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Abstract

Consider the one-dimensional nonlinear Schrédinger equation i0yu = —Azu — |u

P~

with initial data u(0,-) = ug € H'(R) and subcritical /critical exponent 3 < p < 5.

This thesis examines a question derived from the so-called soliton resolution conjec-
ture. The NLS admits regular solutions of the form wu(t,z) = eAtQy(x), A > 0 called
solitons.

The soliton resolution conjecture claims that every global solution of the NLS will
eventually resolve into a sum of soliton-like solutions and a radiation component which
disperses like a linear solution.

We consider the related question of ’asymptotic stability’. For initial data close to a
soliton, does the solution resolve into a soliton-like solution and radiation?

Specifically, we examine the linearisation of the NLS around the soliton. Let L denote
the Hamiltonian of the resulting linear equation dyu = Lu.

We show the following in this thesis.

1.

We fully characterise the spectrum of L. Apart from several well-known eigenvalues
in 0, 7L admits a resonance in £1 for p = 3, a symmetrical pair of eigenvalues
+FE e (—1,1)\{0} for 3 < p < 5, as well as two additional generalised eigenvalues
in 0 for p = 5.

. Based on the above characterisation of the spectrum of L, we show the existence of

a wave operator for 3 < p < 5, mapping dyu = Lu onto the free Schrédinger equa-
tion. This is accomplished by constructing a distorted Fourier transform mapping
L onto a multiplication operator.

. We show that the wave operator acts as a bounded operator L? — L? for every

1 < g < 0. As a consequence, for 3 < p < 5, the equation d;u = Lu allows for the
same dispersive estimates as the free equation.

. For 3 < p < 5, we show a local smoothing estimate for d,u = Lu. Due to

the absence of resonances, this local smoothing estimate allows for significantly
stronger local decay than the case of the free equation i0,u = —Auw.



Acknowledgements

First and foremost, I would like to express my deep gratitude to my supervisor, Prof.
Herbert Koch. For always making time when I had something to share, and being patient
when I didn’t, especially during the corona pandemic. For his knowledge on a range of
topics related to this thesis.

I am grateful to the Mathematical Institute and BIGS, for providing a welcoming and
productive environment. This includes both the mathematical and non-mathematical
staff, who would always be helpful, like Frau Bingel. Many thanks go to the SFB 1060
as well, for supporting me financially.

Finally, I want to thank my family, for being patient and supportive.



Contents

Contents

Introduction

Setting

1.1. Solitary Waves . . . . . . . . ..
1.2. Why are Solitary Waves interesting? . . . . . .. .. ... ... ... ...
1.3. Asymptotic Stability . . . . . . . ...
1.4. Symmetries . . . . . .. L.
1.5. Criticality . . . . . . . . .
1.6. Solution . . . . . . . . .
1.7. Well-Posedness . . . . . . . .. .
1.8. Linearisation and Eigenvaluein O . . . . . .. .. ... ... ........
1.9. Hilbert Space . . . . . . . . . L
1.10. Spectrum of L . . . . . . ..
1.11. Essential Spectrum . . . . . . . .. L L Lo
1.12. Spectral Gap . . . . . . . . L
1.13. Wave Operator . . . . . . . . . . o
1.14. Dispersive Estimates . . . . . . . . . . ... Lo oo
1.15. Outlook: Stability of the nonlinear Schrédinger Equation . . . . . . . ..

Fundamental System

2.1. The Integral Equation . . . . . . . . . ... ... .. ... ... ... ...

2.2. Fundamental System . . . . . .. ... oo L

2.3. Prioritizing Decay . . . . . . . . ...
2.3.1. Essential Spectrum: |[E|>1. ... .. ... ... ... ......
2.3.2. Spectral Gap: [E| <1 .. ... ... ..
2.3.3. Spectral Boundary: |E|=1 .. ... ... ... ...........
2.3.4. Dimension of the Solution Space . . .. ... .. ... ... ....

2.4. Prioritizing Continuity . . . . . . . . . ... o
241, Smallz . . ..o
242, Large & . . . . .

Spectrum of L

Meromorphic Differential Equations

3.1. First Transformation . . . . . . . .. .. ... .. . o

3.2. Hypergeometric Equation . . . . .. .. .. ... ... ... ..

3.3. Second Transformation . . . . . . .. .. ... ... Lo

3.4. Strategy of Proof . . . . . ...
3.4.1. Eigenvalues . . . . . . .. ... e
3.4.2. Resonances . . . . . . . . ..o i e e

12

12
12
13
14
16
17
18
20
21
22
24
26
27
29
30
31

33
34
35
36
36
39
43
44
46
48
50



Contents

3.5. The Even Case . . . . . . . . . e 57
3.6. The Odd Case . . . . . . . . . e e 61

4. Absence of Embedded Eigenvalues 66
4.1. The Even Case . . . . . . . o o o v o e e 67
4.2. The Odd Case . . . . . . . . . 74
4.3. Absence of Eigenvalues . . . . . . . ... Lo 7

5. Spectrum between —1 and 1 78
5. 1. OVerview . . . . . . . e 78
5.1.1. The Even Case . . . . . . . . . . . o v v v v o 78

5.1.2. The Odd Case . . . . . . . . . . . o o o 80

5.1.3. Five Goals. . . . . . . . . . . 81

5.2, Graphics . . . . . . . . 82
52.1. TheEven Case . . . . . . . . . . . . . 82

5.2.2. The Odd Case . . . . . . . . . . . . 86

5.3. Even Resonances . . . . . . . . . . . ... ... e 90
5.3.1. Notation. . . . . . . . . . . e 90

5.3.2. Resonance in the Cubic Case . . . . . . . . ... ... ... .... 91

5.3.3. Establishing Bounds . . . . . . ... ... ... ... ... ..., 93

5.3.4. Absence of Resonances . . . . . . . . . ... ... .. ... 105

5.4. Odd Resonances . . . . . . . . . . . e 107
54.1. Lower Bound . . . . . . . . . . . . ... 108

5.4.2. Recursion . . . . . . . . . e 110

5.4.3. Absence of Resonances . . . . . . . . . ... ... ... ... ..., 113

5.5. Cubic Case, Even Eigenvalues . . . . . . . . .. ... ... ... ...... 115
5.6. Cubic Case, Odd Eigenvalues . . . . . . .. .. ... ... ... ...... 140
5.7. Controlling the Resonance . . . . . . ... ... ... ... ... ... ... 152
5.8. Characterisation of the Spectrum . . . . . . . ... .. ... ... ... .. 158

6. Definition: Eigenfunctions and Hilbert Space 161
6.1. Internal Modes . . . . . . . . . ... 161
6.2. Hilbert Space . . . . . . . . . 161
I1l. Wave Operator 163
7. Goal 163
8. Bounded Solutions 165
8.1. Bounds on Symmetrical Solutions . . . . . . . ... ... oL 165
8.2. Transmission Matrix . . . . . . . . . . . e 169
8.2.1. Smallx . . . . . . . . 169

8.2.2. Large & . . . . . o e 170

8.3. Constructing Symmetrical Solutions . . . . .. .. ... ... ... .... 173



8.4.

8.9.

Contents

Remainder Terms . . . . . . . . . . . ... ... ... ... ..
8.4.1. First Order Remainder Terms . . . . . . . . ... ...
8.4.2. Second Order Remainder Terms . . . ... ... ...
Jost Functions . . . . . .. ... ... ... ...

Distorted Fourier Transform

9.1.
9.2.

9.3.
9.4.

9.5.
9.6.

Overview . . . . . . .
Geand Gy, . . . o o 0 0o
9.2.1. Approximate Identity . . .. ... ... ... ... ..
9.2.2. Unitarity . . .. . . . ... ...
9.2.3. Alternative Definition . . . . ... .. ... .. ... ..
Definition of F' . . . . . . . . ...
Injectivity of F' . . . . . . . . ...
9.4.1. Spectral Theorem and Projection-Valued Measures . .
9.4.2. Regularity . . . . . . ... ... oL

9.4.3. Variation of Constants and Wronskian for —iLw = wyq

9.4.4. Definitionof ® . . . . ... ... oo
9.4.5. Proof of Injectivity . . . . . . .. ... ...

L2-ISOmetry . . . o oo
Zeros of F' . . . . . .

10. Wave Operator

11.

10.1.
10.2.

Classical Fourier Transformation . . ... .. ... ... ...
Definition of the Wave Operator . . . . .. .. .. ... ...

Bounds on the Wave Operator

11.1.
11.2.
11.3.
11.4.
11.5.

11.6.

11.7.

Smooth Remainder . . . . . . . . . ... ... ... ... ...
Fourier Multiplier . . . . . . . .. .. ... ... ... ... ..
Decomposition of the Wave Operator . . . . . . .. ... ...
L9%-Boundedness . . . . . . . .. ... ... ...
Galilean Operator . . . . . . .. ... ... ... ...,
11.5.1. Boundson T . . . . . . .. .. ... ... ... . ...
11.5.2. Boundson T . . . . ...
Commutators . . . . . . . . . . .
11.6.1. Boundson 17 . . . . . . . . . . .. ...
11.6.2. Boundson T . . . . . . . . . ... ... ... ...,
H'Boundedness . . . . . . ...

12. Dispersive Estimates

12.1.

Local Smoothing Estimate . . . . . . . . ... ... ... ...

IV. Outlook: Stability of the nonlinear Schréodinger Equation

13.Stability for Small Data

245
245

253

254



Contents

14. Asymptotic Stability, Possible Ansatz
14.1. Orthogonality Conditions . . . . . . . .. .. ... ... ... ... ...
14.2. The Continuity Argument . . . . . . . . .. . ... .. ...
14.3. Fermi’s Golden Rule . . . . . . .. .. .. . oo



Contents

Convention (On the use of constants) Throughout this thesis, the variable C is
used to denote constants without quantifying them. Dependencies are denoted as sub-
indices.

Consider the following example. Given functions f,g: R> — R, the inequality:

Ve,y,z € R: f(z,y,2) < Cg(x,y, 2) (0.1)
is to be read as:
AC >0 Vx,y,z e R: f(z,y,2) < Cg(x,y, 2). (0.2)
Similarly, the inequality:
Vo,y,z e R: f(z,y,2) < Cryg(x,y, 2) (0.3)
is to be read as:
Ve,y e R3IAC >0Vz eR: f(z,y,2) < Cy(z,vy, 2). (0.4)

Further, no relationship is implied between the constants of different inequalities, even
though the same variable name C is used. Using C as in (0.1) or (0.3) simply implies
the existence of a constant in the sense of (0.2) or (0.4).

Consequently, given f,g: R — R, the inequality:
VreR: f(z) < Cg(z) < C? (0.5)
implies:
VzeR: f(z) <C. (0.6)

Clearly, the constant C denotes different numbers in (0.5) and (0.6).
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The following table gives an overview over the most important quantities used through-
out this thesis. The arrangement is loosely based on the order in which the quantities

are introduced.

Quantity | Description

Q Ground state, see (1.3) on page 12.

L Linear operator, arises by linearising the NLS around a soliton, see
(1.35) on page 22.

Lo Lo = (—A + 1)1, see definition 10.0.2 on page 225.

(1, ¢ Internal Modes. Eigenfunctions of L associated with non-zero eigenvalues,
see definition 6.1.2 on page 161.

H Hilbert space for which ¢L is self-adjoint, see definition 1.9.1 on page 23.

H H ={w e H|{(w, 1)y = (w,{2)y = 0}, see definition 6.2.1 on page 161.

H; Generalisation of H for s > 0 with H; = H, see chapter 9.5 on page 218.

H. H, Subspaces of H, containing only even and odd functions respectively.

Hs H® ={f e L*(R)|(1 +|-|)2f € L*(R)}. See definition 9.2.22 on page 198.

T T = GF. Wave operator, unitary transform H — H'(R)? mapping the
linearised operator L onto (—A + 1)1, see definition 10.2.1 on page 228.

1 I= (2 _01>, matrix equivalent of the imaginary unit <.

F Unitary transform, H — H'x H ! mapping L onto the multiplication
operator isgn(€)(£2 + 1), see definition 9.3.1 on page 201. See also
(9.2), (9.3) on page 186.

G Unitary transform, H' x A — H, inverse of F'. See lemma 9.2.27 on
page 200, as well as (9.4), (9.5) on page 186.

g Unitary transform, H' x B! — H 1(R)2, mapping the multiplication
operator isgn(€)(£2 + 1) onto (—A + 1)1, see definition 10.1.1 on page 226.

We(&,2) | Bounded even solution to Lw = isgn(£)(€2 4+ 1)w wrt. to x. Used as a
kernel when constructing F' and G. See definition 8.5.1 on page 183.

W,(¢€,2) | Bounded odd solution to Lw = isgn(£)(£2 + 1)w wrt. to x. Used as a
kernel when constructing ' and G. See definition 8.5.1 on page 183.

U, V, Component functions of W, = (U, V).

U,,V, Component functions of W, = (U,, V).

Ce, Se Coefficient functions used when constructing We, see theorem 8.3.5
and definition 8.3.6 on pages 176 and 178.

Co, So Coefficient functions used when constructing W,, compare c, Se.

Re, R, Remainder terms, they arise by comparing the asymptotics of W,, W,

with ce(§) cos(€x) and s.(§) sin(£z), see definition 8.5.6 on page 184.
R, R, feature discontinuities in £ = 0 and z = 0 in contrast to We, W,,.
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Quantity | Description

Ry, Rev | Component functions of Re = (R, Re,v)-

R, v, Ro,v | Component functions of R, = (Rou, Rov)-

Re, R, Remainder terms of higher order, they decay faster than R., R, with
respect to £. See definition 8.5.12 on page 185.

Pes Po Remainder terms, replacing R., R, from chapter 11 onwards. They use a
cut-off function to ensure smoothness in x = 0 and £ = 0. See definition
11.1.1 on page 229.

pe,U, Pe,v | Component functions of pe = (pe,r, pe,v)-

Po,Us Po,v | Component functions of p, = (po.rr, po,v)-

Des Po Remainder terms of higher order. See definition 11.1.6 on page 230.

X Cut-off function. Smooth even function R — [0, 1] fulfilling x(z) =1
for |£] > 2 and x(z) =0 for [{| < 1.

Aek,Aor | 1 <k <6. Operators arising from decomposing the wave operator.
Used to show L? — L9 estimates for the wave operator in chapter 11.
See definition 11.3.1 and 11.3.3 on page 234/235.

Bk, By | 1 <k <6. Operators arising from decomposing the inverse of the
wave operator. See definition 11.3.1 and 11.3.3 on page 234/235.

Ji Jy = § + It0,, t € R. Operator related to the Galilean invariance.

F Matrix Fourier transform. See definition 12.1.1 on page 246.
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Part |I.
Introduction

1. Setting
Consider the nonlinear Schrodinger equation (NLS) in one space dimension
O = —Agu — |[ulP u, (1.1)

foru: R xR — C, 3 <p <5 and initial data u(0,-) = up. We mostly consider the cases
up € H'(R) and ug € L%(R).

This Cauchy problem is a special case of the d-dimensional nonlinear Schrodinger
equation

iOu = —Au+ pluf " u, (1.2)

foru:RxR?—-C,1<p<1+ % and p = +1. The case of y = —1, which we consider,
is called the focusing equation. In contrast, for = 1, (1.2) is known as the defocusing
equation.

By Bourgain [4], (1.2), given u = —1 and assuming sufficient regularity s, is locally
well-posed in H?® for every p > 1. In particular, 1 <p <1+ % and s > 0 ensures local
well-posedness in L? (see in addition Cazenave and Weissler [6]), while s > % ensures
local well-posedness in H® for every p > 1.

By Ginibre and Velo [17], (1.2) is globally well-posed in H* for 1 < p < 1+ 4. For
p=1+ % and p = —1, blow-up solutions are explicitly known, see e.g. [24].
1.1. Solitary Waves
Consider a ground state Qy : R — R, A > 0 fulfilling

AQx + |QxP1 Qx = 2Q) (1.3)

and decaying Qx(z) — 0 for |z| — oo. Then, u(t,z) = eMQ,(z) fulfils the nonlinear
Schrodinger equation (1.2). Such a solution is called a solitary wave or a soliton. Soli-
tary waves are a feature of many nonlinear dispersive equations, notably the Korteweg-de
Vries equation, the Sine-Gordon equation and the nonlinear wave equation.

By Strauss [29] and Berestycki and Lions [2], there exist non-trivial ground states

solving (1.3) for every dimension d > 1. By Kwong [22], building on Gidas, Ni and
Nirenberg [16], the solution @) of (1.3) is unique up to translation and phase invariance,

12



1. Setting

meaning multiplication with e, ;i € R. Further, there is a base solution which is posi-
tive and radially symmetric.

In the one-dimensional case d = 1, the ground state can be given explicitly as Q) (x) =
1
AP1Q(A2z), whereby
p+1 2(p + Delr— Ve

-1 _ _
Q)™ = 2cosh2(%x) ~ (elpDz 4 1)2° (14)

The explicit formula (1.4) makes the one-dimensional easier to study, and is the reason
we only consider d = 1 in this thesis.

1.2. Why are Solitary Waves interesting?

The existence of soliton solutions, with solitons being particle-like solutions that persist
for all time, can in some ways be seen as surprising. Prior to the 1950’s, it was generally
expected for nonlinear interactions to lead to "thermalisation". The idea being that any
solution would approach a thermal equilibrium through the non-linear interaction acting
chaotically on the solution.

This idea would naturally lead to the conclusion that, given enough time, any solu-
tion of the NLS would ultimately amount to radiation, i.e. behave like a solution of the
free equation i0; = —Awu. It is to be noted that, given small enough initial data with
respect to ||zuol|p2g)2 ; [|uoll p2(g)2. it is well-known that thermalisation indeed occurs.
See, e.g. [19] or, alternatively, lemma 13.0.3 in this thesis.

There is a famous experiment by Enrico Fermi, John Pasta, Stanislaw Ulam and Mary
Tsingou in 1953-54 on one of the early computers, the Los Alamos MANIAC computer.
They used the MANIAC computer to solve a discrete system of nearest-neighbor coupled
oscillators, hoping to gain inside into the process of thermalisation. Instead, the system
exhibited a complicated quasi-periodic behaviour.

This perplexing behaviour was explained by Zabusky and Kruskal [36] in 1965. They
showed the continuum limit of the above system of coupled ODEs to be the Korteweg-de
Vries (KdV) equation. The quasi-periodic behaviour being explained by the existence of
solition solutions, as well as the surprising fact that solitons apparently can pass through
one another without affecting each others asymptotic shapes.

This discovery naturally lead to a great amount of effort being spend on studying
soliton mechanics, in hopes of understanding the long term behaviour of non-linear dis-
persive equations. Perhaps the most powerful tool was developed by Gardner, Greene,
Kruskal and Miura [15], that being the inverse scattering transform, an ingenious method
for solving the KdV equation.

The inverse scattering transform is to technically complex to be described in any detail

here. We give a very basic run-down. Given a solution u(t, x) of the KdV equation, one
can fin a Lax pair, two linear operators L = —92 + u and B, such that L; = [B, L].

13



1. Setting

Then, if ¢ (t) fulfils the time evolution d;¢p = B, and ¢(0) is an eigenfunction of L,
L(0) = Ap(0), it follows that () is an eigenfunction of L with the same eigenvalue A.

One now fixes a potential u € S(R) and characterises the so-called scattering data,
meaning the time evolution of the eigenfunctions associated with each eigenvalue A, as
well as the transmission and reflection coefficient. The two coefficients are given as
follows. If w(z) solves L — k2, k > 0 and behaves asymptotically as e for z — —oo,
then we also find w(z) ~ a(k)e™™ + b(k)e~ ™%, a is called transmission coefficient, while
b is called reflection coefficient.

Having characterised the scattering data, one can recover the potential u by solving
the Gelfand-Levitan-Marchenko integral equation.

The inverse scattering transform was soon extended to many completely integrable
systems, most notably for us: the nonlinear Schrodinger equation (1.1), for p = 3.
Other systems for which the inverse scattering transform can be used include the Sine-
Gordon equation, the Kadomtsev—Petviashvili equation, the Ishimori equation and the
Dym equation.

A far more comprehensive overview of the development of soliton theory is provided
by Palais in [27]. Still, the vastness of the literature is such that even [27] can only give
an introduction to the topic.

1.3. Asymptotic Stability

The discovery of solitons has given rise to a new conjecture on the long term behaviour
of many nonlinear dispersive equation, replacing thermalisation.

The so-called soliton resolution conjecture predicts that any reasonably regular solu-
tion, given enough time, resolves into a finite number of soliton solutions and a radiative
term, meaning something which behaves like a solution of the linear equation.

As mentioned, this conjecture is also posed for other nonlinear dispersive equations,
notably the nonlinear wave equation and the Korteweg-de Vries equation. Tao [32] gives
a more comprehensive overview over solitons and the soliton resolution conjecture for a
variety of different dispersive equations.

The topic of this thesis derives from the related question of asymptotic stability. Con-
sidering initial data ug = Q) + wg, whereby we have perturbed a soliton with some small
wp. Asymptotic stability states that a perturbed soliton converges to a possibly different
solitary wave and radiation.

Generally speaking, asymptotic stability is a case-by-case problem with no known uni-
versal approach or criterium. Instead, there are a number of different ways to approach

the problem. The following overview is largely taken from [21].

1. Integrability methods, mainly the inverse scattering transform. Because the in-

14



1. Setting

verse scattering transform actually solves the problem, it can result in much more
information than just asymptotic stability. For systems that are not completely
integrable, this Ansatz is not viable, although some spectral information may be
obtained from the integrability structure nonetheless.

. Perturbative Methods, meaning one studies the flow in a neighbourhood of the
solitary wave. One usually presupposes suitable assumptions on the initial data,
or global in time assumptions on the solution, or restriction of the initial data
to a manifold of finite co-dimension. One then decomposes the solution into a
wave, described by a set number of geometrical parameters, and a small residue.
Asymptotic stability reduces to understanding the long term behaviour of the
residue and the evolution of the parameters.

Ideally, one would like to obtain "scattering", meaning that the residue behaves
like a solution of a linear dispersive equation. If scattering can be shown, then
controlling the parameters is usually not all to difficult.

The perturbative approach can in principle be applied to study any soliton problem.
However, the linearised PDE satisfied by the residue is often hard to study. The
following ideas exist.

a) Dispersive estimates. The idea is to mimic the small data global Cauchy prob-
lem, after first proving dispersive estimates for the linear equation resulting
from linearising around a soliton. This usually requires strong spectral infor-
mation on the resulting Schrodinger operator which can present a problem,
especially if the soltion is not given by an explicit formula.

Dispersive estimates become more difficult to use for low power nonlinearities
and/or low space dimension. Also, if the linearised Schréodinger operator
features non-trivial eigenvalues, the corresponding eigenfunctions being called
internal modes, then further complications usually arise.

b) Liapunov functionals. Virial type arguments can provide convergence in a
weaker sense, under different, sometimes weaker spectral information. This
method is often useful for low dimensional problems with low power nonlin-
earities, since dispersive estimates are not needed.

A useful tool to be noted in this context are the Morawetz inequalities, a type
of estimate that was originally derived by studying and bounding the radial
derivative I‘X“ of certain nonlinear equations. In recent years so called inter-
action Morawetz inequalities were introduced, which are not tied to radially
symmetric data. As an example, an interaction Morawetz identity can be

used to control the correlation quantity

[[.] [t ) )P 4o (L5)
R JR3 JR3 |z =yl

in case of the three-dimensional nonlinear Schrédinger equation. See for ex-
ample [20].

15



1. Setting

This thesis considers the question of asymptotic stability by establishing dispersive
estimates on the linearised Schrodinger equation as described in point 2a). Using the
explicit formula of the ground state (1.4), we fully characterise the spectrum of the
linearised operator, which we then use to define a wave operator and establish several
dispersive estimate. Using the results of this thesis should make it relatively straightfor-
ward to establish asymptotic stability results for the NLS. However, proving asymptotic
stability is beyond the scope of this thesis.

1.4. Symmetries

Before we proceed further, let us consider some basic facts about the NLS. We begin by
noting that the NLS conserves several quantities. As stated before, initial data ug € H'!
suffices to ensure local well-posedness. We consider well-posedness in more detail in
chapter 1.7.

Lemma 1.4.1 Let 3 < p < 5. Consider a solution v € C°H'([0,%y) x R) to (1.1)
with initial data u(0,-) = ug € H*(R) and time of existence ty € [0,00]. The following
quantities are conserved for 0 <t < ty:

1. Mass:
[u(t, )l g2 = lluoll Lz - (1.6)

2. Energy:

1

1 2 v1 1 2 1 +1
~|Vult, - - P v/ - pTL 1.7
2|| u( )||L2 D 1||U( )HL2 2” U0||L2 D 1||U0||L2 (1.7)

3. Momentum:
Im (/R Vu(t,:z:)u(t,a:)da;) =Im (/R Vuo(x)uo(a;)d:v> . (1.8)

Proof. Taking the derivative of each quantity with respect to ¢ and then applying (1.1)
gives the desired result. O
Next, we note the symmetries of (1.1):

1. Translation invariance: If u is a solution, so is (¢, z) — wu(t + to, z + o), to, xo € R.

2. Phase invariance: If u is a solution, so is e®u, v € R.

3. Scaling invariance: If u is a solution, so is (¢, x) — )\P%lu(/\%, Az), A > 0.

4. Galilean invariance: If u is a solution, so is (t,z) — u(t,x — ﬁt)e’g(x_gt), B eR.

In the critical case p = 5, (1.1) admits one additional symmetry not in H!, via the so
called pseudoconformal transformation:

16



1. Setting

|z
Loq(L, el
[t]2

u—\»—l
18

5. Pseudoconformal invariance: If w is a solution, so is (¢, z) —

The pseudoconformal transformation immediately ensures the existence of blow-up so-
lutions. Indeed, applied to a solitary wave, it gives rise to a solution which blows up at
time ¢ = 0.

We note that not every symmetry corresponds to a conserved quantities. By a well-
known theorem of Noether, every conserved quantity should correspond to a symmetry
preserving the Hamiltonian.

This is simply due to the fact that neither the scaling, the Galilean nor the pseudo-
conformal invariance preserve the Hamiltonian.

In the above case, the translation invariance in space corresponds to the conservation
of momentum, while the phase invariance and translation invariance in time correspond
to the conservation of mass and energy respectively.

1.5. Criticality

p = 5 allows for an additional symmetry. Somehow, (1.1) is fundamentally different for
p < 5 and p = 5. The case of p = 3 is also different, as then the system is completely
integrable. In this context it is useful to introduce the concept of criticality.

Consider the scaling symmetry for A > 0:
ult, @) = AFTu(A2, Ax). (1.9)
Given a Banach space of initial data, the problem (1.2) is called critical if the norm stays
invariant under the scaling operator (1.9).
If the norm diverges as A — oo the problem is called subcritical. If the norm instead

converges to zero, the problem is called supercritical.

(1.2) is called mass- or L2-critical for p = 2 + 1, related to the conservation of mass:

/R|u0|2dac:/R|u(t,m)|2dm. (1.10)

For p = ﬁ +1, it is called energy- or H'-critical, related to the conservation of energy:

\u0|p+1dx——/ Vu(ta)P dr+ o /|u (t, )"+ da.
(1.11)

7]
2/’VU0| de + —— +1

In this thesis, we consider the one-dimensional focusing equation (1.1) in the mass-
subcritical case 3 < p < 5 and the mass-critical case p = 5.

17
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1.6. Solution

We have not yet established what it means to be a solution of (1.1).
If sufficient regularity of the non-linear term |u|’~' u is ensured, then (1.1) can be
expressed via Duhamel’s formula:

u(t, z) = e®Pug(z) +i /Ot elt=9)A (\u(s,x)|p71 u(s,x)) ds (1.12)

Hereby, e?*®wq denotes the solution w(t, ) to the free equation idyw = —Aw with initial
data w(0,x) = wo(x). (1.12) is better suited than (1.1) to define the notion of a solution.
Lemma 1.6.1 (Dispersive estimate) Consider the free Schridinger equation in R!:

iou(t, x) = —Au(t, x). (1.13)

Let the solution for initial data u(0,-) = ug be given by e ug. Let q € [2,00] with dual
exponent % + % =1. Then, fort > 0:

Proof. The case ¢ = 0o, ¢’ = 1 follows directly from the explicit solution of the Schrédinger
equation:

1 1
< Ct™274 |fug|| 1y - (1.14)

e Bug(t, -)‘

La

et Bug(t, ) =

%}E/R(ziuuo(g)d@ (1.15)

As the Schrodinger equation conserves the L?-norm, the claim holds by interpolation.(]

Lemma 1.6.2 (Strichartz estimate in one space dimension) We consider the free
Schridinger equation (1.13) with solution e*®uq for initial data u(0,-) = ug.

Assume q,r € [2,00] satisfy %—1—% =1 and §,7 € [1,2] satisfy % + L =5. Then, the
following estimates hold true:

1. The homogeneous Strichartz estimate:

2. The dual homogeneous Strichartz estimate:

itA
e Lo < C'|uol| 2 - (1.16)

UO‘

‘/eiSAF(s, Jds|| < CIF|| g, (1.17)
R L2 t M
3. The inhomogeneous Strichartz estimate:
t .
‘/ A (s, )ds <CF|, o, (1.18)
0 Liry Li Ly

18
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Proof. These estimates are originally due to Strichartz [30]. For the version given here,
see e.g. Tao [31]. O

Definition 1.6.3 (Solution in H') Let initial data ug € H'(R) be given. Let further
Z 30 be an interval containing the origin.

u € CYHL(Z x R) is said to be a (strong) solution to (1.1) if it satisfies Duhamel’s
formula (1.12) and u(0,-) = ug.

By the Sobolev embedding H!(R) < L*°(R) and the Strichartz estimates, (1.12) is
well-defined for u € CY H1(I x R).

We also define solutions in L?. In this case we actually do require additional inte-
grability. We choose the space LSLS. On the one hand, the Strichartz estimates then
ensure:

Recall that we consider p < 5. Let 6 € (0,1) be given by ;1) = 16%9 + g. Let further
q € [1,00] be given by % = % + g. Then, for every ty > 0:

eztAuO ‘

yozs < Cllunllpe. (1.19)

[ 4 < Clulfy,
L2 (0,t0)L} L3"(0,t0) LP
1—6 0 P
< C (Il gt poy s 1/l e 000122
1 p
< & (1ellgonmyis + 16 |z ) (1.20)

We conclude:
t
H/ lt=s)A (|u(s, )P (s, x)) ds
0

t
+ H/ ellt=9)A (|u(s,x)]p_1 u(s,x)) ds
0

L$(0,t0) LS

L (0to)L2
1 p
< 0 (lullzgiosayze + 8 lullrz ) (1.21)

Consequently, given tg > 0 and u € CYL2([0,t0] x R) N LELS([0,t0] x R), it follows:

. t .
B0, ) + z/ elt=9)a (\u(s,x)|p_1 u(s,x)) ds
0
€ CPL2([0,t9) x R) N LELE([0,t0] x R). (1.22)

Definition 1.6.4 (Solution in L?) Let initial data ug € L*(R) be given. Let further
T 5 0 be an interval containing the origin.

u € CYL2(Z x R)NLYLS (T x R) is said to be a (strong) solution to (1.1) if it satisfies
Duhamel’s formula (1.12) and u(0,-) = ug.
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1.7. Well-Posedness

Now that a notion of what it means to solve (1.1) is established, we give some basic
well-posedness results in H'.

More general well-posedness results are shown in the literature ( [4], [6], [17], compare
page 12 in this thesis).

Lemma 1.7.1 (Local well-posedness in H') Consider (1.1). Letp > 1 and K > 0.
Then, there exists T > 0, such that for every ug € HY(R) with ||uo||gn < K, there is a
unique solution u € COHY ([T, T] x R). u depends continuously on ug.

Proof. Recall Duhamel’s formula (1.12). For w € C°HY([-T,T] x R) with T > 0 to be
chosen later, we define the operator:

. t o
Buw := ey —i—i/ ellt=9)A (|w]p_1 w) ds. (1.23)
0
For wy, ws € COHY ([T, T] x R), it follows:

[|Bw1 = Bws|| oo < TH(|w1|p_1w1 - |w2|p_1w2)H

Lo H!
< CT Jwr = wal[ oo (Hw]f_IHLooLoo + ng_IHLOOLOO)
+ T hor = wallgeep ([[of ™| + 087 )
< C?T [wny = wal | oo (Il [l + a5l ) (1:24)

In particular, that implies:

eitA

IN

wo|| A CT [t g

‘ LooH?
K + CT ||un]|

[|Bwi] oo g1

A

[ (1.25)

With C' > 0 large enough to fulfil both (1.24) and (1.25), consider T' = min (2”%?0, QPKpl,lcQ )

By (1.25), B maps the ball {w € LXHY([-T,T] x R)| ||w|| 0z < 2K} onto itself.
The lemma follows from (1.24) and the Banach fixed-point theorem. O

Lemma 1.7.2 (Global well-posedness in H') Assume 3 < p < 5. Given ug €
HY(R), (1.1) is globally well-posed. For everyt € R:

p+3

llu(t, Mg < Clluol g1 + Cy [[uoll}>" - (1.26)
Proof. Let E(t) denote the energy (1.7):
1 2 1 p+1
B(®) = 5 IVu(t. ) — 4 e )2 (1.27)
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Consider the Gagliardo-Nirenberg inequality (see [14], [26]):

11 1,1
lullgoss < CHVullfe " flullz2 " (1.28)

Consequently, as the L?>-norm and energy are conserved:
2 2 p+1
IVul[z2 < 2E(0) + o [ullzo
) p=1 pt3
< 2|uol[gr + ClIVul[ 3 [Juoll 3

2 1 2 2 2(’E)pj3)
< 2{Juollg + 5 [IVullpz + C% uoll 27" - (1.29)

We conclude (1.26). As the H!'-norm is uniformly bounded, lemma 1.7.1 implies exis-
tence for all times. O

For p = 5, (1.1) is not globally well-posed in H!. Explicit counterexamples can be
constructed through use of the pseudoconformal transformation (more general coun-
terexamples can be found in [24]).

We also note the virial identity, a type of Morawetz identity (see [25]), which in some
way can be seen as the equivalent of a conserved quantity for the Galilean invariance.

Lemma 1.7.3 (Virial Identiy) Assume 3 < p < 5. Consider (1.1) and assume xuy €
L3(R) in addition to ug € H*(R). Then, for everyt > 0:

d
|2 = 4/ 2 Tm(@Vu)dz. (1.30)
dt R
Further:
p+3
lzullze < llowollz2 + ot (Il +Iluoll 12" ). (131)
Proof. (1.30) follows by direct computation. Consequently:
d d 2
2|lzwullpe 5 Nlwullpe = 2 llzullpe < 4[[Vullp: [laullL: - (1.32)
It follows % llzu|| ;2 < 2]|Vul| 2. Lemma 1.7.2 concludes the proof. O

1.8. Linearisation and Eigenvalue in 0

In order to examine the question of soliton stability for (1.1), we now follow an approach
laid out by Weinstein in [34]. We start be linearising (1.1) around the soliton via u =
e(Q +w):

ptl

1
0w = —Aw +w — Qrlw — pTQp‘lw (1.33)
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Due to |-| not being C-differentiable, (1.33) is only R- and not C-linear. In order to ensure
C-linearity, C is identified with R? < C? and w = u + v is rewritten as w = (u,v).
(1.33) now reads:

Oyw = —Lw. (1.34)

L denotes the following C-linear operator:
(0 —Ly) (u
e (2 ) (0) .

Lyu= — Au+u—pQP tu, (1.36)
Lyv= —Av+v— QP tv. (1.37)

Ly and Ly are given by:

L admits several generalised eigenfunctions, directly connected to the symmetries of
(1.1). The eigenmodes are given by
0 0
L = 1.

L <‘910Q> _ (8) . (1.39)

(1.38) and (1.39) relate to the phase invariance and the translation invariance in space
respectively. Related to the scaling and Galilean invariance, there also exist two gener-
alised eigenmodes of rank 1 given by:

I <p21Q g— m@xQ> _ <_(2)Q> : (1.40)

0 20,Q
(%) () o

Additionally, the case of p = 5 gives rise to two additional generalised eigenmodes:

1
)= () )L e

The former eigenmode is of course related to the pseudo-conformal invariance, while
p € L%(R) is not given explicitly, and is not connected to any symmetry.

1.9. Hilbert Space

Still following Weinstein [34], we use the eigenfunctions of L to define a Hilbert space,
which allows us to treat L as a self-adjoint operator.
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Consider the following orthogonality conditions for u,v € L?(R):

(u, Q)2 = (U, 2Q) 2 = (v, Qz) 2 = (v,

2 -Q +2Qa)r2 = 0. (1.43)
For p = 5, we require two additional orthogonality conditions:
(u,2°Q) 12 = (v, p) 12 = 0. (1.44)
Lemma & Definition 1.9.1 Let for p < 5:
H = {w = (u,v) € H'(R)?| (1.43) holds true}, (1.45)
as well as for p =5:
H = {w = (u,v) € H(R)?| (1.43) and (1.44) hold true}. (1.46)
Further, let (-, )3 : H x H — C be given by:
((u1,v1), (ug, v2))n

= / (VU1V@2 + uiug + Vo1 Vg + 11709 — pr_lulﬂg — Qp_lvlfg) dz. (1.47)
R

Then, (H,(-,-)u) constitutes a Hilbert space and L maps H onto itself. Further, iL

is self-adjoint with respect to (-,-)y. Finally, |||l and ||-|[ g1 (g2 constitute equivalent
norms.
Proof. See Weinstein [34]. O

Remark The H-scalar product is derived from the linearised operator via
((u1,v1), (u2,v2))n = (u1, Lyuz) 2 + (v1, Ly vg) 2. (1.48)

Remark L was derived by complexifying (1.33). This has the effect of mirroring the
spectrum. As a simple example, consider the operator —A + 1, the spectrum of which is
given by [1,00). Now consider the matriz equivalent of the imaginary unit i, given by

I= (? _01> : (1.49)

The spectrum of the complezification il(—A + 1) is given by (—oo, —1]U[1,00). For the
same reason the essential spectrum of iL is given by (—oo, —1]U[1,00). This also means
that —iL is not positive definite with respect to (-, )y, even though —IL is.

23



1. Setting

1.10. Spectrum of L

We finally reach the main topic of the thesis.

In order to establish dispersive estimates on the linearised equation Oyw = —Lw, it
is necessary to study the spectrum of L. As compact perturbations leave the essential
spectrum unchanged, the essential spectrum of iL is given by (—oo, —1] U [1,00). Both
eigenvalues and resonances in 1 are problematic when establishing estimates.

In the literature the following questions are often considered separately.

1. Are there eigenvalues embedded within the essential spectrum (—oo, —1] U [1,00)?
2. Do the endpoints £1 of the essential spectrum constitute resonances?

3. Apart from 0, are there eigenvalues within the spectral gap [—1,1]7

There are several numerical results on the existence of eigenvalues of L, see [13], [23].

The main result of this thesis is the full characterisation of the spectrum of L in the
(sub)critical case 3 < p <5.

Theorem 1.10.1 (Theorem 5.8.7) Forp = 3, iL possesses no eigenvalues apart from
0. 1 and —1 constitute resonances.

For p € (3,5), iL admits two simple eigenvalues Ey, Ey € (—1,1)\{0} with By =
—Fy. tL admits no further eigenvalues or resonances apart from 0. The associated
etgenfunctions of Ev, Es are even. It holds 1 — 1 for p — 3 and E1 — 0 for p — 5.

Finally, for p=1>5, 1L admits no eigenvalues or resonances apart from 0.

Remark The resonances for p = 3 are given by:

(L +1) (1 —Z,Q2> —(L—i) <1 __Z,QQ> _ (8) . (1.50)

The proof of theorem 1.10.1 will make up a majority of this thesis and the entirety of
part I, beginning on page 52. For now, we give a brief overview of the strategy of proof.

By using the explicit formulation of the ground state (1.4), we are able to reformulate
the eigenvalue equation Lw = iFw as a system of hypergeometric equations. After
several transformations we find an equivalent to the eigenvalue equation in (3.16) and
(3.17):

2z 41+E) 1 (p+1)?% 1 p+1 1
0= _ = _
e 1—ZQUZ+< (p—1)2(1—22)2+(p—1)21—22 p_11— 22"
(1.51)
2z 41-E) 1 (p+1)2 1 p+1 1
0=v, — —— — .
Uz = T 2% < (p—1)2(1—22)2+(p—1)21—22 p—ll—zQu
(1.52)
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The symmetries of (1.51), (1.52) allow us to consider even and odd solutions separately.
In the even case, we can substitute ¢ = 1 — 2% and solve (1.51), (1.52) by calculating the
coeflicients of

u(é) = g“p@ > antt, (1.53)
k=0

v(g) = €T > ek, (1.54)
k=0

The coefficients (ag )k, (bx)r can be explicitly calculated (lemma 3.5.1) via the recursion
(QO) bO) = (17 O)a

4k2 + 2k + 8\p/1_+1Ek + 4(1+E) + 2\p/1+1E _ (p+1)?

y1 = (p—1)° - (r—1)° g
4k +1)2 4 SR (k4 1)
1 1
s b, (1.55)

P=1la(k+1)2 + SEE(k 4+ 1)

and

2 8V1+E 4(1+E) 2V1+E (p+1)?
4k + 2]@"‘_ pfl k + (pfl)g + pfl - _ )2

brt1 = b,
Ak +1)2 + BBk + 1) + My
p+1 1
—~ Qg (1.56)
P= Ak +1)2 + HE(R +1) + My

This idea can be used to construct a solution w = (u,v) : [0,1) — R? of (1.51), (1.52)
with w(0) = (0,0) for every E > —1. The condition w(0) = (0,0) is equivalent to the
condition lim,_,_o h(z) = (0,0) for the eigenvalue equation Lh = iEh.

For £ = —1, the solution w does not vanish in £ = 0, but is bounded on [0,1). This
solution is therefore relevant when considering resonances, but not when considering
eigenvalues.

We follow an almost identical idea when studying odd solutions. Recall (1.51) and
(1.52). We instead look for solutions of the form u = 24, v = 20, whereby @ and ¥ are
of the form (1.53), (1.54):

[e.9]

V1+E

a) =& Y are, (1.57)
k=0

36 =5 S byt (1.58)
k=0

The coefficients can again be explicitly calculated (lemma 3.6.1) via (ag,bg) = (1,0), as
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well as
8V1+FE 4(1+F 6V1+E +1)2
g1 = AK” + G + pji k+ (271)2) * le_ +t2- 871;2 ay
+1 —
A+ 17 + S E (k1 1)
p+1 1
- bk, (1.59)
P =L a(k+1)2 + BE (k4 1)
and
2
. 4k? + 6k + B 4 2045) 4 SVIEE 4 o B, .
k+l = 8VItE E k
Ak +1)2 + B2 (k+1) + 255
p+1 1
- ag. (1.60)
_ 8V1+FE 8E
P= L4k +1)2+ BEE(R + 1) + 5255

1.11. Essential Spectrum

In both the even and the odd case, the question of eigenvalues can be resolved by study-
ing the coefficients (ay)g, (bx)x. The argument goes as follows.

We consider the space of potential eigenfunctions
Mg = {w e C*(R)|Lw = iEw A EIP w(z) = (0,0)}, (1.61)

D, = {(u,v) € C*(~1,0)%(1.51), (1.52) hold, lim (u(2),v(2)) = (0,0)}.  (1.62)

It is quite easy to see (lemma 2.3.21) that Mg _ is one-dimensional for |E| > 1 and
two-dimensional for |E| < 1. The same holds for Dg__, which is simply the equivalent of
Mg, _ for the transformed eigenvalue equation (1.51), (1.52). This makes studying the
essential spectrum |E| > 1 far simpler.

Indeed, given |E| > 1, consider the solution wg = (ug,vg) given by (1.53), (1.54). If
and only if

. L2y
il}r(l)@sz(l z%) = (0,0), (1.63)

then the analytical continuation of wg (1 —2%) to z € [~1, 1] is even. Due to Mg, _ being
one-dimensional, this is equivalent to the existence of a non-trivial even eigenfunction
Lw =i1FEw.

Completely analogously, consider the solution wg = (ug, vg) given by (1.57), (1.58).
If and only if

. - L2y
;%zw};(l z*) = (0,0), (1.64)

does a non-trivial odd eigenfunction Lw = iEFw exist.
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Now the coefficients (ay)g, (bg)r come back into play, as the conditions (1.63), (1.64)
can be restated in terms of (ax)r and (bg)r. Let (ar)r and (bg)r be given by (1.55),
(1.56). Then, with the single exception of (E,p) = (—1,3), we can show (lemma 4.1.2)
for every k > 0:

(ak, bx) # (0,0). (1.65)

The exception of £ = —1, p = 3 is directly related to the existence of a resonance in the
cubic case p = 3. (1.65) allows us define

a

r = b’“ € RU {oo}. (1.66)
k

We are then able to show limg_,oo cx € R U {oo} and construct (ji,j2) € R?\{(0,0)},
such that (corollary 4.1.7):

o
kl;xglo ckp = T (1.67)

and (lemma 4.1.10):
ii}%wﬁz(l —2%) = —(j1,j2) # (0,0). (1.68)

This is precisely condition (1.63), hence no eigenvalues with even eigenfunctions exist
embedded within the essential spectrum |E| > 1.

The case of odd eigenfunctions is treated analogously. Let (ay)r and (bg)x be given
by (1.59), (1.60). Without exception this time, we find (ag, bx) # (0,0) for k£ > 0.

We define ¢ = 3* and can construct (j1, j2) € R2\{(0,0)}, such that (corollary 4.2.7):

: J1
1 = — 1-
dm e =2, (1.69)
and (lemma 4.2.10):
lim zwg(z) = —(j1,j2) # (0,0). (1.70)

z,0

This is precisely condition (1.64), consequently eigenvalues with odd eigenfunctions do
not exist embedded within the essential spectrum |E| > 1 either.

1.12. Spectral Gap

For eigenvalues within the spectral gap |E| < 1, the situation is more complicated as
the space of potential eigenfunctions Mg _ is two-dimensional. The same complication
arises in the study of resonances for |E| =1, as

Dy = {w = (u,v) € C*(—1,0)?|(1.51), (1.52) hold, Jim Juw(z)] < oo} (1.71)
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is two-dimensional as well. It no longer suffices to simply construct a non-even and
non-odd solution w € Mg _. Instead, we need to construct two linearly independent
solutions w,h € Mg _ and examine if any possible linear combination is even or odd.

Luckily, there are enough tools at our disposal. As described in chapter 1.11, we can
construct, for every E € [—1,1], some solution wg = (ug,vg) : (—1,0) — C? to the
eigenvalue equation (1.51) and (1.52) with

lim wE(z) = (jl(Evp)va(E>p)) # (070) (172)

z—0

Through symmetry (lemma 2.0.2), we can construct a second solution wg = (v_g,u_g).
The asymptotics of these solutions (lemma 4.1.10) for z — 0 ensure that wg and wg are

linearly independent, meaning Dg _ = span(wg, Wg).
Consequently, there exists an even linear combination of wg and wg, if and only if
]1(E7p) jQ(_Evp)
det |~ . =0. 1.73
(JQ(E,p) 7 (=E,p) (7)

This condition can be expressed using the recursively defined sequence (cx(E, p))x which
fulfils limg_,oo cp = J—; In conclusion, ¢L admits an eigenvalue or resonance E €
[—1,1]\{0} with even eigenfunction, if and only if

1

: _ 1
C(E,p) := lim_cx(E,p) = lim o Ep) B (1.74)

The exact same strategy also works for odd eigenfunctions.

Using (1.74) and the equivalent for odd solutions, we can fully characterise the spec-
trum of L. We show five distinct lemmata. All five statements are proven using heavy
calculations to the point that using a computer algebra system to follow along is recom-
mended.

1. Lemma 5.3.13: Let p € (3,5]. Then, —1 and 1 are not resonances or eigenvalues
with even eigenfunctions of i L, meaning no even bounded solutions to (iL+1)w = 0
exist.

2. Lemma 5.4.21: Let p € [3,5]. Then, —1 and 1 are not resonances or eigenvalues
with odd eigenfunctions of iL, meaning no odd bounded solutions to (iL+1)w = 0
exist.

3. Lemma 5.5.18: Let p = 3. Then, ¢L admits no eigenvalues with even eigenfunctions
within the spectral gap (—1,1), apart from 0.

4. Lemma 5.6.13: Let p = 3. Then, L admits no eigenvalues or resonances with odd
eigenfunctions within the spectral gap [—1, 1], apart from 0.

5. Corollary 5.7.15: There exist E; € [0,1) and p; € (3,5), such that for every
p € (3, p1], there exists exactly one eigenvalue E € (Eq, 1) of iL.
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These five statements suffice to prove theorem 1.10.1. Using lemma 5.3.13, lemma 5.4.21
and corollary 5.7.15, we can prove that the total multiplicity of generalised eigenvalues
and resonances remains invariant with respect to p € [3,5] (lemma 5.8.6). Lemma 5.5.18
and lemma 5.6.13 imply the number of resonances and eigenvalues to be 6. Theorem
1.10.1 follows from the fact that 0 is an eigenvalue of order 4 for 3 < p < 5 and of order
6 for p = 5.

1.13. Wave Operator

Having characterised the spectrum of L, we move on to part III. Part IIT has two goals.
The definition of a wave operator, and establishing several dispersive bounds for the
linearised equation Oyw = Lw.

Let H C H denote the subspace orthogonal to the eigenfunctions of the non-zero
eigenvalues of L. We can construct a wave operator, unitarily mapping solutions of the
linearised equation onto solutions of a free Schrédinger equation. Such a wave operator
T :H — H'(R)? is formally given by

Tw= lim A= Detly, (1.75)
t—00

I= (2 _01>. (1.76)

If the limit exists, then any solution w of (1.34) gives rise to a solution Tw of the free
Schrédinger equation:

10w = (—A + 1)w. (1.77)

In order to construct T, we spend some time examining the bounded solutions of the
eigenvalue equation Lw = iEw, E € R\(—1,1).

We are particularly interested in Jost solutions. Let ' = sgn(£)(£2+1). Heuristically,
a Jost solution of Lw = iFw denotes a solution which exhibits asymptotic behaviour:

w(z) = e 4 o(1). (1.78)

In actuality, the solutions we consider behave closer to

_ cos(ea) sz
wl) = el (—z'sgn@ cos<5x>> +oellé) (—z’sgn@) sin<|§x|>> rolh 4

Ce, Se are well-behaved real-valued coefficient functions. (1.79) describes a solution to
Lw = iEw that is even in . An analogous odd solution exists as well.

These solutions are used as a kernel to define a transform F' mirroring the Fourier
transform, a so called distorted Fourier transform. This transform maps solutions of
(1.34) onto solutions of

Oth = —isgn(€) (€2 + 1)h. (1.80)
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1. Setting

We then define an operator G : L?(R)? — L?(R)?, which maps (1.80) onto (1.77):

f _ the o if(sgn(')ge)
g(g) - (—z‘f(sgnc)fo)) ( Fg, ) (1.81)

f=fe+ foand g = g. + go denote the decomposition into even and odd functions. The
wave operator arises as the composite function of the Fourier-like transforms F and G.

This idea of a distorted Fourier transform usually arises in the context of a linear
Schrodinger equation with rapidly decaying potential, i0;u = —Au — Vu. A brief dis-
cussion of this idea can be found in [7].

1.14. Dispersive Estimates

Having defined the wave operator 1T, we establish several bounds. Most notably, we
show that both T and its inverse are bounded L? — L for every 1 < g < oo.

That allows us to conclude that the classical dispersive estimates for the free Schrodinger
equation hold for the linear equation as well. As a direct analogue of lemma 1.6.1 and
lemma 1.6.2:

Theorem 1.14.1 (Theorem 12.0.1) Let3 < p < 5. Consider the linearised Schrodinger
equation

ow(t,z) = —Lw(t,z), w:R xR — R (1.82)

Let the solution for initial data w(0,-) = wg € L*(R)? be given by e Fwq. Assume
that wo fulfils the orthogonality conditions (1.43). Let q € [2,00] with dual exponent
q € [1,2]. Then, for everyt > 0:

—tL

1 1
He < Ct72 T Jwol| Ly - (1.83)

o
OLg

Hereby, [|(u,v)|| o s used as shorthand for ||(u, v)[| a2 = (Ilull70 + [[0][72)2.

Theorem 1.14.2 (Theorem 12.0.2) Let3 < p < 5. Consider the linearised Schrodinger
equation (1.82) and the solution for initial data w(0,-) = wy € L*(R)? be given by
e Hwg. Assume that wg fulfils the orthogonality conditions (1.43). Assume q € [4, 00]
and r € [2,00] satisfy % +% = % Further assume § € [1,%] and 7 € [1,2] satisfy

% + % = % Then, the following holds true:
1. The homogeneous Strichartz estimates:

Je* e

oz < Cllunlle. (1.84)

2. The dual homogeneous Strichartz estimates:

(1.85)

/ eLh(s,-)ds
R L

) < CHhHL‘Z/Lg/ :
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1. Setting
3. The inhomogeneous Strichartz estimates:

t
‘/ e n(s, ds
0

We finally conclude our examination of the linearised operator L by showing a local
smoothing estimate. Due to the absence of resonances for 3 < p < 5, this local smoothing
estimate is stronger than the equivalent for the free equation for which 0 is a resonance.

< Clhl
LiLy

oy (1.86)

Theorem 1.14.3 (Equivalent of Theorem 12.1.9) Let 3 < p < 5. Let wyg € H and
assume zwy € L*(R)2. Then:

t
1_~_271tL _i_tl_i_?fltL
@t apt T L3(0,00) I} et oy wO‘L?‘“O’“)H%
< C([[woll g + [lzwol|2) - (1.87)

1.15. Outlook: Stability of the nonlinear Schrodinger Equation

At the end of the thesis, we discuss some ideas on how the above results on the spectrum
of L and the wave operator 7" might be used to prove asymptotic stability.

I suspect that the following theorem or a slight variation thereof can be proven. How-
ever, this is merely conjecture and we will discuss no more than some basic ideas of
proof.

See Buslaev and Sulem [5], for an example of how asymptotic stability in the presence
of internal modes can be shown for a class of nonlinear Schréodinger equations, albeit
under simpler assumptions than we are afforded. (In particular, they consider nonlinear
Schrodinger equations i9u = —Au + F(|u|?), whereby the nonlinearity s — F(s) has a
root of order >4 in s = 0.)

Conjecture 1.15.1 Consider the nonlinear Schrédinger equation
O =—Au— |[uP"tu,  (t,x) €[0,00) x R, (1.88)

with exponent p > 3 close to 3. Assume u(0,-) = ug € H'(R) and let wy := ug — Q.
Assume:

1. Re(wg, @) r2 = Re(wg, 2Q) 12 = Im(wg, Q)2 = Im(wy, I%Q +2Qz)r2 = 0.
2. For sufficiently small e, = & > 0: [|wo|| g1 , ||z%wo| 2 < e.

