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Abstract

Ikram JUMAKULYYEV

PDE-based Lossless Medical Image Compression

In this dissertation, our scientific goal is to investigate the potential of Partial
Differential Equations (PDEs) for designing a lossless medical image compression
codec. PDEs has previously been used as a basis for lossy image compression. The
famous PDE used to design a lossy codec is called Edge-enhancing diffusion (EED)
which is a family member of inpainting-based PDEs. It can reconstruct a close ap-
proximation of an original image from a small subset of its pixels. This makes it
an attractive foundation for PDE based image compression. For medical images on
the other hand, lossless compression is often considered to be safer, given that even
subtle details could be diagnostically relevant.

The dissertation consists mainly of three of our contributions which build upon
each other. In our first work, we designed PDEs that give better reconstruction than
EED, especially in a very sparse subset of pixels. In this work, we generalize second-
order EED to a fourth-order counterpart. It involves a fourth-order diffusion tensor
that is constructed from the regularized image gradient in a similar way as in tra-
ditional second-order EED, permitting diffusion along edges, while applying a non-
linear diffusivity function across them. We show that our fourth-order diffusion
tensor formalism provides a unifying framework for all previous anisotropic fourth-
order diffusion based methods, and that it provides additional flexibility. We achieve
an efficient implementation using a fast semi-iterative scheme. Experimental results
on natural and medical images suggest that our novel fourth-order method produces
more accurate reconstructions compared to the existing second-order EED.

In our second work, we introduce a PDE-based codec that achieves competitive
compression rates for lossless image compression. It is based on coding the differ-
ences between the original image and its PDE-based reconstruction. These differ-
ences often have lower entropy than the original image, and can therefore be coded
more efficiently. We optimize this idea via an iterative reconstruction scheme, and a
separate coding of empty space, which takes up a considerable fraction of the field of
view in many 3D medical images. We demonstrate that our PDE-based codec com-
pares favorably to previously established lossless codecs. We also investigate the
individual benefit from each ingredient of our codec on multiple examples, explore
the effect of using homogeneous, edge enhancing, and fourth-order anisotropic dif-
fusion, and discuss the choice of contrast parameters.

For our last work, we focused on diffusion Magnetic Resonance Image (dMRI)
lossless compression as, to our best knowledge, there is no codec designed to exploit
the properties of dMRI data. Diffusion MRI is a modern neuroimaging modality
with a unique ability to acquire microstructural information by measuring water
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self-diffusion at the voxel level. However, it generates huge amounts of data, result-
ing from a large number of repeated 3D scans. Each volume samples a location in q-
space, indicating the direction and strength of a diffusion sensitizing gradient during
the measurement. This captures detailed information about the self-diffusion, and
the tissue microstructure that restricts it. Lossless compression with GZIP is widely
used to reduce the memory requirements. We introduce a novel lossless codec for
diffusion MRI data. It reduces file sizes by more than 30% compared to GZIP, and
also beats lossless codecs from the JPEG family. Our codec builds on our previous
work on lossless PDE-based compression of 3D medical images, but additionally ex-
ploits smoothness in q-space. We demonstrate that, compared to using only image
space PDEs, q-space PDEs further improve compression rates. Moreover, imple-
menting them with Finite Element Methods and a custom acceleration significantly
reduces computational expense. Finally, we show that our codec clearly benefits
from integrating subject motion correction, and slightly from optimizing the order
in which the 3D volumes are coded.
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Chapter 1

Introduction

1.1 Motivation

In hospitals and clinics, ever-developing medical imaging devices generate large
amounts of data per patient for diagnosis, therapy and surgical planning purposes.
Continuous medical data acquisition creates a need for efficient storage to overcome
memory and limited bandwidth network transmission restrictions. Another point
is that aggregating medical data as large datasets is necessary in research activi-
ties for developing automated or semi-automated human assistance techniques in
medical image assesment or diagnosis as there is continuous effort in transforming
healthcare systems currently centered on human expert assessment [54]. It has been
reported (see Figure 1.1) that each year the acquired overall neuroimaging data size
grows exponentially [26]. It is due to the proliferation of medical imaging devices,
their increased resolution, and the increasing use of multiple contrasts or channels.
The need for long-term storage and efficient transmission makes the development
of compression schemes for the storage of medical images an important and active
research goal.

FIGURE 1.1: Increase of neuroimaging data size over years. Data
were taken from I. D. Dinov [26]. GB = gigabyte (109 bytes), TB =

terabyte (1012 bytes), PB = petabyte (1015 bytes).

In general, image compression techniques are mainly divided into two groups:
Lossy and lossless compression. Lossy compression achieves much higher compres-
sion rates by replacing the original image with an approximation that can be stored
more efficiently. However, it might lead to visually noticeable changes that are less
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suitable for medical images, since potentially subtle, but diagnostically relevant de-
tails might be perturbed. Lossless compression techniques permit restoration of the
full, unmodified input data, which however limits the achievable compression rates.
In medical image compression, lossless compression is often preferred and is some-
times even legally required [52, 53, 75], since it guarantees not to interfere with the
interpretation or quantification of the image contents. Therefore, this whole disser-
tation is devoted to designing a lossless compression codec for medical image data.

The use of diffusion-based inpainting has been explored for the lossy compres-
sion of images [30, 96, 97], videos [5, 56, 89], and audio [85]. This paradigm is based
on storing information only for a sparse subset of the original samples, and inter-
polating it to approximate the remaining parts of the original signal. Interpolation
is often done via Partial Differential Equations (PDEs) that are inspired by the well-
known heat transfer equation, in analogy to how radiators that are sparsely dis-
tributed in a room would heat up the space in between them.

Medical images are usually volumetric 3D or series of volumes, 4D data. And
almost all previous works on PDE-based compression have focused on 2D natural
images or videos. Only a single example has considered a 3D extension [84]. Even
more importantly, all above-mentioned codecs are for lossy compression, and their
benefit relative to established transform-based codecs like JPEG [81] and JPEG2000
[101] tends to be most pronounced at high compression rates [97]. Usually, a high
compression rate means more loss which is not desirable in medical images. To fill
this gap, we worked on PDE-based lossless medical image compression.

1.2 Contributions

As a continuation of a research line that has explored the use of Partial Differen-
tial Equations (PDEs) for image compression [29, 30, 70, 97] we first designed a
diffusion-based PDEs for image inpainting. The use of inpainting PDEs for image
compression is based on storing only a small subset of all pixels, and interpolat-
ing between them in order to restore the remaining ones. There is a strong simi-
larity between that interpolation process and image inpainting, whose goal it is to
reconstruct missing or corrupted parts of an image. PDE-based methods for im-
age inpainting and compression are inspired by the physical phenomenon of heat
transport. We introduced a novel fourth-order PDE for edge enhancing diffusion
(FOEED), steered by a fourth-order diffusion tensor. We implemented it using a fast
semi-iterative scheme (FSI) and demonstrated that it achieved improved accuracy
in several inpainting tasks, including reconstructing images from a small fraction of
pixels or removing scratches. Our main motivation for using fourth-order diffusion
in this context is the increased smoothness of results compared to second-order PDEs
[114], which we expected to result in visually more pleasant and numerically more
accurate reconstructions. Better reconstruction, i.e. more accurate approximation of
the original image leads to a more compressible residual which is highly important
to achieve lossless compression.

Next, we proposed our codec which is the first to explore the potential of PDE-
based methods for the lossless compression of 3D medical images. We presented
a lossless PDE-based codec that stores the residuals between the PDE-based recon-
struction and the original values. Its success rests on three key ideas: First, we use a
simple regular grid as the initial inpainting mask, so that the locations of the mask
voxels do not have to be stored explicitly. Second, we encode and decode the im-
age iteratively, alternating between PDE-based reconstructions and dilation of the
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inpainting mask. Compared to a single reconstruction, this further reduces the en-
tropy of the residuals that have to be stored. Third, we optionally code regions of
empty space separately, since they take up a substantial fraction of the field of view
in many medical images. We demonstrate that our codec achieves a higher compres-
sion rate than several established codecs on three Magnetic Resonance Images with
different characteristics, as well as a Computed Tomography image. Moreover, we
studied the effect of several variations of our codec, using different PDEs including
FOEED [47], iteration modes, and contrast parameters.

Furthermore, we propose a PDE-based codec specifically designed for lossless
compression of 4D diffusion Magnetic Resonance Imaging (dMRI) data. Our focus
on dMRI data has two reasons: 1) To our best knowledge, neither PDE-based codec
nor any other kind of compression codecs exists in the literature for dMRI specific
(see Sec. 6.3); 2) With simple linear second-order and fourth-order inpainting PDEs
[87] we can exploit redundancies along the fourth dimension that arises in diffusion
MRI, i.e., the orientation of the diffusion gradient [7]. Especially being linear for in-
painting PDEs, allows us to apply our developed fast implementation trick (see Sec.
6.4.2); The numerical PDEs with Finite Element Methods (FEM) numerical scheme
is implemented by using the package called FEniCS [58, 66].

1.3 Outline and publications

A short introduction to image compression is given in Chapter 2. Chapter 3 pro-
vides mathematical background and an overview of diffusion PDEs used in image
processing and compression.

The main research contribution of this dissertation is based on our three publica-
tions. These publications are presented in:

• Chapter 4: Jumakulyyev et al. ”Fourth-order anisotropic diffusion for inpaint-
ing and image compression” In: Anisotropy Across Fields and Scales. Springer,
Cham, 2021, pp. 99-124. [47].

• Chapter 5: Jumakulyyev et al. ”Lossless PDE-based Compression of 3D Medi-
cal Images” In: International Conference on Scale Space and Variational Methods in
Computer Vision. Springer. 2021, pp. 450-462. [50].

• Chapter 6: Jumakulyyev et al. ”PDE-based Lossless Compression of 4D diffu-
sion MRI” In: Journal of Mathematical Imaging and Vision. Springer Nature. 65
(2023), pp. 644-656. [46].

Chapter 7 concludes all the proposed methods and discusses future possibilities
to extend these works.





5

Chapter 2

Image Compression

Image compression algorithms represent the same or similar quantity of image in-
formation in a reduced amount of data. It is a broad domain with a lot of applica-
tions in real life. We use image compression explicitly or implicitly. For example, all
our pictures captured by our mobile phone cameras are compressed automatically
and saved in our phone memories in a compact compressed form. Image compres-
sion is crucial for various applications, especially when dealing with digital images
in scenarios where storage space, transmission bandwidth, or processing speed are
limited resources. Image compression techniques can be categorized into two main
groups: lossless compression and lossy compression. Lossless compression meth-
ods reduce the size of an image without any loss of information. This means that
when the compressed image is decompressed, it is identical to the original. Lossy
compression methods achieve higher compression ratios by discarding some of the
less critical information in an image. While these methods result in a smaller file
size, there is some loss of image quality. The choice between lossless and lossy com-
pression depends on the specific use case. Lossless compression is preferred when
preserving every bit of data is critical, such as in medical imaging or archival pur-
poses. Lossy compression is suitable for scenarios where a trade-off between image
quality and file size is acceptable, such as in web graphics and multimedia content.

This chapter is devoted to getting a reader familiar with image compression con-
cepts that are necessary to understand upcoming chapters. For in-depth discussions,
please refer to dedicated image compression literature, e.g., [92, 93].

2.1 Digital Images

A digital image is a captured picture of a continuous scene or object by a digital de-
vice such as a digital camera or medical image acquisition device. Digital images are
stored in a digital medium in discrete form; They can be considered as discrete im-
age functions defined on two-dimensional (2D) or three-dimensional (3D) rectilinear
grids depending on image dimension. The famous example of 2D images are natu-
ral images that are, for example, pictures of nature, everyday moments etc. For 3D
images, volumetric medical images acquired by specially designed medical devices
are an example. Discrete image function can be real-valued or vector-valued. Grey-
scale images are real-valued images, while color images are vector-valued images.
They have three red, green, and blue color components.

There are terms used to describe digital images, such as pixel or voxel, resolu-
tion, color model, bit depth, file format and metadata. A pixel is the fundamental
building block of a digital image. It is a tiny square or rectangular element that holds
color or intensity information. Pixels are arranged in rows and columns to form a
grid, commonly referred to as the image matrix. A voxel is a 3D correspondent of
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FIGURE 2.1: Left: Flower natural image with 256 grey-scale levels and
w × h = 400 × 300 resolution. Right: b = 0 diffusion weighted MRI
medical image with 4096 grey-scale levels and w×h×d = 136× 136×

84 voxels.

TABLE 2.1: Raw image file sizes. Visualization of the images are given
in Figure 2.1.

Image Resolution Bit Depth Number of Bits
flower 400×300 8 bits 960.000
B0 MRI 136×136×84 16 bits 248.586.24

a pixel. The resolution tells the number of pixels in an image. Digital images use
color models to represent colors. The most common color models are RGB (Red,
Green, Blue) and Grayscale. In RGB, each pixel is represented as a combination of
red, green, and blue intensities. Mixing these three primary colors in different pro-
portions produces a wide range of colors. Grayscale which is a single-channel color
model that represents the intensity of light, usually from black to white. Each pixel
has only one value representing its brightness. Bit depth determines a set of possible
values that pixels can take or refers to the number of bits used to represent the color
of each pixel/voxel, e.g., 8 bit grey-scale image pixels and 16 bit grey-scale 3D medi-
cal image voxels can have values from intervals [0, 28 − 1] and [0, 216 − 1] respectively
(see Figure 2.1). For a color RGB image 24 (3x8)-bits are used. For a raw and uncom-
pressed image we can estimate the file size (number of bits) needed for memory stor-
age if we know its resolution and bit depth. It is calculated by resolution × bit depth.
For an image with multiple color channels we should additionally multiply by the
number of channels, i.e., resolution × bit depth × channel number. The last column of
Table 2.1 presents our example images’ (Figure 2.1) raw file sizes in bits. It’s worth to
note that those file sizes are required for image data storage. Usually image data is
contained in a certain file format which has a header file containing image specifica-
tions such as image dimensions (width, height and depth if there is any), bit depth,
etc. All this information is known as a metadata. A header file containing metadata
takes relatively little memory.

2.2 Entropy Encoding

Entropy (also known as Shannon entropy) of an image is an average measure of in-
formation content in an image [99]. Images with high entropy have a more diverse
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range of pixel values, suggesting that the image contains a lot of detail or informa-
tion, while images with low entropy have less diversity in pixel values, indicating
more uniform regions or less information. The entropy H(I) of an image I is formu-
lated as follows:

H(I) = −
2bd

∑
i=0

p(xi) log2(p(xi)) , (2.1)

where xi is a unique pixel value of an image I in the range of [0, 2bd], bd is the bit
depth of I and p(xi) is the probability of xi. The unit of image entropy H(I) is
bits. It is a consequence of using logarithms in base two. The entropy is helpful in
image compression as it gives a lower limit for the average coding length in bits per
pixel which can be achieved (or realized) by an entropy encoding scheme without
any loss of information [104]. It is also used for various image analysis tasks, such
as image segmentation, texture analysis, and feature extraction, to characterize the
complexity and information content of an image.

Entropy coding is a method of assigning fixed- or variable-length codewords
(strings of 0s and 1s) to the corresponding symbols according to the probability of the
symbols (in our case unique pixel/voxel values). More formally, it is a data (in our
case, image) compression technique used to represent data in a more compact form
by taking advantage of the inherent statistical properties of the data. The main idea
behind entropy encoding is to assign shorter codes to more frequent symbols and
longer codes to less frequent symbols, resulting in an overall reduction in the size of
the encoded data. In this way an average code length of the data is approximated to
the entropy of the data, which is the most efficient way to represent the data. Two of
the well-known entropy encoding techniques are Huffman and Arithmetic coding.

Huffman entropy encoding [40] is a technique of designing variable-length codes
for coding given the probabilities of the symbols. The designed output code by Huff-
mann coding is uniquely decodable. The obtained codewords are prefix-free, i.e.,
longer codewords are not starting with shorter codewords which confuses decoder
[41]. The ideal probability distribution for Huffmann coding i.e., it works best when
the probabilities of symbols are powers of two or close to that. Huffman encoding
has been used widely in many applications. It is the main component of JPEG image
and MPEG video compression standards.

Arithmetic coding is another entropy encoding technique, and it is often used as
an alternative to Huffman coding. Like Huffman coding, arithmetic coding works
by assigning variable-length codes to symbols based on their probabilities of occur-
rence. Unlike Huffman coding, arithmetic coding does not use a discrete number
of bits for symbol coding it. Rather encodes entire data sequences using fractional
values in the interval [0, 1). Arithmetic coding can achieve higher compression ef-
ficiency compared to Huffman coding, especially for sources with uneven symbol
probabilities. However, it requires more complex implementation due to the contin-
uous nature of interval arithmetic. In general, Arithmetic coding is more efficient
than Huffman coding because it encodes entire sequences of symbols in one step,
rather than encoding symbols one by one as mentioned shortly before. This leads to
a potentially more accurate representation of the original data’s probabilities and can
result in better compression ratios [112]. The choice between them often depends on
the specific characteristics of the data being compressed and the trade-off between
simplicity and efficiency.
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2.3 Common Compression Algorithms

2.3.1 JPEG Family

JPEG [80], which stands for Joint Photographic Experts Group, is a widely used
image compression standard that was developed by the Joint Photographic Experts
Group committee in 1992. It has been designed to efficiently compress and store dig-
ital images while maintaining a balance between image quality and file size. JPEG is
particularly well-suited for photographs and images with complex color gradients,
making it one of the most popular formats for storing. It achieves compression by
exploiting the limitations of human visual perception. It discards certain image in-
formation that the human eye is less sensitive to, while retaining the most critical
visual elements. JPEG has lossy and lossless compression modes. For lossy modes
JPEG and JPEG2000 are famous examples. For lossless modes there are lossless ver-
sions of JPEG and JPEG2000 as well as JPEG-LS. JPEG compression steps can be
summarized as follows [80, 101]:

1) Image color space conversion: The original image, typically in RGB (Red,
Green, Blue) color space, is converted to the YCbCr color space. This color space
separates luminance (brightness) information (Y) from chrominance (color) infor-
mation (Cb and Cr).

2) Chroma component subsampling: The human eye is more sensitive to changes
in brightness than color. JPEG takes advantage of this by reducing the resolution of
the color channels (Cb and Cr) while keeping the luminance channel (Y) at a higher
resolution. Common subsampling ratios are 4:4:4 (no subsampling), 4:2:2, and 4:2:0.

3) Discrete Cosine Transform (DCT): Each color channel is divided into sub-
blocks such as 8x8 block of pixel values. A mathematical transformation called the
DCT (in JPEG) or Wavelet Transform (in JPEG2000) is applied to each block, con-
verting it from the spatial domain to the frequency domain. This helps separate the
image into different frequency components.

4) Quantization: The transformed coefficients are quantized, meaning they are
rounded to a lower precision. This step introduces irreversible loss of information.
The quantization process introduces the most significant loss of image quality in
JPEG compression. Different quantization tables can be used to control the level of
compression and resulting image quality.

5) Entropy Encoding: The quantized coefficients are further compressed using
a variable-length coding scheme e.g., Huffman coding (in JPEG). Coefficients that
represent common patterns are encoded with shorter codes, while less common co-
efficients are encoded with longer codes.

