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Abstract

The main topic of this thesis is the investigation and development of quantum chemical solvation models.
In combination with modern quantum chemical methods, these models can predict various molecular
properties for complex and chemically diverse systems in solution. A special focus lies thereby on the
creation and application of automatic multi-level workflows to combine various levels of theory for an
efficient and accurate calculation that is readily usable even by non-expert users. These multi-level
workflows use carefully chosen combinations of semi-empirical methods for cheap screening in
combination with higher-level quantum chemical methods to yield an accurate prediction for all parts
of the free energy. The computed free energy, in turn, can be used to calculate molecular properties,
like partition coefficients or vapor pressures from thermodynamic relationships. To give a full picture
of this topic, Chapter 2 of this thesis will cover the fundamental theory behind the calculation of the
total free energy. The total free energy thereby includes the electronic energy, which describes the
energy of a molecule in the gas phase at a temperature of 0 K, but also additional contributions to
account for finite temperature and conformational effects. Finally, the theory behind implicit solvation
models, which are used to approximate solvent-solute interactions in a computationally efficient way,
will be briefly introduced. Chapters 3 and 4 will deal with the application of an automated multi-level
workflow for environmentally relevant and other highly complex systems (e.g., frustrated Lewis pairs),
which are largely dominated by non-covalent interactions.
While most of the contributions to the free energy are already rather accurate, or (in the case of
electronic structure theory) at least systematically improvable, solvation contributions can still be a
major source of error. Because solvation effects can have a large impact on both, the final energy, as
well as the molecular structure of a system, an accurate and robust solvation description is important
in all parts of a multi-level workflow, even for the cheap screening parts.
This thesis will, therefore, propose different approaches to improve the accuracy of solvation models
used on all levels of theory. Chapter 5 will introduce a post-SCF solvation model for semi-empirical
methods based on an efficient implementation of a polarizable continuum model (PCM) into the xTB
program package. The calculated results are then post-processed by a combination of literature-known
approaches. This combined method yields a significant improvement of the solvation description on
the "low-level" side of the quantum chemical hierarchy in comparison with the analytical linearized
Poisson Boltzmann (ALPB) solvation model used as default in the xTB program package. While this
eXtended Conductor-like Polarizable Continuum Model (CPCM-X) is specifically designed for the
GFN2-xTB method, it can, in theory, be used as a post-processing method with a variety of PCM
class solvation models, given that enough reference data for training is available. However, despite the
use of sophisticated solvation models, it is still challenging to produce enough suitable reference data
given the aforementioned inaccuracies in the description of solvation effects.
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In Chapter 6, therefore, an efficient approach for the dynamic adjustment of radii for continuum
solvation (the DRACO approach) is presented to improve existing solvation models. This approach
dynamically scales the atomic radii used for a solvation evaluation based on an atoms-in-molecules
approach. To do this, it uses an interface to efficient charge models to obtain atomic partial charges
and fractional coordination numbers, which are used to model the chemical environment of the
atoms. Incorporating dynamic radii in existing solvation models improves their accuracy significantly,
especially for highly polar and ionic solutes. The DRACO method is tested on various versatile
benchmark sets and published as an open source library on GitHub. It introduces no additional
computational overhead and can be used with any solvation model that allows a custom modification
of solute radii.
Although this thesis already yields significant improvements to the description of solvation interactions,
the development of new solvation models is an ongoing process. Nonetheless, the physical insights
gained through this thesis may contribute to further improvements if incorporated into future research.
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CHAPTER 1

Introduction

The pace at which scientific breakthroughs occur due to advancements in modern technology is truly
astonishing. A few decades ago, chemists needed to perform hundreds or thousands of experiments to
determine possible candidates for a single commercial drug. This process could take anywhere from
12 to 15 years and cost over a billion dollars.1 However, in today’s world, automated computational
workflows that combine an efficient sampling of the chemical space with highly accurate computational
methods have expedited a significant portion of these processes. As a result, the necessary time, cost,
and even environmental impact of the chemical drug development process has been vastly reduced.
A milestone on the way to reliable and widely usable computational chemistry methods was the
development of density functional theory (DFT, see section 2.1.3), and efficient semi-empirical
quantum mechanical methods (SQMs, see section 2.1.4). Sophisticated quantum chemical (QC)
methods can yield accurate predictions for various molecular properties, such as saturation pressures
(cf. Chapter 3), partition coefficients, or acid dissociation constants.2–5 These properties can be
important measures for predicting a drug’s environmental and biological hazards like its tendency to
become airborne or to bioaccumulate.6,7 Experimental measurements of these properties are often
time-consuming and expensive and can even be quite challenging, especially for reactions involving
multiple or short-lived intermediates.
All of these properties are closely related to the free energy change of a specific chemical reaction (in
the case of acid dissociation constants) or a phase shift (saturation pressure, partition coefficients). If
the free energy of all involved systems is known, these properties can be derived from thermodynamic
relationships. The free energy accounts for the system’s energy and degrees of freedom. Furthermore,
not only can molecule-specific properties be predicted if the free energy of a chemical system is known,
but it is also possible to determine whether a new drug is pharmacologically active by assessing the
difference in free energy between the protein-ligand complex and the free monomers, the so-called
binding or association free energy (Δ𝐺𝑎).

8–10

To perform a computational investigation, first, it is essential to know the molecular structure of the
relevant compounds and the appropriate experimental conditions, such as solvents or temperature.
However, obtaining suitable input structures for molecules can be incredibly challenging. Although the
three-dimensional structure can be provided from X-ray crystallography, the measurement conditions
and the absence of solvent effects in solid-state crystals add additional uncertainty, making it difficult to
obtain an accurate input structure. In addition, the same molecule can have different three-dimensional
shapes that only differ by the rotation of a few single bonds (conformers).11,12 These conformers,
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Chapter 1 Introduction

while belonging to the same molecule, can have significantly different free energies, and only a
few of them with the highest population will impact the actual molecular property. This problem
is even more enhanced when the property depends on the molecule being in separate, sometimes
highly different, phases. An excellent example of a case where a phase shift is an essential inherent
characteristic of a property is the saturation pressure of a compound (𝑃sat). The influence of a
solvent can considerably change a molecule’s three-dimensional shape by stabilizing some molecular
structures and destabilizing others (see Figure 1.1). Because of this, sampling the conformational
space in each respective phase is typically the first step in setting up a computational calculation.
This is often done by combining highly efficient force-field (FF) and SQM methods to investigate the
relevant conformational space efficiently by creating large conformer-rotamer ensembles (CRE) and
screening them on higher levels of theory. Finally, calculating the saturation pressure of a compound
involves considering the difference in free energy (the reaction free energy of the phase change Δ𝐺𝑟 )
of a complete ensemble in two different phases, the gas phase and a condensed phase. This final step
is typically performed by utilizing higher-level DFT methods.
The combination of efficient force-field or semi-empirical methods with more sophisticated DFT
methods, i.e., a multi-level workflow, allows the processing of several tens of thousands of possible
conformers on standard end-user hardware. Utilizing modern cloud technology, it is possible to screen
billions of conformers in just a few days, provided sufficient resources are available. A recent study
demonstrated that up to 12.7 billion conformers can be screened using a modern QC software package
on approximately 29,000 CPU cores, taking just 56 hours. The cost of the whole sampling process was
estimated to be around 20,300 dollars.13 While this might seem expensive initially, it is insignificant
compared to the costs of an entire commercial drug development process.
Nonetheless, even if it may become possible to screen the full conformational space of a large and
flexible molecule by brute force, utilizing an enormous amount of computer power, there is still
room for improvement by reducing the possible candidates through better screening methods and,
consequently, reducing computational effort and cost. Furthermore, sophisticated computational
chemistry methods are needed for the few low-lying and, therefore, relevant conformers to predict the
free energy accurately. Complicating matters further is that a molecule’s free energy is not a singular
quantity but rather consists of several contributions that are often approximated separately. Commonly,
the free energy for a single conformer is split into at least three contributions, namely the electronic
energy (Eel), a thermodynamic contribution (𝐺𝑇 ), and a solvation contribution (Δ𝐺solv) which will be
explained in more detail in Chapter 2 of this thesis. For some of these contributions, accurate methods
are already readily available.14

Sophisticated DFT methods will yield an accurate prediction of the electronic structure of the system
and, thus, the electronic energy (see section 2.1), while efficient SQM methods allow the sampling at a
highly reduced computational cost. Moreover, the description of the electronic energy is consistently
improvable using more sophisticated methods or a larger basis set, given that the necessary computer
processing power is available. For the inclusion of thermodynamic effects, i.e., finite temperature
effects, various approximate methods are available (see section 2.2), which will yield rather accurate
results for an acceptable cost.
The one thing that is still a significant cause of error for current computational workflows is the
influence of solvent on molecular properties and reactions, i.e., the solvation contribution Δ𝐺solv.
For example, when predicting drug properties, it is vital to consider solvent-solute interactions, as
these compounds are typically digested in the human body and cannot be treated as being in the gas
phase. There are, in principle, two ways to fathom solvent interactions, either by explicitly considering
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Figure 1.1: Schematic representation of a workflow that allows the calculation of saturation pressures for flexible
compounds (𝑃sat).

