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Abstract

Data searchability has been utilized for decades and is now a crucial ingredient of data reuse. How-
ever, data searchability in industrial engineering is essentially still at the level of individual text
documents, while for finite element (FE) simulations no content-based relations between FE simu-
lations exist so far. Additionally, the growth of data warehouses with the increase of computational
power leaves companies with a vast amount of engineering data that is rarely reused. Search tech-
niques for FE data, which are in particular aware of the engineering problem context, is a new
research topic. We introduce the prediction of similarities between simulations using graph algo-
rithms, which for example allows the identification of outliers or ranks simulations according to
their similarities. With that, we address searchability for FE-based crash simulations in the auto-
motive industry. Here, we use SimRank-based methods to predict the similarity of crash simulations
using unweighted and weighted bipartite graphs. Motivated by requirements from the engineer-
ing application, we introduce SimRankTarget++ an alternative formulation of SimRank++ that
performs better for FE simulations. To show the generality of the graph approach, we compare
component-based similarities with part-based ones. For that, we introduce a method for automat-
ically detecting components in the vehicle. We use a car sub-model to illustrate the similarity
ansatz and present results on data from real-life development stages of an automotive company.

Keywords: FE Analysis, Automotive, Searchability, Semantic Data, Outlier Detection, CAE Knowledge,
Knowledge Graph, Graph Database, SimRank, SimRank++

1 Introduction

The introduction of the semantic web at the begin-
ning of the 20th century resulted in a technology
stack to support a 'web of data’ rather than a
'web of documents’ [18]. In particular, the ex-
istence of semantics enhanced searchability as a
fundamental functionality to make more use of the
data. Further, graph algorithms using intercon-
nectivity and semantics can rank the similarity of
the existing entities and predict missing links in

the data. Despite this technological development,
many engineering domains still do not exploit se-
mantics and graph modeling to enhance or allow
searchability.

In the last decades, computer-aided engineer-
ing (CAE) became well established in the R&D
process of OEMs in several disciplines. For exam-
ple, the number of CAE simulations at automotive
OEMs are nowadays between 10,000 to 30,000 per
week [20]. This amount of data makes CAE in
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Figure 1: Similarity prediction workflow for labeled and unlabeled data. This workflow considers parts
and part groups (components) and predicts the similarity based on two variants of a bipartite graph. The
nodes’ coloring in the heterogeneous graph reflects different node types.

the automotive R&D process one of the engineer-
ing domains that can benefit from significantly
enhanced searchability. The current lack of sophis-
ticated searchability in CAE data makes the data
disconnected and hinders multi-disciplinary col-
laboration, thereby degrading efficient problem-
solving. Additionally, a significant proportion of
the available data is not reusable, so it is perceived
as so-called dark data [19].

In this work, we introduce enhanced searcha-
bility to this domain by assessing graph algorithms
to predict similarities of simulations. Predicting
the similarity of simulations will assist engineers
by allowing a search for the most similar simula-
tions to a given one. Such a similarity connects dif-
ferent design solutions with corresponding behav-
ior, highlights limited explored designs, classifies
the studied behaviors, and allows the identifica-
tion of outliers as those simulations are dissimilar
to most others.

Earlier, we established a knowledge graph
(KG) for the automotive industry, called car-
graph, with a focus on the use case of CAE
crash simulations [16, 17]. In this work, we now
use semantics to predict the simulations’ simi-
larities. The case study is in crash simulations
and uses the most energetic parts and derived
internal energy features. Nevertheless, one can im-
plement a similar process for other CAE domains
after introducing simulation-based semantics that

characterizes the analysis’s mechanical proper-
ties, e.g., high strain elements for fatigue analysis
and eigenmodes structural frequencies for noise-
vibration-harshness (NVH) analysis. Currently, no
physic-aware methods are available focusing on
searchability in CAE simulations to the best of
our knowledge.

In this paper, we extend car-graph modeling
with link prediction between simulations based
on crash behavior that will make the simulations
searchable. Car-graph is a heterogeneous weighted
graph, and the relations between simulation out-
comes are missing Accordingly, our problem is lim-
ited to graph algorithms for unsupervised learning
on weighted heterogeneous graphs. Note that la-
beling the data that will characterize the crash
behavior is complex; the behaviors are usually not
classified and multi-criterial.

Currently, limited methods are available for
unsupervised learning on weighted heterogeneous
graphs [13]. Therefore, we reshape our car graph
suitable for the best available algorithms. We
downsize to a weighted graph with two types of
nodes, i.e., a bipartite graph, and employ the
widely used SimRank [11] method. This method
evaluates the similarity of two types of nodes
based on the connectivity of the nodes. To use
the edge weights, we also study SimRank++ [2], a
SimRank extension that includes edge weights in



Springer Nature 2021 ETEX template

the similarity prediction. Furthermore, we intro-
duce a modification of SimRank++ that is better
suited for our use case. Note that the graph nodes
of our weighted bipartite represent simulations
and their main energy absorption entities. Con-
sequently, the commonality of absorption entities
between simulations controls the similarity score.

In [17] we introduced energy features for in-
dividual parts. With an illustrative example, we
motivate energy features as the weights in the bi-
partite graph. In particular, we can visualize crash
simulation behavior in a diagram, label their sim-
ilarities and classify their behaviors. Further, we
investigate a grouping of parts, for which we in-
troduce a method to detect the components in
the vehicle automatically, where we take the load-
ing direction of the analysis (impact direction
for crash simulation) into account. Therefore, we
have two variants for the entity selection in the
graph algorithms: the finite element (FE) parts
individually and a group of parts representing
components.

We examine the performance of predicting
similarities in labeled crash behavior from an illus-
trative example for all the SimRank-based meth-
ods. Subsequently, we integrate the proposed part
grouping and their energy features into our initial
car-graph, which allows an alternative way of pre-
dicting similarities between simulations. Finally,
we explore our approach on unlabeled industrial
data from several development stages in a project
of China Euro Vehicle Technology AB (CEVT).
Figure 1 summarizes our approach.

In Section 2 we recapture related work, fol-
lowed by a description of the simulation setups for
an illustrative example in Section 3. Then we have
an introduction to the SimRank methods and our
extension of the method in Section 4. We present
our method for component detection in Section
5 and show results for the illustrative example.
Next, we introduce an energy diagram that follows
the crash behavior in Section 6, and in Section 7
we use these labels to assess the similarity pre-
dictions and rankings. Further, we summarize the
outcome of similarity prediction for the labeled
data, the illustrative example, and unlabeled data
(CEVT development stages data) in Section 7.
The conclusion and outlook are in Section 8.

2 Related work

Dimensionality reduction methods are one of the
popular techniques in machine learning (ML) for
comparison and gaining an overview of data [14].
In crashworthiness, these methods have been stud-
ied since 2008 [1] for exploration and cluster
identification [15] of the FE simulations. Note, one
can consider the distance of the embeddings as
a similarity measure of the simulations. However,
the focus of the available research has been on
outlier detection or behavior classification [10, 12].

To our knowledge, there is no related work
where simulations’ similarity is assessed using
graph analytics methods. Consequently, we out-
line other available methods for assessing simu-
lations’ similarities. Studies using dimensionality
reduction usually look into deformations of the
FE model [9, 10, 12, 15, 21]. The challenge with
these methods is their computational cost and sen-
sitivity to capture local differences compared with
global deformation. For example, these methods
focus on realizing an occurrence of a buckling, a
global deformation, in comparison to character-
izing the buckling mode, e.g., its timing, a local
feature. Furthermore, these methods’ integration
into the OEM’s workflow has been limited [21],
despite the long period these methods have been
available.

