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Abstract  

 

Irrigated agriculture is essential to sustain crop production and livelihoods of the rural 

population in semi-arid and arid regions such as the Mediterranean. Meanwhile, 

unsustainable irrigation practices, population growth, and climate change are increasing 

agricultural water demand while exacerbating water scarcity. Effective measures to 

reduce agricultural water consumption while sustaining a high level of crop production 

and securing environmental sustainability are therefore urgently needed.  

This thesis aims at increasing the availability of environmental data and advancing the 

representation of agricultural systems in land surface models to improve local and 

regional scale irrigation and water resources management in the Mediterranean. 

In the first part, the use of a low-cost weather station to deliver reliable and timely data 

for environmental monitoring, research, and modelling is assessed. Performance and data 

quality of multiple stations are examined in terms of inter-sensor variability and in 

comparison to a high-performance weather station. 

The second part of this thesis focusses on improving the representation of typical 

Mediterranean crops in the Community Land Model version 5. A new sub-model to 

model deciduous fruit orchards is developed encompassing crop phenological stages, 

biomass growth and partitioning into different plant organs as well as typical management 

practices. The development is then tested using extensive field measurements from an 

apple orchard.  

Finally, the new sub-model is used to assess irrigation and water management in a small 

Greek catchment dominated by irrigated apple orchards. First, simulated crop growth and 

soil moisture dynamics are examined in relation to irrigation and compared to 

observations from two monitored apple orchards. Thereby, further model improvements 

are made to represent the local irrigation practices. Subsequently, the model is applied at 

regional scale to determine irrigation requirements and examine the impact of different 

irrigation deficit scenarios on yield and crop water use efficiency as well as to assess the 

water saving potential in the catchment. 
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Zusammenfassung 

 

Bewässerung sichert die landwirtschaftliche Produktion sowie die Lebensgrundlage der 

ländlichen Bevölkerung in semiariden und ariden Regionen wie dem Mittelmeerraum. 

Gleichzeitig erhöhen nicht nachhaltige Bewässerungspraktiken, Bevölkerungswachstum 

und der Klimawandel den landwirtschaftlichen Wasserbedarf und verschärfen die 

Wasserknappheit. Wirkungsvolle Maßnahmen zur Reduzierung des landwirtschaftlichen 

Wasserverbrauchs bei gleichzeitiger Erhaltung der Ernten und Gewährleistung 

ökologischer Nachhaltigkeit sind daher dringend erforderlich.  

Die vorliegende Dissertation hat zum Ziel, die Verfügbarkeit von Umweltdaten zu 

erhöhen und die Darstellung landwirtschaftlicher Systeme in Landoberflächenmodellen 

weiterzuentwickeln, um Bewässerung und Wasserressourcenmanagement im 

Mittelmeerraum auf lokaler und regionaler Skala zu verbessern. 

Im ersten Teil wird die Verwendung einer kosteneffektiven Wetterstation zur 

Bereitstellung zuverlässiger und aktueller Daten für Umweltmessungen, Forschung und 

Modellierung untersucht. Die Eignung und Datenqualität mehrerer Stationen werden 

hinsichtlich der Variabilität zwischen einzelnen Sensoren sowie im Vergleich zu einer 

hochwertigen Wetterstation bewertet. 

Der zweite Teil dieser Dissertation befasst sich mit der Verbesserung der Darstellung 

typischer mediterraner Nutzpflanzen im Community Land Model Version 5. Ein neues 

Submodell zur Modellierung von sommergrünen Obstplantagen wird entwickelt, welches 

die phänologischen Entwicklungsphasen, das Wachstum und die Aufteilung der 

Biomasse auf verschiedene Pflanzenorgane sowie typische Bewirtschaftungspraktiken 

umfasst. Die Modellentwicklung wird anschließend anhand umfangreicher Feld-

messungen von einer Apfelplantage getestet. 

Schließlich wird das neue Submodell dazu verwendet, die Bewässerung und das 

Wasserressourcenmanagement in einem kleinen griechischen Einzugsgebiet zu 

untersuchen, in dem vorherrschend bewässerte Apfelplantagen gepflanzt sind. Dafür 

werden zuerst die Simulierung des Pflanzenwachstums und der Bodenfeuchtedynamik in 
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Bezug auf die Bewässerung untersucht und mit Messungen aus zwei Apfelplantagen 

verglichen. In dem Zusammenhang werden weitere Modellverbesserungen zur 

Darstellung lokaler Bewässerungspraktiken vorgenommen. Anschließend wird das 

Modell auf regionaler Skala angewendet, um den Bewässerungsbedarf zu bestimmen und 

die Auswirkungen unterschiedlicher Szenarien der Defizitbewässerung auf Ertrag und 

Wassernutzungseffizienz zu untersuchen sowie das Potenzial zur Wassereinsparung im 

Einzugsgebiet zu bewerten.
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1 Introduction 

 

Agriculture has been and continues to be an essential component of human development, 

shaping our societies and sustaining the world’s population. Although the global share of 

employment in agriculture, forestry, and fishing has been declining in recent years, it 

remains the second largest source of employment and currently provides roughly a quarter 

of the world’s population with livelihood [FAO, 2022]. The agricultural sector currently 

accounts for 4.3% of the global gross domestic product (GDP) and for as much as 25% 

of GDP in low-income countries [World Bank, 2021]. As such, it is crucial to economic 

development and poverty reduction. 

Practicing agriculture involves transforming the world’s landscapes and utilizing natural 

resources to meet human needs. Agricultural land use has been expanding due to 

population growth, economic development, and advancements in technology. 

Simultaneously, crop breeding and the widespread use of fertilizers and pesticides have 

boosted agricultural productivity since the green revolution in the mid-20th century 

[Perkins, 1990]. As a result, croplands and pastures now are the largest land use 

worldwide and occupy 37% of the global land surface (excluding Antarctica and inland 

waters) [FAO, 2021b].  

The growing demand for food and the expansion of agricultural land made it imperative 

to increase agricultural production in regions with insufficient or irregular rainfall. This 

led to significant increases and modernization of irrigation infrastructure, especially 

during the green revolution [Angelakιs et al., 2020]. Irrigation is the process of artificially 

applying water to the soil to meet crop water requirements, thereby enabling or enhancing 

crop growth and yield. While most of the cropland continues to be rainfed, the importance 

of irrigated agriculture in terms of food security is ever growing. According to the FAO 

[2022], the global land area equipped for irrigation increased by 20% since 2000 and has 

more than doubled compared to the 1960s. Currently, ~40% of global food supply is 

produced on irrigated land, which covers one fifth of the total agricultural area [WWAP, 

2019]. Irrigation, especially for crop production, accounts for 70% of total freshwater 
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withdrawals worldwide, making it the largest freshwater consumer [Campbell et al., 

2017].  

Despite the apparent societal benefits of providing livelihood and supplying food, modern 

agriculture has profound and often negative impacts on the natural environment. Local 

and regional farming practices can lead to odour and sound pollution, contamination of 

soil and water bodies through the percolation or runoff of fertilizers and pesticides, or soil 

degradation through soil erosion processes [Payraudeau and van der Werf, 2005]. Other 

effects act on a global scale such as land use and -cover change, emission of greenhouse 

gases and biodiversity loss [Ramankutty et al., 2018].  

Irrigation practices also show strong environmental effects across scales, profoundly 

affecting the water cycle, surface energy budget, and climate [Cook et al., 2015]. 

Irrigation directly influences soil water content through the addition of water from other 

sources, e.g. groundwater or surface water, which affects hydrological processes such as 

deep percolation and runoff. Intensive irrigation generally reduces river flows and drives 

groundwater depletion [Thomas and Famiglietti, 2019], thus exacerbating water scarcity 

with consequent risks to natural ecosystems. At the same time, more water is introduced 

into the atmosphere by evaporation from the soil and through crops that readily transpire 

the water supplied through irrigation practices, thereby impacting the climate [Chen and 

Dirmeyer, 2020]. These feedbacks can be observed in regard to temperature, humidity, 

and precipitation [Cook et al., 2015; Rappin et al., 2022]. Studies showed effects such as 

cooling of summer temperatures [Chen and Dirmeyer, 2020; Lawston et al., 2020; Lobell 

et al., 2008a; Sacks et al., 2009], increases or changes in precipitation amount and location 

[DeAngelis et al., 2010; Devanand et al., 2019; Tuinenburg et al., 2011; Yang et al., 

2019], and increased atmospheric moisture [Xu et al., 2019] over various irrigated areas. 

Apart from the environmental impact, poor management of irrigation can also negatively 

affect crop production and increase water use conflicts. Over-irrigation can lead to 

leaching of fertilizers and pesticides and increased risk for plant disease [Irmak, 2008; 

Maharjan et al., 2014]. Moreover, the use of poor irrigation water quality can cause soil 

salinity problems [Khan et al., 2006; Zanchi and Cecchi, 2010]. All of the above can limit 

crop growth with negative effects on crop yield. Excessive or inefficient irrigation can 

result in high conveyance or application water losses leading to poor crop water use 

efficiency (CWUE), referring to the amount of yield produced per unit volume of water 
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consumed, and potentially leaving insufficient water available to crops later in the season 

[Akhtar et al., 2018]. This can also affect other water users downstream of the river 

network or as shared groundwater body. Indeed, this has caused national and international 

conflicts in the past, especially in semi-arid and arid regions [Carkoglu and Eder, 2001; 

Houdret, 2012; Pacific Institute, 2022; Wiebe, 2001].  

The current issues of today’s agriculture are numerous and will be exacerbated by 

continuing climate change. In the coming years, securing and sustaining freshwater 

availability for human activities and natural ecosystems will be one of our major 

challenges [IPCC, 2022]. Global water availability is projected to decrease, especially in 

regions already suffering from severe water scarcity i.e., South and East Asia, the Middle 

East, Mexico, the western US, and the Mediterranean [Van Vliet et al., 2021]. This is 

driven by decreases in water quantity, that is the availability of surface and groundwater 

resources, and water quality, such as salinity levels, both of which constrain irrigation 

[Van Vliet et al., 2021]. At the same time, global agricultural production will have to keep 

up with the needs of a growing population. Global food demand is projected to rise by up 

to 62% between 2010 and 2050 [Van Dijk et al., 2021]. Consequently, water consumption 

for agriculture, including rainfed and irrigated production, is expected to increase by 

about 19% by 2050 [WWAP, 2012].  

Irrigated agriculture will continue to play a key role in sustaining and increasing 

agricultural production in the future. At the same time, it needs to reconcile the conflicting 

trends in water availability and water use, and deal with the numerous present and future 

challenges as elaborated above. A sound understanding of the effects of irrigation is 

required to derive effective adaptation and mitigation measures. This is not only 

necessary to avoid the further depletion of water resources and detrimental impacts on 

aquatic and terrestrial ecosystems but also to sustain a high level of crop production 

[Rosa, 2022]. To accomplish this goal, there is a need to improve agricultural water 

management across spatial and temporal scales, ranging from individual agricultural 

fields and growing seasons to large catchments and long-term trends.  

To improve irrigation management, information about the conditions in the irrigated area 

must be available through measurements and monitoring. This information can 

subsequently be used to directly guide irrigation decisions in the field [Gu et al., 2020; 

Hedley et al., 2012] and evaluate the performance of existing irrigation systems [Akhtar 
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et al., 2018] but also to better understand irrigation-climate interactions and inform 

modelling [McDermid et al., 2023]. Unfortunately, irrigation practices are scarcely 

monitored and observations of irrigation, along with ancillary data such as meteorological 

data, soil moisture (SM), and other environmental variables are rarely available [Dari et 

al., 2023; Lawston et al., 2017; Rappin et al., 2022]. 

Secondly, observations must be combined with the appropriate predictive tools, such as 

numerical models. These models should represent the agricultural system in interaction 

with other Earth-system processes to holistically study and understand irrigation impacts 

on crop growth and yield as well as on the surrounding environment, and to aid decision-

making processes. This means that on one hand they need to provide an accurate 

representation of multiple crops and management options while, on the other hand, they 

should include aspects from a broader environmental context, for instance the impact of 

irrigation on regional climate or groundwater availability. Therefore, interactions and 

feedback mechanisms between land, water, and atmosphere including the hydrological 

and biogeochemical cycles within the Earth system must be captured [Betts, 2005; 

Stehfest et al., 2007]. Current models are however associated with uncertainties and 

biases due to complex parameterizations, challenging physical representations, and 

spatial resolution [Chen and Dirmeyer, 2020; de Vrese and Hagemann, 2018; Kueppers 

et al., 2008]. These aspects can lead to large errors in the estimation of irrigation water 

consumption or withdrawal, making it difficult to derive reliable recommendations for 

water resources management [Felfelani et al., 2021; Leng et al., 2017; Pokhrel et al., 

2015; Zhang et al., 2020]. 

In essence, embracing a well-developed data and model-driven approach in irrigated 

agriculture can help to capitalize on the benefits irrigation is providing. At the same time, 

it has the potential to equip policymakers to take informed decisions for a better irrigation 

and water resources management. Ultimately, this can ensure economic viability and 

global food security, and improve environmental sustainability in the face of a changing 

climate. 
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1.1 Environmental data for irrigation and water resources 

management  

1.1.1 Understanding the importance of environmental data 

Access to comprehensive environmental data from different sources is paramount for 

agricultural and water resources management. Analysing this data can provide critical 

insights into the complex interplay between meteorological conditions, soil 

characteristics, and crop requirements. In this way, they are essential for decision-making 

and to develop, evaluate, and run models that simulate agricultural systems.  

Among the most important environmental data are meteorological parameters such as air 

temperature, humidity, solar radiation, and precipitation. Meteorological parameters play 

a key role in determining plant growth, water requirements, and crop yields. Precipitation 

is a key factor in rainfed crop production, as it provides the water input without which 

crops cannot thrive. Air temperature and radiation influence the rate of photosynthesis 

which is directly linked to plant growth and yield [Hall and Rao, 1999]. 

Evapotranspiration (ET), a key parameter to define plant water requirements, is largely 

controlled by the presence of moisture in the air, which in turn is influenced by 

temperature, solar radiation, and wind speed [Jensen, 1968]. Moreover, meteorological 

data is one of the most important input data to initiate and run models used for agricultural 

applications [Venäläinen and Heikinheimo, 2002]. This requires precise and reliable 

measurements. 

Furthermore, soil water is tightly linked to crop growth and irrigation management. It 

refers to the quantity of water within the upper layers of the soil that directly interacts 

with the atmosphere via ET, infiltration, and runoff [De Lannoy et al., 2019]. The water 

content in the root zone must be maintained at a level that ensures optimal transpiration 

to realize the full yield potential of the crop. Soil water status can be expressed as SM 

content, indicating the amount of water present in the soil, or soil matric potential (SMP), 

which expresses the relative availability of the soil water for plant uptake. Both variables 

are commonly used in irrigation scheduling [Blonquist Jr et al., 2006; Dukes et al., 2007; 

Gu et al., 2020; Millán et al., 2019; Miller et al., 2014; Zotarelli et al., 2011] but are also 

valuable for model evaluation and improvement [Devia et al., 2015; Vereecken et al., 

2008; Zehe et al., 2005].  
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In addition, crop and agricultural management data are important factors influencing crop 

yield. These include crop-specific information such as crop phenology, leaf area index 

(LAI), and transpiration as well as data related to irrigation practices such as water 

withdrawal and quality, irrigation schedules and techniques, and other management 

information like fertilization or harvest practices [Deryng et al., 2011; Licker et al., 2010].  

All of the above parameters can be highly variable in time and space. Meteorological 

phenomena for instance range from local microclimates over mesoscale events such as 

thunderstorms to global climate variations [Steyn et al., 1981; Tavakolifar et al., 2017]. 

Likewise, SM displays high spatial and temporal variability with a nonlinear effect on 

many environmental processes [Vereecken et al., 2008; Western et al., 2002]. 

Consequently, data acquisition must be tailored to different temporal and spatial scales 

depending on the application.  

1.1.2 Scales of environmental data collection 

Advancements in instrumentation and digital technology have diversified the possibilities 

for data acquisition across multiple scales [NSF, 2007]. These methods encompass a 

range of techniques, from satellite-based remote sensing to ground-based in-situ 

measurements (Figure 1.1). 

At a large regional to global scale, environmental data can be gathered through a variety 

of space- and airborne remote sensing techniques. For instance, remote sensing, combined 

with subsequent downscaling techniques, is used to estimate rainfall. Rainfall products 

are available at spatial resolutions between 1 and ~27 km and temporal resolutions 

ranging from half hourly to weekly [Kumar and Reshmidevi, 2013; Michaelides, 2019]. 

Similarly, land surface temperature can be obtained starting from ~1 km resolution even 

though its correlation to air temperature is a topic of ongoing research [Tomlinson et al., 

2011]. Global meteorological datasets are usually based on a combination of satellite and 

ground station data with reanalyses (hybrid model-observational data sets) or numerical 

climate modelling, and interpolated to resolutions of 0.1º and coarser [Davy and Kusch, 

2021; Jiang et al., 2018; Overpeck et al., 2011]. Comparisons of some currently available 

datasets showed large differences in magnitude and variability of the estimated variables 

[Sun et al., 2018].  

For SM retrieval, satellite-based optical, thermal infrared, and microwave sensors are 

being used [Babaeian et al., 2019]. The spatial resolution of the resulting products is 



 1.1 Environmental data for irrigation and water resources management 

7 

 

typically coarse, in the range of 25 and 50 km, while the temporal resolution ranges from 

daily to weekly [Brocca et al., 2017] [Peng et al., 2021]. Currently, some satellite 

missions aim to retrieve SM at 0.1 to 1 km spatial resolution at the regional to continental 

scale [Babaeian et al., 2019; Mengen et al., 2021]. Additionally, unmanned aerial 

vehicles equipped with sensors deliver measurements of airborne SM at higher spatial 

resolution (1-100 m) but at the expense of spatial extent and temporal coverage as they 

are typically flown over specific regions for a limited time only [Kumar and Reshmidevi, 

2013]. 

The above techniques are based on an indirect linkage of the measured signal to SM and 

suffer from interference with clouds and vegetation resulting in relatively low accuracy 

when compared to ground based reference data [Gruber et al., 2020]. Additionally, they 

usually yield information on near-surface SM (up to ~5 cm soil depth), which is 

insufficient for many agricultural applications that rely on root zone SM [Montzka et al., 

2017]. Other remote sensing products include estimates of crop ET or vegetation 

greenness (normalized difference vegetation index), crop classification or the mapping of 

irrigated areas. Despite their great potential, they are often limited in the amount of 

distinguished crop types and spatial coverage, and come with relatively high uncertainties 

[He et al., 2023; Portmann et al., 2010]. Although remote sensing products can deliver 

spatially continuous information over large areas, their limitations become apparent when 

addressing microscale variability. Downscaling or interpolation techniques are frequently 

used to infer regional or local information from these global data sets, which can be 

associated with great uncertainty and low skill in reproducing local conditions [Maurer 

and Hidalgo, 2008; Schoof, 2013]. Hence, ground-based measurements remain 

indispensable for investigating individual fields and small catchments due to the high 

spatial and temporal heterogeneity of e.g. meteorological variables and SM. 

Locally, meteorological data can be obtained from the nearest ground-based weather 

station. These often belong to networks run by national meteorological services or 

research infrastructures. Such networks are typically well developed in high-income 

countries, but station coverage is often limited in rural areas, difficult terrain, or lower 

income countries requiring additional non-conventional stations to better observe the 

local climate [Mendelsohn et al., 2007; Nsabagwa et al., 2019; WMO, 2016].  
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For SM measurements, various techniques are available at the field or intermediate scale. 

These include non- or minimally invasive techniques such as electromagnetic induction 

[Sheets and Hendrickx, 1995] and electrical resistivity tomography [Brunet et al., 2010] 

or emerging techniques such as cosmic ray neutron sensing [Zreda et al., 2008] among 

others. The accurate determination of SM from the received signal can however be quite 

complex and sensitive to soil and vegetation properties [Brogi et al., 2019; Brunet et al., 

2010; Jakobi et al., 2018]. Also, the investigated soil depth can be limited and thus not 

represent the entire root zone depending on SM conditions [Köhli et al., 2015] or on the 

measurement methodology [Bernard, 2003; Koyama et al., 2017]. At the point-scale, in-

situ sensors based on different electromagnetic principles are used to continuously 

measure SM [Bogena et al., 2017]. In order to obtain representative measurements for a 

given area, a large number of in-situ sensors must be installed in multiple locations and 

at different depths within the soil profile [Bogena et al., 2010]. However, applying such 

a high number of sensors requires cost effectiveness and automated solutions. 

 

Figure 1.1 Typical spatial scales for the measurement and modelling of agricultural systems. 

1.1.3 Low-cost sensors for wireless sensor networks 

The rising demand for automated measurement systems has led to a range of low-cost 

sensors available from various manufacturers. Furthermore, recent advancements in 

electronics and communication technology have facilitated the integration of these 

sensors into wireless sensor networks (WSNs) for continuous environmental monitoring 

[Martinez et al., 2004]. In WSNs, individual sensing devices communicate with one or 
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multiple base stations from where data is forwarded to a central server with remote access 

via a communication protocol [Hart and Martinez, 2006]. Commonly used protocols 

include ZigBee, Long Range (LoRa), and Narrow Band Internet of Things (NB-IoT). 

They make use of the low-power wide-area technology that enables wireless 

communication at relatively low cost and power consumption [Bogena et al., 2022]. 

To gather meteorological variables, low-cost all-in-one weather stations have recently 

gained popularity. They offer a compact and easy way to collect meteorological data at a 

given location. Due to their ease of use and cost efficiency, they are becoming widely 

used for field-scale applications [de la Concepcion et al., 2015; Tenzin et al., 2017; 

Watthanawisuth et al., 2009] and larger monitoring networks [van de Giesen et al., 2014]. 

For SM measurements, one type of suitable sensor is based on the capacitance method 

[Blonquist Jr et al., 2005], whereby the soil is incorporated as dielectric medium and the 

resultant output voltage is related to SM content [Bogena et al., 2007]. Other commonly 

used sensors are time domain reflectometry probes that determine the dielectric constant 

by wave propagation transmitted by two parallel metal probes [Tilse et al., 2023]. For 

SMP measurements, tensiometers are common though they are generally unsuitable for 

agricultural studies when crops grow under water-limited conditions. Instead, wettable 

porous media such as gypsum with embedded electrodes can be used for these 

applications [Brogi et al., 2022].  

With the widespread use of low-cost sensors, concerns regarding their accuracy, 

reliability, and performance have been raised. These must be addressed as there can be 

trade-offs between low-cost and traditional sensors with the former potentially being less 

precise and less sensitive to the variable of interest [Okafor et al., 2020; Rai et al., 2017; 

Schwamback et al., 2023]. Hence, proper testing and calibration is indispensable to ensure 

suitability of these sensors for different applications, and to determine the factors that 

influence data quality for a given measurement [Bogena et al., 2017; Ioannou et al., 2021; 

Nsabagwa et al., 2019; Okafor et al., 2020]. If reliable, low-cost sensors in combination 

with WSNs offer diverse opportunities for data collection and monitoring at high 

spatiotemporal resolution complementary to more traditional monitoring and existing 

datasets. 
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1.1.4 Applications of wireless sensor networks 

WSNs have found diverse applications across various fields and aspects of agricultural 

and water resources management and monitoring. Nowadays, they are widely used to 

directly support farmers in various management decisions. This recent data driven 

approach is called smart farming and is seen as a key component for sustainable 

agricultural management [Bach and Mauser, 2018; Lytos et al., 2020]. It aims to increase 

resource efficiency through precise input application, optimize yield, and generate high-

resolution data to guide decision-making processes [Dhanaraju et al., 2022; Walter et al., 

2017].  

Due to its crucial role in modern agriculture, especially in arid and semi-arid regions, 

irrigation water management has become one of the main areas of application in smart 

farming. Different smart irrigation practices are explored to achieve more efficient and 

sustainable water use [Moysiadis et al., 2021; Touil et al., 2022]. Additionally, more 

effective irrigation systems like the use of drip and micro-irrigation, whereby water is 

delivered more directly to the plant root zone, have become more widespread [Hla and 

Scherer, 2003]. These systems minimize water loss due to evaporation and runoff, 

increase CWUE and improve crop yield [Obaideen et al., 2022]. Traditional irrigation 

practices, based on farmer experience and standard schedules are increasingly being 

replaced by automated irrigation systems. These systems integrate real-time data from 

various sources to remotely control, monitor, and adjust irrigation timing, duration, and 

intensity. These decisions are based on a variety of approaches from simple irrigation 

triggers (e.g., lower limit or threshold of SM or SMP), to regression algorithms and 

various machine-learning techniques, to more complex physically-based models [Gu et 

al., 2020]. 

Despite the benefits of smart farming, the high cost and advanced knowledge and skill 

needed to make proper use of such technologies pose a significant challenge for many 

small-scale farmers, especially in low-income countries [Walter et al., 2017]. To extend 

the focus beyond the scale of individual fields and single crop growing seasons, the 

installed WSNs can be integrated into a larger monitoring network. This is necessary as 

water management decisions are often taken at regional or catchment scale and need to 

be informed by an accurate understanding of the interacting processes occurring at this 

scale over time [Jensen and Illangasekare, 2011].  
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Recognizing this necessity has led to the establishment of hydrological observatories that 

intend to cover whole catchments with a dense observational network. One aim of these 

observatories is to collect long-term hydrological measurements to predict the 

consequences of climate and land use changes, and to take a holistic approach to water 

resources management [Bogena et al., 2018; Jensen and Illangasekare, 2011]. Several of 

such observatories across the world investigate the impact of agricultural systems on the 

environment. The Hyderabad Observatory in India for instance looks at various 

components of the water cycle in intensely irrigated areas [Maréchal et al., 2018]. The 

Northeast German Lowland Observatory as part of the German TErrestrial 

ENvironmental Observatories network (TERENO) includes several intensely managed 

agricultural sites [Heinrich et al., 2018] and the Dutch Hupsel Brook catchment was 

established with the aim to improve agricultural water management [Brauer et al., 2018]. 

Observatories with a focus on the Mediterranean area where established in France and 

Tunisia [Molénat et al., 2018], Italy [Romano et al., 2018], and Greece [Pisinaras et al., 

2018] and put an emphasis on sustainable water management among others.  

Notably, the importance of environmental data to further improve agricultural and water 

resources management cannot be overstated. Low-cost sensors in combination with 

WSNs offer new opportunities to increase data availability and to better capture the 

heterogeneity and spatiotemporal variability of e.g. SM across larger areas [Vereecken et 

al., 2019]. The sensors, though cost-effective, should however undergo rigorous testing 

and calibration to address data quality concerns and make them suitable for various 

applications. If leveraged correctly, WSNs integrated into hydrological observatories can 

greatly contribute to not only providing a holistic understanding of local and regional 

scale processes relevant for irrigation and water resources management but also to 

developing, calibrating and validating various models used in this context.
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1.2 Modelling agricultural systems 

Modelling is an essential tool not only for farm-scale crop yield prediction and irrigation 

management but also to guide decision-making at regional or catchment scale and beyond 

for improved agricultural and water resources management. A multitude of models is 

available for the simulation of agricultural systems at different scales (Figure 1.1). These 

models can vary greatly in their degree of process representation, physical basis, and input 

requirements.  

1.2.1 Crop modelling approaches 

Generally, crop modelling can be used to simulate crop growth and yield in agricultural 

systems. Available approaches include empirical or process-based models that were 

developed for field-scale applications or for global dynamic vegetation and land-surface 

modelling [Elliott et al., 2015; White et al., 2011]. Empirical or statistical models estimate 

climate-yield relationships based on observed datasets of yield and climate variables, and 

are mainly applied for agricultural climate impact assessments [Gornott and Wechsung, 

2015; Lobell et al., 2008b]. However, as their equations are solely fitted based on 

available observations, they do not explain the underlying mechanisms of yield variation 

and have limited applicability under climatic or environmental conditions beyond the 

observed ones [Holzkämper, 2017].  

Other models are based on a mechanistic understanding of biophysical processes and 

therefore provide a good basis to assess management or climate change impacts on crops 

and their interactions in different agroecosystems [Kephe et al., 2021]. Certain models 

represent specific biophysical processes such as photosynthesis [Farquhar et al., 1980; 

Wang et al., 2014], respiration [Sweetlove et al., 2013], or crop growth and development 

[Prusinkiewicz and Runions, 2012]. They typically operate at narrow spatiotemporal 

scales to assess how a process is affected by environmental parameters for a particular 

crop type [Marshall-Colon et al., 2017].  

Beyond individual processes or plants, dynamic process-based crop models (CMs) were 

developed to simulate crop development and yield in relation to environmental conditions 

(e.g., SM, air temperature, CO2 concentration) and management practices (e.g., irrigation, 

nitrogen fertilization) at the field scale [Muller and Martre, 2019]. Compared to empirical 

models, they require a larger amount of input data (e.g. soil and crop parameters) due to 
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their greater complexity [Manivasagam and Rozenstein, 2020]. Some of the early, widely 

known CMs are the CERES model for maize [Jones et al., 1986] and wheat [Ritchie and 

Otter, 1985], SUCROS for spring wheat [Van Laar et al., 1997], and SOYGRO for 

soybeans [Wilkerson et al., 1983].  

The above mentioned CMs were later incorporated into the decision support system for 

agrotechnology transfer (DSSAT) for better compatibility and application [Jones et al., 

2003]. This suite of CMs currently includes models for various annual crops e.g. grains, 

legumes, and vegetables as well as perennial forage crops [Pereira et al., 2020]. DSSAT 

can be used to simulate crop growth, development, and yield and to investigate crop 

management decisions over single or multiple seasons under the consideration of soil, 

crop phenotype, and weather [Jones et al., 2003]. Other widely used multi-crop models 

include EPIC [Williams et al., 1989], CropSyst [Stöckle et al., 2003], AquaCrop [Steduto 

et al., 2009], or the APSIM suite of CMs [Keating et al., 2003] and can simulate a variety 

of annual and perennial crops and management options similarly to DSSAT. Apart from 

biophysical processes, APSIM can also simulate economic and ecological outcomes of 

specific crop management practices under changing climatic conditions [Keating et al., 

2003].  

The models differ in terms of complexity, i.e. AquaCrop focusses on simulating the effect 

of water limitation on potential crop yield while the DSSAT model family integrates crop 

responses to soil water, nutrients, and soil carbon (C). EPIC and CropSyst additionally 

integrate climate and management effects on soil erosion while APSIM is more detailed 

in representing crop growth processes and differentiates between individual plant 

components [Holzkämper, 2017]. 

Most CMs were designed for field-scale simulations with one exception being the 

regional-scale crop model GLAM [Challinor et al., 2004], but are often applied at 

regional or even global scale [Challinor et al., 2018; Holzkämper, 2017]. This however 

can lead to computational challenges and may impact their ability to accurately represent 

the spatial heterogeneity of climate variability on yield [Doering and Otto, 2002]. 

Additionally, because of their development as standalone CMs, they typically lack a more 

detailed description of the soil profile including soil hydraulic properties that are key to 

adequately simulate soil water status and irrigation requirements [Vereecken et al., 2016]. 

Other approaches therefore combine CMs with transient state models, e.g. the crop 
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growth model WOFOST and the hydrologic model HYDRUS-1D [Zhou et al., 2012] or 

the agro-hydrological model SWAP and the crop growth model EPIC [Xu et al., 2013] to 

improve the representation of water dynamics in the soil. Moreover, CMs neglect the 

wider interactions of crop and environment [Levis et al., 2012]. For instance, climate 

change will affect water resources with consequent impact on water availability for 

irrigation [Arnell, 1999; Döll, 2002].  

As croplands cover substantial areas of land and greatly impact the Earth system, there 

has been increasing interest and need to model these interactions of crop production and 

management with local climate, hydrology, and land surface processes. This has led to 

the inclusion of agricultural systems into spatially distributed models with broader scopes 

such as dynamic global vegetation models, e.g. the Lund-Potsdam-Jena managed Land 

model (LPJmL) [Bondeau et al., 2007], river basin models such as SWAT/SWIM [Arnold 

et al., 1998; Krysanova et al., 2000], or different land surface models (LSMs) [Fisher and 

Koven, 2020] that can be coupled to climate models and are typically used for regional to 

global scale modelling. Due to their large-scale application and their origin from other 

disciplines (e.g. hydrology, terrestrial ecosystem or climate sciences), crop and 

management representations in these models are often comparatively simpler than those 

of field-scale CMs [Holzkämper, 2017; Manivasagam and Rozenstein, 2020]. However, 

LSMs represent hydrology, surface energy balance, and biogeochemical cycles and could 

thus appear more suitable to evaluate the environmental impacts of agriculture in the 

Earth system in a more holistic way [Blyth et al., 2021; Peng et al., 2020].   

1.2.2 Land surface models 

LSMs form the land component of earth system models and depict all terrestrial 

ecosystem processes. They require meteorological, land cover, and soil data to simulate 

the interactions between land, vegetation, water, and the atmosphere at large regional, 

continental, or global scales [Bonan, 2019]. LSMs originated from the climate modelling 

community where their primary purpose was to deliver the physical boundary conditions 

at the land-atmosphere interface to study the influence of land on weather and climate. 

However, the role of the terrestrial biosphere and land surface itself with the related 

biogeophysical and biogeochemical processes has since gained greater attention and has 

led to many further developments of LSMs across a broad range of spatial and temporal 

scales [Buechel, 2021; Fisher and Koven, 2020]. Their application has thus expanded to 
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a wide variety of contexts including the effects and potential risks of land use and change 

on climate, terrestrial and aquatic ecosystems as well as human societies [Blyth et al., 

2021; Fisher and Koven, 2020]. As a result, LSMs have greatly evolved in the 

representation of processes to include SM dynamics, land surface hydrological processes, 

C and nitrogen cycling, land cover, and human land management such as crop production 

[Lawrence et al., 2019]. 