15 First, a suitable description of the 3D information of a compound has to be obtained, e.g.,
by performing a search in a suitable database with an identifier. Afterward, the conformational space of the
molecule has to be screened individually in the gas phase and in the condensed phase to obtain a realistic
description of the energy levels for each phase and the energy change during the phase transition. The saturation
pressure can finally be obtained by thermodynamic relationships, using the reaction free energy of the phase
change (Δ𝐺𝑟 ) as an input.

the solvent molecules as part of the input geometry or by considering the solvent interactions as an
average effect on the solute, e.g., by a dielectric continuum. The latter approach is called implicit
solvation. Explicitly considering the solvent molecules would vastly blow up the computational cost,
which makes explicit solvent models too expensive for screening purposes.16 But even if accuracy
is important, explicit solvent models often yield worse results than their implicit counterparts,17–19

which can be partly attributed to the difficult task of setting the models up correctly and considering
full solvation shells.20 Furthermore, adding solvent molecules to a system increases the complexity of
sampling the conformational space. This is due to the additional degrees of freedom introduced by the
solvent molecules. As the methods used for explicit solvation, such as molecular dynamics, often do
not parallelize well, using more computer processing power can only partially compensate for the
larger system size. For this reason, implicit solvation models are used in a wide range of applications,
from screening purposes to highly accurate QC calculations.
Today, many different implicit solvation models are available. The basis for the theory of implicit
solvation builds the Poisson-Boltzman equation, and the more simple solvation models are purely
electrostatic ones21 that treat the solvent as a uniform dielectric continuum that primarily depends on
the dielectric constant (cf. section 2.3). More sophisticated solvation models also include extra terms
to account for specific solvent-solute interactions, like hydrogen bonds or van der Waals interactions,
but mostly by empirical terms. Although these models frequently produce satisfactory outcomes, they
are limited by their reliance on empirical data. Consequently, investing more computer processing
power, such as upgrading to higher levels of theory, does not consistently lead to improvements. This
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Chapter 1 Introduction

is due to the inherent limitations of empirical data incorporated into the models,22–24 which makes it
hard to obtain suitable high-level reference data for the creation of new models or the evaluation of
compounds that are outside of the common chemical space.
Moreover, most of these models are optimized for electronic structure calculation on the DFT level and
are, therefore, not readily available for use with screening workflows based on SQM methods. In recent
work, Ehlert et al. presented a solvation model for semi-empirical methods that employs the analytical
linearized Poisson-Boltzmann method (ALPB).25,26 This model can be used in combination with a
rigorous conformational screening approach (CRENSO).12 Although this model has shown reasonable
agreement with experimental data, it is not as accurate as other, more sophisticated, solvation models,
such as the conductor-like screening model for real solvents (COSMO-RS),27,28 the COSMO segment
activity coefficient (COSMO-SAC)29 model, or the universal solvent model based on solute electron
density (SMD).30 In fact, while being computationally very efficient, the final accuracy of the ALPB
is inferior to that of these other models.23

However, even these highly sophisticated empirical solvation models are still limited in terms of
accuracy. This is especially true for solutes that include highly charged solutes,31 or for solvents that
exhibit strong explicit interactions,32 that cannot be fathomed by the model in question. One possible
reason for that is that the radii used to build the solute cavity for which electrostatic equations are solved
are often statically determined based on the atomic number, either by empirically optimizing calculated
properties to experimental data33 or by using radii determined from, e.g., crystal structures.34,35 In
reality, however, these radii should depend on the atom’s atomic environment.36–39 While some efforts
have been made to include information about the system for the determination of the radii, these
attempts mostly focus on water as a solvent and are either limited to certain atoms or functional
groups,40 or are developed for specific applications with a narrow range of training data.41,42 Other,
more sophisticated approaches based on an isocontour of the electron density introduce a significant
additional computational effort and have other limitations, like the lack of analytical gradients, which
would make an optimization of the structure geometry highly difficult.43,44

This work focuses on two areas of research: the investigation and the development of quantum
chemical solvation models. Chapters 3 and 4 of this thesis will focus on the application of state-
of-the-art quantum-chemical methods involving complete computational workflows with a rigorous
sampling approach, highly efficient and accurate electronic structure methods, and sophisticated
solvation models, to tackle the limit of accuracy, that is possible to reach for property calculations and
computational investigations. Chapter 5 will introduce a new solvation model for the semi-empirical
GFN2-xTB method based on a polarizable continuum model (PCM) that can be used to improve
the low-level parts of a multi-level workflow. In Chapter 5, a new approach to obtain dynamic radii
for atoms based on an atoms-in-molecule approach is introduced and investigated, which improves
existing solvation models significantly, especially for the description of ionic compounds.
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CHAPTER 2

Theory

This chapter introduces the theoretical foundation for calculating the various parts of the total free
energy (Gtotal) that can be used to predict various properties through thermodynamic relationships.
The forthcoming chapter will thus provide a summary of the existing knowledge and will be influenced
by the book "Introduction to Computational Chemistry" authored by Frank Jensen.45

Generally, the total free energy 𝐺 total can be partitioned into different parts, which are usually the
electronic energy 𝐸el, a thermostatistical contribution 𝐺𝑇 and a solvation contribution Δ𝐺solv as
follows:

𝐺 total = 𝐸el + 𝐺𝑇 + Δ𝐺solv . (2.1)

The electronic energy is obtained from the electronic structure of a system. It corresponds to a molecule
in the gas phase at 0 K and will be introduced in section 2.1. The thermostatistical contribution (see
section 2.2) introduces finite temperature effects; for example, adding the contribution 𝐺𝑇,298 K would
correspond to a molecule in the gas phase at 298 K. The solvation contribution, at last, corresponds to
a transfer from the gas phase to a solvated phase and is introduced in section 2.3. This contribution
needs to be considered if some solvent is involved in the experiment.
All of these contributions are commonly calculated for a single molecular structure, which may not be
enough for highly flexible molecules for which many different, energetically comparable conformers
can exist. How and why a conformational ensemble should be treated instead will be explained in
section 2.4.

2.1 Electronic Energy

The electronic energy (𝐸el) corresponds to the energy of a molecule in the gas phase at absolute zero
(𝑇 = 0 K). The electronic energy of a system can be calculated ab initio ("from the beginning") without
reference to experimental data or by introducing additional approximations (e.g., by semi-empirical
methods, see section 2.1.4).

2.1.1 The electronic Hamiltonian

The electronic energy (𝐸el) of a system depends on its electronic structure, but as electrons are very
light particles (𝑚𝑒 ≈ 9.109 · 10−31 kg),46 they tend to behave not as we would expect them from
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Chapter 2 Theory

classical mechanics. Because of that, if we want to describe the electronic structure of a system, there
is no way around quantum mechanics (QM), i.e., the time-independent Schrödinger equation,47,48

given as
HΨ = EΨ , (2.2)

where H is the Hamiltonian operator, Ψ is the wave function, and E is the energy. The total,
time-independent Hamiltonian operator consists of the kinetic (T) and potential (V) energies of
electrons and nuclei and can be written as49

Htot = T𝑛 + T𝑒 + V𝑛𝑒 + V𝑒𝑒 + V𝑛𝑛 , (2.3)

where T𝑛 and T𝑒 is the kinetic energy of the nuclei and electrons and V𝑛𝑒, V𝑛𝑛 and V𝑒𝑒 is the potential
energy between nuclei-electrons, nuclei-nuclei and electrons-electrons, respectively.