Then, there are functions v, 3,y : [0,00) = R, X\ :[0,00) = (0,00) and w : [0,00) x R —
C, fulfilling v(0) = B(0) = y(0) =0, A(0) =1, and:

ult, z) = VNS (=S \ET QAN = — Bt + ) + w(t, z). (1.89)
For every t > 0, w admits the dispersive estimate:

lw(t,@)llge < Cp(1+ )72 (llwollzs + ||

LQ) . (1.90)
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1. Setting

Further, for every Strichartz pair q,r € [2,00], % + % — %;

) (1.91)

”w(t?fﬁ)Hng;w <Gy (HwOHHl + szwo

v, B,y and X fulfil:

@+ 20/ @+ 220X, ||a+n2X @],
|a+o2sof], [|a+0*E -y,
< Gy (Ilwoll 1 + || o ) (1.92)

Consequently, for t — oo, v, 3,y and A possess limits vy, Bo, yo and Ao, fulfilling:

) (1.93)

[vol 180l ol + Ao = 1] < Gy (ol 12 + ||wo
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2. Fundamental System

2. Fundamental System

We start with a purely preliminary chapter. The results of chapter 2 are of technical
importance for the rest of the thesis, but are rather basic and unsurprising by themselves.

Using simple fixed-point techniques, we construct several similar fundamental systems
for the eigenvalue equation LW = iEW, based on slightly different assumptions for
T — —00.

When characterising the spectrum of L (theorem 1.10.1), all we require from chapter
2 is a simple a priori bound on the dimension of the eigenspaces of L, given by lemma
2.3.21. This lemma is a direct consequence of the decay of the functions making up the
fundamental system.

When constructing the distorted Fourier transform resp. the wave operator, we require
a bounded solution matrix W (¢, z) € C2*2 to LW (€, ) = isgn(&)(£2+1)W (&, ), in other
words a Jost solution. This solution matrix will be constructed in chapter 8, based on
two additional fundamental systems for LW = i(£? 4+ 1)W, which we define in chapter
2.4. One of these fundamental systems is well-defined for large £ >> 0 and every = € R,
while the other is well-defined for small x << 0 and every £ € R.

Remark It is left at the reader’s discretion to skip this chapter partially or entirely.
In case the chapter is skipped, the relevant results are lemma 2.3.21, which gives the
aforementioned a priori bound, as well as theorem 2.4.7 and theorem 2.4.12, which give
the two fundamental systems solving LW = i(£2 + 1)W.

Let W = (U,V) € H'(R)? be a solution to LW = iEW. As il is self-adjoint with
respect to (-,-) g, we only need to consider £ € R. By (1.35):

AV —V 4+ QP'V =iEU, (2.1)
~AU +U — pQP~'U = iEV. (2.2)

Substituting V = iV gives:
~AV+V+EU =QP 'V, (2.3)

—~AU 4+ U + EV = pQP~'U.

We define u:= U + V and v := U — V to reach the system of equations:

1 1

(“A+14E)u= %Qp*u + P gy, (2.5)
1 “1

(A +1- By = %QP*% + %Qi’*lu. (2.6)

Lemma 2.0.1 Consider (2.5) and (2.6) for some E € R. Let xy € R. There exists a
unique solution (u,v) € C%(R) for every quadruple of initial data:

(u(zo), v/ (z0), v(w0), v (20)) = yo € CL. (2.7)
The solution space Mg := {(u,v) € C%(R)| (2.5), (2.6) hold true} is 4-dimensional.
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2. Fundamental System

Lemma 2.0.2 Consider (2.5) and (2.6) for some E = Eq € R. If (up,v9) € C%(R)
constitutes a solution, then (u1,v1) := (vo,up) solves (2.5) and (2.6) for E = —Ej.

2.1. The Integral Equation
The free Schrodinger equation —Af+A2f = F, (f(x0), f'(x0)) = yo € C? for A € C\{0},

7o € Rand F € L{ (R) has the unique explicit solution via Duhamel’s formula:

2
f(@) = 16 + cpe™ + A ( Ale—y) _ ’\(y_x)) F(y)dy. (2.8)

c1, ¢ € C are uniquely determined by the initial data yqg.

(2.8) allows us to write (2.5) and (2.6) as integral equations for |E| # 1. Lemma 2.0.2
permits us to only consider E > 0.

Given initial data (u(xo), v (20),v(z0), v (z0)) = yo € C*, 9 € R, (2.5) and (2.6) are
equivalent to:

u(x) = ke Bz | poe~VItEe

1+E(z—y) (p +1 + 1 ) d
+s m e Q) uly) + Q) ) ) dy
VITE(y—a) (P +1 p—1 pt+1 p—1 ) 9
=/ (50w uty) + Qo) ) v, (2:9)
v(z) = k3eVITET 4 pyemVITEe
1 * 1-E(z—vy) (p +1 — )
—_— — — d
+ 2\/1_7 e 5 @)’ uly) + Qy)’v(y) ) dy
1-E(y—=x) p+1 p—1 p—1 p—1 )d
- 5= [ e (e ) + ey ) ) du
(2.10)
ki, ko, k3, ky € C correspond to the initial data via:
kpeVITE20 | poemVITEZO — 4 (2), (2.11)
vVi+E (k:leV LHEZ0 _ fpemV 1+Em°> = u' (), (2.12)
kzeViTE20 4 e VImER0 — 4 (g0), (2.13)
1 — E (kseVi7E®0 _ e VIZEZ0) — 4/ (z). 2.14
VI—E (kse 1e” (x0) (2.14)
In case of |E| = 1, (2.5) and (2.6) can also be expressed as integral equations. We
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2. Fundamental System

only consider the case E = 1, courtesy of lemma 2.0.2. (2.5) and (2.6) are equivalent to:
u(z) = k¥ 4 kye V2

LT V) <P+1 p-1,  P—1 p1>
-1-2\/5/:006 Qu+2Q v | dy

2
1 " V2y-w) <p+ 1 o1 P+l pa )
-3 5 2.1
972 J € p @t Q) dy, (2.15)
v(zr) = k3 + kg +/ (x —y) (Zh;Qplv + szplu> dy. (2.16)
z0

Once again, ki, ko, k3, k4 € C correspond to the initial data via:

kleﬂzo + er—\/izo = u(zp),
V2 (kle‘/ixo — k:ge*ﬁxo) = u/(x0),
k3 + kaxo = v(xo),
k4 = 1)/(1'0).
2.2. Fundamental System

We are primarily interested in the decay of solutions of (2.5) and (2.6) as || — oo.
Therefore, we construct a fundamental system (w1, wa, w3, wy) of (2.5) and (2.6), such
that every solution wy, exhibits different asymptotic behaviour as x — —oo.

Consider again the integral equations (2.9) and (2.10). Heuristically, by substituting

rg = —o0o, we would expect solutions of the form:
U(.%’) ~ Cle\/l—l—E:c _i_ch—\/l—&—Ea:, ’U(ZE‘) ~ C3€V1_Ew 4 C4€—\/1—Ex' (221)

We will construct a fundamental system with precisely this asymptotic behaviour. How-
ever, some care must be taken to ensure the respective integrals converge.

We need some basic fixed-point results.

Lemma 2.2.1 (Banach Fixed-Point Theorem) Let (X,||-||y) be a Banach space.
Consider any contraction B : X — X with Lipschitz constant K < 1:

Vfge X |IB(f) = B@llx < K|[f —gllx- (2.22)

Then, there exists a unique fixed-point h € X :
B(h) = h. (2.23)

Proof. See [1]. O
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Lemma 2.2.2 Let (X, ||||x) be a Banach space and let B : X — X be a linear con-
traction with Lipschitz constant K < 1. Then, given f € X, the equation:

g = [+ By, (2.24)
admits a unique solution g € X. This solution fulfils:
1
l9llx = 77 Ifllx- (2.25)

Proof. Let G : X — X be given by G(g) := f + Bg. By definition, G constitutes
a contraction with Lipschitz constant K. Hence, G(g) = ¢ admits a unique solution
g € X. It follows:

lgllx = [If1lx < llg = Fllx = IG(9) = G(O)l[x < Kllgllx - (2.26)
That concludes the proof. O

Our strategy of constructing fundamental systems is based on lemma 2.2.2. As we
are interested in the decay of solutions, it is prudent to have this decay reflected in the
Banach spaces when applying lemma 2.2.2. Consider the following weighted spaces.

Definition 2.2.3 Consider an interval Z C R and v € C(Z) with v(z) # 0 for every
x €Z. We define:
LF(T) = {f € Lig(DIv™"f € L*(D)}, (2.27)
],
1l =[] (2.28)

The contractions will be based on the integral equations (2.9), (2.10) and (2.15), (2.16)
respectively.

As the dynamics are different for the essential spectrum |E| > 1, the spectral boundary
|E| =1 and the spectral gap |E| < 1, we consider these cases separately.

2.3. Prioritizing Decay
2.3.1. Essential Spectrum: |E| > 1

We construct a fundamental system for £ > 1. By lemma 2.0.2 that also yields a
fundamental system for £ < —1.

We define the following class of operators, slightly generalising (2.9) and (2.10). This
definition will only be used in chapter 2.3.1.

Definition 2.3.1 Let E > 1 and (z1,72,73) € [—00,00]3. Given a suitable function
w = (u,v) : R — C2, we define Bg ) 225w : R — C? by BE 2, 2025w = (f,9):

1 1+E(z—y) pl(p+1 1)
SR S P—20)d
f@) = 5 | e Q + P 0) dy

2 2
1 ¥ VITE(y—z) Ap—1 (p—i—l p—1 )

S rr- dy, 2.29
2\/1+E/952e @ y vt Tg) A (229)
Tsin(vE —1(x —y 1 (p+1 -1

g(x) = / ( = (1 ))Qp ! ( 5 U+ T )dy. (2.30)

T3 —
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Furthermore, given w € (—o0, 00|, we define By, = B ko, k € {1,2,3,4} by:

Bl,w = BE,—oo,—oo,—OOa
B2,w = BE,w,—oo,wv
BS,w = B4,w = BE',w,foo,foo-
We define the following Banach spaces.

Definition 2.3.2 Let E > 1 and w € (—o0, 00].
and Banach spaces Xj, = Xpp = Xp o for k€ {1,2,3,4} by:

fi(z) = emx,
fo(x) == e_mx,
fa(z) == VETIe,
fax) = e VEIE,

as well as:
X = L?‘;(—oo,w)Q.
In particular, that implies X3 = X4 = L*(—o0,w)?.

Lemma 2.3.3 Let E > 1 and w € (—o0,0]. Then, for z < w:

1 e\/l-‘rEx
Vw € Xy |Brow(z)| < CTW Jwlly,
1 e —v/1+FEx
Vw € Xy 1 |Byw(x )|<C\f1 H wl|y,
. 1+ |x 1 1
Vw € X3 : |Bsw(z)] < C’mln< \/l’ \/7) = ]| x, -

Proof. Note Q(z)P~1 < Ce~w=Dl#l < ¢=2l7l and
€7 sin(€x)| <201+ €71+ Jaf) < 41+ &) edl
for £ > 0. Let w € Xy with [Jw||y, = 1. Tt follows for x < w:
\/7‘B1 ww( ‘ < C/ mx 2|y‘dy + C/ m(Zy z) —2|y|dy
+c/ e3(@=v) VITEy 2yl gy,

< 206\/1+Ex/ =2l gy
—00

e\/1+E'z

<C?———.
T 14
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Let w € Xo with [[w[|y, = 1. It follows for z < w:

VE |Byw(z)| < C/ eJ@(x—2y)e—zlyldy+0/ e~V B2 =20l g
+ C'/w e%(y*x)e*\/lJrEye*my\dy
—V1+Ex
< Ce\/1+E:r/ e~ 2V1+Ey—|y| —|y|dy+02 M

A T4e 2w
W

+C6_%x/ e~ (VIFE=3)y=31ul .~ 31vl gy
X

VItE
< CleVTHEe ~2VTFEa— |m|/ |y|dy+02 +e_2j

e—\/l—l-Ex
<Cl——F

1“!‘6_%&:'

Let w € X3 with [[w[|x, = 1. It follows for z < w:

VE|Bsow(z)| < C/w 6\/1+E(z—y)e—2ly\dy+c/x eVIFE(—2) =20l gy,

+ C/ (14 2z —y)e Wy

1+e z’

On the other hand, due to |¢ ' sin(éz)| < &1

VE |Bsow(z)| < C/w e~/1+E(f*y)e*2|y‘dy+C/x eVIFB(—2) =2l gy,

C\/% e 2l gy
e VE 1
- VE-1l14e®

That concludes the proof.

Corollary 2.3.4 Let E > 1 and w € (—00,00]. Then:

Yw € X : HBLMU)HXI <

)
/E X1

¢ 3 [Jwl|
e w ,
’E Xo
C

VE

Yw € Xo : |\B27ww|]X2 <

lw
Vw € Xyt [[Bywwll, < —=e2* fJully, -

38

(2.44)

(2.45)

(2.46)

(2.47)
(2.48)

(2.49)



2. Fundamental System

Definition 2.3.5 Let E > 1. Let C > 0 be chosen large enough to satisfy the conlclusion
of corollary 2.3.4. We define w < 0 as an arbitrarily chosen number fulfilling Ce2% < %

We define hy, : R — R?, k € {1,2,3,4} by:
hi = (f1,0),ha = (f2,0), h3 = (0, f3), ha = (0, fa). (2.50)
Definition 2.3.5 is only used in chapter 2.3.1.

Lemma 2.3.6 Let E > 1 and consider (2.5), (2.6). Let w < 0 be given by definition
2.8.5. Then, there exists a unique fundamental system (w1, w2, ws,wy), such that wy =
(ug,vr), k €{1,2,3,4} solves:

wy, = hy, + B ,wy, (2.51)
on (—oo,w). For every x < w:

i) = V7B | o) < eV (2.52)
Jua(@) = eV oy ()] < fﬁeé e VIFET, (2.53)
Jua(a)| + [oa(a) — VP17 < \/Cﬁeéw, (2.54)
lug ()| + ‘04(1’) — e WE-Ir| < \/C’Eeéx. (2.55)

Proof. For z < w, we define wy, by (2.51). Lemma 2.2.2 and corollary 2.3.4 imply:
el < 7= Iilly, =2 (2.56)
Lemma 2.3.3 implies the estimates (2.52) - (2.55), due to z < w < 0. O

2.3.2. Spectral Gap: |E| <1

We construct a fundamental system for 0 < E < 1. By lemma 2.0.2 that also yields a
fundamental system for 0 > F > —1. We proceed analogously to chapter 2.3.1.

Definition 2.3.7 Let 0 < E < 1 and (z1,72,73,74) € [—00,00]%. Given a suitable
function w = (u,v) : R — C2, we define BE 21 29050, W : R — C? by BE 21 29 03,2, W =

(f,9):

_ 1 * V1+E(z—y) np—1 (p +1 p—1 >
R v I R
1 * 1+E(y—z) np—1 (p +1 p—1 )
I ——— o 2.
2\/@/126 Q 5 U+ 5V dy, (2.57)
— 1 * V1-E(z—y) nHp—1 (p +1 p—1 >
g(x)_Q\/ﬁ/xf @ g vt )M

1 z /l—E(y— ) p—1 (p + 1 p— 1 )
- r —_— dy. 2.58
W E Juy @ y T Y)W (2.58)
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Furthermore, given w € (—00, 00|, we define By, = Bp jw, k € {1,2,3,4} for0 < E < %

by:

Bl,w = BE,—oo,—oo,—oo,—OOa

BZ,w = BE,w,foo,w,fOOa

BB,w = BE,w,foo,foo,fom

B4,w = BE,w,foo,w,foo-

FOT’% < F <1, we define:

Bl,w = BE,—oo,—oo,—oo,—OOa

BZ,w = BE,w,foo,w,wa

B3,w = BE,w,foo,foo,fom

B4,w = BE,w,foo,foo,foo-

We define Banach spaces:

Definition 2.3.8 Let 0 < E < 1 and w € (—o0,00]. We define functions fi, = frk :

R — R and Banach spaces X, = Xpj = Xppo for k€ {1,2,3,4} by:

as well as:

fi(z) = eV1TEe,
fa(z) = e VIHER,
fg(x) — e l—Egc7
fa(z) = e V17T,

Xy = LF, (—o0, w)?.

Lemma 2.3.9 Let 0 < E < % and w < 0. Then, for every x < w:

YVw € X :
Yw € Xs :
Yw € X3 :
Yw € Xy :

|Brww(@)] < CeVITEre2® ||ul|
| Baw(@)| < Ce™VHETe |||
| Bsww(@)| < CeVI=Erem [Ju|| ., |
| Biww(z)| < Ce™=Fme |Ju|

Proof. Let w € X; with ||w|[y, = 1. It follows for z < w:

X
|Brww(z)| < CeY 1+Ex/ eWdy < C?eVithErge,
—0o0
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Let w € Xo with [[w[|y, = 1. It follows for z < w < 0:

| By w(z)] < C/x eVImEy—2) o —VI+Ey 2y g,
—o0
+C /w eVI=E(E—y) o ~VI+Ey 2y g,
< 026_*;@””6% + CQ(w —T)e 1-Ex
< 902e~VI+Ez o
(2.74) and (2.75) follow completely analogously.
Lemma 2.3.10 Let % < FE<1andw <0. Then, for every r < w:

Vw € X1 : |Byw(x)] < CeViTFrele wllx,

(2)]
Vw € X1 |Baguw(z)| < Ce V3% ||u||
Vw € X3 : |Byow(z)| < CeV TP ||wl|y, |
Vw € Xy |Byow(x)| < CemViTErer [wl|x, -

Proof. Note (1 — E)_% ‘sinh( 1—FE(z - y))‘ <Clz -1y eV1-Elz—y|
Let w € X7 with [[w|[y, = 1. It follows for z < w:

|B1 pw(z)| < CeVITEe /iE edy < CPeV1HFr 2
—0
Let w € Xo with [[w||y, = 1. It follows for z < w < 0:
| Baw(z)| < C/x eVITEW=2) o ~VI+Ey 2y g,
—00
+ C’/w(y - x)em@_gﬁ)e_mye%dy
< 0267\;@%% +C? Vi-Ez

|z e”

< C?’e*mxeéz.
Let w € X3 with |[w||y, = 1. It follows for z < w < 0:
Bouw@)] < C [ (o —y)eV T/ Bugy
+C /w e\/@(ff*y)e\/ﬁl,le?ydy

< 02(1 + ‘x’)ex/lezelr +C2e\/1+E‘x
< C3eV1-Ezo3e,
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Let w € Xy with [[w[|x, = 1. It follows for z < w < 0:

| Byw(x)| < C’/ (z —y)eV T EEWeVI=Ey 2y,
n C’/ VTFE@—y) o ~VI=By 2y g,
< C%(1 4 |z|)e VITFee2e L CeVitEe
< OBemVitETer, (2.85)
That concludes the proof. O

Definition 12.3.11 Let 0 < E < 1. We define w < 0 as an arbitrarily chosen number
fulfilling Ce2% < % Hereby, C' > 0 is chosen large enough to satisfy the conclusions of
lemma 2.83.9 and lemma 2.3.10.

We define hy, : R — R?, k € {1,2,3,4} by:

h1 = (f1,0),ha = (f2,0), hs = (0, f3), ha = (0, fa). (2.86)
Definition 2.3.11 is only used in chapter 2.3.2.
Corollary 2.3.12 Let 0 < E < 1. Then, fork € {1,2,3,4}:
1
Yw e X : ||Bkw||xk < B HwHXIc . (2.87)
Proof. Follows from lemma 2.3.9 and lemma 2.3.10. ([

Lemma 2.3.13 Let 0 < E < 1 and consider (2.5), (2.6). Let w < 0 be given by
definition 2.3.11. Then, there exists a unique fundamental system (w1, ws, w3, wy), such
that wy, = (ug, vx), k € {1,2,3,4} solves:

wy, = hy + By wwy; (2.88)
on (—oo,w). For every x < w:
[t (@) = /12| Juy (2)] < Cen®eVTHEe, (2.89)
’uz(a:) — e VITE| | lva(x)] < Ce3®eVITET (2.90)
lus(x)| + "Ug(l‘) — VI-Ez| < C’e%xemx, (2.91)
lug(z)| + ’114(:1:) — e VITEr| < CeameVI-Er, (2.92)

Proof. For x < w, we define wy, by (2.88). Lemma 2.2.2 and corollary 2.3.12 imply:

1
T lhwllx, = 2. (2.93)

w < —
hnll, < 7=

Corollary 2.3.12 implies the estimates (2.89) - (2.92), due to z < w < 0. O
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2.3.3. Spectral Boundary: |E| =1

Last but not least, we construct a fundamental system for £ = 1. By lemma 2.0.2 that
also yields a fundamental system for £ = —1.

Definition 2.3.14 Let (71,29, 73) € [—00,00]3. Given a suitable function w = (u,v) :
R — C2, we define B gy zy.25w : R = C2 by B1 gy 2y zsw = (f,9):

L VT p—l(P+1 P—l)
r)=—= [ eV —u+ v|d
f(x) 23 |, Q 5 5 y
L (" ay-w) p—1<P+1 p—1 >
- — — d 2.94
Vel Q 5 Ut v ) dy, (2.94)
x 1 (p+1 p—1
g(x) = / (z —y)QP~! (2u + 5 v) dy. (2.95)
3
Furthermore, given w € (—o0, 00|, we define By, = Bp ko, k € {1,2,3,4} by:
Bl,w = BE,*OO,*OO,*OO? (296)
BZ,w = BE,w,foo,wa (297)
BS,w = B4,w = BE,w,—oo,—oo- (298)

Definition 2.3.15 Let w < 0. We define functions fr : R — R and Banach spaces
X, = Xk,w fOT’ ke {1,2,3,4} by:

filz) = e¥2", (2.99)
fala) = eV, (2.100)
fa(z) =1, (2.101)
fa(z) = =, (2.102)
as well as:
X1 = L (—o0,w)?, (2.103)
Xy = LF(—o0,w)?, (2.104)
X3 = Xy := L35, (—00,w)*. (2.105)

Lemma 2.3.16 Let w < 0. Then, for every x < w:

Vw € Xi 1 |Brow(z)| < CeV? es® ||wl|y, , (2.106)
Vw € Xy 1 |Baw()| < Ce V23 |u|y, | (2.107)
Vw € X3 : |Bspw(z)| < Ce?® [y, - (2.108)
Proof. Follows analogously to lemma 2.3.9. O

43
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Definition 2.3.17 Let C > 0 be chosen large enough to satisfy the conclusions of lemma

2.8.16. We define w < 0 as an arbitrarily chosen number fulfilling Ce® < %

We define hy, : R — R?, k € {1,2,3,4} by:
hi = (f1;0)7h2 = (f2;0)7h3 = (07f3)7h4 = (07f4) (2109)
Definition 2.3.17 is only used in chapter 2.3.3.
Corollary 2.3.18 For k € {1,2,3,4}:
1
Yw € Xy : HBk,ww”Xk < §|\w|]Xk (2.110)

Lemma 2.3.19 Let E =1 and consider (2.5), (2.6). Let w < 0 be given by definition
2.8.17. Then, there exists a unique fundamental system (wy,wa, ws, wy), such that wy =
(ug,vg), k € {1,2,3,4} solves:

wy, = hy, + By wwy; (2.111)
on (—oo,w). For every r < w:
‘ul(aj) — V2| 4 lvi(z)| < Ce%xe‘/ﬁx, (2.112)
’UQ(ZL‘) — e V2| 4 lva(z)| < C’eéze_‘/im, (2.113)
lug(z)] + |vs(z) — 1] < Ce2”, (2.114)
g (z)| + Jva(z) — 2| < Cea®. (2.115)
Proof. Follows analogously to lemma 2.3.6 and lemma 2.3.13. U

2.3.4. Dimension of the Solution Space
Definition 2.3.20 Let F € R. Consider the following subspaces Mg _, Mg 4 of the
solution space (2.5) and (2.6).

Mg, = {(u,v) € CX(R)|(2:5), (2.6) hold, lim (u(z),v(x)) = (0,0)},  (2.116)

——00

Mg = {(u,v) € C*(R)|(2.5), (2.6) hold, xhﬁrgo(u(zr),v(x)) = (0,0)}. (2.117)

Clearly, (u,v) € C?(R) constitutes an H'-eigenfunction of (2.5) and (2.6) with corre-
sponding eigenvalue E € R, if and only if (u,v) € Mgy N Mg, .

Lemma 2.3.21 The dimension of Mg + and Mg _ is given by:

2, if |[E| <1,

dimMEA_:dimME’_:{1 if |E| > 1
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2. Fundamental System

Proof. Lemma 2.0.2 allows us to only consider £ > 0.
For every w = (u,v) € Mg, _, we find unique (ci, 2, c3,¢4) € C* with w = Zi:l CLWE .

In case of F > 1 and E =1, lemma 2.3.6 and lemma 2.3.19 imply:
weMp_ & cp=c3=cq4=0. (2.118)
In case of E < 1, lemma 2.3.13 implies:
weMp_ < c=c=0. (2.119)

Symmetry ensures dim Mg = dim Mg __. That concludes the proof. U
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2.4. Prioritizing Continuity

After proving theorem 1.10.1, we construct a distorted Fourier transform using the
bounded solutions to Lw = iFw as a kernel.

If we disregard eigenfunctions, only the essential spectrum |E| > 1 needs to be con-
sidered when it comes to bounded solutions.

By lemma 2.0.2, it suffices to consider £ > 1. We construct a fundamental system
exhibiting better continuity then the one defined in chapter 2.3.1.

Consider £ = vVE —1 € [0,00) as a new coordinate replacing E € [1,00). Otherwise,
we proceed as we did in chapter 2.3.1.

Definition 2.4.1 Let ¢ > 0 and (x1,72,23) € [—00,00]>. Given a suitable function
w = (u,v) : R — C2, we define Be 4y 15w : R = C? by Be ) 19 25w = (f, 9):

1 * V2+€2(z—y) Hp—1 (p +1 p—1 )
T)= ——— e —u+ v)d
(@) 2,/2+§2/xl @ 2 2 Y
1 Y /e (y—z) Ap—1 <p+ 1 p—1 )
—— e —u+ v dy, 2.120
2,2 + €2 /mg @ 2 2 4 (2.120)
T g — 1 -1
o(z) = / sin(§(z y))prl (p+ ui? U) a. (2.121)
. £ 2 2
We understand M to be a holomorphic function, extended to & = 0 via its limit
limg_o M =z 7.
Given w € (—o0,00], we define B¢, = Be ., k € {1,2,3,4} by:
B 1 := Be, —o0,—00,—00s (2.122)
Bg’g = B{,w,foo,wv (2123)
B&g = B5’4 = B{,w,foo,foo- (2124)

Definition 2.4.2 We define functions fi : [0,00) x R = R for k € {1,2,3,4} by:

fi(&, @) i= eV 2HET, (2.125)

fa(€,z) = " V2HER, (2.126)

f3(§, @) := cos(§x), (2.127)

+1 .
fa(§,x) = : ¢ sin(§x), (2.128)
Again, we understand sin2) 45 g holomorphic function extending to & = 0.
Given w € (—o00,00] and £ > 0, we define Banach spaces X¢ ), = X¢ -

Xen = LT (e (—o0,w)?, (2.129)

Xeo = L3 (—o0,w)?, (2.130)

Xes = Xea = L{](—00,w)*. (2.131)
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We further define hy, : [0,00) x R — R? by:
hl = (flao)th = (f2’0)7h3 = (07f3)7h4 = (07f4) (2132)

Remark Choosing [y = gg sin(§x) ensures fi(x) = x for & =0, which allows to treat

both &€ > 0 and £ =0 at once. We maintain suitable decay, as fy ~ sin(Ez) for large &.

Lemma 2.4.3 Let £ > 0 and w € (—o00,00]. Then, for v < w and suitable functions w:

C eV
| Beaw(x)| < [ —— wllx, , > (2.133)
C e Ve
Beaw@)l < 7 llxea (2.134)
. (14 ]z 1 C
| Be sw(z)| < mm( s 5) ]l - (2.135)
Proof. Follows completely analogously to lemma 2.3.3. [l
Corollary 2.4.4 Let £ > 0 and w € (—o0,00]. Then:
C 1
1Beawlly, , < el L llwllx, , » (2.136)
C 1
||B£,2w||xgy2 < mm HwHX&2 ) (2.137)
C 1
1Beswlly, , < [EEpp— el x - (2.138)

Lemma 2.4.5 Let w € (—o0,00] and k € {1,2,3,4}. Then § — B¢ w is infinitely
differentiable. For £ > 0 andn > 0:

Ch 1

— |jw . 2.139
o STrer e Ml (2.139)

ngww’

Jie

Proof. Follows by direct computation. Note that & — ¢ !sin(¢x) is analytical with
¢ (671 sin(x))| < Cn [2* for 2,6 € R, n € N. O

As before, we can ensure Bgy ., k = 1,2, 3,4 to constitute contractions by requiring
w to be small enough. By corollay 2.4.4, restricting ourself to £ > & >> 0 suffices to
ensure a contraction as well.

We will do both: Constructing a fundamental system once for w << 0 and £, = 0 and
once for w = oo and & >> 0.

Definition 2.4.6 Let C > 0 be chosen large enough to satisfy the conclusions Oji corol-
lary 2.4.4. We define w < 0 and § > 0 as arbitrarily chosen numbers fulfilling Ce1¥

1
2
and C(1+ &)™ < 3.
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2.4.1. Small =

Theorem 2.4.7 Let £ >0, E = 1+ &2 and consider (2.5), (2.6). Then, there exists a
unique fundamental system (w1, wa, w3, wyq)(&, ), such that wy = (ug,vx), k € {1,2,3,4}
solves:

wk’(’iv') = hk(é?) +B§,k,wwk(§7‘) (2.140)

on (—oo,w). For every r < w:

C
+[v1(€, 7)) < ——e3TeV2HET

ui (€, x) — eV e : (2.141)
us(€,@) — € VI 1 fon(6,2)] < igeéx“ e (2.142)
a6, 2)] + fon(6,2) — cos(éo)] < 15el (2.143)
a6, + [on(€, ) — S sin(ga)| < 5ol (2.144)

Proof. For z < w, we define wy by (2.140). Lemma 2.2.2 and corollary 2.4.4 imply:

1
HwkHXk < 1-1 Hth)(,C =2. (2.145)
2
Lemma 2.4.3 implies the estimates (2.141) - (2.144), due to =z < w < 0. O

Definition 2.4.8 Motivated by theorem 2.4.7, we define the following remainder terms
for £ >0 and x < w:

ru(6,0) = (€ 2) — Ve, (2.146)
ro1(§ 2) == v1(§, 2), (2.147)
rua(6,7) = up(€,z) — e VEET, (2.148)
ro2(§ @) == v2(§, 2), (2.149)
ru3(§, ) = u3(§, ), (2.150)
Tv,3(8: @) == v3(§, z) — cos(€x), (2.151)
rua(§, @) = ua(§, ), (2.152)
roa(€, @) = vg (& 2) — (1+ €& sin(é) (2.153)
Lemma 2.4.9 For every £ >0 and x < w:
|02 1| + |Oro| < Cer®eV2Hes, (2.154)
|Oru2| + |01y 2] < Ceste~V2HE (2.155)
10703 + [Oarv.3] < Ce2”, (2.156)
0wl + 0s0a] < Ce3®. (2.157)
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Proof. Differentiating wy(§, ) — hi(§, ) = Bepowi(&, ) with respect to x yields the
claim. g

Lemma 2.4.10 Given xz < w, wi(§,x) is infinitely differentiable with respect to & > 0.
For every £ >0, x <w and n > 0:

OPru| + 080 | < 1+ zeV2HE% (2.158)
Cn 1, ;
% Oros| < 3oV 2.159
57“u,2 + {7’1)72 < 1+€ e2? ( )
O] + |oHrs] < e .160)
) 5 — 1 +§
O¢rual + |0¢Tyal < COn_ie. (2.161)
tl 3 — 1 +£
Proof. Let k € {1,2,3,4}. Consider for n > 0:
dTL
(e = den Dok (2.162)

By lemma 2.4.5, é k) » is well-defined as an operator X¢; — X¢ . We conclude, by
taking the derivative of w (&, z) = hi(€, ) + Bt powi(€, ) :

dm dn n dl

i n(,2) + Bee (gwk<f, 1) (2.163)
Clearly, if for every = < w:
[P (& )| < - \/@ (2.164)
then lemma 2.2.2 and corollary 2.4.4 imply:
‘;lel(g, )| < 1+§ eV2+ea, (2.165)

(2.164) and (2.165) follow easily by induction. (2.158) follows from (2.165) and lemma
2.4.3.
For k = 2,3, 4, the lemma is proven analogously. O

Lemma 2.4.11 Let wy = (ug,vg), k € {1,2,3,4} be as in theorem 2.4.7. wy, : [0,00) X
R — R? is a real analytic function for every k.
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Proof. Analyticity in x is trivial. It follows by bootstrapping, as wg(&,-) solves (2.5),
(2.6).

The definition of B¢y, as given by 2.4.1 can be extended to {§ € C. We consider
CeC, | < % Analogously to theorem 2.4.7, the equation

wi(§+ ¢, ) = hi(§+ ¢, +) + Begekwwi(§ + () (2.166)

admits a unique fixed-point wg(§ 4 ¢, -) for every £ > 0 and k = 1,2, 3,4.

We show that wy, satisfies the Cauchy-Riemann equations, or equivalently a%wk = 0.
8% is the Wirtinger derivative:
of 1 i
—= = —0pf — =0y f. 2.167
Hereby, ¢ = Re(§), ¥ = Im(§). It follows:

0 0 0 0
e = e T o (Bekwwr) = Bekw gk (2.168)
Lemma 2.2.2 implies a%wk = 0 for every £ > 0. That concludes the proof. O

2.4.2. Large &

We state the direct analogues to the theorem and lemmata from chapter 2.4.1. We omit
proof, as that too is completely analogous to chapter 2.4.1.

Theorem 2.4.12 Let £ > &, E = 1+£2 and consider (2.5), (2.6). Then, there exists a
unique fundamental system (1, Wz, W3, Wq) (&, ), such that wy = (ak, 0x), k € {1,2,3,4}
solves:

ﬁ)k(ﬁ, ) = hk(f? ) + B&,k,ooﬁ}k(fa ) (2169)

For every x € R:

1(€,2) — eV 4oy (€, )| < 1i£e§%v2+f%, (2.170)
Ga(&,x) — e VI 4|5y (g,2)| < 1fge§xev2+f%, (2.171)
a(6,2)| + [1a(€.2) — cos(ez)| < e, (2172)
a(6,2)| + [ou(€, ) — S sin(g)| < 5ol (2.173)
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Definition 2.4.13 We define the following remainder terms for &€ > & and x € R:

Fut(€,2) 1= 1 (€, @) — eV 2HE,
o1 (& x) = 01(, @),

Fua(€,) = fia(, ) — e V2HE,
Fu2(&s ) 1= 02(, @),

Fu,3(&, ) = a3(&, v),

Tv,3(&, x) := v3(§, ) — cos(§x),

Fua(§ ) = (@),

Foa(€,2) = 04(&, @) — (14 €)E  sin(éx)

Lemma 2.4.14 For £ > &y and x € R:

‘8rfu,1’ + |6mﬂ,71| < C€%$em:c’
‘aacfu,Ql + ’83;7%72| S Ce%xe*\/@x7
10pFus| + |0ai0 3| < Ce2®,

10pFua| + |0aoa| < Ce2®.

Lemma 2.4.15 Given x € R, Wi (&, z) is infinitely differentiable with respect to & > &.

For every £ > &y, c € R and n > 0:

8?7:11,1 + 8?%,1 Cn %x 2+£2x7

ST
O Tuz| + |0 Toa| < 1?565%‘\/@“’,
s + [087oa] < (e,
e Tua| + |0 Ty a| < 1C_|'il£€§x-

Lemma 2.4.16 Let wy = (g, k), k € {1,2,3,4} be as in theorem

Wy, : [€0,00) x R — R? 4s a real analytic function for every k.

o1

(2.186)
(2.187)
(2.188)

(2.189)

2.4.12. Then,



Part Il.
Spectrum of L

3. Meromorphic Differential Equations

We begin with the characterisation of the spectrum of L. In this chapter we transform
Lw = tFw into a system of hypergeometric equations, which then can be solved by
calculating the coefficients of a power series.

3.1. First Transformation

Recall (2.5) and (2.6). If we write @) out as in (1.4), then (2.5) and (2.6) become:

20p+ e~V /p41  p—1
&A+1+Du:(w”ﬂ+n2< u P), (3.1)

2p+1)e®PD* /p41 p—1
@A+1—EW_(&HW+D2< o Pl (3.2)

Considering the change of coordinates e®1? = ¢ ¢ (0,00) comes natural when trying
to simplify (3.1) and (3.2). We calculate:

dr = (p — 1)eP~29, = (p — 1)yd,, (3.3)
02 = (p— 12?179, + (p — 1)22P~1792 = (p — 1)*y0, + (p — 1)*y°07.
Combining this with (3.1) yields:
— (p— 1)*y*uyy — (p — 1)?yuy + (1 + E)u

— (p+1)° ut (p—1)(p+ 1>ﬁv. (3.5)

y
(y+1)2

It follows:

1 1+E 1  (p+1)? 1 p+1 1
0=ty +—uy+ | ———5—5 + + v (36
Wy ( (P—12%y2  (p—1)?y(1+y)? (36)

p—1y(l+y)?
Analogously, it follows from (3.2):

1-E 1 (p+1)? 1 ) p+1 1

1
0=vyy+ vy + | ——— + 2T — w37
Wy <(p—1)2y2 (p—1)2y(1 +y)? p—1y(l+y)? (3.7)

3.2. Hypergeometric Equation

(3.6) and (3.7) are similar to Riemann’s differential equation, a generalized form of the
hypergeometric differential equation.
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Riemann’s differential equation in its most general form is given by:

_d2 l—al—ag l—bl—bg 1—01—02 d
0_d22w+< c—a z—p + z—r )dzw (38)
(0= B)a—=7)araz | (B—a)(B—7)bib2 | (v —)(y—B)aica w
+< -« " z—p * z= >(z—a)(z—ﬁ)(2—v)’
whereby:
ar+az+bi +by+cr+ca=1 (3.9)

{a1,a2},{b1,b2},{c1,ca} are called the indicial exponent pairs at the regular singular
points «, 8 and v respectively.

(3.8) assumes «, 3,y # 00. In case a, [ or v is equal infinity, the corresponding limit
in (3.8) is considered. In particular, for v = co that means:

_d2 1—a1—a2 1—b1—bg d
0= gt (L)
(a — Blaras (B — a)bibe w
+ ( > — o + P 75 +0102> m (310)

At the singularity «, assuming a; — ao & Z, one can construct two linear independent
local solutions of the form:

(z — )" F, (2 — a)™G. (3.11)

F and G are holomorphic in some neighbourhood of a and can be expressed via the
hypergeometric function:

w(z)
= (i:g)al (j:;)q o F <a1 +0b1 +ci,a1 +b2+c1,1 4+ a1 —ao, m> .
(3.12)

The second solution is obtained by switching a; and as, b1 and be, ¢; and co respectively.

As it turns out, (3.8) locally behaves similar to Riemann’s differential equation. Thus,
our Ansatz in solving (3.6), (3.7) mirrors (3.11). We solve the equations explicitly by
calculating the coefficients of a power series.

No attempt is made to connect solutions at different singularities.

An overview on the topic of Riemann’s differential equation can be found in the NIST
Digital Library of Mathematical Functions [8, Chapter 15].

I am not aware of this Ansatz being used before on the NLS. However, it is to be
noted that using a coordinate transform to restate dispersive equations in a form akin to
(3.6) and (3.7) is not new. Donninger [9], [10], [11] used so-called similarity coordinates
to examine the wave equation and study self-similar blow-up solutions. [9] in particular,
considers an eigenvalue equation loosely mirroring (3.6) and (3.7).
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3.3. Second Transformation

We consider (3.6) and (3.7) and conduct some simplifications.

As (2.5

transformation y — *.

) is invariant under the transformation z — —z, (3.6) is invariant under the

We use another Mébius transform to transpose (3.6) into a more immediately sym-

metrical form.

We achieve this feat by mapping the two singular points of (3.

6) which correspond

to the invariance, y = 0 and y = oo, onto symmetrical points z = —1 and z = 1, while
at the same time mapping the third singular point of (3.6), y = —1, onto z = oc.

Let thus z = Sy = Z_& € (—1,1). Also consider the inverse transform y = S~z = 112,
We calculate:
1 y—1 ) 2
Oy = - 0y = ————0,, 3.13
= () &1
4 4
9 =- 9. + 02 3.14
0y e 1
Furthermore, note:
1 1-— 1 1-
- S (3.15)
y 1+z2 y+1 2
Plugging this into (3.6) yields:
1 1+E 1  (p+1)?2 1 p+1 1
0=1uyy+—uy+ | — — U v
yy yy ( 1)2y2 (p—1)%y(1 +y)? p—1y(l+y)?
(1-— 21—z (1-2)3
= — u
2 1+2 2 :
1— 2 )3 _\3
N E (1-2) p+1)* (1-2) i p+1 (1 Z)v
( )2(1—1—2) 4p—1)2 142 Adp—-1) 1+=z2
(1—2)* z(1—2)3 N 1+E (1-2)?2% (p+1)2 (1-2)3
= Upy — =~ - u
477 21+ 7 (P—12(1+2)?% 4p-1)?2 1+2
p+1 (1-2)°
v
4p—1) 14z
=
2z 41+E) 1 (p+1)% 1 p+1 1
0= — .
Yoz 1 2 Z+< (p—1)2 (1—22)2_'—(p—1)21—z2 u+p—11—z2v
(3.16)
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We conclude completely analogously:

2z 41-E) 1 (p+1)?% 1 p+1 1
=2 - a2 -2

0=v,, —

To summarize:

Lemma 3.3.1 Let E € R. Consider the coordinate transform T : C((—=1,1),R?) —
C(R,R?), given by:

elp—1z +1

(r—Dz _
Tw=w (61> . (3.18)

Then, w : (—=1,1) — R? solves (3.16) and (3.17), if and only if Tw solves (2.5) and
(2.6).

3.4. Strategy of Proof
3.4.1. Eigenvalues

Recall Mg and Mg _ as given by definition 2.3.20. We define a direct analogue based
on (3.16) and (3.17).

Definition 3.4.1 Let E € R. Consider:
N = {(u,v) € C*(~1,1)*|(3.16), (3.17) hold, liml(u(z),’u(z)) =(0,0)}, (3.19)
2——

Nt = {(u,v) € C*(—1,1)?|(3.16), (3.17) hold, lim (u(2), v(2)) = (0,0)}.  (3.20)

Lemma 3.4.2 Let EF € R. Then, iE is an eigenvalue of L, if and only if Ng_NNg 4 #

{0}.

Proof. By definition, W € H'(R)? solves (2.5) and (2.6) for E € R, if and only if
T*1WGNE7_HNE7+. O

Definition 3.4.3 Let E € R. Consider:

NEge— = {w € Ng,_|w is even}, (3.21)
Ngo— = {w e Ng _|w is odd}. (3.22)

Lemma 3.4.4 Let E € R. Then, iE is an eigenvalue of L, if and only if Ng_ # {0}
or Ngo— # {0}. Nge_ # {0} is equivalent to the existence of an even eigenfunction.
Likewise, Ng o, # {0} is equivalent to the existence of an odd eigenfunction.

Proof. Follows from lemma 3.4.2 and Ng._ © Ng,— = Ng_ N Ng 4. U
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Definition 3.4.5 Let & € R. Consider:
D := {(u,v) € C*(—1,0)?|(3.16), (3.17) hold, lim (u(2),v(2)) = (0,0)}, (3.23)
Dge_ :={we Dg_| li}%w'(z) = (0,0)}, (3.24)

Dg,_ :={we Dg_| li}%w(z) = (0,0)}. (3.25)

Lemma 3.4.6 Let E € R. Then, iE is an eigenvalue of L, if and only if Dg._ # {0}
or Dgo— # {0}. Dge— # {0} is equivalent to the existence of an even eigenfunction.
Likewise, Dg, — # {0} is equivalent to the existence of an odd eigenfunction.

Proof. Let w € Ng, . w is even by definition, which implies w’(0) = (0,0). It follows
w|(—1,0) € Dge,—. We conclude Ng . — # {0} = Dg.  # {0} and analogously Ng, — #
{O} = DE,o,— 75 {0}

Let now w € D . As w solves (3.16) and (3.17) it can be analytically extended
to a solution @ : [-1,1] — C% w € Dg._ implies @'(0) = (0,0) meaning that w is
even. That in turn implies w € Ng. . We have shown D, # {0} = Ng._ # {0}.
Dg, - # {0} = Ng,_ # {0} follows completely analogously.

Lemma 3.4.4 concludes the proof. ([

Dge_ and Dg, — allow for falsifiable conditions. We focus on solving (3.16) and
(3.17) for —1 < z < 0. If, for F € R, we can show

lim w'(z) # (0,0), ll}r(l) w(z) # (0,0), (3.26)

2,0

for every w € D _, then iE is no eigenvalue of L.

3.4.2. Resonances
The exact same strategy also works for resonances.

Definition 3.4.7 Let E = —1 or E = 1. Consider:

Ng_ = {w = (u,v) € C*(~1,1)*|(3.16), (3.17) hold, linjl |lw(z)] < oo},  (3.27)

Negy = {w = (u,v) € C*(—1,1)?|(3.16), (3.17) hold, lirr% |lw(z)| < oo}, (3.28)
zZ—r

Nge_ = {w € Ng_|w is even}, (3.29)

Ngo— = {w € Ng_|w is odd}. (3.30)

Definition 3.4.8 Let E = —1 or E = 1. Consider:
Dg,_ = {(u,v) € C*(=1,0)?|(3.16) and (3.17) hold, lim |w(z)] < oo}, (3.31)
Dge_:={we€ Dg_| 11%w’(z) =(0,0)}, (3.32)

Dgo— = {we€ Dg_| h}% w(z) = (0,0)}. (3.33)
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Lemma 3.4.9 Let E = —1 or E = 1. Then, Dg._ # {0} is equivalent to the exis-
tence of a non-trivial even bounded solution to Lw = iEw. Likewise, Dg,_ # {0} is
equivalent to the existence of a non-trivial odd bounded solution to Lw = iFw.

3.5. The Even Case

We introduce the coordinate transform ¢ = 1 — z2. This has the effect of mapping the
singular points z = 1 and z = —1 onto £ = 0 and introducing a new singular point in
¢ = 1, which corresponds to the branch point z = 0 of 1 — 22.

After transforming (3.16) and (3.17) via ¢ = 1 — 22, we solve the resulting equation
via a power series in £ = (. This power series will have convergence radius 1, due to the
nearest singularity being £ = 1.

Such a solution £ — wg(§) will be constructed for every E > —1. In chapter 4, we
show that wg does not extend to an even solution with respect to z € (—1,1), with the
single exception of £ = —1, p = 3. This exception leads to the existence of a resonance
for p = 3, see the remark on page 68 for an explicit formula.

The fact that wg is not even is enough to show that no embedded eigenvalues |E| > 1
with even eigenfunctions can exist. Because the space of potential eigenfunctions Dg
is one-dimensional for £ > 1, it is spanned by wpg, thus even eigenfunctions can not
exist.

In chapter 5, we examine the spectral gap E € [—1, 1] for eigenvalues and resonances.
Due to Dg__ resp. Dg,_ being two-dimensional for E € (—1,1) resp. E = +1, we instead
have to consider linear combinations of solutions. This makes checking for eigenvalues
far more challenging. Chapter 5 consists almost entirely of very technical calculations.

2

We return to the issue at hand. Based on £ = 1 — 2°, we calculate:

62 = —2285, (3.34)
Ozr = 42%0ge — 20¢ = A(1 — €)Oge — 20%. (3.35)

Plugging this into (3.16) gives:

472

0= 4(1—€)U££—2U§+ 1_22u§
41+ E) 1 +(p+1)2 1 p+1 1
12 (1=  (p—1P1-22)" T p-11-2

09,

:4(1_§)u&_2u§+41—§) (_4(1+E)1 (p+1)22> pt1l
4 1 1)21
= 4(1 — §uge + <§ —6) ug + (— TR + o 1;2£> u+%gv. (3.36)
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Analogously:
_ 4 41-E)1  (p+1)21 p+11
0—4“‘5)“&*((6)““( 17 £2+<p—1>25>” poie
_ 4 4(1+E) (p+1)21 p+11
‘4“5)“5“(56>U5+<<p—1>252+<p—1>25>” p—1E
8E 1

As expected, we identify the three singular points £ = 0, £ = 1 and £ = oo. Our goal
is to solve (3.36) and (3.37) for £ € (0,1). Clearly, any solution w : (0,1) — R is real
analytic.
We make the Ansatz:
VIitE
u(§) =& 1 U(E), (3.38)

V1+E

v(&) =& V(E). (3.39)

Hereby, U and V are assumed to be analytic at £ = 0. (3.38) and (3.39) are based on the
asymptotic behaviour of wy described in lemma 2.3.6, lemma 2.3.13 and lemma 2.3.19:

(u1,v1) ~ eV1HE2(1,0)
1+ E
= (6(10—1)56) "1 (1,0)
= (14+2) %7 (1-2)7 %7 (1,0
-
— T (1 /T8 2% (1,0). (3.40)
Based on (3.38), (3.39), we calculate:
\/1 E 5E
_ U+ + -y, (3.41)
VITB 2\/1 E, 1+E  VI+E\ vie_
uge = § =5 Uge + p— + e Ue + ((pj1)2 - _+1 )5 s (3.42)

The same holds true for v and V.
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3. Meromorphic Differential Equations

. . s YIEE_o |
Plugging (3.41) and (3.42) into (3.36) and dividing by & »-1 yields:
2¢/1 +E£ <1+E \/1+E>U]

Ue +
p- (

0=4(1-¢) l£2UE$ p—1)2 p—1

4 5 \/1 +FE A0+ E) | (p+1) gil
“(e9) lﬁ R R R B R T e R
= 41— )€U + 4<1—£>2””E+4 o¢ | €Ue + 2 Lev

1+ E 1+ E 1+ E 4(1+E 1)2
oo (28, EE) s aogg YEE A0e)

= 4&%Uge — 4E%Uge + [8 p” 1f1E +4— (6 48 ”pH E) g} U

41+ E), 2/1+E_ (p+1)?
*l( 028 T o1 T ot

<8\/1 +FE N 4)

U

1
U+7igv

ﬁUgl
8\p/1+E>£U£+< (1+E)+2\/1+E (p+1)2>U_p+1V |

p-12%" p-1 (p—1)2

= [452U5§ +

—¢ l452U§5 + (

Analogously, it follows:

0 l%zvgﬁ <8xp/1_+E+4> fvﬁl

8\p/1+E>€V§ ( (1+E) +2\/1+E_ (p—|-1)2>v_p—|—1U

—¢ [452%5 + <6

-1 p-1 (p—1) p—1
8E
+ Vv
(p—1)°
8V1+ FE 8E
= |4+ (LS ) Vet Y
p- (p—1)
8\/1+E 1+E) 2J/1+FE +1)2 + 1
— € 42Vee + (6 + Ve + A 2)+ _ )2 v-PT oyl
p— (p—1) p—1  (p—1) p—1
(3.44)
Based on our Ansatz that U and V constitute analytic functions, we assume:
k=0
[e.e]
=" bt". (3.46)
k=0
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(3.43) now reads:

0= i [4§2akk(k — 1)fk_2 + <8m + 4) é‘ k‘fk 1‘|

k=0
—¢ i l4€2akk(k—1)£“+< 8m>§ K€M 11

_5Zl< )+2m (p+1)2> e p+1b4

p—1 (p—1)2 1

= Z [4%1@25’“ Sm arke®
- i 4akk2§k+1 + 12+ @ akkfl“H
k=0 p—1

(1+E) 2J1+FE 1)? 1
S

8\/1+7E

1
= k+1 bkt P L
§:ak 1M AR+ 1)% + — -1 K+ +k§0j S

~ Zak§k+1 [4k2+ <2+ 8\/14—7]5) L A04E) 2TFE (417

k=0 p—1 (p—1)2 p—1  (p—1)2
(3.47)
Analogously:
- 8V1+FE SE i +1
0= ber&" |4k +1)* + E(k: TSR
k=0 p—1 (p—1) —~ p—1

s 1+ F 414+ E) 21+ FE 1)2

= bkt a2 2+8\/T ko (1+ 2)+ VI+E (p+ )2

k=0 p—1 (p—1) p—1 (p—1)
SE

(p— 12 (3.48)

+ bo

Lemma 3.5.1 Let —1 < E # 0. Let (ak)ken, (bi)ken € R be given by (agp,by) = (1,0),
as well as:

AR? + 2k + SAEE o 00 4 2P (e,

(k+1) Lﬁ(kJrl)

p+1 1
- b, (3.49)
P la(k+ 12 4+ B (k + 1)

Q41 = ag
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and:
2 8VI+E 40+E) | 2/1+E _ (p+1)?
bost = I WA 7 VB T W TV by
8VI+E E
Ak +1)2 + MEE(k+1) + My
p+1 1
— ag. (3.50)
— 8VI+E 8E
P= L4k +1)2 + HE(R + 1) + My
Then, w = (u,v) given by:
ViTE X2
u(z) = (1- 2251 3 ap(1l — 22)F, (3.51)
k=0
v(z) = (1- 2251 3 be(1 — 22)F, (3.52)
k=0

is well-defined for —1 < z < 0 and fulfils (3.16), (3.17), as well asw € D . If E > —1,
then w € Dp, _.

Proof. By comparing coefficients, we find that (3.47) is equivalent to (3.49). Also by
comparing coefficients (3.48) is equivalent to
S8E
(p—1)
and (3.50). Further, (3.49) and (3.50) imply that 3", ax&® and 3", b€ have at least

convergence radius 1. The same convergence radius can also be derived from the distance
of the singularities £ = 0 and £ = 1. That concludes the proof. O

by =0 < by = 0. (3.53)

3.6. The Odd Case

Given a solution (@, 7) € C(—1,0)% of (3.16) and (3.17), consider (u,v) € C(—1,0)? as
given by:

= zu, 3.54)
0= zv. 3.55)
(3.16) is equivalent to:
2
0= 2u.; + 2u, — 12_zz2uz ~ 7 iZZQU
41+ E) z (p+1)?2 =z p+1 =z
<_ (p—1)% (1-22)? (p—1)21—22> p—11-22"
<:>0:uzz+guz— 22 Uy — 2 U
z 1—22 1—22
+<_4(1+E) 1 (p+1)?% 1 )u p+l 1 (3.56)
p—1)2(1-222 (p—121-22 p—11—22" '
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Analogously, (3.17) can be restated as:

2z 2
Ozvzz—l—;vz— 1-2% 7 1-2¢
41-FE) 1 (p+1)2 1 p+1 1
_ ) 3.57
( CESIEATE RN b ) Ry
We proceed as in chapter 3.5. We introduce the coordinate transform & = 1 — 22,

construct a solution £ — wg(§) via a power series in £ = 0 with convergence radius 1.

In chapter 4, we show that the corresponding solution of (3.16) and (3.17) is non-odd,
which suffices to rule out embedded eigenvalues. In chapter 5, we consider the spectral
gap, which proves more complicated due to Dg _ being two-dimensional.