1.2.3 Crop representations in LSMs 

Initially, crops were represented by a generic crop type similar to grasses in many LSMs 

[Lombardozzi et al., 2020]. Various LSMs, such as ORCHIDEE, the Community Land 

Model (CLM), JULES and Noah-MP have since incorporated process-based CMs to 

dynamically model crops and crop management [Levis et al., 2012; Liu et al., 2016; 

Osborne et al., 2014; Wu et al., 2016]. Crop representations typically include a 

description of crop phenology, partitioning of dry matter, and management practices such 

as sowing, fertilization, and harvest. Similar to classical CMs, crop growth is governed 

by crop phenological phases that are triggered by growing degree-day thresholds [Liu et 

al., 2016]. In CLM version 5 (CLM5), planting, leaf emergence, grain fill, and harvest 

are distinguished while other LSMs may use additional or fewer phenological phases. 

During the growing season, C and N are allocated based on C:N ratios of the individual 

plant organs (leaf, stem, fine roots, grain), whereby N is supplied by the soil mineral N 

pool. At harvest, the grain pool is transferred to a grain product pool and exported as yield 

[Lombardozzi et al., 2020]. The integration of crops into LSMs has significantly 

improved the simulation of the seasonal evolution of LAI [Osborne et al., 2014; Wu et 

al., 2016], gross primary productivity [Drewniak et al., 2013; Osborne et al., 2014], net 

ecosystem exchange and latent heat [Levis et al., 2012; Lokupitiya et al., 2016].  

However, the diversity of crop types, cultivars, and management practices is still greatly 

simplified in these models [Lombardozzi et al., 2020]. This has resulted in inaccurate 

representations of phenology and crop yield [Chen et al., 2018; Lombardozzi et al., 2020; 

Sheng et al., 2018]. Besides a limited number of major annual crop types (e.g., wheat, 

soy, corn, rice) descriptions of other crops such as perennials or less common grains or 

tuber crops are still scarce, partially due to a lack of comprehensive datasets to 

parameterize these crops. Recently, some efforts have been made to improve crop growth 

and management processes or to include additional crop types and cropping systems into 
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LSMs and other global modelling environments. For instance, Peng et al. [2018] 

developed a new maize model in CLM4.5 and Boas et al. [2021] implemented a 

subroutine for winter wheat and new parameters for sugar beet, potatoes, and winter 

wheat in CLM5. Bioenergy crops [Schaphoff et al., 2018] and agricultural trees [Fader et 

al., 2015] were included in the LPJmL model. Moreover, Fan et al. [2015] parameterized 

oil palms, as a perennial evergreen crop within CLM4.5 and Cheng et al. [2020] included 

two perennial grasses for energy production in CLM5. These extensions improved the 

simulation of crop phenology, yield, and the surface energy and C fluxes [Boas et al., 

2021; Peng et al., 2018], and continue to increase the ability of LSMs to represent a 

greater diversity of agricultural systems. 

1.2.4 Irrigation in LSMs 

Irrigation has only recently been acknowledged as an important driver of Earth system 

processes to be included in LSMs. Consequently, irrigation is still largely 

underrepresented or implemented in a rather simplistic way in many LSMs [McDermid 

et al., 2023; Pokhrel et al., 2016].  

De Rosnay et al. [2003] incorporated an irrigation scheme in ORCHIDEE to examine the 

regional impacts of irrigation on energy partitioning. In their study, daily irrigation 

requirements were calculated based on the difference between potential evaporation 

multiplied by a crop coefficient and precipitation. Actual irrigation was then determined 

depending on water availability in the river system and aquifer as simulated by a routing 

scheme. Other authors prescribed a fixed irrigation rate or implemented dynamic 

irrigation schemes based on defined SM thresholds in the root zone to trigger irrigation 

in JSBACH, NoahMP and CLM4 using satellite-derived data to identify irrigated areas 

[de Vrese et al., 2016; Levis and Sacks, 2011; Ozdogan et al., 2010; Sacks et al., 2009]. 

Using this approach, irrigation is driven by soil water status independent of management 

techniques or water availability. Consequently, irrigation and irrigation-induced impacts 

simulated in these studies have shown various issues including overestimation of 

irrigation amounts and duration or runoff, and underestimation of the change in latent 

heat [Kueppers and Snyder, 2012; Lawston et al., 2017; Sacks et al., 2009].  

More recently, model developments added new capabilities such as distinguishing 

different irrigation techniques (i.e. sprinkler, surface, drip irrigation) [Leng et al., 2017; 

Pokhrel et al., 2015; Yao et al., 2022] or including different sources for irrigation water 
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withdrawal including groundwater pumping [Leng et al., 2017; Xia et al., 2022] in CLM5, 

NoahMP, ACME or HiGWMAT. Others added water regulation modules accounting for 

other water uses next to irrigation [Pokhrel et al., 2012], and limitations on water 

availability [Yin et al., 2020] to MATSIRO and ORCHIDEE, respectively. These 

developments improved the performance of the models when compared to observed river 

discharge, irrigation water withdrawals, and groundwater depletion. However, given the 

various approaches to model irrigation, simulated irrigation exhibits considerable 

discrepancies especially at local and regional scales [Haddeland et al., 2014; McDermid 

et al., 2023; Pokhrel et al., 2016]. The coarse scales (10–100 km) at which the mentioned 

irrigation studies were performed and the lack of local irrigation data further contribute 

to these uncertainties [Lawston et al., 2017; McDermid et al., 2023]. As more irrigation 

data become available at higher resolution, they can be used to better evaluate and 

improve existing irrigation schemes. This can give further insight into the effects of 

irrigation and its current representations in LSMs down to the field scale [Huang et al., 

2022; Lawston et al., 2017].  

Clearly, efforts are ongoing to improve the simulation of human land and water 

management in terms of crop and irrigation representations in LSMs. While noteworthy 

progress has been made in both areas, this work needs to be continued to include missing 

crop types, e.g. perennial crops, and to more realistically represent local irrigation 

practices. This will allow to better account for regions with a more diverse agricultural 

landscape, e.g. mixed annual or perennial cropping systems.
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1.3 The Mediterranean context 

Although most of the work in this thesis aims to be applicable across the world, the focus 

is put on the Mediterranean. This region combines a rich history and biodiversity, a wide 

range of traditional and modern agricultural activities, a highly variable climate, different 

degrees of economic development, chronic water scarcity and high environmental 

vulnerability [Tramblay et al., 2020]. All of these factors create a unique environment 

and necessity for research and policy development for sustainable irrigation practices and 

water resources management. Moreover, the lessons learned from this region can have a 

broader applicability and offer valuable insights to address challenges related to 

agriculture, water, and climate change globally. 

1.3.1 Characteristics of the region 

The Mediterranean region spans over southern Europe, Northern Africa, and the Middle 

East. Its climate falls in the transitional zone between the subtropical and temperate zones 

and is characterized by hot and dry summers and cool wet winter periods with high intra- 

and inter-annual variability in rainfall [Joffre and Rambal, 2001; Lionello et al., 2006]. 

The region has a diverse geography and rich biodiversity with a large number of endemic 

plant species, while at the same time conditions in the area are suitable to grow a wide 

variety of crops [Myers et al., 2000].  

The Mediterranean has been a cradle of agriculture dating back millennia [Aguilera et al., 

2020]. Agricultural practices have shaped the landscape, cultural identity, and economic 

growth of the region. Until today, agricultural production is of high economic value 

employing more than a fifth of the population and contributing > 10% of GDP in some 

Mediterranean countries [CIHEAM, 2009]. Next to annual crops including cereals and 

pulses, the cultivation of perennial crops, like olive trees, vineyards, and various fruit and 

nut trees, is an integral part of the region's agricultural landscape. Farm sizes are generally 

small compared to other agricultural areas, which creates a fragmented, diverse 

landscape, and a challenge to farmers who often struggle to provide sufficient income to 

adequately support their families [Lobianco and Roberto, 2006]. Considering the semi-

arid conditions and irregular rainfall patterns, irrigation has been a cornerstone of 

agriculture in the Mediterranean to achieve adequate crop growth and yield [Semple, 

1929]. As a result, irrigated land has been expanding continuously, facilitating food 

production and securing livelihoods for a growing population [Daccache et al., 2014]. 
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Presently, irrigated agriculture is responsible for around 50% of total water withdrawal, 

with strong sub-regional differences ranging from 11% in Croatia and France to > 80% 

in Egypt, Greece, and Syria [FAO, 2022]. 

1.3.2 Environmental pressures 

The Mediterranean region faces mounting pressure on its water resources due to the 

dependence on irrigation combined with other factors including rapid population growth, 

urbanization, and climate change [Fader et al., 2016]. Together with poor water 

governance and inefficient irrigation practices, this has repeatedly led to over extraction 

of water, decline of groundwater quality, soil degradation, and environmental pollution 

[Aureli et al., 2008; Daccache et al., 2014; Kurunc et al., 2016; Pisinaras et al., 2010]. 

Additionally, the Mediterranean has been declared one of the climate change hotspots and 

is likely to experience more frequent and intense heat waves and prolonged periods of 

drought [Diffenbaugh and Giorgi, 2012; IPCC, 2012]. Consequently, certain areas could 

see up to 40% decrease in winter precipitation under RCP8.5 scenario (the Representative 

Concentration Pathway that would lead to 4 °C of global warming) [Tuel and Eltahir, 

2020].  

The effects of climate change on Mediterranean agriculture are manifold. Higher 

temperatures together with changes in the amount and distribution of rainfall will result 

in increased competition for the already limited water supplies in many Mediterranean 

countries [Cramer et al., 2018; Iglesias and Garrote, 2015; IPCC, 2022; Tuel and Eltahir, 

2020]. Additionally, yield reduction and increased crop water demand are expected for 

various spring-grown crops. While the increases in CO2 may reduce these negative effects 

partially, the yield loss will hardly be recovered entirely [Skuras and Psaltopoulos, 2012]. 

The changes in temperature and precipitation might render some crops unsuitable for 

production in the Mediterranean [Ceglar et al., 2019; Zagaria et al., 2023]. Moreover, 

crop phenological development will likely shift to earlier in the year which can result in 

yield decline for certain crops [Moriondo and Bindi, 2007; Zagaria et al., 2023]. 

Furthermore, irrigation water requirements will be strongly affected, for example, the 

southern and eastern Mediterranean is expected to see an increase of up to 35% [Fader et 

al., 2016]. 
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1.3.3 Need for adaptation measures 

Water scarcity, poor irrigation management, and progressing climate change have raised 

concerns about the sustainability and resilience of Mediterranean agriculture and have 

emphasized the need for adaptation measures [Fader et al., 2016]. These measures 

include the switch to more efficient irrigation systems, adjustment of irrigation schedules, 

diversification of water resources, storage and harvesting of rainwater, or water pricing 

[García-Tejero et al., 2014; Harmanny and Malek, 2019]. In addition to measures 

focussed on alternative water resources and improved irrigation efficiency, crop selection 

and management can be effective measures to mitigate climate change impacts. The FAO, 

for instance, has emphasized the role of perennial agriculture in protecting and improving 

soil ecosystem health and enhancing food security [Batello et al., 2014; Glover et al., 

2010]. 

Supporting sustainable agricultural and water resources management will require a 

holistic understanding of the state and potential developments of Mediterranean crop 

production and the role of irrigation in water resources. The high diversity and distinctive 

characteristics of Mediterranean agricultural systems pose a challenge to establishing a 

comprehensive data base as well as to the development of modelling tools that can 

accurately represent these systems. Modern data observation networks and cost effective 

sensors can help leverage data availability of e.g., weather, soil, crop, and irrigation, 

which unfortunately is often limited, especially in southern Mediterranean countries 

[Fader et al., 2015]. In addition, the continued development of process representations in 

LSMs can equip these models to guide decisions in crop production, irrigation, and water 

resources management at different scales to secure environmental sustainability as well 

as economic viability of Mediterranean agriculture. 
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1.4 Research objectives and thesis outline  

The overall aim of this thesis is to improve the representation of crops and irrigation in 

LSMs and combine them with local observational data to assess crop water requirements 

and derive management recommendations that can ultimately lead to reduced irrigation 

water consumption while sustaining agricultural yield in the context of the Mediterranean 

region. The following sub-objectives were defined to achieve this goal. 

The first objective is to examine the use of low-cost weather sensors to deliver accurate 

data and improve overall data availability for field-scale crop and water management as 

well as regional agricultural, hydrologic, or climate research and modelling. These 

sensors should be robust, reliable, easy to use and maintain, and should not deviate 

strongly from high-end sensors in order to be adequate for use in single site monitoring 

or as components of larger environmental observatories. 

The second sub-objective is to improve the representation of perennial crop types within 

LSMs by including deciduous fruit trees in CLM5. To achieve this, the current model 

descriptions of annual crops and natural vegetation must be expanded to include new 

features that are unique to fruit trees and orchards. This should result in more reliable 

simulations of crop growth and water requirements, and reduce the existing bias in the 

representation of the biogeophysical and biogeochemical processes in regions where this 

type of cultivation is prevalent. 

The third sub-objective addresses the critical role of irrigation in global food production, 

especially in semi-arid regions, and its impact on yield, land surface processes, and water 

resources. Despite its critical importance, irrigation is not yet accurately accounted for in 

most LSMs. It is therefore necessary to assess and improve the existing model 

capabilities, demonstrate how these improvements are relevant in advancing the 

incorporation of human land-water management into global LSMs, and illustrate how 

they can contribute to more sustainable irrigation and water resources management. 

To address these objectives, the thesis is structured into five parts. Chapter 1 provided a 

general introduction and background to the following three chapters that are based on two 

peer-reviewed and published papers and one submitted paper.  
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In Chapter 2, the performance of the ATMOS41 all-in-one weather station (METER 

Group Inc.) is evaluated and its potential use in the context of microclimate monitoring 

for various user applications as well as research activities is discussed. This cost-effective 

and easy-to-use station can increase the availability of data, especially in remote regions 

and low-income countries. However, adequate calibration and testing should be 

performed to ensure sufficiently high data quality. Under this objective, three ATMOS41 

were installed next to a high-performance reference station at an experimental site in 

Germany. Meteorological data was collected over a three-month period at a 10-min 

interval. Collected data of solar radiation, precipitation, air temperature, relative 

humidity, atmospheric pressure, wind speed, and wind direction was analysed using 

graphical and statistical techniques. The inter-sensor variability between the three stations 

and the overall quality of the weather data from the ATMOS41 compared to the reference 

station was assessed. Moreover, systematic and random errors were determined and 

potential limitations for the deployment of the ATMOS41 were discussed. 

In Chapter 3, CLM5-FruitTree, a new sub-model for perennial deciduous fruit trees, is 

presented, which improves the representation of agricultural systems within the LSM 

CLM5. The development encompassed (1) a new perennial crop phenology description, 

(2) an adapted C and nitrogen allocation scheme, considering both storage and 

photosynthetic growth of annual and perennial plant organs, (3) typical management 

practices associated with fruit orchards, and (4) the parameterization of an apple plant 

functional type (PFT). Extensive field measurements from an apple orchard in South 

Tyrol, Italy were available to develop and test the sub-model. Measurements of biomass 

and C and nitrogen ratios of the individual plant organs, root distribution as well as 

literature values were used to parameterize the apple PFT. Additionally, a simple one-by-

one sensitivity analysis was performed to further tune model parameters and assess the 

influence of newly added parameters on the simulation results. Finally, the simulation 

results were compared to observed LAI, yield, C, energy, and water fluxes from an eddy 

covariance station, and SM measurements. 

Chapter 4 focusses on the representation of irrigation in CLM5. The new CLM5-

FruitTree sub-model, as presented in Chapter 3, was used to assess irrigation practices 

and water consumption in a small Greek catchment dominated by apple orchards. First, 

the representation of local irrigation practices and resulting SM dynamics and crop 
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growth was evaluated at the point-scale. An irrigation data stream was implemented that 

allows to directly read in measured irrigation data. The simulations were compared to 

data collected from WSNs in two highly instrumented apple orchards and were forced 

with atmospheric data obtained from two ATMOS41 weather stations evaluated in 

Chapter 2. Subsequently, a regional modelling case was set up to compute irrigation 

requirements for the entire catchment. Based on these modelling results and using the 

irrigation stream, different irrigation deficit scenarios were created and their effect on 

yield and CWUE was examined to derive recommendations for regional irrigation 

management.  

Finally, the thesis concludes with Chapter 5, in which a synthesis of this work is provided 

and directions for future research and applications are discussed. 
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2 Performance of the ATMOS41 

All-in-One Weather Station for 

Weather Monitoring 

This chapter is based on the following journal article: 

Dombrowski, O., Hendricks Franssen, H. J., Brogi, C., & Bogena, H. R. (2021). 

Performance of the ATMOS41 All-in-One Weather Station for Weather Monitoring. 

Sensors, 21(3), 741. https://doi.org/10.3390/s21030741  

Abstract 

Affordable and accurate weather monitoring systems are essential in low-income and 

developing countries and, more recently, are needed in small-scale research such as 

precision agriculture and urban climate studies. A variety of low-cost solutions are 

available on the market, but the use of non-standard technologies raises concerns for data 

quality. Research-grade all-in-one weather stations could present a reliable, cost effective 

solution while being robust and easy to use. This study evaluates the performance of the 

commercially available ATMOS41 all-in-one weather station. Three stations were 

deployed next to a high-performance reference station over a three-month period. The 

ATMOS41 stations showed good performance compared to the reference, and close 

agreement among the three stations for most standard weather variables. However, 

measured atmospheric pressure showed uncertainties > 0.6 hPa and solar radiation was 

underestimated by 3%, which could be corrected with a locally obtained linear regression 

function. Furthermore, precipitation measurements showed considerable variability, with 

observed differences of ±7.5% compared to the reference gauge, which suggests 

relatively high susceptibility to wind-induced errors. Overall, the station is well suited for 

private user applications such as farming, while the use in research should consider the 

limitations of the station, especially regarding precise precipitation measurements. 

  

https://doi.org/10.3390/s21030741
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2.1 Introduction 

Weather monitoring plays a central role in the understanding of the hydrological cycle, 

weather forecasting, risk assessment and management as well as agricultural planning, 

the administration of natural resources, climate change studies and other public and 

private interests. Despite the fact that modern automatic weather station networks are 

typically well developed in high-income countries, data quality and station coverage are 

often limited in low-income countries due to high instrumentation and maintenance costs 

[Nsabagwa et al., 2019; Pietrosemoli et al., 2019; WMO, 2016]. Consequently, resources 

and trained personnel to set up and maintain a sufficient number of stations are lacking 

to adequately cover the spatiotemporal variability of meteorological variables [Sabatini, 

2017; WMO, 2009]. Additionally, growing interest in microclimate monitoring for 

precision agriculture [de la Concepcion et al., 2015; Tenzin et al., 2017; Watthanawisuth 

et al., 2009] or urban climate and heat island studies [Gaitani et al., 2011; Tomlinson et 

al., 2013] requires weather stations that are inexpensive, efficient, and provide local and 

reliable data for modelling applications. Ideally, the design of such weather stations meets 

the following criteria: (i) robustness to reduce calibration frequency; (ii) compact design 

for ease of handling and to minimize sensor damage; (iii) low maintenance; (iv) low 

power requirements; (v) low cost; (vi) compatibility with different logger systems; (vii) 

wireless communication. 

With the increasing use of wireless sensor networks [Yick et al., 2008], various non-

standard low-cost weather monitoring systems have been developed in the past few years 

using a wide range of sensor hardware and different microcontroller architectures, such 

as Arduino [Katyal et al., 2016; Lopez and Villaruz, 2015; Saini et al., 2016] or Raspberry 

Pi [7,15,16]. These stations can be very cost effective, with prices of several hundred 

Euros [Pietrosemoli et al., 2019], but they often lack adequate calibration and testing, 

raising concerns about the accuracy, precision, and reliability of the collected data 

[Gunawardena et al., 2018]. However, information on data quality in terms of both the 

accuracy and repeatability of such low-cost weather stations is crucial for modelling 

applications and decision-making [Aponte-Roa et al., 2018; Muller et al., 2015]. 

Furthermore, designing these non-standard devices requires sufficient knowledge of the 

associated hardware and software for installation and maintenance, while the moving 

parts may be susceptible to failure. Commercial all-in-one weather stations, e.g., 

[Environmental XPRT, 2020; Gill Instruments Limited, 2023; Met One Instruments Inc., 
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2023], that incorporate multiple sensors in a single unit can be a viable alternative as they 

are easily deployable, generally cheaper than standard weather stations composed of 

individual sensors, and include manufacturer reported accuracy, precision, and calibration 

details. On the downside, they are less flexible in terms of adding or exchanging sensors 

and may suffer from interference between sensors due to their compact architecture 

[Warne, 2017]. Nonetheless, their plug-and-play principle and the compact design are 

clear advantages since they facilitate non-expert use and make them suitable for 

continuous deployment in rural or remote areas. 

This study focuses on the assessment of the ATMOS41 all-in-one weather station that 

holds 12 embedded sensors, developed and produced by METER Group, Inc. The station 

is currently used in sub-Saharan Africa to improve crop production of maize [Mutuku et 

al., 2020] and to build the Trans-African Hydro-Meteorological Observatory (TAHMO) 

network [TAHMO, 2020]. TAHMO aims at installing 20,000 hydro-meteorological 

stations across sub-Saharan Africa and collected data will be used for educational 

purposes at local schools as well as aid in scientific modelling, early warning systems, 

and the analysis of water availability [van de Giesen et al., 2014]. Furthermore, the 

ATMOS41 has recently found applications in crop research and private sector sensor 

networks of various industrialized countries. In Portugal, the station is being used in the 

development of a forest monitoring system for fire detection [Brito et al., 2020] and in 

the field of smart agriculture to improve vineyard management practices [Valente et al., 

2020]. In addition, the ATMOS41 is part of the Montana Mesonet monitoring stations in 

the Upper Missouri River Basin, where collected data are used for drought detection and 

natural resource management, amongst others [Jencso et al., 2019]. Further applications 

include the investigation of crop water stress in apple orchards at Washington State 

University [Mohamed et al., 2019] and the estimation of the plant growth status of paddy 

rice in Japan [Xie et al., 2020]. 

METER and partners provide reports of calibration and sensor performance tests for the 

complete weather station or for individual components performed in the lab or in outdoor 

testbeds of the METER Pullman campus [METER Group, 2018]. Furthermore, [Anand 

and Molnar, 2018] conducted a first-order performance analysis of the early version of 

the station. The study compared 6 months of data recorded in 2017/2018 by the 

ATMOS41 station against a weather station of the Institute of Atmospheric and Climate 

Science (IAC) of ETH Zurich and a SwissMetNet solar radiation station located at 2.5 
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km distance from the test site. Overall, the ATMOS41 showed similar performance to the 

IAC station, but the authors suggested that further tests are needed. 

Since its first release in 2017, several improvements of the ATMOS41 station were 

developed, some of which directly affect the measurement of certain variables and the 

overall performance of the station [Ayman]. These changes include: (i) improved sensor 

geometry to avoid adverse effects on wind measurements caused by heavy rain, (ii) 

improved sensor firmware and wind sensing algorithm, (iii) upgraded sensors and the 

addition of a secondary calibration for relative humidity and atmospheric pressure. 

Considering the wide use of the ATMOS41 weather station for small- and large-scale 

weather monitoring in sub-Saharan Africa [Mutuku et al., 2020; TAHMO, 2020; van de 

Giesen et al., 2014] as well as industrialized countries [Brito et al., 2020; Jencso et al., 

2019; Mohamed et al., 2019; Valente et al., 2020; Xie et al., 2020], independent testing 

under “out of the lab” conditions can provide further insight and eventually identify 

possible limitations of the ATMOS41 station. In this way, a thorough performance 

assessment can inform private costumers and research organizations regarding the 

potential fields of application and provide impulses for further hardware or software 

developments. Therefore, the aim of this study is to carry out such in-depth assessment 

through direct comparison to an independent, high-performance weather station as well 

as the inter-comparison of multiple ATMOS41 stations. Within this context, the 

following questions will be addressed: 

• What is the quality of weather data from the ATMOS41 weather station? 

• What systematic or random errors affect the ATMOS41 station? 

• How well does the ATMOS41 station perform compared to a high precision, high 

quality weather station? 

• What are the limitations of the ATMOS41 station?
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2.2 Materials and Methods 

2.2.1 ATMOS41 all-in-one weather station 

The ATMOS41 is an all-in-one weather station developed by METER Group, Inc. 

(Pullman, WA, USA). The device is rather inexpensive for developed countries (below 

EUR 2000), has a compact design with no moving parts, and can be mounted with 

minimal effort to ensure easy deployment in a variety of terrains and locations. The station 

has 12 embedded sensors that measure standard weather variables, namely solar radiation, 

precipitation, air temperature, relative humidity, atmospheric pressure, wind speed and 

direction, plus additional parameters such as lightning strike count or compass heading. 

Further characteristics of the station are summarized in Table 2.1. 

Table 2.1 Characteristics of the ATMOS41 all-in-one weather station. 

Characteristic ATMOS41 

Manufacturer METER Group, Inc. 

Cost EUR 1750 

Dimensions Height: 34 cm, Ø = 10 cm 

Warranty 1 year 

Installation 
Mount on pole, stand, or tripod; orient to true North; level the 

weather station 

Maintenance 
Recalibration: every 2 years;  

Cleaning: check for bird droppings and insect debris 

Power requirements 
Supply Voltage: 3.6 to 15 V 

Current draw: 8.0 mA during measurement, 0.3 mA while asleep 

Operating temperature −40 to +50 °C 

Communication protocol SDI-12 

Additional equipment 
Pole, stand or tripod and a data logger (third party loggers are 

compatible too) 

2.2.2 Reference weather station 

The performance of the ATMOS41 weather station was evaluated through a comparison 

with measurements from a meteorological station that serves as a backup station for the 

official Selhausen (C1) measurement site [Schmidt et al., 2012], which is part of the 

Integrated Carbon Observation System (ICOS) [ICOS]. The backup station, hereafter 

referred to as ICOS-bkp, consists of individual, high-quality sensors that fully comply 

with the ICOS standard. This standard specifies minimum requirements for sensor 

selection as recommended by the World Meteorological Organization (WMO) [WMO, 

2008] and includes detailed descriptions for measurement and calibration processes as 

well as regular maintenance [Laurent, 2017]. ICOS measurement uncertainty 

requirements are based on the “achievable uncertainty” that can be expected in 



 CHAPTER 2  

30 

 

operational practice, as specified in the WMO Guide N° 8 [WMO, 2008]. The total 

equipment costs for an ICOS level one station are estimated at EUR 10,000 [Brus et al., 

2013], including the costs of logger and tripod (ca. EUR 1800 for the Selhausen station). 

The cost of weather sensors used at an ICOS station is hence more than four times the 

cost of an ATMOS41 device. The ICOS-bkp station records instantaneous values for solar 

radiation, temperature, and relative humidity at an interval of 20 s and an installation 

height of 2.5 m. Precipitation is recorded at a height of 1 m above ground, and a 10 min 

accumulated value recorded at a separate data logger was used for the comparison with 

the ATMOS41 stations. 

Atmospheric pressure, wind speed, and wind direction are only recorded at the main ICOS 

station but are not recorded at the backup station. For the comparison of wind speed and 

direction, data recorded by a Vaisala WXT520 weather transmitter (Vaisala Corporation, 

Helsinki, Finland) were used. This instrument is installed at a height of 2 m above ground 

next to the ICOS-bkp station and records data for the SE_BDK_002 station of the 

TErrestrial ENvironmental Observatories network (TERENO) [TERENO, 2020] at a 10 

min interval. The Vaisala WXT520 meets the high accuracy and precision standards 

specified by ICOS for wind speed and direction but has a measurement uncertainty of 

±0.5 hPa for atmospheric pressure instead of the ±0.3 hPa required by ICOS standards. 

Therefore, the atmospheric pressure sensor at the main ICOS was used as a reference to 

the ATMOS41 stations. 

2.2.3 Experimental setup 

Data were collected from 23 April to 5 July 2020 (73 days) in Selhausen, Germany (50.87 

N 6.45 E) at an altitude of 103 m a.s.l. The area is characterized by a temperate maritime 

climate with a mean annual air temperature of 10 °C and annual precipitation of 700 mm. 

The site is located in an agricultural area with the dominant crops being sugar beet, winter 

wheat, and winter barley [ICOS, 2020]. 

Three ATMOS41 weather stations (hereafter referred to as Atmos1, Atmos2 and Atmos3) 

were set up next to the Vaisala and ICOS-bkp stations. Atmos1 is the first generation of 

the station, purchased in 2017, and was previously deployed for a period of less than 6 

months. Atmos2 and Atmos3 are the latest versions of the station, purchased in 2020, and 

used for the first time in this study. All three ATMOS41 stations were mounted in a row 

and installed at 2 m above ground (Figure 2.1). The stations were oriented north and 
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levelled according to the user manual [METER Group, 2017] to ensure accurate 

measurements of wind direction, precipitation, and solar radiation. Cumulative or 

instantaneous data were recorded at a 10 min interval for precipitation and all other 

variables, respectively. The ATMOS41 stations were connected to a CR1000X data 

logger (Campbell Scientific Ltd., Logan, UT, USA) which was powered via a 12 V 

battery connected to a battery charger. 

 

Figure 2.1 Experimental site with the three ATMOS41 stations, the Vaisala weather transmitter and the 

ICOS-bkp station. 

Details on the sensors that measured each variable for the ATMOS41 and for the ICOS-

bkp, ICOS or Vaisala stations, including approximate costs for individual sensors used at 

the reference stations, are listed in Table 2.2. The accuracy of most weather sensors used 

in the ATMOS41 station, as stated by the manufacturer, is compliant with the “achievable 

uncertainty” standard used by ICOS, with the exception of the air temperature and 

atmospheric pressure sensor (ICOS standard of ±0.1 °C and ±0.3 hPa, respectively). 
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Table 2.2 Sensor details for the ATMOS41 weather station as well as the ICOS-bkp, Integrated Carbon 

Observation System (ICOS) or Vaisala station. 

Parameter ATMOS41 ICOS-bkp, ICOS or Vaisala 

Radiation 

Miniature pyranometer with 

silicon-cell  

(Apogee Instruments, Logan, 

USA) 

Resolution: 1 W/m2 

Accuracy: ±5% 

Pyranometer with permanent ventilation/heating (CMP21, 

Kipp & Zonen, Delft, Netherlands; EUR 900)  

Resolution: 1 W/m2 

Accuracy: ±1% 

Precipitation 

Optical sensor rain gauge with 

68 cm2 catch area 

(METER Group Inc., Pullman, 

USA) 

Resolution: 0.017 mm 

Accuracy: ±5% (up to 50 

mm/h) 

Weighing rain gauge with 200 cm2 catch area (Pluvio2, Ott 

HydroMet, Kempten, Germany; EUR 5000) 

Resolution: 0.05 mm within an hour 

Accuracy: ±1 mm  

Temperature 

Thermistor, non-aspirated  

(METER Group Inc., Pullman, 

USA) 

Resolution: 0.1 °C 

Accuracy: ±0.6 °C 

Resistance thermometer PT100 1/3 Class B (HC2S3, 

Rotronic, Bassersdorf, Germany; EUR 900) 

Resolution: 0.01 °C 

Accuracy: ±0.1 °C 

Relative 

humidity 

(METER Group Inc., Pullman, 

USA) 

Resolution: 0.1% 

Accuracy: ±3% (varies with 

temperature and humidity) 

ROTRONIC® Hygromer IN-1 (HC2S3, Rotronic, 

Bassersdorf, Germany) 

Resolution: 0.02% 

Accuracy: ±0.8% 

Pressure 

Barometric pressure sensor 

(METER Group Inc., Pullman, 

USA) 

Resolution: 0.1 hPa 

Accuracy: ±1.0 hPa 

BAROCAP® sensor (PTB110, Vaisala Inc., Helsinki, 

Finland; EUR 730) 

Resolution: 0.1 hPa 

Accuracy: ±0.3 hPa (at +20 °C) 

Wind speed 

Ultrasonic anemometer  

(METER Group Inc., Pullman, 

USA) 

Resolution: 0.01 m/s 

Accuracy: the greater of 0.3 m/s 

or 3% 

WINDCAP® ultrasonic transducer (WXT520, Vaisala 

Inc., Helsinki, Finland; EUR 2350) 

Resolution: 0.1 m/s 

Accuracy: ±3% at 10 m/s 

Wind direction 

Ultrasonic anemometer 

(METER Group Inc., Pullman, 

USA) 

Resolution: 1° 

Accuracy: ±5° 

WINDCAP® ultrasonic transducer (WXT520, Vaisala 

Inc., Helsinki, Finland) 

Resolution: 1° 

Accuracy: ±3° 

2.2.4 Performance analysis 

Python software (version 3.7.6, Python Software Foundation) was used for the graphical 

and statistical evaluation of the data quality and performance of the ATMOS41 weather 

station. Data were checked for consistency and erroneous measurements were removed 

manually. Wind speed and relative humidity were computed according to the procedure 

described in the ATMOS41 user manual [METER Group, 2017]. Data from the ICOS-

bkp and ICOS station were resampled to 10 min instantaneous data for comparison to the 

ATMOS41 data. Measured atmospheric pressure was corrected for the difference of 3.7 



 2.2 Materials and Methods 

33 

 

m in observation height (combination of elevation and sensor installation height) between 

the instrument locations using the barometric formula, while the effect of the distance of 

350 m between the stations was considered negligible. Graphical evaluation included time 

series plots and scatterplots for each parameter. Additionally, residual plots and 

correlation matrices were obtained and analysed. Residuals were calculated by 

subtracting the value obtained at the ATMOS41 stations from the value measured at the 

reference station using hourly mean values (hourly sums for precipitation). 

The statistical analysis of solar radiation only considered daytime values as measured 

nighttime solar radiation was zero. For the evaluation of measured precipitation, all time 

steps without precipitation were discarded. Statistical analysis of precipitation 

additionally included an event-based approach using a minimum rainfall amount of ≥ 0.2 

mm/event and a minimum inter-event time of 1 h. 

For statistical comparison, the Arithmetic Mean (𝜇) of the measured variables was 

calculated. Other metrics included the Coefficient of Determination (R2, Eq. (2.1)) as a 

measure of agreement between two stations. The Root Mean Square Error (RMSE, Eq. 