Because nuclei are much heavier than electrons, the motion of the electrons can be seen as independent
from the motion of the nuclei. This assumption is called the Born-Oppenheimer approximation.50–52

The nuclei positions are treated as parameters, and therefore, the kinetic energy of the nuclei can be
neglected (T𝑛 = 0), which leads to the electronic Hamiltonian Operator

Hel = T𝑒 + V𝑛𝑒 + V𝑒𝑒 + V𝑛𝑛 . (2.4)

The contributions to the electronic Hamilton operator can be calculated as53

T𝑒 = −
𝑁elec∑︁
𝑖

1
2
∇2
𝑖 , (2.5)

V𝑛𝑒 = −
𝑁nuclei∑︁
𝐴

𝑁elec∑︁
𝑖

𝑍𝐴

|R𝐴 − r𝑖 |
, (2.6)

V𝑛𝑛 =
𝑁nuclei∑︁
𝐴

𝑁nuclei∑︁
𝐵>𝐴

𝑍𝐴𝑍𝐵

|R𝐴 − R𝐵 |
, (2.7)

V𝑒𝑒 =
𝑁elec∑︁
𝑖

𝑁elec∑︁
𝑗>𝑖

1
|r𝑖 − r 𝑗 |

, (2.8)

where ∇2
𝑖 is the Laplace operator, r𝑖 are the coordinates of electron 𝑖, R𝐴/𝐵 are the coordinates of the

nucleus 𝐴/𝐵 and Z𝐴/𝐵 is the atomic number of the nucleus 𝐴/𝐵.

These operators can be collected according to the number of electron indices for a fixed set of nuclei
positions. V𝑛𝑛 is constant for a given system and does not depend on electron positions. V𝑛𝑒 and T𝑒
only depend on one electron coordinate, and V𝑒𝑒 depends on two electron coordinates and is the most
expensive to calculate. By formulating a core-Hamiltonian h𝑖 that describes the motion of an electron
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2.1 Electronic Energy

in the field of all nuclei and a two-electron operator g𝑖 𝑗 for the electron-electron repulsion as

h𝑖 =
1
2
∇2
𝑖 −

𝑁nuclei∑︁
𝐴

𝑍𝐴

|R𝐴 − r𝑖 |
, (2.9)

g𝑖 𝑗 =
1

|r𝑖 − r 𝑗 |
, (2.10)

the electronic Hamilton operator can be rewritten as

Hel =

𝑁elec∑︁
𝑖

h𝑖 +
𝑁elec∑︁
𝑗>𝑖

g𝑖 𝑗 + V𝑛𝑛︸︷︷︸
const.

. (2.11)

2.1.2 Hartree-Fock Theory

Despite that, even with the limitations introduced by utilizing the Born-Oppenheimer approximation
and neglecting relativistic effects, the exact solution to the (electronic) Schrödinger equation is still
overwhelmingly complex for a multi-particle system. Therefore, approximate solutions to the many-
particle wave function are needed.53 These solutions can be generated by exploiting the variational
principle, which states that an approximate wave function always has an equal or larger energy than
the corresponding exact wave function:

𝐸el,approx. ≥ 𝐸el,exact . (2.12)

The energy of an (approximate) wave function can be calculated as the expectation value of the
electronic Hamilton operator as

𝐸el = ⟨Ψ|Hel |Ψ⟩ . (2.13)

One way to formulate an approximate wave function is a Slater determinant (SD). Using an SD is
especially elegant, as this form fulfills the Pauli principle, which states that two electrons cannot have
exactly the same quantum state and retains the indistinguishability of the electrons. The general case
of a wave function with N electrons can be written as a Slater determinant as

Ψ ≈ Φ(1, 2, .., 𝑁) = 1
√
𝑁!

���������
𝜙1(1) 𝜙2(1) . . . 𝜙𝑁 (1)
𝜙1(2) 𝜙2(2) . . . 𝜙𝑁 (2)
...

...
. . .

...

𝜙1(𝑁) 𝜙2(𝑁) . . . 𝜙𝑁 (𝑁)

��������� . (2.14)

The utilization of a single determinant for the wave function, though convenient, results in the neglect
of electron correlation. In the context of the Hartree-Fock (HF) theory, electron-electron repulsion is
therefore accounted for only on an average level.54–57 To explicitly consider electron correlation, more
complex methods such as multideterminant approaches (electron correlation methods) are required.58

However, these methods are computationally intensive and not covered in this thesis.
Using the single determinant approach with the formulation of the electronic Hamiltonian in equation

7
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2.11, the Hartree-Fock energy can be expressed as

𝐸el, HF = ⟨Φ|Hel |Φ⟩ =
𝑁elec∑︁
𝑖=1

⟨𝜙𝑖 |h𝑖 |𝜙𝑖⟩︸      ︷︷      ︸
ℎ𝑖

+1
2

𝑁elec∑︁
𝑖=1

𝑁elec∑︁
𝑗=1

©­­­­«
⟨𝜙𝑖𝜙 𝑗 |g𝑖 𝑗 |𝜙𝑖𝜙 𝑗⟩︸              ︷︷              ︸

𝐽𝑖 𝑗

− ⟨𝜙𝑖𝜙 𝑗 |g𝑖 𝑗 |𝜙 𝑗𝜙𝑖⟩︸              ︷︷              ︸
𝐾𝑖 𝑗

ª®®®®¬
+ V𝑛𝑛 .

(2.15)
Here, ℎ𝑖 represents the one-particle energy of the electron 𝑖, 𝐽𝑖 𝑗 depicts the Coulomb interaction
of electrons 𝑖 and 𝑗 and 𝐾𝑖 𝑗 the corresponding exchange element. The 1

2 factor counteracts the
electron-electron interactions’ double counting. The self-interaction of an electron (𝐽𝑖𝑖) is exactly
canceled out by the exchange element 𝐾𝑖𝑖 .
According to the variational principle (see equation 2.12), finding a set of molecular orbitals that
minimizes the energy is necessary. A Lagrange function is employed to maintain the normalization
and orthogonality of the MOs. By ensuring that the Lagrange function remains stationary with respect
to a variation in the orbitals, the minimum of the Lagrange function can be determined as follows:

𝐿 = 𝐸 −
𝑁elec∑︁
𝑖 𝑗

𝜆𝑖 𝑗 (⟨𝜙𝑖 |𝜙 𝑗⟩ − 𝛿𝑖 𝑗) , (2.16)

𝛿𝐿 = 𝛿𝐸 −
𝑁elec∑︁
𝑖 𝑗

𝜆𝑖 𝑗 (⟨𝛿𝜙𝑖 |𝜙 𝑗⟩ − ⟨𝜙𝑖 |𝛿𝜙 𝑗⟩)
!
= 0 . (2.17)

Using equation 2.15 for the variation of the energy (𝛿𝐸) and introducing a unitary transformation
diagonalizing the Lagrange multiplier matrix (𝜆𝑖 𝑗 = 0 and 𝜆𝑖𝑖 = 𝜀𝑖), the Hartree-Fock equation

©­­­­­­­«
ℎ𝑖 +

𝑁elec∑︁
𝑗

(𝐽 𝑗 − 𝐾 𝑗)︸                 ︷︷                 ︸
F𝑖

ª®®®®®®®¬
𝜙
′
𝑖 = 𝜀𝑖𝜙

′
𝑖 (2.18)

is derived. The term ℎ𝑖 +
∑𝑁elec
𝑗

(𝐽 𝑗 −𝐾 𝑗) is called the Fock operator F𝑖 . The special molecular orbitals
obtained by this unitary transformation (𝜙′𝑖) are called canonical orbitals, with 𝜀𝑖 being the canonical
orbital energies.