Therefore, considering more scalable methods
and other input measures is beneficial. One exam-
ple for crash simulations is the FE solver outputs
of energy absorption that gives internal energy
(IE) per part over time, a so-called energy curve.
Studies show that energy absorption character-
istics enable quantifying component performance
for the design of experiment (DOE) feedback
in optimization studies [5, 6]. However, to our
knowledge, there is no research on using features
generic to the problem, such as energy features,
to calculate the similarity of simulations. Another
possibility is to use key performance indicators
such as firewall intrusion or occupant injury crite-
rion, but these reflect behavior on a much coarser
level, which limits their analytical capabilities.

In [17], we investigated features derived from
energy curves and studied their capability for sum-
marizing the differences between the simulations.
These features have enough resolution to iden-
tify the simulations’ differences, and the number
of parts included plays a role in localizing the
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differences. As a result, the differences are more
global if more parts are considered compared to
including a limited number of parts. Compared to
the deformation-based approaches, the main ben-
efit is that these features detect local and global
differences. An additional advantage is the compu-
tation efficiency that supports more dynamic user
interactions.

Another aspect of similarity assessment is FE
entities selection for comparison, e.g., node, ele-
ment, or part. Due to the modeling techniques,
most of the FE entities are smaller than a com-
ponent of the vehicle. Here, a component refers
to a group of parts whose structural functional-
ity depends on its parts, e.g., two welded plates
of a crash-box, where each plate alone has much
less axial stiffness than the welded ones together.
Consequently, comparing groups of entities as
components can be seen as more physically mean-
ingful.

Note that the grouping information is avail-
able in the computer-aided design (CAD) stage
of development. However, this data is lost in to-
day’s workflow when generating a FE model from
CAD information. Detecting these components
automatically from a FE model is challenging.
In [8], semantics are introduced for FE entities
that enable identifying part splits during the de-
velopment, but the grouping of FE entities from a
structural aspect is not addressed. Consequently,
we introduce a method to automatically detect the
grouping of the FE entities.

3 Simulations setups

Using a submodel based on the Yaris FE model
from CCSA [4], we generate simulation data that
allows easy labeling of the crash behavior. Figure
2a shows the selected components of the sub-
model, where the main components are the front
bumper beam, crash-boxes, and side-members.
Accordingly, each simulation includes 28 parts.
Originally the right-hand side (RHS) and left-
hand side (LHS) were asymmetric regarding the
xz plane. Therefore, the FE model is modified to
make it symmetric. The specific changes consist of
removing the toe hook from the RHS, Figure 2c,
and making the bumper beam, crash-box and side-
member reinforcement symmetrical. To achieve a
slight deformation also in the side-members, the
side-members end is constrained in x displacement

and the moment along the x axis; and a total of
500 kg is added to increase the kinetic energy,
Figure 2b.

Our study consists of 66 simulations of a full-
frontal impact against a rigid wall with a speed of
56.3 km/h. These simulations have around 30 —
40% increase in total internal energy compared
to the complete FE-model. However, the simula-
tion setups for the submodel have minor design
changes that are replicating real development pro-
cess changes. Consequently, the differences in the
outcome of the simulation are in the scale of CAE
development processes. The simulations vary in
crash-box plate thicknesses, where the crash-box is
built of two sheet metal thicknesses, Figure 2d. For
all simulations, the crash-box outer plate thick-
ness, 11, is dependent on the inner plate thickness,
TQ, by

Ty —T; = 0.6. (1)

Here, Ty increases from its minimum value in
equidistant steps of 0.1 [mm]. These variations are
implemented equally on RHS and LHS. In a sym-
metric setup, 75 of RHS and LHS increase equally
in thickness, while for an asymmetric setup RHS
and LHS thicknesses increase unsymmetrically.
Figure 3a shows the employed distribution of the
Ty thickness value for LHS and RHS of crash-
boxes for 66 simulations’.

These changes cause asymmetrical and sym-
metrical absorption, which results in three crash
modes for the deformation, Figure 4. The crash
mode indicates the yaw angle of the bumper beam.
For this symmetric load-case a symmetric struc-
tural stiffness results in a yaw angle of zero. In
Figure 3a the simulations with equal thicknesses
on LHS and RHS are on the diagonal. For sim-
ulations below the diagonal, the LHS is stiffer,
causing the crash mode to have a negative yaw
—uv,. For those above, the stiffer RHS causes a
positive yaw 4uv, for the crash mode.

Among these 66 simulations, we pick five
simulations as reference simulations for the in-
vestigation in Section 6. Figure 3b summarizes
the crash modes for the selected reference simu-
lations, including one zero mode simulation and
two simulations for each negative and positive

! The simulations and databases are available at:
github.com /Fraunhofer-SCAI/GAE-vehicle-safety
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Figure 2: FE-sub-model setup, (a) top view of the included components with applying symmetry on
crash-box, side-member and bumper beam, (b) add boundary conditions and mass, (c) removing toe hook
from the bumper beam. (d) crash-box thickness parameters.

mode. Simulation three is the base model with
zero crash mode. The negative and positive modes
have mirrored thicknesses, i.e. 30 with 31 and 60
with 61. They also have different stiffness ratios,
Topns/T2, s, 1. 60-61 is stiffer than 30-31. The
reference simulations will later be used to find the
most similar ones, see Section 7.

4 Simulation similarity
prediction

Identifying similar objects based on the link struc-
ture in a graph is a fundamental operation in
various domains such as web mining, social net-
work analysis, and spam detection [22]. Amid the
existing similarity approaches, SimRank [11] has
emerged as a powerful tool for assessing structural
similarities between two objects. Similar to the
well-known PageRank [3], SimRank scores depend
merely on the link structure, independent of the
textual content of objects. The major difference
between the two methods is the scoring mecha-
nism. PageRank assigns an authority weight for
each object, whereas SimRank assigns a similarity
score between two objects.

SimRank is an approach that is applicable in
any domain with object-to-object relationships. It
measures the similarity of the structural context
in which objects occur, based on their relation-
ships with other objects. Effectively, it computes a
measure that says ”"two objects are similar if they
are related to similar objects” [11]. The similarity
s(a,b) € [0,1] between objects a and b is defined

° ® 3
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Lo 60
E. 2.3 e o o o ® &1
€ e o o o o
) 21 e o e o o o o o o o o
T
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(a) Spread of thickness T5 of crash-boxes RHS vs LHS.

1711711

30 31

Crash Modes

Ref. Simulations 3 60 61

(b) Crash modes for the reference simulations.

Figure 3: Simulation setup consisting of 66 sim-
ulations (a), where five are chosen as reference
simulations (b). Colored points in (a) are the
reference simulations in (b).
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Figure 4: Defined label for crash mode based on
Yaw axis rotation. FE simulations result follows
the color coding of the crash modes.

by a recursive equation. If @ = b then s(a,bd) is
defined to be 1, otherwise,

(0.0 = arEm] X o i) (@)

zEE (a) jEE(b)

where the set F(a) contains the edges of node a,
and C is a constant between 0 and 1. C' gives
the rate of decay, since C' < 1, as similarity flows
across edges [11] and we use C' = 0.8. In [2], it
was shown that SimRank scores are not intuitively
correct for complete bipartite graphs?. In our ap-
plication, we typically obtain a complete energy
bipartite graph and have edge weights.

