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Abstract

We introduce a novel approach for analysing light-matter interactions within driven-
dissipative environments. Our study centres on the interaction between dye molecule
solutions and photonic cavity modes, mediated by Jaynes-Cummings coupling. These
dye molecules exhibit discrete electronic and rovibrational energy levels influenced
by the surrounding thermal environment imposed by the solvent.

The principal contribution of this work lies in the development of a mapping that
links the discrete-level structure of dye molecules to auxiliary bosons, subject to
an additional operator constraint. This mapping facilitates the application of field
theory methods, particularly leveraging the Schwinger-Keldysh formalism to address
general non-equilibrium scenarios. Especially, this framework allows for the exact
implementation of the operator constraint. It enables us to consider Markovian and
non-Markovian baths coupled to the molecules. Including non-Markovian baths is of
significant importance in achieving thermalisation beyond the occupation of levels
and allowing to imprint the thermal fluctuation-dissipation relation onto the spectra.

The main goal of this work is to investigate the emergence of phase coherence in the
photon field. Our method enables a unified treatment of photon field fluctuations
and coherence dynamics, allowing the spontaneous breaking of the U(1) symmetry
inherent in the Jaynes-Cummings interaction. The large dye reservoir is incorporated
via a simplified Dynamical-Mean-Field Theory leveraging an expansion in the dye
molecule density. We investigate the implications of broken U(1) symmetry in an
open-driven context and validate the corresponding Ward identity in the phase of
the Bose-Einstein condensate. This sheds light on the intricate interplay between
coherence, fluctuations, and symmetry in light-matter coupled systems within
driven-dissipative environments.





Acknowledgements

This thesis would not have been possible without the countless people who supported
me and I want to express my gratitude for their support here.
I want to thank my supervisor, Hans, for the opportunity to work on this fascinating
and challenging topic. His group is full of talented people, and working with them
was an amazing experience. I want to thank here some of them in particular. This
work would not have been possible without my Keldysh-comrades Tim, Francisco
and Michael. The various and long talks and fiddling around with Keldysh/2-
PI/DMFT were invaluable, and I feel this work is the culmination of these. My
thanks also go out to the current photon BEC practitioners, Sayak and Aya. The
discussions about it helped me tremendously to understand the key ingredients. I
also want to thank our equilibrium team, Marvin and Ulli. Discussing Fermions
with you and organising the various lectures was a great pleasure!
The Fachschaft Physik has been my second home over my studies, and seeing it
flourish fills me with joy. Johann Ostmeyer and Kevin Lukas in particular made my
studies so much more enjoyable and insightful.
The experiments in the Weitz group in Bonn are at the heart of this thesis. The
tremendous inside and intuition they have for this system is stunning. I want to
thank here in particular Frank Vewinger, Julian Schmitt and Martin Weitz for the
discussions and explanation of their marvelous experiments. My thanks also go to
my fellow ML4Q colleague Andreas Redmann for the discussions and back-and-forth
bouncing of ideas.
I have been part of the SFB OSCAR now for quite some time and i want to extend
by gratitude to this amazing collaboration. In particular, I want to thank Enrico
Stein and Axel Pelster from Kaiserslautern for the many discussions over the years.
The support from my parents and my brothers over the years was invaluable. A
special thanks goes to my girlfriend Rieka. Without you, I could not have done this.





Contents

Preface 1

I Introduction to the photon BEC 3

1 Fundamentals of the Photon BEC 5
1.1 Thermalisation through the dye medium . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Particle number control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Phase coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Master equation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II Quantum Many-Body Systems out of Equilibrium 19

2 Non-equilibrium Quantum Field Theory 21
2.1 Schwinger-Keldysh formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Lindbladians in path integral representation . . . . . . . . . . . . . . . . . . . . 25
2.3 Influence of interaction in non-equilibrium . . . . . . . . . . . . . . . . . . . . . 29
2.4 Numerical solution of Kadanoff-Baym equations . . . . . . . . . . . . . . . . . . 30

2.4.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Memory truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 2-Particle Irreducible Effective Action 35
3.1 1-PI Effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 2-PI Effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Explicit expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Approximations of 2-PI EA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Ward-Takahashi identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III Auxiliary-Particle Theory 49

4 Auxiliary-Particles Representation 51
4.1 Auxiliary particle projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Renormalisation of physical particles . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Lindblad dynamics with auxiliary particles . . . . . . . . . . . . . . . . . . . . 57
4.4 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Dynamical Mean-Field Theory 63

vii



6 Ward Identity and U(1) Symmetry 67

7 Relation to Cumulant Expansion 69

IV Dynamics in Multi-Mode Cavities 73

8 Summary of the Model 75

9 Molecule Spectra 77
9.1 Molecule spectra with Lindblad bath . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2 Molecule spectra with thermal bath . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Normal Phase Dynamics 83

11 Condensed Phase Dynamics 87
11.1 Strong-coupling regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Conclusion 95

Bibliography 97

Appendix 101

viii



Preface

The study of light-matter interactions is at the heart of modern condensed matter physics. New
experimental platforms are being discovered continuously, moving ever closer to the realm of
Quantum optics. We will focus here on organic materials coupled to light in micro-cavities.
Organic molecules, with their diverse electronic structures and optical properties, offer the
opportunity to study a broad range of phenomena. They can reach from weak to strong coupling,
and from their intrinsic driven-dissipative nature, life at the border between equilibrium and
non-equilibrium. This allows these platforms to show a diverse set of phenomena, from lasers
[1] and photon Bose-Einstein condensates (BEC) [2–4] over exciton-polariton condensates [5, 6]
to single-photon sources [7]. The inherent open nature makes these systems a perfect testing
field for studying the competition of coherent and incoherent processes.

We will focus on dye molecule solutions in a cavity. This system was demonstrated to form
a BEC of light [2]. The dense liquid leads to rapid thermalisation of the dye, imprinting thermal
equilibrium properties onto the emission and absorption spectra of the solution. This translates
to a thermalisation of the emitted light, such that a Bose-distributed photon spectrum can
be observed. The BEC state also shows strong temporal coherence [8]. The emergence of
this coherence has not been tackled in conjunction with the fluctuation spectrum till now.
The incorporation of both of these properties of light in this strongly dissipative system
is theoretically challenging. The large number of matter constituents does not allow for a
treatment with numerically exact methods. On the other side, a rate equation approach is
inherently semi-classical and relies on a classical distribution of photon and matter excitation,
neglecting coherence effects. Additionally, as we will show, non-Markovianity will be necessary
in various places. The central result of this thesis is an auxiliary particle representation of the
driven-dissipative dye molecule solution in a thermal environment. It relies on mapping the
molecule’s discrete-level structure to auxiliary bosons with an additional operator constraint.
This opens up the way to a rich variety of field theory methods, which are not applicable in
the original representation due to the non-canonical commutation relations of the electronic
operators. Within the field theory framework, the constraint can be implemented exactly,
and photon fluctuation and coherence can be treated on the same footing. It allows the
incorporation of Markovian and non-Markovian baths on general and flexible grounds. The
drawback of Markovian baths is that they can not imprint a temperature onto the system. They
can imprint occupation following thermal expectations if the coupling constants are chosen
appropriately. However, they fail to imprint the crucial fluctuation-dissipation relation onto
the system. This relation manifests in the spectra of correlation functions and is responsible
for the Kennard-Stephanov relation between the molecule’s absorption and emission spectra.
Here, the two-time correlators are of particular interest, which the field theory method focuses
on. The coherent photon field emerges with an intricate relation to the two-time correlator
manifesting in the Hugenholtz-Pines relation, which we generalise to open systems.
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The thesis is structured as follows.

In the first chapter, we introduce the experimental setup and a phenomenological explana-
tion of the photon BEC. We will introduce the system’s central Hamiltonian and show how the
often employed master equation approach emerges. Here, we will encounter the central theme
of this thesis, the phase coherence of light, and give the corresponding perspective on it from
the master equation approach.

The second chapter is devoted to field theory methods in non-equilibrium many body sys-
tems. First, the Schwinger-Keldysh formalism will be introduced with a specific focus on bosonic
open quantum systems. We will briefly outline how these systems can be treated numerically,
solving for the two-time Green functions. Here, a central point are the Kadanoff-Baym (KB)
equations involving self-energy kernels for which an adaptive time-stepper is developed. We will
then go on exploring how the self-energies can be constructed in a conserving way. This leads
us to the effective action formalism, where we will focus on the 2-particle irreducible effective
action (2PI-EA). Within this formalism, we discuss relations between the usual Ward identities
and the Ward identities obtained in the 2PI-EA, which will be necessary for later application
to spontaneously broken symmetries.

The third chapter is devoted to the auxiliary particle theory. We introduce the mapping
of the system to auxiliary particles, leading us to the necessity of imposing an operator con-
straint onto the dynamics. We show how this constraint can be implemented in a general
non-equilibrium and open system setting. We discuss the formal consequences of a broken U(1)
symmetry in the photon sector and its influence on the equations of motion. Afterwards, a
resummation technique inspired by Dynamical-Mean-Field-Theory (DMFT) is introduced to
deal with large molecule reservoirs. We further discuss the Ward identities associated with
the broken U(1) symmetry in an open system setup and relate these to the limitation of the
non-crossing approximation (NCA). The chapter is closed with comparisons to the cumulant
expansion approach.

In the fourth chapter, we present results for a multi-mode cavity. We briefly recap all the
processes included in the treatment. Afterwards, we discuss how the molecule spectra are
obtained and contrast Markovian- and non-Markovian couplings to the solvent. It turns out that
a non-Markovian coupling is necessary to implement the Kennard-Stephanov relation between
absorption and emission spectra. We then turn to the discussion of the light in the cavity. First,
we look at the photon dynamics in the normal state and show the thermalisation of the photon
spectra. Here, two regimes are discussed. A pre-thermal stage shows the fluctuation-dissipation
relation between the photon correlators but at an elevated temperature and a less dissipative
thermal state, thermalising close to the temperature of the dye-reservoir.
We then turn to the condensed state. The condensate emerges energetically close below the
fluctuation spectrum. Its energy is compared via Ward-identity, and the phases are analysed.
The calculation necessarily includes anomalous photon propagators, which we will analyse
afterwards. We close with a short discussion on the strong coupling regime.
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Part I

Introduction to the photon BEC
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Chapter 1

Fundamentals of the Photon BEC

The phenomenon of Bose-Einstein condensation (BEC) was for a long time believed to be
reserved for massive particles. Already predicted in 1924-1925 by Einstein [9] applying the
key insights of Bose on massive particles, it still took until 1995 [10] [11] to realise a BEC
of massive bosons in an atomic gas. This triggered a rapid development such that quickly
afterwards, various exotic atoms could be condensed, and even the BCS-BEC [12] crossover
could be realised in 2005. Despite many fundamental concerns, in 2010 also, a BEC of photons
could be realised by [2]. It is far from obvious that it is even possible to condense photons
into a BEC state. In the case of massive bosons, the condensation is driven by a statistical
enhancement due to the way how microstates are counted. It suppresses large spreads of the
distribution of single-particle states. This leads to the famous Bose distribution, which in
thermal equilibrium describes the particle number distribution by

b(ω) =
1

eβ(ω−µ) − 1
, (1.1)

where ω is the energy of the state and µ is the chemical potential. One of the key features of
the distribution is the divergence for energies at µ. The reason why the chemical potential
can be added in the first place is due to the conservation of the number of massive bosons. In
this way, µ controls the total particle number given in a continuum limit by a density of states
integral

N = N0 +

∫
dωρ(ω)b(ω) = N0 +Nex . (1.2)

Here, Nex is the number of particles above the ground state. In the continuum limit, the
density of states at the ground state energy has zero measure. Therefore, if the ground state
is not macroscopically degenerate, the occupation of the ground state N0 needs to be added
by hand. The formation of a BEC can be understood from here as follows. Increasing the
chemical potential µ adds particles to the system, which distribute over the states of the system
following the Bose distribution. But if the integral for the excited states Nex is finite for µ = 0,
the occupation of these excited modes will saturate, and further increasing the particle number
will occupy the ground state. Therefore, in the limit of large particle numbers, the ground
state occupation will be of the order of the total particle number, which is then called a BEC.
Note that this can also be achieved by tuning the temperature. It allows for a description in
terms of either a critical particle number at a constant temperature or a critical temperature
at a constant particle number. The requirement that Nex(µ = 0) is finite is a condition on
the density of states to vanish fast enough at the ground state energy. It also entails that
the ground state is not macroscopically degenerate. The density of states of free particles in
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dimensions D > 2 allows for a BEC to form. In trapped gasses [13], the density of states
changes due to the trapping potential, e.g. for harmonically trapped gases also in D = 2, a
BEC in the thermodynamics limit can be formed. In the resulting state, essentially all particles
occupy the same single-particle wavefunction. This led Gross [14] and Pitaevskii [15] to the
equations of motion of this single particle wavefunction, the Gross-Pitaevskii equation. As a
key feature, it explicitly describes the BEC as a coherent wavefunction of the particle in the
condensate. Photons are different in various regards from massive bosons. Most importantly,
for the present case, their particle number is not conserved since they are gauge bosons of the
electromagnetic force. The profound consequence of this is that no chemical potential can be
added and the temperature determines the particle number. This leads to black body radiation
[16] and a particle number scaling of N ∝ T 3. Photons also do not directly interact with each
other, unlike massive bosons. Therefore, the thermalisation process is vastly different. Where
in the case of massive bosons collisions lead to thermalisation, it is emission and absorption
processes with a thermal reservoir leading to a thermal distribution of light in the black body
case. This process is not photon number conserving due to the conversion. These issues are
intimately linked since the heat bath and the particle bath are the same. Disentangling these
baths is the major challenge in achieving photon condensation.
This leads to three main requirements that need to be met to create a photon BEC: a thermali-
sation process that conserves photon number; a mechanism acting like a chemical potential,
which allows for tuning the photon number independent of temperature; and, thirdly, a density
of states allowing for the formation of a BEC. All these criteria could be attained by [2] in an
optical microcavity filled with a fluorescent dye medium.

Figure 1.1: Scheme of the experimental setup.
The trapping potential V (x, y) for the two-
dimensional photon gas imposed by the curved
mirrors. [2]

Figure 1.2: Spectral intensity distribution [2].

The experimental setup can be seen in Fig. 1.1.
This system uses a microcavity with two
curved mirrors to impose an effective har-
monic potential onto the photon states. The
longitudinal wavenumbers give a natural low-
energy cut-off, on top of which the transversal
modes are energetically equally spaced due to
the harmonic potential. A dye solution is filled
between the mirrors and kept at room tem-
perature. It serves as a thermalising medium
and a means through which the photons can
be injected into the cavity modes. The dye is
pumped via an external laser, which is blue
detuned wrt. to the cavity modes and enters
the cavity at a 45◦ angle. This prevents the
cavity modes from being directly populated
by the pump laser. Due to the strong reser-
voir coupling of the dye liquid, it thermalises
rapidly so that the emitted photon spectrum
is thermally distributed, as seen in Fig. 1.2.
Upon reaching a critical pump strength and
with this a critical particle number, the lowest
transversal mode developed a peak, indicating
the onset of BEC. In the following, we will de-
tail how this setup meets the aforementioned
requirements.
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1.1 Thermalisation through
the dye medium

Figure 1.3: Franck–Condon principle energy di-
agram. The minima of the electronic potentials
are shifted wrt. to each other. The rovibrational
states involved in the absorption and emission
are those that correspond to a minimal change
in the nuclear coordinates and, therefore, most
spatial overlap (adapted from [17]) .

Figure 1.4: Absorption and fluorescence spec-
trum of rhodamin 6G [18].

The key ingredient for a number conserving
thermalisation process are the dye molecules,
in the present case mostly rhodamine 6G [2].
The dye is dissolved in a solvent, which is
optically transparent at the cavity modes and
minimises non-radiative losses [1], achieving a
quantum efficiency of around 95%. The solu-
tion is kept at room temperature of T ≈ 300
K. Even though tremendously complicated in
the details, the physical picture of the dye
molecules can be understood by the Franck-
Condon principle, see Fig. 1.3. Here, we con-
sider two electronic states, each having a vibra-
tional substructure, which might be approx-
imated by a harmonic oscillator around its
respective minimum. By absorbing a photon,
the electronic state changes abruptly from its
ground state to its excited state. The process
is so fast that the position of the heavy nuclei
does not change, so in the new electron config-
uration, it is not in the equilibrium position of
the excited state oscillator. Higher vibrational
modes are excited by this transition, namely
the one with the most spatial overlap to the
initial vibration configuration. In a dense
medium, this excited vibrational state relaxes
quickly due to collisions to the new equilib-
rium position, so the lowest vibrational state
[19]. The transition to the electronic ground
state follows the same principle: the vibration
configuration of the ground state with the
most overlap with the vibration ground state
of the excited electronic state. Here again, the
equilibrium position changes and then relaxes
back to the original ground state configura-
tion. Transitions are most likely for wave
functions of the initial and final states having
a significant overlap at the atomic positions
in the instant of absorption. This creates a
symmetry between absorption and emission, where the initial and final vibrational states are
interchanged. These processes result in an average conservation of the photon number but a
net loss of photon energy between absorption and emission, the Stokes shift, giving rise to a
characteristic shape of absorption and fluorescence spectra, e.g. for rhodamine 6G Fig. 1.4.
This energy shift can be expressed by the sum rule of the frequency of the photon Ω, the
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frequency of the vibrations ω and the electronic level splitting ∆ as

Ω+ ngω = ∆+ neω .

If the relaxation of the vibrational state happens as fast as assumed, the thermal occupations
of the phonons state in the respective electronic states ne/g must be related by ng/ne = eβδ,
with the detuning δ = Ω−∆. In this case, the Kennard-Stepanov relation 1 for absorption and
fluorescence spectra follows

Babs(δ)

Bem(δ)
= eβδ . (1.3)

This relation usually holds around to the zero phonon line, at a detuning δ = 0, but might be
violated at larger detuning, strong coupling or when relaxation is not rapid enough to thermalise
the vibrations in the excited state.

1.2 Particle number control
The control of the photon number inside the cavity can be understood from a rate equation
approach, considering the molecules as effective two-level systems. Here molecules emit and
absorb photons with a rate Bem and Babs respectively in a process

γ + g 
 e

Additionally, the molecules are pumped by an external laser with a rate Γ↑. The pump laser
is blue-detuned to the cavity modes, so it can not directly populate them. Processes which
lead to a loss of molecule excitations are described by Γ↓. Either they decay non-radiatively or
emit out of the cavity. The cavity modes themselves couple out of the cavity with a rate κ due
to the finite reflectivity of the mirrors. This leads us to rate the equation for the number of
excited molecules Me and a single photon mode occupation n as

∂tMe = Γ↑Mg − Γ↓Me +BabsMgn−BemMe(n+ 1) (1.4)
∂tn = −κn+BemMe(n+ 1)−BabsMgn (1.5)

In a steady state, we can compute the photon occupation as

n =
1

κ
BemMe

+
BabsMg

BemMe
− 1

. (1.6)

If we work in a regime where BemMe � κ, so the emission rate is far larger than the cavity loss,
we might use the Kennard-Stepanov relation to define a chemical potential for the photon by

BabsMg

BemMe
= eβ(δ−µ) with µ = −kBT log(Mg/Me) . (1.7)

The ratio of ground and excited state molecules can be obtained from the steady state as
Mg

Me
=

Γ↑ +Babsn

Γ↓ +Bem(n+ 1)
. (1.8)

With this, the chemical potential depends on the pump rate and the photon occupations inside
the cavity. From here, we conclude that the photon occupation follows a Bose distribution with
a chemical potential which can be tuned independently of the temperature via the pump rate.

n =
1

eβ(δ−µ) − 1
.

1For simplicity, we assume here the same vibration structure in the ground and excited state.
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1.3 Density of states
The light is trapped in a cylindrical microcavity, which dispersion relation in the presence of
the dye solution [20] is given by

ωk =
c

n

√
k2r + k2z(r) .

Here, the longitudinal wavenumber is given by kz(r) = πq/D(r) with D(r) being the distance
between the mirror as a function of the radial coordinate on the mirror. For a symmetric
spherical cavity with curvature R it is given by D(r) = D0 − 2(R−

√
R2 − r2). Experimentally,

the curvature is far larger than the radial coordinate R� r and therefore D(r) ≈ D0 − r2/R.
Additionally the mirror are rather far apart such that D0 � r2/R, so that we can use
kz(r) ≈ πq

D0
(1 + r2

RD0
). This allows us to write the dispersion relation in paraxial approximation

as

~ωk = ~
c

n
kz

√
1 +

k2r
k2z

≈ ~
c

n
kz +

1

2

c~
n
k2r

1

kz
≈ ~

c

n

πq

D0
(1 +

r2

RD0
) + ~

1

2

c

n
k2r

1

πq
(D0 −

r2

R
)

≈
(
c

n

)2 ~πqn
cD0

+
1

2

~πqn
cD0

2c2

n2RD0
r2 +

1

2

(
~πqn
cD0

)−1

~2k2r (1.9)

We already suggestively ordered the expression so that we can define m = ~πqn
cD0

and Ω =
√

2c2

n2RD0

to obtain

~ωk = m

(
c

n

)2

+
1

2
mΩ2r2 +

~2k2r
2m

. (1.10)

It emerges that the dispersion is equivalent to a particle with mass m in a two-dimensional
harmonic trap with frequency Ω. The energy spectrum can be written in terms of transversal
quantum numbers nx,y as

ω = Ω(nx + ny + 1) + ω0 . (1.11)

The energies are linearly degenerate, and the density of states above the ground state energy
in a continuum limit is given by ρ(ω) = 1

~Ωω/Ω. It vanishes linearly for ω → 0, allowing the
particle number integral to be finite. A simple estimate of the critical particle number can be
given by

Nc ≈ 2

∫ ∞

0
dωρ(ω)b(ω) = 2

(
kBT

~Ω

)2 π2

6
(1.12)

The factor of two comes from the two independent polarisations of the photon.
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1.4 Phase coherence

Figure 1.5: Overview of the experimental setup. From the emission out of the dye-filled
micro-resonator, the condensate mode is filtered and, after a polariser, overlapped with the laser
reference. The resulting beat signal is detected on a photomultiplier tube (PMT). Simultaneously,
radiation transmitted through the second cavity mirror at the reverse side is used to record
spectra of the photon gas. [8]

Figure 1.6: Temporal interference signals be-
tween photon condensate and reference laser in
the canonical regime. (Adapted from [8] ).

We have shown how a Bose distribution
for the photon number spectrum arises from
a phenomenological rate equation approach.
When reaching the BEC regime, the system is
expected to form a macroscopically occupied
wavefunction in its ground states. This wave-
function has a spontaneously chosen random
phase for each experimental realisation but
should have a fixed phase in a single experi-
mental run.
This has been experimentally investigated in [8]. The setup is shown in Fig. 1.5. The light from
the cavity is spatially filtered to isolate the ground mode contribution and interfered with a
reference laser. The signal is then detected with a photomultiplier tube. If the light coming
from the cavity is coherent, beating signals should be observable. These beating signals have
been observed in different regimes. In Fig. 1.6, the result in the canonical regime is shown.
This regime is realised at larger detuning from the zero phonon line and is characterised by a
larger photon number and a smaller number of excited molecules. This makes particle exchange
small and reduces number fluctuation in the photon system. A steady beating signal could be
observed, indicating that the ground mode is coherent.

This experiment shows that the light from the BEC has a classical electric field with a stable
phase. From the canonical quantisation of light [21], one obtains the electric field operators2

for a mode with wavefunction ψk(x) as

Êk(x, t) ∝ ∂t

[
ψk(x)ak(t) + ψ∗

k(x)a
†
k(t)

]
. (1.13)

Therefore, if the observed light has a macroscopically well-defined electric field, it implies that
〈Ê(t)〉 6= 0 and therefore also 〈ak(t)〉 6= 0. This expectation value requires breaking the U(1)
symmetry of the photons. Its description will be the primary goal of this thesis.

2For simplicity, we drop the polarisation degree of freedom here.
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1.5 Master equation approach
In this section, we will examine a widely used method to describe the system. Until now, most
theory work on the photon BEC was done using a Markovian master equation approach. A few
of the most relevant works in the present context are [22], [23], [24], [25]. Within this approach,
the formation of a Bose distribution in the photon numbers could successfully be described,
and various non-trivial phases and properties could be uncovered. Nevertheless, within this
approach, the question of phase coherence demonstrated in [8] was not tackled before. Here,
we want to review the essential steps in constructing the master equation and the treatment of
the resulting equations of motion of the observables of interest. We especially want to see what
this approach can tell us about the phase-coherent photon field.
We will start out with the Holstein-Tavis-Cummings model used in [23]

H =
∑
k

δka
†
kak + γ

∑
i,k

(
a†kσ

−
i + akσ

+
i

)
+

M∑
i=1

ω
[
b†ibi + sσzi (b

†
i + bi)

]
. (1.14)

We consider here a microcavity filled with M dye molecules. The energy difference between
the photon modes and the 2-level splitting is the detuning δk. The molecules interact with the
cavity modes via a Jaynes-Cummings interaction, which is the reason why we can write the
energy of the two-level system and the photons just in terms of the detuning. The dye has
various rovibrational modes. We assume we can treat them in the harmonic limit so that they
can be modelled by a harmonic oscillator with operator bi. Nevertheless, the minima of the
electronic potentials from which we extract the oscillators in the electronic states are different.
This is reflected in the last term. The oscillator part σzi (b

†
i +bi) ∝ σzi x̂i gives the displacement of

the minima with a different sign between electronic ground and excited state. The displacement
is parameterised by the Huang-Rhys factor s2. It will lead to the characteristic shift between
emission and absorption spectra. So, light is usually emitted at lower energies as it is absorbed.
To proceed, we diagonalise the molecule part of the Hamiltonian via the Polaron transformation

Ui(s) = exp
(
sσzi (b

†
i − bi)

)
. (1.15)

It is a shift of the oscillator minima to the origin. Consequently, the shift will appear in
the interaction term with the photons, with an addition factor of two in the shift parameter
reflecting that ground and excited state oscillators were separated symmetrically from the
origin. This leads us, up to a constant, to the transformed Hamiltonian

H′ =
∑
k

δka
†
kak +

∑
i

ωb†ibi + γ
∑
k,i

(
D†

i (s)a
†
kσ

−
i +Di(s)akσ

+
i

)
(1.16)

with Di(s) = exp
(
2s(b†i − bi)

)
.

We assume that the phonons thermalise rapidly after absorption of a photon and emit from
an equilibrium phonon distribution. To implement this approximation, we transform into an
interaction picture wrt. the free photon and phonon part and obtain the von Neumann equation
in the interaction picture as

ρI(t) = eiH0tρe−iH0t ⇒ i∂tρI(t) = [V (t), ρI(t)] (1.17)

where we used

V (t) = γ
∑
k,i

(
D†

i,c(t)a
†
k(t)σ

−
i (t) +Di,c(t)ak(t)σ

+
i (t)

)
with Di,c(t) = Di(t)− 〈Di〉B .

