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Abstract

Biological systems are ubiquitous, encompassing complex molecular networks govern-
ing single-cell organisms to expansive ecosystems profoundly impacting our planet’s
environment. In biology, the adoption of a systems approach seeks to achieve a
comprehensive, quantitative understanding of living organisms comparable in some
ways to the kind of understanding we have of systems in engineering and physics.
In this context, a major challenge in scientific AI is causal learning. To address
emerging biomedical questions, this work proposes a deep neural architecture that
learns causal relationships between variables by combining high-dimensional data
with prior causal knowledge. In particular a combination of convolutional and graph
neural networks is utilized within a causal risk framework, specifically designed to
handle the high dimensionality and typical sources of noise frequently occurring
in large-scale biological data. In experimental evaluations, the proposed learner
demonstrate its effectiveness in identifying novel causal relationships among thou-
sands of variables. The results are based on extensive gold-standard simulations
with known ground-truth. Additionally, real biological examples are considered,
where the models are applied to high-dimensional molecular data and their output
compared against entirely unseen validation experiments. These findings showcase
the feasibility of using deep neural approaches to learn causal networks at a large scale.

Additionally, this work presents a novel method for learning dynamical systems
from high-dimensional empirical data combining variational autoencoders and spatio-
temporal attention within a framework that enforces scientifically-motivated invari-
ances. The focus is set to scenarios in which data are available from multiple different
instances of a system whose underlying dynamical model is entirely unknown at
the outset. The presented approach builds upon a separation, dividing the encod-
ing into instance-specific information and a universal latent dynamics model shared
across all instances. This separation is achieved automatically and driven solely by
empirical data. The results offer a promising new framework for efficiently learn-
ing dynamical models from heterogeneous data. This framework has the potential
for applications in various fields, including physics, medicine, biology, and engineering.

In a different approach, this work explores interventional experiments to shed light
on the causal structure within a system. Under the framework of instrumental vari-
ables, a new and mathematically sound cause-effect estimator is proposed to uncover
sparse causal relations based on unpaired data regimes. The primary focus lies in
predicting the outcomes of interventions that have not been performed before, based
on data gathered from observed interventions with unknown characteristics. To il-
lustrate, this framework addresses inquiries such as how hypothetical alterations
through gene-level interventions could impact the growth rate of a cell. The efficacy
of this method is studied on simulated benchmarks and semi-simulated test cases
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Abstract

incorporating human single cell measurements.

Last, this work intends to advance the prediction and comprehension of individual
treatment effects in a longitudinal setting. Specifically, this work is investigating
clinical records of patients afflicted with wet age-related macular degeneration which
if untreated can lead to severe vision loss and legal blindness. To gain a comprehensive
understanding of this disease progression, supervised end-to-end models are devised
and evaluated to estimate drug responses based on highly irregular time-series data
and forecast future treatment effects at individual patient level.

vi



Zusammenfassung

Biologische Systeme sind allgegenwärtig und umfassen komplexe molekulare Netz-
werke, die von einzelligen Organismen bis hin zu ausgedehnten Ökosystemen reichen,
und die Umwelt unseres Planeten tiefgreifend beeinflussen. Derzeit wird in der Biolo-
gie ein umfassendes, quantitatives Verständnis lebender Organismen durch komplexe
Systemansätze angestrebt, vergleichbar mit der Art und Weise wie technische Syste-
me abstrahiert und beschrieben werden. In diesem Zusammenhang ist das Erkennen
von kausalen Zusammenhängen eine große Herausforderung für derzeitige Algorith-
men der künstlichen Intelligenz. Diese Arbeit stellt ein neues Konzept auf Basis eines
neuartigen neuronalen Netzes zur Integration von Kausalität in der Biomedizin vor,
das kausale Beziehungen zwischen Variablen durch die Kombination von hochdimen-
sionalen Daten und bereits bekannten kausalen Zusammenhängen identifizieren kann.
Insbesondere wird eine Kombination von Netzwerken basierend auf Faltungs- und
Graph-Operationen verwendet, um Herausforderungen, wie z.B. hochdimensionale
Messungen und Störquellen, effektiv in biologischen Anwendungen zu adressieren.
Die Effektivität zur Bestimmung von kausalen Beziehungen zwischen Tausenden von
Variablen wird in umfangreichen Simulationen gezeigt. Darüber hinaus werden reale
biologische Beispiele betrachtet, bei denen der präsentierte Ansatz auf hochdimensio-
nale molekulare Daten angewandt und die Ergebnisse mit Validierungsexperimenten
verglichen werden.

Desweiteren wird in dieser Arbeit eine neuartige Methode zum Lernen dynamischer
Systeme aus hochdimensionalen empirischen Daten vorgestellt. Dieser neue Ansatz,
basierend auf einem “Variational Autoencoder” mit räumlich und zeitlicher Gewich-
tung, ist in der Lage invariante Strukturen abzuleiten. Der Schwerpunkt liegt dabei
auf Szenarien, in denen Daten von mehreren verschiedenen Realisierungen eines Sys-
tems, dessen zugrunde liegendes dynamisches Modell unbekannt ist, verfügbar sind.
Der vorgestellte Ansatz basiert auf einer Trennung in instanzspezifische Informatio-
nen und ein universelles latentes Dynamikmodell, das alle Realisierungen beschreibt.
Diese Aufteilung erfolgt implizit und wird ausschließlich durch empirische Daten ge-
steuert. Diese Herangehensweise bietet einen vielversprechenden neuen Rahmen für
das effiziente Lernen dynamischer Modelle aus heterogenen Daten mit potentiellen
Anwendungen in der Physik, Medizin, Biologie und Technik.

Ein anderer Ansatz dieser Arbeit untersucht die Möglichkeit kausale Strukturen an-
hand von Experimenten mit Interventionen zu identifizieren. Unter Zuhilfenahme
von Instrument-Variablen wird ein neuer und mathematisch fundierter Algorithmus
zur Bestimmung von Ursache und Wirkung vorgestellt. In diesem Zusammenhang
wird die Indentifizierung von seltenen, kausalen Beziehungen auf Grundlage von
nicht zusammenhängenden Datenpaaren untersucht. Das Hauptaugenmerk liegt hier-
bei auf der Vorhersage der Auswirkungen von unbeobachteten Interventionen auf
der Grundlage von Daten, die bei Experimenten mit unbekannten Interventions-
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Zusammenfassung

charakteristiken gesammelt wurden. Dieser Forschungsansatz umfasst beispielsweise
die Frage, wie sich Eingriffe an Genen auf die Wachstumsrate einer Zelle auswirken
könnten. Die Wirksamkeit dieser Methode wird anhand von simulierten und teilwei-
se simulierten Testfällen, die aus Gensequenzierungen von einzelnen menschlichen
Zellen bestehen, näher beleuchtet.

Zuletzt befasst sich diese Arbeit mit dem Verständnis und einer verbesserten Vorher-
sage individueller Behandlungseffekte auf Basis von logitudinalen Daten. Konkret
werden in dieser Arbeit klinische Aufzeichnungen von Patienten untersucht, die
an neovaskulärer altersbedingten Makuladegeneration erkrankt sind. Unbehandelt
kann diese Krankheit zu einem signifikantem Sehverlust und der vollständiegen Er-
blindung führen. Um ein umfassenderes Verständnis dieses Krankheitsverlaufes zu
erlangen, werden neue Algorithmen abgeleitet, adptiert und untersucht. Im Fokus
steht dabei die Vorhersage des individuellen Ansprechverhaltens von Patienten auf
verabreichte Medikamente unter Berücksichtigung von zeitlich sehr unregelmäßi-
gen Untersuchungen und die Vorhersage von zukünftigen Behandlungseffekten eines
einzelnen Patienten.
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1 Introduction

Biological systems surround us almost everywhere, ranging from intricate molecular
networks that dictate the functions of single-cell organisms to expansive ecosystems
that profoundly impact our planet’s environmental conditions. The primary objective
of incorporating a systemic approach in the field of biology is to attain quantitative
comprehension of living organisms. This level of understanding would mirror the
meticulous manner in which engineering elucidates the engineered counterparts of
physical systems. This endeavor would enable valuable predictions and insights into
biological processes. In the past, machine learning methods have been shown to be
efficient in finding correlations from data, but it remains challenging to derive causal
– rather than predictive or correlative – insights via machine learning methods. This
issue severely limits the applicability of traditional machine learning methods to pro-
vide a deeper understanding of the relationships between biological entities. The
study of causality is of utmost importance across many scientific disciplines, partic-
ularly in public health, medicine, and related fields. Visionary figures like Wright,
Rubin, and Pearl have paved the way for causality to become a mathematical con-
cept with precise semantics and a well-founded logical foundation, addressing crucial
questions: (1) why events unfold as they do, and (2) what factors contribute to their
unfolding? This concept serves as the bedrock upon which scientific principles are
built, shaping our understanding of natural phenomena, human behavior, and the
interplay of societal systems.

Despite the considerable progress made, understanding the underlying dynamics of
complex systems remains an ongoing challenge that continues to inspire researchers
worldwide to expand our current knowledge boundaries. Before delving into the
mathematical concepts presented later in this work, let’s first explore the implica-
tions and various aspects of causality. To illustrate this, we first consider a few
examples of common diseases and how their understanding and management is linked
to causal understanding.

An essential and complex issue in disease studies lies in the identification and expla-
nation of genotype-phenotype relationships. Cause-effect networks in cancer research,
for instance, encompass a conceptual structure designed to depict the complex inter-
play of factors and occurrences contributing to the evolution and advancement of
cancer. These networks offer way to grasp the interactions and mutual influences
among diverse molecular and cellular constituents illuminating the onset and dissem-
ination of malignant cells. In numerous instances of cancer, distinct biomarkers such
as specific genetic mutations, proteins, or molecules with well-defined characteris-
tics are available. These biomarkers can be exploited for early detection, diagnosis,
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1 Introduction

monitoring treatment responses as well as streamline research including the identi-
fication of cancer specific cause-effect networks. Cancer research draws advantage
from a broad spectrum of firmly established cell lines and animal models that simu-
late various facets of the disease. These models empower researchers to analyze the
progression of cancer, evaluate potential therapeutic approaches, and delve into the
underlying mechanisms at play. The relatively swift advancement of the disease in
cancer cases allows researchers to expedite the evaluation of potential treatments
in terms of their effectiveness. However, it is important to note that only certain
types of cancer can be attributed to specific gene mutations, whereas for others, the
relationships between genetic modifications and resulting phenotypic traits are not
strictly one-to-one. Distinct genetic abnormalities in various cancer patients can re-
sult in identical disease characteristics, creating a challenge in elucidating connections
between genetic makeup and observable traits as well as response to therapy, which
can differ between patients with seemingly similar cancers. One plausible reason for
the diversity observed among cancer instances is that disparate genetic modifica-
tions can disrupt shared pathways, ultimately yielding similar disease manifestations.
Approaching diseases from a network-oriented perspective aids in surmounting the
complexities linked to genotype-phenotype associations and simplifies the task of
identifying the genetic origins of diseases.

It is now widely accepted that the initiation of human diseases is driven by a multi-
tude of factors, rather than being attributed to a single, distinct cause. In essence,
the synergy of various elements contributes to the progression of a disease. As an
illustration, the decline in cognitive and functional abilities among elderly individ-
uals, as witnessed in the context of progressive neurodegenerative disorders like
Alzheimer’s disease, represents one of the most significant public health challenges of
our time. Alzheimer’s is not a single disorder but a spectrum of related conditions
with varying presentations. This heterogeneity complicates efforts to find a single
cause that applies uniformly across all cases. The brain changes associated with
Alzheimer’s are multifaceted, involving protein misfolding, accumulation of amyloid
plaques and tau tangles, inflammation, and synaptic dysfunction. Understanding
how these changes interact and cascade is challenging. While some rare cases of
early-onset Alzheimer’s can be linked to specific genetic mutations, the more com-
mon late-onset form has a more complex genetic component involving multiple genes
with smaller effects. Identifying which genes contribute and how they interact with
environmental, social and lifestyle factors is a complex puzzle, especially considering
the vast amount of potential causes and the fact that our understanding of the intri-
cate cellular and molecular processes of the brain is still incomplete.

The mechanical and electro-physiological properties of the heart are among the best
understood of any organ in the human body. Yet we see heart diseases, e.g. supraven-
tricular arrhythmia, for which we are not able to derive exact causes. Typically,
the heart’s electrical system generates impulses that coordinate the heart muscle’s
contraction and relaxation, resulting in a regular heartbeat. However, in cases of

2
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A B

Figure 1.1: Example of a confounder: The settings shows the interconnected nodes A,
B, and the hidden common cause C. The arrow directions signify potential
influences. Observational data suggests a correlation between A and B,
however, the relation between A and B is not a direct cause-and-effect
relationship; rather, it is confounded by the variable C. This situation
demonstrates how a confounding factor (in this case the variable C), can
create a deceptive appearance of a causal relationship between A and B,
when in reality, there is no causal influence of A on B or B on A, rather
both are caused by C.

supraventricular arrhythmia, an extra electrical signal arises prematurely, causing an
early heartbeat, or the electrical signals may follow an abnormal pathway, leading to
a rapid and irregular rhythm.

Supraventricular arrhythmia can be triggered by various factors, such as stress, caf-
feine, alcohol, certain medications, electrolyte imbalances, and underlying heart
conditions. Additionally, there is an association between supraventricular arrhyth-
mia and a genetic defect called Wolff-Parkinson-White syndrome. Supraventricular
extrasystoles may also arise from prior cardiac infections and cardiomyopathy. Viral
and bacterial pathogens can invade atrial tissue, causing mutations that affect the
cells’ conductivity. These mutated loci within the atrium discharge additional electri-
cal impulses, leading to irregular heart contractions. In such cases, supraventricular
arrhythmia may result from a potentially resolved infection that still has lingering
effects. Many cases of supraventricular extrasystoles go undetected or are detected
at a later stage since long-term electrocardiograms are not routinely performed for
all individuals. Determining the exact cause of supraventricular arrhythmia remains
challenging for many patients, and reliable proof for diagnosis cannot be obtained
through medical imaging or probes prior to surgical intervention. In this scenario,
algorithmic assistance aimed at enhancing diagnosis could involve the identification
of abnormal biomarkers associated with cardiac arrhythmia in blood samples, the
prediction of a patient’s future health condition, or the evaluation of the possible
outcomes resulting from interventions or treatments like surgery or medication.

These examples and many others highlight the significant importance of causal
learning in biomedical applications. It enables researchers to gain insights into the
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1 Introduction

underlying mechanisms of biological systems and their responses to external fac-
tors like environmental influences and therapeutic treatments. However, learning
causal structures from data in such contexts remains challenging. These networks
are now understood to be context-dependent and are believed to underlie disease
heterogeneity and variations in response to molecular therapies. Yet, characteriz-
ing this heterogeneity faces obstacles due to the complex nature of learning causal
structures at scale. The difficulties in understanding causality, combined with spe-
cific characteristics of extensive biological systems like numerous factors, intricate
processes, scarce data, and varying levels of noise, contribute to this challenging
situation. Confounders, in particular, have the tendency to create a false percep-
tion of cause-and-effect relationships between two variables, even when there is no
actual link between them. To illustrate, consider the scenario involving three inter-
connected points, depicted in Figure 1.1. Any apparent correlation between node A
and B is not the result of a direct causal connection between the observed nodes but
rather arises from a hidden common cause. Such a confounding element can mislead
medical professionals and researchers into making erroneous assumptions about the
impacts of treatments, interventions, or exposures. Furthermore, confounders them-
selves might be subject to the influence of other unmeasured factors, leading to a
complex sequence of confounding that is intricate to disentangle. To compound the
challenge, experimental settings that hold promise to uncover confounding variables
could either raise ethical concerns or become prohibitively expensive in practical
terms.

Furthermore, describing underlying dynamics, even in simple systems, may appear
complex. As a result, data-analytics tools are often relied upon to establish tractable
and interpretable reduced-order models. Most commonly used approaches require
prior knowledge of the underlying set of state variables before discovering new natu-
ral laws or low-level system descriptions. Unfortunately, in many research scenarios,
scientists only have access to data that does not directly correspond to the variable
space of the underlying system but represents its evolution. Therefore, the ability
to extract knowledge based on longitudinal observations without prior knowledge
would represent a paradigm-changing advancement for problems where access to the
variable space of the underlying system is limited or restricted.

Motivated by these challenges, this thesis puts forward four novel approaches to
tackle some of the most relevant shortcomings with regard to causal learning and
dynamics identification in biomedical applications. These include

• Deep Causal Structure Learning: A novel end-to-end learning frame-
work to shed light on causal relationships in large-scale molecular networks
is introduced in Chapter 2. Despite remarkable progress in theory and meth-
ods, such causal structure learning problems remain challenging for large-scale
real-world applications due to a number of factors, including unknown and
complex data-generating processes and high-dimensionality. Hence, this thesis
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exploits a novel deep architecture for causal structure learning in high dimen-
sions. The presented approach is based on decision-theoretic/risk-based views
of structure learning and is targeted at learning from a combination of em-
pirical data and prior causal knowledge. The proposed learner can effectively
identify causal relationships across thousands of variables, as verified in exten-
sive (linear and nonlinear) simulations where ground-truth structure is known
and can be directly compared against. Furthermore, using real-world biolog-
ical data it is found that the learner is able to provide output – at genome
scale, spanning thousands of variables – that agrees well with entirely unseen
validation experiments.

• Learning of Latent Dynamical Systems: Chapter 3 proposes a new frame-
work for learning latent dynamics from observed data combining variational
autoencoders and spatio-temporal attention within a learning framework mo-
tivated by certain scientifically-observed invariances. These invariances are
motivated by two findings concerning classical scientific models. First, it is
essential for every output from a class of mechanistic systems to be expli-
cable through a single model that possesses universality across all instances
within this class, irrespective of their apparent differences or variations. Second,
realization-specific factors (such as initial conditions or constants) are often
the same at all times in a given realization and are in that sense time-invariant.
Extensive empirical evaluation proved the effectiveness of the proposed learner
for various spatio-temporal systems characterized by dynamics governed by
ordinary or partial differential equations.

• Intervention Response Prediction: A sparse-effect model for unpaired
data using instrumental variables is presented in Chapter 4. Intervention
experiments emerge as a vital tool, playing a crucial role in advancing our
comprehension of the underlying causal structure within a system. Moreover,
these experiments empower us with the ability to predict the outcomes of
unobserved interventions, further deepening our understanding of complex
phenomena. In this context, a scientifically motivated scenario is examined
consisting of a response variable and corresponding covariates. Some of these
covariates act as causal predecessors, while others are linked through concealed
confounding factors. The system is observed through interventions, where the
targets of these interventions remain unknown. The ultimate objective is to
forecast the outcome of the investigated response variable based on its covariates
in the context of an unseen intervention. The effectiveness of the proposed
sparse regression framework is demonstrated on a simulated benchmark and a
semi-simulated test cases in which the data of the covariates stems from human
single cell data.

• Estimation of Indivual Treatment Effects: The focus of Chapter 5 lies on
predicting individual treatment effects for patients afflicted with wet age-related
macular degeneration based on Optical Coherence Tomography (OCT) scans
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1 Introduction

taken at multiple time points. In this context, a sophisticated treatment effect
estimator is proposed that predicts a continuous future treatment effect for
individual patients given its past data trajectory. To investigate the complex
dynamics of wet AMD and to predict individual patient responses to treatment,
state-of-the-art statistical methodologies, including Bayesian linear models,
Deep Gaussian Processes, and temporal attention networks are employed.
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2 Causal Learning in High Dimensions

Causality is a fundamental concept that lies at the heart of scientific inquiry, enabling
us to understand the relationships between variables and uncover the mechanisms
that drive observed phenomena. It delves into the fundamental question of how
changes in one variable directly influence changes in another. By unraveling cause and
effect relationships, causality provides a deeper understanding of the world around us.

In our daily lives, we often observe associations between variables. However, it is
important to differentiate between mere correlation and true causation. Correla-
tion refers to a statistical association between two variables, indicating that they
tend to vary together. However, correlation alone does not establish causation. To
truly understand causality, we need to go beyond the surface-level observations
and discern the causal links that drive the observed patterns. It enables us to
untwist the intricate tapestry of cause and effect, shedding light on the underly-
ing processes, hidden factors, and mechanisms that govern the phenomena we observe.

In the pursuit of causal inference, we employ a diverse array of sophisticated method-
ologies and techniques. Rigorous experimental designs, quasi-experimental ap-
proaches, natural experiments, and observational studies all contribute to the arsenal
of tools at our disposal. From randomized controlled trials that hold sway in the
medical field to instrumental variable methods that prevail in econometrics, each
methodology serves as a valuable instrument in our quest for causal knowledge.

Causality is a complex task that involves rigorous investigation and careful considera-
tion of various factors. One of the primary challenges in establishing causality is the
presence of confounding variables. These are additional factors that are associated
with both the cause and the effect, creating a misleading relationship. Confounding
variables can obscure the true causal relationships, making it essential to disen-
tangle their influence. Another challenge is selection bias, which arises when the
process of selecting individuals or samples for a study is not random, leading to a
non-representative sample. This bias can distort causal estimates and compromise
the validity of causal inferences. Reverse causality is yet another challenge, where
the perceived cause and effect are actually reversed. Differentiating between cause
and effect is crucial to avoid drawing incorrect conclusions. Ethical and practical
limitations also pose challenges in establishing causality. Conducting randomized
controlled trials or interventions may not always be feasible due to ethical concerns
or practical constraints. In such cases, researchers often rely on observational data,
which can introduce additional complexities and biases.
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2 Causal Learning in High Dimensions

Despite these challenges, establishing causality is of utmost importance. It forms
the basis for evidence-based decision making in various fields, including public pol-
icy, healthcare, economics, and social sciences. By understanding causality, we can
identify effective interventions, guide policy development, and improve outcomes
for individuals and societies. Understanding the factors that causally contribute to
diseases and health conditions is vital for devising successful preventive measures.
Causal inference plays a key role in identifying these factors and enables us to deter-
mine how they influence an individual’s response to treatments or interventions. This
understanding empowers researchers to develop personalized medicine approaches
that tailor treatments to specific patient characteristics, thereby optimizing health
outcomes. Furthermore, causal inference methods offer a pathway to unravel the
intricate pathways and mechanisms underlying disease progression. By identifying
causal factors and their relationships, researchers can gain valuable insights into the
fundamental biological processes at play. This knowledge holds the potential for de-
veloping new therapies or interventions that target the root causes of diseases.

In this Chapter, we will explore the complexities of causality and introduce a novel
methodology for inferring causal structures. Our proposed deep architecture for
causal learning is specifically motivated by the challenges posed by high-dimensional
biomedical problems. By establishing causal relationships, we gain the ability to
make better-informed decisions, design interventions that are more effective, and
develop policies and treatments that have a meaningful impact.

2.1 Descriminative Causal Structure Learning

From a machine learning (ML) perspective, changes in causal regime (e.g. under in-
tervention on a system) can lead to nontrivial changes in data distributions. Hence,
causal learning involves a broader kind of generalization than in standard predictive
ML tasks and the study of causality continues to be a significant and unresolved area
within AI research [3, 4]. To better understand the limitations and sources of error
in an overall causal inference process, it can be beneficial to make a clear distinction
between three key components. First, statistical inference focuses on drawing conclu-
sions about the generating distribution or its properties based on the available data.
Second, causal discovery and causal structure learning involves extracting as much
information as possible about the underlying causal structure using the statistical
quantities, such as probability distributions or their characteristics. Lastly, causal
inference involves determining quantitative causal effects by considering both the
identified causal structure and the associated statistical quantities. It is important
to note that these three inference steps are not always completely separable, and
many approaches exist that combine them in interesting ways.

This work focuses on the crucial task of discerning causal relationships between vari-
ables, known as causal structure learning, which holds significant importance across
various scientific domains [5]. The rich body of work in learning causal structures
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2.1 Descriminative Causal Structure Learning

includes, among other methods, PC [6], LiNGAM [7], IDA [8], GIES [9], RFCI [10],
ICP [11] and MRCL [12]. Scaling causal structure learning to large problems has
been facilitated by reformulation as a continuous optimization problem [13] and re-
cent neural approaches, e.g. SDI [14], DCDI [15], DCD-FG [16], or ENCO [17] have
demonstrated state-of-the-art performance. However, the process of learning causal
structures from data remains challenging and inherently complex. It continues to
present difficulties, especially when dealing with real-world problems that involve
conditions such as high dimensionality, limited data sizes, and the presence of hid-
den variables.

In biomedicine, causal networks encoding interplay between entities such as genes or
proteins, encoded as directed graphs or networks, play a central conceptual and prac-
tical role and carry causal semantics that are widely used by biomedical researchers
to understand and reason about processes underlying health and disease. Such net-
works are increasingly understood to be context-dependent, in the sense that the
causal architecture can differ between cell types or disease states manifesting as vari-
ation in disease heterogeneity and inhomogeneous response to molecular therapies
(see, among others, [18, 19, 20, 21]).

Going beyond the available data to ask what would happen under a change to the
system by an imposed intervention [3, 4] and understanding biomedical heterogene-
ity through causal networks motivates a need for efficient and effective approaches
for causal structure learning [5]. However, a key bottleneck in realizing such a vision
lies in the lack of effective AI workflows to learn causal structures from real-world
data under conditions characterized by high dimensionality, limited data sizes, or
the presence of hidden variables.

Under these settings, the ability to learn such networks from data would enable a
paradigm shift by facilitating a comprehensive characterization of networks, e.g.,
across disease states. In high-dimensional biomedical settings, there are common
problems stemming from methodological limitations, difficulties in scaling, and
specific characteristics of large-scale biology. These characteristics include high di-
mensionality, intricate underlying events, the existence of hidden or unmeasured
variables, limited data availability, varying levels of noise, and more. Thus, we pro-
pose a deep architecture for causal structure learning that is motivated in particular
by high-dimensional biomedical problems. Specifically, we frame causal structure
learning as a non-linear optimization problem in which distributional and graph
structural information are combined to output information on causal relationships
between variables. The approach we put forward operates within an emerging causal
risk paradigm that allows us to leverage AI tools and scale to very high dimensional
problems involving thousands of variables. The learners proposed allow for the inte-
gration of partial knowledge concerning a subset of causal relationships and then
seek to generalize beyond what is initially known to learn relationships between all
variables. This corresponds to a common scientific use-case, in which some prior
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2 Causal Learning in High Dimensions

knowledge is available at the outset – from previous experiments or scientific back-
ground knowledge – but it is desired to go beyond what is known to learn a model
spanning all available variables.

A large part of the causal structure learning literature involves learning models that
allow explicit description of the relevant data-generating model (including both ob-
servational and interventional distributions) and are in that sense “generative" (see,
e.g. [5] and references therein). Taking a different approach, a number of recent pa-
pers, including [22, 23, 12, 24], have considered learning discrete indicators of causal
relationships between variables (without necessarily learning full details of the under-
lying data-generating models) and this can be viewed as related to notions of causal
risk [25]. Such indicators may encode for example, whether, for a pair of variables A
and B, A has a causal influence on B, B on A, or neither.

The approach we propose, called “Deep Discriminative Causal Learning” (D2CL), is
in the latter vein and inspired by these efforts. In very general terms, the idea is
as follows. We consider a version of the causal structure learning problem in which
the desired output consists of binary indicators of causal relationships between ob-
served variables [12, 25], i.e. a directed graph with nodes identified with the variables.
Available multivariate data X are transformed to provide inputs to a neural network
(NN) whose outputs denote the causal indicators. The dimension of the problem is
the number of variables between which causal relationships are to be inferred. As
noted above, this can be large in biomedical problems, hence we focus on high di-
mensional problems with thousands of variables. D2CL differs from classical causal
structure learning approaches, both in terms of the underlying framework (based on
discriminative causal risk rather than generative causal models) and in leveraging
neural learning. The assumptions underlying the approach are also different in na-
ture from those usually made in causal structure learning and concern higher-level
regularities in the data-generating processes (see Sec. 2.7).

Thus, D2CL represents a discriminative neural causal learning approach that is
demonstrably effective in the high-dimensional, limited data regime characteristic
of many real-world problems, including in biomedicine, spanning large numbers of
variables. In summary, the proposed approach has the following main characteristics:

• D2CL focuses on causal learning for real-world, high-dimensional problems with
thousands of nodes but limited data availability and lack of gold-standard sim-
ulation engines, representing typical conditions in high-dimensional biomedical
problems. Acyclicity (of the directed graphs to be learned) is not assumed, nor
is availability of any standard factorization of the joint probability distribution.

• For D2CL it is not required that samples in the data matrix X are drawn from
a single distribution. Samples can be drawn from, e.g., a mix of observational,
and interventional distributions and the causal characteristics of these regimes
(e.g. which node(s) or latents were intervened upon) need not be known in
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2.2 Preliminaries

advance. This is a common setup for real-world data and in particular for
emerging experimental designs in biology (see examples below).

• During the training phase, pattern and feature detectors are trained in a
supervised fashion. These learned patterns are statistical representations of
certain aspects of underlying causal processes (see Sec. 2.5) and possess causal
semantics via the input labels, in a similar sense to the way learned feature
maps in image processing and object recognition implicitly capture image
semantics.

• For inference, the trained network can be used to output a directed causal
relation between any pair of variables and thus, D2CL is able to provide a
global graph (i.e. over all nodes) which could possibly include cycles. Thus,
the model is trained on partial knowledge of some cause-effect relations (prior
causal knowledge Π) but seeks to generalize to the complete problem.

• Inference of causal direction is achieved via a combination of causal knowledge
encoded in supervision labels and the fact that the NNs used are not rotation-
invariant (since if an image feature is rotated, in general this will not match
the expected input of a filter trained on non-rotated input). Although lack of
rotation invariance is not desirable in classic image processing, the proposed
learner exploits this to break symmetries. Hence, the output adjacency matrices
are not symmetric in general.

2.2 Preliminaries
Graphical models, in some form, are commonly utilized as the fundamental framework
for both causal structure learning and the exploration of causal relationships. In this
work, we set focus to structural causal models (SCMs) [6, 3], but other models might
be more suitable under different settings. Let {X1 . . . , Xp} be a set of p random
variables whose relations are summarized in a directed graph G. We assume that one
node of the vertex set Vi ∈ V (G) is associated with the corresponding variable Xi. In
line with [26], we define the domains of random variables as Xi = xi ∈ R : p(xi) > 0,
i ∈ V (G) and the term p(Xi) is used to refer to the distribution or probability. Here,
we only consider continuous random variables as they are dominant in our biomedical
applications. The set of graphical parents of Xj is denoted by Pa(Xj) and each
edge (i, j) ∈ E(G) represents a direct causal relation from variable Xi to Xj , if and
only if i ∈ Pa(Xj). Then, we can define a SCM as a set of functional assignments of
the form

Xi=fi(PaG∗ (Xi), UXi
) for i ∈ {1, . . . , p}, (2.1)

where PaG∗ (Xi) denotes the set of parents in the ground truth graph G∗ for node i
and fi is a node-specific function. Exogenous noise terms UXi

are assumed jointly
independent and distributed as UXi

∼pi, where pi is a node-specific density. We only
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2 Causal Learning in High Dimensions

assume a factorization of observations according to the structure encoded in graph
G. This entails a joint probability distribution that satisfies

p(X) =
∏

i∈V (G)

p(Xi|Pa(Xi)). (2.2)

We refer the set of distributions p(X) that are factorized according to eq. 2.2
as exhibiting the Markov factorization property [3] in relation to graph G. It is
important to note that the Markov factorization does - in general - not entail a
unique identifiability of a graph structure based on its conditional independencies.
It is quite often the case that the same set of conditional independencies holds for a
number of different graph structures. These graphs are called Markov equivalent and
form together a Markov Equivalence Class (MEC). In general, we can state that a
graph G is only identifiable up to a Markov Equivalence Class M(G). Furthermore,
many causal structure learning algorithms rely on the assumption that the set of
conditional independencies in eq. 2.2 is directly reflected in the structure of the
graph G. This assumption is known as causal faithfulness.

Performance evaluation in non-causal tasks relies on classical sampling theory, as-
suming that all present and future data follow the same probability model. However,
causal models introduce challenges as they need to capture a range of distributions
to overcome the limitation of learning Markov equivalent graph structures solely
from observational data. This divergence from conventional machine learning and
statistical tasks necessitates alternative evaluation methods for causal structure learn-
ing. To gain insights into the specific structures within a Markov equivalence class
(MEC), researchers can employ the concept of interventions. In general, interven-
tions refer to any modification made to the structural assignments in the equation
2.1. Intuitively, interventions can involve changing coefficients within the function fi,
altering the parent set Pa(Xi), or modifying the noise term UXi

. Consequently, the
resulting interventional distribution, which represents the data distribution under a
specific intervention regime I, can differ significantly from the observational data dis-
tribution. In formal terms, an intervention upon a set of nodes {Xi : i ∈ I} means
replacing the conditional distributions with new distributions. The joint probability
distribution changes under an intervention to

p̃(X) =
∏
i/∈I

p(Xi|Pa(Xi))
∏
i∈I

p̂(Xi|Pa(Xi)) (2.3)

where p̂(Xi|Pa(Xi)) indicates the conditional distribution of node Xi in its general
form. Similar to the setting with pure observational data, it is only possible to
characterize the graph structure under interventions up to an interventional Markov
Equivalence Class (I-MEC), meaning that two different graphs with the same set
of conditional independencies under interventions with regime I = {I1, . . . , Ik} are
called I-Markov equivalent. In the limit of interventional knowledge, it is generally
possible to identify a unique graph structure from observational and interventional
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data. The formulation of upper bounds on the number of experiments necessary to
identify causal structure is subject to recent and ongoing research [27, 28].

2.3 Methods Summary
Here, we provide a very brief, high-level summary of the main ideas, which will be ex-
plored in more details later on. We propose an end-to-end neural approach to learn
causal networks from a combination of empirical data X and prior causal knowledge
Π. The general D2CL workflow and its application to biomolecular problems are
summarized in Figure 2.1. Here, we offer a concise overview of the key concepts that
will be further investigated in greater depth at a later stage.

Suppose X1, . . . , Xp is a set of variables whose mutual causal relationships are of
interest. Let G∗ denote an (unknown) graph whose directed edges encode these
causal relationships. D2CL seeks to learn G∗ from two inputs: (1) empirical data
X containing measurements on each of the variables of interest, and (2) prior
causal knowledge Π concerning a subset of causal relationships. This corresponds
to a common paradigm in real-world scientific settings, where some data is mea-
sured on variables of interest, but only limited knowledge about causal relationships
is available at the outset (e.g. from prior scientific knowledge or specific experiments).

Hence, we formalize the learning task in the following way. For each ordered pair of
variables with indices (i, j) whose causal status is not known via Π, our goal is to
learn an indicator of whether or not Xi has a causal influence on Xj . D2CL treats
these causal indicators as “labels" in a machine learning sense, using the available in-
puts to learn a suitable mapping. The goal of the mapping is to minimize discrepancy
with respect to the true, unknown causal status; this learning task can be viewed
through the lens of causal risk [25]. In line with scientific settings of interest, we as-
sume that the data X does not contain interventions that would allow an unknown
edge to be directly estimated. Specifically, the learner never has access to data in
which the parent node of an unknown edge was intervened upon. This makes learn-
ing challenging, as we require generalization to interventional regimes/distributions
that are entirely unseen.

Learning is done using a flexible, neural model Fθ with a set of trainable parameters
θ using the variable pairs T (Π) as a training set. The model is trained in a specific
fashion that leverages the input information Π as a supervision/training signal to
allow the model to learn representations suitable for generalization to novel causal
relationships. The network Fθ combines a convolutional neural network (CNN) and
a graph neural network (GNN) to resolve distributional and graph structural regu-
larities. A high-level sketch of the architecture is given in Fig. 2.2 of Sec. 2.8.

In image processing, CNNs make use of certain properties, e.g. spatial invariance,
that exploit the notion of an image as a function on the plane. Here, we leverage
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2 Causal Learning in High Dimensions

Figure 2.1: Conceptual overview of the proposed learning scheme (left) and its use for
large-scale biological experiments (right). We developed a neural architecture
for learning causal structures from a combination of empirical data and prior
causal knowledge. Learning causal structures from data entails learning a
graph G, whose nodes are system variables and whose directed edges encode
causal relationships between the variables. Such graphs encode causal – not
just correlational – information and their learning remains challenging. In
an abstract workflow (left), the proposed learner combines empirical data,
obtained from a specific system (with unknown underlying causal structure)
with prior causal knowledge, to give an estimate of the unknown causal
structure. In an instantiation of the general workflow for biological problems,
data is obtained from a specific biological system and causal prior knowledge
is derived either from known science or interventional experiments on the
system. In the example shown, the problem is high-dimensional since the
data matrix spans many different variables whose mutual causal relationships
are of interest. The learner combines the sources of information to give an
estimate of a graph spanning all nodes of interest, thereby leveraging the
limited inputs to generalize to the entire system. During the training phase,
the model learns features that help identify causal relationships between
variables. During inference, the trained model then decides, for any pair
of variables A and B, whether A has a causal influence on A, B on A, or
neither.
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the CNN toolkit to capture distributional information in data X represented as im-
ages. We create these visual representations for 2-tuples of nodes. Specifically, for a
variable pair (i, j) we use the n× 2 submatrix X(·,[ij]), to form a bivariate kernel
density estimate fij = KDE(X(·,[ij])) that is treated as an image input. The learned
structures are intended to follow the causal semantics of the input labels, in a simi-
lar sense to the way learned feature maps in image processing and object recognition
implicitly capture image semantics. Note that this is in general asymmetric in the
sense that fij ̸= fji. This is important since we want to learn ordered/directed rela-
tionships (symmetry here would imply inability to distinguish causal direction).

In addition, we use a graph neural network (GNN) approach to capture regulari-
ties in edge structure. GNNs extend key CNN ideas to non-Euclidean settings via
operations on graphs. The GNN learns a state embedding hj which contains the
information of the neighborhood for each node j. Each node is associated with an
initial feature vector containing the structural information of the neighborhood. The
GNN tower requires a graph as input; we provide an initial input graph Ĝ0 via com-
putationally lightweight routines which are solely based on the available data X (see
Methods). For each pair of nodes (i, j), an enclosing subgraph is extracted from the
input graph Ĝ0 and causally informative state embeddings are computed when the
enclosing subgraph traverses the GNN. In a GCN layer, each node aggregates in-
formation from its neighbors by taking a weighted average of their feature vectors.
These aggregated messages are multiplied by a learnable weight matrix to combine
information from neighbors. Then, the transformed messages are merged through an
aggregation layer capturing global causally informative patterns in the graph.

Finally, following training, the model Fθ – with parameters now fixed as a function
of the inputs X and Π – can be used to assign causal status to any pair via an infer-
ence step. Note that the overall estimate depends solely on the data X and prior
causal information Π. In applications, the global model output is tested system-
atically at large scale against either the true graph G∗ (in simulations) or against
entirely unseen interventional experiments (for real biological examples).

Our focus is on causal learning for real-world, high-dimensional problems with
thousands of nodes and finite, limited data, motivated by large-scale biomedical
problems. As outlined above, our model is trained end-to-end in a data-driven
fashion under a causal risk paradigm [12, 25]. Within this paradigm, acyclicity (of
the directed graphs to be learned) is not assumed, nor is availability of any standard
factorization of the joint probability distribution. Furthermore, it is not required that
samples in the data matrix X are drawn from a single distribution, rather samples can
be drawn from, e.g., a mix of observational, and interventional distributions and the
causal characteristics of these regimes (e.g. which node(s) or latents were intervened
upon) need not be known in advance. Nor is it required that we have interventional
data or prior information concerning all nodes. On the contrary, in all experiments
the learner never has access to data in which the parent node of an unknown edge
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was intervened upon nor prior information concerning the unknown edge. This is
a common setup for real-world data and in particular for emerging experimental
designs in biology (see examples below). During the training phase, pattern and
feature detectors are trained in a supervised fashion. The inference step allows
generalization to the complete problem (i.e. a global graph over all nodes); thus, the
model is trained on partial knowledge of some cause-effect relations (encoded in prior
causal knowledge Π) but seeks to generalize to the complete problem. We emphasize
that the NNs used are not rotation-invariant and hence can break symmetries and
allow inference of causal direction (experiments below include results concerning this
specific aspect).

2.4 Related Work

A significant body of research in causal structure learning focuses on developing
models that explicitly represent the data-generating process, encompassing both ob-
servational and interventional distributions. These models, referred to as “generative”
models, aim to capture the underlying mechanisms that generate the data, accom-
modating various assumptions and offering different levels of representational power.
Typically, these algorithms not only identify the causal directed acyclic graph (DAG)
but also establish functional relationships between nodes in the graph and their esti-
mated parent sets. In contrast, discriminative approaches diverge from the notion of
inferring functional representations and instead focus on unveiling causal patterns
directly from data. These approaches aim to discern causal structure by analyzing
the data itself, without explicitly attempting to infer the underlying functional rela-
tionships between variables.

Causal structure learning algorithms can be broadly classified into a few main
categories: (i) Constraint-based methods use statistical tests to identify conditional
independence relationships between variables, which can then be used to infer the
causal relationships between them. (ii) Score-based methods apply a scoring function
to evaluate candidate causal models based on how well they fit the data. The goal is
to find the model that maximizes the score. (iii) Hybrid methods combine elements
of both constraint-based and score-based approaches to overcome the limitations of
each. The first category of methods employ combinatorial optimization techniques
to identify the optimal graph structure by leveraging conditional independencies
present in the data. Under the assumptions of causal Markov property, causal
faithfulness, and no confounding variables, [6] were the first to present an algorithm
that estimated an asymptotically correct completed partial graph by iteratively
checking the conditional independence relations of two adjacent nodes conditioned
on all-size subsets of their neighbors. Further improvements suggest new versions
that are order-independent [29] or can detect unknown confounding variables [30,
31]. Recently, score-based methods have garnered significant attention, and several
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new promising approaches have been introduced. Traditionally, score-based learning
seeks to optimize a discrete score Q : D→ R over the space of DAGs D

min
G

Q(G) s.t. G ∈ D. (2.4)

This formulation is equal to a NP-hard optimization problem due to the non-convex,
combinatorial nature of the DAGness constraint growing super-exponentially with
increasing number of variables p. Commonly used methods solve this optimization
problem by performing some form of local search, which involves adding edges and
parent sets of one node at a time. This approach is efficient when each node has
only a few parents, but as the number of potential parents increases, local search
quickly becomes impractical. Additionally, these methods often rely on strict struc-
tural assumptions such as bounded in-degree, bounded tree-width, or edge constraints.

The GES algorithm [32] commences with an empty graph and proceeds iteratively
by adding and removing edges based on the optimization of a score function. During
this equivalence search, it explores the DAG space by adding edges in the forward
phase until the score stops increasing. Then, it repeats the process by deleting
edges one at a time, maximizing score improvement. The algorithm stops when no
more edges can be deleted. This concept was expanded to encompass situations
involving multiple intervention experiments and their corresponding interventional
distributions. This extension resulted in the development of the Greedy Interven-
tional Equivalence Search (GIES) algorithm [9] and enables regularized maximum
likelihood estimation within an interventional framework.