2.1.3 Density Functional Theory

Another approach to approximate the electronic energy of a system is based on the proof that the
electron density of a system completely determines the electronic ground-state energy,59 i.e., there is a
one-to-one mapping between electron density (𝜌) and electronic ground-state energy (𝐸el).
This theory is called Density Functional Theory (DFT), with the DFT ground-state energy 𝐸DFT [𝜌].
Because, up until today, the exact functional dependence is still unknown, the development of new
DFT functionals, connecting the electron density and the ground-state energy is an active area of

8



2.1 Electronic Energy

research.14,60–62 The complete ground-state energy can, analogous to equation 2.4, be divided into
several electron-density dependent parts: The kinetic energy 𝑇 [𝜌], the potential energy between
electrons and nuclei 𝑉𝑛𝑒 [𝜌] and the potential energy between two electrons 𝑉𝑒𝑒 [𝜌]. The latter can be
divided into coulomb (𝐽 [𝜌]) and exchange (𝐾 [𝜌]) parts according to equation 2.15, resulting in a
general DFT energy expression as

𝐸DFT [𝜌] = 𝑇 [𝜌] +𝑉𝑛𝑒 [𝜌] + 𝐽 [𝜌] + 𝐾 [𝜌]︸         ︷︷         ︸
𝑉𝑒𝑒 [𝜌]

. (2.19)

The classical expressions are used for 𝑉𝑛𝑒 [𝜌] and 𝐽 [𝜌]:

𝑉𝑛𝑒 [𝜌] = −
𝑁nuclei∑︁
𝑎

∫
𝑍𝑎 (R𝑎)𝜌(r)
|R𝑎 − r| 𝑑r , (2.20)

𝐽 [𝜌] =1
2

∫ ∫
𝜌(r)𝜌(r’)
|r − r’| 𝑑r𝑑r’ . (2.21)

Early attempts to deduce the kinetic and exchange energies of the electrons considered the electron
distribution as a uniform electron gas.63,64 Although this may be a reasonable assumption for the
valence electrons in periodic systems, this assumption is highly inaccurate for molecules. With
the introduction of orbitals, first suggested by Kohn and Sham in 1965,65 DFT became usable for
computational chemistry.
Following the Kohn-Sham (KS) model, the kinetic energy can be split into two parts: the major
contribution to the kinetic energy, which is derived from HF theory under the assumption of
non-interacting electrons (𝑇𝑆 [𝜌]) as

𝑇𝑆 =

𝑁elec∑︁
𝑖

〈
𝜙𝑖

����−1
2
∇2

���� 𝜙𝑖〉 , (2.22)

and an additional correction, which is called the exchange-correlation term (𝐸𝑋𝐶 [𝜌]). 𝐸𝑋𝐶 [𝜌] is
defined as the missing part to the exact energy as

𝐸𝑋𝐶 [𝜌] = (𝑇 [𝜌] − 𝑇𝑆 [𝜌]) + (𝑉𝑒𝑒 [𝜌] − 𝐽 [𝜌]) . (2.23)

This results in the general KS-DFT equation

𝐸KS-DFT [𝜌] = 𝑇𝑆 [𝜌] +𝑉𝑛𝑒 [𝜌] + 𝐽 [𝜌] + 𝐸𝑋𝐶 [𝜌] . (2.24)

The task in KS-DFT is to derive an approximation for the energy-exchange functional only (in
comparison to the total kinetic and exchange functional in orbital-free DFT). Incorporating orbitals
in KS-DFT reduces the susceptibility to inaccuracies in the function. On the other hand, this also
increases complexity since the number of variables increases from 3 to 3N. Moreover, it is not yet
known how the exchange-correlation and electron density in KS-DFT are precisely related, similar
to the relationship between the complete electronic ground-state energy and the electron density in
orbital-free DFT. The functionals developed to solve this problem can be categorized according to the
information used, such as the local density or its derivative. A commonly used categorization scheme

9



Chapter 2 Theory

Figure 2.1: Schematic representation of the Jacob’s ladder as proposed by Perdew & Schmidt.66

was proposed by Perdew & Schmidt.66 The so-called Jacob’s ladder categorizes the functionals into
five rungs as visualized in Figure 2.1.
The lowest rung of the Jacob’s ladder is called local density approximation (LDA). Functionals of this
rung only use the local electron density 𝜌(r), i.e., the density is locally treated as a uniform electron
gas.57,67,68 By climbing to a higher rung of Jacob’s ladder, the complexity of the functional and,
thus, the computational cost and accuracy will increase. Generalized gradient approximation (GGA)
type functionals additionally use the first gradient of the electron density ∇𝜌(r).69–72 The next rung,
which is built by the meta-GGA functionals, also includes higher-order derivatives of the electron
density ∇2

𝜌(r), or alternatively, the orbital kinetic energy 𝜏(r).73–75 The upper two rungs of Jacob’s
ladder are called hybrid and double hybrid, respectively. As the name suggests, they endeavor to
approximate the exchange-correlation energy by using another theory, where the exchange energy can
be exactly calculated, namely the Hartee-Fock theory (see section 2.1.2).76–78 In spite of that, because
the KS orbitals are not identical to the HF orbitals, the calculated energy is not the exact solution, and
therefore, only a fraction of the so-called Fock exchange is taken as an additional contribution.79 As
the last rung of Jacob’s ladder, double hybrid functionals introduce virtual orbital information, e.g., by
perturbation theory.80–82

2.1.4 Density Functional Tight-Binding

While KS-DFT (section 2.1.3) is already a computationally efficient method in comparison with HF
theory (section 2.1.2), it still can become too expensive for routine screening workflows or computation
of large molecules with several hundred atoms (and therefore thousands of electrons). With the
introduction of several approximations, semi-empirical quantum mechanical methods (SQMs) can
significantly reduce this computational effort. Early SQMs introduced additional approximations to
the Hartree-Fock theory (e.g., Neglect of Diatomic Differential Overlap), but since nowadays DFT
methods have mostly replaced HF methods, new SQMs were developed as approximations to DFT.
A common class of models is based on tight-binding, like Density Functional based Tight-Binding
(DFTB)83 or extended Tight-Binding (xTB).84,85 Instead of calculating the DFT energy from equation
2.24, at first, a reference density 𝜌0 is calculated from a superposition of neutral atomic densities,
based on the assumption that only valence electrons have to be explicitly considered because the core
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electron density is assumed to be mostly invariant to the environment. The energy is then expanded as
a Taylor series in terms of charge density fluctuation 𝛿𝜌 as86

𝐸 [𝜌] = 𝐸0 [𝜌0] + 𝐸
1 [𝜌0, 𝛿𝜌] + 𝐸

2 [𝜌0, (𝛿𝜌)
2] + 𝐸3 [𝜌0, (𝛿𝜌)

3] + · · · . (2.25)

In the case of the GFN2-xTB85 method, the contributions to the total free energy are defined as
follows:

𝐸GFN2-xTB = 𝐸
(0)
rep + 𝐸 (1)

EHT + 𝐸 (2)
ies+xc + 𝐸

(3)
ies+xc + 𝐸aes + 𝐸axc + 𝐸D4 + 𝐺fermi . (2.26)

The specifics of the individual contributions will be discussed below.
The zeroth-order term is the repulsion energy, which is independent of the charge fluctuations and
therefore only includes geometry-dependent contributions as85

𝐸
(0)
rep =

𝑁∑︁
𝐴𝐵

𝑍
eff
𝐴 𝑍

eff
𝐵

𝑅𝐴𝐵
e−(𝑎𝐴𝑎𝐵 )1/2 (𝑅𝐴𝐵 )𝑘rep

, (2.27)

where 𝑅AB is the distance between atom 𝐴 and 𝐵 and 𝑍eff
𝐴/𝐵, as well as 𝑎𝐴/𝐵 are parameters that define

the magnitude of the repulsive interaction. While 𝑍eff
𝐴/𝐵 can be thought of as effective nuclear charges

that correspond to the term of 𝑉nn (cf. equation 2.7), in GFN2-xTB they correlate not as strongly
with the nuclear charge as in other methods, like GFN1-xTB.84,85

𝑘rep is a parameter to differentiate
between light and heavier elements and is mostly kept constant (one for H/He, 3/2 otherwise).
The first-order term is derived from extended Hückel Theory (EHT) and given as85

𝐸
(1)
EHT =

∑︁
𝜅

∑︁
𝜆

𝑃𝜅𝜆H𝜅𝜆 , (2.28)

with the density matrix 𝑃𝜅𝜆 = 𝑃
0
𝜅𝜆 + 𝛿𝑃𝜅𝜆 and the Hamiltonian matrix H. The diagonal elements of

the Hamiltonian matrix are thereby calculated based on an empirical scheme. In GFN2-xTB, they
are flexible in accordance with the chemical environment by introducing the fractional coordination
number CN𝜅 as

