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We investigate for car and component crash tests the comparison of highly
resolved experimental data with corresponding simulation data. Due to re-
cent advances for optical measurement systems, one can nowadays obtain
surface measurement data from a real crash experiment with high resolution
in space and time. These advances call for new data processing methods
that allow an alignment of this experimental data with numerical simulation
results. We propose an approach based on a data representation stemming
from a discrete Laplace—Beltrami operator, which allows such an alignment as
well as a joint visual comparative analysis of both data sources. The method
enables the identification of the best corresponding simulation among several
numerical results, which allows inferring physical quantities that cannot be
measured in experiments. We evaluate the procedure on synthetic and real
experimental data from two different setups.

Keywords: CAE Analysis, Alignment of Experiment and Simulation, Temporal
Coherence, Embedded Deformation.

1 Introduction

Crash tests with prototypes and human-like dummies are carried out in the automotive
industry to investigate the deformation of the vehicle during a crash and its effect on
occupants. Over the last 30 years, computer-aided crash simulations using finite element
methods have become an elementary component in the car development process [32].
Without having to carry out time-consuming and expensive physical crash tests on



prototypes, variations in material properties or geometry of the vehicle components
can be investigated in detail in view of possible effects on the crash behavior. On the
one hand, engineers make such design changes to fulfill safety requirements, while on
the other hand they observe guidelines, including weight, costs, or functional properties.
Nowadays, physical destructive tests are usually only carried out in the late stages of the
development process for verification and regulatory purposes. At this stage, a comparison
of measurements from the physical crash test with the results of numerical simulation
needs to be performed. Here, the simulation data is available in form of function values
on surface meshes, for example, the vertex coordinates or physical values as plastic
strain.

This comparison of experimental and simulation data is typically performed using so-
called coded targets, which are photogrammetric markers that are placed on the surface
of the vehicle and are tracked by cameras [11, 12, 24]. Additionally, before and after the
crash test, the components can be measured in detail.

In recent years new optical measurement systems were introduced that can deliver
3D point cloud measurements with high resolution in space and time [16]. With these
techniques, one can now obtain detailed surface measurement data over time from a
real crash experiment. But, a direct alignment between 3D simulations and 3D data is
not yet possible. The underlying task is the non-rigid alignment of point clouds to a
surface mesh evolving over time with no correspondences. We address these limitations
and propose an approach that allows an alignment of simulation and measurement data
in an entirely new way. Our approach is based on an analytical approach that can
efficiently compare surface mesh data from finite element simulations, introduced in [19].
Here, mesh functions are projected onto the eigenbasis of a discrete Laplace—Beltrami
operator, which results in a form of geometric Fourier analysis and additionally reduces
the dimensionality.

Alignment of measurement and simulation data allows the verification of the quality
of the performed simulations. Our results on two different datasets show that working
in a low-dimensional space stemming from the eigenbasis improves not only the runtime
but also delivers better results. Furthermore, we can jointly visualize experimental and
simulation results in the low-dimensional space. Additionally, from simulation results,
one now can infer physical quantities such as plastic strain or stress for experimental
data, where these quantities cannot be measured in real experiments. The proposed
alignment procedure, therefore, delivers a substantial improvement for the automotive
crashworthiness analysis.

Our contributions can be summarized as a) the introduction of a new approach to
bring experimental point cloud observations in correspondence to meshes originating
from finite element simulations, b) the fast selection of simulation meshes, which match
the experimental observations over time, and, by this means, c¢) enabling the visualization
of both data types in a low-dimensional space.

Further on in section 2, we discuss related work. In section 3, we present the two
different data sources of experimental and simulation data, followed by our proposed
approach to align these two data types in section 4. We present results in section 5.



2 Related Work

2.1 Observation of Experimental Data and Comparison to Simulation Data

In this work we consider the comparison of experimental and simulation data over time
as based on the 3D coordinates of points from the surface of the observed workpieces.
Whereas the 3D coordinates for simulation data are known for all vertices that define the
finite element mesh, during an experiment the 3D coordinates of surface points over time
are calculated using a stereo camera system. Other experimental verification of numerical
crashworthiness simulations is based on measured physical quantities, for example using
absorbed energy and crush force curves [6] or force-displacement curves [25].

In the automotive industry it is common to use photogrammetric markers, also referred
to as coded targets, which are manually placed on the visible surface of the vehicle
[11, 12, 24]. Using a stereo camera system, the markers’ 3D positions over time can
be calculated. When using this small number of manually selected code targets or
photogrammetric markers, their positions are calculated also on the simulation surfaces.
Then, the partial correspondence between the experiment and the simulation surface can
be determined based on those code targets’ positions. Nevertheless, this method only
delivers information about a sparse point set covering visible surface areas. Consequently
critical areas are possibly missing and a detailed alignment is not possible. Additionally,
before and after the crash experiment, the workpieces can be measured in more detail.
Clearly, this cannot capture deformation behavior during the crash.

In our case, we want to align experimental and simulation data without using pho-
togrammetric markers. Instead, we apply the GOBO (GOes Before Optics) method
explained in section 3.1. This allows us to calculate the 3D positions of a dense selection
of points on the whole visible surface including critical deforming areas. Additionally,
the method allows sampling at a higher sampling rate over time [16].

