
Deep Representation Learning for Analyzing
Financial and Cybersecurity Data

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
David Biesner

aus
Düsseldorf

Bonn, 2023

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Christian Bauckhage
2. Gutachter: Prof. Dr. Stefan Wrobel

Tag der Promotion: 25.04.2024
Erscheinungsjahr: 2024

Abstract

Recent years have shown a surge in the capability of deep learning models for various domains of interest
and different types of data. Machine learning models are now capable of understanding, categorizing and
generating unstructured data on par with or even surpassing human performance. While many tasks requiring
human intelligence and expertise are still out of reach for machine learning models, these systems have the
potential to automate tasks that require a large amount of manual work by human experts. In this thesis, we
will investigate the application of machine learning models in the financial auditing process and in the field
of cybersecurity, with data primarily consisting of unstructured text data and numerical tabular data.

Take for example the financial auditing process, in which expert auditors are required to manually check the
compliance of financial reports with accounting standards. The process of handling the text documents and
finding relevant information in the reports is time-consuming and prone to errors. Machine learning models
have the potential to significantly reduce the amount of manual work required by auditors by automating
repetitive tasks and providing a first pass of the data to the human expert.

When working with textual data, one of the most important aspects of any machine learning model is the
representation of the data. Text data is inherently unstructured and difficult to process for machine learning
models due to its high dimensionality and discrete nature. To address this issue, we transform the data into a
lower-dimensional continuous vector space, a process that requires a model to learn a useful representation
of the data. We call this process representation learning. Having learned a useful representation of the
data, we can apply various machine learning models to the data for a variety of tasks in a flexible manner,
meaning we can use the same learned representation for different tasks.

In this thesis, we will show how neural networks are able to learn a useful representation of data and how
this representation can be used to reduce the need for manual work by human experts significantly. We will
further show how representations with meaningful geometric properties allow for the generation of new data
beyond the capabilities of classical generation algorithms.

We first discuss a method for extraction of interpretable word embeddings from a corpus of text data,
based on a matrix factorization approach which is novel for the field of natural language processing. We
demonstrate how the resulting word embeddings are able to capture semantic relationships between words
and are interpretable in the sense that a word embedding is given as a combination of a number of topics
extracted from the corpus.

We then discuss the application of neural networks for named entity recognition and anonymization of
financial report data. We analyze the limitations of word embedding methods and propose the application of
character-based recurrent neural networks for sequence tagging tasks. We show that the use of these models
allows for anonymization of free-form text data without the need for a fixed vocabulary.

Following this, we introduce transformer architectures, which have shown great potential for a variety
of natural language processing tasks in recent years. We apply a transformer-based architecture for textual
matching in financial report data. We show that the embeddings generated by transformer-based language
models are expressive enough to be used in a textual similarity matching task without any additional classi-

iii

fication layers.
For the second field of applications, we discuss the use of deep representation learning for password recov-

ery, in which we aim to generate a large number of novel and realistic password strings based on a given train-
ing set. We first show that variational autoencoders and generative transformer architectures can generate
passwords of significantly higher quality than previous deep-learning-based approaches and consequently,
demonstrate how a novel architecture combining generative transformers and variational autoencoders can
increase the generation quality above the performance of the individual architectures.

Finally, we consider a further application in the field of automated auditing and describe a method for
consistency checks for numerical tables in financial reports. Given a table in a text document, we apply binary
optimization on Hopfield networks to check the validity of sums in the table. We show that this approach
consistently solves binary optimization problems in public financial reports and discuss the potential of
running the algorithm on specialized quantum hardware.

iv

Acknowledgements

I would like to express my deep gratitude to everyone who has supported me during my time as PhD student
and in the writing of this thesis.

A special thanks to my professor and advisor Christian Bauckhage for his invaluable guidance and expert-
ise. I am also thankful to Rafet Sifa for his constant support, his advise, his supply of new ideas for research
and industry projects, and his feedback on the thesis itself. Additionally, I extend my appreciation to all of
my co-authors for their collaboration and their contribution to our joint research. Their collective efforts
have significantly enhanced the quality and impact of this thesis.

v

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of the Thesis . 5

2 Applications in Finance and Cybersecurity 6
2.1 Auditing and Financial Data Analysis . 6
2.2 Text Generation for Cybersecurity – Password Recovery 10

3 Representation Modeling 14
3.1 Embedding and Classification . 14

3.1.1 Topic Modeling . 15
3.1.2 Text Matching . 15
3.1.3 Sequence Classification and Named Entity Recognition 15
3.1.4 Word Embeddings . 16
3.1.5 Recurrent Neural Networks . 19
3.1.6 Transformers . 20
3.1.7 BERT . 20

3.2 Generative Models . 21
3.2.1 GANs . 22
3.2.2 Variational Autoencoders . 23
3.2.3 Latent Space Geometry for Text Generation . 24
3.2.4 GPT and GPT2 . 25

3.3 Tokenization . 26
3.4 Transfer Learning . 28
3.5 Binary Optimization and Hopfield Networks . 28

4 Interpretable Topic Extraction and Word Embedding Learning Using Non-Negative Tensor DEDICOM 30

5 Anonymization of German Financial Documents using Neural Network-based Language Models
with Contextual Word Representations 32

6 Zero-Shot Text Matching for Automated Auditing using Sentence Transformers 35

7 Advances in Password Recovery Using Generative Deep Learning Techniques 37

vi

8 Combining Variational Autoencoders and Transformer Language Models for Improved Password
Generation 39

9 Solving Subset Sum Problems using Quantum Inspired Optimization Algorithms with Applications
in Auditing and Financial Data Analysis 41

10 Conclusion and Future Work 43
10.1 Summary of Results . 43
10.2 Large Language Models . 44

Bibliography 48

List of Figures 56

vii

CHAPTER 1

Introduction

In this thesis, we investigate the evolution of neural networks for representation learning, mainly in the
field of natural language processing (NLP). We demonstrate how developments in model architectures, from
comparatively simple word embeddings to deep neural networks with large parameter counts, help to solve
increasingly complex NLP-related tasks, such as named entity recognition, text matching and text generation.
We focus the applications on the domains of financial text data, analyzing financial report texts to aid the
development of automated auditing systems, and text data related to cybersecurity, applying text generation
algorithms to password data. We further give an outlook on the application of neural networks on financial
data beyond NLP, namely binary optimization algorithms using recurrent neural networks for numerical
consistency checks in financial reports.

In this chapter, we present an overview of the motivation for this thesis and describe why representation
learning is especially valuable for the tasks we consider in this thesis.

1.1 Motivation

When developing machine learning solutions to various problems, we often want to align the mechanisms of
the algorithms with our human intuition. In many real-world applications, the data we are given makes this
challenging. If we want to classify an image, we are unlikely to analyze the color values of every single pixel
but rather want to take in the picture as a whole. When reading a sentence, we do not think about words as
sequences of individual characters but know that words need the context of other words to make sense. To
this end, we need methods to encode the raw data into a representation that makes these abstract concepts
readable to further machine learning algorithms. If we have a reliable method of encoding data into a unified
format, we can apply various algorithms for different downstream tasks regardless of the specific properties
of a single data point.

All of the models we describe in this thesis share a common mechanism. Each algorithm is trained to learn
a compressed representation of input data, which contains all relevant information of the data in a lower-
dimensional space. We call this process embedding and denote the lower-dimensional space as embedding
space or latent space. This is important for many downstream tasks, as it allows for both robust classification
of input data and the generation of new data. We call the process of learning a model for embedding input
data into a compressed representation representation learning [1].

Embedding models are especially important for text data and other sequences of discrete data. Consider
an image made up of 𝑊 ×𝐻 pixels, in which each pixel can be represented as a float value for red, green, and

1

Chapter 1 Introduction

blue color. The vector representation 𝑥 ∈ ℝ𝑊×𝐻×3 already is machine-readable, meaning it can be directly
processed by machine learning algorithms. We can add perturbations to the image by adding artificial noise
to the pixel values, shifting each pixel value by a random small amount. The resulting image will still be
machine-readable and will still be part of the same data space as the original image [2].

Consider, in contrast, a sentence made up of 𝑇 words. The sequence of words is by itself not yet useful,
to make text readable for machines and algorithms, we need to transform it into a numerical representation.
This can be done on a word basis, where we have a vocabulary of all words in the corpus, and each word is
represented by a unique index. Alternatively, we can use a character-based approach, where each character
is represented by a unique index. Further, we can adopt the approach of byte-pair encoding, where we use a
vocabulary of substrings of the corpus, and each substring is represented by a unique index. In all of these
cases, we transform the sequence of characters into a sequence of indices or one-hot encoded vectors. This
sparse representation of the data perfectly represents the data in a way that is readable for machines, but it
has several issues.

First, it differs from the natural representation of images in that it is discrete and not continuous, therefore
not robust to small perturbations. Adding artificial noise to the input data can result in a completely different
sentence or lead to the output not being a valid sentence in data space at all. In Figure 1.1, we demonstrate
this concept in an example sentence and an example image. While the text loses its meaning entirely by
small changes, the image is robust to such perturbations.

The cat sat on the mat.
Uif dbu tbu po uif nbu.

The cat sat on the mat.
The cat sat on the car.

(a) Adding small artificial noise, here shifting each char-
acter by one index in the alphabet, results in a completely
different sentence.

(b) Even adding larger amounts of artificial noise, here shift-
ing each pixel by around 20%, does not change the content
of the image significantly.

Figure 1.1: We demonstrate how discrete data like text and continuous data like images behave differently to the addition
of artificial noise.

Further, this discrete representation is not very expressive. Consider the words cat, dog, and car. As
one-hot encoded words, they are all orthogonal to each other and have no relation to each other in data space.
A classification model learning to classify words in a sentence into classes would have to learn a separate
weight vector for each of these words, and could not learn that cat and dog are more similar to each other
than to car. Moreover, in a character based encoding, the words cat and car are closer to each other
than the words cat and dog, which makes the classification task even harder.

To solve these issues, we can use embedding models. These models act as a preprocessor to the actual task
(e.g., classification) and produce a compressed representation of the input data. An embedding model takes
as input a single word index or a sequence of indices representing words, characters, or substring tokens and
outputs one or multiple vectors of a fixed size, which we call the dimension of the embedding.

This compressed representation is usually much lower-dimensional than the original encoding, for ex-
ample, a vector between 256 and 4 096 dimensions as opposed to a one-hot word encoding of over 100 000

2

Chapter 1 Introduction

(a) An embedding is a representation of the input data in
latent space. Here we encode a series of words into high-
dimensional one-hot vectors and embed them into a much
lower-dimensional space.

(b) Embeddings in latent space encode semantic relation-
ships in linear algebraic relations. In this simple example,
we see the latent representations for man, woman, king,
and queen behave in such a way that
𝑣queen = 𝑣king − 𝑣man + 𝑣woman.

Figure 1.2: The process of text embedding transforms text from discrete indices or one-hot encoded vectors into float
valued numerical vectors in latent space. We require a well-trained embedding model to assign semantic meaning to
the embedding vectors, which results in geometric properties of the embeddings mirroring semantic properties of the
respective words.

dimensions or a one-hot character encoding of 𝑉 × 𝑇 dimensions, where 𝑉 is the number of characters in
the vocabulary, and 𝑇 is the length of the word or sequence.

Ideally, we require the representation to be more expressive, words that are similar in meaning should be
closer to each other in the latent space. Consider the example above. A good embedding model will embed
the words cat, dog, and car in such a way that the vectors representing cat and dog are closer to each
other than to the vector representing car. This allows for a classification model to not learn a separate
weight for each word but to learn that certain regions in latent space correspond to certain classes. This not
only reduces the number of parameters that the classification model has to learn but also allows for better
generalization. Consider a classification model that has learned that both cat and dog are animals. Even if
the model has never seen the word horse, it can still classify it as an animal because its latent representation
will be close to the latent representations of cat and dog. This is not possible with a one-hot encoding
because the word horse is orthogonal to the words cat, dog, and car. For an example of this property
of text embedding, consider Figure 1.2(b), in which we encode the words man, woman, king, and queen
into two-dimensional latent space. We see that, for one, the embedding makes sure that similar words, king
and queen, appear in similar regions of latent space. Further, we see that the embeddings have geometric
properties which mirror the semantic properties of the input text. Just as a king is a male queen, the vectors
have the algebraic property that 𝑣queen = 𝑣king − 𝑣man + 𝑣woman [3].

For an example of how this embedding can aid the classification process, see Figure 1.3. We again show

3

Chapter 1 Introduction

(a) A word embedding model maps semantically sim-
ilar words into similar regions in latent space. These
word embeddings can be used to train a downstream
model, e.g. for classification.

(b) A classification model can learn the semantic
properties of the regions in latent space for robust
classification.

Figure 1.3: An example for a classification task on word embeddings. We see that the model can easily classify
the individual words into their respective categories. Words that fit multiple categories, here fish, are located on
the borders of the decision spaces. New words that have not been seen during training, here apple, horse, and
Melbourne, can be correctly classified because of the location of their embeddings in latent space.

an embedding in two dimensions, in which various words are embedded into latent space. A model classi-
fying these words in categories (e.g. animals, food, and cities) can learn that certain regions in latent space
correspond to their respective categories and can also classify terms it has not seen during training correctly,
like the words horse, apple, and Melbourne in Figure 1.3(b). Considering Figure 1.3, additionally
note how the words hamburger and Hamburg are very similar in terms of characters but are embedded
into entirely different regions in latent space due to their semantic dissimilarity.

The capability for expressive representations depends on the embedding model and its training. Embed-
ding models can be trained in an unsupervised manner, where the model is trained on raw data and learns the
embedding in such a way that similar data points are close to each other in latent space by their appearance in
similar contexts. Or the models can be trained in a supervised manner, where the model is trained on a task
such as classification or generation and learns to embed data in such a way that the task can be solved more
easily. During this thesis, we will investigate the effect of different types of training on the performance
downstream models for their respective tasks.

A further advantage of embedding models is the general process of moving the representation of the
data from a discrete space to a continuous space. This allows for training techniques that are also found in
machine learning models for image data and other continuous data, such as adding noise to the input data
to prevent overfitting. Compare the examples in Figure 1.1, where we add noise to both an image and a
sentence. Embedding text in a continuous space additionally allows for generating artificial latent vectors
by sampling from a known continuous distribution, like a normal distribution. In later chapters, we will
demonstrate how adding noise to an embedding and sampling from a distribution on the latent space allows
for the generation of new artificial text data, and how geometric properties of latent space embeddings can
be utilized for the generation of text with beneficial semantic properties.

In the course of this thesis, we will track the evolution of data representation and embeddings from com-
paratively simple word embedding models to complex deep-learning-based models for embedding long se-
quences, tables, and entire documents. We will not only look at representation learning from a theoretical
perspective but always apply the ideas, algorithms, and model architectures to problems in two distinct do-
mains. These domains are the analysis of financial report documents towards systems for automated auditing

4

Chapter 1 Introduction

and the analysis of password data for applications in cybersecurity. We will show how the methods presented
in the coming chapters are crucial building blocks for automated systems that greatly reduce the need for
manual labor in the processing of financial documents and allow for the generation of data for cybersecurity
applications beyond the capabilities of classical algorithms.

1.2 Structure of the Thesis

We continue in Chapter 2 by introducing the application context for the works presented in this thesis, where
we provide an overview of the specific problems that arise in the fields of financial data analysis (Section 2.1)
and cybersecurity (Section 2.2). We detail how they relate to representation learning and natural language
processing and provide a brief overview of the related work relevant to the use cases.

In Chapter 3, we will discuss the technical background needed for the individual works presented in later
chapters. We introduce the basic machine-learning tasks we will be dealing with, namely text classification
(Section 3.1), text generation (Section 3.2) and binary optimization (Section 3.5). We will describe how each
of them relates to the aforementioned applications and consequently introduce the machine learning model
architectures we will employ. We will introduce text embedding models (Sections 3.1 to 3.1.7), generative
models (Sections 3.2.1 to 3.2.4), and neural networks for binary optimization (Section 3.5). We provide
additional details on training concepts in Sections 3.3 and 3.4.

In Chapters 4 to 9, we will present the individual works which make up the main content of this thesis,
starting with a general method for interpretable word embeddings in Chapter 4, continuing with the analysis
of financial report documents in Chapters 5 and 6 and consequently presenting the research on text generation
for password data in Chapters 7 and 8. We conclude the main part of the thesis by presenting an application
of binary optimization in financial report analysis in Chapter 9.

Finally, in Chapter 10 we will summarize the results of this thesis and give an outlook on future work,
mainly investigating the effect of large language models on the use cases presented in the previous chapters.

5

CHAPTER 2

Applications in Finance and Cybersecurity

In this thesis, we consider solutions based on representation learning to various problems that arise in the
analysis of financial documents during the auditing process and in the field of cybersecurity with relation to
password data. This section gives an overview of both fields, the relevant workflows, the available data, and
the areas that benefit from integrating machine learning components.

2.1 Auditing and Financial Data Analysis

Auditing is the process of reviewing and examining an organization’s financial records, operations, and
activities to ensure that they are accurate, reliable, and comply with relevant laws and regulations [4]. The
objective of auditing is to provide an independent and objective assessment of the organization’s financial
and operational performance and to identify any areas where improvements or corrective actions may be
required.

The auditing process may include reviewing financial statements, conducting interviews with key person-
nel, performing tests of internal controls, and analyzing data and other information [4].

