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English abstract 

The transition from pregnancy to lactation is characterized by major metabolic, physio-

logical, and hormonal changes. In early lactation, dairy cows experience a negative energy bal-

ance (NEB) as the energy required for milk synthesis exceeds feed intake. Thus, body reserves 

from muscle and adipose tissue are mobilized and used for generating energy through various 

conversion processes in the liver or mammary gland. Excessive body fat mobilization, particu-

larly in over-conditioned dairy cows, negatively affects liver function and is associated with an 

increased incidence of metabolic diseases including ketosis and fatty liver. Bile acids (BA) are 

synthesized from cholesterol in the liver, conjugated with the amino acids glycine or taurine, 

and stored in the gallbladder. To aid in the digestion of dietary fats and fat-soluble vitamins, 

they are released into the intestine, where they are modified by the intestinal microbiome before 

being absorbed through the intestinal mucosa and transported back to the liver via the portal 

vein. Furthermore, BA are hormone-like signaling molecules found in various tissues, including 

adipose tissue (AT), being able to trigger receptor-mediated signaling cascades. Changes in BA 

concentrations, depending on hepatic synthesis, intestinal biotransformation, and tissue metab-

olism, have been reported to influence glucose-, lipid- and energy metabolism, including body 

fat content in humans. The aim of this dissertation was to investigate and characterize the in-

fluence of lactation-induced and condition-dependent body fat mobilization on the BA metab-

olism in dairy cows. The experimental design included the examination of a feeding-induced 

(15-7 weeks before calving) high body condition (HBCS, N = 19) and normal body condition 

(NBCS, N = 19) in multiparous cows around calving. Using a targeted metabolomics approach, 

20 BA were analyzed in the liver, in subcutaneous adipose tissue (scAT) and in serum at -7, 1, 

3, and 12 weeks relative to calving. In addition, the mRNA abundance of BA-associated en-

zymes, transporters, and receptors were examined in the liver and scAT. This study shows that 

animals with high body condition had lower concentrations of several BA within the liver, se-

rum, and scAT and an increased hepatic mRNA expression of enzymes involved in an alterna-

tive, generally less relevant synthesis pathway. These results suggest that an increased mobili-

zation of AT affects the BA metabolism in dairy cows. With the onset of lactation, BA concen-

trations increased in both groups, which was accompanied by an increased hepatic expression 

of the key enzyme CYP7A1, probably an adaptation to the increased energy demand due to milk 

synthesis. Although BA have been detected in peripheral bovine tissues in other studies, their 

origin and function remain largely unexplored. We detected BA in scAT; however, enzymatic 

conditions (mRNA data) may exclude de novo synthesis. The detection of the mRNA abun-

dance of specific transporters and receptors in scAT suggests that BA may play a role in sig-

naling cascades in scAT. This dissertation provides fundamental insights into bovine BA me-

tabolism during the transition from pregnancy to lactation and characterizes condition-depend-

ent and lactation-induced changes. 

 



 

 

 

Kurzfassung 

Der Übergang von der Trächtigkeit zur Laktation ist durch metabolische, physiologi-

sche und hormonelle Veränderungen geprägt. In der Frühlaktation übersteigt der Energiebedarf 

für die Milchsynthese die Energiebereitstellung durch die Futteraufnahme was dazu führen 

kann, dass die Kuh eine negative Energiebilanz (NEB) aufweist. Energiereserven werden aus 

dem Fett- und Muskelgewebe mobilisiert und unter anderem in der Leber und Milchdrüse ver-

stoffwechselt. Übermäßige Mobilisierung von Körperfett, welche besonders bei überkonditio-

nierten Milchkühen auftritt, kann sich negativ auf die Leberfunktion auswirken und geht mit 

einer erhöhten Inzidenz für Stoffwechselerkrankungen wie Ketose oder Fettleber einher. Beim 

Menschen hat sich gezeigt, dass sich Leberfunktionsstörungen auf den Gallensäurestoffwechsel 

auswirken können. Gallensäuren (BA) werden in der Leber gebildet, mit den Aminosäuren Gly-

cin oder Taurin konjugiert und in der Gallenblase gespeichert. Zur Unterstützung der Verdau-

ung von Nahrungsfetten und fettlöslichen Vitaminen werden sie in den Darm abgegeben und 

dort durch das Darmmikrobiom modifiziert, über die Darmschleimhaut resorbiert und über die 

Pfortader zurück in die Leber transportiert. BA können zudem als Signalmoleküle, Rezeptor-

vermittelt Signalkaskaden auslösen und andere Stoffwechselprozesse, einschließlich des Lipid- 

und Glucosestoffwechsels, beeinflussen. Ziel dieser Dissertation war es, den Einfluss der lakta-

tionsinduzierten und konditionsabhängigen Lipolyse auf den BA-Stoffwechsel bei Milchkühen 

zu untersuchen. Es wurden Kühe mit fütterungsinduzierter (15-7 Wochen vor der Kalbung) 

hoher Körperkondition (HBCS, N=19) und normaler Körperkondition (NBCS, N=19) im Zeit-

raum rund um die Kalbung (-7, 1, 3 und 12 Wochen relativ zur Kalbung) untersucht. Über einen 

gezielten Metabolomics-Ansatz wurden 20 BA in der Leber, im subkutanen Fettgewebe (scAT) 

und im Blutserum gemessen. Zudem wurde die mRNA BA-assoziierter Enzyme, Transporter 

und Rezeptoren in der Leber und im scAT untersucht. Die HBCS-Tiere wiesen eine Vielzahl 

von BA in niedriger Konzentration auf und zeigten eine erhöhte hepatische mRNA-Expression 

von Enzymen eines alternativen, normalerweise weniger relevanten Syntheseweges als die 

NBCS-Tiere. Die Ergebnisse deuten darauf hin, dass die erhöhte Lipolyse den bovinen BA-

Stoffwechsel beeinflusst. Mit dem Einsetzen der Laktation konnte bei beiden Gruppen ein An-

stieg der BA beobachtet werden, welche mit einer erhöhten Expression des Schlüsselenzyms 

CYP7A1 einherging und vermutlich eine Anpassung an den steigenden Energiebedarf infolge 

der Milchsynthese ist. Obwohl BA bereits in einigen peripheren Geweben bei Milchkühen 

nachgewiesen worden sind, ist ihre Herkunft und Funktion weitestgehend unerforscht. Unsere 

Untersuchungen zeigen, dass BA in bovinem scAT vorkommen, wobei die vollständige de novo 

Synthese vermutlich ausgeschlossen werden kann (mRNA-Daten). Der Nachweis der mRNA-

Expression spezifischer Transporter und Rezeptoren im scAT lässt vermuten, dass sich BA auf 

Signalkaskaden im scAT auswirken. Die vorliegende Dissertation liefert fundamentale Er-

kenntnisse über den BA-Stoffwechsel der Milchkuh in der Übergangszeit zwischen Trächtig-

keit und Laktation und charakterisiert konditionsabhängige Veränderungen.
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1 Introduction 

Modern dairy cows are characterized by high milk yields and a concomitant decrease in 

resilience of metabolic diseases due to several decades of breeding and single trait selection for 

milk production (Shanks et al., 1978; Boichard and Brochard, 2012). High milk yields usually 

go in line with the mobilization of body reserves at the beginning of lactation to compensate 

the energy demand for milk synthesis which cannot be fully provided by feed intake (Herdt, 

2000; Grummer, 2008). Body reserves, mainly from adipose tissue (AT) are mobilized as non-

esterified fatty acids (NEFA) and used for further energy supply by transformation processes 

in the liver, muscle or in the mammary gland (Grummer, 1993). Thus, circulating NEFA are 

the main energy source in times of negative energy balance, being available for most body 

tissues (Katz and Bergman, 1969; Bergman, 1971). However, the liver being the key modulator 

of blood NEFA, removes large amounts of them (Herdt, 2000). When the capacity for oxidation 

is exceeded, incomplete NEFA oxidation leads to the accumulation of triglycerides and the 

production of ketone bodies e.g., acetoacetate or ß-hydroxybutyrate (BHB) (Drackley and 

Drackley, 1999; Herdt, 2000). Over-conditioned cows before calving are more prone to mobi-

lize body fat and thus have a higher risk for metabolic diseases such as ketosis or fatty liver in 

early lactation (Bernabucci et al., 2005). Therefore, the transition from pregnancy to lactation 

in dairy cows is accompanied by considerable physiological changes affecting most organs, 

particularly the liver and AT (Wankhade et al., 2017). 

 Bile acids (BA) are synthesized in the liver and are important in the digestion and ab-

sorption of fats and fat-soluble vitamins in the intestine (Armstrong and Carey, 1982; Di Ciaula 

et al., 2017). Moreover, acting as signaling molecules, BA affect metabolic processes such as 

the lipid, energy, and glucose metabolism (Chiang, 2009; Lefebvre et al., 2009) and body fat 

content (Shapiro et al., 2018). In humans it is known that impairments of the liver functions due 

to diseases such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis 

(NASH) are related to altered BA concentrations, hepatic BA synthesis, BA transport and in-

testinal biotransformation (Arab et al., 2017). 

Since the cow’s lipid mobilization affects the liver metabolism, a profounder knowledge 

concerning the influence on the BA metabolism in dairy cows is required. The extend of body 

fat mobilization influences the BA formation in the gut and the fecal BA excretion in dairy 

cows (Gu et al., 2023). Furthermore, research in humans established that BA are present in AT, 

indicating evidence for functional BA signaling pathways in adipocytes (Schmid et al., 2019). 

Since BA have also been detected in organs, tissues, and body fluids outside the enterohepatic 
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circulation in dairy cows (Tsai et al., 2011; Schmid et al., 2019; Reiter et al., 2021), a more 

profound knowledge of their action in the transition period, including AT mobilization and 

metabolism is required. 

 

1.1.1 The Transition Period and Metabolic Challenges in Dairy Cows 

The transition period is described as the time of transition from pregnancy to lactation, 

which is defined as 3 weeks ante partum (a.p.) to 3 weeks post-partum (p.p.). Homeorhetic 

mechanisms, physiologic, endocrinologic, and metabolic changes arise, and characterize this 

time as the most critical and challenging phase of the lactation period (Grummer, 1995). Within 

the last three weeks of pregnancy, fetal growth and nutrient requirements of glucose and amino 

acids peak (Bell 1993). The endocrine status changes, dry matter intake (DMI) decreases, lead-

ing to the mobilization of fatty acids (FA) from AT in late gestation and early lactation (Grum-

mer et al., 1990; Grummer, 1995; Drackley and Drackley, 1999). Due to the inadequate feed 

intake around parturition in contrast to the rapidly increasing milk production, cows get into a 

negative energy balance (NEB; Grummer, 1993; Kessel et al., 2008). Triglycerides from AT 

are hydrolyzed and released as glycerol and free FA, circulating as NEFA in the blood-stream, 

which are used to cover the cow's energy requirements (Grummer, 1993; Lafontan and Langin, 

2009). The liver either oxidizes NEFA, re-esterifies them into triglycerides, or exports them via 

very low-density lipoproteins (VLDL; Grummer, 1993).  

Glucose is the main source for generating lactose in the mammary gland, thus reducing 

glucose availability for oxidation and energy supply (Bauman and Currie, 1980). Therefore, 

lipids form the main energy source for the increased energy demands (Lemosquet et al., 2009). 

In ruminants, glucose is mainly produced by hepatic gluconeogenesis, which is related to the 

overall tricarboxylic acid cycle activity. Tricarboxylic acid cycle activity depends on the avail-

ability of oxaloacetate, and substrates such as propionate, lactate, amino acids, and glycerol. In 

times of high gluconeogenesis, oxaloacetate availability decreases, and consequently limits the 

oxidation of FA via the Tricarboxylic acid cycle, inducing an alternative metabolic pathway, 

i.e., the production of ketone bodies such as acetoacetate and BHB which accumulate in the 

blood (Grummer, 1993; Goff and Horst, 1997; Bruckmaier and Gross, 2017). Furthermore, if 

the capacity of the liver reaches its limit to oxidize the FA, triglycerides accumulate in the liver 

(Grummer, 1993; Drackley and Drackley, 1999). High concentrations of free FA, accompanied 

by excessively formed ketone bodies, lead to metabolic diseases such as fatty liver syndrome 

and ketosis (Adewuyi et al., 2005). 
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As the lactation period progresses, DMI increases and the energy requirement for milk 

production can be met. However, less milk is also produced towards the end of lactation. Con-

sequently, lipogenesis and fatty acid esterification increases during the positive energy balance, 

serving as a buffer for the next pregnancy and lactation (Bell and Bauman, 1994; Bell, 1995). 

 

1.1.2 Body Condition in the Transition Period 

The metabolic adaptation of dairy cows to the conditions of lactation, going along with 

the supply of energy reserves for milk production, does not lead to clinical or subclinical dis-

eases in all dairy cows. Although the ability to adapt is individual to each animal (Jorritsma et 

al., 2003), various risk factors for poor adaptability, including feed, milk yield, parity, and body 

condition before calving have been established (Komaragiri et al., 1998). Focusing on the pre-

calving body condition that is important in the successful transition of dairy cows (Crookenden 

et al., 2017), energy-dense rations in the period before calving lead to increased body condition 

and increase body condition losses due to excessive lipolysis after calving (Cardoso et al., 

2013). High pre-calving body condition reinforce the excessive mobilization of body fat, reduce 

the ability to oxidize FA in the liver, and lead to increased concentrations of ketone bodies in 

the circulation (Goff and Horst, 1997; Busato et al., 2002). Circulating ketone bodies in the 

plasma inhibit DMI even more after calving, which increases the NEB (Rukkwamsuk et al., 

1999; Laeger et al., 2013). The degree of NEB also affects the degree of immunosuppression 

and the ability to fight disease in the periparturient period (Bernabucci et al., 2005; Goff, 2006). 

Moreover, a high prepartum body condition is associated with an increased risk of metabolic 

diseases such as ketosis (Gillund et al., 2001), milk fever (Roche and Berry, 2006), and fatty 

liver (Drackley and Drackley, 1999). Since the excessive mobilization of body fat affects ani-

mal health, productivity, and reproduction, the assessment of body fat reserves is included in 

management (Bewley and Schutz, 2008). Also, physiological changes can be classified by scor-

ing body condition and thus provide an indication for management (Bewley and Schutz, 2008). 

In most countries, the body condition score (BCS) is usually measured on a 5-point scale with 

0.25 percentage points, where 0 is considered as severely under-conditioned and 5.0 extremely 

over-conditioned (Edmonson et al., 1989). As the determination of BCS is a rather subjective 

assessment, other methods like the determination of body fat by measuring subcutaneous back 

fat thickness (BFT) via ultrasonography have been developed to determine the body condition 

in dairy cows (Butler-Hogg et al., 1985; Bewley and Schutz, 2008). 
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1.1.3 Adipose Tissue  

In general, AT is the body's largest energy reservoir (Lafontan and Langin, 2009); and 

based on the distribution in the body it is classified as visceral or subcutaneous AT (scAT) 

which differ in their cellular composition, metabolic function, and the capacity to secrete adi-

pokines (Coelho et al., 2013). In early lactation, AT metabolism is subject to endocrine regula-

tion, whereby the cell structure of the AT changes (Collier et al., 1984; Smith and McNamara, 

1990, McNamara, 1990; Vernon, and Pond, 1997; Chilliard et al., 2000). Hormone-sensitive 

lipase (HSL) hydrolyzes stored triglycerides in adipocytes, providing free FA and glycerol as 

an energy source in early lactation (Vernon, and Pond, 1997). Moreover, AT communicates 

with other tissues and reacts to stimuli of the lipid metabolism, the immune system, blood pres-

sure, and hormone balance (Ottaviani et al., 2011; Häussler et al., 2022). Besides triglycerides, 

AT contains signaling molecules, so-called adipokines, such as leptin, adiponectin, resistin, 

visfatin, apelin, or growth factors which are produced and secreted in AT (Funcke and Scherer, 

2019) and enable the tissue to communicate with other organs such as the liver, or muscle 

(Romacho et al., 2014). Lipophilic steroid hormones can be stored in AT and locally converted, 

depending on the enzymatic composition (Deslypere et al., 1985; Diamanti-Kandarakis, 2007; 

Schuh et al., 2022). Thus, AT is involved in the regulation of various processes through an 

interplay of endocrine, paracrine, and autocrine mechanisms (Mohamed-Ali et al., 1998), ef-

fecting whole-body physiology (Rosen and Spiegelman, 2006).  

 

1.2 Bile Acids   

In 1928, Heinrich O. Wieland reported in his Nobel Prize lecture about the novel discov-

eries of BA research and described that the BA glycocholic acid (GCA) and taurocholic acid 

(TCA) were discovered and isolated for the first time by A. Stecker in 1848, in oxen bile (Wie-

land, 1928). To date, at least 84 unconjugated BA have been identified in vertebrates (Hofmann 

et al., 2010), although not all are of physiological relevance (Ticho et al., 2019). In general, BA 

have an amphiphilic structure, consisting of a lipophilic steroid backbone with a hydrophilic 

side chain, ensuring that the BA form micelles and ultimately support the intestinal digestion 

and absorption of dietary fats and fat-soluble vitamins (De Aguiar Vallim et al., 2013). Short-

chain FA can be absorbed without the aid of BA, whereas long-chain FA need BA for absorp-

tion (Tomkin and Owens, 2016). Conjugation with glycine or taurine lowers the pKA and in-

crease the water solubility at a physiological pH and structural changes to the hydroxyl groups 

at position 3, 6, 7. or 12 on the steroid backbone change the hydrophilicity and solubility, which 

in turn can highly influence the extend of lipid absorption (Ticho et al., 2019).  
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Additionally, there are interspecies variations in the metabolism of BA, including BA 

composition and conjugation specificity, synthesis, signaling pathways, intestinal microbiota 

composition, and existence of a gallbladder (Angelin et al., 2012). The human BA pool mainly 

contains cholic acid (CA) (~ 40%), chenodeoxycholic acid (CDCA) (~ 40%) and deoxycholic 

acid (DCA) (~ 20%) with the majority being glycine-conjugated. In rodents, the BA pool con-

tains mainly CA (~ 60%) and the murine-specific BA α-muricholic acid (MCA) and β-MCA 

(~ 40%), predominantly in taurine-conjugated form (Chiang, 2017). The bovine BA pool con-

tains mainly CA (68-86%), with a predominance for glycine conjugation (Hofmann et al., 

2018).  

 

1.2.1 Bile Acids Synthesis in the Liver 

In humans, it is assumed that the liver secretes 200-600 mg BA per day (Chiang 2013). 

The majority of the BA are formed via the classical/neutral pathway in the liver (Chiang and 

Ferrell, 2018), which is based on the formation of neutral sterols (Monte et al., 2009), forming 

the primary BA CA and CDCA. There are at least 17 enzymes involved in the formation of BA, 

located in the endoplasmic reticulum, mitochondria, peroxisomes, and the cytosol (Chiang, 

2013). The rate-limiting enzyme in this process and within the classical/neutral pathway is cho-

lesterol 7α-hydroxylase (CYP7A1) (Monte et al., 2009), whose transcription is highly regulated 

by feedback mechanisms exerted by BA and their involvement as ligands of a variety of nuclear 

receptors (Russell, 1999; Lu et al., 2000; Russell, 2003). Via the alternative/acidic pathway, 

cholesterol can be modified by enzymatic processes in different tissues, where the precursor 

molecules must subsequently be transported to the liver for further synthesis. Sterol 27-hydrox-

ylase (CYP27A1), a mitochondria cytochrome P450 enzyme, initiates the alternative pathway 

(Chiang 2013). In humans, about 70% CDCA and 30% CA are formed from the alternative 

pathway of BA (Chiang, 2017), which only produces 9% of the total BA in human hepatocytes 

(Duane and Javitt, 1999). Nevertheless, this pathway is considered to be more important in 

patients with liver diseases (Crosignani et al., 2011; Chiang, 2013; Lake et al., 2013). For ex-

ample, oxysterol 7a-hydroxylase (CYP7B1) gene expression, which is considered to be the 

marker enzyme for the alternative pathway, was upregulated in humans with NASH (Lake et 

al., 2013). 

Figure 1 provides an overview of the involved enzymes within the BA pathways. Regard-

less of the pathway, BA are conjugated to the amino acids glycine or taurine by BA CoA 

synthase (BACS) and BA-CoA: amino acid N-acyltransferase (BAAT) to build the conjugated 
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primary BA TCA, GCA, taurochenodeoxycholic acid (TCDCA), glycochenodeoxycholic acid 

(GCDCA) which are stored in the gallbladder (Di Ciaula et al., 2017). 

 

    

Figure 1: Schematic illustration of bile acid synthesis: * BA-related enzymes are ubiquitously 

expressed and not limited to the hepatic alternative pathway. Involved enzymes: CYP7A1: Cho-

lesterol 7alpha-Hydroxylase; HSD3B7: 3 Beta-Hydroxysteroid Dehydrogenase Type 7; 

CYP8B1: Sterol 12-Alpha-Hydroxylase; AKR1D1: Aldo-Keto Reductase Family 1 Member 

D1; AKR1C4: Aldo-Keto Reductase Family 1 Member C4; CYP27A1: Sterol 27-Hydrox-

ylase; CYP7B1: Oxysterol 7-Alpha-Hydroxylase; CH25H: Cholesterol 25-Hydrox-

ylase; CYP46A1: Cholesterol 24-Hydroxylase; CYP39A1: Cytochrome P450 Family 39 Sub-

family A Member 1; BSH: Bile Salt Hydrolase Bile acids: cholic acid (CA); chenodeoxycholic 

acid (CDCA); taurocholic acid (TCA); glycocholic acid (GCA); taurochenodeoxycholic acid 
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(TCDCA); glycochenodeoxycholic acid (GCDCA); deoxycholic acid (DCA); lithocholic acid 

(LCA); ursodeoxycholic acid (UDCA); taurodeoxycholic acid (TDCA); glycodeoxycholic acid 

(GDCA); taurolithocholic acid (TLCA); glycolitocholic acid (GLCA); glycoursodeoxycholic 

acid (GUDCA); tauroursodeoxycholic acid (TUDCA); α-muricholic acid (αMCA);  β-

muricholic acid (βMCA); tauromuricholic acid (sum of alpha and beta) (α, β-TMCA); ω-

muricholic acid (ωMCA); hyodeoxycholic acid (HDCA); murideoxycholic acid (MDCA). Self-

designed illustration, based on Chiang et al. (2004), Poland et al. (2021), and Chiang and Ferrell 

(2019). 

 

1.2.2 Bile Acids in the Intestine 

In humans, after food intake, the entero-hormone cholecystokinin (CCK) stimulates the 

contraction of the Musculus sphincter oddi at the gallbladder, to release BA into the intestine 

where they are first deconjugated by the bile salt hydroxylase (BSH; Hofmann and Hagey, 

2014). The reabsorption of BA through intestinal epithelial cells towards the portal blood starts 

in the small intestine, whereas the bacterial modification including 7α-dehydroxylation to form 

the secondary BA (DCA, lithocholic acid (LCA) ursodeoxycholic acid (UDCA)) starts in the 

distal small intestine (Hofmann, 1984; Di Ciaula et al., 2017). Deconjugation and dehydroxyla-

tion improve the absorption by increasing the BA hydrophilicity and pKA (Ridlon et al., 2006). 

BA are again conjugated with glycine or taurine, to form the secondary conjugated BA (tauro-

deoxycholic acid (TDCA), glycodeoxycholic acid (GDCA), taurolitocholic acid (TLCA), gly-

colitocholic acid (GLCA), glycoursodeoxycholic acid (GUDCA)). Intestinal microbiota, per-

forming various biotransformations of BA (Ridlon et al., 2016), are highly influenced in popu-

lation, composition, and metabolic activity through the diet (Le Chatelier et al., 2013; Zhang et 

al., 2018; Singh et al., 2019). Also, metabolic changes in obese humans altered the intestinal 

microbiota in microbial richness and composition (Le Chatelier et al., 2013) and affected the 

fecal excretion of BA (Haeusler et al., 2016). In healthy individuals 90-95% of BA return to the 

liver at the terminal ilium via the portal vein (Yang et al., 2003; Chiang, 2004; Chen et al., 

2019a; Chen et al., 2019b) and BA being not absorbed, enter the colon, and are subsequently 

excreted with the feces (Ferrebee and Dawson, 2015). 

 In the portal vein-liver junction, not all BA are equally absorbed, and a small fraction is 

not reabsorbed and recycled but enters the large bloodstream via the Vena cava (Hofmann, 

2009). Disruptions in the absorption of BA by blocking the intestinal uptake, stimulate the he-

patic de novo synthesis of BA (Ferrebee and Dawson, 2015). The circulation of BA between 

the liver and intestine is called the enterohepatic circulation of BA, which can occur up to 10 

times per day (Stamp and Jenkins, 2008). 
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1.2.3 Bile Acid Transport through the Enterohepatic Circulation 

The transport of BA through the compartments of the enterohepatic circulation and the 

associated maintenance of BA homeostasis is essentially controlled by various BA transporters 

in humans. Controlling the secretion of BA from the liver into the biliary canaliculi, the liver 

contains the ATP-dependent bile salt export pump (BSEP) and multidrug resistance protein 

(MRP2; Trauner and Boyer, 2003; Ferrebee and Dawson, 2015). In intestinal epithelial cells, 

conjugated BA are luminally absorbed via the apical sodium-dependent BA transporter (ASBT) 

and are basolaterally released via the organic solute transporters (OSTα-OSTβ; Alrefai and 

Gill, 2007). About 95% of the BA are reabsorbed in the terminal ileum in the brush border, 

whereas some unconjugated BA can already be reabsorbed in the upper intestine via passive 

diffusion (Chiang, 2013). The BA pass the enterocytes at the basolateral membrane, reach the 

blood stream and then the liver where they are taken up into the hepatocytes (Chiang 2013). 

BA in the portal vein are largely bound to albumin for transportation and are dissociated via a 

conformational change of the albumin by contact with the basolateral membrane of the hepato-

cytes (Horie et al., 1988; Meier, 1995). During the first passage of the portal blood through the 

liver lobules, the extraction rate of the conjugated BA varies between 75 and 90% (Meier, 1995; 

Trauner and Boyer, 2003) and is mainly mediated by the Na+-taurocholate co-transporting pol-

ypeptide (NTCP) and the solute carrier organic anion transporter Family Member 1A2 

(OATP1A2; Trauner and Boyer, 2003; Ferrebee and Dawson, 2015). Gene expression of NTCP 

can be regulated in various physiological challenges like pregnancy (Arrese et al., 2003) or in 

the case of high accumulations of BA to reduce their flux into the hepatocytes (Anwer, 2004). 