2.3.2 GZIP

GZIP [24] is a another widely used data compression algorithm. It was developed
by Jean-Loup Gailly and Mark Adler in the early 1990s and is named after the GNU
Project, under which it was initially developed. GZIP works by replacing repeated
sequences of data with shorter codes, thereby reducing the overall size of the data. It
employs the Deflate compression algorithm, which combines two main techniques:
Huffman coding and LZ77 (Lempel-Ziv 77) dictionary-based compression. LZ77
compression is a dictionary-based algorithm that replaces repeated sequences of
characters with references to a previously encountered occurrence. This reduces
redundancy in the data. When a sequence is repeated, instead of storing the en-
tire sequence again, GZIP just stores a reference to the previous occurrence and the
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length of the repeated segment. GZIP uses Huffman coding to represent the LZ77
references efficiently. GZIP compression steps can be summarized as follows [24]:

1) LZ77 Compression: The input data is divided into blocks. Then within each
block, LZ77 compression is applied to identify repeated sequences.

2) Entropy Encoding: Huffman coding is then used to encode the LZ77 refer-
ences.

The above given two-step compression is actually called Deflate compression
algorithm [23]. GZIP adds a header and trailer to the compressed data to provide
information about the compression process and ensure accurate decompression. The
header includes details like the compression method used, timestamp, and original
file name.
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Chapter 3

Diffusion PDEs for Image
Processing

Diffusion PDEs are derived by the heat diffusion equation

∂tu = div(D · ∇u) , (3.1)

which relates temporal changes in a heat concentration ∂tu to the divergence of its
spatial gradient ∇u. When diffusion takes place in an isotropic medium, the dif-
fusivity D is a scalar that determines the rate of heat transfer. In an anisotropic
medium, heat spreads out more rapidly in some directions than in others. In those
cases, D is a diffusion tensor, i.e., a symmetric matrix that encodes this directional
dependence.

When applied to image processing, the gray value at a certain location is inter-
preted as the heat concentration u (Figure 3.1). In diffusion-based image inpainting,
Equation (3.1) is used to propagate information from the known pixels, whose in-
tensity is fixed, to the unknown pixels which will ultimately reach a steady state in
which their intensity is determined by their surrounding known pixels. In this sense,
Equation (3.1) has a filling-in effect that can be exploited for image compression.

FIGURE 3.1: A discrete image is defined on a finite grid. Patch voxel
values visualization by zooming in a DWI volume slice. The voxel

values can be represented compactly as a matrix.

Different choices of the diffusivity function D lead to different kinds of diffu-
sion. Linear diffusion [42] and nonlinear diffusion [82] were widely used for image
smoothing and image enhancement. Edge structures in images can be enhanced by
employing a diffusion tensor which allows diffusion in the direction perpendicu-
lar to the local gradient, while applying a nonlinear diffusivity function along the
gradient direction. This idea has led to the development of anisotropic nonlinear
edge-enhancing diffusion (EED) [110]. Among the six variants that were evaluated
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for image compression by Galić et al. [29], EED led to the most accurate reconstruc-
tions. Subsequently, this idea was applied to three-dimensional data compression
[84], and combined with motion compensation in order to obtain a framework for
video compression [5]. When combined with a suitable scheme for selecting and
storing the preserved pixels, a few additional optimizations, and at sufficiently high
compression rates, anisotropic diffusion has been shown to beat the quality even of
JPEG2000 [96].

3.1 Diffusion-based Smoothing

In order to apply Equation (3.1) to image smoothing, we have to restrict it to the
image domain Ω, and specify the behavior along its boundary ∂Ω. It is common to
assume that no heat is transferred through that boundary (homogeneous Neumann
boundary condition). Moreover, the positive real line (0, ∞) is typically taken as the
time domain. The resulting PDE can be written as

∂tu = div(D · ∇u), Ω × (0, ∞) ,
∂nu = 0, ∂Ω × (0, ∞) ,

(3.2)

where n is the normal vector to the boundary ∂Ω. The original image f : Ω → R is
used to specify an initial condition u = f at t = 0. For increasing diffusion time t, u
will correspond to an increasingly smoothed version of the image (see Figure 3.2).

FIGURE 3.2: Axial view of b = 0 brain MRI. EED smooothing [110].
Diffusion time t is computed by multiplying time-step size (0.15) to

iteration numbers {0, 25, 50, 100} respectively.

3.2 Diffusion-based Inpainting

In image inpainting, we know the pixel values on a subset K ⊂ Ω of the image,
and aim to reconstruct plausible values in the unknown regions. A diffusion-based
model for inpainting can be derived from the one for smoothing, by modeling the set
of locations at which the pixel values are known with Dirichlet boundary conditions.
In this case, f : K → R will be used to model the known values. In inpainting-based
image compression, K will consist of a small fraction of the pixels in the original
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image. With this, we obtain the following model for inpainting:

∂tu = div(D · ∇u), Ω\K × (0, ∞) ,
∂nu = 0, ∂Ω × (0, ∞) ,

u = f , K × [0, ∞)

(3.3)

In this case, the diffusion process spreads out the information from the known
pixels to their spatial neighborhood. For time t → ∞, image smoothing and inpaint-
ing both converge to a steady state, i.e., limt→∞ ∂tu = 0. However, the steady-state
of smoothing is trivial (u approaches a constant image with average gray value),
while the Dirichlet boundary conditions in the inpainting case ensure a non-trivial
steady-state, which is taken as the final inpainting result: uinpainted = limt→∞ u.

FIGURE 3.3: Axial view of b = 0 brain MRI. Fourth-Order EED in-
painting [48]. Diffusion time t is computed by multipliying time-step

size (0.01) to iteration numbers {0, 50, 100, 7864} respectively.

Figure 3.3 shows the timeline for the inpainting process implemented by the ex-
plicit numerical scheme (more on numerical schemes will be given in Sec. 3.5). At
diffusion time t = 0 only a small fraction of pixels are known (randomly chosen
10% of all pixels), the mask set K for Dirichlet boundary conditions. As time goes
forward the known information from the set K spreads towards unknown pixels.
Finally, at time around t = 78.64, the inpainting process reaches its steady state.

3.3 From Linear to Anisotropic Nonlinear Diffusion

So far, we haven’t specified the diffusion coefficient D. For example, it can be a
scalar and constant, independent from the location within the image. This results in
an inpainting model based on linear homogeneous diffusion [42]. With D = 1, it can
be written as

∂tu = ∆u, Ω\K × (0, ∞) . (3.4)

In this and all remaining equations in this section, the same boundary conditions
are assumed as specified in Equation (3.3). Despite its simplicity, it has been demon-
strated that using this inpainting model for image compression can already beat the
JPEG standard when applied to cartoon-like images, and selecting the retained pix-
els to be close to image edges [70].

When the diffusion coefficient is a scalar but depends on u, i.e., D = g(u), then
we call the model inpainting based on nonlinear isotropic diffusion [82]. A common
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variant is to make D depend on the local gradient magnitude, i.e.,

∂tu = div(g(||∇uσ||2)∇u), Ω\K × (0, ∞) , (3.5)

where g is a decreasing nonnegative diffusivity function, e.g., the Charbonnier dif-
fusivity

g(s2) =
1√

1 + s2

λ2

, (3.6)

and λ is a contrast parameter separating low from high diffusion areas [17]. In or-
der to localize edges better and to make the problem well-posed, the image is pre-
smoothed with a Gaussian before taking its gradient, i.e., g(||∇uσ||2) is used instead
of g(||∇u||2) [15].

In the above-discussed models, the diffusion occurs only in the gradient direc-
tion. This can be changed by replacing the scalar diffusivity with a second-order
diffusion tensor, i.e., a symmetric positive definite matrix. This is the basis of
anisotropic nonlinear diffusion [110],

∂tu = div(D · ∇u), Ω\K × (0, ∞) . (3.7)

In edge-enhancing diffusion (EED), the diffusion tensor D is defined as

D = g(||∇uσ||2) · v1vT
1 + 1 · v2vT

2 , (3.8)

where v1 = ∇uσ

||∇uσ ||2 and v2 = ∇u⊥
σ

||∇uσ ||2 . This means that diffusion across the edge
(v1) is decreased depending on the gradient magnitude, while diffusion along the
edge (v2) is allowed. Examples of EED based inpainting are included in our origi-
nal work experimental results section 4.5. In general, EED based inpainting results
in better interpolated images than linear homogeneous or nonlinear isotropic PDEs.
This makes it a perfect second-order PDE model choice for PDE-based image com-
pression.

3.4 From Second to Fourth Order Diffusion

All models discussed above, as well as several others that have been proposed for
inpainting [117], share a common property: They rely on second order PDEs. In
image denoising, higher-order PDEs have a long history, going back to work by
Scherzer [95]. You and Kaveh [114] propose fourth-order PDEs as a solution to the
so-called staircasing problem that arises in edge-enhancing second-order PDEs, such
as the filter proposed by Perona and Malik [82]: While the second-order Perona-
Malik equation creates visually unpleasant step edges from continuous variations
of intensity, corresponding fourth-order methods move these discontinuities into
the gradients, where they are less noticeable to the human eye [34]. Subsequently,
other fourth-order PDE-based models have been introduced, and have mostly been
applied for denoising [36, 37, 67].

For a specific family of higher-order diffusion filters, Didas et al. [25] have shown
that, in addition to preserving average gray value, they also preserve higher mo-
ments of the initial image. Moreover, depending on the diffusivity function, they
can lead to adaptive forward and backward diffusion, and therefore to the enhance-
ment of image features such as curvature. Gorgi Zadeh et al. [115] made use of this
property in order to enhance ridges and valleys, by steering fourth-order diffusion
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with a fourth-order diffusion tensor. In Chapter 4, we present our work that adapts
their method in order to achieve accurate inpainting and reconstruction from a small
subset of pixels.

3.5 Numerical Methods for PDEs

It is often the case that the exact solutions of PDEs are either too complicated to de-
termine in closed form or even impossible. Hence the need for reliable and efficient
numerical methods and algorithms arises for approximating solutions of PDEs with
a computer. Numerical methods provide approximate solutions to these equations
by discretizing the domain and time, allowing us to work with discrete data and
compute approximate solutions. There exist different methods for solving PDEs nu-
merically. In subsequent subsections, we will briefly discuss two of them that we
used to solve PDEs in this dissertation.

3.5.1 Finite Difference Methods

The Finite Difference Methods (FDM) are relatively old but still commonly used in
numerical computations due to their simplicity. In FDM, the key idea is to approx-
imate the continuous function u, the analytical solution of the PDEs defined on do-
main Ω ⊂ Rn with a grid function. A grid function is a function that is defined at all
points of the discretized version of Ω, the finite-difference grid Ωh. Partial deriva-
tives of the analytical solution of the PDEs are discretized by difference quotients
obtained with help of Taylor expansion. There are three common types of difference
quotients (for function u ∈ R3):

1) Forward Difference: Approximates the derivative at a point by looking for-
ward in the grid. For a function u, the first-order spatial derivative along x is ap-
proximated as:

∂xu =
ui+1,j,k − ui,j,k

hx
+O(hx) ,

∂xu ≈ D+u =
ui+1,j,k − ui,j,k

hx
.

(3.9)

2) Backward Difference: Approximates the derivative at a point by looking back-
ward in the grid. For a function u, the first-order spatial derivative along x is ap-
proximated as:

∂xu =
ui,j,k − ui−1,j,k

hx
+O(hx) ,

∂xu ≈ D−u =
ui,j,k − ui−1,j,k

hx
.

(3.10)

3) Central Difference: Approximates the derivative at a point by considering
points on both sides. For a function u, the first-order spatial derivative along x is
approximated as:

∂xu =
ui+1,j,k − ui−1,j,k

2hx
+O(h2

x) ,

∂xu ≈ D+,−u =
ui+1,j,k − ui−1,j,k

2hx
.

(3.11)
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where ui,j,k is a 3D discrete image grey value at the voxel location (i, j, k). hx is the
so-called discretization parameter. Equations 3.9 - 3.11 list finite difference approx-
imations for partial derivative along the x-direction for a 3D image. Discretization
quotients for derivatives in y- and z-directions can be written similarly. To achieve
the discretization formula for mixed derivatives we apply the difference quotients
in respective directions one after one.

Above mentioned differences are only for spatial discretization. When we have
time-dependent PDEs we need to apply temporal discretization as well. There we
have common three different choices as listed in Equation 3.12 in matrix-vector no-
tations.

uk+1 − uk

τ
= P(uk)uk : Explicit Scheme (forward Euler scheme)

uk+1 − uk

τ
= P(uk+1)uk+1 : Implicit Scheme (backward Euler scheme)

uk+1 − uk

τ
= P(uk)uk+1 : Semi-Implicit Scheme

(3.12)

where uk is an mn dimensional image vector at iteration (time level) k and m, n are
image width and height respectively. τ is a temporal discretization parameter, also
called step size. The matrix P(u) is a spatial discretization of PDEs dependent on
image u for nonlinear PDEs and independent (constant matrix P) for linear PDEs. In
the explicit Euler scheme, uk+1 can be calculated explicitly from uk without needing
to solve a system of equations which is not the case in implicit and semi-implicit
schemes. This simple nature makes the explicit scheme computationally very cheap
in each time step iteration, in computing uk+1. But in the whole numerical process,
e.g. in reaching to the steady state in inpainting PDEs (Equation 3.3) explicit scheme
is very slow as it can have a small time step size due to numerical stability reasons
[111, 115]. The explicit scheme is conditionally stable. More specifically, the numer-
ical scheme uk+1 = (I + τP(uk))uk has to satisfy the condition ||uk+1||2 ≤ ||uk||2,
i.e. the L2 stability. We can guarantee that by requiring the spectral norm of the
system matrix I + τP(uk) to be bounded by 1, i.e., ρ(I + τP(uk)) ≤ 1 [111]. For a
negative semi-definite P(uk), the condition boils down to τ ≤ 2

ρ(P(uk))
; ρ(P(uk)) can

be estimated via Gershgorin’s Theorem.
The computational inefficiency of the explicit scheme is solved by Hafner et al.

[35]. They propose a so-called Fast Semi-Iterative Scheme (FSI) which extrapolates
the basic solver iteration with the previous iterate and serves as an accelerated ex-
plicit scheme. The acceleration of the explicit scheme is given as

um,k+1 = αk · (I + τP(um,k))um,k + (1 − αk) · um,k−1 , (3.13)

where um,−1 := um,0 and αk = 4k+2
2k+3 for k = 0, · · · , n − 1. Here m stands for outer

cycle, i.e. m-th cycle with inner cycle of length n. And for passing to the next outer
cycle, we set um+1,0 := um,n.

By replacing the derivatives in the original PDE with their finite difference ap-
proximations, the problem results in a system of algebraic equations that can be
solved numerically. Boundary conditions and initial conditions should be incorpo-
rated into the system of equations. Boundary conditions may be Dirichlet, Neu-
mann, or mixed conditions, depending on the problem.
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FDM is a versatile and widely used technique for solving a variety of PDEs, in-
cluding heat conduction, wave propagation, and diffusion problems. However, it
is important to note that the accuracy and stability of FDM depend on the choice
of grid spacing and time step size, and more complex geometries may require spe-
cialized techniques or adaptations like staggered grids or higher-order schemes. We
used FDM for solving PDEs defined on 2D and 3D spatial image domains that are
rectangle and cuboid respectively.

3.5.2 Finite Element Methods

FDM are usually easy to implement on a regular domain dicretized to equidistant
grid. For complex domains, Finite Element Methods (FEM) are more suitable. In
the FEM, the central idea is to look for the approximate solution of the PDEs, uh in a
chosen finite-dimensional vector space Vh:

uh =
N−1

∑
i=0

Uiϕi , (3.14)

where
{

ϕi
}N−1

i=0 is a basis of finite vector space Vh. The solution uh is determined by

Ui coefficients and ϕi basis functions. It also depends on
{

ϕ̂i
}N−1

i=0 which is a basis of
another vector space V̂h. If we assume that we know Vh, V̂h and their basis functions,
then solving PDEs with FEM is as simple as solving a linear system:

AU = b , (3.15)

where Aij = a(ϕ̂i, ϕj), U ∈ RN is the vector of coefficients
{

Uj
}N−1

j=0 and bi = L(ϕ̂i);
a(·, ·) and L(·) are bilinear and linear forms respectively. Before the problem boils
down to a linear system of equations, there are two main steps in FEM. In subsection,
we give a big picture of those FEM steps and refer the reader to [12] for a detailed
theoretical discussion and to [58, 66] for practical implementation with the package
called FEniCS. Two main steps in FEM:

• Switch from strong to weak formulation: The PDEs formulation with boundary
conditions is called a strong formulation as it states the conditions (e.g. differ-
entiability) at every point over a domain that a solution must satisfy. On the
other hand, a weak formulation (also known as variational formulation) states
the conditions that must be met only in an average sense, i.e., in an integral
sense. A general variational formulation can be written as following:

Find u ∈ V such that a(u, v) = L(v), ∀v ∈ V̂ , (3.16)

where a(·, ·) and L(·) are bilinear and linear forms respectively. The (infinite
dimensional) function spaces, trial space V and test space V̂ are chosen such
that the problem makes sense for u ∈ V, v ∈ V̂. The exact definitions of V and
V̂ depend on the PDEs being solved. The well-posedness of the weak problem
(3.16) is verified by the Lax-Milgram theorem that lists sufficient conditions on
bilinear a and linear L forms for a variational problem to be well-posed, i.e.,
existence and uniqueness of a solution and its stability.
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• Discretize weak formulation: To solve numerically, we need to discretize the con-
tinuous variational problem (3.16) into a discrete variational problem by re-
stricting it to a pair of discrete spaces:

Find uh ∈ Vh ⊂ V such that a(uh, vh) = L(vh), ∀vh ∈ V̂h ⊂ Vh , (3.17)

where Vh and V̂h are closed finite-dimensional subspaces of V and V̂ respec-
tively. This discretization is also known as a Galerkin approximation of the
problem (3.16) over subspaces Vh and V̂h. The same theorem, the Lax-Milgram
theorem studies the well-posedness of the discrete Galerkin approximation
(3.17). By using the ansatz (3.5.2) for the approximate solution uh in terms
of the trial space basis functions we can rewrite the Galerkin approximation
(3.17) as the linear system (3.15) given above. From the linear system (3.15), it
is easy to see that the discretization (3.17) preserves the structural properties of
the continuous problem (3.16). In particular, if the bilinear form, a is symmet-
ric, it is reflected in the discrete linear problem (3.17) as A being a symmetric
matrix. The same is true for coercivity of a that suffices A to be a positive-
definite. The Galerkin approximation error bound is studied by Céa’s lemma.
It formulates the error in terms of some problem-specific constants.

FEM is a versatile and widely used numerical technique, especially in structural
analysis, heat transfer, fluid dynamics, electromagnetics, and many other fields. Its
flexibility in handling complex geometries and boundary conditions, as well as its
ability to adaptively refine the mesh for improved accuracy, makes it a powerful tool
for solving PDEs in practical engineering and scientific applications. We employed
FEM for solving linear inpainting PDEs in q-space, i.e., on the surface of a sphere
(see Section 6.4.2).
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Chapter 4

Fourth-Order Anisotropic
Diffusion for Inpainting and Image
Compression

One of the main tasks in digital image processing is image inpainting which is
widely used in image restoration, image manipulation, and the restoration of dam-
aged or historical images. Image inpainting is a process of filling in missing or
corrupted parts of an image with plausible content, making the inpainted regions
visually coherent and consistent with the surrounding areas. The inpainting meth-
ods can be categorized into two main groups such as exemplar-based methods and
propagation-based methods. The exemplar-based methods use information from
the surrounding areas of the missing region to synthesize a replacement. This in-
volves finding similar patches or structures in the available parts of the image and
using them to reconstruct the missing portion. The latter one, propagation-based
methods propagate information from the known parts of the image to the unknown
or damaged regions. This can involve diffusion-based techniques or solving par-
tial differential equations to extend known information into the missing areas. Our
focus in this dissertation is propagation-based methods.