The process analyzed more closely in this work is the review of annual financial reports, i.e., text docu-
ments detailing a company’s financial situation in a given year. These reports contain financial statements,
providing an overview of the company’s financial performance in terms of income statement, balance sheet,
and cash flow statement. This is followed by notes to the financial statement, which provide context and ad-
ditional information relevant to the stakeholders. Further, the reports contain a section on the management’s
discussion and analysis, in which an analysis of the company’s financial results, operating performance,
future prospects, and possible risks is given by the management,

Writing and publishing these reports in Germany is mandatory for public corporations above certain
thresholds in terms of total assets, net income, or number of employees [5]. The reports must be audited by
independent auditors [6].

Such an audit of a financial report involves legal frameworks known as accounting standards. These
provide requirements that a financial report must follow regarding content and presentation. Examples of
these types of accounting standards are the internationally recognized International Financial Reporting
Standards (IFRS [7]) or Generally Accepted Accounting Principles (GAAP [10]), and Handelsgesetzbuch
(HBG [11]) in Germany. Which accounting standard a company has to follow depends on the location of the
company and the areas of operation. The applicable accounting standards can be interpreted as a checklist,
in which each checklist item corresponds to a specific legal requirement.

6

Chapter 2 Applications in Finance and Cybersecurity

(a) Excerpt from the auditing requirements under the IFRS standard. Screenshot from [7].

(b) Excerpt from a German annual Jahresabschluss financial report audited by HGB standards. Screenshot from [8].

(c) Excerpt from an English annual Form 10-K financial report audited by IFRS standards. Screenshot from [9].

Figure 2.1: Examples for auditing requirements (IFRS standard) and the audited financial reports in English and Ger-
man.

7

Chapter 2 Applications in Finance and Cybersecurity

Figure 2.2: Screenshot of automated auditing software that illustrates the text matching workflow. The left column
shows the auditing standards checklist, the middle column shows relevant passages from the financial report for the
selected checklist item, and the right column shows the corresponding text passage from the financial report in the
context of the document.

We present examples for requirements and financial reports in Figure 2.1. The top screenshot, Fig-
ure 2.1(a), presents an excerpt from the IFRS accounting standard, describing the requirements under which
a company’s financial assets must be measured at amortized cost instead of fair value. Figures 2.1(b) and
2.1(c) show excerpts from annual financial reports in German, audited by HGB standards, and in English,
audited by IFRS standards. The German excerpt is the beginning of the report and describes the basic struc-
ture of the company, the English excerpt is taken from the middle of the report and details the operating
performance by net sales in different geographic regions.

The main task in the audit of a financial report is to check whether the report complies with every relevant
item in the accounting standard checklist. To this end, an auditor must review each checklist item, find the
corresponding section in the financial report, and determine whether the legal requirements described by
the checklist item are followed correctly and completed entirely. Note that a financial report is usually not
structured in an order corresponding to the order of requirements in an account standards checklist, and
report structure varies from company to company. Considering the usual length of annual reports of large
companies, finding the appropriate section in these documents is a manual task that is both time-consuming
and prone to human error [12, 13].

Large parts of this thesis will relate to automating this process in a way that improves an auditor’s work-
flow and frees up time for tasks which require human understanding and expert knowledge. The main task
we consider is matching requirements to financial report text paragraphs in a recommender setting. This ap-
proach has previously been explored using basic natural language processing methods [12]. The result of this
has been auditing software with a machine-learning-based recommender system. In Figure 2.2, we show a
screenshot of the developed software currently used by our industry partner. In Chapter 6 we will present an
extension of the algorithms presented in [12], which allows for matching requirements and financial reports
beyond fixed individual auditing standards.

A second area of interest related to the auditing process we consider in this thesis is data privacy concerns
regarding the distribution of financial reports and the use of financial reports as training data for machine

8

Chapter 2 Applications in Finance and Cybersecurity

Figure 2.3: Screenshots of the tool for automatic anonymization of financial report documents. Left: control panel and
document view with found named entities marked in colors for their respective classes. Right: Result of anonymization
step in which all found sensitive entities are removed, visualized by blacking out the text. Image originally published
in [14].

learning systems. Due to the sensitive information in financial reports, it is impossible to distribute reports
to third parties before the report’s full release to the public. This includes, for example, using these reports
as training data for machine learning systems and access to reports by developers of such systems. One way
to alleviate this issue is anonymization of the reports before distribution. After removing sensitive entities
such as names and locations from the document, the inference of personal information is no longer possible,
and one remains with a document that is safe to distribute but still features the same language and structure
as the original. This anonymized document is then suitable for both the training of models and analysis by
developers [14].

The anonymization of text documents is largely a manual process, in which human annotators select which
text to remove or obscure from the document and which text is safe to keep. This manual process is very
time-consuming and prone to error. Missing a single instance of a name in a document can jeopardize the
entire anonymization process, even if this particular name is correctly removed from the remaining text.
To this end, automated systems can assist human annotators in their work, by automatically reading and
analyzing a given text document and either presenting the user with a de-identified version of the document
or providing a recommendation system, in which the likelihood of a term being sensitive is presented to the
user. Rule-based post-processing methods can ensure that names and terms that are established as sensitive
are removed or obscured in the entire document [14].

In Chapter 5, we will present a method of automated de-identification of financial reports in the German
language, which presents a significant step towards legally valid anonymization of such financial reports.
We show how a combination of deep-learning-based sequence classification and rule-based post-processing
results in a near-perfect de-identification performance, which provides a major improvement in the workflow
of users. See Figure 2.3 for a screenshot of the software developed for automatic anonymization of financial
reports in use.

Lastly, we will consider an application in automated auditing beyond analyzing the text of financial report
documents. Financial reports do not only contain text but also numerical data in the form of tables. These
tables present the financial information in a structured way, presenting the key performance indicators, such
as revenue, profit and loss, and various other monetary values related to the company’s financial performance.

9

Chapter 2 Applications in Finance and Cybersecurity

During the auditing process, auditors need to ensure the correctness of the presented values, which applies
to their representation of the correct financial situation of the company, their consistency with the actual text
of the document, and their internal consistency [15].

Numerical values presented in tables are not unrelated to each other, as tables often contain aggregated
values that are derived from other values in the table. For example, a company’s total revenue is often the
sum of the revenue of all its subsidiaries. This means that certain numerical values in the table present a sum
of other values in the table. Checking the correctness of the sum is trivial. However, deciding which values
are supposed to be sums of other values is more complex. Financial documents are most likely provided
in .pdf or .docx format, which does not offer machine-readable information on the underlying structure of
tables. Therefore, checking the internal consistency of tables in these documents remains a largely manual
task with a large room for human error [15].

In Chapter 9, we will present a novel approach to this type of consistency check, encoding the internal
consistency of the table as a binary optimization problem and applying a neural-network-based solving al-
gorithm to the problem. For an analysis of machine learning methods for table-to-text consistency checks,
see [16].

2.2 Text Generation for Cybersecurity – Password Recovery

The second main domain of application discussed in this thesis is the use of natural language processing
algorithms for text generation in cybersecurity. In particular, we focus on password generation or password
recovery, which is the process of attempting to reconstruct a user’s password by guided brute-force attacks.

Consider a locked device or account protected by a password. In password recovery, we aim to generate
a password string that unlocks the respective account or device without knowing the actual password before-
hand. This password is stored internally as a hash value, and checking whether an input password is correct
is done by comparing the hashed input to the stored password hash [17, 18].

Hash functions are mathematical functions that take an input of arbitrary length and return a fixed-size
string of characters or bytes. These functions have several defining properties. The most important to note
here is the non-reversibility, meaning it is computationally infeasible to determine the original input from
the hash output [19]. Therefore, password recovery is equivalent to reconstructing the input for a given
hash value and known hash function. Since hash functions are non-reversible, the only possibility for recon-
struction is a brute-force approach, in which we hash a large number of possible password candidates and
compare the hash values to the target hash. See Figure 2.4 for an illustration of this approach, in which we
generate multiple password candidates, but only the exact matching string generates the target hash. Even
small changes in the input string result in entirely different hash values.

Considering the exponentially large number of possible passwords (there are 1.4e14 possible combina-
tions for passwords of length 10 of only lower-case characters), a pure brute-force attack is infeasible on
any computational hardware. Therefore password recovery algorithms attempt to produce a large number
of possible password candidates which are both novel and realistic. By novel, we mean that the outputs are
not already part of a known set of passwords since these can be hashed and compared without needing a
text-generation algorithm. By realistic, we mean that they resemble passwords that a human user might use
for authentication.

Note that in practice, the feasibility of this approach also depends on the specific hash function since
hash functions that are slow to compute limit the number of password guesses one can attempt in a certain
time [20]. Additionally, note that randomly generated passwords are safe from this type of attack. A ran-

10

Chapter 2 Applications in Finance and Cybersecurity

Figure 2.4: Illustration of the password recovery process. Given a locked device or account with a corresponding
password hash, one aims to recover the original string that produces the hash. Since hash functions are non-reversible,
the only way to restore the original password is by generating and hashing multiple password candidates.

domly generated password contains no patterns that a password generation algorithm might exploit, so any
algorithm producing passwords is at most as efficient as pure brute-force over the entire password space, less
efficient if the algorithm produces any duplicated outputs.

Password recovery is an active field of research in the domain of cybersecurity. For example, password
generation algorithms are applied during penetration testing, in which the security of computer systems and
networks is tested using simulated cyberattacks by authorized security auditors [21].

There are various password-generation algorithms and tools available. Before providing details on our
contributions in Chapters 7 and 8, we introduce a selection of notable algorithms and tools in more detail
and describe how they differ from a purely data-driven deep-learning text generation approach.

The first tool we consider is hashcat [22], which offers GPU-accelerated hashing of password strings
and can expand an input list of known passwords, called a dictionary, by predefined rules. A rule defines a
specific string manipulation, such as lower-casing of the input, reversing the string, or appending characters
and numbers. Rules can be chained for more extensive string manipulations. There are several lists of rules
publicly available, from small hand-written lists [23] to lists of several thousand rules [24]. These large lists
of rules usually are the result of explicit statistical analysis of large password sets or randomly generated and
then selected by evaluated password recovery performance [25].

Rule-based extensions of known password lists prove powerful and expressive in practice and require
minimal computational power. However, the rules are always predefined and limited in scope, meaning the
algorithm might not be able to produce every possible output and miss parts of the output space, or the
algorithm might be able to generate each possible password string but produce a large number of unrealistic
passwords in the process.

The second algorithm we consider is PCFG [18], an application of the probabilistic context-free gram-
mar [26] probabilistic modeling theory for password recovery. A probabilistic context-free grammar is,
informally, a type of grammar in natural language processing that assigns probabilities to a set of rules that
defines how sentences can be formed. The probability of using a certain rule to construct a sentence might
be inferred from how often sentences in a training dataset adhere to the rule. In the context of passwords,
PCFG generates a password structure (e.g., ULLLLD for an upper-case letter followed by four lower-case

11

Chapter 2 Applications in Finance and Cybersecurity

123456 12345
123456789 password
iloveyou princess
1234567 rockyou
12345678 abc123
nicole daniel
lovely jessica
654321 michael
ashley qwerty
111111 iloveu
000000 michelle
tigger sunshine
chocolate password1
soccer anthony

(a) Most common passwords in the rockyou dataset.

gasukidesu tp6e6npzsa
2183june cindybryant
princesa8294 Ricky6
rbnc1125 sweden21
usheraymond tommy21+
25146313 rachel87
551AME obrazeczek
GALLO valc22
eemmiinneeiizz ng_honay
chirita toothpaste^*
1poohstyle ilovemadiha
jessie.25 81806180
matthew012992 hot819
nostalgiex3 joe90

(b) Random passwords in the rockyou dataset.

Figure 2.5: Example passwords from the rockyou password dataset. The dataset stems from a leak of cleartext pass-
words from a data breach on RockYou, a social application site. The list of passwords is available from various sources
[27, 28] and has become a default benchmark for password recovery algorithms [17, 29].

letters and a digit) and then fills this structure by sampling substrings based on the frequency of their occur-
rence in a training dataset. In practice, this algorithm provides a good trade-off between expressiveness and
computational complexity, resulting in more diverse output passwords than the purely rule-based approach
of hashcat, while still being able to produce a large number of passwords in a reasonable amount of time.

Note that all password-generation algorithms can be used in combination with hashcat, which takes the
output passwords of the algorithm as its input dictionary and applies its rule-based string manipulation to
produce an even larger number of password candidates [17].

For the development and evaluation of password recovery algorithms, there is a need for datasets of pass-
words, i.e., lists of strings that were used by real users for password authentication. There are various datasets
of such passwords publicly available, the most commonly used of which is the rockyou list [27], which is a
list of cleartext passwords acquired from a data breach on the social application website RockYou [30]. In
Figure 2.5, we show some sample passwords from the dataset. Further well known password dataset include
linkedin [31, 32], yahoo [33], and youku [34].

All of these datasets can be used to evaluate password data in the following manner. We split the dataset
into a training, a validation, and a test split, making sure that there is no data overlap between the splits. We
use the training set for the initialization of the password generation algorithm. For example, the training
set can provide a word list for the application of hashcat rules, can be statistically analyzed by the PCFG
algorithm, or, as we will see in later chapters, can be used as training data for deep learning text generation
algorithms. We use a trained algorithm to generate a fixed number of password candidates, e.g., all evalu-
ations in [35] and [36] consider 1.0e9 generated passwords, and count the number of passwords generated
that are also found in the validation and test sets. A generated password found in the validation or test set
is both novel, since it was not part of the training set and the algorithm has therefore not seen the password
before, and realistic, since it is part of another password dataset and therefore has been used by human users
as an actual password. We can then measure the quality of generated passwords as the total number of found

12

Chapter 2 Applications in Finance and Cybersecurity

Figure 2.6: Illustration of the training and evaluation process of a password recovery algorithm. We use the train split
to train the algorithm or model. The model generates new data based on the information present in the train split. The
test split contains only data not found in the train split. We count the number of generated passwords that are also
present in the test split. In this case, we recover two of three passwords in the test split for a recovery rate of 66%.

passwords for a given number of generated strings or as a percentage of the total validation and test set. In
Figure 2.6, we illustrate this process with a toy example. In this case, we generate four new passwords based
on a training split, two of which are found in the test split for a recovery rate of 66% of the test split.

There are several further password-generation algorithms, such as Markov chains [37, 38], recurrent neural
networks [39] (see also Section 3.1.5), advanced dictionary attacks [40], and many more [41–43]. In recent
years, with the advent of deep learning text generation models, the investigation of such models for password
generation has commenced.

One of the first attempts to use deep learning generative models for password generation was PassGAN
[29], which uses a generative adversarial network (GAN [44], see also Section 3.2.1) to generate passwords.
This work received attention from both the research community and the general public [45, 46]. While be-
ing an effective approach, the PassGAN algorithm proved less expressive than competing algorithms like
PCFG. This is partly due to the inherent nature of GANs, which provide impressive performance when gen-
erating images but struggle with discrete data like text [47]. In Chapters 7 and 8, we present a significant
enhancement of deep generative models for password recovery beyond PassGAN by applying various archi-
tectures that lend themselves better to the generation of text data. We will describe the implementation of
a variational autoencoder (VAE [48], Section 3.2.2), a generative transformer language model (GPT2 [49],
Section 3.2.4) and a combined architecture, meaning a variational autoencoder with transformer-based en-
coder and decoder blocks. All of these models present major improvements over PassGAN, with the number
of recovered passwords for the same number of generated strings approximately tripled across various test
datasets.

13

CHAPTER 3

Representation Modeling

In this chapter, we provide a high-level overview of the machine learning techniques we apply in the devel-
opment of solutions for the application domains described in the last chapter. We will describe the tasks, the
optimization objectives, the model architectures, and the training techniques in a general manner. Most of
this chapter will focus on natural language processing, as most applications presented in the later chapters
will deal with unstructured textual data. Section 3.1 will describe text classification models and introduce
text embedding architectures. Section 3.2 will introduce the task of text generation and generative models
specifically for text. In Sections 3.3 and 3.4, we provide further information on the training of the models
introduced previously, namely the tokenization of text and the idea of transfer learning. In addition to this,
we present a special case of binary optimization for numerical data and a solving algorithm using recurrent
neural networks in Section 3.5. In the later chapters, we provide details of the individual implementations
for the specific use cases.

3.1 Embedding and Classification

One of the most basic tasks in natural language processing is text classification, in which a text, i.e., any
sequence of characters like a document, a sentence, or a single word, is read by a classification model and
classified as belonging to one or more predefined classes. We call a classification task on two classes binary,
a task on more than two classes multi-classes and a task in which a text can belong to more than one class
multi-label.

Any classification task will follow a similar architectural pattern. The text, provided as a sequence of
characters, will be processed by an embedding model, which provides a single 𝑁 -dimensional vector rep-
resentation for the entire text, independent of the number of characters. As we will show in this thesis, most
progress in natural language processing has come from developments in the embedding of text data [50].

The vector representation is mapped onto the set of possible labels by a classification layer, often composed
of linear layers or similar architectures, less complex than the embedding model. The output vector must
be transformed into a vector of class probabilities by an activation function, where the choice of activation
function depends on the task at hand.

For binary classification, in which the proposed text can either belong or not belong to a single class,
we apply a sigmoid activation to the single numerical output value of the classification layer to map the
output to the interval [0, 1] and interpret the result as the probability of the input being a positive example
of class. Given a single-label task in which only one of the 𝐶 classes can be correct, we need to map the 𝐶-

14

Chapter 3 Representation Modeling

dimensional numerical vector into a probability distribution over all 𝐶 classes. We do this using a softmax
function which forces all values of the vector to be in the interval [0, 1] and the vector entries to sum up to
1. In a multi-label task, where more than one of the 𝐶 labels can be correct, the task breaks down into 𝐶
individual binary classification tasks. Therefore, we apply a sigmoid activation function to each element of
the 𝐶-dimensional output vector of the classification layer [51].