When the hepatic BA concentration increases, BA spill over into the sinusoid blood, pass 

through the kidney and are back transported to the liver via systemic circulation (Chiang, 2009). 

Figure 2 provides an overview of the involved BA transporters within the enterohepatic circu-

lation. 
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Figure 2: Bile acid transporters within the enterohepatic circulation. BA: Bile acids; NTCP, 

SLC10A1: Na+-taurocholate co-transporting polypeptide; OATP: Solute Carrier Organic An-

ion Transporter; OSTα, SLC51A: solute carrier family 51 subunit alpha; OSTβ, SLC51B: so-

lute carrier family 51 subunit beta; MRP2, ABCC2: Multidrug Resistance-Associated Protein; 

BSEP, ABCB11: Bile Salt Export Pump. Self-designed illustration, based on Alrefai et al. 

(2007) and Cai et al. (2022). 

 

1.2.4 Regulation of Bile Acid Synthesis  

The BA metabolism is subject to negative feedback mechanisms, which can be regulated 

within the enterohepatic circulation by inhibiting the biosynthesis of primary BA or by modu-

lating the flux of BA in hepatocytes or the intestine (Hofmann, 2009). In the hepatocytes, free 

BA, or bound to the Farnesoid X receptor (FXR) or Retinoid X receptor (RXR) - FXR hetero-

dimer, induce the synthesis of the transcription factor small heterodimer partner (SHP), which 

then acts on the promoter of the rate-limiting enzyme CYP7A1, inhibiting BA synthesis 

(Chiang, 2004). Also, BA binding to the FXR induces the expression of the SHP which subse-

quently inhibits NTCP, preventing the excessive BA uptake into the hepatocytes in times of BA 

accumulations (Denson et al., 2001). The transcription of CYP7A1 can also be suppressed by 

activating the Pregnane X receptor (PXR), thereby inhibiting BA synthesis (Li and Chiang, 

2005; Pavek, 2016). The Vitamin-D-receptor (VDR), present in enterocytes, can also be acti-

vated by BA, which leads to the release of fibroblast growth factor 15 (FGF15) and in turn has 

a suppressive effect on CYP7A1 in the liver (Schmidt et al., 2010).  

The membrane-bound Takeda G-protein coupled receptor 5 (TGR5) has been identified 

as BA receptor as well (Maruyama et al., 2002), being able to reduce the hepatic protein ex-

pression of CYP8B1 which is necessary for the de novo synthesis of CA (McGavigan et al., 

2017). In TGR5 knock-out mice a 21-25% decreased BA pool as compared to wild-type mice 

was reported, supporting its role in BA homeostasis (Maruyama et al., 2006). However, the 

mechanisms of TGR5 influencing the BA pool composition are not fully understood (Holter et 
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al., 2020). Figure 3 shows how the main BA receptors (FXR and TGR5) control the BA bio-

synthesis and transport.  

 

                            

Figure 3: Bile acid controlling biosynthesis and transport. BA: Bile acids; FXR, NR1H4: Far-

nesoid X Receptor; TGR5, GPBAR1: Takeda G protein–coupled receptor 5; CYP7A1: Choles-

terol 7alpha-Hydroxylase; CYP8B1: Sterol 12-Alpha-Hydroxylase; SHP: Small Heterodimer 

Partner; NTCP, SLC10A1: Na+-taurocholate cotransporting polypeptide; BSEP, ABCB11: 

Bile Salt Export Pump. Self-designed illustration, based on Chiang and Ferrell (2020), Distrutti 

et al. (2015), and Lefebvre et al. (2009). 

 

1.2.5 Role of Bile Acids in Metabolic Regulation 

Disruptions of BA metabolism is associated with the pathogenesis of diseases (Li and 

Chiang, 2012, 2014; Pandak and Kakiyama, 2019). Acting as signaling molecules, BA interact 

with the gut microbiota affecting the pathophysiology of obesity, type 2 diabetes, and NAFLD 

in humans (Molinaro et al., 2018; Chávez-Talavera et al., 2019). Obese humans had increased 

BA synthesis and impaired BA transport (Haeusler et al., 2016). Plasma BA correlated posi-

tively with the body mass index and negatively with the cognitive restraint of eating in obese 

humans (Prinz et al., 2015). Diet-induced obesity in mice decreased hepatic BA (Hatori et al., 

2012; Suzuki Y et al., 2013; Liu et al., 2015) and increased plasma BA (Ma and Patti, 2014). 

However, fasting BA concentrations were not affected by obesity, whereas obese humans had 

a higher fecal excretion, suggesting a higher BA removal from the body (Gälman et al., 2003). 

Also, the diet (Ridlon et al., 2014; Ridlon et al., 2016), and physiological changes due to preg-

nancy and lactation (Zhu et al., 2013; Fan et al., 2021) can alter the BA pool and the composition 

of BA in humans and murine species. These structural changes due to BA modifications can 

influence the specificity for binding to BA receptors (De Aguiar Vallim et al., 2013). Thus, 

considering that BA can affect different physiological processes based on their structure, BA 

profiles have to be considered individually.  
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The identification of FXR and TGR5 as BA targets, points to their involvement in major 

signaling pathways of energy homeostasis, as well as glucose and lipid metabolism (Houten et 

al., 2006; Keitel et al., 2008; Nguyen and Bouscarel, 2008; Thomas et al., 2008; Lefebvre et al., 

2009; Ma and Patti, 2014; Taoka et al., 2016; Vítek and Haluzík, 2016). Increasing BA con-

centrations correlated strongly with improvements in glucose and lipid metabolism (Patti et al., 

2009; Pournaras et al., 2012). Hepatic BA can bind to the FXR, activating the FXR-SHP sig-

naling pathway, suppressing the lipogenic transcription factor sterol regulatory element-binding 

protein 1c (SREBP1c), and influencing lipid metabolism (Watanabe et al., 2004). Additionally, 

BA activation of FXR increased the expression of apolipoprotein CII (APO CII), further acti-

vating lipoprotein lipase and stimulating the hydrolysis of triglycerides in VLDL and chylomi-

crons (Kast et al., 2001). In mice, FXR binding enhances the transcription of fatty acid synthase 

(FAS; Matsukuma et al., 2006), and FXR activation reduces plasma and hepatic triglyceride 

levels (Watanabe et al., 2004; Zhang et al., 2006). Furthermore, the expression of peroxisome 

proliferator-activated receptor alpha (PPARα), playing a key role in lipolysis, is induced via 

the FXR, activated by BA (Pineda Torra et al. 2003). Likewise, BA stimulate energy expendi-

ture via TGR5 in brown AT in mice and skeletal muscle in humans (Watanabe et al., 2006). In 

humans, TGR5 expression in AT correlates positively with obesity (Svensson et al., 2013), and 

BA acting on TGR5 can stimulate the release of glucagon-like peptides in the portal vein, reg-

ulating the glucose homeostasis (Ayewoh and Swaan, 2022). Conjugated BA binding to the 

sphingosine-1-phosphate receptor 2 (S1PR2) activates the extracellular signal-regulated pro-

tein kinase (ERK)1/2 and the protein kinase A (AKT) pathways which in turn affect the hepatic 

glucose, lipid, and BA metabolism (Studer et al., 2012; Kwong et al., 2015). Moreover, in recent 

years, an increasing number of membrane and nuclear receptors have been identified that can 

be activated by BA. The receptors involved have been detected in organs of the enterohepatic 

circulation but also in other organs, such as AT (Zhang et al., 2003; Schmid et al., 2019). Figure 

4 schematically illustrates the enterohepatic circulation of BA. The BA pool and the BA com-

position can be influenced by environmental and individual factors, which in turn can affect the 

binding and signal transduction through BA receptors. 
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Figure 4: Schematic illustration of the enterohepatic circulation of bile acids. The bile acid 

pool and composition can be influenced by environmental and individual factors, affecting the 

binding and signal transduction through bile acid receptors. BA: Bile acids; FXR, NR1H4: Far-

nesoid X Receptor; TGR5, GPBAR1: Takeda G protein–coupled receptor 5; VDR: Vitamin-D 

Receptor; RXR, NR2B1: Retinoid X Receptor Alpha; CAR: Constitutive Androstane Receptor. 

Self-designed illustration, based on Zhu et al. (2013), Di Ciaula et al., (2017), Ahmad and Hae-

usler (2019), Chiang and Ferrell (2020), Fiorucci et al. (2021), and Gu et al. (2023). 

 

1.2.6 Bile Acids in Tissues outside of the Enterohepatic Circulation   

Due to the spillover of BA into the systemic circulation, BA can be detected in several 

tissues, organs, and body fluids outside of the enterohepatic circulation (Blaschka et al., 2019; 

Schmid et al., 2019; Reiter et al., 2021). In 2014, 17 BA could be detected for the first time in 

human AT, providing insights into the endogenous role of BA and their role as biomarkers 

(Jäntti et al., 2014). Findings of conjugated BA, which are unable to cross cell membranes by 

passive diffusion in peripheral tissues pointed to the existence of an active transport of BA into 

the cells or the possibility of BA conjugation within the cells (Jäntti et al., 2014). Also, the 

expression of BA receptors like the FXR and TGR5 in tissues outside of the enterohepatic cir-

culation, point to a role throughout the body and not just exclusively within the enterohepatic 
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circulation (Swann et al., 2011). Furthermore, significantly higher concentrations of BA in hu-

man follicular fluid compared to serum could indicate de novo production of BA in this tissue 

(Smith et al., 2009). 

 

1.2.7 Bile Acids in Cattle 

Since the discovery of BA, little but steady research has been carried out on these metab-

olites in cattle. However, with the findings that BA can also act as signaling molecules and 

influence other metabolic processes (Shapiro et al., 2018), the field of research is experiencing 

an enormous upswing. In dairy cows, BA concentrations and compositions of the individual 

BA were determined in the compartments of the enterohepatic circulation, including the liver 

(Tsai et al., 2011; Reiter et al., 2021), bile (Sheriha et al., 1968), and blood from the portal vein 

(Reiter et al., 2021). Furthermore, BA have been discovered in follicular fluid, urine (Sanchez 

et al., 2014; Blaschka et al., 2019), feces (Sheriha et al., 1968), serum (Washizu et al., 1991; 

Pacífico et al., 2020; Reiter et al., 2021; Ghaffari et al., 2024), udder, muscle, heart, lung, bone, 

tongue, esophagus, omasum, abomasum, spleen, and kidney (Reiter et al., 2021). The BA in 

the plasma of dairy cows were investigated considering diurnal and individual variations of BA 

(Abdelkader and Ropstad, 1989) or the hepatic conjugation patterns with taurine and glycine 

(Vessey et al., 1977). Grain feeding in Angus beef cattle increased intestinal secondary BA and 

was accompanied by an increase in bacterial taxa being responsible for the conversion of BA, 

compared to grass feeding (Liu et al., 2020).  

The hepatic uptake and conjugation of BA in plasma from cows with fatty livers were 

altered (West, 1990), and dairy cows with a fatty liver syndrome also had increased plasma 

concentrations of bile components, i.e., bilirubin and BA (Bobe et al., 2004). However, the 

large variability of serum BA after feeding was not correlated with liver fat content (Garry et 

al., 1994). The extraction rate of the liver for BA from portal and hepatic venous blood was not 

affected by different fat portions in the diet in healthy animals (Mohamed et al., 2002), whereas 

cows with fasting-induced hepatic lipidosis had an decreased BA extraction, probably caused 

by hepatic triglyceride accumulation causing liver impairment (Mohamed et al., 2004). Exces-

sive lipolysis induced an increased excretion of BA in the feces, indicating that the BA metab-

olism is also affected by lipid mobilization in dairy cows (Gu et al., 2023).   

Taken together, the aforementioned studies in cattle mainly characterized the BA concen-

tration in different tissues and the relation with dietary and hepatic fat. Even though studies in 

mice and humans strongly point to the involvement of BA in several metabolic pathways such 

as lipid and glucose metabolism and disruption during liver disease, data is scarce in transition 
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dairy cows. The liver BA concentrations in the transition period, as affected by different body 

condition around calving have not been investigated so far. The existence of BA in various 

tissues outside the enterohepatic circulation has been demonstrated (Washizu et al., 1991; 

Blaschka et al., 2019; Pacífico et al., 2020; Reiter et al., 2021; Ghaffari et al., 2024); however, 

the function of the metabolites in these tissues is still not clear. Moreover, it is also still unclear 

whether BA can be synthesized de novo in extrahepatic tissues or whether they are transported 

into them. 

  



2 Objectives and hypotheses 

 

15 

 

2 Objectives and hypotheses 

Bile acids (BA) are involved in several metabolic processes besides aiding the digestion 

of fats and fat-soluble vitamins. However, basic information concerning the abundance of BA 

in tissues within the enterohepatic circulation and other tissues like adipose tissue (AT) was 

lacking in dairy cows. Furthermore, the physiologically challenging time of transitioning from 

pregnancy to lactation, as well as different body condition around calving and their effects on 

the BA concentration in the liver, serum, and subcutaneous AT (scAT) have not been investi-

gated previously. Therefore, the present study aimed to fill the gap of knowledge pursuing the 

following objectives: 

 

I. To investigate the composition of BA in serum, liver, and scAT of cows with high 

(HBCS) and normal (NBCS) body condition around calving. 

II. To investigate the mRNA abundance of BA synthesizing enzymes, transporters, and 

receptors in the liver to characterize differences in the formation, transport, and receptor 

expression in cows with different body conditions around calving (HBCS vs. NBCS). 

III. To investigate the mRNA abundance of BA synthesizing enzymes, transporters, and 

receptors in scAT to characterize the role of BA in scAT in HBCS and NBCS cows 

around calving. 

 

We hypothesized that cows with different body condition around calving would differ in their 

BA profiles in serum, liver, and scAT and would show differences in the mRNA abundance of 

BA-associated enzymes, receptors, and transporters within the liver. Furthermore, we hypoth-

esized that the mRNA of BA-associated enzymes, receptors, and transporters would be present 

in scAT and their abundance would differ between HBCS and NBCS cows. 
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ABSTRACT 

Bile acids (BA) play a crucial role not only in lipid digestion but also in the regulation 

of overall energy homeostasis, including glucose and lipid metabolism. The aim of this study 

was to investigate BA profiles and mRNA expression of BA-related genes in the liver of high 

versus normal body condition in dairy cows. We hypothesized that body condition and the tran-

sition from gestation to lactation affect hepatic BA concentrations as well as the mRNA abun-

dance of BA-related receptors, regulatory enzymes, and transporters. Therefore, we analyzed 

BA in the liver as well as the mRNA abundance of BA-related synthesizing enzymes, trans-

porters, and receptors in the liver during the transition period in cows with different body con-

ditions around calving. In a previously established animal model, 38 German Holstein cows 

were divided into groups with high body condition score (BCS) (HBCS; n = 19) or normal BCS 

(NBCS; n = 19) based on BCS and backfat thickness (BFT). Cows were fed diets aimed at 

achieving the targeted differences in BCS and BFT (NBCS: BCS < 3.5, BFT < 1.2 cm; HBCS: 

BCS > 3.75, BFT > 1.4 cm) until they were dried off at wk 7 before parturition. Both groups 

were fed identical diets during the dry period and subsequent lactation. Liver biopsies were 

taken at wk −7, 1, 3, and 12 relative to parturition. For BA measurement, a targeted metabo-

lomics approach with LC-ESI-MS/MS was used to analyze BA in the liver. The mRNA abun-

dance of targeted genes related to BA-synthesizing enzymes, transporters, and receptors in the 

liver was analyzed using microfluidic quantitative PCR. In total, we could detect 14 BA in the 

liver: 6 primary and 8 secondary BA, with glycocholic acid (GCA) being the most abundant 

one. The increase of glycine-conjugated BA after parturition, in parallel to increasing serum 

glycine concentrations may originate from an enhanced mobilization of muscle protein to meet 

the high nutritional requirements in early lactating cows. Higher DMI in NBCS cows compared 

to HBCS cows was associated with higher liver BA concentrations such as GCA, deoxycholic 

acid (DCA), and cholic acid (CA). The mRNA abundance of BA-related enzymes measured 

herein suggests the dominance of the alternative signaling pathway in the liver of HBCS cows. 

Overall, BA profiles and BA metabolism in the liver depend on both, the body condition and 

lactation-induced effects in periparturient dairy cows. 

 

 

Key words: bile acids, body condition, liver, periparturient period 
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INTRODUCTION 

The transition from late gestation to early lactation is a critical period for dairy cows, 

characterized by complex and significant physiological and metabolic adaptations as they over-

come the challenges of transitioning from gestation to the demands of milk production (Ghaffari 

et al., 2024a). During this challenging period, cows often have a negative energy balance 

(NEB), in which the energy requirements of lactation exceed the energy derived from feed in-

take, resulting in increased mobilization of body energy reserves (Drackley et al., 2001). This 

metabolic state mainly involves the mobilization of energy stores from adipose and muscle 

tissue to meet the increased demand during lactation (Grummer, 1993; Sadri et al., 2023). As a 

result, this leads to an overload on the metabolic capacity of the liver, as evidenced by an en-

hanced release of free fatty acids (FFA) from adipose tissue, leading to an accumulation of 

lipids and an increase in the production of ketone bodies, particularly β-hydroxybutyrate 

(BHB). Such changes can affect liver function and the general health of dairy cows (Goff and 

Horst, 1997; Drackley, 1999; Bobe et al., 2004). 

Over-conditioned cows around calving face challenges due to a higher NEB, leading to 

increased lipolysis, reduced feed intake, and a greater risk of liver disease and metabolic disor-

ders (Roche et al., 2009; Ghaffari et al., 2023). Recent metabolomics studies reveal that these 

cows have higher levels of acylcarnitine and long-chain acylcarnitines in muscle and serum 

during early lactation, suggesting incomplete fatty acid oxidation (Ghaffari et al., 2019a; Ghaf-

fari et al., 2020; Sadri et al., 2020). In addition, a study by Ghaffari et al. (2021) using micro-

fluidic quantitative PCR found increased gene expression related to hepatic mitochondrial fatty 

acid oxidation and ketogenesis in over-conditioned cows, indicating potential β-oxidation im-

pairment and increased acylcarnitines in circulation.  

Moreover, the presence of fatty liver in cows is often signaled by increased levels of 

liver enzymes and bile components such as bilirubin and BA in the plasma, pointing to an im-

paired hepatic BA extraction rate (West, 1990; Rehage et al., 1999; Mohamed et al., 2004). The 

liver plays a pivotal role in these metabolic processes related to BA metabolism, synthesizing 

BA through both, the classical and alternative synthesis pathways. While the classical pathway 

is confined to the liver, the alternative pathway, involving the 27-side-chain hydroxylation of 

cholesterol by mitochondrial sterol 27-hydroxylase (CYP27A1), is active in various other tis-

sues (Myant and Mitropoulos, 1977; Armstrong and Carey, 1982; Lund et al., 1996). Notably, 

in cases of chronic liver diseases in humans, the alternative pathway frequently dominates over 

the classical pathway (Crosignani et al., 2007). Following their synthesis, primary BA such as 
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cholic acid (CA) and chenodeoxycholic acid (CDCA) undergo conjugation with glycine or tau-

rine, leading to the formation of primary conjugated BA. Primary conjugated BA are then ex-

creted into bile canaliculi via ATP-dependent mechanisms like the bile salt export pump (BSEP; 

ABCB11) or multidrug resistance proteins (MRP2; ABCC2), and stored in the gallbladder 

(Trauner and Boyer, 2003; Ferrebee and Dawson, 2015). Hormonal stimuli, particularly from 

cholecystokinin (CCK), induce the gallbladder to release BA into the intestine, aiding in the 

emulsification of dietary lipids and fat-soluble vitamins (Di Ciaula et al., 2017). The gut micro-

biome further converts these primary conjugated BA into secondary forms. In humans, about 

90-95% of these BA are reabsorbed and returned to the liver via the portal vein, largely through 

passive diffusion or transporters like the Na+-taurocholate co-transporting polypeptide (NTCP; 

Yang et al., 2003; Chiang, 2004). Intriguingly, in patients with non-alcoholic fatty liver disease 

(NAFLD), BA uptake in the liver is diminished compared to healthy individuals, suggesting 

impaired BA reabsorption in fatty liver conditions (Jahnel et al., 2015). 

In addition to their role in emulsifying dietary fats and vitamins, BA act as signaling 

molecules regulating glucose, lipid, and energy metabolism through the activation of specific 

receptors (Lefebvre et al., 2009). Recent targeted metabolomics studies on serum and liver 

(Ghaffari et al., 2024a,b) have revealed significant changes in BA profiles and concentrations 

in healthy dairy cows with normal body condition during the transition period. These changes 

indicate dynamic alterations in BA synthesis, lipid digestion, and absorption. 

With this background, we aimed to investigate liver BA as well as the BA-related en-

zymes, transporters, and receptors in the liver of periparturient dairy cows with different body 

conditions. We hypothesized that differently conditioned cows with varying degrees of lacta-

tion-induced lipolysis would have different liver BA profiles and different expressions of BA-

related genes within the liver. This study will demonstrate that condition-dependent and lacta-

tion-induced lipolysis affects BA metabolism in dairy cows and will provide further insights 

into BA metabolism by analyzing metabolomics and mRNA data simultaneously. 
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MATERIALS AND METHODS 

The animal experiment was conducted at the Educational and Research Centre for An-

imal Husbandry, Hofgut Neumuehle, Muenchweiler a.d. Alsenz, Germany, in compliance with 

European guidelines for the protection of experimental animals. The study was authorized by 

the local animal welfare authority (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Ger-

many [G 14-20-071]). 

 

Basic trial 

A comprehensive description of the experiment has been published previously (Schuh 

et al. 2019). Briefly, the experiment lasted from wk 15 before calving to wk 14 after calving 

and involved 38 German Holstein cows that were divided into two treatment groups based on 

their body condition score (BCS) and backfat thickness (BFT) from the previous lactation. 

Cows were assigned to two treatment groups to achieve either a high (HBCS) or normal 

(NBCS) BCS and BFT until dry-off at wk 7 antepartum (a.p.) (see Figure 1A). To emphasize 

the differences between BCS and BFT, the cows received different diets from wk 15 a.p. to wk 

7 a.p. (HBCS: 7.2 NEL MJ/kg dry matter (DM); NBCS: 6.8 NEL MJ/kg DM). The HBCS group 

(n = 19) had BCS > 3.75 (3.82 ± 0.33) and BFT > 1.4 cm (2.36 ± 0.35 cm), while the NBCS 

group (n = 19) had BCS < 3.5 (3.02 ± 0.24) and BFT < 1.2 cm (0.92 ± 0.21 cm). From drying 

off to calving, all cows received a ration with the same energy density (6.8 MJ NEL/kg DM) for 

ad libitum intake. In addition, the animals received the same total mixed ration (7.2 MJ NEL/kg 

DM) after calving. 
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Figure 1. Schematic representation of the study and the analytical workflow. Timing of treat-

ment and data collection during the study period from wk 15 before the expected calving date 

to wk 12 after calving. (A) The baseline experiment consisted of a high BCS (HBCS) group 

and a normal BCS (NBCS) group as described by Schuh et al. (2019). (B) Summary of the 

procedure for the quantitative PCR (qPCR)-based microfluidic array using the BioMark HD 96 

× 96 system (Fluidigm) and bile acid (BA) measurements. Liver samples were analyzed using 

the BiocratesTM Bile Acids Kit (biocrates life sciences ag, Innsbruck, Austria). IFC = Integrated 

Fluidic Circuit. LC-ESI-MS/MS = Liquid chromatography-electrospray ionization tandem 

mass spectrometry. (C) Schematic representation of the BA synthesis and transport within the 

liver, gallbladder, and the gut. Abbreviations: cholic acid (CA), chenodeoxycholic acid 

(CDCA), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid 

(TCDCA), glycochenodeoxycholic acid (GCDCA), deoxycholic acid (DCA), lithocholic acid 

(LCA), ursodeoxycholic acid (UDCA) taurodeoxycholic acid (TDCA), glycodeoxycholic acid 

(GDCA), taurolithocholic acid (TLCA), glycolitocholic acid (GLCA), glycoursodeoxycholic 

acid (GUDCA), tauroursodeoxycholic acid (TUDCA), α-muricholic acid (αMCA),  β-muricho-

lic acid (βMCA), tauromuricholic acid (sum of alpha and beta) (α, β-TMCA), ω-muricholic 

acid (ωMCA), hyodeoxycholic acid (HDCA), murideoxycholic acid (MDCA). NTCP, 

SLC10A1: Na+-taurocholate cotransporting polypeptide; OATP: Solute Carrier Organic Anion 

Transporter; MRP2, ABCC2: Multidrug Resistance-Associated Protein; BSEP, ABCB11: Bile 

Salt Export Pump. Parts of the Figure were created using BioRender.com (JU260ULEB0). 
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Sampling and BA analyses  

Liver biopsies were collected at late pregnancy in wk 7 a.p., and early lactation in wk 1, 

3, and 12 postpartum (p.p.; see Figure 1A) and were taken by a liver puncture at the 11th and 

12th intercostal space using a 14-gauge biopsy needle (Dispomed Witt oHG, Gelnhausen, Ger-

many). Liver samples were taken before the presentation of fresh feed after the morning milk-

ing. The samples were rinsed with 0.9% NaCl solution, immediately frozen in liquid nitrogen, 

and stored at -80°C until further analysis. 

Liver samples were analyzed using the BiocratesTM Bile Acids Kit (biocrates life sci-

ences ag, Innsbruck, Austria; Figure 1B). This standardized assay includes sample preparation 

and LC-ESI-MS/MS measurements. The assay enabled the simultaneous quantification of 20 

different BA, including CA, CDCA, deoxycholic acid (DCA), glycocholic acid (GCA), gly-

cochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycolithocholic acid 

(GLCA), glycoursodeoxycholic acid (GUDCA), hyodeoxycholic acid (HDCA), lithocholic 

acid (LCA), alpha-muricholic acid (MCA(a)), beta-muricholic acid (MCA(b)), omega-muri-

cholic acid (MCA(o)), taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA), tauro-

deoxycholic acid (TDCA), taurolithocholic acid (TLCA), tauromuricholic acid (sum of alpha 

and beta) (TMCA(a+b)), tauroursodeoxycholic acid (TUDCA), and ursodeoxycholic acid 

(UDCA). Compound identification and quantification were based on scheduled multiple reac-

tion monitoring measurements (sMRM). The method of BiocratesTM Bile Acids kit has been 

proven to be in conformance with the EMEA-Guideline "Guideline on bioanalytical method 

validation (July 21st, 2011”) (European Medicines Agency, 2011), which implies proof of re-

producibility within a given error range. The assay procedures of the Bile Acid kit and the 

results of an inter-laboratory ring trial have been described in detail previously (Pham et al., 

2016; McCreight et al., 2018).  