(2.2)) was used as a measure of the difference between two stations. The RMSE is 

sensible to outliers since higher weights are given to larger deviations between two 

stations [Walther and Moore, 2005]. The Mean Bias Error (MBE, Eq. (2.3)) was used as 

a measure of the average error between a station and the reference, with positive values 

indicating an overestimation and negative values indicating an underestimation. The 

MBE should be used in combination with other metrics as it is subject to cancellation 

errors since the sum of positive and negative values may result in a smaller MBE [Ruiz 

and Bandera, 2017]. Lastly, the Mean Absolute Error (MAE, Eq. (2.4)) was used as a 

measure of the absolute difference of a measurement compared to the reference 

measurement. It is not subject to cancellation errors and is less sensitive to outliers 

compared to the RMSE [Walther and Moore, 2005]. 

𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)

2𝑁
𝑖=1

∑ (ŷ𝑖 − ȳ)2𝑁
𝑖=1

 (2.1) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − ŷ𝑖)2

𝑁

𝑖=1
 (2.2) 

𝑀𝐵𝐸 =
∑ (𝑦𝑖 − ŷ𝑖)

𝑁
𝑖=1

𝑁
 (2.3) 



 CHAPTER 2  

34 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − ŷ𝑖|

𝑁

𝑖=1
 (2.4) 

where y is the reference value, ŷ is the measured value, ȳ is the mean of the reference 

value, and N is the number of measurements.

 

2.3 Results and Discussion 

2.3.1 ATMOS41 inter-sensor variability 

Instrument orientation data were recorded in the X- and Y-orientation for all three 

ATMOS41 stations to identify undesired rotation or tilt. Orientation data (Figure 2.2) 

showed that all stations remained stable within ±2 degrees of dead level in X- and Y-

direction as recommended for accurate measurements in the user manual [METER Group, 

2017]. A few larger tilts that exceed the ±2 degrees mark are observed in Figure 2.2, 

which mostly coincide with wind speeds > 6 m/s (data not shown). However, only ~0.3% 

of measurements were affected for Atmos2 and Atmos3 and large tilts were never 

sustained for more than a few measured time steps. For Atmos1, a larger 2.6% of 

measurements were affected due to a small, temporary change in orientation between 24 

and 29 April 2020, which was likely caused by a movement of the whole mounting 

structure. In addition, Atmos1 showed a slight misalignment of 0.5 to 1.0 degrees 

compared to Atmos2 and Atmos3, which was not considered significant. 
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Figure 2.2 X- and Y-orientation for the three ATMOS41 weather stations. The red dotted line indicates ±2 

degrees from dead level. 

The inter-sensor variability of the three ATMOS41 stations was analysed for the entire 

observation period (23 April to 5 July 2020) for all standard weather variables by 

examining 10 min instantaneous data. Figure 2.3 shows a pairwise comparison of the 

three stations using scatterplots, histograms with probability density functions, and the R2 

value arranged in a matrix. The scatterplots show good agreement and no apparent bias 

between stations, with most of the data points lying in the proximity of the identity line. 

Some scattering effect can be observed for solar radiation (Figure 2.3a), which may have 

been caused by temporal shading of a single sensor or differences in response time to 

changing radiation. Relatively strong scatter can be observed in the wind speed measurements 

(Figure 2.3f), which was likely caused by other external effects such as small-scale 

turbulences around the stations. This scatter is reduced considerably when the data are 

aggregated to a larger time step (data not shown). The histograms and probability density 

functions of all measured variables generally show very similar distributions. Only in the 

case of relative humidity (Figure 2.3e) does Atmos1 show small differences in the 

distribution of values compared to the histograms of Atmos2 and Atmos3. 

The comparison of all variables shows an R2 ≥ 0.96 except for wind speed, for which the 

R2 ranges between 0.72 and 0.74. R2 values increase when hourly averages are considered 

(data not shown), especially in the case of wind speed (R2 increases to 0.91 for Atmos1 

vs. Atmos2, 0.92 for Atmos1 vs. Atmos3, and 0.90 for Atmos2 vs. Atmos3). Despite most 

comparisons being rather satisfactory, there is slightly better agreement between Atmos2 

and Atmos3 when compared to Atmos1 for solar radiation, atmospheric pressure, and 

relative humidity. 
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Figure 2.3 (a–f) Correlation matrices for all weather variables measured by the three ATMOS41 stations. 

Subplots in the lower left show scatterplots of station pairs with the dashed line indicating the 1:1 identity 

line, the diagonal shows histograms of measured values with probability density functions, upper right 

shows the coefficient of determination R2. 

A statistical summary with a pairwise assessment of all three ATMOS41 stations is given 

in Table 2.3. There is generally close agreement between all stations for most parameters 

with low RMSE and small MBE. Larger variability within the three stations was observed 

for wind speed and precipitation measurements. RMSE for wind speed is ~0.76 m/s at an 

average wind speed between 2.02 and 2.11 m/s. Atmos1 and Atmos2 measured on 
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average slightly higher wind speed compared to Atmos3 as shown by the mean and MBE. 

Precipitation measurements show a RMSE of ~0.06 mm at an average precipitation 

between 0.17 and 0.20 mm. The variability in precipitation measurements becomes more 

apparent when comparing the total precipitation amounts, which were unusually low for 

the observed months from late April to early July. The total amounts are 82.21 mm 

(Atmos1), 75.92 mm (Atmos2), and 70.79 mm (Atmos3), while long-term monthly means 

(1981–2010) are between 47 and 77 mm for the same months [DWD, 2021]. The 

difference between the three stations is considerable given the relatively short observation 

period and low total rainfall and stands in contrast to the test measurements performed by 

METER, where a difference of < 20 mm was observed within three ATMOS41 stations 

for a total of ~800 mm of rainfall over a period of 4 months [METER Group, 2018]. The 

results suggest that wind-induced random errors such as the deflection of air flow and the 

formation of eddies and turbulences around the gauges [Sieck et al., 2007] had an 

important effect on the measurements. Atmos1 was positioned west-southwest of the 

other two stations, which was identified as the prominent wind direction during rainfall 

(data not shown). The three stations may have perturbed each other due to their alignment 

with respect to the wind direction and the relatively small distance between the stations, 

thus increasing the above-mentioned wind effects for Atmos2 and even more for Atmos3. 

This could explain the consistently lower amounts of rainfall measured by Atmos2 and 

Atmos3 compared to Atmos1. Low rainfall rates, as observed for most of the 

measurement period, show a high volumetric fraction of smaller drops (diameter < 1 mm), 

which are particularly prone to wind induced errors [Nešpor and Sevruk, 1999]. This may 

have caused the large observed variability despite the relatively low wind speeds observed 

during rainfall events and throughout the measurement period (~2 m/s). 

Generally, somewhat lower RMSE and MBE were observed between Atmos2 and 

Atmos3 as opposed to Atmos1 for solar radiation, atmospheric pressure, and relative 

humidity. The greater similarity between the newer ATMOS41 variants with regard to 

the latter two variables is most likely a result of the sensor improvements implemented 

after 2017, as mentioned above. However, the most pronounced difference was observed 

for solar radiation, where a bias of ~−25 W/m2 was found between the older Atmos1 

(2017 version) and the newer ATMOS41 stations. In comparison, the bias between 

Atmos2 and Atmos3 was only −0.39 W/m2 (Table 2.3). 
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Table 2.3 Statistical summary of the inter-sensor comparison for all standard weather variables measured 

by three ATMOS41 weather stations. Colours give an evaluation of the comparison, with red indicating the 

lowest and green the highest performance. 

 𝝁 RMSE MBE 

                               Station °N 

Parameter 
1 2 3 1 vs. 2 1 vs. 3 2 vs. 3 1 vs. 2 1 vs. 3 2 vs. 3 

Solar radiation [W/m2] 320.26 345.21 345.6 38.34 47.37 32.76 −24.96 −25.35 −0.39 

Precipitation [mm] 
0.20 

(82.21) * 

0.18 

(75.92) * 

0.17 

(70.79) * 
0.06 0.08 0.05 0.015 0.027 0.012 

Air temperature [°C] 15.05 15.11 15.26 0.22 0.38 0.34 −0.07 −0.22 −0.15 

Atmospheric pressure [hPa] 1004.92 1004.70 1004.53 0.42 0.51 0.23 0.22 0.39 0.17 

Relative Humidity [%] 67.35 66.18 65.56 3.26 3.49 1.38 1.17 1.79 0.62 

Wind speed [m/s] 2.1 2.11 2.02 0.77 0.75 0.76 −0.009 0.089 0.098 

* values in parentheses refer to the total precipitation amount during the observation period. 

At first, the ageing of the pyranometer was considered as a possible explanation for the 

better agreement between the two newer ATMOS41 stations. This assumption was tested 

using previous data from the older Atmos1 (2017 version). Between 12 December 2017 

and 24 May 2018 (164 days), the station was set up next to the ICOS site in Selhausen, 

350 m from the ICOS-bkp station (Figure 2.1). Graphical and statistical analysis showed 

minor differences in the performance of the station between the two periods (data not 

shown), which is more likely a result of the different seasons and lengths of the two 

observation periods. The results suggest a stable performance of the Atmos1 over the 3-

year period, even though calibration or maintenance were not performed. However, 

Atmos1 did not operate continuously throughout this period and hence it was not exposed 

to adverse weather conditions, such as strong solar radiation or heavy wind and 

precipitation. Therefore, sensor ageing or deterioration should be further studied, 

especially when continuous deployment of the station as part of a large monitoring 

network such as TAHMO is intended. A long-term assessment could include field visits, 

calibration checks and the establishment of statistical validation procedures as proposed 

in [Estévez et al., 2011] or, if possible, comparison with a nearby reference station over 

an extended period. 

Communication with the manufacturer allowed us to identify another possible issue 

related to the pyranometer provided by Apogee Instruments. A problem in the production 

of the early pyranometers was identified, which affected some of the earlier weather 
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stations and was solved at a later stage. This most likely explains the observed difference 

in performance between the older Atmos1 (2017 version) and the more recent Atmos2 

and Atmos3 stations. 

2.3.2 Comparison of ATMOS41 with ICOS backup station 

In the following, data collected over the 73-day period that includes late spring and early 

summer months with a small data gap of two days in mid-June are compared. The first 

three weeks of radiation data for Atmos3 were missing due to a defect funnel that was 

later replaced. To better visualize the comparison of the different stations, only a period 

of eight days from 30 May to 6 June (23 April to 5 July for precipitation) is shown in this 

section. The full time series can be found in the Appendix (Figure A.1). 

Table 2.4 shows a summary of the statistical performance analysis of the three ATMOS41 

stations compared to the reference station. Overall, R2 > 0.90 and relatively low RMSE, 

MBE and MAE were found for most variables except precipitation, wind speed, 

atmospheric pressure and solar radiation (only Atmos1). In the following, each variable 

is assessed in more detail.
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Table 2.4 Statistical summary of the performance of three ATMOS41 stations compared to the ICOS-bkp 

or Vaisala reference station. Colours give an evaluation of the comparison, with red indicating the lowest 

and green the highest performance. 

 R2 RMSE MBE MAE 

                                Station °N 

Variable 
1 2 3 1 2 3 1 2 3 1 2 3 

Solar radiation (W/m2) 0.96 0.99 0.99 56.46 31.88 32.28 −35.22 −9.03 −10.06 38.14 18.40 17.14 

Precipitation  

(mm/10min) 
0.92 0.93 0.93 0.13 0.13 0.13 0.02 −0.01 −0.02 0.08 0.09 0.08 

Precipitation (mm/event) 0.99 0.99 0.99 0.19 0.24 0.30 0.06 −0.05 −0.17 0.11 0.15 0.21  

Temperature  

(°C) 
0.99 0.99 0.99 0.53 0.49 0.45 −0.37 −0.31 −0.16 0.42 0.38 0.33 

Atmospheric Pressure (hPa) 0.98 0.99 1.00 1.17 0.89 0.75 1.01 0.79 0.63 1.02 0.80 0.64 

Relative Humidity (%) 0.95 0.97 0.97 4.33 3.36 3.39 1.37 0.25 −0.36 3.47 2.50 2.55 

Wind speed  

(m/s) 
0.62 0.58 0.63 0.84 0.88 0.82 0.17 0.18 0.09 0.55 0.59 0.55 

2.3.2.1 Solar radiation 

Figure 2.4a shows an 8-day period of solar radiation as measured by the four weather 

stations. The timing and variability of radiation during the day are well captured by the 

ATMOS41 stations. However, the maximum measured solar radiation is slightly lower 

than that of the reference station, especially for Atmos1. On a clear day, Atmos3 shows a 

recurring small drop in solar radiation in the early morning, suggesting a shadow cast 

from a surrounding sensor. On overcast days such as 4 June, the four stations show almost 

identical measurements. 
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Figure 2.4 (a) A short time series of solar radiation measured by three ATMOS41 weather stations and the 

ICOS-bkp station from 30 May to 6 June 2020. (b–d) Scatterplots of 10 min solar radiation for the three 

ATMOS41 stations vs. the reference station. (e) Probability density functions of the residual mean hourly 

solar radiation. Dashed lines show the mean of residuals (𝜇𝑟). 

The scatterplots of the ATMOS41 station vs. the ICOS-bkp (Figure 2.4b–d) confirm the 

overall good agreement of the stations, with an R2 between 0.96 and 0.99 (Table 2.4). The 

plots show little scatter and RMSE is ~32 W/m2 for Atmos2 and Atmos3 and somewhat 

higher for Atmos1 (56.46 W/m2) (Table 2.4). Solar radiation values > 400 W/m2 show a 

small underestimation by the ATMOS41 (Figure 2.4b–d). 
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Figure 2.4e depicts the deviation between the three ATMOS41 stations and the ICOS-

bkp station through a probability density plot of the residuals from hourly average data, 

which considers only daytime solar radiation. The peaks of the distributions show a small 

tendency of the ATMOS41 stations to measure higher values (negative residuals), which 

occurs at lower solar radiation as suggested by the scatterplots (Figure 2.4b–d). The 

underestimation of high solar radiation is represented in the right tail of the distribution 

(positive residuals), with a mean bias of −35.22 W/m2 for Atmos1 and mean biases of 

−9.03 and −10.06 W/m2 for Atmos2 and Atmos3, respectively (Table 2.4). 

The presented results for the Atmos1 generally agree well with the analysis by [Anand 

and Molnar, 2018], which compared the 2017 version of the ATMOS41 station with a 

SwissMetNet station. In their study, a lower bias of 8.9% was found compared to the one 

in this comparison (9.9%). This may be attributed to the overall lower radiation during 

the winter period studied by [Anand and Molnar, 2018] as opposed to the early summer 

period of this study that included many sunny days. Despite the 2 km distance between 

pyranometers, the authors observed a lower MAE and RMSE (13.57 and 39.40 W/m2) 

than what was found in this study, which may again be related to the characteristics of 

the observation period since the ATMOS41 measures more accurately in the lower 

radiation range. 

Despite the small systematic deviation from the reference ICOS-bkp station, the quality 

of the radiation measurements provided by the ATMOS41 was satisfactory. The newer 

stations show considerable improvement compared to the 2017 version of the station 

(Atmos1) and confirm the comparison test performed by the manufacturer, where a linear 

regression (y = 1.0323x) showed ~3% underestimation [METER Group, 2018]. Linear 

regressions for Atmos2 (y = 1.0372x) and Atmos3 (y = 1.0336) were similar to the one 

found by METER (Figure A.2). Granting that this bias persists in other climates and 

locations and compared to other high-performance pyranometers, a simple linear 

correction function may be developed and used to adjust the measurements. 

2.3.2.2 Precipitation 

Figure 2.5a shows an 8-day period with several precipitation events between 28 April and 

4 May. The timing of the events agrees well for all four stations, but there are some 

differences in magnitude and the effect of the different measurement resolutions (0.017 

mm for the ATMOS41 and 0.05 mm within an hour for the Pluvio2 that is used at the 
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ICOS-bkp station) is visible. A direct comparison of the rainfall measured by the two 

gauges is complicated given the difference in measurement resolution, gauge size and 

shape, and installation height, as well as the use of a windshield with the Pluvio2. The 

difference in resolution caused a greater scatter for small rainfall amounts in the 10 min 

time series (Figure 2.5b), with an R2 ~0.9, RMSE ~0.15, and MAE ~0.10 mm for the 

three stations. The event-based analysis compared 46 rainfall events with rainfall amounts 

ranging between 0.2 and 19.5 mm and showed more coherent results with R2 ~0.99 

(Figure 2.5c). On average, Atmos1 measured higher precipitation, Atmos3 measured 

somewhat lower precipitation, while Atmos2 showed the least bias compared to the 

reference station (Table 2.4). 
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Figure 2.5 (a) A short time series of precipitation measured by three ATMOS41 weather stations and the 

ICOS-bkp station from 28 April to 4 May 2020. (b,c) Scatterplots of 10 min precipitation and event-based 

precipitation sum for the three ATMOS41 stations vs. the reference station. (d) Cumulative precipitation 

measured by the three ATMOS41 weather stations and the reference station for the whole time series 

(numbers in parentheses refer to total precipitation amount). (e) Probability density functions of the residual 

hourly precipitation sum. Dashed lines show the mean of residuals (𝜇𝑟). 

Differences between the stations are more apparent when the cumulative precipitation for 

the observation period is analysed (Figure 2.5d). Total differences in precipitation 

compared to the reference are 5.78 mm (7.56%), −0.51 mm (−0.67%), and −5.64 mm 

(−7.38%) for Atmos1, Atmos2, and Atmos3. The difference to the reference rain gauge 

and between the ATMOS41 stations (as discussed in Section 2.3.1) is considerable and 

shows higher discrepancies than what is reported by the manufacturer (within 3% of the 
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average of three tipping-spoon rain gauges) [METER Group, 2018]. Surprisingly, Anand 

and Molnar [2018] found an underestimation of only 8.7%, even though their observation 

period included the entire winter season with several snowfall events. Since the 

ATMOS41 rain gauge is not heated and solid precipitation first needs to melt before it 

can be measured, higher errors could be expected during that period. This could not be 

further investigated, since snow was not observed during the measurement period of the 

present study. However, many applications such as agricultural monitoring or the use of 

the station in snow free climates do not rely on accurate measurements of the volume of 

solid precipitation. 

As previously discussed in Section 2.3.1, wind-induced errors have likely played an 

important role in the measurement of rainfall, leading to significant errors considering the 

relatively small total precipitation amount and low rainfall intensities that were 

characteristic for the observed period. Additionally, gauge size and shape influence the 

deformation of the wind field at the gauge and minor changes in installation height can 

cause differences of up to 10% in precipitation measurements, as comparison studies of 

different rainfall gauges have shown [Nešpor and Sevruk, 1999; Sevruk and Klemm, 

1989]. A higher wind-induced under catch could therefore be expected for the ATMOS41 

stations that were installed at an approximate height of 2 m compared to the Pluvio2 that 

is installed at a height of 1 m and uses an Alter windshield which has shown to improve 

the performance of the gauge [Colli et al., 2016; Kochendorfer et al., 2017]. The higher 

precipitation amount measured by the Atmos1 could be a result of the frequent detection 

of very small rainfall amounts, since the Pluvio2 does not measure fine precipitation 

below a threshold of 0.05 mm within an hour. 

Rainfall intensity during the observation period rarely exceeded 10 mm/h, a commonly 

used threshold for heavy rainfall [DWD, 2020]. Those events did not show lower accuracy 

of the ATMOS41 station, but a longer observation period with higher rainfall intensities 

is needed to accurately assess the performance of the station during extreme events. 

2.3.2.3 Air temperature 

Figure 2.6a shows air temperature data of the four stations during an 8-day period. 

Temperature dynamics are well captured by all ATMOS41 stations. However, daily 

maximum temperature and temperature during rainfall (5 June) are slightly lower and 

show a higher noise level for the ATMOS41 stations. The latter could be a result of a wet, 
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exposed temperature sensor or its immediate surroundings, making it more prone to 

evaporative cooling compared to the shielded ICOS-bkp sensor. In comparison, Anand 

and Molnar [2018] found that night-time lows measured by the ATMOS41 were 

generally lower compared to the IAC instrument, while showing high relative humidity. 

The authors observed temperatures ranging from −13 to 23 °C with a mean temperature 

of 4.5 °C, as opposed to the mean temperature of 15 °C measured during the present 

study. The scatterplots (Figure 2.6b–d) and statistical analysis (Table 2.4) show very good 

performance of the ATMOS41 with values close to the identity line, little scatter, and R2 

close to 1. RMSE and MAE are between 0.33 and 0.53 °C for all stations, nearly 50% 

lower than the RMSE and MAE reported in Anand and Molnar [2018]. 

Similar to the findings of Anand and Molnar [2018], there is a small mean bias towards 

lower temperature measured by the ATMOS41 (MBE between −0.16 and −0.37 °C), as 

also reflected in the probability density plot of the hourly residuals (Figure 2.6e). The 

temperature sensor of the ATMOS41 is exposed to solar heating, which is why an energy 

balance correction is used to calculate the actual temperature. The correction factor is 

proportional to solar radiation and inversely proportional to wind speed. Since errors in 

the measurement of those two variables may propagate to the temperature measurement, 

the overestimation of wind speed may explain the small bias in the measurement (Table 

2.4). However, most values lie within 0.5 °C difference. Additionally, no tendency to 

lower accuracy with temperatures > 30 °C was identified, which suggests that the 

ATMOS41 measurements are reliable within the observed range of −1.1 to 32.2 °C. Even 

though the accuracy of ±0.6 °C, as stated by the manufacturer, does not meet the 

“achievable uncertainty” standard of ±0.2 °C used by ICOS, air temperature 

measurements with the ATMOS41 were reliable and consistent. 
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Figure 2.6 (a) A short time series of air temperature measured by three ATMOS41 weather stations and the 

ICOS-bkp station from 30 May to 6 June 2020. (b–d) Scatterplots of 10 min air temperature for the three 

ATMOS41 stations vs. the reference station. (e) Probability density functions of the residual mean hourly 

air temperature. Dashed lines show the mean of residuals (𝜇𝑟). 

2.3.2.4 Atmospheric pressure 

Figure 2.7a shows atmospheric pressure measured by the four stations during an 8-day 

period. The ATMOS41 stations closely follow the reference station with small differences 

that are consistently found during daily peaks and at lower pressures, which generally 

coincide with rainfall. The high R2 ≥ 0.97 indicates good agreement of the measurements. 

However, RMSE and MAE are relatively large, ranging between 0.75 and 1.17 hPa and 
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0.64 and 1.02 hPa, respectively. In agreement with Anand and Molnar [2018], the 

scatterplots (Figure 2.7b–d) and the probability density plot (Figure 2.7e) show a small 

bias towards higher values measured by the ATMOS41 compared to the reference station 

(MBE between 0.63 and 1.01 hPa). Atmos1 shows slightly lower overall performance, 

which was likely improved as a consequence of the secondary calibration added for the 

newer stations (see Section 2.1). While the ATMOS41 performs satisfactorily within the 

manufacturer stated accuracy of ±1 hPa, the pressure sensor does not meet the “achievable 

uncertainty” requirement of 0.3 hPa as commissioned by the WMO [WMO, 2008]. 

Therefore, the ATMOS41 shows only moderate performance in measuring atmospheric 

pressure compared to the reference station. 
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Figure 2.7 (a) A short time series of atmospheric pressure measured by three ATMOS41 weather stations 

and the ICOS-bkp station from 30 May to 6 June 2020. (b–d) Scatterplots of 10 min atmospheric pressure 

for the three ATMOS41 stations vs. the reference station. (e) Probability density functions of the residual 

mean hourly atmospheric pressure. Dashed lines show the mean of residuals (𝜇𝑟). 
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2.3.2.5 Relative humidity 

Figure 2.8a shows relative humidity as measured by all four stations during an 8-day 

period of the measured time series. Relative humidity is captured well by the ATMOS41, 

with slightly higher humidity measured only during rain events such as 5 June for all 

ATMOS41 stations. This matches the observed small underestimation of temperature 

during rain events, as discussed in Section 2.3.2.3. Atmos1 additionally shows higher 

values during the daytime minimum humidity. The statistical summary (Table 2.4) shows 

R2 ≥ 0.95 for all stations and RMSE and MAE range from 3.4 to 4.3% and 2.5 to 3.5%, 

respectively, with Atmos1 showing slightly poorer performance than Atmos2 and 

Atmos3. 

The scatterplot for Atmos1 (Figure 2.8b) confirms a small bias towards higher values for 

lower relative humidity and towards lower values when humidity is high. As a result, the 

Atmos1 shows a relatively higher MBE of 1.37% compared to Atmos2 and Atmos3 

(MBE of 0.25 and −0.36%, respectively). This indicates that the manufacturer’s 

adaptation of the calibration function (see Section 2.3.1) for the newer stations resulted 

in an improvement compared to the older Atmos1 (2017 version). The probability density 

plot of the residuals (Figure 2.8e) confirms the improved performance of the newer 

stations. 

The ATMOS41 stations tend to saturate at 100% relative humidity more frequently than 

the reference station, which seems to verify the observation of Anand and Molnar [2018] 

and which may also be related to the underestimation of air temperature, as discussed in 

Section 2.3.2.3. 
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Figure 2.8 (a) A short time series of relative humidity measured by three ATMOS41 weather stations and 

the ICOS-bkp station from 30 May to 6 June 2020. (b–d) Scatterplots of 10 min relative humidity for the 

three ATMOS41 stations vs. the reference station. (e) Probability density functions of the residual mean 

hourly relative humidity. Dashed lines show the mean of residuals (𝜇𝑟). 

2.3.2.6 Wind speed and direction 

Figure 2.9a shows wind speed measured by the four stations during an 8-day period. Daily 

wind dynamics measured by the three ATMOS41 stations match well with the 

measurements of the Vaisala station. However, measurements by the ATMOS41 show 

higher peak values and a larger variability compared to the Vaisala station, which can be 

explained by the finer resolution of the anemometer of the ATMOS41. 
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The scatterplots (Figure 2.9b–d) show relatively large scatter around the identity line, 

with an R2 between 0.58 and 0.63. The wide spread in wind measurements is likely a 

result of small-scale turbulence caused by surrounding instruments, as discussed in the 

context of the precipitation measurements in Section 2.3.2.2 and which are captured due 

to the rapid response of ultrasonic anemometers to sudden changes in wind speed 

[Ammann, 1994]. R2 increases up to 0.89 when hourly averages are considered, 

suggesting that the scatter can be reduced when small-scale differences average out over 

larger periods. RMSE and MAE are ~0.9 and ~0.6 m/s, respectively (Table 2.4). The 

probability density plot of the residuals (Figure 2.9e) shows a small mean overestimation 

of wind speed (negative residuals) with MBE between 0.09 and 0.18 m/s, with Atmos3 

showing the best performance. Both station types used in this comparison use ultrasonic 

anemometers, which can measure very low wind speeds. Therefore, the agreement found 

in this comparison was higher than that of Anand and Molnar [2018], where the 

ATMOS41 was compared to a cup anemometer that records zero wind speed values more 

frequently. 
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Figure 2.9 (a) A short time series of wind speed measured by three ATMOS41 weather stations and the 

ICOS-bkp station from 30 May to 6 June 2020. (b–d) Scatterplots of 10 min wind speed for the three 

ATMOS41 stations vs. the reference station. (e) Probability density functions of the residual mean hourly 

wind speed. Dashed lines show the mean of residuals (𝜇𝑟). 

Wind direction was compared by drawing wind roses for each station (Figure 2.10a–d), 

where the length of the bins represents the frequency of the observed direction in percent, 

while colours indicate the magnitude of wind speed. West to South-West and East are 

dominant wind directions that occur, in total, ~40% of the time with a top frequency of 

around 7.5% for West/South-West, while wind from the North is observed in total ~13% 

of the time. The measurements from the Vaisala station agree well with the commonly 
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observed wind direction at the Selhausen site [Schmidt et al., 2012]. Strong winds were 

mainly observed from West and South-West and sometimes from the North, while East 

winds were considerably weaker. Wind roses from the ATMOS41 stations agree in the 

main wind directions and speed with the reference station. Atmos1 more frequently 

recorded northerly winds with a top frequency of ~7%, while Atmos2 and Atmos3 

recorded West/South-West winds with a higher frequency of ~10% as compared to the 

reference station. Wind roses for the newer ATMOS41 stations differ somewhat from that 

of Atmos1 likely due to adjustments made by the manufacturer (Section 2.3.1). Although 

our results do not show a significant improvement of the measurement from the older 

Atmos1 (2017 version) to the newer ATMOS41 stations, wind direction is still measured 

reasonably well by the ATMOS41. 

 

Figure 2.10 Wind roses showing the frequency of observed wind direction at a 10 min interval measured 

by (a) the Vaisala reference station. (b–d) the three ATMOS41 weather stations, for the period from 23 

April to 5 July 2020. 
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2.4 Conclusions 

This study evaluated the performance of the ATMOS41 all-in-one weather station over a 

period of 73 days by assessing the inter-sensor variability of three stations and by 

comparison against high quality, highly standardized reference meteorological stations. 

Inter-sensor comparison of the three ATMOS41 stations showed overall close agreement 

for most variables, while the newer Atmos2 and Atmos3 stations performed better in 

measuring atmospheric pressure, relative humidity and solar radiation compared to the 

older Atmos1 (2017 version). Solar radiation showed the greatest improvement, where 

the bias was reduced from 35.22 W/m2 to ~9.55 W/m2. Generally good agreement with 

R2 > 0.95 and small biases were observed for most of the examined weather variables 

when compared to the reference station. If reference solar radiation data are locally 

available, a simple linear correction function was proposed to account for the 3% 

systematic bias that remained in solar radiation measured by the ATMOS41. The 

atmospheric pressure sensor of the ATMOS41 showed only moderate performance 

compared to the ICOS station, showing greater uncertainty in the measurements than 

recommended by the “achievable uncertainty” standard commissioned by the WMO. The 

measurement of wind speed by the ATMOS41 was slightly overestimated and showed 

relatively large scatter. Better results are achieved with hourly or half-hourly averages, 

which are suitable for most modelling applications. The largest variability between the 

stations was found in the measurement of precipitation, where total precipitation 

measured by the ATMOS41 showed differences around ±7.5% compared to the 

reference. This was attributed mainly to wind-induced errors that may have been 

exacerbated due to the close proximity of the three ATMOS41 stations as well as 

differences in the measurement resolution and architecture of the compared rain gauges. 

The results of this study showed similar or improved performance of the ATMOS41 

compared to the early performance test, but also revealed its limitations. Further work 

should focus on the performance assessment of the ATMOS41 during extreme 

precipitation and wind speed as well as the long-term durability and accuracy of the 

station. The station seems to be well suited for private users. In particular, farmers in 

high-income countries can benefit from its compact design and limited maintenance 

requirements. Developing countries may similarly benefit from the ATMOS41 station 

when costs are jointly carried by multiple actors that use the collected data to market data 

products to private and governmental institutions. This strategy is applied within the 
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TAHMO project. Due to the higher uncertainty related to atmospheric pressure and 

precipitation measurements, and the non-heated gauge, the use of the ATMOS41 station 

in research appears to be better suited for studies where the amount of solid precipitation 

is not relevant, where precise rainfall or atmospheric pressure is not a key parameter or 

when multiple gauges can be deployed to calculate average values for a given location. 

Overall, the ATMOS41 is a good compromise between measurement accuracy and cost 

effectiveness, making it an attractive component of wireless sensor networks as well as 

an expansion tool for weather monitoring networks in remote areas or under limited 

financial resources. 
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3 CLM5-FruitTree: A new sub-

model for deciduous fruit trees 

in the Community Land Model 

(CLM5) 

This chapter is based on the following journal article: 

Dombrowski, O., Brogi, C., Hendricks Franssen, H.-J., Zanotelli, D., & Bogena, H. 

(2022). CLM5-FruitTree: a new sub-model for deciduous fruit trees in the Community 

Land Model (CLM5). Geoscientific Model Development, 15(13), 5167-5193. 

https://doi.org/10.5194/gmd-15-5167-2022  

Abstract 

The inclusion of perennial, woody crops in land surface models (LSMs) is crucial for 

addressing their role in carbon (C) sequestration, food production, and water requirements 

under climate change. To help quantify the biogeochemical and biogeophysical processes 

associated with these agroecosystems, we developed and tested a new sub-model, CLM5-

FruitTree, for deciduous fruit orchards within the framework of the Community Land 

Model version 5 (CLM5). The model development included (1) a new perennial crop 

phenology description, (2) an adapted C and nitrogen allocation scheme, considering both 

storage and photosynthetic growth of annual and perennial plant organs, (3) typical 

management practices associated with fruit orchards, and (4) the parameterization of an 

apple plant functional type. CLM5-FruitTree was tested using extensive field 

measurements from an apple orchard in South Tyrol, Italy. Growth and partitioning of 

biomass to the individual plant components were well represented by CLM5-FruitTree, 

and average yield was predicted within 2.3% of the observed values despite low simulated 

inter-annual variability compared to observations. The simulated seasonal course of C, 

energy, and water fluxes was in good agreement with the eddy covariance (EC) 

measurements owing to the accurate representation of the prolonged growing season and 

typical leaf area development of the orchard. We found that gross primary production, 

net radiation, and latent heat flux were highly correlated (r > 0.94) with EC measurements 

and showed little bias (< ±5%). Simulated respiration components, sensible heat, and soil 

heat flux were less consistent with observations. This was attributed to simplifications in 

https://doi.org/10.5194/gmd-15-5167-2022
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the orchard structure and to the presence of additional management practices that are not 

yet represented in CLM5-FruitTree. Finally, the results suggested that the representation 

of microbial and autotrophic respiration and energy partitioning in complex, 

discontinuous canopies in CLM5 requires further attention. The new CLM5-FruitTree 

sub-model improved the representation of agricultural systems in CLM5 and can be used 

to study land surface processes in fruit orchards at the local, regional, or larger scale. 

 

3.1 Introduction 

Orchards and other perennial fruit crops are a major component of the global agricultural 

production with significant coverage and yield in China, the United States, south-western 

Africa, and some parts of Europe [FAO, 2021a]. In the European region, perennial crops 

are a key economic element of Mediterranean agro-ecosystems as they provide 45% of 

the local agricultural output [Lobianco and Roberto, 2006]. Apples are the most important 

fruit tree crop as one third of European orchards is devoted to their production. With a 

coverage of 984,509 ha, they provide a yearly harvest of over 17 million tons which is 

one fifth of the overall European fruit production in terms of output value [FAO, 2021a]. 