H𝜅𝜅 = ℎ𝜅 − ℎCN𝜅
CN𝜅 , (2.29)

where ℎ𝜅 and ℎCN𝜅
are empirical parameters. The off-diagonal elements are also empirically

determined based on averages of the diagonal elements.
For charged and polar systems, the net partial charges of the individual atoms are nonzero. Therefore,
the electron density 𝜌 at these atoms will deviate from the reference density of the neutral atom 𝜌0 by
a charge fluctuation 𝛿𝜌. This deviation is treated with higher-order terms, using shell-wise partitioned
Mulliken partial charges, called the isotropic electrostatic and exchange-correlation energy (𝐸ies+xc).
The energy consists of a second-order and a third-order term and is calculated as

𝐸ies+xc =
1
2

∑︁
𝐴,𝐵

∑︁
𝑙∈𝐴

∑︁
𝑙
′∈𝐵

𝑞𝐴,𝑙𝑞𝐵,𝑙′𝛾𝐴𝐵,𝑙𝑙′︸                                 ︷︷                                 ︸
𝐸

2
ies+xc

+ 1
3

∑︁
𝐴

∑︁
𝑙∈𝐴

Γ𝐴,𝑙𝑞
3
𝐴,𝑙︸                ︷︷                ︸

𝐸
3
ies+xc

, (2.30)

where 𝑞𝑋,𝑙 are the respective Mulliken charges of the shell 𝑙 on atom X, 𝛾𝐴𝐵,𝑙𝑙′ is the distance-
dependent Coulomb interaction and Γ𝐴,𝑙 is a shell and element-specific parameter. The Coulomb
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interaction is calculated as87–90

𝛾𝐴𝐵,𝑙𝑙′ =

(
1

(𝑅𝐴𝐵)
2 + 𝜂−2

𝐴𝐵,𝑙𝑙
′

) 1
2

, (2.31)

where 𝑅𝐴𝐵 is the distance between the atoms A and B, and 𝜂𝐴𝐵,𝑙𝑙′ is the average of the effective
chemical hardness of the two shells 𝑙 and 𝑙′ on the atoms A and B. 𝜂𝐴𝐵,𝑙𝑙′ is empirically determined
from element and shell-specific parameters.

In addition to these general tight-binding terms, GFN2-xTB also includes multipole electrostatics with
the additional second-order anisotropic 𝐸aes and 𝐸axc terms. Furthermore, the DFT-D491,92 correction
is used to include London dispersion interactions, which is an enhancement to the DFT-D393 model
used in GFN1-xTB.84 Static correlation due to the spin-restricted wave function used in GFN2-xTB is
handled by introducing fractional occupations of the energy levels at finite electronic temperatures.
This approach is called Fermi smearing with its corresponding term 𝐺fermi.

85,94

2.2 Thermostatistical Contribution

The electronic ground-state energy introduced in section 2.1 is usually calculated for a single molecule
or an aggregate in the gas phase at 0 K. Experiments, on the other hand, mostly deal with finite
temperatures and with macroscopic samples. The connection between a microscopic system and a
macroscopic system is described by the partition function. The partition function for a single molecule
(𝑞) is defined as an exponential sum over all possible quantum states as95

𝑞 =

∞∑︁
𝑖=states

exp
(−𝜖𝑖

k𝑇

)
, (2.32)

where k is the Boltzmann constant, 𝑇 is the temperature, and 𝜖𝑖 is the energy of the respective quantum
state. For a macroscopic system of 𝑁 non-interacting identical particles (ideal gas), the macroscopic
partition function 𝑄 can be calculated as

𝑄 =
𝑞
𝑁

𝑁!
. (2.33)

From the partition function, a variety of thermodynamic functions can be calculated, like the internal
energy𝑈 and the Helmholtz free energy 𝐴:

𝑈 = k𝑇2
(
𝛿ln𝑄
𝛿𝑇

)
𝑉

, (2.34)

𝐴 = −k𝑇 ln𝑄 . (2.35)
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Because the pressure (𝑃) and the heat capacity at constant volume (𝐶𝑉 ) can be calculated as derivatives
of these thermodynamic functions with respect to the volume (𝑉) as

𝑃 = −
(
𝛿𝐴

𝛿𝑉

)
𝑇

, (2.36)

𝐶𝑉 =

(
𝛿𝑈

𝛿𝑉

)
𝑉

, (2.37)

also, the enthalpy (𝐻) and the entropy (𝑆) can be derived as

𝐻 = 𝑈 + 𝑃𝑉 = k𝑇2
(
𝛿ln𝑄
𝛿𝑇

)
𝑉

+ k𝑇𝑉
(
𝛿ln𝑄
𝛿𝑉

)
𝑇

(2.38)

𝑆 =
𝑈 − 𝐴
𝑇

= k𝑇
(
𝛿ln𝑄
𝛿𝑇

)
𝑉

+ k𝑇 ln𝑄 . (2.39)

Finally, the Gibbs free energy is therefore defined as

𝐺 = 𝐻 − 𝑇𝑆 = k𝑇𝑉
(
𝛿ln𝑄
𝛿𝑉

)
𝑇

− k𝑇 ln𝑄 . (2.40)

Still, in order to know all possible quantum states for a system and be able to derive 𝑞 (cf. equation
2.32), it would be necessary to solve the nuclear Schrödinger equation, which is not feasible for
larger systems. Therefore, the Rigid-Rotor Harmonic-Oscillator (RRHO) approximation is often
employed to solve this problem, which assumes that the electronic, rotational and vibrational degrees
of freedom are seperable.95,96 Using the HO approximation, vibrational frequencies are obtained
by a second-order Taylor expansion around the equilibrium distance while the rotational degrees of
freedom are described as a rigid-rotor. 𝑞tot can therefore be written as

𝑞tot = 𝑞rot𝑞vib𝑞trans𝑞elec , (2.41)

with the individual contributions

𝑞rot =

√
𝜋

𝜎

(
8𝜋2k𝑇
ℎ

2

) 3
2 √︃

𝐼𝑥 𝐼𝑦 𝐼𝑧 , (2.42)

𝑞vib =

𝑣𝑖𝑏.𝑚𝑜𝑑𝑒𝑠∏
𝑖

e−ℎ𝑣𝑖/(2k𝑇 )

1 − e−ℎ𝑣𝑖/(k𝑇 )
, (2.43)

𝑞trans =

(
2𝜋𝑀k𝑇
ℎ

2

) 3
2

𝑉 , (2.44)

𝑞elec =

∞∑︁
𝑖

𝑔𝑖e
𝜖𝑖
k𝑇 . (2.45)

Here, 𝐼𝑥,𝑦,𝑧 denotes the moment of inertia around the principle axes, ℎ is the Planck constant, 𝜎 is the
rotational symmetry number, 𝑣𝑖 is the vibrational frequency for mode 𝑖, 𝑀 is the mass of the molecule,
𝑔𝑖 the degeneracy of state 𝑖 and 𝜖𝑖 the energy of state 𝑖.
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It is generally observed that the energy difference between the ground state and the first excited
electronic state is significantly greater than the product of the Boltzmann constant and the temperature
(k𝑇), which is used in the calculation of the electronic partition function (𝑞elec). In such cases, only the
ground state needs to be taken into consideration, which can be determined by utilizing an appropriate
electronic structure method (as discussed in section 2.1). Given the partition functions, 𝐺𝑇 can be
calculated according to equation 2.40, as the sum of the non-electronic degrees of freedom:

𝐺𝑇 = (𝐻rot + 𝐻vib + 𝐻trans) − 𝑇 (𝑆rot + 𝑆vib + 𝑆trans) . (2.46)

2.3 Solvation Contribution

The last sections have dealt with electronic energy (section 2.1) and thermostatistical contributions
(section 2.2). Considering these contributions, it is possible to calculate the free energy for molecules
in the gas phase at finite temperatures. In contrast to that, most chemical reactions take place in a
particular medium, most commonly a solvent. In this, the interactions and properties in experiments
can strongly differ from the ones observed in the gas phase. For this reason, approximating the
effect of solvent molecules on a solute is of utmost importance for nearly all areas of computational
chemistry. Considering solvent effects can either be done explicitly, e.g., by simulating individual
solvent molecules and therefore explicitly simulating the solvent-solute interface,19,97 or implicitly,
e.g., by a dielectric continuum.98,99 Due to the extra solvent molecules, which can far outnumber the
atoms of the actual solute, explicit solvation models typically have significant additional computational
overhead and are hardly usable for high throughput screening applications. As they are also not part
of this thesis, this chapter will concentrate on implicit solvation models.
For an implicit solvation model, the solvation free energy (Δ𝐺solv) is defined as an additive contribution
to the total free energy in the gas phase (𝐺gas), which describes the energy change that corresponds to
a transfer of a molecule from the gas phase (with the energy 𝐺gas) to the solvation phase (with the
energy 𝐺sol):