In brief, frozen bovine liver samples were weighed into homogenization tubes contain-

ing ceramic beads (1.4 mm). For metabolite extraction, 3 μL of ethanol/phosphate buffer (85/15 

v/v; 4 °C) per 1 mg liver was added and homogenized using a Precellys 24 homogenizer 

(PEQLAB Biotechnology GmbH, Germany) 4 × for 20 s at 5,500 rpm and -4 °C, with 30 s 

pause intervals to ensure constant temperature, followed by centrifugation at 10,000 × g for 5 

min. Subsequently, the freshly prepared supernatants were used for quantification of metabo-

lites.  

For assay preparation, 10 µL of internal standard solution in methanol were pipetted 

onto the filter inserts of a 96-well sandwich plate using a Hamilton Microlab STARTM robot 

(Hamilton Bonaduz AG, Bonaduz, Switzerland). After drying the filters for 5 min at RT with 
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an ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.), 10 µL of blank, calibra-

tion standards, quality control samples, and tissue homogenate supernatants were pipetted into 

the wells of the plate and the filters were dried again for 5 min. For extraction of metabolites 

and internal standards, 100 µL methanol were added per well and the plate was shaken for 20 

min at 650 rpm. The metabolite extracts were eluted to the lower deep well plate by a centrifu-

gation step (5 min at 500 × g at RT). The upper filter plate was removed, the extracts were 

diluted with 60 µL ultrapure water, and the plate was shaken for 5 min at 450 rpm and finally 

placed into the cooled auto sampler (10 °C) for LC-MS/MS measurements.  

Liquid chromatography separation was performed using 10 mM ammonium acetate in 

a mixture of ultrapure water/formic acid (99.85/0.15 v/v) as mobile phase A and 10 mM am-

monium acetate in a mixture of methanol/acetonitrile/ultrapure water/formic acid v/v/v/v 

30/65/4.85/0.15 as mobile phase B. The BA were separated on the UHPLC column for the 

BiocratesTM Bile Acids kit (Product No. 91220052120868) combined with the precolumn Se-

curityGuard ULTRA Cartridge C18/XB-C18 (for 2.1 mm ID column, Phenomenex Cat. No. 

AJ0-8782). Mass spectrometric analyses were performed using an API 4000 triple quadrupole 

system (SCIEX Deutschland GmbH, Darmstadt, Germany) equipped with a 1260 series HPLC 

(Agilent Technologies Deutschland GmbH, Böblingen, Germany) and an HTC-xc PAL au-

tosampler (CTC Analytics, Zwingen, Switzerland) and controlled by the Analyst 1.6.2 soft-

ware. Data analysis for quantification of metabolite concentrations and quality assessment was 

performed using the MultiQuant 3.0.1 software (SCIEX) and the MetIDQ™ software package. 

Data correction, including normalization of plate effects, was based on the Biocrates protocol 

for normalization. 

 

Serum samples 

Weekly blood samples were taken from the vena coccygea from wk 7 a.p. until wk 12 

p.p. to analyze BHB and NEFA in serum, as previously described (Schuh et al., 2019, see Sup-

plemental Figures S1 and S2). Furthermore, the amino acids glycine and taurine were previ-

ously measured in serum by liquid chromatography-electrospray ionization tandem mass spec-

trometry measurements by targeted metabolomics using the Absolute IDQ p180 kit (Biocrates 

life sciences ag, Innsbruck, Austria) and have been previously described in detail (Ghaffari et 

al., 2019b). 
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Primer design and quantitative real time PCR 

Extraction of mRNA and cDNA synthesis were performed as previously described 

(Webb et al., 2019). After homogenization of the tissue using the Precellys 24 system 

(VWR/Peqlab Biotechnologie, Erlangen, Germany), total RNA was extracted from the liver 

using TRIzol (Invitrogen/Life Technologies, Carlsbad, CA) according to the manufacturer's 

instructions. Subsequently, the RNA was purified using spin columns according to the Qiagen 

kit protocol (RNeasy Mini Kit, Qiagen GmbH, Hilden, Germany). The concentration and purity 

of total RNA were quantified at 260 nm and 280 nm using the Nanodrop 1000 (peQLab Bio-

technology GmbH, Erlangen, Germany). For cDNA synthesis, a reverse transcription reaction 

of 250 ng total RNA per 20 µL reaction volume was performed using RevertAid Reverse Tran-

scriptase (Thermo Scientific GmbH, Dreieich, Germany) according to the manufacturer’s in-

structions with a Multicycler PTC 200 (MJ Research Inc, Watertown, MA). 

Bovine specific primer pairs used in this study were designed using the National Center 

for Biotechnology Information (NCBI) Primer Blast. In addition, eight reference genes [low-

density lipoprotein receptor-related protein 10 (LRP10), glyceraldehyde-3-phosphate dehydro-

genase (GAPDH), RNA Polymerase II (POLR2A), eukaryotic translation initiation factor 3, 

subunit K (EIF3K), marvel domain containing 1 (MARVELD1), hippocalcin-like 1 (HPCAL1), 

emerin (EMD), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation pro-

tein zeta (YWHAZ)], which have previously been identified as stable in bovine tissues (Saremi 

et al., 2012), were also investigated. Primer pairs and characteristics are shown in Table 1. The 

selected primer pairs had an ideal melting temperature of 59°C and were evaluated by reverse 

transcription quantitative real-time PCR (RT-qPCR) on pooled cDNA samples from the liver 

using a Bio-Rad CFX96 touch real-time PCR detection system (Bio-Rad Europe GmbH, Leip-

zig, Germany). The RT-qPCR procedure consisted of an initial denaturation at 90°C for 3 min 

followed by 40 cycles of amplification at 95°C for 30 sec, 59°C for 60 sec, and 72°C for 60 

sec. For the subsequent RT-qPCR experiments, only primer sets with PCR efficiencies between 

90 and 110% and an R2 > of 0.985 were used. The analysis was performed in accordance with 

the guidelines of the Minimum Information for Publication of Quantitative RT-PCR Experi-

ments (MIQE) (Bustin et al., 2009). 
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Table 1. Characteristics of primers and real-time PCR conditions 

 

 

 1 

Gene Target Sequence 5'- 3'* Primer Ass. No  (bp) 

Enzymes           

CYP7A1   F CTACCCAGACCCGTTGACTT NM_001205677 270 

    R GGTAAAATGCCCAAGCCTGC     

HSD3B7   F CCCAGGAGACACAGAAGACC NM_001034696.1 74 

    R CGGCCATACCTGGCTGC     

CYP8B1   F GGGAAGGCTTGGAGGAGC NM_001076139.2 142 

    R GGAGGTGATGAGGAGCCAGA     

AKR1D1   F ACTCGGAACCTAAATCGACTCC NM_001192358.1 103 

    R TTCTGGTAGAGGTAGGCCCC     

CYP27A1   F GGCTGGAGTAGACACGACAT NM_001083413.2 201 

    R GGGACCACAGGATAGAGACG     

CYP7B1   F ACAATTGGACAGCCTGGTCT XM_025001826.1 220 

    R ACTGGAAAATAGCAGCCCATCT     

CH25H   F ACGCTTGAGGTGGACTTGAG NM_001075243.1 375 

    R AATCTGAGTCACTGCCCAGC     

CYP46A1   F TTTCCTTCTAGGGCACCTCC NM_001076810.1 96 

    R CCGTACTTCTTAGCCCAATCC     

BAAT   F ACCTGCCTTTCAGAGTGGAG XM_015472664.1 90 

   R CTGGCCCAAGGACCTTAGTAT     

STAR  F AAGACCCTCTCTACAGCGAC NM_174189.3 471 

  R CGTGCTCCGCTCTGATGAC   

TSPO  F CCTCGTCGTCGCTGAACTTT NM_175776.2 145 

  R GTACCAGCGGAAACCCTCTC   

Transporter       
  

SLC10A1 NTCP F GCTATGTCACCAAGGGAGGG NM_001046339.1 272 

  R GGGGAAGGTCACATTGAGGA    

SLC10A2 ASBT F TTTCCTTCCAGCGTCAGCAT XM_019971692.1 566 

    R TATACCACGTACACTGCCAGG     

SLC51A1  OST α F CCCAGCTTTTGAGAGCCATC NM_001025333.2 676 

    R GGTGAACAAGCAATCTGCCC     

SLC51B OST β F AGCAGACCAGACGAGTCCT NM_001077867.2 261 

    R TTCCAAGGAGTTGCGTCCTC     

ABCC2 MRP2 F GATGAGGCCACAGTCAATGAG XM_024985942.1 81 

    R CACGTCCTCTGGGATTTCCT     

ABCB1 MDR1 F GCGGCTCTTCAAGACTCAGTG XM_024991021.1 137 

    R AGATCCATCGCGACCTCGG     

ABCB11 BSEP F GCACTGAGTAAGGTTCAGCA NM_001192703.3 241 

    R TCTCAAGTAAGGCATCTTCGG     

ABCB4 MDR3 F TGGGGCCGGACACTCT XM_024991318.1 395 

    R TTAGCTTGGCTGCTGCTGA    

OATP1A2 SLCO1A2 F TCAGAAGAACGACCCTTTATGACT NM_174654.2 198 

  R TGCCAACAGAAACATCTTCAACT   
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Table 1. continued 

 

CYP7A1: Cholesterol 7alpha-Hydroxylase; HSD3B7: 3 Beta-Hydroxysteroid Dehydrogenase 

Type 7 Hydroxylase; CYP8B1: Sterol 12-Alpha-Hydroxylase; AKR1D1: Aldo-Keto Reductase 

Family 1; CYP27A1: Sterol 27-Hydroxylase; CYP7B1: Oxysterol 7-Alpha-Hydroxylase; 

CH25H: Cholesterol 25-Hydroxylase; CYP46A1: Cholesterol 24-Hydroxylase; BAAT: Bile 

Acid Coenzyme A:Amino Acid N-Acyltransferase; STAR: Steroidogenic Acute Regulatory 

 1 

Gene Target 

Sequence 

5'- 3'* Primer Ass.No  (bp) 

Receptors           

NR1H4 FXR F AAGCCCGCTAAAGGTGTACT NM_001034708.2 298 

    R TGATTCTCCCTGCTGATGCT     

GPBAR1 TGR5 F GACCTCAACGGTCAGGACAC NM_175049.3 126 

    R GGCATGCATGACTGTAGGTG     

NR1I2 PXR F GCGGCATGAGAAAAGAGATGAT NM_001103226.1 998 

    R AGCCAGTCAGCCATTTGTG     

S1PR2 S1PR2 F GATCGGCCTAGCCAGCATCA NM_001081541.1 650 

    R AAGATGGTCACCACGCAGAG     

VDR VDR F CACCCGCAGGACCAGAGTC NM_001167932.2 701 

    R GAGAAGCTGGTTGGCTCCAT     

CHRM2 CHRM2 F ACCTCCAGACCGTCAACAAT NM_001080733.1 139 

    R CAAAGGTCACACACCACAGG     

NR2B1 RXRα F CCATTTTCGACAGGGTGCTG NM_001304343.1 171 

    R CCAGGGACGCATAGACCTTC     

NR0B1 SHP1 F TCCTCTTCAACCCTGACGTG XM_002685759.5 173 

    R GCTGGGTGGAATGGACTTGA     

NR1I3 CAR F GAACAACGGAGGCTACACAC NM_001079768.2 197 

    R TGTTGACTGTTCGCCTGAAG     

Reference genes 

  
      

  

YWHAZ   F CCACCTACTCCGGACACAG NM_174814.2 464 

    R GACTGGTCCACAATCCCTTTC     

EIF3K   F CCAGGCCCACCAAGAAGAA NM_001034489 125 

    R TTATACCTTCCAGGAGGTCCATGT     

HPCAL1   F GCCGGCTTCCTTTTGTCTTT  NM_001098964 216 

    R CTAGACCATGCCCTGCTCC      

POLR2A   F CTATCGCAGAACCCACTCACC NM_001206313.2 91 

    R CACAGCGGGAAGGATGTCTG     

GAPDH   F GAAGGTCGGAGTGAACGGATTC NM_001034034.2 153 

    R TTGCCGTGGGTGGAATCATA     

MARVELD1   F TCGGTGCTTTGATGTCTTGC NM_001101262.1 71 

    R CAATCCACGGGCACTTCCTA     

LRP10   F TTTTCCCGAATCCTGCCTGT NM_001100371.1 73 

    R ACAGGCCTCTGTAAGGTGC     

EMD   

  
F GCCAGTACAACATCCCACAC NM_203361.1 155 

  R CGCCGAATCTAAGTCCGAGA     
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Protein; TSPO: Translocator Protein; NTCP, SLC10A1: Na+-taurocholate cotransporting poly-

peptide; SLC10A2, ASBT: Apical Sodium-Dependent Bile Acid Transporter; OSTα, SLC51A1: 

solute carrier family 51 subunit alpha; OSTβ, SLC51B: solute carrier family 51 subunit beta; 

MRP2, ABCC2: Multidrug Resistance-Associated Protein; MDR1, ABCB1: Multidrug Re-

sistance Protein 1; BSEP, ABCB11: Bile Salt Export Pump; MDR3, ABCB4: Multiple Drug 

Resistance 3; OATP1A2, SLCO2A1: Solute Carrier Organic Anion Transporter Family Member 

1A2; FXR, NR1H4: Farnesoid X Receptor; TGR5, GPBAR1: Takeda G protein–coupled recep-

tor 5; NR1I2, PXR: Nuclear Receptor Subfamily 1, Group I, Member 2; S1PR2: Sphingosine-

1-Phosphate Receptor 2; VDR: Vitamin D Receptor; CHRM2: Cholinergic Receptor Muscarinic 

2; RXRα, NR2B1: Retinoid X Receptor Alpha; SHP1: Small Heterodimer Partner; CAR: Con-

stitutive Androstane Receptor; YWHAZ: Tyrosine 3-Monooxygenase/ Tryptophan 5-Monoox-

ygenase Activation Protein Zeta; EIF3K: Eukaryotic Translation Initiation Factor 3 Subunit K; 

HPCAL1: Hippocalcin Like 1; POLR2A: RNA Polymerase II Subunit A; GAPDH: Glyceralde-

hyde-3-Phosphate Dehydrogenase; MARVELD1: MARVEL Domain Containing 1; LRP10: 

LDL Receptor Related Protein 10; EMD: Emerin. 

*F = forward; R = reverse. 

 

RT-qPCR  

The mRNA abundance of 27 genes in liver tissues from 38 cows at four-time points was 

measured by RT-qPCR using the Biomark HD 96.96 system (Fluidigm Co., San Francisco, CA; 

Figure 1B). The details of the technique and measurements were previously described (Alaedin 

et al., 2021). Primers were measured in triplicate using the Biomark HD RT-qPCR system and 

96.96 integrated fluidic circuits (IFC) prepared according to the protocol "Fast Gene Expression 

Analysis Using EvaGreen on Biomark HD for Biomark" by Fluidigm. To remove the technical 

run-to-run variation, three inter-run calibrators were added to each IFC. The Biomark HD real-

time PCR reader was used with the "GE Fast 96 × 96 PCR + Meltv2" protocol for subsequent 

gene expression (GE) analysis. Quality control of the melting and amplification curves was 

performed using Fluidigm Real-Time PCR Analysis Software (V4.5.2). The qBASEplus soft-

ware (V3.3, Biogazelle, Ghent, Belgium) was used for calibration between runs to adjust for 

inter-run variations. The stability of reference genes, including LRP10, GAPDH, POLR2A, 

EIF3K, MARVELD1, HPCAL1, EMD, and YWHAZ, was analyzed by qBASEplus software. The 

geNormplus function was used to determine the optimal number of reference genes for the nor-

malization of the data.  

 

Statistical Analyses 

Statistical analyses of BA concentrations in the liver and mRNA abundance of BA-

associated enzymes, receptors, and transporters were performed using a linear mixed model 

with repeated measures (IBM SPSS version 28). All residuals were tested for normality using 

the Kolmogorov-Smirnov test. Data that did not meet the assumptions for the normality of the 
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residuals were log-transformed (base 10). The model consisted of treatment group, time, and 

interaction of the treatment group and time as the fixed effects and cow as the random effect. 

Time (wk relative to parturition) was classified as repeated measures. The most appropriate 

covariance structure was selected based on the indices of the Akaike information criterion and 

an autoregressive type 1 covariance structure and identity (scaled identity matrix) were selected 

as best fit. Multiple comparisons were performed using the Bonferroni correction. Correlations 

were calculated using the Spearman correlation (IBM SPSS version 28). The correlation coef-

ficients were categorized as very strong (1.0 ≥ r > 0.9), strong (0.9 ≥ r > 0.7), moderate (0.7 ≥ 

r > 0.5), weak (0.5 ≥ r > 0.3), and very weak to zero correlation (r ≤ 0.3). The threshold of 

significance was set at P ≤ 0.05; trends were declared at 0.05 < P ≤ 0.10. 

 

RESULTS 

BA Concentrations in Liver  

A total of 14 BA was detected in the liver. Regardless of the treatment and the time 

point, the conjugated BA GCA was detected with the greatest concentration (53% of the total 

liver BA concentration). The mean percentage of each BA in relation to the total BA measured 

in the bovine liver samples is shown in Figure 2. 

 In the liver, 81% of the total BA concentration consisted of primary or primary conju-

gated BA. In addition, 70% of liver BA concentrations were glycine-conjugated BA (both pri-

mary and secondary BA). The BA CDCA and LCA were detected above the limit of detection 

(LOD); however, as these were single values per time point and treatment, the data could not 

be statistically analyzed. The BA concentrations in the liver from wk 7 a.p. to wk 12 p.p. in 

HBCS and NBCS cows are shown in Figure 3. 

Irrespective of time, CA concentrations tended to be greater in NBCS cows (1.27-fold; 

P = 0.053) and GCA and DCA concentrations were greater (1.14-fold; P = 0.03 and 1.34-fold; 

P = 0.04, respectively) in NBCS cows than in HBCS cows. In addition, HBCS cows had 1.76-

fold (P = 0.03) greater concentrations of MCA(b) than NBCS animals. Irrespective of treat-

ment, CA concentrations at wk 1, 3, and 12 p.p. were 1.4-fold (P = 0.05), 2.11-fold (P < 0.001), 

and 2.12-fold (P < 0.001) greater than before calving. In addition, CA concentrations at wk 1 

p.p. also differed from all other time points, with a 1.4-fold (P = 0.05) greater concentrations 

compared to wk 7 a.p. and 1.53-fold (P = 0.003) and 1.54-fold (P = 0.005) greater concentra-

tions at wk 3 and 12 p.p., respectively. Furthermore, the lowest concentrations were observed 

for GCA a.p., which increased 1.51- (P < 0.001), 1.82- (P < 0.001), and 1.41-fold (P < 0.001) 

at wk 1, 3, and 12 p.p., respectively. The concentrations of GDCA were 1.23- (P = 0.04), 1.40- 
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(P = 0.004), and 1.39-fold (P = 0.002) greater at wk 3 p.p. than at wk 7 a.p., as well as wk 1 

and 12 p.p. The TCDCA concentration was 1.56- (P = 0.002), 2.09- (P < 0.001), and 2.19-fold 

(P < 0.001) greater at wk 1 p.p. than at wk 7 a.p., as well as wk 3 and 12 p.p. Also, the concen-

trations of TMCA(a+b) were 1.46- (P = 0.005), 1.83- (P < 0.001), and 1.54-fold (P < 0.001) 

greater at wk 1 p.p. than wk 7 a.p., wk 3 and 12 p.p., respectively. The concentrations of 

TUDCA were 2.01- (P ≤ 0.001), 2.42- (P < 0.001), and 3.50-fold (P < 0.001), greater at wk 1 

p.p. than at wk 7 a.p., wk 3 and 12 p.p., respectively. Interactions between treatment and time 

were detected for CA, GUDCA MCA(b), and TLCA. The NBCS animals had 2.83- (P = 0.008) 

and 1.41-fold (P = 0.05) greater CA concentrations than the HBCS animals at wk 7 a.p. and wk 

12 p.p. The HBCS animals had 1.47-fold (P = 0.05) greater GUDCA concentrations than the 

NBCS animals at wk 3 p.p. For MCA(b), the HBCS animals had 1.82-fold greater (P = 0.01) 

concentrations than the NBCS animals at wk 3 p.p. At wk 1 p.p., the NBCS animals had 1.31-

fold greater (P = 0.006) concentrations of TLCA than the HBCS cows. 

 

Figure 2. Mean percentage (%) of total bile acids in liver across all timepoints. Abbreviations: 

cholic acid (CA), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid 

(TCDCA), glycochenodeoxycholic acid (GCDCA), deoxycholic acid (DCA), taurodeoxycholic 

acid (TDCA), glycodeoxycholic acid (GDCA), taurolithocholic acid (TLCA), glycolithocholic 

acid (GLCA), glycoursodeoxycholic acid (GUDCA), tauroursodeoxycholic acid (TUDCA), β-

muricholic acid (β- MCA), tauromuricholic acid (sum of alpha and beta) (TMCA(α+β)).  
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Figure 3. 

Figure 3 
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Figure 3 continued. Concentration of bile acids (pmol/mg tissue) in liver from cows with nor-

mal (NBCS) versus high body condition score (HBCS) at wk 7 ante partum (a.p.) and wk 1, 3, 

and 12 post partum (p.p.). Values are given as means ± SEM. Significant differences (P ≤ 0.05) 

between the groups are indicated by asterisks. Cholic acid (CA), glycocholic acid (GCA), tau-

rocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid 

(TCDCA), deoxycholic acid (DCA), glycodeoxycholic acid (GDCA), glycolitocholic acid 

(GLCA), taurodeoxycholic acid (TDCA), taurolitocholic acid (TLCA), glycoursodeoxycholic 

acid (GUDCA), tauroursodeoxycholic acid (TUDCA), β-muricholic acid (MCA(β)), tau-

romuricholic acid (sum of alpha and beta) (TMCA (α+β)). Asterisks indicate significance * P 

< 0.05. 
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mRNA abundance of BA-related enzymes 

The mRNA abundance of enzymes related to BA metabolism in the liver is shown in 

Table 2. Regardless of treatment, cholesterol 7-alpha-hydroxylase (CYP7A1) mRNA abun-

dance was lowest a.p. and increased 1.50- (P = 0.008), 1.30- (P = 0.028) and 1.85-fold (P < 

0.001) at wk 1, 3, and 12 p.p., respectively. Regardless of treatment, translocator protein (TSPO) 

had the highest mRNA abundance 1 wk p.p., being 1.43- (P = 0.03), 1.37- (P = 0.04) and 1.43-

fold (P = 0.001) higher compared to wk 7 a.p., wk 3 and 12 p.p. Regardless of time, the mRNA 

abundance of oxysterol 7-alpha-hydroxylase (CYP7B1) was 1.27-fold (P = 0.01) higher in 

HBCS cows than in NBCS cows, while the mRNA abundance of cholesterol 25-hydroxylase 

(CH25H) was 1.33-fold higher (P = 0.01) in NBCS cows than in HBCS cows. An interaction 

between treatment and time was found for the mRNA abundance of aldo-keto reductase family 

1 (AKR1D1) 7 wk before calving, with HBCS cows having 1.02-fold (P = 0.005) higher values 

than NBCS cows. An interaction between treatment and time was also seen at wk 3 p.p. for 

steroidogenic acute regulatory protein (STAR) with a 2.65-fold higher (P = 0.03) mRNA abun-

dance in HBCS cows. 
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Table 2: mRNA abundance of enzymes related to bile acid metabolism in the liver from cows 

with normal (NBCS) and high body condition score (HBCS) at wk 7 ante partum, as well as 

wk 1, 3 and 12 p.p.. P-values written in bolt are statistically significant (P ≤ 0.05) Data are 

given as mean ± SEM 

 
CYP7A1: Cholesterol 7alpha-Hydroxylase; HSD3B7: 3 Beta-Hydroxysteroid Dehydrogenase 

Type 7 Hydroxylase; CYP8B1: Sterol 12-Alpha-Hydroxylase; AKR1D1: Aldo-Keto Reductase 

Family 1; CYP27A1: Sterol 27-Hydroxylase; CYP7B1: Oxysterol 7-Alpha-Hydroxylase; 

CH25H: Cholesterol 25-Hydroxylase; CYP46A1: Cholesterol 24-Hydroxylase; BAAT: Bile 

Acid Coenzyme A: Amino Acid N-Acyltransferase; TSPO: Translocator Protein; STAR: 

Steroidogenic Acute Regulatory Protein. 