Diffusion-based inpainting involves using partial differential equations (PDEs)
like the heat equation to propagate information from available parts of the image to
the unavailable regions. The diffusion process helps to estimate the missing pixel
values based on the neighboring pixels and their intensities. It is done by inter-
preting the physical diffusion process as treating the known image values as the
initial condition and allowing the diffusion process to fill in the unknown regions.
The change in time is formulated by spatial variations which basically explains how
gradually filling in the missing regions happens.

Great ability of diffusion PDEs in image inpainting led them to be used in image
compression, particularly in lossy compression schemes. Inpainting PDEs which has
great ability to fill-in missing information allowed to throw away a substantial frac-
tion of pixels in an image. This made it possible to reduce the amount of data needed
to represent an image while attempting to maintain essential visual information.

In this chapter we discuss our proposed PDE-based inpainting method. It is
a fourth-order generalization of second-order edge-enhancing diffusion PDEs ex-
ploited for image inpainting and image compression. Our proposed fourth-order
diffusion PDEs method employs a fourth-order diffusion tensor. The diffusion
tensor is designed from the regularized local image gradient information. The
fourth-order diffusion tensor takes the anisotropy of edge-enhancing diffusion PDEs
method to a higher level. We provide a theoretical unifying framework to define all
anisotropic fourth-order diffusion based methods which have been proposed so far.
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In the implementation of our proposed method we use a fast semi-iterative scheme.
To establish the usefulness of our proposed new model, we performed three dif-

ferent set of experiments: 1) Inpainting of images from a sparse subset of pixels. This
experiment shows the usefulness of our method in image compression. 2) Inpainting
of images when most pixels are known. This experiment shows performance of our
method in classical inpainting tasks such as scratch removal. 3) In our third exper-
iment set, we demonstrate how results depend on the chosen diffusivity function
and contrast parameter. The diffusivity function and contrast parameters are the
main ingredients of the diffusion tensor. They define in which direction and with
which magnitude anisotropic diffusion occurs. Our experimental results demon-
strated that our proposed new method achieved improved accuracy in all above-
mentioned experiment sets.

The content of this chapter is published as a peer reviewed book chapter:
Jumakulyyev Ikram, Schultz Thomas “Fourth-order anisotropic diffusion for in-

painting and image compression” In: Anisotropy Across Fields and Scales. Springer,
Cham, 2021, pp. 99-124. [47].

Contribution of the dissertation author: Conceptualization, methodology, liter-
ature review, algorithm implementation and validation, results interpretation and
visualization, manuscript composition, validation experiment design.

4.1 Abstract

Edge-enhancing diffusion (EED) can reconstruct a close approximation of an orig-
inal image from a small subset of its pixels. This makes it an attractive founda-
tion for PDE based image compression. In this work, we generalize second-order
EED to a fourth-order counterpart. It involves a fourth-order diffusion tensor that
is constructed from the regularized image gradient in a similar way as in traditional
second-order EED, permitting diffusion along edges, while applying a non-linear
diffusivity function across them. We show that our fourth-order diffusion tensor
formalism provides a unifying framework for all previous anisotropic fourth-order
diffusion based methods, and that it provides additional flexibility. We achieve an
efficient implementation using a fast semi-iterative scheme. Experimental results on
natural and medical images suggest that our novel fourth-order method produces
more accurate reconstructions compared to the existing second-order EED.

4.2 Introduction

The increased availability and resolution of imaging technology, including digital
cameras and medical imaging devices, along with advances in storage capacity and
transfer bandwidths, have led to a proliferation of large image data. This makes im-
age compression an important area of research. Image compression techniques can
be divided into two main groups: Lossy and lossless compression. Lossless com-
pression techniques permit restoration of the full, unmodified image data, which
however limits the achievable compression rates. Our work is concerned with lossy
compression, which achieves much higher compression rates by replacing the origi-
nal image with an approximation that can be stored more efficiently.

We continue a line of research that has explored the use of Partial Differential
Equations (PDEs) for lossy image compression [29, 30, 70, 97]. This approach is
based on storing only a small subset of all pixels, and interpolating between them
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in order to restore the remaining ones. There is a strong similarity between that in-
terpolation process and image inpainting, whose goal it is to reconstruct missing or
corrupted parts of an image. PDE-based methods for image inpainting and com-
pression are inspired by the physical phenomenon of heat transport. It is described
by the heat diffusion equation

∂tu = div(D · ∇u) , (4.1)

which relates temporal changes in a heat concentration ∂tu to the divergence of its
spatial gradient ∇u. When diffusion takes place in an isotropic medium, the dif-
fusivity D is a scalar that determines the rate of heat transfer. In an anisotropic
medium, heat spreads out more rapidly in some directions than in others. In those
cases, D is a diffusion tensor, i.e., a symmetric matrix that encodes this directional
dependence.

When applied to image processing, the gray value at a certain location is in-
terpreted as the heat concentration u. In diffusion-based image inpainting, Equa-
tion (6.1) is used to propagate information from the known pixels, whose intensity
is fixed, to the unknown pixels which will ultimately reach a steady state in which
their intensity is determined by their surrounding known pixels. In this sense, Equa-
tion (6.1) has a filling-in effect that can be exploited for image compression.

Different choices of the diffusivity function D lead to different kinds of diffu-
sion. Linear diffusion [42] and nonlinear diffusion [82] were widely used for image
smoothing and image enhancement. Edge structures in images can be enhanced by
employing a diffusion tensor which allows diffusion in the direction perpendicu-
lar to the local gradient, while applying a nonlinear diffusivity function along the
gradient direction. This idea has led to the development of anisotropic nonlinear
edge-enhancing diffusion (EED) [110]. Among the six variants that were evaluated
for image compression by Galić et al. [29], EED led to the most accurate reconstruc-
tions. Subsequently, this idea was applied to three-dimensional data compression
[84], and combined with motion compensation in order to obtain a framework for
video compression [5]. When combined with a suitable scheme for selecting and
storing the preserved pixels, a few additional optimizations, and at sufficiently high
compression rates, anisotropic diffusion has been shown to beat the quality even of
JPEG2000 [96].

In this paper, we introduce a novel fourth-order PDE that generalizes second-
order EED, and achieves even more accurate reconstructions. We build on prior
works that proposed fourth-order analogs of the diffusion equation, and used them
for image processing [25, 37, 62, 67, 95, 114]. In particular, we extend a work by
Gorgi Zadeh et al. [115], who introduced the idea of steering anisotropic fourth-
order diffusion with a fourth-order diffusion tensor. However, their method focuses
on the curvature enhancement property of nonlinear fourth-order diffusion [25] in
order to better localize ridge and valley structures. Deriving a suitable PDE for im-
age inpainting requires a different definition of the diffusion tensor, more similar to
the one in edge-enhancing diffusion [110]. Two anisotropic fourth-order PDEs for
inpainting were previously introduced by Li et al. [62]. However, they only apply
them to image restoration tasks in which small parts of an image are missing (such as
in Figure 4.8), not to the reconstruction from a small subset of pixels. Moreover, we
demonstrate that the fourth-order diffusion tensor based framework is more general
in the sense that it can be used to express anisotropic fourth-order diffusion as it was
described by Hajiaboli [37] or by Li et al. [62], while providing additional flexibility.
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4.3 Background and Related Work

We will now formalize the above-mentioned idea of diffusion-based inpainting
(Section 4.3.1), and review two concepts that play a central role in our method:
Anisotropic nonlinear diffusion (Section 4.3.2) and fourth-order diffusion (Sec-
tion 4.3.3). Further details can be found in works by Galić et al. [29] and Weickert
[110], respectively. Finally, we provide additional context with a brief discussion of
alternative approaches to image compression (Section 4.3.4).

4.3.1 Diffusion-based Inpainting

In order to apply Equation (6.1) to image smoothing, we have to restrict it to the
image domain Ω, and specify the behavior along its boundary ∂Ω. It is common to
assume that no heat is transferred through that boundary (homogeneous Neumann
boundary condition). Moreover, the positive real line (0, ∞) is typically taken as the
time domain. The resulting PDE can be written as

∂tu = div(D · ∇u), Ω × (0, ∞) ,
∂nu = 0, ∂Ω × (0, ∞) ,

(4.2)

where n is the normal vector to the boundary ∂Ω. The original image f : Ω → R is
used to specify an initial condition u = f at t = 0. For increasing diffusion time t, u
will correspond to an increasingly smoothed version of the image.

In image inpainting, we know the pixel values on a subset K ⊂ Ω of the image,
and aim to reconstruct plausible values in the unknown regions. A diffusion-based
model for inpainting can be derived from the one for smoothing, by modeling the set
of locations at which the pixel values are known with Dirichlet boundary conditions.
In this case, f : K → R will be used to model the known values. In inpainting-based
image compression, K will consist of a small fraction of the pixels in the original
image. With this, we obtain the following model for inpainting:

∂tu = div(D · ∇u), Ω\K × (0, ∞) ,
∂nu = 0, ∂Ω × (0, ∞) ,

u = f , K × [0, ∞)

(4.3)

In this case, the diffusion process spreads out the information from the known
pixels to their spatial neighborhood. For time t → ∞, image smoothing and inpaint-
ing both converge to a steady state, i.e., limt→∞ ∂tu = 0. However, the steady-state
of smoothing is trivial (u approaches a constant image with average gray value),
while the Dirichlet boundary conditions in the inpainting case ensure a non-trivial
steady-state, which is taken as the final inpainting result: uinpainted = limt→∞ u

4.3.2 From Linear to Anisotropic Nonlinear Diffusion

So far, we assumed that the diffusion coefficient D is a scalar and constant, indepen-
dent from the location within the image. This results in an inpainting model based
on linear homogeneous diffusion [42]. With D = 1, it can be written as

∂tu = ∆u, Ω\K × (0, ∞) . (4.4)
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In this and all remaining equations in this section, the same boundary conditions
are assumed as specified in Equation (6.3). Despite its simplicity, it has been demon-
strated that using this inpainting model for image compression can already beat the
JPEG standard when applied to cartoon-like images, and selecting the retained pix-
els to be close to image edges [70].

When the diffusion coefficient is a scalar but depends on u, i.e., D = g(u), then
we call the model inpainting based on nonlinear isotropic diffusion [82]. A common
variant is to make D depend on the local gradient magnitude, i.e.,

∂tu = div(g(||∇uσ||2)∇u), Ω\K × (0, ∞) , (4.5)

where g is a decreasing nonnegative diffusivity function, e.g., the Charbonnier dif-
fusivity

g(s2) =
1√

1 + s2

λ2

, (4.6)

and λ is a contrast parameter separating low from high diffusion areas [17]. In or-
der to localize edges better and to make the problem well-posed, the image is pre-
smoothed with a Gaussian before taking its gradient, i.e., g(||∇uσ||2) is used instead
of g(||∇u||2) [15].

In the above-discussed models, the diffusion occurs only in the gradient direc-
tion. This can be changed by replacing the scalar diffusivity with a second-order
diffusion tensor, i.e., a symmetric positive definite matrix. This is the basis of
anisotropic nonlinear diffusion [110],

∂tu = div(D · ∇u), Ω\K × (0, ∞) . (4.7)

In edge-enhancing diffusion (EED), the diffusion tensor D is defined as

D = g(||∇uσ||2) · v1vT
1 + 1 · v2vT

2 , (4.8)

where v1 = ∇uσ

||∇uσ ||2 and v2 = ∇u⊥
σ

||∇uσ ||2 . This means that diffusion across the edge (v1)
is decreased depending on the gradient magnitude, while diffusion along the edge
(v2) is allowed. Examples of EED based inpainting are included in our experimental
results. In general, EED based inpainting results in better interpolated images than
linear homogeneous or nonlinear isotropic PDEs. This makes it a current state-of-
the-art choice for PDE-based image compression.

4.3.3 From Second to Fourth Order Diffusion

All models discussed above, as well as several others that have been proposed for
inpainting [117], share a common property: They rely on second order PDEs. In
image denoising, higher-order PDEs have a long history, going back to work by
Scherzer [95]. You and Kaveh [114] propose fourth-order PDEs as a solution to the
so-called staircasing problem that arises in edge-enhancing second-order PDEs, such
as the filter proposed by Perona and Malik [82]: While the second-order Perona-
Malik equation creates visually unpleasant step edges from continuous variations
of intensity, corresponding fourth-order methods move these discontinuities into
the gradients, where they are less noticeable to the human eye [34]. Subsequently,
other fourth-order PDE-based models have been introduced, and have mostly been
applied for denoising [36, 37, 67].
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For a specific family of higher-order diffusion filters, Didas et al. [25] have shown
that, in addition to preserving average gray value, they also preserve higher mo-
ments of the initial image. Moreover, depending on the diffusivity function, they
can lead to adaptive forward and backward diffusion, and therefore to the enhance-
ment of image features such as curvature. Gorgi Zadeh et al. [115] made use of
this property in order to enhance ridges and valleys, by steering fourth-order diffu-
sion with a fourth-order diffusion tensor. Our work adapts their method in order to
achieve accurate inpainting and reconstruction from a small subset of pixels.

4.3.4 Alternative Approaches to Image Compression

The dominant lossy image compression techniques today are JPEG and JPEG2000.
They are based on the discrete cosine transform (DCT) and wavelet transform, re-
spectively. However, they are not sensitive to the geometry of an image, i.e. those
standards are not tailored to their geometrical behavior [13]. Especially, the JPEG
standard involves dividing the image into small square blocks. This can cause a
degradation called “blocking effect” [102], and can result in unsatisfactory recon-
structions especially at high compression rates.

It is an ongoing research trend to apply machine learning methods to image com-
pression, such as convolutional and recurrent neural networks [6, 103, 106]. Learn-
ing based approaches tend to perform very well on the specific class of images on
which they were trained, but require a huge amount of data. For example, Toderici
et al. [107] used for training a dataset of 6 million 1280 × 720 images taken from the
web.

4.4 Method

We will now introduce our novel PDE (Section 4.4.1), investigate its relationship to
previously proposed anisotropic fourth-order diffusion (Section 4.4.2), and comment
on our chosen discretization, as well as numerical stability (Section 4.4.3).

4.4.1 Anisotropic Edge-Enhancing Fourth Order PDE

Our fourth-order PDE builds on a model that was proposed by Gorgi Zadeh et al.
[115] for ridge and valley enhancement. It can be stated concisely using Einstein
notation, where summation is implied for indices appearing twice in the same ex-
pression:

∂tu = −∂ji
[
D(Hρ(uσ)) : H(u)

]
ij (4.9)

In this equation, H(u) denotes the Hessian matrix of image u. The “double dot
product” T = D : H indicates that matrix T is obtained by applying a linear map D
to H, and the square bracket notation [T]ij indicates taking the (i, j)th component:

[T]ij =
[
D(Hρ(uσ)) : H(u)

]
ij =

[
D(Hρ(uσ))

]
ijkl [H(u)]kl (4.10)

Since D maps matrices to matrices, it is a fourth-order tensor. Since its role is anal-
ogous to the second-order diffusion tensor in Equation (4.7), it is referred to as a
fourth-order diffusion tensor.

The diffusion tensor D in Equation (4.9) is a function of the local normalized
Hessian Hρ(uσ) which contains the information that is relevant to achieve curvature
enhancement. For image inpainting, we propose to instead steer the fourth-order
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diffusion in analogy to edge-enhancing diffusion, i.e., as a function of the structure
tensor J(uσ), which is obtained from image u after Gaussian pre-smoothing with
bandwidth σ. We construct our fourth order diffusion tensor D from its eigenvalues
µi and eigentensors Ei via the spectral decomposition:

D (J(uσ)) = µ1E1 ⊗ E1 + µ2E2 ⊗ E2 + µ3E3 ⊗ E3 + µ4E4 ⊗ E4 (4.11)

The eigenvalues and eigentensors are defined as

µ1 = g(λ1), E1 = v1 ⊗ v1 ,
µ2 = 1, E2 = v2 ⊗ v2 ,

µ3 =
√

g(λ1), E3 =
1√
2
(v1 ⊗ v2 + v2 ⊗ v1) ,

µ4 = 0, E4 =
1√
2
(v1 ⊗ v2 − v2 ⊗ v1) ,

(4.12)

where g is a nonnegative decreasing diffusivity function, λi and vi are eigenvalues
and eigenvectors of the structure tensor J(uσ) = ∇uσ∇uT

σ, i.e., λ1 = ||∇uσ||22, v1 =
∇uσ

||∇uσ ||2 and λ2 = 0, v2 = ∇u⊥
σ

||∇uσ ||2 . The above-defined eigentensors are orthonormal
with respect to the dot product A : B = trace(BTA) [115].

Combining this new definition of the fourth-order diffusion tensor with Dirichlet
boundary conditions as in Equation (6.3) results in our proposed model:

∂tu =− ∂ji[D(J(uσ)) : H(u)]ij, Ω\K × (0, ∞) ,

u = f , K × [0, ∞)
(4.13)

As it is customary in PDE-based inpainting, we allow Equation (4.13) to evolve
until a steady state has been reached, i.e., the time derivative becomes negligible.
In our numerical implementation, we use a Fast Semi-Iterative Scheme (FSI) [35] to
greatly accelerate convergence to a large stopping time.

In the definition of our fourth-order diffusion tensor D, the choice of µ1 and µ2 is
analogous to anisotropic edge enhancing diffusion [110]. However, two additional
terms occur in the fourth-order case, µ3 and µ4. As noted in [115], µ4 is irrelevant,
since the corresponding eigentensor E4 is anti-symmetric, and the dot product E4 : H
with the Hessian of any sufficiently smooth image will be zero due to its symmetry.
To better understand the role of µ3, we observe that

E3 : H =
1√
2

(
vT

1 Hv2 + vT
2 Hv1

)
=

1√
2

(
u( v1+v2√

2

)(
v1+v2√

2

) − u( v1−v2√
2

)(
v1−v2√

2

)) ,
(4.14)

which amounts to a mixed second derivative of u, in directions along and orthog-
onal to the regularized image gradient ∇uσ

||∇uσ ||2 or, equivalently, to the difference of
second derivatives in the directions that are exactly in between the two. This term
vanishes if the Hessian is isotropic, or if the gradient is parallel to one of the Hessian
eigenvectors. Therefore, the role of µ3 can be seen as steering the amount of diffu-
sion in cases of a Hessian anisotropy that goes along with a misalignment between
gradient and Hessian eigenvectors.