To work well with complete bipartite graphs,
[2] introduced SimRank++, a so-called evidence-
based SimRank, which additionally uses edge
weights and the so-called spread to achieve simi-
larity scores consistent with the graph’s weights.
In particular, [2] introduces the notion of evidence

2Note that, a complete bipartite graph is a bipartite graph,
where every vertex of the first node-set connects to every vertex
of the second node-set.

of similarity between nodes a and b

|E(a)NE(®b)]|

€qb = Zl 5 (3)

evidence(a, b) :=
as an increasing function in the number of com-
mon neighbors. Further, using normalization and
scaling according to the local variance, one obtains
weights W

Wa,i _ e—vam’ance(i) Z w(a7;)(a : , (4)
M jeE(a) aj)
—_—————

normalized_weight(a,i)

spread(i)

where variance(i) is the variance of the edge
weights w of node 4. All together, SimRank-++ uti-
lizes the edge weights to compute similarity scores
iteratively by

T(a,b) = eap:C Y Y WaiWiys™ (i, 5).

i€E(a) jEE(b)

We observe that SimRank+-+ normalizes the
edges that have a common source node. A pair of
nodes (v, w) € V xV is associated with every edge
e € E; v is called the source of e and w is called the
target of e, where V' is a list of nodes and E is a list
of edges in a graph. Alternatively, we propose to
normalize the weights with a common target node,
which we call SimRankTarget++ (sfrgf) We be-
lieve that, depending on the physical meaning of
the source and target, it matters how the weights
are normalized. This modification enables the it-
erative method to calculate the distribution of one
target for all the sources instead of all targets’
distribution in one source. We will discuss this fur-
ther in Section 7.2. Consequently, we introduce
@, where we normalize the edges concerning the
target nodes

. — ,—variance(i) w(a7i) 5
Qo = S O
spread(i) JEE()
—_———

normalized_-weight(a,i)

and using ) we define iteratively

Strar(a:b) =eapC D> D Qui@bista(ig).

i€E(a) jEE(D)
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5 Component detection

FE-modeling techniques require arranging vehi-
cle components into several parts, e.g., due to
material and thickness differences®. Consequently,
FE-solvers output result quantities per defined
parts. This split makes the post-processing of the
results per component challenging. Since the parts
connectivities as a component are unavailable, it is
vital to develop a method for component detection
to facilitate post-processing.

With components, we refer to a group of parts
that in their structural analysis from a CAE analy-
sis perspective are highly dependent. For example,
the stiffness of the side-member component, (F)
in Figure 5, depends on three reinforcement plates
as well as the inner and outer side-members. One
application of using components is in selecting the
most essential parts for ML pipelines. In [17], we
showed that using the maximum of the internal
energy is capable to filter the essential parts. How-
ever, this approach sometimes excludes smaller
parts that are of interest from crashworthiness as-
pects, e.g., the reinforcement plates, (1), (m), (n)
in Figure 5.

In this section, we propose a method for com-
ponent detection, verify its outcome for the illus-
trative example and discuss its scalability. Finally,
we discuss options for evaluating energy features
for components.

5.1 Component detection method

There are several possibilities for component de-
tection. One option is to preserve this information
from CAD to CAE by introducing a correspond-
ing workflow within the company. However, this
option is for now not feasible due to the involved
process dependencies that are time-consuming to
establish in big OEMs. A second approach is to
develop an interpreter for the specific FE solver
that transfers each connection type to a generic
connection for component buildup. In [16], we par-
tially employed this method to identify connection
changes in the model. The limitations of this ap-
proach are: a) time-consuming development due
to the dependencies on the specific solver and b)
the need to use several modeling representations
for different types of connections.

3For further background on crashworthiness, see e.g. [7].

Additionally, recent computational power al-
lowed FE-models to include more details. As a
result, connectivities, e.g., bolts and clips, are
modeled with generic FE entities, e.g., shell solid
elements, instead of a solver-specific abstraction
for connections. Therefore, developing the inter-
preter would be even more complicated. Moreover,
both outlined approaches deliver several connec-
tions per pair of parts due to assembly require-
ments, e.g., several bolting or welding. The high
number of connections requires additional filter-
ing to distinguish a component’s assembly from
a component-to-component connection. Thus, a
more automatic method is beneficial.

Therefore, we develop a geometrical search
method that detects components. We consider
each part in the vehicle as a box and then group
highly overlapped boxes. The geometrical features
of the parts define the box, including length,
width, and height, along with the coordinate sys-
tem of the FE-model (L-x, W-y, H-z). In grouping
these boxes, we make the following procedural
decisions

o Include specific entities from the FE-model?.

® Define FE-modeling guidelines to differenti-
ate parts from connections®.

® Decide on a box merge in a pairwise compar-
ison.

® Define batches for pairwise comparison via
two-dimensional (2D) k-means clustering® to
reduce computational time.

e Consider two-stages in merging: complete
and partial overlap. Complete overlap is the
scenario, where a smaller box (child) is lo-
cated entirely in a bigger box (parent). By
contrast, partial overlap refers to situations
where boxes are not completely overlapped.

e Skip merges in the direction of the im-
pact/loading for partial overlapping to cap-
ture the load path.

We start the investigation on the FE-sub-
model presented as an illustrative example, in
Section 3. This model includes 28 parts, and 27
parts match the prescribed entity selection. From

4Only shell elements since beam and solid elements usu-
ally represent the connections and have a single properties
ID (PID) for all same type of connection in the model.

5Require null shell elements for components modeled with
solid elements. null shell is a recommended method for better
contact modeling, MAT_NULL in LS-DYNA.

6Using the implementation from, sklearn.cluster.KMeans
python package.
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(b) frame front cap

(B) crash-box

(c) crash-box inner
(d) crash-box outer

(C) connector plate 1 (e) connector plate 1

(D) connector plate 2 (f) connector plate 2

(E) connector plate 3

(g) connector plate 3
(h) reinforcement 1
(i) reinforcement 2

(F) side-member

(j) side-member inner
(k) side-member outer
() side-member reinforcement 1
(m) side-member reinforcement 2
(n) side-member reinforcement 3

Figure 5: Grouped component for the FE sub-model, 27 parts and eleven corresponding components. In
the table, uppercase letters are referring to the component and lowercase letters to the parts. In the figure,
only one of the symmetric parts is marked and correspondingly subscripted with either LHS or RHS.

the crash analysis engineering view, this model
contains eleven components: (A) bumper beam,
(B) crash-boxes on right hand side (RHS) and left
hand side (LHS), (C)(D)(E) connector plates on
RHS and LHS, and (F) side-members on RHS and
LHS. Thus, the intended outcome is eleven compo-
nents. Connector plates between crash boxes and
side members could be one component. However,
as mentioned, in our grouping procedure, we pre-
vent merging boxes with overlaps in the direction
of the impact/loading.

For grouping boxes, we compare boxes pair-
wise. Pairwise comparison of all parts for the
complete FE-model is computationally expensive.
Therefore, we use k-means clustering® on the
boxes’ center of gravity (COG). Pairwise compar-
ison takes 346 seconds for the complete model of
Yaris with 728 initial parts, and with k-means
clustering, we reduce the time to 23 seconds.
In this way, the clustering of the boxes cre-
ates batches to reduce the number of pairwise
comparisons. We consider the boxes COG dis-
tances in pairwise comparison. However, the three-
dimensional (3D) distance of parts clusters the
parts locally and will skip some desired merges.