Applying (3.34) and (3.35) to (3.56) and (3.57) yields:

0:4(1—§)U5§—QU5—4U§+ 422 - 1 222
N A1+ E) 1 ( D2 1 p+1 1
(- 17 <1—z2> < DPi-22 )t p o2t
21 2 11
:4(1—§)u§§—6u§+ ( 1 +E§+ ; £—§> —|—§i_1£v
A1 4 AA+E) 1 (p+1>21_2 ptll
= 400 e + (g - ) ( PRSI §>“+p—15”‘
(3.58)
Analogously:
4 41-E) 1 121 2 11
0—4“‘9”&*((10)“5*( <(—1>)52+§§f1§25‘5>“ b1t
4 41+ E) 1 +1)21 2 +11
‘4“‘9”&*(5‘10)”5*(‘59—1)2)52*5—1525‘5)” ST
SE 1
fo-re” o
We make the Ansatz:
uw(€) = €7 U (), (3.60)
o() = €T V(©), (3.61)
Analogously to (3.41) and (3.42):
_ Ue + ”p1+E SH-y, (3.62)

VI+E 2V1+FE V1itE _ 1+ F VvV1+FE VIFE _
uge = £ T Ufs+ﬁ€ 1 U+ <(p_ 02 o1 )5 1 UL (3.63)
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VItE
The same holds true for v and V. Plugging this into (3.58) and dividing by & »-1

yields:

0=4(1-¢) [§2U +

(e

= 4(1 - §)&Uge +

2\/ Ue + <1+E \/1+E>U]
(

p—12 p-1
\/1+E§U] [ 414+ E) (p+1)?
(p—1) (p )

+4-10¢

E2Ue + U+ —gv

2§_2§

SR

1+E V1+E VI+E 4(1+E) (p+1)?
+ 4(1—5)<(p1)2— o1 >+(4—10§) R P T +(p1)2§—2£1U
:4€2U&_4€3U§£+[8\/1+E 8\/1+E> U

A1+E). 6/I+E. (p+1)
+l_@—l)? o1 T

= [4§2U§§ + <8pl_+E + 4) ng]

8\p/1+E>€U£+(4(1+E)+6\/1+E ) (p+1)2> p+1

+4— <IO+

25-25] U+—§V

- U-"—"-v]|.
1 p—12  p-1 (p—1) p—1

(3.64)

—¢ [4§2U55 + <10 +

Analogously, it follows:

0= [4521/55 + <8pl_+1E + 4) §V§]

9 8V1+E 41+ E) 6J/1+FE (p+1)> p+1
8E
To-1p v

AE%Vee + <8V + 4) §Ve + (8151)2‘/]

81+ F 41+E) 6VI+E _ (p+1)?*\., p+1

p1 )5‘/“(@—1)2* -1 17 <p—1>2>v p—1"]
(3.65)

—¢ l4§2v + (10 +
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We assume U and V to be analytic in £ = 0 and write:

UE) =3y arc, (3.66)
k=0

=" be". (3.67)
k=0

It follows from (3.64):

il‘lﬁ apk(k —1)5’“—2+<8”IJr +4>g wh&h 1]

—gi [45%%(%-1)5’@ 24 <1o+8v +E>§ pkek 1]

k=0
1+E) 6v1+ E (p+1)> r b+l
_fz [( + 1 +2- (p_1)2>ak§ _p—lbkgl
= Zl4akk2§k 8”1+E apke®
_ i [4akk2§k+1 i <6+ 8\;4‘1E> ak%kﬂ]
k=0

1 T e

_ZK 1+E)+6 LB (p+1)2>akfk+l_ii—ibk§k+1]

8V1I+E > +1
_ Z € A+ 1)+ DT [ Y g 2
p—1 P p—1
8V1+FE 41+E) 6/1+FE (p+1)>
k+1 2
N 4%+ 64+ ——— | k+ + +2—
; kS ( p—1 ) (p— 1) p—1 (p—1)2
(3.68)
Analogously, from (3.65):
> 8V1+FE SE > p+1
0= b1 4k +1°2+ —~——(k+1) + —s + ag’f“—
> 81+ E 41+ E 6\/1 E 1)?
—Zbkka a2+ 6+ + kit (1+ 2)+ + b+ )2
= p—1 (p—1) p—1 (-1
8E
+ boi(p 1y (3.69)

Lemma 3.6.1 Let —1 < E # 0. Let (ak)ken, (bi)ken € R be given by (agp,by) = (1,0),
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as well as:
AR? + 6k + SEEE g o A5} | VIR g i),
p— p—
Ap4+1 = ag
Ak +1)2 + SHEE (& 4 1)
p+1 1
- — b, (3.70)
Pk +1)2 + 2L (K 4+ 1)
and:

452 + 6k + 8\/1+Ek + ((1+J)E) + 6\/1+E +9— gi;z
b

4(k +1)2 + 8vl+E(k+1)
p+1 1

bpy1 =

(p 1)

a. (3.71)
P=La(k +1)2 + EE(R + 1) + M
Then, w = (u,v) given by:
u(z) = (1 — 22 P1+1Ez Z ap(1 — 2 (3.72)
v(z) = (1— 22 P1+1Ez Z b(1 — 22 (3.73)

is well-defined for —1 < z < 0 and fulfils (3.16) and (3.17), as well as w € DE7,. If
E > -1, thenw € Dg__.

Proof. Follows analogously to lemma 3.5.1. ([
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4. Absence of Embedded Eigenvalues

4. Absence of Embedded Eigenvalues

We have constructed solutions to (3.16) and (3.17), which is just a reformulation of the
eigenvalue equation Lw = iEw. In this chapter we examine the coefficients (ay)x, (b
given by lemma 3.5.1 and lemma 3.6.1.

We establish a connection between the coefficients (ag)g, (bx)r and the initial data w(0)
and w'(0) for solutions of (3.16) and (3.17). In particular, we show that the constructed
solutions are non-even and non-odd respectively.

This then directly implies that no eigenvalues exist within the essential spectrum
|E| > 1.

The entire chapter is based on using the following lemma to compare (ay)x, (bg)x to
the coefficients of well-known power series.

Lemma 4.0.1 Consider a,3,A,B € R with « — = A — B. Let ¢,d € R\{0}. Let
(Vi) ken, (0)keny C R and S > 0, such that |yg|, |0k| < S for every k € N.
Choose K > 0 with k* + ak + 7, k> + fk+ 65, k+ A k+ B > 0 for k > K, and define:

K = ¢, (4.1)
k% + ak + v

= ¥ 4.2

Ck+1 k2 +6k+5k Ck, ( )

dix = d, (4.3)

kE+ A
= ——dj. 4.4
o1 = A, (4.4

Then, there exists j € R\{0} and C > 0, such that for every k > K :
) C
ljex — di| < % |d| - (4.5)

Proof. Consider for k > K:

14am a=f | =0k —
e
k

Ck 1+2+% 1+ 2+ %
Analogously:
d A-B -
1n< ’““) - Lot = 2P L og). (47)
di k k
We define:
= (22) - P e o), (48)
Ck k
d _
Vg =1 ( ’f“) _2=bBcop (4.9)
dy, k
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4. Absence of Embedded Eigenvalues

It follows for k > 1 > K:

,_.
B
A/~
&‘m
El I
~
|
—

B
/
S e
~
Il

CL dy,
(%) —m (%
n(cz> n<dl)‘

= Cnt1 dn1
< mn . mn
- 7; n ( Cn ) n < d, >'
k—1
= |l —val €017, (4.10)

We conclude that In (g—i) is a Cauchy sequence. Let j := limg_,o In (g—i) e R. We

define:
. Ck > Cnt1 dpi1
=j—In(— ) = In|—/— ) —-In|——=)). 4.11
ck J n(dk> 7;<D< Cn ) n( dp, )) ( )

It follows from (4.10):

c
< —. 4.12
lek| < ’ (4.12)
We conclude:
. 'ed
Ccl—z:ejfs’“é CCTIZ—@] =elle™F —1| <¢€ ek—l‘écke (4.13)
That concludes the proof. O
4.1. The Even Case
Definition 4.1.1 Let E > —1 and k > 0. We define:
8V1+ E 414+ E) 2J/1+E (p+1)?
Ap = Ap(E) = 4k*> + 2k + k+ + — , 4.14
&) p—1 -1 p-1 (p—1) (19
8v1+ E
By = Bi(E) == 4(k +1)2 + ﬁ(k +1). (4.15)
Recall lemma 3.5.1. (3.49) and (3.50) can be rewritten as:
Ay p+11
_ ko — 4.1
Ap41 Bk ag p— 1 Bk k> ( 6)
A +1 1
br+1 = b by, — b ag. (4.17)

8E _ 8E
Bk—i_W p 1Bkz+W

Lemma 4.1.2 Let E > —1, but exclude the case E = —1, p = 3. Let (ag)ken, (bk)ren C
R be given by (ag,bg) = (1,0) and (4.16), (4.17). Then, for every k > 0:

(ax, bx) # (0,0). (4.18)
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Proof. By definition, ag # 0 and by = Zﬂ 5 +C: 7 0.

Assume the lemma does not hold. We find £ > 1 Wlth ak+1 = b1 = 0 and (ag, by) #
(0,0). It follows:

1 1\?2
OZAkak—p+ b, = ak:>A2 = (p—i_) . (4.19)
p—1 p—1
For £ > —1, k > 1, this is a contradiction to:
1
A >6-22=2> p+1. (4.20)
Similarly, £ = —1, p > 3, kK > 1 implies:
1
A >6-22—2>PT 0 (4.21)
p—1
That concludes the proof. O

Remark Consider E = —1 and p = 3. By direct calculation, (a1,b1) = (—1,—1) and
(ag,bx) = (0,0) for k > 2. That corresponds to a resonance of L:

(L +1) (1 —iQ2> — (L —i) <1 ‘_ZQQ> — (8) . (4.22)

As we will later on prove, no such resonance exists for 3 < p <5.

Using lemma 4.0.1, we compare ), ap&* and Dok biEF to the power series:
z—1=+1- —1—}2{[ %“—}j( ﬁgﬁ (4.23)
n=1k=1 n=1\ "

Lemma 4.1.3 Let E > —1, but exclude the case E = —1, p = 3. Let (ag)ken, (bk)reny C
R be given by (ag,by) = (1,0) and (4.16), (4.17). Then, there are j1,j2 € R and C' > 0
with:

n k_f

w\w

Vn>1:

<

% (4.24)

n k _ n
= i
k=1 k=1

Proof. Let a := a1, b:= by < 0. We define sequences (a4 )i>1, (bx,+)k>1 € R by

(a1,+7 b1,+) = (a’ 0)7 (425)
(al,_, bL_) = (0, b) (4.26)

and mandating that both (ay +, bk +)k>1 and (ax,—)k>1, (b, —)k>1 fulfil (4.16) and (4.17).
Then, for k > 1:

ax = g4 + ag,—, (4.27)
by, = by + + by, —. (4.28)
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Considering a;,— = 0 and by — = b < 0, (4.16) and (4.17) imply inductively:

Vk > 2: ag,— > 0> bk,,. (4.29)
We define ¢, _ := Z:—:‘ = —Z:’: > 0 for k£ > 2. It follows:
8E +1
0< copr = _Bk + o-1p Agag,— — %bk,—
’ Bk Akbk,— — %ah_

ptl
p-1 (4.30)

E +1)(cp— — g -
= (1 + 82) 1- (p+ e, ka’ ) Ch,—- (4.31)
(p—1)*By (p— D)(Ag + ﬁck,—)
We choose some 0 < ¢ < 1. Then, for £ > 2 with ¢, — < ¢:
S8E p+1 1
1—|—> 1- (ch— —cp )
( (p—1)2Bx ( (p—1)(Ax + B, ) "

8 p+1 P
g (1 (P—1)23k> <1+ (p_l)(Ak+2%Ck7,)( )) (4.32)

Choosing ¢ small enough ensures c;11,— > ¢, —. On the other hand, ¢, _ > ¢ implies:

(1 L 8E ) Ager,— + 25
Ck+1,— =
- (p - 1)23k A + ;%}Ck’_

ptl
- (1 B 8 ) Arc+ =1
B (p—1)2B

A + %C
75)
>c|ll— ——=
- < (p—1)*B1
> % (4.33)
Therefore, we find j > 0 with:
Vk>2:cp_ > ] (4.34)

Completely analogously, we find J > 0 with:

Vk>2:¢,_ < J. (4.35)
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4. Absence of Embedded Eigenvalues

Plugging Z:—*: = —cj,— into (3.49) and (3.50) implies for k& > 2:

241 2\/1+E 1+FE V1+E (p+1)? p+1 Sk, —
LR L S e VI s VR e A S R (4.36)
kt1,— k:2+2k:+ zmk+ 2¢1TE 1 k,—> '

k2 4+ 1k + 2\/1+EkJr 1+E2 I \/1+E (p+D)? | p+1ch—

_ (r—1) 2(p—1)  4(p— 1)2 p—1 4
Pt~ = K2+ ok + DB 4 LB 4 gy 2B P (430)
p

As both ¢; and clzl are bounded, lemma 4.0.1 implies the existence of j; _, jo - € R\{0}
and C > 0 with:

(V][N
N[t

Vn>2:|a g
n

(4.38)

Ry et 1
k=1

n ke —
11
k=1

By repeating the same argument for (ax )k, (bk+ )k, we find ji 4,72+ € R\{0} and
C > 0 with:

nog_
[1
k=1

k=3 4 3 o | k-3
VnZZ an+_]1’+k1_[T ,bn+ H SE H (439)
=1 = k=1
We define ji := j1,+ + ji,— and jo := ja 1+ + jo,—. That concludes the proof. O

Definition 4.1.4 Let E > —1, but exclude the case E = —1, p = 3. Let (ay)ken, (bk)ren €
R be given by (ap,bo) = (1,0) and (4.16), (4.17). We define ¢, € RU{oc} for k > 0 by:

(4.40)

To denote the dependency on p and E, we also write ¢, = cx(E,p). If E or p are clear
from context, as will be the case for large parts of chapter 5, we also write ¢y = cp(E)

or ek = cx(p).

Lemma 4.1.5 Let EE > —1, but exclude the case E = —1, p = 3. Consider the Riemann
sphere C U {oo}. Then, (ck)ken is given by co = oo and recursion via the Mébius
transformation:

8E Apey — 211
=(1 . 4.41
Ck+1 < + (p _ 1)23k> A — P-i-lck ( )
Proof. Follows by definition and lemma 4.1.2. O

Remark The singularity in (E,p) = (—1,3) of the multivariable meromorphic function
ci(E,p) for k > 2 is not removable. In general, imp~ 1 cx(E, 3) # limp\ 3 ¢, (=1, p).
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4. Absence of Embedded Eigenvalues

Lemma 4.1.6 Let E > —1, but exclude the case E = —1, p = 3. Let (ak)ken, (bk)ren C
R be given by (ag,bp) = (1,0) and (4.16), (4.17). Then, for ji,j2 € R as given by lemma
4.1.3:

(J1,52) # (0,0). (4.42)

Proof. Assume E > 0. Then, by definition, |cx| > 1 implies |cx41| > 1. Now assume
E < 0. In that case, |c;x| < 1 implies |cp41| < 1.
In any case, we find K > 1, such that:

V> K el <1 (4.43)
or:
Vk > K : \c,j] <1 (4.44)

We restate (4.16) and (4.17):

K2+ 3h+ DOE 4 AE, 4 yIEE ), 4 et g

p—1)2 T 2(p-1)  4(p-1)2 T p-
A1 = Wien PN ey ks (4.45)
k2 4 2k + 2EEE 4 2L 41

k2 4 %kz + 2@]{4_ (1+E2 4 VITE (p+1)2 4 optle
=

bk+1 _ p—1) 2(p—1) B 4(p—1)2 pP— Zbk (446)
k2 + 2k + 2\p/£4{Ek 4 2\p/17—‘{E + 1 + (p3E1)2

By lemma 4.0.1, (4.44) and (4.45) imply j; # 0, while (4.43) and (4.46) imply jo # 0.
That concludes the proof. O

Corollary 4.1.7 Let E > —1, but exclude the case E = —1, p = 3. Let (cx)ren be given
by definition 4.1.4. Let further ji,j2 € R be as given by lemma 4.1.3 Then:

. J1
1 ==, 4.4
% Gy (447
Proof. Follows from lemma 4.1.3 and definition 4.1.4. U

Definition 4.1.8 Let E > —1, but exclude the case E = —1, p = 3. We define

C(E,p) = lim cx(E,p). (4.48)

Lemma 4.1.9 (E,p) — C(E,p) is a real meromorphic function for (—1,3) # (E,p) €
[_17 OO) X [37 5]

Proof. By corollary 4.1.7, C(E,p) = ;;Egz ; By definition, j; and jo are real analytic

functions with (ji1,j2) # (0,0). That already concludes the proof. O
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4. Absence of Embedded Eigenvalues

Lemma 4.1.10 Let E > —1, but exclude the case E = —1, p = 3. Let (ax)ken, (bk)ren C
R be given by (ap,bp) = (1,0) and (4.16), (4.17). Then, w = (u,v) as given by:

u(z) = (1 — 22 PHE Z ap(1l — 2* (4.49)
v(z) = (1 — 22 pHE Z b (1 — 22 (4.50)

is well-defined and solves (3.16) and (3.17) for —1 < z < 0. Given, j1, j2 as in lemma
4.1.8, w fulfils:

lim w'(2) = —(j1,j2) # (0,0). (4.51)

Proof. By lemma 3.5.1, it suffices to prove (4.51). We define:

U(z) := Z an(1 — 2%), (4.52)
n=0

=S (1 2, (4.53)
n=0

Let € =1 — 22. Tt follows for —1 < z < 0:

o
z) =ag + Z <an—
n=1

n o0 n

k — &t
k J1

k=1
= (©)
=ao+ f(§) +1(V1-£-1)
[e’¢) n k_§ oo n k_§
SEUSD S (Y | = R o) | e X
n=1 n=1k=1

k=1

n=1k=1

(4.54)

=:9(¢)
=bo +g(&) +j2(V1-€—1). (4.55)

By lemma 4.1.3, for 0 < £ < 1:

1-yi-¢)<C. (4.56)
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4. Absence of Embedded Eigenvalues

Analogously:

g€ < ———<C.
Putting everything together yields:

U(z) =ag+ f(1 —22) 4 j1(—z — 1),
V(z) =bo+ g(1 — 2%) + jo(—2z — 1).

It follows:

U’(z) = —2zf’(1 — 22) — 71,
V'(2) = —224'(1 — 22) — Ja.

By definition:

It follows:
1. ! — 1. U/ — .
limu (2) iy (2) = —j1,
lim v'(2) = lim V'(2) = —jj.
lim v (2) lim (2) = —j2

That concludes the proof.
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4. Absence of Embedded Eigenvalues
4.2. The Odd Case

We proceed analogously to the even case
Definition 4.2.1 Let E > —1 and k > 0. We define
8V1+ FE 41+ F 6v1+FE
Ap = Ap(E) := 4k* 4 6k + +1 (( +1)2) *
p— p—=

(p+1)°
b1 +2—(p_1)2, (4.67)
8Vpl_+1E(k+1)'

By, = B(E) := 4(k + 1)*

(4.68)
Recall lemma 3.6.1. (3.70) and (3.73) can be rewritten as

p+11
Ap+1 =

(4.69)
A +1 1
b1 = kSE b, — L
Br + -1

RE Q.. (470)
Lemma 4.2.2 Let E > —1. Let (ag)ken, (bk)ken € R be given by (agp, bo)
(4.69), (4.70). Then, for every k >0

= (1,0) and
(ak, bx) # (0,0). (4.71)
Proof. By definition, ag # 0 and by = T—} B +“ o # 0.
Assume that the lemma does not hold.
(ak, br) # (0,0). It follows

We ﬁnd k > 1 with agy1 = b1 = 0 and
0= Apa; — p

1
lbk = Aby, _ b

This is a contradiction to

(4.72)
1
14,@12—22>2>7i1 (4.73)
for k£ > 1. That concludes the proof O
Using lemma 4.0.1, we compare Y, ar¥ and 3. br€F to the power series
= R Y1 C= ol
1= 1= n_ 2>§”. (4.74)
z 1= 5 n=1k=1 k n=1 n
Lemma 4.2.3 Let E > —1. Let (ag)ken, (bk)ken € R be given by (ag,bo) = (1,0) and
(4.69), (4.70). Then, there are ji, jo € R and C' > 0 with:
nop_ 1 LS C n 1
—J1 2 bn, — J2 H — H 2. (4'75)
= k=1 gy
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4. Absence of Embedded Eigenvalues

Proof. Follows analogously to lemma 4.1.3. ([

Lemma 4.2.4 Let E > —1. Let (ag)ken, (bk)ren € R be given by (ap,by) = (1,0) and
(4.69), (4.70). Then, for j1,j2 € R as given by lemma 4.2.3:

(J1,42) # (0,0). (4.76)
Proof. Follows analogously to lemma 4.1.6. (]

Definition 4.2.5 Let E > —1. Let (ag)ken, (bk)ken € R be given by (ao,bp) = (1,0)
and (4.69), (4.70). We define ¢, € RU {oo} for k>0 by:

ag

Ck:a.

(4.77)

To denote the dependency on p and E, we also write ¢, = cx(E,p). If E or p are clear
from context, as will be the case for large parts of chapter 5, we also write ¢ = cp(F)

or i = cx(p).

Lemma 4.2.6 Let E > —1. Consider the Riemann sphere CU {oo}. Then, (ci)ken is
given by cy = oo and:

8E Apey — 2
Ch1 = (1 + ) . 4.78
' - 17B:) A P, )
Proof. Follows by definition and lemma 4.2.2. O

Corollary 4.2.7 Let E > —1. Let (ck)ken be given by definition 4.2.5. Let further
71,72 € R be as given by lemma 4.2.3 Then:

J1

kli}rgo cL = T (4.79)

Proof. Follows analogously to corollary 4.1.7. O
Definition 4.2.8 Let E > —1. We define

C(E,p) = leI{:O ck(E,p). (4.80)

Lemma 4.2.9 (E,p) — C(E,p) is a real meromorphic function for (E,p) € [—1,00) X
[3,5].

Proof. Follows analogously to lemma 4.1.9. U
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4. Absence of Embedded Eigenvalues

Lemma 4.2.10 Let E > —1. Let (ak)ken, (bk)ren C R be given by (ag,bo) = (1,0) and
(4.69), (4.70). Then, w = (u,v) as given by:

u(z) = (1 —2* = z Z ap(1 — 2 (4.81)
v(z) = (1—22 PHlEz Z br(1 — 22 (4.82)

is well-defined and solves (3.16) and (3.17) for —1 < z < 0. Given, j1, j2 as in lemma
4.2.8, w fulfils:

Proof. By lemma 3.6.1, it suffices to prove (4.83). We define:
U(z):= Z an(1 — 22)", (4.84)

V(z):= Z ba(1 — 22)™. (4.85)

n k'—* o] k_l
_a0+z<an_.71H ? )fn-i—JlZH k2§n
n=1k=1
=:f(£)
:a0+f(§)+j1 (\/11?—1>, (4.86)
o] n k_§ oo n k_l
Ve =+ 3 (- n T e n ST e
n=1 k=1 n=1 k=1
=:9(¢)
—bo+g(f)+]2< 11_5—1) (4.87)
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4. Absence of Embedded Eigenvalues

By lemma 4.2.3, it follows for 0 < £ < 1:

HGIRIGIEISY ﬁ

Putting everything together yields:

U(z) = a0+ f(1 - 2%) + j1

/—l\
| =
|

—_
~_

Vi(z) =bo+g(l—2%) +jo

z
=-1)
—Z-1).
z

7 N

By definition:

u(z) = (1 - 2251 2U(2),
v(z)=(1- z%gz‘/(z)
It follows:
li;% u(z) = —j,
li}% v(z) = —j2

That concludes the proof.

4.3. Absence of Eigenvalues

(4.88)

(4.89)

(4.90)

(4.91)
(4.92)

(4.93)

(4.94)

A direct consequence of the existence of the solutions given by lemma 4.1.10 and lemma

4.2.10 is that embedded eigenvalues can not exist.

The space of potential eigenfunctions Dg _ is one-dimensional, consequently both of
the solutions given by lemma 4.1.10 and by lemma 4.2.10 span said space. Because these

two solutions are non-even and non-odd respectively, no eigenfunction can exist.

Theorem 4.3.1 Let p € [3,5]. Then, iL has no eigenvalues embedded within the essen-

tial spectrum (—oo, —1] U [1, 00).

Proof. Symmetry allows us to only consider £ > 1. Lemma 2.3.21 implies dim D _ = 1.
It follows Dg . — = {0} from lemma 4.1.10 and Dg, — = {0} from lemma 4.2.10. Lemma

3.4.6 concludes the proof.
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5. Spectrum between —1 and 1

5. Spectrum between —1 and 1

5.1. Overview

We have concluded our investigation of the essential spectrum of iL, which was aided
by Dpg,_ being one-dimensional.

When checking for eigenvalues £ € (—1,1)\{0} and resonances E = +1, Dg _ resp.
f)E,, is two-dimensional, which makes showing Dg._ = Dg,— = {0} much more dif-
ficult.

Let us recount the tools at our disposal. Through lemma 4.1.10, we have constructed,
for every E € [—1,1] and p € [3,5] some solution wg, = (g, vEp) : (=1,0) = C2 to
the eigenvalue equation (3.16) and (3.17) with

li_r%wE,P(z) = (jl(Evp)ajZ(Eap)) 7& 0. (51)

Through symmetry (lemma 2.0.2), we can construct a second solution Wg, = (V_g,p, U—Ep)-
The asymptotics of these solutions (compare lemma 4.1.10) for z — 0 ensure that wg

and Wg p are linearly independent, meaning Dg — = span(wg ,, Wg p)-
Consequently, Dg . = {0} is equivalent to
jl(E7p) ]2(_E7p)
det | ”, : 0. 5.2
(]2(E7p) i(~Ep) 7 (52)

Lemma 4.1.5 gives a recursively defined sequence (ci(E,p)); which, by corollary 4.1.7
fulfils limg_o cp = 2L.

That gives us a condition for the existence of eigenvalues resp. resonances. 7L admits
an (even) eigenvalue or resonance E € [—1,1]\{0}, if and only if

. L 1
C(E,p) == lim ¢x(E,p) = lim wCEp) CEp) (5.3)

We employ the exact same strategy for odd eigenfunctions.

5.1.1. The Even Case

Definition 5.1.1 Let E € [—1,1] and p € [3,5]. We define wgp = (ugp,vEp) € DE —
as the function given by lemma 4.1.10. Further, lemma 2.0.2 allows us to define Wg,p ==
(U_E7p’ U_E7p) € DE’_'

Definition 5.1.2 For E € [-1,1] and p € [3,5], we define j1(E,p),jo(E,p) € R as
given by lemma 4.1.5.

Definition 5.1.3 Let F € [—1,1] and p € [3,5], we define (cp(E,p))reny € RU {0} as
given by lemma 4.1.5. As before, we need to exclude the case E = —1, p = 3.
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5. Spectrum between —1 and 1

Definition 5.1.4 (Definition 4.1.8) For E € [—1,1] and p € [3,5], but exclude the
case E = —1, p=3. By corollary 4.1.7, limy_, cx(E,p) is well-defined. We define:

C(E,p) = klggo ck(E,p). (5.4)

Lemma 5.1.5 (Lemma 4.1.9) (E,p) — C(E,p) is a real meromorphic function for
(_173) 7é (Evp) € [_LOO) X [375]

Lemma 5.1.6 Let E € (—1,1)\{0} and p € [3,5]. Then, Dg,_ = span(wg ,, Wg.p)-

Proof. By lemma 2.3.21, we only need to show that wg , and wg ), are linear independent.

VItE
By lemma 4.1.10, the decay of wg, for 2 — —1 is given by ~ (1 — 22)»=1 , while the

VIiE
decay of w_g, and thus wg, is given by ~ (1 — 22)7»-1 .
That concludes the proof. [l

Lemma 5.1.7 Let E € (—1,1)\{0} and p € [3,5]. If and only if

1

C(E,p) # ma

(5.5)
then Dg . = {0}.

Proof. Assume 0 # w € Dg, . By lemma 5.1.6, we find k,l € R with w = kwg p,+lwE,
and (k,l) # (0,0). By lemma 4.1.10 and w € Dg —:

—j1(E, p) —Jj2(=E\p)\ _ - L (o
k ( ) +1 < : = /{:ll}%wbl,(z) +lll}%le,p(Z) = lim w'(z) = NE

—j2(E, p) —j1i(=E,p) 270
(5.6)
It follows:
jl(E7p) :_iz j2(E7p) (5 7)
jQ(_E7p) k jl(_E7p)
We reach a contradiction, as corollary 4.1.7 implies:
. j1(E,p) j2<_E7p) : 1
lim ci(F,p) = = == = lim ———. 5.8
) =5 B T h(Ep) Sk al(-E.p) %
The inverse implication follows analogously. That concludes the proof. U
D E,e,— can be characterised completely analogously to lemma 5.1.7.
Lemma 5.1.8 Let E=1 or E=—1, p € (3,5]. If and only if
1
C(E,p) # ———, 5.9
(E,p) CCED) (5.9)

then Dg._ = {0}.
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Remark The reason we require p > 3 in lemma 5.1.8 is that E = —1, p = 3 constitutes
the one exception to definition 4.1.4, due to ag = by = 0. This fact is directly related to
the existence of a resonance as noted in the remark on page 68.

Corollary 5.1.9 Let E € (0,1] and p € [3,5] with (E,p) # (1,3). Then E is an
etgenvalue or resonance of iL with even eigenfunction, if and only if

C(E,p) # (5.10)

C(_E7p) .

5.1.2. The Odd Case

Definition 5.1.10 Let E € [—1,1] and p € [3,5]. We define wgp = (upp, VEp) € D —
as the function given by lemma 4.2.10. Further, lemma 2.0.2 allows us to define Wg :=
(U_E,U_E) S DE7_.

Definition 5.1.11 For E € [—1,1], we define j1(F),j2(E) € R as given by lemma
4.2.3.

Definition 5.1.12 For E € [—1,1] and p € [3,5], we define (cx(E,p))ken € RU {oco}
as given by definition 4.2.5.

Definition 5.1.13 (Definition 4.2.8) Let E € [—1,1] and p € [3,5]. By corollary
4.2.7, limg_, oo ek (E, p) is well-defined. We define:

C(E,p) = kh_{gock(Evp> (511)

Lemma 5.1.14 (Lemma 4.2.9) (E,p) — C(E,p) is a real meromorphic function for
(Evp) € [_1700) x [375]

Lemma 5.1.15 Let E € (—1,1)\{0} and p € [3,5]. Then, Di _ = span(wg.p, Wgp).
Proof. Follows completely analogously to lemma 5.1.6. O

Lemma 5.1.16 Let E € (—1,1)\{0} and p € [3,5]. If and only if

C(E,p) # ———, 5.12
(B0 # a5 (512)
then Dg o, = {0}.
Proof. Follows analogously to lemma 5.1.7. (]
Lemma 5.1.17 Let E =1 or E = —1. Let p € [3,5]. If and only if
1
C(E,p) # ———, 5.13
(B0 # o5 ) (513)

then Dg,_ = {0}.
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Proof. Follows analogously to lemma 5.1.8. ([

Corollary 5.1.18 Let E € (0,1] and p € [3,5]. Then E is an eigenvalue or resonance
of 1L with odd eigenfunction, if and only if

C(E,p) # (5.14)

C(_E7p) ‘

5.1.3. Five Goals

As described in chapter 1.12, in order to use the condition C(E,p) = C(%

terise the spectrum, we employ the following strategy. )

We show five distinct statements, three for the even solution space and two for the
odd solution space. All five statements are proven using heavy calculations to the point
that using a computer algebra system to follow along is recommended.

to charac-

1. Lemma 5.3.13: Let p € (3,5]. Then, —1 and 1 are not resonances or eigenvalues
with even eigenfunctions of 7L, meaning no even bounded solutions to (iL+1)w = 0
exist.

2. Lemma 5.4.21: Let p € [3,5]. Then, —1 and 1 are not resonances or eigenvalues
with odd eigenfunctions of iL, meaning no odd bounded solutions to (L £1)w = 0
exist.

3. Lemma 5.5.18: Let p = 3. Then, L admits no eigenvalues with even eigenfunctions
within the spectral gap (—1,1), apart from 0.

4. Lemma 5.6.13: Let p = 3. Then, ¢L admits no eigenvalues or resonances with odd
eigenfunctions within the spectral gap [—1, 1], apart from 0.

5. Corollary 5.7.15: There exist By € [0,1) and p; € (3,5), such that for every
p € (3, p1], there exists exactly one (even) eigenvalue E € (E1,1) of iL.

In chapter 5.8, we use the above results and basic spectral methods to prove theorem
1.10.1. Chapters 5.3 - 5.7 are dedicated to showing the above five results one at a time.
Chapter 5.2 tries to give some idea how C(E, p) and m behave, by plotting ci(F, p)

and for k£ = 1000 and different values of p and E.

1
cr(—E,p)

As chapters 5.3 - 5.7 consist entirely of calculations, the inclined read may want to
skip ahead to chapter 5.8, only revisiting chapters 5.3 - 5.7 if they are interested in
checking pure calculations. In that case using a computer algebra system for help is
recommended.
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5.2. Graphics

To give an idea of how C(E,p) and C(—E,p) behave, we plot c;(F,p), Ck(—E,p)_l (in
the even case) and ¢z (E,p)~", ex(—E,p) (in the odd case), for certain choices of E, p,
as well as £ = 1000.

The existence of an eigenvalue or resonance is indicated by the curves intersecting.

5.2.1. The Even Case

The following graphics show c1000(E, p) and c1900(—F, p)_l for p =3 and E = 1 respec-
tively. Note that the discontinuity of C(E,p) near (E,p) = (—1, 3) is clearly visible. The
first graphic indicates limpg\ 1 C(—F, 3)~!1 2 0.5 and the second lim, 3 C(—1,p)~t=o0.

T T T T T
I —  coo0(E,3) ||
= c1o00(—E,3) 7"
0.5 |
0 i | | | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FE
‘ T
IS —  ciooo(l,p) ||
- cio00(—1,p)
0.5 |
0 |
| | | | | | | | | | |
2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

These graphics imply the behaviour we prove in section 5.3 and 5.5, namely that no
non-zero eigenvalues exist for p = 3 and that no resonances exist for p > 3.

For p = 5, the fact that E = 0 is an eigenvalue of higher multiplicity (4 instead of 2)
can be clearly seen in the corresponding graphic.
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I —  cioo0(E,5) |
-~ ci000(—EB,5) 7

0.5 :
0 [ -
| | | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1
E
Note that the graphics indicate for p = 3:
C(B,p) < —— (5.15)
P .

with the sign of the estimate switching for p = 5. Thus, by the the intermediate value
theorem, for every E € (0,1) we find some p € (3,5), such that E constitutes an
eigenvalue.

This eigenvalue starts as a resonance in £ = 1 for p = 3 and merges with the eigenvalue
E =0 for p=>5.

The following four graphics depict the position of the eigenvalue for £ = 0.9, £ = 0.99,
E =0.9999 and F = 0.999999. The intersection point between C(E,p) ~ ci000(E,Dp)

and C(—F, p)~! = c1000(—FE,p) ! indicates the exponent p for which E is an eigenvalue
of L.

10 —  ¢1000(0.9,p) ||
= ¢1000(—0.9,p) "
0.5 |
0 |
| | | | | | | | | | |
2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
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1F —  ¢1000(0.99,p) ||
== c1000(—0.99,p) "
0.5+ |
0 |
!
2.8 4 5.2
p
I I T T
1 E— 61000(0.9999,])) N
T 61000(—0.9999,]?)_1
0.5+ |
0 |
! ! ! ! ! ! ! ! ! ! !
2.8 3 3.2 3.4 3.6 3.8 4 4.2 44 46 4.8 5 5.2
p
I I T T
1 — 01000(0.999999,}7) N
= ¢1000(—0.999999, p) !
0.5+ |
0r |
! ! ! ! ! ! ! ! ! ! !
2.8 3 3.2 34 3.6 3.8 4 4.2 44 46 4.8 5 5.2
p

Note that the eigenvalue moves very slowly for exponents close to 3. The eigenvalue
E = 0.99 corresponds to some p > 3.6. The reasons behind that become more clear
in section 5.7. The following three graphics show the position of the eigenvalue given
exponents p = 3.5, p =4 and p = 4.5.
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— 01000(E73‘5)
T Cmoo(—E, 3.5)_1

0.5}

—  co00(E,4)
= c1o00(—E,4) 7"

0.5

— ClOOO(E74-5)
“— cro00(—E,4.5)7!
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5.2.2. The Odd Case

The situation is simpler for odd eigenfunctions. Because non-zero eigenvalues do not
emerge, it holds for every E € (0,1], p € [3,5] and k > 0:

cr(—E,p) > cx(E,p) . (5.16)

The curves only intersect for the eigenvalue E = 0.
The following graphics depict ¢1(E, p)~! and ci(—FE, p), as well as cio00(E,p) "+ and
cr000(—E,p) for E=1, E=0.5, p=3, p=4 and p = 5 respectively.

The case of E =1 depicted below corresponds to chapter 5.4. Because the curves do
not intersect even for small &k, showing the absence of odd resonances via ﬁ #C(—1,p)
is simpler than the case of even resonances.

17 =ub

1l |
| | | | | | | | | | |
2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
p
1 ‘ .
c1000(1, p)
=== c1000(—1,p)
ol e e e - |
-
1L |
| | | | |

As mentioned, the curves only intersect for £ = 0, which is depicted below for E = 0.5.
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- 01(0‘57]7)_1
---- ¢1(=0.5,p)
0 |
—_— T
1tk |
| | | | | | | | | | |
2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
b
1 [ ‘ T T ]
— ¢1000(0.5,p) "
--=- ¢1000(—0.5,p)
0 |
1l |
| | | | | | | | | | |

The case of p = 3 depicted via the two following graphics corresponds to chapter 5.6.
Proving that no eigenvalues exist is somewhat simpler than in the even case depicted on
page 82.

This can be explained through the following heuristic. In the odd case, the graphics
below seem to indicate

diE (C(—E, 3)— cpé:s)) > 0. (5.17)

But, if we compare with the graphic on page 82, the even case admits no equivalent
to (5.17). Consequently, the absence of eigenvalues in the odd case can be proven by
mainly considering E close to 0, while the even case requires an extra step.
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|
0 01 02 03 04 05 06 07 08 09 1
E
We end with four graphics depicting cx(—F,p) > ck(E,p)_1 forp =4, p =5 and
k =1, k = 1000. The fact that £ = 0 is an eigenvalue of multiplicity > 1, namely
multiplicity 2, is visible in all of the below graphics.

1,
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5.3. Even Resonances

In this chapter we show

c(1,p) > (5.18)

C(_lvp) .

for every p € (3,5]. This implies that no resonances exists for p > 3. This chapter
involves some heavy calculations, even compared to the rest of chapter 5. Using a
computer algebra system for assistance is recommended.

5.3.1. Notation
Definition 5.3.1 Let F € [-1,1], p € [3,5] and k > 0. We define Ay and By as given
by definition 4.1.1, meaning:

VI+E. 41+ E) 2V1+E 1)2
Ap = Ap(B,p) = k2 4 2k SYEHE, 41+ E) 2VI+E (p+1)

p—1 (p—1)? p—1 (p—1)?
2
:4<k+”1+E> +2<k+”1+E>—(p+1)z, (5.19)
p— p—1 (p—1)
By = Bi(E,p) == 4(k + 1)* + Sp”l_JrlE(k: +1). (5.20)

Definition 5.3.2 For E € [—1,1], p € [3,5], we define (cx(E,p))keny € RU{o0} as
given by lemma 4.1.5, meaning cg = oo and

8E > Ager, — Z%}

Ck =1+ .
+1 < (p—1)2By A — %Ck

(5.21)

As before, we need to exclude the case F = —1, p = 3.

Notation 5.3.3 In chapter 5.3, we use the shorthand notation ¢ = ¢} (p) = cx(1,p)
and ¢, = ¢, (p) = cx(—1,p). We also abbreviate A} = Ay(1,p) and A, = Ap(—1,p).

The chapter is in essence a proof by induction. We establish bounds on ¢j and ¢;
and extend them to cz and ¢, via induction. The bounds are inspired by the explicit
formulas for ¢ (3), limp\ 3 ¢; (p) which will be calculated in chapter 5.3.2.

The results of chapter 5.3.2 are not needed for the proof of (5.18), here they only
act as an inspiration for the bounds on c,j (p),ci (p). The results of chapter 5.3.2 are
however used in in chapter 5.7, when we examine

1

N Ry

(5.22)

close to the resonance (E,p) = (1, 3).
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5.3.2. Resonance in the Cubic Case
We calculate ¢} (3) and lim\ 3 ¢ (p) ™! explicitly.
Lemma 5.3.4 For E=1,p=3 and k € N, ¢x(E,p) is given by
1
o (3) = m (5.23)

Proof. By lemma 4.1.5:

v 2+ 124+ 2v2(k+ 1) + 1 (4K% + 2k 4+ 4v2k + V2 — 2)¢ff — 2

BT T 12 F 2v2(k+ 1) 4k2+ 2k + 4Vk + V2 — 2 — 261

1+ ) (R 4 2k 4V + V- 2)ef — 2 (5.24)
ok 14+V2)(k+1) 4k2+2k+4V2k +V2 -2 —2¢F '
k

We show the claim by induction. For k& = 0 the claim holds, due to cg = o0. We
calculate:

oF 2(k+1+v2)(k+1)

k1 k+1+%
o(haga L (4k2+2k+4\/§k+f_g)(k+%)_4<k+\/§)k
= (—I— +)2(4]€2+2k+4\/§k+\@—2)(/€+\@)k—2(k+\}5)

V2

1 V2-1y(3. 14 L
—2<k+1+1> 4(k+1+\/§)(k+ 5 ) (K 1+\/§)
V2 8(k+ 14 22k + Y5 (k- 14 L)
=1. (5.25)
That concludes the proof. [l

Lemma 5.3.5 For every k € N:

2k? — 1
lim ¢, = . 5.26
) == 20

Proof. By lemma 4.1.5, ¢y (p) = oo and

2 _ (D2 —(y _ ptl
¢ (p) = (1 — ) (162 4 26 = ) i 0) z‘l. (5.27)
FH (p—=1*k+1)%) 4k2 42k — gﬂgz - %cg(p)

We conclude:

2 ) ptl (5.28)
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Consequently:
14
limey (p) === =1. 2
p{%cl (p) 99 (5.29)
Further:
2 1 p+1
lim dyc; (p) = — 21lim O ()—i—lima ()
p\3p1(p) 3 L\ (p—1)? 2p3 P \p—1
4 1 2
~ () b (2)
3\ (p—1)3) 2p3 P\p-1
12
=1-=-=
24
3
= -, 5.30
- (5.30)
By L’Hoépital’s rule:
+1)2\ — 1
RN O (o v KoY Ol =
h{% ¢ (p) = 8 h{% (p+1)? _ ptl —
g 6= o — pmrer (P)
T $:2-2¢] +20pc] + 3
8p\3 5 -2-24 $¢; —20p¢)
5.3
_T3+t53
5_3
85—3
_ 78
- 82
7
= . 5.31
. (5:31)

We now use induction. For k& = 2, the lemma holds by (5.31). For simplicity, consider:

dp := lim ¢, (—1,p). 5.32
K pgck( p) (5.32)

By (5.27), for k > 2:

J _(1_ 1 )(4k2+2k—4)dk—2
F 2k +1)2) 4k + 2k — 4 — 2d;,
2K+ 4k 4+ 1 (2K + k —2)dy, — 1
2244k +2 2k2+k—2—d

(5.33)
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By (5.33) and the induction hypothesis:

2k% + 4k +1 (2k* + k — 2)d), — 1

d pu—
M9k 4k +2 2k 4+ k — 2 — di
2K+ 4k + 12K+ k—2)(2k* —1) — k
CO2k2 44k +2 (2k2+k—2)k—2k2 +1
2% + 4k + 14k* + 2k3 — 6k% — 2k + 2
2k 44k +2 2k3— k2 -2k +1
~ 2(k+1)? — 1 (k4 1)(4k% — 2k* — 4k + 2)
o 2(k+1)2 (k—1)(2k2+ k —1)
C2(k+1)2—12(k+1)%(2k* — 3k + 1)
o 2(k+1)2 (k-1 (k+1)(2k—1)
C2(k+1)2—12(k+1)%(k—1)(2k — 1)
o 2(k+1)2 (E-1)(k+1)(2k—1)
2(k+1)2 -1
S A 34
k+1 (5:34)
That concludes the proof. O
Corollary 5.3.6 The following holds true:
C(1,3) = 0, (5.35)
1
lim ———— = 0. (5.36)

PN3 C(_17p)

Remark Note that C(E,p) does not possess a continuous continuation to (E,p) =
(—1,3). The limit depends on the direction:

1 1
lim —— li —_— 37
PR L) 7 P OB 3) (5:57)

This is examined in more detail in chapter 5.7.

5.3.3. Establishing Bounds
Lemma 5.3.7 Let p € (3,5] and k > 1. Assume:

V2 V2
_ p+1(k+p_1)(k_p_1)
< < . .
<)< iy - (538)
Then:
V2 V2
o (11))<erl(kJer‘l)(kJr1 1) (5.39)
RV =y 1 k+1
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Proof. By definition:

(k414 22k +1— Y2) (4k2 + 2k — BHL ) o — 25

_ (p—1) p—1
P (5.40)
e (k+1)2 4k2 + 2k — T, — B
It follows:
_ E+1 p—1
c (5.41)
k+1(l<:+1+ (k41— il)PJrl
-1 1 p+1Ak(/€2 ) p+1]€
+1
pr i Ak = £ 132(’“2 o1P)
_ Ap(K? — o) — K
- 2
Apk(k+1) = B (B + 1) (k2 - 55)
oy
= —, 5.42
B (5.42)
It suffices to show oy — 5, < 0. We calculate:
B 2 (p+1)° ( 2 2 > _
ok — Br = Ay (k k(k+1))+(p_1)2(k+1) k (p— 1)
+1)? 2
S (PSP R <k+>—
( (p—1) ) (p—1)
( +1)2 < 3, .2 2 2 )
K+ k k—
(p—12  (p—1)72
+1)2 2
- 4k2+2k—(p <k+ )—
( (p—1)2 (p—1)2
1)2 2 1)2 2 1)2
(p+ (p+ )ka_ (p+ )41@— (p+ )4 (5.43)
(p ) (p—l) (r—1) (p—1)
It follows:
8 4 (p+1)* | 20+1)°
ap — B = — 4k3 — K2 — 2k% — k+ k+ —k
oo (p—1)° -1 (-1 (p-1)*
2 2 2
L +1)° +(p+1)2k2_2(p+1)4 _2(p+1)4
(p 1) (p—1) (p—1) (r—1)
_(p+1)° —4(1?—1)2,{34r (p+1)2—8—2(p—1)2k2
(p—1)2 (p—1)2
212 —4(p-12-2 1?2 —(p—1*
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Consequently:

o g~ =8B =

):IC3 (p B 3)2k2
(p—1) (p—1)°
L =3t -2 +2),
(p—1)*
—p=3)Bp-1, =37 (=34’ —2p+2),
(p—1)2 (p—1)2 (p—1)*
p—3
“ oy (Br=THp =310 @ 24 2)) k
2(p —3)?
- (;_1))4(2;92 —2p+ 1k
<0. (5.45)
That concludes the proof O
Lemma 5.3.8 Let p € (3,5]. Then:
_ Ip+12p°—4p p—|-1( 2 )
= - 4— —F. .
¢ () Tp 190 621 3p 1 1) (5.46)
Proof. By definition:
L 1 22 (k1 2 (4R 2k 2 ;j) . -l )
Ck+1 = +1 2 1 . 5
(k+1)2 4k? + 2k — L — By
Using ¢y = oo:
_ 2 p+1
cg =|1-— ) . 5.48
! ( (p—12/p-1 (5:48)
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It follows:

1

2
4- (p—1)2

1 (6- &) (1- o) 35 -2
4 6 (p+1)?  (p+1)? ( 2)

Co

+1

S

,_.

(r-1)2  (p-1)?

Lp+1 (0~ §55) (Fﬁ)—l

_ +1)2
=1 6- B (2- 52p)

12 (p+1)? 2 B
1p+16- Ghp — G (1- o) — 1

_ +1)2
ip—1 6— 83—132 (2-¢27)

(p+1)?2
( ~er T oo | )
_ (p+1)? . 2
6 - 1) (2- 52)
Ip+1 (p—1)2%(—-124 (p+ 1) — (p—1)?)
1+ )2

6(p—1)*—2(p2 —1)2+2(p+1)2
4(p—3)(p—1)
L S —3) @7 — 62 +3p—1>

2p? —4dp + 2
2p% —6p2 +3p—1)°

(5.49)

That concludes the proof. O

Corollary 5.3.9 Letp € (3,5]. Let further § =6, = 3 ol onde=¢, = @_Sf;ﬁ.
Then:

pr1@+22)2-22)

p—1 2

_p 10+ -3)2+ B - 5)
“p—1 2(6(p—3)+1)

(5.50)

Proof. Follows by direct computation from lemma 5.3.8. O

We are now ready to establish an upper bound on Unfortunately, the calcula-

1
cy ()
tions needed in order to prove lemma 5.3.10 are extensive.
The following two graphics are meant as a heuristic affirmation of the proof of lemma
5.3.10. The first graphic depicts the base case kK = 2. The second graphic depicts

k = 1000, showing that the lemma remains true for large k.
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L a1 |
Upper Bound
0.8 | |
0.6 |- |
0.4 .
| ] | | | | | | | | | |
2.8 3 3.2 34 36 38 4 42 44 46 4.8 ) 5.2
p
T T T
1 = c1000(—1,p) " | |
Upper Bound
0.5 |
0l T |
| | | | | | | | | | |
2.8 3 32 34 36 338 4 42 44 46 4.8 5 5.2
p
Lemma 5.3.10 Let p € (3,5]. Let further § =6, = %45’;:21)10 and € =€, = (p—;)];ﬁ'

Then, for every k > 2:

pt 1+ 2 (k- X2)
p—1 k

- pr1(+e—3)k+22) (k- 22)
= ¢ (p) = p—1 k©o(p—3)(k—1) +1) . (5.51)

Proof (Calculation done with a computer). We proceed by induction. The base case is
covered by corollary 5.3.9. For the induction step let k£ > 1 be given and assume (5.51)
holds. By lemma 5.3.7:

k4l+ Y2y (k41— Y2
1l p=1)( 1) (5.52)

_ <
Ck+1(P) = o-1 b1
It remains to show

pr1(L+e@—3)k+1+22)(k+1-22) 553
p—1 (k+1)(0(p—3)k+1) ' ’

C,;rl (p) >
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Then:

(k+1)(6(p—3)k+1) p—1
(L+e(p—3)(k+1+22)(k+1- f)p+1
p—1 Sp-3k+1 E+ep—3) AR - 25) — E5k(S(p - 3)(k - 1) +1)

T ALt e@ =3k 1) Ak(3(p - 3)(k - 1) +1) = LEL (1 +e(p - 3))(k — - 247)

(5.54)

Cr+1

 A+e(p=3)(R = G Zm)(0(p — 3)k + 1) — k(8(p — )k + 1)(3(p — 3)(k — 1) + 1)
A1+ £(p — 3)k(k + (6 — 3)(k — 1)+ 1) — ZE (14 2(p— 3)2(k+ (K - - 472)
- % (5.55)

It suffices to show oy — 8 < 0. We calculate:

o — B = Ap(1+e(p—3)) <k2 _ (})_21)2 (k4 1)) (6(p—3)k+ 1)

+ Ar(1+e(p—3)k(k+1)d(p—3)

(p+1) 2 2 2
P 3) (k:+1)(k: (p_1)2)
—k(0(p—=3)k+1)(0(p—3)(k—1)+1)
_ (p+1) 2
_ <4k2+2k— (p_1)2> (1+2(p—3)) (k+(p_1)2) (6(p— )k + 1)
+ <4k2 4ok — Eif Bi) (14 e(p — 3))k(k +1)5(p — 3)
—0%(p —3)%k3 + 5%(p — 3)*k* — 20(p — 3)k2+(5(p 3)k k
(p+1)? o2 (13, 12
e -3) (k = ) (5.56)
By (5.45):
1 2
Ve <4k2+2k Ep )2>
(p+1) (p+1)2 2 2p+1) 2(p+ 1)
oot T <—1>k 1)
—-(p—3)Bp—1),3  —(p—3)? 5, (p—3)(4p* —2p+2)
oo K+ oo Rt " k. (5.57)
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We conclude:

ar — B — (L+e(p—3)n
:._Gﬁ+ak—€ 1L>1+ep 3)) (::P>&P—$k
+<M3+%:£+1;>1+6p 3)k(k+1)5(p — 3)
—0%(p—3)%k3 + 6%(p — 3)*k* — 25(p — 3)k* + 5(p — 3)k + (p — 3)k
T E§f1;2(1+a(p—3))s(p—3) GRYE (p_21)2k:— (p_21)2>‘ (5.58)
It follows:
o — B — (L +elp—3)n
p—3
B 9 _(p+1) . 2
_ <4k N )(1+ (- 3))( T _1)2)5k
—0%(p — 3)k3 + 0%(p — 3)k? — 20k> 4 Ok + ek
(p+1)° - 5,0 2 2
e el =) (4 - Sk )
— _ L 3 . _i 2
— (1 4<(p 3))( e )>5k +(14<(p 3))(2 (p_l)Q)ék
(p+1)°> 2(p+1)
~retp-a) (-
p+1)* 5 p+U o 20p+1)?  2(p+1)°
+e(l+e(p—3) (p 1)2 + )k: 1) (p—1)4>
—8%(p — 3)k3 + 6%(p — 3)k? 25k2+—5k—%5k
_< +e(p—3)) (4(5— pt32>—(p—3)(52>k:3
@+1)
(( +e(p— 3))( = ) ( )2 >+255(p—3)+52(p—3)>k2
P+1)*@*—2p—-1), 2(p+1)°
(et (Sl B ) s

2(p + 1)
(p—1)*

—e(l+e(p—3) (5.59)
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In summary:

ag — P
p—3
1-3p 84 +1)?
= <(1+€(p 3))( )2 +45—( — 1y +5Ez1§2>—52(p_3)>k;3
46 1
+<1—|—5p 3)) ( e +€E§j1;>+258(p 3) + 0%(p — 3)>k:2
4p* —2p +2 1)2(p? —2p—1 2(p + 1)?
+< veto—3) ( T+ T - Ry )”“)k
—e(1+e(p—3)) (( ) (5.60)
We substitute § = % i z? 721)p and € = %. By direct computation:
ai — B
p—3

~ 15p” 4 163p® + 562p” — 2030p° — 7057p° + 5555p* + 26816p°® + 7720p* — 9840p + 1392 13
a 64(p — 2)%(p — 1)%p*(p + 2)*
17p + 125p8 + 286p” — 1858p5 — 7855p° — 2547p* + 24816p> + 23368p? — 5520p — 48
64(p — 2)%(p — 1)*p?(p + 2)*

N 18p*t + 98p'0 4+ 85p? — 649p® — 1983p” — 465p° + 5061p° + 6315p* + 2267p> + 897p% — T04p + 84 L
8(p —2)%(p — 1)*p*(p +2)*

20+ 1)°GBp - )" +2p* —p* —18p +3)

(p—2)%(p—1)*p*(p +2)*

3
=) my(p)k'. (5.61)

=0

k>

By direct computation 2ms(p) + ma(p) > 0 and 2m;(p) + mo(p) > 0. That concludes
the proof. O

For ¢ (p), we show a lower bound. As in the case of lemma 5.3.10, as a heuristic

affirmation of lemma 5.3.11, consider the following graphic, depicting the lower bound
for the base case k = 2.
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1 - CQ(Lp) B
Lower Bound
0.8 - N
0.6 - .
04| N
0.2} |
| | | | | | | | | | |
2.8 3 32 34 36 3.8 4 42 44 46 48 5 5.2

b

Lemma 5.3.11 Let p € [3,5]. Let further 6 = 6, = %4(?;”:21)[)(1 - %%), €=
TS0 andl=1,=2+ 2. Then:

P T T2 2prr2)? p—1
-1 (o(p—3)(1—-1 1
P+ - )+ 20 - 2)
Proof (Calculation done with a computer). By definition:
vz \? 1 1
g = <2 i ﬁ) Arei — I% = ’ et I% (5.63)
7= = . .
22+ 29) A - fhel ()0 - B A - el
We need to show:
lAlcf—,%}>p—15(p—3>(z—1)+1 (5,64
A - T e+l 14e(p-3) '
We calculate c¢; using cg = oo:
AL
o — (1+:8) p-1(p+17 8 22
1+22 p+1\(p-1* (-1 p-1
p—1(-1)%((p+1)° 2
= -4 -2 -2(1-2) . 5.65
p+120-3 \(p-12 =2y -20-2) (5.65)
Further, by definition:
+1)?
Ay =4l -1 20 -1~ 2FED 5.66
We introduce the new variables ¢ = ;’%} and j=1—-2= pTQl. (5.64) now reads
G2lut D242 +1) =¢)g e* ~ 47 ~2) —q 10 =3)(+1) +1
(4G +1)2+20+1) —¢?) = (¢* =452 =2j) ~ l+e(p-3) =
(5.67)
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By definition p = Z%% and [ = Q(q —1). It follows

3(q — 2)(q+ 2)(37¢* — 248¢% + 57442 — 600q + 221)
2(1 = 3¢)%(q — 3)%(q + 1)? ’
37¢* — 248¢> + 574¢% — 600q + 221
(1-3¢)%*(¢—3)(g+1)

o(p—3) =

(5.68)

1+e(p—3) = (5.69)

(5.67) is thus equivalent to:

ni(q)  —(vV2¢ — V2 +4)(¢* +6v2¢° — 8¢° — 30v/2¢> + 37¢ + 42v/2q — 60g — 18v/2 + 26)
na(q) 4(q% +3v2q — 4g — 3v/2 + 5)
—(+2) AU+’ +2(+1) —¢*)(¢* — 4> - 2j) = ¢°
(4G + D2 +2( + 1) — ¢%) — (¢ — 452 — 2j)
S =3+ +1

- 1+e(p—3)
_ 3a—2)(¢+2)(V2¢— V2 +2) (1-34)*(¢—3)(¢+1)
4(¢g—3)(¢g+1) 37q* — 248¢3 + 5742 — 600q + 221

_ 7711(61) N ml(q)
T 4(q—3)(qg+ 1)(37¢* — 248¢3 + 574¢q2 — 600q + 221)  ma(q)’ (5.70)

Hereby:

mi(q) = 111v2¢" — 855v/2¢% + 25845 + 2022v/2¢° — 1656¢° — 102v/2¢* + 2584¢*
— 7401v/2¢3 + 2816¢° + 13425v/2¢% — 12422¢% — 9852v/2¢ + 14232¢
+2652v/2 — 5268. (5.71)

We calculate:

n2(q)m(q)
= 444v2¢° — 5196v2¢% + 3696¢° + 27084v/2¢7 — 33936¢" — 72828v/2¢° + 1110404°
+ 63348v/2¢° — 114176¢° + 172860v/2¢" — 218240¢" — 585084v/2¢> + 811824¢>
+ 756588v/2¢% — 1055872¢% — 473472+/2¢ + 669024¢ + 116256+/2 — 169008. (5.72)

On the other hand:

n1(q)ma(q)

= — 148v2¢" + 2620v2¢"° — 2368¢'° — 256401/2¢° + 36000¢° + 159528+/2¢8
— 238544¢% — 616712v/2¢" + 8925764 + 1434904v/2¢% — 2002912¢° — 1837424v/24°
+2521824¢° + 736048v/2¢* — 1023872¢* + 1273980v/2¢° — 1733152¢>

— 2073204v/2¢% + 2898464¢> + 1205944V/2q — 1715200q — 259896v/2 + 371280.
(5.73)
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It follows:

n1(g)ma(q) — na(q)mi(q)
= — 148V2¢" + 2620v/2¢'° — 2368¢'% — 26084v/2¢° + 36000¢° + 164724v/2¢% — 2422404°
— 6437961/2¢" + 926512¢" — 1507732v/2¢% + 2113952¢° + 1900772v/2¢° — 2636000¢°
— 563188v/2¢* + 805632¢* — 1859064v/2¢> + 2544976¢° + 2829792v/2¢* — 39543364¢>
— 1679416v/2q + 2384224¢ + 376152v/2 — 540288. (5.74)

To conclude the proof, it suffices to show n1(q)ma(q) — na(q¢)mi(q) > 0 for ¢ € [%, 2],
which can be checked by direct computation. That concludes the proof. O

As a heuristic affirmation of lemma 5.3.12, consider the following graphic, depicting
the lower bound for the large value & = 1000.