(1.18)
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To apply the Born approximation, we expand to the second order in V , obtaining

i∂tρI(t) = [V (t), ρI(0)]− i

∫ t

0
dt′[V (t), [V (t′), ρI(t

′)]] . (1.19)

The phonons are now treated as a bath in equilibrium, so the density matrices fractorise
ρ(t) = ρs(t)⊗ρB and ρB is thermal. This can be done for each molecule individually. Therefore,
we drop the molecule index for the moment. With this assumption, we can perform the partial
trace of the phonon degrees of freedom, leading us to

i∂tρs(t) = trB{[V (t), ρ(0)]} − i

∫ t

0
dt′trB{[V (t), [V (t′), ρ(t′)]]} (1.20)

The first-order vanishes, and the second-order contributions are generated by

trB{[V (t), [V (t′), ρ(t′)]]} = γ2trB{D†
c(t)a

†
k(t)σ

−(t) +Dc(t)ak(t)σ
+(t) (1.21)

, [D†
c(t

′)a†k′(t
′)σ−(t′) +Dc(t

′)ak′(t
′)σ+(t′), ρ(t′)]]} (1.22)

This factors into three distinct contributions as

[D†
c(t)a

†
k(t)σ

−(t), [Dc(t
′)ak′(t

′)σ+(t′), ρ(t′)]] + [Dc(t)ak(t)σ
+(t), [D†

c(t
′)a†k′(t

′)σ−(t′), ρ(t′)]]

+[D†
c(t)a

†
k(t)σ

−(t), [D†
c(t

′)a†k′(t
′)σ−(t′), ρ(t′)]] + [Dc(t)ak(t)σ

+(t), [Dc(t
′)ak′(t

′)σ+(t′), ρ(t′)]]

The first line is responsible for the usual emission and absorption processes. The second line
contains anomalous contributions, which are conjugate to each other. We go now through each
of these terms separately and collect their contribution. For the first term, we find

a†k(t)σ
−(t)ak′(t

′)σ+(t′)ρs(t
′) 〈D†

c(t)Dc(t
′)〉B − ak′(t

′)σ+(t′)ρs(t
′)a†k(t)σ

−(t) 〈D†
c(t)Dc(t

′)〉B
−a†k(t)σ

−(t)ρs(t
′)ak′(t

′)σ+(t′) 〈Dc(t
′)D†

c(t)〉B + ρs(t
′)ak′(t

′)σ+(t′)a†k(t)σ
−(t) 〈Dc(t

′)D†
c(t)〉B

We now employ the Markov approximation to pull system operators acting at t′ out of the
remaining time integral. By this, we set the processes as instantaneous on system time scales.
This has to be done by factoring fast time scales out of photons and electronic states. Here
namely the detuning δk and electronic pump Γ↑ and loss processes Γ↓. Techniquely this
is done as a(t′) = e−iδt′a = e−iδ(t′−t)a(t) and σ±(t′) = e−(Γ↑+Γ↓)/2|t−t′|σ±(t) 3. After this
transformation, all integrals can be extended to infinity due to scale separation to the phonon
bath. The bath correlation function are only dependent on relative time τ = t − t′ and we
define them by D>(t, t′) = 〈Dc(t)D

†
c(t′)〉B and D<(t, t′) = 〈D†

c(t′)Dc(t)〉B leading us to[
a†k(t)σ

−(t)ak′(t)σ
+(t)ρs(t)− ak′(t)σ

+(t)ρs(t)a
†
k(t)σ

−(t)
] ∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τD<(−τ)

+
[
ρs(t)ak′(t)σ

+(t)a†k(t)σ
−(t)− a†k(t)σ

−(t)ρs(t)ak′(t)σ
+(t)

] ∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τD>(−τ)

We now proceed with the other terms in the same approximation. The second term is given by

ak(t)σ
+(t)a†k′(t

′)σ−(t′)ρs(t
′) 〈Dc(t)D

†
c(t

′)〉B − a†k′(t
′)σ−(t′)ρs(t

′)ak(t)σ
+(t) 〈Dc(t)D

†
c(t

′)]〉B
−ak(t)σ+(t)ρs(t′)a†k′(t

′)σ−(t′) 〈D†
c(t

′)Dc(t)〉B + ρs(t
′)a†k′(t

′)σ−(t′)ak(t)σ
+(t) 〈D†

c(t
′)Dc(t)〉B

3The transformation for the Pauli matrices into an dissipative interaction picture is non-trivial and generally
not possible [26], but will be justified by later comparison to another approach.
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Applying the same approximations as before, we obtain[
ak(t)σ

+(t)a†k′(t)σ
−(t)ρs(t)− a†k′(t)σ

−(t)ρs(t)ak(t)σ
+(t)

] ∫ ∞

0
dτeiδk′τe−

Γ↑+Γ↓
2

τD>(τ)

+
[
ρs(t)a

†
k′(t)σ

−(t)ak(t)σ
+(t)− ak(t)σ

+(t)ρs(t)a
†
k′(t)σ

−(t)
] ∫ ∞

0
dτeiδk′τe−

Γ↑+Γ↓
2

τD<(τ)

The third term is given by

a†k(t)σ
−(t)a†k′(t

′)σ−(t′)ρs(t
′) 〈D†

c(t)D
†
c(t

′)〉B − a†k′(t
′)σ−(t′)ρs(t

′)a†k(t)σ
−(t) 〈D†

c(t)D
†
c(t

′)〉B
−a†k(t)σ

−(t)ρs(t
′)a†k′(t

′)σ−(t′) 〈D†
c(t

′)D†
c(t)〉B + ρs(t

′)a†k′(t
′)σ−(t′)a†k(t)σ

−(t) 〈D†
c(t

′)D†
c(t)〉B

Applying now the same approximations with F(t, t′) = 〈Dc(t)Dc(t
′)〉B we arrive at tremendously

simplified expression since (σ±(t))2 = 0.

− a†k′(t)σ
−(t)ρs(t)a

†
k(t)σ

−(t)

∫ ∞

0
dτeiδk′τe−

Γ↑+Γ↓
2

τF ∗(−τ)

− a†k(t)σ
−(t)ρs(t

′)a†k′(t)σ
−(t)

∫ ∞

0
dτeiδk′τe−

Γ↑+Γ↓
2

τF ∗(τ)

The fourth term is given as

ak(t)σ
+(t)ak′(t

′)σ+(t′)ρs(t
′) 〈Dc(t)Dc(t

′)〉B − ak′(t
′)σ+(t′)ρs(t

′)ak(t)σ
+(t) 〈Dc(t)Dc(t

′)〉B
−ak(t)σ+(t)ρs(t′)ak′(t′)σ+(t′) 〈Dc(t

′)Dc(t)〉B + ρs(t
′)ak′(t

′)σ+(t′)ak(t)σ
+(t) 〈Dc(t

′)Dc(t)〉B

After the same approximations, we are left with

− ak′(t)σ
+(t)ρs(t)ak(t)σ

+(t)

∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τF(τ)

− ak(t)σ
+(t)ρs(t)ak′(t)σ

+(t)

∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τF(−τ)

The explicit expressions for the correlators D and F can be found in the appendix. They
depend on the specific phonon model used, but the expressions should cover many possible
models. With this at hand we define now K(δ) and P (δ) as

K(δ) = γ2
∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τD>(τ) = γ2
∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τD<(−τ) (1.23)

P (δ) = γ2
∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τF(τ) = γ2
∫ ∞

0
dτe−iδk′τe−

Γ↑+Γ↓
2

τF∗(−τ) (1.24)

We can now collect all contributions as[
a†k(t)σ

−(t)ak′(t)σ
+(t)ρs(t)− ak′(t)σ

+(t)ρs(t)a
†
k(t)σ

−(t)
]
K(δk′)

+
[
ρs(t)a

†
k′(t)σ

−(t′)ak(t)σ
+(t)− ak(t)σ

+(t)ρs(t)a
†
k′(t)σ

−(t)
]
K∗(δk′)

+
[
ρs(t)ak′(t)σ

+(t)a†k(t)σ
−(t)− a†k(t)σ

−(t)ρs(t)ak′(t)σ
+(t)

]
K∗(−δk′)

+
[
ak(t)σ

+(t)a†k′(t)σ
−(t)ρs(t)− a†k′(t)σ

−(t)ρs(t)ak(t)σ
+(t)

]
K(−δk′)

−a†k′(t)σ
−(t)ρs(t)a

†
k(t)σ

−(t)(P (δk′) + P ∗(−δk′))∗ − ak′(t)σ
+(t)ρs(t)ak(t)σ

+(t)(P (δk′) + P ∗(−δk′))
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Splitting this in real and imaginary parts and assuming spatially orthogonal photon modes, we
can drop k 6= k′ terms and obtain[

a†k(t)σ
−(t)ak(t)σ

+(t)ρs(t) + ρs(t)a
†
k(t)σ

−(t′)ak(t)σ
+(t)− 2ak(t)σ

+(t)ρs(t)a
†
k(t)σ

−(t)
]

ReK(δk)

+
[
ρs(t)ak(t)σ

+(t)a†k(t)σ
−(t) + ak(t)σ

+(t)a†k(t)σ
−(t)ρs(t)− 2a†k(t)σ

−(t)ρs(t)ak(t)σ
+(t)

]
ReK(−δk)

+i
[
a†k(t)ak(t)Pgρs(t)− ρs(t)a

†
k(t)ak(t)Pg(t)

]
ImK(δk)

+i
[
ak(t)a

†
k(t)Peρs(t)− ρs(t)Peak(t)a

†
k(t)

]
ImK(−δk)

−ak(t)σ+(t)ρs(t)ak(t)σ+(t)(P (δk) + P ∗(−δk))− a†k(t)σ
−(t)ρs(t)a

†
k(t)σ

−(t)(P (δk) + P ∗(−δk))∗

The first two lines give us the emission and absorption processes in Lindblad form, and the
third and fourth lines are contributions to the Hamiltonian, the Lamb-shift. The fifth line has
not been mentioned in the literature until now and only contributes in the coherent photon
phase.
The third and fourth lines might be written as

i
[
a†k(t)ak(t)Pgρs(t)− ρs(t)a

†
k(t)ak(t)Pg(t)

]
ImK(δk)

+ i
[
ak(t)a

†
k(t)Peρs(t)− ρs(t)Peak(t)a

†
k(t)

]
ImK(−δk)

=i
[
a†k(t)ak(t)Pgρs(t)− ρs(t)a

†
k(t)ak(t)Pg(t)

]
(ImK(δk)− ImK(−δk))

+ i
[
a†(t)k(t)ak(t)ρs(t)− ρs(t)a

†(t)kak(t)
]

ImK(−δk) + i
[
Peρs(t)− ρs(t)Pe

]
ImK(−δk)

The last two terms contribute to a Hamiltonian term ∆H = ImK(−δk)Pe + ImK(−δk)a†a. We
can gauge these contributions and have as the sole Hamiltonian part

δH = Im(K(δk)−K(−δk))a†kakPg

We can now transform back into the Schrödiger picture and restore the molecule index to obtain
the Lindblad master equation.

∂tρ(t) =− i[H̃, ρ] +
∑
k

κ

2
L[ak] +

∑
i

[
Γ↑
2
L[σ+i ] +

Γ↓
2
L[σ−i ] +

γφ
2
L[σzi ]

]
(1.25)

+
∑
k,i

[
Bem(δk)

2
L[a†kσ

−
i ] +

Babs(δk)

2
L[akσ+i ]

]
(1.26)

+
∑
k,i

[
α(δk)akσ

+
i ρakσ

+
i + α∗(δk)a

†
kσ

−
i ρa

†
kσ

−
i

]
(1.27)

with H̃ =
∑
k

(δk + ηkPg)a
†
kak +

∑
i,k

γβ(a
†
kσ

−
i + akσ

+
i ) and L[X] = 2XρX† − {X†X, ρ}

The coupling constants are given by ηk = ImK(δk) − Im(K(−δk)), γβ = γ 〈D〉B, Bem =
2Re(K(δk)), Babs = 2Re(K(−δk)) and α(δk) = P (δk) + P ∗(−δk). An example of emission and
absorption spectra obtained using K(δ) can be seen in Fig. 1.7 taken from [24]. Furthermore,
κ is the cavity loss, and γφ is the dephasing of the molecules due to collisions.
The master equation obtained in [22] contains the Lindblad emission and absorption parts and
was extended by the renormalisation of the coherent coupling in [24]. The last term, coupling
via α, was not shown before but does not alter any of the results obtained by these authors
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Figure 1.7: Absorption and emission spectra obtained by [24] using K(δ) from eq. (11.5) with
a super Ohmic phonon density of states.

since it only couples to U(1) variant averages, which were not analysed before.
We can use this master equation to obtain the Markovian equation of motion for averages. For
this, we use the fact that the molecules are uncorrelated and, therefore, averages of operators
on different molecules factorise. Using this, we treat every molecule in the same way and drop
the index, introducing the factor M for the molecule number. We aim here to describe the
coherent and incoherent parts of the photons. This requires breaking the U(1) symmetry of the
photons, which has been discarded in the studies until now. The argument for this is that the
phase will be randomly selected in each experimental run and average to zero when averages
are performed over many experimental realisations. Here, we take a different perspective and
focus on one specific phase to see if the system supports a state with a finite coherent field.

Technically, the equations of motion for the observables are generated from

∂t 〈A(t)〉 = tr
[
(∂tρ(t))A

]
. (1.28)

This usually generates a large set of averages on the rhs. for which also equations of motion
must be obtained. However, the so-generated set of equations does not close, and trunca-
tions must be applied. A cumulant expansion of the expectation values can achieve this
[27]. Technically the averages are decomposed in cumulants as 〈AB〉 = 〈AB〉c + 〈A〉 〈B〉 and
〈ABC〉 = 〈ABC〉c + 〈AB〉c 〈C〉 + 〈AC〉c 〈B〉 + 〈BC〉c 〈A〉 + 〈A〉 〈B〉 〈C〉. The higher-order
cumulants are then dropped at some point to close the set of equations.

We will simplify our setup to get some insight into the mechanisms involved. We focus on a
single photon mode and drop the Lamp-shift as also the term proportional to α. None of the
conclusions drawn hereafter are altered by including them.

It is worthwhile to first look back again at the phenomenological rate equation we used
before. These can be obtained from the master equation by only considering the averages
n = 〈a†a〉 and Me = 〈σ+σ−〉.

∂tn = −κn+BeMe(n+ 1)−Ba(M −Me)n (1.29)
∂tMe = Γ↑M − (Γ↑ + Γ↓)Me −BeMe(n+ 1) +Ba(M −Me)n . (1.30)

Let us compute the steady state. We express the excited state molecule number through the
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photon number by

Me =
Γ↑M − κn

Γ↑ + Γ↓
= Γ̄↑M − κ̄n with Γ̄↑ =

Γ↑
Γ↑ + Γ↓

κ̄ =
κ

Γ↑ + Γ↓
. (1.31)

This leads us to a quadratic equation for the photon number as

cn2 − bn− a = 0 ⇒ n =
b

2c
+
√
(b/2c)2 + a/c = na +

√
n2a + n2b (1.32)

a = BeΓ̄↑M , b = −κ+BeΓ̄↑M −Beκ̄−BaM + Γ̄↑MBa , c = κ̄(Be +Ba) (1.33)

na =
Γ↑(BeM − κ)− Γ↓(BaM + κ)− κBe

2κ(Be +Ba)
, n2b =

BeΓ↑M

κ(Be +Ba)
(1.34)

At large molecule numbers, the photon number has two distinct regimes, which differ in the
sign of na. For large negative na and small κ, one obtains

n = na + |na|
√
1 + n2b/n

2
a ≈

n2b
2|na|

≈ Γ↑
Be

|Γ↑Be − Γ↓Ba|
(1.35)

which does not scale with the molecule number. For large positive na, one obtains

n ≈ 2na ≈M
Γ↑
κ

Be

Be +Ba
. (1.36)

In this regime, the photon number scales with the molecule number, leading to a sharp rise
in the photon number when the pump rate is increased. This is at the root of the behaviour
uncovered in the more sophisticated multi-mode setup in [22].

Let us now include the phase coherent photon field. Just adding its equations of motion
additional to (1.29) and (1.30) will lead to an equation of motion of 〈a〉, which is similar to the
whole photon number but misses spontaneous emission. Therefore, in the longtime limit, 〈a〉
will vanish, and no steady state with a finite value can be obtained. The minimal set of averages,
which allows for a finite coherent part in the steady state, can be achieved by including 〈σ−〉.
With 〈a〉 = ϕ, 〈a†a〉c = nc and 〈σ−〉 = χ the equations of motion obtained from the master
equation are

∂tnc =BeMe +
[
−κ+BeMe −Ba(M −Me)

]
nc (1.37)

∂tϕ =− iδϕ− iγβMχ+
1

2

[
−κ+BeMe −Ba(M −Me)

]
ϕ (1.38)

∂tχ =− iγβϕ(M − 2Me)−
[
(Γ↑ + Γ↓) +Banc +Be(nc + 1) + (Be +Ba)|ϕ|2

]
χ/2 (1.39)

∂tMe =− iγβM
[
ϕχ∗ − ϕ∗χ

]
+
[
Ba(M −Me)−BeMe

]
|ϕ|2

+ Γ↑M − (Γ↑ + Γ↓)Me +Ba(M −Me)nc −BeMe(nc + 1) (1.40)

We look now for a steady-state solution for the densities |Ψ|2 and |χ|2.
One quickly arrives, using (1.37) at

BeMe

Mnc
|ϕ|2(2Me −M) =

[
(Γ↑ + Γ↓) +Banc +Be(nc + 1) + (Be +Ba)|ϕ|2

]
|χ|2 (1.41)

The rhs. is positive. Therefore, a condition for a finite phase coherent part is (2Me −M) > 0.
This condition is not altered when all second-order cumulants and the term proportional to α
are included. This is the usual population inversion criterium obtained in lasers. If population
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inversion is not possible, the transition in the phenomenological rate equations still exists.
Therefore, the transition found here is likely a laser transition, not a BEC transition. However,
the experiments operate far from population inversion.

Another odd property is that the density of phase-coherent photons is explicitly dependent
on the square of the detuning, so it does not contain information about the sign. This hints
at a possible reason why the rate equations lead to odd results for phase-coherent averages.
In performing the Markov approximation, one assumes that the bath is unstructured on all
energy scales of the system. This reduces the complicated molecule dynamics to Marko-
vian two-level dynamics. Therefore, energetically, the photons see a single two-level system
with a fixed energy. Nevertheless, the vibrational bath is structured and has states at large
detuning, which the photons interact with. This leads to a scenario closer to a multi-level system.

In the rest of this thesis, we will develop a formalism to explain the observed phase coherence.
We incorporate the phonon dynamics in a non-Markovian way, keeping as many spectral and
memory effects as possible. For this, we will need various field theoretical tools, which we will
introduce in the following chapter.
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Part II

Quantum Many-Body Systems out of
Equilibrium
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Chapter 2

Non-equilibrium Quantum Field
Theory

2.1 Schwinger-Keldysh formalism
A natural approach to non-equilibrium physics is the Schwinger-Keldysh formalism, which is
most easily implemented in the path integral formalism. It allows us to treat general systems as
open and driven quantum systems. We follow here essentially [28] and [29]1. The key ideas can
most easily be motivated by considering how a quantum average of a time-dependent operator
is computed. For the moment, let us consider a Hamiltonian system prepared in an arbitrary
initial state ρ(t0). The time-dependent average of an operator A is then given by

〈A(t)〉 = tr(U(t0, t)AU(t, t0)ρ(t0)) (2.1)

Reading the expression from right to left, the initial state is time evolved from t0 to the time
t at which the operator A is applied, and then time evolved back to the initial time t0. The
forward- and backward-time evolution appearing here is the crucial idea, which should also be
reflected in the time-slicing procedure used to derive a path integral.

We will be interested in bosonic many-body systems and specialise to this case here. They
can be described by canonically commuting creation b† and annihilation operators b. The path
integral representation is then set up using coherent states as a basis defined by their eigenvalue
equations

b |φ〉 = φ |φ〉 , 〈φ| b† = φ∗ 〈φ| . (2.2)

These states form an overcomplete basis, and their explicit (unnormalised) form and overlap are

|φ〉 = eφb
† |0〉 , 〈φ|φ′〉 = eφ

∗φ′
. (2.3)

From this follows the resolution of unity as

1 =

∫
dφ∗dφe−|φ|2 |φ〉 〈φ| . (2.4)

In the later chapters, we will construct a moment-generating functional whose basis is laid here
by considering the time-dependent partition function

Z[t] = tr(U(t0, t)U(t, t0)ρ(t0)) . (2.5)
1The reader might also be interested in [30] and [31].
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Figure 2.1: Illustration of the time evolution of eq. (2.1)

At this stage, the definition does not look too helpful since U(t0, t)U(t, t0) = 1 and the density
matrix is normalised, giving us Z = 1. Nevertheless, constructing the time-sliced version of this
expression will allow us to generalise it to a more useful object. To this end, let us consider a
system with dynamics governed by a normal-ordered, time-independent Hamiltonian leading to
matrix elements and time evolution operator

〈φ|H(b†, b) |φ′〉 = H(φ∗, φ′) 〈φ|φ′〉 , U(t, t′) = e−iH(t−t′)/~ . (2.6)

The time evolution operator has the group property U(t, t′) = U(t, t̄)U(t̄, t′) and therefore

U(t, t′) =

N∏
n=1

e−iH∆tn/~ with
N∑

n=1

∆tn = t− t′ . (2.7)

In principle, the ∆tn’s can be chosen non-equidistantly, but we will specialise to the equidistant
case ∆tn = ∆t. The time-slicing procedure is now done by using this decomposition and
inserting resolutions of unity in the coherent state basis with t > t0 as

U(t, t0) = e−iH∆t/~e−iH∆t/~e−iH∆t/~ ... e−iH∆t/~ (2.8)

=

∫
d2φNe

−|φN |2 |φN 〉 〈φN | e−iH∆t/~
∫
d2φN−1e

−|φN−1|2 |φN−1〉 〈φN−1| e−iH∆t/~.... (2.9)

=
[ N∏
n=1

∫
d2nφne

−|φn|2
]
|φN 〉 〈φN | e−iH∆t/~ |φN−1〉 〈φN−1| e−iH∆t/~ |φN−2〉 〈φN−2| ... (2.10)

The remaining matrix elements can be computed in the limit of N → ∞, ∆t → 0 with
N∆t = t− t0 by expanding the exponential to first order and later re-exponentiation as

〈φn| e−iH∆t/~ |φn−1〉 ≈ 〈φn| 1− iH(b†, b)∆t/~ |φn−1〉 (2.11)
= 〈φn|φn−1〉 (1− iH(φ∗n, φn−1)∆t/~) (2.12)
≈ 〈φn|φn−1〉 e−iH(φ∗

n,φn−1)∆t/~ (2.13)
= eφ

∗
nφn−1e−iH(φ∗

n,φn−1)∆t/~ . (2.14)

Collecting all these contributions, we obtain

U(t, t0) =

∫  N∏
n=2

d2φne
−|φn|2eφ

∗
nφn−1e−iH(φ∗

n,φn−1)∆t/~

 e−|φ1|2 |φN 〉 〈φ1| d2φ1 (2.15)

=

∫  N∏
n=2

d2φn exp

(
i∆t/~

{
i~φ∗n

φn − φn−1

∆t
−H(φ∗n, φn−1)

}) e−|φ1|2 |φN 〉 〈φ1| d2φ1

(2.16)

The backward part of the time evolution can be done analogously, noting that the time interval
∆t must be chosen with a different orientation, leading to an additional minus sign in front of
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the Hamiltonian and a derivative which points in the negative time direction. This means in
the following expression, increasing n gives decreasing physical times, leading us to

U(t0, t) =

∫  2N∏
n=N+2

d2φn exp

(
−i∆t/~

{
−i~φ∗n

φn − φn−1

∆t
−H(φ∗n, φn−1)

})
e−|φN+1|2 |φ2N 〉 〈φN+1| d2φN+1 (2.17)

(2.18)

Combining these expressions with the definition, δtn = ±∆t being + if n is on the forward
time evolution and − if it is on the backward time evolution, we find

Z =

∫  2N∏
n=1

d2φn

 exp

i
2N∑
n=2

δtn/~
[
i~φ∗n

φn − φn−1

δtn
−H(φ∗n, φn−1)

] e−|φ1|2 〈φ1| ρ(t0) |φ2N 〉

We will usually work with the continuum limit of this expression, but it is worthwhile to
note the structure of the discrete time-sliced version.

The initial state is encoded in the matrix element at the end of the expression. For a
Gaussian initial state, ρ(t0) = ρb

†b
0 , it can be expressed as 〈φ1| ρ(t0) |φ2N 〉 = eφ

∗
1ρ0φ2N . For a

quadratic Hamiltonian, this leads to a matrix form of the action, which is nearly bi-diagonal,
except for the matrix element encoding the initial state. This is crucial in the matrix inverse,
directly related to the correlation functions.

We will only be concerned with Gaussian initial states and only briefly comment on more
complicated initial conditions. In principle they can be encoded, but lead to various complica-
tions. The most used non-Gaussian state is the thermal state of an interacting system. Here,
the initial state can be added to the Keldysh contour as a piece from τ = iβ → τ = 0. This
requires the implementation of the Kubo-Martin-Schwinger (KMS) boundary conditions when
determining correlation functions. Already, this approach covers a large class of initial states
since the Hamiltonian on the imaginary time branch can be chosen independently from the time
evolution.2 General initial states can encoded in the n-PI EA formalism [32] [33]. However, the
computational cost to solve the eom. following this approach is too high to be useful at the
moment.

In the continuum limit, the initial conditions are not written explicitly but must be
remembered when eom. are solved. From here on out, we will take ~ = 1, until further noted.
The partition function on the time contour then reads

Z =

∫
Dφ exp

{
i

∫
c
dt
[
φ∗(t)i∂tφ(t)−H(φ∗, φ)

]}
=

∫
DφeiS (2.19)

The action S is now formulated along the Keldysh contour but should be decomposed into the
usual physical time for practical calculations. This is done by a characteristic doubling of the
degrees of freedom φ(t) in non-equilibrium. We introduce a field φ+(t) on the forward contour
and φ−(t) on the backward contour. Decomposing the contour integral and taking care of the
orientation of the contour, we may write∫

dtc
[
φ∗(t)i∂tφ(t)−H(φ∗, φ)

]
(2.20)

=

∫ ∞

t0

dt
{[
φ∗+(t)i∂tφ+(t)−H(φ∗+, φ+)

]
−
[
φ∗−(t)i∂tφ−(t)−H(φ∗−, φ−)

]}
. (2.21)

2Note, that in these cases also the adiabatic theorem needs to be used to apply Wick’s theorem [30].
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It will in the following be useful to define the ”free” part of the action as the quadratic part of
the action and collect it in g−1

c (t, t′), writing it on the contour as

S0 =

∫
c
dtdt′φ∗(t)g−1

c (t, t′)φ(t′) =

∫
dtdt′φ∗+(t)g

−1
+,+(t, t

′)φ+(t
′) +

∫
dtdt′φ∗−(t)g

−1
−,−(t, t

′)φ−(t
′)

−
∫
dtdt′φ∗+(t)g

−1
+,−(t, t

′)φ−(t
′)−

∫
dtdt′φ∗−(t)g

−1
−,+(t, t

′)φ+(t
′) (2.22)

Note that in the definition of g−1
c (t, t′) often contour-delta functions are used, which are defined

by contour-theta functions as δc(t, t′) = ∂tΘc(t, t
′). In decomposing the contour- into real-line

integrals and attaching contour indices to the time arguments, one arrives at an additional
minus sign at the backward contour, namely

Θc(t, t
′) =


Θ(t− t′) if t, t′ ∈ +

1 if t ∈ − , t′ ∈ +

0 if t ∈ + , t′ ∈ −
Θ(t′ − t) if t, t′ ∈ −

⇒ δc(t, t
′) = δ(t, t′)

[
δt,+δt′,+ − δt,−δt′,−

]
(2.23)

The functions gc(t, t′) are the non-interacting 2-time correlators of the system namely

gc(t, t
′) = −i 〈Tc(φ(t)φ∗(t′))〉0 . (2.24)

Here Tc is the contour ordering symbol, and the subscript zero at the average denotes that
the corresponding action is taken to be Gaussian. It emphasises the need to keep in mind
that initial conditions are implicit in the continuum representation and must be applied when
solving for the free Green function via the equations of motion∫

c
dt′g−1

c (t1, t
′)gc(t

′, t2) = δc(t1, t2) . (2.25)

We will briefly give some definitions here that will be helpful later. The different components
of gc(t, t′) on the contour are called

g+,+(t, t
′) = −i 〈T (φ+(t)φ∗+(t′))〉 = gT (t, t′) time-ordered Green function (2.26)

g−,−(t, t
′) = −i 〈T̃ (φ−(t)φ∗−(t′))〉 = gT̃ (t, t′) anti-time-ordered Green function (2.27)

g+,−(t, t
′) = −i 〈φ∗−(t′)φ+(t)〉 = g<(t, t′) lesser Green function (2.28)

g−,+(t, t
′) = −i 〈φ−(t)φ∗+(t′)〉 = g>(t, t′) greater Green function (2.29)

The time- and anti-time ordered Green functions can be decomposed as

gT (t, t′) = θ(t− t′)g>(t, t′) + θ(t′ − t)g<(t, t′) (2.30)

gT̃ (t, t′) = θ(t′ − t)g>(t, t′) + θ(t− t′)g<(t, t′) (2.31)

This notation, connecting the contour index with the label, will also be used later for the full
Green functions G. In this thesis, we will decompose all these Green functions into greater and
lesser functions. To give some intuition about these functions, let us consider an equilibrium
system. For fermions, the lesser function gives the particle contributions and is proportional to
the Fermi function f(ω). The greater function, on the other hand, is proportional to 1− f(ω)
due to the anti-commutation relation of fermion operators. It is usually interpreted as the hole
contributions. For bosons, it is more intuitive to take a different perspective and think about
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these correlators as a probe of the systems properties. A lesser function gives information if
we can remove a particle from the system. Therefore, for bosons, as in the fermionic case, it
contains information on particle occupation and is proportional to the Bose function b(ω). The
greater function tells us if we can add a particle to the system. In the fermionic case, it checks if
a hole is present. For bosons, it is proportional to 1 + b(ω). One can add particles to a bosonic
system via spontaneous and stimulated emission.

All these components can be collected in a 2× 2 structure in gc(t, t
′). But one can choose

different basis representations, giving different fundamental Green functions. Nevertheless,
following from the 2 × 2 structure, only two can be truly independent. The choice depends
on the problem at hand. A popular choice is the basis of retarded-/advanced- and Keldysh
Green functions. Here retarded and advanced are related by conjugation and interchange of
time arguments. This basis can directly be implemented on the level of fields by transforming
to a ”classical-quantum” basis (c, q) defined by the average and difference of the (+,−) basis3

φc(t) = (φ+(t) + φ−(t))/
√
2 , φq(t) = (φ+(t)− φ−(t))/

√
2 . (2.32)

Another basis choice is then spectral function A and the occupation function ρ, 4 being in the
boson case, averages of the commutator and anti-commutator, of the fields at different times.
Even though it might be the most physically intuitive representation to the best of the author’s
knowledge, there is no transformation of the fields leading to this decomposition due to the
requirement of implementing time-ordering theta functions. For reasons becoming clearer in
later chapters, a representation in terms of greater and lesser functions will be the most suitable
for the case at hand.