3.1.1 Topic Modeling

Topic modeling is a special case of text classification in which the classes are not predefined but learned from
the data. The goal of topic modeling is to find a set of classes, i.e., topics, which describe and cluster the
data appropriately. Often the number of topics 𝐾 to be learned from the data is predefined, and documents
are assumed to be a mixture of these topics [52].

For example, take a corpus of news articles. We can assume that each article is a mixture of topics such
as politics, sports, finance, and others. The goal of topic modeling is to find these topics and assign each
article a probability distribution over these topics, such that we can interpret an article about the current state
of the stock market as a mixture of the topics finance and politics. Since the topics are not predefined but
learned from the data, we can not directly assign labels such as “finance” or “politics” to the topics, but have
to interpret the topics by looking at the documents clustered into the respective topics and infer a topic name
from the distinct texts found in these documents [53].

Standard algorithms for topic modeling include Latent Dirichlet Allocation (LDA [52]), Latent Semantic
Analysis (LSA [54]), and Non-Negative Matrix Factorization (NMF [55]). In Chapter 4, we will introduce
a novel topic modeling algorithm based on matrix factorization for interpretable word embedding and topic
modeling.

3.1.2 Text Matching

Moving from text classification with a predefined set of classes or a set of learned topics, we now consider
text matching, in which we want to find a matching text for a given input document or text. More generally,
we want to rate the similarity of two texts and their relevance to each other [56].

Technically, for two texts 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 we want to find a distance function 𝑑 ∶ 𝒳 ×𝒴 → [0, 1], such that
semantically meaningful texts are mapped to values close to 1, and semantically unrelated texts are mapped
to values close to 0. Once this distance function is found, we can find a matching text 𝑦′ ∈ 𝒴 for a given
input text 𝑥 ∈ 𝒳 by

𝑦′ = arg max
𝑦∈𝒴

𝑑(𝑥, 𝑦). (3.1)

The distance function can be defined independently of the data or learned from the data in an unsupervised
or supervised manner. We will consider unsupervised and supervised learning approaches to text matching
in Chapter 6.

3.1.3 Sequence Classification and Named Entity Recognition

So far, we have considered text classification tasks in which we want to classify entire documents or text
sequences. A more granular task is given by sequence classification. Given a text comprised of multiple
words, we want to classify each word into one or multiple predefined classes [50].

A special case of sequence classification is named entity recognition, in which we want to determine which
words or sequences are named entities. These named entities describe key information present in the text.

15

Chapter 3 Representation Modeling

Named entities can be names of persons, organizations, and locations, as well as any other category of in-
formation to be extracted from the input document, such as financial key performance indicators, pathologies
in medical text, and many others [57].

To this end, we classify a substring of the input text as belonging to one of the predefined categories of
named entities or no named entity. What compromises a substring depends on the problem definition and
the model architecture. One can, for example, classify each character in a sequence, each word or span
compromised of multiple words.

A type of named entity recognition is de-identification. The process of de-identification contains finding
named entities that allow for the identification of persons, locations, organizations, and others and removing
or replacing them in the text such that the resulting text does not enable the identification of these key figures.
The task of anonymization is similar but different since it does not only contain the de-identification of the
document but also the removal of any sensitive information that might make conclusions about the entities
in the document possible. Such information might be dates, numbers, document metadata, and many types
of contextual information present in the document [14].

De-identification can be tackled as a named entity recognition problem if we define the named entity
categories as the types of identifying information present in the document (such as names, locations, and
organizations), classify each word as belonging to one of these categories or not and redact each word clas-
sified as sensitive information from the text. This redaction can be done by replacing the word with generic
tokens (a general REDACTED token or category-specific tokens like PERSON, ORGANIZATION, …) or
pseudonymization, in which the redaction algorithm keeps track of the entities to be redacted and ensures that
the same entity is replaced with the same identifier in the whole document (e.g. PERSON_1, PERSON_2)
[57].

In Chapter 5, we will present an algorithmic approach to de-identification and anonymization, in which
we classify words in financial reports as belonging to a set of classes of named entities using recurrent neural
networks and apply rule-based post-processing methods to ensure the reliability of the prediction and the
removal of various additional types of sensitive information.

3.1.4 Word Embeddings

In order to apply any classification algorithm to text data, we first need to embed the text into a latent space.
Word embeddings are a basic but powerful method of embedding text. To demonstrate the mechanism of
training word embeddings, we introduce the popular word embedding model GloVe [58].

GloVe is a matrix factorization-based model, which means that the training process is equivalent to fac-
torizing a matrix of word cooccurrences in the text. Word embeddings are trained on large collections of
text documents. We split the text into a sequence of words and generate a cooccurrence matrix by count-
ing how often each word appears in a context window of fixed length (the original GloVe implementation
uses a context window of 10 words in each direction) of each other word. We then factorize this matrix of
cooccurrences 𝑿 ∈ ℝ𝑁 into matrices 𝑾 , �̃� ∈ ℝ𝑑×𝑁 , such that

𝑾 𝑇
𝑖 �̃�𝑘 + +𝒃𝑖�̃�𝑘 = log(𝑿𝑖𝑘 + 1), (3.2)

where 𝑁 is the vocabulary size, 𝑑 is the embedding dimension, and 𝒃, �̃� ∈ ℝ𝑑 are bias vectors. The rows
of 𝑾 + �̃� then are the word embeddings for the respective vocabulary entry. For more details on the
motivation and the derivation of this training procedure, see [58].

Having extracted the cooccurrence information and calculated the embedding vectors, using word embed-

16

Chapter 3 Representation Modeling

Text The (black) cat's name is Mittens.
Lower-Casing the (black) cat's name is mittens.
Remove Punctuation the black cats name is mittens
Remove Stop-Words black cats name mittens
Stemming black cat name mitten

Figure 3.1: Preprocessing steps for an example text before whitespace tokenization. We apply lower-casing, remove
punctuation, remove stop words, and apply stemming. The resulting text is suitable for application in word embedding
models.

dings is easy and computationally inexpensive. We only have to split the target text into individual words
and find the pre-calculated vector corresponding to the respective vocabulary entry.

One issue of word embeddings is their lack of interpretability. The original GloVe implementation gener-
ates word embeddings of size 𝑑 = 300. The individual entries in the word embeddings do not correspond to
any specific semantic meaning. Suppose a system trained on a downstream task corresponds more to certain
dimensions in the input embedding than to others. In that case, we can not extract any useful information
about the system from this observation. To this end, in Chapter 4, we introduce a method for calculating
interpretable word embeddings, where we factorize the logarithmic cooccurrence matrix into three matrices
and interpret the individual dimensions of the word embeddings as topics that occur in the text corpus.

For training and retrieval of word embedding models, we need to tokenize the text data first, so that we
split the text into individual words which we can map to the vocabulary. The simplest way of tokenization
into words is splitting on whitespace characters, however, the direct application of this approach runs into
some issues. Consider, for example, the following sentences:

I love my cat.
Cats are my favorite animal.

A simple splitting on whitespace will create the tokens Cats and cat.. While both refer to the same
animal, they will have to be treated differently by a word-based model.

To avoid this, we apply preprocessing steps [50]. These steps include lower-casing, removal of punctu-
ation and numbers, removal of stop words (i.e., common words such as and or the), and stemming (i.e.,
removing inflectional forms from words). See Figure 3.1 for an example of preprocessing on a simple text.

This tokenization requires a large vocabulary of words in the respective language. For example, word2vec
contains a vocabulary of 662 109 individual words [59]. However, even with this large vocabulary, not
all words in the target language can be encoded. Words that, even after preprocessing, are not part of the
vocabulary, like names or compound words, will be tokenized with a special token for unknown words (such
as <UNK>).

All preprocessing steps reduce noise in the text data but make the text more prone to ambiguity by hom-
onyms, i.e., words that are spelled the same but have different and unrelated meanings. For example:

The dog would always bark at people.
Tree bark is the protective outer layer of a tree trunk.

The word bark has two entirely unrelated meanings, one as a verb and one as a noun.
Homonyms, in general, pose a problem for word embedding-based machine learning models. If we pre-

computed and embed for the word bark, we can not know which meaning of the words is represented by the

17

Chapter 3 Representation Modeling

(a) Word embedding of bark has the
same distance to dog as to tree.
The embedding does not capture either
meaning of the word.

(b) Word embedding of bark is closer
to tree than to dog. The embedding
captures the meaning of tree bark but
does not relate to dogs.

Figure 3.2: Word embeddings exhibit limitations when dealing with homonyms, i.e., words that are spelled the same
but have multiple meanings. In this example, there is no optimal way to encode the word bark since we can not
feasibly encode both meanings at the same time.

Figure 3.3: Left: Word embeddings produce a fixed output for each word regardless of the context in the sentence. The
computation of each vector is independent. Right: Contextual embeddings calculate embeddings based on the entire
sequence. A word will have different embeddings depending on the context, i.e., the other words in the sequence.

embedding. We demonstrate this issue in Figure 3.2, in which we show how the word embedding for bark
either favors one of the word embeddings for tree or dog or resides in the middle of both. The embedding
will either only contain information about one meaning of the word and not make sense in the context of the
other meaning, or the embedding will contain information about multiple meanings and therefore make less
sense in the context of each meaning.

One possible solution to this problem is to use different embeddings for each meaning of a word, e.g.
bark_verb and bark_noun, which requires a larger vocabulary and a method to distinguish between
different meanings of a word in the text. Another solution to this problem is to use embeddings that contain
information about the context of a word in addition to the word itself. This contextual embedding approach
will be discussed later, starting with Section 3.1.5 and we demonstrate its effectiveness in applications starting
at Chapter 5.

18

Chapter 3 Representation Modeling

3.1.5 Recurrent Neural Networks

In a text document, words or sentences are usually not independent of each other. The order of characters,
words, and sentences is important for the meaning of the text. Taking into account the context of a word
when embedding solves the issue of homonyms with static word embeddings described in Section 3.1.4. If
we have a way of adding information about the context of the remaining sentence when embedding a word,
we can safely embed the word bark in both sentences displayed above. Both embeddings for the word
will be different and capture the respective meaning of the term in the sentence. We call this approach to
contextual embedding by analyzing the relationships between words in sequences language modeling [60].
Consider Figure 3.3, in which we demonstrate the difference between both approaches. We encode the same
sentence two times, once with a static word embedding in which each word is embedded separately into
a pre-computed embedding vector and once using a language model which calculates the embeddings at
inference time from the entire sequence.

Recurrent neural networks (RNNs) are a class of neural networks that are able to model such dependencies.
In its most basic form, the network has an internal hidden state and takes as input an input token (for example,
a character in a sequence as a one-hot encoded vector) and calculates an output and a new hidden state from
the input and the previous hidden state. The input adds new information to the calculation, while the hidden
state retains previous information from the sequence. We initialize the RNN with a random hidden state.

Regular RNNs often suffer from a problem called vanishing gradients [61, 62], in which the model fails to
learn long dependencies between input tokens in the sequence since the gradients given by new information
become increasingly small at each time step. A version of the RNN which addresses this issue is the Long
Short-Term Memory (LSTM) network [61], which enables learning of long dependencies by implementing
so-called forget gates, which allows information to flow freely between time steps.

For embedding of text, one can apply an RNN as a language model on text tokenized by characters or
sub-word tokens (see Section 3.3) and use a one-hot encoded vector of a token as input. The RNN calculates
an output from the internal hidden state, and the input and transforms the output to a probability distribution
over the token vocabulary to predict the next token in the sequence. We calculate a loss from the predicted
token and the actual next token and repeat the process for the next time step with the next token in the
sequence and the updated hidden state [63].

After training such a model on a corpus of text data, for which we do not need annotations since the model
is trained only on the prediction of the next token in the sequence, we can apply the model for token embed-
ding by reading a new text with the model and interpreting the hidden state of the RNN as an embedding of
the current token. This embedding contains contextual information on the sequence so far. To incorporate
left and right context for one token, i.e., information from the entire sequence, we can pass the text through
the RNN twice, once in each direction. This way, we receive two hidden state vectors, one of which contains
information on the sequence left of the token, one which contains information on the sequence right of the
token. We concatenate both vectors to obtain a single token embedding. We call this type of language model
bidirectional [63].

In Chapter 5, we will apply a bidirectional LSTM language model, trained on both general language data
and domain-specific data, as an embedding model for a sequence classification task, namely named entity
recognition for de-identification of financial report data.

19

Chapter 3 Representation Modeling

3.1.6 Transformers

In recent years, transformer architectures have emerged as state-of-the-art in many NLP tasks. They are based
on the attention mechanism, which allows the model to focus on certain parts of the input. This allows the
model to learn long-range dependencies in the input, which is important for tasks such as machine translation
or text generation [64].

Transformers do not have a recurrent structure but instead, use a self-attention mechanism to model de-
pendencies between words in the input. The main functionality of the self-attention mechanism depends on
three weight matrices. originally named queries 𝑸, keys 𝑲 and values 𝑽 . We denote by 𝑁 the vocab-
ulary size, 𝑑𝐸 the input embedding size, 𝑑𝑘 the dimension of the keys and queries, and 𝑑𝑣 the dimen-
sion of the value vectors. The learnable weight matrices for the queries, keys, and values are denoted by
𝑾 𝑞, 𝑾 𝑘 ∈ ℝ𝑑𝐸×𝑑𝑘 and 𝑾 𝑣 ∈ ℝ𝑑𝐸×𝑑𝑣 , respectively.

For an input string of 𝑇 tokens, we embed each token using the input embedding for a matrix 𝑋 ∈ ℝ𝑇 ×𝑑𝐸 .
We multiply the embedding matrix with the query, key, and value weights to obtain the queries, keys, and
values for the respective input sentence:

𝑸 = 𝑿𝑾 𝑞 ∈ ℝ𝑇 ×𝑑𝑘 , 𝑲 = 𝑿𝑾 𝑘 ∈ ℝ𝑇 ×𝑑𝑘 , 𝑽 = 𝑿𝑾 𝑣 ∈ ℝ𝑇 ×𝑑𝑣 . (3.3)

Given these matrices, we calculate the attention vector for each token as a weighted sum of the values vectors
of all tokens in the sequence:

Attention(𝑸, 𝑲, 𝑽) = soft max (𝑸𝑲𝑇

√𝑑𝑘
) 𝑽 ∈ ℝ𝑇 ×𝑑𝑣 . (3.4)

In a transformer block, we apply self-attention to the input embeddings and map the obtained values back
onto the input or output dimension 𝑑𝐸 by a linear layer in a feed-forward network. This way, we can use
the output of one transformer block as input for another transformer block and concatenate multiple blocks.
For more details on the transformer, the self-attention mechanism, attention between encoder and decoder,
masked attention in the decoder and positional embeddings, we refer to the original transformer paper [64].

We will apply different transformer-based models in the course of this thesis, namely a BERT [65] archi-
tecture for embedding and text matching in Chapters 5 and 6 and a GPT2 [49] architecture for text generation
in Chapters 7 and 8. Before describing these applications in the coming chapters, we will first introduce both
architectures and provide details on their use of the self-attention mechanism in the following subsections.

3.1.7 BERT

The BERT (Bidirectional Encoder Representations from Transformers [65]) model is a transformer-based
language representation model. Unlike other transformer-based models like the original transformer [64]
or GPT [49] (see also Section 3.2.4), BERT is a pure encoding architecture, which reads an input sequence
and outputs embeddings for each token in the sequence. By adding a single additional output layer, these
embeddings can be used for various tasks, such as sequence tagging or text classification.

Internally, BERT is a multilayer bidirectional transformer similar to the original transformer implementa-
tion [64]. The model is trained in an unsupervised manner using masked language modeling, in which some
individual tokens in a sequence are masked (either by a specific MASK token or a random token) before
input and the embeddings of the masked tokens are used to predict the original token. The model is called
bidirectional since it applies attention over the entire sequence, meaning the left and right context for the

20

Chapter 3 Representation Modeling

prediction of each token. Additionally, the model is trained unsupervised using next sentence prediction, in
which two sequences from the dataset are passed to the model as input, and the model has to decide whether
these two sequences are random pairs or consecutive sentences appearing in the dataset.

For supervised training, any dataset with labels for either individual tokens or entire sequences can be used.
Combining both supervised and unsupervised training, BERT achieves state-of-the-art results for many NLP
tasks, such as question answering on various benchmark datasets [65].

In Chapter 5, we apply a BERT model for embedding tokens in financial report texts and classify the
tokens using linear layers or sequential models for a named entity recognition task. We compare the BERT
and LSTM architectures for this task and find that both approaches achieve near-perfect anonymization (99%
recall) when combined with rule-based post-processing. In Chapter 6, we apply the BERT model for embed-
ding sequences and text matching in financial report data, where we calculate the distance in latent space of
the embedding of different texts to rank the most relevant texts in financial reports. We investigate the effect
of multiple unsupervised and supervised training approaches and present a novel training paradigm based
on multiple training steps on a series of datasets for a both powerful and flexible text matching model.

3.2 Generative Models

The previous section dealt with embedding and classification, in which we are given input data that we aim
to classify or compare. In contrast to this, in this chapter, we consider generative models, which aim to
generate new data either randomly or based on input data. In the context of natural language processing, this
is relevant for applications like question-answering, summarization, and translation. In Chapters 7 and 8, we
will describe the application of generative models for the generation of password strings, an application for
which we require the generation of new data both with and without input data.