 

BA transporters in the liver  

The mRNA abundance of BA transporters is shown in Table 3. Irrespective of grouping, 

hepatic mRNA abundance of NTCP was increased 1.21-fold (P < 0.003), 1.27-fold (P < 0.001), 

and 1.27-fold (P < 0.001) at wk 1, 3, and 12, respectively, compared to a.p. values. The mRNA 

abundance of MRP2 was 1.28-, 1.35-, and 1.21-fold higher before calving (P ≤ 0.001) than at 

wk 1, 3, and 12 after calving. NBCS cows had a 1.10- (P = 0.004) and 1.04-fold higher (P = 

Group Time Group x Time

HBCS NBCS HBCS NBCS HBCS NBCS HBCS NBCS

mean 1.97 1.45 2.62 2.54 2.12 2.36 3.33 3.02 0.43 < 0.001 0.39

SEM 0.30 0.18 0.35 0.37 0.29 0.28 0.39 0.37

N 18 17 14 17 16 15 17 14

mean 0.83 0.90 1.11 1.43 1.25 1.00 0.99 0.70 0.54 < 0.001 0.11

SEM 0.12 0.09 0.18 0.17 0.19 0.10 0.14 0.07

N 13 15 12 16 11 14 9 13

mean 6.69 6.15 8.57 6.69 6.92 6.27 8.09 7.63 0.30 0.20 0.89

SEM 1.22 0.95 1.38 0.71 0.99 0.86 0.90 1.08

N 7 9 7 8 8 10 6 8

mean 8.48 8.28 7.20 7.64 7.06 8.64 8.41 8.61 0.12 < 0.001 0.005

SEM 0.36 0.45 0.38 0.44 0.37 0.44 0.43 0.36

N 19 17 14 17 16 15 17 14

mean 4.39 3.82 4.49 3.90 3.99 3.98 4.49 4.19 0.07 0.46 0.48

SEM 0.22 0.24 0.33 0.17 0.23 0.23 0.19 0.31

N 19 17 14 17 16 15 17 14

mean 2.69 2.05 2.12 2.01 2.49 1.54 2.52 2.35 0.01 0.25 0.40

SEM 0.20 0.27 0.25 0.26 0.29 0.20 0.31 0.33

N 18 13 12 15 12 15 15 11

mean 1.24 1.32 0.85 1.46 0.94 1.43 0.92 1.05 0.01 0.48 0.23

SEM 0.19 0.21 0.17 0.20 0.15 0.18 0.13 0.18

N 15 15 12 13 15 13 16 11

mean 0.39 0.37 0.31 0.41 0.33 0.26 0.46 0.33 - - -

SEM 0.04 0.04 0.03 0.11 0.04 0.09 0.11 0.04

N 9 4 10 6 10 3 5 5

mean 2.30 2.09 2.25 2.41 2.28 1.79 1.74 1.63 0.27 0.01 0.19

SEM 0.23 0.21 0.34 0.21 0.18 0.24 0.13 0.28

N 17 15 13 14 16 13 15 12

mean 0.32 0.42 0.47 0.56 0.41 0.36 0.38 0.35 0.89 0.002 0.17

SEM 0.04 0.05 0.07 0.11 0.08 0.06 0.09 0.05

N 19 17 13 17 16 15 16 14

mean 0.65 1.14 0.97 0.93 1.26 0.48 0.70 1.09 0.60 0.80 0.02

SEM 0.11 0.32 0.41 0.35 0.26 0.13 0.18 0.23

N 11 9 8 5 10 6 12 9

CYP7A1

HSD3B7

Weeks relative to parturition P -value

-7 1 3 12

BAAT

CH25H

CYP46A1

CYP27A1

CYP7B1

CYP8B1

AKR1D1

TSPO

STAR
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0.04) mRNA abundance of BSEP 7 wk a.p. and at wk 12 p.p. compared to HBCS cows. A 

treatment effect was observed for solute carrier organic anion transporter family member 1A2 

(OATP1A2) at all p.p. time points, with NBCS cows showing 1.29- (P = 0.03), 1.57- (P = 0.02) 

and 1.44-fold (P = 0.04) higher mRNA abundance than HBCS cows. Irrespective of treatment, 

mRNA abundance of BSEP was 1.21- (P = 0.003), 1.33- (P < 0.001), and 1.31-fold (P < 0.001) 

higher at wk 12 p.p. compared to wk 7 a.p., 1 and 3 p.p., respectively. The mRNA abundance 

of solute carrier family 51 subunit beta (OSTβ) tended to be 1.12-fold higher (P = 0.081) in 

HBCS compared to NBCS before calving. 

 

Table 3. mRNA abundance of transporters related to bile acid metabolism in the liver from 

cows with normal (NBCS) and high body condition score (HBCS) at wk 7 ante partum, as well 

as wk 1, 3 and 12 p.p.. P-values written in bolt are statistically significant (P ≤ 0.05) Data are 

given as mean ± SEM. 

 

NTCP, SLC10A1: Na+-taurocholate cotransporting polypeptide; SLC10A2, ASBT: Apical So-

dium-Dependent Bile Acid Transporter; OSTα, SLC51A1: solute carrier family 51 subunit al-

pha; OSTβ, SLC51B: solute carrier family 51 subunit beta; MRP2, ABCC2: Multidrug Re-

sistance-Associated Protein; MDR1, ABCB1: Multidrug Resistance Protein 1; BSEP, ABCB11: 

Bile Salt Export Pump; MDR3, ABCB4: Multiple Drug Resistance 3; OATP1A2, SLCO2A1: 

Solute Carrier Organic Anion Transporter Family Member 1A2. 

 

 

Group Time Group x Time

HBCS NBCS HBCS NBCS HBCS NBCS HBCS NBCS

mean 19.94 18.71 24.83 22.40 23.90 25.41 25.69 23.35 0.06 < 0.001 0.39

SEM 0.93 1.23 1.54 1.77 1.48 1.62 1.16 1.62

N 19 17 14 17 16 15 17 14

mean 2.14 1.91 1.63 1.84 1.56 1.96 2.28 2.34 0.45 0.004 0.08

SEM 0.18 0.17 0.22 0.19 0.21 0.16 0.19 0.32

N 19 17 14 15 16 15 16 14

mean 13.71 13.35 10.38 10.77 9.32 10.70 11.51 10.74 0.87 < 0.001 0.10

SEM 0.60 0.72 0.66 0.68 0.53 0.68 0.58 0.60

N 18 17 14 17 16 15 17 14

mean 0.43 0.49 0.46 0.54 0.49 0.51 0.44 0.43 0.96 0.73 0.87

SEM 0.05 0.09 0.07 0.11 0.07 0.09 0.06 0.09

N
18 17 14 16 16 13 14 13

mean 11.25 10.19 9.49 9.93 9.00 10.84 13.21 12.72 0.02 < 0.001 0.03

SEM 0.71 0.71 0.63 0.68 0.46 0.51 0.64 0.85

N
19 17 14 17 16 15 17 14

mean 1.84 0.39 2.56 2.98 0.83 2.50 0.98 1.62 - - -

SEM 0.52 - 2.26 0.94 0.42 1.62 0.02 0.55

N 3 1 2 4 3 3 2 3

mean 15.18 19.32 14.00 18.15 12.71 19.99 13.87 19.97 0.02 0.58 0.69

SEM 2.01 1.94 2.67 1.45 1.89 2.23 1.90 2.60

N 18 17 14 17 16 15 17 14

OST-β (Gene: 

SLC51B )

Weeks relative to parturition P -value

-7 1 3 12

BSEP  (Gene: 

ABCB11 )

MDR3 (Gene: 

ABCB4 )

OATP (Gene: 

SLCO1A2 )

MDR1  (Gene: 

ABCB1 )

NTCP  (Gene: 

SLC10A1 )

MRP2  (Gene: 

ABCC2 )
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BA receptors in the liver  

The mRNA abundance of BA receptors in the liver is shown in Table 4. An interaction 

between treatment and time was found for constitutive androstane receptor (CAR) (NR1I3) 

mRNA abundance, which was 1.22-fold (P = 0.04) higher in HBCS than in NBCS cows before 

calving. 

 

Table 4. mRNA abundance of receptors related to bile acid metabolism in the liver from cows 

with normal (NBCS) and high body condition score (HBCS) at wk 7 ante partum, as well as 

wk 1, 3 and 12 p.p.. P-values written in bolt are statistically significant (P ≤ 0.05) Data are 

given as mean ± SEM. 

 

FXR, NR1H4: Farnesoid X Receptor; TGR5, GPBAR1: Takeda G protein–coupled receptor 5; 

NR1I2,; S1PR2: Sphingosine-1-Phosphate Receptor 2; VDR: Vitamin D Receptor; CHRM2: 

Cholinergic Receptor Muscarinic 2; RXRα, NR2B1: Retinoid X Receptor Alpha; CAR: Consti-

tutive Androstane Receptor.  

 

Relationship between hepatic BA and blood variables  

At wk 1 p.p., a weak correlation was observed between TMCA(a+b) and NEFA (r = 

0.465; P = 0.006). At wk 12 p.p., NEFA correlated negatively with TMCA(a+b) (r = -0.410; P 

= 0.016). At wk 3 p.p., BHB was associated with TMCA(a+b) (r = 0.556; P = 0.001), GCDCA 

Group Time Group x Time

HBCS NBCS HBCS NBCS HBCS NBCS HBCS NBCS

mean 1.63 1.72 1.82 1.66 1.63 1.63 1.77 1.58 0.42 0.82 0.39

SEM 0.06 0.12 0.13 0.09 0.07 0.07 0.08 0.10

N 19 17 13 17 16 15 17 14

mean 3.25 3.07 3.70 4.38 3.53 3.21 2.85 3.10 0.46 0.02 0.42

SEM 0.28 0.28 0.63 0.43 0.39 0.33 0.32 0.24

N 18 15 13 16 15 15 17 14

mean - - - 0.61 - 1.75 - - - - -

SEM - - - - - -

N - - - 1 - 1 - -

mean - 1.28 1.28 - - - - 0.60 - - -

SEM - 0.91 - - - - -

N - 2 1 - - - - 1

mean 1.95 2.67 1.82 2.40 2.33 2.82 1.75 2.19 0.14 0.20 0.84

SEM 0.36 0.60 0.27 0.36 0.39 0.55 0.24 0.50

N 18 16 12 13 14 14 16 13

mean 1.98 2.04 2.21 2.02 2.18 2.11 2.14 1.96 0.76 0.23 0.76

SEM 0.14 0.17 0.17 0.13 0.11 0.13 0.13 0.13

N 19 17 14 17 16 15 17 14

mean 3.74 3.05 2.86 3.13 3.09 3.25 3.49 3.43 0.51 0.012 0.010

SEM 0.17 0.20 0.18 0.19 0.15 0.20 0.17 0.21

N 19 17 14 17 16 15 17 14

-7 1 3 12

RXR α  (Gene: 

NR2B1 )

CAR (Gene: 

NR1I3)

VDR  (Gene: 

VDR )

CHRM2  (Gene: 

CHRM2 )

FXR (Gene: 

NR1H4 )

TGR5  (Gene: 

GPBAR1 )

S1PR2  (Gene: 

S1PR2 )

Weeks relative to parturition P -value
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(r = 0.358; P = 0.041), MCA(b) (r = 0.493; P = 0.007), TCDCA (r = 0.468, P = 0.006) and 

TUDCA (r = 0.481; P = 0.005). 

Serum glycine concentrations in HBCS and NBCS cows during the study period are 

shown in Figure 4A. Glycine was lowest before calving and increased 1.73-, 2.30-, and 1.57-

fold (P < 0.001) at wk 1, 3, and 12 p.p., respectively, when compared to a.p. values. At wk 3 

p.p., glycine concentrations were 1.30-fold greater (P = 0.005) in HBCS cows compared to 

NBCS cows. At wk 7 a.p., serum glycine concentrations were positively correlated with CA (r 

= 0.475; P = 0.003) and negatively correlated with TCDCA (r = -0.398, P = 0.015), TLCA (r = 

-0.369, P = 0.025), and TUDCA (r = -0.366, P = 0.026). At wk 3 p.p., glycine concentrations 

were positively correlated with GCDCA (r = 0.335, P = 0.043), GDCA (r = 0.450, P = 0.008), 

and GUDCA (r = 0.427, P = 0.015) as well as with all glycine-conjugated BA (r = 0.338, P = 

0.050) at wk 12 p.p. 

The serum taurine concentrations in HBCS and NBCS cows during the study period are 

shown in Figure 4B, which were previously published by Ghaffari et al. (2019b). Taurine con-

centrations were greatest at wk 12 p.p. and were 1.36- (P < 0.001), 1.37- (P < 0.001), and 1.15-

fold (P = 0.04) greater than at wk 7 a.p. and wk 1 and 3 p.p., respectively. At wk 7 a.p., taurine 

concentrations were negatively correlated with GLCA (r = -0.418, P = 0.01) and at wk 1 p.p. 

with CA, GCA, GCDCA, GDCA and GLCA (r = -0.731, P = 0.031; r = -0.451, P = 0.007; r = 

-0.481, P = 0.004; r = 0.445, P = 0.008; r = -0.457, P = 0.007, respectively). At wk 12 p.p., 

taurine concentrations were negatively correlated with GLCA (r = -0.488, P = 0.003) and pos-

itively correlated with TCA, TCDCA, TMCA (a+b) and TUDCA (r = 0.524, P = 0.001; r = 

0.351, P = 0.042, r = 0.417, P = 0.014, r = 0.412, P = 0.015, respectively). Total taurine-conju-

gated BA were positively correlated (r = 0.471, P = 0.005) with taurine concentrations at wk 

12 p.p. 
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[A] 

 

[B] 

 

 

Figure 4. Concentrations of [A] glycine and [B] taurine (µmoL/L) in serum from cows with 

normal (NBCS) versus high body condition score (HBCS) at wk 7 ante partum (a.p.) and wk 1, 

3, and 12 post partum (p.p.). Values are given as means ± SEM. Asterisks indicate significance 

* P < 0.05. The serum taurine concentrations in HBCS and NBCS cows have been published 

previously by Ghaffari et al. (2019b). 

 

DISCUSSION 

In the present study, we analyzed BA profiles in the liver of periparturient dairy cows 

with different body conditions. Besides lactation-induced changes in the BA liver profiles, we 

observed varying mRNA expression of BA synthesizing enzymes in the liver. A large propor-

tion of BA passes the enterohepatic circulation and returns to the liver, where they can subse-

quently be recycled (Hofmann and Hagey, 2008; Chávez-Talavera et al., 2019).  

In ruminants, the hepatic BA were predominantly conjugated by the amino acid glycine 

(Reiter et al., 2021). The increase in serum glycine concentrations in the present study after 
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parturition may indicate an increased mobilization of muscle protein to meet the high nutritional 

requirements in early lactating cows, as previously suggested (Klein et al., 2013). Besides gly-

cine, taurine is the second amino acid, playing a role in BA conjugation (Guo et al., 2018; Reiter 

et al., 2021). Serum glycine concentration was lowest before parturition and increased p.p. 

Therefore, the greater glycine concentrations in HBCS cows compared to NBCS cows at wk 3 

p.p. could indicate an increased mobilization of body reserves from muscle due to the high 

nutritional requirements in early lactation, as previously shown (Meijer et al., 1995). Whether 

BA are conjugated with glycine or taurine depends on the availability of amino acids in the 

liver (Vessey, 1978). Both taurine and glycine can be synthesized endogenously to a certain 

extent (Ueki and Stipanuk, 2009; Alves et al., 2019). Taurine is involved in many physiological 

processes, including the defense against oxidative stress during inflammation (Marcinkiewicz 

and Kontny, 2014). Therefore, the increase in concentrations of taurine-conjugated BA such as 

TCDCA, TMCA(a+b), and TUDCA in the first wk after calving may be due to physiological 

changes during the transition from gestation to lactation. The increase of taurine-conjugated 

BA was associated with increasing taurine availability in the cows studied here, which suffered 

from the metabolic challenges of early lactation (Ghaffari et al., 2019b). In addition, increasing 

serum taurine concentrations after calving were positively correlated with taurine-conjugated 

BA in the liver. However, Ghaffari et al. (2024a) investigated BA in serum and serum taurine 

concentrations in dairy cows from wk 8 before calving to wk 16 of lactation and found more 

taurine-conjugated BA in the dry period than during lactation. 

In the bovine liver, GCA was the most abundant BA, whereas CA and GCA are most 

abundant in other bovine matrices, i.e. serum (Washizu et al., 1991, Dicks et al., 2024), follic-

ular fluid (Blaschka et al., 2019) and adipose tissue (Dicks et al., 2024). In general, it is known 

that BA in the liver and gallbladder are mainly conjugated, while serum contains both conju-

gated and unconjugated BA (Chiang and Ferrell, 2020b). Regardless of sampling time, GCA 

accounted for over 50% of total liver BA, while its precursor molecule CA accounted for 1% 

of total BA. Thus, either the de novo synthesis of CA in the liver appears to be very low, and/or 

CA coming from the portal vein is immediately conjugated in the liver. Furthermore, the low 

concentrations of CDCA in the present study suggest that BA can either be synthesized to a 

very low extent in the liver or is immediately conjugated with glycine or taurine when it enters 

the hepatocytes, as previously postulated (Hofmann, 2009). 

In lactating rats, increases in BA and BA-forming enzymes have been associated with 

increased energy requirements and food intake (Athippozhy et al., 2011; Zhu et al., 2013). 

Therefore, we suggest that increasing concentrations of CA and GCA after parturition may be 
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due to increased dry matter intake (DMI) in early lactating dairy cows (Schuh et al., 2019; 

Supplemental Figure S3). Higher DMI in NBCS cows compared to HBCS cows was associated 

with higher liver BA concentrations such as GCA, DCA, and CA in the present study. In par-

ticular, the increasing concentrations of the primary BA CA could indicate an increased de novo 

BA synthesis in the liver at the beginning of lactation. 

Cows with excessive postpartum lipolysis had higher fecal excretion of secondary BA 

and thus lower concentrations of secondary BA (DCA, LCA) in the blood (Gu et al., 2023). In 

dairy cows and humans, DCA is recycled in the intestine and conjugated to either GDCA or 

TDCA or both and reintroduced into the circulating BA pool (Ridlon and Hylemon, 2006; Hof-

mann et al., 2018). Lower DCA concentrations in the liver of HBCS cows could indicate altered 

synthesis of secondary BA as well as changes in the microbial composition in the gut of dairy 

cows due to excessive lipolysis (Gu et al., 2023). In the present study, the lower liver concen-

trations of taurine-conjugated LCA at wk 1 after calving in HBCS cows may be due to de-

creased synthesis of secondary BA in the intestine following increased lipolysis (Gu et al., 

2023). In addition, greater GUDCA concentrations in HBCS cows than in NBCS cows at wk 3 

p.p. could indicate altered microbial characteristics already detected in the gut of dairy cows 

(Lin et al., 2023). In humans, UDCA, a precursor of GUDCA, has been administered orally to 

treat liver diseases such as cholestatic liver disorders (Trauner and Graziadei, 1999). In addi-

tion, feeding obese mice with UDCA reduced body weight and the lipogenic pathway in the 

liver, suggesting that UDCA is an important regulator of lipid metabolism (Chen et al., 2019).  

BA can be synthesized via either the classical or the alternative synthesis pathway, 

stored in the gallbladder, and released into the intestine to facilitate digestion (Hofmann, 2009). 

The BA synthesized via the classical pathway appears to be more effective in forming mixed 

micelles in the intestine to emulsify fats and fat-soluble vitamins than BA synthesized via the 

alternative pathway (Wang et al., 2003). Consequently, the synthesis of BA via the alternative 

pathway could result in reduced intestinal lipid absorption (Jia et al., 2021). The BA synthesized 

via the alternative pathway, such as UDCA and MCA, have higher hydrophilic properties than 

BA of the classical pathway, resulting in less effective absorption of cholesterol and fat in the 

intestine (Wang et al., 2003). In humans, the alternative pathway of BA synthesis was found to 

be more important during hepatic diseases (Crosignani et al., 2007). In dairy cows, NEB in 

early lactation leading to fatty liver syndrome is characterized by elevated BHB and NEFA 

concentrations (Andrews et al., 1991; Van Den Top et al., 1995). In the current study, the alter-

native synthesis pathway appeared to be favored in HBCS cows, and the positive relationship 
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between BHB and conjugated BA may thus indicate a preference for the alternative pathway 

during periods of metabolic challenge. 

The enzyme CYP7A1 catalyzes the rate-limiting step of BA synthesis (Chiang, 2009). 

Therefore, the higher mRNA abundance of CYP7A1 in bovine liver after calving in the present 

study could lead to an increased hepatic BA pool, as previously suggested (Schlegel et al., 

2012). Increased intestinal BA concentrations could improve energy supply by enhancing the 

absorption of lipids and fat-soluble nutrients from diets, thereby attenuating NEB after parturi-

tion, as shown in rats (Wooton-Kee et al., 2010). In general, negative feedback mechanisms 

regulate hepatic BA synthesis to prevent BA accumulation in the liver (De Aguiar Vallim et al., 

2013). When the BA pool increases, de novo BA synthesis can be suppressed by the binding of 

BA to specific receptors such as the hepatic FXR or by the activation of FGF15 in the intestine, 

resulting in suppressed CYP7A1 expression and thus lower BA formation (Goodwin et al., 

2000; Lu et al., 2000; Chiang, 2015).  

In the alternative pathway, cholesterol is transformed by CYP27A1 in the mitochondria 

(Björkhem, 2002). Cholesterol is transported into the mitochondria by STAR and TSPO (Li et 

al., 2014). In rodent hepatocytes, increased expression of STAR mRNA led to increased oxys-

terol levels and subsequently to increased BA synthesis (Pandak et al., 2002). Although TSPO 

mRNA abundance was not affected by treatment, the increased STAR mRNA abundance in 

HBCS at wk 3 p.p. suggests increased transport of cholesterol into the hepatic mitochondria. In 

addition to the modification of cholesterol by the enzyme CYP27A1, cholesterol can also be 

degraded via tissue-specific hydroxylation pathways at C24 and C25 (Lund et al., 1998; Rus-

sell, 2003). Other enzymatic steps include oxysterol 7α-hydroxylase (CYP7B1; Li et al., 2021), 

which is considered a marker enzyme of the alternative pathway and mainly produces CDCA 

(Chiang, 2017). Therefore, the higher mRNA abundance of CYP7B1 in HBCS cows at wk 3 

p.p. suggests greater importance of the alternative pathway.  

In mice, CH25H is involved in the alternative metabolic pathway (Pandak and Ka-

kiyama, 2019) and is considered a key enzyme in lipid metabolism that inhibits the sterol reg-

ulatory element binding protein (SERBF2; Lund et al., 1998). In the murine liver, increased 

concentrations of CH25H and 25-hydroxycholesterol activated LXRα, which targets CYP7A1, 

upregulates the enterohepatic circulation of BA and protects against high-fat diet-induced he-

patic steatosis (Dong et al., 2022). The higher mRNA abundance of CH25H in NBCS compared 

to HBCS at wk 1 and 3 p.p. supports the role of the alternative pathway in the bovine liver 

analyzed here. 
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The enzyme AKR1D1, which synthesizes CA and CDCA, is involved in both the clas-

sical and the alternative pathway for BA synthesis (Monte et al., 2009). Higher mRNA abun-

dance of AKR1D1 before calving in HBCS cows, accompanied by low concentrations of CA 

and CDCA, suggests another physiological role of AKR1D1 besides BA synthesis, such as the 

reduction of steroid hormones, i.e. corticosterone, cortisol androstenedione, progesterone, and 

17-hydroxyprogesterone in humans (Palermo et al., 2008; Nikolaou et al., 2019).  

Transporters excrete and reabsorb BA after passage through the intestine and portal 

vein, thereby significantly influencing the enterohepatic circulation of BA (Alrefai and Gill, 

2007). As one of the major transport mechanisms for BA uptake from the portal vein into the 

liver, the NTCP transporter has a higher affinity for taurine- and glycine-conjugated BA than 

for unconjugated BA (Hata et al., 2003). The majority of BA reabsorbed from the portal vein 

into the liver are conjugated BA (Kullak-Ublick et al., 2000; Ferrebee and Dawson, 2015). The 

reabsorption of conjugated BA by NTCP from the portal vein at the basolateral membrane of 

the liver supports the maintenance of the enterohepatic circulation (Dawson et al., 2009). Higher 

post-calving mRNA abundance of NTCP compared to pre-calving levels was associated with 

higher p.p. hepatic BA concentrations, suggesting effective BA transport from BA to the liver. 

In addition to BA, steroid and thyroid hormones can also be transported by NA+-dependent 

transport via NTCP (Kullak-Ublick et al., 2000; Da Silva et al., 2013). 

In addition to NA+-dependent import, BA can also enter hepatocytes independently of 

NA+ via the organic anion-transporting polypeptides, including OATP1A2, which are mainly 

responsible for unconjugated BA (Meier, 1995; Trauner and Boyer, 2003; Kullak-Ublick et al., 

2004). Thus, the higher mRNA abundance of OATP1A2 in NBCS cows compared to HBCS 

cows after parturition could indicate an increased influx of unconjugated BA, i.e. CA and DCA, 

into the liver. 

In hepatocytes, BA are mainly excreted into the biliary canaliculi by the transporter 

BSEP (Kullak-Ublick et al., 2004; Ferrebee and Dawson, 2015). Therefore, the higher mRNA 

abundance of BSEP in HBCS cows indicates increased BA excretion in over-conditioned cows. 

In case of accumulation of BA in the liver, BSEP may protect hepatocytes from cytotoxic ef-

fects (Eloranta and Kullak-Ublick, 2005). In ob/ob mice, injection of leptin increased the 

mRNA of genes related to BA synthesis and transport, including BSEP mRNA (Liang and Tall, 

2001). Since over-conditioned cows in the present study showed increased serum leptin con-

centrations after calving (Schuh et al., 2019), we hypothesize that leptin from adipose tissue 

may upregulate BSEP mRNA abundance. 



3 Manuscript I 

 

42 

 

In addition to the excretion of bilirubin conjugates and other organic substances (Gerk 

and Vore, 2002), MRP2 transports divalent BA such as TCA and GCA from hepatocytes 

(Trauner and Boyer, 2003). In rat hepatocytes, mRNA expression of MRP2 was stable during 

gestation and lactation; however, MRP2 protein expression decreased during pregnancy com-

pared to lactation (Cao et al., 2001). The decreasing mRNA abundance of MRP2 after calving 

in HBCS and NBCS cows suggests that MRP2 plays a minor role in BA export compared to 

BSEP. 

In hepatocytes, the OSTα-OSTβ transport complex facilitates the transport of BA and 

steroids into the systemic circulation via an alternative pathway of BA efflux (Wang et al., 

2001; Trauner and Boyer, 2003). The OSTα-OSTβ complex is upregulated to prevent high he-

patic BA concentrations in the liver and to efflux BA into the systemic circulation via an alter-

native export system (Boyer et al., 2006). In the present study, the mRNA abundance of OSTβ 

tended to be higher in HBCS at 7 wk before calving; however, we were unable to quantify 

OSTα mRNA in bovine liver due to methodological issues.  