Once the 3D coordinates of the observed areas are known, we want to align the sim-
ulation and experimental data over time. The selected GOBO measurement method
delivers more detailed results than a few hand-selected code targets. Therefore, the
GOBO measurement allows a better comparison of experiments and simulations. Nev-
ertheless, the alignment of experimental and simulation data over time, which we address
in this work, is more challenging because we have to compare dense point clouds and
not only selected targets.

There are existing algorithms to geometrically align three-dimensional point clouds.
A widely used one is the ICP (iterative closest point) algorithm [1, 5, 30]. It requires
an initial estimate of the relative pose and iteratively selects a subset of points in both
sets. One of the subsets is transformed via scaling, rotation, and translation to align
with the other subset by minimizing the distance between the points. Many different
variants exist, where the runtime is generally high for dense data sets. We refer to this
as the ICP based approach and explain it in more detail in section 5.1.



2.2 Computing Temporal Coherence from Point Clouds and Mesh Data

The comparison of data from experiments and simulations in the car design process can
be regarded as a specific application of temporal coherence for point clouds and meshes.
In this context, temporal coherence is the correspondence between deforming meshes
or point clouds over time taking into account that the points vary in location and that
occlusions are also time dependent. The extraction of the temporal dynamics from point
clouds and the representation of this information on a mesh is an active research area
in computer graphics. We can here only refer to a selection of relevant research, see the
respective references for other work.

To establish temporal coherence, correspondences between time steps from a set of
temporal point clouds are necessary. Approaches modeling unknown correspondences are
available. Tracking of surfaces based on non-rigid alignment is possible but difficult, as
it depends on the reference frame and is subject to error accumulation in time, especially
due to correspondence computation under noise and occlusion [33].

A related field for temporal correspondence is the compression of time-varying mesh
sequences of varying topology. Approaches use, for example, a special data structure
over time, such as an octree or a graph [35].

Methodologies from video compression that use motion prediction based on previous
frames extend to geometry processing, e.g., [23]. Extraction of temporal coherence
includes the use of skeletons and decimated frames. Both approaches cannot deal with
the temporal change of occlusions. Other approaches keep track of the volume within
the surface and use energy optimization to keep track of the coherence in time [9, 10].

Bojsen-Hansen et al. [3] tracked the first frame of the sequence using embedded de-
formation graphs. The main problem with this approach as well as functional maps [29]
is that one assumes that the surfaces correspond bijectively and continuously between
frames.

More recent approaches for extracting temporal coherence are based on deep learning.
Those approaches learn a low-dimensional representation of time-dependent structures
while at the same time learning the inter-frame correspondence [34]. Note that deep
learning approaches require a large amount of data, where for virtual car development
and testing the availability of large datasets for training is an unrealistic assumption.

Our goal, guided by the application, goes further than finding the temporal coherence
of a temporal point cloud. We would like to compare different temporal data sets
originating from measurements with the finite element meshes that are obtained by
simulations of the effect of different parameter combinations in the design and which
represent deformations. Also, even if we do rely on correspondence over all timesteps,
this is not computed explicitly but over the temporal coherence of the simulation mesh.

2.3 Dimensionality Reduction for Simulations

Our approach for alignment is based on dimensionality reduction using a specifically
constructed data representation, which reduces runtime and allows further data analysis.
Generally, methods for dimensionality reduction are based on the assumption that high-



dimensional data sets (approximately) have a much lower intrinsic dimension [22]. The
high dimension in this context is the number of points in the cloud n € N.

Different methods have been developed for dimensionality reduction, where principal
component analysis is the linear baseline method [22]. However, nonlinear behavior is
present in the car crash simulation data. Nonlinear dimension reduction methods such as
diffusion maps or t-SNE have been successfully applied to analyze crash simulations and
other engineering data [2, 18, 20, 26, 31]. Nevertheless, these approaches only consider
point clouds and do not use mesh information. Autoencoders [13, 17] are a type of
neural network that calculates low-dimensional representations and has been applied
to the analysis of crash deformation over time, e.g., [14]. Nevertheless, the number of
samples has to be very high for successful training of the neural network.

In [19], a geometrical method for low-dimensional representations of functions on
simulation meshes was introduced, which shows good results in the analysis of bundles of
finite element mesh simulations. In [7, 8] a geometry-driven data simplification together
with linear dimensionality reduction was proposed for data analysis and rule-finding.

3 Experimental and Simulation Data

The two considered data sources of experiments and simulations result in different data
representations. From an optical measurement system, we obtain a time series of 3D
point clouds for each physical crash experiment. Additionally, we have a set of numerical
simulation results, where each sample is a possibly deformed finite element mesh at a
specific timestep encoding the computed deformation.

