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Abstract 
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the most 

common cause of dementia and the sixth leading cause of death globally  (Haque & Levey, 

2019; World Health Organization, 2017). Increases in ageing populations are exacerbating 

the problem and by 2050 the number of people with a dementia diagnosis is predicted to 

reach 132 million (World Health Organization, 2017). This will have a significant social and 

economic cost, however despite the active and growing field of research that has arisen to 

tackle this problem AD remains a disease with no curative treatment and relatively limited 

options for management (Revi, 2020). Diagnosis is also challenging, as pre-mortem diagnosis 

struggles to definitively distinguish AD from other types of dementia with similar presentation 

and the long prodromal phase in AD can mean that detection is only possible after neuronal 

damage has already begun (Jack Jr et al., 2018).  

 

The impact of inflammation both in the central nervous system (CNS) and peripheral immune 

system (PIS) has recently become a highly discussed area of research in the field and 

advances in our understanding of immune privilege have led to new opportunities to 

interrogate AD pathogenesis. We now know that systemic inflammation can play a role in the 

progression of CNS pathologies. Studies have demonstrated that peripheral immune stimuli 

can trigger long-term immune training in the CNS and worsen the Amyloid-β (Aβ) burden in 

AD (Wendeln et al., 2018). When we consider this alongside evidence that these peripheral 

inflammatory events have an impact in the CNS far earlier than previously thought (Jack Jr et 

al., 2018) then it is clear that elucidating this early stage relationship could be critical to the 

development of effective interventions. 

Our study aims to investigate the interplay between AD and peripheral inflammation through 

analysis of single-cell RNA sequencing (scRNA-seq) data of circulating immune cells in both 

the CNS and PIS. We sought to identify changes at transcriptional and cellular level between 

the two systems in parallel by profiling peripheral blood mononuclear cells (PBMCs) from the 

PIS and immune cells isolated from cerebrospinal fluid (CSF). The study cohort recruited 

donors via the existing DELCODE, DESCRIBE and DANCER studies at DZNE and used 
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clinical biomarkers to classify these donors using the AT(N) diagnostic framework (Jack Jr et 

al., 2018). 

 

In my thesis, I identified changes in the CSF myeloid cell compartment of AD donors which 

suggested inflammation-triggered recruitment from the PIS into the CSF. This was in line with 

previous observations reporting transitioning of blood-borne myeloid progenitors into a 

microglia-like myeloid subtype in other neuroinflammatory pathologies (Esaulova et al., 2020). 

I also identified a separate subset of apparently dysfunctional CSF-specific microglia that were 

strongly linked to iron metabolism which is known to be dysfunctional in AD (Kenkhuis et al., 

2021). No statistically verifiable transcriptional or cellular level changes were identified in the 

PBMC compartment of AD donors compared to healthy donors. However, this does not rule 

out that further studies of the PBMC compartment in the early and prodromal phases of AD 

could generate valuable insights. 

 

Taken together, this work suggests that using scRNA-seq to decipher the transcriptional 

profiles of peripheral blood and CSF immune cells in AD offers a unique perspective on the 

progression and pathogenesis of this disease. Characterising the immune landscape in both 

systems throughout the course of disease may hold the key to identify new biomarkers and 

develop potential future therapies targeting the peripheral immune system. 
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1. Introduction 
 

1.1. Inflammation and the immune system 
 

The human immune system is comprised of two major effector arms: the innate and the 

adaptive immune systems. As their names suggest the innate immune system originates at 

birth whilst the adaptive immune system is acquired as we grow and retains a memory of the 

pathogens it is exposed to. Both systems have their own cell types. In the innate immune 

system, these are grouped under the term myeloid cells and include monocytes, 

macrophages, dendritic cells, mast cells and granulocytes. In the adaptive immune system, 

they are termed lymphocytes which encompasses: T cells, B cells and natural killer (NK) cells. 

The two systems work together, with the lymphocytes receiving information on their target 

pathogens through the presentation of antigens (small fragments of pathogens) by myeloid 

cells known as antigen-presenting cells (APC) (specifically dendritic cells, macrophages and 

monocytes). 

 

Inflammation is a key component of the innate immune system's response to external threats 

such as microbes, viruses or any other kind of physical damage. It functions as an early 

defensive response, setting about a complex chain reaction tailored to the perceived threat. 

First, threat-specific signals are sent, for example, the lysis of cells can release proteins which 

trigger cytokine production in the extracellular space (Nathan, 2002). This is just one starting 

point, amongst many others which begin the recruitment and activation of the multiple immune 

cell types that constitute an immune response. Normally this immune response is contained 

by anti-inflammatory responses which limit inflammatory signals and eventually restore 

homeostatic conditions within the affected area. However, inflammation has long been 

considered by immunologists as a double-edged sword, where healing potential is balanced 

against the risk of an out-of-control immune response which in the worst scenarios can lead 

to sepsis and death (Tracey, 2002).  
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Excessive inflammatory responses have been linked to many disease pathologies including 

rheumatoid arthritis, Crohn's disease, atherosclerosis, diabetes, multiple sclerosis, cerebral 

myocardial ischaemia and Alzheimer’s disease (Tracey, 2002; Ardura-Fabregat et al., 2017; 

Boyko et al., 2017; Lai et al., 2017; Paouri and Georgopoulos, 2019). In Alzheimer’s disease, 

proteins associated with detrimental β-amyloid plaques trigger inflammatory signalling 

pathways in immune cells specific to the central nervous system and begin an immune 

response that has both positive and negative consequences (Ardura-Fabregat et al., 2017; 

Boyko et al., 2017; Paouri & Georgopoulos, 2019; Weiner & Selkoe, 2002). This is an example 

of a pathology-related inflammatory response in the CNS which is physically separate from 

the peripheral immune system with its own cell types. In this study, we explore the increasing 

evidence of crossover between these two systems and the impact this has on CNS diseases 

like Alzheimer’s. We would like to investigate the extent of detectable change in the PIS during 

a pathological event in the CNS such as AD. A better understanding of these different immune 

landscapes may contribute to new insights into the pathogenesis of AD. 

 

 

1.2. The relationship between the central and peripheral immune system 
 

Traditionally the CNS has been considered an immune-privileged site that is closed to access 

from the PIS. This is a neuroprotective mechanism which protects the brain from unnecessary 

inflammation which could cause damage. Both pathogens and cells of the PIS are prevented 

from accessing this area by physical structures that control access to the CNS architecture.  

Recent interest in the relationship between the central (neuroimmune) system and the 

peripheral immune system has centred on the structures forming the boundary that keeps 

them separate. The first of these structures is the blood-brain barrier (BBB), which specifically 

refers to the endothelial membrane of the vascular network that supplies the brain and covers 

its surface (Sweeney et al., 2018). The capillaries of this network are walled by tightly packed 

endothelial cells enmeshed in a basement membrane which they share with pericytes and 

structurally supportive astrocyte end-feet (Figure 1). As well as providing a structural divide, 

the BBB is a regulator of solute transport into the brain. In optimal conditions, it is impermeable 
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to PIS cells and has low uptake and transport rates for macromolecules. When 

macromolecules do cross this is facilitated by carrier-mediated transport (CMT) for 

carbohydrates, amino acids, fatty acids, nucleotides, hormones and vitamins or receptor-

mediated transcytosis (RMT) for proteins and peptides (Sweeney et al., 2018). Lipid-soluble 

molecules with a molecular weight under 400–600 Da can pass via transmembrane diffusion 

(Bellettato & Scarpa, 2018). Smaller molecules such as oxygen and carbon dioxide have no 

problem diffusing across the barrier rapidly. This ensures a highly-regulated CNS environment 

with favourable conditions for neurons to function. 

 

The second structure that separates the PIS and CNS is the blood-cerebrospinal fluid barrier 

(B-CSF-B) which is found in the choroid plexus (ChP) and the arachnoid membrane, also 

known as the arachnoid mater. The arachnoid mater is the middle of the three layers that 

protect the brain which collectively are known as the meninges. Within the arachnoid mater is 

the subarachnoid space which is filled with CSF and contains small arterial vessels 

(Ransohoff & Engelhardt, 2012) (Figure 1). The ChPs are found in the four ventricles of the 

brain and act as a B-CSF-B as well as the main production centre for CSF. Their structure 

consists of capillaries surrounded by endothelial cells and connective tissue surrounded by 

vilified epithelial cells facing outwards into the CSF-filled ventricles (Figure 1). Once in the 

ventricles, CSF flows from the lateral to the third ventricle to the fourth ventricle to enter the 

central canal of the spinal cord or the subarachnoid space. From the subarachnoid space 

CSF can be reabsorbed into the systemic circulation or lymph nodes (Lun et al., 2015; Proulx, 

2021).  

 

Like the BBB, the B-CSF-B in healthy individuals is considered impenetrable to cells of the 

peripheral immune system. However recent work has shown that during injury and disease it 

can become similarly compromised. For example, the ChP is described as a route of 

recruitment of lymphocytes into the CSF in spinal cord injury (Kunis et al., 2013; Lun et al., 

2015; Schwartz & Baruch, 2014). Monocytes are also suggested to use this route to transit 

into the CSF to reach lesion sites in spinal cord injuries (Shechter et al., 2013). Furthermore, 

the epithelial cell layer of the B-CSF-B is known to mediate monocyte migration in the 

presence of IFN-γ release from TH1 effector memory T cells (Kunis et al., 2013). 
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Figure 1. Structural barriers between the CNS and PIS. Overview of the blood-brain barrier and 

choroid plexus and blood-CSF barrier in the brain. Figure adapted from (Lun et al., 2015; Ransohoff 

& Engelhardt, 2012; Sweeney et al., 2018). 
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1.3. The CSF compartment and its cell types 
 

The CSF provides a protective cushion for the brain and spinal cord as well as maintaining 

homeostatic conditions in the CNS. Studies estimate healthy adults produce CSF constantly 

at a rate of 400-500 ml/day (Brown et al., 2004; Sakka et al., 2011). This turnover in humans 

equates to the replacement of the total volume an average of four times every twenty hours. 

The ChP of the lateral ventricles and the tela choroidea of the third and fourth ventricles 

produce sixty to seventy-five percent of this volume (Sakka et al., 2011). The production of 

CSF comes mostly from the diffusion of arterial blood through the ChP, though as already 

described the B-CSF-B filters out larger and cellular components of the blood. Interstitial fluid 

(ISF) also contributes to CSF volume but accounts for only a small fraction (Ransohoff & 

Engelhardt, 2012). Reabsorption of CSF occurs at two points. Some of it will drain via the 

arachnoid villi in the arachnoid mater, through the dura mater and into venous blood vessels 

(Ransohoff & Engelhardt, 2012). Alternatively, some of it will pass from the subarachnoid 

space through the cribriform plate to the nasal mucosa and deep cervical lymph nodes. It has 

been demonstrated that APCs from the PIS can access these lymph nodes and an antigen 

introduced to the CSF can be detected in these lymph nodes as soon as two hours later, 

which is an example of communication between these two systems (Laman & Weller, 2013). 

Cell populations of the CSF come predominantly from immune cells trafficked from the PIS. 

The percentages found are 90% T cells, 5% B cells, 5% monocytes, and <1% dendritic cells 

(Ransohoff & Engelhardt, 2012). Granulocytes have not been observed and presence of 

Neutrophils is still under debate with one study reporting a small population (<2%) (Farhadian 

et al., 2019). 
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1.3.1. Microglia-like phenotypes in the CSF 
 

Local myeloid cells of the CNS are primarily found within the tissues or traversing across them 

rather than free-living in the CSF. CNS macrophages are found on the tissue borders and can 

be divided into location-based categories such as perivascular (pvMΦ), meningeal (mMΦ) 

and choroid plexus macrophages (cpMΦ) (also called CNS-associated macrophages) 

(Goldmann et al., 2016). Microglia are generally parenchymal and phenotypic variability has 

been observed dependent on what region of the brain they are sampled from (Jiang-Shieh et 

al., 2003). Unlike the bone-marrow-derived monocytes and macrophages of the PIS, microglia 

originate from a fetal yolk sac progenitor and are thought to enter the CNS through the ChP 

and then progress through the CSF to the brain tissue where they are typically found (Ginhoux 

et al., 2010; Lun et al., 2015). 

Single-cell techniques have previously been utilised to characterise microglial transcriptional 

states in both homeostasis and disease. A recent comprehensive study combined scRNA-

seq with time-of-flight mass cytometry (CyTOF) to describe eight heterogenous microglial 

clusters (which they name C1–C3, C5–C9) from human brain tissue (Sankowski et al., 2019). 

They used the mCEL-Seq2 protocol (Herman et al., 2018) to generate data from 4,396 

microglia from 15 donors undergoing surgery for tumours or epilepsy. Whilst around 30% of 

cells were enriched for a bulk-RNAseq microglia signature the remaining cells displayed age 

and region-dependent transcriptional signatures. Two of these signatures (C6 & C7) have 

high expression of the Gene Ontology pathway for “antigen processing and presentation of 

peptide antigen” (0048002) and were later identified in a CSF dataset from two HIV patients 

in a study that aimed to investigate neuroinflammation (Esaulova et al., 2020). Esaulova et al. 

suggested that this CSF-specific population of microglia could be coming from blood-derived 

progenitors that act as a microglial replacement when the BBB is disrupted. These blood-

derived replacement microglia can take on a gene signature which is extremely similar to their 

fetal-derived counterparts (Shemer et al., 2018). The entry route that these blood-derived 

progenitors take to then transition into replacement microglia is still not fully understood, 

however, the presence of chemokine receptors CCR1, CCR5, CXCR4, and CX3CR1 

suggests that they are being recruited. Whether they remain in the CSF or if this study is 
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providing a snapshot of these cells in transit to the parenchyma is not yet known (Esaulova et 

al., 2020). 

The CSF microglia highlighted in Esaulova et al. also exhibited high levels of C1q genes which 

encode the C1q subcomponent of the classical complement activation pathway (Gani, 2021; 

Schäfer et al., 2000). The classical complement activation pathway is one of three pathways 

that make up the complement system, an important feature of the innate immune system that 

is present in both the PIS and the CNS (Figure 2). The three main pathways are activated in 

response to different stimuli: the classical pathway is activated by the formation of the C1-

complex when antibody-antigen complexes bind together with C1q, the alternative pathway 

is activated by C3 hydrolysis and the lectin pathway is activated by either C3 hydrolysis or 

antigens without the presence of antibodies (Gani, 2021). 

Whilst this system is important for its defensive role during immune activation it also functions 

on a maintenance level, for example, it is involved in synaptic pruning by microglia during 

early brain development and for the clearance of cellular debris (Bachiller et al., 2018; Carroll 

& Isenman, 2012). Previous studies have linked the classical complement activation pathway 

with microglial dysfunction, especially in relation to neurodegenerative diseases like AD (Hong 

et al., 2016; Terai et al., 1997).  
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Figure 2. Complement pathways. Figure edited from (Gani, 2021).  

 

 

1.4. Exploring cellular heterogeneity through single-cell Omics 
 

The advent of scRNA-seq has allowed the generation of massive datasets faster than ever 

before. A single run on some of the leading platforms can now profile the transcripts of 

thousands of cells. Alongside this, we are seeing increases in sensitivity and the types of data 

parameters that can be measured, meaning not only is there a greater quantity of data 

available but we also have more options to improve on quality and specificity.  
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1.4.1. The rise of single-cell Omics 
 

Over the last two decades, next-generation sequencing (NGS) and scRNA-seq have become 

the cutting-edge technology for deciphering gene transcription differences at single-cell 

resolution (Figure 3). These pioneering techniques have allowed us to profile highly variable 

gene expression across diverse cell types and complex organisms at the single-cell level  

(Cao et al., 2017). With projects such as the Human Cell Atlas now able to profile over a 

million individual cells in parallel, it is clear that the reach and potential of this technology are 

still rapidly expanding (Rozenblatt-Rosen et al., 2017).  

 

This expansion has had an impact on the quality as well as the quantity of data produced. 

Researchers can now evaluate gene transcription dynamics in an unbiased manner, 

uncovering cell type specific expression profiles in heterogeneous cell populations (Shahan, 

2019). Furthermore, advanced scRNA-seq techniques have recently made it possible to 

assess a large number of multi-tissue samples simultaneously, stratifying complex 

comparisons such as diseases versus controls in a single experiment (Gate et al., 2020; 

Mathys et al., 2019).  

 

 
Figure 3. Timeline and scaling of scRNA-seq experiments. Cell numbers reported in representative 

publications up to 2018. Figure edited from (Svensson et al., 2018). 
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One of the first challenges in the development of new single-cell techniques is the isolation of 

mRNA from single-cells in the smallest possible reaction volume but on the largest possible 

scale. Early scRNA-seq protocols were developed as low-throughput methods involving the 

containment of a cell in a single tube, well or plate. In 2009 the first study to describe single-

cell mRNA sequencing modified a cDNA amplification method from microarray analyses 

(Kurimoto et al., 2006) to assess gene expression profiles at single-cell resolution (F. Tang et 

al., 2009). Following on from this the single-cell tagged reverse-transcription sequencing 

(STRT-seq) method (Islam et al., 2011) utilised a template-switching PCR to amplify full-

length cDNA. Whilst this method sequenced only the 5′-end fragment of the cDNA generated, 

a new method called SMART-seq was published next, which captured and sequenced 

fragments from the full-length cDNA (Picelli et al., 2013). Around the same time, a protocol 

called CEL-seq (cell expression by linear amplification and sequencing) was released which 

worked on a similar basis but barcoded and pooled the cells before using in vitro transcription 

for linear amplification of the mRNA (Hashimshony et al., 2012). Later MARS-seq (massively 

parallel scRNA-seq) scaled up the use of in vitro transcription, reporting the transcriptional 

states for thousands of cells (Jaitin et al., 2014). 

 

Increases in the scale of single-cell experiments continued with the development of 

microfluidics to capture cells in droplets rather than wells. The first commercial system to 

move away from well-based methodologies was Fluidgm’s C1 microfluidic chip-based system 

which captured up to 96 single-cells in individual reaction chambers where it used SMART-

seq methodology to reverse transcribe mRNA (DeLaughter, 2018). The next development 

were droplet-based microfluidics which are characterised by the oil-based partitioning of a cell 

and a bead barcoded with unique molecular indices (UMIs) and oligonucleotide primers in the 

same droplet. Reverse transcription within these isolated droplets results in barcoded cDNA 

that is amplified during library preparation to generate a NGS-ready cDNA library. Early 

examples of this are the inDrop (Klein et al., 2015) and Drop-seq (Macosko et al., 2015) 

protocols. More recently the commercial release of the 10x Chromium platform from 10x 

Genomics (Zheng et al., 2017) has been a hugely popular tool and is used in numerous 

scRNA-seq studies (Gate et al., 2020; Jordão et al., 2019; Mathys et al., 2019; Ochocka et 



 
 

 11 

al., 2021; Olah et al., 2020; Schafflick et al., 2020). The principle of the system is similar to 

previous droplet-based methods and creates Gel beads in EMulsion (GEM) on an 8-channel 

microfluidic chip through the capture of around 100,000 barcoded gel beads in droplets. Single 

cells are then loaded into these individual GEMs which act as reaction chambers for reverse 

transcription. 

 

The method of using UMI barcoded beads is not unique to microfluidic techniques and is often 

used for techniques that do not include fluorescence-activated cell sorting (FACS) in their 

workflow. Seq-Well uses random deposition of cells through gravity into tiny picolitre wells on 

a silicon chip which also contain UMI barcoded beads (Gierahn et al., 2017). The number of 

cells loaded is calculated to the highest possible number that will still be sufficiently diluted to 

avoid the introduction of “doublets”, where more than one cell joins with a single bead. These 

can also be identified in the quality control (QC) of data in downstream bioinformatics 

analyses. The BD Rhapsody is another commercial platform which uses random distribution 

into picoliter wells, this time on a prefabricated cartridge (Chang et al., 2019). Like Seq-Well,  

the process does not offer full-length transcripts. While Seq-Well captures only the 3’-end, the 

BD Rhapsody protocol gets fragment cDNA by priming at random points along the length of 

synthesised first-strand cDNA. 

 

Random cellular deposition into tiny picolitre wells is also used in new ultra-high throughput 

techniques like sci-RNA-seq3 (Cao et al., 2017). It uses probability and three-level single-cell 

combinatorial indexing and was recently used to profile gene expression in four million single 

cells from one hundred and twenty-one samples (Cao et al., 2020). These ultra-high 

throughput techniques have opened up new levels of data collection and new challenges in 

terms of data storage and analysis for the researchers using them.  

 

The BD Rhapsody is one of several current technologies that have the capacity to take a 

multi-omic approach to data collection. This increasingly popular integrative approach 

combines scRNA-seq data with other omics technologies, like proteomics. The Rhapsody 

does this by simultaneously collecting single-cell protein expression data in an additional 

library prep protocol (BD AbSeq). Other examples of multi-omics include CITE-seq which also 
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combines scRNA-seq with protein expression data (Stoeckius et al., 2017), G&T-seq which 

captures DNA alongside scRNA-seq (Macaulay et al., 2015) and single-cell nucleosome, 

methylome and transcriptome sequencing (scNMT-seq) which combines chromatin 

accessibility, DNA methylation and scRNA-seq (Clark et al., 2018). 

 

The last few years have marked a new era of scRNA-seq with the rise of spatial 

transcriptomics where single-molecule fluorescent in situ hybridization allows the spatial 

context of cells within a tissue to be captured. New methods such as cyclic smFISH 

(Codeluppi et al., 2018) and STARmap (spatially-resolved transcript amplicon readout 

mapping) (X. Wang et al., 2018), as well as commercial platforms like the Visium from 10X 

and the GeoMx Digital Spatial Profiler from Nanostring, have revealed information on cell and 

tissue structure heterogeneity that was previously lost during tissue dissociation for single cell 

isolation (Ståhl et al., 2016). 

