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CHAPTER 1

Introduction

1.1 Genesis of quantum mechanics

If intuition for quantum mechanics would be contained a priori in the human understanding, the wave
function and its implications would come naturally, without the need for analogy. But evolution has
driven the human brain to develop a natural capacity for understanding causality as it appears in the
classical world. As such, it is only natural that the effort of reason to grasp nature begins here, and works
its way to modern quantum many-body physics through a sequence of discoveries powered by analogy.

Centuries of scattered research and speculation in mechanics and optics culminated into the classical
mechanics and geometrical optics of Newton [1, 2] and the undulatory optics of Huygens [3], in the
seventeenth century, providing a coherent and intuitive description of classical matter and waves. This
was brought to even greater heights by Maupertuis, Euler, and Lagrange, among others, with a prime
motivator being the potential unification of physics through a principle of least action [4]. Building on
this, Hamilton unveiled a remarkable correspondence between mechanics and optics [5], with geometrical
optics describing mechanical trajectories of light and undulatory optics offering a complementary wave
perspective on mechanics.

This opto-mechanical correspondence motivated Schrödinger to develop his wave mechanics [6–11],
under the impression that the discrepancies in classical microscopic theories, which were prevalent in
the early days of quantum mechanics, could be explained as a regime where the mechanical trajectories
become comparable in size to a wavelength that involves the Planck constant h.1 Some months earlier,
Heisenberg arrived at the same theory in a different formalism [13–15]. He already had the quantum
many-body problem in mind, that he would introduce a couple years later [16].

1.2 Classical spin systems

Before quantum mechanics was formalized by Heisenberg and Schrödinger, some of its phenomena were
already well known. An example is the peculiar behavior of magnetic moments in crystals [17]. Guided

1 Essentially, Schrödinger introduces the wave function by interpreting Hamilton’s principal function as the phase of a
wave (constituted by trajectories that solve the dynamical equations). Then the Schrödinger equation follows from the
Hamilton-Jacobi equation under the assumption that the Planck constant h is the relevant energy×time scale. Many flavors
of this were already present in de Broglie’s work [12].
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Chapter 1 Introduction

by emperical findings and their extrapolations, it seemed reasonable to assume that each molecule in a
crystal effectively has a magnetic moment that points either up or down [18]. Out of this idea the Ising
model was born [19], where binary-valued magnetic moments Zi (i.e. spins) are arranged on a lattice
with N sites, and nearest-neighbors (nn) are coupled classically according to the Hamiltonian

H = −
∑
〈i j 〉

ZiZ j . (1.1)

Here 〈i, j〉 contains all nn pairs.
The local coupling −ZiZ j is chosen to promote ferromagnetism, which was experimentally observed

by Weiss [17]. At finite temperature, the tendency to form a global ferromagnet competes with thermal
fluctuations, leading to a phase transition in two dimensions (2D) between order and disorder [20]. It was
the first many-body model for which large scale numerical simulations were extensively used, especially
for 3D lattices [21, 22]. Although the model is classical and does not require any quantum mechanical
calculations, it was targeted at quantum mechanical phenomena and became a blueprint for modern
quantum many-body physics.

We can also consider a more general classical spin than Z , by defining it as a canonical coordinate in
Hamilton’s formulation of classical mechanics [23]. A classical 3D spin is denoted by Sx,y,z , consisting
of three real numbers that are constrained such that

∑
α |S

α
|
2
= S0 is constant. We get the binary spin

Z by restricting S to a single axis. The magnitude of the spin S0 is largely irrelevant, since the spin
variables are generally continuous functions.

We put a spin Sαj at every site j of a lattice, and for concreteness we couple neighboring spins
ferromagnetically through their inner product, i.e. we consider the Heisenberg Hamiltonian

H = −
∑
〈i, j 〉

Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j . (1.2)

In the Hamiltonian formulation of classical mechanics, we can get a corresponding equation for the time
evolution of the spin variables, as long as we can endow the set of spins with a canonical structure. To
this end we define a Poisson bracket for spin variables, i.e.

{A, B} =
∑
jαβγ

εαβγ
∂A
∂Sαj

∂B

∂Sβj
Sγj , (1.3)

where εαβγ is the Levi-Civita symbol. It satisfies the usual Poisson bracket algebra, and it contains
{Sαj , S

β
k
} = δjk

∑
γ εαβγSγj , where δjk is the Kronecker symbol. This structure is familiar from the Pauli

algebra that governs a quantum spin-1/2 particle.
With this we get the Hamilton evolution equation

dSαj
dt
= {Sαj ,H}. (1.4)

To solve it formally, we simply Taylor expand Sαj around t = 0 and use (1.4) to reduce all derivates to
nested Poisson brackets, i.e.

Sαj (t) = Sαj + t{Sαj ,H} +
t2

2!
{{Sαj ,H},H} + .... (1.5)

2



Chapter 1 Introduction

By defining the linear operator {·,H}, which maps a function O to another function {O,H}, we can
write the closed form

Sαj (t) = et {·,H }Sαj . (1.6)

Here the operator exponential is defined as

eA
=

∞∑
k=0

Ak

k!
, (1.7)

where Ak signifies k sequential applications of the linear operator A.
From (1.3) it is clear that that every order in (1.5) encodes increasingly long-ranged spin correlations.

For example, with the Heisenberg Hamiltonian (1.2) we have only nn contributions at first order:

{Sαj ,H} =
∑

k∈nn(j)

∑
βγ

εαβγSβ
k

Sγj . (1.8)

Then at the next order also the nearest-neighbors of the k sites contribute, and so on. Hence the
exponential (1.6) boils down to a system of polynomials for the spin variables. If we split the evolution
into n segments, i.e.

et {·,H } =
(
e

t
n {·,H }

)n
, (1.9)

and choose n such that t/n << 1, then we only need to consider a finite amount of terms in (1.5) to reach
machine precision.

The evolution (1.6) leaves the spin magnitude S0 invariant, as well as the fundamental Poisson bracket
{Sα, Sβ} [23]. Hence it is a canonical transformation, and the time evolution of a spin system can thus
be considered as a sequence of canonical transformations of its phase space.

1.3 Quantum spin systems

Quantum spin was discovered around the same time as the Ising model and the formalization of quantum
mechanics, in an effort to explain experimentally-observed quantum phenomena [24, 25]. Soon after, a
theory of magnetism appeared [16]. It was found that the quantum version of the continuous spin-1/2
variable Sα is in fact more similar to the binary variable Z , being fundamentally discrete, but that
quantum fluctuations couple different binary configurations and thereby create a superposition. The
spin is now a state vector in a Hilbert space, which is spanned by Z = ±1. In contrast to the classical
spin Sα, the spin magnitude is intimately tied into the physics, with e.g. a spin-1 particle requiring a
larger space with Z = −1, 0, 1. When the spin magnitude is measured along one of the space axes, and
the experiment is repeated many times, it yields a probability distribution over the binary states, with
measured spins pointing either up or down [26]. We call a quantum spin-1/2 particle a qubit, since it is
the quantum version of a bit Z .
To quantize the classical time evolution of a many-qubit system (1.4) we replace the 3N real-valued

binary variables Sαj with a single 2N -dimensional complex-valued state |ψ〉, living in a Hilbert space
spanned by all possible bit configurations |Z1, Z2, ..., ZN 〉. To determine the properties of a single qubit
we generally need to consider all bit configurations of the entire system. Concretely, to extract local
properties from the global state we assign a set of 2 × 2 Pauli operators σI,x,y,z

j to every spin, forming

3



Chapter 1 Introduction

a Pauli algebra (i.e. a two-dimensional fundamental representation of SU(2)) [25, 27, 28]. The inner
product mx,y,z

j = 〈ψ | σ
x,y,z
j |ψ〉 then gives the average x, y, z spin components of the jth qubit, as it

would be determined in an experiment. Because we are now dealing with a superposition instead of a
single bit configuration, we have to do with probabilistic statements when concerned with measurable
properties of the spin system. When the qubits are also coupled to their environment, which seems
inevitable in practice, their quantum state is instead described by a density matrix, which encodes a
probability distribution of states. For simplicity we consider isolated states |ψ〉 in most of this thesis.
Accordingly, instead of a classical Hamiltonian, which is a continuous function over the 3N spin

variables, we get a quantum Hamiltonian that encodes the couplings between the 2N bit configurations
as a complex matrix. Consequently, while the classical Hamiltonian can be computed in O(N) time and
resources, for the quantum Hamiltonian we generally have O(2N

). For example, we obtain the quantum
spin-1/2 Heisenberg model by replacing the variables S in (1.2) with Pauli operators σ. Schrödinger has
argued that an isolated state evolves according to

i~
∂ |ψ〉

∂t
= H |ψ〉 . (1.10)

It is formally solved by
|ψ(t)〉 = e−itH |ψ(0)〉 , (1.11)

which boils down to a matrix-vector product of a unitary matrix with a normalized vector, which is
therefore again normalized. The exponential operator in (1.11) is called the time-evolution operator, and
it is a centerpiece of quantum dynamics since it can map any state to a state evolved according to H. It is
the quantum analog of the classical time-evolution operator (1.6). Now the powers in the exponential
(1.7) are calculated with matrix-matrix multiplication, or if we want to apply the exponential to a state
we only need matrix-vector multiplication.

The time-evolution operator is diagonal when H is diagonal, in which case it cannot generate a
superposition, such that the time evolution is classical. An example is the Ising Hamiltonian (1.1) with
the binary variables Z upgraded to σz operators. Classical spin systems such as (1.2) were only studied
much later than their quantum counterparts [29–33]. This is likely because spin was conceived in the
context of quantum mechanics, such that the quantum version of (1.2) was immediately considered.
Notwithstanding, it has led to the discovery of many interesting phenomena, such as the topological
Berezinskii-Kosterlitz-Thouless (BKT) phase transition that was unveiled in the classical two-dimensional
XY model [34–37]. Afterwards, it was realized that this phase transition also occurs in quantum spin
systems [38–41]. We will consider it in detail in Sec. 2.3. We have studied aspects of BKT physics in
great detail in the first two Articles that feature in this thesis [42, 43], which we will describe at the end
of Ch. 2.

1.4 Exponential complexity

By designing algorithms that construct or apply the time-evolution operator (1.11) we can in principle
simulate any quantum many-body system. The difference in computational complexity between the
evolution of quantum and classical many-body systems is clear: We now generally need to do linear
algebra in a 2N -dimensional Hilbert space, spanned by the bit configurations, instead of solving a system
of N equations in a N-dimension phase space, spanned by the spin variables. Therefore, time evolution

4



Chapter 1 Introduction

of quantum many-body systems generally requires O(2N
)memory and floating point operations, whereas

classical systems only require O(N).
Consequently, on a classical computer we can simulate quantum time evolution only for small systems,

highlighting a major bottleneck of classical simulation methods. Notwithstanding, we will see in Ch. 2
of this thesis, on Quantum Monte Carlo, and in Ch. 4 on tensor networks, that for specific applications
there are classical algorithms with only polynomial scaling. To achieve this in general requires a more
drastic approach, for which we have to replace the classical computer with a quantum computer. We will
discuss this in Ch. 5. Except for modern Quantum Monte Carlo algorithms, these methods rely heavily
on the circuit decompositions that we will discuss in great detail in Ch. 3

1.5 Imaginary-time evolution operator

Besides dynamics, the Schrödinger equation can also be used to directly determine steady states at zero
temperature. These are the eigenstates |n〉 of the Hamiltonian, which satisfy H |n〉 = En |n〉 with energies
E0 < E1 < ..., and upon applying the real-time evolution operator they only gain a phase. Consequently,
their quantum fluctuations average out and hence their expectation values are time independent. In other
words, they describe a system in equilibrium.

We transform the Schrödinger equation (1.10) to imaginary time, i.e. we subtitute t → −iτ, yielding
the imaginary-time evolution operator

P = e−τH . (1.12)

It is no longer unitary, and instead it now serves as a projector. Specifically, if we have an arbitrary
wavefunction |ψi〉, we first expand it into the eigenbasis |n〉 and then apply P, yielding

P |ψi〉 =
∑
n

〈n|ψi〉 e−τEn |n〉 . (1.13)

We now see that the excited states decay quickerwith τ than the ground state. If we shift the energy such that
E0 = 0, we are left with only the ground state |0〉 as τ →∞, provided that 〈0|ψi〉 , 0. Having determined
|0〉, we can now determine |1〉 by performing imaginary-time evolution on |ψ ′i 〉 ∝ (1 − |0〉 〈0|) |ψi〉.
This enforces 〈0|ψ ′i 〉 = 0, such that the slowest-decaying component in (1.13) is now the first excited
eigenstate. In principle, we can obtain the entire spectrum of H in this manner.
The imaginary-time evolution operator (1.12) also encodes the thermal equilibrium of H. Whereas

quantum fluctuations can be confined to an eigenstate, thermal fluctuations couple different eigenstates.
Hence we need to use density matrices, which describe a probability distribution over the eigenstates.
Concretely, we project the maximally mixed state to find

ρs = P
∑
n

|n〉 〈n| =
∑
n

e−τEn |n〉 〈n| . (1.14)

Here we neglected normalization, so we must divide by the partition function Z ≡ 〈ρs〉 to obtain a
physical state. We immediately recognize this as the canonical ensemble at temperature kBT = 1/τ,
with kB the Boltzmann constant, for which the eigenstates are distributed according to the Boltzmann
distribution

pn =
e−τEn∑
n e−τEn

. (1.15)
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Chapter 1 Introduction

To determine the expectation value of an arbitrary operator O we evaluate

〈O〉 = Tr
[
Oρs

]
/Z = Tr [OP] /Z . (1.16)

This corresponds to the average value of O when the system is in thermal equilibrium at temperature 1/τ,
where both the quantum and thermal fluctuations average out, such that 〈O〉 is again time independent.

1.6 Local approximations

To design an algorithm that is more efficient than the explicit construction of the entire time-evolution
operator, we need to utilize the specific structure of the system that we want to simulate. In our case, we
can use the properties of the spin Hamiltonian, e.g. the Heisenberg model (1.2). This model is local,
meaning that spins only interact when they are physically close, thereby encoding the mechanism for
generating long-ranged correlations that exists in nature and condensed matter system in particular. As
such, it is a powerful tool, both for simplification of the model and of the simulation method. For instance,
in Article 1 of this thesis [42], which we will discuss in Sec. 2.4, we are able to qualitatively capture the
phenomenology of an experimental 3D quantum magnet with a simple anisotropic Heisenberg model.

A natural approach to simulating the global time-evolution of a local Hamiltonian is to approximate it
as a sequence of local evolutions, e.g.

e−it
∑
α Hα ≈

∏
α

e−itHα . (1.17)

This does not hold exactly because the Hamiltonian terms generally do not all commute, and hence
neither do their exponentials, but because H is local we at least know that each exponential commutes
with many others. For simplicity, let us consider the simple case of the Heisenberg model (1.2) on
a chain, in which case H can be subdivided into two disjoint sets H = Ha + Hb, with each element
commuting only with other elements in its set and non-commuting with the rest. Then we can implement
the global time evolution with a non-commuting sequence of local evolutions e−itHa and e−itHb .
To this end we first factor the time-evolution into n segments, i.e. e−itH = (e−itH/n)n, and then take

the limit to an infinite amount of segments. Then we can invoke the Lie product formula [44]

e−it(Ha+Hb ) = lim
n→∞

(
e−itHa/ne−itHb/n

)n
, (1.18)

indicating that (1.17) holds exactly in the limit t → 0. Since Ha and Hb are each a sum of commuting
operators, their exponentials can be decomposed exactly into a product of two-qubit evolutions, e.g.

e−itHa =

N/2∏
j=1

e−itH2 j,2 j+1, (1.19)

with Hj, j+1 the Heisenberg coupling between sites j and j + 1. The same decompositions hold for the
imaginary time-evolution operator, and for complex t in general.
In the following chapter we will use (1.18) to construct a powerful algorithm for the simulation of

equilibrium physics. Afterwards, in Ch. 3 we will extensively discuss generalizations of (1.18).
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CHAPTER 2

Quantum Monte Carlo

2.1 Worldline Quantum Monte Carlo

With the decomposition (1.18) we can map the time-evolution operator of a d-dimensional quantum
spin system onto that of a (d + 1)-dimensional classical Ising model [45, 46]. Concretely, we split
the time-evolution operator into n segments according to (1.18), and insert a resolution of identity∑
®σ | ®σ〉 〈®σ | = I between each pair of exponentials, where ®σ = (σ1, σ2, ...) is the computational basis.

For the Heisenberg model this yields

e−itH = lim
n→∞

∑
®σ1, ®σ2,...

e−itHA/n | ®σ1〉 〈®σ1 | e
−itHB/n | ®σ2〉 〈®σ2 | e

−itHA/n.... (2.1)

The segmentation induces an extra time dimension, which encodes the quantum nature of the Hamiltonian,
appearing only when the evolution operators of neighboring segments non-commute. The time-evolution
operator is now represented as a sum over paths through this time. If we apply it to a state, we can
propagate it along the different paths, and by summing the results we get the time-evolved state. If we
can determine bases ®σj such that all the amplitudes in (2.1) are simultaneously real and non-negative,
then we can sample them from a (d + 1)-dimensional Ising model, for which we can use traditional
Monte Carlo techniques such as the Metropolis algorithm [47].

For real-time evolution this program is spoiled by the factor i in each exponential. On account of this,
we cannot determine the sought-after bases, such that we are forced to deal with complex amplitudes.
Consequently, the accurate estimation of (2.1) will rely on the cancellation of many complex numbers,
such that the number of samples required to reach a fixed precision grows exponentially with the system
size. This is called the sign problem, and it brings us back to the exponential asymptotic cost of
constructing the time-evolution operator in its entirety [48]. In contrast, if all amplitudes would be
simultaneously real and non-negative, the cost would be only linear in system size.
Now we consider the imaginary-time evolution operator, for which (2.1) holds with t → −iτ. If we

want to calculate the expectation value of an observable O with (1.16), we have to apply O to (2.1) and
take the trace. By representing the trace as a sum over computational basis states, it is immediately clear
that Tre−τH is now a sum over periodic paths. Consequently, 〈O〉 is simply an average over these paths.
Because we no longer have the factor i, there is now a possibility that the sampling scheme can be carried
out efficiently, depending on the particular model at hand. For instance, the Heisenberg model (1.2)

7



Chapter 2 Quantum Monte Carlo

on a bipartite lattice enjoys this property, and the resulting linear complexity allows for the large-scale
simulation of its equilibrium properties [49]. This method is called worldline quantum Monte Carlo
(QMC) formulated in discrete time [50–54]. See [55] for an extensive introduction to this method and a
summary of early works that use it. At zero temperature we can perform the equilibrium simulations
only indirectly, by performing simulations at various finite temperatures and extrapolating its expectation
values to zero.

In practice, we have to use a finite segmentation n in (2.1), which introduces a discretization error that
has to be extrapolated in n to obtain statistically exact results. This could be computationally costly,
and it is therefore interesting to consider the particular error structure of a truncated version of (1.18).
Perhaps we can improve it by modifying the evolution operator of each segment. We will discuss this
in great detail in Ch. 3. Nowadays, this method has been formulated directly in the continuous-time
limit n→∞, eliminating the discretization error altogether. It is called continuous-time worldine QMC
[56–59] and has proved itself in many large-scale numerical studies [60–66]. As mentioned above, when
there is no sign problem, the cost is linear in system size, for systems of any dimensionality. In that case
it is arguably the most powerful method for equilibrium simulation known today.

2.2 Stochastic Series Expansion

When time-reversal symmetry is broken, e.g. by a magnetic background field, we can construct a
QMC algorithm that is even more powerful than worldline QMC. We will use this for the equilibrium
simulation of experimental 3D quantum magnets in Article 1 [42], which we will discuss in Sec. 2.4.
To uncover it we have to take a different approach to the imaginary time-evolution operator. We

immediately restrict ourselves to equilibrium averages and consider the canonical partition function Z ,
which we expand as a Taylor series

Z =
∑
σ

∞∑
n=0

(−τ)n

n!
〈σ | Hn

|σ〉 . (2.2)

We utilize the locality of H =
∑

b Hb to write Hn as a sum of products, i.e.

Hn
=

∑
Sn ∈Cn

∏
b∈Sn

Hb, (2.3)

where Cn contains all operator products Sn with n bond operators Hb, e.g. S4 = H6H3H2H1.
Inspired by the success of Monte Carlo in simulating the Ising model, Handscomb formulated the

initial proposal for QMC based on this expansion, where a Markov Chain over Cn is used to sample
operator strings with classical Monte Carlo provided there is no sign problem [67]. For the ferromagnetic
Heisenberg model, where all terms in (2.2) become positive, he derived analytical expressions for the
expectation value of an arbitrary operator string, and with this he introduced the first QMC algorithm for
a quantum many-body system [68]. It gave access to previously intractable system sizes, for special
Hamiltonians [69–71].
This was subsequently generalized to arbitrary sign-problem-free Hamiltonians, where the operator

string expectation values are also sampled [72–74]. To see how this can be done, we first note that each
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product in (2.3) propagates a state |σ〉 in (2.2), i.e.

|σ(k)〉 =
∏

b∈Sn(k)

Hb |σ〉 , (2.4)

where Sn(k) contains the first k operators in Sn, e.g. for the same example as before we get S4(2) = H2H1.
Importantly, the initial state |σ〉 is always a classical state, and propagating it with bond Hamiltonians at
most flips spins, never creating a superposition. Hence we have again induced a classical representation
of the quantum partition function by creating an extra time dimension, along which the states are
propagated by the Hb. This can be made explicit by substituting (2.4) and (2.3) into (2.2), yielding

Z =
∑
σ

∞∑
n=0

∑
Sn ∈Cn

(−τ)n

n!

n∏
k=1
〈σ(k)bk

| Hbk
|σ(k − 1)bk

〉 . (2.5)

Here bk is the bond of the kth operator in Sn and |σb(k)〉 represents the z-spins of the bond b, e.g.
|σ0(3)〉 = |↑↓〉.
The distribution of terms in the Taylor expansion (2.2) is concentrated in a small window of n. In

particular, we have 〈n〉 = βNb |Eb | with width
√
〈n〉, where Nb is the amount of terms in the Hamiltonian

and Eb = 〈Hb〉 [74]. So we only need to consider a small amount of terms in order to get a manifestly
unbiased simulation algorithm with computational complexity O(N). Many observables 〈O〉 can be
calculated directly from the information contained in Z , e.g. by averaging over the paths (2.4) [73].

This algorithm is called stochastic series expansion (SSE) QMC, and coupled with cluster sampling
algorithms [56, 57, 74, 75] it became a powerful method for simulating the equilibrium properties of
sign-problem-free systems [76–81]. SSE with directed loops [74] outperforms continuous worldline
QMC with worms [82] for anisotropic Heisenberg models in a background magnetic field. This is rooted
in their inherently different ways of sampling loops [74].

2.3 Topological phase transition in the XY model

As a testament to the power of QMC for sign-problem-free Hamiltonians, we were able to simulate a
3D anisotropic spin-1/2 Heisenberg model in a magnetic field at low temperature for up to a million
spins. This was done in the context of Article 1 of this thesis, where an experimental material is studied
that realizes this Heisenberg model. We will discuss this in detail in the commentary in Sec. 2.4. The
material is of interest because it realizes a weakly-interacting stack of strongly-interacting square lattice
magnets, providing some level of experimental access to exotic phenomena such as topological phase
transitions. Specifically, in a small temperature range the material behaves as the antiferromagnetic XY
model on a square lattice

H =
∑
〈i, j 〉

Sx
i Sx

j + Sy
i Sy

j . (2.6)

This model exhibits a phase transition that is characterized by a proliferation of topological defects and
hence global instead of local ordering. In fact, thermal fluctuations prevent any local ordering at finite
temperature in local two-dimensional systems that have a continuous symmetry [83].

Topological defects already occur in the ferromagnetic classical XY model on a square lattice, which
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we write as
H = −

∑
〈i, j

cos(φi − φ j). (2.7)

Here each spin is represented as a normalized vector with angle φ relative to a fixed axis, i.e. Sαi =
(cos φi, sin φi). For illustration purposes we have chosen a ferromagnetic coupling, which is classically
equivalent to the antiferromagnetic case if we neglect boundary conditions. With quantum mechanics
this is no longer true in general. While the ferromagnet still has a classical ground state |0〉 = |↑↑↑ ...〉,
the antiferromagnet no longer has |Z2〉 = |↑↓↑ ...〉 as its ground state. Instead, the ground state is now a
superposition called the Néel state, which is antiferromagnetically ordered in the sense that its local
magnetization 〈σz

i 〉 is still equal to that of the classical state |Z2〉. At finite temperature the order is
destroyed for both the ferromagnetic and antiferromagnetic XY model, due to the gapless spin-waves
that accompany the U(1) symmetry of (2.6) [83]. In 1D and 2D these proliferate because the entropy
associated to the spin waves already outweighs their energy cost at any finite temperature, to the extent
of preventing any local ordering. For 3D systems this is no longer the case, such that magnetic ordering
can occur at finite temperature. This will become relevant in the experimental setting of Article 1.1

Because we are concerned with the low-energy properties of (2.7), we can expand the angles around
the uniform ground state that is shown in Fig. 2.1a and keep only the quadratic term, i.e.

H − E0 ≈
1
2

∑
〈i, j 〉

(φi − φ j)
2. (2.8)

This term clearly favors smooth configurations, so a natural first guess would be to consider only spin
waves. In that case we have for separated spins [35]

〈Sx
i Sx

j + Sy
i Sy

j 〉 ∝ |ri − rj |
−

kBT

4π , (2.9)

which vanishes for |ri − rj | → ∞ such that thermally-excited spin waves indeed prevent long-range
magnetic ordering at any non-zero temperature [34, 83]. Nonetheless, the correlations decay as a
power-law, implying an infinite correlation length.

There also exist smooth vortex configurations, such as the one shown in Fig. 2.1b. When moving in a
counter-clockwise closed path around the center of the vortex, such that we end up at the same spin, we
know that the φi along the path sum to 2π. In contrast, for the ground state from Fig. 2.1a they sum to
zero along any closed path. If the vortex was reversed, they would instead sum to −2π. Clearly this is
independent of the specific path that we choose, as long as it encloses the center and winds around it
once. This indicates that the vortex is a topological defect in the ground state, where the direction of the
vortex poses as a topological charge, i.e. we can assign q = +1 to the vortex and q = −1 to the antivortex.
When a path encloses Nv vortices and Nav antivortices its angles generally sum to 2πq = Nv + Nav

where q ∈ Z.
Within the low-energy theory (2.8) the vortex is gapped from the ground state by Ev − E0 ≈ 2π ln(R),

where R is the radius of the vortex. If we consider large systems, then it is immediately clear that we
can treat separately the vortex excitations with gaps ∆E ∼ O(ln(R)) from the spin wave excitations with
1 It should be noted that on finite lattices there is no symmetry breaking, and as such the statistically-exact QMC algorithms
inherit the symmetries of the Hamiltonian. Therefore they cannot directly access the order parameter that is associated to
the thermodynamic symmetry breaking, and instead we have to resort to more intricate probes such as the decay of spin
correlations.
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(a) (b)

Figure 2.1: In panel (a) we show the uniform configuration that is the ground state of the 2D XY Hamiltonian. In
panel (b) we show an isolated topological vortex, which is a smooth configuration of spins that has excitation
energy

∆E ∼ O(1/R2
). Essentially, we can consider the vortices as equilibrium configurations and define the

spin waves with respect to each. This makes the topological defects metastable, since the spin waves and
vortices are effectively decoupled due to their different energy scales. However, at finite temperature
T we also need to take into account the configurational entropy of a vortex Sv, since the equilibrium
configuration then coincides with the minimum of the free energy F = Ev − TSv. Taking into account
that the vortex center can roughly be placed on R2 different sites, we estimate Sv ≈ 2kB ln(R). Hence
the free energy is F = 2(π − kBT) ln(R), predicting that above kBTBKT = π the increase in energy is
outweighted by the increase in entropy, seemingly enabling the proliferation of vortices. This suggests
that (2.9) does not hold above TBKT and that we instead have to take into account the vortices. To uncover
this in more detail we need to considering interacting vortices [35].
Far below TBKT there is a small chance that thermal fluctuations excite a vortex, because this takes
O(ln(R)) energy, but a bound vortex-antivortex pair only requires O(1). If these are created already at
T < TBKT, then by increasing T we can imagine that increasingly strong thermal fluctuations cause a
vortex and its antivortex to drift apart, until they become unbound and a vortex can in principle exist on
its own. By decomposing the φi into a spin-wave part that does not wind and a vortex contribution that
encodes the winding, the low-energy theory (2.8) naturally decouples the spin-waves and vortices [35,
36]. The vortex system then becomes a neutral gas of vortices and anti-vortices, with equally-charged
defects repelling eachother and oppositely-charged defects attracting eachother. The coupling decays
logarithmically with separation. This effective theory can be used to show that there is indeed a phase
transition associated to the unbinding of vortex-antivortex pairs.

Specifically, at T ≤ TBKT the average separation between each vortex and its antivortex is finite (in an
infinite system) [35]. In that case the vortex component of φ is long-range ordered, but the spin-wave
component has the correlations (2.9) as usual and therefore prevents any long-range ordering of φ as a
whole. At T > TBKT the average separation becomes infinite, at which point the vortex component of φ
is no longer long-range ordered. As a result, the spin correlations now decay exponentially, such that the
correlation length is finite. Accordingly, at TBKT the magnetic susceptibility jumps down from infinity to
a finite value, indicating a sudden change in the response to a magnetic field. This can be understood
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in light of the vortex-antivortex unbinding, since at T > TBKT even a tiny in-plane magnetic field can
separate vortices and antivortices.

The vortex gas theory can be used to show that the spin-spin correlation length ξ satisfies [35]

ξ ∼ e
1.5

√
TBKT

T−TBKT , (2.10)

in the limit T → TBKT from above. This is qualitatively different than the critical scaling of a symmetry-
breaking transition that is associated to long-range order, where ξ instead diverges as a power of
TBKT/(T − TBKT). The divergence in (2.10) is more severe than any such power. It can be shown that at
T = TBKT the spin-spin correlation function decays as |ri − rj |

−1/4 and that consequently the in-plane
magnetic susceptibility χ diverges as χ ∼ ξ2− 1

4 [36]. This is in stark contrast with any known local
symmetry-breaking transition.

So in the seemingly simple classical system (2.6) we have a finite-temperature phase transition between
a topologically trivial and a topologically non-trivial phase, marked by the presence or absence of free
topological charges. We have seen that it is accompanied by a qualitative change in spin correlations,
but without local ordering or symmetry breaking in general. It is called the BKT transition, and it is a
type of topological phase transition. Such transitions are not captured by the perturbative framework
of Landau and Ginzburg, and are unveiled only when considering non-perturbative effects. The BKT
transition also occurs in superfluids and the melting theory of solids [35], with the main requirement
being the existence of metastable configurations that are gapped with ∆E ∼ O(ln R). For example, the
2D Heisenberg model (1.2) does not have metastable vortices. This is because there are now three
equivalent spin directions in the low-energy theory, such that there would appear two angles in (2.8).
These need to be summed simultaneously in order to define topologically charged vortices, but it turns
out that the increased dimensionality reduces the gapping to Ev − E0 ∼ O(1) [35].

Knowing that the main difference between the two phases is the behavior of the spin-spin correlations,
which decay as a power law at T ≤ TBKT and as an exponential at T > TBKT, we can construct a global
order parameter that captures this. As it turns out, in the absence of long-range order but in the presence
of power-law correlations, applying a uniformly-increasing twist δφ j = jθ/L to the spins φi along one
of the two spatial directions increases the free energy significantly, in the sense that the spin stiffness [84,
85]

ρs =
1
L2

∂2F

∂θ2 (2.11)

is nonzero. As the name indicates, it provides a notion of rigidity of the spin system. Intuitively, the
stronger a spin is correlated to the others, the more energy it will cost to rotate it on its own. When the
spin correlations decay exponentially, we instead have ρs = 0, such that ρs is the global parameter that
we are looking for. It can be shown that at the critical point ρs = 2TBKT/π [85]. In the limit of infinite
system size ρs steps discontinuously from this value to zero, but the behavior of ρs as a function of
both T and L can be used to extract TBKT and various critical exponents. We utilize such a procedure in
Article 1. Crucially, the spin stiffness is readily accesible with the QMC algorithms from this chapter.
See Sec. 3.5 of Ref. [86] for an extensive introduction to the spin stiffness and the BKT transition in the
context of QMC.
The transition is also accompanied by a maximum in the specific heat, which occurs when vortex-

antivortex unbinding is happening at the maximal rate. Because the average vortex-antivortex separation
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is still finite at TBKT, as this temperature marks the point after which the first pairs can be imagined to
start separating, it is only natural that the peak in the specific heat occurs slightly above TBKT, when the
separation rate peaks [87].
The BKT mechanism for topological phase transitions carries over into the quantum realm, and the

alignment induced by the local coupling appears to be irrelevant. For example, the antiferromagnetic
quantum 2D XY model with spin-1/2 constituents is estimated to have a BKT transition with the same
critical scaling and exponents as the ferromagnetic classical XY model that we considered above [39].
But now an analytical treatment is difficult compared to the classical scenario. Luckily, the XY model
on a bipartite lattice is sign-problem-free, such that the QMC algorithms can be employed to perform
efficient simulations. This allows for highly-accurate estimates of the critical scalings. The vortices
generalize in a straightforward manner by encoding them into plaquette operators [88]. These have
been used in QMC to illustrate that the specific heat peak indeed appears at the maximum rate of
vortex-antivortex unbinding [89].

2.4 Commentary on Article 1

Field-Tunable Berezinskii-Kosterlitz-Thouless Correlations in a Heisenberg Magnet
Phys. Rev. Lett. 130, 086704 (2023)
D. Opherden,M. S. J. Tepaske, F. Bärtl,M. Weber,M. M. Turnbull, T. Lancaster, S. J. Blundell,
M. Baenitz, J. Wosnitza, C. P. Landee, R. Moessner, D. J. Luitz, H. Kühne

Experimentally, a square lattice of spins has only been realized as an embedding in a 3D material
[90–93]. In particular, there are various materials that realize a stack of weakly-coupled anisotropic
Heisenberg lattices, each described internally by the 2D XXZ Hamiltonian

H = J
∑
〈i, j 〉

Sx
i Sx

j + Sy
i Sy

j + (1 − ∆)S
z
i Sz

j . (2.12)

Here J > 0 ranges wildly, from a few Kelvin to a few thousand. The exchange anisotropy ∆ > 0 is
often on the order of D ∼ O(10−2

) and is intrinsic to the material. Because the low-energy theory of the
XXZ model (2.12) is that of the XY model (2.6), naively one would expect a BKT transition [40, 41].
However, in reality the interlayer antiferromagnetic coupling J ′ � J spoils this. A review of candidate
materials is given in Article 2 [43] that we will discuss below in Sec. 2.5.

Because the XY model is predicted to have an exponentially divergent correlation length as T → TBKT,
there appear large correlated regions of spins close to TBKT. When these become sufficiently large,
the tiny J ′ will be sufficient to trigger 3D antiferromagnetic ordering [90]. Since this occurs before
the correlation length gets to diverge, the BKT transition is in reality foregone by a Néel transition at
TLRO > TBKT. Nonetheless, if J ′/J is relatively small then the correlated XY regions are relatively large
before they start interacting with other layers. By probing this regime we can investigate genuine BKT
physics. The extent of this regime is controlled by ∆ and J ′/J, which can in turn be controlled by a
uniform magnetic z-field and hydrostatic pressure, respectively. ∆ can be increased in this way because
the uniform z-field competes with the antiferromagnetic Sz

i Sz
j coupling, whereas J ′/J can be increased

because the pressure pushes the square lattices closer together.
In Article 1 of this cumulative thesis [42], shown in App. A, the author has used SSE with directed
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loops to simulate the low-temperature equillibrium properties of a 3D cubic anisotropic spin-1/2
Heisenberg magnet in an external magnetic field. This system is sign-problem-free, allowing us to reach
system sizes with up to a million spins. We have investigated the specific Hamiltonian that models the
molecular material CuPOF of Ref. [93], to provide theoretical backing for their experimental findings of
BKT correlations. By tuning the magnetic field from zero to 17T, the system is interpolated between the
layered XXZ system and a trivial ferromagnet. At small field strengths the effect of the magnetic field
can be described as a field-induced exchange anisotropy [94], which we investigate with QMC in Fig. S4
of the Supplemental Material. At large field strengths, ∆ effectively becomes negative, which induces a
canting of the in-plane XY ordering into the z-direction.
To characterize the effects of a tiny J ′ at different field strengths, we determined TBKT at J ′ = 0 and

TLRO at J ′ > 0 for various magnetic fields. To this end we calculated the spin stiffness (2.11) with QMC
and applied finite-size scaling theory. This procedure is illustrated in Fig. 3 of Article 1. Then, by
fitting the experimentally determined spin-lattice relaxation rate to the correlation length (2.10), in the
temperature regime where the XY model is realized, we can extract an experimental estimate of TBKT.
The experimentalists determined TLRO from the onset of the magnetization, which we have reproduced to
some extent with QMC in Fig. S3 of the Supplemental Material. There we also determined the in-plane
correlation length that triggers the Néel transition when it is on the order of∞′∈ lattice spacings, along
with the uniform z-magnetization that captures the canting and the staggered z-magnetization which
vanishes as expected. The theoretical and experimental TBKT and TLRO were determined across the full
range of non-trivial field strengths, shown in Fig. 1 of Article 1. They display a non-linear dependency
of the criticality on field strength, with the theoretical predictions behaving qualitatively the same as
the experimental findings. So a simple sign-problem-free Heisenberg model is able to qualitatively
capture the low-temperature equilibrium properties of CuPOF, showing a rich interplay of Néel and
BKT correlations that can be tuned through an external field.
An interesting direction for further study would be to consider the vortex operators from Ref. [88].

This could provide a more detailed picture of the extent to which vortices are significant in the regime
that we have studied. It would also give a glimpse of the fate of the vortices at the moment that the
interlayer coupling becomes noticable, i.e. whether they instantly vanish or if there is perhaps some
remnant.

The author of this thesis has performed all the numerical simulations to obtain the theoretical results
of the article, and has performed the finite-size scaling to obtain the theoretical critical temperatures.
The author has also performed the fitting of the universal scaling laws to the experimental data in Fig. 2
to obtain the experimental TBKT. Lastly, the author has written the article in conjunction with the other
authors.

2.5 Commentary on Article 2

Berezinskii—Kosterlitz—Thouless correlations in copper-based quasi-2D spin systems
(Review Article)
Low Temp. Phys. 49, 819–826 (2023)
D. Opherden, F. Bärtl, M. S. J. Tepaske, C. P. Landee, J. Wosnitza, H. Kühne

A crucial aspect to the study in Article 1 is the experimental feasibility of accessing the XY regime
of interest across a wide range of ∆. The material CuPOF has several advantageous properties that
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make it the best known material for this task. This is because of its exceptional isolation of layers, with
J ′/J ∼ O(10−4

), while having a modest J = 6.8K such that a ferromagnet can be experimentally realized
with a magnetic field [42]. Moreover, with an intrinsic anisotropy of ∆ ≈ 0.01, the XY model is realized
in a resolvable temperature range of a few hundred millikelvin above TLRO, which is itself around 2K
for intermediate magnetic fields. Above the crossover temperature Tco > TLRO the exchange anisotropy
washes out due to the thermal fluctuations, separating an isotropic from a planar regime [40, 41, 94].
Hence there are three relevant temperatures: the TBKT that occurs for J ′ = 0, the actual TLRO, and Tco.
These essentially dictate the extent to which BKT correlations can be probed.

