
.

Essays on Voting, Learning, and
Dynamic Games

Inauguraldissertation

zur Erlangung des Grades eines Doktors
der Wirtschaftswissenschaften

durch

die Rechts- und Staatswissenschaftliche Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Kailin Chen

aus Zherong, China

2024



.

Dekan: Prof. Dr. Jürgen von Hagen

Erstreferent: Prof. Dr. Stephan Lauermann
Zweitreferent: Prof. Dr. Sven Rady

Tag der mündlichen Prüfung: 11. Juni 2024



.

Acknowledgements

This dissertation would not have been possible without the support and inspiration
of a number of wonderful individuals. I appreciate all of them for being part of
this journey.

First and foremost, I am deeply indebted to Stephan Lauermann, who was always
extremely welcoming and generous with his time. Before meeting him, I had ex-
celled at exams, but I had no experience in conducting research. He helped me
start my career, inspired me to study economic theory, spent a lot of time and pa-
tience improving my writing, encouraged me when I was frustrated, and gave me
the strength and confidence to continue. I would not have come this far without
his constant support and unwavering guidance. When I have the opportunity to
supervise students, I hope to be as supportive and caring as Stephan was to me.

I am exceptionally lucky to have Sven Rady as my supervisor. He was consistently
kind to me, yet very strict and meticulous when it came to reviewing my writing.
In addition, his assistance during my job search was exceptionally valuable. His
support has been instrumental in shaping my academic journey. He is a role model
to me as a researcher.

I would also like to extend my sincere gratitude to Benny Moldovanu and Jo-
hannes Hörner, who encouraged me to challenge existing results and provided
me with valuable advice. I consider myself fortunate to have been a member of
the amazing theory group at the Institute of Microeconomics, University of Bonn,
which has been a continual source of encouragement and advice. I am especially
grateful to Justus Preusser, Simon Block, Sophie Kreutzkamp, Carl Heese, Günnur
Ege Bilgin, and Axel Niemeyer. They have been critical to my development as a
scholar, and each has greatly helped me to refine my dissertation and presentation
skills. I would also like to thank Sarah Lane, who provided numerous pieces of
advice and help during my job search.

Finally, I am forever indebted to my parents for giving me the opportunities
and experiences that have made me who I am. They have always supported



iv | Acknowledgements

me unconditionally to pursue my goals in academia. I am deeply grateful to
my girlfriend and best companion, Huiyu Liu, who is always there for me,
encouraging me during the most difficult time, and making a foreign city home.

Kailin Chen
Helsinki, Sep 2023



.

Contents

Acknowledgements iii

List of Figures vii

Introduction 1

1 Learning from Biased Souces 3

1.1 Introduction 3

1.2 Model 7
1.2.1 Basic Setting 7
1.2.2 Three-State Scenario 8
1.2.3 Strategy and Equilibrium 10
1.2.4 Characterization of Informative Equilibria 11

1.3 Information Aggregation 13
1.3.1 Results from the Existing Literature 13
1.3.2 Failure of Information Aggregation 15

1.4 Information Transmission 19
1.4.1 Existence of Informative Equilibria 19
1.4.2 Ranking Informative Equilibria 23
1.4.3 Amount of Information Transmission 24
1.4.4 Information Aggregation and Transmission 26

1.5 Beyond the Binary Situation 28

1.6 Commitment Case 33

1.7 Related Literature 36

1.8 Concluding Remarks 38

Appendix 1.A Proofs 38
1.A.1 Proof of Lemma 1.1, Proposition 1.2, Proposition 1.3 39
1.A.2 Informative Equilibrium with T̂ = 1 42
1.A.3 Proof for the Results in Section 1.4 48
1.A.4 Mixed-Strategy Equilibria 49
1.A.5 Commitment Case 51



vi | Contents

References 54

2 Information Aggregation in Collective Experimentation 57

2.1 Introduction 57

2.2 Model 61
2.2.1 Model Setting 61
2.2.2 Equilibrium 62
2.2.3 Beliefs 62

2.3 Characterization 63

2.4 Large Elections 64
2.4.1 Limit Cut-off 64
2.4.2 Information Aggregation 65

2.5 Concluding Remarks 69

Appendix 2.A Proofs 69

References 73

3 Fishing for Approval 75

3.1 Introduction 75

3.2 Model 76
3.2.1 Model Setting 76
3.2.2 Strategy 78
3.2.3 Preliminary Analysis 78

3.3 Equilibrium Analysis 79
3.3.1 Characterization 79
3.3.2 Large Elections 81

3.4 Observable Order 83
3.4.1 Symmetric Equilibrium 83
3.4.2 Asymmetric Equilibrium 85

3.5 Conclusion 87

Appendix 3.A Proofs 87
3.A.1 Proof of Proposition 3.1 88
3.A.2 Proof of Proposition 3.4 89
3.A.3 Set of Symmetric BNE 92
3.A.4 Set of Responsive Equilibria 93

References 97



.

List of Figures

1.1 Preferences 8
1.2 Preferences when the realized state is uncertain 9
1.3 Different thresholds of acceptance when q2 = 0. 9
1.4 Inference from being pivotal and thresholds of acceptance 14
1.5 The distributions of the total number of approvals 16
1.6 The distributions of the total number of approvals 17
1.7 Information transmission and aggregation 22
1.8 Non-monotonic boundaries 23
1.9 Maximal amount of information transmission 26
1.10 Information transmission with the failure of information aggregation 27
1.11 The most likely pivotal frequency 33
1.12 Distributions of the total number of signal h 34
1.13 Distributions of the total number of signal h 36

2.1 Limit cut-off 64
2.2 Limit ratios of votes 67



.



.

Introduction

This dissertation collects three essays on microeconomic theory.

Chapter 1 studies learning from multiple informed agents where each agent has a
small piece of information about the unknown state of the world in the form of a
noisy signal and sends a message to the principal, who then makes a decision that
is not constrained by predetermined rules. In contrast to the existing literature, I
model the conflict of interest between the principal and the agents more generally
and consider the case where the preferences of the principal and the agents are
misaligned in some realized states. I show that if the conflict of interest between
the principal and the agents is moderate, there is a discontinuity: when the num-
ber of agents is large enough, adding even a tiny probability of misaligned states
leads to complete unraveling in which the agents ignore their signals, in contrast
to the almost complete revealing that is predicted by the existing literature. Fur-
thermore, I demonstrate that no matter how small the conflict of interest between
the principal and the agents is, the information contained in each agent’s message
must vanish as the number of agents grows large. Finally, no matter how many
agents there are, the total amount of information that is transmitted is limited,
and the principal always fails to fully learn the unknown state.

Implementing a reform has divergent effects on a population and generates dis-
persed information concerning its overall suitability. Chapter 2 analyzes a collec-
tive experimentation model in which voters gradually learn their payoffs, which
are divergent among them. Furthermore, their payoffs depend on the unknown
state of the world. Hence, experimentation generates information concerning the
unknown state, which is dispersed among the voters. I am interested in how strate-
gic voting shapes incentives for experimentation, and more importantly, whether
elections can aggregate and utilize the voters’ private information concerning the
unknown state. I show that a stricter rule for experimentation leads to more ex-
perimentation when the number of voters is large, and demonstrate information
is effectively aggregated only if the voting rule is biased toward experimentation.

Chapter 3 is a joint work with Mehmet Ekmekci and Stephan Lauermann. We
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study a situation in which one success can make up for a long record of failure,
and hence an individual might engage in a costly search to fish for one approval
from decentralized approval agencies. We frame this situation as a sequential una-
nimity voting model since one approval agency’s decision matters only if the oth-
ers all reject the individual. The existing literature shows that the unanimity rule
produces inefficiency in simultaneous and sequential elections. We further address
the additional concern that the individual might fish for approval. Surprisingly, we
show that the individual’s ability to fish for approval helps the approval agencies
to elicit information from him/her, leading to the approval agencies’ first-best, full
information outcome as the number of them grows large.



.

Chapter 1

Learning fromBiased Souces

1.1 Introduction

This paper studies learning from multiple informed agents where each agent has a
small piece of information about the unknown state of the world in the form of a
noisy signal and sends a message to the principal, who then makes a decision that
is not constrained by predetermined rules. This framework applies to scenarios
that include non-binding shareholder voting, public protests, and survey polls in
which the principal corresponds to the manager, politician, or interviewer, and the
agents correspond to shareholders, citizens, or interviewees.

If the principal and the agents share the same preferences, then the agents
report their signals truthfully and the principal can fully learn the unknown state
of the world as the number of agents grows large. However, if the principal and the
agents do not share the same preferences, that is, their interests conflict, then the
agents might misrepresent information in their messages, as shown by Wolinsky
(2002), Morgan and Stocken (2008), Levit and Malenko (2011), Battaglini (2017),
and Ekmekci and Lauermann (2022) among others. Several of these studies show
that if the conflict of interest between the principal and the agents is below a
certain threshold, then as the number of agents grows large, the agents report
their signals almost truthfully and the principal can still fully learn the unknown
state, and if the conflict is above the threshold, the agents’ messages become
completely uninformative for any number of agents. However, the results in all of
these cases depend on the critical assumption that the preferences of the principal
and the agents are aligned if they have complete information about the realized
state.

In many situations, the preferences of the principal and the agents might not
be fully aligned even if they have complete information about the realized state.
Consider the example of non-binding shareholder voting studied by Levit and
Malenko (2011), in which the shareholders receive dispersed information con-
cerning the unknown payoff of a proposal to the firm and decide whether to vote
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in favor of it, while the manager observes the outcome of the vote and ultimately
forms his own decision. Both the manager and the shareholders care about the
payoff of the proposal and agree on the same decision if the realized payoff is at
the extremes of either very high or very low. However, if the manager receives
additional private benefits from the proposal, then when the realized payoff is
moderate, the preferences of the principal and the agents are more likely to be
misaligned: in this case, only the manager might prefer the proposal due to his
additional payoff. Similarly, in public protests studied by Battaglini (2017), the
citizens receive dispersed information concerning the effect of reform and decide
whether to participate in a rally, while the policymaker decides whether to im-
plement the reform after observing the citizens’ activities. The preferences of the
politician and the citizens are aligned if the reform is dramatically better or worse
than the status-quo, but are misaligned for less significant changes, where the poli-
cymaker’s private interests or ideologies may play a larger role. A similar situation
also arises in the example of survey polls.

In this paper, I model the conflict of interest between the principal and the
agents more generally and consider the case where the preferences of the prin-
cipal and the agents are misaligned in some realized states. I show that in the
framework of the existing literature, if the conflict between the principal and the
agents is moderate, there is a discontinuity: when the number of agents is large
enough, adding even a tiny probability of misaligned states leads to complete un-
raveling in which the agents ignore their signals and no information is transmitted.
This result stands in contrast to the predicted outcome in the existing literature,
in which the agents report almost truthfully. In addition, I demonstrate that no
matter how small the conflict of interest between the principal and the agents is,
the information contained in each agent’s message must vanish as the number of
agents grows large. Finally, and more surprisingly, no matter how many agents
there are, the total amount of information that is transmitted is limited, and the
principal always fails to fully learn the unknown state.

More specifically, I develop a model based on Levit and Malenko (2011) and
Battaglini (2017) (henceforth, LMB). Both of these papers analyze a model with
one principal and N agents. The principal must decide between policy A and
policy B. Both the principal and the agents find A optimal in the high state and
B optimal in the low state, that is, their preferences are fully aligned when the
state is known. All the agents have the same preferences, while the principal is
biased toward A in each state. Therefore, when the realized state is uncertain,
they have different “thresholds of acceptance”: the principal already prefers A at
a relatively low probability of the high state, while the agents prefer it only at
a higher probability. For the information structure, both the principal and the
agents share the same prior belief about the unknown state. Each agent has a
small piece of private information about the realized state in the form of a noisy
signal. She can then choose whether to approve A. The principal, in turn, observes
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the total number of approvals and then chooses a policy that is most in line with
his interests.

LMB apply this type of model to non-binding shareholder voting and public
protests, in which there are usually a large number of agents (shareholders or
citizens). LMB show that information transmission is all-or-nothing. If the conflict
of interest between the principal and the agents is below a certain threshold, then
as N grows large, the agents report their signals almost truthfully. That is, they
approve A with a probability approaching 1 when they receive signals favoring
A, and they reject A with a probability approaching 1 when they receive signals
opposing A. Hence, the principal can fully learn the unknown state, and the in-
formation dispersed among the agents is effectively aggregated. However, if the
conflict is above the threshold, then complete unraveling happens, in which the
agents ignore their signals, and in this case, no information is transmitted from
the agents to the principal.

In what follows, I consider a further possibility, which can be exemplified
with a relatively simple scenario. Let us add a middle state to LMB’s framework.1
This middle state is a misaligned state in which the principal prefers A while the
agents prefer B. For the information structure, each agent’s signal is ordered by the
“monotone likelihood ratio property” (MLRP), which states that, as the realization
of the signal increases, it becomes increasingly likely that the state is higher.

I show that when the conflict of interest in LMB’s framework is moderate and
below the threshold provided by LMB, there is a discontinuity in the results: when
N is large enough, adding the middle state with even a tiny probability leads to
complete unraveling in which the agents ignore their signals and no information
is transmitted. This result stands in contrast to LMB’s prediction, in which the
agents report almost truthfully.

I demonstrate that when the conflict of interest in LMB’s framework is suffi-
ciently small, information is still transmitted from the agents to the principal if
the middle state is also sufficiently unlikely. However, as the number of agents
grows large, the information contained in an agent’s message vanishes, that is,
the agents reject A with a probability approaching 1 even when they receive the
signal that favors A the most. Furthermore, the expected number of total approvals
for A in each state is always smaller than a finite number that is independent of
N. Similarly, the principal chooses A when the total number of approvals exceeds
a cut-off number, and this cut-off is also always smaller than a finite number that
is independent of N. Hence, the principal must follow either the unanimity rule
under which he chooses A if at least one agent approves A or rules that are simi-
lar to the unanimity rule. Finally, I show that no matter how large N is, the total

1. The key difference between this paper and LMB is whether the preferences of the
principal and agents are always fully aligned if they know the state, instead of whether there are
two or three states.
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amount of information that is transmitted is limited and the principal always fails
to fully learn the unknown state. With a strictly positive probability, the principal
chooses the wrong policy in both the high state and the low state, even though
the preferences of the principal and the agents are fully aligned in both states.

Another important finding by Battaglini (2017) is that communication among
the agents facilitates information transmission and aggregation, benefiting both
the principal and the agents. Battaglini thus highlights the value of social media
for the effectiveness of petitions and public protests since social media allow cit-
izens to share information. In contrast, by further considering the case in which
the agents fully communicate with each other, I show that communication among
the agents might impede information transmission and hurt both the principal and
the agents. In this case, as N approaches infinity, the agents learn the state, and
information is effectively aggregated. However, I find that in some situations, the
principal ignores messages from the agents if they fully communicate with each
other, while if they cannot communicate, information transmission is restored. A
key intuition is that we can interpret the failure of information aggregation as
intentional vagueness that mitigates the conflict of interest between the sender
(agents) and the receiver (principal), as discussed in the cheap-talk literature ini-
tiated by Crawford and Sobel (1982).

In this paper’s basic model, the agents can either approve A or reject it, that is,
they can only send binary messages. However, I also extend the model to the case
where the set of available messages for the agents is not restricted to being binary,
which allows the framework of this paper to capture some natural features of ap-
plications, for example, the possibilities of abstaining in non-binding shareholder
voting, staying neutral in public protests, and sending medium scores in survey
polls. In this case, the principal’s decision rule becomes multi-dimensional rather
than a cut-off in the total number of approvals, which complicates the analysis. I
provide a novel and tractable way to analyze this case by taking inspiration from
Chernoff’s fundamental connection between simple statistical hypothesis tests and
large deviation theory.2 I show that all of the results presented above are robust
in a natural class of equilibria in which the agents follow monotonic strategies.

It is also interesting to see how much information the principal can elicit if
he can ex-ante commit to a decision rule. In LMB’s framework, when N is large,
the principal can approach his first-best outcome by committing to a voting mech-
anism with any qualified majority rule in which he chooses A if the ratio of ap-
provals exceeds a certain cut-off. However, I show that in the present paper’s
framework, the principal cannot rely on any qualified majority rule since accord-
ing to the Condorcet jury theorem, they all lead to the first-best outcome for the
agents. However, the principal can approach his first-best outcome by randomizing

2. See Chernoff (1952)
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between two qualified majority rules, that is, between two cut-offs in the ratio of
approvals.

The rest of this paper proceeds as follows: Section 1.2 describes the model and
characterizes the equilibrium. Section 1.3 presents the main result that learning
is always incomplete no matter how many agents there are. Section 1.4 discusses
information transmission from the agents to the principal. Section 1.5 analyzes
the case where the set of available messages for the agents is not restricted to
being binary. Section 1.6 studies the situation in which the principal can ex-ante
commit to a decision rule. Section 1.7 surveys the related literature, and Section
1.8 concludes the paper. Most of the proofs are sketched in the main text, with
the details relegated to the appendix.

1.2 Model

1.2.1 Basic Setting

There is one principal (he) and N agents (she). The principal has to decide be-
tween two policies, A and B. When he chooses B, the payoffs for all players are
normalized to 0. When he chooses A, the payoffs for all players depend on an
unknown state of the world θ ∈ Θ, with Θ = {θ1, ...,θn} ⊂ R and θ1 < ...< θn.3 In
state θ , the principal receives the payoff Vpc(θ) by choosing A, while the agents
all have the same preference and receive the payoff Vag(θ).

Both the principal and the agents receive higher payoffs from A when the
state is higher, that is, both Vpc(θ) and Vag(θ) strictly increase with θ . There are
thresholds θ̂pc, θ̂ag ∈ Θ such that for each j ∈ {pc, ag}:

Vj(θ) > 0 if θ ≥ θ̂j,

Vj(θ) < 0 if θ < θ̂j.

The principal prefers A more than the agents in every state, that is,⁴

Vpc(θ) ≥ Vag(θ), ∀θ ∈ Θ, (1.1)

θ̂pc < θ̂ag. (1.2)

3. In this paper, we mostly focus on the case where n= 3.
4. The condition (1.2) that the principal and the agents have different cut-offs for states

is critical for results, while the condition (1.1) is for the better exposition. If (1.1) is violated,
the main results of this paper (Theorems 1.1 and 1.2) still hold and the other results except for
Lemma 1.1 can also be easily extended.
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θ1 θnθ̂pc θ̂ag

Both prefer B Both prefer A
Principal prefers A

Agents prefer B

Figure 1.1. Preferences

Notes: The Preferences of the principal and the agents when the realized state is known. Their
preferences are not aligned when θ ∈ [θ̂pc, θ̂ag).

For the information structure, the principal and the agents share a common
prior belief q0 = (q0

1, ..., q0
n) ∈∆n about the unknown state, with q0

j > 0 for each
j ∈ {1, ..., n}. Conditional on the state θ ∈ Θ, each agent i ∈ {1, ..., N} receives a
private, independent signal si ∈ {ℓ, h}, that is, a low or a high signal, with

ρj = P[si = h|θj], ∀θj ∈ Θ,

0 < ρ1 < ... < ρn < 1. (1.3)

Hence, the agents are more likely to receive signal h when the state is higher.
After observing the private signal, each agent chooses whether to approve A.

The principal observes the total number of approvals T ∈ {0, ..., N} and chooses
the policy that maximizes his expected payoff.

1.2.2 Three-State Scenario

For simplicity, this paper focuses on the case where Θ = {θ1,θ2,θ3}.⁵ Both the
principal and the agents prefer A to B in state θ3 and prefer B to A in state θ1:

Vpc(θ3) > 0 and Vag(θ3) > 0,

Vpc(θ1) < 0 and Vag(θ1) < 0,

while only the principal prefers A in state θ2:

Vpc(θ2) > 0 and Vag(θ2) < 0, (1.4)

that is, we have θ̂pc = θ2 and θ̂ag = θ3. The preferences of the principal and
the agents are not aligned in state θ2, which is a misaligned state. The pref-
erences of the principal and the agents are illustrated by the simplex of belief
q= (q1, q2, q3) ∈∆3 in Figure 1.2.

5. This setting allows us to incorporate and compare the results with the existing literature.
The main results of this paper (Theorems 1.1 and 1.2) hold for the general setting in Section
1.2.1. The other results can also be easily extended.
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Figure 1.2. Preferences when the realized state is uncertain

Notes: The corner θi for i ∈ {1, 2, 3} corresponds to the belief q with qi = 1. The segment θiθj
corresponds to the set of beliefs {q|qi + qj = 1}. Both the principal and the agents prefer A when
they all hold a belief q in the black area, while both prefer B in the white area. In the shaded area,
only the principal prefers A.

If we assume that q0
2 = 0 and ignore the misaligned state θ2, then the prefer-

ences of the principal and the agents are aligned when the realized state is known
and misaligned when the realized state is uncertain. The conflict of interest is gen-
erated by different payoff intensities in state θ1 and θ3 between the principal
and the agents. From (1.1):

Vpc(θ3) ≥ Vag(θ3) > 0 > Vpc(θ1) ≥ Vag(θ1).

Therefore,⁶

−
Vpc(θ1)

Vpc(θ3)
≤ −

Vag(θ1)

Vag(θ3)
. (1.5)

As illustrated in Figure 1.3,⁷ the principal and the agents have different thresholds
of acceptance: for each belief q= (q1, q3) ∈∆2, the principal prefers A to B if
q3
q1
> −Vpc(θ1)

Vpc(θ3) , while the agents prefer A to B if q3
q1
> −Vag(θ1)

Vag(θ3) .

q3
q10 − Vpc(θ1)

Vpc(θ3) − Vag(θ1)
Vag(θ3)

Principal prefers B
Agents prefer B

Principal prefers A
Agents prefer A

Principal prefers A
Agents prefer B

Figure 1.3. Different thresholds of acceptance when q2 = 0.

6. All results hold if (1.5) is valid but (1.1) is violated. When (1.2) is valid, the condition
(1.5) is equivalent to the argument that under each belief, if the agents prefer A, the principal
does so. If (1.5) is violated, the main results of this paper (Theorems 1.1 and 1.2) still hold and
the other results except for Lemma 1.1 can also be easily extended.

7. Note that when we assume q0
2 = 0 and ignore the misaligned state θ2, we suppress Figure

1.2 to its θ3θ1 segment, which we convert to Figure 1.3.
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1.2.3 Strategy and Equilibrium

We examine the symmetric Bayesian Nash equilibrium, in which all the agents use
the same strategy x= (xℓ, xh) ∈ [0, 1]2. Each agent i ∈ {1, ..., N} approves A with
probabilities xℓ and xh respectively, when si = ℓ and si = h.

We consider equilibria in which the agents who receive signal h are more likely
to approve A than the agents who receive signal ℓ, that is, xℓ ≤ xh.⁸ Note that
there always exists a babbling equilibrium in which xℓ = xh, that is, the agents
ignore their signals. In this equilibrium, the principal finds the total number of
approvals uninformative and makes a decision based only on his prior belief. There
is complete unraveling, and no information is transmitted from the agents to the
principal.

We now consider the case where xℓ < xh. In this case, the principal forms his
posterior belief based on his prior belief and the total number of approvals T. The
posterior likelihood ratios⁹

P[T; N|θ3]
P[T; N|θ1]

and
P[T; N|θ2]
P[T; N|θ1]

strictly increase with T since the agents are more likely to receive higher signals
and hence are more likely to approve A when the realized state is higher, that is,

ρ1xh + (1 − ρ1)xℓ < ρ2xh + (1 − ρ2)xℓ < ρ3xh + (1 − ρ3)xℓ,

by (1.3) and xℓ < xh. Thus, the principal’s posterior belief that the realized state
is θ1 strictly decreases with T.

Hence, a pure strategy for the principal is a cut-off T̂ ∈ {0, ..., N + 1} such that
he chooses A if and only if T ≥ T̂. A mixed strategy for the principal allows him to
randomize when he observes T̂ approvals. For simplicity, we assume in the main
text that the principal always chooses B when he is indifferent and hence that he
always uses pure strategies. All results remain valid when the principal can use a
mixed strategy, as shown in the appendix.1⁰

We focus on the informative equilibrium in which the agents use an infor-
mative strategy x with xℓ < xh, that is, the agents make decisions according to

8. For equilibria with xℓ ≥ xh, we relabel approving A as rejecting A, and the following
analyses still hold.

9. P[T; N|θi]=
�N

T

�

[ρixh + (1−ρi)xℓ
︸ ︷︷ ︸

Prob of approving A

]T[1−ρixh − (1−ρi)xℓ
︸ ︷︷ ︸

Prob of rejecting A

]N−T , ∀i ∈ {1, 2,3}.

10. In particular, we do not rely on the principal’s mixed strategies to ensure the existence of
informative equilibria. In the appendix, we characterize the equilibria where the principal can use
a mixed strategy and show that if there exists an equilibrium in which the principal randomizes
at T̂ ∈ {0, ...,N − 1}, then there must exist an equilibrium in which the principal chooses A if and
only if T > T̂. If there exists an equilibrium in which the principal randomizes at T̂ = N, then
there exists an equilibrium in which the principal chooses A if and only if T̂ = N.
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their private information, and the principal uses a responsive strategy T̂ with
T̂ ∈ {1, ..., N}, that is, the principal makes decisions according to the number of
approvals.