 

 

1.4.2. Computational analysis of scRNA-seq data 
 

Over the last decade, the scale of datasets generated by scRNA-seq experiments has grown 

at an astonishing rate. In early publications, researchers described just one cell (F. Tang et 

al., 2009) and now studies are profiling thousands to millions of single cells at a time (Baßler 

et al., 2020; Cao et al., 2017; Hamed et al., 2022; Schulte-Schrepping et al., 2020; Wendisch 

et al., 2021). Data of this size presents significant challenges in downstream processing, it 

requires considerable computational power to conduct meaningful analyses and often it can 

be sparse containing missing or noisy entries. Data quality can be affected at all stages of the 

protocol, from poor cell lysis rates during isolation to low numbers of cells captured, issues 

with indices in library preparation and errors in sequencing.  

Downstream analysis of scRNA-seq data manages these potential pitfalls through rigorous 

QC. One part of QC is the identification and removal of data artefacts, for example, cells with 

high levels of mitochondrial genes should be removed as this can indicate that the cell was 

under stress during the early isolation stages of the protocol (Zhao et al., 2002). Specifically, 
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the cytoplasmic RNA of damaged or dying cells is the first to leach out of the cell membrane 

leaving behind the mitochondrial RNA to be overrepresented in the dataset (Ilicic et al., 2016). 

Setting a maximum threshold at around 20% for mitochondrial gene expression and filtering 

during QC can prevent false clusters from appearing in the data later on. Another early QC 

step is to set a minimum threshold for UMIs per cell and genes per cell as this will remove any 

cells where barcoding or amplification was unsuccessful. As with the mitochondrial RNA, 

these low gene/UMI per cells can make the identification of clusters and subsequently cell 

populations more difficult.  

Another source of false clusters in scRNA-seq data that uses barcoded beads is doublets.  

These are data points that are the combination of two cells with the same UMI, usually due to 

the two cells settling within the same reaction compartment. These can be identified by 

analysis packages such as DoubletFinder (McGinnis et al., 2019) or Scrublet  (Wolock et al., 

2019). These packages come with both advantages and disadvantages which have been 

previously evaluated and compared (Xi & Li, 2021). Extracellular RNA known as ambient RNA 

can also cause transcriptional changes in the data and should be removed. To achieve this, 

packages such as SoupX (Young & Behjati, 2020) provide tools that allow us to distinguish 

between native and ambient RNA. 

 

 

1.4.3. Single-cell transcriptomic approaches to Alzheimer’s disease 
 

Whilst scRNA-seq is not new to AD research, the majority of work done to date has focused 

on elucidating differences and pathological mechanisms in brain tissue (R. Chen et al., 2017; 

Olah et al., 2020; Zeisel et al., 2015). Different neuronal and glial cell types and brain regions 

have been extensively profiled across stages of pathological change identifying disease-

associated cell type-specific gene regulatory changes (Mathys et al., 2019). The role of 

microglia in AD has also attracted a great deal of attention with investigations finding new 

levels of heterogeneity (Sankowski et al., 2019) and subpopulations with disease signatures 

(Keren-Shaul et al., 2017; Olah et al., 2020). Areas that have been covered less extensively 
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in AD scRNA-seq are the non-parenchymal tissues and CSF in the CNS and the wider 

circulating PIS.  

 

The CSF has been addressed in broader neuroinflammatory work (Esaulova et al., 2020; 

Roostaei et al., 2021; Schafflick et al., 2020) and more specifically in regards to AD where 

transcriptionally distinct immune cell subpopulations have been identified and linked to both 

inflammation and disease stage (Gate et al., 2020). The study from Gate et al. also included 

PBMC data which identified increased CD8+ T effector memory CD45RA+ (TEMRA) cells in 

PBMC through CyTOF. This finding was further substantiated through scRNA-seq of TEMRA 

cells and revealed enhanced T cell receptor (TCR) signalling in this T cell population in AD. 

More recently, a study focused solely on scRNA-seq PBMC analysis in AD profiling immune 

cell types from three AD patients and two age-matched healthy controls (H. Xu & Jia, 2021). 

They speculated that the peripheral adaptive immune response, especially mediated by T 

cells, may have a role in the pathogenesis of AD and their results identified thirty-one cell 

type-specific genes some of which were human leukocyte antigen genes.  

 

With the exception of the studies mentioned above, datasets comparing PBMCs of AD 

patients against those of healthy controls are still relatively uncommon, perhaps because this 

sort of data collection presents challengingly high background variation which requires 

analysis of a high number of individuals to overcome this variability and identify meaningful 

patterns. The sparsity of prior work in this area opens up the potential for the discovery of 

novel blood biomarkers and early detection markers, but finding a viable signal amongst so 

much noise may only become achievable as we begin to harness deep learning techniques. 

 

 

1.5. Alzheimer's Disease 
 

Alzheimer’s disease is a progressive neurodegenerative disease that is the most common 

cause of dementia, accounting for 60-70% of cases (MOE, 2017). Fifty-five million people 

worldwide have a diagnosis of dementia and with increasing rates of the population ageing, 
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this is expected to reach 132 million people by 2050 (MOE, 2017). Owing to the substantial 

burden of AD and economic cost, there is an active and growing field of research attempting 

to better understand the pathophysiology and develop effective treatments and preventative 

measures.  

 

 

1.5.1. Definition of the disease 
 

Alzheimer’s disease manifests with progressing cognitive deficits affecting memory, 

language, motor skills, behavioural function and recognition ability (Burns et al., 2002; Dai & 

Shen, 2021). When the disease was first documented by Alois Alzheimer in 1901, he first 

observed in his patient (Auguste D) changes in behaviour and memory impairment (Burns et 

al., 2002). Years later following a subsequent post-mortem histological investigation he made 

the following description:  

 

“in the centre of an otherwise almost normal cell, there stands out one or several fibrils due to 

their characteristic thickness and peculiar impregnability. Numerous small miliary foci are 

found in the superior layers. They are determined by the storage of a peculiar substance in 

the cerebral cortex. All in all, we have to face a particular disease process.” (Stelzmann et al., 

1995) 

 

This description, published in his 1907 paper, refers to the intracellular neurofibrillary tangles 

of hyperphosphorylated tau and deposits of amyloid plaques. In modern science amyloid-beta 

plaques and neurofibrillary tangles are considered two hallmark characteristics of Alzheimer’s 

disease and are innately associated with neuronal loss and synaptic damage (Goedert, 2009; 

Golde, 2022). 

 

Stages of pathological changes within the CNS in AD were described in 1991 and are known 

as Braak stages (Braak & Braak, 1991). There are six Braak stages which start with 

increasingly severe alterations in the transentorhinal region of the brain (stages I and II) and 

then damage progresses to limbic regions in the middle stages (III and IV), before finally 
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reaching the isocortex (stages V and VI) (Braak & Braak, 1991). These stages can also be 

applied to Parkinson’s disease. Another term that is also related to AD is mild cognitive 

impairment (MCI), this was coined in the 1980s and refers to the transitional phase between 

healthy cognitive function and the onset of dementia (Petersen et al., 2014). 

 

Finally, AD can be separated into hereditary early-onset AD (EOAD) and sporadic late-onset 

AD (LOAD) pathologies. Diagnosis before 65 years of age is generally considered to be EOAD 

and accounts for 5–10% of cases (Reitz et al., 2020). Unlike the sporadic LOAD, EOAD is 

more often inherited and likely to follow an autosomal dominant inheritance pattern caused 

by mutations in APP, PSEN1, and PSEN2, however, in some instances, EOAD can still be 

sporadic (Reitz et al., 2020). 

 

 

1.5.2. Pathogenesis, development and progression of AD 
 

The pathogenesis of AD centres around the two hallmark characteristics introduced in the 

previous section: extracellular amyloid-beta plaques and intraneuronal neurofibrillary tangles 

(NFTs). Aβ peptides form the constituents of these amyloid-beta plaques. They are formed 

when amyloid precursor protein (APP) in the neuronal membrane comes into contact with 

beta-secretase and gamma-secretase, which cleave the protein into Aβ peptides (Ciudad et 

al., 2020; Pospich & Raunser, 2017) (Figure 4). These Aβ peptides known as Aβ(1–40) and 

Aβ(1–42) are polymorphs of different lengths with heterogeneous structures which have 

added to the complexity of their study and have been suggested to result in different 

pathogenicities (Fändrich et al., 2009). The shorter Aβ(1–40) is the most abundant isoform in 

AD, however, Aβ(1–42) is generally considered to have higher toxicity and plaque-forming 

capacities (Mori et al., 1992; Näslund et al., 1994; Schmidt et al., 2009). In the healthy brain 

Aβ peptides are cleared away by microglia, however, lack of clearance allows them to build 

up into densely-packed toxic aggregates which ultimately destroy surrounding neurons 

(Serrano-Pozo et al., 2011). 
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Figure 4. Overview of amyloid plaques and neurofibrillary tangles that accumulate in the AD 

brain. Adapted from (Pospich & Raunser, 2017) 

 

NFTs are structures made up of tau. Normally tau proteins are found associated with the 

microtubule of neuronal axons but can also be found at lower levels in glial cells. Tau is 

encoded by a gene called microtubule-associated protein tau (MAPT) which is located on 

sixteen exons of the long arm on chromosome seventeen (17q21) (Andreadis, 2006). Exons 

2, 3, and 10 can generate six isoforms of tau through alternative splicing (Rinaldi & Wood, 

2018). 

 

In healthy physiology, tau is a soluble, unfolded protein that when phosphorylated has a 

critical function in maintaining the stability of the axonal structure (Figure 4) (Weingarten et 

al., 1975). Phosphorylation of specific amino acid residues in tau is a normal post-translational 

protein modification occurring at eighty-five potential serine, threonine, and tyrosine 

phosphorylation sites (Noble et al., 2013). A higher rate of tau phosphorylation occurs in AD 

and is known as hyperphosphorylation, this happens when tau kinase and tau phosphatase 

activity becomes disrupted (Medeiros et al., 2011; Meng et al., 2022). The effects of this 

disruption are two-fold: firstly tau becomes less suited for microtubules and secondly, it is 

more resistant to degradation by the calcium-activated neutral proteases of the ubiquitin-

proteosome pathway (Alonso et al., 2001). The redundant dysfunctional hyperphosphorylated 

tau instead aggregates into insoluble NFTs (Medeiros et al., 2011). The build-up of NFTs is 
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damaging to the neuron in itself but is especially fatal when accompanying the loss of axonal 

function due to insufficient maintenance of structural stability (Bloom, 2014). This process of 

tau hyperphosphorylation is not unique to AD but also occurs in other tauopathies such as 

Pick’s disease, progressive supranuclear palsy, corticobasal degeneration, and argyrophilic 

grain disease (Rinaldi & Wood, 2018). 

 

Identification of AD-related inflammatory pathways that are present in both the PIS and CNS 

is an important step toward building a more comprehensive understanding of the disease. An 

example of this is the identification of two inflammatory pathways activated during the early 

MCI stages of AD (Pillai et al., 2019). Levels of inflammatory proteins in the CSF and blood 

plasma were assessed to establish a better picture of the pathophysiology of inflammatory 

changes in AD. The authors found that phosphorylated tau levels were associated most highly 

with the tumour necrosis signalling pathway and Aβ42 levels associated with the complement 

and coagulation cascade. Gene expression transcripts in post-mortem brain tissue were 

confirmatory and showed enrichment of genes from the same inflammatory pathways. 

 

Inflammasomes are intracellular protein complexes found in innate immune cells that respond 

to pathogens and damage-associated molecular patterns (DAMPs) (Hu et al., 2019). In age-

related diseases, microglial cells show strong inflammasome activation, which can exacerbate 

disease pathology. Inflammasome formation leads to extracellular secretion of cleaved IL1β  

and IL18, which induce nearby cells to produce proinflammatory factors such as IFNγ, TNFα, 

and ROS (Hu et al., 2019). Inflammasome activation has been observed in PBMCs from MCI 

and AD patients, where release of proinflammatory cytokine IL-1β was strongly associated 

with disease progression (Rui et al., 2021).  

 

 

1.5.3. The challenge of diagnosis 
 

Diagnosis of AD in pre-mortem patients is widely acknowledged to be difficult for several 

reasons. Firstly, the definite diagnosis of AD requires confirmation of Aβ and NFTs in the 

parenchymal brain tissues. The most effective and conclusive way to achieve this is post-
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mortem histological staining of the plaques and bundles on a microscopy slide (Jack Jr et al., 

2018). This means that often AD diagnosis is only considered definite on autopsy, and in living 

patients is referred to as probable AD (McKhann et al., 1984). Biopsy of pre-mortem brain 

tissue is a costly, dangerous and invasive procedure that is not part of the normal diagnostic 

practice for AD. When a patient is already undergoing a biopsy for other reasons such as 

surgical removal of tumours it can be possible to observe these AD hallmarks in the staining 

process but this is a secondary finding in the fine-mapping of the tumour and is not performed 

for the sole purpose of AD diagnosis. The outcome of this is that pre-mortem diagnosis of AD 

through histology is largely not an option. A purely symptom-based diagnosis of AD often fails 

to distinguish it from other forms of dementia due to variation in early symptoms which do not 

always start with defects in episodic memory (Deture & Dickson, 2019). Increasingly, studies 

acknowledge that there is a long prodromal phase in AD which occurs before the onset of 

clear symptoms (Buchhave et al., 2012; Holtzman et al., 2011; Jack et al., 2013). In a disease 

where irreparable neuronal damage is a prerequisite of symptoms, potential treatments could 

arguably only be effective in combination with early diagnosis. 

 

 

1.5.3.1. Current methods for diagnosis of pre-mortem patients 
 

Currently, a range of techniques are employed for the detection of AD, all come with 

advantages and disadvantages and for this reason, it is common for clinical diagnosis to rely 

on multiple diagnostic approaches. Distinguishing AD through cognitive symptoms is difficult. 

Cognitive testing is not standardised and the test used will vary between clinics and countries. 

One popular version is the Mini-Mental-Status-Test (MMST), also known as the Mini-Mental-

Status-Exam (MMSE). This was developed in 1975 and scores the patient out of thirty based 

on their responses to thirty-three general questions (Folstein et al., 1975). The MMST is not 

designed specifically for AD and instead is used to detect a range of aphasic and amnestic 

syndromes (Folstein et al., 1975). As well as this lack of specificity for AD, there is the issue 

that patients will have natural variations in baseline levels of cognition. This means that these 

tests work best as a supportive tool for highlighting symptomatic aspects of the disease rather 

than a comprehensive diagnostic tool. 



 

 20 

 

Neuroimaging is an area which has brought big advances to the field of AD research as well 

as the wider study of neurodegenerative disease. It is non-invasive and two types are 

commonly used to diagnose forms of dementia: positron emission tomography (PET) and 

magnetic resonance imaging (MRI). PET shows emissions from radioactively labelled 

metabolically active chemicals injected into the patient's bloodstream, common examples of 

PET tracers used in AD are fluoro-deoxyglucose (FDG) and Pittsburgh compound B for Aβ 

and flortaucipir for tau (Figure 5). Images produced with PET can highlight deposits of Aβ and 

tau in the brain parenchyma and surrounding tissues (Chien et al., 2013; Jack Jr et al., 2018; 

Villemagne et al., 2014, 2015). This is also true for MRI, which does not use radioactive tracers 

but generates images through radio waves and can show regional atrophy in the brain (Golde, 

2022). The extent to which these images can be used to diagnose AD is debated, with some 

studies suggesting that both forms of neuroimaging are not sufficiently specific to AD but 

function better as more general indicators of neurological damage (Jack Jr et al., 2018; Wirth 

et al., 2013). Other studies have described PET as a powerful differential diagnostic tool in 

identifying and localising Aβ and tau burdens in the brain (Mattsson & Hansson, 2019). 
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Figure 5. Example of neuroimaging in a 75-year-old woman with amnestic multidomain 

dementia. Abnormal Aβ PET with Pittsburgh compound B (top left), tau PET with flortaucipir (top right 

and bottom left), and atrophy on MRI (bottom right). Taken from (Jack Jr et al., 2018). 

 

Fluid biomarkers are the other key tool in current AD diagnosis and when used in the right 

combinations have the potential to predict MCI and AD as early as the prodromal phase and 

before the development of obvious symptoms (Mattsson & Hansson, 2019). Initially, fluid 

biomarker studies focused on proteins expressed in the CSF that are measurable signs of Aβ 

and tau deposition in the brain parenchyma (Jack et al., 2013, 2016), however recent studies 

have moved towards validating blood-borne biomarkers (Fandos et al., 2017; Janelidze et al., 

2021; Mielke et al., 2018). Typical CSF biomarkers measured are Aß42/40 ratio, p-tau-181 

(phosphorylated tau-181) and total tau (t-tau), however agreement over cut-off levels used for 

these biomarkers varies and standardisation across clinics and countries is currently still 

ongoing.  
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1.5.3.2. Development of a biomarker-based classification system 
 

The development of a unified classification system for the diagnosis of dementia is important 

in moving away from classical symptomatic diagnosis to a symptom-agnostic classification 

system based on measurable biological parameters in living patients. This has the double 

advantage of shifting the focus onto early detection, instead of diagnosing based on 

symptoms which are a consequence of damage, and greater clarity through the power of 

combined tools. In 2018 the National Institute on Aging-Alzheimer’s Association (NIA-AA) 

published a research framework called AT(N) designed to achieve these goals (Hampel et al., 

2021). This framework was aimed at improving diagnostic standards in research rather than 

clinical diagnosis, however, improvement in one area is likely to have future effects in the 

other. The framework is structured around three groups of biomarkers that can be measured 

through both imaging and fluid biopsy techniques: Aβ deposition, tau-mediated 

pathophysiology, and neurodegeneration [AT(N)] (Table1). The system was designed in a 

way that allows diagnosis through imaging or CSF biomarkers alone, however, a mixture of 

the two methods is also allowed, providing flexibility where available techniques are limited 

(Jack Jr et al., 2018). 

 

Table 1. Groups of the AT(N) framework and their biomarkers. Biomarkers of Aβ deposition (“A”) 

include cortical amyloid PET ligand binding or low CSF Aβ 42. Biomarkers of NFT (“T”) are cortical tau 

PET ligand binding or raised CSF p-tau. Biomarkers of neurodegeneration or neuronal injury [“(N)”] 

are FDG PET hypometabolism, brain atrophy on MRI or CSF t-tau. Adapted from (Jack Jr et al., 2018). 

AT(N) Group description Neuroimaging CSF biomarkers 

A Aggregated Aß or associated pathology Amyloid PET 
Aß42 

Aß42/ Aß40 ratio 

T 
Aggregated tau (NFT) or associated 

pathology 
Tau PET p-tau 

(N) Neurodegeneration or neuronal injury 
Anatomic MRI 

FDG PET 
t-tau 
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Patients can be scored as either positive or negative for each biomarker [A, T and (N)] which 

offers a further level of categorization as this profile then indicates one of four biomarker 

categories: Normal AD biomarkers, Alzheimer’s disease, Alzheimer’s pathological change, 

Alzheimer’s and concomitant suspected non-Alzheimer’s pathologic change or Non-AD 

pathologic change (Table 2). In 2021 a proposal was published to update the AT(N) system 

to the ATX(N) system which would include novel candidate biomarkers like neuroimmune 

dysregulation, synaptic dysfunction and alterations to the blood-brain barrier (Hampel et al., 

2021). 

 

Table 2. AT(N) profiles and categories. Adapted from (Jack Jr et al., 2018). 

AT(N) Profile Biomarker category 

A-T-(N)- Normal AD biomarkers 

A+T-(N)- Alzheimer’s pathological change 

A+T+(N)- Alzheimer’s disease 

A+T+(N)+ Alzheimer’s disease 

A+T-(N)+ Alzheimer’s and concomitant suspected non-Alzheimer’s pathological change 

A-T+(N)- Non-AD pathological change 

A-T-(N)+ Non-AD pathological change 

A-T+(N)+ Non-AD pathological change 
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1.5.4. Management and therapeutic developments 
 

Despite a strong research community and numerous clinical trials, AD remains a disease 

without curative treatment (Revi, 2020). There are therapeutic options that can interfere with 

disease progression allowing clinicians some degree of management depending on how early 

the disease is detected. Here, we explore current management strategies and recent clinical 

trials. 

 

 

1.5.4.1. Management 
 

Therapies for AD have so far targeted Aβ, and tau or have been for symptomatic 

management.  Management strategies can be summarised by three main therapeutic 

approaches (i) Acetylcholinesterase inhibitors (AChEIs), (ii) Memantine hydrochloride 

(NMDA) and (iii) Antipsychotics (Olanzapine). 

The deficiency of neurotransmitter acetylcholine (ACh) is a theorised pathology of 

Alzheimer’s. Acetylcholinesterase (AChE) is an enzyme that hydrolyzes ACh to acetate and 

choline (Figure 6) (Akıncıoğlu & Gülçin, 2020). The role of AChEIs in the treatment of AD has 

been to restore levels of ACh by inhibiting its clearance.  

AChEIs have been reported to have a role in the protection of cells from Aβ injury and damage 

from free radical toxicity (Tabet, 2006). There is evidence to suggest that AChEIs play an anti-

inflammatory role, inhibiting the release of cytokines from microglia and monocytes in the CNS 

(Tabet, 2006). AChEIs have also shown a reduction of the Aβ burden by impeding Aβ 

assembly (Korabecny et al., 2019; Mezeiova et al., 2019).  
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Figure 6. Hydrolysis of ACh to acetate and choline by AChE. Taken from (Akıncıoğlu & Gülçin, 

2020). 

In AD the overstimulation of N-methyl-D-Aspartate (NMDA) receptors results in calcium and 

glutamate-mediated excitotoxicity (J. Liu et al., 2019), ultimately leading to free radical 

generation and associated tau phosphorylation (Zhang et al., 2016). The use of non-

competitive NMDA receptor antagonists is thought to ameliorate the component of 

neurodegeneration caused by this neurotoxicity.  