3.1 Measurement Data from Physical Crash Experiments

To measure the deformation of a 3D structure, we employ a novel GOBO projection-
based high-speed measurement technique introduced in [16], which is based on the pat-
tern switching principle. A (GOes Before Optics) GOBO projector consists of a light
source, a light collector, the GOBO itself made of steel, and an imaging optical system.
The setup from [16] utilizes a metal-halide lamp, an ellipsoidal reflector as a light collec-
tor, and a two-lens zoom camera system. By moving the GOBO a switching geometric
pattern is projected to the observed 3D structure. Using the known positions of the
stereo high-speed video cameras, one can calculate the 3D coordinates of the surface at
many visible points from the two camera images [16]. This novel measurement method
was developed to allow an analysis of fast processes. Therefore, it can be applied to
measure the deformation of structures in a real crash experiment.

The positions of the cameras allow the measurement of a dense set of 3D points
covering parts of the upper beam of our employed test structure. Because some areas
might be occluded and the deformation changes the size of the scanned surface, the
resulting point clouds are of different sizes and there is no correspondence or tracking
of the points over time. We will refer to the resulting data set as F,,s. An exemplary
point cloud from E,;s obtained from the optical measurement system is shown for the
employed test structure in Figure 1 (left).



Figure 1: Data sources. Left: The real experiment is observed by a stereo camera system
that outputs a dense point cloud registering visible areas. Right: A finite-
element model of the test structure and the extracted beam for the analysis.
For the alignment of simulation results and experimental data, we consider the
visible two sides of the front beam, which is indicated by a rectangular frame.

We would like to stress that the extra quality obtained by the GOBO measurement
system due to a highly detailed time and space resolution, results in challenging data
processing. The mesh that can be created from such a dense point cloud is very fine
and the processing is costly and time-consuming. Down-sampling the data is a possible
approach, but then details are lost. In any case, the data between timesteps is not in
correspondence so analyzing temporal coherence, meaning the temporal dynamics of the
crash process, is not feasible. This is also due to occlusions as the camera focuses only on
a part of the geometry that changes in time, which is observed from only one viewpoint.

3.2 Simulation Data from Virtual Crash Experiments

Simulation results for virtual crash experiments are represented as surface meshes in the
three-dimensional space. Based on the test structure an initial mesh is generated by an
engineer and used for the actual numerical simulation. The deformation of the parts is
simulated using the finite element method [27], where sophisticated commercial solvers
are available. One obtains a sequence of deforming meshes S,,s. The initial surface
mesh for the crash simulations Syps is shown for the employed test structure in Figure 1
(right).

Note that some mesh elements might be removed during the simulation by the numer-
ical solver, often called failed elements. Therefore, although in principle the mesh is the
same for the whole simulation, the number of nodes might differ slightly. Nevertheless,
the meshes can be easily kept in correspondence, for example by reducing them to the
common nodes and elements.
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Figure 2: Considered areas of experimental data.

4 Method: Alignment of Experimental and Simulation Data

We now aim to align the experimental observations Es (3D point clouds) to simulation
results from Syps (surface meshes) over time.

4.1 Preprocessing

The simulation results S, and the observations of real experiments F,s are obtained by
different methods, which lead to highly different data structures, see the previous section
3. Although the simulation results and experimental data represent the same deforming
structure, we note that we require preprocessing for a comparison. The preprocessing
establishes a projection of the data to a data representation that allows the comparison
using dimensionality reduction. In particular, we need to establish vertex-to-point cor-
respondence to a reference simulation sim,..; for all simulations in Sy, and experiments
in E.s. This will lead to two sets S and F containing point clouds of the same size n.

As part of the preprocessing, we identify the region captured by the optical device
and take the corresponding one from the mesh in a way that both represent a similar
area of the component. For example, surfaces of the component that are occluded in the
experiment setup will be excluded from the surface mesh, as well as points of the point
clouds that represent background or other components, see Figure 2.

The steps to establish the vertex-to-point correspondence can be structured into three
and are visualized by the flow chart in Figure 3 and the plots in Figure 4.

1. Rigid transformation: The coordinate systems, in which the experimental data
exp € Eys and simulation results sim € S, are represented, do not necessarily
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Figure 3: Preprocessing steps to create the vertex-to-point correspondence between sim-
ulation results and experimental data and the steps of the method LBEA
(Laplace Beltrami Eigen Alignment) to align the data over time. The VtP
(Vertex-to-Point) approach compares the subsampled samples in S and E.
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Figure 4: Vertex-to-point correspondence of simulation results and experimental data to
the reference mesh sim,.; for dataset C-STRUCTURE. Since the experiment
and the simulations are not aligned over time, the correspondence is to the
undeformed mesh at ¢t = 0.

coincide. We transform the simulation data, by applying a basis change that
is calculated using the camera angle and distance as employed for the GOBO
measurements. The experimental data Eqs and simulation data S!, = are then
represented in the same coordinate system, see Figure 1.

2. Select a reference simulation sim,..s: This step is necessary to establish vertex-
to-point correspondence for all simulations sim € S!, - and experiments exp € Eops.
In particular, for the experimental data this is not given due to occlusions and de-
formations. Additionally, the visible area changes during deformation, which leads
to a different size of the point clouds. The vertex-to-point correspondence is nec-
essary to allow successful comparison of simulation results and experimental data,
as well as the application of dimensionality reduction. There are two approaches
to align the data into vertex-to-point correspondence:

a) We chose a non-deformed mesh of a random simulation at the impact time as
the reference simulation sim,.;. The impact time is the time step when the
car or crash structure hits the barrier. All timesteps are therefore mapped to
the same timestep.

b) In case experiments and simulations are sampled along the same time scale, we
chose a random reference simulation sim,..y and establish the correspondence
to the simulation mesh at the corresponding timestep t¢.