In contrast to annual crops, fruit trees can be productive for several decades before 

rotation is needed. Their prolonged growing season, standing biomass, and low 

respiratory losses can support carbon (C) storage and promote higher C use efficiencies 

[Wünsche and Lakso, 2000; Zanotelli et al., 2013]. The transport of C stored in biomass 

into the soil in addition to reduced soil tillage and disturbances under fruit orchards 

compared to annual crops further promote C sequestration [Bwalya, 2012; Ledo et al., 

2020; Wu et al., 2012]. The FAO has therefore suggested perennial agriculture as a 

possible measure to mitigate climate change and enhance food security [Glover et al., 

2010], and many studies have recently investigated this potential for various fruit 

orchards [Hammad et al., 2020; Scandellari et al., 2016; Wu et al., 2012; Yasin et al., 

2021]. The study of water and irrigation requirements in fruit orchards has become 

another field of intense research due to the need for a more resilient agriculture in the 

context of climate change and water supply shortages [El Jaouhari et al., 2018; Maestre-

Valero et al., 2017; O'Connell and Scalisi, 2019; Segovia-Cardozo et al., 2022]. In order 

to answer questions related to C sequestration, water requirements, and sustainable food 
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production of fruit orchards, a better understanding of the related ecosystem processes is 

vital [Fader et al., 2015]. 

Models with a comprehensive description of the carbon, water, and energy fluxes, such 

as global land surface models (LSMs), are a powerful tool to explore complex ecosystems 

like the abovementioned fruit orchards. The use of LSMs was recently extended to not 

only model the processes at the land–atmosphere interface, but also to study the response 

of ecosystems and water resources to climate change [Blyth et al., 2021; Fisher and 

Koven, 2020; Prentice et al., 2015]. To quantify these effects, LSMs need to represent a 

wide range of land use and vegetation types. However, most LSMs consider only 

perennials such as deciduous and coniferous trees, as well as major annual crops such as 

wheat, soy, or maize [Lawrence et al., 2018]. Recently, some LSMs additionally included 

bioenergy crops [Schaphoff et al., 2018], while others group crops into a few generic crop 

types [Balsamo et al., 2009; Krinner et al., 2005; Noilhan and Mahfouf, 1996]. Despite 

their significance, perennial crops, such as fruit trees, are rarely considered in LSMs and 

attempts of including them in global and regional modelling environments are scarce 

[Cheng et al., 2020; Fader et al., 2015]. An example of such an attempt is the inclusion 

of agricultural trees (e.g., grapes, cotton, and apple trees) in the Lund-Potsdam-Jena 

managed Land (LPJmL) model to improve the representation of Mediterranean agro-

ecosystems [Fader et al., 2015]. Here, agricultural trees were modelled as small trees and 

fruit harvest was determined as the product of a plant specific harvest index and the net 

primary productivity (NPP). Other authors parameterized oil palm trees, a perennial 

evergreen crop, in the Community Land Model (CLM) version 4.5 [Fan et al., 2015]. 

Palm trees were represented by a new phenology where large palm leaves with fruit 

bunches emerge successively, leaves are pruned regularly, and harvest occurs once a 

month. Recently, two perennial grasses for energy production were parameterized in the 

latest version of the model, CLM5 [Cheng et al., 2020]. Parameters for bioenergy crops 

were tuned using sensitivity analysis and observations, while harvest was represented by 

removing around 70% of the aboveground biomass. 

While the abovementioned studies describe some common features of perennial plants, 

they do not, or only partially, represent the seasonal deciduous phenology of fruit trees or 

the explicit modelling of fruit growth. Furthermore, key aspects such as C reserve 

accumulation and mobilization in the following spring are generally not considered, 

possibly due to necessary simplifications or because the drivers of these processes are 
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still not fully understood [Le Roux et al., 2001; Neumann, 2020]. The absence of perennial 

crops in land surface models introduces a significant bias in the representation of 

biogeophysical and biogeochemical processes in agro-ecosystems where this type of 

cultivation is prevalent. As a result, the response to climate change in terms of C 

sequestration, water requirements, or food production cannot be assessed adequately in 

regions such as the Mediterranean, where perennial, woody crops are very common and 

play a vital role for food security and economy [Fader et al., 2015; Lobianco and Roberto, 

2006]. 

Although deciduous fruit trees share certain characteristics with natural vegetation and 

annual crops in LSMs such as CLM5, several particularities in their growth dynamics and 

management practices still prevent a meaningful simulation using currently available 

representations of vegetation. In this study, we therefore provide CLM5 with the ability 

to model perennial fruit trees and the associated processes. For this purpose, we developed 

a new sub-model named CLM5-FruitTree within the existing model framework of CLM5. 

CLM5-FruitTree combines elements of the broadleaf deciduous tree subroutine such as 

growth and C turnover of woody components, with distinctive phenological stages and a 

harvestable organ similar to the annual crop subroutine. We first describe the model 

conceptualization including the new phenology, carbon and nitrogen (CN) allocation, and 

management options. We further demonstrate the applicability of CLM5-FruitTree by 

parameterizing a new apple plant functional type (PFT). Finally we evaluate and discuss 

the model performance using extensive field data from an apple orchard in South Tyrol, 

Italy. 

 

3.2 Methods 

3.2.1 Vegetation characterizations in CLM5 

The latest version of the Community Land Model, CLM5, simulates the exchange of 

water, energy, C, and nitrogen (N) between land and atmosphere as well as their storage 

and transport on the land surface and in the subsurface, driven by climate variability and 

modulated by soil and vegetation states and characteristics. The land surface in CLM5 is 

characterized by one of five land units namely glacier, lake, urban, vegetated, and crop. 

These units are further divided to capture the variability in soil, vegetation, and 
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management options (i.e., irrigated or non-irrigated). Compared to previous model 

versions, CLM5 features various improvements in the representation of land use and 

vegetation modelling such as plant CN cycling, soil and plant hydrology and crop 

modelling [Lawrence et al., 2018; Lombardozzi et al., 2020].  

Many of the C and N cycle components of CLM5 were originally derived from the Biome 

BioGeochemical Cycles (Biome-BGC) model [Thornton et al., 2002]. Here, vegetation 

is represented conceptually by three different plant C and N pools that are maintained 

separately for the individual plant organs (leaf, live/dead stem, fine root, live/dead coarse 

root, and grain). The storage pools represent C and N reserves, the transfer pools serve as 

intermediate pools to separate fluxes in and out of the storage pools, and the display pools 

represent the actual growth of a given organ (Figure 3.1). C made available through 

photosynthesis is first used to support maintenance respiration of live organs based on 

organ N content, temperature, and a constant base rate as proposed by Atkin et al. [2015]. 

Dead stem and dead coarse root components are assumed to consist of dead xylem cells, 

without metabolic function (no C cost for maintenance). The remaining C can then be 

allocated to the growth of new tissue considering associated growth respiration costs. 

Maintenance respiration, growth respiration and C cost of N uptake from the soil 

comprise the autotrophic respiration component (Ra) in CLM5. Plant material reaching 

the end of its lifespan feeds into different litter pools from where it progressively 

decomposes to soil organic matter under C losses through heterotrophic respiration (Rh). 

For the simulation of fruit orchards, a module for perennial deciduous crops is needed 

which is currently missing in CLM5. Such a module must account for the perennial 

deciduous nature of fruit trees, which is similar to the existing representation of broadleaf 

deciduous trees (BDTs) included in Biome-BGC but with differences in phenological 

triggers, vegetation structure, and C partitioning. In addition, it must represent growth 

and harvest of the fruits and typical management practices, of which some are already 

conceptualized in the prognostic Biogeochemistry Crop Module (BGC-crop), while 

others are not yet implemented. The algorithm for the seasonal phenology of BDT 

controls initial leaf development and senescence that mark the beginning and end of a 

growing season based on temperature and day length thresholds. Once a new growth 

period is initiated, C and corresponding N fluxes accumulated in the previous season, 

occur out of the storage pools into the transfer pools, from where they are gradually sent 

to the display pools (Figure 3.1). During the active growth period, C and corresponding 
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N storage pools are replenished based on specified C:N ratios of each plant organ. During 

leaf senescence, C and N pools feed the litter or coarse woody debris pool except for live 

stem and live coarse roots that are mostly retained as structural woody tissue (dead stem 

and dead coarse roots).  

BGC-crop, adopted from the prognostic crop module of the Agro-Ecosystem Integrated 

Biosphere Simulator (Agro-IBIS), currently features eight different annual crop species 

with interactive crop management options (i.e., irrigation and fertilization). Another 23 

currently inactive crop types can be defined but have not been provided with specific crop 

parameters [Lombardozzi et al., 2020]. Crop phenology and CN allocation follow three 

phenological phases: (1) from planting to leaf emergence, (2) from leaf emergence to the 

start of grain fill, and (3) from grain fill to grain maturity and harvest, which are controlled 

by temperature and growing degree-day (GDD) thresholds. Different to natural 

vegetation, crops have a grain pool representing the harvestable organ but no structural 

woody tissue. Furthermore, all assimilates are directed to the displayed pools while the 

storage pools remain unused. At harvest, C and N from the grain pool are transferred to a 

grain product pool while a small amount is kept to reseed the crop in the following year. 

All remaining plant parts feed the litter cycle (Figure 3.1). The reader is referred to 

Lombardozzi et al. [2020] and the technical documentation of CLM5 for a more detailed 

description of the BDT and crop representation [Lawrence et al., 2018]. 

From the above description of the existing vegetation modules, the following limitations 

for the application of CLM5 to deciduous fruit trees arise. (1) The current BGC-crop 

algorithm does not allow the simulation of perennial and/or woody crops. (2) The BDT 

phenology algorithm although describing some characteristics common to fruit trees, 

lacks the capability to simulate a harvestable organ, individual development of different 

plant parts, and the separation of growth from C reserves of the previous year and 

photosynthetic growth of the current season. (3) Typical management practices of fruit 

orchards such as transplanting of tree seedlings and pruning are currently not represented 

in CLM5. (4) There is no parameterized fruit tree PFT in the default parameter set of 

CLM5. 

3.2.2 Model conceptualization and technical implementation  

To resolve the model limitations discussed in Section 3.2.1, we developed a new sub-

model CLM5-FruitTree to model the ecosystem processes and exchanges of energy and 
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matter of deciduous fruit trees grown in commercial orchards with a focus on the 

simulation of biomass growth and yield. More specifically, for the implementation of 

CLM5-FruitTree, we introduced a new phenology subroutine that describes the main 

phenological development of fruit trees and includes triggers for seasonal orchard 

management practices typical under organic or conventional production. In addition, the 

CN allocation module as well as corresponding modules (C and N state and flux updates) 

were modified to reproduce the growth dynamics of fruit trees and to model the fates of 

C and N in the orchard system. The sub-model development does not include any changes 

to the existing calculation schemes for radiative transfer or momentum, heat, and water 

fluxes to explicitly account for the discontinuous canopy structure of tree rows and 

vegetated or non-vegetated alleys in fruit orchards. In-row and between-row planting 

distances and alley vegetation are not defined directly. Instead, the orchard structure and 

the area covered by the canopy are accounted for through parameterization of the leaf and 

stem area indices, the planting density, maximum canopy height, and aerodynamic 

parameters, similar to the implementation of crops and forest in CLM5.   

CLM5-FruitTree combines characteristics of both BDT and annual crops to simulate a 

perennial woody crop with a harvestable organ making use of the existing concepts of 

storage, transfer, and display vegetation pools described in Section 3.2.1 (Figure 3.1). 

Similar to the existing BDT phenology algorithm in CLM5, the fruit tree algorithm uses 

a perennial deciduous phenology with standing woody biomass and annual leaf shedding. 

During the active growth period however, the phenology and CN allocation of vegetative 

and harvestable organs are described by distinct growth phases and are driven by a GDD 

summation similar to the crop phenology. 

An orchard is established by transplanting small tree seedlings from a nursery, a typical 

planting method for this type of cultivation [Corelli-Grappadelli and Marini, 2008; 

Wheaton et al., 1990]. Once planted, the orchard remains productive according to a user-

defined lifespan which, depending on fruit tree type and production system, typically 

ranges between 10 and 30 years [Cerutti et al., 2014; Demestihas et al., 2017]. The sub-

model makes no specific assumptions about the rootstock, but the effect of different 

rootstocks in terms of tree height and rooting depth can be set by the user via the 

respective parameters, ztopmx and root_dmx (Table A.2). In CLM5-FruitTree, both stored 

C and current photosynthesis contribute to the growth of the fruit tree, as leaf and shoot 

development at the beginning of a growing season utilizes carbohydrate reserves and 
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nitrogenous compounds that were accumulated during the previous season [Loescher et 

al., 1990; Oliveira and Priestley, 1988; Tromp, 1983]. Deciduous fruit trees are dormant 

in winter and resume growth in spring after meeting species- and cultivar-specific chilling 

and heat requirements [Anderson et al., 1985; Faust et al., 1997; Zavalloni et al., 2006], 

which is represented in CLM5-FruitTree using the chilling and forcing model proposed 

by Cesaraccio et al. [2004]. Early in the season, the canopy develops rapidly until it 

reaches maturity typically by midsummer, while leaf shedding occurs when temperatures 

drop in autumn [Kozlowski, 1992; Lakso et al., 1999; Loescher et al., 1990]. Fruit trees 

usually start flowering 3–4 weeks after bud break, which is not specifically represented 

by CLM5-FruitTree which instead assumes that fruit growth begins at the end of 

flowering [Lakso et al., 1999]. The implementation of flowering to include effects of non-

optimal pollination, frost during flowering, or hormonal processes affecting fruit set and 

development is outside of the scope of this development and of minor importance for 

large-scale simulations and processes at ecosystem level that are typically the focus of 

LSMs such as CLM5. Consequently, CLM5-FruitTree does not produce information on 

fruit size or number but only on total yield which we consider adequate for most 

applications of the sub-model development. Fruit growth is described by two stages, cell 

division and cell expansion that together form a sigmoid growth curve observed for many 

fruit tree species such as apple, pear, and orange [Corelli-Grappadelli and Lakso, 2002; 

Jackson, 2011]. 

In the following, the new developments to account for the distinct phenology, CN 

allocation, and management practices of a fruit orchard are described in more detail. Other 

biochemical and biophysical processes such as photosynthesis, water and litter cycles, 

and fixation and uptake of N were not modified except for minor adaptations to the re-

translocation of N and respiration to enable the use of certain parts of these scripts for the 

fruit tree PFT. The technical implementation of some features of the new phenology 

routine (transplanting, pruning, harvest, and final rotation) was based on CLM-Palm, a 

previous model development for palm trees in CLM4.5 (Fan et al. [2015] and 

unpublished code). References where code elements were directly reused or modified 

based on CLM-Palm are made in the published source code of CLM5-FruitTree 

[Dombrowski, 2022]. Along with the new sub-model, an apple PFT was parameterized 

using one of the existing but thus far inactive crop types in CLM5, types 35 and 36 

(rainfed and irrigated citrus). 
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Figure 3.1 Schematic of the main phenology and C allocation features of the broadleaf deciduous tree and 

annual crop representations in CLM5 as well as the new sub-model CLM5-FruitTree. C pools within the 

dashed boxes are the individual components that make up the displayed C pool (the same components can 

be found for the other main plant pools: storage and transfer pools respectively). Carbon pools and fluxes 

in green were reused for CLM5-FruitTree while pools and fluxes in brown were modified or newly added. 

3.2.2.1 Phenology 

A new orchard life cycle is initialized by transplanting seedlings at the beginning of the 

year during dormancy. Tree growth thereafter is described by six post-planting 

phenological stages, namely: (1) bud break, (2) fruit growth, (3) fruit ripening, (4) canopy 

maturity, (5) fruit maturity and harvest, and (6) start of leaf senescence (Figure 3.2).  

Bud break is predicted by a sequential model that first accumulates chill days followed 

by anti-chill days based on a predefined temperature threshold and chilling requirement 

[Cesaraccio et al., 2004]. More information on the sequential model and the calibration 

of model parameters can be found in Appendix III. Outside the dormant period, leaf and 

fruit development occurs in parallel but with a time shift as fruit growth typically starts 

4–5 weeks after bud break while canopy development continues until mid-season and leaf 

senescence does not occur until after the fruits are harvested [Goldschmidt and Lakso, 

2005; Wünsche and Lakso, 2000] (Figure 3.2).  

The thermal thresholds to reach phases (2)–(5) are defined as accumulated GDDs since 

bud break and can be adjusted by the user via the parameter file which applies to all 

parameters listed in Table A.2 of the Appendix. GDDs are determined as the difference 

between the average daily air temperature and a base temperature of 4 °C with a maximum 

daily increment of 26 degree days (Eq. (3.1)). Different to the existing deciduous 

phenology, leaf senescence is triggered not by day length but by the drop of the daily 
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mean temperature below a critical temperature threshold, in this case the base 

temperature. This approach was selected since many fruit trees that belong to the 

Rosaceae family (e.g., apple, pear, plum, and cherry) are unaffected by photoperiod and 

instead controlled by temperature [Heide and Prestrud, 2005]. The last day of the leaf 

senescence period marks the beginning of dormancy. The new phenology subroutine of 

CLM5-FruitTree also controls C reserve dynamics, stem and root turnover, and final 

rotation, which involves removing and replanting trees when the maximum orchard 

lifespan is reached. 

 

Figure 3.2 Fruit tree phenological stages of (1) bud break at the end of dormancy, (2) the start of fruit 

growth, (3) fruit ripening, (4) canopy maturity, (5) harvest, and (6) the start of leaf senescence. The lengths 

of phenological stages (2)-(5) are determined by their respective growing degree-day thresholds (GDD) 

starting from bud break (GDDleaf=0), while stage (6) is determined by a critical temperature threshold (Tcrit). 

Coloured bars correspond to the time any plant organ is present on the field throughout a year. 

3.2.2.2 Carbon and nitrogen allocation 

CN allocation to the growth of new tissue (display pools) and to storage pools follows the 

phenological stages described in Section 3.2.2.1 (Figure 3.2). A coupled CN allocation 

subroutine determines the fate of newly assimilated C from photosynthesis. A user-

defined initial biomass can be assigned to leaf and fine root transfer pools via the 

transplant parameter (Table A.2), while additionally 10% of this biomass is assigned to 

the dead stem pool to define an initial stem area index > 0. Each pool is also assigned the 

corresponding amount of N. Adjustments to this parameter have only little effect on the 

biomass growth and yield of the adult trees as the trees reach their maximum canopy 

height and develop their full leaf area index (LAI) within the first couple of years after 

transplanting. Thereafter, the potential allocation to the different plant components is 

based on allocation coefficients and allometric relationships between dead and live parts 

of stem and coarse root. Throughout the growing period until harvest, 5% of the newly 

assimilated C is allocated to the storage pools, as defined by the fcur parameter, except 

for fruits where all allocated C is assigned to the displayed pool. For all other organs, the 
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remaining C is also allocated to the displayed C pools. At bud break, a fraction of the C 

in the storage pool of all plant components, except fruits, is transferred to the actively 

growing C pools over a period that can be specified by the newly added parameter 

ndays_stor. This is based on the assumption that resources are partially mobilized to 

support growth of new tissue [Loescher et al., 1990; Oliveira and Priestley, 1988]. 

Lacking more specific knowledge of the exact fraction, the default of 0.5 used by the 

seasonal deciduous phenology in CLM5 is adopted for fruit trees. 

Before the start of fruit growth, phase (1), newly assimilated C and corresponding N are 

partitioned between leaf, stem, and root pools. The allocation coefficients are calculated 

according to a set of equations that were adapted from the AgroIBIS crop phenology 

algorithm used in CLM5-BGC-crop [Lawrence et al., 2018]: 

𝐺𝐷𝐷𝑇2𝑚 = 𝐺𝐷𝐷𝑇2𝑚 + 𝑇2𝑚 − 𝑇𝑓 − 4    where    0 ≤ 𝑇2𝑚 − 𝑇𝑓 − 4 ≤ 26 °𝑑𝑎𝑦𝑠 , 

 

(3.1) 

𝑎𝑟𝑒𝑝𝑟 = 0 , 

 

𝑎𝑓𝑟𝑜𝑜𝑡 = 𝑎𝑓𝑟𝑜𝑜𝑡
𝑖 − (𝑎𝑓𝑟𝑜𝑜𝑡

𝑖 − 𝑎𝑓𝑟𝑜𝑜𝑡
𝑓

) ∗
𝐺𝐷𝐷𝑇2𝑚−𝐺𝐷𝐷𝑙𝑒𝑎𝑓

𝐺𝐷𝐷𝑓𝑟𝑢𝑖𝑡−𝐺𝐷𝐷𝑙𝑒𝑎𝑓
 ,  

 

𝑎𝑙𝑒𝑎𝑓 = (1 − 𝑎𝑓𝑟𝑜𝑜𝑡) ∗
𝑎𝑙𝑒𝑎𝑓

𝑖 ∗(𝑒−𝑏−𝑒
−𝑏∗

𝐺𝐷𝐷𝑇2𝑚−𝐺𝐷𝐷𝑙𝑒𝑎𝑓
𝐺𝐷𝐷𝑙𝑓𝑚𝑎𝑡−𝐺𝐷𝐷𝑙𝑒𝑎𝑓)

𝑒−𝑏−1
 , 

 

𝑎𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚 = 1 − 𝑎𝑟𝑒𝑝𝑟 − 𝑎𝑓𝑟𝑜𝑜𝑡 − 𝑎𝑙𝑒𝑎𝑓 , 

(3.2) 

 

(3.3) 

 

 

 

(3.4) 

 

(3.5) 

where 𝐺𝐷𝐷𝑇2𝑚 are the accumulated growing degree days for the 2 m air temperature with 

maximum increments of 26 degree days; 𝑇2𝑚 is the simulated 2 m air temperature in K; 

𝑇𝑓 is the freezing temperature of water and equals 273.15 K; 𝐺𝐷𝐷𝑙𝑒𝑎𝑓, 𝐺𝐷𝐷𝑓𝑟𝑢𝑖𝑡, and 

𝐺𝐷𝐷𝑙𝑓𝑚𝑎𝑡 are thermal thresholds for bud break, start of fruit growth, and canopy maturity, 

respectively; 𝑏 is an exponential factor; 𝑎𝑙𝑒𝑎𝑓
𝑖 , 𝑎𝑓𝑟𝑜𝑜𝑡

𝑖 , and 𝑎𝑓𝑟𝑜𝑜𝑡
𝑓

 are initial and final 

values for the allocation coefficients to leaf (𝑎𝑙𝑒𝑎𝑓) and fine root (𝑎𝑓𝑟𝑜𝑜𝑡), respectively; 

and 𝑎𝑟𝑒𝑝𝑟 and 𝑎𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚 are the allocation coefficients to fruit and live stem, respectively. 

Once fruit growth begins in phase (2), an increasing proportion of the assimilated C and 

corresponding N is allocated to this organ, causing leaf allocation to decline and fruit 
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allocation to plateau at a high value once canopy maturity is reached. Allocation to fine 

roots and stem continues to decline and then settles at a constant value until harvest:  

𝑎𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚 = 𝑎𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚 ∗ (1 −
(𝐺𝐷𝐷𝑇2𝑚−𝐺𝐷𝐷𝑙𝑒𝑎𝑓)−(𝐺𝐷𝐷𝑓𝑟𝑢𝑖𝑡−𝐺𝐷𝐷𝑙𝑒𝑎𝑓)

(𝐺𝐷𝐷𝑚𝑎𝑡−𝐺𝐷𝐷𝑙𝑒𝑎𝑓)
𝑑𝐿−(𝐺𝐷𝐷𝑓𝑟𝑢𝑖𝑡−𝐺𝐷𝐷𝑙𝑒𝑎𝑓) )

𝑑𝑎𝑙𝑙𝑜𝑐
𝑠𝑡𝑒𝑚

, 

 

𝑎𝑟𝑒𝑝𝑟 = 1 − 𝑎𝑓𝑟𝑜𝑜𝑡 − 𝑎𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚 − 𝑎𝑙𝑒𝑎𝑓, 

 

(3.6) 

 

(3.7) 

where 𝐺𝐷𝐷𝑚𝑎𝑡 is the thermal threshold for fruit maturity and harvest, while 𝑑𝐿 and 𝑑𝑎𝑙𝑙𝑜𝑐
𝑠𝑡𝑒𝑚 

are stem allocation decline factors. 

After harvest and until the start of dormancy, all of the newly assimilated C is sent to the 

storage pools following the notion that late in the season, assimilates are used mostly to 

fill up reserves that can be mobilized to resume growth in the following spring [Le Roux 

et al., 2001]. Fruit trees store C in the perennial woody parts of the tree, from where it is 

re-mobilized to support the growth of new shoots, leaves, and fine roots [Le Roux et al., 

2001; Millard, 1996; Oliveira and Priestley, 1988]. Since in CLM5 separate storage pools 

are assigned to each plant organ, the newly added aleafstor parameter (Table A.2) defines 

the fraction of allocatable C going to the leaf storage pool, while the remainder is split 

equally between roots and stem. 

Fruit trees, similar to other deciduous species, have been observed to translocate N out of 

senescent leaves to be reused by other tree organs [Malaguti et al., 2001; Millard, 1996; 

Millard et al., 2006]. Therefore, CLM5-FruitTree adopts the same N re-translocation 

strategy as used in the BDT phenology during which N is removed from falling litter 

based on leaf and litter C:N ratios and the available C to pay for the extraction of N from 

increasingly recalcitrant litter pools. Subsequently it is transferred to the plant N pool 

from where it can be used for the growth of new plant tissue [Lawrence et al., 2018]. 

3.2.2.3 Representation of management practices 

Furthermore, management practices such as fertilization and stem pruning are represented 

in the new sub-model. Fertilization is performed on a yearly basis after the occurrence of 

bud break, as N fertilization in early spring is still the most common practice in fruit 

orchards even though autumn fertilization or multiple applications via fertigation are also 

in use to increase fertilizer N use efficiency and reduce N losses [Carranca et al., 2018; 

Sanchez et al., 1995]. We use the existing fertilization scheme of the crop phenology that 
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adds fertilizer directly to the soil mineral N pool. A user-defined fertilization rate or 

amount can be applied as synthetic fertilizer or manure respectively, although there 

currently is no difference in model behaviour for these two fertilizer types [Lawrence et 

al., 2018]. 

Winter pruning is a common practice in fruit orchards and may be performed throughout 

the winter to control the shape and size of fruit trees, and partially to manage crop load 

[Grechi et al., 2008]. In many intensive orchard production systems, pruning residues are 

mulched into the soil, possibly increasing C sequestration [Aguilera et al., 2015; 

Montanaro et al., 2010]. Alternatively, residues may also be exported and treated as waste 

[Benyei et al., 2018] or utilized for energy production [Kazimierski et al., 2021]. In 

CLM5-FruitTree, pruning is performed as the tree enters dormancy by removing a user-

defined fraction, prune_fr (Table A.2), of the dead stem from both storage and displayed 

C pools. We remove C from the dead stem pool instead of the live stem pool since the 

former is the main wood pool in CLM5 that receives 85% of the C allocated to total new 

wood. Furthermore, the implemented live wood turnover in CLM5 converts live stem to 

dead stem at the end of the growing season to account for differences in maintenance 

respiration and C:N ratios between these tissue types [Lawrence et al., 2018]. Hence the 

live stem C pool remains rather small and stable over the years, so that applying pruning 

to this pool would have little effect on total tree biomass. The pruning implemented in 

CLM5-FruitTree affects only the tree biomass and height that are calculated based on this 

biomass pool, which in turn affects the calculation of turbulent fluxes of sensible and 

latent heat. However, this effect is small, and since turbulent fluxes are generally low in 

winter, the exact timing of pruning does not play a significant role in the magnitudes of 

these fluxes. During the first three years after planting, trees are not pruned to allow some 

initial stem biomass to grow. The sub-model treats pruning residues in one of two ways 

to account for their possible difference in fate: (1) residues are added to the wood harvest 

pool and exported from the field or (2) residues are added to the woody debris pool thus 

feeding the litter cycle.  

When the orchard reaches the end of its lifespan, C of all biomass pools (storage, transfer, 

and display) is sent to either the litter pool for leaves and fine roots, or the wood harvest 

pool for live and dead stem and coarse roots, while any remaining C in the fruit pool is 

harvested. The orchard can then be replanted in the following year. Lastly, the standard 
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irrigation routine implemented in CLM5 can be used for irrigated orchards by selecting 

the irrigated crop PFT.  

3.2.3 Model implementation and testing 

3.2.3.1 Site data  

Extensive field measurements from an apple-growing region in the Adige River valley, 

South Tyrol, Italy (46°21’ N, 11°16’ E; 240 m a.s.l.) were used to parameterize and test 

the new CLM5-FruitTree sub-model along with the new apple PFT [Zanotelli et al., 2019; 

Zanotelli et al., 2015; Zanotelli et al., 2013]. Measurements were obtained from an 

approximately 0.5 ha irrigated apple orchard planted in 2000 with the Fuji apple cultivar 

grafted on M9 dwarfing rootstock. The apple trees were planted at a row and tree spacing 

of 3x1 m (3333 trees per hectare). A 1.8 m wide grass strip was grown between the tree 

rows, which was mowed three times a year. Other management practices included regular 

pruning, spring fertilization of 7.5 gN m-2 yr-1, and tillage of the soil directly underneath 

the trees [Zanotelli et al., 2013]. Stand-related data included general stand characteristics 

and phenology observations, LAI, C:N ratios, rooting distribution at three depth ranges 

(0–20, 20–40, and 40–60 cm), measurements of the biomass growth of different tree 

organs at a monthly or seasonal interval, and fruit harvest information (Table 3.1). 

Furthermore, daily soil respiration measurements from a control and a trenching plot 

(with (Rs) and without (Rh) root respiration, respectively) were performed in 2010. 

Additionally, an eddy covariance (EC) station provided measurements of the turbulent 

exchange of trace gases and energy at the studied apple orchard between 2013 and 2015. 

The quality check, gap filling, and flux partitioning of collected data followed the 

procedure outlined in Reichstein et al. [2005]. The average closure of the energy balance 

was 60%. To correct for the closure failure, the missing energy was assigned to the latent 

(LE) and sensible (H) heat fluxes based on the daily Bowen ratio [Zanotelli et al., 2019]. 

Measured or derived fluxes included net ecosystem CO2 exchange (NEE), ecosystem 

respiration (Reco), gross primary production (GPP), LE, H, and evapotranspiration (ET) 

at half-hourly intervals. Furthermore, soil heat flux (G) measured at 5cm depth as well as 

soil moisture (SM) measurements up to a depth of 60 cm of soil are available. Table 3.1 

gives a summary of the available data and measurement periods. A complete description 

of the measurement procedures and instruments can be found in Zanotelli et al. [2013], 

Zanotelli et al. [2015], and Zanotelli et al. [2019]. 
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Meteorological data, recorded partly at the EC tower and at the Laimburg meteorological 

station located 4 km from the site (46°23’ N, 11°17’ E; 224 m a.s.l.), were used at an 

hourly time step to force the model. Measured data included precipitation, solar radiation, 

net radiation (Rn, only at the EC tower), air temperature, air pressure (only at Laimburg), 

relative humidity, and wind speed. Measurements of incoming longwave radiation (LWin) 

were available for 2010 only, but additional calculations following Konzelmann et al. 

[1994] and Sedlar and Hock [2009] were produced and used as forcing for the remaining 

years 2011–2019 (Appendix IV). This was necessary since the use of the internally 

calculated LWin in CLM5 resulted in unrealistic underestimations compared to the 

available measurements of LWin leading to a significant bias in Rn. 

Table 3.1 Summary of available data from an apple orchard in the Adige River valley, South Tyrol, Italy 

between 2010 and 2019. Solid lines represent continuous and dotted lines monthly measurements, while 

diamonds represent single measurements. 

Data 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Weather data EC tower                     

Weather data Laimburg 

          
Biomass (NPP) components   

 

    

      
C:N ratios of biomass components   

         
Leaf area index (LAI)       

       
Fruit production (yield)  

       

   
Root distribution (0-60 cm)                 

  
Soil respiration (Rs, Rh) 

          
Soil heat flux (G) 

          
Soil moisture (SM, 0-60 cm) 

          
EC data: carbon (GPP, Reco, NEE), 

energy (Rn, LE, H), water (ET) 

   

      

    

3.2.3.2 Model set-up 

The model was set up in point mode to simulate the apple orchard in the Adige valley 

using available sand, clay, and organic matter fractions. The model was spun-up for 200 

years, first in accelerated decomposition and then in normal decomposition mode, until 

all state variables, such as total ecosystem soil C and soil water, reached equilibrium 
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[Lawrence et al., 2018]. For the model spin-up, the CRUNCEPv7 atmospheric forcing 

data set from 1986 to 2016 was used [Viovy, 2018]. The apple orchard was then initiated 

using the newly developed sub-model and the apple PFT selecting the site-specific 

management (i.e., fertilization with 7.5 gN m-2 yr-1, irrigation, mulching of pruning 

material). Simulations were performed for a period of 10 years to mirror the time from 

orchard establishment in 2000 up to the start of the measurements in 2010 using 10 years 

(2010–2019) of the available meteorological data from Laimburg meteorological station. 

Simulations were then extended for another 6 years from 2010 to 2015 for model 

parameterization and performance evaluation purposes.  

3.2.3.3 Parameterization 

Key parameters of the new sub-model as well as other PFT-specific parameters were 

parameterized using the first 3 years of simulations between 2010 and 2012. The lengths 

of phenological stages and associated parameters were determined based on field 

observations of bud break, full bloom, and harvest as well as non-cultivar specific apple 

phenology descriptions that were found in the literature (Appendix V). The length of the 

period where growth is supported out of reserves (ndays_stor) was calibrated based on 

the biomass measurements and the estimate by Zanotelli et al. [2013] that apple trees use 

stored carbohydrates in the first two months after bud break. C allocation coefficients 

were calculated based on the monthly measurements in 2010 by dividing the biomass 

growth of the individual plant organs by the total biomass increment. Subsequently, 

model parameters associated with the CN allocation subroutine (Eq. (3.2) – (3,7)) were 

calibrated manually to match the coefficients obtained from the observations and the 

overall biomass partitioning on a yearly basis. Parameter values for C:N ratios of all plant 

organs and maximum LAI were based on field observations in 2010 and 2010–2012, 

respectively. The specific leaf area (slatop) was calculated by dividing monthly 

measurements of LAI by leaf biomass and taking the average of the obtained values. 

