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Abstract

Most standard constructions of the combination technique [M. Griebel et al., Iterative
Methods in Linear Algebra, Elsevier, North Holland, p. 263] manipulate families of
functions organised by downward-closed subsets of Nd. We introduce instead an alternative
formulation, with functions indexed from a more general kind of partially ordered set
(poset). The combinatorial and order-theoretic machinery of Möbius inversion helps us
to construct combination sums of functions organised by order ideals of a poset grid.
An adaptive algorithm is given for the quasi-optimal assembly of such an order ideal.
This order-theoretic combination technique (OTCT) formalism is applied in the quantum-
chemical setting of the high-dimensional electronic Schrödinger equation. Here, the OTCT
allows us to connect, understand, and improve on a number of existing approaches.

We consider first a selection of existing extrapolative composite methods. Extending on
the idea of the CQML approach [P. Zaspel et al., J. Chem. Theory Comput., 15(3), 2018],
an application of basically just the standard version of the combination technique leads
to a generalised composite method (GCM). This approach is systematically improvable
and appears comparable, if not yet truly competitive with standard composite methods
from the perspectives of both accuracy and of cost.

We turn then to energy-based fragmentation methods, which are often founded upon
a truncated many-body expansion (MBE). It is well-known that Möbius inversion can
provide non-recursive expressions for the individual MBE terms, and so the OTCT delivers
by construction a framework for the adaptive truncation of MBE-like formulae. The same
also functions for a class of related graph-based decompositions described in the existing
literature. We term these in our context as SUPANOVA (SUbgraph Poset ANOVA)
decompositions, and motivate them as extensions to the BOSSANOVA decomposition
[M. Griebel et al., Extraction of Quantifiable Information from Complex Systems,
Springer, Cham, 2014, p. 211; F. Heber, Dissertation, Rheinische Friedrich-Wilhelms-
Universität Bonn, 2014]. We identify a subtle technical issue that afflicts BOSSANOVA
in certain cases, and apply instead an adaptive SUPANOVA decomposition defined for
convex subgraphs.

Finally, we combine the GCM and SUPANOVA ideas to obtain a poset grid that recovers
many existing multilevel fragmentation methods. We extend the ML-BOSSANOVA
method [S.R. Chinnamsetty et al., Multiscale Model. Simul., 16(2), 2018], exploring
now also a hierarchy of ab initio theories. Although an initial assessment is inconclusive,
this ML-SUPANOVA formulation appears well-founded and paves the way to a number
of interesting possible applications in the future.
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1. Introduction
Many topics of interest in chemistry, such as the structure of chemical compounds and
their behaviour as they react with each other, reduce to the study of changes in the
total energies of molecular systems [Tul00; LeB05; HOJ13; Jen17]. The field of quantum
chemistry investigates these topics from the perspective of the Schrödinger equation: a
linear partial differential eigenproblem [SO89; Can+03]

HΨ = EΨ, (1.1)

where H is a Hamiltonian operator representing the pairwise interactions between the M
nuclei and N electrons which together make up the system, and each eigenfunction Ψ is
a wavefunction representing a valid quantum state of the system, with a total energy
given by its eigenvalue E.

Application of the Born-Oppenheimer approximation [BO27; Tul00] to (1.1) produces
the electronic Schrödinger equation, sometimes called the electronic problem [SO89].
Solutions to this latter provide, or rather, would provide the total electronic energies of
molecular systems under fixed nuclear conformations. However, analytic solutions cannot
generally be had [GH07; Yse10]. Since the primary impediment to the numerical solution
of the electronic Schrödinger equation is its very high dimensionality [LeB05], so the “curse
of dimensionality” [BG04] predetermines standard numerical techniques as unworkable in
most cases [GH07]. Instead, quantum chemists use a variety of alternative approximation
schemes that are heavily and explicitly tailored to the electronic problem [SO89; HOJ13;
Jen17]. Those schemes which are based on particular assumptions about the structure of
the electronic wavefunction are referred to as ab initio methods [LeB05].

The standard approach of ab initio quantum chemistry is to discretise the electronic
wavefunction in terms of a set of Slater determinants, each an antisymmetrised product
of members of a family of lower-dimensional functions [SO89; Can+03; EA07; HOJ13].
These functions are themselves discretised as finite linear combinations of members of a
shared basis set of functions. Many templates exist for constructing such basis sets [Huz85;
Hil12], but the size of such a set as used in practice is always proportional to the number
of atoms in the system. For a particular basis set, a Galerkin approximation of the
electronic wavefunction in terms of all so-derivable Slater determinants is best possible,
but the number of such determinants, and thus the computational cost of obtaining that
approximation, scales roughly exponentially in the number of basis functions [Sch09].
Several families of ab initio algorithms allow the consideration of wavefunctions discretised
in terms of only particular subsets of all possible Slater determinants [SO89; HOJ13;
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1. Introduction

Jen17]. As the granularity of the discretisation increases and the basis set becomes in
some sense complete, and as fewer of the available Slater determinants are neglected, the
resulting approximations trend reliably towards the exact solution [Can+03; Sch09].

The fundamental ab initio Hartree-Fock approximation [Roo51; Hal51; SO89; EA07]
presents a cost of solution that scales formally as O(K4) in the size of the discret-
ising basis set. Further approximations to the accompanying correlation energy error
term are usually based in techniques either drawn from Møller-Plesset perturbation
theory [MP34; SO89] or founded in the coupled cluster approximation [CS00; Sch09].
The cost scaling expressions of these techniques begin at O(K5), and rise dramatically
for more accurate approximations [SO89; HOJ13]. For instance, the cost of calculating
the well-regarded CCSD(T) approximation to the correlation energy [PB82; Rag+89],
which is regularly referred to as setting the “gold standard” for accuracy [ŘH13], scales
basically as O(K7) [BM07; HOJ13].

The energetic values produced by a CCSD(T) calculation may still fail to agree with
experimentally-observed results to within the exacting tolerance requirements of the
quantum chemist [Kar16; KSM17]. To reliably obtain this level of accuracy, even more
comprehensive ab initio methods must be used, and the scaling terms of these involve even
higher-order polynomials. Extrapolative composite methods offer a more computationally
plausible possibility [Pop+83; Pop+89; Taj+04; CRR07b; Kar+06; DeY+09; Kar16].
These schemes ultimately come down to a certain assumption of additivity of error, see,
e.g., [PFD12; RS15; Jen17; CGH18]. Here, sets of approximate solutions are calculated,
each stressing accuracy in a particular way, then deconstructed and carefully rebuilt into
one. But while composite methods have found favour in various settings, their use always
involves calculations of the correlation energy, so the implied scaling as mentioned above
still extinguishes their utility for large systems [RS15].

The success and applicability of reduced scaling protocols like energy-based fragment-
ation methods [Gor+11; CB15; RS15; Her19] is related to the famous principle of the
nearsightedness of electronic matter as recognised by Kohn [Koh96; PK05]. Surely the
most well-known such method involves the many-body expansion (MBE) of some full-
system energetic property as modelled by a potential function V : (R3×N)N → R [HMS70;
SDS09; RH12; CGH18; Her19],

V (X1, . . . , XM ) =

M∑
A=1

Ṽ (1)(XA) +

M∑
A<B

Ṽ (2)(XA, XB) + · · ·+ Ṽ (M)(X1, . . . , XM ). (1.2)

Here, each XA = (RA ∈ R3, ZA ∈ N) gives the spatial coordinates and charge of the
nucleus of the Ath-indexed atom, and each Ṽ (k) : (R3 ×Z)k → R is a k-body potential. A
truncation of (1.2) after all terms Ṽ (k) with k ≤ n for some n is called an n-body expansion.
If |Ṽ (k)| decays pointwise sufficiently quickly with increasing k — an assumption which
seems at least empirically plausible — then an n-body expansion for some sufficiently
low n can provide a reduced scaling approximation to V that may be accurate enough

2



for practical purposes [CGH18; Her19].
Of course, the number of k-body terms in (1.2) is generally superlinear in M for k > 1.

Many implementations of n-body expansions and closely related fragmentation methods
also take advantage of another expected decay in the magnitudes |Ṽ (k)(X1, . . . , Xk)|
as the nuclei {XA}kA=1 grow more and more distant from each other [OCB14; OB16;
LH17]; most commonly, “distant” is understood here in purely Euclidean terms, but more
abstract concepts of graph-based connectivity can also be used [DC05; WHM10; GHH14;
Heb14]. Both forms of decay can be considered a manifestation of Kohn’s nearsightedness
principle [OB16; CGH18].

Our thesis is that many composite methods and energy-based fragmentation methods
can be usefully viewed and understood as combination techniques. A well-known and
comprehensively studied mechanism for the efficient approximation of high-dimensional
functions, the combination technique [GSZ92] originally emerged from the theory of
sparse grid approximation [BG04]. The approximation of functions using sparse grids can
lead to a significant discount in the computational cost of a solution taken to a certain
accuracy, when that cost is measured relative to conventional techniques. However,
true sparse-grid approximation techniques are intrusive [TW18], in the sense that their
application generally requires the reconfiguration and thus reimplementation of existing
algorithms [BG04; OB21]. It was observed by Griebel et al. [GSZ92] that it is possible
to instead combine certain sets of results obtained using more conventional numerical
formulations in a non-intrusive fashion according to particular weighted summation
formulae [BG04; Gar12b]. The resulting family of approximations display an asymptotic
complexity behaviour that is comparable, up to a factor logarithmic in the dimensionality
of the problem under consideration, to that which could be achieved by equivalent families
of sparse grids.

The functions involved in a standard combination technique sum can be indexed by
and organised according to particular partially ordered subsets of Nd [GG03; Heg03;
HGC07; Har16a; Won16]. We present here a generalisation of the standard combination
technique that operates, not necessarily in terms of the standard index space Nd, but
instead in terms of a general partially ordered set Π. Only slight restrictions are placed
on the structure of this set. The construction of index sets drawn from Π, as well as
expressions for combination sums of functions indexed by the members of those sets,
is formulated with reference to machinery drawn from the toolboxes of order theory
and combinatorics, and particularly that of Möbius inversion [Sta12]. Just as in the
standard combination technique case and related applications [Gri98; GG03; Heg03;
CGH18; TW18], combination-sum index sets may be grown adaptively by consideration
of the benefits and costs associated with individual terms.

Similarities between the standard combination technique and both composite methods
and energy-based fragment methods have been previously noted and exploited [CGH18;
Zas+18]. It is also historically well-known, and not coincidental, that the very tools which
we use to construct our order-theoretic combination technique can also be applied to the

3



1. Introduction

derivation of the MBE [DFS04], as well as other, related decompositions [Dom74], such
as the chemical graph-theoretic cluster expansion (CGTCE) of Klein [Kle86], and also
the lattice fundamental-measure theory (LFMT) of Lafuente and Cuesta [LC05]. We will
build upon these observations and use our generalisation of the combination technique to
variously construct and evaluate direct implementations, analogues, and extensions of
the energy-based fragmentation methods and composite methods mentioned above, and
also to investigate and formalise certain similarities between particular instances of them.

1.1. Thesis structure
The main body of this document is structured as follows:

• We begin in Chapter 2 by summarising some key definitions and fundamental
techniques from molecular quantum chemistry. We assemble for later use an abstract
cost model by which the relative computational costs of certain approximation
methods applied to a particular problem can be compared.

• In Chapter 3, we revise and extend the theory of the combination technique for the
numerical approximation of high-dimensional functions. The focus of this chapter
is the extension of the standard combination technique from the conventional
d-dimensional index space Nd to the more abstract setting of a direct product of
almost arbitrary partially ordered sets. We develop an adaptive algorithm that
progressively assembles order ideals of these poset grids and thus index sets for
quasi-optimal combination sums, again providing an extension of similar algorithms
already known in the standard setting and in related work.

• Chapter 4 briefly reviews several composite methods which are widely used in
practical quantum chemistry. Extending on the idea of the CQML approach
of Zaspel et al. [Zas+18], we construct a generalised composite method (GCM):
a straightforward adaptive mechanism that aims to obtain high-quality results
similar to those delivered by existing conventional composite methods, but in a
systematically-improvable manner.

• In Chapter 5, we investigate the MBE in detail, as well as a variety of other
energy-based fragmentation methods. We focus particularly on different mathem-
atical viewpoints on these methods. The order-theoretic combination technique
provides an adaptive many-body expansion; we investigate its ability to accurately
approximate the total energies of clusters of water molecules.

• Chapter 6 considers a class of decompositions which we call in our context SUPAN-
OVA decompositions. This class is essentially a special case of Klein’s very general
CGTCE [Kle86], but we develop it with respect to the BOSSANOVA approach

4



1.2. Outline of contributions

of Heber and co-workers [Heb14; GHH14], revisited in the order-theoretic context.
Discovering certain technical issues with the original BOSSANOVA construction,
we consider a corrective extension, which we ground in the theory of abstract
convex structure. Case studies examine the application of this convex SUPANOVA
decomposition to two medium-sized molecules, and also to two proteins.

• Finally, we turn in Chapter 7 to a synthesis of the preceding chapters: we consider
a three-dimensional poset grid that combines composite method-style grids with
general SUPANOVA decompositions, and corrects and extends in turn on the
ML-BOSSANOVA method [CGH18]. Preliminary testing of this multilevel ML-
SUPANOVA setup is performed on two systems which are small enough to allow
the calculation of reference total energies.

• The thesis concludes in Chapter 8 with a brief summary of our findings, and a
discussion of various questions which remain open and may suggest potential future
work.

The following supplementary materials are included as appendices:

• Appendix A contains technical details relating to calculations reported in the main
text.

• Appendix B provides brief algorithmic descriptions for certain pieces of functionality
required for a practical implementation of the adaptive algorithm.

1.2. Outline of contributions
The primary contributions of this thesis are as follows:

• The formal and technical development of the order-theoretic combination technique,
and of an accompanying adaptive algorithm for the construction of quasi-optimal
combination sums and order-ideal index sets; see Chapter 3.

• The detailed investigation of the GCM, SUPANOVA and ML-SUPANOVA classes
of decomposition, and also an adaptive formulation of the standard MBE, from the
particular perspective of the order-theoretic combination technique; see Chapters 4
through 7.

• The identification of a subtle technical issue with the BOSSANOVA and ML-
BOSSANOVA methods. This involves a slight generalisation on an observation
previously made by Lafuente and Cuesta [LC05] in the context of their LFMT,
which turns out to be generally important in the setting of the order-theoretic
combination technique; see in particular Sections 5.2.3, 6.3, and 6.5. Although the
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1. Introduction

core idea of the correction, specifically the idea of a decomposition constructed
with reference to convex subgraphs, can be found suggested in [Kle86], we are not
aware of an explicit development or application of this idea in the specific context
of energy-based fragmentation methods. As we will point out, however, some recent
works, e.g., [RHI18; RI18; KI19; RI20; Zha+21], can be recognised as using a
particular special case of this setup; see Sections 6.5, 7.1, and 7.2.

Considering the standard combination technique from the perspective of lattices and
order theory is not in and of itself novel; see, e.g., [Heg03; HGC07; Har16a; Won16],
as well as discussion in Section 3.2. The adaptive algorithm we construct is a direct
extension of existing approaches, particularly inspired by one given in the context of the
ML-BOSSANOVA method [CGH18]. Moreover, we acknowledge explicitly that the basic
observation that Möbius inversion can be used to construct ANOVA-like decompositions
like ML-BOSSANOVA was first brought to our attention by Griebel [Gri19]. However, the
order-theoretic combination technique that we describe here provides, to our knowledge,
the first fully general coalescence of these ideas to appear in the literature.

In the same vein, we are careful to emphasise that the various GCM, SUPANOVA,
and ML-SUPANOVA decompositions that we consider in this thesis are deliberately
similar to, and in some cases either formally identical to or directly recoverable from,
other decompositions and expansions that are described in the existing literature. We
will make these connections very clear in the pages to come, but for now, we acknowledge
particularly strong connections to previous work in [Heb14; GHH14; CGH18; Zas+18].
Also, several such existing decompositions are themselves explicitly constructed using
Möbius inversion; see, e.g., [Dom74; Ess+77; Kle86; DFS04; LC05]. The abstract formal
and algorithmic structure of the order-theoretic combination technique thus reproduces
these as immediate special cases. This allows us to directly link such explicitly Möbius
inversion-based decompositions with many others in the more recent literature, and
also to generally and rigorously introduce concepts of quasi-optimal adaptivity to these
decompositions.
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2. Molecular quantum chemistry

We begin by reviewing some fundamental concepts in molecular quantum chemistry. We
proceed at a high level: our goal here is only to fix our problem, locate our tools, and to
provide sufficient justification for the abstract cost model we construct at the end of the
chapter. We refer here to the standard textbooks by Szabo and Ostlund [SO89], Helgaker
et al. [HOJ13], and Jensen [Jen17]. We also make general reference thoughout to the more
mathematically-oriented reviews by Cancès et al. [Can+03], see in conjunction [LeB05;
LL05; Yse10], and by Echenique and Alonso [EA07], and further to work on the projected
coupled cluster method by Schneider [Sch09]. We have previously reviewed some of the
topics covered in Sections 2.1, 2.2, and 2.4 in [Bar09], there more from the perspective of
implementation. We will choose, adjust, and convert our notation by preference and for
consistency, usually without explicit comment. The use of Dirac’s bra-ket notation is
deliberately avoided.

2.1. The electronic Schrödinger equation and the
Born-Oppenheimer potential

The electronic Schrödinger equation [SO89; Can+03; EA07],

HΨ(x1, . . . , xN ) = EΨ(x1, . . . , xN ), (2.1)

sometimes called the electronic problem, emerges from the application of the Born-
Oppenheimer approximation [BO27; Tul00] to the full time-independent Schrödinger
eigenproblem. Here, H is the electronic Hamiltonian operator, and Ψ : (R3×{±1/2})N →
C is the spin-inclusive electronic wavefunction, hereafter just wavefunction, of a molecular
system containing M nuclei and N electrons. Each xi = (ri, σi) is a (composite) variable
for the ith electron; each ri ∈ R3 is a spatial location, and each σi ∈ {±1/2} a spin
state. Both H and Ψ carry an implicit dependence on the family of nuclear parameters
{XA = (RA ∈ R3, ZA ∈ N)}MA=1, where each RA ∈ R3 is the location of the Ath nucleus
in the system, and each ZA ∈ N is its charge; the nuclei are said to be “clamped” [EA07,
p. 3060] in place. The wavefunction is mandated to be antisymmetric in the electronic
variables, and should in principle be normalised,

〈Ψ,Ψ〉L2 = 1, (2.2)

7



2. Molecular quantum chemistry

where integration over a spin variable is understood to mean summation over spin states.
In what follows, inner products will always be taken in L2, so we will omit the subscript.

The eigenvalue E = 〈Ψ,HΨ〉 corresponding to an eigenfunction Ψ of the Hamiltonian
is the electronic energy of the electronic state represented by Ψ. Both electronic energies
and the Hamiltonian itself are conventionally given in atomic units. For the former, the
relevant unit is the Hartree (Eh). The latter takes the form

H = −
N∑
i=1

1

2
∇2

ri −
M∑

A=1

N∑
i=1

ZA

‖ri −RA‖
+

N∑
i=1

N∑
j>i

1

‖ri − rj‖
. (2.3)

As per Schneider [Sch09] and also with reference to [Can+03; Ham09], the appropriate
solution space for the weak form of (2.1) is

V := H1((R3 × {±1/2})N ,C) ∩
N∧
i=1

L2(R3 × (±1/2),C), (2.4)

where H1((R3 × {±1/2})N ,C) denotes the Sobolev space of those square-integrable trial
wavefunctions Ψ with also square-integrable first derivatives with respect to the spatial
locations of the electronic variables {xi}Ni=1, and the antisymmetrised product space∧N

i=1 L
2(R3 × (±1/2)) locates functions satisfying the requirement of antisymmetry in

those variables. The ground-state electronic energy of the molecular system is then
defined as the minimising eigenvalue

E0 = inf
Ψ∈V

〈Ψ,Ψ〉=1

〈Ψ,HΨ〉, (2.5)

again as in [Sch09], up to the requirement of normalisation, or almost equivalently [Can+03].
Under certain conditions, the infimum is well-defined; see, e.g., [Fri03] and references
within. An energy-minimising wavefunction Ψ0 which corresponds to the ground-state
total energy is called a ground-state wavefunction.

Following, e.g., [CGH18], we define the ground-state Born-Oppenheimer potential,
V BO : (R3 × Z)M → R, as

V BO(X1, . . . , XM ) :=
∑

1≤A<B≤M

ZAZB

‖RA −RB‖
+ inf

Ψ∈V
〈Ψ,Ψ〉=1

〈
Ψ,H

[
{XA}MA=1

]
Ψ
〉
, (2.6)

where we make explicit the dependence of the electronic Hamiltonian on {XA}MA=1;
something notationally similar is done in [RH13]. The initial summation term includes
the nuclear repulsion energy, to make V BO a better approximation of the true total
energy of the molecular system; see and cf., e.g., [SO89; Can+03]. A number of practical
applications require also or instead the gradient ∇{RA}MA=1

V BO; see, e.g., [Sch82; Can+03;
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2.2. Standard ab initio methods

Sch03; EA07; CGH18]. For simplicity, however, we shall not deal explicitly with the
evaluation of nuclear gradients in this thesis.

A ground-state solution to the electronic Schrödinger equation can be had analytically
in the case of an isolated hydrogen-like atom [SO89; Yse10, Chap. 8], but this is not
possible for larger systems [GH07]. Here, the high dimensionality of V frustrates the
application of standard numerical techniques to (2.1); such schemes quickly run afoul of
the “curse of dimensionality” [GH07, p. 216] as the number of electrons N increases.

Quantum chemistry prefers instead to approach the electronic problem via techniques
that ultimately derive from certain approximating assumptions made about the structure
of the solution. We will now outline four such ab initio methods, sometimes also called
wavefunction methods [LeB05]. The latter name serves to distinguish them from a separate
class of formal approaches, which explicitly treat not the wavefunction Ψ of a system, but
instead the electron density ρ(r) : R3 → R. The most important density-based method
is density functional theory (DFT). However, since we shall use and refer to it only in
passing, we omit any explicit description of DFT, and refer the unfamiliar reader instead
to the textbook of Parr and Yang [PY94], or [Can+03] for a more mathematical approach.

2.2. Standard ab initio methods
Most of the following material is basic background in quantum chemistry; we give
only as quick a summary as possible. For deeper detail, we defer again to our general
references, that is, [SO89; Can+03; EA07; Sch09; HOJ13; Jen17]. The lecture notes of
Toulouse [Tou17] and of Benedikter and Sok [BS17] were also helpful general resources
for this section.

Before we begin, we recall some particularly basic definitions and terminology from,
e.g., [SO89; Can+03; EA07]; historically, see [Roo51]. Given an orthonormal collection of
functions {χi ∈ H1(R3 ×{±1/2},C)}Ni=1, called in context (molecular) spin orbitals, their
Slater determinant [Sla29] is defined as

ΨSD(x1, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN (x1)
χ1(x2) χ2(x2) · · · χN (x2)

...
... . . . ...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣ , (2.7)

which is antisymmetric in {xi}Ni=1 by construction and normalised consistent with (2.2).
Each spin orbital can be decomposed as [EA07, (35)]

χi(x) = χi(r, σ) = ψα
i (r)α(σ) + ψβ

i (r)β(σ); (2.8)

Here, the spin functions α(σ) 6= β(σ) are valued in {0, 1}, and are multiplied by functions
ψα
i , ψ

β
i ∈ H1(R3,C) called (molecular) spatial orbitals.
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2. Molecular quantum chemistry

2.2.1. The Hartree-Fock method (HF)
We refer here particularly to the conventional treatments in [SO89; EA07]. For alternative
formulations in terms of the electron density, see [PY94; Can+03].

The Hartree-Fock method [Roo51; Hal51] obtains an approximate solution to (2.1) by
constraining the wavefunction Ψ to membership of the set of Slater determinants [SO89;
Can+03; EA07]. The Hartree-Fock ground-state energy is defined minimally over members
of this set,

EHF
0 = inf

ΨSD
{〈ΨSD,HΨSD〉}. (2.9)

Assuming for the moment its existence and uniqueness, the minimising Slater determinant
is called the Hartree-Fock ground-state wavefunction, written ΨHF

0 .
A constrained optimisation of 〈ΨSD,HΨSD〉 in terms of the set of spin orbitals {χi}Ni=1

of a trial Slater determinant ΨSD produces, after some non-trivial manipulation, a set of
nonlinear pseudo-eigenvalue equations, as in [EA07, (64)],

F̂GHF
[
{χi}Ni=1

]
χi(x) = εiχi(x), 1 ≤ i ≤ N, (2.10)

which are called the canonical (general) Hartree-Fock equations. Here, F̂GHF[{χi}Ni=1] is
the general Fock operator parametrised by the set of spin orbitals {χi}Ni=1; we leave a
full definition for [EA07]. For details and discussion on the existence and uniqueness of
solutions to (2.9) and (2.10), see, e.g., [Can+03; Fri03; LL05; EA07; BS17] and references
therein. In brief, however, a result of Lieb and Simon [LS74; LS77] guarantees an energy-
minimising solution to (2.9) and transitively (2.10), at least when the molecule under
study is not negatively charged, and that the spin orbitals of that solution are also the
solutions to (2.10) with the lowest-lying eigenvalues.

In any case, approximate solutions to the Hartree-Fock equations are usually obtained
by a Galerkin-style discretisation of H1(R3,C) formulated with reference to a single
linearly independent family of K basis functions, {φµ ∈ H1(R3,C)}Kµ=1 [SO89; Can+03;
EA07]. The basis functions are called in context atomic orbitals. Each spatial orbital in
a solution to (2.10) is approximated as

ψi ≈
K∑

µ=1

cµiφµ, (2.11)

that is, as a linear combination of atomic orbitals (LCAO) [Roo51; Hal51]. We will come
back to the precise choice of the atomic orbitals in Section 2.4.2 below.

In the restricted Hartree-Fock (RHF) formalism, which is applicable only for a closed-
shell system where N is even, insertion of (2.11) into a slightly different form of (2.10)
leads to a set of K equations in the LCAO coefficients {cµi}Kµ,i=1 and the eigenvalues
εi [SO89; EA07]. When these Roothaan-Hall equations [Roo51; Hal51] are considered in
matrix form, they represent a single nonlinear generalised eigenproblem, which can be
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2.2. Standard ab initio methods

approximately solved via iterative self-consistent field (SCF) methods. Numerical well-
behaviour of the naïve SCF method as given in, e.g., [SO89] is not guaranteed [Can+03],
but see, for instance, [CL00; Lev12].

Sets of equations analogous to those of Roothaan and Hall can be constructed and
solved similarly in other, more general formalisms [PN54; EA07; JHS11]. The side-lengths
of the involved matrices are in all cases small constant multiples of the size of the basis K,
so the solution cost of the generalised eigenproblem encountered at each iteration of an
SCF procedure scales as O(K3). However, the actual formation of these matrices requires
the evaluation of certain integrals taken over basis functions, particularly the two-electron
integrals [SO89] or electron-repulsion integrals (ERIs) [Gil94]. Using standard notation,
these are

(µν |λσ) :=
∫
R3

∫
R3

φ∗µ(r1)φν(r1)
1

‖r1 − r2‖
φ∗λ(r2)φσ(r2) dr1 dr2 (2.12)

for 1 ≤ µ, ν, λ, σ ≤ K. We will return briefly to their evaluation in Section 2.4.3 below,
but note for now that the technical cost scaling of the Hartree-Fock method thus goes as
O(K4), and this expense is usually incurred repeatedly in practice, once at each SCF
iteration [AFK82].

The full set of coefficients {cµi}Kµ,i=1 produced by a converged SCF approach specifies
some number K ≥ N of orthonormal spin orbitals [EA07].1 Of these, the occupied
orbitals with the lowest eigenvalues εi in (2.10) are taken as providing the best available
approximation to ΨHF

0 . The virtual spin orbitals left over are utilised by the various post
Hartree-Fock [Can+03] techniques which we now consider.

2.2.2. Full configuration interaction (FCI)

The error in the ground-state energy that can be ascribed to the Hartree-Fock approxim-
ation,

Ecorr
0 := E0 − EHF

0 , (2.13)

is conventionally referred to as the correlation energy [Löw55; SO89; Can+03]. A better
approximation to the true wavefunction, and thus the true ground-state energy including
the correlation energy, can be obtained via the method of full configuration interaction
(FCI), which involves a Galerkin discretisation of the full solution space V. We outline
this method following primarily Schneider [Sch09], again with some general reference
to [SO89].

Presupposing an orthonormal set of spin orbitals {χi}Ki=1 ⊂ H1(R3 × {±1/2},C) for
some K ≥ N , Schneider constructs an accompanying subspace VK ⊂ V spanned by all
Slater determinants composed of N distinct spin orbitals χi [Sch09]. The FCI ground-state
1This is an abuse of notation. The precise number of spin orbitals delivered depends on the HF formalism
used, but like the side-lengths of the involved matrices, it is always a small constant multiple of K.
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2. Molecular quantum chemistry

energy is then just the best approximation to the true ground-state energy available
within VK [Sch09, (7)],

EFCI
0 := min

Ψ′∈VK
〈Ψ′,Ψ′〉=1

{〈Ψ′,HΨ′〉}, (2.14)

and an FCI ground-state wavefunction is some ΨFCI
0 ∈ VK that provides the minimum

in (2.14), that is, a Ritz-Galerkin approximation of Ψ0 in VK under the constraint (2.2).
Under some conditions, the FCI ground-state energies and wavefunctions provided by
similarly-constructed members of a family {VK}K≥N converge to E0 and Ψ0 quasi-
optimally as K →∞ [Sch09, Thm. 3.1].

An explicit construction of the full set VK is performed in terms of a reference
wavefunction, itself a particular Slater determinant built from N of the spin orbitals and
thus a member of VK [Sch09; RS13]. The remaining Slater determinants are conceptually
organised in terms of their derivation from the reference determinant via the substitution
of one or more of its involved spin orbitals with spin orbitals drawn from the complement
of the reference set. The standard choice of reference determinant is the ground-state
Hartree-Fock wavefunction ΨHF

0 , and in practice, an LCAO-discretised approximation
to it. The full set of K spin orbitals are here then the Nocc occupied orbitals used to
form ΨHF

0 , which are conventionally indexed as 1 ≤ i, j, k, . . . ≤ Nocc, as in, e.g., [CS00],
and also the Nvirt virtual orbitals produced via solution of the Roothaan-Hall equations
or equivalent, indexed Nocc + 1 ≤ a, b, c, . . . ≤ K. In this context, the singly-excited
determinants are those produced by the exchange of an occupied orbital indexed i with a
virtual orbital indexed a,

Ψa
i := a†aaiΨ

HF
0 , (2.15)

written using the standard creation and annihilation operators of second quantisation;
see, e.g., [SO89; CS00; HOJ13] for a full development of this formalism. Similarly, the
doubly-excited determinants take the form

Ψab
ij := a†aa

†
bajaiΨ

HF
0 , (2.16)

and so on.
Using notation consistent with [SO89, (4.2a)], this leads to an explicit form for a trial

FCI wavefunction ΨFCI ∈ VK as

ΨFCI = c0Ψ
HF
0 +

∑
i,a

caiΨ
a
i +

∑
i<j
a<b

cabijΨ
ab
ij +

∑
i<j<k
a<b<c

cabcijkΨ
abc
ijk + · · · , (2.17)

in terms of coefficients which are written using the same indexing style as the excited
determinants. For practical details on how the coefficients of ΨFCI

0 can be obtained, see,
e.g., [Dav75; SO89]. It suffices to say, however, that the cost scaling of an FCI calculation
is prohibitive in K, i.e., as larger and larger collections of atomic orbitals are used to
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2.2. Standard ab initio methods

discretise H1(R3,C), since the dimensionality of the problem is
(
K
N

)
and thus roughly

proportional to O(KN ) for large K [Sch09].
The elision of all terms in (2.17) beyond single and double excitations leads to a more

tractable approximation technique referred to as CISD, for configuration interaction,
singles and doubles; beyond triple excitations, CISDT, and so on; see, e.g., any of [SO89;
Can+03; HOJ13; Jen17; Tou17]. These are, however, problematic in their application,
since it is well-known that they lose the two very desirable properties of size-consistency
and size-extensivity; see for details also [Bar81; CS00].

2.2.3. Møller-Plesset perturbation theory (MPn)
An alternative approach to the calculation of an approximate solution to the Schrödinger
equation that includes an approximation to the correlation energy is provided by Møller-
Plesset perturbation theory [MP34]. In the interest of brevity, we do not give any
development of either Møller-Plesset theory or the underlying Rayleigh-Schrödinger
perturbation theory, and refer the reader instead to [SO89, Secs. 6.1 and 6.5; Can+03,
Sec. 35; Jen17, Sec. 4.8]; the concise summary in [Tou17] is also informative. We simply
state that Møller-Plesset perturbation theory constructs a particular expansion of each
eigenvalue Ei in (2.1) as a formal power series

Ei =

∞∑
j=0

λjE
(j)
i , (2.18)

in terms of a parameter λ ∈ C [SO89; Can+03; Jen17]. Assuming that this series
converges, it provides an exact solution for the target eigenproblem for λ = 1.

Truncated sums of the terms E(j)
i can be used as approximations to the target eigenvalue

Ei. In particular, the first-order Møller-Plesset ground-state energy is EMP1
0 = E

(0)
0 +

E
(1)
0 = EHF

0 [SO89; Can+03; Jen17]. The second-order Møller-Plesset term can be
(re)written as

E
(2)
0 =

1

2

N∑
i=1

N∑
j=1

K∑
a=N+1

K∑
b=N+1

[ia | jb][ai | bj]− [ia | jb][aj | bi]
εi + εj − εa − εb

, (2.19)

by slight manipulation of [SO89, (6.73)], where we denote as usual the two-electron
integrals in terms of the spin orbitals as, with reference to [SO89, Tab. 2.2],

[ij | kl] :=
∑

σ1,σ2∈{±1/2}

∫∫
χ∗
i (x1)χj(x1)

1

‖r1 − r2‖
χ∗
k(x2)χl(x2) dr1 dr2. (2.20)

Higher-order Møller-Plesset terms can in principle also be explicitly calculated, but
the convergence behaviour of the series of MPn corrections can be problematic; see,
e.g., [Ols+96; Lei+00; Cre11; HOJ13].
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2. Molecular quantum chemistry

Note that the number of terms in (2.19) scales as O(K4) in the size of the total number
of occupied and virtual orbitals K, which is proportional to the number of atomic orbital
basis functions. As we shall discuss in Section 2.5 below, the practical evaluation of E(2)

0

and thus the MP2 total energy EMP2
0 = EHF

0 + E
(2)
0 in the LCAO setting requires an

additional O(K5) computational step; see, e.g., [SO89].

2.2.4. Coupled cluster approximations (CC)

We turn now to approximations of the true electronic energy and wavefunction via
coupled cluster approaches. We follow here again most strongly [Sch09], but use some
second-quantisation notation more like that in, e.g., [CS00; Jen17]. For related rigorous
mathematical treatments, see [RS13; Roh13]; for a detailed development with a practical
focus, see [CS00].

An FCI trial wavefunction built from a reference Hartree-Fock wavefunction ΨHF
0 and

a set of K = Nocc + Nvirt spin orbitals as in (2.17), which is subject not to (2.2) but
instead to the intermediate normalisation constraint that c0 = 1, can alternatively be
written in terms of a cluster operator,

T =

min(Nocc, Nvirt)∑
k=1

Tk, (2.21)

where each subsidiary operator Tk embodies k-fold excitations [CS00; Jen17],2

T1 =
∑
i,a

tai a
†
aai, (2.22)

T2 =
∑
i<j
a<b

tabij a
†
aa

†
bajai, (2.23)

and so on. Rather than an FCI trial wavefunction ΨFCI = (1+ T )ΨHF
0 ∈ VK , the coupled

cluster approximation considers one of the form [CS00; Sch09]

ΨCC = eTΨHF
0 =

( ∞∑
k=0

T k

k!

)
ΨHF

0 =

(
1 + T +

1

2
T 2 +

1

6
T 3 + · · ·

)
ΨHF

0 , (2.24)

which is ultimately in terms of the complete set of values {tai , . . . , tabij , . . .} = {tµ}µ∈I ,
for some index set I that enumerates the various possible excitations, as in [Sch09].
The values tµ are in context referred to as amplitudes. The rewriting is legitimate, in
the sense that any function ΨK ∈ VK can be written in terms of a cluster operator
2Noting that the presentation in [CS00] uses unrestricted indices and a compensatory prefactor for each Tk.
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ΨK = ΨCC
K = eTΨHF

0 defined in terms of some particular set of amplitudes [Sch09,
Thm. 4.3].

Since the trial wavefunctions ΨCC inhabit a nonlinear manifold within V rather than
a linear subspace VK [Sch09], a Ritz-Galerkin minimisation cannot be used to locate a
ground-state couple cluster wavefunction.3 Instead, a collection of amplitude equations are
obtained by noting that, if {tµ}µ∈I is a set of amplitudes defined by ΨCC

0 = eTΨHF
0 = ΨFCI

0 ,
then [Sch09, Prop. 4.7]

〈Ψµ, e
−THeTΨHF

0 〉 = 0, ∀µ ∈ I, (2.25)

where each Ψµ is an appropriately excited determinant.
Much as in the CI case, the excitations included in the cluster operator T can be

restricted, leading to a smaller set of amplitude equations. The problem obtained by a
truncation of T as T1+T2, thus considering single and double excitations only, is referred to
as coupled cluster singles and doubles (CCSD) [PB82]. Truncation as T1+T2+T3, so with
the explicit inclusion of triple excitations, is called CCSDT [NB87], etc. Here, however,
the properties of size-consistency [CS00] and size-extensivity [BM07] can basically be
retained.

This projected coupled cluster method (or rather, family of methods) can be viewed as
a Galerkin approximation in a suitably-constructed space of amplitude vectors; see once
more [Sch09] for such a construction, and for related existence and optimality results. In
practice, approximate solutions to the (truncated) amplitude equations are calculated
using iterative quasi-Newton schemes [Sch09; HOJ13]. In general, the computational
cost required to evaluate the amplitude equations for a cluster operator truncated after
nth-order excitations scales as O(Nn

occN
n+2
virt ) per iteration [BM07], although there is

significant scope for adjusting the involved prefactors and non-dominant terms; see,
e.g., [KR97; CS00; KS01; Hir03; EH11].

Deep connections exist between coupled cluster theory and perturbation theory, and
a variety of perturbative correction terms have been formulated which aim to improve
the accuracy of truncated coupled cluster energies [BM07; CS00; HOJ13]. Of these, the
most widely-used is the CCSD(T) correction of Raghavachari et al. [Rag+89], which
compensates for a subset of the triple-excitation contributions omitted by a CCSD
truncation relative to a CCSDT truncation. We will not describe the details of this
correction here, but remark that, given a set of CCSD amplitudes, the cost of evaluating
the CCSD(T) correction ∆ECCSD(T) scales as O(N3

occN
4
virt) [BM07].

The principle of the CCSD(T) correction has been extended, first to a CCSDT(Q) cor-
rection [Bom+05], and then to a general series of (n+1)th-order perturbative corrections
which can be applied to arbitrary nth-order coupled cluster truncations [KG05; KG08].
These are denoted CCSDT(Q), CCSDTQ(P), etc., and can be calculated at a cost that

3See, however, discussion of variational coupled cluster formulations in [CS00].
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scales as O(Nn+1
occ Nn+2

virt ) [KG05].4
The various coupled-cluster approximations obtained by truncating the cluster operator

T to a particular order, with or without the application of a perturbative correction to
an obtained result, suggest a natural hierarchy of ab initio computational methods with
regularly increasing cost and hopefully increasing accuracy; see, e.g., [CS00; Zas+18]. For
example, similarly to as in [BM07], but with the addition of an entry for Hartree-Fock
calculations and including cost scaling terms in the total number of atomic orbitals K:

HF [O (K4)]→ MP2 [O (K5)]→ CCSD [O (K6)]→ CCSD(T) [O (K7)]
→ CCSDT [O (K8)]→ CCSDT(Q) [O (K9)]→ · · · → FCI [O (KN )].

(2.26)

2.3. Derived energetic properties
Although the ground-state energy is a fundamental observable in the quantum-mechanical
sense [Yse10], practical applications of quantum chemistry focus more on derived energetic
properties that are obtained secondarily from either calculated energies or the character-
istics of the approximate wavefunction; see, e.g., [HOJ13, Chap. 15]. A key example of
such a property is the total atomisation energy (TAE, or just the atomisation energy) of
a molecule, which is “the energy required to dissociate the molecule into separate atoms
in their electronic ground states” [Mar21, p. 6]. Formally, we define the (non-relativistic)
TAE of a molecular system with M atoms as

Eatom :=

(
M∑
i=1

E
(i)
0

)
− E0, (2.27)

where E(i)
0 is the ground-state electronic and thus total energy of the ith atom of the

system; see, e.g., [HOJ13, Sec. 15.7.1; Mar21], up to choice of notation. Throughout this
thesis, a post-inclusion of the nuclear repulsion energy in E0, as in (2.6), will be implicit.

Atomisation energies are usually given in the chemical literature in units of kcalmol−1

or kJmol−1; see, e.g., [FPH11; Kar16]. As mentioned above, total energies are measured
and calculated in terms of Hartree per molecule (Eh). Energies in Hartree per molecule can
be converted into values per mole through multiplication by Avogadro’s constant [NIS19],
that is, 1Eh mol−1 = 6.022 140 76× 1023Eh. Using the further relationships that 1Eh =
4.359 744 722 207 1(85) × 10−18 J [NIS19] and that 1 cal = 4.184 J [TT08], we obtain to
sufficiently high precision for our purposes here the conversion factors 1 kJmol−1 ≈
0.000 380 88Eh and 1 kcalmol−1 ≈ 0.001 593 60Eh. A calculated energetic value which
agrees with a reference value (either experimental or theoretical) to within a tolerance of
1 kcalmol−1 is said to have obtained chemical accuracy [Mar96; FPH11; Lao+16]. We
shall return to the topic of obtaining ab initio results to chemical accuracy in Chapter 4.
4Technically, the scaling as given in [KG05] is O(Nn+1

occ Nn+2
virt +Nn+1

virt Nn+2
occ ), but we assume here that Nocc

is sufficiently smaller than Nvirt that the first term dominates.
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Approximately-calculated atomisation energies, and reaction energies more generally,
can be more accurate than the individual total energies used in their derivation [Bak+00;
HOJ13, Chap. 15]. This effect is usually attributed to a cancelling of the errors afflicting
those total energies; in the terminology of [Bak+00], these include the basis-set error due
to an incomplete discretisation of H1(R3,C), or the intrinsic error associated with, e.g.,
a truncation of the cluster operator in (2.24). The mathematical details of such error
cancellations are not well-understood [Can+03, p. 31]. In any case, the beneficial effect
of error cancellations is less strongly observed in the calculation of atomisation energies
than in that of other types of reaction energies [Taj+04; KSM17], and so atomisation
energies provide a useful test for the quality of high-accuracy quantum-chemical methods;
see, e.g., [Fel13].

2.4. Computational details
We now briefly outline some important computational details that must be considered in
the practical application of the ab initio methods outlined above. Again, this is basic
material in applied quantum chemistry, and we limit ourselves to only the amount of
detail needed to establish a clear context for later discussion.

2.4.1. The frozen-core approximation
All of the various post-HF methods outlined above either are, or in the case of MP2,
can be [SO89] phrased in terms of sets of excited determinants. Contributions to the
correlation energy Ecorr

0 associated with the excitation of those occupied orbitals (in
the mathematical, Hartree-Fock sense) that can be identified with the core, i.e., non-
valence orbitals (in the more standard chemical sense) tend to depend only weakly on the
geometric conformation of a molecular system [HOJ13, Sec. 8.3.1; ŘH13]. The restriction
of the excited determinants used in a post-HF method to only those corresponding to
excited valence orbitals is called the frozen-core (FC) approximation [Jen17, Sec. 4.1].
Calculations performed in the absence of this approximation are in context referred to as
all-electron (AE) calculations; see usage in, e.g., [HOJ13; Tho+21].

When calculating derived properties such as atomisation energies, the error due to the
FC approximation may therefore be mostly nullified by a cancellation effect as mentioned
above [HOJ13; Jen17]. The benefit is a potentially decisive reduction in computational
cost; see, e.g., [Hal+03]. In the MP2 case, for example, that the FC approximation
amounts to a restriction of the summation indices i which run over occupied orbitals
in (2.19) can be seen from inspection of (6.71) in [SO89]; the evaluation cost of the
resulting frozen-core summation is thus reduced by a prefactor quadratic in the number
of occupied orbitals under consideration.

In standard practical application of the frozen-core approximation, some number Nfrozen
of occupied orbitals to be excluded from excitation may be chosen, usually equal to the
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total number of expected core orbitals in the system under study; see for instance the
documentation for the MP2 capabilities of the NWChem software package [Apr+20;
NWCDoc]. It is often assumed that the core orbitals can be identified with the Nfrozen
canonical Hartree-Fock spin orbitals with the lowest eigenvalues εi in (2.10), and so just
these orbitals are then removed from consideration. This assumption is, however, not
always legitimate [Pet98].

2.4.2. Atomic orbitals and basis sets
A key consideration in the implementation of the ab initio methods described above
is the finite collection of basis functions {φµ}Kµ=1 ⊂ H1(R3,C) used to discretise the
spatial orbitals according to (2.11). We give here a brief summary of three classes of
basis functions and their use in the construction of such basis sets, following from the
outset [HOJ13, Chaps. 6 and 8] and also making general reference to [Can+03, Secs. 23
and 24; Gil94; EA07].

We seek, in effect, a suitable complete basis for H1(R3,C) that can be finitely sampled
in a way that allows systematic improvement of the solution space with a correspondingly
regular increase in computational cost [Can+03; HOJ13]. For the moment, we consider
only basis sets for monoatomic problems. An historically important class of basis functions
in this setting are the Slater-type orbitals (STOs) [Sla30; HOJ13, Sec. 6.5.5]. Each STO
is defined in spherical coordinates as ΨSTO

lmn (r, θ, φ; ζ) = RSTO
n (r; ζ)Y m

l (θ, φ), the product
of a radial part and an angular part. The latter is a spherical harmonic; the former is
given by [HOJ13, (6.5.26)]

RSTO
n (r; ζ) =

(2ζ)
3
2√

(2n+ 1)!
(2ζr)n−1 exp(−ζr) (2.28)

parametrised by some ζ > 0. Both radial and angular parts are also parametrised by m,
n, l ∈ Z, where n ≥ 1, 0 ≤ l < n, and −l ≤ m ≤ l. The STOs are complete in L2(R3,C)
for any particular choice of ζ.

A similar radial form, but with an exponential in terms of r2 [HOJ13, (6.6.7)],

RSH-GTO
nl (r;α) =

2(2α)
3
4

π
1
4

√
22n−l−2

(4n− 2l − 3)!!

(√
2α · r

)2n−l−2
exp(−αr2), (2.29)

produces the spherical-harmonic Gaussian-type orbitals (spherical harmonic GTOs) [HOJ13,
Sec. 6.6.3], parametrised by α > 0 and writtenΨSH-GTO

lmn (r, θ, φ;α) = RSH-GTO
nl (r;α)Y m

l (θ, φ).
These are also complete for L2(R3,C) for fixed α and varying m, n, l, and are related to
another complete family of functions which are defined in Cartesian coordinates rather
than spherical, the Cartesian Gaussian-type orbitals (Cartesian GTOs) [Boy50; Gil94;
HOJ13, Sec. 6.6.7]

ΨC-GTO
lxlylz (x, y, z;α) = N(α, lx, ly, lz)x

lxylyzlz exp(−α(x2 + y2 + z2)), (2.30)
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where α > 0 is a parameter as before, lx, ly, lz ≥ 0, and N(α, lx, ly, lz) is a normalisation
constant.

For the STO and GTO families of functions, completeness in H1(R3,C) can also be
shown to hold in some cases; see [KB77b; KB77c] and discussion in [Can+03]. There
are also other ways to construct derived families of functions that are complete, at least
in L2(R3,C); in addition to the above citations, see also [KB77a]. But since in practice
a basis set must always be finite, and given that the cost scaling of the various ab
initio methods is polynomial in the size of the basis set, emphasis is placed instead on
constructing specific basis sets that lead to somehow optimal monoatomic solutions for
the use of a given finite number of functions [Can+03; HOJ13]. For certain computational
reasons to which we will return below, modern basis sets are almost exclusively built
from GTOs; see, e.g., [Gil94; Can+03; EA07]. We gloss over an important practical
detail here, namely that GTO basis functions are not specified alone, but instead in linear
combination; for details and motivation, see, e.g., [HSP69; Raf73; Gil94; HOJ13]. These
contracted basis functions come in matched sets called basis shells; again, for details, see,
e.g., [Gil94; HOJ13, Chap. 9].

Turning now to the construction of basis sets for poly- rather than monoatomic systems,
we encounter a potentially confusing double usage of the term “basis set” that is standard
in the quantum chemical literature. When a particular name is applied, e.g., “the”
cc-pVDZ basis set [Dun89], quantum chemists refer in fact to a predefined collection of
multiple distinct monoatomic basis sets, each one corresponding to and constructed for a
particular atomic species [Can+03; HOJ13]. These monoatomic basis sets can be used to
construct a basis set for a calculation over a polyatomic system: for each atom in that
system, the functions from the appropriate monoatomic basis set are included in the
full-system basis set, with each included function translated so as to be centred at the
nuclear coordinates RA of the relevant atom.

A panoply of such basis sets (i.e., collections of monoatomic basis sets) are available;
see, e.g., the reviews of Huzinaga [Huz85] and Hill [Hil12], as well as [HOJ13, Chap. 8;
Jen17, Chap. 5]. In this thesis, we will make particular use of the correlation-consistent
basis sets due to Dunning and co-workers [Dun89; KDH92; WD95]; see Section A.2
for a complete list and full citations. Most important here are the family of cc-pVnZ
basis sets [Dun89], where n ≥ 2; one speaks of each cc-pVnZ as following an n-tuple
zeta pattern. Again, we defer a detailed description of these, as well as the augmented
aug-cc-pVnZ [KDH92] and core-valence cc-pCVnZ [WD95] families of basis sets, to,
e.g., [Hil12; HOJ13; Jen17]. It is, however, particularly important to note that the
(aug)-cc-pCVnZ basis sets are suitable for all-electron post-HF calculations, whereas the
(aug)-cc-pVnZ basis sets are intended only for frozen-core calculations.

The basis-set errors of calculated energetic quantities obtained with, e.g., the cc-
pVnZ sets decrease regularly as n → ∞, and such results are thus commonly said
to approach the complete basis set (CBS) limit; see, e.g., [FPH11]. The number of
contracted basis functions placed on a first-row atom according to cc-pVnZ is given
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by 1
3(n + 1)(n + 3

2)(n + 2) ∼ n3 [HOJ13, (8.3.7); Hel+97; CGH18]. Similar formulae
can be given for species in other rows, and also for the augmented and/or core-valence
correlation-consistent basis sets [HOJ13, Sec. 8.3.4]. As a result, the cc-pVnZ, cc-pCVnZ,
aug-cc-pVnZ, and aug-cc-pCVnZ families can be viewed as providing four distinct basis
set hierarchies, which either have been constructed or could in principle be constructed
according to a well-defined set of rules. These hierarchies are systematically improvable
in quality, but such improvement incurs a correspondingly regular increase in cost; see,
e.g., an application in [CGH18].

2.4.3. Efficient calculation of two-electron integrals
We refer in this section generally to [Gil94; EA07], and mention again that we are familiar
with most of these concepts from our previous investigation in [Bar09]. Assuming the use
of the LCAO ansatz (2.11) to discretise the spatial orbitals ψi, a practical implementation
of any of the methods detailed above requires explicit evaluation of all of the integrals
(µν |λσ) in (2.12) [SO89; Gil94; HOJ13]. The practical value of Cartesian GTOs stems
from an ERI calculation procedure discovered by Boys [Boy50]; for various improvements
on his basic idea, see, e.g., [MD78; RDK83; OS86], and the review of Gill [Gil94]. For
details of computationally efficient implementations of these and related ERI-calculation
algorithms, see, e.g., [Bar09; Sun15; PC16]. Since it is possible to rewrite ERIs over
spherical-harmonic GTOs in terms of ERIs over Cartesian GTOs [SF95], these approaches
can also function in terms of basis sets composed of spherical-harmonic GTOs.

Given a basis set {φµ}Kµ=1, there are clearly K4 formal ERIs (µν |λσ) defined in terms
of those functions. However, permutational symmetries between the indices in (2.12)
reduce the number of distinct integrals that must be explicitly calculated [BH71; SO89;
Gil94]. In particular, if the basis functions are real-valued, as is usually the case [EA07;
HOJ13] and certainly so for the Cartesian GTOs of (2.30), then the number of distinct
ERIs reduces to 1

8K(K + 1)(K2 +K + 2); see, e.g., [BH71, (27); Gil94, (6)].
More powerfully, the magnitude of an ERI (µν |λσ) shows a dependence on the distance

between the nuclear centres on which the involved atomic orbitals are placed. As a result,
the number of ERIs that are practically non-zero can scale closer to O(K2) than to
the naïve O(K4); see, e.g., discussion and further references in [Gil94; Hea96; EA07].
The a priori identification of precisely which ERIs are in this sense regarded as non-
negligible is performed via integral prescreening techniques. For example, a well-known
approach due to Häser and Ahlrichs [HA89] that requires only O(K2) initial evaluations
of (2.12) exploits the fact that the ERI form describes an inner product, leading to a
Cauchy-Schwarz inequality [HA89, (11) and (12)],

|(µν |λσ)| ≤
√
|(µν |µν)| ·

√
|(λσ |λσ)|, (2.31)

and thence a diagnostic mechanism for at least some of those ERIs (µν |λσ) which have
magnitude below some εERI > 0. Häser and Ahlrichs suggested applying their bound in
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terms of basis shells rather than for individual basis functions. Tighter bounds can also
be applied in similar fashion [Gil94]. The involved prescreening threshold εERI is usually
exposed as a tuneable parameter of calculation; see, for instance, the documentation for
NWChem [Apr+20; NWCDoc].

2.5. An abstract cost model for ab initio calculations

We close the chapter by assembling an abstract cost model for total energy calculations
performed according to the ab initio wavefunction-based methods outlined above. This
abstract cost model assigns a dimensionless number to the problem posed by some
combination of molecular system, basis set, and ab initio method. The ratio between the
abstract costs of any two such problems represents an estimate of the relative difference in
computational effort between them, in a way that ignores practical details, such as specific
computational resources used, as well as the precise implementation of an algorithm in
code.

A simple example of such a cost model is given by Chinnamsetty et al. [CGH18], who
anticipate the cost of a Hartree-Fock calculation using the cc-pVnZ basis set asymptotically
as

CHF
cc-pVnZ(X1, . . . , XM ) .M3n9 (2.32)

as the number of atoms/nuclei M grows. This follows firstly since the total size of the
discretising polyatomic basis set K goes like K ∼ Mn3 (see Section 2.4.2 above), and
secondly from the O(K3) scaling associated with solution of the generalised eigenvalue
problem prescribed by the discretised Hartree-Fock equations. Note that (2.32) is
predicated on the assumption that the number of non-negligible atomic ERIs that must
be calculated scales as O(K3) or less.

The cost model we collate here can be applied not only to Hartree-Fock calculations,
but also to MP2 calculations and coupled cluster calculations to arbitrary excitation
orders. The model is asymptotic, similarly to that of Chinnamsetty et al. [CGH18], and
is generally based upon the computational complexities of individual algorithms, with
the explicit insertion of some tuneable constant factors. Thus, we are really only just
collecting and restating existing formulae.

We place no restrictions on the basis set applied to the system under study; rather,
for any input problem, our cost model is defined in the total number of functions K in
the resulting full-system basis set. In the practical implementation of this cost model
which we have used in this work, we calculate K using functionality provided by the
PySCF package [Sun15; Sun+17; Sun+20]. We also require an estimate of the number
of non-negligible ERIs NERI ≤ K4 over those atomic orbitals. An ERI is considered
non-negligible if |(µν |λσ)| ≥ εERI, where the threshold is here taken consistently to be
εERI = 10−12.
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To estimateNERI, we used a simple Cauchy-Schwarz prescreening approach as per (2.31),
applied at the basis shell level and considering the complete permutational symmetry
mentioned above. The required ERIs were calculated via the libcint library [Sun15].
The involved ideas are all well-known, for very non-exhaustive example [HA89; Gil94;
CS97; Bar09; HOJ13, Sec. 9.12.4; Bar+20], up to the trivial difference that we only count
non-negligible ERIs rather than explicitly evaluating and using them. Sketching anyway
for completeness, using essentially the notation of [HA89] and up to the consideration of
full basis shells instead of lone basis functions, the estimation reduces to first evaluating
all {Qµν :=

√
|(µν |µν)|}µ≤ν , and then counting for each pair µ ≤ ν those terms

Qλσ ≥ εERI/Qµν for symmetry-appropriate λ ≤ σ. An efficient implementation follows
readily from first sorting {Qµν}µ≤ν in descending order; this basic idea can be traced
back at least to [CS97].

We begin with the optimisation of the ground-state Hartree-Fock wavefunction, which
is required both to evaluate a ground-state Hartree-Fock energy, and also as the first step
in all of the post-HF methods outlined above and considered in this thesis. We assume
the use of a direct SCF procedure [AFK82], whereby all required ERIs are reevaluated
during the formulation of the Hartree-Fock eigenproblem at each individual iteration.
The cost of each SCF iteration thus depends firstly on the number of non-negligible ERIs
that must be (re)evaluated, and secondly on the cost of solution of the Roothaan-Hall
equations or equivalent. We make here the simplification5 of assuming that the evaluation
of each ERI requires a relatively significant cost that is on average constant, and so
introduce an explicit average cost factor fERI which weights the calculation and inclusion
of each ERI. Under the further assumption that an SCF calculation requires on average
some NHF

iter iterations to achieve convergence to some desired level of accuracy, the abstract
cost of a Hartree-Fock calculation is modelled as

CHF(· · ·) = NHF
iter
(
fERINERI +K3

)
. (2.33)

Here and for the remainder of this section, we write for simplicity, e.g., CHF(· · ·) to
indicate that the abstract cost is a function of both system and basis set.

We turn now to the costs associated with post-Hartree-Fock methods for calculating
the correlation energy. These are given in terms of the number of correlated orbitals,
Ncorr, that is, the number of occupied spin orbitals Nocc that are excited, or not, as
per the frozen-core approximation. If the frozen-core approximation is applied, then
Ncorr ≤ Nocc; in the case of an all-electron calculation, Ncorr = Nocc. The total number
of frozen orbitals in a polyatomic system is derived as the sum of the monoatomic values
given in Section A.3, weighted by the number of times those atoms appear in the full
system.

Implementations of all of the various post-HF methods require explicit evaluations of
the molecular two-electron integrals [ij|kl] in (2.20). These reduce to the evaluation of
5And it is certainly a simplification; cf., e.g., the much more thorough treatments in [Gil94; HOJ13,
Chap. 9].
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expressions in terms of two-electron integrals over atomic orbitals; in the RHF case, for
example, basically [ij|kl] =

∑
µνλσ c

∗
µ,icν,jc

∗
λ,jcσ,l(µν|λσ). Naïve evaluation of all of these

quantities would require O(K8) operations; however, this can be reduced to O(K5) by
phrasing the four-index transformation as a series of successive tensor contractions, for
example [Ben72; WHR96]:

[iν|λσ] =
∑
µ

c∗µ,i(µν|λσ), [ij|λσ] =
∑
ν

cν,j [iν|λσ], (2.34)

[ij|kσ] =
∑
λ

c∗λ,k[ij|λσ], [ij|kl] =
∑
σ

cσ,l[ij|kσ]. (2.35)

An efficient implementation of these contractions is non-trivial in practice [Raj+17], as
is the exploitation of any negligibility of the tensor entries [(µν |λσ)]µνλσ which may be
estimable by the use of integral prescreening techniques [WHR96].

The MP2 contribution (2.19) involves only O(N2
corrN

2
virt) terms. Thus, it is common to

see the cost of an MP2 energy evaluation given as just O(K5), as in, e.g., [WHR96; Jen17].
Although technically correct, this is somewhat misleading, since the practical cost of an
MP2 evaluation dominates that of the necessarily preceeding Hartree-Fock calculation
only slowly as the size of the system and/or basis set is increased; see comments in [SA89;
BP02; Jen17].

In fact, the expression (2.19) involves only molecular ERIs like [ia | jb] (up to the
permutational symmetry of [SO89, (2.99b)] that is obtained with real atomic orbitals),
where a and b index virtual spin orbitals and i and j index correlated spin orbitals [SA89].
Thus, only a subset of the complete collection of molecular ERIs must be explicitly
calculated, as in [WHR96]. If the tensor contraction given above is performed first over
the correlated indices i and j, and if the sparsity of the atomic ERIs is considered in the
first contraction (on this point, see, e.g., discussion in [SL97]), then a tighter abstract
cost for an MP2 total-energy calculation can be given as

CMP2(· · ·) = CHF(· · ·) +N2
corrN

2
virt + fERINERI

+NcorrNERI +N2
corrK

3 +N2
corrNvirtK

2 +N2
corrN

2
virtK.

(2.36)

The first term on the right-hand side is the cost of the initial Hartree-Fock calculation.
The second term represents the explicit evaluation of the MP2 energy term. The third
term is the cost of calculating the non-negligible atomic-orbital ERIs. The remaining
terms represent the cost of each of the four successive contractions required to calculate
the molecular ERIs; if Ncorr < Nvirt, as is usually the case, it is easy to see that
this represents the optimal contraction order, at least in terms of a raw operation
count [Ben72; WHR96; Raj+17]. Variations of this contraction pattern are used by
many MP2 implementations, e.g., [HPF88; SA89; WHR96; SL97]. Note that these
implementations generally avoid forming complete tensors of atomic and/or molecular
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ERIs, in favour of direct or “semi-direct” approaches that balance for intermediate
memory/storage costs at the expense of some redundant computation. We also neglect
the possibility to consider here permutational symmetries [Ben72].

Finally, we extend our cost model to coupled cluster total energy calculations, both
with and without a perturbative correction. The cost of a coupled cluster calculation
involving excitations up to level n (where n = 2 for CCSD, n = 3 for CCSDT, etc.) is
modelled simply according to the asymptotic cost scaling given in Section 2.2.4 as

CCC(n)(· · ·) = fERINERI +K(Ncorr +Nvirt)
4 +NCC

iterN
n
corrN

n+2
virt . (2.37)

The first and second terms on the right-hand side represent calculation of all non-negligible
atomic ERIs and their complete transformation to molecular ERIs; for simplicity, we do
not model the four-index transform in as much detail as for the case of MP2. NCC

iter is a
constant representing the average number of iterations required to solve the projected
coupled cluster amplitude equations. We assume that the impact of the frozen-core
approximation can be captured by substituting Ncorr for Nocc in the original asymptotic
expression.

The cost of a coupled cluster calculation with an additional non-iterative perturbative
correction for excitations at order n+ 1 (for example, n = 2 for CCSD(T)) is then just

CCC(n)(n+ 1)(· · ·) = CCC(n)(· · ·) +Nn+1
corr N

n+2
virt . (2.38)

The cost of ERI calculation and transformation will likely not be significant for all but
the smallest problems, and these terms are explicitly included in (2.37) and (2.38) only
for completeness.

For the remainder of this thesis, we apply this abstract cost model with the specific
values NHF

iter = 15, NCC
iter = 15, and fERI = 50. The first two values are chosen to be roughly

consistent with the number of iterations that we observed in calculations performed with
the three quantum chemistry software packages that were used in the preparation of
this thesis, namely MRCC [Kál+20; MRCC], NWChem [Apr+20], and PySCF [Sun15;
Sun+17; Sun+20]; see Section A.1. The final value, fERI = 50, was somewhat arbitrarily
chosen as a plausible estimate based upon informal experimentation and the general
experience of the author. In any case, the values NHF

iter , NCC
iter , and fERI are only prefactors

and do not change the overall scaling behaviour of the cost model as the number of
occupied and virtual orbitals increases.

Naturally, the abstract cost model is by construction only an abstraction, and becomes
valid only in the asymptote. A comprehensive assessment of the relationship between
abstract costs of calculations and their corresponding true costs as measured in terms
of operation count or elapsed “wall time” would require the consideration of many
complicated and interacting practical factors, including but not limited to the impact of
parallelism, and is beyond the scope of this thesis. However, we mention for completeness
that preliminary investigation in this direction suggests, in particular, a non-negligible
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disagreement between the rates of growth of the abstract and true costs of some CCSD
and CCSD(T) calculations performed with PySCF and NWChem. It seems reasonable
to assume that this is simply a preasymptotic expression of computational work ignored
by the abstract cost model; indeed, the disagreement does seem to eventually trend
towards stability, although only slowly and for quite substantial problems. Nevertheless,
a rigorous analysis of this effect is important, and is left for future work.
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3. An order-theoretic combination technique

The focus of this thesis is the efficient approximation of energetic properties of molecules
by combination of approximate solutions to the Schrödinger equation, obtained using the
methods described in the previous chapter. Our primary tool will be the order-theoretic
combination technique which we will develop in this chapter. As the name suggests,
this represents an extension of the “standard” combination technique, a well-known and
well-understood multivariate extrapolation method that has particular advantages in
some high-dimensional problem settings [GSZ92; BG04; Gar12b; Heg+16; TW18].

We will begin by sketching the standard combination technique to establish context,
and then briefly review its history and applications. We will develop a new formulation
of the combination technique in a setting of abstract hierarchies of functions, which are
organised according to a general class of partial orderings. We will then develop an
algorithm for the adaptive assembly of particular subsets of these model hierarchies, which
are intended to allow the approximation of a target function in a quasi-optimal [NTT15;
TW18] manner.

3.1. The standard combination technique

All of the following ideas are well-known in the literature, up to different settings, precise
formulations, and notations; we make general reference to, e.g., [GSZ92; Heg03; BG04;
Gar12b; Har16a; Heg+16; TW18]. We proceed quickly and informally, and choose the
structure of our presentation, and our notation and nomenclature, to lead directly into the
latter part of the chapter. We deliberately de-emphasise the usually stressed connections
between the combination technique and the theory of sparse grids.

Let V be a vector space of d-dimensional functions, and pick some interesting f ∈ V . As
in, e.g., [Heg03; Har16a; Heg+16; TW18] up to exact notation, we introduce multiindices
written like m,n ∈ Nd, equipped with a componentwise partial ordering such that m ≤ n
whenever mi ≤ ni for all 1 ≤ i ≤ d. We assume that there exists a particular family of
functions {fm ∈ V }m∈Nd , which we picture as approximations to f that become somehow
more accurate as the components mi of their multiindices m increase. We will call each
such fm a model function of f , and f itself the target function.

Consistent with the idea of, e.g., [Heg+16, Prop. 1], we define, recursively, the hier-
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archical surplus of each fm to be

f̃m := fm −
∑
m′<m

f̃m′ ; (3.1)

cf. also [PZ99; BG04]. For each k ∈ N, let Sk be the truncation of the formal sum∑
m∈Nd f̃m after only those surplus terms f̃m for which all multiindex components

mi ≤ k, that is,
Sk =

∑
m∈Nd

‖m‖∞≤k

f̃m. (3.2)

Trivially and by construction, then, Sk = f(k,k,...,k), and we can view the terms of the
sequence (Sk = f(k,k,...,k))

∞
k=0 as approximations of f that are systematically improvable

by increasing k, of course up to the lack of precision in our informal setup. This also
holds if we take instead an alternative, non-recursive definition of the hierarchical surplus,
cf., e.g., [PZ99; Hul14, (5.60); NTT15, (3); Heg+16, (5); Won16, Def. 1.2.25],

f̃m =
∑

n∈{0,1}d
n≤m

(−1)‖n‖1fm−n. (3.3)

Later in the chapter, we will explicitly rederive the equivalence of (3.1) and (3.3).
The essence of the combination technique [GSZ92], see also [BGR94; Bun+94], is

the replacement of the terms Sk in such a sequence with differently-truncated partial
summations of

∑
m∈Nd f̃m. We write, for instance, the canonical choice as

SIL =
∑
m∈IL

f̃m, (3.4)

differentiated from Sk notationally by the subscript indicating not a natural number but
instead a particular index set, here IL = {m ∈ Nd | ‖m‖1 ≤ L} for some L ∈ N [GSZ92;
Gar12b]. Under a simple but practically quite strong assumption about the model
functions fm, the terms of the sequence (SIL)

∞
L=0 converge at least pointwise to f at

almost the same rate as do those of (Sk)∞k=0, but carry only a much more reasonable cost
scaling.