If we consider only one timestep as in 2 a), the error in the alignment rises over
time, because the translation and the increasing deformation lead to a lower quality
of the correspondence. This effect is reduced by establishing the correspondence
to the corresponding timestep as in 2 b).

3. Establish the vertex-to-point correspondence: We establish the vertex-to-
point correspondence based on comparison to the reference simulation sim..
For all experiments exp € F,s the algorithm finds the nearest point in exp to
each of the vertices of the reference simulation sim,.s. The selected points of exp
describe the new representation for the experimental samples. The same procedure
is applied to all simulations sim in S,  (after the basis change). This way, all
experiments and simulations are represented by n 3D coordinates (the number of
vertices of sim,.r) and the vertex-to-point correspondence to the mesh of sim.s
is established. Therefore, all samples are represented by a surface mesh. We call

the resulting sets F and S.

All samples from the preprocessed sets E and S are now in vertex-to-point correspon-
dence to the mesh of sim,.r, see some examples in Figure 4. Note that more than one
vertex of sim,.; can be in correspondence to a given point of the sample.

4.2 Alignment over time

The presented preprocessing routine establishes the vertex-to-point correspondence from
the reference simulation mesh sim,.; to both, the simulation meshes and experimental
data obtained from the 3D measurement method. Therefore, all simulation results in
S and experiment results in E are point clouds of size n (n € N), and the data can be
interpreted as a function on the mesh of the reference simulation sim,.y.

We investigate two approaches for an alignment over time, called VtP (Vertex-to-
Point) and LBEA (Laplace Beltrami Eigen Alignment), respectively. For any experi-
mental data in F, we look for the closest mesh in S, which consists of all time steps of
all simulations.

4.2.1 Vertex-to-Point (VtP)

Given the vertex-to-point correspondence from section 4.1, each vertex of the mesh is
associated with one point of each point cloud. Thereby, the experiment point clouds in
E are in correspondence to the simulation meshes in S and we can calculate a distance
between the experimental and simulation data on the meshes. This distance is calculated
as the average distance between the positions of the corresponding vertices of the mesh.
After calculating the pair-wise distances between all experiments and simulations, we
define the best match by the experiment-simulation pair with minimum distance:

n
s* = argminz lle; — sill2, (1)
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where e; and s; are the 3D coordinates for vertex i of the considered experimental or
simulation data. We refer to this approach as Vertex-to-Point (VtP).

4.2.2 Laplace Beltrami Eigen Alignment (LBEA)

The second approach is based on the representation derived from a discrete Laplace-
Beltrami operator, following [19]. Here, a function f given on the mesh vertices can be
represented by the eigenvectors {1; }§:1 of this operator:

p
F=Y o5y, a5 =(f,1). (2)
j=1

We use the p eigenvectors associated to the p largest eigenvalues, in descending order.
All the considered functions are thereby projected into a low-dimensional space of p
dimension, where the analysis takes place. The eigenvectors can be understood as repre-
senting elementary components of the mesh’s deformation behavior. For more details see
[19]. In our case of 3D coordinates, we have three functions per simulation and timestep
to consider, i.e. separate functions for z,y, z.

The theoretical background of the approach requires that the data samples are rep-
resented on meshes that are invariant to approximately isometric transformations, in
this case, deformations that preserve distances on the surface. If the data fulfills the
requirements, the method can represent mesh functions from all timesteps of the sim-
ulation using one eigenbasis. Note that the data after vertex-to-point correspondence
fulfills this assumption, because the deformation information is mapped to one reference
simulation mesh sim,.y. On the other hand, a point can be assigned to several vertices
of the reference mesh, which means that isometric transformations in the original data
are not preserved in this preprocessing step. Nevertheless, the alignment procedure still
works, since experimental and simulated data are processed in the same fashion.

The proposed approach based on a comparison in low dimensions has the advantages
of robust results and low runtime. Furthermore, the representation allows identifying
the importance of features, which allows further analysis of the deformation behavior.

Now, the alignment can be calculated by the following steps, see also Figure 3:

1. We calculate the eigenvector basis V for the mesh of the reference simulation
simyefr € S based on its discrete Laplace-Beltrami operator. Since all samples in S
and F are in vertex-to-point correspondence to the reference simulation mesh, the
eigenvector basis can be used to represent all samples. To reduce the dimension
we chose the first p < n eigenvectors resulting in the eigenvector basis V,,. For our
experiments we chose p = 100.

2. Now, the low-dimensional representations for all sim € S are obtained by projec-
tion to the basis V,,. The resulting vectors are of size p < n for each of the z,y, and
z coordinates and we refer to the set containing the low-dimensional representation
of the simulations as Spyq;.
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3. Since the experimental data in F is also in vertex-to-point correspondence to
the reference simulation sim,..; we can project the experiment sample exp € E,
whose best matching simulation result we want to find, to the basis V), of the
low-dimensional space. We refer to the set containing the low-dimensional repre-
sentation of the experiments as Ep.;.