Gorgi Zadeh et al. [115] simply set µ3 to the arithmetic mean of µ1 and µ2. In our
work, we empirically evaluated several alternative options for µ3 by reconstructing
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(a) Original test image of size
300 × 300

(b) Randomly chosen 5% of
pixel values

(c) Second-order EED inpaint-
ing based on (b)

(d) Fourth-order EED inpaint-
ing with µ3 = 1

(e) Fourth-order EED inpaint-
ing with µ3 =

µ1+µ2
2

(f) Fourth-order EED inpainting
with µ3 =

√
µ1µ2

FIGURE 4.1: Reconstruction of a synthetic test image (a) from 5% of
its pixels (b) based on second-order diffusion (c) and fourth-order dif-
fusion with different coefficients for the mixed term µ3 (d–f). Visually,

the reconstruction in (f) is most similar to the original image.
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TABLE 4.1: Numerical reconstruction errors on the test image (Fig-
ure 4.1)

Errors EED FOEED (µ3 = 1) FOEED
(µ3 =

µ1+µ2
2 )

FOEED
(µ3 =

√
µ1µ2)

MSE 647.183 660.588 634.321 533.987
AAE 5.043 4.581 4.505 4.140

the test image shown in Figure 4.1 (a), which contains one rectangle, one circle, and
two stars, from a randomly selected subset of 5% of its pixels. In this experiment,
we compare EED based inpainting with our novel fourth-order edge enhancing dif-
fusion (FOEED) with different settings of µ3: Specifically, µ3 = 1 corresponds to the
maximum of µ1 and µ2 (Figure 4.1 (d)), µ3 = (1 + g(λ1)) /2 corresponds to their
arithmetic mean (Figure 4.1 (e)), and µ3 =

√
g(λ1) corresponds to their geomet-

ric mean (Figure 4.1 (f)). In all cases, we used the Charbonnier diffusivity (Equa-
tion (5.2)), which is popular for image compression [29], the same contrast param-
eter (λ = 0.1) and smoothing parameter (σ = 1). The only difference is time step
size, where second-order EED permitted a stable step size of 0.25, while a smaller
step size of 0.05 was chosen for FOEED. A more detailed theoretical and empirical
analysis of stability will be given in Section 4.4.3.

A numerical comparison of the results is given in Table 4.1. For evaluation, we
used the well-known mean squared error (MSE) and average absolute error (AAE)
between original and reconstructed images. For two-dimensional gray-valued im-
ages u and v with the same dimensions m × n, the MSE and AAE are defined as

MSE(u, v) =
1

mn ∑
i,j
(ui,j − vi,j)

2 ,

AAE(u, v) =
1

mn ∑
i,j

|ui,j − vi,j| .
(4.15)

According to Table 4.1, the most accurate results are achieved by setting µ3 to
the geometric mean of µ1 and µ2. Fourth-order EED with this setting produces
higher accuracy than second-order EED. Visually, Figure 4.1 supports this conclu-
sion. Specifically, fourth-order EED with µ3 =

√
µ1µ2 is the only variant that cor-

rectly connects the thin bar at the top of the test image, and it leads to a straighter
shape of the thicker bar below, which is more similar to its original rectangular
shape. In all subsequent experiments, we set µ3 =

√
µ1µ2.

4.4.2 A Unifying Framework for Fourth-Order Diffusion

Several fourth-order diffusion PDEs have been used for image processing previ-
ously. We can better understand how they relate to our newly proposed PDE by
observing that the fourth-order diffusion tensor D introduces a unifying framework
for fourth-order diffusion filters. In particular, given its coefficients dijkl , we can ex-
pand Equation (4.9) by using Einstein notation as

∂tu = −∂ji[dijklukl ] (4.16)

Effectively, the fourth-order diffusion tensor allows us to separately set the diffu-
sivities for all 24 = 16 fourth-order derivatives of the two-dimensional image u. We
will now demonstrate how several well-known fourth-order PDEs can be expressed
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in this framework, starting with the You-Kaveh PDE [114]

∂tu = −∆(g(|∆u|)∆u) , (4.17)

which can be rewritten as

∂tu = −∂xx[g(|∆u|)uxx + 0 · uxy + 0 · uyx + g(|∆u|)uyy]

−∂yx[0 · uxx + 0 · uxy + 0 · uyx + 0 · uyy]

−∂xy[0 · uxx + 0 · uxy + 0 · uyx + 0 · uyy]

−∂yy[g(|∆u|)uxx + 0 · uxy + 0 · uyx + g(|∆u|)uyy] .

(4.18)

Here and in all subsequent examples, many terms have zero coefficients. For
brevity, we will omit them from now on.

Hajiaboli’s anisotropic fourth-order PDE [37] is

∂tu = −∆
(

g(||∇u||)2uNN + g(||∇u||)uTT
)

, (4.19)

where N and T are unit vectors parallel and orthogonal to the gradient, respectively.
It can be rewritten as

∂tu = −∂xx

[(
g(||∇u||)2u2

x + g(||∇u||)u2
y

u2
x + u2

y

)
uxx +

(
g(||∇u||)2uxuy − g(||∇u||)uxuy

u2
x + u2

y

)
uxy

+

(
g(||∇u||)2uxuy − g(||∇u||)uxuy

u2
x + u2

y

)
uyx +

(
g(||∇u||)2u2

y + g(||∇u||)u2
x

u2
x + u2

y

)
uyy

]

−∂yy

[(
g(||∇u||)2u2

x + g(||∇u||)u2
y

u2
x + u2

y

)
uxx +

(
g(||∇u||)2uxuy − g(||∇u||)uxuy

u2
x + u2

y

)
uxy

+

(
g(||∇u||)2uxuy − g(||∇u||)uxuy

u2
x + u2

y

)
uyx +

(
g(||∇u||)2u2

y + g(||∇u||)u2
x

u2
x + u2

y

)
uyy

]
(4.20)

From this method, Li et al. [62] derived two anisotropic fourth-order PDEs that,
to our knowledge, are the only anisotropic fourth-order models that have been ap-
plied to inpainting previously. We will refer to them as Li 1

∂tu = −∆(g(||∇u||)uNN + uTT) (4.21)

and Li 2
∂tu = −∆(uTT) . (4.22)
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Li 1 can be re-written as

∂tu = −∂xx

[(
g(||∇u||)u2

x + u2
y

u2
x + u2

y

)
uxx +

(
g(||∇u||)uxuy − uxuy

u2
x + u2

y

)
uxy
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u2
x + u2

y

)
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x

u2
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y

)
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]
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y
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y

)
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y

)
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+
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u2
x + u2

y

)
uyx +

(
g(||∇u||)u2

y + u2
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u2
x + u2

y

)
uyy

]
,

(4.23)

while Li 2 becomes

∂tu = −∂xx

[(
u2

y

u2
x + u2

y

)
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−uxuy
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)
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(4.24)

We observe that Li 1 is based on a similar idea as our proposed PDE: It permits
fourth-order diffusion along the edge, while applying a nonlinear diffusivity func-
tion across the edge. However, expressing Li et al.’s models in terms of fourth-order
diffusion tensors D1 and D2 reveals that our approach is more general. In particular,
we can observe that

D1 : H = g(||∇u||)uNNI + uTTI ,
D2 : H = uTTI ,

(4.25)

where I is the 2 × 2 identity matrix. In our model, D : H can yield arbitrary
anisotropic tensors. In this sense, our model more fully accounts for anisotropy
compared to the ones by Hajiaboli and Li et al.

The fourth-order Equation (4.16) involves inner second derivatives of the image,
which then get scaled by diffusivities, before outer second derivatives are taken.
We observe that, in both cases, our model accounts for mixed derivatives that are
ignored by previous approaches to anisotropic fourth-order diffusion: In the outer
derivatives, this can be seen from the fact that Eq. (4.9) involves mixed derivatives,
while Hajiaboli and Li et al. only consider the Laplacian.

Similarly, our definition of a fourth-order diffusion tensor D accounts for mixed
derivatives also in the inner derivatives. Following Equation (4.14), we obtain

D : H = µ1(E1 ⊗ E1) : H + µ2(E2 ⊗ E2) : H + µ3(E3 ⊗ E3) : H

= µ1uv1v1 E1 + µ2uv2v2 E2 +
µ3√

2

(
u( v1+v2√

2

)(
v1+v2√

2

) − u( v1−v2√
2

)(
v1−v2√

2

)) E3 .

(4.26)

Comparing Equations (4.25) and (4.26) reveals differences in the considered di-
rections: First, N and T are derived from the unregularized gradient, while the cor-
responding directions v1 and v2 in our model include a Gaussian pre-smoothing. A
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second difference is that our model involves an additional term, which is steered by
µ3, and accounts for the directions in between the regularized gradient and its or-
thogonal vectors, i.e.,

( v1+v2√
2

)
and

( v1−v2√
2

)
. As it was demonstrated in the previous

section, this term can have a noticeable effect on the outcome. Overall, we conclude
that our newly proposed model is more general than the previously published ones.

4.4.3 Discretization and Stability

When discretizing Equation (4.13) with standard finite differences

uxx ≈
(ui−1,j − 2ui,j + ui+1,j)

(∆x)2 ,

uyy ≈
(ui,j−1 − 2ui,j + ui,j+1)

(∆y)2 ,

uxy ≈
(ui−1,j−1 + ui+1,j+1 + ui−1,j+1 + ui+1,j−1)

4(∆x)(∆y)
,

uyx = uxy ,

(4.27)

we can write it down in matrix-vector form as in [115],

uk+1 = uk(I − τ Pk) , (4.28)

where uk is an mn dimensional image vector at iteration k. m, n are image width
and height respectively; ∆x and ∆y are the corresponding pixel edge lengths. Pk
is a positive semi-definite matrix that, with step size τ, leads to the system matrix
(I − τ Pk). The notation Pk indicates that it is iteration dependent, i.e., Pk = P(uk).

Stability of fourth-order PDEs for image processing is typically formalized in an
L2 sense, i.e., a time step is chosen such that

||uk+1||2 ≤ ||uk||2 . (4.29)

In an inpainting scenario, it depends on our initialization of the unknown pixels
whether we can expect Equation (4.29) to hold. Therefore, we rely on a stability
analysis of the smoothing variant of our proposed PDE. This variant is obtained by
removing the Dirichlet boundary conditions and instead solving a standard initial
value problem. In this case, the stability analysis presented by Gorgi Zadeh et al.
[115] carries over. It ensures that time step sizes

τ ≤ 2
16(∆x)2 + 16(∆y)2 + 2(∆x∆y)

(4.30)

are stable in the L2 sense. For a spatial discretization ∆x = ∆y = 1, this yields
τ ≤ 1/17 ≈ 0.0588. In inpainting, we empirically obtained a useful steady state
with a time step size τ ≤ 0.066, independent of the initialization. The fact that this
slightly exceeds the theoretical step size reflects the fact that Equation (4.30) results
from deriving a sufficient, not a necessary condition for stability.

Stability of fourth-order schemes generally requires a quite small time step τ.
This makes it computationally expensive to reach the steady state by evaluating
Equation (4.28). Hafner et al. [35] propose a remedy to this problem, the so-called
Fast Semi-Iterative Scheme (FSI). It extrapolates the basic solver iteration with the
previous iterate and serves as an accelerated explicit scheme. The acceleration of the



4.5. Experimental Results 31

explicit scheme (4.28) is given as

um,k+1 = αk · (I − τP(um,k))um,k + (1 − αk) · um,k−1 , (4.31)

where um,−1 := um,0 and αk = 4k+2
2k+3 for k = 0, · · · , n − 1. Here m stands for outer

cycle, i.e. m-th cycle with inner cycle of length n. And for passing to the next outer
cycle, we set um+1,0 := um,n. The stability analysis requires the matrix P to be sym-
metric. This is satisfied since the diffusion tensor D is symmetric, and symmet-
ric central discretizations are used. In our implementation, we used n = 40, and
stopped iterating after the first outer cycle for which ∥um − um−1∥2 < 10−4.

4.5 Experimental Results

To establish the usefulness of our proposed new model, we applied it to the recon-
struction of images from a sparse subset of pixels (Section 4.5.1). Moreover, we eval-
uate performance for a more classic inpainting task, scratch removal (Section 4.5.2).
We also demonstrate how results depend on the chosen diffusivity function and con-
trast parameter (Section 4.5.3).

4.5.1 Reconstruction From a Sparse Set of Pixels

Improving image reconstruction from a sparse set of known pixels was the main
motivation behind our work. Therefore, we applied it to two well-known natural
images, toucan and peppers, as well as to a medical image, a slice of a T1 weighted
brain MR scan (t1slice). For toucan, we kept a random subset of only 2% of the pixels.
Due to the lower resolution of the peppers and t1slice images, we kept 5% and 20%,
respectively.

In all three cases, results from our approach ( FOEED) were compared to re-
sults from second-order EED, as well as from the two anisotropic fourth-order PDEs
proposed by Li et al. [62]. In all experiments, we used the Charbonnier diffusivity
function, we set the contrast parameter to λ = 0.1, and the pre-smoothing parameter
to σ = 1.

Results for toucan are shown in Figure 4.2, for peppers in Figure 4.3, and for t1slice
in Figure 4.4. A quantitative evaluation in terms of MSE and AAE is presented in
Table 4.2. In terms of the numerical results, our proposed method produced a more
accurate reconstruction than any of the competing approaches. Visually, there is a
clear difference between second-order (EED) and fourth-order approaches (Li1, Li2,
FOEED). Especially, we found that the shapes of edges were reconstructed more ac-
curately. For example, we noticed this around the body and face in the toucan image
(Figure 4.2). Similarly, the white and grey matter boundaries were better separated
in the t1slice (Figure 4.4).

As we expected based on the theoretical analysis in Section 4.4.2, visual differ-
ences between the fourth-order methods are more subtle. However, in the peppers
image (Figure 4.3), the tall and thin and the small and thick peppers in the fore-
ground are much more clearly separated in the FOEED result than in any of the
others.

In addition to experimenting with grayscale versions of the toucan and peppers
images, we also applied EED and our FOEED filter channel-wise to the original RGB
color versions. Results for toucan can be found in Figure 4.5, for peppers in Figure 4.6.
Table 4.3 again provides a quantitative comparison. Similar observations can be
made as in the grayscale images: Again, FOEED leads to lower reconstruction errors
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FIGURE 4.2: 1st row left: original toucan image of size 512×512; right:
randomly chosen 2% of pixel values; 2nd row left: EED based in-
painted image; right: Li1 based inpainted image; 3rd row left: Li2

based inpainted image; right: FOEED based inpainted image;
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FIGURE 4.3: 1st row left: original peppers image of size 225×225;
Right: randomly chosen 5% of pixel values; 2nd row left: EED based
inpainted image; Right: Li1 based inpainted image; 3rd row left: Li2

based inpainted image; Right: FOEED based inpainted image.
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FIGURE 4.4: 1st row left: original t1slice image of size 256×256; Right:
randomly chosen 20% of pixel values; 2nd row left: EED based in-
painted image; Right: Li1 based inpainted image; 3rd row left: Li2

based inpainted image; Right: FOEED based inpainted image.
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TABLE 4.2: Numerical Comparison of Inpainting Models for Gray-
Valued Images

Image Errors EED FOEED Li1 Li2
toucan MSE 105.37 96.228 100.994 102.665

AAE 4.488 4.164 4.397 4.465
peppers MSE 467.261 443.129 455.633 459.606

AAE 10.94 10.523 11.042 11.107
t1-slice MSE 166.356 150.002 152.698 155.955

AAE 5.895 5.698 5.789 5.853

FIGURE 4.5: RGB toucan image, reconstructed from randomly chosen
2% of pixel values using EED (left) or FOEED (right).

than EED, it visually reconstructs edges more accurately, and separates the peppers
more clearly.

Finally, we reconstructed images from a larger number of pixels, to obtain visu-
ally cleaner results. Qualitative and numerical results are presented in Figure 4.7
and Table 4.4, respectively. FOEED still yields lower numerical errors than EED. Un-
surprisingly, the differences become smaller and less visually prominent as the mask
density increases. The table also reveals that FOEED requires more CPU time com-
pared to standard EED. However, due to the use of FSI in both cases, the difference
in running times until convergence is much lower than the difference in time step
sizes.

4.5.2 Scratch Removal

Li et al. [62] proposed their anisotropic fourth-order PDE for more classical image
inpainting tasks, such as scratch removal. We evaluated whether our more general
filter can also provide a benefit in such a scenario by reconstructing a scratched ver-
sion of the peppers image. Similar to Li et al., we first made the scratches rather thin,
covering only 6% of all pixels. Results are shown in Figure 4.8 and in Table 4.5. In
this case, all methods work well: Numerical errors are small and similar between
methods, and even though FOEED achieves the best numerical result, differences
are difficult to discern visually.
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FIGURE 4.6: RGB peppers image, reconstructed from randomly chosen
5% of pixel values using EED (left) or FOEED (right).

TABLE 4.3: Numerical Comparison of Inpainting Models for RGB Im-
ages

Image Errors EED FOEED
toucan MSE 119.062 108.061

AAE 4.819 4.59416
peppers MSE 478.799 441.203

AAE 11.049 10.543

Therefore, we created a more challenging version with thicker scratches, cover-
ing 18% of all pixels (Figure 4.9). The corresponding numerical comparison is shown
in Table 4.6. Here, FOEED achieves the most accurate reconstruction. Visually, we
again observe that edges are reconstructed more accurately, and objects are more
clearly separated, with fourth-order compared to second-order diffusion, and that
steering it with a fourth-order diffusion tensor again provides small additional ben-
efits over the previous methods.

4.5.3 Effect of Diffusivity Function and Contrast Parameter

For image inpainting with second-order PDEs, the Charbonnier diffusivity was pre-
viously found to work better than other established diffusivity functions. To assess
whether this is still true in the fourth-order case, we repeated the reconstruction of
the peppers image as shown in Figure 4.3 with different diffusivities. Table 4.7 sum-
marizes the results. We conclude that the Charbonnier diffusivity still appears to be
optimal.

Finally, in Figure 4.10, we illustrate how the reconstructed image depends on the
contrast parameter λ. As expected, increasing λ leads to an increased blurring of
edges. In the limit, the diffusivity function takes on values close to 1 over a substan-
tial part of the image, and our model starts to approximate homogeneous fourth-
order diffusion.



4.5. Experimental Results 37

FIGURE 4.7: Higher quality reconstructions from a larger subset of
pixels. 1st row: toucan image, reconstructed with EED (left) or FOEED
(right) from randomly chosen 14% of pixels; 2nd row left: same for
20% of pixels from peppers; 3rd row left: same for 30% of pixels from
t1slice. As expected, increasing the fraction of known pixels reduces

the differences in the results of the two schemes.
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FIGURE 4.8: 1st row left: original peppers image of size 225×225;
Right: corrupted image. 2nd row left: EED based inpainting; Right:
Li1 based inpainting. 3rd row left: Li2 based inpainting; Right:

FOEED based inpainting.
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FIGURE 4.9: 1st row left: original peppers image of size 225×225;
Right: corrupted image. 2nd row left: EED based inpainting; Right:
Li1 based inpainting. 3rd row left: Li2 based inpainting; Right:

FOEED based inpainting.
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TABLE 4.4: Numerical comparison and computation times corre-
sponding to Figure 4.7

Image Errors EED FOEED CPU time
toucan MSE 18.029 17.295 53.060

(FOEED)
AAE 1.696 1.686 21.259 (EED)

peppers MSE 113.5 110.885 20.999
(FOEED)

AAE 4.565 4.441 19.79 (EED)
t1-slice MSE 114.845 107.323 24.74

(FOEED)
AAE 4.610 4.553 10.64 (EED)

TABLE 4.5: Numerical comparison for peppers with thinner scratches
(Figure 4.8)

Image Errors EED FOEED Li1 Li2
peppers MSE 9.520 7.813 8.161 8.132

AAE 0.363 0.326 0.346 0.346

4.6 Conclusions

We introduced a novel fourth-order PDE for edge enhancing diffusion (FOEED),
steered by a fourth-order diffusion tensor. We implemented it using a fast semi-
iterative scheme, and demonstrated that it achieved improved accuracy in several
inpainting tasks, including reconstructing images from a small fraction of pixels, or
removing scratches.