Ly cioo0(1,p) | |
Lower Bound
0.5 |
0+ i
| | | | | | | | | | |
2.8 3 32 34 36 38 4 4.2 44 46 48 ) 5.2
p
Lemma 5.3.12 Let p € [3,5]. Let further 6 = 6, = %4(3;’_21) (1— 7%), €=
—%% Assume ¢, € (0,00) for every k> 1 and let |l =1, = k + p\/il' Then:
p—1 lo(p—3)1—-1)+1
ct(p) > O =3) -1 +1) (5.75)

TPl e(p-3)(+ 20 - 2
Proof (Calculation done with a computer). We proceed by induction. The base case is
covered by lemma 5.3.11. For the induction step let k¥ > 1 be given and assume (5.75)
holds. By definition

V2 f 2 (P12 4+~ _ p+l
o e (+1+5)0+1-75) <4l T2 == 1)2)Ck: p1 (5.76)
1 - 2 — .
* (l +1)2 42 + 21 — T, — e
which directly mirrors
V2 f 2 (p+1)2\ —  ptl
= LU 2) (4k? + 2k — 255 ) o — 2 5
mH (a0 4k2 + 2k — LS ptl '
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We proceed completely analogously to the proof of lemma 5.3.10. It follows
L1 (I+1)(6(p—3)+1) p—1  ay

. < (5.78)
Qe+ 21— f)p+1 Br’
whereby
ag — B
p—3
1-3p 89 p+1)2
— ((1+e(p 3)) <( e + 45 — TEE +s§p_1§2 ~2(p-3) |
45 p+1)2
+<1+5p 3)) < =172 +€Ep—1§2>+266(p_3)+52(p_3)>l2
4p — 2p+ 2 (41’0 -2p-1) o 2p+1)’
+<1+€p 3)) 1) _(p—1)4€ +o+e|l
—e(l4+e(p—13)) (( ) (5.79)
. 3p 6p—10)(p—3 6p—10
We substitute § = 2 T 2)p(l %%) and £ = —%(p_;)’pw. It follows
o = B _ (" +2p* = 25p” + 90p — 105)r5(p) ;5
p—3 64(p — 2)4(p — 1)%p*(p + 2)*
(p* 4 2p3 — 25p? + 90p — 105) k2 (p) 2
64(p — 2)*(p — 1)%p(p + 2)*
n K1(p) I
8(p—2)3(p — 1)*p3(p +2)*
N 14(p + 1)2(3p — 5)(p* + 2p® — 25p% + 90p — 105)
(p—2)%(p — 1)*p%(p + 2)*
3
= > mj(p)l. (5.80)
j=0
Hereby
k1(p) = 15p° + 73p® — 6287p" + 41457p5 — 103800p° + 89440p* + 55665p°
— 129415p? + 46215p — 2835, (5.81)
ro(p) = 17p° + 23p% — 6625p” + 49471p5 — 157544p° + 257312p* — 211009p?
+ 76823p% — 15975p + 2835, (5.82)

r3(p) = 18p™3 + 62p'2 — 897p* + 1971p'0 4 9428p° — 58194p® + 105267p" + 2097p°
— 286399p° + 288635p" + 229312p> — 290150p* — 143745p + 33075.  (5.83)

By direct computation ms, mo > 0, mi,mg < 0. Further 8mg + 4mgy + 2my + mg > 0.
That concludes the proof. O
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5.3.4. Absence of Resonances

Showing that no resonance exists is now a simple matter of comparing the limits of the
lower and upper bounds given by lemma 5.3.10 and lemma 5.3.12.
CZ, C% and the corresponding bounds are shown in the following graphics for & = 2,

k=3, k=4and k= 1000.

1r - 02(17])) |
oLy

0.5

0.5
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5. Spectrum between —1 and 1

IS ciooo(1,p) |
- cio00(—1,p)

0.5

Lemma 5.3.13 Let p € (3,5]. Then, —1 and 1 are not even resonances or eigenvalues
of iL, meaning no even bounded solutions to (iL + 1)w = 0 exist.

Proof. By lemma 5.1.8, it suffices to show

1
Lemma 5.3.10 implies
1
i [0, 00). (5.85)
If ¢ ¢ (0,00), for any k > 1, then due to
Vvz)? 1
L (k+1+22) Akcg—%
k+1 (k:+1)(k+1+2\[)14k 1;
(k+1+ f) of) + Bl
p—1
= T T (5.86)
(k+1)(k+1+ L)Ak+ e (=c)

we conclude C(1,p) = limy_,oo ¢ € (—00,0) and thus C(1,p) # ﬁ. If ¢if € (0,00),
for every k > 1, then, by lemma 5.3.10 and lemma 5.3.12:

p=13 -1 _3
pr124(p—2p7
p—1 24(p—2)p (p - 3)

3 3p—1
3p—1
P11+ Gz (P —3)

C(1,p) = hm Ck >

> lim ck
k—o0
-1 (5.87)
That concludes the proof. O
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5.4. Odd Resonances

We show for 3 < p < 5:

1
C(1,p)

The calculations are more forgiving than in the previous section and we pursue a slightly
more sophisticated strategy.

We begin by showing a straightforward lower bound on ¢x(—1,p). Then, we take
advantage of a similarity between the recursion characterising cx(—1,p) and ¢ (1, p)~ L.

This allows us to show ﬁ < C(—1,p) without separately bounding both terms.

<C(-1,p). (5.88)

Definition 5.4.1 Let E € [—1,1] and k > 0. We define Ay, and By, by definition 4.2.1,
meaning

8\/1+Ek+4(1+E) +6\/1+E (p+1)>

_ 2 _
A= 4 46k + = P R SR e
2
_4<k;_|_ \/p1_+E> +6<k+ \/plle>+2_gJ_rBz, (5.89)
Bk:4(k+1)2+8p”1+1E(k+1)
— A1) (k + 2;1_+1E> . (5.90)

Definition 5.4.2 For E € [—1,1], we define (cix(E))ren = (ckx(E,p))keny € RU {0} as
given by lemma 4.2.6, meaning cg = oo and

8E Apey, — 212
cra1 = 1+ > P 5.91
= (14 o) e (5.91)

Notation 5.4.3 In chapter 5.4, given p € [3,5], we often abbreviate cg = ¢x(1,p) and
cp =cr(=1,p).

Lemma 5.4.4 Let p € [3,5]. Then, for every k > 1:

cx(l,p) < -1 (5.92)
Proof. By definition:
2 Apef — B
oy = <1 - - - ) L (5.93)
(p—1)2(k+1)2+2v2(p—1)(k+1) Ak—pTCk,
It follows:
2 -1 8 62 +1)2
Cl+ = — |1+ B p 5 + f +92— (p )2
(p—12+2v2(p—1))p+1\ (-1 p-1 (p—1)
< -1 (5.94)
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Note:

o 2 Ak( )+ 71
G = - (1 * (p—1)2(k+1)2+2v2(p— 1)(k + 1)) A + B (=¢f) (5.95)

The claim consequently follows by induction. O
Note that cgfl and ¢, fulfil virtually the same recursive equation. On the one hand:

R e [ Ra C ey

Cky1 T V3 \2 -
(k+1+ f)
2. L1
(Ak + 2202+ 6(k + 22) +2 - Erh ) — 2] 596
Ak + 2202 +6(k+ 22) +2 - 2

On the other hand:

(k414 2) (k41— 2) (467 + 6k +2 — L)y — 24

_ (r—1) p—1
Cryq = . (5.97)
. (k+1)? 4K2 4 6k +2 — B — P
5.4.1. Lower Bound
We seek to establish a lower bound on ¢, . By definition:
_ 2 p+1 2(p— 1))
= (1-— — € (0,1). 5.98
o= (1-pom) (I - Sar) <o 9%
We substitute p = q + 3:
__ (8-¢*)(¢" +49+2)
c; = 5.99
LS g2+ ) (>:99)
It follows:
1 (g+4)? +4
o = 2 — tgrap 30— Grap)er — T
2 2 30 — (g+4)2 qt4 ~

(@22 ~ q+2“1
(74 8q+ 2¢%)(128 + 512¢ + 496¢* + 56¢° — 115¢* — 50¢° — 64¢°)

5.100
2(q +2)3(q + 4)(56 + 128¢ + 115¢2 + 44¢3 + 64¢*) ( )

This function attains its minimum at the boundary ¢ = 2, meaning p = 5. We conclude:

Lemma 5.4.5 Let 3 <p <5. Then:

(5.101)
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Definition 5.4.6 Let (dy)r>2 be given by dy = _Tio and

(4k? 4+ 6k +2 — 4)dy, — 2
dpoq = . 102
ML 4R 6k + 2 — 4 — 24, (5.102)

Lemma 5.4.7 For every k > 2:
d, < 0. (5.103)
Proof. Follows easily by induction. [l
Lemma 5.4.8 For everyk > 2 and 3 <p < 5:
ck(—=1,p) > di. (5.104)

Proof. We proceed by induction. For k = 2 the claim follows from lemma 5.4.5. Assume
ck(—1,p) > di. By lemma 5.4.7, we have dj1 < 0. It follows:

2
L (k14 22)(k+1— 22) (4k2 + 6k + 2 — L) d), — 5]
S (k+1) k2 4 6k + 2 — ED _ pilg

(p—1D7 — p—17k
2 J—
(k+ 1+ 22)(k+1 - 2) (4k2 + 6k + 2 — Z5h ) — B
(

- (k+1)2 4k2 + 6k + 2 — EH, — Phep
= Cpy1- (5.105)
That concludes the proof. O
Lemma 5.4.9 Let k > 2. Then:
1 1
dp> -2 — 1
e > 1 + 1000 (5 06)
Proof. By definition do = —ﬁ and
(2k% 4+ 3k — 1)dy, — 1
d = 5.107
LT ok 43k — 1 — d (5.107)
We conclude:
113
_ 1
ds 1301’ (5.108)
157
_ 1
dy 1257 (5.109)
13
g — _ 13 5.110
5 887 ( )
184
de = — —— 111
389
d7 = — —— 112
529 1
dg = — —— < ——. 5.113
s 2905 — 6 (5.113)
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As dj, is decreasing by definition, we conclude dj < —% for every k > 8. It follows, for
k> 8:

(2k% + 3k — 1) — d; !
2k2 4+ 3k — 1 — dj,
2k2+3k—1+4+6
T2y 3k—1+1"
2k +3k+5
>
T 2k2+3k—1
2k% + 3k + 1
~ 2k24+3k—-5
(k+1)(2k + 1)

= (k—l)(2k+5)dk' (5.114)

di+1 = k

dg

k

We conclude for every k > 8:
L& (+1)(20+1)
dor > — LD D
6% (I—-1)(20+5)
o 116+118+1 1 I+1
 68—-19-120+32+5

117191

Z 784
> — E + i (5.115)

4 1000
That concludes the proof. O

Corollary 5.4.10 Let k> 2 and 3 < p < 5. Then:
ck(—=1,p) > —l+i. (5.116)
4 1000

5.4.2. Recursion

To take advantage of the similarity between (5.96) and (5.97), we formalize the recursions
via the following operators.

Definition 5.4.11 Let p € [3,5], and t > 0. We define:

B V2 \? V2 (p+1)2
V2 V2 V2 V2
Bty = I P e L 5 ) (5.118)

(t+1+ 222

« and [ are direct analogues of A and B given by definition 4.1.1. However o and 3
allow for the real valued argument ¢, while A and B are dependent on the integer k.
We now redefine the defining recursion of (¢;,), using « and f instead of A and B.
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Definition 5.4.12 Let p € [3,5] and k,l € Z>1 with | < k. We define
ks VI RU {OO} — RU {OO} (5.119)
by pi(z) = x and

a(k)pg(z) —1

z) = Bk : 5.120
Ml,k-‘rl( ) /B( ) Od(k‘) — ,ul,k(q:) ( )
V2
V2 \ alk— 25 ) vk(z) —1
Vik+1(x) = B <7€ -3 ( pﬁ> : (5.121)
p - (0% (kﬁ — pTl) — Vl7k-($)
We further define:
Hoo(w) = Hm pyp(@), (5.122)
Voo() = klggo v i(x). (5.123)
These limits exist due to lemma 5.4.135.
Lemma 5.4.13 Let p € [3,5] and | € Z>1. Then, the limits
P oo(x) = klg{.lo (), (5.124)
Voolx) = klin;o v k(). (5.125)

are well-defined.

Proof. ) and v}, are a generalisation of the sequence c;. Lemma 5.4.13 follows com-
pletely analogously to corollary 4.2.7 (or corollary 4.1.7). O

Lemma 5.4.14 Let I,k € Z>1 U{oco} and p € [3,5]. Assume k > 1. Then

-1 -1
o = k(e ), (5.126)
¢, = k(e ). (5.127)
Proof. Holds by definition. O

Lemma 5.4.15 Let x € [-1,0], | € Z>1 and p € [3,5]. Then, there exists 6 = 6(x) > 0,
such that for every k > :

=1 < (), vip(2) < —0. (5.128)

Proof. We only consider p; ;. The claim follows completely analogously for ;. Note
(k+1)2—L

that p,(x) € [—1,0] implies py 511(z) € |—1, Wf{lﬁm’k(x) . That already con-

cludes the proof.
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Lemma 5.4.16 Let z,y € [-1,1] withx <y and 1 <1< k. Then

pk () < pug(y), (5.129)
vik(@) < vie(y). (5.130)
Proof. Follows by induction. O

Lemma 5.4.17 Let z,y € [—1,0] with x < y. Letl € Z>1 and p € [3,5]. Then

Hi1,00 (%) < 00 (Y), (5.131)
V00 () < V1,00 (y)- (5.132)

Proof. We only consider i ;. The claim follows completely analogously for v ;. Let
€ (z,y). By definition

(k+1+ f)(k+l_i)a(k)/t1k( ) —1

ok (2) = (k172 a(k) — prz) (5:133)
It follows for k£ > 1:
Ozpupi1(2) _ a(k)Ozpuk(2) n 021,k (2)
pre1(z2)  alk)mp(z) =1 alk) — wr(z)
_ Oapun(2) < a(k)pr(2) - 1k (%) )
i (2) (F)pi(z) — ak) — pk(2)
_ Oapu(2) (k) e (2) — (k)uz,k(Z)2 + (k) (2)? — pp(2)
tak(2) (a(k)pug(z) — (k) — i r(2))
_ Oapun(2) (a(k)® = Dpup(2)
g (2) (k) k(z) — 1) (alk) — pk(2))
O (2) (a(k) + 1)(a(k) — 1)
= ua() @) — pupl) D (@th) = () (5134
By lemma 5.4.15 and  ;11(2) < 0, we find M = §~ 1'> 0, such that
azﬂl,k—&-l(z) azlul,k(z) (a(k) + 1)(04(/6) — 1)
pen(z) = () (ath) + M)alk) + 1) (3:135)
We conclude
azﬂoo O —1 82:““( ) O a(k) —1 1
pE 13 BT ey Uiz <0 010
That concludes the proof, as p(z) < 0 and z < 0. O

Lemma 5.4.18 Let x € [-1,0] and y € [—1,1] with x < y. Letl € Z>1 and p € [3,5].
Then

fi1,00() < fi1,00(Y), (5.137)
Voo (T) < Voo (Y)- (5.138)
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Proof. We only consider ji; ;. The claim follows completely analogously for v; ;. Lemma
5.4.15 implies oo (x) < 0. Consequently, we can assume p o(y) < 0. We find k > 1,
such that y(y) < 0. Lemma 5.4.16 implies p 5 (x) < i %(y). By lemma 5.4.17:

141,00(T) = fik,00 (111 () < k00 (11,5 (Y)) = Hi,00(Y)- (5.139)

That concludes the proof. O

5.4.3. Absence of Resonances

Lemma 5.4.19 Let 3<p<5andk >2. Letx € [—i,O). Then:

uk_l,k(x) < Vi k+1 (.%') (5.140)
Proof. We have to show:
V2
alk—1z—1 V2 a(k_pT>$_1

Due to z € [-1,0),

. ﬂ)a(t—p‘_@l)—ml

p—1 a(t—%)—x

£1) = 5 (

2 2 2 _(p+1)? ptl, 1
(t+1) e 4t° + 6t + 2 12 ~ poi¥ (5.142)
2 2 :
(t+1) 412 + 6t + 2 — ng& =

is decreasing for t > 2. Consequently, t — xf(t) is increasing with respect to t > 2.
That concludes the proof. U

Lemma 5.4.20 Let 3 < p <5. Then:

1
C(1,p)

< C(-1,p). (5.143)

Proof. By corollary 5.4.10, ¢, = vax(cy) > —% —|—ﬁ for k > 2. By continuity (of v o),
we can choose dy < ¢, , such that for every k > 2:

dy := I/27k(d2) S (i,0> . (5.144)

By lemma 5.4.18, to conclude the proof, it suffices to show c,j_lfl < dy, for every k > 2.
We proceed by induction. The base case follows from corollary 5.4.10 and
+-1 _ (P-1(@+1)(p+2vV2-1)

1
c = — < —-. 5.145
! (p? 4 2v/2p — 2p — 2¢/2 + 3)(p? + 6v/2p — 6p — 64/2 + 9) 4 ( )
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In order to prove the induction step, assume c;_l_l < di. By lemma 5.4.18 and lemma
5.4.19:

-1 -1 -1
of = etk ) S vy ) < Vg (di) = digr (5.146)
That concludes the proof. O

Lemma 5.4.21 Let p € [3,5]. Then, —1 and 1 are not odd resonances or eigenvalues
of iL, meaning no odd bounded solutions to (iL £ 1)w = 0 exist.

Proof. By lemma 5.1.17, it suffices to show

1
i) * L) (5.147)

Lemma 5.4.20 concludes the proof. O
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5.5. Cubic Case, Even Eigenvalues

We show that, for p = 3, L admits no even eigenvalues apart from 0 within the spec-
tral gap (—1,1). As shown in chapter 5.1.1, specifically lemma 5.1.7, E € (0,1) is an
eigenvalue of iL, if and only if

CES C(~E,3). (5.148)

Recall the usual definitions.

Definition 5.5.1 (Definition 4.1.1) Let E € [-1,1], k > 0 (and p = 3). Consider

2
AEE) o e EEE)

Ap(E) =4 <k -
=4k +2k+4V1+ Ek+ E+V1+ E — 3, (5.149)
Bi(E) = 4(k+ 1) +4V1 + E(k +1). (5.150)

Definition 5.5.2 (Lemma 4.1.5) Let E € [—1,1] (and p = 3). We define (cx)ren =
(ck(E))ken SR U {00} by cop = o0 and

E Akck -2
= (1 . 5.151
Ch+1 ( + QBk) Ak — Qck ( )

Notation 5.5.3 As long as E € (0,1) is clear from context, we abbreviate ¢; = c(E)
and ¢, = ci(—E), as well as Af = Ap(E), A, = Ap(—E).
_71_ +
We use a different Ansatz then before, by calculating a lower bound on & yo2 . This
bound is basically established through brute force via 20 pages of computations. A com-
puter algebra system might make it easier to follow along, however the computations
were derived using no more than a calculator for external help.

The strategy is relatively simple. Using brute force, we establish a lower bound on
c6(—FE,3)"! —cg(E,3). At that point the difference between ¢, and cj41 is small enough
that we can establish a bound via natural induction.

However, the induction step still requires a variety of technical lemmata. Heuristically,

. _=1
these technical results are necessary to control ¢, ~ — c: for large E. In the odd case
- +—1
considered in chapter 5.6, such a step is unnecessary as E — & EC§ is increasing.

Lemma 5.5.4 Let p=3 and E € [0,1]. Then:

+71_ > AT 5.152
02 C2 — 72 Y ( ° )
R (5.153)
2 2 =096

E 5

3 < 1—cy,c; —1< 6E. (5.154)
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Proof. For now, consider for E € [—1,1]. We calculate:

2F \ Ao(E)
CI(E)__(1+BO(E)) 02
E 1+F 1+ FE
_(1+2+21+E)<2— SR ) (5.155)

It follows:

_ 2 B VIFB-1)
c1(E)—1—(1+2(m+1)) (1 . ; ) 1
:<1+m><1_(m—1)(m+1) m_1>_1

_ mf(l (ﬂTE—l)(ﬂT;m . m1>2
_<¢21ﬁ—1><m+1>_2m—1 2

_ @—1 (jm (Jﬁglé(mﬂ)@l)

_ _‘/TEl(:amﬂJrE). (5.156)
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Calculating further gives:

> (2+5VIFE+1+E)ei(E) -2
1+ )
8+4VI+E/) 2451+ E+1+FE—2¢(E)
=:K(E)

E)5m+1+E+(2+5m+1+E) (c1(E) — 1)
5VI+E+14+E—2(c(E)—1)
E)5m+1+E—(2+5m+1+E)VT“(BJW+1+E)
SVI+E+1+ E+2Y1EE-1 (3m+1+E)
5+\/1+7E—(2+5\/1+7E+1+E)@(3+\/1+7E)
: 5+ VI B+ 2 5 (34 VTHE)
(4+5\/1+7E+1+E)VTEI(3+¢1+7E)>
5+ VI+E+YHEL (34 VI+E)
(4+v1+E) (1+VI+E) (VI+E-1) (3+m))
20+4VT+E+2(VI+E-1) (3+VI+E)
(4+VITE)(3+VItE)

= KE) |\ 1-F 14+8/1+E+2(1+E) ) (5.158)

e (E) = (

(5.157)

—K(E)[1-

~K(E)[1-

By inverting the sign of F, it follows:

E)=K(-E) |1 13(44r [ F)(3+Vi-F) 5.159
—FE) = — + . .
e2(~E) = K(=F) 4+8/1_E+2(1_E) (5.159)
We calculate:
(4+\/1+E)(3+\/1+E)_112+7\/1+E+1+E
144+8/1+E+2(1+E) 27+4/1+E+1+4+E
1 VI+E
S PR\ . (5.160)
2 T+4/1+E+1+E

Clearly, E ~ % (1 + % %) is a decreasing function on [—1,1]. That allows us
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to estimate for E € [0, 1]:

(4+VI+E)(3+VI+E) e\ s
14+8VI+E+2(1+E) §2(1+12>:6’ (5.161)
(4+\/1+7E)(3+\/1+7E>>1 BB
U4+8/I+E+2(1+E) — 2 T+42 42

Z % (1 + %) = %, (5.162)
(4+VI—E)(3+V1i-E) Sy 5
14+8/1—E+2(1—E) 22(1+12>:6 (5.163)
(1+VI=E)(3+vVI=E) 1, 5\ 6
14+8/1—E+2(1—E) §20+7>:r (5.164)

From this point onwards in the proof, we only consider F € [0,1]. We also switch to the
shorthand-notation ¢}, ¢; . It follows from (5.161):

5 >(1_E(4+m)(3+m))

1—c+:1—<1+
2 8+4VI+E 14+8/1+E+2(1+E)

<1-(1-¢E)
6

5
_Sp 5.165
G (5.165)
It follows from (5.162):
s (s > 1 (4+VI+E) (3+VI+E)
_ — 1 — e — _
“ ( 8+4\/1+E) 14+8/1+E+2(1+E)
E 49
>1-(1+2) (1-=F
= " 8)( 60 )
> BB
=860
1
> S E. (5.166)
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It follows from (5.163):

05—1=( b )<1+E(4+m)(3+m))_1

1 ——
8+4/1I—E 14+8/1-E+2(1-E)

(-2) ()

1 5 5
——E+:F—- —F?
87 "%

48
6 40 5
> ahly 2 B
- 48E+48E 48E

>

Y

o

(5.167)

It follows from (5.164):

s () (o)
(1_8134) (1+$E) 1

< (-55+7)E

< B (5.168)

That concludes the proof of (5.154).
Recall (5.158):

N (4+VI+E) (3+VIi+E)
o =KE|1-F 4+8/1+E+2(1+E) |’

(4+VI=E)(3+VIi-E)
4+8/1-E+2(1-E) |

(5.169)

(5.170)

¢; = K(—F) (1 +E

Also recall (5.157). We calculate analogously to (5.158):

1 5+ VI+E+2YHE=L (34 V1 E)
K(E)5+\/H7E—(2+5\/1+7E+1+E)@(3+m)
(4+m) (3+m)
14+ E
K(E) 20+4VT+E— (2+5V/T+E+1+E) (VITE-1) (3+VI+E)
L (s (4+m)(3+m)
K(E) 2% +15VI T E—91+E)-71+E): - (1+E)?2)

1
e
Co

(5.171)
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The same calculation holds true, when switching signs. Therefore:

R N (4+VI-E)(3+Vi-E) oo
o KEBE)\ T2%115V1_E-9(1-E)-71-E)—(1-E32)’ (5.172)

We compare ¢, and ¢ - By definition:

E E 1 1
K-E)=1-————<1- — = . (5.173)
8+ 41— 8+4VI+E1+ o= K(E)
We calculate:
(4+\/1+E)(3+ 1+E) (4+x/1—E)(3+\/1—E)

26+15VI+E—91+E)—7(1+E)2 —(1+E)2 14+8/1-E+2(1-E)
mi(E)  ma(E)
ni(E)  na(E)
my (E) — ma(E)

na(E) —m(E)

= + ma(E
() X Ema)
B T(VI+E-VI—E)+2E . (E)(E+1)2+7(1+E)%+7E—15\/1+E+8\/1—E—1
ni(E) ? ni(E)ne(E)
2E
 TmELoTE T2E E(E+1)2—1+7E\/1+E+7E—8(\/1+E—\/1—E)
= + mz( )
n1(E) n(E)ng(E)
14 16
=12 24 E+ 714+ E+7T - —"+—
_ VItE+VI-E E +ma(E) VITE+VIZE oy (5.174)
n1(E) n1(E)nz(E)
L9, m(E )8+(\/1+E+7 ] ﬁE)\/1+EE
24 na(F) ny(E)
9 o 8 27 20 47
> —F+-—F=—-F+_—-F=_—F. d
- 24 + 624 72 + 72 72 (5.175)
In the last inequality we used (5.163), which implies a(B) = 6
(5.173) and (5.175) together imply:
L 4T,
- _ —_E2. 5.176
& Cg 2 79 ( )
That concludes the proof of (5.152). By (5.173):
K(E) < — (5.177)
-~ K(-E) )
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Analogously to (5.174), we conclude:

(1+VITE) (3+VI+E) (4+VvI=E)(3+ VI-E)
14+8/1+E+2(1+E) 264+15/1-E—9(1—E)—7(1—E)3 — (1 - E)?

14 / 16
_ VI+E+VI-E + 2E X ma(—FE) 8+1-F+T7vl-E- VITEHVIZE @

5.178
m(~E) n2(—E) m(—F) (5:178)
Recall 2 > mQ(( EE)) > 48 > 1 as given by (5.161) and (5.162).
16 )
If8+1—E+7\/ — —m>0,then.
(4+\/1+E)(3+x/1+E> (4+\/1—E>(3+x/1—E

14+8/1+E+2(1+E)  26+15/I-E—-9(1—E)—7(1—E)? — (1 — E)?
14 16
S \/1+E+\/17E+2E 48+1—E+7\/1—E—7ﬁ1+E+ﬁE

_i_f
= ni(—E) 5 ni(—E)
2+ 24+ (14-%
>0 ( >V1+EWlEE>2+ s PN (5.179)
n(—F) 2 2%
If8+1—E+7\/1—E—ﬁSO,then
(4+\/1+E)(3+\/1+E) (4+\/1— )(3+\/ _E

4+8V1+E+2(1+E) 26+15\/1—7 9(1— E)—7(1-E)? — (1 - E)?

14
s v AR A ARt = AV =
B ni(—F) 6 ny(—F)

24+ 8+ (14-4 94 20 9
> ( >V1+E+V1 Ep> it Stip_9p (5.180)
m(—F) 2% 26
We conclude from (5.177), (5.179) and (5.180):
1 9
- —c; > —E% 5.181
c; @ = 26 ( )
That shows (5.153) and concludes the proof. O

Lemma 5.5.5 Let p=3 and E € [0,1]. Then, for every k > 2:
0<c¢, —1<2F. (5.182)

Proof. As we only consider ¢, , notate ¢, = ¢, Ay = A, and By, = B, for short.

We proceed inductively. The base case k = 2 follows from lemma 5.5.4. For the
induction step, assume (5.182) holds true for 2 < k < K. That implies ¢; € [1,3]. B
definition:

By —2F Agc, — 2 < 2E> Ay — 20,:1 ( QE)
= =(1l-—=— | —-Fcp>(1—— . 5.183
k1 B, A — 2¢ By ) Ap —2c¢ k= By Ck ( )
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It follows from lemma 5.5.4:

(5.184)

It remains to show cx11 —1 < 2F. For 2 < k < K, let g, :=

Aka—z
—1= 1—— — -1
it ( )Ak—20k

<Ak(1—|—6kE)—2_
- Ak—2(1—|—€kE)
_Ak—2—|-€kEAk
N Ak—2—2€kE B
o AL +2
_Ak—2—€kE

4+ e
< (1 E. 5.185
—( +4k2+2k;—6—ak>€k (5.185)

L €10,2]. We estimate:

EkE

If K =2 or K = 3, then the claim follows from lemma 5.5.4:

5 4+ 5108 90

—-1<- (1 6 E=-—"FE=_F 5.186

“ _6<+16—|-4 6—) 679 79 (5.186)
90

90 <1 L4+ ) 903160 . _ 15800

1<
“4= =79 36+6—6— = 7927517 = 12087

E. (5.187)
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Otherwise, if K > 4, then:

15800 _ 32 442
—1<——F 1
CR1 TS g0e7 0 L ( +4k2+2k—6—2)

:15800Eﬁ<k2+;k—5>

1

12087~ 0 \ K2+ 3k — 2

_ 15800E1°—°[ (k+1)(k-13) (k+1)?
12087 - (k+1)? K2+ 3k—2

15800E10—O[(]€+1)(k—%) (k+1)?2-1
12087 22 (k+3)? K24+3k-2-1

15800 &5 (k+1)(k—1) (k+2)(k—3)

“ o L e

158004+ 14— 2
120874 — 34+ %
1580010 13

12087 5 17
10 205400E

5 205479
< 2E. (5.188)

IA

That concludes the proof. O

Lemma 5.5.6 Let p =3 and E € [0,1]. Then, for every k > 2:
cf <1 (5.189)

Proof. As we only consider CZ, notate ¢, = CZ, A = A,j and By, = B,j for short.
We proceed inductively. The base case k = 2 follows from lemma 5.5.4.
Now, assume ¢ < 1 for 2 < k < K. By definition:

Bi +2F Apc, — 2
c = .
FH By  Ag—2¢

(5.190)

Hence, if ¢, < 0 for any 2 < k < K, then cxy1 <0< 1.
Therefore, for the rest of the proof, we assume 0 < ¢ < 1 for every 2 < k < K. It
follows:

= (1 + 2E> A =27 (1 + 2E> (5.191)
1 = B, ) A —2c = By, k- '
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By lemma 5.5.4:

K
2F
CK+1§H<+>02
k=2 k
K
E E
<TI(1+ )(1_)
lg( 2(k+1)2 2
-~ E -t E
< 1-— 1——
<I(-gre) (-3)
1
> E E
(- Eatr) (9
< = 2(k +1)? 2
1
E /1 1 E
< N — I, i
<(-5X(G-) (%)
k=2
BNt E
<(1-7) (-3)
<1 (5.192)
That concludes the proof. O

Lemma 5.5.7 Let p=3, E € [0,1] and k > 2. Then, at least one of the following two
estimates is fulfilled:

+

IA

4
3B (5.193)

cf <0. (5.194)

Proof. As we only consider cz, notate ¢, = c;, A = A,j and B = B,j for short.
We proceed inductively. The base case £ = 2 follows from lemma 5.5.4. For the
induction step, assume 1 — ¢ < %E or ¢ <0 for 2 < k < K. By definition:

B +2F Apc, — 2
B, AL —2c

Chtl = (5.195)

¢ < 1 holds by lemma 5.5.6. If ¢, <0 for any 2 < k < K, then cx11 < 0. Therefore,

we can assume c; > 0 for 2 < k < K + 1 and consequently 1 — ¢ < %E for 2 <k <K.
It follows for 2 < k < K:

Bk—i-QEAka—Q_ Apep, —2
By Ak_26k—0k+1>0:>7‘4k_26k>0
Apcp — 2
= > - 5.196
Cht+1 = A, — 26 ( )
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For 2 <k < K, let g, := 15 € [0, 3]. Then:

Ape, — 2

A — 2¢y,

Ak -2 AkekE

A — 2+ 2e,F

Ak + 2

= —Ek
A — 2+ 2, F

§(1+

l—cp1 <1-—

4
%\ 4E 1
452 + 6k — 4) “k (5.197)

Lemma 5.5.4 implies:

=-F. (5.198)
That concludes the proof. O

Corollary 5.5.8 Letp =3 and E € [0,1]. Ifcl+ <0 for anyl > 2, then for every k > I:

o ' -t > ZE% (5.199)

L =

Proof. By definition:

- + .+
B +2E Alc —2

_l’_
Ciiq = . (5.200)
HT T BT A —od
That implies clj < 0 for every k > [. By lemma 5.5.5:
DG S A 2 5.201
% T =112 "T3-3 - (5.201)
That concludes the proof. [l
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Lemma 5.5.9 Letp=3, E €[0,1] and k > 2. Assume clJr > 0 for everyl > 2. Assume
further:

A7 —2¢. 1 A — 2¢; AF —9ct!
A e (A A g0 pam
Ak — 2Ck Ak —20k r — 4C
Then:
_ -1 A —2c. 1 A —2¢; AF —oct !
G~ G 2 (e )+ | e jﬁ_ yell KO8
Ay —2¢; A —2¢; k20
(5.203)
Proof. Lemma 5.5.5 implies ¢;; > 1 > 0 for every [ > 2. By definition:
_ 1 B, Al —2c. 1
e K (5.204)
B, —2E Ay —2¢
+ + +-1
ot = By +2E AL —2¢;) ot (5.205)
* B Af -2
Due to B,j > By
By By +2E
—k >k ++ > 1 (5.206)
B, —2E B}
It follows:
_ -1
Cky1 T ClJcrH
+ — _9¢T — _ 9.~ + _ 9.1
Z = t2E A 2616—1 (01271 —o)+ - 2Ck—l - Ak+ 20k+ cn
By Ay —2c;, A =2, Af —2cf
Ay =2 - Ay =2 A -2t
> kic’“_l(c,; L)+ ( k C’f_l e Ck+ . (5.207)
Ay =2, AL —2¢; AF —2cf
That concludes the proof. O

Lemma 5.5.10 Let p = 3, E € [0,1] and k > 2. Assume ¢ > 0 for every | > 2 and
c,;_l — c,'f > 0. Then:

AL —2¢, AZF — 262_1
AD —2c, 0 AL =2
N 2(c; = ) (8K + 4(V2+ 1)k + V2 — 10) — DE2(4v/2k 4+ 2 4+ V/2)

- (Ay — 2 (A} —26f)

. (5.208)
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In particular, if:

1 4 Ub 5 8k +2(v2+1)
¢ —cf > =V2FE , 5.209
K k=3 8k2 +4(vV2+ 1k ++v2-10 ( )
then:
_ _ —1
A —26 A2, (5.210)
A —26, 0 AL 20 T
Proof. Lemma 5.5.5, lemma 5.5.6 and lemma 5.5.7 imply:
4
0<1—c) < gE, (5.211)
0<¢ —1<2E. (5.212)

We calculate:

( ff’; — 25’;_1 - A;f 26’—“:1) (Ay —2¢, )(Af —2¢])

AL —2¢, Ay =2

= (A —26;)(Af —2¢) — (A7 — 20 )(Af 257

= et AL o AT —f AL — g AD) + 4(ch ey — (6he) ™Y

= 2cf 7 = )AL + 20 = DAL +2(c; — DAL +2(cf — )AL

S G [

= 2(cf T — ) (A 2t o) Ry - e AE —2ep — (A~ A(k» |

5.213

By (5.211) and (5.212):

AT — 920 AF —2ct 7t _
( e 2% A 220 ) (ur — g (A - 26)
A —2¢, Ay = 2¢

=2(cf =) Ay —2(cf + e )2 — DAL —2(e; — gD (A — A)
_ - 4
> e =) (Z’j;(A,; —4) + A,j) —2 (3E + 2E> (Af — Ap)
%

> 2~ ) (A — 4+ AT) - 2 B(AT - A7)

>, )B4k +4(VT+ E4+VI—Ek+2+VI+E+V1I—E—8—4)

2
—EOE(ZL(\/H—E—\/1—E)k+2E+\/1+E—\/1—E)
_ 20
> 2, — )8R +4(V2+ Dk +v2 - 10) — §E2(4\/§k +2+V2). (5.214)
That concludes the proof. O
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Lemma 5.5.11 Let p = 3, E € [0,1] and | > 3. Assume c; > 0 for every k > 2.
Further, assume:

-1 2 81 +2(v2+1)
o et > 2\aE . 5.215
! L2y 812+ 4(v2 4+ 1)l ++v2 10 ( )
Then, for every k > I:
_ E+2(vV2+1
o l—dh > f 2 Sk +2(v2+1) : (5.216)
8k2 +4(v/2 + 1)k + /2 — 10
Proof. Let:
5 8k +2(v2+1)
= (E) = =V/2FE? . 5.217
e = 8k2 + 4(v2 + Dk + V2 — 10 (5.217)
We proceed inductively. Assume (5.216) holds for some k£ > [. By lemma 5.5.10:
A =20 Af -2t
R (5.218)
Ap —2c;, Al —2¢;
Lemma 5.5.5 ensures 1 < ¢,; < 3. By lemma 5.5.9:
— -1
Cpr1 02—4—1
_ A, —2c;
> (G )
AL —2¢,
2 4
2§\/§E2 8k +2(v2+1) 4k% 42k —4—6
3 8k24+4(V2+ 1k +vV2 10 4k>+2k —4
8k +2(v2+1) 8(k+1)2+4(V2+1)(k+1)+vV2-10k*+ 3k — 3
2 Vk+1 5 51
8(k+1)+2(vV2+1) 8k2 +4(v2 + 1)k + /2 — 10 k2 + 3k —1
o kRS 12 A2+ ) (h+ 1) -8k 5§ — 4
TS 8k2 + 4(vV2 + 1)k — 8 k+1-1
- k+38k+1)2+12(k+1)—8k+35—1— 3
—7’“+1k+g 8k? + 12k — 8 k+1-1
s (k+3)(k+3)k—3
> ’Yk+1
S(k+2)(k—3)k+5
_ ( %)(k+3) (k+D)(k+3) (k—3)k
TG )k+2) k+2k (h-Lk+ D)
> Vet (5.219)
That concludes the proof. [l
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Corollary 5.5.12 Let p = 3, E € [0,1] and | > 3. Assume ¢ > 0 for every k > 2.
Further, assume:

_ ) 8l+2(v2+1
o =t > 2V2E? 22+ 1) : (5.220)
3 812 +4(v/2 + 1)l + /2 - 10
Then, for every k > 1:
_—1 o+
R - “ (5.221)
Proof. Lemma 5.5.11 implies for k > I:
N 9 8k +2(v2+1)
¢ —cf >SV2E . 5.222
K k=3 8k2 +4(v2+ 1)k ++v2-10 ( )
Consequently, by lemma 5.5.10:
Ay =2 A -2
R (5.223)
AL —2¢; Ay —2¢;
By lemma 5.5.9:
_ - Al —2¢;
Crot1 to g > (e to cﬁ)ikifkfl (5.224)
A —2c¢;,
It follows inductively:
k—1  ,— _
_ _ A-—2
. to cf = (¢ to ) H 7"75"71 (5.225)
Lemma 5.5.5 implies 1 < ¢, < 3 for n > 2. It follows:
k—1 2
e dn“*+2n—-4 -6
Cr a = (g Cl)g AnZ 1 2n — 4
(—_1 +)kl:[1n2+%n—%
=g —q PR S
n=l n? + an - 1
oo 2 1
1 n°+ sn — 3
> (Cl - Cl+> H % 1
n=l[ n? + 3 —3
] 3
1 (n+2)(n—3)
= D55
ne (R 1)(n—3)
1 _3
—= 2
3
-1 2—3
> (g Cl+>2+i
_—1 +
G 749
=4 5.226
- (5.226)
That concludes the proof. O
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Lemma 5.5.13 Let p =3 and E € [0,1]. Assume ¢ > 0 for every k > 2. Then:

_ 3
G o> 5B (5.227)

Proof. Analogously to (5.213):

Ay —2¢;  Af -2 -
( 2 02_1 - 2+ C2+ (A2_ - 262_ 1)(‘4; - 20;)
Ay —2¢cy Ay —2¢;
—1 _ _ _—1 _—1 _ _
=2(c;  — )4y —2(c; +oy ) +2e; T —e3)Ay —2(c; — ) (A7 — A7)
(5.228)
We estimate using lemma 5.5.4:
Ay —2¢;,  Af —2ef -
< 22, 2T ) (A7 26 )(Af - 2d)
Ay —2¢5 Ay —2¢;
47 9 5. 5
>2( —=E*(A; —4 E2A+> -2 (E E) A — A5
—(72(2 )+26 2 6+6 (A3 2)
47 1
>2F% (—=(16 —4) + = (1 24242
> (72(6 )+ 5 (16+8v2+ +f)>
10
—§E(8(\/1+E—\/1—E)+2E+(\/1+E—\/1—E))
47 10 18
—2E2< 643 2)—E2( 2)
6 7" V2 3 \/1+E+\/1—E+
5 (AT ) 20
> FE §+12+6\@ - E 30\/§+§
= E? (237+12—24\/§>
= B2 (21 - 24v2) . (5.229)
It follows:
Ay —20; A 267 o g2 21 — 244/2
A7 -2 A2 T (A7 -2 (A - 2f)
14
> —E*—
(A7 —2)(A3 - 2)
(15+9V1—E—E)15+9V/1+ E+E)
> fEQL
14(16 + 9v/2)
E2
> - = 2
> - (5.230)
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Lemma 5.5.9 implies:

16 —2(1+ 2) 9 o E?

—-1 S > TN 67 7 =
B TS =""16-0 26 28
42-59 1 9 333 1 9 8076 5, 3 o
> - = _— = — > — . .
- ( 48 26 28) E (1248 28) E 34944E - 13E (5.231)
That concludes the proof. O

Lemma 5.5.14 Let p = 3, E € [0,1] and k > 3. Assume clJr > 0 for 1 > 2. Further,
assume:

-1+ 5 g 8k +2(v/2+1)

0< - < , 5.232
% "% <3 8k2 + 4(v2 + 1k + /2 — 10 (5.232)
and:
(k=S +3)k-F -1 > !
“(cp  —cf)—SV2E >0. (5.233)
(k24 329 3 - Dk D D)
Then:
.l _¢ ( _g—kg)(l{:_g_l(c—_1 ch)
k+1 T Gk Z kT %
(k= L2+ k-2 -3
b} 1
— Z\V2E? (5.234)
3 (k= 3)(k+5)(k—3)
Proof. We show:
Al —2¢c, | _—
bp = —E——E (e — )
AL —2¢,

20c; = ) (8K + 4(V2+ Dk + V2 — 10) — 2E2(4v/2k + 2 + /2) o

+ _ _—1 k
(A —2¢, )(Az — 2cg)
(k=B+Hk-L-1) 1 5 oo, 1
> (c —¢f) - SV2E > 0.
(k=243 (k—2_3) " "3 (k= 3)(k+5)(k—3)
(5.235)

(5.235) suffices to concludes the proof, as lemma 5.5.9 and lemma 5.5.10 then imply:
-1
Cor1  — G = Ok (5.236)
Lemma 5.5.5 ensures 1 < ¢;; < 3. It follows:

Ay =2 A =6 _4k*+2%k-4-6 3 1

=1—-—-—-. 5.237
A;_chfl_ AL T 4R2 42k -4 2]4:24—%14:—1 ( )
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Further, by (5.232):

2(c,;‘1—ck)(8k2+4(f+1)k+\f—10) D E2(4y/2k + 2 + /2)

<0.  (5.238)
(A, —2¢, )(A;r — 2ck )

Lemma 5.5.6 implies ck < 1. It follows:

3 1 _—1
b 2 (1— 2k21k—1> G~

2c; = ) (8K + 4(V2 + Dk + V2 — 10) — DE2(44/2k + 2 + V/2)
(Ap —2¢, )(AkF —2¢))

i . (5.239)

Lemma 5.5.5 and lemma 5.5.6 ensure c,;_l,c: < 1. We estimate:

2(c; = ) (8K + 4(V2+ 1)k + V2 — 10) — DE2(4v/2k 4+ 2 4+ /2)
(A —2¢, )(A+ —2¢])

N 2(c;, = ) (8K + 4(V2+ D)k + V2 — 10) — DE2(4v/2k + 2 + V/2)

- (Ap(—1) — 2)(Ax(1) — 2)

16K +8(V2+ 1)k +2v2-20 20,  4V2k+2++2

T T D) A0 - 3T (D) - (A1) —2)
(5.240)

0>

_—1

We estimate (5.240) further. Firstly:

gt )16k2+8(\/§+1)k+2f—20
P (A1) = 2)(Ax(1) - 2)
. 16k2+8(ﬂ Dk+2v2 -2
) T A - 42
1 L 16K*+8(V2+ 1)k +2v2 - 20
(4k2 + 2(V2 + 1)k + Y2 — 5)2

-1
(ck

> (¢

+
+
+
+
4

A2 4+2(V2+ )k + Y2 -5
1
k?_i_@k_i_@_l

(5.241)
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42k +

24++2

3
20

2

(Ar(—1) — 2)(Ax(1) — 2)

42k + 2+ V2

3
_g\/ﬁbﬂ

5

3

2F?