𝐺sol = 𝐺gas + Δ𝐺solv . (2.47)

The solvation free energy (Δ𝐺solv) is usually partitioned into a sum of contributions, which is often
the electrostatic energy Δ𝐺elec, the energy required to create a cavity for the solute in a solvent Δ𝐺cav,
the stabilization of the solute due to dispersion interactions with the solvent molecules Δ𝐺disp and the
exchange-repulsion Δ𝐺exch as100

Δ𝐺solv = Δ𝐺elec + Δ𝐺cav + Δ𝐺disp + Δ𝐺exch︸                          ︷︷                          ︸
Δ𝐺ne

. (2.48)

The latter three parts are commonly combined into a non-electrostatic contribution to the free energy
Δ𝐺ne. Depending on the method and theoretical framework, additional contributions are sometimes
considered, such as a hydrogen bonding correction Δ𝐺hb.
This section will summarize the theory behind some basic implicit solvation models. These models
serve as the basis for more sophisticated models that have been developed over time. For a more
detailed overview of the theory behind more complex solvation models, including those created over
the course of this thesis, please refer to Appendix C and D.
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2.3.1 Poisson-Boltzman Methods

The electrostatic energy contribution to the solvation free energy can be calculated using the dielectric
continuum theory, which assumes that a solvent can be coarse-grained by a polarizable dielectric
continuum. The Poisson equation101,102 gives the interaction of a solute with this continuum in its
generalized form as

∇ (𝜀(r)∇𝜑(r)) = −4𝜋𝜌(r) , (2.49)

where 𝜀(r) is the relative permittivity in space, ∇𝜑(r) is the gradient of the electrostatic potential
and 𝜌(r) is the charge density of the solute, obtained e.g., from an electronic structure calculation (cf.
section 2.1). In implicit solvation models, the relative permittivity 𝜀(r) is most commonly replaced by
a scalar, which is the macroscopic dielectric constant 𝜀, leading to:

𝜀∇2
𝜑(r) = −4𝜋𝜌(r) . (2.50)

However, there is still the need to differentiate between the solute itself (the inner dielectric constant
𝜀in) and the dielectric continuum surrounding it (the outer dielectric constant 𝜀out). In most quantum
chemical calculations, 𝜀in is set to one, corresponding to a vacuum’s relative permittivity. After
obtaining 𝜑(r) from equation 2.50, this potential can be separated into two parts as

𝜑(r) = 𝜑𝜌 (r) + 𝜑reac(r) , (2.51)

where 𝜑reac(r) is the reaction field arising from the polarization of the dielectric continuum and 𝜑𝜌 (r)
is induced by the charge density of the solute as

𝜑
𝜌 (r) =

∫
𝜌(r’)
|r’ − r| 𝑑r’ . (2.52)

The electrostatic part of the solvation free energy can then be obtained as103

Δ𝐺elec =
1
2

∫
𝜑
𝜌 (r)𝜌(r)𝑑r . (2.53)

For a realistic molecular cavity, the Poisson equation has to be solved numerically, e.g., by a grid
representation, making this method computationally demanding.

2.3.2 The (Generalized) Born Model

If a spherical cavity is assumed, and this spherical cavity contains the entire charge density, an analytic
solution to the Poisson equation exists as

Δ𝐺elec(𝑞) = −
(
1 − 1

𝜀

)
𝑞

2

2𝑅
, (2.54)

where 𝑞 is the net charge in a cavity of radius 𝑅. This equation leads to the formulation of the Born
model.104 Using partial point charges instead of a net charge and combining Coulomb interactions
with the Born formula via a switching function (interaction kernel) yields the generalized Born
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equation105,106

Δ𝐺elec(𝑄𝐴, 𝑄𝐵) = −
(
1 − 1

𝜀

)
𝑄𝐴𝑄𝐵

𝑓𝐴𝐵
, (2.55)

where 𝑄𝐴 and 𝑄𝐵 are partial charges and 𝑓𝐴𝐵 is a switching function depending on the internuclear
distances and Born radii for the respective atoms. A well-known interaction kernel is the one proposed
by Still in 1990105 as

𝑓
Still
𝐴𝐵 =

(
𝑅

2
𝐴𝐵 + 𝑟𝐴𝑟𝐵 exp

[
− 𝑅

2
𝐴𝐵

4𝑟𝐴𝑟𝐵

]) 1
2

, (2.56)

where 𝑅𝐴𝐵 is the distance between nucleus 𝐴 and nucleus 𝐵 and 𝑟𝐵, as well as 𝑟𝐴 are the respective
Born radii.

2.3.3 Polarizable Continuum Models

While the generalized Born model works quite well for small systems, a spherical cavity is a relatively
crude approximation of a molecular cavity, especially for larger and more complex molecules.
Therefore, in implicit solvation methods, the cavity is more commonly formed by overlapping spheres,
which are created, for example, by utilizing van der Waals radii (cf. section 2.3.4). This makes it again
necessary to solve the Poisson equation numerically. Because this is computationally expensive in a
three-dimensional space, the problem is often reformulated into an apparent surface charge (ASC)
problem on a two-dimensional solvent surface.107 This class of models is called polarizable continuum
models (PCMs).98,99,108,109

Instead of solving the continuum solvation problem in three dimensions, PCMs transform it into a
surface charge problem that numerical methods can solve far more efficiently. This opens up the
problem of defining an interface between the inner cavity and the outer dielectric continuum. In its
most simple form, a "jump" boundary condition is assumed.110 That means if a point inside the cavity
undergoes an infinitesimal change in position, so it moves outside the cavity, it will experience an
electric field of 𝜀out instead of 𝜀in. This leads to

𝜀out𝛿s𝜑(s) |s=s+ = 𝜀in𝛿s𝜑(s) |s=s− , (2.57)

where s is a point on the cavity surface, 𝛿s is the normal derivative, and s± denotes if the one-sided
derivatives need to be evaluated directly inside or directly outside the cavity.
In the following, 𝜎(s) is used as the surface charge to differentiate from the volume charge 𝜌(r). In
order to satisfy equation 2.57, equation 2.50 leads to110

4𝜋𝜎(s) =
(
𝜀out − 𝜀in
𝜀out

)
𝛿s𝜑(s) |s=s− . (2.58)

For 𝜀out set to the dielectric constant of the solvent (𝜀) and 𝜀in = 1, this yields

𝜎(s) = 1
4𝜋

(
𝜀 − 1
𝜀

)
𝛿s𝜑(s) |s=s− , (2.59)

which corresponds to the formulation of the "original" PCM model.21,111,112 Analogous to equation
2.51, 𝜑 can be split into two parts. One which comes directly from the solute (𝜑𝜌) and one from the

16



2.3 Solvation Contribution

reaction-field contribution. To calculate the reaction-field contribution 𝜑𝜎 (r), only the cavity surface
instead of the whole space has to be discretized. The corresponding potential can be calculated as

𝜑
𝜎 (r) =

∫
𝜎(s)
|r − s| 𝑑s . (2.60)

This could also be added to the Hamiltonian operator for a self-consistent treatment. The electrostatic
part of the solvation free energy can finally be calculated as an integral over the surface (cf. equation
2.53) as

Δ𝐺elec =
1
2

∫
𝜑
𝜌 (s)𝜎(s)𝑑s . (2.61)