Our main motivation for using fourth-order diffusion in this context is the in-
creased smoothness of results compared to second-order PDEs [114], which we ex-
pected to result in visually more pleasant reconstructions. The model in our current
work is still based on a single edge direction at each pixel, extracted via a traditional
second-order structure tensor. It is left as a separate research goal for future work
to combine this with approaches for the estimation of complex structures such as
crossings or bifurcations [1, 98], and with their improved reconstruction, e.g., by
operating on the space of positions and orientations [11, 22, 28].

Finally, our current work only considered reconstructions from a random subset
of pixels. A practical image compression codec that uses our novel PDE should
investigate how it interacts with more sophisticated approaches for selecting and
coding inpainting masks [96].

TABLE 4.6: Numerical comparison for peppers with thicker scratches
(Figure 4.9)

Image Errors EED FOEED Li1 Li2
peppers MSE 104.744 78.761 101.670 101.592

AAE 2.455 2.099 2.465 2.450
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TABLE 4.7: Numerical Comparison of FOEED with Different Diffu-
sivity Functions

Image Errors
Charbonnier

[17]
1√

1+( s
λ )

2

Aubert
[18]
( s

λ )
2

(s2+λ2)2

Perona-
Malik
[82]
1

1+( s
λ )

2

Perona-
Malik2

[82]
e−( s

λ )
2

Geman-
Reynolds

[33]
2λ2

(s2+λ2)2

peppers MSE 443.129 458.961 478.411 491.153 491.186
AAE 10.523 10.587 10.943 11.157 11.007

FIGURE 4.10: From left to right: FOEED based inpainted image with
λ = 0.1, λ = 0.5, λ = 15.5.
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Chapter 5

Lossless PDE-based Compression
of 3D Medical Images

Inpainting PDEs can achieve a very close reconstruction of an original image from
a very sparse subset of pixels. This led to research of inpainting PDEs in image
compression. The well-known PDEs used in image compression is edge-enhancing
diffusion PDEs (EED). Works done on image compression with EED are all lossy
compression. This lossy codecs are not usually useful for medical image compres-
sion due to diagnostic and legal reasons. In this chapter, we present our designed
new codec for lossless compression of three dimensional medical images. Our work
is the first to explore the potential of PDE-based methods for the lossless compres-
sion of 3D medical images.

The codec consists of the following parts:
Constructing the Initial Mask: We use a simple regular grid as the initial in-

painting mask, so that the locations of the mask voxels do not have to be stored
explicitly. This releases us from substantial effort in selecting a suitable small subset
of pixels as an inpainting mask from which the original image can be approximately
reconstructed and the cost of coding the initial mask. More precisely, for a 3D medi-
cal image, our initial mask is the hexahedral grid consisting of voxels of every fourth
in each of all three spatial dimensions. This amounts to storing the intensities of ap-
proximately 1.6% of all voxels. We tried also to use more sophisticated masks that
exploit edge information, but found that, even though it yielded even more close
reconstruction and hence more compressible residuals, the cost of coding the masks
grew disproportionally.

Iterative Reconstruction and Residual Coding: To achieve a lossless codec the
residuals in all non-mask voxels need to be coded. However, we found the initial
reconstruction to be so coarse that this does not yet yield a competitive compres-
sion rate. This reflects the fact that our initial mask does not adequately sample
all semantically relevant image structures. We compensate for this by an iterative
reconstruction and coding of residuals. In each iteration, we first reconstruct the im-
age from the current inpainting mask. We then store the residuals in the immediate
vicinity of the current mask. Those residuals are typically the most compressible,
since the uncertainty in the inpainting result tends to increase with distance away
from the known part of the image. Voxels whose residuals are stored are added to
the next iteration of the inpainting mask. The decoder mirrors this iterative recon-
struction, again starting with the initial mask, then adding the stored residuals from
the immediate neighbors to the reconstruction results. This yields the original in-
tensities in a subdomain of the image that grows with each iteration, until all voxels
have become part of the mask. The mask growing is performed by applying a mor-
phological dilation to the mask. For reconstruction, we experimentally determined
the suitability of three different PDEs for lossless compression: Linear homogeneous
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diffusion as a simple baseline, edge-enhancing diffusion (EED), which is a popular
choice for PDE-based lossy compression, and our introduced fourth-order general-
ization of EED.

Our experimental tests are divided into four groups depending on medical im-
age properties: 1) A diffusion MRI scan with b = 0 with 73% of voxel values are zeros.
This results in a test case that is analogous to hybrid compression, in which only a
clinically relevant region of interest (ROI) is losslessly compressed. 2) A diffusion
MRI scan with b = 700 with less than 10% of voxels are zeros. This test case is for
medical images with a noisy background region. 3) A T1 weighted MR image with
much less noise and more than 65% zero voxels. This T1 weighted MRI has higher
spatial resolution which could be exploited by a PDE-based inpainting. 4) A foot CT
image which has the noisy appearance within the foreground region. We demon-
strate that our codec achieves a higher compression rate than several established
codecs on three MRIs with different characteristics, as well as a CT image.

The content of this chapter is published as a peer reviewed conference paper:
Jumakulyyev Ikram, Schultz Thomas “Lossless PDE-based Compression of 3D

Medical Images” In: International Conference on Scale Space and Variational Methods in
Computer Vision. Springer. 2021, pp. 450-462. [50].

Contribution of the dissertation author: Conceptualization, methodology, liter-
ature review, algorithm implementation and validation, results interpretation and
visualization, manuscript composition, validation experiment design.

5.1 Abstract

Inpainting with Partial Differential Equations (PDEs) has previously been used as a
basis for lossy image compression. For medical images, lossless compression is often
considered to be safer, given that even subtle details could be diagnostically relevant.
In this work, we introduce a PDE-based codec that achieves competitive compres-
sion rates for lossless image compression. It is based on coding the differences be-
tween the original image and its PDE-based reconstruction. These differences often
have lower entropy than the original image, and can therefore be coded more effi-
ciently. We optimize this idea via an iterative reconstruction scheme, and a separate
coding of empty space, which takes up a considerable fraction of the field of view in
many 3D medical images. We demonstrate that our PDE-based codec compares fa-
vorably to previously established lossless codecs. We also investigate the individual
benefit from each ingredient of our codec on multiple examples, explore the effect
of using homogeneous, edge enhancing, and fourth-order anisotropic diffusion, and
discuss the choice of contrast parameters.

5.2 Introduction

The overall size of neuroimaging data that is acquired each year has been reported
to grow exponentially [26], due to the proliferation of medical imaging devices, their
increased resolution, and the increasing use of multiple contrasts or channels. This
makes the development of compression schemes for the storage of 3D medical im-
ages an important and timely research goal.

The use of diffusion-based inpainting has been explored for the lossy compres-
sion of images [30, 96, 97], videos [5, 56, 89], and audio [85]. This paradigm is based
on storing information only for a sparse subset of the original samples, and inter-
polating it to approximate the remaining parts of the original signal. Interpolation
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is often done via Partial Differential Equations (PDEs) that are inspired by the well-
known heat transfer equation, in analogy to how radiators that are sparsely dis-
tributed in a room would heat up the space in between them.

Almost all previous works on PDE-based compression have focused on 2D natu-
ral images or videos. Only a single example has considered a 3D extension [84]. Even
more importantly, all above-mentioned codecs are for lossy compression, and their
benefit relative to established transform-based codecs like JPEG [81] and JPEG2000
[101] tends to be most pronounced at high compression rates [97]. However, com-
pression schemes that lead to visually noticeable changes are less suitable for medi-
cal images, since potentially subtle, but diagnostically relevant details might be per-
turbed. Therefore, lossless compression is often preferred and is sometimes even
legally required [52, 53, 75], since it guarantees not to interfere with interpretation or
quantification of the image contents.

Our work is the first to explore the potential of PDE-based methods for the loss-
less compression of 3D medical images. In Section 6.4, we present a lossless PDE-
based codec that stores the residuals between the PDE-based reconstruction and the
original values. Its success rests on three key ideas: First, we use a simple regular
grid as the initial inpainting mask, so that the locations of the mask voxels do not
have to be stored explicitly. Second, we encode and decode the image iteratively, al-
ternating between PDE-based reconstructions and a dilation of the inpainting mask.
Compared to a single reconstruction, this further reduces the entropy of the residuals
that have to be stored. Third, we optionally code regions of empty space separately,
since they take up a substantial fraction of the field of view in many medical images.

In Section 6.5, we demonstrate that our codec achieves a higher compression rate
than several established codecs on three Magnetic Resonance Images with different
characteristics, as well as a Computed Tomography image. Moreover, we study the
effect of several variations of our codec, using different PDEs, iteration modes, and
contrast parameters.

5.3 Related Work

Several lossless compression standards are widely used in medical imaging. The
Digital Imaging and Communications in Medicine (DICOM) standard defines a uni-
fied image file format for different devices, manufacturers, and modalities [59]. DI-
COM accounts for lossless compression with JPEG-LS, as well as lossy and lossless
JPEG and JPEG2000. Consequently, these are most often used as a reference to which
new codecs are compared: Lossy JPEG and JPEG2000 in case of lossy and hybrid or
near-lossless medical image compression schemes [84, 119], the lossless JPEG family
for lossless compression [52, 53].

The Neuroimaging Informatics Technology Initiative (NIfTI) defines an alterna-
tive file format that has been widely adopted for brain imaging. It consists of a
header, followed by a binary representation of voxel intensities. NIfTI files are com-
monly compressed by simply applying GZIP [24] to them. GZIP is based on the De-
flate algorithm [23], which is in turn based on the LZ77 and Huffman compression
schemes, which have occasionally been used as an additional reference for lossless
image compression [52]. In Section 5.5.1, we will compare our own codec to JPEG-
LS, lossless JPEG and JPEG2000, as well as GZIP.

Prior to our work, the only PDE-based image compression codec for 3D med-
ical images was C-EED [84]. It is based on edge-enhancing diffusion (EED) [110]
and a cuboid subdivision scheme that extends the rectangular subdivision in the
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FIGURE 5.1: An overview of the individual steps taken to encode
(blue) or decode (red) a 3D image. At the core of our codec is an
iteration that alternates between PDE-based reconstruction from an

inpainting mask, and a dilation of that mask.

previously proposed R-EED codec [97]. Since it aims for lossy compression, C-EED
is based on very different design decisions than our codec. In particular, it applies
brightness optimizations and quantization to the mask voxel values, which makes it
more efficient to store them but, in our context, would require storing residuals even
for the voxels in the inpainting mask.

Recent work has demonstrated the potential of deep learning for lossless com-
pression of natural images [73]. Adapting such an approach to 3D medical images
will have to account for data privacy, which makes it difficult to obtain large-scale
training data and raises concerns about inference attacks [77]. We consider this to be
a separate line of research which is outside of our scope.

5.4 Our Proposed Lossless Codec

Figure 5.1 shows a high-level overview of our PDE-based lossless codec. Sec-
tion 5.4.1 will provide details on the first two steps, in which the encoder (blue)
constructs an initial inpainting mask. The next two steps are the core of our ap-
proach. They alternate between a PDE-based reconstruction and a dilation of the
mask, and will be discussed in Section 5.4.2. Finally, the initial mask and residuals
are stored in compressed form (Section 6.4.4). The decoder (red) mirrors the encoder
in that it again alternates between reconstruction and mask dilation.

5.4.1 Constructing the Initial Mask

In most lossy PDE-based image compression schemes, a substantial effort goes into
selecting a suitable small subset of pixels as an inpainting mask from which the orig-
inal image can be approximately reconstructed. To increase image quality, semanti-
cally important image features such as edges and corners are typically included in
the mask [64, 70], and optimal inpainting masks have been approximated by sophis-
ticated mask selection methods [29, 30, 96, 97].

Our lossless PDE-based codec restores the original image exactly by also coding
the residual with respect to the PDE-based reconstruction. This strategy yields an
advantage in terms of compression rate since the residuals are more compressible
than the original intensities. However, our strategy only achieves a net benefit as
long as the cost of coding the initial mask does not exceed the gain from increased
compressibility of the residuals.
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Therefore, we simply use a regular grid as our initial mask, which has the ad-
vantage of not having to store any voxel locations. In particular, for a 3D input im-
age of size nx × ny × nz, our initial mask is the hexahedral grid consisting of voxels
(4i, 4j, 4k), where i ∈ {0, 1, . . . , ⌊(nx − 1)/4⌋}, and j, k are defined accordingly. This
amounts to storing the intensities of approximately 1.6% of all voxels. We attempted
to use more sophisticated masks that exploit edge information, but found that, even
though it yielded even more compressible residuals, the cost of coding the masks
grew disproportionally.

Our codec exploits the fact that many medical images contain a substantial
amount of empty space, which typically yields the lowest possible intensity, and
can be coded efficiently as a run length encoded binary mask. In the following, we
assume that the minimum intensity will be zero. In practice, our encoder deals with
negative intensities, as they arise in computed tomography (CT), by subtracting the
minimum from the original input and storing it, so that the decoder can add it again
to its output. In some cases, the gain from including voxels with zero intensity in
the preliminary inpainting mask M0 is substantial. In others, its cost outweighs its
benefit, because intensities within empty space are perturbed by strong measure-
ment noise, or the image contains little or no empty space. In this case, our encoder
simply sets M0 := ∅. The initial inpainting mask M1 arises as the union of M0 and
the voxels on the above-described grid. We only store the intensities of grid voxels
outside of M0.

5.4.2 Iterative Reconstruction and Residual Coding

A straightforward lossless PDE-based codec would reconstruct the image from the
inpainting mask M1, and it would code the residuals in all non-mask voxels. How-
ever, we found the initial reconstruction to be so coarse that this does not yet yield
a competitive compression rate. This reflects the fact that our initial mask does not
adequately sample all semantically relevant image structures. We compensate for
this by an iterative reconstruction and coding of residuals.

In each iteration, we first reconstruct the image from the current inpainting mask
Mi. We then store the residuals in the immediate vicinity of the current mask. Those
residuals are typically the most compressible, since the uncertainty in the inpainting
result tends to increase with distance away from the known part of the image. Vox-
els whose residuals are stored are added to the inpainting mask Mi+1 that will be
used in the next iteration. The decoder mirrors this iterative reconstruction, again
starting with the initial mask M1, then adding the stored residuals from the imme-
diate neighbors to the reconstruction results. This yields the original intensities in a
subdomain of the image that grows with each iteration, until all voxels have become
part of the mask.

We grow the mask by applying a morphological dilation to it. We experimented
with two different structuring elements. The first is a cube, which amounts to a 3 ×
3× 3 neighborhood. We call this Mode 0. The second is a cross, which amounts to the
six face-connected neighbors. We call this Mode 1. Compression in Mode 0 requires
two or three iterations, while Mode 1 takes six or seven iterations, depending on
boundary effects. Section 5.5.3 will investigate the effect of the two different modes
on the final compression rates. The computational cost of later iterations decreases
with the number of remaining unknown voxels, and because we initialize them with
the inpainting result from the previous iteration.

Residuals could be positive or negative. We avoid having to store them as signed
integers by performing subtractions (in the encoder) and additions (in the decoder)
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in modular arithmetic, with the maximum value as the modulus. As mentioned
above, the minimum intensity at this point will always be zero.

5.4.3 Choice of PDE and its Parameters

Our compression strategy bears a certain conceptual resemblance to some estab-
lished lossless codecs, such as JPEG-LS, which predict the values that have not yet
been coded from the ones that are already known, and only code the residuals.
Whether we can beat their compression rate should partly depend on whether PDE-
based predictions are more successful at decreasing residual entropy compared to
the simpler predictor used in JPEG-LS.

We experimentally determined the suitability of three different PDEs for lossless
compression: Linear homogeneous diffusion as a simple baseline, edge-enhancing
diffusion (EED), which is a popular choice for PDE-based lossy compression [97],
and a recently introduced fourth-order generalization of EED [48].

Second-order diffusion can be stated as

∂tu = div(D · ∇u), (5.1)

where u denotes the image intensity as a function of location within the image do-
main, and of diffusion time t. Diffusion-based inpainting uses the intensities in the
mask voxels as Dirichlet boundary conditions, and obtains the inpainted result as
the steady state that is attained as t → ∞ [29].

In linear homogeneous diffusion, the diffusion tensor D is the identity. For EED,
it is a symmetric matrix field that encodes directional dependence, so that diffusion
across images edges is decreased depending on the gradient magnitude, while dif-
fusion along the edge is free. In fourth-order EED, the first-order divergence and
gradient operators in Eq. (5.1) are replaced with second-order counterparts, and the
second-order diffusion tensor D is replaced with a fourth-order tensor that acts on
the Hessian. For the sake of brevity, we refer the reader to [48, 110] for the full math-
ematical details and the numerical implementation of these PDEs.

The definitions of diffusion tensors for second- and fourth-order EED involve a
diffusivity function, which determines the diffusivity across the edge as a function
of gradient magnitude. As it is customary in PDE-based inpainting, we select the
Charbonnier diffusivity function,

g(s2) =
1√

1 + s2

λ2

, (5.2)

where s = ∥∇σu∥ is the gradient magnitude, computed with a certain amount of
pre-smoothing. In our experiments, we fixed it at σ = 1. We also tried other values
of σ, but found that this had only a very minor effect on the compression rate. This
agrees with experimental findings in lossy image compression [96].

A second parameter in Eq. (5.2) is the contrast parameter λ, which corresponds to
the scale of ∥∇σu∥ at which g switches from high to low diffusivity. This parameter
affects the quality of the PDE-based reconstructions, and therefore, the compression
rate. Which contrast parameter value is optimal depends on the image contents, in-
painting mask, and PDE. Some lossy PDE-based codecs have optimized λ by trying
out different candidate values [96, 97].

Empirically optimizing λ causes a noticeable computational expense and, as will
be reported in more detail in Section 5.5.4, we found its benefit in the context of
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lossless compression to be relatively minor. Therefore, we rely on a heuristic choice
of λ. It is based on one suggested by Perona and Malik [82], who proposed to set λ
to the 90th percentile of the gradient magnitudes in the input image. We adapt this
in two ways: First, we only consider gradient magnitudes outside of the initial mask
M1, in order to exclude the potentially large flat regions of empty space. Second, we
need to account for the fact that inpainting from a sparse mask results in an image
that is much smoother than the original one. For this reason, we divide the value at
the 90th percentile by the empirical divisor 25. All reported results are based on this
simple heuristic.

5.4.4 Compressed File Format

Our compressed files consist of a header, the locations of zero intensity voxels (if
separating them yielded a benefit), the values at the initial mask voxels, as well as
the residuals at non-mask voxels. We assume that intensity values are 16 bit integers,
as it is common in medical imaging. If zero intensity voxels are coded separately, this
is done as a binary mask, which is compressed using run length encoding, followed
by the Deflate algorithm. The mask intensities and residuals are compressed using
the Deflate algorithm or pure Huffman coding, depending on which choice resulted
in the smaller size.

To ensure that comparisons to compressed NIfTI files are fair, we add the full
NIfTI header (348 bytes), which includes the image dimensions among other infor-
mation. In addition, we have to store the original minimum and maximum values
(4 bytes), sizes of the compressed data streams for zero voxel binary mask and mask
intensities (8 bytes), the contrast parameter (4 bytes), as well as single byte that en-
codes the type of PDE (2 bits), the dilation mode (1 bit), and the types of encoding
for mask intensities and residuals (2 bits).

5.5 Results

For our experiments, we chose four 3D medical images which are illustrated in Fig-
ure 5.2. Even though three of them are from brain imaging, they have been chosen
to represent diverse contrasts and properties.