For example, the bumper beam component in
Figure 5 (A) will encounter this issue since the
bumper beam, part (a), and the RHS and LHS
frame front cap, part (b), have a significant COG

distance in 3D space. In this example, the 3D dis-
tance will cluster the frame front cap with the
crash-box, not the bumper beam. Consequently,
we consider the 2D space for clustering the boxes
and assess each separately, top-view (zy), front-
view (zy), and side-view (zz). In this example,
the bumper-beam and the frame front cap have an
apparent distance in the top-view and front-view
clusters, these boxes will not be compared. How-
ever, the boxes COG are close in the side-view,
and will be in the same cluster to be assessed. As
a result, we have an additional iteration loop to
assure all required pairs are assessed, in each loop
we are switching between 2D views to change the
clustering. After several iterations, we compare all
remaining parts pairwise to be sure all boxes have
been compared.

The pairwise comparison investigates two sce-
narios: complete and partial overlap. Complete
overlap is when a box is entirely inside a larger
box. Here, the merged box takes over the dimen-
sions of the larger box. For partial overlap, we use
as the comparison quantity

/—/H‘—

|Ceogy, — Ceogy, |
Ty = T (6)
(Ley, + Ly, ) /2
—_———

b
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(a) Partial overlap in impact direction, z, classified
in impact direction and not approved for merge.
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(b) Complete overlap in impact direction, z, not

classified in impact direction and will go to the next
check for merging.

Figure 6: Two examples of classifying the over-
laps in direction of the impact with big and small
distances of « := a/b, subfigure (a) and (b) re-
spectively.

i.e., the fraction of the COG distance and the
average of the boxes’ side lengths in the chosen
direction.

Ceogy, and Ceogy, AT€ the COG coordinates com-
ponent for the compared boxes, box one and two
respectively. The coordinate components are in
the global axis direction: z, y, and z. The L., and
L,, are the box dimensions in the corresponding
axis, for boxes one and two respectively. The di-
mension L. is aligned with global axis: L, L,,
and L.

The threshold T in equation 6 is used for two
scenarios, classifying the overlaps in impact direc-
tion and deciding on overlap merging. Therefore,
two different thresholds are applied for each sce-
nario: a and 3, respectively. For impact direction
classification, threshold « is set to a low value,
e.g., 0.01, which prevents box merging for a/b big-
ger than this value, Figure 6a. Afterward, if the
overlap is not classified in the impact direction,
its percentage of overlap is evaluated to decide
on boxes merging. For overlap check, the impact
plane directions are assessed with the threshold
B set close to one, e.g., 0.97, Figure 6b. Here the

y/z
L.

Figure 7: Decision making of box-merge in im-
pact plane, yz.

boxes will merge for a large ratio of a/b, Figure
7. In full-frontal impact in the x plane, considered
overlaps are in the y and z plane.

Algorithm 1 Box merge for impact direction x

if a, /b, < a and a, > 0 then
if a,/b, < S and a,/b, < § then
merge boxes
end if
end if

5.2 Component verification

The outcome of this method for the illustrative
example matches the table in Figure 5. Initially,
27 boxes represent the 27 parts and after merging
eleven new boxes are generated that include the
parts as in Figure 5. Here we run the merging
for the frontal impact that will skip the merges
in the x-direction; see the coordinate system in
Figure 2a. Consequently, the connector plates even
with the existing overlap in the x-direction are not
merged, components C, D, and E.

Afterward, we implement this method on the
full Yaris model to assess the scalability of this
method. One obstacle in the full model application
is the dominancy of the exterior parts that is act-
ing as a wrapper for a big proportion of the parts,
e.g., the front facia and outer layer of the vehicle
body. A solution for this is to exclude the exterior
parts defined by the user. An additional option is
to combine part filtering with grouping as,

e Filter the most energetic parts.

e Apply the component detection with the lim-
ited search for filtered energetic parts and
their neighbors.

e Update the filtering with the most energetic
components.
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In this way, the focus will remain on the structural
parts and exterior parts will not cause an issue.

5.3 Component features

In [17], we introduced energy features for the
IE of each part with initial absorption time [t;],
maximum internal energy [IFEq.], and end of
absorption time [t,]. Since these features are part-
based, enabling the post-processing of the results
at the component level requires an additional step
to combine the features. Two approaches exist to
generate component-based features. First, com-
bining the features of the grouped parts belonging
to a component. Here, combining features refers
to determining the minimum, maximum, sum or
average of a group of features. The other alterna-
tive is summing up the parts’ curves before feature
extraction.

For IE curves, the outcome of these two ap-
proaches affects the time features more noticeably.
For IE,, .., the effect is minor since I F saturates
after the maximum. Consequently, the sum of
1E, 4, for parts and max of I F summation curve
differs only slightly. However, the ¢; and t,, fea-
tures deviate more between the two approaches. In
curve summation, the early ramp-up or late sat-
uration of the I E vanishes for the parts with the
smaller energy due to the dominance of the more
energetic parts. As a result, we propose to use the
part combined features for the time features, ¢;
and t,, minimum and maximum respectively, while
using I Ep,q, from the summation curve.

6 Energy diagram

We introduce an energy diagram to illustrate
simulation behaviors in a crash simulation. For
simplification, we have a 2D view using I F,,, and
t,, where t,, contains the ¢; feature and relates to
absorption time, At = t,, —t;. An additional ben-
efit of ¢,, is that it is easier to understand visually
than At for processing the sequence of behaviors,
i.e., the part’s relative behavior [17]. To shape
the energy diagram, we select the five most ener-
getic parts for each simulation and add the mean
of energy features to the plot and connect each
part. Note that, considering the 28 parts included
in each simulation of the illustrative example will
make the visualization challenging. The five parts

le4
144 ® 3
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— 1.2 1
g
g
2
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0.6 1 outer plate’ } RHS
10 15 20
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Figure 8: Base simulation energy diagram, con-
sidering five parts, base simulation in Section 3.

turn out to be the same for all simulations, in-
cluding the four plates of the crash-box and the
bumper beam.

6.1 Diagram examples

Figure 8 shows the energy diagram for the base
simulation. Left and right directed arrows indicate
the LHS and RHS parts of the crash box, re-
spectively, where a square represents the bumper
beam. The final energy diagram is obtained by
connecting each part to a point reflecting the
average of the energy features of the five parts.
Figure 9a displays the energy diagrams for
simulations 30 and 31. These simulations have
the same thickness value change but on oppo-
site sides. As a result, the corresponding energy
diagrams are essentially mirrored. Their struc-
tures look identical except for the switch between
RHS/LHS, reflecting the change in producing neg-
ative or positive yaw. In Figure 9b we compare one
of these mirrored simulations to the base model.
We observe that the IFE,,,, has decreased for
RHS crash-box plates, which is due to the stiff-
ness reduction. However, in comparison, t, has
not changed. The reduction of IE,,,, while ¢, is
unchanged indicates a so-called stack-up state’.
However, the average of the energy features shows
lower IF,,... Therefore, the side-members are
absorbing the remaining energy since the total
IE should remain the same over all the parts
in the simulation. Another noticeable observa-
tion is that the bumper beam absorption energy

"Maximum possible deformation in a component.
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Figure 9: Energy graph for simulations in Section 3, crash mode defined based on Yaw axis rotation.

is independent of crash-box, however, the t, is
dependent.