1.2.4 Characterization of Informative Equilibria

Best Response of the Agents: Consider a strategy profile in which the agents
choose an informative strategy x and the principal chooses a responsive strategy
T̂. An agent is pivotal if the principal receives T̂ − 1 approvals from the other N − 1
agents. When deciding whether to approve A, it is optimal for an agent to condi-
tion on the pivotal event since this agent’s decision cannot affect the outcome in
any other event. The likelihood of being pivotal in state θi ∈ {θ1,θ2,θ3} is

P[piv|θi;x, T̂] =
�

N − 1
T̂ − 1

�

[ρixh + (1 − ρi)xℓ
︸ ︷︷ ︸

Prob of approving A

]T̂−1[1 − ρixh − (1 − ρi)xℓ
︸ ︷︷ ︸

Prob of rejecting A

]N−T̂.

When this agents receives s ∈ {ℓ, h}, she approves A only if

3
∑

i=1

q0
i
︸︷︷︸

prior

·P[s|θi]
︸ ︷︷ ︸

signal

·P[piv|θi;x, T̂]
︸ ︷︷ ︸

being pivotal

·Vag(θi) ≥ 0.

Rewriting this as a payoff-weighted likelihood ratio, we have

q0
3 · P[s|θ3] · P[piv|θ3;x, T̂] · Vag(θ3)

−
∑2

i=1 q0
i · P[s|θi] · P[piv|θi;x, T̂] · Vag(θi)

≥ 1.

Letting Lag(s;x, T̂) denote the left side. This agent chooses x as the best response
if for each s ∈ {ℓ, h},











xs = 1 when Lag(s;x, T̂) > 1,

xs ∈ [0, 1] when Lag(s;x, T̂) = 1,

xs = 0 when Lag(s;x, T̂) < 1.

(1.6)

By (1.3), we have

Lag(h;x, T̂) > Lag(ℓ;x, T̂). (1.7)

By (1.6) and (1.7), if x with xℓ < xh is the best response to itself and T̂ ∈ {1, ..., N},
then it must satisfy the following:

(

xh = 1 if xℓ > 0,

xℓ = 0 if xh < 1.
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Best Response of the Principal: Consider the case where the agents choose an in-
formative strategy x. When the principal observes T approvals from N agents, he
chooses A only if

3
∑

i=1

q0
i
︸︷︷︸

prior

·P[T; N|θi]
︸ ︷︷ ︸

T approvals

·Vpc(θi) > 0.

Rewriting this as a payoff-weighted likelihood ratio, we have
∑3

i=2 q0
i · P[T; N|θi] · Vpc(θi)

−q0
1 · P[T; N|θ1] · Vag(θ1)

> 1.

Letting Lpc(T;x) denote the left side.11 Note that Lpc(T;x) strictly increases with
T since

ρ1xh + (1 − ρ1)xℓ < ρ2xh + (1 − ρ2)xℓ < ρ3xh + (1 − ρ3)xℓ

by (1.3) and xℓ < xh, that is, the agents are more likely to approve A when the
realized state is higher. The optimal cut-off for the principal is

T̂ = min{T | Lpc(T;x) > 1 and T ∈ {0, ..., N + 1}}. (1.8)

Informative Equilibrium: An informative equilibrium is characterized by a pair
{(xℓ, xh), T̂} that satisfies (1.6) and (1.8), with xℓ < xh and T̂ ∈ {1, ..., N}.

We can show that in every informative equilibrium, the agents always reject A
when they receive signal ℓ:

Lemma 1.1. The agents choose xℓ = 0 in every informative equilibrium.

For a sketch of the proof, consider an informative equilibrium with xℓ > 0. From
(1.6) and (1.7), we have xh = 1 and hence xℓ ∈ (0, 1). Therefore, conditional on
being pivotal, the agents always approve A when they receive signal h and are
indifferent between A and B when they receive signal ℓ. Note that the principal
prefers A more than the agents do. If an agent is indifferent conditional on being
pivotal and receiving signal ℓ, then the principal prefers A when this agent is
pivotal and receives signal ℓ. Since this agent only rejects A when she receives
signal ℓ, the principal prefers A when this agent is pivotal and rejects A, that is,
when the principal observes T̂ − 1 approvals. However, it leads to a contradiction
to the optimality of T̂ as shown in (1.8).

11. We suppress x in P[T; N|θi] for each i ∈ {1, 2,3}.
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1.3 Information Aggregation

In many situations, including non-binding shareholder voting, public protests, and
survey polls, among others, there are usually a large number of agents (share-
holders, citizens, and interviewees). In this section, we study whether information
dispersed among the agents is effectively aggregated and whether the principal
fully learns the state as the number of agents grows large:

Definition 1.1. A sequence of equilibria {ΓN}∞N=1 aggregates information if

lim
N→∞
P[A|θ1;ΓN] + P[B|θ3;ΓN] = 0.

We consider information aggregation with minimal requirements by focusing on
stated θ1 and θ3 in which the preferences of the principal and the agents are
aligned. Note that the failure of information aggregation implies that the principal
fails to fully learn the state no matter how many agents there are.

The present paper’s framework shares certain qualitative features with elec-
tions in which voters decide whether to approve a policy and the total number of
approvals matters. As shown by the Condorcet jury theorem (see Ladha (1992))
and its modern versions (Feddersen and Pesendorfer (1997), Feddersen and Pe-
sendorfer (1998), Myerson (1998), Duggan and Martinelli (2001)), elections ef-
fectively aggregate dispersed information among the agents (voters) under any
qualified majority rule that depends on the ratio of votes. However, full informa-
tion aggregation fails under the unanimity rule or rules that are close to it.

The fundamental difference between this paper’s framework and elections is
that the principal can now choose the policy based on his own decision and is
not constrained by predetermined rules. The existing literature extends the idea
behind the Condorcet jury theorem and shows that information is still effectively
aggregated if the conflict of interest between the principal and the agents is small.
However, we show that full information aggregation always fails after adding the
misaligned state θ2.

1.3.1 Results from the Existing Literature

In this section, we assume that q0
2 = 0 and ignore the misaligned state θ2. As dis-

cussed in Section 1.2.2, the preferences of the principal and the agents are fully
aligned if the realized state is known and misaligned when the state is uncertain.
The principal and the agents have different thresholds of acceptance: for each
belief q= (q1, q3) ∈∆2, the principal prefers A if q3

q1
> −Vpc(θ1)

Vpc(θ3) , while the agents

prefer A if q3
q1
> −Vag(θ1)

Vag(θ3) . Hence, the ratio of −Vag(θ1)
Vag(θ3) to −Vpc(θ1)

Vpc(θ3) is a natural mea-
sure for the conflict of interest between the principal and the agents due to the
different payoff intensities in state θ1 and state θ3. The existing literature has
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considered this case and shown that if the ratio Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) is below a certain

threshold, information is effectively aggregated.12

Proposition 1.1. Assume that q0
2 = 0.

1. If
Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
<
ρ3

ρ1
·

1 − ρ1

1 − ρ3
, (1.9)

then there exists a sequence of equilibria that aggregates information.
2. If

Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
>
ρ3

ρ1
·

1 − ρ1

1 − ρ3
, (1.10)

then only the babbling equilibrium exists for each N.

Figure 1.4 illustrates the intuition behind Proposition 1.1. In an informative
equilibrium, the agents who receive signal h must (weakly) prefer A conditional
on being pivotal. That is, each agent’s posterior belief must be higher than −Vag(θ1)

Vag(θ3)

conditional on signal h and T̂ − 1 approvals from the other N − 1 agents. However,
the principal optimally chooses the cut-off T̂. He must prefer B when he observes
T̂ − 1 approvals from N agents. That is, his posterior belief must be less than
−Vpc(θ1)

Vpc(θ3) when there are already T̂ − 1 approvals from N − 1 agents and the pivotal
agent rejects A. Therefore, the difference in the thresholds of the posterior likeli-
hood ratio between the agents and the principal depends at most on one signal h
and one rejection in every informative equilibrium.

Figure 1.4. Inference from being pivotal and thresholds of acceptance

Notes: The red line corresponds to the argument that the agents signal h must prefer A conditional
on being pivotal. The blue line corresponds to the argument that the principal must prefer B when
he observes T̂ − 1 approvals, that is, when the pivotal agent rejects A.

Note that if the agents report their signals truthfully, that is, if the agents
approve A when they receive signal h and reject A when they receive signal ℓ,
the decrease in the posterior likelihood ratio due to one rejection is maximized.
Hence, we can replace “one rejection" in Figure 1.4 with "one signal ℓ" and argue

12. Levit and Malenko (2011) consider the setting with a symmetric information structure.
Battaglini (2017) considers the setting in which the number of voters follows a Poisson distribution.
Ekmekci and Lauermann (2022) consider the setting with deterministic population size in their
online appendix. We sketch their proof.
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that a necessary condition for the existence of informative equilibria is that the
difference in the thresholds of the posterior likelihood ratio depends on at most
one signal h and one signal ℓ, and thus we derive (1.9).

The inequality (1.9) is indeed a necessary condition for the existence of the
informative equilibrium in which the agents report truthfully, that is, it is a neces-
sary condition for the existence of T̂ such that

P[T̂; N|θ3]

P[T̂; N|θ1]
≥ −

Vag(θ1)

Vag(θ3)
,

P[T̂ − 1; N|θ3]

P[T̂ − 1; N|θ1]
≤ −

Vpc(θ1)

Vpc(θ3)
,

when xh = 1 and xℓ = 0. However, it is not a sufficient condition due to the re-
quirement that T̂ must be an integer. We show that as N grows large, the effect
of this integer requirement vanishes, and there exists an informative equilibrium
in which the agents report almost truthfully, with xh ≈ 1 and xℓ = 0:

Lemma 1.2. Assume that q0
2 = 0. If Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) <

ρ3
ρ1

1−ρ1
1−ρ3

, then for each ε, there
exists an Nε such that for each N > Nε, there exists an informative equilibrium in
which the agents choose xh = 1− ε and xℓ = 0 (almost truthtelling).

Therefore, when the conflict generated by the different payoff intensities is below
the threshold, the principal can fully learn the unknown state by the law of large
numbers as N→∞, and information is effectively aggregated.

1.3.2 Failure of Information Aggregation

We consider the setting with the misaligned state θ2 by assuming that q0
2 > 0 in

the rest of this paper. In this setting, the preferences of the principal and the
agents might be misaligned even if they know the realized state.

As reviewed in Section 1.3.1, the existing literature provides the condition un-
der which informative equilibria exist and shows that if this condition is satisfied,
there exists a sequence of informative equilibria that aggregates information with
the agents reporting their signals almost truthfully as N→∞. We now show that
when q0

2 > 0, full information aggregation always fails even if informative equilib-
ria exist. The principal, therefore, fails to fully learn the realized state even if he
receives a large number of informative messages.

Theorem 1.1. No sequence of equilibria aggregates information. That is, there exists
a constant c> 013 such that for each N and each equilibrium Γ with N agents,

P[A|θ1;Γ ] + P[B|θ3;Γ ] > c.

13. The value of c depends on other parameters, as do Nε, T0, T̂∗, N∗, M1, and δ, introduced
later in this section.



16 | 1 Learning from Biased Souces

We illustrate the intuition behind Theorem 1.1 through two steps.
Step 1. Vanishing Information

We first argue that when q0
2 > 0, the information contained in an agent’s mes-

sage must vanish as N→∞ in every sequence of informative equilibria, which
differs sharply from Lemma 1.2. We also show how quickly the information van-
ishes, that is, the rate of convergence for xh→ 0.

Proposition 1.2. For each ε > 0, there exists N0

ε such that when N > N0

ε, the agents
choose xh < ε in every informative equilibrium. Furthermore, there exists T0 > 0 such
that for each N and each informative equilibrium with N agents,

N · xh < T0.

To understand the intuition, fix an arbitrary x ∈ (0, 1]) and suppose that the
agents behave according to xh = x and xℓ = 0 for each N ∈ N+. The expected num-
ber of approvals in each state θi is N ·ρix for i ∈ {1, 2,3}. Figure 1.5 illustrates
the distributions of the total number of approvals T when N is large.1⁴ We can see
that when N is large, (i) the principal chooses T̂ such that Nρ1x < T̂ < Nρ2x since
he prefers A when the realized state is θ2 or θ3, and (ii) as shown in Figure 1.5,

P[T̂; N|θ3]

P[T̂; N|θ2]
≈ 0,

and hence

P[piv|θ3]
P[piv|θ2]

=
P[T̂ − 1; N − 1|θ3]

P[T̂ − 1; N − 1|θ2]
≈
P[T̂; N|θ3]

P[T̂; N|θ2]
≈ 0.

Each agent believes that the realized state is very unlikely to be θ3 conditional on
being pivotal. She rejects A even when she receives signal h. Hence, she does not
choose xh = x as a best response.

N · ρ1x N · ρ2x N · ρ3xT̂
T

θ1
θ2
θ3

Figure 1.5. The distributions of the total number of approvals

Notes: The distribution of the total number of approvals for A in each state when the agents choose
xh = x ∈ (0, 1) and x� = 0. The principal optimally chooses T̂.

14. Note that we can approximate these distributions by normal distributions.
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Each agent makes her decision conditional on her signal and being pivotal.
However, the number of approvals that makes an agent pivotal is endogenous,
since the principal must be nearly indifferent between A and B when he observes
this number. If the agents’ messages are informative and the principal receives a
large number of messages, then each agent believes that the realized state must
be either θ1 or θ2 given that the principal is uncertain whether the realized state
is θ1 and indifferent between A and B, as shown in Figure 1.5. Hence, each agent
prefers B regardless of her signal, conditional on being pivotal.

To prevent the inference conditional on being pivotal from overwhelming each
agent’s private information, the distributions of the total number of approvals in
different states must be close to each other, as shown in Figure 1.6.1⁵,1⁶ Hence,
the information contained in an agent’s message must vanish as N→∞. We then
show that the information in an agent’s message must vanish at a high speed to
make the differences in the mean N ·ρixh of different states finite. Thus, the rate
of convergence for xh→ 0 must be comparable to 1

N .

T̂
T

θ1
θ2
θ3

Figure 1.6. The distributions of the total number of approvals

Notes: The distributions of the total number of approvals in different states must be close to each
other.

For an alternative intuition behind Proposition 1.2, once again fix an arbitrary
x ∈ (0, 1] and suppose that the agents behave according to xh = x and xℓ = 0. In
this case, the principal and the agents have different preferences, that is, they have
different cut-offs for the total number of approvals above which A should be imple-
mented. If the difference in cut-offs is large, the strategy profile with xh = x and
xℓ = 0 cannot be a part of an informative equilibrium. However, the difference in
cut-offs increases with x, which measures the information in an agent’s message,
and the number of agents N. Therefore, the information contained in an agent’s
message must vanish as N→∞ in every sequence of informative equilibria. Note
that in LMB’s setting analyzed in Section 1.3.1, the difference in cut-offs is con-
stant with respect to N and decreases with x if we ignore the integer requirement
for T̂.

15. When xℓ = 0 and Nxh is finite, we can approximate the distributions of the total number
of approvals by Poisson distributions.

16. One might directly see the failure of information aggregation from Figure 1.6. The
distribution in state θ1 must be close to the distribution in state θ3. Hence, the principal cannot
find a T̂ to separate them.
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Step 2. Unanimity Rule
By Proposition 1.2, the expected number of approvals in each state is always

smaller than a finite number that is independent of N. We also show that the
principal’s cut-off T̂ is always smaller than a finite number that is independent of
N. Hence, the principal must follow either the unanimity rule (T̂ = 1) such that he
chooses B only if all the agents reject A or rules that are similar to the unanimity
rule.

Proposition 1.3. There exists T0 > 0 such that for each N and each informative
equilibrium with N agents,

T̂ < T0.

Note that for each N and each informative equilibrium with N agents, the
posterior beliefs about state θ3 and state θ1 must have the same magnitude con-
ditional on being pivotal, that is, there exists an M1 > 0 such that

1
M1

<
P[θ3|piv]
P[θ1|piv]

< M1. (1.11)

If P[θ3|piv]
P[θ1|piv] → 0, then the agents believe that the realized state is either θ1 or

θ2 conditional on being pivotal, and they reject A when they receive s= h. If
P[θ3|piv]
P[θ1|piv] →∞, then the principal believes that the realized state is either θ2 or θ3

when he observes T̂ − 1 approvals, and then chooses A.
In what follows, we show that there is no sequence of equilibria that satisfies

lim
N→∞

T̂−1
∑

T=0

P[T; N|θ1] = 1 and lim
N→∞

T̂−1
∑

T=0

P[T; N|θ3] = 0,

since (i) P[T̂ − 1; N|θ1] and P[T̂ − 1; N|θ3] have the same magnitude as shown in
(1.11), and (ii) T̂ is always smaller than a finite number T0 as shown in Proposition
1.3. Note that the left term is the probability that the principal chooses B in state
θ1, while the right term is the probability that the principal chooses B in state θ3.
Therefore, no sequence of equilibria aggregates information. Further, we can show
that the principal chooses the wrong policy with a strictly positive probability in
each state:

Corollary 1.1. There exists δ̄ > 0 such that for each N and each informative equi-
librium with N agents,

P[A|θ] > δ̄, ∀θ ∈ {θ1,θ2,θ3},

P[B|θ] > δ̄, ∀θ ∈ {θ1,θ2,θ3}.
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1.4 Information Transmission

In this section, we first discuss conditions under which informative equilibria ex-
ist. If there exist multiple informative equilibria, we can rank them in both the
Blackwell order and the Pareto order. Hence, we can identify the most informa-
tive equilibrium that also maximizes the payoffs of the principal and the agents.
We then discuss the amount of information transmission by focusing on the most
informative equilibrium and show that the amount of information transmission de-
creases with the conflict of interest between the principal and the agents. Finally,
we argue that it might be better to disperse information among the agents instead
of letting one agent receive all the information and further argue that communica-
tion among the agents might impede information transmission and hurt both the
principal and the agents.

1.4.1 Existence of Informative Equilibria

We say information transmission persists if there exists N1 such that for each
N > N1, an informative equilibrium exists. We say information transmission fails
if there exists N2 such that for each N > N2, only the babbling equilibrium exists.

Proposition 1.1 indicates that when q0
2 = 0, information transmission fails if

Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
>
ρ3

ρ1
·

1 − ρ1

1 − ρ3
.

We now provide a new condition when q0
2 > 0:

Proposition 1.4. When q0
2 > 0, information transmission fails if

Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
>
ρ3

ρ1
.

Therefore, when Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) ∈ (ρ3

ρ1
, ρ3
ρ1

1−ρ1
1−ρ3

), there exists a sequence of equilib-
ria that aggregates information if q0

2 = 0 from Proposition 1.1, while information
transmission fails if q0

2 > 0, that is, only the babbling equilibrium exists when N is
large enough.

When we assume q0
2 = 0 and ignore the misaligned state θ2, we show that

informative equilibria exist if the difference in the thresholds of the posterior
likelihood ratio between the principal and the agents depends at most on one
signal h and one rejection. We then let the agents report messages sincerely to
maximize the information contained in one rejection and hence in one message.

However, the agents cannot send messages sincerely when q0
2 > 0 and N is

large, as discussed before. Otherwise, the agents infer that the state must be ei-
ther θ1 or θ2 conditional on being pivotal, and ignore their signals. Instead, they
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choose xh ≈ 0 and their messages are nearly uninformative according to Propo-
sition 1.2. Therefore, when N is large, in an informative equilibrium, the agents
signal h are indifferent between A and B conditional on being pivotal, that is,
the posterior likelihood ratio of state θ3 to state θ1 conditional on signal h and
T̂ − 1 approvals from N − 1 agents must be higher than −Vag(θ1)

Vag(θ3) . However, since
the principal prefers B when he observes T̂ − 1 approvals from N agents, the poste-
rior likelihood ratio of θ3 to state θ1 conditional on T̂ − 1 approvals from N agents
must be lower than −Vpc(θ1)

Vpc(θ3) . Then since almost no information is contained in an
agent’s message hence in one rejection, the posterior likelihood ratio conditional
on T̂ − 1 approvals from N − 1 agents must also be lower than −Vpc(θ1)

Vpc(θ3) . There-

fore, the difference in the thresholds of the posterior likelihood ratio −Vag(θ1)
Vag(θ3) and

−Vpc(θ1)
Vpc(θ3) depends on at most one signal h.

Note that when Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) ∈ (ρ3

ρ1
, ρ3
ρ1

1−ρ1
1−ρ3

) and q0
2 > 0, informative equilibria

might exist when N is small. In this situation, the agents can choose an xh away
from 0, which increases the information contained in one rejection and hence
makes up for a larger difference in the thresholds of the posterior likelihood ratio.
Note that both the principal and the agents receive higher expected payoffs from
any informative equilibria than from the babbling equilibrium. Hence, the amount
of information transmission and the welfare for the principal and the agents1⁷ are
not monotonic with respect to N. The expected payoffs of both the principal and
the agents are maximized if the number of agents equals some finite number. In
contrast, both the principal and the agents receive a lower expected payoff when
we let the number of agents go to infinity. We discuss the effect of the number of
agents on the welfare more generally in Section 1.8.

When Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) <

ρ3
ρ1
, we argue that information transmission persists if the

misaligned state θ2 is unlikely, that is, the prior q0
2 is small. However, we cannot

freely vary q0
2 due to the constraint that q0 ∈∆3. We replace q0 with λ= {λ1,λ2}

such that

λ1 =
q0

1

q0
3

and λ2 =
q0

2

q0
3

.

The ratio λ2 measures the conflict of interest between the principal and the agents
concerning the misaligned state θ2. Both q0

1 and q0
3 are smaller while q0

2 is larger
when λ2 is larger and λ1 is constant.

Proposition 1.5. If Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) <

ρ3
ρ1
, then there exists λ̂2 > 0 such that1⁸

17. In Section 1.4.3, we show that if there exists at least one informative equilibrium, there
exists an informative equilibrium that maximizes the amount of information transmission and the
welfare of the principal and the agents among all informative equilibria.

18. The value of λ̂2 depends on the value of other parameters except λ2 and N.
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(1) if λ2 < λ̂2, information transmission persists,

(2) if λ2 > λ̂2, information transmission fails.

In the appendix, we provide sufficient and necessary conditions under which
there exists an informative equilibrium with T̂ = 1, that is, the equilibrium in
which the principal chooses the unanimity rule. We show that there exists λ̂2,1

such that when N is large, an informative equilibrium with T̂ = 1 exists if λ2 < λ̂2,1

and only if λ2 ≤ λ̂2,1. We then extend this approach and further derive λ̂2,j for
each j ∈ N corresponding to the informative equilibrium with T̂ = j and derive1⁹

λ̂2 = sup
j∈N
λ̂2,j.

We can further show that
lim

j→∞
λ̂2,j = 0.

Hence, for each λ2 > 0, there exists T∗ that is independent of N such that

λ2 > λ̂2,j, ∀j > T∗,

which is also indicated by Proposition 1.3 that T̂ in any informative equilibrium
is always smaller than a number that is independent of N. The principal must
follow the unanimity rule or rules that are close to it, which leads to the failure
of information aggregation.

We now investigate how λ̂2 changes with other parameters.

Corollary 1.2. The threshold λ̂2 increases with Vag(θi) and decreases with Vpc(θi)
for each i ∈ {1,2, 3}. 2⁰

From Corollary 1.2, the threshold λ̂2 decreases with Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) when we

only vary one term. Note that λ̂2 measures the conflict of interest concerning the
misaligned state θ2 while Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) measures the conflict of interest concerning

the payoff intensities in state θ1 and state θ3. Therefore, information transmission
persists if both types of conflict are small, as shown by Figure 1.7.

19. When λ2 > λ̂2, we only need to consider informative equilibria with T̂ < T0 by Proposition
1.3 that guarantees that there exists N2 above which no informative equilibrium exists.

20. When discussing the comparative statistics in Corollary 1.2, Corollary 1.3, and Corollary
1.4, we always change one parameter and keep the others fixed.
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Figure 1.7. Information transmission and aggregation

Notes: The existing literature considers the case where λ2 = 0, and shows that there exists a sequence
of equilibria that transmits and aggregates information when Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) <

ρ3
ρ1

1−ρ1
1−ρ3

. When λ2 > 0, we
show that information transmission persists in the shaded area while information aggregation always
fails.

Corollary 1.3. The threshold λ̂2 decreases with ρ1 while it is not monotonic with
ρ2 and ρ3.

Consider the case where ρ2 decreases. On the one hand, each agent has a
higher incentive to approve A conditional on receiving signal h since this signal
favors state θ3 more. On the other hand, each agent has a lower incentive to
approve A conditional on being pivotal since the distribution of the total number of
approvals in state θ2 moves closer to the distribution in state θ1, which decreases
this agent’s posterior belief of state θ3 conditional on being pivotal. Thus, a smaller
ρ2 has an ambiguous effect on the agents’ incentives to approve A conditional
on being pivotal and receiving signal h, and hence has an ambiguous effect on
information transmission. We can apply a similar intuition to the case where ρ3

increases. However, when ρ1 decreases, the two effects mentioned above move
the agents’ posterior beliefs of state θ3 in the same direction. Thus, a smaller
ρ1 increases the agents’ incentives to approve A conditional on being pivotal and
receiving signal h, and hence contributes to information transmission.

Corollary 1.3 indicates that the boundary of information transmission, that is,
the red dashed line in Figure 1.7, moves outward when ρ1 decreases. However,
changes in ρ3 and ρ2 have ambiguous effects on it.

Corollary 1.4. The threshold λ̂2 is not monotonic with λ1.