Formally, given an input sequence 𝑦0, 𝑦1, … 𝑦𝑁 of tokens, we want to model the probability of the next
tokens in the sequence 𝑦𝑁+1, … , 𝑦𝑁+𝑀 . This probability can be factorized into the conditional probabilities
of each output token given the input sequence and the previous output tokens. We denote by 𝑝𝜃 the probability
distribution calculated by a model with parameters 𝜃 and see that

𝑝𝜃(𝑦𝑁+1, … 𝑦𝑁+𝑀 |𝑦0, 𝑦1, … 𝑦𝑁) =
𝑀
∏
𝑖=1

𝑝𝜃(𝑦𝑁+𝑖|𝑦0, 𝑦1, … 𝑦𝑁+𝑖−1). (3.5)

This way, at every step of the generation, we can model the probability of the next token given the input
sequence and the tokens generated so far [66]. We choose a new generated token ̂𝑦𝑖 by sampling from
this probability distribution, we discuss strategies for effective sampling of ̂𝑦𝑖 below. During training, at
generation step 𝑖 we infer a loss function by maximum likelihood estimation [66], calculating the negative
log-likelihood of the true token 𝑦𝑖 under the predicted probability distribution 𝑝𝜃,

ℒ(𝑝𝜃, 𝑦𝑖) = − log 𝑝𝜃(𝑦𝑖|𝑦0, 𝑦1, … 𝑦𝑖−1). (3.6)

During inference, we do not have access to the true tokens and have to use the tokens generated so far by
the model itself as input. At generation step 𝑁 + 𝑖 we already generated the tokens ̂𝑦𝑁+1, ̂𝑦𝑁+2, … ̂𝑦𝑁+𝑖−1
and model the probability of the next token ̂𝑦𝑁+𝑖 as

𝑝𝜃(𝑦𝑁+𝑖|𝑦0, … 𝑦𝑁 , ̂𝑦𝑁+1, ̂𝑦𝑁+2, … ̂𝑦𝑁+𝑖−1). (3.7)

21

Chapter 3 Representation Modeling

To improve the efficiency of the training, we likely apply a method called teacher forcing, in which we use
the true tokens 𝑦0, 𝑦1, … 𝑦𝑁+𝑖−1 as input to the model instead of the tokens generated by the model itself
[67].

Given a probability distribution 𝑝𝜃(𝑦𝑖), there are several ways of choosing a token ̂𝑦𝑖. The simplest way is
to choose the token with the highest probability at each time step, the so-called greedy approach, which often
leads to repetitive and uninteresting texts. To alleviate this problem, we can consider more than one candidate
sequence and choose the sequence of multiple tokens with the highest joint probability. This approach is
called beam search and results in more diverse texts, which are, however, still prone to repetition [68].

To avoid repetition, we can use a sampling approach, in which we sample the next token from the probabil-
ity distribution 𝑝(𝑦𝑖). To increase the coherence of the generated text, we can use a top-𝑘 sampling approach,
in which we only consider the 𝑘 most likely tokens for sampling [69]. This way, we can avoid sampling from
the tail of the probability distribution, which often contains unlikely tokens. To further increase coherence,
we can use a top-𝑝 sampling approach, in which we only consider the tokens with the highest cumulative
probability mass of 𝑝𝜃(𝑦𝑖) for sampling [69].

Which decoding strategy to use depends on the application and the model architecture [70]. We present
algorithms for text generation in Chapters 7 and 8. We will consider both models that use a greedy de-
coding strategy, namely the architectures based on generative adversarial networks (see Section 3.2.1) and
variational autoencoders (Section 3.2.2), as well as models that use a top-𝑘 sampling approach, namely the
transformer-based language models (Section 3.2.4).

3.2.1 GANs

Generative adversarial networks (GAN [44]) are a class of generative models that are able to generate new
data. They are composed of two networks, a generator and a discriminator. After training, the discriminator
is discarded, and the generator is used to generate new data.

The loss function for the GAN is given by

ℒ(𝑥, 𝑧) = 𝔼𝑥∼𝒳 [log 𝐷(𝑥)] + 𝔼𝑧∼𝒵 [log(1 − 𝐷(𝐺(𝑧)))] (3.8)

where 𝑥 ∼ 𝒳 are samples from the real data distribution, 𝑧 ∼ 𝒵 are samples from the noise distribution,
𝐷 is the discriminator network, and 𝐺 is the generator network. The term 𝐷(𝑥) describes the probability
of the discriminator correctly classifying real data as real, while 𝐷(𝐺(𝑧)) describes the probability of the
discriminator correctly classifying fake data as fake. The first term in the loss function is the loss of the
discriminator, which is trained to minimize the probability of the discriminator correctly classifying real
data as fake. The second term is the loss of the generator, which is trained to maximize the probability of
the discriminator classifying fake data as real. The training follows a min-max game in which the generator
tries to generate samples that are indistinguishable from real data, while the discriminator tries to distinguish
between real and fake data. In the ideal case, the generator is able to generate data that is indistinguishable
from real data, and the discriminator is not able to distinguish between real and fake data.

The original GAN architecture [44] was applied to image data, however, further advances in the architec-
ture and training process [47, 71] have made the GAN applicable to discrete data such as text as well. In
Chapter 7, we apply a GAN architecture with a convolutional neural net with residual connections [72] as
the generator and discriminator for the task of text generation for password data.

22

Chapter 3 Representation Modeling

3.2.2 Variational Autoencoders

A variational autoencoder (VAE [48]) is a type of generative model that learns a probabilistic mapping
between a high-dimensional data space (like images or text) and a lower-dimensional latent space. Like any
autoencoder, it is composed of an encoder and a decoder, both of which are usually parametrized as deep
neural networks [2].

The encoder is a parametrized mapping 𝑞𝜃 ∶ 𝒳 −→ 𝒵, where 𝒳 is the high-dimensional data space and
𝒵 is the low-dimensional latent space. The decoder is a parametrized mapping 𝑝𝜙 ∶ 𝒵 −→ 𝒳 , that takes
a point in the latent space and maps it to a point in the data space. Both encoder and decoder are usually
implemented as a type of deep neural network, for example, a convolutional neural network for images or a
recurrent neural network for text. Additionally, the mapping is often not static but rather a stochastic process,
in which the mappings 𝑞𝜃 and 𝑝𝜙 define parametrized distributions from which we sample points in 𝒵 and
𝒳 [2].

A regular autoencoder is trained to minimize the reconstruction error. The reconstruction error for an
encoder 𝑞𝜃, a decoder 𝑝𝜙 and a data point 𝑥 ∈ 𝒳 is usually defined as the negative log-likelihood of the
input data under the output distribution:

ℒrec(𝑥) = 𝔼
𝑧∼𝑞𝜃(𝑧|𝑥)

[− log 𝑝𝜙(𝑥|𝑧)] . (3.9)

This method of training exhibits some drawbacks: During training, an optimal behavior for the encoder-
decoder pair is mapping each data point onto its respective vector in data space and increasing the space
between individual learned points in latent space. This way, the decoder can learn which latent space points
correspond to which data point and provide a good reconstruction. This behavior leads to issues with a
generalization: If the latent space is learned in such a way that single meaningful latent vectors exist with
large ‘holes’ in the latent space that the decoder has never seen, reconstruction of a data point from the test
set will be challenging: the data will be encoded into an area of latent space the decoder has never handled
during training, and the reconstruction will suffer as a result [48].

To alleviate these issues, one can add noise to the encoding process or implement various other regu-
larization techniques. The variational autoencoder enforces a regularization on the distribution of encoded
data in latent space. Unlike a regular autoencoder, we additionally require the latent space of the variational
autoencoder to resemble a prior distribution 𝑞(𝑧). This allows us to sample from the latent space and gen-
erate new data. In order to achieve this, a variational autoencoder is additionally trained to minimize the
Kullback-Leibler divergence between the encoder’s output distribution and the prior distribution. This prior
distribution is usually chosen to be a normal distribution [48]. The Kullback-Leibler divergence between the
encoders output distribution and the prior distribution is defined as

𝒟𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑝(𝑧)) = 𝔼
𝑧∼𝑞𝜃(𝑧|𝑥)

[log
𝑞𝜃(𝑧|𝑥)

𝑞(𝑧)] . (3.10)

The total loss function for the variational autoencoder for a single data point 𝑥 is then given as

ℒ(𝑥) = ℒrec(𝑥) + 𝒟𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑞(𝑧))

= 𝔼
𝑧∼𝑞𝜃(𝑧|𝑥)

[− log 𝑝𝜙(𝑥|𝑧)] + 𝔼
𝑧∼𝑞𝜃(𝑧|𝑥)

[log
𝑞𝜃(𝑧|𝑥)

𝑞(𝑧)] .

We minimize this loss via gradient descent on the parameters 𝜙 and 𝜃 of the encoder and decoder in batches

23

Chapter 3 Representation Modeling

over the training data.
Note that the formulation above requires the distribution of the latent encoding of each individual datapoint

𝑞(𝑧|𝑥) to resemble the prior distribution 𝑞(𝑧). In practice, this may lead to issues where the optimization
reaches a local minimum and each latent distribution perfectly replicates the prior 𝑞(𝑧). More recent work
addresses this issue and proposes an alternative regularization method in which we consider the distribution
of the latent variables over an entire batch of data [73].

To generate new data using a trained variational autoencoder, we can discard the encoder of the model
and sample new latent vectors directly from the prior distribution. Since we enforced the encoded data to
resemble data from the prior distribution, the decoder will be able to decode the latent vector into a point
resembling the data distribution. In Chapters 7 and 8, we apply a variational autoencoder model to generate
new text data by sampling random vectors from the prior distribution and decoding into data space using
different decoding architectures.

3.2.3 Latent Space Geometry for Text Generation

So far, we have only explored the geometry of latent spaces implicitly. We discussed the theoretical advant-
ages of latent space encoding over direct encoding like one-hot vectors, for one, the dimensionality reduction
and on the other hand, the encoding of similar data into similar regions of the latent space. As shown illus-
trated in Figure 1.3, embedding models encode data in such a way that geometric regions in latent space
correspond to similar semantic meanings, which has implicit advantages for text classification tasks: if sim-
ilar text (where the semantic similarity is dependent on the specific training objective) is encoded in similar
regions in latent space, a classification model will have an easier time generalizing from training data to
unseen test data.

For text generation, we can see an explicit application of the geometry of latent space. Consider the
example of the variational autoencoder above. During training, the VAE encodes data into latent space and
tries to reconstruct the original data from its latent representation. During generation, we sample data from a
distribution in latent space and decode it into a data point in data space. If we sample from the standard prior
distribution, we will generate entirely random data points resembling the original data distribution [48].

However, we can adjust the sampling distribution to target specific regions in the data space. By encoding
a certain data point and only sampling new latent vectors from a small region around this encoded data point,
we can decode data that will resemble the target data point [48]. See Figure 3.4 (middle) for an illustration
of this approach, where we encode the blue pentagon into latent space, sample latent vectors from the same
region and decode into pentagons of similar color.

We can further apply this method to generate interpolations between data points. Given two data points,
we want to generate new data that is semantically in between the two data points. Direct linear interpolation
in data space is not feasible since the resulting data is unlikely to resemble real data [48, 74]. We demonstrate
this issue in Figure 3.5, where we show the difference between interpolation in data space (left) and the kind
of semantic interpolation we expect (right).

To achieve this, we encode both data points into latent space, interpolate linearly between both points and
decode from a point along the interpolation. The resulting decoded data point will lie in the data distribution
(i.e., resemble real data) and be semantically similar to both input data points (i.e., have properties of both
input data points). For an early application of this method to text data, see [75].

We will apply this method for text generation in password data in Chapter 7. As an example of this,
consider Figure 3.6. We use the geometric properties of the latent space to generate password strings that
are similar to an input password string (here they contain the substring love) and use two real passwords

24

Chapter 3 Representation Modeling

Figure 3.4: Illustration of the concept of latent space geometry for targeted generation. Left: During training, points in
data space (lower area) are encoded in latent space (upper area) and reconstructed. Middle: To generate data similar
to some target data, we encode the data into latent space, sample latent points around the encoded data, and decode
it into data space. Right: We can generate mixtures of multiple data points by encoding both into latent space and
interpolating between their latent representations.

(a) Linear interpolation in data space. (b) Linear interpolation in latent space.

Figure 3.5: Illustration of interpolations between data points. Left: Linear interpolation in data space results in gener-
ated data that does not lie in the data distribution and does not make semantic sense. Right: Linear interpolation in
latent space and decoding into data space results in data from the data domain that is a mixture of both data points.

as the start and end points of a linear interpolation in latent space, which results in a smooth interpolation in
data space. This is important for generation tasks in which we have prior information. Suppose in a password
recovery task we already have information about other passwords used in similar situations. We can encode
the known password strings and use targeted sampling and interpolation to improve the quality of password
guesses for this specific application.

This feature is only possible if the generative model architecture enforces such a structure on the latent
space. For example, a standard GAN architecture as described in Section 3.2.1 is only trained to generate
data from latent points sampled from a predefined prior distribution (usually a standard Gaussian). Since
we do not have the ability to encode data into latent space in a meaningful way, we can not apply the tar-
geted sampling approach described above. Note, however, that there are approaches to adjusting the GAN
architecture to enable targeted sampling, for example, by combining variational autoencoders and generative
adversarial networks [76, 77] or enhancing the latent space with additional information [78].

3.2.4 GPT and GPT2

The generative pre-trained transformer (GPT [79]) model is an auto-regressive decoder-only architecture
for language modeling. This means that it reads an input sequence and outputs a probability distribution over
the vocabulary for the next token in the sequence. Unlike BERT, GPT is not bidirectional but autoregressive,

25

Chapter 3 Representation Modeling

nublove85/9 miblovenv11
siclove00me riglover2k
failoveye4 n2ulovemswo
gemloveso1 irolovesor
vatlover10 melovey4u
cetlovesder 9alolove71u

remington223 pepegrillo16

rtninton2131 popegrillo16
ntn123to2131 hoperillel62
rmnm2et21213 agterillo652
nnd231523465 allininal505
ontit1321642 allinllang08
andiew123456 alliannan680

andrew123456 alliatnna068

Figure 3.6: Using the geometry of the latent space allows for targeted generation of text data. Left: We encode the string
love and decode random passwords from a neighbourhood of the encoding. Right: We encode two real password
strings (top and bottom of each column) and interpolate linearly between the encoded vectors. We decode multiple
password strings along the interpolation.

meaning when predicting a new token, it only considers the context before the new token. The original
transformer uses an encoder-decoder architecture, where the encoded context is fed into the decoder using
cross-attention during the decoding process. In contrast to this, GPT only features a decoder that reads a
prompt, for example, the beginning of a sentence and outputs the next token without additional context from
an encoder.

This architecture can be trained unsupervised on raw text data by having the model read the beginning
of a sequence and learning to output the next token, or in a supervised manner, for example, by prompting
the model with a question and making it learn to output the corresponding answer. Unlike BERT, which
is generally applied to text classification and general embedding tasks, GPT is particularly used for text
generation. Later GPT models [49, 80, 81] allow for state-of-the-art performance in text generation.

A follow-up model to GPT, GPT2 [49], features minor architectural improvements, such as added layer
normalization and adjusted weight scaling, as well as a larger parameter count. In Chapter 7, we will apply
GPT2 as a language model for the generation of password data and see that the language modeling ap-
proach successfully generates usable password data, showing a performance comparable to the variational
autoencoder approach and improving on the previous state-of-the-art for deep learning password generation
significantly. In Chapter 8, we implement GPT2 as both the encoder and decoder of a variational autoen-
coder in order to leverage both the expressive power of GPT2 and the natural data generation capabilities of
the autoencoder. We find that the combination of both models further improves on each of the individual
architectures.

3.3 Tokenization

A key component of any NLP pipeline is tokenization. In order to make a text machine-readable, we must
split it into smaller substrings and assign each substring an index from a given vocabulary.

In Section 3.1.4, we have seen how word-based tokenization requires preprocessing of the text in order to
match the tokens to the limited vocabulary. Preprocessing and vocabulary limits remove information from
the input text irreversibly.

In order to avoid this, we can apply lossless tokenization, such as character-based tokenization. The vocab-
ulary is given by a set of characters, for example, lowercase letters a-z, uppercase letters A-Z, numbers
0-9, and some special characters and punctuation. Any text consisting of these characters can be described

26

Chapter 3 Representation Modeling

Text The cat is black.
Tokens T h e _ c a t _ i s _ b l a c k .
Indices 45 7 4 62 2 0 19 62 8 18 62 1 11 0 2 10 63

(a) Character tokenization of a sentence. The _ token denotes a whitespace character.

Text The cat is black.
Tokens The cat is bl #ack .
Indices 141 2543 19 3772 7865 12

(b) Subword tokenization of a sentence. Each token is implied to be prefixed by whitespace unless a token
starts with a # character.

Text The cat is black.
Preprocessed the cat is black
Tokens the cat is <UNK>
Indices 786 15420 11956 0

(c) Word tokenization of a sentence. The sentence is preprocessed (lower-casing and removal of punctu-
ation) and the text is split on whitespace and matched to the large vocabulary. If a word (here the word
black) is unknown, i.e., not found in the vocabulary, it is replaced by a special <UNK> token.

Figure 3.7: Comparison of character, subword, and word tokenization. The same original sentence is tokenized using
the three methods, we show both the split text tokens and the corresponding indices from the vocabulary. Note that the
difference in vocabulary size between character tokenization and the other two is apparent by the magnitudes of the
respective indices.

perfectly by mapping each character to the corresponding index in the vocabulary [63].
The character set described above results in a rather small vocabulary of less than 100 individual charac-

ters, which has advantages, for example, during a text generation task. At each step, the model only has to
decide between a small number of individual characters for the next character to generate. However, this
tokenization also results in long sequences. Consider common words found in many texts such as and. A
character tokenized model must generate three individual characters each time it wants to generate this word,
which is computationally expensive and can provide issues with long context windows.