—§\/§E2
3

_ 2 aE?
3

_g\/iEQ

_g\/iEQ

1 2
k++T\[

(4k2 + 2k — 6)(4k2 + 2k + 42k + /2 — 4)

(K2 + & — 3)(k2 + 225 4 2 1)
k+1+4\/§

G2+ 5 -

16

1 2

3
16

2
k+%

(b + 52 4+ §)(k + 22 - )

1-v2
1

) — Bk + 4242 4 8y (k +
1

1+2v2
4

23

© 16k+4+4v2
1

Yk + 1292 4 5y () 4

4

1+2v2

[Nl
~—

1+2v2

" 52+4
1

4

(k

_l’_

— D+ R ket

1+2v2
1

(k

_l’_

¥
(o}
&

(k-

(k —

+ k-3

(5.239), (5.240), (5.241) and (5.242) together yield:
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We simplify:
1 3

1

1+
k24 L2p g V22

13k2 + 315/2) 4 3v2=2 _

1_§k2+
3—2k2 —

sk —1
k+2

2 (k4 Bk B2

2 | 14+3v2 V22
1_1 k* + =552k + 35

1)(k2 +
~1

tk—1)

2 (kQ + 1+2\/§k_|_ \/58_2 _

—_

1)(k? +

ik—1)

k2 + LE3V2p 4 3v22

2(k2+1+2\/§k+ \/58*2_
1

2v/2-1 2-v2

V2lp 4222

| =

:1—

252 _
2‘/2_114: _
2\/5—1]{; _
2f 1

k2 —
k2_

3, 2-V2
2t 1

1+M

L+ (V2h+ 22)) (R + 3k — 1 = (V2k + ¥272))

J;;;i

m‘“’

\_/\_/
?’?‘??‘

2{1
1

\/? 2+1

(k+3\[ \f+2)

)(k —
\f \ﬁJrl)( V2 V171

T - il

>%—§+aw
T -

That concludes the proof.

f —1)
i §)'
1

Lemma 5.5.15 Let k> 5. Then:

-3

Proof. Follows by direct computation.

m‘“’

NI || N
+ |+
H M\O-'J

(5.244)

> k3. (5.245)

(-3

O

Lemma 5.5.16 Let p =3, E € [0,1] and K > 6. Assume c; > 0 for k > 2. Further,

assume for 6 < k < K:

. 5 8k +2(v/2+1)
0< — ¢ < SV2E? , 5.246
=% "% =3 8k2 + 4(v2 + 1)k + /2 — 10 (5.246)
as well as:
- S (k=R k-2 -1 2o 1
(s —e) ]I — f\fE Z — > 0. (5.247)
i (k= + Pk =2 =) ¢
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Then:
K V2 | 3 V2 K
I . (k=% +35)k=-%-1) 5 2 1
Cry1  —Cry1 2> (co _Cﬁ)H — 2V2E 273'
e (k=2 + k-2 -3 3 Sk
(5.248)

Proof. We show the lemma by induction. Lemma 5.5.14 provides the base case K = 6.
For the induction step, assume:

s (P )Kil ( _§+%)(k_§_l)
K K = (G 6
imo (k=2 + (k=2 -9
SR S |
— g\@E ]; 3 (5.249)
=6
By lemma 5.5.14 and lemma 5.5.15:
|
Cky1 T C;r<+1
R L 1

S DK -

K V2 2
-1 (k—%+5)k-%-1) 5 o 1
> (g —cf) H “V2E —
ime (k=5 + )(k—§_%) 3 K
(K= F+HE-F-1)5 5]
B V2 5 2 3 5\/§E k3
(K=F+DE -5 %) k=6
<1
K 2 .3 2 K
-1 (k-5 +3)k="%-1) 5 2 1
> (g —cH]] —SV2EPY T — >0 (5.250)
o (k—Z+Hk-E-% 3 pr gl
That concludes the proof. O

Lemma 5.5.17 Letp =3, E € [0,1]. Assume ¢} > 0 for every k > 2. Then, for k > 3:
et > L2 (5.251)
F = 6000

Proof. Assume the lemma does not hold. We choose K > 2 as the smallest such integer

fulfilling:

L o

_ —1
CK+1 — C}Jrl < m (5252)

Lemma 5.5.13 implies K > 3. As K was chosen minimally, we conclude for every
2<k<K:

T o g — (5.253)
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By corollary 5.5.12, for every 2 < k < K:

1 4 b 5 8k +2(v/2+1)
—¢f < SV2E . 5.254
K K 8k2 +4(v2 + 1)k + /2 — 10 (5.254)
By lemma 5.5.13 and lemma 5.5.14:
L B-LHB-L-13E* 5 ., 1
Cy —C4 2 NG 5 3 - 5V2E ) 7 3
(3_7+ 5)(3 — 7—1) 133 B-3)0B+3)B-3)
(A - 2)@_\/5)13 21 13
E? —
_ B 336+2 13\/5_@\/5
13 @+2—13\/§ 21
E2< 9 20 )
= (3-°Z - V2
161 _ q19. /o
13 4Tf13f 21
E2< 9 20144)
> 3—-- -——
=13 440—19 21100
E2
_ (3__)
13
S E? (420— 15 — 192)
=~ 13 140
_ B
- 13140
3
2%E2. (5.255)
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Further, by lemma 5.5.14:

c—_l_c+>(4_§+%)(4_§ 1)3E—§\/§E2 1
5 5 = 7 3
(4—L2 434232 3 4-U+HMA-3)
_ (= v2)(6-v2) 3 by 53 22 g
(2 —V2) (8 - 2)26 310155
_ 66+2-17v2 3 ——\fEQ
E+2—17ﬂ26
—1
T_17\/526
6825 3 )
= Bl _ 9526 _%ﬂE
42 3 237
= 4526 7526
. 1(42_74) 2
— 26 \15 75
zi2—7E2
26 15
> g2 (5.256)
15
Again, by lemma 5.5.14 and lemma 5.5.15:
. (5*§+%)(5*§*D1 2 9 2 1
% ¢ = 25 2 3T5E_§\/§E53
G- +36-%-1)
B-3+5)6-G-D1 0 1 50
T GB-24+2)6-3-3)15 75
23131 , 1 )
=220 —\2E
221415 75\[
1
> —F2 (5.257)
22
We conclude K > 6. By lemma 5.5.16 and (5.254):
00 V2 V2 o]
o Loopp (B—F+5)(E—%-1) 5 - o=l
Cky1  —Ckp1 2 55F H ~ ZV2E 273
227 S h— R+ k- -3 3 i
o] 3 2
16— -1 6 H(k V2 3y (M2 4 1)
SR Lab b PR S
=1
2
- f\fE Z = (5.258)
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We calculate:

16-¥2-1 62 16-3-1 6-3
99 2 o0 3 _ 3 3 | 1
11721
= _—____ 2
2218 22 (5 59)
Further:
) (LR U SRR VU U st {
k=6 (k — 4 +3)? —6 (kb — @ +2)?
T\ 16(k+5)?
1 & 1
= 16 = (k + 3)?
1 S k+1 1
16 ek x
1 (> 1
—1- d
16 Jo 22 o
95
= —. 5.260
Finally:
K o0 1
1 k+5 1 o 1 2
_ > —dx > — —dr > ——. 5.261
N A A T e
We summarize:
o 1172195 , 5 2 ,
- > 2P 02 hp
“K+1 T CK+1 = 99789206 31212
51 2261 1
L R N D ok
3112 ( 3 28 f)
ST
— 363 \ 768 50
L5 <2261 _71> =
363 \ 775 25
- 5 2261 — 2201E2
363 775
01,
363 775
1
p— 5.262
— 1000 ( )
That contradicts (5.252) and concludes the proof. O

138



5. Spectrum between —1 and 1

Lemma 5.5.18 Let p = 3. Then iL admits no eigenvalues with even eigenfunctions
within the spectral gap (—1,1), apart from 0.

Proof. Follows from lemma 3.4.6, lemma 5.1.7, corollary 5.5.8 and lemma 5.5.17. U
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5.6. Cubic Case, Odd Eigenvalues

We show that, for p = 3, ¢L admits no odd eigenvalues apart from 0 within the spectral
gap (—1,1). As before, we make use of lemma 5.1.16. E € (0,1) is an eigenvalue of iL,
if and only if

1

CE) = s sy

(5.263)
We make use of the same strategy as for even eigenvalues in chapter 5.5. Using brute
force, we establish a lower bound on c5(—FE, 3)—c5(F, 3)~! and then use natural induction
to establish an estimate for £ > 5. However, in contrast to the even case, no complicated
technical results are needed to complete the induction step.

As before, the computations can be followed without external help, a computer alge-
bra system might nevertheless be helpful.

Recall the usual definitions.

Definition 5.6.1 (Definition 4.2.1) Let E € [-1,1], k> 0 (and p =5). Consider

2
VI+E VI+E
Ak(E):zl(lH— 2+>+6<k+ 2+>—2
= 4k* + 6k +4V1+ Ek+E+3V1+E -1, (5.264)

Bi(E) =4k +1)* + 41+ E(k + 1). (5.265)

Definition 5.6.2 (Lemma 4.2.6) Let E € [—1,1] (and p = 3). We define (cx)ren =
(ck(E))ken CRU{oc0} by cp = o0 and

E ) Axer — 5 (5.266)

cky1= 1+ .
wH < 2B;,) Ay, — 3¢y

In the even case, we had ¢;(0) = 1 for every k£ > 1. Now, in the odd, case it holds
cx(0) = —1 instead. To improve readability, we introduce:

Definition 5.6.3 Let E € [—1,1]. We define d(F) := —cx(E) € RU {o0}.

Lemma 5.6.4 Let E € [—1,1]. (di(E))reny = (di)ken satisfies the recursion dy = oo
and:

SE Apdy, + 2
diy1 = (1 + ) P 5.267
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Proof. By definition dy = —¢y = oo and:

dp+1 = — Ckt1
+1
:_(1+ 8E )Akck—f,l
(p—1)2Bi) Ay — %Ck
ptl
- (1 4ok ) i+ p-l (5.268)
(p - 1)2Bk Ak + %dk
That concludes the proof. O

Notation 5.6.5 As long as E € (0,1) is clear from context, we abbreviate df = di(E)
and di; = di(—E), as well as A = Ay(E), A, = Ai(—E).

Lemma 5.6.6 Let p=3 and E € [0,1]. Then:

_ 2
a7 —dy > 22, (5.269)
72
_ 10
0<1-dy < —F. (5.270)

Proof. For now, consider E € [—1,1]. We calculate:

a(B)= (1+ ng)) AolF)
E E 3 (\/ 1+ FE— 1)
2 (1 +VIF E) 2 2
It follows:

E
di(E) —1= (1+2(1+ 1+E)> (1+2+ 5

VI+E-1 WVI+E-1)(VI+E+1) 3(v1+E—1)
= (1) 1+ : + 5 ~1
_m—l<1+(m—1)(m+1)+3(\/1+E—1)>

2 2 2
+(m—1)(m+1)+3(vl+E—l)

2 2

:@_1(“ ﬁm(m_lgmm+3(¢12E—1))
_vithbol +4E -1 (T+5VI+E+E). (5.272)

141



5. Spectrum between —1 and 1

By definition:

(4 B (8+7VITE+1+E)di(E)+2 s
= (14 .
2(E) < 8+4\/1+E> S+7VI+E+1+E+2di(E) (5.273)

For the sake of readability, let:
K(E):=1+ B (5.274)
T 8+ 4VIFE '
It follows:
d2(—F)
K(-E)

(8+7VI—E+1-E)di(-E)+2
8+7V1—E+1—E+2d(-FE)
0+ 7VI-E+1-E+ (8+TVI-E+1-E)(di(-E) - 1)
10+7V1—E+1—E+2(d(-E)—1)
0+7VI-E+1-E—(8+TVI-E+1-E) =Y (64+5/1-E+1-E)
0+7VT—E+1-E-2YEE (64 51— E+1-E) '

(5.275)
Further:
b(-E) | (8+7VI-E+1-E—2) =L (6+5/T—E+1-E)
K(-E) 0+TVI-E+1-E-2YEE (645/1-E+1-E)

L IWVIZE4+)WVI-E+6)(1-VI-E)(VI-E+2)(V1-E+3)
4 (VICE+2)(VI—E+5) - ==E(/T—E+2)(V1—E +3)
B (VI“E+6(WI-E+3)
AVIZE+5 - 2 E(VI-E +3)
E 1-E+9/1-E+18
C22/1-E+10—(3—-2V/1—E—(1—E))
E1-FE+9/1—-E+18
C274+4/1-E+1-E
P 18+9y1-E+1-F
14481 - E+2(1 - E)
ma(E)
ny(E)

=1—-F

(5.276)
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We note for E € [0,1]:

my(E) 1 - 11+5/1-FE 1 1+11+5\/1—E

no(E) 2 T+4/1-E+1-E) ~ 2 7T+4V1—-FE
1 11 9
< (1+=)==. 5.277
—2<+7) 7 ( )

By the same token, for E € [0, 1]:

ma(E) (1 ( 11451 F 21(1+16):721, (5.278)
na(E) = 2 T+5/1-E 2 12/ 6

We conclude:

d5‘1:(1‘8+45m)( ‘EZ(%))”

=1- 8+4§ﬁ _Err]zl;((g)) !
> _1705 (5.279)
Next, we estimate d;fl. We invert (5.275) and proceed analogously to (5.276):
K(E) 0+7VI+E+1+E+2Y51 (64 5/T+ E+1+E)
i 0+ TVITE+1+E+ (8+7VI+E+1+E) YL (64+5VT+ E+1+E)
_VItE+2 VITE+5+ 2L (T T E 4 3)

CVIFE+2VTTE+5+ (8+ 71+ E+1+E) YL (VT E +3)

(8+7VITE+1+E—2) YEEEL (VT E +3)
VIFE+5+ (8+TVI+E+1+E) YHEL(/TH E +3)

L (VIFB+OWIF+E+)(WI+E-)(VITE+3)

AVIFE+5+L(8+TVITE+14E)(1+ E+2V/1+E-3)
(VITE+6)(VItE+3)
WTFHFE+20-24—5/T+E+19(1+ E)+9(1 + E)? + (1 + E)?
1+ E+9VI+E+18

(1+E2+9(1+E):+191+E)—VI+E—4

mi(E)

nl(E)

=1

=1-F (5.280)

Clearly, 1 — 7;11((5))E > 0 for every E € [0,1]. We now compare d; and d;_l. By
definition:

E 1 1
= . (5.281)

E
K(-E)=1-————=<1- -
8+ 41— 8+4\/1+E1+m K(E)
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We calculate:

df '~ dy
— 1 ml(E) mQ(E)
- K(B) (1 N Enl(E) ) - K(-F) (1 a Em(E) )
mo(E)  my(E)
> K22 (5 ~ i)
_ B ma(E) —mi(E)  ni(F) —na(E) ma(E)
= K(-E)E ( T R R Sl = )
_ K(E)E 2849 (VI+E-VI-E)
B (_ nl(E)
L o8 -8V1-E- VI E+4B +17(L+ E) L1+ E): +(1+E)? mZ(E)>
i (E) (E) )
>0
(5.282)
Using (5.278), we further estimate:
df ' —dy
- 2E+9(\/1+E—\/1—E)
> K(—E)E | — o E)
1-8Y/I-E—-VITE+21E+9(1+E)? + (1+E)2>
+
nl(E)
_ K(_E)ElgE—¢1+E+\/1—E—9(m_1)+9((1+E>§ )+ (1+E)?—
- n1<E)
> K(—E)ElgE ~ EET _(9¢)1TEE+1 +93E+28
- ny(F
— K(—E)E? 69 — \/HiEi\/le _1\/%“
2TL1(E)
69— 4 18
> K(—E)E? VIFIH/I-1T  IF1+1
2774(1)
o 69-2v2-18(v2-1)
S RERE (4+ 18v2 +38 — V2 — 4)
_ ( ) o 8T 20V2
- 8+ 4\f (38 +17v/2)
7 87 —29 729 29
-8 QW §@ T2 (5.283)
That concludes the proof. 0

144



5. Spectrum between —1 and 1

Lemma 5.6.7 Let p=3, F € [0,1] and k > 1. Then:
df > 1.

Proof. By definition:

A+
df 1 =0 >,
<+BO> 2

n - Ard;f + 2
Bl = Bk Ap +2d;f

The lemma follows inductively.

Further:

Lemma 5.6.8 Let p =3, E € [0,1] and k > 2. Then:

67
0<1-d; < —E.
k=49

(5.284)

(5.285)

(5.286)

(5.287)

Proof. As we only consider d, , notate dj, = d,, A, = A, and By, = B, for short.

We proceed by induction. The base case £k = 2 follows from lemma 5.6.6 as 0 <

1—dy < YE.

For the induction step, assume 0 < 1 — dj < %E. It follows Ay + 2dy, > Ay + 2(1 —

STE) > Ay, — 2. We estimate:

Apdy + 2

1—-d =1—-(1-—=—)] ——
frl ( Bk>Ak+2dk

2E 2E Apdy, +2
_+<1 )(1 Ak+2dk>

Bk: By,

Ay — Agdy, — 2 + 2dy,

(1Y

A + de
A+ Qdk

| /\

-l- <1
2E

14
B, ke

IN
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Ap, — 2dy,

")
= +(1 )A/::zdkl_d’“)
B) Ao,

—dy)

(5.288)
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It follows:

k
2
1*dk+1§1+d2+g §
l

2F
)24+ 4(1+1)

IA
\]
&
+
I Mw |
M=
+
—_

10 EE 1 1
- —F+= =
7 +2;<z+1 z+2>

= —_F. (5.289)

Further, dp, <1 implies Apdy + 2 < Ag + 2di. Together with Ay + 2dg > 0, it follows:

P (1_2E) Apdy + 2
LA Ay, + 2d;,

IN
—
|
|

IN
—_

(5.290)

That concludes the proof. O

Lemma 5.6.9 Let p = 3, E € [0,1] and k > 2. Assume d;_l —d, > 0. Assume
further:

k+2)(k—%) .+ . 67( E? E?
T 2T —d) — — - > 0. 5.291
k(k+3) (i A K2+3k k2+3k+3) " (5.201)

Then:

dﬁrlil |
1
L k(E+2) <<k+2><k—2>(d;1 —dk>—g( = - )) (5.292)

= (k+1)2 k(k+3) K24+ 3k k24 3k+3
Proof. Note:
2F 2K 2F 2F
(1—_><1++>§1—_++§1. (5.293)
By, By B, By
That implies:
28 o8\ "
1-——<(1+=-] . (5.294)
B; By
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By lemma 5.6.7, we have d,j > 1> 0. It follows:
dl~c++171 B dl;rl + =7

+ + 7+ = — =

B; Apdl +2 B, ] A, + 2d,

L 2B (A t2d) Agdy +2
By J\Afdf+2 A +2d;

2E>1 Af vodf (1_2E> Agdy +2

Y
—~ —~ —

9B\ [Afdf 42 Asds +2
= 1—_)( kK :— E% T2 (5.295)
We calculate:
Afd T 2 Agdy +2
Afvodt™! Ap 24y
_ (A £ 2d;§)(A§dE§_1 +2) = (A dy +2)(Af + 2dl—:_1)
(A +2d ) (Af +2d )
_ -1 _ N g— —1 _ _ —1
_ A Ap(dy " —dy) + 2(A) — Ap)dpdif— + 2(A, — Af) +4(dy, —dff )
(A; +2d ) (A +2dF
A7 AN —4 _ 20AT — A7 _
_ k2 (T —d) + (A — A) —(didf T = 1).
(A, +2d) (A +2dF ) (A, +2d,) (A +2dF )
(5.296)
We estimate:
AfAL -4 . 2 2
(Ay +2)(A) +2) Ay +2  Af+2
4
>1-—
- Ap(—=1)+2
Syt
- 4k? + 6k
K4+ 3k—1
k2 + 3k
kE+2)(k—1
— L(?)?) (5.297)
k(k+5)
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Similarly:
2(AF — Ar) _ 2((4k + 3)V2 + 2)E
(Ap +2)(AF +2) 7 (Ap(=1) +2)(4k(1) +2)
B 2((4k +3)vV2 +2)E
(4k2 4 6k)(4k2 + 6k + (4k + 3)V2 + 2)
_ 2E 2F
O AK? + 6k 4k2 4 6k 4 (4k + 3)v/2 + 2
_E ( 1 L ) (5.298)
2 \K2+3k R+E+V)k+3V2+3) '
Using k > 2, we conclude k? + (% +V2)k + %\@—F % < k®+3k+ % Consequently:
2(AF — Ay E 1 1
2(4; +k) §<2 —— 3), (5.299)
Ay +2)(AF +2) ~ 2 \k2+ 3k k2 +3k+3

By lemma 5.6.7, lemma 5.6.8 and dj ' —d > 0, it follows dj = > d > 1 - 5IF.
Consequently:

_ 67
A —5p B (5.300)
Finally:
2E _ Bp(-1)—2 _ 4(k+1)2—4 _ k(k+2
1- = > At) 2(+)2 z(+3. (5.301)
B, Br(—1) Ak +1) k+1)
The lemma follows from (5.295), (5.296), (5.297), (5.300) and (5.301). O
Lemma 5.6.10 Let p =3 and E € [0,1]. Then:
+-1 o1
df " —dy > B (5.302)
Proof. d;r_l —dy, > %EQ holds by lemma 5.6.6. By lemma 5.6.9:
3
s S (B (12
B mds =y (2; 72 2\7 23
_8 <129 _ 679) o
9\712 42161
_ 81 (29 _ 201) Jo
97 \12 322
81 (29 2> )
> (==
—97\12 3
2
= §E2. (5.303)
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Further:

di

Finally:

di " —dy

That concludes the proof.

Spectrum between —1 and 1

5
2802 (22
16 \ 359 42 \27 45
> 10 (B2 012 e
16 \279 21915
15 2 (25 67> )
> - (=
—1681\3 35
L 5167,
= 827105
11672 _,
> - -
— 827 21
4
= —_E> 5.304
27 ( )
7
S 24 (65 4 WC_J>2
— 25 4%27 42 \22 30
_24<214 67 8> )
25 \2227 42660
> S () Ee
—25\33 7165
81 (14—67> E?
25 33 35
> 12E2
— 333
1
> §E2. (5.305)
O

Lemma 5.6.11 Let p = 3, E € [0,1] and K > 5. Assume al'k"_1 —d, > 0 for every

5 <k < K. Assume further:

E* X (k +

+ —1 _
dK+1 - dK+1

k(k+2) 2)(k—3) 67 5 1 1
>0
H (k+1)% H k(k+3) 42 Z K243k K2+3k+3

(5.306)

k(i +2) T (Rt 2)(k—3) 67 1 |
EKH(kH)zl;[ k(k+%)2 42E Z<k2+§k_k2+3k+g>' (5.307)

k=5
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Proof. We show the lemma by induction. By lemma 5.6.9 and lemma 5.6.10 the base
case K = 5 holds. For the induction step, assume:

d+—1_d,
EQIi—[l k+2)K1(k+2)(k 1 67 22 1
(k+1)? k(k+3) 3k: k2+3k+3)
(5.308)

k=5

By lemma 5.6.9:
d}Jrli _dl_(+1
KK+2)(K+2)(K—3), -1 67 E? E?

> 2 3 (dK _dK)_i D) 3 19 3
(K+1)2?  K(K+3) 2\K2+3K K2+4+3K+3
E2ﬁ k+2H(ks+2)(k—%)_K(K+2)ﬁi B2 E?
= (k+1)2 k(k+3) (K+1)2 42\ K2+ 3K K?+3K+3

N————

<1

| K(K+2) (K+2)(K - 3) 67 1 Ki 1 1
(K+1)2 K(K+3) 42 2+ 3k k2+3k+3
<1
B> K k(k+2) {5 k+2/~c 3 67 .o 1 1
. (5.309
9 H(k+1 1;[ +3) 42 Z K2+3k K2+3k+3 (5:309)
That concludes the proof. O
Lemma 5.6.12 Let p=3, E € [0,1] and k > 5. Then:
_ E?
T dr > 5.310

Proof. We proceed inductively. The base case kK = 5 holds by lemma 5.6.10. For the
induction step, assume (5.310) for every 5 < k < K. By lemma 5.6.11, it suffices to
show:

E? 2 2) k+2)(k—1 1 1 E?
H k(k + H(+)(32) 67 QZ S . B
(k+1)2 k(k+3) 42 K243k k24 3k+3 36

(5.311)
We calculate:
Mk(k+2) o (k+2)(k—1) 5 (k+2)%k-13
,g(kJrl)? I1 k(k+3) © - g(k+1)2k+§
1 1 1
- (5-3)(o-3)
- 5.312)
16 (5.
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Further:
0 1 1 ) °°< 1 1 )
> - <> -
3 3 — 3 2
k:5<k2+2k k2 43k + 5 S\ K245k kP +3k+2
_i( 1 1 )
= k(k + %) (k+1)(k+2)
2. <1 1 °°( 1 1 )
=) 2 i
3= \k k+3 S \k+1 k42
1 1 1 2 1
SZ( 1+ 1 3)‘
3 \k—5 k+35 k+3 6
1 1 1 1 1 1 1
3 1 3
3k:5<k_; ]H‘z) 3k—5 k+2 k+§ 6
_1< 1,1 >+1 1 _1
3\5-4 6-3/) 35+3 6
Sl ly,eld
- 3\9 11 311 6
1/8 4 117
e e R 5.313
6<9+11 > 6 99 ( )
It follows:
_ E?11 67 ,117 11 6717\ E? _ E?
dt. - dr >—E2><_>>. 314
K+1 K+1= 9 16 427 699 —\ 4 2133/ 36 — 36 (5.314)
That concludes the proof. O

Lemma 5.6.13 Let p = 3. Then tL admits no eigenvalues or resonances with odd
eigenfunctions within the spectral gap [—1,1], apart from 0.

Proof. Follows from lemma 3.4.6, lemma 5.1.16 and lemma 5.6.12. O
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5.7. Controlling the Resonance
Notation 5.7.1 Given p € [3,5] and E € [0,1], we abbreviate c; = cx(E,p) and ¢, =
ck)(_E7p)'

We study the resonance that arises for even solutions as £ = 1 and p = 3. We
formalise the recursion defining cg, given by lemma 4.1.5.

Definition 5.7.2 Let | € R and p € [3,5]. We define

(p+1)?
(p—1)%

Definition 5.7.3 Let E € [0,1] and p € [3,5], such that (E,p) # (1,3). Let l € R. We
define the Mobius transform x — myp, p(x) = mi(x) by

a(l,p) = 412 4+ 21 — (5.315)

_— I+ 1+ YEE) 1+ 1 - YEE) ol p)o — 2 (5.316)
Lp,B(T) = : .
g (+1+ —Vplle)(l +1— Yy a(l,p) - Frya

Definition 5.7.4 Let E € [0,1] and p € [3,5], such that (E,p) # (1,3). Letl € R and
k € Z>o. We define the Mébius transform x — p () by po(x) =z and

f g1 (2) = Mier (1,16 ())- (5.317)
We further define
foo(x) = Hm py (). (5.318)
k—oo

That this limit exists follows analogously to corollary 4.1.7, corollary 4.2.7 or lemma

5.4.13.

Lemma 5.7.5 Let E € [0,1] and p € [3,5], such that (E,p) # (1,3). Let k € Z>o.
Then:

C;Ci:kl nk+\/ 7E (C;{)’») ) (5319)
- -1 _—1

Proof. By definition, on the one hand:

_(k+1_|_7\/1+E+v1 E)(k+1+\/1+E \/pl)
41 (k+1+YIEE 4 YUFB) (4 4 vIEE _ JIIE)

1
2
( (k + \/1+E) +2 (k + \/p1+1E) gt&) o — g%} ( |
5.321
(ko SEE) 42 (k4 ) - (B - B4l
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On the other hand:

Coo (k1 SR YR (R L SE - )
Ck’ —
+1 (k’ + 1 + \/pl_—lE + \/pl_—‘,-lE)<k + 1 + \/pl_—lE _ \/pl_-‘rlE)
2 _
(o) 2o 4EP) )™ -
5.322)
VI—E\? VI—E +1)2 1 -1 (
4(k+ p—1 ) +2(k+ p—1 ) B Eg—&? _%ck’
That concludes the proof. O
Lemma 5.7.6 Let E € [0,1] and p € [3,5]. Letl € R>y1. Then

T = U o00() (5.323)

constitutes a Mébius transform.

Proof. As the limit of a sequence of Mobius transforms, p « is either a Mdbius transform
or a degenerate Mdobius transform, i.e. constant. If py ., is constant, so is jiy4 oo for
every k € Zxo. That is clearly not the case, as < 0 implies 4 oo(x) < 0, while
limg o0 pitk,00(1) = 1. u

What happens, if we extend the definition of 1, g to (E,p) = (1,3)?

For k > 1, My VIZE g remains a well-defined Mébius transform. However, 1 1—x D B
p—1 "0 p—1

is degenerate:

20 — 2
nyize , 5(*) = 55 (5.324)

p—1 D,

We conclude:

Lemma 5.7.7 Let E € [0,1] and p € [3,5] with (E,p) # (1,3). ca(—E,p) is a rational
function in € = /1 — E and p by lemma 4.1.5. Let Pi, P, be polynomials, such that:

P -3
(€2 —1,p) = Im. (5.325)
Then P1(0,0) = P»(0,0) = 0.
Lemma 5.7.7 allows us to define:
Definition 5.7.8 Let a € [0, 5]. Let P1, P> as in lemma 5.7.7. We define:
(o) = 1 7 ot (o)
~ im ! . (5.326)

eNO ca(e2 cos?(ar) — 1, esin(a) + 3)
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Lemma 5.7.9 Let o € [0, F]. Then:

_ Tcos(a) + 2sin(a)

= . .32
w() 13 cos(a) + 8sin(a) (5327)
Proof (Calculations are computer assisted). Recall (5.322):
C o 1+ YEE By 41+ VIR VIR,
C =
k+1 ( +1+7\/plf1E+ \/1+E)(k_|_1+ \/1 E \/plj-lE)
V1i—E Vi—E (p+1)2) —-1 +1
(4 (k+ p—1 ) +2 (k+ p—1 ) B (p1)2> G T (5.328)
VI=E 2 VI—E (1?2  p+1 ——1 '
4(k+5E) 42 (k4 XI5E) - 2t ph e
Let £ =1 — E and ¢ = p — 3. By direct computation, using ¢, = oc:
0
! (¢ +2q(6+2) +2(E+1)*)(¢* —2q(§ —4) —4(& + £ —4))
Further:
(2 + \/pl:lE’ \/1+E)(2 + \/1 E \/pl—i-lE) __1 B Xl (&q) (5 330)
2+ E s EE ey LEE)? T Xaeq) |
p— P

Hereby, on the one hand:

2(q +4)Y1(¢, q)
(g +2)(q% —2q€ +8q — 4€2 — 4 +16)(q% + 2q€ + 4q + 262 + 4 + 2)
(5.331)

X1(§,q) =

with

Y1(€,q) = 2¢" + 10¢°¢ + 12¢° + 15¢°€? + 52°€ + 21¢% + 10¢&°> + 5646
+ 78q€ + 461 + 2083 + 446 + 8q + 28¢. (5.332)

On the other hand:

Y2(¢,q)

2+ 9)2((®+2(1+6)? +29(24 &) (q> — 2q(§ —4) —4(2 + £ —4)))
(5.333)

Xa(€,q) =

with
Y2(€,q) = 4¢° 4+ 8¢°€ + 60¢” — 26¢*¢? + 152¢*¢ 4 3464 — 120¢°¢” — 484°¢
+936¢3¢ + 944> — 184¢%¢* — 5604 + 536¢%€% + 2448¢%¢
+ 1184¢% — 128¢¢% — 672¢€* — 544¢€> + 1760¢€2 + 2656¢¢
— 3265 — 2566° — 5126% + 19263 + 131262 4 512¢ + 832¢. (5.334)
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As the zeros are contained within Y7, Ys, it follows:

lﬁ;(a) — 684 lim (5008( ) 55%11(@))
o5 5\0 Ys(e cos(av), e sin(a))
16 28cos(a) + 8sin(a)
"~ 1 832cos(a) + 512sin(a)’ (5.335)
That concludes the proof. O
Corollary 5.7.10 Let o € [0,%]. Then:
k(o) > 0, (5.336)
Oak(a) < 0. (5.337)

Lemma 5.7.11 There exist £ € (0,1) and po € (3,5), as well as an analytic function
v+ [0, 8] % [3, po] = R\{0}, such that for (£, p) € [0,&)] x [3,po]\{(0,3)}:

M =K <arctan (pg?)>) v(&,p). (5.338)

Proof. Follows from the fact that m is a rational function. O

Lemma 5.7.12 Let & € (0,1), po € (3,5) and v : [0,&)] x [3,p0] — R be as in lemma
5.7.11.

Then, E = 1 — &2 € [1 — &2,1] is an eigenvalue or resonance of iL with exponent
p € [3,p0], if and only if

24 5= D) =K (arctan (pg?))> ) (5.339)

As always, we need to exclude the case p =3, F = 1.

Proof. By lemma 5.7.5:

1 1
= . 5.340
5o (E7) = G (5340)
By lemma 5.7.11, (5.339) is equivalent to
1
That concludes the proof. ([

Definition 5.7.13 For E > 0, p > 3, consider the coordinate transform 7(E,p) = (r, «)
into polar coordinates:

a = arctan <pg3> , (5.342)

£+ (-3)> (5.343)
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Lemma 5.7.14 There exist & € (0,1) and p1 € (3,5), such that for every p € (3,p1),
there exists at most one eigenvalue E € (1 — £2,1] of iL.

Proof. We transform (E, p) into polar coordinates via (r, ) = 7(E, p). By lemma 5.7.12,
we find an analytic function f : [0, &] x [3, po] — R, such that E = 1—£? is an eigenvalue
or resonance of 1L with exponent p, if and only if

f&p)==r (arctan <pg3>) : (5.344)

Expressed in polar coordinates, E = 1 — r2cos?(«) is an eigenvalue or resonance of iL
with exponent p = rsin(«) + 3, if and only if

2

g(r,a) :== f(rcos(a),rsin(a) +3) — k(a) = 0. (5.345)
By lemma 5.3.4 and lemma 5.3.5:
9(0,7/2) = 0. (5.346)
Consequently, by corollary 5.7.10, for a < 5:
9(0,@) > 0. (5.347)
As f is analytic, we find ro > 0, such that for r € [0,79] and a € [0, F]:
Oag(r,a) = — K'(a) — e f(r cos(ar), rsin(ar) + 3)r sin(w)
+ 0y f(rcos(a), sin(ar) + 3)r cos()
> 0. (5.348)

Suppose we have a solution (p,8) € [0,7r0] x [0,7/2] of g(p,5) = 0. By the implicit
function theorem, we find r1 € [0, 7] and a unique analytic function 6 : [0, 1] — [0, 7/2],
such that 6(p) = f and

g(r,6(r)) = 0. (5.349)

From (5.347), we conclude #(0) = 7/2, meaning that r — (r,0(r)) parametrises every
solution of g(r,«) = 0 in [0, 7] x [0, 7/2].
We conclude that

= (A7), q(r) := (1 — 2 cos®(A(r)), rsin(8(r)) + 3) (5.350)

parametrises every pair of eigenvalues/resonances E and exponents p close to (1,3).

As r — q(r) is analytic, it follows that ¢ is either constant or injective on some
sufficiently small interval [0,72] C [0,71]. By lemma 5.5.18, 7 + ¢(r) is not constant.
Due to ¢(0) = 3 and ¢(r) > 3, we can conclude that r — ¢(r) is increasing for r € [0, rg].

In conclusion, we find the parametrisation

p— (Ag ' (p)),p) (5.351)
for every pair of eigenvalues/resonances F and exponents p close to (1,3). That concludes
the proof. O
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Corollary 5.7.15 There exist E1 € [0,1) and p1 € (3,5), such that for every p € (3, p1],
there exists exactly one eigenvalue E € (Fy,1) of iL.

Proof. Assume that at least one eigenvalue/exponent pair (E,p) close to (1,3) exists.
As seen in the proof of lemma 5.7.14, that allows us to construct a parametrisation
p+— (E,p) for every p close to zero.

The fact that there are indeed eigenvalue/exponent pairs (E,p) close to (1,3) is a
simple consequence of the intermediate value theorem. As shown in the proof of lemma
5.3.13, for every p > 3:

C(l,p) > ———. 5.352
(1,p) C—1p) (5.352)
By lemma 5.5.17, for every E < 1:
1
C(E,3) < ———=. 5.353
(B3 < g5 (5.353)
That concludes the proof. O

Corollary 5.7.16 Let p; € (3,5) and E; € [0,1] be given by corollary 5.7.15. For p €
(3,p1), let E, € (E1,1) be the unique eigenvalue of iL. Let (, denote the corresponding
etgenfunction. Then, for x € R, up to a possibly different sign, the following point-wise

convergence holds:
(1 - Q(w)2>
Gp(2) ' (5.354)

lim =

P B1GO] - V- QU1

Hereby, |(z,y)| = \/|z|* + |y|* denotes the usual norm on R2.

Proof. In the proof of lemma 5.7.14, we have constructed an analytic parametrisation
p — (p, Ep) for p € [0,p1]. Consequently p — (, is analytic as well. That concludes the
proof, as the eigenfunction of the resonance is given by:

(iL—1) (1 _.Q2> = (8) . (5.355)
! O
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5.8. Characterisation of the Spectrum

We summarize the chapter.

Lemma 5.8.1 There exists py € (3,5), such that for p € (3,po], iL admits two simple
eigenvalues Ey, By € (—1,1)\{0} with Ey = —Fs. iL admits no further eigenvalues or
resonances apart from 0. The associated eigenstates of E1, Eo are even.

Proof. Consider the case of odd functions first. 0 is well-known to be an eigenvalue of
multiplicity 2 for every p € [3,5], see [34]. Consequently,

1

—— _ —C(—E,p)| < CE* 5.356
CED) ( ) (5.356)
for every p € [3,5] and E € [0,1]. As the functions are analytic for p € [3,5] and
E €[0,1), we conclude that

ot — C(—E,
f(E,p) = “ED EQ( ) (5.357)

is a well-defined continuous function. By lemma 5.6.12, we conclude

1
f(B.3) < 5. (5.358)

Consequently, we find py > 3, such that f(E,p) < 0 for every p € [3, po].

Now consider even functions. By corollary 5.7.15, there is p; > 3 and 0 < A; < 1,
such that

1

C(E,p) = m

(5.359)

has exactly one solution E € [\, 1] for every p € (3, p1]. As in the case of even functions,
we define

C(Eap) - C(JE,p)

o (5.360)

g(E,p) =

Then ¢ is a well-defined, continuous function for E € [0, A\;] and p € [3, p1].
By corollary 5.5.8 and lemma 5.5.17, we find py € (3,p1], such that g(F,p) > 0 for
every E € (0, 1] and p € [3, p2]. That conclude the proof. O

Lemma 5.8.2 There exists v € (0,1), such that the following holds true. Let py > 3
be given by lemma 5.8.1 and let p € [po,5]. Then, iL admits no eigenvalues outside of

(—=7,7)-
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Proof. Assume the lemma does not hold. We find a sequence of exponent-eigenvalue
pairs (pn, En)>1 € [po,d] x [—1,1] with lim,_,~ |E,| = 1. By symmetry, we can assume
E, >0 for every n > 1.

As [po, 5] is compact, we can find a convergent subsequence and define po, := limy, o0 Pn-
By continuity (lemma 5.1.5 and lemma 5.1.14):

1
C(1, = — 5.361
(1) = G (5.361)
We conclude that 1 is an eigenvalue or resonance of iL for p = ps. This contradicts
lemma 5.3.13 and lemma 5.4.21. O

Notation 5.8.3 As usual, let H denote the Hilbert space given by definition 1.9.1, while
L denotes the linearised operator given by (1.35).

We denote H, = H and L, = L to express the fact that H and L are dependant on
the exponent p.

Definition 5.8.4 Let pg € (3,5) be given by lemma 5.8.1. For p € [po, 5], let PP denote
the spectral projection associated with iL, on H,.

Lemma 5.8.5 The spectral projection Pfy_ vy AN be expressed via the resolvent formal-
ism:
1
D _ ; _ -1
73[_%7] =55 jg(sz M)A (5.362)

Hereby, T': [0,27] — C,t — HTve“.

Proof. The essential spectrum of iL,, is given by (—oo,—1] U [1,00). We conclude by
lemma 5.8.2, 0(iLy,) C (=00, —1]U[1,00) U [—7,~]. That already concludes the proof.(]

(5.362) extends the definition of Pf_w 5 to H L(R)2, allowing us to consider 77[73_7 .
independent of the Hilbert space H,,, which depends on p.

Lemma 5.8.6 Let pg € (3,5) be given by lemma 5.8.1. Let w € HY(R)? and T :

[0,27] — C,t — HT'Yeit. Then,

1
P ——— 7( (iL, — M) wdA (5.363)
2w Jr

is continuous for p € [po, 5].

Proof. For r > 0, let K, := {z € C||z| = r} be the circle around the origin with radius

r. Al = 1+ij (iL, — AI)~! is uniformly bounded with respect to A\ € Ki4,. Further,
2

p — (iL, — AI)~! is continuous. That already concludes the proof. O
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Theorem 5.8.7 (Theorem 1.10.1) Forp = 3, iL possesses no eigenvalues apart from
0. 1 and —1 constitute resonances.

Forp € (3,5), iL admits two simple eigenvalues Ey, By € (—1,1)\{0} with E; = —FEj.
1L admits no further eigenvalues or resonances apart from 0. The associated eigenstates
of Ev, E5 are even.

Finally, for p =15, 1L admits no eigenvalues or resonances apart from 0.

Proof. Let py € (3,5) be given by lemma 5.8.1. By lemma 5.5.18, lemma 5.6.13 and
lemma 5.8.1, it remains to consider p > pg.

By lemma 5.8.5, the total multiplicity of the eigenvalues of iL,, for p € [po, 5] is given
by dimran ¢(iL, — AI)~'dX. This number is continuous and thus constant by lemma
5.8.6. By lemma 5.8.1, dimran §(iL, — AM)~'d\ = 6. That concludes the proof, as 0 is
an eigenvalue of multiplicity 4 for p € [3,5) and of multiplicity 6 for p = 5. O

Lemma 5.8.8 For3 < p <5, let E1(p) be given by theorem 5.8.7. Then, lim,\ 3 E1(p) =
1 and limy, ~5 E1(p) = 0.

Proof. We only show lim,\3 E1(p) = 1. limy, x5 E1(p) = 0 follows completely analo-
gously.

Because [0, 1] is compact, it suffices to show that 1 is the only cluster point of E(p)
for p N\, 3. Assume that another cluster point A\ € [0,1) exists. We find a sequence
(Pr)k>0 C (3,5) with limy_,oo pr = 3 and limy_,o0 E1(pr) = A

By continuity (lemma 5.1.5):

1

C(\3) = N 3)’

(5.364)

in contradiction to lemma 5.5.18. O

160



6. Definition: Eigenfunctions and Hilbert Space

6. Definition: Eigenfunctions and Hilbert Space

We have succeeded in charactering the spectrum of L, which is the main result of this
thesis (theorem 1.10.1). The remainder of the thesis considers how theorem 1.10.1 can
be used to establish dispersive estimates on the linear equation dyw = Lw, in particular
by constructing a wave operator for iL.

Defining a wave operator is only sensible for the continuous part of the spectrum of
1L. We need to further restrict the Hilbert space H, by projecting away from the eigen-
functions associated with the non-zero eigenvalues of iL, the so-called internal modes.

The point of this short chapter is to define such a Hilbert space H.

6.1. Internal Modes

Definition 6.1.1 Let 3 < p < 5. We define E = E(p) € (0,1) as the unique positive
etgenvalues of il given by theorem 1.10.1. The unique negative eigenvalue is given by
—FE.

Definition 6.1.2 Let 3 <p < 5. We choose

_ (S
- (&), o

to be the eigenfunction of iL with eigenvalue E. We further require |[C||,, = 1 and that
Cu, Gy are real-valued. Note that the eigenfunction of —FE is given by:

o Cu
- (%) -

6.2. Hilbert Space

In order to prove orbital stability, Weinstein [34], [35] constructed the Hilbert space H
given by definition 6.2.1. We recall, for 3 < p < 5:

Lemma & Definition 6.2.1 (Definition 1.9.1) Let p € (3,5). Consider:
H = {w = (u,v) € H'(R)?| (1.43) holds true}. (6.3)
Further, let (-,-)y : H x H — C be given by:

((ur,v1), (u2,v2))n

= / (VU1VE2 + w1ty + Vo1 Vg + 0179 — prflulﬁg — prlvﬁg) dx. (6.4)
R
Then, (H,{(-,-)) constitutes a Hilbert space and L maps H onto itself. Further, iL
is self-adjoint with respect to (,-)y. Finally, |||l and ||||;1g)2 constitute equivalent
norms.
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6. Definition: Eigenfunctions and Hilbert Space

Definition 6.2.2 Let 3 < p < 5. Consider the Hilbert space H C H given by

(m = (e (6.6)

Lemma 6.2.3 Let 3 <p < 5. Then L : H D dom(L) — H admits neither eigenvalues
nor resonances.
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Part I1ll.
Wave Operator

For the remainder of the thesis we only consider 3 < p < 5.

7. Goal
Consider the free Schréodinger equation:
0w = (—A+1)w (7.1)

(—A +1— E)w = 0 admits non-trivial bounded solutions for every E > 1. If we define
E =1+&2, ¢ € R, then the solution space is spanned by e%* and e™%*. e~%7 ig precisely
the kernel of the Fourier transform F:

1 .
F =—— / ~rdy. 7.2
(FNEQ = 7= [ fa)e S a (72)
That allows us to use the Fourier transform to diagonalise —A + 1:
“A+1=F Y+ 1F. (7.3)

Now, suppose we have a bounded matrix-valued solution

W:R xR C*>?% (7.4)
(€.2) > W(E,2) (7.5)

of the eigenvalue equation
(L —isgn(€)(€? +1))w = 0. (7.6)

In analogy to the Fourier transform, we can define the distorted Fourier transform F
for Schwartz functions w by somewhat incorrectly using the scalar product of H (since

W(E, ) ¢ H):
1
O e

1 _ o p—1 0 o
- s /R <VWVw + Ww — (PQO Qp_1> Ww> de.  (7.7)

Heuristically, F' satisfies the diagonalisation:

(w, W(&, ) u

FLw = isgn(£) (€2 + 1) Fuw. (7.8)

In chapter 8, we construct bounded solutions W, W, : R? — C2 to (7.6). W, is even
with respect to x, while W, is odd.
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We define W, W, such that (7.7) for W = (W,, W,) resembles the Fourier transform
(7.2) as closely as possible. Based on theorem 2.4.7, the asymptotic behaviour of W,
W, for x — —o0 is given by

AGOE <_11> co(€) cos(&x) + (_ﬂ) s.(€) sin(€x), (7.9)

Wo(&.x) ~ (f) Col€) cos(éx) + (f) So(€) sin(&x). (7.10)

By rescaling W, W,, we can ensure
leel® + [sel* = leol? + [50]* = 1. (7.11)
(7.9), (7.10) now characterise W, W, as some matrix equivalent of Jost solutions.

In chapter 9, we define an operator F' based on (7.7) and show that F' maps L onto the
multiplication operator isgn(€)(£2 4+ 1). We prove that F extends to a unitary operator
mapping H onto {f € L?(R)?|¢h € L?(R)?}. Further, we generalise H for s > 0 via

H, = {w = (u,v) € H*(R)?| (1.43) holds, and (w, )y = (w,{)y = 0}. (7.12)

After defining a suitable norm, we show that F : Hy — {f € L%(R)?|(1+¢2)2h € L*(R)?}
constitutes a unitary map as well.

That allows us to define the wave operator in chapter 10, as finding a unitary transform
G:{f € L*(R)?|(1+€%)2h € LA(R)?} — H*(R)? (7.13)

mapping isgn(£)(¢2 + 1) onto I(—A + 1) is quite simple. Hereby, I denotes the matrix
equivalent of the imaginary unit .

In chapter 11, we show that the wave operator 7" and its inverse are bounded L? — L4
for every 1 < q < oo, as well as a variety of less significant estimates. The proofs of
these bounds are quite straightforward, requiring only some basic results about Fourier
multipliers.

Finally, in chapter 12, we establish several dispersive estimates for the linear equation
Ow = Lw. As a result of the L¢ — L? bound, both the dispersive estimate given by
lemma 1.6.1 and the Strichartz estimates given by 1.6.2 hold for d,w = Lw as well. The
actual result of chapter 12 is a non-resonant local smoothing estimate, for which the free
equation allows no analogue.
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8. Bounded Solutions

8.1. Bounds on Symmetrical Solutions

We examine the bounded solutions to (L —iE)w = 0, E = sgn(£)(£2 + 1) and establish
some basic bounds. We always assume 3 < p < 5.

Definition 8.1.1 For (¢1,c2,¢3,¢4) € C* let the linear combinations:

Wey,c,03,04 = (Uer,ca,03,005 Versenenea) * [0,00) X R — R?, (8.1)
1D01762703,C4 = (a01762703,c4a 501762703704) : [507 OO) XR— RQ (8'2)
be given by:
4
Wey,c2,c3,c4 = Z CLWk;, (8.3)
k=1
4
Wey 9,304 = Z CrW- (8.4)
k=1

(wi)1<k<a and (Wg)1<k<a are given by theorem 2.4.7 and theorem 2.4.12. & is given by
definition 2.4.6.

Lemma 8.1.2 Let £ >0, E=14+¢%, y e R and K > 0. Assume w = (u,v) € C*(R)
solves (2.5) and (2.6). Assume further:

|w'(y)]
lw(y)| + w: <K. (8.5)
Then, for every x € R:
jw ()| + |§Ufcg) | < CReVERE (8.6)

Proof. Let A\ := 2+ &2 =1+ E, U := —A"%/ and V := —\"!¢/. Then (2.5) and
(2.6) read:

U 0 —-A 0 0 U
i u — —A+ %Qp_l 0 %Qp_l 0 U (8.7)
de | v 0 0 0 - v ’
4 BRQrt 0 S+gtert 0/ \V

For f := vu? + U? + v2 + V2 that implies f(z) < (A+Ce 1) f(z). The lemma follows
from Gronwall’s inequality. O

Corollary 8.1.3 Let w < 0 be given by definition 2.4.6. Let & > 0, z € [w,0] and
c1,c3,¢4 € C. Then:

1 d —y/
[Wer 005,04 (& )| + 777 | G Wer0es ea (&, 7)< Ce FE o] + fes] + feal) (8:8)
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8. Bounded Solutions

Proof. Follows from theorem 2.4.7 and lemma 8.1.2. (]

Lemma 8.1.4 Let £ > 0 and (c1,c3,c4) € C3, such that w = (u,v) = Wey 0.c5.04(E57) 18
either even or odd. Then, for every x € R:

Vg (1, 1) g

1 o0
@)= - 2,2 + €2 /:1: ‘

2 2
! T (1) p1<p+1 p—1 )
2\/m/_ooe Q 5 u+ 5V dy, (8.9)
1+¢ .
v(x) = cgcos(€x) + ¢y sin(éx)
T i -~ 1 1
+/ sin(€(@ y))Qp_l (p—i— v+ L u> dy. (8.10)
—o0 § 2 2
For £ > &, (8.9) and (8.10) can be restated as:
Wey,0,e3,04 (€5 *) = W0,0,e3,¢4 () (8.11)

&o is given by definition 2.4.6.
Proof. Let w < 0 be given by definition 2.4.6. We define:

1 -1
—\/@yQp—l <p+ up + 2 vl> dy

C1 o0
I := 7/ e
! 2v2+ &% /-

2 2
Cc3 o —\/2+€2y np—1 (p +1 p—1 )
+ 7/ e —us3 + vy | d
NerwzIA Q 5 U3 5 U3 ) dy
Cq * _ /242y ~p—1 (p +1 p— 1 )
+ 7/ e Ug + vy | dy. 8.12
QW » Q 2 4 2 4 Z/ ( )
By definition, for x € R:
ey 1 o 1 (p+1 p—1
u(r) = (c1 +1)e 2+§2x—7/ eV2He@=y) pl(u—l—v)d
(z) = (c1 + 1) 22+ e Q 5 5 y
1 Y Ve g1 (P +1, . p-1 )
e e —u+ v | dy, 8.13
22+ & /_oo © 2 2 )Y (8.13)
1+¢ .
v(x) = egcos(x) + ¢y sin(&x)
g - 1 -1
+ / sin(€(@ =) 1 <p+ v+ pu) dy. (8.14)
—00 13 2 2
As u and v are both even or both odd, we conclude ¢; + I1 = 0 and the proof. O

Corollary 8.1.5 Let & > 0 be given by definition 2.4.6. Let € > & and (c1, c3,¢4) € C3,
such that w = (U, V) = We, 0,¢5,c4(§, ) is either even or odd. Then, for every x € R:

jw(z)| < Cles| + |ea])- (8.15)
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8. Bounded Solutions

Proof. Lemma 8.1.4 implies we, 0,¢5,c4(§5) = W0,0,¢5,¢4(§; ). Theorem 2.4.12 concludes
the proof. O

Lemma 8.1.6 Let & > 0. Let further £ € [0,&1] and (c1,c3,c4) € C3, such that w =
(U, V) = We, 0,c3,e4(&, ) 15 either even or odd. Then, with a bound only dependant on &;:

le1] < G (s + leal)- (8.16)

Proof. Assume w to be even and assume the lemma does not hold.
We find sequences (€M), C [0,&] and (cén))neN, (cin))neN C C, such that:

1. ) (€M) is even for every n > 0,

w
1,0,0&" 1Cy

)

2. lim, s c:(,,n = lim, cfln) =0.
Wy ) o (€™, .) being even implies %w17070én>7cin) (€™.0) = (0,0). By choosing a

suitable subsequence, we find & € [0, &;], with

lim €M™ = ¢&. (8.17)

n—oo

It follows by lemma 2.4.11 and corollary 8.1.3:

d d
a S P el (n)
’dxwl(&’o)’ = lim_ dxwl,o,o,o(é ,0)’
d d
; il (n) ; il (n)
< i | o o (€ v0>|+n1;%o|dxwoyo,cg">,cgn><f =0>\
d
: a (n) . (n) (n)
< Jim | T, o0 00 (60,00 + € i (|7 + |7

= 0. (8.18)

Hence w1 (&2,-) is even. Theorem 2.4.7 and lemma 2.4.9 imply w;(&,+) € HY(R) in
contradiction to theorem 1.10.1. That concludes the proof if w is even.
The odd case follows analogously. O

Corollary 8.1.7 Let £ > 0 and (c1,c3,c4) € C3, such that w = (u,v) = We, 0,504 (5 7)
is either even or odd. Then, for every x < 0:

1

u(w)] + o) — e con(Ea) — x> Lsin(ea)| < Cffg('%' +led), (8:19)
%u(aﬁ) + % (v(x) — czcos(€x) — 046 +1 sin({x))' < Ce%x(|63| + |cal)- (8.20)

Proof. Let £y > 0 and w < 0 be given by definition 2.4.6. By corollary 8.1.5, for £ > &:

jw(z)| < C(les| + |ea])- (8.21)
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On the other hand, by lemma 8.1.6 for 0 < & < &:

le1] < O(les| + |eal).- (8.22)
By theorem 2.4.7, for £ > 0 and =z < w:
sin(éx)

o)

< C%(Jes| + leal (1 +[2])).- (8.23)

w(z)] < C (\cn T les] + leal (1 +

Lemma 2.4.11 ensures that w;, ws and wy are bounded for (§,z) € [0,&)] X [w,0]. It
follows:

[w(z)] < ferf Jwi(€, 2)| + les| [wa (&, 2)] + [eal |wa(€, 2)]

C(les| + [eal)- (8.24)

IN A

Summarizing, for £ > 0 and = < 0:
jw(z)| < C(les| + |eal (14 [2])). (8.25)

As w is even or odd, (8.25) holds for true for every z € R. (8.25) applied to lemma 8.1.4
yields the claim for z < 0 and consequently x € R. O
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8.2. Transmission Matrix

The fundamental systems (wy); and (wg)r describe the asymptotic behaviour of solu-
tions as * — —oo. As (2.5) and (2.6) are symmetric with respect to x — —z, these
fundamental systems can also be used to describe the asymptotic behaviour as x — oo.

8.2.1. Small =

Connecting the asymptotic behaviour at —oo and 400, we define the following trans-
mission matrix S, which is quite similar to a scattering matrix.

Definition 8.2.1 For £ >0, let S = S(§) = (Spm)i1<n,m<4:
C* — C4,
(k1, ko, ks, kq) — (I1,12,13,14),
be given by:
Ve € R Why kg ks b (&, ) = Wiy 115,01, (§, —T). (8.26)
Here, Wi, ko ks ks @5 given by definition 8.1.1.
Due to symmetry, the following basic properties are immediately apparent.

Lemma 8.2.2 Let £ > 0. Then, S(¢) € R4 and S(¢£)? = 1d.

Lemma 8.2.3 Let and £ > 0. Then, the eigenvalues of S(§) are given by —1 and 1,
both of geometric multiplicity 2.

Proof. Given (ky, ko, ks, k4) € R*, Wi, ky ks ks (&, °) is even, if and only if:
S(g)(k17k27k3ak4) - (klak27k'37k4)- (827)

Analogously, (k1, ko, k3, ks) € R* is an eigenvector of S(£) with eigenvalue —1, if and
only if Wi, gy ks ks (€, ) is odd. That concludes the proof. O

Lemma 8.2.4 S :[0,00) — R¥™* is an analytic function.
Proof. Let (c1,c2,c3,¢4) € R* and E = ¢2 + 1. We define Wey eo.es,ca (€, +) as the unique
solution (U, V) of (2.5) and (2.6) given initial data (U,U’,V,V')(0) = (c1, ca,c3,¢4).

In analogy to S, we define T'(§) : (k1, k2, k3, k4) — (c1, c2, c3,¢4) as given by:

Ve € R Why kg ks ks (6, 2) = Wey co,05,04 (&, T). (8.28)
By lemma 2.4.11, T : [0, 00) — R**% is an analytic function. By definition:
1 0 0 O
s©O=1"0y o 1 o |70 (8.29)
0 0 0 -1
That concludes the proof. O
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8.2.2. Large &
Definition 8.2.5 For & > &, let S = S(&) = (5nm)1<n.m<4:
c*—
(kh k?a k37 k4) = (l17 l27 l37 14)7
be given by:
Ve eR: Wy kg k3, ka (57 ‘T) = Wiy ly,l3,l4 (67 —:C). (8’30)
Here, Wi, ko ks ky 15 given by definition 8.1.1. &y is given by definition 2.4.6.
Completely analogously to the last section, we infer the following three lemmata.