In Figure 1.8, we plot λ̂2,j for j ∈ {1,2, 3} and λ̂2 as functions of λ1. As stated
before, an informative equilibrium with T̂ = j exists if λ2 < λ̂2,j when N is large.
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Figure 1.8. Non-monotonic boundaries

The threshold λ̂2,j is not monotonic with λ1 for each j ∈ N. To see the intuition,
let us fix an arbitrary j ∈ N+ and let the principal always choose T̂ = j. We then
consider the case where λ1 increases while other parameters are constant. The
prior q0

2 is smaller and hence the conflict of interest between the principal and
the agents is smaller, which contributes to information transmission and increases
λ̂2,j. However, the prior q0

3 also decreases, and hence the state θ3 is less likely,
which decreases the agents’ incentives to approve A when they receive signal h,
which impedes information transmission and decreases λ̂2,j.

1.4.2 Ranking Informative Equilibria

When we fix all parameter values, there cannot exist more than one informative
equilibrium in which the principal chooses the same T̂ since there exists at most
one xh solving (1.6). However, there might exist multiple informative equilibria
with different T̂, as shown by the left panel of Figure 1.8. We now rank them
according to the payoffs of the principal and the agents. Let Upc(Γ ) and Uag(Γ )
be the expected payoff of the principal and the expected payoff of the agents
respectively for a given equilibrium Γ .

Proposition 1.6. Fix all parameter values. If there exist two informative equilibria
Γ1 = {xh,1, T̂1} and Γ2 = {xh,2, T̂2} such that T̂1 < T̂2, then

xh,1 ≤ xh,2,

Upc(Γ1) ≤ Upc(Γ2),

Uag(Γ1) ≤ Uag(Γ2).

All inequalities are strict if xh,1 < 1.

When the principal requires a higher T̂, the agents approve A with a higher
probability and hence increase xh. The principal observes N messages from the
agents that are identically distributed and independent conditional on the state
and makes his decision to maximize his expected payoff. When xh is higher, each
message is more Blackwell informative, and hence the joint N messages are also
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more Blackwell informative. Thus, the principal receives a higher expected payoff
from the equilibrium with a higher T̂.

For the agents, consider an informative equilibrium Γ = {xh, T̂} with xh < 1.
Each agent is indifferent between A and B conditional on receiving signal h and
being pivotal. Hence, she is indifferent conditional on the event that there are
T̂ approvals from N agents since the agents randomize when she receives signal
h. Therefore, the principal would still choose T̂ if he shared the same preference
with the agents. Thus, an informative equilibrium with a higher T̂ also benefits
the agents since the principal chooses T̂ under a more Blackwell informative in-
formation structure.

As discussed above, in every informative equilibrium, when we fix the strategy
of the agents, the principal and the agents agree on the same threshold T̂, that is,
they share common interests. Therefore, we can rank all informative equilibria in
the Blakweell order or the Pareto order, and these two orders coincide with each
other.

From Proposition 1.6, the informative equilibrium with the highest cut-off T̂max

maximizes the expected payoffs of the principal and the agents among all informa-
tive equilibria. We denote this equilibrium by the most informative equilibrium.
Note that the agents also choose the highest xh in the most informative equilib-
rium among all informative equilibria. From Proposition 1.3, the highest cut-off
T̂max is always smaller than a number that is independent of N since messages
from the agents cannot be too informative. Otherwise, the inference from being
pivotal overwhelms each agent’s private information.

We can show that for almost all parameter values that satisfy Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) <

ρ3
ρ1

and λ2 < λ̂2, that is, for almost all parameter values under which information
transmission persists, the highest cut-off T̂max is independent of N when N is
above some threshold. For the other parameter values that satisfy both conditions
above, the highest cut-off T̂max takes a value between two adjacent numbers. In
the left panel of Figure 1.8, we can see that when N is large, the cut-off T̂max = 1
if (λ1,λ2) is above the orange line and below the purple line while T̂max = 2 if
(λ1,λ2) is above the green line and below the orange line. However, for some
points of (λ1,λ2) exactly on the orange line, the highest cut-off T̂max might be
either 1 or 2 when N is large.

1.4.3 Amount of Information Transmission

In this section, we discuss the maximal amount of information transmission by
focusing on the most informative equilibrium Γmax = {xh,max, T̂max}.
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Proposition 1.7. In the equilibrium Γmax, the agents’ equilibrium strategy xh,max

increases with Vag(θi) and decreases with Vpc(θi) for each i ∈ {1,2, 3}. Furthermore,
it decreases with λ2. 21

As discussed in Section 1.4.2, the principal receives more information from
the agents if the agents choose a higher xh. By Proposition 1.7, the agents’ equilib-
rium strategy xh,max decreases with Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) when we only vary one term, and

also decreases with λ2. Hence, the maximal amount of information transmission
decreases with both types of conflict between the principal and the agents.

We now compare the maximal amount of information transmission as N→∞
in the setting with the misaligned state θ2 with the one in the setting with no
misaligned state analyzed by the existing literature. We measure the maximal
amount of information transmission by22

I = lim sup
N→∞

Vmax
pc − V0

pc

Vfull
pc − V0

pc

∈ [0,1],

where (i) Vmax
pc is the principal’s expected payoff from the most informative equi-

librium, (ii) V0
pc is the principal’s expected payoff from the uninformative babbling

equilibrium, and (iii) Vfull
pc is the principal’s expected payoff if he can observe the

realized state.
Figure 1.9 illustrates the maximal amount of information transmission regard-

ing the two types of conflict between the principal and the agents, the conflict
generated by the different payoff intensities in state θ1 and θ3 that is measured
by Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) ,23 and the conflict concerning the misaligned state θ2 that is mea-

sured by λ2.

21. We always change one parameter and keep others including N fixed.
22. The limit always exists in the situations where λ2 = 0.
23. When varying Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) , we either only change Vag(θ1) or only change Vag(θ3), while

keeping other parameters fixed.
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Figure 1.9. Maximal amount of information transmission

Notes: We plot I as a function of Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) in different cases. The blue line corresponds to the

case where λ2 = 0. The red line corresponds to the case where λ2 > 0. In the left panel, we choose
λ2 < λ̂2 given that Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) = 1 for the red line. In the right panel, we chooses λ2 > λ̂2 given that

Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) = 1 for the red line.

When λ2 = 0, Proposition 1.1 shows that the principal fully learns the state
as N→∞ if Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) is below the threshold ρ3

ρ1

1−ρ1
1−ρ3

. Otherwise, information
transmission fails and only the babbling equilibrium exists.

This paper analyzes the setting with λ2 > 0. In the left panel with a small λ2,
even if the principal and the agents have the same payoffs in state θ1 and state
θ3 with

Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
= 1,

information aggregation fails and the amount of information transmission is lim-
ited. As Vag(θ1)

Vag(θ3)
Vpc(θ3)
Vpc(θ1) increases, the principal receives less information. When

Vag(θ1)
Vag(θ3)

Vpc(θ3)
Vpc(θ1) is above a threshold that is lower than ρ3

ρ1
, the principal receives

no information. In this case, information transmission fails and only the babbling
equilibrium exists. Note that the threshold above which information transmission
fails decreases with λ2. In the right panel with a large λ2, information transmis-
sion always fails according to Proposition 1.5.

1.4.4 Information Aggregation and Transmission

We claim that the failure of information aggregation might facilitate information
transmission and further argue that communication among the agents might im-
pede information transmission and hurt both the principal and the agents.

Consider the case where there is only one agent and this agent receives all
N signals. She advises the principal to choose A or not. As N→∞, this agent is
fully informed about the realized state. She advises the principal to choose A in
state θ3 and choose B in state θ2 and state θ1. The principal follows this agent’s
advice of choosing B if he receives a negative expected payoff from choosing A,

q0
2Vpc(θ2) + q0

1Vpc(θ1) < 0,
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that is, if
λ2

λ1
< −

Vpc(θ1)

Vpc(θ2)
.

Proposition 1.8. There exists λ̄1 such that2⁴

λ̂2

λ1
> −

Vpc(θ1)

Vpc(θ2)
iff λ1 < λ̄1.

We plot λ̂2 as a function of λ1 in Figure 1.10, which illustrates Proposition 1.8.
Consider a pair of (λ1,λ2) in the shaded area. If there are N agents and each of
them receives a private signal, full information aggregation fails but information
transmission persists since λ2 < λ̂2. If there is only one agent who receives all N
signals, as N→∞, she fully learns the realized state but information transmission
fails since

λ2Vpc(θ2) + λ1Vpc(θ1) > 0.

The principal chooses A even if the agent advises him to choose B.

Figure 1.10. Information transmission with the failure of information aggregation

The intuition for the argument that the failure of information aggregation
might facilitate information transmission goes as follows. Many studies in cheap-
talk literature, initiated by Crawford and Sobel (1982) consider a model of in-
formation transmission between one sender and one receiver. They show that the
sender might make her message intentionally vague since intentional vagueness
mitigates the conflict of interest between the sender and the receiver and further
facilitates information transmission. Now, we can also interpret the failure of in-
formation aggregation as intentional vagueness if we regard all N agents as the
sender and the principal as the receiver. Such intentional vagueness disappears

24. The value of λ̄1 depends on the value of other parameters except λ1 and N.
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in the case where an agent fully learns the state but does not have commitment
power.

Furthermore, we can show that for each (λ1,λ2) in the shaded area, there
always exists an informative equilibrium with T̂ = 1 when N is large since the
unanimity rule aggregates information the least efficiently and hence generates
the largest intentional vagueness.

Both the principal and the agents benefit from the failure of information aggre-
gation when (λ1,λ2) is in the shaded area since both of them receive higher pay-
offs from any informative equilibrium than from the babbling equilibrium. Hence,
it might be better to disperse the information among the agents instead of let-
ting an agent receive all the signals when this agent cannot commit to generating
intentional vagueness.

An important finding of Battaglini (2017) is that communication among the
agents facilitates information transmission and aggregation, benefiting both the
principal and the agents. He hence highlights the value of social media to the
effectiveness of petitions and public protests, since social media allow citizens to
share information. In contrast, we show that the communication among the agents
might impede information transmission and hurt both the principal and the agents.
Note that the case where the agents fully communicate with each other and share
their signals is equivalent to the case analyzed above in which there is only one
agent and this agent receives all N signals.

1.5 Beyond the Binary Situation

We now extend the model to the case where neither the signal space nor the mes-
sage space is binary. Each agent i ∈ {1, ..., N} receives a private signal si ∈ {s1, ..., sJ}
with J ≥ 2. The signals are identically distributed and independent across the
agents conditional on the state θ ∈ {θ1,θ2,θ3}. There exists α > 0 such that

P[sj|θ] > α, ∀j ∈ {1, ..., J} and θ ∈ {θ1,θ2,θ3}.

That is, an agent cannot exclude any state if she receives a particular signal.
We generalize (1.3) by assuming the strict Monotone Likelihood Ratio Property
(MLRP):

P[sj|θ3]

P[sj|θ2]
and
P[sj|θ2]

P[sj|θ1]
strictly increase with j. (1.12)

Each agent i can send a message zi ∈ {z1, ..., zK} with K ≥ 2. The principal observes
T = (T1, ..., TK) ∈∆K(N), that is, the total number of each kind of message, and
chooses between A and B.

In the example of non-binding shareholder voting, besides voting in favor of
or rejecting the new proposal, the shareholders can also stay neutral and abstain.
Similarly, in the example of public protests, the citizens can choose among joining
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the rally for implementing reform, joining the rally for keeping the status-quo, or
staying neutral and remaining silent. We can also use this framework to study
survey polls in which each interviewee sends a score rating the desirability of a
new policy.

We examine symmetric Bayesian Nash equilibrium in which the agents use
the same strategy P= {pj,k}J×K such that an agent sends the message zk with a
probability pj,k when she receives the signal sj. The strategy of the principal is a
function

ψ : ∆K(N) → [0,1]

such that he chooses A with probability ψ(T) when he observes T = (T1, ..., TK).
The agents follow a monotonic strategy if they are more likely to send higher

messages when they receive higher signals, that is,2⁵

pj0,k · pj,k0 ≤ pj,k · pj0,k0 for each j < j0 and k < k0. (1.13)

The principal follows a monotonic strategy if he chooses A with a higher
probability when an agent switches from a lower message to a higher one, that is,
for each T = (T1, ...,TK) ∈∆K(N − 1) and each m<m0,

ψ(T1, ...,Tm + 1, ..., Tm0 , ..., TK) ≤ ψ(T1, ..., Tm, ..., Tm0 + 1, ..., TK).

Note that when one side uses a monotonic strategy, it is without loss of generality
to let the other side use a monotonic strategy as the best response. We focus
on the monotonic equilibrium in which both the principal and the agents use
monotonic strategies.

Monotonic equilibria are reasonable and fit applications well while non-
monotonic equilibria are counterintuitive and hard to be implemented. Intuitively,
a shareholder should support the new proposal more, a citizen should be more
likely to quit the rally for keeping the status-quo and join the one for implement-
ing reform, and an interviewee should rate the new policy with a higher score
if they are more optimistic about the new proposal, reform, or new policy based
on their private information. It is also reasonable that a manager should accept
the new proposal with a higher probability if fewer shareholders object to it or
more shareholders support it, a politician should implement reform with a higher
probability if fewer citizens join in the rally for keeping the status-quo or more
citizens join the rally for implementing the reform, and an interviewer should
choose the new policy with a higher probability if more interviewees rate it with
higher scores. There is growling literature studying the monotonic equilibrium in
communication games, as discussed in Section 1.7.

25. It is equivalent to
pj0 ,k
pj,k
≤

pj0 ,k0

pj,k0

when both pj,k and pj,k0 are positive.
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Proposition 1.9. For each ε > 0, there exists N00

ε such that for each N > N00

ε , in every
monotonic equilibrium except the babbling one, the agents only send z12⁶ when they
receive s ∈ {s1, ..., sJ−1} and send z1 with probability larger than 1− ε when they
receive sJ, that is,

pj,1 = 1, ∀ j ∈ {1, ..., J − 1},

pJ,1 > 1 − ε.

By Proposition 1.9, when N is large enough, there is no difference among
{z2, ..., zK}. The agents send these messages only if s= sJ. Therefore, when N is
large enough, we return to the basic model with binary signals and binary mes-
sages such that

ρi = P[sJ|θi], ∀i ∈ {1,2, 3}.

Hence, we can easily extend all results in Section 1.3.2 and Section 1.4. In partic-
ular,

Theorem 1.2. No sequence of monotonic equilibria aggregates information. That is,
there exists a constant c> 0 such that for each N and each monotonic equilibrium
Γ with N agents,

P[A|θ1;Γ ] + P[B|θ3;Γ ] > c.

We now sketch the proof for Proposition 1.9. For simplicity, consider the case
where each agent can send a message z ∈ {z1, z2, z3}. Let the agents use a mono-
tonic strategy P. From (1.12), (1.13) and some additional regularity assumptions
concerning P to avoid degenerate cases, we can show that the distributions of the
message from an agent also satisfy strict MLRP,

P[zk|θ3]
P[zk|θ2]

and
P[zk|θ2]
P[zk|θ1]

strictly increase with k.

Denote the distributions of the message from an agent in θ1,θ2, and θ3 by G1, G2,
and G3 respectively. We have

G3 ≻ G2 ≻ G1 (1.14)

in the monotone likelihood ratio order.
Consider the set of pivotal events,

EN = {T = (T1, T2, T3) ∈ ∆3(N − 1) | ψ(T1 + 1, T2, T3) ̸= ψ(T1, T2, T3 + 1)},

26. We ignore the degenerate case where agents never send z1. In this case, just relabel the
lowest message that the agents send with a positive probability by z1.
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that is, consider the set of events in which one additional message might change
the principal’s decision.2⁷

Now, let us fix the strategy of the agents and let N→∞. We can show that

lim
N→∞

P[EN|θ3]
P[EN|θ2]

= 0 and lim
N→∞

P[EN|θ3]
P[EN|θ1]

= 0. (1.15)

Intuitively, given that the principal is not sure whether the realized state is θ1

or not, the realized state must be either θ1 or θ2 since the “distance" between
distributions G1 and G2 is smaller than the one between G1 and G3 according to
(1.14). We extend the intuition in Section 1.3.2 to higher dimensions.

To see more precisely why (1.15) is true, consider the posterior likelihood
ratio for T ∈∆3(N − 1) and each i, i0 ∈ {1,2, 3},

P[T|θi]
P[T|θi0]

=
3
∏

k=1

� P[zk|θi]
P[zk|θi0]

�Tk

= exp

¨ 3
∑

k=1

Tk log
P[zk|θi]
P[zk|θi0]

«

= exp
�

(N − 1) ·
�

KL
�

γ(T), Gi0
�

− KL
�

γ(T), Gi

��	

,

(1.16)

where γ(T) is the sample frequency with

γ(T) =
�

γ1(T),γ2(T),γ3(T)
�

=
�

T1

N − 1
,

T2

N − 1
,

T3

N − 1

�

,

and KL(·, ·) is the Kullback–Leibler divergence (KL divergence) with

KL(γ, Gi) =
3
∑

k=1

γk log
γk

P[zk|θi]
, ∀i ∈ {1,2, 3}.

It measures how γ (observed frequency) deviates from Gi (mean in state θi). The
larger KL(γ, Gi) is, the more rare that a sample with a frequency γ in state θi is.

From (1.16), as when N is large, instead of focusing on the set of pivotal
events EN, we can work with the set of pivotal frequencies,

F =
�

γ ∈ ∆3(1)|KL(γ, G1) = min [KL(γ, G2), KL(γ, G3)]
	

.

For each γ /∈ F, we have T /∈ EN for each T with γ(T)= γ when N is large. For
example, consider a γ̃ /∈ F such that

KL(γ̃, G1) < min [KL(γ̃, G2), KL(γ̃, G3)] .

When N is large and the principal observes T̃ from N − 1 agents such that γ(T̃)= γ̃,
he must be sure that the state is θ1 by (1.16). Hence, one additional message
cannot change his decision. We have T̃ /∈ EN.

27. Note the in any monotonic equilibrium except the babbling equilibrium, for each T =
(T1, T2, T3) ∈∆3(N − 1), if ψ(T1 + 1, T2, T3) ̸=ψ(T1, T2 + 1, T3) or ψ(T1, T2 + 1, T3) ̸=ψ(T1, T2, T3 +
1), then we must have ψ(T1 + 1, T2, T3) ̸=ψ(T1, T2, T3 + 1).
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Note that in the binary setting analyzed in Section 1.3.2, the set F is a sin-
gleton, which is not true when we move beyond the binary setting. We provide a
way to identify the unique most likely pivotal frequency

γ∗ = argmin
γ∈F

KL(γ, G1).

Note that we only need to consider the pivotal events with frequencies concen-
trated around γ∗ since the unconditional likelihoods of them dominate the un-
conditional likelihoods of other pivotal events at an exponential rate as shown in
(1.16). We further show that

KL(γ∗, G1) = KL(γ∗, G2) < KL(γ∗, G3). (1.17)

We prove (1.15) by using (1.16) and (1.17).
To find the most likely pivotal frequency, let us consider a type of statistical

distance between distribution Gi and Gi0 for i ̸= i0, the Chernoff Information:

c(Gi, Gi0) = min
γ∈∆3(1)

KL(γ, Gi) s.t. KL(γ, Gi) = KL(γ, Gi0).

The minimizing problem has a unique minimizer.2⁸ Denote it by γi,i0 or γi0,i.
It can be show that2⁹

c(G1, G2) < c(G1, G3),

if (1.14) is satisfied. We further show that

KL(γ1,2, G1) = KL(γ1,2, G2) < KL(γ1,2, G3).

The key step is to show that

G3 ≻ G2 ≻ γ1,2 ≻ G1

in the monotonic likelihood ratio order if we regard γ1,2 as a signal distribution.
Therefore, the frequency γ1,2 is the most likely pivotal frequency and satisfies
(1.17).

We plot the simplex of distributions and frequencies in Figure 1.11, which
illustrates the reasoning presented above.

28. Both the function KL(γ, Gi) and the set
�

γ ∈∆3(1) | KL(γ, Gi)= KL(γ, Gi0 )
	

are convex.
29. Frick, Iijima, and Ishii (2021a) first find this result. There will be a note forthcoming for

further discussion.
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Figure 1.11. The most likely pivotal frequency

Notes: The corner zk corresponds to the distribution or the sample frequency that the message is
always zk. The segment zkzk0 corresponds to the set of distributions and sample frequencies that the
message is always either zk or zk0 . The red line is the set of pivotal frequencies from which the
“distance" (KL divergence) to G1 equals the minimum of distances to G2 and G3. Among all pivotal
frequencies, the frequency γ1,2 has the shortest distance to G1 and hence it is the most likely pivotal
frequency.

We show that in every sequence of monotonic equilibria, we must have

lim
N→∞

KL(Gi, Gi0) = 0, ∀i, i0 ∈ {1,2, 3},

lim
N→∞

c(Gi, Gi0) = 0, ∀i, i0 ∈ {1,2, 3},

that is, the distributions of messages in different states must be close to each other.
Otherwise, the agents realize that the state must be either θ1 or θ2 conditional
on being pivotal by (1.15) and ignore their own signals. Hence, the information
contained in an agent’s message must vanish as N→∞.

By extending Lemma 1.1, we show that the agents only send the lowest mes-
sage z1 when they receive the lowest signal s1. Finally, we demonstrate that as N
grows large, the agents only send z1 when they receive s ∈ {s1, ..., sJ−1} and send
z1 with probability near 1 when they receive s= sJ since (i) the strategy of the
agents must be a monotonic mapping and satisfy a single crossing condition3⁰ due
to the strict MLRP of signals, and (ii) information contained in an agent’s message
must vanish.

1.6 Commitment Case

In the basic model, the principal cannot ex-ante commit to a decision rule. Con-
sequently, conditional on being pivotal, each agent learns that the principal must
be nearly indifferent between A and B and infers the realized state from such an
event. We now consider the case where the principal can design and commit to

30. That is, for each k0 > k, if the agents send message zk with a positive probability when
they receive signal sj, then they never send message zk0 when they receive signals sj0 with j0 < j.
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a decision mechanism. In this section, we show that the principal can approach
his first-best outcome as N→∞ by committing to mechanisms with a simple
structure.
With no misaligned state

We first consider the case with no misaligned state, that is, the case where
q0

2 = 0. Let us start with direct and anonymous mechanisms that depend only on
T, that is, the total number of agents reporting signal h. The principal commits to
a cut-off mechanism if there exists T̂ ∈ N such that the principal chooses A when
T ≥ T̂ and choose B otherwise.

Note that when the agents can observe all signals together, for each N, there
exists a cut-off T̄N such that the agents prefer A if and only if more than T̄N of them
receive signal h. The principal then commits to a sequence of cut-off mechanisms
{T̂N}∞N=1 with T̂N = T̄N for each N. It is always incentive compatible for the agents
to report truthfully. The principal can approach his first-best outcome as N→∞.

The principal can also pick any t ∈ (0,1) and run an election among the agents
following a qualified majority rule with t, in which the agents choose whether to
vote for A, and A is chosen if the ratio of votes for it exceeds t. By the Condorcet
jury theorem and its modern versions ( Feddersen and Pesendorfer (1997), Fed-
dersen and Pesendorfer (1998),Myerson (1998), Duggan and Martinelli (2001)),
as N→∞, dispersed information among the agents is effectively aggregated and
the principal approaches his first-best outcome.
With the misaligned state

We now consider the case with the misaligned state θ2, that is, with q0
2 >

0. First, the principal cannot approach his first-best outcome by committing to
a sequence of cut-off mechanisms. Figure 1.12 illustrates this argument. When
N is large, the principal must choose T̂N ∈ (Nρ1, Nρ2) to approach his first-best
outcome. However, each agent realizes that the state must be either θ1 or θ2

conditional on being pivotal, that is, conditional on the event that from the other
N − 1 agents, T̂N − 1 of them receive signal h. She does not have the incentive to
report truthfully when she receives signal h.

Nρ1 Nρ2 Nρ3T̂N
T

θ1
θ2
θ3

Figure 1.12. Distributions of the total number of signal h

Notes: Distributions of the total number of signal h and one cut-off T̂N. The cut-off mechanism with
T̂N
N ∈ (ρ1, ρ2) is not incentive compatible.
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Furthermore, for each t ∈ (0,1), the principal cannot approach his first-best out-
come by committing to an election following a qualified majority rule with t,
in which according to the Condorcet jury theorem, information is aggregated as
N→∞ but the agents approach their first-best outcome.

The principal can approach his first-best outcome by mixing two cut-off mech-
anisms. Consider a mechanism M = (µ, T̂α, T̂β) such that the principal commits to
choosing the cut-off mechanism T̂α with probability µ and choosing the cut-off
mechanism T̂β with probability 1−µ. The agents cannot observe the principal’s
choice.

Proposition 1.10. there exists a sequence of mechanisms {MN}∞N=1 with MN =
(µN, T̂αN, T̂βN , ) for each N such that

lim
N→∞

Pr(A| θ3; MN) = 1,

lim
N→∞

Pr(A| θ2; MN) = 1,

lim
N→∞

Pr(B| θ1; MN) = 1.

Note that each agent makes a decision conditional on being pivotal, that is,
conditional on the event that her report can change the decision of the principal.
In the mechanism MN = (µN, T̂αN, T̂βN , ) with N agents, when the principal chooses
T̂αN, an agent is pivotal if from the other N − 1 agents, there are T̂αN − 1 agents
who receive signal h, and when the principal chooses T̂βN , an agent is pivotal if
from the other N − 1 agents, there are T̂βN − 1 agents who receive signal h. The
principal hence can mix between T̂αN and T̂βN to manipulate the agents’ inferences
from being pivotal.