2.2 Lindbladians in path integral representation

One of the primary methods to incorporate open quantum system dynamics is the Lindblad
formalism. The Lindblad form of the Master equation is intimately related to the structure of
the Schwinger-Keldysh contour. In [34], the path integral formulation belonging to a master
equation of the density matrix is derived. We will take a different route, considering the
Hamiltonian of the system and bath as fundamental and show how the Lindblad form emerges
in the action. This approach allows for easier generalise to more complicated bath situations as
shown in [35].
As a starting point, we take the same setup as in the usual derivation of the Lindblad formalism.
Consider the full Hamiltonian of system and bath with operators b linearly coupled to some
system operator A as

H = Hs +HB + γ(A†b+ h.c.) . (2.33)

For simplicity, we will take the bath Hamiltonian to be quadratic 5. The action follows with
the field representation of the system operators as

S = Ss +

∫
c
dtdt′b†(t)g−1

c (t, t′)b(t′) + γ

∫
dt(A†

+(t)b+(t)−A†
−(t)b−(t) + h.c.) . (2.34)

3This transformation is not so straightforward for fermions, see [28].
4Note that the letters for these two functions vary in the literature, e.g. [32] reverses the definitions.
5For more complicated bath, see methods used in [35].
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We can complete the square using the inverse of g−1
c leaving us with

S =Ss +

∫
c
dtdt′dτdτ ′

(
b†(t)δc(t, τ) + γA†(t)gc(t, τ)

)
g−1
c (τ, τ ′)

(
δc(τ

′, t′)b(t′) + γgc(τ
′, t′)A(t′)

)
− γ2

∫
c
dtdt′A†(t)gc(t, t

′)A(t′) . (2.35)

We assumed that the initial state factorises in a product of the system and bath density matrices.
This allows us to obtain the free bath correlators only considering the bath state and dynamics.
With this assumption, the integral over the bath fields can be performed by a shift that does not
change the path integral measure. This leaves us with the last term and leads to the dissipative
action

S =Ss − γ2
∫
dtdt′A†

+(t)g+,+(t, t
′)A+(t

′)− γ2
∫
dtdt′A†

−(t)g−,−(t, t
′)A−(t

′) (2.36)

+ γ2
∫
dtdt′A†

+(t)g+,−(t, t
′)A−(t

′) + γ2
∫
dtdt′A†

−(t)g−,+(t, t
′)A+(t

′) . (2.37)

We now perform the Markov approximation. To this end, we consider the symmetry properties
of greater and lesser functions

g>(t, t′) = −i 〈b(t)b†(t′)〉 (g>(t, t′))† = −g>(t′, t) (2.38)
g<(t, t′) = −i 〈b†(t′)b(t)〉 (g<(t, t′))† = −g<(t′, t) (2.39)

They are anti-hermitian and in a steady state, as in equilibrium, only depending on relative
time. Until now, we did not consider the mode structure of the bath, but it can easily be
restored. For bosonic modes with energy ωk in equilibrium, these functions are

g<k (t, t
′) = −ie−iωk(t−t′)nb(ωk) , g>k (t, t

′) = −ie−iωk(t−t′)(nb(ωk) + 1) . (2.40)

In the expression before, we should now sum over all the bath modes. We assume that the
bandwidth of the bath is large so the time integrals only have little support in relative time
wrt. to the time scales of the system. It allows us to assume both system operators at equal
time and the remaining integrals are of the type∫ ∞

−∞
dtg<(t) =

∫ ∞

0
dtg<(t) +

∫ 0

−∞
dtg<(t) (2.41)

=

∫ ∞

0
dt
[
g<(t)− (g<)∗(t)

]
= 2iIm

∫ ∞

0
dtg<(t) . (2.42)

To obtain the Lindblad form, one assumes an empty bath, meaning nb(ωk) = 0. This sets
the lesser function to zero, and in the greater function, only the density of states contributes,
which will be absorbed in the coupling constant later. The integrals for the (+,+) and (−,−)
components can be computed as∫

dtdt′A†
+(t)g+,+(t, t

′)A+(t
′) ≈

∫ ∞

−∞
dtA†

+(t)A+(t)

∫ ∞

−∞
dt′g+,+(t, t

′) (2.43)

=

∫ ∞

−∞
dtA†

+(t)A+(t)

∫ ∞

0
dt′g>(t′) (2.44)∫

dtdt′A†
−(t)g−,−(t, t

′)A−(t
′) ≈

∫ ∞

−∞
dtA†

−(t)A−(t)

∫ ∞

−∞
dt′g−,−(t, t

′) (2.45)

=

∫ ∞

−∞
dtA†

+(t)A+(t)

∫ 0

−∞
dt′g>(t′) . (2.46)
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The remaining integrals can be complex and are related by∫ ∞

0
dtg>(t) = −

∫ ∞

0
dt(g>(−t))∗ = −

∫ 0

−∞
dt(g>(t))∗ = −

[∫ 0

−∞
dtg>(t)

]∗
:= κ . (2.47)

Collecting all the terms we obtain

S =Ss − γ2κ

∫
dtA†

+(t)A+(t) + κ∗γ2
∫
dtA†

−(t)A−(t) + 2iIm(κ)γ2
∫
dtA†

−(t)A+(t) (2.48)

=Ss − χ/2

∫
dtA†

+(t)A+(t) + χ∗/2

∫
dtA†

−(t)A−(t) + iIm(χ)

∫
dtA†

−(t)A+(t) (2.49)

If the system operators are linear in the fields, the real part of χ can be absorbed into the free
part of the Hamiltonian as a Lamb shift. For other cases, the bath density of states can be
chosen symmetrically such that χ is purely imaginary, leading to the standard form of

S =Ss + iΓ/2

∫
dtA†

+(t)A+(t) + iΓ/2

∫
dtA†

−(t)A−(t)− iΓ

∫
dtdt′A†

−(t)A+(t) . (2.50)

The general structure of the Lindblad equation is here directly reflected. The first two terms
represent the anti-commutator. Therefore, the doubling of the degrees of freedom can be seen
in the master equation as the application of operators from the left or the right of the density
matrix. Further discussion of the operator perspective on the doubling of dof. can be found in
[36].

We will mostly be interested in the case where the system exchanges particles with the
bath. Here, we want to see how this influences the free propagators of the system. For this, it
is sufficient to consider a single non-interacting bosonic mode with action

S0 =

∫
dt
[
φ∗+(t)(i∂t − ε)φ+(t)− φ∗−(t)(i∂t − ε)φ−(t)

]
. (2.51)

We now include dissipation by a particle pump and a loss. The system operators in (2.33) are
then Aloss = φ and Apump = φ∗ leading us to

S0 =

∫
dt
[
φ∗+(t)(i∂t − ε+ i/2(κ↑ + κ↓))φ+(t)− φ∗−(t)(i∂t − ε− i/2(κ↑ + κ↓))φ−(t)

]
−
∫
dt
[
iκ↑φ

∗
+(t)φ−(t) + iκ↓φ

∗
−(t)φ+(t)

]
(2.52)

In the following chapters, we will deal with the phenomenon of condensation, which emerges
here due to the spontaneous breaking of a U(1) symmetry. In foresight thereof, we extend the
application of g−1(t, t′) also to give us the time evolution of anomalous (explicitly symmetry
breaking) averages. To this end, we need to specify a matrix structure for the operators
contained in g, which we choose in the usual Nambu/Beliaev form as [37]

Pc(t, t′) = −i

(
〈Tc(a(t)a†(t′))〉 〈Tc(a(t)a(t′))〉
〈Tc(a†(t)a†(t′))〉 〈Tc(a†(t)a(t′))〉

)
:=

(
P c(t, t′) f c(t, t′)
f̄ c(t, t′) P c(t′, t)

)
(2.53)

This structure ensures the symmetry under hermitian conjugation namely P≷(t, t′) = −(P≷(t′, t))†.
Similar relations hold for time- and anti-time ordered Green functions. The inverse propaga-
tors acting from the left can directly be obtained from the action. Here, one needs to take

27



into account that the time derivative acting on the conjugate field gets a minus from partial
integration, leading us to

g−1
+,+ =

(
i∂t − ε+ i/2(κ↑ + κ↓) 0

0 −i∂t − ε+ i/2(κ↑ + κ↓)

)
(2.54)

g−1
−,− =

(
−(i∂t − ε− i/2(κ↑ + κ↓)) 0

0 −(−i∂t − ε− i/2(κ↑ + κ↓))

)
(2.55)

g−1
−,+ =

(
iκ↓ 0
0 iκ↑

)
, g−1

+,− =

(
iκ↑ 0
0 iκ↓

)
. (2.56)

Note here a subtlety when applying these operators from the right; the rhs. of the eom. is a
contour delta function. Therefore, the free inverse propagators acting from the right are minus
the hermitian conjugated acting from the left. This essentially reflects that the derivative is
acting on the conjugate operator. Let us now carry on and calculate the eom. of the greater
and lesser components.

g−1
−,+P+,+ − g−1

−,−P−,+ =

(
i∂t − ε− i/2(κ↑ + κ↓) 0

0 −i∂t − ε− i/2(κ↑ + κ↓)

)(
P>(t, t′) f(t′, t)
f̄(t, t′) P<(t′, t)

)

+

(
iκ↓ 0
0 iκ↑

)(
P T (t, t′) fT (t′, t)
f̄T (t, t′) P T (t′, t)

)
(2.57)

g−1
+,+P+,− − g−1

+,−P−,− =

(
i∂t − ε+ i/2(κ↑ + κ↓) 0

0 −i∂t − ε+ i/2(κ↑ + κ↓)

)(
P<(t, t′) f(t, t′)
f̄(t′, t) P>(t′, t)

)

−

(
iκ↑ 0
0 iκ↓

)(
P T̃ (t, t′) f T̃ (t′, t)

f̄ T̃ (t, t′) P T̃ (t′, t)

)
(2.58)

For the normal greater/lesser functions in the presence of dissipation, we find

i∂tP
>(t, t′) = (ε+ i/2(κ↑ + κ↓))P

>(t, t′)− iκ↓P
T (t, t′) (2.59)

i∂tP
<(t, t′) = (ε− i/2(κ↑ + κ↓))P

<(t, t′) + iκ↑P
T̃ (t, t′) . (2.60)

In the end, we will need to time evolve these equations. Therefore, we separate the time
derivative and multiply with σz to switch the sign in the lower component, leading us to(
i∂t 0
0 i∂t

)(
P<(t, t′) f(t′, t)
f̄(t, t′) P>(t′, t)

)
=

(
ε− i/2(κ↑ + κ↓) 0

0 −ε+ i/2(κ↑ + κ↓)

)(
P<(t, t′) f(t′, t)
f̄(t, t′) P>(t′, t)

)

+

(
iκ↑ 0
0 −iκ↓

)(
P T̃ (t, t′) f T̃ (t′, t)

f̄ T̃ (t, t′) P T̃ (t′, t)

)
(2.61)

(
i∂t 0
0 i∂t

)(
P>(t, t′) f(t′, t)
f̄(t, t′) P<(t′, t)

)
=

(
ε+ i/2(κ↑ + κ↓) 0

0 −ε− i/2(κ↑ + κ↓)

)(
P>(t, t′) f(t′, t)
f̄(t, t′) P<(t′, t)

)

−

(
iκ↓ 0
0 −iκ↑

)(
P T (t, t′) fT (t′, t)
f̄T (t, t′) P T (t′, t)

)
(2.62)
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We will also consider the one-point field 〈φ(t)〉 = ϕ(t). As a one-time function, it must be the
same on both branches of the Keldysh contour. It will describe the phase coherent part of the
light field. The eom. are obtained as

g−1
+,+ϕ

+(t)− g−1
+−ϕ

−(t) = (i∂t − ε+
i

2
(κ↑ + κ↓))ϕ(t)− iκ↑ϕ(t)

⇒ i∂tϕ(t) =

[
ε+

i

2
(κ↑ − κ↓)

]
ϕ(t) (2.63)

2.3 Influence of interaction in non-equilibrium
Until now, the discussion has been limited to non-interacting systems. In interacting systems,
the rhs. of the equations of motion have additional self-energy terms. How these emerge will
be discussed in the next chapter. Here, we only want to give the general structure of these
equations for future reference. The rhs. are given in terms of a contour integral of a self-energy
Σ with a Green function G. After the contour is decomposed, and time- and anti-time order
Green functions are written in terms of greater and lesser functions one finds∫

c
dt̄Σ(t−, t̄)G(t̄, t+) =

∫ t′

t0

dt̄Σ>(t, t̄)G<(t̄, t′)−
∫ t

t0

dt̄Σ<(t, t̄)G>(t̄, t′)

+

∫ t

t0

dt̄Σ>(t, t̄)G>(t̄, t′)−
∫ t′

t0

dt̄Σ>(t, t̄)G>(t̄, t′) (2.64)∫
c
dt̄Σ(t+, t̄)G(t̄, t−) =

∫ t

t0

dt̄Σ>(t, t̄)G<(t̄, t′)−
∫ t′

t0

dt̄Σ<(t, t̄)G>(t̄, t′)

+

∫ t′

t0

dt̄Σ<(t, t̄)G<(t̄, t′)−
∫ t

t0

dt̄Σ<(t, t̄)G<(t̄, t′) . (2.65)

The eom. for the two-time Green functions are called the Kadanoff-Baym (KB) equation. They
represent the main challenge in solving interacting non-equilibrium problems.
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Figure 2.2: Time-stepping procedure [38]

2.4 Numerical solution of Kadanoff-Baym equations

The general non-equilibrium set-up leads us to an initial values problem, whose main difficulty
is solving the two-time Kadanoff-Baym equations given by non-linear Volterra integro-differntial
equations (VIDE). In a unified notation for the self-energy parts they may be written as

i∂tG(t, t
′) = h0(t)G(t, t

′) +

∫
γ′
dt̄Σ(t, t̄)G(t̄, t′) , (2.66)

here the integral boundaries are γ′ = [t0, t] or γ′ = [t0, t
′] due to causality, as already shown

when employing the decomposition in greater and lesser Green functions. Note here that the
usual quadratic part h0(t) is time dependent as we will need later. The equations of motion
in t′ can be obtained from eq. (2.66) by employing the symmetries of the Green function
under conjugation. For complex fields, the equations of motion in t′ are the adjoint of the
equations of motion in t. In [38], we developed a variable order and variable step size Adams
(predictor-corrector) method, which we will outline here only briefly and refer for more details
to the paper and references therein. The package is written in Julia and can be found on
Github or as package import KadanoffBaym.jl. Specific details of the symmetry and dissipative
properties of the KB equation for the system considered will be discussed in later chapters.

We take the Cartesian product of a non-equidistant one-dimensional grid

T := {t0 < t1 < ... < ti < ... < tN} (2.67)

with itself, to obtain a symmetric mesh T × T =
{
(t, t′) | t ∈ T , t′ ∈ T

}
for the two-time plane.

The time-stepping procedure can be visualised as fan-like stepping in the symmetric two-time
mesh, as depicted in Fig. 2.2. Due to the symmetry of the Green functions, only one of the
half-planes t ≥ t′ or t′ ≥ t must be computed. The other can be inferred by reflection. The KB
equation can now be understood as a system of vector-valued differential equations

i∂tiG
v(ti) = h0(ti)G

v(ti) + (Σ ◦G)v (ti) (vertical step)
−i∂tiG

h(ti) = Gh(ti)h0(ti)
† + (G ◦Σ)h (ti) (horizontal step)

i∂tiG
d(ti) = h0(ti)G

d(ti)−Gd(ti)h0(ti)
† + (Σ ◦G−G ◦Σ)d (ti) (diagonal step) ,

(2.68)
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where

Gv(ti) =
[
G(ti, t0), G(ti, t1), ..., G(ti, ti)

]
,

Gh(ti) =
[
G(t0, ti), G(t1, ti), ..., G(ti, ti)

]
,

Gd(ti) =
[
G(ti, ti)

]
,

(2.69)

and ◦ denotes the element-wise Volterra integration

(A ◦B)v(ti) =

[∫
γ′
dt̄ A(ti, t̄)B(t̄, t0),

∫
γ′
dt̄ A(ti, t̄)B(t̄, t1), ...,

∫
γ′
dt̄ A(ti, t̄)B(t̄, ti)

]
. (2.70)

As the dimension of the KB equations grows with each time-step, also the size of Gv(t) and
Gd(t) grows by one. This requires a continued resizing of the equations and is one reason why
such equations are not straightforwardly compatible with the extensive amount of available
ODE solvers. The new equations added have a self-energy kernel over past points. This can
is visualised in Fig. 2.2 for a diagonal step. The self-energy integrals involve an integration
over the points in the shaded region. This emphasises why we build a non-equidistant but
symmetrical time mesh. For a general non-symmetric mesh, the points for these integrals must
be interpolated, and the reflection symmetry of the Green functions can not be directly used,
introducing another layer of complexity. In terms of the system of vector-values differential
equations eq. (2.68), the KB integration procedure can be solved as an effective one-time ODE
problem.

Following the structure of eq. (2.68), we consider a univariate non-linear VIDE

y′(t) = F [t, y(t)] +

∫ t

t0

dsK[t, s, y(s)] , (2.71)

which can be seen as a system of two equations, where one is an ordinary differential equation
and the other a Volterra integral equation with initial conditions y(t0) = y0 as

y′(t) = F [t, y(t)] + z(t) , z(t) =

∫ t

t0

dsK[t, s, y(s)] . (2.72)

We use a variable order and variable step size Adams (predictor-corrector) method. It provides
a good trade-off between cost (two function evaluations per step) and overall accuracy, even
when the number of equations is very large. We first integrate eq. (2.72) from tn to tn+1 to
obtain

y(tn+1) = y(tn) +

∫ tn+1

tn

ds
{
F [s, y(s)] + z(s)

}
. (2.73)

The integrals are then evaluated with interpolating quadrature formulas. The main computa-
tional bottleneck is in the computation of z(t), which can be evaluated with a direct quadrature
method as

z(tn) =

∫ t

t0

dsK
[
tn, s, y(s)

]
=

n−1∑
`=0

∫ t`+1

t`

dsK
[
tn, s, y(s)

]
. (2.74)

The variable Adams method [39] is a predictor-corrector scheme where the integrand of eq.
(2.73) is approximated by a Newton polynomial of previously computed points, and a prediction
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y∗n+1 for the solution of y(tn+1) is obtained with an explicit method with a (k − 1)-th order
polynomial as

y∗n+1 = yn +

∫ tn+1

tn

ds
k−1∑
j=0

j−1∏
i=0

(s− tn−i)

 δj {F [tn, y(tn)]+ z(tn)
}
. (2.75)

The divided differences are defined recursively as

δ0F
[
t`, y(t`)

]
= F

[
t`, y(t`)

]
,

δjF
[
t`, y(t`)

]
=
δj−1F

[
t`, y(t`)

]
− δj−1F

[
t`−1, y(t`−1)

]
t` − t`−j

.
(2.76)

The prediction for y(tn+1) is corrected via an implicit method, where the k-th order interpolation
polynomial of the integrand depends on the predicted value y∗n+1:

yn+1 = y∗n+1 +

∫ tn+1

tn

ds

k−1∏
i=0

(s− tn−i)

 δk {F [tn+1, y(tn+1)] + z(tn+1)
}
. (2.77)

The integrals in eq. (2.74) can be evaluated in the same predictor-corrector manner:

z∗n =

n−1∑
`=0

∫ t`+1

t`

ds

k−1∑
j=0

j−1∏
i=0

(s− t`−i)

 δjKn

[
t`, y(t`)

]
,

zn = z∗n +

n−1∑
`=0

∫ t`+1

t`

ds

k−1∏
i=0

(s− t`−i)

 δkKn

[
t`+1, y(t`+1)

]
,

(2.78)

with divided differences defined as

δ0Kn

[
t`, y(t`)

]
= K

[
tn, t`, y(t`)

]
,

δjKn

[
t`, y(t`)

]
=
δj−1Kn

[
t`, y(t`)

]
− δj−1Kn

[
t`−1, y(t`−1)

]
t` − t`−j

.
(2.79)

The predictor-corrector equations (2.75) and (2.77) can be solved by recurrence formulas [39],
making the evaluation of the integrals and j-th derivatives more efficient. An estimate of the
local truncation error can be obtained by ỹn+1 − yn+1, where ỹn+1 is the result of the implicit
step using a (k + 1)-th order formula. A measure of this error satisfying specific tolerances is
obtained via

lek(n+ 1) :=
ỹn+1 − yn+1

atol + rtol ·max
(
|yn| ,|yn+1|

) , (2.80)

for which the integration step is accepted if

∥∥lek(n+ 1)
∥∥ ≤ 1 , with ‖x‖ =

 1

n

n∑
i

|xi|2
 1

2

. (2.81)

The local error is then used to adjust both the step size hn := (tn+1 − tn) and the order k, such
that the next time step is chosen as the largest possible step that still satisfies the local error
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being . 1. For more details, see [38] and [39] III.5 and III.7. Given this acceptance criterion,
the roles of the tolerances rtol and atol in (2.80) can be better understood considering them
separately under the infinity-norm. In this scenario, − log10 rtol controls the minimum number
of correct digits between time steps, while atol is a threshold for the magnitude of the elements
of y for which the minimum number of correct digits is guaranteed.

Since publication, native support for one-time functions and improved methods determining
the integration weights using the Vandermonde matrix [40] has been implemented.

2.4.1 Spectra

Understanding the information contained in two-time Green functions can be tricky and most
of the insight can be gained by analysing spectra in the steady state. For this, the Green
functions must first be rotated to Wigner coordinates defined by T = (t+ t′)/2 and τ = t− t′.
In the particular case of our non-equidistant grid, the data of the Green functions must first
be interpolated into an equidistant time grid. Afterwards, we can map the Green functions to
Wigner coordinates via

G(t, t′) = G(T + τ/2, T − τ/2) . (2.82)

To obtain the spectra, it is Fourier transformed wrt. to relative time τ , leaving us with G(T, ω),
which is then on the equidistant time and frequency grid. The package has native functions
implemented for this procedure. In a steady state G(T, ω) can be interpreted as spectra of the
respective Green functions. Note that during the time evolution, when the steady has not yet
been reached, the interpretation as spectra does not strictly hold. Nevertheless, the obtained
signal can still give valuable insight into the dynamics. One should also be careful with spectra
extracted close to the end of the time evolution. Here, the data for the Fourier transform is
only in a small time domain; therefore, various artefacts are bound to appear. This is especially
pronounced for sharp peaks in the frequency spectrum, which require long time intervals to be
resolved.
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2.4.2 Memory truncation

In many systems of interest, the self-energies and Green functions have a finite memory, which
means they decay away from the equal-time diagonal t = t′. Usually, the self-energies decay
faster than the Green functions. An example often encountered is small self-energy contributions
so that the Green function has a plane-wave-like structure in the two-time plane with a small
exponential decay in relative time due to interactions. In this case, the self-energy is closely
confined to the equal time diagonal t = t′, but the Green function has long time scales. The
photon Green functions we will consider behave in this way. Therefore, if we can assume
that the self-energies are decayed on a scale tΣ away from the equal time diagonal, we can
approximate the integrals in the KB equations (2.65) and (2.64) as∫ t

0
dt̄Σ(t, t̄)G(t̄, t′) ≈ θ(tΣ − t)

∫ t

0
dt̄Σ(t, t̄)G(t̄, t′) + θ(t− tΣ)

∫ t

t−tΣ

dt̄Σ(t, t̄)G(t̄, t′) (2.83)

The second integral up to t′ can cross the equal time diagonal and is different in the case t > t′

or t′ > t. In the two cases, we can approximate the integrals as∫ t′

0
dt̄Σ(t, t̄)G(t̄, t′) ≈ θ(t− t′)

[
θ(tΣ − t)

∫ t′

0
Σ(t, t̄)G(t̄, t′) + θ(t− tΣ)θ(t

′ + tΣ − t)

∫ t′

t−tΣ

Σ(t, t̄)G(t̄, t′)

]

+ θ(t′ − t)
[
θ(tΣ − t)

{
θ((tΣ + t)− t′)

∫ t′

0
dt̄Σ(t, t̄)G(t̄, t′)

+ θ(t′ − (tΣ + t))

∫ t+tΣ

0
dt̄Σ(t, t̄)G(t̄, t′)

}
+ θ(t− tΣ)

{
θ((tΣ + t)− t′)

∫ t′

t−tΣ

dt̄Σ(t, t̄)G(t̄, t′)

+ θ(t′ − (tΣ + t))

∫ t+tΣ

t−tΣ

dt̄Σ(t, t̄)G(t̄, t′)
}]

(2.84)
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Chapter 3

2-Particle Irreducible Effective
Action

Non-equilibrium dynamics pose a challenging problem in the formulation of consistent approxi-
mation schemes. The equation of motion will necessarily have strong non-linearities to capture
relaxation dynamics, but here, care has to be taken to preserve conservation law during time
evolution [41]. This chapter will introduce a functional method to formulate such problems
and approximation schemes. The method goes back to [42] [43] [44] and has a rich history
with many contributions from various perspectives [45] [46]. We will follow here closer in the
spirit of [47]. First, we will show the main train of thought and techniques on the 1-particle
irreducible (1-PI) effective action (EA). The approach can be generalised to a 2-PI EA, which is
better suited for perturbative approaches and allows for the generation of conserving equations
of motion for 2-time propagators. After introducing the 2-PI EA we will discuss properties of
approximations and their effect on Ward identities. This chapter will be rather technical; for a
broader overview of the technique, see [33] [32] [29]; for a more technical introduction, see [48].

3.1 1-PI Effective action
We will start with the 1-PI formulation following [31]. For clarity’s sake, we focus on a
scalar theory, but the generalisation to a complex theory is straightforward. We first define a
generating functional with an external source J and restoring ~ as

Z[J ] =

∫
Dφe

i
~
[
S[φ]+Jφ

]
. (3.1)

The first step is to shift the integration variable φ→ φ+ φ0. This does not change the domain
of the integral, nor introduces a Jacobian factor leading us to

Z[J ] = e
i
~
[
S[φ0]+Jφ0

] ∫
Dφe

i
~
[
S[φ+φ0]−S[φ0]+Jφ

]
= e

i
~
[
S[φ0]+Jφ0

]
Z1[J ] . (3.2)

The cumulant generating functional or the generator of connected Green functions is then

W [J ] = −i~ log(Z[J ]) = S[φ0] + Jφ0 +W1 with W1 = −i~ log(Z1[J ]) . (3.3)

Till now, φ0 was arbitrary, but we will fix it now to be the full one point average φ0 = 〈φ〉 =
δW
δJ = ϕ. This will determine the external field J [ϕ] as a function of ϕ through the equation

ϕ =
δW

δJ
=

[
δS

δϕ
+ J +

δW1

δϕ

]
δϕ

δJ
+ ϕ⇒

[
δS

δϕ
+ J +

δW1

δϕ

]
δϕ

δJ
= 0 . (3.4)
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The factor δϕ
δJ generates the connected 2-point Green function and is therefore generally non-zero.

We will show that shortly. Therefore the equation determining J as a function of ϕ is

J = −
[
δS

δϕ
+
δW1

δϕ

]
. (3.5)

We will now introduce the 1-PI effective action Γ1[ϕ] as the Legendre (-Fenchel) transformation
of the W [J ], which is therefore a functional of δW

δJ = ϕ

Γ1[ϕ] =W [J ]− J
δW

δJ
=W [J ]− Jϕ = S[ϕ] +W1[ϕ] with J = −δΓ1

δϕ
(3.6)

where in the last equality, it is implied that all dependencies of J in W1 must be re-expressed
in terms of eq. (3.5), which leads us explicitly to

W1 = −i~ log

∫ Dφ exp

 i

~

[
S[φ+ ϕ]− S[ϕ]− φ

[
δS[ϕ]

δϕ
+
δW1[ϕ]

δϕ

]]
 (3.7)

= −i~ log

∫ Dφ exp

{
i

~

[
S[φ+ ϕ]− S[ϕ]− φ

δΓ1[ϕ]

δϕ

]} . (3.8)

The connected 2-point Green function will in the following only be called G and is given by

δ2W

δJ2
=
i

~

[
〈φ2〉 − 〈φ〉2

]
= −G(2) = −G . (3.9)

Another useful relation can be shown from the properties of the Legendre transform, namely

δi,j =
δφi
δφj

=

∫
dz
δφi
δJz

δJz
δφj

=

∫
dz

δ2W

δJzδJi

−δ2Γ1

δφzφj
=

∫
dz

δ2Γ1

δφjφz
Gz,i . (3.10)

This means that δ2Γ
δ2φ

= G−1, so the 1-PI EA generates the inverse 2-point Green function as its
Hessian matrix.

We start evaluating W1 and show that the theory governed by this functional has some
pleasant properties, namely that the one-point averages vanish. This can already be anticipated
from the choice of φ0 = ϕ, but we will explicitly show it here. Therefore let us consider the
derivative of W1 wrt. to ϕ governed by the action S̃ = S[φ+ ϕ]− S[ϕ]− φ

[
δS[ϕ]
δϕ + δW1[ϕ]

δϕ

]
δW1

δϕ
=

1

Z1

∫
Dφe

i
~ S̃

[
δS[φ+ ϕ]

δϕ
− δS[ϕ]

δϕ
− φ

δ2

δϕ2

[
S[ϕ] +W1[ϕ]

]]
. (3.11)

The first term can be rewritten in terms of∫
Dφe

i
~ S̃
δS[φ+ ϕ]

δϕ
= −i~

∫
Dφ δ

δφ
e

i
~ S̃ +

∫
Dφe

i
~ S̃

δ

δϕ

[
S[ϕ] +W1[ϕ]

]
. (3.12)

The first term is a total derivative, vanishing when integrated so that we can write

δW1

δϕ
=

1

Z1

∫
Dφe

i
~ S̃

[
δ

δϕ

[
S[ϕ] +W1[ϕ]

]
− δS[ϕ]

δϕ
− φ

δ2

δϕ2

[
S[ϕ] +W1[ϕ]

]]
(3.13)

=
1

Z1

∫
Dφe

i
~ S̃

[
δW1

δϕ
− φ

δ2

δϕ2

[
S[ϕ] +W1[ϕ]

]]
(3.14)

=
δW1

δϕ
− δ2

δϕ2

[
S[ϕ] +W1[ϕ]

] ∫ Dφ
Z1

e
i
~ S̃φ . (3.15)
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For the equation to hold, the second term must vanish. We note that δ2

δϕ2

[
S[ϕ] +W1[ϕ]

]
= δ2Γ1

δφ2 ,
which is by the construction of the Legendre transform the inverse Green function. The relation
must hold for all J . So, we obtain the result that the first moment of the probability distribution
given by action S̃ must vanish.
With this, we have shown that W1 contains all 1-PI connected vacuum diagrams from the theory
generated by S̃. To obtain these diagrams, the action S̃[φ] can be expanded around small φ
dropping terms until the first order to obtain a theory governed by a new free propagator given
by the second derivative of the action and interaction given by all higher derivatives

S0[φ] =
1

2

δ2S[ϕ]

δϕ2
φ2 , SI =

∞∑
n=3

1

n!