Article 2 of this cumulative thesis [43], shown in App. B, is a review article on the XY regime of
CuPOF and other modern candidate materials. We consider the qualities that make for a suitable magnet
in which field-tunable BKT correlations can be observed, as well as the methods of determining this, and
we compare previous QMC studies with the experimental results. In Fig. 1 we compare the experimental
TLRO of various quasi-2D materials with different intrinsic anisotropies to the theoretical TBKT from
the QMC studies in Refs. [40, 41]. This is done at zero field strength. It gives the first indication that
CuPOF is a good candidate for observing BKT correlations, since it is one of two materials for which
TLRO falls below the predicted TBKT.

We provide further support for this by comparing in Fig. 2 the experimental Tco to the theoretical
Tco from Ref. [95], again at zero external field. These are both obtained from the minimum of the
out-of-plane magnetic susceptibility, which was introduced in the QMC study of Ref. [95]. The
experimental and theoretical results agree very well. For comparison we also show again the theoretical
TBKT from Ref. [41] along with the experimental TLRO. The section between the Tco and TBKT curves
can be considered as the region in which XY physics dominates.
If we look for a field-tunable magnet then only CuPOF remains as a suitable candidate. This can

be seen in Table 1, where the relevant couplings are summarized. Only CuPOF and its analogs have
J ∼ O(1), such that they can be experimentally tuned through the entire range of non-trivial field
strengths. In Fig. 3 we show the experimental magnetic susceptibility minima at various field strengths,
illustrating how Tco can be increased by increasing the field strength. This supports the concept of
field-induced anisotropy. To investigate this more closely from the theoretical side, we plot in Fig. 4 the
Tco and TBKT as determined by QMC in Ref. [94] for ∆ = 0 with variable field strength, together with
the Tco and TBKT for zero field and variable ∆ from Refs. [40, 41]. The excellent agreement indicates
that at low field strength the models are equivalent in many respects, which we already got a glimpse of
in the supplemental material of Article 1.

It is clear from Articles 1 and 2 that the simple sign-problem-free anisotropic XXZ model captures the
physics of a wide range of layered materials. This enabled QMC to be a driving force, as it can simulate
the finite-temperature equilibrium properties of the Hamiltonian for system sizes that are inaccesible
with any other known theoretical method. It provides the foundation for an extensive finite-size scaling
analysis that gives highly accurate predictions of critical temperatures, to achieve the best possible
comparison between theory and experiment.
The author of this thesis is responsible for the theoretical analysis and comparison with QMC. The

author has furthermore assisted in writing the article.
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CHAPTER 3

Iterative algorithms

The QMC algorithms from the previous chapter are only efficient in simulating the equillibrium properties
of sign-problem freeHamiltonians. This excludes real-time evolution and the exotic equilibriumproperties
of e.g. frustrated magnets that frequently appear in experiments [96–99]. Outside of this, we have
to consider the decomposition in (1.18) directly, without any mapping to a classical model. For
example, we can alternatively calculate the trace in (1.16) as the average return amplitude from an
imaginary-time-evolved state P |ψ〉 to its initial state O |ψ〉, for all bit strings |ψ〉. At zero temperature
we only need to evolve a single state, analogous to the real-time evolution of a state.

The particular form of the time-evolution operator decomposition now becomes important, as for
the discrete worldline QMC from Ch. 2, because in practice we have to use a finite n truncation of
(1.18). Furthermore, in Ch. 4 and Ch. 5 we will see that approximate decompositions with a small
amount of exponentials are often crucial to modern time-evolution methods. Each exponential has to be
applied to the state, incurring a computational cost and potentially decohering the state. Then the exact
decomposition (1.18) leads to a completely mixed state.
In this chapter we will develop various alternatives to (1.18), where the time-evolution operator of a

single segment is made more complex to improve the approximation accuracy for a fixed segmentation
n. In Ch. 4 on tensor networks and Ch. 5 we will see that this is crucial for modern time evolution
algorithms on both classical and quantum computers.

3.1 Approximate time evolution

Before we start looking for approximate decompositions, we have to define a measure of accuracy that is
physically sensible. We do this with a distance between the targeted time-evolution operator U and its
approximation C. A natural option is the normalized completely bounded trace distance [100, 101],

dtbt(C,U) = max
ρ

1
2
| |(C ⊗ I)ρ(C† ⊗ I) − (U ⊗ I)ρ(U ⊗ I)† | |t. (3.1)

The maximum is taken over arbitrary density matrices ρ (satisfying | |ρ| |t ≤ 1 by definition) that live in a
tensor product of the physical Hilbert space with an auxillary system. The distance (3.1) is induced by

the trace norm | |ρ| |t = Tr
√
ρ†ρ on density matrices, and the accompanying normalized trace distance

dt(ρ, σ) = | |ρ − σ | |/2 encodes the distinguishibility of states ρ and σ [102]. The auxillary space is

16



Chapter 3 Iterative algorithms

required to efficiently discriminate between C and U. The identity in (3.1) acts on this auxillary space
and is there solely to account for its presence during a discrimination task. When C and U are affected
by decoherence, the distance (3.1) is a natural choice even when not considering the distinguishibility
test [100], and analogously for time-evolution algorithms that rely on auxillary systems. The operational
meaning of precision as defined by (3.1) is clear: It is the maximum extent to which the difference
between C and U can induce distinguishible states that should be indistinguishable when C and U are
equivalent. The errors of the decompositions that we will introduce below are defined with respect to
this measure.

There is no closed form for calculating (3.1) [101], calling for a bound on (3.1) that is relatively easy
to evaluate. This is essential for applications where we often need to quantify the distance between
a time-evolution operator and its approximation, e.g. when attempting to minimize this distance in a
variational algorithm. It can be shown that dtbt(C,U) < dspec(C,U), where dspec(C,U) is the spectral
distance between C and U, which is the operator distance induced by the Euclidean norm on the Hilbert
space of states [101]

dspec(C,U) = | |C −U | |spec = max
|ψ〉

√
〈ψ | (C −U)†(C −U) |ψ〉. (3.2)

Here |ψ〉 can be an arbitrary state, such that dspec(C,U) ≈ 0 only when C |ψ〉 and U |ψ〉 are close even in
the worst case. Now, dspec(C,U) has a closed form: it is equal to the square root of the largest eigenvalue
of (C −U)†(C −U). This norm is also often used to quantify the error of analytical decompositions
[103]. However, its calculation requires (partial) matrix diagonalization, which is expensive compared to
matrix multiplication. Hence for the purpose of e.g. numerical optimization it is worthwile to look for a
distance that involves matrix multiplication at most.

The Frobenius distance generalizes the Euclidean norm to operators, i.e.

dF(C,U) = | |C −U | |F =
√
Tr((C −U)†(C −U)) =

√∑
i j

|Ci j −Ui j |
2, (3.3)

and it is closely related to the spectral and trace distance, all being based on the eigenvalues of
(C − U)†(C − U). In particular, the trace distance of an operator is the sum of the square root of its
eigenvalues, i.e. the sum of its singular values, the Frobenius distance is the square root of the sum of its
eigenvalues, and the spectral norm is the square root of the largest eigenvalues. This indicates how the
different distances prioritize states differently, with the trace and Frobenius distances averaging over the
entire Hilbert space while the spectral distance only considers the worst case.
To calculate dF(C,U) we only need to perform matrix multiplication followed by a trace, and since

clearly dspec(C,U) ≤ dF(C,U) we find the efficiently calculable bound dtbt(C,U) ≤ dF(C,U). Hence if
we determine dF(C,U) = ε , we know that dtbt(C,U) ≤ ε , giving us an intuitive measure of how close C
and U are. We can normalize the Frobenius norm by averaging over the eigenvalues instead of summing
them, to which end we divide the trace in (3.3) by the Hilbert space dimension 2N . This normalized
measure introduces a notion of error, which we use as a cost function for the optimization procedure in
Articles 4 and 5, as well as in the preprint [104].
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σ1 σ2 σ3 σ4 σ5 σ6

e−iA e−iA e−iA

e−iB e−iB e−iB e−iB

e−iC e−iC e−iC

Figure 3.1: A translationally-invariant circuit C consisting of general two-qubit gates G laid out in a brickwall
pattern.

3.2 First-order decomposition

Now we are ready to consider approximate decompositions, starting with (1.18). Trotter showed that
(1.18) generalizes to the case where the operators are unbounded (e.g. for Hamiltonians of infinite lattice
systems) [105], in which case we cannot write the closed form (1.18). Suzuki further extended it to the
case of more than two operators and formulated it in the practical language of approximants [106], i.e.
the nth approximant of (1.18) is

e−it
∑

j Hj =

(∏
j

e−itHj/n

)n
+ O(t2

/n). (3.4)

The error depends solely on the norm of all nested commutators of the Hamiltonian terms [103].
These vanish when all the terms commute, in which case the error is zero. For instance, for the
Heisenberg model we can easily use the triangle inequality to show that the error in (3.4) is equal to
| |[HA,HB]| |spect

2
/(2n) + O(t3

/n2
). This explicit dependence of the error bound on the locality of the

system under consideration, as quantified through the commutators of the Hamiltonian terms, can be
used to prove rigorously that the amount of local exponentials required to reach a fixed precision ε scales
linearly with system size [107]. In [103] a rigorous theory of Trotter commutator error bounds was
introduced.

3.3 Variational compiling

More generally, we can build C from an arbitrary product of exponentials, that we can design whichever
way we want. Each gate G in the product can be chosen to arbitrarily couple any amount of qubits, and
the terms can be executed in any order. This is called a circuit or product formula. Then we can try to
modify the couplings in each G such that their product approximates the desired time evolution. One
possible choice is the first-order decomposition (3.4), which consists of uniform gates. For practical
reasons, we will only consider circuits C consisting of gates G that act at most on nn qubits, laid out in
a brickwall architecture. We call these brickwall circuits, which arise naturally for Hamiltonians that
satisfy (1.19), but in general we can use it for more complex Hamiltonians.
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An example of such a circuit is depicted in Fig. 3.1, for a qubit chain with periodic boundary conditions
(PBC). Every gate is in principle a general unitary, e.g. G1 = e−iA with A an arbitrary 16 × 16 complex
matrix that can be varied to affect the approximation accuracy of C. Such parameterized circuits are
essential to variational approaches, where the parameters are varied to find an optimal approximation
accuracy for a given layout and amount of gates. This process is called variational compiling. Here it is
essential that an efficiently calculable distance measure such as the Frobenius distance (3.3) is used. For
manifest translational symmetry we choose all gates in a half-layer to be equal, serving to approximate
a translationally-invariant time-evolution operator. Naturally, a translationally-invariant circuit can be
executed for any amount of qubits. In Article 3 [108], Article 4 [109], and the preprint [104], we use this
approach to numerically determine high-accuracy approximations of various time-evolution operators.

The gates in every half brickwall layer can be applied simultaneously, and more generally the brickwall
architecture has the smallest circuit depth for a fixed number of gates. The depth is the maximum amount
of gates encountered by a forward-moving path from the input to the output qubits. If we think of the
vertical direction in Fig. 3.1 as time, then a brickwall circuit has the minimum qubit idling time for a
fixed number of gates. Depth also bounds the extent to which gate errors can propagate, such that it
is especially relevant in the presence of non-correctable errors. In Ch. 4 we will see how this applies
to classical tensor network algorithms that undergo algorithmic decoherence on account of keeping
calculations tractable, and in Ch. 5 we will see how it similarly applies to quantum computer algorithms
that undergo physical decoherence. There it is desirable to use circuits with as small a depth and as little
elementary two-qubit gates as possible.

When looking for a shallow circuit approximation C to a time-evolution operatorU(t), i.e. containing a
relatively small amount of layers of gates, a fundamental property that C should reproduce is the distance
W(t) that information can travel in time t. One way to quantify this is through the out-of-time-ordered
correlators (OTOCs) [110–112]

Cαβ
i, j (t) = | |[σ

α
i (t), σ

β
j ]| |

2
F, (3.5)

where σαj (t) = Uσαj U†. The OTOCs vanish when information cannot travel from the spin at site i to
the spin at site j. By varying i and j at a time t of interest, we get an idea of W(t). The Lieb-Robinson
velocity implies W(t) ∝ te−λt for local Hamiltonians [113], where λ > 0 signifies a leaking of the perfect
lightcone.

Analogously, circuits have a maximum-velocity width R(M), which can be determined by starting at
an input qubit and taking the forward-moving path that yields the largest displacement in sites after M
layers [114]. A sensible approximation should have R(M) ≥ W(t). It is easily inferred from Fig. 3.1 that
a brickwall circuit has R(M) = 2M + 1. In contrast, a sequential straircase architecture has R(M) = N ,
since by design it allows for transport from one side to the other with only a single layer [115].
In the preprint [104] we consider in detail the potential benefits of reducing the parameter count of

fixed-depth shallow circuits. We achieve this by incorporating the local constraints and symmetries of
various models directly into the variational circuit. This greatly reduces the amount of circuit parameters
and hence makes the optimization much faster, allowing for the optimization of larger circuits. However,
we found that it can reduce the expressibility of fixed-depth shallow circuits. In the case of the PXP
model we were able to construct restricted circuits that have the brickwall architecture, and there it
immediately follows that on account of the restriction we have the more than eightfold reduction to
R(M) = M/4. As a result, the time t where the lightcone of the targeted time-evolution operator is larger
than R(M) occurs relatively early, after which the approximation breaks down. This is illustrated in Fig.
8 of [104], where we compare the OTOCs for fixed circuit depth. However, at this t the R(M) of an
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σ1 σ2 σ3 σ4 σ5 σ6

ψ

Figure 3.2: A quantum state of six qubits in the tensor product basis: ψσ1σ2σ3σ4σ5σ6
.

equally-sized unrestricted (i.e. only translationally-invariant) brickwall circuit is still much larger than
the lightcone, and we found that it can encode high-accuracy approximations up to 2t. This illustrates
how circuit design is especially relevant when searching for accurate fixed-depth shallow circuits.

3.4 Computational complexity

To simulate the targeted dynamics we have to apply the circuit to a state, for which we need to sequentially
apply its gates. In Fig. 3.2 we show a quantum state for six qubits, represented as a (2, 2, ...) tensor
ψσ1σ2σ3σ4σ5σ6

to make the tensor-product structure of the Hilbert space explicit. Pictorally, it is already
clear how the gates from Fig. 3.1 are applied to the state from Fig. 3.2.

The gate count Ng of a circuit is a natural measure of its computational complexity. This is the amount
of nn two-qubit gates required for C to approximate the targeted unitary with precision ε . Long-ranged
gates or multi-qubit gates have to be decomposed into nn two-qubit gates before counting. This measure
of complexity allows for comparison between widely different algorithms, and it is an especially relevant
measure for noisy classical and quantum calculations. Importantly, this measure of complexity pertains
only to the circuit, and not to the mechanism with which it is applied to a state. In particular, if we want
to simulate arbitrary circuits on a classical computer, e.g. by considering their effect on arbitrary states,
then applying a gate to a state is exponentially costly in N . In contrast, as we will discuss in Ch. 5, this is
in principle only polynomially costly on a quantum computer. In Ch. 4 we will consider a formalism
that allows for approximate Hilbert space calculations based on entanglement truncation. This lets us
apply a circuit to a state on a classical computer with polynomial complexity, as long as the initial and
propagated states are lowly entangled.

3.5 Higher order circuits

Before considering the numerical approach from Sec. 3.3 we will first explore analytical decompositions
such as (1.18), to see what we are up against. To determine circuits for which the error scales as a
higher power than (3.4), we have to consider more complicated approximants, such that the accuracy
can be improved without having to use a finer segmentation n. To get a sense of how this will go, we
note the celebrated Baker-Campbell-Hausdorff (BCH) formula, which states that for the case of two
non-commuting exponentials

e−it Ae−itB = e
∑∞

n=1(−it)
nQn . (3.6)
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The coefficients Qn are the averages of the nested commutators available at order n [116, 117], e.g.
Q1 = A + B, Q2 = [A, B]/2, and Q3 = ([A, [A, B]] − [B, [A, B]]) /12. When [A, B] = 0 we get the scalar
multiplication law e−it(A+B) = e−it Ae−itB.

With the BCH formula we can determine the coefficients Cn of the dual Zassenhaus formula [117–119]

e−it(A+B) = e−it Ae−itB
∞∏
k=2

e(−it)
kCk . (3.7)

For example, C2 = [B, A]/2 and C3 = ([[B, A], A]+ 2[[B, A], B])/6. These can be determined recursively
[117], and it immediately provides a mth order approximation to e−it(A+B) by truncating the product
[106], i.e.

e−it(A+B) =

(
e−it A/ne−itB/n

m∏
k=2

e(−it)
kCk/n

k

)n
+ O

(
tm+1

nm(m + 1)!

)
. (3.8)

Here we again introduced the segmentation n to induce a perturbative parameter. By fixing n such
that t/n � 1 we then get the exact exponential for m → ∞. It generalizes naturally to the case of
multiple non-commuting sets of Hamiltonian terms [106]. Because the amount of BCH and Zassenhaus
coefficients increases exponentially with the order m, the amount of gates in (3.8) also grows exponentially
with m. We can therefore expect that to increase m for a general circuit approximation will require us to
add an amount of gates that scales exponentially with m.
We find a similar structure for the approximation of a single exponential e−itH . The definition (1.7)

can be regarded as a m→∞ approximation with n = 1, whereas the other well known definition

e−itH = lim
n→∞
(I − itH/n)n, (3.9)

instead has m = 1 and n→∞. We can combine both definitions into the approximant [106]

e−itH =
m∑
k=0

[
1
k!

(
−itH

n

)k ]n
+ O(tm+1

/nm), (3.10)

which is the analog of (3.8). However, increasing m by one now only requires one extra term in the
expansion. This illustrates how the matching of orders is exponentially less complex when using an
approximant that is a sum instead of a product as for (3.8).

3.6 Symmetric circuits

Nonetheless, the direct truncation approximation (3.8), first introduced by Suzuki [106], can be improved.
In particular, shortly after Ref. [106], multiple reports surfaced of a simpler second-order circuit for the
case of two non-commuting operators [120–122]

e−it(Ha+Hb ) = e−itHa/(2n)e−itHb/ne−itHa/(2n) + O(t3
/n2
). (3.11)
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Because of its symmetry, the circuit (3.11) is odd in t, i.e. its Zassenhaus formula is

e−itHa/(2n)e−itHb/ne−itHa/(2n) = e−it A/ne−itB/n
∞∏
k=1

e(−it)
2k+1C2k+1/n

2k+1
, (3.12)

This implies the Taylor expansion(
e−itHa/(2n)e−itHb/ne−itHa/(2n)

)n
= e−itH + E3(t)

t3

n2 + E5(t)
t5

n4 + ..., (3.13)

where the coefficient Ek depends on Ck and hence consists of nested commutators between Ha and Hb.
This exposes the error structure of a symmetric circuit, and it illustrates how higher-order approxima-

tions can be obtained relatively easily by summing second-order circuits with different n. Such sums of
powers of symmetric circuits are called multiproduct formulas [123, 124]. While a single circuit grows
exponentially with m, with a multi-product the amount of gates grows polynomially with m, because it is
straightforward to eliminate terms in the Taylor expansion. Essentially, the terms with different n have
different accuracies ε when executed on their own, and the multiproduct formula is an extrapolation to
increase the accuracy, analogous to Richardson extrapolation [125].

For real-time evolution, generalizing from circuits to sums of circuits breaks the manifest unitarity of
the approximation, since a linear combination of unitaries is generally non-unitary. Nonetheless, they
have found wide application in classical simulation methods [123, 124].

3.7 Designing efficient algorithms

If we include the order of approximation m as an algorithmic parameter, then product formulas may be
considered inefficient, as they have an inherintly exponential scaling of the gate count Ng with m. This is
also reflected in its scaling with 1/ε , which is polynomial [126]. For multiproduct formulas it is instead
polylogarithmic, which is optimal [126].
From the previous section it is clear how to design efficient algorithms, that scale optimally with m

and hence 1/ε . For instance, by first determining a circuit approximation to the targeted unitary, and
decomposing its remainder into a linear combination of unitaries, the optimal scaling is achieved [127].
We could also implement the Taylor series directly, but implementing a sum of Hamiltonian powers
with complex coefficients is a daunting task that appears unappealing from an algorithmic point of view.
In principle, we can implement the Taylor series directly, by performing a classical simulation of the
quantum algorithm of Ref. [128], but it leads to an inferior algorithm.
Of course, these asymptotic considerations are only relevant when gates can be executed perfectly,

which is not the case in many relevant settings. An example is noisy quantum computing without error
correction, which we will consider in much detail in Ch. 5. Here, the particular amount of gates in a
circuit is crucial for the potential of a quantum algorithm, with too many gates leading to severe mixing
with the enviroment.
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3.8 Improved first-order bound

In the case of two non-commuting operators, the symmetrical second-order circuit (3.11) has the favorable
property that it is structurally close to the first-order circuit (3.4). This can be utilized to determine some
special properties of the first-order circuit. For example, tracing over (3.11) and utilizing the cyclicity of
the trace, we find that the trace of the first-order circuit is second order, i.e.

Tr
[
e−it(Ha+Hb )

]
= Tr

[
e−itHa e−itHb

]
+ O(t2

/n2
). (3.14)

It moreover induces an error scaling of the full operator that is significantly better than the O(t2
/n)

from (3.4), which was already noticed for particular local Hamiltonians in Ref. [129]. This was explained
in Ref. [130] as self-inference of subsequent Trotter errors, but it can be derived easily by utilizing that
a sequence of second-order circuits becomes a slightly modified first-order circuit with an additional
half-layer. In Ref. [131] this was used to derive the improved scaling

e−it(Ha+Hb ) = e−itHa e−itHb +min(C2t2
/n,C1t/n + C3t3

/n2
), (3.15)

with the coefficients C1 = min(| |Ha | |, | |Hb | |), C2 = | |[Ha,Hb]| |/2, and C3 = (min(S) +max(S)/2)/12
with S = {| |[H1, [H1,H2]]| |, | |[H2, [H2,H1]]| |}. Together, the results in Refs. [130, 131] imply that the
first- and second-order Lie-Trotter-Suzuki circuits have the same asymptotic number of gates, namely

Ng ∼ O

(√
n3t3
/ε

)
.

Interference effects like this can always occur, and the rigorous Trotter bounds do not take them into
account. As a result, emperical bounds are frequently observed [129, 132–135].

3.9 Recursive construction of higher-order circuits

Suzuki generalized the symmetric second-order circuit to the case of r general Hamiltonian terms Hj

[50], i.e.

S2(t) =
r∏
j=1

e−itHj/2
1∏
j=r

e−itHj/2. (3.16)

He also realized that it can be used as a building block for a recursive construction of higher-order
circuits that are simpler than (3.8) [51, 52]. In particular, we can generate a Lie-Trotter-Suzuki circuit of
arbitrary order 2m

e−it
∑

j Hj = (S2m(−it/n))n + O(t2m+1
/n2m
), (3.17)

by using a recursively defined symmetric approximant S2m such as

S2m =
[
S2m−2(pmt)

]2 S2m−2
(
(1 − 4pm)t

) [
S2m−2(pmt)

]2
, (3.18)

with coefficient
pm =

1

4 − 4
1

2m−1
. (3.19)

Due to the symmetrical structure of (3.18), odd powers in t vanish in its Taylor expansion, such that the
(2m − 1)th order approximation is automatically also the 2mth order approximation [51]. Therefore we
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only consider even powers in the definition (3.17).
The choice (3.18) is not unique, and there is in fact a smaller option

S2m = S2m−2(cmt)S2m−2
(
(1 − 2cm)t

)
S2m−2(cmt). (3.20)

However, there is no simple analytical formula for cm, which instead have to be determined by explicitly
matching orders [51]. They are also in principle unbounded and generally blow up for m→∞, whereas
pm < 1. For concreteness we use (3.18), such that the gate count scales as Ng ∼ O(5

k
). In any case, the

circuits with m > 2 contain both forward and backward evolutions.
Some circuits cannot be derived via (3.18) and its generalizations to non-symmetric or complex-time

circuits [53, 136, 137]. For example, the Zassenhaus truncation (3.8) and the Ruth formula with
its generalizations to higher orders [138–140], which were developed for the simulation of classical
mechanics. However, Suzuki introduced a more general mathematical framework [141] in which
these can all be derived systematically [142]. Besides these analytical approaches, more recently there
have also been numerical works that find better product formulas [143–146]. Furthermore, while we
have been concerned with time-independent Hamiltonians, analogous circuits have been found for the
time-dependent case, in which case we have to use time-ordered exponentials [147–153].

From a practical point of view, the symmetrical circuits from this section are usually the best. These
only involve exponentials of the local Hamiltonian terms, whereas e.g. the Zassenhaus truncation (3.8)
contains exponentials of polynomials of the local terms. Moreover, as we have seen in (3.13), the
symmetry simplifies the error structure.

3.10 Computational complexity and no fast-forwarding

Let us determine the overall computational complexity of the 2mth order Lie-Trotter-Suzuki circuit
(3.17) for a Hamiltonian with r terms that generally do not commute. The amount of exponentials Nexp

in (3.17) for segmentation n and order m is equal to Nexp = 2r5k−1n. To fix the precision ε , we can take

the segmentation n = d2
1

2m (5m−12rt)1+
1

2m /ε
1

2m e [154]. With this we get the complexity

Nexp ∼ O
(
52mr(rt)1+

1
2m /ε

1
2m

)
. (3.21)

To obtain the corresponding Ng scaling we need to decompose every gate that acts on more than two nn
qubits into nn gates. If the Hj are l-qubit operators, then the bound in (3.21) gets at least a factor l.

The bound (3.21) is for the Lie-Trotter-Suzuki circuits of Hamiltonians with arbitrary Hj , and as such
it might overestimate the complexity of particular cases. One such example was given in Sec. 3.8,
with the first- and second-order circuits having equal gate complexity for a Hamiltonian with only nn
couplings. For such a Hamiltonian the bound in (3.21) can be tightened. This is because the Trotter
errors depend on the commutators between the Hamiltonian terms, such that a strong locality has an
explicit effect on the bound. Specifically, it allows us to eliminate a factor r from the bound [107]. Since
now all gates are already nn, and r ∼ O(N), we get complexity

Ng ∼ O

(
52m
(Nt)1+

1
2m /ε

1
2m

)
. (3.22)

For fixed order m, this bound shows that when we have a Lie-Trotter-Suzuki circuit that approximates the
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time-evolution operator at time t with accuracy ε , then to reach the same accuracy at time 2t we need to
more than double Ng. In terms of the segmentation n, it means that when t is doubled we need to at
least double n. Strict doubling only occurs in the limit of infinite order m→∞, when every segment is
evolved exactly. However, because Ng scales exponentially with m, the bound (3.22) has a minimum in
m, which is derived in Ref. [154]. Hence the scaling is always superlinear in Nt.
A linear scaling Ng ∼ O(t) is optimal, which is called the no-fast-forwarding theorem. It lies at the

heart of iterative algorithms, where time is closely connected to the specifics of the algorithm. It has
been rigourously shown to hold for the iterative approximation of sparse Hamiltonians in general [154].
There are particular simple Hamiltonians where asymptotic fast-forwarding is attainable with an iterative
algorithm [155–157]. Analogously, the linear scaling Ng ∼ O(N) is optimal for local Hamiltonians
such as the Heisenberg model (1.2), which can also be shown rigorously [158]. It is intuitively clear
that the combined scaling Ng ∼ O(Nt) is optimal, simply because we are simulating one physical
system with another. As discussed in Sec. 3.5, the bound (3.22) scales suboptimally in 1/ε due to the
exponential complexity of eliminating orders with a product formula. The overall optimal scaling for
local Hamiltonians Ng ∼ O(Ntpoly(log(1/ε))) can be achieved by utilizing the Lieb-Robinson bounds
[113, 159] together with e.g. sums of circuits [158].

To avoid the fundamental no-fast-forwarding bound O(t) we need to use non-iterative methods, where
time is simply a parameter of the targeted unitary. Concretely, we fix the gate count in our circuit
approximation and increase the precision by modifying its gates [160–163]. This can be done with the
variational compiling approach from Sec. 3.3. It seems especially promising for circuits that have a
relatively small gate count, since there it seems feasible that significant improvements can be made
relative to iterative methods. This usually comes at the cost of numerical optimization, where the gates
are parameterized and then taylored to particular Hamiltonian for a particular N and t.
Since numerical optimization limits the non-iterative approach to small Ng, we cannot probe its

asymptotic behavior in t for constant ε . In practice, we perform optimization up to some thresholds Ng

and t, and to go beyond these we use the optimized circuits iteratively. As such, it obeys the asymptotic
non-fast-forwarding bound. Nonetheless, it could improve the scaling of the Lie-Trotter-Suzuki circuits,
as well as its offsets and prefactors. This is important for practical use, as we will discuss in Ch. 4 and
Ch. 5.

3.11 Commentary on Article 3

Optimal compression of quantum many-body time evolution operators into brickwall
circuits
SciPost Phys. 14, 073 (2023)
M. S. J. Tepaske, D. Hahn, D. J. Luitz

In Article 3 of this cumulative thesis [108], which is shown in App. C, we consider the low-Ng

performance of the Lie-Trotter-Suzuki circuits with various orders of approximation, and compare this
with variationally-compiled parameterized brickwall circuits. We did this for the nn Heisenberg model
(1.2) and the nn + nnn Heisenberg model, where the nnn coupling is equally strong to the nn coupling.
The nn Heisenberg model is naturally simulated on a quantum computer such as IBM’s guadalupe [164],
where a loop of 12 qubits can be formed, on which we can act with nn CNOT gates, arbitrary single-qubit
z-rotations, σx and

√
σx .
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For the nnn Heisenberg model we need to insert additional SWAP gates to implement the nnn gates
that appear in the Lie-Trotter-Suzuki circuits, so that they no longer have the brickwall architecture. We
compared these with parameterized brickwall circuits of nn gates, that were numerically optimized to have
minimal Frobenius distance (3.3) to the time-evolution operator. The calculations were performed with
the tensor network machinery that we will describe in Ch. 4. We chose every gate to be a general unitary,
to probe the maximum expressibility of the brickwall architecture, outside of any hardware-specific
constraints. Moreover, we used open boundary conditions (OBC) since it is more flexible than PBC as
far as real quantum computers go, and it allows us to use efficient tensor network methods.
We find that, for both Hamiltonians, the shallow optimized circuits are significantly better than the

Lie-Trotter-Suzuki circuits, for a fixed number of nn two-qubit gates. Hence, at the cost of numerical
optimization, we can effectively eliminate the SWAP gates from the Lie-Trotter-Suzuki circuits, and
instead we can use the simplest possible architecture of nn gates, while improving the accuracy for a
fixed number of gates. Moreover, by stacking the optimized circuits we find the scaling from Ref. [131],
i.e. iteratively they behave like second-order Lie-Trotter-Suzuki circuits. Nonetheless, the offsets are
significantly smaller for the parameterized circuits, requiring multiple times as little resources to achieve
a precision threshold.

We also find that the variational circuits can break the no-fast-forwarding bound. Specifically, for the
small circuits and the particular models and times that we have considered, when we have a brickwall
circuit of Ng two-qubit gates that simulates up to time t with precision ε , then we can often variationally
determine a circuit with 2Ng two-qubit gates that simulates up to time 2t with a precision better than ε .
This can only be seen implicitly from Fig. 1 in Article 3. However, recently we also considered the
potential benefits of incorporating local constraints and symmetries of the targeted Hamiltonian directly
into the variational circuits [104]. In that preprint we explicitly consider the compilation performance as
a function of time, with different curves corresponding to different circuit depths. Then it can be directly
read off from the plot if a doubling of M can more than double t at fixed ε . For example, in Fig. 3 of Ref.
[104] we optimize circuits for the PXP model, and there it can be seen that going from M = 4 to M = 8
allows us to go from t = 1 to t = 2.3 for the error threshold ε = 10−2. In contrast, the Lie-Trotter-Suzuki
circuits are observed to adhere to the fast-forwarding bound.
The author of this thesis has developed the framework of variational compiling, with the goal of

finding shallow circuit approximations of quantum many-body time-evolution operators, together with
the other authors. He has performed all the numerical simulations, carried out the theoretical analyses,
and wrote the article together with the other authors.
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CHAPTER 4

Tensor networks

To simulate quantum time evolution with one of the circuit approximations from Ch. 3 on a classical
computer generally requires us to perform matrix-vector multiplication in a Hilbert space that grows
exponentially with system size. When the sign problem prevents us from using the QMC algorithms
from Ch. 5, and there is no special structure such as integrability that allows for analytic calculation, we
have to resort to clever approximation algorithms that work within a subspace of the full Hilbert space
which grows merely polynomially with system size.

One class of dynamics that can be simulated efficiently in this way is that of locally-correlated
states. This can be uncovered by formulating quantum states and operators in an explicitly local manner,
namely as a tensor network, which gives control over the range of correlations that can be captured.
In this chapter we consider this in some detail, to motivate Article 4 [165], shown in App. D, which
we will discuss in Sec. 4.10. There we introduced a new class of 3D tensor networks along with an
associated time-evolution algorithm. As we will discuss in this chapter, imaginary time-evolution of
tensor networks allows for the efficient simulation of the low-lying eigenstates of local Hamiltonians,
which are predominantly locally correlated. Real-time evolution is generally restricted to small times,
since for a generic local Hamiltonian the correlations spread through the entire system until it is correlated
equally on all length scales.
Nonetheless, by utilizing tensor networks for circuit optimization at the bleeding edge of what is

possible on a modern classical supercomputer, we can determine circuits that can in principle be applied
a few times on a quantum computer to generate classically intractable states. This was part of the
motivation behind Article 3 [108] and Article 5 [109], which are shown in App. C and App. E,
respectively, and discussed in Sec. 3.11 and Sec. 5.10. We will discuss this in more detail in Ch. 5 on
quantum computing.

4.1 Manifest locality

The brickwall architecture of Fig. 3.1 consists of local gates, each acting on two neighboring qubits.
Intuitively, such a gate should only affect the state locally, but this is not immediately clear when
performing calculations in the representation of Fig. 3.2. There the tensor-product structure of the
many-body Hilbert space is used to write the six-qubit state |ψ〉 as a (2, 2, 2, 2, 2, 2)-dimensional tensor
ψσ1σ2σ3σ4σ5σ6

. Then it is already clear that we do not need to construct a 2N
× 2N unitary for the circuit,
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Figure 4.1: A tensor network state for six qubits.

in order to apply it to |ψ〉 through a matrix-vector product. Instead, we only need to sequentially apply a
4 × 4 matrix with the state reshaped as a 4 × 2N−2 matrix. This reduces the computational complexity
from O(22N

) to O(2N+2
), which is however still exponentially complex. One such gate application

immediately modifies all elements of ψσ1σ2σ3σ4σ5σ6
, obfuscating its locality.

This motivates us to look for a representation where ψ can be modified in a manifestly local manner,
which will naturally lead us to an approximation scheme based on the truncation of entanglement. In the
same spirit as for the circuits from Ch. 3, we consider a 1D tensor network state (TNS) |ψ〉 that is a
simultaneous contraction of local tensors T

σj

j,ab
, i.e.

ψσ1σ2σ3σ4σ5σ6
=

∑
abcdef

Tσ1
1,aTσ2

2,abTσ3
3,bcTσ4

4,cdTσ5
5,deT

σ6
6,e f . (4.1)

A virtual index a corresponds to a X-dimensional artificial Hilbert space with orthonormal basis |a〉,
where X is commonly called the bond dimension, and each lattice site now hosts a direct product
of one qubit space with one or two virtual spaces, e.g. at site 2 we have the basis |σ2〉 |a〉 |b〉. In
higher-dimensional tensor networks there are usually more virtual spaces per site, depending on the
lattice connectivity and the type of tensor network. The tensor Tσ2

2,ab maps the virtual spaces a and b

onto the qubit space σ2, allowing us to generate qubit states from virtual states [166, 167].1

A contraction such as
∑

b Tσ2
2,abTσ3

3,bc creates a maximally-entangled pair of virtual particles a and c
between neighboring sites. Hence the state in (4.1) has a maximally-entangled virtual pair for every
bond of the lattice, which are mapped to a N-qubit state by the Tj . This is illustrated in Fig. 4.1, where
connected tensors imply a contraction. With this construction, it is immediately clear that the generated
spin states are entangled hierarchically, according to the lattice geometry. For example, sites 1 and 3 are
only entangled because they are both entangled with site 2. Depending on the dimension X of the virtual
spaces, this can severely restrict the range across which qubits can be entangled.

4.2 Isometric tensor networks

To uncover the connection with entanglement, let us consider the center bond in Fig. 4.1, which splits
the chain into subsystems A and B. We will convert the TNS into a special representation with respect to
this bond, such that the tensor networks on A and B form orthonormal bases. For this we only need to
use the gauge freedom that exists on each bond on account of the ability to insert

∑
c U†acUcb = Iab on

every virtual bond ab. Starting with the leftmost two tensors in Fig. 4.1, we insert this and determine

1 A circuit like that in Fig. 3.1 is clearly a tensor network by design, consisting of gate tensors with only physical spaces.
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Figure 4.2: The isometric tensors used to construct the orthonormal basis on subsystem A. In panel (a) we show the
corner tensor, which satisfies the condition shown in panel (b), i.e. it reduces to a virtual identity upon contraction
with the conjugate qubit space. In panel (c) we show a bulk tensor, which satisfies the condition shown in panel (d),
now also requiring the contraction of one virtual space with its conjugate. The isometric tensors are analogously
defined for subsystem B, for which we only have to reverse the direction of the virtual spaces. The arrows signify
the direction of collapse of an isometry: by contracting over the incoming legs of a tensor we obtain an identity on
every outgoing leg.

Uac such that
∑

a Tσ1
1,aU†ac = Aσ1

1,c, where Aσ1
1,c satisfies the orthonormality constraint∑
σ1

Aσ1
1,cA†σ1

1,m = Icm. (4.2)

Here Icl is the identity operator of the first virtual space. In Fig. 4.2a we show a diagram for A1, and
in Fig. 4.2b we show the constraint (4.2). Here the arrows indicate the specifics of the isometry: By
contracting over the incoming arrows we get identities for the outcoming arrows.
The appropriate U follows from a QR decomposition of T1, for which fast numerical linear algebra

routines exists, and it immediately yields A1 and Ucb. Then we absorb Ucb into Tσ2
2,bd, and we invoke the

gauge freedom of the next bond. This time we choose U† such that it transforms T2 into an isometric
tensor A2, which satisfies ∑

σ2c

Aσ2
2,c f A†σ2

2,cn = I f n. (4.3)

In Fig. 4.2c we show A2 and in Fig. 4.2d we show the isometry constraint (4.3). We continue this
process until all of the tensors in A are isometric, and for the last T we keep the final gauge tensor U.
This yields the tensors inside area A in Fig. 4.3a.