Figure 9c presents the energy diagrams for
simulations 31 and 61, wherein both the RHS
crash-box is stiffer than the LHS resulting in the
negative yaw crash mode. We observe an offset
in the diagrams, while the structures are simi-
lar since they reflect the similarity of the crash
mode. The angle differences in each energy dia-
gram correspond to the yaw angle. Note, the offset
is due to more energy absorption in simulation 61,
reflecting its higher thickness values.

6.2 Diagram similarities

Representing simulations as a diagram with en-
ergy features enables the comparison of simu-
lations. The illustrative example highlights two
scenarios: a change in the diagram’s structure and
an offset of the whole diagram. From an engineer’s
perspective, these two aspects can be considered
as crash mode and absorption factor. First, a crash
mode reflects the parts’ absorption relative to each
other, represented by the diagram’s structure. On
the other hand, one looks at how much energy
is absorbed with the absorption factor. Thus, the
absorption factor operates as an offset factor in
the energy diagrams in this data representation.
Consequently, the same crash mode but different
absorption factors exist if the relative stiffness of
the components is similar.

With these visual definitions of similarity be-
tween simulations using energy diagrams, we have
the following research question: how to implement

these in graph analytic methods to estimate sim-
ulation similarities? Working with unsupervised
learning methods on these energy diagrams would
involve treating these as separate data objects and
individual weighted graphs, an ongoing open re-
search question [23]. Instead, we investigate the
energy features as weights in a graph to be able
to use established methods for link prediction. In
this way, we use the edge weights to detect slight
differences between simulations as presented in
examples we discussed in Section 6.1.

7 Similarity results

In this section, we present and compare differ-
ent SimRank methods for predicting the simula-
tion’s similarities. We start with a short descrip-
tion of our bipartite graph, both part-based and
component-based, and its connection to our graph
database [16]. Afterward, we evaluate SimRank
methods and compare them with the root mean
square error (RMSE) of displacements and inter-
nal energy as a similarity baseline. We use two
approaches for evaluating the similarity predic-
tions:

e Comparing a labeled ranking, where we order
the five reference simulations from an engi-
neering perspective and compare this ranking
with one based on the computed similarities.

® Searching for similar simulations, where for
the five reference simulations we find the
most similar ones among the remaining 61
simulations.



Springer Nature 2021 ETEX template

Figure 10: Graph data schema used for simula-
tions similarity prediction, full schema available
in [16].

Finally, we present results from an industrial
application of this method.

7.1 Bipartite graph

Let us provide a brief overview of our graph model-
ing for both part- and component-based bipartite
graphs. Figure 10 shows the data schema that we
here employ, which is part of the entire graph mod-
eling we introduced in [16]. In this schema, a
node reflects a FE simulation outcome, where its
properties stem from global entities of the sim-
ulation, e.g., total mass or impact energy. An
FE-model contains many elements, where a group
of elements with the same properties is identified
as one part. Consequently, one simulation includes
several parts and we model it with a node
as the main entity representing the simulation.
The edge O— NRG_PART —O relates nodes
to nodes and includes certain energy features
of the parts as weights. Design nodes bun-
dles parts that have similar FE-model features.
A @) node is a group of different nodes
in the database that reflect the outcome of our
component detection method.

For simulations similarity prediction, we are
looking to predict the O— sim_sim —O edge. Both
bipartite graphs, part- and component-based, re-
spectively, have with and two node
types, see Figure 11 for the part-based graph.
Therefore, the similarity of connections between

is used to predict a (Sim)-(sim) con-

nection. We have two scenarios for structuring

the bipartite graph with (Sim)— SIM.DES —(Des ).

First, for the part-based similarity, we follow

(Sim )~ NRG_PART ~(Part )~ PART.DES —(Des ). Here,

we obtain the edge weight from the parts’ energy
features and predict the simulations’ similarity

PID Part Name
2000000 bumper beam
LHS RHS
2000001 2000501  crash-box inner plate
2000002 2000502  crash-box outer plate

Table 1: Part names for PID in Figure 11.

based on the parts’ absorption similarity. Sec-
ond, for the component-based similarity, we go
along (Sim )~ GRP_FTS —(Grp )~ GRP_DES —(Des) and
use the grouped features as weights and pre-
dict the simulations’ similarities based on the
components absorption similarities.

7.2 Part-based similarity

To study part-based similarity, we compare the
results from different SimRank formulations with
a defined labeled ranking for the Yaris simulations
from Section 3. Table 2 summarizes the results. In
this table, we order the columns according to the
desired ranking based on engineering judgment as
follows:
® Simulations (30 -(31) are the most similar due
to the symmetric changes.
® Simulations (3)-(61) are the least similar since
there is the most significant stiffness change
among all simulations.
® The pairwise similarity of or (31) to simu-
lations (3) and should be equal. Equality
comes from symmetrical behavior that acts
as a mirrored weight on nodes.
e Simulations and (31) are more similar
to (3) than since the stiffness differ-

ence is less in (3 -(31)/(30) compared to (61 -
(31)/(30). As aresult, simulations (3 -(30) and

(3-(31) have the second-order ranking with
equal values, and simulations (61)-(31) and
(30 -(31) have the third-order ranking.

The used methods include SimRank (s),
weighted SimRank (s,,), weighted SimRank with
evidence (Sy,evd), weighted SimRank with evi-
dence and spread (s™1), and weighted SimRank
with evidence and spread that is normalized over
target nodes (stt,;“t) We employ the energy power
absorption (P, = I Eyq./At) of the parts as the
weight for the O— sIM_DES —O edges. Another
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Figure 11: Bipartite graph for illustrative example with P. as edge weight, shown values are in
[LOM Nm/s]. The edge color follows reference simulations in Section 3.

Method 30-31 3-30 3-31 61-31 61-30 3-61

s 0.4444 04444 0.4444 0.4444 0.4444 0.4444
Sw 0.4749  0.4795 0.4798 0.4789 0.4783  0.4892
6 3 2 4 5 1
Swevd 04379 04427 04430 04420 04414 0.4527
6 3 2 4 5 1
stt 0.2084 0.2104 0.2102 0.2267 0.2260 0.2295
6 4 5 2 3 1
sty 0.3119 02719 0.2717 0.2695 0.2695 0.2399
1 2 3 4 5 6

Table 2: Similarity prediction from different methods when considering the five most energetic parts in
the illustrative example, Figure 11. The order of columns is the expected order as described in Section
7.2, (C = 0.8, weight = P,).

Scalar  Time Step Parts 30-31 3-30 3-31  61-31 61-30 3-61

tmazx All 5.95 7.60 7.82 21.16 2196 15.25

1 2 3 5 6 4

Displ tall All 7.97 7.02 7.09 1735 2045 13.82
3 1 2 5 6 4

tmazx Five 5.92 4.74 4.67 9.06 9.83 6.03

energetic 3 2 1 5 6 4

P tn All 4.5 299.1 2951 3275 331.3 69.5
1 4 3 5 6 2

Table 3: RMSE for the difference of displacement (Disp [mm]) and P, (((MNm/s]) in each pair of simula-
tions, considering a different number of parts and time steps in the illustrative example. The even rows
show the ranking of the distances. The order of columns is the expected order described in Section 7.2.
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alternative for the edge weight is the I E,,,;; how-
ever, P, gives better results. In the study, we
select the five most energetic parts, which are the
bumper beam and two plates of the crash-box on
LHS and RHS, Table 1.