δnS[ϕ]

δϕn
φn . (3.16)

From now on, we will always define the free propagator as G−1
0 = δ2S[ϕ]

δϕ2 . To obtain a more
explicit form for the 1-PI EA we normalise the integral inside the logarithm of W1 with det(G0)
to obtain proper averages so we can write

Γ1[ϕ] = S[ϕ] +
i~
2

tr ln(G−1
0 )− i~ ln 〈e

i
~SI 〉S0

+ const . (3.17)

This result can be understood as follows. In a perturbative expansion, Z contains all vacuum
diagrams and therefore W contains all connected vacuum diagrams. The Legendre transforma-
tion factors out all diagrams, which are 1-particle reducible. All 1-PI diagrams are now written
in terms of free propagators G0. Expectation values are obtained by first decomposing them
into cumulants as derivatives of W . The cumulants can then be calculated using the Hessian of
the Legendre transforms, which must be the minus inverse of each other. This defines the full
two-point Green function from the 1PI EA, namely

δi,j =

∫
dz

δ2Γ1

δφjφz
Gz,i . (3.18)

This allows us to derive various exact relations between expectation values. We will return to
the explicit procedure later and contrast it to the 2-PI EA case.
The 1-PI EA is constructed with a free propagator G0 and, therefore, lacks strong non-linearities
necessary for various physical processes such as thermalisation. In the following, we will introduce
the 2-PI EA, which better suits perturbative approaches capturing essential non-linearities.
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3.2 2-PI Effective action
The 2-PI formulation is constructed along similar lines but has the advantage that the resulting
equations of motion are in terms of full 1- and 2-point Green functions. The arguments are
nevertheless more complicated and involved. Therefore, we will tackle this problem from
different perspectives. First, we set up the general ideas and expression. From there, we can
prove that the remaining diagrammatic part is 1-PI in the sense we discussed before and only
contains full 2-point Green function lines. Afterwards, the explicit expression from [47] will be
discussed. With this ansatz, an explicit expression for the diagrammatic part can be found,
showing that it contains only 2-PI diagrams. This allows us to perform explicit perturbative
expansions. The starting point is a moment-generating functional, including a 2-point source
R. We stick here again to a scalar theory. The moment- and cumulants generating functionals
are then

Z[J,R] =

∫
Dφe

i
~

[
S[φ]+Jφ+ 1

2
φRφ

]
= e

i
~W [J,R] . (3.19)

We perform the same trick as in the 1-PI case and shift φ→ φ+ φ0

Z[J,R] = e
i
~

[
S[φ0]+Jφo+

1
2
φ0Rφ0

] ∫
Dφe

i
~

[
S[φ+φ0]−S[φ0]+(J+Rφ0)φ+

1
2
φRφ

]
(3.20)

= e
i
~

[
S[φ0]+Jφ0+

1
2
φ0Rφ0

]
Z1[J,R] . (3.21)

The cumulant generating function may then be written as

W [J,R] = S[φ0] + Jφo +
1

2
φ0Rφ0 +W1 with W1 = −i~ log(Z1[J,R]) . (3.22)

We again fix φ0 to be the full 1-point average ϕ and obtain the 2-PI EA as

Γ[G,ϕ] =W − δW

δJ
J − δW

δR
R =W − ϕJ − 1

2
R
[
i~G+ ϕ2

]
(3.23)

= S[ϕ] + Jϕ+
1

2
ϕ2R+W1 − ϕJ − 1

2
R
[
i~G+ ϕ2

]
(3.24)

= S[ϕ] +W1 −
i~
2
RG . (3.25)

We used here the connection of derivatives wrt. to J and R of W [J,R] to the correlation
functions, namely

δW

δJ
= 〈φ〉 = ϕ (3.26)

δ2W

δJ2
=
i

~

[
〈φ2〉 − 〈φ〉2

]
= −G (3.27)

δW

δR
=

1

2
〈φ2〉 = 1

2

[
ϕ2 + i~G

]
. (3.28)

The first derivatives of the 2-PI EA give the connection to the source fields as
δΓ

δϕ
=
δW

δϕ
− J − ϕ

δJ

δϕ
− ϕR− δW

δR

δR

δϕ
(3.29)

=
δW

δJ

δJ

δϕ
+
δW

δR

δR

δϕ
− J − ϕ

δJ

δϕ
− ϕR− δW

δR

δR

δϕ
= −J − ϕR (3.30)

δΓ

δG
=
δW

δG
− ϕ

δJ

δG
− i~

2
R− δW

δR

δR

δG
(3.31)

=
δW

δR

δR

δG
+
δW

δJ

δJ

δG
− ϕ

δJ

δG
− i~

2
R− δW

δR

δR

δG
= − i~

2
R . (3.32)

38



From here, we obtain the key feature and the reason why this formulation is called the effective
action. At the physical point, where J and R vanish, the theory of interest, also the derivatives
of Γ[ϕ,G] vanish

δΓ

δϕ

∣∣
J,R=0

= 0 ,
δΓ

δG

∣∣
J,R=0

= 0 . (3.33)

This leads to a variational principle for quantum field theories.
We now follow the ideas of the analysis in the 1-PI case and analyse the theory given by W1.
Taking the derivative wrt. to ϕ leads us to

δW1

δϕ
=

1

Z1

∫
Dφe

i
~ S̃

[
δS[φ+ ϕ]

δϕ
− δS[ϕ]

δϕ
− φ

δ2Γ

δϕ2
+

1

2
φ2
δR

δϕ

]
(3.34)

=
1

Z1

∫
Dφe

i
~ S̃

[
δS[φ+ ϕ]

δϕ
− δS[ϕ]

δϕ
− φ

δ2Γ

δϕ2
+
i

~
φ2

δ2Γ

δϕδG

]
. (3.35)

We can write the first term, dropping boundary terms again as

−i~
∫

Dφ δ

δφ
e

i
~ S̃ =

∫
Dφe

i
~ S̃

[
δS[φ+ ϕ]

δϕ
− δΓ

δϕ
+ 2

i

~
φ
δΓ

δG

]
= 0 (3.36)

⇒
∫

Dφe
i
~ S̃
δS[φ+ ϕ]

δϕ
=

∫
Dφe

i
~ S̃

[
δΓ

δϕ
− 2

i

~
φ
δΓ

δG

]
. (3.37)

Using this result, we can rewrite the expression as

δW1

δϕ
=

1

Z1

∫
Dφe

i
~ S̃

[
δΓ

δϕ
− 2

i

~
φ
δΓ

δG
− δS[ϕ]

δϕ
− φ

δ2Γ

δϕ2
+
i

~
φ2

δ2Γ

δϕδG

]
(3.38)

=
1

Z1

∫
Dφe

i
~ S̃

[
δW1

δϕ
− i~

2

δR

δϕ
G− φ

δ2Γ

δϕ2
+
i

~
φ2

δ2Γ

δϕδG
− 2

i

~
φ
δΓ

δG

]
(3.39)

=
1

Z1

∫
Dφe

i
~ S̃

[
δW1

δϕ
+

δ2Γ

δGδϕ
G− φ

δ2Γ

δϕ2
+
i

~
φ2

δ2Γ

δϕδG
− 2

i

~
φ
δΓ

δG

]
(3.40)

=
δW1

δϕ
+

1

Z1

δ2Γ

δϕδG

∫
Dφe

i
~ S̃

[
G+

i

~
φ2
]
− 1

Z1

[
δ2Γ

δϕ2
+ 2

i

~
δΓ

δG

]∫
Dφe

i
~ S̃φ . (3.41)

Both terms in front of the integrals are non-zero due to the invertibility of the Legendre
transform from the convexity of W already assumed. Therefore we obtain 〈φ〉S̃ = 0 and
〈φ2〉S̃ = i~G, so all diagrams contained in W1 are 1-PI and written in terms of full propagators
G.
We can further isolate all 2-PI diagrams. Here, we follow the approach of [47], which uses a
clever ansatz for the effective action, which we will justify later, namely

Γ[ϕ,G] = S[ϕ] +
i~
2

tr logG−1 +
i~
2

trG−1
0 G+ Γ2[ϕ,G] + const . (3.42)

Here, Γ2 is the remaining diagrammatic part containing only 2-PI vacuum diagrams. We will
call this form the CJT form of the 2PI EA. Taking the derivative, we obtain the equations of
motion and define the self-energy by analogy with Dyson’s equation as Σ = 2i

~
δΓ2

δG .

δΓ

δG
= − i~

2
G−1 +

i~
2
G−1

0 +
δΓ2

δG
=

−i~
2
R ⇒

[
G−1 = G−1

0 − Σ
]
J=R=0

(3.43)

δΓ

δϕ
=
δS

δϕ
+
i~
2

δG−1
0

δϕ
G+

δΓ2

δϕ
= −J − ϕR . (3.44)
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In the case of complex fields, one must be more careful at this point and remember that the
Green functions are two index objects of complex fields. This means the derivatives must be
performed keeping the appropriate order of indices as

δ

δGi,j

∑
k

log(G−1)k,k =
∑
k,p

G−1
k,p

δGp,k

δGi,j
= G−1

j,i

δ

δGi,j

∑
k,p

(G−1
0 )k,pGp,k = (G−1

0 )j,i


⇒ Σi,j =

2i

~
δΓ2

δGj,i
. (3.45)

Note that if Γ2 contains only 2-PI vacuum diagrams, then Σ contains 1-PI diagrams with
external indices. The sources can now be represented as

R = G−1 −G−1
0 +

2i

~
δΓ2

δG
= G−1 −G−1

0 +Σ (3.46)

J = −δΓ
δϕ

+
[
G−1 −G−1

0 +Σ
]
ϕ . (3.47)

This allows us to obtain the 2-PI EA more explicitly using its integral representation.

e
i
~Γ =

∫
dφ exp

i

~

[
S[φ] + J(φ− ϕ) +

1

2
R(φ2 − ϕ2 − i~G)

]
= e

i
~S[ϕ]

∫
dφ exp

i

~

[
S[φ+ ϕ]− S[ϕ] + (J + ϕR)φ+

1

2
R(φ2 − i~G)

]
= e

i
~S[ϕ]

∫
dφ exp

i

~

[
S[φ+ ϕ]− S[ϕ]− δΓ

δϕ
φ+

1

2
(G−1 −G−1

0 +Σ)(φ2 − i~G)
]

= e
i
~

[
S[ϕ]+ i~

2
G−1

0 G− i~
2

tr1
] ∫

dφ exp
i

~

[
S[φ+ ϕ]− S[ϕ]− δΓ

δϕ
φ+

1

2
φ2(G−1 −G−1

0 ) +
1

2
Σ(φ2 − i~G)

]
= e

i
~

[
S[ϕ]+ i~

2
G−1

0 G− i~
2

tr1
] ∫

dφ exp
i

~

[
1

2
φG−1φ+ SI [φ, ϕ] +

1

2
Σ(φ2 − i~G) + φ

(
δS

δϕ
− δΓ

δϕ

)]

where we have defined the effective interaction as SI =
∑

n=3
1
n!

δnS[ϕ]
δϕn φn. We now pull the

remaining integral into the exponent and normalise the integral by its Gaussian part, obtaining
tr(log(G)). In this way, we find for Γ[ϕ,G] and the diagrammatic part Γ2 the expressions

Γ[ϕ,G] = S[ϕ] +
i~
2
G−1

0 G− i~
2

tr1 + i~
2

tr ln(G−1) + Γ2 (3.48)

Γ2 = −i~ ln
[ ∫ dφ√

det(G)
exp

i

~

[1
2
φG−1φ+ SI [φ, ϕ] +

1

2
Σ(φ2 − i~G) + φ

(
δS

δϕ
− δΓ

δϕ

)]]
.

(3.49)

We can equate this with what we have found before from the CJT ansatz.

Γ[ϕ,G] = S[ϕ] +
i~
2

tr logG−1 +
i~
2

trG−1
0 G+ Γ2[ϕ,G] + const (3.50)

= S[ϕ] +W1 −
i~
2

tr(RG)

⇒ Γ2 =W1 −
i~
2

tr(R+G−1
0 )G+

i~
2

tr logG+ const (3.51)
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We now analyse Γ2 diagrammatically at the saddle point, so when the equations of motion
hold and the sources vanish. For this, we factor G0 in its free contribution, coming from the
quadratic part of the action g0 and the interacting part VI to find

Γ2[ϕ,G] =W1 −
i~
2

trG−1
0 G+

i~
2

tr log(1 + (Σ− δ2VI
δϕ2

)G) + const . (3.52)

Expanding the logarithm in powers of the self-energy we obtain

Γ2[ϕ,G] =W1 −
i~
2

trG−1
0 G− i~

2

∑
n=1

1

n

[
(
δ2VI
δϕ2

− Σ)G

]n
+ const . (3.53)

The third term generates all 2-PR diagrams assuming that Σ contains only 1-PI diagrams in
a loop tr(GΣGΣ) + ...1. Here, for bosons, the additional factor δ2VI

δϕ2 appears, which removes
condensate insertions in propagators. These are already included by the definition of G−1

0 .
This shows that the assumption that Σ ∝ δΓ2

δG contains only 1-PI diagrams is consistent with
the form of Γ2. Therefore Γ2 must only contain 2-PI diagrams, with lines given by full Green
functions and vertices given by SI =

∑
n=3

1
n!

δnS[ϕ]
δϕn φn.

3.2.1 Explicit expansion

We want to show here how explicit approximations can be obtained. We focus on the ~
expansion, but also expansion in terms of coupling constants [31] or 1/N [49] are obtainable
from the expression of Γ2. The reason for the focus on the ~ expansion is that it measures
quantum fluctuations. This can be seen directly from the path integral by the weighting factor
1/~ in front of the action, measuring deviation from the classical path. Therefore, one can
often obtain good results even in strong coupling regimes if a well-defined mean field exists and
fluctuations around it are small. We now focus on the path integral inside of the logarithm.
Note here that this already has a factor of ~ in front. Let us first scale the integral variable
explicitly with ~ as φ→

√
~φ leading us to

∫
dφ√
det(G)

exp i

1
2
φG−1φ+ S̃I +

i

~
δΓ2

δG
(φ2 − iG)−

√
~φ

(
1

2

δ3S

δϕ3
G+

1

~
δΓ2

δϕ

) (3.54)

with S̃I =
∑

n=3
~n/2−1

n!
δnS
δϕnφn. The first term of the ~ expansion starts at the second order

since we already factored out the first order via the logarithm. Therefore we can expand
Γ2 =

∑
n=2 ~nΓ2

n. To be explicit, we focus now on a theory, which only contains terms up to
φ4 in its interaction. Let us start collecting the orders of ~ in the action up to order ~2

1

2
φG−1φ+

√
~

[
1

3!

δ3S

ϕ3
φ3 − φ

1

2

δ3S

δϕ3
G

]
+ ~

[
1

4!

δ4S

δϕ4
φ4 +

δΓ2
2

δG
(iφ2 +G)

]
+O(~3/2) . (3.55)

We now expand the exponential around a Gaussian with second moment G in powers of ~.
Note that we do not need to expand around a shifted Gaussian since we have already shown

1Some reader might wonder where diagrams are contained, which are not apparent loops, like ladder diagrams,
which are reducible by cutting two lines at the same rung. All these diagrams can be obtained by self-energy
insertions into Green function lines. The ladder diagrams, for example, are produced via self-energy insertions of
NCA-type diagrams.
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that the theory has a vanishing central moment. A direct expansion leads us to

∫
dφ√
detG

e
i
2
φG−1φ

1 + i
√
~

[
1

3!

δ3S

ϕ3
φ3 − φ

1

2

δ3S

δϕ3
G

]
+

~
2
i2

[
1

3!

δ3S

ϕ3
φ3 − φ

1

2

δ3S

δϕ3
G

]2
(3.56)

+ i
~
4!

δ4S

δϕ4
φ4 + i~

δΓ2
2

δG
(iφ2 +G) +O(~3/2)

]
. (3.57)

Now, we have to remember that the integral is inside a logarithm; therefore, all disconnected
parts are factored, so we only need to consider the connected part. The

√
~ order drops out

since we average wrt. to a symmetric Gaussian. In order ~, we find first the Hartree-Fock
diagrams, which are connected and 2-PI. The last term in the second line vanishes since the
propagator of the shifted theory is the full Green function. The last term in the first line
generates the non-crossing 2 approximation (NCA) and also needs to cancel the dumbbell
diagram, namely [

1

3!

δ3S

ϕ3
φ3

]2
+

[
1

2
φ
δ3S

δϕ3
G

]2
− 2

[
1

3!

δ3S

ϕ3
φ3

1

2
φ
δ3S

δϕ3
G

]
. (3.58)

Let us explicitly show the cancellation using the diagrammatic representation of the three
terms. [

1

3!

δ3S

ϕ3
φ3

]2
=

1

3!2

[
3 ∗ 2 ∗ + 3 ∗ 3 ∗

]
(3.59)[

1

2
φ
δ3S

δϕ3
G

]2
=

1

4
∗ (3.60)

2

[
1

3!

δ3S

ϕ3
φ3

1

2
φ
δ3S

δϕ3
G

]
=

1

3!
3 ∗ (3.61)

Collecting all the terms, the dumbbell diagram cancels, and we only obtain the NCA diagram

1

2!
+

1

4
+

1

4
− 1

2
=

1

2!
. (3.62)

The first contributions are of order ~2 as anticipated and are the NCA diagram and HF given
by

Γ2
2 = ~2

[
1

2

δ3S

δϕ3
G3 δ

3S

δϕ3
− 1

8

δ4S

δϕ4
G2

]
(3.63)

Higher order contributions are now obtained iteratively since the next order will depend on Γ2
2,

which is needed to cancel various 2-PR contributions.

2Often called the sunset diagram.
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3.3 Approximations of 2-PI EA
The 2-PI EA is tremendously helpful in developing conserving approximations for a theory.
Nevertheless, various caveats should be kept in mind when interpreting results. Here, we want
to investigate a few of these issues. To clarify the point, let us first look at how expectation
values are computed in an approximation of the 1PI EA Γ1. As an example, let us take a
four-point average. The idea is to decompose the expectation value into its cumulants and then
compute the cumulants using the 1PI EA. To this end, one obtains

〈φiφjφkφl〉 = δW
δJi

δW
δJj

δW
δJk

δW
δJl

−~2
(

δ2W
δJiδJj

δ2W
δJkδJl

+ 2permutations
)

+ +

−i~2
(
δW
δJi

δW
δJj

δ2W
δJkδJl

+ 5permutations
)

+ + + + +

−~2
(

δ3W
δJiδJjδJk

δW
δJl

+ 3 permutations
)

+ + +

+i~3 δ4W
δJiδJjδJkδJl

Here, we have introduced an intuitive graphical notation to clarify permutations. Each corner
is one of the indices (i, j, k, l) connected to various cumulants. The first four lines separate all
processes, which have some independent parts, and the last line gives the non-separable part
of the average. From now on, we will need to keep track of internal indices, which need to be
summed up. We use a sum convention that over every index, which is a number, is summed
and integrated appropriately, and every letter is an external index.
The cumulants are obtained from the approximation of the 1PI EA using recursion as follows.
We know that the second derivative of the 1PI EA is the inverse 2-point Green function

δ2Γ1

δϕiδϕ1
G1,j = δi,j ⇔ Gi,j =

[
δ2Γ1

δϕδϕ

]−1

i,j

= − δ2W

δJiδJj
. (3.64)

We can now obtain the next cumulant by chain rule as

δ3W

δJiδJjδJk
= − δ

δJk

[
δ2Γ1

δϕδϕ

]−1

i,j

(3.65)

= −δϕ1

δJk

δ

δϕ1

[
δ2Γ1

δϕδϕ

]−1

i,j

=
δϕ1

δJk

[
δ2Γ1

δϕδϕ

]−1

i,2

δ3Γ1

δϕ1δϕ2δϕ3

[
δ2Γ1

δϕδϕ

]−1

3,j

(3.66)

= −Gk,1Gi,2Gj,3
δ3Γ1

δϕ1δϕ2δϕ3
= (3.67)

The diagrams represent the three derivatives of Γ and attach three Green functions to the
external legs. The fourth cumulant can be computed using the same method, leading us to

δ4W

δJiδJjδJkδJl
=−

δGk,1

δJl
Gi,2Gj,3

δ3Γ1

δϕ1δϕ2δϕ3
− δGi,2

δJl
Gk,1Gj,3

δ3Γ1

δϕ1δϕ2δϕ3
(3.68)

− δGj,3

δJl
Gi,2Gk,1

δ3Γ1

δϕ1δϕ2δϕ3
−Gk,1Gi,2Gj,3

δ

δJl

δ3Γ1

δϕ1δϕ2δϕ3
(3.69)

=Gk,1Gl,2
δ3Γ1

δϕ1δϕ2δϕ3
G3,4

δ3Γ1

δϕ4δϕ5δϕ6
G5,iG6,j + (2 permutations ) (3.70)

+Gk,1Gi,2Gj,3Gl,4
δ3Γ1

δϕ1δϕ2δϕ3δϕ4
(3.71)

=3 permutations of + (3.72)
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Note here that all derivatives of W are taken wrt. J and of Γ with ϕ. Each of these derivatives
commutes, and therefore, the averages will always have the correct symmetry imposed by the
action. From this property, one can derive the exact Ward identities, which we will show later.
The case of the 2-PI EA is different in that here derivatives wrt. to the second source R produce
expectation values that can be decomposed in derivatives wrt. J . This already occurs for
quadratic averages and, more importantly, for cubic averages as

δW

δRx,y
=

1

2

[
δW

δJx

δW

δJy
− i~

δ2W

δJxδJy

]
(3.73)

δ2W

δRx,yδJz
=

1

2

[
δ2W

δJxδJz

δW

δJy
+

δ2W

δJyδJz

δW

δJx

]
− i~

2

δ3W

δJxδJyδJz
. (3.74)

The set of relations generated by this procedure strictly holds only if no approximations are
employed [50] [51] [52] [53]. Applying approximation might lead to a violation of these identities
between different correlation functions following the exact structure of the theory. We will
start now to derive exact relations from the 2-PI EA for the self-energy and show where such
problems can arise. As a starting point, we use that the 2-PI EA is constructed via a Legendre
transformation. Therefore, the Hessian matrices of W and Γ must be inverse, such that the
transformation is involutive. We first represent the sources J and R in term of derivatives of Γ
as

δΓ

δϕi
− 2

i~
δΓ

δGi,1
ϕ1 = −Ji and 2

i~
δΓ

δGi,j
= −Ri,j . (3.75)

The two relevant relations between the second derivatives in the present case can then be
constructed as

δi,j =
δJi
δJj

= −

[
δϕ1

δJj

δ

δϕ1
+
δG1,2

δJj

δ

δG1,2

][
δΓ

δϕi
− 2

i~
δΓ

δGi,3
ϕ3

]
(3.76)

=− δ2W

δJjδJ1

[
δ2Γ

δϕ1δϕi
− 2

i~
δ2Γ

δGi,3δϕ1
ϕ3 −

2

i~
δΓ

δG1,i

]
(3.77)

+
δ3W

δJjδJ1δJ2

[
δ2Γ

δG1,2δϕi
− 2

i~
δ2Γ

δG1,2δGi,3
ϕ3

]
(3.78)

0 =
δRk,l

δJi
= − 2

i~

[
δϕ1

δJi

δ

δϕ1
+
δG1,2

δJi

δ

δG1,2

]
δΓ

δGk,l
(3.79)

=− 2

i~

[
δ2W

δJiδJ1

δ2Γ

δϕ1δGk,l
− δ3W

δJiδJ1δJ2

δ2Γ

δG1,2δGk,l

]
(3.80)

The second relation can be used to cancel the explicit dependence of ϕ in the first relation to
obtain

δi,j = Gj,1

[
δ2Γ

δϕ1δϕi
− 2

i~
δΓ

δG1,i

]
+

δ3W

δJjδJ1δJ2

δ2Γ

δG1,2δϕi
. (3.81)
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To relate this expression to the self-energies we now use the CJT form of the 2-PI EA and take
the required derivatives, leading us to

Γ[ϕ,G] = S[ϕ] +
i~
2

tr logG−1 +
i~
2

trG−1
0 G+ Γ2[ϕ,G] + const (3.82)

δΓ

δGx,y
= − i~

2
G−1

x,y +
i~
2
(G−1

0 )x,y +
δΓ2

δGx,y
(3.83)

δ2Γ

δϕxδϕy
=

δ2S

δϕxδϕy
+
i~
2

(
δ4S

δϕxδϕyδϕ1δϕ2
G2,1

)
+

δ2Γ2

δϕxδϕy
(3.84)

δ2Γ

δϕxδGa,b
=
i~
2

δ3S

δϕxδϕaδϕb
+

δ2Γ2

δϕxδGa,b
(3.85)

δ2Γ

δGa,bδGx,y
=
i~
2
G−1

a,xG
−1
b,y +

δ2Γ2

δGa,bδGx,y
. (3.86)

At the physical point where the sources vanish, we obtain through these relations

δi,j =Gi,1

 δ2S

δϕ1δϕj
+
i~
2

(
δ4S

δϕ1δϕjδϕ2δϕ3
G2,3

)
+

δ2Γ2

δϕ1δϕj

 (3.87)

+
δ3W

δJiδJ1δJ2

[
i~
2

δ3S

δϕ1δϕ2δϕj
+

δ2Γ2

δϕjδG1,2

]
. (3.88)

By comparison with the Dyson equation, we can identify the self-energy part of the equation as

−Gi,1Σ1,j =Gi,1

 i~
2

(
δ4S

δϕ1δϕjδϕ2δϕ3
G2,3

)
+

δ2Γ2

δϕ1δϕj

 (3.89)

+
δ3W

δJiδJ1δJ2

[
i~
2

δ3S

δϕ1δϕ2δϕj
+

δ2Γ2

δϕjδG1,2

]
. (3.90)

In this thesis, we will only be interested in cubic interaction, which reduces the expression to

Gi,1Σ1,j = − i~
2

δ3W

δJiδJ1δJ2

δ3S

δϕ1δϕ2δϕj
= − δ3W

δJiδJ1δJ2

δ2Γ

δG1,2δϕj
. (3.91)

This gives us a direct connection between the self-energy contributions in the KB eq, and
certain expectation values related to the interaction. We can further establish a consistency
equation for the self-energy. For this, we take another look at the second Hessian equation to
obtain

Gi,1
δ2Γ

δϕ1δGk,l
= − δ3W

δJiδJ1δJ2

δ2Γ

δG1,2δGk,l
. (3.92)

We now use that we can construct the inverse of δ2Γ
δG2 via a Bethe-Salpeter equation to obtain

Gi,1
δ2Γ

δϕ1δG2,3

[
δ2Γ

δG2

]−1

2,3,4,5

δ2Γ

δG4,5δϕj
= − δ3W

δJiδJ1δJ2

δ2Γ

δG1,2δϕj
. (3.93)
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Compared with our previous result for a cubic interaction, this leads us to an equality for the
self-energy

i~
2

δ3S

δϕiδϕ1δϕ2

[
G−1G−1 +

δΣ

δG

]−1

1,2,3,4

δ3S

δϕ3δϕ4δϕj
= Σi,j . . (3.94)

One might note that most conserving self-energy approximations do not fulfil this relation. In
[50] [51] [52], it was shown that (3.94) is crucial to preserve the proper connections between
correlation functions of different order due to symmetry. They proposed a way to restore
this symmetry again by using (3.94) to supplement the missing diagrammatic channels. This
means one first chooses an approximation for Γ2 and extracts the self-energies accordingly.
The insertion in the lhs. of (3.94) will usually lead to an infinite class of distinct diagrams
defining the self-energy which should be used. The solution of this system will usually now
also involve the solutions of a Bethe-Salpether equation, which determines the new self-energy
approximation. This approach is tremendously hard to implement. Therefore, one might
wonder what we are losing if (3.94) is not implemented.

3.4 Ward-Takahashi identities

Later on, we will investigate systems with spontaneously broken symmetry (SSB). In this
case, the action and the path integral measure, following from there also the effective action,
are invariant under continuous transformations. However, the solutions of the equations of
motion generated do not necessarily have the full symmetry but pick a specific subgroup.
An example is the Heisenberg model in d = 3, in which the Hamiltonian is invariant under
rotations. Nevertheless, in the thermodynamic limit at low temperatures, a magnetisation with
a specific direction, which is spontaneously chosen, can form. The symmetry of the model
nevertheless restricts the dynamics in the SSB phase. These restrictions are most clearly stated
in the Ward-Takahashi identities, which are most easily derived from the 1-PI formalism. In
this section, we focus on the problem that the effective actions are rarely known exactly and
need to be approximated and truncated, leading to non-equivalence of different N-PI effective
actions [32]. However, we will see different effective actions lead to different Ward identities,
which are only equivalent when evaluated exactly. We will limit ourselves here to only the
first-order Ward-identities. Let us begin by considering the 1-PI EA Γ1[Φ], with n scalar fields
Φ, which is invariant under a continuous transformation O = eaT , where T is the generator of
the transformation. Since the effective action is invariant under all transformations of this kind,
we can look at an infinitesimal transformation and see how the correlation functions behave.
First, we expand to linear order in the parameter a and obtain

Γ1[Φ] = Γ1[OΦ] = Γ1[(1 + aT + ..)Φ] = Γ1[Φ] +
∂Γ1

∂a
a+ ... = Γ1[Φ] +

δΓ1[Φ]

δΦ

∂aTΦ

∂a
a+ ...

= Γ1[Φ] + a

[
δΓ1[Φ]

δΦ1
T1,2Φ2

]
+ ...