Behavioural dysfunction, such as thought disturbance, aggression and hallucinations, are 

possible symptoms of AD and there are various pharmaceutical (e.g. Olanzapine) and non-

pharmaceutical methods to try to improve this. The use of typical and atypical antipsychotic 

medication is licensed for use in AD with the aim of symptom control (Calsolaro et al., 2019). 

Increasing awareness around safety concerns relating to the use of antipsychotics has 

reduced the prevalence of use in AD patients (Ballard et al., 2011). 

 

 



 

 26 

1.5.4.2. Developments in antisense oligonucleotide (ASO) therapies 
 

A promising therapeutic approach currently being developed for AD are antisense 

oligonucleotides (ASOs). These are synthetic RNA-altering single-stranded 

oligodeoxynucleotides which cause the subsequent reduction or changes in protein 

expression depending on their design mechanism (Rinaldi & Wood, 2018). The BBB prevents 

oligonucleotide access into the CNS from the peripheral blood stream. To circumnavigate this, 

ASOs are delivered via intrathecal injection. At present only a handful of ASO-mediated 

therapies are already approved and successfully used in the US for the treatment of 

neuroinflammatory demyelinating diseases of the CNS, for example, Duchenne muscular 

dystrophy (Eteplirsen (Lim et al., 2017)) and spinal muscular atrophy (Nusinersen (Neil & 

Bisaccia, 2019)).  

 

ASO approaches in AD have so far focused on targeting the tau production gene MAPT. This 

16-exon gene has 6 known isoforms, all of which are capable of the hyperphosphorylation 

associated with AD pathologies. Murine studies have demonstrated that morpholino-induced 

skipping on exons 1, 5 or 7 results in a frameshift that can cause tau reduction (Sud et al., 

2014). Treatment with ASOs has also been shown to reverse some effects of AD pathologies 

in aged mice and non-human primates as well as prolonging survival (DeVos et al., 2017). 

Recently, Biogen completed phase 2 testing for the anti-tau ASO Ionis-MAPTRX, which 

targets tauopathies via the MAPT gene. Their cohort consists of forty-four mild AD patients 

and whilst the study is complete no results have been reported yet (Lane et al., 2017). 

 

In summary, ASO therapies are a fast-progressing therapeutic area, however their application 

is currently more advanced in other neuroinflammatory pathologies. The dual mechanism of 

amyloid plaques and tau in AD pathology also presents a problem. At present, AD ASO 

therapies are largely based around targeting tauopathies. To fully address the disease, ASO 

development will also need to slow the formation of amyloid plaques. 
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1.5.4.3. Immunotherapy in Alzheimer’s Disease 
 

Immunotherapies in AD are a promising idea, and currently include vaccinations, antibodies 

(targeting Aβ and tau), and biologicals targeting microglia molecules and inflammasome 

modulation. Many of the vaccines being trialled aim to train immune system recognition of Aβ 

plaques and subsequently trigger Aβ antibody production. GV1001 is currently the most 

advanced AD vaccine, having started phase III trials in 2023. It uses a different mechanism, 

inhibiting production of Aβ induced ROS in neurons by mimicking human telomerase reverse 

transcriptase (Koh et al., 2021). 

 

One of the best-known therapies trialled in humans in recent years is the human monoclonal 

antibody aducanumab. The FDA approved this drug in 2021, making it the first new AD drug 

in over eighteen years to be approved in the US (Mullard, 2021). In transgenic murine models 

aducanumab allowed dose-dependent reductions in soluble and insoluble Aβ aggregations 

(Sevigny et al., 2016). In Europe, the treatment reached phase III trials before being 

discontinued in 2019 due to a lack of significant effect on cognitive decline in humans. Other 

Aβ monoclonal antibodies to be trialled in the last decade include solanezumab and 

crenezumab (Selkoe & Hardy, 2016), however, these have not been approved in Europe or 

the US.  

 

Recently, promising data has been released on a IgG1 monoclonal antibody called 

Lecanemab. It binds with high specificity to Aβ peptides and, for the first time in a phase III 

study, has demonstrably slowed cognitive decline. Patients’ decline in overall mental skills 

was reduced by 27% over 18 months (van Dyck et al., 2023). In late 2022, lecanamab was 

approved by the FDA despite safety concerns because of bleeding events in preconditioned 

individuals.  

 

In summary, the last decade has seen the development of numerous new therapies for AD, 

but it is the advent of antibody therapies which brings the most tangible progress in the field. 

This immune aspect of neurodegenerative medicine makes it even more critical that research 

fully elucidates the relationship between the CNS and PIS. Understanding communication 
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between these systems may allow the development of more effective targets and improve 

management for exacerbatory neuroinflammation. As well as this there is potential for better 

diagnostics and disease monitoring in both the CSF and pB. Techniques like scRNA-seq 

could be used to monitor cell population changes in both these areas and inform treatment 

efficacy during drug development. 
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2. Aim of the thesis 
 

The last decade of research has seen a shift in our understanding of the relationship between 

the CNS and PIS. The concept of immune privilege in the CNS has been challenged as new 

techniques uncover further evidence that the two systems are not as separate as previously 

thought. The CNS is vulnerable to peripheral inflammatory events and systemic inflammation 

is now known to play a role in the progression of neurodegenerative pathologies like AD. 

Alongside this, there is now evidence suggesting that these peripheral inflammatory events 

are having effects in the CNS far earlier than previously thought (Flores-Cordero et al., 2022; 

Jack Jr et al., 2018; Wyss-Coray & Rogers, 2012). This emphasises the importance of 

understanding the early and prodromal phases of pathologies like AD to fully uncover the 

pathogenesis and develop effective interventions.  

Research in AD has traditionally focused on changes occurring in the neurons and their 

surrounding parenchymal tissues in the brain. There are several commonly used biomarkers 

and many more in development, however, these are generally designed to measure levels of 

AD-associated proteins such as phosphotau-181 and Aβ in the CSF. In the last years, the 

analysis of biomarkers has been extended to the peripheral blood, but only a handful of 

studies have approached this at a single-cell level and even fewer have attempted to elucidate 

transcriptional changes in immune cells between the two systems in parallel. 

Therefore, this thesis aims to provide more insight into the interplay between AD and 

peripheral inflammation through analysis of scRNA-seq data of circulating immune cells in the 

CSF and peripheral blood. More specifically, we would like to know whether, during a 

pathological event in the CNS such as AD, we can also observe changes in the PIS detectable 

through scRNA-seq. We hypothesise that the high-resolution data made available through 

scRNA-seq technology will allow a better characterization of the immune landscape in both 

systems and contribute to our understanding of the cellular and molecular pathways in AD 

pathogenesis. 
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3. Materials 
 

3.1. General laboratory consumables, equipment and reagents 

3.1.1. Equipment 

Table 3: Overview of equipment 

Reagent or resource Source Identifier 

Instruments 

Thermo Scientific Megafuge 40R with TX-1000 rotor  Thermo Fisher 
Scientific  PN 75004518 

BD Rhapsody Express instrument Becton Dickinson  Cat# 633702 

BD Rhapsody Scanner Becton Dickinson Cat#  633701 

BD Rhapsody P1200M and P5000M pipettes Becton Dickinson Cat. No. 633704, 
Cat.No. 633705 

Eppendorf ThermoMixer C    Eppendorf Cat# 5382000015 

Magnetic separation stand (0.2 ml; 5ml)  V&P Scientific, Inc 
Cat#  VP 772F4-1,  
VP 772FB-1A, 
VP772FB-1  

DynaMag-2 Magnet  ThermoFisher 
Scientific Cat# 12321D 

Mr. Frosty Freezing  Container ThermoFisher 
Scientific Cat# 5100-0001 

Countess 3  Automated Cell Counter  ThermoFisher 
Scientific Cat# AMQAX2000 

Agilent 4200 TapeStation system Agilent Cat# G2991BA 

BD FACSymphony BD bioscience  
Cat# 
FACSymphony A5 
SE 
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3.1.2. Reagents and kits 

Table 4: Overview of reagents, kits and oligonucleotides 

Reagent or resource Source Identifier 

Critical commercial assays and kits 

RPMI 1640 Medium  GIBCO Cat# 11875093 

Fetal Bovine Serum  Pan Biotec Cat# 3302 

BD Pharmingen Stain buffer Becton Dickinson Cat# 563794 

Pancoll human, Density: 1.077 g/ml  Pan  Biotech Cat# P04-601000 

Dulbecco’S Phosphate Buffered Saline, MO Sigma-Aldrich  Cat# D8537 

Nuclease-Free Water  Invitrogen Cat# AM9937 

TE Buffer, pH8.0, 1mM disodium EDTA  Thermo Fisher Cat# 12090015 

SPRIselect  Beckmann Coulter Cat# B23318 

10% Tween 20  BIO-RAD Cat# 1662404 

Buffer EB  QIAGEN Cat# 19086 

Ethanol, Absolute Fisher Bioreagents Cat# BP2818-500 

BD Rhapsody WTA Amplification Kit  Becton Dickinson Cat# 633801 

BD Rhapsody Cartridge Kit  Becton Dickinson Cat# 633733 

BD Cartridge Reagent Kit  Becton Dickinson Cat# 633731 

BD Rhapsody cDNA Kit  Becton Dickinson Cat# 633773 

High Sensitivity D5000 ScreenTape  Agilent Cat# 5067-5592 

TapeStation HS D5000 Reagents (Buffer & Ladder) Agilent Cat#5067-5593 

Qubit dsDNA HS Assay Kit ThermoFisher Cat# Q32854 

NextSeq 500/550 High Output Kit v2.5 (150 Cycles) Illumina Cat# 20024907 

Trypan Blue  Invitrogen Cat# T10282 

FACS Clean  BD Bioscience Cat# BD 340345 

FACS Rinse BD Bioscience Cat# 340346 
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OneComp/UltraComp compensation beads  Invitrogen Cat# 01-2222-42 

DAPI SigmaAldrich Cat# 28718-90-3 

2 mM Calcein AM Thermo Fisher 
Scientific Cat# C1430  

DRAQ7 BD Bioscience Cat. No. 564904 

DMSO SigmaAldrich Cat# 200-664-3 

INCYTO disposable hemocytometer INCYTO Cat. No. DHC-N01-
5 

High Sensitivity D5000 ScreenTape Agilent Cat#5067-5592 

NEBNext High-Fidelity 2x PCR Master Mix NEB Cat#M0541L 

Nextera XT DNA Library Preparation Kit (96 samples) Illumina Cat#FC-131-1096 

2x Kapa Hifi HotStart Readymix Kapa Biosystems Cat#KK-2602 

NextSeq 500/550 High Output Kit v2.1 (75 cycles) Illumina Cat#20030410 

NextSeq PhiX Control Kit Illumina Cat#FC-110-3002 

NxGenTM RNase Inhibitor Lucigen Cat#F83923-1 

Exonuclease I NEB Cat#M0293S 

Maxima H Minus Reverse Transcriptase Thermo Fisher Cat#EPO0753 

dNTP NEB Cat#N04465 

Oligonucleotides 

Tn5ME-B Oligo: 5`-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-
3` 

IDT custom 

Tn5MErev Oligo: 5`-
[phos]CTGTCTCTTATACACATCT-3` IDT custom 

TSO primer IDT custom 

P5-SMART-PCR primer IDT custom 

barcoded primer IDT custom 

N70X Oligo Illumina custom 

SMART PCR primer Eurofins Scientific Cat#74998995 
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3.1.3. Consumables 

Table 5: Overview of consumables 

Reagent or resource Source Identifier 

Consumables 

AMPure XP beads Beckman Coulter Cat#A63881 

mRNA Capture beads Chemgenes Cat#MACOSKO-
2011-10 

1.5/2 ml reaction tubes Eppendorf Cat# 0030121023. 

PCR reaction tubes Sarstedt Cat#72.737.002 

Falcon Tube (15 ml)  Corning® Cat# CLS430053-
500EA 

Falcon Tube (50 ml)  Corning® Cat# CLS430290-
500EA 

Flow cytometry tubes  Sarstedt Cat# 55.1579.002 

Cell strainers (70μM, 100μM)  BD, Falcon Cat# 352350 

Serological pipettes Sarstedt Cat# 86.1253.001 

LifterSlip Electron Microscopy 
Science Cat#72186-60 

Transwell polycarbonate membrane cell culture inserts Corning Cat#3422 

184 Silicone Encapsulant Clear 0.5kg 
kit Dow SYLGARD™ Dow 184 SIL 

ELAST KIT 0.5KG 

Polycarbonate (PCTE) membrane filters, 0.01 
MICRON, 
62MM X 22MM 

Sterlitech  
Cat#PCT00162X22
1 
00 

Countess Cell Counting Chamber Slides ThermoFisher 
Scientific Cat# C10228 
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3.2. Software 
Table 6: Overview of software 

Reagent or resource Source Identifier 

Software and algorithms 

AUCell (Aibar et al., 2017) v1.6.1 (CRAN) 

Seurat (R package)  

(Butler et al., 2018; 
Hafemeister & Satija, 
2019; Stuart et al., 
2019) 

v2.3.4 (CRAN) 

umap (McInnes, Healy, & 
Melville, 2018) 

https://cran.r-
project.org/web/pac
kages/umap/index.
html 

pheatmap (Raivo Kolde, 2019) v1.0.12 

ComplexHeatmap (R package)  (Gu et al., 2016) v1.20.0 
(Bioconductor) 

ggplot2 (Wickham, 2016) v3.3.6 (CRAN) 

ClusterProfiler (R package)  (Yu et al., 2012) v3.10.1 (CRAN) 

R statistical programming R Core Team v3.1.5, v4.0.3 
(CRAN) 

RStudio RStudio, Inc. v2022.02.01 

Harmony (R package)  (Korsunsky et al., 
2019) v1.0 

DoubletFinder (McGinnis et al., 
2019) 

https://github.com/c
hris-mcginnis-
ucsf/DoubletFinder 

SingleR (Aran et al., 2019) https://github.com/d
viraran/SingleR 

scRAD (Li et al., 2011) v0.99.0 

scCODA (Büttner et al., 2021) v0.1.8 

STAR: RNA-seq aligner (Dobin et al., 2013) v2.6.1b 

Azimuth (Hao et al., 2021) v 0.4.5 
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3.3. Donors 
3.3.1. Donor cohort for Seq-Well 

Table 7:  Demographic and clinical characteristics of Seq-Well donor cohort 

 

Donor Age Gender Condition MMST PBMC CSF 
AD001 51 Female Control 29 Y - 
AD002 56 Male AD - Y - 
AD003 60 Female Control 30 Y - 
AD004 61 Male AD - Y - 
AD006 68 Male Control 30 Y - 
AD007 63 Female AD - Y - 
AD008 77 Female AD - Y - 
AD009 70 Female Control - Y - 
AD010 79 Male Control - Y - 
AD011 90 Male Control - Y - 
AD012 81 Female AD - Y - 
AD013 72 Male Control - Y - 
AD014 57 Female AD - Y - 
AD015 58 Male Control - Y - 
AD016 58 Male Control - Y - 
AD017 56 Female AD 27 Y - 
AD018 71 Male Control - Y - 
AD019 75 Female Control 30 Y - 

AD020 - Male AD 28 Y - 
 

 

 

 

 

 

 

 

 

 

 



 

 36 

Table 8: Medications from donors of the Seq-Well cohort 

Donor 
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AD001         + +                   
AD002                               
AD003                               
AD004                               
AD006               +               
AD007                         +     
AD008     +   +                     
AD009     +             +           
AD010 +   +           +             
AD011       +                       
AD012   +         +           +     
AD013     +                 +       
AD014     +       +             +   
AD015         +         +           
AD016                               
AD017                           +   
AD018                               
AD019     +             +           
AD020             +             +   
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3.3.2. Donor cohort for BD Rhapsody 

Table 9:  Demographic and clinical characteristics of the Rhapsody donor cohort 

 

Donor Age Gender Condition MMST PBMC CSF 

AD005 76 Female AD - Y - 
AD008 77 Female AD - Y - 
AD009 70 Female Non-Biomarker Control - Y - 
AD011 90 Male Non-Biomarker Control - Y - 
AD012 81 Female AD - Y - 
AD013 72 Male Non-Biomarker Control - Y - 
AD014 57 Female AD - Y - 
AD015 58 Male Non-Biomarker Control - Y - 
AD016 58 Male Non-Biomarker Control - Y - 
AD017 56 Female AD 27 Y - 
AD018 71 Male Non-Biomarker Control - Y - 
AD019 75 Female Non-Biomarker Control 30 Y - 
AD020 - Male AD 28 Y - 
AD022 80 Female Control 28 - Y 
AD023 66 Female Non-Biomarker Control 30 Y - 
AD024 72 Female Control - Y Y 
AD025 57 Male Control - Y Y 
AD026 49 Female Non-Biomarker Control - Y - 
AD027 58 Male Non-Biomarker Control - Y Y 
AD028 87 Female Non-Biomarker Control - - Y 
AD031 61 Male Non-Biomarker Control 29 Y - 
AD033 68 Male Non-Biomarker Control 30 Y - 
AD034 76 Male Non-Biomarker Control 29 Y - 
AD036 62 Female Non-Biomarker Control 30 Y - 
AD037 68 Female Non-Biomarker Control 25 Y - 
AD038 76 Male AD 27 Y - 
AD039 54 Female Non-Biomarker Control 30 Y - 
AD041 71 Male AD 27 Y - 
AD042 62 Female Non-Biomarker Control 30 Y - 
AD043 64 Male Non-Biomarker Control 30 Y - 
AD044 76 Female Non-Biomarker Control 30 Y - 
AD045 - Female Control 25 Y Y 
AD046 - Male AD 25 - Y 
AD047 56 Female AD 28 Y Y 
AD048 70 Female Non-AD Pathological change 8 Y Y 
AD049 69 Male Non-Biomarker Control 30 Y - 
AD050 76 Male AD 26 Y Y 



 

 38 

AD051 71 Male Control 20 Y Y 
AD052 77 Female Non-Biomarker Control 28 Y - 
AD055 66 Male Control 19 Y Y 
AD056 55 Male Control 27 Y Y 
AD057 83 Female AD Pathological change 25 Y Y 
AD060 57 Female Non-Biomarker Control - Y Y 
AD061 55 Female Control 29 Y Y 
AD062 73 Male AD 24 Y Y 
AD063 69 Female Control 26 Y Y 
AD064 69 Female AD 29 Y Y 
AD065 78 Female Non-Biomarker Control 30 Y - 
AD066 79 Male Non-Biomarker Control 29 Y - 
AD067 45 Female Non-AD Pathological change 18 Y - 
AD068 70 Male AD Pathological change 24 Y Y 
AD069 62 Male Control 30 Y Y 
AD070 69 Female AD 27 Y Y 
AD071 71 Female Non-AD Pathological change - - Y 
AD072 78 Female AD - Y Y 

AD073 77 Male Non-AD Pathological change 27 Y Y 
 

 

Table 10: Medications from donors of the Rhapsody donor cohort 
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AD005                               
AD008     +   +                     
AD009     +             +           
AD011       +                       
AD012   +         +           +     
AD013     +                 +       
AD014     +       +             +   
AD015         +         +           
AD016                               
AD017                           +   
AD018                               
AD019     +             +           
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AD020             +             +   
AD022     +                 +       
AD023         +                     
AD024                               
AD025                               
AD026                               
AD027                     +         
AD028     +   +       +     +       
AD031                               
AD033         +                     
AD034         +                     
AD036                               
AD037                               
AD038         +                     
AD039         +                     
AD041 +   +                         
AD042         +                     
AD043                               
AD044           +         +         
AD045     +   +   +       + +       
AD046     +           +   +         
AD047                               
AD048                           +   
AD049     +                         
AD050                               
AD051                     +       + 
AD052   + +                         
AD055                   + +         
AD056                               
AD057     +                 +       
AD060     +   +           + +       
AD061             +                 
AD062     +   +           +         
AD063     +   +                     
AD064                               
AD065     +                         
AD066     +               + +       
AD067     +       +                 
AD068 +   +                         
AD069                               
AD070                               
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4. Methods 
 

4.1. Human specimens 
 

Human samples were acquired via the DELCODE, DESCRIBE and DANCER studies at the 

DZNE. All studies have been approved by the ethics committee of the medical faculty of the 

Rheinische Friedrich-Wilhelms-Universität Bonn and are in line with national legal regulations 

and the ICH-GCP guidelines (local ethics vote 227/19). All patients provided written informed 

consent according to the Declaration of Helsinki before specimens were collected. 

 

Clinicians completed exclusion criteria forms and provided CSF biomarker information 

wherever possible to allow us to classify patients into the AT(N) framework and place them in 

the correct condition cohort (Supplementary Figure 7). The exclusion criteria forms included 

information regarding comorbidities, medication and a list of pre-defined exclusionary criteria 

designed to prevent donors with known inflammatory or autoimmune comorbidities from being 

recruited (Tables 8 & 10). These exclusion criteria included individuals with a BMI>30, HIV, 

Diabetes Type I, recent infection, other autoimmune conditions, or currently receiving steroids, 

NSAIDs or chemotherapy. 

 

PBMCs were obtained by the collection of 9 ml venipuncture blood into tubes containing EDTA 

(Ethylenediamine tetra-acetic acid). CSF samples were collected by lumbar puncture and 

transportation was handled via the clinical research biorepository team at the DZNE Bonn. 

Any CSF samples containing haemoglobin were discarded.  

 

 

4.2. Isolation of PBMCs from whole blood 
 

PBMC were isolated from anti-coagulated whole blood by density centrifugation (at 20°C and 

800g for 20 min with centrifugation break off)  over Pancoll (density: 1.077 g/ml; PAN-Biotech). 
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PBMC were extracted from the interphase and all further steps were conducted at 4°C. 

Subsequently, the PBMCs were prepared for scRNA-seq or cryopreserved and analyzed 

later. Cryopreserved samples were mixed with Resuspension Buffer (60% RPMI, 40% FBS) 

and 2X Freezing media (70% Resuspension Buffer, 30% DMSO) before transfer to cryotubes 

in a refrigerated cryostorage device and kept overnight at -80°C before liquid nitrogen tank 

storage. 