1. A scan from diffusion MRI [7] with diffusion weight b = 0 and 136 × 136 × 84
voxels. A brain extraction algorithm has zeroed out 73% of the voxels. This
results in a test case that is analogous to hybrid compression, in which only a
clinically relevant region of interest (ROI) is losslessly compressed [113, 119].

2. A diffusion MRI scan with b = 700 and 104 × 104 × 72 voxels. This time,
no brain extraction has been performed, and there is substantial measurement
noise in the background, yielding less than 10% voxels with exactly zero inten-
sity. This should provide a challenging test case for our codec, since the noisy
background region should be difficult to compress losslessly.

3. A T1 weighted MR image with 256 × 256 × 220 voxels. No brain extraction
has been performed, but there is much less noise, leading to more than 65%
zero voxels. Due to the higher spatial resolution, we expected a larger degree
of spatial dependencies which could be exploited by a PDE-based inpainting.

4. A foot CT image with 256 × 256 × 256 voxels, which we expected to be chal-
lenging due to the noisy appearance within the foreground region.
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FIGURE 5.2: The four 3D medical images used in our experiments.
Top to bottom: Three brain MR images with B0, B700, and T1 weight-
ing, and a foot CT image. Right to left: The middle slices on the sagit-

tal, coronal, and axial planes.
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TABLE 5.1: A comparison of different variants of our PDE-based
codec to established lossless standards. Positive percentages indicate

a relative benefit from our codec.

Image PDE Codec GZIP JPEG JPEG2000 JPEG-LS
B0 R-ILH-1 +26.489% +29.747% +17.238% +2.980%
B0 R-IEED-1 +28.036% +31.225% +18.979% +5.022%
B0 R-IFOEED-1 +28.784% +31.940% +19.821% +6.009%
B700 R-ILH-1 +23.778% +6.922% −4.461% +7.123%
B700 R-IEED-1 +27.167% +11.061% +0.184% +11.253%
B700 R-IFOEED-1 +27.552% +11.530% +0.711% +11.721%
T1 R-ILH-1 +32.294% +31.912% −5.142% −1.650%
T1 R-IEED-1 +35.615% +35.252% +0.015% +3.336%
T1 R-IFOEED-1 +37.925% +37.575% +3.602% +6.804%
CT R-ILH-1 +16.954% +37.111% +11.198% +3.527%
CT R-IEED-1 +19.886% +39.332% +14.334% +6.934%
CT R-IFOEED-1 +20.658% +39.916% +15.158% +7.830%

5.5.1 Comparison to Other Codecs

Table 5.1 compares the compression rate of our proposed codec to four established
alternatives, by specifying the relative differences in final file sizes. Positive val-
ues indicate a benefit of our codec. Details on the four lossless codecs included
in our comparison are given in Section 5.3. Results consider different variants of
our codec, using linear homogeneous (LH), second-order edge enhancing (EED), or
fourth-order edge enhancing diffusion (FOEED). All cases use iterative reconstruc-
tion from a regular grid (R-I) in Mode 1 (see Section 5.4.2). The effect of using fewer
or no iterations will be studied separately in Section 5.5.3.

In all four examples, we observe a clear improvement when moving from ba-
sic linear homogeneous diffusion to anisotropic diffusion. Highest compression
rates were achieved with the recently introduced fourth-order EED. It allowed us
to achieve higher lossless compression rates than any established codec. In many
cases, the margin was considerable.

However, FOEED also had the highest computational cost. For the B700 image,
iterative 3D reconstruction on a single 3.3 GHz CPU core took 27 s with LH diffu-
sion, 478 s with EED, and 6185 s with FOEED. We expect that these times could be
shortened significantly by a parallel implementation. This was not the focus of our
current work.

5.5.2 Non-PDE Baseline for Further Comparisons

We require a suitable baseline to pinpoint the effect that the iterative reconstruc-
tion and tuning of the contrast parameter have on the final compression rate. Since
we use Huffman coding or the Deflate algorithm for the final encoding, file sizes
achieved with GZIP are a natural reference. In addition, we designed a baseline
codec that is “in between” GZIP and our PDE-based codec.

First, we found that, when 3D images contain a substantial amount of empty
space, coding it separately can increase compression rates. Therefore, our baseline
codec performs the same run length encoding as our PDE-based codec if it decreases
the overall file size. This was the case in all examples except B700.
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TABLE 5.2: Delta coding of intensities already reduced entropy in
all test images. We separately report this for the whole images, and

within their non empty space regions.

Image Image
Entropy

Delta Coded
Image Entropy

Nonzero Region
Entropy

Delta Coded
Nonzero Region
Entropy

B0 3.63997 3.50099 10.33056 9.63958
B700 5.34271 5.01050 5.39311 5.11973
T1 3.14553 2.73150 6.46612 5.54785
CT 2.81012 2.66688 6.71209 6.15826

TABLE 5.3: Our non-PDE baseline that makes use of delta coding and
optional empty space coding already results in a clear improvement

over GZIP.

Image GZIP (bytes) Non-PDE Baseline Zero Density Zero Mask (bytes)
B0 692.372 +21.431% 72.92% 9.928
B700 610.968 +18.015% 9.07% 43.681
T1 5.207.535 +26.955% 65.70% 290.969
CT 4.515.257 +8.347% 71.10% 315.173

Second, we were wondering how much we can benefit already from a very sim-
ple, non PDE-based prediction of voxel intensities. To this end, we performed a delta
coding, i.e., we fed differences between subsequent voxel intensities instead of the
intensities themselves into the final compression. Table 5.2 shows that, in all cases,
this decreased the entropy. It also slightly increased compression rates.

Finally, as in our PDE-based codec, our baseline codec uses either Deflate or
pure Huffman coding, depending on what results in a smaller file. We used the
same implementations from zlib and dippykit, respectively. Table 5.3 shows that
this baseline already improves considerably over GZIP.

5.5.3 Effect of Iterative Construction of Residuals

Table 5.4 shows how the iterative alternation between reconstruction and residual
coding that is described in Section 5.4.2 affects the overall file sizes achieved with our
codec. Differences are relative to the non-PDE baseline from the previous section. In
this experiment, second-order EED has been used for reconstruction. Positive values
indicate a benefit of PDE-based predictions over delta coding.

Results indicate that a single reconstruction from a sparse regular grid is not
sufficient to obtain a benefit from second-order anisotropic diffusion. On the other

TABLE 5.4: Compared to the non-PDE baseline, direct coding of resid-
uals after a single reconstruction with second-order EED does not yet
result in a clear benefit. However, an iterative reconstruction as de-

scribed in Section 5.4.2 does.

Image Direct Residual Iteration in Mode 0 Iteration in Mode 1
B0 +0.095% +4.367% +8.406%
B700 +1.784% +6.847% +11.164%
T1 −0.698% +6.715% +11.845%
CT −6.476% +7.286% +12.590%
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TABLE 5.5: Results from varying the threshold that our heuristic uses
to set the contrast parameter λ. Despite a noticeable effect on λ itself,
the corresponding differences in compression rates are rather small.

Improvements are relative to the non-PDE baseline.

30% Threshold 60% Threshold 90% Threshold
Image λ Improve-

ment
λ Improve-

ment
λ Improve-

ment
B0 2.04741 +4.272% 4.42198 +4.362% 11.83980 +4.367%
B700 0.01379 +6.468% 0.10905 +6.794% 0.56127 +6.847%
T1 0.12347 +7.108% 0.30572 +7.017% 0.58445 +6.715%
CT 0.12464 +7.060% 0.22596 +7.225% 0.65364 +7.286%

hand, the proposed iterative reconstruction achieves a clear additional reduction in
compressed file size. It is most pronounced in Mode 1, which dilates the inpaint-
ing mask with a cross-shaped structuring element and consequently requires more
iterations than Mode 0, which dilates with a box.

5.5.4 Effect of Contrast Parameter

Even though it can be seen from Table 5.1 that moving from isotropic to anisotropic
diffusion noticeably improved compression rates, we found that fine-tuning the con-
trast parameter in the diffusivity function is less important. Table 5.5 explores the
effect of varying the ad-hoc threshold value of 90% that was used in Section 5.4.3 to
two other values, 60% and 30%. For each image and threshold, the table reports the
corresponding values of contrast parameter λ, as well as the resulting improvement
over the non-PDE baseline.

All differences due to the contrast parameter are below 0.5%. This supports our
decision to rely on a heuristic setting of the contrast parameter for lossless compres-
sion, rather than spending computational resources on trying to optimize it. Results
in Table 5.5 used second-order EED with iteration mode 0, because fine-tuning the
contrast parameter would be even more costly in mode 1.

5.6 Conclusion

PDE-based inpainting has previously been shown to have a strong potential for lossy
image compression, especially at high compression rates. We demonstrated that
this approach also holds promise for lossless compression of 3D medical images. In
particular, we propose a codec that beats state-of-the-art alternatives by combining
a simple yet efficient to code initial inpainting mask with iterative reconstruction
and coding of residuals, as well as a separate coding of empty space. In the future,
we are planning to extend our work to exploit redundancies along the fourth axis
that arises in diffusion MRI, i.e., orientation of the diffusion gradient [7]. This will
require operating on the space of positions and orientation.
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Chapter 6

Combining Image Space and
q-Space PDEs for Lossless
Compression of Diffusion MR
Images

Diffusion Magnetic Resonance Imaging is a non-invasive imaging technique used to
study the microstructural organization of biological tissues, particularly the brain’s
white matter. It provides information about the diffusion of water molecules in tis-
sues, which can reveal the structure and organization of cell membranes, axons, and
other cellular components. Diffusion MRIs are 4D data with a large number of re-
peated 3D volumetric scans. This results into huge amounts of data. An efficient
diffusion MRI-oriented compression codec is essential for managing large datasets,
facilitating storage, and enabling faster data transfer and analysis. Commonly, dif-
fusion MRI datasets are compressed using GZIP which is a lossless compression
scheme based on dictionary coding and Huffman coding.

In this chapter we introduce a novel PDE-based lossless codec for diffusion MRI
data. This new codec is designed on top of our previous codec on lossless PDE-
based compression of 3D medical images by additionally exploiting smoothness in
q-space. Q-space is diffusion MRI volume sample space indicating the direction and
strength of a diffusion sensitizing gradient during the measurement. Our previously
proposed 3D codec can be applied for each 3D individually. However, doing so does
not exploit q-space redundancy, i.e., the fact that measurements for nearby gradient
directions are usually similar. Moreover, it is very time consuming.

The core of the 4D codec is image-space inpainting with a novel approach of
PDE-based inpainting in q-space. The codec uses a spatial PDE as in our 3D codec
for the first few volumes until the sufficient amount of samples ( diffusion-weighted
images/ 3D dMRI scans) are available. Our 4D codec adaptively determines a suit-
able point for switching from spatial to q-space inpaiting. Then we employ q-space
PDE-based inpainting. The general idea of q-space inpainting is that when a certain
number of diffusion-weighted images with different gradient directions are known,
it is possible to use them to predict images that correspond to a new direction which
means a new 3D dMRI volume can be reconstructed given its gradient direction.
For complexity reasons we perform q-space inpaiting with linear homogeneous dif-
fusion. We also introduce our method for accelerated computation, it makes q-space
inpainting of a 3D volume at a very reasonable computational cost. We further
demonstrated the importance of including motion correction, and propose an ef-
ficient implementation that is based on affine image transformations via a common
reference.
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We evaluate our codec on two dMRI datasets. Both datasets have been collected
from the same subject in the same scanner. For the first scan, the subject received the
usual instruction of staying as still as possible during the acquisition. For the second
scan, the subject was asked to move his head, to deliberately introduce motion arti-
facts. We demonstrate with results that compared to GZIP the proposed codec can
reduce required disk space by more than 30%. It also beats lossless codecs from the
JPEG family.

We additionally demonstrate the benefit of motion correction. In the first scan,
in which the subject tried to keep his head still, compensating for small involuntary
movements yields a benefit although it is slight. On the other hand, when strong
head motion is present, in the second scan, motion correction has a big impact on
the q-space inpainting and hence on the final file size.

The content of this chapter is published as a peer reviewed journal paper:
Jumakulyyev Ikram, Schultz Thomas ”PDE-based Lossless Compression of 4D

diffusion MRI” In: Journal of Mathematical Imaging and Vision. Springer Nature. 65
(2023), pp. 644-656. [46].

Contribution of the dissertation author: Conceptualization, methodology, liter-
ature review, algorithm implementation and validation, results interpretation and
visualization, manuscript composition, validation experiment design.

6.1 Abstract

Diffusion MRI is a modern neuroimaging modality with a unique ability to acquire
microstructural information by measuring water self-diffusion at the voxel level.
However, it generates huge amounts of data, resulting from a large number of re-
peated 3D scans. Each volume samples a location in q-space, indicating the direc-
tion and strength of a diffusion sensitizing gradient during the measurement. This
captures detailed information about the self-diffusion, and the tissue microstruc-
ture that restricts it. Lossless compression with GZIP is widely used to reduce the
memory requirements. We introduce a novel lossless codec for diffusion MRI data.
It reduces file sizes by more than 30% compared to GZIP, and also beats lossless
codecs from the JPEG family. Our codec builds on recent work on lossless PDE-
based compression of 3D medical images, but additionally exploits smoothness in
q-space. We demonstrate that, compared to using only image space PDEs, q-space
PDEs further improve compression rates. Moreover, implementing them with Finite
Element Methods and a custom acceleration significantly reduces computational ex-
pense. Finally, we show that our codec clearly benefits from integrating subject mo-
tion correction, and slightly from optimizing the order in which the 3D volumes are
coded.

6.2 Introduction

With the development of new medical imaging techniques, and constant refinement
of existing ones, the associated storage requirements have been reported to grow
exponentially each year [26]. This explains why medical image compression is an
active area of research.

Our work belongs to the family of compression algorithms that are based on
Partial Differential Equations (PDEs). The general idea behind this approach is to
store a sparse subset of the image information, and to reconstruct the remaining
image via PDE-based inpainting [29].
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PDE-based compression has a long tradition for the lossy compression of nat-
ural images [29, 96] and videos [5, 56, 89]. The benefit of PDE-based approaches
relative to transform-based codecs like JPEG [80] and JPEG2000 [101] has often been
most pronounced at high compression rates [96]. Even though this strategy for lossy
compression has also been transferred to three-dimensional images [84], in medical
imaging, lossless compression is often preferred to ensure that all diagnostically rel-
evant details are preserved. In some cases, it is even legally forbidden to apply lossy
compression for medical image archival [52, 75].

We recently introduced a PDE-based codec for 3D medical images that stores the
residuals between the original image and an intermediate PDE-based reconstruction
to ensure that the final reconstruction is lossless, and we demonstrated that this
strategy led to competitive compression rates [50]. In our current work, we extend
this idea for the specific use case of image datasets from diffusion MRI.

Diffusion MRI (dMRI) [7, 60] is a variant of Magnetic Resonance Imaging in
which diffusion sensitizing gradients are introduced into the measurement se-
quence. If the hydrogen nuclei that generate the MR signal undergo a net displace-
ment along the gradient direction during the measurement, the signal is attenu-
ated. Assuming that these displacements result from (self-) diffusion, comparing
diffusion-weighted to non-weighted measurements permits computation of an ap-
parent diffusion coefficient.

Taking measurements with different gradient directions captures the directional
dependence of the diffusivity. It results from interactions between water and tis-
sue microstructure and therefore carries information about structures that are much
smaller than the MR image resolution. Important applications of dMRI include the
detection of microstructural changes that are related to aging or disease, and the re-
construction of major white matter tracts, which is referred to as fiber tracking or
tractography [44].

The large number of repeated measurements in diffusion MRI leads to large
amounts of data. In practice, resulting image datasets are often compressed us-
ing GZIP [24]. In our previous work [50], we demonstrated that, compared to this,
PDE-based lossless compression can further reduce the memory requirement of in-
dividual dMRI volumes by more than 25%. However, applying our codec to each
3D volume independently does not exploit the fact that measurements for nearby
gradient directions are usually similar. Moreover, it is relatively time consuming.

In our current work, we address both of these limitations by combining the pre-
vious idea of lossless compression via image-space inpainting with a novel approach
of PDE-based inpainting in q-space, which is the space spanned by diffusion sensi-
tizing gradient directions and magnitudes. We find that predictions from linear dif-
fusion in q-space can be made with low computational effort, and are strong enough
to further improve compression rates.

The remainder of our work is organized as follows: Section 5.3 provides the re-
quired background and discusses prior work on 4D image compression. Section 6.4
introduces the components of our proposed codec. Section 6.5 demonstrates that
the resulting compression rates exceed those of several baselines and investigates
the effects of specific design choices. Section 6.6 concludes with a brief discussion.

6.3 Background and Related Work

We will now introduce the main ideas behind diffusion PDE-based image inpaint-
ing and compression (Section 6.3.1), clarify the foundations of diffusion MRI and
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q-space (Section 6.3.2), and briefly review the literature on 4D medical image com-
pression (Section 6.3.3).

6.3.1 Diffusion PDE-based Inpainting and Compression

Inspired by their use for modeling physical phenomena, Partial Differential Equa-
tions (PDEs) have a long tradition for solving problems in image processing. In
particular, the PDE describing heat diffusion has provided a framework for image
smoothing and inpainting [10, 16, 42, 72, 79, 82, 110].

The heat equation captures the relationship between temporal changes in a tem-
perature ∂tu and the divergence of its spatial gradient ∇u,

∂tu = div(D · ∇u) , (6.1)

where D is the thermal diffusivity of the medium. In a homogeneous and isotropic
medium, the diffusivity D is a constant scalar. In a non-homogeneous isotropic
medium, D would still be a scalar, but depend on the spatial location. In an
anisotropic medium, heat dissipates more rapidly in some directions than in oth-
ers. In that case, D is a symmetric positive definite matrix that is referred to as a
diffusion tensor.

In image processing, the gray value at a certain location is interpreted as a tem-
perature u, and Equation (6.1) is coupled with suitable boundary conditions. For
image smoothing,

∂tu = div(D · ∇u), Ω × (0, ∞) ,
∂nu = 0, ∂Ω × (0, ∞) ,

(6.2)

where Ω is the image domain, and n is the normal vector to its boundary ∂Ω. The
original image f : Ω → R is used to specify an initial condition u = f at t = 0. For
increasing diffusion time t, u will correspond to an increasingly smoothed version
of the image.

In image inpainting, values are known at a subset of pixel locations, and un-
known values should be filled in. For this, a Dirichlet boundary condition is intro-
duced, which fixes values at a subset K of pixel locations [29, 110]

∂tu = div(D · ∇u), Ω\K × (0, ∞) ,
∂nu = 0, ∂Ω × (0, ∞) ,

u = f , K × [0, ∞) .
(6.3)

and a steady-state is computed at which ∂tu ≈ 0. The ability of PDEs to reconstruct
plausible images even from a very sparse subset of pixels made them useful for
image compression [29, 89, 96].

Different choices of diffusivity D introduce considerable flexibility with respect
to shaping the final result. Fixing D = 1 turns Equation (6.3) into second-order linear
homogenous (LH) diffusion

∂tu = Lu, Ω\K × (0, ∞) (6.4)

with Lu = ∆u, where ∆ denotes the Laplace operator, and the steady state satisfies
the Laplace equation ∆u = 0. Even though the resulting reconstructions suffer from
singularities [29] and can often be improved by the more complex models discussed
below, they have been used to design compression codecs for cartoon-like images
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[68], flow fields [45], and depth maps [32, 38, 63]. Its simple linear nature and fast
convergence to the steady-state also make LH diffusion an attractive choice for real-
time video compression [5, 56].