As illustrated by Figure 1.13, the principal chooses T̂αN ∈ (Nρ1, Nρ2) for his
first-best outcome and chooses T̂βN close to Nρ3 to fulfill the incentive-compatible
constraint. Note that the agents prefer B conditional on being pivotal in the cut-off
mechanism with T̂αN, while they prefer A conditional on being pivotal in the cut-off
mechanism with T̂βN . By mixing between T̂αN and T̂βN , the principal can make the
agents indifferent between A and B conditional on being pivotal. Hence, they have
incentives to report their signals truthfully. Furthermore, by choosing T̂βN close to
Nρ3, the principal can choose T̂βN with a probability approaching 0 as N→∞.
He pays almost no information rent to the agents and approaches his first-best
outcome.
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Nρ1 Nρ2 Nρ3

T̂αN T̂βN

T

θ1
θ2
θ3

Figure 1.13. Distributions of the total number of signal h

Notes: Distributions of the total number of signal h and two cut-offs T̂αN and T̂βN. The principal mixes

between two cut-offs and lets T̂βN
N be close to ρ3.

Similarly, the principal can approach his first-best outcome by randomizing
between two qualified majority rules with different t.

1.7 Related Literature

This paper is related to the literature on cheap talk with multiple senders. This
paper further considers the case where senders (agents) have the same prefer-
ence. Besides Levit and Malenko (2011) and Battaglini (2017), Wolinsky (2002)
analyzes a similar model and also shows that information transmission fails and
complete unraveling happens if the conflict of interest between the principal and
the agents is large. Ekmekci and Lauermann (2022) follow the setting of Battaglini
(2017) but add costly participation, that is, each agent in our basic model needs
to pay a cost drawn from a distribution when rejecting A.31 They show that infor-
mation is aggregated even if the conflict of interest is above the threshold given
by Levit and Malenko (2011) and Battaglini (2017). However, It is ambiguous
whether a similar result holds in our setting with the misaligned state θ2. Mor-
gan and Stocken (2008) consider a model where the agents have heterogeneous
preferences. They show that when the principal and the agents have similar pref-
erences, information is effectively aggregated and the principal fully learns the
state when the number of agents grows large.

This paper is also related to the literature on information aggregation in
elections (Feddersen and Pesendorfer (1997), Feddersen and Pesendorfer (1998),
Myerson (1998), Duggan and Martinelli (2001)), which demonstrates that infor-
mation dispersed among voters is effectively aggregated in elections with pre-
determined qualified majority rules while information aggregation fails under the
unanimity rule. In contrast, we consider the case where the principal cannot ex-
ante commit to a rule. We show that he optimally follows the unanimity rule
or rules close to it, and information aggregation fails. Razin (2003) considers a
novel model in which the voters vote between two candidates and the winning

31. In this case, approving A is the default choice for the agents.
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candidate chooses the policy based on his own decision. He shows that if both
candidates have large conflicts of interest with voters, full information aggrega-
tion fails in a special subset of symmetric equilibria under a symmetric setting.
We consider a different setting and show that the principal always fails to fully
learn the state in all symmetric equilibria, even if the conflict of interest between
him and the agents is small.

We further demonstrate that if the principal has the commitment power, he
cannot approach his first-best outcome by committing to a qualified majority
rule.32 However, the principal can approach his first-best outcome by committing
to randomizing between two qualified majority rules to manipulate the agents’ in-
ferences from being pivotal. Gerardi, McLean, and Postlewaite (2009) consider a
similar mechanism in which the principal mixes between asking different numbers
of agents to manipulate the agents’ inferences from being pivotal.

We take inspiration from the literature on comparisons of statistical experi-
ments. Moscarini and Smith (2002) consider a model in which a decision-maker
is uncertain about the state of the world but can draw signals that are iden-
tically distributed and independent conditional on the state by performing an
experiment repeatedly. Frick, Iijima, and Ishii (2021b) further consider the case
of misspecified learning. They both provide rankings over statistical experiments
by calculating the expected payoff of the decision-maker when he can perform
a large number of experiments. Both rankings depend critically on Chernoff’s in-
formation introduced in Section 1.6. Note that when the number of experiments
approaches infinity, the speed at which the belief of the decision-maker converges
depends crucially on the most likely events in which the principal stays uncertain
about the realized state and hence the frequency that we derive when calculating
Chernoff’s information.

Finally, Section 1.6 contributes to the growing literature on the monotonic
equilibrium in communication games, including Cho and Sobel (1990), Krishna
and Morgan (2001), Chen, Kartik, and Sobel (2008), Ivanov (2010), Gordon
et al. (2021), Kolotilin and Li (2021), and Vida, Honryo, and Azacis (2022).
In addition, most of the literature studying the communication game in which
each sender receives a noisy signal about the unknown state, including Austen-
Smith (1990), Austen-Smith (1993), Morgan and Stocken (2008), Hagenbach and
Koessler (2010), Galeotti, Ghiglino, and Squintani (2013)), and Currarini, Ursino,
and Chand (2020) among others, focuses on binary signals and messages like
our basic model, which guarantees the monotonicity of the equilibrium. The proof
of Proposition 1.9 provides a novel and tractable way to analyze the case with
multiple signals and messages.

32. However, the voters might obtain information aggregation, as discussed in Section 1.4.4.
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1.8 Concluding Remarks

This paper analyzes a model of learning from multiple agents. In contrast to the
existing literature, this paper considers the situation in which the preferences of
the principal and the agents might not be completely aligned even if they fully
know the state of the world, and introduce a different way to model the conflict
of interest between the principal and the agents. The paper provides new insights
regarding information transmission and demonstrates that learning is always in-
complete no matter how many agents there are.

One promising direction for future research is to understand the effect of the
number of agents on the welfare of the principal and the agents. We can show
that in some situations, the expected payoffs of both the principal and the agents
are maximized if the number of agents equals some finite number, while both the
principal and the agents receive a lower expected payoff when we let the number
of agents go to infinity, whenever we focus on the sequence of informative equi-
libria that maximize the welfare of the principal and the agents or the sequence
of informative equilibria that minimize the welfare. As discussed in Section 1.4.3,
there exist situations in which informative equilibria exist only if the number of
agents is below some threshold. Furthermore, even when information transmis-
sion persists, we can find situations in which the maximal amount of information
transmission is non-monotonic with the number of agents, and more surprisingly,
the maximal amount of information transmission, the cut-off chosen by the prin-
cipal, and the expected payoffs of the principal and the agents, are all maximized
when the number of agents equals to a finite number. We expect that such results
should hold generally for all parameter values.

Appendix 1.A Proofs

The appendices proceed as follows:

(1) In Appendix 1.A.1, we prove Lemma 1.1, Proposition 1.2, Proposition 1.3.
(2) In Appendix 1.A.2, we provide sufficient and necessary conditions under which

there exists an informative equilibrium with T̂ = 1, that is, the equilibrium in
which the principal chooses the unanimity rule. We then extend this approach
for the informative equilibrium with T̂ = i for each i ∈ N.

(3) In Appendix 1.A.3, we prove the results in Section (1.4) based on results in
Appendix 1.A.2.

(4) In Appendix 1.A.4, we characterize the equilibria in which the principal uses
mixed strategies and demonstrate that it is without loss of generality to focus
on the equilibria in which the principal uses pure strategies.

(5) In Appendix 1.A.5, we construct the mechanisms in which the principal ap-
proaches his first-best outcome as N→∞.
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1.A.1 Proof of Lemma 1.1, Proposition 1.2, Proposition 1.3

1.A.1.1 Proof of Lemma 1.1

Assume there exists an informative equilibrium with xℓ > 0. From (1.6) and (1.7),
we have xh = 1. Hence, we have xℓ ∈ (0, 1). From (1.6),

q0
3 · (1 − ρ3) · P[piv|θ3;x, T̂] · Vag(θ3)

−
∑2

i=1 q0
i · (1 − ρi) · P[piv|θi;x, T̂] · Vag(θi)

= 1. (1.A.1)

In state θi ∈ {θ1,θ2,θ3}, the probability that one agent rejects A is (1−ρi)(1− xℓ).
Hence,

(1 − ρi) · P[piv|θi;x, T̂]

(1 − ρi0) · P[piv|θi0;x, T̂]
=

(1 − ρi) · P[T − 1; N − 1|θi]
(1 − ρi0) · P[T − 1; N − 1|θi0]

=
P[T − 1; N − 1|θi]
P[T − 1; N − 1|θi0]

.

Plug it into (1.A.1),

q0
3 · P[T − 1; N|θ3] · Vag(θ3)

−
∑2

i=1 q0
i · P[T − 1; N|θi] · Vag(θi)

= 1.

From (1.1) and (1.4),
∑3

i=2 q0
i · P[T − 1; N|θi] · Vpc(θi)

−q0
1 · P[T − 1; N|θ1] · Vpc(θ1)

> 1.

That is,
Lpc(T̂ − 1;x) > 1,

which contradicts (1.8).

1.A.1.2 Proof of Proposition 1.2

Consider a strategy profile that the agents choose xh ∈ (0, 1) and xℓ = 0, we have

P[T; N|θi]
P[T; N|θi0]

=
(ρixh)T(1 − ρixh)N−T

(ρi0xh)T(1 − ρi0xh)N−T
= exp
�

T · log
ρixh

ρi0xh
+ (N − T) · log

1 − ρixh

1 − ρi0xh

�

= exp
§

N ·
�

KL
�

T
N

,ρi0xh

�

− KL
�

T
N

,ρixh

��ª

,

(1.A.2)

where KL(·, ·) is the relative entropy with

KL(x, y) = x log
x
y
+ (1 − x) log

1 − x
1 − y

.

Fix some arbitrary x ∈ (0,1). Consider a sequence of informative equilibrium
{ΓN = (xh,N, T̂N)} with

lim
N→∞

xh,N = x. (1.A.3)
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We first claim that there exists N̂1 such that when N > N̂1, we must have

T̂N < N · ρ2xh,N. (1.A.4)

Note that if (1.A.4) does not hold,

KL(
T̂N

N
,ρ1xh,N) − KL(

T̂N

N
,ρ2xh,N) =

T̂N

N
log
ρ2xh,N

ρ1xh,N
+ (1 −

T̂N

N
) log

1 − ρ2xh,N

1 − ρ1xh,N

≥ ρ2xh,N · log
ρ2xh,N

ρ1xh,N
+ (1 − ρ2xh,N) log

1 − ρ2xh,N

1 − ρ1xh,N

= KL(ρ2xh,N,ρ1xh,N)

> 0.

The first inequality is from taking the derivative in T̂N
N . The second inequality is a

result known as Gibbs’ inequality. From (1.A.3), we can see that KL(ρ2xh,N,ρ1xh,N)
is always larger than a strictly positive number independent of N. Therefore, if
(1.A.4) does not hold, then

KL(
T̂N

N
,ρ1xh,N) − KL(

T̂N

N
,ρ2xh,N)

is always smaller than a positive number independent of N. Hence, if we cannot
find an N̂1 such that (1.A.4) holds when N > N̂1, then from (1.A.2), for each
M̂1 > 0, we can find N̄1 such that

P[T̂N̄1
; N̄1|θ2]

P[T̂N̄1
; N̄1|θ1]

> M̂1,

and
P[T̂N̄1

− 1; N̄1|θ2]

P[T̂N̄1
− 1; N̄1|θ1]

> M̂1,

By choosing M̂1 large enough, we can see that the principal strictly prefers A when
he observes T̂N̄1

− 1 approvals from N̄1 agents, which contradicts the optimality of
T̂N̄1

as shown in (1.8).
However, if there exists N̂1 such that (1.A.4) holds when N > N̂1, we must

have

lim
N→∞

P[T̂N; N|θ2]

P[T̂N; N|θ3]
= ∞. (1.A.5)

Note that when T̂N < N ·ρ2xh,N,

KL(
T̂N

N
,ρ3xh,N) − KL(

T̂N

N
,ρ2xh,N) =

T̂N

N
log
ρ2xh,N

ρ3xh,N
+ (1 −

T̂N

N
) log

1 − ρ2xh,N

1 − ρ3xh,N

≥ ρ2xh,N · log
ρ2xh,N

ρ3xh,N
+ (1 − ρ2xh,N) log

1 − ρ2xh,N

1 − ρ3xh,N

= KL(ρ2xh,N,ρ3xh,N).

> 0.
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From (1.A.3), we can see that KL(ρ2xh,N,ρ3xh,N) is always larger than a strictly
positive number independent of N. We then prove (1.A.5) by (1.A.2).

From (1.A.5),

lim
N→∞

P[T̂N − 1; N|θ3]

P[T̂N − 1; N|θ2]
= 0,

Hence, the agents choose xh,N = xl,N = 0 when N is above some threshold by (1.6),
which leads to a contradiction.

Therefore, in every sequence of informative equilibrium {ΓN = (xh,N, T̂N)}, we
must have

lim
N→∞

xh,N = 0. (1.A.6)

Otherwise, we can construct a subsequence from it and show that xh converges to
a positive number along this sub-sequence, which leads to a contraction as shown
above.

We now assume that there exists a sequence of informative equilibrium {ΓN =
(xh,N, T̂N)} with

lim
N→∞

N · xh,N = ∞. (1.A.7)

From the proof above, we have

KL(
T̂N

N
,ρ1xh,N) − KL(

T̂N

N
,ρ2xh,N) ≥ KL(ρ2xh,N,ρ1xh,N), if T̂N ≥ N · ρ2xh,N,

(1.A.8)

KL(
T̂N

N
,ρ3xh,N) − KL(

T̂N

N
,ρ2xh,N) ≥ KL(ρ2xh,N,ρ3xh,N), , if T̂N ≤ N · ρ2xh,N.

(1.A.9)
We can linearize KL(ρ2xh,N,ρixh,N)) with respect to xh,N when xh,N ≈ 0 for

i ∈ {1, 3},

KL(ρ2xh,N,ρixh,N) = κixh,N + o(xh,N), ∀i ∈ {1, 3}, (1.A.10)

where
κi = ρ2 log

ρ2

ρi
+ ρi − ρ2 > 0, ∀i ∈ {1,3}.

Similar to the proof before, when (1.A.6) and (1.A.7) hold, from (1.A.2),
(1.A.8) and (1.A.10), when N is above some threshold, we must have (1.A.4),
which leads to (1.A.5) from (1.A.2), (1.A.9) and (1.A.10), and a further contra-
diction.

Therefore, there exists a finite number T0 independent to N such that for each
N and each informative equilibrium with N agnets,

N · xh < T0.
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Otherwise, we can construct a sequence of informative equilibria and construct a
subsequence from it, showing that N · xh,N grows without bound along this sub-
sequence, which leads to a contradiction as shown above.

1.A.1.3 Proof of Proposition 1.3

Consider a sequence of informative equilibrium {ΓN = (xh,N, T̂N)}. From Proposi-
tion 1.2,

xh,N <
T0

N
, ∀N ∈ N+.

Hence,

P[T; N|θ3]
P[T; N|θ1]

=
(ρ3xh,N)T(1 − ρ3xh,N)N−T

(ρ1xh,N)T(1 − ρ1xh,N)N−T
>

�

ρ3

ρ1

�T
�

1 − ρ3 ·
T0
N

1 − ρ1 ·
T0
N

�N−T

>

�

ρ3

ρ1

�T
�

1 − ρ3 ·
T0
N

1 − ρ1 ·
T0
N

�N

.

Since

lim
N→∞

�

1 − ρ3 ·
T0
N

1 − ρ1 ·
T0
N

�N

= exp[(ρ1 − ρ3)T0] > 0.

We can find γ > 0 independent of T and N such that

P[T; N|θ3]
P[T; N|θ1]

>

�

ρ3

ρ1

�T

· γ, ∀N ∈ N+ and ∀T ∈ {0, ..., N}. (1.A.11)

Note that P[T̂N−1;N|θ3]
P[T̂N−1;N|θ1]

must be always smaller than a number independent of N

for each N ∈ N+. Otherwise, the principal chooses A when he observes T̂N − 1 ap-
provals, which contradicts the optimality of T̂N as shown in (1.8). From (1.A.11),
for each N ∈ N+, the equilirium cut-off T̂N is always smaller than a number inde-
penedent of N.

1.A.2 Informative Equilibrium with T̂ = 1

We provide sufficient and necessary conditions under which there exists an in-
formative equilibrium with T̂ = 1, that is, the equilibrium in which the principal
chooses the unanimity rule. We then extend this approach for the informative
equilibrium with T̂ = i for each i ∈ N.

We only consider the case where

Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
<
ρ3

ρ1
.
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Otherwise, from Proposition 1.4, information transmission fails when N is large
enough.

For each i ∈ N+, we say information transmission persists with T̂ = i (ITPi)
if there exists N̂1 such that for each N > N̂1, an informative equilibrium with T̂ = i
exists. We say information transmission fails with T̂ = i (ITFi) if there exists N̂2

such that for each N > N̂2, there does not exist an informative equilibrium with
T̂ = i.

1.A.2.1 Unanimity Rule

We now provide the sufficient and necessary conditions for ITP1 and IFP1. We
consider the case where the principal always chooses T̂ = 1, that is, he follows the
unanimity rule under which B is chosen if all the agents reject it. From Proposition
1.2, when N is large enough, the agents must choose xh < 1 in each informative
equilibrium. Therefore, if ITP1 holds, then there exists N̂1 and a sequence of in-
formative equilibrium {ΓN = (xh,N, xℓ,N, T̂)}∞

N=N̂1
with

xh,N ∈ (0, 1), xℓ,N = 0, T̂ = 1,

for each N > N̂1. We suppress xh,N to xN to save notation. If ITP1 holds, there
exists a strictly positive sequence {xN}∞N=N̂1

satisfying

ρ3 · (1 − ρ3xN)N−1 · Vag(θ3)

−λ2 · ρ2 · (1 − ρ2xN)N−1 · Vag(θ2) − λ1 · ρ1 · (1 − ρ1xN)N−1 · Vag(θ1)
= 1,

(1.A.12)

ρ3 · (1 − ρ3xN)N−1 · Vpc(θ3) + λ2 · ρ2 · (1 − ρ2xN)N−1 · Vpc(θ2)

−λ1 · ρ1 · (1 − ρ1xN)N−1 · Vpc(θ1)
> 1, (1.A.13)

(1 − ρ3xN)N · Vpc(θ3) + λ2 · (1 − ρ2xN)N · Vpc(θ2)

−λ1 · (1 − ρ1xN)N · Vpc(θ1)
≤ 1. (1.A.14)

for each N > N̂1. We derive (1.A.12) from (1.6) since the agents are indiffer-
ent conditional on receiving signal h and being pivotal. We derive (1.A.13) and
(1.A.14) from (1.6) since the principal prefers A when one agent approve it and
prefers B when all the agents reject it.

Note that we can interpret the agents as voters who vote between A and B
under the unanimity rule. An informative voting equilibrium under the unanimity
rule exists if there is a positive xN satisfying (1.A.12). We now provide conditions
under which there exists N̂1 such that when N > N̂1, there exists an informative
equilibrium under the unanimity rule. Note that the left side of (1.A.12) decreases
with xN. Furthermore, for each x ∈ (0, 1), if we fix xN = x for each N and let N go
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to infinity, the left side approaches 0. Therefore, by the intermediate value theo-
rem, a sufficient and necessary condition under which informative voting equilib-
ria exist when N is large enough is that the value of the left side (1.A.12) given
that xN = 0 is strictly bigger than 1, by which we have

λ2 < −
ρ3Vag(θ3) + λ1ρ1Vag(θ1)

ρ2Vag(θ2)
.

Denote the right side by λ̂0

2,1. Note that if λ2 < λ̂
0

2,1. There exists a unique infor-
mative voting equilibrium since (1.A.12) admits a unique solution. Therefore, a
necessary condition for ITP1 is λ2 < λ̂

0

2,1 while a sufficient condition for ITF1 is
λ2 ≥ λ̂0

2,1.
Now consider the case where λ2 < λ̂

0

2,1, there exists N̂1 such that there exists a
strictly positive sequence {xN}∞N=N̂1

satisfying (1.A.12) for each N > N̂1. Note that
(1.A.12) implies (1.A.13) since

Vpc(θ2) > 0 > Vpc(θ2),

−
Vpc(θ1)

Vpc(θ3)
≤ −

Vag(θ1)

Vag(θ3)
.

Assume that there exists N̂1 such that there exists a strictly positive sequence
{xN}∞N=N̂1

satisfying (1.A.12) and (1.A.14) for each N > N̂1, by which we have
ITP1. By Proposition 1.2,

lim
N→∞

xN = 0. (1.A.15)

Therefore, we can find {εN}∞N̂1
with limN→∞ εN = 0 such that for each N > N̂1

(1 − ρ3xN)N−1 · Vpc(θ3) + λ2 · (1 − ρ2xN)N−1 · Vpc(θ2)

−λ1 · (1 − ρ1xN)N−1 · Vpc(θ1)
<

1
1 − εN

(1.A.16)

by (1.A.14) and (1.A.15).
Note that we can rewrite (1.A.12) as

a1

�

1 − ρ1xN

1 − ρ3xN

�N−1

+ a2

�

1 − ρ2xN

1 − ρ3xN

�N−1

= 1, (1.A.17)

where a1 > 0 and a2 > 0 are calculated from (1.A.12). We can also rewrite
(1.A.16) as

b1

�

1 − ρ1xN

1 − ρ3xN

�N−1

− b2

�

1 − ρ2xN

1 − ρ3xN

�N−1

> 1 − εN, (1.A.18)

where b1 > 0 and b2 > 0 are calculated from (1.A.16). By (1.A.17) and (1.A.18),
�

1 − ρ1xN

1 − ρ3xN

�N−1

>
b2 + a2(1 − εN)

a2b1 + a1b2
, (1.A.19)
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�

1 − ρ2xN

1 − ρ3xN

�N−1

<
b1 − a1(1 − εN)

a2b1 + a1b2
. (1.A.20)

Note that for each t> 0, if there exists a sequence {yN}∞N=N̂1
such that

�

1 − ρ1yN

1 − ρ3yN

�N−1

> t, ∀N > N̂1.

then

lim inf
N→∞

�

1 − ρ2yN

1 − ρ3yN

�N−1

> t
ρ3−ρ2
ρ3−ρ1 ,

which is shown by considering the sequence {yN}∞N=N̂1
such that

�

1 − ρ1yN

1 − ρ3yN

�N−1

= t, ∀N > N̂1.

Therefore, if both (1.A.19) and (1.A.20) for each xN when N > N̂1 with
limN→∞ εN = 0, we must have

�

b2 + a2

a2b1 + a1b2

�

ρ3−ρ2
ρ3−ρ1
≤

b1 − a1

a2b1 + a1b2

That is,

λ2 ≤ λ
ρ3−ρ2
ρ3−ρ1
1 ·

ρ3u13 − ρ1v13

(ρ3u23 + ρ2v23)
ρ3−ρ2
ρ3−ρ1 (ρ1u23v13 + ρ2u13v23)

ρ2−ρ1
ρ3−ρ1

.

with

uij =
|Vpc(θi)|
|Vpc(θj)|

, ∀i, j ∈ {1, 2,3},

vij =
|Vag(θi)|
|Vag(θj)|

, ∀i, j ∈ {1, 2,3}.

Denote the right side by λ̂00

2,1. A nessessary condition for ITP1 is λ2 ≤ λ̂00

2,1. Fur-
thermore, if λ2 > λ̂

00

2,1, we can find N̂2 such that for each N > N̂2, there does not
exist xN satisfying both (1.A.19) and (1.A.20). Therefore, a sufficiecnt condition
for ITF1 is λ2 > λ̂

00

2,1.
Let

λ̂2,1 = min{λ̂0

2,1, λ̂00

2,1}.

A nessessary condition for ITP1 is λ2 ≤ λ̂2,1 while a sufficient condition for ITF1 is
λ2 > λ̂2,1.

We now show that a sufficient condition for ITP1 is λ2 < λ̂2,1. Note that we
can find sequences {yN}∞N=1, {εN}∞N=1, and {ε

0

N}
∞
N=1 with

lim
N→∞

yN = lim
N→∞

εN = lim
N→∞

ε0

N = 0,
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such that

ρ3 · (1 − ρ3yN)N−1 · Vag(θ3)

−λ̂00

2,1 · ρ2 · (1 − ρ2yN)N−1 · Vag(θ2) − λ1 · ρ1 · (1 − ρ1yN)N−1 · Vag(θ1)
= 1 + εN,

(1 − ρ3yN)N · Vpc(θ3) + λ̂00

2,1 · (1 − ρ2yN)N · Vpc(θ2)

−λ1 · (1 − ρ1yN)N · Vpc(θ1)
= 1 + ε0

N

Hence, for each λ2 < λ̂2,1, we can find N̂1 such that for each N > N̂1,

ρ3 · (1 − ρ3yN)N−1 · Vag(θ3)

λ2 · ρ2 · (1 − ρ2yN)N−1 · Vag(θ2) − λ1 · ρ1 · (1 − ρ1yN)N−1 · Vag(θ1)
> 1,

(1 − ρ3yN)N · Vpc(θ3) + λ2 · (1 − ρ2yN)N · Vpc(θ2)

−λ1 · (1 − ρ1yN)N · Vpc(θ1)
< 1.