 

 

4.3. Isolation of cells from cerebrospinal fluid 
 

CSF cells were pelleted by centrifugation of CSF by the biorepository team and all but 1 ml 

supernatant was removed. On receipt of the samples, samples were centrifuged again (400g 

for 10 min) and directly prepared for scRNA-seq or cryopreservation. 

 

 

4.4 Seq-Well 
 

The Seq-Well method described by the Shalek lab (Gierahn et al., 2017) was used for the 

initial component of this work. Fresh PBMCs were collected from both patients and matching 

controls. Below we describe the specifics of array preparation and library generation for these 

8 patients and eleven controls. The cohort was divided and sequenced in three independent 

sequencing runs: AD001-AD010 with sequencing data from donors 1 to 10, AD011-AD018 

(donors 11 to 18) and AD019-AD020 (donors 19 and 20) (Table 7). The samples were fresh, 

however, stored frozen samples were also included for AD019-AD020. The datasets 

displayed a total of 24,963 genes across 60,027 cells before downstream analysis. 
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4.4.1. Preparation of Seq-Well arrays 
 

The arrays used for Seq-Well were prepared following the published protocol (Gierahn et al., 

2017). Base and crosslinker from the Sylgard kit were mixed (10:1), put under vacuum (15 

minutes), poured into moulds and baked for 2 hours at 70oC. After being removed and tidied 

up they were functionalized by adding and washing a sequence of chemicals designed to 

allow the sealing of a semi-permeable polycarbonate membrane and the interchange of lysis 

and RNA hybridization buffers. The complete process for this can be found in the published 

protocol (Gierahn et al., 2017). 

 

 

4.4.2. Preparation of Seq-Well libraries and sequencing 
 

The preparation and generation of Seq-Well libraries from isolated PBMCs were conducted 

as described by Gierahn et al. (Gierahn et al., 2017). Here we provide an overview of the 

process, for a more in-depth description refer to the original protocol (Seq-Well v1.7, (Gierahn 

et al., 2017)). Functionalized arrays were loaded with mRNA capture beads and 20,000 cells 

that had been sorted by flow cytometry with a DAPI stain to select for live cells. After loading, 

the process uses washing steps to remove any beads or cells that are not in microwells and 

then an incubation step in lysis buffer (5M guanidine thiocyanate, 1mM EDTA, 0.5% Sarkosyl 

and 1% β-mercaptoethanol in H2O) is performed to lyse cells. Next, mRNA capture beads 

were collected from the arrays and reverse transcription was performed on the mRNA 

captured on the beads. After this, there were further washing steps and excess primers were 

digested in an exonuclease reaction. Then beads were resuspended and counted before 

being pooled (5,000 beads/pool) for PCR (95°C for 3 min, 4 cycles of 98°C for 20 s, 65°C for 

45 s, 72°C for 3 min, 12 cycles of 98°C for 20 s, 67°C for 20 s, 72°C for 3 min and final 

extension of 72°C for 5 min). After PCR, 16,000-20,000 beads were combined and PCR 

products cleaned up with AMPure XP beads before cDNA was measured using a High 

Sensitivity D5000 assay for the Tapestation 4200 (Agilent). After tagmentation, these cDNA 

libraries went through a further PCR for barcoding with index primers and cleaned up again 
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with AMPure XP beads. After a final High Sensitivity DNA5000 assay on a Tapestation 4200 

(Agilent), and quantification with the Qubit high-sensitivity dsDNA assay, the libraries were 

equimolarly pooled and prepared for sequencing in paired-end mode (2*75 cycles) with the 

NextSeq 500 System. 

 

 

4.4.3. Processing of scRNA-seq raw data 
 

For pre-processing, the fastq files generated from Seq-Well libraries were loaded into a data 

pre-processing pipeline based on the Drop-seq tools package developed by the McCarroll lab 

(Macosko et al., 2015). The human GENCODE reference genome and transcriptome hg38 

release 27 (Harrow et al., 2012) were used for STAR alignment and produced datasets were 

imported into the R package ‘Seurat’ (v. 2.3.4) for downstream analyses. 

 

 

4.4.4. Quality control and normalisation 
 

Quality control was performed according to the Seurat Guided Clustering Tutorial from the 

Satija lab (Stuart et al., 2019). This includes filtering low-quality background cells. Cells with 

a gene count of <50 genes per cell and genes that were expressed in <3 cells were excluded 

from further analysis. We also set a threshold which excludes cells with more than 5% 

mitochondrial genes from analysis as high mitochondrial gene presence is indicative of 

stressed and apoptotic cells. Micro-clustering problems in the analysis caused us to later 

adjust the quality threshold to a gene count of more than 150 genes per cell.  

The data was log-normalized with a scale factor of 10,000 and the 2,000 most variable 

features were calculated via the “vst” method included in Seurat. 
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4.4.5. Dimensionality reduction and clustering 
 

The Seurat default clustering algorithm based on shared nearest neighbour (SNN)-graphs 

were used to cluster the data (Stuart et al., 2019). This considered 20 principal components 

(PCs) and a resolution of 0.5 respectively. The dimensionality of the data was then reduced 

with the Uniform Manifold Approximation and Projection algorithm (UMAP) (McInnes, Healy, 

Saul, et al., 2018) which provides two-dimensional data representation based on the 20 

calculated PCs.  

 

 

4.4.6. Integration 
 

Individual datasets were separately log-normalized (default settings) and for each, the top 

2,000 most variable genes were selected by the implemented Seurat function based on the 

“vst” method. These top 2,000 features were then used to integrate the data by the Seurat 

Integration Algorithm based on the intersection of all genes across the data as well as 30 PCs 

(Stuart et al., 2019). After scaling, the data dimensionality was reduced to 20 PCs, clustered 

with a resolution of 0.5 and represented via UMAP, taking the top 20 calculated PCs into 

account. 

 

 

4.4.7. Cell Type Annotation based on transcriptomic marker genes 
 

Expression profiles of cell types and prior knowledge of canonical markers (Table 11) were 

used for annotation. Correct annotations were verified by SingleR using the built-in references 

“MonacoImmuneData” and “BlueprintEncode” (Aran et al., 2019). 
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Table 11: Marker genes used for PBMC cell type annotation. 

 

 

 

4.4.8. Exclusion of AD008-AD010 and AD019-AD020 
 

Data from four samples (AD008-AD010 and AD019-AD020) were excluded from the final 

analysis. While most of the samples were sequenced using the protocol Seq-Well v1.7, 

AD008-AD010 used an adapted experimental protocol (Seq-Well v3) which resulted in poor 

quality of data due to low gene counts and low unique molecular identifier (UMI) counts.  

Samples AD019-AD020 used the protocol Seq-Well v1.7 but were excluded due to data 

quality issues. While the manual cell type annotation (Table 11) was sufficient for 

discriminating between all major PBMC types in the data, one cluster did not display any 

known cell type markers and originated solely from the AD019-AD020 dataset. We analysed 

the dataset AD019-AD020 independently from all the others and found that, unlike the other 

two Seq-Well datasets which included sequencing data for only fresh PBMCs, AD019-AD020 

also included data from frozen PBMCs. The cluster was present in all pools but for donor 

AD020 depletion of monocytes was detected upon freezing. 

As the anomalies outlined above may have been caused by problems in the alignment 

pipeline, we analysed the quality of intergenic and intronic bases for all datasets to rule out 

possible technical anomalies. Percentages of both intronic and intergenic bases per cell were 

higher in pools corresponding to AD019-AD020 compared to all the other samples. 

Consequently, we excluded AD019-AD020 from the further analysis. 
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After these exclusions were made, AD001-AD007 and AD011-AD018 were quality controlled 

and integrated using the same parameters described above. After scaling, the dimensionality 

of the data was reduced to 25 PCs and clustered with a resolution of 0.4. Based on the top 

25 calculated PCs, UMAP was used for visualization purposes. Cell types were annotated as 

described above and the final dataset included 18,345 genes across 10,871 cells. 

 

 

4.4.9. Differential Expression Analysis 
 

Differentially expressed genes (DE genes) were globally calculated between AD and control 

samples based on the RNA assay and a Wilcoxon Rank Sum test implemented in Seurat 

(default settings are a logarithmic fold-change (log-FC) of 0.25, a minimum fraction of 0.1 cells 

in either of the two groups and a minimum difference (min.diff.pct) of –Inf). This is in line with 

the Seurat Guided Clustering Tutorial from the Satija lab (Stuart et al., 2019). 

 

 

4.4.10. scRAD package 
 

The heterogeneous expression differences between patients in the dataset were assessed 

by implementing the Single-Cell Reproducibility Across Donors package in R (scRAD) (Li et 

al., 2011). This aims to control the influence of individual patients on the DE analysis. One of 

the analyses scRAD provides is an irreproducible discovery rate (IDR) analysis, which 

evaluates “reproducible” differential expressions across donors and correlates their 

significance accordingly. First, we downsampled the data to have identical numbers of cells 

in the patient and control groups (4956 cells per group). We identified marker genes between 

every patient and every control individually by a Wilcoxon Rank Sum test in Seurat. We set 

the log-FC threshold for marker genes >0.01 and min.pct cells as 0.01, returning both positive 

and negative marker genes from the input RNA assay. Secondly, the list of significant scores 
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(p-values) for individual patient-control combinations was negative logarithmic transformed, 

which is a prerequisite for the IDR analysis. Besides, all NAs were excluded from the analysis. 

Thirdly, the IDR was estimated using a multivariate Gaussian copula mixture model, 

implemented in the “est.IDRm” function of scRAD (Li et al., 2011), and the following 

parameters: mu = 2, sigma = 2, rho = 0.5 and p = 0.01. The model assumes that each 

component follows a Gaussian copula, a multivariate cumulative distribution function, which 

describes the dependency between random variables. It is provided with a correlation matrix 

of each random variable, thereby taking each random component into account for the 

dependencies (Li et al., 2011; Marbac et al., 2017). 

Finally, the results were filtered for an IDR threshold higher than 0.01 and a median log-FC 

across all patient-control combinations of higher than 0.2 and lower than -0.2 respectively. 

The filtered genes were visualized in a Heatmap. Moreover, genes with a high IDR value were 

visualized before log-FC filtering, signifying genes which might be reproducible across donors. 

 

 

4.5 BD Rhapsody 
 

The BD Rhapsody Single-Cell Analysis System (BD Biosciences) is a commercial platform 

that consists of a BD Rhapsody express instrument and a scanner for assessing cell and bead 

loading at several stages of the protocol. PBMCs and CSF immune cells were isolated from 

both patients and matching controls as described in sections 4.2 and 4.3. Below the specifics 

of sample preparation and library generation for the PBMCs and CSF immune cells collected 

are described. The datasets displayed a combined total of 46,174 genes across 115,000 cells 

before downstream analysis. 
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4.5.1. Preparation of cells for BD Rhapsody 
 

PBMCs and CSF immune cells prepared as detailed above were processed with the BD 

Rhapsody Single-Cell Analysis System (BD Biosciences). The protocol followed for this was 

the BD Rhapsody Single-Cell Analysis System Instrument User Guide (Doc ID: 214062 Rev. 

3.023-21336-01). Here, I give an overview of the process and refer to the manufacturer’s 

protocol for further details. After isolation, cells were labelled with sample tags (BD Human 

Single-Cell Multiplexing Kit), washed and resuspended in BD Sample Buffer before counting 

using a Countess Cell Counter. Cells were then stained for viability (2 mM Calcein AM and 

DRAQ7) and the BD Rhapsody Single-Cell Analysis System scanner calculated pooling 

concentration for loading onto the cartridge. For every run, a cartridge was loaded with 

approximately 40,000 cells with an average of 10,000 cells for each sample. From here single 

cells were lysed, barcoded, washed, retrieved and underwent an exo-nuclease reaction 

according to the manufacturer’s recommendations (BD Biosciences).  

 

 

4.5.2. Preparation of Rhapsody WTA libraries and sequencing 
 

cDNA libraries were prepared by following the BD Rhapsody mRNA Whole Transcriptome 

Analysis (WTA) and Sample Tag Library Preparation Protocol (Doc ID: 23-21712-00). Sample 

tag and cDNA libraries were prepared in parallel. Sample tags were denatured from the BD 

Rhapsody Cell Capture Beads and amplified through a series of PCR steps. The cDNA 

libraries were generated directly from the beads using a random priming approach and index 

PCR. Quantification of final libraries was done with the Qubit Fluorometer and Qubit dsDNA 

HS kit The Agilent high sensitivity D5000 assay on a TapeStation 4200 system was used to 

measure fragment size distribution. Libraries were equimolarly pooled and prepared for 

sequencing in paired-end mode (2*75 cycles) with the NovaSeq 6000 or NextSeq 500 

System.  

 

 



 
 

 49 

4.5.3. Processing of scRNA-seq raw data 
 

After demultiplexing and quality control, paired-end scRNA-seq reads generated on the 

Rhapsody platform were filtered for valid cell barcodes using the barcode whitelist provided 

by BD. The Gencode v27 reference genome (Dobin et al., 2013) was used for STAR 2.6.1b 

alignment. The Drop-seq tools package developed by the McCarroll lab (Macosko et al., 2015) 

was used to quantify gene expression and hashtag-oligo based demultiplexing of single-cell 

transcriptomes and subsequent assignment of cell barcodes to their sample of origin based 

on the respective multiplexing tag sequences were added to the reference genome and 

quantified for downstream analyses in R package ‘Seurat’ (v. 2.3.4). 

 

 

4.5.4. Quality control of scRNA-seq data 
 

Quality control was performed according to the Seurat Guided Clustering Tutorial from the 

Satija lab (Stuart et al., 2019). This includes filtering low-quality background cells. The 

Rhapsody dataset used the same cut-offs that were used for the Seq-Well dataset, excluding 

cells with a gene count of <50 genes per cell and genes that were expressed in <3 cells from 

further analysis. We also set a threshold which excluded cells with more than 5% 

mitochondrial genes from the analysis.  

 

 

4.5.5. Dataset integration and dimensionality reduction of scRNA-seq data 
 

After demultiplexing following the Demultiplexing with hashtag oligos (HTOs) protocol from 

the Satija lab (Stoeckius et al., 2018), data from individual Rhapsody cartridges were merged 

into one collective Rhapsody dataset. The collective Rhapsody dataset then underwent QC 

as described above and doublet removal using the ‘DoubletFinder’ package (version 2.0.2, 

McGinnis et al., 2019). The data was log-normalized with a scale factor of 10,000 and the 

2,000 most variable features were calculated via the ‘vst’ method from the 
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'FindVariableFeatures' function included in Seurat. Integration was completed using the 

‘Harmony’ package in Seurat which integrates data based on ‘anchors’ across batches 

(Korsunsky et al., 2019; Stuart et al., 2019). This reduces the influence of batch effects which 

could be introduced at several stages of the sample pipeline. Next, we reduced the 

dimensionality of the dataset and visualised the data through UMAP representation. The 

parameters for this were different for the different Rhapsody datasets (Whole/PBMC/CSF) 

and individual values and settings are reported in the results section. More generally, Seurat 

and the ggplot2 package (version 3.3.6, (Wickham, 2016)) were used for data visualisation. 

 

 

4.5.6. Cell-type annotation based on reference transcriptome datasets 
 

Initially, we annotated the data through SingleR using the built-in references “Monaco Immune 

Data” (Monaco et al., 2019), “Blueprint Encode” (Aran et al., 2019), and “Human Primary Cell 

Atlas Data” (Mabbott et al., 2013) which provided a basic classification of cell types. Later we 

supplemented this using Azimuth annotation (Hao et al., 2021). It was then necessary to use 

prior knowledge of canonical markers from the literature to further annotate the datasets. This 

was especially true for CSF-specific cell types as the built-in references used are focused on 

peripheral immune cells and might not truthfully reflect the heterogeneity of CSF immune cells. 

 

 

4.5.7. Marker gene identification of scRNA-seq data 
 

Identification of DE genes between AD and control samples was done using a Wilcoxon rank 

sum test for differential gene expression implemented in Seurat. A significance threshold was 

set to an adjusted p-value < 0.001 and a logarithmic fold change cutoff of at least 0.25. 

Visualisation of DE genes was mainly achieved using Seurat functions, such as dot plot 

representation of cell types-/cluster-specific marker gene expression or heat map 

representation of marker genes across single cells. We also used the R package ‘pheatmap’ 

in which the genes were clustered according to the ‘ward.D’ agglomeration method. 
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4.5.8. scCODA statistical analysis 
 

Statistical evaluation was carried out using the single-cell compositional data analysis 

(scCODA) package (Büttner et al., 2021). This detects statistically relevant changes in cell 

type composition and calculates the model inclusion probability for each covariate. The 

package was designed specifically to be used with scRNA-seq data and can cope with the 

low number of sample replications that are common with this data type, which made it a good 

choice for our dataset. It is also able to account for the proportional nature of cell type counts 

and the bias that can be introduced in a cell population when one type is depleted or inflated.  
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5. Results 
 

5.1. Analysis of PBMC of AD donors using the Seq-Well approach 
revealed transcriptional changes but no inflammatory signature 
 

As previously detailed, the Seq-Well data gathered in this project is a combination of PBMCs 

from a total of eight patients and eleven matching controls, which yielded three datasets. After 

analysis of the ten donors for the preliminary dataset (AD001-AD010), I integrated all datasets 

and jointly analysed them to compare the transcriptome across donors. 

 

5.1.1. Analysis of the preliminary Seq-Well dataset (AD001-AD010) resulted in 
an adapted analysis approach for all subsequent data  
 

To explore cellular differences between the first ten donors of the preliminary data set (AD001-

AD010), I analysed this data set independently from the other data. Therefore, the data 

dimensionality was reduced by the Seurat UMAP algorithm (McInnes, Healy, Saul, et al., 

2018) revealing a complex topology of approximately 10 main clusters and over 25 micro-

clusters (Figure 7A). These micro-clusters were not specific for any cell type, diagnosis, donor, 

pool, age, or gender (Figure S1A-E) and contained substantially lower numbers of reads 

compared to the main clusters. Furthermore, cellular marker genes were detectable in both 

the main and several sub-clusters with a similar expression level (Figure 7B). As the number 

of reads for duplicated barcodes indicated an adequate sequencing depth, we can rule out 

insufficient sequencing depth as cause for the unexpected distribution of marker genes over 

the dataset. Thus, there was no inherent reason to re-sequence these pools to increase data 

quality. 

The pools associated with AD008-AD010 displayed a very low unique molecular identifier 

(UMI) count as well as a low feature count. These pools were sequenced according to the 

protocol Seq-Well v.3, while all the others were sequenced according to Seq-Well v.1.7. As a 
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consequence, we excluded AD008-AD010 from further analyses. However, the micro-clusters 

were still present and were only removable by increasing the cut-off for cells to be further 

included in the analysis to 150 expressed genes per cell (Supplementary Figure 1F). 

 

Figure 7. Characterisation of the dataset from donors AD001-AD010. (A) Uniform Manifold 

Approximation and Projection (UMAP) representation of cells in the dataset AD001-AD010, displaying 

micro-clustering. (B) UMAP representation of IL7R and LYZ expression, marker genes for T cells and 

monocytes respectively. The gene expression in the micro-clusters is mirrored in the main clusters.  
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5.1.2. Integration of additional samples allowed to establish QC criteria to 
exclude AD019-AD020 from the further analysis 
 

Afterwards, we integrated AD001-AD007 and the remaining datasets AD011-AD018 and 

AD019-AD020 into a joint dataset, before visualising and evaluating the data. While manual 

cell type annotation allowed to discriminate between all major PBMC types in the data (Figure 

8A), cluster 7 did not display any known cell type markers (Figure S2A) and originated solely 

from the AD019-AD020 dataset (Figure 8B).  

To further investigate the nature of cluster 7, we analysed the dataset AD019-AD020 

independently from all the others using the same Seurat pipeline we already implemented for 

the analysis of AD001-AD007. In contrast to the other two datasets which included 

sequencing data for only fresh PBMCs, AD019-AD020 also included sequencing data from 

frozen PBMCs. The cluster in question was present in all pools (Figure 8C, purple) and 

depletion of monocytes was observed upon freezing (Figure 8C, * frozen, Figure S2B), 

especially for donor AD020. Note that AD020 accounted for 4410 cells in total, while AD019 

included 614 cells.  

Since the anomalies outlined above might arise from problems with the alignment pipeline, 

we analysed the quality of intergenic and intronic bases for all datasets. As depicted in Figure 

8D, the percentage of both intronic and intergenic bases per cell was much higher in pools 

corresponding to samples AD019-AD020 compared to all the others (Figure 8D, red boxes). 

Consequently, we excluded samples AD019-AD020 from further analysis and re-aligned the 

data for subsequent downstream processing and analysis. 
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Figure 8. Visualisation of AD001-AD020 integration and AD019-AD020 separately. (A) UMAP 

representations of cell types in the integrated dataset AD001-AD020. The red question mark highlights 

the cluster in question (cluster 7), which does not display known cell type markers (Figure S2A) 

(marker genes given in brackets). (B) UMAP representation of (A), grouped by the input dataset. Circle 

highlights cluster 7, originating solely from dataset AD019-AD020. (C) UMAPs for dataset AD019-

AD020, visualising each sequencing pool separately. Fresh samples, an asterisk indicates frozen 

samples. (D) Violin plots of each sequencing pool for AD001-AD020 showing percentages of intronic 

bases and intergenic bases per cell or number of UMIs and genes per cell, respectively. Red box 

highlighting the sequencing pools for AD019-AD020. 