In their work, [13] propose a novel approach to the structure learning problem that
eliminates the need for combinatorial constraints. Instead, they frame the problem
as a continuous optimization task involving real-valued matrices. The combinatorial
constraint G ∈ D is replaced with a smooth equality constraint h(W ) = 0, where
W represents the weighted adjacency matrix of the graph G. The formulation is as
follows:

h(W ) = tr(exp(W ◦W )− d = 0 (2.5)

∇h(W ) = (exp(W ◦W ))T ◦ 2W (2.6)

Here, ◦ denotes the Hadamard product, and exp refers to the matrix exponential.
Importantly, the evaluation of the matrix exponential, which is crucial for both h
and its gradient ∇h(W ), is a well-established topic in numerical analysis, featuring
an algorithm with a complexity of O(d3). Consequently, the resulting problem can
be efficiently solved using standard numerical algorithms, making implementation
straightforward.

The introduction of the smooth equality constraint in [13] has inspired numerous
subsequent approaches. One notable algorithm, SDI [14], addresses interventional
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settings characterized by sparse interventions that typically impact a single random
variable, even if the specific variable remains unknown. This assumption aligns with
realistic scenarios where it is unlikely for a single agent to coordinate large-scale in-
terventions across a broad range of causal mechanisms. The algorithm’s effectiveness
is also demonstrated in cases where the graph structure is partially provided but re-
quires completion. In such scenarios, the focus shifts from complete graph recovery
to partial graph recovery, leveraging prior information about the existence of spe-
cific cause-effect edges and non-edges. The training process comprises three phases,
where both the structural representation of a DAG and the functional representa-
tion of independent causal mechanisms are jointly optimized until convergence. To
address the interdependence between these parameters, the training alternates be-
tween different phases using block coordinate descent optimization. In phase 1, the
functional parameters are trained to maximize the likelihood of observational data,
leveraging randomly generated graphs that align with our current beliefs about the
edge structure. Moving to phase 2, we sample multiple graph configurations based
on the parameterized edge beliefs and assess their performance using data samples
from the intervened black-box SCMs. Phase 3 involves aggregating scores from inter-
ventional data batches across various graph configurations to compute the gradient
for the structural parameters. Through this iterative training procedure, the causal
structure progressively refines until convergence is achieved.

The work presented in [15] introduces a novel differentiable approach to causal discov-
ery utilizing interventional data and expressive density estimators. Unlike existing
methods, their approach does not rely on strong assumptions about the functional
form of causal mechanisms. By incorporating an unconstrained objective with a
regularization term inspired by the smooth acyclicity constraint, they provide a
theoretically-grounded framework for causal discovery. Importantly, the proposed
method extends beyond the consideration of discrete random variables and also ap-
plies to continuous ones. While it does not explicitly account for latent confounders,
the method demonstrates the validity of its theoretical results in the infinite-data
regime. These results are established under the assumptions of causal sufficiency,
independent and identically distributed samples, and an acyclic graph structure. In
subsequent research, [16] introduced a novel concept known as factor directed acyclic
graphs, which serves as a means to limit the exploration of non-linear low-rank causal
interaction models. By incorporating this innovative structural assumption and lever-
aging recent advancements [13, 15] that connect causal discovery with continuous
optimization, they were able to successfully perform causal discovery on a large scale,
involving thousands of variables, primary in biomedical applications.

The work of [17] expands on this line of research by introducing ENCO, an innova-
tive approach that addresses the problem of graph search in causal discovery. ENCO
formulates the graph search as an optimization problem that focuses on independent
edge likelihoods, with edge orientation treated as a separate parameter. Unlike tra-
ditional constrained optimization methods or approaches with acyclicity regularizers,
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ENCO does not enforce acyclicity constraints or penalties. Instead, it utilizes unbi-
ased low-variance gradient estimators, allowing for scalability to larger graphs while
maintaining convergence guarantees. While interventions on all variables ensure con-
vergence to the correct acyclic graph, ENCO also demonstrates robust performance
even in scenarios with limited interventions or small sample sizes. This approach
overcomes the limitations of scaling continuous optimization methods beyond linear
settings.

An alternative research direction revolves around extracting causal structure di-
rectly from data by leveraging causally informative patterns. This line of inquiry
acknowledges the necessity for a more flexible approach to causal inference that
can learn pertinent causal footprints from data, reducing the dependence on prede-
fined identifiability conditions. Studies conducted by [22, 23] tackle the challenge
of distinguishing between A causing B and B causing A using exclusively observa-
tional data. Essentially, they explore methods to determine the direction of causality
within a finite, independent, and identically distributed samples drawn from the joint
distribution. Their approach frames causal inference as a classification problem in-
volving probability measures for pairs of random variables with causal relationships.
They propose employing kernel mean embeddings to nonparametrically represent
cause-effect samples and extend these techniques to infer causal connections among
multiple variables. Theoretical guarantees, including consistency and learning rates,
are derived, and approximations are introduced to facilitate the scalability of the
learning process for large-scale data.

In subsequent work, [12] build upon the aforementioned concept and introduce a
novel approach that expands the idea of utilizing bivariate histograms within a mani-
fold regularization framework to encompass entire graph structures. They specifically
address the challenge of estimating edges in a graph that captures causal relation-
ships among a predetermined set of vertices. However, their method diverges from
conventional approaches by adopting a machine learning perspective, allowing for
the integration of any available information pertaining to known cause-effect relation-
ships. Consequently, the resulting graph generated by their approach may contain
cycles, departing from the typical assumption of acyclicity. This innovative tech-
nique is firmly rooted in the manifold regularization framework, which serves as the
underlying basis for incorporating regularization constraints aimed at promoting fa-
vorable characteristics in the inferred graph structure. By leveraging this framework,
the method strives to enhance the accuracy and reliability of the learned graph, opti-
mizing its performance and usefulness in capturing causal dependencies. [24] deviate
from the manifold framework and instead adopt a generalized linear model approach.
This shift in methodology is motivated by the desire to enhance scalability and im-
prove the ease of training the model. By leveraging generalized linear models, the
researchers aim to overcome potential limitations associated with the manifold frame-
work, allowing for more efficient and effective learning of causal relationships from
data.
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Recently, Ke et al. [33] have introduced an innovative approach that transforms
discriminative causal structure learning into a meta-learning problem. Their method,
CSIvA, employs a specialized variant of a transformer neural network that takes
observational and interventional samples as input to predict the structure of a
causal Bayesian network. The model incorporates an attention mechanism to
effectively identify relationships among variables across samples, and a decoder that
generates the inferred network structure. CSIvA exhibits remarkable generalization
capabilities, successfully applying learned knowledge from synthetic data to real-
world causal Bayesian networks with novel structures. By utilizing meta-learning
techniques, CSIvA overcomes the challenges associated with acquiring training data
containing known causal structures from diverse real-world domains. It achieves this
by leveraging synthetic data with diverse graph structures, ensuring robustness even
when confronted with shifts between training and test data distributions. The model
is trained using maximum likelihood estimation and does not enforce acyclicity in
the graph structure.

2.4.1 Comparison to D2CL
The proposed method D2CL differs fundamentally from classical causal structure
learning methods rooted in causal graphical models, as it focuses on “directly” learn-
ing the directed causal status of edges. This means it neither seeks to estimate a
causal generative model nor is its output based on a model of this kind or associ-
ated with explicit conditional independence relationships. This is analogous to the
difference between generative and discriminative learning in standard ML tasks. In
particular, this means that D2CL can effectively learn novel causal edges (as seen in
the experiments reported) and scales well to larger problems, but cannot provide
richer output such as full interventional distributions on its own.

The learning framework upon which D2CL is based was introduced in MRCL [12];
the key difference is that while MRCL is based on a classical semi-supervised mani-
fold learning scheme, D2CL uses neural networks in a supervised fashion and can
scale to much larger problems that are typically not solvable by MRCL. Similar to
all discriminative approaches D2CL leverages the idea to infer causal structure by
unveiling causal patterns directly from data. [22] and [23] present very first results
of this new line of causal structure learning based on bivariate observational data.
MRCL [12] and SCL [24] include interventional samples but differ from D2CL in the
applied method. MRCL builds on a manifold regularization framework, while SCL
relies on generalized linear models. In contrast, D2CL uses two different types of
neural networks, a convolutional neural network and graph neural network, to esti-
mate graph encoding causal relationships.

CSIvA and D2CL are similar algorithms in some respects. One commonality is that
both approaches do not assume any factorization of observational or interventional
data. They also do not require the data to be generated by a directed acyclic graph,
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Table 2.1: Comparision of algorithms
Method Causal

Model
Method

Type
Link

Function
Latent

Confounders
Demonstrated

scalability
Variable

Type
Sample size

used Intervention Type

SDI generative continuous
constraint

linear
non-linear No 48 categorical

single variable intervention,
unknown target,
soft intervention

DCDI generative continuous
constraint

linear
non-linear No 100 categorical

continuous
1000000 samples,

interventions on all nodes

regime interventions,
soft stochastic interventions,
hard stochastic interventions,

known/unknown targets

DCD-FG generative continuous
constraint

linear
non-linear No 1000 continuous >50000 observational and

interventional samples

regime interventions,
hard stochastic interventions,

known/unknown targets

ENCO generative continuous
constraint

linear
non-linear No 1000

(categorical)
categorical
continuous

100000 observational samples,
4096 interventional
samples per node

regime interventions,
soft stochastic interventions,
hard stochastic interventions
full intervention information

CSIvA discriminative meta-learning linear
non-linear Possibly 80 categorical

continuous

40000 graphs,
1500 interventional

and observational samples
each graph

soft and hard interventions,
single variable interventions

D2CL discriminative supervised
learning

linear
non-linear Possibly 50000 continuous >1000 observational

and interventional samples

hard determenistic interventions,
hard stochastic interventions,
single variable interventions,

unknown targets

and they do not enforce acyclicity in the predicted graph. However, there are notable
distinctions between the two methods.

In terms of inference, both CSIvA and D2CL generate a graph sequentially. However,
CSIvA predicts the graph in an autoregressive manner, taking into account previously
predicted rows, while D2CL does not utilize such dependencies in its predictions.

The formulation of D2CL is based on a supervised learning task, where it is trained
and applied to a single system W , without aiming to generalize to different systems.
This assumption aligns with the understanding that causal mechanisms can differ
greatly even between seemingly similar systems, such as brain cells and skin cells.
D2CL assumes access to observational and interventional samples, as well as prior
causal knowledge that helps define causal labels.

On the other hand, CSIvA is designed as a meta-learning task. During training,
CSIvA assumes access to tens of thousands of causal systems from a common
distribution and learns statistical features representative of causal relations within
that distribution. It requires observational and interventional data for all graph
samples, along with the underlying adjacency matrix. The generalization capability
of CSIvA depends on the diversity of the distribution of causal graphs encountered
during training. It may not be feasible for CSIvA, trained on systems like dynamical
rigid body systems, to generalize effectively to biomedical applications like gene
regulatory networks.

CSIvA and D2CL also differ in their architectural design. CSIvA learns from the
entire graph data, while D2CL focuses on identifying causally informative patterns
between two nodes at a time. CSIvA employs two transformer networks with self-
attention mechanisms, whereas D2CL uses a convolutional neural network to capture
distributional information and a graph neural network to capture structural patterns
from the bivariate input. Additionally, CSIvA assigns a node identifier to each node
at the graph scale, while D2CL uses node identifiers within shuffled subgraphs. A
comparison to recent neural methods for causal learning appears in the Table 2.1.
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2.5 Problem Statement
The following section presents a comprehensive formulation of the mathematical
problem under investigation, laying the foundation for subsequent analysis and
exploration.

2.5.1 Notation
Observed variables with index set V = {1, . . . , p} are denoted X1, . . . , Xp. The vari-
ables will be identified with vertices in a directed graph G whose vertex and edge
sets are denoted V (G), E(G), respectively. We occasionally overload G to refer also
to the corresponding binary adjacency matrix, using Gij to refer to the entry (i, j)
of the adjacency matrix, as will be clear from context.

We use linear indexing of variable pairs to aid formulation as a machine learning
problem. Specifically, an ordered pair (i, j) ∈ V × V has an associated linear in-
dex k ∈ K = {1, . . . ,K}, where K is the total number of variable pairs of interest.
Where useful we make the mapping explicit, denoting the linear index corresponding
to a pair (i, j) as k(i, j) and the variable pair corresponding to a linear index k as
(i(k), j(k)). The linear indices of pairs whose causal relationships are unknown and
of interest are U ⊂ K and those pairs known in advance via input knowledge Π are
T (Π) ⊂ K. In all experiments T (Π) and U are disjoint, i.e., no prior causal informa-
tion is available on the pairs U of interest.

Our intuition suggests that specialized methods are needed to ensure the validity
of this type of inference. In particular, such methods rely on assumptions that are
somewhat different in nature and arguably stronger than those used in traditional
statistical inference.

2.5.2 Problem Statement
We focus on the setting in which available inputs are

(I1) Empirical data: an n × p data matrix X whose columns correspond to
variables X1, . . . , Xp.

(I2) Causal background knowledge Π providing information on a subset T (Π) ⊂
K of causal relationships.

No particular assumption is made on (I1) but in all experiments we ensure that the
data matrices never contain either data from test interventions, nor any observational
data realizations that were used to define gold-standard labels. Note that for (I1), we
assume that the data matrix X consists of observational and interventional samples
as follows: First, n0 observational samples are available from the system of interest
under no intervention, i.e. we collect n0 samples of the system in a non-intervened
state. Additionally, we assume having access to the outcome of multiple interventions.
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We overload I to represent the family of k interventions performed upon the system,
I = {I1, . . . , Ik}. For every Ij ∈ I, we have nj i.i.d. samples generated according to
eq. 2.3. The total sample size of the data matrix X accumulates to n = n0+

∑k

i=1 ni.

For (I2), we assume that information is available concerning the causal status of a
subset of variable pairs. That is, for some variable pairs (Xi, Xj) the correct binary
indicator G∗

ij , e.g., presence/absence of an edge in the target graphical object, is
provided as an input. In terms of linear indexing, these can be viewed as available
“labels” of causal status for the pairs T (Π) ⊂ K. No specific assumption is made on
the data X, but in line with our focus on generalizing to unseen causal relationships,
it is assumed that it does not contain interventional data corresponding to the pairs
in U . Furthermore, in all experiments, not only are the sets T and U disjoint, but
we enforce the stronger requirement that u ∈ U =⇒ ∄j : k(i(u), j) ∈ T , i.e. all in-
terventions on which models are tested are entirely novel, i.e. unrepresented in the
inputs to the learner.

Thus, the learning task can be formulated as follows: Given the inputs (I1) and (I2),
the goal is to estimate for each ordered pair of variables (Xi, Xj) with unknown
causal relationship whether or not Xi has a causal influence on Xj .

2.6 Summary of learning scheme

With the notation above, our goal is to learn a graph whose nodes correspond to
the variables X1, . . . , Xp and edges represent causal relationships. Our framework is
discriminative (in the sense above) and supervised; accordingly, what constitutes a
“causal relationship” depends on the setting and input Π (in real data experiments
below these are potentially indirect causal effects). To this end, we train a param-
eterized network Fθ, i.e., a nonlinear function F with a set of unknown, trainable
parameters θ. This is possible since we know for each pair k ∈ T the causal status
G∗
ij based on input information Π.

The architecture we use as Fθ is detailed below, but for now assume this has been
specified. Then, given the data X and the training labels Yk = G∗

i(k),j(k) for all
pairs k ∈ T (Π), we train the set of parameters θ̂(X,Π) under a loss that is super-
vised by the (causal) labels Yk.

At this stage, the trained network Fθ̂(X,Π) allows assignment of causal status to any
pair since it gives an estimate of the entire graph including those pairs whose causal
status was unknown. The output is given by

Ĝij(X,Π) =
{
Fθ̂(X,Π)(i, j; X) if k(i, j) /∈ T (Π)
Yk(i,j)(Π) otherwise

. (2.7)
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where (i, j) are ordered variable pairs. Note that the overall estimate depends solely
on the data X and causal information Π. By default, no change is made for pairs T
whose status was known at the outset. Eigenmann et al. [25] studied causal notions
of risk based on loss functions of the form L(Ĝ,G∗) that compare a graph estimate
Ĝ with ground-truth G∗. Given a causal estimator Ĝ = FG(X), the theoretical risk
is

R(FG) = E [L(G∗, FG(X))] . (2.8)

There are many different types of loss functions L that can be used for risk estimation,
depending on the specific application and the nature of the problem being solved.
In our setting, we consider a classification-type loss on the variable pairs k, where
the causal status of known pairs T (Π) provides the training “labels". Therefore, the
general risk estimator takes the form of a cross-entropy loss over ordered variable
pairs k. This penalizes the model for assigning high probabilities to incorrect edges
and low probabilities to correct edges. We further augment the loss function by
standard terms that, for instance, prevent exploding weights. In line with [25], the
concept of causal risk is tailored to the specific problem at hand and measures how
well the causal structure learning method performs in the particular context defined
by the system W . This notion of risk takes into account the finite sample size
and provides an estimate of the method’s performance based on the available data.
Furthermore, the problem-specific nature of the risk estimator acknowledges that a
particular method may perform well in certain settings, but not in others, depending
on the specific characteristics of the system being studied, in alignment with our
system-specific approach.

2.7 Causal interpretation of the learning scheme

In this Section, we discuss some concepts underpinning the idea of discriminative
causal structure learning, in particular addressing interpretation and specifying the
conditions under which discriminative causal structure learning may be expected to
be effective. However, note that the following arguments are not intended to con-
stitute a rigorous theory at this stage but rather to help gain understanding of the
conditions under which discriminative causal structure learning may be expected to
be effective.

D2CL outputs a directed graph: the discriminative nature of D2CL means that the
notion of causal influence encoded by the edges is rooted in the application setting
and input information Π, since causal semantics are inherited via the problem setting
rather than specified by a generative model (see [12] for related discussion). Indeed,
in the experiments we showed that depending on the problem set-up D2CL could be
used to successfully learn either direct or indirect/ancestral causal relationships.
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General causal framework. To provide a framework within which to discuss causal
structure learning, we start with a general structural causal model and then intro-
duce assumptions for D2CL (MGA and DCSI, see below). Following [3, 34], we
assume decomposition of the underlying system into modular and independent mech-
anisms:

Independent Causal Mechanisms (ICMs): The causal generative process of a sys-
tem’s variables is composed of autonomous modules that do not inform or influence
each other.

For variablesXi assume a structural causal model with equationsXi=fi(PaG∗ (Xi), UXi
)

with i ∈ {1, . . . , p}, where PaG∗ (Xi) denotes the set of parents in the ground truth
graph G∗ for node i and fi is a node-specific function. Exogenous noise terms
UXi

are assumed jointly independent and distributed as UXi
∼pi, where pi is a

node-specific density. The foregoing is a generic causal structural model. The next
assumption is specific to our approach and explains when machine learning tools as
applied here can be effective in learning causal structures.

Our approach treats the fi’s and pi’s as unknown but assumes they are related at a
higher level. This can be formalized as a meta-generator assumption as follows:

Meta-Generator Assumption (MGA): For a specific system W , the functions fi and
noise distributions pi are (independently) generated as fi∼FW and pi∼PW , where
FW denotes a function generator, and PW a stochastic generator, that are specific
to the applied problem setting W .

MGA is motivated by the notion that in any particular real-world system, underlying
(biological, physical, social, etc.) processes tend to share some functional and stochas-
tic aspects, which impart some higher-level regularity. That is, MGA states that in
a given applied context, functions fi and (ICM-consistent) noise terms UXi

while
unknown, varied and potentially complex, are nonetheless related at a “meta”-level.
The generators FW ,PW are random processes, representing respectively a “distri-
bution over functions” and “distribution over distributions”, whose role here is to
capture the notion of relatedness among fi’s (respectively pi’s) in a given setting W .
Note that FW ,PW are treated as unknown and never directly estimated (see below).

As stated in Sec. 2.5, we focus on the causal status of variable pairs (Xi, Xj) (rather
than general tuples) which denotes the simplest possible case under MGA. Further-
more, in both our work and the majority of interventional studies in applications
such as biology, single interventions (rather than joint interventions on multiple
nodes) are the norm. This requires the following additional assumption:

Dominant cause under single interventions (DCSI): A sufficiently large change in
one of potentially multiple causes leads to a change w.r.t. the effect. Therefore, sin-
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gle interventions are sufficient to drive variation in the child distribution which is
independent of the occurrence of other dominant causes.

From MGA and DCSI to discriminative causal structure learning. Consider an ap-
plied problem W with underlying causal graph G∗

W , treated as fixed but unknown.
The associated functions and noise terms are also unknown but assumed to follow
MGA. Then, under DCSI, we have that all pairs of the form (Xi, Xj) , have un-
derlying relationships of the form Xj=fj(Xi, UXj

) with components following the
MGA (i.e. drawn from generators FW ,PW ). This in turn suggests that within the
setting W , identification of causal pairs can be treated as a classification problem,
since all pairs share the same generators. In other words, MGA restricts the distri-
bution over relations of variables in U and noise terms to system-specific distributions.

Note that no particular assumption is made on the individual functions fj , only that
they are mutually related on a higher level. Furthermore, the generators themselves
need not to be known or are directly estimated, it is only important that they are
shared across the applied setting W . Further note that a model learned for setting
W will not in general be able to classify pairs in an entirely different applied setting
W ′ (since the generators may then differ strongly), i.e. we do not seek to learn “uni-
versal” patterns that apply to all causal relations in any system whatsoever. The
classification task of D2CL aims at telling apart causal parent-child functions, drawn
from the system-specific function generator FW , from non-causal ones. Naturally
under MGA, a covariate shift between training and test distribution could occur
due to biased sampling from FW ,PW which we address by normalization. Inde-
pendence in the classification sense (i.e. conditional independence given the causal
label), relies upon the independence of the noise terms and also the assumption
within MGA that the fi’s are independently generated via FW . Given a set of nodes
V = {V1, . . . , Vn}, ICM states that it is possible to perform a localized intervention
on the parent set Pa(Vi) for node Vi without changing the conditional P (Vi|Pa(Vi)).
Hence, P (Vi|Pa(Vi)) is assumed to be invariant and independent of all other con-
ditionals P (Vj |Pa(Vj))∀j ̸= i. If DCSI holds, a randomly drawn function sample
fi ∼ FW can be decomposed into an additive set of independent parent-child rela-
tions fi(Pa(Vi)) =

∑
j∈DCSI(Pa(Vi)) fi(Vj). Note that classification is performed

on the level of invariant function samples and not rows of the data matrix X. There-
fore, the collection of random samples forming the input data matrix X can be
composed of samples from observational and interventional experiments as long as
the overall mixture distribution is not changed throughout training and inference.

We note that in real systems, fi’s may be coupled via constraints on global func-
tionality, hence non-independent, however, the good performance seen in Sec. 2.12
empirically justifies the approach. Despite the initial theoretical ideas above, rigor-
ous theory and theoretical properties of the kind of approach studied here remain to
be understood. In particular, precise conditions on the underlying system needed
to ensure that the classification-type approach can guarantee recovery of specific
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causal structures remain incompletely understood. We emphasize also that in con-
trast to classical causal learning schemes, for example based on causal DAGs, we
cannot make theoretical statements concerning underlying multivariate distributions
and their link to edges estimated by our models at this stage. Our goal is good per-
formance in an edge-wise sense (as detailed above) and the core assumptions concern
a limited notion of classifiability. We note also that our models learn edges sepa-
rately and do not impose any particular wider/global constraints (such as acyclicity
or path constraints), although this could in principle be done within the supervised
framework.

2.8 Architecture details

In this Section, we present the neural network architecture employed in our approach
for causal structure learning. Figure 2.2 illustrates a flow chart of the architecture.

CNN Tower: To capture distributional information from empirical data X, a pre-
processing step is required. In principle, this could be done via a variety of multi-
dimensional transformations of X. We consider the simplest possible case, namely
for a pair (i, j) to consider only the corresponding columns i and j in the data ma-
trix X. Specifically, we use the n× 2 submatrix X(·,[ij]) to form a bivariate kernel
density estimate fij = KDE(X(·,[ij])). Note that this is in general asymmetric in
the sense that fij ̸= fji, which is important since we want to learn ordered/directed
relationships. In other words, this ensures that in general the CNN tower can output
different probabilities for the edges A→ B and B → A (for any two nodes A and B).
Evaluations of the KDE at equally spaced gridpoints on the plane (i.e. numerical
values from the induced density function) are treated as the input to the CNN. The
KDE itself is a standard bivariate approach using automated bandwidth selection
following [35, 36]. This provides an “image” of the data and allows us to leverage ex-
isting image analysis ideas. Furthermore, we concatenate the numerical KDE values
on the regularly spaced grid with a positional encoding of the grid points channelwise.

The concrete network architecture of our CNN tower is inspired by a ResNet-54
architecture [37]. From a high level perspective, it consists of a stem, five stages
with [3, 4, 6, 3, 3] ResNet blocks and multiple fully connected layers that transform
the high-level feature maps into a latent space that is merged with the output of
the GNN tower. The first ResNet block at each stage downsamples the spatial
dimensions of the output of the previous stage by a factor of two. To enhance
the computational efficiency of the bottleneck layers in each ResBlock, channel
down- and upsampling exploiting 1× 1 convolutions is performed before and after
each feature extraction CNN layer [38]. We replaced ReLU activations by its para-
metric counterpart PReLU [39] allowing to learn the slope of the negative part at
negligible additional computational costs, which addresses the problem of dying neu-
rons. Following [40], we chose a full pre-activation of the convolutional layers, i.e.

27



2 Causal Learning in High Dimensions

Figure 2.2: Overview of the D2CL architecture, training and inference. D2CL combines
empirical data on a large number of variables with prior causal knowledge
to learn causal relationships between variables. For any pair of variables
Xi and Xj (corresponding to two columns of the input data matrix), D2CL
seeks to learn whether Xi has a causal influence on Xj , Xj on Xi, or
neither. This is done using a neural architecture with two components: a
CNN tower aimed at learning distributional features and a GNN tower that
detects structural regularities. For an ordered pair (Xi, Xj), the CNN tower
captures distributional information via a bivariate density estimate that
traverses the tower to form an embedding. The GNN tower extracts a 1-hop
subgraph from an initial graph Ĝ0 and computes an embedding containing
structural information on the neighborhood of the nodes. The CNN and
GNN embeddings are then merged through multiple layers which finally
output the probability of a directed causal relationship. The input causal
information is used to provide a training signal (see text for details). During
inference the network generalizes beyond the initial inputs to provide an
estimate of the global graph spanning all variables of interest.
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normalization-activation-convolution.

GNN tower: Our GNN tower builds on the SEAL architecture of [41] and the result-
ing graph convolutional neural network (GCNN) for link prediction. The underlying
notion is that a heuristic function predicts scores for the existence of a link. However,
instead of employing predefined heuristics (such as the Katz coefficient or PageRank),
an adaptive function is learned in an end-to-end fashion, which is formulated as a
graph classification problem on enclosing subgraphs. [41] proved that a γ-decaying
heuristic can indeed be approximated by an h-hop neighborhood while the approx-
imation error is at least decreasing exponentially. These findings show that it is
possible to learn high-order graph structure features from local enclosing subgraphs
instead of the entire graph that can be exploited for link prediction. Consider the
pair of nodes of interest (i, j), then, the GNN tower is intended to infer causally
interesting node features and state embeddings based on a local 1-hop enclosing sub-
graph extracted from the approximated input graph Ĝ0. For node pair (i, j), we first
extract a set of nodes N with all nodes that are connected to either node i or node j
based on the adjacency matrix of the approximated input graph Ĝ0. Then, the edge
structure within the subgraph Gi,j is reconstructed by pulling out all edges from Ĝ0
for which the parent and child node are in N . The order of the nodes is shuffled for
each subgraph. The node features in every input subgraph consist of structural node
labels that are assigned by a Double-Radius Node Labeling (DRNL) heuristic [41]
and the individual data features. In a first step, the distances between node i and all
other nodes of the local subgraph except node j are computed. The same is repeated
for node j. A hashing function then transforms the two distance labels into a DRNL
label that assigns the same label to nodes that are on the same “orbit” around the
center nodes i and j. During the training process the DRNL label is transformed
into a one-hot encoded vector and passed to the first graph convolutional layer. In
contrast to traditional CNNs, GCNNs do not benefit strongly from very deep archi-
tecture design [42, 43]. Therefore, our GNN tower consists only of four sequentially
stacked graph convolutional layers. The activation function is defined as the hyper-
bolic tangent. Since the number of nodes in the enclosing subgraph for each pair
of variables (i, j) is different, a SortPooling layer [44] is applied to select the top k
nodes according to their structural role within the graph. Afterwards, 1-dimensional
convolutions extract features from the selected state embeddings.

Embedding Fusion: Each tower outputs a high-dimensional embedding of the indi-
vidual features found. These embeddings are concatenated and further processed by
multiple fully connected layers. Finally, the last layers output the log-likelihood of a
directed edge from node i to node j.
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Implementation Details All network architectures are implemented in the open
source framework PyTorch [45]. The GNN is coded based on the deep graph library
[46]. All modules are initialized from scratch using random weights. During training,
we apply an Adam-Optimizer [47] starting at an initial learning rate ϵ0 = 0.0001.
Furthermore, the learning rate is reduced by a factor of five once the evaluation
metrics stopped improving for 15 consecutive epochs. The minimum learning rate
is set to ϵmin = 10−8. This learning rate scheduler shows the best results in
the current study. The training predictions are supervised on the binary cross
entropy loss between estimated and ground truth truth edge label. The evaluation
metric is the area under the ROC-curve on the distinct test dataset. Every network
architecture is trained for 100 epochs. All computations are run on multiple GPU
nodes simultaneously each equipped with eight Nvidia Tesla V100.

2.9 Experimental Setup
In general terms, we use data X and causal information Π (in real problems, derived
from interventional experiments) to train the learners and then test the output
against entirely unseen interventional data. The data are strictly split in the sense
that (i) in all experiments the pairs U on which the model output is tested are
disjoint from those pairs T whose causal relationships are provided as training inputs
and (ii) no data used to define the true causal relationships against which the model
output is tested appear in inputs to the models.
At a high level, it is important to understand why evaluating causal structure learning
methods empirically is a challenging task that differs from conventional non-causal
tasks in machine learning and statistics. In non-causal tasks, performance measures
based on classical sampling theory are appropriate, since the underlying assumption
is that all data, present and future, are generated from the same probability model.
However, in the case of causal models, the model captures a set of distributions
that arise from various interventions on the system. This characteristic restricts the
applicability of conventional sampling theory-based approaches to evaluating causal
structure learning methods.

2.10 Overview of Datasets

2.10.1 Gold-standard simulated benchmark data
Structural Equation Model based on Directed Acyclic Graph: Given the set of
variables X1, . . . , Xp, our chosen SEM is a set of p functions, each corresponding to
one of the observed variables. Without loss of generality, the non-parametric form of
the SEM comprises equations

Xi = fXi
(Pa(Xi), UXi

), i = 1, . . . , p,

where Pa(Xi) is the set of parents for node i and the UXi
’s are exogenous noise

variables assumed jointly independent but arbitrarily distributed. The structure of
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this SEM follows a directed acyclic graph (DAG) and a variety of synthetic datasets
is generated for empirical investigation. The considered functions f are

1. linear: f(Xi) = aPa(Xi) + b+ UXi

2. MLP-tanh: f(Xi) = W2tanh(W1Pa(Xi) + b1) + b2 + UXi

3. MLP-leaky ReLU: f(Xi) = W2fl.ReLU (W1Pa(Xi) + b1) + b2 + UXi

4. tangent hyperbolic: f(Xi) = tanh(norm(Pa(Xi)) + UXi

5. leaky ReLU: f(Xi) = fl.ReLU (norm(Pa(Xi)) + UXi

6. polynomial of order three: f(Xi) = a1Pa(Xi) + a2(Pa(Xi))2 + a3(Pa(Xi))3 +
b+ UXi

Additionally, we consider measurement noise at different signal-to-noise ratios varying
from SNR = 10 to SNR = 0.1.

Definition of ground truth graph G∗ In a first series of experiments, we sought to
investigate direct causal effects. That is, for a pair of nodes (i, j), the corresponding
edge i→ j the ground truth adjacency matrix is set to one, if and only if node i is in
the parent set of node j, i.e. j ∈ PaG∗ (i). In other words, Gij = 1, if node j occurs
directly on the right hand side in the SEM for node i.
The causal graph G∗ in the above examples encodes direct causal effects. However,
in many real-world examples, interest focuses also on indirect effects that may be
mediated by other nodes. For example, if node A has a direct effect on B, and B on
C, intervention on A may change C, even though A does not itself appear in the
equation for C. To study the ability to identify such indirect effects, we additionally
tested the various methods on the task of learning indirect edges. This was done in
the same way as above, but with the inputs Π being indirect edges and output tested
against a true, gold-standard indirect graph. That is, in this example, if A causes
B and B causes C, the gold-standard graph (and, where relevant, causal inputs in
Π) would have an additional edge A→ C to capture the causal, but indirect, effect
of A on C. Other aspects were as for the direct problems above. In a second series
of experiments, we report performance metrics for causal relationships of this kind.
This simulated dataset differs from the previous one in the sense that the ground
truth graph is obtained as the transitive closure of the original DAG

G∗ =
∞⋃
i=1

G
∗DAG
i .

We used the same set of transition functions as before. This experimental setup is
arguably closer to the real-world biological data, where effects may be indirect in
this sense.
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2.10.2 Yeast Gene Deletion Experiments
We use data from yeast gene deletion experiments [48], which have previously been
employed for causal learning [11, 49, 12]. To define causal status, we follow the
approach of [12], considering changes under interventions relative to the observa-
tional distribution. The data is a collection of nint = 1479 interventional samples
and nobs = 153 observational data points each containing measured gene expression
levels for a total of p = 5535 genes (after preprocessing). The interventional sam-
ples are from gene knockout experiments (each carried out for a specific target gene)
while observational samples stem from experiments with no such intervention.

To ensure that models are tested on entirely unseen interventions, we split the data
such that the set of interventions against which model output is tested is entirely
disjoint from any model input. The number of interventions whose effects are avail-
able to the learner via Π is denoted m.

To define causal status, we follow the approach of [12], considering changes under
intervention relative to the observational distribution for the same gene. Specifi-
cally, if cint

ij is the expression level of gene j observed under intervention on gene
i, for any variable pair (i, j) ∈ V × V we say that i has a causal effect on j if and
only if zij = |cint

ij −m
obs
j |/s

obs
j > τ , where mobs

j is the median level of gene j in the
observational data; sobs

j is the corresponding inter-quartile range (IQR) and τ is a
threshold (set to 5 in the experiments). In other words, if G∗ is the gold-standard
p × p adjacency matrix, we have G∗

ij = 1 ⇐⇒ zij > τ . This approach focuses
attention on strong causal effects and ensures that the notion of “change under inter-
vention” is appropriate to the scale of each gene.

Note that in the yeast example causal effects may be indirect and our goal in the
analysis is to learn a directed graph G with nodes corresponding to p observed genes
and edges (i, j) ∈ E(G) that represent (possibly indirect) causal influences, i.e. exis-
tence of a directed causal path from Xi to Xj (possibly via latent variables). Such
edges are scientifically interesting as they are relatively amenable to experimental
verification as noted in [50, 24]. Cycles can arise in systems biology (see e.g. [51])
and we do not enforce acyclicity in this example (see [52] and references therein, for
discussion of cyclic causality). A fuller discussion of the causal interpretation of lab-
oratory experiments is beyond the scope of this work, but relevant work includes [53,
52, 54] and we direct the interested reader to these references for further discussion.

We conducted the following experiments:

• Varying amount of causal input. In a first set of experiments, we seek
to investigate the influence of varying the amount of causal input provided to
the learners. More precisely, we vary the number of interventions m whose
effects are available to the learner. (In terms of the notation above m = |{i :
∃j, k(i, j) ∈ T (Π)}|). Results are shown in Figure 2.5a-c.
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Figure 2.3: Visual illustration of changed configurations in evaluation of yeast gene
deletion data (see Text for details): (a) Varying amount of causal input
m, (b) Varying sample size n, (c) Scaling to full yeast genome, (d) Label
perturbation, (e) Embedding perturbation, (f) Causal direction analysis

• Varying sample size. Here, we vary the sample size n of the data matrix X.
The matrix X never contains interventions on variables V and its sample size
can therefore be varied separately from the number m of training interventions
or the dimension p = |V |. Results are given in Figure 2.5d-f.

• Scaling to full yeast genome. This experiment is a higher dimensional
example with p = 5535 genes aimed at investigating performance in a larger
problem. Since none of the baseline algorithms can scale to such a high-
dimensional space, Figure 2.5g-k only contains evaluation results for D2CL.

• Label perturbation. To study sensitivity, we introduced errors into Π; this
was done by perturbing 10% of the training labels , i.e. labeling causal pairs as
non-causal and vice versa at the outset. Results are presented in Figure 2.6a.

• Embedding perturbation. In this experiment, we intentionally perturb
the independent embeddings of the two towers in the forward pass of D2CL.
In general, the embedding of either the CNN or the GNN tower is modified
right before the fusion layer to test the impact of a failing tower on the overall
performance. The experiment contains four different embedding modifications:
(i) We set the complete embedding of one tower to zero and thereby, erase
all information of this tower. In the other cases we apply strong zero-mean
Gaussian noise with varying scale to the embedding , (ii) σ = 1.0, (iii) σ = 2.0,
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and (iv) σ = 5.0. Subfigure 2.6b illustrates the results under embedding
perturbations.

• Causal direction analysis. To empirically study the performance to
recover directed and asymmetric causal relations, we constructed test datasets
as follows: For each causal edge k → l of the test set, we also include the
reverse direction l→ k. Intuitively, this means that any learner that predicts
undirected causal links would achieve an AUC score of 0.5 since the prediction of
a causal edge for k → l entails the prediction of edge l→ k, which, consequently,
is a false positive. Table 2.7b summarizes the empirical results and Figure
2.7a presents a low-dimensional representation of the feature maps of the CNN
tower right ahead of the embedding fusion.

In the first and second series of experiments, we limit the total number of variables
to p = 1000 due to computational considerations for the baseline algorithms (not
for D2CL, which as we show further below can practically scale to very large prob-
lems). Since this is only a subset of the entire yeast genome (a total of 5535 genes
were included in the full set of data of the third line of experiments), in these experi-
ments (many) latent variables (genes not included in the dataset in addition to other
biological variables, such as proteins, not measured in the data) are present by design.

2.10.3 CRISPR-based interventional data in human cells

Here, we use recent data due to [55] involving large-scale perturbation experiments
in human cells to further test performance. In the experiments used here, a CRISPR-
based gene editing protocol was combined with single-cell RNA sequencing to allow
for efficient multiplexed interventions. This protocol gives mRNA readouts for thou-
sands of genes under each of a large number of interventions in two cell types, a
leukemia cell line (K562) and (non-cancer) retinal pigment epithelial (RPE) cells.
For K562, the dataset includes m = 2285 detected genetic perturbations with a mean
coverage of 148 cells per perturbation and a median coverage of 134 cells per per-
turbation. For RPE, m = 2679 genetic perturbations were detected with a mean
coverage of 101 cells per perturbation and a median coverage of 79 cells per per-
turbation. After filtering, the causal graph of the K562 cell line contains p = 8552
nodes and the causal graph of the RPE cell line is of dimension p = 8833.

To ensure that models are tested on entirely unseen interventions, we split the data
such that the set of interventions against which model output is tested is entirely
disjoint from any model inputs.

To define causal status, we consider changes under intervention relative to the
observational distribution. Treating the normalized gene expression levels as con-
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tinuous random variables, we use an adapted version of the total variation between
interventional and observational distributions

Vi,j =
1
2

∫
|f int(i)j (x)− fobsj (x)|dx .

Specifically, if Vi,j > τ we consider the edge i→ j causally relevant. In other words,
if G∗ is the gold-standard p× p adjacency matrix, we have G∗

ij = 1 ⇐⇒ Vi,j > τ .
We chose τ = 0.3 where the threshold τ is a problem specific hyperparameter. This
approach focuses attention on strong causal effects and ensures that the observa-
tional distribution and the corresponding distribution under an intervention deviate
sufficiently.

2.11 Baseline Comparisons
• Simulated data: We compare D2CL against: (i) IDA [8], (ii)SCL [24], and

(iii) Marginal correlation coefficients.

• Yeast Gene Deletion Experiments: We compare D2CL against: (i) Classi-
cal causal structure learning approaches including IDA [8], LV-IDA [56], and
the GIES algorithm [9]. (ii) A discriminative causal approach called SCL
[24] and (iii) Marginal correlation coefficients (Pearson correlations in the fig-
ures, but Kendall and Spearman correlations gave similar results) as a simple
baseline.

• Human data: We compare D2CL against: (i) IDA [8], (ii)GES [57] and (iii)
GIES [9], (iv) LiNGAM [58], (v) CAM [59], and (vi) RFCI [31].

In addition to the established methods and baselines listed above we also consid-
ered a range of recently developed neural network-based causal learning approaches
including SDI [14], DCDI [15], DCD-FG [16], ENCO [17] and CSIvA [33]. For scala-
bility reasons, it is not feasible to apply SDI or DCDI to the datasets explored during
the empirical evaluation (scalability issues for SDI and DCDI are also reported in
[16]). At the time of writing, there was no source code available for CSIvA [33].
We evaluated DCD-FG and ENCO on simulated benchmark test cases with known
ground truth graphs. Despite hyper-parameter tuning, we found that results were
poor (see Fig. 2.4b). This is likely due to the problem setting (including dataset
type and sizes), in which n = 6144 observational and interventional training samples
are available. For applications motivating our work this is realistic, but nevertheless
much smaller than the datasets used in the original papers (DCD-FG was was ap-
plied to p = 1000 nodes using n > 50000 observational and interventional samples
and ENCO to p = 1000 categorical variables using nobs = 105 observational samples
and nint = 4096 interventional samples for each node). We emphasize that all of
the above methods are conceptually exciting and very powerful in suitable settings.
Our work is targeted at the high-dimensional, limited data regime – as relevant to
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many current, real-world applications, including in biology – hence our experimental
set-up is designed to test performance in this kind of regime.

More generally, we note that the comparison with existing causal approaches is not
one-to-one, since in many cases methods differ in their expected inputs and outputs.
For example, IDA is aimed at analysis of observational data, hence the comparison is
unfair since our approach has access also to background causal information Π. GIES
allows for interventional data, but requires different inputs. Due to these differences
in input/output requirements, we emphasize that comparisons here are provided for
completeness but with the caveat that the various methods are intended for different
use-cases (and furthermore make assumptions that are likely not met in the real
biological data).