Note that the left sides of both equations above decrease with yN. Therefore, for
each N > N̂1, if we can find xN ≤ 1 satisfying (1.A.12), then we have xN > yN

and (1.A.14) is satisfied. In this case, since λ2 < λ̂2,1 ≤ λ̂2,1 and xN is the unique
solution of (1.A.12), we must have xN > 0. Therefore, we construct an informative
equilibrium with T̂ = 1. If we cannot find xN ≤ 1 satisfying (1.A.12), we have

ρ3 · (1 − ρ3)N−1 · Vag(θ3)

λ2 · ρ2 · (1 − ρ2)N−1 · Vag(θ2) − λ1 · ρ1 · (1 − ρ1)N−1 · Vag(θ1)
> 1, (1.A.21)

(1 − ρ3)N · Vpc(θ3) + λ2 · (1 − ρ2)N · Vpc(θ2)

−λ1 · (1 − ρ1)N · Vpc(θ1)
< 1. (1.A.22)

From (1.A.21),

ρ3 · (1 − ρ3)N−1 · Vpc(θ3) + λ2 · ρ2 · (1 − ρ2)N−1 · Vpc(θ2)

−λ1 · ρ1 · (1 − ρ1)N−1 · Vpc(θ1)
< 1. (1.A.23)

From (1.A.21),

(1 − ρ3) · (1 − ρ3)N−1 · Vag(θ3)

λ2 · (1 − ρ2) · (1 − ρ2)N−1 · Vag(θ2) − λ1 · (1 − ρ1) · (1 − ρ1)N−1 · Vag(θ1)
< 1,

(1.A.24)
From (1.A.21) and (1.A.24), the agents strictly prefer A conditional receiving sig-
nal h and being pivotal while strictly prefer B conditional on receiving signal ℓ and
being pivotal. Hence, it is optimal for the agents to choose xh = 1 and xℓ = 0. From
(1.A.22) and (1.A.23), it is optimal for the principal to choose T̂ = 1. Hence, we
construct an informative equilibrium. Therefore, for each λ2 < λ̂2,1, we can find
N̂1 such that for each N > N̂1, an informative equilibrium with T̂ = 1 exists.
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1.A.2.2 General Case

We now discuss the sufficient conditions for ITPi and IFPi for each i> 1. Fix an
arbitrary i> 1 and consider the case where the principal always chooses T̂ = i.
From Proposition 1.2, when N is large enough, the agents must choose xh < 1 in
each informative equilibrium. Therefore, if ITPi holds, then there exists N̂1 and a
sequence of informative equilibrium {ΓN = (xh,N, xℓ,N, T̂)}∞

N=N̂1
with

xh,N ∈ (0,1), xℓ,N = 0, T̂ = i,

for each N > N̂1. We suppress xh,N to xN to save notation. If ITPi holds, there exists
a strictly positive sequence {xN}∞N=N̂1

satisfying

ρ3 · (ρ3xN)i−1 · (1 − ρ3xN)N−i · Vag(θ3)

−λ2 · ρ2 · (ρ2xN)i−1 · (1 − ρ2xN)N−i · Vag(θ2) − λ1 · ρ1 · (ρ1xN)i−1 · (1 − ρ1xN)N−i · Vag(θ1)
= 1,

(1.A.25)

ρ3 · (ρ3xN)i · (1 − ρ3xN)N−i · Vpc(θ3) + λ2 · ρ2 · (ρ2xN)i · (1 − ρ2xN)N−i · Vpc(θ2)

−λ1 · ρ1 · (ρ1xN)i · (1 − ρ1xN)N−i · Vpc(θ1)
> 1,

(1.A.26)

(ρ3xN)i−1 · (1 − ρ3xN)N−i+1 · Vpc(θ3) + λ2 · (ρ3xN)i−1 · (1 − ρ2xN)N−i+1 · Vpc(θ2)

−λ1 · (ρ3xN)i−1 · (1 − ρ1xN)N−i+1 · Vpc(θ1)
≤ 1.

(1.A.27)

Note that we can choose

λ0

1 = λ2 ·
�

ρ1

ρ3

�i−1

,

λ0

2 = λ2 ·
�

ρ2

ρ3

�i−1

,

and convert (1.A.25), (1.A.26), and (1.A.27) regading λ1 and λ2 to (1.A.12),
(1.A.13), and (1.A.14) regarding λ0

1 and λ0

2. In this way, we can follow the analysis
in A.2.1 and find λ̂2,i such that ITPi holds if λ2 < λ̂2,i and while ITFi holds if
λ2 > λ̂2,i. The left panel of Figure 1.8 illustrateS λ̂2,1, λ̂2,2, and λ̂2,3.
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1.A.3 Proof for the Results in Section 1.4

1.A.3.1 Proof of Proposition 4

Assume that there exists an informative equilibrium with xh ∈ (0,1) and xℓ = 0,
that is, the agents are indifferent conditional on receiving signal h and being
pivotal. From (1.6),

q0
3 · ρ3 · P[T − 1; N − 1|θ3] · Vag(θ3)

−
∑2

i=1 q0
i · ρi · P[T − 1; N − 1|θi] · Vag(θi)

= 1.

Therefore,
q0

3 · ρ3 · P[T − 1; N − 1|θ3] · Vag(θ3)

−q0
1 · ρ1 · P[T − 1; N − 1|θ1] · Vag(θ1)

> 1,

q0
3 · P[T − 1; N − 1|θ3]

q0
1 · P[T − 1; N − 1|θ1]

> −
ρ1

ρ3

Vag(θ1)

Vag(θ3)
. (1.A.28)

Furthermore, since the principal must prefer B when he observes T̂ − 1 approvals
by (1.8),

∑3
i=2 q0

i · P[T − 1; N|θi] · Vpc(θi)

−q0
1 · P[T − 1; N|θ1] · Vpc(θ1)

≤ 1.

Therefore,
q0

3 · P[T − 1; N|θ3] · Vpc(θ3)

−q0
1 · P[T − 1; N|θ1] · Vpc(θ1)

≤ 1,

q0
3 · (1 − ρ3xh) · P[T − 1; N − 1|θ3] · Vpc(θ3)

−q0
1 · (1 − ρ1xh) · P[T − 1; N|θ1] · Vpc(θ1)

≤ 1,

∑3
i=2 q0

i · P[T − 1; N|θi] · Vpc(θi)

−q0
1 · P[T − 1; N − 1|θ1] · Vpc(θ1)

≤ −
1 − ρ1xh

1 − ρ3xh

Vpc(θ1)

Vpc(θ3)
. (1.A.29)

From (1.A.28) and (1.A.29),

−
ρ1

ρ3

Vag(θ1)

Vag(θ3)
< −

1 − ρ1xh

1 − ρ3xh

Vpc(θ1)

Vpc(θ3)
,

Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
<
ρ3

ρ1
·

1 − ρ1xh

1 − ρ3xh
. (1.A.30)

By Proposition 1.2, when N is large enough, in every informative equilibrium, we
must have xh ≈ 0. Therefore, if

Vag(θ1)

Vag(θ3)
·

Vpc(θ3)

Vpc(θ1)
>
ρ3

ρ1
,

there does not exist any informative equilibrium when N is large enough, by which
we prove Proposition 1.4.
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1.A.3.2 Proof of Proposition 1.5

We choose
λ̂2 = sup

i∈N+
λ̂2,i.

From the analysis in Appendix 1.A.2, it is direct to see that information transmis-
sion persists if λ2 < λ̂2.

For each λ2 > λ̂2, by Proposition 1.3, we can find T0 independent of N such
that in any informative equilibrium, the principal chooses T̂ < T0. We further have

λ2 > max
i∈N+

λ̂2,i > max
i<T0

λ̂2,i.

Hence, we have ITFi for each i< T0. We then can find N̂2 such that when N > N̂2,
only the babbling equilibrium exists since T0 is a finite number independent to N,
by which information transmission fails.

1.A.3.3 Rest Results of Section 1.4

The proofs of Corollary 1.2, Corollary 1.3, and Proposition 1.7 are similar. We
only need to show that given that there exists an informative equilibrium, there
always exists an informative equilibrium with a higher xh when there are a lower
λ2, a lower ρ1, higher Vag(θi), and lower Vpc(θi) for each i ∈ {1,2, 3}. We skip the
proof here since we already do a similar construction when proving a sufficient
condition for ITP1 is λ2 < λ̂

00

2,1 in Appendix 1.A.2.
The part of Corollary 1.3 that λ̂2 is non-monotonic with ρ2 and ρ3 is proved

by taking the derivative of λ̂2 over ρ2 and ρ3. Proposition 1.6 is direct from
Blackwell’s informative ranking. Proposition 1.8 is based on calculation, which
can be directly seen by the fact that λ̂00

2,1 is concave in λ1.

1.A.4 Mixed-Strategy Equilibria

In this section, we characterize the informative equilibrium in which the principal
uses a mixed strategy. Consider an equilibrium in which the agents choose an
informative strategy x with xℓ < xh and the principal chooses T̂ ∈ {1, ..., N − 1}
and p ∈ (0,1) such that he chooses B when T < T̂, chooses A with probability p
when T = T̂, and chooses A when T > T̂.33

33. We skip the case where T̂ = 0 and p ∈ (0,1) since if there exists such an equilibrium,
there must exist one informative with T̂ = 1 and p= 1. Similarly, we skip the case where T̂ = N
and p ∈ (0, 1).
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In this case, if one agent is pivotal, with probability p, there are T̂ − 1 approvals
from N − 1 agents while with probability 1− p, there are T̂ approvals from N − 1
agents. Hence,

P[piv|θi;x, T̂, p] = p · P[T̂ − 1, N − 1|θi;x, T̂, p] + (1 − p) · P[T̂, N − 1|θi;x, T̂, p].

We then define

Lag(s;x, T̂, p) =
q0

3 · P[s|θ3] · P[piv|θ3;x, T̂, p] · Vag(θ3)

−
∑2

i=1 q0
i · P[s|θi] · P[piv|θi;x, T̂, p] · Vag(θi)

.

We have










xs = 1 when Lag(s;x, T̂, p) > 1,

xs ∈ [0, 1] when Lag(s;x, T̂, p) = 1,

xs = 0 when Lag(s;x, T̂, p) < 1.

(1.A.31)

For the principal, he must be indifferent when he observes T̂,

∑3
i=2 q0

i · P[T̂; N|θi] · Vpc(θi)

−q0
1 · P[T̂; N|θ1] · Vag(θ1)

= 1. (1.A.32)

Therefore, an informative equilibrium {x, T̂, p} with p ∈ (0, 1) is characterized
by (1.A.31) and (1.A.32).

It is direct to verify that Lemma 1.1, Proposition 1.2, Proposition 1.3, and
hence Theorem 1.1 stay valid when we allow the principal to use a mixed strategy.
We extend results in Section 1.4 based on the following lemma.

Lemma 1.3. If there exists an informative equilibrium in which the principal chooses
A with probability p ∈ (0, 1) when he observes T̂ approvals with T̂ ∈ {1, ..., N − 1},
then there exists an informative equilibrium in which the principal chooses A if and
only if T > T̂.

Proof. Consider the case that there exists an informative equilibrium {xh, T̂, p} in
which the principal chooses A with probability p ∈ (0,1) when he observes T̂ ap-
provals. Since the agents chooses xh > 0, from (1.A.31), we have

q0
3 · ρ3 · P[piv|θ3;x, T̂, p] · Vag(θ3)

−
∑2

i=1 q0
i · ρi · P[piv|θi;x, T̂, p] · Vag(θi)

≤ 1. (1.A.33)

Note that since xℓ < xh, we have

P[T; N|θ3]
P[T; N|θ1]

and
P[T; N|θ2]
P[T; N|θ1]
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both strictly increase with T. Hence, from (1.A.33),

q0
3 · ρ3 · P[T̂, N − 1|θ3;x, T̂, p] · Vag(θ3)

−
∑2

i=1 q0
i · ρi · P[T̂, N − 1|θi;x, T̂, p] · Vag(θi)

> 1. (1.A.34)

Note that if xh = 1, equations (1.A.32) and (1.A.34) guarantee that there exists an
information equilibrium in which the agents choose the same xh and the principal
chooses A if and only if T > T̂. Note that (1.A.32) implies that the agents must
choose xℓ = 0 conditional on receiving signal ℓ and being pivotal. If xh < 1, we can
follow the construction when proving a sufficient condition for ITP1 is λ2 < λ̂

00

2,1 in
Appendix 1.A.2, showing that there must exist x0

h ∈ (xh, 1] such that there exists an
informative equilibrium in which the agents choose the same x0

h and the principal
chooses A if and only if T > T̂.

From Lemma 1.3, we can see that we only need to focus on the informa-
tive equilibrium in which the principal follows pure strategy when discussing the
existence of informative equilibria.

1.A.5 Commitment Case

1.A.5.1 Proof of Proposition 1.10

Fix N ∈ N+ and conider a mechanism MN = (µN, T̂αN, T̂βN , ). When one agent is piv-
otal, with probability µN, there are T̂αN agents receving signal h for N − 1 agents,
and with probability 1−µN, there are T̂βN agents receving signal h for N − 1 agents.

Define

P[pivα|θi; T̂αN] =
�

N − 1
T̂αN − 1

�

[ρi]
T̂αN−1[1 − ρi]

N−T̂αN , ∀i ∈ {1,2, 3},

P[pivβ |θi; T̂βN] =
�

N − 1

T̂βN − 1

�

[ρi]
T̂βN−1[1 − ρi]

N−T̂βN , ∀i ∈ {1,2, 3},

P[piv|θi; T̂N,µN] = µN · P[pivα|θi; T̂αN] + (1 − µN) · P[pivβ |θi; T̂βN], ∀i ∈ {1,2, 3},

where T̂N = (T̂α, T̂β). The mechanism MN must satisfy the incentive compatibility
constraints under which the agents report truthfully,

q0
3 · ρ3 · P[piv|θ3; T̂N,µN] · Vag(θ3)

−
∑2

i=1 q0
i · ρi · P[piv|θi; T̂N,µN] · Vag(θi)

≥ 1, (1.A.35)

q0
3 · (1 − ρ3) · P[piv|θ3; T̂N,µN] · Vag(θ3)

−
∑2

i=1 q0
i · (1 − ρi) · P[piv|θi; T̂N,µN] · Vag(θi)

≥ 1. (1.A.36)



52 | 1 Learning from Biased Souces

From (1.A.2),

P[T; N|θi]
P[T; N|θi0]

= exp
§

N ·
�

KL
�

T
N

,ρi0xh

�

− KL
�

T
N

,ρixh

��ª

. (1.A.37)

Note that for i0 > i, if

t >
log 1−ρi

1−ρi0

log
ρ0

i
ρi
+ log 1−ρi

1−ρi0

,

then
KL(t,ρi0) − KL(t,ρi) > 0.

While if

t <
log 1−ρi

1−ρi0

log ρi0

ρi
+ log 1−ρi

1−ρi0

,

then
KL(t,ρi0) − KL(t,ρi) < 0.

Hence, we can choose tα and tβ such that

tα ∈ (ρ1,
log 1−ρ1

1−ρ2

log ρ2
ρ1
+ log 1−ρ1

1−ρ2

), (1.A.38)

tβ ∈ (
log 1−ρ2

1−ρ3

log ρ3
ρ2
+ log 1−ρ2

1−ρ3

,ρ3), (1.A.39)

and let T̂αN, T̂βN be the integers closest to Ntα and Ntβ respectively. We have

lim
N→∞

P[pivα|θi; T̂αN]

P[pivα|θ1; T̂αN]
= 0;∀i ∈ {2, 3}, (1.A.40)

lim
N→∞

P[pivβ |θi; T̂βN]

P[pivβ |θ3; T̂βN]
= 0;∀i ∈ {1, 2}. (1.A.41)

By Sterling approximation and (1.A.2),

P[pivα|θi; T̂αN]

P[pivβ |θj; T̂βN]
= exp
�

N ·
�

KL
�

tβ ,ρj

�

− KL
�

tα,ρi

�

+ o(1)
�	

, ∀i, j ∈ {1, 2,3}.

(1.A.42)
Note that for each i ∈ {1,2, 3}), the function KL(t,ρi) strictly decreases with t
when t< ρi and strictly increases with t when t> ρi. We further have KL(t,ρi)= 0
if and only if t= ρi. We further choose tα and tβ such that

KL(tα,ρ1) > KL(tβ ,ρ3),
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and choose µN ∈ (0,1) such that

µN

1 − µN
·
P[pivα|θ1; T̂αN]

P[pivβ |θ3; T̂βN]
·
−Vag(θ1)

Vag(θ3)
= 1. (1.A.43)

From (1.A.42), we can see that µN must exist when N is large enough and

lim
N→∞

µN = 0. (1.A.44)

From (1.A.41) and (1.A.43),

lim
N→∞

µN

1 − µN
·
P[pivα|θ1; T̂αN]

P[pivβ |θ1; T̂βN]
= ∞.

Hence,

lim
N→∞

µN · P[pivα|θ1; T̂αN]

P[piv|θ1; T̂N,µN]
= 1.

Similarly,

lim
N→∞

(1 − µN) · P[pivβ |θ3; T̂βN]

P[piv|θ3; T̂N,µN]
= 1.

Furthermore, from (1.A.41), (1.A.42) and (1.A.43),

lim
N→∞

P[piv|θ2; T̂N,µN]

P[piv|θ1; T̂N,µN]
= 0,

lim
N→∞

P[piv|θ2; T̂N,µN]

P[piv|θ3; T̂N,µN]
= 0.

Therefore, when N is large,

q0
3 · P[piv|θ3; T̂N,µN] · Vag(θ3)

−
∑2

i=1 q0
i · P[piv|θi; T̂N,µN] · Vag(θi)

≈
µN

1 − µN
·
P[pivα|θ1; T̂αN]

P[pivβ |θ3; T̂βN]
·
−Vag(θ1)

Vag(θ3)
= 1,

by which (1.A.35) and (1.A.36) are satisfied and we hence construct an incentive-
compatible mechanism. By (1.A.38), (1.A.39), (1.A.44), and the law of large num-
bers, we can see that the principal can approach his first-best outcome as N→∞.
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Chapter 2

Information Aggregation in Collective
Experimentation

2.1 Introduction

Attention is often focused on the fight to implement reform in policies. And yet,
in order to evaluate the overall suitability of reform, it is important to study the
divergent effects that it has on a population. Some may benefit enormously while
others are worse off than before, and the full effects of reform may need time
to arrive. This disparity of results in turn complicates the information available
to a population to measure its suitability. For example, after the UK joined the
European Union, British citizens deliberated whether the gradual changes imple-
mented by this reform primarily caused them to gain benefits or suffer hardships.
The answer was not a simple one, as it varied from sector to sector and from
time to time. Each person had a piece of the information but no one had any
easy access to the whole picture of the situation that would allow them to judge
whether joining the EU was to the advantage of the majority. On 23 June 2016,
British citizens voted by referendum to leave the EU. Did this election aggregate
people’s private information? Was BREXIT the utilitarian optimum?

This paper analyzes a collective experimentation model in which voters grad-
ually learn their payoffs, which are divergent among them. Furthermore, their
payoffs depend on an unknown state of the world. Hence, experimentation gener-
ates information concerning the unknown state, which is dispersed among voters.
We are interested in how strategic voting shapes incentives for experimentation,
and more importantly, whether elections can aggregate and utilize voters’ private
information concerning the unknown state.

We study a two-armed exponential bandit model with N voters. At each in-
stant, voters vote between a safe action and a risky action. The risky action is
chosen if the ratio of votes for it exceeds a given number k ∈ (0, 1]. If not, then
the safe action is chosen irreversibly. The safe action yields a constant, homoge-
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neous payoff to every voter, while the risky action yields payoffs depending on
voters’ types, which are initially unobservable to all voters. For each voter, if her
type is bad, then the risky action always pays her nothing. If her type is good,
then the risky action pays her lump-sum payoffs at random times corresponding
to the jumping times of a Poisson process. When a voter receives a lump-sum, she
becomes a sure winner, that is, she is informed that her type is good. By contrast,
unsure voters are those who have not received any lump-sum. They become more
pessimistic as experimentation on the risky action goes on. We further assume
that each voter can only observe her own payoff stream.

Voters’ payoffs are correlated. Before the game starts, nature chooses a state
ω ∈ {H, L} randomly. Voters are uncertain about the state. After choosing the state,
nature chooses the type of each voter randomly and independently. Each voter’s
type is more likely to be good in state H than in state L. Hence, knowing that
there are more sure winners makes unsure voters believe that their types are
more likely to be good, creating additional incentives for experimentation.

We focus on the symmetric pure-strategy equilibrium and further assume that
each voter will always vote for the risky action after she becomes a sure winner.
Hence, unsure voters use the same cut-off strategy such that they vote for the
risky action before a cut-off time t̂ and vote for the safe action after that in the
equilibrium. We further require that unsure voters are indifferent between the
risky action and safe action at the cut-off time t̂ to rule out equilibria in which
each unsure voter votes for the risky action when she strictly prefers the safe
action but her vote cannot change the election outcome.

Strulovici (2010) has focused on a similar setting in which voters’ payoffs
are publicly observed and independent. He shows that incentives for experimen-
tation are always weaker compared to the case of a single decision-maker since
the control power over future experimentation is shared. Strategic voting shapes
incentives for experimentation differently in our paper where voters’ payoffs are
privately observed and correlated. Each unsure voter makes decisions at the cut-
off time t̂ conditional on the event that her vote can change the election outcome,
that is, conditional on being pivotal. She updates her belief about the realized
state conditional on the event that there are exactly kN − 1 sure winners1. Thus,
strategic voting conveys information and affects voters’ incentives for experimen-
tation.

We analyze the limit properties of the equilibrium cut-off time when the num-
ber of voters goes to infinity. We find that the limit cut-off time is increasing in
k, that is, a stricter voting rule leads to more experimentation. However, the limit
cut-off time is bounded above by the stopping time chosen by a myopic decision-
maker who is sure that the realized state is H. For the intuition, when the number

1. Assume kN is an integer.
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of voters is large, each unsure voter updates her belief conditional on the event
that she is pivotal and only can be pivotal at the cut-off time, acting myopically
since individual control over future decisions becomes infinitely diluted. Unsure
voters are more optimistic that the realized state is H and their types are good
when k is higher since they infer that there are more sure winners conditional
on being pivotal. Therefore, a higher k leads to more experimentation. However,
when unsure voters are sure that the realized state is H, a higher k cannot in-
crease their belief of being good type. Hence, the limit cut-off time is bounded
above.

When experimenting with the risky action, voters learn gradually about their
own types. Hence, they gain private information about the realized state. We are
interested in whether elections can aggregate the voters’ information generated by
experimentation and pick the most suitable action in each state. Specifically, we
assume that the risky action has a higher expected flow payoff in state H while
the safe action has a higher expected flow payoff in state L. We are wondering if
the risky action is always chosen after the limit cut-off time in state H and the safe
action is always chosen after the limit cut-off time in state S when the number
of voters goes to infinity. In contrast, there is no uncertainty about which action
has a higher expected flow payoff in Strulovici (2010). The one with a higher
expected flow payoff is always chosen when the number of voters goes to infinity.

We show that information aggregation obtains if k is below some threshold,
that is, if the ratio of votes required for the risky action R is low. Hence, we argue
that the voting rule should be biased toward experimentation. For intuition, note
that experimentation reveals the true state but brings heterogeneity among voters
in their beliefs of being good type. From the previous result, a higher k leads to
more experimentation. When k is small, the heterogeneity in beliefs among voters
is small. Sure winners prefer the risky action in both states while unsure voters
prefer the risky action in state H and the safe action in state L. We prove that
the vote share for the risky action must be bigger than k in state H and lower
than k in state L at the cut-off time when the number of voters goes to infinity.
If not, then each unsure voter would believe they are in the state where the vote
share for the risky action is closer to k for sure conditional on being pivotal, and
she cannot be indifferent between the two actions at the cut-off time. The proof
in this case is similar to the one for information aggregation in the static voting
model (Feddersen and Pesendorfer (1997), Duggan and Martinelli (2001)), in
which strategic voters make inferences conditional on being pivotal and try to
match different actions to different states. When k is large, the heterogeneity in
beliefs among voters is large. Sure winners prefer the risky action in both states
while unsure voters prefer the safe action in both states. There are unsure voters
who should vote for the risky action if they know their types but vote for the safe
action due to a pessimistic belief. Hence, the heterogeneity in beliefs generates a
bias towards the safe action. Information is not aggregated. This case relates to
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Fernandez and Rodrik (1991), which explains the status-quo bias in the presence
of asymmetric uncertainty about the payoffs from a new reform. They consider a
static voting model in which both the voting rule and asymmetric uncertainty are
exogenous. In the present paper, asymmetric uncertainty is endogenized by the
voting rule.

This paper contributes to the literature on experimentation with multiple
agents started by Bolton and Harris (1999) and Keller, Rady, and Cripps (2005).
Most of the literature in this field assumes that the payoff of each agent is pub-
licly observed. Hence, an agent can directly learn from others if their payoffs are
correlated. By contrast, we assume the payoff of each voter is privately observed.
Each voter indirectly learns from others by conditioning on being pivotal. Hence,
different voting rules generate different incentives for experimentation. Similarly,
Halac, Kartik, and Liu (2017) study contests for experimentation in which each
agent indirectly learns from others by conditioning on the event that the contest
is not stopped by the principal. They show that the principal can generate more
incentives for experimentation by committing to share the prize and stop the con-
test following a certain number of successes instead of only awarding the first
success.

This paper is related to the literature on information aggregation in elections
with strategic voters started by Austen-Smith and Banks (1996), Feddersen and
Pesendorfer (1997), and Feddersen and Pesendorfer (1998). Most of the litera-
ture in this field analyzes a static model in which the preferences of voters are
exogenous. Voters receive information purely about the unknown state that affects
all voters’ payoffs in the same direction. We instead focus on a dynamic model in
which voters receive more precise information about their own preferences and
the unknown state as experimentation evolves. We argue that more precise in-
formation might reduce the total welfare if it enlarges the heterogeneity among
voters asymmetrically.