Now we carry out the same procedure for B, starting from the rightmost tensor, so that finally we get
the isometric tensor network state (isoTNS) shown in Fig. 4.3a. Upon contraction with its conjugate, it
becomes clear that the isometric tensors serve to implement X-dimensional orthonormal bases |An〉 and
|Bm〉. Concretely, starting with the outermost tensors, we invoke the orthonormality condition from
Fig. 4.2b. Afterwards, we invoke the isometry condition from 4.2d until we reach the center, leaving us
with identity matrices of the virtual spaces of the middle bond. The virtual tensor s on the middle bond,
shown in red, is the product of the two final gauge tensors from the orthonormalization of A and B. It is
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A1 A2 A3 B4 B5 B6

A B

s

(a)

A B

(b)

Figure 4.3: In panel (a) we show an isoTNS in 1D, with the singular values located at the middle bond. The
isometric tensors Aj and Bj implement the orthonormality of the bases on subsystem A and B, respectively. Upon
contraction with the conjugate isoTNS, the isometric tensors sequentially contract to identities, starting from the
corners. They eventually reduce to a pair of identities that act on the virtual spaces of the middle bond. Here the
singular values are located, and on account of the orthonormality on A and B they directly encode the entanglement
between A and B. In panel (b) we show a 2D isoTNS, with the singular values on the middle bond. The isometric
tensors are now slightly more complex than in panel (a), but they implement orthonormal bases for the middle
bond in the same fashion. Unlike in panel (a), we now truncate the entanglement across a system-wide boundary
by truncating only one of many bonds that crosses it.

a X × X matrix, which we diagonalize to find the singular value decomposition (SVD)

|ψ〉 =
∑
n

λn |An〉 |Bn〉 , (4.4)

where the X eigenvalues λn are the singular values. They satisfy
∑

n |λn | = 1 because |ψ〉 is normalized.
To see their significance we construct the density matrix ρ = |ψ〉 〈ψ | and trace out the B subsystem

ρA = TrB [|ψ〉 〈ψ |] =
∑
n

|λn |
2
|An〉 〈An | . (4.5)

This shows that |λn |
2 are the eigenvalues of ρA, already indicating that the singular values control the

entanglement between subsystems A and B. This is quantified by the entanglement entropy [168]

S = −Tr
[
ρA ln ρA

]
= −

∑
n

|λn |
2 ln

(
|λn |

2
)
. (4.6)

So in the isoTNS representation it is immediately clear that the virtual particles of the middle bond
control the entanglement between A and B in Fig. 4.3a, on account of the isometric tensors constituting
orthonormal bases for the bond. Their Hilbert space dimension X determines the maximum entanglement
that the TNS can encode between A and B, which occurs for the maximal superposition λn = 1/

√
X ,

yielding S = ln X . A product state instead has λ1 = 1 and hence S = 0.
The bond gauge freedom can be used to move the singular values to every bond, indicating that the 1D

isoTNS in Fig. 4.3a is simply a particular gauge of the arbitrary TNS in Fig. 4.1. Now it is clear that the
TNS provides an entanglement-controlled subspace of the full many-body qubit Hilbert space, which
grows upon increasing the bond dimensions.
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4.3 Circuit application

Applying a nn gate G to a TNS is manifestly local, since we can ignore all tensors except for those
involved. First, we perform a SVD of G, which yields

G =
4∑
l=1

κl |il〉 〈il | ⊗ | jl〉 〈 jl | . (4.7)

Here κl are operator singular values, now satisfying
∑

n |κn |
2
= 16 on account of unitarity. The

states |il〉 , | jl〉 are 2-dimensional orthonormal bases for neighboring sites i and j, considered as a
two-qubit system. Because G acts only on two qubits, the virtual space is at most 4-dimensional. The
representation (4.7) is called a tensor network operator (TNO), and it can be defined for many-body
operators analogously to how did for states. Now, a virtual space controls the operator entanglement
entropy (opEE) between two subsystems [169]. If we rescale κn such that that they are normalized,
yielding κ̃n, then we can define it as in (4.6), i.e.

opEE = −
∑
n

| κ̃n |
2 ln

(
| κ̃n |

2
)
. (4.8)

As such, a TNO with large X can encode a large amount of opEE, which we can truncate optimally by
first bringing it into the isoTNO gauge.
To see the significance of the opEE, we apply G (4.7) to the middle bond of the isoTNS in Fig. 4.3a,

yielding

GA3λB4 = | f 〉 |h〉
∑
σ3σ4

4∑
l=1

X∑
g=1

κlλg |il〉 〈il |σ3〉 Aσ3
3, f g | jl〉 〈 jl |σ4〉 Bσ4

4,gh . (4.9)

We now have the (4, 2, X, X̃) tensors
∑
σ3
〈il |σ3〉 Aσ3

3, f g and
∑
σ4
〈 jl |σ4〉 Bσ4

4,gh, where X is the bond
dimension of the contracted space g and X̃ the bond dimension of the uncontracted spaces f , h. These
tensors are no longer isometric, but we can use the gauge freedom of the direct product of the virtual spaces
l and g to recover the isometric representation. Concretely, we insert

∑X
k=0 U(mo)kU†

k(np)
= I(mo)(np)

twice, each with a different gauge transformation, U and U ′, which are 4X × X isometries. This implies
X ≤ 4X , with the fourfold increase occuring for unitary gauge transformations. We choose U and
U ′ such that the tensors again become isometric, which imposes the additional condition X ≤ 2X̃ .
Consequently, for uniform bond dimension X = X̃ we cannot saturate the bound X = 4X , instead at
most X = 2X . In this case, the maximum S increases with ln(2). In contrast, for X ≥ 2X̃ we can
choose X = 4X , increasing the maximum S with ln(4), which is the fundamental maximum increase in
entanglement due to a nn qubit gate.

The non-isometric remainder
∑

lg Uk(lg)κlλgU
′
†

(lg)d
is diagonalized to determine the X singular values

µk . We have then recovered the isometric representation

GA3λB4 = | f 〉 |h〉
X∑
k=1

µk |σ
′
3〉 A′σ

′
3

3, f k |σ
′
4〉 B′σ

′
4

4,kh = A′3µB′4. (4.10)

This gives a glimpse of how opEE relates to the generation of entanglement in a state, and how this is
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naturally captured by a TNS. For example, if we apply a gate with κ̃0 = 1, i.e. a direct product of two
one-qubit unitaries and hence with opEE = 0, to a state with X = X̃ = 1, then the result clearly has
X = 1 as well. We can apply such a gate at every bond with only a tiny N-independent cost, which
would instead be exponential in N if we would work directly in the many-body Hilbert space.

4.4 States and operators of local Hamiltonians

Themaximum opEE of a N-body unitary is ln(2N/2
), which can be encoded by an isoTNOwhen X = 2N/2.

Therefore, exactly representing an arbitrary many-qubit operator as an isoTNO is exponentially complex
in the amount of qubits that it acts on. Hence it is clear that the opEE quantifies the non-locality of a
unitary, which is explored in Ref. [169]. Analogously, it quantifies how much entanglement a unitary
generates on average for all its input states. Real-time evolution is known to generate linear growth of S
for generic Hamiltonians and initial product states [170]. For low t, it entangles states only locally, but
for large t it yields states that are entangled across the entire system. In this case, an exact representation
as a TNS requires a bond dimension that grows linearly with time, until it reaches the maximum entropy.
In some cases this process is relatively slow, e.g. logarithmically for many-body-localization [171] and
many-body scarring [172, 173], but e.g. for the Heisenberg model (1.2) it is linear [174].

States that are predominantly locally entangled can be encoded by a TNS with X ∼ O(poly(N)) [175].
One group of such states are the low-lying eigenstates of local Hamiltonians, in any dimension, for which
S scales only with the boundary size between A and B [176, 177]. This is essentially because only the
qubits close to the boundary contribute to the entanglement across it. Unlike with the QMC algorithms
from Ch. 2, there is no classical sampling involved and hence no sign problem, such that in principle
any Hamiltonian can be simulated. This makes it seem plausible that imaginary-time evolution can be
performed efficiently for local Hamiltonians by utilizing TNS.

When approximating a quantum many-body time-evolution operator U with a brickwall circuit C, such
as that in Fig. 3.1, the gates must be able to generate sufficient entanglement across each bond. We now
know that an entanglement entropy of S across the middle bond requires us to apply at least S/2 gates to
the corresponding qubits. Moreover, with the brickwall architecture of Fig. 3.1, non-neighboring qubits
are only entangled indirectly, as it encodes a lightcone of correlation spreading. It is therefore clear that
we need at least enough brickwall layers to reach the non-locality of the targeted U. These properties
give a lower bound on the minimum circuit size that is required for a suitable approximation. For local
Hamiltonian, correlations also spread in a lightcone, which is known as the Lieb-Robinson bound [113,
159]. The spreading of a particular Hamiltonian can be quantified by calculating out-of-time-ordered
correlators (OTOCs) [110–112]. We will consider this in more detail in Ch. 5.

These considerations are mostly relevant when we are concerned with small circuits, where we want
to pack as much information into every gate. For a Lie-Trotter-Suzuki circuit with t/n ∼ O(10−2

) the
gates are close to the identity and therefore have small opEE, which is a consequence of the fact that an
accurate Lie-Trotter-Suzuki circuit relies on the iteration over many tiny segments. This incremental
approach becomes unfavorable when each gate is accompanied by decoherence. Then, if the incurred
errors are not corrected, the application of many near-identity gates would simply lead to a completely
mixed state. This highlights the objective of compressing accurate Lie-Trotter-Suzuki circuits into
smaller circuits, as discussed in Article 3 of Sec. 3.11.
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Figure 4.4: A tensor network operator for six qubits.

4.5 Efficient time evolution

To keep calculations tractable, we have to curb the growth of the bond dimension in (4.10) when X
surpasses some threshold X . The numerical linear algebra algorithms that implement (4.10) always
saturate the bound X = 2X or X = 4X on the size of the new virtual space, but for small times many
of the new singular values will be zero. As such, we can omit them without losing any information,
such that the actual SVD is obtained. If none of the new singular values are negligible, we have to omit
physical information when truncating back to the threshold X , thereby inevitably degrading the TNS
approximation. However, with (4.6) in mind we can omit the virtual states with the smallest singular
values, such that the loss of entanglement is minimal.

By maintaining a fixed threshold X we can use the procedure outlined in Sec. 4.3 to approximately
execute any circuit with complexity O(poly(N)). We only need to move around the singular values,
which is free on account of the bond gauge freedom, and apply every gate with optimal truncation.
This algorithm is called time-evolving-block-decimation (TEBD) [168], and it lets us do real- or
imaginary-time evolution with one of the Lie-Trotter-Suzuki circuits from Sec. 3.5. We can initialize
the TNS as a product state and then carry out TEBD, e.g. to simulate quench dynamics for real-time
evolution or to determine a ground-state approximation at large imaginary time. Importantly, the form
(4.4) also allows us to calculate an expectation value for the middle two qubits, e.g. 〈ψ | σz

3σ
z
4 |ψ〉, using

only A3, λ, and B4. As such, we never need to perform the full contraction in (4.1), thereby avoiding the
O(2N

) complexity as long as X � 2N .
As mentioned earlier, for real-time evolution a constant X < 2N/2 at some evolution time becomes

insufficient to reach fixed accuracy as a function of N , after which it has complexity X ∼ O(2N/2
) to

accomodate for additional long-range entanglement. The alternative is to let the accuracy degrade, which
effectively decoheres the TNS [178, 179]. As a result, real-time TEBD is generally limited to short times
for generic local Hamiltonians, unlike imaginary-time evolution where the infinite-time evolution yields
a locally-entangled state. When we are instead interested in simulating time evolution under decoherence,
the artificial decoherence due to truncation can mimic the physical decoherence of the system under
investigation. Then to simulate e.g. a noisy quantum computation from Ch. 5 we might only need a
relatively small bond dimension.
We can also use TEBD to determine a TNO approximation to a circuit. To obtain a TNO we simply

add an extra qubit space to each tensor in Fig. 4.1, yielding the tensor network in Fig. 4.4. As we found
earlier, in the isoTNO representation the singular values of each bond encode the opEE across that bond,
which we bound to keep calculations tractable. We initialize the TNO as the identity by setting X = 1
and Tσκj,00 = Iσκ for all sites j. Then we use TEBD to apply the circuit to the σj , truncating the opEE
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whenever necessary, yielding a TNO approximation of the circuit.
Tensor networks are taylored to circuit approximations like those from Ch. 3, where entanglement

is explicitly generated only locally, and as such they are naturally simulated with TEBD. In contrast,
with multi-product formulas entanglement is additionally generated globally, due to the non-unitarity of
summing states.2 Adding two tensor networks doubles X on all bonds [175], making it twice as costly
as TEBD. Truncating back to X induces an algorithmic decoherence, since there are now truncations
occuring outside of the gate application in (4.10). In principle there can then exist a maximum in the
accuracy as a function of segmentation, in contrast to vanilla 1D TEBD. Because of these unfavorable
properties it yields an inferior tensor network algorithm. This summation of tensor networks can also be
realized stochastically, if we consider it as a sum of circuits instead of states. With a convex sum we can
sample the circuits in a straightforward manner, and by applying each sample to a state of interest we can
estimate expectation values.
Finally, an isometric tensor network can also be updated variationally, by restricting the tensor

parameters to e.g. a Stiefel manifold and minimizing an objective function [181–185]. With this in mind,
the differential programming machinery for general tensor networks [186] was extended to isoTNS [187],
opening the door to efficient implementation with modern automatic differentiation frameworks such as
PyTorch [188].

4.6 Higher-dimensional isometric tensor networks

Let us see if we can generalize the isoTNS construction from Sec. 4.2 to higher-dimensional tensor
networks. If we take a tensor network that is arranged and connected as a square lattice with OBC,
such as in Fig. 4.3b, then it is immediately clear that the local truncation of entanglement will be less
straightforward. In particular, dividing the lattice in two equal halves A and B now yields a system-wide
boundary. In the spirit of 1D isoTNS, we would like to find a representation such that we can truncate
the entanglement between A and B by truncating only a single bond that crosses the boundary. This
is in contrast to 1D, where the boundary contains a single bond. Alternatively, we could use a tree
TNS, where the connectivity of the tensor network is chosen such that the boundary of every possible
subdivision into A and B is crossed by a single virtual bond. In that case, the TNS is essentially 1D, and
we can perform TEBD as in 1D. But such an approach cannot directly encode the correct entanglement
distribution for the locally-entangled states of the underlying qubit lattice.
For concreteness we focus on the center bond again. To determine a SVD (4.4) across this bond, we

now know that this boils down to determining an appropriate set of isometric tensors. In this case, we
also need isometric tensors A

σj

j,abcd
that collapse in both spatial directions upon contraction with the

conjugate isoTNS, e.g. ∑
σjab

A
σj

2,abcdA
†σj

j,abef
= Ice Id f . (4.11)

As an example, in Fig. 4.3b we show a 2D isoTNS that encodes orthonormal bases for the middle bond.
Now we can apply a gate to this bond and afterwards optimally truncate the entanglement between A and
B. We can do this for all the bonds shown in red, for which we only need to use the bond gauge freedom

2 In principle, we can implement a non-unitary multi-product formula with a unitary circuit, if we extend the system with
auxillary qubits. This extended system can then be represented as a tensor network, and e.g. the quantum algorithm from
Ref. [180] could be implemented with TEBD.
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to move the singular values. Hence we can truncate the entanglement across all possible choices of
rectangles for A and B. However, in practice we want to evolve all pairs of nn qubits, such that we have
to apply gates across all bonds. Since we want to optimally truncate the entanglement after each gate
application, this means that we also have to move the singular values to the black bonds in Fig. 4.3b,
which is currently situated in an orthonormal basis. For example, to evolve the top row of bonds, we
have to move the red row upwards, flipping the vertical bonds that connect the rows. This can be done
with the gauge freedom that exists between entire columns, inserting isometries that act on many virtual
spaces. Essentially, we want to perform a QR decomposition for an entire row.
To maintain the locality of the tensor network, we want to implement this global operation with a

sequence of local operations. Unlike in 1D, the bond gauge freedom no longer suffices. To see this, we
can use it to move the singular values in Fig. 4.3b to one of the black bonds that connects with the red
string. This creates a loop of isometries, spoiling the orthonormal basis as it can no longer be reduced
to identities upon contraction with the conjugate. Hence, we have to move the row while taking care
not to create loops, which highlights a fundamenental difference between 1D and higher-D isoTNS. To
achieve this we can utilize the gauge freedom between a tensor and two neighboring tensors that are
spatially orthogonal. In 2D the required gauge transformation is achieved by splitting a tensor into a
triangle [189], while in 3D we can do it with the tetrahedron splitting introduced in Article 4 of this
thesis [165]. This lets us simultaneously flip two orthogonal arrows in Fig. 4.3b. Now we can move the
singular values to every bond, giving rise to TEBD2, which is the generalization of TEBD to 2D isoTNS.

4.7 Algorithmic decoherence

It appears that we are forced to utilize a gauge freedom that is not native to the tensor network layout,
coupling three tensors simultaneously, thereby potentially generating multipartite entanglement. As
a result, the bond dimensions can grow even without applying a gate, analogous to the situation for
summing tensor networks that we encountered in Sec. 4.5. If we maintain a constant threshold X then
we can lose information just by moving the singular values across all bonds, such that applying a circuit
is accompanied by algorithmic decoherence.

This emphasizes the need for clever algorithms, where circuits are applied with minimal decoherence.
It highlights a potential application of non-iterative approximations, as discussed in Sec. 3.10, where
we try to pack as much information into each gate as possible. This indirectly minimizes the overall
decoherence by minimizing the amount of costly isometry manipulations. If the circuit approximation
error is less than the overall error due to decoherence, we do not need to look for a high-accuracy
approximation.
With a tree TNS, e.g. the 1D TNS from Fig. 4.1, it does not matter if the time evolution is spread

out over many gates that are close to the identity, as is the case for accurate Lie-Trotter-Suzuki circuits.
This is because truncation only occurs after applying a gate. Because of this, for fixed X we can always
increase the approximation accuracy by increasing the segmentation, whereas with higher-dimensional
isoTNS there is a maximum in the accuracy at a finite segmentation [165, 189]. In the limit of infinite
segementation the error becomes maximal, since near-identity gates effectively only supply decoherence.
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4.8 Long-range couplings

It should be noted that some loops appear impossible to resolve. For example, already in 1D with PBC
we can have a loop across the entire system. In fact, here the isometric construction does not work at all,
since a system-wide loop is inevitable if we want to be able to put the singular values on every bond. A
solution is to remove one bond and couple the corresponding pair of tensors with a system-wide coupling.
In particular, we can use SWAP gates to move the two qubit spaces to a pair of tensors that share a bond,
then apply a gate, and then move the spaces back to their original tensors [190]. But this in some sense
spoils the locality of the tensor network, which can no longer be constructed such that it simultaneously
encodes the natural pattern of correlations and allows for the singular values to be moved across every
bond.

A similar situation occurs when we want to simulate a Hamiltonian with couplings that are not native
to the tensor network, i.e. which couple tensors that are not directly connected. Here we also have to use
SWAP gates, and if this coupling is equally strong to the native couplings, then again the TNS does not
encode the proper hierarchy of correlations. As a result, in the extreme case, to encode entanglement on
all length scales the bond dimensions need to be of order X ∼ O(2N/2

). In a practical setting, it is not a
priori clear to which extent we should reproduce the Hamiltonian couplings with the tensor network
connectivity.
For instance, the states and operators of a qubic 3D qubit system can be represented either as a 3D

tensor network, with each tensor having at most six virtual spaces, or e.g. as a snake following a 3D
path, with each tensor having only two virtual spaces. TEBD is cheaper for the snake at fixed X , but the
local couplings of the underlying qubit system appear as long-range couplings of the snake, such that
short-range entanglement of the qubit system becomes long-range entanglement for the snake. As such,
the required bond dimension X is larger than for a cubic tensor network. It is generally unclear which
approach allows one to reach the highest accuracy, which depends on the specific hardware and software
used to perform the calculations. Therefore a particular system is often simulated with different tensor
networks [191].

4.9 Non-isometric tensor networks

Alternatively, we can use non-orthonormal bases, in which case we have to contract the entire TN to
perform entanglement truncation, which is generally inefficient [192]. To combat this, an approximate
environment is constructed for the bond of interest [167, 193]. For example, if we consider the 2D TNS
from Sec. 4.6, then after contracting it with its conjugate we can interpret the bulk columns of the tensor
network as TNOs, and the first and final columns as TNSs. Then the contraction of the environment
boils down to applying 1D isoTNOs to a 1D isoTNS, truncating the entanglement whenever necessary
to maintain a constant threshold X [167]. It can be naturally extended to infinite TNS [194].3 It has
significantly higher cost than TEBD2 at fixed X , and also has a worse asymptotic cost [193].
Analogous to the algorithmic decoherence of the 2D isoTNS, there is an additional error due to the

entanglement truncation of the environment. It is unclear how these compare in general, since their
sources are so different. With TEBD2, the error instead stems from the entanglement truncations that are
necessary to manipulate manifestly orthonormal bases with constant X . Similarly, when we want to
calculate the expectation value of an observable at a particular tensor, then in the isoTNS representation

3 This is in contrast with QMC, where thermodynamic estimates instead have to be obtained through finite-size scaling.
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we can do this exactly with small constant cost. However, if afterwards we want to calculate it for a
different tensor, then we incur an error if it lies outside of the red lines in Fig. 4.3b. In contrast, for a
general 2D TNS, the expectation value is always calculated approximately, because the environment
always has to be calculated.
As of yet it is unclear how the isometric and general approaches compare for e.g. the real- or

imaginary-time evolution with various types of local Hamiltonians. One important aspect would be
to consider the maximum performance that can be achieved with a feasible amount of computational
resources. Then it would also be interesting to consider how the performance scales with the amount of
resources, which would determine the approach that is likely to be more useful in the future. Of course,
such a comparison is only legitimate if the employed algorithms are equally optimal in some sense, but
this is difficult to estimate. Since TEBD for higher-dimensional isoTNS has acquired popularity only
recently, and since its machinery seems to be in an early stage of developement, it seems plausible that it
will improve. In contrast, higher-dimensional TNS have been around for longer, and could therefore be
expected to undergo less algorithmic advances.

4.10 Commentary on Article 4

Three-dimensional isometric tensor networks
Phys. Rev. Research 3, 023236 (2021)
M. S. J. Tepaske, D. J. Luitz

In Article 4 of this cumulative thesis [165], shown in App. D, the author has introduced isoTNS in
3D and generalized the TEBD algorithm. This was benchmarked with the imaginary time-evolution of
the 3D transverse-field Ising model for a ground state search. Here a second-order Lie-Trotter-Suzuki
circuit was utilized for the state propagation, using a segmentation that roughly minimizes the overall
decoherence. We determined an approximate ground state for a range of field strengths and calculated
some equilibrium properties of the state in order to benchmark it against numerically exact results. The
computational cost of our time-evolution algorithm has the best scaling in bond dimension of any known
tensor network algorithm.

It is likely that the higher-dimensional versions of TEBD could benefit from the circuit compression
of Article 3 [108], discussed in Sec. 3.11, to reduce the effect of the artificial decoherence. By packing
more opEE into each gate than the Lie-Trotter-Suzuki circuits, we can achieve higher accuracy with less
gates, which is likely to reduce the overall decoherence. With less information being lost due to the
specifics of the algorithm, this could bring us closer to the inherent expressibility of isoTNS and provide
access to states that were previously intractable. The potential gain from circuit compression could be
even bigger if we can determine a compressed circuit whose error is at least equal to the decoherence
error. If this error is not too large, say ε ∼ O(10−2

), then we can often determine shallow approximations
that outperform the Lie-Trotter-Suzuki circuits by orders of magnitude. Of course, for this we have to
tackle the circuit optimization problem from Article 3.

IsoTNS also have a natural interpretation in terms of a quantumMarkov chain, which can be considered
as the initial representation of 1D isoTNS [195]. This representation was already used to formulate
holographic quantum algorithms, where the isometry structure of a 1D isoTNS is interpreted as a time
direction along which qubits travel [196–200]. The virtual spaces are then represented with O(log2(X))
ancilla qubits, and the isometric tensors are converted into unitary gates, yielding a quantum circuit. In
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this way the isoTNS can be sequentially generated, which can be used to perform D + 1-dimensional
time evolution on a D-dimensional quantum computer. When X > 2, the gates act on multiple qubits at
once, so they first need to be decomposed into nn two-qubit gates to be straightforwardly executed on a
quantum computer like that of IBM [164]. Here the compression machinery of Article 3 could again be
of great use. The sequential construction can be straightforwardly generalized to higher-dimensional
isoTNS [201–203]. Unlike the classical representation of isoTNS, the orthogonality center is now fixed,
with its only remaining function to signal the end of the circuit.

The isoTNS representation was only recently brought to attention in 2D, where a TEBD2 algorithm
was introduced that has the same computational complexity as TEBD in 1D [189]. In Article 4 we
generalize this to TEBD3 for 3D, which is significantly more expensive on account of the tetrahedron
splitting [165]. In Ref. [204] a DMRG algorithm was introduced for 2D isoTNS, and in the same article
they used 2D isoTNS for real-time evolution. Moreover, in Ref. [205] it was shown that string-net
liquids, which are exotic qubit states, can be exactly represented as isoTNS. All these studies focused on
finite and isolated qubit systems, but they were subsequently generalized to fermions [206], thermal
systems [207], and systems that are infinite in one spatial dimension [208].
The author has conceptualized the contents of the paper, performed the numerical simulations, and

wrote the article. David J. Luitz has provided valuable input during all stages.
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Quantum computing

A fundamental solution to the classical intractablity of quantum time evolution is to not construct the
Hilbert space on a classical computer, where it has to be done in terms of classical bits and hence with
exponential complexity, but to instead do it on a quantum computer. To this end we have to replace the
classical bits with small quantum systems, in the simplest case qubits. By coherently coupling N qubits
we then get a many-body Hilbert space with dimension 2N . If we can create and control such a system
with perfect accuracy and coherence, we have access to the full Hilbert space with only N constituents,
compared to O(2N

) classical bits. By performing unitary operations on the qubits, e.g. coupling a pair of
qubits with coherent laser photons, we can in principle perform arbitrary quantum dynamics [209, 210].

5.1 Early days of quantum computing

Many flavors of quantum information processing were already present in the work of Benioff, who
built a universal classical computer (i.e. a reversible Turing machine [211]) from quantum components
[212–214]. Feynman provided an intuitive picture of how quantum coherence could be further harnessed
to achieve a universal quantum computer [209]. To him it was already clear that, for the simulation of a
general N-qubit state, a universal classical computer would require O(2N

) memory and runtime, and
that this cannot be avoided due to the sign problem. The natural solution would be to use a computer
that behaves entirely according to quantum mechanics, consisting of qubits that can only be coupled in
specific ways. This would in principle allow for an exponential improvement in computational complexity
over the universal classical computer.
In order to simulate systems that are not already such a qubit system, they first need to be mapped

onto one. In that case we require an additional pre-processing step, where the targeted time-evolution
algorithm is decomposed into the elementary qubit operations. This shifts the burden onto the quantum
algorithms, and allows for hardware to be specifically designed and optimized for a particular type of
qubit system. In principle, for it to be universal it should be able to implement arbitrary many-qubit
unitaries and the time evolution of arbitrary time-dependent Hamiltonians.
Deutsch formalized the universal quantum computer, essentially generalizing the reversible Turing

machine to be entirely quantum mechanical, additionally allowing for logical computations to be carried
out in superposition [210]. Because the universal classical computer is a subset of the universal quantum
computer, it allows for precise comparison between their computational power. Providing a natural
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framework to study quantum complexity [215], it was used to determine many instances of quantum
superiority, where exponential improvements on asymptotic scalings were rigorously proven [210, 216,
217].

5.2 Quantum circuits

Quantum computing became more accessible when it was realized that the circuit language of Fig. 3.1
provides an alternate framework for the universal quantum computer [218–220]. This is analogous to
how any universal classical computer can be represented as a Boolean circuit acting on a collection of
bits [221]. The diagrammatics of such quantum circuits allows for easy design of quantum algorithms,
providing an intuitive picture of the quantum simulation on multiple levels. It abstracts the physical
implementation of the qubit couplings into gates, just like in Fig. 3.1. Then algorithms can be formulated
in terms of general multi-qubit unitaries, or directly in terms of the elementary operations that can be
implemented on specific hardware. Here we are again concerned with constructing a global unitary from
local evolutions, providing a direct connection with the circuits from Sec. 3.5.

Moreover, quantum circuits provide an intuitive framework for quantum complexity theory [220, 222].
They were also extended to the arena of open quantum systems [100], but here they lose practicality
because actual quantum devices can only realize an ensemble by amassing pure state trajectories.
Nonetheless, it is a useful tool for classical pre- and post-processing, as evidenced by Article 5 on
quantum error mitigation [109], which we will discuss in Sec. 5.10.
An immediate question arises about the universality of circuits with a restricted set of gates: What

should this set contain in order to be able to generate arbitrary N-qubit unitaries? For reversible Boolean
circuits, it has to contain at least a three-bit logic gate in order to be able to construct arbitrary Boolean
functions [221]. For quantum circuits we need two-qubit gates at most [223], with reversibility being a
natural consequence of quantum mechanics since a time-evolution operator e−itH always has inverse
eitH . In fact, a simple class of two-qubit gates is already universal [224], as well as any programmable
multi-qubit gate [225, 226]. A powerful result is that a single entangling two-qubit gate together with
general one-qubit unitaries forms a universal gateset [227]. An example of such a two-qubit gate is the
quantum logical controlled NOT (CNOT) operation, which flips the left qubit if the right qubit is spin
down and otherwise does nothing.

More generally, quantum circuits built from simple universal gatesets can be used to approximate any
unitary up to a desired precision [228]. As with the circuits from Ch. 3, allowing for approximation is an
important aspect, since imperfect control and decoherence inevitably lead to errors. Therefore, we can
maintain an approximation accuracy on the order of the decoherence error, to maximize the use of the
noisy computational resources. In the same spirit, we can efficiently decompose general one-qubit gates
into a discrete gateset, according to the Solovay-Kitaev theorem. It states that a general one-qubit gate
can be decomposed up to precision ε into a sequence of O(poly(log(1/ε))) discrete one-qubit gates that
are pulled from a finite gateset [229]. In practice, it implies high accuracy with short sequences, while
allowing for a decomposition error. Altogether, these results imply that we can in principle approximate
an arbitrary unitary to arbitrary precision with a circuit that is built from a discrete gateset that contains
the CNOT and a finite amount of one-qubit unitaries.
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5.3 Experimental implementation

A quantum circuit implements a sequence of local time evolutions, which have to be physically
implemented in a quantum computer. This is often done by coherently coupling qubits through externally-
controlled photons and fields, which can realize various time-dependent Hamiltonians for the qubits.
These are then tuned to ensure that the integrated time-evolution operator implements the required
unitary. Currently, there are multiple quantum computing architectures that are already feasible and
which appear as potential candidates for the scalable platforms of the future.

So far we have discussed the digital quantum computer, where universality is key. Alternatively,
there are experimental setups where the time-evolution operator of particular classes of local quantum
many-body Hamiltonians can be directly realized. The implementable unitaries of such an analog
quantum computer in principle form a subset of the implementable unitaries of an equally-sized digital
quantum computer. Nonetheless, their relative simplicity allows for more straightforward scalability.

For example, optical lattices of ultracold atoms can be used to simulate common quantum many-body
Hamiltonians [230–235]. Qubits are often encoded in neutral Rydberg atoms, and on account of the
Rydberg blockade effect these interact according to a simple spin Hamiltonian [236–239]. Analog
quantum computers consisting of trapped Rydberg atoms coupled by external fields and photons have
been used to perform the largest quantum time evolution experiments to date [240–247]. Similarly,
trapped ions can be used to encode qubits, and the Coulomb interaction can be engineered via external
control to realize tuneable spin Hamiltonians [248]. This has also allowed for many large-scale quantum
time evolution studies [245, 249–254].

These atom or ion-based systems can moreover be used for the purpose of digital quantum computing.
For example, the Rydberg blockade mechanism can be used to construct a two-qubit CNOT [255, 256].
With this a digital quantum computer can be constructed [257–259]. Analogously, logic gates can
be implemented on trapped ion platforms [260, 261]. This has also been used to construct digital
quantum computers [262, 263] that have already been employed for various simulation studies [200,
264–272]. Less explored options include platforms based on nuclear spins that can be controlled through
nuclear magnetic resonance [273], silicon spins that can be manipulated coherently at relatively high
temperatures [274, 275], and photonic systems where polarization is used to encode qubits [276, 277].

Perhaps the furthest developed and most popular digital computing platform consists of locally-coupled
superconducting qubits [278–280]. One such qubit is essentially a non-harmonic oscillator for which the
two lowest energy levels can be (imperfectly) isolated. They are experimentally realized as electrical
circuits that contain superconducting Josephson junctions [281], for which the energy spacing lies
in the microwave regime. Neighboring qubits are coupled through microwave resonators [282, 283].
This allows for an off-resonant driving that evolves the pair with an effective XZ Hamiltonian, i.e. the
corresponding time-evolution operator is

UXZ (t) = e−itσ
x
0 ⊗σ

z
1 , (5.1)

where σI,x,y,z
j is the Pauli algebra of the jth qubit. We can then use (5.1) as the elementary two-qubit

gate in the variational circuits from Sec. 3.3, which can then be translated to a schedule of microwave
pulses with as little overhead as possible. This digital quantum computing platform has arguably been
used most extensively, with many studies on quantum many-body simulation [162, 284–296]. Recently,
such machines have become large and accurate to the extent that it is no longer clear if their computations
can be simulated classically with a feasible amount of computing resources [178, 191, 296, 297].
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By focusing on a restricted gateset, much effort can go toward reducing the decoherence of a specific
process, while it also simplifies quantum error mitigation. For t = π/4 the gate (5.1) becomes the CNOT
gate, which due to decoherence and imperfect control currently has O(1%) median error on a standard
superconducting device such as the ibm_algiers computer with 27 qubits [164]. One-qubit gate errors
are an order of magnitude lower, making the two-qubit gates the main source of decoherence during a
quantum algorithm. There is also a transient error due to the coupling of the qubits with the environment,
making the brickwall circuit architecture from Sec. 3.3 favorable because it minimizes the idling time.
Finally, there is also an error in the measurement process, which is of the same order as the CNOT
error. All these factors can be used to estimate an effective error per two-qubit gate for a corresponding
brickwall circuit, which can then be used to determine the quantum volume of a device [298]. This is a
figure of merit for the amount of qubits times the amount of brickwall layers that can be executed before
reaching an error threshold. In practice it serves as a quality factor for digital quantum computers.
Trapped atom or ion platforms often have a two-qubit gate error that is an order of magnitude lower

than for superconducting platforms [299]. Even more, they can be directly applied to qubits that are far
apart, which could be beneficial when simulating long-range interacting systems. Recently, it was shown
that these trapped systems can be configured into any desired 3D configuration with relative ease [246].
This could eventually give rise to e.g. analog quantum computers that can directly simulate the intricate
3D geometries that often appear in experiments [42, 300–302].

5.4 Efficient circuits

While the results from Sec. 5.2 display the universality of quantum circuits, for practical purposes we look
for efficient circuits, which implement a particular unitary up to precision ε using O(poly(N, t, log(1/ε)))
nn one- and two-qubit gates Ng. Here N denotes the amount of qubits that the circuit acts on, and t is the
evolution time of the targeted unitary (or more generally a parameter that controls its complexity). This
is the same situation as we encountered in Sec. 3.5, where we also looked for circuits with favorable cost
scaling. Again, the polylogarithmic dependency on 1/ε is optimal, representing a simulation overhead
that arises even when e.g. a Turing machine simulates another [126].
It turns out that an arbitrary unitary cannot be implemented efficiently [228]. If we can determine

a unitary that can be implemented efficiently on a quantum computer but not on a classical computer,
we can in principle use it to perform classically intractable calculations. However, analogously to
the higher-dimensional isometric tensor networks from Sec. 4.6, each gate application is in reality
accompanied by decoherence, which is now physical instead of algorithmic. If this can be overcome,
then the circuits from Sec. 3.5 provide a path to high-accuracy time evolution with Ng ∼ O(N) for
all times. In Ref. [226] the first-order Lie-Trotter-Suzuki circuit (3.4) was used to formulate the first
efficient quantum simulation algorithm for local Hamiltonians.

For the time-evolution operator of local Hamiltonians, a decomposition into CNOTs can be obtained by
starting from a Lie-Trotter-Suzuki circuit, and then decomposing every gate into nn CNOTs and one-qubit
unitaries [132]. Similarly, in the universality studies [223–225, 227] a hierarchy of decompositions
is used to decompose an arbitrary unitary. First, the unitary is analytically decomposed into large
multi-controlled gates, which are then decomposed into Toffoli gates, and finally into CNOTs. This
sequential scheme was afterwards improved, reducing overheads and improving bounds [303–308].
Clearly, such a hierarchical procedure is prone to global redundancies, with different parts of the circuit
being synthesized independently. One approach to resolving redundancies and inefficiencies, especially
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with a particular hardware implementation in mind, is to utilize circuit identities [309–314]. This can
drastically reduce the gate count in some instances [315].
There are also many Hamiltonians of interest that do not have a tensor product structure, but which

are sparse. These feature for example in adiabatic quantum computation [316, 317] and various quantum
algorithms [318–321]. In that case, one option is to decompose H into a sum of simple terms [154, 317,
322], and use the same techniques as for local systems.

5.5 Effects of decoherence

Even if a quantum algorithm can in principle yield an exponential speedup over the best classical
algorithm, this situation might change drastically in the presence of decoherence. In particular, in the
absence of error correction, the state will mix increasingly with the enviroment as noisy gates are applied
to it, until it ends up in a completely mixed state. In any case, to minimize the detrimental effects of
decoherence we can try to pack a quantum algorithm into as little gates as possible. This was the prime
motivation behind Article 3 of this thesis [108] and the preprint [104], which we discussed in Sec. 3.11.

To achieve quantum supremacy in this age of noisy quantum computing requires us to find classically
intractable problems that can be solved with high accuracy using a relatively small amount of gates Ng.
Currently, IBM devices have quantum volumes that are on the order of the qubit count, e.g. ibm_algiers
has a quantum volume of 128 at 27 qubits [164], such that only a few brickwall layers of CNOTs can be
executed before complete mixing is expected to occur. At this point, the asymptotic scaling of gates is
not important, since it pertains to the behavior of the large and clean devices of the future. Instead we
are currently restricted to the regime of small and noisy computers without error correction. With this in
mind, the most straightforward way of generating classically intractable states is with random circuits,
to generate as much entanglement as possible for a fixed number of gates. A more meaningful goal is
to perform a classically intractable calculation that approximates a meaningful unitary, such as a time
evolution operator [135]. In any case, the classical verification of potential showcasings of quantum
supremacy is crucial [191, 296, 297].

For locally-connected quantum computers such as the superconducting platforms, where the elementary
gates act on qubits that are physically neighboring, the simplest circuit architecture is that of a brickwall
as in Fig. 3.1. In that case, gates do not need to be supplied with SWAP gates before being executed on
the quantum computer. We discussed this in detail in Article 3 [108], which we covered in Sec. 3.11.
Then the gate count of a circuit is a direct indication of the potential influence of decoherence.

If the total error incurred per gate is below some threshold, we can in principle make the circuit
execution fault-tolerant through error correction [323–325]. Here, redundancy is used to detect and
correct errors, such that we could in principle execute arbitrarily large circuits with perfect precision.
Then large circuits such as those for the quantum Fourier transform can be coherently executed, opening
the door to e.g. Shor’s algorithm for integer factoring [326]. This would allow for unmistakable
demonstrations of quantum supremacy. It can be considered as an ultimate goal of quantum computing,
but as of yet the experimental aspects appear out of reach [327]. For now, we instead rely on classical
pre- and post-processing to make the most out of what we have, prompting research such as that of
Article 3 [108], Article 5 [109], and the preprint [104].

43



Chapter 5 Quantum computing

5.6 Alternatives to product formulas

The simplest approach to time evolution on a quantum computer is conceptually analogous to the TEBD
algorithm for tensor networks from Sec. 4.2. Namely, we store the gates in a classical memory and
execute them sequentially on the quantum computer. However, we can now also utilize ancilla qubits to
coherently implement non-unitary operations. This allows for many alternatives to sequential circuits,
often with improved asymptotic scaling. For example, we can execute the whole circuit coherently
instead of sequentially [154, 218, 317, 322].