⇒ δΓ1[Φ]

δΦ1
T1,2Φ2 = 0 . (3.95)

Since the relation must hold for all a, every coefficient in the power series must vanish. Note
here that this is not just a constraint on Γ1 on the physical solution but on the whole functional.
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Therefore, we can differentiate again wrt. to Φx and obtain

0 =
δ2Γ1[Φ]

δΦxδΦ1
T1,2Φ2 +

δΓ1[Φ]

δΦ1
T1,x . (3.96)

At the physical point, the second term vanishes, and we obtain for the physical solutions that

0 =
δ2Γ1[Φ]

δΦxδΦ1
T1,2Φ2 = G−1

x,1T1,2Φ2 . . (3.97)

Let us now consider a bosonic theory with a U(1) symmetry, which we can easily obtain by
choosing Φa = φ and Φb = φ∗. The Ward identity leads us then to∫

dt′
[
G−1

φ,φ(t, t
′)φ(t′)−G−1

φ,φ∗(t, t
′)φ∗(t′)

]
= 0 (3.98)

=

∫
dt′
[
−Σφ,φ(t, t

′)φ(t′)−
(
δt,t′(i∂t − h0)− Σφ,φ∗(t, t′)

)
φ∗(t′)

]
(3.99)

To understand the implications, let us consider that the system reached a steady state, which
implies Φ(t) = Φ0

3 and the self-energies only depend on relative time so that they can be
represented in frequency space. With this, we obtain the Hugenholtz-Pines relation

[h0 − Σφ,φ(ω = 0) + Σφ,φ∗(ω = 0)]Φ0 = 0 (3.100)

which relates the normal and anomalous self-energies to the chemical potential and ground
state energy contained in h0. This enforces the pole position of the Green function so that it is
not invertible at the frequency ω = 0. This fact can be most easily understood in equilibrium,
where the distribution function is the Bose function with a pole at ω = 0. The spectral function
must change sign and at least linearly vanish at this point so that the fluctuating particle
number spectrum remains finite and positive. It is an essential consequence of the stable,
macroscopically occupied single-particle wavefunction φ.
Taking higher order derivatives of (3.96) leads to further connections between response functions,
whose dynamics are all restricted by symmetry.

The case of the 2-PI EA is more complicated. Here also, the Green functions need to be
transformed, meaning that we now obtain after infinitesimal transformation

Γ[Φ, G] = Γ[OΦ, O†GO] = Γ[(1 + aT )Φ, (1 + aT )G(1 + aT )] = Γ[(1 + aT )Φ, G+ a(GT + TG) + ...]

= Γ[Φ, G] + a

[
δΓ

δΦ1
T1,2Φ2 +

δΓ

δG1,2

[
G1,3T3,2 + T1,3G3,2

]]
(3.101)

Therefore, generally, the 2-PI Ward-ID is different from the 1-PI Ward-ID, namely generated by

δΓ

δΦ1
T1,2Φ2 +

δΓ

δG1,2

[
G1,3T3,2 + T1,3G3,2

]
= 0 . (3.102)

Explicitly, we again take the Φx derivative using here that this must hold for all Φ and G being
independent and then restricting to the saddle point, leading us to

δ2Γ

δΦxδΦ1
T1,2Φ2 +

δ2Γ

δΦxδG1,2

[
G1,3T3,2 + T1,3G3,2

]
= 0 . (3.103)

3Generally, a time evolution with a phase factor involving the ground state energy is possible, which in the
translational invariant, weakly interacting Bose gas is chosen to be zero. We will come back to this point when
we analyse the system of interest.
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At this point, one might be tempted to declare the second term as the culprit of this changed
Ward-identity. But in the 2-PI EA case, δ2Γ/δΦ2 also has a different meaning from the full
inverse Green function. Therefore, the result should better be interpreted as a condition onto
the two-point Green function to fulfil

δ2Γ

δΦxδΦ1
T1,2Φ2 +

δ2Γ

δΦxδG1,2

[
G1,3T3,2 + T1,3G3,2

] !
= G−1

x,1T1,2Φ2 (3.104)

Let us again specialise in the case of a cubic theory, where we can use the identities obtained in
the previous section. This allows us to write

(G−1
0 )x,1T1,2Φ2 +

δ2Γ

δΦxδG1,2

[
G1,3T3,2 + T1,3G3,2

] !
= ((G−1

0 )x,1 − Σx,1)T1,2Φ2 (3.105)

We can find another identity from (3.102) by taking a derivative wrt. to the Green function to
obtain

δ2Γ

δGx,yδΦ1
T1,2Φ2 +

δ2Γ

δGx,yδG1,2

[
G1,3T3,2 + T1,3G3,2

]
+

[
Ty,1

δΓ

δG1,x
+

δΓ

δGy,1
T1,x

]
= 0 . (3.106)

The last bracket will vanish at the saddle point, and we can manipulate the first two terms to
obtain

− δ2Γ

δϕxδG1,2

[
δ2Γ

δG2

]−1

1,2,3,4

δ2Γ

δG3,4δϕ5
T5,6ϕ6 =

δ2Γ

δϕxδG1,2

[
G1,3T3,2 + T1,3G3,2

]
(3.107)

The left-hand side contains the expression for the self-energy found before. This means the
Ward identity will only be fulfilled if the self-energy fulfils eq. (3.94). The interpretation in
non-equilibrium is that the condensate energy should be at the pole position of the Green
functions following eq. (3.97). If the self-energy does not follow (3.94), the condensate’s energy
is no longer constrained to this position.
An approach to remedy this problem was proposed in [54]. Here, one discards the equation of
motion of the condensate generated by the stationarity condition of the 2-PI EA in favour of
eq. (3.97). This will force the condensate to the pole of the Green function determined by the
approximation of Γ2. This approach, nevertheless, can lead to a loss of solutions in some cases
[55].
One should note that dissipation in the form of particle loss and gain will not alter any of the
arguments given above. The U(1) symmetry, usually used to argue particle number conservation,
is still present on the path integral level but can now not be decoupled in the (+) and (−)
branch of Keldysh contours independently. From this follows a continuity equation rather than
a conservation law [34]. But the Ward identities are formally the same as in eq. (3.97). Here,
the free propagator contains additional dissipative contributions, which must then be taken
into account.
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Part III

Auxiliary-Particle Theory
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Chapter 4

Auxiliary-Particles Representation

We now turn to the auxiliary particle representation of the Hamiltonian. The approach was
first followed in [56–58]. This method is generally applicable if the system can be mapped to an
effective single impurity model and has been applied to strongly correlated electron systems for
a long time [59]. The mapping to a single impurity model can be archived by various methods.
In the present case, we will employ ideas from Dynamical-Mean-Field Theory (DMFT). The
underlying insight is that if the photon self-energy is a local quantity, then a local mean field
can capture the effect on the molecule. In the present case, the molecule solution is dilute in
the sense that the dye molecules are uncorrelated. Therefore, the photon self-energies generated
by the photon-molecule interactions are purely local, and we can treat the molecules as single
impurity systems coupled to a dynamical photon bath. For this reason, we drop the molecule
and photon mode indices at the present stage and focus on the single impurity problem. How
large molecule reservoirs and multiple photon modes are treated will be discussed later. The
Hamiltonian in the rotating frame of the molecule was already introduced and reads:

H = δa†a+
(
ωb†b+ sωσz(b† + b)

)
+ γ(a†σ− + aσ+) (4.1)

The aim is to treat the problem with field theoretical methods. Pauli matrices have the property
that they do not commute canonically, which means that the commutator of two Pauli matrices
again produces a Pauli matrix. This leads to various problems when working with them, among
others, Wick’s theorem does not hold. One of the methods to circumvent this is to introduce
auxiliary bosons, which explicitly address the basis states with a set of bosonic operators. The
key idea for the problem at hand is to enlarge the basis such that all physically different states
are represented by their own bosonic single-particle state. It allows us to introduce auxiliary
particles and create the original states from a vacuum as

|e, n〉 = d†e,n |vac〉 |g, n〉 = d†g,n |vac〉 . (4.2)

Note that this approach is completely independent of the specifics of the molecule model used.
This is one reason why this method is tremendously flexible regarding which systems can be
treated.
To construct the operator in the new basis, we start by considering the action of the physical
operators b and σ± on this new bosonic Hilbert space. The creation and annihilation operator
for the phonons can then be decomposed in bilinear terms, which destroys a particle in a state
with n - phonons and creates a state with n+1, or n− 1, phonons giving an appropriate matrix
element. These operators preserve the electronic state σ ∈ {e, g} and can be written as

b† =
∑
n,σ

√
n+ 1 d†σ,n+1dσ,n b =

∑
σ,n

√
n+ 1 d†σ,ndσ,n+1 . (4.3)
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The auxiliary bosons have the usual commutation relation: [dσ,n, d†σ′,m] = δm,nδσ,σ′ . The original
operators act now as effective hopping between states with different phonon numbers. However,
we need to preserve the commutation relation between the original operators, which leads us to:

[b, b†] =
∑

m,σ,n,σ′

√
(n+ 1)(m+ 1)[d†σ,ndσ,n+1, d

†
σ′,m+1dσ′,m]

=
∑
m,n,σ

√
(n+ 1)(m+ 1)

(
d†σ,n[dσ,n+1, d

†
σ,m+1dσ,m] + [d†σ,n, d

†
σ,m+1dσ,m]dσ,n+1

)
=
∑
σ,m,n

√
(n+ 1)(m+ 1)

(
d†σ,n(d

†
σ,m+1[dσ,n+1, dσ,m]

+ [dσ,n+1, d
†
σ,m+1]︸ ︷︷ ︸

δn+1,m+1

dσ,m) + (d†σ,m+1 [d
†
σ,n, dσ,m]︸ ︷︷ ︸
−δm,n

+[d†σ,n, d
†
σ,m+1]dσ,m)dσ,n+1


=
∑
σ,m,n

√
(n+ 1)(m+ 1)(d†σ,ndσ,mδm+1,n+1 − d†σ,m+1dσ,n+1δm,n)

=
∑
σ

d†σ,0dσ,0 +∑
n=1

d†σ,ndσ,n(n+ 1− n)

 =
∑
σ,n=0

d†σ,ndσ,n := Q̂ = 1 . (4.4)

This equation gives us an operator constraint we have to impose on the Hilbert space to be the
physical subspace. We will call this operator constraint Q̂. It tells us that only one of the states
we introduced can be occupied to have a faithful representation of our original system. So, a
product state must have a definite electronic state and phonon number. Still, superpositions of
states in this subspace are physical.
We now calculate the other relevant terms for the Hamiltonian:

b†b =
∑

m,n,σ,σ′

√
(n+ 1)(m+ 1)d†σ,n+1dσ,nd

†
σ′,mdσ′,m+1

=
∑

σ,σ′,m,n

√
(n+ 1)(m+ 1)d†σ,n+1d

†
σ′,mdσ,ndσ′,m+1 +

∑
σ,m,n

√
(n+ 1)(m+ 1)d†σ,n+1dσ,m+1δm,n

=
∑

σ,m=0

md†σ,mdσ,m +
∑

σ,σ′,m,n

√
(n+ 1)(m+ 1)d†σ,n+1d

†
σ′,mdσ,ndσ′,m+1 (4.5)

The last term is a normal ordered product of two creation and two annihilation operators. This
term vanishes in the physical space, where Q̂ = 1 since the physical system is constrained to
a total auxiliary particle number of one. Therefore, two destruction operators annihilate this
subspace. Terms of this kind can be dropped. The Pauli matrices in this basis are given by:

σ+ =
∑
n

d†e,ndg,n ; σ− =
∑
n

d†g,nde,n ; σz =
∑
n

(d†e,nde,n − d†g,ndg,n) . (4.6)

The commutation relations lead again to the same constraint Q̂. In this basis, we find the
Hamiltonian in the constraint subspace as:

H =δa†a+
∑
n

ωnd†e,nde,n +
∑
n

ωnd†g,ndg,n

−
∑
n

sω
√
n+ 1 (d†g,n+1dg,n + d†g,ndg,n+1) +

∑
n

sω
√
n+ 1 (d†e,n+1de,n + d†e,nde,n+1)

+ γ
∑
n

(a†d†g,nde,n + ad†e,ndg,n) (4.7)
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Even though, for some applications, collecting all quantum numbers in subscripts is pretty
useful and will be employed for certain derivations later, it is often more transparent to make
the electronic quantum number explicit by dg,n = gn and de,n = en. It will later on make the
naming of 2-time Green functions more intuitive. The Hamiltonian reads now

H =δa†a+
∑
n

ωne†nen +
∑
n

ωng†ngn +
∑
n

sω
√
n+ 1 (e†n+1en − g†n+1gn + h.c.)

+ γ
∑
n

(a†g†nen + ae†ngn) . (4.8)

The molecule part of the Hamiltonian, which is not interacting with physical particles, is still
bilinear. This is a characteristic of the auxiliary particle method and allows for diagonalisation
of the free molecule part by the analogon of the polaron transformation. As in the original
theory, this will lead to a photon interaction strength γn,m, which explicitly mixes different
phonon states n and m. The coefficients are given by Frank-Condon integrals, as shown in
the appendix. This representation can be useful in derivations of rate equations, where the
molecule part is taken as stationary equilibrium distributions. However, it does not lead to
meaningful simplifications for dynamical calculations, which we are primarily interested in.
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4.1 Auxiliary particle projection

We now discuss how the auxiliary particle constraint Q = 1 can generally be implemented
exactly in a field theoretical Green function approach. This procedure is model-independent,
and we call the auxiliary particle creation and annihilation operators just d† and d. We will call
the operator, which we did not represent as auxiliary particles, the physical particle operators.
In the problem at hand it would be the photons.

The first observation is that every auxiliary particle Hamiltonian commutes with the
constraint [H,Q] = 0. This follows from the fact that every operator represented by the
auxiliary particles must commute independently with the constraint. Therefore, if the initial
conditions can be projected to the correct Hilbert space, the density matrix will stay in the
correct subspace during the time evolution. Historically, this has been archived in equilibrium
via a chemical potential [59]. Here, we take an equivalent route but focus on the fugacity, which
more intuitively generalises to non-equilibrium situations.
Let us consider an operator Â, which we represented through auxiliary particle operators. We
want to compute the average of this operator in the physical Hilbert space. This operator will
always annihilate the vacuum of the auxiliary particle theory. Furthermore, we can always
choose the density matrix of the auxiliary particle system to factorise in the different particle
number sectors Q. We will label these particle number sectors by attaching a factor ζQ to
the density matrix ρ→ ρζQ. The traces in the averages can then be taken separately in the
different Q number sectors. For reasons which will become clear in a second, we will divide the
grand canonical average 〈A〉 by the average of the constraint 〈Q〉 and separate the different
Q−sectors explicitly as

〈A〉
〈Q〉

=
tr(ρζQA)

tr(ρζQQ)
=

trQ=0(ρζ
0A) + trQ=1(ρζ

1A) + trQ=2(ρζ
2A) + ...

trQ=0(ρζ00) + trQ=1(ρζ11) + trQ=2(ρζ22) + ....
(4.9)

=
trQ=1(ρA) + ζ trQ=2(ρA) + ...

trQ=1(ρ) + 2ζ trQ=2(ρ) + ....
(4.10)

From this expression, we can obtain the average over the desired subspace Q = 1 by taking the
limit of ζ → 0 as

〈A〉c =
trQ=1(ρA)

trQ=1(ρ)
= lim

ζ→0

〈A〉
〈Q〉

. (4.11)

This means we can do computations in a grand canonical setting with a density matrix ρζQ,
where Wick’s theorem applies and later take the limit of ζ → 0. The additional factor 1/ 〈Q〉 is
treated differently depending on the system settings. In equilibrium and steady-state calculation,
the problem reduces to a boundary value problem, and the value of 〈Q〉 must be considered
explicitly. In general, non-equilibrium one solves an initial value problem, and it can be fixed
via the initial conditions from the onset.

The projection procedure of taking ζ → 0 has various implications on field theoretical
treatment. Firstly, all one-point averages of auxiliary particles must vanish 〈d〉 = 0, which is a
consequence of demanding that the density matrix factorises in different Q sectors and that
[Ĥ, Q̂] = 0. Secondly, to perform the limit ζ → 0, we will need a way to make the leading order
ζ scaling of the equations of motion explicit. This can most transparently be done using greater
and lesser Green functions. Considering them at initial times, one can find the leading order
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Figure 4.1: First diagrams contributing to the projected Luttinger-Ward functional. Solid lines
represent auxiliary particles, and wiggly lines are physical particles.

scaling as

G>(t0, t0) ∝ 〈dd†〉 = tr(ρζQdd†) = tr
Q=0

(ρdd†) +O(ζ) = O(1) (4.12)

G<(t0, t0) ∝ 〈d†d〉 = tr(ρζQd†d) = tr
Q=0

(ρd†d) +O(ζ) = O(ζ) . (4.13)

The leading order ζ scaling is preserved in the time-evolution since the constraint commutes with
the Hamiltonian1. Therefore, we can get the scaling of diagrammatic contributions by counting
the lesser functions contained after decomposing the Keldysh contour. The approximations
to models must be obtained via conserving approximations to guarantee the constraint’s
preservation. We are using the 2-PI EA to generate these. Contributions from Γ2 can be
classified in terms of auxiliary particle loops. For simplicity, we focus on the 3−vertex theory,
where two auxiliary particle operators connect to one physical particle operator. The general
argument does not change for vertices with more operators since the number of auxiliary
operators must still be two. Nevertheless, the topology of the resulting diagrams is more
complicated and clutters up the diagrams.
We now organise Γ2 in terms of auxiliary particle loops. First, we look at all diagrams with one

auxiliary particle loop. The first order is the non-crossing approximation (NCA). The higher
orders involve more crossing of propagators of physical particles. The first few contributions can
be seen in Fig. 4.1. Let us consider a generic diagram from this class on the Schwinger-Keldysh
contour. A diagram with N -vertices will contain N -auxiliary particle propagators connecting
them in a loop. The vertices will also be connected by N/2 propagators of physical particles
in various ways; all these possibilities can be collected in a function χc(t1, t2, ..., tN ). We can
write these diagrams as N∏

i=1

∫
c
dti

Gc(t1, t2)G
c(t2, t3)...G

c(tN−1, tN )Gc(tN , t1)χ
c(t1, t2, ..., tN ) . (4.14)

At this point, all propagators in the expression are contour-time-ordered and place for Gc(t, t′),
a greater function is t � t′ and a lesser function if t ≺ t′[60]. To obtain the leading order
scaling in ζ, we must order the times t1 to tN in ascending order to pick up the least lesser
functions. This results in N − 1 greater functions and one lesser function from the Green
function connecting the last to the first vertex Gc(tN , t1). This shows that the lowest order
contributions are of O(ζ). The same argument can be applied to diagrams with more auxiliary
particle loops, leading to another power of ζ for every auxiliary particle loop. This means that
in the limit of ζ → 0, only the one-loop diagrams will contribute, and of these, only the subset

1Note that this implies that the spectral function is given only by the greater function. This means that the
normalisation of the spectral function carries over to the greater function at equal time as G>

i,j(t, t) = −iδi,j .
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with a single lesser function. 2

The greater and lesser self-energies are now generated as

Σ>(t, t′) = i
δΓ2[G]

δG<(t′, t)
(4.15)

Σ<(t, t′) = i
δΓ2[G]

δG>(t′, t)
. (4.16)

Note that the ζ scaling of the Green functions is inherited by the self-energies and leads to a
simplification of the equations of motion of the auxiliary Green functions, the Kadanoff-Baym
equations (KB).
They are generally given by eq. (2.64) and (2.65) which are

(i∂t − h)G>(t, t′) =

∫ t′

t0

dt̄Σ>(t, t̄)G<(t̄, t′)−
∫ t

t0

dt̄Σ<(t, t̄)G>(t̄, t′)

+

∫ t

t0

dt̄Σ>(t, t̄)G>(t̄, t′)−
∫ t′

t0

dt̄Σ>(t, t̄)G>(t̄, t′) (4.17)

(i∂t − h)G<(t, t′) =

∫ t

t0

dt̄Σ>(t, t̄)G<(t̄, t′)−
∫ t′

t0

dt̄Σ<(t, t̄)G>(t̄, t′)

+

∫ t′

t0

dt̄Σ<(t, t̄)G<(t̄, t′)−
∫ t

t0

dt̄Σ<(t, t̄)G<(t̄, t′) . (4.18)

We now take the ζ → 0 limit on both sides and keep only the leading order contribution.
Various terms on the rhs. vanish. In this way, one obtains simplified equations of motion for
the auxiliary particle Green functions

(i∂t − h)G>(t, t′) =

∫ t

t0

dt̄Σ>(t, t̄)G>(t̄, t′)−
∫ t′

t0

dt̄Σ>(t, t̄)G>(t̄, t′) (4.19)

(i∂t − h)G<(t, t′) =

∫ t

t0

dt̄Σ>(t, t̄)G<(t̄, t′)−
∫ t′

t0

dt̄Σ<(t, t̄)G>(t̄, t′) . (4.20)

These equations have two essential properties at equal-time t = t′: They preserve the constraint
encoded in the lesser component, and they preserve the commutator encoded in the greater
component.

4.2 Renormalisation of physical particles
Another important aspect is the scaling of the self-energy of the physical particles, which are
influenced by the auxiliary particles. Extracting it directly from Γ2 leads to a scaling of O(ζ)
and vanishes therefore. As a result, Green functions of physical particles appearing in the
auxiliary particle self-energies are not renormalized by them. Nevertheless, the observable
physical Green functions get renormalized. This can be seen from the connection of the rhs. of
the KB equation to expectation values, which we have shown before in eq. (3.91) to be

Σx,1G1,y ∝ δ3S

δϕxδϕ1δϕ2

δ3W

δJ ′
1δJ

′
2δJ

′
y

(4.21)

2Note that in the presence of dissipative interactions, the contour ordering argument must be modified since
they allow to change the contour branch at an interaction point. It still holds that greater and lesser functions
classify the scaling, but the contour-time ordering argument is not directly applicable. Nevertheless, generic
dissipative interaction can be traced back to a Hamiltonian interaction with a bath, where the arguments
presented hold. We will return to this point later when we discuss open system dynamics for auxiliary particles.
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Here on the rhs. δ3W
δJ ′

1δJ
′
2δJ

′
y

belongs to an expectation value of an auxiliary particle operator.
We can now apply the projection procedure for expectation values eq. (4.11) as[

δ3W

δJ ′
1δJ

′
2δJ

′
y

]
Q=1

= lim
ζ→0

1

〈Q〉
δ3W

δJ ′
1δJ

′
2δJ

′
y

. (4.22)

Using this in the KB equation, for the photon Green functions P , we obtain for the rhs. in the
projecting limit[

Σx,1P1,y

]
Q=1

= lim
ζ→0

1

〈Q〉
Σx,1P1,y = lim

ζ→0

1

〈Q〉
Σx,1

[
(G0)1,y + (G0)1,2Σ2,3P3,y

]
(4.23)

= lim
ζ→0

Σx,1

〈Q〉
(G0)1,y . (4.24)

Therefore, in self-energies of the physical particles coming from auxiliary particles, only terms
linear in ζ are retained. The equations of motion are no longer of the usual Dyson form but
obtain a T-matrix form G−1

0 P = δ + limζ→0
Σ
〈Q〉G0.

As we have seen, the auxiliary particle lesser function vanishes in the limit of ζ → 0. But in
all observables, it appears with an additional factor of 1/ 〈Q〉. This gives rise to a contribution
of the finite part of the lesser functions. To isolate this part, we define a new auxiliary-particle
lesser Green function through G< = ζG̃<. This way, the finite part of G< is retained, and the
ζ scaling is explicitly performed on the equations. We will always use initial conditions with
tr(G̃<(t0, t0)) = −i so that 〈Q(t0)〉 = ζ. In this way, we only need to change all G< into G̃< in
the equations obtained before. In all following expressions, we will use the old symbol G< for
G̃< to not clutter up the notation, but the difference should be kept in mind.
We can now write the equations of motion for the photon Green functions due to a single
molecule as

G−1
0 P>(t, t′) =

∫ t′

t0

dt̄Σ>(t, t̄)G<
0 (t̄, t

′)−
∫ t

t0

dt̄Σ<(t, t̄)G>
0 (t̄, t

′)

+

∫ t

t0

dt̄Σ>(t, t̄)G>
0 (t̄, t

′)−
∫ t′

t0

dt̄Σ>(t, t̄)G>
0 (t̄, t

′) (4.25)

G−1
0 P<(t, t′) =

∫ t

t0

dt̄Σ>(t, t̄)G<
0 (t̄, t

′)−
∫ t′

t0

dt̄Σ<(t, t̄)G>
0 (t̄, t

′)

+

∫ t′

t0

dt̄Σ<(t, t̄)G<
0 (t̄, t

′)−
∫ t

t0

dt̄Σ<(t, t̄)G<
0 (t̄, t

′) . (4.26)

4.3 Lindblad dynamics with auxiliary particles

Including dissipation is essential for many systems of interest and can also be done in the
auxiliary particle formulation. This can either be achieved by directly using the field theory
generated by the corresponding Lindblad operators [34] [35] or by coupling a bath to the system
and using Born and Markov approximation. Due to the constraint of the auxiliary particles,
this procedure is not entirely straightforward. The class of allowed operators, which are coupled
to the reservoir, must commute with the constraint so that it is conserved in the time evolution.
This is naturally fulfilled if one starts with physical operators and writes these with their
corresponding auxiliary particle representation. Starting with a Lindblad operator, therefore
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a Markovian bath, generates interaction terms of fourth order in the auxiliary fields, which
mix different branches of the Keldysh contour. The projection can still be done in terms of
greater and lesser functions. A more transparent way is to consider the bath directly coupled
to the system and investigate the field theory generated, bearing in mind the Born and Markov
approximation. This also allows for a straightforward generalisation to general bath setups, e.g.
coloured or thermal baths and coherent pumps. Here, we will need to keep track of the auxiliary
particle indices. Note that every impurity operator A can be represented in the Hilbert space
of interest in terms of auxiliary particle operators dn as

A =
∑
n

Γn,md
†
ndm . (4.27)

We now consider the coupling to a bath with bosonic operators b as

∆H = γ(A†b+ b†A) = γ
∑
n,m

[
Γ∗
m,nb+ Γn,mb

†
]
d†ndm (4.28)

with bath correlation functions g(z, z′) = −i 〈Tc(b(z)b†(z′)〉. The first contribution to Γ2 is the
NCA diagram with auxiliary particle Green functions G and is given as∫

dzdz′
∑

n,m,k,l

γ2Γn,mΓ∗
k,lGm,l(z, z

′)Gk,n(z
′, z)g(z′, z) . (4.29)

The contour-ordered self-energies follow as

Σi,j(t, t
′) = iγ2

∑
n,k

[
Γn,jΓ

∗
k,iGk,n(t, t

′)g(t, t′) + Γi,kΓ
∗
j,nGk,n(t, t

′)g(t′, t)
]

= iγ2
[
g(t′, t)ΓG(t, t′)Γ† + g(t, t′)Γ†G(t, t′)Γ

]
i,j
. (4.30)

In the second line, we introduced a useful matrix notation.
To obtain the usual Lindblad form, we assume that the bath is not occupied (g<(t, t′) = 0 ),
which leads us to the auxiliary particle self-energies as

Σ>(t, t′) = iγ2g>(t, t′)Γ†G>(t, t′)Γ (4.31)
Σ<(t, t′) = iγ2g>(t′, t)ΓG<(t, t′)Γ† . (4.32)

These are now used in the KB equations for auxiliary particles (4.20) and (4.19)

(i∂t − h)G>(t, t′) =

∫ t

t′
dt̄iγ2g>(t, t̄)Γ†G>(t, t̄)ΓG>(t̄, t′) (4.33)

(i∂t − h)G<(t, t′) =

∫ t

t0

dt̄iγ2g>(t, t̄)Γ†G>(t, t̄)ΓG<(t̄, t′)

−
∫ t′

t0

dt̄iγ2g>(t̄, t)ΓG<(t, t̄)Γ†G>(t̄, t′) . (4.34)

To perform the Markov approximation, we assume that the bath correlation function has
vanishing time support on the characteristic time scales of the system so that the auxiliary
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particle Green functions can be pulled out of the integral. This allows us to obtain

(i∂t − h)G>(t, t′) ≈Γ†G>(t, t)ΓG>(t, t′)

∫ t

t′
dt̄iγ2g>(t, t̄) (4.35)

(i∂t − h)G<(t, t′) ≈Γ†G>(t, t)ΓG<(t, t′)

∫ t

t0

dt̄iγ2g>(t, t̄)

− ΓG<(t, t)Γ†G>(t, t′)

∫ t′

t0

dt̄iγ2g>(t̄, t) . (4.36)

Due to the small time support of the bath correlation functions on the scale of the system, t
and t′ are always far separated on the time scale of the bath, and we can assume∫ t

t0

dt̄g(t, t̄) =

∫ t

−∞
dt̄g(t− t̄) =

∫ ∞

0
dτg(τ) . (4.37)

We can further simplify this by choosing the bath density of state symmetric ρ(ε) = ρ(−ε),
allowing us to show that the integrals are purely imaginary as

∫ ∞

0
dτg(τ) = −i

∫ ∞

−∞
dερ(ε)

∫ ∞

0
dτe−iετ = −

[
−i
∫ ∞

−∞
dερ(ε)

∫ ∞

0
dτeiετ

]†

= −

[
−i
∫ ∞

−∞
dερ(−ε)

∫ ∞

0
dτe−iετ

]†
=︸︷︷︸

ρ(ε)=ρ(−ε)

−

[
−i
∫ ∞

−∞
dερ(ε)

∫ ∞

0
dτe−iετ

]†

⇒
∫ ∞

0
dτg(τ) = −

[∫ ∞

0
dτg(τ)

]†
⇒ Re

(∫ ∞

0
dτg(τ)

)
= 0 ⇒

∫ ∞

0
dτg(τ) := if

The other integrals can be computed by considering the cases of t > t′ and t < t′; note that we
have chosen here a theta function convention θ(0) = 1/2∫ t′

t0

dt̄g>(t, t̄) = θ(t′ − t)

∫ ∞

−∞
dτg>(τ) = θ(t′ − t)2if (4.38)∫ t′

t
dt̄g>(t− t̄) = sign(t− t′)if (4.39)

Using now G>
i,j(t, t) = −iδi,j and defining the bath coupling κ/2 = −γ2f2 we obtain the general

form of a Lindblad contribution to auxiliary particles

(i∂t − h)G>(t, t′) =− i
κ

2
sign(t− t′)Γ†ΓG>(t, t′) (4.40)

(i∂t − h)G<(t, t′) =− i
κ

2
Γ†ΓG<(t, t′)− κθ(t′ − t)ΓG<(t, t)Γ†G>(t, t′) (4.41)

2The bath dos. is positive ρ(ε) > 0 and therefore f < 0.
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Figure 4.2: Diagramatic representation of the NCA approximation eq. (4.46). The left diagram
generates the dynamics in the normal phase. The right diagrams only contributed in the
condensed phase.