Nuclear receptors can regulate BA concentrations at the transcriptional level (Goodwin 

et al., 2000). Bile acids have been identified as natural ligands for the nuclear receptor FXR 

(Parks et al., 1999). Since BA concentrations are much higher in the intestine than in the liver, 

it is hypothesized that feedback regulation of BA metabolism via FXR is mainly controlled 

from the gut (Chiang and Ferrell, 2020a). The treatment- and time-independent hepatic expres-

sion of FXR mRNA in the current study suggests the ubiquitous presence of FXR. The mRNA 

abundance of TGR5 is expressed in several tissues, such as gallbladder (highest expression), 

brown adipose tissue, liver, and intestine (Watanabe et al., 2006). In murine hepatocytes, the G 

protein-coupled receptor TGR5 had a higher affinity for secondary than primary BA, i.e. LCA 

> DCA > CDCA > CA (Kawamata et al, 2003; Thomas et al, 2008; Chen et al, 2011; Holter et 

al, 2020). The BCS of cows in the present study did not affect the hepatic mRNA abundance of 

TGR5. However, an increase in TGR5 mRNA after calving could be related to metabolic 

changes in the periparturient period of dairy cows, as TGR5 signaling has been identified in the 

maintenance of glucose homeostasis and insulin sensitivity in mouse models of metabolic dis-

ease (Thomas et al., 2009). 

Activated either through direct ligand binding or indirectly (Li and Wang, 2010), the 

nuclear hormone receptor CAR is involved in the regulation of BA synthesizing enzymes and 

BA transport proteins (Beilke et al., 2009). Although CAR is suggested to be involved in BA 

signaling, it remains unclear whether BA serves as natural ligand for CAR (Kovács et al., 2019). 

Given that CAR plays a role in several physiological processes, including energy metabolism 
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(Konno et al., 2008), triglyceride homeostasis (Maglich et al., 2009), and lipids (Roth et al., 

2008), higher mRNA abundance of CAR in HBCS cows before calving does not necessarily 

indicate a role of CAR in bovine BA metabolism.  

 

CONCLUSIONS 

This study provides new insights into the dynamics of BA metabolism in periparturient 

dairy cows and shows the profound influence of lactation and body condition on BA profiles, 

enzyme activities, and transporter expressions in the bovine liver. The results show a prevalence 

of glycine-conjugated BA in the liver, with marked differences between cows with different 

body conditions. Notable upregulation of enzymes after parturition, particularly CYP7A1, indi-

cates an increased hepatic BA pool. In addition, increased expression of key BA transporters 

such as NTCP and MRP2 were observed in the study, indicating an adaptive response of the 

liver to the physiological changes during this period. The correlations between specific BA and 

blood parameters such as NEFA and BHB highlight the interplay between BA metabolism and 

energy balance in early lactation.  
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SUPPLEMENTAL FIGURES 

 

 

Supplemental Figure S1: ß-hydroxybutyrate (BHB) from 7 wk antepartum (a.p.) to 12 wk 

postpartum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results are given as 

means ± SEM. Significant differences between the groups are indicated with asterisks (*) when 

P ≤ 0.05. Data for BHB are from Schuh et al. (2019). 

 

 

Supplemental Figure S2: Non-esterified fatty acids (NEFA) from 7 wk antepartum (a.p.) to 

12 wk postpartum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results are given 

as means ± SEM. Significant differences between the groups are indicated with asterisks (*) 

when P ≤ 0.05. Data for NEFA are from Schuh et al. (2019). 
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Supplemental Figure S3: Dry matter intake (DMI) from 3 wk antepartum (a.p.) to 14 wk post-

partum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results are given as means 

± SEM. Significant differences between the groups are indicated with asterisks (*) when P ≤ 

0.05. Data for DMI are from Schuh et al. (2019). 
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ABSTRACT 

Besides their lipid-digestive role, bile acids (BA) influence overall energy homeostasis, 

such as glucose and lipid metabolism. We hypothesized that BA along with their receptors, 

regulatory enzymes, and transporters are present in subcutaneous adipose tissue (scAT). In ad-

dition, we hypothesized that their mRNA abundance varies with the body condition of dairy 

cows around calving. Therefore, we analyzed BA in serum and scAT as well as the mRNA 

abundance of BA -related enzymes, transporters, and receptors in scAT during the transition 

period in cows with different body conditions around calving. In a previously established ani-

mal model, 38 German Holstein cows were divided into either a high (HBCS; n = 19) or normal 

BCS (NBCS; n = 19) group based on their body condition score (BCS) and back fat thickness 

(BFT). Cows were fed different diets to achieve the targeted differences in BCS and BFT 

(NBCS: BCS < 3.5, BFT < 1.2 cm; HBCS: BCS > 3.75, BFT > 1.4 cm) until dry-off at 7 wk 

ante partum. During the dry period and subsequent lactation, both groups were fed the same 

diets regarding their demands. Using a targeted metabolomics approach via LC-ESI-MS /MS, 

BA were analyzed in serum and scAT at wk -7, 1, 3, and 12 relative to parturition. In serum, 15 

BA (cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic 

acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid (TCDCA), 

deoxycholic acid (DCA), lithocholic acid (LCA), glycodeoxycholic acid (GDCA), glyco-

lithocholic acid (GLCA), taurodeoxycholic acid (TDCA), taurolithocholic acid (TLCA), β-

muricholic acid (MCA(b)), tauromuricholic acid (sum of alpha and beta) (TMCA (a+b)), gly-

coursodeoxycholic acid (GUDCA)) were observed, whereas in scAT 7 BA (CA, GCA, TCA, 

GCDCA, TCDCA, GDCA, TDCA) were detected. In serum and scAT samples, the primary 

BA CA and its conjugate GCA were predominantly detected. Increasing serum concentrations 

of CA, CDCA, TCA, GCA, GCDCA, DCA, and MCA(b) with the onset of lactation might be 

related to the increasing DMI after parturition. Furthermore, serum concentrations of CA, 

CDCA, GCA, DCA, GCDCA, TCA, LCA, and GDCA were lower in HBCS cows compared 

with NBCS cows, concomitant with increased lipolysis in HBCS cows. The correlation between 

CA in serum and scAT may point to the transport of CA across cell membranes. Overall, the 

findings of the present study suggest a potential role of BA in lipid metabolism depending on 

the body condition of periparturient dairy cows. 

 

 

Key words: adipose tissue, bile acids, body condition, periparturient period  
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INTRODUCTION 

Bile acids (BA) are formed in the liver from cholesterol and are synthesized by various 

enzymatic processes within the classical/neutral or alternative/acidic synthetic pathway (Rus-

sell, 2003; Ma and Patti, 2014; Shapiro et al., 2018). Although BA classically support the di-

gestion and absorption of nutrients such as lipids and lipophilic vitamins from the intestine, 

they also act as signaling molecules and can influence glucose and lipid metabolism (Ferrebee 

and Dawson, 2015; Shapiro et al., 2018). 

The primary BA cholic acid (CA) and chenodeoxycholic acid (CDCA) are synthesized in the 

liver and conjugated by the amino acids glycine or taurine to form the conjugated primary BA 

(Armstrong and Carey, 1982). After feed intake, the entero-hormone cholecystokinin (CCK) 

stimulates gallbladder contraction, and the BA are released into the intestine where they are 

deconjugated and 7α-dehydroxylated by intestinal bacteria. Finally, the resulting secondary BA 

(Di Ciaula et al., 2017) can be conjugated in the intestine by either glycine or taurine (Chiang, 

2004). The BA biosynthetic pathway is shown in Figure 1. 

In humans, the majority of BA (90-95% in total) return to the liver at the terminal ilium 

via the portal vein; however, BA that are not reabsorbed are excreted via feces (Yang et al., 

2003; Chiang, 2004; Chen et al., 2019a; Chen et al., 2019b). Moreover, a small portion of BA 

enters the systemic circulation (Hofmann, 2009). In addition to enterohepatic circulation, BA 

have also been detected in tissues such as the kidney and heart in rats (Swann et al., 2011), 

bovine follicular fluid (Blaschka et al., 2019), and human adipose tissue (AT; Jäntti et al., 2014). 

Furthermore, a variety of different BA transporters have been described to control BA flux, 

either by absorption and enterohepatic circulation or by excretion and removal from the body 

(Dawson et al., 2009). 

In mice and humans, BA activate both, nuclear and membrane receptors (Ticho et al., 

2019). The farnesoid X receptor (FXR) is considered to be a metabolic feedback sensor for the 

formation of BA by inhibiting the transcription of BA forming enzymes (Chiang, 2009). More-

over, the Takeda G protein-coupled receptor 5 (TGR5) is expressed in many murine tissues, 

such as placenta, gallbladder, liver, intestine, and brown AT (Maruyama et al., 2002; Maruyama 

et al., 2006). Via TGR5, BA stimulate energy expenditure in brown AT and skeletal muscle of 

mice (Watanabe et al., 2006). Furthermore, several membrane and nuclear receptors such as the 

nuclear receptors vitamin D receptor (VDR), pregnane X receptor (PXR, NR1I2), and consti-

tutive androstane receptor (CAR, NR1I3), G protein-coupled sphingosine-1-phosphates recep-

tor 2 (S1PR2), can be activated by BA and indirectly affect BA homeostasis (Kliewer et al., 

1998; Timsit and Negishi, 2007; Wan and Sheng, 2018; Studer et al., 2012). 
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In the periparturient period, lipid mobilization, mainly from AT, can affect the metabo-

lism of dairy cows (Drackley et al., 2005). Cows with higher pre-calving body condition mobi-

lize more body reserves after parturition and are therefore more prone to metabolic disorders 

compared to thinner cows (Bernabucci et al., 2005). Increased lipid mobilization from AT, 

which is associated with an increase in free fatty acids (FFA) in the blood, may increase the 

risk of metabolic diseases such as ketosis and fatty liver (Adewuyi et al., 2005). Dairy cows 

suffering from the fatty liver syndrome had increased plasma concentrations of bile compo-

nents, i.e., bilirubin (West, 1990) and BA (Rehage et al., 1999), indicating a decrease in bile 

flow. In dairy cows, plasma BA profiles were affected after excessive lipolysis around calving 

(Gu et al., 2023); however, BA profiles in bovine scAT have not yet been investigated so far. 

In the present study, we aimed to investigate BA in serum and scAT by metabolomics approach, 

as well as the mRNA abundance of BA -related enzymes, receptors, and transporters by quan-

titative reverse transcription real-time PCR (RT -qPCR) in scAT from dairy cows with different 

body condition. We hypothesized that (1) cows with different pre-calving body condition and 

thus different levels of lactation-induced lipolysis would differ in their BA profiles and (2) BA 

as well as the mRNA abundances of BA receptors, transporters, and regulatory enzymes are 

present in subcutaneous AT (scAT) of dairy cows. By investigating variables involved in BA 

metabolism within bovine scAT, we aimed to further elucidate lipid metabolism in the peripar-

turient period of dairy cows. 
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Figure 5: Bile acid synthesis pathway in liver and intestine. *: BA-related enzymes are ubiq-

uitously expressed and not limited to the hepatic alternative pathway. Involved enzymes: 

CYP7A1: Cholesterol 7alpha-Hydroxylase; HSD3B7: 3 Beta-Hydroxysteroid Dehydrogenase 

Type 7; CYP8B1: Sterol 12-Alpha-Hydroxylase; AKR1D1: Aldo-Keto Reductase Family 1 

Member D1; AKR1C4: Aldo-Keto Reductase Family 1 Member C4; CYP27A1: Sterol 27-Hy-

droxylase; CYP7B1: Oxysterol 7-Alpha-Hydroxylase; CH25H: Cholesterol 25-Hydrox-

ylase; CYP46A1: Cholesterol 24-Hydroxylase; CYP39A1: Cytochrome P450 Family 39 Sub-

family A Member 1; BAAT: Bile Acid Coenzyme A: Amino Acid N-Acyltransferase; BSH: 

Bile Salt Hydrolase Transporters: NTCP, SLC10A1: Na+-taurocholate cotransporting polypep-

tide; SLC10A2, ASBT: Apical Sodium-Dependent Bile Acid Transporter; OSTα, SLC51A1: 

solute carrier family 51 subunit alpha; OSTβ, SLC51B: solute carrier family 51 subunit beta; 

MRP2, ABCC2: Multidrug Resistance-Associated Protein; BSEP, ABCB11: Bile Salt Export 

Pump; MDR3, ABCB4: Multiple Drug Resistance 3; OATP: Solute Carrier Organic Anion 

Transporter. Receptors: FXR, NR1H4: Farnesoid X Receptor; TGR5, GPBAR1: Takeda G pro-

tein–coupled receptor 5; RXRα, NR2B1: Retinoid X Receptor Alpha; SHP: Small Heterodimer 

Partner. Bile acids: cholic acid (CA). chenodeoxycholic acid (CDCA), taurocholic acid (TCA), 

glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), glycochenodeoxycholic acid 

(GCDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA) 

taurodeoxycholic acid (TDCA), glycodeoxycholic acid (GDCA), taurolithocholic acid 

(TLCA), glycolitocholic acid (GLCA), glycoursodeoxycholic acid (GUDCA), tauroursodeox-

ycholic acid (TUDCA), α-muricholic acid (αMCA),  β-muricholic acid (βMCA), tauromuri-

cholic acid (sum of alpha and beta) (α, β-TMCA), ω-muricholic acid (ωMCA), hyodeoxycholic 

acid (HDCA), murideoxycholic acid (MDCA). The Figure was created using BioRender.com 

(SL25XUBGY1). 
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MATERIALS AND METHODS 

Basic trial 

The animal experiment was performed at the Educational and Research Centre for An-

imal Husbandry, Hofgut Neumuehle, Muenchweiler a.d. Alsenz, Germany. The trial was con-

ducted following European regulations for the protection of experimental animals and was ap-

proved by the local authority for animal welfare affairs (Landesuntersuchungsamt Rheinland-

Pfalz, Koblenz, Germany [G 14-20-071]). The experiment was described previously in detail 

(Schuh et al., 2019). In brief, the experimental period started fifteen wk before calving and 

lasted until fourteen wk after calving. In total, 38 multiparous German Holstein cows were pre-

selected based on their body condition score (BCS) and backfat thickness (BFT) of the previous 

lactation and divided into two groups (HBCS; n = 19 and NBCS; n = 19). They received dif-

ferent feeding regimens from 15 wk ante partum (a.p.) to 7 wk a.p. (HBCS: 7.2 NEL MJ/kg of 

dry matter (DM)); NBCS: 6.8 NEL MJ/kg of DM) to reach the targeted BCS and BFT at dry-

off (HBCS: BCS > 3.75 and BFT > 1.4 cm; NBCS: BCS < 3.5 and BFT < 1.2 cm). During the 

dry period and subsequent lactation, both groups received identical diets. Performance data 

(BCS, BFT, EB, and DMI) were reported earlier (Schuh et al., 2019) and are presented herein 

as Supplemental Figures S1- S4. 

 

Sampling and BA analyses  

Blood and tissue samples were collected at wk 7 a.p., as well as wk 1, 3, and 12 post-

partum (p.p.). Blood samples were collected from the coccygeal vein after morning milking and 

before the new presentation of fresh feed. The scAT taken from the tail head region were rinsed 

with 0.9% NaCl solution and immediately frozen in liquid nitrogen. Samples were stored at -

80°C until analysis. 

Bile acids in serum and scAT have been quantified using the AbsoluteIDQTM Bile Ac-

ids kit (biocrates life sciences ag, Innsbruck, Austria). This standardized assay includes sample 

preparation and LC-ESI-MS/MS measurements. The assay allows simultaneous quantification 

of 20 BA, including CA, CDCA, deoxycholic acid (DCA), glycocholic acid (GCA), gly-

cochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycolithocholic acid 

(GLCA), glycoursodeoxycholic acid (GUDCA), hyodeoxycholic acid (HDCA), lithocholic 

acid (LCA), alpha-muricholic acid (MCA(a)), beta-muricholic acid (MCA(b)), omega-muri-

cholic acid (MCA(o)), taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA), tauro-

deoxycholic acid (TDCA), taurolithocholic acid (TLCA), tauromuricholic acid (sum of alpha 

and beta) (TMCA(a+b)), tauroursodeoxycholic acid (TUDCA), and ursodeoxycholic acid 
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(UDCA). Identification and quantification of the compounds were based on scheduled multiple 

reaction measurements (sMRM). The method of the Bile Acids kit has been proven to be in 

conformance with the EMEA "Guideline on bioanalytical method validation” (EMEA, 2011), 

which implies proof of reproducibility within a given error range. The complete assay proce-

dures of the Bile Acid kit for the analysis of plasma or serum and the results of an inter-labor-

atory ring-trial have been described in detail previously (Pham et al., 2016; McCreight et al., 

2018). 

Serum samples were applied directly to the assay, whereas scAT samples were applied 

as homogenate supernatant. The homogenization and extraction protocol have been developed 

specifically for this application. Samples from scAT have been prepared as follows: frozen 

bovine AT samples were weighted into homogenization tubes with ceramic beads (1.4 mm). 

To ensure comparable extraction efficiency and to provide stable pH values, 12 μL of a cooled 

(4 °C) mixture of ethanol/phosphate buffer (70/30 v/v) was added per 1 mg frozen AT. These 

tissue/buffer samples were homogenized using a Precellys24 homogenizer (PEQLAB Biotech-

nology GmbH, Germany) 4 × for 20 sec at 5,500 rpm and 10-15 °C, with 30 sec pause intervals 

to ensure constant temperature. After sample centrifugation at 10,000 × g for 5 min, superna-

tants were used for metabolite quantification. Internal standards were included in the Bile Acid 

kit and were added after homogenization of scAT. To prepare the assay, 10 µL of the internal 

standard solution in methanol was pipetted onto the filter inserts of the 96-well sandwich plate. 

After drying the filters for 5 min at RT in a stream of nitrogen, 10 µL of blank, calibration 

standards, quality control samples, or plasma samples, or 40 μL of the freshly prepared tissue 

homogenate were pipetted into the respective wells and the filters were dried again for 5 min. 

The tissue homogenates (40 µL) were applied in two steps of 20 µL each, with a separate drying 

step in between to avoid sample leakage from the filter insert. For extraction of metabolites and 

internal standards, 100 µL of methanol was added and the plate was shaken at 650 rpm for 20 

min. The metabolite extracts were eluted into the lower deep-well plate by a centrifugation step 

(5 min at 500 × g at RT). The upper filter plate was removed, the extracts were diluted with 60 

µL ultrapure water, and the plate was shaken at 450 rpm for 5 min and placed in the cooled 

auto-sampler (10 °C) for LC-MS /MS measurements. 

The LC -separation was performed using 10 mM ammonium acetate in a mixture of 

ultrapure water/formic acid v/v 99.85/0.15 as mobile phase A and 10 mM ammonium acetate 

in a mixture of methanol/acetonitrile/ ultrapure water/formic acid v/v/v/v 30/65/4.85/0.15 as 

mobile phase B. The BA were separated on the UHPLC column for the Bile Acids kit (Product 

No. 91220052120868) combined with the precolumn SecurityGuard ULTRA Cartridge 
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C18/XB-C18 (for 2.1 mm ID column, Phenomenex Cat. No. AJ0-8782). All solvents used for 

sample preparation and measurement were of HPLC grade. Samples were processed using a 

Hamilton Microlab STARTM robot (Hamilton Bonaduz AG, Bonaduz, Switzerland), an Ul-

travap nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.), and standard laboratory 

equipment. Mass spectrometric analyzes were performed using an API 4000 triple quadrupole 

system (SCIEX Deutschland GmbH, Darmstadt, Germany) equipped with a 1260 series HPLC 

(Agilent Technologies Deutschland GmbH, Böblingen, Germany) and an HTC-xc PAL auto-

sampler (CTC Analytics, Zwingen, Switzerland) controlled by Analyst 1.6.2 software. Data 

evaluation for quantification of metabolite concentrations and quality assessment were per-

formed using MultiQuant 3.0.1 (Sciex) software and the MetIDQ™ software package, which 

is an integral part of the Bile Acids kit. Metabolite concentrations were calculated using internal 

standards and reported in µM. 

 

Primer Design and Quantitative real-time PCR 

Bovine-specific primer pairs were designed using the National Center for Biotechnol-

ogy Information (NCBI) primer blast. In addition, eight reference genes (low-density lipopro-

tein receptor-related protein 10 (LRP10), glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), RNA polymerase II (POLR2A), eukaryotic translation initiation factor 3, subunit K 

(EIF3K), marvel domain containing 1 (MARVELD1), hippocalcin-like 1 (HPCAL1), emerin 

(EMD), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta 

(YWHAZ)), previously shown to be stable in bovine AT (Saremi et al., 2012), were measured. 

The primer pairs used in this study are presented in Table 1. Specific primers were selected 

based on an optimal melting temperature of 59°C. Using a Bio-Rad CFX cycler each primer 

pair was tested by reverse transcription quantitative real-time PCR (RT-qPCR) in pooled cDNA 

samples from scAT. Primers were tested according to the following RT-qPCR protocol: 3 min 

at 90°C initial denaturation and 40 cycles of amplification (95°C for 30 sec, 59°C for 60 sec, 

and 72°C for 60 sec).  

 

 

 

 

 

 

 



4 Manuscript II 

 

65 

 

Table 1: Characteristics of primers and real-time qPCR conditions 

 

 

 

Gene Target 

Sequence 

5'- 3'* Primer Ass.No  (bp) 

Enzymes           

CYP7A1   F CTACCCAGACCCGTTGACTT NM_001205677 270 

    R GGTAAAATGCCCAAGCCTGC     

HSD3B7   F CCCAGGAGACACAGAAGACC NM_001034696.1 74 

    R CGGCCATACCTGGCTGC     

CYP8B1   F GGGAAGGCTTGGAGGAGC NM_001076139.2 142 

    R GGAGGTGATGAGGAGCCAGA     

AKR1D1   F ACTCGGAACCTAAATCGACTCC NM_001192358.1 103 

    R TTCTGGTAGAGGTAGGCCCC     

CYP27A1   F GGCTGGAGTAGACACGACAT NM_001083413.2 201 

    R GGGACCACAGGATAGAGACG     

CYP7B1   F ACAATTGGACAGCCTGGTCT XM_025001826.1 220 

    R ACTGGAAAATAGCAGCCCATCT     

CH25H   F ACGCTTGAGGTGGACTTGAG NM_001075243.1 375 

    R AATCTGAGTCACTGCCCAGC     

CYP46A1   F TTTCCTTCTAGGGCACCTCC NM_001076810.1 96 

    R CCGTACTTCTTAGCCCAATCC     

BAAT   F ACCTGCCTTTCAGAGTGGAG XM_015472664.1 90 

    R CTGGCCCAAGGACCTTAGTAT     

Transporter           

SLC10A1 NTCP F GCTATGTCACCAAGGGAGGG NM_001046339.1 272 

    R GGGGAAGGTCACATTGAGGA     

SLC10A2 ASBT F TTTCCTTCCAGCGTCAGCAT XM_019971692.1 566 

    R TATACCACGTACACTGCCAGG     

SLC51A1  OSTα F CCCAGCTTTTGAGAGCCATC NM_001025333.2 676 

    R GGTGAACAAGCAATCTGCCC     

SLC51B OSTβ F AGCAGACCAGACGAGTCCT NM_001077867.2 261 

    R TTCCAAGGAGTTGCGTCCTC     

ABCC2 MRP2 F GATGAGGCCACAGTCAATGAG XM_024985942.1 81 

    R CACGTCCTCTGGGATTTCCT     

ABCB1 MDR1 F GCGGCTCTTCAAGACTCAGTG XM_024991021.1 137 

    R AGATCCATCGCGACCTCGG     

ABCB11 BSEP F GCACTGAGTAAGGTTCAGCA NM_001192703.3 241 

    R TCTCAAGTAAGGCATCTTCGG     

ABCB4 MDR3 F TGGGGCCGGACACTCT XM_024991318.1 395 

    R TTAGCTTGGCTGCTGCTGA     
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CYP7A1: Cholesterol 7alpha-Hydroxylase; HSD3B7: 3 Beta-Hydroxysteroid Dehydrogenase 

Type 7; CYP8B1: Sterol 12-Alpha-Hydroxylase; AKR1D1: Aldo-Keto Reductase Family 1 

Member D1; CYP27A1: Sterol 27-Hydroxylase; CYP7B1: Oxysterol CH25H: Cholesterol 25-

Hydroxylase; CYP46A1: Cholesterol 24-Hydroxylase; BAAT: Bile Acid Coenzyme A:Amino 

Acid N-Acyltransferase; NTCP, SLC10A1: Na+-taurocholate cotransporting polypeptide; 

SLC10A2, ASBT: Apical Sodium-Dependent Bile Acid Transporter; 

Table 1: Continued 

 

 

 

Gene Target 

Sequence 

5'- 3'* Primer Ass.No  (bp) 

Receptors           

NR1H4 FXR F AAGCCCGCTAAAGGTGTACT NM_001034708.2 298 

    R TGATTCTCCCTGCTGATGCT     

GPBAR1 TGR5 F GACCTCAACGGTCAGGACAC NM_175049.3 126 

    R GGCATGCATGACTGTAGGTG     

NR1I2 PXR F GCGGCATGAGAAAAGAGATGAT NM_001103226.1 998 

    R AGCCAGTCAGCCATTTGTG     

S1PR2 S1PR2 F GATCGGCCTAGCCAGCATCA NM_001081541.1 650 

    R AAGATGGTCACCACGCAGAG     

VDR VDR F CACCCGCAGGACCAGAGTC NM_001167932.2 701 

    R GAGAAGCTGGTTGGCTCCAT     

CHRM2 CHRM2 F ACCTCCAGACCGTCAACAAT NM_001080733.1 139 

    R CAAAGGTCACACACCACAGG     

NR2B1 RXRα F CCATTTTCGACAGGGTGCTG NM_001304343.1 171 

    R CCAGGGACGCATAGACCTTC     

SHP1 SHP1 F TCCTCTTCAACCCTGACGTG XM_002685759.5 173 

    R GCTGGGTGGAATGGACTTGA     

NR1I3 CAR F GAACAACGGAGGCTACACAC NM_001079768.2 197 

    R TGTTGACTGTTCGCCTGAAG     

Reference genes 
  

      
  

YWHAZ   F CCACCTACTCCGGACACAG NM_174814.2 464 

    R GACTGGTCCACAATCCCTTTC     

EIF3K   F CCAGGCCCACCAAGAAGAA NM_001034489 125 

    R TTATACCTTCCAGGAGGTCCATGT     

HPCAL1   F GCCGGCTTCCTTTTGTCTTT  NM_001098964 216 

    R CTAGACCATGCCCTGCTCC      

POLR2A   F CTATCGCAGAACCCACTCACC NM_001206313.2 91 

    R CACAGCGGGAAGGATGTCTG     

GAPDH   F GAAGGTCGGAGTGAACGGATTC NM_001034034.2 153 

    R TTGCCGTGGGTGGAATCATA     

MARVELD1   F TCGGTGCTTTGATGTCTTGC NM_001101262.1 71 

    R CAATCCACGGGCACTTCCTA     

LRP10   F TTTTCCCGAATCCTGCCTGT NM_001100371.1 73 

    R ACAGGCCTCTGTAAGGTGC     

EMD   

  
F GCCAGTACAACATCCCACAC NM_203361.1 155 

  R CGCCGAATCTAAGTCCGAGA     
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OSTα, SLC51A1: solute carrier family 51 subunit alpha; OSTβ, SLC51B: solute carrier family 

51 subunit beta; MRP2, ABCC2: Multidrug Resistance-Associated Protein; MDR1, ABCB1: 

Multidrug Resistance Protein 1; BSEP, ABCB11: Bile Salt Export Pump; MDR3, ABCB4: Mul-

tiple Drug Resistance 3; FXR, NR1H4: Farnesoid X Receptor; TGR5, GPBAR1: Takeda G pro-

tein–coupled receptor 5; NR1I2, PXR: Nuclear Receptor Subfamily 1, Group I, Member 2; 

S1PR2: Sphingosine-1-Phosphate Receptor 2; VDR: Vitamin D Receptor; CHRM2: Cholinergic 

Receptor Muscarinic 2; RXRα, NR2B1: Retinoid X Receptor Alpha; SHP1: Small Heterodimer 

Partner; CAR: Constitutive Androstane Receptor; YWHAZ: Tyrosine 3-Monooxygenase/Tryp-

tophan 5-Monooxygenase Activation Protein Zeta; EIF3K: Eukaryotic Translation Initiation 

Factor 3 Subunit K; HPCAL1: Hippocalcin Like 1; POLR2A: RNA Polymerase II Subunit A; 

GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase; MARVELD1: MARVEL Domain Con-

taining 1; LRP10: LDL Receptor Related Protein 10; EMD: Emerin. 