2.3.4 Non-electrostatic Contribution

The non-electrostatic contribution is often assumed to be proportional to the surface area of the
solute. As a result, the entire surface area is frequently mapped to individual solute atoms, and the
proportionality factor for the non-electrostatic contribution is assumed to be solely element-specific.
This surface area depends on the algorithm used to create the solvent cavity. A relatively simple
approach would be to use a spherical cavity, which would also allow the analytical derivation of the
electronic energy (cf. section 2.3.2). Because most molecules are not well defined by a spherical
cavity, nowadays, primarily cavities created by overlapping van der Waals spheres are used (see also
section 2.3.3). The radii used for the spheres are usually fixed per element and are either empirical
parameters obtained by optimizing calculated properties to match experimental data33 or directly
deduced from crystal structures.34 Still, even if the same radii are used for creating a cavity, several
ways exist to evaluate the corresponding surface area, as seen in Figure 2.2. The sum of the surface
areas of the single spheres denominates the van der Waals surface, which is the easiest way to obtain
the surface. A solvent-excluded surface (SES) is created using a probe sphere with a fixed radius
𝑟probe. When this radius is set to the realistic radius of the solvent (e.g., about 1.3 Å for water), this
yields the physically motivated picture of pockets inaccessible to the solvent molecule that should not
be considered. On the other hand, in some approaches, a fixed (sometimes arbitrary) probe sphere
radius is used,30,113 invalidating the physical motivation. The solvent-accessible surface (SAS) is
obtained in the same way, with the solvent’s radius added to the atoms’ radius first.
Having obtained the surface area of the atoms, the non-electrostatic part of the free energy is derived
empirically. In their most simple form, a linear dependence is assumed, which leads to the following
equation:

Δ𝐺ne =

𝑎𝑡𝑜𝑚𝑠∑︁
𝑖

𝛾𝑖𝑆𝑖 , (2.62)

where 𝛾𝑖 is an element-specific parameter and 𝑆𝑖 is the corresponding surface area of the atom.
However, Such a linear dependence may perform quite poorly114, and therefore, more sophisticated
methods to approximate Δ𝐺ne in dependence of the surface area have been developed.115 Despite
the progress made in developing models for non-electrostatic energy evaluation, they remain largely
empirical and rely heavily on the functional and electrostatic models used. This suggests that these
models may, at least partially, compensate for diverse errors arising from the underlying computational
evaluation rather than accurately describing the non-electrostatic energy.
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Figure 2.2: Visualization of a cavity creation using overlapping van der Waals spheres, with different approaches
for the surface creation.

2.4 Conformational Contribution

The last sections comprised everything needed to calculate the total free energy for a single geometric
structure of a molecule, i.e., a conformer. This is usually enough for small and rather rigid molecules
but not for larger and more flexible molecules, where there is not only one possible conformation
but several hundred (or even more, dependent on the possible degrees of freedom). Not all of these
structures are energetically equivalent and, at finite temperatures, only a few of them are occupied,
which is described by the Boltzmann weight of a conformer as12

𝑝𝑐 =
e−𝐺𝑐/k𝑇∑Conf.
𝑗 e𝐺 𝑗/k𝑇

, (2.63)

where k is the Boltzmann constant, 𝐺𝑐/ 𝑗 is the free energy of the respective conformer, obtained
according to equation 2.1, and 𝑇 is the temperature. As a conformer’s occupation strongly correlates
with its energy, it is normally sufficient to investigate conformers only in a relatively narrow energy
window (e.g., about 2.5 kcal/mol at room temperature). For properties that depend only on energy,
limiting oneself to a single conformer with the lowest energy (the "lowest-lying" conformer) may be
sufficient. However, this is mostly not the case for properties that strongly depend on the geometric
structure of the molecule and not only on the energy itself, like optical rotation.116 But even for
heavily energy-dependent properties, like octanol-water partition coefficients5 or vapor pressures, a
sophisticated conformer search workflow can be important, as the lowest-lying conformer in one phase
may not be the lowest-lying conformer in another phase (cf. Figure 1.1). For more details on vapor
pressures, please refer to Appendix A. Therefore, for an accurate property calculation, the average free
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energy of a full conformer ensemble (CE) should be considered, which is calculated as follows

𝐺 total =

Conf.∑︁
𝑖

𝑝𝑖𝐺𝑖 . (2.64)

To generate a suitable CE, an exploration of the potential energy surface (PES) of the system in
question is necessary. The conformer ensembles used throughout this thesis were obtained using the
CRENSO workflow.5,12 A CE is thereby produced by an extensive exploration of the PES with the
Conformer-Rotamer Ensemble Sampling tool (CREST)11 in combination with the reevaluation of the
obtained conformers at higher levels of theory using the Energetic Sorting (ENSO)12 algorithm.
The underlying idea of CREST is to introduce a history-dependent bias potential to accelerate the
exploration of the PES. This approach is called meta-dynamics (MTD) simulation.117 The biasing
contribution is thereby given as

𝑛∑︁
𝑖

𝑘𝑖e
−𝛼Δ2

𝑖 . (2.65)

The parameters 𝑘𝑖 and 𝛼 are used to define the shape of the bias potential, while the values of Δ𝑖 are
based on the root-mean-square deviations (RMSDs) of atomic Cartesian coordinates using 𝑛 reference
structures. During the MTD, structures that have a high similarity to already explored regions of the
PES will yield a small RMSD and receive an energy penalty. This way, new minimum structures
(conformers) are reached faster than by using an unbiased molecular dynamics simulation. Although
a single run of the CREST algorithm suffices to generate a comprehensive CE, the exploration of
the PES is constrained by the approximations inherent in the method used for performing the MTD
simulation.
To counteract this shortcoming and ensure a more complete mapping of the PES, the default version
of the CRENSO workflow involves conducting multiple searches with CREST at the GFN-FF118 level
of theory on slightly modified versions of the original PES. The modifications include scaling London
dispersion contributions and artificially altering the molecular charge. By exploring all of these
modified versions of the PES, an ensemble with more diverse conformations is reached, which reduces
the likelihood of missing relevant conformers. To enable comparability, the differently obtained
CEs are reoptimized at the same unmodified semi-empirical GFN2-xTB85 level of theory and then
condensed using a combined principal component analysis and k-means clustering algorithm.
Because the calculation of molecular properties typically requires more accurate free energies, the
CE created by CREST has to be refined at the DFT level. The command line ENSO program
(CENSO)12 was designed to refine a CE on several (higher) levels of theory. According to the
Boltzmann distribution (cf. equation 2.63), only conformers in a certain energy window from the
lowest conformer contribute significantly to the final property. Therefore, to save computational time,
the multilevel sorting scheme employed by the CENSO program works with several energy thresholds,
starting on a low level of theory and only treats the most relevant conformers at higher levels of theory
(cf. figure 2.1 for an overview of DFT functionals). A short overview of the complete CRENSO
workflow used throughout this thesis is also given in Appendix A. A more detailed description of
CREST11, CENSO12, and the full CRENSO5,12 workflow can be found in the respective publications.

19





CHAPTER 3

Quantum Chemical Calculation of the Vapor
Pressure of Volatile and Semi Volatile Organic
Compounds

Marcel Stahn∗, Stefan Grimme∗, Tunga Salthammer†, Uwe Hohm‡, Wolf-Ulrich Palm§

Received 26th June 2022 , Accepted 1st October 2022, First published on 3rd October 2022

Reprinted (adapted) in Appendix A with permission∗∗ from
M. Stahn, S. Grimme, T. Salthammer, U. Hohm and W.-U. Palm, Quantum chemical calculation of the
vapor pressure of volatile and semi volatile organic compounds, Environmental Science: Processes &
Impacts 24.11 (2022) 2153–2166, DOI: https://doi.org/10.1039/d2em00271j

Own manuscript contributions

• workflow development and methodology

• performing all quantum chemical calculations

• data curation, investigation, and visualization of the results

• writing of the manuscript

∗Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
†Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, 38108 Braunschweig, Germany
‡Institute of Physical and Theoretical Chemistry, University of Braunschweig, 38106 Braunschweig, Germany
§Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, 21335 Lüneburg, Germany

∗∗This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence

21

https://doi.org/10.1039/d2em00271j


Chapter 3 Quantum Chemical Calculation of the Vapor Pressure of Volatile and Semi Volatile
Organic Compounds

The vapor pressure describes the volatility of a substance and is thus a measure of its tendency to
sublimate into the gas phase.120 Substances with higher vapor pressures will more easily become
airborne and, therefore, exhibit a higher environmental hazard. There are different methods for the
experimental evaluation of vapor pressures, like gas chromatography (GC).121 Still, these methods are
usually associated with high levels of effort and are even rather inaccurate, especially for lower vapor
pressures. For this reason, methods based on structure-activity relationships (QSAR)122 are often
used to predict vapor pressures for screening purposes. Although these methods can be effective for
common compounds with a limited range of chemical diversity, they rely heavily on empirical data.
As a consequence, their accuracy unsurprisingly declines significantly when dealing with compounds
that fall outside of the relatively small boundary of known chemical space.123,124