4. For the projected experiment sample exp,.,; we can determine the best matching
simulation by calculating the nearest neighbor of expy.o; in Spro):

p
s* = argmin » _|[lej — 52, (3)

5C€proj j=1

where e; and s; are the respective 3 spectral coordinates «; from (2) for the z,y, 2
functions for the experiment sample exp,;,; or simulation sample from Sp;..;.

We refer to this approach, which selects the nearest neighbor of the projected experi-
ment point cloud exppro; € Eproj in the low-dimensional space containing the simulation
data Sp.j, as LBEA (Laplace Beltrami Eigen Alignment).

4.3 Runtime Comparison

The method LBEA has two components, for which the runtime can be determined
separately. The first step includes the eigenvector calculation resulting in the basis V),
and the projection of the simulation data S to Sp.,; using the basis V,,. Afterward, the
nearest neighbors in Sp,,; for the projected experimental data are determined.

For an alignment in the high-dimensional spaces S and F, the eigenvectors are not cal-
culated, nevertheless, the nearest neighbor search of the method Vertex-to-Point (VtP)
is more costly since the point clouds in S and E are of size n.

For the runtime of the nearest neighbor search in the approach VtP, let s be the
cardinality of the set of simulations S. The best high-dimensional match to experiment
sample exp € E is defined as the nearest neighbor of exp in the set of simulations .S.

The runtime for the nearest neighbor search for the samples of size n is s-O(n) for the
distance calculation, which can be done in linear time, plus O(s) for finding the sample
with minimum distance. Therefore, the total runtime for the approach VtP is

s-O(n)+ O(s)

for one nearest neighbor search in the high-dimensional space S.
If we reduce the dimensionality to p < n by projecting to the basis V), the runtime
for the approach LBEA reduces to

O(n)+s-0(p)+ O(s)

for the projection to the basis V,, and one nearest neighbor search in the low-dimensional
space Sprq;. Computing the first p eigenvectors of the Laplace-Beltrami operator is done
only once and achieved with complexity [21]
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O(p - n*log(n)).

Generally, the projection to the eigenvector basis V), reduces the number of coordinates
to less than 10% of the original number n. Therefore, especially if we have to compare
to a high number of samples in S, the extra effort of computing the eigenvectors and
the projection is easily compensated.

4.4 Postprocessing of the Alignment

Additionally, the approach LBEA allows us to jointly visualize the behavior of experi-
ments and simulations for further data analysis. We consider the sets of the projected
samples Sp.o; and

Eproj = {expproj| for all exp € E}.

The low-dimensional embedding corresponds to the projection of the data to a small
eigenvector-basis (up to 3 vectors to be able to visualize the result). We typically chose
the three eigenvectors from the basis V), with the highest variance computed for all the
samples as proposed in [19].

In the low-dimensional embedding, we expect similar deformation patterns to be lo-
cated in the same cluster. This way many coarse patterns in the deformation behavior
of the simulations and experimental data can be visualized.

Non-observable physical functions for example plastic strain or stress cannot be mea-
sured during real experiments, whereas for finite element simulation these functions are
calculated over time. Our alignment of simulations and experiments over time allows a
projection of the simulation’s physical quantities to the experiment and gives an estimate
of quantities, that cannot be measured. We refer to this projection of non-observable
physical quantities from simulations to experimental results as indirect inference.

5 Results

We investigate the alignment between simulation results and experimental observations
over time on synthetic and real experimental data, where the synthetic experimental
observations are generated with a simulated light detection and ranging (LiDAR) sensor
[4]. Both datasets contain simulation meshes (Syps) and point clouds (Eys) at different
timesteps. To evaluate the results we have a detailed look at the best matches obtained
from different approaches for the synthetic and real experimental data. We are com-
paring against a baseline method, which is based on the ICP (iterative closest point)
algorithm. Additionally, we compare the runtimes and in particular analyze the joint
low-dimensional visualizations that the LBEA approach provides.

5.1 Iterative Closest Point

Iterative closest point (ICP) is an algorithm that aligns two point sets [1, 5, 30]. It
assumes that the two point clouds are similar and are sampled from the same object. In
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comparison to the methods VtP and LBEA, the algorithm does not require an established
correspondence between the sets, because itself iteratively creates this.

For a selected exp € Eqps, we apply ICP to the pairs (exp, sim) for all sim € S/, .
From the meshes in S/, , we only consider the mesh’s vertex coordinates, because the
ICP algorithm handles point clouds. The ICP algorithm iterates the following two steps
to align the two point clouds exp and sim:

(i) given a rigid transformation, find the closest point in sim for every point in exp

(ii) given the correspondence calculated in (i), calculate the rigid transform between
the two sets by minimizing the distances between the corresponding points. This
is achieved by solving a least-squares problem.

This is iterated for a maximum of 30 iterations. The simulation sim with the smallest
final error in step (ii) of the last iteration of ICP is considered the best match since the
deformation described by the two point clouds is then similar.

