation for training video un-
derstanding models but also as an important benchmark in other areas, such as self-supervised video
representation learning.

10.2.3 Efficient Methods

As the sophistication of video understanding models increases, so too do their computational de-
mands. In this thesis, we presented methods that dynamically adapt their computational resources to
the content of the input video data. However, these methods currently face limitations in terms of
hardware support. Thus, it is imperative that further research is conducted in this direction to fully
realize the potential for computation cost reduction through adaptive methods, and to facilitate the
development of appropriate future hardware support. Another promising area for the application of
computational efficiency enhancement techniques is in other video processing tasks, such as video
semantic segmentation, where significant improvements may be achieved. Additionally, the absence
of a standardized efficiency metric for neural networks hinders the proper comparison of the process-
ing costs of different models, highlighting the need for the development of a comprehensive metric
to address this issue. In the following, we provide a thorough analysis of potential future directions
to address these key factors.

10.2.3.1 Adaptive Models

One of the defining characteristics of human cognition is the ability to adapt biological resources to
the complexity of a task at hand. In this thesis, we demonstrated the feasibility of designing models
that can adapt their computation resources to the complexity of their input data. We established that
there is a significant scope for enhancing the efficiency of video understanding models by judiciously
allocating computation resources to avoid redundant processing. However, as evidenced by our em-
pirical results, the actual rate of speedup on current hardware is less than the theoretical improvement
due to factors arising from hardware design. Current hardware is optimized for batch processing of
static neural networks, which do not dynamically alter intermediate feature maps. Therefore, we
encourage the research community to continue investigating this line of research to demonstrate the
potential of adaptive models to the industry. This would lead to the development of dynamic neural
network-friendly hardware in the near future, resulting in more efficient models that consume less
energy and are capable of more processing given the same computation resources, which could be
widely available in industrial products.
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10.2.3.2 Efficient Video Processing

Video processing is a multifaceted field of study that encompasses various tasks, including but not
limited to, object detection and tracking, video semantic segmentation, and video enhancement.
However, current state-of-the-art approaches tend to treat these problems as if they were image pro-
cessing problems, instead of fully leveraging the temporal nature of video data. Specifically, they
process video as a sequence of individual frames, rather than as a holistic representation. This ap-
proach, however, is inherently suboptimal, as it leads to the processing of a large amount of redundant
data. As previously discussed, video data is replete with redundancies, and therefore, processing in-
dividual frames individually is not the most efficient approach to video processing. As demonstrated
in our thesis, we were able to significantly improve the efficiency of a video understanding model by
avoiding the processing of redundant data. Consequently, we believe that similar approaches could
be applied to other video processing tasks, with the aim of improving their efficiency.

10.2.3.3 Efficiency Metrics

The currently prevalent metric utilized to gauge the efficiency of neural networks is GFLOP, which
provides a relatively accurate approximation of the floating point operations performed within a
neural network. However, as this metric was designed with static neural networks in mind, it fails
to take into account several crucial factors that ultimately impact the actual processing cost of a
neural network. One such important factor is the number of memory input/output (IO) operations, as
memory access is typically a computationally expensive task. The number of such operations plays
a crucial role in determining the cost of a neural network. Additionally, the metric also neglects the
number of iterative procedures performed within a neural network. For example, the implementation
of an expensive iterative clustering method inside a neural network to aggregate feature maps and
subsequently reduce GFLOPs would yield a lower GFLOPs value, but it does not truly reflect the
cost of the neural network. Therefore, we believe that the research community should strive to
develop a more comprehensive metric that captures these missing factors, which would provide a
more accurate representation of the actual cost of a neural network.

10.2.4 Long term video understanding

Experience and reasoning are known to encompass multiple temporal scales, ranging from millisec-
onds to days. Despite this, the majority of computer vision research remains focused on individual
images or brief videos lasting only a few seconds. In this thesis, we demonstrate methods that are
capable of processing long-term videos by utilizing pretrained models to represent the videos as
extracted features. These models were all trained on supervised action recognition tasks, which ne-
cessitate large amounts of annotated data. Therefore, we believe that these models could be replaced
with models trained on self-supervised tasks. Another significant challenge in long-term video un-
derstanding is the limitations imposed by memory. In our opinion, this constitutes a key obstacle
in the development of models that can directly process the given video without the need for any
pre-processing feature extraction steps. Additionally, the lack of large-scale, long-term video under-
standing datasets constitutes a significant bottleneck in the development of high-quality long-term
video understanding methods. In the following, we provide a thorough analysis of potential future
directions to address these key factors.
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10.2.4.1 Memory Limitations