Lemma 8.2.6 Let £ > &. Then, S(¢€) € R4 and S(¢)? =1d.

Lemma 8.2.7 Let £ > &y. Then, the eigenvalues of S’(E) are given by —1 and 1, both
of geometric multiplicity 2.

Lemma 8.2.8 S : [£y,00) — R*** is an analytic function.

We show some asymptotic behaviour of S. Consider the following operator T', in analogy
to the operator T' defined in the proof of lemma 8.2.4.

Definition 8.2.9 For & > &, let T = (fum)1<nm<a = T(£):
C* — C4,
(K1, k2, k3, ka) = (I, 12,13, 1),
be given by:
Ve € R Wk, gy ks b (&, ) = Wiy 151514 (€, —). (8.31)

Hereby, Wi, 15.05.1.(&, ) = (U, V) (&, -) is the unique solution to the pair of equations:
U, z) = leV HET | e V2

1 T V21€(z—y) Hp—1 (p+1 p—1 )
+ / V2w g U+2-v)d
2vzte o < 2 2 Y

x —
1 / eV 2 (=) gr—1 (P‘; 1U+ p 1V> dy. (8.32)
0

NNz 2
V(€ x) = egcos(&x) + 041 Zg sin(éx)
vsin(§(z —y) p1 (P+1l, p—1
+/O TQf” ! ( 5V U) dy. (8.33)
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Lemma 8.2.10 There is To, € R¥*, such that T fulfils:
T(¢) =1d+& T + O(672), (8.34)
as &€ — o0.

Proof. We show (8.34) for #1;. The other elements of the matrix are estimated analo-
gously.
Let w; = (41, 71) = W1,0,0,0 be given by theorem 2.4.12. By definition:

1 z +1 —1
~ _ \2+€2 V242 (z—y) Hp—1 (P - p ~
u(&,x)=e +72 e [@e vQP ( 5 a1 + vl)dy

1 Y Ve (y—a) -1 (P+ 1 -1 )
. — + L d
272 1 &2 /_ooe @ “ Y

2 2
0
— oV2+E% 1+ 1 / —V2+&y Hp—1 <p+1~ _|_ p—1. )d
¢ 22+ 2 " @ 9 1Ty y
/0 6\/2+£2yQp—1 <p+17l _{_p—l@ >d
22+ ) 2 Ty )W
1 T 24 (r—y) 1<p+1~ P1~>
b [V Qr 4 d
9 %2_%52 0 Q 9 U1 5 v ) ay
1 " V() gp-1 <P+1~ P—1~)
- e a1 + U1 | dy, 8.35
5 %2_1_52/0 Q 5 U1 5 U1 ) dy (8.35)

ngn = [ =D (20 220 ) gy

§

0 _
_ _cos(gm)/_oo Smé sin(y) - 1<p;1171+p2 1a1> dy
+ sin(&x) ' cosé{y)Qp ! <p—51@1+p;1a1> dy

_ e V2

It follows:
0 /2 £2 p—1 p +1 p— 1
(& yQ ('LL] + ’U]) dy (834)

) 1
e) =1+ -7 reé /_oo 2

By theorem 2.4.12:

- +1 o _
@ =1+ | e VEEgrie/rEy,

1 0 —Vrey -1 (PEL - Voreyy P 1o
—_— — d
*wm/_ooe @ (T =V P ) ay
p+1 o _
=1+ wm Qp Ydy + 0(e72). (8.38)
That concludes the proof. O
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Lemma 8.2.11 Let k > 1. Then, as & — oco:

k

er (6 € 0(E™). (8.39)

Proof. Taking the k-th derivative of (8.37) and applying lemma 2.4.15 yields (8.39) for
t11. The other elements of the matrix are estimated analogously. O

Corollary 8.2.12 There is Soo € R**, such that S fulfils:

010 O
= 1 00 O _1a _
0 00 —1

as & — o0.

Proof. Corollary 8.2.12 follows from lemma 8.2.10 and:

010 O
5 ~ 1|1 0 0 0]z
SO=TEO" |y o 1 o |T© (8.41)
00 0 -1 -
Corollary 8.2.13 Let k > 1. Then, as §& — oco:
dr _9
@S(f) €0(¢™). (8.42)

Proof. Corollary 8.2.13 follows from lemma 8.2.10, lemma 8.2.11 and:

7). (8.43)

o O O
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8.3. Constructing Symmetrical Solutions

Consider ¢ > 0 and E = 1 + £2. Wy p.e,s(€,x) is bounded and even with respect to z, if
and only if b = 0 and:

S(&)(,b,e,s) =(1,b,c,58). (8.44)

By the same token, wyps(§, ) is bounded and odd with respect to x, if and only if
b =0 and:

S, b,e,s) =—(1,b,c,8). (8.45)

In case of £ = 0, theorem 1.10.1 tells us that no non-zero bounded solution of (2.5) and
(2.6) exists.

Definition 8.3.1 Let £ >0 and E = €2+ 1. We define:

Kog:={(1,0,¢,5) € R*(S(¢) —1d)(1,0,¢,s) = (0,0,0,0)}, (8.46)
Kog :=1{(1,0,¢,5) € R*(S(¢) +1d)(1,0,¢,s) = (0,0,0,0)}. (8.47)

Let further K¢ := K¢ ® K, ¢.
Lemma 8.3.2 For every £ > 0 with at most finitely many exceptions:
dim K¢ = dim K, ¢ = 1. (8.48)
Proof. By lemma 8.2.3:
1 <dim K, ¢,dim K, ¢ < 2. (8.49)
Consequently, it suffices to show dim K¢ < 2 for almost every £ > 0. By definition:
Ke ={(1,0,¢,5) € RY|3,&,5 € C: S(€)(1,0,¢,5) = (1,0, 3)}, (8.50)

Further, (1,b, ¢, s) € Kg, if and only if wy . s(&, x) is bounded with respect to .
Let & be given by definition 2.4.6. Analogously to before, given & > &g, Wy p.cs(§, )
is bounded with respect to z, if and only if:

(I,b,c,s) € K¢ := {(1,0,¢,s) € RY3,¢,5 € C: S(€)(1,0,¢,8) = (1,0,6,3)}.  (8.51)

That implies dim K¢ = dim f(g for every £ > &. Consequently, for { > &, dim K¢ = 3
is equivalent to §21(§) = S23(§) = 524(€) = 0.

From corollary 8.2.12, we know lim¢_,o 521(§) = 1. That allows us to choose &1 > &
with 821 (§) # 0 for every £ > &;. Consequently, dim K¢ = 3 is only possible for £ € [0,&].

By definition, dim K¢ = 3 is equivalent to s21(§) = s23(§) = s24(§) = 0. That
concludes the proof, as S is analytic by lemma 8.2.4. (]
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Lemma 8.3.3 Let & > 0. Then, there exist € > 0 and real analytic functions:

(les Cey 8¢) : [0,00) N (&1 — &, & +¢) — R3\{(0,0,0}, (8.52)
(lm Co, 50) : [07 OO) N (51 -8+ 5) — RS\{(Ov 0, 0}7 (853)
fulfilling:
(le’ 0, ce, 56)(5) € Ke,fa (8'54)
(lo, Oa Co, 50)(5) S Ko,{v (855)

for every & > 0 with |€ — &1| < e.

Proof. We show the lemma for l¢,c. and s.. l,,c, and s, are constructed completely
analogously.

Lemma 8.2.3 allows to us find linear independent (L1, By, C1,S1), (L2, Ba, Ca, So) € R*
fulfilling:

(5(61) — 1d)(L.b.c. ) = (0.0.0,0). (8.56)
That implies:
(S(&1) +Id) (L1, B1, C1, S1) = 2(Ly, By, Cy, S1), (8.57)
(S(&1) +1d)(La, B2, C2, S2) = 2(La, B, C3, 52). (8.58)
We define:
(l1,b1,¢1,51) (&) :== (S(&) +1d)(L1, By, Cy, S1), (8.59)
(I2, b2, c2,82)(§) == (S(§) + Id) (L2, B2, C2, S2). (8.60)

As S is continuous, we can choose 6 > 0, such that (I1,b1,¢1,$1)(§) and (l2, ba, c2, 52)(&)
are linear independent for every £ > 0 with [ — &;| < .
Lemma 8.2.2 implies S(¢)? = Id and thus:

(S(¢) +1d)(S(¢) — 1d) = (0,0,0,0). (8.61)
Hence, (11,b1,c1,51)(€) and (l2, b, c2, $2)(§) both fulfil:
S(€) —1d)(l,b,¢,s) = (0,0,0,0). (8.62)

(
We conclude (11, b1, c1,51)(§) € Keg, if and only if b1 (§) = 0. Analogously, (I2, b, c2, 52)(§) €
K. ¢, if and only if b(£) = 0.

If by = 0 or b, = 0, then we are already done. Otherwise, since b; and by are both real
analytic by lemma 8.2.4, there exist real analytic functions g1, g2 : [0, 00)N({1—6,&1+9) —
R, as well as ki, ko € N, fulfilling:

bi(€) = (€ —&)Mq1(§),  qi(&1) #0, (8.63)
b2(€) = (€ — €)™ g2(E),  g2(&1) £0. (8.64)

174



8. Bounded Solutions

By choosing 0 < £ < ¢ small enough, we ensure g;(£) # 0 and g2(§) # 0 for | — &1| < e.
Symmetry allows us to assume ki > ko. We define:

(le,be,ce,se)(ﬁ) = (5 - §1)k2_klg2(§)(l1>blvclasl)(f) - gl(g)(bab%c% 32)(5) (8'65)

It follows:

(S(&) = Id)(le, be, ce, 5¢)(§) = 0 (8.66)

and:
be(§) = (€ — &)™ 1 g2(€) (€ — €)M g1(&) — 91(€) (€ — &) g2() = 0. (8.67)
That implies (le, 0, ce, 5¢)(€) € Ko for every |€ — &] < e, € > 0. 0

Lemma 8.3.4 There exist analytic functions:

(lg, e, S¢) = [0, 00) — R3, (8.68)
(Lo, Co, 50) = [0,00) — R3, (8.69)
fulfilling for every & > 0:
(le’O,cewSe)(g) S Ke,&v (870)
(10,0, co,50)(§) € Ko, (8.71)
as well as:
le(§)2 + Ce(‘f)z + 83(5)2 = ZO(OQ + 00(5)2 + 30(5)2 =1 (8.72)

Proof. We show the lemma for l¢,c. and s.. l,,c, and s, are constructed completely
analogously.

By lemma 8.3.3, there is some § > 0 and real analytic functions (I,¢,3) : [0,6) —
R3\{(0,0,0} with (I,0,¢,5)(&) € K¢ for 0 < & < §. We define:

(l,c.5):[0,6) = R?,

(,2,5)(¢)
7 iR e e &7
That yields real analytic functions (I, c, s) : [0,) — R? fulfilling:
(1d—S())(1,0,¢,)(€) = (0,0,0,0), (8.74)
() +e(6)® +5(6)* = (8.75)

for every 0 < & < §. Consider:

¢ :=sup{{1 > 0| l,c and s extend analytically to [0,&1]} > 9. (8.76)

175



8. Bounded Solutions

Recall that an analytic extension on an interval is always unique. For given & € [0, (),
we denote the unique analytic extension to [0,&1] by (l¢,, cg,, 5¢,). Then:

(ley Ceyse) + [0,0) = R?, (8.77)
£ (le; ce, 5¢) (€), (8.78)

constitutes an analytic extension of (I, ¢, s) to [0, ().
By the identity theorem for analytic functions, (I, ce, s¢) fulfils (8.74) and (8.75) for

every £ € [0, ().
Therefore, to conclude the proof, it suffices to show ¢ = co. We proceed indirectly.

_Assume ¢ < oco. Using lemma 8.3.3, we can choose ¢ > 0 and analytic functions
(lh,¢1,51) : (C—&,¢+¢) = R3\{(0,0,0} fulfilling (I1,¢1,51)(§) € K¢ for [€ — (| <e.
By choosing & small enough, lemma 8.3.2 ensures for £ € (( — ¢, ():

dim K. ¢ = 1. (8.79)
We define:

(ll, C1, 51) : (C - &, C + 5) — R3a

(51,51,51)(5)
CChER e+ a©r
Both (I, 0, ce, se) and (11,0, ¢1,s1) fulfil (8.74) and (8.75) on (¢ —&,¢). By (8.79), that
implies for every £ € (¢ —¢,&1):

(le, 0, ey 8¢) (&) = (11,0, ¢1,51)(&) V (le, 0, ce, Se) (&) = — (11,0, 1, 51)(§). (8.81)

By continuity, the sign in (8.81) remains constant. We can assume without loss of
generality for € € (( —¢,():

(8.80)

(l6707ce>36)(§) = (11,0,01,81)(6). (8'82)
Hence:
(I3, ¢2,82) : [0, +¢€) — R3, (8.83)
(le,Ce,Se)(€)7 if§<Cv
& {(zl,cl,slm, it € > (. (8:84)

constitutes an analytic continuation of (I, ¢, s). That contradicts the definition of (. We
conclude ( = oo and the proof. O

Theorem 8.3.5 There exist real analytic functions le, ce, Se : [0,00) = R and l,, ¢y, So :
[0,00) — R, such that we,w, : [0,00) x R — R? given by:
we(§, ) = wle(g),o,ce(g);se(g)&%(57$)’ (8.85)
we(&, ) 1= wlo(ﬁ),O,co(E),—so(f)E%(g"r)’ (8.86)

Fulfil:
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1. For every £ > 0, we(&, x) is even with respect to x.
2. For every & > 0, wy(§, x) is odd with respect to x.

3. we and w, can be expressed in terms of Ww:

VE> & Ve eR: we(§>$) = ’LDOO ce(8), _se(g)%(gax)7 (8.87)
'wo(f, ) 00 Co(£),—50(&) %(57 ) (888)
&o is given by definition 2.4.6.
4. ce and se Tesp. ¢, and S, are normed:
VE 2> 0 ce(€)® + 5c(6)” = col)® + 50(€)° = 1. (8.89)
5. As £ = 00, ¢, Se and ¢, So fulfil:
(cesse)(§) = (1,0) + 5_1(66,07 Se,0) + 0(5_2), (8.90)
(coy80)(§) = (0,1) + 5—1(6070’ $0,0) + 0(572)7 (8.91)
with suitable constants ce 0, Se,0, Co0, So,0 € R.
6. As & = 00, Ce, Se and co, So fulfil for every k > 1:
dk 9
dfk (067 36)(5) € O(éi )7 (892)
dk 9
dé-k; (CO7 30)(5) € O(f_ ) (893)

Proof. We show the lemma for [, c. and s.. l,,c, and s, are constructed completely
analogously.

Let (I, ¢, s) be given by lemma 8.3.4. Then wy(¢) 0 ¢(¢),s(¢) (€, *) is a non-trivial bounded
and even solution to (2.5) and (2.6) for every £ > 0 and E €2 41. Corollary 8.1.5 and
lemma 8.1.6 imply (¢, s)(§) # (0,0) for every £ > 0.

On the other hand, w;(),0,¢(0),5(0)(0; ) is bounded, if and only if s(0) = 0. Theorem
1.10.1 consequently ensures s(0) # 0. Hence, I, cc, s¢ : [0,00) — R as given by:

fl(f)

le(§) == NG} (8.94)
o () £c(£)

O = Vo arone (5:95)
se(§) = (Hf) ©) (8.96)

V(€2 + (T +8)%s(6)
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are well-defined and real analytic functions on [0, 00). (8.87) follows from lemma 8.1.4.

It remains to demonstrate (8.90) and (8.92). From (8.87), we can infer for every

£ > &o

(5(€) - 1d) <0, 0, ce(€), —?i’?) = (0,0,0,0). (8.97)
We define for ¢ > &:
(1,b,¢,3)(€) == (S(&) +1d)(0,0,1,0). (8.98)
We rewrite (8.98). Thus, for ¢ > & and z € R:
Wi j, 2 5(& @) = W0,0,1,0(§; ) + Wo,0,1,0(§; —x) = W3(&, ) + W3(§, —). (8.99)

As w3 is bounded and wy, wy are unbounded by theorem 2.4.12, it follows I(£) = b(€) = 0.

By corollary 8.2.12, there is & > & with (¢, 3)(§) # (0,0) for every & > &. If we
choose &; large enough, we ensure dim K. ¢ = 1 by lemma 8.3.2.
Lemma 8.2.6 implies (S(&) — Id)(S(€) +1d) = 0 and thus:

(5(€) —1d)(0,0,&(&), 5(€)) = (0,0,0,0). (8.100)

From dim K.¢ = 1, (8.97) and (8.100), we infer that (cc(£),—£(€ + 1)71s.(€)) and
(¢(£),5(&)) are linear dependent. Hence, if we define:

. §e(€)
O =@+ e 100
N O R L9,
O Eg o 10
for £ > &, we ensure either:
V€ > & (067 Se)(&) = (667 56)(5)7 (8'103)
VE > &0t (Cey8e)(§) = —(Ce, 3e) (). (8.104)

After possibly changing the sign of (I, ce, s¢), we can assume (8.103) to be true. (8.90)
and (8.92) now follow from corollary 8.2.12, corollary 8.2.13 and (8.98).
That concludes the proof. O

Definition 8.3.6 Consider c., se and c,, S, as given by theorem 8.5.5. We extend c., S
and Cy, S to functions R — R by:

ce(§) = ce([§]), (8.105)
se(€) = se([€]), (8.106)
co(&) = co([€]), (8.107)
50(€) = so([€])- (8.108)
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Corollary 8.3.7 c, 5, Co, 5o € WH(R). Further, given any k > 0:

Cel(0,00)5 Sel(0,00)> Col (0,00)» S0l (0,00) € Wk(0, 00). (8.109)
Lemma 8.3.8 1.(0) = c.(0) = 1,(0) = ¢,(0) = 0 and s.(0)? = 5,(0)? = 1.
Proof. Follows from theorem 1.10.1 and (8.89). O
Corollary 8.3.9 s.(0) = s,(0) =0.
Proof. Follows from (8.89). O
8.4. Remainder Terms

8.4.1. First Order Remainder Terms

Consider the functions we = (ue,ve), wWo = (o, Vo) : [0,00) x R — R2, as given by
theorem 8.3.5:

%(& ), (8.110)

Wo(&,%) = W, ¢) 00 ) _80(5%(5, z). (8.111)

we(€7x) = wle(f),O,CE(f)v Se

For £ > 0 and x < 0, we establish bounds on the remainder terms pe = (pe,u, pPe,v) and
Po = (Po,m po,v) given by:

Peu(§, ) = ue(§, ), (8.112)
Pen(&,x) == ve(&, ) — ce(§) cos(§x) + se(§) sin(x), (8.113)
Po.u(&; @) = uo(§, @), (8.114)
Pow(&,2) = 0,(&, ) — co(&) cos(Ex) + $o(€) sin(&x). (8.115)

Lemma 8.4.1 Let w.,w, be given by (8.110) and (8.111). Then, w.(&,x) and wy(§, x)
are real analytic both in & > 0 and x € R. Further, we(0,z) = w,(0,z) = (0,0).

Proof. Lemma 8.3.8 implies we(0,2) = w,(0,2) = (0,0). The analyticity follows from
lemma 2.4.11 and theorem 8.3.5. ([

Lemma 8.4.2 Let p,

= (Pe,u, Pev) and po = (pou,Pov) be given by (8.112) - (8.115).
Then, for € >0 and x < 0:

1
ez”
[Peu(&s )]+ [pew (€ 2) + lpou(&, 2) + [P0 (&, 2)] < O 3 (8.116)
1
10zpe,u(&s )| + [0zpe,n (&, 2)| + [0xpou(§s )| + 102pou(€, )| < Ce2™. (8.117)
Proof. Follows from corollary 8.1.7. O

179



8. Bounded Solutions

Lemma 8.4.3 Let pe = (pe,u, Pe,v) and po = (Pou, Pow) be given by (8.112) - (8.115).
Then, for € >0, x <0 and k > 0:

e%$
1+&

+ ‘3§Pe,v < Ck

+ ’8§po,u

+ |0 po

]ag“pe,u (8.118)

Proof. We prove (8.118) for p.. For p,, the proof is identical.
Let &y be given by definition 2.4.6. Continuity implies for (§,z) € [0, o] X [w,0]:

k

d
+ d?kpe,v(é}fv) <C. (8.119)

dk:
‘ Tgcpe’“(g’ :U)

To conclude the proof, it suffices to show (8.118) for (£, z) € (&, 00) x (—o0,0] and
(5,1') € [0760] X (—OO,(,U)-

Assume £ > £ and = < 0. Recall lemma 2.4.15.
By theorem 8.3.5, we (&, ) = ce(&)Ws(€, ) — 257 50 (€)wa(€, x), which implies:

s,
Peul€,7) = cel&)Fus(€,7) - fise<£>fu,4<s, 2), (8.120)
Pew(§sx) = ce(§)Tu3(E, @) — gilse(é)mA(& ). (8.121)

(8.118) follows from lemma 2.4.15 and corollary 8.3.7.

Assume 0 < € < &) and =z < w. Recall lemma 2.4.10.
By theorem 8.3.5, we (&, ) = le (&) w1 (&, ) +ce(&)ws (€, :U)—gjglse(f)wzl(ﬁ, x). It follows:

Pe,u(fvx) = le(&u1(§, z) + 66(5)7’%3(5,1’) - 86(5)7’“74(5,37), (8.122)

E+1

Pew(§5 ) = le(§)v1(€, @) + ce(€)rv 3(8, 7) (&)rpa(Ex). (8.123)

&
£+1°

By continuity, %le is bounded on [0, &y]. (8.118) follows from lemma 2.4.10 and corollary
8.3.7.
That concludes the proof. O

8.4.2. Second Order Remainder Terms

Lemma 8.4.2 and lemma 8.4.3 estimate the remainder terms with a decay of O(£71).
We construct a higher order remainder term exhibiting a decay of O(£72).
We only do the calculations for p.. p, is handled completely analogously.
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By lemma 8.1.4:

1 00 _ - +1 —1
pon= = srara ) T (P ) dy
€T

2 2

o1 Vg (211, 21,
22t ) s’ @ 5 e T 5 ve | dy, (8.124)
”w:/ WQp_l (p—;lvﬁp;lue) dy. (8.125)

Lemma 8.4.2 and lemma 8.4.3 applied to (8.124) already yield stronger bounds for pe ,:

d* d

62

vk >0: i — peulé, )| Cr—— e (8.126)
d 2"
dé:kpau(gx)| < Ck 16_‘_ 52 ’ (8'127)

Pe.v Must be controlled more carefully. We expand (8.125):

Pey = /_zoo WQ‘” (Mpe,v + p_lpe,u> dy

9 2
+ 2 /oo S =0 01, € con(ey) = ) sin(e0))ly
_ /Jfoo sin(& Qp 1 <p+10€v peu> dy
+p+1/x S =) o1, () cos(€y) — se(€) sin(€y))d
2 Jow £(14Y) ’ v o
+p;1/; Sm(ﬁ(ig 9) Qr1 (o (€) cos(ey) — se(€) sin(€y)dy.  (3.128)

Note sin(¢(z — y)) = sin(£x) cos(€y) — cos(Ex) sin(€y). We conclude:

[ sinlee = 9)Q7 el€) cos(€y) — se(€) sin(€w))dy
= @) sinea) [ @ cos(ey)dy + 5. cos(én) [ Qsin(ey)dy

= (ce(€) cos(€a) + se() sin(ea)) [ Q7 cos(y) sin(€y)dy. (5.129)

We apply cos(€y)® = 3(1 + cos(26y)), sin(€y)? = 5(1 — cos(26y)) and cos(&y) sin(Ey) =
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% sin(2&y):

sin(€(z — y)) QP (ce(€) cos(§y) — se(€) sin(€y))dy

—

—00

= Slel@)sin(én) + se(€) costen)) [ @ty
+5(c(©sin(€n) — s.(€) costéan)) [ Q! cos(26)dy
— S cos(en) + s sin(er)) [ Qrsine)dy. (8130
For simplicity, let:
1 1 z
O, ) = 7% g (€(©) sin(€r) + se(€) cos(ér) /_ Q. (8.131)
Using lemma 8.4.2 and lemma 8.4.3 to control the integral terms, we conclude:
k> 0 0800 (pen(€,2) — O (&, )] < Ci fi 3 (8.132)
06 (peal) ~ bl )| < Ciprgm (8.133)

We summarize:

Lemma 8.4.4 Let pe = (peus Pew) and po = (Pous Pow) be given by (8.112) - (8.115).
Let further 0.,0, : [0,00) x (—00,0] — R be given by:

1 1 z
Oen(6) = P @) sinféo) + se(© os(én) [ @ty (8.13)
p+1 1 . Y1
Oul) = T el sin(en) + s costéo) [ Q7 May. (8.135)
Then, for every £ >0, x <0 and k > 0:
1
e2”
‘8gazpe,u 7‘8§8w(pe,v - ee,v) s 8§8mpo,u 5 agax(po,v - 90,1}) < Ckl T é.a (8136)
1
e2”
‘afpe,u s ag(pe,v - He,v) ) aé‘cpo,u , 3?(00,1; - 00,0) < Cy 1r 62' (8-137)

8.5. Jost Functions

With w, and w, as given by theorem 8.3.5, let (ue, ve) := we and (ue, Vo) := w,. Consider

Ul = e + ve, (8.138)
Vo= i(ue — ve), (8.139)
U =y + o, (8.140)
Vo= i(uo — o). (8.141)
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By definition, (U}, V,7)(&,-) and (U}, V,7)(€, ) are solutions to the equation:
Lw = iEw (8.142)
for every E = ¢2 4+ 1,¢ > 0. By symmetry, (U, —V,F)(€,-) and (U}, —V,)(€, ) solve:
Lw = —iBw. (8.143)
Definition 8.5.1 We define
W, = (U, Vo) : R? — C?,

US V&), if €20,
(5’1:) ~ {(U(j_’ _‘/e+)(_£>$)7 ng < 07 (8144)

W, = (U, V,) : R? — C?,

U Vo) &), if €20,
(&@H{awrnwe@m i€ <0 (8.145)
Lemma 8.5.2 Let £ € R. Then
LWe(&,-) = isgn(€) (€2 + DWe(&, ), (8.146)
LW, (€, ) = isgn(&)(€2 + )Wo(&, ). (8.147)

Lemma 8.5.3 Let (¢,2) € R2. Then, U.(§,2),U,(€,2) €R, as well as Vo(€, ), Vo(€,2) €
iR. Further
We(&,z) = We(=€, x), (8.148)
Wo(&,z) = Wo(=E, ). (8.149)
Lemma 8.5.4 £ — W, (§,x) and £ — W(&, ) are real analytic on both (—o0,0] and

[0,00) for every x € R. x — W(§,x) and x — W(§, x) are real analytic on R for every
¢ € R. Further, W.(0,x) = W,(0,z) = (0,0).

Proof. Follows from lemma 8.4.1. O

Remark W,(0,z) = W,(0,z) = (0,0) is directly related to the absence of resonances
(theorem 1.10.1). In contrast, the integral kernel e* of the Fourier transform admits
no zero. This property of We, W, allows us to show a stronger local smoothing estimate
(theorem 12.1.9) for Oyw = —Lw than the free equation admits.

Lemma 8.5.5 Let £ € R. Then

HWe(g’ ')HLOO(R) ) HWO(57 ')HLOO(R) < C7 (8150)
W&, ey » Vol ey < CCL+ €D (8.151)
Proof. Follows from corollary 8.1.7 and theorem 8.3.5. U
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Mirroring (8.112) - (8.115), we define:

Definition 8.5.6 We define the remainder terms R, = (Re,U,Re,V) CR2 5 C2? and
Ro = (Rou, Rov) : R? — C? by:

0(6,2) = Uo(€,) — c.(€) cos(&x) — sgn(€x)s. (€) sin(€x), (8.152)
v (,2) = Vi€, @) + i sgn(€)ce(€) cos(€x) + i sgn(a)s.(€) sin(gw),  (8.153)
o0 (6,) 1= Un(&, @) + sgn(w)co(€) cos(€x) + sgn(€)s(€) sin(€a), (8.154)
oV (€)= Vol&, 7) — i sgn(€a)col(€) cos(€x) — is(€) sin(€a). (8.155)

Remark While the eigenfunctions W, and W, are smooth with respect to x, the remain-
der terms exhibit discontinuity. R,y , R, v are not continuous in x = 0, while the other
remainder terms are not continuously differentiable in x = 0.

Lemma 8.5.7 Let x € R. Then, R.(0,z2) = R,(0,z) = (0,0).
Proof. Follows from lemma 8.3.8 and lemma 8.5.4. O

Lemma 8.5.8 Let £ € R. Then, x — R.(§,x) and x — Ry(&,x) are analytic on both
(—00,0] and [0,00). Likewise, for x € R, £ — Re(§,x) and & — Ro(&, ) are analytic on
both (—o0,0] and [0, o).

Proof. Follows from lemma 8.5.4. U

Lemma 8.5.9 Let (¢,7) € R%. Then

C
IRe(E, )], |Rul6 )| < 17

|02 Re(€, )], |8: Ro(€, )| < Ce 3121, (8.157)

e alel, (8.156)

For x =0, the derivatives are to be understood as one-sided.
Proof. Follows from lemma 8.4.2. O

Lemma 8.5.10 Let (£,x) € R? and k > 0. Then

Cr_ Ll
Ro(g,:c)’§1+|£|e . (8.158)

For £ =0, the derivatives are to be understood as one-sided.

O R(&,2)|. |0

Proof. Follows from lemma 8.4.3. O

Corollary 8.5.11 Let £, x € R and k > 0. Then

ALAEOINY

For £ =0, the derivatives are to be understood as one-sided.

Wol€,2)| < Ci(1 + Ja)*. (8.159)
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Proof. Follows from lemma 8.5.10 and corollary 8.3.7. (]

We close with a higher order estimate.
Definition 8.5.12 Consider the function

~ p+ 1 —|z|

Qz) : N QP dy. (8.160)

We define the second order remainder terms Ry := (RE,U, Rey) and R, := (RO,Ua Rov):

)

Rop(€a) = Ry + 05 senleopsin(en)Qle) - 4L cos(en)Qla), (s.161)
Ry (€:0) = Ruy = i1 sgn(a)sinf6a)Q(o) + 115 sent) cos(6)Qle). (5,162
Rop(€:0) = Rog = 125, sn(@)sin(€a)Q(o) + 5L sen(o) cos(6)Q(o). (5169
Row (€.2) == Roy + 1 f"f% sin(é2)O(x) — i 181(% sen(¢x) cos(£x)0 (x). (8.164)

Lemma 8.5.13 Let £,z € R and k > 0. Then

_lm
~ ~ e 2
ok Ree, )] ok Rote, )] < O (8.165)
_lw
~ ~ e 2
\agaxRe(g,x) , agaxRo(g,x)\ < Cerrer (8.166)

For £ =0 and © = 0 respectively, the derivatives are to be understood as one-sided.
Proof. Follows from lemma 8.4.4. O
Corollary 8.5.14 Let £,z € R and k> 0. Then

0F 0. Re (€, )

|0k R (&, 2)| < Cre2 1, (8.167)

For £ =0 and x = 0 respectively, the derivatives are to be understood as one-sided.

Proof. Follows from lemma 8.5.13. O
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9. Distorted Fourier Transform

We have succeeded in defining Jost solutions We, W,,.

We now use W,, W, to define analogues of the Fourier transform called F' and G.
Establishing F' and G as unitary transforms between reasonable Hilbert spaces is the
goal of this chapter.

We generally use the variable names w = (u,v) and h = (f, g) as arguments of F' and
G respectively. We will often decompose these functions into even and odd parts.

Convention 9.0.1 Consider functions R — C2, denoted specifically w = (u,v) or h =
(f,g) or slight variations thereof (e.g. W instead of w).

We understand we = (e, Ve), Wo = (U, Vo) and he = (fe,ge)s ho = (fo, go) to be the
unique decomposition into sums of even and odd functions w = we + Wy, h = he + ho.

As always, we assume 3 < p < 5.

9.1. Overview

The Fourier transform is a well-known operator F : L2(R) — L?(R), which for f € S(R)
is given by:

1 —1ix
(FAEQ = 7= [ Fle 1)

In this chapter we define a ’distorted’ Fourier transform using W, and W, as integral
kernels. For Schwartz functions f,g € S(R) and w = (u,v) € S(R)*:

1

(Few)(§) = m@%we(fy ) H, (9.2)
1

(Fow)(§) := mW,Wo(f, )N H, (9.3)

1

(GeP)@) = /IR W (€,2) F(€)de, (9.4)
1

(Gog)) = = [ WolE,a)(E)de (95)

We show that F = (F., F,) extends to a unitary operator H — {f € L?(R)?|¢h €
L?(R)?} with inverse G(f, g) = Gef + Gog.

We also show that F' maps the Hamiltonian L onto the multiplication operator
isgn(€)(€2 4+ 1). That allows us to define the wave operator, as finding a unitary trans-
form G : {f € L?*(R)?|zh € L*(R)?} — H*(R)? mapping isgn(&)(¢2 + 1) onto I(—A +1)
is quite simple. (I denotes the matrix equivalent of the imaginary unit i.)
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9. Distorted Fourier Transform

9.2. G. and G,

Heuristically, we can determine ||G.f||3;, by calculating:

o [ Wl Wele, D (€0 F€2) e, (9.6)
which can be simplified via:
g Wl ) Weleo.
= —sgn(&)(Ue(€1, ), Ve(€2, ) 2wy + sen(€)(Ve(§1, ), Ue(€2s ) L2 (R)- (9.7)

None of the products used in (9.7) are well-defined. We introduce the following scalar-like
product in order to remedy this fact.

Definition 9.2.1 Let e > 0. Given measurable functions ui,us : R — C for which the
following integral converges, we define:

<U1,UQ>5 ::/6_8212ulﬂ2dl‘. (98)
R

Using lim._o(, -)¢ in place of (-,-);2 makes the Ansatz (9.6), (9.7) viable. We define:

Definition 9.2.2 For &1,& € R and ¢ > 0, we define

Nee(&1,62) == —sgn(&1)(Ue(&1,-), Ve(&2,-))e +sgn(&1)(Ve(&1, ), Ue(&2,-))es (9.9)
Ne,o(§1,€2) 1= —sgn(§1)(Uo(&1, ), Vo(&2, +))e +58n(€1)(Vo(&1,7), Uo(&2,7))e- (9.10)

9.2.1. Approximate ldentity

We show that 7. . and n., act as approximate identities. We will only be giving the
proof for 7. . as the proof for 7., is identical.

Lemma 9.2.3 For & # &5:

ii\r‘%ns,e(élaéb) =0. (911)

Proof. For the sake of simplicity, let:

(€1, &2) = sgn(&1)nee(§1,82) = —(Ue(&1,7), Ve(§2, +))e + (Ve(€1,9), Ue(§2,+))e- (9.12)

Lemma 8.5.4 implies W, (0, -) = (0,0). Hence, it suffices to consider &, &2 # 0.
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9. Distorted Fourier Transform

Let (Ul,Vl) = ( 1, ) (UQ,VQ) = We(fg, ) By lemma 8.5.2:
—isgn(&)(Ef + 1)(U1, Va).
= (LyV1, Va)e

= /e*s P A+ 1— Q" Wi Vads
R
— / 6762I2V1(—A +1— Qp71>v2dx
R
+/R452xe_52x2‘/18x72da:—/R(—262+464x2)e_€2x2V172dx
= (V1, —isgn(&) (&5 + 1)Us)-
+/452336_52x21/18m72d:v—/(—2524—454:32)6_62”“21/172(13:
R R

= isgn(&)(& + 1)(Vi, Ua)e

+ / 422~ V10, Vada — / (=262 + 4e*2?)e =< Vi Vadar. (9.13)
R R
We estimate (9.13). By lemma 8.5.5:
/ (—2¢% + 4e'2?)e " Vi Vadz| < C / (262 + 4e'a?)e <" da < Ce. (9.14)
R R

By the same token, lemma 8.5.9 allows us to estimate:

/ 4e2pe—c"T’ V10, Vodx
R

IN

2,2 1
/4€2x€ ot o= sl gy
R

- /R 42267 (co(€1) cos(617) + 5c(€1) sin([€12]))Da (ce(€2) cos(€ax) + 5 (&2) sin(|€a2]))da

< Ce?+ &) / 4e2pee 7 gim(@1+82) g0 | 4 1€ / 4e2pe—c%" pir(€1—€2) g
0
< Ce? + |&| / dze=" e gy + |&2| / dze=" 522 gy | | (9.15)
0
It follows for |&1| # [&al:
/ 422e V10, Vada| < € (E + &2 + & ) . (9.16)
R &+ &l 6 — &l
On the other hand, for & = —&3, lemma 8.5.3 implies V; = V5. It follows:
/ 452xe_52$2‘/18m72dx / 252xe_52m28x(‘/12)dx
R R
’/ (2e2 — 4£4x2)e_52x2\/12dx
R
< Ce /(2 - 4x2)e*m2d:c < C%. (9.17)
R
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9. Distorted Fourier Transform

Completely analogously to (9.13), we conclude:

isgn(&1)(&F +1)(Vi, Ua)e
= —isgn(&) (&5 + 1)(Ur, Va)e

+/ 462xe_52x2U18172dx—/(—262+464m2)e_82“2U172d:U.
R R

Analogously to (9.14), (9.16) and (9.17):

lim
e\0

/ 4e2pe—ce’ U,0;Usdzx
R

By (9.13) and (9.18):

isgn(&1) (&8 + 1)ne(€r, &2) — isgn(€2) (€5 + )ne(&, &2)
= /4€2$€_62$2‘/16172d$—/(—2€2+4€4l‘2)6_82m2vlv2d1'
R R

+/ 452xe_52I2U18x72d:c—/(—2524—454:32)6_62”52%@(19:.
R R

It follows:
(sen(€0)(&F +1) — sgn(&)(& + 1)) lim (&1, &2) = 0.
That concludes the proof.

To estimate 7. ., we require the following additional functions.

Definition 9.2.4 We define

k:R— {z€C||z| =1},
£ ce(§) — 15e(§)-

+ ‘/ (—252 + 484332)67829:2[]1726&73 =0.
R

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

Put another way, k is the unique function R — {|z| = 1} fulfilling for every {,x € R:

Re(k(€)e™!) = co(€) cos(§x) + se(€) sin(|&z)
= Ue(f, IL‘) - Re,U(£7 I’)
=isgn(§)(Ve(&,z) — Rev (&, ).

Definition 9.2.5 For &1,& € R and € > 0, we define

e (517 52)

= —sgn(&y) /R e (Ue(€1,2) — Repr(€1,2)) (Ve(€a, 2) — Rey (€2, 2))dar

+sgn (&) /R e (Vo(é1,2) — Rey (€1,2)) (Ue(Ez, @) — Rer(Ea, 2))da.
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9. Distorted Fourier Transform

Definition 9.2.6 For x € R, consider the Dawson-integral:

Dy(z) = e /0 "t ay. (9.25)
Lemma 9.2.7 Let £,& € R and e > 0. If sgn(€&;) = sgn(&y), then:
pe (61, &) = —4i / D e Re(k(£1)e1611%) Re(k(&y)e 121 d. (9.26)
If sgn(&1) # sgn(&2), then: )
pe(€1,62) = 0. (9.27)

Proof. We abbreviate k; = k(&) and ko = k(&2). By definition:
pef6n,2) = —sen(&) [ e Re(lue’©){=) sgn(€) Re(hae ) do
R

+ sgn(&1) /R e~ (i) sgn(&1) Re (k€617 Re (kpel€2rl ) da

= —i(sgn(&1&) + 1)/ e e Re(k;e’47) Re(koe!l$2?!) da:
0 . .
= —2i(sgn(&1&2) +1) / e Re(kie 1411%) Re(koe 821%)de.  (9.28)
That concludes the proof. O

Lemma 9.2.8 D, is an odd function. The following estimates are fulfilled for x > 0:

D > 9.29
)2 1T (9.29)
Di(x) <uz, (9.30)
1 1
Dy(z) <aze VT4 — + = 9.31
@) Sae VT g (9.31)
Proof. Dy is odd by definition. (9.30) also holds by definition. We calculate:
1—e 2 [F2y 2
— =c eV dy<D . 9.32
o= [ SLetay < D) (9:32)
By (9.30), it suffices to show (9.31) for z > 1. We estimate:
2 z_% x 2
D_i_(x)ge_x/ eydy—}—ex/ ) eV dy
0 7
2
_1 T T _
< €_$21‘€<x \/5) +e $2/ Yew dy—l—/ 7y692_$2dy
mf% xfﬁ
s 11
<pe 2Vt 4 — 4 VELD
2z T
<peViy L (9.33)
- 2v  x?
That concludes the proof. O
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9. Distorted Fourier Transform

Corollary 9.2.9 D, exhibits the following asymptotic behaviour:

lim 2zxD4(z) = 1. (9.34)

|z|—o00
Corollary 9.2.10 D, exhibits the following asymptotic behaviour. For x # 0:

Dy (%) _ 1

lim —=&~ = —, 9.35
a{(r(l) € 2x ( )
Proof. By corollary 9.2.9:
Dy (%) 1 2x x 1
li 2 =—1lim—Dy|(—)=—. 9.36
:—:1{}(1) € 2x s{,% et (6) 2z ( )
That concludes the proof. O

Lemma 9.2.11 Let £ € R and e > 0. Then:
0 _fi? Dy(%)
/ 6752x267i5xdx = ﬁe : Ny +\4e )
€

o 2¢e

(9.37)

Proof. We calculate:

0 1 [0

_ 2.2 _; .2 €
/ esxe’&’:dx:f/ e F e Pedz
—o0 € J—oc0

& D.(E
- T+ z*é”t) (9.38)
That concludes the proof. O

Lemma 9.2.12 Let e > 0 and &1,& € R. Assume sgn(&1) = sgn(&2). Then:

D ( |£1\+|€2\)

£ D+(|§1|—|§2|)

+ 2i Im(k(&)@) i

,@T?F 7&5?9
— Vi Re(k(€0)k(€2) ———— = Vi Re(k(§)k(&) ————.  (9:39)

3

pe(61,62) = 20 Tm(k(E)k(C2))
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9. Distorted Fourier Transform

Proof. We abbreviate k1 = k(&) and ko = k(&2). By lemma 9.2.7 and lemma 9.2.11:

/J'E(é.th)
0 . . . .
— / e~ (e i1le | el (e —ilole | Teilole) gy
D (laltlél _ p.lal=lely p Zlalte D (=lal=l&]
= k1ko () + k1ko Ce) + k1ko ( 546 ) + kiko +{ 845 )
7<|§1|+|2§2|>2 7(\51\—|2§2|>2 7(—\51\+2\52\>2 7<—|§1|—2\52\>2
4e R 4e R 4e - 4e
VT e R i ERC T RS
2 € € €
D (laltlél _ D, (l&al=lgl
=21 Im(klkg) ( de ) + 2 Im(k‘lk‘g)M
_(€1+52)2 _(51—52)2
(& 42 — € 4e2
— /7 Re(lﬁkz)f — /i Re(klkg)f. (9.40)
That concludes the proof. O

Corollary 9.2.13 Let ¢ > 0 and &1,& € R. Assume sgn(&1) = sgn(§2) and & # &o.
Then:

Im(k(&1)k(&2)) +4i1m(k‘(£1)k(£2))
1&1] + |&2| ST

Proof. Follows from corollary 9.2.10 and lemma 9.2.12. O

i{%/‘s(ﬁhf?) =4 (9.41)

Definition 9.2.14 Let € > 0 and &1,& € R. Let 1 denote the characteristic function
of any given set M C R%. We define:

Yi(e)(€1, &) = [im(nee(§1,62) = Mae (&1, 62) = pel&r, €2) + 16(61,2), (9.42)

Ya(e)(61,62) = iRe(k(&)k(&))ﬁe(??1{5152>0}, (9.43)
V(o) (6. &) = iRe(k(&)k(&))ﬁ(;(é}?ﬂ{&ﬁxob (9.44)
K(e)(E1.6) = z‘Re(k(sl)zwsz))ﬁe(g:y (9.45)

For & # &, we define:
Ya(e)(€1,62) = 20 Im(k(€1)k(£2)) (D*(lilig&) e ‘52,) Loy (946)

. (D, (lal=l&] 9
V()68 = 2t @D (2 - 2 . (07
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9. Distorted Fourier Transform

Lemma 9.2.15 Let ¢ > 0 and & € R. Let further f € S(R) be a Schwartz function.
Then:

[ Y6 @] < €2 il (9.48)
Proof. Let & € R and § € (0,¢). By lemma 8.5.9:

‘n8,€(§17§2) — 7, 6(517§2) - (:U’E(élaéé) - /1’5(61752))’

22 2.2
< 0| ) (Re(60,2)| + [Re (60,0)| + [ Rewr (€2, 0)] + |Re (0|, o
< CQ H 67521‘2 - 1)€f§|x\
L3 (R)

< 202H5 x2e~3lal

Li(R)
< 32 (9.49)
That concludes the proof. [l

Lemma 9.2.16 Lete >0, & € R and f € S(R). Then:

&
‘/RYQ(E)(§17§2)f(§2)d€2 : < Ce 5 || fll poo () - (9.50)

JRICIGHANGES

Proof. By definition:

(€142

42

[1Y2(e) (€1 ) L1y » 1Y3(E) (€15 )| L1 gy < C/ 7615

<|§1|+55>2
_C /

o0 £2
< Ce” / e TdE
0
&
= Cyme 12, (9.51)
That concludes the proof. [l

Lemma 9.2.17 Let 1 >e >0, & € R and f € S(R). Then:

\ JRCIGRSNELE

< CVE | ey - (9.52)

Proof. By symmetry, we can assume & > 0. Let & > 0 be given. We abbreviate

]ﬁ = k(fl) and kg = k‘({g)
Denote z = §1+§2 . By definition:

Ya(e) (&1, &2)| = [Tm(ki1k2))| (9.53)

4z 1
&1+ & ‘D+($) 2z
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9. Distorted Fourier Transform

Lemma 8.3.8 implies Im(k(0)?) = 0. Using corollary 8.3.7, we conclude:
[Im(k1k2)| < C (&1 + &2).- (9.54)
Corollary 8.3.7 also implies |Im(k1k2)| < C. It follows:

Im(k1k2)| < CVE& + & (9.55)
By (9.53) and lemma 9.2.8:

4Cx 1
[Yi(e)(&1,62)] < Vath Dy (@) - 21"

4Cx e’ 1
< m( 5, T e ﬁ+352>
VGt & e

= 4C% (61 + &) 2.

[N

(9.56)

Further, by lemma 9.2.8, (9.53) and (9.54), we conclude for & + & < 4¢e resp. x < 1:

.2
e.l’

1

[Yi(e)(&1,62)| < 4Cx

+ x) < C2 (9.57)
(9.56) and (9.57) imply the desired estimate. We define ¢ := max(4e — £1,0). Then:

\ JRACICRINSTS
<2 [T e el (e dés

1) 00

<2 [ V@) 0,6l da lfll ey +2 | V)€ &I 2 1Ly
é 0o 3

< [ Cle e+ [ Coler+ &) Mgl lligey

4e oo _3
S/O Cd&l!f\lmo(mﬁ[l Cety *dS || fll oo (m)
£

1
< ACE || fll poo () + 2C(42) 2 || f]| oo (m)
< 5CVE | fll oo ) - (9.58)

That concludes the proof. O

Lemma 9.2.18 Let 1 > e >0, & € R and f € S(R). Then:

[ Y506 7 (€] < CVE Il (9.59)
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9. Distorted Fourier Transform

Proof. By symmetry, we can assume & > 0. Let & > 0 with & # & be given. We

abbreviate k1 = k(&) and ko = k(&2).

_ [&-&]
= 1452

Denote . By definition:

1

¥5(6) (1. &2)] < [Tm(kuz) =

D (z) -

4x
‘ TR (9.60)

Clearly, Im(kik1) = Im(|k1|?) = 0. Corollary 8.3.7 implies:
[t (k1 ) ] ‘kzlkg - @kl‘ < ClE - &) (9.61)

Corollary 8.3.7 further implies ’Im(klkig)’ < C. It follows:

]hn(kl/?g)\ < Cy/|& - &). (9.62)

By (9.60) and lemma 9.2.8:

4Cx D
N

4Cx e 1
’ < +xe Ve 4 IEQ)

Y5(e) (&1, &2)| <

&1 — &

4025
S —3-
&1 — &f?
Further, by lemma 9.2.8, (9.60) and (9.61), we conclude for |{; — £2] < 4e resp. = < 1:

(9.63)

[Y5(e)(&1,&2)| < 4Cx

1 e’
D —— <4 <2 .64
() 23;’— C’m<2x —i—x)_C’ (9.64)
(9.63) and (9.64) imply the desired estimate:

' JRECIGHANE S

&1+4e
<2 [ V€6 e 1l e + [ Ya(2) (€1, £2)] déa |||
MG e e+ [ B e
[ cae s e anlifl
< 0o — oo
= Joae TRV ® T o sgiran g gp I ®

< 8Ce || flpoo gy + 4Ce(48) 72 ||| oo ry
< 100\[||f”L°°(R)' (9.65)

That concludes the proof.
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9. Distorted Fourier Transform
Lemma 9.2.19 Let e >0, & € R and f € S(R). Then:

\ [ K@ @€ + 2mif (@)

< Cellfllwroom) - (9.66)

2

Proof. That is a well-known property of the Gaussian e™* . We still give a proof.
By the mean value theorem or Taylor’s formula, we can find, for every £1,& € R,
some m(&2) € [€1,&2] fulfilling:

Re(kiFa) (&) = Re(kFn)f(61) + (€2 — €0) 5 (Re(WER@AE))] . ..
=: f(&) + (& — &1)9(&, &) (9.67)

Corollary 8.3.7 implies k € W1°(R). We conclude:

g (&1, ooy < C IS ooy - (9.68)

It follows:

/R K(e)(&1, ) f(&2)déa + 2mif(€1)

7(51*52)2
= | /]R Re (k1 ko) /T f(£2)dés + 2mi f(£1)
<£1 &2)2 M
= ﬁ/fﬁl dés — 2/ f(&1) +/ & —&1) (51,52) d&o
*%
— VR 2VRF(E) — 2VRFE) + [ €96 €+ 6 de
_ &2
e 4e2
< v [ 1615 de gt ey
<ce[” € dE ||y
< Ce ”fHWLOO(]R) : (9.69)
That concludes the proof. O

Lemma 9.2.20 For every & € R, f,g € S(R) and 1 > ¢ > 0:

‘/Rns,e(§17§2)f(§2)d§2 +2mif(&)| < C(Ve+ 674%2>(||f||W1»°°(]R) Al wy)s (9.70)

&
\ [ meolér,€2)a(€)déa + 2mig(en)| < C(VE+e ) (lgllwroeqey + llsl gy (0.71)
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9. Distorted Fourier Transform

Proof. Lemma 9.2.3, lemma 9.2.12 and corollary 9.2.13 imply for & € R with sgn(&;) =
sgn(&2) and &1 # Lo

Nee(&1,&2) = gig%(ns,e(&,&) — N5, (&1,&2) — pe (&1, &2) + ps(&1,62))

+ %1{% 776,:3(51: 52) + M£(€17 52) - %1\‘1% /1'5(517 52)

( 11 |4+€|52|)

|§1|*|§2|)

= Yi1(e)(&1, &) + 2i Im(ki ko) +2i Im(k‘1kz)D+(€4E

-~ (£1+522)2 _ (61-69)

4¢2

— Vi Re(kks) ———— = V/mi Re(k F2) ———
lIHl(k‘le) . Zlm(kllg)
1€1] + [&2] 11| = [€a]

Lemma 9.2.3 and lemma 9.2.7 imply for &; € R with sgn(&;) # sgn(&2):

—4 (9.72)

Nee(§1,82) = %i\r‘%(ne,e<§17§2> — Ns.e(§1,82) — pe (€1, €2) + ps(€1,62))
+ %ig% N5,e(§1,62) + pe(§1,62) — y\% ps(&1,62)
= Y1(e) (&, &2)- (9.73)
We conclude for every & # & € R:
Nee(81,62) = (Y1(e) + Ya(e) + Ya(e) + K(e) — Ya(e)) (&1, &2)- (9.74)

(9.70) follows form lemma 9.2.15 - 9.2.19. (9.71) follows completely analogously.
That concludes the proof. O

9.2.2. Unitarity
Theorem 9.2.21 Let f,g € S(R). Then, Gef,Gof,Geg, Gog € H. Further:

<G6f7 Geg>H = <G0f7 Gog>H = <f7 (1 + .2)g>L2(R) ) (9'75)
1Gefllar = 11Gof sy = || VI+-21]| (9.76)

Proof. We show the even case. The odd case follows analogously.
Consider [[|£11] := [|Fllys. gy + I1f]11: -
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9. Distorted Fourier Transform

By Lebesgue’s dominated convergence theorem:

<G [ Geg)r

" or </W (&) )df»/ We(&, ')g(é)d§>H
=5 (L (B0 ) e [ () )
&

L2(R)?
e(&1,) Ue(&2,-)
=5 < ( U (61, -) )ngn EE+1)f (él)dfla/ (VE( ,)) g(éz)d§2>L2(R)2

— lim </ sgn (&) Ve (&1, ) (€2 + 1) f(&) dfh/ Ue(&2,-) (52)d§2>

27’[‘ e\0
—i timy ([ sen(@)Uelér. (e} + D), [ Vileo, o))
~ or 6\0/ / Tle,e 51,52)(51 + 1) f(€1)9(&2)dEadE . (9.77)

By lemma 9.2.20:
(Get,Gegr = (. (1+ Dghuaqw)
/ (€ + DF@) [ neclén )a(@dades +# [ (& + D9l e

5\0

m | [ 6+ D) ([ nec(6r alea)dsa + 2mig(éy)) dés

< cii\%/]R(gl +1)|f<fl>r<\@+e*@>|ng\|rda

2
< Clim Ve ||(*+ 1)1, o, ol +C lim Reféd& 2+ 07| Mol
= 0+2Clme [ e Cae|[2+ s . ol
= 0. (9.78)
Gef,Geg € H holds by lemma 8.5.2. That concludes the proof. O
Definition 9.2.22 Let s € R. We define the Hilbert space
= {f € XR)|(1+ D)3 € LX(R)} (9.79)

with scalar product resp. norm:

<f7g>ﬁs = <(1+'2)%f7(1+'2)%g>L2(R)7 (980)
£l = ||+ 235

L2(R)

198



9. Distorted Fourier Transform

Definition 9.2.23 Consider the linear subspaces H., H, C H given by:

H. := {w € H|w is even},
H,:={w € H|w is odd}.

Using these spaces we conclude the definition of G.
Definition 9.2.24 By theorem 9.2.21, G. and G, extend to linear operators

Ge:f[1—>He,
Go:ﬁ1—>HO,

which we again denote by Ge,Go. We define G : H* x H' — H by:
G(f,9) = Gef + Gog.
Lemma 9.2.25 Let h = (f,g) € H' x H'. Then:

2 2 2 2
WAl s = 117 + Ngllzn = |GA[ -

Proof. By theorem 9.2.21, we only need to show ||Gh||3; = ||Gefll3 + ||Gogl|3-

follows directly from the fact that G.f is even and G,g is odd.