As is standard, we will illustrate this in the two-dimensional case, directly following
the original formulation of [GSZ92]; see also [Gar12b]. Let f : [0, 1]2 → R, and take
each f(i,j) to be a discretisation of f onto a rectilinear grid within [0, 1]2 with generally
anisotropic mesh widths hi = 2−i and hj = 2−j . Suppose that, pointwise,

f − f(i,j) = C1(hi)h
2
i + C2(hj)h

2
j +D(hi, hj)h

2
ih

2
j , (3.5)

and that there exists some K > 0 such that for all hi and hj , it holds that |C1(hi)| ≤ K,
|C2(hj)| ≤ K, and also |D(hi, hj)| ≤ K. Then it can be shown that |f − SIL | =
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3.1. The standard combination technique

O(h2L log(h−1
L )) [GSZ92; Gar12b]; that is, the combinations SIL converge pointwise to f

at the same rate, up to a logarithmic factor, as do the models f(k,k) and thus the partial
sums Sk.

Suppose, though, that the computational cost C(i,j) of calculating each f(i,j) is C(i,j) =
O(h−1

i h−1
j ), so linear in the number of grid points. The summation SIL involves only

those O(L2) model functions f(i,j) with i + j ≤ L, the evaluation of which requires
a combined cost of

∑L
i=0

∑L−i
j=0 C(i,j) = O(L · 2L) = O(h

−1
L log(h−1

L )) [Bun+94; GT95],
compared to the O(h−2

k ) cost incurred to evaluate each Sk = f(k,k). An additional saving,
albeit one which does not change the overall cost scaling, is found by noting that SIL
can be written in terms of only 2L+ 1 = O(L) model functions [GSZ92; Gar12b],

SIL =
L∑
i=0

f(i,L−i) −
L−1∑
i=0

f(i,L−i−1). (3.6)

We will explicitly rederive this identity later in the chapter. Since this is just a particular
linear combination of model functions, hence we call SIL a combination sum.

In the generally d-dimensional version of the same setup, writing [d] = {1, 2, . . . , d},
suppose that for each fm there exists an analogous pointwise error expansion

f − fm =
∑
u⊆[d]

Cu(. . . , hi∈u, . . .)
∏
i∈u

h2i (3.7)

to that in (3.5), in terms of a collection of 2d |u|-dimensional functions {Cu}u⊆[d] which are
all bounded absolutely by some K > 0. Then [Rei12, Thm. 5.4], see also [Rüt16], provides
that |f − SIL | = O(h2L log(h−1

L )d−1). This is once more within a logarithmic factor of the
O(h2k) pointwise convergence offered by the terms of the sequence (Sk)

∞
k=0. However, the

cost required to evaluate each SIL scales only as O(h−1
L (log(h−1

L ))d−1) [Gar12b; Rüt16,
Sec. 4.2.2], compared to the O(h−d

k ) required for each Sk. Generalising (3.6), a well-known
expression for SIL directly as a combination sum of model functions is [Del82; WW95;
Rei04; Gar12b; Har16a]

SIL =

d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
‖m‖1=L−k

fm. (3.8)

Again, we will rederive this identity below.
Leaving the explicit grid setting behind and following the more general lead now

of [TW18], up to slightly different formulation and also with some reference to [CGH18],
suppose that L : V → Y is some linear functional from the vector space V into a Banach
space Y . Rather than requiring an explicit error decomposition like (3.7) of the model
functions fm, suppose instead that the Y -norms of all values L[f̃m] are bounded up to a
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3. An order-theoretic combination technique

universal constant factor by a product of strictly decreasing functions {bi : N→ R+}di=1,
that is,

‖L[f̃m]‖Y ≤ K1

d∏
i=1

bi(mi) (3.9)

for K1 > 0. If it also holds that
∑
m∈Nd

∏d
i=1 bi(mi) < ∞, then [TW18, Prop. 3.1(i)]

provides, firstly, that limmindi=1 mi→∞ L[fm] exists, and secondly, that
∑
m∈Nd L[f̃m] con-

verges absolutely (in Y ) to this limit. In practice, the model functions fm are usually
chosen such that the limit is known to be some particular property L[f ] of the target
function f .

Suppose further that each evaluation L[fm] incurs a computational cost Cm that is
similarly bounded by strictly increasing functions {wi : N→ R+}di=1 [TW18],

Cm ≤ K2

d∏
i=1

wi(mi) (3.10)

for universal K2 > 0. We seek then to find the best possible approximation of L[f ]
according to ‖·‖Y that is achievable as a sum of evaluated hierarchical surpluses L[f̃m],
with a total evaluation cost that does not exceed some predetermined cost budget W > 0.

In the absence of any other information about the models fm and the target f , we
want [GG98; Heg03; Har16a; CGH18; TW18] to find an index set, denoted IW ⊂
Nd, that maximises the sum of the benefits of the terms in IW , that is, the sum
K1
∑
m∈IW

∏d
i=1 bi(mi) of the bounds on ‖L[f̃m]‖Y for each m in the index set [TW18,

Sec. 3.1]. This maximisation is made while keeping the cost of IW less than W , as
provided by K2

∑
m∈IW

∏d
i=1wi(mi) ≤W . Some such maximising set is guaranteed to

exist, and must be downward-closed, in the sense that if m ∈ IW , then also n ∈ IW for
any n <m [TW18, Prop. 3.2].

It is easier to construct instead quasi-optimal [NTT15; TW18] index sets by picking
all points m with benefit/cost ratios exceeding some δW ; this cutoff is then reduced as
far as possible while keeping the total cost less than W [TW18]. It follows informally
that a sequence of combined quasi-optimal approximations SIW can be obtained by
progressively increasing the cost budget W , and that the evaluated terms L[SIW ] of this
sequence will be at least as cost-effective as those of (L[Sk])∞k=1 with equivalent or lesser
cost, at least up to the information provided by the bounding functions bi and wi. As
mentioned in [TW18], this kind of quasi-optimal construction can be generally related to
various adaptive algorithms, e.g., those given in [GG98; Heg03; Gar07a; CGH18], which
construct index sets via inspection of the norms of the true calculated benefits ‖L[f̃m]‖Y
and optionally also their costs.
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3.2. History and applications of the combination technique

3.2. History and applications of the combination technique

The (standard) combination technique as sketched above was initially shaped by Griebel
et al. to engage with PDEs [GSZ92]; see also [BG04; Gar12b; TW18]. Here, while
the combination sums SIL can be in a conditional sense “as good” [GH14, p. 9] as
approximate solutions leveraging the well-known sparse grid functions [Smo63; Zen91;
GSZ92; BGR94; Bun+94; BG04; Gar12b; TW18], their evaluation sidesteps the non-
trivial implementational effort necessary to reconfigure algorithms for use with the
same [BG04; Gar06; OB21].

Versions of the original PDE-focused formulation of the combination technique have
been applied in a variety of settings; see, e.g., [BG04; Heg+16] and references therein.
However, the power of the combination technique derives from error decompositions
equivalent to (3.7), and these can be difficult to demonstrate in many problems of in-
terest [Heg+16; Lag+20]. Moving beyond the solution of PDEs, certain and similar issues
with the standard combination sum [HGC07; Gar12a] often suggest rather dimensionally-
adaptive combination techniques [Heg03; Gar07a; HGC07]; cf. [Gri98; GG03]. These have
been applied in turn in the PDE setting [SG22], and alternative algorithms based on
the combination technique that seek full spatial adaptivity rather than just dimensional
adaptivity have also been recently reported [OB21; Obe21].

An interesting interpretation of dimensionally-adaptive formulations of the combination
technique [Heg03; Gar07a; Gar12b] involves the rewriting of the d-dimensional target
function f as an ANOVA decomposition [Kuo+09; Feu10]

f =
∑
u⊆[d]

fu = f∅ +
∑
i∈[d]

f{i} +
∑
i<j

f{i,j} + · · ·+ f[d], (3.11)

where each fu is a |u|-dimensional function defined only on those dimensions indexed by
u ⊂ [d]. If the model functions fm are chosen in a particular way, then a dimensionally-
adaptive combination sum can be viewed as recovering approximations for each fu
individually [Gar07a; Gar12b; Gar12a]; see also, e.g., [Heg+16].

In the quantum chemistry setting, Garcke [Gar98] and Garcke and Griebel [GG00]
used the combination technique to approximate solutions to monoatomic problems; see
also later work in the context of the opticom approach [Gar07b; HGC07]. More recently,
Zaspel et al. [Zas+18] developed a multilevel combination-technique strategy for the
machine-learning and subsequent prediction of chemical properties. Their scheme is
closely related to the composite methods which we shall discuss in Chapter 4, and we
will provide further details there. Separately, Heber [Heb14] and co-workers [GHH14]
produced a technique for approximating ground-state polyatomic total energies that
centres upon a modified ANOVA-style decomposition. Their BOSSANOVA decomposition
is heavily informed by the combination technique; we shall return to it, and its adaptive
multilevel ML-BOSSANOVA generalisation [CGH18], at length in Chapters 6 and 7.
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3. An order-theoretic combination technique

An alternative construction of the standard combination technique has been considered
by Hegland and co-workers [Heg03; HGC07; HH13]; cf. here the earlier [HP97]. As
per [Heg03], their setting is a lattice of tensor-product function spaces Vm =

⊗d
i=1 Vi,mi ,

for m ∈ Nd and Vi,1 ⊂ Vi,2 ⊂ · · · ⊂ Vi,m. The combination sum is formed in terms of
projections PVi,j into the spaces Vi,j , which provide themselves a lattice of projections
Pm =

⊗d
i=1 PVi,mi

. Informally, these projections could be used to obtain the model
functions fm considered in our sketch in the previous section; see, e.g., discussion directly
prior to Proposition 4.26 in [Har16b].

The lattice-of-projections version of the standard combination technique has been
explored in particular detail by Harding [Har16a; Har16b] and Wong [Won16]. In the gen-
eral context of a fault-tolerant scheme, and building on earlier results of Hegland [Heg03],
Harding [Har16b, Sec. 4.2] investigated the structure of combination coefficients like
those in front of each fm in (3.8), but for projections formed in terms of arbitrary
downward-closed index sets I; the modification of the combination coefficients under
adaptive-style updating of I is also considered. We mention also Harding’s treatment and
extension of alternative combination techniques for extrapolated solutions in a similar
lattice-of-projections setup; see [Har16a, Chap. 4] for further details, as well as several
other interesting developments and applications.

Wong [Won16, Chap. 3] constructed a generalised combination technique1 that is
defined, rather unusually, for index sets that are not necessarily downward-closed, but are
allowed more generally to be meet subsemilattices of Nd, that is, subsets of Nd that are
closed under taking componentwise minima. Wong’s characterisation of the combination
coefficients is explicitly founded on an inclusion/exclusion-style argument; although a
relationship between the combination coefficients and the principle of inclusion/exclusion
is well-known, see, e.g., [HGC07; Gar12b], we find Wong’s interpretation particularly
interesting and will come back it briefly in Chapter 5.

In what follows, we consider a combination technique defined not simply for the
lattice Nd, but rather for a much more general class of partially ordered sets. We focus
on machinery for the calculation and adaptive updating of the involved combination
coefficients based upon the technique of Möbius inversion that is fundamental in order
theory and combinatorics [Sta12]. Our inspirations here are twofold. Firstly, in structuring
a combination technique in terms of partially ordered sets, we are heavily inspired by and
start from the same basic idea as [Heg03; HGC07], and there are also strong connections
to related work in, e.g., [Har16b; Won16]. In particular, although the development
in [HGC07] is focused on a particular kind of lattice which is basically equivalent to
Nd, the setup in Section 3.1 of that work allows, in principle, for an arbitrary meet
semilattice of spaces, there called an intersection structure; also, the possibility to use

1We remark in passing that we are aware of at least eight competing usages of the phrase “generalised
combination technique” or similar in the literature [GG98, Sec. 5.2; HGC07; Kra07, Sec. 3.3.5; Hol08,
Sec. 4.1.3; Har16a, Sec. 1.1.2; Won16, Chap. 3; OB21; SG22, Sec. 4.2].
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3.3. Poset model hierarchies

various lattices other than the standard is at least mentioned in [Heg03]. In general,
although we do not explicitly follow the formalisms of [Heg03; HGC07; Har16b; Won16],
when our construction is applied to the setting of the standard combination technique, a
number of their results relating to the combination coefficients in particular can be easily
rederived. This is, however, not our primary purpose.

Secondly, although we build the following in the abstract, we will apply it to compu-
tational chemistry. There, we shall be particularly interested in certain ANOVA-like
decompositions of high-dimensional functions, including (ML-)BOSSANOVA [GHH14;
Heb14; CGH18] but also many others; much more on this in the chapters to follow. The
observation that Möbius inversion can be used to construct such decompositions was
first brought to our attention by Griebel [Gri19], who also suggested the relevance of
Möbius inversion to the standard combination technique in the particular context of
ML-BOSSANOVA. Möbius inversion has also been used to explicitly construct other
related decompositions, such as those in [Dom74; Ess+77, (7) and (8); Kle86, (7) and
(15); DFS04, (3), (4), and (7); LC05, (3.18)]. The basic idea of application of Möbius
inversion that leads to decompositions and sums like, e.g., (3.17), (3.19), and (3.20) below
is fundamentally the same as used there, up to minor formal details, and so not new. The
novelty of our work lies instead in first formally extending this idea to include the standard
combination technique, and then bringing across existing and well-understood concepts of
quasi-optimal adaptivity from that setting. For now, we present the construction cleanly
in full generality, and will comprehensively relate it back to existing literature in the
pages to come; see, in particular, Sections 5.2.3 and 6.1 below.

3.3. Poset model hierarchies

We now derive the promised generalisation of the combination technique in terms of
families of model functions which are indexed by elements drawn from a very broad class
of partially ordered sets, and from “grids” defined using such sets as “axes”.

Our primary reference for standard order-theoretic material here and throughout this
thesis is the textbook of Stanley [Sta12], particularly Chapter 3 of that source;2 we
make additional general reference to [Rot64; Aig97]. We broadly follow the notational
conventions of [Sta12], with some minor adjustments. To make the following reasonably
self-contained, and for the convenience of the reader, we shall restate some core definitions
and results, particularly at the outset. We assume that the basic notion of a partially
ordered set, or poset, is clear. Given some poset P , we use the notation s ≺ t to denote
that t is a cover of s in P , that is, that t > s and there is no u ∈ P with s < u < t. A
poset P is locally finite if, for every s ≤ t in P , the interval defined as [s, t] := {u ∈ P |
s ≤ u ≤ t} is finite. Further, the zero of a poset, 0̂ ∈ P , is a unique minimal element of
2It is perhaps worth mentioning that Stanley speaks explicitly only of poset theory and lattice theory,
rather than order theory, but cf. [Aig97].
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P , if such exists.
The first two definitions directly extend ideas seen in the sketch of the standard

combination technique given earlier in the chapter. In particular, the second definition
can be viewed as a kind of generalisation of that given in [Heg+16, Prop. 1].

Definition 3.3.1 (Poset model hierarchy). Let P be a locally finite poset with a 0̂, and
let FP = {ft}t∈P be a family of elements of some vector space V of functions, each of
which is indexed by an element of P . We call FP a (poset) model hierarchy over P , and
each ft a model or a model function.

Definition 3.3.2 (Hierarchical decomposition). Let FP be a poset model hierarchy. The
hierarchical decomposition of each ft ∈ FP is given by

ft =
∑
s≤t

f̃s, (3.12)

where each implicitly-defined term f̃s is the hierarchical surplus or simply surplus of the
model fs ∈ FP .

We can obtain an explicit recursive definition of the surpluses by rewriting (3.12):

f̃t = ft −
∑
s<t

f̃s. (3.13)

The sum on the right-hand side of (3.13) is finite, so all functions in the family {f̃t}t∈P
are well-defined.

We introduce now a key standard definition, given in a form that is almost but not
quite equivalent to that in [Sta12, Sec. 3.7];3 see also [Rot64], and cf. the version given
in [God18].

Definition 3.3.3 (Möbius function of a poset [Sta12]). Let P be a locally finite poset,
and K be a field. Define the function µ : P × P → K recursively as follows:

µ(s, t) =


1 if s = t,

−
∑

s≤u<t

µ(s, u) if s < t,

0 otherwise, i.e., when s 6≤ t,

(3.14)

where 0 and 1 are those of K. Then we call µ the Möbius function of P (defined for K).

The specific choice of field K will always be clear in context and we will generally not
mention it explicitly. For future reference, suppose that P ∼= Q are locally finite posets
3Specifically, we make explicit the definition of µ(s, t) when s 6≤ t.
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that are isomorphic; that is, two posets connected by a bijection φ : P → Q that is
order-preserving in both directions [Sta12]. We use subscripts to distinguish the Möbius
functions of each, i.e., µP and µQ, both for the same K. Then it is well-known that their
Möbius functions are related as µP (s, t) = µQ(φ(s), φ(t)) for all s, t ∈ P ; cf., e.g., [BG75,
Cors. 2 and 3].

The following theorem [Hal34; Wei35; Rot64] provides the basis for our generalisation
of the combination technique. We recite it verbatim from [Sta12], noting that our slightly
extended definition of µ makes here no difference. We recall beforehand that the principal
order ideal of some t ∈ P is Λt := {s ∈ P | s ≤ t} [Sta12].

Theorem 3.3.4 (Möbius inversion formula; verbatim from [Sta12]). Let P be a poset for
which every principal order ideal Λt is finite. Let f, g : P → K, where K is a field. Then

g(t) =
∑
s≤t

f(s), (3.15)

for all t ∈ P , if and only if
f(t) =

∑
s≤t

g(s)µ(s, t), (3.16)

for all t ∈ P .

Proof. See [Sta12, Prop. 3.7.1].

This suggests immediately an alternative expression for the hierarchical surpluses f̃t.
Although the following cannot be had directly from the preceeding theorem as stated,
due to the assumption of field-valued functions f , g, it is just an example of Möbius
inversion and is in no way novel. Indeed, it follows immediately from an alternative proof
of the preceeding theorem that is also given by Stanley [Sta12].

Proposition 3.3.5. Let FP be a model hierarchy as defined above. Then for any t ∈ P ,

f̃t =
∑
s≤t

µP (s, t)fs. (3.17)

Proof. See the alternative proof of [Sta12, Prop. 3.7.1], replacing g(s) and f(t) there
with fs and f̃t here, and ensuring that δ(s, t) is valued in the appropriate field K.

Next, we define summations of surpluses analogous to the combination sums SI in (3.4)
in Section 3.1 above. We define these summations in terms of particular subsets I ⊆ P .
We require that, if t ∈ I, then also s ∈ I for every s ≤ t in P . In the language
of order theory, such an I is called an order ideal of P [Sta12]. Finite order ideals
provide generalisations of the downward-closed index sets used in the original adaptive
formulations of the combination technique.
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Definition 3.3.6. Let FP be a model hierarchy, and let I be a finite order ideal of P .
Then we define the I-truncation of FP as

SI :=
∑
t∈I

f̃t (3.18)

=
∑
t∈I

∑
s≤t

µ(s, t)fs. (3.19)

We use the name “truncation” to convey the idea that such a summation is a finite
approximation of the possibly infinite formal sum

SP =
∑
t∈P

f̃t. (3.20)

When we wish to emphasise the poset structure of I, we will refer to it as an “order
ideal”; when we wish to emphasise its use as a particular selector of terms f̃t for use in a
summation, we may refer to it as a “(downward-closed) index set”, for consistency with
the combination-technique literature.

We will also sometimes refer to truncations SI as combination sums (with respect to
either the order ideal or index set I), again when this helps to connect our construction
with the standard combination technique. In particular, we view each SI as a weighted
“combination” of the model functions fs for s ∈ I. In (3.19), each fs appears exactly once
in the summation over t ∈ I for every s ≤ t. By collecting terms in s and reordering
summations,4

SI =
∑
s∈I

∑
t≥s
t∈I

µ(s, t)fs (3.21)

=
∑
s∈I

fs
∑
t≥s
t∈I

µ(s, t), (3.22)

which motivates the following definition, again by extension of the same for the standard
combination technique.

Definition 3.3.7 (Combination coefficient). Let FP and I be as in Definition 3.3.6. For
any s ∈ FP , define

D(I)
s :=

∑
t≥s
t∈I

µ(s, t). (3.23)

We call D(I)
s the combination coefficient of fs in the I-truncation SI .

4Cf. here again the alternative proof of [Sta12, Prop. 3.7.1].
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Note that the latter definition is not restricted to s ∈ I, but is universally zero when
this is not the case. In general, it will not be possible to further characterise the values of
the combination coefficients without more information about the particular poset P , such
as a non-recursive expression for its Möbius function µP .5 Even without such knowledge,
however, we can easily obtain a consistency guarantee that generalises one already known
for the combination coefficients in the standard combination technique; see, e.g., [Rei04,
Lem. 4.3; Har16a, Lem. 6; Won16, Prop. 3.2.20]. This is really just a slight rephrasing of
a very basic property of the Möbius function, cf., e.g., [Sta12, Exercise 3.88]. The proof
makes trivial use of a different version of Theorem 3.3.4 that is also given in [Sta12];
cf. a similar usage of Theorem 3.3.4 on [Sta12, p. 265] that we will come back to in
Section 5.2.3.

Proposition 3.3.8. Let FP and I be as in Definition 3.3.6. Then∑
s∈I

D(I)
s = 1. (3.24)

Proof. Define g(s ∈ I) = 1, let f(s ∈ I) = D
(I)
s =

∑
t≥s µ(s, t)g(t), consider g(0̂), and

apply the dual form of Möbius inversion as per [Sta12, Prop. 3.7.2].6

On that note, we take a moment to relate the construction back to the standard
combination technique as sketched in Section 3.1 above. There, the multiindices m are
drawn from Nd. The functions fm obtained by progressively increasing these multiindices
componentwise can be viewed as more refined approximations in distinct dimensions, often
according to some kind of grid. The componentwise partial order on Nd = N× · · · ×N is
just an example of the standard product order that is assigned to the direct product P ×Q
of two posets P and Q, where (s, t) ≤P×Q (s′, t′) whenever s ≤P s′ and t ≤Q t′ [Sta12].
To generalise this idea, we define by analogy a “grid” poset model hierarchy formed in
terms of individual “axes”.

Definition 3.3.9 (Poset model grid). Let P1, P2, . . . , Pd be locally finite posets, each
with a zero 0̂Pi , and let Π = P1×· · ·×Pd be their direct product. Now let FΠ = {fp}p∈Π
be some family of functions. Then we call Π a d-dimensional (poset) model grid, and
refer to the ith original poset Pi as the ith (poset) axis of the model grid. If necessary to
remove ambiguity, we may call the family FΠ a poset grid model hierarchy.

5A slightly different formal application of Möbius inversion as used in [LC05] does, however, lead to a
different way of understanding the combination coefficients, which makes their well-known connection
with the principle of inclusion/exclusion extremely clear, and also relates them to the construction
in [HGC07, Sec. 3.1]. See Section 5.2.3, and in particular, Footnote 4 on page 112.

6This could be considered the same basic idea of proof used by Wong in [Won16, Prop. 3.2.20], but applied
in a more general setting. See discussion in Section 5.2.3 below.
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Let us mention here that this can be more broadly viewed as a generalisation on the
tensor-product function space lattices constructed in, e.g., [Heg03; HGC07]. Notationally,
we will use boldface characters to indicate entries of a poset model grid, for example,
p ∈ Π, as above; to identify the ith component of some p, we will write, e.g., pi ∈ Pi.
The “grid” Π is itself a poset which is locally finite and has a zero 0̂Π = (0̂P1 , . . . , 0̂Pd

),
so all of the above definitions and results apply without change to Π and any model
hierarchy FΠ defined over it. In particular, we can speak of order ideals, combination
coefficients, I-truncations, and combination sums over poset grids just as over poset axes.

This grid definition contains a certain ambiguity. If P and Q are arbitrary posets,
then trivially P ×Q ∼= Q× P . Consider a poset grid Π constructed as above from some
set of poset axes P1, . . . , Pd. There are d! different ways of arranging the terms in the
direct product of the constituent poset axes, and so of building equivalent grids up to
isomorphism. Slightly more subtly, if we group the axes into arbitrary subsets and take
their direct products first, we can view the result as being a “grid” formed from “subgrids”,
e.g. (P1 × P2)× (P3 × P4).

This ambiguity is unproblematic, and is better regarded as flexibility: we are free to
choose the product structure of Π in such a way that we can best exploit it. In particular,
the calculation of the Möbius function values µΠ(p,q) for p,q ∈ Π can be cast in terms of
the Möbius functions µPi of the poset axes. For this, we will need the following standard
result, adapted slightly from [Sta12]; see also [Rot64; God18].

Theorem 3.3.10 (Product theorem [Sta12]). If P and Q are locally finite posets, then

µP×Q((s, t), (s
′, t′)) = µP (s, s

′) · µQ(t, t′). (3.25)

Proof. This is essentially [Sta12, Prop. 3.8.2], but with the restriction that (s, t) ≤ (s′, t′)
removed, in keeping with our slightly broader definition of the Möbius function.

We consider now the combination coefficients for two particular posets. The first is,
in our terminology, a d-dimensional poset grid Π = P × · · · × P , where P is an infinite
but locally finite chain with a 0̂; here, a chain is just another name for a totally ordered
set [Sta12]. Such a P is trivially isomorphic to N, with the necessary bijection φ : P → N
provided by the usual rank function of P [Sta12, p. 244]; so φ(0̂) = 0, then φ(s � 0̂) = 1,
and so on. Thus Π ∼= Nd, the setting for the standard combination technique.

The second poset we consider is the powerset 2[n] of [n] = {1, 2, . . . , n}, with its
elements ordered so that u ≤ v whenever u ⊆ v for u,v ⊆ [n]. This is the well-known
(finite) boolean algebra of rank n, denoted Bn [Sta12]. Since Bn is finite, it is locally
finite, and it has a 0̂ in the form of the empty set ∅. The boolean algebra is deeply
related to certain approximations of high-dimensional functions; we will come back to
this particularly in Chapter 5 below.

Non-recursive expressions for the Möbius functions of these posets are derived in
Examples 3.8.3 and 3.8.4 of [Sta12], respectively; we refer to the source for details, but
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3.3. Poset model hierarchies

note that in both cases, the derivations follow directly from the product theorem. We will
use the resulting expressions to rederive in turn existing expressions for the combination
coefficients of particular order ideals of these two posets. In both examples, we present
the rederivations cleanly before explicitly surveying their presence in existing literature,
but these are only motivating examples and there is no particular novelty. We will make
use of the following supporting identity.

Lemma 3.3.11 ([QG15]). Let n, k ∈ N be such that k ≤ n. Then

k∑
j=0

(−1)j
(
n

j

)
= (−1)k

(
n− 1

k

)
. (3.26)

Proof. This is a special case of (1.31) in [QG15].

Example 3.3.12 (d-dimensional grid of chain posets Π = P × · · · × P ∼= Nd). We work
directly with Nd for simplicity, but everything here also translates immediately to Π. We
have from [Sta12, Example 3.8.4], up to precise formulation and the use of infinite chains,
that

µNd(m,n) =
{
(−1)‖n−m‖1 if m ≤ n and n−m ∈ {0, 1}d,
0 otherwise,

(3.27)

where n−m is defined componentwise as standard. Now let IL := {m ∈ Nd | ‖m‖1 ≤
L ∈ N}. Choose an arbitrary m ∈ IL, and consider the value of the corresponding
combination coefficient according to (3.23),

D
(IL)
m =

∑
n≥m
n∈IL

µNd(m,n). (3.28)

Collecting terms by ‖n−m‖1 leads to

D
(IL)
m =

L−‖m‖1∑
k=0

(−1)k
(
d

k

)
. (3.29)

Now using (3.26), we have

D
(IL)
m = (−1)L−‖m‖1

(
d− 1

L− ‖m‖1

)
. (3.30)

This lets us write an explicit form of the combination sum over IL as

SIL =

d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
m∈IL

‖m‖1=L−k

fm. (3.31)
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3. An order-theoretic combination technique

These last three identities are well-known in the literature surrounding the combination
technique and related methods. The earliest formulation of (3.31) of which we are
aware is an inductive derivation given by Delvos in the context of Boolean interpola-
tion [Del82, Lem. 2], while forms of (3.29) and (3.30) appear at least in [WW95], and
we essentially follow their idea of derivation once (3.28) is established. We observe in
passing that the also well-known expression for the standard combination coefficients
D

(I)
m =

∑
z∈Nd, z≤1(−1)‖z‖1χI(m+ z) for an arbitrary downward-closed finite index set

I ⊂ Nd, as given in, e.g., [GG98, Sec. 5.2; Gar12b, (33); Har16a, Prop. 4] and used to
begin the very similar proof of [Har16a, Lem. 7], also emerges trivially as a consequence
of (3.27) and (3.23). In any case, (3.27) along with Proposition 3.3.5 validates the
equivalence of (3.1) and (3.3), and (3.31) confirms (3.6) and (3.8), as promised.

Example 3.3.13 (The boolean algebra Bn). We know from [Sta12, Example 3.8.3], also,
e.g., [Rot64; Gre82; Aig97], that the Möbius function of Bn is given by

µBn(u,v) =
{
(−1)|v−u| if u ⊆ v,
0 otherwise.

(3.32)

That given, consider a model hierarchy FBn with models fu, and form the index set
IL = {u ∈ Bn | |u| ≤ L} for some 0 ≤ L ≤ n. An explicit expression for the combination
coefficient of some u ∈ IL is easily obtained:

D
(IL)
u =

∑
v⊇u
v∈IL

µBn(u,v) (3.33)

=

L−|u|∑
k=0

(−1)k
(
n− |u|
k

)
, (3.34)

where the latter follows from (3.32) by considering each v− u by cardinality. Using once
more (3.26), we find that

D
(IL)
u = (−1)L−|u|

(
n− |u| − 1

L− |u|

)
. (3.35)

In particular, when L = n,

D
(IL)
u =

{
1 if u = [n],
0 otherwise,

(3.36)

and when L = 0, it is easy to see that IL = {∅} and D(IL)
∅ = 1. Thus, the combination

sum over IL for L < n is given explicitly by

SIL =
∑
u∈IL

f̃u =
L∑

k=0

(−1)L−k

(
n− k − 1

L− k

) ∑
|u|=k

fu. (3.37)
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Again, these expressions are not novel. Nor are the combinatorial manipulations by
which they are derived, certainly not once µBn(u,v) is explicitly converted into (−1)|v−u|
in (3.33). Equations (3.34) and (3.35) are exactly [Hul14, (2.82)] up to notation, and
are derived using an identical argument. The expression (3.37) can be found at least
in [KC06], in the context of a many-body expansion (there, more precisely, an n-mode
expansion) in computational chemistry. Variations on the individual expressions (3.34)
and (3.35) are recognisably implicit in the original proof, which also involves (3.26). A
more general but not completely explicit version of (3.34) can be seen in [KC16, (15)],
which is equivalent to our definition (3.23) of D(I)

u for any order ideal I ⊆ Bn. We note
with some interest that the derivation of that identity involves an apparently independent
reformulation of what is basically the general version of the Möbius function (3.14), as
constructed by a counting argument [KC16, (A1)]. The development of [KC16, (15)]
thus amounts to an inductive reformulation of Möbius inversion in the specific boolean
algebra setting. An expression that is effectively equivalent but not identical to (3.37)
was given independently in a closely related context by Richard et al. [RLH14, (2.6)],
there also inductively derived and also making use of similar combinatorial arguments
and (3.26). Contrast the above also with [LH16, (11) and (13)], noting in particular
that [LH16, (13)] corresponds exactly to (3.34) and (3.35). A slight variation on (3.37)
is also given in [Kuo+09, (3.2)],7 in the context of certain ANOVA-like decompositions.
We will discuss the settings of these works in detail in Chapter 5 below.

There is an important difference between the combination coefficients here and those
shown in the previous example. For the case L < n, every coefficient D(IL)

u is non-zero;
contrast this with the vanishing of many of the coefficients for the grid of chains in the
previous example. This does not necessarily remain true for an I-truncation over an
arbitrary order ideal I ⊆ Bn; see, e.g., [KC16].

3.4. Targets, benefits, and costs

We have now put in place a rather complicated formal apparatus for the construction
of combination sums in terms of index sets drawn from any instance of a very general
class of poset. However, we have not yet introduced anything for the associated model
hierarchies to actually model. We remedy this now, drawing inspiration from ideas and
constructions in, e.g., [Nob+16; CGH18; TW18].

Definition 3.4.1. Let FP be a model hierarchy, and let f ∈ V be some particular
element of the same vector space as the models in FP . We call f the target of FP . Let
further L : V → Y be some linear functional into some Banach space Y . We call L a
property evaluation functional.
7There given without explicit proof; see, however, an extended preprint version of the same paper [Kuo+08],
which makes use of very similar combinatorial manipulations to those here.
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3. An order-theoretic combination technique

Since we have as of yet assumed no explicit relationship between f and FP beyond the
underlying vector space, this definition is purely a linguistic assocation. We shall, in fact,
generally want to work in the reverse direction: given a target f , find (or construct) a
model hierarchy in such a way that combination sums SI taken over that hierarchy for a
particular sequence of index sets I will provide systematically-improvable approximations
for f , in the particular sense that the applications L[SI ] will provide the same for L[f ].

How this construction is done, and how well it will work, will naturally depend on
the forms of both the target f and the model hierarchy FP . In this thesis, we shall be
working in a setting where no error decomposition like (3.7) will be available. Thus,
following [TW18], we will consider instead quasi-optimal I-truncations, similar to those
discussed in Section 3.1 in the standard case.

In [TW18], Tempone and Wolfers outline a general framework for the analysis of a
slightly-extended variant of the standard combination technique. In our terminology, they
consider a d-dimensional poset grid composed of infinite chain axes. We now very briefly
generalise a small subset of the development in [TW18] to our setting, with intention to
motivate the adaptive algorithm which we shall develop in the final part of this chapter;
cf. here again also, e.g., [NTT15; Nob+16]. A similar idea in a fixed non-Nd context was
previously considered in [CGH18].

We work in the following with a poset model hierarchy FΠ in terms of a d-dimensional
poset grid Π = P1 × · · · × Pd, along with a property evaluation functional L. For
simplicity, we will assume that each Pi is infinite; this will often not be so, but the
necessary adjustments are not difficult. We assume by extension of [TW18] the existence
of some family of strictly decreasing functions {bi : Pi → R+}di=1, in the sense that if
s < t ∈ Pi, then bi(s) > bi(t). We also assume that there exists some constant K1 > 0
such that

‖L[f̃p]‖Y ≤ K1

d∏
i=1

bi(pi). (3.38)

That is, we assume that each evaluated hierarchical surplus term can be bounded above
by a product of the functions bi, up to a constant factor. Let further C : Π → R+ be
a cost function, which associates a non-negative number to each p ∈ Π representing
the amount of computational work required to perform the evaluation L[fp], and that
we have some family {wi : Pi → R+}di=1 of strictly increasing functions and a constant
K2 > 0 such that

C(p) ≤ K2

d∏
i=1

wi(pi). (3.39)

The elements of each Pi can then be totally ordered, not necessarily uniquely, in
decreasing order of bi(pi); we denote P ′

i to be any such totally reordered set corresponding
to Pi. We make now a further assumption, which will be implicit for any poset axis
considered for the remainder of this chapter, and thesis more generally: that, for any
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3.4. Targets, benefits, and costs

p ∈ Pi, the set {q ∈ Pi | q � p} is finite. Under this assumption,8 P ′
i
∼= N, with

corresponding bijection φi : P
′
i → N, and so Π′ = P ′

1 × · · · × P ′
d
∼= Nd. Define by its

inverse the further bijection Φ−1(m ∈ Nd) = (φ−1
1 (m1), . . . , φ

−1
d (md)). Let us assume, as

in [TW18, Prop. 3.1(i)], that

∑
m∈Nd

d∏
i=1

bi(φ
−1
i (mi)) <∞. (3.40)

By an equivalent argument as there given, we have that limmindi=1 mi→∞ L[fΦ−1(m)] exists
and is equal to some x∞, and also that the first sum in∑

m∈Nd

L[f̃Φ−1(m)] = x∞ =
∑
p∈Π
L[f̃p] (3.41)

converges absolutely. The latter sum is obtained by reordering the terms of the first.
We will simply make the assumption now that x∞ = L[f ], that is, the evaluated

property of the target function; it is left up to the precise implementation to ensure that
this is in fact so. So, by extension of Section 3.1 of [TW18] and for some cost budget
W > 0, we seek an index set I ⊂ Π that solves the binary knapsack problem of finding,
by adaptation of [TW18, (11)],

argmax
I⊂Π

|I|b := K1

∑
p∈Π

d∏
i=1

bi(pi), (3.42)

such that |I|c := K2

∑
p∈Π

d∏
i=1

wi(pi) ≤W, (3.43)

and provides a quasi-optimal truncation of (3.41). The following proposition is a tailoring
of Proposition 3.2 of [TW18] to our setting, rephrased in our terminology.

Proposition 3.4.2 (Adapted from [TW18]). The following hold:

(i) The binary knapsack problem (3.42) and (3.43) has a solution I∗ such that |I∗|b =
maxI⊂Π|I|b := B∗

W .

(ii) Any I∗ ⊂ Π such that |I∗|b = B∗
W is a finite order ideal of Π.

(iii) Let IW be the set

IW :=

{
p ∈ Π

∣∣∣∣∣
d∏

i=1

bi(pi)

wi(pi)
> δW

}
, (3.44)

8To get a sense for why this is helpful, consider the set of non-negative real numbers, partially ordered such
that 0 ≺ x for every non-zero x. This is a locally finite poset with a 0̂, but clearly cannot be isomorphic
to N.
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3. An order-theoretic combination technique

with δW > 0 taken smallest possible while maintaining |IW |c ≤W . Then IW is a
finite order ideal of Π, and

|IW |b ≥
|IW |c
W

B∗
W . (3.45)

Proof. The original proof of [TW18, Prop. 3.2] applies basically unchanged. Note,
however, that the necessary bound on the size of I ⊂ Π for any W holds here because of
the assumption that each element in Π has only finitely many covers.

Just as stated in the original [TW18, Prop. 3.2], the set IW provides a solution to the
possibly different binary knapsack problem in terms of the cost budget |IW |c, but is not
guaranteed to be a solution to the problem for the original cost budget W .

3.5. Adaptive construction of poset-grid order-ideal index sets
The mechanism for choosing a quasi-optimal index set IW outlined in the previous section
presupposes an explicit knowledge of families of bounding functions bi and wi, but in
practice, these may not be precisely known; see, e.g., [CGH18]. However, we assume
that it is always possible to know the actual value ‖L[f̃p]‖ simply by calculating it, at
least where this is computationally feasible. Since this necessarily involves calculation of
‖L[fp]‖, we assume that we may also calculate a corresponding abstract cost C(p) for
the same, even if we cannot decompose that cost neatly in terms of the grid axes.

We consider an alternative, adaptive way of choosing an index set I. Our strongest
influence here is a similar algorithm described in [CGH18, Alg. 2], and we are also
inspired by ideas in [HGC07]. Like most adaptive algorithms that have been developed
in combination-technique settings, the basic idea follows the schemes of Griebel and
Gerstner [GG03] and of Hegland [Heg03], both of which build in turn on [Gri98]; see
also, e.g., [Hol08; Gar07a; Gar12a; Nob+16; SG22]. These algorithms, and ours, are
fundamentally greedy in nature: beginning from an empty or somehow minimal index
set I(0), indices that maximise some benefit/cost criteria are used to guide the addition
of new indices to that set, with appropriate care taken to retain the downward-closure
property. The resulting sequence of index sets I(i) for each iteration i is intended to
provide a progressively more expensive but hopefully more accurate approximation.

The overall approach of the algorithm at the ith iteration can be summarised as follows.
An element p ∈ I(i) is considered active if there exists some successor9 element q � p
such that q 6∈ I(i). Some subset of the active elements of I(i) are selected for expansion,
based upon the values of the respective benefit/cost ratios ‖L[f̃p]‖/C(p). When an active
element is expanded, each successor q � p which is not yet included in I(i) is tested to
9Note that this corresponds with the idea of a forward neighbour in, e.g., [GG03]. Similarly, a predecessor
is basically a backward neighbour. Our terminology originally stems from considering the Hasse diagram
of a poset P as a directed graph, as in [HGC07].
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Figure 3.1.: A sample illustration of a possible adaptively-obtained index set I for a small single-
axis poset grid Π = P . The figure shows P as a Hasse diagram [Sta12]: each vertex
corresponds to an element of the poset, and an edge between two vertices indicates
that the higher-drawn element covers the lower-drawn element. Black-filled vertices
( ) indicate non-active members of I, grey-filled vertices ( ) show active members
of I, and unfilled vertices ( ) show members of P which have not yet been added
to I. One particular active element is highlighted with a blue square ( ). Were this
member to be expanded, three possible successors would be considered. Two of these
are admissible for inclusion in I, and are highlighted with green circles ( ). One
successor is not immediately admissible, and is highlighted with a red triangle ( ).
This latter element is inadmissible since one of the elements which it covers is not
already in I.

see whether its inclusion in I(i+1) would maintain the invariant that I(i+1) must be an
order ideal of Π. This is equivalent to testing whether all of the predecessors of that
successor, i.e., all elements r ≺ q, are in I(i). If so, then q is considered admissible, and
is added to I(i+1). An illustration of a possible adaptively-obtained index set is given in
Figure 3.1, visualising the distinction between active and non-active elements of an I(i)
for a particular poset.

The detailed description of this algorithm is organised into subsections as follows.
In Section 3.5.1, we will reformulate the calculation of combination sums and surplus
terms in terms of tensors, which allows an efficient and clean implementation of the
algorithm via the use of a sparse tensor data structure. Sections 3.5.2 and 3.5.3 describe
the functionality which must be implemented in order to use any arbitrary poset as
an axis of a poset grid. Section 3.5.4 outlines three selection strategies that may be
used to control the adaptive growth of the index set at each iteration. Section 3.5.5
introduces and motivates an error indicator by which the quality of an adaptively-obtained
approximation may be judged. Full pseudocode for the main loop of the algorithm is
given and discussed in Section 3.5.6. Finally, a brief assessment of the computational
complexity of the algorithm is provided in Section 3.5.7.
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3.5.1. Sparse tensor formulation of combination sums

Some formulations of adaptive algorithms (see e.g. [GG03]) form the final combination
sum directly from the equivalents of the evaluated surplus terms L[f̃p]. Here, as each
new element p ∈ Π is added to the index set, the relevant surplus term is calculated
and folded into a running total. That is, if I(i)new indicates the collection of newly-added
elements at the ith iteration of the adaptive algorithm, such that the complete index set
after iteration i is formed as I(i) ← I(i−1) ∪ I(i)new, then the combination sum at iteration i
is maintained and updated as

SI(i) ← SI(i−1) +
∑
p∈I(i)new

L[f̃p], (3.46)

with SI(0) := L[f̃0̂]. If the algorithm terminates after n iterations, the combination
sum SI(n) is therefore immediately available, along with the index set I(n) to which it
corresponds.

So calculated, the final combination sum SI(n) involves |I(n)| distinct terms L[f̃p],
each itself a sum of potentially many terms µ(q,p)L[fq]. In the standard combination
technique case, these latter are non-zero for only a small subset of I(i), cf. (3.3), and
there is alternatively a well-known expression for the final SI(n) in terms of models L[fp]
rather than surpluses; see, e.g., [SG22, (4.2)]. In the general poset-grid setting, however,
such an expression for SI(n) will not generally be known, and it may be the case (for
example, for some index subsets of Π = Bn) that each f̃p depends explicitly on fq for
each and every q ≤Π p.

The total number of operations involved in the naïve numerical evaluation of SI(i)
can therefore be as high as

∑
p∈I(i) |Λp|, which is potentially much greater than in the

standard case, and the numerical stability of the sum is correspondingly and negatively
affected. Extending slightly on an observation made by Richard et al. [RLH14] in a
particular computational-chemistry setting: as well as the usual floating-point sources,
an instability can stem here more subtly from any compounding inaccuracies which may
be inherent to the underlying model-function evaluations L[fp], particularly if those
evaluations are provided only to limited precision by iterative-type numerical solvers. We
will come back to this topic in Section 5.3.

Rather than apply (3.46), we progressively calculate and update instead the complete
set of combination coefficients {D(I(i))

p }p∈I(i) . This is achieved by working with repres-
entations of the involved quantities in terms of tensors. We use the word “tensor” in the
sense of a multidimensional array, and our terminology is chosen accordingly. Following
convention set by the NumPy library [Har+20], we give a d-dimensional tensor a shape:
a sequence (si)

d
i=1 of values, each drawn from N+ ∪ {∞}, which describe the lengths of

each axis of the tensor. We denote the entries of a tensor T as Tm, each indexed by
some m ∈ Nd such that each mi ≤ si. Note that we explicitly allow for tensors with
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axes of countably infinite length. Elementwise addition (+) and multiplication (�) are
defined in the obvious way. To avoid ambiguity, we explicitly define the tensor product
(⊗) as follows: if T and U are k- and l-dimensional tensors respectively, then T ⊗ U is
(k + l)-dimensional and has entries (T ⊗ U)(m1,··· ,mk,n1,··· ,nl) = T(m1,··· ,mk)U(n1,··· ,nl).

From this point on, when dealing with a poset grid Π = P1 × · · · × Pd, we assume
the existence of an indexing bijection for each poset axis Pi. This must be a bijection
φPi : Pi → N (when P is an infinite poset) or φPi : P → {0, . . . , |P | − 1} (when P is a
finite poset with n elements) that maps each element of P to a unique natural index. We
then define a composite bijection by Φ(p ∈ Π) =

∏d
i=1 φPi(pi). By abuse of notation, if

we work with a d-dimensional tensor T with shape (|P1|, · · · , |Pd|), then when we write
Tp for some p ∈ Π, we mean TΦ(p).

Assuming a fixed choice of poset grid Π = P1 × · · · × Pd, we define a family of d-
dimensional tensors {M (p)}p∈Π as follows. The entries of each M (p) are defined to be
such that each element M (p)

q := µΠ(q,p). We call each M (p) the Möbius tensor of p.
Note that although M (p) may have infinitely many entries, depending on the posets Pi,
the number of non-zero entries is finite by the definition of the Möbius function, so M (p)

can be represented exactly in finite memory; we will discuss such a representation below.
We then define a family of tensors D(I) for every finite order ideal I ⊆ Π, such that

D(I) :=
∑
p∈I

M (p). (3.47)

Our notational choice is deliberate: so constructed, every entry D(I)
p of each D(I) is just

a combination coefficient for fp in I, cf. (3.21), (3.22), and (3.23). Since I is finite, each
D(I) can again be represented exactly in finite memory.

At each iteration i of our adaptive algorithm, some collection of new elements p are
added to the index set I(i−1) to produce the new index set I(i). For each such p, the
tensor M (p) is constructed. This can be done by calculating a one-dimensional tensor
m(pi) for each per-axis component pi of P : a Möbius vector defined elementwise such
that m(pi)

t := µPi(t, pi) for each t ∈ Pi. The entries of the full M (p) are then obtained as

M (p) =
d⊗

i=1

m(pi), (3.48)

as per Theorem 3.3.10.10 The introduction of the per-axis tensors M (pi) means that we
need only explicitly implement the Möbius functions µPi on a per-axis basis.

As remarked above, these tensors will contain a potentially large but always finite
number of non-zero terms, even though they may be countably infinite in general. We
10We note some inspiration in this construction from an observation on [Sta12, p. 267], where some µP×Q

is recognised as a tensor product µP ⊗ µQ in a particular algebra of functions. Similarly, Godsil uses a
Kronecker product of matrices to prove the product theorem [God18, Lem. 3.1].
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rely on a d-dimensional generalisation of a standard sparse matrix data structure; we
refer to this as a sparse tensor . The basic idea is certainly not new; see, e.g., [BK08].
Algorithmically, we consider a sparse tensor to be “empty” on creation, in the sense that
all (potentially infinitely many) entries are assumed to be zero and therefore not explicitly
stored. Entries can be assigned to, written Tm ← x for some appropriate x. In addition
to the operations on tensors defined above, we also assume the existence of a reduction
operation, which returns the sum of all entries in the sparse tensor:

Reduce(T ) :=
∑
m
Tm. (3.49)

A Reduce operation need only consider the non-zero entries of the involved sparse tensor
T , and since only a finite number of entries of a sparse tensor can be practically set to be
non-zero, this operation is always well-defined in an implementation.

Throughout the execution of the adaptive algorithm, three persistent sparse tensor
objects are maintained: D, V , and C. Each has shape consistent with the Möbius tensors
defined above. The combination tensor D stores the combination coefficients at each
iteration. The value tensor, V , stores the explicitly-evaluated values L[fp] for all p in
the index set. The cost tensor, C, stores the corresponding values C(p) of a cost function
C : Π→ R+. If all values indexed by Λp have already been calculated, then a hierarchical
surplus L[f̃p] can be explicitly evaluated as the reduction of the elementwise product
between M (p) and V , that is, L[f̃p] = Reduce(M (p) � V ). The complete combination
sum at each iteration i can be likewise evaluated as SI(i) = Reduce(D � V ). Finally,
the cost of the combination sum is obtained as CI(i) = Reduce(1[D]� C), where 1[D]
is a sparse tensor with ones everywhere D is non-zero.

3.5.2. Operations on poset axes and poset grids
We assume that we are able to represent each element t ∈ P of any axis P in the poset
grid symbolically, either directly (for posets which admit a numerical representation) or
by means of some kind of encoding scheme. With such a representation fixed, we then
express the ordering structure of each poset axis in terms of four functions, which provide
a consistent mechanism for manipulating and exploring the topology of the poset axis
around various elements and for the calculation of Möbius functions. Borrowing from
the terminology of computer science, we call this the poset axis interface; these functions
need to be explicitly constructed for every type of poset axis that may be employed in a
problem setting.

The first function we require is AxisIndex(P ; t ∈ P ), where P is the poset axis, treated
as a parameter in the mathematical sense and fixed for each concrete implementation,
and t ∈ P is a parameter in the computational sense, which varies between calls to
the function. This function simply implements an indexing bijection φP : P → N or
φP : P → {0, . . . , |P | − 1}, as discussed above.
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Algorithm 3.1 Poset grid interface functionality.
function GridMultiindex(Π = P1 × · · · × Pd; p = (p1, . . . , pd) ∈ Π)
l← (0, . . . , 0) ∈ Nd

for 1 ≤ i ≤ d do
li ← AxisIndex(Pi; pi)

return l

function GridPredecessors(Π = P1 × · · · × Pd; p = (p1, . . . , pd) ∈ Π)
R← ∅
for 1 ≤ i ≤ d do
for all p′ ∈ Predecessors(Pi; pi) do

R← R ∪ {(p1, . . . , pi−1, p
′, pi+1, . . . , pd)}

return R

function GridSuccessors(Π = P1 × · · · × Pd; p = (p1, . . . , pd) ∈ Π)
R← ∅
for 1 ≤ i ≤ d do
for all p′ ∈ Successors(Pi; pi) do

R← R ∪ {(p1, . . . , pi−1, p
′, pi+1, . . . , pd)}

return R

function MöbiusTensor(Π = P1 × · · · × Pd; p = (p1, . . . , pd) ∈ Π)
M ← MöbiusVector(P1, p1)
for 2 ≤ i ≤ d do

M ←M ⊗MöbiusVector(Pi; pi)
return M

We require also a set-valued function Predecessors : P → 2P , such that a call to
Predecessors(P ; t ∈ P ) returns the set of all elements s such that s ≺ t. Similarly,
the function Successors : P → 2P must return the set of all elements s ∈ P such that
t ≺ s. Finally, we need an implementation of MöbiusVector, which must return a
one-dimensional sparse tensor representing m(t) as defined above. As observed previously,
this sparse tensor need only explicitly contain entries for the finite number of values
φP (s) such that µP (s, t) is non-zero.

Given implementations of these four operations for an arbitrary collection of posets
{Pi}di=1, we can construct equivalent operations for a complete poset grid Π = P1×· · ·×Pd.
Each such poset grid interface function is analogous to a poset axis interface func-
tion. GridMultiindex : Π → Nd provides the indexing bijection φ(p) =

∏n
i=1 φPi(pi).

GridPredecessors : Π → 2Π and GridSuccessors : Π → 2Π explore the cover re-
lationship of Π just as Predecessors and Successors explore that of an axis Pi.
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MöbiusTensor implements (3.48).
The poset grid interface functions are completely defined by the four poset axis

interface functions, so must be implemented only once, regardless of the choices of Pi.
For pseudocode demonstrating this, refer to Algorithm 3.1. Note that we implicitly use
the obvious fact that, for a direct product P ×Q, it holds that (s, t) ≺ (s′, t′) if and only
if either s ≺ s′ or t ≺ t′, but not both.

3.5.3. Fallback calculation of the Möbius function

The Möbius function µP for each of the various poset axes P may be available in an
explicitly non-recursive form, as in Examples 3.3.12 and 3.3.13 above. However, we will
wish to apply our algorithm to poset grids that contain an axis, or axes, for which no non-
recursive expression for µP is known. As such, we sketch here how one might implement
a “fallback” version of MöbiusVector(P ; t), which can be used for an arbitrary poset
axis and requires only the functionality specified by the poset axis interface.

In the general case, the number of values s ∈ P for which µ(s, t) 6= 0 is bounded above
by |Λt|, which we denote N for the purposes of this section. Since posets P exist for
which µ(s, t) 6= 0 exactly when s ≤ t (for example, boolean algebras), and as we shall see,
the cost for the insertion of a value into a sparse tensor can be made O(1) on average, it
follows that the cost required for an invocation of MöbiusVector(P ; t) in the general
case can scale at best as O(N).

Naïvely calculating each µ(s, t) by recursive expansion of (3.14) leads however to a
cost which may scale exponentially, depending on the structure of P . To avoid this,
we can borrow from a slightly alternative characterisation of the Möbius function in
purely linear-algebraic terms. We refer to, e.g., [NW78; God18] for more details, but
this is basic and well-known. Index each si ∈ Λt by some 1 ≤ i ≤ N , and write Z
to be the N × N matrix with entries Zij = ζ(si, sj), where ζ(si, sj) is the usual zeta
function [Sta12]; here, if si ≤ sj , then ζ(si, sj) = 1, and if not, ζ(si, sj) = 0. As noted
in [God18], the elements si can be indexed such that if si < sj , then i < j, and so Z
is upper-triangular; cf. [NW78, Chap. 25]. Then, if we temporarily repurpose notation
and write M to be the equivalently-sized matrix with entries Mij = µ(si, sj), it holds
simply that M = Z−1 [NW78; God18]. Calculation of all values µ(si, sj) thus reduces to
a matrix inversion, with cost O(N3). However, MöbiusVector(P ; t) needs to return
only the final column MN of M , and this can be had by solving ZMN = eN , where
eN =

[
0 · · · 0 1

]T [Cor+22]. Since Z is upper-triangular, this costs only O(N2)
using back substitution; cf. here Godsil’s derivation of the Möbius function in [God18,
Lem. 2.2].11

11We note here also connections to other work related to sparse grids and the combination technique,
for example the „Hierarchisierung und Dehierarchisierung“ matrices discussed in [Mat14], or the linear
systems (6) and (7) in [Heg+16]; cf. here [HGC07, (11)]. Indeed, Harding uses a basically equivalent
linear-algebraic construction in [Har16b, Sec. 4.4.1] — but derived from an existing expression for the
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Calculating MöbiusVector(P ; t) in this way also requires some ancillary work to
establish the system for solution. In particular, we must actually obtain all the elements
in Λt, and calculate the values ζ(si, sj). Working within the confines of the poset axis in-
terface, the former can be achieved by what amounts to a depth-first traversal of the Hasse
diagram [Sta12] of Λt, which can be explored via repeated calls to Predecessors(P ; si),
starting from a call to Predecessors(P ; t). Under the assumption that the cost of
each such call scales linearly in the size of the output,12 it follows from basic results in
computer science that this costs at most O(N2); see again [Cor+22]. For the latter, if
si ≤ sj can be explicitly tested at O(1) cost, which is the case for all posets we consider
in this thesis, the naïve cost of all pairwise comparisons is also O(N2). Even if not, that
is, if the only known information about the ordering relationship is that given by the
poset axis interface, then an algorithm given in [NW78, Chap. 26] can still be used to
deliver MöbiusVector(P ; t) (actually, the complete matrix Z) at cost O(N3).

We mention also that the application of standard techniques in applied computer
science can make the cost of calculating MöbiusVector by recursive expansion more
tolerable. It is just a restatement of the recursive definition of the Möbius function that

MöbiusVector(P ; t) = 1φ(t) −
∑
s<t

MöbiusVector(P ; s), (3.50)

where 1φ(t) is an appropriately-sized one-dimensional sparse tensor that contains a single
one in the φ(t)th entry, and zeros everywhere else. A straightforward implementation of
this expression also based on repeated calls to Predecessors(P ; si) can be computa-
tionally acceptable in repeated use if the results of evaluations of MöbiusVector(P ; si)
are memoised, which incurs, however, an according and possibly non-trivial storage cost.
Note here that, in an adaptive calculation, the poset P is explored from the zero up; so,
since MöbiusVector(P ; s) is then already known for every s < t, the cost of evaluation
is again at most O(N2), under the same assumptions as above.

3.5.4. Adaptive selection strategies
The preceeding subsections have described the manipulation of various quantities related
to the adaptive update I(i) → I(i+1) of the index set at each iteration i of our algorithm.
We consider now the details of how new elements are selected for addition to the index
set.

We define the subset I(i)act ⊆ I(i) of active elements of I(i) to be all those with at least
one covering element which is itself not in I(i), that is,

I
(i)
act :=

{
p ∈ I(i)

∣∣∣ ∃q ∈ Π− I(i) s.t. q � p
}
. (3.51)

standard combination coefficients.
12A strong assumption which may not necessarily be achievable in practice. See examples and comments in

Appendix B.
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It should be noted that this definition is not necessarily equivalent to that used in
previously-described adaptive combination-technique algorithms, such as [GG03; SG22].
The adaptive update process involves the expansion of one or more active elements
p ∈ I(i)act. Here, every successor q � p is considered in turn; if all predecessors p′ ≺ q are
currently in the index set I(i), which we assume to be an order ideal of Π, then clearly
also I(i) ∪ {q} is an order ideal of Π. We say that such a q is admissible, and select it for
inclusion in I(i+1).

Following [GG03], we maintain a queue of elements p ∈ I(i) which may currently be
active; these are ranked in descending order, according to the corresponding benefit/cost
ratios ‖L[f̃p]‖/C(p). As each new element q is added to the index set, its benefit/cost
ratio is calculated, and q is inserted into the queue, ranked accordingly. Selection of
elements to expand is achieved by removing maximally-ordered elements one-by-one from
the queue, according to one of the three selection strategies which we shall describe below.

As each element p is removed from the queue, its successors are enumerated according
to the GridSuccessors function described in Section 3.5.2 above. Each successor q � p
which is not already in the index set is tested for admissibility, by enumeration of its own
GridPredecessors in turn. All such admissible successors are compiled into the set of
new elements to add to the index set, Inew, such that I(i+1) ← I(i) ∪ Inew.

If all successors of an active p are either admissible or already in the index set, then by
definition, p will not be active in I(i+1), and is not considered further. Otherwise, p is
reinserted into the queue. The justification of allowing an element to be thus considered
multiple times is that, when an active element is expanded, we would like in principle
to add every possible successor of that element to the index set as quickly as possible,
including those which are currently inadmissible. If the original element is not requeued,
then any such inadmissible element will not be added to the index set until, firstly, all
of its own predecessors have been added, and secondly, one of those elements is itself
expanded. If the original element is requeued, however, the inadmissible element will
then be validly added to the index set at the next iteration after only the first of these
two conditions becomes true.

We allow three possible strategies for the selection of the subset of active elements
that are eligible for expansion at each step of our algorithm. The first strategy simply
expands All of the active elements in the queue, regardless of their benefit/cost ratios.
The intention of this strategy is to produce a sequence of approximations equivalent to
those that would be obtained with a non-adaptive refinement of a combination sum, as
would be obtained by calculating (3.8) for increasing values of L. In this case, the two
are indeed equivalent. Care should be taken using this equivalence for intuition, since in
the general poset grid case, it is possible that some active elements will be incompletely
expanded and hence requeued during an All selection.

The second strategy expands only the Best active element; that is, the active element
in the queue with the highest benefit/cost ratio. This strategy represents a faithful
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implementation of a greedy solution to the binary knapsack problem; cf. [TW18] and
references within. However, as the index set grows larger, the related bookkeeping cost
associated with this strategy may become inefficient. As a compromise, we also allow
selection of all queued and active elements whose benefit/cost ratios are at or above some
Threshold, defined as some factor 0 ≤ α ≤ 1 multiplied by the benefit/cost ratio of the
Best active element in the queue; we base this strategy on a similar approach outlined
in [CGH18]. Note that here, a selection of α = 0 corresponds to the All strategy, and
α = 1 to the Best strategy, up to the possibility of multiple such best elements. There is
a subtlety here. For example, it may be the case that the Best-ranked active element in
the queue may not have any admissible successors. Since this element would be requeued,
it would then be selected again in the subsequent iteration, leading to an infinite loop
and an unchanging index set. As such, the choice of elements to expand under the Best
and Threshold strategies should more precisely be defined as being relative to the best
active element in the queue that has at least one admissible successor that is not already
in the index set.

For later use, we introduce a function SelectElements, which we assume takes the
queue Q, the current index set I(i), and a chosen selection_strategy, and returns
the set Inew. Pseudocode for SelectElements is given for the Threshold case in
Algorithm 3.2; the cases All and Best are similar but simpler, and are not given explicitly
for reasons of space. The main loop of the function removes elements from the queue in
descending order, and comparing their benefit/cost ratios with a threshold. The threshold
is initially set to a placeholder of −∞; since every benefit/cost ratio is non-negative,
every such ratio is above this value. The successors (if any) of each element which are not
already in the index set are tested for admissibility, and added to Inew whenever so. The
first time an element is encountered with at least one admissible successor, the threshold
is explicitly updated; this can happen at most once. Once an element is encountered
with benefit/cost ratio below the (necessarily updated) threshold, the loop terminates;
this element is then requeued, along with any other elements which still have successors
that have not been added to the index set, and the function terminates. Note that any
non-active element which is removed from the queue is implicitly ignored and removed
from any future consideration, since a non-active element can never become active at a
future iteration.

3.5.5. Error indicator

Most existing dimension-adaptive combination technique and sparse grid algorithms
provide an error indicator, see, e.g., [GG03; BG04; Gar07a; Gar12a; Nob+16; CGH18;
SG22], and that which we now develop is similar in concept to those.

The adaptive algorithm we give here produces sequences of index sets (I(i))∞i=1, and
implicitly, corresponding sequences of tensors (D(I(i)))∞i=1 and combination sums (SI(i))∞i=1.
Each I(i) is always a finite order ideal of Π. The maximal elements of I(i) form an
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Algorithm 3.2 SelectElements for Threshold selection strategy
1: function SelectElements(Q, I(i), selection_strategy = Threshold)
2: α ← a pre-chosen factor between 0 and 1
3: Inew ← ∅ . New elements to be added to the index set.
4: R← ∅ . Existing elements to be requeued.

5: threshold← −∞ . Placeholder threshold.
6: while Q is not empty do
7: Remove element p with maximal ‖L[f̃p]‖/C(p) from Q.
8: if ‖L[f̃p]‖/C(p) < threshold then
9: . Found first element below threshold. This element must be requeued. /

10: R← R ∪ {p}
11: Terminate while loop.
12: . Consider all successors of p not already in the index set. /
13: any_successor_added← false
14: for all q ∈ GridSuccessors(p)− I(i) do
15: if GridPredecessors(q) ⊆ I(i) then
16: . q is admissible. /
17: Inew ← Inew ∪ {q}
18: any_successor_added← true
19: if GridSuccessors(p) ⊃ I(i) ∪ Inew then
20: . p has an inadmissible successor; set aside for requeueing. /
21: R← R ∪ {p}
22: if threshold = −∞ and any_successor_added then
23: . First and thus best element with at least one admissible successor. /
24: threshold← α · (‖L[f̃p]‖/C(p))
25: Terminate while loop.

26: . Requeue unexpanded or incompletely expanded elements. /
27: for all p ∈ R do
28: Reinsert p into Q, keyed by ‖L[f̃p]‖/C(p).

29: return Inew
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antichain [Sta12] of Π; that is, they are a subset A(i) = {a(i)1 ,a(i)2 , . . . ,a(i)n } such that
for any j 6= k, neither a(i)j ≤ a

(i)
k nor a(i)k ≤ a

(i)
j . Using the terminology and notation

of [Sta12, Sec. 3.1], the antichain A(i) is said to generate the order ideal I(i), and we
write I(i) = 〈A(i)〉 = 〈a(i)1 ,a(i)2 , . . . ,a(i)n 〉.13 This suggests a natural error indicator which
is determined purely by the state of the index set I(i) at each iteration, and carries no
direct dependency on how precisely the algorithm arrived at that index set:

Ei := L

 ∑
a∈A(i)

f̃a

 =
∑
a∈A(i)

L[f̃a]. (3.52)

This definition is motivated by the informal idea that the surpluses for all elements
p > a(i)j are usually expected to be “small” and to decay “rapidly”, so the sum of all the
surpluses f̃a(i) can be used to approximately estimate the sum of those elements and thus
the error of SI(i) ; on this latter, see, e.g., [Nob+16; TW18, Sec. 3.1].

Given an arbitrary finite order ideal I, naïvely calculating its generating antichain
A requires O(|I|2) pairwise evaluations of s ≤ t. We avoid this in our algorithm by
maintaining and updating a generator set A(i) alongside the index set I(i) at each iteration
of the adaptive refinement process. A new element p can be added in iteration i only if
all of its predecessors are contained in I(i−1). As a result, every such element must be a
maximal element of I(i), so it can also be immediately added to A(i). Every predecessor
of the newly-added p can then no longer be a maximal element of I(i), and is removed
from A(i) if present. This is sufficient to maintain the invariant that A(i) indeed generates
I(i) at the completion of the ith iteration.

The explicit calculation of Ei according to (3.52) is prone to all of the same numerical
issues associated with direct evaluation of a combination sum L[SI ]. We avoid this in
the same way: we maintain an explicit error-indicator tensor E, analogously to the full
combination tensor D. Once the Möbius tensor M (p) of a newly-added element p has
been calculated and summed into the full combination tensor D, it is also summed into
the error estimator tensor E. Similarly, when an element is evicted from A(i) for being a
predecessor of a newly-added element, its Möbius tensor is either recalculated or retrieved
from some form of cache, and subtracted from E. The value of the error indicator Ei
at the end of the iteration can then be obtained by a product-and-reduce operation
Ei = Reduce(E � V ) against the value tensor V , equivalently to the calculation of the
combination sum itself.