2.12 Results
We assess the proposed approaches in comparison to a range of existing methods,
using both simulated data and real biological data. In the case of the simulations,
we have access to the true, underlying causal graph, and hence can assess results by
direct comparison with the ground truth. For the real data examples, we test the
model output against the outcome of entirely unseen interventional experiments. In
all experiments, simulated or real, we test the model output with respect to causal
relationships that are entirely unseen in the sense that (i) the variable pairs on
which the model output is tested are disjoint from those pairs whose causal rela-
tionships are provided as inputs during training, and (ii) no data used to define the
gold-standard causal relationships against which the model output is tested appear
in inputs to the models.

2.12.1 Gold-standard simulated benchmark data
We first tested the proposed methods using linear and non-linear simulations. These
involved generating data X (and obtaining prior knowledge Π) from a (linear or
non-linear) SEM with noise, based on a known underlying causal graph G∗. The
protocol is outlined in Figure 2.4a with further details in Sec. 2.10. Results were
evaluated against the true, gold-standard causal structure G∗ and hence tested in
causal (and not correlational or predictive) terms.
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Figure 2.4: Results - large-scale simulated data. (a) Overview of experimental workflow.
Data were simulated from known, gold-standard causal graphs and the
output of the learners was compared with the true, underlying graph to
quantify ability to recover causal structure. Finite-sample empirical data were
generated using a directed causal graph of specified dimension p, specifically
via linear and nonlinear structural equation models with noise. Functional
forms used include simple linear functions, multi-layer perceptrons (MLPs)
with tangent hyperbolic activations, MLPs with leaky ReLU activation,
tangent hyperbolic, leaky ReLU and a polynomial of order three. (b) ROC
curves for an illustrative nonlinear case (the tangent hyperbolic), at a signal-
to-noise ratio SNR = 10.0, for direct causal relations in a graph with p=1500
nodes. D2CL (blue) is compared against Pearson correlation coefficients
(orange), IDA (red), SCL (green), ENCO (cyan) and DCD-FG (purple). The
ROC curve and the area under the ROC curve (AUC) is given for algorithms
providing continuous output (Pearson, IDA, SCL, D2CL). The binary graph
estimates of ENCO and DCD-FG are represented by single markers for five
different runs. (c) Results for an illustrative nonlinear case (the tangent
hyperbolic), at varying noise levels, for direct causal relationships. Causal
area under the ROC-Curve is shown as a function of signal-to-noise ratio
(SNR) for an experiment with p=1500 variables and a sample size of n=1024.
Results for other linear and nonlinear functions appear in Table 2.2. D2CL
(blue) is compared with: Pearson correlations (yellow; this is a non-causal
baseline); IDA (red); and SCL (green). (d) Results for indirect causal
relationships, with other settings as in (c). Here, causal AUC is with respect
to a graph encoding causal, but potentially indirect, relationships (see also
Table 2.3). (Results shown are averages over five datasets at each specified
SNR.)
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In-system, out-of-distribution evaluation: We first study performance on in-system
but out-of-distribution tests. In this setting, model training uses (limited) prior
knowledge and data from a given system; assessment is with respect to unknown
edges within the same system (test and training edges are always entirely disjoint).
This is out-of-distribution since the learner never has access to samples from the test
interventional distributions, but in-system since all data are from the same overall
data-generating system. This corresponds to a common use-case in scientific applica-
tions where the goal is to learn a model for a given system of interest given available
data on that system. Figure 2.4c shows results for a problem of dimension p=1500
using a nonlinear transition function (the tangent hyperbolic; other functions and
configurations are shown in Table 2.2 (AUC) and A.1 (AUPRC) in the Appendix)
and varying SNR. (For these first results, we restricted the dimension of the prob-
lem to facilitate comparison to existing approaches that are less scalable than D2CL;
higher dimensional examples appear below.) Note that pairwise correlations between
the variables (“Pearson") are ineffective; this is expected due to the presence of latent
variables in all experiments and the fundamental difference between correlational and
causal relationships. Overall, D2CL remains effective across a broad range of SNRs,
as well as for a range of linear and nonlinear problems and problem sizes. These
results support the notion that D2CL can learn direct causal edges in systems span-
ning many variables. We also compared D2CL to DCD-FG [16] and ENCO [17], two
recently proposed, scalable neural-causal learners. Due to computational considera-
tions, we restricted this comparison to a subset of the simulations. Exemplary results
appear in Fig 2.4b. We find that neither approach is effective in this case. This is
likely due to the limited nature of the data inputs and the presence of latent variables.

In addition, we test the effectiveness of D2CL for additive and multiplicative Gaus-
sian noise with varying SNRs under settings with hard deterministic and stochastic
interventions. The test results (AUC and AUPRC values) are summarized in Ta-
ble 2.4 and A.4 and support the notion that D2CL is robust to different types of noise.

The graph G∗ in the above examples encodes direct causal relationships since there
is an edge from one node to another if the former appears in the equation for the
latter. However, in many real-world examples, interest focuses also on indirect ef-
fects, that may be mediated by other nodes. For example, if node A has a direct
effect on B, and B on C, intervention on A may change C, even though A does not
itself appear in the equation for C. To study the ability to identify such indirect
effects, we next tested the various methods on the task of learning indirect edges.

Table 2.2: AUC values for direct cause-effect relations for p = |V | = 1500.
Linear MLP(tanh) MLP(leaky ReLU) Tanh Leaky ReLU Polynom 3

SNR Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL
10.00 0.718 0.748 0.789 0.641 0.691 0.625 0.686 0.634 0.688 0.608 0.693 0.623 0.728 0.777 0.854 0.851 0.756 0.837 0.843 0.729 0.809 0.848 0.829 0.641
6.00 0.700 0.771 0.795 0.617 0.670 0.609 0.658 0.638 0.666 0.590 0.683 0.602 0.710 0.783 0.861 0.841 0.736 0.818 0.839 0.692 0.784 0.824 0.821 0.637
4.00 0.684 0.768 0.784 0.616 0.648 0.590 0.647 0.625 0.652 0.562 0.667 0.584 0.689 0.770 0.854 0.819 0.700 0.792 0.831 0.668 0.735 0.787 0.812 0.628
2.00 0.638 0.781 0.802 0.615 0.613 0.544 0.639 0.594 0.617 0.521 0.661 0.592 0.639 0.750 0.844 0.764 0.644 0.743 0.815 0.630 0.651 0.722 0.777 0.617
1.00 0.595 0.774 0.796 0.614 0.572 0.506 0.622 0.551 0.575 0.487 0.642 0.546 0.593 0.740 0.806 0.721 0.582 0.701 0.787 0.619 0.552 0.659 0.743 0.598
0.75 0.589 0.765 0.793 0.612 0.556 0.494 0.619 0.566 0.567 0.483 0.638 0.568 0.580 0.724 0.795 0.689 0.572 0.696 0.783 0.610 0.539 0.645 0.734 0.603
0.50 0.558 0.748 0.787 0.610 0.536 0.473 0.631 0.540 0.544 0.459 0.641 0.567 0.558 0.697 0.770 0.654 0.548 0.678 0.771 0.606 0.521 0.640 0.717 0.592
0.25 0.537 0.735 0.784 0.572 0.530 0.467 0.617 0.517 0.496 0.434 0.624 0.552 0.538 0.667 0.733 0.588 0.517 0.667 0.748 0.579 0.514 0.634 0.694 0.543
0.10 0.523 0.730 0.774 0.558 0.492 0.441 0.618 0.530 0.507 0.439 0.616 0.528 0.513 0.630 0.725 0.562 0.503 0.661 0.743 0.559 0.492 0.620 0.691 0.539
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Table 2.3: AUC values for indirect cause-effect relations for p = |V | = 1500.
Linear MLP(tanh) MLP(leaky ReLU) Tanh Leaky ReLU Polynom 3

SNR Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL Pearson IDA D2CL SCL
10.00 0.553 0.907 0.928 0.708 0.548 0.522 0.733 0.700 0.563 0.483 0.789 0.738 0.511 0.903 0.947 0.905 0.502 0.857 0.943 0.839 0.610 0.822 0.933 0.761
6.00 0.540 0.905 0.925 0.700 0.537 0.502 0.720 0.658 0.552 0.458 0.775 0.735 0.487 0.896 0.947 0.895 0.501 0.852 0.941 0.808 0.598 0.815 0.927 0.751
4.00 0.530 0.905 0.928 0.677 0.533 0.490 0.711 0.675 0.548 0.447 0.767 0.727 0.460 0.881 0.947 0.888 0.504 0.848 0.937 0.782 0.581 0.803 0.914 0.732
2.00 0.506 0.897 0.928 0.619 0.523 0.461 0.683 0.656 0.532 0.420 0.766 0.695 0.424 0.851 0.940 0.856 0.501 0.834 0.920 0.736 0.543 0.775 0.879 0.704
1.00 0.507 0.888 0.925 0.609 0.513 0.433 0.660 0.626 0.518 0.393 0.738 0.672 0.400 0.810 0.895 0.791 0.502 0.824 0.900 0.676 0.520 0.753 0.831 0.658
0.75 0.507 0.882 0.920 0.631 0.513 0.431 0.638 0.610 0.514 0.385 0.721 0.637 0.402 0.790 0.891 0.785 0.501 0.822 0.888 0.667 0.516 0.747 0.820 0.641
0.50 0.506 0.877 0.918 0.505 0.510 0.422 0.618 0.577 0.513 0.387 0.713 0.655 0.407 0.771 0.861 0.740 0.502 0.821 0.880 0.651 0.510 0.742 0.808 0.635
0.25 0.513 0.873 0.913 0.516 0.511 0.423 0.622 0.567 0.509 0.385 0.703 0.639 0.441 0.754 0.830 0.632 0.498 0.816 0.861 0.624 0.502 0.736 0.792 0.589
0.10 0.506 0.867 0.905 0.542 0.501 0.417 0.617 0.571 0.503 0.385 0.705 0.613 0.481 0.741 0.819 0.595 0.500 0.817 0.865 0.598 0.503 0.734 0.784 0.537

Table 2.4: Gold-standard simulations: AUC values for direct cause-effect relations for
p = |V | = 1500: additive and multiplicative noise

deterministic hard interventions stochastic hard interventions
additive Noise multiplicative Noise additive Noise multiplicative Noise

SNR Linear Tanh Linear Tanh Linear Tanh Linear Tanh
10.00 0.849 0.882 0.746 0.810 0.794 0.812 0.696 0.796
6.00 0.799 0.891 0.691 0.779 0.781 0.826 0.688 0.790
4.00 0.805 0.875 0.675 0.771 0.785 0.825 0.677 0.791
2.00 0.833 0.876 0.664 0.775 0.779 0.814 0.676 0.778
1.00 0.833 0.837 0.678 0.768 0.771 0.734 0.675 0.748
0.75 0.828 0.832 0.666 0.747 0.770 0.718 0.669 0.749
0.50 0.818 0.798 0.643 0.757 0.737 0.726 0.672 0.771
0.25 0.816 0.772 0.639 0.745 0.720 0.709 0.673 0.743
0.10 0.808 0.761 0.617 0.753 0.720 0.697 0.663 0.751

This was done in the same way as above, but with the inputs Π being indirect edges
and output tested against the true indirect graph.

Results appear in Figure 2.4d. D2CL outperforms existing methods across a range
of SNRs and also in other linear/nonlinear problem configurations (see Table 2.3
and A.2 in the Appendix). IDA performs well in case of a linear SEM but not for
functions based on nonlinear MLPs. D2CL appears to be the most noise robust of
the methods tested. These results show that D2CL can learn indirect causal edges
over many variables under conditions of noise and non-linearity.
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Table 2.5: Out-of-distribution experiments: Cross validation experiments - AUC values
Predicted class

Linear leaky ReLU
SNR 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.1 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.10

Tr
ai

ne
d

cl
as

s

Li
ne

ar

10.00 0.787 0.791 0.793 0.793 0.786 0.781 0.772 0.755 0.728 0.752 0.756 0.756 0.746 0.730 0.725 0.718 0.705 0.701
6.00 0.796 0.798 0.799 0.797 0.783 0.778 0.768 0.749 0.722 0.752 0.754 0.753 0.743 0.726 0.720 0.714 0.708 0.705
4.00 0.792 0.797 0.800 0.803 0.791 0.784 0.774 0.756 0.730 0.725 0.731 0.735 0.738 0.730 0.726 0.719 0.710 0.703
2.00 0.763 0.770 0.781 0.797 0.793 0.789 0.780 0.760 0.728 0.708 0.715 0.721 0.733 0.730 0.727 0.721 0.713 0.706
1.00 0.732 0.738 0.752 0.781 0.791 0.792 0.790 0.776 0.746 0.692 0.699 0.704 0.724 0.732 0.730 0.728 0.718 0.709
0.75 0.710 0.716 0.732 0.768 0.785 0.786 0.786 0.776 0.755 0.652 0.661 0.672 0.702 0.712 0.714 0.720 0.722 0.709
0.50 0.709 0.715 0.727 0.763 0.782 0.785 0.788 0.782 0.769 0.670 0.676 0.683 0.700 0.710 0.715 0.718 0.721 0.716
0.25 0.673 0.677 0.689 0.731 0.760 0.768 0.776 0.778 0.774 0.628 0.632 0.638 0.659 0.688 0.696 0.704 0.714 0.721
0.10 0.662 0.667 0.678 0.712 0.736 0.742 0.751 0.763 0.776 0.674 0.678 0.682 0.687 0.688 0.687 0.687 0.694 0.714

Ta
nh

10.00 0.654 0.656 0.656 0.656 0.644 0.636 0.627 0.619 0.608 0.788 0.786 0.778 0.747 0.697 0.685 0.666 0.632 0.619
6.00 0.653 0.654 0.654 0.652 0.636 0.628 0.619 0.610 0.598 0.781 0.781 0.775 0.743 0.696 0.684 0.666 0.630 0.610
4.00 0.649 0.651 0.651 0.651 0.639 0.630 0.622 0.614 0.604 0.777 0.777 0.773 0.744 0.691 0.678 0.659 0.622 0.611
2.00 0.642 0.644 0.644 0.648 0.635 0.624 0.613 0.604 0.600 0.732 0.734 0.736 0.739 0.684 0.670 0.646 0.611 0.600
1.00 0.672 0.673 0.674 0.682 0.681 0.673 0.659 0.645 0.637 0.711 0.716 0.721 0.736 0.739 0.726 0.705 0.673 0.650
0.75 0.664 0.667 0.669 0.682 0.691 0.687 0.676 0.656 0.644 0.708 0.715 0.720 0.737 0.746 0.737 0.718 0.694 0.664
0.50 0.673 0.676 0.678 0.689 0.694 0.690 0.677 0.657 0.644 0.683 0.692 0.703 0.723 0.732 0.733 0.720 0.697 0.663
0.25 0.679 0.682 0.685 0.696 0.712 0.711 0.707 0.687 0.663 0.583 0.592 0.607 0.647 0.676 0.687 0.708 0.720 0.698
0.10 0.674 0.676 0.678 0.686 0.702 0.708 0.712 0.713 0.694 0.501 0.504 0.502 0.505 0.549 0.588 0.638 0.697 0.718

Predicted class
Polynom 3 Tanh

SNR 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.1 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.10
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10.00 0.728 0.724 0.721 0.707 0.687 0.686 0.675 0.663 0.656 0.758 0.757 0.756 0.748 0.725 0.716 0.695 0.664 0.639
6.00 0.739 0.735 0.729 0.712 0.689 0.685 0.674 0.667 0.665 0.768 0.766 0.764 0.752 0.723 0.712 0.692 0.669 0.648
4.00 0.709 0.708 0.711 0.707 0.691 0.689 0.680 0.669 0.663 0.749 0.750 0.750 0.748 0.728 0.719 0.698 0.667 0.645
2.00 0.690 0.686 0.687 0.692 0.687 0.688 0.680 0.673 0.668 0.742 0.742 0.743 0.742 0.723 0.717 0.697 0.672 0.648
1.00 0.676 0.673 0.673 0.673 0.675 0.678 0.678 0.675 0.670 0.718 0.718 0.719 0.718 0.709 0.706 0.695 0.678 0.650
0.75 0.607 0.611 0.625 0.655 0.668 0.672 0.674 0.677 0.671 0.694 0.696 0.700 0.705 0.699 0.698 0.690 0.682 0.653
0.50 0.635 0.639 0.654 0.670 0.670 0.671 0.671 0.675 0.673 0.710 0.712 0.714 0.714 0.702 0.699 0.688 0.677 0.656
0.25 0.563 0.562 0.569 0.608 0.645 0.655 0.661 0.668 0.674 0.644 0.648 0.656 0.670 0.679 0.680 0.675 0.671 0.660
0.10 0.609 0.608 0.613 0.637 0.651 0.654 0.653 0.656 0.666 0.680 0.681 0.686 0.691 0.685 0.682 0.670 0.656 0.652

Ta
nh

10.00 0.796 0.792 0.785 0.742 0.683 0.663 0.641 0.608 0.599 0.841 0.840 0.834 0.792 0.715 0.683 0.640 0.605 0.588
6.00 0.792 0.791 0.785 0.750 0.694 0.672 0.650 0.612 0.592 0.840 0.841 0.839 0.801 0.720 0.686 0.644 0.609 0.582
4.00 0.780 0.780 0.779 0.749 0.691 0.666 0.644 0.604 0.591 0.835 0.840 0.843 0.812 0.726 0.693 0.643 0.600 0.579
2.00 0.738 0.739 0.740 0.749 0.702 0.672 0.641 0.596 0.581 0.797 0.805 0.815 0.832 0.754 0.721 0.659 0.596 0.569
1.00 0.705 0.707 0.709 0.721 0.720 0.704 0.673 0.642 0.625 0.761 0.766 0.775 0.792 0.779 0.765 0.704 0.638 0.605
0.75 0.699 0.702 0.703 0.715 0.714 0.710 0.690 0.655 0.633 0.750 0.753 0.758 0.768 0.762 0.758 0.721 0.660 0.611
0.50 0.667 0.667 0.673 0.687 0.693 0.698 0.690 0.659 0.633 0.700 0.703 0.709 0.719 0.723 0.724 0.711 0.661 0.610
0.25 0.555 0.561 0.564 0.587 0.625 0.638 0.662 0.681 0.660 0.591 0.596 0.603 0.621 0.639 0.644 0.666 0.688 0.643
0.10 0.545 0.547 0.544 0.553 0.552 0.566 0.590 0.649 0.678 0.524 0.528 0.530 0.528 0.529 0.538 0.568 0.637 0.673

Predicted class
MLP (leaky ReLU) MLP (Tanh)

SNR 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.1 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.10
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10.00 0.400 0.392 0.382 0.362 0.376 0.383 0.388 0.396 0.403 0.413 0.402 0.392 0.378 0.391 0.394 0.395 0.404 0.416
6.00 0.394 0.386 0.384 0.368 0.378 0.384 0.388 0.397 0.405 0.407 0.397 0.393 0.381 0.392 0.396 0.396 0.407 0.418
4.00 0.443 0.440 0.434 0.404 0.395 0.395 0.393 0.396 0.403 0.450 0.446 0.443 0.417 0.405 0.403 0.397 0.403 0.417
2.00 0.434 0.430 0.419 0.388 0.388 0.390 0.390 0.398 0.404 0.437 0.434 0.424 0.403 0.401 0.397 0.395 0.408 0.415
1.00 0.453 0.451 0.450 0.429 0.403 0.400 0.393 0.398 0.401 0.451 0.449 0.448 0.435 0.414 0.403 0.397 0.404 0.409
0.75 0.467 0.465 0.460 0.423 0.398 0.394 0.391 0.396 0.398 0.469 0.466 0.463 0.435 0.408 0.401 0.396 0.403 0.407
0.50 0.447 0.444 0.435 0.407 0.392 0.392 0.389 0.396 0.399 0.452 0.448 0.442 0.419 0.404 0.399 0.396 0.403 0.408
0.25 0.455 0.454 0.453 0.432 0.414 0.409 0.398 0.398 0.397 0.464 0.463 0.461 0.448 0.425 0.415 0.405 0.404 0.406
0.10 0.429 0.425 0.420 0.407 0.401 0.397 0.394 0.400 0.398 0.440 0.434 0.429 0.418 0.408 0.410 0.403 0.403 0.408

Ta
nh

10.00 0.398 0.386 0.368 0.358 0.383 0.397 0.413 0.429 0.444 0.417 0.404 0.388 0.381 0.406 0.418 0.426 0.439 0.456
6.00 0.379 0.371 0.364 0.362 0.382 0.395 0.412 0.432 0.425 0.400 0.390 0.385 0.381 0.400 0.412 0.424 0.441 0.442
4.00 0.391 0.384 0.374 0.358 0.378 0.391 0.405 0.430 0.439 0.408 0.399 0.388 0.374 0.397 0.407 0.415 0.440 0.455
2.00 0.400 0.399 0.401 0.382 0.379 0.390 0.395 0.427 0.451 0.407 0.409 0.416 0.400 0.395 0.401 0.406 0.441 0.464
1.00 0.399 0.393 0.391 0.391 0.386 0.395 0.397 0.405 0.418 0.403 0.399 0.400 0.399 0.403 0.401 0.394 0.414 0.432
0.75 0.442 0.435 0.431 0.403 0.405 0.404 0.398 0.402 0.409 0.446 0.445 0.439 0.419 0.415 0.409 0.403 0.409 0.419
0.50 0.463 0.469 0.472 0.480 0.460 0.436 0.414 0.406 0.402 0.468 0.471 0.478 0.487 0.460 0.433 0.413 0.408 0.410
0.25 0.503 0.504 0.506 0.515 0.495 0.487 0.473 0.446 0.412 0.493 0.496 0.497 0.503 0.490 0.482 0.478 0.444 0.413
0.10 0.501 0.503 0.501 0.501 0.508 0.519 0.538 0.547 0.477 0.497 0.497 0.498 0.499 0.518 0.516 0.537 0.559 0.460
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2.12 Results

Out-of-system, out-of-distribution evaluation: D2CL is intentionally designed to be
trainable using (limited) data from a specific system (e.g. a specific biological system,
such as cells of particular kind, or a disease state). However, it is interesting to see
whether it is possible to generalize to different systems. We study such generalization
by training D2CL on a dataset from a certain system and cross-evaluate the trained
model on data from another system (i.e. a different simulation regime). Results
appear in Table 2.5 and A.5 in the Appendix. It is interesting to see that some gen-
eralization is possible, suggesting that D2CL can extract patterns that are causally
informative in a cross-system sense. However, the cross-evaluation performance is al-
ways worse compared to in-system training and evaluation. This is expected and we
emphasize that we do not claim any general ability to achieve out-of-system general-
ization. Nevertheless, these results are interesting and support the use of large-scale
meta-learning for causal structures [14].

Large-scale evaluation: Finally, to test the scalability of D2CL to very high dimen-
sional problems, we considered a problem with p = 50, 000 variables (i.e. p = 50, 000
nodes in the ground-truth graph). We consider learning of direct causal relation-
ships; results appear in Table A.3 in the Appendix. Note that this is a setting that
none of the compared methods can practically scale to. These results show that
D2CL can indeed scale to very high dimensional problems spanning many thousands
of variables.

2.12.2 Large-scale biological data.
Next, we sought to study performance in the context of real biological data. To this
end, we leveraged a large set of gene deletion experiments in yeast [48], which have
previously been used for causal learning [11, 49, 12]. These data involve measuring
gene expression in yeast cells under each of a large number of interventional (gene
deletion) experiments.
In biological experiments, causal effects may be indirect (e.g. via latent variables)
and our goal in the analysis is to learn a directed graph with nodes corresponding to
p observed genes and edges representing (possibly indirect) causal influences. Such
edges are scientifically interesting as they are relatively amenable to experimental
verification as noted in [50, 24]. Cycles can arise in systems biology (see e.g. [51])
and we do not enforce acyclicity (see [52] and references therein, for discussion of
cyclic causality). A fuller discussion of the causal interpretation of laboratory experi-
ments is beyond the scope of this work, but relevant work includes [53, 52, 54] and
we direct the interested reader to these references for further discussion.

Since causal background knowledge is an input to our approach, it is relevant to con-
sider performance as a function of the amount of such input. To this end, we fixed
the problem size to p = 1000 and varied the number of interventions m whose ef-
fects were available to the learner (see Sec. 2.10 for details). Since each experiment
involves only a subset of the entire yeast genome, latent variables are present by de-
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2 Causal Learning in High Dimensions

Figure 2.5: Results - yeast gene deletion experiments. Causal learning methods, includ-
ing D2CL, were applied to gene expression measurements from yeast cells.
Performance was quantified using causal ROC curves (and the area under
the curves, or AUC) computed with respect to a causal ground truth ob-
tained from entirely unseen interventional experiments (see Text for details).
Panels (a)–(c): the number of interventions whose effects are available to
the learner is varied as shown (with problem dimension fixed to p=1000 and
sample size to n=706). Panels (d)–(f): the sample size n of the data matrix
X is varied as shown (with problem dimension fixed to p=1000 and number
of available interventions fixed to to m=753). Panels (g)–(k): analogous re-
sults for a higher-dimensional setting covering all available genes (roughly
the full yeast genome) with p=5535 (with n=706 and m=753). Here, only
D2CL variants are shown, as the other methods could not be run due to
the computational burden in this higher dimensional case. Comparison with
the corresponding p=1000 case demonstrates the scalability of D2CL, with
performance broadly maintained in the higher dimensional setting. [D2CL
variants shown include a CNN tower alone, GNN tower alone and the en-
tire D2CL architecture; methods compared against include IDA, LVIDA,
Kendall correlations (as a non-causal baseline) and SCL (see text and SI for
details and references). For D2CL and its variants two different initial graph
estimates were used based respectively on Pearson correlation coefficients
(“Pearson") and on a lightweight regression (“Lasso"; see Text for details).]
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2.12 Results

sign. The input prior knowledge Π is derived from the causal status, but, as in all
experiments, is strictly disjoint with respect to any test edges.

Results are shown in Figure 2.5a-c, including the area under the ROC curve (AUC;
computed with respect to an experimentally-determined gold-standard). Overall, the
proposed methods perform well, achieving good results in this high-dimensional, lim-
ited data regime. Interestingly, the two towers differ in some ways: the CNN tower
degrades slowly with fewer causal inputs while the performance of the GNN tower
degrades faster. GIES [9] was not effective in this setting (result not shown; findings
are in line with [12] using the same data); however, we note that GIES requires dif-
ferent inputs to our approach and its assumptions are likely violated in this setting.
Next, to shed light on data efficiency we varied the sample size n of the data matrix
X. Results are shown in Figure 2.5d-f.

Finally, we tested performance in a higher dimensional example spanning all p=5535
available genes (cf. Figure 2.5g-k) and found that D2CL remains effective at genome
scale. Interestingly, while the CNN tower performs particularly well, the GNN tower
degrades more. This may be because larger p leads to a larger number of variable
pairs (which is helpful for the CNN), but also to a (rapid) increase in the number of
nodes and edges in the GNN subgraphs and hence a harder GNN learning task in
practice.

2.12.3 Performance under perturbations
D2CL leverages prior causal knowledge; however, in practice, available causal inputs
Π may be incorrect, e.g. due to flawed initial experiments or errors in the known
science. To study sensitivity to flawed causal inputs we introduced errors into Π. This
was done by perturbing 10% of the inputs (i.e. labeling causal pairs as non-causal
and vice versa) at the outset. Figure 2.6a shows corresponding results; this confirms
that the networks are reasonably robust in this sense. These experiments reveal also
a benefit of the dual network variants: when one tower underperforms, the combined
network still performs well, as it (automatically) adapts to rely on the effective tower,
which is further investigated in Figure 2.6b. In general, the embedding of either
tower is modified right before the fusion layer to test the impact of a failing tower
on the overall performance. The experiment contains four different modifications: (i)
We set the complete embedding of one tower to zero and hence effectively remove
all information from this tower. In the other cases we apply Gaussian noise with
magnitude (ii) σ = 1.0, (iii) σ = 2.0, and (iv) σ = 5.0. The results support the
notion that even when one tower fails, the second can compensate so that D2CL still
provides useful output.

2.12.4 Identifying causal direction
Causal relations are in general directed and asymmetric, hence it is interesting to ex-
plore this behavior with respect to causal direction. Given an image representation,
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2 Causal Learning in High Dimensions

(a) Label Perturbation (b) Embedding Perturbation

Figure 2.6: Sensitivity to incorrect causal inputs and additional results on causal direc-
tion. (a) Robustness to incorrect causal inputs. Sensitivity of D2CL to errors
in prior/input causal knowledge Π was studied by artificially introducing
errors into Π, with 10% of inputs corrupted. Results quantified via causal
AUC shown for several D2CL variants. (b) An ablation-like study in which
failures of either the CNN (orange) or the GNN (blue) tower within D2CL
are artificially introduced. The affected embedding is either set to zero or a
zero-mean Gaussian noise with varying scale is applied. The unaffected case
is given as dashed black line.

the CNN tower extracts feature maps that are unique for (ordered) node pairs. The
two-dimensional convolutional operation S(i, j) =

∑
m

∑
n
I(m,n)K(i−m, j − n)

that convolves image I with kernel K would produce the same feature map for two
causal images Ik→l and Il→k if and only if Ik→l and Il→k were identical. In other
words, unless the probability distribution P (Xi, Xj) is perfectly symmetrical around
the center of the causal image, the CNN tower extracts causal features that differ
depending on direction.

To empirically study this behavior, we constructed additional test data as follows: for
each truly causal edge k → l in the test set, we also included the reverse direction
l → k. This means that any learner estimating undirected links would have an
AUC score of 0.5 (since the output k → l entails also l→ k, one of which is a false
positive).Table 2.7b shows that D2CL is indeed capable of accurately identifying
causal direction. In addition, Figure 2.7a shows a low-dimensional representation of
the feature maps of the converged CNN tower. These feature maps differ by causal
direction (k → l vs. l→ k) throughout the forward pass, supporting the foregoing
arguments.

2.12.5 High-dimensional human CRISPR-based data.
Finally, we used recent, single-cell CRISPR-based interventional experiments [55] to
illustrate the use of the proposed approaches in very high-dimensional human data.
The experimental protocol (see [55] for full details) includes interventions on a large
number of gene targets for two different human cell lines: a cancer (leukemia) cell
line (K562) and a (non-cancer) cell line (retinal pigment epithelial or RPE cells). The
K562 and RPE experiments include gene expression levels for a total of, respectively,
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2.12 Results

(a) Low-dimensional representation of feature maps of CNN tower

SNR Linear MLP(tanh) MLP
(leaky ReLU) Tanh Leaky ReLU Polynom 3

10.00 0.983 0.711 0.787 1.000 0.994 0.929
6.00 0.981 0.659 0.806 1.000 0.990 0.920
4.00 0.989 0.648 0.802 1.000 0.989 0.927
2.00 0.988 0.721 0.777 1.000 0.992 0.929
1.00 0.987 0.668 0.798 0.999 0.990 0.924
0.75 0.997 0.618 0.765 0.998 0.993 0.926
0.50 0.990 0.669 0.784 0.994 0.991 0.920
0.25 0.991 0.683 0.721 0.962 0.991 0.905
0.10 0.985 0.674 0.790 0.941 0.992 0.915

(b) Causal Directions: AUC values for test sets containing edges A → B and
B → A.

Figure 2.7: Causal direction analysis (see text for details). (a) Low-dimensional repre-
sentations of latent feature maps of the converged CNN tower. Edges A → B
shown as dots and reverse edges B → A as x-shaped markers. An edge and
its corresponding reverse is indicated by the same color. For improved read-
ability, only ten random pairs are highlighted in colors and bigger markers.
We see that the embedding is not invariant with respect to causal direction
and able to effectively identify the correct direction. [The different D2CL
variants include: a CNN tower alone; a GNN tower for two different initial
graph estimates; and the complete network for the same two initial graph
estimates. Initial graph estimates for the GNN and combined models were
either based on Pearson correlation coefficients (“Pearson") or a lightweight
regression (“Lasso”; see Text for details).] (b) AUC values of causal direc-
tion tests for different test sets and signal to noise ratios (SNR).
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2 Causal Learning in High Dimensions

p=8552 and p=8833 genes (see Sec. 2.10 for details). This is a highly challenging set-
ting, due to the complexity of regulatory events in these human cells and high levels
of variability and noise in the recently developed single-cell CRISPR protocols. Re-
sults are shown in Figure 2.8. Results for K562 and RPE cells (each with more than
8000 genes in the data) show good performance for RPE, and slightly worse perfor-
mance but still nontrivial consistency with the experimental gold-standard for K562.

Figure 2.8: Results - high-dimensional human data. Single-cell CRISPR-based experi-
ments (due to [55]) were used to illustrate the use of the proposed approaches
in high-dimensional human data. Performance was quantified using causal
ROC curves (and the area under the curve, or AUC) computed with respect
to a causal ground truth obtained from entirely unseen interventional experi-
ments. (a) Results from D2CL applied to data obtained from retinal pigment
epithelial cells (RPE) and a cancer cell line (K562) in problems spanning
more than 8000 variables (other methods could not be practically run in
this case due to computational burden). (b) Performance of existing causal
learning approaches (on K562 data) as a function of problem dimension.
The dashed line indicates D2CL performance on the full problem (p=8552
variables). We see that for the existing methods tested, performance con-
verges to the level of random guessing once more than ∼100 variables are
considered. (c) Computational runtime as a function of problem dimension.
(Runtime of D2CL on the full problem with p=8552 including full training
and inference is shown as a dashed line; shown only for completeness).
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2.13 Conclusions

Additional plots in Figure 2.8 show performance and the runtime for a set of baseline
algorithms (CAM, GES, GIES, LiNGAM, RFCI, and IDA). These results demonstrate
two key points. First, that the runtime for these existing algorithms grows so rapidly
with increasing number of variables as to render them unsuitable for problems at
this scale. Second, in terms of performance, all the tested methods are considerably
less effective than D2CL and in fact, for these data, converge to the performance
level of random guessing once more than ∼100 variables are considered.

2.13 Conclusions

Emerging experimental protocols, involving combinations of perturbations and high-
dimensional readouts, are allowing for new, scalable ways to query molecular networks
in a context-specific fashion. Combined with scalable causal learning tools, these
approaches have the potential to strongly impact disease biology by allowing global
networks, spanning thousands or tens of thousands of variables, to be investigated
across many different contexts. We propose an innovative method for inferring causal
graph structures. Our approach leverages supervised learning from limited data
from a single system and prior causal knowledge to determine the causal status of
the remaining edges. Our unique two-tower architecture builds on directly examin-
ing statistical characteristics within bivariate distributions and analyzing structural
graph features through subgraph processing. During inference, it generates prob-
ability distributions for queried edges and estimates sequentially the entire graph.
Through extensive experiments, we demonstrate that our approach achieves high
accuracy, efficiency, robustness, and scalability when applied to both simulated and
real-world datasets. Furthermore, we illustrate that our model generalizes well in
out-of-distribution tests and consistently outperforms other comparison methods
across various conditions.

Networks learned in this way could, in future, be leveraged to allow for prediction of
disease phenotypes or drug response under novel perturbations (this is a different task
from standard supervised learning since the test case involves an unseen perturbation
to the system). Furthermore, in the area of personalized medicine, such an approach
could even allow for rational optimization over potential therapeutic strategies, since
the latter are often interventions targeted at molecular nodes, e.g., genes and proteins.

Our model leverages deep learning tools to learn causal relationships between vari-
ables at large scale. However, and in contrast to well established approaches based
on causal graphical models, it provides only structural output rather than a proba-
bility model of the underlying system. It would therefore be interesting to consider
coupling our approach, as a first learning step, with a graphical model based analysis
in a second step. This would amount to using the flexible and scalable discrimina-
tive approach as a filter to render subsequent causal modeling more tractable. It
is also interesting to contrast D2CL with the recently proposed CSIvA [33]. Both
approaches pursue in a sense a “direct" mapping of data inputs to graph outputs,
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2 Causal Learning in High Dimensions

with a key difference being that CSIvA uses meta-learning and seeks to generalize
across systems while D2CL uses supervised learning to generalize to new interven-
tions on a given system (for example a biological system of interest). An interesting
direction for future work may be to combine both approaches, e.g. by using CSIvA
to provide input to D2CL’s GNN tower: this would allow the combined learner to
leverage both the general patterns discovered by meta-learning and the data effi-
cient, system-specific approach of D2CL.

At present, rigorous theory and theoretical properties of the kind of approach studied
here remain to be understood. A key direction for future theoretical work will be to
understand precise conditions on the underlying system needed to ensure that direct
mapping or classification-type approaches can guarantee recovery of specific causal
structures. An interesting observation is that the proposed approach may benefit
from a “blessing of dimensionality”, since the learning problem will typically enjoy a
larger number of examples as the dimension p grows. Conversely, and in contrast to
established statistical-causal models, our approach (at the current stage) cannot be
used in the small-p regime, since then the number of examples will be too small for
deep learning.
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3 Learning Latent Dynamical Models

The world around us is filled with dynamic systems that evolve and change over
time. From the weather patterns that shape our climate to the intricate dynamics of
financial markets, understanding and predicting the behavior of such systems is a
fundamental challenge and of utmost importance for numerous domains ranging from
bio-medicine to traditional engineering applications. In recent years, learning latent
dynamical models has emerged as a powerful tool for unraveling the hidden dynam-
ics within these complex systems. To begin, let us explore what a latent dynamical
model entails. In essence, it is a mathematical framework that aims to capture the
hidden dynamics underlying a system’s behavior. It provides us with a powerful tool
to extract meaningful insights and predictions from complex, time-varying data. By
uncovering the latent variables driving the observed phenomena, we gain a deeper
understanding of the underlying processes at play. Nonetheless, when it comes to nu-
merous research inquiries, scientists often find themselves limited to data that does
not directly align with the variables of the actual system, merely reflecting its pro-
gression. Consider, for instance, a scenario where a camera observes a pendulum
in motion. The recorded image data encompasses the temporal development of the
dynamic system, albeit solely within the observational state realm. In the absence
of prior knowledge or additional analysis, it becomes impossible to discern that the
governing ordinary differential equation is actually defined by the pendulum’s angle
and angular velocity.

For these problems, the beauty of latent dynamical models lies in their ability to
handle uncertainty and infer hidden states. They enable us to deal with incomplete
or noisy data and make accurate predictions even in the face of sparse longitudi-
nal snapshots. This is achieved through a combination of probabilistic modeling
techniques, machine learning algorithms, and sophisticated inference methods. The
latent variables in these models serve as a bridge between the observed data and the
underlying dynamics. They encode valuable information about the system’s behav-
ior that may not be immediately apparent from the raw data. By extracting and
leveraging this hidden knowledge, latent dynamical models have the potential to
deepen our comprehension of the system and empower us to make well-informed
choices, particularly in situations where theoretical principles and observations fail
to align in terms of physical connections. In fact, the ability to extract knowledge
solely from longitudinal observations, without any preexisting knowledge, presents a
revolutionary advancement for such problems wherein our access to the underlying
system’s variable space is either limited or nonexistent. Consequently, it becomes
crucial to possess automated scientific discovery tools that condense raw sensory per-
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ceptions into a concise collection of state variables and their interdependencies.

The applications of latent dynamical models are vast and diverse. In the field of
robotics, these models have proven invaluable for motion planning and control, al-
lowing robots to navigate and interact with their environment effectively. In finance,
they have been employed to forecast market trends, manage risk, and detect anoma-
lies. In healthcare, latent dynamical models have helped in understanding disease
progression, personalized medicine, and early diagnosis.

The key challenge of modeling multi-variate time sequences lies in estimating the
hidden variables and their interactions from observed data. This necessitates the
integration of optimization algorithms, statistical inference techniques, and often,
domain expertise. The advent of deep learning has revolutionized this process,
with neural network architectures enabling more powerful and flexible modeling
capabilities. Novel techniques, such as variational inference, deep generative models,
and recurrent neural networks, have pushed the boundaries of what is possible and
helped discover unknown relations for traditionally challenging problems.
Hence, learning latent dynamical models has the potential to revolutionize our
understanding of complex systems and enhance predictive capabilities. With its
interdisciplinary nature, this approach surpasses disciplinary boundaries, finding
practical applications across diverse domains. In this Chapter, we delve into the
intricacies of learning latent dynamics and present a novel methodology for inferring
latent dynamical models using explicit invariance decomposition. Through this
approach, we aim to address the challenges associated with understanding and
modeling complex systems, paving the way for more accurate predictions and deeper
insights.

3.1 Neural Latent Dynamical Models via Invariance
Decomposition

For many systems of interest in fields like biology, medicine and engineering, high-
dimensional observations can reasonably be thought of as obtained via dynamics
operating in a lower dimensional space and this assumption (related to the manifold
hypothesis [60]) is a common one in many settings. Machine learning approaches
for learning dynamical systems have been an important area of recent research, in-
cluding in particular neural ordinary differential equations [42] and a wider class
of related neural-dynamical models ([61, 62, 63, 64, 65, 66]). These models define
layers as differential equations and in that sense incorporate an informative (and
often appropriate) inductive bias for physical systems. However, the training of neu-
ral ordinary differential equations (NODEs) poses a challenging task, necessitating
the application of diverse techniques and assumptions to ensure practical viability.
Primarily, these methods suffer from the curse of length, wherein the complexity of
the loss function escalates as the observed trajectory of the system increases. Sur-
prisingly, even for moderately long sequences, the landscape of the loss function
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can become enigmatically complex. Consequently, conventional gold-standard op-
timization techniques can readily deviate when employed in NODE-based approaches.

We propose a new framework for learning latent dynamics from observed data and
our approach, named “Latent Dynamics via Invariant Decomposition” (LaDID),
combines variational autoencoders and spatio-temporal attention within a learning
framework motivated by certain scientifically-motivated invariances, but which does
not require an explicit ODE formulation (details below). Although the focus of this
paper is primarily on methodology, the research we present is driven by real-world
applications, particularly in the fields of biomedicine and health. In these domains,
it is often the case that explicit dynamical models are not initially accessible. How-
ever, we anticipate that the invariances outlined below are nonetheless expected to
hold (see also Discussion).

The methods we propose build on two observations concerning classical scientific
models:

• First, the notion that every output from a class of scientific systems should be
explainable via a single model that operates across all instances within this
class and is, in that sense, universal. For example, for a class of mechanical
systems, the same equations can explain all specific instances (with different
initial conditions or constants, say) even when the instances are very different
in terms of their respective observations. This is interesting from an ML point
of view because the induced distribution shifts between instances can be very
large.

• Second, instance/realization-specific factors (such as initial conditions or con-
stants) tend to remain unchanged throughout the entire duration of a given
realization. In this regard, these factors exhibit time invariance, as they main-
tain their values consistently over time.