9.2.3. Alternative Definition

Lemma 9.2.26 Let f € S(R). Then, for every x € R:
e — [ cos(en) 1€ = (FL)@) = (1))
N / sin(€x) f(E)dE = i(F L) () = —i(F~f,)(@).

Proof. We calculate:

\/12?/Rcos(§x)f(£ d¢ = \ﬁ/ cos(—&€x) fe(€)d§
\/%/ e £,(€)de
= (Ffe)(x).

Analogously:

! i b isin(—&x
Ton /IR sin(g) F(€)de = —7= /]R (=€) fo(&)de

= = [ e
— i(Ff)).

That concludes the proof.
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9. Distorted Fourier Transform

Lemma 9.2.27 Let f,g € H'. Then, for = € R:

e,U éa )
Gl = == [ ( i )> 1)
(cefe) i]:(se Sgn(')fe)
* (_i]:(ce Sgn(')fo)) +Sgn($) < ]:(Sefo) ) ’ (9.92)
w0(€,0)
(Co)w) = o= [ ( e )> a(€)ds

—sgn(x F(coge) ~ [iF(sosgn(-)ge)
egn( )<_z‘}'(cosgn(.)go)> < F(5090) ) (9.93)

The remainder terms R, R, are given by definition 8.5.6.

Proof. Tt suffices to consider Schwartz functions. By definition 8.5.6:

359 cos(x)
(Gl m/ ( . >> ee s o fLee (isgn@cos(sx)) Jee
) 1o () s
) sgn(z) cos(x)
(Gog) () \/%/ ( ,$)> g(§)d§ — V2 /Rco(g) (—isgn(g) COS({I’)) 9(§)d§
L[ (sl singen)
-5, o(o( A )g(f)df- (9.95)
Lemma 9.2.26 concludes the proof. ([
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9.3. Definition of F

We define operators F., F, : H'(R)? — H' by extending the definitions given by (9.2)
and (9.3). Let w = (u,v) € S(R)2. (9.2) can be simplified via:

1
(Few)(§) = m@%We(@ ) H
() 5521)
Var(1+ &) \\v) "\LvVe&)) [ g
_ s u(z x) —v(x x))dx
- \/ﬂ /]R( ( )‘/6(57 ) ( )Ue(£7 ))d
_ ”g\/;f) [ Velg.a)ula) + Uelé, 2)oa) da. (9.96)
In the last step, we used lemma 8.5.3. By definition 8.5.6:
Ue(§, ) = Reu(§,2) + ce(§) cos(§x) + sgn(§x)se(§) sin(€x), (9.97)
Ve(§,2) = Rev (&, ) — isgn(§)ce(§) cos(§x) — isgn(z)se(§) sin(§xz). (9.98)
It follows:
()€ = "B [ (Reyi6.0uto) + Reve o) do+ “ [ cos(eyutads
ice(§) sgn(§) se(£) sgn(§)
+ \/%/Rcos(fx)v(x)d:c+ \/%/Rsm(éx) sgn(z)u(x)dx
ise(§) :
+ N /Rsm(fx) sgn(x)v(z)de. (9.99)
Analogously:
()€ = "5 [ (o (€0)ute) + Rap (€ a)ota) do
ce(§) ice(§) sgn(§)
~ o Rcos(fx) sgn(z)u(x)dr — \/ﬂ/Rcos(éx) sgn(z)v(z)dz
sel€)sen(®) is.(6)

W /Rsin(ﬁa:)u(x)dm— \/%/Rsin(fa:)v(a:)dx. (9.100)

We can use (9.99), (9.100) and lemma 9.2.26 to define F, and F, on H'(R)?.
Definition 9.3.1 We define F,,, F, : H'(R)?> — H' by:

_ isgn(§)
Fav = P52 [ (Rey (€ 2)ue(z) + Bep (€ )ue(z) da
+ ceFue + ice sgn(€) Fue + ise sgn(€) F(sgn(-)ue) — seF (sgn(-)ve),  (9.101)
_ isgn(§)
Faw = 5280 | (o (€.)uo(w) + oy (6, )uu(a)) d
— coF(sgn(-)ue) — icosgn(§)F(sgn(-)vy) — isosgn(&)Fue + SoFvo.  (9.102)
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9. Distorted Fourier Transform

Definition 9.3.2 With F, and F, as above, we define:

F:HYR)? —» H' x A, (9.103)
— (Few, Fyw). (9.104)

Lemma 9.3.3 Let h € H! x H'. Then:
FGh = h. (9.105)

Proof. 1t suffices to show F.G.f = f and F,Go,g = g for f,g € S(R).
For ¢ > 0 and any w;,wy for which the integral converges, we define following the
scalar-like product:

2.2

<w1,w2>He = <w1,e w2>H. (9106)

(-, ) is given by (6.4). Lemma 9.2.20 implies for £ € R:
lime o{ g We(&1, ) f(§1)dEr, We(€, ) 1.

F.G. =
= -t [ eel@, 7€)
= f(§). (9.107)
F,G,g = g follows analogously. That concludes the proof. O

9.4. Injectivity of F'

The goal of this chapter is to prove that F|g is injective, which we formulate as the
following lemma.

Lemma 9.4.1 ker F,|g, = {0} and ker Fy,|g, = {0}.

Together with lemma 9.2.25 and lemma 9.3.3 that shows F|g and G to be unitary
transformations and inverses of each other.
9.4.1. Spectral Theorem and Projection-Valued Measures

We need some preparation before proving lemma 9.4.1. Let us briefly recall the defini-
tion of projection-valued measures and how they can be used to formulate the spectral
theorem for self-adjoint operators.

Definition 9.4.2 Consider a measurable space (X, A) and a Hilbert space B.
A mapping P from A to the set of orthogonal projections on B is called a projection-
valued measure, if and only if the following two properties are fulfilled. Firstly,

P(X) = idg, (9.108)
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9. Distorted Fourier Transform

and, secondly, for every x,y € B, the function:

A= C, (9.109)
M — (P(M)z,y)s (9.110)

constitutes a complexr measure.

Lemma 9.4.3 (Spectral Theorem) Let A : B D dom(A) — B be a self-adjoint oper-
ator on a Hilbert space B. There exists a unique projection-valued measure E defined on
the Borel subsets of o(A), such that:

A= / AE). (9.111)
o(4)
That is to say, for every x,y € B:
(Az,y) :/ A(E\z,y). (9.112)
o(A)
Proof. See, e.g. [18]. O

Note the following lemma about the most basic properties of projection-valued measures.

Lemma 9.4.4 Let P be a projection-valued measure on Hilbert space B and measurable
space (X, A). Then, P(A)P(B) = P(AN B) for every A, B € A. Further, it necessarily
holds P () = 0.

Proof. By definition, for every x € B:
|1P(0)z][3 = (P(0)z, P(0)z)p = (P(0)x, )5 = 0. (9.113)
That proves P(()) = 0.

Assume for now ANB = () and let C' := X \(AUB). Given z € B, we define y = P(B)x
and conclude:

o
IN

>
=
s
=

|
s
s
g
s
=

= 0. (9.114)
That shows P(A)P(B) = 0. We now consider arbitrary sets A, B C X:
P(A)P(B) = (P(A\B)+ P(ANnB))(P(B\A)+ P(ANB))

ANB). (9.115)

That concludes the proof. O
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9. Distorted Fourier Transform

Lemma 9.4.5 Let P be a projection-valued measure on Hilbert space B and measurable
space (X, A). Consider a sequence of sets (Ay)nen C A with A, C A, for everyn > m.
Then, for every w € B:

P (noo An> w= lim P(Ap)w. (9.116)
Proof. Let A =72y An and B, := A,\Ap41. By definition:

|1P(An)wl5 = (P(An)w, w)s

= (P(A)w,w)p + Z(P(Bk)w,w)g
k=n

= [|P(A)wl[z + > [[P(Br)wl[3 - (9.117)
k=n

It follows > 32, HP(Bk)wH% < oo and consequently lim, o0 > oo, HP(Bk)wH% =0. We
conclude:

. 2 . - 2
g |IP(A)w = P(AYull = Jug 3 11P(B)ulfy = o (9.118)
That concludes the proof. O

Lemma 9.4.6 Let A: B 2D dom(A) — B be a self-adjoint operator on a Hilbert space B
with spectral measure E. Let further X € 0(A) and x € B. Then, y := Epyyx fulfils:

Ay = \y. (9.119)
Proof. By definition, for every z € B:
(Ay.2) = | oy PUE ). (9.120)
Let us examine the measure M — (Ejpy,z). If A & M:
(Epy, z) = <EME{)\}1‘,Z> = (Eyx, z) = 0. (9.121)
IfAe M:
(Emy, 2) = (EMEpy, 2) = (B, 2) = (Y, 2). (9.122)
We conclude:
(Emy, 2) = 0A(M)(y, 2). (9.123)
Hereby, ) denotes the Dirac measure. In summary:
Ay = [ 20N () = Xy, 2). (9.124)
That concludes the proof. O
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9. Distorted Fourier Transform

Let us briefly discuss the basic idea of proof for lemma 9.4.1.

It is well-known that the spectral measure E; corresponding to the Laplace operator
—A: L*(R) D H*(R) — L?(R) can be expressed via the Fourier transform:

Euf=FtAyFf). (9.125)

Hereby, 1), denotes the characteristic function of a given set M C o(—A) = [0, 00).
As it turns out (but will not be proven in this thesis), for M C R\(—1, 1), the spectral
measure Ejs corresponding to —iL can similarly be expressed via:

Eyw =G (1pyFuw). (9.126)

This illustrates the natural connection between F' and GG on the one hand and the spectral
measure on the other hand.

We will show F'|g to be injective by examining the spectral measure E) corresponding
to —iL, In particular, the spectral density lim.\ g éE[xO,E,mOJrE]w for w € H and zqg €
o(—tL) will be of importance.

9.4.2. Regularity

We characterise the image of S(R)? under the map GF. That allows us to only consider
sufficiently smooth functions when proving lemma 9.4.1.

Definition 9.4.7 Let S ¢ H' and S ¢ H'(R) be given by:

S = {f € C(R) | f(0O)=0AVE,1>0:sup ‘(1 +52)%f(’“)(5)‘ < oo} , (9.127)
€40
S = {u € C(R) | Vk >0 :sup ‘(1 + x2)u(k)(x)’ < oo} : (9.128)
z€R

Lemma 9.4.8 Let w € S(R)2. Then F.w, F,w € S.

Proof. We show the even case. The odd case is handled analogously.
Let f = Fow. f(0) = 0 follows directly from lemma 8.5.4. Due to LW,(¢,:) =
isgn(&)(1 + )W, (€, ), we only need to show:

Vk2030>0V§7&0:|£€f(§) <C. (9.129)

That follows directly from definition 9.3.1, corollary 8.3.7 and lemma 8.5.10. U

Lemma 9.4.9 Let w € S(R)2. Then, GFw e S2N H.
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9. Distorted Fourier Transform

Proof. Let @ := GFw. By definition, for & > 0:

(—iL)*d = GF(—iL)*w.

That already shows @ € C°°(R)?. It only remains to show, for every = € R:

C

()] < [e(@)] + to(2)| < —5——-

Let f = F.w, g = F,w and in consequence G f = W, Go,g = W,. By definition:

_ (6,)
= [ Welg.a)f(e)de = /( w)) )de,
= [ Walgmg)de = | (Ugj[f;) g(€)de.

By definition 8.5.6:

[ Ue )1~ [ Rov(a)f(©)ie

R R

= [ cl€)5(€) costgads + [ 5.(6)5(€) singal)d
R R

=2 [ O fele) cosléa)de +2 [ sel€)1.(O)sin(€ al)d
0 0

Analogously:

[ Veleanf(©de - [ Rev(e)f(©)de

R R

=~ 2 [ ol cos(ga)de — 21 [ (€SO sin(€ e
| Uaté.2)9(0)ds = | Row(e)g(€)de

- —sgn(a) / o(©)9¢(6) cos(€a)de — sgn(a) [~ su(€)g.(€) sine Jal)de.
[ Vale0)g(€)de — [ Rov(&.a)g()ds

— 2isgn(z) / o(€)90(¢) cos(éa)d +2isgn(a) | " 50(€)g0(€) sin(€ |x])de

By lemma 8.5.9 and lemma 9.4.8:

‘/ Reu (& x)f
‘/ Rou(§,x)

e,V 5,:13 f(g)

o,V €7 (g)d

—x241
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9. Distorted Fourier Transform

Hence, to prove (9.131) it suffices to show:
VieS3C >0Vz>0:
7 @€ costeards +| [ su(e) (€ sinfeayde] <
0 0

/OOO co(£)f(€) cos(fx)dg‘ + ‘/Ooo so(E)F(£) sin(€x) df‘

e + - (9.139)

e (9.140)

For z < 1, (9.139) and (9.140) follow from corollary 8.3.7. We calculate for x > 1, using
f(0) =0:

(1% [ cl€)1() cos(éo)de

B 9 [ d sin(&x) 9 sin(0z)
=~ () [ O )™ e - (14 a0 W)
2 oo g2 2
= [T st @) eostends + EHE i TielOf(©). (0141
Corollary 8.3.7 implies:
(1423 [ @)1 costéa)a| < C. (9.142)
The rest of (9.139) and (9.140) follows analogously. That concludes the proof. O

9.4.3. Variation of Constants and Wronskian for —iLw = wy

Lemma 9.4.10 (Variation of constants) Let A : R — C"" and b : R — C" be
continuous functions and ®(z) = (y1(x), y2(x), .., yn(x)) a solution matriz of the homo-
geneous equation y' () = A(z)y(z).

Let further ®p(zx) be the matriz one obtains when replacing the kth column of ®(z) by
b(x). Then:

y(@) = cp(@)y(), (9.143)
k=1
with:
A det @y (s)
ck(x) == . et @ (s) ds, (9.144)
solves the inhomogeneous equation y'(x) = A(z)y(x) + b(zx), y(xo) = 0.
Proof. See e.g. [33]. O
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To be able to make use of lemma 9.4.10, we reformulate —iLw = wq for w = (u,v) €
C?(R)? and wo = (ug,vo) € C(R)?. By (1.35), —iLw = wp can be stated as:

Av—v+ QP 1y . fug
(S Yo, o

This can be easily restated in a form compatible with lemma 9.4.10:

u 0 1 0 0\ [u 0
d | o 1—pQP~t 0 0 ol |« —ivg
de | v |~ 0 0 0 1 |wv 0 (9.146)
v’ 0 0 1—pr~t 0) \V/ iug
=:A
Hence —iLw = Aw + wy is given by:
U 0 1 0 0 Uu 0
d |« |  [1-pQP~t 0 —i\ ol |« —ivg
dr | v |~ 0 0 0 {{o]T] o |- (9.147)
v’ i\ 0 1—p@rt o) \ 1ug
:ZA)\

Lemma 9.4.11 Let A € R and Ay : R — C*** be as in (9.147). Let ® = (y1,y2,Y3, Y1)
be a solution matriz of the homogeneous equation y'(x) = Ax(z)y(xz). Then, = —
det ®(x) is constant.

Proof. Let Dy := det ®. It follows:

D(I) = det(y/17y27y37y4) + det(ylv yé7y37y4) + det(yl:y% yga y4) + det(y17y27y3ayil)
— Dy. (9.148)

We also define:

Dy := det(yy, Y, Y3, ya) + det(y], y2, y3, ya) + .. + det(y1, Y2, v5, Y1), (9.149)
D3 := det(yy,ys, Y3, ya) + det(y1, y5, y3, y4) + - + det(y1, ¥a, ¥3, ¥4), (9.150)
Dy := det(yy1, Y3, Y3, Yy)- (9.151)

With & = (y1,v5, v, y)), it follows for u € C:

det(® + ud’) Z 1k Dy.. (9.152)
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We conclude:

4 3
4Dy = > Dy > (iF )
k=0 =0
3 4
= > i (@ Dy,
=0 k=0
3
= > it det(® +i'®)
=0
3
=Dy > i 'det(Id+i'Ay)
=0
3
= Do Y i tdet(i”'Id+A)). (9.153)
=0
We calculate for every pu € C:
— 1 0 0
- 1—pQP~t —pu —iA 0
det(Ay — pld) = det 0 0 iy 1
i\ 0 1-—pQP ' —p
0 1 0 0
B 1—pQP~t —p? —p —iA 0
= det 0 0 0 1
i 0 1—-pQrt—p? —p
0 1 0 0
- 1—pQP~t—p? 0 —iA 0
= det 0 0 0 1
i 0 1—pQPt—p? 0
B 1—pQP~1 — 42 —iX
— det( Z)\ 1—pr_l—/,L2
= (1 —pQP ! — p?)? — N2 (9.154)

(9.153) and (9.154) imply 4D = 0. (9.148) then implies % (det ®) = 0.
That concludes the proof. O

9.4.4. Definition of ¢

Let wy = (u1,v1) : [0,00) x R — C? be as in theorem 2.4.7 and lemma 2.4.9.
By theorem 2.4.7, wy solves (2.5), (2.6) and exhibits exponential decay for z — —oo.
Analogously to definition 8.5.1, if we define
Uy :=uy 4+ v, (9.155)
V1 = i(ul — Ul), (9.156)
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then Wy = (Up, V1) solves Lw = i(1 + £2)w. By symmetry, Wo = (Us, Vo) given by
Wa(z) := Wi (—x) saves Lw = i(1 +&2)w while exhibiting exponential decay for x — oo.

Definition 9.4.12 Let Wy = (U1, V1), Wa = (Ua, Va) : [0,00) x R — C? be as above. We
define ® = (y1,y2,y3,ya) : (0,00) x R — C* by:

Ui Us U U,
0.Ur 0,Uz 0,U. 0,U,
i Vv Ve WG
0V 0:Va OpVe Vs

Definition 9.4.13 For £ > 0, let S = S(€) = (Spm)1<n,m<a be as in definition 8.2.1.
We define for e > 0:

d = (9.157)

N :={¢§ = 0s21(§) = 0}, (9.158)
N:={1+&¢ec N} (9.159)

Lemma 9.4.14 Let £ > 0, A = 1 + &2 and Ay : R — C** be as in (9.147). Then,
(&, ) is a solution matriz of y = Ary.

Proof. Follows from theorem 2.4.7, lemma 2.4.9 and lemma 8.5.2. O
Lemma 9.4.15 N and N are discrete sets.

Proof. sy is analytical by lemma 8.2.4. Hence, either N and N are discrete or s21(£) = 0
for every £ € R. Assume the latter holds true.
Let K¢ = K. ¢ ® K, ¢ be as in definition 8.3.1. By definition, for every £ > 0:

By lemma 8.2.2:
(1+ 511(£), 0, 831(§), 841(§)) € Kege, (9.161)
(1 — 811(5), 0, —S31 (f), —841(5)) S Koé. (9.162)

By lemma 8.3.2, we can choose §; > 0, such that dim K. = dim K, = 1 for every
€ > ¢&;. Consequently, we find continuous coefficient functions ae, o, : [€1,00) — C, such
that, for £ > & and z € R:

WE(S) I‘) = ae(g)wl—l—sn(5),0,531(5),541(5) (5, I‘), (9163)
Wo(&, @) = ao(§)wi—sy;(¢),0,—s51(6),—s41(6) (& T)- (9.164)
By theorem 8.3.5:
ae(§)s31(§) = ce(§), (9.165)
ae(€)sa1(€) = —se@ljg, (9.166)
—ao(§)s31(£) = co(§), (9.167)
—ul€)sn(©) = sl g (9.168)
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Theorem 8.3.5 further states:

lim (ce, Se, Co, S0)(§) = (1,0,0,1). (9.169)
£—o0
Hence, for sufficiently large £, we have a.(€) # 0 and «,(§) # 0.
Again, for sufficiently large £, (9.165), (9.166) and (9.169) imply |s31(&)| > [s41(E)]-
Analogously, (9.167), (9.168) and (9.169) imply |s31(£)| < [s41()]-
That constitutes a contradiction. (]

Lemma 9.4.16 Let £ >0, £ & N. Then, for every x € R:

VIR <y (&, 2)] < CeeV (9.170)
Cele VT < yo(€,2)| < Ceem V2TET, (9.171)

Proof. Let wy = (u1,v1) : [0,00) x R — R? be as in theorem 2.4.7. It suffices to show:

Ce eV < uy (&, 2)| + —— < CeeV e, (9.172)

‘wl £,2)

1+¢1d

Theorem 2.4.7 and lemma 2.4.9 allow us to find zp < w, such that (9.172) holds for
x < xg. By definition 8.2.1:

4
) =3 s (©uwi(e, —o). (9.173)
k=1

£ & N implies s91(§) # 0. By theorem 2.4.7 and lemma 2.4.9, we find 21 = ;¢ > —w,
such that (9.172) holds for z > x;.
For x € [z, 1], (9.172) follows from lemma 8.1.2. That concludes the proof. O

Lemma 9.4.17 Let £ > 0 and z € R. Then:

Ol < lys(&,2)] < Ce, (9.174)
Cet < |ya(§,2)] < Ce. (9.175)
Proof. Tt suffices to show:
Ot < [We(¢ <y, <C, 17
ARAT *5 = A (9.176)
_ d
Cet < |Wo(& 7& ‘d < Cg. (9.177)
By symmetry, we only need to consider z < 0. (9.176) and (9.177) follow from lemma

8.5.9 and lemma &8.1.2. O

Lemma 9.4.18 Let £ >0, & N and x € R. Then, det (£, x) # 0

211



9. Distorted Fourier Transform

Proof. Let &= (c1,c2,c3,c4)T € C*, 29 € R and assume ®(£,29)¢ = 0. As x — ®(£, 2)¢
solves ¢y = A,y, it follows for every x € R:

y(&,z) == ®(&,2)é= (0,0,0,0)T. (9.178)
By lemma 9.4.16 and lemma 9.4.17:
0=1[y(&,z)| = || [y1 (& 2)| = lea| [y2(& )| — lea] [y3 (€, 2)| — [ea] [ya(€, @)
> O le| eV2HET — ey [y (€, —)| — Celles| + |eal)
> O fer] eV — O Jeo] e V2 — Oy (Jes] + Jeal)- (9.179)
By considering = >> 0 that implies ¢; = 0. Analogously:
0= [y(€,a)| = Celea| e VEHER = O Jeq] eV2HE™ — Ce(ley| + Jeal)- (9.180)

That implies co = 0. It follows c3ys+c4y4 = 0. By definition c3ys+cays = 0 is equivalent
to:

Ve e R:esWe(€,x) + caWo(§,2) = 0. (9.181)

We(&, ) is even and W, (&, -) is odd, it follows:
Ve € R:esWe(€, ) = caW,o(€,2) = 0. (9.182)
We conclude ¢3 = ¢4 = 0 and the proof. O

Lemma 9.4.19 Let £ >0, € N, x <0 and c1,c9,c3,¢c4 € C. Then:

4
le1] eVHHET 4 jey| e VEFET 4 jeg| 4 fea| < Ce | il - (9.183)
=1
Proof. We calculate:
4
Y
ch Y] H|
=1 Y
. 24: &) ’yl’ Z ‘ | ‘y
- ?’L n
=1 |Cn||yn| ‘y‘
C
- \k1|+|k2|+|k3\+\k4| 1 Z l|y| nz:1| nHyn‘
1 4
>~ 1T |cn| |ynl
4 iy 2o ? +|ks| e 2=1 ; !y! nZl e
Yy Y2 Y3 Y4
= —|de t( ) cnl [Ynl
i il il T Z‘ ol
1 _
= [det | H | " Z lenl [yn] - (9.184)
=1 n=1

Lemma 9.4.11, lemma 9.4.16, lemma 9.4.17 and lemma 9.4.18 conclude the proof. O
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Lemma 9.4.20 Let w,wo € H,1>e>0and £ >0, £ € N, A\ =1+ £2. Assume:
1. (=il — Nw = wy,
2. Jwlly < 2,
3. |wolly < e.
Then:
[wllyyr00my < C. (9.185)

Proof. Let (u,v) := w and (ug, vg) := wo.
We show HwHWI,oo(_OO 0 < C¢. By considering w(z) := w(—x) and wo(z) := wo(—x),
that also implies |[w][y1.00(9 o) < Ct-

By lemma 9.4.10 and lemma 9.4.18, we find continuous coefficient functions ¢; : R — C,
[ €{1,2,3,4}, such that for every x € R:

(u, ', v,0")(x) = Z @)y, x). (9.186)

=1

By lemma 9.4.16 and lemma 9.4.17, it suffices to show for x < 0:

le1(2)] eV Jea ()| e VT [e(a)], [ea()] < C, (9.187)
as well as:
|0pc1 ()] eV 2HET |0,c0(x)| e VI |Ope3(2)|, [0pca(z)| < Ce. (9.188)

Inspired by lemma 9.4.10, we define ®(z) to be the matrix one obtains when replacing
the kth column of ®(¢&,x) by b(x) := (0, —ivg, 0, iug)” .
By lemma 9.4.16 and lemma 9.4.17:
[det @ 1] < fwo| [y2] [ys] [ya] < C [wo| eV, (9.189)
[det ®a| < C¢ [ug| eV, (9.190)
|det @3] < Cs lwol (9.191)
|det ®4] < C |wp| - (9.192)

By lemma 9.4.18, K = K¢ := det® # 0. Lemma 9.4.10 and (9.147) imply for every
z,y € R:

ck(x) —ex(y) = /yac thfgg('z)dz. (9.193)

IA

Using the Sobolev embedding ||wol|}
(9.189) - (9.193).

llwol| 2 < C'llwol|y, (9.188) follows from
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It remains to prove (9.187). Lemma 9.4.19 and w € L?(R) imply ¢ieV?+¢** ¢ L2(R).

% |det B (2)|
le1(2)] < / ldet 1(2)]
w |K|

< / |[wo (2 Ve,
|K]

67\/2%{22

It follows:

[woll 2 (r)
L2(z,00)

c? —v/248&2x

We conclude |¢;(z)| eV21€* < Ce. Analogously, note coe™ V2% ¢ L2(R) and:

T |det ®o(z)] C 212
< = 2y € —————ee V2T 9.195

It follows |co(x)| e~ V2HE* < Ce.

< — |
|K|

To prove |c3(z)|, |ea(z)] < C, fix any xg € R with |e3(z)| > 1. By (9.193):
2 02

c [ C 1

|es(z) — e3(zo)] < K|/ lwo(2)| dz < K ] L2202 wol [ < K |z — z0]2 €.
)

(9.196)

With C' > Oasin (9.196), we define § := 5=3 > 0. (9.196) implies for x € (xo—g—z, CL’0—|—§):

) +% > lesl@o)l = %'C«”’(ﬂfo)l + % (9.197)
We conclude:
les(z)] > %|03(x0)|. (0,195
By lemma 9.4.19:
Cllwllg > llesll 2 gy
> ||C3HL2(I0 82 nr82)
2 @) 11, o 01 2
> L lea(on) 2, o

Due to ||w||y < %, it follows % > les(xg)| for every zy € R. % > leq(xo)| follows

analogously.
That concludes the proof. O

214



9. Distorted Fourier Transform

Lemma 9.4.21 Let (wp)nen, (Won)nen € H, (en)neny C (0,00), € > 0, £ € N and
A =1+&2. Assume:

~

. Vn e N: (=il — Nwy, = won,

2. ¥neN:[jwn||y < L,

8. VYn e N: |lwonll g < en,

4. limy, yo0€n =0,

5. limy o0 wy(0) and limy, oo w),(0) converge.

Then, there are ke, ks € C, fulfilling for x € R:

Jim wp () = keWe(&, ) + koWo (€, ), (9.200)
i @
nan;O w,, () = k:edee(ﬁ,x) + kodeo(g,x). (9.201)

Proof. Let w, = (upn,v,). For every n € N, we find continuous coefficient functions
an:R—C,1e{1,2,3,4}, fulfilling:

4
(U, Ul U, 01 () = Z cin(z)y(z). (9.202)
=1

Analogously to (9.194) and (9.195) in the proof of lemma 9.4.20, it follows:
e ()] V2T ey ()| e VEHET < Cep,. (9.203)
Hence, for every x € R:
7113130 cin(x) = nhﬁrgo con(x) =0. (9.204)
As (up, ul,, vy, v)(0) converges against some limit for n — oo, we also find limits k. :=

limy, 00 €3,,(0) and ko, = lim,, 50 €4,5,(0).
Analogously to (9.196) in the proof of lemma 9.4.20, we conclude:

1
lean(®) — e3n(z0)l; [ean(z) — canlwo)| < C'lz — 0|2 €0 (9.205)

Hence, for every = € R:

nh—g)lo C3,n(x) - nh—>rrolo C3,n(0) = ke, (9206)
Jim can(x) = Jim can(0) = ko. (9.207)

Due t0 g5 = (Ue, UL Ve VI)(E) and s = (Up, Ul Vi VI)(E,), that concludes the
proof. O
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9.4.5. Proof of Injectivity
Proof (of lemma 9.4.1). We show the lemma indirectly.

Assume there exists 0 # wy € H with Fw; = 0.

By choosing wy € S(R)?N H, such that ||wi — ws||p is sufficiently small, it follows for
h=(f,g):=Fw, € H' x H':

11 n = F 1 + gl 7 < Hlwal [ - (9.208)

Lemma 9.2.25 implies w := wy — Gh # 0 and lemma 9.3.3 further implies Fw = 0. By
lemma 9.4.9, w € S?2NH.

Let E) be the spectral measure corresponding to the self-adjoint operator —iL : H D
dom(L) — H as given by the spectral theorem (lemma 9.4.3). By lemma 6.2.3:

0#w= Eo(—iL)w = E(—oo,—l]w + E[l,oo)w' (9.209)

Symmetry allows us to assume Ejj ooyw # 0.

Lemma 9.4.6 together with theorem 1.10.1 implies ENU{l}fw = 0. By lemma 9.4.15,
we find 1 < ag < by with by — ag < 1, [ag,bo] C (1,00)\N and Elgg by # 0. We can
assume:

HE[ao,bo]wHH =1 (9.210)
By lemma 9.4.4:
E[@Oﬁo]w = E[ao’@]w + E[aogbo’bo]w- (9.211)

Moreover, as E agtbg ) and F, ay+5o bo] 2T€ orthogonal to each other:
50 =050,

lao [

2
(9.212)

2
u HE[‘IO;bO,bo]“’

=B, = HE[1w u
2

allows us to find
H

The intermediate value theorem applied to t — HE[ao L 00tbo qv

[al,bl] C [ao,bo] with b1 — a1 = bO_TaO < % and:
2 1
HE[al’bl]wHH =3 (9.213)

By inductively repeating this argument, we find sequences (ap)nen, (bn)neny € R with
by —an, <277, [an+17 bn+1] C [an7 bn] and:

| Ban ]|, =272 (9.214)
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for every n € N. By definition, (a,), and (by,), constitute Cauchy sequences. We define:

A= lim a, = lim b, € [ag, bo] C (1,00)\N. (9.215)

n—o0

Let & > 0, such that \; = 1+ &2\ ¢ N implies & ¢ N. To improve readability, we
define wy, := Elg, p, 0.

By definition, for every k > 0:
(—iL)fw, = By, 4,1 (—iL)Fw. (9.216)
We conclude w, € C*°(R)? for every n € N. By the spectral theorem:

L= A2 wnlly < sup Ju=dal 12" wnlly < [bn = anf 28 <275 (0.21)
wE[an,bn

By lemma 9.4.20, (9.214) and (9.217), we conclude [|2"wp||y1,00r) < C' independently
of n e N.

That allows us to choose some index sequence (ng)ren C N, such that limyg_, o wy, (0)
and limy ;0 wy,, (0) exist. Lemma 9.4.21 yields ke, k, € C, fulfilling for every = € R:

klim Wn,, () = keWe(&1, ) + koWe (&1, ), (9.218)
—00

: d d
kl;n;o wy,, (z) = ke@We(fl, x) + ko%Ws(&,x). (9.219)

We estimate:
w(@)2%w,, (@)] + [ (@)2% ), (@)] < ()] + [ @) 12 w0,y ey
< C(jw(@)| + |/ (@))). (9.220)
By Lebesgue’s dominated convergence theorem and w € WH1(R):
lim (w, 2" wy, ) g = (W, keWe(&1,-) + kaWo (&1, ) H

k—o00
= \/ﬂ(l =+ f%) (k?e(Few)(fl) + ko(Fow)<§1)>
o (9.221)

(9.221) contradicts:

Vn > 0:(w,2"wn) g = (w, 2" Elg,, b, W)

= (Elap 6] W5 2" Elq,, 5] W) H

n 2
2% v,

|
=1. (9.222)

That concludes the proof. O

217
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9.5. L’-lsometry

Theorem 9.5.1 F|y : H — H' x H' and G : H' x H' — H are unitary operators
fulfilling F| ;' = G.

Proof. This is a consequence of lemma 9.2.25, lemma 9.3.3 and lemma 9.4.1. (]
Lemma 9.5.2 Let w € H. Then, the following is equivalent:
1. w € dom(L).
2. (2 +1)Fwe H' x H'.
Every w € H realizing one of the above properties fulfils:
FLw = isgn(&)(€* 4+ 1) Fuw. (9.223)
Proof. Follows from lemma 8.5.2. U

In this section we generalize lemma 9.5.2. We show that F' unitarily maps Hy (see
below) onto H* x H* for any k > 0.

Recall the orthogonality conditions (1.43), which characterise H:
0= <U, Q>L2 = <U,J)Q>L2
2
=(v,Qz)r2 = <v, (Q + :UQI)> . (9.224)
pb— 1 12

H is given by (6.3). We restate the orthogonality conditions in terms of the L? scalar
product:

0= <w7C>'H = <wvz>'H
0= (w,IL )2 = (w,[L() 2
0= (w,I{)2 = (w,I) 2. (9.225)

I denotes the matrix equivalent of the imaginary unit «:

0 —1
I= (1 0 > . (9.226)

Definition 9.5.3 Let k > 0. We define the vector space:
Hy = {w = (u,v) € H¥(R)?| (9.224), (9.225) hold}. (9.227)
For odd k =20+ 1,1 € N, we define a scalar product and norm on Hy:

<w1,w2)Hk, = <Llw1,Llw2>H, (9.228)
Iy
]l g, = HL wHH (9.229)
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We can use Hy, and H* to generalize theorem 9.5.1.

Lemma 9.5.4 Let k € 2N + 1. Then, F|y, maps Hy unitarily onto HE < H* with
inverse G| g, e = F|;Ii For every w € Hy:
Wl g, = [[Fwl] gy g - (9.230)

Proof. Let k = 20+ 1. By lemma 9.5.2, dom(L!) = Hj,. Further, w € H}, is equivalent
to (€2 4+ 1)!Fw € H' x H'. By definition, (¢2 + 1)!Fw € H' x H' is equivalent to
Fw e H* x H*. Tt follows:

_ !
ol = ||2']|,,
= ||Fzte|| .,
HlxH!
_ s 2 l
= ||Gsen(©)(€+ D) Fu|| .,
_ 2 I
= ||+ vF|,
= |[Fw|l g gn - (9.231)
That concludes the proof. O

Lemma 9.5.4 can be used to invert L.
Lemma 9.5.5 Let k € 2N+ 1 and wog € Hy. Then, there exists w € Hypyo C Hy with

Lw = wo and [[w]|g, < [wl|g,, = |lwollg, -

Proof. By lemma 9.5.4, Fuwy € H* x H*. That implies (£2 +1)"'Fwy € H*2 x H*+2.
We define w € Hy9 by:

Fwo

Fuw = - . (9.232
EEGIEESY )

By lemma 9.5.4, ||w||y, , = [lwol|y, - Lemma 9.5.2 implies wo = Lw.

Finally, |[wl[gy, = [[Fwllge.ge < [[Fwllgrsey gree = [[wllg,,, holds true for every
w e Hk-+2.

That concludes the proof. O
Lemma 9.5.6 Let k € 2N+ 1. Then, ||||g, and ||| gr gy constitute equivalent norms
on Hy.

Proof. We show the lemma inductively. The case of k =1 is covered by lemma 6.2.1.

Let k € 2N + 1. Assume:

Va € Hi: O [l ygeye < lfwllg, < C llwl e (0.233)
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To conclude the proof, we need to demonstrate:
Vo € Higo : O flwllgagye < llollg,, < Cllwllgesegey: (9.234)
By lemma 9.5.5, ||w||y, , = [[Lw]|g, . By (1.35) and (9.233):
lwll g, ., = 1Lw]l g, < ClLw]| gprgrye < O [[w]] oy - (9.235)
On the other hand, by (1.35) and (9.233):

|wll grr2my2 < NLwll grgy2 + C Wl e g2
< || Lwl| g, + C* [[wlly,
<1+ ||wllg,,, - (9.236)

That concludes the proof. [l

We use complex interpolation to expand the definition of |[-||; to include every s > 1.

Lemma 9.5.7 Let k€ 2N+1,0< 0 <1 and s = (1 — 0)k + 0(k + 2). Then:

(H57 HHH@(R)Q) - ((Hk7 HHHk(R)Q) ; (Hk+27 H.HH}C-’_Q(RP))Q . (9.237)

Proof. 1t is well-known (see, e.g. [3]) that complex interpolation between Sobolev spaces
H¥*(R) and H**2(R) yields another Sobolev space:

(H*(R), H**2(R))g = H*(R). (9.238)
That already concludes the proof. O

Lemma 9.5.8 Let k € 2N+ 1, 0 < 0 < 1 and s = (1 — 0)k + 0(k + 2). Then, there
exists a norm ||-||g, on Hs, such that:

(oo Hls,) = (Hr, Hyro)o. (9.239)
Proof. Follows from lemma 9.5.6 and lemma 9.5.7. U

Definition 9.5.9 Let s > 1 with s € 2N+ 1. Let k € 2N+ 1 and 0 < 8 < 1 be chosen,
such that s = (1 — 0)k + 0(k + 2). We define ||-||g, as the norm given by lemma 9.5.8.

Lemma 9.5.10 Let k,l e R, 0< 0 <1 and s = (1 —6)k+ 0l. Then:
(H* HYy = H*. (9.240)

Proof. The Fourier transform acts as an isometry between (H*, ||-| | i7+) and (H*(R), [[[| g ()
for every s € R. The lemma follows from:

(H*(R), H(R))g = H*(R). (9.241)

That concludes the proof. O
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Lemma 9.5.11 Lemma 9.5.4 - 9.5.6 hold true for every s > 1, i.e.:
1. F maps Hy unitarily onto H® x H® with inverse Glpsyis = F\I_{i
2. Let wo € Hs. There isw € Hyyo with Lw = wo and [|w||y, < [|w]|y, ., = [[wollg, -

3. [l p, and ||| gsmy2 constitute equivalent norms on H.
Proof. Follows by complex interpolation from lemma 9.5.4. U

By lemma 9.2.27 and definition 9.3.1, F and G can be continuously extended to
bounded operators:

F,G: L*(R)? - L*(R)?. (9.242)

To be able to extend lemma 9.5.11 to include every s > 0, we have to define a norm
I/l g7, o0 Ho.
We take inspiration from the following identity:

U2y = sap (f,9) m(w)- (9.243)

||9HH2(R):1

Definition 9.5.12 We define the norm ||-|| g, on Ho by:

lw|lfg, = sup (w,0)m,. (9.244)
@1, =1
Lemma 9.5.13 |||y, is equivalent to ||-[| 2(g)> on Hi.

Proof. Let wy € Hj be given. By lemma 9.5.11, we find ws € Hs with Lws = wi.
Lemma 9.5.11 implies:

fwillg, = sup  (Lws, W2)m,
| g7, =1

= sup (Lws, Lg)p,
[[Da]| g7, =1

= sup (w3, Ws)H,
4] 7, =1

= sup  (Fws, h) s, ps
[l ga ga=1

= [[Fwsll g2y 2
= ||wslly, - (9.245)

It follows [[w1 | p2(my2 = [[Lws|| 2y < Cllws|l gy < C? ||wsll g, = C* [Jwill g,
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On the other hand:

lwillg, = sup (w1, W2)m,
] 7, =1

S C sup <w1, UN}2>H1(]R)2
12| 72 (my2=1

=C Hw1HL2(R)2 : (9.246)
That concludes the proof. O

Corollary 9.5.14 |||, is equivalent to ||| 2(g)2 on Ho.

Proof. By definition, Hy is the topological closure of Hy with respect to |||| 2g). By
lemma 9.5.13, |||[ 2(g) and ||-||, are equivalent on Hy. That concludes the proof. [

Lemma 9.5.15 F : Hy — HO x HY constitutes a unitary operator with inverse G =
Flg .
0

Proof. 1t suffices to show ||w||z = [|[F'w|[ 0, 0 for every w € Hy. We calculate:
|lwllg, = sup (w, @),
@]l 7, =1

= sup  (Fw,h) g, m
[Pl g2 5 gr2=1

= sup  (Fw,h)go, g0
1Al go « go=1

= |[Fwll oy g0 - (9.247)

That concludes the proof. O

Lemma 9.5.16 L continuously extends to an operator L : Hy D Hy — Hy. Let further
wo € Ho. Then, there is w € Hy with Lw = wq and ||wl|g, < [|[w|[g, = [lwol|g,-

Proof. L extends to an operator L : Hy D Hy — Hj simply by the definition (1.35).

As Hy is the topological closure of Hy under ||-[|g,, it suffices to find w € H with
Lw = wq and ||wl|g, < ||wl|g, = [lwol|g, for wo € Ha.

Lemma 9.5.11 yields w € Hy with Lw = wq. It follows:

HWHHO < ||w||H2 = ||LwHH0 = ||w0||HO' (9.248)
That concludes the proof. O

Definition 9.5.17 Let s € (0,1). We define ||-||y, as the complex interpolation norm
between HHHO and HHHl

Theorem 9.5.18 Let s > 0. Then:
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1. F maps Hy unitarily onto H® x H*® with inverse Glgswpgs = F\I_{i
2. Let wo € Hy. There is w € Hyyp with Lw = wo and |[wl[ g, < [|wg, ., = [|lwol|y, -

3. |[la, and ||| gsmy2 constitute equivalent norms on H.

Proof. Follows via complex interpolation from lemma 9.5.11 and corollary 9.5.14, lemma
9.5.15, lemma 9.5.16. O

We restate lemma 9.5.2 for the extended operator L : Hy D Ho — Hj.
Theorem 9.5.19 Let w € Hy. Then, the following is equivalent:

1. w € dom(L) = Hs.

2. Fw € H? x H>.
Every w € H realizing one of the above properties fulfils:

FLw =isgn(&)(¢2 + 1) Fuw. (9.249)

Theorem 9.5.18 and 9.5.19 allow us to consider the linearised equation (1.34) entirely in
an L2-setting.

9.6. Zeros of I

We end the chapter by giving a simple lemma related to the zeros of W, and W, laid
out by lemma 8.5.4. The Fourier transform F allows no equivalent to this lemma. It
holds true due to L not allowing resonances (theorem 1.10.1).

Lemma 9.6.1 will be used to show a local smoothing estimate for 0w = —Lw. This
smoothing estimate will be stronger than the usual local smoothing estimate for the free
equation.

Lemma 9.6.1 Let w € Hy and h = Fw. If w € L'(R)?, then h(0) = (0,0). If
rw € L?(R)?, then £1h € L?(R)2.

Proof. The first claim follows from (9.96), lemma 8.5.4 and lemma 8.5.5.
To prove the second claim, recall definition 9.3.1:

Fow = zsg\/%(f) /R(Rey(f,x)ue(a:) + Rev (&, z)ve(w)) do

+ ceFue +ice sgn(§) Fue + ise sgn(&)F(sgn(-)ue) — seF(sgn(-)ve),  (9.250)
= ) [ (R (€, 2)uo(a) + Rop (€, 2)vol) d
R
o) =

V2
— coF (sgn(-)uo) — ico sgn(&)F(sgn(-)v 15058N(§) Fuo + SoFvo.  (9.251)
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Due to lemma 8.3.8, we only need to show:

= / (Rey (6, 2)ute() + Repr (€, 2)ve(x)) da € LA(R), (9.252)
R
¢t / (Rov (&, 2)uo(z) + Rorr (€, )vo(z)) dz € L*(R). (9.253)
R
Lemma 8.5.7, lemma 8.5.10 and the mean value theorem conclude the proof. O
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10. Wave Operator

10. Wave Operator

As before, given w or h, we use we, w, and he, h, to denote the even or odd functions
described in convention 9.0.1.

F N .
So far, we have defined unitary operators Hy = L?(R)? = H° x H°.
G

F and G are closely linked to the spectral measure of L. As a consequence - noted in
theorem 9.5.19 - we have FLw = isgn(€)(£2 + 1) Fw, which directly mirrors the Fourier
transform and the Laplace operator.

Recall the definition of the operator L, as given by (1.35):

u\ Av—v+Qr 1y
L (v) N (—Au +u— PQp_lu> ’ (10.1)

Definition 10.0.1 Consider the imaginary unit ¢ expressed as a matrix when identifying

C with R?:
0 -1
= (1 . ) . (10.2)

Definition 10.0.2 We define the ‘unperturbed’ operator Lo : L*(R)? D H?*(R)? —
L?(R)2:

Lo=(-A+1)I. (10.3)

Linked to Lo we define 'unperturbed’ or 'undistorted’ versions of F' and GG, which we
name G~ and G. We then define a unitary operator T'= GF.

T fulfils the commutation property T'L = LT, meaning that T is actually the wave
operator T = limy_,o, e tLoetl,
We also show that 7" and 7! are well-defined as bounded operators LY — L9 for

every 1 < q < 00, by proving C~ [[w]|, < ||Twl| 1, < C |l .

10.1. Classical Fourier Transformation

Recall definition 9.3.1. For w = (u,v) € L?(R)?:

isgn(§)
o [ (R (€ a)u(a) + Bop(€, 2)olw) de
+ ceFue + ice sgn (&) Fue + ise sgn(&)F (sgn(-)ue) — seF (sgn(-)ve), (10.4)
Fow = "B [ (o€ 0)uta) + Rop (€. 2)ola)) da
— coF(sgn(-)ue) — icosgn(&)F(sgn(-)vy) — isesgn(&)Fue + SoF V. (10.5)

Fow=

225



10. Wave Operator

Definition 10.1.1 Consider the ‘undistorted’ Fourier transforms F.,F, : L*(R)? —
L?(R):
Few := Fue + isgn(-)Fve, (10.

0.6)
Fow := —isgn(-)Fu, + Fup. (10

6
.7
(10.6) is derived from (10.4) by substituting R,y = Reyv =0, s¢ = 0 and ¢, = 1. (10.7)

is derived from (10.5) by substituting R,y = Rov = 0, s, = 1 and ¢, = 0. Those are
the limits of R, c. and s, as well as R,, ¢, and s, for || — oo.

We also define "undistorted’ Fourier transformations mirroring G, and G,. By lemma
9.2.27:

eUga )
Gef = = / < b )) F(€)de

(Cefe) i}—(se Sgn(')fe)
" (—mcesgn(-)fo)) ”gn(x)( Flsofo) ) (10.8)
_ o,U 57 )
Gog = m/( Ry (€, ))g@df
L Flas)  \_ (iFGsen()e)
gn( )<—i]:(cosgn(‘)go)> ( F(5090) ) (10.9)

We define G, f and G,g by substituting limits as well.

Definition 10.1.2 Consider the ‘undistorted’ Fourier transforms Ge,G, : LQ(R)2 —
L2(R):

— Ffe

Gef = <—z’.7-"(5gﬂ(')fo)> | 10-10)

_ _ [iF(sen(-)ge)
Gog = — < Fa, ) . (10.11)

Definition 10.1.3 We define:

G: L*(R)* — L*(R)?, (10.12)
(f,9) = Gef + Goy, (10.13)
g1 L*(R)? — L*(R)?, (10.14)
= (Few, Fow). (10.15)

The notation G~ is used to prevent conflation with the classical Fourier transformation
F and is justified due to the following lemma.

Lemma 10.1.4 G and G~ are inverses of one another. Further, G and G~ constitute
unitary operators L?(R)? — L%(R)2.
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Proof. That G and G~! are inverses of one another follows by direct computation. We
calculate for w = (u,v) € L?(R)%:
2
-1
o7,
= ||Fewl[72 + || Fowl|72

_ /R (Fue + i sgn(6) Foe) (Fup + i sgn(€)Fve)de

+ /R(—i sgn(&)Fuo + Fuo)(—isgn(§)Fue + Fup)dE

= [ ((Fue)® + Gsen€)(Fuo)de + [ (sen(6)(Fuo)® + (Fuo))ie

= || Fuell72 + [|1Fvell 72 + | Fuol |72 + || Fvoll72

= [[uel |72 + llvel |72 + 1ol (72 + [voll72

= [[ull72 + llvlI72

= |jw|[32 . (10.16)
That concludes the proof. O

Lo, G and G~ closely mirror L, G and F, as demonstrated by the following equivalent
to theorem 9.5.19.

Lemma 10.1.5 For w € L*(R)?, the following is equivalent:
1. w € dom(Lg) = H?(R)2.
2. Glwe H? x H?.
Every w € L?(R)? realizing one of the above properties fulfils:
Low = G(isgn(€)(€? +1)G 1w). (10.17)

Proof. The equivalence of the two properties follows from —AFf = F(£2f) for every
f € L*(R).
Let w = (u,v) € H?(R)?. Then:

_ o (—(=A+1)w
G~ Low =g 1((—A+1)u>

[ =F(—A+1)ve +isgn(§)F(—A + 1)u,
isgn(§)F(—A 4+ 1)v, + F(—A+ 1)u,

— (€4 1) (—.7:116 + isgn(f)]—'ue>

isgn(&)Fu, + Fue
iy 9 isgn(§)Fue + Fue
= isgn(§)(&" +1) (]:vo — isgn({)]—"uo>
= isgn(&)(&2 +1)G w. (10.18)
That concludes the proof. O
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10. Wave Operator

10.2. Definition of the Wave Operator
Definition 10.2.1 We define:

T : Hy — L*(R)?, (10.19)
w— GFw. (10.20)

By theorem 9.5.18 and lemma 10.1.4, T constitutes a unitary operator.

Convention 10.2.2 By definition 9.3.2, F and thus T = GF are well-defined on L*(R)?.
Of course, both operators are no longer unitary if we extend them to L?(R)2. Indeed, by
definition, the eigenvalues of L are all mapped onto zero:

2 20y - =
F(plQ—(;— o Q) :F(Cg) :F($(22> :F<80Q> =F(=F(= (8) (10.21)

Consequently, we also understand T = GF as an operator L*(R)? — L?(R)? by projecting
L?(R)? onto Hy via (10.21).

By T~! = GG : L?(R)2 — Hy C L?*(R)?, we always refers to the inverse of the
unitary operator T : Hy — L*(R)2.

Combining lemma 9.5.2 and lemma 10.1.5 immediately implies:
Lemma 10.2.3 For w € Hy, the following is equivalent:

1. w € dom(L) = Hs.

2. Tw € dom(Lg) = H?(R)2.
Every w € Hy realizing one of the above properties fulfils:

TLw = LoyTw. (10.22)
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11. Bounds on the Wave Operator

11. Bounds on the Wave Operator

We show that both the wave operator T : L?(R)? — L?(R)? (defined on L? by projecting
onto Hyp) and its inverse T~! : L2(R)? — Hy — L?(R)? extend to bounded operators
Li(R)%2 — LI(R)?, for every 1 < q < co. We also show a variety of other bounds that
might prove useful in proving asymptotic stability of the NLS.

As always, we assume 3 < p < 5.

Theorem 11.0.1 Let 1 < ¢ < co. Then, for w € LY(R)?> N L?(R)?2:

N Twlge < Cllwllzq (11.1)
HT‘leLq < Clw|| - (11.2)
Proof. Follows from corollary 11.4.4 and corollary 11.4.6. (]

Corollary 11.0.2 Let 1 < g<oo and k > 0. Then, for w € Wk*q(R)2:

| Twllyra < Ckllwllyyra (11.3)
77|, < Crllwllypa (11.4)
Proof. Follows from theorem 11.0.1 and lemma 10.2.3. ([

11.1. Smooth Remainder

In order to prove an L%-bound, we will decompose T and T~! based on lemma 9.2.27
and definition 9.3.1.

However, such a decomposition introduces discontinuities both in & = 0 and z = 0,
despite the fact that the integral kernels W, (&, x), W, (¢, z) of T, T—! are continuous in
& and x.

We remedy this problem by introducing continuous remainder terms, replacing R,
and R,. In analogy to definition 8.5.6:

Definition 11.1.1 Let x : R — [0, 1] be a smooth and even function, fulfilling x(x) =1
for |z| > 2 and x(x) =0 for |z| < 1.

We define the remainder terms pe = (pe,u, Pe,v) : R?2 — C? and p, = (Po,s Pov) -
R? — C? by:

pev (&) = Ue(&; ) — Xx(§)x () (ce(§) cos(§x) — sgn(€x)se(§) sin(Ex)), (11.5)
pev(§,x) = Ve(§, x) + ix(§)x(x)(sgn(§)ce(§) cos(§x) 4 sgn(x)se(£) sin(§x)),  (11.6)
Po.u (&) := Uo(§, ) + x(§)x () (sgn(x)co(§) cos(§x) 4 sgn(£)so(§) sin(éx)),  (11.7)

(&) = Vo(&, ) — ix(§)x(x) (sgn(€x)co() cos(§x) 4 50(8) sin(€x)). (11.8)

Lemma 11.1.2 Let x € R. Then, p.(0,z) = po(0,z) = (0,0).
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11. Bounds on the Wave Operator

Proof. Follows from lemma 8.5.7.

O

Lemma 11.1.3 Let £ € R. Then, x — pe(&§,x) and x — po(&, ) are smooth on R.
€ pe(&x) and & — po(&, ) are continuous on R and smooth on R\{0} for every

z eR.
Proof. Follows from lemma 8.5.4 and lemma 8.5.8.

Lemma 11.1.4 For (¢,z) € R?:

1pe(&,2)], 1pol&, )] < f‘ g,e—%

-1
105pe(&, )], |02po(€, )] < Ce 217,

|z
;

Proof. Follows from lemma 8.5.4 and lemma 8.5.9.

Lemma 11.1.5 For (£,z2) € R? and k > 0:

Okpo(6,2)| < —k el

’agpe(é.ax) = 1+’£‘

i

For £ =0, the derivatives are to be understood as one-sided.
Proof. Follows from lemma 8.5.4 and lemma 8.5.10.

We also define analogues to definition 8.5.12.

Definition 11.1.6 Consider the function:

) ~lal
Q(z) = pzl/_ QP dy.

O

(11.9)

(11.10)

(11.11)

(11.12)

Let x : R — [0, 1] be as in definition 11.1.1. We define the second order remainder terms

Pe 1= (ﬁe,Ua ﬁe,V) and po = (ﬁO,Ua ﬁO,V) by

pev = pev + x(€)x(2)Q(x) (161(% sgn({x) sin(éx) — lsi(%
e,V 1= Pe,v

~ xX(©x(@)Q) (H(% sgn(e) sin(&e) — 181(%
PoU i= Po,U

(O (g mlersnten) - 5
oy = pov +ix(€)x(2)Q(z) (fﬁé sin({x) — 181(%
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sgn(§) cos({x)) , (11.14)

sgn(z) Cos(§$)> . (11.15)

sgn(éx) cos(fx)) . (11.16)



11. Bounds on the Wave Operator

In contrast to the remainder terms given by definition 8.5.12, g. and g, do not exhibit

discontinuity in x = 0 or £ = 0.
Lemma 11.1.7 Let x € R. Then, p.(0,x) = po(0,x) = (0,0).