 

 

5.1.3. Analysis of the final dataset demonstrated minor transcriptional 
differences in AD 
 

The final dataset for Seq-Well included AD001-AD007 as well as AD011-AD018, containing 

18,345 expressed genes across 10,871 cells. Figure 9A displays the UMAP visualisation of 

the clustered final dataset, identifying all major PBMC cell types. Besides, it exhibits distinct 

clusters for erythrocytes and proliferating cells that were not present before. The frequency of 

AD and control donors was balanced across all clusters except for cluster 6, which comprises 

a second CD14+ monocyte cluster. Here, cells from control donors were more frequent than 

cells from AD patients; however two single control donors contributed largely to this fraction 

(Figure 9B). These observations were confirmed by splitting the UMAP visualisation between 

AD and control (Figure 9C). Although the total number of cells varied largely across individual 

donors (Figure 9D), cell types were similarly distributed amongst donors with low and high 

cell numbers (Figure S3A). The frequency of T cell and monocyte subsets varied slightly 

between AD and control but displayed a large variability between donors (Supplementary 

Figure 3B).  

Therefore, we evaluated transcriptional differences between control and AD patients first 

globally, instead of analyzing several cellular subsets individually. Visualisation of the global 

DE genes we identified over the complete dataset, indicated only very slight differences 
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between the two groups, representing very few significant genes and no group-specific 

clustering (Figure 10A). To control for inter-donor heterogeneity, we implemented the 

irreproducible discovery rate (IDR) analysis from the scRAD package (Li et al., 2011). Upon 

calculating marker genes for every control across every patient, we determined IDR values 

for every significant score and filtered them accordingly. Unfortunately, the visualization of 

reproducible gene expression differences across multiple donors did not improve compared 

to the standard Seurat pipeline, displaying no defined clusters and only slight gene expression 

changes between patients and controls (Figure 10B).  
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Figure 9. Characterisation of integrated final Seq-Well dataset . (A) UMAP representation of the 

integrated datasets AD001-AD008 and AD011-AD018, including 18,345 genes across 10,871 cells 

(marker genes given in brackets). (B) Stacked bar plot visualizing the frequency of donors and AD vs. 

control across all clusters in (A). (C) UMAP representation of (A), divided into AD vs. control. (D) Bar 

plot highlighting the total number of cells for each donor, grouped by AD and control respectively.   

By filtering identified DE genes for top IDR outliers, we were able to detect genes which were 

consistently up or downregulated across donors (Figure 10C). Among these genes, we found 

LYZ, MALAT1, and HLA-DRA, while FTH1 and SNHG5 were downregulated in AD patients 

(Figure 10C). Except for SNHG5, all of these genes are known to be associated with AD, 

contributing directly or indirectly to AD risk (Dunne et al., 2020; J. L. Liu et al., 2018; Ma et al., 

2019; Mansouri et al., 2015; Sandin et al., 2016; Steele et al., 2017; P. Wang & Wang, 2017; 

J. Xu et al., 2020). Moreover, SNHG5 represents a snoRNA host gene, and an aberrant 

expression of snoRNAs has been associated with disease development for a range of 

diseases (Steinbusch et al., 2017; Stepanov et al., 2015). 
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Figure 10. Differentially expressed genes in final Seq-Well dataset. (A) Heat map of marker genes 

differing between control and AD, using Seurat (source). The marker gene expression is represented 

by a z-transformed value. (B) Heat map of marker genes differing between control and AD using the 

irreproducible rate (IDR) analysis by scRAD (source). IDR values are calculated based on marker 

gene significant scores, comparing every patient against every control separately. Genes are filtered 

for IDR values > 0.01 and logarithmic fold-changes (logFC) > 0.2 and < -0.2 respectively. Finally, they 

are displayed in the heat map by a z-transformed value. (C) Violin plots of gene expression levels 

between AD and control, displaying genes with high consistency across donors as determined by IDR 

analysis.    

 

In summary, data sparsity and heterogeneity across donors negatively impacted the data 

analysis leading to the discovery of only minute transcriptional changes. However, the genes 

that passed rigorous filtering criteria raise interesting links with immune dysfunction on the 
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basis of which we postulated the hypothesis that an elevated inflammatory signature might be 

present in the blood of AD patients.  

 

5.2. A holistic analysis of CSF and PBMC in AD donors using the BD 
Rhapsody approach revealed cell population changes in the former 
 

Because of these short-comings of the SeqWell technology we switched to a newly developed 

commercial platform for the generation and assessment of single-cell transcriptomes. The 

Rhapsody system employs a very similar approach as the SeqWell technology as both rely 

on cell capture in microwells, however side-by-side comparisons revealed significantly 

improved gene coverage and cell recovery for the Rhapsody system. Therefore, the dataset 

generated using the Rhapsody platform is the more extensive dataset collected in this study 

and combines CSF and PBMC samples across five conditions: AD, AD Pathological Change, 

Non-AD Pathological Change, Control, and Non-Biomarker Controls (Figure 11). These five 

conditions were defined using clinical protein biomarkers to classify donors according to the 

AT(N) framework. The Non-Biomarker Control group contains donors for which no biomarker 

information was available. We kept this group in the analysis in a limited capacity to support 

the biomarker-validated Control group. The complete Rhapsody dataset comprises 46,174 

genes across 115,000 cells. 
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Figure 11 Overview of the Rhapsody cohort (A) Study workflow including cohorts for CSF and 

PBMC donors. (B) Characteristics of the study cohort. (C) AT(N) cut-offs used for cohort classification. 

 

5.2.1. An overview of the combined PBMC and CSF dataset 
 

After sequencing, alignment and demultiplexing, data from individual Rhapsody cartridges 

were merged into one collective Rhapsody dataset combining cells from peripheral blood and 

CSF. Quality control checks were used to remove low-quality background cells and doublets 

(McGinnis et al., 2019) prior to integration (Korsunsky et al., 2019; Stuart et al., 2019) to create 

an object that would allow an overview of all donors and tissue types (Figure 12). 

At a clustering resolution of 0.9. the whole dataset forms 18 clusters (Figure 12A). Next, we 

performed cell type annotation and identified cell types across these clusters (Figure 12B) 

and assessed donor heterogeneity across clusters, revealing that donors are well distributed 

with no cluster dominated by a single donor (Figure 12C). This further supports that a 

successful integration of the data across donors was feasible. Distribution of the different 

disease conditions was evaluated, which also revealed a sufficient distribution of the 

individuals, independent of disease over the different cell clusters (Figure 12D). Following 

this, we assessed how the different tissue types were distributed and found a large amount of 

overlap, with many clusters in common (Figure 12E). Only clusters 11 and 15 are unique to 

the CSF, and cluster 12 is more highly represented in the CSF though it still contains some 

PBMC samples. While the distribution of conditions across the clusters is generally 

heterogeneous as described above, the CSF-specific clusters 11 and 15 mainly present in 

CSF are visibly dominated by the AD cohort. Finally, we determined the top 5 characteristic 

marker genes for each cell type, which allowed us to manually validate the computer-based 

annotations and identify subtypes (Figure 12F). 

Taken together, these data demonstrate that over a series of samples from 52 individuals 

collected over a 2.5 year period, the Rhapsody technology was able to generate scRNA-seq 

data that could be successfully integrated and yielded sufficient data depth to allow for further 

analysis. Based on the identification of CSF-specific subpopulations of cells, we decided at 
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this point that a joint analysis of both types of biomaterial could potentially obscure more subtle 

findings and therefore analysed both sources of biomaterial separately. 
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Figure 12 Summary of the combined PBMC and CSF dataset (A) UMAP representation and 

clustering of cells contained in main clusters 0-17. (B) UMAP showing cell types in the whole dataset. 

(C) UMAP showing donors in the whole dataset. (D) UMAP showing conditions in the whole dataset. 

(E) UMAP showing tissue types in the whole dataset. (F) Dotplot of characteristic marker expression 

of the top 5 genes sorted by average log fold change assigned to each cell type.  

 

5.2.2. Analysis of CSF in AD donors using the Rhapsody approach revealed an 
expanded myeloid cell compartment and reduced lymphocyte compartment in 
AD 
 

Prior to recent improvements in NGS and the popularisation of single-cell RNA-seq, the 

characterisation of cell types in the CSF has been modest relative to sample types such as 

PBMCs or brain tissues. Factors such as accessibility and sparsity of cells in CSF samples 

(1-5 cells/μL) mean that they require robust technology with high sensitivity to yield reliable 

data (Esaulova et al., 2020). 

To investigate our Rhapsody CSF dataset we took the data object produced during the 

processing and analysis of the Rhapsody whole dataset and subsetted this by tissue type to 

produce separate data objects for the CSF and PBMC samples. The CSF dataset reported 

here is made up of 14,046 cells from 20 donors. The mean number of cells contributed per 

donor was 702.3 and samples contributing <50 cells were excluded from the analysis. These 

numbers are in line with published CSF single-cell RNA-seq datasets which often contain only 

a few donors and similar cell numbers (Esaulova et al., 2020; Gate et al., 2020; Schafflick et 

al., 2020), with the exception of a recent study which sampled a much larger cohort of 57 

individuals (Roostaei et al., 2021). 

For demonstration purposes, the analysis of the CSF dataset has been split into two parts: 

firstly we analysed the data across all conditions to provide an overview of the different groups. 

Secondly, we analysed only the AD and Control groups, as the other groups contained low 

sample numbers (two donors for AD Pathological Change, one for Non-AD Pathological 

Change, and three donors for the Non-Biomarker Control group, respectively) which would 

not withstand robust statistical testing.  
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5.2.2.1. Defining a ground truth about the distribution of cell types in healthy CSF 
 

As discussed in the introduction, the ChP not only produces CSF but also acts as a blood-

CSF-barrier which can also be an entry point for immune cells into the CSF (Lun et al., 2015). 

Despite traditionally being thought of as an immune-privileged site, there are an increasing 

number of studies that detail the trafficking and entry of peripheral immune cells into the CSF. 

Infiltrating immune cells migrating from the blood via the ChP must cross the fenestrated outer 

endothelial layer into the stromal space before crossing the basolateral epithelium into the 

ventricles of the brain (Ransohoff & Engelhardt, 2012). For lymphocytes, the ChP facilitates 

a route into the CSF through the expression of adhesion molecules and chemokines 

(Schwartz & Baruch, 2014). For monocyte-derived macrophage recruitment, the route is still 

debated, with some studies favouring the damaged BBB as a path (Sweeney et al., 2018) and 

others suggesting monocytes transit via the ChP as demonstrated in the context of spinal cord 

injuries where it was described that monocytes are recruited via the ChP into the CSF to 

resolve lesion sites (Shechter et al., 2013).  

According to a review by Ranshoff and Engelhardt (2012), immune cells traffic into the CSF 

in the following approximate proportions: 90% T cells, 5% B cells, 5% monocytes, and <1% 

dendritic cells. However, as they do not cite a source for this estimate and only give broad cell 

types, we did not take this as our CSF baseline. Some studies also include a small number of 

NK cells (<2%) and cite slightly lower B cell numbers (<1%) (Farhadian et al., 2019). To 

establish a baseline of healthy immune cell types in CSF we first determined the percentages 

of immune cells in our dataset. This analysis revealed that 61.8% of the cells from our AD 

cohort were classified as monocytes compared to 12.4% in our healthy control (HC) cohort. 

Meanwhile, percentages of T cells were reduced in the AD cohort, CD4+ effector memory cells 

decreased from 11.2% to 4.3%, and CD4+ central memory dropped from 37.2% to 10.5%. 
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To compare these findings with prior knowledge we integrated a baseline study for cell type 

numbers in CSF into our analysis (De Graaf et al., 2011). This study used 6-colour flow 

cytometry on fresh CSF samples from 84 individuals. These individuals showed no signs of 

neurological disease, cancer, or treatment with immunosuppressive or cytostatic drugs 

(except for spinal anaesthesia for patients undergoing surgery). They also had normal CSF 

glucose and protein levels and a normal WBC count. Whilst not all cell types present in the 

De Graaf dataset were present in our CSF dataset (and visa versa), we were able to compare 

the percentages of cell types we identified using the Azimuth package (Hao et al., 2021) during 

our initial round of annotation.  

 

Figure 13. Establishing a healthy CSF baseline using published data. Barchart depicting a 

comparison of immune cell type percentages from AD and Control groups in CSF data collected in 

this study, and CSF data from healthy donors in De Graaf et al., 2011. 
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This analysis showed a reasonable comparability between our control samples and the 

healthy samples described in De Graaf (Figure 13). In fact, the percentages shown by our 

healthy controls more closely resemble the broad estimates published by Ranshoff and 

Engelhardt than those from the De Graaf study which cites a higher percentage of monocytes 

(25%).  

Next, we compared the cell type distribution in healthy donors to the biomarkers positive AD 

cases and observed that our AD samples have an expanded monocyte compartment 

compared to either the De Graaf controls, our controls, or the percentages suggested by 

Ranshoff and Engelhardt. Having established that our control samples matched prior 

knowledge, we were able to move on to further elucidate the CSF cell types in our samples 

and investigate differences between the conditions in our study. 

 

 

5.2.2.2. Characterisation of the immune cell compartment in the CSF of all conditions 
reveals two CSF specific clusters  
 

To investigate the cell types detected in our CSF dataset we used the CSF object described 

in 5.2.1. A second integration was carried out with the Harmony package (Korsunsky et al., 

2019) and the dimensionality of the data was reduced to 10 PCs which served as an input for 

UMAP visualisations. The harmonised data was clustered using the Seurat default Louvain 

algorithm based on shared nearest neighbour (SNN)-graphs, considering the 10 principal 

components (PCs) established in Harmony and a resolution of 0.5. Afterwards, the reduced 

dimensionality was represented in a UMAP, allowing a two-dimensional representation based 

on the 10 calculated PCs from the Harmony data reduction.  

Initial annotation through SingleR using the built-in references “Monaco Immune Data” 

(Monaco et al., 2019), “Blueprint Encode” (Aran et al., 2019), and “Human Primary Cell Atlas 

Data” (Mabbott et al., 2013) provided a basic classification of cell types which was later 

supplemented by Azimuth annotation (Hao et al., 2021). The “Blueprint Encode” reference 

identified the cells found exclusively in CSF (clusters 3 and 9, Figure 14A) as macrophages, 
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however, on closer inspection they expressed only low levels of canonical macrophage 

markers.  

Overall, the cell-type annotation showed that we could identify all the major immune cell types 

that were suggested by Ranshoff and Engelhardt (2012) plus two microglia-like myeloid cell 

subclusters (clusters 3 and 9) that are CSF specific (Figure 14B) and cluster with a mixed 

signature that did not carry any of the canonical immune or CNS marker genes (cluster 8). 

The microglial-like clusters 3 and 9 have been annotated as Microglia-like myeloid subset and 

FTLhi microglia subset respectively, and are subsequently referred to by these names. The 

rationale for their classification is explored in the subsequent section (5.2.2.4. 

Characterisation of the immune cell compartment in the CSF of AD donors). 

Visualising proportions of cell types across all conditions (Figure 14C) showed that the AD 

cohort dominated the CD14+ monocyte, mDC, and microglia-like cell clusters. Meanwhile, the 

mixed, B cell and T cell clusters were mostly comprised of the other conditions. However, the 

inclusion of conditions with low donor numbers makes it difficult to fully assess the actual cell 

type changes beyond the comparison of AD and healthy donors. 

The reference datasets were mostly immune-based and do not cover the CSF-specific cell 

types, therefore further validation, and adjustment of cell type classifications was required. 

The annotations were augmented by a comparison of top cluster gene markers (Figure 14D) 

with gene expression profiles gathered from current CSF literature (Supplementary Figure 4). 

Cluster 4 is a CD14+ monocyte group which has been annotated as S100Ahi CD14+ 

monocytes due to the high expression of alarmins S100A8/9 (Figure 14D). They also show 

low expression of human leukocyte antigen genes (HLA-DPA1/B1, HLA-DQA1/B1) which is 

reminiscent of CD14+ monocytes from PBMCs observed in patients of severe COVID-19 

which were high in alarmins and low in HLA-DR genes (HLA-DRA and HLA-DRB) (Schulte-

Schrepping et al., 2020).  

The CSF T cell compartment in our data was characterised by four T cell subsets. Two of 

these belong to the CD4+ central memory T (TCM) cell subsets (clusters 0 and 1) and two 

are CD8+ effector memory T (TEM) cell subsets (clusters 2 and 5). This is in line with 

published literature which suggests that the CSF contains very few naïve T cells but contains 
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primarily effector and memory CD8+ T cells and CD4+ T cells (Ransohoff & Engelhardt, 

2012). These T cells can sometimes carry characteristics of both TCM and TEM cells often 

making it difficult to distinguish between them using classical approaches but also scRNA-seq 

(Ransohoff & Engelhardt, 2012). 

Next, we calculated the percentage of cells that the different conditions contributed to each 

cell type (Supplementary Figure 5). This highlighted the variation introduced to the dataset by 

the conditions with only a few donors (AD Pathological Change, Non-AD Pathological 

Change, and Non-Biomarker Control). To further investigate this, we plotted a separate UMAP 

for each condition accompanied by bar charts of cell type percentages in CSF samples, split 

by individual and condition (Figure 15). Here we could observe that for the AD Pathological 

Change and Non-AD Pathological Change groups the number of donors is not sufficient to 

draw conclusions based on biology rather than individual differences. While the Non-

Biomarker Control group shows more homogeneity, with three donors it is unlikely that any 

finding will be statistically robust. Whilst no further analysis has been made including these 

groups for this reason, it can be noted that their cell type distribution is broadly similar to the 

control group.  

The increase in the microglial-like cell clusters that was noted before (Figure 14C) when 

assessing the integrated dataset can be pinpointed to only three out of the five AD donors 

(Donors AD046/47/50) (Figure 15). However, as a caveat to this, these three donors with a 

higher percentage of microglial-like cells are samples that were processed on different 

Rhapsody cartridges on different days, while the remaining two AD donors (Donors AD062 

and AD064) who showed percentages of microglial-like cells more similar to the control group 

were donated on the same day and processed on the same Rhapsody cartridge. While this 

does not completely rule out any technical variability affecting the results, it supports that this 

is not a batch effect but underlying biological differences. 

This cell type variation within conditions could be caused by the severity of the condition and 

disease stage. However, whilst metadata includes cognitive tests, e.g. MMST scores, we were 

unable given the timeframe to obtain more detailed severity information such as Braak stages 

for our donor cohort. Unfortunately, the MMST scores between individuals are variable and 
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do not explain the differences we see between these AD individuals on a cellular level 

(Materials: Table 9).  

In summary, these data demonstrate that our CSF samples contained all expected CSF cell 

types listed in Ransohoff and Engelhardt (2012) plus two additional CSF specific clusters, the 

classification of which is fully explored in the subsequent section (5.2.2.4.). The cell type 

variation within conditions suggested that AD donors have an expanded myeloid compartment 

compared to healthy donors. We decided to explore this further by investigating differential 

gene expression in the myeloid compartment. 
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Figure 14. CSF analysis of all conditions. (A) UMAP representation and clustering of cells contained 

in main clusters 0-9. (B) UMAP showing cell types in CSF. (C) Cell proportions in the CSF according 

to condition. (D) Dotplot of CSF characteristic marker expression of top 5 genes sorted by average log 

fold change assigned to each cell type.  

Figure 15. Comparison of cell type percentages in CSF samples. UMAPs showing cell types in 

CSF by condition and corresponding cell types proportions from individual donors. 

 

5.2.2.3. Differential gene expression analysis shows upregulation of chemokine genes 
in the Microglia-like myeloid cell subset 
 

We calculated differential gene expression for the CSF AD cohort and removed any genes 

with an adjusted p-value above 0.05. This filtering identified only seventeen genes that were 



 

 74 

being differentially expressed. One of these, Inhibitor of DNA Binding 2 (ID2), was upregulated 

in the CD8 TEM_1 subset. Pseudogene AL365357.1 is upregulated in both CD4 TCM 

subsets, as well as the Microglia-like myeloid cell subset.  

Pseudogene AL365357.1 and the remaining fifteen differentially expressed genes can be 

observed in the Microglia-like myeloid cell subset (Figure 16). In the Microglia-like myeloid 

cell subset the expression of inflammatory C-C motif chemokine genes CCL4, CCL3, CCL4L2, 

and CCL3L3 is upregulated. Pre-microglia and activated microglia clusters identified in murine 

glioma environments have been shown to upregulate orthologues of human CCL3 and CCL4 

genes (Ochocka et al., 2021). These genes were formerly known by the names macrophage 

inflammatory protein 1-alpha and beta respectively (MIP-1α and MIP-1β) (Guan et al., 2001). 

The CC chemokine family is known for encoding proteins that play a role in the migration of 

leukocytes (Menten et al., 2002). Up-regulation of these genes in the Microglia-like myeloid 

subset could suggest peripheral immune recruitment into the CSF through the expression of 

chemokines. Increased expression of these genes has been demonstrated before in both 

microglia and macrophages when stimulated in vitro with Aβ (El Khoury et al., 2003). Whilst 

research into the role of these two chemokines in AD is sparse, we know that both act on the 

receptor CCR5. This receptor is expressed on microglia and monocytes and is suggested to 

be involved in peripheral monocyte recruitment into the CNS and movement of microglia 

towards Aβ plaques (Guedes et al., 2018).  

The significant upregulation of CCL3, CCL4 and C3AR1 in Microglia-like myeloid cells in the 

AD cohort is further associated with disease pathology by a study that described several 

microglial subpopulations from cerebral cortex samples (Olah et al., 2020). Interestingly, the 

cluster that was enriched for CCL3, CCL4 and C3AR1 in this microglial study was also found 

to be associated with Aβ.  

The key point in this analysis was the suggestion that the presence of chemokine genes in 

the Microglia-like myeloid cell subset could indicate peripheral immune recruitment into the 

CSF, alongside the identification of other genes which may have been linked with Aβ. We 

decided the next step was an in depth look at the AD cohort versus the control cohort to 

elucidate AD links in the myeloid cell compartment. As insufficient donor numbers in the other 
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three condition cohorts would be a limiting factor in any further analysis of these datasets, we 

excluded them to allow an unbiased comparison. 