Our approach and the derived transformer-based architecture builds directly on
these notions of invariance. We describe the network in detail below, but in brief the
set-up is as follows. From an available trajectory – thought of as representing a spe-
cific instance/realization r of a more general model class M – we learn an encoding
ψr of the realization-specific information. This is intended to implicitly capture in-
formation (such as initial conditions or constants) that are specific to the instance or
realization r, but the information should remain valid for all times within a realiza-
tion/instance; hence the encoding has a superscript indicating the realization but no
time index. This encoding ψr is treated as an input to a “universal” model f to en-
able prediction of system output at any time t. The model f itself is learned across
multiple realizations r of the system defined by the model class but the same func-
tion is always used for prediction (for the system M). In other words, f is intended
to be universal (across all queries concerning the systemM) with realization-specific
information provided only by the input ψr. We argue that under certain conditions,
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this decomposition into realization-specific (RS) and realization-invariant (RI) in-
formation allows for definition of a simple and convenient learning framework. We
propose a deep neural architecture for this purpose, showing how learning of univer-
sal latent dynamics and realization-specific information can be done jointly, in an
end-to-end manner. This enables prediction of system behavior at any continuous
time t, for any realization r (for which minimal data are available).

We empirically validate our proposed method on spatio-temporal systems with dy-
namics governed by ordinary or partial differential equations. These systems are
ubiquitous in nature and include physical phenomena in rigid body motion, fluid
dynamics and turbulent flows, electromagnetism and molecular dynamics. Our work
is related to a large body of previous work on neural learning of dynamical models,
which we discuss in detail below. A key distinction of our approach is that by lever-
aging the framework outlined above, we do not require an explicit neural ODE at
all; rather we can carry out learning within a simple, broadly supervised framework
that, as we show, substantially outperforms existing neural-dynamical models over a
range of challenging tasks relative to both, regular and irregular time grids.

Thus, our main contributions are:

• We present a novel framework, and associated transformer-based network for
the separation of realization-specific information and (realization-invariant)
latent dynamical systems.

• We systematically study performance on short- and longer-horizon prediction
of a wide range of complex temporal and spatio-temporal problems, comparing
against a range of state-of-the-art neural-dynamical baselines.

• We study the challenging case of transfer to data obtained under entirely novel
system interventions via a few-shot learning (FSL) approach.

3.2 Related Works
We start by exploring the diverse range of methods that have been proposed for learn-
ing dynamical models from data, with a particular emphasis on approaches rooted
in machine learning. Non-linearity, as present in a wide array of complex phenom-
ena, poses a significant challenge in the study of dynamical systems. Unfortunately,
a comprehensive mathematical framework that explicitly and universally describes
nonlinear systems is currently missing. In contrast, linear systems can be fully char-
acterized using spectral decomposition that enables the utilization of generic and
computationally efficient algorithms for prediction, estimation, and control. One
way to transfer these properties to nonlinear dynamical systems roots in the Koop-
man operator theory of dynamical systems which presents a promising alternative
perspective [67, 68]. It suggests that even highly nonlinear dynamics may exhibit a
form of linear superposition through the utilization of the infinite-dimensional, yet
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linear, Koopman operator. Unlike traditional approaches, the Koopman operator,
operates on measurement functions of the system. Its spectral decomposition pro-
vides a comprehensive understanding of the behavior of the nonlinear system, akin
to the characterization afforded by eigenvalues and eigenvectors in linear systems.
[69] introduces a novel approach to the problem of discovering dynamical systems,
viewing it through the lens of sparse regression in combination with Koopman the-
ory. This new perspective allows us to identify nonlinear models while striking a
balance between model complexity and accuracy. The inherent convex optimization
algorithms employed in this method ensure its applicability to large-scale problems.
The key insight of this line of research lies in recognizing that, for many systems of
interest, the dynamical model can often be expressed using only a small number of
functions, rendering it sparse within the space of possible functions. To capture this
sparsity, they construct an augmented library that comprises candidate nonlinear
functions offering flexibility and various choices. This approach found wide-spread
application in the community [70, 71, 72, 73] and was extended to an implicit formu-
lation [74] and neural reformulation [75].

In certain cases, the modeling of dynamical systems necessitates meticulous dis-
cretization to accurately capture the underlying phenomenon. However, this reliance
on fine discretization can often result in slow and inefficient traditional numerical
solvers. To address this challenge, a recent line of research has proposed the use of
neural networks to learn mesh-free, infinite-dimensional operators. The introduc-
tion of neural operators offers a solution to the dependency on specific meshes by
generating a single set of network parameters that can be utilized across different
discretizations [76, 77, 78, 79, 80]. This allows for the transfer of solutions between
meshes, eliminating the need for retraining. Moreover, neural operators only re-
quire training once, and obtaining a new solution merely involves a forward pass
through the network. Importantly, the neural operator does not require prior knowl-
edge of the underlying partial differential equation, relying solely on data-driven
insights. Tailored neural operators, e.g. Fourier Neural Operator [81, 82], target the
resolution-invariant solution of the turbulent regime of the Navier-Stokes equations
with applications in e.g. weather forecasting [83].

Within the existing body of research, a significant amount of work has been dedi-
cated to addressing the computationally intensive nature of forward solutions by
leveraging the assumption of a known parametric form of a differential equation [84,
85, 86]. This approach involves matching empirical gradients ẋ = f(x), thereby cir-
cumventing the need for costly integration steps. In more recent investigations, the
focus has shifted towards estimating an unknown, non-parametric differential equa-
tion using Gaussian processes [87, 88, 89, 90, 91]. This novel approach offers the
potential to uncover the underlying dynamics without relying on pre-defined param-
eterizations, opening up new avenues for modeling and analysis.

In dynamical systems it is typically not feasible to have a reliable analytical model
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of the underlying processes. In such cases, a more general approach is to learn and
capture the latent dynamics of the data using an architecture that incorporates
an appropriate inductive bias. Hamiltonian and Lagrangian mechanics offer dis-
tinct mathematical reformulations of Newton’s equations of motion, specifically for
energy-conservative dynamics. The conservation of energy in these systems enables
predictions of the system’s state over significantly longer time horizons, both for-
ward and backward, compared to the training data. This property makes them
attractive biases to incorporate into deep neural networks. Despite the different co-
ordinate frames they employ (Hamiltonian using position q and momentum p, and
Lagrangian using position q and velocity q̇), both formalisms describe the same un-
derlying dynamics, allowing for seamless translation between the two without any
loss of generality. One advantage of these models is that they only need to infer the
Hamiltonian or the Lagrangian, without the additional burden of learning a state
representation. This also simplifies evaluation, as it requires calculating the distance
between the ground truth states and the states predicted by the model along the tra-
jectory. To tackle this challenge, several approaches have been proposed that augment
physics-inspired models with encoder/decoder modules [92, 93, 94, 95, 96, 97]. These
modules facilitate the inference of low-dimensional states from high-dimensional
pixel observations bridging the gap between visual input and the underlying dynamics.

Adopting a continuous dynamical system approach facilitates the combination of
ideas from machine learning and physical modeling. The underlying idea emanates
from the following theoretical observation: Each residual block in a ResNet can be
represented as a step in the forward Euler discretization of an ODE, suggesting a
potential connection between discrete dynamic systems and deep networks featuring
skip connections [98, 99, 100, 101]. In fact, such networks may be formalized as

ht+1 = ht + f(ht, σt), (3.1)

with ht denoting the hidden network state at time step t and f(ht, σt) is the learned
function of the current hidden state information. Hence, deep neural networks can
be seen as a discretized version of continuous dynamical systems. Mathematically,
working with continuous dynamical systems is often more convenient and manageable.
The continuous formulation offers greater flexibility and ease of analysis compared
to discrete systems. The application of physics-inspired partial differential equation
(PDE) models in image processing has resulted in significant advancements. Some
notable contributions include optical flow models for motion estimation [102] or
nonlinear diffusion models for image filtering [103] amongst others. In the realm of
differential equation based data processing, the data is often treated as discretized
representations of multivariate functions. Consequently, various operations on the
data can be understood as discretizations of differential equation operators acting
on these underlying functions. In this context, the governing idea of neural ODEs
suggests to gradually decrease the step size ∆t yielding a differential version of the
above equation. In other words, the difference ht+1 − ht can be interpreted as a
discretization of the derivative d

dt
h(t) with time step ∆t = 1 [98, 99, 104]. Letting
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∆t→ 0, eq. 3.1 can be rewritten as

lim∆t→0
ht+∆t − ht

∆t
=
dh(t)
dt

= f(h(t), t). (3.2)

Consequently, the hidden state can be represented by an ODE that maps a data
point x to a set of features ϕ(x) by solving an Initial Value Problem (IVP) up to a
certain time T

dh(t)
dt

= f(h(t), t) h(0) = x . (3.3)

The hidden state at time T , i.e. h(T ), corresponds to the features learned by the
model. That is, in neural ODEs the input x is mapped to an output y by solving an
ODE starting from x. Then, the dynamics of the system (encoded by f) is adjusted
such that the ODE transforms x to a y which is close to ytrue.
When employing the Euler integration scheme, setting the step size to m = 1 precisely
aligns with the update of sequence transformations in neural networks. Consequently,
adding an infinite number of layers to the neural network defines the dynamics of
the hidden state h as an ordinary differential equation:

d(h(t))
dt

= f(h(t), t, θ) (3.4)

To address the memory consumption issue associated with solving an ODE in the
forward pass, various existing ODE solvers such as Runge-Kutta [105, 106] or DOPRI
[107] integration schemes can be employed. However, these ODE solutions come at
the expense of high memory usage, typically of the order O(L̃), where L̃ represents
the number of function evaluations involved. In order to mitigate this challenge,
[104] propose to utilized the adjoint sensitivity method [108]. The adjoint sensitivity
method offers a general approach applicable to all ODE solvers and tackles the
problem of memory costs during gradient computation. It achieves this by solving
a second, augmented ODE in reverse time. By applying the adjoint sensitivity
method, the time complexity scales linearly resulting in constant memory costs. This
reduction in memory consumption is highly desirable and addresses a significant
concern associated with solving ODEs in neural networks.
A well-known limitations of neural ODEs emanates from the curse of length: as
training progresses and the flow becomes increasingly more complex, the number
of steps required to solve the ODE increases [104, 109]. One approach to overcome
these limitations is through the use of augmented neural ODEs [110]. ANODEs aim
to address the challenges by augmenting the space in which the ODE is solved. This
augmentation enables the model to leverage the additional dimensions, facilitating
the learning of more complex functions while employing simpler flows. As a result,
ANODEs offer a notable reduction in the computational cost of both the forward and
backward passes of the model when compared to the original neural ODE counterpart.
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Another issue of NODEs arises from their continuous modeling idea which does not
allow to incorporate discrete events that abruptly change the latent vector. One so-
lution to tackle this drawback are neural jump ODEs (NJ-ODEs) [111]. The authors
use a latent vector z(t) to encode the state of a system which flows continuously over
time until an event happens at random causing an abrupt jump and change in its
trajectory. To model such rare events, its conditional intensity and its influence are
parameterized with neural networks as functions of z(t) while the continuous flow is
modeled via an original NODE. Concurrent work aiming to adjust the trajectory
based on subsequent observations was proposed in [112] combining general charac-
teristics of RNNs with neural ODEs to form neural controlled differential equations
(NCDEs). Generally speaking, NCDEs are the continuous analogue of RNNs sim-
ilar to NODEs being the continuous version of ResNets. Follow-up work in [113]
proposed a NCDE extension based on the rough path theory called neural rough
differential equations (NRDEs). Instead of directly embedding into the path space,
the input signal is represented over small time intervals through its log-signature,
which are statistics describing how the signal drives a CDE. The log-signature cap-
tures statistical information about how the signal influences a controlled differential
equation (CDE). This log-ODE method enables the updating of the hidden state of
a non-commutative differential equation (NCDE) over extended intervals, surpass-
ing what would typically be achievable based solely on the sampling rate or data
length. Consequently, the effective length of the time series is effectively reduced, as
the log-signatures serve as a specific choice of summarization tailored to the CDE.

An alternative approach to address the challenge of long-term trajectory prediction
involves applying the concept of multiple shooting, commonly used in differential
equations, to neural networks. In this regard, [114] introduced a novel class of implicit
neural models called Multiple Shooting Layers (MSLs). These MSLs leverage time-
parallel methods for differential equations, enabling them to seek solutions to initial
value problems using parallelizable root-finding algorithms [115, 116]. Differentiable
MSLs focus on maximizing parallelization by utilizing the interplay between numerical
methods for root finding and differential equations. This new class of neural models,
MSLs, can often serve as drop-in replacements for Neural ODEs with the advantage
of frequently requiring a smaller number of function evaluations. Multiple-shooting
methods for differential equations involve a fundamental concept of transforming an
initial value problem into a boundary value problem (BVP). The time interval [0,
T] is divided into N sub-intervals [tn, tn+1] with 0 = t0 < t1 < · · · < tN = T , each
associated with a left boundary subproblem characterized by the following condition:

zn(tn) = bn (3.5)
zn(t)
dt

= fθ(t, zn(t)), t ∈ [tn, tn+1] , (3.6)

where bn represents shooting parameters. The solution of the second subproblem
matches the solution of the first subproblem at each time t ∈ [0, T ] if and only if all
shooting parameters are identical to z(tn), i.e. bn = ϕθ(z0, t0, tn). A remarkable
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feature of Multiple Shooting Layers is their ability to compute the solutions of all N
initial value problems in parallel based on the shooting parameters in the boundary
value problem. The research conducted by [117] presents an innovative perspective
that expands upon conventional multiple shooting methods. Their approach intro-
duces a probabilistic framework that integrates sparsity into the shooting variables,
enabling the effective integration of irregularly sampled time grids and redundant
shooting variables. This novel methodology effectively addresses the challenges asso-
ciated with irregularities and redundancies in a systematic manner. Furthermore,
the authors propose an attention-based encoder architecture specifically tailored for
latent neural ordinary differential equations. This architecture seamlessly comple-
ments the sparse shooting formulation and demonstrates remarkable capabilities in
handling high-dimensional data that is noisy and partially observed. Leveraging the
power of Bayesian inference, the authors naturally incorporate a continuity prior.

Ordinary differential equations are mathematical equations that describe determinis-
tic systems and are known to define a flow of diffeomorphisms [118]. These systems
have predictable behavior, where the evolution of a variable is solely determined by
its current state. ODEs involve derivatives with respect to a single independent vari-
able, usually representing time and find extensive application in physics, engineering,
and various scientific fields. This allows the modeling of phenomena like classical
mechanics or chemical reactions, which exhibit consistent patterns. On the other
hand, stochastic differential equations (SDEs) provide a generalization of ODEs by
incorporating instantaneous noise into their dynamics. SDEs can be expressed in
general by the following integral equation

dh(t)
dt

= f(h(t), t) + σh(t)ζ(t), (3.7)

where ζ(t) denotes a random component, commonly represented by a Wiener pro-
cess or Brownian motion. SDEs are utilized to model dynamic systems affected by
random forces or external sources of uncertainty. They are particularly useful when
studying phenomena that involve noise, fluctuations, or random processes. The in-
corporation of randomness in SDEs enables them to capture systems with inherent
uncertainty. Recent advancements have enabled efficient training of neural stochastic
differential equations , similar to the concept of neural ordinary differential equa-
tions. To compute gradients through a neural SDE [119, 120] proposed to employ
the pathway approach [121] to simulate the forward dynamics of an explicit Jacobian
matrix while [122] presented a stochastic version of the adjoint sensitivity method
which is computationally cheaper. SDEs and their neural equivalent find widespread
usage in fields such as finance [123, 124, 125], biology [126], and physics [127, 128],
where they are well-suited for modeling phenomena governed by small, unobserved
interactions. However, as these models assume distinct characteristics such as deter-
ministic transitions versus stochastic transitions we will confine our experimental
comparisons to (neural) ODE-based methods.
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Our approach is inspired by this body of work in that we also use neural networks
to learn latent dynamical models. However, two key differences are as follows. First,
our models are specifically designed to exploit certain invariances that are important
in classical scientific models. From this point of view, we leverage a particular
kind of scientifically-motivated inductive bias from the outset. Second, exploiting
these invariances allows us to eschew explicit neural ODEs altogether, providing an
arguably simpler, transformer-based scheme that can be trained in a straightforward
fashion, but that, as we show, achieves excellent performance on unseen data from
complex dynamical systems and that can even be leveraged for few-shot learning to
generalize to nontrivial system interventions.

3.3 Method
Initially, we present a problem statement, followed by a discussion of several funda-
mental arguments. These arguments aim to demonstrate how a relatively straightfor-
ward learning framework can be applied within this particular scenario. While these
arguments are simplified for the purpose of clarity, they are nonetheless pertinent in
providing a conceptual foundation and explaining why learning is feasible within this
context. We then put forward a specific architecture to permit learning in practice,
i.e. a concrete learning framework that we implement and study empirically.

3.3.1 Problem statement
We focus on settings in which we capture observations of a system of interest at
irregularly spaced time points t ∈ T forming an individual realization trajectory.
Here, we employ the term “realization” to emphasize that our framework is not
confined to Newtonian or Hamiltonian mechanics. It also accommodates longitudinal
observations of intricate systems, e.g. complex genotype-phenotype relationships or
others.
Let X ∈ RT×C×H×W represent a high-dimensional trajectory in the observational
space. Here, T indicates the number of time steps, and C, H, and W correspond to
channels, frame height, and frame width respectively. Our objective is to predict
future observations X̂tq at queried future time points tq>T . For realizations that
were not represented in the training data at all, we assume availability of some data
specific to the realization at inference-time. With initial observations X at hand, we
strive to develop a model g that captures observed dynamics in a lower-dimensional
latent space. This model should enable accurate future predictions of the system at
any continuous time t, i.e. X̂tq =g(X, tq). The uniqueness of our model lies in its
innovative design, which enforces a novel latent structure separating information
into “realization-specific” and “realization-invariant” components.

Analogy to traditional ODE formulations.

To facilitate a more intuitive understanding of our framework, we would like to draw
some analogies to standard ODE problems. Typical ODE solvers comprise a specifi-
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cally formulated ODE function and some initial value (IV) which are evolved over
time using well-known integration methods, e.g, Euler, Runge-Kutta, or DOPRI
schemes. From a high-level perspective, the IVs relate to our RS representation
while the ODE functions and its corresponding integration approach is our RI
part. However, please note that this analogy only holds on a superficial level as
two fundamental differences exist to our framework: First, our framework purely
relies on observations of a specific system, for which underlying state variables re-
quired to apply standard ODE solver are not known (and in fact neither observed).
Hence, our RS representation requires access to a collection of consecutive high-
dimensional observations as a single sample does not provide sufficient information
to derive a unique solution for its temporal evolution. Second, our RI function is
continuous in time and therefore unites temporal integration and dynamics function
on an abstract level. To do so, we condition our RI model on specific RS repre-
sentations and only query time points from it to obtain a discretized latent trajectory.

In Section B.1, we demonstrate that, under reasonable assumptions, our model driven
by invariances can generally yield accurate predictions. Importantly, this holds true
even without prior knowledge of the actual dynamical system or its accurate latent
variables. The underlying theoretical proof was done by Sach Mukherjee and is
beyond the scope of this thesis, however, very important for a deeper understanding
of our approach.

3.3.2 Neural architecture
Based on the initial thoughts and theoretical motivations in Section B.1, we now put
forward a specific architecture leveraging an amortized variational inference model.

3.3.2.1 Model, inference and forecasting

Model. Overall, our implementation is composed of three primary components: the
encoder fϕenc , the invariant dynamical system fϕdyn

, and the decoder fϕdec
, all

of which are characterized by parameters ϕenc, ϕdyn, and ϕdec respectively. The
encoder is a collection of three NNs, i.e. a CNN processing spatial information in
the observation space, a transformer utilizing temporal attention and a learnable
mapping function. Since we want to predict future observations based on a few ob-
servations, we only use the first K data points in time and process these in a shared
convolutional encoder (green trapezoid in Fig. 3.1 (ii)). We employ a shallow CNN
that compresses the input to 1/16 of the initial input size using four ReLU activated
and batch-normalized convolutional layers. The resulting tensors are then flattened
and mapped linearly to a single vector. Next, we use a transformer on the K output
vectors of the convolutional encoder, applying temporal attention to reweigh vec-
tors. We tested two approaches [129, 117] with comparable performance which are
discussed in the Appendix in more detail. For each of the k ∈ K time aware repre-
sentations ρTAk , we sample a latent embedding using the reparameterization trick,
i.e. lembk ∼ N (fµ(ρTAk ), fσ(ρTAk )). The final trajectory representation ψr is the out-
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Figure 3.1: Architecture: Learning of Latent Dynamics via Invariant Decomposition
(LaDID). Top half: general flow chart of the compute steps (i)-(v) of LaDID;
lower half: more detailed representation of the compute steps. A set of high-
dimensional snapshots of a system on a regular or irregular time-grid serves
as the empirical input to LaDID. The trajectory is split into subpatches using
Multiple Shooting Augmentation (i). The first time-points of each subpatch
are used to compute a subtrajectory representation: features of the selected
snapshots are re-weighted w.r.t. time and spatial location (ii), transformed
to low-dimensional variational embedding (iii), and aggregated into one
trajectory representation ψr (iv). During inference, the latent dynamical
model is conditioned on the specific representation ψr . Prediction is possible
at any continuous time by querying the latent state of any time point of
interest (v). Latent subtrajectories are sewn together by a smoothness loss.
Finally, the entire latent trajectory is decoded to the observation space (vi).

put of an aggregation over all K tokens. In our implementation, we choose a simple
yet effective mean-aggregation which can be changed based on the task at hand.
The second important part of our proposed framework is the dynamical model fϕdyn

.
We utilized a three layer MLP which can also be interchanged by other functions. To
obtain a latent trajectory, we condition the latent dynamical model to our end-to-end
learned trajectory representation ψr and roll-out the latent trajectory z based on
the queried time points tq represented through a time encoding which we choose as
a set of different sine and cosine waves with different wave length.
Finally, we map all data points of our latent trajectory back to the original ob-
servation space. Our decoder module fϕdec

is kept very simple consisting of four
deconvolutional layers.

The key novelty of our approach lies in the unique structure of the latent space
mimicking the interplay of realization-specific information in initial/boundary condi-
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Figure 3.2: Graphical model: The graph consists of three random variables, the trajec-
tory representation ψr, the latent states z and the observations x. Fixed
parameters ϕ are represented by the gray node.

tions and a realization-invariant dynamical model similar to the frame of differential
equations. However, we can significantly reduce computational costs as we are not
forced to solve explicitly any differential equation since we rely on an unsupervised
end-to-end learning scheme.

Generative model, inference and optimization. We now turn the descriptive technical
context of our method to a probabilistic model. Our graphical model (see Fig. 3.2)
consists of (trainable) parameters Φ = ϕenc ∪ ϕdyn ∪ ϕdec, a random variable ψr
which additionally acts as global random variable at the level of latent states ztq
and observations xtq . The index tq refers to a specific queried time point within a
trajectory. The joint distribution is given by

p(x, z, ψr) = p(x, z|ψr)p(ψr) = p(x|z)p(z|ψr)p(ψr). (3.8)

Our graphical model assumes these independencies: (i) The dataset contains i.i.d.
trajectories of varying length. (ii) The observation of trajectory xrtq at time tq
is conditionally independent of xrtq−1

at time tq−1, given latent states zrtq and
trajectory representation ψr: p(xtq |ztq , ψr)⊥⊥p(xtq−1 |ztq−1 , ψ

r). Analyzing data
with this graphical model involves computing posterior distributions of hidden
variables given observations

p(z, ψr|x) =
p(x, z, ψr)∫

p(x|z)p(z|ψr)p(ψr)dzdψr
. (3.9)

To effectively process long-horizon time series data, we apply a variant of multiple
shooting. However, since our model does not rely on an explicit ODE formulation,
we are not concerned with turning an initial value problem into a boundary value
problem [114]. Instead, we incorporate a Bayesian continuity prior [91, 117] to extend
the multiple-shooting framework from deterministic neural ODEs to a probabilistic
context. Our approach dissects each realization xrt:T into a series of N overlapping
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subtrajectories and independently condenses each patch into a latent representation.
Within this Bayesian multiple shooting framework, the smoothness prior connects
the patches via

p(z|ψr) =
N∏
i=1

p(zn|ψrn)p(zn|zn−1, ψ
r
n−1) (3.10)

to form a cohesive global trajectory. We leverage the independence of trajectory
representations in subpatches i.e. p(zi|ψri ) ⊥⊥ p(zj |ψrj ). For the continuity prior, we
follow [91] and place a Gaussian prior on the error between consecutive subtrajectories,
i.e. ∆ ∼ N (0, σ∆) entailing exact overlapping if ∆→ 0. This yields our continuity
prior

p(zn|zn−1, ψ
r
n−1) = N ((zt1n |z

−t
n−1, ψ

r
n−1), σ∆), (3.11)

where the time index −t refers to the last time point of a subpatch. The prior
trajectory representation is set to a Gaussian, i.e. p(ψr) ∼ N (0, 1). With the priors
introduced above, we get the following generative model (we drop the subpatch index
n for improved readability):

p(lembK |x) = N (fϕenc,µ(xK), fϕenc,σ(xK)) (3.12)

p(ψr|x) = fagg(lembK ) (3.13)
p(z|ψr, x) = fϕdyn

(ψr, tq) (3.14)

p(x|z) = N (fϕdec
(z), σdec) (3.15)

In the context of inference, we opt for Gaussian distributions as our variational
approximations and set σdec = 10−2. We then work to minimize the Kullback-Leibler
divergence KL[q(z, ψr)||p(z, ψr|x)] and derive the ensuing evidence lower bound
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ln p(x) = ln
∫

p(x, z, ψr)
q(z, ψr)
q(z, ψr)

dzdψr (3.16)

≥
∫

q(z, ψr) ln
p(x, z, ψr)
q(z, ψr)

dzdψr (3.17)

=
∫

q(z, ψr) ln
p(x|z)p(z|ψr)p(ψr)

q(z)q(ψr)
dzdψr (3.18)

=
∫

q(z, ψr) ln
p(x|z)p(ψr)

∏N

n=1 p(zn|ψrn)p(zn|zn−1, ψrn−1)
q(z)q(ψr)

dzdψr (3.19)

=
∫

q(z, ψr) ln p(x|z)
N∏
n=1

p(zn|ψrn)dzdψr +
∫

q(z, ψr) ln
p(ψr)
q(ψr)

dzdψr

+
∫

q(z, ψr) ln
p(z1|z0, ψr0)

∏N

n=2 p(zn|zn−1ψrn−1)
q(zn)

dzdψr

(3.20)

This is equivalent to maximizing the following loss function with short term notation
pn(x̂n) = p(xn|zn)p(zn|ψrn):

max Eq(z,ψr)

N∑
n=1

ln pn(x̂n)︸ ︷︷ ︸
(i) likelihood

−
N∑
n=1

KL(q(ψr)||p(ψr|x))︸ ︷︷ ︸
(ii) representation prior

−
N∑
n=2

Eq(z,ψr)KL(q(zn)||p(zn|zn−1, ψ
r
n))︸ ︷︷ ︸

(iii) smoothness prior

(3.21)

3.4 Datasets

To study the capabilities of LaDID relative to existing models, we consider a large
range of physical systems ranging from rather simple ODE-based datasets to complex
turbulence driven fluid flows. Specifically, we evaluate LaDID on high-dimensional
observations (p=16384) of a nonlinear swinging pendulum, the chaotic motion
of a swinging double pendulum, and realistic simulations of the two-dimensional
wave equation, a lambda-omega reaction-diffusion system, the two-dimensional
incompressible Navier-Stokes equations, and the fluid flow around a blunt body
solved via the latticed Boltzmann equations. This extensive range of applications
covers datasets which are frequently used in literature for dynamical modeling and
therefore enable fair comparisons to state-of-the-art baselines and at the same time
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study effectiveness in the context of complex datasets relevant to real-world use-
cases. To this end, we evaluate LaDID on regular and irregular time grids and
further transfer a learned model prior to a completely unknown setting obtained
by intervention on the system. That is, we generate small datasets on intervened
dynamical systems (either via modifying the underlying systems, for example by
changing the gravitational constant or the mass of a pendulum, or via augmenting
the realization-specific observation, e.g. by changing the length of the pendulum
or the location of the simulated cylinder) and fine-tune a pre-trained model on a
fraction of the initially seen training data.

3.4.1 Swinging pendulum

For the first dataset we consider synthetic videos of a nonlinear pendulum simulated
in two spatial dimensions. Typically, a nonlinear swinging pendulum is governed by
the following second order differential equation:

d2z

dt2
= − sin z (3.22)

with z denoting the angle of the pendulum. Overall, we simulated 500 trajectories
with different initial conditions. For each trajectory, the initial angle z and its angular
velocity dz

dt
is sampled uniformly from z ∼ U(0, 2π) and dz

dt
∼ U(−π/2, π/2). All

trajectories are simulated for t = 3 seconds. The training, validation and test dataset
is split into 400, 50 and 50 trajectories, respectively. The swinging pendulum is
rendered in black/white image space over 128 pixels for each spatial dimension. Hence,
each observation is a high-dimensional image representation (16384 dimensions -
flatted 128× 128 px2 image) of an instantaneous state of the second-order ODE.

3.4.2 Swinging double pendulum
To increase the complexity of the second dataset, we selected the kinematics of a
nonlinear double pendulum motion. The pendulums are treated as two point masses
with the upper pendulum being denoted by the subscript “1” and the lower one
by subscript “2”. The kinematics of this nearly chaotic system is governed by the
following set of ordinary differential equations:

d2z1

dt2
=

[
− g(2m1 + m2) sin z1 − m2g sin(z1 − 2z2)

− 2 sin(z1 − z2)m2(
dz1

dt

2
L2 +

dz1

dt

2
L1 cos(z1 − z2))

]
L1(2m1 + m2 − m2 cos(2z1 − 2z2))

(3.23)

d2z2

dt2
=

2 sin(z1 − z2)(
dz1

dt

2
L1(m1 + m2)

+ g(m1 + m2) cos z1 +
dz2

dt

2
L2m2 cos(z1 − z2))


L2(2m1 + m2 − m2 cos(2z1 − 2z2))

(3.24)
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with mi denoting the mass and the length of each pendulum respectively, and g is the
gravitational constant. Again, we simulated 500 trajectories split in sets of 400, 50
and 50 samples for training, validation and testing. The initial condition for (z1, z2)
and ( dz1

dt
, dz2
dt

) are uniformly sampled in the range U(0, 2π) and U(−π/2, π/2). The
double pendulum is rendered in a RGB color space over 128 pixels for each spatial
dimension with the first pendulum colored in red and the second one in green. Hence,
each observation is a high-dimensional image representation (16384× 3 dimensions -
flatted 128× 128 px2 RGB image) of an instantaneous double pendulum state.

3.4.3 Reaction-diffusion equation

Many real-world applications of interest originate from dynamics governed by partial
differential equations with more complex interactions between spatial and temporal
dynamics. One such set of PDEs we selected as test case is based on a lambda-omega
reaction-diffusion system which is described by the following equations:

du

dt
= (1− (u2 + v2))u+ β(u2 + v2)v + d1(

d2u

dx2 +
d2u

dy2 ) (3.25)

dv

dt
= −β(u2 + v2)u+ (1− (u2 + v2))v + d2(

d2v

dx2 +
d2v

dy2 ) (3.26)

with (d1, d2) = 0.1 denoting diffusion constants and β = 1. This set of equations
generates a spiral wave formation which can be approximated by two oscillating
spiral modes. The system is simulated from a single initial condition from t = 0 to
t = 10 in ∆t = 0.05 time intervals for a total number of 10 000 samples. The initial
conditions is defined as

u(x, y, 0) = tanh
(√

x2 + y2 cos
(

(x+ iy)−
√
x2 − y2

))
(3.27)

v(x, y, 0) = tanh
(√

x2 + y2 sin
(

(x+ iy)−
√
x2 − y2

))
. (3.28)

The simulation is performed over a spatial domain of (x ∈ [−10, 10] and y ∈ [−10, 10]
on grid with 128 points in each spatial dimension. We split this simulation into
trajectories of 50 consecutive samples resulting in 200 independent realizations. We
use 160 randomly sampled trajectories for training, 20 trajectories for validation and
the remaining 20 trajectories for testing. Source code of the simulation can be found
in [130].

3.4.4 Two-dimensional wave equation

A classical example of a hyperbolic PDE is the two-dimensional wave equation
describing the temporal and spatial propagation of waves such as sound or water
waves. Wave equations are important for a variety of fields including acoustics,
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electromagnetics, and fluid dynamics. In two dimensions, the wave equation can be
described as follows:

∂2u

∂t2
= c2▽2u, (3.29)

with ▽2 denoting the Laplacian operator in R2 and c is a constant speed of the wave
propagation. The initial displacement u0 is a Gaussian function

u0 = a exp
(
−

(x− b)2

2r2

)
, (3.30)

where the amplitude of the peak displacement a, the location of the peak displacement
b and the standard deviation r are uniformly sampled from a ∼ U(2, 4), b ∼ U(−1, 1),
and r ∼ U(0.25, 0.30), respectively. Similar to [131], the initial velocity gradient
∂u
∂t

is set to zero. The wave simulations are performed over a spatial domain of
(x ∈ [−1, 1] and y ∈ [−1, 1] on a grid with 128 points in each spatial dimension.
Overall, 500 independent trajectories (individual initial conditions) are computed
which are split in 400 randomly sampled trajectories for training, 50 trajectories for
validation and the remaining 50 trajectories for testing.

3.4.5 Navier-Stokes equations

To ultimately test the performance of our model on complex real-world data, we
simulated fluid flows governed by a complex set of partial differential equations called
Navier-Stokes equations. Overall, two flow cases of different nature are considered,
e.g., the temporal evolution of generic initial vorticity fields and the flow around an
obstacle characterized by the formations of dominant vortex patterns also known as
the von Kármán vortex street.
Due to the characteristics of the selected flow fields, we consider the incompressible
two-dimensional Navier-Stokes equations given by

∂u

∂t
+ (u · ▽)u− ν▽2u = −

1
ρ
▽p. (3.31)

Here, u denotes the velocity in two dimensions, t and p are the time and pressure, and
ν is the kinematic viscosity. For the generic test case, we solve this set of PDEs in its
vorticity form and chose initial conditions as described in [132]. Simulations are per-
formed over a spatial domain of (x ∈ [−1, 1] and y ∈ [−1, 1] on a grid with 128 points
in each spatial dimension. Overall, 500 independent trajectories (individual initial
vorticity fields) are computed which are split in 400 randomly sampled trajectories
for training, 50 trajectories for validation and the remaining 50 trajectories for testing.
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3.4.6 Flow around a blunt body
The second fluid flow case mimics an engineering inspired applications and captures
the flow around a blunt cylinder body, also known as von Kármán vortex street.
Von Kármán vortices manifest in a repeating pattern of swirling vortices caused
by the unsteady flow separation around blunt bodies and occur when the inertial
forces in a flow are significantly greater than the viscous forces. A large dynamic
viscosity of a fluid suppresses vortices, whereas a higher density, velocity, and larger
size of the flowed object provide for more dynamics and a less ordered flow pattern.
If the factors that increase the inertial forces are put in relation to the viscosity,
a dimensionless measure - the Reynolds number - is obtained that can be used to
characterize a flow regime. If the Reynolds number is larger than Re > 80, the two
vortices in the wake of the body become unstable until they finally detach periodically.
The detached vortices remain stable for a while until they slowly dissociate again
in the flow due to friction, and finally disappear. The incompressible vortex street
is simulated using an open-source Lattice-Boltzmann solver due to computational
efficiency. The governing equation is the Boltzmann equation with the simplified
right-hand side (RHS) Bhatnagar-Gross-Krook (BGK) collision term [133]:

∂f

∂t
+ ζk

∂f

∂xk
= −

1
τ

(f − feq) (3.32)

These particle probability density functions (PPDFs) f = f(x⃗, ζ⃗, t) describe the
probability to find a fluid particle around a location x⃗ with a particle velocity ζ⃗
at time t [134]. The left-hand side (LHS) describes the evolution of fluid particles
in space and time, while the RHS describes the collision of particles. The collision
process is governed by the relaxation parameter 1/τ with the relaxation time τ to
reach the Maxwellian equilibrium state feq . The discretized form of equation 3.32
yield the lattice-BGK equation

fk(x⃗+ ζk∆t, t+ ∆t) = fk(x⃗, t)−
1
τ

(fk(x⃗, t)− feq
k

(x⃗, t)). (3.33)

The standard D2Q9 discretization scheme with nine PPDFs [135] is applied. The
equilibrium PPDF is given by

feq
k

= wkρ

(
1 +

ζku⃗

c2
s

+
(ζku⃗)2

2c4
s

−
u⃗2

2c2
s

)
(3.34)

where the quantities wk are weighting factors for the D2Q9 scheme given by 4/9
for k ∈ 0, 1/9 for k ∈ 1, . . . , 4, and 1/36 for k ∈ 5, . . . 9, and u⃗ is the fluid velocity.
cs denotes the speed of sound. The macroscopic variables can be obtained from
the moments of the PPDFs. Within the continuum limit, i.e., for small Knudsen
numbers, the Navier-Stokes equations can directly be derived from the Boltzmann
equation and the BGK model [136]. We simulated three different Reynolds numbers
Re = 100, 250, 500 for 425 000 iterations with a mesh size of 128 point in vertical and
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Figure 3.3: Training scheme with losses, and test/evaluation procedure. Top left: Mul-
tiple Shooting Multi-length Training. An input trajectory is split into
subpatches. Subtrajectory length is increased in multiple phases to the
length of the input trajectory. Bottom left: Testing: only the first few points
are used to roll-out the latent trajectory and transformed to the observa-
tional space. Evaluation: Last T samples of the predicted trajectory are
used to compute the evaluation metrics, the average of the summed nor-
malized mean squared error and a time history diagram showing the error
evolution. Right: Loss consisting of three parts: negative log likelihood loss
to penalize reconstruction errors , representation loss to define a gradient
field between representations, smoothness loss to penalize jumps between
latent subpatches.

256 points in horizontal direction. We skipped the first 25 000 iterations to ensure
a developed flow field and extracted velocity snapshot every 100 iterations. The
simulation is performed over a spatial domain of (x ∈ [−20, 20] and y ∈ [−10, 10].
We split this simulation into trajectories of 50 consecutive samples resulting in 200
in dependent realizations. We use 160 randomly sampled trajectories for training, 20
trajectories for validation and the remaining 20 trajectories for testing.

3.5 Experimental Setup

Training. We train all experiments in a multi-phase schedule w.r.t. the multiple
shooting loss in eq. 3.21. In the different phases, we split the input trajectory into
overlapping patches and start learning by predicting one step ahead. We double the
number of prediction steps per patch every 3000 epochs meaning that learning is
done on longer patches with decreased number of patches per trajectory. In cases,
where the trajectory length is not dividable by the number of prediction steps, we
drop the last patch and scale the loss accordingly. In the final phase, training is car-
ried out on the entire trajectory. All network architectures are implemented in the
open source framework PyTorch [45]. Training hyperparameters can be found in Ap-
pendix B.3.
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Testing. We test the trained models on entirely unseen trajectories. During test-
ing, we only provide the first k=10 trajectory points to the learned model. Based on
these samples, we compute a trajectory representation ψr followed by rolling out the
latent trajectory at the time points of interest. Last, we compare predictions and
ground truth observations by evaluation metrics.

Evaluation metrics. Our experiments focus on two key metrics. Firstly, we calcu-
late the mean squared error (MSE) for extrapolated trajectories, where we evaluate
the model’s performance over a total of 2T steps and measure the MSE over the
last T time steps. This approach allows us to assess whether extrapolation over fu-
ture time periods can better predict the model’s ability to extrapolate further in
time, compared to reconstruction MSE. The value of T is set to 60 for all our experi-
ments, and we normalize the MSE value by dividing it with the average intensity of
the ground truth observation, as recommended in [137, 138]. Additionally, we pro-
vide time history diagrams that plot the root mean square error (RMSE) against
the normalized time, which maps the time interval [T, 2T ] to the interval [0, 1]. All
evaluation metrics presented are averaged across all test trajectories and five runs,
with mean and 75% inter-quantile range (IQR) reported on all metrics. Last, we
also provide subsampled predictions and the pixelwise L2 error of one trajectory for
visual inspection but we emphasize that one trajectory might not be representative
for the overall performance (the trajectory shown is chosen at random). Please see
Figure 3.3 for visual intuition on the training and testing procedure and how evalua-
tion metrics are applied.

Baselines. We compare our approach to recent models from the literature, e.g.,
ODE-RNN [139], NDP [140], ODE2VAE [141], and MSVI [117]. All the baseline
methodologies share similarities with our proposed approach in terms of how they
handle longitudinal observations. They encode these observations into latent spaces,
simulate low-dimensional latent trajectories, and then decode these trajectories to
predict future observations. Similar to our methodology, NDP [140] utilizes two la-
tent variables for encoding (an “initial state” and a “global control of an ODE”).
They employ MLPs or convolutions to model dynamics and use neural ODEs to in-
tegrate over time. The decoder generates predictions from a Bernoulli distribution.

From a broader perspective, MSVI [117] operates similarly, incorporating a modi-
fied encoder. In this case, a transformer module is introduced, while the dynamics
function and decoder utilize Bayesian MLPs and CNNs, with their parameterization
assumed to be Gaussian. Comparable to our work, MSVI utilizes Bayesian multiple
shooting, relying on a smoothness prior. Consequently, training involves a loss func-
tion that integrates data, continuity, dynamics, and decoder priors.

Similarly, ODE2VAE [141] is grounded in a variational inference framework based
on Bayesian Neural Networks. Like our approach, it encodes observations into a la-
tent initial state, with explicit shaping through a physics-inspired prior. This prior
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separates the latent space into velocity and position components. Subsequently,
high-order dynamics are approximated using a BNN and evolve over time. The de-
coder setup is akin to MSVI, where both BNN priors are assumed to be Gaussian.

Echoing the other baseline methodologies, ODE-RNN represents a family of time
series models with hidden state dynamics governed by Neural ODEs. As such,
ODE-RNN models, when trained, rely on latent ODEs and can accommodate irregu-
lar time gaps between observations. To derive latent representations, our approach
employs the same CNN encoding as ODE-RNN, ensuring a fair comparison. The
dynamics function and decoder align with those of MSVI.

All models are subjected to training and testing following the default parameters and
code provided in their original publications. Please note that for comparisons against
these baseline methods, our options are restricted to regular time grid datasets,
as ODE2VAE’s encoder exclusively suits evenly spaced grids. For datasets with
irregularly sampled observations, we present comparisons against MSVI.