Table 2 presents the (Sim )-(sim ) similarity pre-
dictions® for the illustrative example. Figure 11
shows the five most energetic parts for the five
simulations. This results in a fully bipartite graph,
and disregarding weights means that two sim-
ulations are similar if the energetic parts are
similar. Therefore, as expected from Section 4,
SimRank predicts that all simulations are simi-
lar, which shows that the method is insufficient to
evaluate the similarity between simulations with
similar energetic parts but different absorption
distributions.

With the P, weight, the predicted similarities
still differ from our expectations for s, Sy, cvq and
stT. However, the S;Jgrt method provides a result
that reflects our labeling. Note that to observe an
effect using the weight factors, they need to be
scaled to be smaller than 2 (P, scaled with 10 e8
based on this model unit system, energy [N —mm]
and time [s]). If the spread is more expansive than
two, then all similarities become zero, and if it
is smaller than one, the result is similar to the
weighted graph without spread.

It is interesting to further discuss the differ-
ence of 577, and s in this use case. Considering
s+ and normalizing the edges regarding the sum
of the edges in the source nodes refers to normal-
izing each part absorption with the total IE in a
model, which is more or less constant for all the
simulations when considering one load-case. How-
ever, normalizing for edges in the target nodes,
we are normalizing the edge weight with the total
absorbed energy for that specific part in all simu-
lations, which highlights the absorption efficiency
of that part for each simulation. Consequently, the
second approach is more relevant for comparing
simulations since we can weigh the parts’ relative
to each other instead of the first approach, which
looks into the parts’ relativity in one simulation.

To further study the performance of the pro-
posed algorithm, we compare with rankings based
on similarity or distance measures for simulations.

8We modify the SimRank similarity calculation in the
NetworkX Python package to evidence-based SimRank with
spread consideration.

A common approach is to assess differences in
the simulations is by looking at mesh-based func-
tion differences, e.g., [10, 9]. Therefore, we use the
differences in the displacement between the simu-
lations and use the RMSE as the distance. Table
3 summarizes the RSME of the displacements and
the corresponding ranking for the illustrative ex-
ample in three scenarios: all parts at the last time
step tinaz, all parts in all the time steps, and the
five most energetic parts in the last time step.
From Table 3 we gather that none of three ap-
proaches can capture the expected crash behavior
in the order prescribed previously. The top three
and the last three similarities are invariant. How-
ever, there is a different order within each cluster.
Differences in the ranking show that this method
is time-step dependent. Additionally, parts meshes
should be the same to be able to evaluate the
RMSE. Further, looking at all time steps is com-
putationally expensive, and the time sequence of
events can lead to high differences while the fi-
nal crash mode is similar, e.g., stack-up situations.
While looking at only the last step would solve
this issue, but the sequences of events will still be
missing in the similarity calculation.

Another approach is to evaluate the RMSE for
the internal energy of the parts with more global
features than displacement, the last row in Table
3. Here for simulation pairs, P, are compared for
the five most energetic parts. The main difference
is the ranking of (3 -(61) as the second.

So far, we have investigated different config-
urations of the SimRank++ method for similar-
ity prediction between simulations. An additional
hyperparameter to evaluate is the number of em-
ployed parts from each simulation that are used
in the bipartite graph. Table 4 summarizes s;;;t
prediction for 2, 5, 15, and 28 (all) parts being
considered. The order of the predicted similar-
ity between simulations has the expected pattern
for the labeled data upwards from including five
parts. Noteworthy, the similarity score spread
declines when including more parts.

7.3 Component-based similarity

Initially, we constructed a bipartite graph based
on the FE parts to predict the similarity of sim-
ulations. We now consider similarity predictions
based on the components, where we use the out-
come of the component detection presented in
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No. Parts  30-31 3-30 3-31 61-31 61-30 3-61 Range
2 0.4239 0.4243 0.4243 0.4235 0.4228 0.4234 0.0016
5 0.3119 0.2719 0.2717 0.2695 0.2695 0.2399 0.0719
15 0.2763 0.2568 0.2565 0.2518 0.2517 0.2393 0.0370
28 0.3086 0.2976 0.2973 0.2947 0.2945 0.2902 0.0184

Table 4: Part-based s;' T, similarity prediction deviation regarding changing the number of energetic

trgt

parts included in the illustrative example, Figure 11, (C' = 0.8, weight = P,).

No. Parts ~ 30-31 3-30 3-31 61-31 61-30 3-61 Range
2 0.4198 0.4211 0.4212 0.4180 0.4166 0.4182 0.0046
3 0.4125 0.4071 0.4071 0.4009 0.4003 0.3967 0.0157
5 0.2440 0.2260 0.2262 0.1997 0.1990 0.1858 0.0583
11 0.2517 0.2394 0.2395 0.2266 0.2260 0.2166 0.0351

Table 5: Component-based stt,';t similarity prediction
getic components included in the illustrative example,

deviation regarding changing the number of ener-
(C =0.8, weight = P,).

Section 5. Table 4 summarizes the prediction
result of stﬁ;rt for the component-based bipar-
tite graph while increasing the number of most
energetic components included. This evaluation
requires at least three components to fulfill the
previous section’s pre-defined ranking. Parts in-
cluded in these three components are similar to
the five parts in similarity prediction of Table 4.
However, using components, the predicted simi-
larities have higher values.

Additionally, for the component-based similar-
ity, the maximum range of the spread is achieved
by including five components, 15 parts, whereas
for part-based similarity, it is with five parts. Note
that the 15 parts involved in component-based
similarity are not equivalent to 15 parts in part-
based similarity. Six parts are the side-member
reinforcement plates when filtering with compo-
nents and are not selected as the most energetic
parts when using parts. Consequently, component-
based similarity performs adequately with a more
stable result; however, the part-based similarity is
more sensitive.

Moreover, the similarity range drops less with
increasing the number of components than with
the number of parts. If we compare the full model
prediction, 28 parts for the part-based compared
with eleven components, the component-based
has a broader range than the part-based. Overall
component-based similarity shows better results
in this use case.

7.4 Searching simulations

In this section, we use the similarity prediction
methods to search for simulations similar to the
five reference simulations. First, we compare the
capabilities of the s;;;t and RMSE of P. meth-
ods as a search tool. In Figure 12 we visualize for
each of the reference simulations from Section 3
the corresponding top seven similar simulations.
We expect to have the diagonal points, z = y,
similar to simulation three with zero modes. This
is because the points have the same relativity of
the thickness of the crash-box plates. Likewise,
the simulations under x = y should be similar to
simulations 30 and 60 and mode +wv, based on
their stiffness range, while the ones above should
have mode —v,. Figure 12a shows that the s;;;
method achieves the expected clustering, e.g., the
modes stay on one side of the diagonal. On the
other hand, Figure 12b shows that the RMSE of
P. method fails to recognize the crash modes as
the colored points for simulations 30, 31, 60, and
61 are on both sides of the diagonal. This re-
sult shows that this method primarily works by
averaging the parts’ energy absorption.