A way to improve on this issue is the use of subword tokenization [82]. Subword tokenization is a tech-
nique in which a training corpus of raw text data is used to extract a vocabulary of single characters and
strings of multiple characters in order to find efficient tokenization of the data. The tokenization is lossless,
meaning, like character-based tokenization, we can perfectly encode any input text and recover the original
text from the calculated tokens. This type of tokenization increases the size of the vocabulary significantly,
by default BERT has a vocabulary size of around 30 000 and GPT a vocabulary size of around 50 000, but
decreases the number of tokens in each sequence [49, 65]. Most transformer-based architectures for language
modeling apply a version of subword tokenization [49, 64, 65, 83–85].

In Chapters 5, 7 and 8 we apply character tokenization for language modeling and text generation, in
Chapters 5, 6 and 7 we train transformer based language models using subword tokenization.

27

Chapter 3 Representation Modeling

3.4 Transfer Learning

Various studies [86–89] have shown that training machine learning models on data not entirely related to
the proposed task can improve the performance of downstream tasks. In practice, this means that given a
limited amount of training data, one can first train a model on a large corpus of publicly available data and
later continue training on the actual dataset.

We call this process transfer learning and the individual steps pre-training and finetuning. Transfer
learning builds a base for the application of many text analysis models. Given the large number of trainable
parameters in state-of-the-art models, a large amount of training data is needed to reach their full potential.
This training data is seldom available for a specific task, which is why pre-training on a large corpus of
publicly available data, such as CommonCrawl [90] or Wikipedia [91], is beneficial or even required for the
application of these models.

The large number of parameters and the size of the public datasets make pre-training very costly in terms
of computing time and resources. In order to facilitate this process, many models are publicly available
with pre-trained weights. We apply transfer learning and compare the performance of pre-trained models to
models trained from scratch on the relevant datasets in Chapters 5, 6, and 7.

3.5 Binary Optimization and Hopfield Networks

Moving on from classic natural language processing applications, we will focus on a further application in
the field of automated auditing in Chapter 9. As described in Section 2.1, we will expand the automated
analysis of financial reports to consistency checks within numerical tables in these documents.

In [15], we present a way of encoding the task of finding sums of values in numerical tables as the subset
sum problem, which is an NP-hard binary optimization problem [92]. We show that this problem has an
equivalent formulation as a quadratic unconstraint binary optimization problem (QUBO [93]), in which
we optimize a quadratic polynomial function 𝑓 ∶ {0, 1}𝑛 −→ ℝ of the form

𝑓(𝒛) = ∑
𝑖𝑗

𝑷𝑖𝑗𝒛𝑖𝒛𝑗 (3.11)

to find the optimal binary vector

𝒛∗ = arg min
𝒛∈{0,1}𝑛

𝑓(𝒛) = arg min
𝒛∈{0,1}𝑛

𝒛𝑇 𝑷 𝒛 (3.12)

with a symmetric matrix 𝑷 ∈ ℝ𝑛×𝑛. We encode the subset sum problem into a QUBO in a way that the
binary vector 𝒛 indicates which values of the table belong to the sum and the function 𝑓(𝒛) has a global
minimum if the sum of all values indicated by 𝒛 is equal to a target sum.

While finding the solution to a QUBO problem is NP-hard, there are several algorithmic approaches to
finding optimal or approximate solutions like heuristic algorithms [94] and genetic algorithms [95].

In order to solve the corresponding QUBO to the underlying subset sum problem will present a GPU-
accelerated algorithm for which we apply a special type of recurrent neural network, called a Hopfield net-
work [96]. The network consists of 𝑛 interconnected neurons, each with a value in {−1, 1}. The state of
the network can be described by a binary vector 𝒔 ∈ {−1, 1}𝑛. Each neuron is connected with every other
neuron by connection weights 𝑾 ∈ ℝ𝑛×𝑛, such that 𝑾𝑖𝑖 = 0 and 𝑾𝑖𝑗 = 𝑾𝑗𝑖 for all 𝑖, 𝑗. Each neuron

28

Chapter 3 Representation Modeling

additionally contains a threshold value 𝜽𝑖 ∈ ℝ. We define the energy of the network for a certain state as

𝐸(𝒔) = −1
2𝒔𝑇 𝑾 𝒔 + 𝜽𝑇 𝒔. (3.13)

Given the constraints on 𝑾 stated above, updating the state of a single neuron by

𝑠𝑖 = sign (𝑾 𝑇
𝑖 𝒔 − 𝜽𝑖) (3.14)

can never increase the energy value of the network. By updating the network as in (3.14) multiple times
for different neurons, we perform gradient descent on 𝐸(𝒔). Since there are only 2𝑛 possible states of the
network, this procedure is guaranteed to find a local or global minimum after a finite amount of update steps
[97].

This type of optimization procedure is useful for many problems in binary optimization. We initialize
the weights 𝑾 and thresholds 𝜽 such that an energy minimum of the network as in (3.13) corresponds to a
solution to the optimization problem and performs the gradient descent update steps until a convergence state
of minimal energy is reached, at which point the state of the network is the solution to the binary optimization
problem [97].

In Chapter 9, we show how GPU-accelerated gradient descent can find solutions to these complex binary
optimization problems. We show that the algorithm is capable of solving subset sum problems that arise
in the consistency check of real financial report documents and explore its limitation by testing on artificial
data. Additionally, we show how this architecture is related to the field of quantum computing and apply a
quantum computing architecture to this type of problem.

29

CHAPTER 4

Interpretable Topic Extraction and Word Embedding
Learning Using Non-Negative Tensor DEDICOM

This chapter is based on the publication “Interpretable Topic Extraction and Word Embedding Learning
Using Non-Negative Tensor DEDICOM” by Lars Hillebrand, David Biesner, Christian Bauckhage and Rafet
Sifa, published in Machine Learning and Knowledge Extraction 3 (2021) [53].

Word embeddings are a vital tool for natural language processing. As previously established in Sec-
tion 3.1.4, in order to be processed by machine learning models, a text must be converted into numerical
vectors first. One way of embedding text is splitting the text into words and assigning each word a predefined
vector. This converts a sentence into a sequence of numerical vectors, one vector for each word in the text.
These word embeddings must contain information about the word itself and its usage in order to make it
usable for downstream tasks.

Many word embedding models are based on a matrix factorization approach [58, 98]. Take GloVe (Sec-
tion 3.1.4), which extracts an adjusted concurrency matrix of words from a text corpus and factorizes this
matrix into a matrix of lower dimensionality. This method of embedding text has been shown to yield good
performance on downstream tasks while being computationally inexpensive: Once the word embeddings
are pre-computed, they can be easily stored and shared in lookup tables, and for embedding a text, one must
only split the text into single words and retrieve the corresponding embedding for each word.

While this method of embedding text is more intuitive and requires fewer parameters than deep-learning
language models, the resulting word embeddings are not any more interpretable in the sense that individual
entries of a word embedding do not have any extractable semantic meaning. The calculated embeddings are
𝑛-dimensional numerical vectors, where 𝑛 is usually relatively large, e.g. 300 for the default GloVe imple-
mentation. This poses a limitation for the development of machine learning solutions for downstream tasks,
as we can not infer any information about the models from knowing which dimensions of the embedding it
focuses on.

In [53], we present a novel approach for learning interpretable word embeddings in combination with
topic modeling. The method is based on the DEDICOM algorithm [99], which factorizes a square matrix
𝑺 ∈ ℝ𝑛×𝑛 into three matrices by

𝑺 ≈ 𝑨𝑹𝑨𝑇 , 𝑨 ∈ ℝ𝑛×𝑘, 𝑹 ∈ ℝ𝑘×𝑘, (4.1)

where we call 𝑨 the loading matrix and 𝑹 the affinity matrix.
We apply this factorization approach to word embeddings by factorizing a logarithmic cooccurrence mat-

30

Chapter 4 Interpretable Topic Extraction and Word Embedding Learning Using Non-Negative Tensor
DEDICOM

rix 𝑺 ∈ ℝ𝑛×𝑛, where 𝑛 is the vocabulary size, into a matrix 𝑨 ∈ ℝ𝑛×𝑘 and an affinity matrix 𝑹 ∈ ℝ𝑘×𝑘,
where 𝑘 ≪ 𝑛 is the dimension of the word embeddings. We enforce row-stochasticity on the matrix 𝑨,
such that each word embedding describes a probability distribution over the 𝑘 dimensions. By enforcing
this constraint, we can interpret each word embedding as a mixture of 𝑘 individual components, which we
call topics. A word is relevant to a topic if its entry in the word vector in the respective dimension is large
and we identify the content of the topics by taking into account the most relevant words for each dimension.

For example, if the words with the largest word embedding entries for a topic dimension are cup, foot-
ball and fifa, we can interpret the topic to be soccer. Since

𝑺𝑖𝑗 ≈
𝑘

∑
𝑏=1

𝑘
∑
𝑐=1

𝑨𝑖𝑏𝑹𝑏𝑐𝑨𝑗𝑐, (4.2)

we can estimate the probability of the cooccurrence of any two words 𝑤𝑖 and 𝑤𝑗 in the vocabulary by
calculating a weighted sum of their word embedding entries, where the weights are given by the relationship
matrix 𝑹. This way, we can interpret matrix 𝑹 as a matrix describing relationships between topics in the
corpus: A large value in 𝑹𝑏𝑐 describes a likely cooccurrence of words that belong to topics 𝑡𝑏 and 𝑡𝑐 and a
semantic relationship between the respective topics. Further, we extend this method to a tensor factorization
approach, where the cooccurrence matrix is not only calculated on one corpus but on multiple text sources.
The resulting factorization yields word embeddings for the entire data, meaning one set of topics for the entire
data, and one relationship matrix for each text source. This way, one can identify the different relationships
between topics depending on the individual text source.

In [53], we show that this approach generates interpretable word embeddings for a variety of text corpora.
We demonstrate how the algorithm models logical relationships between the topics in the text and how
the topics are identifiable by the words that are assigned the greatest weights in their respective dimensions.
Additionally, we establish how the tensor factorization method successfully models the relationships of topics
in a series of text corpora, for example extracting the changing focus of news outlets on various political
events over time.

Contributions

My contributions to these papers as first author (shared first authorship) are as follows: I was in equal parts
with my first co-author responsible for research, planning, and conceptualization of the project, as well as
the deduction of the update rules for the matrix formulation of the DEDICOM algorithm. I was in equal
parts with my first co-author responsible for the conduction of the experiments presented in the paper and
the main contributor to the evaluation of the interpretability of the algorithms. I was in equal parts with
my first co-author responsible for the text, tables, and figures of both papers and the main contributor to the
respective section on interpretability.

31

CHAPTER 5

Anonymization of German Financial Documents using
Neural Network-based Language Models with Contextual
Word Representations

This chapter is based on the publication “Anonymization of German financial documents using neural
network-based language models with contextual word representations” by David Biesner, Rajkumar
Ramamurthy, Robin Stenzel, Max Lübbering, Lars Hillebrand, Anna Ladi, Maren Pielka, Rüdiger Loitz,
Christian Bauckhage, and Rafet Sifa, published in the International Journal of Data Science and Analyt-
ics 13 (2022) [14].

The previous chapter introduced a method of word embedding, which is a powerful tool for converting
text into machine-readable information with various properties that enable their use on downstream tasks
(see also Section 3.1.4). They are easy to implement and computationally inexpensive to use. However, they
present multiple downsides.

First, they deal with a fixed vocabulary. Any word-embedding model has a vocabulary of 𝑁 predefined
words that it can embed meaningfully. While this vocabulary may be very large (the pre-trained GloVe
vocabulary contains between 400k and 2.2M entries, depending on the training corpus), all finite vocabu-
laries will eventually run into out-of-vocabulary issues, where we can not find a suitable word embedding
for a string in the text and have to ignore the word or use the embedding of a generic <UNK> token. Pre-
processing text, like lower-casing, removing punctuation, stemming, and lemmatization, reduces the risk of
out-of-vocabulary words. Nevertheless, many texts will contain words, often names of persons and places,
for which no embedding is available.

Second, pre-trained word embeddings contain no context information. Consider the following sentences.

The early bird catches the worm.
Mr. Bird is a data scientist.

After lowercasing, both contain the token bird, which will receive the same word-embedding using any
word-embedding model. However, it is evident that both tokens refer to completely different concepts, one to
an animal, the other to the name of a person. Any model for downstream tasks will not be able to differentiate
between the two concepts.

A way to deal with these issues are language models, which we introduced in Section 3.1.5. Language
models are machine learning models that read tokenized text and output embeddings for each token. Instead
of assigning each token a fixed pre-calculated embedding, the embeddings are calculated during inference

32

Chapter 5 Anonymization of German Financial Documents using Neural Network-based Language
Models with Contextual Word Representations

time with regard to context, i.e., the previous and next tokens in the sequence. Such models are trained by
reading a large corpus of non-annotated text data and trying to predict the next token in a sequence.

In the present work, we tackle the issue of de-identification and anonymization of financial text documents.
Text in financial reports may contain sensitive information, such as names of people, organizations, and loc-
ations, that needs to be anonymized (replaced by generic tokens) or pseudonymized (replaced by tokens that
still allow for tracking of entities in a document) before publication or distribution to another party. Manual
anonymization of text is possible but very time-consuming and prone to errors. A machine learning model
trying to anonymize text using word embeddings would soon run into problems, as evident considering the
example given above. A model processing both sentences would have to decide whether or not to anonymize
the token bird based on its word embedding. Either decision would result in errors, either anonymization
of non-sensitive tokens or not anonymizing sensitive information.

To this end, we employ a language model based on a character-based bidirectional LSTM, trained on a
large corpus of raw German financial document text data (without annotations for sequence tagging). The
model embeds each word by processing a text paragraph by characters, reading the text bidirectionally and
concatenating the embeddings of each word’s first and last character. During language modeling training,
the model is trained to predict the next character in the sequence.

In the paper, we compare the performance of various pre-training data corpora (general language and
financial domain data) and the effect of the size of the embedding, i.e., the dimension of the hidden state of
the LSTM, on the classification performance. We infer that training on domain-specific language is beneficial
to the model in any configuration and the size of the embedding is a hyperparameter that provides a trade-off
between classification performance and inference time. While the best model is based on embeddings of
dimension 4096, a model with embedding size 2048 provides very similar performance while reducing the
inference time by approximately 60%.

We additionally consider the transformer-based BERT model (see also Sections 3.1.7 and 6) as the em-
bedding model and find that it provides similar performance to the 2048 dimensional RNN model and does
not reach the best RNN models both in terms of performance or inference speed.

The actual named entity recognition is based on a sequence classification architecture with the contextual
word embeddings calculated by the language model as input. Each architecture outputs a probability distri-
bution over the classes of names entities (0, ORG, PER, LOC, PROD, SEG and OTH). We compare three
different architectures: a regular feed-forward neural network with one layer mapping the word embedding
to a probability distribution over the number of classes, an RNN, which is a bidirectional LSTM reading
the sequence of word embeddings, and the RNN with an additional conditional random field (CRF [100]),
which models the conditional dependencies between labels in the sequence. We find that the RNN with
CRF provides the best classification results, while the choice of classifier does not impact inference time
significantly.

We evaluate the model on recall, precision, and the resulting F1-score. We can interpret the recall as
the performance on anonymization. A high recall means that little sensitive tokens were missed during the
sequence tagging. We interpret precision as a readability score, a high precision means that little tokens
which are not sensitive were anonymized unnecessarily. To improve the performance on the classification
task, we employ a post-processing step of anonymization of the same token in the entire document if it is
tagged as a sensitive entity once. Before post-processing, the best model shows very good performance
for anonymization and readability (97.3% precision, 97.1% recall, 97.2% F1-score). After post-processing,
the best model shows nearly perfect anonymization performance while keeping the text readable (90.3%
precision, 99.0% recall, 94.7% F1-score).

33

Chapter 5 Anonymization of German Financial Documents using Neural Network-based Language
Models with Contextual Word Representations

Contributions

My contributions to this paper as first author (shared first authorship) are as follows: I was in equal parts
with my first co-author responsible for the research, planning, and conceptualization of the project. I was
the main contributor to overseeing the data acquisition and annotation and the implementation of the data
infrastructure. I was the main contributor to the implementation and tuning of the post-processing methods
and the evaluation of their efficiency in the anonymization process. I was responsible for the generation of
the figures and tables in the final version of the paper and was together with my first co-author in equal parts
responsible for the writing of the text.

34

CHAPTER 6

Zero-Shot Text Matching for Automated Auditing using
Sentence Transformers

This chapter is based on the publication “Zero-Shot Text Matching for Automated Auditing using Sentence
Transformers” by David Biesner, Maren Pielka, Rajkumar Ramamurthy, Tim Dilmaghani, Bernd Kliem,
Rüdiger Loitz, and Rafet Sifa, published in the proceedings of the 21st IEEE International Conference on
Machine Learning and Applications (2022) [101].

The last chapter considered the application of character-level language models for the task of anonymiza-
tion of financial reports. Anonymization of these reports may be necessary for a number of reasons, one of
which is the use of reports in the development of further machine learning systems for analysis of financial
report texts. One of these systems is the recommender for automated auditing, which we introduced in Sec-
tion 2.1 and shown in Figure 2.2. The goal of this tool is to find the paragraphs in a financial report which
are relevant to a given regulatory requirement or vice versa.