3.6 Results

We report on a series of increasingly challenging experiments to test LaDID. First, we
examine whether our model generalizes well on synthetic data for which the training
and test data come from the same dynamical system. This body of experiments
test whether the model can learn to map from a finite, empirical dataset to an
effective latent dynamical model. Second, we examined few-shot generalization to
data obtained from systems subject to nontrivial intervention (and in that sense
strongly out-of-distribution). In particular, we train our model on a set of trajectories
under interventions, i.e. interventions upon the mass or length of the pendulum,
changes to the Reynolds number, or variations to the camera view on the observed
system, and apply the learned inductive bias to new and unseen interventional
regimes in a few-shot learning setting. This tests the hypothesis that the inductive
bias of our learned latent dynamical models can be a useful proxy for dynamical
systems exposed to a number of interventions.

3.6.1 Benchmark comparisons to state-of-the-art models for ODE
and PDE problems

We begin by investigating whether our approach can learn latent dynamical models
in the conventional case in which the training and test data come from the same sys-
tem. We evaluate the performance of ODE-RNN, ODE2VAE, NODEP, MSVI and
our model on the on data described in Sec. 3.4 with increasing order of difficulty,
starting with the non-linear mechanical swing systems with underlying ODEs, before
moving to non-linear cases based on PDEs (reaction-diffusion system, 2D wave equa-
tion, von Kármán vortex street at the transition from laminar to turbulent flows,
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and Naiver-Stokes equations).

3.6.1.1 Applications to ODE-based systems.

Swinging pendulum. For visual inspection and intuition, Figure 3.4c provides pre-
dicted observations x̂rt of a few time points of one test trajectory of the single
pendulum dataset for all tested algorithms, followed by the ground truth trajectory
and the pixelwise L2-error. In addition, Figure 3.4a presents the normalized MSE
over entire trajectories averaged across the entire test dataset and the evolution of
the RMSE over time for the second half of the predicted observations averaged over
all test trajectories (see Sec. 3.5) is provided in Fig. 3.4b. First, we see that across
all ODE-based datasets LaDID achieves consistently the lowest normalized MSE.
Second, the time history diagram (see Fig. 3.4b) shows that LaDID predicts future
time points with lower mean RMSE and lower standard deviation for long-horizon
predictions relative to all other algorithms tested.

This can also seen by visual inspection in Figure 3.4c as for other approaches the
predicted states at later time points deviate from the ground truth trajectory sub-
stantially while LaDID’s predictions follow the ground truth. Considering only the
baselines, one can observe that MSVI (a recent and sophisticated approach), achieves
the best results and predicts accurately within a short-term horizon but fails on
long-horizon predictions. The predictions generated by ODE2VAE exhibit blurry
pendulum bars that do not align with the position of the ground truth trajectory.
Similarly, NDP and ODE-RNN produce predictions characterized by indistinct dots
centered within the image. These algorithms prioritize minimizing the loss function
across all time steps, resulting in minimal variation in predictions over time. This
lack of variation indicates a failure to learn the underlying dynamical model. We
think that the high errors depicted in Figure 3.4a and 3.4b are a direct consequence
of this limitation.
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(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure 3.4: Test errors and exemplary test trajectories of different models for the single
pendulum test case.

Swinging double pendulum. In line with the results of the rather simple single
pendulum, the performance of LaDID remains also good for the swinging double
pendulum test case governed by a set of complex ODEs. As shown in Fig. 3.5,
LaDID achieves lowest errors relative to both the normalized MSE and the RMSE
distribution plotted over time. For this test, however, the observed performance
gap to the baseline is comparably moderate which may yield erroneous conclusions.
In fact, if one only considers MSE and RMSE values, it may be concluded that
LaDID performs only slightly better compared to the baseline methods. However,
these methods do not learn any useful dynamics at all yielding trajectory predictions
that are characterized by completely different motion patterns, e.g., the pendulum
swings in a wrong direction or barely moves at all as shown in Fig. 3.5c. In contrast,
LaDID predicts accurately the movement of the pendulum system with an increasing
RMSE error over time. Indeed, the RMSE errors of MSVI and LaDID become
comparable for long-horizon predictions although the dynamics of the trajectory
predicted by MSVI differ substantially from the ground truth as visualized in Fig.
3.5c. This finding illustrates that the importance of an in-depth test case analysis
and visualization as a pure comparison of error metrics might disguise relevant
shortcomings of the learned dynamics model which at the same time creates the need
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(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure 3.5: Test errors and exemplary test trajectories of different models for the double
pendulum test case.

for well defined loss functions during training. For the present double pendulum test
case, only LaDID is capable of learning a reliable approximation of the underlying
system and demonstrates a convincing accuracy level when predicting long-term
future trajectories. Note that none of the comparison baseline can accomplish this
learning task for this complex system.

3.6.1.2 Applications to PDE-based processes.

Navier-Stokes equations. We additionally evaluated all baselines and our proposed
method on PDE-based processes. We focus our analysis on the flow evolution char-
acterized by the Navier-Stokes equation in the two dimensional case, which is of
great importance in many engineering tasks, e.g. the analysis of internal air flow
in a combustion engine [142, 143], drag reduction concepts in the transportation
and energy sector [144, 145, 146], and many more. Results in Figure 3.6 show that
LaDID clearly outperforms all considered competitors. The normalized MSE is the
lowest and the averaged RMSE is also the lowest at any time. When comparing with
the established baselines, it becomes evident that ODE-RNN struggles to capture
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(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure 3.6: Test errors and exemplary test trajectories of different models for the Navier-
Stokes equations test case.

the underlying dynamics based on partial differential equations. This observation
holds true across all other experiments involving PDE-based methods. On the other
hand, in the case of the Bayesian approaches, ODE2VAE and MSVI, it is apparent
that the error increases over time. However, this trend is not observed in the predic-
tions made by LaDID, which consistently exhibits low error rates at all time points,
approximately five times lower than the current gold-standard benchmark, MSVI.
Moreover, when considering the interquartile range intervals, as indicated by the er-
ror bars in Figure 3.6a and 3.6b, it is evident that LaDID outperforms all baseline
algorithms. This finding signifies that LaDID accurately forecasts dynamic behavior
that closely aligns with the ground truth across various test trajectories.

Lambda-omega reaction-diffusion system. Prediction results and error distributions
of the PDE based reaction-diffusion system are shown in Fig. 3.7 for all methods.
Similar to the ODE system described above, the proposed approach demonstrates
a convincing level of accuracy and precisely predicts future observational system
states. In detail, LaDID can outperform all considered baseline by quite some mar-
gin while the RMSE error barely increases over time. Moreover, the IQR is much
lower compared to the baseline methods. These findings evidence that LaDID effec-
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(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure 3.7: Test errors and exemplary test trajectories of different models for the lambda-
omega reaction-diffusion system.

tively learns the underlying PDE system and reliable predicts future states spaces of
both near-term and long-horizon future predictions.

Two-dimensional wave equation. A detailed comparison of prediction results for
the two dimensional wave equation can be found in Fig. 3.8. Interestingly, the
general trend of baseline methods of this test case does not match the general trend
of previous experiments. That is, NDP achieves much lower normalized MSE and
RMSE error values compared to all other baseline which is nicely confirmed by
the exemplary trajectory visualization shown in Fig. 3.8c. Note that the current
gold-standard method MSVI only shows a modest performance for this test case,
most likely based on its Bayesian prior. It appears that test cases characterized by
spatially varying initial conditions (for the two dimensional wave equation system the
initial condition of the simulation comprise the peak displacement of the wave and the
initial wave location which may change over the entire spatial domain) constitute a
major challenge for this Bayesian method since it derives a reconstruction distribution
for every pixel over time individually. In cases with varying spatial initial conditions
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(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure 3.8: Test errors and exemplary test trajectories of different models for the wave
equation test case.

as present in the current test, this network approach most likely mixes realization-
specific and dynamics information impeding the spatial and temporal reconstruction.
To summarize, the two dimensional wave system demonstrates the system (and initial
condition) dependent performance of the baseline method highlighting that different
methods have different preferred sweet spots. Similar to the findings described above,
the performance of our proposed LaDID approach remains convenient. Again, our
approach can outperform all considered competitors and achieves lowest normalized
MSE and RMSE values relative to both short-term prediction and long-horizon future
states. The descent performance of LaDID is further evidenced in the trajectory
visualization shown in Fig. 3.8c. We argue that our explicit decomposition in RS
and RI learning parts helps the learner to extract correct dynamics even for cases
characterized by spatially varying initial locations. This finding will be analyzed in
more detail for transfer learning experiments under interventional distributions (see
Section 3.6.4).

Turbulent flow around a blunt body. For the final test case, we analyze the perfor-
mance of our proposed approach for a typical engineering application. That is, we
seek to learn the time-dependent dynamics of a turbulent flow around a blunt cylin-
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(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure 3.9: Test errors and exemplary test trajectories of different models for the von
Kármán vortex street test case.

der body characterized by alternating vortex patterns. Results can be found in Fig.
3.9. In line with all experiments described above, the performance of LaDID remains
good as it outperforms all considered baseline methods by quite some margin. In
fact, our approach achieves lowest errors in combination with unmatched small un-
certainties yielding very accurate predictions for short-term and long-horizon future
sequences.

Overall, the results shown provide strong evidence that LaDID achieves state-of-the-
art performance for ODE and PDE based systems.

3.6.2 Performance on regular and irregular time grids.
Here, we study the performance of LaDID on regular and irregular time grids and
compare it to other neural-dynamical models which are able to deal with irregular
time series data. As shown in Fig. 3.10, the proposed LaDID performs very similarly
on both types of the time grids relative to both ODE-based benchmark examples
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and challenging PDE-based real-world systems, outperforming existing methods and
demonstrating strong and robust performance on irregularly sampled data. More-
over, it evidences that the proposed framework leveraging specific system invariances
indeed extracts a realization-specific and a dynamics (realization-invariant) part as
suggested.

(a) Single pendulum: Normalized MSE (b) Single pendulum: RMSE distribution over
time

(c) Lambda-omega reaction-diffusion system:
Normalized MSE

(d) Lambda-omega reaction-diffusion system-
RMSE distribution over time

Figure 3.10: Test errors of different models for regular and irregular time grids: (a)
Normalized MSE for single pendulum dataset, (b) RSME over time for
single pendulum dataset, (c) Normalized MSE for lambda-omega reaction-
diffusion system, (d) RSME over time for lambda-omega reaction-diffusion
system.
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Table 3.1: Errors for ablated LaDID models trained on the single pendulum test case.
loss

heuristics
attention

mechanism
representation

encoding
ablation mean IQR ablation mean IQR ablation mean IQR

reconstruction 2.66 1.04 no attention 7.79 6.84 w./o. encoding 2.83 2.02
reconstruction &

representation 2.17 0.99 spatial attention 2.81 1.47 w. encoding 2.02 0.88
reconstruction &

smoothness 2.04 0.92 temporal attention 2.41 0.92

full loss 2.02 0.88 spatio-temporal
attention 2.02 0.88

Table 3.2: Comparison of training and inference time as well as the number of trainable
model parameters for all methods applied to the single pendulum test case.
Note that for MSVI (block size = 1 / 8), no inference times can be given since
inference requires roll-out across the full trajectory. All tests are performed
on a NVIDIA A100 40 Gb with an AMD EPYC 7742 processor.

forward /
backward pass

[ms]

forward pass
(inference)

[ms]

trainable
parameters
[M params]

ODE-RNN 851.95 351.68 10.51
NDP 388.69 163.15 1.13
ODE2VAE 571.77 68.04 3.04
MSVI (block size = 60) 1192.86 48.37 1.51
MSVI (block size = 8) 285.79 (N/A) 1.51
MSVI (block size = 1) 60.08 (N/A) 1.51
LaDID (ours) 48.11 15.09 1.35

3.6.3 Effects of relevant network modules.
As discussed above, our model leverages three key features: a reconstruction embed-
ding, a spatio-temporal attention module and a specifically designed loss heuristic to
learn temporal dynamics from empirical data. Here, we show that each of these net-
work modules is indeed relevant for the good performance of LaDID (see Table 3.1).
First, we compare LaDID with counterparts trained on ablated loss heuristics, e.g. a
pure reconstruction loss and loss combinations either using the described represen-
tation or smoothness loss. Overall, the proposed loss heuristic appears to stabilize
training and yields the lowest MSE and IQR values. Second, we compare LaDID to
counterparts trained on ablated attention modules. Table 3.1 highlights that the
applied spatio-temporal attention helps to extract key dynamical patterns. Finally,
Table 3.1 further shows the usefulness of the proposed representation encoding. This
representation encoding can be thought of a learning-enhanced initial value stabiliz-
ing the temporal evolution of latent trajectory dynamics.

Table 3.2 displays the time required for various executions, including a training
step involving both forward and backward passes, as well as a single forward pass
conducted during inference. The figures prominently underscore the substantial
speed advantage of LaDID, achieved with a notably smaller parameter count. This
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advantage originates from our approach of not explicitly solving an ODE, but rather
acquiring the ability to implicitly compute its solution through our end-to-end
dynamics model.

3.6.4 Generalizing to novel systems via few-shot learning
Here, we assess LaDID’s ability to generalize to a novel system obtained by nontrivial
intervention on the system coefficients themselves (e.g., mass, length, Reynolds
number). Such changes can induce large changes to data distributions and can be
viewed through a causal lens. Consider a vectorized differential equation of the form

d

dt
x = f(x, t) (3.35)

with general initial conditions x(t0) = x0. Using an appropriate discretization
scheme allows us to foretell the future of the system based on its past states and we
can directly read off the causal structure for such a system. This underlying causal
structure remains the same when changing coefficients on the right hand side which
is summarized by the principle of independent causal mechanisms [147, 148, 149]:

Independent Causal Mechanism: LetX be the outcome variable, and letM1,M2, . . . ,Mn

be n distinct mechanisms or factors that independently contribute to X. Then, we
can write:

X = f(M1,M2, . . . ,Mn) (3.36)

where f represents the functional relationship between the mechanisms and the out-
come. In other words, the outcome variable X is determined by the independent
contributions of each mechanism Mi, and these mechanisms operate independently
of each other and do not inform each other.

For example, consider a system of ODEs that describes the dynamics of a population
of predator and prey animals:

dx

dt
= ax− bxy (3.37)

dy

dt
= −cy + dxy (3.38)

where x represents the population of prey, y represents the population of predators,
and a, b, c, d are parameters that describe the interactions between the two
populations. In this system, x and y represent independent causal mechanisms
that contribute to the dynamics of the population. The equations describe how the
population of prey and predators changes over time as a result of their interactions.
By solving the system of ODEs, we can study how changes in the parameters affect
the long-term behavior of the system, and how interventions can be used to control
the population dynamics. Mathematically, an intervention is typically represented
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as a modification of the equations that describe the system, by setting the value
of one or more variables to a fixed value or function. This modification represents
the assumption that the variable(s) being intervened upon is no longer subject
to external influences, and its value is determined by the intervention. In formal
terms, an intervention upon a set of nodes I in the causal structure of a system
{Xi : i ∈ I} means any manipulation of the system that alters its state or behavior,
including changes in the initial conditions, modifying the parameters, or adding or
removing variables or equations. When observing a latent process, which moves the
deterministic setup of an ODE to a probabilistic case, this means that the conditional
distribution when observing the state of a node given its parents Pa(Xi) is replaced
by a new, predefined distribution. Thus, the joint probability distribution of as
system under an intervention changes to

p̃(X) =
∏
i/∈I

p(Xi|Pa(Xi))
∏
i∈I

p̂(Xi|Pa(Xi)) (3.39)

where p̂(Xi|Pa(Xi)) indicates the conditional distribution of node Xi in its general
form.

Assuming that the underlying dynamical model is an invariant causal mechanism, we
aim to transfer the inductive bias learned from a set of training systems to a new set
of systems with limited data availability in a few-shot learning setup. In particular,
we train a dynamical model on a set of interventions and fine-tune it to new interven-
tion regimes with only a few samples, finally evaluating performance on an entirely
unseen dataset. We compare the performance of our prior-based few-shot learn-
ing model with a model trained solely on the fine-tuning dataset (“scratch-trained”
model). In our first experiment, we use the single pendulum dataset and test the
transferability hypothesis on fine-tuning datasets of varying sizes. In a few-shot
learning setup, we train in a first stage a dynamical model on a set of interventions
and then, fine-tune the the dynamical system to the new intervention regimes with
only a few fine-tuning samples. Testing is carried out on an entirely unseen dataset
and we compare performances between a prior based few-shot learning model and a
model that is solely trained on the fine-tuning dataset. In our experiments, we use
the single pendulum dataset and test prior transferability hypothesis on fine-tuning
datasets that span 32%, 16%, 8%, and 4% of the training data size. The results
are presented in Figure 3.11a and plot the normalized MSE against the fine-tuning
dataset size. The results are averaged across five runs. Overall, one can observe that
the normalized MSE is always lower for the model that fine-tunes the transferred
inductive bias. At a fine-tuning dataset size of 32%, the prior based model reaches a
comparable performance to a model that was trained from scratch on 100% data
size. Decreasing the number of fine-tuning samples leads to an expected rise in the
normalized MSE. By visual inspection, we could see that 8% dataset size is the abso-
lute minimum which produces partially erroneous but still usable predictions which
are only slightly worse compared to the predictions of MSVI trained on full data
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availability.

In a second experiment, we are investigating effect of interventions upon the observa-
tion process. In other words, we leave the underlying dynamical system unchanged
but introduce variation to e.g. the camera position and angle when capturing sam-
ples in the observation space. If the model learns a valid dynamical model, it should
be transferable to new observation settings. We test this hypothesis on the von Kár-
mán vortex street dataset by shifting the dataset to the camera to the left and right
and up and down. Please note that since we learn a latent dynamical end-to-end,
we do not assume a zero-shot transferability since encoder and decoder also need to
adapt to the new input scenes. Thus, we evaluate this hypothesis in a few-shot learn-
ing problem as before. Figure 3.11b plots the normalized error against a fine-tuning
dataset size of 32%, 16%, 8%, and 4% of the training data size. Again, we compare
against model that is solely trained on the fine-tuning dataset. Overall, we can ob-
serve that prior based model show always lower normalized MSE values than models
trained from scratch under limited data availability. Moreover, the results indicate
that a fine-tuning a prior based model on a new observation scene with as little as
8% of the usual training set size leads to accurate and usable predictions under new
observation conditions. This finding supports the hypothesis that our model extracts
a general dynamical model.
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Figure 3.11: Test errors for a set of transfer learning experiments.

3.7 Discussion and Conclusion
In this Section, we presented a novel approach called LaDID aimed at end-to-end
learning of latent dynamical models from empirical data. LaDID uses a novel
transformer-based architecture that leverages certain scientifically-motivated invari-
ances to allow separation of a universal dynamics module and encoded realization-
specific information. We demonstrated state-of-the-art performance on several new
and challenging test cases and well-known benchmarks. Additionally, we showed
that LaDID can generalize to systems under nontrivial intervention (when trained
on the unintervened system) using few-shot learning, and in that sense provides a
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useful prior for systems under novel interventions.

However, despite good performance relative to NODE-based methods, for complex
models prediction over very long time horizons remains challenging and further
modifications and possibly additional inductive bias will be needed for improved
performance. At present, data sampled on an irregular spatial grid cannot be consid-
ered. Future work using graph-based approaches will address this point.

Our work was motivated by the broad range of examples in contemporary science
and engineering in which data are available from different experiments/pipelines
that are plausibly underpinned by a unified model but where the model itself cannot
be directly specified from first principles or is too complex to work with. A key
motivation for our work is problems in the biomedical and health domains, where we
expect the invariances underpinning LaDID to hold, but where explicit dynamical
models are often not available at the outset. In ongoing work we are exploring the use
of LaDID and related schemes in these challenging settings, e.g. for the modeling of
complex longitudinal observations. In such settings, an implicit yet universal model
is useful as a way to capture system behavior and to generalize, in a data efficient
manner, to new realizations/instances where only limited data may be available.
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4 Forecasting Responses in Unpaired
Interventional Data using Sparse Causal
Modeling

In the realm of scientific exploration, the task to identify cause-effect relationships
within high-dimensional systems stands as an enduring and intricate challenge. In-
terventions, in the form of controlled experiments, emerge as indispensable tools
that play a pivotal role in enhancing our understanding of the underlying causal
framework within a system. These interventions, although powerful for revealing
causality, necessitate meticulous attention to study design, randomization, and the
management of confounding factors to ensure accurate conclusions. The act of delib-
erately disrupting the natural sequence of events to observe the system’s response
yields a multifaceted range of insights. An immediate application of interventional
experiments involves confirming expected causal relationships and pathways or iden-
tifying confounding structures as shown in Figure 1.1. Yet, interventions also extend
their utility by enabling the anticipation of responses to subsequent interventions, i.e.
knowledge acquired from one intervention can be extended to forecast outcomes in
unobserved interventions. This comprehension of variable interactions during inter-
ventions and the recognition of recurring patterns facilitate the informed prediction
of results in new intervention scenarios. In this Chapter, our goal is to develop a
mathematical framework that enables the prediction of responses to interventions
that have not been previously carried out. We achieve this by solely relying on infor-
mation obtained from interventional experiments that have already been conducted.
This model possesses considerable promise in predicting outcomes for interventions
that are ethically unfeasible, financially burdensome, or resource-intensive and facili-
tates addressing counterfactual inquiries. For example, in the field of biomedicine,
this model would allow us to anticipate the phenotypic responses to genetic interven-
tions without requiring further experimental interventions.

In this context, we examine a scenario consisting of a response variable Y and covari-
ates X. Some of these covariates act as causal predecessors to Y , while others are
linked to Y through concealed confounding factors. Additionally, there are covariates
that possess both causal relationships and connections via hidden confounders. The
system is observed through interventions, where the targets of these interventions
remain unknown. The ultimate objective in this setting is to forecast the outcome
of Y based on X in the context of an unseen intervention. However, this ambitious
endeavor is accompanied by a multitude of key challenges:
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Confounding: Consider, for instance, the enigmatic interplay between the transcrip-
tome of a cell and a phenotypic measurement, e.g. a disease state or cell growth.
Unraveling the precise causal influence of the cell’s transcriptome on the observed
phenotypic outcome presents a complex puzzle. This is further compounded by
the hidden relation between the high-dimensional covariates and the target variable
which often leads to substantial confounding through unknown mechanisms. In many
real-world applications, this confounding renders the stringent assumptions neces-
sary for estimating cause-effect relationships from observational data unfeasible.

Distribution Generalization: While machine learning techniques have pioneered
breakthroughs in fields such as statistics, econometrics, epidemiology, and related dis-
ciplines, they are often vulnerable to challenges of limited generalizability, instability,
and inexplicability due to the presence of spurious relationships. These relationships
entail associations between two or more events or variables without a causal connec-
tion. In the context of a response variable Y and the set of covariates X, existing
methods frequently strive to identify a function that minimizes the worst-case risk
within a small neighborhood of distributions. The selection of this neighborhood
should be representative of the differences between the training and test datasets
[150, 151]. In other words, these models will degrade performance when the test
distribution undergoes uncontrolled and unknown distribution shifts [149], which
commonly emerge as intervention distributions.

Unpaired Data: Recent technological advancements have empowered researchers to
explore heterogeneous mixtures of cell populations at the single-cell level. Through
techniques like single-cell RNA sequencing providing comprehensive transcription
profiling across the entire genome, single-cell ATAC-seq allowing the identification
of accessible chromatin regions, or single-cell bisulfite sequencing facilitating the
measurement of DNA methylation patterns, it is possible to measure histone modifi-
cations or transcription factors at single-cell resolution. Despite these remarkable
technological milestones, it remains technically infeasible to observe all genomic
profiles and phenotypic traits simultaneously within the same single cell. As an
alternative approach, researchers have sought to generate specific modalities of ge-
nomic data from certain cells and complement it with other modalities from other
cells within the same heterogeneous population. This integration of multiple omics
datasets has been instrumental in gaining a comprehensive understanding of cellu-
lar processes. A substantial amount of unpaired data, such as unpaired scRNA-seq
and scATAC-seq datasets, has been generated [152, 153, 154], where the profiles are
not derived from the same individual cells. This poses a significant challenge in es-
tablishing cause-effect relationships from this pool of unpaired data, necessitating
the development of novel and robust analytical approaches to overcome this limitation.

Sparse Causal Effects: We specifically assume that the causal effect of the covari-
ates X on Y is sparse, however, we do not make any assumption on the existence
or strength of statistical correlations between nodes which, in fact, are likely to be
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observed much more frequently than actual causal connections. The process of nar-
rowing down the multitude of potential causes influencing a particular target variable
to a more manageable subset of candidates holds significant practical importance.
Hence, establishing an effective framework to tackle this challenge is crucial with
potential applications ranging from validating biomarkers as causal risk factors to
developing proxies for clinical trials. Such an efficient framework can pave the way
for advancements in various domains and offer valuable insights for targeted inter-
ventions and improved decision-making processes.

In response to these challenges, we introduce a sparse-effect model designed for
unpaired data. This model predicts the outcomes of interventions that have not been
previously encountered, relying on insights from past experiments. We show the
effectiveness of our framework on a simulated benchmark and semi-simulated test
cases in which the data of the covariates stems from human single cell data. The
rest of this Chapter is structured as follows. In Section 4.1 we review related work.
Section 4.2 introduces the setup, followed by the introduction of our framework
in Section 4.3. We evaluate our model in a set of diverse tests in Section 4.4 and
4.5. Finally, we draw conclusions and discuss limitations and improvements of our
approach in Section 4.6.

4.1 Related Work

Machine learning techniques have made significant advancements in fields like statis-
tics, econometrics, and epidemiology. However, they often suffer from limitations
such as poor generalizability, instability, and lack of interpretability. This is primar-
ily because these techniques can establish associations between variables but fail to
identify causal relationships.

Inferring Causal Effects through Randomized Control Experiments
In various medical disciplines, the focus is centered on treatment effects, which per-
tain to understanding the influence of an intervention on the subjects under study.
Essentially, we aim to assess how administering a drug to a patient affects their
health condition compared to their state before receiving the initial medical dosage.
To achieve this goal, Randomized Controlled Trials (RCTs) are considered the gold
standard for estimating treatment effects. In an RCT, one or more causal variables
are randomly assigned to different samples. By ensuring a sufficient number of par-
ticipants, this approach can effectively control for confounding factors and provide
valuable comparisons between interventions. However, conducting fully randomized
controlled trials may not always be practical due to factors such as cost and ethical
concerns [155]. Estimating treatment effects from observational data poses chal-
lenges in the presence of unmeasured confounders. Specifically, we can only observe
the outcome when a specific treatment is applied, and we lack the ability to obtain
counterfactual outcomes that would have arisen if a different treatment option had
been assigned. Furthermore, non-random assignment of treatments and interven-
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tions often results in notable variations in the covariate distribution across different
treatment groups. Even when we account for all observed variables and adjust
for confounding differences using observational covariates, the existence of unmea-
sured key variables can conceal the causal relationships within the observational data.

Prior approaches utilizing Instrumental Variables
A frequently used method which typically suffers from unmeasured confounders is
the Ordinary Least Squares (OLS) analysis. In causal inference, the objective of
regression analysis is to estimate the conditional expectation function, E[Y |do(X)],
in order to recover the coefficient, β, from the scalar regression model. However,
in real-world scenarios, there may be unobserved confounders that act as common
causes for both the covariates X and the outcome Y . As a result, there exists a di-
rect effect X → Y as well as an indirect effect through unknown confounders that
influence X and, in turn, introduce an additional spurious correlation between the
covariates and the outcome. In this situation, the OLS estimator becomes biased
as it combines both of these effects within the regression analysis. To overcome the
challenge of unmeasured confounders, researchers introduced instrumental variables
[156, 157]. The underlying idea is to leverage additional information and utilize al-
ternative sources providing independent variables to mitigate confounding effects.
By assuming a linear causal relationship, instrumental variables provide a tool to
uncover the causal impact of the treatment on the outcome. In situations where
the independent variables are potentially endogenous, instrumental variables are
employed as proxies to address this issue. These instruments are variables that are
correlated with the endogenous independent variables but have no direct effect on
the dependent variable. They are used to isolate the exogenous variation in the in-
dependent variables and estimate their true causal effect on the outcome variable.
Two-stage least squares (2SLS) [158] involves conducting two separate regression
analyses to estimate causal effects. In the first stage, a set of functions is fitted to
establish the relationship between instrumental variables and each covariate. Then,
in the second stage, a single function is learned to approximate the connections be-
tween the covariates and the outcome variable. The intuition behind 2SLS resembles
the process of identifying a valid instrumental variable. Precisely, the goal of the
first stage of 2SLS is to estimate the extent to which a specific covariate changes
when the corresponding instrumental variable is modified. This step allows us to
understand the impact of the instrument on the covariate. In the second stage, it is
examined how the changes in the covariate, induced by the instrument, ultimately af-
fect the outcome variable. By conducting these two stages, we can gain insights into
the causal relationship between the instrument, the covariates, and the outcome. In
order to accommodate non-linearity assumptions, researchers have developed specific
identification assumptions tailored to different scenarios (see [159, 160, 161] amongst
others). To extend the applicability of 2SLS regression to nonlinear settings, “Sieve
NPIV” [162], provides a flexible and robust framework for nonlinear causal inference
using instrumental variables. This method draws inspiration from non-parametric
sieve regression estimators and involves a basis expansion technique in the two-stage
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estimation process. More recent studies focus on modeling relations between instru-
ments, covariates and outcome as nonlinear functions in reproducing kernel Hilbert
spaces [163, 164] while other approaches build upon deep learning techniques [165,
166]. To ensure the effectiveness of conventional IV estimation methods, it is crucial
to have valid instruments (refer to Section 4.2). For instance, if an instrument is
confounded with the outcome, this immediately renders the IV invalid and thereby
yields imprecise results in inference and limited applicability in real-world scenarios.
One approach to enhance the precision of instrumental variables estimators is to em-
ploy multiple instruments or attempts to approximate the optimal instruments [167,
168].

Concurrent research focuses on synthesizing valid and robust instrumental variables
from a pool of candidate instruments. In this context, LASSO is a popular method
that serves as both a regression function estimator and a model selection tool. It
offers a practical solution for incorporating optimal instruments into IV estimation
while mitigating the challenges associated with a large number of instruments. The
LASSO estimator selects instruments and estimates the coefficients of the first-stage
regression using a shrinkage procedure [169, 170, 171, 172]. The Post-LASSO esti-
mator, on the other hand, discards the LASSO coefficient estimates and employs the
instrument set selected by LASSO to re-estimate the first-stage regression using ordi-
nary least squares (OLS), thus reducing LASSO’s shrinkage bias [173]. [174] propose
a method for IV estimation with a large number of instruments using a shrinkage
estimator that assumes a random coefficients structure for the first-stage coefficients.
Similarly, [175] suggest to use ridge regression to estimate the first-stage regression
in a homoscedastic framework, where the instruments can be ordered based on their
relevance. [176] investigate underspecified instrumental variable settings by assuming
sparsity between covariate and outcome. This allows to relax standard identifiability
assumptions in the linear IV setting. [177] propose an estimator relying on distribu-
tionally robust variable selection. Their approach can be seen as an interpolation
between OLS and 2SLS estimates.

Examining Distribution Shifts: Previous Research Overview
Another fundamental challenge is the potential mismatch between the distributions
of the data used for training and the data on which the models are tested. This
discrepancy has drawn significant attention in recent years due to its potential impli-
cations for the reliability and generalizability of scientific findings. The training-test
distribution gap arises when the data used to train a model does not accurately rep-
resent the real-world scenarios that the model is expected to encounter during its
deployment. This mismatch can occur due to various reasons, including differences
in data collection methods, environmental conditions, experimental settings, or tem-
poral factors. The consequences of the training-test distribution mismatch can be
far-reaching, particularly in scientific domains where the robustness and generaliz-
ability of models are of utmost importance. For instance, in fields such as medicine,
climate science, and particle physics, models trained on limited or biased datasets
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can lead to inaccurate predictions, potentially compromising patient outcomes, envi-
ronmental policy decisions, or fundamental understanding of physical phenomena.
However, assuming an arbitrary test distribution is impractical. Thus, addressing
the challenge of distributional differences between training and test distributions re-
quires certain restrictions to enable generalization. To tackle this issue, a common
approach is to define a neighborhood around the training distribution, using diver-
gence measures such as the Kullback-Leibler divergence [178, 179] or the Wasserstein
distance [151, 180], allowing for a controlled exploration of distributional differences.
Adversarial attacks are frequently employed in empirical studies to tackle distri-
butional shifts [181] but the theoretical understanding of these procedures is still
evolving. In scenarios involving covariate shift, it is often assumed that the distribu-
tions of the covariates differ between training and test data, while the conditional
distribution of the response given the covariates remains invariant [182, 183, 184].
Sometimes, it is additionally assumed that the support of the training distribution
covers its counterpart of the test distribution [185]. Complementary research allows
for the conditional distribution of the response given the covariates to vary between
interventions due to the presence of a hidden confounder in settings where the test
observations lie outside the range covered by the training data [186].

Our approach is based on the principles of linear instrument variables estimators [156,
157, 158]. To tackle the issue of many instruments, we employ instrument selection
techniques that rely on approximate sparsity. Our work is heavily influenced by the
research conducted by [176], where we extend their work to address the challenging
scenario of unpaired covariate-outcome data. Specifically, we aim to identify sparse
causal relationships from interventional data characterized by changing supports of
observational and interventional distributions. To evaluate our model’s performance,
we conduct tests on simulated gold-standard benchmarks under controlled settings.
Additionally, we also test our model on a semi-simulated scenario that incorporates
covariates from real-world human data [55].

4.2 Modeling Causal Relation under Unpaired Interventional
Data

Our primary goal is to estimate the causal impact of covariates X ∈ Rd on a scalar
outcome Y ∈ R. While the relationship between X and Y may be affected by
unobserved variables H ∈ Rq, we assume that we have access to valid instruments
I ∈ Rm. These exogenous instruments induce changes in the covariates X but have
no direct influence on the outcome Y , i.e. mathematically we have P (X|I) ̸= P (I)
(see Figure 4.1). Additionally, we require that there are no direct pathways from the
instrumental variables I to the outcome Y , and the instruments I and covariates X
are not confounded by common hidden factors H. It is important to note that we
cannot directly observe or test for the presence of hidden confounders. Therefore, the
assumption of independence between instruments and hidden variables is necessary to
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Instruments I

Covariates X

Outcome Y

Confounders H

Figure 4.1: IV setup: We are concerned with finding sparse causal relations between
between a set of covariates X and outcome Y . Potential confounders H
might conceal direct cause-effect estimation and therefore, require additional
intrumental variables I.

ensure the validity of the instruments. We consider the following structural equation
model (SEM) describing the underlying data generating process:

X := BX +AI + h(H, ϵX)

Y := X⊤β∗ + g(H, ϵY )
(4.1)

where B defines the adjacency matrix of a DAG describing inter-covariate dependen-
cies, A expresses the relations between covariates X and instruments I, β∗ is a sparse
vector of coefficients and ϵX and ϵY define noise terms. We assume that we observe
data from different experiments/interventions and define for all K = k ∈ {1, . . . ,m},
Ik := ek ∈ Rm being the unit vector in Rm of the k-th dimension. That is, each
column in the matrix A specifies a different experiment in which (a subset of) the
covariates X is shifted by the corresponding column of A. Further, we assume that
Ik, H, ϵX and ϵY are jointly independent and Id−B is invertible, with Id denoting
the identity matrix.

In our analysis, we consider data obtained from various interventions. We define
the unit vector Ik := ek ∈ Rm as the k-th column of matrix A, where A represents
the experimental setup. Each column of A corresponds to a distinct experiment
where a subset of the covariates X is shifted according to the amount specified in the
corresponding column of A. Moreover, we make the assumption that the data of Ik,
unobserved confounders H, and the error terms ϵX and ϵY are mutually independent.
Within an experiment K = k, we may have several repetitions which are split into
two disjoint subsets of size (nk, ñk) and share the value of Ik . More explicitly, we
write
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X := BX +AIk + h(H, ϵX) Y := XT β∗ + g(H, ϵY )

X̃ := BX̃ +AIk + h(H̃, ϵ̃X) Ỹ := X̃T β∗ + g(H̃, ϵ̃Y )

where the variables H, H̃, ϵX , ϵ̃X , ϵY , and ϵ̃Y are jointly independent.
The experiment indicator k can be modeled in two ways: (i) as a uniform random
variableK ∼ U{1, . . . ,m} as done above or (ii) as a non-random experiment indicator.

Our work develops methodology that only uses the realizations of X̃ and Y . We
are therefore referring to an unpaired setting. Any identification of the dependence
structure between the covariates X̃ and the response Y must come via the different
experimental settings, i.e. within an experiment k, X̃ and Y are independent from
each other.

4.3 Algorithm

Consider a data generating process of the form 4.1. It can be shown that -under mild
conditions- the true parameter vector β∗ is the unique solution to minβ∈B ∥β∥0 with
B =

{
β ∈ Rd|Cov(X̃,X)β = Cov(X̃, Y )

}
. We refer the interested reader to Section

C.1 and Theorem C.1.1 therein for a formal statement and proof of this statement.
The underlying the theoretical work is a contribution from Niklas Pfister, Jonas Pe-
ters, and Sach Mukherjee which is not subject to this thesis but of great importance
for the underlying methodology and the algorithm derived in the following.

The theoretical findings in Section C.1 of the Appendix emphasize that the causal
coefficient β∗ can be determined in scenarios with unpaired data. Now, we present a
novel estimation approach that optimizes Eq. C.3 via coordinate descent and induce
sparsity into the solution vector by adding a LASSO type penalty term. We perform
a grid search over penalties to find a sparse yet effective solution. Recall that our
work focuses on finding the true causal structure between covariates and outcome
from unpaired data samples and estimates quantitatively the strength from cause
on effect which goes beyond causal inference with typical IV approaches. In the
following, we assume having access to observations of k experiments each defining an
intervention upon an instrument. Further, we assume that the data consists of three
data tuples [(X,Y ), (X̃, Ỹ ), ( ˜̃X, ˜̃Y )] that are generated from the same SEM in Eq.
4.1 but denote independent realizations of the same experiment given the identical
set of instruments. In particular, we are interested in inferring the causal structure
of the underlying SEM based on the unpaired three-tuple (X, X̃, ˜̃Y ). Following the
idea of [176], we test the effectiveness of the sparse solution vectors with sparsity
s={1, . . . , d} by the null hypothesis:

H0(s) : ∃β ∈ Rd with ∥β∥0 = s s.t. β ∈ B. (4.2)
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We can test this hypothesis using an Anderson-Rubin test [150] as suggested in [176]
with some modifications. Let PX := X̃(X̃⊤X̃)−1X̃⊤, then the Anderson-Rubin test
is defined as

T (β) =
(Y −Xβ)⊤PX(Y −Xβ)

(Y −Xβ)⊤(Id− PX)(Y −Xβ)
n− d
d

(4.3)

where Id denotes the identity matrix. Eq. 4.3 satisfies T (β) ∼ F (n− d, d), ∀β ∈ B.
As argued in [176], the limited likelihood estimator (LIML) minimizes this test
statistic. Following the same line of argumentation and assumptions in [176], we
define a hypothesis test ϕs : Rn×d × Rn×d × Rn → {0, 1} by

ϕs(X, X̃, Y ) = 1(T (β̂(s)) > F−1
n−d,d(1− α)). (4.4)

Next, we discuss a novel algorithm that refers to the case with unpaired data. Our
implementation provides a flexible and efficient way of unpaired LASSO regression
using the coordinate descent algorithm, which can be applied to various problems
that benefit from feature selection, regularization, and interpretability.

We determine the intensity of the penalty by conducting a grid search. For each
penalty value λ, we obtain the estimated coefficient vector, denoted as β̂, by

β̂ = argmin
β

(
n∑
i=1

(Yi − f(Xi, X̂i, β))2 + λ

d∑
j=1

|βj |) (4.5)

where f denotes our prediction function. To ensure that β̂ belongs to the solution
space B, we perform a hypothesis test (see Eq. 4.4). The optimization problem in
Equation 4.5 is solved using coordinate gradient descent. Our approach iteratively
updates all regression coefficients in a coordinate-wise manner, applying a soft
thresholding step to promote sparsity in the coefficient estimates. In each update step,
we compute the influence of the j-th covariate on the residuals. This computation
takes into account the difference between the measured target variables and the
predicted values, as well as the contribution of the j-th covariate itself. Additionally,
we leverage the relationship (or similarity) between the j-th covariate in X and the
covariates in X̃. These two vectors are then utilized to update the j-th coefficient in
the soft thresholding step, which drives the covariate selection process. In essence, our
method captures the influence of the j-th covariate on the residuals and incorporates
the relationships between the j-th covariate and the covariates in X̃. This information
is crucial for estimating the importance of the j-th covariate and guiding the selection
of relevant covariates within the unpaired LASSO regression framework. Further
details of this approach are given in Algorithm 1 and 2.
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Algorithm 1 Unpaired Causal Regression

Input: tuple of unpaired data (X ∈ Rn×d, X̃ ∈ Rn×d, ˜̃Y ∈ Rn), penalty grid Λ ∈ Rl
Returns: estimators B̂, test results Φ

Initialize estimator array B̂ ∈ Rl×d
Initialize test results Φ ∈ Rl
for i ∈ range(l) do

λ← Λ[i]
Compute β̂ = argminβ(

∑n

i=1(Yi − f(X, X̃, β))2 + λ
∑d

j=1 |βj |) ▷ see Alg. 2
Compute test statistic T (β̂) from Eq. 4.3
Test whether H0(s) can be rejected:

ϕs(X, X̃, Y ) = 1(T (β̂(s)) > F−1
n−d,d(1− α))

Set B̂[i]← β̂, Φ[i]← ϕs
end for

Algorithm 2 Coordinate gradient descent with unpaired data

Input: tuple of unpaired data (X ∈ Rn×d, X̃ ∈ Rn×d, ˜̃Y ∈ Rn), penalty λ ∈ R
Returns: estimator β̂

Initialize estimator β̂ ∈ Rd ← 0
for i in range(iters) do

for j in range(d) do
Compute influence of j-th covariate on residual:

κ← X̃⊤( ˜̃Y −Xβ̂ + β̂[j] ∗X[:, j])
Compute similarity between independent covariates:

ϑ← X̃X[:, j]
Aggregate:

ρ← 1
n

∑
κ ∗ ϑ

ζ ← 1
n

∑
i
ϑ2
i

Perform soft thresholding:
if ρ < −λ then

β̂[j]← ρ+λ
ζ

else if ρ > λ then
β̂[j]← ρ−λ

ζ

else
β̂[j]← 0

end if
end for

end for
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4.4 Experimental Setup
To assess the capabilities of our approach compared to existing models, we examine
two challenging datasets. Firstly, we evaluate the proposed method on a completely
synthetic dataset, where we have full control over the entire data generating process
including interventional setups. Secondly, we test the performance on a semi-
simulated dataset in which only the outcome is simulated. The covariate data under
interventions is derived from real-world measurements in the human genome [55].
This selection of applications covers datasets commonly used in literature while
simultaneously studying effectiveness in the context of complex datasets relevant to
real-world use-cases.