Proof. Follows from lemma 8.5.4.

O

Lemma 11.1.8 Let £ € R. Then, x — pc(&§,x) and x — po(&,z) are smooth on R.
€ pe(&,x) and & — po(&, ) are continuous on R and smooth on R\{0} for every

z € R.
Proof. Follows from lemma 8.5.4.

Lemma 11.1.9 For &,z € R and k > 0:

3]

o6e(c.)| okaote =) < i

e 3 ezl
0£0ue(¢,)| |0k0po(6, )| < Cugper

For £ =0, the derivatives are to be understood as one-sided.
Proof. Follows from lemma 8.5.4 and lemma 8.5.13.
Corollary 11.1.10 For &,z € R and k > 0:

’85 zPe 57 57 )’ < Ckeié‘xl

For £ =0, the derivatives are to be understood as one-sided.
Proof. Follows from lemma 8.5.4 and lemma 8.5.14.

Using these new remainder terms, we can restate ' and G.

Lemma 11.1.11 Let f,g € S(R). Then, for z € R:

Pe,U\S>
(Gef)(x) = wm/<%v )>ﬂ®%

O

(11.17)

(11.18)

(11.19)

+ x(2) ( i (Xcefe)) )> + x(x) sgn(x) (lf(ié?e}ii?ﬂi))fs)) . (11.20)

XCesgn(:) f

(Gog)la) = %h/(;’g;)<ag

F(XCobe vz iF(XS05gn(")ge)
x)sgn(z ( )90)) X( )< > (11.21)

iF (xcosgn(
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11. Bounds on the Wave Operator

Proof. Follows from lemma 9.2.27. (]
Lemma 11.1.12 F,, F, : L?*(R)?> — L?(R) are given by:

Fow= isgn(¢) /R (pe,v (& x)ue(z) + pev(§, x)ve(x)) da + xceF (XUe)

V2
+ ixce sgn(§) F (xve) + ixse sgn(§) F (xsgn(-)ue) — xseF (xsgn(-)ve), (11.22)
F(xsgn(-)uo)

zs;g/Ig) /R (Po,V(f, x)uo(:p) + po,U(g, l’)UO(.T)) dx — XCo

—iXCosgn (&) F (xsgn(-)ve) — ixse sgn(&)F (Xuo) + XSoF (XVo)- (11.23)

F,w=

Proof. Follows from definition 9.3.1. O

11.2. Fourier Multiplier

We give some basic facts about Fourier multipliers. For more information on the topic
see, e.g. [12].

Definition 11.2.1 Given a sufficiently regular function m : R — C, the associated
multiplier operator B, is given by:

B f == F Y(mFf). (11.24)
m is called a multiplier or a symbol.

Lemma 11.2.2 Let H : L?*(R) — L%*(R) be the Hilbert transform. Then, for every
f e L3R):

2miH f = F*(sgu(-)Ff). (11.25)
Proof. See [12, chapter 3. O

Corollary 11.2.3 Let f € L2 (R)N L4(R), 1 < g < co. Then:
|7 sen(FA] < Collfla- (11.26)

Proof. The Hilbert transform is a well known bounded operator L9(R) — L4(R) for
every 1 < ¢ < oo. The bound was originally shown by Marcel Riesz in 1928, see [28]. O

Lemma 11.2.4 Consider mg € C and m € WH(R) fulfilling:

C
1+ ¢

3C > 0VE e R: |m(§) — mol,|m/(&)] < (11.27)

Then, for every 1 < q < oo, the multiplier operator By, is bounded L4(R) — L4(R).
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Proof. For f € LY(R):
B = By—my +moId. (11.28)

Hence, we can assume mg = 0. By definition:

1

Bnf=F YmFf) = Fim) « f. 11.29
f=FmFf) = = (F )« (11.29)
By (11.27):
1
< 1
1l < ||| 10 ) Fml

< 2||Fmllgz + 2|z Fml|

= 2|Imll > +2[|m/|[ 2

<C. (11.30)
Young’s convolution inequality concludes the proof. O

Lemma 11.2.5 Consider mg € C and m € WH(R) fulfilling:

C
1+ ¢

Then, for every 1 < q < oo, the multiplier operators By, and Bggy,(.y,, are bounded
LY(R) — LY(R).

3C >0 VE e R: |m(§) — mol,|m/(&)] < (11.31)

Proof. Follows from corollary 11.2.3 and lemma 11.2.4. U

Corollary 11.2.6 Consider m € W1°(R) fulfilling:

C
1+ [¢)

Then, for every 1 < q < 2, the multiplier operator B, is bounded LI(R) — L?(R).

3C >0VEeR: m(9)],|m/ (&) < (11.32)

Proof. Recall the proof of lemma 11.2.4. By the Plancherel theorem:
|Fml[p2 = [Iml|. < C. (11.33)

Together with (11.29), (11.30) and Young’s convolution inequality the claim follows. [J

11.3. Decomposition of the Wave Operator

Note the basic identities:

T = G.F. + G,F,, (11.34)
T = G.F. + G, F,. (11.35)

We further decompose G.F, and G, F,, as well as G.F. and G,F, into a variety of
operators.
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11. Bounds on the Wave Operator
Definition 11.3.1 For w = (u,v) € L*(R)?, we define:

[ F M (xee — 1) F(xu))
A qw = <f1((xce B 1)f(xv))> . (11.36)

To improve readability, we introduce the shorthand notation:

Acqw = F 1 ((xce — 1) F(xw)). (11.37)
We further define:
Aepw := iF " (x sgn(§)seF (x sgn(y)w)), (11.38)
Apqw i= F 1 ((xso — 1)F(xw)), (11.39)
Agpw = iF (xsgn(€)eoF (x sen(y)w)), (11.40)
Beaw := xF H(xce — 1)Fw), (11.41)
Beow := —ixsgn(z)F (xsgn(€)s.Fw), (11.42)
Boaw := xF (xso — 1) Fuw), (11.43)
By ow = iy sgn(x)F(xsgn()coFw). (11.44)
Also consider:
1 iF (sgn(&)pe,v (& y))u(y)
A, — / VS dy, 11.45
= o ( Floew&yly) )™ (11.45)
1 F(pov (&, y))uly)
Aps = —— / _ ! dy, 11.46
s 2 Jr ( iF (sen(€)pou (& m)v(y) ) Y (11:46)
1 Pe, U(§7 )]:’LL
Besw i= —— / de, 11.47
W= (ZPeV(E, z) sen(§)Fv ) © (47
L[ (—ipou(€, 2) sgn(©) Fu
B, = 7/ ’ dg. 11.48
S Vor Jr ( pov (& x)Fv ¢ (s
Lemma 11.3.2 Let w = (u,v) € L?(R)2. Then:
GeFow = XWe + Ac1We + Ac pWe + Ae 3We, (11.49)
GoFow = xw, + Ao,lwo + Ao,2wo + Ao,3w07 (1150)
GeFew = XWe + Be1we + Be gwe + Be 3w, (11.51)
GoFow = XWo + By 1w, + By 2w, + By 3w,. (11.52)

Proof. Direct computation using lemma 11.1.11, lemma 11.1.12, definition 10.1.1 and
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11. Bounds on the Wave Operator

definition 10.1.2 gives:
GeFew = F(xceF (xwe)) +iF (x sgn(§)seF (x sgn(y)we))

Zf Sgn )pe V(é~ y))ue(y)
+ 75 e ( Flpew (€ )vely) )dy’ (1.5
GoFow = _]:(XSOF(XU)O)) - lf(XSgn(g) O‘F(X Sgn(y)wo))
(Po,v (&, 4))uo(y)
+ 7 (—zf (sg0(&)p0r(€,)) o<y>> . (1159
(€

G Few = f(xce]:(xwe)) + isgn(z) F(x sgn(&)seF (xwe))
Pe,U fa -/rue

de, 11.55
\/ 2T x/R (’LPeV §7 Sgn FUe) ¢ ( )

GoFow = — F(xSoF (xws)) + isgn(x)F(xsgn(&)coF (xw,))

ipo,u (& ) sgn(§) Fuo

d§. 11.56
\/27['/ ( poV(éa )]:Uo 5 ( )
We now use the fact that even functions fulfil Ff, = F~'f., while odd functions fulfil
]:fo = _-Filfw 0

Definition 11.3.3 Consider Q : R — R as given by definition 11.1.6:
- 1 Izl
Oz) = %/ QP Ldy. (11.57)

For w = (u,v) € L*(R)?, we define:

— 1 Se A
Acqw == F <x1 n |f‘]:(XQw)> , (11.58)
Augwi= — i x sen(€) 7 Fx sen(y)Qu)). (11.59)
— _ 1 Co A
Apqw = —F (X1 n mﬂx@w)) ; (11.60)
Ao = —iF ! (xsen(©) 27 Flxseny)Qu) ) (11.61)
B qw = XQF ! (Xl j_em]:w> ) (11.62)
B sw = ixsgn(z)QF~ <ngn(§) 1 _ﬁﬂ]—'w) ) (11.63)
Boyw:= —xQF ! < T |£| ) (11.64)
B, sw = ixsgn(z)QF (ngn(g)lj_m}"w> . (11.65)
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11. Bounds on the Wave Operator

Further, using the remainder terms given by definition 11.1.6:

Ae w = / Sgl’l &)ﬁe V(§ y)) (y) d , 11.66
" (FeEe ) o)
Apgw = / (Po,v (&, 1))uly) dy, 11.67
o \/27r (—zf (sen(&)pou (& v)v(y) ) Y (.67
B gw := / peu (&, 7)Fu de, 11.68
o \/27r (z,oe v(.2) sen(e)Fv ) © (11:65)
— Fu

B, gw := / /LPOU ga )sgn(f) de. 11.69
0 V2T ( po,v (&, ) Fv ¢ ( )

Lemma 11.3.4 Let w = (u,v) € L?(R)2. Then:
Ae,g’we = Ae’4we + Ae’5we + Ae,6we, (1170)
Ao,3we = Ao,4wo + Ao,5wo + Ao,6w0a (1171)
Be swe = Begwe + Be swe + Be 6We, (11.72)
By 3we = By 4w, + Bo 5w, + By gWo. (11.73)
Proof. Follows by direct computation and lemma 9.2.26. O

11.4. [?-Boundedness

Lemma 11.4.1 Let 1 < g < o0 and p = sgn(§)pev, p = peys P = Pov O p =
sgn(&)pe,u. Then, for everyy € R:

_1
1(Fp) (@, )l e < Coe 2. (11.74)
If 2 < q < o0, then:
_1
|2(Fp)(x,y)l| g < Cye 2, (11.75)
Proof. For every r > 2 and k € {0,1}, by lemma 11.1.5:

H:rk(}"p)(:r,y)H < cHagpg y)H < Chezl, (11.76)

(Weak) differentiability in 0 is ensured by lemma 11.1.2 and lemma 11.1.3.
We choose 7 > 2 with r > ¢. It follows:

1Fp) @, 9)llzs < CINFD @yl +C lle(Fo) @)l < Coe2W. (11.77)

That concludes the proof. O
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Lemma 11.4.2 Let p = sgn(&)pev, p = pevs P = Pov or p = sgn(&)pev. Then, for
everyy € R and 1 < ¢ < oo:

1(Fp) (@)l g < Cezl. (11.78)
If1 < g < o0, then:
10:(Fp) (,9)ll g < Cem2M. (11.79)
If 2 < q < o0, then:
12(Fp) (. 9)l 3 11202 (Fp) (x, )l 13 110y (Fp) (0, )| 1o < Cqe 21, (11.80)
Proof. 1t suffices to show for every 1 <r < 2:
[1p(& W)l - 19ep(& )l < Ce 31l (11.81)
as well as for 1 < r < 2:
1€0(&, )11 - 10 (€&, )l 1y 10y (E Il < Cre™ 2, (11.82)

Lemma 11.1.9 shows just that. Lemma 11.1.7 and lemma 11.1.8 ensure differentiability
in £ = 0. That concludes the proof. ([

Lemma 11.4.3 Let 1 < ¢ < oo and w = (u,v) € LI(R)2. Then, for every 1 < k < 6:
1 Ae ko [[Aogwl] g < Cllwll - (11.83)

Proof. The claim follows, for £k = 1,2,4,5, from lemma 11.2.4 and theorem 8.3.5, specif-
ically (8.90) - (8.93). For k = 6, lemma 11.4.2 yields the claim. Lemma 11.3.4 concludes
the proof. O

Corollary 11.4.4 Let 1 < ¢ < o0 and w = (u,v) € LY(R)%. Then:
[ Twl|e < CllwllLq- (11.84)
Proof. Follows from lemma 11.4.3. U
Lemma 11.4.5 Let 1 < q¢ < 0o and w = (u,v) € LYR)?. Then, for every 1 < k < 6:
1Begwll o, [ Bogwll e < Cllwllpq - (11.85)

Proof. The claim follows, for £k =1,2,4,5, from lemma 11.2.4 and theorem 8.3.5, specif-
ically (8.90) - (8.93). For k = 6, lemma 11.4.2 yields the claim. Lemma 11.3.4 concludes
the proof. O

Corollary 11.4.6 Let 1 < ¢ < oo and w = (u,v) € LY(R)%. Then:

HT‘leLq < Cllw|l - (11.86)
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Proof. Follows from lemma 11.4.5. ([
Lemma 11.4.7 Let w = (u,v) € L?(R)2. Then:
[|(20, T — Tx0y)wl|| ;2 < Cl|lw||;2 - (11.87)

PT'OOf. Let A = A671 or A&Q, Ae’4, Ae?5.

20, A — Axz0, cancels largely out. The remainder can be bounded using lemma 11.2.5.
For A = A.¢ the bound follows from lemma 11.4.2.

Ao, Aoz, Aoa, Aos and A, g are bounded analogously. O

Lemma 11.4.8 Let w = (u,v) € L*(R)? and 1 < ¢ < co. Then:

|lzTw||pe < Collfwllpe + lzwl[Lq)- (11.88)

Proof. By definition:

TAcw = i}'_lﬁg((xce — 1) F(xw))
= iF (e (xee) F(xw)) + FH((xee = D) F (xyw)). (11.89)

Lemma 11.2.5 yields the desired estimate for A.;. Ac2, Ao1 and A, are bounded
analogously. The bound for A3 and A, 3 follows from lemma 11.4.1.

That concludes the proof. O
11.5. Galilean Operator

Consider the self-adjoint operator J; = 5 + Itd,. Through the following identity, .J; is
strongly connected to the Galilean invariance of the free Schrédinger equation:

JieltAyy = eltA (;wo) : (11.90)

For that reason we refer to J; as the Galilean operator.

It seems likely that J; will play a major role in any proof of asymptotic stability of the
NLS. For that reason, we establish a variety of bounds involving J; and T, that might
prove useful. In particular, we estimate ||J;Thl|;> and ||J;T'hl|, ..

We also show bounds involving the commutators 77 = IT—T1 and Ty = x0,T —Tx0,.
11.5.1. Bounds on T

Lemma 11.5.1 Let 2 < g < oo, k € {1,2,4,5} and w € L4(R)2. Then:
lzAepw — Ae(zw)|| 0 , [l Aopw — Ao (zw)]| o < Cllw]|Lq - (11.91)

Proof. Follows by direct computation from theorem 8.3.5, specifically (8.90) - (8.93),
and lemma 11.2.4. O
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Lemma 11.5.2 Let 2 < g < oo and w € LY(R)2. Then:
lzAeswllpq s [|zAoswl e < Cqllwllg, - (11.92)
Proof. Follows from lemma 11.4.2. O
Lemma 11.5.3 Let 2 < g < oo, k € {1,2,4,5} and w € L4(R)2. Then:
100 Ac g = Ac Dl 0 105 Ao o = Ao ol 1y < Cle2 | o (11.93)
Proof. By direct computation
OpAeqw — Ae10,w = F 1 ((xce — 1) F(Oyxw)). (11.94)
Lemma 11.2.4 shows the claim. The other bounds follow completely analogously. (]
Lemma 11.5.4 Let 2 < ¢ < oo and w € LY(R)?. Then:

_1
”axA@,GwHLq ) Haon,GwHLq < Cq He 3|m|w‘

. (11.95)

Proof. Follows from lemma 11.4.2. O

Lemma 11.5.5 Let 2 < ¢ < oo, t >0 and w € LI(R)%. Let J, = § + 1t0,. Consider
the operator:

5 5
Tw := Z Ae pwo + Z Ap pWe. (11.96)
k=1 k=1
Then:
HTwHLq < CljwllLq - (11.97)

Further, for 2 < q < oo:

HJtTU) - TthHLq < Cyllwl||q + Cqt Heiémw‘

" (11.98)

Proof. Follows from lemma 11.5.1 - lemma 11.5.4 and lemma 11.3.2, lemma 11.3.4. O

Corollary 11.5.6 Let2 < g <o0,t >0 and w € LI(R)?. Let J; = 5 +1t0;. Then, for
2 <g<oo:

1
Il 0 < Cyllwl| o + C | Juwl| o + Cat ||e 37w

. (11.99)

Using ¢ Hefémw‘ ‘Lq as an upper bound is totally fine. By the smoothing theorem at

the end of chapter 12 (theorem 12.1.9), ¢ HefémeLq behaves similarly to ||Jw]||; 4.
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11.5.2. Bounds on 7!
Lemma 11.5.7 Let 2 < q < oo, k € {1,2,4,5} and w € LY(R)?. Then:
||zBo gw — By i (zw)|] ;4 < Cllw||fq - (11.100)

||z Be yw — Be i(zw)

llLa s e

Proof. Follows by direct computation from theorem 8.3.5, specifically (8.90) - (8.93),
and lemma 11.2.4. O

Lemma 11.5.8 Let 2 < g < oo and w € LY(R)%. Then:
leBegoll s leBogwll 0 < Cllwly (11.101)
Proof. Follows from lemma 11.4.2. O

Lemma 11.5.9 Let2<qg<oo,t>0 andw € LI(R)?. Let J; = 5 + I1td, and assume
Jyw € L2(R)?2, as well as (Fw)(0) = (0,0). Then:
|0z Begwl| 4, L0 Boswl| g < CllJiwl|pe + Cl|wl]|Lq - (11.102)

Proof. By lemma 11.1.2, lemma 11.1.3 and lemma 11.1.5:
/ azpe,U(gaSU)‘Fu d¢
R \10zpe,v (&, ) sgn(§) Fu
/ awpe,U(é'v LL‘)./—"’LL d§
o \i0pey (€ 2) sgn(§)Fo ) ||

/ filarpe,U(fax)]:(tayu) df
i i€ 10 pe (€ 2) sen(€) Fleoyo) | @

/ g_lax/oe,U(éa Z)J:(y’l)) Cl§
R Zf—laxpe,\/(gvm) Sgn(&)}—(yu)

t]10:Begwl| g <

La

<

SRS RS
3 3 3

< || Jwl| . + (11.103)

La

We make use of (Fu)(0

mean value theorem:

~—

= (Fv)(0) = 0. By lemma 11.1.2, corollary 11.1.10 and the

/ gilazpe,U(& x)F(yU) df
1 Oupev (€, 7) sgn(§)F (yu)

La

< / aﬁ (g_lawpe,U(& l’)) Fv df

B R 2'85 (6_181/)6,V(€7$)) Sgn(&)]:u Ia

< Cllw||q - (11.104)
t||0xBozw||;, is bounded completely analogously. That concludes the proof. O
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11. Bounds on the Wave Operator

Lemma 11.5.10 Let2 < g <o0,t >0 and w € LY(R)2. Let J; = 5 +1t0, and assume
Jyw € L2(R)?2, as well as (Fw)(0) = (0,0). Then:

|71 < CllTwll L+ Clholl o + Ct [ Buwll (11.105)
Hereby:

Bw = 0y xwe + 8mBe,lwe - Be,laacwe + arBe,Zwe - Be,anwe
+ Oy XWo + 02 By 1wo — By 103w, 4 03 By 2wo — By 20, W, (11.106)

Proof. Follows from lemma 11.5.7 - lemma 11.5.9. (]

In order to control |[tBw||;,, we use the following local smoothing estimate. More
generalised local smoothing estimates will be proven later in the form of lemma 12.1.8,
theorem 12.1.9 and theorem 12.1.10.

Lemma 11.5.11 Let2 < g<o00,t>0 and wy € LZ(R)Q. Consider w = e'*®wy and

Bw = 8wae + 8mBe,1we - Be,laacwe + 8xBe,2we - Be,anwe
+ Oy XWo + 02 Bo 1wo — By 103w, + 03 Bo 2wo — B 20, W, (11.107)

Then:

t||Bwl| s < C He”AwOHLq +C Helm(m‘wo)HLq . (11.108)

Proof. By direct computation and lemma 12.1.2:

OpXWe + Op Be 1w — Be 10, w = amx]:_l(xce]:w)
= 0pXF L (xceFw). (11.109)

By definition, 0yx is a smooth function with d;x(x) = 0 for |z| > 2 and |z| < 1. It
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11. Bounds on the Wave Operator

follows:

3 ||azxwe + azBe,lw - Be,lameLq
= sup t<8xx.73_1(xcefw), h) 12

1Bl], =
= sup e Fug, xeeF (uxh) 2
1Bl], =
= sup /(—2It£)e_lt52fwo 1@ce[}"(ﬁmxh)df
Al =1 /R 2 ¢
= sup /e*”g]:"wo-ag (1X(§)cel}"( xxh)) dg
IRl =1 /R 2 ¢
+ sup /6_1t52f(mw0)~lmcel]:"(&txh)df
[1B]] g =1 /R 2 ¢
= sup /elmwo-f_lag (1X(€) JF( wxh)) d¢
1] =1 /R 2 ¢
+  sup /e”A(xwo)-f (1’((5) JF( xXh)) de.
[1h]] =1 /R 2 ¢

By lemma 11.2.4:
t Haazxwe + 8acBe,lw - Be,laIwHLq

< C ||| e (1exhllye + lladexhll)
Ld =

+ C’Helm(xwo)‘

zm ITup HaxthLq’

< o2 HeltAwOH + 2 HeItA wa)H

La La’

Completely analogously:

HaszeQwe - Be,QBzwe| ’Lq + Hamxwo + 6;E-Bo,lwo - Bo,laacwo‘ ’Lq

+ Haa:Bo,Zwo - BO,Qal‘wOHLq

< O], +CJer S @uo],.

That concludes the proof.

(11.110)

(11.111)

(11.112)

O

Corollary 11.5.12 Let 2 < g < oo, t > 0 and w € LI(R)2. Let J; = 5 + 1td, and

assume (Fw)(0) = (0,0). Then:
|7 || < Cllgnell+ Cllwll -

Proof. Consider wy = e *®w. Using the identity, J;e

follows from lemma 11.5.10 and lemma 11.5.11.
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11. Bounds on the Wave Operator

11.6. Commutators

When trying to show asymptotic stability of the NLS the commutators 17 = IT — T1
and Ty = 20, T — Tx0, are very natural quantities arising from the phase and scaling
invariance of the NLS.

Similarly, the translation and Galilean invariance give rise to 173 = 0,7 — T0, and
T, =T —Tuz.

There are two reasons, we only consider 77 and T5. Firstly, by restricting ourself
to radially symmetric solutions, the question of asymptotic stability can be examined
without considering T3 and Ty. Secondly, Ty admits significantly weaker bounds. Even
without involving J;, the strongest Li-bound on T} is given by

Tawll e < C lhull o + C o]l (11.114)

For that reason alone, examining asymptotic stability without restricting oneself to ra-
dially symmetric solutions, makes any proof significantly more technically challenging.
T3 on the other hand can be bounded in much the same way as T>. We will still ignore
T3 in this chapter.

11.6.1. Bounds on T}
Lemma 11.6.1 Let 1 < q < oo and w = (u,v) € LY(R)2. Then:

(T + ITT)wl|, < C|e721 | - (11.115)

If1 < g < o0, then:
1102(T + ITwl| 4 < cHe—%lwlw( - (11.116)

If 2 < q < 0, then:
[T + IT || 4 < C|[e 2 - (11.117)

Proof. I commutes with A, and A, for k € {1,2,4,5}. Hence:

T+ ITI = A+ TAegI + Agg + TAggl. (11.118)
Lemma 11.4.2 concludes the proof. O

Corollary 11.6.2 Let t > 0 and w € L*(R)%. Let J; = 5 + It0, and assume Jyw €
L?*(R)%. Then:

_1
(T + ITT)wl| 2 < CQ+1) ||e3 || . (11.119)
11.6.2. Bounds on 75
Lemma 11.6.3 Let t >0, w € L*(R)? and J; = % + It0,. Then:
1
17:(20; T = Tady)wll 2 < Clfwll 2 + Ct|[e™21hw|| |+ CllJwll 2. (11.120)
Proof. Follows analogously to lemma 11.4.7 and lemma 11.5.5. O
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11. Bounds on the Wave Operator

11.7. H'-Boundedness

As a consequence of lemma 10.2.3, whatever L? — L? estimates we showed for 7', T~}
and T}, also hold H! — H!.

Lemma 11.7.1 Let 1 < g < co. Then, for every w € WH4(R)?%:

|1 Tw||yra < Cllwllypra (11.121)
HT—%UHWM < Cwllype (11.122)
(T + ITT)wllyra < C ||e 2 \leq. (11.123)
Further, for w € H'(R)?2:
[|(x0,T — Tx0y)w||gn < Cl|w|| g - (11.124)
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12. Dispersive Estimates

12. Dispersive Estimates

The wave operator being bounded LY — L4 by theorem 11.0.1 ensures that the linearised
equation dyw = —Lw fulfils the same dispersive estimates as the free Schrédinger equa-
tion. As always, we assume 3 < p < 5.

Theorem 12.0.1 Let 3 < p < 5. Consider the linearised Schrodinger equation
onw(t,r) = —Lw(t,z), w:R xR —R? (12.1)

Let the solution for initial data w(0,-) = wg € Hy be given by e wy. Let further

q € [2,00] with dual exponent ¢’ € [1,2]. Then, for everyt > 0:
_1.1
llw(t, e < Ct 27 |fwo| Lo - (12.2)
Proof. Follows from lemma 1.6.1, lemma 10.2.3 and theorem 11.0.1. U

Theorem 12.0.2 (Strichartz estimate) Let 3 < p < 5. Consider the linearised

Schréodinger equation (12.1). Let the solution for initial data w(0,-) = wy € Hy be
given by w = e wy. Assume q € [4,00] and v € [2,00] satisfy % +1 = 1. Further

assume ¢ € [1, %] and 7 € [1,2] satisfy % + 4 = 3. Then, the following holds true:

T2
1. The homogeneous Strichartz estimates:

—tL
oz, < Clluolls. (123)

[

2. The dual homogeneous Strichartz estimates:

|[etns.as|| < Cliblg,,. (12.4)
R L2 t Hx
3. The inhomogeneous Strichartz estimates:
t
‘ / e n(s, ds < CIhll, g0 (12.5)
0 LlLy t
Proof. Follows from lemma 1.6.2, lemma 10.2.3 and theorem 11.0.1. U
12.1. Local Smoothing Estimate
The linearised equation J;w = —Lw admits a strong local smoothing estimate. We

make use of the fact that the absence of resonances (theorem 1.10.1) introduces a zero
We(0,2) = W,(0,z) = (0,0) in the Jost functions We, W, used to define F' and G.

For the free Schrodinger equation (i0; + A)w = 0, a local smoothing estimate denotes
something of the form

[+ 1) 72 9]

sogs < Cllunlle. (12.6)

The zero introduced by W,, W, means that we do not need to consider a derivative. We
instead establish a bound on ||t(1 + |z|) " w|| ;42
t - x
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12. Dispersive Estimates

Definition 12.1.1 Let I be given by definition 10.0.1. We define the matriz equivalent
of the Fourier transform for Schwartz functions h: R — C? by:

N 1 e
(FQ) = = /R 16 b () du. (12.7)

F naturally extends to a unitary operator L*(R)? — L2(R)2.
Lemma 12.1.2 Let he, h, € L?(R)? be even and odd functions respectively. Then:

Fhe = Fhe, (12.8)
Fho = —ilFh,. (12.9)

The Fourier transform F is to be understood as component-wise, F(f,qg) = (Ff,Fg).
Proof. Follows from lemma 9.2.26. [l

Lemma 12.1.3 Consider F as given by definition 12.1.1 and G as given by definition
10.1.3. Then, for every h = (f,g) € L*(R)?:

A = fe+igo
Ton= <_i sen(:) fo + Sgn(-)ge> : (12.10)

Proof. By definition:

_ ]:fe _ i]:(sgn(-)ge)
gh‘(—if(sgn(-)fo>> ( Fao ) (12.11)

Lemma 12.1.2 concludes the proof. U
Lemma 12.1.4 Let G* denote the L*-adjoint of G. Then, for w = (u,v) € L?(R)?:
CFuw — / peu (& ue( ) = pev(§,x)ve(e) ) o
V2T (po U 57 ( ) - Po,V(§7 iL‘)’UO(.le)

Xce]:(Xue) +ixCe Sgn(g)]:(xve)
—XCoF (X 8gn(-) o) — ixCosgn(&)F (X sgn(-)vo)

ixse sgn(§)F (xsgn(-)ue) — xseF (X sgn(-)ve)
" ( —iXS05gn(§)F (XUo) + XSoF (XVo) ) ) (12.12)

Pe, Po and x are given by definition 11.1.1.
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12. Dispersive Estimates

Proof. By lemma 11.1.11:

(Gef)le) = = —/ (ﬁ:g ¢ )> £(6)de

(Xcefe) if(xse Sgn(')fe)
+ x(z) <—i}“(Xce sgn(-)fo)> + x(z) sgn(z) ( Flxs.t,) ) , (12.13)

(Goa)) = —= [ (ngi )> 9(e)d

et i) ~ X0 (T ) a0

Let any h = (f,g) € L?>(R)? be given. By definition, G.f is an even function, while G,g
is odd. Therefore:

(Gh,w)r2 = (Gef,we) 12 + (Gog, wo) 12 (12.15)

The lemma follows from (12.13) and (12.14). Note that lemma 8.5.3 and definition 11.1.1
imply pe.v = pe,v and pou = po,u, as well as peyv = —pe,v and po v = —po,v- 0

Corollary 12.1.5 Let G* denote the L?-adjoint of G. Then, for w = (u,v) € L*(R)?:

/ peU(& ) ()_ipmV(fvx)UO(x) dr
V2r Jr \i5g0(8)pe,v (€, )ve(w) + sgn(€)po,u (€ x)uo(x)

+ xceF (xwe) — Ixcosgn(§)F (x sgn(-)w,)
+ ixSesgn(§)F (x sgn(-)we) — il xsoF (XWo)- (12.16)

FGG*w =

Proof. By lemma 12.1.3 and lemma 12.1.4:
- O PeU(é, ) ( )*'L’po,V(&x)vo(x)
Fo6t= |, <zsgn< Oper (& Duele >+sgn<s>po,a<s,x>uo<x>> o

(Xce ( Ue +XCoSgn(£)~F(XSgn(')UO)>
XCeF (XVe) — XCosgn(§)F (x sgn(-)u,)

)
) (€
ixSesgn(§)F (xsgn(-)ue) + ixsoF (XVo)
" (iXSe sgn(§)F (x sgn(-)ve) — ZXSOF(XUO)> ' (12.17)

That concludes the proof. O

Lemma 12.1.6 (Local Smoothing in L?) Let wy € L*(R)? and assume (Fwg)(0) =
(0,0). Let further 2 < g < oo and 1 < ¢ <2 with % + % = 1. Then, for every t > 0:

’ ’ oIt wo '
Ld L Ll

(12.18)

T

tH(1+ |x\)*1T*161tAwo‘ L < CHlerz

+ Helm(:pwo)‘
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12. Dispersive Estimates

Proof. Recall T~! = GG~!. Let G* denote the L?-adjoint of G. It follows, for t > 0:

t H(1 + |x\)_1T_16“Awo‘

, =t sup (e Fug, FGGH(1+ [2])'h)) . (12.19)
La il =1 L

Let any h € L?(R)? with ||h||,;2> = 1 be given. For simplicity, let & = (14 |x|)~'h. Then:

. FGG*h

t<e_1t52fwo,ﬁgG*ﬁ>L2 <C |/R(—It§)e_“£2]}wo dg‘ . (12.20)

Note that £ FGG*h is bounded by corollary 12.1.5, as well as lemma 11.1.2, lemma
11.1.3, lemma 11.1.5 and the mean value theorem. However, despite being smooth for
& # 0, it is not necessarily continuous in & = 0.

We use partial integration in order to bound (12.20):

t<e*“52.7:"w0,]:“QG*f~z>L2
/e—ft€2f(xw0) : fggG hdg‘ +c|/ e Fuyg - O (fgf h) de
R R

/elm(l‘wo)‘]}_l l}'QG*h] dz| + /elmw()'f_l [85 (J:QG*h>] dz| .
R R §

§
(12.21)

<C

<C C

(Fuwo)(0) = (0,0) < (Fwo)(0) = (0,0) allows us to consider d¢ (£~ FGG*h) as a point-
wise derivative, instead of the distributional derivative that arises from the discontinuity
of &1FGG*h in € = 0.

Both integrals in (12.21) are bounded completely analogously. We show the bound
for the second integral.

Let (f,§) = h denote the components of h. By corollary 12.1.5:

h *7 T Pe, U(§7 )fe(y) _ipO,V(g ) ( )
Foeh = wm/Q%an@wmw+w&><fnxJ@
+ Xcef(Xhe) — Ixco Sgn(f)f(x Sgn(')ho)
+ X Se Sgn(f)]:(x Sgn(')ile) - iIXSOF(XiLo)' (12'22)
We define:

. peU( )fe( ) ipo,V(£7 )~ ( )
%(‘Vw/@@;wmm<wwmmmmmmw% 12.23
¥a(€) := X[ceF (xhe) — Icosgn(€)F(xs

xsgn(-)ho)]
+ ix[se sgn(§) F (xsgn(-)he) — IsoF (xho)]- (12.24)
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12. Dispersive Estimates

By definition:

/elmwo-]}_1 0 FGG h dz
R ‘ 3

< /R e"wy - F1 [0 (¢71un) | da +’ /R e - F71 [0 (670s)] da| - (12.25)
Recall x(§) =0 for |{] < 1. Lemma 11.2.4 implies
77 [0 (7wl < €Al < ® 001z (1220)
Consequently:
/R By F [0 (€74 dé‘ < C||e"Bw|, 1Bl (12.27)

It remains to bound ’fR eltBwy - F71 [0 (€7141)] df‘. Recall that pe 7 and pe,1 are even
with respect to z, while p, ¢ and p, are odd. Hence:

by = /( e (& FW) —ipov (E1)a(y) )
\/ﬂ isgn(§)pe,v (&, 9)3(y) +sen(§)pou (€, y) f(y)

/ peU (&) —irov (&) (JW)) 4,
~ Vo Je \sen(©pou (&) isen(©)pev (& y) ) \ )
= [ P& wh()dy. (12.28)

By lemma 11.1.2, lemma 11.1.3, lemma 11.1.5 and the mean value theorem, for £ € R\{0}
and y € R:

dy

Ce_%‘xl

(E71P(& )|, T

€71P(g, ),

(P&, y) ] < (12.29)
We define ¥ : R — C?*2 by
W(y) = lim (07 P)(&.y) ~ 0T P) (L) (12:30)
By (12.29), for every y € R:
1W(y)| < Ce 2. (12.31)

Let §of = f(0) denote the Dirac distribution. From the discontinuity of d¢(£~1P) in
& =0, it follows:

w77t [0 (671
— i [0R (¢ )| +iF- [50/\1/ dy}

/Ré% (f‘lP(§,y)) h(y)dy} + \/%/R‘If(y)ﬁ(y)dy- (12.32)

249



12. Dispersive Estimates

We conclude:

/ReItAwo CFE [85 (5711/11)} dx
‘/ReltAwo 1 _:1:2]:—1 |:8§ (ffll/}l)} dx
foeou o) e
/ It

R La La
L |l [ o (6 P R
/Re”Awo- . /R‘If(y)fl(y)dydw

1+ 22
x
/elmwo /76“Aw0d93
R R

1+ a2
That concludes the proof.

IN

+

IN

d o [ ()]
T

14+ 22

’

L
+C

+ C?
La

< C?

Lemma 12.1.7 Let 2 < g < oo and 1 < ¢ <2 with % + % =1. Then:

xT 1—1

— < C*g—-1 .

H 1 + $2 Lq/ — (q ) q

Proof. We estimate:
1
o0 1 o
HSE C (/ ,dx) !
1+ 22 LY 1 a9

That conclude the proof.

Lemma 12.1.6 can be generalised to include the first derivative.

(12.33)

(12.34)

(12.35)

Lemma 12.1.8 (Local Smoothing in H!) Letwy € L*(R)? and assume (Fwg)(0) =

(0,0). Then, for everyt >0 and 2 < q < oo:

¢ H(l +m2)*1T*16“Aw0‘ .

< C(q—- 1)17% (Helmwo‘

Le + Helm(xwo)‘

x
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12. Dispersive Estimates

Proof. Consider the Galilean operator J; = § + It0,. By corollary 11.4.6, as well as
lemma 11.5.10 and lemma 11.5.11:

" H(l + :xQ)_lﬁzT_le“Awo’

LE

<C HJtTfle”Awo‘ 19 + C’HTﬁlelmwol

L3

< 2 rug O]
x

+C? Helmwo‘
Ll

o+ o2 Helm(:ﬂwo)‘

L La

o I e

. (12.37)

Together with lemma 12.1.6 and lemma 12.1.7, that concludes the proof. ([

Theorem 12.1.9 (Local Smoothing) Letwy € L?(R)? and assume (Fwg)(0) = (0,0).

Then:
t
B A T g1 3 22y LrLelta
TEEEE LE(0.00) ) et 7 L3°(0.00) H}
< C[l(1+ |z)wol| 2 - (12.38)

Proof. By lemma 12.1.8, it suffices to show:

t
(1 + 2?) T el Ry < |+ |=])wol| 12 - 12.39
mart ) ] gy S C IO IeDunllia - 1239)
Given n > 0, we choose ¢, € (4, 00|, such that % + 2n1+2 = % Note that this implies:
1 1 1
S= 4 (12.40)

4 g, 4dn+4

By lemma 12.1.8, for n > 0:

¢ 2\ —1p—1_TtA
—(1 T
1n(2—|—t)3( + z%) ey

<Cm+1) Hln(2 + t)*%“ﬁwo\

Li(ement1)H}

Li(en en ) L202

+C(n+1) Hln(2 + t)73elm(xwo)‘

Li(em,entl yL2n T2

< C2n+1) |2+ Ita

& ’u}o‘
LT (en entl) ’

+C¥(n+1)|[In(2+ 1)~

Lgn (en ,en+1 )L2n+2

‘eltA(

Twp)

L?n+4(e”,e”+1) Lgn (e”,€n+1)L2n+2

< C3(n + Vet In(2 + ") 73 (JJwo|| 12 + ||zwol| 12)

<t 1

O (Hwoll L2 + [Jzwoll2) - (12.41)
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12. Dispersive Estimates

In conclusion:

t
— 1+ :L,Q)fleleItAwO
HIH(Q +1)? LA(1,00) HY
— t
= — (1 + 2?7 IT e By,
nE::o In(2 +1)? LA(en en+1)H1
= 1
< C ) 3 (lwoll 2 + [[zwol]2)
2 Gy aye Ulolle + izl
< € (|fwoll 2 + llawoll2) - (12.42)
That concludes the proof. U

Theorem 12.1.10 (Local Smoothing for Duhamel’s formula) Let the dual of a

Strichartz pair be given, meaning q' € [1,%], r’ € [1,2], such that % + % = g Let

Jy = §+110;. Letw € L9 (0,00) L™ (R)? and assume (Fw)(t,0) = (0,0) for everyt > 0.
Then:

t
+ Ht(l + m2)_1T_1/ !0 8y (s, 2)ds
0

t
In(2+t)3

t
(1 +x2)71T*1/ el =98y (s, x)ds
0

Li(0,00)H}

Lge(0,00)Hy

<C HwHLg/(O,oo)Lg' +C ||th||L§'(o,oo)Lg/ . (12.43)
More generally, for k > 2:
t t
—(1 —1—3:2)_1T_1/ el t=3) 8y (s, 2)ds
In(2 +t)k 0 L4(0,00) H
t
+ ’ —(1 —|—CL‘2)_1T_1/ el t=5) 8y (s, 2)ds
In(2 + t)k 0 L5°(0,00) H .
[e.e]
1
< Cllwll o g sy + C Mol 4 + Cn;) L 19601 g g1y 1
(12.44)
Proof. Note, JieltAwy = %e[m (xwp). The theorem follows completely analogously to
theorem 12.1.9. ]

Remark Theorem 12.1.9 suggest decay of order ~ t=3. This decay came about by using
the absence of a resonance to establish decay of ~ t~', and a Strichartz estimate to
ensure the resulting function lives in L* with respect to the time t.

If, instead of a Strichartz estimate, we where to utilise the dispersive estimate ’

itA
| 3 ],
Ct™2 ||fl|;1, decay of order ~ t~2 could be established as well, under the additional as-

sumption zwy € L*(R)2.  For theorem 12.1.10, decay of order ~ 72 does not seem

feasible while maintaining reasonable assumptions.
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Part V.
Outlook: Stability of the nonlinear
Schrodinger Equation

We can restate (1.1) as a system of equations by identifying the imaginary unit i with
0 -1

its matrix equivalent I = 1 0

IOW = —AW — [WIP'W,  (t,x) € [0,00) x R. (12.45)
Wy € L*(R)? denotes the initial data. As before, we consider 3 < p < 5.

Conjecture 12.1.11 (Asymptotic Stability) There exist g > 0 and p1 € (3,5),
such that the following holds true. Consider equation (12.45) with radially symmetric
initial data Wy € H*(R)? and exponent p € (3,p1). Assume:

wg = Wy — (g) eEH (12.46)

and [|wol| g1, ||zwol| 2 < €o. Then, there are functions v : [0,00) — R, X : [0,00) —
(0,00) and w : [0,00) x R — C2, such that:

W = 7,00t (g) +w. (12.47)
For every t > 0, w admits the dispersive estimate:
[t 2| e < Cp1+8)72 (Jlwol g + ||ewol| ) - (12.48)
Further, given a Strichartz pair q,r € [2,00], % + % = %:
[t @) | gz < Cp ([lwollgr +|[?wol| ) (12.49)

v and A fulfil for 0 < s <t:

M) = A(s)] () = w(s)] < Cp(1+ )% (Jfuwol s + | [0

L2) : (12.50)

While an actual proof is beyond the scope of this thesis, we give some ideas on how
its results might be used to show asymptotic stability of the NLS. Everything presented
in this outlook is based on an, as of yet, unfinished proof of asymptotic stability, which
I originally planned to include in this thesis.

The reason I ultimately decided against including such a proof is threefold. Firstly, I
have not yet finished the proof. Secondly, the proof is quite long. It would easily make
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13. Stability for Small Data

this thesis longer by a third. Thirdly, the techniques used in the proof are quite different
to both of the already very distinct parts of this thesis.

I remain optimistic that the linear results contained within this thesis are sufficient
to analytically show asymptotic stability of the one-dimensional focusing non-linear
Schrédinger equation. Most likely even without restricting oneself to radially symmetric
initial data.

13. Stability for Small Data

We already discussed the general approaches when proving asymptotic stability in chap-
ter 1.3. The approach we take is to show dispersive estimates (theorem 12.0.1, 12.0.2,
12.1.9) for the linearised equation dyw = Lw and then treat the perturbation as a small
data Cauchy problem.

Thus, in proving asymptotic stability, the first step is to recall how the NLS acts on
small initial data. The information presented in chapter 13 is largely taken from [19].

Definition 13.0.1 Given t € R, we introduce the following operator:
Jyw = gw + Itd,w. (13.1)

Ji is linked to the Galilean invariance of the Schrédinger equation. A consequence of
this relationship is lemma 13.0.2.

Lemma 13.0.2 Let wg € L?>(R)?, such that zwg € L?>(R)2. Then, for every t € R:

Jiel P = A (gwo) . (13.2)

Proof. Let w(t,z) = e/*®wy. w satisfies the equation:

10w = —Aw. (13.3)

Applying J; yields:
10; Jyw + Opw = —AJyw + O, w. (13.4)
Jow(0, ) = Swp concludes the proof. O

Lemma 13.0.3 Consider (12.45) and assume ||[zWol| 22, |[Wollp2r)2 < € for some

sufficiently small € > 0. Then, for every q,r € [2,00] satisfying % + % = %

||W||L§Lg < Ce. (13.5)
Further, for every t > 0:

W (t, )| o < Cet™3. (13.6)
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13. Stability for Small Data

Proof. Note:
(WPt W)
= J(W, W) T W)
-1 -1
— (WPt LWt pT(It&EW, WY W3 W — pT<W, Tt0, W) [W[P-3 W
-1 -1
= WPt gw+ Z’Tutw, WY WP W — p?m/, JWY [WIP3w. (13.7)
It follows:
(W w)| < C WP W (13.8)
We define the following quantities for ¢t > 0:
er(t) ;= sup |[W(s,2)llpo(orr (13.9)
T r—2
ea(t) == ,Sup [ TsW (s, @) a0y » (13.10)
9 rT2
es(t) == sup s2 |[W(s, )| oo - (13.11)
0<s<t ®
Clearly, £1(0),£2(0),e3(0) < €. By definition:
t
/ W (s, 2)|[B-t ds < Cey ()P~ + Ces(t)". (13.12)
0 x
We use Duhamel’s principle to estimate W:
t
Wt z) = AW, +1/ =08 (lw =t w) ds (13.13)
0
Using a Strichartz estimate (lemma 1.6.2), it follows:
ert) < e+ ClWP|Li 2
t
< et C [ IW s )l ds Wiy s
<e4C%e(t)(e1 ()P + e5()P7 ). (13.14)
Analogously:
ea(t) < Ce+ ||| WP I, W] .
< Ce+ C?eq(t)(e1 ()P + e3(t)P7h). (13.15)
Further, for ¢ > 0:
W < |l T5W ’8x(e_l4tW)
L2 L2
< ||W]|,2 t_lJtW‘ L (13.16)
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13. Stability for Small Data

Consequently:
e3(t) < £1(t)2es(t)2. (13.17)

(13.14), (13.15) and (13.17) conclude the proof. O
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14. Asymptotic Stability, Possible Ansatz

14. Asymptotic Stability, Possible Ansatz
Consider the NLS in the form given by (12.45):
IOW = —AW — |[WP' W,  (t,z) €[0,00) x R. (14.1)

Wo € L?(R)? denotes the initial data. The exponent fulfils 3 < p < 5.
We seek to treat (14.1) in the neighbourhood of a soliton in the same manner as lemma
13.0.3. What complications arise compared to lemma 13.0.37

Consider first the basic idea W (t,z) = e!*(Q(x) + w(t,x)). This Ansatz leads to an
equation

I0w = Lw — |wP ' w+ R (14.2)

with the remainder term R(¢,x) containing nonlinear terms of order > 2 with exponen-
tially decaying coefficients. If the orthogonal condition w € H is fulfilled, we can control
R using the local smoothing estimates given by theorem 12.1.9 and theorem 12.1.10.
|w|? ~Lw is controlled analogously to lemma 13.0.3, using the dispersive estimates given
by theorem 12.0.1 and theorem 12.0.2.

Clearly, the condition w € H can not be presupposed. While the flow generated by
the linear equation 0;w = Lw stays contained within the sub-manifold H, such a thing
does not hold in the presence of nonlinear interactions.

Recall that H C H is of co-dimension 6 with H being of co-dimension 4. H is char-
acterised by (1.43), four orthogonal conditions in L? related to the eigenspace of L
associated with the eigenvalue 0. H is then defined as the orthogonal complement (with
respect to (-,-)%) of the internal modes ¢, ¢, which are the eigenfunctions of the non-zero
eigenvalues £/, —F of L.

By introducing geometric parameters, which we use to variate the soliton along its
symmetries (compare chapter 1.4), it is possible to control the eigenspace of 0 and ensure
w e H.

That leaves the internal modes ¢, {, which can not be controlled in such an elegant
manner. We are forced to make the decomposition w = wy + u¢ + i, whereby wy € H,
w € C. wy is to be controlled as a radiative term in the same manner we discussed above.
However, controlling the coefficient u(t) of the internal modes requires yet another idea,
the co-called nonlinear version of Fermi’s golden rule.

By examining the quadratic terms of the evolution equation describing wi and p re-
spectively, Fermi’s golden rule describes the interaction between the internal modes and
wy, specifically at the frequency 2F — 1.

At this point I want to mention [5], where Buslaev and Sulem examine a class of

non-linear Schrédinger equations with internal modes, and making use of Fermi’s golden
rule. While [5] makes stronger assumptions than we are afforded, Fermi’s golden rule
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14. Asymptotic Stability, Possible Ansatz

still works in much the same way.

We present three ingredients for a possible proof of conjecture 12.1.11. In chapter
14.1, we introduce the geometric parameters that ensure w € H.

In chapter 14.2, we give a possible structure for the proof in a way that mirrors lemma
13.0.3.

Finally, in chapter 14.3, we affirm that the nonlinear version of Fermi’s golden rule
can be used to control the internal modes and explain the form Fermi’s golden rule takes
when using the terminology developed in this thesis.

14.1. Orthogonality Conditions
Definition 14.1.1 Givent >0, A >0, v,3,y € R and h : R — C2, consider:
Ty ysth(x) = eI”eD‘QteIg(x_gt))\%h()\(:c — Bt +y)). (14.3)

7 is based on the invariances of the NLS laid out in chapter 1.4. Instead of u, 5,y € R
and A > 0, consider differentiable functions v, 3,y : [0,00) = R and A : [0, 00) — (0, 00).
Using the short-hand notation, 7: = 7,(1) g(),y(1),\(t),¢> it follows by direct computation:

IthlatTth + thlATth

2
= I0;h + N2Ah — \h — aqh — agwh — Tazd.h — Tay <1h + :caxh> : (14.4)
p—

The coefficients oy, are given by

ai(t) == V() + 2N (t)t — ﬁ;(t)y(t), (14.5)
as(t) = 25;((?) (14.6)
as(t) = A()B ()t — A(t)y'(¢), (14.7)
ast) = — AA((;) (14.8)

In order to ensure w € H, the following lemma can be used.

Lemma 14.1.2 Consider equation (12.45) with exponent 3 < p < 5 and initial data
Wo € HY(R)2. Given some sufficiently small € > 0, assume

wg = Wy — <%2> €EH (14.9)

and ||wol|1 < €. Then, one can choose 0 < ty < oo and v,,y : [0,t9) = R, X :
[0,t0) — (0,00) and wy : [0,t9) x R — R2, such that, for every t € [0,t0):

1. v(0) = 5(0) = y(0) = 0 and A(0) = 1.
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14. Asymptotic Stability, Possible Ansatz

2. W = Tv, Byt ((%2) + w1> .

3. wl(t, ) eH.
4. With ai,..,aq as given by (14.5) - (14.8):

4

-5 wy (t,z)|? de. .
k;!ak(t)\ < CA(t)Q/Re |wi (£, )] d (14.10)

5. to = 00 or limy_yy, ||wi(t, )| 1 > Ve.

Proof. The proof is straightforward, but omitted, to prevent this outlook chapter from
becoming bloated. O

14.2. The Continuity Argument

We give a plausible structure for a proof of conjecture 12.1.11, which is essentially a
more technical version of the proof of lemma 13.0.3.

Let initial data wg € H fulfil the assumptions of conjecture 12.1.11. Lemma 14.1.2
gives rise to wy : [0,%0) x R — R?, which fulfils wy(¢,-) € H for every time ¢ € [0,t9). As
this w, is radially symmetric, we conclude 3(t) = y(t) = 0. Consider w = 7,90 ) +w1. W
%2 + w by lemma 14.1.2.

We introduce the first half of the continuity argument. Consider

fulfils W = Tv,0,0,\,t

t1 = sup{0<t<ty|V0<r<s<t: (LAMBDALI) holds true}. (14.11)

(LAMBDAL1) is a condition on the mode A, ensuring that A(t) converges as t increases.
Given some large K7 > 0, I would suggest the following;:

IA(s) = A(r)| < 2Ky (2 + 1) 2. (LAMBDAL1)
It might even be possible to utilize a condition as strong as:

IN(s) = A(r)| < 2K (e 2 4+7)7 L. (LAMBDAZ2)
We can now define \g := lim;_+, A(t). Also consider

p(t) == v(t) + (A1) = A3) t. (14.12)

We introduce the shorthand 7 s = 75(4),0,0,29,s and define

w2 = Tt;tlw = Tt,_tlTu(t),o,o,A(t),tM- (14.13)
Put another way, this reads

wa(t, ) = ()\)\al)?%lwl (t, )\)\611‘) . (14.14)
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14. Asymptotic Stability, Possible Ansatz
Clearly, we can not assume wo € H. However, the error is small. By projecting onto ‘H
and H, we find a decomposition
wy = w3 + pC + fc + 1. (14.15)

ws fulfils wy € H, p is a coeflicient term for the non-zero eigenfunctions and tv; is small
to the point of being negligible. We define

= Qﬂugu
2 = puC + 11 <—2MvCu> ( )
Finally, the wave operator 7' = GF' comes into play. Consider:
wy = Fws, (14.17)
Wy = Tw3 = gw4, (14.18)
we = Tt Tws = T pws. (14.19)

We introduce the second half of the continuity argument:
to = sup{0 <t < t;| (14.21) - (14.25) hold true}. (14.20)
Given some large constants Ko, K3, K4, K5, K > 0, (14.21) - (14.25) are given by:

1. For every Strichartz pair ¢,r € [2,00], £ + % = %:

ESELN

Hw3(s,x)HLg(07t)W11,T < 2Kse. (14.21)
2. wsg fulfils the dispersive estimate:

H(€72 —i—s)%wg(s,x)‘

2Ks. (14.22)

Lgo(0,t) Lge

t
1

—

3. I;et Jy = 5 + It0;. Let v > 0 be small. For every Strichartz pair ¢,r € [2, 00],
q T 2"

H(l + 3)711 'YJ/\(Q)Swg(s,x)’

< . .
Lo < 2K (14.23)

4. ws fulfils the smoothing estimate for every ¢ € [4, >]:

: (5,2)
1,8 ws (s,
In(2+s)3) 1+ a2

< 2K;. (14.24)
L3(0,6)H}

5. w fulfils:

(G 5)%“(3)”@0(0@ < 2KG. (14.25)

In order to prove asymptotic stability, it suffices to show that (LAMBDA1) and (14.21)
- (14.25) hold true with smaller bounds.
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14. Asymptotic Stability, Possible Ansatz

14.3. Fermi’s Golden Rule

The conditions (LAMBDAL), as well as (14.21) - (14.24) should be provable in a straight-
forward manner using the dispersive estimates from chapter 12 and the Duhamel 