4.4 Equations of motion
We now define the correlation functions and equations of motion. We use the notation introduced
in the Keldysh section eq.(2.53) for the photonic part. For the molecule part, we define

Gc
n,m(t, t′) = −i 〈Tc(gn(t)g†m(t′))〉 (4.42)

Ec
n,m(t, t′) = −i 〈Tc(en(t)e†m(t′)〉 (4.43)

EGc
n,m(t, t′) = −i 〈Tc(en(t)g†m(t′))〉 (4.44)

GEc
n,m(t, t′) = −i 〈Tc(gn(t)e†m(t′))〉 (4.45)

The first contributions to the diagrammatic part are the NCA diagrams given by

Γ2 =
1

2
γ2
∑
n,m

∫
c
dtdt′

[
P c(t′, t)Gc

n,m(t′, t)Ec
m,n(t, t

′) + h.c.

+GEc
n,m(t, t′)GEc

m,n(t
′, t)f c(t, t′) + h.c.

]
. (4.46)

Here, the first term will give the dynamics in the normal phase, whereas the second term only
contributed in the condensed phase. The self-energies are extracted from this expression. Here,
we are using the symbols P and f for the photon Green functions, but one must remember that
they are the free photon propagator at this point. We come back to this in the next chapter.
The molecule parts are given by

(Σ>
G)n,m(t, t′) = iγ2E>

n,m(t, t′)P<(t′, t) (4.47)
(Σ<

G)n,m(t, t′) = iγ2E<
n,m(t, t′)P>(t′, t) (4.48)

(Σ>
E)n,m(t, t′) = iγ2G>

n,m(t, t′)P>(t, t′) (4.49)
(Σ<

E)n,m(t, t′) = iγ2G<
n,m(t, t′)P<(t, t′) (4.50)

(Σ>
EG)n,m(t, t′) = iγ2GE>

n,m(t, t′)(f(t, t′) + f(t′, t))/2 (4.51)
(Σ<

EG)n,m(t, t′) = iγ2GE<
n,m(t, t′)(f(t, t′) + f(t′, t))/2 (4.52)
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The photon self-energies generated are

(Σ>
P )(t, t

′) = iγ2
∑
n,m

E>
n,m(t, t′)G<

m,n(t
′, t) (4.53)

(Σ<
P )(t, t

′) = iγ2
∑
n,m

E<
n,m(t, t′)G>

m,n(t
′, t) (4.54)

(Σ>
f )(t, t

′) = iγ2
∑
n,m

EG>
n,m(t, t′)EG<

m,n(t
′, t) (4.55)

(Σ<
f )(t, t

′) = iγ2
∑
n,m

EG<
n,m(t, t′)EG>

m,n(t
′, t) (4.56)

We will collect all of these quantities in matrix structures and define the molecule Green
functions as

Gn,m(t, t′) = −i 〈Tc

(
gn(t)g

†
m(t′) gn(t)e

†
m(t′)

en(t)g
†
m(t′) en(t)e

†
m(t′)

)
〉 (4.57)

and similarly, collecting the self-energies and free propagators as

ΣM (t, t′) =

(
ΣG(t, t

′) ΣGE(t, t
′)

ΣEG(t, t
′) ΣE(t, t

′)

)
(4.58)

(G0)−1
n,m(t) =

(
i∂tδn,m − hg −γϕ∗(t)δn,m
−γϕ(t)δn,m i∂tδn,m − he

)
(4.59)

This notation allows us to use a matrix structure in the KB equation. Note that the ”free”
part of the molecule time evolution also contains contributions of the interaction term, namely
the photon condensate ϕ(t). It is the only point where the coherent photon field influences
the molecules. These are obtained from the free propagators since it is defined as the second
derivative of the action evaluated at the macroscopic field δ2S

δφ2

∣∣∣
φ=Φ

.
Additionally, various Lindbladians need to be considered on the molecule side, which we will
discuss now using the notation introduced in eq. (4.27).

The phonons are coupled to a bath due to collisions with other molecules in the dye
solution. Here, vibrational excitations are exchanged with the bath. This is usually described
by Lindblad operators b and b†. We decouple the vibrational bath for electronic ground and
excited state here. Using the projection operator on electronic ground Pg and excited state Pe

they can be written as bPe, bPg, b†Pg and b†Pe. Additionally, it should be noted that we use
the Hamiltonian in the original phonon basis, so without polaron transformation. Therefore,
the oscillator equilibrium positions in the ground and excited state are not at the origin but
shifted. This shift must be included in the dissipator to thermalise into the proper equilibrium
distributions. In auxiliary particle representation, the corresponding coupling matrices are

(Γb
e)

σ,σ′
n,m = (

√
n+ 1δn+1,m + sδn,m)δσ,eδσ′,e (4.60)

(Γb†
e )σ,σ

′
n,m = (

√
n+ 1δn,m+1 + sδn,m)δσ,eδσ′,e (4.61)

(Γb
g)

σ,σ′
n,m = (

√
n+ 1δn+1,m − sδn,m)δσ,gδσ′,g (4.62)

(Γb†
g )σ,σ

′
n,m = (

√
n+ 1δn,m+1 − sδn,m)δσ,gδσ′,g . (4.63)
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We will use λ as the bath coupling strength and n̄ as the average phonon occupation in the
bath. This leads us to Lindblad couplings in the KB eq. of λ(n̄+ 1) and λn̄ respectively.
The collisions between the dye and other molecules in the solution also lead to decoherence in
the electronic state, which has the effect of dephasing. It is described by a Lindblad operator
σz with coupling constant γφ leading us in auxiliary particle representation to

(Γσz)σ,σ
′

n,m = δn,m(δσ,eδσ′,e − δσ,gδσ′,g) . (4.64)

Also, the electronic states can be de-excited without producing a cavity photon. Two distinct
processes can lead to this. Firstly, the electronic excitation can be exchanged in a collision
between molecules, and the collision partner might not be radiatively coupled to the cavity
mode. This effect is highly suppressed due to the high quantum efficiency of the dye solution.
The second process is spontaneous emission into photon modes, which are not trapped in the
cavity, mainly the free space modes at the open sides of the cavity. These two processes can be
described by a Lindbladian σ− with coupling constant Γ↓ and matrix elements

(Γσ−
)σ,σ

′
n,m = δn,mδσ,gδσ′,e . (4.65)

The external pump laser can be described in different ways. Experimentally, it is strongly blue
detuned wrt. the zero phonon line and does not couple directly to the cavity modes. Technically,
this can be included in the model via an external photon propagator. However, the energy is
quickly dissipated due to the rapid relaxation of the vibrational states. Therefore, another way
to model the pumping is via a Lindblad operator σ+ with coupling Γ↑ as

(Γσ+
)σ,σ

′
n,m = δn,mδσ,eδσ′,g . (4.66)

What is still left are the equations of motion for the photon condensate ϕ(t) for which we obtain

(i∂t − h+
i

2
κ)ϕ(t) = iγ

∑
n

EG<
n,n(t, t) . (4.67)

As in the case of the photon self-energy, also here, the rhs. of the equation of motion vanishes
in the limit ζ → 0, and only an unrenormalised photon condensate is seen by the molecules.
Therefore, starting without a condensate, only a trivial condensate from the initial off-diagonal
electronic correlation EG will be generated. This results from the fact that we only considered
a single molecule until now, which will not be able to form a macroscopic coherent photon state.
This will change when we include the macroscopic dye reservoir.
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Chapter 5

Dynamical Mean-Field Theory

The effect of large molecule reservoirs can be included via a variation of Dynamical-Mean-Field-
Theory (DMFT), which induces renormalisation of the photons due to the other molecules.
The literature on DMFT in lattice systems, in and out of equilibrium, is vast, and we refer the
interested reader to [61] [62]. Here, we will outline only the main train of thought of the cavity
construction of DMFT.
Let us begin by considering a liquid of Nmol dye molecules, with positions i, in a cavity with
modes k. The action in auxiliary particle representation and local constraints1 reads:

S =
∑
i

e†i (G
0
e,i)

−1ei +
∑
i

g†i (G
0
g,i)

−1gi +
∑
k

(G0
γ)

−1
k a†kak + γ

∑
i

(a†ig
†
i ei + aigie

†
i ) (5.1)

We did not write time arguments and internal phonon quantum numbers here to avoid further
cluttering the notation. Here, γ is the local coupling strength of the photon to the molecule. To
obtain the coupling to the mode, the interaction can be transformed by considering the overlap
of cavity wave function χk(i) with the local wavefunction of the molecule states. This generally
produces a space- and mode-dependent coupling, reflecting the different mode profiles inside the
cavity γ

∑
i ai =

∑
k,i γi,kak. We will assume that this coupling can be represented uniformly.

This means we assume that all photon modes have the same overlap with all molecules we are
describing.2
The DMFT is now constructed as follows. First, we single out a molecule at position 0 and
integrate out all other molecules and local photon states. This involves certain approximations
in the coupling of this local problem to the rest we have integrated out. Namely, that the photon
self-energy is local. This reduces the problem to a single impurity problem, which we will solve
afterwards. In the second step, we set up the formalism for the full system, which we will call
the lattice problem, also assuming the locality of the self-energies and derive the equations of
motion. This is done in the mode representation of the cavity photons. We then assume that
the local Green’s functions and the local self-energies are the same for both approaches, closing
the self-consistency loop. In a local basis, we may write the action as

S =
∑
i

e†i (G
0
e,i)

−1ei +
∑
i

g†i (G
0
g,i)

−1gi +
∑
i,j

ti,ja
†
iaj + γ

∑
i

(a†ig
†
i ei + aigie

†
i ) (5.2)

with ti,j =
∑
k

χ∗
k(i)χk(j)(G

0
γ)

−1
k

1Note that the auxiliary particle representation has various subtleties when multiple impurities are represented
in this way. Nevertheless, these issues will not change the construction of the DMFT in the case presented here.

2The ideas presented here can be extended to include the spatial dependence of the mode profile, but it is
computationally rather expensive. For the system in question, one would consider a spatial dependent but still
local self-energy.

63



We now separate the action into a local part S0, the coupling between the local system and
rest ∆S, as well as the rest of the system SB.

S0 = t0,0a
†
0a0 + e†0(G

0
e,0)

−1e0 + g†0(G
0
g,0)

−1g0 + γ(a†0g
†
0e0 + a0g0e

†
0) = t0,0a

†
0a0 + SS (5.3)

∆S =
∑
i

(ti,0a
†
ia0 + t0,ia

†
0ai) (5.4)

SB =
∑
i,j 6=0

ti,ja
†
iaj +

∑
i 6=0

e†i (G
0
e,i)

−1ei +
∑
i 6=0

g†i (G
0
g,i)

−1gi +
∑
i 6=0

γ(a†ig
†
i ei + aigie

†
i ) (5.5)

The partition function is expanded in terms of coupling between the local system and the rest
as

Z =

∫
D[a0, e0, g0]e

iS0

∫
D[ai, ei, gi]e

iSBei∆S (5.6)

=

∫
D[a0, e0, g0]e

iS0

∫
D[ei, gi]e

iSB

[
1 + i∆S −∆S2/2 + ...

]
(5.7)

=

∫
D[a0, e0, g0]e

iS0ZB

[
1 + i 〈∆S〉B − 〈∆S2〉B /2 + ...

]
. (5.8)

The first two terms are given by

〈∆S〉B =
∑
i

(ti,0 〈a†i 〉B a0 + t0,ia
†
0 〈ai〉B) (5.9)

〈∆S2〉B =
∑
i,j 6=0

[
ti,0tj,0a0a0 〈a†ia

†
j〉B + t0,it0,ja

†
0a

†
0 〈aiaj〉B

+ ti,0t0,ja0a
†
0 〈a

†
iaj〉B + t0,itj,0a

†
0a0 〈aia

†
j〉B

]
(5.10)

Note here that different times are involved in the correlation functions in the second line and
that the averages are taken wrt. to the rest of the system. The averages in the second line can
be written as connected Green’s functions plus disconnected parts. We assume now that all
connected correlation functions of higher order than quadratic are negligible. This assumption
is equivalent to local photon self-energies since only the photon couples different positions.
Afterwards, we can use the link cluster theorem to re-exponentiate the expression and get the
connected correlation functions in the action. Writing now the new local action with explicit
time arguments, we obtain

S′ =

∫
c
dt

∫
c
dt′ψ†(t)M−1(t, t′)ψ(t′) +

∫
c
dt(Φ†(t)ψ(t) + h.c.) + SS . (5.11)

Here ψ(t) = (a0(t), a
†
0(t))

T is the Nambu representation of the photon fields and M−1(t, t′)
collects all contributions to the two-point correlation functions. In the same way, Φ(t) collects
all contributions to the one-point correlations. The explicit form of these terms M−1 and Φ
appearing in the action is straightforward but also not important for a diagrammatic approach.
We will start to discuss the now changed local problem and give the connection to the ”lattice”
problem afterwards to close the set of equations. In the local problem, the free photon propagator
is now given by the Weissfield M(t, t′) and appears as the photon Green function in the auxiliary
particle self-energies. The field Φ appears as a source term in the equation of motion of the
condensate as ∫

c
dt′M−1(t, t′)Ψ(t′) = iγ

∑
n

(
EG<

n,n(t, t)

GE<
n,n(t, t)

)
− Φ(t) (5.12)
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The first term on the rhs. does vanish in the limit of ζ → 0, as we have shown earlier. Therefore,
the condensate which the molecule sees Ψ0 is determined by

Ψ0(t) = −
∫
c
dt′M(t, t′)Φ(t′) (5.13)

Nevertheless, as physical observable, the local condensate is by the same arguments as in the
case of two-point functions given by

Ψ(t) = iγ
∑
n

∫
c
dt′M(t, t′)

(
EG<

n,n(t
′, t′)

GE<
n,n(t

′, t′)

)
−
∫
c
dt′M(t, t′)Φ(t′) (5.14)

We now close the set of equations and obtain equations for M and Ψ0. For this, we need
to extract the local Green functions from the local problem and from the ”lattice” problem.
This requires the knowledge of the local self-energy of the photons Σloc. As we have shown in
the single molecule case, we obtained a T-matrix equation for the photon two-time functions,
where the T-matrix is given by naively generated self-energy of Γ2. Now we need to extract the
physical self-energy of the photons due to a single molecule Σ̄ from it using the definition of
the self-energy via the Dyson equation as∫

c
dt1Σ(t, t1)M(t1, t

′)
!
=

∫
c
dt1Σ̄(t, t1)P (t1, t

′) (5.15)

⇒ Σ̄(t, t′) = Σ(t, t′)−
∫
c
dt1

∫
c
dt2Σ(t, t1)M(t1, t2)Σ̄(t2, t

′) (5.16)

In steady state calculation, this can conveniently be solved in frequency space using, for
the spectral components, Σ̄(ω) = Σ(ω)

(
1 +M(ω)Σ(ω)

)−13, but for general non-equilibrium
calculation, this is not possible. The local self-energy we obtained is due to a single molecule
and must be scaled by the molecule density Nmol to obtain the local self-energy in mode space.
Therefore, the local self-energy in the ”lattice” problem is Σloc = NmolΣ̄. The ”lattice” KB
equation for each mode is then

(i∂t − hk)Pk(t, t
′) = δc(t, t

′) +

∫
C
dt1Σloc(t, t1)Pk(t1, t

′) . (5.17)

In equilibrium calculations, this equation can be solved using the spectral components of the
Green functions since the distribution function is fixed to the Bose function, and the problem
can be converted to solving a single density of states integral. This is not the case anymore in
non-equilibrium. Here, every mode has to evolve individually. Using now our assumption that
the overlap of the spatial profiles of the modes with the molecule wave functions is the same
everywhere, we can extract the local Green function as Ploc =

∑
k Pk. The two-point Weissfield

is then calculated as

M(t, t′) = Ploc(t, t
′)−

∫
C
dt1dt2Ploc(t, t1)Σ̄(t1, t2)M(t2, t

′) (5.18)

The condensate in the ”lattice” system for each mode is obtained from the equation of motion
as

(G−1
0 )kΨk(t) = iγNmol

∑
n

(
EG<

n,n(t, t)

GE<
n,n(t, t)

)
(5.19)

⇒ Ψk(t) = iγNmol

∫
c
dt′(G0)k(t, t

′)
∑
n

(
EG<

n,n(t
′, t′)

GE<
n,n(t

′, t′)

)
(5.20)

3The Keldysh component can be extracted in a similar way.
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The local condensate is again obtained via Ψloc =
∑

k Ψk. The effective condensate seen by the
molecules Ψ0 from eq. (5.13) is then given as

Ψ0(t) = iγ

∫
c
dt′

Nmol

∑
k

(G0)k(t, t
′)−M(t, t′)

∑
n

(
EG<

n,n(t
′, t′)

GE<
n,n(t

′, t′)

)
. (5.21)

For a complete DMFT treatment, one now needs to time evolve the local problem and (5.16),
(5.17), (5.18), (5.19) and (5.21). Some of the additional equations can not be transformed
into a KB form since some of the objects involved do not have an inverse connected to time
derivatives. They must be solved in Dyson form, which is numerically demanding and leads to
various difficulties.

Nevertheless, for the system in mind, tremendous simplifications can be achieved by noting
that Nmol is large, of the order 106 − 109, and the local coupling constant γ is small compared
to the intrinsic energy scales of the molecule. Therefore, the contribution of a single molecule Σ̄
is small so that we can obtain from eq. (5.18) that M(t, t′) ≈ Gloc(t, t

′). Then from eq. (5.16)
it follows that the local self-energy is given as Σloc(t, t

′) = NmolΣ(t, t
′). By the same reasoning

in eq. (5.21) Ψ0 is just given by Ψ0(t) =
∑

k Ψk(t). Therefore, the set of equations can be
reduced significantly to only the ones which possess KB form, namely

(i∂t − hk)Ψk(t) = iγNmol

∑
n

(
EG<

n,n(t, t)

GE<
n,n(t, t)

)
(5.22)

(i∂t − hk)Pk(t, t
′) = δc(t, t

′) +

∫
c
dt1Σloc(t, t1)Pk(t1, t

′) . (5.23)

Within this approximation, the photon propagator in the auxiliary particle self-energies is the
renormalised local Green function Gloc =

∑
kGk and the condensate in the free part of the

molecule equation is given by Ψ0 =
∑

k Ψk.
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Chapter 6

Ward Identity and U(1) Symmetry

The Hamiltonian is invariant under two phase transformation. One is associated with the
conservation of the constraint Q and is in equilibrium used to perform the projection. Here,
we want to investigate the second invariance under a† → a†e−iθ and e† → e†e−iθ, which is a
result from the rotating wave approximation used to obtain the Jaynes-Cummings interaction.
It is connected to the total number of excitations in the cavity a†a+ Pe or in auxiliary particle
representation a†a+

∑
n e

†
nen. The symmetry is not fully broken by the inclusion of dissipation

but needs to be extended along the Keldysh contour. In the following, we want to explore
the consequences of this symmetry. Firstly, we note that the auxiliary particle must have
a vanishing one-point average 〈en〉 = 0 at the physical point due to the strongly imposed
particle number constraint Q. Therefore, the first order 1-PI Ward-identity will only contain
information about the photonic part. We explicitly include the open system case, leading us to

G−1+,−
k,i T

−,−
i,j Φ−

j −G−1+,+
k,i T

+,+
i,j Φ+

j =

=

∫
dt′(G−1T

aa(t, t
′)−G−1<

a,a(t, t
′))Φ(t′)−

∫
dt′(G−1T

aa†(t, t
′)−G−1<

aa†(t, t
′))Φ∗(t′) (6.1)

We now separate the inverse Green functions into the free part and self-energies as∫
dt′(G−1

0
T

aa†(t, t
′)−G−1

0
<

aa†(t, t
′))Φ∗(t′) =

∫ t

t0

dt′(Σ>
aa†

(t, t′)− Σ<
aa†

(t, t′))Φ∗(t′)

−
∫ t

t0

dt′(Σ>
aa(t, t

′)− Σ<
a,a(t, t

′))Φ(t′) (6.2)

We obtain here the dissipative analogue of the Hugenholtz-Pines relation(
i∂t + h+

i

2
(κ↓ − κ↑)

)
Φ∗(t) =

∫ t

t0

dt′(Σ>
aa†

(t, t′)− Σ<
aa†

(t, t′))Φ∗(t′)

−
∫ t

t0

dt′(Σ>
aa(t, t

′)− Σ<
a,a(t, t

′))Φ(t′) (6.3)

Note that his condition still fixes the pole position of the Green functions, but now the imaginary
part of the self-energies must also compensate for the Lindbladian dissipation [34]. This might
be understood from the coupled system and bath Hamiltonian perspective. Here, the symmetry
transformation would also include the bath, and the self-energies would include explicit bath
contributions. But in deriving the Lindblad form, we made certain assumptions about the bath
density of states and distribution, which now imposes the occupations via the relations between
dissipative coupling constants κ. We choose a symmetric bath density of states such that no
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real part is obtained, which would shift the chemical potential in a steady-state approach.
Therefore, only the imaginary part of the bath contributions must be accounted for through
the relation between the pure system self-energies. In practice, the main point of this result is
the energy shift due to the real part of the self-energies and a phase shift to compensate for the
dissipation.
Nevertheless, this result looks rather different from the equation of motion we obtain from the
variational principle of the 2PI EA. The equation of motion of the condensate is the same as
the 2PI Ward identity. The main caveat is that the NCA self-energies in the condensed phase
do not fulfil the consistency condition (3.94). This can be seen by expansion (3.94) in terms
of the derivative of the self-energy, which results in ladder-like resummation. Therefore, the
energy of the condensate is not necessarily forced to the pole of the Green function. This can
lead to inconsistencies between the fluctuation spectrum and the phase coherent contribution.
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Chapter 7

Relation to Cumulant Expansion

In this section, we look into the similarities and differences between the approach put forward
here and the often-used master equation approach. To this end, we first show the connection to
the Markovian rate equations. Secondly, we will show how cumulant expansions relate to the
approach used here.

We consider the case where the phonon spectra are static equilibrium spectra, so the photon
interaction does not influence them. Furthermore, we drop the symmetry-breaking terms for
the moment. We can isolate the specific electronic dissipative contribution to the spectra by
using the relative time dynamics. We obtain via the Lindbladian with loss Γ↓ and pump Γ↑ to
equations of motion as

i∂τG
>(t, t′) =− i

Γ↑
2

sign(t− t′)G>(t, t′) (7.1)

i∂τG
<(t, t′) =

Γ↓
2

(
θ(t− t′)E<(t′, t′)− θ(t′ − t)E<(t, t)

)
G>(t, t′) (7.2)

i∂τE
>(t, t′) =− i

Γ↓
2

sign(t− t′)E>(t, t′) (7.3)

i∂τE
<(t, t′) =

Γ↑
2

(
θ(t− t′)G<(t′, t′)− θ(t′ − t)G<(t, t)

)
E>(t, t′) (7.4)

These relative time contributions can be incorporated by substituting

G<(t, t′) → G<(t, t′)e−
Γ↑
2
|t−t′| , E<(t, t′) → E<(t, t′)e−

Γ↓
2
|t−t′| (7.5)

G>(t, t′) → G>(t, t′)e−
Γ↑
2
|t−t′| , E>(t, t′) → E>(t, t′)e−

Γ↓
2
|t−t′| . (7.6)

We are ultimately interested in the photon number. Therefore, we take a look at the equation
of motion of the lesser function at equal time. These are constructed from

(i∂t − h)P<(t, t′) =

∫ t

t0

dt̄Σ>(t, t̄)P<(t̄, t′)−
∫ t′

t0

dt̄Σ<(t, t̄)P>(t̄, t′)

+

∫ t′

t0

dt̄Σ<(t, t̄)P<(t̄, t′)−
∫ t

t0

dt̄Σ<(t, t̄)P<(t̄, t′) (7.7)

(i∂t′ + h)P<(t, t′) =

∫ t′

t0

dt̄P<(t, t̄)Σ>(t̄, t′)−
∫ t

t0

dt̄P>(t, t̄)Σ<(t̄, t′)

+

∫ t

t0

dt̄P<(t, t̄)Σ<(t̄, t′)−
∫ t′

t0

dt̄P<(t, t̄)Σ<(t̄, t′) . (7.8)
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Adding them at equal time leads us to the Boltzmann equation for the photon number

i∂TP
<(t, t) =

∫ t

t0

dt̄
[
Σ>(t, t̄)P<(t̄, t) + P<(t, t̄)Σ>(t̄, t)

]
−
∫ t

t0

dt̄
[
P>(t, t̄)Σ<(t̄, t) + Σ<(t, t̄)P>(t̄, t)

]
. (7.9)

The photon self-energies in NCA and simplified DMFT approximation are

Σ>(t, t′) = iNmolγ
2
∑
n,m

E>
n,m(t, t′)G<

m,n(t
′, t) (7.10)

Σ<(t, t′) = iNmolγ
2
∑
n,m

E<
n,m(t, t′)G>

m,n(t
′, t) . (7.11)

We now look at the self-energy integrals and go into an interaction picture, factoring out photon
detuning and electronic dissipation and assuming that photon occupation changes are slow on
the molecule time scales. This allows us to write the first integral as∫ t

t0

dt̄Σ>(t, t̄)P<(t̄, t) = iNmol

∫ t

t0

dt̄
∑
n,m

E>
n,m(t, t̄)G<

m,n(t̄, t)P
<(t̄, t) (7.12)

≈ iNmolP
<(t, t)

∫ t

t0

dt̄γ2e−
Γ↑+Γ↓

2
|t−t̄|e−iδ(t̄−t)

∑
n,m

E>
n,m(t, t̄)G<

m,n(t̄, t) . (7.13)

Assuming that molecule spectra are static and not renormalized by the photons, we can factorise
the molecule Green functions in electronic occupations and phonon spectra as

E>
n,m(t, t′) = −ip>n,m(t− t′) G<

n,m(t, t′) = −ixg(T )p<n,m(t− t′) . (7.14)

The molecule spectra are broad compared to the electronic dissipation processes, and we may
write

−n(t)Mg(t)

∫ ∞

0
dτγ2e−

Γ↑+Γ↓
2

τe−iδτ
∑
n,m

p>n,m(τ)p<m,n(−τ) = −n(t)Mg(t)K(δ) . (7.15)

The second integral is treated in the same way, and we obtain the contribution from the greater
self-energy part as

−n(t)Mg(t)Re

2γ2 ∫ ∞

0
dτe−

Γ↑+Γ↓
2

τe−iδτ
∑
n,m

p>n,m(τ)p<m,n(−τ)

 := −n(t)Mg(t)Babs . (7.16)

For the lesser contribution, we find with analogous definitions∫ t

t0

dt̄Σ<(t, t̄)P>(t̄, t) = iNmol

∫ t

t0

dt̄
∑
n,m

γ2E<
n,m(t, t′)G>

m,n(t
′, t)P>(t̄, t) (7.17)

≈ iNmolP
>(t, t)

∫ t

t0

dt̄γ2e−
Γ↑+Γ↓

2
|t−t̄|e−iδ(t̄−t)

∑
n,m

E<
n,m(t, t′)G>

m,n(t
′, t) (7.18)

≈ −Me(n(t) + 1)

∫ ∞

0
dτe−

Γ↑+Γ↓
2

τe−iδτ
∑
n,m

p<n,m(τ)p>m,n(−τ) (7.19)

= −Me(n(t) + 1)H(δ) . (7.20)
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The contribution from the lesser self-energy part is

Me(n(t) + 1)Re

2∫ ∞

0
dτγ2e−

Γ↑+Γ↓
2

τe−iδτ
∑
n,m

p<n,m(τ)p>m,n(−τ)

 =Me(n(t) + 1)Bem . (7.21)

The relation between the integrals can be obtained by complex conjugation

[
K(δ)

]†
=

γ2 ∫ ∞

0
dτe−

Γ↑+Γ↓
2

τe−iδτ
∑
n,m

p>n,m(τ)p<m,n(−τ)

†

(7.22)

= γ2
∫ ∞

0
dτe−

Γ↑+Γ↓
2

τeiδτ
∑
n,m

p<n,m(τ)p>m,n(−τ) = H(−δ) (7.23)

which are the same relations as we have found from the operator approach.
We obtain the contribution of the molecules to the equations of motion of the photon number
as

∂tn(t) = BemMe(n+ 1)−BabsMgn . (7.24)

The equation of motion for the excited molecules Me(t) can be obtained in the same way as
shown here by considering the Boltzmann equation of the molecules. This shows that our
approach reduces to the rate equations in the Markovian limit.