This paper shares common features with Murto and Välimäki (2011). They an-
alyze information aggregation in a stopping game with uncertain payoffs that are
correlated among players. In their model, players make decisions about when to
exit the game individually while in our model voters choose between two actions
collectively. Moldovanu and Rosar (2021) consider a similar setting in which vot-
ers jointly decide between a reversible option and an irreversible one. They also
argue that the voting rule should be biased toward the reversible option. Other-
wise, the coordination failure might diminish the option value from the reversible
option.

This paper proceeds as follows: Section 2.2 describes the model. Section 2.3
characterizes the equilibrium. Section 2.4 analyzes the limit case in which the
number of voters goes to infinity and presents our main results about information
aggregation. Section 2.5 concludes.
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2.2 Model

2.2.1 Model Setting

We study an exponential bandit model in continuous time with t ∈ [0,∞). Payoffs
are discounted at rate r. There is a set of voters, denoted by {1, ..., N} with N ≥ 1.
Voters vote continuously on two actions, the safe action S and the risky action R.
Let k ∈ (0,1] be a fixed number. At each time t ∈ [0,∞), the risky action R is
chosen if the number of votes for R is larger than or equal to k ·N. If not, then
the game ends and the safe action S is chosen irreversibly.2 At each time, the
aggregate numbers of votes for each alternative are observed. Assume that kN is
an integer.3

Before the game starts, nature chooses a state randomly from two alternatives
{H, L}. Voters are uncertain about the state. They hold a common prior belief q0

that the state is H. After choosing the state, nature chooses the type of each voter
randomly and independently. For each voter, her type is either good or bad. If the
state is H, then the probability of being good type is ρH, while if the state is L,
then the probability of being good type is ρL. Each voter is more likely to be of
good type in state H than in state L (ρH > ρL). All types are initially unobservable
to all voters.

If the safe action S is chosen, then it yields a flow s per unit of time to all
voters. If the risky action R is chosen, then for each voter i ∈ {1, ..., N}, the payoff
depends on her type. If her type is bad, then R always pays her 0. If her type is
good, then R pays her lump-sum payoffs at random times corresponding to the
jumping times of a Poisson process with constant intensity λ > 0. The arrivals
of lump-sums are independent among individuals. The magnitude of these lump-
sums equals z. We denote the expected payoff per unit of time from R when the
voter’s type is good by g= λz. Assume that

ρHg > s > ρLg > 0. (2.1)

Based on the prior belief, the risky action R has a higher expected flow payoff in
state H while the safe action S has a higher expected flow payoff in state L. Payoffs
are privately observed. Each voter can only observe her own payoff stream.

At each time t ∈ [0,∞), we can divide voters into two groups. One is sure
winners who received lump-sums before t. They are sure that their types are good.
The other is unsure voters who have not received any lump-sum yet. They share
the same belief that their types are good.

2. We consider the case in which it is costly to restart the risky policy.
3. All results can be extended to the general case in which R is chosen if and only if at

least ⌈kN⌉ voters vote for R.



62 | 2 Information Aggregation in Collective Experimentation

2.2.2 Equilibrium

We say a voter follows a cut-off strategy t̂ if she votes for R for t< t̂ and votes
for S for t≥ t̂. We focus on Bayesian Nash equilibrium in which all unsure voters
follow an identical cut-off strategy.⁴

Definition 2.1. A Bayesian Nash equilibrium is simple if

(1) sure winners always vote for R,

(2) unsure voters all use a cut-off strategy t̂k,N with t̂k,N > 0,

(3) at time t̂k,N, each unsure voter must be indifferent between voting for R and
voting for S.

A simple equilibrium is solely characterized by the cut-off t̂k,N. All voters vote
for R at t< t̂k,N. Hence, the risky action R is chosen at t< t̂k,N. At the cut-off time
t̂k,N, if there are at least kN sure winners, then R is chosen forever. If not, then S
is chosen forever.

Requirement (iii) of Definition 2.1 is a refinement. Suppose unsure voters
strictly prefer to vote for S at time t̂k,N. Consider the case in which unsure voters
use a mixed strategy mixing the cut-off strategy t̂k,N with probability 1− ε and
the cut-off strategy t̂k,N −δ with probability ε for some δ > 0. By choosing a small
δ, we can see that each unsure voter strictly prefers to vote for S at time t̂k,N −δ,
no matter how small ε is.

In the simple equilibrium, consider an unsure voter at the cut-off time t̂k,N. If
there are more than kN − 1 sure winners, then R is chosen forever whenever this
unsure voter votes for R or S. If there are fewer than kN − 1 sure winners, then S is
chosen forever whenever she votes for R or S. Hence, this voter’s vote can change
the election outcome only if there are exactly kN − 1 sure winners. Therefore, at
the cut-off time t̂k,N, each unsure voter makes decisions conditional on the event
that there are exactly kN − 1 sure winners, that is, conditional on being pivotal
for the election outcome and having full control of experimentation. Hence, in
a simple equilibrium, even though voters do not observe the payoffs of others,
they can still learn something about the aggregate state conditional on being
pivotal. Thus, strategic voting conveys information and affects voters’ incentives
for experimentation.

2.2.3 Beliefs

Consider the case in which all voters always vote for R before some time t> 0,
that is, the risky action R is always chosen before t.

4. Since the safe action is irreversible, we actually consider the symmetric pure-strategy
equilibrium in which each voter always votes for R after becoming the sure winner.
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Denote the probability that the type of an unsure voter is good at time t
conditional on state H by p(t|H), and denote the probability that the type of an
unsure voter is good at time t conditional on state L by p(t|L):

p(t|H) =
ρHe−λt

ρHe−λt + 1 − ρH
, (2.2)

p(t|L) =
ρLe−λt

ρLe−λt + 1 − ρL
. (2.3)

Note that the probability that a voter of good type has not yet received any lump-
sum yet is e−λt in each state.

Denote the probability that the state is H conditional on the event that there
are K sure winners at t by q(K, t). In state ω, the probability that a voter receives
lump-sums before t is ρω(1− e−λt). Hence,

q(K, t)
1 − q(K, t)

=
q0

1 − q0
︸ ︷︷ ︸

prior

�

ρH(1 − e−λt)
ρL(1 − e−λt)

�K

︸ ︷︷ ︸

K sure winners

�

1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�N−K

︸ ︷︷ ︸

N−K unsure voters

. (2.4)

Finally, denote the belief of an unsure voter that her type is good conditional
on the event that there are K sure winners at time t by p(K, t),

p(K, t) = q(K, t)p(t|H)
︸ ︷︷ ︸

H state and good type

+ (1 − q(K, t))p(t|L)
︸ ︷︷ ︸

L state and good type

. (2.5)

Notice that p(t|H) and p(t|L) are strictly decreasing in t. Also, notice that
q(K, t) and p(K, t) are strictly increasing in K and strictly decreasing in t.

2.3 Characterization

We calculate the cut-off time t̂k,N in a simple equilibrium. At t̂k,N, each unsure voter
makes decisions conditional on being pivotal, that is, conditional on the event that
there are kN − 1 sure winners. She believes that her type is good with probability
p(kN − 1, t̂k,N). Since unsure voters are indifferent between voting for R and voting
for S at t̂k,N, the cut-off time is supposed be a solution to the equation,

s = p(kN − 1, t̂)g
︸ ︷︷ ︸

flow payoff from R

+ p(kN − 1, t̂)λ
�g

r
−

s
r

�

︸ ︷︷ ︸

jump when i receives a lump-sum

+ (N − kN)p(kN − 1, t̂)λ

�

p(kN, t̂)g
r
−

s
r

�

︸ ︷︷ ︸

jump when others receive a lump-sum

.

(2.6)
Consider an unsure voter i at the cut-off time t̂k,N. Conditional on being pivotal,
this voter has full control of experimentation. If she votes for R (S), then R (S)
is chosen for the next instant. The left side of equation (2.6) is the flow payoff
by choosing S. The right side contains the flow payoff of choosing R for the next
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instant and the jumps in the discounted payoff when voter i receives a lump-
sum and when other unsure voters receive lump-sums. When voter i receives a
lump-sum in the next instant with probability p(kN − 1, t̂)λdt, she becomes a sure
winner and R is chosen forever. Her expected payoff jumps from s

r to g
r . When one

of the other unsure voters receives a lump-sum in the next instant with probability
(N − kN)p(kN − 1, t̂)λdt, the risky action R is chosen forever and i remains as an
unsure voter with belief p(kN, t̂k,N). Her expected payoff jumps from s

r to p(kN,̂tk,N)g
r

Proposition 2.1. For each k ∈ (0,1], there exists Nk > 0 such that for each N > Nk,
a unique simple equilibrium exists.

2.4 Large Elections

In this section, we analyze the limiting properties of the sequence of simple equi-
libria with N voters with N→∞.

2.4.1 Limit Cut-off

We characterize the limit of the sequence of cut-offs {̂tk,N} as N→∞. Pick t such
that p(t|H)= s

g . Note that t̄ is the time when a single myopic decision-maker stops
if she knows the state is H but has not received any lump-sum.

Proposition 2.2. For each k ∈ (0,1], there exists t̂k ∈ (0, t̄ ] such that

lim
N→∞

t̂k,N = t̂k.

There exists k ∈ (0,1) such that t̂k is strictly increasing in k when k≤ k with
limk→0 t̂k = 0 and t̂k = t. When k> k, the limit cut-off t̂k is equal to t.

We illustrate Proposition 2.2 by Figure 2.1. When k< k̄, the limit cut-off t̂k

is increasing in k. Voters experiment more under a stricter voting rule. However,
when k≥ k̄, the limit cut-off t̂k equals the myopic cut-off t̄. Each unsure voter
acts like a single myopic decision-maker who believes the realized state is H. In
addition, the limit cut-off t̂k is continuous in k and bounded above by t̄ for each
k ∈ (0,1].

Figure 2.1. Limit cut-off
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When the number of voters is large and other unsure voters use the cut-off
strategy t̂, suppose that voter i is an unsure voter and pivotal at t̂. If she votes for R
during the next instant [̂t, t̂+ dt) instead of S, then R is chosen forever if an unsure
voter receives a lump-sum in the next instant. However, it is rare that she is the
one who receives a lump-sum and makes the risky action R be chosen forever. It
is almost certain that other unsure voters receive lump-sums and voter i remains
an unsure voter with no control power. Thus, when the number of voters is large,
voter i updates her belief about the realized state conditional on the event that she
is pivotal and can only be pivotal at time t̂, or say, conditional on the event that
she has full control of experimentation at t̂ and will lose the control forever in the
next instant. Voter i acts like a single myopic decision-maker, choosing between R
and S forever.

Since unsure voters vote conditional on being pivotal, that is, conditional on
the event that there are kN − 1 sure winners, they are more optimistic that the
realized state is H and their types are good when k is higher. Hence, a higher k
leads to a higher limit cut-off t̂k. However, this effect is limited. Even if unsure
voters are certain that the realized state is H, they vote for S after the time t̄ since
they behave myopically. Hence, the limit cut-off t̂k is bounded above by t̄ for each
k ∈ (0,1].

2.4.2 Information Aggregation

When experimenting with the risky action R, voters learn gradually about their
own types, hence, they gain private information about the aggregate state. We
are interested in whether information aggregation obtains when the number of
voters goes to infinity. From (2.1), based on the prior belief, the risky action R
has a higher expected flow payoff in state H while the safe action S has a higher
expected flow payoff in state L. Hence, according to the law of large numbers,
when N→∞, under the optimal decision made by a utilitarian social planner
who knows the state and the type of each voter, the probability that R is chosen
in state H goes to 1, and the probability that S is chosen in state L goes to 1.
We now formally define information aggregation for every sequence of strategy
profiles with N→∞.

Definition 2.2. A sequence of strategy profiles aggregates information if there
is a t̂> 0 and for each ε > 0, there is an Nε such that for N > Nε, the following
holds:

(1) the event that R is chosen at each t ∈ [̂t,∞) in state H happens with proba-
bility greater than 1− ε,

(2) the event that S is chosen at each t ∈ [̂t,∞) in state L happens with probability
greater than 1− ε.



66 | 2 Information Aggregation in Collective Experimentation

In the simple equilibrium, denote the numbers of sure winners at cut-off time
t̂k,N in state H and state L by H(̂tk,N) and L(̂tk,N). The sequence of simple equilibria
aggregates information if

lim
N→∞

Pr(H(̂tk,N) > kN) = 1,

lim
N→∞

Pr(L(̂tk,N) < kN) = 1.

We now provide the condition under which the sequence of simple equilibria ag-
gregates information.

Proposition 2.3. For each k ∈ (0, ρHg−s
g−s ), the sequence of simple equilibria aggre-

gates information, that is,

lim
N→∞

Pr(H(̂tk,N) > kN) = 1,

lim
N→∞

Pr(L(̂tk,N) < kN) = 1.

For each k ∈ [ρHg−s
g−s , 1], information is not aggregated with

lim
N→∞

Pr(H(̂tk,N) > kN) < 1.

Proposition 2.3 shows that the sequence of simple equilibria aggregates infor-
mation if k is small, that is, if the ratio of votes required for the risky action R is
low. We hence argue that the voting rule should be biased toward experimenta-
tion.

For intuition, experimentation brings information about the aggregate state.
However, during experimentation, voters’ beliefs evolve and become heteroge-
neous. From Proposition 2.2, a higher k leads to more experimentation. When
k< k̄, the heterogeneity in beliefs among voters is small. Conditional on being
pivotal at t̂k, sure winners prefer R in both states while unsure voters prefer R in
state H and S in state L. We show that strategic voting successfully conveys in-
formation through pivotal reasoning and leads to information aggregation. When
k> k̄, the heterogeneity in beliefs among voters is large. Conditional on being piv-
otal at t̂k, sure winners prefer R in both states while unsure voters prefer S in both
states. There are unsure voters who should vote for R if they know their types but
vote for S due to a pessimistic belief. The heterogeneity in beliefs generates a bias
towards S and leads to the failure of information aggregation when k> ρHg−s

g−s .
We now sketch the proof for Proposition 2.3. By the law of large numbers and

Proposition 2.2, the ratios of votes for R at the cut-off time t̂k,N in both states
converge,

H(̂tk,N)

N
p
−→ ρH(1 − e−λt̂k),
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L(̂tk,N)

N
p
−→ ρL(1 − e−λt̂k).

The sequence of simple equilibria aggregates information if

ρH(1 − e−λt̂k) > k > ρL(1 − e−λt̂k).

We draw both limit ratios of votes ρH(1− e−λt̂k) and ρL(1− e−λt̂k) as functions of
k in Figure 2.2. By Proposition 2.2, they are both strictly increasing in k when
k< k̄ and constant when k≥ k̄. We also draw the 45 degree line in Figure 2.2
(the blue line). For each k ∈ (0,1], the sequence of simple equilibria aggregates
information if at this k, the red line is above the blue line while the green line is
below the blue line.

Figure 2.2. Limit ratios of votes

Case 1: k< k̄
In this case, we have t̂k < t̄. Hence, conditional on being pivotal at t̂k, unsure

voters prefer R in state H and S in state L since they act myopically as N→∞.
The proof in this case is similar to the one for information aggregation in the
static voting model (Feddersen and Pesendorfer (1997), Duggan and Martinelli
(2001)), in which strategic voters make inferences conditional on being pivotal
and try to match different actions to different states. Similar to these studies, we
demonstrate that strategic voting successfully conveys information through pivotal
reasoning and leads to information aggregation. We show that

ρH(1 − e−λt̂k) > k > ρL(1 − e−λt̂k), ∀k < k̄.

Otherwise, if
k > ρH(1 − e−λt̂k) > ρL(1 − e−λt̂k),

unsure voters realize that the state must be H conditional on being pivotal at t̂k,
while if

ρH(1 − e−λt̂k) > ρL(1 − e−λt̂k) > k,

unsure voters realize that the state must be L conditional on being pivotal at t̂k.
In both cases, unsure voters cannot be indifferent at t̂k.
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Case 2: k≥ k̄
In this case, since the limit cut-off t̂k equals t̄ by Proposition 2.2, the vote share

for R at t̂k stays constant for all k≥ k̄,

ρH(1 − e−λt̂k) = ρH(1 − e−λt) =
ρHg − s

g − s
.

Hence, information is not aggregated in state H for each k ∈ [ρHg−s
g−s , 1).

Note that when k≥ k̄, each unsure voter is sure that the realized state is H
conditional on being pivotal at t̄ when N→∞,

lim
N→∞

q(kN − 1, t̄)
1 − q(kN − 1, t̄)

= ∞, ∀k ≥ k̄.

However, each unsure vote acts myopically and votes for S at t̄ even if she is sure
that they are in state H since she holds a pessimistic belief about her type.

The inefficiency in this case is generated by asymmetric uncertainty. Assume
that voters know the realized state is H. Consider the following two cases. (i) If
there is no uncertainty, that is, each voter knows her own type, then R is chosen
if k< ρH due to the law of large numbers. (ii) If the uncertainty is symmetric,
that is, each voter holds the same belief that her type is good with probability
ρH, then R is chosen if k≤ 1. However, in the simple equilibrium, there exists
uncertainty since voters act myopically and the cut-off time t̂k is bounded above
by t̄. In addition, the uncertainty is asymmetric. Sure winners are sure that their
types are good while unsure voters hold a pessimistic belief about their types.
There are unsure voters whose types are good. They would vote for R if they
knew their types, but they vote for S even if they are sure the realized state is
H. Hence, there is a bias towards S. The safe action S is chosen in state H when
k> ρHg−s

g−s with ρHg−s
g−s < ρH.

This case relates to Fernandez and Rodrik (1991), which explains the status-
quo bias in the presence of asymmetric uncertainty about the payoffs from a new
reform. They consider a static voting model in which both the voting rule and
asymmetric uncertainty are exogenous. In the present paper, asymmetric uncer-
tainty is endogenized by the voting rule. A stricter voting rule leads to more
experimentation and generates larger heterogeneity in beliefs among voters.

From Proposition 2.3, we can approximate the first-best outcome by choosing
an arbitrarily small k since limk→0 t̂k = 0. Information aggregation obtains almost
immediately. However, information aggregation fails when voters follow the una-
nimity rule over the safe action S under which the risky action R is chosen if at
least one voter votes for it.⁵

5. If R is always chosen until some time t, then the probability that there is no sure winner
in state ω ∈ {H, L} is [1−ρω(1− e−λt)]N. We obtain information aggregation if there exists t̂(N)
such that limN→∞[1−ρH(1− e−λt̂(N))]N = 0 and limN→∞[1−ρL(1− e−λt̂(N))]N = 1. However, those
two equations cannot happen at the same time.
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2.5 Concluding Remarks

This paper studies a dynamic voting model in which voters jointly decide whether
or not to experiment with a risky action. We show how strategic voting affects
voters’ incentives for experimentation and provide conditions under which infor-
mation aggregation obtains.

We assume that the decision to switch the safe action is irreversible, which
corresponds to the case in which it is costly to restart the risky policy. If the deci-
sion is reversible, there exist multiple symmetric pure-strategy equilibria including
the simple equilibrium and the Markov equilibrium in undominated strategies an-
alyzed by Strulovici (2010). However, since the votes of unsure voters matter only
if the number of sure winners is less than kN and unsure voters’ belief of being
good type is increasing in the number of sure winners, it is reasonable to focus
on the equilibria in which unsure voters always vote for the safe action after the
cut-off time characterized in the simple equilibrium.⁶ Hence, if the decision to
switch to the safe action is reversible, information aggregation still fails when k is
large, that is, when the ratio of votes required for the risky action is high.

Appendix 2.A Proofs

2.A.0.1 Proof of Proposition 2.1

Rewrite (2.6) as

s = p(kN − 1, t̂)λ

�

z +
g
r
−

s
r
+ (N − kN)(

p(kN, t̂)g
r
−

s
r
)

�

.

The right side is strictly decreasing in t̂ whenever it is positive since p(kN − 1, t̂)
is strictly decreasing in t̂, as discussed in Section 2.2.3.

The right side grows without bound when t̂ goes to 0 and N goes to infinity
since

lim
N→∞

t̂→0

p(kN − 1, t̂) = lim
N→∞

t̂→0

p(kN, t̂) = ρh,

and
ρhg > s.

The limit of the right side for any fixed N when t̂ goes to infinity is non-positive
since

p(kN − 1, t̂) < p(kN, t̂) < p(̂t|H), ∀N > 0 and ∀t̂ > 0,

6. We can rule out the equilibria in which unsure voters vote for the risky action after the
cut-off time characterized by the simple equilibria according to the discussion of requirement (iii)
of Definition 2.1.
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and
lim

t̂→∞
p(̂t|H) = 0.

Since the right side is continuous in t̂, by the intermediate value theorem, we can
find a unique solution of equation (2.6) when N is large enough, which ensures
the existence and uniqueness of the simple equilibrium.

2.A.0.2 Proof of Proposition 2.2

We rewrite equation (2.6) by plugging in (2.5). The cut-off t̂k,N is the solution of

q(kN − 1, t̂)
1 − q(kN − 1, t̂)

·
p(̂t|H)g − s + p(̂t|H)λ( g

r −
s
r) + (N − kN)p(̂t|H)λ( p(̂t|H)g

r − s
r)

s − p(̂t|L)g − p(̂t|L)λ( g
r −

s
r) − (N − kN)p(̂t|L)λ( p(̂t|L)g

r −
s
r)
= 1.

(2.A.1)
At each t ∈ [0,∞), there exists Λ > 0 such that

1
Λ
<
ρH

ρL

1 − ρL(1 − e−λt)
1 − ρH(1 − e−λt)

< Λ,

1
Λ
<
ρL

ρH

1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

< Λ.

Thus, for each k ∈ (0, 1] and each N ∈ N+,

1
Λ

q0

1 − q0

¨

�

ρH

ρL

�k
�

1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�1−k«N

<
q(kN − 1, t)

1 − q(kN − 1, t)
< Λ

q0

1 − q0

¨

�

ρH

ρL

�k
�

1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�1−k«N

.

For each k ∈ (0, 1], we work with
¨

�

ρH

ρL

�k �1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�1−k«N

.

Let k̂ be that

k̂ =
ln 1−ρL

1−ρH

ln ρH
ρL
+ ln 1−ρL

1−ρH

.

When k< k̂, the equation

�

ρH

ρL

�k �1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�1−k

= 1

admits a unique solution. Denote it by t̂0k, which is strictly increasing in k. It follows
that

lim
k→0

t̂0k = 0,

lim
k→k̂

t̂0k = ∞.
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Set t̂0k =∞ when k≥ k̂. There exists k ∈ (0, k̂) such that t̂0
k
= t.

We now show that for k< k, limN→∞ t̂k,N = t̂0k. If not, then there exist ε > 0
and a sub-sequence of {1,2, ...} denoted by {n1, n2, ...} such that

|̂tk,ni
− t̂0k| > ε, ∀i ∈ {1,2, ...}

Thus, for any M > 0, there exists N(M) such that

q(kni − 1, t)
1 − q(kni − 1, t)

/∈ [
1
M

, M], ∀i > N(M).

Hence, the first term of (2.A.1) is extremely small or big when there are ni voters
and i is big. Since the second term of equation (2.A.1) is a bounded positive
number when k< k, the equation (2.A.1) is not valid — a contradiction.

Finally, we show that for k≥ k, limN→∞ t̂k,N = t. Suppose it is not true. Two
cases might happen. One case is that there exist ε > 0 and a sub-sequence of
{1,2, ...} denoted by {n1, n2, ...} such that

t̂k,ni
− t > ε, ∀i ∈ {1,2, ...}

Thus, there exists M < 0 and N(M)> 0 such that the second term of the (2.A.1)
is less than M when there are ni voters with i> N(M). Since the first term of
(2.A.1) is positive, (2.A.1) is violated. The other case is that there exist ε > 0 and
a sub-sequence of {1,2, ...} denoted by {n1, n2, ...} such that

t̂k,ni
− t < −ε, ∀i ∈ {1,2, ...}.

Thus, for any M > 0, there exists N(M) such that

q(kni − 1, t)
1 − q(kni − 1, t)

> M, ∀i > N(M).

Hence, the first term of (2.A.1) is extremely big when there are ni voters and i
is big. As the second term of (2.A.1) is a positive number bounded away from 0
since t̂k,ni

− t< ε, (2.A.1) is violated.

2.A.0.3 Proof of Proposition 2.3

We define k̂, t̂0k, k̄ in the proof of Proposition 2.2.
From the proof of Proposition 2.2, we know that t̂k = t̂0k for k< k and t̂k = t for

k≥ k. For each k ∈ (0, 1], under the k−majority rule, by the law of large numbers,
the ratios of sure winners at time t̂k,N in both states converge in probability to fixed
numbers when N goes to infinity, that is,

H(̂tk,N)

N
p
−→ ρH(1 − e−λt̂k),
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L(̂tk,N)

N
p
−→ ρL(1 − e−λt̂k).

Since t̂k is bounded above by t,

ρH(1 − e−λt̂k) ≤ ρH(1 − e−λt) =
ρHg − s

g − s
.

Thus, information is not aggregated in state H for each k ∈ [ρHg−s
g−s , 1]. Note that

k≤ ρHg−s
g−s < k̂.

For each k ∈ (0, ρHg−s
g−s ), we wish to prove that

ρH(1 − e−λt̂k) > k > ρL(1 − e−λt̂k).

Define

H(k) = ρH(1 − e−λt̂k),

L(k) = ρL(1 − e−λt̂k).

It is direct to see that H(k) and L(k) are increasing and continuous in k when
k≤ k̄. Both H(k) and L(k) stay constant when k ∈ (k̄, ρHg−s

g−s ].
We can show that

lim
k→0

dH(k)
dk

=
ρH

ρH − ρL
ln(
ρH

ρL
) > 1,

lim
k→0

dL(k)
dk

=
ρL

ρH − ρL
ln(
ρH

ρL
) < 1.

by choosing x = ρH
ρL

and using the fact that 1− 1
x < ln(x)< x− 1 for x > 1. Since

limk→0 H(k)= limk→0 L(k)= 0, there exists k̃> 0 such that H(k)> k> L(k) for
k ∈ (0, k̃).