Structural and morphological parameters such as maximum tree height (ztopmx), planting 

density (nstem), the ratio of stem height to radius at breast height (taper), or rooting depth 

(root_dmx) were adjusted based on site-specific information [Zanotelli et al., 2013]. 

Initial biomass at transplanting was assumed 5 gC m-2, resulting in an initial tree height 

of around 100 cm and a stem diameter of 16 mm. As seedlings are dormant at the time of 

transplanting, their LAI is 0. The CLM5 root distribution parameter (rootprof_beta), 

which sets the root ratios at different depths, was calibrated by least squares regression of 
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the measured root ratios at 0–20, 20–40, and 40–60 cm depths and the calculated ratios. 

Optical parameters for leaf transmittance and reflectance in the visible and near-infrared 

(IR) were set to average values reported for apple by Bastías and Corelli-Grappadelli 

[2012]. Stem reflectance and transmittance were assumed to be similar to other woody 

species and therefore set to the values used for BDT in CLM5, similar to the assumptions 

made by Fan et al. [2015] for the palm tree development in CLM4.5. The ratio of 

momentum roughness length to canopy top height (z0mr) was set to the average value of 

the ranges reported for apple and citrus orchards to account for the differences in canopy 

structure compared to annual crops and forest [la Fuente-Sáiz et al., 2017; Tanny and 

Cohen, 2003]. No specific values could be found for the ratio of displacement to top of 

canopy height (displar), the leaf orientation index (xl), or the intercept to calculate the top 

of canopy maintenance respiration base rate (lmr_intercept_atkin). These values were 

assumed to be comparable to other deciduous trees and thus set to the values used for 

BDT in CLM5. Parameters related to C reserve dynamics (e.g., fcur) and photosynthesis 

(e.g., the slope of the relationship between leaf N per unit area and the maximum rate of 

carboxylation at 25 °C, s_vcad) were adjusted to match observed LAI and productivity 

data. All parameters with their values and references to the literature are summarized in 

Table A.2 of the Appendix. 

3.2.3.4 Sensitivity analysis 

A simple one-by-one sensitivity analysis was performed to further tune model parameters 

and assess the influence of newly added parameters on the simulation results. As a 

complete sensitivity analysis of all PFT-related parameters would have exceeded the 

scope of this study, the analysis focused on key parameters of the new phenology and CN 

allocation subroutines. Other potentially influential parameters were selected based on 

previously performed sensitivity analyses by Göhler et al. [2013] for CLM3.5, and by 

Cheng et al. [2020] and Dagon et al. [2020] for CLM5, taking into account differences 

between previous and current model versions. Parameters selected for the analysis were 

perturbed by varying a parameter by ±30%, ±20%, and ±10% while keeping the others 

fixed to the value of the control simulation (after initial parameterization). The goal here 

was not to perform an in-depth analysis covering the full range of possible parameter 

values, but rather to provide a first indication of influential parameters in the new sub-

model similar to the approach of Fan et al. [2015]. As a measure of sensitivity, the 

parameter effect (PE) was calculated using the average of three years of simulations 
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between 2013 and 2015 of the control and the perturbed simulations for selected output 

variables and the following formula adjusted from Luo et al. [2020]: 

∆𝑋𝑖,𝑗 =  ∑
|𝑋𝑖,𝑗,𝑘
̅̅ ̅̅ ̅̅ − 𝑋𝑖,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

|𝑋𝑖,𝑐𝑜𝑛𝑡𝑟𝑜𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛

𝑘=1

  , 

 

𝑃𝐸𝑖,𝑗 =  
∆𝑋𝑖,𝑗

𝑚𝑎𝑥 [(∆𝑋𝑖,𝑗)
1≤𝑖≤𝑛;1≤𝑗≤𝑚

]
  , 

 

(3.8) 

 

 

(3.9) 

 

where 𝑋 is a simulated value of the control or a perturbation run, ∆𝑋 is the summed 

absolute difference between the control and the perturbation run across all perturbations, 

𝑘 is the parameter perturbation factor, 𝑖 is the ith variable across 𝑛 = 6 selected output 

variables including: GPP, NEE, Ra, LE, maximum LAI, and yield, and 𝑗 is the jth 

parameter across 𝑚 selected parameters. 𝑃𝐸𝑖,𝑗 is a number between 0 and 1 that represents 

the sensitivity of an output variable 𝑖 to the parameter 𝑗, with 1 meaning high and 0 

meaning low sensitivity. The parameters selected for sensitivity analysis are indicated in 

Table A.2 of the Appendix. 

3.2.3.5 Model performance evaluation 

Modelling results are compared to observed biomass, yield, and LAI data as well as 

ecosystem fluxes retrieved from the EC measurements. Statistical indices for model 

performance evaluation include the Pearson coefficient of correlation (r), the root mean 

square error (RMSE) and the percent bias (%bias): 

𝑟 =
(

1

𝑛
∑ (𝑋𝑖

𝑜−𝜇𝑜)∗(𝑋𝑖−𝜇)𝑛
𝑖=1 )

𝜎∗𝜎𝑜
 , 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑖 − 𝑋𝑖

𝑜)2𝑛
𝑖=1  , 

 

%𝑏𝑖𝑎𝑠 =
∑ (𝑋𝑖−𝑋𝑖

𝑜)𝑛
𝑖=1

∑ (𝑋𝑖
𝑜)𝑛

𝑖=1

 , 

(3.10) 
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where 𝑖 is the time step, 𝑛 is the total number of time steps, and 𝑋𝑖 and 𝑋𝑖
𝑜 are simulated 

and observed values at each time step respectively, 𝜇 and 𝜇𝑜 are simulated and observed 

mean values, respectively, and 𝜎 and 𝜎𝑜 are simulated and observed standard deviations. 

 

3.3 Results and Discussion 

3.3.1 Sensitivity analysis 

A total of 34 parameters were initially considered for the sensitivity analysis of which the 

13 most influential parameters (PE > 0.1 for at least one of the selected output variables) 

are shown in Figure 3.3. GPP, NEE, Ra, and yield have similar sensitivity patterns and 

are most sensitive to the leaf C:N ratio (leafcn) and the relationship between leaf N and 

the maximum rate of carboxylation at 25 °C (s_vcad). Together with slatop and other 

constants, they control the maximum photosynthetic capacity in the photosynthesis 

calculation and thus largely influence total C assimilation. As expected, LAI is most 

influenced by parameters that control the CN allocation to leaves such as the initial leaf 

allocation coefficient (fleafi), the GDDs needed to reach canopy maturity (lfmat), the 

maximum LAI (laimx), photosynthetic parameters, and, to a smaller extent, the fraction 

of C allocated to the leaf storage pool to refill C reserves (aleafstor). The first three 

parameters influence leaf biomass and thus show a considerable effect on GPP, NEE, Ra, 

and yield. The same output variables are affected in a similar fashion by the GDDs needed 

until fruit harvest (hybgdd) that control the amount of C allocated to fruits. LE is 

influenced largely by the parameter controlling stomatal conductance (medlynslope), and 

the photosynthetic parameters (leafcn, s_vcad). 

Overall, photosynthetic parameters play a key role in determining the magnitude of the 

studied output variables with an average PE value close to 0.7 across all six variables. 

Phenological parameters (top seven parameters in Figure 3.3) are generally less 

influential for the same output variables with average PE values up to 0.43. These findings 

are largely consistent with earlier studies of parameter sensitivity [Cheng et al., 2020; 

Dagon et al., 2020; Göhler et al., 2013; Luo et al., 2020]. In contrast to Luo et al. [2020], 

we did not find a strong effect of the root distribution parameter (rootprof_beta) on LE, 

which can be attributed to the low water stress due to the irrigation management of the 

studied orchard. 
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While the one-at-a-time sensitivity analysis provides some insight into model sensitivity, 

the ranking of influential parameters is strongly influenced by the choice of parameters 

and output variables, the parameter perturbation strategy (i.e. percent change, linear 

sampling), and the index chosen as the sensitivity measure. Parameter tuning based on 

this analysis is further complicated since this approach does not consider parameter 

covariation that is particularly strong for plant parameters that influence photosynthesis 

[Göhler et al., 2013]. Selecting parameter values based on the individual best simulation 

hence does not necessarily yield the best overall result [Luo et al., 2020]. We therefore 

decided to first adjust s_vcad to best match the observed average GPP. In the following, 

we further adjusted fleafi, hybgdd and medlynslope to improve the simulated biomass 

components as well as the LE flux, respectively. 

 

Figure 3.3 Parameter effect (PE) as a measure of sensitivity of selected output variables to the most 

influential model parameters. Output variables include gross primary production (GPP), net ecosystem 

exchange (NEE), autotrophic respiration (Ra), maximum leaf area index (LAImax), latent heat flux (LE) and 

yield. Parameters are: Post-harvest leaf allocation coefficient to storage (aleafstor), initial leaf allocation 

coefficient (fleafi), GDD to canopy maturity (lfmat), root allocation coefficients at the start of fruit 

development (arootf) and until harvest (arootf2), GDD needed until harvest (hybgdd), maximum LAI 

(laimx), fraction of allocation that goes to currently displayed growth (fcur), C:N ratios of fruits (graincn) 

and leaves (leafcn), specific leaf area at top of canopy (slatop), slope of the relationship between leaf N per 

unit area and the maximum rate of carboxylation at 25 °C (s_vcad), and the medlyn slope of the 

conductance–photosynthesis relationship (medlynslope). For more details on the parameters, see Appendix 

V. 
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3.3.2 Modelling results 

In the following, we present the modelling results according to the initial parameterization 

and the updated parameter values from the sensitivity analysis. Daily simulations or 

yearly sums are compared to observed biomass, yield, and LAI data as well as ecosystem 

fluxes retrieved from the EC measurements and the SM measurements aggregated to daily 

mean values.  

3.3.2.1 Biomass growth and yield 

The patterns in seasonal biomass allocation simulated by CLM5-FruitTree show good 

agreement with the monthly observations from 2010 (Figure 3.4a). The beginning and 

end of the growing season are well captured. After bud break at the beginning of March, 

biomass is allocated to the vegetative organs of leaves, fine roots, and woody organs, and 

growth is supported by C and N reserves until the start of fruit growth in early May (50 

days according to the ndays_stor parameter). In the following months, fruit biomass 

grows rapidly until harvest takes place in mid-October, following the typical sigmoidal 

growth curve that is well captured by the new phenology and CN allocation. Simulated 

leaf biomass peaks in mid-June and remains constant thereafter, with leaf senescence 

starting later October when temperatures drop below 4 °C. Pruning is performed when 

the tree enters dormancy by removing 85% of the stem biomass assimilated over the 

season according to the observed pruning amounts in the studied apple orchard [Zanotelli 

et al., 2015; Zanotelli et al., 2013]. From 2010 to 2012, the modelled percentage of 

biomass allocation to plant organs was generally in agreement with the observations 

[Zanotelli et al., 2015], with differences ranging between 1 and 5% for fruits, leaves, 

aboveground wood, and roots (Figure 3.4b). Penzel et al. [2020] stated that different 

studies reported biomass allocation to fruits ranging from 50 to 85% depending on apple 

cultivar, suggesting considerable variability in allocation coefficients. This emphasizes 

the benefit of a cultivar specific calibration in order to obtain realistic modelling results. 

On the other hand, it suggests that a more general parameterization, that reflects an 

average apple tree, may be necessary to apply CLM5-FruitTree at larger scales and across 

multiple cultivars. 
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Figure 3.4 (a) Observed and simulated growth of leaves, fruits, fine roots, aboveground (live and dead 

stem), and belowground biomass (live and dead coarse roots) during 2010. (b) Observed and simulated 

biomass components between 2010 and 2012 as percentage of total biomass. 

The timing for initial leaf development in spring and leaf senescence in late autumn are 

sufficiently well captured by the implemented bud break prediction algorithm and the 

simple temperature threshold for leaf abscission, respectively (Figure 3.5). Observed 

maximum LAI varied between 2.8 and 3.3 m2 m-2 and occurred during the first half of 

July. The simulations reached similar values in 2010 and 2012, matching the 

observations, while the simulated LAI in 2011 underestimated the measurements due to 

a smaller C transfer from storage and lower solar radiation early in the growing season. 

The discrepancy between the low simulated LAI and the high observed LAI in 2011 could 

have been further exacerbated by a lighter pruning performed in the previous winter 

compared to other years [Zanotelli et al., 2013]. Such practice is sometimes performed in 

an attempt to counteract the strong alternate bearing behaviour of the Fuji variety, which 

causes a substantial drop in yield following a high yielding year [Atay et al., 2013; 

Belleggia et al., 2009; Pasa et al., 2021]. As a consequence of the light pruning, a larger 

number of vegetative and flower buds remained on the tree, leading to more growth and 

possibly contributing to the larger discrepancy between relatively high observed LAI and 

relatively low simulated LAI. The adjusted pruning is however based on a somewhat 

subjective assessment of the farmer and information about the exact amount is hardly 

available. Thus, CLM5-FruitTree currently adopts a simplified pruning practice based on 

the removal of a fixed portion of the seasonal stem growth which manages tree size and 

total woody biomass without affecting LAI. 

Measured LAI showed a slow decline soon after maximum LAI was reached, while 

simulated values in contrast are assumed to remain constant until leaf senescence is 

initiated. The observed early decline may be an artefact of the sampling strategy used to 
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determine LAI that extrapolated individual leaf area measurements to the whole tree, 

assuming a constant leaf distribution within the tree [Zanotelli et al., 2013]. Another 

reason could be some premature leaf fall in the summer at the expense of the inner 

shadowed leaves, as observed during field sampling. Other studies suggest that the LAI 

of fruit trees generally stays constant until a rapid decline with the start of senescence 

[Lakso et al., 1999; Pallas et al., 2016], supporting the simulated LAI dynamic.  

 

Figure 3.5 Simulated daily leaf area index (LAI) between 2010 and 2012 together with observations 

(±standard error) of LAI that were made once a month for the same period. Ticks on the x-axis refer to the 

beginning of the month. 

Simulated yield averaged 70 t ha-1 between 2010 and 2015 and was within 2.3% of the 

observed average yield. While simulated yield varied between 61 and 76 t ha-1, the 

observations showed a greater inter-annual variability (IAV), as exemplified in the case 

of the years 2012 (low yield of 51 t ha-1) and 2015 (high yield of 101 t ha-1) (Figure 3.6). 

Low IAV of yield has also been observed in previous crop simulations with CLM5 for 

winter wheat [Boas et al., 2021] suggesting that certain drivers of IAV such as extreme 

environmental conditions (e.g., frost, heat, and hail) or plant pests and diseases and the 

resulting plant physiological responses (e.g., stress-induced leaf shedding or failure to 

flower) [Charrier et al., 2021] are missing or not represented with sufficient detail in 

CLM5. In the case of apple trees, yield is also tightly linked to the number of flowers and 

early fruit growth, which in turn depend on a complex interaction of the environmental 

conditions during winter dormancy and the start of the new growing season [Chmielewski 

et al., 2012; Corelli-Grappadelli and Lakso, 2002]. Additionally, C reserves accumulated 

in the previous year [Greer et al., 2002], and crop load management play an important 

role in determining the final harvest [Penzel et al., 2020]. The latter includes pruning or 

fruit thinning to ensure optimal fruit growth and to reduce the effect of alternate bearing. 
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The low observed yield in 2012 may be a result of such behaviour. This phenomenon and 

the processes involved are not universal, so that different fruit trees may be bearing 

regularly, irregularly, or biannually [Hoblyn et al., 1937; Monselise and Goldschmidt, 

1982]. As such, alternate bearing and its treatment through pruning or fruit thinning 

cannot easily be generalized and are thus not currently implemented in CLM5-FruitTree, 

which could have further reduced simulated IAV. Storage growth is considered in CLM5-

FruitTree and exhibited an impact on the final yield of the following season, as shown by 

the sensitivity analysis of the aleafstor and fcur parameters (Figure 3.3). However, its 

effect on fruit growth in CLM5-FruitTree is indirect since it supports leaf development 

in the early growth stage but does not directly contribute to fruit growth. Identifying the 

driving forces of reserve deposition and mobilization and their quantification remains an 

unsolved issue, and there is yet no consistent formulation of this process in tree modelling 

[Allen et al., 2005; Le Roux et al., 2001]. Predicting final yield in fruit orchards is further 

complicated by the fact that harvest is usually based on certain fruit quality traits such as 

firmness or soluble solids and can occur successively as fruits may not mature at the same 

time [Corelli-Grappadelli and Lakso, 2002; Musacchi and Serra, 2018]. Within this 

context, the proposed simplifications of the C reserve dynamics and fruit harvest are 

likely contributing to the difference in observed and simulated yields. Considering the 

many specific challenges in modelling this apple cultivar, we believe that the yield 

predictions are satisfactory enough in the context of the sub-model development. 

 

Figure 3.6 Annual yields from 2010 to 2015 and their mean in tons of fresh weight per hectare. For the 

conversion of simulated fruit biomass in gram carbon per square metre to tons per hectare, fruit C content 

was assumed 42% of total dry weight, harvest efficiency was assumed 95%, and fruit water content 83% 

according to Zanotelli et al. [2013]. 
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3.3.2.2 Ecosystem fluxes and soil moisture variation 

Carbon fluxes 

As shown in Figure 3.7, CLM5-FruitTree was able to capture the overall patterns of GPP, 

NEE, and Reco, particularly during the transition between dormancy periods and growing 

seasons (April to November). Simulated C fluxes are highly correlated with observations 

(r ≥ 0.84) while the RMSE ranges between 1.12 and 1.53 gC m-2 d-1. Observed and 

simulated peak C fixation occurred in mid-June (Figure 3.7a), corresponding to the 

maximum (negative) NEE (Figure 3.7c) and maximum LAI (Figure 3.5). Simulated NEE 

becomes negative (net carbon sink) around April and returns to positive (net carbon 

source) around November, in agreement with the observed dynamic (Figure 3.7c). 

Observed yearly sums of GPP (NEE) were 1.60 (–0.49), 1.43 (–0.48), and 1.65 (–0.76) 

kgC m-2 yr-1 for 2013, 2014, and 2015, respectively. Simulated yearly sums of GPP (NEE) 

were 1.58 (–0.53), 1.56 (–0.51), and 1.53 (–0.57) kgC m-2 yr-1 for the same years, showing 

a negligible positive bias of on average 0.17% for GPP (Figure 3.7b) and a small 

underestimation (less negative) of on average 3.8% for NEE (Figure 3.7d). Simulated and 

observed Reco (Figure 3.7e) generally increased until July because of the increase in air 

temperature and respiratory costs of the developing canopy, and declined thereafter as air 

temperature started to drop. Simulations of Reco tend to slightly underestimate 

observations between April and late August and to overestimate observations during 

winter, although discrepancies are relatively small. Observed yearly sums of Reco were 

1.13 (2013), 0.98 (2014), and 0.94 (2015) kgC m-2 yr-1, while simulated values were 1.08, 

1.08, and 0.99 kgC m-2 yr-1, respectively. CLM5-FruitTree overestimated yearly Reco by 

on average 3.3%, explaining most of the difference in observed and simulated NEE in 

2013, while differences in 2014 and 2015 are due to a combination of small biases in both 

GPP and Reco. Measured Reco showed irregular fluctuations in the early part of the 

growing season 2013 and mid to late season 2014 and 2015 that are not reproduced well 

by the model. These fluctuations mostly correspond to the observed temperature 

dynamics (not shown) as a result of the applied gap filling that is based on an air (or soil) 

temperature-Reco relationship [Reichstein et al., 2005]. Such discrepancies between 

observed and simulated dynamics could be further explained by the occurrence of field 

management practices such as mowing of the grassed alleys or soil tillage under the tree 

rows, which are currently not represented in CLM5-FruitTree. Such practices could have 

led to a temporary rise in soil respiration (Rs) due to increased heterotrophic respiration 
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(Rh) as discussed in Zanotelli et al. [2013]. Indeed, soil tillage experiments performed in 

an apple orchard located in a Loess plateau in Shaanxi Province in China were found to 

increase Rs 14–57% depending on the tillage method [Hou et al., 2021].  

Zanotelli et al. [2013] measured a total Rs of 801±95 gC m-2 in 2010, contributing around 

90% to Reco, based on soil chamber measurements within the orchard (total soil 

respiration). The comparison to parallel measurements in a trenched plot produced a high 

ratio Rh/Rs of 0.77 for the apple orchard. In contrast, simulated Rs was 510 gC m-2, 

contributing merely 45% to Reco for the same year with a ratio Rh/Rs of 0.87. Simulated 

Reco was instead dominated by autotrophic respiration (Ra) due to high C costs for 

maintenance, mainly of leaf biomass (data not shown). Other studies found that Rs 

contributed 56–67% to Reco in irrigated citrus orchards of different ages that share 

common management practices (i.e., use of heavy machinery, irrigation, fertilization, tree 

pruning, and mulching) as well as structural similarities (e.g. planting in tree rows) with 

the studied apple orchard. Both aspects have a strong influence on soil respiration 

components in orchards [Martin-Gorriz et al., 2020]. In forest ecosystems, where the 

magnitude of ecosystem fluxes was found to be somewhat comparable to orchards, Rs 

contributed > 60% to Reco [Lasslop et al., 2012; Zanotelli et al., 2013]. 

In addition to the missing representation of certain management practices, CLM5-

FruitTree currently does not account for an active ground cover in the orchard, which has 

shown to enhance Rs in an Italian olive orchard through increased fine root and microbial 

biomass [Turrini et al., 2017]. Furthermore, the simplified representation of microbial 

activity in CLM5, through fixed respiration fractions for litter and soil organic matter 

pools, may limit the ability of CLM5-FruitTree to accurately represent soil respiration 

processes. Not accounting for mycorrhizal respiration may fail to adequately represent 

Reco of the orchard, as measurements suggested a substantial contribution of 11±6% to 

total Rs in an apple orchard [Tomè et al., 2016]. Lastly, biases in simulated soil 

temperature, SM content, and fine root density could further contribute to explaining the 

above discussed differences, as these factors have a major effect on Rs in apple orchards 

[Ceccon et al., 2011]. 

In contrast to the underestimation of Rs in the model, the simulated Ra of 693 gC m-2 was 

almost twice the measured value of 372±195 gC m-2. In our simulations, maintenance 

respiration comprised the main part of Ra, with on average 78%. The calculation of 
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maintenance respiration in CLM5 (see Section 3.2.1) does not account for a lower or 

varying maintenance cost observed in mature apple orchard canopies compared to annual 

crops [Bepete and Lakso, 1996; Lakso et al., 1999]. It therefore seems likely that the tissue 

maintenance costs in the orchard are overestimated in CLM5-FruitTree, accounting for 

on average 45% of Ra (28% of Reco). This could also explain the lower simulated carbon 

use efficiency (NPP/GPP) of 0.59 compared to 0.71 found by Zanotelli et al. [2013]. 

Further work and more experimental data are needed to better understand the differences 

in modelled and observed respiration partitioning and to improve the performance of 

CLM5-FruitTree to adequately simulate the respiration components in fruit orchards. 

 

Figure 3.7 Daily instantaneous (a, c, e) and cumulative (b, d, f) observed and simulated fluxes of gross 

primary productivity (GPP), net ecosystem exchange (NEE), and ecosystem respiration (Reco) for the 

studied apple orchard between 2013 and 2015. Pearson’s coefficient of correlation (r), the root mean square 

error (RMSE) and the percent bias (%bias) are displayed as statistical indices. 

Energy and water fluxes 

The simulated seasonal course of the energy balance components Rn, G, LE, and H agrees 

well with observed dynamics in the orchard (Figure 3.8). CLM5-FruitTree shows a high 

performance in reproducing Rn and LE with r ≥ 0.97 and RMSE of 15.98 and 17.85 W 

m-2, respectively (Figure 3.8a and c). Due to the lack of LWin measurements, the CLM5 

internal LWin calculation based on a clear-sky parameterization after Idso [1981] was 

used initially. This resulted in a significant underestimation of 5% (511 MJ) for LWin and 
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18% (471 MJ) for Rn compared to the observations in 2010. The Rn bias could be reduced 

by 14% for the observed time series when LWin was calculated by considering cloud 

cover as described in Appendix IV. This stresses the necessity of accounting for cloud 

cover, ideally combined with locally calibrated parameters, for an accurate calculation of 

LWin. The remaining small negative bias of 4.48% in Rn is due to negative simulated Rn 

during the winter months (Figure 3.8b), which may be a result of the higher reflectance 

of solar radiation from bare soil compared to a grass surface [Bryś et al., 2019]. The model 

assumes a bare soil (except for stem area) during the dormancy period, as the grass-

covered alleys in the orchard are not considered explicitly.  

The simulated LE (Figure 3.8c) shows similar dynamics and variability to the 

observations following the increase and decrease in GPP (Figure 3.7a) and LAI (Figure 

3.5). Similarly to LE, modelled ET shows a high correlation coefficient of 0.97 and a 

small RMSE of 0.62 mm d-1 (Figure 3.8i). Simulated ET exceeds observed ET by 1.1 mm 

d-1 on average during its peak in July, but the overall bias is almost negligible (Figure 

3.8j). Total observed ET is 901 (2013), 858 (2014), and 883 (2015) mm, while the 

corresponding simulated values are 916, 877, and 925 mm, respectively. When examining 

the order of magnitudes of the ET components, canopy transpiration takes up around 85% 

of ET, followed by soil evaporation and canopy evaporation (data not shown). Typically, 

apple orchard ET represents a combined flux from the apple trees and the grassed alley 

system, which is not explicitly represented in CLM5-FruitTree since CLM5 currently 

does not consider inter-row grass coverage or intercropping. Ntshidi et al. [2021] found 

that the contribution of understory transpiration is high in young, non-bearing apple 

orchards but contributes less than 10% to whole-orchard ET in mature orchards with high 

canopy cover, which may explain the good model performance despite not considering 

the grass cover.  

Simulated H and G are less consistent with the observations with r values of 0.54 and 

0.64, respectively, and large percent bias (Figure 3.8e and g), which is partially due to the 

much smaller magnitudes of the two fluxes compared to Rn and LE. A possible reason 

for the lower amplitude of observed G (Figure 3.8h) compared to simulated values may 

be the dampening effect of the grass cover providing additional shading during summer 

and insolation during winter [Bryś et al., 2019; Oorthuis et al., 2021]. Observed H was 

rather constant throughout the year, with slightly higher values at the start and end of the 

growing season when the canopy was not yet fully developed or leaves were shedding. 
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CLM5-FruitTree simulated a clear rise of H until April, closely following the 

observations, but H thereafter declined steeply in May, with negative values in August 

2013 and 2015. Negative H during August corresponds to maximum LE and the main 

simulated irrigation season (June to September) that added 357 (2013), 281 (2014), and 

517 mm (2015) of water to the orchard (Figure 3.9a). In a study conducted with CLM4.5, 

intense irrigation was found to strongly influence the convective heat fluxes by increasing 

LE and decreasing H [Zeng et al., 2017]. Although precise measurements of the irrigation 

amount in the orchard are not available for the studied period, the average yearly irrigation 

was estimated around 200 mm, with no irrigation in 2014 due to sufficient rainfall 

[Montagnani et al., 2018]. The difference in irrigation amounts may in part explain why 

the described phenomenon is not observed in the measurements. Indeed, negative 

simulated H in the summer months occurred as a result of strong evaporative cooling of 

ground and vegetation temperature through energy absorption by LE following irrigation 

that caused simulated LE to exceed simulated Rn. This behaviour was not observed in the 

measurements where LE rarely exceeded Rn and was mostly due to an overestimation of 

simulated LE compared to the measurements. Persisting model weaknesses in the 

partitioning of the energy balance were pointed out by a recent study examining land 

surface processes over a tropical rainforest using CLM4.5 and CLM5, and were linked to 

missing detail in the representation of the canopy and an oversensitivity of vegetation 

temperature to incoming solar radiation, among others [Song et al., 2020]. As a result, the 

authors observed an overestimation of LE and unrealistically high day-to-night changes 

in G, which was also observed in this study when examining the model output at an hourly 

time step (results not shown).  

Energy partitioning in orchards is strongly influenced by the positioning and pruning of 

branches to optimize tree architecture for higher productivity, planting density, tree 

height, and LAI distribution [López-Olivari et al., 2016]. Consequently, the contribution 

of H and LE can significantly differ in the discontinuous orchard canopy (grass-covered 

alleys between tree rows) compared to the closed canopies of annual crops [la Fuente-

Sáiz et al., 2017]. Currently CLM5 is still limited to the assumption of a closed canopy 

structure that is uniform in space, and hence biases are likely to arise from this model 

limitation. Future developments towards integrating multi-layer schemes for canopy 

processes and the explicit representation of the canopy to improve the related processes 

are desirable for a more realistic representation of the orchard canopy structure. 
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Soil moisture variation 

Simulated mean SM at 5 cm depth was within 1.6%vol of the observed value during the 

three observed growing seasons, despite the higher simulated irrigation amount (Figure 

3.9b). Simulated daily values show a greater variability than the measured data in 

response to precipitation and to frequent irrigation (Figure 3.9a–b). In contrast, observed 

SM in the deeper soils (30–60 cm), was 3–11%vol higher during the growing season 

compared to simulated values (Figure 3.9c–d). Considering the total investigated soil 

depth, simulations exhibit a larger variability in SM throughout the year, with a general 

overestimation in winter and underestimation during the growing season (especially in 

the deeper soils). However, the collected SM data were limited to a single soil profile that 

may not adequately reflect the average SM of the apple orchard, which should be 

considered when comparing measurements and simulations. Even though the 

measurements are incomplete, the constant high observed SM in the deeper soils suggests 

an ample supply of water due to capillary rise from the shallow groundwater table that 

typically ranges between 1.2 and 1.85 m in the area [Montagnani et al., 2018]. This 

process replenishes the water removed by ET processes and may explain the reduced need 

for irrigation compared to the simulations. Despite the shallow simulated ground water 

table (generally 1.2 m depth), groundwater could not be used for root water uptake in the 

simulation as the rooting depth of the orchard was restricted to 0.8 m according to local 

measurements, and capillary rise is currently not implemented in CLM5. 
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Figure 3.8 Daily and cumulative observed and simulated fluxes of net radiation (Rn), ground heat (G), latent 

heat (H), sensible heat (LE) and evapotranspiration (ET) for the studied apple orchard between 2013 and 
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2015. The coefficient of determination (r), the root mean square error (RMSE) and the percent bias (%bias) 

are displayed as statistical indices. 

 

Figure 3.9 Precipitation and simulated irrigation (a), and observed and simulated soil moisture (SM) at 0.05 

m (b), 0.3 m (c), and 0.6 m (d) depth from 2013-2015. 
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3.4 Conclusions 

The novel CLM5-FruitTree was developed to model perennial deciduous fruit orchards 

and thus extended the representation of agricultural systems in CLM5. The development 

included a new phenology subroutine to account for the perennial nature, prolonged 

growing season, and distinct phenological development of fruit trees compared to annual 

crops. Furthermore, C reserve dynamics of perennial deciduous trees were considered by 

adapting the CN allocation and typical management practices associated with fruit 

orchards were represented, such as transplanting of seedlings and winter pruning. To 

evaluate the development, a new apple PFT was parameterized, and the model was set up 

and tested using extensive site data of a mature apple orchard in northern Italy.  

One-by-one parameter sensitivity analysis revealed that photosynthetic parameters and 

parameters associated with canopy conductance have the highest influence on GPP, NEE, 

LE, and yield, while phenological parameters were more influential in biomass 

partitioning to the different plant organs. Due to the high number of model parameters 

and parameter covariation, future studies could propose a more comprehensive sensitivity 

analysis with a training data set consisting of multiple sites, which would give more 

insight into model sensitivity and could further improve the parameterization. 

CLM5-FruitTree was able to capture the seasonal biomass development as well as the 

average relative partitioning of the total biomass into the different plant organs. The 

inclusion of C reserves next to photosynthetic growth was imperative to enable regrowth 

at the end of a dormancy period and influenced LAI development, total seasonal biomass, 

and yield. Average simulated yield was within 2.3% of the observation even though 

CLM5-FruitTree showed a lower IAV likely due to the simplification of C reserve 

dynamics, specific management practices, and the alternate bearing behaviour exhibited 

by the Fuji apple cultivar. 

The new phenology and CN allocation algorithms well represented the seasonal course 

of carbon, water, and energy fluxes of the orchard. The magnitude of ecosystem fluxes 

was particularly well captured for GPP, Rn, LE, and ET, with correlation coefficients > 

0.94 and percent bias < ±5%. The model exhibited small biases in NEE and Reco that were 

most likely caused by the overestimation of Ra, especially leaf maintenance respiration, 

and an underestimation of Rs. Possible reasons for the smaller simulated contribution of 

Rs to Reco could be the missing representation of the grass-covered alleys, differences in 
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simulated and actual soil temperature or organic matter content, and oversimplification 

of microbial respiration processes. Additionally, large negative biases in simulated H 

were found over most of the main irrigation season during summer as the model simulated 

a strong evaporative cooling of the surface temperature. 

Further model developments should consider the improvement of canopy processes 

related to energy partitioning and the inclusion of an active ground cover in the orchard 

representation to improve the yearly energy budget calculations and possibly soil 

respiration. An explicit representation of the microbial community and a more flexible 

calculation of Ra, i.e. considering tissue age, should also be the focus of future model 

improvements. While the particular alternate bearing of the Fuji variety posed a challenge 

in this specific study, the pruning routine that is currently implemented may be sufficient 

for most other apple cultivars and fruit tree species for which this behaviour is less 

pronounced or not exhibited. However, future developments could be envisioned once 

the model is further tested and applied. In addition, management practices such as 

mowing or soil tillage could further enhance the model capability of capturing the 

dynamics and fate of assimilated C. Fruit thinning is another common practice in 

orchards, but its implementation would be more challenging, as the current model 

structure does not represent individual fruits. This process could however be implicitly 

accounted for through parameterization of the C allocation to fruits. Finally, the 

application of the newly developed sub-model to different geographical regions and other 

types of fruit trees or apple cultivars is needed to further validate the model and give more 

insight into the transferability of the development to different types of orchards. 