4.4.1 Gold-standard synthetic benchmark data
Structural Equation Model based on Directed Acyclic Graph: Our simulated bench-
mark data is generated in two stages, using a framework that resembles an inference
setup with instrumental variables. In the first stage, we identify a set of independent
instruments I1, . . . , Im that have no causal relationship with the outcome variable
Y and do not share any common causes with it. We then create a DAG structure
with nodes corresponding to the covariates X1, . . . , Xd, and add the instrument vari-
ables as independent root nodes connecting each instrument to every covariate. In
the final stage, we randomly select a subset of covariates to serve as parents to the
outcome variable Y . Our focus is on scenarios where the causal parents of Y are
distributed sparsely among the covariates X. We utilize the above-mentioned DAG
structure as the causal model underlying Eq. 4.1. In order to satisfy the linearity
assumption of standard IV methods, we enforce linear node functions for all con-
nections. To determine the strengths of the causal relations, we sample the edge
strengths uniformly from U((−1.5,−0.5)∪ (0.5, 1.5)). Given that the instruments are
root nodes in the DAG, we assign distributions to them which might vary across our
series of experiments (see below for details). In general, the intervention strength
is related to the width of the instrument distribution. During simulation, we per-
form q interventions [187, 3] each targeting by default exclusively one instrument
and collect data from n repetitions for the covariates and the outcome. The effect
of the number of children per instrument variable is subject to our studies below.
Importantly, an intervention on some of the variables does not change the assign-
ment of any other variable. In particular, an intervention on I does not change the
conditional distribution of Y , given X and H. This can be thought of as an instance
of the invariance property [34, 3]. Our evaluation methodology involves stochastic
soft interventions that adjust the distribution of the intervened instrument which is
commonly seen in gene knock-down experiments and shift interventions [177], which
maintain the confounding structure of the original assignment but shift it linearly.

This setup has been extensively researched in the case of paired data and numerous
results haven been reported in literature [157, 158, 159, 176]. The first type of inter-
ventions is confounding removing, resulting in a unique solution for the underlying
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causal function (as per Proposition 3.1 in [186]). Based on our assumption of lin-
earity for all causal relationships, the shift interventions we employ suffice to yield
unbounded variability in every direction of X’s covariance matrix which is sufficient
to obtain a unique solution for the underlying causal function (see Proposition 3.2 in
[186]). Hence, using paired samples under the set of considered intervention types
can generally guarantee causal identifiability which we also demonstrate in our eval-
uation. Therefore, we adopt this setup as our first benchmark case and extend it to
the unpaired data scenario.

Specifically, we generate a paired dataset (X̄ ∈ Rq×n×d, Ȳ ∈ Rq×n×1) based on
the simulation following the structural equation model in Eq. 4.1. To transform
this paired dataset into an unpaired setup, we divide the n observations for each
intervention into three equally sized but entirely disjoint subsets, resulting in the
following data partition (gray colored data not available in the unpaired setting):

(X ∈ Rq× n
3 n×d, Y ∈ Rq× n

3 ×1)

(X̃ ∈ Rq× n
3 n×d, Ỹ ∈ Rq× n

3 ×1)

( ˜̃X ∈ Rq× n
3 n×d, ˜̃Y ∈ Rq× n

3 ×1)

Note that the samples themselves are always unpaired, but they are generated from
the same data generating process. We conducted a series of experiments to evaluate
our approach under different conditions which are described in the following:

(E1) Intervention strength: We varied the strength of the instruments with range
σI ∈ (0.5, 4.0) affecting the covariates to test the effect of intervention strength.

(E2) DAG sparsity: We adjusted the probability of sampling edges when generating
the DAG to test the impact of DAG sparsity, i.e. P (GDAGi,j ) ∈ (0.1, 1.0).

(E3) Number of affected covariates per intervention: We varied the number of covari-
ates affected per instrument nchildren ∈ {1, . . . , |X|} to evaluate performance
when instruments influence multiple covariates simultaneously.

(E4) Number of available interventions: We tested under- and overdetermined cases
by adjusting the number of available instruments relative to the number of
covariates, i.e. nint ∈ {2i}, i ∈ {0, . . . , 8}.

(E5) Distribution of instruments: We assigned different distributions to the in-
struments, including Gaussian, Laplace, uniform, Rayleigh, and a mix of the
mentioned distributions, to assess the impact of the instrument distribution.

(E6) Number of affected nodes and distribution shapes: We combined experiments
(E3) and (E5) to test the joint effect of the number and distribution of affected
nodes.

96



4.4 Experimental Setup

Table 4.1: Dataset overview of the synthetic database: A series of of experiments under
varying conditions is simulated including variation in intervention strength
(E1), DAG sparsity (E2), number of affected covariates per intervention
(E3), number of available interventions (E4), distribution of instruments
(E5), number of affected nodes (E6), confounding strength (E7), confounding
sparsity (E8), and number of samples (E9).

Exp. E1 Exp. E2 Exp. E3 Exp. E4 Exp. E5 Exp. E6 Exp. E7 Exp. E8 Exp. E9

Intervention
strength

{0.2, 0.4, 0.6,
0.8, 1.0, 1.2,
1.4, 1.6, 1.8,

2.0}

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

DAG edge
probability 0.8

{0.1, 0.2, 0.3,
0.4, 0.5, 0.6,
0.7, 0.8. 0.9,

1.0}

0.8 0.8 0.8 0.8 0.8 0.8 0.8

Num. effected
covariates by IV 1 1 {1, 2, 3, 4, 5,

6, 7, 8, 9, 10} 1 1 {1, 2, 3, 4, 5,
6, 7, 8, 9, 10} 1 1 1

Distribution IV Gaussian Gaussian Gaussian Gaussian

{Gaussian,
Laplace,
Uniform,
Rayleigh,

Mix}

{Gaussian,
Laplace,
Uniform,
Rayleigh,

Mix}

Gaussian Gaussian Gaussian

Num. available
interventions 50 50 50

{1, 2, 4
, 8, 16, 32,

64, 128,
256}

50 50 50 50 50

Confounder
strength 0.5 0.5 0.5 0.5 0.5 0.5

{0.1, 0.2, 0.3,
0.4, 0.5, 0.6,
0.7, 0.8. 0.9,

1.0}

0.5 0.5

Confounder
edge prob. 0.8 0.8 0.8 0.8 0.8 0.8 0.8

{0.1, 0.2, 0.3,
0.4, 0.5, 0.6,
0.7, 0.8. 0.9,

1.0}

0.8

Num. observed
samples 1000 1000 1000 1000 1000 1000 1000 1000

{10, 17, 30,
54, 95, 167,

294, 517,
910, 1600}

(E7) Confounding strength: Similar to (E1), we introduced confounding of varying
strengths σconf ∈ (0.1, 1.0) to evaluate its impact.

(E8) Confounding sparsity: We adjusted the sparsity of confounding connections
between X and Y, i.e. P (Gconfi,j ) ∈ (0.1, 1.0) to test the effect of confounding
sparsity.

(E9) Number of samples: Finally, we assessed the influence of sample size by varying
the number of observed samples nsamples ∈ {10, . . . , 1600}.

Table 4.1 summarizes the different experimental setups and the corresponding
variables at change.

4.4.2 Semi-simulated benchmark with human gene data
Recent large-scale perturbation experiments on human cells [55] contain a large
database of gene expression measurements under genetic perturbations providing a
database of genotypic causes and their effects on downstream mRNA levels. The
dataset includes perturbations and expression measures for thousands of genes in
two cell types - a leukemia line (K562) and retinal cells (RPE). There are 2285 and
2679 detected genetic interventions in the two cell types respectively, with median
coverage of over 100 cells per intervention. This provides a database of genotypic
causes (the perturbed genes) and their effects on the expression of many potential
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downstream covariates. To complete the instrument variable framework, we intro-
duce an outcome variable Y that depends linearly on a sparse subset of the covariate
genes. This models a scenario where only some of the expression levels causally in-
fluence the outcome. The intervened genes provide exogenous variation in the full
set of covariates, allowing us to uncover this small causal subset that are the par-
ents of Y. This sets up a simulated phenotype Y that depends on a sparse set of
covariate gene expression levels, which in turn depend on the larger set of genet-
ically perturbed instrument variables. Hence, this dataset provides a database of
instruments and their effects on potential covariates. By simulating Y as a sparse
linear function of covariates, we can use the instruments to uncover the causal rela-
tionships from genotype to phenotype, with covariate gene expression levels as the
intermediates between genetic instruments and outcome.

Technical details: In a first step, we follow the normalization routine described in
[55, 188]. Then, we filter out genes that are insufficiently effected by the performed
interventions. We discard interventions for which an insufficient number of cells was
measured, i.e. we require at least n = 60 or more cells per intervention. We create
two lines of experiments that use the interventional data differently:

(1) Interventional data as intrumental variables: The first experimental setup
treats the interventional data as instruments. This setup is very similar to the
setup used in Section 4.4.1 except that the data of the instruments is given by
real-world measurements. We define a gold standard for causal relationships
similar to [12]. Specifically, we calculated a robust z-score ζi,j that quantified
the change in gene j under intervention on gene i, relative to the observational
variation in gene j. That is, ζi,j=|med(Iinti,j )−med(Iobsi,j )|/IQR(Iobsi,j ), where
med(Iinti,j ) and med(Iobsi,j ) denote the median of the gene expression levels un-
der intervention and in the truly observational case of the wildtype distribution
respectively and IQR(Iobsi,j ) defines the interquartile range of the wildtype dis-
tributions. We concluded there is an experimentally verified causal relationship
from gene i to gene j if and only if ζi,j > τ . That is, we inferred a sufficiently
large causal effect of gene i on gene j when the intervention on gene i changed
the expression of gene j by more than τ > 5 interquartile ranges relative to
the observational variation in gene j. This approach allows us to include suffi-
cient variance in the instrumental variables. To compute the covariates X and
the outcome Y , we follow the simulation framework as explained above.

(2) Using interventional data as covariates: In the second setup, we opt to employ
interventional data as samples for the covariates, which seems intuitive at
first. However, defining the confounding variables H becomes less clear in
this arrangement. While the proposed method does not explicitly require the
presence of confounding, evaluating it under such conditions is desirable, as
confounding generally complicates predictions and certainly, exists in real-world
applications. To preserve confounding, we adopt the following approach: the
confounding variables H must belong to the subset of variables I that were
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intervened upon during the experimentation. Additionally, the confounders
need to be part of the intersection D = I ∩ O, where I represents the set of
all intervened genes, and O denotes the set of observed variables. In other
words, we can only consider those genes as confounding variables H for which
we generally observe gene expression levels and additionally, are subject to
interventions. We select covariates X based on two constraints: (i) there
should be a substantial causal relationship in terms of the z-score from the
confounders H to the covariates X and (ii), the instruments I need to act
as causal predecessors of the covariates X, while not exerting any influence
on the confounders H. Ideally, this arrangement ensures that the covariates
are ancestors of the confounders and the instruments. However, it is essential
to note that the relationships between confounders and covariates are not
necessarily linear, and a causal connection is likely but not certain, as there
could be unmeasured confounders that explain detected relations. Although
our setup explicitly avoids direct connections between instrument variables
and confounders, it is not possible to guarantee the absence of any causal
influence from instrument to confounders through indirect paths or unknown
or unmeasured confounders. Using the extracted covariates X and confounders
Y , we proceed with the simulation protocol for generating Y , as defined in
Equation 4.1 and detailed in Section 4.4.1.

To complete the causal setup, a small subset of the covariate genes is randomly selected
to be the direct causal parents of the outcome variable Y . The goal is to examine
scenarios where the genes that directly influence Y are sparse, meaning they make up
a small fraction of the full set of covariate genes. This models a situation where only a
limited number of genes out of the many observed expression levels have a direct causal
effect on the phenotype Y . By using simulated outcome data while retaining the real
instrument and covariate data, we can ensure there is no inherent confounding between
the instruments and outcome that could undermine causal inference. However, the
relationships between the instruments and covariates may still involve non-linearity
or hidden confounding, as they reflect the complex real gene perturbation effects.
Also, the true interventions done in the experiment do not perfectly meet the ideal
intervention assumptions outlined in [187], as real gene perturbations can have off-
target effects. In other words, the simulated outcome avoids built-in confounding, but
complexities in the real instrument-covariate connections remain. The interventions
are not ideal, but still provide useful variation in the covariates for inferring causal
relationships.
By selecting appropriate subsets of perturbed genes as instruments and affected
genes as covariates, the data can be used to uncover genotypic causal effects on a
simulated phenotype drawn from the covariate gene expression levels.

4.5 Results
We conducted experiments to evaluate the generalization performance and robustness
of our approach. First, using a fully synthetic dataset, we tested generalization by
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individually varying simulation parameters and observing the effect on our estimator.
This allowed us to isolate the impact of each parameter change.
Additionally, we evaluated our model on a semi-simulated dataset derived from
human gene expression measurements across two cell lines. By using real gene
expression data, this experiment tested whether our model can handle scenarios
where experimental conditions are not fully controlled, such as noise, confounding,
and non-linearity. Overall, these experiments aimed to assess the applicability of our
model to both synthetic data where we control all parameters, as well as real-world
data where experimental factors are imperfect.

4.5.1 Gold-standard synthetic data
We first assess the individual effects of simulation parameters on our proposed
model’s performance. To evaluate performance, we compare our model to three
benchmark estimators: (1) an unpaired OLS estimator with covariance adjustment,
(2) a paired OLS estimator using the true subset of nonzero coefficient covariates,
and (3) a standard paired OLS estimator. For each simulation experiment, we re-
port the root mean square error (RMSE) between the predicted and ground truth
β-coefficients. We also report the RMSE of outcome Y predictions and present the
learned causal structures using our model, including the signed distance to the ground
truth. Together, these performance metrics allow us to thoroughly evaluate our pro-
posed model under various simulation settings against relevant benchmark estimators.

(E1) Intervention strengths: In our initial experiment, we manipulate the inter-
vention strength by increasing the variance of the distributions of the simulated
instrumental variables. The underlying idea is that a wider distribution of an inter-
vened instrument makes its impact on the corresponding covariate more detectable.
By employing an algorithm that utilizes oracle-like data of the non-zero ground
truth coefficient, we can deduce that a minimum intervention strength is necessary
to enable causal inference in an unpaired setup. This is evident from the erroneous
predictions for β̂ and the decreasing root mean square error in Y since the interven-
tion strength increases, see Figure 4.2. Figure 4.2b demonstrates that both unpaired
ordinary least squares (Unp.-OLS) and our method are influenced by the interven-
tion strength. Unp.-OLS assigns high values to all coefficients in β̂, resulting in
elevated RMSE values in Figure 4.2a. Conversely, our approach incorporates a pe-
nalization term, leading to a coefficient vector with small values across the board,
lacking informative content. Consequently, the RMSE is reduced to a mere line in
Figure 4.2a due to the minimal variation in the coefficient vector. As the interven-
tion strength increases, both algorithms exhibit competitive performance and yield
the actual causal structure.

(E2) DAG sparsity: This experiment demonstrates that the density of the adjacency
matrix of the directed acyclic graph underlying the covariates is not a significant
factor for any of the algorithms. The findings are visualized in Figure C.1 in the
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Appendix.

(E3) Number of affected covariates per interventions: The findings of this experi-
ment are depicted in Figure 4.3. As the number of ancestors per intervention in the
covariates increases, the performance declines. The unpaired OLS estimator proves
to be ineffective in scenarios where interventions impact nearly all covariates. Con-
sequently, the predicted β-coefficients deviate significantly from the ground truth,
resulting in poor predictions for the outcome variable Y . This observation holds true
in general, however to a smaller extent, for both the penalized version and unpaired
OLS on the oracle data subset. The experiments conducted with the oracle unpaired
OLS suggest that recovering the causal structure becomes challenging when interven-
tions on the instruments induce changes in the distributions of (almost) all covariates.

(E4) Number of available interventions: The performance in both underdetermined
and overdetermined interventional setups is explored in Figure 4.4. Existing liter-
ature suggests that, in cases of abundant data, it is generally feasible to identify
the causal structure when the number of interventions matches or exceeds the num-
ber of non-zero beta coefficients. However, our findings indicate that this assertion
does not hold true for an unpaired experimental setup with limited data. The or-
acle unpaired ordinary least squares estimator demonstrates ineffectiveness when
the number of interventions is less than n = 8. Consequently, the standard unpaired
OLS estimator and our penalized counterpart are also not expected to perform well
in such scenarios. The unpaired OLS estimator displays competitive performance
when n = 32 interventions are available, while the penalized estimator requires a
minimum of n = 16 interventions. This is evident from the decreasing root mean
square error (RMSE) in Figure 4.4a for Unp.-OLS, as well as the erroneous predic-
tions of β∗ in 4.4b for both Unp.-OLS and the penalized version.

(E5) Distribution of instruments: The impact of different distributions of instrumen-
tal variables is illustrated in Figure 4.5. It is intriguing to observe that the oracle
unpaired ordinary least squares (OLS) estimator is minimally affected by the choice
of distribution in the instrumental variables. In contrast, the standard unpaired OLS
algorithm proves ineffective when the instrumental variable (IV) data is distributed
uniformly or according to a Rayleigh distribution. However, the setup utilizing a
mixture of distributions appears to be less affected. Since the number of available
interventions is set to n = 50, the valuable information obtained from the useful dis-
tributions is sufficient. Interestingly, the penalized version of the algorithm does not
exhibit a comparable behavior. Our method consistently and reliably restores the
causal relationship for all distributions, with only slightly higher errors observed for
the Rayleigh distribution (see to Fig. 4.5b).

(E6) Number of affected nodes and distribution shape: As this experiment combines
aspects from (E3) and (E5), we anticipate a similar pattern of behavior as observed
in those experiments. This observation is validated in Figure C.2 of the Appendix.
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Once again, we can observe increasing errors for β̂ and Ŷ as the number of ancestors
among the covariates increases. This effect is further amplified by the mixture of
distributions employed in the unpaired OLS estimator.

The confounding strength investigated in experiment (E7) and the sparsity in
confounder-outcome relations (experiment (E8)) have only a minor effect on the per-
formance of all algorithms. The results are presented in Figure C.3 and C.4 of the
Appendix.

(E9) Number of samples: The final experiment explores the impact of sample size
on performance. The findings depicted in Figure 4.6 indicate that a minimum of
at least n = 17 samples is necessary in the paired setup. Given that the unpaired
estimators leverage covariance structures, we anticipate that a higher number of
samples is required for the algorithms to operate effectively, and this expectation is
validated. The oracle unpaired ordinary least squares (OLS) estimator demonstrates
effectiveness at a sample size of n = 54, while both the standard unpaired OLS
estimator and our proposed penalized method exhibit efficacy starting at a sample
size of n = 95.
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure 4.2: Experiment (E1): Intervention strength. (a): Boxplot of RMSE of predicted
coefficients β̂ (left) and predicted outcomes Y (right) for OLS (blue), Un-
paired OLS (orange), Unpaired OLS using solely non-coefficients (green) and
our proposed penalized covariance adjusted estimator, Unpaired penalized,
(red). (b): Heatmap of ground truth and predicted β-coefficients (left) , error
between predictions and ground truth values (right), lighter colors indicate
smaller errors. Predicted β-values falling outside the range of [−1, 1] are rep-
resented in black and orange, while errors exceeding [−1, 1] are emphasized
using purple and gold.
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure 4.3: Experiment (E3): Number of affected covariates per intervention. (a):
Boxplot of RMSE of predicted coefficients β̂ (left) and predicted outcomes Y
(right) for OLS (blue), Unpaired OLS (orange), Unpaired OLS using solely
non-coefficients (green) and our proposed penalized covariance adjusted
estimator, Unpaired penalized, (red). (b): Heatmap of ground truth and
predicted β-coefficients (left) , error between predictions and ground truth
values (right), lighter colors indicate smaller errors. Predicted β-values falling
outside the range of [−1, 1] are represented in black and orange, while errors
exceeding [−1, 1] are emphasized using purple and gold.
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure 4.4: Experiment (E4): Number of available interventions. (a): Boxplot of RMSE
of predicted coefficients β̂ (left) and predicted outcomes Y (right) for OLS
(blue), Unpaired OLS (orange), Unpaired OLS using solely non-coefficients
(green) and our proposed penalized covariance adjusted estimator, Unpaired
penalized, (red). (b): Heatmap of ground truth and predicted β-coefficients
(left) , error between predictions and ground truth values (right), lighter
colors indicate smaller errors. Predicted β-values falling outside the range of
[−1, 1] are represented in black and orange, while errors exceeding [−1, 1]
are emphasized using purple and gold.
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure 4.5: Experiment (E5): Distribution of instrumental variables. (a): Boxplot of
RMSE of predicted coefficients β̂ (left) and predicted outcomes Y (right)
for OLS (blue), Unpaired OLS (orange), Unpaired OLS using solely non-
coefficients (green) and our proposed penalized covariance adjusted estimator,
Unpaired penalized, (red). (b): Heatmap of ground truth and predicted β-
coefficients (left) , error between predictions and ground truth values (right),
lighter colors indicate smaller errors. Predicted β-values falling outside the
range of [−1, 1] are represented in black and orange, while errors exceeding
[−1, 1] are emphasized using purple and gold.
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(a) RMSE: left ∥β̂ − β∗∥2, right ∥Ŷ − Y ∗∥2
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure 4.6: Experiment (E9): Number of samples. (a): Boxplot of RMSE of predicted
coefficients β̂ (left) and predicted outcomes Y (right) for OLS (blue), Un-
paired OLS (orange), Unpaired OLS using solely non-coefficients (green) and
our proposed penalized covariance adjusted estimator, Unpaired penalized,
(red). (b): Heatmap of ground truth and predicted β-coefficients (left) , error
between predictions and ground truth values (right), lighter colors indicate
smaller errors. Predicted β-values falling outside the range of [−1, 1] are rep-
resented in black and orange, while errors exceeding [−1, 1] are emphasized
using purple and gold.
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4.5.1.1 Semi-simulated human gene data

In addition to the synthetic benchmark cases, we conduct a series of experiments
utilizing interventional data obtained from human gene knock-down measurements.
For two cell-lines, namely a cancerous blood cell-line (K562) and retinal pigment
epithelium tissue (RPE), we apply the same metrics and benchmark algorithms as
presented in Section 4.5.1. This allows us to evaluate our proposed method in a
real-world setting. We explore two different experimental setups, each varying in the
utilization of interventional measurements (refer to Sec. 4.4.2 for detailed informa-
tion).

Using Interventional Data as Instrumental Variables: In this setup, we utilize inter-
ventional gene expression levels as instrumental variables to simulate the covariates
X and the outcome Y . This approach allows us to account for noise in the covari-
ates and address confounding between X and Y by employing gene distributions as
instrumental variables. The results, depicted in Figure 4.7 for K562 and Figure 4.8
for RPE, present the outcomes. We conduct the tests using ten different gene config-
urations, whereby each repetition involves a distinct set of genes and interventions as
instruments. These gene configurations are selected to fulfill the assumptions of the
IV framework. As we increase the gene configuration index, we intentionally intro-
duce more violations of assumptions, such as less expressive interventions or noisier
interventions. This allows us to evaluate the algorithm performance on gene configu-
rations that closely resemble synthetic cases as well as those that are less well-defined
due to measurement noise, unmeasured confounding, and other sources of noise. We
repeat each gene configuration experiment ten times with different random seeds and
present the averaged results. For both cell lines, we observe that the OLS method
applied to paired data successfully identifies the correct causal structure, although
the estimates exhibit slightly higher errors compared to the fully synthetic test case.
This indicates the presence of a detectable regression signal in the data. When ex-
amining the unpaired OLS estimator with the oracle data setup, we find that the
predicted quantitative results are significantly more erroneous compared to the sim-
ulation benchmarks. This observation also holds for the standard unpaired OLS
estimator. Figures 4.7b and 4.8b illustrate that the error in non-zero β-coefficients is
higher, with an increasing trend for more challenging gene configurations. Specifi-
cally, the predictions for gene configurations 8, 9, and 10 lose their usefulness and
informativeness. In contrast, we note that our proposed method exhibits higher
quantitative errors compared to the simulation benchmark, but it reliably restores
the causal structure even for the more challenging gene configurations.

Using Interventional Data as Covariates: In this setup, we employ interventional gene
expression levels as actual covariates and solely simulate the outcome Y . Finding gene
configuration setups characterized by strong confounding between X and Y requires
highly stringent data requirements. To identify suitable candidate configurations, we
had to relax the z-score threshold to τ > 3. Moreover, the presence of confounding on
the covariates is very sparse. We identified five gene configurations and averaged the
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results over ten runs with different random seeds, as done previously. The outcomes
are presented in Figure C.5 and C.6 in the Appendix. Within this setup, none of the
considered algorithms demonstrate effectiveness, most likely due to the presence of
noise. The complexity of the current problem is exacerbated by the vast number of
potential genetic and environmental causes in large biomedical studies, rendering
exhaustive interventional experiments implausible. Additionally, it is generally
impossible to eliminate confounding bias caused by unmeasured latent variables that
influence the associations between biomarkers and outcomes. Furthermore, when
dealing with mRNA transcript levels as biomarkers, the measurements are known
to be considerably noisy. In this context, it is important to note that we cannot
guarantee the absence of unmeasured confounding between instruments and the
outcome Y through connections involving the selected genes acting as confounders
H. In quantitative genetics, such applications of instrumental variable methods
are referred to as Mendelian randomization [189]. As per requirements of classic
instrumental variable methods, it is assumed that the effects of the genetic instrument
on a covariate are unconfounded, and the effects of the instrument on the outcome are
solely mediated through the covariate [190]. However, the assumption of no hidden
pleiotropy significantly limits the applicability of this approach, as most genotypic
effects on complex traits lack sufficient understanding to exclude pleiotropy as a
possible explanation for an association. In other words, a pleiotropic gene exhibits
multiple phenotypic expressions, meaning that a mutation, such as CRISPR/Cas
gene knock-down, in a pleiotropic gene may simultaneously affect several traits due
to the gene coding for a product utilized by numerous cells or different targets with
the same signaling function.
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure 4.7: K562 gene expression levels as instrument variables. (a): Boxplot of RMSE
of predicted coefficients β̂ (left) and predicted outcomes Y (right) for OLS
(blue), Unpaired OLS (orange), Unpaired OLS using solely non-coefficients
(green) and our proposed penalized covariance adjusted estimator, Unpaired
penalized, (red). (b): Heatmap of ground truth and predicted β-coefficients
(left) , error between predictions and ground truth values (right), lighter
colors indicate smaller errors. Predicted β-values falling outside the range of
[−1, 1] are represented in black and orange, while errors exceeding [−1, 1]
are emphasized using purple and gold.
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure 4.8: RPE gene expression levels as instrument variables. (a): Boxplot of RMSE
of predicted coefficients β̂ (left) and predicted outcomes Y (right) for OLS
(blue), Unpaired OLS (orange), Unpaired OLS using solely non-coefficients
(green) and our proposed penalized covariance adjusted estimator, Unpaired
penalized, (red). (b): Heatmap of ground truth and predicted β-coefficients
(left) , error between predictions and ground truth values (right), lighter
colors indicate smaller errors. Predicted β-values falling outside the range of
[−1, 1] are represented in black and orange, while errors exceeding [−1, 1]
are emphasized using purple and gold.
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4.6 Conclusion and Discussion
Across the nine experiments of our synthetic benchmark test cases, we systemat-
ically evaluate the performance of our proposed regularized regression method in
comparison to three benchmark algorithms and investigated various aspects of causal
inference in an unpaired setup. Different intervention strengths, sparsity of the
underlying graph, number of affected covariates per intervention, distribution of
instruments, confounding strength and sparsity, and sample sizes were examined.
The results showed that intervention strength affects the performance of the algo-
rithms, with a minimum strength required for accurate causal inference. The density
of the underlying graph did not significantly impact the algorithms. Increasing the
number of affected covariates per intervention led to decreasing performance, partic-
ularly for the unpaired estimator. The number of available interventions was crucial,
with a minimum requirement for accurate results. The choice of distribution for
instrumental variables affected the algorithms differently. The penalized method
consistently restored the causal relationship, while the standard unpaired OLS algo-
rithm struggled with certain distributions. Lastly, the experiments highlighted the
importance of sample size. The oracle unpaired OLS estimator demonstrated effec-
tiveness with fewer samples, while the other algorithms required larger sample sizes
for reliable performance. In summary, the experiments provided insights into the
factors influencing causal inference in unpaired setups, emphasizing the significance
of intervention strength, number of affected covariates, distribution of instruments,
and sample size. Furthermore, our experiments demonstrate that our method consis-
tently yields sparse coefficient estimates, while OLS produces dense solutions. This
aligns with the regularization in our approach, which encodes a bias for sparsity.
Moreover, our method proves effective at identifying the true causal relations even
with limited samples and interventions. By contrast, standard OLS struggles to
recover sparse structures without substantial data. Overall, the empirical results
highlight the advantages of our proposed framework in terms of sparsity and sample
efficiency.

Moreover, our experiments involve the use of interventional data in two different
setups. In one setup, interventional gene expression levels were used as instrumental
variables to simulate the covariates and the outcome. The results show that the
proposed method performs well in restoring the causal structure, even for challenging
gene configurations. In another setup, interventional gene expression levels were
used as actual covariates while only simulating the outcome. However, none of the
algorithms yield effective results in this case, most likely due to the presence of
noise and sparse confounding on the covariates. The complexity of this problem
is attributed to the large number of potential genetic and environmental causes in
biomedical studies. The assumption of no hidden pleiotropy, which refers to the
effects of a gene on multiple traits, posed limitations to the application of instrumental
variable methods. Most genotypic effects on complex traits cannot be sufficiently
understood to exclude pleiotropy as a possible explanation for associations. Overall,
the study demonstrated the challenges and limitations in utilizing interventional data
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and instrumental variable methods, particularly in the context of genetic research
and complex traits.
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5 Estimating Treatment Effects using Deep
Neural Networks

5.1 Introduction and Motivation
In the clinical environment, decision makers such as physicians face several crucial
questions that must be addressed carefully before taking any action. Typically, these
questions encompass whether to administer a treatment, which specific treatment
to choose, and the optimal timing for initiating the treatment. However, answer-
ing these questions is not a trivial task and requires a reliable estimation of the
anticipated effects of a treatment. In this context, clinical trials traditionally serve
as the gold standard for addressing these questions and often report an average
treatment effect (ATE). However, it is crucial to recognize that the same treatment
can have diverse impacts on different individuals, as evidenced by experience and
real-world observations. Estimating these heterogeneous treatment effects (HTEs)
is still a state-of-the-art challenge and requires the development of novel, sophisti-
cated algorithms that are able to predict the individualized future effectiveness of a
specific treatment plan. In essence, these models offer insights into diverse individ-
ual responses to various treatments. This aids physicians in making better-informed
choices about treatment options for patients, customizing plans to suit individual
requirements. Our aim revolves around foreseeing the future responses of patients
based on their ongoing medication regimen. Specifically, we are interested in forecast-
ing future state e.g. to enable early identification of inadequate response to ongoing
therapy. This enables the identification of insufficient individual treatment plans
and timely transitions to more promising medication strategies. In this Chapter, we
primarily focus on a systemic disease, i.e. wet age-related macular degeneration (wet
AMD), which is characterized by macroscopic symptoms like the growth of abnormal
blood vessels beneath the retina. Its onset is triggered by the breakdown of the reti-
nal pigment epithelium (RPE) and is associated with inflammation and angiogenesis.
It is useful to contrast this with cancer research, which while a very different area
of medicine, offers useful contrasts and similarities with respect to causal interplay.
In the case of cancer, the data tends to be at the molecular level, but in terms of
modelling and theory there are similarities in the need to go beyond ATEs towards
understanding personalised response to therapy. Cancer involves the unchecked pro-
liferation and division of abnormal cells capable of infiltrating nearby tissues and
disseminating to distant body regions. This uncontrolled growth primarily stems
from genetic mutations that disrupt the conventional regulatory pathways governing
cell division and growth. Consequently, the scope of observations for these distinct
disease categories spans a wide spectrum. For wet AMD, it encompasses medical
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images, assessments of visual acuity, and diverse clinical outcomes. In contrast, for
various cancer types, it encompasses mainly cellular and molecular readouts such as
cell proliferation rates and gene expression assays.

The overwhelming majority of current models employed in this challenging setting
are based on novel machine learning algorithms and leverage large diverse data
sources to provide more profound HTE estimations. “High-Throughput Screening”
has revolutionized the drug discovery process by providing a rapid and systematic
way to identify potential drug candidates. Its combination of automation, speed,
and large-scale testing has significantly increased the efficiency of finding compounds
with therapeutic potential, leading to improved results in drug screening experi-
ments. In addition, novel technological approaches at large scale including single-cell
RNA sequencing or single-cell mass cytometry have enabled the profiling of molecu-
lar and functional attributes of individual cells within a complex mixture to uncover
rare cell types and study cell-to-cell variations [191]. This has led to the develop-
ment of large public datasets with thousands of experiments testing different drugs
on different types of cell lines. These datasets are exceptionally valuable and en-
able scientists to investigate the relationship between the molecular profile of a cell
(for example its DNA and other related biological information) and its phenotypic
response to a specific medical treatment [192, 193, 194, 195]. However, the use of
these datasets is still in its early stages and the primary objective of analyzing these
datasets has been to construct a predictive model for drug response, at least from a
data science perspective. These models should be designed to take in longitudinal
image or probe data and forecast the anticipated outcome when employing a candi-
date drug for treatment. Consequently, the higher the accuracy of such a predictor,
the greater the level of trust it instills, as it faithfully emulates wet lab results.

To summarize, understanding the effects of treatments over time is crucial for the im-
plementation of complex treatment plans and personalized healthcare in real-world
scenarios. That is, only in the longitudinal setting it is possible to gain insights into
how diseases progress under different treatment plans, how individual patients re-
spond to treatment over time, and the optimal timing for administering treatments.
However, estimating counterfactual outcomes in the longitudinal setting presents
additional challenges, with the most significant being the potential dependency of ob-
served treatment assignments on time-varying confounding variables (time-dependent
confounding, [196]). For instance, let us consider the treatment of leukemia patients.
Not all cancer patients are equally likely to receive the same chemotherapy regimen,
and their past treatment responses and history influence future treatment choices
[197]. Consequently, this introduces a bias in causal effects and increases the vari-
ance in counterfactual estimation due to systematic differences in the distribution of
confounding variables between different treatment sets over time. In other words, the
primary challenge of causal inference over time lies in addressing a time-dependent
confounding and distribution shift, which is not encountered in standard time-series
analysis. Therefore, conventional time-series models are not suitable for this setting
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[198].

Previous work in causal inference has attempted to address this confounding bias, as
demonstrated in [199, 200, 201]. However, their approaches rely on strong assump-
tions that do not align with most real-world observational data. Specifically, these
methods assume that the data is regularly sampled at fixed, evenly spaced time in-
tervals, and that the sampling times perfectly align across different individuals. In
contrast, observational data is typically not sampled at regular intervals due to prac-
tical reasons such as simple scheduling issues, e.g. patients missing an appointment,
or more complex considerations, such as more frequent observations for severe cases
or variations in monitoring requirements for different treatments. Therefore, such
assumptions often do not hold in practice, significantly limiting the applicability of
these approaches.

Motivated by these challenges, we have devised and evaluated supervised end-to-end
models to estimate drug responses based on highly irregular time-series data, e.g.,
clinical patient records. Specifically, our focus lies on predicting individual treat-
ment effects for patients afflicted with wet age-related macular degeneration (wet
AMD). This condition is a leading cause of vision loss and affects the macula, a criti-
cal part of the retina responsible for sharp central vision. Detecting and intervening
early are crucial for a successful treatment as the early stages may not present no-
ticeable symptoms. Hence, regular eye exams are necessary for timely intervention,
as untreated wet AMD can lead to severe vision loss and legal blindness. To gain a
comprehensive understanding of this disease progression and treatment response, the
database under consideration incorporates Optical Coherence Tomography (OCT)
scans taken at multiple time points. Moreover, each patient’s longitudinal trajectory
is further enriched by accompanying information, including demographic character-
istics, medical history, administered treatment drugs, visual acuity measurements,
and other clinical outcomes.

Leveraging this multi-variate set of information, our overall goal is to design a so-
phisticated treatment effect estimator that predicts a continuous future treatment
effect for individual patients given its past data trajectory. In contrast to other work
reported in literature, here we are not interested in predicting individual treatment
effects for a set of available drugs to substantiate the choice of medication, but focus
on modeling the treatment effects of an existing medication plan to estimate its fu-
ture (continuous) efficiency. In this setting, major challenges arise from the fact that
the underlying dynamics of the highly irregularly sampled record data are learned
inherently and aggregated to estimate the effectiveness of the designed medication
plan. That is, relevant system interventions are assumed, but remain unknown to
the learner relative to both, the exact interventional method as well as its precise
timing. Moreover, our models have to account for the inherent uncertainty in the in-
vestigated (noisy) clinical record collection, considering measurement errors, natural
retina variation, and drug response heterogeneity. To tackle these exceptional chal-
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lenges, we capitalize on recent breakthroughs in machine learning and investigate
the prediction accuracy of three fundamentally different approaches, e.g., sparsity
promoting linear regression, deep Gaussian processes and attention-based deep neu-
ral networks. We test the performance of the methods empirically and demonstrate
the effectiveness of our approach via comparing the results to expert evaluations
given by two long-term ophthalmologists.

The remainder of this Chapter is organized as follows. In Section 5.2, we present
a review of related literature. Section 5.3 introduces the notation and defines the
problem, followed by the presentation of the considered methods in Section 5.4. In
Section 5.5 and 5.6, we conduct a comprehensive evaluation of the considered models
through a series of diverse tests. Finally, in Section 5.7, we draw conclusions, discuss
limitations, and propose potential areas for improvement.

5.2 Related Work

Since this work primarily engages with traditional and recent approaches for aver-
aged and heterogeneous treatment effect estimation, a short literature overview will
be provided in the following. We start with available datasets used for drug response
studies to characterize current requirements for our envisioned learner, and continue
with existing machine learning methods reported in literature. Here, we specifically
focus on work with time-varying covariates, treatments, and outcomes, but also draw
on insights from causality in dynamical systems and recent work on modeling con-
trolled differential equations. As outlined above, we explicitly note the difference
between causal inference over time and conventional time series modeling and hence
do not focus on recent advances in time series models.

Large-scale drug screening datasets for HTE estimation
The high-throughput screening of compounds is an important step in the drug dis-
covery process. Its underlying purpose is to determine which medication or series of
medications will potentially result in effective treatments. In recent years, several
large-scale anti-cancer drug screens have been performed and were made publicly
available. Well-known projects such as Genomics of Drug Sensitivity in Cancer
(GDSC) [192], Cancer Cell Line Encyclopedia (CCLE) [193], Cancer Therapeutics
Response Portal (CTRP) [202, 203] and NCI-60 [204] provide access to drug sensi-
tivity profiles for a wide variety of cancer cell lines. In addition to the dose-response
data gathered from the high-throughput screening experiments, these databases also
provide access to omics data characterizing the cancer cell lines that the compounds
were screened against. Precisely, all three projects provide genomic, transcriptomic
and epigenomic data. Additionally, proteomics [205, 206] and metabolomics [207]
data are available for the NCI-60 and CCLE cell lines.
Other studies, e.g., the Connectivity Map (CMap) [208, 209] or the Library of
Integrated Network-Based Cellular Signatures (LINCS) [210, 211] projects, simi-
larly provide data regarding the response of cells to treatment, but focus on small
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molecules at the proteomic and epigenomic levels [212]. These cellular response sig-
natures can complement the data from other drug screening initiatives and may be a
very valuable source of information when building drug response prediction models.
Complementary studies in this field focused on large pan-cancer drug combination
screening datasets which also have been made available to the public (see for example
[213, 214, 215]). These datasets can serve similarly as the basis for the development
of deep learning based drug response prediction models.

Another important area for predictive modeling of drug-induced gene expressions
beyond cancer cell research is individualized drug repurposing for Alzheimer’s dis-
ease (AD). However, conventional target-based compound screening that follows the
one-drug-one-gene drug discovery paradigm has low success rates for AD due to its
multi-genic systemic effect. Hence, a comprehensive systems pharmacology strategy
is required that targets whole gene regulatory networks. To enable such phenotypic
screening, it is critical to utilize a mechanistic phenotype readout to link drug re-
sponses in a model system to drug toxicity and efficacy. Frequently used datasets in
this research topic include data from the ROSMAP project [216], the MSBB project
[217], and the MayoRNAseq [218] project. Within the ROSMAP project, multi-level
omics, neurobiologic traits, and structural and functional neuroimaging are collected
for approximately 3400 participants. Complementary work within the MSSB project
generated whole genome RNA-sequencing and proteome profiling data from multiple
regions of 364 postmortem traits, and collected rich clinical and pathophysiological
data. Researchers of the MayoRNAseq project pursued a similar approach collecting
whole genome genotype, microarray-based whole transcriptome and RNA-sequencing
data from the Mayo Clinic eGWAS study [219].

Further pathologies that have been studied in the context of individualized drug re-
sponse prediction involve detecting and treating first-episode drug-naive (FEDN)
schizophrenia. Recently reported studies [220, 221] leverage schizophrenia biomark-
ers to establish diagnosis and make individualized predictions of future treatment
responses to antipsychotics. Based on mutual information and the correlations of
brain activities measured by functional MRI, dysconnectivity between cortical re-
gions in patients were discovered. Other studies used electroencephalography signals
to monitor and diagnose schizophrenia disease [222, 223, 224] and published their
extensive clinic records.

Ongoing long-horizon studies focus on the collection of a more comprehensive dataset
combining various state-of-the-art techniques. These endeavors are not exclusively
concentrated on estimating heterogeneous treatment effects, but encompass abun-
dant data that also holds significance for causal modeling. One promising work in
this active research area is the Rhineland study [225] examining their more than 3000
participants repeatedly every 3-4 years over the course of their lives. The examina-
tions include visual acuity, optical coherence tomography (OCT), magnetic resonance
imaging, physical activity intensity data, genomic, transcriptomic and epigenomic se-
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quencing, neuropsychological test data, blood samples and EEG data [226, 227, 228,
229, 230, 231]. This extensive set of diverse data sources opens the door for com-
pletely new approaches to characterize neurodegenerative and age-related diseases
and will help to understand the complex interrelationships in HTEs of such diseases.