Previous work [12, 13] interpreted this task as multilabel text classification: Given a set of 𝑁 regulatory
requirements and one trains a predictor to predict which of the 𝑁 possible requirements are relevant to
a given text passage. Since more than one requirement can be relevant to a given text passage, this is a
multilabel classification task on 𝑁 labels. To recommend the most relevant text paragraphs for a given
requirement, one encodes and predicts each paragraph in a document separately and either recommends
each paragraph with a positive prediction for the requirement or ranks the paragraphs by their prediction
score for the corresponding label. In [12], the authors use the word-based tf-idf algorithm [102] to encode
the text passages and train a set of logistic regression models to predict the labels. In [13], the authors use
a BERT model to encode the text passages and investigate the effect of RNN and MLP classification layers.
The application of transformer architectures for text embedding provides significant performance gains over
the more simple tf-idf-based embedding.

While these approaches are capable of classifying texts to the correct requirements for the given data-
sets of financial reports and auditing standards, the multilabel classification interpretation has a number of
disadvantages: While both works show that the chosen approach works very well for the given set of re-
quirements, it is very inflexible and cannot be applied to new requirements. Should the regulatory checklist
change, which happens fairly regularly [103], the set of prediction labels changes and the model (at least the
prediction layers) must be retrained on new annotated data. There is no mechanism with which to apply the
model to new requirements without retraining. Furthermore, a model trained on one checklist can not be
applied to other checklists or checklists in other languages at all.

35

Chapter 6 Zero-Shot Text Matching for Automated Auditing using Sentence Transformers

In contrast to this approach, in [101] we apply the SentenceBERT [56] architecture to the task, convert-
ing the multilabel classification task into a text similarity matching task. For this, we use a BERT model
to encode both the paragraph text from the financial report and the description text from the regulatory re-
quirement and calculate the cosine similarity between the two embeddings. We then rank the paragraphs
by their similarity score to the requirement and recommend the top 𝑘 paragraphs. This interpretation of the
assignment of pairs of text paragraphs and requirements more closely models the way a human auditor would
approach the task. An auditor does not view a requirement as a numbered label and learns which types of
text fit this label, but rather reads the description text of the requirement and finds text in the document that
corresponds to this description.

The base architecture of this model is a regular BERT model in a siamese architecture, meaning that the
same model is used to produce embeddings for both sequences. During training, the model encodes two
sequences which may or may not match and produces one embedding for each sequence. The training loss
is given by the cosine distance between the two embeddings, where we want the distance to be small for
matching sequences and large for non-matching sequences.

We show that this approach leads to prediction performance that is comparable to the previous approaches,
while providing usable results on new requirements and entirely new checklists, which is not possible at all
with the multilabel classification methods. We compare two methods of unsupervised pre-training, an un-
supervised similarity matching approach based on [104] and a denoising autoencoding approach based on
[105], and find that the autoencoding approach improves performance significantly. We compare supervised
training on different combinations of datasets, German data, English data, and German and English data
combined, and find that training on both languages is preferable even when the inference language is only
German or English, and that training on one language and using it for inference on the other is not recom-
mendable in any configuration. Additionally, we analyze the language modeling step of the base BERT
model, which is conducted before the unsupervised and supervised training begins. We compare training on
general language data and domain-specific data, i.e., not-annotated financial reports, and find that the effect
of this training is negligible once the model is trained in the unsupervised and supervised manner.

This work provides the basis for recommender systems for automated auditing to be applied beyond the
confines of a single auditing standard and language, such that trained models can be used in multiple regions
of interest.

Contributions

My contributions to this paper as first author are as follows: I implemented parts of the models and the
training procedures, mainly the TSDAE algorithm and an overhaul of the training and evaluation routine. I
conducted all experiments presented in the paper, compiled and processed the evaluation results and gener-
ated their presentations in the text. Finally, I was the main contributor to the text, figures, and tables in both
the first draft and the final version of the paper.

36

CHAPTER 7

Advances in Password Recovery Using Generative Deep
Learning Techniques

This chapter is based on the publication “Advances in Password Recovery Using Generative Deep Learning
Techniques” by David Biesner, Kostadin Cvejoski, Bogdan Georgiev, Erik Krupicka, and Rafet Sifa, pub-
lished in the proceedings of the 30th International Conference on Artificial Neural Networks and Machine
Learning (2021) [35].

The previous chapters focused on text embedding models for text classification and text similarity match-
ing, in which the embeddings are either used directly or provide the bases for classification models. We
have seen that transformer models improve on more traditional NLP models like tf-idf and RNNs in terms
of performance significantly.

The following chapters will consider the effect of transformer architectures on the task of text generation.
We will consider a text generation task in the domain of cybersecurity data, namely the generation of pass-
word strings, and investigate how latent variable models and generative transformers allow for the generation
of realistic text.

As discussed in Chapter 2.2, the password generation task requires a model to learn the general structure
of password data from a dataset of cleartext passwords and generate a large number of password candidate
strings. The generation can be either unsupervised, without context information for the generated string, or
supervised, with additional context information (like an input prompt), which should guide the generation
process.

One of the first works to apply modern deep-learning text generation models to the password generation
task was PassGAN [29], in which the authors used a generative adversarial network for the generation of
password strings.

Generative adversarial networks are inherently not ideal for text generation due to the discrete nature of
text data. Tokenized and vectorized text exists as discrete indices or one-hot encoded vectors, and non-integer
values are not part of the data domain. Unlike images, which can exist as real-valued vectors, text generation
must include a step in which one chooses a specific token from a given real-valued probability distribution.
This step is non-differentiable in general and provides issues with GAN architectures that require an entire
output sample to be passed to the discriminator [106].

While there are workarounds to this issue [106, 107], in [35], we investigate the capability of other architec-
tures for the password generation task and find that both variational autoencoders and generative transformers
are able to generate passwords of much higher quality than the GAN approach presented in [29].

37

Chapter 7 Advances in Password Recovery Using Generative Deep Learning Techniques

We construct the variational autoencoder with encoder and decoder based on ResNet [72], which is a
convolutional neural net with residual connections between the layers. We train the model on password
text tokenized by characters and generate new data by sampling new latent vectors from a standard normal
distribution and passing it to the decoder.

For the generative transformer, we train the GPT2 [49] (see also Section 3.2.4) architecture on password
data. For this, we generate a dataset of raw text documents consisting of randomly arranged passwords
concatenated into continuous text. We compare both a GPT2 model trained from scratch and a GPT2 model
pre-trained on general language data and finetuned on password data. Both models read the password text
as subword tokenized input.

We additionally show how models that encode data into latent space, in our case the variational autoen-
coder model, are able to use the geometric properties of the latent space for targeted generation. We show
that the trained model is able to encode a data point, in our case a specific password string, and output various
passwords that are similar, for example, because they share a certain substring. In the same manner, we can
apply the idea of linear interpolation in latent space introduced in Section 3.2.3 to encode two passwords
and generate an interpolation of password strings between them.

Quantitatively, we show that both variational autoencoder and generative transformer produce passwords
of higher quality than the GAN approach, resulting in a significant increase in the number of passwords
reconstructed across all test sets, e.g., 44.9% reconstruction of rockyou for the VAE, 45.1% for GPT2, in
contrast to 15.9% for GAN. We investigate the ability to generate high-quality password strings for all models
qualitatively and demonstrate the ability of the VAE for targeted generation of password strings. We show
that both generation of passwords similar to an input string as well as smooth interpolation between two
input passwords is possible and results in output data usable for the password recovery task. As an example
of this, see also Figure 3.6.

Contributions

My contributions to this paper as first author (shared first authorship) are as follows: I was in equal parts with
my first and second co-authors responsible for the research, planning of the project, and conceptualization of
the machine learning components. I was in equal parts with my first and second co-authors responsible for
the general code base for training and evaluation of the models. I was the main contributor to the acquisition
of training and evaluation data and the implementation of data preprocessing. I was responsible for the devel-
opment, training, and evaluation of the generative transformer models and conducted various experiments
and evaluations regarding the targeted generation of password data. Additionally, I was responsible for the
implementation and evaluation of the classic (i.e., not deep-learning) algorithms for comparison. During the
paper writing process, I was in equal parts with my first and second co-authors responsible for the majority
of the text, and was the main contributor to the section on the generative transformer model.

38

CHAPTER 8

Combining Variational Autoencoders and Transformer
Language Models for Improved Password Generation

This chapter is based on the publication “Combining Variational Autoencoders and Transformer Language
Models for Improved Password Generation” by David Biesner, Kostadin Cvejoski, and Rafet Sifa, published
in the proceedings of the 17th International Conference on Availability, Reliability and Security (2022)
[36].

The previous chapter has shown that both encoder-decoder architectures, like the variational autoencoder,
and decoder-only language models with transformer-based components are capable of generating a large
number of passwords with high diversity and good quality. However, both models have their limitations.

On the one hand, the variational autoencoder trained in the previous work is limited in terms of its ar-
chitecture, which was based on convolutional neural nets. While CNNs are a powerful architecture, recent
advances in NLP have shown that architectures based on self-attention are often superior to sequential archi-
tectures like CNNs and RNNs [64].

On the other hand, the decoder-only language model GPT2 employs a transformer-based architecture that
is capable of generating high-quality passwords, but the generation process itself is less a controlled random
process and more of an artifact of the training procedure. During the training, we let the model learn from
a concatenated string of random passwords. There are no patterns in the sequence of passwords, and the
model can only learn to generate a random password after each whitespace character. Ideally, we aim to
combine the features of both architectures, having a generative latent variable model with meaningful latent
space that has the same expressive power as the transformer-based language model.

In this work, we proposed a novel architecture, the variational GPT2 (VGPT2), which combines the
variational autoencoder with the transformer-based language model GPT2, and show that it surpasses both
previously established methods of generating passwords using deep-learning generative models in terms of
the quality of generated passwords.

The model is an encoder-decoder architecture trained to encode a single password string into latent space
and decode the latent vector back into the original string. The loss is given, just like the regular variational
autoencoder discussed in Section 3.2.2 and Chapter 7, by a reconstruction loss and a loss on the distribution
of the latent vector.

Both the encoder and the decoder are individual GPT2 models. While GPT2 is a decoder-only architecture
in the sense that there is only a mechanism to read an input prompt and predict the next token in the sequence,
internally, the input prompt must be encoded by the transformer blocks. We take the token embeddings of

39

Chapter 8 Combining Variational Autoencoders and Transformer Language Models for Improved
Password Generation

the input string, apply a pooling operation and map the input embedding onto the mean and variance vector
for the latent distribution. We sample a latent vector from the distribution and provide the needed context
for the reconstruction by concatenating the latent vector to the embedded input token to the decoder at every
time step. We provide further details and illustrations of the architecture in [36].

We conduct experiments on the same datasets for training and testing as in [35] and see that the model
is capable of generating passwords of higher quality, reconstructing more passwords from the test set than
the other models for each tested number of generated passwords, for example 48.3% reconstruction of the
rockyou test set as opposed to 44.9% reconstructed by the variational autoencoder from [35] and 23.6%
reconstruction of the linkedin test set as opposed to 21.8% reconstructed by the variational autoencoder
from [35].

The combination of variational autoencoders and GPT2 paves the way for the application of any type of
transformer language model as the encoder and decoder module of the autoencoder, enabling the use of
powerful generative models for the generation of password data.

Contributions

My contributions to this paper as first author are as follows: I was the sole contributor to all additional
code to the data, models, training, and evaluation in [35]. Specifically, I implemented the combined VAE
and transformer model and conducted all experiments and evaluations regarding this model. I was the sole
contributor to all new experiments and evaluations presented in the paper. I was responsible for the first draft
of the paper and was the main contributor to the final version of the text, tables, and figures presented in the
paper.

40

CHAPTER 9

Solving Subset Sum Problems using Quantum Inspired
Optimization Algorithms with Applications in Auditing
and Financial Data Analysis

This chapter is based on the publication “Solving Subset Sum Problems using Quantum Inspired Optim-
ization Algorithms with Applications in Auditing and Financial Data Analysis” by David Biesner, Thore
Gerlach, Christian Bauckhage, Bernd Kliem, and Rafet Sifa, published in the proceedings of the 21st IEEE
International Conference on Machine Learning and Applications (2022) [15].

The main part of this thesis has described the various ways in which representation learning models with
a focus on natural language processing can be applied to problems in the realms of automated auditing
and cybersecurity. For the final chapter of the thesis, we will take another look at the field of automated
auditing and present a novel approach to numerical consistency checks in financial documents. We show
how encoding an NP-hard optimization problem using a recurrent neural network allows for the usage of
GPU-accelerated binary optimization algorithms.

Previously, Chapters 5 and 6 introduced methods of preparing financial reports for the development of
machine learning algorithms and using recommender systems to improve the auditing workflow. The re-
commender systems decrease the need for human auditors to search manually through long text documents
and increase the time an auditor can spend applying their expert knowledge to analyze the content of the
document.

However, even with a reliable recommender system in place, there are aspects of the auditing workflow
that remain manual work done by auditors and show potential for improvement by automation. As mentioned
in Section 2.1, one such task is the internal consistency check of numerical tables in financial documents.
Financial reports feature numerical data in structured tables, that highlight key indicators like revenue and
profit. These numbers are connected, often aggregating values from within the table, such as total revenue
deriving from subsidiary revenues. Auditors must ensure their accuracy and internal consistency. For this
application, we focus on the correctness of the aggregated values in the table. If these sums are incorrect,
that indicates a potential error in the financial report since either the sum value is incorrect or one or multiple
of the values that are summed up are incorrect. This type of correctness check must be performed by auditors
for each numerical table in the document.

During the auditing process, financial documents are prepared in .pdf or .docx format, which does not
include machine-readable information on the underlying structure of tables. Therefore, one must find an

41

Chapter 9 Solving Subset Sum Problems using Quantum Inspired Optimization Algorithms with
Applications in Auditing and Financial Data Analysis

algorithmic way of identifying which values are supposed to be sums of other values, which becomes very
complex for tables with many rows and columns, complex structure, and little regulation on the formatting.

In [15], we present a novel approach to this type of numerical consistency check, in which we do not
try to identify the exact sum structure of the table but rather treat finding sums in tables as a combinatorial
optimization problem. The problem of finding the correct values in a table that sum up to a certain target
element is equivalent to the subset sum problem, which is a well-known NP-complete problem. Due to
its complexity, we can not solve the subset sum problem exactly for large tables. Therefore, we consider a
reformulation of the problem as a quadratic unconstrained binary optimization problem (QUBO, Section 3.5).
We encode the subset sum problem as a QUBO and apply Hopfield networks, introduced in Section 3.5, such
that the state of the network represents the current solution to the subset sum problem and that the energy
minimum of the network corresponds to a state which is an optimal solution.

We present a novel algorithm for efficient minimization of the energy of Hopfield networks using parallel-
ized computing on GPUs. In a quantitative evaluation, we show that this reformulation of the problem allows
us to find correct sums in real-world financial documents and various types of artificial tables. This method
of solving QUBOs is inspired by the idea of solving QUBOs on specialized quantum hardware, so-called
quantum annealers. This type of computer can solve complex binary optimization problems very efficiently,
given that the problem can be encoded in the number of available quantum bits [97]. We demonstrate the abil-
ity of quantum hardware to solve real-world application problems by calculating the correct sum structure for
multiple financial report tables. By encoding consistency checks in this manner, we can apply both Hopfield
networks and gradient descent on regular GPU-accelerated hardware and use quantum hardware as soon as
the required number of quantum bits is available, without needing to adjust the underlying representation of
the problem.

Contributions

My contributions to this paper as first author are as follows: I was the main contributor to the implementation
of the models and training routines and the sole contributor to the acquisition and preprocessing of suitable
data. I was the sole contributor to the conduction of experiments using the Hopfield networks and the
evaluation of the results, as well as the evaluation of the results of the experiments on quantum hardware. I
was responsible for the first draft of the paper and the main contributor to the final version of the text, tables,
and figures presented in the paper.

42

CHAPTER 10

Conclusion and Future Work

In this thesis, we investigated the potential of representation learning for various tasks in the fields of auto-
mated auditing and cybersecurity. To conclude, we will summarize the results of the individual chapters and
works that build the basis of the thesis. Additionally, we will give an overview of more recent advancements
in natural language processing and discuss their potential for the tasks presented in this thesis and how future
work can build on the results presented here.

10.1 Summary of Results

The individual works referenced in this thesis have shown how architectures for representation learning have
evolved over the last years, from simple embedding models to complex generative deep learning models with
semantically interesting latent space properties.

The methods for word embedding introduced in Chapter 4 provide powerful methods of embedding text
with very little computational cost at inference time and the embeddings provide a layer of interpretability
to the machine-learning system that apply them to downstream tasks. We showed how the novel DEDICOM
word embedding algorithm is able to generate interpretable word embeddings and extract topics from text
corpora. However, all word embedding models suffer from the limited word vocabulary that results in issues
with homonyms and out-of-vocabulary words.

The introduction of character-based recurrent neural nets in Chapter 5 provided a clear advantage over the
use of word embeddings for many tasks. For one, since the entire text can be tokenized lossless by characters,
we do not have to deal with out-of-vocabulary words anymore, which is especially important for the task of
de-identification, which we tackled for financial report documents. In these reports, many of the words to be
tagged will be names, places, and organizations that are unlikely to have a pre-trained embedding. Second,
the context-aware nature of the embeddings lets the system differentiate between common words and names
with the same spelling. Our experiments show that this type of context-aware embedding can provide the
basis for near-perfect anonymization while keeping the output text readable.