Overall, our results demonstrate the ability of the newly developed CLM5-FruitTree sub-

model to represent the seasonal dynamics and magnitudes of growth and ecosystem fluxes 

in a deciduous fruit orchard. As such, this development constitutes an important 

contribution to a more comprehensive representation of the agricultural land surface in 

CLM5 by adding a perennial, woody crop to the existing annual crop types. This will 

allow for a more realistic evaluation of land use and climate change effects, or water 

availability at regional scale such as the Mediterranean or parts of China and the US, 

where perennial agriculture such as fruit orchards covers large parts of the agricultural 

landscape.
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4 Land surface modelling as a tool 

to explore sustainable irrigation 

practices in Mediterranean fruit 

orchards 

This chapter is based on the following manuscript: 

Dombrowski, O., Brogi, C., Hendricks Franssen, H. J., Bogena, H., Pisinaras, V., 

Panagopoulos, A., Chatzi, A., Babakos, K. & Swenson, S. (2023). Land surface 

modelling as a tool to explore sustainable irrigation practices in Mediterranean fruit 

orchards. (submitted to Water Resources Research) 

Abstract 

Irrigation strongly influences land-atmosphere processes from regional to global scale. 

Therefore, an accurate representation of irrigation is crucial to understand these 

interactions and address water resources issues. While irrigation schemes are increasingly 

integrated into land surface models, their evaluation and further development remains 

challenging due to data limitations, e.g. irrigation amounts and timing, and soil moisture 

(SM). This study assessed the representation of irrigation and its effect on crop yield in 

the Community Land Model version 5 (CLM5) through implementation of an irrigation 

data stream that allows to directly use observed irrigation data. Simulations were 

conducted at the point scale for two instrumented apple orchards using the CLM5 

irrigation routine as well as the implemented data stream. Furthermore, irrigation 

requirements and the effect of deficit irrigation on crop yield and crop water use 

efficiency (CWUE) at the regional scale were simulated and discussed. The irrigation 

data stream performed better in representing observed SM dynamics compared to the 

standard irrigation routine that could be further improved by implementing more flexible 

irrigation schedules and irrigation efficiency. At the regional scale, simulated irrigation 

and yield showed a high sensitivity to climatic changes caused by the topographic 

gradient. While a 25% reduction in irrigation had negligible negative effect on simulated 

yield and CWUE, a reduction of 50% notably reduced both variables. These effects varied 

with climatic conditions, soil properties and timing of irrigation. These results showcase 

how CLM5 could be utilized for irrigation and water resources management. 
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4.1 Introduction 

Irrigation plays a vital role in sustaining global food production by providing a reliable 

water supply to agricultural systems, especially in semi-arid or arid regions [McLaughlin 

and Kinzelbach, 2015]. With a growing global population and increasing food demands, 

irrigation contributes significantly to ensuring food security by enabling higher crop 

yields and reducing the vulnerability of agricultural systems to climate change 

[McDermid et al., 2023; Mueller et al., 2012]. On the other hand, poor management of 

irrigation water has led to the depletion of groundwater resources [Dangar et al., 2021; 

Scanlon et al., 2012; Wada et al., 2010] and water use conflicts in many regions [Cai et 

al., 2003; Eshete et al., 2020; Gurung et al., 2006]. Apart from quantitative and qualitative 

effects on water resources [García-Garizábal et al., 2012; Zhang et al., 2022], irrigation 

substantially impacts biogeophysical and biogeochemical processes at the land surface 

through alteration of the hydrological cycle or energy budget. This has subsequent effects 

on climate [DeAngelis et al., 2010; Erb et al., 2017; Ferguson and Maxwell, 2012; 

Gordon et al., 2005; Sacks et al., 2009]. The multidimensional role of irrigation calls for 

increased efforts in effective irrigation management and irrigation impact studies using 

large-scale approaches. This is crucial not only to meet food demands and mitigate future 

increases in climate change induced water stress, but also to understand its interactions 

and feedback mechanisms within the Earth system [Elliott et al., 2014; McDermid et al., 

2023].  

Modelling can be a powerful tool to simulate complex interactions in agricultural 

systems, evaluate different irrigation and climate scenarios, and provide decision support 

for water resources management [Blyth et al., 2021; Pongratz et al., 2018]. This 

necessitates comprehensive modelling frameworks that combine field-scale 

representations of crop growth and irrigation with a more holistic assessment of the 

impacts of irrigated agriculture on water resources and climate at larger scale [Peng et 

al., 2020]. Process-based crop models include a range of crop parameterizations that 

provide a unique way to study crop growth processes in response to irrigation practices 

by using physical and biological principles. However, their main purpose is to simulate 

yield at the field scale, often over a single growing season, while lacking the interface 

with the land surface, soil, and climate [Cheng et al., 2020]. Land surface models (LSMs), 

on the other hand, provide a more holistic representation of the land-atmosphere 

interactions to capture the feedback mechanisms between irrigation, vegetation, 
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hydrological processes, and climatic conditions beyond the field scale [Blyth et al., 2021]. 

Conversely, they often lack more detailed physiological and genetic representations of 

crops and irrigation management [Lombardozzi et al., 2020; Peng et al., 2018]. This limits 

the ability of LSMs to reliably simulate yield and irrigation water withdrawals leading to 

poor model performance and biases in related processes such as carbon, energy, and water 

fluxes over intensively irrigated regions [Leng et al., 2015; Lombardozzi et al., 2020; 

Ozdogan et al., 2010; Zhang et al., 2020].  

In recognition of the important role of human land management, efforts to advance the 

representation of crops and irrigation in LSMs are ongoing [Pokhrel et al., 2016]. Various 

land surface models such as ORCHIDEE, the Community Land Model (CLM), and Noah-

MP have since added crop modules [Levis et al., 2012; Liu et al., 2016; Smith et al., 2010]. 

New crop representations have been developed to improve crop growth and management 

processes [Boas et al., 2021; Peng et al., 2018] or to add new crop types [Dombrowski et 

al., 2022; Fader et al., 2015; Fan et al., 2015]. Rather simple irrigation schemes are 

generally incorporated based on soil moisture (SM) thresholds [de Vrese et al., 2016; 

Ozdogan et al., 2010; Sacks et al., 2009], while more recent developments include the 

integration of irrigation techniques [Leng et al., 2017; Yao et al., 2022], irrigation water 

withdrawal from different sources [Leng et al., 2017; Xia et al., 2022], and water 

availability limitation [Yin et al., 2020]. These studies, however, were performed at river 

basin, county, or global level with coarse spatial resolutions between 10 and 100 km. 

Simulated irrigation was validated against rather uncertain statistics like total yearly 

irrigation water withdrawals, without considering specific irrigation practices. Crop and 

irrigation data at higher spatial (< 5 km) and temporal (e.g. daily or sub-seasonal) 

resolution is needed to evaluate the representation of local irrigation schedules in LSMs 

and support irrigation management decisions. However, data to reliably constrain and 

further develop implemented irrigation schemes is often lacking, e.g. irrigation amount 

and timing along with continuous SM observations [Lawston et al., 2017]. Lawston et al. 

[2017] first evaluated the sprinkler irrigation scheme of the NASA Land Information 

System LSM with point and gridded SM observations at 1 km resolution. While the model 

could not capture the field-scale heterogeneity and overestimated irrigation amounts, it 

captured well the seasonal variability and regional average SM dynamics. The authors 

did however use a prescribed crop phenology (green vegetation fraction) and did not 

examine the effect of irrigation on crop yield. A recent study examined the effect of 
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different irrigation setups on maize yield and two water use efficiency definitions using 

the dynamic crop and irrigation scheme of the Noah-MP LSM [Huang et al., 2022]. They 

found that modelled crop yield was sensitive to irrigation quantity and timing (in which 

crop growth stage irrigation was applied) and based on these results recommended an 

optimal SM threshold to trigger irrigation. While the authors lacked data to accurately 

assess the irrigation amount and crop yield, their work presents a first use of a LSM to 

study the effects of deficit irrigation on crop growth, yield and water use efficiency. 

The work presented here builds upon previous studies to continue the evaluation and 

improvement of irrigation representations in LSMs combining local irrigation, SM, and 

yield observations. In particular, this study applies CLM version 5, with a recent 

extension to represent deciduous fruit trees, to model irrigation and crop growth in a 

Mediterranean catchment. Specifically, we aim to: (1) evaluate the existing irrigation 

scheme of CLM5 and enhance its flexibility to account for local irrigation management 

practices; (2) assess whether the model can reproduce SM dynamics and crop growth in 

irrigated apple orchards using the enhanced model capability; (3) examine the potential 

to improve regional irrigation management by modelling the effect of different irrigation 

scenarios on crop yield and water use efficiency at the catchment scale.

 

4.2 Materials and Methods 

4.2.1 Study area 

Located in central Greece, the Pinios Hydrologic Observatory (PHO) covers an area of 

approximately 45 km2 (Figure 4.1). The PHO was established in 2015 to study the Pinios 

catchment hydrological processes and, ultimately, to support local authorities in the 

sustainable management of water resources [Pisinaras et al., 2018]. It is characterized by 

a Mediterranean climate with an annual precipitation of 500 to 1200 mm, and highest 

precipitation amounts in the winter months, annual potential evapotranspiration of 

approximately 1100 mm, and annual average air temperature of 15 °C [Bogena et al., 

2018]. The area displays a range of altitudes from 1500 m in the northern part down to 

less than 200 m in the plain. The mountainous part of the catchment features steep slopes 

and is covered by forests, mixed with shrubs and grassland, while the southern plain is 

primarily characterized by agriculture and small villages. In the plain, sandy loam soils 
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dominate while sandy clay loam and loamy soils also occur [Pisinaras et al., 2018]. The 

PHO is located in one of the most productive agricultural areas in Greece owing, among 

other factors, to widespread irrigation practices that account for over 85% of the local 

freshwater consumption [Panagopoulos et al., 2018]. The main cultivation are apple and 

cherry orchards (i.e., ~78% of agricultural area) that are irrigated between May and 

October. There are a few other rainfed fruit and nut tree orchards in the area with < 5% 

coverage. Annual crops including corn, cereal (mainly winter wheat), and potato are 

grown on the remaining agricultural land. They are partially irrigated, depending on 

precipitation occurrence, but cover a negligible part of the total irrigated area. Irrigation 

in the orchards is typically applied through micro sprinklers and the demand is almost 

entirely met by abstraction from the alluvial groundwater system through water wells, 

most of which are privately owned. Overexploitation of groundwater in the area due to 

poor irrigation management practices, amongst others, has previously been reported by 

Panagopoulos et al. [2018] and Pisinaras et al. [2023] resulting in the decline of 

groundwater levels. 

Within the PHO, irrigation management in two irrigated apple orchards, hereafter referred 

to as S09 and S10, was studied (Figure 4.1). Both orchards have a size of around 1.2 ha, 

with a mild southern slope of < 5%. The soil texture is sandy loam and sandy clay loam 

with a high gravel content (13–29%) (Table 4.1) and many larger cobbles (> 64 mm 

according to Wentworth [1922]), especially below 30–50 cm depth. Trees are planted in 

rows, oriented North-South with 3.3 m distance between rows and an in-line distance of 

1.5 m (approximately 2020 trees ha-1). The trees in S09 and S10 were planted in 2013 and 

2015 respectively, with a mixture of 3 to 5 different varieties. Trees are pruned to a height 

of 3.5 m throughout the winter season and residues are mulched back into the soil. Bud 

burst typically occurs in the second half of March while fruit development starts with the 

end of flowering in mid to late April. Harvest dates range from late August to mid-

November depending on the harvested variety. Major leaf fall starts in late October and 

continues until mid-November, sometimes until early December. Trees are irrigated with 

a micro sprinkler system with a maximum flow rate of 60 L hour-1 that is installed below 

the canopy, halfway between the tree stems of the same row. The irrigation season 

typically starts in May and continues until October. Orchards are fertilized with 80 kgN 

ha-1 at the end of flowering in April. Pest and fungicide treatment is applied prior to 

flowering and after flowering until late June. The grass in the alleys is generally mowed 
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once a month starting in March or April and mowing material is left on the ground. During 

periods of intense heat, the actively growing grass cover provides a cooling effect to 

protect the apples from heat damage. 

 

Figure 4.1 Top left: Map overview of Greece and of the study area location. Top right: Elevation and land 

use of Pinios Hydrologic Observatory with the locations of climate stations. Bottom: Apple orchards S09 

and S10 with instrumentation.
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Table 4.1 Main characteristics of the two apple orchards (S09 and S10). 

Orchard 

ID 

Altitude 

(m a.s.l.) 

Size 

(ha) 

Apple 

varieties 

Soil 

depth 

(cm) 

Sand 

content 

(%) 

Clay 

content 

(%) 

Soil 

organic 

carbon 

content 

(%) 

Gravel 

content 

(%) 

S09 200 1.24 3 0–30 

30–60 

60–90 

64.5 

63.0 

59.9 

17.8 

21.9 

24.6 

1.5 

1.2 

0.7 

23.3 

20.6 

13.7 

S10 190 1.13 5 0–30 

30–60 

60–90 

64.3 

65.8 

65.4 

12.5 

12.7 

13.7 

1.44 

0.86 

0.66 

28.2 

28.7 

28.7 

4.2.2 Data sources 

The meteorological data that are necessary to drive CLM5 including precipitation, air 

temperature, atmospheric pressure, wind speed, relative humidity, and incoming solar 

radiation, were acquired from three meteorological stations located at different altitudes 

within the PHO (Figure 4.1) as well as two stations located in the orchards S09 and S10. 

For the agricultural plain, detailed soil texture and organic matter information was 

collected during an extensive soil sampling campaign. In total, 116 locations were 

sampled with one sample from the topsoil (0–50 cm) and a second sample from the 

subsoil (50–100 cm) (Figure 4.2). In addition to the point measurements, the LUCAS 

topsoil physical properties for Europe soil map [Ballabio et al., 2016] and the European 

Soil Database (ESDB) derived data product [Hiederer, 2013] provide soil information for 

the area at a resolution of 500x500 and 1000x1000 m, respectively (Table 4.2). These 

data sources were combined to create soil texture (point measurements+LUCAS) and soil 

organic carbon (point measurements+ESDB) maps for model input (Figure 4.2). In a first 

step, for the unsampled regions, data points were extracted from the map products in a 

sampling density equal to the average density of the soil sampling locations (~580x580 

m). Next, the extracted points were combined with the sampled points to a single set of 

data points (Figure 4.2). Then, the points were interpolated to the target resolution of 

100x100 m using ordinary kriging and a spherical variogram model with a radius that 

included 30 measurements around an estimation point. Topographic information was 

available through the European Digital Elevation Model (EU-DEM) [Copernicus, 2016], 

version 1.1 at a spatial resolution of 25x25 m (Figure 4.1). Detailed maps of the 
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agricultural fields and orchards were provided by the Hellenic Payment and Control 

Agency for Guidance and Guarantee Community Aid while the land use of the remaining 

area was digitized from satellite imagery, using ArcGIS® software by Esri (Figure 4.1).  

Orchard scale SM data were retrieved from S09 and S10, which were equipped for 

extensive monitoring in September 2020 (Figure 4.1). SM was monitored via a SoilNet 

wireless sensor network [Bogena et al., 2010; Bogena et al., 2022] with 12 nodes per 

orchard. Each node had six SMT100 SM sensors (Truebner GmbH, Neustadt, Germany) 

divided into two separate profiles which were installed at 5, 20, and 50 cm depth as well 

as two TEROS21 soil matric potential (SMP) sensors (METER Group Inc., Pullman, 

USA) installed at 20 cm depth. Irrigation amounts were recorded with TW-N flowmeters 

(TECNIDRO, Genova, Italy), installed at different irrigation sectors within the orchards. 

Meteorological data was collected by the cost-effective but reliable all-in-one ATMOS41 

weather station (METER Group Inc., Pullman, USA) installed above the canopy in each 

orchard [Dombrowski et al., 2021]. A more detailed description of the instrumentation 

and setup used to monitor SM dynamics, irrigation, and meteorological variables is given 

in Brogi et al. [2023]. Additionally, S10 was equipped with six SFM-1 sapflow sensors 

(ICT International Pty Ltd, Armidale, Australia) to estimate whole-tree transpiration. The 

sapflow sensors were installed on the trunk of six trees to represent, as much as possible, 

the orchards’ trees in terms of height, perimeter, and vigor covering all five varieties. The 

installation and data correction followed the procedure outlined in Burgess [2018]. 

Phenology of the three main apple varieties was monitored using six phenocams 

(SnapShot Cloud 4G, Dörr GmbH, Germany) installed in S10. 

Table 4.2: Main characteristics of the different soil data products used for the surface file creation of the 

regional case. 

 
European Soil Database Derived data 

LUCAS topsoil physical 

properties for Europe 

Underlying 

observational data 

European Soil Database, Harmonized World 

Soil Database, Soil-Terrain Database 

LUCAS 2009 soil survey 

(around 20 000 points) for EU-25 

Resolution (m) 1000x1000 500x500 

Soil texture Yes Yes 

Organic matter Yes No 

Depth ranges (cm) 0–30, 30–100 0–20 
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Figure 4.2 Top, from left to right: Soil sampling locations within the Pinios Hydrologic Observatory, soil 

data from the European soil database and the LUCAS topsoil map. Bottom: Soil texture input data sets of 

sand, clay, and organic carbon derived from the three data sources. 

4.2.3 The land surface model 

4.2.3.1 The Community Land Model 

The Community Land Model v.5 (CLM5) used in this study is the latest version of the 

land component in the Community Earth System Model as described in detail by 

Lawrence et al. [2019]. CLM5 simulates land surface energy fluxes as well as 
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hydrological, biogeophysical, and biogeochemical processes that are driven by 

atmospheric input variables in combination with soil and vegetation states and 

characteristics [Lawrence et al., 2018]. These processes are simulated on different subgrid 

units within a grid cell. Subgrid units include (1) the land unit defining the land use 

category (e.g., vegetated, urban, crop), (2) the column that is represented by 20 soil and 

5 bedrock layers and resolves state variables and fluxes of water and energy in the soil, 

and (3) the patch level capturing biogeophysical and biogeochemical differences between 

plant functional types (PFTs) (e.g., broadleaf deciduous forest, evergreen shrub, maize, 

soy). The one-dimensional multilayer vertical water flow in the soil is simulated using a 

modified Richards equation [Dingman, 2015]. Soil hydraulic parameters for these 

calculations are derived from pedotransfer functions of sand and clay [Clapp and 

Hornberger, 1978; Cosby et al., 1984] and organic properties of the soil [Lawrence and 

Slater, 2008]. With version 5 of CLM, a plant hydraulic stress routine was introduced that 

uses a simple hydraulic framework to model water transport along a water potential 

gradient from soil via plant to atmosphere [Kennedy et al., 2019]. The new configuration 

replaces soil potential with leaf potential as the basis for plant water stress while root 

water potential is used to drive root water uptake. A new biogeochemistry and crop 

module, BGC-Crop, enhanced the representation of major crop functional types and land 

management practices such as irrigation and fertilization. Unlike natural vegetation that 

competes for water and nutrients, crops operate on separate soil columns that may be 

irrigated or non-irrigated, thus allowing for differences in land management [Lawrence 

et al., 2019].  

The recent development of CLM5-FruitTree enables the simulation of deciduous fruit 

trees and associated management practices in CLM5. The main features of the new sub-

model include (1) a perennial phenology routine that allows the woody plant parts to 

remain on the orchard for several years, (2) carbon storage dynamics that enable the 

regrowth of annual plant parts, (3) an adapted carbon and nitrogen allocation, and (4) the 

description of typical management practices such as transplanting, pruning, and orchard 

rotation. Additionally, a new apple plant functional type was parameterized while 

fertilization and irrigation use the default CLM5 schemes. The complete model 

development of CLM5-FruitTree is described in Dombrowski et al. [2022]. 
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4.2.3.2 Irrigation module in CLM5 

Irrigation is performed individually over each irrigated soil column and responds 

dynamically to SM based on a daily check at 6 am. If crop leaf area is non-zero and if the 

available soil water over a specified irrigation depth 𝑧𝑖𝑟𝑟𝑖𝑔 (=0.6 m by default) is below a 

defined threshold, irrigation is triggered. The irrigation amount is based on the SM deficit 

(𝐷𝑖𝑟𝑟𝑖𝑔) that is calculated over 𝑧𝑖𝑟𝑟𝑖𝑔: 

𝐷𝑖𝑟𝑟𝑖𝑔 = 𝑤𝑡ℎ𝑟𝑒𝑠ℎ − 𝑤𝑎𝑣𝑎𝑖𝑙 (4.1) 

where 𝑤𝑎𝑣𝑎𝑖𝑙 is the available SM (mm) and 𝑤𝑡ℎ𝑟𝑒𝑠ℎ is the irrigation SM threshold (mm) 

calculated as: 

𝑤𝑡ℎ𝑟𝑒𝑠ℎ = 𝑓𝑡ℎ𝑟𝑒𝑠ℎ(𝑤𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑤𝑤𝑖𝑙𝑡) + 𝑤𝑤𝑖𝑙𝑡 (4.2) 

where 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 is the irrigation target SM (mm), 𝑤𝑤𝑖𝑙𝑡 is the SM at wilting point (mm), 

and 𝑓𝑡ℎ𝑟𝑒𝑠ℎ is a tuning parameter. If 𝑓𝑡ℎ𝑟𝑒𝑠ℎ = 1 (default), irrigation will be triggered once 

the available SM is below 𝑤𝑡𝑎𝑟𝑔𝑒𝑡. If 𝑓𝑡ℎ𝑟𝑒𝑠ℎ = 0, irrigation is only triggered once the 

available SM falls below 𝑤𝑤𝑖𝑙𝑡. Target SM is determined as the sum of SM at the target 

SM of each soil layer: 

𝑤𝑡𝑎𝑟𝑔𝑒𝑡 = ∑ 𝜃𝑡𝑎𝑟𝑔𝑒𝑡,𝑖 ∗ ∆𝑧𝑖

𝑛𝑖𝑟𝑟

𝑖=1

 (4.3) 

where 𝑛𝑖𝑟𝑟 is the index of the soil layer corresponding to 𝑧𝑖𝑟𝑟𝑖𝑔, ∆𝑧𝑖 (mm) is the depth of 

the soil layer 𝑖 and 𝜃𝑡𝑎𝑟𝑔𝑒𝑡,𝑖 is the target volumetric SM value in a given soil layer. 

Similarly, 𝑤𝑤𝑖𝑙𝑡 is calculated as the sum of SM at wilting point of each soil layer: 

𝑤𝑤𝑖𝑙𝑡 = ∑ 𝜃𝑤𝑖𝑙𝑡,𝑖 ∗ ∆𝑧𝑖

𝑛𝑖𝑟𝑟

𝑖=1

 (4.4) 

where 𝜃𝑤𝑖𝑙𝑡,𝑖 is the volumetric SM value at wilting point in a given soil layer. 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 and 

𝜃𝑤𝑖𝑙𝑡 are calculated by inverting the equation for soil matric potential (SMP) (Eq. 7.53 in 

Lawrence et al. [2018]) at the respective depth. By default, the SMP parameters 𝜓𝑡𝑎𝑟𝑔𝑒𝑡 

and 𝜓𝑤𝑖𝑙𝑡 are set to –34 and –1500 kPa, considered field capacity and permanent wilting 

point, respectively. 
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In addition to 𝑤𝑡𝑎𝑟𝑔𝑒𝑡, 𝑤𝑤𝑖𝑙𝑡, 𝑓𝑡ℎ𝑟𝑒𝑠ℎ, and 𝑧𝑖𝑟𝑟𝑖𝑔, the user can define the irrigation duration 

(𝑇𝑖𝑟𝑟𝑖𝑔). Irrigation is applied directly to the ground surface at an intensity equal to 
𝐷𝑖𝑟𝑟𝑖𝑔

𝑇𝑖𝑟𝑟𝑖𝑔
. 

Irrigation parameters are not spatially distributed but are defined globally for a given 

model domain independent of geographic location or crop type. 

4.2.3.3 Irrigation data stream implementation 

To study and evaluate the modelling outcomes under specific observed irrigation 

practices, an irrigation data stream was implemented in CLM5 to enable continuous 

prescription of irrigation parameters, i.e., irrigation rate, duration, and start time. These 

parameters are defined separately for one or multiple crop types and for each grid cell. 

This allows to account for differences in irrigation management depending on crop type 

and location to accurately reproduce local management practices. In addition, using the 

data stream, the applied irrigation amount can be easily adjusted, thus creating different 

irrigation scenarios while maintaining the same irrigation schedule. As irrigation is 

prescribed, the irrigation SM threshold that is calculated in the standard irrigation routine 

is not needed for this implementation.  

4.2.4 Model implementation 

4.2.4.1 Orchard scale simulations 

For the simulations of S09 and S10, CLM5-FruitTree was run in single point mode and 

forced with hourly meteorological data from the two orchards. Fertilizer amount and soil 

texture were adjusted according to information provided by the farmer and soil samples. 

The default parameter file was adapted to account for the local climate and orchards 

characteristics. Crop parameters such as the different phenological stages were adjusted 

according to observations from the phenocam pictures, harvest information, and 

communication with the farmer. In the absence of observed bud break dates, parameters 

for the bud break prediction model were calibrated such that bud break would occur 

around the estimated date of 15th of March using the available local climate data. The 

modified crop parameters are listed in Table 4.3. Additionally, the observed irrigation 

time series was used as input to the irrigation data stream.  

In order to balance ecosystem carbon and nitrogen pools and total water storage in CLM5 

[Lawrence et al., 2018], a 200 years model spin-up was performed. For this, the 
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CRUNCEPv7 atmospheric forcing data set from 1986 to 2016 [Viovy, 2018] and the 

parameterized apple plant functional type were used. Using the model state at the end of 

the spin-up, simulations were then re-initiated from planting in 2013 (S09) and 2015 

(S10) using meteorological data from climate station CS1 (2016–2020) and data from the 

ATMOS41 sensors installed in the orchards for the years 2021 and 2022. 

Table 4.3: Local crop parameters for the apple plant functional type. 

Parameter Variable name (unit) Value 

Base temperature for bud burst prediction and GDD 

summation 

baset (°C) 8.5 

Chilling requirements for bud burst crequ (chill days) –126 

Critical temperature to initiate leaf offset crit_temp (K) 281.15 

Final root allocation coefficient until harvest arootf2 (unitless) 0.12 

GDD needed from bud break to canopy maturity lfmat (degree days) 1350 

GDD needed from bud break to harvest hybgdd (degree days) 2100 

GDD needed from bud break to the fruit ripening phase grnrp (degree days) 640 

GDD needed from bud break to the start of fruit 

development 

grnfill (degree days) 130 

Initial leaf allocation coefficient fleafi (unitless) 0.25 

Maximum canopy height ztopmx (m) 3.65 

Maximum harvest date in the northern hemisphere max_NH_harvest_date (mmdd) 1120 

Maximum LAI laimx (m2 m-2) 2.1 

Maximum rooting depth root_dmx (m) 0.6 

Planting density nstem (# m-2) 0.202 

Ratio of height: radius at breast height taper (unitless) 95 

The slope of the relationship between leaf N per unit 

area (gN/m2) and Vcmax25top (umol CO2/m2/s) 

s_vcad (μmol CO2 s-1 gN-1) 30 

4.2.4.2 Regional case simulations 

A regional model domain, encompassing the entire PHO, was set up at a spatial resolution 

of 1 ha. This resolution was a compromise between accounting for the diverse, patchy 

landscape with small field and orchard sizes (from a few 100 m2 to some hectares) and a 

reasonable computational effort. For the land use information, the database of agricultural 

fields and orchards was combined with the remaining land uses digitized from satellite 

imagery. Since CLM5 allows to define fractional land use in a single grid cell, the overall 

area of individual land use classes was still accurately represented.  
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The slope of the terrain was derived from the EU-DEM. Furthermore, the surface 

parameter defining the depth to bedrock was adjusted based on the minimum (0.27 m) 

and maximum (1.3 m) depths available to roots from the ESDB, which were linearly 

scaled by the slope. In the plain area, the value was set between 10 and 20 m to represent 

the thick alluvial deposits and prevailing free drainage conditions. Lastly, the maximum 

fractional saturated area (𝑓𝑚𝑎𝑥) that controls runoff generation was set to zero for all grid 

cells containing crops due to the deep groundwater table, gentle sloping in the plain, and 

assuming that there are no large saturated areas in the fields and orchards. 𝑓𝑚𝑎𝑥 was set 

to 0.16 in the remaining areas of the catchment as extracted from the global data set. The 

adjusted parameters for apple were used as described in Section 4.2.4.1 while a separate 

parameter set was used for cherries to account for the earlier start of the growing season 

and harvest, and lower productivity as compared to apples. For the sake of consistency, 

parameters for winter wheat and potato were also modified based on Boas et al. [2021] 

with minor adjustments to growing seasons to account for the local climate [Dercas et 

al., 2022; FAO, 2023]. 

For the model spin-up, the available global GSWP3 v1 atmospheric forcing data set 

providing data from 1901 to 2010 at a 3-hourly temporal and 0.5° spatial resolution was 

used [Lange and Büchner, 2020]. The model was spun-up for 720 years until equilibrium 

for soil carbon and nitrogen pools, soil water storage, and other ecosystem variables was 

reached for all land uses in the catchment. For the remaining simulations, the model was 

forced with a 7-year time series obtained from the observational data of meteorological 

stations CS1, CS2 (2016–2022), and CS3 (2018–2022) in the study area as well as from 

the two ATMOS41 stations in orchard S09 and S10 (2021–2022) (Figure 4.1). The data 

was spatially interpolated to the same resolution as the surface data using inverse distance 

weighting. The interpolation of precipitation and temperature included a weighting factor 

for elevation variation using a linear correlation between station elevation and mean 

annual station precipitation and temperature, respectively, as described in Panagoulia 

[1995]. Another short spin-up period of 3 years was performed as the orchards had just 

reached their maximum lifespan before orchard rotation is initiated and new seedlings 

need a couple of years to reach the full productivity level [Dombrowski et al., 2022]. 
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4.2.5 Simulation scenarios 

To assess how well CLM5-FruitTree can represent SM dynamics and crop growth in the 

study area, 1D simulations were first performed in orchards S09 and S10 for the growing 

seasons 2021 and 2022. Two model set-ups were tested: the first used the default CLM5 

irrigation routine with adapted parameterization to approximate the observed irrigation 

schedule, while the second was prescribed with the observed irrigation through the 

irrigation data stream. By directly applying irrigation water to the ground surface, CLM5 

assumes an irrigation efficiency of 100% which is hardly achieved in sprinkler irrigation 

[Gilley and Watts, 1977]. For the irrigation data stream, we thus assumed that only 75% 

of the water volume measured by the hydrometers is reaching the ground surface while 

the rest is lost through evaporation from leaf surfaces, transpiration of the grass cover in 

the orchard alleys, and leakages in the piping system. Modelling results were compared 

to observed SM and tree transpiration at a daily time step as well as crop yield and 

development. Pearson’s coefficient of correlation (r), the root mean square error (RMSE) 

and the percent bias (%bias) were calculated for statistical model evaluation. 

For the regional case, we conducted three simulation experiments to test different 

irrigation scenarios. Regional data on irrigation outside the instrumented orchards S09 

and S10 was not available. Thus, the model was run using the default CLM5 irrigation 

routine with the same parameterization that was used for the point scale simulations, in 

the following considered the full irrigation scenario (FI). Based on this scenario, two 

deficit irrigation scenarios were created for both apple and cherry orchards with 75 and 

50% of full irrigation (DI75 and DI50, respectively) using the irrigation data stream. All 

scenarios were run over the same 7-year period (2016–2022). To investigate the 

differences between irrigation scenarios, multi-year averages and seasonal dynamics of 

irrigation, SM, crop growth or yield, and crop water use efficiency (CWUE) were 

calculated and compared. In this study, CWUE was defined as the amount of yield 

produced per unit volume of water consumed [Ibragimov et al., 2007]: 

 

𝐶𝑊𝑈𝐸 =
𝑌

𝐸𝑇
 (4.5) 

where Y is crop yield in t ha-1 and ET is crop evapotranspiration in mm.
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4.3 Results 

4.3.1 Orchard scale simulations 

4.3.1.1 Soil moisture and matric potential dynamics 

Outside the irrigation season 

Figure 4.3 and Figure 4.4 show the SM time series at 5, 20, and 50 cm depth and SMP at 

20 cm depth for S09 and S10, respectively. The interquartile range (Q25–Q75), calculated 

from 24 measurements (12 nodes with two profiles each) for every depth, shows 

considerable variability in SM, especially in S10 and at 50 cm depth. This reflects the 

high heterogeneity of soil texture and gravel content that was observed during soil 

sampling. When comparing the observed SM dynamics in the two orchards, S09 showed 

4–12 vol% higher SM on average compared to S10 throughout the measurement period. 

The soil textural analysis of both orchards clearly showed a higher clay and organic matter 

content, and lower gravel content in S09 compared to S10 (Table 4.1). Frequent rainfall 

during the winter months (631 and 606 mm in 2021 and 2022 respectively) kept the soil 

close to saturation with average SMP around –8.5 kPa in both orchards. Starting in April 

the soil gradually became drier causing a steep decline in SMP to around –500 kPa (S09) 

and –300 to –400 kPa (S10) by mid-May. The decline resulted from low rainfall amounts 

and increased evaporation demand along with water consumption from the grasses in the 

alleys and the fruit trees. In addition to the observations, the simulation results using both 

the standard CLM5 irrigation routine and the irrigation data stream are shown for the 

corresponding CLM5 soil layers in Figure 4.3 and Figure 4.4. Table 4.4 lists the model 

quality parameters used to evaluate the simulation results. The model simulations outside 

the irrigation season, using either irrigation approach, corresponded well to the observed 

SM in S09. However, in S10, CLM5 overestimated SM in the soil profile by on average 

4.5–7.3 vol%. The observed differences in SM between both orchards were not captured 

by the model where SM values in S10 were only 1–2 vol% higher. In April and May, just 

before the start of the irrigation season, the simulations showed the strongest deviation 

from observed values for both orchards as the soil drying was much less pronounced in 

the simulations. 
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Irrigation season 

In 2021 and 2022, the farmer irrigated every 5–7 days starting mid-May through October. 