Another interesting aspect is the origin of the Kennard-Stepanov relation for the absorption
and emission coefficient in this approach. This can most easily be seen in a steady state where
the photon self-energies can be Fourier-transformed as

Σ>(ω) = iNmolγ
2

∫
dνE>(ω + ν)G<(ν) , Σ<(ω) = iNmolγ

2

∫
dνE<(ω + ν)G>(ν) (7.25)

In thermal equilibrium, the greater and lesser functions are connected via the fluctuation-
dissipation theorem1 G<(ω) = e−βωG>(ω). The photon self-energies will inherit this relation if
the molecule is in thermal equilibrium as

Σ>(ω) = iNmolγ
2

∫
dνE>(ω + ν)G<(ν) = iNmolγ

2

∫
dνeβ(ω+ν)E<(ω + ν)e−βνG>(ν) (7.26)

= eβωiNmolγ
2

∫
dνE<(ω + ν)G>(ν) = eβωΣ<(ω) . (7.27)

We now take a look at another kind of approximation, which is, in spirit, closer to the
approach we are following. In [63] the phonon modes are not averaged out, but the system is
mapped to a 2N-level system, which is also effectively done in our approach. Afterwards, a
cumulant expansion up to the second order is employed to close the set of equations of motion.
Here, we want to explore the difference in the approximation schemes. To this end, we can
focus on a greatly simplified model of a two-level system, which will show different physics
but nevertheless make the comparison of the approximations more clear. In [63], the coherent
photon part was neglected, which we will also do here for comparison’s sake.

We start with a Hamiltonian of a two-level system coupled to a photon mode

H = δa†a+ g(aσ+ + a†σ−) . (7.28)
1It is equivalent to the KMS boundary condition.
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The equation of motion for the photon number with the ground/excited state projectors Pg/e

are given by

i∂t 〈a†a〉 = g 〈a†σ−〉 − g 〈σ+a〉 (7.29)
i∂t(〈a†σ−〉 − 〈aσ+〉) = −δ(〈a†σ−〉+ 〈aσ+〉) + 2g 〈a†aPg〉 − 2g 〈aa†Pe〉 (7.30)

We now truncate in second cumulant order, neglecting symmetry broken terms, simplifying the
second equation of motion to

i∂t(〈a†σ−〉 − 〈aσ+〉) = −δ(〈a†σ−〉+ 〈aσ+〉) + 2g 〈a†a〉 〈Pg〉 − 2g 〈aa†〉 〈Pe〉 (7.31)

We again look at the Boltzmann eq. to compare with the field theory approach

i∂TP
<(t, t) =

∫ t

t0

dt̄
[
Σ>(t, t̄)P<(t̄, t) + P<(t, t̄)Σ>(t̄, t)

]
−
∫ t

t0

dt̄
[
P>(t, t̄)Σ<(t̄, t) + Σ<(t, t̄)P>(t̄, t)

]
. (7.32)

The rhs. of the KB eq. gives the approximation of the average generated by the Heisenberg
equation. Therefore, to compare the results, we take a time derivative of the rhs. of the
Boltzman eq. to get the approximation of the second equation of motion. We obtain via chain
rule: [

Σ>(t, t)P<(t, t) + P<(t, t)Σ>(t, t)
]
−
[
P>(t, t)Σ<(t, t) + Σ<(t, t)P>(t, t)

]
(7.33)

+

∫ t

t0

dt̄
[
Σ>(t, t̄)∂tP

<(t̄, t) + ∂tP
<(t, t̄)Σ>(t̄, t)

]
(7.34)

−
∫ t

t0

dt̄
[
∂tP

>(t, t̄)Σ<(t̄, t) + Σ<(t, t̄)∂tP
>(t̄, t)

]
(7.35)

+

∫ t

t0

dt̄
[
∂tΣ

>(t, t̄)P<(t̄, t) + P<(t, t̄)∂tΣ
>(t̄, t)

]
(7.36)

−
∫ t

t0

dt̄
[
P>(t, t̄)∂tΣ

<(t̄, t) + ∂tΣ
<(t, t̄)P>(t̄, t)

]
(7.37)

The NCA self-energies of the Hamiltonian are given by

Σ>(t, t′) = ig2E>(t, t′)G<(t′, t) , Σ<(t, t′) = ig2E<(t, t′)G>(t′, t) . (7.38)

Therefore, from the first line (7.33) we obtain

2ig2
[
E>(t, t)G<(t, t)P<(t, t)− E<(t, t)G>(t, t)P>(t, t)

]
= 2g2

[
Me(n+ 1)−Mgn

]
. (7.39)

This already recovers the interacting part of the second-order cumulant expansion. Note that
the time-evolution with δ, which would also be true for all free molecule contributions, is
recovered via chain rule from the derivatives of the self-energies. Here, the derivatives acting
on the Green functions in it can be written through the KB. eq., and the free part supplements
these contributions. The difference between the approaches is the self-energy integrals in eq.
(7.34-7.37) . We will later show their importance specifically for the Kennard-Stepanov relation
of the molecule spectra.
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Part IV

Dynamics in Multi-Mode Cavities
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Chapter 8

Summary of the Model

Figure 8.1: Schematic representation of the model used to describe the system. a) Cavity
system with dye molecule solution. b) Model of the dye molecules. c) Molecule spectra and
photon density of states. Details are discussed in the text.

In the previous chapters, we derived all the tools needed to tackle the coherence of the
photons. After this rather technical part, it is worthwhile to recapitulate the essential processes
captured in our approach. As shown in Fig. 8.1 a), we consider a cavity with a photon loss rate
κ filled with a dilute dye molecule solution, pumped via an external laser source with a rate Γ↑.
Molecules also lose excitation with a rate Γ↓, either due to radiationless decay or emission into
non-trapped cavity modes. These three contributions are modelled via incoherent Lindblad
processes as

κL[ak] , Γ↑L[
∑
n

e†ngn] , Γ↓L[
∑
n

g†nen] . (8.1)

The dye molecules Fig. 8.1 b), are modelled as two electronic states with an energy difference
of ∆, dressed with harmonic oscillator states with a spacing of ω, representing the vibrational
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excitations of the molecules. The displacement between the equilibrium positions of these
oscillators due to the Frank-Condon principle is incorporated via a hopping in the oscillator
states with the Huang-Rhys parameter s2.

he + hg = ∆
∑
n

e†nen + ω
∑
n

n
[
e†nen + g†ngn

]
+ ωs

∑
n

√
n+ 1(e†n+1en − g†n+1gn + h.c.) (8.2)

Relaxation of the vibrations due to collisions is modelled with a coupling to a bath with a
coupling rate λ and thermal occupation n̄. This will lead to the thermalisation of the vibrational
states to the bath temperature implicit in n̄.

λ

(n̄+ 1)L

[∑
n

√
n+ 1e†nen+1 + se†nen

]
+ n̄L

[∑
n

√
n+ 1e†n+1en + se†nen

] (8.3)

+λ

(n̄+ 1)L

[∑
n

√
n+ 1g†ngn+1 − sg†ngn

]
+ n̄L

[∑
n

√
n+ 1g†n+1gn − sg†ngn

] (8.4)

We will also explore the differences between a thermal and the Markovian Lindblad bath for
the phonon relaxation. The same collisions also lead to dephasing with a rate γφ as

γφL

[∑
n

e†nen − g†ngn

]
. (8.5)

The interaction between the molecules and the cavity photons is modelled via a Jaynes-
Cummings interaction with coupling strength γ, which we consider the same for all cavity
modes with energy Ωk. The molecule number is incorporated via the simplified DMFT.

Hp +HI =
∑
k

Ωka
†
kak + γ

∑
n,k

[
a†kg

†
nen + akgne

†
n

]
(8.6)

This setup leads to generic absorption Babs and emission Bem spectra, as seen in Fig. 8.1 c).
They cross at the energy difference of the electronic states ∆, also called the zero-phonon line.
Due to the rotating wave approximation used to arrive at the Jaynes-Cummings interaction,
only the energy difference between the photon energy Ωk and the molecule energy ∆ is relevant.
Therefore, we use the detuning δk = Ωk − ∆ from the zero-phonon line as the energy of
the photon modes. The curvature of the mirror maps the cavity states to an effective two-
dimensional harmonic oscillator. This means that the photon states above the ground mode δ0
are linearly spaced with a difference ∆δk and linearly degenerate, as indicated by the density of
states ρp.
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Chapter 9

Molecule Spectra

Reconstructing the appropriate molecule parameters is one of the most challenging tasks when
applying the methods introduced here. The guiding principle is to reproduce the measured
emission and absorption spectra. One should keep in mind that these spectra are experimentally
dependent, among others, on temperature, solvents, and concentration. Therefore, we limit
ourselves here to the most simple reference model, which is the one introduced in the previous
sections. More complex molecule dynamics might lead to better agreement in the spectra but
will involve more constants to be fixed. As we have shown in the previous chapter, the molecule
spectra can be computed from the photon self-energies in a steady state as

Bem(ω) = lim
t→∞

Σ<(t, ω)

Nmoltr(E<(t, t))
and Babs(ω) = lim

t→∞

Σ>(t, ω)

Nmoltr(G<(t, t))
. (9.1)

To analyse the underlying structure of the molecule states, it is helpful to look at a particular
property of the lesser Green function of the auxiliary particles. In the auxiliary particle method,
the lesser functions at equal time contain information about the reduced density matrix of the
molecule system. This can be seen by using the cyclic property of the trace in the not projected
Green function as

G<
n,m(t, t) = −itr(ρζQd†m(t)dn(t)) = −itr(dn(t)ρζQ d†m(t)) (9.2)

We can trace the different Q sectors separately and take the ζ → 0 limit. The trace over the
physical particle states |np〉 is the same in each Q sector so that we can write

lim
ζ→0

G<
n,m(t, t)/ζ = lim

ζ→0
−i/ζ

∑
np

〈np|

〈vac| dn(t)ρζQd†m(t) |vac〉+
∞∑

Q=1

trQ
(
dn(t)ρζ

Qd†m(t)
) |np〉

= lim
ζ→0

−i/ζ
∑
np

〈np|

〈dn(t)| ρζQ |dm(t)〉+
∞∑

Q=1

trQ
(
dn(t)ρζ

Qd†m(t)
) |np〉

= lim
ζ→0

−i/ζ
∑
np

〈np|
[
ζ 〈dn(t)| ρ |dm(t)〉+O(ζ2)

]
|np〉

= lim
ζ→0

−i
∑
np

〈np, dn| ρ(t) |np, dm〉 = −itrnp

(
〈dn| ρ(t) |dm〉

)
(9.3)

Therefore we can obtain the reduced molecule density matrices as limζ→0 iG
<
n,m(t, t)/ζ = ρredn,m(t).
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9.1 Molecule spectra with Lindblad bath

Figure 9.1: Absoprtion and emission spectra
obtained with N = 6 , n̄ = 0.385 ,λ = 2.9 THz
,ω = 8 THz ,s = 0.92,γφ = 2.5 THz ,γ = 550
MHz. Note all parameters are given in frequency,
not angular frequency.

We analyse the spectra separately first, focus-
ing on the molecules’ dynamics generated by
eq. (8.2 - 8.5). As a first step, we look at the
spectra obtained by coupling the molecules
only to Lindblad baths. We need to deter-
mine here the molecule vibration frequency
ω, the Huang-Rhys factor s2, the phonon re-
laxation rate λ with the average phonon bath
occupation n̄ as well as the dephasing rate γφ.
Temperature will enter here through the av-
erage phonon bath occupation n̄. Afterwards,
the coherent coupling γ can be determined
by comparison with the measured amplitude
of absorption and emission coefficient. As a
reference for the Rhodamin 6G spectra, we
follow [24], [64] and [65]. The spectra cover
a spectral range of roughly 180 THz with a
Stokes shift of 13 THz. We determine the
bath occupation from n̄ = b(βω) with room
temperature at T = 300K(≈ 6.25THz). Considering four phonon states, a reasonable spectrum
can already be obtained, but more realistic spectra usually require more states. In Fig. 9.1,
spectra are shown for six phonon states using the parameters in the caption of the figure.
We first take a look at the state distribution of the phonons. Previously, we already argued
that the bath must couple to the shifted phonon operators b+ sσz to thermalise the system
to the minima of the respective potentials. To quantify if the system relaxes to the correct
minimum of the shifted oscillators, we compute the eigenvectors of the molecule Hamiltonian
and the lesser Green functions for the truncated phonon space from

G<(t, t) |gi(t)〉 = ρi |gi(t)〉 and hg |vgi 〉 = εgi |v
g
i 〉 . (9.4)

The idea is if the system thermalises to the correct minimum of the respective oscillator, the
density matrix should be diagonal in the eigenbasis of this oscillator. The diagonal entries for
the electronic ground state lesser function at equal-time are shown in Fig. 9.2. Here Fig. 9.2a
is obtained directly from the time evolution and Fig. 9.2b is rotated into the eigenbasis of
the shifted molecule oscillator via its eigenvector matrix R. The lesser Green function in the
steady state is strongly diagonal in this basis. If we compare the eigenvectors of the lesser
Green function in the long-time steady state |gi(t→ ∞)〉, to the eigenvectors of the molecule
Hamiltonian |vgi 〉, we obtain an overlap of

|1−
N∑
i=1

〈vgi |gi(t→ ∞)〉 /N | = 1.3 · 10−2 . (9.5)

In Fig. 9.3a, the steady-state distribution of the diagonal elements of the rotated lesser function
is shown. They are the diagonal elements of the reduced density matrix and give the occupation
probability of the phonon states. We also show a Boltzmann factor of the shifted molecule
Hamiltonian at room temperature. The same temperature imprinted by the n̄ factor in the
phonon Lindbladians. They are in good agreement. As we will see, this result is rather deceiving.
Since the states follow a Boltzmann distribution of the molecule Hamiltonian, one might now
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(a) Original basis of molecule Hamiltonian (b) Eigenbasis of molecule Hamiltonian

Figure 9.2: Ground state phonon occupation of the molecule states during non-interacting time
evolution. a) Diagonal elements in the original basis; b) Diagonal elements in the eigenbasis of
the molecule Hamiltonian

(a) Steady state distribution of the molecule
states

(b) Kennard–Stepanov relation

Figure 9.3: a) Diagonal elements of the steady-state lesser functions and the thermal density
matrix of the shifted molecule Hamiltonian for T = 300K. The system thermalises to the shifted
Hamiltonian. b) Ratio of the emission and absorption spectra as a function of frequency measured
from the zero phonon lines. Exponential behaviour is expected following the Kennard–Stepanov
relation. A fit shows a higher temperature in the spectra.

expect to find the Kennard–Stepanov relation between the emission and absorption spectra.
Their ratio should follow a Boltzmann factor and is shown in Fig. 9.3b. The behaviour around
the zero phonon line is exponential but with a higher temperature. Further away from the
zero-phonon line, the exponential behaviour quickly breaks down.

This can be traced back to the Lindblad coupling of the phonon bath. Due to the Markovian
assumption in the derivation of the Lindbladian, the spectral information about the temperature
of the bath is lost. In this approximation, the retarded and lesser functions in the long time
steady state can be computed from

GR(ω) =

ω − h− i
∑
i

κiΓ
†
iΓi

−1

, G<(ω) = GR(ω)

∑
i

κiΓiG
<(t, t)Γ†

i

GA(ω) . (9.6)

The coefficients κi are the respective coupling constants of the Lindbladian and Γi the matrix

79



elements of the operators in auxiliary particle representation. Here, G<(t, t) encodes the
long-time steady-state occupations determined by the coefficients κi. For general greater and
lesser functions in a steady state, a similar formula hold, where the Lindblad part between
retarded and advanced functions is replaced by the frequency-dependent self-energy [30]

G≷(ω) = GR(ω)Σ≷(ω)GA(ω) . (9.7)

Using the Markovian approximation, the self-energy part loses its frequency dependence and
does not imprint the fluctuation-dissipation theorem onto the relation between greater and
lesser functions. But as we have seen in the previous chapter, the Kennard–Stepanov relation is
a direct consequence of it. Therefore, a Lindblad bath fails to capture the Kennard–Stepanov
relation. Nevertheless, it is possible to generate spectra which fulfil an exponential behaviour
over the spectral range of some photon states, but usually at a higher temperature as used in
the bath occupation n̄. The same shortcoming also limits the applicability at large detunings
where the ratio of emission and absorption becomes large. These regimes can not be reached
since the exponentials necessary for the strong decay do not govern the long tails of the spectra
but rather Lorentzians, as seen from eq. (9.6).

9.2 Molecule spectra with thermal bath
As in the rate equation approach, we expect the emission and absorption spectra’s statistical
distribution to be imprinted onto the photons. Therefore, it is imperative to obtain these
correctly. To achieve this, we must implement the fluctuation-dissipation relation on the
auxiliary particle Green functions. We have shown that this will not be possible with a
Markovian bath, as assumed in the Lindblad construction. Therefore, we go back to the
construction of the dissipation before the Markov approximation was performed. We obtained
the auxiliary particle self-energy due to a bath as

Σbath
i,j (t, t′) = iλ

[
g(t′, t)ΓG(t, t′)Γ† + g(t, t′)Γ†G(t, t′)Γ

]
i,j
. (9.8)

We now couple the phonons to an Ohmic bath in the usual linear way via the exchange of
oscillator quanta. The coupling matrix Γ is then given by the auxiliary particle representation of
the shifted harmonic oscillator destruction operator from eq. (4.60) and (4.62). The density of
states of the bath is chosen as linear with an exponential cut-off ρ(ε) = ε

ρ0
e−Dε. The temperature

is imprinted onto the bath via its occupation function, the Bose function. Numerically, the
bath must be discretised, and we compute the greater and lesser Green functions of it as

g>(t, t′) = −i
∑
k

ρ(εk)e
−iεk(t−t′)

[
1

eβεk − 1
+ 1

]
(9.9)

g<(t, t′) = −i
∑
k

ρ(εk)e
−iεk(t−t′) 1

eβεk − 1
. (9.10)

Care must be taken in the bath discretisation to avoid spurious signatures in the correlation
functions. The mode spacing ∆ε of the bath must be smaller than the reciprocal of the
maximum time the system is evolved to, ∆ε < 2π

tmax
. Otherwise, Poincaré recurrence leads to

periodic peaks appearing at long times. Therefore, a large number of bath modes need to be
taken into account to cover the spectral range of the bath. The exponential cutoff D mainly
controls the long-time behaviour of the greater function and dampens oscillations.
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(a) Absorption and emission spectra (b) Kennard-Stepanov relation

Figure 9.4: a) Absorption and emission spectra obtained with a finite temperature bath. The
parameter are N = 8 ,λ = 3.85 THz ,ω = 6.6 THz ,s = 1.05,γφ = 1 THz ,γ = 520 MHz with a
bath determined by , T = 300 K, ∆ε = 2π

60 THz, D/∆ε = 150 and 2000 bath modes. ; b) Ratio
of emission and absorption in logarithmic scale. The Kennard-Stepanov relation is fulfilled over
a large frequency range with the temperature of the bath.

(a) Original basis of molecule Hamiltonian (b) Eigenbasis of molecule Hamiltonian

Figure 9.5: Ground state phonon occupation of the molecule states during time evolution with a
thermal bath. a) Diagonal elements in the original basis; b) Diagonal elements in the eigenbasis
of the molecule Hamiltonian
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A spectrum obtained this way and the corresponding Kennard-Stepanov relation can be
seen in Fig. 9.4. The Kennard-Stepanov relation is now fulfilled for a larger frequency band,
such that the ratio of emission and absorption can be tuned over a large range. Two effects
dominantly produce deviations. Firstly, finite truncations of the phonon space. Here, enough
modes must be considered to represent all occupied states at the temperature T in the shifted
basis. Secondly, the dephasing parameter γφ. It introduces the same issue encountered in the
purely Markovian bath case. One should also keep in mind that these spectra are generated
from a time evolution with finite accuracy on a non-equidistant time grid, then interpolated
onto an equidistant grid, and Fourier transformed on a finite domain. This also introduces
defects, which are most prominent in the ratio at the boundaries of the spectra.

In Fig. 9.5, the evolution of the diagonal elements of the lesser functions at equal-time are
shown. As in the previous case, the lesser functions become diagonal in the shifted oscillator
basis. Here, the overlap of the eigenvectors in the long-time steady state is

|1−
N∑
i=1

〈vgi |gi(t→ ∞)〉 /N | = 2 · 10−3 . (9.11)

Nevertheless, the eigenvalues for the lesser function do not follow a Boltzmann distribution
of the molecule Hamiltonian. Only in the limit of vanishing bath coupling, the system would
thermalise to this distribution [28]. In our case, the systems spectra are strongly influenced by
the bath, so the dynamics are also strongly governed by the bath coupling.

Figure 9.6: Decay of the equal-time, phonon
summed, Green function tr(EG<(t, t)). It de-
scribes the molecule coherence and shows deco-
herence effects due to bath coupling far larger
than the expected dephasing rate γφ.

Another important aspect concerns the de-
phasing of the electronic states. In the
collisions, which lead to the exchange of
phonons with the bath, also phase infor-
mation between the electornic states should
be lost. In Fig. 9.6, the equal time dy-
namics of the off-diagonal auxiliary particle
lesser function EG< is shown. It represent
in the physical operator basis the expecta-
tion value 〈σ−(t)〉 = itr(EG<(t, t)). This
expectation value measures the coherence
between the electronic ground and excited
state. In the master equation approach, it
decays with the dephasing rate γφ. There-
fore, one might expect that the decay of
the correlations should be dominated by
the dephasing parameter γφ. But they de-
cay much quicker due to the additional de-
phasing induced by the phonon relaxation
λ.
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Chapter 10

Normal Phase Dynamics

Figure 10.1: Molecule spectra used in the inter-
acting case. We use a energy scale of 10 THz and
consider N = 4 phonon states with s = 1.05,
ω = 0.75, λ = 0.6, γϕ = 0.1, Γ↓ = 5 · 10−2,
γ = 5 · 10−5, Nmol = 108 .

Before diving into the photon dynamics inside
the cavity, let us briefly explain the numerical
details of all systems discussed in the follow-
ing. As initial conditions, we will always start
with an empty photon system. This means
all photon Green functions are zeros at initial
times except the greater components being −i
due to the commutation relation. We must
imprint a phase into the system to obtain a
symmetry-broken phase. This is done by a
small value of the off-diagonal molecule corre-
lator itr

[
GE<(t0, t0)

]
≈ 1/Nmol, of the order

of the inverse molecule number. In the normal
phase, this correlation will further decay, and,
in the condensate phase, grow. We also start
with a finite number of excited molecules in-
side the cavity, here 5%. This number must
be chosen to be significantly smaller depend-
ing on the system’s parameters. We will show
results in a dissipative regime close to the zero
phonon line. Here, most excitations in the cavity are contained in the molecule system and due
to the large dissipation, the number of excited molecules is relatively high. The systems are
solved with the KB solver introduced earlier with atol = 10−5 and rtol = 10−4. The memory
integrals are cut following the decay of the self-energy eq.(2.84) at tΣ · λ = 8.
We now turn to the photon dynamics in the normal phase. This means in the following
parameter regime, no coherent field is supported. Due to the numerical complexity and the
available computational power, we need to make some concessions in the system’s parameters.
We consider a smaller number of phonon states, as shown previously, and enlarge the molecule
dissipative couplings. This results in the spectra seen in Fig. 10.1. The parameters can be
found in the caption. For these spectra, the Kennard-Stephanov relation is not fulfilled in
such a large range as in Fig. 9.4b. We consider 10 modes in the cavity, with a large trapping
frequency of ∆δk = 1.5 THz, which are linearly degenerate. This resolves a temperature range
of around 2kBT . Due to the small number of modes and the large trapping frequencies, the
critical particle number is very small. This makes the system sensitive to tremendously small
changes in the pump rate. To counteract this, we work with rather large cavity loss. We first
look at large dissipation with κ = 500 GHz and electronic loss Γ↓ = 500 GHz.
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(a) Fraction of excited molecules (b) Photon number without degenerasis.

Figure 10.2: Time-evolution of the fraction of excited molecules and photons to a steady state
in the non-symmetry broken regime.

We use a detuning close to the zero phonon line δ0 = −20THz and a pump rate of Γ↑ =
2
25κ.

This results in moderate ratios of absorption and emission rates.
In Fig. 10.2, we show the relaxation of the photon number and the excited molecules. These
quantities are obtained from the two-time correlators, the Green functions and self-energies.
Fig. 10.3a shows the self-energies from which the emission and absorption spectra are extracted.
They are strongly confined to the equal time diagonal, which allows us to cut the memory
integrals in the KB eq. following eq. (2.84). This is not the case for the photon Green functions
themselves. The imaginary part of lesser functions of the ground mode and the fifth excited
mode can be seen in Fig. 10.3b. At small cavity losses κ, they have support on most of the
two-time grid. The spectra are obtained from these two-time data. The absorption and emission
spectra are obtained as slices in the centre of motion (com.) time T = (t+ t′)/2 of the spectra
Fig. 10.3c.
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(a) Imaginary part of the normal photon self-energies in the two-time plane. They are strongly confined
to the equal time diagonal as anticipated in eq. (2.84) .

(b) Imaginary part of the lesser function of the ground- and fifth cavity mode in the two-time plane.

(c) Fourier transform of the photon self-energies in Wigner coordinates, so as a function of com. T and
frequency as Fourier transform wrt. to relative time τ = t− t′. Left: The greater self-energy leads to
the absorption coefficient. Right: The lesser self-energy leads to the emission coefficient.

Figure 10.3: Example of the two-time functions computed in this approach.
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Figure 10.4: Test of the fluctuation-dissipation
theorem for the photon spectra. The spectra
thermalise, but due to the large dissipation at
a larger temperature Tfit = 5.2T and chemical
potential µ = −132κ.

Figure 10.5: Fluctuation-dissipation theorem
for the photon spectra at significantly smaller
dissipative coupling κ = 20 GHz, Γ↑ = κ/4,
γφ = 250 GHz. The frequency axis is scaled
with the cavity loss used in fig. (10.3c). The
system has not fully reached a steady state,
and the spectra are not fully thermalised. A fit
shows a temperature Tfit = 1.1T and a chemical
potential µ = −71κ̄.

We now turn to the thermalisation of
the photon spectra in the normal state. For
this, we compare the fluctuation-dissipation
relation between the greater and lesser func-
tions in equilibrium. We consider the mode
summed functions

Np(ν) = −
∑
k

Im
(
P<
k (T∞, ν)

)
(10.1)

Nh(ν) = −
∑
k

Im
(
P>
k (T∞, ν)

)
. (10.2)

In thermal equilibrium, they should be related
by

Np(ν) = e−β(ν−µ)Nh(ν) . (10.3)

In Fig. 10.4, a fit of this relation is shown, and
the parameters are given in the caption. The
fit reveals that the spectra are thermal, but
the temperature is higher than in the phonon
bath. This can be traced back to two phe-
nomena. Firstly, as previously discussed, the
large Lindblad couplings in the molecules lead
to a higher temperature in the spectra. The
main contribution comes from the large de-
phasing parameter γφ. But more importantly,
the large mode spacing and small number
of modes lead to small photon numbers. In
this regime, spontaneous emission dominates.
Due to the comparably large number of ex-
cited molecules but small emission coefficient,
it competes with the cavity decay κ. This
issue was essentially already found in the phe-
nomenological rate equation approach in the
introduction eq. (1.6). But here, it manifests
in a higher temperature and the spectral func-
tions of the photons. Nevertheless, the spec-
tra follow the fluctuation-dissipation theorem
rather well. Therefore, the photon correla-
tions can be expected to be thermal even if
the spectra do not directly indicate this when
constructed from the free cavity density of
states. This effect is significantly reduced at smaller dissipative couplings. In Fig. 10.5, the
relation for a system with smaller dissipation is shown. The system has not reached its steady
state at the point where the spectra are obtained. But already at this stage, the photon
spectrum shows a temperature close to the phonon bath temperature. Here, we again compare
with the bath temperature and not the temperature of the molecule spectra, which is higher
due to the dissipative coupling γφ. The spikes in the spectrum Fig. 10.5 arise due to the
smaller time domain for the Fourier transformation at the end of the time evolution. They are
numerical and decrease for longer time evolutions.
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Chapter 11

Condensed Phase Dynamics

Figure 11.2: Density of phase-coherent photons
in the transversal cavity modes, including de-
generacies.

We now turn to the condensation of the pho-
tons. The critical region is tremendously small
since the photon number in the phase inco-
herent fluctuations is small. This leads to a
strong sensitivity of the condensate fraction
with the pump rate. Therefore, one quickly
reaches a regime where the coherent field dom-
inates the system. This is also the regime
where we will show results here. We increased
the pump rate to Γ↑ =

1
5κ and left the other

parameter as in the first example. In Fig. 11.1,
the time evolution of the fraction of excited
molecules and the photon fluctuations can be
seen. Their drop coincides with the emergence
of the phase coherent condensate, as seen in
Fig. 11.2. Here, multiple modes contribute to
the condensate. In Fig. 11.3, the real part of
these fields is shown as a function of time in
a small time interval.

(a) Fraction of excited molecules (b) Fluctuating photon number without
degeneracy

Figure 11.1: Time-evolution of the fraction of excited molecules and photon fluctuations to a
steady state in the symmetry broken regime.
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Figure 11.3: Mode resolved real part of the
condensates in a small time interval.

Figure 11.4: Photon number spectrum of the
fluctuations and the energy of condensate E =
−41.6κ obtained from fitting the phase oscilla-
tion of the condensate. The spectrum fulfils the
fluctuation-dissipation theorem but at a higher
temperature.