Compared to LH diffusion, decreasing the diffusivity as a function of image gra-
dient magnitude permits a better preservation of salient edges [17, 82]. This is re-
ferred to as nonlinear diffusion, since the results are no longer linear in the original
image f . Rather than just decreasing the overall diffusivity close to edges, modeling
D as an anisotropic diffusion tensor permits smoothing along edges, while maintain-
ing or even increasing the contrast perpendicular to them. One widely used model
is referred to as Edge-Enhancing Diffusion (EED) [109].

All PDEs that have been discussed up to this point are of second order. Fourth-
and higher-order extensions have also been studied, both for smoothing [25, 37, 67,
114, 115] and for inpainting [49, 62]. In the simplest case, setting Lu = −∆2u in
Equation (6.4) leads to the biharmonic (BH) equation. In two and three dimensions,
it does not suffer from the singularities that are present in the results of LH diffusion
[19, 29], while preserving a simple linear nature. For this reason, BH has been con-
sidered for the design of compression codecs [3, 19, 86, 88]. However, it no longer
satisfies a min-max principle [25] and it increases running time and sensitivity to
quantization error.

Our own previous work [49] proposed an anisotropic fourth-order PDE in which
a fourth-order diffusion tensor is constructed from the image gradient in a similar
way as in second-order EED. We thus refer to it as Fourth-Order Edge-Enhancing
Diffusion (FOEED). It was shown to result in more accurate inpainting results than
second-order EED, and higher PDE-based compression rates, in several examples
[50].

Our current work is concerned with compressing data from diffusion MRI, which
is similar to hyperspectral images in that it contains a large number of values (chan-
nels) at each location [3]. However, the channels in hyperspectral images have a
one-dimensional order, while our channels correspond to positions on a spherical
shell in q-space, which we will now introduce.

6.3.2 Diffusion MRI

The signal in Magnetic Resonance Imaging is generated by the hydrogen atoms
within water molecules. Their heat motion is referred to as self-diffusion, since it
takes place despite a zero concentration gradient. The extent to which this motion
is restricted in a cellular environment correlates with microstructural parameters
such as cellular density or integrity. Moreover, in the white matter of the human
brain, which contains the tracts that connect different brain regions, self-diffusion
can occur more freely in the local direction of those tracts than perpendicular to it
[8]. Therefore, measuring the apparent diffusion coefficient in different directions
provides relevant information about small-scale structures that are below the image
resolution of in vivo MRI.

This motivates the use of diffusion MRI. It goes back to the idea of measuring
diffusion by introducing a pair of diffusion sensitizing magnetic field gradients into
a nuclear magnetic resonance sequence [100]. Integrating it with spatially resolved
Magnetic Resonance Imaging permits diffusion measurements at a voxel level [60].
Repeating the measurements with differently oriented gradients reveals a biologi-
cally relevant directional dependence in various tissue types, including muscle and
the white matter of the brain [90].
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FIGURE 6.1: Illustration of three diffusion sensitizing gradient direc-
tions on a shell in q space, with equal b = 700 (top left). The three
diffusion-weighted images have been measured with different gradi-
ent directions, as indicated at the bottom left of each image. Compar-

ing them reveals the directional dependence of the dMRI signal.

Several key parameters of the diffusion sensitization can be summarized in the
gradient wave vector

q =
1

2π
γδg, (6.5)

where γ is the gyromagnetic ratio of hydrogen nuclei in water, δ is the duration of
the diffusion sensitizing gradients, and g corresponds to their direction and strength.
The normalized MR echo magnitude |E(q, τ)| additionally depends on the time τ
between the pair of gradient pulses. It is computed as the ratio between the corre-
sponding diffusion-weighted measurement and an unweighted measurement with
q = 0. It is antipodally symmetric, |E(−q, τ)| = |E(q, τ)|.

The relevance of this q-space formalism derives from a Fourier relationship be-
tween |E(q, τ)| and the ensemble average diffusion propagator P̄(R, τ), which spec-
ifies the probability of a molecular displacement R within a fixed diffusion time [14].
An alternative parameterization of the diffusion gradients is in terms of their direc-
tion and a factor b = 4π2∥q∥2 (τ − δ/3), which also accounts for the fact that the
diffusion weighting increases with the effective diffusion time (τ − δ/3).

Due to practical constraints on the overall duration of dMRI measurements, the
sampling of q-space is usually limited to one or several reference measurements
with q = 0, as well as one or a few shells with constant ∥q∥, and thus constant b.
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This is illustrated in Figure 6.1. Such setups focus on the directional dependence of
the signal, and typically strive for a uniform distribution of gradient directions on
these shells [20]. Our codec assumes dMRI data with such a “shelled” structure, an
assumption that is shared by well-established algorithms in the field [4].

6.3.3 4D Medical Image Compression

Many medical imaging modalities, including Magnetic Resonance Imaging, Com-
puted Tomography, and ultrasound, can be used to image volumes repeatedly, in
order to capture time-dependent phenomena such as organ motion, perfusion, or
blood oxygenation. Considerable work has been done on lossless and lossy com-
pression of the resulting 4D (3D plus time) image data. Much of it has borrowed
from video coding, and has often involved motion compensation [51, 94], which is
combined with wavelet transforms [9, 51, 57, 65, 116] or hierarchical vector quanti-
zation [78] for compression.

Almost all of these works have compared their compression rates to codecs from
the JPEG family. We will also compare our codec to JPEG-LS, lossless JPEG, and
JPEG2000. Additionally, we compare compression rates against GZIP [24] which,
in conjunction with the Neuroimaging Informatics Technology Initiative (NIfTI) file
format, is currently most widely used to compress diffusion MRI data in practice.
To make this comparison fair, we also use Huffman coding or Deflate within our
own codec, as opposed to computationally efficient alternatives that might further
improve compression rates [27, 112].

Even though the volumetric images in diffusion MRI are also taken sequentially,
their temporal order is less relevant than the q-space structure that was described
above: Measuring with the same diffusion sensitizing gradients, but in a different
order, should yield equivalent information, even though it permutes the temporal
order. To the best of our knowledge, no codec has been proposed so far that exploits
this very specific structure. There has been extensive work on compressed sensing
for diffusion MRI (see [74, 105] and references therein), but with a focus on reducing
measurement time, rather than efficient storage of the measured data.

Recent work has demonstrated the potential of deep learning for lossless com-
pression of 3D medical images [76]. Extending this specifically for diffusion MRI is
an interesting future direction. However, our PDE-based approach has the advan-
tage of not requiring any training data. Since medical data is a particularly sensitive
type of personal data, obtaining diverse large-scale datasets can be difficult, and the
potential of model attacks that could cause data leakage is concerning [71, 77].

6.4 Proposed Lossless Codec

Traditional PDE-based image compression [29, 49, 50, 96] performs inpainting in
image space, which relies on piecewise smoothness of the image. A key contribution
of our current work is to additionally exploit the smoothness in q-space. As it can be
seen in Figure 6.1, dMRI signals that are measured with similar gradient directions
are correlated.

Our codec uses a spatial PDE for the first few volumes, which is described in
more detail in Section 6.4.1. Once sufficiently many samples are available so that
a q-space PDE, described in Section 6.4.2, produces stronger compression than the
spatial PDE, we switch to it.
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The q-space PDE assumes that all volumes are in correct spatial alignment, which
might be violated in practice due to subject motion. For this reason, our codec in-
cludes a mechanism for motion compensation, described in Section 6.4.3. Our over-
all compressed file format is specified in Section 6.4.4.

6.4.1 Lossless 3D Spatial Codec

The initial few volumes are compressed with an image space PDE-based codec that
follows our recent conference paper [50]. To make our current work self-contained,
we briefly summarize the most relevant points, focusing on the forward, i.e., encod-
ing direction. The decoding process just mirrors the respective steps. The codec is
composed of three main parts: Data sparsification (initial mask selection), prediction
(iterative reconstruction), and residual coding.

Initial Mask Selection: As an initial mask, our codec simply stores voxel intensi-
ties on a sparse regular grid. More specifically, for a given 3D input image of size
n1 × n2 × n3, the initial mask is chosen as a hexahedral grid consisting of voxels

(4i1, 4i2, 4i3), where ij ∈ {0, 1, . . . , ⌊ (nj−1)
4 ⌋}, j ∈ 1, 2, 3.

Most lossy PDE-based codecs select a mask adaptively [29, 96], which better pre-
serves important image features such as edges and corners [68]. However, this in-
troduces the need to store the locations of the selected pixels, which can be avoided
by the use of fixed grids [38, 83]. In the context of lossless compression, we achieved
higher compression rates by combining the latter strategy with iterative reconstruc-
tion.

Iterative Reconstruction: Making PDE-based compression lossless requires coding
the differences between the original image and the PDE-based reconstruction, and
is beneficial in terms of compression rates to the extent that those residuals are more
compressible than the original image. In general, residuals become more compress-
ible the more accurate the reconstruction is. Therefore, the overall compression rate
can be increased by iteratively coding residuals of some pixels, and refining the re-
maining ones based on them.

Our previous work [50] explored different iterative schemes. The variant that
is used here codes the residuals in all remaining face-connected neighbors of the
current mask voxels, i.e., up to six voxels per mask voxel. Those neighbors become
part of the mask for the next iteration, and the process continues until all voxels have
been coded.

Among the PDEs that have been explored for inpainting, we currently consider
the two that worked best in [50], i.e., traditional edge-enhancing diffusion (EED)
[110] and our recent fourth-order generalization (FOEED) [49].

Residual Coding: Residuals are computed in modular arithmetic, so that they can
be represented as unsigned integers. The final compression of the initial mask and
the residuals is either done via a Huffman entropy encoder or the Deflate algorithm,
depending on which gives the smaller output file size.

In cases where medical images contain a substantial amount of empty space,
e.g., a background region with exactly zero image intensity, our previous work [50]
found that coding it separately using run length encoding (RLE) can provide an ad-
ditional benefit. Unfortunately, in dMRI, the background is perturbed by measure-
ment noise, which renders this approach ineffective. Therefore, our current work
does not include any dedicated empty space coding.
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FIGURE 6.2: An example of q-space inpainting to predict a diffusion-
weighted volume in gradient direction g⃗5 (red double arrow) based
on four known volumes, illustrated as filled volumes in directions g⃗i

(black arrows).
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FIGURE 6.3: The q space sampling of the dMRI data used in our ex-
periments (left), and the resulting triangulation that is used within

the Finite Element Method.

6.4.2 PDE-based q-Space Inpainting

The general idea of q-space inpainting is illustrated in Figure 6.2: Once a certain
number of diffusion-weighted images with different gradient directions are known,
we can use them to predict images that correspond to a new direction. This happens
at the voxel level, so that the prediction at a given location is entirely determined by
values at the same location in the known images.

This can be understood as “flipping” the setup from Section 6.4.1, where the
mask consisted of pixel locations, and the inpainting was repeated with an identical
mask for each channel. Instead, the mask now specifies the known channels, and
inpainting is repeated for each voxel in the volume.

Compressing Diffusion-Weighted Images

Since we assume that diffusion-weighted measurements are on spherical shells in
q-space (Section 6.3.2), we inpaint with second-order linear homogeneous (LH) dif-
fusion

∂tu = ∆u (6.6)

or fourth-order biharmonic (BH) smoothing

∂tu = −∆2u (6.7)

on the sphere, where ∆ is the Laplace-Beltrami operator.
Given that our samples do not form a regular grid, we numerically solve these

equations using Finite Element Methods (FEM) [21, 66]. For this, we first construct
a 3D Delaunay tessellation from the set of all gradient vectors gi and their antipodal
counterparts −gi, and then extract a triangular surface mesh from it. Figure 6.3
shows an example of the given vectors (left), and the resulting triangular mesh
(right).

Similar to PDE-based inpainting in the image domain, we fix the known values
by imposing Dirichlet boundary conditions at the vertices corresponding to the pre-
viously coded diffusion-weighted images, again accounting for antipodal symmetry
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so that each known image determines the values of two vertices. Once a steady state
has been reached, the values at locations corresponding to diffusion-weighted im-
ages that are yet to be coded can serve as predictions. Similar as before, we compute
residuals with respect to those predictions in modular arithmetic, and apply Huff-
man coding or Deflate to them.

We found that, once a sufficient number of diffusion weighted images are avail-
able as a basis of q-space inpainting, its residuals become more compressible than
those from iterative image space inpainting. Our codec adaptively determines a suit-
able point for switching from spatial to q-space predictions. After the first diffusion-
weighted volume, it starts comparing the sizes of compressing subsequent volumes
with the spatial codec (Section 6.4.1) to the size when using q-space inpainting and
switches to it on the first volume where it is beneficial. To limit computational effort,
the spatial codec is no longer tried for subsequent volumes.

Accelerated Computation

Since q-space inpainting happens at a voxel level, it should be repeated for each
voxel of the 3D image. However, the computational cost of running the FEM solver
for each voxel separately is extremely high. Fortunately, linearity of the PDEs and
the fact that the Dirichlet boundary conditions are imposed on the same vertices for
each voxel permit a significant speedup.

Formally, we can consider one time step of numerically solving Equation (6.6)
or (6.7), at time t, as applying a discrete linear differential operator D, which is de-
termined by the vertices and connectivity of our triangular mesh, on a discrete input
u(t) ∈ Rc,

u(t+1) = D
[
u(t)
]

, (6.8)

where c is the number of channels (q-space samples per voxel). The boundary condi-
tions ensure that u(t+1)

k j
= u(t)

k j
at positions k j that correspond to the fixed (previously

coded) channels.
The inpainting result is obtained as the fixed point u(FP) as t → ∞. It can be

approximated by iterating D a sufficient number of times, resulting in an operator
DFP that directly maps

u(FP) = DFP

[
u(0)

]
. (6.9)

DFP is still linear, and we observe that its kernel is the subspace corresponding to
the unknown q-space samples, so that their initialization in u(0) does not influence
the steady state [89]. Therefore, we can rewrite Equation 6.9 as

DFP

[
u(0)

]
=u(0)

k1
DFP[ek1 ] + u(0)

k2
DFP[ek2 ]

+ . . . + u(0)
kn

DFP[ekn ],
(6.10)

where ek j are the indicator vectors of the known samples k j.
In other words, by computing wk j = DFP[ek j ], we can obtain weight vectors that

specify how the known values are combined to predict the unknown ones. They
are analogous to the “inpainting echoes” that have been computed in previous work
[69] for the purpose of optimizing tonal data. Omitting the irrelevant initialization
of the unknown values from the input u(0), and the known values from the output
u(FP) yields a weight matrix W of shape m × n for n known and m unknown values.
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FIGURE 6.4: Top (A): Compression of the first b = 0 volume using the
recently proposed lossless 3D codec [50]. Bottom (B): Compression of
the remaining b = 0 volumes using residuals in modular arithmethic.
Residuals are taken with respect to the first b = 0 volume, after mo-

tion correction.

We compute the coefficients of W by running the FEM n times. In the jth run, we
set the value corresponding to k j to one, all remaining values to zero. After numer-
ically solving the Laplace or Biharmonic PDE, the values at the m unique vertices
that correspond to unknown DWIs yield the jth column of W.

Finally, W allows us to make efficient predictions in each voxel, by simply mul-
tiplying it to a vector that contains the intensities in that voxel from the previously
coded diffusion gradients.

Implementation Details and Running Times

We numerically solve Equations (6.6) and (6.7) via the open-source FEM solver pack-
age FEniCSx [66]. For implementation details, we refer to its tutorials [58]. Applying
this solver to each voxel of a 104× 104× 72 volume takes close to two and four hours,
respectively, for LH and BH PDEs on a single 3.3 GHz CPU core.

The acceleration from the previous section reduces this to only 1.6 s and 2.4 s per
volume, respectively. This includes the time for building a Delaunay tessellation,
which is computed with SciPy [108], and extracting a surface mesh from it using the
BoundaryMesh method from FEniCSx.

Compressing b = 0 Images

Our general approach simplifies for unweighted volumes with b = 0. Again, the
first of them is compressed using the spatial codec. If multiple b = 0 images were
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acquired to increase the signal-to-noise ratio, our codec compresses the remaining
ones by taking the respective residuals with respect to the first b = 0 volume, as
illustrated in Figure 6.4.

6.4.3 Motion Correction

Subject motion commonly occurs during the lengthy dMRI acquisitions, and is typ-
ically accounted for by applying motion correction based on image registration [43].
We also include this step in our codec, since inpainting in q-space requires a correct
spatial alignment of all 3D volumes so that predictions are based on information
from the same location within the brain.

We implement motion correction as follows:

1. We perform affine registration of each volume to the same b = 0 volume,
which is used as a common reference. This yields a transformation matrix
TX→b0 which aligns DWI volume X to the b = 0 reference.

2. When predicting a DWI volume P, we transform all known volumes X via the
affine transformation T−1

P→b0
◦ TX→b0 , which can be computed from the trans-

formations in Step 1.

3. In addition to resampling each known volume X, we re-orient its diffusion
gradient direction gX according to the rotational part of the transformation in
Step 2. Omitting this step would lead to incorrect relative orientations of dif-
fusion gradient directions [61], which could again reduce accuracy of q-space
inpainting.

Transforming images via a common reference allows us to align them without
having to perform image registration on all pairs of volumes. This saves consider-
able computational effort. Combining the two transformations and applying them
in a single step also reduces computational effort, and simultaneously reduces image
blurring compared to a two-stage implementation that would involve interpolating
twice.

In addition to the computational expense, motion correction incurs the cost of
having to store the affine matrices TX→b0 along with the compressed data. Experi-
mental results in Section 6.5.4 will demonstrate that this storage cost is outweighed
by the increase in compression rate when q-space inpainting properly accounts for
motion.

Subject movement correction and B-matrix reorientation are done using the
freely available FSL tools [43] and the DIPY imaging library [31], respectively. A
practically relevant implementation detail concerns boundary effects. As illustrated
in Figure 6.5, missing information can enter the field of view when applying image
transformations. We found that q-space inpainting near the boundary of the domain
works more reliably if we resolve these cases with nearest neighbor extrapolation,
rather than with zero padding.

6.4.4 Compressed File Format

In our current implementation, the relevant data is spread over multiple files whose
sizes are added when computing compression rates.

The volumes that are compressed with the 3D lossless codec (Section 6.4.1) are
stored with the same header as in [50]. Stated briefly, it contains the original min-
imum and maximum voxel values (4 bytes), sizes of the compressed data streams
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FIGURE 6.5: Boundary effects in volume alignment. Top: Origi-
nal DWI volume. Center and Bottom: Motion corrected with zero

padding and nearest neighbor extrapolation, respectively.

FIGURE 6.6: Example images from our two dMRI datasets, without
deliberate head motion (left) and with strong motion artifacts (right).
In each case, six corresponding sagittal slices from different diffusion
weighted images (DWIs) are shown. Note that subject motion leads
to spatial misalignments between DWIs, but also to artifacts within

individual images.
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for zero voxel binary mask and mask intensities (8 bytes), the diffusivity contrast
parameter (4 bytes), the type of PDE (2 bits), the dilation mode (1 bit), and the types
of encoding for mask intensities and residuals (2 bits).

For each volume that is compressed with q-space inpainting, the header contains
the original minimum and maximum voxel values (4 bytes), the type of PDE (2 bits),
the type of encoding for the residuals (1 bit), and the volume number in the original
order (2 bytes).

Mask and residual values themselves are stored after compression with pure
Huffman coding or Deflate, depending on what gave a smaller file size.