13Technically, Stanley constructs the concept of a generating antichain only for a finite poset P , by building
a bijection between the set of all antichains of P and the set J(P ) of all order ideals of P [Sta12, Sec.
3.1]. It is unproblematic in our context to extend the idea to an infinite poset P , and speak only of
generating antichains for the members of the set Jf (P ) of explicitly finite order ideals of P .
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3.5.6. Main loop

Pseudocode for the main loop of our adaptive algorithm is given in Algorithm 3.3. The
algorithm begins by initialising empty sets I and A, to represent the current index set
and the current generator set respectively. An empty initial queue, Q, is constructed.
Four empty sparse tensors D, V , C, and E must also be created; the shapes of these
tensors will depend on the poset grid Π, as described in Section 3.5.1.

Each loop iteration begins with the selection of a set Inew of new elements to add to
the index set. On the first iteration, Inew contains only the zero element 0̂Π of the poset
grid Π (line 8). On all subsequent iterations, the calculation of Inew is delegated to the
SelectElements function, according to a pre-chosen selection strategy, as described in
Section 3.5.4.

Once Inew is calculated, each new element p ∈ Inew is incorporated into the index set
and the approximation in turn. First, L[fp] is explicitly calculated, and inserted into
the value tensor V at a location according to the indexing bijection Φ (line 13). The
(abstract) cost of evaluation C(p) is also calculated and stored. The Möbius tensor for p
is then evaluated, and accumulated into both the full combination tensor (line 17) and
the error indicator tensor (line 18). Finally, the hierarchical surplus L[f̃p] is calculated
directly as a reduction of the elementwise product of the Möbius tensor M (p) and the
value tensor V (line 20), and an appropriate norm of this quantity is used to calculate a
benefit/cost ratio and to enqueue p for consideration in future iterations.

Once every new element has been treated, the data structures for the index set and the
generator set are updated for consistency. As described in Section 3.5.5, the generator set
must be further processed; all direct predecessors of any newly-added element p ∈ Inew
that were in A are removed (lines 25 and 26), and their Möbius tensors are discounted
from the error indicator tensor E. This done, the full combination sum Si, the error
indicator Ei, and the complete cost of the algorithm so far Ci can be calculated. The
main loop of the algorithm repeats until Ei and Ci meet or exceed some particular choice
of termination criteria, at which point the final index set is returned.

3.5.7. Data structures and computational complexity

To conclude, we briefly and informally sketch some computational details involved in
an implementation of Algorithm 3.3. We give this only in the interest of completeness
and to aid an implementation, and do not seek to establish rigorous complexity results
for the algorithm in any particular case. For basic computer science concepts, we refer
particularly to [Cor+22]. For details of the specific implementation we use throughout
the remainder of this work, see Section A.8.

Algorithm 3.3, as well as the subsidiary functions specified by the poset grid interface,
involve three distinct kinds of data structures: sets, sparse tensors, and the queue. On
the assumption that the involved elements p ∈ Π admit a suitable hash function, the
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Algorithm 3.3 Adaptive construction of an order-ideal index set for a poset grid Π.
1: I, A← ∅ . Index set and generator set.
2: Q← an empty queue . Expansion queue.
3: D, V, C, E ← empty sparse tensors . Combination, value, cost, and error tensors.
4: i← 0 . Iteration counter.
5: repeat
6: . Select new elements and include in index set. /
7: if i = 0 then
8: Inew ← {0̂Π}
9: else

10: Inew ← SelectElements(Q, I(i), selection_strategy)
11: for all p ∈ Inew do
12: . Evaluate L[fp], and calculate its cost. /
13: VΦ(p) ← L[fp]
14: CΦ(p) ← C(p)

15: . Calculate and accumulate the Möbius tensor of p… /
16: M (p) ← MöbiusTensor(p)
17: D ← D +M (p) . …into the full combination tensor,
18: E ← E +M (p) . …and into the error indicator tensor.

19: . Calculate the surplus for p, and enqueue p for later expansion. /
20: L[f̃p]← Reduce(M (p) � V )
21: Insert p into Q, keyed by ‖L[f̃p]‖/CΦ(p).

22: . Update index set, generator set, and error indicator tensor. /
23: I ← I ∪ Inew
24: A← A ∪ Inew
25: R← A ∩

⋃
p∈Inew GridPredecessors(p)

26: A← A−R
27: E ← E −

∑
p∈RMöbiusTensor(p)

28: . Calculate approximation, error indicator, and cost. /
29: i← i+ 1
30: Si ← Reduce(D � V )
31: Ei ← Reduce(E � V )
32: Ci ← Reduce(1[V ]� C)
33: until Ei and Ci meet termination criteria.

34: return I(i)
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sets I, A, and R can be readily represented using hash tables [Cor+22, Chap. 11].14
Informally, this leads to unions, intersections, and set difference operations with cost at
worst linear in the size of the largest of the two involved sets; this is achieved in practice
by, e.g., the Python set built-in datatype [PWTC].

There are several ways to implement the sparse tensor datatype and related operations,
depending on the particular sparse storage format used. For a detailed discussion of some
possible approaches, see, e.g., [BK08]. However, for our purposes, a completely adequate
implementation is obtained by constructing a sparse tensor as an associative array, with
each non-zero entry stored by association with its multiindex. This is sometimes referred
to as a dictionary-of-keys (DOK) format; see, e.g., [ASW07], also the documentation
of the scipy.sparse package in the SciPy library [Vir+20]. There exists at least one
existing Python implementation of arbitrary-dimensional sparse tensors that supports
DOK storage [Sparse]. Such a scheme can also be based on hash tables, and so the cost of
setting and accessing entries is basically constant; see again [Cor+22]. Assuming that the
multiindex/value pairs for the non-zero entries in a sparse tensor can be enumerated at a
cost linear in their number, it is trivial to construct naïve implementations of the simple
arithmetic operations required here. In particular, the cost of obvious implementations of
elementwise addition or multiplication of two sparse tensors T and U scales on average
as O(|T |+ |U |), where we abuse notation and mean |T | to be the number of non-zero
entries in T , and a Reduce operation over T scales similarly as O(|T |).

The queue Q can be most easily realised using a MaxHeap data structure [Cor+22,
Chap. 6]; see also [GG03]. It is well-known that there exist particular implementations of
MaxHeap that guarantee constant-cost insertion of an element, and that extraction of a
maximally-keyed element from a heap containing N elements costs O(logN); see, e.g.,
the introduction to [Cor+22, Part V] and references within.

The cost of the SelectElements function is necessarily dependent on both the
selection strategy used, and on the structure of the queue. In the worst (or at least,
most costly) case, which is equivalent to the All selection strategy, it will involve at
least one call to GridSuccessors for each element p in the queue, followed by calls
to GridPredecessors for each such successor. The cost of these latter functions is
determined by the structure of the poset axes Pi involved. Although in simple cases, such
as the standard combination technique grid Π = Nd, these functions may be implemented
at constant cost for fixed dimension d, this is not necessarily so for all possible poset
axes; see Appendix B.

The cost of each iteration of the loop over new elements (lines 13–21), and thus the
inclusion of each new element in the index set, requires a number of operations linear in
the number of non-zero values of the Möbius tensor M (p) for each p ∈ Inew, as well as the
explicit evaluation of both L[fp] and C(p) and the Möbius tensor itself. In practice, the
cost of these latter operations — which are also dependent on the problem setting and on

14If no better hash function is available, one can be constructed using the required indexing bijection φ.
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the involved poset axes Pi — may be expected to dominate that of the surrounding work,
and this is certainly true for the applications we consider for the remainder of this thesis.

59





4. Composite methods

In the quantum chemistry literature, a particular type of two-dimensional grid-style
diagram is commonly used to visualise and organise ab initio calculations by their
approximation quality, and, implicitly, their computational expense [Hea96; Kar16]; for
examples, see [Hea96, Fig. 1; HOJ13, Fig. 15.1]. Such charts, as well as their annotated
or adapted extensions, are related to a famous plot by Pople [Pop65, Fig. 1; Kar90], and
are sometimes referred to as (modified) Pople diagrams [Kar16; Zas+18]; Pople himself
discussed just such a diagram in the lecture he gave upon being awarded the Nobel
Prize [Pop99, Fig. 1].

On a Pople diagram, calculations are organised along one axis by the precision of
the core ab initio approximation in use, in steps often basically as in (2.26); along the
other, by the granularity of discretisation applied to H1(R3), ranked for instance by the
cardinal number n indexing the cc-pVnZ family [Dun89] of basis sets [Kar16]. Some
formulations may also include a third axis indexing the quality of approximate solutions
of the relativistic Dirac equation, as in the “magic cube” of [Tar+01, Fig. 1]. In any
case, it is understood that each step further away from the origin on the underlying grid
implies a level of theory both offering a higher accuracy and carrying a higher cost [Hea96;
Kar16].

Pople diagrams have been used to motivate and explain the structure of several
instances of extrapolative composite methods; see, e.g., [PTM91, Fig. 1; Pop99, Fig. 2;
Kar16, Fig. 1; Jen17, Figs. 5.4 and 5.5; Zas+18, Fig. 1]. Composite methods seek to
divide and reunify multiple approximate solutions to the Schrödinger equation in such a
way as to recover a single, highly-accurate value [PFD12; RS15; Kar16; Zas+18]. Here,
there is a limited assumption of additive separability of the basis-set and intrinsic errors
mentioned in Section 2.3; see, e.g., [Pop+83; Pop+89; Pop99; PFD12; RS15; GKC17;
Jen17; CGH18]. Plotting the individual subcalculations required by a composite method
on a Pople diagram makes visible [Pop99, Fig. 2; Jen17, Figs. 5.4 and 5.5] a sampling
from a roughly lower-triangular subset of the points on the diagram grid.

We will begin this chapter by outlining some simple one-dimensional extrapolative
techniques for obtaining higher-accuracy quantum chemical results from relatively cheaper
instances of the same. We will then review the formulations of a selection of composite
methods. After discussing certain similarities between their working equations and
the summation patterns of the standard combination technique, as previously noted
in [CGH18] and exploited by [Zas+18], we will apply the machinery developed in Chapter 3
to the development of a generalised composite method (GCM); this is itself very closely
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related to a construction given in [Zas+18]. We will conclude by investigating in detail
the performance of the GCM as a systematically-refinable tool for the high-accuracy
calculation of energetic properties for three small molecular systems.

Before we proceed, a word on notation. For the remainder of this thesis, we will
be interested exclusively in ground-state energetic properties; thus, we elide the zero
subscript on, e.g., the ground-state total energy that we used in Chapter 2. We will
instead make liberal use of superscripts and subscripts to indicate different energetic
quantities calculated at different levels of theory; we are influenced here perhaps most
strongly by notation used in works relating to the HEAT methods, e.g., [Taj+04; Bom+06;
Har+08]. We will also generally use a prefixed ∆ to indicate various correction terms,
including correlation energies. Finally, for readability and consistency, we will in most
cases report formulae using equivalent but not identical notation to that in cited sources,
without further explicit comment.

4.1. Energetic extrapolation

The simplest approach for extracting additional accuracy from calculations drawn from
a notional Pople-diagram grid is unidirectional extrapolation. Given some collection of
results obtained by ranging along a particular direction on such a grid, such as values
obtained with denser and denser basis sets [Mar96; Var07; FPH11; PFD12], or by the
use of increasingly involved treatments of electron correlation [Fel93; Goo02; BR04a],
and under some assumptions regarding the decay in approximation error, one can seek
to extrapolate those results towards an anticipated limit. Unidirectional extrapolation
techniques can be applied in each of the two directions on a Pople-diagram grid: both
towards the complete basis set (CBS) limit, and towards the best-possible FCI solution.
For more detail on the following, as well as empirical investigation of their relative
qualities, see, e.g., [FP07; FPD08; HKT08; FPH11; Fel13; Var18], to which we make
general reference.

4.1.1. Complete basis set (CBS) extrapolation

We collect here some CBS extrapolation formulae discussed in the comparative study of
Feller et al. [FPH11], covering only those formulae which we shall explicitly refer to later
in the chapter. The interested reader is referred to that source for further information,
and also other reviews mentioned above. Let us note that effectively the same formulae
were used in [CGH18] to partially motivate the construction of the ML-BOSSANOVA
method, to which we shall return in later chapters.

Use of the well-known and basically empirically-motivated extrapolation formula

Etot
n = Etot

∞ +Ae−αn. (4.1)
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4.1. Energetic extrapolation

traces back to Feller [Fel92; Fel93]. Each Etot
n is here the total (or, alternatively, inter-

action) energy for a molecular system, as calculated using cc-pVnZ. Fitting the three
unknowns Etot

∞ , A, and α requires three total-energy values, usually taken as Etot
n , Etot

n+1,
and Etot

n+2 for some n [Var18]. Thus, the approximate CBS-limit energy Etot
∞ so obtained

from (4.1) is referred to as a three-point extrapolation. An alternative three-point formula
due at least to Peterson et al. [PWD94] extrapolates the total energy as

Etot
n = Etot

∞ +Ae−(n−1) +Be−(n−1)2 . (4.2)

The two formulas given above presuppose exponential decay in the total energy, and
thus both in the Hartree-Fock and correlation-energy components, but there is theoretical
reason to anticipate that the correlation energy should decay only algebraically [Hel+97;
FPH11]. Helgaker et al. [Hel+97] suggested that the correlation energy Ecorr should
therefore be extrapolated in isolation from the Hartree-Fock energy EHF, the latter
according to (4.1), and the former with the two-point extrapolation formula

Ecorr
n = Ecorr

∞ +An−3. (4.3)

The practical evaluation of Feller et al. [FPH11] suggests that, given energies calculated
using basis sets up to (aug)-cc-pVnZ, these formulae can produce extrapolated values
with accuracy consistent at least with (aug)-cc-pV(n+ 1)Z calculations.

4.1.2. Full configuration-interaction (FCI) extrapolation
Clearly, the form of an extrapolation towards an FCI solution will depend on the type of
calculations of correlation energy used in that extrapolation. When these latter are taken
as sums of increasingly high-order terms in a Rayleigh-Schrödinger or Møller-Plesset
perturbation expansion, the convergence of the underlying power series can be accelerated
by the introduction of Padé approximants and similar quantities [BG70; BS77; Wil80;
HC96]. For example, Pople et al. [Pop+83] suggest an extrapolative approximation of the
correlation energy using second-, third-, and fourth-order Møller-Plesset terms [Pop+83,
(4)]:

Ecorr ≈ E(2) − E(3)

1− E(4)/E(2)
, (4.4)

which they note amounts to an assumption “that the even and odd terms of the Moller-
Plesset series both constitute geometric series with a constant ratio of E(4)/E(2)” [Pop+83,
p. 312].

If the correlation energy is approximated by a series of truncated configuration inter-
action calculations (CISD, CISDT, etc.), then it may be possible to apply exponential
extrapolative formulae similar to (4.1) above, as also suggested by Feller [Fel93]. Here,
the quantities used for fitting are not functions of the basis set cardinal n, but rather of
values derived from the individual coefficients in (2.17). We note informally that, since
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this approach requires knowledge of the values of the CI coefficients, it is less readily
applied in a “black box” manner than are the CBS extrapolations considered in the
previous section.

An even more intrusive extrapolation scheme in the context of truncated CI is provided
by the correlation energy extrapolation by intrinsic scaling (CEEIS) method of Bytautas
and Ruedenberg [BR04a]. As CEEIS is relatively complex in the details, we refer the
reader to the source for further information. Briefly, however, studies by the original
authors suggest that CEEIS approximations to the true FCI energy are in some cases
good to at least the mEh [BR04b; BR05].

The only extrapolation technique of which we are aware that is explicitly defined for
series of coupled cluster results is due to Goodson [Goo02]. Here, the FCI energy is
decomposed into a series of correction terms, EFCI = ECCSD(T) + · · · = EHF +∆ECCSD +
∆ECCSD(T) + · · · , which are then rearranged into the form of a continued fraction. This
continued fraction is itself truncated below all terms which can be explicitly calculated.
The continued-fraction extrapolation has been utilised in some applied studies [Pet+06;
BP06], and has also been investigated in a form adjusted to use sequences of correction
terms obtained from CCSD, CCSDT, and CCSDTQ calculations [FPC06]. However,
there appears to be a limited consensus that the corrections provided by the technique
are too unreliable for production use [Fel+03; FD03; Boe+04], at least in the CCSD(T)
version.

4.2. Conventional composite methods

The unidirectional extrapolation approaches discussed above combine by definition sets of
calculations that vary in only one of the two refinement types provided by a Pople-diagram
grid: either an adjustment of the basis set, or by modification of the form of the correlation
energy approximation. The concept of varying both refinement types was explored at
least in [Pop+83]. There, total energies were first approximated by HF-based calculations
using the 6-311G** basis set [Kri+80] and including an extrapolated Møller-Plesset term
as per (4.4). These were then adjusted by three distinct correction terms, each formed as
the difference between the original reference 6-311G** total energy and another total
energy computed similarly,1 but using one of three slightly different basis sets. These
latter were constructed by extension from 6-311G** to be in some sense “orthogonal to
each other” [Pop+83, p. 314], in the hope that the reductions in total basis-set related
error that they produced in comparison to 6-311G** would be additive, approximately if
not exactly. A similar construction is described in [Pop+85], although apparently without
the use of an extrapolative treatment of the correlation energy. These schemes can be
considered as early examples of composite methods [GKC17].
1It is not completely clear to this author’s reading whether the correction terms in [Pop+83] were also
calculated using the MPn extrapolative formula.
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We will consider here only four particularly well-known and representative families of
composite methods, all of which provide “fixed recipes” [GKC17; FD18] for the calculation
of thermochemical values. We make general reference to the reviews of Helgaker et
al. [HKT08], Peterson et al. [PFD12], Raghavachari and Saha [RS15], and Karton [Kar16],
as well as [Jen17]. We mention also a more recent review again by Karton [Kar22]; see
comments in Section 4.3 below. We leave full details, motivations, etc., to the sources, and
limit ourselves basically to recalling the forms of their working energy equations. When
we speak of “total energies” here without further qualification, we mean (approximate)
ground-state solutions to the electronic Schrödinger equation (2.1), always adjusted by
a post-inclusion of the nuclear repulsion energy, as in (2.6). It should be stressed that
all of the following methods are intended in their original formulations to approximate
true physical energies at 0K, and thus include approximate corrections both for errors
introduced by the Born-Oppenheimer approximation and also for the non-relativistic
formulation of the (electronic) Schrödinger equation. For simplicity, we avoid this detail
here, and so the energy equations given below should be considered adapted from the
originals.

4.2.1. The Gaussian-n family (Gn)

The Gn family of composite methods [Cur+90; Cur+91; Cur+98; Cur+99b; Cur+99a;
Cur+01; CRR07a; CRR07b] represent, in short, a series of incremental developments and
improvements to the original Gaussian-1 (G1) method [Pop+89]. We focus here explicitly
only on the G4(MP2) model [CRR07b]. After the molecular system under study is
subjected to an initial DFT geometry optimisation, a base approximation ECCSD(T),FC

6-31G* to
its total energy is calculated via, as suggested by the sub- and superscripts, a frozen-core
CCSD(T) calculation according to the 6-31G* basis set [DHP71; HDP72; HP73]. Two
additive corrections are defined:

∆EMP2,FC
G3(MP2)LargeXP = EMP2,FC

G3(MP2)LargeXP − E
MP2,FC
6-31G* , (4.5)

∆EHF
∞ = EHF

∞ − EHF
G3(MP2)LargeXP. (4.6)

The former expression attempts to estimate the benefit that would have been obtained,
had the base CCSD(T) calculation been performed using a more detailed basis set
than 6-31G*, specifically the customised G3(MP2)LargeXP basis set [Cur+98; CRR07a;
CRR07b]. The latter expression further compensates for the discretisation error in
the Hartree-Fock component of that secondary calculation, and, implicitly, that of the
original. Here, EHF

∞ is an extrapolated approximation to the CBS-limit Hartree-Fock
energy, as per the two-point formula obtained from (4.1) for fixed α = 1.63, presumably
following [Hal+99]; the energies extrapolated from are calculated with adjusted variants
of the aug-cc-pVTZ and aug-cc-pVQZ basis sets.
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The G4(MP2) total energy is, then, adapting from [CRR07b, (1)],

EG4(MP2) = E
CCSD(T),FC
6-31G* +∆EMP2,FC

G3(MP2)LargeXP +∆EHF
∞ +∆EHLC. (4.7)

The trailing ∆EHLC term is a higher-level correction (HLC). For full details, see [CRR07a;
CRR07b], but it suffices to say that this is given by a parametrised expression, the precise
parameters of which minimise an error quantity over a particular training dataset; see
further, e.g., [Cur+97; CRR05], and also discussion in [DCW06]. The total G4(MP2)
energy at 0K follows from (4.7) by the addition of further correction terms, as mentioned
above. We omit the details here.

As independently benchmarked, the G4(MP2) method achieves accuracy levels at or
slightly above the conventionally-set 1 kcalmol−1 cutoff of chemical accuracy [KSM17].
The transferability of the G4(MP2) HLC term to molecular systems that are substan-
tially different to those on which it was originally parametrised has also been recently
investigated [DCR21], and at least partially confirmed. The G4(MP2) protocol has seen
wide use in practical applications, such as the provision of accurate training values for
use in quantum machine learning [Ram+14; Zas+18; Nar+19; Bar+21].

4.2.2. The correlation-consistent Composite Approach (ccCA)

The correlation-consistent Composite Approach [sic] (ccCA) [DCW06] is closely and
explicitly related to the Gn methods, differing most notably in the deliberate omission
of any term like, e.g., the Gn-family HLCs. As in the Gn case, there are a number of
alternative formulations of the ccCA [DCW06; DeY+09]. We consider here the ccCA-PS3
form as described in [DeY+09], which also presupposes an equilibrium geometry calculated
via a particular DFT calculation. A base total energy is derived as an extrapolated
approximation of the CBS frozen-core MP2 total energy, EMP2,FC

∞ . This approximation
is formed from individual extrapolations of the Hartree-Fock total energy and MP2
correlation energy. The Hartree-Fock energy is extrapolated according to (4.1) with
α = 1.63, as per [Hal+99]. The frozen-core MP2 correlation energy is taken as the mean
of two separate extrapolations, one according to (4.2), and another according to (4.3). All
extrapolations are performed using results obtained with the aug-cc-pVDZ, aug-cc-pVTZ,
and aug-cc-pVQZ basis sets.

The complete ccCA total energy is then, adapting from [DeY+09, (1.6)],

EccCA = EMP2,FC
∞ +∆E

CCSD(T),FC
cc-pVTZ +∆EMP2,FC1

aug-cc-pCVTZ, (4.8)

where the first correction term attempts to approximate the error reduction that would
be provided by a full CCSD(T) calculation rather than MP2 [DeY+09, (1.3)],

∆E
CCSD(T),FC
cc-pVTZ = E

CCSD(T),FC
cc-pVTZ − EMP2,FC

cc-pVTZ, (4.9)
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and the second correction term partially addresses the use of the frozen-core approximation
in the above [DeY+09, (1.4)],

∆EMP2,FC1
aug-cc-pCVTZ = EMP2,FC1

aug-cc-pCVTZ − E
MP2,FC
aug-cc-pVTZ. (4.10)

For our purposes, “FC1” can be considered to indicate an all-electron calculation, although
some orbitals would be frozen for atoms living in higher rows of the periodic table than
those we will explicitly consider; see [DeY+09, p. 1109]. Additional corrective terms are
applied to push the ccCA energy EccCA towards the true (i.e., relativistic) total energy;
we do not discuss these here.

When tested with reference to a dataset of thermochemical properties that was itself
constructed to benchmark certain Gn models [CRR05], the ccCA methods, and ccCA-PS3
in particular, produced a mean accuracy very close to 1 kcalmol−1 [DeY+09]. A more
recent benchmark using the W4-17 dataset [KSM17] found the ccCA-PS3 method to
perform slightly better than the G4 and G4(MP2) methods.

4.2.3. The Weizmann family (Wn)
The Weizmann Wn family [MO99; Boe+04; Kar+06] of composite methods aim to
produce much more accurate thermochemical values than do the Gn or ccCA methods.
In their paper describing the original W1 and W2 methods, Martin and de Oliveira [MO99]
state their target to be calibration accuracy, which they define at the dataset level to be
a mean absolute error of 1 kJmol−1 (≈ 0.24 kcalmol−1), “with the additional constraint
that no individual error be larger than the chemical accuracy goal of 1 kcalmol−1” [MO99,
p. 1843]. This target can be broadly reached at least by the subsequently-developed W4
method; see, e.g., [KDM11; KSM17].

We sketch only a rough outline of W4 here, following [Kar+06; KSM17]. The details
are complex; for a full description, we refer to the sources, but the total W4 energy can
basically be written as2

EW4 := EHF
∞ +∆ECCSD

∞ +∆ECCSD(T)
∞ +∆ECCSDT

∞

+∆E
CCSDT(Q)
cc-pVTZ +∆ECCSDTQ

cc-pVDZ +∆ECCSDTQP
DZ +∆ECV. (4.11)

We will briefly outline the various correction terms below. As for the Gn and ccCA meth-
ods, the total W4 energy at 0K includes further corrections, again left here undescribed.

In the following, when we write W4-pVnZ, we refer to a composite basis set that is,
for our purposes, just aug-cc-pVnZ, but with cc-pVnZ used for hydrogen atoms; cf.,
however, [Kar+06; KDM11]. The first two terms on the RHS of (4.11), EHF

∞ and ∆ECCSD
∞ ,

are two-point CBS extrapolations, calculated using formulae [KM06; Kar+06] which we
2Actually, omitting an additional term relating to technical differences between two CCSD(T) implementa-
tions used in the original W4 implementation [Kar+06].
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did not give above, from W4-pV5Z and W4-pV6Z values of the total HF energy and
the CCSD correlation energy respectively. The calculation of ∆ECCSD

∞ requires some
additional work; see [Kar+06]. All of the remaining terms but the last estimate the
improvements available from progressively better-quality coupled cluster treatments. For
instance, the term ∆E

CCSD(T)
∞ approximates the “true” difference ECCSD(T)

∞ − ECCSD
∞ as

a two-point extrapolation of those differences as approximated using W4-pVQZ and
W4-pV5Z; ∆ECCSDT

∞ is similar, but uses only the standard cc-pVDZ and cc-pVTZ
basis sets. The terms ∆E

CCSDT(Q)
cc-pVTZ and ∆ECCSDTQ

cc-pVDZ are scaled differences; for instance,
∆E

CCSDT(Q)
cc-pVTZ = 1.1(E

CCSDT(Q)
cc-pVTZ − ECCSDT

cc-pVTZ) [Kar+06, (1)]. In ∆ECCSDTQP
DZ = ECCSDTQP

DZ −
ECCSDTQ

DZ , “DZ” indicates for our purposes the unpolarised double-zeta basis set of
Dunning and Hay [DH77]. Since all of the preceeding calculations apply the frozen-
core approximation [KSM17], the final correction term ∆ECV includes an extrapolated
estimate of the resulting systematic error from the differences of all-electron CCSD(T)
correlation energies calculated with the aug-cc-pwCVTZ and aug-cc-pwCVQZ basis sets,
and the frozen-core versions of the same.

Several variants of W4 are available [Kar+06; KSM17]. In particular, the cheaper
W4Lite variant of (4.11) replaces∆ECCSDT(Q)

cc-pVTZ with an equivalently-defined term∆E
CCSDT(Q)
cc-pVDZ ,

and omits ∆ECCSDTQ
cc-pVDZ and ∆ECCSDTQP

DZ entirely. Alternatively, the more expensive W4.2
variant calculates ∆ECV using CCSDT. The calculation of a W4.2-approximated energy
is only feasible for molecular systems “with up to 2–3 non-hydrogen atoms” [KSM17,
p. 2064]. W4Lite, by contrast, can handle “up to eight” [KSM17, p. 2065].

4.2.4. High-accuracy Extrapolated ab initio Thermochemistry (HEAT)

The final composite method family that we shall outline are the High-Accuracy Ex-
trapolated ab initio Thermochemistry (HEAT) methods [Taj+04; Bom+06; Har+08;
Tho+19]. Like the Wn methods, the HEAT methods target accuracies of kJmol−1 or
better [Taj+04]. The total energy for the HEAT-456QP method [Bom+06; Har+08],
which is the most comprehensive of the family in terms of its treatment of the correlation
energy and thus also the most expensive, is, cf. e.g. [Bom+06, (1)]

EHEAT-456QP := EHF
∞ +∆ECCSD(T)

∞ +∆ECCSDT
∞ +∆ECCSDTQP

cc-pVDZ . (4.12)

Obtaining the first two terms here requires calculation of ECCSD(T)
aug-cc-pCVQZ, E

CCSD(T)
aug-cc-pCV5Z, and

E
CCSD(T)
aug-cc-pCV6Z. The Hartree-Fock energy components of these are then extrapolated to EHF

∞

via (4.1), and the correlation energy components of the latter two provide ∆E
CCSD(T)
∞ as

per (4.3). These are all-electron calculations, and the HEAT methods do not usually in-
clude an explicit core-valence correction term [Taj+04; Har+08]; cf., however, the variants
described in [Tho+19]. The next term, ∆ECCSDT

∞ , is obtained as the difference between
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CCSD(T) and CCSDT correlation energies, each of which is individually extrapolated
from the results of frozen-core cc-pVTZ and cc-pVQZ calculations, again using (4.3).
The final correction, ∆ECCSDTQP

cc-pVDZ , is just the difference between now-unextrapolated
frozen-core CCSDTQP/cc-pVDZ and CCSDT/cc-pVDZ correlation energies. Once more,
the full energy at 0K also includes correction terms for, e.g., relativistic effects, and once
more, we leave these undescribed.

Several variants of the HEAT-456QP method are obtained by modifying either one
or both of two particular computational details [Bom+06; Har+08]. The first possible
modification is to make use of the aug-cc-pCVTZ, QZ, and 5Z basis sets for calculation of
EHF

∞ and ∆E
CCSD(T)
∞ , rather than the aug-cc-pCVQZ, 5Z, and 6Z basis sets as described

above. The second is to replace the use of the roughly O(K12)-scaling CCSDTQP in
∆ECCSDTQP

cc-pVDZ with a cheaper treatment, either CCSDT(Q) or CCSDTQ [Bom+06].3 The
resulting schemes are named accordingly, so, e.g., HEAT-345(Q) denotes the cheapest
HEAT method, which uses basis sets up to aug-cc-pV5Z for extrapolation and requires
coupled cluster calculations only up to CCSDT(Q).

As tested by the original authors, the HEAT methods produce results that reliably
agree with high-quality experimental values to within 1 kJmol−1 [Taj+04; Bom+06;
Har+08]. We are unaware of any detailed critical benchmarking that has been performed
in order to explicitly compare the results of the various Wn methods and the HEAT
methods; see, however, an indirect comparison in [Kar16].

4.3. A generalised composite method
There is a certain similarity between the general formulations of the composite methods
outlined above and that of the standard combination technique. This similarity has
been previously noted at by Chinnamsetty et al. [CGH18] and particularly Zaspel et
al. [Zas+18], whose work underlies the following and to which we shall return shortly.

To make the underlying similarity obvious to the reader with some experience of the
combination technique, consider first the expression for the total G4(MP2) energy given
in (4.7). By explicitly inserting the expressions (4.5) and (4.6), then eliding the HLC
term and reformatting, we obtain

EG4(MP2) ≈ +E
CCSD(T)
6-31G*

−EMP2
6-31G* +EMP2

G3(MP2)LargeXP

−EHF
G3(MP2)LargeXP +EHF

∞ .

(4.13)

The involved values are arrayed roughly according to an implicit underlying Pople-diagram
grid; cf. here [Jen17, Fig. 5.4] for an explicit plot of the component values required by
3The use of CCSDTQ(P) appears to have not been explicitly considered in any HEAT-related work.
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the full G4 method. A similar rewriting of the ccCA-PS3 total energy equation (4.8)
provides

EccCA-PS3 =+E
CCSD(T)
cc-VTZ

+EMP2,FC1
aug-cc-pCVTZ

−EMP2,FC
cc-pVTZ −E

MP2,FC
aug-cc-pVTZ +EMP2,FC

∞ .

(4.14)

The W4 energy equation (4.11) is significantly more complicated, but can also be rewritten
as a weighted sum:

E W4 =

+ECCSDTQP
DZ

−ECCSDTQ
DZ +1.1ECCSDTQ

cc-pVDZ

−1.1ECCSDT(Q)
cc-pVDZ +1.1E

CCSDT(Q)
cc-pVTZ

+(· · ·)ECCSDT
cc-pVDZ +(· · ·)ECCSDT

cc-pVTZ

+(· · ·)ECCSD(T)
cc-pVDZ +(· · ·)ECCSD(T)

cc-pVTZ +(· · ·)ECCSD(T)
W4-pVQZ +(· · ·)ECCSD(T)

W4-pV5Z

+(· · ·)ECCSD
W4-pV5Z +(· · ·)ECCSD

W4-pV6Z

+(· · ·)EHF
W4-pV5Z +(· · ·)EHF

W4-pV6Z

+∆ECV,

(4.15)
where we use the notation (· · ·) to indicate scalar factors that are fixed and in principle
calculable. These factors arise from the use of the terms which they precede in one or
more extrapolation formulae. For an explicit Pople-style plot of the W4 components,
cf. again [Jen17], this time Figure 5.5. As the extrapolations used in the various HEAT
methods do not produce expressions which are linear in the values extrapolated from, the
presentation of an equivalently-formatted weighted sum is not possible; however, it is not
hard to persuade oneself via inspection of (4.12) that the overall component structure of
a HEAT total energy is fundamentally similar. Consistent with [Zas+18], the key point
to take away from the above is, firstly, that all of these composite methods involve sets
of values that can be organised in a way corresponding very loosely to index sets used in
applications of the standard combination technique, and secondly, that the sign patterns
of the involved sums are reminiscent of those encountered in, for example in the case of
G4(MP2), the combination sum (3.6) taken over the two-dimensional index set IL for
L = 2.

The combination sum-like structure of such composite methods, and particularly
that of the G2 method, led Zaspel et al. [Zas+18] to construct their multilevel CQML
scheme for the machine-learning of molecular energetic properties. Basing their work on
the standard formulation of the combination technique, they consider what are in our
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terminology combination sums SIL over poset grids Nd with both d = 2 and d = 3. Both
grids include an axis counting an increasing number of training samples. The second
axis of the two-dimensional grid indexes a combined level of theory, capturing both
an ab initio method and a pre-chosen, fixed basis set: HF/STO-3G, then MP2/6-31G,
then CCSD(T)/cc-pVDZ; see the modified Pople diagram in [Zas+18, Fig. 1]. The
three-dimensional grid splits this axis into two, one each for ab initio theory (HF, MP2,
CCSD(T)) and for basis-set theory (STO-3G, 6-31G, cc-pVDZ). Each point on each grid
corresponds to a machine-learning setup, trained on a dataset of appropriately-calculated
atomisation energies; each model function represents an evaluated prediction by that
trained setup.

Following very closely the example of the CQML method, we will investigate an adapted
and more conventional application of the combination technique here. Specifically, without
applying machine-learning techniques but considering instead extended and more regular
hierarchies of both an initio and basis set theory, we investigate whether the combination
technique can be used to calculate approximations to FCI/CBS energetic properties of a
molecular system at a similar ratio of accuracy to cost as is provided by the conventional
composite methods which we have discussed above, but in a more systematically-refinable
way. Although the use of such larger axes in the CQML setting is explicitly suggested
in [Zas+18] as an avenue of future investigation, this idea has not yet to our knowledge
been thoroughly explored. For example, a very recent application of the CQML method
is still limited in particular to only basis sets of up to triple-zeta quality [Vin+23]. We are
also particularly interested in investigating to what extent the application of adaptivity
might be helpful, and we are laying the foundations here for work in Chapter 7 to come.

We will refer to the following construction just as the generalised composite method
(GCM). In this application of the order-theoretic combination technique, the target
function is taken to be the (true) Born-Oppenheimer ground-state potential energy
function, V BO, as defined in Section 2.1. Each model function is an approximation
V BO
(m,n,p,q) ≈ V BO, where the four indices m, n, p, q specify levels of theory used in the

approximation, to be outlined below. Each index is drawn from a contiguous subset of N,
all of which are either truly or practically finite, so the model functions form a family
FΠ according to a poset grid Π composed of four finite chain posets. This setup thus
exercises little of the poset-grid machinery introduced in Chapter 3.

The first poset axis, corresponding to the indices m, specifies a generally post-HF
ab initio method as per (2.26). The lowest-indexed m = 0 indicates a “treatment”, or
rather a neglection of electron correlation as given by the Hartree-Fock method. An
initial approximation to the correlation energy is then provided by the total MP2 energy
(m = 1), followed by coupled cluster methods using cluster operators in (2.24) truncated
at increasing orders. The truncated coupled cluster method for each excitation order
is considered first in its standard form, and then with the addition of a perturbative
correction for next-order correlation effects: CCSD (m = 2), then CCSD(T) (m = 3),
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then CCSDT (m = 4), CCSDT(Q) (m = 5), and so on. The highest available value of m
is a completely untruncated coupled cluster treatment, which is effectively equivalent to
an FCI calculation.

The second index, n, allows a choice of discretising basis set. Here, we consider only
correlation-consistent sets drawn from the (aug)-cc-p(C)VnZ families; a similar hierarchy
was used in the ML-BOSSANOVA construction of [CGH18]. The first available index,
n = 2, specifies the use of a double-zeta basis set, such as cc-pVDZ; n = 3, a triple-zeta
basis set, e.g., cc-pVTZ, and so on. At least in principle, basis sets from this family
could be constructed for arbitrary values of n ≥ 2 by following the protocol outlined
in [Dun89], so this poset axis is notionally unbounded. In practice, however, we have
access to constructed basis sets only in the range 2 ≤ n ≤ 8; see Section A.2 for details
of the basis sets used, as well as appropriate citations.

The third and fourth indices, p ∈ {0, 1} and q ∈ {0, 1}, are binary “fine-tuning”
parameters. The index p controls the introduction of extra diffuse functions into the basis
set. If p = 0, no diffuse functions are used, and the basis set is cc-p(C)VnZ; if p = 1,
then aug-cc-p(C)VnZ. When q = 0, the frozen-core approximation is applied; for q = 1,
an all-electron calculation is performed. The choice of q also has an impact on the precise
basis set used: for frozen-core approximations, we use (aug)-cc-pVnZ, and for all-electron
calculations, we use (aug)-cc-pCVnZ. Technically, the frozen core approximation has
meaning only in the context of correlated calculations, i.e., for m ≥ 1. However, for
Hartree-Fock calculations (m = 0), there is still a difference in quality of results between
q = 0 and q = 1, as the use of the core-valence basis sets increases the number of basis
functions relative to, e.g., valence-only cc-pVnZ, and therefore also the variational scope
of the solution space.

For the calculation of total energies, the evaluation functional L is simply point
evaluation for a particular fixed nuclear configuration {XA = (RA, ZA)}MA=1, follow-
ing [CGH18]:

L[V : (R3 × N)M → R] = V (X1, . . . , XM ). (4.16)

We shall discuss the extension of L to the evaluation of total atomisation energies below.
Although we shall not explicitly do so here, we note that we could also choose L to be
point evaluation of the nuclear gradient ∇V with respect to {RA}MA=1.

We mention here, before we begin, a recent review and comparitive discussion of
composite methods by Karton [Kar22], which suggests a classification of various composite
methods along “rungs” [Kar22, p. 15] of a notional Jacob’s ladder, here echoing a name
which has previously been used to taxonomise approximate DFT functionals [Goe+17].
We became aware of [Kar22] only late in the production of this thesis, and will not engage
with it in detail. We note with interest, however, that Karton’s classification (which
considers many more composite methods than those we have mentioned here) also hinges
upon the introduction of what we would call a one-dimensional hierarchical decomposition
of the total energy in terms of a hierarchy of computational methods [Kar22, Tab. 2]
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that is basically identical to that which we use here. This is also related directly to
Pople-style diagrams [Kar22, Figs. 1 and 4]. Indeed, the generalised formulae [Kar22, (5),
(6), and (7)] used to express the different rungs of the ladder can also be rewritten, with
substitution as per [Kar22, Tabs. 3 and 4], in roughly triangular forms similar to those
given above. This provides yet another motivation for the investigation of the GCM.

4.4. Case study: water (H2O)
For an initial investigation of the generalised composite method, we consider the wa-
ter monomer, H2O, which has historically provided a simple quantum-chemical “test-
bed” [Fel92, p. 6104]; a visualisation is given in Figure 4.4 below. We will benchmark the
performance of the GCM as used for the calculation of both the total energy and total
atomisation energies of water. We begin with the total energy.

4.4.1. Total energy
We draw a reference estimate for the true non-relativistic Born-Oppenheimer total energy
of water as EFCI

∞ = −76.4390(4)Eh from a study by Bytautas and Ruedenberg [BR06].
This value was obtained by repeated application of their CEEIS extrapolation scheme
(see Section 4.1.2), and then further extrapolation of those results using basically (4.1)
and (4.3), plus an additional core-valence correction; for full details, see [BR06] and
references within.

We performed a base set of single-point total energy calculations on H2O at the reference
geometry given in [Hel+97], which was that used in [BR06]. We then used these to derive
total energy estimates according to a variety of extrapolation schemes and standard
composite methods. Let us note that our focus here will be on the performance of the
GCM, and these standard values, as well as similar which will be discussed throughout
the remainder of this work, are used only to provide necessary context. We do not
present their calculation as novel work in and of itself; in particular, some very similar
calculations for a different geometry of H2O are discussed in the context of the HEAT
methods in [Har+08; Tho+21].

Specifically, we performed RHF calculations [SO89] using the cc-pVnZ, cc-pCVnZ,
aug-cc-pVnZ, and aug-cc-pCVnZ basis sets for all 2 ≤ n ≤ 8; full citations for these
and all other used basis sets are given in Section A.2. We also attempted to calculate
correlation energies using the MP2, CCSD, CCSD(T), CCSDT, CCSDT(Q), CCSDTQ,
CCSDTQ(P), and CCSDTQP levels of theory [MP34; Číž66; PB82; NB87; Rag+89;
SO89; KB92; KS01; Bom+05; KG05; KG08] for the same collection of basis sets. The
frozen core approximation was applied for calculations performed using the (aug)-cc-pVnZ
basis sets, while those with the (aug)-cc-pCVnZ basis sets were complete all-electron
calculations. We write “attempted”, since not all of these calculations proved to be
computationally feasible in practice. CCSDT and higher calculations were performed
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Method E (Eh) Abstract cost

G4(MP2), no HLC −76.339 020 8.475× 109

G4(MP2), HLC −76.376 908 8.475× 109

ccCA-PS3 −76.434 304 1.473× 1011

HEAT-345(Q) −76.439 812 1.439× 1014

HEAT-345Q −76.439 783 1.441× 1014

HEAT-345QP −76.439 798 1.576× 1014

HEAT-456(Q) −76.438 861 2.330× 1014

HEAT-456Q −76.438 832 2.331× 1014

HEAT-456QP −76.438 848 2.467× 1014

CCSD(T) extrap. (aug-cc-pCV8Z) −76.438 192 3.234× 1015

CCSDT extrap. (cc-pCV6Z) −76.438 549 2.279× 1016

Reference [BR06] −76.439 0(4) –

Table 4.1.: Total energies of H2O according to a selection of composite methods and extrapolative
procedures, along with their abstract costs of calculation. Note that the CCSDT
extrapolation (and cost) includes the same Hartree-Fock total energy extrapolation at
the aug-cc-pCV8Z level as used for the CCSD(T) extrapolation.

using MRCC [Kál+20; MRCC], and the remainder with PySCF [Sun15; Sun+17; Sun+20].
For full calculation details, see Appendix A, and in particular, Sections A.1, A.2, and A.4.

The set of calculations which completed successfully included all required single-point
values necessary to calculate total Born-Oppenheimer energies according to the ccCA-PS3,
HEAT-345(Q), HEAT-345Q, HEAT-345QP, HEAT-456(Q), HEAT-456Q, and HEAT-
456QP composite methods, as described above. So that we could also calculate the
G4(MP2) total Born-Oppenheimer energy, we also performed appropriate RHF, MP2,
and CCSD(T) total energy calculations according to the 6-31G*, G3(MP2)LargeXP,
and G4(MP2)-specialised basis sets mentioned above using PySCF; see again Sec-
tions A.1, A.2, and A.5. Using CBS extrapolation according to either Feller’s exponential
formula (4.1) (for Hartree-Fock total energies), or the two-point formula (4.3) of Hel-
gaker et al. (for correlation energies), our best available values lead to the estimates
E

CCSD(T)
∞ ≈ −76.438 192Eh and ECCSDT

∞ ≈ −76.438 549Eh. These follow from an extra-
polation for EHF using basis sets up to aug-cc-pCV8Z, and extrapolations for ∆ECCSD(T)

and ∆ECCSDT using up to aug-cc-pCV8Z and cc-pCV6Z respectively. The latter value is
very nearly within the tolerance of the reference estimate of [BR06]. We are unable to
give a confident estimate of the total CCSDT(Q)/CBS level by direct extrapolation, as
we were unable to calculate any all-electron data points at the 6Z level.

These CBS-extrapolated values are contrasted in Table 4.1 with the total energies
of H2O as calculated according to the G4(MP2), ccCA-PS3, and various HEAT-family
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composite method formulae, as given earlier in the chapter. For computational details,
see Section A.5. The total cost of each calculation according to the abstract cost model
outlined in Chapter 2 is also provided; these values are simply the sums of the abstract
costs for all required component calculations. It is important to clarify here that these
total energies are not entirely faithful to the composite methods in their full definitions. In
particular, all of these composite methods technically assume calculations at equilibrium
geometries as per different levels of theory. This is particularly problematic for G4(MP2),
since the HLC is fitted in terms of just such equilibrium-geometry calculations [CRR07b].
For comparison, we provide values for the G4(MP2) total energy of H2O both with and
without the inclusion of the ∆EHLC term in (4.7); see and cf., e.g., [CRR07a; DCR21].
In this context, it is also slightly interesting to see that our HEAT-456QP energy is
exactly that given in [Har+08, Tab. IV], up to the precision of that source, despite the
presumably different geometry used.

Table 4.1 does not contain a total energy calculated using any Wn-family composite
method. In particular, a W4-level calculation would have been desirable for comparison
relative to the HEAT-family calculations. This omission is due to the fact that none of the
quantum chemistry codes to which we had access could split the CCSD energy into the
components required for the W4 extrapolation of ∆ECCSD(T); see [Kar+06; KSM17]. We
considered replacing this extrapolation with one of the variants described in Section 4.1.1;
however, we judged that the resulting approximation could be misleading, especially since
“true” W4 calculations (as calculated by other authors) will be used later in this chapter.

The G4(MP2) total energies, both with and without the HLC, match the reference
value to only approximately 0.1Eh. In the HLC-free case, we remember that (4.7)
otherwise considers only calculations as per the frozen-core approximation. An estimate
for the concomitant intrinsic error is collated by Bytautas and Ruedenburg as −0.0628Eh;
see [BR06, Sec. IV.D] and references therein. The inaccuracy of the full HLC-inclusive
expression (4.7) is more interesting. An experimentally-derived relativistic total energy of
H2O (specifically −76.352 56Eh) is, in fact, included in the G2/97 dataset [Cur+97], an
expanded variant of which [CRR05] was used to fit the parameters of the G4(MP2) HLC
term [CRR07b]. It may or may not be meaningful that the calculated G4(MP2) total
energy for our reference geometry is closer to this value (with a difference of approximately
0.02Eh) than to our reference (difference approximately 0.06Eh). However, a post-
inclusion of the FC error term from [BR06] narrows this latter difference down to only
approximately 0.0007Eh ≈ 0.4 kcalmol−1.

By contrast, the ccCA-PS3 energy agrees with the FCI/CBS reference to within approx-
imately 0.005Eh ≈ 2.9 kcalmol−1. The various HEAT methods, although significantly
more expensive than the G4(MP2) and ccCA-PS3 methods, are also much more accur-
ate. The 345-family HEAT total energies all match the FCI/CBS reference to roughly
0.0008Eh ≈ 0.5 kcalmol−1, and the 456-family HEAT total energies are no more than
approximately 0.0002Eh ≈ 0.1 kcalmol−1 from the reference; let us note that [Har+08]
also compares HEAT results for H2O with the same reference and comments on their
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accuracy. The latter value, which is well within the 1 kJmol−1 threshold of calibration
accuracy, must, however, be considered in light of the relatively loose error bounds on
the reference value, which are themselves on the same order of magnitude. The HEAT
methods clearly outperform the conventionally extrapolated CCSD(T) and CCSDT
results, which are one and two orders of magnitude more expensive again than the most
expensive HEAT method respectively.

We consider now approximations of the total energy of H2O according to the generalised
composite method, obtained via the adaptive algorithm for index set selection described
in Chapter 3. Since this algorithm is iterative, its execution produces a sequence of
progressively-refined combination sums according to the chosen adaptive strategy; we
investigated the relationship between abstract cost and accuracy of the combination sums
at each iteration.

As well as the complete four-dimensional family of model functions FΠ defined in
Section 4.3 above, we also considered the subfamily of FΠ consisting of those model
functions indexed with p = 0 and q = 1. This corresponds to a two-dimensional “subgrid”
of calculations, all using the cc-pCVnZ basis sets and without applying the frozen-core
approximation; let us stress that this is even closer to the idea of the CQML method
of [Zas+18]. The intention here was to investigate the impact of the fine-tuning parameters
on the quality of the results.

For both grids (complete 4D and restricted 2D cc-pCVnZ-only), we report executions
of the adaptive algorithm using both the All and Best adaptive strategies. The former
produces a sequence of index sets and accompanying combination sums that is equivalent
to marching out the parameter L in the standard combination-technique combination
sums SIL as defined in (3.4). In each case, we consider as many iterations as possible
given the complete set of precalculated total-energy calculations described above.4 For
completeness, we mention that the various reductions involved in the adaptive algorithm
were calculated using high-precision floating-point arithmetic [Joh17] rather than standard
double-precision arithmetic (see Appendix A), although we have no reason to believe this
has any meaningful impact on the results.

The absolute errors relative to the FCI/CBS reference value of each combination sum
obtained at each iteration are plotted in Figure 4.1, measured against the total abstract
cost of their respective index sets. The absolute errors and costs of the various composite
method total energies given in Table 4.1 are also marked on the plot for the purpose of
comparison, as are horizontal lines marking the 1 kcalmol−1 and 1 kJmol−1 thresholds
of chemical accuracy and calibration accuracy respectively. Only one result is plotted
for each of the HEAT-345 and HEAT-456 families, as the costs and accuracies of the
members of each family are very similar.

We have also plotted the sequence of results obtained by simultaneously increasing

4Since neither calculation applies an explicit termination criteria, the All calculations are not adaptive in
the strictest sense of the word.
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Figure 4.1.: Performance of the generalised composite method (GCM), in terms of absolute error
relative to the FCI/CBS reference value of E = −76.4390Eh for the total energy
of H2O, as a function of total abstract cost. Each coloured marker indicates a
per-iteration result for a particular iterative adaptive calculation, with iterations
connected by lines which move here from left to right. The dashed grey horizontal
line indicates chemical accuracy (1 kcalmol−1); the dash-dotted grey horizontal line
indicates calibration accuracy (1 kJmol−1). The pinned black points indicate the
cost and accuracy of the conventional composite method results given in Table 4.1.

both the basis set quality and the treatment of electron correlation for all-electron
calculations, i.e., HF/cc-pCVDZ, MP2/cc-pCVTZ, CCSD(T)/cc-pCVQZ, etc. This is
labelled in Figure 4.1 as “Full grid”, following standard terminology from the sparse grids
and combination technique literature; see, e.g., [GSZ92; BG04].

The total energy results obtained according to the conventional composite methods
appear to describe a roughly algebraic trend in accuracy versus cost; although the HEAT-
456(Q) result appears substantially “better” in terms of accuracy, we remember that the
error bounds on the reference are approximately equivalent to the calibration accuracy
threshold.

The per-iteration results from the four GCM calculations also follow a roughly algebraic
trend. Index-set refinement according to the Best (i.e., greedy) adaptive strategy produces
results which for the most part oscillate around or are less accurate than the All results,
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before “settling” to about the same levels of accuracy in their final iterations. The All
calculations are at best narrowly better than chemical accuracy, although they appear to
grow less accurate in their own respective final iterations. We will return to this effect
shortly.

There appears to be a slight but noticeable advantage in both cost and accuracy
attached to the use of the fine-tuning parameters in the complete four-dimensional GCM
grid, particularly for the All results. However, this advantage does not change the
overall behaviour of the per-iteration results.

The “full grid” results, those obtained by simultaneously increasing the basis set quality
and electron correlation treatment, are approximately as good as those obtained via
the GCM for the first four iterations. The fourth iteration, however, produces only
a slight increase in quality for a significant increase in cost. This is consistent with
expectation taken from conventional applications of the combination technique, where full
grid solutions may appear to perform equally well or better than combination-technique
solutions for small index sets, but then scale much less favourably once a pre-asymptotic
regime is exceeded. We observe here that the next such result after the sequence plotted,
namely the total energy according to a CCSDT(Q)/cc-pCV7Z calculation, is completely
computationally infeasible.

For reasons of legibility, we have not explicitly plotted here the adaptive error indicators
produced by the various GCM index sets as described in Section 3.5.5. These follow
the same overall trends as do the true absolute errors, although they tend towards an
underestimation of the error. This is particularly true in the final iterations, where the
the error indicators underestimate the true error by a half to a full order of magnitude.

Although the standard composite methods produce total energies which are almost
always more accurate than the GCM index sets at a given cost, the latter do indeed seem
to have similar overall accuracy/cost behaviour to the former. In this comparison, we
remember that all of the standard composite methods make explicit use of extrapolated
energies, which are expected to significantly increase delivered accuracy for a given cost.
The particular extrapolations used are the result of careful calibration, while the GCM
provides instead a systematically-refinable approximation.

Previously, we motivated the application of the combination technique in the form
of the GCM by a rather handwaving analogy between the structure of the total energy
expressions of the conventional composite methods and that of the standard combination
technique in two dimensions. We can improve somewhat on this justification by an a
posteriori analysis of the data produced by the GCM calculations.

We recall from Chapter 3, as well as the discussion in e.g. [TW18], that favourable
performance of the combination technique may be expected if the involved benefit/cost
ratios L[f̃m]/C(m) decay in a certain bounded and predictable way in the multiindices m.
Here, we are unable to place any kind of generally-rigorous bounds on the benefit terms
L[Ṽ BO

(m,n,p,q)] in particular. However, we can explicitly evaluate these benefit/cost ratios
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for the functions V BO
(m,n,p,q) that are evaluated in the course of our adaptive calculations.

A Pople-style plot of the true benefit/cost values for all points in the final index set
over the complete four-dimensional grid for the Best adaptive calculation is given in
Figure 4.2. Each of the four subplots displays the benefit/cost ratios for a particular fixed
pair of model fine-tuning indices p ∈ {±1}, q ∈ {±1}. To interpret this figure, consider an
execution of the adaptive algorithm performed using the All strategy. The first iteration
of such an execution of the adaptive index-set selection algorithm produces an index set
containing only the bottom left-hand point in the bottom-left hand subplot, i.e., the
point (HF, DZ) in subplot (a), corresponding to the model function V BO

(m=0,n=2,p=0,q=0),
representing the Hartree-Fock total energy using the cc-pVDZ basis set, without diffuse
functions and with a notional application of the frozen-core approximation.5 The next
refinement adds the points (MP2, DZ) and (HF, TZ) in the same subplot, so MP2/cc-
pVDZ and HF/cc-pVTZ FC calculations, and also the points (HF, DZ) in subplots (a)
and (d), so HF/cc-pCVDZ and HF/aug-cc-pVDZ calculations. The third refinement adds
(HF, DZ) in subplot (b), both (MP2, DZ) and (HF, TZ) in subplots (a) and (d), and
(CCSD, DZ), (MP2, TZ), and (HF, QZ) in subplot (a). Further refinements follow the
general pattern of a regular “lower triangular” simplex in each subplot, with a boundary
in subplot (a) that extends one grid cell further than those in subplots (b) and (c), which
are themselves one grid cell further out than that in subplot (d).

To a first glance, the benefit/cost ratios display a fairly even pattern of decay as
‖(m,n, p, q)‖1 increases. This suggests one reason why the truly adaptive Best strategy
does not perform significantly differently to the All strategy, since all strategies lead to
selection of the same indices in more or less the same order. However, some imbalance
does begin to become visible towards the frontiers of the plotted index set. Higher-order
coupled cluster calculations using cheaper basis sets offer less benefit per cost than do
CCSD and CCSD(T) calculations with more expensive basis sets.

The benefit/cost plots of Figure 4.2 also provide a visual hint as to the behaviour
of the GCM calculations in their final iterations, as remarked on above. There, the
rates of error decay slow, flatten, and then seem to turn upwards. This behaviour is
likely due to incompleteness in the available data, as expressed in the finite poset grid
axes. Specifically: the poset axis corresponding to the treatment of electron correlation
contains nine elements, but there are only seven elements in the axis expressing basis set
size (i.e., from DZ up to 8Z). This means that from the eighth iteration onwards, the
progressively-refined index sets are no longer being augmented with points distributed
equally along a simplex, and, in particular, no information from basis sets with quality
higher than 8Z enters the approximations. Unfortunately, suitable basis sets of higher
quality than 8Z are not available for further experimentation.

5“Notional” since the frozen-core approximation is meaningful only in the context of a correlated, i.e.,
post-Hartree-Fock calculation.
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Figure 4.2.: Benefit/cost ratios for all index set elements involved in the GCM estimations of
the total energy of H2O given in Figure 4.1. Each coloured grid square displays the
base-10 logarithm of the magnitude of the benefit/cost ratio L[Ṽ BO

(m,n,p,q)]/C(m,n, p, q)
for a particular element with indices m, n, p, q. The value for Hartree-Fock at cc-
pVDZ is several orders of magnitude larger than surrounding points (log-magnitude
approximately −5.73) and is omitted in order to avoid compressing the colour
representation of the remaining data. The four subplots here represent a single set of
benefit/cost ratios in terms of the complete four-dimensional GCM grid; refer to the
main text for interpretation.
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4.4.2. Total atomisation energy

We turn now to the calculation of the total atomisation energy of the H2O monomer.
As discussed in Section 2.3, the total (Born-Oppenheimer, non-relativistic) atomisation
energy of a molecular system composed of M nuclei is a derived quantity, defined as
(with a slight notational adjustment of (2.27))

Eatom :=

(
M∑
i=1

E(i)

)
− E, (4.17)

where E is the total energy of the full system, and E(i) is the total energy of the
ith-indexed atom treated as a standalone system in its own right.

Our consideration of the atomisation energy of H2O serves two purposes. Firstly, it is
interesting to investigate whether our GCM can be usefully applied to the approximation
of derived energetic quantities and specifically energy differences, particularly since these
are more interesting in practice than are raw total energies [Taj+04], and also since most
of the standard composite methods are directly targeted at the same [Kar16]. Secondly,
high-quality reference estimates for total energies such as those used in the previous
section are uncommon in the literature, while reference estimates for atomisation energies
are comparitively easier to come by. We will follow this case study by investigating the
application of the GCM to two additional and more complicated molecular systems, for
which we shall only have atomisation energies for reference. Thus, the atomisation energy
of water provides us with an informal control subject.

A reference estimate of the FCI/CBS total atomisation energy of H2O as Eatom ≈
0.3716Eh can be derived from a value given in the study of Bytautas and Rueden-
berg [BR06, (40)] by discounting a term modeling relativistic effects; see also [BR06, Tab.
V]. Unlike their FCI/CBS estimate for the total energy of water used in the previous
section, this value comes without an explicit quantification of error. We note a newer
empirical reference value given in [Tho+21, Tab. II] as Eatom = 974.91(6) kJmol−1 ≈
0.371 32(2)Eh; see [Tho+21] for details. For consistency with the previous section, how-
ever, we take the value derived from [BR06] as our reference here. In any case, the two
values are still within 1 kJmol−1 of each other.

We derived a collection of atomisation energies for H2O from the set of total energy
calculations discussed in previous section. This required an equivalent collection of
monoatomic total energy calculations for both H and O. For more details on these
monoatomic calculations, refer to Section A.3 in Appendix A. In particular, to avoid any
ambiguity regarding the order of operations, we note that we consistently performed CBS
extrapolations using HF and correlation energy values, and then combined the resulting
values into atomisation energies.

A collection of atomisation energies similarly derived from standard composite method
total energies (both monoatomic and for H2O) is given in Table 4.2, along with their
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Method Eatom (Eh) Abstract cost

G4(MP2), no HLC 0.360 651 8.475× 109

G4(MP2), HLC 0.370 597 8.475× 109

ccCA-PS3 0.373 560 1.473× 1011

HEAT-345(Q) 0.371 568 1.439× 1014

HEAT-345Q 0.371 528 1.441× 1014

HEAT-345QP 0.371 541 1.576× 1014

HEAT-456(Q) 0.371 427 2.330× 1014

HEAT-456Q 0.371 388 2.331× 1014

HEAT-456QP 0.371 400 2.467× 1014

W4.2 0.371 277 a 3.636× 1014

CCSD(T) extrap. (aug-cc-pCV8Z) 0.371 395 3.141× 1015

CCSDT extrap. (cc-pCV6Z) 0.371 192 2.011× 1014

Reference, derived from [BR06] 0.371 6 –
a At the W4-17 dataset geometry [KSM17; W4-17].

Table 4.2.: Atomisation energies (Eh) of H2O calculated according to a selection of composite
methods and extrapolative procedures, and their abstract costs of calculation. A
reference energy is provided for comparison.

abstract costs, equivalently to those in Table 4.1. As the monoatomic total energies
involved in each atomisation energy calculation do not depend on the structure of the
full system, they may be precalculated and reused repeatedly. For this reason, we do not
explicitly include the abstract costs of the monoatomic calculations when reckoning the
abstract cost of an atomisation energy calculation, either here or elsewhere.

In addition to the G4(MP2), ccCA-PS3, and HEAT-family results, Table 4.2 also
contains an atomisation energy calculated according to the W4.2 composite method.
This value is taken from the W4-17 dataset of Karton et al. [KSM17; W4-17]. We will
discuss this dataset in more detail in Section 4.5 below, but for now, we note that the
provided value was obtained using a complete W4.2 calculation, including a CCSD(T)/cc-
pV(Q+d)Z geometry optimisation as per [Kar+06; KSM17]. The geometry so obtained
is close but not identical to the reference geometry of H2O of [Hel+97]: the H-O bond
lengths and H-O-H bond angles of each are approximately 0.958Å and 104.120◦ (derived
from geometry of [KSM17; W4-17]) versus 0.957Å and 104.520◦ ([Hel+97]), placing the
hydrogen atoms in each geometry 1.511Å and 1.514Å apart respectively. The total and
atomisation energies of the two geometries may therefore be expected to be close to one
another, but we shall not attempt to quantify precisely how close. As such, any direct
comparison of the W4.2 value against the remaining values should be made with caution,
and the value is included only for the sake of interest and completeness.
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4.4. Case study: water (H2O)

Compared to the total energy calculations above, the accuracy of the G4(MP2) com-
posite method is now much more competitive. This is particularly so when the HLC
is included as intended; the resulting G4(MP2) atomisation energy agrees with the
chosen reference value to within approximately 0.6 kcalmol−1. Again, we stress that
this comparison is not a completely fair test of the G4(MP2) approach, as the values
here still disregard certain components of the experimental energies against which the
HLC was fitted; even so, this accuracy is better than the 1.2 kcalmol−1 provided by the
significantly more expensive ccCA-PS3 method. Note that the comments made in the
previous section regarding the applicability of the HLC to this particular geometry also
still hold.

The remaining, higher-quality composite methods all perform extremely well, delivering
results within 1 kJmol−1 of the reference. This is also true of the W4.2 value, even
considering the associated caveats regarding geometry. The composite-method result
with closest agreement to the reference value is provided by the relatively cheapest
HEAT-345(Q) method.6 It has been noted in the literature that the HEAT-345(Q)
method operates somehow “better than it ought to” [Har+08, p. 10], but also that
all of the HEAT-345 methods are prone to overestimating experimental atomisation
energies [Bom+06]. Both observations may be relevant here. However, the reference
result is probably insufficiently precise to support any deeper assessment of the relative
quality of the HEAT methods.

The extension of the GCM to the calculation of atomisation energies is straightforward.
For a fixed nuclear conformation, and a fixed set of monoatomic energies E(i), the
evaluation of the total atomisation energy can be written as a suitable linear functional,
itself defined in terms of that in (4.16), i.e.:

Latom[V ] =

(
M∑
i=1

E(i)

)
− L[V ]. (4.18)

In order to maximise any available cancellation of errors, however, the monoatomic
energies should be calculated at the same level of theory as that used to approximate
V BO. Achieving this requires only a slight tweak to the definition of (4.18).7

A plot of per-iteration results for All and Best adaptive refinements over both the
complete four-dimensional grid Π and the cc-pCVnZ restriction is given in Figure 4.3,
equivalently as for the total energy case above. The expected error-cancellation property
that leads to an improvement in absolute accuracies of atomisation energies in comparison
6We observe in passing that our HEAT-345(Q) value matches the equivalent value for the atomisation
energy of H2O given in [Tho+21, Tab. V], up to the precision of that source. This is interesting, since
our extrapolated values do not seem to agree to the same level of precision with the data in [Tho+21,
Tab. IV]; we suspect that this relates to the use of a slightly different geometry of H2O in [Tho+21].

7We could also construct a combination-sum approximation of each monoatomic energy according to the
same index set as that used to approximate the full-system energy, and then combine these in turn
according to (4.17).
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Figure 4.3.: Performance of the generalised composite method, in terms of absolute error relative
to the reference value of Eatom = 0.3716Eh for the atomisation energy of H2O, as a
function of abstract cost. Plot format is as for Figure 4.1.

to that of total energies is visible: now all four sets of results easily pass below chemical
accuracy. The greedy-style Best strategy again does not seem to produce an improvement
on the conventional All strategy; for the complete four-dimensional grid in particular,
although many of the Best results are highly accurate (at least up to the precision of
the reference value), they still oscillate around the All results and converge in the end
towards a similar value.

Using the All strategy, both the complete 4D grid and the reduced cc-pCVnZ grid
show similar behaviour relative to each other as previously seen for total energies. The
complete grid appears to produce higher accuracy at lower cost, with a faster rate of
increase in accuracy, but refined index sets over both grids also both plateau to a result
that is slightly more than 1 kJmol−1 away from the reference value. This plateau effect
is again most likely due to some combination of the limitations of the available basis sets,
and the inherently limited precision of the reference value.

As for the total energy case, the “full grid” sequence of solutions obtained by simul-
taneously increasing both the basis set quality and the treatment of electron correlation
perform on par with the GCM results for the first four iterations, before failing to produce
a significant error increase in the fifth iteration. This is consistent with both the total
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energy results and with expectations from applications of the standard combination
technique.

The All calculation over the complete grid shows a particularly accurate result at the
third iteration, with a cost slightly more than 1010, before returning in the fourth iteration
to a less accurate approximation. The changes in these points appears to correspond to
a sign flip in the true error, and we conclude that the high accuracy of the third iteration
result is likely just numerical accident.

Overall, and allowing for the fact that all points plotted with accuracy less than
approximately 1 kJmol−1 cannot reliably be distinguished as being truly more or less
accurate than each other, we conclude that again, the GCM produces systematically-
improvable series of results that broadly match the cost/accuracy trend of the various
standard composite methods.

4.5. Case study: ozone (O3) and β-lactim (C3H5NO), total
atomisation energies

Although the GCM appears to function reasonably well in the simple case of the water
monomer, it is prudent to also consider its performance when faced with less straightfor-
ward high-accuracy calculations. We conclude the chapter by investigating the application
of the GCM to two further molecular systems: the ozone monomer O3, and β-lactim
(C3H5NO).