Learning based approaches for treatment effect estimation
Leveraging these diverse dataset sources, HTE estimation has been studied in great
detail in the recent machine learning literature. Early work built mainly on tree-based
methods, but many other methods, such as Gaussian processes and neural networks,
have been adapted to estimate HTEs recently.
Mentionable work w.r.t. tree-based approaches for individual drug response estima-
tion leverages a Bayesian modeling procedure called Bayesian Additive Regression
Trees (BART) [232]. The authors contend that BART possesses the ability to detect
interactions and non-linearities in the response surface, thereby making it well-suited
to identify HTEs more effectively. In contrast to methods like propensity score
matching and subclassification, BART naturally generates coherent posterior inter-
vals.
Complementary work builds on regression tree methods, which is modified to opti-
mize for goodness of fit in treatment effects and to account for honest estimation
[233]. By partitioning the data into subpopulations that differ in the magnitude
of their treatment effects, the proposed method enables the construction of valid
confidence intervals for treatment effects, even with many covariates relative to the
sample size. In follow-up work, Breiman’s widely used random forest algorithm is
applied for estimating HTEs [234]. In their framework, it is suggested that causal
forests are pointwise consistent for the true treatment effect and have an asymptoti-
cally Gaussian and centered sampling distribution. The presented experiments find
causal forests to be substantially more powerful than classical methods based on
nearest-neighbor matching, especially in the presence of irrelevant covariates. Sub-
sequent work evidences relevant generalization and performance gains when using
an adaptive weighting function designed to express heterogeneity in the specified
quantity of interest [235].

Leveraging a fundamentally different approach, Alaa et al. [236] developed a Bayesian
method for learning the treatment effects using a multi-task Gaussian process (GP).
The authors suggest to use a linear coregionalization kernel as prior to compute indi-
vidualized measures of confidence in inferred estimates via pointwise credible intervals,
which they argue are crucial for realizing the full potential of precision medicine.
The impact of selection bias is alleviated via a risk-based empirical Bayesian method
for adapting the multi-task GP prior, which jointly minimizes the empirical error
in factual outcomes and the uncertainty in (unobserved) counterfactual outcomes.
Based on this intial work, principled guidelines for building estimators of treatment
effects are derived by characterizing the fundamental limits of estimating HTEs, and
establishing conditions under which these limits can be achieved [237].
Motivated by the idea that the uncertainty in the counterfactual distributions can
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be learned by a neural network, Yoon et al. [238] developed a Generative Adversar-
ial Network (GANs) framework to estimate individualized treatment effects (ITEs).
The proposed method, termed Generative Adversarial Nets for inference of Indi-
vidualized Treatment Effects (GANITE), generates proxies of the counterfactual
outcomes using a counterfactual generator, and forwards these proxies as training
inputs to an ITE generator. By modeling both, the authors argue to infer correct
ITEs based on the factual data, while still accounting for the unseen counterfactuals.

Arguably the largest stream of current work builds on neural networks, due to their
flexibility and ease of manipulating loss functions, which allows for easy incorporation
of balanced representation learning. Relevant initial work addresses counterfactual
inference as a type of domain adaptation problem, and derive a novel way of learn-
ing representations [239]. The proposed models which are based on fully connected
layers rely on regularized representations which have similar distributions among the
treated and untreated cohorts. In more detail, the first hidden layers are used to
learn a representation of the input. The output of the following layer is then used to
calculate the discrepancy between the factual and counterfactual distribution. Fi-
nally, the last layer takes as additional input the treatment assignment and predicts
the patient’s response.
In a similar fashion, Shalit et al. [240] suggest to learn a “balanced” representation
such that the induced treated and control distributions have a similar shape and
statistical characteristics. In their work, a novel and intuitive generalization-error
bound is derived showing that the expected ITE estimation error of a representa-
tion is bounded by the sum of the standard generalization-error and the distance
between the treated and control distributions. However, some underlying assump-
tions, e.g. a well-specified model or prior knowledge about the policy that gave rise
to the observed data, do not resemble realistic settings. To tackle this problem, [241]
introduces a new bound on the generalization error incorporating both representa-
tion learning and sample re-weighting. Based on this bound, their novel algorithmic
framework outperforms existing method on synthetic benchmarks under more realis-
tic assumptions.
Contrarily, Hassanpour et al. [242] argued that not all factors in the observed covari-
ates might contribute to the procedure of selecting treatment, or more importantly,
determining their outcomes. They introduced a new algorithm called Disentangled
Representations for CounterFactual Regression (DR-CFR), that can identify disen-
tangled representations of the underlying data generating process and leverage this
knowledge to reduce and account for the negative impact of selection bias on esti-
mating the treatment effects from observational data.

More recently, [243] showed that the use of balancing weights complements represen-
tation learning in mitigating the covariate imbalance. Specifically, they link balance
to the quality of propensity estimation, emphasize the importance of identifying a
proper target population, and highlight the complementary roles of feature balanc-
ing and weight adjustments. Their claims are supported with theoretical results and
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evaluations on synthetic datasets and realistic test benchmarks, reporting competi-
tive performance throughout.

However, one major shortcoming of the methods described above stems from their
strong observation sampling assumptions as they exclusively consider regular, discrete-
time intervals between observations and treatment decisions and hence, are unable
to naturally model the de facto standard of irregularly sampled data in practice. In
the following, we will review further neural approaches that are specifically designed
to handle arbitrary observation patterns. From a high-level perspective, further ex-
tensions have been proposed that interpret the data as samples from an underlying
continuous-time process and propose to model its latent trajectory explicitly. These
methods also differ by how they adjust for confounding and for differences in covari-
ate distributions in different treatment regimes.
First work in this topic engages Marginal Structural Models (MSMs) [199]. MSMs
are linear in treatment and covariate effect, and create a pseudo-population us-
ing inverse probability of treatment weighting, as the probabilities of treatments
are independent w.r.t. time-varying confounders. Thus, MSMs can effectively con-
trol for confounding bias. With regard to deep learning based methods, Lim et
al. [200] proposed a semi-parametric alternative to MSMs using recurrent neural
networks (R-MSN). The model is subdivided into two parts, a set of propensity net-
works to accurately compute the inverse probability of treatment weightings, and a
sequence-to-sequence architecture to predict responses using only a planned sequence
of future actions. Based on this framework, R-MSN demonstrated performance im-
provements over traditional methods for joint treatment response prediction over
multiple future time steps on synthetic datasets.
The Counterfactual Recurrent Network (CRN) [201] uses a similar architecture but
instead leverages adversarial training to balance differences in covariate distributions
in different treatment regimes.

Recent fundamentally different approaches leverage the outstanding capabilities of
neural ordinary differential equations (NODEs) [104] and their numerous extensions,
e.g., neural controlled differential equations (NCDEs) [112, 244], to model irregular
time series data. However, neural ODE based methods are conventional time series
models, which do not account for issues such as time-dependent confounding. To
tackle this shortcoming, Seedat et al. [245] proposed Treatment Effect Neural Con-
trolled Differential Equation (TE-CDE) that allows the potential outcomes to be
evaluated at any time point. In the context of intervention modeling, Gwak et al.
[246] proposed to use separate ODEs for interventions and outcome processes Their
work applies to systems with deterministic dynamics in the absence of time-varying
confounders.

All approaches summarized above share one common characteristics as they study
the problem of inferring HTEs for binary or continuous outcomes. Recent work ex-
tends these frameworks via leveraging time-to-event data to estimate both the effects
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of treatments on instantaneous risk and survival probabilities. Pioneer work in the
context of machine learning methods was reported by Curth et al. [247] learning
individual treatment estimation and discrete-time treatment-specific conditional haz-
ard functions from time-to-event data. Instead of modeling event times directly, the
authors adapt neural networks for the estimation of treatment-specific hazard func-
tions. Subsequently, this learner is used to directly compute survival functions, i.e.
mean survival time and hazard ratios. Follow-up work [248] studies the problem of
inferring HTEs from time-to-event data in the presence of competing events. It is
shown that inclusion of competing events not only leads to multiple definitions of
effects but also to multiple sources of covariate shifts. As a result, future work will
be required to model these new dependencies sufficiently.

5.3 Problem statement and notation
In this work, we explicitly focus on the task of predicting individual treatment effects
for patients afflicted with wet age-related macular degeneration (wet AMD). Wet
AMD is characterized by the gradual breakdown of light-sensitive cells in the macula
and the growth of abnormal blood vessels beneath the retina leading to severe vision
loss and legal blindness in final disease states. Our primary objective targets the
detection of insufficient therapy after diagnosis to allow a timely transition to an
alternative treatment plan at early stages.
Framed under these challenging conditions,we designed a sophisticated end-to-end
trainable treatment effect estimator that is able to predict reliably a continuous future
treatment effect for individual patients given its past data trajectory. Specifically,
we focus on the setting in which available inputs are

(I1) preprocessed longitudinal OCT scans that provide statistical features, e.g.
the thickness of the different layers of the retina or estimated disease-related
fluid volumes, and

(I2) individual examination protocols providing relevant information on demo-
graphic characteristics and medical history only available at a highly irregular
time grid.

For (I1), we assume that the raw OCT scans cover all relevant eye sections with a
sufficient signal-to-noise ratio. Data preprocessing and quality assessment is carried
out by a semantic segmentation approach under the supervision of medical experts
which is not part of this work. For (I2), we assume precise patient records to trans-
form absolute medical trail recordings to relative time-series data.

Suppose all input requirements are fulfilled, the underlying learning task of our ap-
proach can be formulated as follows: Unlike other, our focus is not on predicting
heterogeneous treatment effects for a set of available drugs to guide medication se-
lection. Instead, we concentrate on modeling the treatment effects of an existing

123



5 Estimating Treatment Effects using Deep Neural Networks

medication plan to estimate its future (continuous) efficiency concerning individual
patients. In this context, significant challenges arise due to the complex dynam-
ics underlying the highly irregularly sampled record data, which are learned and
aggregated to estimate the effectiveness of the designed medication plan. Further
challenges arise from the fact that relevant system interventions are assumed (and
indeed performed), but their exact interventional method and precise timing remain
unknown to the learner.

In the following, we introduce a notation to formalize the investigated problem setup.
Let X be the input of size (N × T ×D). Entries are denoted Xn,t,d with n identi-
fying the patient and t being the snapshot index in time of available longitudinal
patient features of dimension D. We further assume that for each of N different pa-
tient records, we have access to an observed trajectory of T time points. We need to
know the sampling times themselves, but these need not be evenly spaced neither
do we assume that each patient’s trajectory comprises the exact same number of T
OCT scans. In fact, such an assumption would significantly limit the applicability of
the designed learner since clinical patient record characteristics, such as timing and
number of performed examinations, are typically highly individualized.

With the notation above, our goal is to learn a continuous treatment effect estima-
tor predicting future patient responses treated under an unknown but reasonable
medication plan. To this end, we train a parameterized learner Fθ, i.e. a linear or
non-linear function F with a set of trainable parameters θ. This is possible since
training is performed in a supervised fashion assuming a carefully designed dataset
with known ground-truth labels. The ground-truth is based on expert domain knowl-
edge and is described in Section 5.5.1. Note that training is performed prior and
independently to inference. Hence, we require our learner Fθ to generalize well to
unknown presumably out-of-distribution patient records in an out-of-the-box fashion
during inference. The architectures we use for Fθ are detailed below, but for now
assume that this has been specified. Then, given the training data Xtrain (which
might be independent in feature distribution from our inference data Xtest), we
train the set of parameters θ under a supervision loss using the labels Ytrain. In our
setting, we consider the negative log likelihood (NLL) between ground truth and
predictions

NLL(θ) = −
N∑
i=1

logP (Yi|Xi; θ) (5.1)

where P (Yi|Xi; θ) represents the probability of the correct label Yi given the input
Xi and model parameters θ. Assuming a suitable training dataset with corresponding
labels, the optimization of this loss is carried out for multiple different learners and
enables sufficient generalization capabilities as demonstrated empirically in Section
5.6.
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5.4 Architectural details
In this work, we investigate the performance of three fundamentally different ap-
proaches with rising complexity. These include a Bayesian linear regression method
augmented by a sparsity-promoting horseshoe prior, deep Gaussian processes lever-
aging a stochastic variational inference algorithm, and a temporal attention based
deep neural network. Individual details are presented in the following.

5.4.1 Linear regression via a sparsity-promoting horseshoe prior
Regression analysis, while simple, is of central focus in statistics, data analysis and
machine learning research as it provides useful yet easily interpretable relationships in
many areas involving, amongst others, finance, healthcare, physics, and engineering.
In supervised learning, the linear regression problem can be cast as the problem of
estimating a set of coefficients that determine a strictly linear relationship between a
set of inputs X and a target variable Y

Y = Fθ(X) = Xw + b, (5.2)

with w denoting the learnable weighting coefficients (slopes) and b is the linear bias
(intercept). Due to this rather simple learning scheme, linear regression analysis tends
to overfit in high-dimensional problems. That is, in order to avoid overly complex
and barely interpretable models, some form of dimensionality reduction is required.
This entails finding sparse solutions, where some elements of the learnable weighting
coefficients w remain zero. In this work, we adopt a well-known shrinkage approach
which is based on the horseshoe prior [249]. The horseshoe prior is a member of the
family of multivariate scale mixtures of normals, and is therefore closely related to
widely used sparsity-promoting methods for sparse Bayesian learning such as LASSO
[250] or Student-t priors [251]. The horseshoe prior assumes that each entry in w is
conditionally independent with density πHS(wi|τ), where πHS can be formalized as
a scale mixture of normals:

(wi|λi, τ) ∼ N(0, λ2
i τ

2) (5.3)

λi ∼ C+(0, 1) (5.4)

Here, C+ denotes a half-Cauchy distribution for standard deviation λi. In this con-
text, the λi’s refer to the local shrinkage parameters while τ characterizes the global
shrinkage.

We intentionally choose this prior distribution since it provides two useful features
in the context of sparsity promotion. First, its flat, Cauchy-like tails allow strong
signals to remain large a-posteriori while its infinitely tall spike at the origin provides
relevant shrinkage for the zero elements in w [249]. As a result, the horseshoe prior
is robust for handling unknown sparsity and large outlying signals at the same time,
which are typical challenges in treatment effect estimations.
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5.4.2 Gaussian processes
The second approach which is used within this work leverages Gaussian Processes
(GPs) to model the desired treatment effect estimation. Employing GPs in challenging
applications, e.g. treatment effect estimation with continuous outcomes, proved to
be effective in literature and provides several advantages [198]. First, GPs exhibit
adaptability by increasing their complexity to approximate the data closely even
in non-linear cases. Second, they demonstrate robustness against overfitting and
provide accurate uncertainty estimates. Third, GPs possess the capability to model
a wide range of functions using only a few hyperparameters, making them highly
flexible and efficient in handling irregularly sampled datasets. Nevertheless, the
expressiveness of the kernel/covariance function in single-layer GP models is limited,
as shown in various studies [252, 253, 254, 255]. In contrast, a Deep Gaussian
Process (Deep GP) overcomes the limitations of standard GPs while retaining their
advantages by introducing an ordered stack of GPs. Deep GPs are more expressive
models compared to standard GPs, in the same way how deep neural networks show
a higher expressiveness in comparison to generalized linear models [256].
Given a set of input points X and corresponding function values Y , a GP generates
a joint distribution over the function values as a multivariate Gaussian distribution.
The mean function µ(X) and covariance function σ(X,X′) are used to define the
parameters of this Gaussian distribution. We denote any covariance function hy-
perparameters as θ. In the light of a potentially large dataset, we employ a set of
inducing points Z = (z1, . . . , zK)T [257, 258] to summarize the behavior of the GP
over the entire input space. These inducing points act as representatives of the en-
tire dataset and allow us to make predictions based on a reduced set of points rather
than considering all data points. Let P (Y |Fθ) define the likelihood and F being
normally distributed, we can write the joint density as

P (Y, Fθ(X), Fθ(Z)) = p(Fθ(X)|Fθ(Z), X, Z)p(Fθ(Z)|Z)︸ ︷︷ ︸
GP prior

N∏
i=1

P (Yi|Fθ(Xi))︸ ︷︷ ︸
likelihood

. (5.5)

Deep Gaussian Processes

A Deep Gaussian Process is a GP extension that integrates the principles of deep
learning. In traditional GPs, the kernel function represents assumptions about the
smoothness and structure of the underlying function which, in some cases, might be
too complex for what a single kernel can express. Deep GPs overcome this limitation
by introducing a hierarchical architecture with multiple layers, reminiscent of neural
networks. In a Deep GP, each layer is a GP on its own, i.e. the first layer GP
takes the raw input data, and each subsequent layer GP operates on the outputs of
the previous layer GP. This arrangement enables each layer to have its own kernel
function, which can either be based on prior assumptions about the data or learned
from the data itself. Similar to [256], we define a prior recursively over different
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stochastic functions F 1
θ , . . . , F

L
θ . Note that the prior on each function FLθ is an

independent GP in each dimension. Then, the resulting joint density reads

P (Y, Fθ(Xl), Fθ(Zl)Ll=1) =
N∏
i=1

P (Yi|FLθ,i)︸ ︷︷ ︸
likelihood

L∏
l=1

P (Fθ(Xl)|Fθ(Zl), Fθ(Xl−1), Zl−1)P (Fθ(Zl)|Zl−1)︸ ︷︷ ︸
Deep GP prior

.

(5.6)

During optimization of this Deep GP, the posterior retains the full conditional struc-
ture of the true model. This, however, comes at the cost of losing the analytical
tractability, but due to the sparse posterior within each layer we can sample the
bound using univariate Gaussians.

In the present work, we employ a Deep GP consisting of three single-layer GPs. To
extract temporal patterns in the longitudinal input data, a temporal feature extractor
is applied which comprises one-dimensional convolutions and multiple stacked Multi-
Layer-Perceptrons (MLPs). These time-series features are then forwarded to the
Deep GP which finally outputs the desired continuous treatment effect.

5.4.3 Temporal attention based deep neural networks
Motivated by recent successes based on transformer networks, we introduce an
attention-based [259] encoder architecture for modeling treatment effects based
on longitudinal patient records that can handle noisy and partially observed high-
dimensional data. To this end, we employ a transformer-based encoder with a
time-aware attention [117] and relative positional encodings, which efficiently handles
data on an arbitrary time grid. These modifications provide useful inductive biases
and allow the encoder to effectively operate on input sequences with a temporal
component. Similar to [260, 117] the encoder computes

hθenc (X) = hread(hagg(hcomp(X))), (5.7)

where

1. hcomp compresses observations into a low-dimensional sequence.

2. hagg aggregates information of the low-dimensional features into a time-aware
representation

3. hread linearly transforms the extracted time-aware feature space into the
required output domain.

Transformations hcomp and hread may be any suitable differentiable functions, but
here we employ stacked MLPs. The transformation hagg is a transformer encoder
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which is a sequence-to-sequence mapping represented by a stack of L layers. Each
layer l ∈ 1, . . . , L contains a component called attention sub-layer, which - in the
standard case - comprises a combination of the dot-product (CDPij ), softmax (Cij),
and attention score (βi) and reads

CDPij =
⟨WQhi,WKhj⟩√

Dlow
, Cij =

exp(CDPij )∑N

k=1 exp(CDP
ik

)
, βi =

N∑
j=1

Cij(WV hj),

(5.8)
where WQ,WK ,WV are learnable layer-specific parameter matrices, and C is the
attention matrix. However, this standard formulation of self-attention [259] works
poorly on irregularly sampled data since it operates upon discrete and equidistant
steps rather than a continuous scale as required in our time dependent weighting
scheme. To reweigh the individual βi’s based on the distance in time, i.e. a time-
aware feature representation, we follow [117] and augment the original dot-product
attention with a temporal attention module CTAij . The redefined attention matrix
[117] reads

CTAij = ln(ϵ)
( |tj − ti|

δr

)p
, Cij =

exp(CDPij + CTAij )∑N

k=1 exp(CDP
ik

+ CTA
ik

)
, (5.9)

where ϵ ∈ (0, 1], p ∈ N and δr ∈ R>0 are constants. Hence, the larger the distance
|tj − ti| grows, the stronger the time-aware attention is reduced [261]. The parameter
δr determines the distance threshold beyond which the scaling of CDPij occurs by at
least ϵ. Moreover, parameter p governs the shape of the scaling curve.

5.5 Experimental Setup
We study the performance of the presented algorithms on a new longitudinal dataset
of wet AMD patients. Age-related macular degeneration is a leading cause of vi-
sion loss among individuals. It affects the macula, a small yet critical part of the
retina responsible for sharp central vision, which is essential for reading, driving,
and recognizing faces. In particular, wet AMD is characterized by the gradual break-
down of light-sensitive cells in the macula and marked by the growth of abnormal
blood vessels beneath the retina. These vessels are fragile and tend to leak fluid and
blood into the surrounding tissue, causing rapid and severe damage to the macula.
The early stages of wet AMD may not present noticeable symptoms, making regu-
lar eye exams essential for early detection and timely intervention. If left untreated,
wet AMD can lead to severe vision loss and even legal blindness. Optical Coher-
ence Tomography (OCT) is a cutting-edge imaging technique that has revolutionized
the diagnosis and management of wet AMD. It provides detailed cross-sectional im-
ages of the retina, allowing eye care specialists to visualize the extent of the damage
caused by the abnormal blood vessels. OCT scans enable early detection of wet
AMD, facilitate accurate monitoring of disease progression, and guide treatment de-
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cisions.

5.5.1 Datasets

The dataset used in this study comprises clinical records from a large cohort of pa-
tients diagnosed with wet AMD. All data preprocessing steps including normalization,
imputation, and transformations were carried out by Nastassy Horlava. Johannes
Wahle contributed the LMM preprocessing routine (see below).

The records were collected over a period of more than 10 years, providing a longi-
tudinal perspective on the patients’ medical histories and treatment interventions.
Each patient’s data includes diverse information, such as demographic character-
istics, medical history, treatment drugs administered, visual acuity measurements,
and other relevant clinical outcomes. To obtain a comprehensive understanding of
the disease progression and treatment response, the dataset incorporates OCT scans
taken at multiple time points. These scans are preprocessed using a neural network
specialized in semantic segmentation, enabling the quantification of retinal layer
thickness and the identification of disease-induced fluids between these layers. The
primary focus of this study is to predict the individual patient responses to treat-
ment using longitudinal data with multiple time points available. The starting point
for each patient is defined as t=0, representing the date of the first treatment dose.
The goal is to predict the individual quantitative treatment response after 90 days,
i.e., at t=90. The dataset is divided into two subsets for evaluation:
(i) The first subset includes data from patients with two visits, nvisits=2. In addi-
tion to the initial measurements at t=0, there are additional measurements taken at
approximately t=30 days.
(ii) The second subset uses data from three time points, t ∈ {0, 30, 60}, to predict
the treatment response after 90 days.

The evaluation consists of two distinct tasks, each aiming to assess the predictive
performance of the models on the different datasets:

1. Regression task: We predict the relative change of the disease related fluid
volume V (t) in relation to the volume measured at t=0, i.e.

∆V =
V (t=90)− V (t=0)

V (t=0)
. (5.10)

2. Classification task: We employ a thresholding function to assign the class
labels - good responder, poor responder, non-responder - to each patient based
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on the relative change. The labels are defined as follows:

τ(V (t)) =

good responder ∆V ≤ −0.25
poor responder −0.25 < ∆V ≤ 0.01
non-responder ∆V > 0.01

. (5.11)

Note that we study the performance of our proposed algorithms based on two addi-
tional variants of this dataset. That is, further preprocessing and filtering is applied
to extract valuable and informative data patterns more easily and to enhance the
quality of subsequent analyses. One such preprocessing pipeline is the Linear Mixed
Model (LMM), which offers a comprehensive and robust framework to handle the
intricacies and challenges associated with longitudinal data analysis. By employing
a LMM as a preprocessing step, we can effectively model the inherent correlation
structure in the longitudinal data by including random effects for individual patients.
This random effect captures the variability between patients and accounts for the
within-subject correlation, providing a more accurate representation of the true rela-
tionships between variables over time. Furthermore, a LMM can handle unbalanced
data, allowing for the inclusion of patients with different numbers of visits while ap-
propriately handling missing data. This aspect is crucial in longitudinal studies like
wet AMD, where patients may leave the study or miss visits for various reasons. In
fact, this methods further provides the advantage to sample a patients trajectory
at a finer time scale. Exemplary LMM-resampled patient trajectories are shown in
Figure 5.1a.

Motivated by the fact that more sophisticated statistical techniques are well-equipped
to capture complex interactions between variables, the second preprocessing scheme
at use targets the inherent non-linearities in the wet AMD data. Here, we choose a
non-parametric Gaussian Process. By defining a prior distribution over functions and
updating it based on observed data, GP regression can effectively capture complex
and non-linear relationships between variables, making it particularly well-suited for
longitudinal analyses of wet AMD patient records. One of the key benefits of using a
GP in this context is its ability to accommodate irregularly spaced and unbalanced
data. Unlike parametric models that require fixed time points for each patient,
GP regression seamlessly handles missing data and varying visitation patterns,
ensuring that no valuable information is discarded due to data incompleteness. Our
implemented GP preprocessing pipeline trains an overall Gaussian process per class
which is then conditioned to each longitudinal patient trajectory in turn. For all test
data points, we decide which GP to use based on the highest likelihood given the
longitudinal data of the test trajectories. Similar to the LMM, we also sample data
points on a finer time grid. The trained class priors are illustrated in Figure 5.1b.
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(a) Linear mixed model preprocessing for two features.

(b) Gaussian process preprocessing for two features.

Figure 5.1: Additional preprocessing approaches: Two exemplary features are shown,
the retina thickness of subsection C0 and the thickness of the choroid layer
surrounding the retina. (a): Linear Mixed Model (LMM), (b): Gaussian
Process. Subpopulations are indicated by color, i.e., good responders in blue,
poor responders in orange, and non-responders in green.

5.5.2 Training and evaluation setup

We partitioned the dataset into two distinct subsets denoted as {D̃,Dtest}. The
subset D̃ was utilized for training and validation purposes, employing a 5-fold cross-
validation approach, while the test dataset Dtest remained completely separate and
was never used during any training or validation stages.

Training: To train the Bayesian linear model, we employed Pyro [262] with stochas-
tic variational inference. A low-rank multivariate normal distribution was utilized as
a guide, and an Adam optimizer [47] with a learning rate of lr = 1e− 3 and an expo-
nential learning rate scheduler with γ = 0.995 was utilized. Each model underwent
2000 epochs of training. We implemented the Deep GP model and the temporal at-
tention network using PyTorch [45] with the same learning rate setup. The Deep
GP model and the temporal attention network were trained for 1000 epochs and 300
epochs, respectively. All models were optimized using the negative log-likelihood as
the reconstruction loss.

Test Setup and Evaluation: To evaluate the models, we performed testing on the
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held-out subset Dtest, which consisted of 93 longitudinal data trajectories. For the
regression task, we computed the overall and class-wise Root Mean Squared Error
(RMSE) and included scatter plots to visualize the combination of ground truth
and predicted values for further analysis. For the classification task, we used the
confusion matrix and three class-wise binary metrics (F1 score, recall, and precision)
to assess model performance. We averaged the performance metrics over all models
trained in the 5-fold setup. Additionally, we extended the evaluation to the entire
patient population by concatenating all prediction results from all validation folds,
allowing us to present the overall performance on all data points.

5.6 Results

In this Section, we present the outcomes of our comprehensive analysis based on the
three derived datasets (initial dataset, LMM preprocessed, and GP preprocessed)
comprising clinical records of wet age-related macular degeneration (AMD) patients.
To investigate the complex dynamics of wet AMD and predict individual patient
responses to treatment, we employed state-of-the-art statistical methodologies, in-
cluding Bayesian linear models, Deep Gaussian Processes, and temporal attention
networks. We present and discuss the results obtained from each model and evalu-
ation metric, shedding light on the efficacy of our methodologies in modeling wet
AMD dynamics and predicting treatment responses.

Figure 5.2 and Figure 5.5 display the classification and regression performance of
the considered methods on the initial dataset with nvisits = 2 and nvisits = 3,
respectively. In the first row of these figures, the F1 score, precision, and recall val-
ues for the test dataset are presented. The second row shows the same metrics for
the different patient subpopulations, i.e. good responders, poor responders, and
non-responders. Additionally, the subfigures include the prediction baselines of two
human ophthalmologists who were asked to estimate the class label based on the pa-
tient’s OCT scans. Upon analyzing the overall dataset in the first rows of the figures,
it becomes evident that the Deep GP exhibits strong performance, as indicated by
its F1 score, precision, and recall, which either match or surpass human classification
performance. However, this apparent superiority is deceiving and stems from the
dataset’s inherent class imbalance. A more thorough examination of the regression
performance in Figure 5.2 unveils a noteworthy issue as it assigns a singular value to
all input data points. This disparity is visualized in the scatter plots in Figure 5.2.

The effectiveness of the Bayesian linear regression model is found to be limited. In
Figure 5.2, it can be observed that the Bayesian linear regression approach assigns a
wide range of predicted values to a relatively small range of ground truth values, as
evidenced by the vertical line of dots. We attribute this behavior to two possible
reasons. First, the assumption of linearity between X and Y does not hold in this
case. Second, after optimization, the distribution over non-zero parameters might
become excessively broad, resulting in a wider range of potential values in the pre-

132



5.6 Results

diction space for slightly varying input values.

The temporal attention neural network demonstrates the strongest performance
among the considered models. The correlation between its predicted responses and
the ground truth is notably high, with a RMSE three times lower compared to the
Deep GP and ten times lower than the Bayesian linear regression. In terms of clas-
sification performance, the temporal attention neural network exhibits also strong
results. The class-wise F1 score matches the performance of the two experts for
good and non-responders, and it even outperforms them for the class of poor respon-
ders. This trend remains consistent for precision as well. Moreover, the precision
and recall for poor-responders are notably better compared to the human experts,
indicating that the predicted poor-responding subpopulation is labeled correctly
with high probability. On the other hand, identifying the second rare subpopulation,
non-responders, proves to be challenging for all competitors, whether human or ma-
chine algorithms. The corresponding precision in Figures 5.2a and 5.5a is low for
non-responders, implying that predicted non-responders are unlikely to be correct.
However, the recall of the human experts for the non-responding subpopulation is
higher compared to the machine counterparts, suggesting that the trained ophthal-
mologists can, to some extent, identify non-responders at an early stage.

When comparing Figure 5.2 and Figure 5.5, we can observe that an increased num-
ber of longitudinal data points is advantageous for the temporal attention neural
network. The correlation between predictions and ground truth values is notably
improved, and the RMSE decreases by more than 10%. These findings strongly sug-
gest that the temporal attention network is highly effective in this context. The
classification performance also experiences a slight improvement with the increased
number of longitudinal data points. F1 score, precision, and recall all show enhance-
ments for good and poor responders, while the performance on the non-responding
subpopulation remains relatively unchanged when utilizing more longitudinal visits.
One possible reason for this might be an insufficient definition of the thresholding
function τ(V (t)), which could favor the over-expressing subpopulation of good re-
sponders. Since class computation is performed in a relative space, i.e. classes are
computed relative to the fluid volume at t=0, small errors in the regression analysis
do not transfer directly to small errors in the relative space underlying the classifica-
tion performance. In extreme cases, this might yield a false class prediction despite
a highly accurate regression prediction.

Figures 5.3 and 5.6 showcase the outcomes based on the LMM preprocessed dataset
for nvisits = 2 and nvisits = 3, respectively. In this context, both Bayesian linear
regression and Deep GP regression prove to be ineffective, displaying the same issues
as observed in the initial dataset. Interestingly, the performance of the temporal
attention neural network using the LMM preprocessed dataset is weaker compared
to the initial dataset. The RMSE is 2-3 times higher when using the LMM prepro-
cessed data. Regarding the classification task, it becomes apparent that the F1 score,
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precision, and recall remain high for the good responding subpopulation. However,
for the two underrepresented subpopulations of poor and non-responders, none of
the algorithms are effective, as they rarely predict these classes. One possible ex-
planation for this observation is that the LMM filters out subtle non-linear features
within the patient trajectories, leading to erroneous regression predictions that lie
within the support of the distribution of the good responders. Consequently, the
class transformations overpredict the good responding subpopulation, thereby hin-
dering accurate predictions for poor and non-responders.

Figures 5.4 and 5.7 depict the performance metrics for the dataset using a class-wise
GP preprocessing. Upon examining the temporal attention network, we notice a
slight increase in RMSE with this dataset; however, the correlation between ground
truth and predictions remains high, indicating the trained model’s effectiveness in
the regression task. In terms of classification performance, the results for good
and poor responders are notably improved, with higher F1 scores, precision, and
recall values compared to those achieved on the initial dataset. In fact, the tem-
poral attention network’s prediction performance matches or even surpasses both
ophthalmologists, particularly for the poor responding subpopulation, where the
best models reach classification metrics close to 1. However, the GP trained on
the non-responding subpopulation appears to have no beneficial effect on the down-
stream classification task. This may be attributed to the fact that the trained
preprocessing GP for non-responders exhibits high variation at all times, indicat-
ing a lack of common trends within the non-responding subpopulation (see Fig. 5.1b).

The unaveraged results for the overall population, obtained through predictions on
different validation runs within the 5-fold cross-validation procedure, are provided in
Section D of the Appendix. These results validate the previously mentioned findings.
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(b) Regression Performance: Initial data: nvisits = 2

Figure 5.2: Results of the initial dataset with nvisits = 2: (a) Classification performance
of the Bayesian linear regression (blue), the temporal attention neural network
(orange) and the Deep GP (green) are shown. The top row depicts F1 scores,
precision and recall values for all patients while the bottom row presents
the same metrics per subpopulation. (b) Regression performance for the
same models are shown. Top row: The RMSE value of the entire test data
is given on the left while class-wise RMSE values are shown on the right
of each subplot. Bottom row: Scatter plot presenting predictions against
ground truth.
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(a) Classification Performance: LMM preprocessed data: nvisits = 2
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(b) Regression Performance: LMM preprocessed data: nvisits = 2

Figure 5.3: Results of the LMM preprocessed dataset with nvisits = 2: (a) Classification
performance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (b) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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(b) Regression Performance: GP preprocessed data: nvisits = 2

Figure 5.4: Results of the GP preprocessed dataset with nvisits = 2: (a) Classification
performance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (b) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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(b) Regression Performance: Initial data: nvisits = 3

Figure 5.5: Results of the initial dataset with nvisits = 3: (a) Classification performance
of the Bayesian linear regression (blue), the temporal attention neural network
(orange) and the Deep GP (green) are shown. The top row depicts F1 scores,
precision and recall values for all patients while the bottom row presents
the same metrics per subpopulation. (b) Regression performance for the
same models are shown. Top row: The RMSE value of the entire test data
is given on the left while class-wise RMSE values are shown on the right
of each subplot. Bottom row: Scatter plot presenting predictions against
ground truth.
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(b) Regression Performance: LMM preprocessed data: nvisits = 3

Figure 5.6: Results of the LMM preprocessed dataset with nvisits = 3: (a) Classification
performance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (b) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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(b) Regression Performance: GP preprocessed data: nvisits = 2

Figure 5.7: Results of the GP preprocessed dataset with nvisits = 3: (a) Classification
performance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (b) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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5.7 Discussion and Conclusion
In this study, we evaluated the performance of different machine learning models on
clinical records from a large cohort of patients diagnosed with wet AMD, specifically
focusing on patients’ responses to a treatment. We analyzed the results based on
two preprocessing methods and the number of visits for each patient. For the initial
dataset, the temporal attention neural network emerged as the most effective model.
It demonstrated a strong correlation between predicted responses and ground truth
values, with significantly lower RMSE values compared to the Bayesian linear re-
gression and the Deep GP. Moreover, its classification performance, especially for
good and poor responders, rivaled those of human experts, showcasing its potential
in clinical applications.

When using the LMM preprocessed dataset, the effectiveness of the models decreased.
Both, Bayesian linear regression and Deep GP, remained ineffective, while the tem-
poral attention neural network’s performance was reduced, exhibiting higher RMSE
values. Additionally, the classification task for poor and non-responders proved diffi-
cult for all algorithms, likely due to the filtering of subtle non-linear features by the
linear mixed model.

In contrast, employing class-wise GP preprocessing improved the classification per-
formance for good and poor responders. The temporal attention neural network
continued to display impressive results, outperforming human experts in several cases.
However, the GP preprocessing for non-responders did not contribute positively to
the classification task, most likely due to high variations within the non-responding
subpopulation.

In conclusion, the temporal attention neural network showcased remarkable ca-
pabilities, particularly when class-wise GP preprocessing was applied. Its strong
performance in both regression and classification tasks highlights its potential as a
valuable tool in medical settings. However, the choice of preprocessing method and
dataset characteristics can significantly impact model effectiveness. This study under-
scores the importance of selecting appropriate models and preprocessing techniques
to achieve accurate and reliable predictions in medical applications, especially in the
presence of under-represented subpopulations. One of the most prominent challenges
faced in this study was the class imbalance within the dataset. This imbalance,
specifically the poor and non-responding subpopulations, posed significant difficul-
ties for all models. As a result, accurate predictions for these under-represented
classes were elusive, and the models tended to favor the dominant class, leading to
imbalanced classification results. Addressing class imbalance through techniques like
resampling or using appropriate evaluation metrics is crucial for further improvement.
Future research addressing critical points like class imbalance, appropriate prepro-
cessing, model interpretability, and clinical relevance are essential to harnessing the
full potential of these models and ensure their responsible and effective integration
into healthcare practices.
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A Supplementary Information: Descriminative
Causal Learning (D2CL)

A.1 Gold-standard simulated benchmark data: Direct causal
effects

Table A.1: Problem Class I: AUPRC values for direct cause-effect relations for p = |V | =
1500.

Linear MLP(tanh) MLP(leaky ReLU) Tanh Leaky ReLU Polynom 3
SNR Pearson IDA DDCL SCL Pearson IDA DDCL SCL Pearson IDA SCL DDCL Pearson IDA DDCL SCL Pearson IDA DDCL SCL Pearson IDA DDCL SCL
10.00 0.729 0.733 0.833 0.719 0.696 0.549 0.795 0.656 0.716 0.496 0.786 0.599 0.733 0.770 0.853 0.882 0.776 0.834 0.850 0.816 0.822 0.819 0.821 0.742
6.00 0.698 0.745 0.754 0.711 0.663 0.521 0.784 0.631 0.683 0.493 0.783 0.530 0.707 0.766 0.879 0.860 0.756 0.796 0.844 0.782 0.792 0.771 0.821 0.723
4.00 0.663 0.737 0.778 0.709 0.643 0.518 0.765 0.674 0.657 0.466 0.766 0.499 0.681 0.729 0.843 0.846 0.721 0.766 0.833 0.760 0.750 0.744 0.820 0.712
2.00 0.605 0.731 0.806 0.700 0.589 0.484 0.739 0.567 0.613 0.445 0.784 0.621 0.622 0.676 0.848 0.829 0.661 0.704 0.799 0.709 0.644 0.630 0.771 0.668
1.00 0.568 0.703 0.802 0.694 0.549 0.446 0.766 0.5 0.575 0.417 0.761 0.5 0.561 0.638 0.802 0.791 0.607 0.648 0.763 0.673 0.552 0.564 0.677 0.620
0.75 0.571 0.698 0.798 0.694 0.537 0.441 0.719 0.634 0.558 0.421 0.767 0.674 0.539 0.603 0.801 0.755 0.583 0.634 0.764 0.665 0.541 0.544 0.675 0.609
0.50 0.545 0.688 0.769 0.685 0.532 0.423 0.758 0.5 0.540 0.408 0.768 0.647 0.520 0.596 0.790 0.720 0.551 0.622 0.746 0.651 0.536 0.551 0.645 0.588
0.25 0.521 0.676 0.784 0.5 0.517 0.417 0.754 0.5 0.479 0.394 0.763 0.594 0.509 0.592 0.758 0.644 0.508 0.599 0.726 0.643 0.518 0.548 0.617 0.5
0.10 0.534 0.677 0.784 0.679 0.485 0.407 0.728 0.613 0.516 0.404 0.751 0.573 0.502 0.548 0.737 0.579 0.523 0.608 0.761 0.632 0.485 0.517 0.636 0.543

A.2 Gold-standard simulated benchmark data: Total causal
effects

Table A.2: Problem Class II: AUPRC values for ancestral cause-effect relations for
p = |V | = 1500.