Note that in step (i) of each iteration the point-wise distances between all points in
both point clouds have to be calculated. The point clouds in F,,s contain between 16,000
and 62,000 points for the real experimental dataset and between 15,800 and 25,000 points
for the synthetic experimental dataset.

It is possible to apply ICP to a random subsample of points from exp to reduce the
runtime. But this means that the result is not deterministic anymore. Also, the quality
of the registrations decreases with a decreasing number of subsampled points because of
outliers. Therefore, down-sampling of the point clouds is not necessarily a solution as
information is lost.

5.2 Measuring the Error

For the synthetic experimental data, we can compare the result of the alignment to
the ground truth. To quantify this, we calculate an error between the simulation mesh
s* € Syps that the algorithm identifies as the best match to the selected experiment exp €
FEops, and the simulation mesh s corresponding to the synthetic LIDAR observation exp,
i.e. using the original simulation meshes before the LiDAR processing. The error is the
average Fuclidean distance between the corresponding vertices of the two meshes in mm:

* 1 - *
EE(s%,s") = n Z s — 8512, (4)
=1

where s§ and s] are the 3D coordinates for vertex ¢ of the respective experimental and
simulation data.

For the real experimental data, the point clouds in F,;s have no corresponding simu-
lation meshes. Therefore, we cannot calculate a Euclidean error to a ground truth mesh.
The matching results of different alignment methods have to be compared visually. The
visual comparison takes place not only in the high-dimensional space by comparing the
experiment point clouds to the matched simulation meshes, but, in the case of the LBEA
approach, also in the low-dimensional space.
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Figure 5: Simulation mesh of the left front beam of the TRUCK model at impact time
in the undeformed state (left) and in a deformed state after approximately
one-third of the simulation time.

Figure 6: Simulated LiDAR observation of the left front beam (TRUCK dataset) from a
laser. Left: the view of the simulated LiDAR laser. Right: View as in Figure
5. Notice that some areas are not scanned due to occlusion.

5.3 TRUCK - Synthetic Experimental Data

The simulation dataset S, contains simulation meshes of a left front beam that deforms
over time, see Figure 5. We artificially create the synthetic experimental observations
Eys by applying a simulated LiDAR sensor [4] to 50 simulations, see Figure 6. Since
the experimental data is created artificially based on simulation results, we can measure
a true error and use (4) for that.

We use frontal crash simulations of a Chevrolet C2500 pick-up truck (from NCAC
[28]), where material characteristics were changed, which is a setup similar to [2]. Each
simulation result has 100 equally distributed timesteps, of which we chose every second
timestep. As the impact time, we identify timestep t = 19, at which we start our
alignment. For our analysis, we chose the left front beam. Figure 5 illustrates an
undeformed beam at the impact time and a deformed beam. To create the two sets
we randomly assigned 150 completed simulations to either Syps or Eopg, such that Seps
contains 100 and E, s 50 samples. This data will be made available after acceptance of
the article.

For the TRUCK dataset, when calculating the vertex-to-point correspondence we
consider both approaches for selecting sim,..r, because we know the respective timesteps
for all experimental and simulation data:

1. sim;.s is one simulation over time since the experimental and simulation data are
aligned over time. For every timestep, we then establish the correspondence to the
corresponding timestep from sim,.y.

2. simyey is one reference simulation mesh at impact time ¢ = 19.

For the three methods, Table 1 shows the Euclidean errors in mm between the iden-
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simr.y at impact time $imyoy over time
Method VtP LBEA VtP LBEA ICP*
Mean EE (mm) 10.01 9.71 9.01 8.64 13.13
Median EE (mm) 9.67 9.70 10.06 8.70 10.38
Perfect match possible
Mean EE (mm) 4.03 3.79 2.69 2.46 -
Median EE (mm) 1.88 2.10 2.35 1.65 -

Table 1: On the top mean and median of the average Euclidean errors (EE), in mm, per
experiment over time for the TRUCK dataset for unseen data. Since the exper-
imental data is synthetic, we can calculate the distance between the matched
simulation and the ground truth. Under perfect match possible we show results
for experimental observations that are included in the simulation data.

*For the ICP based approach, the errors are calculated for only two experiments
because of the high runtime.

tified best matches and the ground truth simulation meshes. We first average the Eu-
clidean errors per experiment over time and then take the mean and median over the 50
experiments. The errors between best match and true mesh obtained with our approach
LBEA are slightly lower compared to the error of the VtP approach. Additionally, the
LBEA approach has a lower runtime. The ICP based approach is not able to match the
selected experimental observations to the simulation meshes in a satisfying way.

Figure 7 visualizes where the ICP based approach fails in comparison to our alignment
approaches VtP and LBEA. For the ICP alignments, also undeformed areas of the com-
ponents are not well aligned, which leads to a higher alignment Euclidean error. The
best matches from our approaches VtP and LBEA align well in most of the areas of the
component. In some cases, the aligned mesh is tilted towards the end of the component.