In addition, we store the NIfTI header (348 bytes) as well as files containing b
values and gradient vectors in their original ASCII formats. For simplicity, affine
transformations for motion correction are also kept in the ASCII format generated
by FSL FLIRT [43].

6.5 Results and Discussion

6.5.1 Data

We evaluate our codec on two dMRI datasets that were made publicly available by
Koch et al. [55], and are specifically suited to investigate the impact of subject mo-
tion compensation. Both datasets have been collected from the same subject (male,
34 years) in the same scanner, a 3T MAGNETOM Skyra (Siemens Healthcare, Er-
langen, Germany), with an identical measurement sequence. For the first scan, the
subject received the usual instruction of staying as still as possible during the acqui-
sition. For the second scan, the subject was asked to move his head, to deliberately
introduce motion artifacts.

From these datasets, we use the five non-diffusion weighted (b = 0) MRI scans
each, as well as 30 diffusion weighted images (b = 700 s/mm2, diffusion gradient
duration δ = 334 ms, spacing τ = 445 ms). Each image consists of 104 × 104 × 72
voxels with a resolution of 2× 2× 2 mm3. The data, and the effects of subject motion,
are illustrated in Figure 6.6.

6.5.2 DTI Baseline

We compare the signal predictions from our q-space PDE to a simple baseline, which
is derived from the Diffusion Tensor Imaging (DTI) model. DTI is widely used in
practice, due to its relative simplicity and modesty in terms of scanner hardware
and measurement time.

It rests on the assumption that the diffusion propagator P̄(R, τ) is a zero-mean
Gaussian whose covariance matrix is proportional to the diffusion tensor D, a sym-
metric positive definite 3 × 3 matrix that characterizes the local diffusion [7]. The
signal model in DTI relates the diffusion-weighted signal S(ĝ, b) for a given b-value
and gradient vector direction ĝ = g/∥g∥ to the unweighted signal S0 according to

S(ĝ, b) = S0e−bĝTDĝ. (6.11)

Fitting D requires at least one reference MR image S0, plus diffusion-weighted
images in at least six different directions, which are usually taken with a fixed non-
zero b-value. Equation (6.11) can then be used to predict the diffusion-weighted
signal in any desired direction. In our experiments, we compare our PDE-based to
DTI-based predictions that account for the same set of known measurements.
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TABLE 6.1: Compressed file sizes from separate PDE-based compres-
sion of each 3D scan (baseline), from different variants of our pro-
posed lossless codec, as well as from GZIP and lossless codecs from
the JPEG family. For hybrid codecs, the split indicates the number of

volumes coded with q-space or spatial inpainting, respectively.

Scan 1: No deliberate motion Scan 2: Strong head motion

Codec Variant Split Size
(bytes)

Over
R-IEED-1

Split Size
(bytes)

Over
R-IEED-1

R-IEED-1 16022666 - 16082537 -
R-IFOEED-1 15955826 +0.42% 16019913 +0.39%

qLH ◦ R-IFOEED-1 27/4 14984472 +6.50% 26/5 15570493 +3.18%
qLH ◦ R-IEED-1 27/4 14991732 +6.43% 26/5 15578604 +3.13%
qBH ◦ R-IFOEED-1 27/4 15032384 +6.18% 26/5 15681354 +2.50%
qBH ◦ R-IEED-1 27/4 15039644 +6.14% 26/5 15689465 +2.44%
DTI ◦ R-IFOEED-1 24/7 15099213 +5.76% 24/7 15854216 +1.42%
DTI ◦ R-IEED-1 24/7 15108244 +5.71% 24/7 15861176 +1.38%

GZIP 21841701 -36.32% 21819641 -35.67%
JPEG 17885953 -11.63% 17905933 -11.34%
JPEG-LS 17921807 -11.85% 17893931 -11.26%
JPEG2000 15993453 +0.18% 15980005 +0.64%

6.5.3 Comparing Lossless Codecs for Diffusion MRI

A comparison of file sizes that can be achieved on our two test datasets with different
lossless codecs is provided in Table 6.1. As a baseline, the first two rows show results
from coding each 3D volume independently with our recently proposed PDE-based
codec [50], using second-order (R-IEED-1) and fourth-order anisotropic diffusion (R-
IFOEED-1). Additional savings of other codecs with respect to R-IEED-1 are given
in percent.

The second block in Table 6.1 shows results from several variants of our pro-
posed new codec, which adaptively combines inpainting in q-space and image
space. Highest compression rates were achieved when combining linear homo-
geneous (LH) diffusion in q-space with R-IFOEED-1 in image space, closely fol-
lowed by R-IEED-1. Biharmonic (BH) diffusion in q-space also produced useful,
but slightly weaker results.

Both q-space diffusion approaches achieved better compression than predictions
from DTI (Section 6.5.2). This could be due to the fact that the quadratic model of
diffusivities in Equation (6.11) is known to be an oversimplification in many parts of
the brain [2], and the PDE-based approaches provide more flexibility.

DTI requires independent coding of at least seven 3D volumes, which led us to
fix this split in our experiments. PDE-based imputation makes it possible to switch
to q-space inpainting earlier, and our adaptive selection does so after four volumes
in the low-motion data, after five volumes in the data with strong motion.

Switching to q-space inpainting also speeds up our codec. Our implementation
of R-IEED-1 and R-IFOEED-1 requires approximately 478 s and 6185 s, respectively,
for one volume on a single 3.3 GHz CPU core. Even though it would be possible
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TABLE 6.2: Compressed file sizes when omitting motion compensa-
tion, and the relative benefit from motion correction.

Scan 1: No deliberate motion Scan 2: Strong head motion

Codec Variant Split Without
Correction

Benefit Split Without
Correction

Benefit

qLH ◦ R-IFOEED-1 27/4 15113407 +0.85% 16/15 16456557 +5.38%
qLH ◦ R-IEED-1 27/4 15122438 +0.86% 16/15 16478088 +5.46%
qBH ◦ R-IFOEED-1 27/4 15302805 +1.77% 16/15 16582150 +5.43%
qBH ◦ R-IEED-1 27/4 15311836 +1.78% 16/15 16603681 +5.51%
DTI ◦ R-IFOEED-1 24/7 15396194 +1.93% 24/7 16946648 +6.45%
DTI ◦ R-IEED-1 24/7 15405225 +1.93% 24/7 16955494 +6.45%

to further optimize this, exploiting linearity in qLH and qBH, as described in Sec-
tion 6.4.2, significantly lowers the intrinsic computational complexity, so that even
a straightforward implementation only requires 1.64 s and 2.4 s per volume, respec-
tively.

It can be seen in Figure 6.6 that subject motion during different phases of the ac-
quisition leads to different types of artifacts. Results in Table 6.1 include the motion
correction described in Section 6.4.3, which compensates spatial misalignments of
different scans. However, motion can also lead to signal dropouts or to distortions
within scans, which our current codec does not explicitly account for. This explains
why q-space inpainting is less effective on the second as compared to the first scan.
However, even on this challenging dataset that exhibits unusually strong artifacts,
q-space inpainting still provides a benefit compared to all other alternatives.

Finally, Table 6.1 shows results from several other lossless codecs for compari-
son. GZIP is most widely used in practice, but the resulting files are more than 35%
larger than those from our proposed codec. Among the lossless codecs from the
JPEG family, JPEG2000 is the only one that outperforms R-IEED-1 for per-volume
compression, and only by a small margin. Our new hybrid methods that combine
image space and q-space inpainting always performed best.

6.5.4 Benefit from Motion Correction

Table 6.2 investigates the benefit of motion correction (Section 6.4.3) by showing file
sizes when removing motion correction from our codec, and comparing the results
to ones with motion correction (Table 6.1), indicating the benefit in percent.

Even on the first scan, in which the subject tried to keep his head still, compen-
sating for small involuntary movements yields a slight benefit. The effect is largest
when imputing via qBH and DTI. This might be explained by the fact that qLH sat-
isfies the min-max principle, which makes it more robust against inaccuracies in its
inputs, and provides another argument in its favor.

When strong head motion is present (second scan), restoring a correct voxel
alignment via motion correction becomes essential for q-space inpainting. Without
it, the switch to q-space imputation happens much later, and the overall file size is
larger than when coding each volume independently. This is explained by the fact
that our codec always applies difference coding to the b = 0 images, and that this
becomes detrimental when those images are strongly misaligned.
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FIGURE 6.7: Given a set of previously coded DWIs, the closest strat-
egy (left) selects the volume whose gradient vector has the smallest
angular distance from the known ones, to maximize expected pre-
diction accuracy. The furthest strategy (right) maximizes the angular
distance, aiming for a more uniform coverage of the sphere for subse-
quent steps. The sketch shows the directions selected in the first three

steps as black double arrows, the fourth direction as a red dot.

TABLE 6.3: Compressed file size for scan 1 (without strong motion)
when ordering the diffusion-weighted images differently. This affects

the accuracy of q-space imputation.

Codec Variant Closest
Selection

Furthest
Selection

qLH ◦ R-IEED-1 15031703 14991732
qBH ◦ R-IEED-1 15153333 15039644
qDTI ◦ R-IEED-1 15290105 15108244

6.5.5 Effect of Re-ordering DWIs

Since q-space imputation relies on the previously (de)coded diffusion weighted im-
ages, its accuracy depends on the order in which we process the gradient directions.

Two contradictory greedy strategies are illustrated in Figure 6.7: Always select-
ing the closest gradient direction, i.e., the one with the smallest angular distance from
the already known ones, can be expected to result in the most accurate prediction, in
the same spirit as our spatial codec (Section 6.4.1) iteratively grows a mask of known
pixels around an initial set of seed points.

On the other hand, the spatial codec starts with a seed mask that covers the full
domain sparsely, but uniformly. Achieving something similar motivates selecting
the gradient direction that is furthest from any of the known ones. Even though this
strategy can be expected to lead to lower accuracy, and therefore to less compress-
ible residuals in the first few iterations, later iterations might benefit from the more
uniform coverage of the overall (spherical) domain.

Table 6.3 presents the effect of these two selection strategies on final file sizes. The
results are from the first scan, without strong motion. Overall, greedily selecting the
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furthest gradient vector gives slightly smaller overall file sizes. Therefore, this is the
strategy that we followed in all other experiments.

6.6 Conclusion

In this work, we introduced a PDE-based lossless image compression codec that
explicitly exploits both the spatial and the q-space structure in diffusion MRI. To
our knowledge, it is the first codec that has been tailored to this type of data. We
demonstrated a clear improvement over PDE-based codecs that treat each volume
separately, and over other established baselines including GZIP and spatial codecs
from the JPEG family.

We evaluated several variants of our codec, and found that q-space predictions
with linear homogeneous diffusion permitted the highest compression rates among
them. With our proposed method for accelerated computation, it could also be ap-
plied at a very reasonable computational cost. We further demonstrated the im-
portance of including motion correction, and propose an efficient implementation
that is based on affine image transformations via a common reference. Finally, we
found that the order of coding the diffusion-weighted volumes had a relatively mi-
nor effect, but that a greedy strategy that strives to cover the sphere as uniformly as
possible provides a small benefit.

In the future, one might attempt to replace the switching between image space
and q-space inpainting with a PDE that jointly operates on the product space. How-
ever, this is likely to substantially increase the computational effort, and introduces
the issue of properly balancing image space and q-space diffusion. Similarly, em-
ploying nonlinear PDEs for q-space predictions might further increase compression
rates, but is likely to cause a high computational cost.
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Chapter 7

Conclusion

7.1 Contributions

7.1.1 Image inpainting

Image inpainting is a technique used in image processing to fill in missing or cor-
rupted parts of an image based on the surrounding areas or known subset of pixels.
It’s a form of image restoration where the goal is to generate visually coherent and
realistic information in the areas where data is missing. Diffusion PDEs provide a
mathematical foundation for modeling the process of propagating information and
can be adapted for image inpainting. By leveraging the principles of diffusion and
adapting PDEs to guide the inpainting process, algorithms can effectively estimate
and fill in missing or corrupted parts of an image while preserving important struc-
tural features.

As a contribution to this topic we introduced a novel fourth-order PDE for edge
enhancing diffusion (FOEED), steered by a fourth-order diffusion tensor. The diffu-
sion tensor is designed from the regularized local image gradient information. The
ingredients of the diffusion tensor are the diffusivity function and contrast param-
eter. They define the direction and magnitude of the diffusion. We provide a the-
oretical unifying framework to define all anisotropic fourth-order diffusion based
methods which have been proposed so far. In implementation, we used a fast semi-
iterative scheme, and demonstrated that it achieved improved accuracy in several
inpainting tasks, including reconstructing images from a small fraction of pixels, or
removing scratches.

Our main motivation for using fourth-order diffusion in this context is the in-
creased smoothness of results compared to second-order PDEs [114], which we ex-
pected to result in visually more pleasant reconstructions. We also demonstrated
that the reconstruction quality difference between the second-order edge enhancing
diffusion-based PDE (EED) increased as we decrease the fraction of known pixels.

7.1.2 3D medical image compression

In medical image compression, preserving every detail of an image is crucial for ac-
curate diagnosis and analysis by healthcare professionals. The lossless compression
ensures that the original image can be perfectly reconstructed from the compressed
version, making it superior for medical image storage and transmission.

PDE-based inpainting has previously been shown to have a strong potential for
lossy image compression, especially at high compression rates. We demonstrated
that this approach also holds promise for lossless compression of 3D medical im-
ages. In particular, we propose a codec that beats state-of-the-art alternatives by
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combining a simple yet efficient to code initial inpainting mask with iterative recon-
struction and coding of residuals, as well as a separate coding of empty space.

As an initial mask we use the hexahedral grid consisting of voxels of every fourth
in each of all three spatial dimensions. It releases us from substantial effort in select-
ing a suitable small subset of voxel locations as an inpainting mask from which the
original volume can be approximately reconstructed and the cost of coding the ini-
tial mask, i.e., initial voxel locations and voxel values. Our codec exploits also the
fact that many medical images contain a substantial amount of empty space, which
typically yields the lowest possible intensity, and can be coded efficiently as a run
length encoded binary mask. We perform residual coding and iterative reconstruc-
tion to achieve a lossless codec and to compensate coarse reconstruction with our
initial mask.

7.1.3 Diffusion MR image compression

Diffusion MRI visualizes and quantifies the diffusion of water molecules within bio-
logical tissues. The dMRI data are 4D data with many repeated 3D volumetric scans.
Volumetric scans, diffusion MRI volumes are three dimensional spatial data. The
spatial redundency is exploited in our 3D medical image codec [50]. The 3D codec
[50] can be applied for each 3D volume individually to compress 4D dMRI data. We
observed that exploiting redundancy in the fourth dimension brings more compres-
sion benefit than applying the 3D spatial codec [50] individually. The fourth dimen-
sion in dMRI, q-space is for gradient sample indicating the direction and strength of
a diffusion sensitizing gradient in MRI during the measurement of water molecules
in a biological tissue. Q-space redundancy comes with the fact that measurements
for nearby gradient directions are usually similar. It results in very similar MRI vol-
umes which can be exploited.

We introduced a PDE-based lossless image compression codec that explicitly ex-
ploits both the spatial and the q-space structure in diffusion MRI. To our knowledge,
it is the first codec that has been tailored to this type of data. We demonstrated a
clear improvement over PDE-based codecs that treat each volume separately, and
over other established baselines including GZIP and spatial codecs from the JPEG
family.

We evaluated several variants of our codec, and found that q-space predictions
with linear homogeneous diffusion permitted the highest compression rates among
them. With our proposed method for accelerated computation, it could also be ap-
plied at a very reasonable computational cost. We further demonstrated the im-
portance of including motion correction, and propose an efficient implementation
that is based on affine image transformations via a common reference. Finally, we
found that the order of coding the diffusion-weighted volumes had a relatively mi-
nor effect, but that a greedy strategy that strives to cover the sphere as uniformly as
possible provides a small benefit.

Last but not least, the potential of deep learning for lossless compression of nat-
ural images has been demonstrated in the recent works [73, 118]. However, training
deep learning based models to develop a codec for medical images will have to
account for data privacy, which makes it difficult to obtain large-scale training data
and raises concerns about inference attacks [77]. Hence, we kept deep learning based
approches out of this thesis scope.
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7.2 Future work

7.2.1 Anisotropic fourth-order diffusion

Our proposed FOEED anisotropic fourth-order diffusion model is specific for im-
age inpainting and compression purposes. The FOEED model is based on a single
edge direction at each pixel, extracted via a traditional second-order structure tensor.
It can be investigated as a potential future research work to combine this with ap-
proaches for the estimation of complex structures such as crossings or bifurcations
[1, 98], and with their improved reconstruction, e.g., by operating on the space of
positions and orientations [11, 22, 28].

Although it is designed specifically for inpainting and compression, the FOEED
can be applied for image denoising purposes. For denoising, it is suggested to inves-
tigate the FOEED model’s diffusivity function. There is a set of different diffusivity
functions investigated for inpainting with the FOEED model in our work which can
be investigated for denoising applications as a starting point. The FOEED model
employs the Charbonnier diffusivity function as it has been proved to be useful for
inpainting applications.

Anisotropic fourth-order diffusion has the potential for super-resolution and im-
age reconstruction. For example, this work [39] employs isotropic fourth-order dif-
fusion mode as a part of its super-resolution model. The isotropic model can be
replaced by an anisotropic counterpart with a specifically designed diffusion tensor
and diffusivity function.

In work [91], the second-order anisotropic diffusion is employed to design a 3D
seismic data fusion and filtering. The PDE model can be extended to the fourth-
order anisotropic model and its performance can be investigated compared to the
proposed second-order counterpart.

7.2.2 Medical image compression

Both our proposed 3D lossless medical image and 4D dMRI codecs have the poten-
tial to extend to almost/near lossless medical image compression which focuses on
measurement noise as a loss. We use a regular mask in our proposed codecs as it is
simple and requires no location signaling to the final bitstream as an overhead. With
almost lossless schemes one can re-design regular masks based on tree structure so
that more mask locations are gathered to the region of importance in a medical im-
age. Then the obtained mask locations can be signaled as coding tree blocks which
consist of 0s and 1s. This might be further compressed by Run length encoding.
Given that dMR images change due to gradient direction, ROI is expected to be on
the same locations. Finding ROI in one sample of q-space should be efficient enough
in almost lossless compression of dMRI data. However, here one should introduce
a metric to make sure that the diagnostically relevant structures are not affected.
This metric can be structural similarity index (SSIM) which should be higher than
pre-defined threshold during the encoding process of codec.

Further, for the work on dMRI codec, as a future work, one might attempt to
replace the switching between image space and q-space inpainting with a PDE that
jointly operates on the product space. However, this is likely to substantially in-
crease the computational effort, and introduces the issue of properly balancing im-
age space and q-space diffusion. Similarly, employing nonlinear PDEs for q-space
predictions might further increase compression rates, but is likely to cause a high
computational cost.
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Our 4D dMRI codec is specifically designed for a single shell diffusion MRI
dataset. In single shell diffusion MRI, only one set of diffusion gradients with a
particular diffusion weightings, described by b-values, is used during image acqui-
sition. The b-value represents the strength and timing of the diffusion-sensitizing
gradients applied in the MRI sequence. Our dMRI codec can be extended to multi-
shell diffusion MRI. Multi-shell diffusion MRI employs multiple sets of diffusion
gradients with varying b-values during image acquisition. Different b-values probe
different scales of diffusion in biological tissues. For each different b-values 4D dMRI
codec can be applied seperately.
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