For this we need to introduce ancilla qubits, enough to encode the gates into a state. For example, to
select gate G j from a circuit C, and apply it to a state |ψ〉, we can use

select(C) | j〉 |ψ〉 = |φ j〉Uj |ψ〉 , (5.2)

where |φ j〉 is a garbage state that is there solely to make the select operation unitary (i.e. reversible). The
state | j〉 picks a gate at a particular bond and should therefore have at least Ng different basis states, i.e.
we need O(log2(Ng)) ancilla qubits. In the current age of quantum computing, with experimental devices
containing O(102

) noisy qubits, this ancilla overhead is intolerable, especially since these algorithms also
come with a large constant gate overhead [128, 135, 317]. Essentially, they are tailored to the quantum
computers of a future generation, where such overheads become insignificant relative to the asymptotic
cost.
The select(C) operation also allows for the coherent implementation of a linear combination of

unitaries [328]. As we mentioned in Sec. 3.10, this can be used to formulate time-evolution algorithms
with a gate count that scales optimally as O(poly(log(1/ε))), i.e. exponentially better than a single circuit.
Many such quantum algorithms were developed, for example using a discrete fractional query model
[126], a quantum walk (which saturates the no-fast-forwarding bound even for non-local Hamiltonians)
[319, 329, 330], multiproduct formulas [180, 331], a direct truncation of the Taylor series of e−itH [128],
and representing the Lie-Trotter-Suzuki remainder as a linear combination of unitaries [127]. The block
encoding that a linear combination of unitaries realizes can also be implemented differently, namely
by encoding the eigenvalues of the Hamiltonian into ancilla qubits, which are then rotated to induce
time evolution [332, 333]. For local Hamiltonians we can use one of these algorithms with optimal
scaling in 1/ε to construct a quantum algorithm that saturates all optimality bounds, by relying on the
Lieb-Robinson bound [158]. All mentioned algorithms require at least O(N) ancilla qubits. In Ref.
[135] the gate counts were estimated for a few of the mentioned algorithms, in the context of reaching a
particular evolution time for a simple spin model with a particular precision. All the given estimates
contain millions of gates, still out of range for modern devices, and even then their emperical bounds
predict that the product formulas outperform the rest while requiring no ancilla qubits.
Of course, all these algorithms can be implemented classically as well, e.g. using a single tensor

network for the system and ancilla qubits. This can be useful in order to verify and analyze various
aspects of an algorithm.

5.7 Randomization

If we only care about the expectation values that a circuit produces when acting on a state, we can
improve its accuracy by introducing randomness, so that we work with an ensemble of circuits instead of
a single circuit [334, 335]. For example, if we take a product formula, instead of always applying one
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specific gate at a particular point in the algorithm, we now sample the gate from a probability distribution
[336–338]. This is done by replacing each gate with a sum of gates, with the coefficients corresponding
to probabilities [109]. Randomization can double the approximation order of Lie-Trotter-Suzuki circuits
[339]. It also allows for the stochastic implementation of a linear combination of unitaries, requiring
only a single ancilla and shallow circuits compared to a coherent implementation [127, 340]. This
could benefit the mentioned time-evolution algorithms that rely on this subroutine, by providing a more
hardware-friendly alternative that could be viable in the current era of quantum computing.

The use of such randomization is natural when looking for circuit approximations in the presence of
decoherence. This is because the decoherence already introduces a classical probability distribution,
effectively doubling the Hilbert space to accomodate for density matrices. Such an ensemble of states
can then be directly propagated by an ensemble of circuits, called a supercircuit [100], and we can extend
the variational compilation framework of Sec. 3.3 to determine the optimal supercircuit approximation
of e.g. a noisy time-evolution operator. Here each constituent supergate, i.e. an ensemble of gates, has
to be parameterized. An obvious choice is to make it into a probability distribution over various gates,
with the probabilities also functioning as variational parameters. We utilized this in Article 5 [109],
which we discuss in Sec. 5.10.

5.8 Variational quantum compiling

When performed in the context of quantum computing, the variational compiling approach from Sec.
3.3 is called variational quantum compiling, and it has been at the core of many studies on quantum time
evolution [104, 108, 160–163, 341–353]. This approach has also been used to represent states of interest
as a circuit applied to some initial state [115, 354–362]. In most of these variational compiling studies the
computational load of the circuit optimization is intended to be placed onto a digital quantum computer
[160–163, 341–349]. With the current level of noise this program still suffers from many ailments that
are absent with a classical optimization algorithm [342, 363]. Hence there are also variational compiling
approaches where the optimization is geared to a classical computer [104, 108, 350–353]. Then the
quantum computer is only needed to execute the final optimized circuit, in order to simulate the targeted
dynamics. As we will discuss below, this allows for the generation of classically intractable states, even
though the optimization is classically tractable. Naturally, here a restricted gateset is often used to taylor
the variational compiler to a specific quantum computing platform.
The classical optimization problem at the core of variational compiling has only recently become

feasible for more than three qubits, with the rise of supercomputers and efficient optimization algorithms
based on gradient descent [186]. In the first place, this is because the circuit parameters form a
high-dimensional space, and determining the minimimum distance (3.3) boils down to minizing a
nonlinear function over this space. Then, the distance needs to be calculated many times, and this can be
costly when done with high accuracy for more than a few qubits.
Determining the minimum distance through a simultaneous global scan of all circuit parameters

becomes infeasible already for a modest amount of parameters and qubits, so we resort to a local scheme.
Here the circuit is initialized with some parameters, and these are then continuously updated based on
local information about the distance function. To first order only the gradient is used, from which the
gradient descent algorithm derives its name. Now we can get stuck in local minima of the distance
function, which is a well-known problem of variational compiling and the optimization of complicated
non-linear functions in general [354].
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To classically optimize a circuit that acts on many qubits, we can represent the circuit and the targeted
unitary as truncated isoTNOs, as explained in Sec. 4.2. But this will inevitably fail for large times with a
generic Hamiltonian, in which case the optimization is limited to a few qubits. Crucially, we can perform
the optimization only for a few qubits, or only at small times, and then “extrapolate” the circuit. For
example, we can use tensor networks to perform the distance calculation at relatively small times on
a large lattice, with the bond dimension chosen such that we are just able to perform the calculations
without significant information loss. Then we can simply stack the circuit twice to reach double the time,
which we can no longer verify on a classical computer. Alternatively, if we have a quantum computer
with PBC, we can use translationally-invariant circuits, which are straightforwardly used at any system
size. Then we can perform the optimization at e.g. N = 8 and use the optimized circuits on a larger
quantum computer. In Ref. [104] we have found that this extrapolation works extremely well for the
models considered. Either way, we can determine highly-accurate circuits with relatively small gate
counts via a classically-tractable optimization procedure. This is at the core of the variational quantum
compiling approach that we have taken in Article 3, Article 5, and the preprint [104].

5.9 Mitigating errors

After we have determined the optimal circuit parameters to approximate the targeted unitary, we can now
use them as instructions for the quantum computer. By performing many shots for a couple of initial
states, and measuring the output states, we can check how close the experiment is to the theoretical
prediction. Naturally, the decoherence affects this correspondence, with deep circuits yielding a complete
loss of information. Interestingly, for some cases it is known that the optimal circuit parameters remain
unchanged when including noise [161, 343].
To combat the information loss, we can perform quantum error mitigation, which is a classical

post-processing step. With probabilistic error cancellation (PEC) we can effectively cancel the errors
due to the decoherence [364, 365]. For this we first create many new realizations of the circuit, by
extending it with random gates that are distributed according to a particular mitigating ensemble. Then
we can determine a mitigated observable by calculating the observable for each of the random circuits,
performing many shots for every circuit, and then averaging over the results. If done exactly, the amount
of required samples grows exponentially with N , which is why in Article 5 we aim to reduce the amount
of gates in the mitigating ensemble through variational compiling.

Alternatively, we can use zero-noise extrapolation, where the decoherence is varied to obtain data at
various noise levels [125, 191, 366]. This is then extrapolated to zero noise in an attempt to mitigate
noise. For a brickwall circuit of CNOTs, the overall decoherence due to two-qubit gates can be varied by
inserting products of CNOTs into the circuit, with a product of two CNOTs being equal to the identity.

5.10 Commentary on Article 5

Compressed quantum error mitigation
Phys. Rev. B 107, L201114 (2023)
M. S. J. Tepaske, D. J. Luitz

In Article 5 of this cumulative thesis [109], shown in App. E, we use variational quantum compiling
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to determine shallow mitigating ensembles for PEC on the level of an entire circuit. Concretely, we look
for a supercircuit that (partially) reverts the decoherence of a circuit, where the decoherence stems from
the accumulation of two-qubit decoherence. In practice, after such a denoiser has been determined, the
circuits that make up its ensemble have to be sampled and applied after every sample of the noisy circuit.
By averaging over many samples, the errors are mitigated up to the capacity of the denoiser. Because we
also have to average over many quantum trajectories, the cost of PEC is high. This emphasizes the utility
of a PEC approach where the size of the mitigating ensemble can be tuned, in contrast to the traditional
approach from Refs. [364, 365]. By keeping the ensemble small we can enforce practicality, since it
requires less sampling. This comes at the cost of imperfect mitigation, i.e. it has an approximation error
relative to a perfectly mitigating ensemble, but this can be a practical advantage when we are mitigating
the errors of circuits that already have an associated approximation error. For example, in the Article we
chose to mitigate second-order Lie-Trotter-Suzuki circuits of the 1D Heisenberg model, so at most we
need to look for a denoiser that is equally accurate to the Lie-Trotter-Suzuki circuit. Alternatively, we
can look for denoisers that only consist of a couple gates, in order to construct fast partial mitigation
procedures.
The denoiser is unphysical, and even if we had access to a quantum computer that realizes density

matrices and allows for arbitrary physical maps, it would not be executable. It is the analog of a non-unitary
circuit in the supercircuit formalism. It makes little sense to look for a coherent implementation, because
we cannot physically realize a supercircuit, so a natural approach is to utilize the randomization from
Sec. 5.7 to realize it stochastically. To facilitate this, we parameterize the supergates in a denoiser, which
is a supercircuit with a brickwall architecture, as a convex sum of elementary gates and measurements.
Every supergate can then be sampled based on its coefficients, and the resulting collection of unitary
circuits interspersed with measurements realizes the ensemble of the denoiser. This is similar to many of
the methods that we mentioned in Sec. 5.6, where a sum of unitaries has to be realized on a quantum
computer.

In contrast to Article 3, here we utilized translationally-invariant circuits. For this we have to restrict
the noisy time-evolution operator to be translationally invariant. This is crucial in order to simulate the
performance of the denoiser on larger quantum computers. In particular, since we are now working
with supercircuits, exact calculations have cost O(4N

). Consequently, the distance minimization is
already expensive with N = 8 qubits. We can also calculate the distance stochastically, by utilizing
typicality, i.e. interpreting the superoperator trace as an average over random density matrices, and
replacing the ensemble calculations with averages over pure state trajectories. This way, we only need to
perform pure-state calculations, at the cost of needing many samples. Besides allowing us to check the
performance of the denoiser at system sizes that are larger than the size for which it was optimized, it
also opens the door to the extrapolation procedure of Sec. 5.8.
There are many interesting variations on the problem that we have studied in this Article. For

example, instead of compiling a noisy circuit into the product of the noiseless version and a denoiser, we
could directly compile it into an ensemble of pure-state operations. In other words, we could directly
incorporate the error mitigation into the time evolution, following the approach from Article 3. It could
also be worthwhile to consider different denoiser architectures. For example, it could be advantageous to
denoise after every couple layers, instead of waiting until the entire circuit has been completed.
The author of this thesis has developed the theory, performed the numerical simulations, and wrote

the article. All with input from David J. Luitz.
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We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations
in the weakly coupled spin-1=2 Heisenberg layers of the molecular-based bulk material
½CuðpzÞ2ð2-HOpyÞ2�ðPF6Þ2. At zero field, a transition to long-range order occurs at 1.38 K, caused by
a weak intrinsic easy-plane anisotropy and an interlayer exchange of J0=kB ≈ 1 mK. Because of the
moderate intralayer exchange coupling of J=kB ¼ 6.8 K, the application of laboratory magnetic fields
induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT
regime, as the tiny interlayer exchange J0 only induces 3D correlations upon close approach to the BKT
transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic
resonance measurements to probe the spin correlations that determine the critical temperatures of the
BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series
expansion quantum Monte Carlo simulations based on the experimentally determined model parameters.
Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures
between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram
of ½CuðpzÞ2ð2-HOpyÞ2�ðPF6Þ2 is determined by the field-tuned XY anisotropy and the concomitant
BKT physics.

DOI: 10.1103/PhysRevLett.130.086704

Cooperative behavior and critical phenomena of strongly
correlated magnets are typically dictated by the lattice and
spin dimensions, as well as by the symmetry of the
underlying Hamiltonian [1–8]. Among the most fascinating
examples are two-dimensional (2D) XY spin systems,
which are known to undergo a topological Berezinskii-
Kosterlitz-Thouless phase transition at a finite temperature
TBKT [9–11], which marks the binding of topological
defects in vortex-antivortex pairs. So far, experimental
efforts to probe a genuine BKT transition in a bulk material
were compromised by the onset of 3D order [12–18] due to
the inherent 3D nature of these materials. Still, if the
perturbative terms relative to a purely 2D XY model are
small enough, the experimental observation of magnetic
properties associated with BKT correlations may be pos-
sible in the transition regime [19–23].
In particular, a controlled tuning of the XY anisotropy,

with associated impact on TBKT, can provide an ideal test
bed for experimental studies of BKT physics and their

comparison to numerical state-of-the-art modeling. As
a possible approach to tune the magnetic correlations
away from 2D Heisenberg to a 2D XY symmetry, the
application of a uniform magnetic field to the 2D quantum
Heisenberg antiferromagnet breaks theOð3Þ symmetry, but
preserves the easy-planeOð2Þ symmetry, as was confirmed
by quantum Monte Carlo (QMC) calculations [24].
Correspondingly, for Zeeman energies of the order of
the exchange energy, the effective XY-exchange anisotropy
can be controlled. The associated BKT transition persists
for all fields below saturation, yielding a nonmonotonic
magnetic phase diagram [24].
In order to find materials that allow us to study this

phenomenology, the chemical engineering of molecular-
based bulk magnets is a promising approach. By an
appropriate choice of molecular ligands and counterions,
the syntheses of several materials that realize a 2D
spin-1=2 Heisenberg model on the square lattice
were reported [25–35]. In these materials, a moderate
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nearest-neighbor exchange interaction of the order of a few
K allows for the tunability of the effective exchange
anisotropy by experimentally accessible magnetic fields.
Indeed, for several Cu2þ-based molecular materials, a
nonmonotonic magnetic phase diagram as a function of
the external field was reported [25,30,32,36,37]. The
magnetic properties of these molecular-based 2D quantum
Heisenberg antiferromagnets were mostly investigated by
thermodynamic methods [26,30,32,34,35], thus missing
local information about the magnetic correlations in the
BKT transition regime.
In this Letter, we report on the field-tunable anisotropy of

magnetic correlations in ½CuðpzÞ2ð2-HOpyÞ2�ðPF6Þ2 [with
pz ¼ C4H4N2, 2-HOpy ¼ C5H4NHO] (CuPOF in the fol-
lowing), ranging from the almost-isotropic Heisenberg
limit at zero field to a substantial XY anisotropy upon
increasing the magnetic field strength. We use nuclear
magnetic resonance (NMR) as the experimental probe for
the dynamic and quasistatic spin correlations. Furthermore,
by QMC simulations, we calculate the in-plane spin stiff-
ness, which we use to determine the critical temperatures of
the long-range order (LRO) and the BKT transition. Our
main findings are (i) that the temperature dependence of the
nuclear spin-lattice relaxation rate follows the behavior
predicted from 2D BKT theory in a wide range of temper-
atures, determined by the field-driven anisotropy, (ii) that
finite-size scaling of the QMC results permits the extraction
of TBKT, which lies below the actual 3D ordering temper-
ature TLRO, and (iii) that both temperatures exhibit a
nonmonotonic field dependence, which is analogous to
the behavior when instead of the field, the anisotropy of
interactions is tuned, a clear signature for the tunability of
BKT correlations.
The synthesis and characterization of CuPOF by means

of various techniques, including μþSR experiments, are
described in Ref. [25]. The crystals are flat plates with the
crystallographic c axis perpendicular to the plate. The NMR
spectra and spin-lattice relaxation time T1 were recorded
using a standard Hahn spin-echo pulse sequence and an
inversion-recovery method, respectively. The measurements
were performed using a commercial phase-coherent spec-
trometer and a 16 T superconducting magnet, equipped with
a 3He sample-in-liquid cryostat. A single-axis goniometer
was used to align the c axis parallel to the magnetic field.
The magnetic interactions of CuPOF in an applied field

are well approximated by the effective Hamiltonian

H ¼ J
X
hi;jik

½Sxi Sxj þ Syi S
y
j þ ð1 − ΔÞSziSzj�

þ J0
X
hi;ji⊥

Si · Sj − gμBμ0H
X
i

Szi ; ð1Þ

where hi; jik and hi; ji⊥ denote the intra- and interlayer
nearest neighbors, and J and J0 are the intra- and interlayer

exchange couplings, estimated as J=kB ¼ 6.8 K and
J0=kB ≈ 1 mK [25]. Whereas Δ ¼ 0 corresponds to the
isotropic Heisenberg case, 0 < Δ ≤ 1 quantifies an easy-
plane anisotropy, with a zero-field value of Δ ≈ 0.01…0.02
for CuPOF [25].
In the presence of interlayer interactions, any nonfrustrated

magnetic quasi-2D lattice inevitably undergoes a transition to
long-range order at low temperatures. Because of the very
large separation of the magnetic layers in CuPOF, with
J0=J ≈ 1.4 × 10−4, the very small entropy change associated
with the transition to LRO is beyond the experimental
resolution of thermodynamic quantities [25,38]. On the other
hand, μþSR is very sensitive to the local staggered magneti-
zation, and was used to probe the transition to LRO at 1.38
(2) K in CuPOF [25]. This transition occurs under the
influence of the weak intrinsic easy-plane anisotropy, which
yields a temperature-driven crossover from isotropic to XY-
type correlations at the crossover temperature Tco > TLRO.
An applied magnetic field increases the effective XY
anisotropy, which manifests itself as a field-dependent
minimum of the uniform bulk susceptibility at Tco, as
depicted by the pentagons in Fig. 1.
The temperature dependence of the 31P-NMR spin-lattice

relaxation rate at out-of-plane fields up to 16 T is presented

FIG. 1. Phase diagram of CuPOF for out-of-plane magnetic
fields from experiment and numerics. The pentagons denote the
spin-anisotropy crossover temperature Tco from Ref. [25]. White
diamonds indicate the transition temperature TLRO to long-range
order, and squares show the BKT transition temperature TBKT, as
obtained from the analysis of the 31P 1=T1 rate (Fig. 2). TLRO at
zero field is determined by μþSR measurements [25]. The green
pluses and red crosses denote TLRO and TBKT, respectively, as
obtained from QMC calculations (Fig. 3). The diamond at 17.5 T
denotes the saturation field, which was determined from mag-
netization experiments [25], and is in agreement with QMC
results. All lines are guides to the eye.
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in Figs. 2(a)–2(c). The spin-lattice relaxation rate 1=T1 has
sharp maxima at TLRO ¼ 1.96 and 2.66 K at 2 and 7 T,
respectively. In comparison, the maximum amplitude of
1=T1 at 16 T (TLRO ¼ 1.15 K) is substantially reduced.
The transition temperatures between the 2D XY and the
LRO regimes are depicted by diamonds in Fig. 1. The
strong dependence of TLRO on the field strength that we
observe in CuPOF clearly indicates a field tunability of the
XY anisotropy of the spin correlations [24]. This behavior
is confirmed by our QMC simulations.
As previously reported, the 31P 1=T1 rate in CuPOF

yields several broad maxima at high temperatures, which
are associated with a freezing of the PF6 molecular
reorientation modes [39]. Below about 10 K, in the range
of interest in the present study, these modes are frozen out
and 1=T1 becomes temperature independent, indicating
predominantly paramagnetic fluctuations. In 2D magnetic
lattices, the onset of short-range spin correlations occurs at
temperatures T ≃ J=kB [38], with a correlation length of
about one magnetic-lattice constant [16,40].
At temperatures above the onset of LRO, 1=T1 can serve

as a probe for the dynamic correlation length ξ [19,20,41–
44]. As was shown from dynamical scaling arguments
[41], 1=T1 is proportional to the transverse spin correlation
length as 1=T1 ∝ ξz−η, where z and η are characteristic
dynamic and critical exponents [3,19,41,45]. By compar-
ing the temperature dependence of 1=T1 with the charac-
teristic ξ of different universality classes, we can therefore
probe the nature of the predominant correlations in the
critical regime, before the system finally undergoes the
transition to long-range order. Thus, we compare the BKT
correlation length of a 2D easy-plane antiferromagnet,
ξ2DXY ∝ expð0.5π= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=TBKT − 1
p Þ [11,16], with that of a

3D isotropic Heisenberg antiferromagnet, ξ3DHeis ∝ jT −
TLROj−0.7112 [46,47].
To describe 1=T1 in the interval TLRO ≤ T ≤ J=kB, we

note that η ¼ 0.0375 for the 3D Heisenberg antiferromag-
net [46], with the LRO transition residing in the Oð3Þ
universality class, whereas the easy-plane model has η ¼
1=4 [48–50]. For both models, we use z ¼ d=2, with d the
spatial dimensionality [45]. The experimental estimates of
TBKT are obtained from fits to the 2D XY form.
In Figs. 2(a)–2(c), we show the measured 1=T1 along

with both fits, for fields of 2, 7, and 16 T [51]. In contrast to
the 3D Heisenberg description, the 2D XY fit accurately
captures the increase of 1=T1 near TLRO, most noticeably
at 7 T. The fits yield TBKT ¼ 1.708ð14Þ, 2.237(7), and
0.90(16) K for applied fields of 2, 7, and 16 T, respectively,
with errors determined by bootstrapping. The nonmonotonic
dependence of TBKT on the field tracks that of TLRO, being
separated by a few hundred mK for the most part, as shown
in the phase diagram in Fig. 1. One should note, however,
that the BKT transition is preempted by the LRO that arises
from the 3D correlations, stemming from the finite interlayer
exchange interaction J0. In the Supplemental Material [52],
we discuss indications that changing the field strength has
similar effects on the spin correlations as changing the
exchange anisotropyΔ [16,62] and argue that hence the field
allows us to tune the effective anisotropy. Further, as shown
by μþSR and 1H-NMR spectroscopy, the low-temperature
staggered magnetization in CuPOF agrees with a change
from Heisenberg behavior at zero field towards that of a 2D
XY system at 7 T, see Fig. S2 in the Supplemental
Material [52].
In order to shed more light on the experimentally

observed phenomenology of mixed Néel and BKT-type
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FIG. 2. (a)–(c) Temperature-dependent 31P nuclear spin-lattice relaxation rate 1=T1 of CuPOF, recorded at out-of-plane fields of 2, 7,
and 16 T. The solid lines are best fits according to 1=T1 ∝ ξz−η for the temperature dependent correlation lengths ξ3DHeis and ξ2DXY of the
3D Heisenberg and the 2D XY cases (see main text). The transition temperature TLRO, marked with a downward triangle, is inferred from
the 1=T1 peak position, and TBKT, marked with a dotted line, is determined from fits according to 1=T1 ∝ ξz−η2DXY. At all fields, but most
noticeably at 7 T, 1=T1 is described best by ξ2DXY at T ≳ TLRO.
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correlations, we numerically investigate the Hamiltonian (1)
using stochastic series expansion quantum Monte Carlo
with directed loops [63]. We consider finite simple-cubic
lattices with periodic boundary conditions and dimensions
L × L × L=8, fixing J=kB ¼ 6.8 K, J0=kB ¼ 1 mK, and
Δ ¼ 0.0185. To determine TBKT and TLRO, we calculate the
in-plane spin stiffness ρ ¼ 8L−3

∂
2F=∂ϕ2jϕ¼0, which is

defined as the second derivative of the free energy F with
respect to a uniform in-plane twist angle ϕ [64,65]. This
quantity is nonzero in the BKT phase and in the thermo-
dynamic limit it should vanish instantly at TBKT. For the
finite lattices simulated with QMC, this drop-off is instead
continuous, but based on how ρ approaches the instant drop-
off with increasing system size, we can determine TBKT. In
particular, using finite-size scaling theory, it is predicted that
ρ depends on temperature T and system size L as [64]

ρðT; LÞ=PðLÞ ¼ f

�
lnðLÞ − affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T − TBKT
p

�
; ð2Þ

PðLÞ ¼ 1þ 1

2 lnðLÞ þ cþ ln½c=2þ lnL� þ
b

ln2L
; ð3Þ

where a, b, c are fitting constants and f is a general
continuous function which we choose to be a fifth-order
polynomial. This parametrization of ρ is fitted closely above
TBKT for simulation data of the J0 ¼ 0 model to de-
duce TBKT. Afterwards, we plot ρ=P versus lnðLÞ −
a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − TBKT

p
in the fitting interval, which should collapse

to a single curve if the fit is perfect. We checked that fitting ρ
for J0 ¼ 1 mK in the full 3Dmodel reproduces the 2D TBKT
to within error bars, when fitted at T > TLRO, where the
interlayer coupling becomes insignificant such that the 2D
scaling ansatz (3) holds. In Fig. 3(a), we show the finite-size
collapse of the ρ fit performed at 2 T, for systems with up to
1 × 106 spins and a temperature grid ofΔT ¼ 1 mK. The fit
yields TBKT ¼ 1.748ð15Þ K.
To determine TLRO, we consider the scaled in-plane

stiffness Lρ for the full 3D model with J0 ¼ 1 mK. At large
L, this quantity becomes size independent at TLRO [47].
Hence, by determining the crossings T� between Lρ curves
with two different sizes L, and extrapolating this crossing
temperature to L → ∞, we obtain TLRO [66]. In Fig. 3(b),
we show the scaling analysis performed for Lρ at 2 T,
where the inset shows the L → ∞ scaling of the crossing
temperature T�. Here, we used a second-order polynomial,
which yields TLRO ¼ 1.959ð2Þ K. Further calculations of
the relevant magnetization components and correlation
length are presented in Fig. S3 of the Supplemental
Material [52].
Employing these procedures at different magnetic fields,

we determined TBKT ¼ 1.4877ð6Þ, 1.7477(15), 1.9584(24),
1.5323(13), and 0.6495(15) K, at fields of 0, 2, 7, 12, and
16 T, respectively. We also confirmed that TBKT ¼ 0 when
both Δ ¼ 0 and H ¼ 0, which emphasizes the strong effect

on TBKT of the seemingly small Δ ¼ 0.0185 for CuPOF.
Furthermore, we determined TLRO ¼ 1.7425ð19Þ, 1.9597
(20), 2.1768(23), 1.7110(22), and 0.7376(17) K. At all
fields, our calculations yield TLRO > TBKT, thus supporting
the experimental phenomenology, as can be seen in Fig. 1.
We also determined the saturation field to be 17.5 T, in
excellent agreement with the experimental value. As in the
experiment, the strong dependence of the numerically
determined TLRO on the field strength reflects the effect
of the field-induced anisotropy. The quantitative
differences to the experimental transition temperatures at
elevated fields might be resolved by extending the com-
plexity of the modelling. In Fig. S4 of the Supplemental
Material, we obtain a simple estimate of an effective
exchange anisotropy ΔðHÞ at H ≤ 6 T and compare it to
the low-field results [52].

(a)

(b)

FIG. 3. Finite-size scaling analysis performed to obtain the
critical temperatures TBKT and TLRO from the QMC simulations
at 2 T. (a) Data collapse of the finite-size in-plane spin stiffness ρ
fit closely above TBKT, for the J0 ¼ 0 model, which should
collapse to a single curve if the fit is perfect, reaffirming the
calculated TBKT. The different curves correspond to different
linear sizes L. (b) Crossings of the Lρ curves for the J0 ¼ 1 mK
model; the inset shows the L → ∞ scaling of the crossing
temperature T�. The red line denotes a second-order polynomial
fit, which is extrapolated to 1=L → 0 to estimate TLRO.
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Our findings suggest the following scenario for the
temperature evolution of spin correlations in CuPOF in
applied magnetic fields. Decreasing the temperatures from
the paramagnetic high-temperature limit, isotropic
Heisenberg-type spin correlations develop, which cross
over to an anisotropic XY-type close to Tco. With further
decreasing temperature, the correlation length ξ grows
exponentially due to the vortex physics described by
BKT theory. For T ≳ TBKT, a rather low density of these
topological excitations is expected [67]. The exponential
increase of ξ yields a rapid strengthening of the antiferro-
magnetic correlations in the XY regime and, therefore, the
staggered magnetization appears effectively nonzero even
above TLRO (see Supplemental Material) [52]. With further
increase of ξ upon lowering the temperature further, the
magnetic correlations, due to the influence of the small but
nonzero interlayer interaction J0 on the regions with large
in-plane correlation lengths, can no longer be treated as 2D,
and a transition to long-range order occurs at TLRO. As a
consequence of the field-induced BKT-type spin correla-
tions, a concomitant nonmonotonic behavior of the tran-
sition temperature TLRO is observed experimentally and
confirmed by our QMC simulations.
In conclusion, the very good agreement between our

experimental results and the matching QMC calculations
establishes our study of CuPOF as a model case, where the
application of a magnetic field allows a controlled tuning of
the spin-1=2 system from the almost isotropic 2D
Heisenberg to the highly anisotropic 2D XY limit. The
phenomenology in CuPOF is driven by field-induced
Berezinskii-Kosterlitz-Thouless physics under the influence
of extremely small interplane interactions, thus providing an
attractive opportunity for systematic investigations of the
BKT-type topological excitations and calling for further
experimental studies by inelastic scattering techniques.

Data presented in this Letter resulting from the UK effort
are available from [68].
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Staggered spin correlations probed by NMR and
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Figure S1. Temperature-dependent 1H-NMR (a) spin-lattice
relaxation rate and (b) resonance frequency of CuPOF at 7 T.
The vertical dashed line indicates the transition temperature
TLRO = 2.66 K. A representative 1H-NMR spectrum at 3 K is
shown in the inset of (b). The blue triangle marks the spectral
line under investigation. The solid vertical line indicates the
Larmor frequency νL = 297.96 MHz, given by the external
field.

In order to investigate the effect of the field-tunable
XY anisotropy on the quasi-static spin correlations, we
probed the evolution of the staggered magnetization as
an effective order parameter. As reported previously, the
1H-NMR spectra of CuPOF yield a distinct line split-
ting at low temperatures, which provides a direct probe
of the local staggered magnetization [1]. More precisely,
the NMR spectrum represents a histogram of the quasi-
static fields, probed at the positions of the resonantly
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Figure S2. Log-log plot of the normalized 1H-NMR and µ+SR
frequencies (µ+SR data are from Ref. [1]), probing the stag-
gered magnetization mxy(π, π, π), and plotted as a function
of the reduced temperature τ = 1 − T/Tc, with Tc = TLRO.
The dashed lines are plots of mxy ∝ τβ , where β denotes an
effective critical exponent.

excited nuclear moments, on the time scale of the mea-
suring process (a few ten µs here). The temperature-
dependent resonance frequency νres (determined as the
first spectral moment) of a line at the high-frequency
end of the 1H-NMR spectrum, recorded at 7 T, is pre-
sented in Fig. S1(b). The corresponding 1H nuclear spin-
lattice relaxation rate is presented in Fig. S1(a), and
yields TLRO = 2.66 K, identical to TLRO as determined
from the 31P spin-lattice relaxation rate, see Fig. 2(b)
in the main text. A deviation of νres from an almost
constant value at high temperatures occurs at about 3 K
' Tco > TLRO.

Whereas the staggered magnetization already becomes
non-zero in the XY regime, we define the maximum tem-
perature of the 1H spin-lattice relaxation rate as crit-
ical temperature, see Fig. S1(a), as supported by the
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Figure S3. (a) The staggered in-plane magnetization mxy(π, π, π), (b) the corresponding correlation length ξxy(π, π, π), (c)
the uniform out-of-plane magnetization mz(0, 0, 0), and (d) the squared staggered out-of-plane magnetization m2

z(π, π, π), all
determined from the structure factor. The lattices have sizes L× L× L/8 and we simulated the Hamiltonian (1) in the main
text with intralayer coupling J/kB = 6.8 K, interlayer coupling J ′/kB = 1 mK, intrinsic exchange anisotropy ∆ = 0.0185, and
magnetic field strength µ0H = 2 T. The solid lines are for the J ′ = 1 mK model and the dashed lines for J ′ = 0. The vertical
dashed lines denote the critical temperatures TBKT and TLRO as determined in Fig. 3 in the main text.

following reasoning. In a layered anisotropic magnetic
lattice, the correlation length significantly increases with
decreasing temperature, following an exponential growth
described as ξ2DXY ∝ exp

(
0.5π/

√
T/TBKT − 1

)
[2, 3].

In the presence of a finite interlayer coupling J ′, the
transition to long-range order is expected at ξ2J ′/J ' 1
[4]. According to our QMC simulations, at TLRO, the
in-plane correlation length is of the order of 100 lattice
spacings, as can be seen for µ0H = 2 T in Fig. S3(b).
With J ′/J ' 1.4 × 10−4 for CuPOF [1], the condition
ξ2J ′/J ' 1 is satisfied at TLRO.

Thus, the 1/T1 maximum precisely represents TLRO,
whereas the previously reported splitting of the 1H spec-
tral lines, stemming from the evolution of a finite stag-
gered magnetization, occurs at a slightly higher tempera-
ture [1]. Further, although a small Dzyaloshinskii-Moriya
(DM) interaction with a vector parallel to the crystallo-

graphic b axis is not strictly excluded from symmetry
considerations, our ESR data place an upper limit of 50
GHz on the presence of an excitation gap [1].

Closely below Tc, the staggered magnetization
mxy(π, π, π) scales with the reduced temperature τ =
(1− T/Tc) as mxy ∝ τβ , where β may be interpreted as
an effective critical exponent. Here, we study to what ex-
tent the expected universality classes of an (an)isotropic
spin system in (non-)zero field are reflected in the exper-
imental data, but note that there may in practise be a
broad crossover region “interpolating” between the two
(Heisenberg and XY) cases [5].

Employing Tc = TLRO = 2.66 K at 7 T, we plot the
normalized 1H resonance frequency as a function of the
reduced temperature in a log-log plot, see Fig. S2. We
find a good agreement when comparing with the criti-
cal exponent β2DXY = 3π2/128 ' 0.23 of a finite-size
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Figure S4. (a) The staggered in-plane magnetizations mxy(∆, H = 0) and (b) mxy(∆ = 0, H) for an L × L = 100 × 100
Heisenberg system at T = 1.2 K. In (c), we show the numerically determined field-induced exchange anisotropy ∆(H), that was
determined for µ0H ≤ 6 T by solving mxy(∆, H = 0) = mxy(∆ = 0, H). The black dotted line shows the quadratic dependence
with ∆ = 0.01(µ0H)2.

2D XY model [6, 7]. Similar observations were made
for other materials that realize a planar XY lattice [8–
10]. The same analysis was applied to the µ+SR fre-
quency at zero field [1], using Tc = 1.38(2) K, giving a
good agreement when comparing to the critical exponent
β3DHeis = 0.3639(35) [11] of the 3D Heisenberg model,
and, similarly well, to the critical exponent β3DXY = 0.33
[4] of the 3D XY model. These observations further sup-
port the scenario of the enhanced anisotropy of intralayer
spin correlations at elevated fields.

Staggered spin correlations calculated with QMC

To infer the pattern of the long-range order that is as-
sociated to TLRO, which was calculated with QMC by
examining the Lρ crossings in the lower panel of Fig. 3
in the main text, we also calculate the in-plane struc-
ture factor Sxy and the corresponding correlation length
ξ [12], i.e.,

Sxy(~k) =
∑
j

ei
~k·~rj

(
〈Sx0Sxj 〉+ 〈Sy0S

y
j 〉
)
, (1)

ξxy(~k) =
L

2π

√
Sxy(~k)

Sxy(~k + ~dk)
− 1 . (2)

Here, we introduced a staggering phase based on the lat-
tice position ~rj of site j and a staggering vector ~k with

nearest-by vector ~k + ~dk. This structure factor can be
used to define a magnetization via m2

xy = Sxy(~k)/N ,
where N denotes the amount of spins. In Fig. S3(a), we
show the staggered in-plane magnetization mxy(π, π, π)
at 2 T as a function of temperature for various values
of L, and in Fig. S3(b) we show the corresponding cor-
relation length ξxy(π, π, π). The J ′ = 1 mK results are
shown as solid lines and the J ′ = 0 results as dashed

lines. We see an onset of the magnetization and in-plane
spin-correlations at TLRO that does not scale to zero with
system size when J ′ is nonzero.

In Fig. S3(c), we show the uniform out-of-plane mag-
netization mz(0, 0, 0), which depicts the field dependency
of the out-of-plane canting of the in-plane antiferromag-
netic order and converges with system size. To verify
that the magnetic order is only in-plane staggered, we
show the squared staggered out-of-plane magnetization
mz(π, π, π) in Fig. S3(d), which clearly scales to zero for
large system sizes.

Field-induced exchange anisotropy

As a simple estimate of the field-induced exchange
anisotropy, we compute the staggered in-plane magne-
tizations mxy(∆, H = 0) and mxy(∆ = 0, H) for an
L×L = 100× 100 Heisenberg system at T = 1.2 K, and
find ∆(H) such that mxy(∆, H = 0) = mxy(∆ = 0, H)
is satisfied. This condition should hold if the Hamilto-
nians H(∆, H = 0) and H(∆ = 0, H) can be mapped
onto each other, thereby giving an estimate of the field-
induced exchange anisotropy ∆(H). In Figs. S4(a) and
S4(b), we show mxy(∆, H = 0) and mxy(∆ = 0, H), and
in Fig. S4(c) we show the numerically determined field-
induced exchange anisotropy ∆(H) that was found at
H ≤ 6 T. To compare with the perturbative quadratic
field dependence estimate from [13], we also plot the
quadratic curve ∆ = 0.01(µ0H)2, showing excellent
agreement at small H.
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Figure S5. Temperature-dependent 31P NMR 1/T1 rate of
CuPOF at 7 T. The dashed line indicates a fit with a 2D
Heisenberg model between Tco ≈ 3.2 K and J/kB = 6.8 K.
The red line indicates a fit with a 2D XY model between
between TLRO and Tco.