Approximations of the atomisation energies of both ozone and β-lactim are included in
the W4-17 dataset of Karton et al. [KSM17; W4-17]. This dataset contains atomisation
energies for 200 small molecular systems, all of which have been calculated using variants
of the W4 family of composite methods. The calculations contained in the dataset are
explicitly intended to approximate physically-measurable atomisation energies, and so are
corrected for, e.g., relativistic effects and the Born-Oppenheimer approximation; however,
uncorrected values are also included in the dataset, matching our restricted problem
formation. The values in the W4-17 dataset are expected by the authors to be physically
accurate to within a full-dataset 3σ confidence interval of at least 1 kJmol−1, and are
intended as high-quality benchmark references; indeed, these values are used in [KSM17]
to assess the quality of some of the composite methods we consider here. It should be
noted that we understand the confidence interval stated in [KSM17] to apply to the
atomisation energies in the W4-17 dataset intended for experimental comparison, and
it is not clear to our reading whether the nonrelativistic clamped-nuclei values are as
reliable; nevertheless, we will operate here on the general assumption that this is so.

Visualisations of both ozone and β-lactim are shown in Figure 4.4, using the respective
geometries as obtained from [W4-17]. Although both molecules are still small by the
usual standards of quantum chemistry, each still presents a significantly more difficult
computational problem for high-accuracy calculation than does the water monomer.
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Figure 4.4.: Ball-and-stick visualisations of H2O (left), ozone monomer (O3, middle), and β-lactim
(C3H5NO, right). Geometries are drawn from [Hel+97] (H2O) and [KSM17; W4-17]
(ozone, β-lactim), as described in the main text.

The conformation of ozone is superficially similar to that of H2O. Ozone involves more
than twice as many electrons as does water — 10 for H2O, 24 for O3 — and, more
importantly, has also been called a “pathological system” [Fog+12, p. 2]. Ozone is a
multireference system [KSM17], in the sense that it can be problematic to treat via ab initio
calculations which involve only a single reference Slater determinant; see e.g. [HG11].8
Karton et al. [KSM17] expect that such systems may not be well approximated at the
CCSD(T) level of theory; here, they implicitly include also composite methods that
involve at most CCSD(T) calculations, such as G4(MP2) and ccCA-PS3.

By contrast, Karton et al. [KSM17] classify β-lactim as a non-multireference system,
suggesting that the incorporation of CCSDT calculations or higher is comparatively less
likely to be necessary to achieve chemical or calibration accuracy than would be so in
the case of ozone. Instead, it is simply the size of β-lactim that makes it here a difficult
problem. β-lactim is one of the larger molecules included in the W4-17 dataset, consisting
of 38 electrons orbiting ten nuclei. As a result, the W4-17 reference value is calculated
using only the W4Lite scheme, as described at the end of Section 4.2.3 above.

We performed equivalent sets of single-point and extrapolated total energy calculations
on both ozone and β-lactim as those described for water in the previous section, subject
again to the limits of practical computational feasibility. Only a very limited subset of
these calculations proved practically possible for β-lactim. For example, a CCSDT(Q)
calculation was only achievable using the cheapest basis set considered (cc-pVDZ), even
under the frozen-core approximation, and no all-electron correlation energy treatment of
any kind proved feasible under any 7Z or 8Z basis set.

A summary of the atomisation energies of both ozone and β-lactim as predicted by
various standard composite methods, and their attendant costs, is given in Table 4.3.

8Alternatives include, e.g., MCSCF methods [Jen17], which we do not consider here.
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Method Ozone (O3) β-lactim (C3H5NO)

Eatom (Eh) Abstract cost Eatom (Eh) Abstract cost

G4(MP2), no HLC 0.219 436 1.309× 1011 1.542 215 2.285× 1012

G4(MP2), HLC 0.233 548 1.309× 1011 1.582 537 2.285× 1012

ccCA-PS3 0.232 680 1.072× 1012 1.585 637 9.002× 1013

HEAT-345(Q) 0.234 654 7.500× 1015 – 3.700× 1018

HEAT-345Q 0.233 187 7.571× 1015 – 3.811× 1018

HEAT-345QP 0.233 852 2.687× 1016 – 1.218× 1020

HEAT-456(Q) 0.234 779 9.708× 1015 – 3.932× 1018

HEAT-456Q 0.233 312 9.779× 1015 – 4.043× 1018

HEAT-456QP 0.233 977 2.908× 1016 – 1.221× 1020

W4Lite – 4.318× 1014 1.583 825b 1.630× 1017

W4.2 0.234 945a 1.197× 1017 – 2.278× 1019

Best extrap. 0.230 327c 1.416× 1016 1.585 033d 5.843× 1017

a Reference for O3 [KSM17; W4-17].
b Reference for C3H5NO [KSM17; W4-17].
c Hartree-Fock extrap. to aug-cc-pCV8Z, CCSD(T) to aug-cc-pCV7Z.
d Hartree-Fock extrap. to cc-pCV8Z, CCSD(T) to cc-pCV6Z.

Table 4.3.: Atomisation energies (Eh) of ozone (O3) and β-lactim (C3H5NO), calculated according
to a selection of composite methods and extrapolative procedures, and their abstract
costs of calculation. Both reference values are drawn from [KSM17; W4-17], and are
here given converted into Eh. Missing values indicate unavailability, either in the
W4-17 dataset (for Wn methods), or due to practical computational infeasibility (for
HEAT methods for β-lactim).

A sample approximation assembled from CBS extrapolations of Hartree-Fock total
and CCSD(T) correlation energies is also given for each system; we could not obtain
CCSDT results at a sufficiently high basis set level that their extrapolations would merit
comparison. The values in the W4-17 dataset (as explicitly obtained from [W4-17]) are
provided to three decimal places and given in units of kcalmol−1, so we list the W4
reference values to an equivalent level of precision in Eh. It should still be kept in mind
that these values may not necessarily be reliable past the 1 kJmol−1 ≈ 0.0004Eh level, if
that.

For ozone, the G4(MP2) method provides an impressive level of accuracy considering
its low cost and the anticipated difficulty of the problem: the G4(MP2) atomisation
energy is within 1 kcalmol−1 of the reference solution. However, like water, O3 is also
a member of the G2 test set [Cur+97], and thus transitively of the G3/05 test set on
which the G4(MP2) HLC is trained [CRR05; CRR07b]. Therefore, this result may again
be unrepresentative of the quality of the G4(MP2) method when applied to arbitrary
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systems; cf. again [DCR21]. By contrast, the ccCA-PS3 prediction is not even close to
chemical accuracy with respect to the W4-17 reference.

The HEAT variant that provides an estimate closest to the reference atomisation en-
ergy of ozone is HEAT-456(Q), with an absolute error of approximately 0.1 kcalmol−1 ≈
0.4 kJmol−1. This is followed closely by HEAT-345(Q)’s error of approximately 0.8 kJmol−1.
The other HEAT variants are undercompetitive; those two using an iterative treatment of
quadruple excitations both fail to come even within 1 kcalmol−1 of the reference solution.
The energies produced by the two HEAT variants that involve both quadruple and
pentuple excitations are still no closer than approximately 0.6 kcalmol−1 to the W4.2
reference, despite having access to roughly the same quality of correlation information
as that built into the W4.2 method itself. (And, indeed, these methods are roughly an
order of magnitude more expensive than W4.2.)

The practical unaffordability of high-accuracy composite calculations over β-lactim is
clear: since we were unable to perform the CCSDT/cc-pVQZ calculation required for the
construction of ∆ECCSDT

∞ in (4.12), we can provide no HEAT-family atomisation energies
in this case.9 Again, the G4(MP2) HLC-inclusive atomisation energy for β-lactim is more
accurate than the ccCA-PS3 atomisation energy. As far as we aware, the definition of
the G4(MP2) HLC does not involve β-lactim, so this may be a better test of its quality
and transferability than either water or ozone.

Again following the same approach as in the previous sections, we also consider the
GCM applied to ozone over both the complete 4D Pople grid, as well as the restricted two
dimensional cc-pCVnZ hierarchy. As above, we consider adaptive calculations according
to both the All and Best strategies, iterated as far as possible given the available
calculation data. Per-iteration results are plotted in Figure 4.5, with an equivalent format
as used for the results for water given above. Here, however, we have not plotted a
sequence of “full grid” results, since one fewer result is available than in the previous case
of H2O and the resulting data are inconclusive.

The eye is drawn first to the second-iteration results of both All- and Best-obtained
index sets using the restricted cc-pCVnZ grid, which are roughly as accurate at the
G4(MP2) result, but even cheaper. Again, we see no reason to believe that this indicates
anything more than numerical accident.

The index sets refined used the All strategy again seem to increase in accuracy more
smoothly and also slightly more cheaply than do those according to the Best strategy.
The complete four-dimensional grid outperforms the cc-pCVnZ grid, but up to the last
possible iteration of each, only in terms of a cost benefit of at most an order of magnitude.
At this last iteration, the four-dimensional All index set produces a result that is within
calibration accuracy of the W4.2 reference. The final possible cc-pCVnZ All-derived
index set is not quite good to chemical accuracy, and is indeed less accurate than the

9Given the very high number of involved triple excitations, we consider it unlikely that this calculation
would be feasible on any currently-available hardware.
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Figure 4.5.: Performance of the generalised composite method, in terms of absolute error relative
to the reference value of Eatom = 0.234 945Eh for the atomisation energy of O3, as a
function of abstract cost. Plot format is as for Figure 4.1.

penultimate such result. Once more, although the low precision of the reference data
hampers the drawing of strong conclusions, it seems reasonable to say that the GCM
functions here again as a systematically refinable method to approach the true atomisation
energy of ozone, although not as efficiently as the tuned and extrapolation-based standard
composite methods.

The unaffordability of high-quality β-lactim calculations proved limiting for a similar
investigation of the GCM in the case of that molecule. In particular, we were unable to
perform frozen-core CCSDT(Q) or higher calculations with any basis set of more than
double-zeta quality, frozen-core CCSDT calculations with better than triple-zeta quality,
or any all-electron CCSDT or greater calculation at more than double-zeta quality. As
a result, GCM All-strategy results were only possible up to the sixth iteration for the
complete four-dimensional poset grid, and the fifth iteration for the cc-pCVnZ-only
subgrid. Best-strategy results were similarly limited.

The major difficulty in the preparation of results stems from the prohibitive jump in
cost from CCSD(T) calculations to CCSDT calculations. We were still able to perform
CCSD(T) calculations for β-lactim up to reasonably high-quality basis sets (6Z, 7Z, or
for frozen-core, cc-pV8Z). As discussed above, we might expect a CCSD(T) treatment of
correlation to be sufficient to provide at least chemical accuracy for a non-multireference
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Figure 4.6.: Performance of the generalised composite method, in terms of absolute error relative
to the reference value of Eatom = 1.583 825Eh for the atomisation energy of C3H5NO,
as a function of abstract cost.

system such as β-lactim.
Based on this idea, we also investigated a further restriction of the GCM poset

grid. Here, the treatment of correlation was restricted to go no higher than CCSD(T),
corresponding to m-index values only in the range 0 ≤ m ≤ 3. The restricted poset grid
is technically unbounded in only one of its four axes, that corresponding to basis set size.
It follows that an index set and corresponding combination sum over this grid is better
viewed as producing an approximation, not of the full FCI/CBS atomisation energy, but
instead only of the CCSD(T)/CBS atomisation energy; cf., e.g., Karton’s classification
of ccCA-PS3 and G4(MP2) as CCSD(T)/CBS approximations in [Kar16], and again
comments in [Zas+18].

Per-iteration results for both the standard 4D and cc-pVnZ only poset grids are plotted
in Figure 4.6, along with results for the CCSD(T)-limited 4D and cc-pCVnZ only grids.
Here, we show only results obtained using the All strategy, but have also plotted the
per-iteration error indicators for each of the four sets of results. When interpreting
this plot, it is helpful to realise that results for the 4D grid both with and without the
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restriction on the index m are necessarily identical for the first four iterations, as are the
results for the cc-pCVnZ grid both with and without the restriction on m.

The per-iteration error indicators, which are plotted using dashed lines in Figure 4.6,
are generally quite close in magnitude to the true absolute errors to which they correspond.
The greatest difference between a true error and an error indicator is seen in the results
at the third iteration of the cc-pCVnZ-only index sets, where the difference is still less
than an order of magnitude.

All sets of per-iteration results show the same roughly-algebraic trend in increasing
(true) accuracy and cost as has been consistently observed for the cases previously studied
in this chapter, at least as far as we can judge given the limited availability of single-point
total energies. This is also true for the results which use no higher than a CCSD(T)
treatment of correlation; these two sets of results both obtain chemical accuracy in their
final iterations.

Overall, we see once again that the GCM results display the expected and desired
patterns of systematic improvement. Although a restriction of the correlation treatment
to CCSD(T) technically removes the ability of the GCM to approximate true solutions
to the Schrödinger equation, the best-quality resulting approximations are still slightly
cheaper than the best-available standard CBS extrapolation at the CCSD(T) level of
theory. However, the G4(MP2) and ccCA-PS3 composite methods provide atomisation
energies at or close to chemical accuracy, at orders of magnitude less cost.

In summary, the generalised composite method which we have discussed in this chapter
appears to offer a well-founded mechanism for the relatively efficient approximation of
solutions to the Schrödinger equation, as well as for derived energetic quantities such
as atomisation energies. It seems reasonable to think that the understanding of the
additivity of error relied on both implicitly and explicitly by the composite methods we
have considered here may benefit from deeper analysis from the established viewpoint of
the combination technique.

In practice, the accuracy offered by the GCM at a given cost seems at best equivalent
to and generally somewhat worse than that offered by the standard composite methods
by which it is inspired. This is unsurprising: as should be clear from the above, those
methods are mature and well-developed, and benefit in particular from the use of CBS
extrapolation. The GCM, however, remains flexible, and the rather rudimentary poset
grid on which it is based can be itself further extended. Such an extension will be the
work of the remainder of this thesis.
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Although the composite methods discussed in the previous chapter may well offer the
reasonable possibility of a chemically-accurate approximation to the true FCI/CBS total
energy of a small molecular system, they all require post-HF estimations of the correlation
energy. Therefore, the fact that even Hartree-Fock calculations scale at best cubically in
the number of basis functions — and so, in the number of atoms — places larger systems
well beyond their practical reach [RS15].

As mentioned in Section 2.4.3 above, the complexity reduction for Hartree-Fock calcu-
lations over sufficiently large molecular systems from formally quartic down to practically
cubic occurs because the H1(R3)-discretising basis functions are spatially localised around
the nuclear centres on which they are placed [Hea96; EA07]. Similar and related manifest-
ations of locality form the basis of a number of efforts to construct approximate solution
techniques for the electronic problem that scale more sympathetically, and in the best
case linearly, in the number of atoms in a molecular system; see, e.g., [Mas+98; Goe99;
Gor+11; BM12; BBR13; BCK16].

It was in the context of such reduced-scaling methods that Kohn first introduced his
well-known principle of the nearsightedness of electronic matter [Koh96; PK05], which
limits the response of local electronic properties to remote changes in an external potential.
Kohn was careful to highlight that his principle is not always applicable, and in particular
can only be expected to hold for many-particle systems [Koh96].

For the remainder of this thesis, we consider a class of possibly [Her19] reduced-
scaling protocols that rely fundamentally, although often rather fuzzily, on Kohn’s
principle [MR11; RH13; CGH18]. These approaches build, augment, or approximate
full-system electronic properties via one or more calculations which are performed with
particular reference to smaller regions of the complete system. Thus, we will refer
collectively to these methods as subsystem techniques; see similar language used in
e.g. [MR11; Her19].

We will be particularly interested in those subsystem techniques which formally de-
compose the complete set [M ] of nuclear indices of a molecular system into a family
of fragment subsets Fi ⊆ [M ], and through that decomposition also the total energy
of the system [Gor+11; CB15; RS15; Her19]. Most such energy-based fragmentation
methods either explicitly are or at some conceptual level can be linked to the well-known
many-body expansion (MBE); see, e.g., [Fis64; HMS70; MR12; RH12; GHH14; CGH18;
LH19]. Although they could be considered fragmentation methods in the above sense, we
keep our scope manageable and explicitly exclude from this category those approximation
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techniques that apply the related and also nearsighted atomic decomposition ansatz,
e.g., [Bar+10; Bar+17; Fis18].

Our central contention, here and in the following chapters, is that the energy expressions
produced by fragmentation methods based on or related to the MBE can be usefully
viewed as truncations of particular combination sums in the sense of the order-theoretic
combination technique presented in Chapter 3. We are particularly interested in obtaining
a new perspective on the BOSSANOVA [Heb14; GHH14] and ML-BOSSANOVA [CGH18]
techniques; although we mention these only obliquely in this chapter, we still draw
significant general influence here from [GHH14; CGH18] in particular. For now, we will
lay the necessary groundwork for this new viewpoint. We collect and relate a number
of basic ideas and existing definitions and observations from the copious literature on
subsystem techniques and fragmentation methods. We will consider the construction
of the MBE at length, and contrast an order-theoretic perspective on the MBE with
two other perspectives more commonly seen in the literature. Although historically
well-known [Kle86; DFS04], this viewpoint seems to have been mostly forgotten in
contemporary discussions of fragmentation techniques, and its reapplication provides
a formal connection between several modern constructions and ideas. After briefly
summarising some known issues related to the cost and numerical stability of MBE
truncations, we then apply the adaptive algorithm from Chapter 3 to the problem of
calculating quasi-optimal MBE truncations, leading to an adaptive many-body expansion.

5.1. Subsystem techniques

We will consider subsystem techniques of two loosely-divided types. As mentioned above,
fragmentation methods somehow disintegrate the complete system under study into plural
fragment subsystems; see, e.g., [Fis64; HMS70; Gor+11; RH12; Her19]. Full-system
electronic properties are then obtained by some recombination of those properties as
calculated for the individual fragments. By contrast, embedding techniques single out
one or more subsystems as being more deserving of careful treatment [WL76; Chu+15].
Calculations over these embedding regions are performed using a high-quality and therefore
expensive level of theory, and somehow coupled to or merged with a lower-quality but
more affordable full-system calculation. The two types are not disjoint, conceptually
or in practice. Many modern fragmentation methods embed their fragments in some
coarse model of the complete system; see, e.g., [DT06; IWT13; LH16; Jon+20]. Similarly,
embedding techniques can be viewed as separating the system into at least two fragments,
namely the embedding region (or regions) and the embracing environment region; see,
e.g., [BT96; Bat+11; Chu+15; SC16; Jon+20].

However they are categorised, subsystem techniques are a major subfield of modern
computational chemistry, supported by a considerable body of literature. We will
provide here only sufficient background to contextualise our investigation of additive
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decompositions related to the MBE. For classical embedding techniques and QM/MM
methods, we refer to the reviews of Lin and Truhlar [LT06], Senn and Theil [ST09], and
Chung et al. [Chu+15], also [Jen17, Sec. 2.12]. For quantum embedding theories, we refer
to the reviews of Sun and Chan [SC16] and Jones et al. [Jon+20]. For fragmentation
methods, we refer to the reviews of Gordon et al. [Gor+11], Collins and Bettens [CB15],
Raghavachari and Saha [RS15], and Herbert [Her19].

5.1.1. Embedding schemes
The development of modern embedding techniques is entwined with the field of quantum
mechanics/molecular mechanics (QM/MM) [WL76; FBK90; BT96; LT06; ST09; Chu+15].
Here, a molecular system is split into an environment region, called in context the MM
region, and an embedding, QM region. A full-system effective Hamiltonian is written
as [FBK90; WCC08; Jen17; Kir+21]

Heff = HQM +HQM/MM +HMM. (5.1)

The first term, HQM, is the electronic Hamiltonian (2.3), defined in restricted terms of
the nuclei and electrons in the QM region. The final term, HMM, describes the energy of
the MM region as per a classical molecular mechanics model, and is effectively a scalar
constant, like the nuclear repulsion term in (2.6). The middle term, HQM/MM, is a coupling
Hamiltonian which represents cross-region interactions. The total electronic energy of
the system decomposes additively according to the terms of the effective Hamiltonian, as
E = 〈Ψ,HeffΨ〉 = EQM + EQM/MM + EMM; in addition to the above citations, see and
cf., e.g., [BT96; ST09; Chu+15].

For details on different forms of the coupling Hamiltonian, see, e.g., [BT96; LT06;
ST09; Kir+21]. In the particular case of an electrostatic embedding scheme, however,
HQM/MM is basically constructed like HMM, but includes a term explicitly imposing the
electrostatic configuration of the MM region on the QM-region wavefunction. That is, as
in, e.g., [FBK90; BT96; WCC08],

HQM/MM =

MQM∑
A=1

MMM∑
B=1

ZAqB
‖RA −RB‖

−
NQM∑
i=1

MMM∑
B=1

qB
‖ri −RB‖

+ · · · (5.2)

Here, MMM counts the atoms in the MM region, and MQM and NQM the QM region
nuclei and electrons respectively. Each qB is a point charge associated with the atom
indexed by B, usually a partial charge chosen with reference to the molecular mechanics
model; see, e.g., [WCC08] and discussion in [LT06]. The first summation tallies pairwise
Coulomb interactions between MM atoms and QM nuclei, and the second sets an external
potential on the electrons in the QM region [BT96; Kir+21]. The trailing ellipsis in (5.2)
includes any remaining non-electrostatic cross-region interactions that may be specified
by the molecular mechanics model; see, e.g., the van der Waals terms in [FBK90, (9);
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WCC08, (4)]. The external potential term in (5.2) can be subsumed into the QM-region
Hamiltonian HQM [FBK90; BT96; Vre+06]. Obtaining an approximate solution to the
electronic problem posed in terms of the so-augmented HQM requires minor modifications
to the solver; this is supported in particular by the PySCF package [Sun15; Sun+17;
Sun+20], which we use in this chapter.

There is another class of alternatively-formulated embedding techniques which also
seek to emphasise the theoretical treatment of a particular region, or regions, of a full
system. These are commonly referred to as subtractive [Chu+15], to distinguish them
from the additive-style QM/MM approach outlined above. The canonical subtractive
embedding formulation is the ONIOM (Our own N -layered Integrated molecular Orbital
and molecular Mechanics) [Sve+96] method, which is constructed in terms of a nested
hierarchy of N subsystems of the full system. The outermost, lowest-level region is just
the full system itself, referred to in context as the real system. Each interior higher-level
region is referred to as a model system, and receives a notionally higher level of theoretical
treatment than those below it. The full ONIOM energy equation for a nested hierarchy
of N systems approximated with N matching levels of theory is given by [Sve+96, (4)]

EONIOM(N) :=

N∑
i=1

E
level(i)
model(n+ 1− i) −

N∑
i=2

E
level(i)
model(n+ 2− i), (5.3)

where we slightly adjust the notation of the source and write Elevel(i)
model(j) to indicate the

total energy of the jth-nested model region calculated using the ith-ranked level of theory.
It is interesting to observe that this is, up to notation, exactly the expression (3.6) for
the two-dimensional standard combination technique sum SIL of level L, and ONIOM
is directly presented in [Sve+96] as an extrapolation of a set of cheaper values towards
E

level(N)
model(N); cf. [Sve+96, Fig. 1], and see also comments in [CGH18]. Explicit connections

have also been made between the ONIOM formulation and composite methods [Chu+15]
such as those which we contrasted with the standard combination technique in the
previous chapter.

In the implementation, the additive and subtractive embedding formulations outlined
above reduce to performing a postereori arithmetic on sets of energies — or, although not
discussed here explicitly, nuclear gradients; see, e.g., [MM95; WCC08] — that are provided
by distinct calculations. We mention briefly the existence also of quantum embedding
theories, which can be viewed as somehow partitioning either the full-system wavefunction
or an equivalent property such as the electron density and then performing basically one
single calculation [SC16; Jon+20]. We refer to those reviews for more information, but
it will be slightly relevant below that these include DFT-in-DFT approaches, like the
frozen density embedding (FDE) method of Wesolowski and Warshel [WW93]; also WFT-
in-DFT techniques, where “WFT” stands for “wavefunction theory”, like the embedded
correlated wavefunction (ECW) approach of Carter and co-workers, see, e.g., [GWC99;
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Yu+17]; finally, full WFT-in-WFT embedding approaches, see, e.g., work by Hégely et
al. [Hég+16].

In the classical additive and subtractive approaches, particular difficulties are en-
countered when a covalent bond exists between two atoms, one inside and one outside an
embedding region. The absence of one half of a bonded pair from a subsystem considered
in isolation is said to leave behind a dangling bond [AR96; VM03; ST09]. Such a sub-
system will be “chemically unrealistic” [Dap+99, p. 2], and, left untreated, the electron
density near the dangling bond will not resemble that in the complete system [FBK90].
Although more complicated and intrusive methods exist [AR96; Gao+98], a simple and
widely-applied fix is to adjoin a link atom to terminate any dangling bond [FBK90]. It is
generally anticipated, either implicitly or explicitly, that the embedding structure is chosen
such that only single bonds will be cut, and so a link atom must be monovalent [AR96];
hydrogen atoms are the most common choice [LT06; ST09; Chu+15; RS15], and their
precise placement is an implementation detail. Although it is technically possible to use
divalent link atoms to cap dangling double bonds [Dap+99], we are aware of only one
study in which this is actually performed [MMM16]. Certain additional subtleties must
be considered when introducing link atoms in an electrostatic embedding context [LT06];
see, e.g., the discussion of charge balancing and redistribution in [WT10].

The handling of embedding/environment interfaces in quantum embedding theories
is not important for our purposes. We mention, however, the DFT-in-DFT embedded
mean-field theory (EMFT) of Fornace et al. [For+15], which uses the association of the
underlying LCAO basis functions with their nuclear centres to decompose the DFT
density matrix. Here, although the concept of a dangling bond is not meaningful in
the sense above, certain irregularities can still occur in the electron density local to the
boundary between the embedding and environment regions [MMM16; Lee+17; HNK18].

5.1.2. Fragmentation methods and the many-body expansion

There exist a number of fragmentation-style methods phrased explicitly in terms of
densities and density matrices [Gor+11; CB15]; see, e.g., [Yan91; YL95; LYY96]. However,
we will focus in this section, and in this thesis more generally, only on energy-based
fragmentation methods, hereafter just “fragmentation methods” where there is no chance of
confusion. We make in this section general reference to reviews in [SDS09; Gor+11; RH12;
RLH14; CB15; RS15; Her19]. Let us recommend here also a body of important work by
Herbert and co-workers which we found influential and interesting; see generally [RH12;
Jac+13; RLH13; RH13; RLH14; Lao+16; LH16; LH17; LH19].

We follow the taxonomies in, e.g., [SDS09; RH12; RS15] and consider two ways of
deconstructing the complete molecular system under study: into sets of fragments that
are either disjoint or overlapping. Mathematically, the former is equivalent to a partition,
in the strict sense, of the set of nuclear indices [M ]; that is, a family of K non-empty
sets {Fi}Ki=1 which are pairwise disjoint, i.e., Fi ∩ Fj = ∅ for i 6= j, and such that
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⋃K
i=1 Fi = [M ]. The latter corresponds to a family of non-empty sets {F ′

i}Ki=1 that still
recover [M ] in their union, but which are not necessarily pairwise disjoint. Since we are
mostly interested in the forms of the final energy equations of fragmentation methods, we
will not linger here on the technical details of how these families are actually decided. We
will often conflate as fragments both sets of indices Fi ⊆ [M ] and the notional molecular
subsystems of physical atoms to which those indices correspond.

We summarise for the moment only a small selection of methods that begin with disjoint
fragments. We will come to some methods that start with sets of potentially-overlapping
fragments in the following section, and we defer a discussion of multilevel fragmentation
methods until Chapter 7. In general, we mostly try to follow the overall notational
style of the sources, although we make modifications for clarity and consistency, usually
without explicit comment.

We start with and will focus most closely on the well-known concept of the many-body
expansion (MBE), which permeates the literature [SDS09; Gor+11; Fed+14; CB15;
Her19]. Following, e.g., [CGH18], we will consider the MBE as an additive decomposition
of the Born-Oppenheimer potential,

V BO(X1, . . . , XM ) =

M∑
A=1

Ṽ (1)(XA)+

M∑
A<B

Ṽ (2)(XA, XB)+· · ·+Ṽ (M)(X1, . . . , XM ). (5.4)

Here, each XA = (RA, ZA) is a nuclear variable as usual. Each Ṽ (k) is a k-body potential
energy function, to be defined shortly.

The notation used to express the MBE in the literature varies considerably from work to
work; ours is inspired primarily by that in [CGH18], also [HMS70; Heb14], but is modified
for consistency with the remainder of this thesis. In practice, such an explicitly nuclear
form of the MBE as (5.4) is not common, and eachXA is more usually a composite variable
collecting the nuclei/atoms in a fragment Fi; see, e.g., [HMS70] for an early example. We
will formalise this more precisely below. It is, however, common, particularly in the more
modern literature, to treat the MBE instead as a decomposition of a scalar energy value for
a fixed nuclear conformation; see, e.g., [MR12; RH12; Her19]. But up to these and other
small details, the k-body potentials are usually constructed recursively [Fis64; HMS70;
CGH18; Her19]. To make this even slightly rigorous, we require an extended family of
Born-Oppenheimer potential functions {V BO,k : (R3 × N)k → R}Mk=1; the definitions are
equivalent to that of the “full” V BO = V BO,M but for molecular systems containing fewer
nuclei, and the superscripts k will usually be clear from context and so omitted. We
ignore and will continue to ignore the technical question of the well-definition of each
V BO,k on (R3 × N)k; see, however, related discussion in [CGH18].

Noting that V BO is symmetric in its variables {XA}MA=1, we consider sets u ⊆ [M ] and
write

Ṽu :=: Ṽu(. . . , XA∈u, . . .) := Ṽ (|u|)(. . . , XA∈u, . . .), (5.5)
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and similarly for V BO
u , etc. Then the usual recursive definition of the k-body potentials is

Ṽ (k)(X1, . . . , Xk) := V BO −
∑
u⊂[k]
u6=∅

Ṽu. (5.6)

The MBE given by
V BO(X1, . . . , XM ) =

∑
∅⊂u⊆[M ]

Ṽu (5.7)

is thus formally exact by construction. Again following [CGH18], we will refer to each Ṽu
as the contribution of u ⊆ [M ], and, indirectly, of the molecular subsystem so indexed.

As is well noted in the literature, see, e.g., [GHH14; CGH18; Her19], the MBE makes
practical sense only after the elision of certain terms in (5.4). The simplest standard
approach is to make a truncation of (5.4) after all terms Ṽ (k) for k ≤ n for some particular
1 ≤ n ≤ M ; the resulting expression is referred to as an n-body expansion. Critical
here is the anticipation of a swift pointwise decay in |Ṽ (k)| for higher k, and thus an
acceptably small divergence from V BO in truncation even for very low values of n [CGH18].
Since those terms which are left remaining are expected to be individually cheap to
evaluate, their calculation and summation may, under some conditions, be markedly
more affordable than a complete full-system evaluation of V BO. It has also been very
thoroughly noted that these calculations can be performed completely in parallel; see,
e.g., [CB15; CGH18], but cf. cautionary comments in [Her19].

Although it seems a priori obvious that the error intrinsic to an evaluated n-body
truncation should shrink with increasing n, certain practical aspects mean that this may
not necessarily be so, and particularly not for larger systems [RLH14; Lao+16; LH17].
We shall return to this topic briefly in Section 5.3 below. But it is especially problematic
given that the “convergence” of n-body truncations of the MBE, insofar as that term
makes sense in the context of a finite expansion, may also not be as quick or as smooth
as historically believed [OCB14].

For a full discussion on the cost of fragmentation methods and particularly the MBE,
we refer to [Her19], also, e.g., [Lao+16; LH17; LH19]. It suffices to say that, since the
number of k-body terms in (5.4) is

(
M
k

)
, the total number of the same involved in an

n-body expansion scales roughly as O(Mn) in M [LH19]. If the evaluation cost of any
k-body potential is bounded above by a constant (see, e.g., [LH19] and cf. [Her19, (1)]),
this implies an equivalent overall cost scaling in M . Note here that k-body terms of order
k = 5 or possibly even higher may be required in order to obtain an accurate result in
some cases [OCB14].

Such unfavourable scaling can be mitigated to some extent when a second kind of
decay in the magnitudes |Ṽ (k)| is exploited, namely one in the distance(s) between the
nuclear spatial variables [OB16; LH17; LH19]. This decay, which can be viewed as a
manifestation of Kohn’s nearsightedness principle [OB16; CGH18], is relied on either
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implicitly or explicitly by many fragmentation methods which build their sets of fragments
using distance- or connectivity-based arguments, e.g. [DC05; Gan+06; LLJ07; WHM10;
MR12; RH12; KC16; CGH18]. We shall have more to say on this later in this chapter,
and particularly in the next. For now, we leave the idea with the reader and move on to
quickly reviewing some other fragmentation methods.

As the name suggests, the electrostatically-embedded many-body expansion (EE-MB) of
Dahlke and Truhlar [DT06; DT07b] is based upon a fragment-based formulation of the
MBE, given in terms of scalar energy values. Here, each k-body energy calculation is
performed using an augmented Hamiltonian as for an electrostatically-embedded QM/MM
calculation, with one point charge term in that Hamiltonian for each atom outside the
k-body subsystem. Dahlke and Truhlar are not prescriptive as to the source of the point
charges; indeed, one interesting extension to the EE-MB suggests computing the point
charges themselves as standard partial charges using a three-body expansion [Lev+12].

In the simplest version of the kernel energy method (KEM) of Huang et al. [HMK05],
a chain-like molecule is split into K fragments, which are non-overlapping and indexed
such that fragments i and i+ 1 are directly adjacent in the chain. These fragments are
called in context kernels. Any pair of adjoining fragments form together a double kernel,
with energy Ei,i+1. The total KEM energy of such a molecule is then [HMK05, (1)]

EKEM :=
K−1∑
i=1

Ei,i+1 −
K−2∑
i=2

Ei. (5.8)

It has been noted that when the adjacency requirement on a double kernel is dropped,
as also done in [HMK05], the resulting energy expression is just a standard two-body
expansion [SDS09]; cf, e.g., [Gor+11, (52)]. More interesting, and less standard, is a
generalised variant of the KEM (GKEM) due to Weiss et al. [WHM10]. The GKEM
considers the kernels as vertices of an undirected graph, and produces a sum of terms,
one for each of the connected induced subgraphs of that graph with size up to some fixed
n. This sum is itself converted into a weighted sum of energy values for systems formed
as combinations of up to n kernels. In [WHM10], n ≤ 4, and a generalisation of the
GKEM energy equations to higher values of n seems non-trivial.

The systematic fragmentation method (SFM) of Deev and Collins [DC05; CD06]
partitions a molecule or nonconducting crystal [NC07] into disjoint fragments referred
to as functional groups. These are “defined in the usual way” [NC07, p. 2], but can in
principle also be chosen more flexibly [CD06]. The complete system is then split into K
potentially-overlapping subsystems basically by dissolving pairs of bonds separated by
some particular number of functional groups, which determines the level of the resulting
fragmentation; see the appendices of [CD06] for details. The total SFM energy is [CD06,
(A7)]

ESFM =

K∑
k=1

sign(k)Ek; (5.9)
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where Ek is the energy of the kth subsystem and sign(k) is a weight assigned during the
splitting process. We foreshadow the next section by mentioning that the precise values
of sign(k) can be understood as correcting for somehow overcounted interactions caused
by functional groups that appear in multiple subsystems [RH12; RS15].

The DCMB scheme of Wu and Xu [WX12] is a slightly unusual approach that also
bases upon a disjoint partition of the complete set of nuclear indices. Here, a complete
full-system mixed basis DFT calculation specialises each fragment; in each, the nuclei
indexed by the fragment, as well as those in a narrow surrounding buffer region, are
equipped with a large basis set, such as 6-31G* [DHP71; HDP72; HP73], while the
remaining nuclei are equipped with a small basis set, such as STO-3G [HSP69] or 3-
21G [BPH80]. The DCMB scheme focuses on the calculation of nuclear gradients, rather
than energies; the former for the complete system are not summed, but are instead simply
collated componentwise. Obtaining the latter requires extra effort.

The fragment combination range (FCR) approach of König and Christiansen [KC16]
was introduced in the context of a double-incremental expansion of V BO.1 They start
from a standard MBE, which is formulated with reference to a set of N disjoint fragments,
each represented by a composite variable zi. This MBE is truncated to include only
terms corresponding to certain subsets fl ⊆ [N ]. The FCR provides particularly for a
non-recursive expression, which we present based on both [KC16] and also [HK21, (9),
(10), (11)]:

E(z1, z2, . . . , zN ) ≈
∑

fl∈{FCR}

pFCR
fl Efl({z}fl), (5.10)

where {FCR} is the set of all subsets considered in the truncation; this set must be
downwards-closed. Each such subset has an associated coefficient

pFCR
fl =

∑
fl′⊇fl

fl′∈{FCR}

(−1)l′−l. (5.11)

This expression is not given explicitly for the FCR in the original [KC16], but rather for
the more general VCR (variable combination range) upon which the FCR is based. The
authors of [KC16] are, however, very clearly aware of the equivalence.

Finally, we mention the Bond-Order diSSection ANOVA (BOSSANOVA) approach,
due to Heber [Heb14] and co-workers [GHH14]. The precise formal presentation of
BOSSANOVA differs between the two sources just given, and a third version again can
be found in the later [CGH18], but all three presentations involve exact decompositions
of the full-system Born-Oppenheimer potential which are formally equivalent and based
on the theory of approximation of high-dimensional functions. From one perspective,
1Getting somewhat ahead of ourselves, we remark in passing that the double-incremental expansion can
also be formalised as a particular application of the order-theoretic combination technique. The specific
poset grid under consideration is Π = BM ×BM . We leave an investigation of this setup for future work.
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BOSSANOVA truncates a standard MBE, but one constructed in terms of modified
potentials V (k) which are defined in such a way that many of the resulting k-body
potentials Ṽ (k) vanish. From another perspective, the covalent bond graph of the target
molecule is pulled apart into generally non-disjoint connected induced subgraphs, and
per-fragment potentials are calculated and recombined according to those subgraphs and
their own subgraph structures. We shall discuss BOSSANOVA in detail in Chapter 6.

5.2. Mathematical viewpoints on the many-body expansion
We discuss now three mathematical viewpoints on the many-body expansion. Specifically,
we shall first review the use of counting arguments in explications of the energy expressions
of certain fragmentation methods related to the MBE, and then consider the MBE as
an example of a particular kind of general decomposition of high-dimensional functions.
Finally, we will discuss the MBE from a combinatorial and order-theoretic perspective.

5.2.1. Counting arguments
The literature describing and contrasting fragmentation methods and the MBE contains a
number of counting-style arguments, carried out to varying levels of rigour. Many of these
rely on or reduce to an application of the principle of inclusion/exclusion (PIE) [MR11;
MR12; RH12; RH13; RS15]. Stanley gives a very general expression of the PIE as [Sta12,
Thm. 2.1.1]; this is directly recoverable as a special case of Möbius inversion, applied to a
boolean algebra Bn. We are aware of only one place in the fragmentation method-related
literature (specifically [WHM10, Supp. info]) where such a general form of the PIE is
mentioned explicitly. There, it is used to derive expressions for k-body terms in a certain
generalisation of the MBE. We will come back to Möbius inversion in Section 5.2.3 below.

A less general but much more widely-known variant of the PIE has been used both
to motivate and compare a number of fragmentation methods that are defined in terms
of families of potentially-overlapping fragments {Fi}Ki=1 [Gan+06; MR11; MR12; RH12;
CB15; RS15; Her19]. As well as our general references for fragmentation methods, the
following summary is particularly informed by the comparison of the MOBE and the
GMBE in [RH13].

For the convenience of the reader, we begin with an explicit statement of this set-
cardinality version of the PIE, given without proof. We refer generally here to [Sta12]
for detailed background, but this is of course a standard result; the precise form we give
here is actually closer to that given in, e.g., [RH12].
Theorem 5.2.1 (Principle of inclusion/exclusion [Sta12]). Let X be a finite set, and
{Xi ⊆ X}ni=1 a family of subsets of X. Then

|X1 ∪ · · · ∪Xn| =
n∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

|Xi1 ∩ · · · ∩Xik |. (5.12)
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We now recite the energy equation of the cardinality-guided molecular tailoring approach
(CG-MTA) [Gan+06], which “preserves the count of atoms and bonds in the parent
system” [Gan+06, p. 3]. This equation, which is explicitly and directly related to (5.12),
is given as [Gan+06, (4)]

ECG-MTA =

K∑
i=1

EFi −
∑
i<j

EFi∩Fj + · · ·+ (−1)K+1
∑

i<j<···<k

EFi∩Fj∩···∩Fk
, (5.13)

where we slightly adjust and clarify the notational style of the source. Here, for example,
we write EFi∩Fj for the notional total energy of the subsystem Fi ∩ Fj .

Mayhall and Raghavachari [MR12] carried the same argument further in the derivation
of their many-overlapping-body expansion (MOBE). Here, an extended set {F ′

i}K
′

i=1 of
K ′ ≤ 2K − 1 of derivative subsystems or just monomers is constructed as the original
set of fragments {Fi}Ki=1, along with all of the k-fold intersections of those sets for every
1 ≤ k ≤ K [RH13]. The inequality for K ′ holds because the intersections are not
guaranteed to be elementwise distinct. The MOBE is then [MR12, (5)]

EMOBE :=

K′∑
i=1

ciEF ′
i
+

K′∑
i<j

cicj∆EF ′
i∪F ′

j
+

K′∑
i<j<k

cicjck∆EF ′
i∪F ′

j∪F ′
k
+ · · · , (5.14)

by extension of (5.4). Each coefficient ci is the sum of the ±1 terms which would
be attached in a calculation of |F1 ∪ · · · ∪ FK | using (5.12) to the cardinalities of the
intersections of original sets Fj ∩ · · · ∩ Fk = F ′

i that lead to the monomer F ′
i ; as well as

the original [MR12], cf. on this point also [RH13; CB15]. The scaled terms ∆EF ′
i∪F ′

j

and ∆EF ′
i∪F ′

j∪F ′
k
substitute for the normal recursive two- and three-body MBE terms;

see [MR12, (6) and (7)] for their full definitions, which also involve a counting argument.
Note that, in particular and very deliberately, the first sum in (5.14) is just the RHS
of (5.13).

Richard and Herbert [RH12] have also suggested a competing many-body generalisation
of sums such as (5.13). Their generalized many-body expansion (GMBE) is phrased in
terms of unions of elements of the original set of potentially-overlapping fragments
{Fi}Ki=1, rather than intersections as in the case of the MOBE [RH13]. As per the
equivalent protocols given in [RH12; RH13] and with slight reference to [CB15], to obtain
a truncation of the GMBE after order 1 ≤ n ≤ K, a family of n-mers is first built to be
the K ′ =

(
K
n

)
precisely n-fold unions of distinct fragments, {F ′

i}K
′

i=1. The order-n energy
is then written, as per [RH13, (1.9), (2.4), (2.5)] up to notation,

EGMBE
(n) =

K′∑
i=1

EF ′
i
−

K′∑
i<j

EF ′
i∩F ′

j
+

K′∑
i<j<k

EF ′
i∩F ′

j∩F ′
k
+ · · ·+ (−1)K′+1EF ′

1∩···∩F ′
K′
, (5.15)

again directly constructed by reference to the cardinality PIE.
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Wondering about the legitimacy of the counting arguments involved in the derivations
of the above expressions, Richard and Herbert suggested that the cardinality PIE can be
better understood in context as a tool “to keep track of” [RH12, p. 5] the two-particle
interactions embodied in the full-system electronic Hamiltonian (2.3) [RH12]. This
viewpoint is formalised in [RH13], with reference to a family of Hamiltonians {Ĥ[S]}S⊆[M ].
The terms of each such Hamiltonian are restricted to “all pairwise interactions among the
particles” [RH13, p. 1409] indexed by S, so Ĥ[[M ]] is just (2.3). Then, given a K ′-set
of n-mers as per the construction of the GMBE, an inductive argument is used to show
that [RH13, (2.1)]

Ĥ[[M ]] =
K′∑
i=1

Ĥ
[
F ′
i

]
−

K′∑
i<j

Ĥ
[
F ′
i ∩ F ′

j

]
+ · · ·+ (−1)K′+1Ĥ

[
F ′
1 ∩ · · · ∩ F ′

K′
]
. (5.16)

Expanding the RHS of E0 = 〈Ψ0, Ĥ[[M ]]Ψ0〉 via the bilinearity of the inner product,2
where Ψ0 and E0 are a true eigenpair for the electronic problem, leads to an expres-
sion [RH13, (2.2)] that can be approximately matched termwise with (5.15) [RH13].

We mention one last counting-style argument, which seems to have been first applied
by Li et al. [LLJ07] in the context of the generalised energy-based fragmentation method
(GEBF); cf. also [IWT13; LH16]. Here, the terms in an energy equation that is fun-
damentally just (5.13), see [MR11; RH12], are evaluated using electrostatic-embedding
Hamiltonians, much like, e.g., the EE-MB approach described above. These are defined in
terms of a complete set of point charges {qA}MA=1, one for each each atom in the molecular
system, and each calculation explicitly includes Coulomb interactions between the partial
charges outside the involved subsystem. That is, given for example some fragment Fi,
the term EFi includes the value∑

1≤A 6∈Fi≤M

∑
A<B 6∈Fi≤M

qAqB
‖RA −RB‖

. (5.17)

To avoid considering these and other pairwise Coulomb interactions too many times,
a counting argument is used to justify the form of, in the terminology of [IWT13], an
overcounting correction in the GEBF energy equation [LLJ07; IWT13]. This is, in full,
following [IWT13, (13)] and using notation adjusted for consistency with the expression
of the CG-MTA energy given previously,

EGEBF =
K∑
i=1

EFi −
∑
i<j

EFi∩Fj + · · ·+ (−1)K+1
∑

i<j<···<k

EFi∩Fj∩···∩Fk

−

[(
K∑
i=1

ci

)
− 1

]
M∑

A=1

M∑
A<B

qAqB
‖RA −RB‖

. (5.18)

2Here assuming, unlike in Chapter 2, that Ψ0 is real-valued; see, e.g., [Can+03].
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The additional term on the right-hand side compared to (5.13) is the correction; the
sum in parentheses runs over coefficients ci for each of the K ′ intersections in the
inclusion/exclusion sum, defined equivalently as for the MOBE above.

5.2.2. ANOVA-like decompositions
It has been previously and repeatedly observed that MBEs such as (5.4) are reminiscent
of certain decompositions used in the approximation and analysis of high-dimensional
functions; see, e.g., [Gri06; Heb14; GHH14; Pas14; KC16; CGH18; Fis18]. We will recall
and consider a general construction for the latter given in [Kuo+09]; the notation we use
in this section mostly matches that of [Kuo+09], and the reader is warned that it may
conflict slightly with the notation we use elsewhere. We omit some definitional details in
the interest of brevity.

The setting of [Kuo+09] is a vector space F of d-dimensional functions f(x1, . . . , xd) :
D ⊆ Rd → R. We require a family of commuting projections {Pi : F → F}di=1 such that,
for any choice of 1 ≤ i ≤ d and f ∈ F , then Pif is invariant in xi, and moreover, Pif = f
whenever f is invariant in xi [Kuo+09, (2.1)]. Then any f ∈ F can be decomposed as

f =
∑
u⊆[d]

fu, (5.19)

in terms of functions fu invariant in those variables {xi}i∈u [Kuo+09, Thm. 2.1]. Here,
each fu can be defined equivalently as [Kuo+09, Thm. 2.1(b)]

fu :=
∑
v⊆u

(−1)|u|−|v|P[d]−vf, (5.20)

where Pu :=
∏

i∈u Pi, or recursively [Kuo+09, Thm. 2.1(a)],

fu := P[d]−vf −
∑
v⊂u

fv, (5.21)

with f∅ := P[d]f providing the base case. Regardless of the precise choice of commuting
projections Pi, the decomposition (5.19) is minimal, in the sense that if some decomposi-
tion f =

∑
u∈[d] tu exists such that tv = 0 for all v ⊇ z for some z ⊆ [d], then also fv = 0

for all v ⊇ z [Kuo+09, Thm. 3.1].
If F is taken to be L2([0, 1]d), and the projections Pi are chosen such that

Pif :=

∫
[0,1]

f(x1, . . . , xd) dxi, (5.22)

then (5.19) becomes the ANalysis Of VAriance (ANOVA) decomposition; see [Kuo+09,
Ex. 2.2], and also [Gri06; Feu10] and references therein. For this reason, following
also [Gri06], we will call decompositions of the form (5.19) to be ANOVA-like.
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There is a relationship here to the concept of effective dimension [CMO97]; see
also [Gri06; Feu10]. We leave a formal definition for [CMO97], but it has been suggested
that low-order n-body expansions function in practice because the Born-Oppenheimer po-
tential energy function possesses something akin to low effective dimension [Gri06; Pas14;
CGH18]. Also noteworthy in this context is the high-dimensional model representation
(HDMR) of Rabitz and Aliş [RA99]. It has been explicitly observed by those authors that
“many-body expansions can be viewed as a special case of an HDMR” [RA99, p. 199].

To illustrate, we give a sketch of an explicit construction of the MBE as an ANOVA-
like decomposition (5.19) in the style of [Kuo+09], and motivated by the termwise
decomposition (5.16) of the Hamiltonian discussed in Section 5.2.1; cf. here the very
closely related constructions of MBEs in [GHH14; CGH18]. The simplest choice of
underlying vector space F is just the set of functions f : (R3 × N)M → R, which we
consider as taking M nuclear variables {XA = (RA ∈ R3, ZA ∈ N)}MA=1 consistent with
our setting. The use of such four-dimensional composite variables means that the results
of [Kuo+09] are not directly applicable here. We claim without proof, however, that
Theorems 2.1 and 3.1 of [Kuo+09] generalise trivially to this setting.

We define the family of operators {PA : F → F}MA=1 to be such that

(PAf)(X1, . . . , XM ) = f(. . . , XA−1, (RA, 0), XA+1, . . .). (5.23)

that is, the charge of the Ath variable of PAf is constrained to be zero. Clearly, P 2
A = PA,

so PA is a projection; it also easy to see that PAPBf = PBPAf for 1 ≤ A, B ≤M , and
more generally that the family {PA}MA=1 is as required by the preconditions of [Kuo+09,
Thm. 2.1]. We thus obtain a minimal decomposition of any f ∈ F . This is just a very
slight variation of the anchored-ANOVA decomposition; see [Gri06; Kuo+09], and cf.
basically equivalent applications of the cut-HDMR [HLR05] such as, e.g., [KC16].

We recall the definition of the Born-Oppenheimer potential function from (2.6) above:

V BO(X1, . . . , XM ) :=
∑

1≤A<B≤M

ZAZB

‖RA −RB‖
+ inf

Ψ∈V
〈Ψ,Ψ〉=1

〈
Ψ,H

[
{XA}MA=1

]
Ψ
〉
. (5.24)

Assuming for simplicity a net zero total charge, the solution space over which the infimum
is taken is implicitly defined for wavefunctions in terms of only

∑M
A=1 ZA electrons. Since

any term in the Hamiltonian (2.3) involving XA = (RA, ZA) vanishes when ZA = 0, it
is clear that the projected potential P[M ]−uV

BO loses any dependence on the variables
{XA}A∈[M ]−u. Thus, with some abuse of notation, P[M ]−uV

BO = V BO,|u|, where the latter
is just the standard Born-Oppenheimer potential function V BO,|u| for the charge-neutral
subsystem described by the index set u. So the minimal decomposition of V BO of the
form (5.19) promised by [Kuo+09] is effectively just the MBE in (5.4).

The implementations of the MBE as applied in practice by the various fragmentation
methods discussed in Section 5.1.2 above do not lend themselves quite so easily to a
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5.2. Mathematical viewpoints on the many-body expansion

projector-based construction. The analysis is complicated by the introduction of link
atoms, as well as the use of embeddings. The latter is particularly problematic, since a
potential function for some subsystem indexed by some u must in such a case still retain
some explicit dependence on all the nuclear variables. Also, the guarantee of minimalism
is not especially useful in context, since although the higher-order terms of the MBE
may be small, they are not expected to be exactly zero. A more thorough analysis of
particular variants of the MBE from the perspective of related work in high-dimensional
function approximation is sure to be of value, but is beyond the scope of this work.

5.2.3. An order-theoretic perspective

We now consider two, more carefully-defined versions of the MBE (5.4), built in the
particular context of order theory. Our primary intention is to bring the MBE, and
MBE-like sums, within the scope of the adaptive order-theoretic combination technique
described in Chapter 3. In so doing, we shall also collect some straightforward results
that will help us to understand some MBE-like fragmentation techniques both mentioned
in the sections above, and to be discussed in the pages to come.

The phrasing of chemical problems in terms of posets is well-established [KB97], and
the basic idea of the following is certainly not new. Although it has long been known that
a non-recursive expression for the k-body terms in (5.6) can be derived using Möbius
inversion [DFS04], the technique still goes mostly unmentioned in the modern literature on
fragmentation methods; cf., however, [SDS09]. But the MBE is also deeply connected to
various cluster expansion methods found in statistical physics [Mar75; DFS04], where the
explicit application of Möbius inversion is also well-established [Dom74] and more common.
For example, the use of Möbius inversion to obtain a different perspective on the cluster
variation method [An88; Mor94] inspired in turn an order-theoretic redevelopment [LC05]
of the lattice fundamental-measure theory (LFMT) of Lafuente and Cuesta [LC04]. We
mention also the chemical graph-theoretic cluster expansion of Klein [Kle86], an extremely
general formulation which explicitly allows for but is not restricted to the construction
of decompositions in terms of Möbius functions and Möbius inversion. We shall return
briefly to the CGTCE in the following chapter, but remark now without elaboration that
it provides as a special case a construction that is formally equivalent to that which we
now give; see, e.g., [Kle86, App. A].

We begin by precisely defining, or redefining, some terminology which we have up
to this point used either informally or in a less-than-general way. Again, the core
ideas here are well-known, up to terminology and notation. We are most strongly
influenced at the outset here by the development in [CGH18, Sec. 3.2]. Although this
does not explicitly involve Möbius inversion, it does mention powersets and posets,
and also downward-closed subsets of the same; see also comments below. Select a
family of functions {Vu : (R3 × N)M → R}u⊆[M ], each depending on M variables
{XA = (RA ∈ R3, ZA ∈ N)}MA=1. We call each Vu the subproblem potential for the index
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subset u, and we will sometimes in this context call u a subproblem. For each u ⊆ [M ],
we also define a contribution potential by

Ṽu :=
∑
v⊆u

(−1)|u−v|Vv, (5.25)

as in [CGH18, (8)]. In what follows, it will always be the case that V[M ] := V BO, the
Born-Oppenheimer potential for the complete system assuming a net-zero total charge.
Each Vu for ∅ ⊂ u ⊂ [M ] will be a potential that somehow accentuates the set of atoms
indexed by u. We will discuss the particular choice and role of V∅ below, but note for now
that it may but need not be identically zero. We depart from the prequel in that each
subproblem potential is now deliberately 4M -dimensional, to allow for embedding-style
potentials which depend somehow on the complete set of nuclear variables.

As covered in Chapter 3, the powerset of [M ] ordered by set inclusion is the boolean
algebra BM , which has the Möbius function

µ(u,v) =
{
(−1)|v−u| if u ⊆ v,
0 otherwise.

(5.26)

As in [CGH18], fix some arbitrary nuclear configuration {XA}MA=1, and define a point-
evaluation functional by

L[V : (R3 × N)M → R] = V (X1, . . . , XM ). (5.27)

Then Möbius inversion of

L[Ṽu] =
∑
v⊆u

(−1)|v−u|L[Vv] =
∑
v⊆u

µ(v,u)L[Vv] (5.28)

as per Theorem 3.3.4 provides that, for any u ⊆ [M ],

Vu =
∑
v⊆u

Ṽv, (5.29)

hence,
Ṽu = Vu −

∑
v⊂u

Ṽv. (5.30)

This is in no way novel, although it is more usually done in the other direction. That is, we
could equally well have started with (5.30) and obtained (5.25); this is explicitly referenced
in [SDS09], cf. [DFS04], and the derivation of [KC16, (14)] can be understood similarly.3

3We mention here also a discussion by others on the Physics Stack Exchange forum on the subject of the
MBE. One response [Kor22] provides a very interesting and quite technical and general derivation of
what is essentially (5.25), starting from essentially (5.29). Without going into details, the derivation
involves what is recognisably a special case of the linear-algebraic construction of the Möbius function
that we mentioned in Section 3.5.3; cf. in particular [NW78, Chap. 26]. Hence, although the term is not
explicitly used there, the derivation in [Kor22] can also be viewed as an application of Möbius inversion.
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This equivalence of definition is also a key feature of the ANOVA-like decompositions
of [Kuo+09] discussed just previously. It is also made clear in [CGH18], which simply
states the equivalence of contribution potentials defined as in (5.25) and (5.30) above.
In this last, reference is made to the PIE, rather than explicitly to Möbius inversion,
but as mentioned previously, the former can be understood as just a special case of the
latter [Sta12].

No matter which definitional direction we choose, equation (5.29) provides an exact
decomposition of any Vu, and of V[M ] in particular. We will call this decomposition the
nuclear many-body expansion of V[M ] according to the family of (nuclear) subproblem
potentials {Vu}u⊆[M ]:

V[M ] =
∑
u⊆[M ]

Ṽu. (5.31)

Now let I ∈ J(BM ) be an order ideal of BM . Then, completely consistently with
definitions in Chapter 3 that were made in the context of the order-theoretic combination
technique, we call the sum

SI :=
∑
u∈I

Ṽu =
∑
u∈I

D
(I)
u Vu (5.32)

the I-truncation, or just a truncation, of the nuclear MBE of V[M ], where the combination
coefficient D(I)

u for each u ∈ BM is

D
(I)
u =

∑
v∈I
v⊇u

µ(u,v) =
∑
v∈I
v⊇u

(−1)|v−u|. (5.33)

It is to be stressed that here, the general order-theoretic construction leads only to a
specific form which is already known; in particular, note that the preceeding expression
for D(I)

u is just that used in the FCR of König and Christiansen [KC16], for an order
ideal I identical to the downward-closed set which they write as {FCR}. As we remarked
in Example 3.3.13, the derivation of this expression in [KC16] can be viewed as an
independent reformulation of Möbius inversion, limited to BM . Indeed, most of the
earlier versions of the identities that we rederived in Example 3.3.13, e.g., those in [KC06;
RH12; RH13; KC16], were explicitly constructed in the setting of truncated MBEs; the
only exception, that of [Kuo+09], was in the context of the ANOVA-like decompositions
just mentioned.

The construction of the nuclear MBE given above is easy to extend to match the more
common disjoint-fragment setup. Specifically, let {Fi ⊆ [M ]}Ki=1 be a partition of [M ],
that is, a family of K non-empty sets such that Fi ∩ Fj = ∅ for 1 ≤ i 6= j ≤M , and also
that

⋃K
i=1 Fi = [M ]. Then we call each Fi a fragment of the complete index set [M ], and

the partition {Fi}Ki=1 is called a fragmentation of [M ].
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Let F = {Fu :=
⋃

i∈u Fi | u ⊆ [K]} be the set of all possible k-fold unions of fragments
for 0 ≤ k ≤ K. Note in particular that F∅ = ∅ and F[K] = [M ]. We recall from [Sta12]
that a subposet of some poset P is a poset Q ⊆ P where, given s, t ∈ Q, then s ≤Q t
implies s ≤P t, and also vice versa. Ordered by set inclusion, F is then a subposet of
BM . We will call F the fragmentation poset associated with the particular fragmentation
of [M ] under consideration. F is easily seen to be isomorphic to BK , the boolean algebra
of rank K, with the required bijection provided by φ(u ∈ BK) := Fu ∈ F . Moreover, the
Möbius function of F is equivalent to that of BK :

µF (Fv, Fu) = µBK

(
φ−1(Fv), φ

−1(Fu)
)
= µBK

(v,u) = (−1)|u−v|. (5.34)

It will be relevant in what follows that F , BM , and BK are examples of particular kinds
of poset. We recall some more basic definitions here; see again [Sta12], also, e.g., [AK16].
Given a poset P , if two elements s, t ∈ P have a greatest lower bound in P , it is named
their meet and written s ∧ t. Their least upper bound is their join, written s ∨ t. If s ∧ t
is well-defined for any s, t ∈ P , then P is a meet semilattice; a join semilattice is defined
similarly. If P is both a meet and a join semilattice, then it is a lattice. If P is finite
and has a 1̂, that is, a unique maximal element, then if it is a meet semilattice, it must
also be a lattice [Sta12, Prop. 3.3.1]. Any boolean algebra Bn is a lattice, with meets
and joins provided by intersections and unions respectively. Since obviously u ∩ v = w
for u,v,w ∈ BK if and only if Fu ∩ Fv = Fw, it follows in particular that F is a meet
semilattice, with meets provided by intersections.

Now, given a family of fragment subproblem potentials {VFu : (R3×N)M → R}u⊆[K], we
can obtain a corresponding family of fragment contribution potentials {ṼFu : (R3×N)M →
R}u⊆[K] via a definition equivalent to any one of (5.25), (5.29), or (5.30), just as in the
nuclear case. Then

VF[K]
=
∑
Fu∈F

ṼFu =
∑
u⊆[K]

ṼFu , (5.35)

which, since V[M ] = VF[K]
by definition, we call the fragment many-body expansion of

V[M ] according to the family of fragment subproblem potentials.
It is in order to compare nuclear and fragment MBEs that we have not taken the more

usual approach of defining the fragment potentials, either subproblem or contribution, to
be functions of composite fragment variables; see and cf., e.g., [HMS70; RH12; KC16;
HK21; Kor22]. To avoid confusion in what follows, we will use circumflexes to distinguish
between the truncations and combination coefficients SI and D(I)

u of a nuclear MBE and
those ŜI and D̂

(I)
Fu

of a fragment MBE, which can be defined in terms of order ideals
I ∈ J(F ) equivalently as in the nuclear case.

The combination coefficients of any truncation of a fragment MBE in terms of a
molecular system can be precisely related to those of a truncation of the corresponding
nuclear MBE. From an order-theoretic perspective, this relationship is essentially a
special case of one previously observed by Lafuente and Cuesta [LC05] in the context
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of the LFMT. A little explanation is required to make the connection clear in our
setting. Like those authors, we use a fundamental theorem due to Rota [Rot64], which
we recite verbatim in the form given by Stanley [Sta12]. Here, the meet of some subset
X = {t1, . . . , tn} of a finite lattice L is obviously

∧
X =

∧n
i=1 ti = t1 ∧ · · · ∧ tn, with

∧
∅

vacuously 1̂; see, e.g., [AK16].

Theorem 5.2.2 (Crosscut theorem; verbatim from [Sta12]). Let L be a finite lattice,
and let X be a subset of L such that (a) 1̂ 6∈ X, and (b) if s ∈ L and s 6= 1̂, then s ≤ t
for some t ∈ X. Then

µ(0̂, 1̂) =
∑
k

(−1)kNk, (5.36)

where Nk is the number of k-subsets of X whose meet is 0̂.

Proof. See [Sta12, Cor. 3.9.4].

The following corollary is also used in [LC05]; it can be attributed to Hall [Hal36;
Gre82] but we recite it also verbatim from [Sta12]. Here, the coatoms of a finite lattice L
are the members of the set {p ∈ L | p ≺ 1̂}.

Corollary 5.2.3 (Verbatim from [Sta12]). If L is a finite lattice for which 0̂ is not a
meet of coatoms, then µ(0̂, 1̂) = 0.

Proof. See [Sta12, Cor. 3.9.5].

In short and omitting much interesting detail, Lafuente and Cuesta [LC05] consider
a cluster expansion of a density functional defined for a multicomponent lattice model.
Here, “lattice” refers to a point lattice such as, e.g., Z or Z2, rather than the order-
theoretic construction. Using essentially their notation, given a generally infinite point
lattice L, each of multiple clusters are defined as C = (C1, C2, . . . , Cp), where p is the
number of particle types considered by the model and each Ci ⊆ L; also, notationally,
L = (L,L, . . . ,L). The poset of all clusters is partially ordered by componentwise set
inclusion.

As per [LC05, Thm 2], given a subposet of clusters W with L ∈ W, an application of
Möbius inversion is used to approximately decompose a full-lattice density functional
FL[ρ] in terms of functionals FC [ρ] defined with respect to individual clusters. Specifically,
adapting slightly from [LC05, (3.7) and (3.18)],

FL[ρ] ≈
∑

C∈W−{L}

[−µW(C,L)]FC[ρ]. (5.37)

The key link to our setting is that the RHS is just, in our terminology, an I-truncation (3.22)
of a decomposition of FL[ρ] in terms of W, with the truncation taken according to the
order ideal I =W−{L}. This follows immediately by noting that, for each C ∈ W−{L},
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we haveD(I)
C =

∑
C≤C′ 6=L µW(C,C′) = −µW(C,L) directly by the definition of the Möbius

function, (3.14). This viewpoint is very convenient and we shall make repeated use of it
below.4

As constructed in [LC05], the setW = {L}∪{
⋂
S | ∅ ⊂ S ⊆Wmax}, where intersection

is defined componentwise and Wmax is a set of somehow maximal clusters. The meaning
of “maximal” here corresponds to the specific lattice model under study, but formally,
Wmax could be any arbitrary antichain of the full cluster poset. Considering also a poset
which we write in generator notation (see here Section 3.5.5 and transitively [Sta12]) as
V = 〈Wmax〉 ∪ {L}, where the order ideal is generated in the full poset of clusters, it is
observed in [LC05, App.] that [C,L]V is an order-theoretic lattice for any C ∈ V. Since
Theorem 5.2.2 and Corollary 5.2.3 then provide that µV(C,L) = µW(C,L) if C ∈ W,
and µV(C,L) = 0 if not, respectively, it is further noted that the decomposition (5.37)
could equally well have been formed in terms of 〈Wmax〉, rather than just intersections of
subsets of Wmax.

Thus, although we state and explicitly prove the following proposition and subsequent
corollary directly in the MBE setting, both the core observation and the ideas of proof are
just those of [LC05]. Indeed, this can be viewed as a special case of their result, since the
poset of all possible clusters considered in [LC05] is a direct product of p possibly-infinite
boolean algebras, while we consider here only one finite boolean algebra. As mentioned
in Footnote 4, the idea of rephrasing the combination coefficients by adjoining a 1̂ to an
order ideal I is basically that on [Sta12, p. 265].

Proposition 5.2.4. Let [M ] be some set of nuclear indices, and let {Fi}Ki=1 be a
fragmentation of [M ] with the associated fragment poset F ∼= BK . Further, let I ′ be an
4This alternative expression for the combination coefficients emerges here simply because Lafuente and
Cuesta take a slightly different formal approach in the application of Möbius inversion than that which
we used to construct the order-theoretic combination technique in Chapter 3. We demonstrate in the
more general notation of the order-theoretic combination technique, but still following the basic form
of [LC05], and using an idea that can be found on [Sta12, p. 265] to which we will return shortly. Given
some poset grid Π, a subposet I ⊆ Π — here not necessarily an order ideal of Π — is essentially fixed a
priori, and an explicit 1̂ is adjoined to it, even if I already has a unique maximal element. An additional
model function f1̂ is then defined to be the target function f . Möbius inversion of f = f1̂ =

∑
p∈I∪{1̂} f̃p

provides for the case p = 1̂ the expression f̃1̂ =
∑

p≤1̂ µ(p, 1̂)fp, and thence f1̂ = f̃1̂+
∑

p<1̂[−µ(p, 1̂)]fp.
The term f̃1̂ is treated as an error quantity. In some cases considered in [LC05], properties of the model
functions fp and the particular choice of I can be used to show that this term vanishes and the expansion
is exact. In general, this is not so, and omitting f̃1̂ makes (5.37) an approximation.