 

 

Figure 16. Comparison of AD DEG in the CSF myeloid cell compartment against expression in 

the same genes in other conditions. Heatmaps of DEG with an adjusted p-value <0.05 in the AD 

cohort CSF cell type clusters S100Ahi CD14+ monocytes and Microglia-like myeloid cell subset. Scaled 

per cell type and also showing expression levels of these genes across all other conditions. 

 

 

5.2.2.4. Characterisation of the immune compartment in the CSF of AD donors 
 

Next, we performed a more focused analysis of cells from AD patients and healthy controls 

only to further identify changes in cell populations between these groups. The input of cells 

from these two conditions is variable, with more cells in the control group due to their higher 

number of donors (AD=2730; control= 5603). To be able to conduct comparisons between 

the two conditions we downsampled the cells in each condition so that both subsets 

contributed 2730 cells to the analysis.  
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An overview of the cell types (Figure 17A) revealed that none were lost by excluding the three 

other conditions. To simplify assessment of CSF cell proportions across conditions and 

donors, annotated cell types were integrated into six groups: B cells, CD14+ monocytes, 

mDCs, microglia, a mixed group, and T cells (Figure 17B). This analysis decision was 

supported by the expression of marker genes that characterised individual cell types, which 

were clearer in the myeloid compartment than in the T cell groups (Figure 17C). The 

comparison in figure 17B shows that the AD condition represents lower proportions of cells in 

the B cell, T cell and mixed groups. 

In the comparison of individual donors on the more fine-grained level (Figure 17D), there were 

marked changes in several compartments that are not removed by the downsampling. Firstly, 

in both the myeloid and dendritic cell compartments there is an increased percentage of cells 

being contributed by the AD cohort. The Microglia-like myeloid cell subset is strongly 

represented in three out of the five AD donors, whereas in all control donors they constitute 

less than 25% of any sample. In contrast, the FTLhi microglia-like subset is more consistent 

across conditions and shows little variation between individuals. CD14+ monocytes and 

cDC2’s appear only slightly augmented in three out of the five AD donors compared to the 

control group. The donor identified as AD050 is an exception here and has a 4-fold increase 

in cDC2’s compared to the other donors. This may be overcontributing to the difference shown 

for the cDC2 in both Figure 17B and the cDC2 cell cluster in the UMAP in Figure 17D.  

Further analysis of the comparison of the individual donors (Figure 17D) revealed that the 

control donors all show high percentages of T cells (>75%) made up of a mixture of CD4 TCM 

cells and CD8 TEM cells. In contrast, three out of the five AD donors have a smaller T cell 

compartment (<75%). The remaining two AD donors once again appear much more like the 

control group with a T cell compartment constituting >75% of the cells in their samples. We 

theorise that differences between AD and control conditions in the proportions of B cells, T 

cells and mixed cells may be a relative decrease in response to the expanded myeloid group. 

Taken together these data show a higher percentage of cells belonging to AD patients within 

the myeloid groups: CD14+ monocytes, mDC and microglia. This pattern can be seen on a 

more granular level when we looked at the donors as individuals, with the Microglia-like 

myeloid cell subset showing the most pronounced difference from the control group. 
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Figure 17. CSF analysis of AD and Control donors. (A) UMAP showing cell types in CSF. (B) CSF 

donor cell proportions by cell group. (C) Dotplot of CSF characteristic marker expression of top 5 genes 

sorted by average log fold change assigned to each cell type (D) Comparison of cell type percentages 

in CSF samples split by individual and condition. (Downsampled to 2730 per condition). 

 

 

5.2.2.5. Analysis of the CSF myeloid cell compartment shows that FTLhi microglia and 
Microglia-like myeloid cell subsets are distinct from monocytes 
 

To gain a better understanding of the CSF myeloid cell compartment we calculated the marker 

expression for the top fifteen genes sorted by average log fold change assigned to each of its 

three clusters, annotated as S100Ahi CD14+ monocytes, microglia-like myeloid cells and FTLhi 

microglia-like cells (Figure 18A). These clusters were all initially annotated as CD14+ 

monocytes when first identified using annotation packages such as SingleR (Aran et al., 2019) 

and Azimuth (Hao et al., 2021). Following a closer inspection of the marker genes, it was 

apparent that the microglia-like myeloid cell and FTLhi microglia-like cell subset did not 

express a typical CD14+ monocyte signature. Each displayed a gene expression signature 

that shared insufficient overlap with any of the other myeloid cell clusters. Most canonical 

CD14+ monocyte markers such as LYZ, VCAN, CD36, and FCN1 were expressed at low 

levels or absent from both clusters. However, the microglia-like myeloid cell subset expressed 

other typical markers for monocytes or monocyte-derived cells, e.g. CD14 while retaining also 

LYZ expression. 
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Figure 18. Analysis of the CSF myeloid cell compartment in AD and control cohort. (A) Dotplot 

depicting expression for top 15 genes of gene marker of the myeloid compartment sorted by average 

log fold change assigned to each cell type. (B) Feature maps for CSF myeloid cell genes of interest in 

the Microglia-like myeloid subset. (C) Violin plots for CSF myeloid genes of interest in the Microglia-

like myeloid subset. 
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To correctly annotate these myeloid cell clusters we cross-referenced gene expression in 

these subsets with previously published scRNA-seq CSF datasets to determine gene markers 

that were present in these clusters. One study, which was used for cell type annotation, 

performed scRNA-seq of CSF cells from patients with inflammatory demyelinating diseases 

(anti-MOG disorder and RRMS) and described cell clusters within the myeloid cell 

compartment containing what the authors described as microglia-specific genes: LYVE1, 

TREM2, C1QB, GPR34, OLR1, and C3 (Esaulova et al., 2020). The obvious similarities with 

one of our myeloid cell clusters lead us to assess expression of this signature in our data set 

(Supplementary Figure 4). The signature shared some similarities with our microglia-like 

myeloid cell subset, with prominent expression of complement components (C1QA-C) and 

LYVE1 as well as moderate expression of TREM2, GPR34, and OLR1.  

Another scRNA-seq study using CSF from adults with and without HIV found two CSF-specific 

myeloid cell subsets (Farhadian et al., 2019). One of these subsets expressed genes that the 

study identified from previous literature (Keren-Shaul et al., 2017) as enriched in 

neurodegenerative disease-associated microglia in mice. The CSF-associated microglia-like 

cells found in that study represented <5% of all CSF cells analysed and were significantly 

expanded in the CSF of individuals with HIV compared to the controls, which they attribute to 

chronic immune activation in the CNS. Once again, we identified similarities with our myeloid 

cell clusters and assessed expression of this CSF-associated microglia-like expression 

signature in our data (Supplementary Figure 4). Key similarities included the strong 

expression of complement components (C1QA-C), LYVE1, CD14, CTSB and MSR1, (Figure 

18B/C) as well as moderate expression of OLR1, SELENOP, AXL, MARCO, CTSL, SLC2A5, 

HAVCR2 and FCGBP. The expression of typical macrophage signature genes MSR1 and 

MARCO caused us to assess enrichment of a macrophage signature in this cluster. I used 

the signature from (Baßler et al., 2020) and observed that only MSR1 and FCGR3A were 

expressed in >50% of cells in the cluster (Supplementary Figure 4). As FCGR3A is also a 

known marker of CD16+ monocytes and MSR1 can be expressed in DCs (Herber et al., 2010) 

and microglia (Farhadian et al., 2019), we can exclude from this analysis that this cluster is 

enriched in macrophage genes but is expressing transcripts in line with the acquisition of 

microglia-like features. 
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Unlike microglia which originate from the fetal yolk sac and populate the CNS in early 

development, CNS-infiltrating monocyte-derived macrophages originate from blood-borne 

myeloid cells and only enter the CNS under neuroinflammatory conditions (Ginhoux et al., 

2010). Despite sharing morphological and phenotypical features with activated microglia, 

these monocyte-derived macrophages are not similarly limited in their self-renewal capacity 

(Hanisch & Kettenmann, 2007). This, alongside increased phagocytic capacity and anti-

inflammatory characteristics, means that these cells are potentially beneficial in 

neurodegenerative diseases (Shechter & Schwartz, 2013).  

Recently a study demonstrated the bone-marrow-derived origin of CSF microglia-like cells 

taken from a human donor (Roostaei et al., 2021). The donor was female and had chronic 

progressive multifocal leukoencephalopathy (PML) after an infection of the brain with the John 

Cunningham (JC) virus following a bone marrow transplant for lymphoma a decade earlier. 

The bone marrow transplant had come from a male donor and when CSF samples from the 

female recipient were assessed, the authors observed expression of sex chromosome genes 

that strongly suggested a male origin. This confirmed that the CSF microglia-like cells 

identified in this study were bone-marrow-derived. Similar to our own Microglia-like myeloid 

subset, the CSF microglia-like cells identified in Roostaei et al. expressed high levels of 

C1QA-C and APOE suggesting that also the microglia-like cells we observe are bone-marrow 

derived. 

Next, we assessed the Microglia-like myeloid subset (clusters 3) for the expression of marker 

genes for CNS-infiltrating monocyte-derived macrophages using a gene signature from a 

scRNA-seq study investigating phenotypes of myeloid cell subpopulations in murine gliomas 

which profiled microglia, infiltrating monocyte-derived macrophages and CNS border-

associated macrophages (Ochocka et al., 2021). The gene signature contained murine-

specific genes which were replaced with known human orthologues or excluded from the 

signature where no orthologue exists. The Microglia-like myeloid cell subset expressed strong 

levels of MS4A7 (Figure 18B/C), and MRC1, as well as moderate levels of APOE, which are 

all known border-associated macrophage (BAM) genes (Supplementary Figure 4) (Ochocka 

et al., 2021; Van Hove et al., 2019). However, they also highly expressed MS4A4A, a human 

orthologue of Ms4a4c, which has been reported as a novel monocyte-derived macrophage 
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marker (Ochocka et al., 2021). The annotation of cluster 3 is further complicated by its high 

expression of microglial marker CX3CR1 (murine orthologue Cx3cr1) (Figure 18B/C) and 

moderate expression of CST3 and IFITM3 which are low specificity markers for both microglia 

and monocyte-derived macrophages (Ochocka et al., 2021). In summary, the markers from 

this study do not clearly identify the Microglia-like myeloid subset as BAMs, monocyte-derived 

macrophages or microglia, as the subset carries marker genes for all three groups. 

The FTLhi microglia subset is named in reference to the high expression of the Ferritin Light 

Chain gene (FTL) observed as the top marker for this cluster (Figure 18A). Another highly 

expressed gene in this cluster is Allograft inflammatory factor 1 (AIF1, alias Iba1), which is 

known as a marker of homeostatic microglia and macrophages and is upregulated after 

activation of both cell types (Kenkhuis et al., 2021). An AD-specific dystrophic microglia 

phenotype has been identified in the human middle temporal gyrus (MTG) (Kenkhuis et al., 

2021) and is characterised by increased FTL and Iba1 expression, and decreased TMEM119 

and P2RY12 expression. This matches the expression profile of our FTLhi microglia subset 

(Supplementary Figure 4). Furthermore, the expression of major histocompatibility complex 

(MHC) Class II DP Beta 1 (HLA-DPB1) together with the above markers, could suggest a 

DAM-like microglia phenotype. HLA-DPB1 encodes one of the beta chains of the HLA-DP 

complex and studies have shown that the HLA-DP complex is present on the surface of 

microglia and plays a role in antigen recognition and presentation, particularly in the context 

of neuroinflammation and neurodegenerative diseases such as AD (Forabosco et al., 2013; 

Masuda et al., n.d.). 

The genes used to characterise enrichment of a macrophage signature (Baßler et al., 2020) 

were not enriched in the FTLhi microglia subset (Figure 18A), which would suggest that this 

cluster is not a typical macrophage cluster. However, this is questioned by the expression of 

F13A1, a marker highly and specifically expressed by BAMs (Ochocka et al., 2021). In 

summary, the gene expression markers for the FTLhi microglia subset share some similarities 

with one of the microglial subpopulations identified in an scRNA-seq study of the human 

cerebral cortex, which further validates their classification as microglia. 

The gene signature for CSF-associated microglia-like cells in HIV patients (Farhadian et al., 

2019) that we used earlier to characterise the Microglia-like myeloid subset also contained 
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marker genes that were exclusively expressed by the FTLhi microglia subset, supporting the 

notion that the two microglia subsets are distinct. The top markers expressed by the FTLhi 

microglia subset (Figure 18A) include EPB41L2, F132A1 and C3, which are all genes that 

appear in the CSF-associated microglia-like cell signature from these HIV patients (Farhadian 

et al., 2019). This means that while our two microglial subclusters express markers that are 

distinct from one another, they do both express genes found in this literature-defined CSF-

associated microglia-like cell signature. This implies that both clusters contain some degree 

of microglial differentiation. 

Taken together this analysis of the gene expression data of the CSF myeloid cell compartment 

suggests that the subsets we call FTLhi microglia and Microglia-like myeloid cells are distinct 

from monocytes and each other. An examination of the literature has excluded the possibility 

that these subsets are macrophages and instead both subsets have different gene markers 

that suggest each could be a distinct type of dysregulated microglia.  

 

 

5.2.2.6. The Microglia-like myeloid cell subset is upregulated in CSF of AD donors 

 

As outlined before (5.2.2.4), this Microglia-like myeloid cell subset appears to be upregulated 

in the CSF of the AD cohort (Figure 15/17). To substantiate this observation we used the 

single-cell compositional data analysis (scCODA) package (Büttner et al., 2021), which 

detects statistically relevant changes in cell type composition and calculates the model 

inclusion probability for each covariate. We chose to use this package because it was 

designed specifically to be used with scRNA-seq data and can cope with the low number of 

sample replications that are common with this data type. It also accounts for the proportional 

nature of cell type counts and the bias that can be introduced in a cell population when one 

type is depleted or inflated. In short, whilst inflation of one cell type may appear to decrease 

the relative frequencies of differential cell types, this is unlikely to be a real effect and instead 

represents negative correlations between the cell types. This is important in our CSF data as 
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it will help us to differentiate between real cell type changes and relative decreases occurring 

only in response to the expanded myeloid cell group. 

After initially visualising the data across all conditions to obtain an overview of changes in all 

cohorts (Figure 19A), we subsetted the data to AD and control donors to determine how AD 

influences the cell composition. From this, we could observe a large increase in the Microglia-

like myeloid subset in the AD samples compared to the Control group (Figure 19B). 

Concomitantly, there is a slight increase in the S100Ahi CD14+ monocytes and minimal 

increases in the FTLhi microglia subset and cDC2s. All other cell types show minimal 

decreases in AD, except the T cell subsets (CD4 TCM cells and CD8 TEM cells) which appear 

strongly depleted in AD. To establish whether this depletion is real or relative to the increase 

in the Microglia-like myeloid cell subset we modelled inclusion probability for each covariate. 

To achieve this we first selected a reference cell type that has a nearly constant relative 

abundance. In this case, we use the Mixed cell type as a reference. The model returns two 

analysis parameters: “intercept” showing cell types distribution without active covariates, and 

“effect” which indicates if a statistically credible effect is detected. Here, we observed a 

statistically credible effect for the Microglia-like myeloid subset and all four T cell groups. The 

reporting of credible effects is based on inclusion probability which are depicted for each cell 

type (Figure 19B). The cutoff is defined by the FDR which we set at a level of 0.1. Setting a 

smaller FDR would give a more conservative result, however having reviewed the author’s 

recommendations in the paper the chosen cut-off of 0.1 is in line with the study's example 

datasets (Büttner et al., 2021). 

To surmise, we find a statistically credible effect for five cell types: the Microglia-like myeloid 

subset, the two CD4 TCM cell subsets and the two CD8 TEM cell subsets. This implies firstly 

that the increase in the Microglia-like myeloid subset in AD patients is genuine and secondly 

that the depletion of the T cells groups in AD patients is also a biologically relevant finding. 
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Figure 19. CSF analysis with scCODA. (A) scCODA results on all CSF cell types (B) scCODA 

comparison of AD and control samples in CSF. Cell types are marked with inclusion probability values 

and statistically credible changes in cell type compositions are highlighted with a red asterisk. (FDR 

=0.1). 

 

 

5.2.3. Analysis of pB in AD donors using the Rhapsody approach found no 
statistically verifiable change between AD and control donors 

While CSF is more closely connected to the brain parenchyma and as such a higher impact 

of neurodegenerative processes directly affecting cell composition in the CSF can be 

envisioned, the peripheral blood, circulating constantly also within the vessels of the CNS, 

could be exposed to secretory mediators affecting also peripheral blood cells and the 

hematopoietic system. To study the impact of neurodegeneration on the peripheral blood, we 

also assessed PBMCs by scRNA-seq. 

Therefore, our Rhapsody PBMC dataset was generated by subsetting the data object 

produced in the Rhapsody whole dataset analysis by tissue type (see section 5.2.1. An 

overview of the combined PBMC and CSF dataset). PBMC samples are more easily 

accessible and contain far more cells per ml than CSF and so the PBMC dataset is 

comparatively well-populated, containing 97,046 cells from 48 donors. The mean number of 

cells contributed per donor is 2022 and the median is 1497. 

Just like the CSF analysis, the PBMC dataset analysis was split into two parts: firstly we 

analysed the data across all conditions to provide an overview of the different groups then 

secondly, we analysed only the AD and Control groups. The AD Pathological Change and 

Non-AD Pathological Change cohorts contain only two PBMC donors each, which prohibited 

a statistically robust full analysis. The Non-Biomarker Control groups contained 24 PBMC 

donors, and whilst this would withstand robust statistical testing we cannot fully characterise 

these individuals as a healthy control group without the full biomarker information that has 

been used to classify the other groups. For this reason, we include them only for the overview 

analysis of all conditions where they support the data provided by the nine control donors. 
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5.2.3.1. Characterisation of the PBMC immune cell compartment across all conditions 
 

Once generated, the PBMC object was prepared in the same way as previously described in 

the CSF and methods sections. During the Harmony integration (Korsunsky et al., 2019), the 

dimensionality of the data was reduced to 10 PCs and later clustered with a resolution of 0.9. 

This resolution resulted in the identification of twenty-four clusters which included a higher 

number of subclusters than is optimal (Figure 20A). However, any reduction in resolution led 

to hybrid clusters containing markers for both monocytes and T cells, and so it was necessary 

to maintain the resolution at 0.9 to form biologically likely clusters. 

The twenty-four clusters generated were first annotated through SingleR references (Monaco 

(Monaco et al., 2019), Blueprint/Encode (Aran et al., 2019), HPCA (Mabbott et al., 2013)), 

then supplemented with annotations from the Azimuth PBMC atlas (Hao et al., 2021). 

The annotated clusters identified immune cell groups in the blood (Figure 20B) that fit with 

published single-cell RNA-seq PBMC data (Bassler et al., 2019; Kapellos et al., 2019; Schulte-

Schrepping et al., 2020). Multiple subsets were identified in the myeloid, NK and T cell 

compartments that were later investigated through comparison of their top cluster marker 

genes with previously published gene expression profiles (Figure 20D). 

The myeloid cell compartment was characterised by seven subsets (clusters 2, 3, 10, 12, 13, 

19 and 20) (Figure 20A/B). One of these subsets (cluster 10) was marked in the references 

and by its canonical genes to be non-classical monocytes (CD16+ monocytes). Low 

expression of HLA-DRB1 and HLA-DRA alongside high expression of alarmins S100A8/9/12 

in cluster 3 led us to annotate it as S100Ahi CD14+ monocytes. A recent COVID-19 PBMC 

study (Schulte-Schrepping et al., 2020) observed a similar expression profile in their monocyte 

subsets (HLA-DRloS100Ahi). Cluster 12 also expressed low levels of HLA-DRB1 and HLA-

DRA alongside high levels of S100A8/9/12 markers (though not as high as cluster 3). Once 

again we noted similarities with another monocyte subset in the COVID-19 PBMC study 

defined as HLA-DRloCD163hi (Schulte-Schrepping et al., 2020). However, our cluster 12 did 

not contain CD62L and CD163 used to characterise HLA-DRloCD163hi as its top markers. 
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Instead, cells from this cluster shared a strong expression of MX1, APOBEC3A and moderate 

expression of IFITM3, all of which are genes associated with IFN type I (Taura et al., 2022). 

The study noted that low expression of HLA-DR genes, such as we see in clusters 3 and 12, 

is a sign of dysfunctional monocytes with reduced response to stimuli (Schulte-Schrepping et 

al., 2020; Veglia et al., 2018; Venet et al., 2021).  

 

We identified a myeloid cell subcluster (cluster 20: C1Q myeloid cluster) that contained cells 

which moderately expressed CD14 but otherwise showed little expression of CD14+ 

monocyte-associated genes. Instead, this cluster demonstrated high expression of 

complement components (C1QA-C) and HLA class II genes (HLA-DPA1, HLA-DPB1, HLA-

DQA1, HLA-DQB1, HLA-DRA and HLA-DRB1). This suggested that the cells from this cluster 

have a stronger capacity for antigen presentation. Cells from this cluster also showed a 

moderate expression of Fc gamma binding protein (FCGBP), Alpha-2-Macroglobulin (A2M), 

and MSR1. These last two markers could suggest monocyte-to-macrophage differentiation in 

this cluster as both genes are expressed by macrophages (Bassler et al., 2019; Vandooren & 

Itoh, 2021). 

 

The remaining myeloid clusters 2, 13 and 19 contained enough myeloid-specific marker genes 

to place them in this compartment, but it was not possible to further describe these clusters 

based on these genes. 

 

The NK compartment was split into two subsets: NK cells_1 and NK cells_2 (clusters 1 and 

16 respectively) (Figure 20A/B). Cells from these clusters had canonical markers in common 

(NKG7, GNLY, IL2RB, KLRF1, KLRD and NCAM1) but each additionally displayed a distinct 

set of marker genes. The NK cells_1 subset was distinguished by the expression of PRF1, 

GZMB and SPON2. These last two markers were amongst the demarcating genes for a 

subset of NK cells in a scRNA-seq study of human bone marrow NK cells (Crinier et al., 2020). 