Crossover in growth of dynamic correlation length
at Tco

At temperatures above the XY crossover regime, the
dynamic spin correlations in CuPOF are isotropic, i.e.,
of 2D Heisenberg type. At around Tco, a crossover to the
low-temperature 2D XY regime takes place. To probe
this crossover, we described the 31P 1/T1 data of CuPOF,
recorded at 7 T, between Tco ≈ 3.2 K and J/kB = 6.8 K
with a 2D Heisenberg model, according to ξ2DHeis ∝
exp [2π0.178J/ (kBT )] [11, 14–17]. In contrast, we de-
scribed the data between TLRO and Tco with a 2D XY
model, according to ξ2DXY ∝ exp

(
0.5π/

√
T/TBKT − 1

)
[2, 3]. Clearly, this comparison shows the formation of 2D
XY correlations below Tco, manifested as an increased
slope of the temperature-dependent 1/T1 rate as com-
pared to that according to the 2D Heisenberg model.
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ABSTRACT

We present an overview of selected copper-based quasi-2D square-lattice spin-1/2 materials with an easy-plane anisotropy, providing the
possibility to study emergent Berezinskii-Kosterlitz-Thouless (BKT) correlations. In particular, in those materials with a comparatively small
exchange coupling, the effective XY anisotropy of the low-temperature spin correlations can be controlled by an applied magnetic field,
yielding a systematic evolution of the BKT correlations. In cases where the residual interlayer correlations are small enough, dynamical BKT
correlations in the critical regime may be observed experimentally, whereas the completion of the genuine BKT transition is preempted by
the onset of long-range order.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0019692

1. INTRODUCTION

Due to its importance as a fundamental model system in
quantum magnetism, the two-dimensional quantum Heisenberg
spin-1/2 antiferromagnet (2DQHAF) on a square lattice and its
ground-state properties, as well as the influence of small perturba-
tions and magnetic fields on the spin correlations, were investigated
in numerous works over the past decades. In the presence of an XY
anisotropy, the occurrence of the topological Berezinskii-Kosterlitz-
Thouless phase transition at a finite temperature TBKT,

1–3 which
marks the binding of topological defects in vortex-antivortex pairs,
is a phenomenon of particular interest. Whereas the BKT transition
is often studied for the spin-1/2 case, it occurs also in the classical
limit.4,5 In the reported experimental studies, the investigation of a
genuine BKT transition in bulk materials was compromised by the
onset of long-range order (LRO).6–12 Typically, a residual interlayer
coupling J0 stabilizes LRO at temperatures above TBKT, thus pre-
venting the manifestation of the BKT transition in material realiza-
tions of the 2D XY model. Still, if the perturbations relative to the
2D XY model are small enough, the spin system may yield

experimental signatures of BKT-type correlations that develop at
temperatures approaching TLRO.

12–19

The 2D spin-1/2 Heisenberg square-lattice antiferromagnet
with weak easy-plane anisotropy in an applied magnetic field can
be described by the Hamiltonian

H ¼ J
X
i,jh ik

[Sxi S
x
j þ Syi S

y
j þ (1� Δ)Szi S

z
j ]

þ J 0
X
i,jh i?

Si � Sj � gμBμ0H
X
i

Szi , (1)

where i, jh ik and i, jh i? denote the intra- and interlayer nearest
neighbors, and J and J0 are the intra- and interlayer exchange cou-
plings, respectively. Whereas Δ = 0 corresponds to the isotropic
Heisenberg case, 0 < Δ ≤ 1 denotes a nonzero XY anisotropy.

For a small exchange coupling J of a few K, the application of
experimentally available magnetic fields of several T offers the pos-
sibility to continuously tune the low-temperature spin correlations
from the 2D Heisenberg to the 2D XY limit.12,20–26 As was shown
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Physics ARTICLE scitation.org/journal/ltp

Low Temp. Phys. 49, 819 (2023); doi: 10.1063/10.0019692 49, 819

Published under an exclusive license by AIP Publishing

 13 July 2023 07:58:09



by numerical and analytical calculations, a uniform magnetic field
breaks the O(3) symmetry of the 2D quantum Heisenberg antifer-
romagnet, but preserves the easy-plane O(2) symmetry.21

Correspondingly, for Zeeman energies of the order of the exchange
energy, the resulting effective XY anisotropy can be controlled. The
associated BKT transition persists for all fields below the saturation
field, yielding a nonmonotonic magnetic phase diagram.21 This
provides an excellent possibility for experimental studies of BKT
physics and their comparison to theoretical predictions.

2. CLASSIFICATION OF QUASI-2D MATERIALS

In contrast to an ideal 2D Heisenberg spin system, the mag-
netic layers in bulk materials yield a nonzero interlayer exchange J0,
and typically also a weak intrinsic anisotropy Δint, which is
described by the anisotropy parameter Δ in Eq. (1). Thus, in order
to characterize how well the spin system in a given material can be
approximated by the 2D Heisenberg model, the parameters J0 and
Δint need to be determined. Nonzero values of J0 and Δint lead to
long-range order at a critical temperature TLRO, in contrast to the
ideal 2D spin-1/2 Heisenberg case, which does not reveal long-
range order at finite temperatures.27 Therefore, a first qualification
of a material as a realization of the 2D spin-1/2 Heisenberg antifer-
romagnet may be defined by the ratio kBTLRO/J, which varies

between zero and values approaching unity for the 2D and the 3D
spin-1/2 Heisenberg cases, respectively.28

In order to estimate the interlayer interaction J0, an empirical
form, proposed by Yasuda et al., is often used:29

kBTLRO ¼ 4πρs
2:43� ln(J 0/J)

, (2)

where ρs = 0.183 J is the renormalized spin-stiffness. Since this esti-
mate assumes Δint = 0, it represents only an upper boundary of J0

for weakly anisotropic materials. Both, the interlayer coupling J0 as
well as the easy-plane anisotropy Δint, may drive long-range order
at nonzero temperatures. Therefore, the ratio J0/J, calculated for
quasi-2DQHAFs with a finite Δint by means of Eq. (2), represents
an upper limit of the interlayer coupling.

For a nonzero Δint and J0 = 0, quantum Monte Carlo (QMC)
calculations showed that, even for anisotropies as small as 10−3, the
critical behavior of the magnetic lattice resembles that of the
Berezinskii-Kosterlitz-Thouless universality class. A weak logarith-
mic decrease of the TBKT temperature with reduction of the spin

TABLE I. Selected Cu2+-based quasi-2D spin-1/2 Heisenberg square-lattice antiferromagnets.24,32–41 The exchange interaction J, the ordering temperature TLRO, the g-factor
(where available, both the in-plane and the out-of-plane components are listed), the anisotropy field HA, as well as the saturation field Hsat are presented. The ratio J0 /J of the
inter- to intralayer coupling is estimated using Eq. (2). The anisotropy parameter Δint is calculated from the dc susceptibility minimum at Tco using Eq. (5). Indirect estimates of
Δint from

(*) ESR,36 (**) specific heat,24 (†) and renormalization of the spin-wave dispersion analysis12 are shown as well.

J/kB, K
TLRO,
K

kBTLRO/
J J0/J g-factor HA, T Hsat, T HA/Hsat Δint

Cu(pz)2(ClO4)2 18.1 4.21 0.232 5.6 · 10–4 2.25
2.04

0.28 51.1 5.5 · 10–3 4.6 · 10–3

Cu(pz)2(BF4)2 15.3 3.8 0.248 1.1 · 10–3 … 0.25 43 5.8 · 10–3 6.2 · 10–3

Cu(pz)2(ReO4)2 15.1 4.2 0.278 2.9 · 10–3 2.13 … 42.7 … …
Cu(pz)2(H2O)2Cr2O7 4.7 < 1.6 < 0.34 & 1:3 � 10�2 2.13 … 13.3 … …
[Cu(pz)2(NO3)](PF6) 10.8 3.05 0.282 3.3 · 10–3 … 7 · 10–3 30 2.3 · 10–4 1.2 · 10–2

[Cu(pz)2(HF2)](BF4) 6.3 1.54 0.244 9.1 · 10–4 2.13 … 18.0 … …
[Cu(pz)2(HF2)](ClO4) 7.2 1.91 0.265 1.9 · 10–3 2.26

2.07
0.08 20.2 4 · 10–3 …

[Cu(pz)2(HF2)](PF6) 12.8 4.38 0.342 1.4 · 10–2 2.11 … 35.5 … 3 · 10–3 (∗)

[Cu(pz)2(HF2)](AsF6) 12.8 4.34 0.339 1.3 · 10–2 2.13 … 36.1 … …
[Cu(pz)2(HF2)](SbF6) 13.3 4.31 0.324 9.4 · 10–3 2.14 … 37.6 … …
[Cu(pz)2(4-phpy-O)2](ClO4) 7.5 1.63 0.217 2.8 · 10–4 2.26

2.04
0.11 21.1 5.2 · 10–3 …

[Cu(pz)2(pyO)2](ClO4) 7.7 1.70 0.220 3.3 · 10–4 2.26
2.04

0.11 21.9 5 · 10–3 …

[Cu(pz)2(pyO)2](PF6)2 8.1 1.71 0.211 2.1 · 10–4 2.25
2.05

… 23.7 … 7 · 10–3
(∗∗)

[Cu(pz)2(2-HOpy)2](PF6)2 (=
CuPOF)

6.8 1.38(2) 0.203 1.4 · 10−4 2.29
2.07

0.36
(4)

17.57
19.5

1.85 ·
10−2

0.9 · 10−2

Sr2CuO2Cl2 ∼
1450

255 0.176 2.4 · 10–5 … 0.7 ∼
4000

1.8 · 10–4 1.4 ·
10–3(†)

La2CuO4 ∼
1600

320 0.200 1.2 · 10–4 … … ∼
4500

… 2 · 10–4
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anisotropy was determined as30

kBTBKT ¼ 4πρs
ln 330/Δð Þ , (3)

with the spin stiffness ρs = 0.177 J.
In Table 1, we present a list of several Cu-based materials and

their experimentally determined parameters, i.e., the intralayer cou-
pling J, the zero-field ordering temperature TLRO, the ratio J0/J, the
electronic g-factor, the anisotropy field HA (corresponding to a
spin-flop anomaly), the saturation field Hsat, and the estimated
easy-plane anisotropy Δint.

Metal-organic materials, in which the magnetic Cu2+ ions
are embedded into a matrix of organic molecules, represent a
pathway for realizing a 2DQHAF on a square lattice with small
exchange coupling J/kB of several K. By an appropriate choice of
molecular ligands and counterions, the syntheses of several such
materials were reported.24,31–39,42 Often, pyrazine (pz = C4H4N2)
molecules are used as ligands to link the Cu2+ ions in the mag-
netic quasi-2D layers. The canting of the pyrazine rings43–45 and
the choice of the counterions46 determine the strength of the
exchange interaction. For several Cu2+-based molecular materials,
a magnetic phase diagram in applied magnetic fields was
reported.24,31,36,47,48 Therein, the magnetic properties were mostly
investigated by thermodynamic methods,24,32,36,39,42 thus missing
local information about the magnetic correlations at low
temperatures.

As mentioned above, a 2D square-lattice spin-1/2 system with
XY anisotropy exhibits a topological transition at a finite tempera-
ture TBKT.

10,30 QMC results for the dependence of this BKT transi-
tion temperature on the anisotropy parameter Δint are presented as
open symbols and solid or dashed lines in Fig. 1.10,30 The black
solid circles denote the experimentally obtained values of kBTLRO/J
versus Δint for selected quasi-2D weakly anisotropic QHAFs.34,39,50

Where possible, Δint was determined by Eq. (5) from a characteris-
tic minimum of the dc susceptibility at Tmin = Tco, compare
Table 1. For Cu(pz)2(ClO4)2 and Cu(pz)2(BF4)2, very similar values
of Δint were found from measurements of the field- and
temperature-dependent magnetization. For [Cu(pz)2(HF2)](ClO4),
the experimentally determined value of Δint = HA/Hsat was used.
[Cu(pz)2(4–phpy–O)2](ClO4) and [Cu(pz)2(pyO)2](ClO4) are very
similar in their properties and composition. Hence, only the
slightly better isolated second material is presented in Fig. 1. For
[Cu(pz)2(HF2)](PF6) and [Cu(pz)2(pyO)2](PF6)2, an indirect esti-
mate of Δint using ESR and specific-heat measurements from
Refs. 24 and 36 was used.

For the inorganic compound Sr2CuO2Cl2, which is a well-
known realization of the 2DQHAF model, the anisotropy parame-
ter, evaluated from the spin-dispersion analysis,12,51 is an order of
magnitude larger than the estimate Δint =HA/Hsat=1.8⋅10–4.
However, the latter estimate of Δint suffers from the uncertainty of
Hsat. From the dc-susceptibility minimum at Tco ≃ 320 K,
reported in Ref. 50, Δint =9.9 · 10

–4 was found by use of Eq. (5).
Further, Sr2CuO2Cl2 hosts extremely well-isolated magnetic layers,
with a ratio kBTLRO/J = 0.176, from which J0/J = 2.4⋅10–5 can be esti-
mated.13,34,49,50 However, the antiferromagnetic intralayer coupling
of 1450 K yields extremely large saturation fields, which prohibits
experimental studies of field-induced effects on the spin
correlations.

In this context, the material [Cu(pz)2(2–HOpy)2](PF6)2
(CuPOF in the following) is of particular interest. The values of J,
TLRO, J0/J, the g-factor, the saturation field Hsat, and the anisotropy
field Hsat, as well as the anisotropy parameter Δint were determined
by various experimental probes.31,52,53 When comparing CuPOF
with the other materials listed in Table 1, it can be characterized as
an excellent realization of a quasi-2DQHAF with a small nearest-
neighbor interaction of J/kB =6.8 K.

3. CHARACTERISTIC TEMPERATURES VS XY
ANISOTROPY

As shown in Fig. 1, for selected quasi-2D materials with a very
weak interlayer interaction, such as Sr2CuO2Cl2 and [Cu(pz)2-
(pyO)2](PF6)2, the experimentally determined values of kBTLRO/J
are very close to those of the QMC calculations of kBTBKT/J for a
weakly anisotropic 2DQHAF.

This indicates that the critical spin correlations of the BKT
transition and those underlying the formation of long-range order
are closely related in these materials. Following Refs. 12 and 30, a
comparison of the experimentally observed spin-anisotropy cross-
over temperature Tco and the LRO transition temperature TLRO
with QMC calculations of Tco and TBKT for a weakly anisotropic
square-lattice 2DQHAF is presented in Fig. 2 for Sr2CuO2Cl2 and
CuPOF. For both materials, excellent agreement is observed for the

FIG. 1. Characteristic temperatures versus the anisotropy Δint. The open
symbols denote QMC calculations of kBTBKT/J for weakly-anisotropic 2DQHAFs
from Ref. 10 (open squares) and Ref. 30 (open triangles). Solid and dashed
lines denote fits to the QMC data by empirical formulas from Refs. 30 and 10,
respectively. Full circles denote kBTLRO/J of several quasi-2DQHAF materials
with weak XY anisotropy Δint.

34,39,50 The full red stars represent kBTLRO/J of the
material CuPOF versus estimates of the anisotropy parameter from the dc sus-
ceptibility and the anisotropy field, respectively.31
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characteristic temperatures Tco, TBKT, and TLRO. The larger value of
kBTLRO/J = 0.203 for CuPOF, as compared to kBTLRO/J = 0.176 for
Sr2CuO2Cl2, is attributed only to the comparatively stronger intrin-
sic spin anisotropy in CuPOF. Therefore, the magnetic layers in
CuPOF are concluded to be similarly well isolated as in
Sr2CuO2Cl2.

Due to the very weak coupling of the magnetic layers in
CuPOF, with J0/J ≈ 1.4⋅10–4, the small entropy change expected at
the transition at TLRO is beyond the experimental resolution of
thermodynamic probes.31,54 On the other hand, μ+SR is very sensi-
tive to the local staggered magnetization, and was used to probe the
transition to LRO at 1.38(2) K in CuPOF.31 This transition occurs
under the influence of the weak intrinsic easy-plane anisotropy,
which yields a temperature-driven crossover from isotropic to XY
-type correlations at the crossover temperature Tco > TLRO. An
applied magnetic field increases the effective XY anisotropy, which
manifests itself as a field-dependent minimum of the uniform bulk
susceptibility at Tmin = Tco, as depicted in Fig. 3.

4. XY ANISOTROPY AND CHARACTERISTIC
TEMPERATURES VS FIELD

A weak intrinsic anisotropy Δint can be determined from, e.g.,
measurements of the temperature- and field-dependent magnetiza-
tion.12,30,34,39,50,56 A qualitatively different behavior of the field-
dependent magnetization for magnetic fields applied parallel and
perpendicular to the easy plane is expected at temperatures below
Tco. At the anisotropy field HA, a step-like feature of the in-plane
magnetization occurs. Accordingly, HA represents a measure of the

spin-anisotropy and Δint can be evaluated as57

Δint ¼ 2SgμBHA

zJ
¼ HA

Hsat
, (4)

where z = 4 is the coordination number for a square lattice. For
CuPOF, HA = 0.36(1) T, so that Δint =HA/Hsat = 1.85(5)⋅10–2 is
obtained as an estimate of the intrinsic easy-plane anisotropy.31

The intrinsic anisotropy, caused by the combination of crystal elec-
tric field effects and residual spin-orbit coupling of the Cu2+ ions,
is comparable for all metal-organic compounds in Table 1, result-
ing in similar values of the anisotropy fields HA and components
of the electronic g-factor.

As mentioned above, at fields above HA, both the in- and
out-of-plane dc susceptibility exhibit a broad minimum as a func-
tion of temperature. This anisotropic behavior can be understood
in terms of the 2D Heisenberg model in the presence of a weak
easy-plane anisotropy.12,30,34Cuccoli et al. reported an empirical
formula for estimating the anisotropy parameter Δint from the tem-
perature of the minimum of the out-of-plane susceptibility at
Tmin= Tco:

12,30

kBTco ¼ 4πρs
ln (160/Δ)

, (5)

with the spin stiffness ρs = 0.214 J. For CuPOF, employing Eq. (5)
with J/kB = 6.8 K and Tco =1.86(5) K, we determine an anisotropy
of Δint = 0.9(2) · 10–2.

In applied magnetic fields, a weakly-anisotropic quasi-2D
Heisenberg spin system is described by the Hamiltonian (1). From
analytical arguments23,58 and Monte Carlo simulations,20 it was

FIG. 3. Molar dc susceptibility of single-crystalline CuPOF at different magnetic
fields applied perpendicular to the crystallographic planes.31 The black down-
ward arrows indicate the crossover temperature, as discussed in the text.

FIG. 2. Phase diagram for weakly anisotropic 2D spin-1/2 square-lattice
Heisenberg antiferromagnets from Refs. 12 and 30. The calculated BKT transi-
tion and spin-anisotropy crossover temperatures kBTBKT/J and kBTco/J, respec-
tively, are presented as open up and down triangles. The temperatures kBTco/J
and kBTLRO/J for Sr2CuO2Cl2 and CuPOF are denoted by black circles and red
stars, respectively. The dashed and solid lines are plots according to Eqs. (5)
and (3), respectively.
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established that, in the low-field regime, the 2DQHAF with J0 = Δint
= 0 in uniform magnetic fields exhibits an XY-like phase below Tco.
Thus, the isotropic 2DQHAF in applied magnetic fields can be
mapped to a 2DQHAF with a weak easy-plane anisotropy by defin-
ing an effective field-induced anisotropy parameter Δfi. From com-
paring the QMC results of TBKT for both these cases of the
2DQHAF, Cuccoli et al.21 proposed a field-dependent anisotropy of
the form Δ fi ≃ h2 for the low-field regime, where h = gμBH/(JS) is
the reduced magnetic field, with h = 8 at magnetic saturation. A
comparison of the resulting characteristic temperatures is presented
in Fig. 4. Here, the field-dependent temperatures Tco and TBKT are
presented as red stars and open circles, respectively. The black
dashed line denotes the field dependence according to
tBKT (h) ≃ (4πρs/J)/ ln (C/h

2), where ρs is the spin stiffness and C a
constant.21

Further, in Fig. 4, Tco and TBKT for the weakly anisotropic
2DQHAF are plotted versus Δ1/2, since Δ fi ≃ h2. Here, the solid
down triangles are the QMC results from Refs. 10, 59, the open up
and down triangles are the results from Ref. 30. In the low-field
regime, a very good agreement between the QMC calculations for
both cases of the 2DQHAF is found for both Tco and TBKT. Thus,
the effect of an increasing magnetic field applied to the isotropic
2DQHAF yields very similar spin correlations as an increase of the
intrinsic easy-plane anisotropy in zero field.

An isotropic 2DQHAF in applied magnetic fields can be
described by a renormalized planar rotator model with progres-
sively decreasing rotator length.21 By means of a detailed finite-
size scaling analysis, Cuccoli et al.21 verified an XY-type anisot-
ropy of the spin system with a subsequent BKT transition for all
magnetic fields up to the saturation field, regardless of the gradu-
ally reduced planar spin projection. Thus, the competing mecha-
nisms of the field-induced XY anisotropy and the progressive spin
canting in field direction govern the field-dependent evolution of
TBKT.

5. FIELD-DRIVEN EVOLUTION OF THE STAGGERED
MAGNETIZATION

For a 2DQHAF in applied magnetic fields, upon cooling from
the paramagnetic regime, Heisenberg-type spin correlations
develop below T ≃ J/kB, and cross over to a XY-type in the regime
of Tco. With further decreasing temperature, the spin correlation
length ξ grows exponentially approaching the BKT transition at
TBKT. For T.

�
TBKT , a rather low density of vortices is expected.60

Furthermore, whereas Skyrmion-type textures may develop
between about J/kB and Tco, the associated correlation length is
rather short in this regime.53 The exponential increase of ξ yields a
rapid strengthening of the antiferromagnetic correlations in the XY
regime and, therefore, the staggered magnetization becomes
nonzero in a finite-size system. With further increase of ξ upon
lowering the temperature, the magnetic correlations, due to the
influence of the small but nonzero interlayer interaction J0 on the
regions with large in-plane correlation lengths, can no longer be
treated as 2D. Therefore, a transition to long-range order occurs at
TLRO.

In order to investigate the effect of the field-tuned XY anisot-
ropy on the static spin correlations in CuPOF, we probed the evolu-
tion of the staggered magnetization. The linewidth of the 31P-NMR
spectra, probing the local-field distribution at the 31P sites, provides
a measure of the staggered magnetization mxy (π, π, π). The
temperature-dependent 31P-NMR linewidth Δν*. recorded at 2 and
7 T, is presented in Fig. 5(a). The linewidth is normalized by the
low-temperature limit, Δν → 0, as well as the x axis by the onset
temperature T* of a steeply increasing Δν. This onset occurs close
to TLRO, which is determined as the maximum of the temperature-
dependent 31P 1/T1 rate at given field, compare Fig. 6. In a 2D XY
magnetic lattice, the correlation length increases exponentially as
ξ2DXY / exp 0:5π/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T/TBKT � 1

p� �
.2,10 In the presence of a finite

interlayer coupling J0. the transition to long-range order is expected
at ξ2J 0=J ≃ 1.61 With an inplane correlation length of the order of
100 lattice spacings at TLRO and J 0/J ≃ 1:4 � 10�4 for CuPOF, the
condition ξ2J 0/J ≃ 1 is satisfied, and TLRO may be interpreted as
critical temperature Tc.

53

Closely below Tc, the staggered magnetization mxy (π, π, π)
scales with the reduced temperature τ = (1–T/Tc) as mxy / τβ,where
β may be interpreted as an effective critical exponent. Employing
T*≃Tc ¼ 2:25K at 2 T and T*≃Tc ¼ 2:66K at 7 T, we plot the
normalized 31P linewidth as a function of the reduced temperature
in a log-log plot, see Fig. 5(b). For the 7 T data, we find good agree-
ment with the critical exponent β2DXY ¼ 3π2/128 ≃ 0:23 of a finite-
size 2D XY model.62,63 Similar observations were made for other

FIG. 4. QMC results of Tco and TBKT for a 2DQHAF with (i) a field-induced
anisotropy Δfi and (ii) an intrinsic anisotropy Δint.

10,12,21,30,59 Red stars and
circles refer to the field-dependent temperatures Tco and TBKT of the isotropic
2DQHAF.21 Up and down triangles refer to Tco and TBKT of the intrinsically
anisotropic 2DQHAF from Ref. 30 (open symbols) and Refs. 10 and 59 (solid
symbols). The black solid lines denote the empirical expressions (5) and (3) for
Tco and TBKT, respectively, in the weakly-anisotropic regime.12,30 The magnetic
field and the anisotropy parameter Δ are shown on the bottom and top horizon-
tal scale, respectively. The temperatures and magnetic fields are scaled with the
parameters of CuPOF, i.e., J/kB =6.8 K and Hsat,c = 17.57(5) T.
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materials that realize a planar XY lattice.17,19,64 The same analysis
was applied to data of the μ+SR precession frequency at zero field,31

using Tc =1.38(2) K, giving β = 0.345, which is in good agreement
with the theoretical critical exponent β3DΗeis = 0.3639(35)65 of the
3D Heisenberg model, and, similarly well, with the critical expo-
nent β3DΧY = 0.3361 of the 3D XY model. At 2 T, we find β = 0.28,
which may be interpreted in terms of a crossover between the
Heisenberg and XY cases.66

6. FIELD-DRIVEN EVOLUTION OF THE DYNAMIC
CORRELATIONS

The temperature-dependent 31P nuclear spin-lattice relaxation
rate 1/T1 for out-of-plane magnetic fields of 2, 7, and 16 T is

presented in Fig. 6. At high temperatures, 1/T1 is almost
temperature-independent, indicating predominantly paramagnetic
fluctuations. At temperatures above the onset of LRO, 1/T1 probes
the dynamic correlation length ξ.15,16,67–70 As was shown from
dynamical scaling arguments,67 1/T1 is proportional to the trans-
verse spin correlation length as 1/T1 / ξz�η, where z and η are
characteristic dynamic and critical exponents.15,25,67,71 In 2D mag-
netic lattices, the onset of short-range spin correlations occurs at
temperatures T ≃ J/kB,

54 with a correlation length of about one
magnetic-lattice constant.10,72 To probe the crossover at Tco, we
describe the 31P 1/T1 rate above Tco ≈ 3.2 K with a 2D Heisenberg
model, according to ξ2DHeis / exp[2π0:178J/(kBT)].

65,72–75 In con-
trast, we describe the data between TLRO and Tco with a 2D XY
model, according to ξ2DXY / exp 0:5π/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T/TBKT � 1

p� �
.2,10 Clearly,

this comparison shows the formation of 2D XY correlations below
Tco as a stronger increase of the temperature-dependent 1/T1 rate,
compared to the increase according to the 2D Heisenberg model. A
fit of 1/T1 in the interval TLRO ≤ T ≤ J/kB with the 2D XY model
yields TBKT = 1.708(14), 2.237(7), and 0.90(16) K for applied fields
of 2, 7, and 16 T, respectively, with errors determined by bootstrap-
ping.53 The BKT transition itself is preempted by the LRO that
arises from the 3D correlations, stemming from the finite interlayer
exchange interaction J0. At TLRO, a sharp maximum of 1/T1 is
observed for the two lower fields of 2 and 7 T. The amplitude of
the 1/T1 maximum at 16 T, closely below the saturation field of
17.5 T, is substantially reduced in comparison.

With similar reasoning, for the case of Sr2CuO2Cl2, it was
argued that the LRO transition is induced by the incipient
intralayer BKT transition at TBKT ,�

TLRO,
10,12 Moreover, a

spin-anisotropy crossover at Tco ∼ 320 K was detected in measure-
ments of the correlation length by means of neutron scattering55

FIG. 6. Temperature-dependent 31P nuclear spin-lattice relaxation rate of
CuPOF at 2, 7, and 16 T.53 The downward triangles indicate the long-range
ordering temperature TLRO, determined as the rate maximum. For the data at
7 T, the dashed line indicates a fit with a 2D Heisenberg model between
Tco ≈ 3.2 K and J/kB = 6.8 K. The red line indicates a fit with a 2D XY model
between TLRO and Tco.

FIG. 5. (a) Normalized 31P-NMR linewidth Δν*, recorded at 2 and 7 T, plotted
versus the reduced temperature T/T*. (b) Double-logarithmic plot of the stag-
gered magnetization mxy (π, π, π), plotted versus the reduced temperature
τ = (1– T/Tc). At zero field, mxy is probed by the normalized μ+SR precession
frequency. At 2 and 7 T, mxy is probed by the normalized 31P-NMR resonance
linewidth Δν*. The black solid lines denote a power-law behavior according to
mxy / τβ.
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and NMR.14 This is a very similar scenario of a spin-anisotropy
crossover from isotropic Heisenberg correlations at T > Tco to
XY-like planar anisotropy at T < Tco as we found for CuPOF.

7. SUMMARY

We presented an overview and classification of several copper-
based quasi-2D spin-1/2 square-lattice materials. These provide the
opportunity to study Berezinskii-Kosterlitz-Thouless correlations,
which emerge from a nonzero XY anisotropy. If the residual inter-
layer correlations are small enough, dynamic BKT correlations may
be probed in the transition regime, whereas the completion of the
genuine BKT transition is preempted by the onset of long-range
order.

In particular, we discussed the material CuPOF as a model
case for a 2DQHAF with small exchange coupling J, for which the
application of a magnetic field allows a controlled tuning of the
spin correlations from the almost isotropic 2D Heisenberg to the
highly-anisotropic 2D XY limit. As a consequence of the
field-induced BKT-type spin correlations, a concomitant nonmo-
notonic behavior of the transition temperature TLRO is observed.
The phenomenology in CuPOF is driven by field-induced
Berezinskii-Kosterlitz-Thouless physics under the influence of
extremely small interplane interactions, thus providing an opportu-
nity for systematic investigations of BKT-type topological
excitations.
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Abstract

Near term quantum computers suffer from a degree of decoherence which is prohibitive
for high fidelity simulations with deep circuits. An economical use of circuit depth is
therefore paramount. For digital quantum simulation of quantum many-body systems,
real time evolution is typically achieved by a Trotter decomposition of the time evolution
operator into circuits consisting only of two qubit gates. To match the geometry of the
physical system and the CNOT connectivity of the quantum processor, additional SWAP
gates are needed. We show that optimal fidelity, beyond what is achievable by simple
Trotter decompositions for a fixed gate count, can be obtained by compiling the evolution
operator into optimal brickwall circuits for the S = 1/2 quantum Heisenberg model on
chains and ladders, when mapped to one dimensional quantum processors without the
need of additional SWAP gates.
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1 Introduction

Quantum processors are a rapidly evolving technology which is expected to be pivotal for
many classically hard problems like integer factorization, database search, optimization and
many others [1–4]. While truly universal quantum computing is still a long shot, one of the
most promising near-term applications is the simulation of complex quantum systems due to
their relative similarity to the quantum hardware itself. The simulation of such systems on
classical computers is extremely hard due to the exponential complexity in terms of storage
and computer time, while both problems are naturally solved on quantum hardware.

There are two different approaches: analog and digital quantum simulators. Analog sim-
ulators are specifically engineered systems to mimic the corresponding dynamics of the target
system and are often based on quantum optical setups. This technique has been successfully
applied to condensed matter systems [4–9] and lattice gauge theories [10–12] and is in princi-
ple extremely powerful but requires a tailored experimental setup for a given type of problem.

In contrast, digital quantum simulators [13] rely on a discrete representation of the wave
function on an array of two level systems (dubbed qubits), which can be fully controlled by
a universal set of quantum gates which allows in principle for the representation of any uni-
tary operation on the many-body wave function, represented as a sequence of gates. Due to
the universal representation of the wave function, this is an attractive approach which is ex-
tremely flexible once a suitable mapping of the system of interest to qubits is devised. Recent
applications include condensed matter systems [14–19], simulations from quantum chem-
istry [11,20–22] and high-energy physics [23,24]. Digital quantum simulations were also used
to realize exotic phases of matter like time crystals [25,26] and quantum spin liquids [27].

The state-of-the-art method for simulating the real time dynamics of complex quantum
systems involves a factorization of the time evolution operator into a sequence of gates using
Trotter decompositions of different orders [28–32], introducing discrete time steps to get an
approximation of the exact time evolution of the system. This introduces a discretization error,
which can be systematically controlled by using smaller step sizes. As a downside, small step
sizes require a larger number of gates. Due to the fragility of the quantum state stored in
the machine, and due to hardware imperfections, each additional gate potentially introduces
new sources of error due to dissipation processes. Hence a trade-off between discretization
errors and errors due to intrinsic machine noise during the simulation is required. To achieve
optimal fidelity in light of this tradeoff, it is therefore important to minimize the resource costs
for a given simulation. Recent work yielded tighter bounds for the discretization errors [33].
Furthermore, it was also argued recently that beyond a certain step size the fidelity of the
Trotter decomposition breaks down in a universal fashion, leading to a regime of quantum
chaos [34,35]. This sets also upper bounds for possible step sizes. It remains however unclear,
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whether better alternatives to Trotter decompositions exist.
One promising approach in this regard are quantum variational algorithms. The main

idea of them is to approximate a time-evolved state using a parametrized circuit [36–39].
The parameters are then fixed using optimization algorithms on a quantum computer. Recent
numerics suggest that the number of parameters needed to describe time-evolved states or
ground states scales favorable even in comparison to matrix-product states [40, 41]. Most of
these algorithms involve optimization where gradients are measured directly on the quantum
devices, or they use deep learning approaches. However, the measurement of gradients on a
quantum device is currently infeasible due to the high error rates, while optimization using
deep neural networks is not controlled.

In this paper we take a more universal approach. Rather than focussing on the wave
function, we directly target the time evolution operator, aiming at a compact representation
as a shallow circuit. We use brickwall circuits in which the gates are parametrized two qubit
unitaries, connecting neighboring qubits in the architecture of the quantum processor as an
ansatz for the time evolution operator. This parametrized circuit can be optimized classically
to represent the time evolution operator for a given time step with high fidelity. The resulting
circuit can then be repeated to evolve the quantum state to later times. We show that such
an optimized circuit can yield significantly higher fidelity time evolution for a fixed gate count
compared to the traditional Trotter decomposition and is thus superior for digital quantum
simulation.

We also show that this strategy allows us to obtain similar accuracy using significantly less
gates, even for systems where the physical geometry does not coincide with the proposed cir-
cuit architecture, essentially “baking in” the otherwise required SWAP gates to match geome-
tries into the circuit. As an interesting benchmark problem, we use our approach to compute
out-of-time-ordered correlators (OTOCs) and show that we achieve better accuracy than Trot-
ter methods with similar resource cost. Finally, we analyze the gate structure of the optimized
gates, as a first step towards further improvements of this approach.

2 Model and Method

2.1 Model

For concreteness and simplicity, we focus on simulating finite systems of s = 1/2 spins on
a lattice with L sites, designed to be performed on a quantum processor with an identical
Hilbert space H, which is the product space of L two-level quantum systems (qubits)

⊗L
i=1 Qi

and has an exponentially growing dimension dim H = 2L . Specifically, we discuss spin-1/2
systems with SU(2) symmetric Heisenberg couplings

hi j = σ
x
i σ

x
j +σ

y
i σ

y
j +σ

z
iσ

z
j , (1)

between nearest neighbor (NN) spins on a chain c and a triangular ladder l, both with open
boundary conditions, i.e.

Hc =
∑

〈i, j〉

hi j , Hl =
∑

〈〈i, j〉〉
hi j . (2)

Here σx ,y,z are the usual Pauli matrices while 〈i, j〉 and 〈〈i, j〉〉 denote the NN sites of the chain,
or the NN sites of our triangular ladder geometry (note that this is identical to a chain with
nearest and next nearest neighbor (NNN) interactions). These lattice geometries are illustrated
in Fig. 1.

Most current quantum devices using superconducting qubits are not capable of all-to-all
connectivity, i.e. due to the chip setup two qubit gates can only be applied between neighboring

3
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Chain

h01 h12 h23 h34 h45

0 1 2 3 4 5

Ladder

h01
h12

h23
h34
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h56
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h78

h89

h13 h35 h57 h79

h02 h24 h46 h680 2 4 6 8

1 3 5 7 9

Figure 1: The chain (left) and triangular ladder (right) lattice geometries used in this
work.

M = 2

ui uj

u′
i u′

j

vij

Figure 2: Left: A brickwall circuit with depth M = 2 for six qubits, with each color
representing a M = 1 layer. Circles represent the initial state of the qubits and boxes
indicate a two qubit unitary gate applied to a pair of neighboring qubits. Right:
Parametrization of a two qubit unitary as a product of four single qubit gates and
one two qubit gate.

qubits, which are arranged in different geometries [42–44] In order to apply gates between
distant qubits, one has to use a sequence of swap gates, which exchange the quantum state of
neighboring qubits, such that effectively the states of distant qubits are moved to neighboring
qubits in the processor geometry. On these, any two qubit gate can be applied and then the
swap sequence needs to be applied in reverse order. This requires a great number of additional
gates and therefore introduces further possible sources of errors.

Our goal is therefore to find the best unitary circuit C of a given depth M to approximate
the time evolution operator U(t) = exp(−i tHc/l). In order to mimic the limited connectivity
of current quantum devices, we choose C to consist only of NN two-qubit gates on a 1d chain,
arranged in a brickwall pattern, i.e. we model our quantum processor as an open chain of
qubits, while one of our physical models we want to simulate on this machine has a different,
triangular ladder, geometry. This allows us to investigate whether it is possible to compile
the time evolution operator in a nearest neighbor, brickwall circuit (exemplified in the left
panel of Fig. 2) without the need for additional swap gates, which are generally costly on
superconducting platforms.

2.2 Trotter circuits

To benchmark the performance of the brickwall circuits we will compare them with the first-,
second- and fourth-order Trotter circuits that are based on the well known Trotter decompo-
sitions [45]. Here we introduce these circuits for the Hamiltonians (2) that are used in this
work.

For the chain Hamiltonian Hc we have two non-commuting parts, namely the bond Hamil-
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=

SWAP

Figure 3: Left: The blue brickwall layer encodes the first-order Trotter decomposition
for NN interacting Hamiltonians. The combination of the blue and red layers encodes
the first-order Trotter decomposition for NNN interacting Hamiltonians, where the
blue gates act on NN qubits whereas the red gates act on NNN qubits. Right: The
decomposition involving SWAP gates, displayed as the crossed line, which is used to
convert the NNN two-qubit gate into a circuit involving only two-qubit gates.

tonians hi,i+1 (1) on alternating bonds, such that we can split Hc in two commuting parts
as

Hc = H1 +H2 =
∑

i=0,2,...

hi,i+1 +
∑

i=1,2,...

hi,i+1 . (3)

For the ladder Hamiltonian we have on top of this three extra non-commuting parts due to the
NNN couplings, i.e. we can split Hl into five commuting parts as

Hl = Hc +H3 +H4 +H5 = Hc +
∑

i=0,3,...

hi,i+2 +
∑

i=1,4,...

hi,i+2 +
∑

i=2,5,...

hi,i+2 . (4)

By writing the Hamiltonians in this way we can define the M = 1 first-order Trotter circuits
for Hc and Hl as [45]

U1st
c (t) = U1(t)U2(t) (5)

= exp(−itH1)exp(−itH2) , (6)

U1st
l (t) = U1(t)U2(t)U3(t)U4(t)U5(t) (7)

= exp(−itH1)exp(−itH2)exp(−itH3)exp(−itH4)exp(−itH5) . (8)

These circuits approximate the exact U(t) = exp(−itHc/l) with error O(t2) [33]. Note that
depth M = 1 for the Trotter circuits does not mean one brickwall layer, but instead one Trotter
step U1nd

c/l
(t). While these coincide for the first-order Trotter circuit for the chain, this is not

the case for the first-order Trotter circuit for the ladder, and for the second- and fourth-order
Trotter circuits which we introduce below. The circuit diagram for U1st

c (t) is shown as the blue
brickwall layer in the left panel of Fig. 3, where U1(t) is the half-brickwall layer on odd bonds
and U2(t) is the half-brickwall layer on even bonds. The circuit diagram for U1st

l (t) is the full
circuit in this figure, where U1(t) and U2 again form the blue brickwall layer while U3(t), U4(t)
and U5(t) form the red layer, containing two-qubit gates that act on NNN instead of NN qubits.
To turn this into a circuit that involves only NN two-qubit gates we introduce the SWAP gate
and decompose every NNN gate as in the right panel of Fig. 3.