*F = forward; R = reverse. 

 

RT-qPCR Measurements  

The mRNA abundance of 26 target genes and 8 reference genes in scAT from 38 cows 

at four time points was measured by RT -qPCR using the Biomark HD 96.96 system (Fluidigm 

Co., San Francisco, CA, USA), as described in detail previously (Alaedin et al., 2021). In brief, 

samples were measured in triplicates using the Biomark HD RT-qPCR system and 96.96 inte-

grated fluidic circuits (IFCs). Preparation of the IFCs was performed according to the protocol 

“Fast Gene Expression Analysis Using EvaGreen on Biomark HD or Biomark” from Fluidigm. 

To compensate for variations between IFCs, three inter-run calibrators were added to each IFC. 

For subsequent gene expression (GE) analysis, the Biomark HD real-time PCR reader was used 

with the protocol “GE Fast 96 × 96 PCR + Meltv2”. 

Quality control of the melting and amplification curves was performed using Fluidigm 

real-time PCR Analysis Software (V4.5.2). Inter-run calibration was performed using 

qBASEplus software (V3.3, Biogazelle, Ghent, Belgium). Differences in the quantification cy-

cle between the inter-run calibrators of the runs were compared, and corrections or calibration 

factors were determined to compensate for the differences between runs. Three reference genes 

were determined by GeNormPlus (included in qBASEplus) to serve as optimal numbers for 

normalization, i.e., EIF3K, LRP10, and POLR2A). Reference genes were determined as de-

scribed in detail by Alaedin et al. (2021). The normalized values were used for statistical anal-

ysis of the mRNA data. 
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Statistical Analyses 

Statistical analyses of BA concentrations in blood and scAT as well as mRNA abun-

dance of BA-associated enzymes, receptors, and transporters were performed using a linear 

mixed model with repeated measures (IBM SPSS version 28). The model consisted of group, 

time, and interaction of group and time as fixed effects and cow as the random effect. Time was 

classified as repeated measures. Different variance-covariance structures were tested to deter-

mine the most appropriate variance-covariance structure. An autoregressive type 1 covariance 

structure and an identity covariance structure (scaled identity matrix) were selected as the best 

fit based on the Akaike and Bayesian information criteria. Bonferroni´ correction was used to 

perform multiple comparisons. All residuals were tested for normality using the Kolmogorov-

Smirnov test. Data that did not meet the assumptions of normality of residuals had to be log-

transformed (base 10). Data was back-transformed for the Figures and Tables (mean ± SEM). 

Relationships between BA in serum and scAT were calculated by Spearman correlation using 

non-transformed data and represented by a heat map generated using JASP 0.17.1 (JASP Team, 

2019). Correlations between mRNA abundance of BA -related enzymes, transporters, and re-

ceptors were calculated only for the data analyzed under the mixed model. Correlation coeffi-

cients were considered as very strong (1.0 ≥ r ≥ 0.9), strong (0.9 > r ≥ 0.7), moderate (0.7 > r ≥ 

0.5), weak (0.5 > r ≥ 0.3), very weak to zero correlation (r < 0.3). The threshold of significance 

was set at P ≤ 0.05; trends were declared at 0.05 < P ≤ 0.10. 

 

 

RESULTS 

BA concentrations in Serum  

A total of 6 primary and 9 secondary BA, including their conjugates, were evaluated in 

serum. The mean percentage of each BA relative to the total BA in serum is shown in Figure 

2A. In serum, CA and its conjugated form GCA account for the largest proportion of the total 

BA (approximately 65%). The concentrations of BA in serum from wk 7 a.p. to wk 12 p.p. are 

shown in Figure 3. The concentration of serum BA changed over time, except for GLCA. For 

CA, CDCA, TCA, GCA, GCDCA, DCA and MCA(b) concentrations were greater after calving 

than a.p.. Regardless of time, concentrations of CA, CDCA, GCA, DCA, GCDCA, TCA, LCA, 

and GDCA were greater (P ≤ 0.05) in NBCS cows than in HBCS cows. 
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BA concentrations in scAT 

A total of 5 primary and 2 secondary BA were detected in scAT. The average percent-

ages of each BA relative to the total BA in scAT are shown in Figure 2B. In scAT, CA and its 

conjugated form GCA had the highest proportion of the total BA. The concentrations of BA in 

scAT from wk 7 a.p. to wk 12 p.p. are presented in Figure 4. The concentrations of CA, GDCA 

and GCA were lower (P ≤ 0.001) before calving and at wk 1 p.p. compared to wk 3 and 12 p.p. 

In addition, GCDCA concentrations a.p. were lower compared to p.p. concentrations (P ≤ 

0.001). Across all time points, higher concentrations of GCA (1.46-fold, P ≤ 0.001), GCDCA 

(1.40-fold, P ≤ 0.001), GDCA (1.63-fold, P ≤ 0.001), TDCA (1.19-fold, P = 0.02), and TCDCA 

(1.35-fold, P = 0.01) were measured in NBCS cows compared with HBCS cows. At wk 3 p.p., 

an interaction (P = 0.01) between group and time was observed in CA concentrations, with 

NBCS cows showing 2.4 times higher (P ≤ 0.001) CA levels than HBCS cows, indicating a 

time-specific differential response between the groups. 

 

[A]        [B] 

Figure 2: Mean percentage (%) of total bile acids in serum [A] and subcutaneous adipose tissue 

[B]. Bile acids: cholic acid (CA). chenodeoxycholic acid (CDCA), taurocholic acid (TCA), 

glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), glycochenodeoxycholic acid 

(GCDCA), deoxycholic acid (DCA), lithocholic acid (LCA), taurodeoxycholic acid (TDCA), 

glycodeoxycholic acid (GDCA), taurolithocholic acid (TLCA), glycolitocholic acid (GLCA), 

glycoursodeoxycholic acid (GUDCA), tauroursodeoxycholic acid (TUDCA), muricholic acid 

b (MCA beta). 
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Figure 3 

 

 

Bile acids in Serum  
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Figure 3 continued: Concentration of bile acids (µmol/L) in serum from cows with normal 

(NBCS) versus high body condition score (HBCS) at wk -7 ante partum (a.p.) and wk 1, 3, and 

12 postpartum (p.p.). Values are given as means ± SEM. Significant differences (P ≤ 0.05) 

between the groups are indicated by asterisks.: cholic acid (CA), chenodeoxycholic acid 

(CDCA), glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid 

(GCDCA), taurochenodeoxycholic acid (TCDCA), deoxycholic acid (DCA), lithocholic acid 

(LCA), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), taurodeoxycholic acid 

(TDCA), taurolithocholic acid (TLCA), β-muricholic acid (MCA(b)), tauromuricholic acid 

(sum of alpha and beta) (TMCA (a+b)), glycoursodeoxycholic acid (GUDCA). 
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Bile acids in subcutaneous adipose tissue 

 

Figure 4: Concentration of bile acids (pmol/ng) in scAT from cows with normal (NBCS) versus 

high body condition score (HBCS) at wk -7 ante partum (a.p.) and wk 1, 3 and 12 postpartum 

(p.p.). Values are given as means ± SEM. Significant differences (P ≤ 0.05) between the groups 

are indicated by asterisks. Bile acids: cholic acid (CA), glycocholic acid (GCA), taurocholic 

acid (TCA), glycodeoxycholic acid (GDCA), taurodeoxycholic acid (TDCA), glycochenodeox-

ycholic acid (GCDCA), taurochenodeoxycholic acid (TCDCA). 
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Relationship between BA in Serum and scAT 

The correlations between BA in serum and scAT are shown in Figure 5. Glycine-con-

jugated BA in serum and scAT were weakly correlated, with correlation coefficients ranging 

from r = 0.447 to 0.498. Significant positive correlations between taurine-conjugated BA in 

serum and scAT ranged from r = 0.276 to 0.356. Serum CA was positively associated with CA 

as well as with glycine-conjugated BA (i.e., GCA, GCDCA, and GDCA; P ≤ 0.001) in scAT. 

 

Figure 5: Correlations between serum (S) BA and scAT (AT) BA independent of group and 

time. Asterisks indicate significant differences: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. Bile 

acids: cholic acid (CA), glycocholic acid (GCA), taurocholic acid (TCA), glycodeoxycholic 

acid (GDCA), taurodeoxycholic acid (TDCA), glycochenodeoxycholic acid (GCDCA), tau-

rochenodeoxycholic acid (TCDCA).  
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mRNA abundance of BA-related Enzymes in scAT 

The mRNA abundance of enzymes related to the BA metabolism in scAT are shown in 

Table 2. In HBCS cows, the mRNA abundance of 3 beta-hydroxysteroid dehydrogenase type 7 

(HSD3B7) was 1.53-fold higher at 3 wk p.p. (P ≤ 0.001) and 1.41-fold higher at 12 wk p.p. (P 

= 0.02) compared to NBCS cows. An interaction between group and time was observed for the 

mRNA abundance of cholesterol-24S-hydroxylase (CYP46A1; P = 0.04), with HBCS cows 

having a 2.16-fold higher (P = 0.01) mRNA abundance than in NBCS cows at wk 7 a.p.. Fur-

thermore, in HBCS cows, the mRNA abundance of CYP46A1 was higher before calving com-

pared to wk 3 p.p. (3.76-fold; P ≤ 0.001).  

 

Table 2: mRNA abundance of enzymes related to bile acid metabolism in scAT from cows 

with normal (NBCS) and high body condition score (HBCS) at wk 7 a.p., as well as wk 1, 3 

and 12 p.p.. Statistically significant P-values are given in bolt (P ≤ 0.05). 

CYP7A1: Cholesterol 7alpha-Hydroxylase; CYP27A1: Sterol 27-Hydroxylase; HSD3B7: 3 

Beta-Hydroxysteroid Dehydrogenase Type 7; CYP8B1: Sterol 12-Alpha-Hydroxylase; 

AKR1D1: Aldo-Keto Reductase Family 1 Member D1; CH25H: Cholesterol 25-Hydroxylase; 

CYP46A1: Cholesterol 24-Hydroxylase; BAAT: Bile Acid Coenzyme A: Amino Acid N-Acyl-

transferase; CYP7B1: Oxysterol 7-Alpha-Hydroxylase. 

 

 

 

Group Time
Group x 

Time

HBCS NBCS HBCS NBCS HBCS NBCS HBCS NBCS

mean 0.002 0.001 0.000 0.001 0.002 0.009 - 0.001 - - -
SEM 0.001 0.000 0.007 -

N 3 4 1 1 1 2 - 1
mean 1.034 1.212 1.384 0.906 1.440 1.463 1.951 1.384 0.008 0.009 0.067
SEM 0.092 0.268 0.161 0.107 0.191 0.216 0.273 0.181

N 19 17 18 19 17 16 16 11
mean 0.159 0.269 0.545 0.483 0.262 0.434 0.555 0.423 0.250 < 0.001 0.268
SEM 0.036 0.067 0.125 0.133 0.046 0.079 0.178 0.055

N 11 13 12 10 12 8 10 7
mean 0.010 0.004 0.002 0.008 0.002 0.012 0.001 - - - -
SEM 0.004 0.001 0.000 0.004 0.000 0.010 0.000 -

N 8 13 2 8 6 6 2 -
mean 0.376 0.341 0.335 0.340 0.342 0.318 0.336 0.392 0.832 0.714 0.643
SEM 0.035 0.024 0.032 0.029 0.027 0.029 0.026 0.050

N 19 17 19 19 17 16 17 11
mean 0.388 0.287 0.589 0.471 0.795 0.684 0.943 0.648 0.309 < 0.001 0.897
SEM 0.089 0.043 0.108 0.067 0.182 0.078 0.224 0.142

N 12 12 11 10 8 4 7 4
mean 0.785 0.894 1.742 3.359 1.570 2.324 2.250 2.668 0.038 < 0.001 0.982
SEM 0.194 0.153 0.409 1.472 0.447 0.483 0.423 0.563

N 18 16 15 17 16 15 17 11
mean 4.282 1.986 1.878 2.194 1.138 1.301 1.473 1.163 0.363 < 0.001 0.039
SEM 0.653 0.287 0.425 0.354 0.216 0.205 0.207 0.238

N 19 17 17 18 15 11 14 10
mean 0.737 0.541 0.672 0.772 0.711 0.566 0.488 0.719 0.903 0.779 0.095
SEM 0.112 0.070 0.115 0.119 0.090 0.081 0.082 0.114

N 14 15 15 17 13 11 12 10

P -value

CYP7A1

-7 1 3 12

Weeks relative to parturition

CYP46A1

BAAT

CYP7B1

CH25H

AKR1D1

CYP27A1

HSD3B7

CYP8B1
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Relationship between BA and the mRNA abundance of BA-related Enzymes in scAT 

Before parturition, the mRNA abundance of sterol 27-hydroxylase (CYP27A1) was neg-

atively correlated to GDCA (r = -0.34, P ≤ 0.05). Moreover, negative correlations were ob-

served between the mRNA abundance of CYP46A1 and GDCA at wk 7 a.p. (r = -0.34, P ≤ 

0.05), as well as TCDCA (r = -0.42, P ≤ 0.05) and TDCA (r = -0.43, P ≤ 0.05), both at wk 1 

p.p.. At wk 1 p.p., the mRNA abundance of cholesterol 25-hydroxylase (CH25H) was positively 

associated with GCDCA (r = 0.37, P ≤ 0.05), TCDCA (r = 0.59, P ≤ 0.01), TDCA (r = 0.49, P 

≤ 0.05) and between the mRNA abundance of CH25H and GCDCA at wk 12 p.p. (r = 0.42, P 

≤ 0.05). 

 

BA Transporters in scAT 

The mRNA abundance of BA transporters in scAT is shown in Table 3. The mRNA 

abundance of the apical sodium-dependent BA transporter (ASBT/ SLC10A2) and the organic 

solute transporters (OST-α/ SLC51A1) were not detectable in scAT. Irrespective of grouping, 

the mRNA abundances of the Na+-taurocholate co-transporting polypeptide (NTCP/ SLC10A1) 

were higher a.p. when compared to wk 1, 3, and 12 p.p. (3.71-, 4.81- and 3.82-fold, respectively; 

all P ≤ 0.001). An interaction between group and time was observed for the mRNA abundance 

of NTCP, with 2.52-fold higher mRNA abundance in HBCS compared to NBCS cows before 

calving (P ≤ 0.001).  
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Table 3: mRNA abundance of transporters related to bile acid metabolism in scAT from cows 

with normal (NBCS) and high body condition score (HBCS) at wk 7 ante partum, as well as 

wk 1, 3 and 12 p.p.. Statistically significant P-values are given in bolt (P ≤ 0.05). 

NTCP, SLC10A1: Na+-taurocholate cotransporting polypeptide; OSTβ, SLC51B: solute carrier 

family 51 subunit beta; MRP2, ABCC2: Multidrug Resistance-Associated Protein; MDR1, 

ABCB1: Multidrug Resistance Protein 1; BSEP, ABCB11: Bile Salt Export Pump; MDR3, 

ABCB4: Multiple Drug Resistance 3. 

 

Relationship between BA and the mRNA abundance of BA-related Transporters in scAT 

The mRNA abundance of NTCP and GDCA were negatively correlated at wk 7 a.p. (r 

= - 0.36; P ≤ 0.05). Regarding wk 1 p.p., the mRNA abundance of the bile salt export pump 

(BSEP) was negatively correlated to all scAT BA except CA [GCA (r = - 0.62; P ≤ 0.05), 

GCDCA (r = - 0.61; P ≤ 0.01), GDCA (r = - 0.55; P ≤ 0.05), TCA (r = - 0.80; P ≤ 0.01), TCDCA 

(r = - 0.78; P ≤ 0.01) and TDCA (r = -0.67; P ≤ 0.01)]. Furthermore, the mRNA abundance of 

the multidrug resistance protein 1 (MDR1) was negatively correlated to the glycine-conjugated 

BA GCA (r = - 0.34; P ≤ 0.05) and GCDCA (r = - 0.46; P ≤ 0.01) at wk 1 p.p.. In addition, the 

mRNA abundance of MDR1 was negatively correlated with CA (r = - 0.54; P ≤ 0.01), GCA (r 

= - 0.52; P ≤ 0.01), GDCA (r = - 0.55; P ≤ 0.001) and TDCA (r = - 0.50; P ≤ 0.001) at wk 3 

p.p., whereas at wk 12 p.p., the mRNA abundance of MDR1 was negatively correlated to CA 

(r = - 0.51; P ≤ 0.01), GCA (r = - 0.67; P ≤ 0.001), GCDCA (r = - 0.58; P ≤ 0.01), GDCA (r = 

- 0.63; P ≤ 0.001), TCA (r = - 0.52; P ≤ 0.01), TCDCA (r = - 0.49; P ≤ 0.05), TDCA (r = - 0.48; 

P ≤ 0.05) in scAT.  

 

Group Time
Group x 

Time

HBCS NBCS HBCS NBCS HBCS NBCS HBCS NBCS

mean 0.136 0.054 0.016 0.033 0.011 0.034 0.018 0.034 0.297 < 0.001 < 0.001
SEM 0.019 0.015 0.004 0.007 0.001 0.021 0.003 0.012

N 18 17 11 15 13 8 12 10

mean 0.005 - 0.003 0.024 - 0.014 - 0.009 - - -
SEM 0.003 - 0.017 - - 0.001

N 3 - 1 3 - 1 - 3

mean 0.008 0.005 0.006 0.010 0.003 0.015 0.006 0.005 - - -
SEM 0.003 0.002 0.002 0.005 0.000 0.011 0.001 0.004

N 8 10 6 6 6 5 5 2

mean 1.637 1.997 2.097 2.171 2.419 2.045 1.658 1.830 0.838 0.001 0.135
SEM 0.153 0.289 0.198 0.202 0.239 0.227 0.255 0.207

N 19 17 19 19 17 16 16 11

mean 0.012 0.009 0.013 0.014 0.012 0.021 0.017 0.013 0.930 0.229 0.104
SEM 0.003 0.001 0.003 0.003 0.004 0.007 0.005 0.001

N 9 14 6 12 10 7 5 4

mean 1.399 0.869 1.615 1.419 - 1.612 1.523 2.614 - - -
SEM 0.690 0.464 1.161 1.204 - - 1.378 1.262

N 3 3 3 3 - 1 3 2

Weeks relative to parturition

-7 1 3 12

NTCP 

(Gene: 

SLC10A1 )

OST-β 

(Gene: 

SLC51B )

MRP2 

(Gene: 

ABCC2 )

MDR1 

(Gene: 

ABCB1 )

BSEP 

(Gene: 

ABCB11 )

MDR3 

(Gene: 

ABCB4 )

P -value
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BA Receptors in scAT 

The mRNA abundance of BA receptors in scAT are shown in Table 4. The mRNA 

abundance of TGR5 and cholinergic receptor muscarinic 2 (CHRM2) were up to 3.70- and 4.13-

fold higher (P ≤ 0.001) at wk 3 p.p. compared to a.p.. Moreover, the mRNA abundance of the 

retinoid X receptor alpha (RXRα; NR2B1) was highest at wk 12 p.p. compared to all other time-

points (P ≤ 0.001). Regarding group differences, the mRNA abundance of S1PR2 was 2.12-

fold (P = 0.04) higher in NBCS cows than in HBCS cows.  

 

Table 4: mRNA abundance of receptors related to bile acid metabolism in scAT from cows 

with normal (NBCS) and high body condition score (HBCS) at wk 7 ante partum, as well as 

wk 1, 3 and 12 p.p.. Statistically significant P-values are given in bolt (P ≤ 0.05).  

FXR, NR1H4: Farnesoid X Receptor; TGR5, GPBAR1: Takeda G protein–coupled receptor 5; 

VDR: Vitamin D Receptor; S1PR2: Sphingosine-1-Phosphate Receptor 2; CHRM2: Cholinergic 

Receptor Muscarinic 2; RXRα, NR2B1: Retinoid X Receptor Alpha; CAR: Constitutive An-

drostane Receptor. 

 

 

 

 

 

Group Time
Group x 

Time

HBCS NBCS HBCS NBCS HBCS NBCS HBCS NBCS

mean 0.001 0.006 - 0.004 0.0059 - - - - - -
SEM 0.000 0.003 - - - - - -

N 3 3 - 1 1 - - -

mean 0.102 0.113 0.312 0.285 0.374 0.419 0.273 0.340 0.462 < 0.001 0.908
SEM 0.032 0.026 0.090 0.051 0.089 0.114 0.060 0.165

N 11 10 11 12 9 10 9 3

mean 1.038 2.580 0.954 1.462 0.778 1.277 1.008 0.683 0.039 0.276 0.121
SEM 0.338 1.085 0.254 0.492 0.114 0.170 0.246 0.051

N 6 5 7 7 5 10 5 4

mean 1.636 0.931 2.372 1.977 0.818 0.995 1.074 1.572 - - -
SEM 0.459 0.256 1.449 0.455 0.176 0.995 0.251 1.249

N 5 8 4 6 5 4 6 2

mean 0.486 0.484 0.825 1.596 1.916 2.101 1.781 1.598 0.103 < 0.001 0.713
SEM 0.123 0.119 0.112 0.617 0.975 0.619 0.413 0.516

N 16 13 16 15 15 14 16 11

mean 0.584 0.599 0.583 0.550 0.498 0.563 0.751 0.741 0.664 < 0.001 0.621
SEM 0.047 0.038 0.028 0.026 0.030 0.049 0.032 0.042

N 19 17 19 19 17 16 16 11

mean 0.007 0.003 0.005 0.006 0.002 0.017 - - - - -
SEM 0.003 0.001 0.002 0.001 0.011 - -

N 7 9 3 4 1 3 - -

-7 1 3 12

CAR 

(Gene: 

NR1I3 )

CHRM2 

(Gene: 

CHRM2 )

RXR α 
(Gene: 

NR2B1 )

S1PR2 

(Gene: 

S1PR2 )

VDR 

(Gene: 

VDR )

FXR 

(Gene: 

NR1H4 )

TGR5 

(Gene: 

GPBAR1 )

P -valueWeeks relative to parturition
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DISCUSSION 

Synthesized from cholesterol, BA are known to affect metabolic processes such as lipid 

and glucose metabolism as well as general energy homeostasis (Shapiro et al., 2018). In the 

periparturient period, the metabolism of high-yielding dairy cows is challenged by calving and 

the onset of lactation. Over-conditioned cows, mobilizing more body reserves, are more sus-

ceptible to metabolic disorders compared to thinner cows (Bernabucci et al., 2005). In the pre-

sent study, increased mobilization of AT in HBCS cows was indicated by higher NEFA con-

centrations as well as the loss of BFT and BCS in HBCS cows compared to NBCS cows after 

parturition (Schuh et al., 2019, see Supplemental Figures S1, S2, S5). Excessive lipolysis in 

over-conditioned dairy cows, knowingly affected plasma BA and activated secondary BA bio-

synthesis in the gut microbiome (Gu et al., 2023). In our study, cows with different body con-

dition around calving had different serum and scAT BA profiles, with increasing serum BA 

concentrations at the onset of lactation. In the current study, CA and GCA were the dominant 

BA in serum and scAT, as reported in ruminants (Sheriha et al., 1968; Washizu et al., 1991; 

Reiter et al., 2021). Postprandial stimuli are known to affect BA synthesis in the liver, BA 

circulation in enterohepatic tissues, and serum (LaRusso et al., 1978; Hofmann, 1999). Herein 

we assumed, that higher p.p. BA concentrations in serum might be related to increasing DMI 

after parturition. However, the relationship between serum BA and DMI (an increase in DMI 

was previously reported by Schuh et al. (2019), see Supplemental Figure S3) was limited to a 

few BA at wk 1 p.p. (i.e., TCA, TCDCA, TMCA, GDCA, and TDCA; data not shown). In dairy 

cows, most serum levels of BA change during the dry period and lactation (Ghaffari et al., 

2023). The increasing metabolic demand for milk synthesis associated with dietary changes 

resulted in increased BA synthesis to facilitate digestion and absorption of dietary lipids (Ghaf-

fari et al., 2023). In humans, the body mass index (BMI) was positively correlated to BA con-

centrations in the fasting period (Prinz et al., 2015) and negatively correlated with postprandial 

BA concentrations (Brufau et al., 2010). Moreover, obesity suppressed the normal postprandial 

increase in circulating BA (Ahmad et al., 2013; Haeusler et al., 2016). Given that excessive 

lipolysis seven days after calving altered the gut microbiota in transition cows, leading to 

changes in the composition of secondary BA (Gu et al., 2023), it may suggest that the lower 

serum BA concentrations in HBCS cows compared to NBCS cows might be due to higher fecal 

BA excretion.  
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In the present study, we observed 7 BA in scAT using a targeted metabolomics approach 

via LC-ESI-MS /MS that allowed detection of 20 BA. Since both primary and secondary BA 

as well as their conjugates were present in scAT, we assume that BA can be taken up from 

circulation into scAT. The trend toward lower concentrations of BA in scAT before calving and 

increasing concentrations after the onset of lactation were consistent with higher circulating BA 

concentrations after parturition. However, the weak to moderate correlations between BA in 

serum and in scAT were not adequate to indicate clear bioactive mechanisms. In bovine estrus, 

very strong relationships between serum and follicular fluid CA (up to r = 0.97; P ≤ 0.001) 

indicated predominant diffusion of circulating CA across the follicular membrane (Blaschka et 

al., 2019). The relationship was stronger for glycine-conjugated BA than for taurine-conjugated 

BA. The moderate correlation between CA in serum and scAT may indicate the ability of CA 

to cross cell membranes by passive diffusion, whereas transport of conjugated BA into cells 

depends on specific transporters (Hofmann, 1999). Since secondary BA are synthesized exclu-

sively by the gut microbiome (Chiang, 2015), de novo synthesis in scAT seems unlikely. Fur-

thermore, the tissue-specific conjugation patterns of BA as well as the specific expression of 

BA transporters suggest selective uptake of conjugated BA in peripheral tissues such as serum, 

kidney, and heart (Swann et al., 2011). The mRNA abundance of BA transporters, i.e., the 

mRNA abundance of NTCP and BSEP, being mainly responsible for the import and export of 

BA within the liver (Trauner and Boyer, 2003), were detectable in scAT from dairy cows in the 

present study. In mouse adipocyte cell culture, expression of BSEP mRNA and export of BA 

from cells to the circulation via BSEP appeared to be essential for preventing cytotoxic accu-

mulation of BA within cells (Schmid et al., 2019). Whether this also applies for AT from dairy 

cows has not been investigated so far. However, the negative moderate correlations at wk 1 p.p. 

with all conjugated BA, led to the assumption, that BA might be eliminated from scAT through 

BSEP. As an adaptive regulation of BA entering into hepatocytes, NTCP gene expression is 

associated with the total hepatic BA concentration, thyroid and steroid hormones, cytokines, or 

injury in the liver (Geier et al., 2007; Alrefai and Gill, 2007; Dawson et al., 2009). Furthermore, 

BA indirectly regulate the expression of NTCP and BSEP, through the activation of signaling 

cascades via FXR, small heterodimer partner (SHP), and RXRα in humans and rodents (Anwer, 

2004). As known in rats, FXR can bind BA, inducing the expression of SHP, and thus activating 

RXRα, which finally initiates NTCP (Jung et al., 2004). In the present study, the FXR mRNA 

abundance was below the limit of detection (LOD); however, the absence of mRNA does not 

definitely rule out FXR activity in general. Previous research, employing proteomic methods, 

has demonstrated substantial FXR pathway activity in AT in late-pregnant dairy cows (Zachut 
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et al., 2017). Since MDR1 does not exclusively transport BA (Klaassen and Aleksunes, 2010), 

the negative correlation between MDR1 mRNA and BA after calving should be considered 

cautiously. MDR1 is responsible for the excretion of BA (Ayewoh and Swaan, 2022), organic 

cations, phospholipids (Anwer, 2004) and cholesterol from the liver into the bile (Honig et al., 

2003). Therefore, transporters may depend on factors other than BA concentration in scAT. 