Alternatively, let us reimpose in the above that I is an order ideal with combination sum SI , and define
instead f1̂ = 0. Then Möbius inversion leads firstly to f̃1̂ = −SI , and secondly to f̃1̂ =

∑
s<1̂ µ(p, 1̂)fp.

This also serves to justify the alternative expression for the combination coefficients.
Finally, we mention that the idea from [Sta12] referenced above appears in discussion relating Möbius

inversion to the cardinality PIE. There, effectively the RHS of (5.12) is written as a sum that is, of
course up to setting, basically the same shape as (5.37). This is very closely related to the construction
of the combination coefficients for an arbitrary meet semilattice in [HGC07, Sec. 3.1], which is founded
upon a different expression of the PIE again.
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arbitrary order ideal of F . Then there exists an order ideal I of BM such that

D
(I)
u∈BM

=

{
D̂

(I′)
u∈F if u ∈ F , i.e., if there exists v ∈ BK such that u = Fv,

0 otherwise.
(5.38)

Proof. Fix some I ′ as in the statement of the claim, and let A′ be the set of maximal
elements of I ′. Each a ∈ A′ ⊆ F is also a member of BM , so let I = 〈A′〉BM

be the order
ideal generated by those elements in BM . Define J to be I with an explicit additional
element 1̂J adjoined, such that 1̂J >J u for all u ∈ I, and define J ′ similarly for I ′.
Clearly, both J and J ′ are lattices. Also, by (3.14) as noted above, D(I)

u = −µJ(u, 1̂J)
for arbitrary u ∈ I, and similarly, D̂(I′)

Fu
= −µJ ′(Fu, 1̂J ′) for arbitrary Fu ∈ I ′.

Fix an arbitrary u ∈ I, and note, as in [LC05], that the interval [u, 1̂J ] in J is itself a
lattice, with u as 0̂. Since the elements of A′ are all in F , the setwise meet of any subset
of them is also in F . So, if u is a meet of coatoms of J , then also u ∈ F , and furthermore,
since [u, 1̂J ′ ] in J ′ is a lattice, D(I)

u = D̂
(I′)
u , by Theorem 5.2.2 with X = A′. If u is not a

meet of coatoms of J , then D(I)
u = 0, by Corollary 5.2.3. If in this case u ∈ F , then also

D̂
(I′)
u = 0, which is sufficient to show (5.38).

Corollary 5.2.5. Let [M ], {Fi}Ki=1, and F be as for Proposition 5.2.4. Further, let
{Vu}u⊆[M ] be a family of nuclear subproblem potentials for the nuclear subsets u ⊆ [M ],
and let {V ′

Fu
:= VFu}u⊆[K] be a family of fragment subproblem potentials defined in terms

of that nuclear family. Then for every order ideal I ′ of F , there exists some order ideal I
of BM such that ŜI′ = SI .

Proof. Fix an order ideal I ′ of F , and let I be any corresponding order ideal of BM as
provided by Proposition 5.2.4. Then

SI =
∑
u∈I

D
(I)
u Vu =

∑
u∈I′

D̂
(I′)
u Vu =

∑
Fu∈I′

D̂
(I′)
Fu

V ′
Fu = ŜI′ , (5.39)

by definition, by Proposition 5.2.4, by construction, and by definition, respectively.

In effect, Corollary 5.2.5 allows any truncation of any fragment MBE to be identified as
a truncation of an underlying nuclear MBE, if the family of nuclear subproblem potentials
used to construct that nuclear MBE is an extension of the family of fragment subproblem
potentials. From an intuitive perspective, this is of course completely unsurprising.

To see one practical application of this, consider in inverse a family of nuclear subprob-
lem potentials which are always well-defined in theory, but some of which are somehow
problematic in practice. For example, if the evaluation of some Vu requires the introduc-
tion of multiple link atoms to terminate dangling bonds, and if some or all of those link
atoms are spatially close to each other, then the value Vu might carry an unrepresentative
bias due to their interaction, and that bias would carry into any nuclear truncation
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SI over an order ideal I where D(I)
u 6= 0. This difficulty has been anticipated in the

construction of existing subsystem methods; see, e.g., discussion in [Das+02; DC05, Sec.
II.D.1; CD06, Sec. II.B; MR12; CB15; See+22]. The general response suggested by
these methods is to somehow just remove problematic fragments from consideration. So,
consistent with this idea and with a particular eye to an adaptive approach, if we can
construct a fragmentation of the nuclear indices such that the evaluation of any VFu
either does not require link atoms, or only introduces them separated by a sufficiently
large distance, then the set {ŜI | I ∈ J(F )} of truncations of the fragment MBE can be
viewed as a “safe” subset of the set of nuclear truncations {SI | I ∈ J(BM )}, since any
such bias is automatically excluded.

Moreover, from a theoretical level, since such a fragment truncation will still be a
truncation of the underlying nuclear MBE, any properties of that nuclear MBE that we
have either assumed or that we have been able to prove will still hold. For example, this
can be used to view any truncation of an appropriate fragment MBE as a truncation
of the explicitly nuclear-focused Hamiltonian-based ANOVA-like decomposition of V BO

sketched in the previous section, without the need for any further definition. This may
be helpful in deeper analysis of particular MBEs.

Since this equivalency of nuclear and fragment truncations occurs because each nuc-
lear combination coefficient D(I)

u is either zero or equal to the corresponding fragment
combination coefficient D̂(I′)

u , we will say that such a fragment MBE is combination-
consistent with the underlying nuclear MBE. If we use this terminology, Lafuente and
Cuesta noted in [LC05], in effect, that their decomposition (5.37), defined in terms of the
order ideal W − {L} of the subposet W produced by the effectively arbitrary Wmax, is
combination-consistent with one defined in terms of the order ideal 〈Wmax〉 of the full
poset of clusters. Since this property is important for the order-theoretic combination
technique well beyond the standard MBE (or indeed LFMT) setting, we will fix a very
general definition of combination-consistency, and extend Proposition 5.2.4 accordingly.

Definition 5.2.6 (Combination-consistency). Let P be a locally finite poset, and let Q
be a subposet of P . For any finite order ideal I of P and any s ∈ I, let

D(I)
s =

∑
t∈I
t≥s

µP (s, t) (5.40)

be the combination coefficient of s in I.5 For any finite order ideal I ′ of Q and s ∈ Q,
define D̂(I′)

s equivalently. For any two such finite order ideals I of P and I ′ of Q, if

D(I)
s =

{
D̂

(I′)
s if s ∈ Q,

0 otherwise
(5.41)

5Note that this is a slight generalisation of Definition 3.3.7, which requires P to have a 0̂.
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for every s ∈ P , then I and I ′ are combination-consistent. If such an I exists for every
finite order ideal I ′ of Q, then Q is a combination-consistent subposet of P .

We first confirm, without explicitly using the crosscut theorem or requiring either P or
Q to be a lattice, that given some finite order ideal I ′ ∈ Jf (Q), if there exists any order
ideal I ∈ Jf (P ) which is combination-consistent with I ′, then it must be that generated
in P by the maximal elements of I ′.

Lemma 5.2.7. Let P be a locally finite poset, let Q be a combination-consistent subposet
of P , and let I ′ ⊆ Q be an arbitrary finite order ideal of Q. If I is a finite order ideal of
P which is combination-consistent with I ′, then I = 〈A′〉P , where A′ ⊆ I ′ is the antichain
of all maximal elements of I ′.

Proof. Let P , Q, I ′, and A′ be as in the statement of the claim. Further, let I be some
finite order ideal of P which is combination-consistent with I ′. Since I is finite, it is
generated by some antichain A ⊆ I.

The proof is by contradiction. Suppose that A 6= A′. Then there is either some a ∈ A
such that a 6∈ A′, or some a′ ∈ A′ such that a′ 6∈ A. Begin by supposing the former. Since
a is maximal in I, we have D(I)

a = µP (a, a) = 1 by definition. If a 6∈ Q, then by (5.41),
D

(I)
a = 0, a contradiction. So a ∈ Q. It must be that a ∈ I ′, for otherwise, D̂(I′)

a = 0,
again a contradiction. Since a 6∈ A′, there exists some a† ∈ A′ such that a† > a. Just as
above, D̂(I′)

a†
= 1, but since a is maximal in I, we know that a† cannot also be an element

of I, so also D(I)

a†
= 0, a contradiction.

It must then be that there exists a′ ∈ A′ such that a′ 6∈ A. Just as above, D̂(I′)
a′ = 1. If

a′ 6∈ I, then D(I)
a′ = 0, a contradiction, so a′ ∈ I. Then there exists some a† ∈ A such

that a† > a′, and D
(I)

a†
= 1. Since this is nonzero, it must be that a† ∈ Q, by (5.41).

But since D̂(I′)
a†

is nonzero only when a† ∈ I ′, we have that a′ is not maximal in I ′, a
contradiction.

We need now one more definition. Let P be a meet semilattice, and let Q be a subposet
of P such that Q is closed under ∧P , that is, if t, t′ ∈ Q, then also t ∧P t′ ∈ Q. Then we
call Q a meet subsemilattice of P . Although [Aig97; Sta12] explicitly give definitions only
for a sublattice, the more restricted version is also standard in the literature.

It is noted in [LC05] that the set W used in (5.37) is closed by direct construction
under componentwise intersection; thus, W is a meet subsemilattice of the full poset of
clusters. Similarly, W is a meet subsemilattice of 〈Wmax〉 ∪ {L}. In the MBE setting, the
fragmentation poset F is also a meet subsemilattice of BM , again effectively by direct
construction.

Meet semilattices provide a natural environment for combination techniques; see, in
particular, the construction in [HGC07, Sec. 3.1], and discussion of [Won16] to follow
below. We will show that, in the general case when P is a meet semilattice with a 0̂, in
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order for some Q ⊆ P to be fully combination-consistent with P , it is both necessary and
sufficient that it be a meet subsemilattice of P . Although necessity in particular is not
to our reading recognised explicitly in [LC05], this remains only a mechanical and slight
extension of their work. Note also here that, from a purely order-theoretic perspective,
this is an immediate and not especially interesting result, although we do not believe we
have seen it stated explicitly elsewhere. We give it as a theorem only for its importance
to the order-theoretic combination technique.

Theorem 5.2.8 (Combination-consistent subposets of certain meet semilattices). Let
P be a locally finite meet semilattice with a 0̂, and let Q be a subposet of P . Then Q is
combination-consistent with P if and only if Q is a meet subsemilattice of P .

Proof. The proof of (⇐) is almost identical to that of Proposition 5.2.4 above; we repeat
ourselves for completeness, again noting the previous work in [LC05; Sta12]. Let P be a
locally finite meet semilattice with a 0̂, and let Q ⊆ P be a meet subsemilattice of P . Let
I ′ be an arbitrary finite order ideal of Q with generating antichain A′, and let I = 〈A′〉P
be the (necessarily finite) order ideal of P generated by A′ in P .

Define J := I ∪ {1̂J} and J ′ := I ′ ∪ {1̂J ′}, such that 1̂J >J t for any t ∈ I, and
1̂J ′ >J ′ t′ for any t′ ∈ I ′. Now fix an arbitrary s ∈ I. Consider D(I)

s = −µJ(s, 1̂). If s is a
meet of coatoms of J , then D(I)

s = −µJ(s, 1̂J) = −µJ ′(s, 1̂J ′) = D̂
(I′)
s , by Theorem 5.2.2,

with X = A′. If not, then D(I)
s = 0 by Corollary 5.2.3; if here also s ∈ Q, then similarly

D̂
(I′)
s = 0, and we are done.
In the other direction, (⇒), the proof is by contradiction. Let P be a locally finite meet

semilattice with a 0̂, and let Q be a combination-consistent subposet of P . Suppose that
Q is, however, not a meet subsemilattice of P . Then there exist two distinct elements
t, t′ ∈ Q such that t ∧P t′ 6∈ Q. Let I ′ = 〈t, t′〉Q be the finite order ideal of Q generated
by those two elements.

Since Q is combination-consistent with P , there exists a finite order ideal I of P that is
combination-consistent with I ′. By Lemma 5.2.7, this I = 〈t, t′〉P . Form J := I∪{1̂J}, as
above. Since the only subset of {t, t′} whose meet is t ∧P t′ is {t, t′} itself, it follows from
Theorem 5.2.2 that D(I)

t∧P t′ = −µJ(t∧P t
′, 1̂J) = 1. But, since I is combination-consistent

with I ′, and since t ∧P t′ 6∈ Q, also D(I)
t∧P t′ = 0, a contradiction.

The ramifications of this result in the broader order-theoretic combination technique
setting are basically those of Proposition 5.2.4 as applied to MBEs. As mentioned above,
the most natural choices for individual poset axes seem to often be lattices [Heg03],
and thus meet semilattices; cf. again [HGC07, Sec. 3.1]. It is easy to see that any
direct product of meet semilattices is also a meet semilattice. Suppose, then, that one
constructs a theoretically well-behaved and -understood poset model hierarchy over a meet-
semilattice grid Π that nevertheless exhibits undesirable computational characteristics
for particular models, or is perhaps too sprawling for an adaptive algorithm to explore
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efficiently. Theorem 5.2.8 provides a precise description of exactly when the order-
theoretic combination technique can be applied instead to a smaller subposet of the
original poset grid, safe in the knowledge that any resulting I-truncation will be exactly
the same as one which might have been encountered in the original. Note that while this
viewpoint is very closely related to that of [LC05], the work there is instead more focused
on obtaining a single exact decomposition that is, effectively, provably minimal in the
sense of [Kuo+09].

We take a brief detour here to draw a connection with a generalised construction
of the combination coefficients for the standard combination technique as given by
Wong [Won16, Chap. 3], which we mentioned briefly in Section 3.2 above. We give an
abbreviated and slightly adapted sketch for the purposes of comparison. In the original,
Wong considers finite sets C of particular finite grids gm ⊂ [0, 1]d, each of which latter
is indexed by an element m ∈ Nd. For simplicity and consistency with our setting, we
speak in adapted terms rather of finite subsets C ⊂ Nd. The involved ideas translate
directly, cf., e.g., [Won16, Assumption 3.2.4 and Prop. 3.2.6], and so we still follow Wong’s
development very closely and reuse much of his notation with only slight modification, if
any. Each set C must be closed under meets, that is, m ∧ n = (. . . ,min(mi, ni), . . .) ∈ C
for m, n ∈ C, and is thus a meet subsemilattice of Nd; cf. [Won16, Def. 3.2.7]. Fixing now
some particular such C, the set ∂C is defined to contain exactly those meet-irreducible
elements m ∈ C such that m = n ∧ n′ for n, n′ ∈ C only when either m = n or
m = n′, consistent with [Won16, Def. 3.2.19]. After defining F(m ∈ C) := {F ⊆ ∂C |∧
F =m} as per [Won16, Def. 3.2.22], the inclusion/exclusion coefficient for eachm ∈ C

is, from [Won16, Def. 3.2.25],

cm :=
∑

F∈F(m)

(−1)|F |+1. (5.42)

As is suggested by the name, this construction is motivated by an inclusion/exclusion
argument, explicitly connected to the cardinality PIE; see [Won16, Sec. 3.2.2]. Wong
shows in [Won16, Thm. 3.5.4] that these combination coefficients match those of the
standard combination technique, as given in, e.g., Section 3.1 above.

To see the connection to our order-theoretic combination technique, consider some non-
empty and finite meet subsemilattice ∅ 6= C ⊂ Nd, and then write I = 〈C〉 = {m ∈ Nd |
∃n ∈ C s.t. m ≤ n}, by a slight abuse of our usual notation for an antichain-generated
order ideal. Clearly, since I is an order ideal, it is also a meet subsemilattice, since
m ∧ n ≤ m and m ∧ n ≤ n for any m,n ∈ Nd. Further, it has a zero, 0̂ = 0.
Adjoin an explicit one to I as above, J := I ∪ {1̂J}. Now fix some m ∈ C, and write
∂mC := {n ∈ ∂C | n ≥ m}. Every F ∈ F(m) is then clearly a subset of ∂mC. In fact,
∂mC is a subset X ⊂ [m, 1̂J ]J of the form required by the preconditions of Theorem 5.2.2,
and the definition of the inclusion/exclusion coefficient cm in (5.42) is, up to trivial
manipulation, precisely how we would calculate −µJ(m, 1̂J) = D

(I)
m according to (5.36).
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Again, cf. here the discussion relating Möbius inversion to the PIE on [Sta12, p. 265],
and also the construction in [HGC07, Sec. 3.1].

Wong’s argument can be easily extended to construct inclusion/exclusion coefficients
in terms of any finite meet subsemilattice C of an arbitrary poset grid Π which is a meet
semilattice, and not only for those of Nd. Moreover, an equivalent appeal to the crosscut
theorem shows that those coefficients so obtained will match those obtained via a Möbius
function-based definition for the order ideal I = 〈C〉Π. Although this viewpoint may be
helpful for future theoretical analysis of combination sums in particular problem settings,
it should be clear from the discussion of combination-consistency above that there is no
real difference in terms of the available combination sums themselves.

We return now to the MBE setting, and to the counting arguments in Section 5.2.1.
Here, we can revisit some previous observations in the fragmentation-method literature
in the context of the order-theoretic construction and in light of the above discussion.

The basic observation that the energy equations of many fragmentation methods reduce
to particularly-truncated MBEs goes back at least to Suárez et al. [SDS09]. In [CB15],
Collins and Bettens state that energy equations like those in Section 5.2.1 above “can
be constructed by conventional many-body expansion methods through the inclusion
and exclusion of various higher order many-body interaction terms” [CB15, p. 5622]. As
evidence, they give the equivalence of the MOBE-like energy expression provided by the
combined fragment method (CFM) [Le+12] with a particular truncated MBE involving
terms of up to fourth order. A similar observation can also be found in [RS15].

Although such an equivalence is heavily implicit in the work of Herbert and co-workers
regarding the GMBE, e.g., [RH12; RH13; LH16], it does not seem to our reading to
be stated there explicitly. König and Christiansen argue in [KC16] that the terms of
any GMBE energy equation should emerge as, in their terminology, a particular FCR
summation, or in ours, a suitably-chosen I-truncation of an MBE. Further practical
demonstration of this is given in [HK21]. We are now equipped to confirm (or at
least reconfirm) this with full rigour in the general case. Let us be clear that, from a
combinatorial perspective, we apply here what reduces fundamentally to just a differently-
organised version of the same argument that Stanley uses on [Sta12, p. 265] to connect
Möbius inversion with the cardinality PIE, and we use in particular an effectively identical
poset construction as there.

We build this poset in our notation and setting as follows. Consider some family of
distinct, non-empty, and now potentially-overlapping fragments {Fi ⊆ [M ]}Ki=1. Define
F∩u :=

⋂
i∈u Fi for each non-empty u ⊆ [K], and then let F̂ := {F∩u | ∅ ⊂ u ⊆ [K]}∪{∅};

that is, denote by F̂ the set of all possible k-fold intersections of fragments Fi for
1 ≤ k ≤ K, with the empty set always explicitly included. By construction, F̂ is a
subposet of BM that is closed under intersection.6 So is the subposet F̂+ := F̂ ∪ {[M ]}

6And indeed, if the set of fragments {Fi ⊆ [M ]}Ki=1 is an antichain, it is completely formally equivalent to
the set Wmax of [LC05]; either way, the decomposition (5.43) is clearly analogous to (5.37).
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formed by adjoining [M ] to F̂ if it is not already present. An exact decomposition

V BO =
∑
û∈F̂+

Ṽ
(F̂+)
u , (5.43)

can then be defined in terms of some family of subproblem potentials {V (F̂+)
û }û∈F̂+ as

usual, either by slight extension of the definitions given earlier in this section or by
directly using the equivalent machinery in Chapter 3, along with I-truncations of this
decomposition and their involved combination coefficients. Since F̂ is trivially an order
ideal of F̂+, there exists some order ideal of BM that is combination-consistent with F̂ .

Consider now the energy equation (5.15) for the GMBE; for notational ease, we use K
rather than K ′ for the total number of n-mers. This equation can be rewritten

EGMBE
(n) =

∑
∅⊂u⊆[K]

(−1)|u|+1EF∩u =
∑
û∈F̂
û 6=∅

dûEû; (5.44)

this is just a rephrasing of [LH16, (14)], up to an additional correction term to which
we will return shortly. Here, we consider F̂ to be defined in terms of the set of GMBE
n-mers, and define each dû to be the sum of the ±1 coefficients in front of each term
(−1)|u|+1EF∩u for all u such that F∩u = û, consistent with [RH12; RH13; LH16].

We claim that each dû in (5.44) is just and exactly the combination coefficient of û
in the F̂ -truncation of (5.43), which we remind the reader is not necessarily either a
standard nuclear or fragment MBE. To see this, begin by fixing some non-empty û ∈ F̂ .
There must be some maximal 1 ≤ kû ≤ K such that û can be written as a kû-fold
intersection of fragments Fi; that is, there exists some u ⊆ [K] such that û = F∩u, and
|u| =: kû is as large as possible. This u must be unique, for were it not, then we could
obtain û as the intersection of some k′ > kû fragments, contradicting the maximality of
kû.

Now, each non-empty subset v ⊆ u corresponds to some v̂ = F∩v ∈ F̂ . Clearly, v̂ ≥F̂ û,
for û is a subset of each Fi for i ∈ u by construction. Moreover, every v̂′ ≥F̂ û must
appear as F∩v′ for at least one non-empty v′ ⊆ [kû]. Thus, the leading coefficient in each
term (−1)v+1EF∩v must be counted in exactly one dv̂ for some v̂ ≥F̂ û. It follows that

∑
v̂≥F̂ û

dv̂ =

kû∑
j=1

(−1)j+1

(
kû
j

)
= 1−

kû∑
j=0

(−1)j
(
kû
j

)
= 1, (5.45)

where the first equality is obtained by separating non-empty subsets v ⊆ u by cardinality,
and the last by application of (3.26).

We introduce now another standard idea from order theory: the poset P ∗ derived from
another poset P by reversal of order, that is, such that s ≤P t if and only if s ≥P ∗ t,
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is called the dual of the original poset P [Rot64; Aig97; Sta12]. It can be shown that
µP (s, t) = µP ∗(t, s) for all s, t ∈ P [Sta12]. Möbius inversion of (5.45) in terms of F̂ ∗

provides, then, that
dû =

∑
v̂≥F̂u

µF̂ ∗(v̂, û) =
∑
v̂≥F̂ û

µF̂ (û, v̂), (5.46)

which is precisely how we would define the combination coefficient of û in the F̂ -
truncation of (5.43) according to (3.23). So the claim holds. As a result, and assuming
for the moment that the subproblem potential V (F̂+)

∅ is everywhere zero, the GMBE
energy equation (5.15) can be viewed as being the F̂ -truncation of (5.43), and also and
simultaneously a truncation of both a standard nuclear MBE in terms of the order ideal
generated by the maximal elements of F̂ in BM , or of a fragment MBE in terms of a
similarly-generated order ideal of BK , just as anticipated in [KC16].

Echoing an observation made at least by Mayhall and Raghavachari in the context
of the MOBE [MR12], and also one in [CB15], we point out that this equivalence also
works inversely. Since any order ideal I of BM is trivially seen to be closed under
intersection, it can be used directly as the set of potentially-overlapping fragments that
are fed into (5.15). In this case, F̂ = I, and the above confirms the obviously desirable
property that this GMBE energy corresponds exactly to the I-truncation of an MBE
using appropriately-chosen contribution potentials.

We highlight here one subtle difference between the FCR constructions in [KC16;
HK21] and the order-theoretic one just used. Mixing our terminology with theirs, the
FCR approach begins by considering a full MBE-style expansion of V BO, truncated in
terms of an order ideal I = {FCR} ⊆ BM . As combination coefficients in (5.11) are
established to be zero, the relevant subsets fl are discarded from {FCR}, leading to an
effective FCR; however, coefficients must still be calculated for all terms in {FCR}, even
if some subproblem potential evaluations can be subsequently avoided. By contrast, we
construct an ANOVA-like expansion of V BO directly in terms of some potentially much
smaller subposet of BM , pick an order ideal of that poset, and rely on Theorem 5.2.8 to
guarantee that the other terms in the relevant order ideal have zero coefficients. In the
following chapters, we will use similar subposets to supply our adaptive algorithm with
what is effectively a smaller search space than the full boolean algebra BM .

In any case, the MBE/GMBE equivalence just demonstrated also applies effectively un-
changed to, e.g., the CG-MTA energy expression (5.13). Equivalence to the overcounting-
corrected GEBF equation (5.18), or to [LH16, (14)], requires slightly more attention to
be paid to V∅. Setting V∅ = 0 is obviously the natural choice for a family of subproblem
potentials that model, e.g., the total energies of subsystems u ⊆ [M ] when treated in
complete isolation. Liu and Herbert [LH16] considered instead the situation of what we
would call a family of electrostatic-embedding subproblem potentials, defined as for the
GEBF in Section 5.2.1. Again by appeal to a PIE-style decomposition of the full-system
Hamiltonian, they point out that the correct definition for the empty-set potential should
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5.3. Numerical condition of the many-body expansion

be, in our notation,
V∅ =

∑
A≤B

qAqB
‖RA −RB‖

. (5.47)

Considering the terms that we wrote as dû in (5.44), and reasoning that “the sum of all
coefficients in the PIE equals unity” [LH16, p. 575], Liu and Herbert conclude that, again
in our notation, d∅ = 1−

∑
∅6=û∈F̂ dû, which suffices to recover (5.18) as the F̂ -truncation

of (5.43) for electrostatic-embedding subproblem potentials.
A slight generalisation of Liu and Herbert’s expression for d∅ is found in a “top-down”

recursive expression for the FCR combination coefficients introduced in [HK21]. In our
notation, this reads D(I)

u = 1 −
∑
u⊂v∈I D

(I)
v , where I is any order ideal of BM and

u ∈ I. This expression is justified in [HK21] by an inductive-style counting argument.
A significantly more general version again, D(I)

s = 1−
∑

s<t∈I D
(I)
t for any combination

coefficient D(I)
s for any element s in any finite order ideal I of any poset P , is trivially

obtained by dual-form Möbius inversion of (5.40); here, observe the connection to (5.45)
and (5.46), and cf. [Won16, Prop. 3.2.20] in the specific case of the standard combination
technique.

Thus, although the argument of [LH16] just mentioned was for the specific case of
electrostatic-embedding subproblem potentials used in the GMBE setting, it also inform-
ally motivates the following idea. If any family of embedding-style subproblem potentials
Vu is constructed over any meet subsemilattice of BM , such that each subproblem po-
tential Vu improves on a coarser treatment of the full-system energy for the particular
set of atoms u than is embodied in V∅, then any I-truncation includes an automatic
“overcounting correction” in the form of D(I)

∅ . These subproblem potentials could, for
example, apply some form of quantum embedding rather than a simple electrostatic-
embedding approach. We will come back very briefly in Section 5.4 to some existing
works applying such potentials, but we note without deeper exploration that the formal
treatment of overcounting in these seems to us generally somewhat different, see, e.g.,
explicit discussion in [BAM12; SJ20].

5.3. Numerical condition of the many-body expansion

The accuracy and numerical stability of several versions and variations of the MBE
has been thoroughly assessed in a series of papers by Herbert and co-workers [RLH14;
Lao+16; LH17]; we highlight here one particular aspect of their study. In [RLH14],
Richard et al. performed effectively an informal assessment of the numerical condition
of n-body truncations of an MBE using a propagation-of-errors analysis. Their results
show that while small propagated uncertainties compound quite gently for two-body
MBE truncations as the number of fragments increases, those for third- and higher-
order truncations become progressively and prohibitively more superlinear in the same;
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5. Adaptive many-body expansions

see [RLH14, Fig. 5(a)]. This “calls into question the assumption that the n-body expansion
is systematically improvable as a function of n” [RLH14, pp. 7–8].

Using essentially the notation of [RLH14], if f is a d-dimensional function in a family
of uncorrelated variables {xi}di=1, each of which is certain only to within some ±dxi, then
the overall uncertainty of the function is given by [RLH14, (4.2)]

df =

√√√√ d∑
i=1

(
df
dxi

)2

( dxi)2. (5.48)

In the context of the MBE, and mixing in now our notation, the dimensionality d is the
total number of terms in a truncation SI , with each “variable” xi being an evaluated
subproblem potential, xi = Vu ∈ R for some u ∈ I. The uncertainties dxi stem in
particular from the fact that ab initio methods generally involve an iterative component,
in which some property is refined until a representative error estimate shrinks below some
convergence threshold; see again [RLH14]. The derivative terms df/dxi are just the
combination coefficients D(I)

u ; here, Richard et al. use the equivalent expression to (3.37)
that we mentioned in Example 3.3.13.

The structure of our adaptive combination technique algorithm proves to be useful
in this context. Recall from Chapter 3 that our algorithm does not calculate individual
contribution values directly; rather, it manipulates sparse tensors, which store individual
Möbius function evaluations and their sums. As a result, at every stage of the adaptive
refinement process, we know — explicitly and by design — the combination coefficients
for every term of the candidate combination sum. Thus, if the results for individual
calculation results can be ascribed an inherent uncertainty, then we can also evaluate
the total propagated uncertainty of that combination sum according to (5.48), with no
more effort than is required to evaluate the combination sum itself. This technique is not
limited to MBE-style combinations, and applies without modification to any truncation
of a combination sum taken over an arbitrary poset grid.

The impact of compounding uncertainty on the calculation of SI is found in [RLH14] to
be more pressing than that of raw floating-point error. Nevertheless, those authors note
that double-precision arithmetic might not always suffice in the K-fragment MBE case
for larger K; cf. [RLH14, Fig. 7]. In the implementation of the adaptive order-theoretic
combination technique algorithm used throughout this thesis, the summation of SI
is handled using arbitrary-precision arithmetic [Joh17], using 100 bits of intermediate
precision; see Appendix A.8. This latter number carries no inherent meaning in the MBE
context. But since it is only a little less than the 113 bits [Mul+18, Tab 3.1] that would
be provided were we to use the quadruple-precision arithmetic suggested as prophylaxis
in [RLH14], we will assume in the case studies that follow that possible floating-point
error can be effectively disregarded.
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5.4. Case study: water clusters

∼8.5Å ∼14.5Å

Figure 5.1.: Stick-model visualisations of water clusters (H2O)15 and (H2O)55. Geometries are
drawn from [KT13], as described in the main text.

5.4. Case study: water clusters

At the beginning of the chapter, we stated that we can use our order-theoretic combination
technique to calculate truncations of various MBEs and MBE-like sums. We will now
make this application concrete, and investigate the behaviour of the resulting adaptive
many-body expansion when used to approximate the total energies of two water clusters,
that is, collections of water molecules. Water clusters have a long history of study
from the perspectives of both MBE-type approximations and subsystem techniques in
general [HMS70; Xan94; DT06; Pru+12; PL15; Cis+16; Che+17; HX20]. Our purpose
here is not to investigate or benchmark the standard MBE as applied to water clusters per
se; this has been done authoritatively by Herbert and co-workers [RLH14; Lao+16; LH17;
LH19]. Instead, guided at a high level by their work, we ask whether the application of
adaptivity may be helpful, particularly in light of the numerical and cost-related issues
mentioned in Section 5.3 above.

We have previously mentioned that both the adaptive algorithm we use and the order-
theoretic combination technique more generally have their origin in the ML-BOSSANOVA
approach [Heb14; GHH14; CGH18]. In fact, the adaptive formulation in [CGH18] is
explicitly given in terms of a powerset 2[M ], and so can be viewed formally also as an
adaptive MBE, albeit one where — unlike here — most of the contribution potentials
vanish exactly. We shall elaborate on this in the following chapter, and it will become
clear why we have returned to a more traditional MBE form first rather than trying to
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5. Adaptive many-body expansions

apply the BOSSANOVA approach immediately. Techniques also exist for explicit a priori
selection of included MBE terms based on particular screening criteria [LH17; LH19], and
as we shall discuss in the following chapters, various connectivity-based fragmentation
methods can be understood as implicit examples of the same. In particular, the method
of Iyengar and co-workers [RHI18; RI18; KI19] has been referred to as providing an
“adaptive-many-body-expansion” [KI19, inset graphic, p. 5769], but their approach is
only adaptive in the sense that the set of potentially-overlapping fragments they use is a
direct function of the spatial layout of the system, up to some adjustable parameters; see
discussion in Section 7.1 below. Notions of adaptivity are also applied in a construction
by Artiukhin et al. [Art+20] that is related to the FCR method; here, the adaptivity is
in terms of the set of sampling coordinates used to assemble a fitted approximation to
the Born-Oppenheimer potential energy surface. But beyond ML-BOSSANOVA, we are
unaware of any other adaptive schemes for selecting terms from a standard MBE in a
quasi-optimal way.

We consider the two water clusters (H2O)15 and (H2O)55. Approximately equilibrium-
state geometries for these clusters were obtained from [KT13]; specifically, we used
the w15[AMOEBA] and w55[AMOEBA] structures given in the supplementary material
of [KT13]. Visualisations of these clusters are given in Figure 5.1. For each cluster,
we obtained a reference total energy via an all-electron MP2 calculation [MP34; SO89]
using the cc-pCVTZ [Dun89; WD95] basis set. These calculations were performed with
NWChem [Apr+20], with an RHF iterative convergence threshold set to 10−9Eh and
ERI prescreening thresholds for both RHF and MP2 set to 10−14Eh. This represents only
a lightweight treatment of electron correlation, particular in view of the extremely high
quality treatments considered in the previous chapter. However, these are not entirely
trivial calculations, particularly in the case of (H2O)55, which when equipped according
to cc-pCVTZ presents a problem involving 3905 contracted atomic orbitals.

In the terminology of the order-theoretic combination technique, the target function f
which we want to approximate is the charge-neutral MP2/cc-pCVTZ Born-Oppenheimer
potential energy function V BO(X1, . . . , XM ), where M is the total number of atoms in
each cluster, so M = 45 and M = 165 for (H2O)15 and (H2O)55 respectively. We use
a single-axis poset grid Π = BM ′ , where M ′ is the number of water molecules in each
cluster, soM ′ = 15 andM ′ = 55. The implementation of the poset axis interface required
to use this axis is given in Section B.2.

We construct the obvious fragmentation {Fi}M
′

i=1 of the nuclear indices, where each
Fi corresponds to the indices of one of the M ′ water molecules in each cluster. The
model hierarchy is then taken to be a family of subproblem potentials, {VFu}u∈BM′ , where
Fu =

⋃
i∈u Fi. The property evaluation functional L is as usual point evaluation as per

the cluster geometries. The arguments made in this chapter make it clear that, given
any order ideal I ⊆ BM ′ , the resulting combination sum SI is an I-truncation of the
fragment MBE of V BO = V[M ′] in terms of the fragmentation {Fi}M

′
i=1.

We consider four different families of subproblem potentials. The members of the first
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5.4. Case study: water clusters

family, {V vac
Fu
}u⊆[M ′], are simply standard MP2/cc-pCVTZ Born-Oppenheimer potential

energy functions, and so deliver the total energy of the isolated system specified by the
subfamily of the nuclear variables {XA}A∈Fu . Although no explicit embedding scheme is
applied here, we will refer to members of this family as vacuum embedding subproblem
potentials, following terminology in [Hég+16]. We set V vac

∅ to be identically zero.
The second and third families of subproblem potentials, written {V EE-xTB

Fu
}u⊆[M ′] and

{V EE-IAO
Fu

}u⊆[M ′], also calculate the MP2/cc-pCVTZ total energies of charge-neutral
systems formed from subfamilies of the nuclear variables, but use electrostatic-embedding
Hamiltonians defined for subsets of certain sets of point charges {qxTB}MA=1 and {qIAO}MA=1

respectively, following the EE-MB idea of [DT06; DT07b]. For reasons that will shortly
become clear, we will call members of these families xTB electrostatic embedding potentials
and IAO electrostatic embedding potentials respectively. The Coulomb interaction
energy (5.17) of all used point charges is explicitly included in each such potential, and
the empty-fragment potentials are taken to be the complete sum of all distinct Coulomb
interactions between the point charges, that is,

V EE-xTB
∅ =

M∑
A<B

qxTB
A qxTB

B

‖RA −RB‖
, (5.49)

and equivalently for V EE-IAO
∅ . This is consistent with discussion in Section 5.2.3 above,

and also, e.g., [LH16]. We note that this goes against the advice of [RLH14]; nevertheless,
the point charges used for all subproblem potential evaluations were equivalent up to full
double precision.

Each qxTB
A is the Mulliken partial charge [Mul55] for atom A provided by an appropriate

full-system calculation using the GFN2-xTB semi-empirical method [BEG19; Ban+20].
Similarly, each qIAO

A is a partial charge calculated according to the intrinsic atomic orbitals
of Knizia [Kni13], obtained from a reference full-system RHF wavefunction according to
the cc-pVTZ basis set [Dun89] and calculated using PySCF [Sun15; Sun+17; Sun+20].
We will not describe the GFN2-xTB model here, observing only that it carries a formal
scaling as O(M3) in the number of atoms [Ban+20]. In practice, however, this scaling
carries a dramatically smaller prefactor than, e.g., a Hartree-Fock calculation, so the xTB
charges can be viewed as a relatively affordable estimate of the electrostatic environment
that might feasibly be obtained for any medium-size system. The calculation of the IAO
charges, by contrast, requires a full-system Hartree-Fock calculation, and the use of at
least a triple-zeta basis set seems to be suggested by [Kni13, Tab. 1]. We do not suggest
that IAO charges should be used in general; we consider them in order to investigate
results obtained using electrostatic embedding under a “best-case” scenario, since the
semi-empirical nature of GFN2-xTB in conjunction with potential issues with Mulliken
partial charges [Her19] suggests caution in the use of the xTB charges; cf., however,
comments in [RLH14].
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5. Adaptive many-body expansions

The final family of subproblem potentials that we consider, {V mix
Fu
}u⊆[M ′], are mixed-

basis embedding potentials. For a deeper discussion of mixed-basis embeddings, see,
e.g., [HNK18], but the idea is straightforward and well-known [JG91]. The evaluation
of any V mix

Fu
delivers a total energy obtained by a complete full-system MP2 calculation.

When performing this calculation, the atoms indexed by Fu are equipped with atomic
orbitals according to cc-pCVTZ, which in context we call the embedding basis. The
remaining atoms are equipped only with the Dunning-Hay DZ basis set [DH77], called
the environment basis.7 The empty-fragment potential V mix

∅ thus delivers the total energy
according to a standard full-system MP2 calculation using the DZ basis set. Such an
approach is closely related to the DCMB method [WX12] and the EMFT [For+15];
indeed, a mixed-basis DFT calculation can be viewed as a special case of EMFT [Lee+17].
We note here that there is a body of previous work investigating the use of quantum
embeddings and related techniques to obtain terms of MBEs; see, e.g., [Man+12; BAM12;
GW12; SJ20; SJ21], and particularly [VLH19] for an approach explicitly applying the
EMFT. Although we will not attempt to engage with or compare against this work for
reasons of space, we observe that this work generally considers expansions truncated
after only second- or third-order terms,8 and adaptivity is not used. Moreover, to our
knowledge, simple mixed-basis embeddings treating the complete system with a correlated
wavefunction theory such as MP2 have not been previously investigated in the MBE
context.

We use our standard abstract cost model to represent the cost of all subproblem
potential evaluations. For calculation details on all subproblem potentials, see Section A.7.
For completeness, we mention a practical aspect of the adaptive calculations described
here and throughout the remainder of this thesis (with the particular exception of that
described in Section 6.8.2). As discussed in Section A.7, we carefully cached and reused
the results of subproblem potential evaluations between adaptive calculations. This
allowed us to repeat and extend adaptive calculations in a resilient manner, making
efficient use of available computational resources and backed by progressively larger
caches of evaluated subproblem potentials. Thus, although we will consider the adaptive
calculations discussed below as being notionally standalone, each draws underlying
evaluated subproblem potentials from what is effectively a precalculated dataset. Since
the adaptive algorithm is fully deterministic, and since we consider only the abstract costs

7The reader may wonder why we have chosen DZ for the environment basis set, rather than, say, a minimal
and thus cheaper basis set such as STO-2G [HSP69]. During the preparation of this work, we did indeed
experiment with the use of minimal environment basis sets, but found that they performed poorly. We
can only speculate informally about this behaviour. Mixed-basis calculations are known to lead to
irregularities in the electronic density [Lee+17; HNK18]. Since the constructions of the STO-nG and
cc-pCVnZ monoatomic basis functions are quite different, we hypothesise that this leads to particularly
pronounced irregularities. However, the DZ set is effectively an unpolarised variant of cc-pVDZ, so the
effect of increasing basis-set quality in particular regions should be correspondingly less disruptive. This
would be consistent with comments and observations in, e.g., [Lee+17; HNK18].

8Up to four-body in [SJ20; SJ21], but there only for small systems.
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of evaluations and not their real-world wall-time costs, the use of precached evaluations
has no impact on the final results as given here.

We did not explicitly modify the cost model to account for the use of electrostatic-
embedding Hamiltonians, either for the calculation of the point charges themselves or their
inclusion in the one-electron term. Thus, in what follows, each electrostatic-embedding
potential “costs” exactly the same as an equivalent vacuum embedding potential. We
justify this decision for reasons of simplicity, and by our anecdotal observation that the
true costs of evaluating the vacuum potentials and the electrostatic-embedding potentials
are in these cases indeed comparable, although this would not necessarily be expected
to hold were the sizes of the systems and thus the numbers of point charges to grow
significantly. The real-world computational costs of each full-system evaluation of the
xTB point charges were here negligible; the costs of each evaluation of the IAO point
charges were not.

The evaluations of the mixed-basis subproblem potentials are by nature much more
expensive than those for either the vacuum or electrostatic-embedding potentials, since
their costs scale in the full-system size rather than the size of the fragment. We have no
reason to believe that a cost benefit will be obtained relative to the other potential types;
indeed, we expect mixed-basis potentials to rapidly become infeasible for large systems,
and consider them only out of interest with respect to accuracy.

For each type of subproblem potential, we report per-iteration results for two adaptive
calculations, one each using the All and Threshold strategies. Results are given up to
termination thresholds defined in terms of cumulative abstract cost. For calculations over
(H2O)15, the termination threshold was chosen to be the abstract cost of the reference
calculation multiplied by 100; for (H2O)55, the abstract cost of the reference calculation
multipled by 10. This latter was further restricted for All calculations with mixed-basis
potentials for (H2O)55; see below.

The nth “adaptive” refinement according to the All strategy is, of course, not truly
adaptive, but adds

(
M ′

n

)
elements to the index set and produces a result which is exactly

equivalent to an n-body truncation of a fragment MBE. By contrast, index set growth
according to the Threshold strategy will depend on the precise value of the threshold
parameter α. For simplicity, and since we are interested at first in knowing whether true
adaptivity can be of any value at all, we sidestep the question of how one might best
choose such a value a priori. Instead, we consider results only for the particular value
α = 0.5, which seems to introduce a relatively granular but usually non-trivial amount
of new work at each adaptive iteration. A deeper analysis of behaviour obtained with
different values of α is certainly important, but is left for future work.

As well as per-iteration approximations to the total energy, we also calculated at each
iteration a propagated uncertainty, as per [RLH14] and as described in Section 5.3 above.
Here, an uncertainty of 10−8Eh was assigned to the result of each subproblem potential
evaluation, consistent with the RHF iterative convergence thresholds used for the set of
underlying single-point calculations.
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Figure 5.2.: Per-iteration absolute errors for progressively-refined adaptive fragment-MBE calcu-
lations over the water clusters (H2O)15 and (H2O)55. Errors are measured relative to
reference MP2/cc-pCVTZ calculations, as described in the main text. The horizontal
axis represents the total cumulative cost expended by the algorithm to calculate
the index set at each iteration, according to our abstract cost model. Vertical and
horizontal lines indicate the abstract cost of the reference calculation and chemical
accuracy (≈ 0.0016Eh) respectively.

The absolute error obtained by adaptively-refined index sets relative to the reference
calculations is plotted against their cost in Figure 5.2. The left-hand plot shows the
results for (H2O)15, the right-hand for (H2O)55. Vertical and horizontal lines are shown
indicating the reference cost and chemical accuracy respectively. The latter is not
inherently meaningful here, since it is quite clear from Chapter 4 than an MP2/cc-
pCVTZ calculation has no chance of being within chemical accuracy of the true FCI/CBS
total energy; nevertheless, we include it in its traditional role as an accuracy benchmark.
These lines allow an easy informal assessment of the quality of any adaptively-obtained
approximation: if it offers an accurate approximation to the reference result at cheaper
cost, then it must be plotted in the lower left-hand “quadrant”.

Beginning with (H2O)15, we see first that all adaptive calculations considered here
eventually produce approximations which are within chemical accuracy of the reference.
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5.4. Case study: water clusters

However, this does not reliably occur until the cost of each respective approximation
is well past that of the reference calculation. The third iterations of both Threshold
calculations for electrostatic-embedding potentials are both below chemical accuracy,
but immediately return to errors of approximately 10−1Eh in the subsequent iteration.
The fact that the respective All calculations do not show the same dip, and also that a
smaller although less pronounced dip is also visible in the Threshold calculation using
vacuum embedding potentials, suggests that this is probably not of any great interest.

The overall error/cost scaling of the various approximations do not dramatically
differ from each other. The vacuum embedding potential calculations, both All and
Threshold, appear to perform the worst, but the Threshold calculation is not far
enough from the remaining group of results that we can conclude any inherent superiority
of the latter over the former. Similarly, although the remaining non-vacuum potentials do
produce results that venture far below chemical accuracy, these excursions are oscillatory
and unpredictable. In all cases, the Threshold calculations generally outperform their
All counterparts, suggesting that the adaptive algorithm successfully finds and incor-
porates more important contribution potentials; again, however, the scaling differences
between the two are not so significant as to be remarkable.

The mixed-basis embedding approximations perform well, and are competitive in both
accuracy and cost with the remainder, despite initial costs and errors that are much
higher. Indeed, of all of the All results, it is those for mixed-basis potentials which
appear to perform the best, and show the most consistent reduction of error at high cost.
Nevertheless, all results for mixed-basis embeddings with costs that do not exceed the
reference cost threshold carry errors well above 10−1Eh.

We turn now to the results for (H2O)55, which are concerning. Although the calculations
using vacuum and electrostatic-embedding potentials again pass briefly below chemical
accuracy, they do not reliably stay there. Worse, the errors of all such calculations appear
to reach minima between approximately 10−2Eh and 10−3Eh, before deteriorating as
they approach the point at which the calculations were terminated. This does not suggest
optimism for the reliability of the MBE for larger systems, even with the application of
adaptivity. Furthermore, although the electrostatic-embedding potentials do outperform
the vacuum-embedding potentials, particularly in the Threshold cases, their results are
still far from reliable. In short: both vacuum and electrostatic-embedding adaptive MBE
calculations fail to provide useful approximations to the total energy of (H2O)55 at any
measured cost.

The mixed-basis calculations for (H2O)55 do appear to be trending reliably downwards,
but their evaluation was so expensive that we could only calculate them up to the inclusion
of two-body terms. As a result, the Threshold and All calculations have no chance to
differentiate themselves, and we are unable to make any clear further judgement. This
highlights a general issue which we encountered during informal experiments applying
adaptive MBE-type calculations to large systems. Specifically, zero- and one-body
calculations produce large contribution potentials, but are inherently unable to capture
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Figure 5.3.: Absolute errors, error indicators, and propagated uncertainties for progressively-
refined adaptive fragment-MBE calculations over the water clusters (H2O)15 and
(H2O)55 using vacuum embedding subproblem potentials. Absolute errors and costs
are calculated as in Figure 5.2. Error indicators are calculated as described in
Section 3.5.5. Propagated uncertainties are calculated as described in Section 5.3,
with an assumed uncertainty of 10−8Eh ascribed to the value of each individual
subproblem potential. Vertical and horizontal lines indicate the abstract cost of the
reference calculation and chemical accuracy (≈ 0.0016Eh) respectively, also as in
Figure 5.2.

any meaningful spatial information from the system. As a result and in practice, at least
all two-body terms must be calculated before an adaptive algorithm can have sufficient
information for a meaningful exploration of the remaining space of possible terms.

We consider now the behaviour of the two error metrics available to the adaptive
calculations: the adaptive error indicator outlined in Section 3.5.5, and the propagation-
of-uncertainty analysis discussed in Section 5.3. For simplicity, we consider only the
calculations involving vacuum embedding potentials. The plots in Figure 5.3 show again
the absolute errors for the relevant All and Threshold calculations for both considered
water clusters. Also plotted in each case are the values of the error indicator, and the
propagated uncertainty in the final result, according to (5.48), calculated with an assumed
per-result uncertainty of 10−8Eh, which corresponds to the SCF convergence threshold
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settings used for the subproblem potential calculations.
A positive first observation is that the error indicator is generally reliable in both

calculations and for both types of adaptive refinement, consistently overestimating the
error of the approximation by at most an order of magnitude. In both cases, the error
estimators for the Threshold calculations do once dip below the true error, only to
return to reliability quickly. These dips are attributable in both cases to a sign change
of the underlying combination sum of evaluated subproblem potentials; since the error
indicator updates by only a small amount at each iteration, it passes the true error closely
during the transition between signs.

The propagated uncertainties of both calculations grow, which is as anticipated given
the analysis in [RLH14]. The uncertainty for Threshold calculations is consistently
below that of the All calculations; this is likely due to the fact that the combination
coefficients of some subproblem potentials vanish, unlike those for All, which are always
non-zero, as mentioned in Example 3.3.13. In the case of (H2O)55, there is a suggestion
that the growth of the propagated uncertainty for the Threshold calculation may be
slightly slower than that for the All calculation; however, both approach the chemical
accuracy threshold as the cost of their respective calculations passes that of the reference
calculation. It seems reasonable to conclude that this uncertainty may provide at least a
partial explanation for the failure of the true errors of the (H2O)55 calculations to come
near chemical accuracy, let alone fall below it.

We close our study of the adaptive MBE by a brief empirical investigation of the
expected decays in the sizes of the evaluated contribution potentials L[ṼFu ], both in
terms of the size of the subsystem |Fu|, and in terms of the spatial organisations of
the atoms in those subsystem. Similar and more detailed studies can be found in the
literature. For example, Heindel and Xantheas considered the magnitudes of many-body
contributions for several water clusters in [HX20], and basically concluded that the
contribution potential terms become generally negligible beyond fourth order. Their
work focused particularly on many-body corrections for a phenomenon called basis set
superposition error, which we do not consider in this thesis for reasons of simplicity. We
aim here not to compare with or extend on their work or similar, but rather only to
obtain a quick and informal picture for a single molecular system of the relationship
between the spatial dispersion of involved subsystems, the magnitudes of their resulting
contribution potential, and the individual computational costs associated with them.

Here, we calculated all 32 768 possible contribution potentials L[ṼFu ] for the vacuum-
embedding case of (H2O)15. We grouped the results by the total number of H2O monomers
involved in each subsystem, k = |u|. The single contribution potential for k = 0 is zero
by definition, and those for k = 1 are just the total energies of individual H2O monomers.
Two-dimensional histograms of some of the remaining values are plotted in Figure 5.4.
Each histogram groups all values for some particular k = |u| with 2 ≤ k ≤ 10. The
vertical axis of each histogram corresponds to the base-10 logarithm of L[ṼFu ]. The
horizontal axis classifies the distance between each of the k H2O monomers involved in
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5. Adaptive many-body expansions

each Fu, measured in terms of the central points calculated as 1/3(RA +RB +RC) for
the three nuclear spatial variables RA, RB , and RC involved in each monomer. Naturally,
we cannot compress the full geometric conformation of each subsystem into a single scalar
value. Instead, we calculated both the mean and the maximum of the pairwise distances
between the fragments, and then took the mean of these two values again. The intention
here was to obtain a value that represents, very roughly, how “elongated” each collection
of monomers is, while not ignoring its overall shape.

The bin counts in the histogram are normalised such that all bins for every k sum to
unity. Each bin is coloured according to the base-10 logarithm of its normalised count;
the same colour scale is used for all plots for all values k. We do not provide histograms
for collections of values 11 ≤ k ≤ 15 for reasons of space. However, the values for these
do not deviate strongly from those for k = 10, and indeed seem to continue the pattern
of “compression” into a small region that is visible in the data that is plotted.

Decays in the size of the terms L[ṼFu ] are certainly visible, both in terms of increasing u
and increasing distance. These are strongest for the first few values of k plotted, although
it is interesting to note that even some four-body terms still have magnitudes greater
than chemical accuracy; this would seem to confirm previously-mentioned statements in
the literature about the importance of some four- and five-body terms, although clearly
not all of them. Once k passes six or seven, the decay in the largest of the evaluated
terms seems to slow.

Perhaps more significantly, the number of terms with magnitudes that could be
considered “negligible”, in that they are less than the applied convergence tolerance
threshold of 10−8Eh, also decreases: the magnitudes seem to cluster between 10−6Eh
and 10−8Eh. We remark that this might also be understandable in some cases via a
propagation-of-errors analysis, since the explicit calculation of each L[ṼFu ] requires the
summation of 2u evaluated subproblem potential terms L[VFu ]. Since the weights in
this sum are always ±1, it is easy to see that the propagated uncertainty will be, in the
example case of a system with k = 9, just

√
29 × 10−16Eh ≈ 2 × 10−7Eh. Of course,

since these sums are not performed explicitly in the evaluation of most truncated MBE
sums — at least, not when using our tensor-based formulation — this effect will have no
direct impact on the accuracy of the same.

A decay in terms of distance is also obvious. This would seem to be clear and further
confirmation that the importance of individual k-body terms can be related to the locality
properties of the subsystems they represent, as has been widely remarked on and exploited
in the literature mentioned earlier in the chapter. However, we note that there is still
usually a large spread in the magnitudes of the plotted terms for any given choice of k
and at any particular distance. It is difficult to characterise this spread further without a
more detailed analysis, since the ad hoc distance metric we use here is not very descriptive.
Nevertheless, it still seems reasonable to hope that some kind of adaptive approach should
be able to locate structure here.

In closing, we remember that the adaptive index-set algorithm given in Chapter 3.5
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5.4. Case study: water clusters

implicitly requires, or at least hopes, that the sum of the ratios of the evaluated model
functions to their calculation costs should also decay rapidly. A histogram of these
benefit/cost ratios |L[ṼFu ]|/C(u) in this case is given in Figure 5.5, with an equivalent
format to that of Figure 5.4. The overall shape of the plotted distributions is basically the
same as in the earlier figure; this is unsurprising, since the costs C(u) for all terms with
u = k involve exactly the same number and species of atoms, and will be distinguished in
our cost model only by the number of non-neglible ERIs that must be evaluated. Thus,
this data can be viewed as basically a rescaling of the earlier-shown data.

However, the decays for these terms is in fact slightly stronger than that seen previously,
particularly as k grows. Although we cannot do anything more rigorous with these values,
this is, at least in principle, exactly what we would hope to see. Although the adaptive
MBE approach we have tried here is clearly not of any real practical value in the
form given, this is obviously just an expression of the same numerical issues that were
anticipated in [RLH14; Lao+16]; put differently, even an adaptive index set must simply
grow too much in order to gain too little. In the following chapter, we will consider
how we might adjust the MBE to better exploit the locality effect on the contribution
potentials that is so visible in Figures 5.4 and 5.5.
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Figure 5.4.: Histograms of magnitudes of evaluated vacuum-embedding MP2/cc-pCVTZ fragment-
MBE contribution potentials |L[ṼFu ]| for the water cluster (H2O)15. Each histogram
corresponds to values with u = k. See the main text for further details.
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fragment-MBE contribution potentials |L[ṼFu ]|/C(u) for the water cluster (H2O)15.
Each histogram corresponds to values with u = k. See the main text for further
details.
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Since it is quite clear from the previous chapter that many-body expansions as usu-
ally considered cannot extend gracefully in application to even moderately substantial
molecular systems, we consider now the question of how the basic shape of the MBE
might be adjusted or reworked in such a way as to ameliorate issues both of cost and of
compounding numerical instability. However we do so, it is desirable to retain some kind
of systematic improvability, and for this, we must also retain the formal exactness of
the expansion. The switch from a nuclear MBE to a fragment MBE is actually already
a step in this direction, since, as we have seen, any truncation of a fragment MBE is
provably equivalent to a truncation of an underlying nuclear MBE.

Although it is not technically required, fragment MBEs are basically always obtained
by grouping together collections of atoms that are spatially local to each other [Gor+11;
CB15; RS15; Her19]. Both the literature discussed and the data analysed in the previous
chapter suggest a relationship between the magnitudes of the contributions |Ṽu| and the
distances between the individual atoms indexed by u. It seems therefore a priori sensible
to discard these terms if the relevant sets of atoms are somehow spatially non-local.
This idea underlies a variety of distance-based thresholding [LH17] schemes used in the
construction of a number of fragmentation methods; see, e.g., [CLJ06; Gan+06; DT07a;
HHL10; MR11; QLT13; Fis18] and discussion in [OB16; LH17]. In general, however,
simply discarding contribution potential terms will destroy the formal exactness of an
MBE. It has also been recognised that some such terms may contribute more strongly
to the resulting sum than might be suggested by the spatial density of the underlying
atoms [OB16].

More generally, fragmentation methods can and have been defined in terms of some
abstract concept of the connectivity between pairs of atoms or fragments. Such con-
nectivity is usually defined by the presence of chemical bonds (covalent or otherwise)
between atoms or fragments [DC05; CD06; LLJ07; GHH14; Heb14; CB15; RS15; Her19],
sometimes augmented or filtered according to spatial separation [Gan+06; MR11; LH17;
See+22]. The application of connectivity hinges upon the expectation that collections
of atoms or fragments interact most strongly when they are closely connected to each
other, thus providing another mechanism with which to attempt to select a priori the
“important” terms in an MBE-like sum.

Imbuing a molecular system with connectivity then leads very naturally to an expli-
cit treatment using graph theory. This can be used to select a fragmentation, as in,
e.g., [Le+12; See+22], or directly to arrive at a decomposition or approximation of the
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total energy, as in, e.g., [Kle86; WHM10; GHH14; Heb14; KDI21; ZI22]. Depending
on method, the distinction is not always clear. In this chapter, hypothesising some
full-system interaction graph, we extend the order-theoretic development of MBE-like
sums given in the prequel to a class of exact decompositions of V BO defined with reference
to particular subcollections of the induced subgraphs of that graph.

6.1. Interaction graphs and SUPANOVA decompositions
We use here and throughout standard graph-theoretic notation and definitions consistent
with the textbook of Diestel [Die17]; we make also some general reference to the textbooks
of Harary [Har72] and of Cormen et al. [Cor+22]. We consider here only finite undirected
graphs G = (V,E); although we are already making heavy notational use of V to
represent subproblem/contribution potentials and E to represent energetic quantities, the
distinction will be clear in context. We prefer to use the term connected component rather
than just component. Following [Har72], we write Cn = ([n], E = {{1, 2}, {2, 3}, . . . , {n−
1, n}, {n, 1}}) to mean the canonical cycle graph of n vertices, and Kn to mean the
complete graph of n vertices. For clarity, if we say that a graph is cyclic, we mean only
that it contains at least one cycle.

We now introduce a semi-formal definition for an interaction graph in our context.
Our naming is based on usage of “interaction graph” in [CGH18]; the term also appears
in [GHH14, Sec. 3.1], although in context the meaning is more specific than here. We
are very far from the first to introduce such a definition. In the fragmentation method
setting, for example, something similar is explicitly used to define the GKEM of Weiss
et al. [WHM10], which we shall discuss further in Section 6.4; see also and cf. [Kle86].
Similar graphs also appear in works by Iyengar and co-workers, e.g., [KDI21; ZI22]; there,
edges also embody pairwise interactions in a quite general sense.

Definition 6.1.1 (Interaction graph). Given a set of nuclear indices [M ], a nuclear
interaction graph is an undirected graph G = ([M ], E), where every vertex i ∈ [M ] is
a nuclear index. Similarly, given some fragmentation F = {Fi}Ki=1 of [M ], a fragment
interaction graph is an undirected graph G = ([K], E), where every vertex i ∈ [K] is the
index of some fragment Fi ∈ F . In both cases, each edge {i, j} ∈ E is called a direct
interaction between the atoms or fragments indexed by i and j, which are said to interact
directly according to G.

If the choice between the nuclear or fragment setting is clear in context, we will
usually speak only of an interaction graph. The simplest possible (here nuclear, but also
equivalently fragment) interaction graph is the edge-free interaction graph ([M ], ∅), which
represents a system of M non-interacting atoms. Similarly, an M -atom system wherein
every atom interacts directly with every other atom is represented by the complete
interaction graph KM = ([M ], {{i, j} | 1 ≤ i < j ≤ M}). Since the definition is not
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prescriptive as to precisely what an “interaction” between two atoms entails, an interaction
graph can be constructed with an edge set capturing effectively any pairwise definition of
connectivity between atoms in a system. The prototypical interaction graph, is, however,
the covalent bond graph, such that atoms i and j interact directly (or alternatively,
the vertices i and j are adjacent) whenever they share a covalent bond. This graph
is handled, either implicitly or explicitly, by basically all of the overlapping-fragment
methods mentioned and referenced in the previous chapter. There are various mechanisms
for obtaining the covalent bond structure and thus graph of a given molecule, and in
practice, this information is often provided alongside or directly recoverable from a
molecular conformation in standard storage formats [OBo+11; Zha+12; Heb14; Bar+21].

We explicitly introduce one particular graph-theoretic idea which we will find useful.
The following definition is a slight rephrasing of that given in [GL78, Sec. 4.2], but this is
a standard concept and other equivalent versions can be readily found elsewhere in the
literature.

Definition 6.1.2 (Quotient graph [GL78]). Let G = (V,E) be an undirected graph, and
let F = (Fi ⊆ V )Ki=1 be a partition of V . The quotient graph G/F = (F,E′) of F in G
is defined such that, if {i′, j′} ∈ E, and there exists i 6= j such that i′ ∈ Fi and j′ ∈ Fj ,
then {Fi, Fj} ∈ E′.

In our setting, it should be clear that any quotient graph of a nuclear interaction graph
is a fragment interaction graph. In practice and in the interest of simplicity, we shall abuse
the definition by assuming that any quotient graph of a fragment interaction graph is
also a fragment interaction graph. To make this precise, we would need to complicate the
definition by specifying that each vertex of the quotient graph of a fragment interaction
graph is not a set of fragments, but instead the union of those fragments. Since we will
use quotient graphs only as a practical tool, and will not rely on the definition explicitly
in proof, we trust the reader will forgive our sloppiness.

As is the case for any graph, a nuclear (equivalently fragment) interaction graph G
can be broken down into subgraphs. In particular, if u ⊆ [M ] is a subset of the relevant
set of nuclear indices, then the induced subgraph G[u] can itself be considered as an
interaction graph, and preserves by definition the direct interactions between the atoms
indexed by elements of u. Thus, any subset of the set of all induced subgraphs of an
interaction graph can be considered as a poset of interaction-preserving subgraphs, with
a natural ordering provided by set inclusion calculated on the inducing vertex sets of
those subgraphs; that is, G[u] ≤ G[v] whenever u ⊆ v; see [Nie80] and cf. [Kle86]. The
poset of all induced subgraphs of G is therefore isomorphic to the boolean algebra BM ,
and any subposet P of the poset of all induced subgraphs is isomorphic to one of BM .

We consider a general type of ANOVA-like decomposition of the Born-Oppenheimer
potential energy V BO of some M -atom molecule which is equipped with a nuclear
interaction graph G. A formally equivalent, and indeed markedly more general rendition
of the following construction is given in [Kle86]; more details below. Slightly adjusting
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notation, suppose that P is an arbitrary subposet of BM corresponding to some particular
family of induced subgraphs {G[u]}u∈P , rather than the poset of such induced subgraphs
themselves. Define subproblem potentials {Vu}u∈P with V[M ] = V BO and contribution
potentials

Ṽu =
∑
v≤Pu

µP (v,u)Vv. (6.1)

In context, we will then call the exact decomposition

V BO =
∑
u∈P

Ṽu. (6.2)

a SUPANOVA decomposition, for SUbgraph Poset ANOVA. Of course, since the definition
is technically in terms of a subposet of BM , the entire machinery of the previous chapter
applies without modification and this definition just mirrors those given before. The
distinction is only one of viewpoint. It is to stress that we choose to see P as an ordered
collection of induced subgraphs rather than one of subsets that we write the order relation
as ≤P rather than ⊆; where there can be no confusion, we may simply conflate posets of
induced subgraphs and isomorphic posets of their inducing vertex sets. The generalisation
of (6.2) to induced subgraphs of a fragment interaction graph is immediate, and we will
not give it explicitly.

Such an expansion class is not inherently novel. In particular, the SUPANOVA
decomposition (6.2) emerges as an immediate special case of the chemical graph-theoretic
cluster expansion (CGTCE) of Klein [Kle86], which we mentioned in the previous
chapter. Klein’s formalism is extremely general, and the construction of a CGTCE
using Möbius functions and total-energy potentials is only one of multiple possibilities
mentioned in [Kle86]. We take the liberty of introducing an explicit new name for the
decomposition (6.2) for two reasons. Firstly, we find it a convenient way to denote the
precise choice of, in Klein’s terminology, cluster function and f transform in the particular
context of energy-based fragmentation methods. Secondly, our investigation in this
chapter is based upon the foundation laid by the BOSSANOVA decomposition [GHH14;
Heb14], and we structure our development so as to converge in the next chapter with the
multilevel ML-BOSSANOVA decomposition [CGH18]. This latter represents a further
generalisation that is not, to our reading, explicitly anticipated by the work of Klein.
From this perspective, we could also expand SUPANOVA as SUPerset of bossANOVA.

In any case, Klein’s original work suggests truncations of the CGTCE according to
subgraph size, analogously to order-n truncations of an MBE. We mention in connection
with the previous chapter that, if one considers a Möbius function-based CGTCE
expansion over all induced subgraphs of a complete interaction graph, then a standard
MBE form is recovered; essentially just this is obtained by the Bethe-Goldstone hierarchy
discussed in [Kle86, App. A]. There is also a strong connection between the CGTCE
formulation and the linear combination of graph invariants (LCGI) scheme described
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in e.g. [GK73; Ess+77]; we note in particular the use of Möbius inversion and Möbius
functions in [Ess+77]. We are not aware of any treatments of either the CGTCE or the
LCGI which consider truncations in terms of arbitrary order ideals, or which explicitly
apply adaptivity as we do here.

6.2. BOSSANOVA

The original development of the BOSSANOVA (Bond Order diSSection ANOVA) de-
composition is described most completely in the German-language doctoral thesis of
Heber [Heb14];1 see also [GHH14; CGH18] for alternative and relatively concise English-
language presentations.2 To contextualise further discussion, we will give a brief and
in places interpretative sketch of the construction of this decomposition, following at
first [Heb14] but later also [GHH14; CGH18]. We use our notation rather than that of
the sources where possible and appropriate. We omit much detail, particularly including
but not limited to the handling of short- and long-range contributions in [Heb14].

The construction as given in [Heb14] is based on an ANOVA-like decomposition of the
negative-semidefinite component N of a generally-indefinite Hermitean matrix H ∈ Cn×n;
for full details, see [Heb14, Chap. 6]. The eigenvectors ui of H are assumed to be
sparse, in a sense which we will not make precise here; see [Heb14, Defs. 28 and 29] and
surrounding discussion. Each eigenvector is matched with a set Ii ⊆ [n] which indexes
its non-negligible entries. The set

J = {Ii ∩ Ij | 1 ≤ i, j ≤ n}. (6.3)

is named a „minimalüberlappende Zerlegung“ [minimal overlapping decomposition] [Heb14,
Def. 33] of [n]. Such a decomposition is a special case of what Heber calls a „hierarchische
Zerlegung“ [hierarchical decomposition] [Heb14, Def. 30] of [n]:3 a family of potentially-
overlapping subsets I ′ = {I ′i ⊆ [n]}mi=1 such that

⋃
i I ′i = [n],4 and such that the family is

closed under intersection. It is shown by a casewise argument that N can be decomposed
as [Heb14, Lem. 12]

N =
∑
Ii∈J

Ñi, Ñi = Ni −
∑
Ij⊂Ii

Ñj , (6.4)

1This author does not claim fluency in German, let alone mathematical German, and apologises in advance
for any resulting mistranslation and/or misunderstanding of this source.