The circuit layers U1,U2,U3,U4,U5 form the building blocks of the second- and fourth-order
Trotter circuits. The M = 1 second-order Trotter circuits are composed as [45]

U2nd
c (t) = U1(t/2)U2(t)U1(t/2) , (9)

U2nd
l (t) = U1(t/2)U2(t/2)U3(t/2)U4(t/2)U5(t)U4(t/2)U3(t/2)U2(t/2)U1(t/2) , (10)
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which approximate the exact evolution operators with error O(t3) [33]. Using these second-
order Trotter circuits we can define the M = 1 fourth-order Trotter circuits as [45]

U4th
c/l
(t) = U2nd

c/l
(t1)U2nd

c/l
(t1)U2nd

c/l
(t2)U2nd

c/l
(t1)U2nd

c/l
(t1) , (11)

where we defined the time steps

t1 =
1

4− 41/3
t , t2 = (1− 4t1)t . (12)

These circuits approximate the exact evolution operators with error O(t5) [33].
Because we are concerned with circuits that are implemented on a quantum processor

with only NN qubit connectivity, we have to convert every NNN two-qubit gate that appears
in U1st

l ,U2nd
l ,U4th

l to three NN two-qubit gates, as shown in the right panel of Fig. 3. The gate
counts Ng of the resulting NN Trotter circuits are given in Sec. A, also for the chain geometry.

2.3 Optimization

Each two-qubit gate Ui j ∈ C4×4 of the circuit C, acting on two neighboring qubits i and j, can be
decomposed into a product of one-qubit gates ui ∈ C2×2 and a two-qubit gate vi j ∈ C4×4 [46]

Ui j = (ui ⊗ u j)vi j(u
′
i ⊗ u′j) . (13)

Here vi j is parameterized as

vi j(λ0,λ1,λ2) = e−i(λ0σ
x
i ⊗σ

x
j +λ1σ

y
i ⊗σ

y
j +λ2σ

z
i⊗σ

z
j ) , (14)

with three real parameters λ0,1,2, and the ui are parameterized up to a global phase as

ui(φ0,φ1,φ2) =

�

eiφ1 cos(φ0) eiφ2 sin(φ0)
−e−iφ2 sin(φ0) e−iφ1 cos(φ0)

�

, (15)

each containing three real parameters φ0,1,2. Hence this decomposition of Ui j contains 15 real
parameters, and it can be visualised as in the right panel of Fig. 2. To represent the unitary
gate as a global unitary matrix, acting on the full wave function, we introduce its matrix form

mat(Ui j) = I2i−1 × Ui j × I2L− j , (16)

by taking the Kronecker product with identity matrices on the qubits on which the gate does
not act (and implicitly encoding the nearest neighbor condition j = i + 1). The entire circuit
is a product of such unitaries and can formally be expressed by

C =
Ng
∏

k=0

mat(Uik , jk) , (17)

where Ng is the total number of gates in the circuit. Since each gate is parametrized by
θ⃗ik = (λ⃗ik , φ⃗ik), the circuit depends on all these 15Ng parameters θ⃗ = (θ⃗i0 , θ⃗i1 . . . ) ∈ R15Ng

C(θ⃗ ) =
Ng
∏

k=0

mat(Uik , jk(θ⃗ik)) . (18)

In practice, when stacking the gates to form the circuit, we merge two one-qubit unitaries into
a single one-qubit unitary where possible, since a product of general one-qubit unitaries can be
written as a single general one-qubit unitary. This reduces the amount of circuit parameters.
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We would like to find an optimal parameter set θ⃗ for a given circuit architecture, such
that the distance between the unitary represented by the circuit C(θ⃗ ) and the targeted time
evolution operator U of the system up to time t is minimized. For two unitary operators U
and C, we therefore define a measure of distance in terms of the normalized Frobenius norm,
namely the “infidelity” ε, given by

ε=
1
2

∥U − C∥2
F

2L
=

1
2L+1

Tr
�

(U − C)†(U − C)
�

= 1−
ReTr
�

U†C
�

2L
. (19)

We use this infidelity as an objective function, such that we obtain a minimization problem for
a fixed circuit architecture (number and sequence of two qubit gates). In our case the target
unitary U is an approximation of an exact time-evolution operator, where the error stems from
the tensor network methods that make the optimization tractable.

The objective function ε needs to be evaluated many times during the optimization and
we find that it is efficient to first compress the time evolution operator U into a matrix product
operator (MPO) Mχ of bond dimension χ, such that we can calculate ε via efficient standard
tensor network methods. For the local systems we investigate here and for short times, this
is always efficient, due to the low operator entanglement of the time evolution operator [47].
In particular, we discard the smallest singular values for which the squares sum to a tiny num-
ber, since their contribution is negligible, such that lowly entangled operators do not saturate
the maximum bond dimension χ. To obtain the (truncated) MPO representation of U with
negligible discretization error, we take an identity MPO and perform time-evolving block deci-
mation [45,48]with a small timestep δt = 10−4 and fourth-order Trotter decomposition, such
that the introduced error is negligible.1

To optimize the parameters θ⃗ of the circuit such that ε is minimal, we employ the paradigm
of differentiable programming [49]. Here the gradient ∇θ⃗ ε is calculated in a similar fashion
as the original backpropagation algorithm used for deep neural networks [50], which has
been generalized to arbitrary programs, including tensor network algorithms [49]. To this
end, a program is represented as a computational graph through which the local gradients are
propagated, which requires each computational component to have a well-defined gradient.
In particular, for the tensor network algorithm in this work, the SVD is a crucial component,
and so it is important to construct a stable SVD gradient [49]. Fortunately, differentiable
programming inherits the cost from its base algorithm, i.e. in our case from the M SVDs that
are performed when obtaining the circuit MPO at every iteration. As a result our algorithm has
the scaling O(Ni LMd6χ3), where N is the amount of gradient descent iterations. Importantly,
even though the cost scales linearly with system size L and circuit depth M , the amount of
parameters grows as O(LM), such that the amount of iterations required to reach a low-lying
minimum also grows, because local minima prolifrate with growing parameter count [51].

Using the global gradient ∇θ⃗ ε we then perform gradient descent. We use this global
optimization procedure instead of the local optimization from [40] because we found that
this yields significantly higher fidelity when an Adam-like adaptive learning rate is used [52].
Here it is crucial not to stop optimizing when the infidelity appears to have stagnated, since
we have often found that the optimization gets stuck in such a “local minimum” for some time
before it jumps out and converges to a lower minimum. This is possibly related to the “barren
plateau” problem that often occurs when performing gradient descent for quantum circuits
with a large parameter space, where the optimization reaches a set of circuit parameters for
which the majority of its gradients become very small such that the optimization (temporarily)
halts [53]. In Sec. B we review the Adam method and discuss the mentioned convergence
behavior in more detail.

1We compare the results for our circuits to Trotter circuits with comparable gate counts, and in all instances
of the involved Trotter circuits, the timesteps are several orders of magnitude larger than the stepsize used to
approximate the target unitary U .
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At small M the optimized circuits in a sense compress the targeted time evolution operator,
especially when its time-step is large, and therefore they are called “compressed circuits”. In
Sec. D we check if the lattice symmetries of the targeted unitary emerge in the gates of the
optimized circuits.

2.4 Stacking circuits

The general strategy we implement is the following: For some (short) timestep t, we find
an optimal circuit C(θ⃗ ) which best approximates the targeted time evolution operator Ut .
In principle, t is arbitrary, with the general logic that shorter t unitaries can be encoded by
shallower circuits (lower M). In practice, t will be also governed by the time grid, on which
observables should be evaluated, although this could be achieved also by working with two
or more different optimized circuits with different t, a case we do not further discuss in this
work. To propagate the wave function to longer times, which are multiples of t, we then use
the circuit

C(θ⃗ )n ≈ Un
t . (20)

It is interesting to investigate how well this stacked circuit performs for time evolution to longer
times and we will confront these results to benchmarks for the circuits discussed in Sec. 2.2
that result from traditional Trotter decompositions.

2.5 Quantities of interest

Having obtained the compressed circuits for short times, for which the relatively low entan-
glement allows for an accurate description with truncated MPOs, we then compute ε for long
times using the stacked circuits as approximation. If we now were to use the same MPO for-
malism that was used during the optimization, the growing of entanglement as we stack the
circuit multiple times results in either an unfeasible amount of required computational re-
sources or significant truncation errors. In particular, the stacked circuit represents a target
unitary at large times, which generally has large entanglement, such that an accurate MPO
representation requires a saturated bond dimension, i.e. the central tensors would require
bond dimension 2L to prevent significant truncation errors.

For a highly entangled MPS |ψi〉 this central bond dimension is instead 2L/2, which is
still managable for the system sizes considered in this work. Hence, to probe the true repre-
sentablity of the stacked circuit, without having to deal with artefacts of the tensor network
method, we use typicality [54]. Here the trace in Eq. 19 is replaced by the average over Nψ
Haar random states |ψi〉, i.e.

Tr
�

U†C
�

≈
1

Nψ

∑

i

〈ψi |U†C|ψi〉 . (21)

This allows us to calculate ε in an unbiased manner for the system sizes considered in this
work.

Besides using the infidelity ε as a measure of the performance of the circuits, we will also
use the circuits to compute out-of-time-ordered correlators (OTOCs) [55]. For spin-1/2 σz

operators, the OTOC Ci j between lattice sites i and j is defined with the Frobenius norm as

Ci j(t) =






�

σz
i (t),σ

z
j

�







2

F
, (22)

where σz
i (t) = C†σz

i C is the spin operator on site i evolved by the circuit. As for the infidelity,
it is important to use typicality instead of the truncated MPO formalism when calculating Ci j
for a circuit that is stacked many times.
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To calculate (22) we invoke the hermiticity of the spin operatorsσz , such that by expanding
the commutator in (22) we can write the OTOC as

Ci j(t) = 1−
1
4

Tr
�

σz
jσ

z
i (t)σ

z
jσ

z
i (t)
�

, (23)

which is readily calculated in the MPO formalism. Concretely, we take an identity MPO and put
a z-spin operator σz at site i, which is then evolved in the Heisenberg picture by the circuit C,
yielding a different MPO. Then we again take an identity MPO and put a z-spin operator on
site j, which we do not evolve. Then we calculate the trace in (23) via a full contraction of
four MPOs, which can be done efficiently.

3 Results

To benchmark the performance of the compression strategy outlined in Sec. 2, we systemat-
ically analyze the infidelity ε as a function of simulation time step t, total gate count Ng and
system size, in direct comparison to Trotter decompositions of different orders, and present
these results in Sec. 3.1. In Sec. 3.2 we extend this systematic analysis to out-of-time-ordered
correlators (OTOCs) (22). Furthermore, in Sec. 3.3 we probe the structure of the gates that
make up the optimized circuits, in an attempt to uncover the structures that allow these circuits
to outperform their Trotter counterparts.

3.1 Infidelity

As a first test of the circuit optimization algorithm outlined in Sec. 2, we compare the op-
timal infidelities of compressed circuits to those of comparable Trotter circuits. Concretely,
we consider time evolution operators of the chain and ladder Heisenberg Hamiltonians (2) at
three system sizes L = 8, 12,16 and two time-steps t = 1, 2. For each Hamiltonian, system
size and time-step, we determine the time evolution operator U with numerically negligible
discretization error for a certain bond dimension χ, and perform the global optimization as
outlined in Sec 2 to minimize the infidelity ε of the compressed circuit. For L = 8,12, 16 we
have taken χ = 256,150, 100 as a compromise between precision and practical efficiency. We
note that our main concern here is not to get a numerically exact MPO representation, but
rather a reasonably good approximation of the time evolution operator. We call this our target
time-evolution operator, which we want to approximate with our circuits.

As a first benchmark, we take for each of our parameter sets various circuit depths
M = 1, 2,4,8, 16, where M is the number of elementary layers of L − 1 gates, and consider ε
as a function of the corresponding gate count Ng (see Sec. A for details on how to obtain the
number of gates). We compare this with first-, second- and fourth-order Trotter circuits [45].

The results are shown in Fig. 4. The left pair of panel columns is for the chain and the
right pair is for the ladder. The first and third columns are for time-step t = 1 and the second
and fourth are for t = 2. The upper row is for system size L = 8, the middle row is for
L = 12, and the bottom row is for L = 16. Each panel contains the infidelities of the optimized
compressed circuits (CC) as a red line, and the infidelities of the Trotter circuits as blue lines.
The infidelities of the Trotter circuits are calculated for the same depths M as the compressed
circuit, where it should be remembered from Sec. 2.2 that in this case M is not necessarily
equal to the amount of brickwall layers in the Trotter circuit, but is instead equal to the amount
of Trotter steps that compose the circuit. The time-step of the Trotter step is chosen as t/M ,
such that M subsequent steps correspond to a total time-step t. The gate counts of the Trotter
circuits were calculated with the expressions in Sec. A, which take into account the number of
swap gates required to map the ladder geometry to a chain of qubits.
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Figure 4: The infidelity ε versus gate count Ng for the time evolution operator of the
Heisenberg model on a chain (left panels) and ladder (right panels) in log-log scale.
The first and third columns are for t = 1 while the second and fourth columns are
for t = 2. The top panels are for L = 8 and a time evolution MPO with χ = 256, the
middle panels are for L = 12 with χ = 150, and the bottom panels are for L = 16 with
χ = 100. The blue curves represent the Trotter circuits and the red curve represents
the compressed circuit (CC).

From Fig. 4 it becomes clear that per gate the compressed circuit outperforms the Trotter
circuits for all considered parameter sets. Moreover, it appears that for L = 8 the infidelity
of the compressed circuit roughly scales with Ng like the best Trotter order, but with a more
favorable prefactor, i.e. at intermediate gate counts it scales as second-order whereas at the
highest probed gate count it scales as fourth-order. We have found that the same picture
emerges when plotting ε versus the t at which the circuit was optimized, where M = 1 scales
like first-order Trotter, and by increasing M we approach the fourth-order scaling, passing
through the second-order scaling. We expect the same to hold for L = 12 and L = 16, if we
could reach a lower minimum, but here the optimization is more expensive.

Having considered the infidelities of the compressed circuits at the time-step for which they
were optimized, we now quantify how these infidelities grow when the circuits are stacked,
which we do for the same systems as in Fig. 4. To this end we select a compressed circuit that
was optimized at t = 2, and take for every Trotter order a circuit of depth M with a gate count
as close as possible to that of the compressed circuit, and choose its time-step to be t/M .

Concretely, for the chain we take a compressed circuit with M = 8, in which case we
have to take first-, second-, and fourth-order Trotter circuits with M = 8, 7, 1. Using the gate
count equations from Sec. A we find that for L = 8 the circuits have Ng = 56, 56,53,39, for
L = 12 they have Ng = 88, 88,83, 61, and for L = 16 they have Ng = 120, 120, 113,83.
For the ladder we take a compressed circuit with M = 16, such that we have to take
first-, second-, and fourth-order Trotter circuits with M = 4, 3, 1. The corresponding gate
counts are Ng = 112,100, 124,204 for L = 8, Ng = 176,164, 207, 341 for L = 12,

10



SciPost Phys. 14, 073 (2023)

10−6

10−2

L = 8

t = 1

10−4

10−1

t = 2

10−3

10−1

t = 1

10−2

100

t = 2

10−5

10−2

L = 12

10−4

10−1

10−3

10−1

10−2

10−1

100

101 103

10−5

10−2

L = 16

101 102 103

10−3

100

101 103

10−3

10−1

101 102 103
10−2

10−1

100

1st

2nd

4th

CC

ε̂

t̂

Chain Ladder

Figure 5: The time t̂ after which the stacked circuits exceed the infidelity threshold
ε̂, for the time evolution operator of the Heisenberg model on a chain (left panels)
and ladder (right panels) in log-log scale. The first and third columns are for circuits
optimized at t = 1 while the second and fourth columns are for t = 2, with the
circuits being stacked up to a thousand times. The circuits were chosen such that
they have similar gate counts, with M = 8, 8,7, 1 for the chain and M = 16,4, 3, 1
for the ladder, for the compressed circuit and first-, second- and fourth-order Trotter
circuits, respectively. The top panels are for L = 8 with χ = 256, the middle panels
are for L = 12 with χ = 150, and the bottom panels are for L = 16 with χ = 100. The
blue curves represent the Trotter circuits and the red curve represents the compressed
circuit (CC). The fourth-order Trotter circuit for the ladder is displayed as a dashed
line, since it contains roughly twice as many gates as the compressed circuit and is
therefore not necessarily indicative of their relative performance.

and Ng = 240,228, 290,478 for L = 16.
To quantify the quality of the compressed and Trotter circuits under stacking, we take

various infidelity thresholds ε̂ and stack the circuits up to a thousand times until they cross
this threshold at some time t̂, i.e. we determine ε( t̂) = ε̂. As mentioned in Sec. 2 we utilize
typicality (21) to calculate the stacked infidelities.

In Fig. 5 we plot ε̂ versus t̂ in log-log scale. The used color coding is identical to that
of Fig. 4, except that the fourth-order Trotter circuit for the ladder is now represented with a
dashed line, to emphasize that its infidelity relative to that of the compressed circuit is not nec-
essarily indicative of the relative performance, because it contains roughly twice as many gates
as the compressed circuit. From these plots it is clear that the advantage of the compressed
circuits from Fig. 4 is not lost when stacking it many times. In particular, in all considered
cases the compressed circuits are able to go to significantly larger times, at all infidelity thresh-
olds, than the Trotter counterparts. The only exception is for the ladder at t = 1, where the
fourth-order Trotter circuit performs better, but as mentioned this Trotter circuit has twice as
many gates as the compressed circuit and is therefore not a fair comparison.
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From the plots we extract the universal quadratic power-law ε̂∝ t̂2, for both the com-
pressed and the Trotter circuits. This error scaling is analogous to first-order Trotter decom-
position. The only exception is the ladder with L = 16 at t = 2, where the infidelity reaches
ε ≈ 1 rather quickly, such that it is situated in the rounding part that is also observed for the
t = 1 ladder curves at the high-infidelity end. The gap between the compressed circuits and
the best performing Trotter circuits is thus found to grow quadratically with t̂. Concretely, for
the chain with L = 12 and timestep t = 1, we find that for ε̂ = 10−3 the compressed circuit
has t̂ = 644 whereas the best Trotter circuit (i.e. of fourth-order) has t̂ = 94. For ε̂= 10−4 we
instead get t̂ = 201 for the compressed circuit and t̂ = 29 for the best Trotter circuit. For the
same system at timestep t = 2, we find that at ε̂ = 10−3 the compressed circuit has t̂ = 116
while the best Trotter circuit has t̂ = 14. At ε = 10−2 we have t̂ = 378 for the compressed
circuit and t̂ = 46 for the best Trotter circuit. From these values it is clear that for the chain
we can go roughly eight times further in time than the best Trotter circuit with similar gate
count. These values are for L = 12, and the same analysis at L = 8 reveals that here we can
go fourteen to twenty times as far, while for L = 16 we can go three to eight times as far, with
the lower bounds for t = 2 and the upper bounds for t = 1. These values emphasize that
the larger we choose ε̂, the larger the gap between t̂ of the compressed and Trotter circuits
becomes, which grows quadratically as stated above. This implies that the superiority of the
compressed circuits over Trotter circuits becomes especially apparent when we set a relatively
high error threshold, which for the compressed circuits is reached at much larger time than
for Trotter circuits which have comparable gate count.

Repeating this analysis for the ladder, again starting off with L = 12 and t = 1, we find at
ε̂= 10−2 that the compressed circuit has t̂ = 34 whereas the best Trotter circuit, excluding the
fourth-order Trotter with double the gate count, has t̂ = 14. With ε̂ = 10−1 the compressed
circuit has t̂ = 125 whereas the second-order Trotter circuit has t̂ = 57. For the same system
at t = 2 and with ε̂ = 10−1, we have t̂ = 40 for the compressed circuit and t̂ = 10 for the
second-order Trotter circuit. Hence for the ladder we can go roughly two to four times as far
than the best Trotter circuit with comparable gate count. Repeating this analysis for L = 8 we
find that we can go five to two times farther, and for L = 16 we can go three to two times
farther, again with the lower bounds for t = 1 and the upper bounds for t = 2.

Instead of examining the stacking behavior of compressed and Trotter circuits with com-
parable gate count, we now compare how circuits with comparable optimized infidelity stack,
to see whether similar fidelities are achievable with compressed circuits that have only a frac-
tion of the gates of Trotter circuits. To this end we consider the chain and ladder for a single
system size L = 12, with time-step t = 2 for the chain and t = 1 for the ladder, and we stack
the circuits up to t = 20. For simplicity we compare only with second-order Trotter circuits,
as we find analogous results for the other Trotter orders. For the chain we take compressed
circuits with M = 4, 8, in which case the second-order Trotter circuits with similar optimized
infidelity have M = 5, 16. Imporantly, while these compressed and Trotter circuits have similar
fidelity, the M = 5 Trotter circuit has 1.4 times the gate count of the M = 4 compressed circuit,
whereas the M = 16 Trotter circuit has 2.1 times the gate count of the M = 8 compressed cir-
cuit. For the ladder we take compressed circuits with M = 8,16, such that the corresponding
second-order Trotter circuits have M = 2,4, i.e. they contain 1.6 times as many gates.

The results are displayed in Fig. 6 in log-log scale, where in the left panel we show the
stacked infidelities for the chain and in the right panel for the ladder. The red dashed lines
are for the power laws ε ∝ tn with the best fitting power n. It is seen that the infidelity
increases similarly for all considered pairs of compressed and Trotter circuits, which like Fig. 5
emphasizes that the compression strategy expounded in Sec. 2 has no drawbacks at long
times, relative to the Trotter circuits. Moreover, the mentioned discrepancy in gate counts,
with in all cases the Trotter circuit having significantly more gates, makes the compressed
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Figure 6: The infidelity ε versus stacking time t for the time evolution operator of the
L = 12 Heisenberg model on a chain at t = 2 (left panels) and ladder at t = 1 (right
panels), for compressed and second-order circuits that are stacked twenty times. The
circuits were chosen such they have similar ε at the optimized t, with M = 4, 8
and M = 5,16 for compressed and second-order Trotter circuits on the chain, and
M = 8, 16 and M = 2,4 for the ladder. As a result the compressed circuits have
significantly lower gate count than the corresponding Trotter circuits. The red dashed
lines are for the power laws ε∝ tn with the best fitting power n.

circuits especially favorable for simulation on real quantum devices, where the error due to
gate imperfections and decoherence noise hampers time evolution.

3.2 Out-of-time-ordered correlators

Having studied the infidelity and its behavior under stacking in detail in Sec. 3.1, we now
use the compressed circuits to determine the behavior of a quantity that does not enter the
objective function (19), namely the OTOC (22).

In Fig. 7 we show the absolute Ci=2, j(t) errors, relative to the targeted time-evolution
operator, for compressed circuits which were optimized for L = 8, 12, 16 chains and ladders at
t = 2 and stacked up to ten times, along with the errors for Trotter circuits with gate counts
similar to these compressed circuits. For the chain we let j run over all sites, whereas for the
ladder it runs over all rungs. The upper three rows are for the chain while the lower three
rows are for the ladder. The first and fourth row are for L = 8, the second and fifth row are
for L = 12, and the third and sixth row are for L = 16. The left column is for the compressed
circuit while the second, third and fourth columns are for the first-, second- and fourth-order
Trotter circuits. As in Fig. 5 the depths are M = 8, 8, 7, 1 for the chain and M = 16,4, 3, 1
for the ladder, for the compressed circuit and first-, second- and fourth-order Trotter circuits,
respectively.

For the chain it is clear that the compressed circuit works better than the Trotter circuits
within the lightcone, whereas it is slightly worse than the second- and fourth-order Trotter
circuits at approximating the small values outside of the lightcone. For the ladder the com-
pressed circuit is better everywhere, even better than the fourth-order Trotter circuit which
has twice as many gates. Hence we draw the same conclusion as from Fig. 5: With a similar
amount of gates we are able to go farther in time with the compressed circuits than with the
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Figure 7: The absolute Ci=2, j(t) errors for the chain (top three rows) and ladder
(bottom three rows) for a compressed circuit optimized at t = 2 and stacked up to
ten times, along with the errors for Trotter circuits with similar gate counts. For the
chain j labels the sites and for the ladder it labels the rungs. The first and fourth row
are for L = 8 with χ = 256, the second and fifth row are for L = 12 with χ = 150,
and the third and sixth row are for L = 16 with χ = 100. The first column is for the
compressed circuit, the second, third and fourth columns are for the first-, second-
and fourth-order Trotter circuits. To have roughly equal gate counts, the used depths
are M = 8,8, 7,1 for the chain and M = 16, 4, 3, 1 for the ladder, for the compressed
circuit and first-, second- and fourth-order Trotter circuits, respectively.

Trotter circuits, before reaching some error threshold, even though we do not optimize based
on OTOCs.

In Sec. C we show the OTOC values corresponding to the errors from Fig. 7, for compressed
circuits and the targeted time-evolution operators. There we also show how the relative error
of Ci=2, j=4(t) propagates with stacking, for compressed and Trotter circuits that have similar
optimized fidelity, indicating that we can maintain similar fidelity with compressed circuits
that have a fraction of the amount of gates of the Trotter circuits.
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the circuit across the horizontal dashed line, and want to use the lowest M∗ layers
to calculate an infidelity, we have to take into account the gauge freedom that is
encoded by inserting a pair of conjugate one-qubit unitaries u†

i ui = I at each qubit,
and absorbing one unitary upwards and the other downwards.

3.3 Analysis of the compressed circuit

In the previous Sections 3.1 and 3.2 we have seen that the compressed circuit outperforms
the Trotter circuits. Here we investigate how this is achieved, by probing the structure of the
layers and gates that make up the compressed and Trotter circuits.

Starting off, we take a compressed circuit and Trotter circuits with comparable gate counts,
and consider the infidelity between a subset of layers M∗ < M (counting from the bottom
layer) and the time evolution operator at a time t∗ < t that is smaller than the time-step t at
which the compressed circuit was optimized. Crucially, we must take into account the gauge
freedom that exists between layers, where we are able to insert conjugate layers of one-qubit
unitaries, and absorb one layer into the subset we are considering and the other layer into its
complement. This process is illustrated in Fig. 8. Hence when calculating a subset infidelity for
the compressed circuit, we add a layer of one-qubit unitaries between the subset and the time
evolution operator at t∗, and minimize the infidelity with respect to these one-qubit unitaries.
This way we account for the gauge freedom.

In Fig. 9 we show the results for the chain with L = 8 at t = 1, for a compressed circuit
with M = 8 and Trotter circuits with M = 8, 7,1 for first-, second- and fourth-order, which
have gate counts close to that of the compressed circuit. Here we define a Trotter circuit with
M∗ layers as having M∗ brickwall layers, and the largest shown M∗ is the full circuit, which
e.g. for the second-order Trotter circuit involves adding half a brickwall layer to its largest
subset. For the compressed circuit M∗ = 8 corresponds to the full circuit. The dashed lines
mark the times t∗ = tM∗/8.

From Fig. 9 it is clear that at t = 1 there is significant overlap of the subsets with a time
evolution operator at t∗ < t for both the compressed and Trotter circuits. However, in contrast
to the first- and second-order Trotter circuits, where the infidelity dips are equidistant, and
where for the first-order Trotter circuit the dip depth is decreasing with the number of stacked
layers while for the second-order Trotter circuit it is constant, the dips of the compressed circuit
are instead roughly symmetric and are smallest around t∗ ≈ t/2. A closer look reveals that
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Figure 9: The infidelity between a subset of layers M∗ < M , counting from the bottom
layer, and the targeted time evolution operator at time t∗ < t, where t denotes
the time-step at which the compressed circuit was optimized. The plots are for a
Heisenberg chain with L = 8 at t = 1. In the top left panel we show the results for a
compressed circuit with M = 8, in the top right for a first-order Trotter circuit with
M = 8, in the bottom left for a second-order Trotter circuit with M = 7, and in the
bottom right for a fourth-order Trotter circuit with M = 1. These depths were chosen
such that the circuits have similar gate count. The curve with M∗ = M corresponds
to the full circuit. The dashed lines mark times tM∗/8.

the infidelity at this point is roughly 10−2, which is more than one order of magnitude larger
than for the first- and second-order Trotter circuit at similar t∗. This is even more remarkable
when taking the final infidelity into account, which is ε= 1.8 ·10−9 for the compressed circuit
and therefore at least three orders of magnitudes better than the first-, second- and fourth-
order Trotter circuits, which have ε = 8.2 · 10−4, 1.2 · 10−6, 2.1 · 10−6. This indicates that the
compressed circuit does not follow the target “trajectory” given by the unitary time evolution,
but slightly deviates from it. However, it becomes “refocused” at t∗ = t, which we sketch in
Fig. 10. It is an interesting question for future research to understand the alternative trajectory,
which might be beneficial for an optimal discretization of time evolution beyond the Trotter
decomposition. In Sec. C we show that the refocussing also occurs for the OTOCs.

We note that we did not find these symmetric dips for all our compressed circuits, especially
for larger t and the ladder geometry. It remains an open question whether this is an artefact
of the convergence of the optimization to a non-global minimum.

As a further comparison between compressed and Trotter circuits, we calculate the oper-
ator entanglement entropy (opEE) of their gates [47, 56]. Concretely, we take an optimized
compressed circuit C and decompose each two-qubit gate Ui j ∈ C using a singular value de-
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Figure 10: A sketch of the “refocussing” mechanism that potentially explains the
structures observed in Fig. 9. Here the targeted time evolution U(t) is shown in
black, the Trotter evolution U t r(t) is shown in blue, and the compressed evolution
U c(t) is shown in red. While U t r(t) follows the target trajectory quite closely, U c(t)
instead becomes “refocussed” at multiples of the optimization timestep t.
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Figure 11: Stacked histograms for the opEE of the gates of a compressed circuit with
depth M = 8, optimized at t = 2 for a L = 16 chain (left panels) and ladder (right
panels). The colors denote the contents of each layer, with the lightest color for the
bottom layer and the darkest for the top layer. The red vertical lines denote the values
for the gates in a M = 8 first-order Trotter circuit, with the two lines in the ladder
plots corresponding to the evolution and SWAP gates.

composition into

Ui j =
4
∑

l=1

sl v
l
i ⊗ v l

j , (24)

where v l
i and v l

j are two sets of four one-qubit operators, acting on qubit i and j respectively,
and where the four singular values sl encode the opEE of Ui j as

opEE= −
∑

l

s2
l ln(s2

l ) . (25)

In Fig. 11 we display the opEE of all gates in a M = 8 compressed circuit for the chain (left
panel) and ladder (right panel) for L = 16 at t = 2. The histograms are stacked, with each
color denoting the content of a layer, where the lightest color represents the bottom layer and
the darkest color the top layer. The red vertical lines mark the values for the M = 8 first-order
Trotter circuit, with the two lines in the ladder plots corresponding to the evolution and SWAP
gates. These histograms show that the gates of the compressed circuit are more hetergenous
compared to those of the Trotter circuits, since they have a relatively large spread in opEE
instead of one or two values. Moreover, for the ladder it is seen that a several gates in the
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Figure 12: The distribution of the λ1 parameter which enters the two-qubit unitary
parameterization that was used in this work, shown for the chain (left panel) and
ladder (right panel) with L = 8 at t = 1. The parameter count Np for a compressed
circuit with M = 8 is shown as a stacked histogram, with the lightest color corre-
sponding to the bottom layer and the darkest color to the top layer. The first-order
Trotter evolution gate value λevo

1 = t/M and the SWAP gate value λSWAP
1 = −π are

shown as dashed red lines. The other two-qubit parameters λ2 and λ3 are distributed
similarly. Note the different scales of the x-axes.

compressed circuit assume an opEE that is near to that of the SWAP gate, which we view as
an indication that the action of the SWAP gate is baked into our optimized circuits.

Finally we consider the distribution of the parameter λ1 across the optimized two-qubit
unitaries, which are parameterized as in (14). We found that λ2 and λ3 are distributed sim-
ilarly. In Fig. 12 we show histograms for the parameter counts Np of λ1 for the chain (left
panel) and ladder (right panel) with L = 8 at t = 1, for a compressed circuit with M = 8. Note
here the different scales of the x-axes. The histograms are again stacked, with the lightest color
corresponding to the bottom layer and the darkest color to the top layer. The red dashed lines
mark the values of the gates in the M = 8 first-order Trotter circuit, for which λSWAP

1 = −π and
λevo

1 = t/M , both having no one-qubit dressing (15). As in Fig. 11, we see that the gates of
the compressed circuit have a larger spread than the gates of the Trotter circuit, which instead
assume one or two values. Also, for the ladder we again observe an accumulation of gates
near the SWAP value.

The gates appearing in the optimized circuits appear to encode more structure than gates
from Trotter circuits and are generally speaking encoding a larger change of the wave function
per gate compared to the case of Trotter circuits. This can be seen best in the limit of very small
Trotter time steps, in which each appearing gate (except SWAP) is very close to identity, while
in the opposite limit which we optimize for, each gate needs to be sufficiently different from
identity in order to represent the same time evolution operator.

4 Conclusion and Outlook

In this work we have presented an approach which reduces the resource cost of digital quan-
tum simulation compared to standard Trotter decompositions by globally optimizing a simple
parameterized brickwall circuit in a way that is scalable to large systems. Crucially, the perfor-
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mance per gate is better even when the compressed circuit does not respect the connectivity
of the simulated lattice, potentially allowing for high fidelity simulation of systems with a
connectivity that is larger than that of the used quantum processor. To illustrate this we have
compared the infidelity of the compressed and Trotter circuits with the targeted time evolution
operators of Heisenberg chains and ladders, as well as the ability to reproduce their OTOCs.

We have shown that we can achieve similar accuracy of the time evolution operator with
up to one order of magnitude less gates, depending on the desired accuracy and system. More-
over, we checked that this advantage persists when stacking the circuits many times, a central
ingredient to simulating a quantum system over long times. This enables high fidelity propa-
gation to times which are currently elusive with conventional Trotter decomposition methods.

Furthermore, we analyzed the structure of the compressed circuits. In the case of the
chain, we observed a “refocussing” mechanism, which suppresses the infidelity at multiples of
the optimized time step, while the evolution inside the optimized circuit appears to follow a
trajectory which is further away from the targeted time evolution operator. It is an interesting
question for further research to understand this trajectory and relate it also to recent studies
of Trotter decompositions and its breakdown for large time steps [34,35].

Our results open the door for many further directions. As a next step, one can for example
take symmetries into account to further reduce the number of parameters. This might be
especially favorable when exploiting translation symmetries. Furthermore, one can optimize
the circuits with other cost functions than the fidelity, as was also done for example in [37].
Promising directions are using local observables or density matrices. While such an approach
might simplify the convergence of the optimization, it is still an open question to what extent
the accurate simulation of observables or other general quantities would be recovered.

We end by stressing that in this work we have used the simplest possible noise model, by
assuming that each applied gate introduces the same amount of noise to the system and that
therefore a minimization of the gate count reduces the overall noise. A refinement of this noise
model will be the subject of future research.
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A Gate count equations

Here we state the equations for the NN two-qubit gate counts Ng of the first-, second- and
fourth-order Trotter circuits of depth M , which are used in Sec. 3. These are denoted by
N1st

gc/l(M), N2nd
gc/l(M) and N4th

gc/l(M), respectively, where c corresponds to the chain and l to the
triangular ladder. In deriving these equations we made maximal use of the ability to combine
gates in subsequent Trotter steps. The compressed circuits have gate count N1st

gc .
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For the chain the equations are

N1st
gc (M) = M(L − 1) , (A.1)

N2nd
gc (M) = M(L − 1) +

�

L
2

�

, (A.2)

N4th
gc (M) = 5M(L − 1) +

�

L
2

�

. (A.3)

For the ladder, in which case we have to take into account the SWAP gates, the corresponding
equations are

N1st
gl (M) = M (4L − 7) , (A.4)

N2nd
gl (M) = 2M
�

N1st
gl (1) + 1
�

− (3M − 1)
�

L
2

�

, (A.5)

N4th
gl (M) = 5MN2nd

gl (1)− (5M − 1)
�

L
2

�

. (A.6)

B Convergence of the optimization

In order to find the optimal compressed circuit using the gradient descent method outlined in
Sec. 2.3, it is important to scan the hyperparameter space of the used optimizer. The reason is
that there is no single set of hyperparameters which finds the best solution for all optimization
problems. We find the best convergence by using the vanilla Adam optimizer [52], which is
presented in Algorithm 1.

We scan the hyperparameter space (λ,δ,β1,β2) for the most favorable convergence prop-
erties. As mentioned in Sec. 2.3, it is crucial to continue iterating the algorithm when we
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Figure 13: The infidelity ε as a function of the iteration step i for an Adam opti-
mizer with learning-rate τ = 0.01, regularization δ = 10−4, and various decay rates
(β1,β2) with β1,β2 ∈ {0.9,0.99, 0.999}. The optimization is performed for a size
L = 8 ladder at time t = 1 with circuit depth M = 8. The lowest infidelity is reached
with (0.999,0.999), but crucially this requires the optimizer to spend time in local
minima without getting stopped by a convergence criterion when the infidelity has
stagnated.
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Algorithm 1 Vanilla Adam [52]. This gradient-descent optimizer updates the circuit parame-
ters θ⃗ to minimize the infidelity ε(θ⃗ ), by taking into account exponentially decaying running
averages of the first moment m and second moment v of the infidelity gradient g for each
parameter separately. Instead of choosing the parameter updates to be proportional to g, as
in vanilla gradient descent, here it is proportional to a memory of the previous gradients m.
This results in a relatively stable minimization and to some extent prevents getting stuck in
local minima. Moreover, since the optimization algorithm is first order, the magnitude of the
parameter update is proportional to its uncertainty in decreasing the infidelity. For this rea-
son, large updates are undesirable, whereas tiny updates are also undesirable since they halt
the minimization and promote getting stuck in local minima. With this in mind, the update
magnitude is forced to be desirable, by choosing it to be proportional to m/

p
v.

Hyperparameters:
λ: Raw learning-rate
β1: First moment decay strength
β2: Second moment decay strength
δ: Regularization
Niters: Amount of iterations

Initial conditions:
m0← 0 (First moment initially zero)
v0← 0 (Second moment initially zero)

for ( i = 0; i < Niters; i = i+1 ) do
gi ←∇θ⃗i−1

ε(θ⃗i−1) (Calculate gradient at current parameters)
mi ← β1mi−1 + (1− β1)gi (Extend running average of first moment)
m∗i ← mi/(1− β i

1) (Bias correction)
vi ← β2vi−1 + (1− β2)g2

i (Extend running average of second moment)
v∗i ← vi/(1− β i

2) (Bias correction)
θ⃗i ← θ⃗i−1 −λm∗i /(

Æ

v∗i +δ) (Update parameters)
end for
return θ⃗i (Final circuit parameters)

reach a plateau in the fidelity. This is illustrated in Fig. 13, where we display the gradient de-
scent of ε for a circuit with M = 8 layers on the time evolution operator of an L = 8 ladder at
t = 1, and consider various (β1,β2) with learning-rate τ= 0.01 and regularization δ = 10−4.
Here the largest fidelity is obtained with β1 = β2 = 0.999, but we have to overcome multiple
plateaus, which would have been spoiled by using a convergence criterion.

C OTOC details

First we display the OTOC values of the stacked compressed circuits and targeted time-
evolution operators that were used to make Fig. 7. In the left two panel columns of Fig. 14 we
show the OTOCs Ci=2, j(t) for the chain and in the right two columns for the ladder. The first
and third columns are for the compressed circuits, whereas the second and fourth columns are
for the target unitaries. As already became apparent from Fig. 7, the agreement is excellent
for all considered stacking times t.