The mRNA of key enzymes such as cholesterol 7α-hydroxylase (CYP7A1; Chiang and Ferrell, 

2020) and aldo-keto reductase family 1 member D1 (AKR1D1; Chiang, 2004), being relevant 

for the de novo synthesis within the classical pathway, could only be detected in few samples 

below the LOD. However, oxysterol-7α -hydroxylase (CYP7B1), which is a marker enzyme of 

the alternative BA synthesis pathway (Chiang, 2017), was detected in scAT. Moreover, the 

weak to moderate negative correlations between the mRNA abundance of enzymes involved in 

the alternative pathway (CYP27A1, CH25H, and CYP46A1) and conjugated BA, point to a pre-

dominance of the alternative pathway. However, CDCA, the main BA of the alternative path-

way, was detected below the LOD in scAT. Therefore, increasing mRNA abundance of 

CYP7B1 throughout the experimental period, might rather control cellular oxysterol concentra-

tions as recently reported in murine liver (Pandak and Kakiyama, 2019). Also, the cholesterol 

hydroxylase enzymes mRNA, CH25H, CYP27A1, and CYP46A1, generating oxysterols (Björk-

hem et al., 2002), have been detected in bovine scAT in this study. Oxysterols are precursors 

of BA (Russell, 2000), influencing lipid metabolism through activating the liver X receptor 

(LXR), which increases lipid synthesis by an induced expression of genes, such as sterol ele-

ment binding protein-1c (SREBP-1c), FA synthase (FAS), stearoyl-CoA desaturase 1 (SCD-1), 

and acetyl-CoA carboxylase 1 (ACC-1) (Joseph et al., 2002; Talukdar and Hillgartner, 2006). 

In 3T3-L1 preadipocytes, oxysterol-forming enzymes (CYP27A1, CYP7B1) as well as oxys-

terols themselves, were synthesized (Li et al., 2014). Therefore, oxysterols might serve as an 

alternative way to metabolize cholesterol and thus protect adipocytes against cholesterol over-

load (Li et al., 2014). Catalysis of cholesterol to the oxysterol 25-hydroxycholesterol, CH25H, 

has been previously studied in obese humans, where weight reduction downregulated CH25H 

mRNA in the visceral AT (Dankel et al., 2010). In our study, HBCS cows that exhibited greater 

postpartum BCS loss than NBCS cows (Schuh et al., 2019) had lower mRNA abundance of 

CH25H than NBCS cows, suggesting a specific role for CH25H in lipid metabolism at least 

during periods of lipid mobilization. The higher mRNA abundance of CYP46A1 in scAT of 

HBCS cows 7 wk before calving may indicate higher cholesterol degradation as described in 

human embryonic kidney 293 cells (Mast et al., 2003). The consistent abundance of CYP27A1 

mRNA across all time-points irrespective of body condition, suggests that this enzyme is of 
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permanent importance in scAT. In addition to the formation of BA, CYP27A1 is also involved 

in the formation of oxysterol 27-hydroxycholesterol, an oxysterol, is formed de novo in adipo-

cytes to protect against cholesterol overload (Li et al., 2014). Recently, the formation of oxys-

terols via the enzyme CYP27A1 was discussed in context with steroid biosynthesis in scAT of 

cows from the same study (Schuh et al., 2022). 

Within the classical and alternative pathway of BA synthesis, HSD3B7 is involved in 

the production of CA and CDCA (Chiang, 2013; Li and Dawson, 2019); however, HSD3B7 

serves as an important enzyme for the synthesis of oxysterols (Griffiths and Wang, 2019). Due 

to the lack of correlations between HSD3B7 and BA, we assumed that HSD3B7 may be in-

volved in oxysterol rather than BA synthesis in scAT. In addition, the higher mRNA abundance 

of HSD3B7 in HBCS animals may point to the formation of oxysterols, which affects lipid 

metabolism (Russell, 2000). In addition, the present study detected the mRNA abundance of 

BAAT in scAT, the enzyme that conjugates BA in the liver (Falany et al., 1994). As postulated 

earlier, conjugation could protect adipocytes from cytotoxic BA overload (Monte et al., 2009). 

In the present study, mRNA from both transmembrane (i.e., TGR5, CHRM2, and S1PR2) and 

nuclear BA receptors (RXRα) were present in scAT. The TGR5 is activated by BA concentra-

tions (LCA, TLCA, CA, DCA, and CDCA) in the nanomolar range (Prawitt and Staels, 2010). 

In this study, CA could serve as the major ligand for TGR5 in scAT. Since ligand activation in 

AT and liver induced lipolysis and energy expenditure in mice and humans (Chávez-Talavera 

et al., 2017; Velazquez-Villegas et al., 2018), the upregulation of mRNA abundance of TGR5 

with the onset of lactation could point to similar effects in dairy cows. Furthermore, although 

the mRNA abundance of CHRM2 was detected in scAT, the concentrations of secondary BA 

DCA and LCA binding to CHRM2 (Evangelakos et al., 2021) in the present study were below 

the LOD. Moreover, albeit GCDCA, GDCA, and TCDCA are not considered as potential ago-

nists for CHRM2, the positive correlation between CHRM2 and these BA may suggest a role 

as ligand precursor molecules (Xie et al., 2021). The S1PR2, a ubiquitously expressed G pro-

tein-coupled receptor (Adada et al., 2013) that serves as a receptor for sphingosine-1-phosphate 

and conjugated BA in liver (Wan and Sheng, 2018), was detected herein in scAT. As a ligand 

for S1PR2, TCA could regulate glucose and lipid metabolism as suggested in rodent hepato-

cytes (Studer et al., 2012). The nuclear receptor RXRα, being present in scAT, forms a hetero-

dimer with FXR in the liver, which is activated via BA and subsequently prevents BA synthesis 

via inhibiting CYP7A1 (Lu et al., 2000). BA are not direct ligands of the RXRα but bind to 

FXR (Jenkins and Hardie, 2008). Given that FXR mRNA was occasionally present in this study 
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(with values below the LOD), the importance of the heterodimer formation (FXR and RXRα) 

is questionable.  

 

CONCLUSION 

In conclusion, our study detects BA in serum and scAT of cows, as well as the mRNA 

abundance of BA -related enzymes, receptors, and transporters, suggesting a potential role of 

BA in lipid metabolism. Higher concentrations of BA in both serum and scAT, after parturition, 

may be associated with increasing DMI. Increasing lipid mobilization in over-conditioned cows 

after parturition was accompanied by lower circulating BA concentrations. Conjugated BA may 

be actively transported from the circulation to the scAT via NTCP and exported via BSEP as 

well as metabolized by BA -related enzymes. Finally, the presence of specific BA receptors in 

scAT supports the potential role of BA in lipid metabolism during the periparturient period of 

dairy cows. 
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SUPPLEMENTAL FIGURES 

 

Supplemental Figure S1: Changes of body condition score (BCS) from 15 wk antepartum 

(a.p.) to 15 wk postpartum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results 

are given as means ± SEM. Significant differences between the groups are indicated with as-

terisks (*) when P ≤ 0.05. Data were already published by Schuh et al. (2019). 

 

 

 

Supplemental Figure S2: Changes of back fat thickness (BFT) from 15 wk antepartum (a.p.) 

to 15 wk postpartum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results are 

given as means ± SEM. Significant differences between the groups are indicated with asterisks 

(*) when P ≤ 0.05. Data were already published by Schuh et al. (2019). 
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Supplemental Figure S3: Dry matter intake (DMI) from 3 wk antepartum (a.p.) to 14 wk post-

partum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results are given as means 

± SEM. Significant differences between the groups are indicated with asterisks (*) when P ≤ 

0.05. Data were already published by Schuh et al. (2019). 

 

 

 

Supplemental Figure S4: Energy balance (EB) from 3 wk antepartum (a.p.) to 14 wk postpar-

tum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results are given as means ± 

SEM. Significant differences between the groups are indicated with asterisks (*) when P ≤ 

0.05. Data were already published by Schuh et al. (2019). 
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Supplemental Figure S5: Non-esterified fatty acids (NEFA) from 7 wk antepartum (a.p.) to 

12wk postpartum (p.p.) in high BCS (HBSC) and normal BCS (NBCS) cows. Results are given 

as means ± SEM. Significant differences between the groups are indicated with asterisks (*) 

when P ≤ 0.05. Data were already published by Schuh et al. (2019). 
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5 General Discussion and Perspectives 

This thesis aimed to investigate the BA metabolism in dairy cows with HBCS compared to 

those with NBCS in the period around calving. We hypothesized that cows with different body 

condition before calving would differ in their BA metabolism. To test this hypothesis, we com-

pared the BA concentrations in serum and liver between HBCS and NBCS cows. Furthermore, 

we analyzed the mRNA abundance of BA synthesizing enzymes, transporters, and receptors in 

the liver of HBCS and NBCS cows to determine potential differences at the transcriptional 

level. In scAT, we hypothesized that BA as well as the mRNA of BA receptors, transporters, 

and enzymes are present and differ between cows with different body condition around calving. 

 

5.1 Bile Acids in Liver and Serum of Dairy Cows  

The BA contribute to optimal feed digestion by supporting the emulsification of dietary 

fats and facilitating nutrient digestion and absorption in the intestine (Chiang, 2013). Under the 

influence of postprandial stimuli, BA are released into the intestine and pass through the entero-

hepatic circulation several times a day (Hofmann, 1999).  

The bovine liver contains mainly conjugated BA with a predominance for glycine con-

jugation and the main BA being GCA (Reiter et al., 2021). Our results go in line with GCA 

being predominant, accounting for 53%. In total, we were able to quantify 14 BA within the 

liver with a total of 81% being primary or primary conjugated BA. Secondary BA were present 

at 19% with a predominance for GDCA. In contrast, intestinal formed DCA returns to the liver 

being rehydroxylated to its precursor CA in rodents (Yamashita et al., 1989); in humans and 

cattle, hepatic biotransformation of secondary BA is limited to the conjugation (Hofmann, 

1984; Hofmann et al., 2018), which may explain the high concentrations of TDCA and GDCA 

within this study. The BA are synthesized de novo to the amount of BA excreted via feces 

(Dawson et al., 2010), and are represented by the small amounts of the primary BA CA (1%) 

and CDCA, the latter being below the limit of detection in liver in this study. After the synthesis, 

BA undergo enterohepatic circulation, passing the gallbladder, intestinal epithelium, intestinal 

veins and then reach the liver via the portal vein (Hofmann, 1999). Small amounts spill over 

into the systemic circulation (Chiang, 2013).  

Being the organ of the BA synthesis (Hofmann, 1999), the liver had higher concentra-

tions (pmol/g tissue) of total BA, compared to serum (pmol/mL) in dairy cows within this study. 

By comparing 1 mL of serum and 1g of liver tissue, serum contained 4.3-fold higher amounts 

of CA, which could be due to intestinal modifications like deconjugation of GCA through BSH 

(Chiang, 2004; Di Ciaula et al., 2017). Furthermore, the circulating BA pool in bovines mainly 
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contains CA and GCA to equal amounts (Washizu et al., 1991), as we also could demonstrate 

within this study. Differences in composition are probably due to modifications in the intestine 

and absorption via active transport or passive diffusion at the intestinal epithelial cells (Poland 

and Flynn, 2021). Also, the capacity of the liver to re-absorb BA and to pass them via bile into 

entero-hepatic circulation, rather than forwarding them into the systemic circulation, impacts 

the serum BA concentrations (LaRusso et al., 1978). The origin of the BA present in the sys-

temic circulation is related to the composition of the intestinal microbiome, as well as to the 

extraction rate of the liver and the re-absorption of the BA into the enterohepatic circulation 

(Lin et al., 2023; LaRusso et al., 1978). Therefore, perspectives for further investigation might 

be extending the study to the individual processes of BA metabolism in dairy cows, including 

BA concentrations in the intestine, the excretion via the feces, and also the BA transported in 

the portal vein. 

 

5.2 Bile Acids in subcutaneous Adipose Tissue 

The BA that enter the circulation can accumulate in tissues outside the enterohepatic 

circulation, and have already been detected in bovine follicular fluid, urine (Sanchez et al., 

2014; Blaschka et al., 2019), udder, muscle, heart, bone, tongue, esophagus, omasum, aboma-

sum, lung, spleen, and kidney (Reiter et al., 2021). To the best of our knowledge, BA have not 

been investigated in bovine scAT. Being a metabolically active and also an endocrine organ, 

AT produces cytokines and hormones secreting them into the circulation (Bélanger et al., 2002; 

Kershaw and Flier, 2004). It is also capable of storing lipophilic steroid hormones (Schuh et al., 

2022), which have a structural similarity to BA (Amaral et al., 2009). Steroid hormones as well 

as steroidogenic enzymes have already been detected in bovine scAT within the animals used 

for this study (Schuh et al., 2022). Sharing the same precursor molecule, i.e., cholesterol, their 

structural similarity enables them to undergo similar biochemical processes and utilize common 

enzymes and metabolic pathways, in particular concerning cholesterol synthesis and conversion 

(Li et al., 2014). With this background, we aimed to investigate BA in scAT within this study 

to elucidate their abundance and potential mechanisms. 

In 2014, 17 BA were quantified for the first time in human AT via ultra-high perfor-

mance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with a Kit target-

ing 61 BA. Comparatively, we were able to quantify 7 BA in bovine scAT, including primary 

and secondary BA by using the Biocrates BA kit, by which 20 BA can be detected by liquid 

chromatography electrospray ionization tandem mass spectrometry (LC ESI MS/MS).  The 

lower number of BA in our study as compared to the results of Jäntti et al. (2014) may be 
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explained by the lesser coverage of the method we used. Besides BA in AT, Jäntti et al. also 

measured BA concentrations in blood. The authors attempted to explain BA concentrations in 

AT by assuming 1% blood volume being present in AT. Showing that the amount of explainable 

BA concentrations varied between 0 and 80% (depending on the different BA), led to the as-

sumption that BA are released from AT into the circulation (Jäntti et al., 2014).  

We aimed to investigate the absolute BA concentrations and the ratio between serum 

and AT by calculating the BA in total body fat (TBF) and in the total blood volume (TBV). As 

HBCS and NBCS differed in body fat and blood volume we calculated values separately. Based 

on BFT equivalents [BFT, HBCS: 2.04 cm; NBCS: 0.95 cm], with the conversion factor indi-

cating that 10 mm BFT is equivalent to 50 kg of body fat (Schröder and Staufenbiel, 2006) the 

mean TBF was determined to be 102 kg and 48 kg for HBCS and NBCS cows, respectively, at 

7 weeks a.p.. Calculations were done without considering the heterogeneous nature of different 

AT depots. Additionally, TBV was considered, amounting to 44 L and 42 L for HBCS and 

NBCS cows, respectively, relying on data from Turner and Herman (1931), who specified 61 

mL/kg BW for mature non-lactating cows [BW, HBCS: 727 kg; NBCS: 693 kg]. Assuming 

that one liter of blood is equal to one kilogram, we adopted the following methodology: 

 

BA in TBF (pmol) = BA in scAT [pmol/g tissue] * 1.000 * TBF (kg) 

BA in TBV (µmol) = BA in serum [µmol/mL] * 1.000 * TBV (L) 

 

After converting the BA concentration in serum from µmol to pmol, BA concentrations 

in TBF were about 1.2 to 6.5-fold higher compared to BA in TBV in both groups. These results 

may indicate local uptake and accumulation of BA in bovine scAT, as BA diffusion from blood 

into a peripheral tissue would assume BA concentrations to be nearly identical (Blaschka et al., 

2019). Also, the detection of secondary BA, which are exclusively synthesized by the gut mi-

crobiome (Chiang, 2015), points to an accumulation in scAT, rather than generation of BA from 

scAT. All BA which we detected in scAT, were also detected in serum, however, weak to mod-

erate correlation coefficients between BA in scAT and in serum could not entirely clarify the 

underlying bioactive mechanisms. The moderate correlation between CA in serum and scAT 

may indicate the ability of CA to cross cell membranes by passive diffusion, whereas conju-

gated BA could be actively transported into cells (Hofmann, 1999) and accumulate. However, 

these calculations are very speculative as this assumption is based on equalizing all fat depots 

within the cow. The comparison of scAT in different body locations in dairy cows (sternum, 

tail-head, withers) revealed that the location contributed to its metabolic activeness (Singh et 
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al., 2014), which could also be indicative for the lack of clear bioactive mechanisms between 

scAT and serum BA within this study. With respect to the anatomical location of the AT depots, 

visceral AT in dairy cows may be metabolically more active (Klein et al., 2004; Kelley 2004), 

which could respond to physiological changes caused by lactation-induced and condition-de-

pendent lipolysis differently.  

To further evaluate the origin of the BA located in scAT, we investigated the mRNA 

abundance of various BA transporters. By detecting the mRNA expression of the main BA 

transporters BSEP and NTCP, being responsible for the export and import of BA (Trauner and 

Boyer, 2003), we were able to show the potential for transport of conjugated BA in scAT. In 

human and murine adipocyte cell cultures, BSEP mRNA was detected earlier, already indicat-

ing that adipocytes may contain active transport mechanisms for BA (Schmid et al., 2019). By 

analyzing the mRNA abundance of BA synthesizing enzymes, we further evaluated the possi-

bility of de novo BA synthesis in scAT. In the present study, we could detect the mRNA abun-

dance of key enzymes involved in the classical BA synthesis pathway only in a few samples, 

therefore, we assume that the de novo synthesis of BA is lacking or of minor importance in 

scAT. Nevertheless, the mRNA abundance of enzymes being involved in the alternative path-

way, point to a predominant role of the alternative pathway in scAT. Enzymes of the alternative 

pathway like the cholesterol hydroxylase enzymes, CH25H, CYP27A1, and CYP46A1, are also 

involved in synthesis of oxysterols (Björkhem, 2002), being precursor molecules of BA (Rus-

sell, 2000). Oxysterols and oxysterol-forming enzymes have previously been detected in 3T3-

L1 preadipocytes, pointing to an alternative way to metabolize cholesterol in adipocytes (Li et 

al., 2014). Therefore, this metabolic pathway could also be pronounced in bovine scAT rather 

than the de novo synthesis of BA. Furthermore, the detection of secondary BA, which are ex-

clusively formed by the gut microbiota (Chiang, 2015), de novo synthesis in AT seems unlikely. 

Subsequently, investigations concerning cellular cholesterol as well as oxysterol concentrations 

in scAT might be beneficial to evaluate clear mechanisms of cholesterol degradation. Since 

conjugated BA are unable to diffuse through cell membranes, their presence in scAT may also 

point to a local conjugation of BA with glycine and taurine in AT (Jäntti et al., 2014). Our work 

supports this assumption, as we were able to detect the mRNA of the enzyme BAAT, being 

responsible for the conjugation of BA. However, enzymatic activity is not only determined by 

transcriptional regulation and does not necessarily correspond to mRNA levels (Rodríguez-

Antona et al., 2001). 

In human medical research, BA are increasingly recognized as hormone-like signaling 

molecules (Ferrebee and Dawson, 2015; Shapiro et al., 2018), and BA receptors being present 
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in human adipocytes provided evidence for functional signaling pathways that might represent 

a hormonal network, being able to regulate adipocyte physiology including lipolysis (Schmid 

et al., 2019). By detecting the mRNA of both, transmembrane and nuclear BA receptors in 

bovine scAT, BA could probably serve as signaling molecules in cattle. The presence of BA 

and the mRNA of related enzymes, transporters, and receptors in scAT opens up new perspec-

tives for the understanding of AT physiology and interactions with bioactive molecules such as 

BA. Potential avenues for future research include the detection of transport proteins and enzyme 

activity. In summary, the presence of BA and of the mRNA for BA-forming enzymes, trans-

porters, and receptors provides new insights into these molecules and their involvement in 

whole-body physiology. 

 

5.3 Bile Acids and Body Condition  

 Body condition in transition dairy cows is knowingly impacting metabolic processes, 

including liver health but research on the BA metabolism in dairy cows is scarce. Excessive 

body fat mobilization after parturition due to over-conditioning before calving, reinforces tri-

glyceride accumulation in the liver, which in turn interferes with the normal hepatic function 

(Heuer et al., 2001). We hypothesized that differences in body fat mobilization would affect 

BA metabolism, as the liver is the main organ for BA synthesis (Hofmann, 2009).  

Cows experiencing excessive lipolysis tended to excrete higher levels of total secondary 

BA compared to cows with normal lactation-induced lipolysis, suggesting that the lipolysis 

status affects the composition and function of fecal microbiota, which in turn affects the syn-

thesis of secondary BA (Gu et al., 2023). By demonstrating different hepatic BA concentrations, 

and the expression of BA associated enzymes and transporters in HBCS and NBCS in this 

study, lipolysis could already affect the BA metabolism in the liver, affecting the substrate for 

the microbiome in the gut.  

Within this study, NBCS cows had higher BA concentrations of several BA in liver, 

serum, and scAT than HBCS cows, indicating that different extents of body fat mobilization 

affect the BA concentrations. The liver function of transition cows underlies dramatic changes 

and challenges which are even more pronounced with excessive lipolysis (Roche et al., 2009). 

The liver is the limiting step for the enterohepatic circulation of BA (Fuchs, 2003; Kullak-

Ublick et al., 2004) and impairments of liver function due to liver diseases lead to a dysregula-

tion of the BA metabolism (Zhang and Deng, 2019). Liver disorders such as NAFLD in humans 

and rodents altered the BA pool size and the BA pool composition (Zhang and Deng, 2019). In 
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NASH patients, hepatic CA and GDCA concentrations decreased by 69% and 91%, respec-

tively, whereas TCA, TDCA, and GCDCA increased compared to healthy control subjects 

(Lake et al., 2013). Lower concentrations of GCA, DCA, and a trend for CA could be due to an 

impaired liver function of the HBCS cows, as indicated by greater ketogenesis (Schuh et al., 

2019). Changes in liver BA could indicate that HBCS cows have impaired liver function and 

that adaptation to metabolic changes cannot be regulated as in the NBCS animals. Furthermore, 

HBCS had a lower DMI, compared to the NBCS animals (Schuh et al., 2019), which could 

cause lower BA concentrations in HBCS as well.  

Transcription factors, which respond to environmental, autocrine, or paracrine signals, 

are the primary regulators of hepatic gene expression (Costa et al., 2003). As there is evidence 

that the alternative BA synthesis pathway is elevated during liver diseases in humans (Cro-

signani et al., 2011; Lake et al., 2013), we investigated the mRNA abundance of BA synthesiz-

ing enzymes within the liver of HBCS and NBCS cows. Within mitochondria, CYP27A1 cata-

lyzes the hydroxylation of cholesterol, being the first step of the alternative pathway of BA 

synthesis (Crosignani et al., 2011). The hepatic mRNA abundance of CYP27A1 tended to be 

higher in HBCS cows, which may indicate a pronounced use of the alternative pathway. Also, 

the mRNA abundance of CYP7B1, the rate-limiting enzyme of the alternative pathway (Chiang, 

2017) was upregulated in HBCS compared to NBCS cows, which may further indicate a pre-

dominance of this pathway.  