Next, we compare part-based and component-
based results. Figure 13 visualizes the comparison
of the two methods while increasing the number
of target nodes in the bipartite graph, @ and
@ for part-based and component-based meth-
ods, respectively. This comparison also highlights
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Figure 12: Most similar simulations to the ref-
erence simulations according to two similarity
estimations. The used color code of simulations is
from Section 3.
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Figure 13: Comparing part-based labeling
(a)(b)(c)(d) with component-based (e)(f)(g)(h)
while Vf.irying the pumber .of and @) nodes
respectively. x-axis, y-axis, and coloring are the
same as in Figure 12.

the deviation between the two methods by increas-
ing the number of parts. Additionally, the color
coding for the zero mode deformation, blue scatter
points, is captured the best for the minimum in-
cluded target nodes, Figure 13a, 13e. This observa-
tion emphasizes that finding a similar simulation
differs from ordering the similarities. For finding
the most similar simulation, including the least
number of target nodes or part-based assessment,
perform satisfactorily. However, from the robust-
ness aspect and the ranking of the prediction, the
component-based is more promising.

7.5 Industrial application

After investigating the SimRank++ method for
the illustrative example, we apply the approach to
data from CEVT, using the so far best-performing
configuration, i.e., SimRankTarget++. This data
includes a total of 611 simulations of three dif-
ferent load-cases from frontal impact (ffo: full
front overload, foU: front oblique overlap, and fol:
front small overlap) in four successive development
stages (primary, early, middle, and late)®.

For this data, the bipartite graph is part-
based with energy power as the weight factor,
P, = IE,4./At. The similarity prediction con-
siders each load-case for each development stage
separately for a specified number of parts, i.e,
20. The load-case separation of simulations is due
to the use-case that similarity between different
load-cases is usually out of interest. Furthermore,
the grouping of development stages is due to
PID changes between development stages to avoid
connecting two irrelevant parts. The necessary
parts mainly vary between load-cases and slightly
among developmental stages.

Here we present an overview of these results
and deep dive into the result for one load-case in
a single development stage. The industrial data
is unlabeled, so it is challenging to assess the re-
sult of the similarity predictions. To tackle this,
we introduce two approaches. First, we visualize
the similarity prediction result using a histogram
and a KDE'. Second, we select specific simulation
pairs in each batch to further analyse the similar-
ity prediction, H-LL simulations. We present these
approaches for the fol load-case in the primary
development stage.

7.5.1 Similarity density

The similarity prediction score depends on the
selection of simulations in the batch and the num-
ber of included designs. Figure 14 presents the
similarity distribution for different load-cases in
different development stages. Here, we analyse
each load-case in separate development stages.
Each calculation is without simulations with sim-
ilarities of less than 0.2. The KDE plots the
probability of data being in a given range in the
area under the density curve. The KDE graph’s

9Detailed data description in Section 3 of [17].
0seaborn.distplot python package with KDE=True
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Figure 14: kernel density estimation (KDE) plot for sj;;rt prediction with 20 most energetic parts in
three different load-cases full front overload(ffo), front oblique overlap (fol), and front small overlap (ffU)
in four development stages, primary, early, middle and late that reflects the sequence of the stage, for
more information look in Section 3 of [17]. The simulations with less than 0.2 similarities, and outliers,

are removed. (At [ms],IEmanr [kNmm]).

range on the horizontal axis refers to the pre-
dicted similarity score, whereas the vertical axis
reflects the number of simulation pairs for each
value. These KDE plots highlight the differences
between each batch, e.g., the score range and the
number of peaks. Here, 0.2 seems low for some
batches to disregard the outliers, e.g., Figure 14a
and 14c. Nonetheless, SimRankTargt++ low com-
putational cost, less than a second, allows users to
run the computation interactively with different
filtering.

In particular cases, the scores spread is small
between simulations, figures 14e and 141. The nar-
row range can highlight limited exploration of the
designs. Moreover, the singular high density of
similarity prediction is related to the number of
parts included in the similarity calculation, figures

14c and 14h. Like in the illustrative example, a
fully-connected bipartite graph has tighter predic-
tion scores, and the effect of the weights is not as
strong as the structure. For example, in a group of
FE simulations, a fully bipartite graph means all
20 most energetic parts are the same for all the FE
simulations; however, there is a difference between
them due to the difference in energy distribution.
One approach to extend the deviation of the link
prediction score is to include fewer parts to avoid
having a fully bipartite graph.

Further, we focus on the similarity predictions
for the fol load-case in the primary development
stage when considering the 20 most energetic
parts, Figure 15. The total number of simulations
is 115; consequently, the number of similarities
pairs is 6555. A noticeable outcome is that the
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Figure 15: sz;;t link prediction histogram and
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Figure 16: H-LL simulation schema selected for
each load-case in a development stage based on
similarity prediction score.

density of similarity prediction shapes clusters of
simulations. In this way, density clustering de-
tects the groups of simulations with similar scores
of similarities. Figure 15 has three clusters at
(a), (b), and (c), where (a) includes mainly the
outliers.

Furthermore, we claim that the cluster with
the lowest prediction values includes simula-
tions that reflect outliers, which can be used
for anomaly detection. For the considered fol
load-case during the primary stage, we manually
identified and labeled simulation runs with early
termination due to errors or unrealistic high inter-
nal energy, respectively. Afterward, we evaluated
the similarity score with and without these simu-
lations. We observed that the low-range similarity
cluster, i.e., zone (a) in Figure 15, is removed from
the density plot when excluding the outlier simu-
lations. The corresponding similarity distribution
is plotted in Figure 14a.

7.5.2 H-LL simulations

We propose to compare the energy features [17]
of several simulations to verify the similarity dis-
tances in detail. For that, we select what we call
H-LL edges, where H is the edge with the highest
similarity, that is the nodes H; and Hs, connected
by edge H, are the most similar pair of simulations.
The edge is according to the maximum predicted
score of O— stMm_siM —O. In a second step, we select
the corresponding least similar simulations, that is
both H;-L; and Hs-Lo, Figure 16. In some cases,
L; and Ly may be the same. We call these H-LL
simulations, and we further investigate the results
with them to assess the reliability of the predicted
similarity.

Table 6 shows a summary of link prediction for
the fol load-case during the primary stage. First,
we consider all the simulations, Table 6a. Each
table row shows the predicted similarity of H-LL
simulations while increasing the number of parts.
For this data set, the graph is disconnected if we
consider less than six most energetic parts. An ad-
ditional observation is the HL similarity drop after
including at least 15 parts in the analysis. Accord-
ingly, the 15 most energetic parts will have the
highest similarity range, and afterward, the H-LL
pairs are stable.

In a further step, we remove the outlier simu-
lations from cluster (a) in Figure 15. We identify
the H-LL simulations while increasing the number
of parts included in the bipartite graph, Table 6b.
Increasing the number of parts keeps the similar-
ities range shrinking constantly. Generally, parts
selection for the similarity assessment is a hy-
perparameter for the user; however, the H-LL
similarities support revealing the differences.