The errors must be strictly larger than zero because the ground truth meshes of the
experimental data F, are not included in the simulation data S,;s. Consequently,
selecting the ground truth mesh, which would produce an error of zero, is not possible.

Therefore, we consider a second experiment dataset containing 25 experiments, where
the underlying simulation meshes to the experimental observations are included in the
simulation data, see Table 1 (Perfect match possible). If for all the samples the ground
truth meshes were selected as the best match, the errors would be zero. Because the
synthetic LIDAR observations miss occluded areas (Figure 6) and the samples are aligned
in the low-dimensional space, not for every sample the best match is found. This suggests
that more sophisticated preprocessing steps could further improve the results. Note, the
results with our LBEA approach are still better compared to the VtP results.

When selecting a simulation sim,.; over time, the results are only slightly better in
comparison to those when selecting an undeformed simulation mesh at the impact time.
Especially the error in later timesteps is similar, as the curves in Figure 8 for a reference
simulation sim,..; over time for a reference simulation at the impact time show.

If we select an undeformed simulation mesh at the impact time as sim,..y, we observe
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Figure 8: Euclidean errors (EE) in mm over time for the TRUCK dataset, when se-
lecting a reference simulation sim,.; over time or at impact time for the two
approaches VtP and LBEA. The errors are calculated for the two different
branches corresponding to different deformation patterns. Note that the align-
ment error is lower for the pattern, in which the reference simulation deforms.

outliers for errors in early timesteps. This is due to the translation of the meshes,
which is the highest in the early timesteps. If the meshes are matched to a slightly
translated mesh, the deformation might be similar, but the vertex-wise errors increase
because of the translation. For later timesteps, the two ways of selecting the reference
simulation sim,.y lead to similar errors. This means, that if experimental observations
and simulations are not aligned over time, the methods LBEA and VtP are still able to
find a corresponding deformed simulation mesh to each experimental observation.

One can observe that the left front beam of the TRUCK deforms in two different
branches [2, 15], depending on the material characteristics. The reference simulation
simyf is from the second branch. Therefore, the alignment error for experiments from
the second branch is also somewhat lower than for the other branch, see Figure 8.

5.4 C-STRUCTURE - Real Experimental Data

A generic crash structure was designed that shows deformation behavior typical during
a crash test. It is inspired by the front part of a car and based on crash structures cur-
rently used in automotive engineering. During the crash, the kinetic energy is absorbed
by buckling. This deformation is characterized by statistically strongly different defor-
mation behavior during a front crash under identical test conditions due to different weld
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Figure 9: Generation of the real experimental data. The crash structure’s spot weld
thickness is varied for the different experiments. The deformation in the upper
part of the structure will be analyzed (the area that is marked by an ellipse).
The arrow indicates the direction of the load.

seams or heat-effected zones. The crash structure was hand-welded out of aluminum.

The structure gets under load by an accelerated mass simulating a front crash, see
Figure 9. The deformation behavior is observed in a real experiment using the GOBO
3D measurement method [16] and using numerical simulations. The buckling behavior
can be observed in the beams, which are highlighted in Figure 9. The measurement data
from the real experiment consists of a dense point cloud of 42 observed timesteps.

The structure and its characteristics are represented in a finite element mesh. Since
the deformation behavior has proven to be dependent on the spot weld thickness, this pa-
rameter has been randomly chosen, creating different setups for the simulation. We refer
to the resulting meshes as S5, which contains a mesh for 46 simulations at 61 timesteps.
Note that the experiments and simulations are not synchronized along the time scale.
While in the course of the original research several experiments were performed, we focus
on one to illustrate our approach for comparing simulation and experiment.

As mentioned in section 5.2, the error between the best match in S35 and the experi-
ment exp € Eys cannot be measured, because there is no ground truth for the real data.
Therefore, we evaluate the quality of the approaches using visualizations of the results in
Figure 10. For the selected examples we can observe that the ICP based approach seems
to focus on the non-deformed areas of the beam, which leads to suboptimal alignment
results. For example, the timesteps that are selected as the best match are from earlier
in the simulation (see ¢t = 10, 13), or the best match manifests a different deformation
pattern (see t = 10).

At the same time, however, the alignment approach VtP after establishing the vertex-
to-point correspondence and the LBEA approach in the low-dimensional space success-
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Figure 10: Visualization of the alignment using ICP, VtP, and LBEA on the real observed
data E,ps from the C-STRUCTURE dataset. The alignment fails when using
the ICP based approach, whereas the results from the LBEA and VtP are
similarly good.
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Figure 11: Indirect inference of physical quantities. Left: Point cloud of the real experi-
ment. Right: The finite-element model of the test structure that best fits the
experiment. We show the values of the plastic strain on the mesh.

fully align experiments and simulations given the location of the buckling on the beam.
The results of the two methods VtP and LBEA are very similar. For the 42 timesteps of
the experiment in E,, 25 are matched to the same simulation in S,,s. The differences
in the matching are similar to the ones at ¢ = 13 visualized in Figure 10.

As outlined, such an alignment to a simulation allows the indirect inference of quan-
tities, available in the simulation, that cannot be measured in the experiment. This
allows further insight into the experiment. As an example, Figure 11 shows the indirect
inference of the maximal plastic strain from the simulation matching the experiment.