A prevalent challenge in the domain of long-term video understanding is the scalability of methods
required to process longer videos. As video data is a sequence of still images, it necessitates a sub-
stantial amount of storage space and processing memory. This high volume of data results in various
issues such as data transfer bottlenecks, speed limitations, and memory constraints. To conserve stor-
age space, video data is commonly stored in a compressed format. However, this compression has
the adverse effect of increasing the computational power required for decompression, thus slowing
down the video processing pipeline. Current training pipelines propose storing videos in a decom-
pressed format to alleviate this issue, yet this approach has its own drawbacks such as increased
storage usage and saturation of the processors’ data transfer lines. We believe that there are multiple
approaches to mitigate these challenges. One potential solution could involve unifying the video pro-
cessing pipeline by compressing the video data using neural compression techniques and processing
the video using the same compressed data, thus eliminating the need for decompression. An alter-
nate approach could involve designing neural networks that can handle compressed video data from
current standard codecs. Such techniques, unlike the previous one mentioned, would be beneficial
in terms of consistency over current standardized codecs. However, these techniques may introduce
new limitations, such as limitations in data augmentation, which could be resolved in future research.
In conclusion, we believe that addressing the memory constraints currently facing the field of video
understanding can pave the way for the development of approaches that are capable of processing
long-term videos in an end-to-end fashion. This, in turn, could open up new horizons for research in
video understanding, allowing for the examination of more complex and nuanced phenomena, and
ultimately leading to more powerful and sophisticated video understanding systems.

10.2.4.2 Feature Learning

Current methodologies for temporal action segmentation and untrimmed video understanding gener-
ally leverage a pretrained model as a feature extractor for the input video. These pretrained models
are typically trained on supervised tasks, which necessitate a vast amount of annotated data. Re-
cent advancements in self-supervised approaches for pretraining video understanding models have
emerged, which can be applied to downstream tasks, such as trimmed video action recognition. In
one of our recent publications (Behrmann et al., 2021), we proposed a self-supervised method for
pretraining video understanding models. Our work demonstrates that a backbone pretrained using
our self-supervised approach is capable of extracting superior features compared to a model pre-
trained on supervised action recognition tasks. Furthermore, we show that employing these methods
for a downstream task, such as fully supervised temporal action segmentation on long-term videos,
not only improves performance compared to fully supervised features but also reduces the need for
supervision during the training of the feature extraction model. Given these promising results, we
believe that utilizing similar techniques for pretraining feature extraction models could also be ben-
eficial for weakly supervised temporal action segmentation models. In light of these considerations,
we encourage the research community to undertake a more comprehensive examination of the im-
pact of various feature learning techniques on long-term video understanding methodologies. Such
investigations have the potential to significantly reduce the reliance on supervision, specifically in
the context of weakly supervised temporal action segmentation methodologies. Furthermore, by
leveraging large amounts of unlabeled video data, these techniques may enable the learning of more
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universal and generalizable representations, thereby enhancing the performance of long-term video
understanding methods.

10.2.4.3 Larger Datasets

The dearth of large-scale, long-term video understanding datasets constitutes a formidable obstacle
in the advancement of state-of-the-art long-term video understanding methodologies. The absence of
comprehensive and diverse datasets hinders the ability to train and evaluate models on a broad range
of scenarios, limiting the generalizability and robustness of the developed models. For instance,
the Breakfast dataset (Kuehne et al., 2014), which is a widely-utilized and prominent dataset in
temporal action segmentation, is recorded in a confined setting and comprises a relatively small
number of videos, at around 1700. The limited size of such datasets poses a significant challenge for
temporal action segmentation models in their ability to learn to accurately predict transcripts without
overfitting. Furthermore, models trained on the Breakfast dataset demonstrate restricted applicability,
as they fail to generalize to other environments, emphasizing the imperative for more diverse and
comprehensive datasets to be developed. This necessitates the curation of novel and more varied
long-term video understanding datasets, which can foster the advancement of this field of study. The
generation of such datasets can provide the necessary resources for training and evaluating models
on a broad range of scenarios, enabling the generalizability and robustness of the developed models,
and ultimately leading to a more comprehensive understanding of long-term video understanding.
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