Additionally, we consider a plot using the en-
ergy features for a couple of H-LL simulations.
With the so-called energy scatter plot [17], one
compares the energy features of the most energetic
parts of the simulations, which enables us to visu-
ally assess the similarity of the simulations’ parts
in energy absorption. We start with the H-LL;,
(354)-(387 -(237), from Table 6a that sj,.7, that pre-
dicted simulation as least similar. Figure 17a
visualizes the energy features of 20 parts for each
of these three simulations. The plot indicates that
simulation has enormous energy in one part,
and the simulation ended earlier, causing it to dif-
fer noticeably in comparison with the other two
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No. Parts H; Ho Ly Lo H{H> HL, HLo
6 008 018 386 386 0.486 0.295 0.291
10 004 007 090 090 0.438 0.287 0.294
14 353 354 090 090 0.409 0.266 0.253
15 354 387 237 237 0.401  0.002 0.002
16 354 387 237 237 0.388 0.002 0.002
*20 354 387 237 237 0.364 0.003 0.003

* H-LL;, Figure 17a

(a) All simulations, cluster

(a), (b), and (c) in Figure 15

No. Parts Hj Ho Ly Lo H{H> HL, HLo
2 195 197 354 354 0.477 0.113 0.112

4 354 387 197 197 0.455 0.108 0.123

5 135 197 021 021 0.485 0.236 0.237

6 135 190 287 287 0.492 0.304 0.307

8 354 385 028 028 0.468 0.322 0.346

10 354 357 028 017 0.453 0.340 0.358

12 004 007 287 287 0.442 0.369 0.370
***14 004 007 354 354 0.427 0.375 0.376
16 354 387 017 021 0.405 0.344 0.350
**18 004 007 287 287 0.389 0.349 0.349
*20 354 387 017 017 0.377 0.321 0.331

* H-LLs, Figure 17b
** H-LLg3, Figure 17c

*** H-LLy4, Figure 17d

(b) Excluding outliers, cluster (b), and (c) in Figure 15

Table 6: The H-LL simulations id and their similarities, s}
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simulations. We expected the least similar simula-
tion to be an outlier, cluster (a) in Figure 15, and
this comparison confirms it.

Next, we investigate H-LL simulations from
Table 6b excluding the outlier simulations. Here
we expect to find the clusters (b) and (c) in
the KDE plot, Figure 15. An initial remark from
comparing Table 6a and 6b is that the mini-
mum number of required parts in the dataset that
avoids having a disconnected graph decreases from
six to two, comparing Table 6a and 6b respec-
tively. This drop is an additional cross-check for
verifying the filtering of the outliers. Besides, it
emphasizes that filtered simulations have the two
most energetic parts in common, but there is a flip
in its order that we can not decrease it to one part
and still have a connected graph. Consequently,
there is a bifurcation in the simulations’ behavior.

In Table 6b, increasing the number of parts
does not settle in one H-LL simulations group,
whereas in Table 6a occurs after 15 parts. How-
ever, in Table 6b, a trend is observed in H-LL
simulations. Thses groups are marked in Table 6b
as H-LLs, H-LL3, H-LL,4 that includes simulations
@0-@7 D), (DD, and @O-@8) re-
spectively. The first and second sets H-LL, and
H-LL3 do not overlap in simulations; however,
H-LL4 contains HH simulations of H-LLs and
H-LL3. This observation underlines that two be-
havior trends are dominant and have a detectable
distance from each other.

We look into the energy features scatterplots
of these simulations to verify our assumptions.
Figures 17b, 17¢c, and 17d plot energy scatterplats
of these simulations for H-LLo, H-LL3, and H-
LL4 respectively. In Figures 17b and 17c, we see
that parts of HH simulations are nearby (blue and
green markers), whereas L simulation points are
further away (red marker). Furthermore, Figure
17d proves the distance between HH of H-LL, and
H-LLs3. Here we can see that the difference is not as
noticeable as H-LL, and H-LL3; parts with lower
energy become dominant in similarity prediction
if we increase the number of parts.

7.5.3 Summary

We used the KDE and H-LL with varying num-
bers of parts as representations for verifying the
similarity scores in the industrial application. For

the practical CAE process, we aim for a discov-
ery platform where the user can actively select
the input simulations from KDE distribution and
validate that cluster using the H-LL simulations.
For now, the novelty of predicting the similarity of
simulations and the lack of labeled data requires
these types of visualization to assess the similar-
ity results. These visualizations can facilitate the
integration of the method into the CAE workflow,
which enables the collection of feedback from engi-
neers. The integration of these methods into CAE
processes is a critical requirement to enable future
improvements using graph analytics.

8 Conclusion and outlook

Today, the searchability of the web is an obvious
benefit for everyone. However, enhanced searcha-
bility still needs to be realized in the CAE domain,
where its advantages need to be demonstrated
to the engineers. For example, it enables multi-
disciplinary collaboration by easing the finding of
data within the team and across the company,
which increases efficient problem-solving. More-
over, it allows different interconnecting solutions
for the same problem and highlights unexplored
solutions.

In the context of crash simulation searcha-
bility, we focused on predicting the similarity of
simulations and a corresponding ranking. Regard-
less, enhanced searchability will also bring benefit
to other CAE domains and other semantics of
a domain, e.g., design features, cause and effect
analyses, modeling techniques, discipline require-
ments, and project decisions.

Our graph modeling results in a heterogeneous
graph and we need to consider unsupervised learn-
ing. To be able to use SimRank-style methods,
the only method we found suitable in our sce-
nario, we extracted a bipartite-weighted graph.
Additionally, we introduced an alternative weight
normalization for SimRank++-. The proposed nor-
malization is based on target nodes instead of
source nodes. We could show that this works bet-
ter for our addressed application of predicting the
similarity of crash simulations and the correspond-
ing ranking of simulations, shown on a constructed
illustrative example with labels.
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Additionally, we compared similarity predic-
tions using part-based and component-based ap-
proaches. Here we introduced an automatic ap-
proach to group the parts and combine the
features. While the overall outcome for part-
based and component-based similarity is close,
the component-based similarity provides a more
stable prediction, whereas the part-based similar-
ity is a more sensitive technique. Consequently,
we recommend component-based similarity in par-
tial comparison of simulations and part-based for
complete model comparison.

On industrial data, we could show that our
methods scale up to real data scenarios. Overall,
we could verify the simulation similarity pre-
diction, while the data representations showed
promise for outlier detection and clustering of
simulations based on similarity score distribution.

To further extend the graph-based search ca-
pability for the CAE domain we intend extensions
of the graph model. For the case of crash sim-
ulations, one can consider quantifying the input
designs and including different outputs of the
simulations. Design features support further link
prediction tasks such as the similarity of the FE-
models’ inputs or cause-effect relations that in-
terconnect the input designs and output features.
However, including more simulation outcomes will
also require a feature embedding to combine the
features or aim for a SimRank formulation with
multi-edge weights.

Furthermore, extending applications of graph
analytics methods for domain-specific demands
will assist cross-domain solutions. Including the
multi-discipline requirements as the search object
will support ranking the cross-discipline solu-
tions. Another step to enhance searchability is
to improve the data labeling to leverage result
assessment. Enhanced graph models with larger
numbers of simulations stored would also allow
applying graph neural networks in this domain.

One approach for improving data labeling is
the integration of the current method in com-
panies as a dynamic report platform to collect
feedback from engineers, e.g., CAEWebVis'! in-
troduced in [17]. Only with feedback on the
predicted similarities from engineers can one envi-
sion a transferring of the unlabeled CAE data to

labeled data. Such labeling will open up new pos-
sibilities to empower further ML solutions, e.g.,
graph neural networks. To allow further investiga-
tion of graph analytics for the CAE process, we
release our illustrative example, the databases and
the source code with a user tutorial'2.
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