In light of the advancements in language modeling provided by the transformer architecture, we applied a
language model based on a bidirectional transformer to the task of text similarity matching in Chapter 6. We
showed that this architecture is able to encode text into latent space in such a way that the model can match
text passages from new financial reports to known auditing requirements with competitive performance and
still perform well when matching new financial reports to previously unknown auditing requirements. This
matching of auditing requirements not seen during training is a clear advantage over the more limited and

43

Chapter 10 Conclusion and Future Work

less flexible multilabel classification approach of previous work.
The emergence of transformer architectures as the dominating building block for NLP models has also af-

fected the works presented in Chapters 7 and 8. In both chapters, we discussed the capability of deep learning
text generation models of various architectures for the task of generating password strings. In Chapter 7, we
compared two more classical approaches, namely a generative adversarial network and a variational autoen-
coder, both with ResNet-based encoding and decoding blocks, to a transformer-based language model. We
found that both the variational autoencoder and the transformer language model provided similar perform-
ance in the password generation task across multiple test datasets, improving significantly on the previous
state-of-the-art for deep learning password generation and most classic password reconstruction methods.
We showed that the variational autoencoder is able to enforce a geometry on the latent space, in which en-
coded vectors have geometric properties that correspond to the semantic properties of the respective data. We
demonstrate this by qualitative evaluations of targeted sampling and interpolation of text data. In Chapter 8,
we approach the combination of both architectures, leveraging both the expressiveness of the transformer-
based language model and the capability of generating new data from latent space sampling of the variational
autoencoder to build a model that improves password generation performance on both individual architec-
tures.

Finally, in Chapter 9, we investigated a further application in the field of automated auditing by consid-
ering the use of neural networks for automated consistency checks in financial reports. We encoded the
problem of verifying the correctness of sums in tables using a Hopfield network such that the state of min-
imal energy of the network corresponds to a solution to the problem. We presented a novel GPU-accelerated
gradient descent algorithm and demonstrated it’s ability to solve consistency checks for real tables and arti-
ficial data. Additionally, we detailed how this approach relates to the application of quantum hardware to
the problem and described how sufficiently advanced quantum hardware is directly applicable to solve this
type of consistency check reliably and exceedingly faster than traditional hardware.

In conclusion, we have shown how advances in representation learning have contributed to major improve-
ments in the field of automated auditing and cybersecurity. Many of the solutions presented in this thesis are
in use by industry partners. The remainder of this thesis will now discuss more recent advances in algorithms
for natural language processing and detail possible future work.

10.2 Large Language Models

Recently, we have seen major breakthroughs in the field of NLP by account of large language models (LLMs).
These models are generally decoder-only language models like GPT2, but with a much larger number of para-
meters, trained on a much larger corpus of text and with new training techniques [83]. Large language models
are able to achieve human-like performance on various NLP benchmarks and surpass human performance
on a number of tasks. Given a prompt, these models are able to generate text that is often indistinguishable
from human-written text [81].

Due to these developments, one has to consider the potential impact of these models on the topics and
tasks presented in this thesis. We will first consider the application of large language models on financial
report analysis as detailed in Section 2.1 and Chapters 5 and 6. Second, we discuss the use of large language
models for the text generation task detailed in Section 2.2 and Chapters 7 and 8.

Considering the application of large language models to the anonymization of financial reports, a qualit-
ative analysis shows that the models are generally capable of reproducing text with de-identified personal
information. In Figure 10.1 we prompt GPT4 [81] with the task of de-identifying an excerpt from a news

44

Chapter 10 Conclusion and Future Work

Figure 10.1: Prompting GPT4 with the task of de-identification of a short news text results in correctly replaced named
entities. Screenshot taken on [108].

article on European politics. Here we applied few-shot learning [84], i.e., giving the model additional in-
formation and examples in the prompt, to potentially improve the performance of the model.

We see that the model correctly identifies the names, places, and organizations mentioned in the text and
replaces them in the output. Future work will more closely investigate the possibility of using generative
language models for the de-identification task. A possible concern one must pay attention to is the exact
replication of the input text since the models are able to generate any text and are not technically confined to
copying the input prompt with de-identified entities. The model losing the context of reproducing the input
text and starting to hallucinate alternative text is a possibility [109].

We now consider the application of large language models for the requirement recommendation task dis-
cussed in Section 2.1 and Chapter 6. In [110], the authors compare the performance of various GPT language
models to the model proposed in [101] for the task of text similarity matching. In order to apply the generative
transformer to the matching task, the authors propose multiple possible solutions.

First, they investigate using a smaller language model (GPT3 [80]) as an embedding model, embedding
all paragraphs of the documents and the requirement texts independently and matching the most similar text
and requirements based on cosine similarity. This approach is very similar to the SentenceBERT approach
in [101], only switching the BERT model trained on domain-specific data with a larger language model
trained on general language data. The evaluation shows that this substitution causes a significant drop in
performance, with 25.73% sensitivity and 13.15% F1-score as opposed to 52.12% sensitivity and 27.69%
F1-score for the SentenceBERT model on the same test set.

Second, they use a combination of embedding model and conversational large language model by using
the GPT3 embeddings to filter out a list of the 15 most relevant text paragraphs and ask a GPT3.5 [108] or
GPT4 [81] model to extract the 5 most relevant paragraphs to the given requirement from the filtered subset
of paragraphs. This two-step process greatly improves the performance of the pure GPT3 approach but still

45

Chapter 10 Conclusion and Future Work

(a) Generation of random passwords
with GPT4.

(b) Generation of passwords that con-
tain the substring test with GPT4.

Model Parameters

GPT2 1.5e09
LLaMA 6.5e10
GPT3 1.8e11
BLOOM 1.8e11
GPT4 NA∗

(c) Parameter count for various lan-
guage models.

Figure 10.2: Password generation with large language models. Left and middle: sample passwords generated by GPT4.
Right: Comparison of the number of parameters of GPT2 [49] (applied to password generation in [35]), LLaMA [84],
GPT3 [80], BLOOM [83] and GPT4 [81]. ∗The exact number of parameters of GPT4 is not officially disclosed but
rumoured to be around 1.0e12 [111]. Screenshots taken on [108].

does not reach the prediction quality of the SentenceBERT model, with 35.30% sensitivity and 27.69%
F1-score. Note that the direct application of the GPT4 model to extract the most relevant paragraphs from
the entire document is not possible due to the size of the documents and the limited context length of the
model.

Finally, the authors combine the idea of pre-filtering a larger subset of paragraphs and tasking the con-
versational large language model with the final decision with the SentenceBERT model trained on domain-
specific data. Using SentenceBERT to extract the 15 most relevant paragraphs and using GPT4 to choose
the best 5 paragraphs from this subset results in 57.62% sensitivity and 30.57% F1-score, which is a clear
improvement on the pure SentenceBERT model.

From this information, we can conclude that the application of large language models does provide benefits
for the task of text similarity matching. However, a direct substitution of the specifically trained model for a
larger general model is not recommendable. The combination of filtering models trained on domain-specific
data and a final decision by the large language model provides a benefit over the base model.

Future work might include the domain-specific finetuning of the open-source language models and a
further investigation of prompting methods beyond the approaches proposed in [110].

As mentioned in the introduction to this chapter, large language models are specifically trained to generate
text from a given prompt. Therefore, an application to the password generation task is very straightforward.
In fact, in [35], we already applied the GPT2 language model for password generation with very good results.
The large language model GPT4 is a direct successor to GPT2 with a very similar architecture.

Prompting a large language model with the request to generate passwords yields a promising list of output

46

Chapter 10 Conclusion and Future Work

passwords. See Figure 10.2(a) and 10.2(b) for an example of randomly generated passwords and targeted
password generation. However, in this application more than in the other applications discussed in this thesis,
one must consider the inference cost of generating one output string.

Consider Table 10.2(c). While the inference time for each token can not be directly inferred from the
number of parameters in a model, since all models have a similar type of architecture, it is a useful proxy
for the estimated inference time. The task of password generation requires not only quality in the generated
passwords but also quantity in the number of strings generated. For all models trained and evaluated in [35]
and [36] we see a similar pattern, that while the architecture of the model matters for the performance on the
password generation task, the number of generated passwords is the most important factor. Generating 1.0e8
passwords with the best model results in fewer reconstructed passwords than generating 1.0e9 passwords
with a worse model. While GPT2 is able to generate the number of passwords required for the experiments in
[35] in a reasonable amount of time (approximately 8 hours for 1.0e9 password strings on one A100 GPU),
we can expect large language models to take much longer for the same task.

However, given the required resources are available, password generation using large language models is
possible and should be investigated more closely. Note that in [36], we implemented a combined architecture
of a GPT2 language model and a variational autoencoder. This method is directly applicable to larger and
more advanced pre-trained large language models, and future work will examine the effect of applying these
models to the password generation task.

47

Bibliography

[1] Y. Bengio, A. Courville and P. Vincent,
Representation Learning: A Review and New Perspectives,
IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013) 1798.

[2] P. Vincent, H. Larochelle, I. Lajoie et al., Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion,
Journal of Machine Learning Research 11 (2010) 3371.

[3] T. Mikolov, I. Sutskever, K. Chen et al.,
Distributed Representations of Words and Phrases and their Compositionality, (2013),
arXiv: 1310.4546.

[4] International Federation of Accountants (IFAC),
International Auditing and Assurance Standards Board Handbook 2021,
International Federation of Accountants (IFAC), 2021.

[5] Bundesministerium der Justiz, §264, §267, §336, §340, §341 HGB,
https://www.gesetze-im-internet.de/hgb/, Accessed: 2023-03-16.

[6] Bundesministerium der Justiz, §316-§324 HGB,
https://www.gesetze-im-internet.de/hgb/, Accessed: 2023-03-16.

[7] The IFRS Foundation, International Financial Reporting Standards,
https://www.ifrs.org/issued-standards/list-of-standards/,
Accessed: 2023-03-16.

[8] Apple GmbH, Jahresabschluss zum Geschäftsjahr vom 01.10.2019 bis zum 30.09.2020,
https://www.bundesanzeiger.de/, Accessed: 2023-06-21.

[9] Apple Inc., Annual Reports on Form 10-K 2021,
https://investor.apple.com/investor-relations/, Accessed: 2023-06-21.

[10] Federal Accounting Standards Advisory Board,
FASAB Handbook of Accounting Standards and Other Pronouncements,
https://fasab.gov/accounting-standards/, Accessed: 2023-03-16.

[11] Bundesministerium der Justiz, German Commercial Code (Handelsgesetzbuch, HGB),
https://www.gesetze-im-internet.de/hgb/, Accessed: 2023-03-16.

[12] R. Sifa, A. Ladi, M. Pielka et al., Towards Automated Auditing with Machine Learning,
Proceedings of the ACM Symposium on Document Engineering 2019 (2019).

[13] R. Ramamurthy, M. Pielka, R. Stenzel et al.,
ALiBERT: Improved Automated List Inspection (ALI) with BERT,
Proceedings of the 21st ACM Symposium on Document Engineering (2021).

48

https://arxiv.org/abs/1310.4546
https://www.gesetze-im-internet.de/hgb/
https://www.gesetze-im-internet.de/hgb/
https://www.ifrs.org/issued-standards/list-of-standards/
https://www.bundesanzeiger.de/
https://investor.apple.com/investor-relations/
https://fasab.gov/accounting-standards/
https://www.gesetze-im-internet.de/hgb/

Bibliography

[14] D. Biesner, R. Ramamurthy, R. Stenzel et al., Anonymization of German financial documents
using neural network-based language models with contextual word representations,
Springer International Journal of Data Science and Analytics 13 (2022) 151.

[15] D. Biesner, T. Gerlach, C. Bauckhage et al., Solving Subset Sum Problems using Quantum
Inspired Optimization Algorithms with Applications in Auditing and Financial Data Analysis,
21st IEEE International Conference on Machine Learning and Applications (ICMLA) (2022) 903.

[16] L. Hillebrand, T. Deußer, T. Dilmaghani et al.,
Towards automating Numerical Consistency Checks in Financial Reports,
2022 IEEE International Conference on Big Data (Big Data) (2022) 5915.

[17] R. Hranický, F. Lištiak, D. Mikuš et al., On Practical Aspects of PCFG Password Cracking,
Data and Applications Security and Privacy XXXIII (2019) 43.

[18] M. Weir, S. Aggarwal, B. d. Medeiros et al.,
Password Cracking Using Probabilistic Context-Free Grammars,
2009 30th IEEE Symposium on Security and Privacy (2009) 391.

[19] I. Mironov, Hash functions: Theory, attacks, and applications,
https://www.microsoft.com/en-us/research/publication/hash-
functions-theory-attacks-and-applications/, Accessed: 2023-08-21,
2005.

[20] T. Wu et al., Study on Massive-Scale Slow-Hash Recovery Using Unified Probabilistic
Context-Free Grammar and Symmetrical Collaborative Prioritization with Parallel Machines,
Symmetry 11 (2019).

[21] H. M. Z. A. Shebli and B. D. Beheshti, A study on penetration testing process and tools,
2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (2018) 1.

[22] J. Steube, Hashcat, https://hashcat.net/hashcat/, Accessed: 2023-06-21, 2022.

[23] J. Steube, Hashcat ruleset: best66.rule, https:
//github.com/hashcat/hashcat/blob/master/rules/best66.rule,
Accessed: 2023-06-21.

[24] J. Steube, Hashcat ruleset: generated.rule, https://github.com/hashcat/
hashcat/blob/master/rules/generated.rule, Accessed: 2023-06-21.

[25] J. Steube, Hashcat Wiki: Rule-based Attack,
https://hashcat.net/wiki/doku.php?id=rule_based_attack,
Accessed: 2023-06-21.

[26] M. Collins, Three Generative, Lexicalised Models for Statistical Parsing,
35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the
European Chapter of the Association for Computational Linguistics (1997) 16.

[27] R. Mutalik et al., Password dataset: rock_you,
https://dx.@doi.org/10.21227/gzcg-yc14, Accessed: 2023-06-21, 2021.

[28] TensorFlow Datasets, Password dataset: rock_you,
https://www.tensorflow.org/datasets/catalog/rock_you,
Accessed: 2023-06-21.

49

https://www.microsoft.com/en-us/research/publication/hash-functions-theory-attacks-and-applications/
https://www.microsoft.com/en-us/research/publication/hash-functions-theory-attacks-and-applications/
https://hashcat.net/hashcat/
https://github.com/hashcat/hashcat/blob/master/rules/best66.rule
https://github.com/hashcat/hashcat/blob/master/rules/best66.rule
https://github.com/hashcat/hashcat/blob/master/rules/generated.rule
https://github.com/hashcat/hashcat/blob/master/rules/generated.rule
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://dx. @doi.org/10.21227/gzcg-yc14
https://www.tensorflow.org/datasets/catalog/rock_you

Bibliography

[29] B. Hitaj, P. Gasti, G. Ateniese et al.,
PassGAN: A Deep Learning Approach for Password Guessing,
International Conference on Applied Cryptography and Network Security (2017).

[30] N. Cubrilovic, RockYou Hack: From Bad To Worse,
TechCrunch (2009), https://techcrunch.com/2009/12/14/rockyou-hack-
security-myspace-facebook-passwords/, Accessed: 2023-07-12.

[31] LinkedIn, LinkedIn password leak, https://hashes.org/leaks.php?id=68,
Accessed: 2022-03-02.

[32] LinkedIn Corporation, Notice of data breach: May 2016, LinkedIn Help (2016), https:
//www.linkedin.com/help/linkedin/answer/a1338522/notice-of-
data-breach-may-2016, Accessed: 2023-07-12.

[33] Yahoo, Yahoo password leak, https://weakpass.com/wordlist/44,
Accessed: 2023-03-02.

[34] Youku, Youku password leak, https://hashes.org/leaks.php?id=508,
Accessed: 2023-03-02.

[35] D. Biesner, K. Cvejoski et al.,
Advances in Password Recovery Using Generative Deep Learning Techniques,
Artificial Neural Networks and Machine Learning – ICANN 2021 (2021) 15.

[36] D. Biesner, K. Cvejoski and R. Sifa, Combining Variational Autoencoders and Transformer
Language Models for Improved Password Generation,
Proceedings of the 17th International Conference on Availability, Reliability and Security (2022).

[37] M. Dürmuth, F. Angelstorf, C. Castelluccia et al.,
OMEN: Faster Password Guessing Using an Ordered Markov Enumerator,
Engineering Secure Software and Systems (2015) 119.

[38] J. Steube, statsprocessor, https://github.com/hashcat/statsprocessor,
Accessed: 2023-06-21.

[39] W. Melicher, B. Ur, S. M. Segreti et al.,
Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks,
25th USENIX Security Symposium (USENIX Security 16) (2016) 175.

[40] J. Steube, Princeprocessor Algorithm,
https://github.com/hashcat/princeprocessor, Accessed: 2023-06-21.

[41] A. Narayanan and V. Shmatikov,
Fast Dictionary Attacks on Passwords Using Time-Space Tradeoff,
Proceedings of the 12th ACM Conference on Computer and Communications Security (2005) 364.

[42] C. Castelluccia, M. Dürmuth and D. Perito,
Adaptive Password-Strength Meters from Markov Models, (2012).

[43] J. Ma, W. Yang, M. Luo et al., A Study of Probabilistic Password Models,
2014 IEEE Symposium on Security and Privacy (2014) 689.

[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., Generative Adversarial Nets,
Advances in Neural Information Processing Systems 27 (2014).

50

https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://hashes.org/leaks.php?id=68
https://www.linkedin.com/help/linkedin/answer/a1338522/notice-of-data-breach-may-2016
https://www.linkedin.com/help/linkedin/answer/a1338522/notice-of-data-breach-may-2016
https://www.linkedin.com/help/linkedin/answer/a1338522/notice-of-data-breach-may-2016
https://weakpass.com/wordlist/44
https://hashes.org/leaks.php?id=508
https://github.com/hashcat/statsprocessor
https://github.com/hashcat/princeprocessor

Bibliography

[45] M. Hutson, Artificial intelligence just made guessing your password a whole lot easier,
Science.org (2017), https:
//www.science.org/content/article/artificial-intelligence-
just-made-guessing-your-password-whole-lot-easier, Accessed:
2023-08-13.