Now we prove H(k)> k for k ∈ (0, k̄]. It is enough to show that there does not
exist k ∈ (0, k̄) such that H(k)= k. If such k exists, then

�

ρH

ρL

�k �1 − ρH(1 − e−λt̂k)

1 − ρL(1 − e−λt̂k)

�1−k

=
�

ρH

ρL

�k
�

1 − k

1 − ρL
ρH

k

�1−k

> 1.

The inequality above is shown by setting x = ρH
ρL

and showing that xk( 1−k
1− k

x
)1−k is

strictly increasing when x > 1 for each k ∈ (0,1).
Next, there exists Λ > 0 such that for each N > 0,

1
Λ
<
ρH

ρL

1 − ρL(1 − e−λt̂k,N )

1 − ρH(1 − e−λt̂k,N )
< Λ,

1
Λ
<
ρL

ρH

1 − ρH(1 − e−λt̂k,N )

1 − ρL(1 − e−λt̂k,N )
< Λ.
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Thus, for each N ∈ N+,

1
Λ

q0

1 − q0

¨

�

ρH

ρL

�k
�

1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�1−k«N

<
q(kN − 1, t)

1 − q(kN − 1, t)
< Λ

q0

1 − q0

¨

�

ρH

ρL

�k
�

1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�1−k«N

.

Since
lim

N→∞
t̂k,N = t̂k,

�

ρH

ρL

�k �1 − ρH(1 − e−λt)
1 − ρL(1 − e−λt)

�1−k

> 1,

for each M > 0, there exists NM > 0 such that for each N > NM,

q(kN − 1, t̂k,N)

1 − q(kN − 1, t̂k,N)
> M.

Thus, the first term of equation (2.A.1) is extremely big when N is big. Since
the second term of equation (2.A.1) is a bounded positive number when k< k̄,
equation (2.A.1) is violated. Therefore, there does not exist k ∈ (0, k̄) such that
H(k)= k. Hence, we have H(k)> k for k ∈ (0, k̄).

With the similar argument, we can prove L(k)< k for k ∈ (0, k̄).
Since H(k) and L(k) are continuous, we have

H(k̄) ≥ k̄ ≥ L(k̄).

Note that H(k̄)= ρHg−s
g−s . Since H(k) and L(k) are constant when k≥ k̄. It is directly

to see that for k ∈ (k̄, ρHg−s
g−s ),

H(k) > k > L(k).
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Chapter 3

Fishing for Approval

Joint with Mehmet Ekmekci and Stephan Lauermann

3.1 Introduction

One success can make up for a long record of failure. For example, a lobby is
searching for an expert to support its position publicly. Once it finds an advocate,
none of those past attempts matter anymore. Other examples include an interna-
tional student who takes the TOEFL repeatedly until he receives a satisfying grade,
or a family who visit charities sequentially until they convince one of them that
they are in need. Such “fishing for approval" happens generally when someone
needs a critical assent and engages in a costly search to solicit one from decentral-
ized approval agencies. Approval agencies often have common interests, in that
they only want the qualified person to receive approval. However, fishing for ap-
proval seems to be a substantial problem for them. No matter how many agencies
give rejections under contemplative reasoning, an unqualified person can still turn
the tide by fishing for one fortuitous approval.

Here, we analyze such case of fishing for approval within the framework of
two-option elections. An organizer samples voters sequentially to vote on two
policies, a and b. He incurs a cost for each voter sampled. If one voter votes for a,
then the game ends and a is implemented. If the organizer stops sampling or he
exhausts the pool of voters, then b is implemented. Voters have common interests
and prefer a in state α and b in state β . However, none of them knows the
realized state. They only obtain noisy information as private signals. The organizer
is informed about the realized state and prefers a regardless of it. He is fishing
for approval for a.

This paper studies a sequential voting model under unanimity rule. Feddersen
and Pesendorfer (1998) and Duggan and Martinelli (2001) show that unanim-
ity rule produces asymptotic inefficiency in simultaneous common-value elections
with an exogenous number of voters. Even in large elections, unanimity rule gen-
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erally fails to aggregate dispersed information among voters (unless there exists an
unboundedly informative signal). Dekel and Piccione (2000) show that the whole
set of equilibria is the same in all sequential voting structures under the unanim-
ity rule. Hence, sequential voting structures do not facilitate the aggregation of
private information.

Our paper raises additional concern: by fishing for approval, the biased or-
ganizer might manipulate the voting outcome in his favor. However, we show
that, somewhat paradoxically, rather than hurting, the organizer’s ability to fish
for approval helps voters. Since the organizer bases his sampling behavior on his
knowledge of the state, voters can "manipulate" him to reveal his private informa-
tion by generating state-dependent approval probability. The endogeneity of the
sequential voting structure is the key difference between this paper and Dekel and
Piccione (2000). Our main result Proposition (3.2) shows that voters can reach
their first-best outcome as the number of voters goes to infinity.

Information aggregation is a consequence of the interplay between the in-
centives of the organizer to be willing to sample everyone in state α and the
increasingly negative inference the voters draw from conditioning on other voters’
disapproval. A voter’s approval probability must be high enough to make up for
the organizer’s sampling cost. Hence, disapproval by one voter is an informative
signal in favor of state β . A voter votes according to her inference from being piv-
otal, that is, on disapproval from all other voters. As the number of voters grows,
if the organizer sampled in state β as well, then a voter would put a sufficiently
large weight on state β when conditioning on being pivotal, and would approve
with a vanishing probability. This, however, is inconsistent with the organizer’s
sampling incentives. Hence, in equilibrium, the organizer samples in state α with
probability 1 and only with a vanishing probability in state β .

This paper proceeds as follows: Section 3.2 describes the basic model in which
voters do not observe their order in the sampling sequence. Section 3.3 character-
izes the equilibrium and presents our main result in large elections. Section 3.4
analyzes the observable-order case. Section 3.5 concludes.

3.2 Model

3.2.1 Model Setting

An organizer samples among M > 1 voters sequentially. He incurs a sampling cost
c ∈ (0, 1) for each voter sampled. Sampling is random without replacement. Voters
do not observe their order in the sampling sequence.

After a voter is sampled, she votes on two policies, {a, b}. If she votes for a,
that is, she approves a, then the game ends and a is implemented. If she votes for
b, that is, she rejects a, then the organizer decides whether to continue sampling.
Policy b is implemented if there is no approval for a, which happens if (i) the
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organizer stops initially without sampling anyone, (ii) he stops sampling after one
voter rejects a, or (iii) he has sampled all M voters and none of them approves a.

Voters’ payoffs depend on the realized state ω ∈ {α,β}. They share the follow-
ing utility function:

u(a,α) = u(b,β) = 1,

u(a,β) = u(b,α) = 0,

where u(x,ω) denotes the utility if the policy x is chosen in state ω.
Voters are uncertain about the realized state ω. They share a common prior

belief π ∈ (0,1) that the state is α. Each voter i ∈ {1, ..., M} receives a private
signal si ∈ [0,1]. Conditional on the state, signals are independent across voters.
In state ω ∈ {α,β}, signals are distributed according to a cumulative distribution
function F(s|w) with a continuous density function f(s|w).

We assume the strict Monotone Likelihood Ratio Property (MLRP):

f(s|α)
f(s|β)

is strictly decreasing in s. (3.1)

Assumption (3.1) implies that higher signals are stronger indicators of state β . It
also implies that F(s|α)> F(s|β) for each s ∈ (0,1).

We further assume that1

lim
s→1

π

1 − π
f(s|α)
f(s|β)

< 1. (3.2)

The organizer observes the realized state ω and prefers a to be implemented
in both states. If in total n voters are sampled, then his payoff is:

uo(a) = 1 − cn,

uo(b) = −cn.

1. Duggan and Martinelli (2001) specify assumption (3.2) to ensure the existence of a non-
trivial equilibrium in the simultaneous common-value voting game. We can replace assumption
(3.2) by assuming lims→1

π
1−π

�

f(s|α)
f(s|β)

�M
< 1 without changing any result.
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3.2.2 Strategy

We examine symmetric Bayesian Nash equilibrium, in which all voters use the same
cut-off strategy2 ŝ ∈ [0, 1]. Each voter i ∈ {1, ..., M} approves a if si < ŝ and rejects
a if si ≥ ŝ. In state w ∈ {α,β}, one voter’s approval probability is F(̂s|ω).

The strategy of the organizer is a function

p : {0, ..., M} × {α,β} → [0, 1],

such that
M
∑

n=0

p(n,ω) = 1, ∀ω ∈ {α,β}.

With probability p(n,ω), the organizer samples up to n voters in state ω ∈ {α,β},
he stops if (i) one voter approves a, or (ii) he has sampled n voters and no one
approves a.

3.2.3 Preliminary Analysis

Inference of Voters
Each voter sampled is pivotal if (i) the organizer stops sampling after she

rejects a, or (ii) all voters sampled after her reject a. When deciding how to vote,
it is optimal to condition on the event that she is pivotal since her vote cannot
affect the outcome in any other event.

Assume that voters use a cut-off strategy ŝ and the organizer uses a pure
strategy p with p(nα,α)= 1 and p(nβ ,β)= 1 for some nα, nβ > 0. Consider a voter
who is sampled and pivotal in state ω ∈ {α,β}. (i) The voters sampled before her
must have rejected a, otherwise she is not sampled. (ii) Since she is pivotal, if she
rejects a, then all voters sampled after her reject a. Thus, if she rejects a, then in
state ω the organizer samples in total nω voters and the remaining nω − 1 voters
reject a. The likelihood of being sampled and pivotal in state ω is

nω
M

(1 − F(̂s|ω))nω−1.

For each voter, when the strategy of the organizer is p and the strategies of
other voters are ŝ, the posterior likelihood ratio that the state is α, conditional on
(i) receiving a signal s, (ii) being sampled, and (iii) being pivotal, is denoted by
Φ(s, spl,piv; p, ŝ, M). We suppress arguments p, ŝ, M and denote it by

Φ(s, spl, piv) =
π

1 − π
︸ ︷︷ ︸

prior

f(s|α)
f(s|β)
︸ ︷︷ ︸

signal

∑M
m=1 p(m,α) m

M (1 − F(̂s|α))m−1

∑M
n=1 p(n,β) n

M (1 − F(̂s|β))n−1
︸ ︷︷ ︸

sampled and pivotal under distribution p

. (3.3)

2. In Appendix 3.A.3 of the supplement material, we show that focusing on the cut-off
strategy is without loss of generality from the MLRP assumption.
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If the denominator is 0 but the numerator is not, then we set Φ(s, spl, piv)=∞.
If both the denominator and the numerator are 0, then we set Φ(s, spl, piv)= 1.
Each voter approves a if Φ(s, spl, piv)> 1 and rejects a if Φ(s, spl, piv)< 1. She is
indifferent between a and b if Φ(s, spl, piv)= 1.
Organizer’s Sampling Problem

The organizer’s sampling problem is stationary. It only depends on the cost c
and the approval probability F(̂s|ω) in state ω ∈ {α,β}. The strategy p is optimal
if










p(0,ω) = 1 when F(̂s|ω) < c,

p(M,ω) = 1 when F(̂s|ω) > c,

(p(0,ω), ...., p(M,ω)) ∈ ∆{[0,1]M+1} when F(̂s|ω) = c.

(3.4)

In the first case, the organizer stops initially. In the second case, the organizer
keeps sampling voters. In the third case, the organizer is indifferent between all
stopping time.

3.3 Equilibrium Analysis

3.3.1 Characterization

An equilibrium is responsive if (i) the organizer does active sampling in both states,

p(0,α) < 1 and p(0,β) < 1,

and (ii) voters do not always approve a, that is, ŝ< 1.
The first condition rules out the trivial equilibrium in which the organizer stops

initially in both states. In such equilibrium, each voter uses the cut-off strategy
ŝ such that F(̂s|α)≤ c when being sampled. Policy b is always implemented. In
addition, there does not exist any equilibrium3 where the organizer only samples
voters in one state. If the organizer only samples voters in state α, then all voters
always approve a, but this would also induce the organizer to sample voters in
state β . If the organizer only sample voters in state β , then all voters always reject
a, but this would induce the organizer to stop initially in both states.

The second condition rules out the trivial equilibrium in which all voters al-
ways approve a with probability 1 when being sampled. In such equilibrium, the
organizer keeps sampling voters in both states since c< 1. Since all voters always
approve a and there are more than one voters, none of them is pivotal. Policy a is
always implemented.

3. When referring to equilibrium without further qualification, we mean symmetric equilib-
ria.
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In a responsive equilibrium, since the organizer does active sampling in both
states, from (3.4),

F(̂s|α) > F(̂s|β) ≥ c. (3.5)

The strict inequality comes from the MLRP assumption. Since F(̂s|α)> c, the orga-
nizer keeps sampling voters in state α,

p(M,α) = 1. (3.6)

In state β ,

p(M,β) = 1 when F(̂s|β) > c, (3.7)

(p(0,β), ...., p(M,β)) ∈ ∆{[0, 1]M+1} when F(̂s|β) = c. (3.8)

Denote the vector (p(0,β), ..., p(M,β)) by pβ .
Let ŝc such that F(̂sc|β)= c. From (3.5) and the condition that ŝ< 1,

ŝ ∈ [̂sc, 1). (3.9)

Voters are indifferent between a and b when receiving the cut-off signal ŝ.
Plug in (3.6) to (3.3), the cut-off ŝ is determined by

Φ(̂s, spl, piv) =
π

1 − π
f (̂s|α)
f (̂s|β)

(1 − F(̂s|α))M−1

∑M
n=1 p(n,β) n

M (1 − F(̂s|β))n−1
= 1. (3.10)

A responsive equilibrium is characterized by a pair (pβ , ŝ) satisfying (3.7),
(3.8), (3.9) and (3.10).

Proposition 3.1. A responsive equilibrium exists for each c ∈ (0, 1) and M > 1.

In the Appendix 3.A.1, we construct one responsive equilibrium in which the
organizer mixes: he either stops initially or keeps sampling voters in state β , that
is,

p(0,β) + p(M,β) = 1. (3.11)

We denote this equilibrium as the simple equilibrium. We show that a unique
simple equilibrium exists for each c ∈ (0,1) and M > 1.
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3.3.2 Large Elections

For each cost c ∈ (0, 1), consider a sequence of responsive equilibria corresponding
to M. The following proposition shows that every sequence of responsive equilibria
leads to voters’ first-best outcome as M→∞.

Proposition 3.2. For each c ∈ (0,1), the voter’s expected payoff converges to 1 in
every sequence of responsive equilibria as M→∞.

We prove Proposition 3.2 by two lemmas. Lemma 3.1 characterizes voters’
equilibrium strategy when M is large.

Lemma 3.1. For each c ∈ (0,1), there exists M1(c) such that for each M >M1(c),
voters use the cut-off strategy ŝc in every responsive equilibrium.

Proof. Fix the cost c. Consider a responsive equilibrium in which voters do not
use the cut-off strategy ŝc. If ŝ ̸= ŝc, then ŝ> ŝc from (3.9). Using (3.5), we have
p(M,β)= 1. Hence, we can rewrite (3.10) as

L(̂s; M) ≡
π

1 − π
f (̂s|α)
f (̂s|β)

(1 − F(̂s|α))M−1

(1 − F(̂s|β))M−1

If such equilibrium exists, then L(̂s; M)= 1 for some ŝ> ŝc.
By the MLRP assumption, the function L(s; M) is strictly decreasing in s. Hence,

L(̂s; M) < L(̂sc; M).

Since (1− F(̂sc|α))< (1− F(̂sc|β)),

lim
M→∞

L(̂sc; M) = 0.

Thus, we can pick M1(c) such that for each M >M1(c), the likelihood ratio L(̂s; M)
is strictly less than 1 for each ŝ ∈ [̂sc, 1)⁴. Therefore, for each M >M1(c), voters
use the cut-off strategy ŝc in every responsive equilibrium.

Lemma 3.2 characterizes the organizer’s equilibrium strategy. The organizer
hardly samples any voters in state β when M is large.

Lemma 3.2. For each c ∈ (0, 1), p(0,β) converges to 1 in every sequence of respon-
sive equilibria as M→∞.

4. There exists δ > 0 such that limŝ→1 L(̂s; M)< 1−δ for each M > 1 according to assump-
tion (3.2) and L’Hôpital’s rule.
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Proof. Fix the cost c. For each M >M1(c), by Lemma 3.1, voters use the cut-off
strategy ŝ(c) in every responsive equilibrium. Rewrite (3.10) as

Φ(̂sc, spl, piv) =
π

1 − π
f (̂sc|α)
f (̂sc|β)

(1 − F(̂sc|α))M−1

∑M
n=1 p(n,β) n

M (1 − F(̂sc|β))n−1
= 1. (3.12)

Consider the function g(x)= xax with a ∈ (0, 1). Note that (i) g(x) is decreasing
in x when x > − 1

log a , and (ii) limx→∞ g(x)= 0. Thus, there exists x̄(a)> 0 such
that for each x̂ > x̄(a),

x̂ = arg min
x∈[1,x̂]

g(x).

Hence, there exists M2(c) such that for each M >M2(c),

(1 − F(̂sc|β))M−1 <
n
M

(1 − F(̂sc|β))n−1, ∀n ∈ {1, ..., M − 1}. (3.13)

For each M >max{M1(c), M2(c)}, using (3.12) and (3.13)

1 = Φ(̂sc, spl, piv) ≤
π

1 − π
f (̂sc|α)
f (̂sc|β)

(1 − F(̂sc|α))M−1

(1 − p(0,β))(1 − F(̂sc|β))M−1
.

Therefore,

p(0,β) ≥ 1 −
π

1 − π
f (̂sc|α)
f (̂sc|β)

(1 − F(̂sc|α))M−1

(1 − F(̂sc|β))M−1
. (3.14)

The right side converges to 1 when M→∞ since (1− F(̂sc|α))< (1− F(̂sc|β)).

In every sequence of responsive equilibria, in state α, when M >M1(c), the
probability of implementing a is 1− ((1− F(̂sc|α)))M, which converges to 1. In
state β , the probability of implementing b converges to 1 since p(0,β) converges
to 1. Thus, every sequence of responsive equilibria leads to voters’ first-best out-
come as M→∞.

Proposition 3.2 seems counter-intuitive since the biased organizer should ma-
nipulate the election outcome. However, since he bases his sampling behavior
on his knowledge of the state, voters can "manipulate" him to reveal his pri-
vate information by generating state-dependent approval probability. The orga-
nizer is indifferent in state β when voters use the cut-off strategy ŝc. Note that
ŝ(c) is determined by the cost c, independent of the number of voters M. Since
(1− F(̂sc|α))M−1 goes to 0 much faster than n

M (1− F(̂sc|β))M−1 for each n≤M
when M→∞, from (3.12), the organizer has to choose p(0,β) near 1 to keep
the likelihood ratio away from 0.
Remark 3.1. Every sequence of responsive equilibria converges to the same strat-
egy profile in which (i) voters use the cut-off strategy ŝc, and (ii) the organizer
keeps sampling voters in state α and stops initially in state β . This strategy pro-
file is an equilibrium leading to voters’ first-best outcome when there are infinitely
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many voters. In addition, this strategy profile maximizes the expected payoff of
the organizer among all the equilibria leading to voters’ first-best outcome since
it maximizes the approval probability in state α.
Remark 3.2. The inequality (3.14) is an equality in the simple equilibrium. Hence,
when M is large, the probability of implementing b in state β is lowest in the
simple equilibrium among all responsive equilibria. The simple equilibrium is the
worst responsive equilibrium for voters when M is large. In Appendix 3.A.4 of the
supplement material, we show that the simple equilibrium is the worst responsive
equilibrium for all M > 1.
Remark 3.3. We can construct an asymmetric equilibrium in which voters gain
their first-best outcome when M is above some threshold by (i) letting one voter
approve a with probability 1 to impede others from being pivotal, and (ii) letting
other voters use the same cut-off strategy ŝ ∈ (0, 1) to make the organizer keep
sampling voters in state α and stop initially in state β . However, this equilibrium
requires a strong collaboration between voters and is not robust even when there
is a tiny uncertainty about the total number of voters. For example, assume that
the game ends with probability ε > 0 after each voter votes. No matter how small
ε is, if the organizer only samples voters in state α, for each voter, she is pivotal
with positive probability and always approves a, which would induce the organizer
to sample voters in state β . Additionally, if we assume the number of voters follows
a Poisson distribution with mean M, such asymmetric equilibrium does not exist
while Proposition 3.2 remains valid.

3.4 Observable Order

In the basic model, voters do not observe their order in the sampling sequence.
Now, we analyze the model in which voters observe their order. When someone is
searching for approval from decentralized agencies, they might know how many
rejections he has received if the privacy requirement is weak.

3.4.1 Symmetric Equilibrium

We first focus on symmetric Bayesian Nash equilibrium in which voters use the
same cut-off strategy ŝ ∈ [0,1] regardless of their order. The strategy of the or-
ganizer is a function p defined in Section 3.2.2. Compared to the basic model
with unobservable order, the organizer faces the same sampling problem, which
is discussed in Section 3.2.3. The only difference is the inference of voters.

Consider the nth voter in the sequence with n ∈ {1, ..., M}. Given that the or-
ganizer uses the strategy p and other voters use the cut-off strategy ŝ, if she is
sampled in state ω ∈ {α,β}, then (i) voters before her must have rejected a, and
(ii) the organizer does not stop before sampling her. Hence, the likelihood of being
sampled in state ω is
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(1 − F(̂s|ω))n−1

︸ ︷︷ ︸

(i)

(1 −
n−1
∑

i=0

p(i,ω))

︸ ︷︷ ︸

(ii)

.

If she is pivotal, then voters sampled after her must reject a. The likelihood of
being pivotal in state ω is

M
∑

j=n

p(j,ω)

1 −
∑n−1

i=0 p(i,ω)
︸ ︷︷ ︸

distribution

(1 − F(̂s|ω))j−n

︸ ︷︷ ︸

all reject a

.

Hence, for the nth voter, the likelihood of being sampled and pivotal in state
ω ∈ {α,β} is

M
∑

j=n

p(j,ω)(1 − F(̂s|ω))j−1.

For the nth voter, when the strategy of the organizer is p and the strategies of
other voters are ŝ, the posterior likelihood ratio that the state is α, conditional on
(i) receiving a signal s, (ii) being sampled, and (iii) being pivotal, is

Φn(s, spl, piv) =
π

1 − π
︸ ︷︷ ︸

prior

f(s|α)
f(s|β)
︸ ︷︷ ︸

signal

∑M
j=n p(j,α)(1 − F(̂s|α))j−1

∑M
j=n p(j,β)(1 − F(̂s|β))j−1

︸ ︷︷ ︸

sampled and pivotal

. (3.15)

We now characterize the responsive equilibrium⁵ defined in Section 3.3.1. In
a responsive equilibrium, since the organizer faces the same sampling problem,
from the discussion in Section 3.3.1, he keeps sampling voters in state α with
p(M,α)= 1. In state β , his equilibrium strategy is still characterized by (3.7) and
(3.8). For voters, since they are indifferent between a and b when receiving the
cut-off signal ŝ. Plug in p(M,α)= 1 to (3.15), the cut-off ŝ is determined by

Φn(̂s, spl, piv) =
π

1 − π
f (̂s|α)
f (̂s|β)

(1 − F(̂s|α))M−1

∑M
j=n p(j,β)(1 − F(̂s|β))j−1

= 1, ∀n ∈ {1, ..., M}.

(3.16)
A responsive equilibrium is characterized by (3.7), (3.8), (3.9) and (3.16).

Compared to the characterization of the responsive equilibrium in the basic model,
we only replace (3.10) by (3.16).

Proposition 3.3. When the order is observable, a unique responsive equilibrium ex-
ists for each c ∈ (0, 1) and M > 1, which is the simple equilibrium in the basic model.

5. For equilibria which are not responsive, the two types of trivial equilibria mentioned in
Section Section 3.3.1 are still valid equilibria when the order is observable.
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Proof. From (3.16),

p(n,β) ∝
1

Φn(̂s, spl, piv)
−

1
Φn+1(̂s, spl, piv)

= 0, ∀n ∈ {1, ..., M − 1}.

Hence, in every responsive equilibrium, we must have p(n,β)= 0 for each n ∈
{1, ..., M− 1}, that is, we must have p(0,β)+ p(M,β)= 1. Plug in this to (3.16),

π

1 − π
f (̂s|α)
f (̂s|β)

(1 − F(̂s|α))M−1

(1 − p(0,β))(1 − F(̂s|β))M−1
= 1. (3.17)

In the proof of Proposition 3.1, we show that there exits a unique strategy pro-
file satisfying (3.7), (3.8), (3.9) and (3.17), which is the simple equilibrium in the
basic model. Hence, the simple equilibrium is the unique responsive equilibrium
when the order is observable.

Remark 3.4. From Remark 3.2, in the basic model with unobservable order, the
simple equilibrium is the worst responsive equilibrium. Hence, voters are worse off
when the order is observable. Knowing the order does not help one voter know
more about other voters’ private information since she already makes decisions
based on being sampled. Instead, voters are worse off since the available strategies
of the organizer are restricted. It is harder for the voters to “manipulate" the
organizer.

From Proposition 3.2 and Proposition 3.3, the sequence of responsive equilibria
leads to voters’ first-best outcome as M→∞,

Corollary 3.1. When the order is observable, for each c ∈ (0, 1), the voter’s expected
payoff converges to 1 in the sequence of responsive equilibria as M→∞.