The second NK subset (NK cells_2) expressed EOMES, DUSP2 and GZMK, again the latter 

two genes here are listed in the annotation for another NK subset identified in human bone 

marrow by the same study (Crinier et al., 2020). 
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The T cell compartment was characterised by four CD4+ naïve T cell subsets (clusters 0, 7, 

9 and 18), three CD4+ TCM cell subsets (clusters 4, 14 and 23), two CD8+ TEM cell subsets 

(clusters 5 and 8) and one cluster of Regulatory T cells (Treg) (cluster 11) (Figure 20A/B). 

The CD4+ naïve T cell subsets (clusters 0, 7, 9 and 18) are all marked by canonical marker 

genes TCF7, LEF1, CCR7 and ILR7. However, this signature is strongest in cluster 7 which 

also includes expression of FHIT, TSH22, MAML2 and INPPB4. The CD4+ TCM cell subsets 

(clusters 4, 14 and 23) are difficult to annotate and are separating due to their very low marker 

gene expression. However, from the markers present and SingleR references, they appear 

best characterised as CD4+ TCM cells. Finally, the two CD8+ TEM cell subsets (clusters 5 

and 8) are marked by canonical markers CCL5 and CD8A. This classification is slightly 

complicated by the expression of TRGC2 in both subsets as this is normally a marker of 

gamma delta T-cells (γδ T-cells) (Zakeri et al., 2022) and which could indicate that this cluster 

contains a fraction of contaminating gamma-delta T cells.  

 

When we visualised proportions of cell groups across all conditions (Figure 20C), we observed 

that the cell percentages contributing to the cell type groups were homogenous across 

cohorts. This is especially true when we compare this data to the changes previously seen in 

the CSF dataset (Figure 14B and 17C). We calculated the percentage of cells that the different 

conditions contributed to each cell type (Supplementary Figure 6) which mostly showed 

variation in the AD Pathological Change and Non-AD Pathological Change groups that we 

mainly attribute to high variance because of the low donor numbers.  

 

Next, we generated a UMAP for each condition accompanied by bar charts of cell type 

percentages in PBMC samples, split by individual and condition (Figure 21). Whilst all the 

conditions show minimal differences and are mostly homogenous between individuals and 

conditions, the AD Pathological Change donors have a larger myeloid compartment that takes 

up around 75% of their cells compared to around 25% in other conditions. Once again the low 

donor number in this cohort makes it difficult to rely on this result – which is not observed in 

the AD group. The Control and Non-Biomarker Control groups appear similar despite the 

individual variation that we see across all donors. 
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In summary, these data demonstrate that our PBMC samples contained all expected PBMC 

cell types identified in published single-cell RNA-seq PBMC data. We observed only minor 

cell type variations within conditions and cell type percentages were homogenous across 

condition cohorts. However, due to the myeloid cell changes observed in CSF data, we 

decided to investigate differential gene expression in the myeloid compartment. 
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Figure 20. PBMC analysis of all conditions. (A) UMAP representation and clustering of cells 

contained in main clusters 0-23. (B) UMAP showing cell types in PBMCs. (C) Plot of top 5 genes sorted 

by average log fold change assigned to each cell type.   

 

 

Figure 21. Comparison of cell type percentages in PBMC samples split by individual and 

condition. 
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5.2.3.2. Differential gene expression in PBMCs 
 

To investigate the possibility that PBMCs in the AD cohort may contain DEGs which could 

indicate inflammatory pathways linked with AD, we subsetted cells from the myeloid cell 

clusters for the PBMC AD cohort and calculated differential gene expression against the 

control group. After removing any genes with an adjusted p-value above 0.05 we were left 

with ninety-five downregulated genes and only one upregulated gene. 

We visualised the significantly expressed genes in the myeloid cell types (Figure 22) and 

despite the low numbers of DEG made several interesting observations. Firstly that there was 

only one upregulated gene (AL365357.1), but this was upregulated in four out of the seven 

myeloid clusters: S100Ahi CD14+ monocytes, CD14+ monocytes_1, CD14+ monocytes_4 

and non-classical monocytes. This gene was previously identified in the CSF as upregulated 

in the Microglia-like myeloid subset and both CD4 TCM subsets. The gene is one of several 

pseudogenes for RPS14 which encodes human ribosomal protein S14 (I. T. Chen et al., 

1986). While the literature does not specifically link AL365357.1 to AD, there are studies 

linking AD to other pseudogenes. One such study (Q. Liu et al., 2021), found high expression 

of the Pseudogene ACTBP2 in a murine AD model, increased KHDRBS2 transcription which 

in turn promoted HEY2 expression in cerebral microvascular endothelial cells and increased 

BBB permeability. 

Another observation was the significant downregulation in the expression of 2'-5'-

oligoadenylate synthetase 1 (OAS1) in the CD14+ monocytes_4 subset from the AD cohort. 

This is unexpected as OAS1 is implicated as a risk gene for AD and transcripts of this gene 

increase in response to amyloid deposition in the brain tissue of transgenic mice (Salih et al., 

2019). However, we did note that expression of this gene was upregulated (p>0.05) in the 

CD14+ monocytes_2 cells from the AD Pathological Change cohort (Figure 22). The OAS1 

gene is involved in the regulation of interferon response and the activation of viral RNA-

degrading ribonucleases (Donovan et al., 2013; Lee et al., 2019). Interferon-related genes 

have been linked with ageing in murine studies and ‘interferon response microglia’ populations 

have been described in murine brain tissue (Sala Frigerio et al., 2019), however, their exact 

role in AD is not yet fully understood (Salih et al., 2019). Whilst we previously made 
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observations in the CSF regarding the expression of genes in our microglial subset related to 

inflammatory responses (see 5.2.2.3. Differential gene expression analysis shows 

upregulation of chemokine genes in Microglia-like myeloid subset), it is not plausible to link 

this with the expression of OAS1 in the PBMCs.  

The C1Q myeloid cluster shows significant downregulation of the expression of Cathepsin B 

encoding gene CTSB in AD donors. The increased expression of the protein cathepsin B is 

associated in the CNS with cognitive dysfunction in AD (Hook et al., 2020). This doesn’t fit 

with the downregulation we see in our C1Q myeloid cluster, however, altered levels of 

cathepsin B protein in the serum and PBMCs have been correlated with AD which may 

suggest that while there appears to be an association the exact nature of this is not yet clear 

(Morena et al., 2017; Sundelöf et al., 2010). 

Taken together, it is difficult to present a unified picture of gene expression from this data. 

The upregulation of pseudogene AL365357.1 in AD is not enough by itself to suggest a 

neurodegeneration linked inflammatory pathway, especially without any established 

precedent linking this specific pseudogene to any function or disease phenotypes. Meanwhile, 

expression of other significantly expressed genes such as OAS1 and CTSB did not 

correspond with AD in line with published data.  

As a result of low donor numbers in the AD Pathological Change, Non-AD Pathological 

Change, and the lack of full biomarker information in Non-Biomarker Control groups we 

decided to exclude these groups from all subsequent analyses. Instead, we placed our focus 

on identifying differences between the AD and Control groups in the cells of the peripheral 

immune system. 
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Figure 22. Heatmaps of DEG with an adjusted p-value <0.05 in the AD cohort PBMC myeloid 

clusters. Significantly expressed genes in AD cohort including expression levels of the same genes 

across all other conditions for comparison. 
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5.2.3.3. Characterisation of the immune cell compartment in the peripheral blood of 
AD donors 
 

After excluding all conditions except the AD and Control groups, we ran a further analysis to 

identify if the two were transcriptionally distinct. The cell types remained the same 24 clusters 

as before, with the same annotation (Figure 23A/B). Visualisation of PBMC donor cell 

proportions between these conditions showed homogeneity across all cell type groups (Figure 

23C). 

A direct comparison of the AD and control groups shows minimal differences between the 

donors of the two groups (Figure 23D). The input of cells from these two conditions is variable, 

with more cells in the AD group due to their higher number of donors (AD= 29174; control= 

18504).  

The myeloid cell compartment fluctuates in size across all donors, but for most remains within 

the range of 25-30%. There are a few donors that are outside of this range: two control donors 

(AD056 and AD069) have a myeloid compartment expanded to 50-75% and two AD donors 

(AD017 and AD020) have a reduced compartment of <10%. Despite steps taken during the 

analysis to remove batch effects, this could still potentially be caused by technical bias 

introduced in the lab. Another possible explanation is that this could be a result of undetected 

conditions in these donors. Whilst we used a predetermined list of exclusion criteria (See 

Methods: 4.1. Human specimens) to exclude donors with known immune system alterations, 

some donors may have conditions that have not yet been detected in the clinic. 

In summary, the reduction of the dataset to two conditions did not affect the number of cell 

types in the dataset or their annotations. However, it has also not revealed a clear difference 

between the cell type proportions which remain constant in both conditions. A closer look at 

the contributions of individual donors revealed minor fluctuations in the myeloid compartment 

of AD donors and two control donors with an expanded myeloid compartment. It was unclear 

whether this was due to a technical bias or unknown donor comorbidities which were not 

filtered by our clinical exclusion criteria. Overall, we did not observe strong hints pointing 

towards a distinct AD group. To validate this we decided to perform a more detailed statistical 

analysis. 
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Figure 23. scRNA-seq analysis of PBMCs from AD and Control donors did not demonstrate 

differences in AD. (A) UMAP showing cell types in PBMCs. (B) Dotplot of the expression of top 5 

marker genes for each cluster sorted by average log fold change assigned to each cell type.  (C) 

PBMC donor cell proportions. (D) Comparison of cell type percentages in PBMC samples split by 

individual and condition. 

 

 

5.2.3.4. Absence of significant cell type changes in PBMCs between control and AD 

donors 

 

To verify the lack of cell type changes observed between the AD and control cohort in the 

PBMC dataset (Figure 23D) we used the single-cell compositional data analysis (scCODA) 

package (Büttner et al., 2021).  

We first visualised the data across all conditions to get an overview of changes in all cohorts 

(Figure 24A). This again reflects the variation introduced by having low donor numbers in the 

AD Pathological Change and Non-AD Pathological Change cohorts. Whilst the AD 

Pathological Change shows a higher proportion of myeloid cells than the other conditions it 

isn’t possible to statistically prove this without more donors in this group. 

When we subsetted the data to AD and control donors to determine how AD influences the 

cell composition we observed that whilst visually there appears to be a slightly higher 

percentage of cells in the AD cohort for the S100Ahi CD14+ monocytes and CD14+ 

monocytes_1 cell types (Figure 24B), there is no statistically credible effect for any of the cell 

types. We used an FDR of 0.1 (the same as with the CSF dataset) and used the pDCs as the 

reference cell type. Even when we checked the data with a less conservative FDR of 0.3 there 

were still no credible effects in any of the cell types. This statistically confirms the lack of cell 

type changes in the PBMC dataset that has been observed so far. However, it is possible that 

an increased number of donors may be able to discern a trend that is not clear at this level. 
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Figure 24.  PBMC analysis with scCODA. (A) scCODA results on all PBMC cell types (B) scCODA 

comparison of AD and control samples in PBMCs. (FDR =0.1). 
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6. Discussion 
 
This project set out to investigate the relationship between the CNS and PIS in patients with 

AD. Specifically, we are interested in what can be learnt from scRNA-seq analysis of 

circulating immune cells in these systems and if a pathological event in the CNS such as AD 

can initiate detectable change in the PIS. Current interest in blood-borne biomarkers for AD 

suggests that there is potential for detectable biomarkers of PIS change (Fandos et al., 2017; 

Janelidze et al., 2021; Mielke et al., 2018). However, this work is mostly focused on measuring 

circulating levels of AD-associated proteins Aβ and tau-181, while a few recent studies 

focused also on inflammatory soluble markers (Brosseron et al., 2022) and only few have 

approached this at a single-cell level using flow cytometry or scRNA-seq. Where this has been 

approached at a single-cell level, the number of samples collected has been prohibitively low 

(H. Xu & Jia, 2021).  

 

The analysis of existing scRNA-seq data on the peripheral immune response to AD (H. Xu & 

Jia, 2021) centred around T cells, with AD patients showing a significantly higher proportion 

of CD4+ T cells but a lower proportion of CD8+ T cells. The authors suggested their data 

implies adaptive PIS dysfunction in AD and that this could lead to worsening of conditions in 

the CNS. To some extent, this fits with existing work in the area of neuroinflammation such 

as spinal cord injuries where lymphocyte recruitment to the CNS has previously been 

observed with mixed effects (Kunis et al., 2013; Lun et al., 2015; Schwartz & Baruch, 2014). 

 

The approach of profiling immune cells from the PIS and CNS side by side through the 

collection of CSF and PBMCs is also reasonably novel in AD. Gate et al. profiled PBMC and 

CSF immune cells from AD patients in a lymphocyte–orientated study that found increased 

CD8+ TEMRA cells with enhanced T cell receptor (TCR) signalling in the PBMCs and clonally 

expanded CD8+ TEMRA cells in the CSF (Gate et al., 2020). However, it is worth noting that 

the CSF and PBMC samples in this study were derived from different clinical cohorts and not 

observed in parallel from the same donors which could have provided a more holistic view. A 

murine study took a combined approach to elucidate links between the PIS and CNS when 

they modelled the effects of peripheral immune stimulation on the brains of mice with AD 
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pathology (Wendeln et al., 2018). Samples from the blood and cortex tissue were investigated 

with FACS and RNA-seq alongside other methods to show that inflammation in the PIS can 

shape the brain’s immune response and reprogramme microglia for six months or potentially 

longer. 

 

Therefore, the parallel collection of CSF and PBMC samples in humans is a novel approach 

to elucidating the relationship between the CNS and PIS in AD. The data we have gathered 

using this approach has offered new insight to the nuance of the myeloid cell compartment 

but has also highlighted some of the challenges of comparing data across sample types. 

 

 

6.1. Preliminary data show transcriptional changes suggesting a 
dysfunctional PBMC compartment in AD 
 

The Seq-well datasets in this study (both preliminary and final) showed all the major expected 

PBMC cell types but did not display robust cell type changes between the AD and control 

cohorts. When we explored transcriptional changes in this analysis only a handful of genes 

were highlighted as interesting but all of these could be linked with immune cell dysfunction. 

HLA-DRA was upregulated and encodes an HLA class II alpha chain paralogue which is part 

of the MHC (Dunne et al., 2020; J. Xu et al., 2020). Polymorphisms of HLA-DR genes have 

previously been cited as contributing to AD risk (Mansouri et al., 2015; Steele et al., 2017) 

and could suggest an elevated inflammatory signature in the PIS of these AD patients. This 

is supported by the other upregulated genes LYZ and MALAT1. LYZ encodes an enzyme 

called lysozyme which is mainly expressed in myeloid cells and upregulated in brain tissues 

and CSF of AD patients. Drosophila models suggest that this enzyme binds Aβ(1–42), 

reducing its toxicity (Sandin et al., 2016). MALAT1 is part of the body’s response to AD 

including the promotion of neurite growth and has been shown to play an anti-inflammatory 

role through the reduction of the pro-inflammatory cytokine TNF-α and induction of the anti-

inflammatory mediator IL-10 (Ma et al., 2019). Meanwhile, FTH1 and SNHG5 were 

downregulated in AD compared to the control group. SNHG5 is not related to AD but has 
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been linked with tumours (Pang et al., 2019) and pro-inflammatory roles in chronic obstructive 

pulmonary diseases (COPD) (Shen et al., 2020; W. Tang et al., 2016). FTH1 encodes Ferritin 

Heavy Chain 1 which is a protein normally associated with intracellular iron storage (Rucker 

et al., 1996). Disrupted iron metabolism in the brain is a hallmark of AD (J. L. Liu et al., 2018; 

P. Wang & Wang, 2017) and causes oxidative stress reactions damaging both cells and their 

genetic material which in turn contributes to the formation of Aβ and NFT. The translation of 

FTH1 is triggered by pro-inflammatory cytokines interleukin-1α (IL-1α) and interleukin-1β (IL-

1β), which again links the inflammatory response to AD (Lumsden et al., 2018; Thomson et 

al., 2005). The dysregulation of iron metabolism is a theme we will return to later as it is 

something we also saw in the CSF-specific FTLhi microglia subset in our Rhapsody dataset.  

 

Based on this preliminary analysis and the concurrent technical improvements, we switched 

at this point in time to a commercial microwell system with higher sensitivity to confirm the 

observations we had made using the SeqWell-technology. 

 

 

6.2. Blood monocytes trafficking through the CSF differentiate into 
microglia-like cells 
 

The Rhapsody dataset was designed to collectively investigate the changes induced by AD 

from two perspectives: firstly through the CSF samples of the CNS and then peripherally from 

the PBMC samples of the PIS. The CSF samples demonstrated a baseline cell type 

composition that in healthy control samples matched data from the literature (De Graaf et al., 

2011; Farhadian et al., 2019; Ransohoff & Engelhardt, 2012). Once a baseline composition 

was established it was possible to determine deviations from this that came from an expanded 

myeloid compartment and reduced lymphocyte compartment in AD. The driving force behind 

these changes appeared to be the CSF-specific Microglia-like myeloid cell subset which was 

significantly expanded in the AD patients. Next, we compared the gene signature from this 

subset with a range of myeloid cell expression signatures from the CNS gathered from current 

literature. The range of similar cell types included CSF-specific microglia (Esaulova et al., 
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2020; Farhadian et al., 2019), AD-specific disease-associated microglia (DAM) (Keren-Shaul 

et al., 2017) and to a lesser extent monocyte-derived macrophages (Ochocka et al., 2021) 

and border-associated macrophages (Ochocka et al., 2021). However, the absence of well-

expressed canonical macrophage genes as well as the knowledge that BAMs share 

transcriptional overlap with microglia suggested that this was not a macrophage cluster but is 

more likely to be a microglial cluster (Brioschi et al., 2020). Strong similarities with the CSF-

specific microglia-like subsets described by Esaulova et al. and Farhadian et al., as well as 

the expression of canonical classical monocyte markers such as CD14, led us to speculate 

whether our CSF-specific Microglia-like myeloid cell subset could be “replacement microglia” 

derived from PBMC myeloid progenitors. Whilst homeostatic microglia in the brain 

parenchyma are widely known to originate from the fetal yolk sac (Ginhoux et al., 2010), recent 

work has developed a hypothesis for an alternative source under inflammatory conditions 

(Esaulova et al., 2020; Shemer et al., 2018). This hypothesis suggests that under stress 

conditions disruption of the BBB may allow the entry of blood-derived myeloid progenitors into 

the CNS where they take on the characteristics, morphology and to some extent the gene 

expression profiles of the native microglia. However, on this last point, Shemer et al. state that 

the transcriptional signature of these cells is still always distinguishable from the native 

microglia (Shemer et al., 2018). The migration of PIS immune cells through the BBB may be 

initiated by chemokine signalling from cells in the CNS. Esaulova et al. found chemokine 

receptors CCR1, CCR5, CXCR4, and CX3CR1 on their CSF-specific microglia-like subsets 

(Esaulova et al., 2020). We found inflammatory C-C motif chemokine genes CCL4, CCL3, 

CCL4L2, and CCL3L3 significantly upregulated in our Microglia-like myeloid subset. Unlike in 

Esaulova et al., these genes encode chemokine ligands, not receptors. However, ligands 

encoded by CCL3 and CCL4 (aliases MIP-1α and MIP-1β) are known to act on receptor CCR5 

which is expressed by microglia and monocytes and involved in both peripheral monocyte 

recruitment into the CNS and microglial migration towards Aβ plaques (Guedes et al., 2018). 

Meanwhile, CCL3 expression is known to be increased by exposure of microglia to Aβ 1–42 

aggregates (Heneka et al., 2015). Another perspective comes from a recent publication which 

found that individuals with AD or MCI exhibited CSF monocyte signalling to clonal CD8+ T 

cells via CXCL16-CXCR6 (Piehl et al., 2022). The study cites this as a possible mechanism 

for antigen-specific T cell entry into the CSF, which is different from our theory of monocyte 
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trafficking through the BBB but nonetheless provides another example of chemokines being 

used to attract peripheral cells into the CSF in cognitively impaired individuals. In summary, 

the Microglia-like myeloid cell subset in our data appears to be strongly implicated in the 

stress-induced recruitment of peripheral immune cells into the CNS. 

 

Another parallel between the Microglia-like myeloid cell subset and the CSF microglia 

highlighted in Esaulova et al. is that both are characterised by strong expression of 

complement components genes (C1QA-C). As discussed in the introduction C1q genes 

encode the C1q subcomponent of the classical complement pathway (Gani, 2021; Schäfer et 

al., 2000) which becomes activated in response to antibody-antigen complexes binding with 

C1q to form a C1-complex (Gani, 2021). The presence of C1q genes does not reveal the 

origin of these cells as the complement system is active in both the CNS and PIS. However, 

it does support the idea that these cells are fulfilling an immune role linked to AD. For example, 

C1q proteins are localised in close proximity to Aβ plaques and in a murine study deletion of 

C1q genes resulted in reduced neuron damage from Aβ plaques possibly because 

complement-activated inflammation can exacerbate neuronal degeneration (Fonseca et al., 

2004). 