Now we consider the analog of Fig. 6 for the relative error of the OTOC Ci=2, j=4. In
particular, we consider the chain and ladder with L = 12 and take a couple compressed circuits
for which the infidelities were optimized at t = 2 for the chain and t = 1 for the ladder, which
we then stack up to t = 20. As in Fig. 6 we take compressed circuits with M = 4,8 for the
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Figure 14: The OTOCs Ci=2, j(t) as a function of site or rung j and stacking time t
for the chain (left columns) and the ladder (right columns), for compressed circuits
optimized at t = 2 and stacked up to ten times (first and third columns) and the
corresponding target values (second and fourth columns). For the chain we take
M = 8 and for the ladder M = 16. The top row is for L = 8 with χ = 256, the middle
row is for L = 12 with χ = 150, and the bottom row is for L = 16 with χ = 100.

chain and M = 8,16 for the ladder, and we compare these with second-order Trotter circuits
that have similar fidelity at the optimized time step, corresponding to M = 5,16 for the chain
and M = 2, 4 for the ladder. In Fig. 15 we show the results, with the left panel for the chain
and the right panel for the ladder. The implications are the same as those derived from Fig. 6:
With a smaller amount of gates we essentially get the same performance, in this case even for
a quantity that does not appear in the objective function (19).

Finally, we check whether the refocussing that was observed for the infidelity ε in Fig. 9 also
emerges for the OTOCs, which contrary to ε does not enter the cost function of the optimization
scheme. In Fig. 16 we show the relative error of Ci=5, j=5(t∗) between that of M∗ layers and
that of the target unitary at time t∗. Before using the M∗ layers to calculate the OTOC at t∗, we
minimize its infidelity with respect to the target unitary at t∗, taking into account the gauge
invariance. As in Fig. 9, we perform the calculations for the Heisenberg chain with L = 8 and
a M = 8 circuit optimized at t = 1, with the results shown in Fig. 16. We see that a similar
refocussing takes place, with the minima for M∗ < M being elevated with respect to that at
M∗ = M and with unequal spacing in time.

D Emergence of lattice symmetries

The brickwall circuit ansatz (18) used in this work has the most general form, consisting of
arbitrary two-body unitaries and not taking into account any symmetry of the targeted time-
evolution operator, i.e. in our case those corresponding to the Hamiltonians (2). To restrict
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Figure 15: The relative error of the OTOC Ci=2, j=4(t) versus stacking time t for the
chain (left panel) and ladder (right panel) with L = 12, for circuits optimized at
t = 2 for the chain and t = 1 for the ladder, and stacked up to time t = 20. For the
chain we consider M = 4, 8 and for the ladder M = 8, 16. For each M we choose a
second-order Trotter circuit with similar fidelity at the optimized t, i.e. M = 5, 16
for the chain and M = 2, 4 for the ladder. As a result the compressed circuits have
significantly less gates than the corresponding Trotter circuits.
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Figure 16: The relative error of the OTOC Ci=5, j=5(t∗) between that of a subset M∗ of
layers and that of the target unitary at time t∗, for the Heisenberg chain at L = 8 and
a depth M = 8 circuit optimized at time t = 1. The curve with M∗ = M corresponds
to the full circuit and the dashed lines mark times tM∗/8.

the ansatz space it could be useful to incorporate such symmetries into the circuit at the gate
level.

Take for example the Heisenberg chain in (2), which possesses lattice inversion symmetry,
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Figure 17: The average gate-wise infidelity δ of every gate with its mirrored counter-
part (top panels), flipped across the middle bond, for all gates in compressed circuits
which were optimized to approximate the lattice inversion symmetric Heisenberg
chain time-evolution operator. For comparison, we also show the infidelity ε of the
circuit as a whole with its mirrored counterpart (bottom panels). These quantities
probe to which extent the inversion symmetry of the targeted unitary emerges in the
compressed circuit. The infidelities are shown as a function of the circuit depth M ,
for times t = 1 and t = 2. The left panels are for system size L = 8, the middle
panels are for L = 12, and the right panels are for L = 16.

being invariant under a flip of the lattice across the middle bond for even L. To incorporate
this into the ansatz we let the gate acting on the bond between sites i and i+1 also act on the
mirrored bond between L−2− i and L−1− i, albeit flipped across the time axis. Since this gate
and its flipped counterpart should be equal for the inversion symmetry to be manifest, the gate
parameterization (13) implies that the one-qubit unitary ui should be equal to u j , and that u′i
should be equal to u′j , with the two-qubit unitary vi j being flip-symmetric by construction.

Since we did not incorporate this inversion symmetry into the circuits used for our simu-
lations, it is an interesting question whether the chosen circuit ansatz in combination with the
optimization procedure leads to its emergence. To probe this, we take an optimized circuit and
for each of its gates we calculate the infidelity with its mirrored counterpart, and then average
over all gates to get the average gate infidelity δ. As for the subset infidelity from Fig. 9, here
it is crucial to take into account the gauge symmetry. We also calculate the infidelity ε of the
circuit as a whole with its mirrored counterpart, to determine if it is reasonable to expect the
symmetry to emerge on the gate level. If this overall infidelity is high, it is unlikely that it is
low at the gate level. The results are shown in Fig. 17.
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Tensor network states are expected to be good representations of a large class of interesting quantum
many-body wave functions. In higher dimensions, their utility is however severely limited by the difficulty of
contracting the tensor network, an operation needed to calculate quantum expectation values. Here we introduce
a method for the time evolution of three-dimensional isometric tensor networks which respects the isometric
structure and therefore renders contraction simple through a special canonical form. Our method involves a
tetrahedral site splitting which allows one to move the orthogonality center of an embedded tree tensor network
in a simple cubic lattice to any position. Using imaginary time evolution to find an isometric tensor network
representation of the ground state of the three-dimensional transverse field Ising model across the entire phase
diagram, we perform a systematic benchmark study of this method in comparison with exact Lanczos and
quantum Monte Carlo results. We show that the obtained energy matches the exact ground-state result accurately
deep in the ferromagnetic and polarized phases, while the regime close to the critical point requires larger
bond dimensions. This behavior is in close analogy with the two-dimensional case, which we also discuss for
comparison.

DOI: 10.1103/PhysRevResearch.3.023236

I. INTRODUCTION

The Hilbert space dimension of quantum many-body sys-
tems grows exponentially with the number of constituents,
making the direct handling of many-body wave functions
impractical for large systems. Tensor networks are an attempt
to tame the many-body wave function, by expressing it in
terms of local tensors, which are contracted according to
the network structure. This reduces the complexity from an
exponential to a polynomial number of variables. While in
principle any wave function can be expressed as a tensor net-
work, some particularly entangled states require exponentially
large tensors. Fortunately, the manifold of wave functions ex-
pressible with small tensor networks includes wave functions
with area law entanglement, which are expected to be relevant
for the description of ground states of many local quantum
many-body systems [1–3].

Tensor network states are particularly successful in one
dimension, where they are known as “matrix-product states”
(MPS) [4], which have become state-of-the-art machinery
for the classical simulation of one-dimensional (1D) many-
body systems. This popularity rests primarily on the existence
of powerful algorithms to variationally optimize the en-
ergy of the state [e.g., the density matrix renormalization
group (DMRG) [5]] and on the ability to compute ma-
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trix elements of local operators 〈φ |Ô|ψ〉 both exactly and
efficiently. In particular the second property does not gen-
eralize to the higher-dimensional variants of MPS known
as “projected-entangled pair states” (PEPS) [6]. It turns out
that the exact calculation of a local correlator in an arbi-
trary PEPS state 〈PEPS |Ô|PEPS〉—requiring the contraction
of a higher-dimensional network—is generally inefficient for
generic finite PEPS with open boundary conditions (OBC)
already in two dimensions [6–10]. While PEPS are readily
formulated in three dimensions (see Fig. 1), currently no ef-
ficient contraction method is known. So even though PEPS
are efficient representations of area-law entangled quantum
many-body wave functions, it is often difficult to extract use-
ful information from them.

The central problem for the generalization of powerful 1D
methods to higher dimensions is caused by the fact that cutting
a bond in a higher-dimensional PEPS does not separate the
network into two disconnected pieces, in contrast to 1D MPS.
In MPS methods, the separation of the network into unique
“left” and “right” parts by cutting any bond is exploited by
using an orthonormal basis to represent the left/right states,
and one can then decimate the basis to the dominant compo-
nents by truncating to the largest singular values in an optimal
way [11]. This property is the foundation of MPS evolution
algorithms [12]. The absence of such separability in higher-
dimensional PEPS diminishes the effectiveness of purely local
evolution algorithms, where in the case of a nearest-neighbor
interacting system the tensor network is optimized by iter-
ating over the bonds and applying a two-body gate to each
bond followed by a truncation of this bond according to
the standard time-evolving block decimation (TEBD) [4,11].
Instead, optimal truncation and hence optimal evolution re-
quire each gate to be accompanied by a contraction of the
full network (dubbed “full update”), which is inefficient as it

2643-1564/2021/3(2)/023236(12) 023236-1 Published by the American Physical Society
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FIG. 1. A generic 3D PEPS ansatz for the cubic lattice, where the
tensors T σi

iαβγ δκλ are represented by spheres. The blue legs denote the
physical degrees of freedom σi and the gray legs denote the virtual
degrees of freedom. The connections depict contractions between the
virtual legs of neighboring tensors.

generally scales exponentially with network size when per-
formed exactly [8].

One way around the inefficiency of full contraction is to
instead perform the contraction approximately [6,8–10], sac-
rificing precision for speed. Recently there appeared multiple
works [13–16] which suggest an attractive alternative: to con-
struct finite PEPS in an explicit canonical form in which it
can be contracted both exactly and efficiently in a way that
local truncation again becomes optimal just like for MPS,
thereby circumventing the mentioned problems that occur
when dealing with generic PEPS. This does induce a loss
of generality, restricting its subspace in Hilbert space to a
subspace of generic PEPS, thereby reducing the expressiv-
ity of the network [17]. While the effect of this restriction
is not yet clear, it becomes irrelevant in the limit of large
bond dimensions and therefore seems at least in principle
controllable.

In [13] a class of finite two-dimensional (2D) PEPS called
“isometric tensor network states” (isoTNS) was introduced
for which 〈PEPS | PEPS〉 reduces to a canonical MPS norm,
and which can be time evolved using an efficient local evo-
lution algorithm called TEBD2. Here we will generalize the
isoTNS ansatz to three dimensions and develop an extension
of TEBD2 which we call TEBD3. This upgrade to a higher
spatial dimension is an important step in developing efficient
techniques to simulate generic three-dimensional (3D) quan-
tum many-body systems, especially for cases which are not
accessible to quantum Monte Carlo methods due to a sign
problem. This importance is stressed by the limited number
of existing finite 3D PEPS algorithms [18,19] and generic
simulation methods for 3D quantum many-body systems in
general [20–22].

II. METHOD

A generic finite 3D PEPS ansatz for a 3D many-body spin-
1/2 system can be written in the local basis σi = ±1 as

|PEPS〉 =
∑

σ1...σN

C
(
T σ1

1 . . . T σN
N

)|σ1 . . . σN 〉, (1)

where T σi
i represents the set of tensors which contain the

complex-valued variational parameters and which are spa-
tially arranged like the spins σi. Here C indicates that all
tensors are contracted, giving complex scalar coefficients,
which is usually done by choosing the amount of virtual de-
grees of freedom per T σi

i equal to the lattice connectivity and
then contracting nearest neighbors. In Fig. 1 this is illustrated
for a cubic lattice with open boundary conditions, where the
pairs of virtual degrees of freedom are represented by the
gray bonds and the physical (spin) degrees of freedom are
represented by the blue free legs, i.e., in a particular basis we
get the tensors T σi

iαβγ δκλ.
In order to calculate 〈PEPS | PEPS〉 we would contract this

tensor network with the physical legs of its conjugate, which
we would then have to contract down to a scalar.

A. General properties of isoTNS

The goal of this paper is to design a type of 3D tensor
network that allows for the full network contraction to be
done exactly and efficiently. To this end we impose an ad-
ditional structure on the PEPS shown in Fig. 1, such that
〈PEPS | PEPS〉 = 〈MPS | MPS〉 becomes manifest. In particu-
lar, we choose the majority of the Ti to be isometric, meaning
that these Ti reduce to identities when contracted with their
conjugate over a subset of the legs, e.g.,

∑

iαβγ δκ

T †αβγ δκλ
σi

T αβγ δκη
σi

= 1λη (2)

and
∑

iαβγ δ

T †αβγ δκλ
σi

T αβγ δνη
σi

= 1κν1λη. (3)

If T is unitary instead of isometric, these constraints also hold
under T → T †, which in the case of an isometry instead gives
a projector.

In the language of tensor network diagrammatics we can
represent these constraints by decorating the legs with arrows
[4,13], where incoming arrows represent contracted indices in
the isometry constraint and where outgoing arrows represent
free indices. In Fig. 2 we illustrate this notation for tensors
with four virtual legs. Here the diagrams in the upper panels
encode the isometry constraints depicted in the lower panels.
Specifically, Fig. 2(a) corresponds to Eq. (2) and Fig. 2(b)
corresponds to Eq. (3). Note that for convenience we choose
a single arrow direction after contracting the legs. In the same
spirit we will omit the arrows on physical legs from here on,
since we will always choose these to be incoming.

Using these isometric tensors we can construct tensor net-
works that identically reduce to a single pair of tensors (the
“orthogonality center”) upon contraction with its conjugate,
which are called isoTNS [13]. In Fig. 3 we show a few snap-
shots of this reduction for a 2D isoTNS on a 3 × 3 square
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= ===

FIG. 2. The isometry constraints are encoded by decorating the
tensor legs with arrows (top row). Here panel (a) corresponds to
Eq. (2) and panel (b) corresponds to Eq. (3), where in the bottom
figures the tensor shown in the top panel is contracted with its
conjugate to yield identities.

lattice. Before employing the isometry constraints we have
the network depicted in Fig. 3(a). Here we allow the red and
gray legs to have distinct bond dimensions χ and D, which
is motivated by the observation that for the chosen pattern of
arrows we can first reduce the network to a canonicalized MPS
amplitude, as shown in Fig. 3(b). Note that the gray legs which
stem from the reduction effectively enlarge the local Hilbert
space of the MPS.

The distinction between red MPS bonds and gray non-MPS
bonds is an important aspect of the isoTNS ansatz, as it will al-
low us to increase the accuracy of correlators while increasing
the bond dimension on only a small part of the tensor network.
In Sec. III C we will see that in some situations the accuracy
is indeed greatly increased when we increase χ while keeping
D constant. This is especially favorable because we will see in
Sec. II B 4 that the computational cost of the time-evolution
algorithm scales significantly more favorably in χ than in D.

Due to the remaining isometry structure we can further
reduce the MPS amplitude down to a single site, as shown
in Fig. 3(c). This final site, which is called the orthogonality
center and which is colored red in Fig. 3, therefore fully
encodes the norm, just like the orthogonality center of MPS
in one dimension [4]. It also encodes the one-body correlators
of that site, but if we want to calculate its two-body correlator
with another site we can already no longer reduce the network
to the orthogonality center. In terms of the arrow language this
reduction requires that the arrows flow towards the MPS and
within the MPS towards the orthogonality center, which can
be characterized as having only incoming arrows.

For example, say we want to calculate a local correlator
between the two nearest neighbors of the center in Fig. 3(b).
In this case the MPS reduction that yields Fig. 3(c) from
Fig. 3(b) would be halted at the operators, since there we
can no longer utilize the isometry relations from Fig. 2. Con-
sequently we also cannot utilize the isometric tensors that
lie between the operators, meaning that we are left with a
MPS correlator instead of a single-site correlator, the ac-
curacy of which is controlled by χ . This is illustrated for
〈isoTNS |O1O2|isoTNS〉 in Fig. 4.

Clearly the calculation of a MPS correlator is more costly
than the single-site correlator, but crucially it still scales poly-
nomially in its bond dimension and size [4]. When we instead

consider local correlators with one or more operators located
outside of the MPS, the isometry reductions yield a genuine
2D network, which would have to be contracted in order to
get the correlator. As a result the correlator can no longer be
computed efficiently, illustrating the importance of being able
to move the embedded MPS through the network.

It should be noted that by calculating correlators as MPS
correlators we do reduce the formal expressibility of the
ansatz, as compared to generic PEPS, since it is known that
MPS with finite χ can only encode exponentially decaying
correlations [4] whereas generic PEPS can also encode alge-
braic correlations [23]. This means that the isoTNS ansatz
can only encode exponential correlations. Nonetheless, for
finite systems the bond dimension can always be chosen large
enough to encode algebraic correlations which are cut off by
the system size.

Before discussing the time-evolution algorithm, which we
will do directly for 3D isoTNS, we consider how Fig. 3 gen-
eralizes to three dimensions. First we note that the suitable
embedding even for two dimensions is actually a tree tensor
network (TTN) with the geometry of a star [24,25], which
turns into a MPS when the center occupies a corner as in
Fig. 3. When it instead occupies the bulk there emerge four
MPS strands from the center, which becomes six for a 3D
cubic lattice. As long as there are no loops we can put the TTN
in canonical form. The principles that underlie the isometry
reduction generalize directly to three dimensions, and in Fig. 5
we show the 3D analog of Fig. 3.

B. Evolving 3D isoTNS

We will now explain how the TTN is moved through the
3D isoTNS during its trotterized time evolution, specializ-
ing to nearest-neighbor interacting Hamiltonians. In order to
take advantage of the isoTNS representation we always ap-
ply evolution gates when all sites occupy the TTN, with the
orthogonality center at one of the sites. We will see that this
gives rise to a threefold-nested TEBD, which we call TEBD3

in analogy to TEBD2 for 2D isoTNS.
The evolution takes place columnwise, starting with

the middle slice in Fig. 5(a) that is shown separately in
Fig. 6(a). To this end we first trotterize the evolution operator
exp(−dτH ), which is for an imaginary time step of size dτ ,
in terms of columns cx, cy, and cz. At first order in dτ we can
trotterize as

e−dτH ≈
∏

cx

e−dτHcx

∏

cy

e−dτHcy

∏

cz

e−dτHcz , (4)

where the error is O(dτ 2) and stems from the noncommuta-
tivity of columns that intersect. With only a bit more effort we
can trotterize at second order:

e−dτH ≈
∏

cx

e− dτ
2 Hcx

∏

cy

e− dτ
2 Hcy

∏

cz

e−dτHcz

∏

cy

e− dτ
2 Hcy

∏

cx

e− dτ
2 Hcx , (5)

which has error O(dτ 3). Here subsequent cx terms can
be combined when performing multiple time steps. In
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FIG. 3. Multiple stages of the reduction of 〈isoTNS | isoTNS〉 to a contraction of just two tensors, illustrated for a 2D isoTNS on a 3 × 3
square lattice. Panel (a) shows the amplitude before employing the isometry constraints, where the gray bonds have dimension D, the red bonds
have dimension χ , and the blue bonds have dimension d . Panel (b) shows the canonical MPS that is obtained after utilizing a large part of the
isometry structure. Panel (c) shows the final pair of contracted tensors that remains after fully utilizing the isometry structure.

Appendix B we investigate the interplay between the trotteri-
zation error and the various truncation errors.

Since we will be dealing exclusively with nearest-neighbor
interacting systems, each column is further trotterized in terms
of two-body gates. At first order this gives us

e−dτHcx =
∏

bi

e−dτhbi + O(dτ 2), (6)

where bi labels the bonds in the column and hbi ∈ C4×4 repre-
sents the Hamiltonian on bi. At second order we get

e−dτHcx =
L∏

i=1

e− dτ
2 hbi

1∏

i=L

e− dτ
2 hbi + O(dτ 3), (7)

which combined with Eq. (5) yields an overall second-order
trotterization.

1. Evolving the columns of a slice

To begin the evolution we apply a two-body gate at the
initial orthogonality center, as illustrated in Fig. 6(b). For
clarity we omit the transverse legs in most of the panels, only
restoring them when crucial for interpretation. Before con-
tracting the gate with the tensors in Fig. 7(a) we apply a QR
decomposition into an orthogonal matrix Q and a triangular
matrix R at each tensor to get a reduced bond [10], yielding
the configuration in Fig. 7(b) where we now get to evolve a
reduced space because the orange transient bonds are much

FIG. 4. The final product of the isometry reductions when calcu-
lating the local two-body correlator 〈isoTNS |O1O2|isoTNS〉, leaving
us with a MPS correlator that has to be fully computed.

smaller than the dark-red bonds (which consist of many virtual
legs).

After contracting the gate with the reduced tensors we
perform a truncated singular value decomposition (SVD) A ≈
UsV †, with U an isometry and sV † the new orthogonality
center, to regain the reduced bond while shifting the orthogo-
nality center, giving the configuration in Fig. 7(c). To ensure
that the new bond is not larger than the bond in Fig. 7(a)
we often need to truncate the singular values s, which can
be done optimally since we are at the orthogonality center.
After reabsorbing the reduced tensors we have now shifted
the orthogonality center by one site while evolving the bond,
giving us the configuration in Fig. 6(c).

We then evolve the next bond, so that we end up at the
bottom as shown in Fig. 6(d). To evolve the next column
we first need to transfer the TTN strand to this column, for
which we use the column-splitting procedure introduced in
[13] which is sequence of triangle splittings. This is illustrated
in Figs. 6(e)–6(h).

A single triangle splitting is shown in Fig. 8. By performing
two truncated SVDs on the orthogonality center in Fig. 8(a)
we get the decomposition in Fig 8(b). To improve the quality
of the column splitting, i.e., reduce the information loss in
obtaining Fig. 8(g) from Fig. 8(d), we follow [13] and reduce
the bipartite entanglement between the right and upper tensors
of the triangle in Fig. 8(b). For this we insert a pair of unitary
“disentanglers” U †U = 1 and optimize them such that the α-
Rényi entropy Sα between these tensors is minimized. If we
put the orthogonality center s on this bond we can write

Sα = 1

1 − α
ln

∑

i

sα
i , (8)

where α is the Rényi order. For α < 1 this quantity is known
to provide a bound on MPS precision [26]. After minimizing
Sα we have a triangle with minimal entanglement across its
red bond, and therefore we will end up with a split-off column
that has minimal vertical entanglement. The disentangler can
be easily optimized with gradient descent. In the case of α = 2
there is also a cheaper optimization algorithm [27], but as in
[13] we find that α < 1 gives the best performance.
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FIG. 5. The reduction of a particular 3D isoTNS configuration as it would occur upon contraction with its conjugate. In panel (a) we show
the initial network. In panel (b) we show the canonical TTN that would remain after utilizing most of the isometry structure. In panel (c) we
show how the canonical TTN further reduces to a single site, i.e., the orthogonality center.

After performing the triangle splitting on the orthogonality
center in Fig. 6(d) we absorb the new center upwards as
in Figs. 6(e) and 8(c). To continue the column splitting we
then temporarily combine the legs as designated in Fig. 8(c)
and repeat the triangle splitting, giving the configuration in
Fig. 6(f), which becomes Fig. 6(g) after a truncated SVD.
This completes the column splitting, and after absorbing the
transient column into the next column we have successfully

transferred the TTN strand, as shown in Fig. 6(h). This ab-
sorption increases the vertical bond dimension from χ to Dχ ,
which we truncate back to χ before proceeding with the evo-
lution. After repeating the steps in Fig. 6 on the middle column
in Fig. 6(h), and subsequently evolving the final column, we
have moved the TTN strand from the first to the last column
while evolving all columns. The final configuration is shown
in Fig. 10(a).

FIG. 6. The evolution of a slice in the 3D isoTNS, where for clarity we omit the transverse legs in most of the panels. In panel (a) we show
the initial slice, which is the middle slice from Fig. 5. In panel (b) we apply a two-body gate at the orthogonality center, after which in panel
(c) we shift the orthogonality center downwards using a SVD. In panel (d) we repeat this after which the orthogonality center is at the bottom
of the first column. In panel (e) we perform the triangle splitting from Fig. 8 on the orthogonality center, which we repeat in panel (f). Now
that we have reached the top of the column we perform a truncated SVD to finalize the column splitting, after which we have transferred the
TTN strand to a temporary column that has only virtual legs, as shown in panel (g) where we restored the transverse legs to emphasize that
the virtual column has no transverse legs. By absorbing the virtual column into the neighboring isometry column, yielding the configuration
in panel (h), we have finally moved the TTN strand to the middle column. The increased vertical bond dimension Dχ is truncated back to χ

before evolving the new column. Repeating the column splitting and evolution once more we will have evolved all columns in the slice.
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FIG. 7. The reduced time evolution used in TEBD3. The bond
depicted in panel (a) is to be evolved, to which end we first create
a reduced bond by applying a QR decomposition at each tensor.
This yields a pair of transient bonds with dimension dχ that are
colored orange. Because these orange bonds are much smaller than
the dark-red bonds, the gate application shown in panel (b) and the
subsequent truncated SVD that yields panel (c) are much cheaper
than when working in the gauge from panel (a). Having evolved the
reduced bond we reabsorb the reduced tensors to get the original
bond shown in panel (d), for which the orthogonality center has been
shifted relative to panel (a).

2. Splitting a slice

Having evolved the columns in the first slice we now want
to transfer the TTN strands to the next slice and repeat the
evolution. To achieve this we use a tetrahedron splitting on
the orthogonality center, which is illustrated in Fig. 9. By
using a series of such splittings we can split off a transient
slice containing the TTN strands, converting Fig. 10 into
Fig. 10(e). Starting at the orthogonality center in Fig. 10(a),
shown separately in Fig. 9(a), we perform a sequence of SVDs
to get the tetrahedron in Fig. 9(b). The face constituted by the
tensors A, B, and C is part of the new slice.

To improve the fidelity of the slice splitting we now need
to consider the tripartite entanglement between A, B, and C.
Hence we insert a pair of tripartite disentanglers U †U = 1

FIG. 8. The triangle splitting of the orthogonality center that
is used multiple times in succession to shift a TTN strand to a
neighboring column. By performing two truncated SVDs we split
the orthogonality center shown in panel (a) into the triangle shown
in panel (b), where the upper tensor is the new orthogonality center
and where the two lower tensors are isometries. Note that the top and
bottom-right tensors have only virtual legs. The amount of truncation
during the SVDs is based on the usual color coding, and we have in-
serted a pair of disentanglers U †U = 1, depicted as yellow cylinders,
in order to minimize the entanglement across the red bond. After the
splitting we absorb the top tensor upwards, as shown in panel (c). To
now perform the splitting from panel (b) on the new orthogonality
center we first temporarily combine the tilted legs as indicated by the
arrows, so that the orthogonality center again looks as in panel (a).

FIG. 9. The tetrahedron splitting used in the slice splitting that
transfers the TTN strands to the next slice. In panel (a) we show
the initial orthogonality center. In panel (b) we show the tetrahedron
that results from three consecutive SVDs, where the pair of tripartite
disentanglers is depicted as a yellow triangle, which reduces the
tripartite entanglement S3α (A|B|C). Note that only one of the four
produced tensors has a physical leg. In panel (c) we have absorbed A
upwards and B backwards. To repeat the tetrahedron splitting on the
new orthogonality center we temporarily combine the tilted legs as
indicated by the arrows.

that minimizes a tripartite extension of the α-Rényi entropy
Sα (similar to the tripartite information I3 [28]):

S3α (A|B|C) = Sα (A|BC) + Sα (B|AC) + Sα (C|AB), (9)

where, e.g., Sα (A|BC) is the bipartite α-Rényi entropy be-
tween tensor A and the contraction of B and C. We minimize
S3α (A|B|C) by iterating over its terms and performing a single
step of bipartite disentangling each time. It should be noted
that each bipartite disentangler is here a three-body operator.
After minimizing S3α (A|B|C) we get a triangle ABC with
minimal entanglement, and hence we will end up with a split-
off slice that has minimal internal entanglement.

In Appendix A we compare this tripartite disentangler with
a direct 3D extension of the bipartite disentangler from Fig. 8,
where we replace each side of the yellow triangle in Fig. 9 by
a pair of bipartite disentanglers.

To continue the slice splitting we absorb A upwards and
B backwards, which is illustrated in Figs. 9(c) and 10(b). We
then temporarily combine the legs as indicated in Fig. 9(c)
and repeat the tetrahedron splitting, yielding Fig. 10(c). Note
that the new vertical red bond is enlarged to Dχ . With the
orthogonality center at the top we perform a triangle splitting
to get Fig. 10(d), where we also truncated the enlarged vertical
bonds back to χ . This produces the first column of the new
slice. By combining the tilted legs as in Fig. 9 we can repeat
the splitting to move the TTN strand to the final column. We
complete the slice splitting by performing the column splitting
from Figs. 6(e)–6(h), resulting in Fig. 10(e). The transient
slice is then absorbed into the next slice, after which the TTN
strands have been successfully transferred, as illustrated in
Fig. 10(f). Before continuing with the evolution we truncate
the enlarged bonds.

3. Evolving the full network

With the machinery developed in the previous sections
we can now perform a trotterized time evolution where all
truncation occurs at the orthogonality center, so that the local
evolution is globally optimal. To illustrate this we consider the
details of a single TEBD3 iteration, starting from the network
in Fig. 11(a).
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FIG. 10. The slice splitting by which we transfer the two TTN strands to the next slice, after evolving the vertical bonds of a slice. In panel
(a) we show the initial isoTNS, which is obtained from Fig. 5 by evolving the middle slice as in Fig. 6. In panel (b) we show the first step of
the slice splitting, where we employ the tetrahedron splitting from Fig. 9 on the orthogonality center, thereby moving it upwards by one site.
After temporarily combining the tilted legs with the horizontal legs as indicated by the arrows in Fig. 9(c) we repeat the tetrahedron splitting to
get panel (c). Finally we apply the triangle splitting from Fig. 8 to the uppermost tensor in panel (d). We then move the orthogonality center to
the bottom of the column, resulting in panel (d). We repeat this combination of evolving and column splitting until we reach the final column,
which is instead split via the procedure described in Figs. 6(e)–6(h), yielding the split-off slice in panel (e). To finalize the transfer we absorb
the transient slice into the neighboring slice, yielding panel (f). The increased bond dimensions are truncated before continuing the evolution.

FIG. 11. A single iteration of TEBD3. Starting from the initial configuration in panel (a) we evolve all columns to get panel (b). Here
the evolved gray bonds are colored green and the evolved red bonds are colored dark green. To evolve the next set of columns we rotate the
network as indicated by the numbering of the corners, yielding panel (c), which becomes panel (d) after evolving the new columns. To evolve
the final set of columns we rotate the network to panel (e), which turns into panel (f) upon evolving the columns. With all bonds evolved this
concludes a single iteration of TEBD3.
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We evolve the columns of the first slice, following the
procedure in Fig. 6, and subsequently move the TTN strands
to the neighboring slice using the slice splitting of Fig. 10.
Repeating these operations on the middle slice and afterwards
evolving the final slice we end up with Fig. 11(b), where all
columns have now been evolved as indicated by the green
bonds.

To evolve the rest of the bonds we rotate the network in
Fig. 11(b) such that the TTN again has the position from
Fig. 11(a) while the columns consist of nonevolved bonds.
We have numbered the corners in Fig. 11 to show a possi-
ble way of doing this. After evolving the columns, yielding
Fig. 11(d), we rotate the network to get Fig. 11(e), which
becomes Fig. 11(f) upon evolving the final columns. Since all
bonds have now been evolved we have completed the iteration
of TEBD3.

The TEBD3 algorithm has two main sources of error: the
error due to the multitude of truncated SVDs and the error due
to the trotterization. In [13] it was found that for TEBD2 the
column-splitting truncation error and trotterization error con-
spire to yield an energy minimum in dτ space. In Appendix
B we show that the same occurs for TEBD3, now resulting
from the interplay between the column- and slice-splitting
truncation errors and the trotterization error.

4. Computational complexity

The computational complexity of the TEBD3 algorithm
can be attributed to various operations, in particular to the
SVDs that occur during these operations. Here we include
only terms that are potentially leading in either d , D, or χ .
We moreover assumed that we perform full SVDs instead of
partial SVDs in obtaining all estimates.

Starting with the slice splitting and subsequent ab-
sorption, we find that the tetrahedron splitting has cost
O[dD10χ2 min(d, Dχ2)] when it is performed on a tensor
with the maximum amount of combined legs (see Fig. 9). The
truncation of the enlarged bonds after absorbing the split-off
slice has cost O(dDχ6).

Other contributions arise from the evolution of the bonds
in a column, where the pairs of QR decompositions that
precede gate application have cost O[dχ5 min(d, χ2)]. These
decompositions yield pairs of intermediate bonds with sizes
η and ζ , which depend on the external bonds involved in
the decompositions, so that the subsequent SVD has cost
O[d3 min(ηζ 2, η2ζ )]. The pair that potentially yields the
leading order in D occurs in the bulk and has η = ζ =
χ min(d, D4).

When simultaneously d � χ2 and D4 the total cost reduces
to O(d2D10χ2) + O(dDχ6) + O(d6χ3). Because the costli-
est operations are performed roughly N times we have the
linear scaling O(N ) in system size.

III. BENCHMARKING

A. The benchmarking system

As a proof of principle we probe the accuracy of TEBD3

for imaginary time evolution to find an isoTNS approximation
for the many-body ground state of a simple 3D quantum
many-body system: the ferromagnetic transverse field Ising

model (TFIM) on a cubic lattice with OBC:

H = −
∑

〈i j〉
σ z

i σ z
j − h

∑

i

σ x
i . (10)

Here �σi ≡ (σ x
i , σ

y
i , σ z

i ) corresponds to a spin 1/2 on site i,
with σ x,y,z the usual Pauli matrices, and the two-body sum
runs over nearest-neighbor pairs 〈i, j〉.

Working in the σ z basis, we see from Eq. (10) that the
TFIM Hamiltonian becomes classical for h → 0 where it has
a twofold degenerate ferromagnetic ground state |↑↑ . . . ↑〉
and |↓↓ . . . ↓〉. Quantum fluctuations are generated by the
uniform magnetic transverse (i.e., along the x direction) field
of strength h. In the limit of strong fields h → ∞, the ground
state is unique and aligned with the field and a simple product
state | →→ · · · →〉 in the σx basis. Between these two limits,
the competition between the x and z basis leads to a much
more complex ground state [29] and to a quantum phase
transition as a function of h between the ferromagnetic phase
at h < hc and the polarized phase at h > hc. The value of the
critical field on the 3D simple cubic lattice was numerically
estimated to be hc ≈ 5.158 13(6) [30].

Our main reason for choosing this model as a benchmark
is its simplicity and the fact that it can be solved exactly using
quantum Monte Carlo using the stochastic series expansion
[31,32]. Our two benchmark observables are the energy den-
sity E/N = 〈H〉/N and the x magnetization mx = ∑

i〈σ x
i 〉/N ,

which we compare to exact values in order to assess the
accuracy of TEBD3.

Quantum phase transitions are associated with a divergent
correlation length and are therefore extremely challenging to
study using tensor network methods. While a phase transition
occurs at a singular point in the thermodynamic limit, a critical
region is expected for finite systems. In the case of OBC
the region gets shifted towards h < hc, which is especially
pronounced for the smaller L, where the ratio of one- to
two-body couplings is significantly larger. We expect the 3D
isoTNS ansatz to be particularly challenged in this critical
region, whereas its performance is likely to improve when
progressing deeper into both phases, since the ground state
in both phases is a dressed product state.

B. The benchmarking procedure

We perform imaginary time TEBD3 propagation of the
wave function represented by an isoTNS with bond dimen-
sions (D, χ ) for the TFIM (10) with L = 3, 4, 10 at various
fields h = 0.5, 1.0, . . . , 8 (across the critical point). For L = 3
we use bond dimensions D = 2, 4, 6 with χ = 2D, 4D, 6D,
which allows us to observe the convergence of both E/N
and mx towards the exact values. For L > 3 we are more
constrained in our choice of (D, χ ) due to the large cost as
derived in Sec. II B 4. Hence for L = 4 we use D = 2, 3
with χ = 2D, 4D, 6D, and to illustrate the capacity of TEBD3

to reach large system sizes we consider a (2,4) isoTNS for
L = 10.

For the initial state we take a σz product state |ψini〉 = |↑↑
. . . ↑〉, which we evolve in imaginary time until the energy
density is converged. This means that we perform the opera-
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tion

|ψ0〉 ≈ e−βĤ |↑↑ . . . ↑〉, (11)

which for TEBD algorithms is done by trotterizing it into
small time steps dτ as explained in Sec. II B. We typically
evolve to β � 40.

As mentioned Sec. II B 3, TEBD3 has an energy minimum
in dτ space, so for each simulation we choose dτ such that it
coincides with the minimum. In Fig. 17 of Appendix B we
show the dτ minima for various (D, χ ) on a L = 3 lattice
in the critical region. Similarly, we consider various Rényi
entropy orders α for the disentangling and pick the one with
lowest energy. It is usually between α = 1/2 and 1, although
it varies across the phase diagram.

The exact values for the energy density were obtained with
the stochastic series expansion, for which we used the ALPS

library [33,34]. Here convergence to the ground state was
checked by a β-doubling scheme. For L = 3 we also per-
formed Lanczos exact diagonalization, providing exact energy
density and additionally the x magnetization of the ground
state at all h.

In order to provide a reference for the quality of our TEBD3

results, we furthermore performed TEBD2 calculations for the
2D TFIM using the algorithm detailed in [13]. Here we chose
a comparable system size of 5 × 5, for which exact Lanczos
values are easily obtained.

C. Results

In this section we present the results of our TEBD3 bench-
marks for the 3D TFIM ground state.

We start off with L = 3, for which the performance can be
comprehensively probed. In Fig. 12 we have plotted E/N and
mx across a range of h. Here the thermodynamic critical point
is denoted by a gray dotted line, but as mentioned in Sec. III A
this point is spread into an extended region for finite systems,
and furthermore shifted to smaller h < hc due to the use of
OBC.

The top panel of Fig. 12 shows E/N across a range of h
for various (D, χ ), along with the exact Lanczos values as a
red dotted line. The inset shows the relative error in E/N . Here
we see that deep in the polarized and ferromagnetic phases the
accuracy is high, whereas in the critical region around h ≈ 3
the performance is clearly worse.

For D = 2 and 4 we see that the accuracy is converged
in χ , meaning that D must be increased (i.e., the column
and slice splitting need higher fidelity) to further improve the
performance. For D = 6 it is not clear whether convergence
is reached, meaning that convergence becomes slower as D
grows. On a related note, it can be seen that (4,16) performs
better than (6,12), illustrating why large D is only useful when
combined with a few multiples larger χ .

The bottom panel of Fig. 12 shows mx for various h, again
together with the exact Lanczos values as a red dashed line.
The inset contains the absolute error δ = me

x − mx relative to
the exact value me

x, which is chosen over the relative error
since me

x vanishes as h → 0. Deep in the polarized and ferro-
magnetic phases we see excellent agreement already for small
bond dimensions, with the critical region clearly requiring
larger tensors to get near the exact line.

FIG. 12. Top: The energy density E/N and its accuracy relative
to the exact Lanczos value for the 3 × 3 × 3 cubic TFIM with OBC at
various field strengths h across the critical point. Each curve belongs
to a different set of bond dimensions (D, χ ), and in the main plot
we show the exact values with a red dotted line. Bottom: The x
magnetization mx and its error δ = me

x − mx relative to the exact
Lanczos value me

x for various field strengths around the critical point,
for the same TFIM system as in the top panel.

Next we consider L = 4, for which we show the results
in Fig. 13. The curves display similar behavior as for L = 3,
but due to the high computational cost we did not probe its
performance beyond D = 3. A noticeable difference is the
sharper peak in energy accuracy, which is likely due to the
shrinking critical region (that has moreover shifted to larger
h). For L = 4 the exact values were obtained via Monte Carlo,
with the accompanying errors falling inside the linewidth.