2Let us note the existence of an extended preprint [GHH08] of [GHH14], to which we also make some
general reference.

3Note that this is not the same as our equivalently-named definition in Chapter 3.
4The term „(überlappende) Zerlegung“ [(overlapping) decomposition] [Heb14, p. 80] used in [Heb14, Def. 30]
is not, to our reading, entirely precisely defined. In context, we understand „überlappende“ to mean “not
necessarily pairwise disjoint”; thus, we write “potentially-overlapping” in the main text, for consistency
with the remainder of this work.

141



6. Graph-based ANOVA-like decompositions

where each Ni =
∑

j∈Ii,λj<0 λjuju
†
j , with λj the eigenvalue of uj . It is conjectured [Heb14,

Behauptung 1] that an equivalent decomposition also exists for any hierarchical decom-
position J ′ which contains J ; we understand this last in the sense of [Heb14, Def. 20].

The decomposition (6.4) is applied to the restricted Hartree-Fock density matrix P
of some molecular system [Heb14, Chap. 7], which we recall from [SO89] is defined
elementwise by Pµν = 2

∑N/2
a=1 cµac

∗
νa for 1 ≤ µ, ν ≤ K and in terms of values cµa drawn

from the Hartree-Fock coefficient matrix C. Since the total RHF energy is then given by
EHF = 1

2 Tr[PF ] where F is the Fock matrix [SO89], we obtain, as in [Heb14, (7.2.4)]
but with slight formulaic differences,

EHF =
1

2
Tr

∑
Ii∈J

P̃iF

 (6.5)

≈
∑
Ii∈J

1

2
Tr[P̃iFi]. (6.6)

Here, each P̃i is defined basically just as in (6.4), and each Fi is the principal submatrix
of F according to Ii. For details on the legitimacy and conditions of this approximation,
see [Heb14, Chap. 7].

From a practical perspective, the approximation (6.6) can only be evaluated as written
if the precise structure of the minimal overlapping decomposition J is known. In
general, it is not, so a technique for choosing a plausible alternative decomposition J ′ is
required [Heb14, Sec. 7.5]. One is built by taking each I ′i to collect the basis function
indices associated with all of the nuclear indices specified by some particular u′i ⊆ [M ].
The term on the RHS of (6.6) for each I ′i can then be interpreted in our notation and
terminology just as an evaluated contribution potential, L[Ṽu′i ]. In particular, if J ′ is
chosen to consist of all possible k-fold unions of the sets of indices of the basis functions
located at the various nuclear centres, then (6.6) becomes just a standard nuclear MBE
of an equivalent form to (5.31); this more familiar approach is used as a starting point in
both of [GHH14; CGH18], although differently in each.

Here enters the covalent bond graph G [Heb14, Sec. 7.5; GHH14; CGH18]. Since any
observed sparsity of the density matrix is interpretable as an manifestation of spatial
locality, as is covalent bonding, the intention is to use the information contained in the
covalent bond graph in order to winnow down the number of terms in the nuclear MBE,
or, equivalently, the size of the decomposition I ′.

At this point, the BOSSANOVA construction makes a critical assumption, which
we phrase in our notation following [CGH18]; cf. the ultimately equivalent phrasings
in [GHH14, Lem. 1; Heb14, Lem. 13]. For any non-empty subset u ⊆ [M ] of the nuclear
indices, the induced subgraph G[u] of the covalent bond graph can clearly be separated
into some number 1 ≤ N (u)

comp ≤M of connected components. The subproblem potential
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for any u such that G[u] is disconnected is then assumed to be exactly additive in the
subproblem potentials corresponding to those connected components:

Vu = Vv1 + Vv2 + · · ·+ Vv
N

(u)
comp

, (6.7)

where the sum runs over the subsets of u which induce the connected components of
G[u]. Under this assumption, an inductive argument [CGH18, Lem. A.1] shows that if
G[u] has two or more connected components, then the contribution potential Ṽu = 0.
This justifies the omission of any such Ṽu from the nuclear MBE, and leads, finally, to
the BOSSANOVA decomposition of V BO. Again in our notation, this reads

V BO = V[M ] = Ṽ∅ +
∑

u∈conn [G]
|u|=1

Ṽu +
∑

u∈conn [G]
|u|=2

Ṽu + · · ·+
∑

u∈conn[G]
|u|=N

Ṽu, (6.8)

where we introduce conn[G] to indicate the set of all subsets u ⊆ [M ] that induce a
connected subgraph G[u] of G. We will always consider the empty graph to be vacuously
connected. The contribution potentials for each u ∈ conn [G] have the recursive definition

Ṽu = Vu −
∑

v∈conn[G]
v⊂u

Ṽv. (6.9)

Using the terminology and notation we have developed in this and the preceeding
chapter, we can view (6.8) as being a SUPANOVA decomposition of V[M ] in terms of the
poset of the connected induced subgraphs of G ordered by set inclusion of their inducing
vertex sets.

Although the development of BOSSANOVA is more rigorous and complicated than
is common for fragment-based energy methods, once it is arrived at, equation (6.8)
and its applications are closely related to earlier constructions. In particular, an n-
body truncation of the BOSSANOVA decomposition (6.8) after the terms for connected
subgraphs of orders 1 ≤ |u| ≤ n appears,5 in the case of chain-like molecules, equivalent
to the level-n SFM method [DC05], see Section 5.1.2 in the previous chapter, if an SFM
“functional group” is taken to mean “atom” and “bond” is taken to mean “any covalent
bond”.6 Here, we observe also, again without explicit proof, that a two-body BOSSANOVA
truncation is equivalent to the original KEM double-kernel total energy (5.8) as described
in [HMK05]. The FCR method can here also deliver an equivalent, non-recursive
formula [KC16; Art+20].

From a technical perspective, the subproblem potentials used in the BOSSANOVA
method are for the most part standard. The subproblem potential V∅ is taken to
5A rigorous proof of this is complicated by the relatively informal presentations of the SFM in, e.g., [DC05;
CD06].

6References [DC05; CD06] are mentioned in passing in [GHH14].
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be identically zero. No electrostatic embedding is used, although an extension which
separately approximates the long-range exchange component of the Fock matrix is
described in [Heb14, Sec. 7.3]. Dangling bonds are treated using hydrogen link atoms.
One novelty is found in the handling of dangling double bonds, which are not treated with
a divalent link atom as suggested in Section 5.1.1 above. Instead, a dangling double bond
is saturated with two hydrogen atoms arrayed according to the geometry of the original
bond and of any other bonds emanating from the link atom host; see, e.g., [Heb14, Fig.
9.31].

Although BOSSANOVA is constructed in terms of the nuclear covalent bond graph G,
this graph is preprocessed before its connected subgraphs are used to express (6.8) [GHH14;
Heb14, Sec. 9.1.2]. We will refer to the adjusted version as the dehydrogenated bond graph.
For our purposes, we define it to be that which is obtained by first building a (disjoint)
fragmentation F = {Fi = {j, k1, k2, . . .}}Ki=1 of [M ], where each j indexes a non-hydrogen
atom and k1, k2, . . . index the possibly several hydrogen atoms which interact directly
with j in G, and then taking the quotient graph G/F . The BOSSANOVA decomposition
is therefore in practice a variation on a fragment MBE (5.35) rather than on the nuclear
MBE (5.31). The implicit assumption that this underlying fragment MBE is consistent
with the original nuclear MBE appears to pass unremarked in the original BOSSANOVA
constructions, but is of course unproblematic, as per Proposition 5.2.4 in the previous
chapter.

6.3. On the connected induced subgraphs of cyclic graphs
Although the BOSSANOVA method produces good results when applied to simple linear
chain-like molecules, it is known to perform poorly when confronted with systems for
which the covalent bond graphs contain chordless cycles [Heb14; GHH14]. Such cyclical
structures are often referred to in the chemical context as rings.

BOSSANOVA approximations of the total energy of the aromatic hydrocarbon benzene
(C6H6) are reported in [Heb14, Fig. 9.30], where the subproblem potentials represent
HF calculations using the 6-311G* basis set [Kri+80]. As there remarked, the n-body
truncations of the BOSSANOVA decomposition (6.8) after all |u|-body terms for 1 ≤
|u| ≤ n ≤ 6 produce a series of approximations of the total Hartree-Fock energy that
gain steadily in accuracy up to n = 3, but then lose accuracy for n = 4 and n = 5.
Basically the same is further and consistently observed in equivalent sets of results for
other small biomolecules which contain chordless cycles in their bond graphs [Heb14,
Sec. 9.4.5]. Heber advances a physical explanation for this behaviour. Specifically, it is
suggested that the „Krümmung“ [curvature] [Heb14, p. 174] of larger ring subfragments
leads increasingly to straining forces and steric effects, which are only offset by electron
delocalisation in the finally-closed aromatic ring; see also [GHH14].7

7It is suggested that this issue might be ameliorated by „gesonderter Berücksichtigung aller Zyklen im
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Although this observation seems sound, a more fundamental underlying problem is in
fact at least partially at work. This is due to the structure of the poset of connected induced
subgraphs over which the BOSSANOVA decomposition is defined, and is explicable via
Theorem 5.2.8 of the previous chapter.

We will demonstrate the problem by a series of model calculations of the total energy
of the linear alkane hexane (C6H14), which will help to underscore the importance of that
theorem. We choose hexane for two reasons. Firstly, it is clearly established [GHH14;
Heb14; CGH18] that the BOSSANOVA technique is productive for linear alkanes; indeed,
they seem to be the class of molecule for which BOSSANOVA performs best. Secondly,
hexane has the same number of non-hydrogen atoms as benzene, so the dehydrogenated
bond graphs of both admit connected subgraphs of orders 0 ≤ n ≤ 6. We can thus
contrast results for hexane with those which we also obtain for benzene, which serves
the additional purpose of demonstrating that our method is consistent with that used to
obtain the results given in [Heb14] and [GHH14].

Briefly summarising our method: we used molecular geometries that were obtained
from the ChemSpider database [CSHex; CSBenz], and then optimised to plausible
equilibrium geometries according to B3LYP/cc-pVDZ KS-DFT calculations [KS65; Dun89;
Ste+94]; see Section A.6 for details. Calculations were performed using the same
implementation of the order-theoretic combination technique as elsewhere in this work;
as in Section 5.4, we used a poset grid Π = P composed of only a single poset axis P .
Here, however, P was taken to represent the poset conn[G] of vertex subsets inducing
connected induced subgraphs of an interaction graph; for a description of the necessary
implementation of the poset axis interface, see Appendix B.3. The subproblem potentials
used correspond to Hartree-Fock calculations with the 6-311G* basis set, also chosen to
match [Heb14; GHH14]; these are similar to the vacuum embedding potentials described
in Section 5.4, but also include a link-atom treatment of cut covalent bonds. Such cut
bonds were treated using single or pair hydrogen link atoms according to the strength
of the cut bond, in a manner that should be consistent with the original BOSSANOVA
implementation [Heb17].8

For these calculations, explicit adaptivity was not used; rather, we performed a complete
series of progressive refinements using the All strategy. The intermediate results here
correspond exactly to n-body truncations of (6.8) after the terms for connected subgraphs
of orders 0 ≤ k ≤ n ≤ 6, and so should be consistent with results reported in [Heb14;
GHH14], up to differences in the exact molecular geometries, and the additional initial
approximation for n = 0, which is here always zero. As a reference, we also performed
fragment MBE calculations for hexane and benzene, taking the same carbon/hydrogen

Bindungsgraphen“ [separate consideration of all cycles in bond graphs] [Heb14, p. 182]. However, since
the precise details of this treatment are to our reading slightly ambiguously described in [Heb14], we do
not engage with it here.

8We note here that the distances between link atoms and their parent atoms differs from our implementation
to the original. We do not believe that this meaningfully impacts the results given in this section.
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Figure 6.1.: Dehydrogenated covalent bond interaction graphs for benzene (C6H6, left) and hexane
(C6H14, right). Each vertex in a graph corresponds to a carbon atom, as well as all
hydrogen atoms which are directly bonded to it. On the right-hand side of the plot,
two graphs are shown stacked. The top graph is the standard dehydrogenated bond
graph of hexane; the bottom is the same graph, but augmented with an additional
direct interaction edge between vertices 1 and 6. Note that the augmented hexane
graph is actually identical to the standard benzene graph, but with vertices drawn in
different relative locations.

groups as in the BOSSANOVA case for the sets of fragments.
For BOSSANOVA calculations on benzene, we considered only the dehydrogenated

covalent bond graph. For hexane, we considered the standard dehydrogenated bond
graph, and also an augmented variant, which includes an extra edge between vertices
1 and 6, i.e., between the terminal groups capping the alkane chain. Visualisations
of these graphs are given in Figure 6.1. One might consider the augmented graph as
modelling an additional direct interaction between the terminal groups, in addition to the
indirect interaction provided by the standard bond graph; we would reasonably expect
this interaction to be fairly “small”, and that its inclusion would only slightly improve the
quality of any truncation of the resulting BOSSANOVA-like decomposition. However,
the fact that we have constructed the augmented interaction graph of hexane so as to be
identical to the standard bond graph of benzene is not a coincidence.

Plots of the absolute errors of the n-body BOSSANOVA total-energy approximations
for all three cases are shown in Figure 6.2, along with the equivalent absolute errors for
the n-body fragment-MBE calculations. The observed errors for hexane and benzene are
generally consistent with, although not entirely equivalent to those plotted in Figures
9.24 and 9.30 of [Heb14] respectively, even after adjusting for the fact that our graphs
are plotted against absolute rather than relative error. In particular, our implementation
seems to achieve slightly better accuracy for higher-order truncations over hexane than
the original BOSSANOVA implementation, as reported in [Heb14]. We suspect that the
original results were generated by naïvely summing individually-calculated contribution
potentials, which implies uncertainty-related error as outlined in the preceeding chapter.
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Figure 6.2.: Absolute errors of n-body BOSSANOVA truncations for benzene (C6H6) and hexane
(C6H14) as described in the main text, contrasted with absolute errors for n-body
fragment-MBE truncations in terms of the same systems/fragmentations. Since the
six-body truncations are exact by definition for both BOSSANOVA and the fragment
MBE, their associated absolute errors are zero, and are not plotted.

It is interesting to contrast the standard BOSSANOVA results with the behaviour
of the n-body fragment-MBE approximations for both hexane and benzene. Both sets
of MBE results display error “bumps” in the four-body case, and the five-body cases
are only slightly better or approximately equivalent to the three-body cases. Also, the
standard BOSSANOVA hexane calculations significantly outperform the equivalent MBE
calculations. This is somewhat surprising, given that the BOSSANOVA decomposition is
obtained by excluding information from the fragment MBE, and so would seem a priori
guaranteed to be less accurate for the same truncation order. One potential explanation for
this behaviour is the interaction between link atoms introduced by fragment calculations
for index sets which induce disconnected subgraphs of the complete bond graph. If the
connected components of such subgraphs map to molecular subsystems which are not
far from each other, the steric interactions of these link atoms may be non-negligible,
thus presenting a source of error just as suggested in Section 5.2.3. Since BOSSANOVA
avoids such subproblem calculations by nature, these errors would then be absent.

The most striking aspect of Figure 6.2, however, is the behaviour of the BOSSANOVA
approximation driven by the augmented hexane graph. These results are equivalent
to or very slightly more accurate than the standard-graph calculations for truncation
orders 0 ≤ n ≤ 3. Past this point, however, the four- and five-body approximations
decrease markedly in accuracy, to the point that the five-body approximation is almost
two orders of magnitude less accurate than the two-body approximation. We stress here

147



6. Graph-based ANOVA-like decompositions

that the only difference to the standard hexane calculations is an additional edge in the
underlying interaction graph. That this small change can cause such a dramatic decrease
in approximation quality is both unexpected and concerning, and this decrease cannot
be convincingly explained away by either electron delocalisation or steric effects.

To locate the source of the errors in the augmented bond graph case, we remember that
each subproblem potential used on the right-hand side of the recursive definition (6.9)
of the BOSSANOVA contribution potentials can also be expanded exactly using a full
fragment many-body expansion as in (5.35). Insertion of such an expression into (6.9),
followed by some tedious manipulation, leads to an explicit representation of any n-body
BOSSANOVA approximation V (n)

BOSSANOVA in terms not of BOSSANOVA contribution
potentials, but instead in terms of fragment MBE contribution potentials; cf., e.g., [GHH08,
(3.8)].

Performing this manipulation in the case of the standard hexane bond graph, and
indeed for any system modelled by fragments with a chain-like interaction graph of length
6, we find that the n-body BOSSANOVA approximations V (n)

BOSSANOVA for 1 ≤ n ≤ 4 are
given by

V
(1)
BOSSANOVA = Ṽ∅ + Ṽ{1} + Ṽ{2} + Ṽ{3} + Ṽ{4} + Ṽ{5} + Ṽ{6}, (6.10)

V
(2)
BOSSANOVA = V

(1)
BOSSANOVA + Ṽ{1,2} + Ṽ{2,3} + Ṽ{3,4} + Ṽ{4,5} + Ṽ{5,6}, (6.11)

V
(3)
BOSSANOVA = V

(2)
BOSSANOVA + Ṽ{1,3} + Ṽ{2,4} + Ṽ{3,5} + Ṽ{4,6}

+ Ṽ{1,2,3} + Ṽ{2,3,4} + Ṽ{3,4,5} + Ṽ{4,5,6},
(6.12)

V
(4)
BOSSANOVA = V

(3)
BOSSANOVA + Ṽ{1,4} + Ṽ{2,5} + Ṽ{3,6}

+ Ṽ{1,2,4} + Ṽ{1,3,4} + Ṽ{2,3,5} + Ṽ{2,4,5}

+ Ṽ{1,2,3,4} + Ṽ{2,3,4,5} + Ṽ{3,4,5,6}.

(6.13)

We remind the reader that the contribution potentials Ṽu here are those as defined for a
full fragment MBE, not for BOSSANOVA; we choose not to explicitly indicate this by
e.g. placing a superscript on the contribution potential terms in order to minimise the
visual noise of the equations.

At each successive truncation order n, along with the expected contributions for the
connected subgraphs of size n, some number of lower-order MBE contribution potentials
also enter the BOSSANOVA sum. These terms can be understood as representing all
pairwise, triple-wise, etc. subfragments of those connected subgraphs, which are not
themselves connected and are thus not directly calculated, but are instead provided
implicitly by some relevant Vu for u ∈ conn[G] with |u| = n. The overall effect is just as
intended: each V (n)

BOSSANOVA is a “sub-truncation” of the full n-body MBE sum, guided by
the connectivity information encoded in the covalent bond graph.

We consider now the equivalent n-body BOSSANOVA truncations in terms of connected
subgraphs of a cycle interaction graph of size 6, as in the case of the augmented hexane
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graph, rather than in terms of a chain graph like the standard hexane graph. For
1 ≤ n ≤ 3,

V
(1)
BOSSANOVA = Ṽ∅ + Ṽ{1} + Ṽ{2} + Ṽ{3} + Ṽ{4} + Ṽ{5} + Ṽ{6}, (6.14)

V
(2)
BOSSANOVA = V

(1)
BOSSANOVA + Ṽ{1,2} ++Ṽ{1,6} + Ṽ{2,3} + Ṽ{3,4} + Ṽ{4,5} + Ṽ{5,6}, (6.15)

V
(3)
BOSSANOVA = V

(2)
BOSSANOVA + Ṽ{1,3} + Ṽ{1,5} + Ṽ{2,4} + Ṽ{2,6} + Ṽ{3,5} + Ṽ{4,6}

+ Ṽ{1,2,3} + Ṽ{1,2,6} + Ṽ{1,5,6} + Ṽ{2,3,4} + Ṽ{3,4,5} + Ṽ{4,5,6}.
(6.16)

The results again seem to be as intended; the only difference to the chain case is the
inclusion of additional disconnected lower-order contribution potentials, which come
implicitly from the additional connected induced subgraphs of order n that include the
“bridging” edge between vertices 1 and 6. However, for n = 4, we find that

V
(4)
BOSSANOVA = V

(3)
BOSSANOVA + 2Ṽ{1,4} + 2Ṽ{2,5} + 2Ṽ{3,6}

+ Ṽ{1,2,4} + Ṽ{1,2,5} + Ṽ{1,3,4} + Ṽ{1,3,6} + Ṽ{1,4,5} + Ṽ{1,4,6}

+ Ṽ{2,3,5} + Ṽ{2,3,6} + Ṽ{2,4,5} + Ṽ{2,5,6} + Ṽ{3,4,6} + Ṽ{3,5,6}

+ Ṽ{1,2,3,4} + Ṽ{1,2,3,6} + Ṽ{1,2,5,6} + Ṽ{1,4,5,6} + Ṽ{2,3,4,5} + Ṽ{3,4,5,6}.

(6.17)

Three MBE contribution potentials of order two are introduced in the first line, each
with a non-unit coefficient. As a result, the four-body BOSSANOVA approximation
of any system represented by a cycle interaction graph of size 6 is not combination-
consistent with any truncation of a fragment MBE over the same system. The five-body
BOSSANOVA truncation suffers from the same problem, in fact even more so: nine order-
two contribution potentials are double-counted, as are twelve order-three contribution
potentials, and eight order-four contribution potentials. Additionally, two order-three
contribution potentials (Ṽ{1,3,5} and Ṽ{2,4,6}) are triple-counted.

To understand why this happens, we could try to investigate how the overcounted
terms enter the sum by counting the involved subsets. For example, the subset {1, 4}
occurs as a subset of {1, 2, 3, 4} and of {1, 4, 5, 6}, and so we might suspect that Ṽ{1,4}
is counted twice as a result. However, {2, 3} occurs as a subset of three of the size-4
subsets relevant to (6.17), but there is no triple-counting of Ṽ{2,3}. This kind of analysis
is not helpful without considering the contextual properties of the subsets. The critical
difference is that {2, 3} induces a connected subgraph, while {1, 4} does not, so the
recursive definition of the BOSSANOVA contribution potentials simply does not involve
the latter.

Structurally, {1, 4} appears as the intersection of two sets which induce connected
subgraphs of the cycle bond graph, namely {1, 2, 3, 4} and {1, 4, 5, 6}. In the standard
hexane case, it is easy to persuade oneself visually by studying Figure 6.1 that there is no
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way to choose two connected subgraphs such that the intersection of their inducing sets
does not itself induce a connected subgraph. This is effectively a restatement of the fact
that the poset of index sets which induce connected subgraphs for the standard hexane
case is closed under intersection, so the poset is a meet subsemilattice of the underlying
boolean algebra. Clearly, however, the equivalent poset in the cycle bond graph case is
not closed under intersection, so the poset is not a meet subsemilattice. By Theorem 5.2.8,
this guarantees that there will exist at least one order ideal of conn[G] such that the
resulting truncation is not combination-consistent with the underlying nuclear MBE.
The four-body and five-body truncations of the BOSSANOVA decomposition in this case
involve just such order ideals.

The issue in the construction of the BOSSANOVA method as described in the previous
section is the assumption of additivity of subproblem potentials of connected components
according to (6.7). Since the contribution potentials for any disconnected induced
subgraph are shown on this basis to be zero, then the overcounted terms above would be
expected to simply vanish without ill effect. However, the additivity assumption (which
is justified in [Heb14] by an appeal to size-consistency) does not generally hold, certainly
not to chemical accuracy or better, and the contribution potentials for disconnected
subgraphs cannot be so easily neglected. Also, since some sets of vertex subsets which
induce connected subgraphs for systems with cyclic bond graphs such as benzene do not
fulfill the closure-under-intersection property required of the hierarchical decompositions
defined in [Heb14], neither will decompositions I ′ formed by expanding those vertex sets
into sets of underlying basis function indices. We suspect that this may cause trouble
related to the original matrix decomposition theorem [Heb14, Lem. 12, Behauptung 1].

For hexane, for example, the actual value of the MBE contribution potential for {1, 4}
produced by our calculations is Ṽ{1,4} ≈ 1.948 × 10−3Eh, and for benzene, Ṽ{1,4} ≈
1.216 × 10−2Eh. Thus, the four-body BOSSANOVA truncation of the total energy
of hexane using the augmented bond graph is afflicted by an inherent error on the
order of 6× 10−3Eh due to the double-counting of the three diametric-pair contribution
potentials; this is directly visible in the results plotted in Figure 6.2. The observed
error for the five-body BOSSANOVA truncation for hexane shown in Figure 6.2 admits
a similar explanation. Such inherent errors also afflict the the four- and five-body
BOSSANOVA approximations of the total energy of benzene, although there do also
appear to be additional issues in these cases which may well be related to steric effects
and delocalisation as originally suggested.

We conclude, then, that the BOSSANOVA decomposition “works” in the case of the
standard hexane graph despite rather than because of the assumption of additivity in
the subproblem potentials. It seems that the selection of subproblem potentials which
are explicitly evaluated here is fortuitous, leading to relatively error-free truncations
of a hypothesised and pure underlying nuclear MBE which do not incur, for example,
issues related to link atom placement. However, in the augmented case for hexane, as
well as the standard case for benzene, the structure of the underlying poset of connected

150



6.3. On the connected induced subgraphs of cyclic graphs

induced subgraphs leads to higher-order truncations which fundamentally cannot be good
approximations of the true total energy.

We end the section by addressing the obvious next question: does this problem occur for
the BOSSANOVA decomposition in terms of any interaction graph containing chordless
cycles, or is the particular graph we have considered here just a special and unfortunate
case? The answers are, basically, yes and no respectively.

The conditions under which the connected induced subgraphs of a connected graph
form a lattice were considered at least by Leclerc [Lec76], and seem to have been first
settled in the general case by Nieminen [Nie80]. In the latter, Nieminen considers a
particular class of graphs, which he calls tree structures; this class includes but is not
limited to trees. For our purposes, it is more helpful to use a characterisation in terms of
certain forbidden subgraphs9 that is also used in proof by Nieminen. The following is a
partial restatement of some of his results rephrased in our terminology; the proof we give
serves only to justify this rephrasing and contains nothing novel.

Theorem 6.3.1 ([Nie80]). Let G = ([M ], E) be a connected graph, with M ≥ 0. The
poset conn[G] is a meet subsemilattice of BM if and only if there exists no u ⊆ [M ] such
that G[u] is isomorphic to either the graph C ′

4 = ([4], {{1, 2}, {1, 4}, {2, 3}, {3, 4}, {2, 4}}),
that is, the cycle graph C4 with an additional edge connecting two diametric vertices,10
or to the cycle graph Cn with n ≥ 4.

Proof. For M ≤ 3, the claim is equivalent to conn[G] always being a meet subsemilattice
of BM , and this is mechanical to verify for all such connected graphs. So assume that
M ≥ 4. We use the definition of a tree structure given in [Nie80] without repeating it
here. For (⇒), suppose conn[G] is a meet subsemilattice of BM . Since G[∅] is connected,
as is G itself, conn[G] is a lattice. The presence of either forbidden subgraph would
contradict this, as reasoned in the proof of [Nie80, Lem. 1]. For (⇐), the condition of
the claim is only possible if G is a tree structure; the contrapositive of this is used in
the proof of [Nie80, Lem. 1]. Then, as noted in the first few lines of the proof of [Nie80,
Lem. 2], for every pair of vertex subsets u, v inducing connected G[u], G[v], it holds that
G[u ∩ v] is connected, so ∧conn[G] is well-defined on conn[G].

In particular, note that if G is a tree, then conn[G] is a meet subsemilattice of BM ;
see and cf. Leclerc [Lec76], who cites earlier works by Boulaye which we have been
unfortunately unable to access. For other order-theoretic properties of conn[G], see
also [JKS95; KS96].

Taken together, Theorems 5.2.8 and 6.3.1 imply that if G contains one of the forbidden
induced subgraphs C ′

4 or Cn for n ≥ 4, then there will be at least one order ideal of
conn[G] which leads to a summation of BOSSANOVA contribution potentials which is
inconsistent with the underlying nuclear MBE. But these results do not directly guarantee
9A standard term in graph theory; see, e.g., [Har72].

10See [Nie80, Fig. 1] for a visual representation of the original graph.
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that any of the order-n BOSSANOVA truncations will be “broken” in this way, although
this clearly can happen in practice.

A general characterisation of exactly which order ideals do possess the inconsistency
property would require some extra work, as would a characterisation of the manner
in which the resulting truncation sums are inconsistent (e.g. which MBE contribution
potentials are overcounted, and how many times). Such further investigation might be
of some minor interest from an order-theoretic perspective. Practically and informally,
however, we observe that inconsistent truncations seem to follow at least from any order
ideal which is itself not closed under intersection, and the multiple-counting issue appears
to grow worse as the number of “missing” intersections between elements in the order
ideal increases. In particular, if a large interaction graph contains induced chordless
cycles of some bounded size, say size 6, then the issue does not seem to vanish for the
n-body BOSSANOVA truncations for n ≥ 6, and usually seems to become worse, not
better.

6.4. On amending the poset of connected induced subgraphs

Many non-trivial molecules of interest, and most proteins and large biomolecules in
particular, contain cyclic structures within their covalent bond graphs. Most commonly,
these are five- and six-membered, but larger chordless cycles can also occur. The
unreliability of the BOSSANOVA approach when applied to the bond graphs of these
systems is therefore a significant limitation to its general applicability.

However, it is clear that n-body truncations of the BOSSANOVA decomposition can
provide good approximation quality when applied to some systems with acyclic covalent
bond graphs, indeed sometimes better quality than the equivalent n-body truncations of
the traditional fragment MBE on which the BOSSANOVA decomposition is based. It is
therefore natural to wonder if we might somehow modify the poset of connected induced
subgraphs in such a way as to ensure that truncations of the resulting SUPANOVA
decomposition are guaranteed to retain consistency with the underlying nuclear MBE.

Before investigating this idea further, we observe firstly that effectively the same
problem that afflicts the BOSSANOVA decomposition when applied to cyclic bond
graphs has been identified and addressed in other connectivity-based fragmentation
schemes. We have already mentioned that an n-body BOSSANOVA decomposition seems
to be related to the level-n SFM scheme [DC05]. It was quickly recognised that chordless
cycles presented issues for SFM calculations, which were initially ascribed to steric effects
due to close-range interactions between introduced hydrogen link atoms [CD06]. The
resulting ring repair modification to the SFM algorithm is difficult to phrase in our
terminology — see [CD06, App. B] for details — but it seems to essentially remove the
contribution potentials of any subfragment of a ring from explicit consideration.

In later work by Collins [Col12], the SFM was used as the basis for the systematic
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molecular fragmentation by annihilation (SMFA) protocol. We omit detail, but the SMFA
method can be basically viewed as performing a recursive top-down splitting of the
original interaction graph into a series of connected subgraphs. It is observed in [Col12]
that splitting chordless cycles can lead to the overcounting of certain “non-bonded
interactions” [Col12, p. 7745], and so biasing the weighted summation of per-fragment
energies used to deliver the full SMFA energy; thus, when a chordless cycle is encountered
during the top-down splitting, it is simply left whole.

An alternative approach is taken by the generalized kernel energy method (GKEM) of
Weiss et al. [WHM10], which we mentioned briefly in Sections 5.1.2 and 6.1 above. The
GKEM is an explicitly graph-based algorithm, phrased in terms of graphs that match
in structure and purpose what we call here interaction graphs. Very briefly, using our
notation and omitting much detail, one begins with an fragment interaction graph G in
terms of some fragmentation. For some truncation order n, all subsets u ∈ conn[G] of
size 1 ≤ k ≤ n are enumerated. Then, the sum of all of the fragment-MBE contribution
potentials Ṽu = Vu −

∑
v⊂u Ṽv for such subsets u is manipulated into a weighted sum

of subproblem potentials; this sum may involve subproblems v such that G[v] is not
connected.11

The GKEM energy expressions are given in [WHM10] explicitly only up to n = 4; the
derivations are complicated and the extension to n ≥ 5 is not immediate. Nevertheless, to
our best although informal and unproven understanding, the order-n GKEM total energy
is identical to the order-n BOSSANOVA decomposition for tree interaction graphs, but
also provides combination-consistent truncations of the underlying fragment MBE for
cyclic interaction graphs, while BOSSANOVA generally does not.

These examples suggest two possible approaches to amending the poset of connected
induced subgraphs. Given conn[G], we could seek to add additional disconnected induced
subgraphs G[v] in such a way as to make that poset closed under intersection, which
seems to be effectively although not explicitly done by the GKEM in cases where summed
contribution terms Vv do not cancel out. Alternatively, we could seek to remove certain
connected induced subgraphs from the poset, following the example of the SMFA.

Both approaches are problematic from the perspective of our adaptive algorithm.
Whichever adjusted poset P ⊆ BM we end up using, we need its cover relation to be
somehow locally enumerable, in the sense that given some induced subgraph G[u] and
its inducing vertex set u ∈ P , we need to be able to discover all elements v ∈ P such
that v ≺P u or v �P u. The cost of such discovery should ideally scale in a way
dependent only on u, v, and possibly the underlying graph G, but should not require
global knowledge of the complete poset P . This is true for conn[G]; see Section B.3. We
could in theory calculate, enumerate, and record the entirety of P before beginning a
calculation, but this is unlikely to be computationally feasible for even moderately-sized

11It is in the derivation of the four-body terms in [WHM10] that we encounter the only explicit invocation
of the general form of the PIE in the fragment literature that we are aware of.
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full-system interaction graphs.12 Nor is it easily feasible to somehow augment or prune the
poset during the adaptive process, since adding or removing a term s ∈ P can potentially
change the value of the Möbius function µP (s, t) for any t ≥ s.

6.5. Graph convexities and convex subgraphs

We consider now a particular subposet of the connected induced subgraphs which is
guaranteed by definition to be closed under intersection: that of the convex subgraphs of
G, or isomorphically, the subposet of vertex subsets of G which induce convex subgraphs.
We defer a definition of “convex subgraph” for the moment, but mention in anticipation
that the cover relations u ≺ v and u � v of this subposet can also be explored in a way
that is more-or-less local to some u, although not as straightforwardly as in the case of
conn[G].

Once more, we are not the first to consider decompositions of chemical properties in
terms of convex subgraphs. In particular, Klein suggests the use of the set of convex
subgraphs of a graph in the context of the CGTCE [Kle86]. In the words of Klein, “we
believe connected convex subgraphs form an especially well-behaved class of subgraphs in
some cluster expansion schemes to be discussed” [Kle86, p. 156]. By the latter, he refers
to a coupled cluster-like expansion. A full consideration of this formulation and the role
which the convex subgraphs play in it is beyond the scope of this work. To our reading,
however, precisely why and in what sense the convex subgraphs are “well-behaved” is not
elaborated upon.

The convex subgraphs of a graph have been considered when applying the CGTCE
in the context of, e.g., Heisenberg model Hamiltonians [PSK89]. Although it is possible
to recover the SUPANOVA decomposition form (6.2) in terms of the convex subgraphs
of some graph G from Klein’s very general class of expansions, it does not appear that
this has ever been fully and explicitly done in a setting like ours. It turns out, however,
that a particular subset of the convex subgraphs — specifically, the complete induced
subgraphs — provide the building blocks for a multilevel graph-based fragmentation
scheme developed more recently by Iyengar and co-workers [RHI18; RI18; KI19; RI20;
Zha+21], although the convexity of these subgraphs in the sense we consider here does
not seem to have been noticed by those authors.13 Although the derivation we give here
is not based directly on their work and we present it distinctly, the resulting convex
SUPANOVA expansion provides a natural extension to their formulation and recovers it
as a special case. We will discuss their scheme in detail and describe the connections
between it and that which we now give in Sections 7.1 and 7.2 in the following chapter.

12The SMFA encounters effectively just this issue during its top-down splitting, and attempts to overcome
it by a compression technique in the fragmentation algorithm [Col12].

13A different kind of convexity is mentioned in [RI20; Zha+21]. See Footnote 6 on page 195 in Section 7.2
for more details.
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6.5. Graph convexities and convex subgraphs

To make the connection with our order-theoretic construction clear, we will introduce the
convex subgraphs via the well-established theory of abstract convexity. This development
is not novel, and we shall only scratch the surface of the subject here. The reader interested
in a deeper treatment could begin with the survey by Edelman and Jamison [EJ85], the
textbook of van de Vel [Vel93], and the monograph of Pelayo [Pel13]. Precise nomenclature
and notation differs across the literature; we pick and choose for consistency and according
to taste.

We begin by recalling informally that a convex subset X ⊆ Rd is one such that every
point z that lies on a straight line between two points x, y ∈ X is itself in X. It follows
immediately that, if X, Y ⊆ Rd are convex, then so too is their intersection. This leads
to the following basic abstraction, which is defined equivalently in, e.g., [EJ85, Sec. 2;
Vel93, Sec. 1.1; Pel13, Sec. 1.3]. Our notation partially follows that in [GO10; BO13].

Definition 6.5.1 (Convexities and convex structures [EJ85; Vel93; Pel13]). Let X be
a finite set, and letM⊆ 2X be such that ∅ ∈ M, X ∈ M, and if A ∈ M and B ∈ M,
then A∩B ∈M. ThenM is called a convexity, and the members ofM are called convex
sets or convex subsets of X. Collectively, (X,M) is called a convex structure.

The additional requirement of closure under nested union specified in [Vel93; Pel13] is
unnecessary in the finite case [CMS05]. From an order-theoretic perspective, note that
any convexityM ordered by set inclusion is trivially isomorphic to a meet subsemilattice
of B|X|.

For the next definition, we refer again to, e.g., [EJ85, Sec. 2; Vel93, Sec. 1.1], and
borrow some notation from [BO15].

Definition 6.5.2 (Convex hull [EJ85; Vel93]). Let (X,M) be a convex structure, and
let S ⊆ X be an arbitrary subset of X. The convex hull of S, written CH[S], is defined
as

CH[S] :=
⋂
{A ∈M | S ⊆ A}. (6.18)

The convex hull of S ⊆ X can be considered equivalently as the unique smallest convex
subset of X containing S; see, e.g., [Vel93; Pel13]. Now following specifically [EJ85]:

Definition 6.5.3 (Extreme points of a set [EJ85]). Let (X,M) be a convex structure.
The extreme points of some A ⊆ X, written ex(A), are those points p ∈ A such that
p 6∈ CH[A− {p}].

In [EJ85, Thm. 2.1], Edelman and Jamison show the equivalence of several properties
that may be possessed by a convexity. The following definition, which we consider an
abridgement of that in [EJ85], is in terms of just one of those conditions. This simpler
form is also given in, e.g., [FJ86; Pel13].

Definition 6.5.4 (Convex geometry [EJ85]). Let (X,M) be a convex structure. If for
every convex set A ∈ M it holds that A = CH[ex(A)], then (X,M) is called a convex
geometry. If X is clear in context, we say informally just thatM is a convex geometry.
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6. Graph-based ANOVA-like decompositions

The convexity of any convex geometry turns out to be a kind of lattice called lower
semidistributive [EJ85, Thm. 4.1; Mon85]. It is particularly interesting from our per-
spective that a non-recursive expression has been given for the Möbius functions of these
lattices [EJ85, Thm. 4.3].

The intersection of abstract convexity and graph theory has a long history of study [FJ86;
FJ87; Duc88; BO13; Pel13]. Naturally, one can define a convexity of subsets of the vertex
set of some graph G. When so doing, it is usual to include an additional connectedness
requirement on both G and the subgraphs induced by members of the convexity. Partially
following, e.g., [Duc88; Pel13]:

Definition 6.5.5 (Graph convexity and convex subgraph [Duc88; Pel13]). Let G = (V,E)
be a connected undirected graph. LetM be a convexity over the vertex set V of G. If
every convex set ofM induces a connected subgraph of G, i.e., if u ∈ M implies that
G[u] is connected, then every such G[u] is called a convex subgraph of G, andM is called
a graph convexity.

We will sometimes write a graph convexity asM[G] to emphasise the particular graph
involved, much like [GO10; BO13]. We note that the term “convex subgraph” is not
very widely used in the graph-convexity literature (cf., however, e.g., [BC08]), and is in
particular not used in [Duc88; Pel13]. But we find it simpler than writing, e.g., “subgraph
of G induced by a convex set u”.

As usual, we define the shortest-path distance d(u, v) between two vertices u and v in
a connected graph G to be the minimum length of any path between them. Since G is
connected, at least one such shortest path exists. Each such shortest path is called a u−v
geodesic, as in, e.g. [CZ99; GO10; Pel13, Sec. 1.2], leading to the following definitions.
We cite here only [HLT93; CZ99; BC08; GO10; Pel13, Sec. 2.1] as exemplary references
for particular names and forms, but there are many other equivalent versions to be found
throughout the literature.

Definition 6.5.6 (Geodesic interval and geodesic closure [HLT93; CZ99; BC08; GO10;
Pel13]). Let G = (V,E) be a connected undirected graph, and let u, v ∈ V . The geodesic
interval [GO10] between u and v is defined14 to be the set of all vertices which lie along
any shortest path between u and v in G, and is written Ig(u, v). That is, following the
explicit form given in [BC08, Sec. 1],

Ig(u, v) := {w ∈ V | d(u,w) + d(w, v) = d(u, v)}. (6.19)

Similarly, the geodesic closure [HLT93; CZ99; Pel13, Sec. 2.1] is defined to be

Ig[u] :=
⋃

u,v∈u
Ig(u, v); (6.20)

14Both “geodesic” and “geodetic” can be found used interchangeably in this context in the literature. For
consistency, we use “geodesic” throughout.
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Figure 6.3.: All chordless paths between two vertices in the dehydrogenated covalent bond graph
of phenalene (C13H10) [CSPhen]. The numbering is arbitrary. The coloured arcs
between vertices indicate all three possible chordless paths, up to orientation, between
vertices 1 and 3 (shaded grey). The path marked by blue dashed arcs ( ) is the
unique shortest path between vertices 1 and 3, so the geodesic convex hull of {1, 3} is
CHg[{1, 3}] = {1, 2, 3}. Since the vertices along the paths marked by red dash-dotted
arcs ( ) and green dash-double-dotted arcs ( ) are also included in the monophonic
closure Im[{1, 3}], the monophonic convex hull of {1, 3} is CHm[{1, 3}] = [13], i.e.,
the complete vertex set of the graph.

that is, Ig[u] is defined to be the set of all vertices that lie along any shortest path
between any pair of vertices u, v ∈ u.

Clearly Ig[∅] = ∅ and Ig[V ] = V . Moreover, suppose that u,v ⊆ V are such that
u = Ig[u] and v = Ig[v]. Then clearly also u ∩ v = Ig[u] ∩ Ig[v] = Ig[u ∩ v]. As a result,
the collection of sets which are fixed points of the geodesic closure [Dou+09; Pel13] is a
graph convexity over G, called the geodesic convexity [FJ86; GO10; BO13; Pel13]:

Mg[G] := {u ⊆ V | u = Ig[u]}. (6.21)

As well as being called convex by dint of membership in a convexity, any u ∈Mg[G] may
also be called geodesically convex. Similarly, we will call each G[u] geodesically convex.
The geodesic convex hull of any v ∈ V , written in context CHg[v], is defined as above and
can be found by repeated application of Ig to v until a fixed point is encountered [HN81;
Dou+09; Pel13].

Although the geodesically convex subgraphs of a graph are usually those meant when
“convex subgraph” is used unqualified, as in [Kle86], a variety of other path-based graph
convexities can also be defined; see, e.g., [FJ86; Duc88; ASS13; Pel13; BO15; DS16]. For
example, the monophonic convexity Mm is obtained by defining an interval between u
and v to be all vertices along any chordless path between u and v, rather than just those
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6. Graph-based ANOVA-like decompositions

along any shortest path [FJ86; Pel13; BO13]. However, the geodesic convexity is the only
graph convexity described in the literature which we consider suitable for our purpose
here. We seek a hierarchy of subgraphs that is “balanced”, in the sense that it allows
our adaptive combination technique to explore small increments in cost and accuracy.
For this, we ask informally that the convex hull of a set of vertices should be somehow
“as small as possible” in order to cover those vertices. The monophonic convexity can
produce much larger convex hulls for given sets of vertices than the geodesic convexity.
For an illustration of this effect, see Figure 6.3, which shows the dehydrogenated bond
graph of the polycyclic aromatic hydrocarbon phenalene (C13H10) [CSPhen]. The bond
structure of this molecule consists of three joined benzene-like rings. The empty set, the
singleton sets, and the sets of adjacent vertex pairs are convex sets in both the geodesic
and monophonic graph convexities. However, the smallest monophonically convex set
including {1, 3} is CHm[{1, 3}] = [13], i.e., the entire graph, while CHg[{1, 3}] = {1, 2, 3}.

In general, it would be desirable to work with a graph convexity M[G] that is a
convex geometry. As well as the aforementioned non-recursive expression for the Möbius
function, certain properties of a convex geometry would suit our adaptive algorithm well.
In particular, it can be shown that each maximal chain in a convex geometry over X has
length |X| [EJ85, Thm. 2.2]. This would immediately imply that every cover v � u of
some u ∈M[G] could be obtained by the addition of a single additional vertex to u; see
also [EJ85, Thm. 2.1(b)]. Likewise, every v ≺ u could be obtained by the removal of a
single extreme point of u.

Consider, however, the following slightly rewritten version of [GO10, Thm. 24], which
is itself a partial restatement of a key result on the geodesic convexity originally due to
Farber and Jamison [FJ86].

Theorem 6.5.7 ([FJ86; GO10]). Let G = (V,E) be a connected undirected graph. Then
Mg[G] is a convex geometry if and only if G contains no chordless cycles of length four
or greater, and there does not exist {v1, v2, v3, v4, v5} ⊆ V such that each of {v1, v2},
{v1, v3}, {v1, v4}, {v1, v5}, {v2, v3}, {v3, v4}, {v4, v5} ∈ E.15

Proof. See [FJ86, Thm. 4.1].

This is a strong condition, which is not fulfilled by precisely the kind of problematic
interaction graphs which led us to this point, i.e., those containing five- and six-membered
chordless cycles. However, it is not hard to see that Mg[G] = conn[G] for any tree
interaction graph, and here also Mg is a convex geometry. We remark that just this
occurs in the known-good case for BOSSANOVA of linear alkanes.

In summary, although the geodesic convexityMg[G] of an interaction graph is a meet
subsemilattice and thus a combination-consistent subposet of BM that we can safely use
in a SUPANOVA decomposition, the presence of chordless cycles of length greater than
15In this case, both [FJ86; GO10] call the induced subgraph G[{v1, v2, v3, v4, v5}] a 3-fan. For visual

representations of the 3-fan, see either [FJ86, Fig. 1] or [GO10, Fig. 6].
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6.6. Case study: heterocyclic molecules

three (or, in their absence, the substructure described in Theorem 6.5.7) in G will cause
Mg[G] to be not as well-behaved as we would like. We mention in particular that we
have so far been unable to construct a general formulation of the Möbius function for
Mg that is usefully more efficient than the standard recursive definition; we suspect that
this is likely to be a difficult problem.

6.6. Case study: heterocyclic molecules
Undeterred by the last, we will examine SUPANOVA decompositions of V BO made using
the posetMg[G] of those vertex subsets which induce geodesically convex subgraphs of
a connected interaction graph G. Here, the nuclear subproblem potentials are, in our
standard notation,

Vu =
∑

v∈Mg [G[u]]

Ṽv. (6.22)

As before, we relegate a description of the poset axis interface functionality to Section B.4
in Appendix B.

We consider now two molecules of non-trivial size: limonin (C26H30O8) [CSLimo] and
chignolin (C48H63N11O18) [Hon+04]. We choose these molecules because their properties
allow us to demonstrate particular strengths and weaknesses of various SUPANOVA
decompositions in terms of covalent bond graphs. An initial geometry for limonin was
obtained from the ChemSpider database [CSLimo], and an initial geometry for chignolin
from the Protein Data Bank [HY04, PDB key: 1UAO]. Both geometries were further
optimised to plausible equilibria; see Section A.6. As in the case of the water clusters
considered in the previous chapter, we then performed reference calculations on both
systems at the all-electron MP2/cc-pCVTZ level of theory [MP34; SO89; Dun89; WD95].
Both calculations were also performed using NWChem [Apr+20], with the RHF iterative
convergence threshold set to 10−9Eh and ERI prescreening thresholds for both RHF
and MP2 set to 10−14Eh. The reference total energy of limonin was calculated to be
EMP2

cc-pCVTZ ≈ −1609.265 066Eh, and that of chignolin, EMP2
cc-pCVTZ ≈ −3820.686 852Eh.

The reference energy for chignolin was somewhat non-trivial to obtain, as the involved
MP2 calculation involved 4193 atomic orbital basis functions.

We begin with limonin, an abstract visualisation of which is provided in Figure 6.4.
The structure of limonin is strongly heterocyclic, containing a total of six five- and
six-membered rings of oxygen and carbon atoms. There is also a single three-member
ring formed of two carbon atoms and an oxygen.

Although the original BOSSANOVA formulation allows the severing of double bonds,
we choose to explicitly avoid this possibility here. We do so mostly to avoid the additional
complexity introduced by the questions of how one should saturate a dangling double
bond, and — should two hydrogen atoms be used — where precisely they should be
placed. Thus, we must use a different fragmentation of the nuclear indices of the system.
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6. Graph-based ANOVA-like decompositions

Figure 6.4.: Stick-model visualisation of limonin (C26H30O8) [CSLimo], after geometry optimisation
according to B3LYP/cc-pVDZ. Each stick represents a covalent bond between two
non-hydrogen atoms; hydrogens are omitted in order to better display the main
structure of the molecule. Fully grey sticks indicate bonds between carbon atoms;
half-grey and half-red sticks indicate bonds between carbon and oxygen atoms. Single
sticks indicate single bonds, and double sticks indicate double bonds.

There are, of course, very many ways of generating such a fragmentation, and a full
comparison of the different approaches described in the existing literature is beyond the
scope of this work. For the purposes of this study, we applied a simple heuristic algorithm
based upon repeated refinement of a candidate fragmentation F ′. We will describe this
algorithm only informally. Very similar heuristics are used to produce the initial sets
of functional groups used by both the SMFA [Col12] as well as the CFM (combined
fragmentation method) [Le+12] of Le et al. The basic approach of the algorithm is also
very similar to that given in [Le+12]. We note, however, that our approach here is
intended to function for an arbitrary interaction graph, rather than the covalent bond
graphs considered in [Col12; Le+12].

We begin by setting F ′ := {{i}}Mi=1, that is, assigning each distinct atom to a singleton
fragment, and then forming the quotient graph G′/F ′ of the base interaction graph G′.
The algorithm then proceeds in two phases.

In the first phase, for each fragment Fi, we consider every adjacent fragment Fj in the
quotient graph. If there exists a non-single covalent bond between a atom in Fi and one
in Fj , the two fragments are combined. Similarly, if there exists a hydrogen atom in Fi
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6.6. Case study: heterocyclic molecules

which is bonded to any atom in Fj , or vice versa, the fragments are combined into a
single fragment in an updated version of F ′. Once all fragments have been considered, the
quotient graph G/F ′ is recalculated. This process is repeated until a fixed point is found,
that is, until no fragment should be combined with an adjacent fragment according to
the two rules given above. Although we do not offer a proof, this results in practice in
a quotient graph that is effectively just the dehydrogenated covalent bond graph, with
any two fragments in that graph that are linked by a non-single bond merged together.
Exactly such a quotient graph is used as the initial group structure by the SMFA, as
presented in [Col12]; the two conditions here are also rules H1 and H2 in [Le+12, Tab. 1].

The second phase of the heuristic algorithm aims to produce a quotient graph such
that no vacuum embedding calculation in terms of any convex induced subgraph would
result in the cutting of multiple bonds to any atom not indexed by the subgraph, and
therefore require the placement of two or more link atoms in close spatial proximity. This
can occur in two cases. Firstly, if a single atom in one fragment is bonded to two or
more atoms in another fragment adjacent in the quotient graph. Secondly, if two atoms,
one in each of two quotient graph-adjacent fragments Fi and Fj , are bonded, and there
exists an atom bonded to either of the two original atoms in a third fragment Fk, that
is itself adjacent in the quotient graph to both Fi and Fj . Similarly to the first phase,
the second phase again iterates over all adjacent pairs of fragments Fi and Fj , testing
whether either of these two conditions holds, and merging Fi and Fj if so. Once a fixed
point is found, the algorithm terminates, and the current candidate F ′ is taken to be the
final fragmentation F . The two heuristics used in this step are very similar to rule H3
in [Le+12, Tab. 1], although not identical; we do allow an atom to be bonded to multiple
other atoms outside its containing fragment, provided that each of those atoms resides in
a distinct fragment, and none of those fragments are adjacent in the quotient graph.16

Although this heuristic approach is observed to construct suitable fragmentations in
practice, we offer no formal proof of its optimality in any sense. Indeed, the second
phase in particular does not necessarily lead to a unique fragmentation, since the merging
of fragments depends on the order in which the pairs are considered. A more rigorous
development of this algorithm, as well as comparison with those described in, e.g., [Col12;
Le+12; CCB14; See+22] may be of some slight interest in the future.

When applied to limonin, the heuristic approach produces a fragmentation F that is
as follows. As expected, each non-hydrogen atom is found in the same fragment as are all
hydrogen atoms to which that atom is covalently bonded. Additionally, any two atoms
connected by a double bond are also found in the same fragment. The carbon and oxygen
atoms involved in the three-member ring are likewise grouped into the same fragment,
16For example, consider the case of the covalent bond graph of any branched alkane containing a tertiary

carbon atom. Our algorithm simply provides the dehydrogenated covalent bond graph, and the tertiary
carbon atom will be placed alone in a fragment with its single bonded hydrogen atom. The CFM
algorithm, to our understanding, will never allow this atom to exist in a group without the presence of
at least two of its three bonded carbon atoms, since this would break rule H3 in [Le+12, Tab. 1].
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6. Graph-based ANOVA-like decompositions

and the oxygen atom in the five-member ring containing double bonds is grouped with
the two carbon atoms involved in the double bond that is drawn further from the page
in Figure 6.4. The fragmentation F consists of 26 fragments in total; seven of these are
singleton sets, seven are pairs, five are triplets, and seven are quadruplets. The final
quotient graph G = G′/F contains three chordless cycles of length six, and two chordless
cycles of length five.

We report several order-theoretic combination technique calculations using single-axis
poset grids, with two types of SUPANOVA axis. The first type is in terms of the poset
grid Π = conn[G], the poset of connected induced subgraphs of G. The second set
involves Π =Mg[G], the poset of geodesically convex subgraphs of G. For comparison,
we also consider fragment MBE calculations, using the single-axis boolean algebra grid
Π = B|G| of subsets of the complete set of fragments.

Calculations were performed in terms of both vacuum embedding subproblem potentials
and mixed-basis subproblem potentials, all at the MP2/cc-pCVTZ level of theory [MP34;
SO89; Dun89; WD95] as calculated with PySCF [Sun15; Sun+17; Sun+20]. We refer
again to Section A.7 for full details, remarking also again that the practical process of
obtaining the final results given here and throughout this chapter (with the exception of
those in Section 6.8.2) involved the use of repeatedly restarted adaptive calculations and
precached subproblem potential results. Given that the various electrostatic embedding
potentials in the MBE case discussed in the previous chapter did not demonstrate
a persuasive benefit relative to vacuum embedding potentials, and in the interest of
simplicity, we do not consider such potentials either here or anywhere in the remainder
of this thesis. For vacuum embedding calculations, dangling bonds were treated using
hydrogen link atoms, placed according to the scaled covalent radii [Cor+08] of the involved
atoms as per [RH12, (9)]. The embedding basis set for the mixed-basis potentials was
again chosen to be DZ.

As in the previous chapter, we report per-iteration results for adaptive calculations
using both the Threshold and All strategies. For Threshold calculations, we give
results here and for the remainder of the chapter only for a single threshold value,
α = 0.1, rather than the α = 0.5 considered in the previous chapter. The reduction was
intended to increase the amount of work available at each iteration; we note that the
posets investigated here are significantly “sparser” than the full boolean algebra. Again,
a full investigation of different values of α for such calculations is left for future work.
For full-MBE calculations, however, the threshold is kept at α = 0.5 for consistency.
Calculations are considered to have terminated once the cumulative abstract cost of
evaluation of all terms in an adaptively-obtained index set exceeds the reference cost by
a factor of ten.

In what follows, we will refer to as “BOSSANOVA” those calculations which are made
in terms of conn[G], and “SUPANOVA” or “convex SUPANOVA” those in terms ofMg[G].
The former are not, strictly speaking, BOSSANOVA calculations exactly as described
previously in the chapter, since some of the involved fragments are larger than those
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Figure 6.5.: Absolute errors for progressively-refined adaptive SUPANOVA calculations over
limonin (C26H30O8), performed using vacuum and mixed-basis embedding subproblem
potentials. The fragmentation is as described in the main text. Also shown for
comparison are errors for a vacuum-embedding fragment MBE performed over the
same system with the same fragmentation; the Threshold calculations here used
α = 0.5. Errors are measured relative to a reference MP2/cc-pCVTZ calculation.
Costs measure the total evaluation cost of the complete index set at each stage of
the refinement. The black vertical and horizontal lines indicate the abstract cost of
the reference calculation and chemical accuracy (≈ 0.0016Eh) respectively.

provided by the dehydrogenated covalent bond graph of limonin. Informal experimentation
suggests that a truly faithful implementation of the original BOSSANOVA formulation
performs no better, indeed significantly worse, perhaps due to issues related to both
the treatment of double bonds and steric effects arising from too-close placement of link
atoms.

Per-iteration plots of the absolute errors obtained during progressive refinement versus
the cumulative cost expended are given in Figure 6.5. As expected, the BOSSANOVA
calculations perform poorly. The progressive refinements produce a steady decrease in
absolute error until three-body subgraph terms are included in the combination sum,
at which point overcounting errors begin to accumulate, as discussed in Section 6.3
above. The errors of the subsequent approximations are oscillatory, but they do not fall
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meaningfully and consistently below 5× 10−2Eh at best.
It is perhaps interesting to note that the adaptive MBE calculations produce errors

roughly equivalent to the various BOSSANOVA calculations once their cumulative cost
passes 1014. It is likely that some of the MBE contribution potentials are also incurring
significant errors due to proximally-placed link atoms. More interesting is that the
Threshold-adaptive MBE calculation here does seem to clearly outperform the All
calculation, which produces effectively a sequence of standard n-body fragment MBEs
for n = 1, 2, . . . This might suggest that longer-range interactions contribute less strongly
to the total energy of limonin than they do for the water clusters considered previously,
and that the adaptive algorithm has more flexibility to ignore fragments separated by
medium and long distances.

The error behaviour of the SUPANOVA expansions over the poset of convex subgraphs
is much better behaved than that of the BOSSANOVA expansions. Although the errors
for these calculations also oscillate from one iteration to the next, particularly those
obtained according to Threshold adaptivity with vacuum-embedding potentials, they
appear to decay algebraically against cost in the overall trend. The obtained error for a
given cost is almost always better than that of the fragment-MBE calculations; for the
vacuum-embedding calculations, this is usually by multiple orders of magnitude.

Even the adaptive results involving mixed-basis embedding potentials, which are full-
system calculations and thus individually expensive, produce results which are still at
least competitive with those of the Threshold fragment-MBE calculation in the convex
subgraph case. Here, we observe that the distinction between Threshold and All
calculations is very slight; indeed, for the first few iterations, it turns out here that the
Threshold expansion simply selects all of the elements in the queue. It is unclear
whether and to what extent this behaviour would continue for further iterations; it may
be that a different and higher choice of α would produce more fine-grained iterations and
be able to winnow out some of the less-important contribution potentials.

The behaviour of the error indicator and propagated uncertainty for the BOSSANOVA
and convex SUPANOVA calculations using vacuum embedding potentials is displayed in
Figure 6.6. The propagated uncertainties grow here much slower with calculation cost
than they do for the fragment-MBE calculations discussed in the previous chapter, never
surpassing 10−5Eh. This is most likely not due to any inherent structural characteristics
of the involved posets, but rather to the simple fact that far fewer subproblem potentials
are explicitly involved in each combination sum than would be in a comparable fragment-
MBE combination sum; this would be consistent with [RLH14; Lao+16; LH17]. Thus,
we can effectively rule out numerical condition as a contributing factor to the poor
performance of the BOSSANOVA calculations. The major problem remains most likely
the overcounting issues inherent to combination sums over a combination-inconsistent
subposet of the relevant boolean algebra.

The error indicator is again observed to behave reliably for the convex SUPANOVA
calculations, both for Threshold and All adaptivity. The error indicator does at times
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Figure 6.6.: Absolute errors, error indicators, and propagated uncertainties for progressively-
refined adaptive BOSSANOVA and convex SUPANOVA calculations on limonin
(C26H30O8) using vacuum embedding subproblem potentials. Absolute errors and
costs are calculated as in Figure 6.5. Error indicators are obtained as described in
Section 3.5.5. Propagated uncertainties are calculated as described in Section 5.3,
with an assumed uncertainty of 10−8Eh ascribed to the value of each individual
subproblem potential. Vertical and horizontal lines indicate the abstract cost of the
reference calculation and chemical accuracy (≈ 0.0016Eh) respectively, also as in
Figure 6.5.

fall below the true error for the Threshold calculations, but never by more than half
an order of magnitude. For the BOSSANOVA cases, the error indicator appears less
reliable, oscillating around the true error and in some cases underestimating it by an
order of magnitude or more. Here, the same over-counting issues which afflict the full
BOSSANOVA combination sums also afflict the partial combination sum used to produce
the error indicator. This does not indicate a problem with the formulation of the error
indicator itself, but it does emphasise that that the error indicator is deeply tied to the
poset and index set which are used to derive the approximation that it measures. Thus,
the error indicator does not and cannot provide an independent assessment of quality.

We turn now to chignolin. As the visualisation in Figure 6.7 shows, chignolin takes a
β-hairpin conformation; see [Hon+04] and references within. This is held in place by
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∼
3
.8

Å

Figure 6.7.: Stick-model visualisation of chignolin (C48H63N11O18) [Hon+04; HY04, PDB key:
1UAO], after geometry optimisation according to B3LYP/cc-pVDZ. The visualisation
format is that of Figure 6.4. Here, blue half-sticks indicate nitrogen atoms. The two
circled atoms, one nitrogen and one oxygen, are separated in space by approximately
3.8Å, as indicated. The shortest-path distance between these two atoms in the
covalent bond graph of chignolin is 30.

non-covalent interactions, particularly by hydrogen bonds, between atoms on both sides
of the hairpin; see again [Hon+04], particularly Figure 4.B. Chignolin contains three
cyclic substructures. The first is a fused pair of aromatic rings. The remaining two are
isolated rings, one aromatic and one non-aromatic.

We consider chignolin in order to investigate a situation in which the guiding assump-
tions underlying the use of an adaptively-truncated SUPANOVA decomposition over
posets of connected induced subgraphs or convex subgraphs of covalent bond graphs
may not hold. Many of the atoms in chignolin which are not close in the covalent bond
graph are however close in terms of distance in space, and so may also produce strong
non-covalent effects. For a particularly striking case, observe that the two circled atoms in
the visualisation in Figure 6.7 are almost maximally distant from each other in the bond
graph, being separated by a shortest path across 29 intervening atoms. Nevertheless,
their spatial separation is only approximately 3.8Å. It seems therefore doubtful that
considering larger and larger connected or convex subgraphs of the bond graph will
smoothly resolve all of the medium- to long-range effects involved in the total energy of
chignolin. This is a known problem with graph-based fragmentation methods [See+22].
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Figure 6.8.: Absolute errors for progressively-refined adaptive SUPANOVA calculations over
chignolin (C48H63N11O18). Plot formats are as for Figure 6.5.

We report equivalent calculations on chignolin to those performed on limonin, using
a fragmentation F and quotient interaction graph G = G′/F of the covalent bond
graph G′ obtained using the same heuristic algorithm. This fragmentation F consists
of 57 fragments: one singleton fragment, 35 pair fragments, 15 triplet fragments, and 6
quadruplet fragments.

Due to practical computational limits, we give adaptive calculations for chignolin up
to a termination threshold set as the abstract cost of the reference calculation multiplied
by a factor of two, rather than the tenfold factor used for limonin. The All vacuum-
embedding fragment MBE calculation is given only up to the introduction of three-body
terms; inclusion of the four-body terms would involve 395 010 subproblem potentials, and
was not considered interesting enough to justify the significant additional computational
expense.

Plots against cumulative cost of the per-iteration absolute errors for the BOSSANOVA
and convex SUPANOVA calculations for chignolin are given in Figure 6.8, in the same
format as those for limonin above. It is immediately clear that neither BOSSANOVA nor
SUPANOVA truncations provide good approximations to the total energy when vacuum
embeddings are used, at least not in the cost range considered. After an initially rapid
decrease, the per-iteration errors produced by both All and Threshold calculations
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stabilise around 1014Eh, and do not improve even as the cost of the approximations
increases by multiple orders of magnitude.

When mixed-basis embedding potentials are used, a steep decay in error is also observed
from the second iteration onwards; recall that the first iteration provides in effect just
a DZ-level MP2 calculation in the form of V∅. However, these errors also only reach
approximately 1014Eh before the cost limit is exceeded. It is unclear from these plots
whether the decay would continue at the same rate if more expensive approximations
were considered. This would be interesting to know in principle, but it is not practically
relevant in the face of a cheaper reference calculation.

It is interesting that the “control” fragment MBE calculations using the Threshold
strategy provide the best result; not results, plural, since only one such calculation
was performed, and plotted on each of the left- and right-hand side plots in Figure 6.8
for reference. We note that this is also the clearest indication that we have yet seen
of a true adaptive algorithm outperforming a simple All strategy. For example, at a
cumulative abstract cost of around 1016, the former provides an approximation that is
almost two orders of magnitude better than the latter. This suggests that many of the
MBE terms in a larger system are indeed negligible and can be successfully screened
by our adaptive approach. Nevertheless, even the Threshold MBE calculation does
not approach chemical accuracy in the explored cost range, which is consistent with the
results for fragment MBEs given in the previous chapter.

Taken together, these results, specifically those for the vacuum-embedding BOSSAN-
OVA/SUPANOVA expansion and for the fragment MBE, seem to confirm our suspicion
that the interaction graph underlying these decompositions does not suffice as a rep-
resentation of the underlying system. The most likely explanation here is that those
MBE terms that include components of the system on both sides of the hairpin structure
are important, but are not being included in either the BOSSANOVA or SUPANOVA
truncated summations, since they do not appear as connected induced subgraphs of the
complete graph, nor as convex subgraphs.

In the absolute error and related error metrics for the vacuum-embedding case, shown
in Figure 6.9, we find a more concerning aspect of the inability of the adaptive algorithm
to locate more important contribution potentials. The error indicators for both BOSSAN-
OVA and convex SUPANOVA calculations are far too optimistic. Although this might
be ascribed in the BOSSANOVA case to the now-clear issues with that decomposition,
this is not expected in the convex SUPANOVA case. Again, however, we realise that
the error indicator is connected to the decomposition itself. All that the error indicator
can truly tell us is that the sum of the contribution potentials in the antichains which
generate the progressively-refined index sets is shrinking. This does not necessarily imply
that the resulting approximation is accurate.