5.5 Runtime

In Table 2 the runtimes are specified for the three different alignment methods applied to
both datasets. We separate the measurements into preprocessing and the actual align-
ment. The preprocessing is necessary for establishing the vertex-to-point correspondence
for the approaches VtP and LBEA. Additionally, for the latter, the eigenbasis is calcu-
lated and the data is projected to the basis V.

Although the preprocessing takes additional time, the total runtime of preprocessing
plus the alignment for the LBEA approach is reduced to approximately half in compari-
son to VtP. At the same time, the results are of the same quality as before the dimension
reduction. The runtime of the alignment depends on the size of the data samples and
this size is reduced from the number of vertices in the reference mesh sim,..; for VtP
to the number of eigenvectors p for LBEA. Notice that the larger the datasets E and
S, the bigger is also the runtime advantage of the low-dimensional comparison LBEA
compared to VtP.

The calculation of the best matches applying the ICP based approach takes hours for

21



Preprocessing Alignment
Data Method | Correspondence | Calculation of | Alignment Total
t0 8iMpey and projection | of samples
to basis V), in Eops
ICP - - >10h >10h
C-STRUCTURE | VtP 5 sec - 17 sec 22 sec
LBEA 5 sec 0.5 sec 5 sec 11 sec
ICP - - > 40 days* > 40 days*
TRUCK VtP 15 sec - 1257 sec 21.2 min
LBEA 15 sec 0.5 + 1 sec 496 sec 8.5 min

Table 2: Average runtimes for the three alignment methods for all experiments from the
C-STRUCTURE (1 experiment and 46 simulations a 61 timesteps in Eys and
Sobs) and TRUCK (50 experiments and 100 simulations a 41 timesteps in Eyps
and Syps) datasets.
*: For the application of the ICP based approach to the TRUCK dataset, the
runtime has been estimated based on the alignment of two experiments, because
of the high runtime.

the C-STRUCTURE dataset. The application of ICP is not feasible for the full TRUCK
dataset, the runtimes have been extrapolated based on two experiments for it to be more
than a month.

5.6 Joint Low-dimensional Visualization of Simulations and Experiments

The alignment with the LBEA approach is based on a decomposition of the deformation
behavior into elementary components. This allows a joint visualization of an experiment
together with the simulations in a low-dimensional space, as shown in Figure 12. Each
point of the 3D scatter plot represents a simulation at a certain time step. The points
that are bigger in size correspond to the most similar mesh to the experimental data
as calculated by the LBEA approach. In this way, experiment and simulation data are
shown jointly.

As time advances, the points follow curves that start at the bottom and end at the
top of the 3D scatter plot. We clearly observe two different patterns in the deformation
behavior: the right side corresponds to deformations starting in the upper area of the
beam, whereas the left side corresponds to those starting in the lower area. Furthermore,
one can also observe that the deformation branch, to which the simulation belongs,
depends on specific parameter ranges. Values of the weld thickness greater than two
seem to correspond to simulations on the left, while values lower than two correspond to
the ones on the right. This shows that the LB-based approach allows in addition to the
alignment also an effective analysis of ensembles of numerical simulations, as originally
proposed in [19], with or without experimental data.
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Figure 12: Embedding of 46 simulations at 60 timesteps and the matched results for the
real crash experiment. We use the three Laplace-Beltrami coefficients with the
highest variance, which are all for the coordinate function in the direction of
the crash. The experimental data, marked by the bigger points, is following
the left branch. The color of the points, range on the left, corresponds to
the changed input parameter, which is the thickness of the welding. We
exemplary show the part that differs between the simulations. The color
on the meshes, range on the right, represents the difference to the selected
reference, shown at the bottom.
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6 Conclusion

As we have seen, our novel Laplace Beltrami Eigen Alignment (LBEA) determines a
correspondence between highly resolved optical experimental observations, stemming
from a GOBO method [16], and a match from a simulation ensemble. In particular, it
allows a joint comparison and visualization in a low-dimensional space. This results in an
intuitive overview of the parameter-dependent behavior in a collision for experimental
data and many simulation results. Usage of said methods for industrial applications
promises very relevant results for the engineering practice.

In the considered examples the arising more global behavioral changes were investi-
gated to show the potential of the approach. For future work, it would be interesting
to explore up to which small scale and fine detail such matches are possible and what
kind of insight into the experiment they could allow, e.g. by indirect inference. Different
preprocessing approaches might be needed for this, which could also improve the overall
quality of the alignment procedure. Furthermore, instead of looking for an existing sim-
ulation, one could aim to find the best possible simulation via the small LB eigenbasis,
by means of an interpolation in the low-dimensional space. Here, one assumes that the
LB eigenbasis represents the simulation manifold in a reasonable fashion and that the
modelling of the component by the employed simulation mesh is suitable. This could al-
low an estimation of the gap between the best matching simulation and the best possible
simulation. Future research could also explore the analysis of components that are not
visible by a LiDAR sensor or the GOBO method, since they are not in the field of vision
or covered by other components, which is another application of indirect inference.
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