Irrigation amounts per event varied strongly and averaged 14 and 25 mm in S09 and S10 

respectively (upper panel of Figure 4.3 and Figure 4.4). Irrigation increased SM by up to 

10 vol% in the top 5 cm and about 5 vol% at 50 cm depth. To represent the observed 

irrigation schedule, the CLM5 irrigation routine can be adjusted in two ways, by (1) 

adapting 𝜓𝑡𝑎𝑟𝑔𝑒𝑡 or (2) tuning the 𝑓𝑡ℎ𝑟𝑒𝑠ℎ parameter. Figure 4.5 shows the effect that 

different values of these two parameters have on several aspects of the simulated 

irrigation (e.g., start of irrigation period, number of irrigation events, irrigation frequency) 

as well as on SM and crop yield. In both cases, a lower parameter value results in a later 

onset of irrigation, fewer irrigation events and lower total irrigation amounts. However, 

the parameters have different effects on irrigation frequency, whereby smaller values of 

𝑓𝑡ℎ𝑟𝑒𝑠ℎ result in less frequent irrigation events while the irrigation volume per event 

increases (Figure 4.5). Changing 𝜓𝑡𝑎𝑟𝑔𝑒𝑡, on the other hand, has little effect on the 

irrigation frequency and volume. SM in the upper 50 cm of soil increases with increasing 

values of both parameters. The increase is exponential for 𝜓𝑡𝑎𝑟𝑔𝑒𝑡 with values ranging 

between 0.195 and 0.275 cm3 cm-3 and almost linear for 𝑓𝑡ℎ𝑟𝑒𝑠ℎ with a somewhat smaller 

range. Consequently, varying 𝜓𝑡𝑎𝑟𝑔𝑒𝑡 has a more pronounced effect on yield compared 

to 𝑓𝑡ℎ𝑟𝑒𝑠ℎ for the investigated range of parameter values. 

For the model run using the standard irrigation routine, we set 𝑓𝑡ℎ𝑟𝑒𝑠ℎ to 0.7 while leaving 

𝜓𝑡𝑎𝑟𝑔𝑒𝑡 at its default value of –34 kPa, which resulted in approximately weekly irrigation 

events of on average 26 mm per event, starting mid-May. This, however, could only 

partially reproduce the observed irrigation schedule and SM dynamics compared to using 

the irrigation data stream. Nevertheless, both irrigation approaches showed fluctuations 

of similar magnitude compared to the observed values in the upper soil. Less dynamics 

than observed were simulated at 50 cm depth for both irrigation approaches and both 

orchards. The wet bias in S10 was still persistent throughout the profile for the simulation 

using the irrigation data stream while simulated SM based on the default irrigation routine 

dropped to the range of observed values (Figure 4.4). 

Simulated and observed total yearly irrigation were similar in S09 with the observed 

effective irrigation being 433 and 458 mm (75% of actual measured irrigation) and 

simulated amounts being 425 and 439 mm for 2021 and 2022, respectively. In S10, 
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observed effective irrigation amounts were considerably higher than in S09, which could 

be expected considering the lower observed SM in S10. Compared to the observed 706 

and 586 mm, for 2021 and 2022, respectively, the model applied only 393 and 388 mm, 

which is a result of the simulated wet bias. 

 

Figure 4.3 The upper panel shows precipitation, and observed and simulated irrigation for orchard S09 in 

mm d-1. The central panels show observed soil moisture (SM) as interquartile range between the 25 th and 

the 75th percentile from 24 measurements, simulated SM using the standard CLM5 irrigation routine and 

the irrigation data stream at 5, 20, and 50 cm depths. The bottom panel shows observed interquartile range 

and simulations using the two irrigation approaches of soil matric potential (SMP) at 20 cm depth for 

orchard S09 for 2021 and 2022. 
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Figure 4.4 The upper panel shows precipitation, and observed and simulated irrigation for orchard S10 in 

mm d-1. The central panels show observed soil moisture (SM) as interquartile range between the 25 th and 

the 75th percentile from 24 measurements, simulated SM using the standard CLM5 irrigation routine and 

the irrigation data stream at 5, 20, and 50 cm depths. The bottom panel shows observed interquartile range 

and simulations using the two irrigation approaches of soil matric potential (SMP) at 20 cm depth for 

orchard S10 for 2021 and 2022. 
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Table 4.4: Pearson’s coefficient of correlation (r), root mean square error (RMSE) and percent bias (%bias) 

for soil moisture (SM) at 5, 20 and 50 cm depth and soil matric potential (SMP) at 20 cm depth in orchards 

S09 and S10 simulated using the irrigation data stream. The first number refers to 2021 and the second 

number to 2022. Statistics were calculated for the whole year and for the irrigation season only (21 th May 

to 25th Sep for 2021; 15th May to 10th Oct and 14th May to 2nd Oct for S09 and S10, respectively, in 2022). 

  S09 S10 

 

Soil 

depth 

(m) 

r 
RMSE 

(vol%) 
%bias r 

RMSE 

(vol%) 
%bias 

W
h

o
le

 y
ea

r
 

2
0

2
1

/2
0

2
2

 

0.05 0.88/0.81 3.97/3.89 13.13/8.18 0.77/0.83 9.55/8.08 50.21/39.89 

0.2 0.88/0.86 3.10/3.23 10.14/9.26 0.75/0.84 8.18/7.68 37.30/35.55 

0.5 0.78/0.80 3.08/3.49 –6.60/–6.63 0.56/0.72 8.06/7.65 37.48/36.13 

SMP 

(kPa) 

0.82/0.63 56.25/89.67 –27.54/        

–37.14 

0.62/0.75 41.65/122.41 –35.44/        

–76.14 

Ir
r
ig

a
ti

o
n

 s
ea

so
n

 

2
0

2
1

/2
0

2
2

 

0.05 0.86/0.74 3.85/3.02 15.47/4.30 0.70/0.83 5.13/8.43 21.13/45.60 

0.2 0.84/0.77 3.00/2.84 10.86/8.10 0.67/0.77 2.3/7.70 4.51/37.32 

0.5 0.48/0.27 3.12/3.74 –6.27/–6.14 0.25/0.45 1.73/7.10 –0.74/33.74 

SMP 

(kPa) 

0.73/0.64 46.61/61.36 –11.08/       

–7.54 

0.65/0.66 52.04/98.86 –81.11/        

–72.95 
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Figure 4.5 Effect of irrigation target soil matric potential (𝜓𝑡𝑎𝑟𝑔𝑒𝑡) and irrigation threshold fraction (𝑓𝑡ℎ𝑟𝑒𝑠ℎ) 

on total irrigation amount (Irr), irrigation starting date (Irr start), number of irrigation events (Irr events), 

irrigation frequency (Irr frequency), irrigation dose per event (Irr dose), soil moisture (SM) at 5, 20, and 50 

cm depth, and yield. Shown are yearly average values for S09 and the year 2016.  

4.3.1.2 Tree transpiration and fruit harvest 

The comparison of measured sapflow with simulated transpiration expressed as water 

consumption per tree is presented in Figure 4.6. Observed sapflow varied significantly 

between different trees resulting in large inter-quartile ranges. The two model runs 

showed no difference in simulated tree transpiration despite the difference in irrigation 

amount and timing. In 2021, CLM5 showed higher values and a slight shift in the seasonal 

dynamic as a result of a too early onset of leaf development compared to the observed 

values (LAIsim in Figure 4.6). Simulated leaf duration and total transpiration agreed well 

with the measurements in 2022. Tree transpiration peaked in July with a measured 

monthly average of 12.5 (2021) and 20.2 L tree-1 day-1 (2022) and simulated values of 

25.1 (2021) and 24.5 L tree-1 day-1 (2022). The better agreement between simulated and 
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observed values in 2022 followed a reinstallation that was performed after partial sensor 

failure and unreliable measurements that resulted in data gaps for the 2021 growing 

season. The 2021 data should therefore be handled with care when interpreting absolute 

values. Simulated maximum leaf area index (LAI) was reached in early July. Full canopy 

cover in the orchards occurred in the second half of June, so slightly earlier, based on 

visual inspection of the phenocam pictures (data not shown). Simulated leaf area and 

hence transpiration fell to zero by December, which broadly agreed with observed 

sapflow and leaf senescence deduced from the phenocam images. 

 

 

Figure 4.6 Whole tree transpiration estimated from the sapflow sensors in orchard S10 together with 

simulated transpiration expressed in liters per tree and day, and simulated leaf area index (LAIsim) for 2021 

and 2022. 

Generally, fruit harvest in the orchards was performed between 17th of August and 30th 

of October in a first and second harvest for most varieties. Due to very low apple quantity, 

harvest in 2022 occurred in a single harvest between 1st Sep and 15th Nov depending on 

variety. Simulated harvest in 2021 occurred on 12th and 18th Sep for S09 and S10 

respectively, and a few days earlier in 2022. The two simulation runs using either the 

adapted CLM5 irrigation routine or the irrigation data stream showed no difference in 

harvest amounts. In 2021, simulated yield was close to the observed values while the 

exceptionally low yield in 2022 was not captured by the simulations (Table 4.5). Visual 

inspection of the phenocam images showed significantly less flowers on the trees in 2022 

compared to 2021 (data not shown). No extreme weather conditions were observed during 

the winter 2021/2022 that could explain the reduced flowering. Other possible reasons 

for the low number of flowers and hence low yield in this year may be related to alternate 

bearing of the varieties or other factors (e.g., plant physiology or traits, pest and disease 

or certain management practices) that are not included in the model. 
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Table 4.5: Observed and simulated apple yield in t ha-1 for orchards S09 and S10 for 2021 and 2022. 

 Yield in S09 (t ha-1) Yield in S10 (t ha-1) 

Year obs sim obs sim 

2021 44 47 47 51 

2022 16 49 11 50 

 

4.3.2 Regional simulations  

4.3.2.1 Irrigation signature in the PHO  

Figure 4.7 shows simulated seasonal mean SM and sum of evapotranspiration (ET) within 

the PHO averaged over the 7-year period. Depicted values represent grid cell averages, 

meaning they are the weighted average of all land uses in a given cell. During the winter 

months and into spring, SM is high throughout the catchment, but with a declining 

gradient along the North-South axis from the mountainous part down to the plain. ET in 

the catchment is low during winter but starts to increase in spring, revealing a discernible 

pattern attributed to differences in land use (Figure 4.1). During the summer months, ET 

reaches its peak, displaying a distinct irrigation signature with significantly higher ET 

values of 293 mm on average over irrigated land, as opposed to 214 mm on average in 

the rest of the catchment. The pattern persists throughout autumn and is also evident in 

summer and autumn SM, albeit less pronounced due to the lower productivity of rainfed 

vegetation, resulting in reduced water uptake from the soil. The subsequent analysis will 

focus exclusively on the irrigated land, more specifically on apple orchards, as they 

account for 91% of the total irrigated area. 
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Figure 4.7 Seasonal mean soil moisture, and evapotranspiration sums in the PHO catchment, averaged over 

the period 2016–2022. 

4.3.2.2 Simulated spatial patterns  

Figure 4.8 shows average and standard deviation of the 7-year simulation period for 

irrigation, SM, yield, and CWUE for all apple orchards in the PHO, between 2016 and 

2022. Modelling results show a clear spatial pattern that is driven by climatic conditions 

following the topographic gradient (Figure 4.1) on the one hand and soil characteristics 

on the other hand (Figure 4.2). Average yearly irrigation requirements range between 400 

and 450 mm in the plain. The highest values are found in the southeast while considerably 

lower values occur at higher altitudes in the northern part of the catchment (< 200 mm). 

Harvest values show a similar pattern because cooler temperatures and lower incoming 

radiation in the northern part of the catchment result in lower crop productivity and thus 

smaller yields (16–38 t ha-1) compared to the plain where yields are around 50 t ha-1 

without much spatial variability. In addition to lower crop productivity and thus lower 

crop water demands, spatial variability in irrigation requirements results from the higher 

precipitation in the upper parts of the catchment that further reduces the need for irrigation 

as well as soil textural differences. The latter is most evident in the southern part of the 

catchment where the higher clay content and the consequently higher water holding 
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capacity of the soil result in increased evaporation (not shown). This in turn generates a 

greater irrigation demand resulting in slightly lower CWUE of orchards planted on these 

soils. Soil textural differences are also reflected in the SM plot where areas with a higher 

percentage of clay or organic matter show higher SM values than areas with sandier soils 

or soils that are lower in organic matter. CWUE ranges from 57–65 kg ha-1 mm-1 in the 

plain to 35–45 kg ha-1 mm-1 in the northern part of the catchment and largely reflects the 

spatial patterns of irrigation and harvest whereby high irrigation requirements and low 

harvest lead to low CWUE. Inter-annual variability (standard deviation plots) within the 

catchment shows similar patterns for irrigation, harvest, and CWUE and is higher in the 

northwestern part of the catchment. The higher variability was driven by local 

temperature differences in some years that delayed the onset of the growing season up to 

14 days compared to the remaining orchards. Inter-annual variability of SM is generally 

low without a distinct spatial pattern. 

 

Figure 4.8 Mean and standard deviation (SD) of average yearly irrigation, soil moisture in the root zone 

(0–60 cm), harvest, and crop water use efficiency (CWUE) for apple orchards within the PHO between 

2016–2022 under full irrigation (FI).
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4.3.2.3 Effect of irrigation deficit scenarios 

The effect of deficit irrigation on total irrigation amounts, harvest, and CWUE of apple 

orchards in the PHO for the moderate irrigation deficit scenario, DI75, and the more 

severe deficit scenario, DI50, are shown in Figure 4.9. Yield differences between the FI 

and the DI75 scenario are almost negligible, ranging from a decline of maximum 3 t ha-1 

(5%) to even slight increases in yield. However, the DI50 scenario resulted in a clear 

decline of simulated yield with up to 12 t ha-1 corresponding to a 30% reduction in yield 

compared to the FI scenario. Nonetheless, orchards located at high altitudes and in the 

southeast on clay-rich soils are still barely affected by the higher water deficit (< 5% 

decline in yield). Overall, annual water savings are highest in the plain, averaging 100–

125 mm for DI75 and 210–250 mm for DI50. CWUE shows a differing pattern between 

both scenarios. While in DI75, CWUE declines slightly in the central part of the plain by 

around 1 kg ha-1 mm-1 (2%), there are large areas that show an increase in CWUE of 

similar magnitude. The decline in CWUE is concentrated on the orchards growing on 

soils with a high percentage of sand. For DI50, on the other hand, CWUE is almost 

exclusively showing a decrease of up to 8.8 kg ha-1 mm-1 (17%), though again CWUE for 

orchards in the higher altitudes and the ones located on soils with higher clay content are 

less affected. 
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Figure 4.9 Absolute and relative differences in irrigation amount, harvest, and crop water use efficiency 

(CWUE) between the full and the 75% irrigation scenario (DI75-FI), and the full and 50% irrigation 

scenario (DI50-FI) for apple orchards within the PHO during the period 2016–2022.  
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4.3.2.4 Irrigation and yield at the inter-annual and monthly scale 

Yearly irrigation amounts, precipitation during the main irrigation season, and harvest 

averaged for all apple orchards in the PHO are shown in Figure 4.10. For the investigated 

7-year period, irrigation ranges between 297 and 487 mm while precipitation is around 

167–322 mm from May to October. Differences in precipitation drive the inter-annual 

variability in irrigation requirements whereby drier summer months, such as 2019–2022, 

result in higher irrigation demand compared to wetter years. Yield ranges between 32 and 

55 t ha-1, with 2019 and 2020 being the years with the highest yields due to favourable 

meteorological conditions (high solar radiation and temperature). Notably, the effect of 

deficit irrigation on yield is strongest in these two years reducing yield by > 12 t ha-1 for 

the DI50 scenario. In contrast, both the DI75 and DI50 scenario have negligible effect on 

yield in the first three simulation years. 

 

Figure 4.10 Yearly sum of precipitation during the main irrigation season (May-Oct), irrigation, and harvest 

averaged over all apple orchards within the PHO from 2016 to 2022, under full irrigation (FI) and the 

difference for the 75% and the 50% deficit irrigation scenarios (DI75 and DI50). 

Figure 4.11 shows the seasonal course of irrigation, precipitation, and fruit growth in the 

apple orchards averaged over the PHO and the 7-year period. The simulated irrigation 

season starts in April or May and lasts until October with negligible amounts still applied 

in November for some years. Monthly irrigation requirements increase sharply between 

April and June until reaching their peak in August with on average 107 mm per month. 

Accordingly, August is also the month in which the greatest water savings occur for the 

deficit scenarios. After that, irrigation declines rapidly. Fruit biomass increases steadily 

from April to harvest in September with faster growth occurring in the earlier months. 

While fruit growth is barely affected by a 25% reduction in irrigation (DI75), for the DI50 

scenario it decreases sharply in August and to a smaller extent in July and September. 
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The reduced fruit growth results in a yield loss of on average 0.5 t ha-1 for DI75 and 6.5 

t ha-1 for DI50. 

 

Figure 4.11 Seasonal pattern of monthly precipitation, irrigation, and fruit biomass averaged over all apple 

orchards within the PHO and the period 2016–2022, under full irrigation (FI) and the difference for the 

75% and the 50% deficit irrigation scenarios (DI75 and DI50).

 

4.4 Discussion 

4.4.1 Evaluation of the CLM5 irrigation routine 

The direct comparison of simulated SM dynamics to observed SM from a dense sensor 

network in two irrigated orchards gave valuable insights into model performance. Our 

findings demonstrate that the standard CLM5 irrigation routine lacks the necessary 

flexibility to represent specific irrigation practices observed in the orchards. Simulated 

crop growth and transpiration at the orchard scale were not sensitive to the difference in 

irrigation amount and timing between the two model runs using the standard irrigation 

routine and the implemented irrigation data stream respectively. However, as differences 

between the simulated and actual irrigation practices increase, the effects may become 

more important especially considering runoff generation or sensible and latent heat fluxes 

that were not analysed in this study. Similarly, if the irrigation is limited so that the crop 

experiences some degree of water stress, the timing of irrigation may become more 

important. This could be further tested by applying different irrigation schedules under 

various amounts of irrigation using the irrigation data stream. 

Prior studies using the irrigation module in CLM were limited to calibrating the target 

SM or adjusting the irrigation threshold fraction to match gross irrigation requirements 

reported at the country or regional level, or performed no calibration at all [Felfelani et 

al., 2018; Leng et al., 2015; Leng et al., 2013; Zhu et al., 2020]. The model, however, 
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does not currently consider restrictions on irrigation schedule, over irrigation, or irrigation 

efficiency that significantly affect gross irrigation requirements as our results revealed. 

The newly implemented irrigation data stream can be used to overcome some of these 

limitations by prescribing crop and farmer specific irrigation schedules and amounts. This 

allows investigating the irrigation-induced effects on e.g., crop yield, SM, or carbon and 

energy fluxes under observed irrigation practices and can help to identify existing model 

biases by removing one possible source of uncertainty. While the use of the irrigation 

data stream at larger scale is currently hampered by the limited availability of precise 

information on irrigation practices in most areas [Felfelani et al., 2018], it can serve as a 

valuable tool to investigate the modelled effect of different irrigation schedules and water 

availability scenarios. This can offer a basis and direction for further developments of the 

irrigation routine that are necessary for a more realistic representation of irrigation 

management practices [Yao et al., 2022]. 

4.4.2 Model uncertainties and limitations of this study 

4.4.2.1 Parametric uncertainty 

SM dynamics outside the growing season were well reproduced by CLM5, indicating that 

the model was able to capture infiltration and soil water redistribution in the studied 

orchards. However, the significant SM bias in S10 suggests structural and parametric 

uncertainty in the estimation of soil hydraulic properties, probably due to inappropriate 

pedotransfer functions implemented in CLM5 [Han et al., 2015]. Gao et al. [2021] found 

that poor performance of CLM5 in reproducing observed root zone SM was mainly due 

to uncertainty in porosity estimates. In addition, a high content of rock fragments, which 

is typical of many Mediterranean soils [Nijland et al., 2010; Poesen and Lavee, 1994; 

Zalidis et al., 2002], can strongly influence the SM regime through non-linearity in soil 

hydraulic conductivity and by reducing the soils’ effective porosity [Angulo‐Jaramillo et 

al., 1997]. For this reason, most pedotransfer functions fail to correctly reproduce the 

hydraulic properties of stony soils [Nasri et al., 2015], which likely led to biases in 

simulated SM in S10. Further investigation of the results would be needed to confirm this 

hypothesis, e.g. data assimilation of observed soil variables could be used to optimize soil 

hydraulic parameters [Strebel et al., 2022]. In both orchards, the simulations showed a 

lower simulated SM dynamic in 50 cm depth, which could be the result of uncertainties 

in the rooting distribution and thus root water uptake within the soil profile. The current 
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parameterization of the vertical discretization of root fraction results in a rather shallow 

profile while deeper roots may still contribute to root water uptake in the studied orchards. 

Shrestha et al. [2018] encountered a similar issue when analyzing root zone SM on a 

grassland site using CLM3.5 and were able to improve simulated SM dynamics by 

increasing the root fraction in deeper layers. This may help to improve the simulated SM 

dynamics at 50 cm on our study sites. 

The sensitivity experiments performed using two parameters of the CLM5 irrigation 

routine (Figure 4.5) and the results from the irrigation scenarios revealed relatively low 

sensitivity of crop yield to reduced irrigation (Figure 4.9). The new plant hydraulics 

introduced by Kennedy et al. [2019] advanced the physical basis for hydraulic stress in 

the model, but there is large uncertainty in its parameterization and in capturing the 

relationship of plant water stress and SM deficit for different crops. To better quantify the 

model performance and find the most suitable parameters for apple orchards, comparison 

of simulations to observations from stressed and non-stressed crops would be necessary. 

Additionally, sensitivity analysis of plant hydraulic parameters, which was out of the 

scope for this paper, could help to better constrain these model parameters. 

4.4.2.2 Crop representation 

The PHO catchment is characterized by a diversity of small-scale farm holders resulting 

in considerable heterogeneity in management practices, which cannot be fully captured 

by the model. While simulated yield was close to observations during a “good” year for 

the point-scale simulations, according to Mattas et al. [2019] average Greek apple 

production in 2016 was only ~23 t ha-1. This suggests a great variability in orchard 

productivity, apple cultivars, or type of end product (e.g. apples for direct consumption 

or for juice) which would necessitate the inclusion of additional crop types and 

management practices in CLM5. In striving for global applicability, CLM5 and other 

LSMs face constraints in computational resources and often insufficient observational 

data to parameterize additional crop types, which results in biases in certain regions, while 

others are more accurately represented [Lombardozzi et al., 2020]. In our case, the model 

demonstrated a strong correlation of yield and irrigation with the climatic gradient 

induced by the topography in the PHO, indicating a high sensitivity to model forcing data. 

The large simulated differences in yield between orchards in the plain (~50 ton ha-1) vs. 

the higher altitudes (as low as 16 ton ha-1) may however be exacerbated, as CLM5 
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employs a single set of parameters for a given crop across diverse geographies and 

climates. In reality, various cultivars of the same crop type, along with plant physiological 

adaptations to their environments, can lead to comparable productivity levels despite 

variations in climatic conditions. This phenomenon is evident in the cultivation of 

numerous crops, including apples, across climates on a global scale [Sherman and 

Beckman, 2002]. The issue has been addressed by Lombardozzi et al. [2020] who 

recommended further developments in CLM5 to improve phenological triggers and 

agricultural management, and to include different cultivars. In the future, the 

incorporation of additional satellite-derived crop data, advanced parameterizations, or the 

use of crop calendars to constrain these models may help reduce some of the biases 

[Pongratz et al., 2018; Yao et al., 2022; Zhang et al., 2020].  

At the orchard scale, we found discrepancies between observed and simulated SM during 

the growing season that suggest limitations specific to the current representation of 

orchards. As CLM5 does not allow intercropping, the actively growing grass cover in the 

orchard alleys is not included in the CLM5-FruitTree sub-model [Dombrowski et al., 

2022]. Consequently, our simulations do not account for the additional root water uptake 

and transpiration as well as interception of the irrigation water from the grasses. The 

former may explain the smaller simulated decline in SM early in the season compared to 

the observations, while we considered the latter to some extent by assuming a reduced 

irrigation efficiency. In doing so, we did however neglect the additional ET flux. Yao et 

al. [2022] developed and tested different irrigation techniques in CLM5 and found an 

increase in canopy evaporation through increased interception for their implementation 

of sprinkler irrigation. However, the overall impact on ET and total applied irrigation 

remained small compared to the control run using the standard CLM5 irrigation. More 

importantly, accounting for conveyance and application losses would increase the 

simulated irrigation amount and could lead to more realistic irrigation values [Yao et al., 

2022]. 

Despite these limitations, and though we could not validate the simulation of crop yield 

and irrigation requirements in the PHO catchment due to the lack of observational data, 

the reasonable modelling results at the orchard scale give some confidence in the 

robustness of the regional simulations. 



 4.4 Discussion 

123 

 

4.4.3 Implications for irrigation management 

We studied the relationship between crop yield and water use efficiency, and irrigation at 

the regional scale, as it is determinant for a reasonable allocation of irrigation water 

according to crop needs. For most part of the PHO, CWUE and yield were little affected 

when irrigation was reduced to 75%, suggesting that this scenario lies closer to the 

optimal irrigation that maximizes yield while minimizing water consumption as opposed 

to the FI scenario. These results are similar to a study by Li et al. [2018] who used CLM 

to schedule irrigation in a citrus orchard in Spain which resulted in 24% less irrigation 

compared to the farmers’ practices. This could indicate that farmers irrigate too much 

when water is available and water prices are low [Latinopoulos, 2005]. Simulated apple 

yield was sensitive to a reduction of 50% of the applied irrigation water causing up to 

30% decline in yields. The effect, however, varied with different meteorological 

conditions and soil types within the PHO. At higher altitudes, cooler temperatures and 

lower incoming radiation rather than water scarcity limited crop growth. Irrigation in 

these orchards could thus be greatly reduced without negatively affecting yield. 

Moreover, under the same climatic conditions, orchards growing on soils with a higher 

percentage of clay (southeastern part of the catchment) could maintain similar yield and 

CWUE under 50% reduction in irrigation water because of the greater water holding 

capacity of the soil. This will make orchards growing on these soils less prone to 

experience water stress. The effect of deficit irrigation on fruit growth and yield varied 

between years and throughout the growing season. Years with high productivity and 

greater dependence on irrigation (due to low rainfall) showed greater yield loss under 

deficit irrigation (Figure 4.10). At the seasonal scale, fruit growth showed the highest 

reduction in August followed by July and September (Figure 4.11). This was mainly an 

effect of higher temperature, little rainfall, and larger leaf area that resulted in high 

irrigation requirements in this month. Apples, similarly to other crops, show different 

susceptibility to drought stress depending on their growth stages whereby flowering and 

fruit set as well as fruit development and maturation are highly susceptible to drought. 

The latter stage falls within the period July to September where the model showed the 

largest reduction in fruit growth. While the simulated plant water stress is currently linked 

to environmental conditions rather than capturing plant physiological differences in this 

stage of growth, it suggests that under limited water conditions, irrigation should be 

prioritized during these months to maintain reasonable yields.  
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4.4.4 Perspectives for further application and model development 

The analysis performed in this study displays the current ability and potential way forward 

of applying CLM5 for irrigation and water resources management at various scales. 

Prospectively, future applications and research studies should focus on the improvement 

of input data sets, crop and irrigation parameterizations, and process representation. Input 

related improvements include the creation of high-resolution climate and land use 

information, especially crop types and the extent and type of irrigation. Our results clearly 

showed how climate and environmental heterogeneity (e.g., topography, land use, soil 

properties) can greatly affect total crop water requirements, emphasizing the need for 

spatially explicit modelling for large-scale applications. Model investigation at the 

orchard scale revealed the importance of soil and crop-specific parameterization to 

correctly represent SM and phenology dynamics, and harvest time. Extending simulations 

to larger scales will thus require further improving soil hydraulic parameterization 

through improved pedotransfer functions [Vereecken et al., 2022] or parametrization of 

soil hydraulic properties through data assimilation approaches [Han et al., 2014]. 

Furthermore, information on crop management and improved differentiation between 

different crop varieties and cultivars (e.g. different growing seasons and harvest of cherry 

compared to apple trees) is necessary, as these can result in distinct irrigation seasons and 

amounts. Concerning irrigation, this could include either crop-specific or spatially 

explicit values for irrigation parameters that are currently the same for all irrigated crops, 

hence not reflecting different management strategies or susceptibilities to water stress. 

Lastly, some processes could be refined or added to represent irrigation requirements 

more realistically. These include a parameterization of irrigation efficiency, water 

availability considerations and more flexible irrigation schedules that can be tailored to 

represent typical field practices. Conducting parallel testing and assessment of future 

developments covering greater spatial and temporal scales (e.g. in the form of long-term 

observatories) will be crucial, especially as more accurate irrigation data becomes 

available.
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4.5 Conclusions 

This study assessed the ability of the CLM5-FruitTree sub-model to represent irrigation 

practices in fruit orchards in a small Mediterranean catchment and explored the effects of 

different irrigation scenarios on simulated yield and CWUE. The standard CLM5 

irrigation routine could not accurately reproduce observed irrigation practices, which 

motivated the implementation of an irrigation data stream that directly prescribes 

measured irrigation data. Using this irrigation data stream, observed SM dynamics in the 

two studied apple orchards were well captured by the model. We did however find some 

discrepancies between observed and simulated SM, transpiration, and yield that were 

related to uncertainties in soil hydraulic parameters and limitations in the crop 

representation, which does, for instance, not account for the active grass cover growing 

in the alleys.  

To examine the potential to improve regional irrigation management using CLM5, we 

simulated different irrigation scenarios and analyzed their effect on crop yield and 

CWUE. The model showed distinct effects of deficit irrigation on yield and CWUE for 

scenarios with 25% and 50% reduction in irrigation (DI75 and DI50, respectively) that 

were tested using the irrigation data stream. While DI75 had negligible negative effect on 

yield and CWUE, DI50 notably reduced both yield and CWUE. Based on the modelling 

results, this would suggest substantial water savings of up to 125 mm year-1 with little to 

no effect on apple yields and up to 250 mm year-1 when accepting up to 30% reduction 

in yield (although potential effects of fruit quality need to be considered as well). These 

effects varied depending on climatic conditions, soil type, and timing of irrigation. Hence, 

under limited water availability, irrigation should primarily focus on the summer months 

July to September and on sandy soils with lower water holding capacity. 

The outcomes of this study demonstrate the potential use of CLM5 in irrigation and water 

resources management research and applications. Future research efforts should focus on 

improving soil and crop parameterizations, and as well as process representation. Finally, 

we anticipate that implementing more realistic irrigation schedules in land surface models 

such as CLM5 will allow for better water resource management at the local and regional 

level.   
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5 Synthesis 

 

In the face of increasing water scarcity in the Mediterranean and other arid and semi-arid 

regions, tools to effectively determine crop specific irrigation requirements are crucial to 

sustain agricultural production and to guide irrigation and water resources management 

decisions. To achieve this a multifaceted approach is needed that involves: 

• Affordable measurement technology that can provide comprehensive, high-

resolution environmental data on climate, soil, and vegetation.  

• Physically-based, fully distributed predictive models that accurately represent 

agricultural systems and the effect of irrigation management on yield, water 

resources, and other components of the terrestrial system.  

In the following synthesis, the contribution this thesis has made to both of these 

components is summarized and promising directions for further research are discussed. 

Lastly, potential applications for different aspects of irrigation and water resources 

management at the field scale and beyond are explored. 

 

5.1 Towards high-resolution climate data using low-cost 

sensors  

High-resolution climate data is critical to improve the resilience and sustainability of the 

agricultural sector. This is especially important in light of more frequent and intense 

weather extremes related to climate change that decision-makers will be confronted with. 

The evaluation of a low-cost all-in-one weather station demonstrated that this type of 

sensor can deliver reliable and timely observations of local microclimatic conditions. As 

such, it is well suited for application in precision agriculture to promote water 

conservation, tailor management decisions to crop needs, and reduce the risk of crop 

failure through early warning systems. The potential of all-in-one weather stations to 

increase data availability and resolution in data-scarce, remote, and heterogeneous 

regions, and under budget constraints will benefit the quality of local and regional 
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modelling and a range of applications. These include water resources management 

[Jencso et al., 2019], weather forecasting [Hewage et al., 2020], early warning systems 

for flood prediction [Ibarreche et al., 2020; Nikolić et al., 2022], and urban planning 

[Bassett et al., 2016; Šećerov et al., 2019], which are of importance not only to farmers 

but also to policy-makers, industries, and the general population. In any case, reliability 

and accuracy of the deployed sensors should meet the needs of the intended purpose, as 

this work also revealed that data from low-cost weather stations are associated with higher 

uncertainties compared to that of high-end measurement devices. This can have important 

implications for instance regarding their use in extreme weather research. Here, current 

design, size, or sensor quality may not be well fit to deliver reliable measurements under 

strong winds, heavy rain, or solid precipitation. 

 

5.2 Towards improved process-based modelling of 

agricultural systems 

In conjunction with environmental data, process-based models are increasingly being 

used for the simulation and sustainable management of agricultural systems. However, 

crops in such models are often not sufficiently differentiated or rather certain crop types 

are not considered at all [Blyth et al., 2021; Lombardozzi et al., 2020; Peng et al., 2020]. 