The differences in absolute errors between results obtained using BOSSANOVA and
convex SUPANOVA appear to be much less pronounced here than for limonin. This
can be understood as a consequence of the fragmentation scheme we have employed,
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Figure 6.9.: Absolute errors, error indicators, and propagated uncertainties for progressively-
refined adaptive BOSSANOVA and convex SUPANOVA calculations on chignolin
(C48H63N11O18) using vacuum embedding subproblem potentials. Plot formats are
equivalent to those in Figure 6.6.

specifically that the quotient graph G/F possesses fewer chordless cycles than does the
original covalent bond graph G′. The quotient graph contains only three chordless cycles:
two of length three, the fragments of which make up the two six-membered aromatic
rings that involve double bonds, and one of length four, which includes the five-membered
non-aromatic ring along the main line of the hairpin. The two length-three chordless
cycles in the quotient graph do not lead to overcounting problems in the BOSSANOVA
decomposition; only the length-four chordless cycle does. It may be the case that the
resulting overcounted contribution potential values are sufficiently small in number
and magnitude that their contribution falls below the larger inaccuracy caused by the
inadequacy of the covalent bond graph.

It is tempting to wonder if this suggests a remedy for the problems with the BOSSAN-
OVA decomposition that is simpler than the use of convex subgraphs. Given a covalent
bond graph, we would need only construct a fragmentation such that the resulting
quotient graph G contains none of the forbidden subgraphs discussed above. The poset of
connected induced subgraphs would then be closed under intersection, and the significant
additional complexity of the convex-subgraph approach could be avoided entirely. Put
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differently, the geodesic convexityMg[G] would be exactly equal to conn[G]; it would also
be a convex geometry, and we would have a cleaner expression for its Möbius function.

There are several ways in which this could be manually achieved for chignolin. Noting
that only a single carbon-nitrogen bond in the non-aromatic ring is a part of the main
hairpin structure, we might group together in a fragment the three carbon atoms that lie
off the hairpin. Alternatively, we might introduce an additional rule for the construction
of the fragmentation, stating that any two bonded atoms which are not both carbon
should be constrained to lie in the same fragment. Again, this would compress the
non-aromatic ring to a triangle subgraph in the quotient graph.

Consider, however, the three-ringed structure of phenalene, as drawn in Figure 6.3.
The same fragmentation scheme we have used in this section there produces a quotient
graph composed of two square subgraphs and a triangle subgraph. Each of the square
subgraphs is isomorphic to C4, and thus problematic. Certainly this quotient graph and
its corresponding fragmentation could be further compressed, but an algorithm which
could also operate on arbitrary other similar molecular structures (graphenes, coronenes,
fullerenes, etc.) is not immediate. Nor is it clear how one could perform a similar
transformation for limonin, or for an arbitrary valid interaction graph in the general case.

6.7. Alternative interaction graphs

Although a SUPANOVA expansion of the total energy in terms of the convex subgraphs
of the covalent bond graph of a molecule is combination-consistent with the underlying
MBE, the results shown for chignolin in the previous section suggest that adaptive
truncation of that expansion may not be well-behaved if the bond graph provides a poor
representation of the spatial connectivity of that molecule.

Additionally, such a SUPANOVA decomposition is only formally exact if the complete
covalent bond graph of the system is itself connected. This is trivially not so in the
case of the water clusters considered in the previous chapter, nor for any cluster of
non-covalently bonded molecules. It may also be not be true for other macromolecular
systems. Consider, for example, the famous double-helix structure of DNA; the two
helices are not covalently bonded, but are instead held coherent by hydrogen bonds
between base pairs [Gue+00].

We consider briefly a way to treat the former issue, that bond graphs may underdescribe
the spatial connectivity of a molecular system, and in so doing also treat the latter issue,
that the full-system covalent bond graph may be disconnected. Specifically, we can use a
different full-system interaction graph, which includes a superset of the direct interactions
in the original covalent bond graph, and which can always be made to be connected.

For this purpose, we will consider what we will call radial interaction graphs, which
have the edge set E = {{i, j} ⊆ [M ] | i 6= j, ‖Ri −Rj‖ ≤ rcut} for some choice of cutoff
rcut > 0. Here, each atom interacts directly only with those atoms which lie within a
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surrounding sphere of radius rcut. This is just the same idea as applied by effectively
all of the distance-based thresholding methods mentioned above; see, for very non-
exhaustive example, the original definition of the GEBF [LLJ07], and a study of the SFM
method as applied to water clusters [Pru+12]. The idea is also well-known in other areas
of computational chemistry and molecular dynamics, particularly in the construction
of approximate potential functions [GKZ07; Bar+10; TM11; FT13; Bar+17; Jen17;
GGG20]. Radial interaction graphs have been directly considered and used by other
existing fragmentation methods, e.g., [Fis18; RI20; RKI20; KDI21; Zha+21], sometimes
explicitly to garner non-bonded interactions. In fact, a slightly more sophisticated idea
with species-dependent values of rcut is used in, e.g., [CCB14; See+22] to construct a
bond graph itself.

Since the precise choice of rcut determines the graph, so will it also determine the
behaviour and characteristics of truncations of the resulting SUPANOVA decomposition.
If rcut is taken to be greater or equal to the Euclidean length of the longest bond
represented in the covalent bond graph, the edge set of the resulting radial interaction
graph will be a superset of the edge set of the covalent bond graph. There must also
exist some minimal rcut such that the radial interaction graph is connected. This value is
bounded above by the largest pairwise distance between atoms in the system, but will
generally be smaller in magnitude. If a radial interaction graph G is constructed using
an rcut which exceeds this threshold, then it will be connected, and so any SUPANOVA
decomposition in terms of the poset of convex subgraphs of G will be formally exact.

It seems reasonable to wish to choose an rcut sufficiently large enough to enmesh any
important direct interactions which are omitted from the covalent bond graph, but no
larger, so as to retain as much sparsity in the graph as possible. If rcut is taken sufficiently
large, the according radial interaction graph will be complete, and every involved atom
modelled as interacting directly with every other atom. In this case, every induced
subgraph is convex, and so the convex SUPANOVA decomposition becomes nothing more
than a standard nuclear or fragment MBE.

We return now not only to chignolin, but also to the 55-monomer water cluster (H2O)55
considered in the previous chapter. The structures and thus energies of both systems
are known to be influenced by non-covalent bonding. As remarked above, chignolin
contains hydrogen bonds across the gap formed by its β-hairpin conformation [Hon+04].
The conformations assumed by water clusters are also deeply influenced by hydrogen
bonds [Xan94; RS15]; this is visible to some extent in Figure 5.1, where the individual
water molecules are oriented such that their oxygen-hydrogen bonds tend to point towards
the oxygen atoms in other molecules. Informally and roughly, hydrogen bonds such as
these are around 2Å in length, if one measures from the hydrogen atom to the heavy
atom [HM99]; see also [Gue+00] for a discussion of hydrogen bond lengths in the DNA
case. Thus, for each system, we equip each system with a radial interaction graph,
constructed with a cutoff threshold of rcut = 2.5Å; the intention here is to model at least
all hydrogen bonds, allowing a reasonable threshold for similar interactions at a slightly
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Figure 6.10.: Absolute errors and error indicators for progressively-refined adaptive convex SUPAN-
OVA calculations over (H2O)55 and chignolin (C48H63N11O18), at the MP2/cc-pCVTZ
level of theory. The calculations are in terms of posets of convex subgraphs of pro-
cessed radial interaction graphs with rcut = 2.5Å as described in the main text.
Horizontal and vertical lines display the threshold of chemical accuracy and the cost
of the reference, respectively.

longer length scale.
Again, we consider approximate calculations of the MP2/cc-pCVTZ total energies

of both systems using adaptively-refined poset-grid combination sums. The radial
graphs used for both systems are highly cyclic, so we consider only calculations in terms
of convex SUPANOVA decompositions, and for simplicity, only vacuum embedding
potentials. Again, both All and Threshold (α = 0.1) strategies are considered.

Per-iteration results for the calculations using radial interaction graphs are given in
Figure 6.10. The calculations for (H2O)55, both All and Threshold, proved to be
only feasible up to a total abstract cost of approximately 1016. This was due to an
interesting emergent property of the poset of convex subgraphs, which is related to
the observation thatMg[G] cannot in this case be a convex geometry. Instead,Mg[G]
contains saturated17 chains between the empty induced subgraph and the full (sub)graph
G which are of widely varying length. The longest saturated chain in the poset is of
17A saturated chain in a poset P is one where, informally, each element of that chain is covered by the next

element. See [Sta12] for a more precise definition.
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length 13, while the shortest is of length 6. In the latter case, the numbers of monomers
in the involved fragments are 0, 1, 2, 3, 4, 5, and then suddenly 55; put differently, there
is a five-monomer convex-subgraph fragment which is covered inMg[G] by the complete
system.

This is quite different to the poset of connected subgraphs conn[G], where every
saturated chain of that poset has the same length, 56, and adds a single monomer at each
element of that chain. This structure ofMg[G] means in practice that the expansion
of a small subgraph in the adaptive index set algorithm can introduce a dramatically
larger subgraph into the index set, and the cost associated with this larger subgraph can
be several orders of magnitude greater than that of the predecessor which introduced
it. Precisely this occurred during the calculations for (H2O)55: at some iteration of the
adaptive process, a large jump in the individual cost of some or all of the required MP2
calculations occurred, and these calculations were not practically feasible with the PySCF
solver on the particular hardware resources used.

This effect is a good illustration of the desirability of a SUPANOVA decomposition in
terms of a convex geometry. A thorough analysis of this behaviour would surely be of
interest, as would be the development of a mechanism by which a radial-type interaction
graph might be structured so as to ameliorate its impact, but these are well beyond
the scope of this thesis. There is likely to be a connection here to the hull number
of a graph [ES85]: the size of the smallest subgraph G′ of some graph G such that
CHg[G

′] = G. The hull number and related quantities have been well-studied for various
classes of graph, see, e.g., [BO13; Dou+09; Ton09; JG12] and Chapter 2 of [Pel13]. Note
that the five-monomer fragment mentioned above would then correspond to a hull graph
of the full graph. Also interesting here is an empirical study of convexity in a variety of
real-world networks [MŠ18].

The limited results for (H2O)55 that we do have are slightly better in comparison to
those for the conventional MBE setting as plotted in Figure 5.2 in the previous chapter,
and are at least more stable. Both All and Threshold calculations comfortably achieve
a true accuracy of 10−2Eh. Although these results are not particularly impressive, it is
reassuring to see that the adaptive error indicator is again acceptably accurate, never
over- or underestimating the true error by more than an order of magnitude.

The convex-subgraph poset Mg[G] for the equivalent quotient graph for chignolin
seems to be better-behaved than that for (H2O)55, and the performance of the convex
SUPANOVA method is in this case much more encouraging. Both All and Threshold
calculations show a progressive and smooth decay in error as the cost increases. In
the final iterations as plotted, the combination sums comfortably and convincingly pass
chemical accuracy. The error indicators are also generally well-behaved and accurate, and
consistently overestimate the true error, although there is one particular All iteration
where the error indicator instead underestimates the true error by slightly more than an
order of magnitude.

The results for chignolin seem then to suggest that our suspicions about the descriptive
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quality of the covalent bond graph were well-founded, and that the use of a radial
interaction graph can indeed produce a SUPANOVA decomposition that is systematically
improvable and does not produce misleading error indicators. Despite this, however, the
SUPANOVA calculations still do not produce a meaningful speedup when considered
against the reference calculation. Presumably, if such is to materialise, we must consider
even larger systems again.

6.8. Case study: proteins
We conclude the chapter by investigating the application of the convex SUPANOVA
decomposition to two proteins, one relatively small, the other enormous.

6.8.1. Antifreeze protein
We consider first a model of a natural antifreeze protein [Sön+96; Sön+97, PDB key:
1KDF], which we obtained from the Protein Data Bank (PDB). We converted the
representation of 1KDF from the original PDB format into MOL format and explicitly
added hydrogen atoms using the OpenBabel toolkit [OBo+11]. The resulting structure
has the empirical formula C303H512N82O89S3, for a total of 991 atoms, 479 of which are
non-hydrogen. The covalent bond graph of 1KDF is connected, and contains seven
chordless cycles, all of length either five or six. An abstract visualisation of the non-
hydrogenic bond connectivity structure of 1KDF is given in Figure 6.11, with those
cyclic substructures highlighted. Unlike previous systems considered in this chapter, we
performed no further optimisation on the geometry of 1KDF, and treated it exactly as
obtained from the PDB, up to the addition of hydrogens.

This particular protein is briefly investigated in [Heb14, Sec. 9.6.2] in the context of the
BOSSANOVA decomposition. There, a three-body BOSSANOVA truncation provides
an approximate MP2/6-311G* total energy of 1KDF as EMP2

6-311G* ≈ −24 996.98Eh. The
accuracy of this approximation is not explicitly estimated. In the context of similar
calculations reported in that work, however, we suggest that this approximation might
have a relative error between 10−3 and 10−4. Despite the presence of chordless cycles in
the bond graph, this approximation will not be afflicted with the inconsistency-related
errors discussed in Section 6.3, since only up to three-body terms are used and no chordless
cycles of length four exist in the bond graph. However, such a relative error would lead
to an absolute error at least on the order of 10Eh. Such an approximation is unlikely
to be of any great use without further refinement, especially without validation of its
reliability, and any further refinement would necessarily introduce consistency-related
errors.

We now investigate whether an adaptive convex SUPANOVA approximation can
provide a refineable estimate of the total energy of 1KDF. We attempted to perform
reference MP2 total energy calculations on 1KDF at various levels of basis set theory,
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Figure 6.11.: Stick-model visualisation of the covalent bond structure of the antifreeze pro-
tein [Sön+96; Sön+97, PDB key: 1KDF]; bonds to hydrogen atoms are not shown.
Chordless cycles in the bond graph are highlighted in red; all other elements are left
universally grey.

including 6-311G*, but found these calculations to be computationally impractical for
any non-trivial basis set. Instead, we consider here only the HF/cc-pVTZ [SO89; Dun89]
total energy of 1KDF, EHF

cc-pVTZ ≈ −24 896.350 029Eh, which — requiring a calculation
in terms of 21 558 contracted basis functions — was the best-available reference value
that we could reasonably obtain.

The set of atoms composing the 1KDF system were split into a fragmentation F
according to the heuristic algorithm outlined above. This fragmentation comprised
143 fragments, with fragment sizes ranging between two (four fragments) and 17 (one
fragment), most (131 fragments) involving ten or fewer atoms. We then constructed the
quotient graph G = G′/F of the radial interaction graph G′ of 1KDF with rcut = 2.5Å,
similarly to as in the previous section.

As above, we consider here two adaptive convex SUPANOVA calculations in terms of G,
using the All and Threshold adaptive strategies respectively, the latter with α = 0.1.
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Figure 6.12.: Error metrics for adaptive SUPANOVA calculations on the antifreeze protein.
Calculations are in terms of the poset Mg[G] of convex subgraphs of a radial
interaction graph with rcut = 2.5Å, as described in the text. The left-hand plot (a)
shows per-iteration absolute errors, measured against a reference value of EHF

cc-pVTZ ≈
−24 896.350 029Eh, as well as the absolute values of the error indicator. The right-
hand plot (b) shows per-iteration relative errors. Solid black vertical and horizontal
lines indicate reference abstract cost and chemical accuracy as usual; in plot (b),
chemical accuracy is measured as the relative error of the difference of the reference
value and 1 kcalmol−1.

Only vacuum embedding subproblem potentials are considered. These calculations
were terminated once the total cumulative abstract cost exceeded that of the reference
calculation by a factor of two. Per-iteration results for the true absolute errors and
calculated error indicators of these calculations versus the cumulative abstract costs are
plotted in Figure 6.12. Here, we depart from the prequel in plotting not only the absolute
error of the per-iteration results (in the left-hand plot), but also the corresponding relative
errors (in the right-hand plot).

The results here are mixed. Most importantly, the per-iteration results for both
calculations show that the convex SUPANOVA approximation does appear to approximate
the HF/cc-pVTZ total energy more and more accurately. Also, the error indicators appear
to track the true absolute error quite closely, at least once past an initial regime where
they significantly overestimate it. From this, we conclude that the radial interaction
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graph is again an appropriately comprehensive description of the system.
However, neither of the two adaptive calculations is quite able to convincingly obtain

chemical accuracy, certainly not with any kind of speedup relative to the reference
calculation. This is somewhat discouraging — 1KDF is by normal quantum chemical
standards a large system, so even if speedup were only to be found for large systems, we
would hope to see at least a glimmer of it here. However, it should still be noted that
since the threshold of chemical accuracy is of course fixed, calculations over larger and
larger systems will require more and more relative accuracy in order to exceed it.

6.8.2. SARS-CoV-2 spike glycoprotein

The infection process of the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus
2) [Wal+20b] virus connected to the COVID-19 pandemic is driven by spike glycoproteins
arrayed over its exterior [TV19; Wal+20b; Mur+21]. We consider here a model of the
SARS-CoV-2 spike glycoprotein obtained via cryoelectron microscopy and published in
the Protein Data Bank [Wal+20b; Wal+20a, PDB key: 6VXX]; see the visualisation in
Figure 6.13, and also those in Figure 3 of [Wal+20b]. As for 1KDF above, we explicitly
hydrogenated the original model of 6VXX using OpenBabel [OBo+11]. The resulting
molecular system consists of 27 distinct non-covalently bonded subunits, ranging in size
between 63 and 2690 non-hydrogen atoms. In total, these subunits involve 46 923 atoms,
connected by 47 526 covalent bonds.

From an ab initio quantum chemical standpoint, this glycoprotein is prohibitively large.
Equipped with the STO-2G minimal basis set [HSP69; Heh+70], a description of the
6VXX glycoprotein system would require 142 095 atomic orbitals, increasing to 1 036 422
AOs for the more moderate cc-pVTZ basis set, and 9 565 164 AOs for aug-cc-pCV6Z.
These are problem formulations that are vastly beyond the capabilities of any conventional
quantum-chemical solver. However, some research has been performed [Aki+21] using the
fragment molecular orbital (FMO) method [Kit+99; FNK12] to investigate interaction
energies between subunits of the spike glycoprotein, as well as between the glycoprotein
and certain enzymes and antibodies possibly related to virus infection. These calculations
involved post-HF calculations up to a simplified formulation of MP4, applying the 6-31G*
and cc-pVDZ basis sets and considering only up to two-body fragment terms. Although
the computational requirements for this study were substantial, involving well more than
100 000 CPU cores working in parallel, the authors were still prevented for reasons of
feasibility from performing a more desirable cc-pVTZ calculation [Aki+21, Supp. info.].

As a speculative application of our SUPANOVA approach, we attempted to approximate
the Hartree-Fock total energy of the modelled spike glycoprotein according to the cc-
pVTZ basis set. We calculated the radial interaction graph G′ for the spike protein with
rcut = 2.5Å. When applied to this graph, the heuristic fragmentation method outlined
above produced a fragmentation F containing 7524 fragments, ranging in size from 93
monoatomic fragments up to seven fragments containing 17 atoms. Thus, we consider
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Figure 6.13.: Space-filling visualisation of the SARS-CoV-2 spike glycoprotein [Wal+20b; Wal+20a,
PDB key: 6VXX]. Each atom is represented by a sphere of species-appropriate van
der Waals radius, according to [Man+09]. Atoms are coloured by membership of the
same covalently-bonded subunit, corresponding to a connected component of the
covalent bond graph provided implicitly by the OpenBabel toolkit [OBo+11] after
explicit hydrogenisation. Colours are reused for multiple subunits, but are assigned
so that no two spatially-adjacent subunits share the same colour. For further details,
see Section A.9.
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Figure 6.14.: Error metrics for an adaptive convex SUPANOVA calculation of the HF/cc-pCVTZ
total energy of the SARS-CoV-2 spike glycoprotein (PDB: 6VXX). Each plot shows
the per-iteration absolute value of the adaptive error indicators and propagated
uncertainities, as well as an estimate of the relative error, calculated as the absolute
value of the ratio of the error indicator to the corresponding approximation. The
left-hand plot shows these metrics as a function of the total abstract cost of all
elements in the adaptively-obtained index set at each iteration; the right-hand plot,
as a function of the cumulative wall time required by the calculation up to and
including the relevant iteration.

the single-axis convex SUPANOVA grid Π =Mg[G
′/F ], similarly to previous examples.

This calculation used the parallel implementation of the adaptive index-set calculation
algorithm outlined in Section A.8. The required single-point calculations at each iteration
were distributed across 146 nodes of an HPC cluster, for a total of 4864 concurrently-
utilised cores. Additionally, one node was used to execute the adaptive index-set algorithm
itself, and another to broker task distribution. Although this is a non-trivial set of
computational resources, it still represents only a few percent of those used in [Aki+21].

We performed a single self-contained calculation run, using the Threshold refinement
strategy with threshold α = 0.1. All calculations were performed using PySCF [Sun15;
Sun+17; Sun+20], with equivalent calculation settings to those used for previously-
described results in this chapter. No reference value was available to measure accuracy
against. We were also unable to calculate a reference abstract cost for the complete full
system calculation, due to the computational effort required to assess the number of
non-negligible ERIs. Thus, we simply allowed the calculation to run for a period of some
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46h, and assess the quality of the resulting approximation via only the error indicator
and the propagated calculation uncertainty.

All involved subproblem potentials were explicitly evaluated from scratch during the
execution of this calculation; thus, we are able here to validly consider real-world wall
times as well as abstract costs. Plots of the error indicator and propagated uncertainty
are given in Figure 6.14, measured both against the total abstract cost of the adaptively
obtained index set at each iteration, and also against the total cumulative wall time
expended at each iteration. The two sets of plots are very similar in shape, which offers
some confirmation that the abstract cost model of Section 2.5 is and has been a reliable
method for assessing the expense of the various calculations described throughout this
thesis, at least in the Hartree-Fock case. Some small differences can be attributed to
particular iterations of the adaptive algorithm in which only a few elements were added
to the index set, at most a low constant multiple of the number of available calculator
processes and with costs varying by several orders of magnitude. As these iterations
introduce parallel inefficiency, their marginal cost in wall time terms is much greater than
according to the abstract cost model.

Regardless of whether it is plotted against abstract cost or wall time, the absolute
value of the error indicator exhibits an overall smooth pattern of decay. It is interesting
to note that the propagated uncertainty, which assumes a per-calculation uncertainty of
ε = 10−8, does not change greatly over the course of the calculation. This is important;
the approximated total energy at the final iteration is calculated as a combination sum
over 67 478 distinct subproblem potentials, and so it is reassuring to know that this value
seems to be reasonably free of numerical issues such as those discussed in Section 5.3 in
the context of a standard MBE. It seems reasonable to hope that, were the calculation
continued to a point where the error indicator fell below the chemical accuracy threshold,
the propagated uncertainty would itself still be below this threshold.

With due regard of the various caveats discussed in this chapter, and particularly under
the reasonable but unproven assumption that the constructed radial interaction graph is
sufficiently descriptive of the system — as it was for chignolin and 1KDF — we can then
tentatively suggest that the HF/cc-pVTZ total energy of 6VXX as we have considered it
is approximately EHF

cc-pVTZ = −1 183 006.07(17)Eh. This result does not achieve chemical
accuracy. It is perhaps worth noting, however, that chemical accuracy would require here
a relative error around 10−10, which is two orders of magnitude greater again than that
required for chemical accuracy over 1KDF.

It must be stressed that this calculation is thoroughly naïve, and ignores many important
considerations that should more properly be taken into account. In particular, we have
implicitly assumed here that the system under study possesses a net-zero total charge, as
do all fragments, but this is likely not valid; see for instance comments about charged
residues in [Aki+21]. The work in that source also deemed necessary a comprehensive
pre-calculation manipulation of the glycoprotein; see [Aki+21, Supp. info.]. Even were
such issues to be addressed, significant further benchmarking and validation would be
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required before the result could be viewed as reliable. An adaptation to the calculation
of the interaction energies described in [Aki+21] and a detailed comparison with that
work would be an obvious first step.

For such a comparison to be meaningful, a treatment of the correlation energy to at
least the MP2 level of theory would be necessary. We were prevented from doing so here
only by a technical limitation of the particular pairing of software and hardware that we
used. Specifically, the MP2 implementation available in PySCF relies on the use of disk
storage to hold partially-transformed molecular integrals once the size of the ERI tensors
become too large to hold entirely in memory. Most of the compute nodes used here were
equipped with only relatively small amounts of local storage (approximately 80GB), and
thus could not successfully compute MP2 correlation energies for subproblems involving
many more than approximately 1000 contracted basis functions. Some of the compute
nodes, however, were equipped with substantially more storage (up to approximately
3TB); calculations on these nodes were able to compute MP2 energies in reasonable
time for subproblems up to and exceeding 2000 basis functions. As such, we believe that
an equivalent calculation at the MP2/cc-pVTZ or MP2/cc-pCVTZ level would be quite
feasible, given either a reasonable increase in the amount of per-node local storage, or
alternatively, the use of a suitable, fully integral-direct MP2 implementation, similar to,
e.g., that described in [WHR96].

In conclusion, although we are cautious not to read too much into the result from the
perspective of accuracy, this calculation demonstrates that an application of the convex
SUPANOVA approach to extremely large molecules is technically feasible, given access
to a reasonable set of computational resources. Moreover, the resulting combination sum
seems to be numerically stable.
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In the three preceeding chapters, we have considered several different applications of the
order-theoretic combination technique to the calculation of energetic properties of various
molecular systems. We briefly recapitulate the ideas there covered.

In Chapter 4, basing on previous work in [Zas+18], we outlined a generalised composite
method (GCM) for approximating the FCI/CBS total and atomisation energies of
molecules via combination sums taken over a four-axis poset grid. In this grid, in
particular, one axis indexes increasingly detailed basis sets, and another indexes higher-
and higher-quality treatments of electron correlation. All involved axes are simple chain
posets, and the resulting poset grid Π was no more complex than that used implicitly by
the standard combination technique in its original form.

In Chapters 5 and 6, we investigated MBE-style combination sums taken over a poset
grid composed of a single poset axis. This axis was initially taken to be the boolean
algebra BM of all subsets of the nuclear indices, or, similarly, the poset BK of all subsets
of a particular fragmentation of those indices, corresponding to conventional forms of the
MBE. We then considered what we refer to as the SUPANOVA class of decompositions,
cf. [GHH14; Heb14; CGH18], which involve subposets of the poset of induced subgraphs of
some full-system interaction graph G. An arbitrary SUPANOVA truncation after an order
ideal ofMg(G), the poset (axis) corresponding to the geodesically convex subgraphs of
G, is by construction combination-consistent with a truncation of the underlying nuclear
MBE. Adaptively-refined combination sums over a convex SUPANOVA axis appear
numerically stable and, in some limited circumstances, seem to offer a performance benefit
relative to a conventional full-system calculation.

Both the GCM and SUPANOVA approaches are, however, restricted in their applicab-
ility. Like other high-accuracy composite methods [RS15; Kar16], the GCM can only be
usefully brought to bear on very small molecular systems. This is due to the prohibitive
scaling behaviour along each poset axis, particularly in terms of the costs of higher-quality
approximations of the correlation energy. But the discussion and results in Chapter 4, as
well as the literature there reviewed, make clear that such calculations are necessary if
the GCM or indeed any composite method is to approximate either the true total energy
or the true atomisation energy of a system to a level that approaches chemical accuracy,
let alone surpasses it.

By contrast, much like other fragmentation methods [Gor+11; CB15; RS15; Her19], the
various SUPANOVA-type decompositions that we have discussed can be applied to very
large systems. However, it seems that relatively higher-order SUPANOVA contribution
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terms are necessary in order to approximate the total energy of such systems with
reasonable accuracy relative to a full-system calculation at an equivalent level of theory.
The scope of the terms required depends on the choice of fragmentation and interaction
graph. This has implications for the accurate calculation of correlation energies of large
systems using SUPANOVA decompositions. The same high-order computational scaling
of truncated coupled cluster approximations that limits the GCM will also impact the
calculation and feasibility of the many higher-order subproblem potentials required for
a SUPANOVA calculation, especially if a better-quality basis set is to be used for the
subproblem potential calculations.

In this final chapter, we investigate a joining of the GCM and SUPANOVA techniques.
Guided by the example of the ML-BOSSANOVA method [CGH18], the FCI/CBS total
energy of a molecular system is subjected to a multilevel SUPANOVA (ML-SUPANOVA)
decomposition, which contains terms representing the additional contribution of subsystem
calculations not only relative to their individual subsubsystems, as in the standard
SUPANOVA decomposition, but also in terms of calculations over the same subsystems
using lower-quality treaments of electron correlation and/or basis sets. Informally, we
hope that each term in a formal SUPANOVA decomposition of the FCI/CBS total energy
can itself be efficiently approximated by a GCM combination sum; and moreover, that
since SUPANOVA terms Ṽu are generally expected to be smaller in magnitude for larger
subsystems u, then overall accuracy to some particular threshold may require only a
“cheaper” GCM combination sum for larger subsystems than for smaller.

The ML-SUPANOVA decomposition requires no additional theory to construct. It is
obtained by simply assembling a three-axis poset grid as the direct product of two GCM
poset axes with an appropriate SUPANOVA poset axis. For simplicity, and as discussed
in Chapter 4, we omit the two “fine-tuning” axes that were considered in that chapter.
The adaptive algorithm described in Chapter 3 is applicable here almost without change;
one minor adjustment is required for technical reasons, which we shall discuss below.

As in previous chapters, the basic idea we explore here — that of a multilevel MBE-style
expansion — is not in and of itself novel, and part of our aim is to demonstrate that the
order-theoretic combination technique can be used to easily rederive and extend on some
existing approaches. Thus, we begin with a brief summary of some multilevel approaches
which have already been applied in the setting of subsystem-based techniques.

7.1. Multilevel energy-based fragmentation methods

For the purposes of this chapter, we consider a multilevel technique to be one that involves
multiple quantum chemical calculations, not all of which are performed at the same
level of computational theory. This is consistent with usage throughout the existing
literature, both with respect to subsystem techniques [ŘS09; MR11; CGH18], and also
more generally [Zas+18]. We note in particular that the ONIOM-style approaches
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mentioned in Section 5.1.1 are multilevel techniques according to this definition, although
they are sometimes referred to as multilayer(ed) [Sve+96; Gor+11; RH12; LH16]; see
again [Chu+15] for a comprehensive summary of the ONIOM family.

Multilevel-style extensions have been proposed for a number of the energy-based
fragmentation methods that were outlined in Chapters 5 and 6. What follows here is not
intended to be exhaustive, and again, we are mostly seeking to collect energy expressions
for comparison. We refer again to and are influenced by the more complete reviews listed
at the beginning of Section 5.1, particularly [Gor+11; Chu+15; CB15; RS15; Her19], and
also to [RH12].

Multilevel fragment-based techniques are often grounded in the ONIOM methodology,
and we are also particularly influenced in the following by the summary in Section 2.3.2
of [Chu+15]. The multicentered QM/QM (MC QM/QM) approach was initially presented
by Hopkins and Tschumper [HT03] as an extension of an ONIOM-style framework. Here,
some number m of disjoint centers1 are selected for additional theoretical attention. The
resulting MC QM/QM energy expression becomes, in the ONIOM-based notation of the
source [HT03, (3)],

EMC
QM/QM = ELow(Real) +

m∑
i=1

EHigh(Modeli)− ELow(Modeli), (7.1)

that is, just the full-system low-level energy and a correction for the high-level energy of
each distinct center. The MC QM/QM has since been generalised from this one-body form
to two-body and higher-order forms [HT05; Tsc06; Bat+11], and in particular has been
adjusted to account for m potentially overlapping centers via an equivalent application of
the cardinality form of the principle of inclusion/exclusion to those discussed in Chapter 5.
In this setup, from [Bat+11, (1)] but using a more compact notation,

EMC
QM/QM = ELow(F1 ∪ · · · ∪ Fm) +

∑
∅⊂u⊆[m]

(−1)|u|−1

[
EHigh

(⋂
i∈u

Fi

)
− ELow

(⋂
i∈u

Fi

)]
.

(7.2)
Here, we use Fi to indicate the ith center, which would correspond to Modeli in (7.1) in
the disjoint case. Clearly, also ELow(F1 ∪ · · · ∪ Fm) would be ELow(Real).

The molecules-in-molecules (MIM) approach of Mayhall and Raghavachari [MR11] is
also derived from the ONIOM formulation. The MIM method provides for the construction
of a hierarchy of increasingly-detailed MIMn energy expressions, which are defined as a
series of additive corrections in terms of energies obtained by a fragmentation method
with increasingly high orders of theory applied to the per-fragment calculations. For

1In context, we spell “center” as in the source.
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example [MR11, (5), (6), (7)],

EMIM1 = Er
High (7.3)

EMIM2 = Er
High − (Er

Low − E∞
Low), and (7.4)

EMIM3 = Er
High − (Er

Med − Er′
Med)− (Er′

Low − E∞
Low). (7.5)

In these expressions, the superscripts r < r′ <∞ represent levels of detail used in the
fragmentation procedure, such as cutoff distances used to construct families of potentially
overlapping fragments.2 E∞

Low is the total energy of the full system, calculated using a
standard method. In [MR11], the energy expressions according to the fragmentations, e.g.,
Er

High, are also based generally on the cardinality PIE and specifically on the approach
taken by the GEBF [LLJ07]. Later consideration of these values provided one motivation
for the development of the MOBE by the same authors in [MR12]; see again discussion
in Chapter 5. An equivalence between the MIM and MC QM/QM methods has also
been recognised [LH19].

Relatively recently, Iyengar and co-workers have developed a multilevel graph-theoretical
energy-based fragmentation method also based upon ONIOM [RHI18; RI18; KI19; RI20;
RKI20; Zha+21; KDI21; ZI22], which they have applied particularly in the context of mo-
lecular dynamics. We will rephrase their scheme using our terminology in order to simplify
the presentation and later discussion. The approach requires first the construction of a
fragment interaction graph, G. Several protocols for construction of this graph have been
suggested, based variously on connectivity in the covalent bond graph [RHI18; RKI20],
on techniques drawn from computational geometry [RHI18], and upon thresholded spatial
distances between atoms [RI20; RKI20; KDI21; Zha+21]. The method is then defined
in terms of the set of complete induced subgraphs G[u] of G, each of which is called in
the original context a rank-r simplex for r = |u| − 1. We introduce here the notation
compR[G] := {u ⊆ [M ] | |u| ≤ R+ 1 and G[u] is complete} to be the set of all vertex
subsets that induce complete subgraphs of G up to and including some size R+ 1, for
R ∈ N; clearly, these subsets also induce all rank-r simplexes for 0 ≤ r ≤ R.

The total energy of the full molecular system is approximated in terms of some or all
of these simplexes as, with adaptation from [Zha+21, (3) and (4)],

Esimplex-ONIOM
R = ELow

[M ] +
R∑

r=0

(−1)r
∑

u∈compR[G]
|u|=r+1

(
EHigh
u − ELow

u

)( R∑
m=r

(−1)mpmu

)
. (7.6)

Here, we write ELow
u and EHigh

u to mean total energies calculated for the subsystem
formed as the union of fragments indexed by u, calculated using low and high levels
of theory respectively, as usual. For each u ∈ compR[G], the term pmu counts the
2It is stated in [MR11] that r > r′, but in context, we believe this to be a typographic error.
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number of simplexes G[v] of rank m ≤ R that contain G[u] as a subgraph, that is,
pmu := |{v ∈ compR[G] | v ⊇ u, |v| = m + 1}|. The maximum simplex rank R to be
considered is an adjustable parameter.

Equation (7.6) first appeared, in slightly different formulation, in [RHI18, (A1)], there
motivated by a counting argument. Alternative formulations in, e.g., [KI19; RI20; RKI20]
are constructed by interesting and unusual but rather informal appeals to concepts drawn
from topology, particularly the Euler characteristic of a simplicial complex. It has also
been recognised that the sum on the right-hand side of (7.6) is the difference of two
equivalent truncations of standard fragment MBEs, one each in terms of the calculations
performed with low and high levels of theory [RI20; RKI20; Zha+21].

In earlier work from the same group [LI15; LHI16; HLI17], a standard cardinality-PIE
overlapping-fragment energy approximation was used in a similar ONIOM-style expres-
sion [LI15, (2); LHI16, (1); HLI17, (1)]; this expression is equivalent to (7.2). It is claimed
in [RI18] that such an expression in the simplex case [RI18, (1)] is “isomorphic” [RI18,
p. 5548] to (7.6), although a rigorous argument is not provided. The form (7.6) is
preferred, since it is “more efficient” [RI18, p. 5548], in the sense that a calculation of
the involved coefficients does not require brute-force enumeration of all possible k-fold
intersections of the simplex-inducing vertex sets [RHI18].

Multilevel fragment-based techniques may also be obtained by direct manipulation
of the standard MBE form (5.4). For instance, Beran [Ber09] motivates his hybrid
many-body interaction (HMBI) model by selectively merging two distinct MBEs, with
terms calculated using two different qualities of model theory. Using his notation, then
and for example [Ber09, (2.4) and (2.5)],3

Ehigh
tot ≈

∑
i

Ehigh
i +

∑
ij

∆2Ehigh
ij +

∑
ijk

∆3Elow
ijk + · · ·+

∑
ijk···

∆NElow
ijk···

 (7.7)

=
∑
i

Ehigh
i +

∑
ij

∆2Ehigh +

Elow
tot −

∑
i

Elow
i +

∑
ij

∆2Elow
ij

. (7.8)

Here, a complete full-system calculation is required to deliver Elow
tot . Beran explicitly notes

in [Ber09] that the working equations of his model reduce to those of the MC QM/QM
approach.

The multilevel fragment-based approach (MFBA) of Řezáč and Salahub [ŘS09] also
involves a fragment MBE with contribution terms calculated with disparate levels of theory.
This MBE is initially and explicitly truncated after two-body terms. We use an informal
variant of our usual notation and terminology here, observing that there is some room for
definitional ambiguity in the original paper [ŘS09]. The empty-set subproblem potential
3And also correcting for an apparent typographical error in (2.5) of [Ber09], namely an extraneous leading
i in front of a summation.
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is taken to be always zero and so we do not write it anywhere explicitly. A high level
of model theory is used to calculate the singleton contribution potentials Ṽ high

{i} = V high
{i} ,

as well as a subset of the pair contribution potentials Ṽ high
{i,j} = V high

{i,j} − V
high
{i} − V

high
{j} .

Specifically, given a covalent bond interaction graph G and fixing some cutoff threshold
rcut > 0, if we write X to be the set of all two-element subsets {i, j} ⊆ [M ] such that
either atoms i and j interact directly in G or ‖Ri − Rj‖ ≤ rcut, then the full MBFA
energy is given by

EMFBA =

M∑
i=1

Ṽ high
{i} +

∑
i<j

{i,j}∈X

Ṽ high
{i,j} +

∑
i<j

{i,j}6∈X

Ṽ low
{i,j}. (7.9)

When considering the application of their EE-MB scheme to the calculation of MP2
total energies, Dahlke and Truhlar explicitly separate the treatment of the Hartree-Fock
total energy and the correlation energy [DT07a]. They decompose each according to an
MBE [DT07a, (8), (9)],

E = EHF + Ecorr (7.10)

= (V
(1)
HF + V

(2)
HF + · · ·+ V

(M)
HF ) + (V

(1)
corr + V

(2)
corr + · · ·+ V

(M)
corr ), (7.11)

where we use a slight modification to the notation of the source and write V (k)
HF for the

summed k-body contributions to the Hartree-Fock energy, and similarly V (k)
corr for the

summed k-body contribution to the correlation energy. Dahlke and Truhlar explicitly
truncate only the correlation-energy MBE, and replace the Hartree-Fock MBE just with
the Hartree-Fock total energy.

The FCR method has also recently been extended to a multilevel setting [HK21].
Given two distinct downward-closed sets of fragments, which we will write {FCRLL}
and {FCRHL} for low-level and high-level respectively, the relevant energy equation is,
from [HK21, (15)] and adjusting notation for consistency with (5.10) above,

EML-FCR =
∑

fl∈{FCRHL}

pHL
fl E

HL
fl ({z}fl) +

∑
fl∈{FCRHL}

pHL
fl E

LL
fl ({z}fl). (7.12)

The terms EHL
fl and ELL

fl should by this point be self-explanatory. It is reasoned that, for
consistency and to avoid overcounting, it should hold that [HK21, (16)]

pHL
fl + pLLfl = p

{FCRHL}∪{FCRLL}
fl , (7.13)

where the coefficients p{FCRHL}∪{FCRLL}
fl on the right-hand side are standard FCR coeffi-

cients from (5.11) in terms of the union of the low-level and high-level sets of fragments.
The high-level coefficients pHL

fl are directly chosen to be those provided by (5.11) in terms
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of {FCRHL}, and the low-level coefficients pLLfl are then delivered by (7.13). It is stated
in [HK21] that this approach can be generalised to multiple layers, rather than only two,
although an explicit construction is not given.

Finally, the ML-BOSSANOVA scheme of Chinnamsetty et al. [CGH18] is a direct
extension of the original BOSSANOVA method as outlined in Section 6.2. Again, we will
make some minor notational adjustments to the original description of ML-BOSSANOVA,
for consistency with the remainder of this thesis. Rather than considering a single
Born-Oppenheimer potential V BO, as in the standard BOSSANOVA case, the ML-
BOSSANOVA formulation considers a family {V BO

p }p∈N of such potentials, with entries
indexed by a level parameter p indicating somehow increasing basis set thoroughness.
Each distinct potential V BO

p is decomposed as in (6.8), that is,

Vp,[M ] = Ṽ∅ +
∑

u∈conn [G]
|u|=1

Ṽp,u +
∑

u∈conn [G]
|u|=2

Ṽp,u + · · ·+
∑

u∈conn[G]
|u|=N

Ṽp,u. (7.14)

Then, each contribution potential Ṽp,u is itself decomposed as

Ṽp,u =

p∑
q=0

ω̃q,u, (7.15)

where each [CGH18, (14)]
ω̃q,u = Ṽq,u − Ṽq−1,u, (7.16)

with specifically ω̃0,u = Ṽ0,u. Then, under some conditions on {V BO
p }p∈N,

V BO
∞ =

∑
p∈N

∑
u∈conn [G]

ω̃p,u, (7.17)

with V BO
∞ written to indicate the Born-Oppenheimer potential for a notional CBS-limit

solution to the Schrödinger equation.
The ML-BOSSANOVA construction, particularly (7.16), is explicitly motivated by

reference to the standard combination technique [CGH18]. Brief mention is made
in [CGH18] to the fact that the complete set of terms can be partially ordered, and it
bears repeating that the ML-BOSSANOVA technique was a primary inspiration for the
development of both the general order-theoretic combination technique construction in
Chapter 3, as well as the accompanying adaptive algorithm.

7.2. Multilevel extensions to ANOVA-like decompositions
Extending the order-theoretic formulation of MBE-style energy-based fragmentation
methods to an arbitrarily multilevel setting requires only an adjustment of the underlying
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poset grid Π. Rather than choosing Π to be just a single boolean algebra axis, we take
it to be the direct product of exactly one such axis with at least one additional axis
corresponding to a discretisation treatment or other computational adjustment for a
numerical solution to the electronic problem. This latter axis, or axes, can be either finite
or infinite, depending on the desired application. More precisely, a full multilevel MBE-
style poset grid can be equivalently obtained as a direct product Π = BM ×P1×P2×· · · ,
where BM is a boolean algebra for the nuclear fragmentation, and P1, P2, · · · are chain
posets indexing refinements to the treatment of the electronic problem in the subproblem
potentials V(u,p,q,···). If the boolean algebra is replaced with an arbitrary subposet of
induced subgraphs of some full-system interaction graph, we obtain a very general
definition of an ML-SUPANOVA decomposition.

The addition of only a single chain axis to a boolean algebra is sufficient to reproduce
all of the existing multilevel schemes that we mentioned in the previous section, with
the partial exception of ML-BOSSANOVA, to which we will come shortly. We will
demonstrate this explicitly by showing precisely which order ideals I suffice to reproduce
energy expressions from the previous section as combination sums. Let us be clear that, as
noted above, pairwise similarities and connections between some such schemes, and also
connections to the standard MBE, are either very deliberately explicit in their original
derivations or have already been observed in the literature. A careful catalogue of all
such previous observations is beyond the scope of this work, but suffice it to say that
we have not uncovered some previously elusive truth. Rather, we simply showcase here
the generality of the order-theoretic combination technique formalism as a means of
alternative derivation. Even here, we mention that the ML-FCR method [HK21] is in
this particular setting an equally general and basically formally equivalent tool; we shall
return to this point very shortly.

Consider in general Π = BM × [n] for some n ≥ 1. If I is an order ideal of Π, it is
not hard to see that I can be written as I =

⋃n
i=1 Ii × {i}, where each Ii ⊆ BM and

I1 ⊇ I2 ⊇ · · · ⊇ In. If i = n, then

D
(I)
(u,i) =

∑
v⊇u
v∈Ii

µΠ((u, i), (v, i)) =
∑
v⊇u
v∈Ii

µBM
(u,v) = D

(Ii)
u , (7.18)

by (3.25) and (3.27), and where we use D(Ii)
u on the right-hand side to mean the combin-

ation coefficient of u in an Ii-truncation with respect to the standard BM , rather than
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the multilevel Π. If i < n, then similarly,

D
(I)
(u,i) =

n∑
j=i

∑
v⊇u
v∈Ij

µI((u, i), (v, j)) (7.19)

=

n∑
j=i

∑
v⊇u
v∈Ij

µBM
(u,v)µ[n](i, j) (7.20)

=
∑
v⊇u
v∈Ii

µBM
(u,v)−

∑
v⊇u
v∈Ii+1

µBM
(u,v) (7.21)

= D
(Ii)
u −D(Ii+1)

u . (7.22)

If we consider Π = BM×[2], and identify two downward-closed subsets I1 = {FCRLL} ⊆
BM and I2 = {FCRHL} ⊆ BM for use with the ML-FCR method, taken such that I1 ⊇ I2,4
we see immediately that (7.18) and (7.22) are exactly the definitions for the two-layer
ML-FCR coefficients. This is unsurprising, since as mentioned in Chapter 5, the FCR
method provides for an I-truncation over an arbitrary order ideal of BM , and thus delivers
combination coefficients on BM that are fully equivalent to those from the order-theoretic
combination technique. The full (7.18) and (7.22) for arbitrary Π = BM × [n] provide
presumably just the multiple-layer generalisation envisaged by the authors of [HK21].
The arguments that follow therefore support claims to generality made in [HK21], in that
other multilevel methods beyond those there explicitly considered can be obtained from
the ML-FCR by an appropriate choice of order ideal. In the broader context, however,
we observe again, much as in Chapter 5, that the ML-FCR approach is potentially
unwieldy in comparison to ML-SUPANOVA-style approaches over restricted subposets of
subgraphs, since it requires full enumeration of an order ideal so as to identify non-zero
coefficients in the general case. This also makes it less amenable to the possible application
of adaptivity.

We mention here in passing that a recent implementation of a generalised multicentre
ONIOM scheme [See+22] can make use of the FCR approach for individual model
calculations. Although we have not investigated in any detail, it seems likely that the
final summations produced by this setup would be consistent with a generalisation of the
ML-FCR as just discussed. We leave this for the moment as conjecture.

Returning to Π = BM × [2], where now the entries of the chain poset correspond
specifically to the exclusion or inclusion of the MP2 correlation energy in the subproblem
potentials V(u,1) and V(u,2) respectively, the resulting decomposition of the full-system

4In fact, the ML-FCR definition also rather neatly handles the case where I2 ⊃ I1, by simply nulling
out every low-level subproblem term ELL

fl in (7.12) and thus reducing to a standard, non-multilevel
I2-truncation.
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MP2 Born-Oppenheimer potential V BO = V[M ],2 is just and exactly that used by Dahlke
and Truhlar [DT07a] in (7.10). Assuming the use of an n-body expansion of the correlation
energy Ecorr, the particular truncation of the full decomposition that they studied clearly
corresponds to the order ideal I as above, with I1 = BM and I2 = {u ∈ BM | |u| ≤ n}.
This should be intuitively obvious, but to make it fully explicit, note that D(I)

(u,2) = D
(I2)
u

is just the standard n-body coefficient for u ∈ I2. Then, since D(I1)
u is unity for u = [M ]

and zero otherwise, we have from (7.18) that

D
(I)
(u,1) =

1−D(I)
(u,2) if u = [M ],

−D(I)
(u,2) otherwise.

(7.23)

Assuming everywhere-zero empty-set subproblem potentials5 V(∅,1) = V(∅,2) = 0, it is then
clear that the full truncation SI is given by

SI = V([M ],1) +
∑
u∈I2

D
(I2)
u (V(u,2) − V(u,1)) (7.24)

when n < M , so a full-system HF calculation and an n-body truncation of the MP2
correlation energy, and just by SI = V([M ],2) when n = M . The HMBI energy (7.8)
of [Ber09] emerges equivalently for the specific choice n = 2, if exclusion or inclusion of
the MP2 correlation energy is replaced with use of a low or a high level model in the
above.

To obtain the MFBA energy expression (7.9) suggested by [ŘS09], let instead I1 =
{u ∈ BM | |u| ≤ 2}, and then take I2 = {u ∈ BM | |u| ≤ 1} ∪X, where X is defined as
above (7.9). Clearly I2 ⊆ I1. The first two summations of the right-hand side of (7.9)
are just a standard non-multilevel MBE truncation in terms of I2, again assuming a zero
empty-set subproblem potential. In this truncation, when |u| = 2, it is easy to see that
D

(I2)
u = 1 when u ∈ X, and D(I2)

u = 0 when u 6∈ X. Each atom i is involved in at most
M − 1 pairs in X; write the number of such pairs as mi. For |u| = 1, then, it follows
that D(I2)

u = 1−mi. Similarly, we see that for I1, i.e., a standard two-body expansion,
D

(I1)
u = 1 when |u| = 2, and D(I1)

u = 2 −M when |u| = 1. Now, in the full multilevel
I-truncation in terms of Π, we have from (7.18) that D(I)

(u,2) = D
(I2)
u , and from (7.22),

D
(I)
(u,1) = D

(I1)
u −D(I2)

u . Thus, to show that the truncation SI = EMFBA, we need only

demonstrate that the values D(I)
(u,1) correspond to the summed coefficients of all low-level

terms V low
{i} and V low

{i,j} introduced implicitly by the terms Ṽ low
{i,j} in (7.9). Each V low

{i,j}

appears at most once, depending on whether or not {i, j} ∈ X. Since D(I)
({i,j},1) is then

either 0 or 1 respectively, these coefficients agree. Since there are M − 1 pairs for each i,
5There seems to be no mention of an overcounting correction for point-charge interactions in [DT07a].
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the number of such pairs not in X is M −1−mi, and each V low
{i} appears that many times,

each carrying a leading minus. This is consistent with D(I)
({i},1) = (2−M)− (1−mi), so

we are done.
Obtaining the MC QM/QM energy equation is also straightforward. We consider the

general case (7.2) as adapted from [Bat+11], where centers are allowed to be overlapping.
Here, Π = BM × {1, 2} again suffices, and we use equivalent subproblem/contribution
potential choices as above. As discussed in Chapter 5, any overlapping-fragment energy
equation obtained via the cardinality form of the PIE produces a truncation of an MBE
in terms of some particular order ideal of BM . So, let I2 be this order ideal for the
specific choice of overlapping fragments at hand, and take I1 = BM . Then, just as above,
we have

SI = V([M ],1) +
∑
u∈I2

D
(I2)
u (V(u,2) − V(u,1)) (7.25)

= V([M ],1) + S
(2)
I2
− S(1)

I2
, (7.26)

where we again abuse our notation and write S(2)
I2

to mean the I2-truncation of a standard
MBE defined in terms of the high-level subproblem potentials only, and similarly S(1)

I2
in

terms of the low-level subproblem potentials. The arguments in Section 5.2.3 suffice to
show the full termwise equivalence of (7.26) with (7.2).

The level-1 MIM energy EMIM1 is, of course, also just an appropriate truncation of
a standard MBE matching a PIE-based overlapping-fragments expression, and not a
true multilevel sum; see again [MR12], and more broadly discussion in Section 5.2.3.
The argument for obtaining the overlapping version of the MC QM/QM energy above
also applies to the provision of EMIM2, once (7.4) is slightly rearranged to be EMIM2 =
E∞

Low− (Er
High−Er

Low). As mentioned above, this formal equivalence was previously noted
at least in [LH19]. Now particularly informally, if we consider instead Π = BM × [3] and
assume that every fragment Fi constructed according to the MIM threshold parameter
r is a subset of an F ′

j constructed according to r′ > r — as would be the case for a
distance-thresholding approach as used in [MR11] — then clearly the order ideal I3
that produces the PIE-style summations Er

high and Er
med is a subset of that I2 for the

summations Er′
med and Er′

low. Taking I1 = BM and forming I =
⋃3

i=1 Ii × {i}, we can also
obtain

SI = V([M ],1) + S
(2)
I2
− S(1)

I2
+ S

(3)
I3
− S(2)

I3
, (7.27)

which is just the expression for EMIM3 up to notation and rearrangement. The extension
to an arbitrary MIMn is obvious.

To obtain the multilevel simplex-based energy expression given by Iyengar and co-
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workers, we restrict ourselves first to the simpler, non-multilevel form

Esimplex
R =

R∑
r=0

(−1)r
∑

u∈compR[G]
|u|=r+1

Eu

(
R∑

m=r

(−1)mpr,mu

)
, (7.28)

also adapted from [Zha+21, (3)]. It is stated implicitly in [RI20] and explicitly in [RKI20;
Zha+21] that this is equivalent to a particular truncation of a standard fragment MBE
form. This is demonstrated for the cases R = 1 and R = 2 in, e.g., [RI20], but we are
not aware of a full proof given for the general case. We remark here that a more general
version of (7.28) in terms of any downward-closed subset of 2[M ] can be obtained by only
very minor rewriting of [KC16, (14) and (15)]. This would suffice, since as observed
in [RI20; Zha+21; ZI22], if G[v] is complete and u ⊆ v, then also G[u] is complete, so
compR[G] is just such a subset. But since the rederivation of (7.28) as an I-truncation
of an MBE in our formalism is straightforward, we give it explicitly for completeness.

For any fixed R ≥ 0, write for notational convenience I ′R = compR[G]. Noting as
above that compR[G] is an order ideal of BM , consider the I ′R-truncation of a standard
fragment MBE. Then as usual,

SI′R =
∑
u∈I′R

D
(I′R)
u Vu =

∑
u∈I′R

Vu
∑
v⊇u
v∈I′R

µBM
(u,v) =

∑
u∈I′R

Vu
∑
v⊇u
v∈I′R

(−1)v−u. (7.29)

Using pmu as defined above, and also that maxu∈I′R |u| = R+ 1, then,

SI′R =
R+1∑
k=0

∑
u∈I′R
|u|=k

Vu

R+1∑
m=k

∑
u⊆v∈I′R
|v|=m

(−1)m−k (7.30)

=
R+1∑
k=0

(−1)−k
∑
u∈I′R
|u|=k

Vu

R+1∑
m=k

(−1)mpmu (7.31)

=
R∑

k=−1

(−1)k
∑
u∈I′R

|u|=k+1

Vu

R∑
m=k+1

(−1)mpmu . (7.32)

This is equivalent to (7.28), up to notation and the assumption that V∅ = 0.
In the full multilevel setting, then, a similar argument to those used for the HMBI, MC

QM/QM, and MIM methods above shows that choosing I1 = BM and I2 = compR[G]
leads to an I-truncation in terms of Π that is just (7.6), again up to notation. As
mentioned above, that the right-hand side term of (7.6) is a termwise difference of
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truncated MBEs has been recognised [RI20; RKI20; Zha+21]; a connection to the HMBI
is also explicitly drawn in [RI20].

If we take comp+R[G] := compR[G]∪{[M ]} to be compR[G] with [M ] explicitly adjoined
if not already present, and denote the maximum rank of any simplex in G by R̂, then (7.28)
for any R can also be considered as a truncation of a SUPANOVA expansion of V BO

constructed in terms of comp+
R̂
. As mentioned in the previous chapter, there is a direct

relationship between this SUPANOVA expansion and one constructed in terms ofMg[G],
that is, in terms of the geodesically convex subgraphs of G. For any given G, it is easy
to see that every complete induced subgraph is also a geodesically convex subgraph,
although the converse is not necessarily true.6 Thus, every compR[G] is a subposet of
Mg[G], and moreover, clearly an order ideal ofMg[G]. From this perspective, we can
view a SUPANOVA expansion in terms of Mg[G] as being an extended version of a
SUPANOVA expansion in terms of comp+

R̂
, containing additional higher-order terms.

This suggests a potential benefit of the combination of our adaptive SUPANOVA
algorithm and the posetMg[G] relative to the approach of Iyengar and co-workers. In
effect, it is the protocol by which the interaction graph G is constructed that selects
the MBE terms retained in the truncation Esimplex

R , possibly restricted further by the
maximum rank R [KI19]. It is in this sense that their approach is adaptive, since a
distance-based protocol will select different terms according to different conformations of
the underlying molecular system [RHI18; KI19]. Once that protocol has been applied,
however, the selection of terms is fixed. By contrast, our adaptive approach is able
first to explore any strongly local subsystems as provided by simplexes in G, without
necessary preselection of a maximal rank R, but then also able to extend resiliently to
other, larger and less “compact” but still convex subsystems as the available simplexes in
G are exhausted.

Finally, if a multilevel poset grid is formed instead as the direct product of conn[G]
and an infinite chain axis over N representing a notional level of basis set theory to
be used in the construction of Born-Oppenheimer potentials V BO

p , then the resulting
decomposition of V BO is just the full ML-BOSSANOVA expansion (7.17) of [CGH18],

6Notions of convexity are invoked in two particular discussions of this scheme [RI20; Zha+21]. The use
of mathematical terminology and notation is here unfortunately imprecise. To our best understanding,
however, a geometric definition of convexity is used to justify the fact that, in our terminology, the set of
vertex subsets which induce simplexes in G is an order ideal of BM (a “(truncated) power set” [Zha+21,
p. 2673]), and thus that (7.28) does not overcount any k-body terms. It is also mentioned in passing
in [RKI20] that “[t]he many-body contributions in Equation (3) form an ordered set” [RKI20, p. 4], there
referencing what is essentially (7.6) here, but this order does not seem to be used explicitly. At any rate,
it does not seem to us that an abstract definition of convexity in the purely graph-theoretical setting is
ever considered, at least not one like that given in Section 6.5 above and used in our construction of a
SUPANOVA decomposition in terms of convex subgraphs.

There are, however, deep connections between more abstract versions of the topological ideas invoked
in [KI19; RI20; RKI20] and abstract convexity, order theory, and Möbius inversion; see, e.g., [EJ85; Vel93,
Chap. 3; Sta12, Chap. 3]. Further exploration is likely to be profitable, but we leave this for future work.
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effectively by direct construction. Note here that the previously-identified issues with the
use of conn[G] when the underlying graph G contains the forbidden subgraphs C ′

4 or Cn

for n ≥ 4 will persist in this construction, and in such cases the ML-BOSSANOVA grid
conn[G]× N will not be fully consistent with the grid BM × N.

It is easy to see that the direct product of any two posets is a meet semilattice if and only
if both of those posets are meet semilattices. Thus, if we consider conn[G]×P1×P2×· · ·
as a subposet of BM × P1 × P2 × · · · , for any choice of P1, P2, . . . such that every Pi

is a meet semilattice, it is clear from Theorem 5.2.8 that the latter grid will not be
combination consistent with the former. If, however, we useMg[G] — or any SUPANOVA
axis which is isomorphic to a meet subsemilattice of BM — the resulting poset will be a
meet subsemilattice, resp. isomorphic to a meet subsemilattice of BM × P1 × P2 × · · · ,
and so will be combination consistent with it.

Regardless of whether or not combination consistency is guaranteed, the adaptive
algorithm given in Chapter 3 can also be used to explore index sets over any such
ML-SUPANOVA poset grid. If a truly adaptive selection strategy is applied, however —
that is, not the All strategy — there is one minor practical detail that requires attention.
The issue surrounds the benefit/cost ratios of poset grid elements involving the empty
set from the SUPANOVA axis.

Suppose that Π = P1 × P2 × · · ·Pn is an ML-SUPANOVA poset grid, where P1 is the
SUPANOVA axis. Suppose also that the values L[V(∅,p2,··· ,pn)] are all equal for any choice
of p2 ∈ P2, · · · , pn ∈ Pn. This can occur, for example, in the case when the involved
contribution potentials represent vacuum embedding calculations, so both L[V(∅,p2,··· ,pn)]
and C(∅, p2, · · · , pn) are uniformly zero whenever any value pi is not a 0̂ of Pi. In this
case, the benefit/cost ratio L[Ṽ(∅,p2,··· ,pn)]/C(∅, p2, · · · , pn) = 0/0 is not defined. A simple
workaround would be to just set the benefit/cost ratio to zero; however, this would
defer the adaptive activation of (∅, p2, · · · , pn) until after the activation of all points
(u, p2, · · · , pn). Similarly, setting the benefit/cost ratio to a notional ∞ would allow the
Threshold and Best strategies to activate only points (∅, p2, · · · , pn) at each iteration,
to the complete exclusion of any other points (u, p2, · · · , pn). Either way, the adaptive
index-set algorithm will not be able to explore the full poset grid.

To avoid such situations, the algorithm can be adjusted to include the concept of a
“freely-available point”, which can be automatically included into the index set if and
when required. Specifically, if a point in the current index set at a given iteration is
expanded, and a successor to that point would be admissible except for the absence of
some number of missing freely-available points, then those missing points are tested to see
whether their inclusion in the index set would break the property of downward-closure.
If not, then both the original successor point and the missing freely-available points are
chosen for addition to the index set. All freely-available points required at an iteration
are explicitly added to the index set, and any relevant information incorporated into
all necessary tensors, directly before any newly-added successor points are considered
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at line 11 of Algorithm 3.3. The relevant changes to the algorithm are mechanical but
untidy, and since the results given in this chapter do not rely on them, we do not describe
them explicitly here.

7.3. Case study: heptane (C7H16)

We consider now the linear alkane heptane (C7H16) [CSHept]. Heptane was used as a
primary test case for the initial evaluation of the ML-BOSSANOVA method in [CGH18],
where it was demonstrated that that method was capable of efficiently and accurately
approximating the Hartree-Fock total energy of heptane at the cc-pV6Z basis set level.
This was in reinforcement of earlier results from [Heb14; GHH14], which considered
standard BOSSANOVA approximations of the HF/6-311G* total energy of heptane.

We investigated the ability of various truncated ML-SUPANOVA expansions to ap-
proximate two distinct quantities. The first quantity is the total energy of heptane at the
CCSD(T)/cc-pCV5Z level [PB82; Rag+89; WD95], as calculated using PySCF [Sun15;
Sun+17; Sun+20]. This value is thus known to within the convergence tolerance of
the used iterative solver, to whit, 10−9Eh. The calculation of this value was nontrivial:
heptane equipped with cc-pCV5Z presents a computational problem in terms of 1895
contracted GTO basis functions. Such a problem lies in the upper range of currently-
feasible conventional CCSD(T) calculations [GKN20].7 As in previous chapters, for full
calculation details for single-point and composite total energy calculations, and also for
detailed citations for basis sets, see Appendix A.

Ideally, we would also like to consider an approximation targeting the true FCI/CBS
total energy of heptane. The exact value of this quantity is of course not practically
calculable. As a reference estimate thereof, we considered using the ccCA-PS3 total
energy [DeY+09], which is the only all-electron composite method that we discussed in
Chapter 4 which can be feasibly applied to heptane. As there discussed, the ccCA-PS3
estimate is not likely to be reliable past the kcalmol−1 level. It may, however, be viewed
as an estimate of the CCSD(T) total energy extrapolated towards the CBS limit [Kar16,
Tab. 1].

Both total energy values are given in Table 7.1. Even given that CCSD(T) is not
variational, there is already reason to be suspicious of the ccCA-PS3 value, which is
greater than the CCSD(T)/cc-pCV5Z value by approximately 0.011Eh. Therefore, rather
than attempt to approximate the FCI/CBS total energy with only the ccCA-PS3 value
as a benchmark, we consider instead the atomisation energy. Here, we can also apply the
G4(MP2) method [CRR07b]. Both G4(MP2) and ccCA-PS3 atomisation energies for
heptane are given in Table 7.2, alongside the CCSD(T)/cc-pCV5Z atomisation energy.

7Indeed, the implementation described in [GKN20] involves a “density-fitting” approximation, which reduces
the computational load due to the calculation and storage of the AO ERIs, at the cost of a certain
amount of accuracy.
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Method E (Eh) Abstract cost

ccCA-PS3 −276.359 040 3.832× 1015

CCSD(T)/cc-pCV5Z −276.369 764 4.735× 1017

Table 7.1.: Total energies and accompanying abstract costs of calculation for heptane (C7H16),
according to the ccCA-PS3 composite method, and to a conventional single-point
CCSD(T)/cc-pCV5Z calculation.

Method Eatom (Eh) Abstract cost

G4(MP2) 3.480 747 1.565× 1013

ccCA-PS3 3.485 641 3.832× 1015

CCSD(T)/cc-pCV5Z 3.473 717 4.735× 1017

Table 7.2.: Atomisation energies and accompanying abstract costs of calculation for heptane
(C7H16), according to the G4(MP2) and ccCA-PS3 composite methods, and to a
conventional single-point CCSD(T)/cc-pCV5Z calculation.

These values differ by up to approximately 0.012Eh. Since the G4(MP2) method was
consistently more accurate than the ccCA-PS3 method in the results of Chapter 4,
we choose the G4(MP2) value as our reference, Eatom = 3.480 747Eh. Here, however,
we should expect no more than chemical accuracy, and even that is dependent on the
applicability of the HLC in this situation.

For this case study, we consider a three-axis ML-SUPANOVA poset grid Π. The
SUPANOVA axis is taken to be just the standard BOSSANOVA poset, conn[G], of those
subsets of the nuclear indices which induce connected subgraphs of the dehydrogenated
covalent bond graph of heptane. Since heptane is an acyclic system, conn[G] is both a
lattice and identical to the posetMg[G] of those vertex subsets inducing geodesically
convex subgraphs of G.

The remaining two axes are taken to be chain posets. The first represents electron
correlation treatments at four different levels of theory: Hartree-Fock, then MP2, then
CCSD, then CCSD(T). As in Chapter 4, we associate these with an index 2 ≤ m ≤ 5.
The second axis is the choice of cc-pCVnZ basis set. When aiming to approximate the
G4(MP2) atomisation energy of heptane, we index this axis 2 ≤ n ≤ 5; when aiming to
approximate the atomisation energy, we use all available cc-pCVnZ basis sets and index
2 ≤ n ≤ 8. To simplify the discussion, we explicitly do not apply either of the two fine-
tuning axes discussed in Chapter 4; thus, all subproblem potentials V(u,m,n) are backed
by all-electron calculations. We consider here only calculations using vacuum embedding
potentials. For the atomisation energy calculations, we use notional subproblem potentials
V atom
(u,m,n) which evaluate the atomisation energy rather the total energy.
As in previous chapters, we use our standard abstract cost model, and the evaluation

198



7.3. Case study: heptane (C7H16)

functional L is chosen to be point evaluation of a subproblem potential at a particular
nuclear geometry. For details on subproblem potentials, see again Section A.7. Here,
we have used a geometry of heptane that was obtained from the ChemSpider data-
base [CSHept] and then subjected to a further geometry optimisation using DFT with
the B3LYP functional and the cc-pVDZ basis set; see again Section A.6.

In order to evaluate the benefit of the three-axis grid relative to simpler constructions,
we also consider the following four “subgrids” obtainable as distinct combinations of either
one or two of those three axes:

• A single SUPANOVA axis, with each fragment calculation performed at the
CCSD(T)/cc-pCV5Z level. This is explicitly not a multilevel setup, and instead
leads, in effect, to a standard BOSSANOVA decomposition as per [Heb14; GHH14].

• A two-axis GCM grid, corresponding to refinements of the full-system calculation
for different basis sets and correlation treatments. This is closest to the original
CQML setup in [Zas+18].

• A two-axis grid composed of the SUPANOVA axis and the basis set axis, with all
calculations performed at the CCSD(T) level. This leads, in this case, to just an
implementation of the ML-BOSSANOVA method of [CGH18].