The concomitant analysis of the mRNA abundance of the BA transporters showed that 

HBCS cows had a higher mRNA expression of hepatic OSTβ, and a trend for higher values of 

BSEP-mRNA, both being responsible for hepatic BA export (Trauner and Boyer, 2003, Kullak-

Ublick et al., 2004; Ferrebee and Dawson, 2015), indicating a higher BA excretion into the bile 

canaliculi and systemic circulation (Arab et al., 2017). Even though there is evidence for re-

duced re-uptake of BA in cows with fatty liver (Mohamed et al., 2004), the NTCP mRNA 

abundance was not affected by treatment. However, the capacity of the liver to re-absorb BA is 

also reflected in the amount of BA within the circulation (Mohamed et al., 2002). Serum BA 

correlated with the degree of clinical illness in hepatic lipidosis in cattle and may represent an 

indicator for hepatic diseases (West, 1991). Within our study, serum BA concentrations of CA, 

CDCA, GCA, DCA, GCDCA, TCA, LCA, and GDCA were higher in NBCS cows compared 

to HBCS cows, which does not go in line with the previous hypothesis. Since we did not meas-

ure the degree of fatty degeneration of the liver within our study, we can only rely on the higher 

BHBA concentrations in the serum of the HBCS animals, indicating a higher degree of fatty 

infiltration and ketogenesis compared to NBCS. 
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A recent study compared cows with excessive and normal lactation-induced lipolysis, 

presenting results which are in line with our study. Cows with excessive lipolysis had higher 

serum concentrations of GLCA, TLCA, and, as a trend, of GCDCA in cows with normal lipol-

ysis (Gu et al., 2023). The authors showed that the lipolysis status of dairy cows is linked to the 

microbial composition of the gut, being related to the BA composition in serum (Gu et al., 

2023). Thus, lower BA concentrations in HBCS cows could also be due to a higher fecal BA 

excretion in cows with higher body fat mobilization as reported by Gu et al. (2023). In scAT, 

GCA, GCDCA, GDCA, TDCA, and TCDCA concentrations were higher in NBCS, compared 

to HBCS cows. Higher concentrations of glycine conjugates (GCA, GCDCA, GDCA) could be 

due to their higher concentrations in serum of NBCS compared to HBCS animals. However, 

calculating correlations between serum and scAT BA did not indicate a direct BA diffusion 

from serum to scAT, as correlations were weak to moderate. 

In summary, the HBCS animals had lower concentrations of numerous BA, including 

the main bovine BA CA, GCA, and DCA in both, the tissues and serum, indicating that body 

condition around parturition affects the BA metabolism of high yielding dairy cows. Previous 

studies showed that body condition in the period around calving has an impact on related met-

abolic processes such as steroid hormone metabolism (Schuh et al., 2022). Metabolic changes 

associated with excessive lipolysis and the increased accumulation of triglycerides in the liver 

alter liver function and the metabolic processes located in the liver (Wankhade et al., 2017). 

The synthesis of primary BA as well as the hepatic excretion of BA could be altered in HBCS 

animals which in turn affects the BA concentrations in the liver as well as those within the 

circulation (Mohamed et al., 2004). In addition, according to Gu et al., the intestinal microbi-

ome appears to change during excessive lipolysis, which in turn influences the synthesis of 

secondary BA, the excretion of BA, and serum BA (Gu et al., 2023). Assuming that the BA 

metabolism in NBCS cows is less affected by other metabolic challenges compared to HBCS 

cows, the higher BA concentrations in NBCS cows support the notion of superior adaptability 

of these cows to the conditions of pregnancy and lactation.  

 

5.4 Bile Acids in the Period around Calving 

The time around calving is a challenging period for dairy cows, as the metabolism needs 

to adapt to the conditions of late pregnancy and then the onset of lactation (Drackley, 1999). 

Transition from pregnancy to lactation physiologically affects multiple organ and tissue sys-

tems including the liver and AT (Wankhade et al., 2017). The BA synthesis, mainly taking 



5 General Discussion and Perspectives 

 

101 

 

place within the liver, is also affected by the metabolic changes occurring in this phase in dairy 

cows (Ghaffari et al., 2023).   

Within the liver, CA and GCA, the predominant bovine BA (Reiter et al., 2021), had 

higher concentrations after calving than before calving, indicating an increase in BA synthesis 

at the onset of lactation (Zhu et al., 2013). Increasing feed intake (DMI was reported by Schuh 

et al., 2019) after parturition could induce a higher production of BA. Elevated BA concentra-

tions and mRNA abundance of BA forming enzymes have already been reported in the liver of 

lactating rats and suggest an effect of the increased energy demand and food intake (Athippozhy 

et al., 2011; Zhu et al., 2013). Increasing CA concentrations within the liver could also indicate 

a higher de novo synthesis of BA, induced by lactation (Klassen and Strom, 1978; Kilpatrick et 

al., 1980). In rats, the mRNA abundance of CYP8B1, CYP27A1, CYP7B1, NTCP, and BSEP 

was higher during lactation compared to gestation, indicating stimulated BA formation and up-

take into the circulation (Zhu et al., 2013). In addition, we also observed a higher hepatic mRNA 

abundance of CYP7A1 after parturition. Improvements of lipid and nutrient absorption in the 

intestine mediated by increased BA concentrations could improve the energy intake from feed 

in times of the prevailing NEB (Wooton-Kee et al., 2010). Furthermore, in lactating rats, pro-

lactin may reinforce hepatic CYP7A1 and HMG-CoA reductase, being the rate-limiting en-

zymes for the BA and cholesterol synthesis (Bolt et al., 1984). We further observed a higher 

mRNA abundance of hepatic NTCP after parturition, going along with higher hepatic BA con-

centrations. NTCP is mainly responsible for the re-uptake of BA from the portal blood into the 

liver (Trauner and Boyer, 2003). Within this study, serum and liver BA concentrations were 

elevated after parturition, assuming a greater circulating BA pool size and a higher reabsorption 

through NTCP in line with the higher hepatic expression of NTCP.  

Higher serum concentrations of CA, CDCA, TCA, GCA, GCDCA, DCA, and MCA(b) 

after parturition, compared to the pre-calving values, could be due to the higher hepatic BA 

synthesis related to milk production and an increased DMI after calving as reported by Schuh 

et al. (2019). In scAT, the concentrations of CA, GDCA, GCDCA, and GCA increased, a find-

ing that is consistent with increasing hepatic and circulating BA levels after parturition. How-

ever, comparisons between BA concentration in tissues versus serum should be made with cau-

tion. Comparisons of different biological matrices must be done with caution due to their dif-

ferent biological and biochemical properties, in particular tissue samples may have different 

distributions and regulations of metabolite concentrations that may influence results. Further-

more, underlying the control of the enterohepatic circulation, BA metabolism is subject to mul-

tifactorial influences, such as diurnal and individual variations (Abdelkader and Ropstad, 
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1989), the diet (Liu et al., 2020), and health status (Kalaitzakis et al., 2007; Gu et al., 2023; 

West, 1990) in dairy cows.  

 

The results of the studies included in this doctoral thesis provide evidence that the BA 

metabolism changes with the onset of lactation and that body condition before calving affects 

BA the metabolism in liver and serum, as well as in scAT of dairy cows. A holistic approach 

and the inclusion of all organs and fluids involved in the enterohepatic circulation would pro-

vide an even better overview for future studies. Additionally, it is not yet clear from this study 

how the alterations in BA metabolism may affect the overall metabolism of dairy cows and, 

potentially, the ability of the cow to absorb lipids. Furthermore, we showed that BA are present 

in scAT from the tailhead region, but no clear relationships with serum BA have been identified. 

Given that BA act as signaling molecules, further research may help to elucidate potential rela-

tionships to energy and lipid metabolism in the periparturient period of dairy cows. 
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6 Summary 

The periparturient period is characterized by significant metabolic, physiological, and 

hormonal changes in dairy cows. Early lactation milk production increases, while feed intake 

does not increase proportionally, resulting in a negative energy balance (NEB). Energy reserves 

are mobilized primarily from adipose tissue to meet energy demands and maintain milk synthe-

sis. Adipose tissue (AT) triglycerides are hydrolyzed to glycerol and free fatty acids, the latter 

are either oxidized or re-esterified in the liver. Excessive AT mobilization can exceed the oxi-

dative capacity and triglyceride export from the liver, promoting both ketogenesis and triglyc-

eride accumulation. Over-conditioned cows are more susceptible to excessive body fat mobili-

zation, increasing their risk for metabolic diseases such as ketosis and fatty liver. Triglyceride 

accumulation in the liver can impact numerous metabolic processes, including bile acid (BA) 

synthesis. The liver synthesizes BA from cholesterol through both the classical and alternative 

pathways. After synthesis, BA are conjugated with either glycine or taurine, and stored in the 

gallbladder as conjugated BA. Postprandially, BA are released into the intestine, where they 

aid in the emulsification of dietary fats and fat-soluble vitamins. The intestinal microbiota de-

conjugate BA, converting them to both secondary and secondary conjugated BA. The majority 

of BA are absorbed by intestinal epithelial cells and are returned to the liver via the portal vein. 

Maintaining BA homeostasis, the BA pool circulates several times a day, with only a small 

fraction being excreted in the feces and a small fraction not being re-absorbed by the liver, 

entering the circulation. BA have been detected in body fluids and tissues outside the enterohe-

patic circulation, although their origin and function in these tissues are controversially discussed 

and require further research. Furthermore, BA act as signaling molecules by binding to recep-

tors, influencing various metabolic processes, including glucose, lipid, and energy metabolism. 

The presence of BA receptors in human adipocytes suggests that BA might have functional 

signaling pathways in adipocytes being able to impact metabolic processes such as lipolysis. 

Therefore, the aim of this study was to investigate the impact of the body condition and the 

extend of body fat mobilization on BA metabolism in dairy cows.  

The animal experiment included 38 multiparous German Holstein cows, which were 

divided into either a high-body condition score (HBCS; N=19) or a normal-body condition 

score group (NBCS; N=19) 15 weeks before the calculated calving date. In order to achieve the 

target values for body condition score (BCS) and backfat thickness (BFT) at dry off (NBCS: 

BCS < 3.5, BFT < 1.2 cm; HBCS: BCS > 3.75, BFT > 1.4 cm), the groups received different 

diets (HBCS: 7.2 NEL MJ/kg dry matter (DM)); NBCS: 6.8 NEL MJ/kg DM) from 15 to 7 
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weeks before calving. Both in the dry period (6.8 MJ NEL/kg DM) and in the following lacta-

tion (7.2 MJ NEL/kg DM), the animal groups received identical diets for ad libitum intake. 

Liver and subcutaneous AT (scAT) biopsies as well as serum samples were taken 7 weeks ante 

partum (a.p.), 1-, 3-, and 12-weeks postpartum (p.p.) and were analyzed for 20 BA using liquid 

chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in a tar-

geted metabolomics kit format. The mRNA abundance of the target genes in the liver and scAT 

was analyzed by an automated, high-performance polymerase chain reaction (PCR)/quantita-

tive PCR (qPCR) system that uses microfluidics technology to process samples at nanoliter-

scale volumes. 

In total, 14 BA could be quantified in the liver, the majority being primary or primary 

conjugated with a predominance for glycocholic acid (GCA). In serum, 15 BA were detected 

with a predominance for GCA and cholic acid (CA) in almost equal concentrations. Liver and 

serum BA differed in their composition, which is probably related to intestinal microbial bio-

transformation, fecal BA loss or reabsorption conditions at the liver.  

Tissues and body fluids outside the enterohepatic circulation could contain BA passed 

from the liver vein into the systemic circulation. However, there is evidence that BA may be 

synthesized de novo in extrahepatic tissues. Also, the detection of BA specific receptors in ex-

tra-enterohepatic tissues pointed to a role of BA acting as signaling molecules besides the liver 

and gut. Focusing on scAT, a metabolically active endocrine organ, that is highly involved in 

energy metabolism during the transition from pregnancy to lactation, we were able to quantify 

7 BA. The BA were primary and secondary, as well as conjugated. The mRNA of key enzymes 

for BA synthesis was not detectable in scAT, therefore a de novo synthesis of BA in scAT 

seemed unlikely. However, the expression of BA synthesizing enzymes of the alternative path-

way may indicate the formation of oxysterols for the degradation of cholesterol. The detection 

of the mRNA of specific BA transporters in scAT suggests that BA are actively transported into 

scAT. Along with the presence of mRNA of specific BA receptors, we hypothesized that BA 

might act as signaling molecules in scAT.  

Considering the effect of body condition on the BA concentrations, we showed that 

animals with increased body condition before calving, had lower concentrations of BA than 

animals with normal body condition. The liver, being highly involved in energy and lipid me-

tabolism, is the key organ for BA synthesis. Lower BA concentrations in HBCS compared to 

NBCS cows could be due to an impaired liver metabolism in the HBCS. In the liver, the mRNA 

of key enzymes of the alternative synthesis pathway were upregulated in the HBCS animals, 

being consistent with the results from human research, indicating impairment of liver function. 
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Lower BA concentrations were also detected in serum and scAT in the HBCS animals com-

pared to the NBCS animals. This might be interpreted as a reduced circulating BA pool, which 

in turn could affect the circulating BA. Furthermore, the intestinal microbiome might have been 

altered in the HBCS cows which in turn would affect BA metabolism and excretion via the 

feces, as already shown in a comparable study. With the onset of lactation, the concentrations 

of several BA in the liver, serum and scAT increased. Along with the increase in the concen-

tration of BA, an increase in the mRNA abundance of the key enzyme CYP7A1 in the liver was 

observed. We assume that the BA synthesis is upregulated during lactation in response to the 

increasing energy requirements for milk synthesis.  

Our results clearly showed that lactation-induced and condition-dependent lipolysis has 

an effect on the BA metabolism in dairy cows. However, in order to characterize the patho-

physiological effects of prepartum over-conditioning on BA metabolism, research should focus 

on all compartments of the enterohepatic circulation. The BA metabolism is subjected to com-

plex interactions between the intestinal microbiome, receptor-controlled or concentration-based 

altered synthesis, which in turn can be influenced by a variety of factors. The results presented 

within this doctoral thesis help to further characterize the role of BA in peripheral tissues and 

provide important insights into the involvement of BA outside the enterohepatic circulation. 
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7 Zusammenfassung 

Die Zeit rund um die Kalbung der Milchkuh ist geprägt durch enorme metabolische, 

physiologische und hormonelle Veränderungen. In der Frühlaktation kann die schnell anstei-

gende Milchleistung mit einer nicht äquivalent ansteigenden Futteraufnahme zu einer negative 

Energiebilanz (NEB) führen. Zur Deckung des Energiebedarfes und zur Aufrechterhaltung der 

Milchsynthese werden Energiereserven hauptsächlich aus dem Fettgewebe mobilisiert. Trigly-

ceride im Fettgewebe werden zu Glycerol und freien Fettsäuren gespalten; letztere erreichen 

über die Zirkulation die Leber wo sie entweder oxidiert oder re-verestert werden. Übermäßige 

Fettgewebsmobilisation führt dazu, dass die Oxidationskapazität und der Triglycerid-export aus 

der Leber überschritten wird und sowohl die Ketogenese als auch die Akkumulation von Trig-

lyceriden gefördert wird. Überkonditionierte Tiere vor der Kalbung mobilisieren mehr Körper-

fettreserven und sind folglich einem erhöhten Risiko für Stoffwechselerkrankungen, wie Ketose 

und Fettleber ausgesetzt. Die Belastung der Leber durch Triglyceridakkumulation beeinflusst 

eine Vielzahl metabolischer Prozesse. Studien zufolge wirken sich Stoffwechsel- und Leberer-

krankungen wie das nicht-alkoholische Fettlebersyndrom (NAFLD) sowohl auf die de novo 

Synthese, den Syntheseweg als auch auf die Resorption der Gallensäuren im Darm und an der 

Leber aus. 

Primäre Gallensäuren werden in der Leber aus Cholesterin sowohl über den klassischen 

als auch alternativen Syntheseweg gebildet. Die Gallensäuren werden nach der Synthese mit 

den Aminosäuren Glycin oder Taurin konjugiert und als konjugierte Gallensäuren in der Gal-

lenblase gespeichert. Durch enterohormonelle Reize werden Gallensäuren postprandial in den 

Darm abgegeben, wo sie die Emulgierung von Nahrungsfetten und fettlöslichen Vitaminen un-

terstützen. Im Darm werden die Gallensäuren durch das dortige Mikrobiom de-konjugiert, und 

sowohl zu sekundären als auch zu sekundär konjugierten Gallensäuren umgewandelt. Ein Groß-

teil wird anschließend über die Darmschleimhaut resorbiert und über die Pfortader zurück in 

die Leber geführt. Der Gallensäurepool unterliegt einer Homöostase und zirkuliert zwischen 

diesen Kompartimenten mehrmals täglich, wobei nur geringe Anteile über den Kot ausgeschie-

den werden und ein kleiner Teil von der Leber nicht resorbiert wird und in den systemischen 

Kreislauf gelangt. So konnten Gallensäuren auch in Körperflüssigkeiten und Geweben außer-

halb des enterohepatischen Kreislaufes nachgewiesen werden, wobei ihre Herkunft und Funk-

tion in diesen Geweben kaum erforscht und auch umstritten ist. Forschungsergebnisse aus dem 

Humanbereich haben zudem gezeigt, dass Gallensäuren als Signalmoleküle fungieren und sich 

über die Bindung an Rezeptoren auf verschiedenste Stoffwechselprozesse, inclusive dem Glu-
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cose-, Lipid- und Energiestoffwechsel auswirken können. Die Detektion von Gallensäurerezep-

toren in humanen Adipozyten lieferte erste Hinweise darauf, dass im Fettgewebe funktionelle 

Gallensäure-Signalwege vorliegen, die in der Lage sind, die Physiologie der Adipozyten ein-

schließlich der Lipolyse zu regulieren. 

Im Rahmen dieser Arbeit sollte der Gallensäurestoffwechsel der Milchkuh in der Zeit 

rund um die Kalbung in Abhängigkeit von der Körperkondition untersucht werden. Die Leber 

und das subkutane Fettgewebe (scAT) als Schlüsselorgane des Energiestoffwechsels der Milch-

kuh wurden hinsichtlich der Gallensäurekonzentrationen und der mRNA-Menge von Gallen-

säurebildenden Enzymen, sowie von Rezeptoren und Transportern untersucht. Zudem wurden 

Gallensäuren im Serum aus dem systemischen Kreislauf untersucht, um Rückschlüsse über die 

Herkunft im peripheren Gewebe zu schließen.  

Der Tierversuch beinhaltete die Untersuchung von 38 Multiparen deutschen Holstein 

Kühen, welche 15 Wochen vor dem errechnetem Kalbetermin entweder in eine High Body 

Condition Score Gruppe (HBCS; n=19) oder in eine Normal-BCS-Gruppe (NBCS; n = 19) 

eingeteilt wurden. Um die Zielgrößen in der Körperkondition (BCS) und Rückenfettdicke 

(BFT) (NBCS: BCS < 3.5, BFT < 1.2 cm; HBCS: BCS > 3.75, BFT > 1.4 cm) zum Zeitpunkt 

des Trockenstellens zu erreichen, wurden die Gruppen von der 15. bis zur 7. Woche vor der 

Kalbung mit Rationen unterschiedlicher Energiedichte gefüttert (HBCS: 7.2 NEL MJ/kg Tro-

ckenmasse (DM)); NBCS: 6.8 NEL MJ/kg DM). Sowohl in der Trockenstehzeit (6.8 MJ NEL/kg 

DM), als auch in der darauffolgenden Laktation (7.2 MJ NEL/kg DM) erhielten die Tiergruppen 

jeweils identische Rationen zur ad libitum Aufnahme.  

Leber-, Fettgewebsbiopsien und Serumproben wurden 7 Wochen ante partum (a.p.), 1, 

3, und 12 Wochen post partum (p.p.) entnommen und mittels Flüssigchromatographie Elektro-

spray-Ionisierung Tandem-Massenspektrometrie (LC-ESI-MS/MS) auf 20 verschiedene Gal-

lensäuren in einem gezielten Metabolom-Kit-Format getestet. Die mRNA-Menge der Zielgene 

wurde mittels eines automatisierten Hochleistungs-qPCR-Systems, das die Mikrofluidik-Tech-

nologie nutzt, um Proben im Nanoliterbereich zu verarbeiten (Fluidigm Technik) untersucht. 

Insgesamt konnten in der Leber 14 Gallensäuren quantifiziert werden, wobei der Groß-

teil in Form von primären oder primären konjugierten Gallensäuren vorlag und überwiegend 

Glycocholsäure (GCA) nachgewiesen wurde. Im Serum konnten 15 Gallensäuren nachgewie-

sen werden, wobei GCA und Cholsäure (CA) zu annähernd gleichen Teilen dominierten. Die 

Gallensäurekonzentrationen in der Leber und im Serum aus dem systemischen Kreislauf weisen 

Unterschiede in ihrer Zusammensetzung auf, was vermutlich durch Modifikationen der Gallen-

säuren durch intestinale mikrobielle Biotransformationen hervorgerufen wurde.  
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Gallensäuren in Geweben und Körperflüssigkeiten außerhalb des enterohepatischen 

Kreislaufes könnten aus dem Blut aus dem systemischen Kreislauf angereichert werden, wobei 

es Hinweise auf eine mögliche de novo Synthese in extrahepatischen Geweben gibt. Die De-

tektion von gallensäureaffinen Rezeptoren in extra-enterohepatischen Geweben lässt ebenfalls 

darauf schließen, dass Gallensäuren dort in ihrer Funktion als Signalmoleküle Wirkungsmecha-

nismen beeinflussen könnten. Mit der Fokussierung auf das scAT und seiner Eigenschaft als 

metabolisch aktives, endokrines Organ, haben wir im Zuge dieser Arbeit die Rolle der Gallen-

säuren in diesem Gewebe untersucht. Wir konnten insgesamt 7 primäre und sekundäre Gallen-

säuren im scAT nachweisen. Einhergehend mit der Untersuchung der mRNA-Menge gallen-

säurebildender Enzyme halten wir die de novo Gallensäuresynthese im scAT für unwahrschein-

lich, wobei Teilreaktionen auf die Bildung von Oxysterolen zum Abbau des Cholesterins hin-

deuten könnten. Der Nachweis der mRNA spezifischer Gallensäuretransporter im scAT lässt 

jedoch vermuten, dass die Gallensäuren aktiv in das scAT transportiert werden. Mit dem Nach-

weis der mRNA spezifischer Gallensäurerezeptoren stellten wir die Hypothese auf, dass Gal-

lensäuren im scAT als Signalmoleküle fungieren könnten.  

Im Hinblick auf die Untersuchung des Einflusses der Körperkondition auf den Gallen-

säurestoffwechsel der Milchkuh konnten wir zeigen, dass Tiere mit einer erhöhten Körperkon-

dition vor der Kalbung, einhergehend mit einer erhöhten postpartalen Fettgewebsmobilisation, 

eine Vielzahl an Gallensäuren in geringerer Konzentration aufwiesen als die Tiere mit normaler 

Körperkondition. Die Leber, welche maßgeblich in den Energie und Lipidstoffwechsel invol-

viert ist, ist zudem das Schlüsselorgan der Gallensäuresynthese. Geringere Gallensäurekonzent-

rationen könnten darauf hindeuten, dass die Lebern der HBCS-Tiere durch vermehrte Trigly-

ceridakkumulation in ihrer normalen Stoffwechselleistung beeinträchtigt waren. In der Leber 

konnten wir ebenfalls feststellen, dass die mRNA von Schlüsselenzymen des alternativen Syn-

theseweges bei den HBCS-Tieren hochreguliert waren, was im Hinblick auf die mögliche Be-

einträchtigung der Leberfunktion mit den Ergebnissen aus der humanmedizinischen Forschung 

übereinstimmt. Im Serum und scAT konnten ebenfalls geringere Gallensäurekonzentrationen 

bei den HBCS-Tieren im Vergleich zu den NBCS-Tieren nachgewiesen werden. Wir stellten 

die Hypothese auf, dass die HBCS-Tiere einen verminderten zirkulierenden Gallensäurepool 

aufweisen könnten, was sich wiederum auf die zirkulierenden Gallensäuren in der Peripherie 

auswirken könnte. Zudem stellten wir die Hypothese auf, dass die HBCS-Tiere eine veränderte 

intestinale mikrobielle Gallensäuremodifikation aufweisen und eine erhöhte Gallensäureaus-

scheidung über den Kot aufweisen könnten, wie es bereits in einer vergleichbaren Studie ge-

zeigt wurde.  
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Mit dem Einsetzen der Laktation stiegen die Konzentrationen bei einer Vielzahl von 

Gallensäuren in der Leber, dem Serum und im scAT an. Einhergehend mit dem Konzentrati-

onsanstieg der Gallensäuren konnten wir eine Erhöhung in der mRNA-Expression des Schlüs-

selenzyms CYP7A1 in der Leber nachweisen, was darauf hindeuten könnte, dass sich der Gal-

lensäurestoffwechsel in der Laktation an den steigenden Energiebedarf für die Milchleistung 

anpasst. Unsere Ergebnisse zeigen deutlich, dass die laktations-induzierte und konditionsab-

hängige Lipolyse einen Einfluss auf den Gallensäurestoffwechsel der Milchkuh hat.  

Der Gallensäurestoffwechsel unterliegt komplexer Wechselwirkungen zwischen dem 

Darmmikrobiom, rezeptor-gesteuerten oder auf Konzentrationsbasis veränderten Synthesera-

ten, die wiederum über eine Vielzahl von Faktoren beeinflusst werden können. Eine ganzheit-

liche Betrachtung des Gallensäurestoffwechsels in allen Organen des enterohepatischen Kreis-

laufes könnte dazu beitragen, klare Rückschlüsse über Wirkungsketten zu fassen. Die in diesem 

Forschungsprojekt erlangten Ergebnisse zum Vorliegen der Gallensäuren im scAT tragen dazu 

bei, die Rolle der Gallensäuren in peripheren Geweben weiter zu charakterisieren und liefern 

wichtige Erkenntnisse in Bezug auf potenzielle Wirkungsmechanismen der Gallensäuren au-

ßerhalb des enterohepatischen Kreislaufes.  
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