Linear MLP(tanh) MLP(leaky ReLU) Tanh Leaky ReLU Polynom 3
SNR Pearson IDA DDCL SCL Pearson IDA DDCL SCL Pearson IDA SCL DDCL Pearson IDA DDCL SCL Pearson IDA DDCL SCL Pearson IDA DDCL SCL
10.00 0.581 0.878 0.892 0.632 0.545 0.547 0.750 0.680 0.545 0.490 0.727 0.809 0.594 0.899 0.926 0.883 0.526 0.829 0.916 0.816 0.639 0.794 0.904 0.690
6.00 0.557 0.878 0.886 0.604 0.531 0.525 0.748 0.623 0.531 0.490 0.697 0.806 0.573 0.872 0.924 0.864 0.517 0.816 0.910 0.763 0.629 0.786 0.896 0.664
4.00 0.543 0.879 0.890 0.581 0.523 0.521 0.731 0.624 0.525 0.479 0.714 0.785 0.554 0.872 0.922 0.854 0.513v 0.806 0.900 0.708 0.604 0.761 0.866 0.639
2.00 0.512 0.853 0.878 0.519 0.517 0.484 0.701 0.635 0.513 0.457 0.700 0.790 0.522 0.818 0.905 0.795 0.505 0.790 0.834 0.640 0.565 0.715 0.816 0.601
1.00 0.510 0.847 0.879 0.479 0.514 0.470 0.695 0.650 0.503 0.436 0.680 0.769 0.492 0.768 0.821 0.718 0.503 0.781 0.825 0.581 0.533 0.690 0.741 0.588
0.75 0.517 0.839 0.861 0.554 0.517 0.483 0.669 0.636 0.502 0.442 0.676 0.759 0.483 0.747 0.822 0.700 0.504 0.788 0.811 0.590 0.523 0.692 0.732 0.577
0.50 0.506 0.833 0.864 0.534 0.511 0.468 0.629 0.618 0.506 0.435 0.673 0.774 0.467 0.727 0.789 0.652 0.495 0.771 0.811 0.528 0.512 0.684 0.674 0.565
0.25 0.523 0.831 0.870 0.572 0.518 0.467 0.577 0.522 0.506 0.436 0.649 0.712 0.479 0.714 0.751 0.593 0.500 0.776 0.814 0.537 0.506 0.669 0.694 0.565
0.10 0.515 0.827 0.865 0.531 0.495 0.453 0.673 0.524 0.502 0.431 0.574 0.751 0.474 0.680 0.711 0.548 0.502 0.774 0.810 0.545 0.507 0.678 0.706 0.545

A.3 Gold-standard simulated benchmark data: Scalability
experiment with p=50,000
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A Supplementary Information: Descriminative Causal Learning (D2CL)

Table A.3: D2CL: AUC values for direct cause-effect relations for p = 50, 000.
SNR Linear Tanh Leaky ReLU Polynom 3
6.0 0.765 0.861 0.823 0.748
2.0 0.759 0.857 0.829 0.747
1.0 0.773 0.852 0.825 0.740
0.5 0.757 0.840 0.826 0.745
0.1 0.764 0.748 0.827 0.713

A.4 Gold-standard simulated benchmark data: Direct causal
effect with different noise types

Table A.4: Gold-standard simulations: AUPRC values for direct cause-effect relations
for p = |V | = 1500: additive and multiplicative noise

deterministic hard interventions stochastic hard interventions
additive Noise multiplicative Noise additive Noise multiplicative Noise

SNR Linear Tanh Linear Tanh Linear Tanh Linear Tanh
10.00 0.834 0.853 0.691 0.776 0.768 0.795 0.692 0.784
6.00 0.755 0.879 0.645 0.745 0.767 0.787 0.655 0.757
4.00 0.779 0.843 0.631 0.739 0.758 0.791 0.639 0.765
2.00 0.807 0.848 0.609 0.743 0.753 0.780 0.621 0.742
1.00 0.803 0.803 0.626 0.732 0.753 0.689 0.615 0.704
0.75 0.798 0.801 0.627 0.714 0.734 0.668 0.634 0.699
0.50 0.770 0.791 0.617 0.717 0.748 0.680 0.625 0.735
0.25 0.785 0.758 0.611 0.718 0.732 0.676 0.628 0.705
0.10 0.784 0.737 0.599 0.718 0.739 0.664 0.607 0.715
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A.5 Gold-standard simulated benchmark data: Out-of-distribution testing

A.5 Gold-standard simulated benchmark data:
Out-of-distribution testing

Table A.5: Out-of-distribution experiments: Cross validation experiments - AUPRC
values

Predicted class
Linear LeakyReLU

SNR 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.10 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.10

Tr
ai

ne
d

cl
as

s

Li
ne

ar

10.00 0.757 0.762 0.763 0.765 0.758 0.752 0.743 0.726 0.703 0.715 0.719 0.718 0.708 0.680 0.675 0.666 0.651 0.647
6.00 0.767 0.769 0.768 0.767 0.752 0.746 0.736 0.718 0.691 0.713 0.713 0.709 0.691 0.666 0.661 0.656 0.648 0.647
4.00 0.755 0.761 0.764 0.769 0.759 0.752 0.742 0.722 0.699 0.678 0.683 0.683 0.679 0.664 0.663 0.658 0.653 0.647
2.00 0.742 0.749 0.757 0.770 0.765 0.760 0.748 0.727 0.692 0.669 0.674 0.677 0.688 0.679 0.677 0.668 0.656 0.649
1.00 0.707 0.714 0.723 0.744 0.753 0.755 0.753 0.739 0.704 0.652 0.658 0.660 0.679 0.679 0.676 0.670 0.658 0.650
0.75 0.685 0.695 0.706 0.736 0.753 0.753 0.751 0.738 0.718 0.585 0.593 0.605 0.643 0.650 0.654 0.659 0.660 0.650
0.50 0.679 0.687 0.697 0.729 0.746 0.750 0.753 0.745 0.730 0.606 0.609 0.617 0.636 0.651 0.656 0.656 0.658 0.655
0.25 0.646 0.650 0.658 0.693 0.721 0.730 0.740 0.741 0.733 0.576 0.579 0.584 0.605 0.631 0.637 0.641 0.650 0.656
0.10 0.629 0.633 0.642 0.670 0.692 0.700 0.711 0.725 0.736 0.614 0.617 0.621 0.630 0.626 0.625 0.623 0.629 0.649

Ta
nh

10.00 0.685 0.689 0.690 0.689 0.667 0.656 0.642 0.625 0.603 0.765 0.764 0.753 0.720 0.675 0.667 0.655 0.622 0.610
6.00 0.683 0.686 0.687 0.685 0.663 0.652 0.638 0.618 0.595 0.759 0.761 0.754 0.717 0.670 0.662 0.651 0.620 0.606
4.00 0.683 0.687 0.688 0.688 0.664 0.652 0.640 0.623 0.599 0.751 0.752 0.746 0.713 0.661 0.658 0.646 0.616 0.607
2.00 0.674 0.677 0.677 0.687 0.667 0.652 0.633 0.615 0.599 0.707 0.709 0.713 0.712 0.651 0.648 0.633 0.605 0.596
1.00 0.686 0.688 0.688 0.699 0.701 0.691 0.672 0.652 0.640 0.684 0.690 0.691 0.700 0.695 0.688 0.666 0.641 0.633
0.75 0.675 0.679 0.681 0.694 0.703 0.698 0.687 0.658 0.647 0.675 0.682 0.683 0.697 0.699 0.691 0.670 0.651 0.632
0.50 0.681 0.685 0.688 0.700 0.703 0.699 0.685 0.663 0.650 0.638 0.645 0.656 0.674 0.687 0.686 0.673 0.652 0.631
0.25 0.645 0.649 0.654 0.672 0.696 0.700 0.703 0.688 0.667 0.549 0.551 0.564 0.597 0.617 0.626 0.645 0.659 0.650
0.10 0.630 0.633 0.633 0.641 0.658 0.670 0.683 0.696 0.689 0.483 0.485 0.481 0.483 0.514 0.543 0.585 0.638 0.661

Predicted class
Polynom 3 Tanh

SNR 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.1 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.10

Tr
ai

ne
d

cl
as

s

Li
ne

ar

10.00 0.678 0.675 0.675 0.666 0.645 0.643 0.633 0.626 0.616 0.707 0.708 0.708 0.704 0.677 0.667 0.645 0.617 0.595
6.00 0.701 0.698 0.694 0.674 0.650 0.644 0.632 0.623 0.619 0.723 0.722 0.721 0.709 0.677 0.665 0.644 0.619 0.598
4.00 0.656 0.654 0.656 0.657 0.641 0.640 0.632 0.627 0.619 0.690 0.691 0.694 0.695 0.672 0.665 0.643 0.614 0.598
2.00 0.650 0.648 0.649 0.652 0.646 0.645 0.636 0.629 0.621 0.693 0.695 0.697 0.698 0.678 0.669 0.648 0.620 0.597
1.00 0.633 0.631 0.632 0.635 0.631 0.631 0.627 0.627 0.623 0.671 0.672 0.673 0.672 0.660 0.656 0.644 0.623 0.600
0.75 0.549 0.554 0.571 0.606 0.622 0.626 0.626 0.631 0.625 0.626 0.631 0.638 0.653 0.651 0.650 0.643 0.626 0.599
0.50 0.583 0.590 0.608 0.627 0.626 0.628 0.625 0.630 0.627 0.653 0.657 0.661 0.669 0.659 0.655 0.643 0.623 0.600
0.25 0.530 0.530 0.537 0.570 0.598 0.608 0.612 0.622 0.627 0.592 0.596 0.604 0.620 0.633 0.636 0.630 0.620 0.603
0.10 0.571 0.572 0.577 0.598 0.604 0.606 0.603 0.608 0.620 0.627 0.629 0.634 0.642 0.638 0.637 0.626 0.612 0.601

Ta
nh

10.00 0.752 0.746 0.737 0.701 0.656 0.637 0.619 0.590 0.586 0.806 0.803 0.797 0.757 0.684 0.653 0.610 0.590 0.575
6.00 0.752 0.750 0.744 0.709 0.662 0.640 0.620 0.591 0.585 0.805 0.808 0.805 0.765 0.682 0.649 0.608 0.591 0.574
4.00 0.735 0.737 0.736 0.707 0.662 0.637 0.617 0.588 0.584 0.798 0.803 0.808 0.778 0.690 0.657 0.607 0.586 0.573
2.00 0.695 0.696 0.694 0.695 0.662 0.634 0.610 0.578 0.571 0.749 0.757 0.771 0.794 0.720 0.690 0.629 0.580 0.560
1.00 0.667 0.668 0.671 0.676 0.673 0.656 0.627 0.606 0.599 0.718 0.720 0.727 0.744 0.735 0.720 0.661 0.598 0.587
0.75 0.660 0.660 0.662 0.669 0.663 0.660 0.640 0.616 0.595 0.702 0.705 0.710 0.718 0.706 0.699 0.667 0.609 0.577
0.50 0.620 0.621 0.625 0.644 0.651 0.653 0.641 0.621 0.600 0.653 0.656 0.663 0.673 0.678 0.674 0.656 0.612 0.576
0.25 0.539 0.543 0.543 0.560 0.586 0.591 0.616 0.627 0.620 0.562 0.565 0.568 0.582 0.593 0.596 0.619 0.634 0.596
0.10 0.520 0.520 0.518 0.523 0.526 0.537 0.555 0.610 0.628 0.503 0.505 0.507 0.508 0.512 0.517 0.540 0.598 0.617

Predicted class
MLP (leaky ReLU) MLP (Tanh)

SNR 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.1 10.00 6.00 4.00 2.00 1.00 0.75 0.50 0.25 0.10

Tr
ai

ne
d

cl
as

s

Li
ne

ar

10.00 0.459 0.452 0.447 0.427 0.433 0.435 0.437 0.441 0.447 0.466 0.455 0.447 0.434 0.442 0.444 0.446 0.455 0.459
6.00 0.454 0.451 0.450 0.431 0.435 0.437 0.438 0.443 0.448 0.459 0.454 0.449 0.436 0.443 0.446 0.447 0.456 0.459
4.00 0.492 0.487 0.480 0.457 0.448 0.445 0.444 0.444 0.449 0.494 0.487 0.477 0.461 0.450 0.451 0.448 0.453 0.461
2.00 0.488 0.481 0.467 0.440 0.438 0.440 0.441 0.444 0.448 0.490 0.483 0.469 0.450 0.446 0.445 0.444 0.456 0.457
1.00 0.503 0.500 0.495 0.464 0.447 0.445 0.443 0.444 0.449 0.497 0.493 0.489 0.471 0.455 0.450 0.446 0.453 0.458
0.75 0.514 0.510 0.501 0.457 0.443 0.442 0.440 0.442 0.445 0.520 0.514 0.504 0.468 0.451 0.449 0.446 0.452 0.456
0.50 0.489 0.485 0.474 0.446 0.439 0.440 0.439 0.441 0.446 0.496 0.487 0.478 0.457 0.449 0.447 0.446 0.454 0.457
0.25 0.496 0.495 0.492 0.466 0.452 0.449 0.443 0.444 0.444 0.504 0.500 0.497 0.479 0.461 0.455 0.450 0.453 0.456
0.10 0.468 0.467 0.465 0.453 0.447 0.444 0.441 0.444 0.443 0.477 0.472 0.469 0.458 0.449 0.453 0.450 0.453 0.457

Ta
nh

10.00 0.450 0.443 0.431 0.427 0.438 0.442 0.448 0.457 0.464 0.457 0.450 0.436 0.437 0.450 0.452 0.456 0.467 0.477
6.00 0.436 0.434 0.432 0.432 0.441 0.444 0.449 0.458 0.458 0.444 0.439 0.438 0.440 0.448 0.452 0.458 0.468 0.473
4.00 0.448 0.443 0.435 0.429 0.437 0.440 0.446 0.455 0.461 0.451 0.443 0.438 0.435 0.446 0.450 0.452 0.468 0.476
2.00 0.450 0.449 0.448 0.436 0.437 0.441 0.444 0.455 0.464 0.451 0.452 0.454 0.444 0.445 0.448 0.450 0.467 0.478
1.00 0.447 0.442 0.441 0.440 0.438 0.443 0.447 0.450 0.454 0.447 0.444 0.443 0.442 0.447 0.447 0.445 0.459 0.466
0.75 0.474 0.474 0.470 0.450 0.451 0.451 0.445 0.450 0.452 0.477 0.479 0.475 0.459 0.458 0.455 0.453 0.457 0.462
0.50 0.486 0.493 0.497 0.500 0.485 0.467 0.456 0.450 0.451 0.490 0.493 0.500 0.506 0.481 0.467 0.456 0.453 0.457
0.25 0.524 0.528 0.529 0.536 0.519 0.514 0.503 0.477 0.459 0.516 0.517 0.519 0.523 0.514 0.509 0.507 0.480 0.460
0.10 0.519 0.525 0.524 0.521 0.529 0.540 0.556 0.572 0.500 0.517 0.519 0.520 0.518 0.534 0.532 0.555 0.580 0.485

167



A Supplementary Information: Descriminative Causal Learning (D2CL)

A.5.1 Yeast Gene Deletion Experiments

Figure A.1: Results - yeast gene deletion experiments. Causal learning methods, includ-
ing D2CL, were applied to gene expression measurements from yeast cells.
Performance was quantified using causal Precision-Recall curves (and the
area under the PR-curves, or AUPRC see. Table A.6) computed with respect
to a causal ground truth obtained from entirely unseen interventional exper-
iments (see Text for details). Panels (a)–(c): the number of interventions
whose effects are available to the learner is varied as shown (with problem
dimension fixed to p=1000 and sample size to n=706). Panels (d)–(f): the
sample size n of the data matrix X is varied as shown (with problem di-
mension fixed to p=1000 and number of available interventions fixed to to
m=753). Panels (g)–(k): analogous results for a higher-dimensional setting
covering all available genes (roughly the full yeast genome) with p=5535
(with n=706 and m=753). Here, only D2CL variants are shown, as the other
methods could not be run due to the computational burden in this higher
dimensional case. Comparison with the corresponding p=1000 case demon-
strates the scalability of D2CL, with performance broadly maintained in
the higher dimensional setting. [D2CL variants shown include a CNN tower
alone, GNN tower alone and the entire D2CL architecture; methods com-
pared against include IDA, LVIDA, Kendall correlations (as a non-causal
baseline) and SCL (see text and SI for details and references). For D2CL
and its variants two different initial graph estimates were used based respec-
tively on Pearson correlation coefficients (“Pearson") and on a lightweight
regression (“Lasso"; see Text for details).]
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A.5 Gold-standard simulated benchmark data: Out-of-distribution testing

Table A.6: Yeast Gene Deletion - AUPRC scores: Causal learning methods, including
D2CL, were applied to gene expression measurements from yeast cells. Per-
formance was quantified using causal area under Precision-Recall curves.
Subtables extend results of Figure A.1, Subtable A.6a extends panels (a)-(c),
Subtable A.6b provides AUPRC scores for panels (d)-(f), and Subtable A.6c
presents scores for panels (g)-(k).

(a) Varying amount of causal input m
m=100 m=500 m=753

D2CL - CNN Tower 0.784 0.804 0.815
D2CL - GNN Tower (Lasso) 0.597 0.837 0.835
D2CL - GNN Tower (Pearson) 0.766 0.811 0.814
D2CL (Pearson) 0.787 0.839 0.845
D2CL (Lasso) 0.792 0.822 0.828
IDA 0.533 0.533 0.533
LVIDA 0.499 0.499 0.499
Kendall 0.538 0.538 0.538
SCL 0.737 0.752 0.749

(b) Varying sample size n
n=100 n=300 n=706

D2CL - CNN Tower 0.806 0.807 0.815
D2CL (Pearson) 0.846 0.845 0.845
D2CL (Lasso) 0.824 0.827 0.828
IDA 0.524 0.533 0.533
LVIDA 0.499 0.499 0.499
Kendall 0.536 0.543 0.538
SCL 0.749 0.749 0.749

(c) Scaling to full yeast genome
p=1000 p=5535

D2CL - CNN Tower 0.815 0.829
D2CL - GNN Tower (Pearson) 0.835 0.683
D2CL - GNN Tower (Lasso) 0.814 0.753
D2CL (Pearson) 0.845 0.811
D2CL (Lasso) 0.828 0.821
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B Supplementary Information: Learning Latent
Dynamics via Invariance Decomposition
(LaDID)

B.1 From invariances to a simple learning framework

In this Section, we consider an abstract version of the problem of interest, aimed
at clarifying the specific invariances that will be needed and gaining understanding
of how learning can be conveniently performed in this setting. The notation in this
Section is self-contained but (in the interests of expositional clarity) differs from Sec-
tion 3.3.2 and B.2 providing architectural and implementation details.

General formulation. Consider an entirely general system f which may be determinis-
tic or stochastic (with all random components absorbed for convenience into f). We
are interested in settings in which some aspects of the model are realization-specific
(RS) while others remain realization-invariant (RI). Let

xrt=f(t; Θr), xrt∈Rp

denote the fully general model. Here, Θr is the complete parameter needed to spec-
ify the time-evolution, including both RS and RI parts. To make the separation
clear, we write the two parts separately as xrt=f(t; θr, θ), where θr, θ are respec-
tively the RS and RI parameters (together comprising Θr).

We call this a generalized initial condition formulation, as it generalizes the idea
of an initial condition in ODEs. In the case of an ODE, the initial conditions and
relevant constants are the information needed, in addition to the model equations
themselves, to fully specify the time evolution of any specific instance/realization of
the model. In our terms, if a problem/dataset has one model but many such “initial
conditions” (more precisely this can be any RS aspect, including constants), then the
model itself is RI, while the initial conditions/constants are the RS part. Note that
although we do not assume any specific knowledge about the system (other than
the motivating invariances), we do assume that we can at the outset block datasets
into instances arising from a shared system (whose details are entirely unknown); in
this work we do not consider the task of learning the system classification itself from
data.
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Fully observed case. In the model f above, the true parameter Θr = (θr, θ) com-
prises RS and RI parts. We now provide conditions under which learning of the
system state at any continuous time t is possible without explicit knowledge of ei-
ther the model f or the true parameter Θr. We start with the simplest case of fully
observed data (i.e. no latent dynamics) and then consider the latent case. The idea
is to work from a candidate encoding θ̂r of the RS information. In practice this
would be the output of a neural network (NN) based on initial data from a real-
ization r and itself learned end-to-end jointly with other model components; see
subsequent Sections for architectural and implementation details. The encoding θ̂r is
intended to be a representation of RS information that, as we will see below, under cer-
tain assumptions can be combined with a universal model to allow effective prediction.

Specifically, we assume that the encoding θ̂r, while possibly incorrect (i.e. such that
θ̂r ̸=θr) satisfies the property

∃m, ∃θm : θr=m(θ̂r; θ, θm),

where m is a function that “corrects” θ̂r to give the correct RS parameter. Note
that the correction function m can potentially use the RI parameter of the system
and possibly additional parameters θm. This essentially demands that while the en-
coding θ̂r might be very different from the true value (and may even diverge from
it in a complicated way that depends on unknown system parameters), there ex-
ists an RI transformation that recovers the true RS parameter from it, and in this
sense the encoding contains all RS information. We call this the sufficient encod-
ing assumption (SEA). Note that the function m has an oracle-like property in that
it may depend on the true RI parameter θ and we will not have access to m in practice.

We would like to learn a mapping that takes as input the RS encoding θ̂r and query
time point t and yields the correct system output (for any realization and any time).
To this end, consider the candidate prediction

x̂rt=f(t;m(θ̂r; θ, θm), θ),

and observe that we can always write the RHS as h(t, θ̂r; Ξ) where Ξ = (θ, θm) is a
RI parameter and h is a function (obtained by combining f and m as above). This
latter formulation emphasizes the fact that the RHS is in fact a function (here, h) of
only the inputs (t, θ̂r), and therefore potentially learnable from training pairs. Note
that the parameters of h are entirely RI and hence the only RS information is carried
by the encoding θ̂r. It is easy to see that under SEA this construction provides the
correct output since we can write the RHS as f(t;m(θ̂r; θ, θm), θ) = f(t; θr, θ) = xrt .
Thus, combining encoding θ̂r and function h allows prediction of the time evolution
of any realization. In other words, even if the RS encoding is distant from the true
RS parameter, under SEA there exists a RI function that can correct it, and we can
therefore seek to train a NN aimed at learning a function h which combines these RI
elements to provide the desired mapping.
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B.1 From invariances to a simple learning framework

Latent dynamics. In line with the manifold hypothesis, consider now dynamics at
the level of latent variables z ∈ Rq and again consider a model with RS and RI parts
but at the level of the latents, i.e. zrt = f(t, θ̂r; θr, θ). We assume that the observ-
ables are given by (an unknown) function of the hidden state z. We first consider
the case in which the latent-to-observed mapping is RI, and then the more general
case of a RS mapping.

Case I: RI mapping. Assume the observable is given as xrt = g(zrt ; θg), where
g : Rq → Rp is the (true) observation process and θg is an RI parameter. Fur-
ther, assume that we have an estimate θ̂r of the RS encoding that satisfies the
sufficient encoding assumption (SEA). In a similar fashion, assume we have an
estimate θ̂g, which may be incorrect (in the sense of θ̂g ≠ θg) but that satisfies:
∃mg ,∃θmg : θg = mg(θ̂g; θ, θmg ). That is, θ̂g admits an RI correction. As above,
the correction is oracle-like and may potentially depend on true RS parameters. Note
also that subject to the existence of a correction the estimate (and implied mapping)
may be potentially arbitrarily incorrect. In analogy to SEA, we call this the suffi-
cient mapping assumption (SMA).

Now, consider training of a NN, with training (input, output) pairs of the form
{(t, θ̂r), xrt }(t,r)∈Train. We want to understand whether supervised learning of a
universal model to predict output for arbitrary queries (t, r) is possible. This is not
obvious, since we now have training data only at the level of the observables, but
the actual dynamics operate at the level of latents. Consider the following function
hSMA:

hSMA(t, θ̂r; Φ) = g(f(t;m(θ̂r; θ, θm);mg(θ̂g ; θ, θmg ))

where Φ = (θ, θm, θmg ) is an RI parameter.
Under SEA and SMA it is easy to see that hSMA provides the correct output, since:

hSMA(t, θ̂r; Φ) = g(f(t;m(θ̂r; θ, θm);mg(θ̂g ; θ, θmg ))
= g(f(t; θr, θ); θg)
= g(zrt ; θg)
= xrt

That is, under SEA and SMA there exists a function of t and θ̂r that provides the
correct output and that is universal in the sense that (i) the same function applies
to any query (t, r) and (ii) its parameter is itself RI and hence the same for all real-
izations.

Case II: RS mapping. Suppose now the mapping is RS, with the model specification
as above but with the observation step xrt = g(zrt ; θrg), where θrg is an RS parameter.
This means that the latent-observable relationship is itself non-constant and instead
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varies between realizations.

Assume we have a candidate estimate θ̂rg which may be incorrect in the sense
of θ̂rg ̸= θrg but that satisfies: ∃mg , ∃θmg : θg = mg(θ̂rg ; θ, θmg ). In analogy to
SMA, we call this the realization-specific sufficient mapping assumption or RS-SMA.
Now to create training sets, we extend the formulation to require input triples, as:
{(t, θ̂r, θ̂rg), xrt }(t,r)∈Train. In a similar spirit to the RS encoding above, θ̂rg in the
input triples may be incorrect, but only needs to satisfy RS-SMA. As in Case I,
we have training data only at the level of observables (not latents) but want to
understand whether supervised learning of a model to predict output for arbitrary
queries (t, r) is possible. Consider the function hRS−SMA:

hRS−SMA(t, θ̂r, θ̂rg ; Φ) = g(f(t;m(θ̂r; θ, θm), θ);mg(θ̂rg ; θ, θmg ))

where Φ = (θ, θm, θmg ) is an RI parameter. In a similar manner to Case I, it is easy
to see that hRS−SMA provides the correct output under SEA and RS-SMA, since:

hRS−SMA(t, θ̂r, θ̂rg ; Φ) = g(f(t;m(θ̂r; θ, θm), θ);mg(θ̂rg ; θ, θmg ))

= g(f(t; θr, θ); θ̂rg)

= g(zrt ; θ̂rg)

= xrt

The foregoing arguments are based on an abstract view of the task at hand and
show that under the assumptions above, there exist universal mappings from the
available inputs to the desired outputs whose parameters are themselves RI. As a
result, subject to the assumptions above, it may be possible to learn suitable mapping
functions from data (without requiring prior access to the various components). We
now put forward a specific architecture aimed at learning such a mapping in practice.

B.2 Model Architecture
Encoder. The encoder is a collection of three NNs. First, features from the input
observations xrt−k:t−1 are extracted using a convolutional neural network (CNN) pa-
rameterized by θenc and shared across all representations and patches. Specifically,
the CNN encoder has the following architecture: three convolution layers (5x5 ker-
nel, stride 2, padding 2) with batch norm and ReLU activations, one convolution
layer (2x2 kernel, stride 2) with batch norm and ReLU activation. The channels of
the respective CNN layers are doubled throughout. Finally, the downsampled image
features are flattened and linearly projected to the output dimension. Hence, our en-
coder transforms the sequence of input observations to a sequence of feature vectors,
z

(enc),r
t−k:T =fθenc (xrt−k:T ).

Then, we compute the trajectory representation and the latent embedding as fol-
lows. Each input patch is split into two disjoint sets by time. The first k ∈ K
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data points MR={z(enc),r
t−k:t } are used to compute a trajectory specific represen-

tation distribution ψr∼qΘR
(xrt−k:t−1) = N (µr, σr) and µr, σr=fθR

(z(enc),r
t−k:t ). In

cases of irregularly sampled trajectories, we use a time threshold τ to define the
representation set, MR={z(enc),r

ti
}, ti∈{t<τ}. We model fθR

as a transformer
network with temporal attention. In other words, we consider the sequence fea-
ture vectors z(enc),r

t−k:t as an time-ordered sequence of tokens and transform each
token according to the temporal distance to the other tokens. We compared two
approaches of temporal attention [117] which performed roughly similar. First,
temporal reweighting is performed as introduced [117]: Cij = cij/

∑K

k=1 cik with
cij = exp(

〈
WQhi,WKhj

〉
+ ln(ϵ)(|tj − ti|/δ)p), where ⟨·, ·⟩ denotes the dot prod-

uct, WK , WQ, and WV represent the weight matrices for the query, key, value as
in regular attention. ϵ and δ are constants. Hence, the larger the distance |tj − ti|
grows, the stronger the time-aware attention is reduced [117]. The parameter δ de-
termines the distance threshold beyond which the scaling of regular attention occurs
by at least ϵ. Moreover, parameter p governs the shape of the scaling curve. This
methods works best for most of the dynamical systems. Second, we tested a tem-
poral attention approach as defined in [129]. This time aware attention is given by
CTA(t) =

∑T−1
t′=0 softmax( ⟨WQρt,WKρt′ ⟩√

d
)WV ρt′ .

Finally, the trajectory representation ψr is obtained applying a mean-aggregation of
the temporally transformed representation tokens.

Dynamics model. With initial density given by the encoder networks qΘL
(zt|xrt−k:T , ψ

r),
the density for all queried latent points (on a continuous time grid) can be predicted
by zrtq∼N (µrtq , σ

r
tq

) with µrtq , σ
r
tq

=fθdyn
(tq , zt, ψr). Note that this approach allows

for latent state predictions at any time since the learned dynamics module fθdyn
is

continuous in time and our variational model utilizes encoders only for obtaining
the initial latent distribution. We also make use of the reparameterization trick to
tackle uncertainties in both, the latent states and in the trajectory representations
[263]. In our implementation fθdyn

consists of three linear layers, with the first two
followed by a ReLU non-linearity.

Decoder. The decoder maps the latent trajectory points back to the observational
space. Hence, our implementation is fairly simple and comprises a set of transposed
convolutional layers. In particular, it first projects latent trajectory points linearly
followed by four transposed convolution layers (2x2 kernel, stride 2) with batch norm
and ReLU non-linearities. Finally, a convolutional layer (5x5 kernel, padding 2) with
sigmoid function computes our output distribution. The channel dimension of the
four transposed convolution layers is halved subsequently from layer to layer.
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B.3 Training details and hyperparameters
Our implementation uses the PyTorch framework [45]. All modules are initialized
from scratch using random weights. During training, an AdamW-Optimizer [264] is
applied starting at an initial learning rate ε0 = 0.0003. An exponential learning rate
scheduler is applied showing the best results in the current study. Every network
is trained for 30 000 epochs. At initialization, we start training at a subpatch
length of 1 which is doubled every 3000 epochs. After the CNN encoder, 8 attention
layers are stacked each using 4 attention heads. A relative Sin/Cos embedding is
used as position encoding followed by a linear layer. The input resolution of the
observational image data is 128× 128 px. All computations are run on a single GPU
node equipped with one NVidia A100 (40 GB) and a global batch size of 16 is used.
A full training run on the single pendulum, the double pendulum, the wave equation
and the Navier-Stokes equation dataset requires approx. 14 h. A full training run on
the reaction-diffusion system and the von Kármán vortex street requires approx. 8 h.

Table B.1: Training hyperparameters
Hyperparameter Value
LR schedule Exp. decay
Initial LR 3e-4
Weight Decay 0.01
Global batch size 16
Parallel GPUs 1
Input resolution 128× 128 px
Number of input time steps 10
Initial subpatch length 1
Number of epochs per subpatch length 3000
Latent dimension 32
attention mechanism spatio-temporal
Number of attention blocks 8
Number of attention heads 4
Position Encoding relative Sin/Cos encoding
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C Supplementary Information: Forecasting
Responses in Unpaired Interventional Data
using Sparse Causal Modeling

C.1 Identifiability of sparse causal relations for unpaired data

Consider a data generating process of the form 4.1. The true parameter vector β∗

satisfies the moment condition

Cov
(
X̃, Y − Y T β∗

)
= 0. (C.1)

This scenario can be considered analogous to an instrumental variable setting. That
is, the identifiability results in an IV model with a sparse causal effect, as presented
by [176], are highly relevant and transferable to our considered setting. Hence, initial
notation is directly borrowed from [176] with further case-relevant modifications
introduced. To establish this connection, we define the solution space of Eq. C.1 by

B =
{
β ∈ Rd|Cov(X̃,X)β = Cov(X̃, Y )

}
. (C.2)

Following [176], we will see below that - under mild conditions on the interventions
I - the causal coefficient β∗ is a unique solution to the optimization problem

min
β∈B
∥β∥0. (C.3)

Consider the matrix C, defined as

C := A⊤(Id−B)−⊤, (C.4)

with dimensions (m× d). Each entry Ci,j represents the total effect of intervention
I = ei on Xj , as defined in the structural causal model described in equation 4.1.
The entry Ci,j expresses the weighted sum of all paths from the instrument variable i
to covariate Xj . The matrix C will play a crucial role in the analysis of identifiability.
Now, we introduce the following assumptions:

(A1) It holds that Rank(CPa(Y )) = |Pa(Y )|.
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(A2) For all S ⊆ {1, . . . , d}, it holds that

Rank(CS) ≦ Rank(CPa(Y )) and

Im(CS) ̸= Im(CPa(Y ))

}
implies{

∀w ∈ R|S| : CSw ̸= CPa(Y )β
∗
Pa(Y )

(A3) For all S ⊆ {1, . . . , d} with |S| = |Pa(Y )| and S ̸= Pa(Y ), we have Im(CS) ̸=
Im(CPa(Y )).

In this context, we adopt a convention where a matrix D ∈ Rm×d and a subset
S ⊆ {1, . . . , d} imply that the subindexed matrix DS represents the m × |S| sub-
matrix of D, containing only the columns indexed by S. The assumption (A1) is
essential for identifying the true coefficients β∗ under the IV framework since it en-
sures β∗ is correctly identifies if the IV regression is based on the correct parent set
Pa(Y ). Assumption (A2) pertains to the underlying causal model and prevents cer-
tain types of cancellations. It can be considered a mild assumption because if we
regard the true causal parameter β∗ as randomly drawn from a distribution that is
absolutely continuous w.r.t. the Lebesgue measure, it would almost surely result in
a system that satisfies (A2), see [176].

The subsequent theorem demonstrates that the assumptions (A1) and (A2) are
sufficient to guarantee that β∗ satisfies the optimization problem minβ∈B ∥β∥0. Fur-
thermore, by including assumption (A3), we ensure the uniqueness of the solution.
This assumption can be interpreted as necessitating an additional level of hetero-
geneity in a manner in which interventions influence the system, as described in
Theorem 5 in [176].

Theorem C.1.1 (Identifiability of sparse causal parameters). Consider a data
generating process of the form 4.1. If (A1) and (A2) hold, then β∗ is a solution to
minβ∈B ∥β∥0. Moreover, if, in addition, (A3) holds, then β∗ is the unique solution.

Proof. We use the notation ξX := h(H, ϵX), ξ̃X := h(H̃, ϵ̃X), and ξY := g(H, ϵY ).
Then, Eq. 4.1 and the assumption K ⊥⊥ ξX ⊥⊥ ξ̃X ⊥⊥ ξY imply that

Cov[X̃,X] = Cov
[
(Id−B)−1(AIK + ξ̃X), (Id−B)−1(AIK + ξX)

]
= (Id−B)−1ACov(IK)A⊤(Id-B)−⊤.

(C.5)

Similarly, we find

Cov[X̃, Y ] = Cov
[
(Id−B)−1(AIK + ξ̃X),

(
(AIK + ξX)⊤(Id−B)−⊤β∗ + ξY

)]
= (Id−B)−1ACov(IK)A⊤(Id−B)−⊤β∗.

(C.6)
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Hence, for any β̃ ∈ B, using the definition of B and Eq. C.5 and C.6, leads to

ACov(IK)Cβ̃ = ACov(IK)Cβ∗. (C.7)

Here, we used the definition of C in Eq. C.4. Finally, since Rank(A) = m we know
that A has a left-inverse, i.e. A−1 = (A⊤A)−1A⊤ and the fact that Cov(IK) is
invertible, hence, we can conclude

Cβ̃ = Cβ∗. (C.8)

The remaining of the proof follows exactly the proof of Theorem 3 in [176] and the
interested reader is referred to this work and references therein.

C.2 Additional Results
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Coefficient Values Errors

G
ro

un
d 

tr
ut

h

0 1 2 3 4 5 6 7 8 9
Index *

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

O
LS

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

U
np

ai
re

d 
O

LS

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

U
np

ai
re

d 
O

LS
 t

ru
e 

S

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

U
np

ai
re

d 
pe

na
liz

ed

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

0 1 2 3 4 5 6 7 8 9

Index 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0DA

G 
ed

ge
pr

ob
ab

ilit
y

1.0
0.5

0.0
0.5
1.0

-v
al

ue
s

1.0
0.5

0.0
0.5
1.0

-v
al

ue
s

1.0
0.5

0.0
0.5
1.0

-v
al

ue
s

1.0
0.5

0.0
0.5
1.0

-v
al

ue
s

1.0
0.5

0.0
0.5
1.0

-v
al

ue
s

1.0
0.5

0.0
0.5
1.0

Er
ro

rs
: 

*

1.0
0.5

0.0
0.5
1.0

Er
ro

rs
: 

*
1.0
0.5

0.0
0.5
1.0

Er
ro

rs
: 

*

1.0
0.5

0.0
0.5
1.0

Er
ro

rs
: 

*

(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure C.1: Experiment (E2): DAG sparsity. (a): Boxplot of RMSE of predicted coeffi-
cients β̂ (left) and predicted outcomes Y (right) for OLS (blue), Unpaired
OLS (orange), Unpaired OLS using solely non-coefficients (green) and our
proposed penalized covariance adjusted estimator, Unpaired penalized, (red).
(b): Heatmap of ground truth and predicted β-coefficients (left) , error be-
tween predictions and ground truth values (right), lighter colors indicate
smaller errors. Predicted β-values falling outside the range of [−1, 1] are rep-
resented in black and orange, while errors exceeding [−1, 1] are emphasized
using purple and gold.
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure C.2: Experiment (E6): Number of affected nodes and mix of distribution shapes.
(a): Boxplot of RMSE of predicted coefficients β̂ (left) and predicted out-
comes Y (right) for OLS (blue), Unpaired OLS (orange), Unpaired OLS
using solely non-coefficients (green) and our proposed penalized covariance
adjusted estimator, Unpaired penalized, (red). (b): Heatmap of ground
truth and predicted β-coefficients (left) , error between predictions and
ground truth values (right), lighter colors indicate smaller errors. Predicted
β-values falling outside the range of [−1, 1] are represented in black and
orange, while errors exceeding [−1, 1] are emphasized using purple and gold.
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(a) RMSE: left ∥β̂ − β∗∥2, right ∥Ŷ − Y ∗∥2
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure C.3: Experiment (E7): Confounding strength. (a): Boxplot of RMSE of pre-
dicted coefficients β̂ (left) and predicted outcomes Y (right) for OLS (blue),
Unpaired OLS (orange), Unpaired OLS using solely non-coefficients (green)
and our proposed penalized covariance adjusted estimator, Unpaired pe-
nalized, (red). (b): Heatmap of ground truth and predicted β-coefficients
(left) , error between predictions and ground truth values (right), lighter
colors indicate smaller errors. Predicted β-values falling outside the range
of [−1, 1] are represented in black and orange, while errors exceeding [−1, 1]
are emphasized using purple and gold.
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(a) RMSE: left ∥β̂ − β∗∥2, right ∥Ŷ − Y ∗∥2
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure C.4: Experiment (E8): Confounding probability. (a): Boxplot of RMSE of
predicted coefficients β̂ (left) and predicted outcomes Y (right) for OLS
(blue), Unpaired OLS (orange), Unpaired OLS using solely non-coefficients
(green) and our proposed penalized covariance adjusted estimator, Unpaired
penalized, (red). (b): Heatmap of ground truth and predicted β-coefficients
(left) , error between predictions and ground truth values (right), lighter
colors indicate smaller errors. Predicted β-values falling outside the range
of [−1, 1] are represented in black and orange, while errors exceeding [−1, 1]
are emphasized using purple and gold.
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(a) RMSE: left ∥β̂ − β∗∥2, right ∥Ŷ − Y ∗∥2
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure C.5: K562 gene expression levels as covariates. (a): Boxplot of RMSE of pre-
dicted coefficients β̂ (left) and predicted outcomes Y (right) for OLS (blue),
Unpaired OLS (orange), Unpaired OLS using solely non-coefficients (green)
and our proposed penalized covariance adjusted estimator, Unpaired pe-
nalized, (red). (b): Heatmap of ground truth and predicted β-coefficients
(left) , error between predictions and ground truth values (right), lighter
colors indicate smaller errors. Predicted β-values falling outside the range
of [−1, 1] are represented in black and orange, while errors exceeding [−1, 1]
are emphasized using purple and gold.
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(a) RMSE: left ∥β̂ − β∗∥2, right ∥Ŷ − Y ∗∥2
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(b) Predictions of coefficients: left: Heatmaps of predicted coefficients β̂, right: error between
ground truth coefficients and predictions

Figure C.6: RPE gene expression levels as covariates. (a): Boxplot of RMSE of pre-
dicted coefficients β̂ (left) and predicted outcomes Y (right) for OLS (blue),
Unpaired OLS (orange), Unpaired OLS using solely non-coefficients (green)
and our proposed penalized covariance adjusted estimator, Unpaired pe-
nalized, (red). (b): Heatmap of ground truth and predicted β-coefficients
(left) , error between predictions and ground truth values (right), lighter
colors indicate smaller errors. Predicted β-values falling outside the range
of [−1, 1] are represented in black and orange, while errors exceeding [−1, 1]
are emphasized using purple and gold.
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D Supplementary Information: Estimating
Treatment Effects using Deep Neural
Networks
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D Supplementary Information: Estimating Treatment Effects using Deep Neural
Networks
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(a) Confusion Matrix: Initial data: nvisits = 2
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(b) Classification Performance: Initial data: nvisits = 2
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(c) Regression Performance: Initial data: nvisits = 2

Figure D.1: Entire Population Validation Data: Results of the initial dataset with
nvisits = 2: (a) Confusion matrix: left algorithms (blue colorbar) and right
human ophthalmologists (green colorbar) (b) Classification performance of
the Bayesian linear regression (blue), the temporal attention neural network
(orange) and the Deep GP (green) are shown. The top row depicts F1 scores,
precision and recall values for all patients while the bottom row presents
the same metrics per subpopulation. (c) Regression performance for the
same models are shown. Top row: The RMSE value of the entire test data
is given on the left while class-wise RMSE values are shown on the right
of each subplot. Bottom row: Scatter plot presenting predictions against
ground truth.
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(a) Confusion Matrix: LMM preprocessed data: nvisits = 2
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(b) Classification Performance: LMM preprocessed data: nvisits =
2
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(c) Regression Performance: LMM preprocessed data: nvisits = 2

Figure D.2: Entire Population Validation Data: Results of the LMM preprocessed dataset
with nvisits = 2: (a) Confusion matrix: left algorithms (blue colorbar) and
right human ophthalmologists (green colorbar) (b) Classification perfor-
mance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (c) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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D Supplementary Information: Estimating Treatment Effects using Deep Neural
Networks
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(a) Confusion Matrix: GP preprocessed data: nvisits = 2
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(b) Classification Performance: GP preprocessed data: nvisits = 2
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(c) Regression Performance: GP preprocessed data: nvisits = 2

Figure D.3: Entire Population Validation Data: Results of the GP preprocessed dataset
with nvisits = 2: (a) Confusion matrix: left algorithms (blue colorbar)
and right human ophthalmologists (green colorbar) (b) Classification per-
formance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (c) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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(a) Confusion Matrix: Initial data: nvisits = 3
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(b) Classification Performance: Initial data: nvisits = 3
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(c) Regression Performance: Initial data: nvisits = 3

Figure D.4: Entire Population Validation Data: Results of the initial dataset with
nvisits = 3: (a) Confusion matrix: left algorithms (blue colorbar) and right
human ophthalmologists (green colorbar) (b) Classification performance of
the Bayesian linear regression (blue), the temporal attention neural network
(orange) and the Deep GP (green) are shown. The top row depicts F1 scores,
precision and recall values for all patients while the bottom row presents
the same metrics per subpopulation. (c) Regression performance for the
same models are shown. Top row: The RMSE value of the entire test data
is given on the left while class-wise RMSE values are shown on the right
of each subplot. Bottom row: Scatter plot presenting predictions against
ground truth.
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D Supplementary Information: Estimating Treatment Effects using Deep Neural
Networks
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(a) Confusion Matrix: LMM preprocessed data: nvisits = 3
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(b) Classification Performance: LMM preprocessed data: nvisits =
3
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(c) Regression Performance: LMM preprocessed data: nvisits = 3

Figure D.5: Entire Population Validation Data: Results of the LMM preprocessed dataset
with nvisits = 3: (a) Confusion matrix: left algorithms (blue colorbar) and
right human ophthalmologists (green colorbar) (b) Classification perfor-
mance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (c) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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(a) Confusion Matrix: GP preprocessed data: nvisits = 3
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(b) Classification Performance: GP preprocessed data: nvisits = 3
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(c) Regression Performance: GP preprocessed data: nvisits = 3

Figure D.6: Entire Population Validation Data: Results of the GP preprocessed dataset
with nvisits = 3: (a) Confusion matrix: left algorithms (blue colorbar)
and right human ophthalmologists (green colorbar) (b) Classification per-
formance of the Bayesian linear regression (blue), the temporal attention
neural network (orange) and the Deep GP (green) are shown. The top
row depicts F1 scores, precision and recall values for all patients while the
bottom row presents the same metrics per subpopulation. (c) Regression
performance for the same models are shown. Top row: The RMSE value of
the entire test data is given on the left while class-wise RMSE values are
shown on the right of each subplot. Bottom row: Scatter plot presenting
predictions against ground truth.
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