They evolve with the same frequency. This
is a manifestation of the macroscopic wave-
function of the photon system. To understand
this behaviour, let us, for a moment, turn to
cold-atom experiments on BECs. Let us as-
sume we have massive bosons in a trap, which
interact with a contact interaction. Further-
more, let us assume that the description via
the Gross-Pitaevskii equation is valid. In the
real space representation, we can write it as

i∂tΨ(x, t) = h0(x)Ψ(x, t) + g|Ψ(x, t)|2Ψ(x, t) .

Here, h0 is the single particle Hamiltonian
containing kinetic energy, the trapping poten-
tial, and the chemical potential. When the
BEC is formed in a steady state, the wave-
function evolves in time with its energy as
Ψ(x, t) = e−iEtΨ(x). The density profile fol-
lows then from

EΨ(x) = h0(x)Ψ(x) + g|Ψ(x)|2Ψ(x) .

But we can also look at this problem in the
basis of the eigenfunctions φn(x) of the single
particle Hamiltonian h0. If we decompose the
fields into this basis as Ψ(x) =

∑
n φn(x)Ψn

we end up with

EΨn = εnΨn +
∑
p,q,k

Un,p,q,kΨ
∗
qΨ

∗
kΨp

with Un,p,q,k = g

∫
dxφn(x)φp(x)φ

∗
q(x)φ

∗
k(x)

The solution will be some distribution of the
Ψn. But all these contributions still time-
evolve with the same energy E. This effect is
essentially what happens with the cavity modes in Fig. 11.3. Experimentally, this manifests in
a deviation of the density profile from the profile of the trap ground mode. This is an effect of
the interaction. In [2], a broadening of the spatial distribution was reported as the condensate
fraction is increased. Our result here does not necessarily explain this broadening. Here, even
though the interaction strength is realistically small, the condensate fraction is unreasonably
large due to the small number of modes, the large trapping frequency and the limitation on
how close the critical point can be approached in the time evolution. Also, other processes
contribute to the broadening, which are not contained in the treatment presented here. One
possibility is the heating of the solvent. The heating effects result in a thermo-optic interaction
considered in [66]. This effect is on a tremendously long time scale compared to the molecule
time scales considered here. Therefore, it is hard to incorporate into the presented formulation.
Another contribution could come from the pump spot size. It usually exceeds the mode profile
of the ground mode. At small pump rates, the molecule solution is in a global equilibrium in the
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(a) Time evolution of the imaginary part. (b) Relative Difference of the signals in a)

Figure 11.5: Comparison of the equation of motion of the condensate with the Ward identity.
a) The imaginary part evolves with the same phase and phase velocity. b) Relative difference
of the relations.

cavity. However, after the BEC is formed and the pump rate is increased, the external regions,
not contained in the spatial profile of the BEC, accumulate molecule excitation. This might
lead to a broadening of the spatial profile. Studying this scenario by considering the molecule
solutions inhomogeneous would be tremendously insightful. Here, an interesting point is that
the different mode distributions inside the cavity can lead to mode competition and loss of
coherence [67]. Unfortunately, the available computational power does not allow us to study this.

As we have seen, we can obtain the energy of the condensate from its phase oscillation.
In Fig. 11.4, its position relative to the spectrum of the fluctuation is shown. It emerges
closely below the ground mode of the cavity as expected. The fluctuation spectrum follows the
fluctuation-dissipation theorem in the sense of the first example in the normal phase we showed.
Here again, the temperature is larger than that of the phonon bath. To test if condensate’s
energy fits the fluctuation spectrum, we look at the Ward identity obtained earlier. We compare
the Ward identity eq. (6.3) with the mode summed equations of motion of the condensate eq.
(5.22). This is the equation of motion of the local condensate, for which eq. (6.3) should hold.
It implies that

∑
k

[∫ t

t0

dt′(Σ>
aa†

(t, t′)− Σ<
aa†

(t, t′))ϕ∗
k(t

′)−
∫ t

t0

dt′(Σaa(t, t
′)− Σaa(t

′, t))ϕk(t
′)

]
(11.1)

!
= iγNmoltr

[
GE<(t, t)

]
(11.2)

In Fig. 11.5a, we show their imaginary part in a small time window to resolve the oscillation.
The agreement is surprisingly good as shown by computing the relative error of the eq. (11.2) as
|lhs. − rhs.|/|rhs.|. Here Fig. 11.5b shows an agreement of around 2%− 4%. This agreement is
striking, considering we use a simplified DMFT formulation with a lowest-order approximation
for the impurity solver.
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Figure 11.6: Phase shift between the off-
diagonal molecule correlators and the coherent
fields in the modes. In blue is the numerical
result of the time evolution, and in orange, eq.
(11.4) with the condensate energy E = −41.6κ.

We want to show another aspect that is un-
fortunately only hardly visible in the current
parameter range, but might be more impor-
tant when the cavity parameters are taken to
the experimental region. In Fig. 11.3, the os-
cillation of the condensate in the cavity modes
looks in-phase. This is not the case. The equa-
tion of motion leads to a necessary phase shift
of the modes depending on their detuning. As
shown from the Hugenholtz-Pines theorem for
open systems, this phase shift is crucial to
cancel the dissipation due to κ and obtain
a stable condensate. The phase shift can be
calculated from the equation of motion of the
phase coherent condensate

∂tϕk(t) = −iδkϕk(t)−
κ

2
ϕk(t)

+ γNmoltr
[
EG<(t, t)

]
. (11.3)

In the steady-state the coherent part of the
photons and molecules evolve with the same phase evolution ϕk(t) = e−iEte−iθkφk and
tr
[
EG<(t, t)

]
= e−iEte−iνg with g = |tr

[
EG<(t, t)

]
| and φk = |ϕk(t)|. This allows us to

write

−i(E − δk)φk = −κ
2
φk + γNmolge

i(θk−ν) ⇒ E − δk
κ/2

= tan(ν − θk) (11.4)

A comparison of this steady-state formula to the numerically obtained phase shift is shown in
Fig. 11.6. The relation seems already to hold for the higher modes, but the low-lying modes
still deviate. This could also be anticipated from Fig. 11.2. The density of the lower modes still
shows dynamics and has not reached a steady state yet. The phase shift to the molecule plays
here the role of stabilising the condensate against the cavity decay κ. This gives us another
perspective on the multiple modes contributing in Fig. 11.2. In the absence of the cavity loss,
we expect a decay of the occupations in the modes as 1/(E − δk)

2. This decay is slowed down
by dissipation κ to a Lorentzian shape 1/(κ2/4 + (E − δk)

2). We use a large dissipation κ.
Therefore, also modes that are further away energetically contribute to the phase coherent
part. This is the main reason why we obtain large occupations for the higher modes. Similar
behaviour due to finite cavity loss has also been reported in [68].
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Figure 11.7: Imaginary part of f1(t, t′) and the Σaa(t, t
′) in the two-time plane.

Figure 11.8: Absolute value of the anomalous
photon propagators, including the degeneracies
of the modes in com. time.

Figure 11.9: Phase evolution of the anomalous
propagators on the time diagonal compared with
the condensate phase evolution.

Additionally to the photon condensate,
the anomalous photon propagators are also
present in this phase. Fig. 11.8 shows the
absolute values on the time diagonal, and
Fig. 11.9 shows the imaginary part compared
to the evolution of the (scaled) square of the
condensate. They all evolve with the same
phase factor as the square of the condensate.
This indicates that all these anomalous prop-
agators are a property of the condensate. In
Fig. 11.7, the anomalous propagator for the
ground mode and the anomalous self-energy
are shown in the two-time plane. The ab-
solute values of the anomalous propagators
are surprisingly large compared to the num-
ber of fluctuating photons. In the context of
atomic BEC’s, these correlators are usually
interpreted as a result of two-body scattering
[37]. They are necessary to implement the
symmetry relation between the 1-particle and
2-particle observables. Here, they fulfil a sim-
ilar role, as they are necessary to implement
the relation between the condensate and the
Green functions in Fig. 11.5a. It is unclear if
this would also hold with more realistic cav-
ity parameters or if this is a consequence of
the large condensate fraction. Nevertheless,
a comparison to atomic BEC’s [69] indicates
that at smaller mode spacing, these effects
are enhanced. From the quantum optics per-
spective, they tell us about squeezing of the
light. We want to emphasise that the results
presented here do not provide any information
about multi-mode squeezing. However, these correlators might be especially interesting in
micro-structured cavities. By imprinting additional structures onto the surface of the mirrors,
different potential landscapes can be engineered. In this way, a double well was realised in
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[70]. Here, a direct tunnelling couples neighbouring sites due to the spatial overlap of the
mode. In this setup, the anomalous propagator between the sites can give information about
the entanglement of the sites [71]. Numerically, this system is demanding not only because
of the larger molecule space, which needs to be considered but especially because the local
modes have a smaller mode volume. This leads to fewer molecules in their profile, drastically
increasing the thermalisation time. On the upside, this makes the system even more interesting
since the tunnelling rate is on the time scale of the thermalisation.

11.1 Strong-coupling regime

Figure 11.10: Test of the Ward identity.

The strong-coupling regime can be reached
by increasing the molecule density Nmol or
the photon-molecule coupling γ. Even though
they are formally similar, they influence the
system differently. This can most transpar-
ently be seen when eliminating the explicit
dependence on the molecule number from the
equations. This can be achieved by map-
ping γ → γ

√
Nmol and simultaneously scal-

ing the photon correlators as ϕ→ ϕ/
√
Nmol

and P≷ → P≷/Nmol. After this transforma-
tion, the equations of motion do not have any
explicit dependence on Nmol anymore. The
molecule number now only appears in the ini-
tial conditions of the photon correlator. For an empty cavity, the greater functions at initial
time are P>(t0, t0) = −i/Nmol. This specifically scales the contribution of the commutator by
a factor of 1/Nmol. From another perspective, the molecule number controls the contribution
of spontaneous emission. This scaling behaviour is a consequence of the simplified DMFT.
We will show here some results for a coupling γ twice as large as before γ = 1 GHz. At
larger couplings, various phases are expected, and the many dissipative couplings make this
method rather versatile. We do not aim here to claim any specific physical behaviour or
phase. This presentation aims to emphasise certain aspects which hint at inconsistencies and
should be checked when results are interpreted. Firstly, we show the total photon number
in the phase-coherent part against the off-diagonal molecule Green function in Fig. 11.11a
. The large value of the off-diagonal molecule correlator hints at the formation of excitons,
and the comparable size to the photon condensate suggests a polariton condensate. This view
is supported by the molecule spectra showing a strong peak emerging at the energy of the
condensate. They are shown in Fig. 11.11b with a scaled reference of the photon number
spectrum. The photon fluctuations are not vastly changed. They get shifted and broadened by
the larger photon self-energies. The energy of the condensate is gapped wrt. to the fluctuation
spectrum, which is a key feature of exciton-polariton condensates [5]. If we consider the Ward
identity, we find a large deviation as shown in Fig. 11.10. The exciton is a highly entangled
molecule state, which can here only emerge due to the strong interaction with the photons.
Therefore, we can expect to need more than the NCA diagrams to describe this state. This
discrepancy manifests here in an inconsistency between the fluctuations and the condensate.
Therefore, conclusions drawn on the state of the system and the signatures manifesting in the
light should be taken with a grain of salt.
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(a) (b)

Figure 11.11: a) Condensed photons and molecule coherence Nmol| 〈σ+(t)〉 |. b) Molecule
spectrum with photon fluctuations as a reference to the energy of the condensate E.

(a) Incoherent photon number (b) Molecule spectra

Figure 11.12: Loss of coherence in strong-coupling regime. a) Photon number accumulates in
the ground mode. b) Molecule and photon number spectrum at Tκ = 1.8 : Parameters in units
of 10 THz given by γ = 2 · 10−4 , ∆δk = 0.1, κ = 2 · 10−2, Γ↓ = 10−3, Γ↑ = κ/4.

Figure 11.13: Photon spectral function.

Increasing the coupling strength further,
the system loses its coherence and only the
fluctuating part of the photons contributes
Fig. 11.12a. The photon numbers show similar
dynamics as expected from the rate equation
approach. The molecule spectra get strongly
renormalised and a peak at the ground mode
energy emerges as the mode accumulates pho-
tons Fig. 11.12b. The photon spectral func-
tion Fig. 11.13 develops a slight negative part
at the ground mode to accommodate the large
photon numbers, and a faint high energy tail
or side peak emerges. The high energy be-
haviour was reported in a mean-field study
[72] and interpreted as a strong coupling sig-
nature attributed to an upper polariton band. Coherence is recovered at large pump rates, but
the molecule spectra get so strongly renormalised that they are hardly recognisable as molecule
spectra and are far from thermal.
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Conclusion

Incorporating a coherent photon field, which leads to a classical phase coherent wave emitted
from the cavity, turned out to be complicated. In a rate equation approach, one quickly
concludes that it requires a lasing state, which is distinct from the BEC state. To remedy
this, we developed a formalism to describe the molecule dynamics in a field theory setting.
This auxiliary particle representation, in combination with the spontaneously broken U(1)
symmetry in an open-driven quantum system, requires a variety of different theory tools. We
gave an introduction to the Schwinger-Keldysh formalism and the approximation method of
the 2-PI EA. From this, we developed the auxiliary particle theory for an open-driven system
and incorporated large molecule reservoirs with a simplified DMFT. This leads us to a crucial
consistency requirement between the fluctuation spectrum and condensate. The time-evolution
of the coupled two-time Green functions and condensate is performed with an adaptive order
and step size method.

It turned out that a non-Markovian thermal bath for the vibrations is needed to obtain
physical spectra following the Kennard-Stepanov relation. We could show that the light ther-
malises in the cavity and pre-thermal states could be observed. We presented results in the
symmetry-broken phase and could show that for realistic molecule parameters, a phase-coherent
condensate emerges at the bottom of the fluctuation spectrum. Our approximation fulfils
the Ward identity at this point, revealing the importance of the anomalous propagators to
obtain consistent energies for the condensate. This allows us to conclude that we observed a
photon condensate in this parameter regime. What still remains is the question of whether
what we observe is a BEC or a laser. The presented parameter regime has a tremendously
small number of fluctuating photons, such that the condensate fraction is close to one. It
results from the combination of a small number of modes, the large mode spacing and the
strong cavity loss. With only the information of the g1 function of the light, this state should
be experimentally indistinguishable from a lasing state. At the present stage, we can not
make reliable predictions for the g2 function. However, the state has two-photon correla-
tions manifesting in the anomalous propagators in a similar order to the fluctuations. From
atomic BEC, we can expect that this correlation grows as the mode spacing is reduced [69], as
we also expect from the photon fluctuations. Additionally, the occurrence of the anomalous
self-energy is crucial to maintain the Ward identity. This would not be expected in a lasing state.

In the presentation of the result, we have already hinted at various points that need
further investigation. These were mainly concerned with numerical improvements to reach the
experimental parameter of the cavity and tackle various effects from the cavity geometry. We
want to expand this list here on a few fronts;
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Second order coherence

These properties of the photon fluctuations have been investigated experimentally and theoreti-
cally using the rate equation approach [25] as well as the auxiliary particle method without
symmetry breaking [58]. In the symmetry-broken phase, the path to obtain these contribu-
tions is unclear. That we needed to check the Ward identity already hinted to the fact that
these correlation functions are manifestly not uniquely defined when approximations to the
self-energies in the symmetry broken phase are applied. A first principle calculation would, in
any case, result in coupled Bethe-Salpeter equations. At the present time, they are numerically
too expensive to solve in non-equilibrium. The most promising path to obtain these in the
symmetry-broken phase seems to be response theory, as applied without symmetry breaking in
[58]. Here, two main questions need to be answered. Firstly, in the Green function setup, the
response is usually calculated from the linear response of the two-time Green function [30]. How
this concept generalises to a simultaneous change of the coherent field is not explored. Secondly,
in this system, the light response will always be accompanied by a matter response. Their
correlation will mix on the level of KB equations. Extracting the photon correlations from
these signals requires an understanding of the underlying symmetries between these different
responses. Here, the analysis of the higher-order Ward identities might lead to some insight
into this problem. To the best of the author’s knowledge, the study of these connections
has only recently been started [73]. Nevertheless, in the context of the photon BEC, these
corrections can be expected to be small. Another unexplored aspect is that the two-time Green
function formulation of linear response theory can also provide additional information from
the two-time nature of the correlation functions. This might also be a pathway to obtain more
exotic correlation functions like out-of-time-ordered correlators.

Non-Markovian Molecule bath

In the approach put forward here, we included all internal molecule states, which makes it
numerically expensive. Therefore, it might not be applicable to large structured cavity systems.
But as we have seen, molecule spectra are largely unperturbed by the photon interaction in
the region where the photon BEC is studied. We have shown that the Markovian master
equation does not support a phase-coherent BEC state and that the Kennard-Stepanov relation
can not be obtained from a Lindblad bath. This means that also multi-level approximation
in a cumulant expansion as used in [63] will not show an actual Kennard-Stepanov relation.
Therefore, the most promising approach to minimize the computation cost seems to treat the
phonon system as a non-Markovian bath. Technically, this can be achieved using the Polaron
transformation and only applying the auxiliary particle representation to the electronic states.
The phonon bath can then be integrated out in the path integral formulation. This leads,
in NCA approximation, in the normal state effectively to a non-Markovian variant of the
master equation used in [22]. In the condensed phase, the anomalous parts also contribute as a
non-Markovian variant of eq. (1.25).

By now, a hallmark of condensed matter physics is that the experimentalists are quite ahead
of the theory, and the photon BEC is no exception. The micro-structuring of cavities opens up
entirely new possibilities, from studying the Kibble-Zurek mechanism in continuous rings, over
topology of open-driven systems in discrete arrays to entanglement in discrete lattice structures.
In the light of these developments, there is still much work ahead of theorists.
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Appendix

Correlation functions of the polaron transform
We want to show here how the polaron correlation function can be calculated assuming a
thermal phonon state. This can be done using the Schwinger-Keldysh formalism introduced in
chapter 2. We take a rather general approach here and only assume non-interacting thermal
phonons so that the bath density of state ρ(ω) can be easily changed afterwards. This allows
us to write the phonon greater and lesser Green functions in frequency space as

G>(ω) = −iρ(ω)b(βω) , G< = −iρ(ω)(b(βω) + 1) .

The action can then be written in frequency space as

S =

∫
dν

∑
σ,σ′∈±

~φ∗σ(ν)G
−1
σ,σ′(ν)~φσ′(ν) =

∫
dν~φ∗(ν)G−1(ν)~φ(ν)

The average of 〈D(t)〉 is the same on both branches and time independent, due to thermal
equilibrium. It can directly be computed from the path integral using η+ = (1, 0)T

〈D(t)〉 =
∫

D[φ]√
det(G−1)

exp(i

∫
dν

(
~φ∗(ν)G−1(ν)~φ(ν) + 2s

(
eiνtφ∗+(ν)− φ+(ν)e

−iνt
))

=

∫
D[φ]√
det(G−1)

exp(i

∫
dν
(
(~φ∗(ν) + 2se−iνtηT+G(ν))G

−1(ν)(~φ(ν)− 2sG(ν)η+e
iνt) + 4SηT+G(ν)η+

)
= exp

[
i4s2

∫
dνGT (ν)

]
= exp

[
−2s2

∫
dνρ(ν)(1 + 2b(βν))

]
with b(x) =

1

ex − 1
.

For the two-time correlator we obtain in the same fashion

〈D−(t)D
†
+(t

′)〉 =
∫

D[φ]√
det(G−1)

exp(i

∫
dν
(
~φ∗(ν)G−1(ν)~φ(ν)

+ 2s
(
eiνtφ∗−(ν)− φ−(ν)e

−iνt − eiνt
′
φ∗+(ν) + φ+(ν)e

−iνt′
))

=

∫
D[φ]√
det(G−1)

exp
[
i

∫
dν
{
(~φ∗(ν) + 2s(e−iνt′ ,−e−iνt)G(ν))G−1(ν)(~φ(ν)− 2sG(eiνt

′
,−eiνt)T )

+ 4s2(e−iνt′ ,−e−iνt)G(ν)(eiνt
′
,−eiνt)T

}]
= exp

[
4is2

∫
dν
(
GT (ν) +GT̃ (ν)− e−iν(t−t′)G>(ν)− eiν(t−t′)G<(ν)

) ]
= exp

[
4is2

∫
dν
(
(G>(ν) +G<(ν))(1− cos(ν(t− t′)) + i sin(ν(t− t′))(G>(ν)−G<(ν))

) ]
= exp

[
4is2

∫
dν
(
(G>(ν) +G<(ν))2 sin2(ν(t− t′)) + i sin(ν(t− t′))(G>(ν)−G<(ν))

) ]
= exp

[
− 4s2

∫
dνρ(ν)

(
2(1 + 2b(βν)) sin2(ν(t− t′)) + i sin(ν(t− t′))

) ]
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〈D†
−(t

′)D+(t)〉 =
∫

D[φ]√
det(G−1)

exp(i

∫
dν
(
~φ∗(ν)G−1(ν)~φ(ν)

+ 2s
(
eiνtφ∗+(ν)− φ+(ν)e

−iνt − eiνt
′
φ∗−(ν) + φ−(ν)e

−iνt′
))

=

∫
D[φ]√
det(G−1)

exp
[
i

∫
dν
{
(~φ∗(ν) + 2s(e−iνt,−e−iνt′)G(ν))G−1(ν)(~φ(ν)− 2sG(eiνt,−eiνt′)T )

+ 4s2(e−iνt,−e−iνt′)G(ν)(eiνt,−eiνt′)T
}]

= exp
[
4is2

∫
dν
(
GT (ν) +GT̃ (ν)− eiν(t−t′)G>(ν)− e−iν(t−t′)G<(ν)

) ]
= exp

[
− 4s2

∫
dνρ(ν)

(
2(1 + 2b(βν)) sin2(ν(t− t′))− i sin(ν(t− t′))

) ]
The symmetry properties are

[
D>(τ)

]∗
= D>(−τ) = D<(τ) =

[
D<(−τ)

]∗
The two-time correlators F are given by

〈D−(t)D+(t
′)〉 =

∫
D[φ]√
det(G−1)

exp(i

∫
dν
(
~φ∗(ν)G−1(ν)~φ(ν) + 2s

(
eiνtφ∗−(ν)

− φ−(ν)e
−iνt + eiνt

′
φ∗+(ν)− φ+(ν)e

−iνt′
))

=

∫
D[φ]√
det(G−1)

exp
[
i

∫
dν
{
(~φ∗(ν)− 2s(e−iνt′ , e−iνt)G(ν))G−1(ν)(~φ(ν) + 2sG(eiνt

′
, eiνt)T )

+ 4s2(e−iνt′ , e−iνt)G(ν)(eiνt
′
, eiνt)T

}]
= exp

[
4is2

∫
dν
(
GT (ν) +GT̃ (ν) + e−iν(t−t′)G>(ν) + eiν(t−t′)G<(ν)

) ]
= exp

[
4is2

∫
dν
(
(G>(ν) +G<(ν))(1 + cos(ν(t− t′))− i sin(ν(t− t′))(G>(ν)−G<(ν))

) ]
= exp

[
4is2

∫
dν
(
(G>(ν) +G<(ν))2 cos2(ν(t− t′))− i sin(ν(t− t′))(G>(ν)−G<(ν))

) ]
= exp

[
− 4s2

∫
dνρ(ν)

(
2(1 + 2b(βν)) cos2(ν(t− t′))− i sin(ν(t− t′))

) ]
(11.5)

This lets us conclude the symmetry property as
[
F(τ)

]†
= F(−τ). Another interesting property

of these correlators is the product of them follows 〈D−(t)D
†
+(t

′)〉 〈D−(t)D+(t
′)〉 = 〈D〉4.

102



Polaron transformation in auxiliary particle representation

Most of the following section was used in the master thesis of the author [56].

The coupling matrix γn,m is composed of the unitary transformations, which diagonalizes
the excited and ground state Hamiltonian. We want to find an analytic form for the structure of
the matrix. Our starting point, before the auxiliary particle transformation, was a Hamiltonian
containing operators of harmonic oscillators. Here, the coupling term comes from a position
shift of the oscillators to ±x0 in excited and ground state. The transformation diagonalizing
the molecule part should be a translation back to the original position. We now use results
obtained from the real space representation of the harmonic oscillator problem and apply
these properties to the auxiliary particle problem. To this end, we recapitulate here various
results of [74] [75]. The unitary transformation is the shift operator and can be considered in a
matrix form connecting the wavefunction in the two representations. Its entries are the overlap
integrals of the shifted oscillator wavefunction with the unshifted ones.

U±
n,m =

∫
dxΨn(x± x0)Ψm(x) . (11.6)

These elements are called the Franck-Condon coefficients or integrals.
The route we want to take is to derive symmetry and addition properties for these elements,
which allows us to show that the transformation needed to diagonalise the Hamiltonian has the
same properties.
We first consider the action of an exponential of creation and destruction operators of the
harmonic oscillator on a function composed of these:

e±x0a†f(a†, a) = f(a†, a∓ x0)e
±x0a† e±x0af(a†, a) = f(a† ± x0, a)e

±x0a (11.7)

From here, it directly follows that

U = exp(x0(a− a†)) Ua†a = (a† + x0)(a+ x0)U = (a†a+ x0(a
† + a) + x20)U .

This can be used to find relations between the matrix elements of U as

⇒ nUm,n = n

∫
dxΨm(x)UΨn(x) =

∫
dxΨm(x)Ua†aΨn(x)

=

∫
dxΨm(x)(a†a+ x0(a

† + a) + x20)UΨn(x)

= mUm,n + x0
√
mUm−1,n + x0

√
m+ 1Um+1,n + x20Um,n

⇒
√
n+ 1Um,n+1 =

∫
dxΨm(x)Ua†Ψn(x) =

∫
dxΨm(x)(a† + x0)UΨn(x)

=
√
mUm−1,n + x0Um,n

Considering now the with ω scaled Hamiltonian of our auxiliary particles under this unitary
transformation:∑

n

nd†ndn + s
√
n+ 1(d†n+1dn + d†ndn+1)

=
∑
n,k,l

nd†kdlU
†
k,nUn,l + s

√
n+ 1(d†kdlU

†
k,n+1Un,l + d†kdlU

†
k,nUn+1,l)
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We separate the operator content from the matrix elements of the unitary transformation and
evaluate the sum over the index n with the properties found earlier.∑
n,k,l

nU †
k,nUn,l + s

√
n+ 1(U †

k,n+1Un,l + U †
k,nUn+1,l)

=
∑
n,k,l

kU †
k,nUn,l − s

√
kU †

k−1,nUn,l − s
√
k + 1U †

k+1,nUn,l + s2U †
k,nUn,l

+ s
√
kU †

k−1,nUn,l + s
√
k + 1U †

k+1,nUn,l − 2s2U †
k,nUn,l =

∑
n,k,l

(k − s2)U †
k,nUn,l =

∑
k,l

(k − s2)δk,l

Therefore, the transformation diagonalises also the auxiliary particle Hamiltonian. Note here
that the unitary transformations for both oscillators are complex conjugates of each other,
which is equivalent to a shift by +s and −s.
The matrix elements can be obtained with the wavefunctions of the harmonic oscillators in
dimensionless units

Ψn(x) =
1√√
π2nn!

e−
x2

2 Hn(x)

here Hn(x) are the Hermite polynomials with the properties,

Hn(x+ a) =

n∑
i=0

(
n

i

)
Hi(x)(2a)

n−i (11.8)∫
dxHn(x)Hm(x)e−x2

=
√
π2nn!δn,m (11.9)

The overlap integrals can be calculated as
1√

π2n+mm!n!

∫
dxe−

(x−a)2

2 Hn(x− a)e−
x2

2 Hm(x)

=
1√

π2n+mm!n!

∫
dxe−

(x−a/2)2

2 Hn(x− a/2)e−
(x+a/2)2

2 Hm(x+ a/2)

=
1√

π2n+mm!n!
e−

a2

4

n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
(−a)n−i(a)m−j

∫
dxe−x2

Hi(x)Hj(x)

=
1√

π2n+mm!n!
e−

a2

4

n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
(−a)n−i(a)m−j√π2ii!δj,i

=
1√

2n+mm!n!
e−

a2

4

min(n,m)∑
i=0

(
n

i

)(
m

i

)
(−a)n−i(a)m−i2ii!

=
1√
m!n!

e−
a2

4 (−1)n(
a√
2
)m+n

min(n,m)∑
i=0

(
n

i

)(
m

i

)
(−a2/2)−ii!

=
1√
m!n!

e−
a2

4 (−1)n−min(n,m)(
a√
2
)m+n(

a√
2
)−2min(n,m) U [−min(n,m), |n−m|+ 1, a2/2]

Here U [a, b, x] is Krummers function of second kind, which is connected to the generalised
Laguerre polynomials through

Lα
n(x) =

(−1)n

n!
U [−n, α+ 1, x] . (11.10)
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With this, we find

Un,m = e−
a2

4



(
a√
2

)m−n
√
n!

m!
Lm−n
n

(
a2

2

)
m > n

(
−a√
2

)n−m
√
m!

n!
Ln−m
m

(
a2

2

)
n > m

(11.11)

Under the transformation, the interaction with the photons transforms as∑
n

γa†d†g,nde,n =
∑
n,l,k

γa†d†g,kde,lU
†
k,n(x0)Un,l(−x0) =

∑
n,l,k

γa†d†g,kde,lU
†
k,n(x0)U

†
n,l(x0)

⇒ γk,l =
∑
n

γU †
g,k,n(x0)U

†
g,n,l(x0) = γU †

g,k,l(2x0)

= γe−x2
0


(
x0

√
2
)l−k

√
k!

l!
Ll−k
k

(
2x20

)
l > k(

−x0
√
2
)k−l

√
l!

k!
Lk−l
l

(
2x20

)
k > l

As already mentioned, we will not use this representation further since, in the fully interacting
theory, the phonon quantum numbers will mix due to the photon interaction anyway.
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