[46] J. Condliffe, A Pair of AIs Have Become Very Good at Guessing Your Passwords,
MIT Technology Review (2017),
https://www.technologyreview.com/2017/09/18/67897/a-pair-of-
ais-have-become-very-good-at-guessing-your-passwords/, Accessed:
2023-08-13.

[47] I. Gulrajani, F. Ahmed, M. Arjovsky et al., Improved Training of Wasserstein GANs, Proceedings
of the 31st International Conference on Neural Information Processing Systems (2017) 5769.

[48] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes,
2nd International Conference on Learning Representations, ICLR (2014).

[49] A. Radford, J. Wu, R. Child et al., Language Models are Unsupervised Multitask Learners,
(2019).

[50] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition,
Usa: Prentice Hall PTR, 2000.

[51] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics),
Berlin, Heidelberg: Springer-Verlag, 2006, ISBN: 0387310738.

[52] D. M. Blei, A. Y. Ng and M. I. Jordan, Latent Dirichlet Allocation,
Journal of Machine Learning Research 3 (2003) 993.

[53] L. Hillebrand, D. Biesner, C. Bauckhage et al., Interpretable Topic Extraction and Word
Embedding Learning Using Non-Negative Tensor DEDICOM,
Machine Learning and Knowledge Extraction 3 (2021) 123.

[54] S. Deerwester, S. T. Dumais, G. W. Furnas et al., Indexing by latent semantic analysis,
Journal of the American Society for Information Science 41 (1990) 391.

[55] D. Lee and H. S. Seung, Algorithms for Non-negative Matrix Factorization,
Advances in Neural Information Processing Systems 13 (2000) 81.

[56] N. Reimers and I. Gurevych,
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, (2019),
arXiv: 1908.10084.

[57] G. Lample, M. Ballesteros, S. Subramanian et al.,
Neural Architectures for Named Entity Recognition,
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (2016) 260.

[58] J. Pennington, R. Socher and C. Manning, GloVe: Global Vectors for Word Representation,
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (2014) 1532.

51

https://www.science.org/content/article/artificial-intelligence-just-made-guessing-your-password-whole-lot-easier
https://www.science.org/content/article/artificial-intelligence-just-made-guessing-your-password-whole-lot-easier
https://www.science.org/content/article/artificial-intelligence-just-made-guessing-your-password-whole-lot-easier
https://www.technologyreview.com/2017/09/18/67897/a-pair-of-ais-have-become-very-good-at-guessing-your-passwords/
https://www.technologyreview.com/2017/09/18/67897/a-pair-of-ais-have-become-very-good-at-guessing-your-passwords/
https://arxiv.org/abs/1908.10084

Bibliography

[59] T. Mikolov, K. Chen, G. Corrado et al.,
Efficient Estimation of Word Representations in Vector Space, (2013), arXiv: 1301.3781.

[60] M. E. Peters, M. Neumann, M. Iyyer et al., Deep Contextualized Word Representations,
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (2018) 2227.

[61] S. Hochreiter and J. Schmidhuber, Long Short-term Memory, Neural computation 9 (1997) 1735.

[62] R. Pascanu, T. Mikolov and Y. Bengio, On the difficulty of training recurrent neural networks,
Proceedings of the 30th International Conference on Machine Learning (2013) 1310.

[63] A. Akbik, D. Blythe and R. Vollgraf, Contextual String Embeddings for Sequence Labeling,
COLING 2018, 27th International Conference on Computational Linguistics (2018) 1638.

[64] A. Vaswani, N. Shazeer, N. Parmar et al., Attention Is All You Need, (2017),
arXiv: 1706.03762.

[65] J. Devlin, M.-W. Chang, K. Lee et al.,
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, (2019),
arXiv: 1810.04805.

[66] Y. Bengio, R. Ducharme, P. Vincent et al., A Neural Probabilistic Language Model,
Journal of Machine Learning Research 3 (2003) 1137, ISSN: 1532-4435.

[67] I. Sutskever, O. Vinyals and Q. V. Le, Sequence to Sequence Learning with Neural Networks,
Proceedings of the 27th International Conference on Neural Information Processing Systems
(2014) 3104.

[68] S. Bengio, O. Vinyals, N. Jaitly et al.,
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, Proceedings of
the 28th International Conference on Neural Information Processing Systems (2015) 1171.

[69] A. Fan, M. Lewis and Y. Dauphin, Hierarchical Neural Story Generation, (2018),
arXiv: 1805.04833.

[70] S. Welleck, I. Kulikov, J. Kim et al.,
Consistency of a Recurrent Language Model With Respect to Incomplete Decoding,
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (2020) 5553.

[71] M. Arjovsky, S. Chintala and L. Bottou, Wasserstein Generative Adversarial Networks,
Proceedings of the 34th International Conference on Machine Learning 70 (2017) 214.

[72] K. He, X. Zhang, S. Ren et al., Deep Residual Learning for Image Recognition,
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 770.

[73] I. Tolstikhin, O. Bousquet, S. Gelly et al., Wasserstein Auto-Encoders,
6th International Conference on Learning Representations (ICLR) (2018).

[74] G. Arvanitidis, L. K. Hansen and S. Hauberg,
Latent Space Oddity: on the Curvature of Deep Generative Models,
6th International Conference on Learning Representations ICLR (2018).

52

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1805.04833

Bibliography

[75] S. Bowman, L. Vilnis, O. Vinyals et al., Generating Sentences from a Continuous Space,
Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning
(2016) 10.

[76] A. B. L. Larsen, S. K. Sønderby, H. Larochelle et al.,
Autoencoding beyond Pixels Using a Learned Similarity Metric, Proceedings of the 33rd
International Conference on International Conference on Machine Learning (2016) 1558.

[77] X. Yu, X. Zhang, Y. Cao et al., VAEGAN: A Collaborative Filtering Framework Based on
Adversarial Variational Autoencoders,
Proceedings of the 28th International Joint Conference on Artificial Intelligence (2019) 4206.

[78] T. Karras, S. Laine and T. Aila,
A Style-Based Generator Architecture for Generative Adversarial Networks,
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 4396.

[79] A. Radford, K. Narasimhan et al.,
Improving Language Understanding by Generative Pre-Training, (2018).

[80] T. B. Brown, B. Mann, N. Ryder et al., Language Models are Few-Shot Learners, (2020),
arXiv: 2005.14165.

[81] OpenAI, GPT-4 Technical Report, 2023, arXiv: 2303.08774.

[82] T. Kudo and J. Richardson, SentencePiece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Processing,
Conference on Empirical Methods in Natural Language Processing (2018).

[83] T. Le Scao et al., BLOOM: A 176B-Parameter Open-Access Multilingual Language Model,
(2023), arXiv: 2211.05100.

[84] H. Touvron, T. Lavril, G. Izacard et al.,
LLaMA: Open and Efficient Foundation Language Models, (2023), arXiv: 2302.13971.

[85] Z. Dai, Z. Yang, Y. Yang et al.,
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, (2019),
arXiv: 1901.02860.

[86] C. Raffel, N. Shazeer, A. Roberts et al.,
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,
Journal of Machine Learning Research 21 (2020) 1.

[87] S. Niu, Y. Liu, J. Wang et al., A Decade Survey of Transfer Learning (2010–2020),
IEEE Transactions on Artificial Intelligence 1 (2020) 151.

[88] R. Liu, Y. Shi, C. Ji et al., A Survey of Sentiment Analysis Based on Transfer Learning,
IEEE Access 7 (2019) 85401.

[89] S. J. Pan and Q. Yang, A Survey on Transfer Learning,
IEEE Transactions on Knowledge and Data Engineering 22 (2010) 1345.

[90] CommonCrawl Foundation, CommonCrawl Dataset, https://commoncrawl.org/,
Accessed: 2023-03-16.

[91] Wikimedia Foundation, Wikimedia Downloads, https://dumps.wikimedia.org,
Accessed: 2023-03-16.

53

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1901.02860
https://commoncrawl.org/
https://dumps.wikimedia.org

Bibliography

[92] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer, 2004.

[93] A. Lucas, Ising formulations of many NP problems, Frontiers in Physics 2 (2014) 5.

[94] F. Glover and M. Laguna, Tabu Search, Boston, MA: Springer US, 1998 2093.

[95] M. Affenzeller, S. Winkler, S. Wagner et al.,
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications,
1st, Chapman & Hall/CRC, 2009, ISBN: 1584886293.

[96] J. J. Hopfield,
Neural networks and physical systems with emergent collective computational abilities,
Proceedings of the National Academy of Sciences 79 (1982) 2554.

[97] C. Bauckhage, R. J. Sánchez and R. Sifa,
Problem Solving with Hopfield Networks and Adiabatic Quantum Computing,
Proceedings of the International Joint Conference on Neural Networks IJCNN (2020) 1.

[98] O. Levy and Y. Goldberg, Neural Word Embedding as Implicit Matrix Factorization,
Advances in Neural Information Processing Systems 27 (2014).

[99] A. H. Andrzej, A. Cichocki and T. V. Dinh,
Nonnegative DEDICOM Based On Tensor Decompositions for Social Networks Exploration,
Australian Journal of Intelligent Information Processing Systems 12 (2010).

[100] J. D. Lafferty, A. McCallum and F. C. N. Pereira, Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data,
Proceedings of the Eighteenth International Conference on Machine Learning (2001) 282.

[101] D. Biesner, M. Pielka, R. Ramamurthy et al.,
Zero-Shot Text Matching for Automated Auditing using Sentence Transformers,
21st IEEE International Conference on Machine Learning and Applications (ICMLA) (2022) 1637.

[102] H. P. Luhn,
A Statistical Approach to Mechanized Encoding and Searching of Literary Information,
IBM Journal of Research and Development 1 (1957) 309.

[103] Deloitte Centre for Financial Reporting,
New and revised pronouncements as at 31 December 2022, https:
//www.iasplus.com/en/othernews/new-and-revised/2022/december,
Accessed: 2023-06-22.

[104] T. Gao, X. Yao and D. Chen, SimCSE: Simple Contrastive Learning of Sentence Embeddings,
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
(2021) 6894.

[105] K. Wang, N. Reimers and I. Gurevych, TSDAE: Using Transformer-based Sequential Denoising
Auto-Encoderfor Unsupervised Sentence Embedding Learning,
Findings of the Association for Computational Linguistics: EMNLP 2021 (2021) 671.

[106] L. Yu, W. Zhang, J. Wang et al.,
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient,
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2017) 2852.

54

http://dx.doi.org/10.3389/fphy.2014.00005
https://www.iasplus.com/en/othernews/new-and-revised/2022/december
https://www.iasplus.com/en/othernews/new-and-revised/2022/december

Bibliography

[107] D. Pfau and O. Vinyals, Connecting Generative Adversarial Networks and Actor-Critic Methods,
(2017), arXiv: 1610.01945.

[108] OpenAI, ChatGPT, https://chat.openai.com/chat, Accessed: 2023-07-16, 2023.

[109] Z. Ji et al., Survey of Hallucination in Natural Language Generation,
ACM Computing Surveys 55 (2023).

[110] L. Hillebrand, A. Berger, T. Deußer et al.,
Improving Zero-Shot Text Matching for Financial Auditing with Large Language Models,
Submitted to The 23rd ACM Symposium on Document Engineering DocEng’23 (2023).

[111] R. Albergotti, The secret history of Elon Musk, Sam Altman, and OpenAI,
Semafor (2023), Accessed: 2023-05-24.

55

https://arxiv.org/abs/1610.01945
https://chat.openai.com/chat

List of Figures

1.1 We demonstrate how discrete data like text and continuous data like images behave differ-
ently to the addition of artificial noise. 2

1.2 The process of text embedding transforms text from discrete indices or one-hot encoded
vectors into float valued numerical vectors in latent space. We require a well-trained embed-
ding model to assign semantic meaning to the embedding vectors, which results in geometric
properties of the embeddings mirroring semantic properties of the respective words. 3

1.3 An example for a classification task on word embeddings. We see that the model can easily
classify the individual words into their respective categories. Words that fit multiple cat-
egories, here fish, are located on the borders of the decision spaces. New words that have
not been seen during training, here apple, horse, and Melbourne, can be correctly
classified because of the location of their embeddings in latent space. 4

2.1 Examples for auditing requirements (IFRS standard) and the audited financial reports in
English and German. 7

2.2 Screenshot of automated auditing software that illustrates the text matching workflow. The
left column shows the auditing standards checklist, the middle column shows relevant pas-
sages from the financial report for the selected checklist item, and the right column shows
the corresponding text passage from the financial report in the context of the document. . . 8

2.3 Screenshots of the tool for automatic anonymization of financial report documents. Left:
control panel and document view with found named entities marked in colors for their re-
spective classes. Right: Result of anonymization step in which all found sensitive entities
are removed, visualized by blacking out the text. Image originally published in [14]. 9

2.4 Illustration of the password recovery process. Given a locked device or account with a cor-
responding password hash, one aims to recover the original string that produces the hash.
Since hash functions are non-reversible, the only way to restore the original password is by
generating and hashing multiple password candidates. 11

2.5 Example passwords from the rockyou password dataset. The dataset stems from a leak of
cleartext passwords from a data breach on RockYou, a social application site. The list of
passwords is available from various sources [27, 28] and has become a default benchmark
for password recovery algorithms [17, 29]. 12

2.6 Illustration of the training and evaluation process of a password recovery algorithm. We use
the train split to train the algorithm or model. The model generates new data based on the
information present in the train split. The test split contains only data not found in the train
split. We count the number of generated passwords that are also present in the test split. In
this case, we recover two of three passwords in the test split for a recovery rate of 66%. . . . 13

56

List of Figures

3.1 Preprocessing steps for an example text before whitespace tokenization. We apply lower-
casing, remove punctuation, remove stop words, and apply stemming. The resulting text is
suitable for application in word embedding models. 17

3.2 Word embeddings exhibit limitations when dealing with homonyms, i.e., words that are
spelled the same but have multiple meanings. In this example, there is no optimal way to
encode the word bark since we can not feasibly encode both meanings at the same time. . 18

3.3 Left: Word embeddings produce a fixed output for each word regardless of the context in the
sentence. The computation of each vector is independent. Right: Contextual embeddings
calculate embeddings based on the entire sequence. A word will have different embeddings
depending on the context, i.e., the other words in the sequence. 18

3.4 Illustration of the concept of latent space geometry for targeted generation. Left: During
training, points in data space (lower area) are encoded in latent space (upper area) and re-
constructed. Middle: To generate data similar to some target data, we encode the data into
latent space, sample latent points around the encoded data, and decode it into data space.
Right: We can generate mixtures of multiple data points by encoding both into latent space
and interpolating between their latent representations. 25

3.5 Illustration of interpolations between data points. Left: Linear interpolation in data space
results in generated data that does not lie in the data distribution and does not make semantic
sense. Right: Linear interpolation in latent space and decoding into data space results in data
from the data domain that is a mixture of both data points. 25

3.6 Using the geometry of the latent space allows for targeted generation of text data. Left:
We encode the string love and decode random passwords from a neighbourhood of the
encoding. Right: We encode two real password strings (top and bottom of each column)
and interpolate linearly between the encoded vectors. We decode multiple password strings
along the interpolation. 26

3.7 Comparison of character, subword, and word tokenization. The same original sentence is
tokenized using the three methods, we show both the split text tokens and the corresponding
indices from the vocabulary. Note that the difference in vocabulary size between character
tokenization and the other two is apparent by the magnitudes of the respective indices. . . . 27

10.1 Prompting GPT4 with the task of de-identification of a short news text results in correctly
replaced named entities. Screenshot taken on [108]. 45

10.2 Password generation with large language models. Left and middle: sample passwords gen-
erated by GPT4. Right: Comparison of the number of parameters of GPT2 [49] (applied to
password generation in [35]), LLaMA [84], GPT3 [80], BLOOM [83] and GPT4 [81]. ∗The
exact number of parameters of GPT4 is not officially disclosed but rumoured to be around
1.0e12 [111]. Screenshots taken on [108]. 46

57

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Structure of the Thesis

	2 Applications in Finance and Cybersecurity
	2.1 Auditing and Financial Data Analysis
	2.2 Text Generation for Cybersecurity – Password Recovery

	3 Representation Modeling
	3.1 Embedding and Classification
	3.1.1 Topic Modeling
	3.1.2 Text Matching
	3.1.3 Sequence Classification and Named Entity Recognition
	3.1.4 Word Embeddings
	3.1.5 Recurrent Neural Networks
	3.1.6 Transformers
	3.1.7 BERT

	3.2 Generative Models
	3.2.1 GANs
	3.2.2 Variational Autoencoders
	3.2.3 Latent Space Geometry for Text Generation
	3.2.4 GPT and GPT2

	3.3 Tokenization
	3.4 Transfer Learning
	3.5 Binary Optimization and Hopfield Networks

	4 Interpretable Topic Extraction and Word Embedding Learning Using Non-Negative Tensor DEDICOM
	5 Anonymization of German Financial Documents using Neural Network-based Language Models with Contextual Word Representations
	6 Zero-Shot Text Matching for Automated Auditing using Sentence Transformers
	7 Advances in Password Recovery Using Generative Deep Learning Techniques
	8 Combining Variational Autoencoders and Transformer Language Models for Improved Password Generation
	9 Solving Subset Sum Problems using Quantum Inspired Optimization Algorithms with Applications in Auditing and Financial Data Analysis
	10 Conclusion and Future Work
	10.1 Summary of Results
	10.2 Large Language Models

	Bibliography
	List of Figures