3.4.2 Asymmetric Equilibrium

We now analyze the asymmetric equilibrium where voters with different orders
might choose different strategies. The strategy profile of voters is characterized
by a sequence of cut-offs {ŝ1, ..., ŝM} where the nth voter uses the cut-off strategy
ŝn for each n ∈ {1, ..., M}. The strategy of the organizer is still characterized by
function p. We focus on Bayesian Nash equilibrium.

We can construct an asymmetric equilibrium in which voters gain their first-
best outcome when M is above some threshold by (i) letting the last voter approve
a with probability 1 to impede others from being pivotal, and (ii) letting other
M− 1 voters use the same cut-off strategy ŝ ∈ (0, 1) to make the organizer keep
sampling voters in state α and stop initially in state β . However, these equilibria
are not robust even when there is a tiny uncertainty about the total number of
voters, as discussed in Remark 3.3.
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An equilibrium is non-trivial if (i) each voter does not always approve a and
(ii) the organizer keep sampling voters in state α, that is,

ŝn < 1, ∀n ∈ {1, ..., M},

p(M,α) = 1.

The second condition is based on D1 refinement. The organizer benefits more by
sampling one more voter in state α for each ŝ ∈ [0,1] this voter chooses. Hence,
for a voter who is never sampled in state α and β on the equilibrium path, if she
is sampled, she believes that the state must be α and approves a.

The following proposition shows that every sequence of non-trivial equilibria
leads to voters’ first-best outcome as M→∞.

Proposition 3.4. For each c ∈ (0,1), the voter’s expected payoff converges to 1 in
every sequence of non-trivial equilibria as M→∞.

The proof is similar to the one of Proposition 3.2. Consider a sequence of non-
trivial equilibria. First, when M is large, for each voter, either (i) the probability
that the organizer stops sampling in state β before reaching her⁶ approaches 1,
or (ii) the probability that she approves a approaches or equals 0⁷, since the
posterior belief that the state is β conditional on rejections from all other voters
converges to 1 as M→∞. Hence, the probability that the organizer receives
the approval in state β from each voter⁸ converges to 0 as M→∞. Second,
we can find Tc ∈ N+ independent to M such that one of the first Tc voters must
approve a with probability bounded away from 0 in both states. Otherwise, the
organizer stops initially in both states. Third, when M→∞, the probability that
the organizer stops sampling before reaching the (Tc + 1)th voter in state β must
converges to 1. Otherwise, we can construct a subsequence of non-trivial equilibria
where the organizer samples all the first Tc voters with probability bounded away
from 0 when M→∞. According to the first argument, all the the first Tc voters
must approve a with probability converging to 0, which contradicts the second
argument. Therefore, the probability of implementing b in state β converges to 1.

The observable-order case relates to the social learning literature (Banerjee
(1992), Bikhchandani, Hirshleifer, and Welch (1992)). This literature analyzes a
sequential decision model in which each decision-maker looks at the decisions
made by previous decision-makers in taking her own decision. This setting can
lead rapidly to an inefficient "herd-cascade" in which subsequent decision-makers
optimally ignore their private information and imitate earlier decision-makers.
However, the "herd-cascade" does not happen in our model since voters learn

6. which is
∑i−1

j=0 p(j,β) for the ith voter.
7. It depends on whether lims→0

f(s|α)
f(s|β) =∞.

8. which is
�

1−
∑i−1

j=0 p(j,β)
�

·
∏i−1

j=0

�

1− F(̂sj|β)
�

· F(̂si|β) for the ith voter.
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not only from the past, that is, conditional on being sampled, but also from the
future, that is, conditional on being pivotal⁹.

3.5 Conclusion

There is a concern that a biased agent might fish for approval if one assent undoes
all past rejections. In this paper, we study a sequential voting model in which a
biased organizer engages in a costly search to solicit one vote for his preferred
policy. We show that the ability to fish for approval actually helps voters. By
basing his sampling behavior on his knowledge of the state, the organizer ends
up injecting additional information, often leading to the voters’ first-best, full-
information equivalent outcome.

This paper suggests several promising directions for future research. (1) We
expect our main result can be extended to the interdependent-value case and
other extreme rules under which a fixed number of approval are required. (2)
It would be interesting to consider the costly voting here, following Krishna and
Morgan (2011) and Krishna and Morgan (2015). The cost of voting corresponds
to the expense of providing support when someone is searching for help among
decentralized agencies. We could also consider the cost of information acquisition,
following Martinelli (2006). (3) We analyze the case where the organizer is in-
formed about the realized state. It is natural to study whether information can be
aggregated if the organizer is only partially informed about the realized state.

Appendix 3.A Proofs

The appendices proceed as follows:

(1) In Appendix 3.A.1, we prove Proposition 3.1 and characterize the simple equi-
librium.

(2) In Appendix 3.A.2, we prove Proposition 3.4 for the case where the voters can
observe the order.

(3) In Appendix 3.A.3, we characterize the set of symmetric Bayesian Nash equi-
librium and show that we can focus on the cut-off strategy without loss of
generality.

(4) In Appendix 3.A.4, we characterize the set of responsive equilibrium and show
that the simple equilibrium is the worst responsive equilibrium for the voters.

9. Ali and Kartik (2012) study sequential voting and identifies voting equilibria with herding.
Our model’s main difference from them is the endogeneity of the sampling process, hence the
number of voters.
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3.A.1 Proof of Proposition 3.1

We now show the existence and the uniqueness of the simple equilibrium for each
c ∈ (0,1) and M > 1.

If a strategy of the organizer psim is a part of a simple equilibrium, then it
must satisfy (3.11). Plug in (3.11) to (3.10),

Φsim(̂s, spl, piv) =
π

1 − π
f (̂s|α)
f (̂s|β)

(1 − F(̂s|α))M−1

(1 − p(0,β)) (1 − F(̂s|β))M−1
. (3.A.1)

A simple equilibrium is characterized by (3.7), (3.8), (3.9) and (3.A.1).
Define

L(s) ≡
π

1 − π
f(s|α)
f(s|β)

�

1 − F(s|α)
1 − F(s|β)

�M−1

.

It follows that
Φsim(s, spl, piv) = L(s)

1
1 − psim(0,β)

. (3.A.2)

The function L(s) is continuous in s since the density functions are continuous. It
is strictly decreasing in s due to the MLRP assumption. By assumption (3.2),

lim
s→1

L(s) = lim
s→1

π

1 − π

�

f(s|α)
f(s|β)

�M

< 1.

We also know that lims→0 L(s)= lims→0
π

1−π
f(s|α)
f(s|β) . If lims→0

π
1−π

f(s|α)
f(s|β) > 1, then for

each M ∈ N+, there exists a unique s ∈ (0,1) such that L(s)= 1, denoted by s∗(M).
If lims→0

π
1−π

f(s|α)
f(s|β) ≤ 1, then let s∗(M) equal 0.

Consider a pair of c ∈ (0, 1) and M > 1.
First, consider the case where c≤ F(s∗(M)|β), that is, s∗(M)≥ ŝc. If the cut-

off strategy of the voters ŝ< s∗(M), then L(̂s)> 1 and psim(0,β)< 0 from equa-
tion (3.A.2). If ŝ> s∗(M), then L(̂s)< 1 and psim(0,β)> 0 from equation (3.A.2).
From (3.7) and (3.8), it follows that ŝ= s1(c), which contracts that ŝ> s∗(M)≥ ŝc.
Finally, let the voters use the cut-off strategy s∗(M). The organizer must choose
psim(M,β)= 1 to satisfy (3.A.1) since L(s∗(M))= 1. The strategy psim satisfies the
optimality condition (3.7) since F(s∗(M)|β)≥ c. Hence, we construct a unique
simple equilibrium.

Second, consider the case where c> F(s∗(M)|β), that is, ŝc > s∗(M). By (3.9),
the voters must use the cut-off strategy ŝ≥ ŝc. If ŝ> ŝ(c), then L(̂s)< 1 and
p(0,β)> 0 by (3.A.2), which contracts (3.7). Finally, let the voters use the cut-
off strategy ŝc. From (3.A.2), the organizer must choose psim(0,β)= 1− L(̂sc) and
psim(M,β)= L(̂sc) to satisfy (3.A.1). The strategy psim satisfies the optimality con-
dition (3.8) since F(̂sc|β)= c. Hence, we construct a unique simple equilibrium.

In Appendix 3.A.4, we analyze other responsive equilibria. Denote a responsive
equilibrium as interior equilibrium if it is not a simple equilibrium. We show that,
for each c ∈ (0,1), there exists Mint(c) such that for each M >Mint(c), an interior
equilibrium exists.
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3.A.2 Proof of Proposition 3.4

For each c ∈ (0,1), consider the sub-sequence of the voters

Tc = {tc(1), ..., tc(T)} ⊂ {1, ...M}

such that
F(̂stc(i)|α) >

c
2

, ∀i ∈ {1, ..., T}.

Note that Tc has at least one element. Otherwise, the organizer stops initially in
state α.

Lemma 3.3. For each c ∈ (0,1), there exists Tc such that for each M > 1 and each
non-trivial equilibrium, we have tc(1)< Tc.

Proof. We calculate one upper bound of the organizer’s expected payoff in state
α if he keeps sampling the voters. It is reached by letting the tc(1)th voter use
ŝ= 1 and letting the voters before her use ŝ such that F(̂s|α)= c

2 . Denote this
upper-bound as U(tc(1)),

U(tc(1)) =
tc(1)−1
∑

n=1

�

1 −
c
2

�n−1
(

c
2
− c) +
�

1 −
c
2

�tc(1)−1
(1 − c).

Note that U(tc(1)) is decreasing in tc(1) and

lim
tc(1)→∞

U(tc(1)) < 0.

Hence, we can choose

Tc = inf{tc(1) ∈ N|U(tc(1)) < 0}.

Considering the organizer’s sampling problem after the tc(i)th voter rejects a
for each i ∈ {1, ..., T}. Based on the proof of Lemma 3.3,

tc(i + 1) − tc(i) ≤ Tc, ∀i ∈ {1, ..., T}.

Hence,

T ≥
M
Tc

. (3.A.3)

Now, consider a sequence of non-trivial equilibria with M→∞. By (3.A.3), we
have T→∞. Therefore, the probability of implementing a in state α converges
to 1.
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In state β , for the ith voter with i ∈ {1, ..., M}, the likelihood that she is sampled
is



1 −
i−1
∑

j=0

p(j,β)



 ·
i−1
∏

j=1

�

1 − F(̂sj|β)
�

.

The first term is the probability that the organizer does not stop before reaching
her. The second term is the probability that all the voters before her reject a. The
ith voter is pivotal if the voters sampled after her reject a. The likelihood is

p(i,ω)

1 −
∑i−1

k=0 p(k,ω)
︸ ︷︷ ︸

stop after the ith voter

+
M
∑

j=i+1























p(j,ω)

1 −
∑i−1

k=0 p(k,ω)
︸ ︷︷ ︸

stop after the jth voter

·
j
∏

k=i+1

[1 − F(̂sk|β)]























,

which is larger than
M
∏

j=i+1

�

1 − F(̂sj|β)
�

,

since

M
∏

k=i+1

[1 − F(̂sk|β)] ≤
j
∏

k=i+1

[1 − F(̂sk|β)] ≤ 1, ∀j ∈ {i + 1, ..., M}.

Hence, the likelihood that the ith voter is sampled and pivotal in state β is larger
than



1 −
i−1
∑

j=0

p(j,β)



 ·
∏

j̸=i

�

1 − F(̂sj|β)
�

.

Denote Φi(s, spl,piv) as the posterior likelihood ratio assigned by the ith voter
that the state is α, conditional on (i) receiving a signal s, (ii) being sampled, and
(iii) being pivotal,

Φi(s, spl,piv) ≤
π

1 − π
f(s|α)
f(s|β)

∏

j̸=i

�

1 − F(̂sj|α)
�

�

1 −
∑i−1

j=0 p(j,β)
�

·
∏

j ̸=i

�

1 − F(̂sj|β)
�

.

We also have,
(

Φi(̂si, spl,piv) = 1, if ŝi ∈ (0, 1),

Φi(̂si, spl,piv) ≤ 1, if ŝi = 0.

Therefore,

1 −
i−1
∑

j=0

p(j,β) ≤
π

1 − π
f (̂si|α)
f (̂si|β)

∏

j̸=i

�

1 − F(̂sj|α)
�

∏

j ̸=i

�

1 − F(̂sj|β)
� , if ŝi ∈ (0, 1).
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Since T→∞ as M→∞,

lim
M→∞

∏

j̸=i

�

1 − F(̂sj|α)
�

∏

j̸=i

�

1 − F(̂sj|β)
� = 0.

Hence, for each ε1 > 0 and ε2 > 0, we can find M(ε1,ε2) such that for each
M >M(ε1,ε2), for each i ∈ {1, ...., M}, either

1 −
i−1
∑

j=0

p(j,β) < ε1.

or1⁰
ŝi < ε2.

Hence,

lim
M→∞

ŝi



1 −
i−1
∑

j=0

p(j,β)



 = 0. (3.A.4)

Denote ψi as the probability that the organizer receives the approval in state
β from the ith voter,

ψi =



1 −
i−1
∑

j=0

p(j,β)



 ·
i−1
∏

j=0

�

1 − F(̂sj|β)
�

· F(̂si|β).

Note that the probability of implementing a in state β is
∑M

i=1ψi.
From (3.A.4), for each i ∈ {1, ..., M},

lim
M→∞

ψi = 0.

Since Tc is independent of M,

lim
M→∞

Tc
∑

i=1

ψi = 0.

We claim that

lim
M→∞

M
∑

i=Tc+1

ψi = 0.

Note that
M
∑

i=Tc+1

ψi < 1 −
Tc
∑

j=0

p(j,β),

10. Note that we can replace this one by ŝi = 0 if lims→0
f(s|α)
f(s|β) <∞.
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since if the organizer stops before reaching the (Tc + 1)th voter, he cannot receives
approval from her or the voters after her. Hence, it is sufficient to show that

lim
M→∞

Tc
∑

j=0

p(j,β) = 1. (3.A.5)

If (3.A.5) does not hold, then we can construct a subsequence of non-trivial
equilibria {Γmj

}j=1,2,... such that

lim
mj→∞

n
∑

j=0

p(j,β) < 1, ∀n ≤ Tc.

By (3.A.4),
lim

mj→∞
ŝn = 0, ∀n ≤ Tc,

which contradicts Lemma 3.3.
Hence,

lim
M→∞

M
∑

i=1

ψi = 0.

The probability of implementing b in state β converges to 1 in each sequence of
non-trivial equilibria with M→∞.

3.A.3 Set of Symmetric BNE

In this section, we characterize the set of symmetric Bayesian Nash equilibrium
and show that we can focus on the cut-off strategy without loss of generality.

The strategy of the voters is

d : [0,1] → [0,1].

A voter with signal s ∈ [0, 1] approves a with probability d(s).
We denote q(ω) as the expected probability that one voter approves a in state

w ∈ {α,β},

q(ω) =

∫ 1

0

d(s)dF(s|ω).

The strategy of the organizer is still characterized by

p : {0, ..., M} × {α,β} → [0, 1],

such that
M
∑

n=0

p(n,ω) = 1, ∀ω ∈ {α,β}.

For each voter, when the strategy of the organizer is p and the strategies of
other voters are d, the posterior likelihood ratio that the state is α, conditional on
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(i) receiving a signal s, (ii) being sampled, and (iii) being pivotal, is denoted by
Φ(s, spl,piv; p, d, M). We suppress arguments p, d, M and denote it by

Φ(s, spl, piv) =
π

1 − π
︸ ︷︷ ︸

prior

f(s|α)
f(s|β)
︸ ︷︷ ︸

signal

∑M
m=1 p(m,α) m

M (1 − q(α))m−1

∑M
n=1 p(n,β) n

M (1 − q(β))n−1
︸ ︷︷ ︸

sampled and pivotal under distribution p

. (3.A.6)

If the denominator is 0 but the numerator is not, then we set Φ(s, spl, piv)=∞.
If both the denominator and the numerator are 0, then we set Φ(s, spl, piv)= 1.

The strategy d is optimal if










d(s) = 1 when Φ(s, spl, piv) > 1,

d(s) = 0 when Φ(s, spl, piv) < 1,

d(s) ∈ [0,1] when Φ(s, spl, piv) = 1.

(3.A.7)

The organizer’s sampling problem is stationary. The strategy p is optimal if










p(0,ω) = 1 when q(ω) < c,

p(M,ω) = 1 when q(ω) > c,

(p(0,ω), ...., p(M,ω)) ∈ ∆{[0,1]M+1} when q(ω) = c.
(3.A.8)

An equilibrium is a strategy profile {d, p} satisfying (3.A.7) and (3.A.8).
We now show that we can focus on the cut-off strategy without loss of gener-

ality. We first consider the equilibrium where the organizer stops initially in both
states. In such equilibrium, the voters use strategy d such that the correspond-
ing approval probabilities q(ω)≤ c for ω ∈ {α,β}. Note that we can construct
such equilibrium by letting the voters use cut-off strategy ŝ such that F(̂s|α)≤ c.
Furthermore, for the equilibrium in which all the voters always approve a with
probability 1 when being sampled, the organizer keeps sampling the voters in
both states since c< 1. In this equilibrium, the voters use cut-off strategy ŝ= 1.

Consider the equilibrium where (i) the organizer does active sampling in both
states, and (ii) the voters do not always approve a. In such equilibrium, both
the denominator and the numerator of (3.A.6) is positive. Hence, the posterior
likelihood ratio Φ(s, spl, piv) is strictly increasing in s. The voters must use a cut-
off strategy.

3.A.4 Set of Responsive Equilibria

In this section, we characterize the set of responsive equilibria and show that the
simple equilibrium is the worst responsive equilibrium for the voters.

A responsive equilibrium is complex if

p(0,β) + p(M,β) < 1, (3.A.9)
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M
∑

n=o

p(n,β) = 1. (3.A.10)

In a complex equilibrium (pβ , ŝ), since p(M,β)< 1, from (4), we have ŝ= ŝc.
Plug in this to (16),

Φ(̂sc, spl, piv) =
π

1 − π
f (̂sc|α)
f (̂sc|β)

(1 − F(̂sc|α))M−1

∑M
n=1 p(n,β) n

M (1 − F(̂sc|β))n−1
= 1. (3.A.11)

Proposition 3.5. For each c ∈ (0, 1), there exists M2(c) such that for each M >
M2(c), a complex equilibrium exists.

Proof. Fix the cost c. Since Φ(̂sc, spl, piv; pβ) is continuous with respect to pβ , if
there exist vectors p0

β
and p00

β
satisfying (3.A.9) and (3.A.10) such that

Φ(̂sc, spl, piv; p0

β) > 1, (3.A.12)

Φ(̂sc, spl, piv; p00

β) < 1, (3.A.13)

then at least one pβ satisfying (3.A.9), (3.A.10) and (3.A.11). On the one hand,
we can choose p0

β
= (1− εM,εM, 0, ..., 0) with εM near 0 to satisfy (3.A.12). On

the other hand, Pick p00

β
= {1

2 , 1
2 , 0, ..., 0}. From (13),

Φ(̂sc, spl, piv; p00

β) ≤
π

1 − π
f (̂sc|α)
f (̂sc|β)

(1 − F(̂sc|α))M−1

1
2(1 − F(̂sc|β))M−1

,

lim
M→∞

Φ(̂sc, spl, piv; p00

β) ≤ lim
M→∞

π

1 − π
f (̂sc|α)
f (̂sc|β)

(1 − F(̂sc|α))M−1

1
2(1 − F(̂sc|β))M−1

= 0.

Thus, we can pick M2(c) such that for each M ≥M2(c),

Φ(̂sc, spl, piv; p00

β) < 1.

Therefore, for each M ≥M2(c), at least one complex equilibrium exists.

Now, we prove that the simple equilibrium is the worst responsive equilibrium
for the voters.

Proposition 3.6. For each c ∈ (0, 1) and M > 1, the voters gain the lowest expected
payoff from the simple equilibrium among all responsive equilibria.
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Proof. From proof of Proposition 3.1, we define define s∗(M) by11

π

1 − π
f(s∗(M)|α)
f(s∗(M)|β)

�

1 − F(s∗(M)|α)
1 − F(s∗(M)|β)

�M−1

= 1. (3.A.14)

We already show that for the simple equilibrium, (i) p(0,β)= 1 and ŝ= s∗(M) if
c≤ F(s∗(M)|β), and (ii) p(0,β)< 1 and ŝ= ŝc if c> F(s∗(M)|β).
Case 1: c≤ F(s∗(M)|β)

The expected payoff of one voter in the simple equilibrium is

π{1 − [1 − F(s∗(M)|α)]M} + (1 − π)[1 − F(s∗(M)|β)]M.

We rewrite it by plugging in (3.A.14),

π + π[1 − F(s∗(M)|α)]M−1{[1 − F(s∗(M)|β)]
f(s∗(M)|α)
f(s∗(M)|β)

− 1 + F(s∗(M)|α)}.

(3.A.15)
The expected payoff of one voter in a complex equilibrium is

π{1 − [1 − F(̂sc|α)]M} + (1 − π)
M
∑

n=0

p(n,β)(1 − F(̂sc|β))n. (3.A.16)

From (3.A.11),

(1 − π)
M
∑

n=1

p(n,β)(1 − F(̂sc|β))n > π
f (̂sc|α)
f (̂sc|β)

[1 − F(̂sc|α)]M−1(1 − F(̂sc|β)).

Plug in this to (3.A.16), the expected payoff of one voter in a complex equilibrium
is larger than

π + π[1 − F(̂sc|α)]M−1{[1 − F(̂sc|β)]
f (̂sc|α)
f (̂sc|β)

− 1 + F(̂sc|α)}. (3.A.17)

Since c≤ F(s∗(M)|β), we have ŝc ≤ s∗(M). By taking a derivative,

d(1 − F(s|α))
ds

< 0,

d{[1 − F(s|β)] f(s|α)
f(s|β) − 1 + F(s|α)}

ds
< 0.

Therefore, when c≤ F(s∗(M)|β), the expected payoff from each complex equilib-
rium is higher than the one from the simple equilibrium.
Case 2: c> F(s∗(M)|β)

11. If it does not admit a solution, let s∗(M)= 0.
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In this case, the voters choose ŝ= ŝc in each responsive equilibrium. The ex-
pected payoff of one voter is given by (3.A.16). Now, we solve the vector pβ
minimizing (3.A.16), satisfying (3.A.10) and (3.A.11).

Define

γ = 1 − F(̂sc|β),

K = π
f (̂sc|α)
f (̂sc|β)

[1 − F(̂sc|α)]M−1(1 − F(̂sc|β)),

Note that only the second part of (3.A.16) depends on pβ . By writing (3.A.11)
as a linear constrain in {p(0,β), ..., p(M,β)}, we are facing a linear programming
problem:

min
{p(0,β),...,p(M,β)}

M
∑

m=0

p(m,β)γm,

s.t
M
∑

m=0

p(m,β) = 1,

M
∑

m=1

p(m,β)γmm = K,

p(m,β) ≥ 0, ∀m ∈ {1, ..., M}.

Note that if the linear programming problem above admits one solution, then it
admits one solution with at most two non-zero entries. Hence, the problem can
be rewritten as

min
n1,n2∈{0,...,M}

p(n1,β)γn1 + p(n2,β)γn2 , (3.A.18)

s.t p(n1,β) + p(n2,β) = 1, (3.A.19)

p(n1,β)γn1n1 + p(n2,β)γn2n2 = K, (3.A.20)

p(n1,β) ≥ 0 and p(n2,β) ≥ 0. (3.A.21)

If we can drop (3.A.21), then we can replace p(n1,β) and p(n2,β) in equation
(3.A.18) by using (3.A.19) and (3.A.20), facing an unconstrained problem. Now,
we try to find a way to drop (3.A.21).

Define mc such that

mc = inf{n|n ∈ {0, ..., M},γnn ≥ K}.

The existence of mc is ensured by the existence of the responsive equilibrium. If mc

does not exist, then the linear programming does not admit one solution, which
means there does not exist any responsive equilibrium.

Since c> F(s∗(M)|β),

π

1 − π
f (̂sc|α)
f (̂sc|β)

�

1 − F(̂sc|α)
1 − F(̂sc|β)

�M−1

< 1.
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Therefore, we have γMM > K.
For any γ ∈ (0, 1), the function γnn is single-peaked in n. We can divide

{0,1, ..., M} to two sets {0, ..., mc − 1} and {mc, ..., M}. If n ∈ {0, ..., mc − 1}, then
γnn< K. If not, then γnn≥ K.

We can drop (3.A.21) by choosing n1 ∈ {0, ..., mc − 1} and n2 ∈ {mc, ..., M}. Re-
place p(n1,β) and p(n2,β) in equation (3.A.18) by using (3.A.19) and (3.A.20).
Finally, we are facing the following problem.

min
n1∈{0,...,mc−1},n2∈{mc,...,M}

g(n1, n2) (3.A.22)

where
g(n1, n2) =

(n2 − n1)γn1+n2 − Kγn1 + Kγn2

γn2n2 − γn1n1
.

Given x ∈ [0, mc − 1] and y ∈ [mc, M],

∂ g(x, y)
∂ x

> 0,

∂ g(x, y)
∂ y

< 0.

Thus, the solution of (3.A.22) and (3.A.18) is n1 = 0 and n2 =M. We can
conclude that the simple equilibrium minimizes the expected payoff of each voter
among all responsive equilibria when c> F(s∗(M)|β).
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