• A two-axis grid composed of the SUPANOVA axis and the correlation-treatment
axis, with the basis set fixed at cc-pCV5Z.

We consider calculations in terms each of these poset grids, subject to the restrictions
outlined above for the two different reference value targets. We do not consider the
last-listed grid for approximation of the atomisation energy, since it would provide only
an approximation to at best CCSD(T)/cc-pCV5Z quality rather than the CCSD(T)/cc-
pCV8Z quality available from the complete grid. The use of an equivalent grid with the
basis set fixed at cc-pCV8Z was considered, but the involved subproblem calculations
became expensive too rapidly to allow the collection of meaningful data.

Here, we used only the All strategy. This was a practical choice made in order to
reduce the size of the set of results which we must plot and consider. All calculations are
given for as many iterations as were possible, up to practical limitations. We observe here
that the cc-pCV5Z reference calculation, which was run as a single standalone calculation,
was so expensive that it was practically difficult to exceed its abstract cost via the use
of the order-theoretic combination technique. Per-iteration results for the calculations
targeting the CCSD(T)/cc-pCV5Z reference are given in the left-hand plot of Figure 7.1,
and for those targeting the FCI/CBS atomisation energy according to G4(MP2) in the
right-hand plot.

Previous results in [GHH14; Heb14; CGH18] have already shown heptane and other
alkanes to be highly amenable to SUPANOVA-style treatments, and the results here
are no exception. With the exception of the (full-system) GCM, adaptively-refined
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Figure 7.1.: Error metrics for ML-SUPANOVA and related calculations on heptane (C7H16). The
left-hand plot shows per-iteration absolute errors measured relative to a reference
CCSD(T)/cc-pCV5Z total energy calculation, as well as per-iteration error indicators.
The right-hand plot shows equivalent per-iteration values for atomisation energy
calculations, measured against a G4(MP2) calculation as reference. Vertical and
horizontal lines indicate the abstract cost of the respective reference calculations and
chemical accuracy (≈ 0.0016Eh) respectively.

combination sums in terms of each of the five poset grids considered can approximate the
reference CCSD(T)/cc-pCV5Z total energy to within chemical accuracy, with significant
speedups of up to more than three orders of magnitude. The cheapest calculation which
achieves this is produced by the full ML-SUPANOVA calculation, but this appears to
be just numerical coincidence, since the accuracy at the following iteration is again
of less than chemical accuracy. The two-axis ML-SUPANOVA calculation with fixed
CCSD(T) treatment of correlation, i.e., the ML-BOSSANOVA calculation, falls below
chemical accuracy more consistently and at only slightly more cost. The other two-axis
ML-SUPANOVA calculation, with a fixed cc-pCV5Z basis set and varying treatment of
correlation, does not perform as well, and is indeed beaten to chemical accuracy by the
standard non-multilevel SUPANOVA (BOSSANOVA) calculations.
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Although the cost/error behaviour of basis-set ML-SUPANOVA calculations appear
to be slightly more favourable than those of the complete ML-SUPANOVA calculations,
the error indicator on the latter is more reliable, tracking the true error for the most
part to within an order of magnitude. The error indicators for the correlation-only
ML-SUPANOVA grid and the GCM grid are also reliable; those for the non-multilevel
SUPANOVA axis are less so.

The results for the approximations of the atomisation energy are not as clear. Since
heptane is still a relatively small system and the G4(MP2) calculation for heptane is
quite affordable, it is not surprising that none of the three calculations considered here
offers a significant relative performance benefit; we are more interested in the general
trends of error behaviour. Once past the first few iterations, all three grids produce
decays in error that go roughly at the same rate, although the non-SUPANOVA GCM
calculation is notably and again unsurprisingly more expensive for equivalent accuracy.
The complete ML-SUPANOVA grid calculation appears to pick up a very slightly faster
rate of decay than does the two-dimensional basis-only grid calculation, although this is
not clearly-indicated enough to draw any kind of conclusion. Again, the error indicator
of the complete grid calculation appears to be slightly more reliable in the limit than
that of the basis-only grid calculation, but the latter behaves better here than it did in
the total energy case.

With the exception of an obvious numerical fluke in the results of the complete ML-
SUPANOVA grid, none of the combination technique solutions approximates the G4(MP2)
reference solution to within chemical accuracy. It is not clear here whether this is due to
unreliability or inaccuracy of the reference itself, if the CCSD(T)/cc-pCV8Z atomisation
energy which the ML-SUPANOVA solutions are actually approximating even agrees with
G4(MP2) to that level of accuracy, or some combination of the two. This problem —
that of obtaining reliable reference results against which to benchmark — is vexing,
and it seems that the best we can say here is that all of the tested grids do allow for
systematically-improvable approximations of the atomisation energy, although possibly
at a slower rate of error decay compared to that of the total energy.

7.4. Case study: limonin (C26H30O8)

For the final case study of this thesis, we return to the heterocyclic molecule limonin
(C26H30O8) [CSLimo], at the same optimised geometry as in Section 6.6. We saw there
that an adaptive SUPANOVA calculation over a poset axis of convex subgraphs leads to
a systematically-improvable estimation of the MP2/cc-pCVTZ total energy of limonin for
both vacuum and mixed-basis embeddings. There, however, the computational benefit
of the SUPANOVA approach was limited; although an adaptive vacuum-embedding
SUPANOVA calculation was able to approximate the MP2/cc-pCVTZ energy to within
chemical accuracy at a slight cost improvement relative to the reference, this improvement
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was not especially persuasive.
We investigate now whether a multilevel treatment of limonin may be able to provide a

more substantial performance improvement. Although not a particularly “large” system,
we were still unable to obtain a CCSD(T) reference energy for limonin at cc-pCVTZ or
higher. Instead, we consider only the MP2/cc-pCVQZ [MP34; SO89; Dun89; WD95]
total energy of limonin, which required a calculation in terms of 3756 contracted basis
functions. The poset grid we use to approximate this quantity is now formed as the
direct product of a convex SUPANOVA axis for the same quotient graph G = G′/F of
the covalent bond graph G′ as was used in Section 6.6, and chain axes with elements
2 ≤ m ≤ 3 for the correlation treatment (i.e., either HF or MP2), and 2 ≤ n ≤ 4 for the
cc-pCVnZ basis set.

As for heptane, we also attempted to approximate the atomisation energy of limonin as
estimated by the G4(MP2) model, Eatom

G4(MP2) ≈ 11.183 448Eh. An application of G4(MP2)
is no longer quite so computationally trivial as has been the case for results discussed
previously in this thesis, as it carries an abstract cost of 3.593 × 1016. The ccCA-PS3
atomisation energy of limonin proved to be too expensive to calculate (abstract cost
1.811× 1019). When calculating atomisation energies, we extended the grids to include
electron correlation treatments up to CCSD(T) and basis sets up to cc-pCV8Z, as above.

We consider now a matching set of All-strategy calculations over the same poset grids
considered in the previous section. As an exception, we did not consider the GCM-only
grid, since the calculations required past the third iteration became too expensive. Per-
iteration error metrics are plotted in Figure 7.2, with a plot format equivalent to that in
Figure 7.1.

Again, the results for the total energy approximations are inconclusive. All of the
grids do produce sequences of approximations that decay in an overall smooth and
consistent way. Both the standard SUPANOVA grid and the correlation treatment-only
ML-SUPANOVA grid display single iterations at roughly the same cost which are more
accurate than would be expected from trend, but which are not supported by the error
indicator; in the end and at their most expensive iterations, both of these grids only
graze chemical accuracy. The complete ML-SUPANOVA grid and the basis-only grid are
here again competitive with each other. Although the basis-only grid does produce the
cheapest result that falls below chemical accuracy, the decay of errors for the complete grid
is truly monotonic. However, in both cases, chemical accuracy is obtained only at very
limited speedup relative to the reference calculation, and unreliably and unpredictably
so, since in both cases the error indicator is slightly more than an order of magnitude
greater than the true error.

The lack of any significant speedup makes these results appear underwhelming. It
should be considered, however, that the problem setting is only limited, and there is
not much scope for the multilevel approaches to perform. There is still a reasonably
clear benefit to the use of the complete and basis-only ML-SUPANOVA results. It seems
uncontroversial to suggest that were we to somehow obtain a CCSD(T) total energy

202



7.4. Case study: limonin (C26H30O8)

for a high-quality basis set such as cc-pCV5Z or better, that a true speedup would be
observed, although perhaps not as comprehensive as in the case of heptane. It is also
generally encouraging to see that the ML-SUPANOVA technique produces systematically-
improvable results here — with the use of convex subgraphs in a highly-cyclic molecular
system — just as in the topologically much more simple case of heptane.

Considering the atomisation energy results as obtained by the two tested grids, namely
the complete ML-SUPANOVA grid and the basis-only grid, we see again similar perform-
ance between the two in the later iterations. However, the utility of both as approximations
of the G4(MP2) reference atomisation energy is still severely limited, since neither agrees
with that value to within 0.1Eh. Once again, it is difficult to conclude more here, given
the questions that surround the reliability of the reference value, but at the very least, the
ML-SUPANOVA results are again systematically improvable. Given that the cost of the
G4(MP2) method has significantly increased in this case, we can tentatively hypothesise
that ML-SUPANOVA techniques may be of use in similar approximations for larger
systems again, where the G4(MP2) cost will become prohibitive. Further investigation is
certainly required.
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Figure 7.2.: Error metrics for ML-SUPANOVA and related calculations on limonin (C26H30O8).
The left-hand plot shows per-iteration absolute errors measured relative to a reference
MP2/cc-pCVQZ total energy calculation, as well as per-iteration error indicators.
The right-hand plot shows equivalent per-iteration values for atomisation energy
calculations, measured against a G4(MP2) calculation as reference. The notation
“using MP2 or CCSD(T)” corresponds to the left- and right-hand plots respectively.
Vertical and horizontal lines indicate the abstract cost of the respective reference
calculations and chemical accuracy (≈ 0.0016Eh) respectively.
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8. Conclusion
In this thesis, we constructed an order-theoretic generalisation of the standard combination
technique, and considered several applications of that generalisation to the approximation
of energetic properties derived from solutions to the Schrödinger equation for molecular
systems. We conclude by first giving a brief summary of our results, and then finally by
outlining several promising avenues for potential future work.

8.1. Summary
In Chapter 2, we summarised a variety of standard ab initio techniques for the numerical
solution of the electronic Schrödinger equation. An abstract cost model for estimating
the relative cost difference between ab initio calculations was formulated.

We began Chapter 3 by sketching a conventional development of the standard combin-
ation technique [GSZ92; Gar12b; TW18]. Viewed from the perspective of order theory,
the standard combination technique is defined in terms of a partially ordered set [Heg03;
HGC07; Har16a; Won16] that can be constructed as the direct product of some number of
totally ordered sets, or chains. We extended the construction of the combination technique
to the setting of a poset grid, formed as the direct product of members of a very general
class of partially ordered sets. The introduction of combinatorial and order-theoretic
concepts, particularly the Möbius function and the technique of Möbius inversion [Sta12],
was used to derive generalised analogues of the summation formulae underlying the
standard combination technique in this setting. Extending on existing work surrounding
and related to the standard combination technique, e.g., [Gri98; GG03; Heg03; CGH18;
TW18], we outlined an adaptive algorithm for the discovery of quasi-optimal combination
sums over order ideals of the underlying poset grid. We refer collectively to this extended
formulation and the accompanying adaptive algorithm as the order-theoretic combination
technique.

Extending upon observations and work by [CGH18] and particularly the CQML
method of [Zas+18], we discussed in Chapter 4 the application of what is effectively just
the standard combination technique to the problem of obtaining very highly accurate
approximations to the true total energy of a molecular system. Since this application
is inspired by consistent patterns in the energy equations of conventional composite
methods, which were previously noted by [Zas+18], we refer to it as the generalised
composite method (GCM). Case studies of the calculation of total and/or atomisation
energies for three small molecules suggest that the GCM is a well-behaved approximation
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technique, and can deliver results to reasonably high accuracy. Although there is no
major cost-based benefit of the GCM relative to existing composite methods, and indeed
the former performs not quite as well as the latter, the GCM provides a more systematic
framework that may be amenable to future analysis.

Turning to larger molecular systems, Chapter 5 was devoted to a detailed discussion of
the many-body expansion (MBE) and of a variety of related energy-based fragmentation
methods. We contrasted several existing mathematical viewpoints on the MBE, and
discussed the development of truncated MBEs as combination sums that are produced by
the order-theoretic combination technique in terms of order ideals of either the boolean
algebra BM , or as a subposet thereof. With reference to an earlier result of Lafuente
and Cuesta [LC05], we considered the conditions under which such a subposet will be
combination consistent with the full boolean algebra, in the sense that a combination sum
over any arbitrary order ideal of that subposet can be placed into termwise correspondence
with an equivalent combination sum in terms of an order ideal of BM . This idea was
extended to the general order-theoretic combination technique setting.

Practical application of the order-theoretic combination technique over BM produced
an adaptive many-body expansion, which we tested in the calculation of the total energies
of two clusters of water molecules. The results were consistent with previous work in
the literature, e.g. [RLH14; Lao+16; LH17], in that both numerical and cost-scaling
issues make standard n-body expansions neither particularly efficient nor accurate. The
application of adaptivity proved to have only limited utility here.

In Chapter 6, we considered a general class of ANOVA-like decompositions of functions
such as V BO, phrased in terms of interaction graphs such as the covalent bond graph
of a molecular system. This family of SUPANOVA decompositions, which can be
viewed as a special case of a decomposition due to Klein [Kle86], contains in particular
the BOSSANOVA technique of Heber and co-workers [Heb14; GHH14]. A careful
consideration of the construction of the BOSSANOVA decomposition in light of the
conditions for combination consistency established in Chapter 5 provided a rigorous
explanation for previously-observed issues with the BOSSANOVA decomposition in cases
of molecular systems with cyclic covalent bond graphs.

Addressing these issues, we considered instead a SUPANOVA decomposition based
not on the poset of connected subgraphs of an interaction graph, but instead on that of
geodesically convex subgraphs of that graph. This poset is guaranteed by construction
to be combination consistent with the underlying boolean algebra. Although the use of
convex subgraphs to construct formally similar expansions has been previously sugges-
ted [Kle86], and other existing techniques have been defined in terms of what turns out
to be a simpler subset of these subgraphs [RHI18; RI18; KI19; RI20], this is the first time,
to our knowledge, that they have been explicitly and fully considered in a modern energy-
based fragmentation setting. Several case studies demonstrated that the resulting convex
SUPANOVA technique is capable in some cases of providing systematically-improvable
approximations of energetic quantities of potentially very large molecules, although this is
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not necessarily guaranteed, and care must be taken to ensure that an interaction graph is
chosen which includes sufficient information about the interaction structure of the system
under study. With an eye to the latter, and reapplying well-known concepts both from
fragmentation methods as well as computational chemistry more generally, we considered
radial interaction graphs that explicitly incorporate distance-thresholded interactions
between atoms as well as those implied by bond connectivity. Such graphs seem to be
capable of remedying certain deficiencies in the interaction information contained in a
covalent bond graph. However, although the application of the adaptive algorithm to
the resulting convex SUPANOVA decomposition produces well-behaved sequences of
approximations, the results in this chapter make clear that truly persuasive speedups
relative to standard calculations still remain elusive, even for large molecules.

Finally, we briefly considered in Chapter 7 a straightforward combination of the
GCM and SUPANOVA techniques. Again both inspired and informed by existing
multilevel techniques in the literature, including particularly the ML-BOSSANOVA
expansion [CGH18], this ML-SUPANOVA method involves the decomposition of an
energetic quantity such as V BO both in terms of basis set and correlation treatment,
and in terms of connectivity-based subsystems. An insurmountable practical difficulty
was encountered here, in that reference-quality solutions to the Schrödinger equation
are practically unattainable for any system large enough that we might hope to obtain
a true benefit from the ML-SUPANOVA approach. Restricting ourselves to smaller
systems where reference solutions are available, the results are mixed. Certainly the
ML-SUPANOVA technique produces approximations which increase in accuracy at a
rate that improves upon those of the basic SUPANOVA formulation; however, the data
are unclear as to whether a multilevel technique considering both basis set level and
correlation treatment is any more efficient than one involving only basis set level, such as
is provided by the ML-BOSSANOVA technique. At the very least, the use of a convex
SUPANOVA decomposition rather than the original BOSSANOVA decomposition makes
this technique now safely applicable to systems with cyclic interaction graphs. Also, if
the adaptive error indicator provided by the order-theoretic combination technique is
to be believed, a full three-dimensional ML-SUPANOVA technique may be useful when
applied to larger systems.

8.2. Future work

In full conclusion, we now provide a sketched outline of interesting areas and ideas which
we were not able to fully explore in this thesis, either for reasons of scope, of time, or of
space. The following are given in no particular order.
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Use of CBS extrapolation in the GCM

Although the GCM outlined in Chapter 4 was seen to provide a systematically-refinable
approximation of the FCI/CBS energy of a molecule, its performance was no better than
comparable to that of the existing composite methods that motivated it. One potential
reason for the better performance of these composite methods is their aggressive use of
unidirectional extrapolation techniques, particularly of HF, MP2, CCSD and CCSD(T)
results towards the CBS limit [Taj+04; CRR07b; Kar+06; DeY+09]. Since any GCM
index set is required to be an order ideal, it follows that if, for example, an MP2/cc-
pCVQZ point is included in an index set, then so too are the MP2/cc-pCVDZ and
MP2/cc-pCVTZ points required for an extrapolation from the cc-pCVQZ level towards
the CBS limit. Moreover, if that index set was built adaptively, the calculated energies
for these points must also have been previously calculated. It would be possible, therefore,
to extend the GCM to make use of extrapolated subproblem potentials, rather than
conventional ones. This may allow more accurate GCM results at a negligible increase
in computational cost. Such an extension could also be applied in the more general
ML-SUPANOVA setting; here, we note in connection some previous work applying CBS
extrapolation to many-body terms in [MGP99].

Quantum embedding techniques

In Chapters 5 and 6, we investigated the use of mixed-basis contribution potentials.
During the research which led to the production of this thesis, we originally considered
these in the hope of avoiding certain practical issues associated with the use of link
atoms for the treatment of dangling covalent bonds; see, e.g., [CD06; ŘS09; Le+12].
However, although the obtained results indeed seem to offer systematically-refinable
approximations of energetic quantities, the still-high costs of mixed-basis embedding
subproblem potentials appears to rule out their useful application in practice, particularly
in light of the number of individual calculations required for SUPANOVA calculations.

In light of this and also of comments in, e.g., [HNK18], there is good reason to suspect
that mixed-basis set embeddings may not be well-suited to the task. It would be of great
interest to consider a similar SUPANOVA formulation that uses instead true quantum
embeddings as briefly discussed in Section 5.1.1, be they either DFT-in-DFT, WFT-in-
DFT, or WFT-in-WFT. Here, the previous work mentioned in Section 5.4 would be the
natural place to start.

The use of quantum embeddings might be particularly worthwhile in the context of an
ML-SUPANOVA formulation, where one poset axis indexes the correlation treatment of
the embedding region in a WFT-in-DFT or WFT-in-WFT scheme. This idea is hinted at
in [Man+12], and what is recognisably a simple multilevel scheme is used in [GW12] to
incorporate dispersion contributions calculated via MP2 into two-body terms. Also, the
title of [RKI20] suggests an investigation of DFT-in-DFT and WFT-in-DFT embeddings
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in a multilevel setting. However, only ONIOM-style subtractive embedding approaches
are there considered, rather than true quantum embeddings.

Approximations of nuclear gradients

We mentioned in Chapter 2 that the total energy of a molecular system is not a particularly
useful quantity in and of its own right and that, in practice, one is usually more interested
in either energy differences such as atomisation energies, or the forces on the nuclei as
provided by the gradient of V BO with respect to the nuclear coordinates. In this thesis,
we considered the former in a limited fashion, but did not explicitly consider the latter.

It is explicit in the construction of the order-theoretic combination technique that
any linear evaluation functional L can be used. Although we used here a functional
corresponding to point evaluation of a subproblem potential, it would be theoretically
trivial to replace this functional with one for point evaluation of the nuclear gradient of
V BO. That MBE-type sums of energies can be modified in this way to produce gradient
calculations is well-known [DT07b; SDS09; MR11; LH17; Liu+19]. From a practical
perspective, the combination sum would then become one of tensors, rather than of
scalars. This might cause issues due to increased storage requirements for the collection
of all evaluated gradients, particularly for large systems. However, these issues could
in turn be treated by the use of appropriate sparse data structures, such as the sparse
tensors used in Chapter 3, or indeed any sparse array implementation. There are also
well-known issues regarding the impact of link atoms on the correctness of so-evaluated
gradients [ŘS09] which would need to be considered.

Further verification of applicability and of results

The experimental studies provided in this thesis represent only initial investigations of
the described techniques in particular cases, and the conclusions so drawn should not be
extrapolated to the general case without further analysis. Indeed, while developing the
algorithms and tools presented here, we also tested them informally on other molecular
systems. As for those cases which we have explicitly considered, the behaviour of
the adaptive algorithm and the quality of the resulting approximations seemed to be
highly dependent on the structure of the involved molecule, its connectivity as modelled
either by a bond graph or other interaction graph, and/or the precise approach used to
generate a fragmentation of the involved atoms. In some cases, combinations of these
factors appeared to present significant difficulties for the adaptive algorithm. Rigorous
investigation of these cases was not feasible for reasons of time, space, and computational
resources.

It is therefore important that a deeper understanding be sought of the precise conditions
which molecular systems must fulfil in order that these algorithms can be expected to
produce well-behaved approximations. It would also be important to investigate the
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application of all of these techniques to more complicated scenarios, such as charged
and/or non-equilibrium systems. Here, the natural beginning would be to revisit the
existing and more rigorous analysis of the underlying nearsightedness conditions, as in,
e.g., [Goe99; BBR13; Heb14].

Drawing more general conclusions about the performance and reliability of these tech-
niques will require their application and statistical evaluation across larger datasets of
molecules. Ideally, these should be chosen so as to be representative of particular subdo-
mains of chemical compound space; see, e.g., [Zas+18; Bar+21; Kei+21] and references
therein. Several such datasets have been published and widely used for evaluating the
performance of quantum machine-learning techniques, see, e.g., [Ram+14; Nar+19]. Here,
however, care must be taken to choose the applied subproblem potentials with reference
to the methods used to calculate the reference values (particularly total/atomisation
energies) in these datasets.

Theoretical analysis of benefit decay conditions

Closely related to the previous point, a key requirement for combination sums over
SUPANOVA-type decompositions to be practically useful is a decaying upper bound on
the magnitude of the surplus terms L[Ṽu] and similar. Although such a decay is expected,
and is clearly visible in, e.g., the data discussed at the end of Chapter 5, we have provided
here no more than a handwaving justification for its existence.

Were rigorous bounds available here, then it might be possible to perform true error
analysis on SUPANOVA-class combination sums. Existing techniques from the literature
surrounding the standard combination technique and sparse grids in general may prove
to be useful here. This would also be assisted by the results we have given regarding
combination consistency, since if one could provide some kind of bound on the error
of a combination sum over an arbitrary order ideal of a nuclear MBE — or even an
MBE in terms of basis functions, rather than nuclei, like the construction underlying the
BOSSANOVA method [Heb14] — then a generalisation to a SUPANOVA decomposition
over another poset may not be too difficult, particularly if the Möbius function of that
poset were to be known in a non-recursive form.

Alternative applications of the order-theoretic combination technique

Although the order-theoretic formulation of the combination technique that was presented
in Chapter 3 is given in very general terms, we have only applied it here in a single
setting. Given the broad applicability of the standard combination technique and similar
methods that work in what we now recognise as simple poset grids of chain axes — see
Section 3.2 and, e.g., [TW18] — it seems reasonable to suspect that there may be other
areas of numerical science where the relaxed poset formalism may be useful.

A natural starting point for the discovery of further applications would be to consider the
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listing of function space lattices given in [Heg03], and then investigating which (presumably
high-dimensional) problem settings base naturally around those lattices. Similarly, an
extension of the opticom technique given in [HGC07] to our construction strikes us as
both plausible and interesting. The work of Wong [Won16] and Harding [Har16b] will
surely also be relevant here.

It may also be possible to apply the order-theoretic combination technique in other areas
of computational and quantum chemistry. We might begin with a deeper investigation
of the chemical graph-theoretic cluster expansions listed by Klein in [Kle86], which
interact with the wavefunction at a lower level than the “black-box” potentials we have
considered here. Comments made in that source regarding a connection between convex
subgraphs and subsets of occupied orbitals in a variant of the coupled cluster expansion
are particularly intriguing, and we wonder whether the construction of some form of
multilevel scheme might be possible in this setting.

Possible applications of the fast Möbius/Zeta transforms

In closing, we mention one final point related to Möbius inversion. We use here our usual
notation of the order-theoretic combination technique, and assume some appropriate
poset grid Π and families of model functions {fp}p∈Π and hierarchical surpluses {f̃p}p∈Π
related as in Chapter 3 and specifically as per Theorem 3.3.4. It is natural to wonder how
one might most efficiently calculate the model functions fp (or, more precisely, evaluated
model functions L[fp]) given the necessary surpluses f̃s, or inversely, the hierarchical
surpluses f̃p given the necessary model functions fs. Provably optimal approaches for
these calculations, called the fast zeta transform and fast Möbius transform respectively,
have been developed for particular posets and classes of poset Π; see, e.g., [Ken92;
Bjö+15]. One relatively recent variant is tuned for cases when many of the surpluses f̃p
are exactly zero [CDC19; CDC21; Cha21].

We became aware of this body of work only very late in the preparation of this thesis,
and we have not had the opportunity to properly evaluate it in our context. However,
there seems to be an immediate relevance. In particular, recall that we mentioned in
Footnote 4 on page 112 that evaluating the combination sum SI of an order ideal can be
simply rephrased as the calculation of f̃1̂, where 1̂ is an additionally-adjoined maximal
element of J = I ∪ {1̂} and f1̂ is defined to be zero. Thus, an optimal Möbius transform
for such a J would immediately provide an optimal mechanism for evaluating SI . See,
e.g., [Bjö+15; CDC19] for interesting possibilities when J is a lattice, which will occur at
least whenever Π is a meet semilattice.

The adaptive approach we took in Chapter 3 to develop both I and the combination
coefficients required to evaluate SI is not directly comparable, since our focus is on
the adaptive calculation of I itself. In particular, the evaluation of SI at each loop
iteration is simply linear in |I|, since the combination coefficients have been progressively
constructed and are thus completely known. Informally, however, some |I| evaluations of
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MöbiusTensor(p) will have been necessarily required over the course of the algorithm
up to that point, one for each p ∈ I. Since each such evaluation and summation into
the full combination tensor might cost at least O(Λ2

p) as per discussion in Section 3.5.3,
the worst-case complete evaluation cost of SI can be cubic in |I|. Here, it would be
particularly interesting to investigate whether an alternative formulation of the adaptive
algorithm could include some of kind of mechanism based upon the fast Möbius transform
for more efficient updating of the involved values at each iteration. It might also be
worth reconsidering the complexity of the fast Möbius transform in light of the costs to
actually evaluate each fp; it seems to our initial reading of the above-cited literature
regarding the fast Möbius transform that these values are assumed to be known a priori
and thus available in constant time, which is not generally the case in our setting.
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A. Calculation details

A.1. Quantum chemical software

The ab initio quantum chemical calculations reported in this thesis were performed with
the MRCC [Kál+20; MRCC], NWChem [Apr+20], and PySCF [Sun15; Sun+17; Sun+20]
software packages. We used the 2022 version of MRCC, and obtained main-branch versions
of NWChem and PySCF from their respective GitHub repositories; the most recent
preceeding release for NWChem was version 7.0.2, and for PySCF, version 2.0.1. Some
trivial local modifications were made to both PySCF and NWChem for technical reasons.
MRCC was used to perform some HF, MP2, CCSD, CCSD(T), CCSDT, CCSDT(Q),
CCSDTQ, CCSDTQ(P), and CCSDTQP single-point calculations, using both RHF and
UHF wavefunctions [SO89; MP34; Číž66; PB82; NB87; Rag+89; KB92; KS01; Bom+05;
KG05; KG08; Rol+13; Kál14; GKN20]. NWChem was used to perform some single-point
HF and MP2 calculations using RHF wavefunctions, see additionally [WH95; Fos+96;
WHR96], and to perform KS-DFT/B3LYP [KS65; Ste+94] geometry optimisations for
some test molecules. In all calculations, NWChem was explicitly prevented from removing
linearly-dependent basis functions (set lindep:n_dep 0). PySCF was used to perform
some HF, MP2, CCSD, and CCSD(T) single-point calculations using RHF wavefunctions;
see additionally [Pul80; Pul82].

We also used the xTB package [Ban+20], via a Python API [xTBPy], to calculate the
GFN2-xTB [BEG19] partial charges used in Section 5.4. The IAO partial charges [Kni13]
used in the same section were calculated using PySCF, following an example script
contained in the PySCF GitHub repository. The OpenBabel toolkit [OBo+11] was used
to convert molecular structures between representation formats and, in some cases, to
calculate bond structures and/or add hydrogen atoms.

We used functionality from the libcint library [Sun15] to perform the ERI calculations
necessary to implement the abstract cost model described in Section 2.5. All costs
described in this thesis were calculated with libcint version 5.1.1. Here, the internal
cutoff parameter PTR_EXPCUTOFF was set to fabs(log(1.0e-12)). Standard single-point
calculations performed with PySCF did not use manually modified libcint settings.

A.2. Basis sets

The following basis sets were used for calculations described in this thesis:
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• 6-31G* and 6-311G* [DHP71; HDP72; HP73; Kri+80].

• The Dunning-Hay DZ basis set [DH77].

• cc-pVnZ and aug-cc-pVnZ, for 2 ≤ n ≤ 8 [Dun89; KDH92; WD93; PWD94;
WMD96; FP99; MGP99; MWD99; FS00; FPD08; FP09; FPH10; FPH11; Tho+21].

• cc-pCVnZ and aug-cc-pCVnZ, for 2 ≤ n ≤ 8 [WD95; Pet+97; Tho+21].

• aug-cc-pwCVTZ and aug-cc-pwCVQZ, for evaluating W4 costs in Chapter 4 [PD02].

• Three specialised basis sets required by the G4(MP2) composite method [Cur+98;
CRR07b; CRR07b]: G3MP2LargeXP, and the G4(MP2) specialisations of aug-cc-
pVTZ and aug-cc-pVQZ.

Most of the calculations we have described involved only basis sets for H, C, N, and O,
but the cc-pVTZ calculations on the proteins 1KDF and 6VXX described in Section 6.8
also required basis sets for S.

In most cases, specifications for these basis sets were obtained from the Basis Set
Exchange (BSE) [Pri+19]. The tight function values for cc-pCV6Z/aug-cc-pCV6Z were
as provided by NWChem; we understand these to be the standard values originally
due to Wilson and Dunning, as cited in [Pet+97]. The specifications for aug-cc-pCV7Z
and aug-cc-pCV8Z were obtained from the supporting information of [Tho+21]. The
cc-pCV7Z and cc-pCV8Z specifications were generated by removing diffuse functions from
aug-cc-pCV7Z and aug-cc-pCV8Z. cc-pV7Z and aug-cc-pV7Z were generated by removal
of core and/or diffuse functions from aug-cc-pCV7Z as appropriate. Specifications for
cc-pV8Z and aug-cc-pV8Z were kindly provided by David Feller [Fel22]. The specifications
of the various non-standard basis sets required for G4(MP2) calculations were obtained
from the supporting information of [CRR07b].

Most basis set specifications were manipulated using the BSE Python library [Pri+19]
as follows. Entries for multiple angular momenta (SP shells, etc.) were split into dis-
tinct entries (uncontract_spdf(...)). Entries were then converted to a single general
contraction per angular momentum value, and these contractions were then optim-
ised (optimize_general(...)) [HHT95]. Finally, all general contractions were again
uncontracted and pruned (uncontract_general(...) and prune_basis(...)). These
manipulations were done for reasons of computational efficiency, and to our understanding,
should have no meaningful impact on results obtained.

Calculations were generally performed using spherical harmonic (i.e., pure) primitive
Gaussian functions. Cartesian functions were used for calculations with 6-31G* and
6-311G**. Mixed pure/Cartesian basis sets in the sense discussed in [PLV20] were not
used for any calculations.
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A.3. Monoatomic total energies

This section describes the total energy calculations for the four monoatomic systems (H,
C, N, and O) that were required for the calculation of the total atomisation energies
described in Chapters 4 and 7.

Calculations were performed using spin-unrestricted (UHF) Hartree-Fock wavefunctions.
For frozen-core calculations over C, N, and O, one spatial orbital and thus two spin
orbitals were frozen. Spin multiplicities of 1, 3, 4, and 3 were set for H, C, N, and O
respectively.

All monoatomic total energy calculations were performed using MRCC, with the excep-
tion of those for oxygen under the aug-cc-pCV8Z basis set; see below. The prescreening
tolerance for calculation of two-electron integrals was uniformly set to 10−14 (itol=14).
Energy convergence thresholds for both SCF and iterative coupled cluster calculations
were set to 10−10 (scftol=10, cctol=10). MRCC’s thresholding parameter for SCF
density matrix convergence was set at 10−11 (scfdtol=11). Canonical MP2 energies
were extracted from program output for the relevant CCSD calculations. Frozen-core
calculations for C, N, and O were specified by the MRCC setting core=1.

Calculations for oxygen with the aug-cc-pCV8Z basis set were performed using PySCF.
A convergence tolerance of 10−9 was set for both RHF and CCSD iterative solvers;
PySCF’s direct_scf_tol parameter was set to 10−14. For frozen-core calculations, we
set the PySCF solver attribute frozen = 1.

In the particular case of carbon, where frozen-core values for coupled cluster theories
considering treatments higher than CCSDTQ were required, we simply used those for
CCSDTQ. In this case, a CCSDTQ treatment corresponds to full coupled cluster, thus
FCI.

A.4. Total energies, H2O, O3, and C3H5NO

This section contains full calculation details for the total energy calculations used in
Chapter 4, both explicitly (for H2O, in Section 4.4.1) and implicitly (for the atomisation
energies of H2O, O3, and C3H5NO analysed in Sections 4.4.2 and 4.5).

All calculations at the RHF, MP2, CCSD, and CCSD(T) levels of theory were performed
using PySCF. A convergence tolerance of 10−8 was set for both RHF and CCSD iterative
solvers; PySCF’s direct_scf_tol parameter, which we understand to control integral
prescreening, was set to 10−14.

All remaining correlated calculations (i.e., CCSDT and higher) were performed using
MRCC. The following convergence tolerances were set: an RHF energy convergence
threshold of 10−8 (scftol=8), an RHF density-matrix convergence threshold of 10−9

(scfdtol=8), a coupled cluster energy convergence threshold of 10−8 (cctol=8) and an
integral prescreening threshold of 10−14 (itol=14). MRCC’s implementation of the Rys
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quadrature algorithm for ERI evaluation [RDK83; LRL91; Flo09] was explicitly selected
(intalg=rys).

The use of automatically-detected symmetry was enabled for both PySCF and MRCC
calculations for H2O and O3. The use of symmetry was not enabled for C3H5NO.

For frozen-core calculations over H2O, one spatial orbital was frozen, corresponding to
two spin orbitals (PySCF: solver attribute frozen = 1; MRCC: core=1). For frozen-core
calculations over O3, three spatial orbitals were frozen (PySCF: solver attribute frozen
= 3; MRCC: core=3). For frozen-core calculations over C3H5NO, five spatial orbitals
were frozen (PySCF: solver attribute frozen = 5; MRCC: core=5).

A.5. Standard composite method calculations

The G4(MP2), ccCA-PS3, and HEAT total and atomisation energies given and discussed
in Chapters 4 and 7 were calculated consistent with the formulae given in Chapter 4. We
calculated the G4(MP2) HLCs consistent with the description in [CRR07a]; the number
of alpha/beta electrons in each system was calculated using PySCF. The implementation
of G4(MP2) in the open-source composite-thermochemistry-nwchem package [Ern16]
was a helpful reference here.

All individual single-point calculations required to compute G4(MP2) energies for
non-monoatomic systems were performed using PySCF, using equivalent settings to those
given in Section A.4. The full-system total energy values used to calculate ccCA-PS3
and HEAT energies in Chapter 4 were those described in Section A.4. The ccCA-PS3
total energies described in Chapter 7 were calculated directly using PySCF, again using
settings as in Section A.4. For the calculation of all composite-method monoatomic
energies, we used the single-point monoatomic energy values described in Section A.3.
All given atomisation energies were calculated directly from corresponding molecular and
monoatomic energies according to (2.27).

A.6. Preliminary geometry optimisations

The test molecules hexane, heptane, benzene, limonin, and chignolin considered in
Chapters 6 and 7 were optimised to plausible equilibria after being obtained from
the ChemSpider database or the PDB. Geometry optimisations were performed using
NWChem, employing DFT calculations with the B3LYP functional [KS65; Ste+94] and
the cc-pVDZ basis set. An energy convergence threshold of 10−6Eh was explicitly set;
otherwise, NWChem’s default thresholds were applied for both energy calculations and
geometry optimisation. The ERIs used in these calculations were obtained via the simint
library [PC16].
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A.7. Subproblem potentials

The point-evaluated vacuum and electrostatic-embedding subproblem potentials L[Vu]
used in the calculations discussed in Chapters 5, 6, and 7 were calculated using PySCF.
Iterative convergence thresholds were set to 10−8Eh for both RHF and CCSD calculations,
and PySCF’s direct_scf_tol integral prescreening threshold was set to 10−12. Where
required, dangling single bonds were capped using hydrogen link atoms, placed as
per [RH12, (9)]. Here, we used the covalent radii given in [Cor+08]. Dangling double
bonds, which were only encountered in the representative calculation for benzene in
Section 6.3, were treated with two hydrogen link atoms. These atoms were arrayed in
a manner which we understand to be consistent with the treatment in [Heb14; Heb17],
except that we also used covalent radii to decide on the distance of each hydrogen from
the parent carbon atom, as above.

The mixed-basis embedding subproblem potentials were evaluated using NWChem, with
iterative convergence thresholds also set to 10−8Eh and integral prescreening parameters
(e.g., tol2e) set to 10−12.

While performing the work described in Chapters 5, 6, and 7 of this thesis, we variously
precalculated, cached, and reused the results of subproblem potential evaluations. All
such results were cached at full precision, and significant care was taken to ensure that any
adaptive calculation result obtained using cached results would be completely consistent
with a “clean” reexecution of the same calculation, i.e., one that did not use cached results.
Since costs are generally calculated and reported as per the abstract cost model described
in Section 2.5, it is immaterial from this perspective whether the value of an evaluated
subproblem potential is drawn from cache or calculated directly. The only case study
given in this thesis in which real-world execution times were reported was the calculation
of the total energy of the spike glycoprotein described in Section 6.8.2; here, all involved
subproblem potentials were explicitly evaluated from scratch during the course of the
calculation.

A.8. Order-theoretic combination technique implementation

We generated the results in this thesis using an implementation of the adaptive algorithm of
Chapter 3 that was written in the Python programming language, with some performance-
critical functionality implemented in C++. As well as various standard and general-
purpose libraries and tools, we made heavy use of the Numpy [Har+20], Scipy [Vir+20],
and NetworkX [HSS08] scientific libraries. A sparse tensor data structure was implemented
directly, influenced by [Sparse] but tailored for our problem. Tensor reductions like, e.g.,
Reduce(D� V ) were handled in arbitrary precision using the Arb library [Joh17], using
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100 bits of precision for intermediate values.1 The required poset axis interfaces were
implemented basically consistently with the high-level outlines in Appendix B, up to a
variety of performance optimisations. Fallback Möbius-vector calculations for conn[G]
andMg[G] were performed using an implementation of (3.50), applying memoisation
techniques in order to offset certain performance issues inherent to Python as far as
possible.

Although the adaptive algorithm is given in Chapter 3 in a purely sequential form, a
significant amount of parallelism is available; cf. here [CGH18, Sec. 3.4.3]. The simplest
to exploit is the functional evaluation for each newly-added element in the innermost
loop of the algorithm (see Algorithm 3.3, line 13). Our implementation was capable
of distributing these evaluations across a standard HPC cluster according to a simple
distributed-memory parallelisation scheme. The techniques used here are basic and can
be found in any introductory textbook on parallel programming.

Our scheme uses the ZeroMQ message-passing protocol [PZMQ]. A broker process
maintains connections to a collection of available calculator processes, which are re-
sponsible for launching evaluation calculations and collating subsequent results. At each
iteration of the adaptive algorithm, a specified batch of calculations is dispatched from
the organiser process (i.e., the process executing the adaptive algorithm) to the broker,
which is then responsible for distributing the batched work items amongst the calculator
processes, and collecting and returning the eventual results to the organiser process. We
remark that similar approachs have been suggested in the fragmentation-method setting
by, e.g., [Gan+06], but this is a very standard and natural pattern in high-performance
and distributed computing in general.

The calculations involved in any given batch may vary substantially in terms of required
runtime, potentially by several orders of magnitude. To minimise situations where a
single long-running job delayed the completion of an entire batch, we applied a simple
greedy-scheduling approach to load-balancing. Here, the abstract costs C(p) for all
calculations in a batch are calculated a priori. These cost calculations are themselves
dispatched to and performed in parallel by the calculator processes, since the walltime
required for each cost-model evaluation itself may be relatively non-trivial: consider the
abstract cost model outlined in Chapter 2, which requires the evaluation of a set of
ERIs and thus requires a computation time on the order of milliseconds, rather than the
nanoseconds that would be expected for the evaluation of a simple algebraic expression.
Once this is done, batch tasks are assigned to available calculators in decreasing order of
abstract cost. Under the assumption that true calculation costs are modelled accurately
by the cost function, the resulting work distribution is close to optimal, at least when the
computing capacities available to all calculator processes are identical; see, e.g., [Gra69,
Thm. 2]. As above, we note that similar schemes have been previously implemented

1The choice of this value was essentially arbitrary, but we mention here that we found success using an
almost identical precision to perform the otherwise unrelated calculations reported in [BTZ22].
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in the fragmentation method setting [Gan+06; ŘS09]. More sophisticated scheduling
approaches would certainly be possible, particularly if some deeper knowledge of the
underlying calculations were to be applied, but anecdotally and informally, we observed
our approach to work acceptably well in the general case.

A.9. Plots and visualisations
With the exception of Figures 4.2, 5.4, and 5.5, the plots and visualisations in this thesis
use colours drawn from the “bright” palette of Tol [Tol21]. Three-dimensional molecule
visualisations were produced using the Blender software package [Blender], shaded
according to the direct shadow overlay (DSO) method described by Hansen [Han20].

In the visualisation of the SARS-CoV-2 spike glycoprotein in Figure 6.13, atoms are
coloured by their membership in individual connected components of the underlying
covalent bond graph of the full system, as implicitly calculated by the OpenBabel
toolkit [OBo+11]. Colours were assigned according to an approximately minimal graph
colouring of a derived graph. This graph contained one vertex for each connected
component in the original bond graph, and an edge joining two vertices whenever any
two atoms in the respective connected components of the original graph lay within
a cutoff radius of 5Å of each other. The graph colouring was calculated using the
NetworkX function networkx.coloring.greedy_color(...) according to the default
largest_first strategy; the NetworkX documentation for this function cites [KM04].
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B. Poset axis interfaces
We give here a brief and high-level algorithmic summary of the required interfaces for
the various poset axes used in this thesis, as per Section 3.5.2. For basic computer
science results and terminology, we refer most strongly to [Cor+22]. We rely heavily on
operations on sets. We assume rather naïvely here and throughout that a set u can be
constructed and its elements iterated over with cost O(|u|), and can have a single element
added or removed at cost O(1); this is achieved in the average case by the built-in set
data structure provided by Python [PWTC], but cf. more detailed discussion in [Cor+22,
Chap. 11].

B.1. Chain poset
An implementation of the poset axis interface for an arbitrary chain poset P with a 0̂, finite
or infinite, is given in Algorithm B.1. Here, we take the indexing bijection φ = ρ, where
ρ is the standard rank function on P ; thus, φ is order-preserving in both directions. The
details of the AxisIndex, Predecessors, and Successors functions follow immediately.
The form of MöbiusVector follows directly from (3.27) in Example 3.3.12, restricted
to the case d = 1 and possibly up to the finiteness of P ; see alternatively [Sta12,
Example 3.8.1].

B.2. Boolean algebra of rank n, Bn

An outline of the poset axis interface for the boolean algebra BN is given in Algorithm B.2.
The implementation of AxisIndex again reduces to one of an indexing bijection, φ :
BN → {0, . . . , 2N − 1}. Construction of such a bijection is a standard problem in applied
combinatorics [Leh64; NW78, Chap. 1; SW86; KS98, Chap. 2], where it is referred to
as ranking the subsets of [N ]. Probably the simplest approach is to identify each subset
u ∈ 2[N ] with a binary string a = a1a2 · · · aN , such that ai = 1 if i ∈ u and ai = 0
otherwise. A suitable bijection is then obtained by interpreting these strings as binary
numbers, as in, e.g., the SubsetLexRank algorithm in [KS98, Alg. 2.1]:

φ(u) =
∑

1≤i≤N

ai · 2N−i =
∑
i∈u

2N−i. (B.1)

Evaluating the last sum requires O(|u|) operations, assuming constant-cost arithmetic
and exponentiation.
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Algorithm B.1 Poset-axis interface implementation for a chain poset P .
1: function AxisIndex(t ∈ P )
2: return φ(t)

3: function Predecessors(t ∈ P )
4: if φ(t) > 0 then
5: return {φ−1(φ(t)− 1)}
6: else
7: return ∅

8: function Successors(t ∈ P )
9: if P is infinite or φ(t) < |P | − 1 then

10: return {φ−1(φ(t) + 1)}
11: else
12: return ∅

13: function MöbiusVector(t ∈ P )
14: . Initialise a zero-filled 1D sparse tensor with shape (|P |), which might be (∞). /
15: M ← an empty sparse tensor
16: i← φ(t)
17: Mi ← 1
18: if i ≥ 1 then
19: Mi−1 ← −1
20: return M

Although φ is order-preserving, it maps even some very small sets to very large indices;
for example, φ({1}) = 2N−1, which exceeds the range of a standard 64-bit unsigned
integer for any N > 64. As a result, indices must be represented using arbitrary-precision
integers. The impact of this can be ameliorated to an extent by the use of a different
bijection. That just given ranks subsets as per the well-known lexicographic ordering; see,
e.g., [KS98, Chap. 2]. We can build instead an alternative indexing bijection that orders,
for every 1 ≤ k ≤ N , all ranked subsets of size less than k before any of size k, and all
those latter lexicographically. This ordering is also well-known; see and cf., e.g., [Eps+92,
Sec. 2.5; KS98, Exercise 2.10; Fil13]. Given an algorithm for lexicographically ranking
only the size-k subsets of [N ] into {0, . . . ,

(
N
k

)
− 1} like, e.g., kSubsetLexRank [KS98,

Alg. 2.7], then, clearly,

φ(u) =
|u|−1∑
k=0

(
N

k

)
+ kSubsetLexRank(u, |u|, N). (B.2)
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Algorithm B.2 Poset-axis interface implementation for the boolean algebra Bn.
1: function AxisIndex(u ∈ BN )
2: return φ(u)

3: function Predecessors(u ∈ BN )
4: return {u− {i} | i ∈ u}

5: function Successors(u ∈ BN )
6: return {u ∪ {i} | i ∈ [N ]− u}

7: function MöbiusVector(u ∈ BN )
8: . Initialise a zero-filled 1D sparse tensor with shape (2N ). /
9: M ← an empty sparse tensor

10: for all v ⊆ u do
11: i← AxisIndex(v)
12: Mi ← (−1)|u|−|v|

13: return M

An expression for kSubsetLexRank in terms of O(u) binomial coefficients is given
by Lehmer [Leh64]; see also [SW86, Exercise 10; KS98, Alg. 2.9 and Thm. 2.4; use13].
Note, however, that if N is large, then arbitrary-precision integers may still be required
to represent the indices of relatively small subsets; for example, if N = 7524, which
is the number of fragments of the spike glycoprotein considered in Section 6.8.2, then
φ(u) > 264 − 1 for all subsets u ∈ BN with |u| ≥ 7 and for some with |u| = 6.

Given u,v ⊆ [N ], it is immediately clear that u ≺ v exactly when u = v−{i} for some
i ∈ v. The resulting algorithms for Predecessors(u) and Successors(u) are obvious,
and carry complexities of O(|u| · (|u| − 1)) = O(|u|2) and O(|u| · (N − |u|)) = O(N |u|)
respectively, due to the repeated replication of u.

The implementation of MöbiusVector(u) follows immediately from the standard
expression (3.32) for the Möbius function of BN as given in Example 3.3.13. Since
µBN

(v,u) 6= 0 for any v ⊆ u, the function MöbiusVector(u) must return a sparse
tensor with exactly 2|u| nonzero entries, one for each possible v. Here, an algorithm for
enumerating all subsets v ⊆ u is required. We do not describe such an algorithm here —
see, e.g., [NW78, Chap. 1; KS98, Chap. 2] — but one will require at best O(2|u| · |u|)
operations, from the sum of the sizes of all possible subsets of u, and this complexity
is readily achievable in practice. The single O(|u|) call to AxisIndex for each subset
required to generate the indices for the sparse tensor does not affect the overall complexity
of MöbiusVector, which is then O(2|u| · |u|) under the assumption of constant-cost
writes to elements of the sparse tensor.1

1We note in passing that careful implementations that iterate directly over indices rather than explicit
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B.3. Poset of subsets inducing connected induced subgraphs,
conn[G]

For an arbitrary G = (V,E), we are not aware of a suitable ranking function for members
of conn[G] similar to those mentioned for the boolean algebra case above. One based on
a lookup table could in principle be implemented by simply preenumerating all of the
connected induced subgraphs, using an approach like that given in [Wer05], but this will
generally not be feasible for medium to large and/or non-sparse graphs. Since conn[G] is
just a subposet of B|V |, however, it is possible to just reuse AxisIndex as defined in the
previous section. Although not technically a bijection onto {0, . . . , |conn[G]| − 1}, this
functions perfectly well for the purposes of the order-theoretic combination technique;
one simply uses sparse tensors with notionally longer axes.

We are neither aware of nor can we give a non-recursive expression for the Möbius func-
tion µconn[G] in the general case.2 Instead, a fallback implementation of MöbiusVector
as described in Section 3.5.3 can be used.

Pseudocode for the remaining two required poset-axis functions is given in Algorithm B.3.
Their derivation follows straightforwardly from results as well as insight in [KS96; Wer05].
Specifically, Lemma 3.2 of [KS96] provides, up to notational differences, that u ≺ v in
conn[G] if and only if u ⊆ v and |v| − |u| = 1. It is also easy to see, as is implicitly relied
on in [Wer05], that u ≺ v implies that, if we write v − u = {w}, then the additional
vertex w must be adjacent in G to some vertex u ∈ u; otherwise, G[u] and G[{w}]
would both be connected components of G[v] and u ∪ {w} would not induce a connected
subgraph of G.

Given a fixed graph G, we write the neighbourhood of u ∈ V as N(u) = {v ∈ V |
{u, v} ∈ E}, as usual [Cor+22]. The Successors function needs only iterate over all
vertices u ∈ u, and return copies of u extended by any neighbour w ∈ N(u) which is not
itself in u. If G is stored using an adjacency-list representation or similar [Cor+22, Chap.
20], then N(u) can be evaluated with linear complexity in the size of the output, which
is at most |V | − 1 in the case of a complete graph. Thus, the worst-case complexity of
Successors is given by O(|u|2|V |). If the size of any N(u) is bounded above by some
small constant independent of G, as is basically the case for the relatively sparse graphs
we consider in this thesis, this becomes O(|u|2).

Calculating the Predecessors of some vertex set u that induces a connected subgraph
of G is only slightly more complicated. In connection with [KS96, Lem. 3.2], we note
that the problem is just that of enumerating the connected induced subgraphs of G[u]
of size |u| − 1. More general versions of this problem are well-studied [AF96; Wer05;
KS21], but we use here only a naïve brute-force style search. Clearly, v ≺ u requires

subsets can bring this down to O(2|u|), for both kinds of indexing bijection described above.
2Although this would be readily possible in the specific case where G is a tree, since conn[G] would then
be a convex geometry. See Section 6.5.
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Algorithm B.3 Partial poset-axis interface implementation for conn[G] ⊆ BM .
1: function Predecessors(u ∈ conn[G])
2: if |u| = 1 then
3: return {∅}
4: predecessors← ∅
5: for all u ∈ u do
6: if G[u− {u}] is connected then
7: predecessors← predecessors ∪ {u− {u}}
8: return predecessors

9: function Successors(u ∈ conn[G])
10: if u = ∅ then
11: return {{u} | u ∈ V }
12: successors← ∅
13: for all u ∈ u do
14: successors← successors ∪ {u ∪ {v} | v ∈ N(u), v 6∈ u}
15: return successors

that v = u− {u} for some u ∈ u, so each possible u− {u} is a candidate predecessor.
However, not every such set is guaranteed to induce a connected subgraph of G.

Thus, we explicitly test the graph induced by each such candidate for connectedness.
A well-known and standard way to achieve this is by performing a breadth-first search
(BFS) [Cor+22, Sec. 20.2] of G[u − {u}], starting from an arbitrary vertex. It follows
immediately from [Cor+22, Thm. 20.5] that G[u − {u}] is connected if and only if
the BFS terminates without encountering every vertex in u − {u}. Again assuming
adjacency-list representation, forming G[u − {u}] costs at most O(|u| · |V |), again for
a complete graph. Since BFS has complexity linear in the number of vertices plus the
number of edges in a graph G, i.e., O(|V |+ |E|) [Cor+22], the worst-case cost for the
BFS of G[u− {u}] is O(|u|2), again when G[u− {u}] is complete. Thus, the worst-case
cost of Predecessors(u) scales as O(|u|3 + |u| · |V |). Again, this cost is usually not
encountered in practice here.

Note also that the implementations of Predecessors and Successors consider the
special cases of the predecessors of a singleton subset, of which the empty set is the only
one, and the successors of the empty set, which are all possible singleton sets.

B.4. Geodesic convexity, Mg[G]

The geodesic convexityMg[G] of those sets which induce geodesically-convex subgraphs
of some connected graph G = ([M ], E) is also isomorphic to a subposet of BM . Just as
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for conn[G] above, we can reuse any valid implementation of the AxisIndex(u) function
for BM forMg[G]. We are not aware of a specialised expression for the Möbius function
ofMg[G] in the general case, and must again rely on one of the fallback implementations
of MöbiusVector(u) outlined in Section 3.5.3.

The implementation of Successors(u) forMg[G] is also related to that of conn[G].
An if-and-only-if version of the following result is shown and used in the proof of [AK16,
Thm. 20], there restricted to a particular class of graph G and without explicit mention
of conn[G]. The proof for the only-if direction functions without modification in the case
of a general G; the following reuses the same idea of proof, but is phrased in specific
terms of conn[G].

Lemma B.4.1 (Extended/adapted from [AK16]). Let u ∈ Mg[G] be a convex set of
vertices of some connected non-empty graph G = (V,E), such that u ⊂ V induces a
convex subgraph of G. Let v ∈Mg[G] be such that u ≺Mg [G] v, and say in context that
v is a convex cover of u. Then there exists some v′ ∈ conn[G] such that u ≺conn[G] v′
and CHg[v′] = v.

Proof. We observe first that every convex set u ∈ Mg[G] is also a member of conn[G]
by definition, so Mg[G] is a subposet of conn[G]. Thus, if u is covered by some v in
Mg[G], then u must have at least one cover in conn[G], so we have a non-empty set of
candidates for v′. It remains only to show that there exists some such candidate so that
CHg[v′] = v.

Suppose first that u = ∅. Since every singleton vertex subset is convex, the covers of ∅
inMg[G] are exactly the singleton vertex subsets. Since this is also true for the covers
of ∅ in conn[G], we are done.

Otherwise, following [AK16], since u 6= ∅, we may pick an arbitrary vertex u ∈ u. Since
u ≺Mg [G] v, then u ∈ v, and there must be at least one vertex v ∈ v such that v 6∈ u.
Since v is a convex set, all vertices in the geodesic interval Ig(u, v) are by definition also
in v, and in particular, there must exist some u′, v′ ∈ Ig(u, v) such that u′ ∈ u, v′ 6∈ u,
and {u′, v′} ∈ E. (We may choose u′ to be the last vertex along some shortest path
between u and v which is still in u, and v′ to be the vertex directly following u′ on that
path.)

Fixing now v′ = u ∪ {v′}, it is immediate from Section B.3 that u ≺conn[G] v′. To
see that CHg[v′] = v, note that v′ ⊆ v, and so CHg[v′] ⊆ CHg[v] = v, where we use
the fact that CHg is a closure operator on BM ; see, e.g., [Pel13, Thm. 1.3]. Were it
the case that CHg[v′] ⊂ CHg[v], then u ≺Mg [G] v would not be true, which would be a
contradiction.

The converse is, however, not generally true; that is, it is not the case that if u ∈Mg[G],
then u ≺conn[G] v implies u ≺Mg [G] CHg[v]. An easy counterexample is provided by the 3-
fan substructure considered in the statement of Theorem 6.5.7 in Chapter 6 when regarded
as a graph G in its own right. Consider there {v1, v2}, which is covered in conn[G] by
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{v1, v2, v3}, {v1, v2, v4}, and {v1, v2, v5}. It is readily verified that CHg[{v1, v2, v3}] =
{v1, v2, v3}, and also that CHg[{v1, v2, v4}] = {v1, v2, v3, v4}. Since the latter is a strict
superset of the former, they cannot both cover {v1, v2} inMg[G].

It is well-known that CHg[u] can be calculated by repeated iteration of u 7→ Ig[u],
proceeding until a fixed point is found; see, e.g., [Dou+09; Pel13]. The geodesic interval
Ig[u] can itself be calculated with cost proportional toO(|u|·|E|), as discussed in [Dou+09].
The algorithm provided in that source involves launching a BFS of the entire graph from
each vertex in u. If such an algorithm is used, the overall calculation of CHg[v] scales in
cost as O(|CHg[u]| · |E|) [Dou+09].

Using the above, we could calculate the set of convex covers of u— so, Successors(u)
— by first calculating the set of connected covers of u, then calculating the set of their
convex hulls, and finally screening out any such convex hull which is a strict superset of
another. We used here instead a slightly refined algorithm, which aims to avoid some of
the possibly-expensive calculations of the geodesic interval that would be incurred by
naïvely evaluating CHg[v] for each v �conn[G] u in turn.

The idea is to perform the calculations of the convex hulls concurrently, and use the
observation that, if some such CHg[v] is already known to be a convex cover of u, then
the convex hull CHg[v′] of any other vertex subset v′ ⊃ CHg[v] cannot also be a convex
cover of u. Pseudocode for the ConvexCovers function is given in Algorithm B.4;
although we give it a distinct name, note that this algorithm is completely functional as a
definition of Successors forMg[G]. The core approach, that of somehow progressively
expanding and winnowing out members of a set of candidate subgraphs, is a basic one in
graph-theoretical algorithms; see, e.g., [Wer05; Dia+13]. We draw some inspiration here
from a related iterative subset/subgraph expansion procedure described in [MŠ18], which
stochastically samples maximal saturated chains fromMg[G], effectively using the idea
of Lemma B.4.1. There is also a body of existing work focused on enumerating convex
subgraphs of certain directed acyclic graphs; see, e.g., [Xia+21]. Although interesting,
this does not seem to be directly applicable in our problem setting.

The algorithm begins by calculating the set of connected covers in conn[G] of some
convex u ∈Mg[G], each of which has the form u ∪ {w} for some w 6∈ u which is still a
neighbour of some u ∈ u. Each connected cover is considered to be an untested candidate
for membership in the set of convex covers of u. Each candidate is split into two disjoint
sets of vertices, named expanded and unexpanded; the algorithm is constructed to enforce
the invariant that u ∈ expanded exactly when Ig(u, v) has been previously and explicitly
calculated for every other v ∈ expanded. Initially, the set of expanded vertices is just u,
which is already known to be convex, so Ig[u] = u and the invariant holds, and the set of
unexpanded vertices is {w}.

The main loop here represents, very loosely, a similar approach to that underlying
Dijkstra’s well-known shortest-path algorithm [Cor+22, Sec. 22.3]. The candidates are
placed in a “queue” in the form of a MinHeap, and ordered in that queue by size; we use
here and in Algorithm B.4 essentially the notation of [Cor+22]. A collection of all convex
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Algorithm B.4 Calculating the convex covers of some u ∈Mg[G].
1: function ConvexCovers(u ∈Mg[G = (V,E)])
2: if u = ∅ then
3: . The empty set is covered by all singleton vertex subsets. /
4: return {{u} | u ∈ V }

5: . Initialise the queue of candidate covers. Each candidate is stored as a pair of
disjoint sets (expanded, unexpanded). The MinHeap is ordered by the sums
of the sizes of the sets in each pair. /

6: Q← an empty MinHeap
7: for all (u ∪ {w}) = v �conn[G] u do
8: MinHeap-Insert(Q, (u, {w}))

9: . Expand candidate covers in increasing order of size. /
10: covers← ∅
11: while Q is not empty do
12: (expanded, unexpanded)← MinHeap-Extract-Min(Q)
13: if ∃c ∈ covers such that c ⊆ (unexpanded ∪ expanded) then
14: . The convex hull of the candidate cannot be a (new) convex cover, so

discard it and proceed. /
15: else if unexpanded = ∅ then
16: . Candidate is convex, and must be a convex cover. /
17: covers← covers ∪ {expanded}
18: else
19: . Expand some vertex in unexpanded. /
20: u← an arbitrary element of unexpanded
21: I ← Ig[expanded ∪ {u}]
22: expanded← expanded ∪ {u}
23: unexpanded← unexpanded− {u}
24: unexpanded← unexpanded ∪ (I − expanded)

25: . Requeue the updated candidate. /
26: MinHeap-Insert(Q, (expanded, unexpanded))

27: return covers
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covers known so far is maintained. At each iteration of the algorithm, the smallest
available candidate is selected from the queue. The candidate is checked against every
entry of covers; if it is found to be a superset of any existing entry, then it is discarded.
If not, and if there are no more unexpanded vertices, then it is added to covers for
eventual return.

If the candidate is neither discarded nor kept aside, then an arbitrary unexpanded
vertex u is chosen, and the geodesic interval Ig[expanded ∪ {u}] is calculated. This can
be done using a single BFS with u as the source vertex, since the invariant guarantees
that Ig[expanded] = expanded. The chosen vertex u is moved from unexpanded to
expanded, and any vertices in the calculated geodesic interval which are not already
in either expanded or unexpanded are added to unexpanded, to maintain the invariant
on candidate pairs (expanded, unexpanded). The candidate is then requeued, and the
algorithm repeats. Once the queue is empty, the algorithm returns covers as the set of
convex covers of u.

It is easy to see that progressively expanding a single candidate in this way, starting
from u ∪ {w} and stopping when unexpanded = ∅, produces a sequence S(w) = (s(w)

i )Kw
i=1

of length Kw, and that s(w)
Kw

= CHg[u ∪ {w}].3 This is, after all, just a very slight
reorganisation of the algorithm for the construction of the geodesic convex hull outlined
in [Dou+09] and mentioned above. It should also be clear that the terms of the sequence
(s(w)

i )Kw
i=1 have the property that s(w)

i ⊆ s(w)
j whenever i < j, and so |s(w)

i | ≤ |s
(w)
j |.

Suppose that the main loop in Algorithm B.4 were restricted such that candidates
removed from the queue were never discarded, but only either selected for return, or
expanded and requeued. The ordering property of the underlying MinHeap provides that
the candidates removed at each iteration would provide a sequence S′ = (s′i)K

′
i=1, such

that each S(w) is a subsequence of S′, that K ′ =
∑

wKw, and that the elements of S′ are
also in nondecreasing order of size, although the subset ordering no longer applies. When
candidates are allowed to be discarded, the equivalent sequence of elements S = (s′i)Ki=1

is also in nondecreasing order of size, and is a subsequence of S′ in turn.
Suppose that there exists some s′i ∈ S′ that is not an element of S. We can identify s′i

with s(w)
j for some particular w and j, and the absence of s′i = s

(w)
j from S implies that

some element s(w)
k with k < j was discarded upon removal from the queue.

Clearly, ConvexCovers terminates, since we are only considering finite graphs G and
so K must be finite. We claim that it is also correct, in the sense that the sets v that are
selected for return at line 17 of ConvexCovers are exactly and only those such that
u �Mg [G] v.

To see this, suppose first that there exists some such v that is not selected. This is
equivalent to saying that it is never removed from the queue, so is not an element of S,

3Technically, for the terms of this sequence to be unambiguously defined, we would need to make the
selection of u at each step deterministic, but this is easily done in practice.
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and so there exists some s(w)
k for some w and k such that s(w)

k ⊆ v was removed from
the queue and then discarded. If the subset relationship is proper, then v cannot be a
convex cover of u; if it is an equality, then s(w)

k = v would still have been selected for
return. Both are contradictions.

Now suppose that some v which is not a convex cover of u is selected for return. Then
there must exist some w such that u ≺Mg [G] w ⊂ v. But we just established that all
convex covers of u are selected. Since S is in nondecreasing order of size, w precedes v
in S. Then w would have been removed from the queue, and selected for return prior to
v being removed from the queue, which would have caused v to be discarded at line 14
of Algorithm B.4 and thus not selected for return.

Although we have observed an implementation of ConvexCovers to perform well in
practice, we will not attempt to provide any explicit complexity results for the function
here. For completeness, we note that the actual implementation in code that we used to
obtain the results in this thesis was a slightly optimised variant of ConvexCovers as
given here. The only significant difference in this version is that candidate pairs are not
requeued at line 26 if their union is a superset of the union of any candidate pair already
in the queue; the correctness of this optimisation also follows from the fact that u ⊆ v
implies CHg[u] ⊆ CHg[v] since CHg is a closure operator.

We were unable to derive a similar algorithm for calculating the predecessors of an
arbitrary element ofMg[G]. Informally, the main difficulty is that the geodesic convex
hull is in general a many-to-one mapping; again, we mention the body of existing literature
on problems related to the hull number of a connected graph, which includes the earlier-
cited [Dou+09]. Thus, for the implementation of Predecessors(v) which we used to
obtain the results reported in this thesis, we were forced to resort to a deeply inelegant
solution which we will only describe informally.

Maintaining a set S which is initialised as S ← {∅}, we repeatedly pick a member v
of that set and evaluate ConvexCovers(v). If one of those convex covers is u, then v
is a predecessor of u. All other convex covers w �Mg [G] v are tested for the property
w ⊂ u; those for which this property holds are reinserted into the set, and the process is
repeated. Once no more elements remain in the set, the collection of elements v ≺Mg [G] u
so discovered is returned.

When care is taken not to consider the same v multiple times, this can be implemented
as just a standard BFS (or depth-first search) over a directed graph with the elements
of P as vertices, and such that the graph contains a directed edge from u to v if and
only if u ≺Mg [G] v. This graph can be directly related to Hasse diagrams like that in
Figure 3.1; indeed, Hasse diagrams are sometimes explicitly defined as directed graphs,
as in [HGC07; AK16].

We found this approach to be perhaps surprisingly performant when combined with
the use of memoisation so that each ConvexCovers(v) is only calculated once during a
calculation. Despite the inelegance, it also still meets our informally-stated requirement
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that we should be able to explore the successors and predecessors of u somehow locally
to that point, since the amount of work required for the BFS is (up to the explicit
calculations of ConvexCovers) linear in the sum of the size of the principal order ideal
Λu and of the number of distinct cover relationships v ≺Λu w, and does not depend on
the size of the complete posetMg[G].
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