Consequently, systems with diverse crops and agricultural practices, e.g. the 

Mediterranean that is largely characterized by permanent crops (e.g. fruit trees), are 

poorly represented. In this work, the widely used global LSM CLM5 was extended by a 

component that enables the consideration of apple orchards (CLM5-FruitTree). By 

capturing the prolonged growing season, permanent woody biomass, and typical 

management practices of fruit trees, CLM5-FruitTree offers new possibilities to address 

relevant research questions in Mediterranean agricultural catchments or other fruit 

growing regions. Particularly, the impacts of land use and climate change on crop 

production and crop water requirements in the Mediterranean can be investigated more 

reliably. This kind of analysis can reveal potential shifts in crop phenology and changes 

in water demand or suitable growing areas for fruit trees, which can have important 

implications for food security [Fader et al., 2015]. Another topic that could be addressed 

with the model development is the potential of orchards to sequester C and help mitigate 

climate change impacts [Sharma et al., 2021; Wu et al., 2012]. This potential depends on 



 5.2 Towards improved process-based modelling of agricultural systems 

129 

 

orchard age, biomass production, and management, as well as climatic conditions which 

could be jointly investigated with CLM5-FruitTree. 

There is a number of additional model developments that can be envisaged to further 

improve the simulation of fruit orchards. Some of these improvements involve additional 

refinements of the new crop model routine. One model weakness that should be resolved 

is the failure to capture the inter-annual yield variability of fruit trees, as accurate yield 

prediction is essential for farmers as well as policy makers to maximize economic profit 

and reduce losses. This could potentially be addressed by adding parameterizations of 

alternate bearing and flowering, both of which greatly affect final yield. The resource 

budget model for alternate bearing, first introduced by Isagi et al. [1997], could present 

a possible approach in this direction. It assumes that flowers are only produced once C 

reserves exceed a certain threshold which could be integrated into the existing C reserve 

dynamics in CLM5-FruitTree. Another aspect of yield which is currently not accounted 

for is fruit quality, which plays an important role in fruit production. Coupling or 

integration of a dedicated fruit tree model such as QualiTree that includes the effect of 

management on fruit quality could be explored in this context [Lescourret et al., 2011; 

Miras-Avalos et al., 2013]. Moreover, the options for crop management could be further 

extended to include their effect on C and water fluxes in the orchard. For instance, 

mulching is widely used in semi-arid and arid environments for annual crops 

[Chakraborty et al., 2008] as well as fruit orchards [Liao et al., 2021; Liu et al., 2014]. In 

CLM5-FruitTree, the effect of mulching was only crudely considered by adding more C 

to the soil in the form of pruned biomass but did not include its effect on soil water 

retention and evaporation. To account for this, two recent studies could be explored that 

have incorporated a (plastic) mulch layer into a surface energy balance model and a LSM, 

which allowed to examine its effect on surface energy fluxes and ET [Ochege et al., 2022; 

Yuan et al., 2019].   

Certain other model improvements necessitate more substantial changes to the model 

structure or physics but could significantly advance the representation of the true land-

surface heterogeneity and pave the way towards the modelling of more complex 

vegetation structures. One of these improvements concerns the partitioning of energy and 

the transfer of heat and water within different canopy structures. The current assumption 

of a closed canopy, typical for annual crops, needs to be revisited to reduce uncertainties 

in the simulation of energy balance and water cycle in fruit orchards or other 
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heterogeneous canopies. Under water-limited conditions this is especially important to 

accurately determine crop water requirements [Gao et al., 2020; Ma and Liu, 2019]. A 

possible way forward may be the explicit modelling of different surfaces as proposed by 

Blyth et al. [2021] or an advanced multi-layer canopy model to improve sub-canopy 

processes as tested by Ma and Liu [2019]. Another major topic involves the types of 

planting systems that can be represented in CLM5. Currently, only homogenous annual 

cropping systems are modelled that differ significantly from orchard systems where tree 

rows alternate with alleys, which are often covered by weeds or cover crops. 

Implementing such intercropping or mixed cropping systems in CLM5 would improve 

the simulation of C and water fluxes and could furthermore create opportunities to extend 

the model towards the simulation of agro-forestry and other diversified cropping systems. 

Such systems could regain more relevance as they can support soil water retention, C 

sequestration, biodiversity, and food security [De Stefano and Jacobson, 2018; Debaeke 

et al., 2017]. In their review, Hernández-Ochoa et al. [2022] identified several agro-

ecosystem models that can represent such systems to a certain extent and which could 

serve as a basis for this kind of development in CLM5.  

Any process-based model used to simulate the Mediterranean agricultural system needs 

to consider irrigation as a critical management practice to meet crop water requirements. 

While the land modelling community has recognized irrigation as an important driver of 

change in the water cycle and other processes occurring at the land surface, it is still not 

accurately accounted for in most LSMs. Therefore, the final part of this work focused on 

assessing and improving the representation of irrigation in the context of field-scale and 

regional irrigation management in fruit orchards using CLM5-FruitTree. Local weather 

data and parallel observation of SM and irrigation at the field scale were essential to 

quantify the model performance after making site-specific adjustments to soil, crop, and 

irrigation parameterizations. The models’ ability to approximate observed irrigation 

quantities depended on how well root zone SM and water movement was simulated 

throughout the soil profile. Furthermore, it became evident that additional flexibility in 

the irrigation routine is necessary to represent farmers’ irrigation practices. A confident 

validation of the total crop water requirements proved more challenging as only a part of 

ET was observed using sapflow measurements that were additionally associated with a 

large measurement uncertainty. At catchment scale, the explorative analysis of different 

irrigation scenarios gave interesting insights into expected yield and CWUE under 
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varying irrigation amounts, and the additional role of soil and climate in driving the 

magnitude of the effect of reduced irrigation. Overall, this analysis showed that CLM5 

could produce relevant information to advice farmers, water authorities, and policy 

makers in irrigation management at different scales. Additional simulations with 

projections of future climate conditions can furthermore shed light on how water 

consumption will likely develop. Together with a more flexible irrigation routine that 

considers different irrigation techniques and strategies, irrigation management could be 

optimized to ensure high yields while minimizing water consumption.  

Towards the use of CLM5 for these applications, uncertainties that are related to model 

processes and parameterizations need to be addressed. This is critical to ensure crop water 

requirements and irrigation amounts can be predicted accurately. For instance, there is 

large uncertainty associated with the parameters used to describe plant hydraulic stress 

(PHS routine) which are currently generic for all crops in CLM5. An initial assessment 

of the current parameterization suggested a generally low sensitivity of crops to water 

stress. It is, however, well established that different crops and crop varieties react 

differently to water stress and levels of SM depletion [Budak et al., 2013; Chaves et al., 

2003]. Consequently, the model may not accurately represent stressed conditions for a 

particular crop, which limits its ability to determine optimal irrigation amounts or assess 

the trade-off between yield loss and water savings under various deficit irrigation 

scenarios. This also adds ambiguity to the calibration of the SM threshold parameter to 

trigger irrigation, as crop- and growth stage specific differences regarding the optimal 

threshold are most likely not well captured. Enhancing calibration efforts for these 

parameters will therefore be critical. Furthermore, some authors have suggested the 

implementation of more advanced approaches to better represent plant stress for different 

plant types. Verhoef and Egea [2014] suggested to combine plant and soil hydraulics with 

chemical signalling instead of a water stress factor that is calculated based on SMP, as it 

is currently used in CLM5. Another approach may be to additionally incorporate leaf 

water potential for an improved plant stress representation [Kennedy et al., 2019]. 

Another issue, which was not yet discussed in this work is the simplified root profile 

representation in LSMs, which was found to introduce considerable uncertainty in root 

water uptake simulations [Canal et al., 2014; Zeng, 2001]. For example, Zeng [2001] 

showed that the one-parameter equation used for the rooting profile in CLM5 resulted in 

a too shallow rooting profile, which could explain some of the observed SM biases in the 
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deeper soil layers. Addressing such model uncertainties will be relevant when evaluating 

deficit irrigation strategies or the need for irrigation in fields that are partially or entirely 

rainfed. In fact, under such conditions, crops can develop extensive root systems to tap 

deep soil water or shallow groundwater, particularly perennial crops [Vico and Brunsell, 

2018]. Different approaches using a two-parameter equation [Zeng, 2001] or uniform 

instead of exponential root profiles [Stevens et al., 2020] have been suggested next to 

upscaling a 3D hydraulic root architecture model [Vanderborght et al., 2021], and should 

be further explored to improve root profile representation in CLM5. 

Future model developments to improve the representation of agricultural systems and 

irrigation in LSMs such as CLM5 are driven by a diverse user community including crop 

modellers, hydrologists, climate scientists, ecologists, and many others. Such 

community-based model development greatly benefits from a multidisciplinary 

knowledge base but also faces challenges to integrate the various spatiotemporal scales 

that are targeted by different groups of researchers [Blyth et al., 2021; Peng et al., 2020]. 

Another difficulty comes with finding parameters for the static global parameterization 

that is used for crop and irrigation parameters in CLM5, as developments are often made 

for a specific region and dataset, and cannot be easily adapted to the global scale. The 

development of CLM5-FruitTree is no exception to this, as despite the comprehensive 

dataset, the geographic scope and timeframe were limited considering only a few seasons 

and a single location. Lombardozzi et al. [2020] therefore proposed that future model 

developments should focus on moving to spatially varying parameterizations instead of 

global parameters to better represent regional differences and crop adaptations to their 

environment. The crop calendar developed by Rabin et al. [2023] or the implementation 

of spatially explicit irrigation parameters could improve the models accuracy and/or 

flexibility to capture such differences in crop growing season and irrigation management, 

respectively. Either way, there is a great need for spatially continuous data concerning 

soils, crops, irrigation amounts, or water withdrawal for model calibration and validation 

across different scales [Blyth et al., 2021; Gibson et al., 2017; Pongratz et al., 2018]. At 

the same time, the data should be available at a sufficient resolution (i.e. < 1 km) to 

produce results that are relevant for individual farmers and local authorities. Therefore, 

efforts to obtain the necessary data need to be continued and intensified. These may 

include the combined use of high-resolution satellite datasets and machine learning 

algorithms to retrieve irrigation extent and amount [Dari et al., 2022; Zappa et al., 2021], 
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land cover [Li et al., 2022], crop phenology [Gao and Zhang, 2021], or yield estimates 

[Hunt et al., 2019]. Moreover, long-term in-situ observations from new shared research 

infrastructures such as eLTER [Mirtl, 2018] and ICOS [Heiskanen et al., 2022] as well 

as existing environmental observatories (see Section 1.1.4) are valuable sources of 

distributed data (e.g., atmospheric, ecosystem, biological, soil parameters). Finally, the 

expansion of non-traditional data sources from the rapidly developing smart farming and 

citizen science movements, and private sensor networks may be used for model input, 

calibration, and validation at improved spatiotemporal resolution in the future [Fraisl et 

al., 2022; Reis et al., 2015; Tsai et al., 2021]. 

Such joint efforts in model development and calibration could enable the application of 

LSMs such as CLM5 for different aspects of irrigation and water resources management 

across a range of spatiotemporal scales. In the following, some possible applications in 

this context are explored that build on the potential of LSMs such as CLM5 as tools for 

research and decision-making.

 

5.3 Operational field-scale irrigation scheduling using CLM5 

Effective irrigation scheduling is one potential way to minimize water wastage while 

ensuring optimal yield for the farmer. Further developing the existing model application 

at field scale into an operational tool for irrigation scheduling in a smart farming context 

could therefore be a promising extension of this work. Because irrigation in CLM5 is 

based on SM, determining the optimal irrigation amount necessitates, above all, an 

accurate representation of SM conditions.  

To improve field-scale SM simulations a data assimilation framework could be applied 

in fields were SM is being monitored continuously. Data assimilation of SM can improve 

model simulations through the update of the models’ SM state and the optimization of 

relevant model parameters, in this case, soil hydraulic parameters [Reichle et al., 2007; 

Strebel et al., 2022]. In addition, estimates of uncertainty in SM can be obtained that can 

be used to quantify the uncertainty in, e.g. the prediction of irrigation requirements or 

yield outcome [De Lannoy et al., 2019]. Assimilation of SM into various LSMs has been 

performed previously to improve SM predictions for cropland and natural vegetation 

[Hung et al., 2022; Kolassa et al., 2017; Mahmood et al., 2019; Naz et al., 2019]. Han et 
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al. [2016] and Li et al. [2018] presented first studies using data assimilation for irrigation 

scheduling in drip irrigated citrus orchards in CLM4.5 with promising results and the 

possibility of real-time online control for the latter study. For CLM5, Strebel et al. [2022] 

recently performed and tested the coupling to PDAF (the parallel data assimilation 

framework) which could be applied to continue the present work and to test if the bias in 

simulated SM can be reduced. 

The improved model simulations can further be combined with suitable short- to medium-

range weather forecasts [Hewage et al., 2020; Lorite et al., 2015] to predict the depletion 

of SM within the forecasting window. Subsequently, the optimal irrigation amount and 

timing can be determined based on a defined target SM or SMP to avoid crop water stress 

while minimizing water wastage. By using ensemble weather forecasts or historical 

weather data as forecasts, uncertainties in the predictions could be taken into account 

[Guo et al., 2023; Linker and Sylaios, 2016]. Additionally, alternative decisions of 

irrigation timing could be considered and the trade-off and risks between water 

consumption and crop stress could be communicated to the farmer to support decision-

making [Guo et al., 2023]. Automating the entire process, including the fetching and 

preparation of data for model input, starting a new model run, analysing model output, 

and communicating the proposed irrigation schedule to the farmer, entails the 

development of a web application and the necessary APIs (application programming 

interfaces) that allow communication between the different software applications and data 

portals. This is not trivial, as setting up and running CLM5 and similar models involves 

a multi-step process that requires a significant amount of expert knowledge and 

computational resources. Developing a simplified modelling infrastructure by, e.g., 

unifying workflows, creating templates, or building simple user interfaces can support 

operational use of the model. Moreover, major efforts must also be made to improve 

interoperability between different applications as well as for the harmonization and 

shared use of data [Choi et al., 2021; Maechling et al., 2005].    

Application of the described irrigation scheduling service in combination with data 

assimilation necessitates the availability of continuous SM data that is representative for 

the target area. At present, WSNs may be the most effective solution for small, 

heterogeneous fields. The number of sensors and thus total costs associated with the 

installation of such a network will depend on several factors including the heterogeneity 

of soil texture, crop planting patterns, and management practices. Electromagnetic or 
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drone-based soil and crop surveys can be used to decide on an optimal sensor placement 

[Hedley et al., 2012; von Hebel et al., 2021]. Alternatively, non-invasive measurement 

techniques such as cosmic ray neutron sensing that provide an integrated SM 

measurement over multiple hectares could be used as the technique becomes more cost-

effective. This way multiple growers could invest into a few shared sensors to lower 

investments for the individual and to share the benefit of improved SM simulations.  

While the costs of sensing technologies are steadily decreasing, many farmers, especially 

in the low to middle-income countries of the Mediterranean region, lack financial assets 

and technical knowledge to install and maintain such extensive measurement systems. 

The complexity of model-based irrigation scheduling and scepticism or low confidence 

in this technology result in low adoption rates especially for small-scale irrigators [Barnes 

et al., 2019; Fernández García et al., 2020; Frisvold and Deva, 2012]. It is therefore 

critical that governments and water authorities support sustainable irrigation management 

at the farm scale through funding and training, or educational programmes based on 

regional and national water management plans that consider irrigation in the larger 

context of water resources.

 

5.4 Modelling frameworks for holistic irrigation and water 

resources management 

So far, this work has considered field and regional scale irrigation under the assumption 

of an unrestricted supply of suitable irrigation water or hypothetical scenarios of limited 

water availability (deficit irrigation scenarios). It is however clear, that this does not 

reflect reality in the Mediterranean context, where instead, irrigation is restricted by water 

availability and quality, and competes with other water use sectors (e.g., agricultural, 

urban, industrial, environmental) [Choukr-Allah et al., 2012]. Modelling for regional 

water resources management needs to consider this interconnectedness to ensure the 

responsible use and long-term sustainability of groundwater and surface water resources 

across sectors.  

Groundwater is the main water resource in most semi-arid and arid Mediterranean 

catchments including the PHO [Pisinaras et al., 2018; Zagana et al., 2007] but also the 

more water rich Adige valley [Castagna et al., 2015]. Taking water availability for 
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irrigation into account should therefore consider groundwater and the impact of irrigation 

activities on groundwater dynamics (depletion or recharge) in the catchment. The work 

of Felfelani et al. [2021] could be a good starting point, as they implemented a prognostic 

groundwater module into CLM5 that considers aquifer pumping as well as intercell lateral 

flow. This improved groundwater level simulations as well as the subsurface response to 

pumping. Apart from representing the impact of groundwater withdrawals on the 

surrounding areas, the implementation of intercell lateral flow will likely also improve 

the representation of aquifer recharge mechanisms. In the PHO but also in other 

Mediterranean catchments with a pronounced topographic gradient, precipitation and 

snow melt from the mountainous parts of the catchment contribute substantially to aquifer 

recharge while the lowland typically contributes little to total annual recharge [Pisinaras 

et al., 2018; Zagana et al., 2007]. Alternatively, a better representation of subsurface 

hydrological processes and interactions with the land surface can be achieved by coupling 

CLM5 with more complex hydrological models such as ParFlow or groundwater models 

such as MODFLOW [Felfelani et al., 2022]. In this way, groundwater resources can be 

better assessed, and a sustainable level of water abstraction can be determined more 

reliably. Moreover, effective mitigation measures to avoid the overexploitation of 

groundwater aquifers, such as deficit irrigation strategies or the switch to less water 

consuming or more drought resilient crops, can be explored. Peng et al. [2020] argued 

that to reliably investigate such adaptation and mitigation strategies a much greater effort 

to merge agroeconomic CMs and LSMs is necessary. In this way the strength of CMs in 

representing the effect of environmental conditions and crop management on yield can 

be combined with the ability of LSMs to jointly consider agricultural systems and other 

land uses as well as their environmental implications on other Earth system components 

such as C and water cycles.  

In moving towards integrated water resources management, models used as decision-

making tools must reflect the multi-purpose function of water resources and the 

multidisciplinary nature of their management. This entails the consideration of other 

water use sectors including industrial, recreational, domestic, and environmental as well 

as artificial water reservoirs used for irrigation or other purposes [Felfelani et al., 2021]. 

Furthermore, future model developments may also consider alternative water sources 

from wastewater recycling or desalination plants, since they will likely grow in 

importance as water scarcity in Mediterranean countries continues to worsen [Ait-Mouheb 
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et al., 2020; Martin-Gorriz et al., 2014; Martínez-Alvarez et al., 2019; Moretti et al., 

2019]. The use of such water sources comes with increased energy consumption, 

environmental impacts, and economic costs on top of possible health concerns that 

undermine their social acceptance [Ait-Mouheb et al., 2020; Martínez-Alvarez et al., 

2019]. Therefore, the combination of environmental, economic, and social goals in the 

integrated approach to water resources management could be combined with the water-

energy-food nexus concept to achieve higher resource efficiency and increased water, 

energy, and food security [Shams and Muhammad, 2022]. In this context a stronger 

integration or exchange of information between LSMs (or fully coupled Earth System 

Models) with models from other communities such as integrated assessment, 

vulnerability, and adaptation should be encouraged to create holistic modelling 

frameworks for water resources management [Van Vuuren et al., 2012]. 
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Appendix 

 

Appendix I Full time series ATMOS41 

Figure A.1 Cont. 
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Figure A.1 Full time series for all standard weather variables measured by three ATMOS41 weather stations 

and the reference station. 

 

Appendix II Linear regression ATMOS41 

 

Figure A.2 Linear regression for solar radiation for Atmos2 and Atmos3 vs. ICOS-bkp station. 
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Appendix III Sequential model for bud break prediction 

The bud break prediction in CLM5-FruitTree is based on the sequential model developed 

by Cesaraccio et al. [2004]. Negative chill days (Cd) are accumulated from the 1st of 

November followed by positive anti-chill days (Ca) to overcome the different stages of 

tree dormancy, rest and quiescence. The chilling requirement (CR) defines the threshold 

for the accumulation of Cd and is reached when ∑ 𝐶𝑑 ≤ 𝐶𝑅. Thereafter Ca accumulation 

begins until 𝐶𝑅 + ∑ 𝐶𝑎 ≥ 0 at which bud break occurs. The accumulation of Cd and Ca 

on a given day is calculated from maximum (Tx) and minimum (Tn) daily air temperature 

as well as a temperature threshold for chill accumulation (TC), and varies depending on 

five possible temperature cases that relate Tx, Tn, TC, and 0 °C with the daily mean air 

temperature (Table A.1). The optimal values for CR and TC were calibrated based on bud 

break observations from 2010–2013 for the Adige site by minimizing the RMSE between 

observations and predicted bud break. The optimal value for CR was -68 while TC was 4 

°C resulting in an RMSE of 7.2 days. 

Table A.1 Chill day (Cd) and anti-chill day (Ca) calculation for five different temperature cases relating 

maximum (Tx) and minimum (Tn) air temperature to the air temperature threshold (TC) and 0 °C, TM is the 

air mean temperature. 

Temperature Cases Chill days Anti-chill days 

0 ≤ 𝑇𝐶 ≤ 𝑇𝑛 ≤ 𝑇𝑥 𝐶𝑑 = 0 𝐶𝑎 = 𝑇𝑀 − 𝑇𝐶  

0 ≤ 𝑇𝑛 ≤ 𝑇𝐶 < 𝑇𝑥 
𝐶𝑑 = − [(𝑇𝑀 − 𝑇𝑛) −

(𝑇𝑥 − 𝑇𝐶)2

2(𝑇𝑥 − 𝑇𝑛)
] 𝐶𝑎 =

(𝑇𝑥 − 𝑇𝐶)2

2(𝑇𝑥 − 𝑇𝑛)
 

0 ≤ 𝑇𝑛 ≤ 𝑇𝑥 ≤ 𝑇𝐶  𝐶𝑑 = −(𝑇𝑀 − 𝑇𝑛) 𝐶𝑎 = 0 

𝑇𝑛 < 0 ≤ 𝑇𝑥 ≤ 𝑇𝐶  
𝐶𝑑 = − [

𝑇𝑥
2

2(𝑇𝑥 − 𝑇𝑛)
] 

𝐶𝑎 = 0 

𝑇𝑛 < 0 < 𝑇𝐶 < 𝑇𝑥 
𝐶𝑑 = −

𝑇𝑥
2

2(𝑇𝑥 − 𝑇𝑛)
−

(𝑇𝑥 − 𝑇𝐶)2

2(𝑇𝑥 − 𝑇𝑛)
 𝐶𝑎 =

(𝑇𝑥 − 𝑇𝐶)2

2(𝑇𝑥 − 𝑇𝑛)
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Appendix IV Calculation of incoming longwave radiation 

Incoming longwave radiation (LWin) can be expressed based on the Stefan Boltzmann 

Law as: 

𝐿𝑊𝑖𝑛 = 𝜀𝑒𝑓𝑓 ∗ 𝜎 ∗ 𝑇4 = 𝜀𝑐𝑠 ∗ 𝐹 ∗ 𝜎 ∗ 𝑇4  , (A.1) 

where εeff is the effective emissivity that can be expressed by multiplying the clear-sky 

atmospheric emissivity εcs with a cloud factor F (always ≥1) that expresses the increase 

of LWin under cloudy conditions, σ is the Stefan Boltzmann constant (5.67 x 10-8 W m-2 

K-1) and T is the 2m air temperature in K.  

Clear-sky emissivity was obtained using the Konzelmann et al. [1994] parameterization 

as follows: 

𝜀𝑐𝑠 = 0.23 + 0.484 ∗ (
𝑒

𝑇
)

1

8
  , (A.2) 

where e is the vapour pressure in Pa at 2 m. 

Equation (A.1) can be rearranged to obtain F as follows: 

𝐹 =
𝐿𝑊𝑖𝑛

𝜀𝑐𝑠∗𝜎∗𝑇4  (A.3) 

F was calculated at hourly interval using measured LWin data from 2010 and εcs calculated 

using the above Eq. (A.2). 

As proposed by Sedlar and Hock [2009], in the absence of cloud data, the cloud factor F 

can be parameterized as a function of the atmospheric transmissivity index τ, which is 

defined as follows: 

𝜏 =
𝑆𝑊𝑖𝑛

𝑆𝑊𝑡𝑜𝑎
  , 

 

 

(A.4) 

where SWin is the incoming shortwave radiation, and SWtoa is the theoretical shortwave 

radiation received at the top of the atmosphere. 

Figure A.3 shows the linear equation that was fitted to the relationship of F and τ for the 

year 2010. For the calculation of clear-sky emissivity, all data where τ was greater than 

0.7 (N=3863) was considered based on the suggestion by Campbell [1985]. 
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Figure A.3 Cloud factor F as a function of atmospheric emissivity τ for hourly observations. The black line 

represents the linear equation for F(τ) and F≥1. Clear-sky emissivity is parameterized based on Konzelmann 

et al. [1994]. 

For the nighttime values and for very low incoming shortwave radiation (SWin < 15 W 

m-2), τ was gap-filled with the mean of the two surrounding values to obtain a complete 

time series of LWin data. Figure A.4 shows the results of the LWin parameterization 

compared to LWin calculated by CLM5 and to the observed data for the year 2010. As 

performance statistics the Pearson coefficient of correlation (r), the root mean square error 

(RMSE) and percent bias (%bias) are given. 

 

Figure A.4 Comparison of observed LWin with the parameterization using (a) Konzelmann et al. [1994] 

according to Eq. (A.2) and the cloud factor parameterization F(τ), and (b) the calculation procedure used in 

CLM5, as well as (c) cumulative observed and calculated LWin for 2010. Pearson’s r, RMSE and %bias are 

given as performance statistics. 
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Appendix V Parameters used in CLM5-FruitTree and for the apple PFT 

Table A.2 Parameters adapted or added in the new CLM5-FruitTree sub-model and the apple PFT including phenology, CN allocation, photosynthesis, vegetation structure as 

well as optical and respiration parameters. Parameters were adjusted based on field observations or literature values and are listed with their definition, unit, value, and references 

to the literature. 

Parameter Definition Unit Value Reference 

Phenological parameters 
   

baset Base temperature for GDD accumulation °C 4 Based on commonly used values for apple trees [Díez-Palet et al., 2019; Penzel 

et al., 2020; Reyes et al., 2016] 

crequ Chilling requirements for bud break of fruit 

tree crops 

unitless -68 Calibrated using bud break dates from Zanotelli et al. [2013] and Zanotelli et 

al. [2015], and the sequential model [Cesaraccio et al., 2004] 

crit_temp Critical temperature to initiate leaf senescence 

for fruit tree crops 

K 278.15 Adjusted based on LAI measurements [Zanotelli et al., 2013] 

grnfill* (GDDfruit) GDD needed from bud break to beginning of 

fruit development 

degree days 400 Based on observed and commonly used values for apple trees [Lakso et al., 

2000; Neumann, 2020; Penzel et al., 2020; Zanotelli et al., 2013] 

grnrp*(GDDripe) GDD needed from bud break to the fruit 

ripening phase 

degree days 1100 Based on observed and commonly used values for apple trees [Lakso et al., 

2000; Neumann, 2020; Penzel et al., 2020; Zanotelli et al., 2013]  

huileaf (GDDleaf) GDD accumulated at the moment of bud 

break (end of dormancy period) 

degree days – Calculated based on sequential model for bud break prediction [Cesaraccio et 

al., 2004] 

hybgdd* (GDDmat) GDD needed from bud break until fruit 

harvest 

degree days 2880 Based on observed and commonly used values for apple trees [Lakso et al., 

2000; Neumann, 2020; Penzel et al., 2020; Zanotelli et al., 2013] 
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laimx* Maximum leaf area index m2/m2 3 Based on observed and commonly used values for apple trees [Li et al., 2002; 

Valancogne et al., 1999; Zanotelli et al., 2013] 

lfmat*(GDDlfmat) GDD needed from bud break to canopy 

maturity 

degree days 1350 Based on observed and commonly used values for apple trees [Lakso et al., 

2000; Neumann, 2020; Penzel et al., 2020; Zanotelli et al., 2013] 

max_NH_harvest_date maximum harvest date for northern 

hemisphere (NH) 

date (md) 1015 Based on typical harvest dates in NH 

max_NH_planting_date maximum planting date for NH date (md) 101 Only needed for orchard establishment and initiation of sequential model for 

bud break, tree is still dormant 

min_NH_planting_date minimum planting date for NH date (md) 101 Only needed for orchard establishment and initiation of sequential model for 

bud break, tree is still dormant 

mxmat Maximum orchard age  days 9125 Based on common values for apple orchards [Lakso et al., 2000; Penzel et al., 

2020; Zanotelli et al., 2013] 

ndays_stor Length of period for storage growth of fruit 

tree crops 

days 50 Based on common values for fruit orchards [DeJong and Grossman, 1994; 

Kozlowski, 1992; Wünsche and Lakso, 2000] 

perennial Binary flag for perennial crop phenology unitless 1  

root_dmx Maximum rooting depth of crops m 0.8 Based on observed rooting depth [Zanotelli et al., 2013] 

rootprof_beta* Rooting beta parameter, for C and N vertical 

discretization 

unitless 0.964 Calibrated based on root sampling campaign of root mass up to 60cm (Zanotelli 

2010, unpublished data) 

woody Binary flag for woody lifeform unitless 1  
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C and N allocation parameters 

   

aleaff* Final leaf allocation coefficient  unitless 0.01 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

aleafstor* Leaf allocation coefficient to storage post-

harvest used in CNAllocation 

unitless 0.3 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

allconss* Power to control the shape of the stem 

allocation curve 

unitless 1.5 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

arootf* Root allocation coefficient at start of fruit 

development 

unitless 0.2 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

arootf2* Final root allocation coefficient until harvest unitless 0.08 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

arooti* Initial root allocation coefficient unitless 0.7 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

astemf* Final stem allocation coefficient] unitless 0.22 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

bfact* Exponential factor used for fraction allocated 

to leaf 

unitless -0.5 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

declfact* Decline factor to control the shape of the stem 

allocation curve 

unitless 4 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

fcur* Fraction of C and N allocated to the displayed 

pools 

unitless 0.95 Tuned based on observed LAI and yield data [Zanotelli et al., 2013] 

fleafi* Initial leaf allocation coefficient unitless 0.85 Adjusted based on monthly biomass measurements [Zanotelli et al., 2013] 

flivewd Fraction of new wood that is live 
 

0.15 Same as BDT in CLM5 
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frootCN Fine root C:N ratio gC/gN 32 Average of 6 measurements (Zanotelli 2010, unpublished data) 

grainCN* Fruit C:N ratio gC/gN 139 Average of 6 measurements (Zanotelli 2010, unpublished data) 

leafCN* Leaf C:N ratio gC/gN 19.7 Average of 6 measurements (Zanotelli 2010, unpublished data) 

lflitCN Litter C:N ratio gC/gN 60 Average of 4 measurements (Zanotelli 2010, unpublished data) 

livewdCN Livewood C:N ratio gC/gN 60 Average of 6 measurements (Zanotelli 2010, unpublished data) 

transplant Initial carbon for crops transplanted from 

nursery 

gC 5  

Photosynthetic parameters 
   

i_vcad* Intercept of the relationship between leaf N 

per unit area and Vcmax25top 

μmolCO2/m2/s 5.2 Adjusted in between BDT and crop 

medlynslope* Medlyn slope of conductance–photosynthesis 

relationship 

μmolH2O/μmolCO2 8.2 Tuned based observed GPP and ET data [Zanotelli et al., 2015] 

s_vcad* Slope of the relationship between leaf N per 

unit area and Vcmax25top 

μmolCO2/s/gN 34 Tuned based on observed LAI and yield data [Zanotelli et al., 2013] 

slatop* Specific leaf area at top of canopy m2/gC 0.028 Mean value for the growing season based on LAI and leaf biomass 

measurements [Zanotelli et al., 2013] 

Vegetation structure and management 
   

displar Ratio of displacement height to canopy top 

height 

unitless 0.67 Same as BDT in CLM5 
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mulch_pruning Binary flag for mulching (1) or export (0) of 

pruning material 

unitless 1 Based on reported organic farming practices [Zanotelli et al., 2013] 

prune_fr Fraction of dead stem that is pruned unitless 0.85 Based on reported pruning quantity [Zanotelli et al., 2015] 

nstem Planting density #/m2 0.33 Based on reported planting density [Zanotelli et al., 2013] 

taper Ratio of stem height to radius at breast height 
 

120 Based on reported tree allometry and height [Zanotelli et al., 2013] 

xl* Leaf/stem orientation index unitless 0.25 Same as BDT in CLM5 

z0mr* Ratio of momentum roughness length to 

canopy top height 

unitless 0.06 Based on average values reported for apple [la Fuente-Sáiz et al., 2017] and 

citrus [Tanny and Cohen, 2003] orchards 

ztopmx Maximum canopy height for crops m 3.6 Based on reported tree heights [Zanotelli et al., 2013] 

Optical parameters     

rholnir* Leaf reflectance: near-IR fraction 0.5 Based on average values for apple trees [Bastías and Corelli-Grappadelli, 

2012] 

rholvis* Leaf reflectance: visible fraction 0.1 Based on average values for apple trees [Bastías and Corelli-Grappadelli, 

2012] 

rhosnir* Stem reflectance: near-IR fraction 0.39 Same as BDT in CLM5 

rhosvis* Stem reflectance: visible fraction 0.16 Same as BDT in CLM5 

taulnir* Leaf transmittance: near-IR fraction 0.3 Based on average values for apple trees [Bastías and Corelli-Grappadelli, 

2012] 
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taulvis* Leaf transmittance: visible fraction 0.04 Based on average values for apple trees [Bastías and Corelli-Grappadelli, 

2012] 

tausnir* Stem transmittance: near-IR fraction 0.001 Same as BDT in CLM5 

tausvis* Stem transmittance: visible fraction 0.001 Same as BDT in CLM5 

Respiration     

FUN_fracfixers* The maximum fraction of assimilated carbon 

that can be used to pay for N fixation 

fraction 0.25 Same as BDT in CLM5 

lmr_intercept_atkin Intercept in the calculation of the top of 

canopy leaf maintenance respiration base rate. 

μmolCO2/m2/s 1.756 Same as BDT in CLM5 
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