Now we consider L = 10 (i.e., N = 103) in Fig. 14. Here
we were not able to go beyond D = 2, which embodies
the large difference in computational complexity between
the bond dimensions and system size, as found in Sec. II B
4. We again observe a peak in relative error of E/N at the
critical region, which is now centered on the thermodynamic
hc. The x magnetization is now also seen to saturate around
hc.

Overall, the comparison of our results across different
system sizes reveals an excellent representation of the ground-
state wave function deep in the ferromagnetic phase, even
for the relatively small (D, χ ) which are reachable at large
system sizes on current computers. The accuracy is slightly
worse in the polarized phase, especially for the smaller (D, χ ),
but nonetheless high accuracies can be reached on relatively
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FIG. 13. Top: The energy density E/N and its accuracy relative
to the exact QMC value for the 4 × 4 × 4 cubic TFIM with OBC at
various field strengths h across the critical point. Each curve belongs
to a different set of bond dimensions (D, χ ), and in the main plot
we show the exact values with a red dotted line. Bottom: The x
magnetization mx for various field strengths around the critical point,
for the same TFIM system as in the top panel.

small lattices. As expected, the accuracy is worst in the critical
region, but also here the performance is significantly improved
upon increasing the bond dimensions, showing a clear trend
toward the exact values both for the energy density and x
magnetization.

In order to put the TEBD3 benchmarks into perspective we
have also performed a TEBD2 benchmark for the 2D TFIM
on a 5 × 5 square lattice. It is clear that the simulation of a 2D
system with TEBD2 is easier than that of a 3D system with
TEBD3, since the 3D version involves more truncation. We
therefore expect TEBD2 to have higher accuracy for similar
bond dimensions.

In Fig. 15 we show E/N and mx for multiple (D, χ ) at
various h for the 5 × 5 TFIM. In the top panel we see that the
relative error of E/N is again smallest when deep in the ferro-
magnetic and polarized phases, with the critical region around
hc ≈ 3 again posing the biggest challenge. As expected, we
see that (4,16) performs better in two dimensions than in three
dimensions, reaching just below 0.5% compared to just below
1% in Fig. 12. The same is apparent from the bottom panel,
where we see that (4,16) already closely matches the exact
mx in the critical region, which is reached only with (6,36) in
Fig. 12.

FIG. 14. Top: The energy density E/N of the (2,4) isoTNS and
its accuracy relative to the exact QMC value for the 10 × 10 × 10
cubic TFIM with OBC at various field strengths h across the critical
point. The exact values are shown as a red dotted line. Bottom: The x
magnetization mx for various field strengths around the critical point,
for the same TFIM system as in the top panel.

IV. CONCLUSION

We have introduced a method for the simulation of 3D
quantum lattice models using a representation of the wave
function as a 3D isometric tensor network state (isoTNS).
Generalizing the method for two dimensions presented in
[13] we introduced a tetrahedral splitting and accompanying
tripartite disentangling, such that optimal time-evolving block
decimation can be carried out in cubic 3D networks. We call
the resulting evolution algorithm TEBD3.

Our systematic benchmark for the 3D transverse field Ising
model in the full range of transverse fields across the critical
point reveals that our method yields accurate results, and that
the systematic error incurring from finite bond dimensions
can be controlled systematically by increasing (D, χ ). This
behavior is identical to what is observed in TEBD2. The
regime close to the critical point is particularly challenging
and requires larger bond dimensions, beyond the capacity of
our computers for large systems.

While imaginary time evolution using TEBD3 is arguably
the simplest method for finding the ground state of a quantum
many-body system, it is known even in one dimension that it
is not optimal and that local variational energy minimization
(e.g., DMRG in one dimension) is far more efficient. We
expect a similar behavior for isoTNS in higher dimensions
and it is possible that our results can be further improved by
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FIG. 15. Top: The energy density E/N and its accuracy relative
to the exact Lanczos value for the 5 × 5 square TFIM with OBC at
various field strengths h across the critical point. Each curve belongs
to a different set of bond dimensions (D, χ ), and in the main plot
we show the exact values with a red dotted line. Bottom: The x
magnetization mx and its error δ = me

x − mx relative to the exact
Lanczos value me

x for various field strengths around the critical point,
for the same TFIM system as in the top panel.

the formulation of a DMRG analog for 3D isoTNS, a direction
which we leave for future study.
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APPENDIX A: BIPARTITE VERSUS TRIPARTITE
DISENTANGLING

To quantify the difference in performance between the
bipartite and tripartite 3D disentanglers from Sec. II B 2 we
use each to calculate the ground-state energy density of the
4 × 4 × 4 TFIM at various h. In Fig. 16 we show the perfor-
mance of the isoTNS configurations (2,12) and (3,15). Here it
is clear that the improvement in accuracy when using tripartite
over bipartite disentanglers is largest in the critical region
h ∈ [3, 5], whereas the improvement becomes progressively
smaller outside of this region.

FIG. 16. A comparison of the bipartite and tripartite disentan-
glers, showing the energy accuracy for the 4 × 4 × 4 TFIM ground
state at various h and two (D, χ ). We see that the improvement in
using a tripartite over a bipartite disentangler is most significant in
the critical region.

Because the chosen (D, χ ) are converged in χ we can-
not improve the bipartite curves by further increasing the
TTN’s bond dimension. This illustrates that the quality of the
tetrahedron splitting, and hence of the slice splitting, cannot
be compensated by only improving the TTN. This is easily
understood if we recognize that the slice splitting is a major
component of TEBD3, since it serves to transfer the TTN to
the next slice with minimal information loss, and that this part
of the algorithm is mainly controlled by D and not χ (see
Fig. 9). In particular, even though a larger χ might improve
the time evolution on a fixed TTN, this gain is lost when
transferring the TTN.

APPENDIX B: MINIMA IN dτ SPACE

As noted in [13], the error due to the multitude of truncated
SVDs and the error due to the trotterization combine to yield
an energy minimum in dτ space for TEBD2. Here we show
that this also occurs for TEBD3 and we will furthermore
illustrate the difference between first- and second-order trot-
terization.

In Fig. 17 we show the relative error in energy density
for the ground state of the 3 × 3 × 3 TFIM at h = 3.5, at
multiple points in dτ space. For each (D, χ ) we plot both

FIG. 17. The dτ dependency of the relative error in energy
density of the 3 × 3 × 3 TFIM at h = 3.5, for various isoTNS con-
figurations (D, χ ).
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the first-order (n = 1) and second-order (n = 2) trotterization
results, from which we see that for all considered cases the
n = 2 minimum lies below the n = 1 minimum. We can also

see that the minima shift to lower dτ as we increase D, for
both n = 1 and 2, which is in accordance with the findings in
[13] for TEBD2.
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We introduce a quantum error mitigation technique based on probabilistic error cancellation to eliminate
errors which have accumulated during the application of a quantum circuit. Our approach is based on applying
an optimal “denoiser” after the action of a noisy circuit and can be performed with an arbitrary number of extra
gates. The denoiser is given by an ensemble of circuits distributed with a quasiprobability distribution. For a
simple noise model, we show that efficient, local denoisers can be found and we demonstrate their effectiveness
for the digital quantum simulation of the time evolution of simple spin chains.
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Introduction. Quantum information processing has been
theoretically shown to hold great promise and quantum al-
gorithms were developed which can in principle achieve an
exponential speedup over their classical counterparts, both
for general purpose computing [1–4] and quantum simulation
[5–9]. However, present day quantum computing prototypes
still suffer from significant noise processes which hinder the
execution of many potentially groundbreaking quantum algo-
rithms [10]. Nontrivial quantum algorithms typically require
large sequences of quantum gates, each of which introduces
dissipation and hence an overall loss of coherence, eventually
rendering the results useless.

Until quantum error correction [11,12] becomes practical,
quantum error mitigation seems to be more feasible to in-
crease the accuracy of expectation values. Here the goal is to
induce the (partial) cancellation of errors that stem from noisy
quantum gates by extending the circuit corresponding to the
desired algorithm with an ensemble of gates [13,14], sampled
from a quasiprobability distribution.

The traditional way to accomplish this is with the gate-wise
method from [13,14], where noise is mitigated by inverting
the noise channel of each gate separately, i.e., the cancellation
of errors is performed for each gate on its own. Here the
local noise channel is approximated in a way such that it can
be easily inverted analytically, e.g., using Pauli twirling [14].
Gates are then sampled from the inverted noise channel by in-
terpreting it as a quasiprobability distribution. Because in this
gatewise approach every noisy gate has to be modified sepa-
rately, the sign problem is exponentially large in the number of
gates, limiting the practicality of the mitigation. The success
of the gatewise approach resulted in a large body of work
concerning these methods [15–23], including extensions for
simultaneous mitigation of multiple gates by Pauli-twirling
entire layers [24,25] or variationally constructing a mitigating
matrix product operator [26].

In principle, errors during the execution of a circuit
can propagate and accumulate. These propagated errors can

*david.luitz@uni-bonn.de

potentially blow up and lead to large errors for the circuit as
a whole [27,28]. Here we introduce a mitigation technique
that takes into account the propagation of errors, can be per-
formed with a tunable number of extra gates, and works for
non-Clifford local noise channels since the inversion of the
accumulated global noise channel is implicit. We first execute
the targeted noisy circuit completely, letting the noise propa-
gate and accumulate, and only afterwards we apply an extra
random circuit sampled from a quasiprobability distribution.
We call the corresponding ensemble of random circuits a
denoiser and we construct it such that upon averaging the
accumulated errors cancel. Essentially, the denoiser inverts
a global noise channel. Since we will construct it as a lo-
cal brickwall circuit, following the classical preprocessing
approach from [29], we call this compressed quantum error
mitigation.

Method. Due to the inevitable coupling of a quantum pro-
cessor to its environment, every qubit operation is affected
by noise. Therefore, the simplest technique to minimize the
impact of the resulting noise is to minimize the number of
operations when performing a quantum algorithm. In [29] we
showed that many-body time evolution operators can be ef-
ficiently compressed into brickwall circuits with high fidelity
per gate.

In this Letter, we consider the noise explicitly by treat-
ing quantum operations as (generally nonunitary) quantum
channels, corresponding to completely positive and trace
preserving (CPTP) maps [30]. For example, instead of a
noiseless two-qubit gate G, which acts on a quantum state
|ρ〉〉 in superoperator form as G|ρ〉〉 = G ⊗ G∗|ρ〉〉, we get
the noisy channel G̃ = NG, where the noise channel N
implements the two-qubit noise [31]. These channels are
used to construct a “supercircuit” C̃ = ∏NG

i=1 G̃i, consisting
of NG channels, which is affected by multiqubit accumu-
lated noise. This supercircuit encodes an ensemble of circuits
[31]. For simplicity, we assume that the noisy channels
G̃i in each half brickwall layer are lattice inversion and
translation invariant, such that we can construct a denoiser
with these properties, limiting the number of variational
parameters.
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FIG. 1. Example of the quantum error mitigation procedure used
in this work for the time evolution of the wave function of a spin
chain. The ideal second-order Trotter supercircuit C of depth Mtrot =
1 (light blue) is approximated by applying a denoiser D̃ of depth
M = 1 (red) to the noisy Trotter supercircuit C̃ (dark blue). Because
the denoiser is applied after fully executing the noisy Trotter su-
percircuit, it represents an approximate inverse of the global noise
channel with a precision tunable by the depth of the denoiser.

The purpose of quantum error mitigation is to modify the
ensemble of circuits described by C̃ in a way that we can use
it to obtain the noiseless expectation values. In superoperator
language, we do this by following the supercircuit C̃ with a
denoiser supercircuit D̃, such that D̃C̃ is as close to the noise-
less supercircuit C = C ⊗ C∗ as possible. Here C is the target
unitary circuit. Because the noise channel N is nonunitary,
hence making the supercircuit C̃ nonunitary, we need to use a
nonunitary denoiser to retrieve the unitary C.

We illustrate the mitigation procedure in Fig. 1, where
a denoiser with one layer is used to mitigate errors for a
second-order Trotter supercircuit with one layer. This circuit
architecture is commonly used to simulate the time evolution
of a quantum many-body system, until some time t , with
controllable precision [29,32–42], and we will use it to bench-
mark the denoiser. In practice, we cannot directly implement
a supercircuit, and so we have to utilize its interpretation as an
ensemble of circuits. Essentially, after executing a shot of the
noisy circuit we sample the denoiser and apply it. The goal is
to construct the denoiser in a way that averaging over many
of its samples cancels the accumulated errors and gives us a
good approximation of the noiseless expectation values.

It should be noted that our approach requires more gate
applications on the quantum processor than with the gate-
wise scheme, since there each sample from the mitigation
quasiprobability distribution can be absorbed into the original
circuit, whereas our approach increases the circuit depth. We
take this into account by imposing the same noise on the de-
noiser. Furthermore, within our scheme, the dimensionality of
the quasiprobabilistic mitigating ensemble can be controlled,
in contrast to the gatewise approach where it is equal to the
gate count.

To facilitate the stochastic interpretation we parametrize
each two-qubit denoiser channel Gi as a sum of CPTP maps,
such that we can sample the terms in this sum and execute
the sampled gate on the quantum processor. Concretely, we
use a trace preserving sum of a unitary and a nonunitary
channel. For the unitary part we take a two-qubit unitary chan-
nel U ( �φi ) = U ( �φi ) ⊗ U ∗( �φi ), with U ( �φi ) a two-qubit unitary
gate parametrized by �φi. For this we take the two-qubit ZZ
rotation exp[−iα(σz ⊗ σz )] with angle α, which can be ob-
tained from native gates on current hardware [43], and dress
it with four general one-qubit unitaries, only two of which

are independent if we want a circuit that is space inversion
symmetric around every bond. The resulting gate has seven
real parameters �φi.

For the nonunitary part, which is essential because D̃
has to cancel the nonunitary accumulated noise to obtain
the noiseless unitary circuit, we use a general one-qubit
measurement followed by conditional preparation channel
M(�ζi )|ρ〉〉 = ∑

l Kl ⊗ K∗
l |ρ〉〉. It has Kraus operators K1 =

|ψ1〉〈ψ | and K2 = |ψ2〉〈 ψ̄ | if we measure in the orthonormal
basis {|ψ〉, |ψ̄〉}, where |ψ̄〉 is uniquely defined by |ψ〉 as they
are antipodal points on the Bloch sphere. If the measurement
yields |ψ〉 we prepare |ψ1〉 and if we measure |ψ̄〉 we prepare
|ψ2〉. These states can be arbitrary points on the Bloch sphere,
i.e., |ψ1〉 = V (�κ1)|0〉, |ψ2〉 = V (�κ2)|0〉, and |ψ〉 = V (�κ3)|0〉,
with V a general one-qubit unitary and each �κi a three-
dimensional vector, resulting in a real nine-dimensional �ζi.
This yields the two-qubit correlated measurement M(�ζi ) ⊗
M(�ζi ).

With these parts we construct the parametrization

Gi = η0U ( �φi ) + η1M(�ζi ) ⊗ M(�ζi ), (1)

with coefficients ηi ∈ R that satisfy η0 + η1 = 1 because Gi

is trace preserving. Note that here the tensor product symbol
corresponds to combining two one-qubit channels to make a
two-qubit channel, whereas in most of the paper it is used
to link the column and row indices of a density matrix. We
construct the denoiser from the noisy channels G̃i = NGi.
With this parametrization one denoiser channel has 17 inde-
pendent real parameters, such that a denoiser of depth M, i.e.,
consisting of M brickwall layers, has 34M real parameters
(we use one unique channel per half brickwall layer). For
reference, a general channel has 544M parameters.

To determine the mitigated expectation values we use the
full expression

〈Ô〉p=0 = 〈〈1|(Ô ⊗ 1)C|ρ0〉〉 ≈ 〈〈1|(Ô ⊗ 1)D̃C̃|ρ0〉〉, (2)

where |ρ0〉〉 is the initial state and |1〉〉 is the vectorized
identity operator on the full Hilbert space. To evaluate this
on a quantum processor, we use the stochastic interpretation
of (1) to resample (2). In particular, from each channel (1)
we get a unitary with probability p0 = |η0|/γ and a mea-
surement followed by conditional preparation with probability
p1 = |η1|/γ . Here γ = |η0| + |η1| is the sampling overhead,
which characterizes the magnitude of the sign problem from
negative ηi [13,14,18,20,44,45]. For quasiprobability distri-
butions, i.e., with γ > 1, every denoiser sample has an extra
sign sgn(η) = ∏NG

g=1 sgn(ηg), where sgn(ηg) is the sign of the
sampled coefficient of the gth channel. γ = 1 means that all
signs are positive. Observables 〈Ô〉p=0 for the noiseless circuit
are then approximated by resampling the observables from the
denoiser ensemble [13]

〈Ô〉p=0 ≈ γ 〈sgn(η)Ô〉p, (3)

where γ = ∏NG
g=1 γg is the overall sampling overhead, with

γg the overhead of the gth gate. Clearly, a large γ implies a
large variance of 〈Ô〉p=0 for a given number of samples, with
accurate estimation requiring the cancellation of large signed
terms.
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The number of samples required to resolve this can-
cellation of signs is bounded by Hoeffding’s inequality,
which states that a sufficient number of samples to esti-
mate 〈Ô〉p=0 with error δ at probability 1 − ω is bounded by
(2γ 2/δ2) ln(2/ω) [44]. Since γ scales exponentially in γg, it
is clear that a denoiser with large M and γ 	 1 will require
many samples.

We observed that decompositions with γ > 1 are crucial
for an accurate denoiser. Restricting to γ = 1 leads to large
infidelity and no improvement upon increasing the number
of terms in (1) or the depth M of the denoiser. Simply put,
probabilistic error cancellation of gate noise introduces a sign
problem and it is crucial to find optimal parametrizations
(1) which minimize γ to make the approach scalable. This
issue arises in all high performance error mitigation schemes
[13,20,24,44], because the inverse of a physical noise channel
is unphysical and cannot be represented as a positive sum
over CPTP maps. This is clearly visible in the spectra of the
denoiser, which lies outside the unit circle (cf. Fig. 4). This
makes the tunability of the number of gates in each denoiser
sample a crucial ingredient, which allows control over the sign
problem, because we can freely choose the ηi in (1).

For the parametrization (1) of denoiser channels, we try to
find a set of parameters for error mitigation by minimizing
the normalized Frobenius distance between the noiseless and
denoised supercircuits [29]

ε = ||C − D̃C̃||2F /4L, (4)

which bounds the distance of output density matrices and
becomes zero for perfect denoising.

We carry out the minimization of ε on a classical proces-
sor, using gradient descent with the differential programming
algorithm from [29]. Instead of explicitly calculating the ac-
cumulated global noise channel and subsequently inverting it,
we approximate the noiseless supercircuit C with the denoised
supercircuit D̃C̃, effectively yielding a circuit representation
D of the inverse noise channel.

Results. To benchmark the denoiser we apply it to the
second-order Trotter circuits of the spin-1/2 Heisenberg chain
with periodic boundary conditions (PBC)

H =
L∑

i=1

(
σ i

1σ
i+1
1 + σ i

2σ
i+1
2 + σ i

3σ
i+1
3

)
, (5)

where σ i
α = (1i, σ i

x, σ
i
y, σ

i
z ) is the Pauli algebra acting on the

local Hilbert space of site i. A second-order Trotter circuit
for evolution time t with depth Mtrot consists of Mtrot − 1 half
brickwall layers with time step t/Mtrot and two layers with half
time step [29,34]. We consider circuits that are affected by
uniform depolarizing noise with probability p for simplicity,
but our approach can be used for any non-Clifford noise. The
two-qubit noise channel is

N =
(

1 − 16p

15

)
1 + p

15

i+1⊗

j=i

(
3∑

α=0

σ j
α ⊗ σ j∗

α

)
, (6)

which acts on neighboring qubits i and i + 1 and is applied
to each Trotter and denoiser gate and p = 0.01 unless stated
otherwise. We study circuits with depths Mtrot = 16, 32, 64

FIG. 2. Normalized distance ε between the denoised Trotter su-
percircuit D̃C̃ and the noiseless Trotter supercircuit C (top panels), at
evolution times t = 0.5, 1, . . . , 5, and the two-point z-spin correlator
Czz

i=L/2, j=L/2(t ) of a spin on the middle site at times 0 and t (bottom
panels), for the infinite temperature initial state. We consider denois-
ers with depths M = 1, 2, 4, 6, 8 and second-order Trotter circuits
with depths Mtrot = 16, 32, 64. In the top panels we use a Heisenberg
chain with L = 8 and in the bottom panels with L = 14, both with
periodic boundary conditions. All gates are affected by two-qubit de-
polarizing noise with p = 0.01. The nondenoised results are labeled
with M = 0 and the noiseless values with p = 0.

for evolution times t = 0.5, 1, . . . , 5 and denoisers D̃ with
depths M = 1, 2, 4, 6, 8.

In the top panels of Fig. 2 we show ε (4) for a chain of size
L = 8 as a function of time t . Here it can be seen that even
for Mtrot = 32 a denoiser with M = 1 already improves ε by
roughly an order of magnitude at all considered t . Depending
on Mtrot and t , further increasing M lowers ε, with the biggest
improvements occurring for high precision Trotter circuits
with large depth Mtrot = 64 and short time t = 0.5, where
the Trotter gates are closer to the identity than in the other
cases. At the other extreme, for Mtrot = 16 the improvements
are relatively small upon increasing M > 2. In all cases the
denoiser works better at early times than at late times, again
indicating that it is easier to denoise Trotter gates that are
relatively close to the identity.

To probe the accuracy of the denoiser on quantities
that do not enter the optimization, as a first test we con-
sider the two-point correlator between spins at different
times [46]

Czz
i j (t ) = 〈〈

1
∣∣(σ z

i ⊗ 1
)
D̃C̃(t )

(
σ z

j ⊗ 1
)∣∣1

〉〉
/2L, (7)

where we have chosen the infinite temperature initial state and
C̃(t ) is the Trotter supercircuit for time t . In the bottom panels
of Fig. 2 we show Czz

i=L/2, j=L/2(t ) for the supercircuits from
the upper panels, now for a L = 14 chain. Here we see that at
Mtrot = 16 we can retrieve the noiseless values already with
M = 1, but that increasing Mtrot makes this more difficult. At
Mtrot = 64 we see larger deviations and improvement upon
increasing M is less stable, but nonetheless we are able to
mitigate errors to a large extent.
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FIG. 3. Out-of-time-ordered correlator Cotoc
i=L/2, j (t ) as a function

of the operator position j and time t , for the infinite temperature
initial state, for a denoised second-order Trotter supercircuit with
Trotter depth Mtrot = 32 and denoiser depth M = 2. We consider evo-
lution times t = 0.5, 1, . . . , 5, for the periodic L = 14 Heisenberg
chain that is affected by two-qubit depolarizing noise with p = 0.01.

As a further test, we compute the out-of-time-ordered cor-
relator (OTOC) [29,39,47–50]

Cotoc
i j (t ) = Re

〈〈
1
∣∣(σ z†

j ⊗ 1
)
D̃C̃(−t )

× (
σ z

i ⊗ σ z∗
i

)
D̃C̃(t )

(
σ z

j ⊗ 1
)∣∣1

〉〉/
2L. (8)

In Fig. 3 we show the results for i = L/2, for a Trotter circuit
with depth Mtrot = 32 and a denoiser with depth M = 2. Here
we see that a denoiser with M 
 Mtrot is able to recover
the light cone of correlations, which are otherwise buried
by the noise. In the Supplemental Material [51] we consider
how the denoiser performs at different noise levels p and how
the denoised supercircuits perform under stacking. There we
also calculate domain wall magnetization dynamics and show
the distribution of the optimized denoiser parameters and the
sampling overhead associated to the denoiser as a whole.

In Fig. 4 we show the eigenvalues of the noisy supercircuits
for a noisy second-order Trotter supercircuit with Mtrot = 16
at t = 1 (left), the corresponding optimized denoiser with
M = 4 (center), and the denoised supercircuit (right). The
eigenvalues λ of a unitary supercircuit lie on the unit cir-
cle and in the presence of dissipation they are pushed to
the center. We see that the spectrum of the denoiser lies
outside the unit circle, making it an unphysical channel which

FIG. 4. Complex eigenvalues λ of the noisy second-order Trotter
supercircuit with Mtrot = 16 at time t = 1 (left), the corresponding
optimized denoiser with M = 4 (center), and the denoised Trotter su-
percircuit (right). The Trotter circuit is for a L = 6 Heisenberg model
with PBC and all two-qubit channels are affected by depolarizing
noise with p = 0.0046. The unit circle, on which unitary eigenvalues
must lie, is shown in black and the noiseless eigenvalues are shown
as blue bars. It is evident that the denoiser recovers all the noiseless
eigenvalues from the noisy circuit.

cures the effect of the noise on the circuit, such that the
spectrum of the denoised circuit is pushed back to the unit
circle. The noiseless eigenvalues are shown as blue bars,
making it clear that the denoiser is able to recover the noise-
less eigenvalues from the noisy circuit. In the Supplemental
Material [51] we show the spectra for a p = 0.036 denoiser,
where we observe a clustering of eigenvalues reminiscent of
Refs. [52–54]. There we also investigate the channel entropy
of the various supercircuits [55,56].

Conclusion. We have introduced a probabilistic error can-
cellation scheme, where a classically determined denoiser
mitigates the accumulated noise of a (generally non-Clifford)
local noise channel. The required number of mitigation gates,
i.e., the dimensionality of the corresponding quasiprobability
distribution, is tunable and the parametrization of the cor-
responding channels provides control over the sign problem
that is inherent to probabilistic error cancellation. We have
shown that a denoiser with one layer can already significantly
mitigate errors for second-order Trotter circuits with up to
64 layers.

This effectiveness of low-depth compressed circuits for de-
noising, in contrast with the noiseless time evolution operator
compression from [29], can be understood from the nonunitar-
ity of the denoiser channels. In particular, measurements can
have nonlocal effects, since the measurement of a single qubit
can reduce some highly entangled state (e.g., a GHZ state) to
a product state, whereas in unitary circuits the spreading of
correlations forms a light cone.

To optimize a denoiser with convenience at L > 8, the
optimization can be formulated in terms of matrix product op-
erators [26,29] or channels [16], which is convenient because
the circuit calculations leading to the normalized distance
ε and its gradient are easily formulated in terms of tensor
contractions and singular value decompositions [29,57]. This
provides one route to a practical denoiser, which is relevant
because the targeted noiseless circuit and the accompanying
noisy variant in (4) need to be simulated classically, confining
the optimization procedure to limited system sizes with an
exact treatment or limited entanglement with tensor networks.
Nonetheless, we can use, e.g., matrix product operators to
calculate (4) for some relatively small t , such that the noiseless
and denoised supercircuits in (4) have relatively small entan-
glement, and then stack the final denoised supercircuit on a
quantum processor to generate classically intractable states.
Analogously, we can optimize the channels exactly at some
classically tractable size and then execute them on a quantum
processor with larger size. Both approaches are limited by the
light cone of many-body correlations, as visualized in Fig. 3,
because finite-size effects appear when the light-cone width
becomes comparable with system size.
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In this supplementary material we further investigate the denoiser. We probe the denoiser per-
formance at various noise strengths, consider the denoiser spectra at high noise strength, calculate
the entropy of the various supercircuits that appeared in the main text, check how the denoised
circuits perform under stacking, plot the optimized denoiser parameters in histograms, determine
the sampling overhead of the optimized denoisers, and finally consider the simulation of domain wall
dynamics as another test of the denoiser performance.

DENOISER PERFORMANCE AT VARIOUS
NOISE LEVELS

To probe how the denoiser performs at different noise
strengths p, we take a second-order Trotter supercircuit
of depth Mtrot = 16 for the time evolution of the wave
function to time t = 1, and optimize the denoiser at
various noise strengths in the interval p ∈

[
10−3, 10−1

]
.

In Fig. 1 we show the normalized distance (left panel)
and the z spin correlator (right), for denoiser depths
M = 1, 2, 4, 6, 8. For comparison, we show the results
for the noisy limit, i.e. without a denoiser (M = 0, red
dashed), and for the exact limit without noise (p = 0,
black dashed).

The error of the entire circuit ε improves with denoiser
depth M for the full range of p, and depends roughly
quadratically on p. This is illustrated with the purple
dashed line in the left panel of Fig. 1. It is interesting
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FIG. 1. The normalized distance ε (left) and z spin correlator
Czz

i=L/2,j=L/2 (right), for a second-order Trotter supercircuit
of depth Mtrot = 16 for time t = 1, affected by various two-
qubit depolarizing errors p. We compare the values obtained
with and without a denoiser, i.e. M > 0 and M = 0, to
the noiseless values (p = 0). The denoiser is affected by the
same noise as the Trotter circuit. We consider denoisers with
depths M = 1, 2, 4, 6, 8, and we use a L = 8 Heisenberg chain
with PBC for the normalized distance, while for the correlator
we use L = 14.
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to observe that even for larger noise strength p, the local
observable Czz improves significantly even with denoisers
of depth M = 1. For large noise strengths, we generally
see that the optimization of the denoiser becomes diffi-
cult, leading to nonmonotonic behavior as a function of
p, presumably because we do not find the global optimum
of the denoiser.

SUPERCIRCUIT SPECTRA

It is interesting to analyze the spectra of the super-
circuits considered in this work. As mentioned in the
main text, the spectrum of the ideal, unitary supercir-
cuit C lies on the unit circle. The comparison to this case
is therefore instructive. In the main text, we showed
an example of the spectra in Fig. 4 for moderate noise
strength. Here, we show additional data for stronger
noise p = 0.036 in Fig. 2 for a denoiser with M = 4
layers, optimized to mitigate errors for a second-order
Trotter supercircuit with Mtrot = 16 layers at time t = 1.

The eigenvalues λ of the noisy supercircuit C̃ are clus-
tered close to zero, far away from the unit circle (except
for λ = 1), showing that the circuit is strongly affected
by the noise. To mitigate the impact of the noise, the
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FIG. 2. The complex eigenvalues λ of the noisy second-order
Trotter supercircuit with Mtrot = 16 at time t = 1 (left), the
corresponding optimized denoiser with M = 4 (center), and
the denoised Trotter supercircuit (right). The Trotter circuit
is for a L = 6 Heisenberg model with PBC, and all two-
qubit channels are affected by depolarizing noise with p =
0.036. The unit circle, on which unitary eigenvalues must lie,
is shown in black, and the noiseless eigenvalues are shown as
blue bars. It is clear that the denoiser recovers with high
accuracy the noiseless eigenvalues from the noisy circuit.
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denoiser consequently has to renormalize the spectrum
strongly. If it accurately represents the inverse of the
global noise channel, its spectrum has to lie far outside
the unit circle, which is the case. Interestingly, we ob-
serve a clustering of eigenvalues which is reminiscent to
the spectra found in [1–3]. By comparison to these works,
we suspect that this is due to the local nature of the de-
noiser, and warrants further investigation.

The right panel of Fig. 2 shows the result of the de-
noiser, pushing the eigenvalues back to the unit circle,
nearly with the exact same distribution along the circle
as the noiseless eigenvalues (blue bars). Due to the strong
noise, this is not achieved perfectly, and it is clear that
this cannot work in principle if the global noise channel
has a zero eigenvalue.

SUPERCIRCUIT ENTROPIES

The complexity of an operator can be quantified by
its operator entanglement entropy [4]. Here we calcu-
late the half-chain channel entanglement entropy S [5]
of the noiseless C, noisy C̃, denoiser D̃, and denoised D̃C̃
supercircuits. We define S as the entanglement entropy
of the state that is related to a supercircuit C via the
Choi-Jamio lkowski isomorphism, i.e. ψC = χC/N , where

the process matrix χab,cd
C = Cac,bd is simply a reshaped

supercircuit and N ensures normalization. Then we have
S = −Tr [ψC lnψC ]. This entropy measure is a particular
instance of the “exchange entropy”, which characterizes
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FIG. 3. The half-chain channel entanglement entropy S at dif-
ferent two-qubit depolarizing noise strengths p, for a second-
order Trotter supercircuit with Mtrot = 16 and t = 2, for
a M = 4 denoiser. The Trotter circuit is for a Heisenberg
model with PBC of size L = 6. The different curves corre-
spond to the different supercircuits, i.e. the noisy supercir-
cuit, the denoiser, the corresponding denoised supercircuit,
and the noiseless variant.

the information exchange between a quantum system and
its environment [5].

In Fig. 3 we plot the various S for a second-order
Trotter circuit with Mtrot = 16 at t = 2, for a denoiser
with M = 4, both affected by two-qubit depolarizing
noise with p ∈ [10−3, 10−1]. The Trotter circuit is for
a Heisenberg model with L = 6 and PBC. We see that
at large p, the noise destroys entanglement in the noisy
supercircuit, and that the denoiser S increases to correct
for this, such that the denoised supercircuit recovers the
noiseless S.

STACKING DENOISED SUPERCIRCUITS

Here we investigate how denoised supercircuits per-
form upon repeated application. We optimize the de-
noiser for a Trotter supercircuit for a fixed evolution time
t. Then, to reach later times, we stack the denoised su-
percircuit n times to approximate the evolution up to
time nt:

C(nt) ≈
(
D̃(t)C̃(t)

)n
(1)

In Fig. 5 we stack a denoised t = 1 supercircuit up to
n = 20 times and calculate the correlation function, de-
fined in the main text, for the middle site. We consider
Trotter depths Mtrot = 8, 16, 32, 64 and denoiser depths
M = 1, 2, 4, 6, 8, for a L = 14 Heisenberg chain with
p = 0.01 depolarizing two-qubit noise. The noisy results
correspond to M = 0 and the noiseless results to p = 0.
In Fig. 4 we calculate the OTOC, defined in the main
text, with stacked time evolution for a denoised t = 2
supercircuit with Mtrot = 32 and M = 2, stacked up
to ten times. We see that the stacked supercircuit per-
forms very well, and the additional precision obtained by
using deep denoisers (M = 8) pays off for long evolu-
tion times, where we see convergence to the exact result
(black dashed lines in Fig. 5) as a function of M .
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FIG. 4. The out-of-time-ordered correlator Cotoc
i=L/2,j(t) as a

function of the operator position j and stacked time t, for
the infinite temperature initial state, for a denoised second-
order Trotter supercircuit with Trotter depth Mtrot = 32 and
denoiser depth M = 2. It is optimized at t = 2 and stacked
up to ten times. The calculations are for the periodic L = 14
Heisenberg chain that is affected by two-qubit depolarization
with p = 0.01. The denoiser is affected by the same noise.
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FIG. 5. The two-point z-spin correlator Czz
i=L/2,j=L/2(t) of

a spin on the middle site at times 0 and t, for the infinite
temperature initial state, for denoised second-order Trotter
supercircuits that are optimized at evolution time t = 1 and
then stacked up to twenty times. We use Trotter depths
Mtrot = 8, 16, 32, 64 and denoiser depths M = 1, 2, 4, 6, 8.
The calculations were performed for a periodic Heisenberg
model with L = 14 and PBC, affected by two-qubit depo-
larizing noise with strength p = 0.01, which also affects the
denoiser. The non-denoised results are labelled with M = 0,
and the noiseless results with p = 0. The panels are arranged
as Mtrot = 8, 16, 32, 64 for top left, top right, bottom left,
bottom right, respectively.

DISTRIBUTION OF OPTIMIZED ZZ CHANNELS

The costliest and most noise-susceptible operation is
the two-qubit ZZ rotation with angle α, which is the
foundation of the unitary piece in our channel parame-
terization, defined in the main text. For completeness,
we here present the α angles of the optimized denois-
ers. The results are shown in Fig. 6, which contains
histograms for the channel count NG versus α. The his-
tograms are stacked, with the lightest color correspond-
ing to the angles of the denoiser at t = 0.5 and the dark-
est at t = 5. The top four panels are for a denoiser with
M = 2 and the bottom four with M = 8. We consider
Mtrot = 8, 16, 32, 64. We see that in both cases the distri-
bution widens upon increasing Mtrot, indicating that the
unitary channels start deviating more from the identity.
Moreover, while the M = 2 denoisers in all cases except
Mtrot = 64 have ZZ contributions close to the identity,
this is clearly not the case for M = 8.
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FIG. 6. The distribution of the ZZ angle α of M = 2 denoisers
(top panels) and M = 8 denoisers (bottom panels), with the
lightest color corresponding to the denoiser for the Trotter
supercircuit with t = 0.5, and the darkest color with t = 5. As
usual, we consider the Heisenberg model on a periodic chain,
and second-order Trotter supercircuits with depths Mtrot =
8, 16, 32, 64, which together with the denoiser is affected by a
two-qubit depolarizing noise with p = 0.01. The panels are
arranged as Mtrot = 8, 16, 32, 64 for top left, top right, bottom
left, bottom right, respectively.
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SAMPLING OVERHEAD OF OPTIMIZED
DENOISERS

For simplicity, we did not focus on obtaining denoisers
with the smallest sampling overhead γ, which is required
to minimize the sign problem and hence ease the sam-
pling of mitigated quantities. Instead, we let the opti-
mization freely choose the ηi in the denoiser parameter-
ization, as defined in the main text. In Fig. 7 we show
the sampling overhead of the denoisers from Fig. 2 of the
main text. We see that for M = 1 and M = 2 the sam-
pling overhead is relatively small and uniform across the
different t, whereas for M > 2 the optimization some-
times yields a denoiser with large γ and other times with
small γ. This could be related to the difference in α distri-
butions from Fig. 6. The large fluctuations of γ appears
to stem from the difficulty in finding optimal deep de-
noisers, and our optimization procedure likely only finds
a local minimum in these cases.
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FIG. 7. The sampling overhead γ of the optimized denoisers
from Fig. 2 of the main text, with denoiser depths M =
1, 2, 4, 6, 8 and Trotter depths Mtrot = 8, 16, 32, 64 at times
t = 0.5, 1, ..., 5, for the Heisenberg model on a chain with
PBC affected by two-qubit depolarizing noise with p = 0.01.
The panels are arranged as Mtrot = 8, 16, 32, 64 for top left,
top right, bottom left, bottom right, respectively.

DOMAIN WALL MAGNETIZATION

As another test of the denoiser performance we evolve

the periodic z-spin domain wall |dw〉 =
⊗L/2

i=1 |1〉 ⊗⊗L
i=L/2 |0〉 and consider the domain wall magnetization

Zdw(t) =

L∑
i=1

(−1)b2i/Lc〈〈1|(σz
i ⊗1)D̃C̃(t)|dw〉|dw∗〉. (2)

Here C̃(t) is the Trotter supercircuit for time t. In Fig.
8 we show Zdw for the circuits from Fig. 2 of the main
text, calculated for a L = 14 chain. As in our other tests,
we see that at Mtrot = 8 we can recover the noiseless
values already with M = 1, and that increasing Mtrot

makes this more difficult. At Mtrot = 64 we see larger
deviations, and improvement upon increasing M is less
stable, but nevertheless we are able to mitigate errors to
a large extent.
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FIG. 8. The domain wall magnetization Zdw after evolv-
ing a periodic density wall |dw〉|dw∗〉 with the denoised

second-order Trotter supercircuits D̃C̃ from Fig. 2 of the
main text. These supercircuits have various Trotter depths
Mtrot = 8, 16, 32, 64, denoiser depths M = 1, 2, 4, 6, 8, and
evolution times t = 0.5, 1, ..., 5, for the periodic L = 14
Heisenberg chain that is affected by two-qubit depolarizing
noise of strength p = 0.01. The denoiser is affected by the
same noise. The non-denoised results are labelled with M = 0
and the noiseless results with p = 0. The panels are arranged
as Mtrot = 8, 16, 32, 64 for top left, top right, bottom left,
bottom right, respectively. We see that the denoiser allows us
to recover the noiseless behavior.
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