 

Whilst the increase in CSF S100Ahi CD14+ monocytes did not yet reach statistical 

significance, they do show an interesting marker expression profile which is distinct from the 

one seen in PBMC S100Ahi CD14+ monocytes. This signature has the typical markers of 

classical CD14+ monocytes but also contains the genes TYROBP and CTSS. These two 

genes are found in an AD-associated activated microglial signature (Keren-Shaul et al., 2017) 

and are also identified as having a high number of connections to other genes in the innate 

immune network expressed by amyloid-responsive microglia (Salih et al., 2019). If our 

“replacement microglia” theory is correct and our CSF-specific Microglia-like myeloid cell 

subset is derived from PBMC myeloid progenitors, then it might also be possible that the 

crossover we see between our CSF S100Ahi CD14+ monocytes and published AD-associated 

activated microglial signatures (Keren-Shaul et al., 2017) could represent an early transitory 

phase of these blood-derived monocytes towards microglia-like cells. 
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6.3. FTL+Iba1+TMEM119!P2RY12! microglia in CSF suggest dysregulated 

iron metabolism 
 

The other microglial subset we found was transcriptionally distinct from the Microglia-like 

myeloid cell subset and was characterised by high expression of FTL, which encodes an iron 

storage protein, and Iba1, which is a marker of activated microglia. These FTLhi microglia 

showed a marked similarity to a dysfunctional parenchymal microglia subtype in AD (Kenkhuis 

et al., 2021). Both our FTLhi microglia and the published AD-associated microglial subtype 

have raised FTL and Iba1 expression and lower TMEM119 and P2RY12 expression than 

homeostatic microglia. The expression of FTL in these microglia is interesting as ferritin has 

frequently been linked with AD (Bulk et al., 2018; Kenkhuis et al., 2021; J. L. Liu et al., 2018; 

Lumsden et al., 2018; Ward et al., 2014). This includes also our Seq-Well PBMC dataset, 

where we observed possible dysregulation of iron metabolism through the downregulation of 

FTH1. Here in the CSF, the mechanism is different as FTL is being expressed by microglia. 

Dysfunctional FTL+Iba1+TMEM119−P2RY12− microglia have a higher prevalence in AD 

patients and are thought to infiltrate Aβ plaques (Kenkhuis et al., 2021). To date, several 

theories have been put forward to explain FTL expression in these cells. Firstly, as FTL 

encodes a protein used in the cellular storage of iron, any increase in its expression is likely 

to indicate a change in intracellular levels of iron (Kenkhuis et al., 2021). The brain uses iron 

for a range of processes including metabolism, oxygen transportation, mitochondrial 

respiration and synthesis of DNA, myelin and neurotransmitters (Ward et al., 2014). Even in 

healthy brains accumulation and binding of iron via ferritin have been shown to occur with 

age, the difference in neurodegenerative pathologies like AD is that this accumulation is 

reported to be more substantial and region-specific (Ward et al., 2014). In AD intracellular iron 

increases may occur in response to increased blood-brain barrier permeability or misformation 

of myelin sheaths around axons (Bulk et al., 2018; Ward et al., 2014). Another hypothesis for 

the expression of FTL may be as a response to inflammation as ferritin is recognised as an 

acute-phase reactant (APR) and FTL could be part of a stress response after the microglia 

have interacted with Aβ (Streit et al., 2018). In the context of our dataset, this would imply that 

these microglia have already encountered a stress event in the parenchymal tissues, become 
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activated and are afterwards found in the CSF. The issue with this theory is that our subset of 

these cells shows no change between condition groups and is present in the CSF of our 

control cohort at similar levels to the AD cohort. Furthermore, only one instance of significant 

differential gene expression occurred in this cell type, which was the downregulation of human 

leukocyte antigen gene HLA-DRB5 in AD. If these cells are, as speculated, responding to an 

inflammatory stimulus then it seems counterintuitive that a key inflammatory gene responsible 

for antigen-presentation is being significantly downregulated. This is also incongruous with 

the subset's expression of complement component 3 gene (C3) which is a central part of all 

three complement system activation pathways (Gani, 2021). C3 is also one of the genes this 

subset has in common with a signature for CSF-associated microglia-like cells in HIV patients 

(Farhadian et al., 2019), which helps confirm the identity of this subset as CSF microglia with 

links to neuroinflammation. 

 

 

6.4. Depletion of lymphocytes in the CSF of AD patients 
 

Beyond the changes in the myeloid cell type composition, the CSF data also exhibited 

significant decreases in the two CD4+ TCM cell subsets and the two CD8+ TEM cell subsets. 

However, significant differential expression in these groups was limited to upregulation of the 

pseudogene AL365357.1 in the CD4+ TCM subsets and Inhibitor of DNA Binding 2 (ID2) in 

the CD8+ TEM_1 subset. Initially, we speculated that this cell type depletion in AD was only 

occurring relative to increases in the myeloid compartment, yet scCODA confirmed the 

statistical robustness of these changes. If they represent real biological change this would be 

a direct contrast with current literature, which comprehensively describes T cell recruitment 

and trafficking into the CNS in AD and other neurological conditions (Gate et al., 2020; Heneka 

et al., 2015; Kunis et al., 2013; Lun et al., 2015; Pietronigro et al., 2016; Schwartz & Baruch, 

2014). 

A flow cytometry-based study into the distribution of immune cells in the CSF reported 

reductions in CD8+ and CD4+ TCM cells in all dementia types investigated, bhut increased 

numbers of CD8+ and CD4+ TEM cells in patients with AD compared to age-matched healthy 
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controls (Busse et al., 2021). However, what they suggest is a transition from central memory 

T cells to effector T cells, which still does not align with our findings of total lymphocyte 

depletion in AD CSF, and so a technical or biological explanation for this observation is still 

needed. 

  

 

6.5. No statistically verifiable changes in the cell type composition of the 
PBMC compartment of AD donors  
 

The collection of circulating peripheral immune cells for the purpose of investigating 

neurodegenerative disease through scRNA-seq analysis presents significant challenges. 

Firstly, the volume of cells found in the five litres of blood that circulate through the PIS of the 

average human is vast in comparison to the average volume of cells within the CNS circulating 

CSF. This makes the task of identifying crosstalk between these two systems much easier in 

the CSF than in the PIS. Secondly, the trafficking of immune cells from the PIS into the CNS 

is a well-documented phenomenon (Kunis et al., 2013; Lun et al., 2015; Ransohoff & 

Engelhardt, 2012; Schwartz & Baruch, 2014; Shechter & Schwartz, 2013), however, travel in 

the other direction is more difficult to show. There are some accounts of memory T cells 

crossing into the CSF and then returning to the PIS via the subarachnoid space and deep 

cervical lymph nodes if no antigen is detected (Ransohoff & Engelhardt, 2012), but most 

pathology-driven research focuses on entry into the CNS.  

 

Overall, we found no statistically significant changes in cell type composition between AD and 

healthy controls. And whilst there were hints of cell type changes occurring in the myeloid and 

T cell compartments of the AD Pathological Change cohort, the size of our study means that 

we did not have sufficient numbers of AD Pathological Change donors to make a statistically 

valid comparison. This lack of statistically verifiable cell type change in AD does not 

necessarily mean that these changes are not occurring, as the number of current studies to 

identify blood-borne protein biomarkers for AD certainly suggest that this is possible. 

However, our data suggest that identifying gene markers for this in the blood requires a very 
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large cohort with comprehensive metadata in order to control for the high individual variation 

that comes with this type of human dataset. 

 

Despite this absence of statistically verifiable change, we did observe several changes that 

whilst they did not meet the threshold for significance, may hint at future areas of interest. For 

example, the small increase in S100Ahi CD14+ monocytes in the PBMCs of the AD cohort 

could be interesting as their low expression of HLA-DR genes could be a sign of dysfunctional 

monocytes with reduced response to stimuli (Schulte-Schrepping et al., 2020; Veglia et al., 

2018; Venet et al., 2021). However, it should be kept in mind that this study recruited patients 

with a median age of sixty-nine, so there are many possible causes for inflammation and 

dysfunction in the PBMC compartment. A high threshold of evidence is required to directly 

link this to neurodegeneration, which we do not have here. This is also true for our finding of 

a C1Q myeloid cluster in the PBMCs. Whilst this cluster suggests a strong capacity for antigen 

presentation through the high expression of complement components (C1QA-C) and HLA 

class II genes (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA and HLA-DRB1), 

it shows no change in AD patients and so cannot yet be directly linked to AD. Especially as 

an increase in background inflammation is expected in an elderly cohort in accordance with 

the theories of immunosenescence and inflammaging (Alberro et al., 2021; Barbé-Tuana et 

al., 2020; Furman et al., 2019). 

 

In summary this scRNA-seq analysis presented significant challenges in terms of signal 

sensitivity in large blood volumes and a lack of prior work documenting immune cell trafficking 

from the CNS to the PIS. Overall, we saw no statistically significant change in cell type 

composition between AD and healthy controls. However, it is possible that further, more 

comprehensive study of an AD Pathological Change cohort could uncover myeloid and T cell 

disease related-variation. 

 

 



 

 110 

6.6. Comparison of PBMC and CSF data suggests crosstalk between 
these systems 

Evidence of crosstalk between the CNS and PIS in our datasets is limited to one direction: 

PIS to CNS. Arguably any presence of peripheral immune cells in the CNS represents 

crosstalk between the two systems because these cells are not native to this environment 

(Ransohoff & Engelhardt, 2012). However, we can go further than this and speculate that the 

expression of chemokines we see from the CSF-specific Microglia-like myeloid cell subset 

could be suggestive of peripheral immune cell recruitment into the CNS. Especially, when we 

combine this information with the presence of S100Ahi CD14+ monocytes in the CSF which 

show expression of genes which are normally found in AD-associated activated microglia 

(Keren-Shaul et al., 2017). 

 

The cell types found in these compartments are not identical and we observed key cell type 

differences in line with what has been reported in the literature. The PBMC compartment has 

a much higher variety of immune cells than the CSF, where cell types such as naïve T cells, 

non-classical monocytes, megakaryocytes and NK cells are absent. Meanwhile, the CSF 

includes CNS-specific cells such as microglia and contains an S100Ahi CD14+ monocyte 

group which is transcriptionally distinct from the one seen in PBMCs.  

 

Transcriptional changes in the PBMC compartment relating to AD have been difficult to 

elucidate. However, the data has possible clues for a peripheral inflammatory component of 

AD which may be worth further investigation. The minor increase (p>0.05) in S100Ahi CD14+ 

monocytes in the PBMCs of the AD cohort would be a good starting point for this. A larger AD 

cohort size is key here, but it would also be beneficial to expand the AD Pathological Change 

cohort as the limited data we have here hinted at a higher proportion of myeloid cells than the 

other conditions. If this were to be validated it could point to an early peripheral inflammatory 

response. A murine study that used peripheral immune stimuli to trigger long-term immune 

training and tolerance in the brain suggests that this training can worsen the Aβ burden in AD 

(Wendeln et al., 2018). If this model were also valid in humans then prodromal and MCI groups 

could offer valuable insight into the contribution of the PIS to AD.  
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6.7. Comparison of BD Rhapsody and Seq-Well technology suggests a 
choice between sensitivity and cost 

During the course of this study, we utilised two different scRNA-seq technologies, transitioning 

from preliminary data collection via the Seq-Well technique (Gierahn et al., 2017) to the 

commercial BD Rhapsody platform (Chang et al., 2019) where we collected a more extensive 

dataset. These methods are both microwell-based and use UMI barcoded beads to capture 

RNA from individual cells in picolitre wells. Neither technique produces full-length transcripts, 

Seq-Well captures only the 3’-end whilst the Rhapsody protocol BD gets fragment cDNA by 

priming at random points along the length of synthesised first-strand cDNA. The time required 

for the initial capture and transcription of RNA is less with the Rhapsody. Especially when you 

take into account the isolation steps prior to this which are greatly reduced in the Rhapsody 

workflow as flow cytometric enrichment is not a prerequisite to the process. This is especially 

an advantage when working with CSF samples where cell populations are smaller than in 

peripheral blood and the increased stress on cells during flow cytometry can greatly reduce 

cell numbers available for scRNA-seq. The time required for library preparation is similar in 

both technologies.  

 

Detection of cell types was assessed through a comparison of PBMC data as this was 

collected on both technologies. Both methods reliably detected the major cell types in the 

PBMC compartment, and it should be taken into account that differences in cell types 

identified may also be due to the different sensitivity of the technologies or the subsequent 

analysis strategies as e.g. the clustering resolutions that were set in Seurat during the analysis 

of these datasets were different (Seq-Well = 0.5 and Rhapsody = 0.9). There are two key 

differences in cell types detected, firstly Seq-Well identified a neutrophil cluster that was not 

seen in the Rhapsody data and secondly the Rhapsody identified a C1Q myeloid cluster that 

was absent in the Seq-Well data. The loss of a granulocyte compartment in our Rhapsody 

data may however be explained by the frozen storage of samples used in Rhapsody 

experiments. In general, the Rhapsody was able to detect more UMIs and genes per cell, 

however, Seq-Well technology has lower costs per cell. 
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6.8. Summary 

The work performed in the scope of this study aimed to advance our understanding of the 

relationship between the CNS and PIS on a transcriptional and single-cell level. With this in 

mind, we investigated the immune cell compartments of blood and CSF from different healthy 

and pathological cohorts both independently and, where possible, in parallel. This 

investigation occurred across two single-cell technologies providing different perspectives 

which were largely in agreement yet still highlighted the unique advantages and 

disadvantages of these methods. The datasets generated describe shifts in the CSF myeloid 

compartment of AD suggestive of inflammation-triggered recruitment from the PIS into the 

CSF. Here, blood-borne myeloid progenitors transition into a Microglia-like myeloid cell 

subtype that imitates the characteristics, and to some extent the gene expression profiles of 

native microglia. This is supported by existing studies into AD-specific disease-associated 

microglia, CNS immune stimulation and neuroinflammatory conditions and which have 

observed transcriptionally similar cells (Esaulova et al., 2020; Keren-Shaul et al., 2017; 

Shemer et al., 2018). We speculate that the final destination of these migrating “replacement 

microglia” is the brain parenchymal tissues where their assistance is required in the clearance 

of toxic Aβ plaques. Determining the entry points for these cells is difficult as whilst the 

literature records several routes into the CNS for peripheral immune cell recruitment (Kunis 

et al., 2013; Lun et al., 2015; Ransohoff & Engelhardt, 2012; Schwartz & Baruch, 2014; 

Shechter & Schwartz, 2013), this can only be definitively confirmed through analysis of CNS 

barrier structures which was outside the scope of this study. 

 

We also identified a subset of potentially dysfunctional CSF-specific microglia 

(FTL+Iba1+TMEM119−P2RY12−), that appear to be strongly linked to iron metabolism which 

is known to be dysfunctional in AD (Bulk et al., 2018; Ward et al., 2014). However, we were 

not able to link this subset directly with our AD cohort and observed no change in cell type 

composition in relation to this.  
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Concomitantly, we observed a depletion of lymphocytes in CSF of AD patients and validated 

this through statistical analysis. This was contradictory as the established literature describes 

T cell recruitment and trafficking into the CNS in AD and other neurological conditions (Gate 

et al., 2020; Heneka et al., 2015; Kunis et al., 2013; Lun et al., 2015; Pietronigro et al., 2016; 

Schwartz & Baruch, 2014). 

 

Furthermore, we found no statistically verifiable changes in cell type composition between AD 

and healthy controls in the PBMC compartment. However, given that current research interest 

in elucidating blood-borne biomarkers is high, we suggest that AD-related changes in the PIS 

are possible but in this instance, transcriptional identification is limited by cohort size and 

insufficient metadata collection. 

 

 

6.9. Future perspectives 

On the whole, this study adds to our understanding of the involvement of the immune system 

in AD on a systemic level, by providing single-cell information on immune cells in two major 

compartments, the CSF and peripheral blood. However, through this study, we also learned 

more about the challenges and limitations involved in this task. Elucidating PIS change related 

to CNS pathologies requires the generation of datasets with a much larger number of samples 

to find statistically robust patterns. Which in turn is expensive and time-consuming and 

produces datasets that contain challengingly high background variation and require enormous 

computing power. These challenges are not insurmountable, current developments in 

machine learning are opening up novel analysis pathways and the rise of memory-driven 

computing represents a future-driven approach to computational power that could help 

overcome these hurdles. High sample number requirements can be fulfilled through studies 

such as the Rhineland study which aims to recruit a large cohort of donors (>10,000) and a 

wide array of data including PBMC samples over a long time period. Similarly, many 

researchers are taking a collaborative approach and working in multi-country consortia to 

accumulate larger datasets. A recently published GWAS study used samples from almost 
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800,000 participants across 15 European countries by bringing together ten different 

European GWAS consortia (Bellenguez et al., 2022). 

 

The increasing capacity of scRNA-seq technologies to take a varied multi-omics approach 

offers fresh opportunities to expand datasets like the one we present here. Possibilities 

include BD AbSeq which would add protein expression using the same platform already in 

use here, or epigenetic techniques like scNMT-seq which combines chromatin accessibility, 

DNA methylation and scRNA-seq (Clark et al., 2018). Meanwhile, the analysis of CNS barrier 

structures and parenchymal tissues with spatial technologies could help determine peripheral 

immune cell entry points into the CNS and advance our understanding of the relationship 

between these environments. 

 

In summary, this study found that scRNA-seq offers a unique perspective on the immune 

landscape in AD. The relationship between the PIS and CNS is much closer than originally 

thought and thorough characterisation of this in early AD stages could be the key to 

deciphering the progression and pathogenesis of this disease. 
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7. Supplementary figures 
 

 

 

Supplementary figure 1. Further characterization of the dataset AD001-AD010. UMAP 
representations of cells in the dataset AD001-AD010 (A) Alzheimer’s Disease (AD) and Controls; (B) 
Donors; (C) Sequencing pools; (D) Age of each donor [years]; (E) Gender: F = Female, M = Male (F) 
UMAP representation of AD001-AD010 after increasing Seurat’s feature threshold to a minimum of 
150 features per cell. 
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Supplementary figure 2. Investigation of AD019-AD020 (related to Figure 8). (A) Dotplot 
displaying the marker genes of cluster 7, part of UMAP visualization of the integrated datasets AD001-
AD020 (Figure 2A). (B) UMAP representation of AD019-AD020, divided into the state of the sample: 
fresh vs. frozen. 
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Supplementary figure 3. Cell type frequencies of the final dataset. Frequency of cell types in the 
integrated dataset AD001-AD008 and AD011-AD018. (A) Bar plot displaying the relative frequency of 
cell types across all donors. (B) Box plot highlighting the frequency [%] of T cells, CD14+ Monocytes 
and CD16+ Monocytes in AD and control. Each triangle represents a donor PBMC sample, which was 
sequenced fresh, each dot represents a donor PBMC sample which was stored at 4°C overnight. 
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Supplementary figure 4.  Identifying myeloid clusters through comparison with genes in 
literature. CSF based cell type marker genes taken from five publications and analysed for their 
expression in three CSF data myeloid clusters. 
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Supplementary figure 5. CSF percentage of cells per cohort. Percentage of cells contributed 
to each cell type by each condition in the CSF dataset. 

 

 

Supplementary figure 6. PBMC percentage of cells per cohort. Percentage of cells 
contributed to each cell type by each condition in the PBMC dataset. 
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 Supplementary figure 7. Biomarkers for AT(N) classification of all donors 

Internal 
ID Information from Clinic AT(N) Classification 

Aß 
Aß42/4
0-ratio tau p-Tau 

Aß42/
pTau Diagnosis 

A 
Aß42/40  

T 
p-tau-
181 

N 
t-tau  

ATN 
status Biomarker category AD 

Continuum 

AD001                         

AD002 n p p p p AD + + + ATN AD Yes 

AD003                         

AD004 n p p p p AD + + + ATN AD Yes 

AD005 n p p p p AD + + + ATN AD Yes 

AD006                         

AD007 p p p p p AD + + + ATN AD Yes 

AD008 n p p p n AD + + + ATN AD Yes 

AD009                         

AD010                         

AD011                         

AD012 n p p p p AD + + + ATN AD Yes 

AD013                         

AD014 n p p p p AD + + + ATN AD Yes 

AD015                         

AD016                         

AD017 p p n p p AD + + - ATn AD Yes 

AD018                         

AD019                         

AD020 p p n p p AD + + - ATn AD Yes 

AD022 n n n n n Not AD - - - atn Normal AD Biomarkers No 

AD023                         

AD024 p n n n n Not AD - - - atn Normal AD Biomarkers No 

AD025 n n n n n Not AD - - - atn Normal AD Biomarkers No 

AD026                         

AD027                         

AD028                         

AD029                         

AD030                         

AD031                         

AD032                         

AD033                         

AD034                         

AD035                         

AD036                         

AD037                         
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AD038 p p p p p AD + + + ATN AD Yes 

AD039                         

AD040                         

AD041 p p p p p AD + + + ATN AD Yes 

AD042                         

AD043                         

AD044                         

AD045 p n n n n Not AD - - - atn Normal AD Biomarkers No 

AD046 n p p p p AD + + + ATN AD Yes 

AD047 n p p p p AD + + + ATN AD Yes 

AD048 n n p p p Not AD - + + aTN 
Non-AD Pathological 

change No 

AD049                         

AD050 n p p p n AD + + + ATN AD Yes 

AD051 p n n n n 
Other 

dementia - - - atn Normal AD Biomarkers No 

AD052                         

AD055 n n n n n Not AD - - - atn Normal AD Biomarkers No 

AD056 n n n n n Not AD - - - atn Normal AD Biomarkers No 

AD058 p p n n n 
Other 

dementia + - - Atn 
AD Pathological 

change Yes 

AD059                         

AD060                         

AD061 n n n n n Not AD - - - atn Normal AD Biomarkers No 

AD062 p p p p p AD + + + ATN AD Yes 

AD063 p n n n p AD - - - atn Normal AD Biomarkers No 

AD064 - p p p p AD + + + ATN AD Yes 

AD065                         

AD066                         

AD067 p n p p n Not AD - + + aTN 
Non-AD Pathological 

change No 

AD068 p p n n p AD + - - Atn 
AD Pathological 

change Yes 

AD069 n n n n n Not AD - - - atn Normal AD Biomarkers No 

AD070 p p p p p AD + + + ATN AD Yes 

AD071 p n p n n Not AD - - + atN 
Non-AD Pathological 

change No 

AD072 p p p p p AD + + + ATN AD Yes 

AD073 p n p p n AD - + + aTN 
Non-AD Pathological 

change No 
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