This initial work mostly focuses on investigating common and state-of-the-art quantum chemical
(QM) methods and solvation models for high throughput routine investigations of flexible compounds.
The goal of this work is the application of a highly automated multi-level workflow (the CRENSO12

workflow) for the calculation of vapor pressures of volatile and semi-volatile organic compounds
with environmental relevance. This, in comparison to QSAR, much less empirical strategy, depends
on the prediction of a change in free energy (Δ𝐺) for the transition from a condensed phase to the
gas phase. Because this work also deals with highly flexible compounds, the consideration of a full
conformer ensemble in each phase is necessary to predict this phase shift energy accurately. The
conformer ensemble is created with a metadynamics-based approach using the CREST125 program
utilizing a combination of efficient conformational screening with the general force field GFN-FF.118

The resulting conformer ensemble is reranked with the semi-empirical method GFN2-xTB85 in
combination with the analytical linearized Poisson-Boltzmann (ALPB)26 model to include solvation
interactions. The final conformer ensemble is then reoptimized and evaluated with density functional
theory, using the r2SCAN-3c126 composite method.
One key point of this workflow is the treatment of the condensed phase. Considering an ensemble of
molecules explicitly for the condensed phase calculation would significantly increase the computational
cost, which would make this calculation unfeasible. Therefore, treating the molecule-molecule
interactions implicitly would be preferable, like a solvent in an implicit solvation model. However,
implicit solvation models are generally parametrized for specific solvents and are therefore not
able to use arbitrary substances in a self-solvation treatment. The conductor-like screening model
for real solvents (COSMO-RS)28 used in this workflow has a slightly different approach based on
pre-performed density functional theory calculations for solutes in an ideal conductor. This enables an
on-the-fly calculation of the self-solvated phase. However, this treatment is only possible for the final
evaluation of the conformer ensemble in the last step of the multi-level workflow because the ALPB
solvation model does not allow for a self-solvation treatment. Therefore, so-called sampling solvents
with a dielectric constant similar to the molecules in question were chosen for the conformational
screening part.
In this study, we examine the effectiveness of a rigorous screening process of different conformations,
along with the self-solvation treatment via COSMO-RS, in comparison to a single-structure COSMO-
RS approach. We also compare the results with those obtained from the QSAR model SPARC and a
more advanced linear-free-energy relationship approach. The aim is to determine the accuracy of our
approach in relation to experimental data. This work shows that the CRENSO workflow is superior to
conventional prediction models, does not inhibit any bias based on the compound class, and provides
reliable vapor pressures for liquids and sub-cooled liquids over a wide range of pressures.
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Chapter 4 Dispersion Energy-Stabilized Boron and Phosphorus Lewis Pairs

Quantum chemical methods have reached a stage where they can accurately predict molecular
properties for many different molecules, which was demonstrated by the calculation of vapor pressures
in chapter 3. In this work, an especially complicated class of structures, known as Frustrated Lewis
pairs (FLPs), is investigated. While FLPs consist of monomers that are not covalently bound, they
exhibit strong Lewis acid – Lewis base interactions, which should lead to the formation of a Lewis
acid-base adduct. However, due to the steric demands of the monomer, this formation is not possible,
which ultimately leads to an encounter complex that is dominated by non-covalent interactions.128,129

This encounter complex exhibits an "unquenched" reactivity.130,131 For this reason, FLPs can be used
as a catalyst for many reactions that undergo a heterolysis, e.g., the splitting of hydrogen.132

One particularly interesting subclass of FLPs is the class of London dispersion energy-stabilized
boron and phosphorus Lewis pairs. Instead of being dominated by the difference in Lewis acidity
of the two monomers, the encounter complex is stabilized by aliphatic substituents that function as
dispersion energy donors (DEDs).133 Crucial for the formation of the encounter complex of these
pairs is the subtle interplay of many formally weak, attractive, and repulsive interactions. This makes
calculating the difference in energy between the encounter complex and the monomers (the association
free energy Δ𝐺𝑎) especially challenging for modern quantum chemical methods and solvation models
because solute-solvent interactions can play a crucial role by quenching dispersion interactions.134

This work investigates many functionals used for density functional theory (DFT) calculations, ranging
from cheap meta-GGA functionals to highly accurate range-separated hybrids. It compares their
accuracy to experimentally determined association-free energies. These methods do not perform
satisfactorily, as they could not reproduce the experimental trend sufficiently. We attribute this fact to
an insufficient description of the conformational space by the "crude" conformational screening. With
the help of the advanced CRENSO12 workflow, which was specially developed for flexible molecules
and already showed promising results in earlier work (see also chapter 3), it was finally possible to
accurately reproduce the experimental values for all investigated compounds. However, an unexpected
trend between two of the investigated Lewis pairs could be observed that was not justified by the
experimental data.
Further investigation into this issue led to the conclusion that the solvent models yield an unsatisfactory
description of the solvation interactions. This is not surprising, as they are typically developed for
small, relatively rigid organic molecules and are, therefore, of limited accuracy for the large and
flexible systems investigated in this work, especially if these exhibit strong charge-transfer effects.
Creating new solvation models that can better describe these kinds of effects, e.g., by taking the
environment of the solute atoms into account for the creation of the solute cavity instead of using static
radii (c.f. chapter 6), should therefore be in the focus of future research. Another possible source of
error is the neglect of dynamic effects, such as the B-P bond elongation of weakly bound Lewis pairs
in solution, which is impossible to capture with an approach based on static equilibrium geometries.
Nonetheless, by employing state-of-the-art workflows that use advanced sampling and the refinement
of the conformer ensembles at finite temperature with modern DFT functionals, combined with the
Boltzmann averaging of the thermally populated ensemble, a large part of these missing contributions
can be fathomed, and the free energy of association of complicated systems can be accurately calculated.
The full computational workflow could ultimately predict the association free energies of the boron-
and phosphorus-centered Lewis pairs within an accuracy of 0.5 to 1.0 kcal/mol. The association
becomes more exergonic with the increasing number of atoms in the dispersion energy donors within
the Lewis pair. It is mostly unaffected by changes to the electron pair donor/acceptor properties of the
phosphane and borane.
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Chapter 5 Extended Conductor-like Polarizable Continuum Solvation Model (CPCM-X) for
Semiempirical Methods

The previous works that are part of this thesis (see Chapters 3 and 4) showed that the utilization of
state-of-the-art implicit solvation models in combination with robust quantum mechanical workflows
can yield an accurate prediction of properties for a wide variety of complex systems. However, even
the most advanced solvation models still have some shortcomings and are one of the main remaining
sources of errors for computational calculations. This problem is even more pronounced for the
less sophisticated but more efficient solvation models that are routinely used in combination with
semi-empirical models in the screening part of a multi-level workflow, like the analytical linearized
Poisson Boltzman (ALPB)26 solvation model. Additionally, these models are often limited to a certain
(narrow) range of solvents for which the necessary parameters are available, which reduces their
applicability for innovative approaches, like self-solvation (see chapter 3) or novel solvents. Replacing
the ALPB model with a more sophisticated solvation model, like the conductor-like screening model
for real solvents (COSMO-RS),28 would therefore not only possibly significantly increase the accuracy
but also greatly extend the range of applicability, as there would be no need for solvent-specific
parameterizations (see chapter 3). However, COSMO-RS depends on pre-performed density functional
theory (DFT) calculations utilizing the conductor-like screening model (COSMO)136 and is therefore
not easily usable with a semi-empirical method, like GFN2-xTB.85

The introduction of the eXtended Conductor-like Polarizable Continuum Model (CPCM-X) for
implicit solvation treatment solves these problems. The necessary DFT calculations are replaced with
semi-empirical calculations incorporating an efficient implementation of a domain-decomposited
conductor-like screening model (ddCOSMO).137 Using the results of these calculations, CPCM-X
can, therefore, utilize the COSMO-RS approach to describe the electrostatic interactions of the
solute with the solvent. Additionally, the non-electrostatic interactions are approximated using the
cavity-dispersion-solvent formalism introduced by the universal solvation model based on solute
electron density (SMD).30 This combination of a fast and efficient polarizable continuum model with
a sophisticated post-SCF approach to evaluate the respective results makes it possible to accurately
describe solute-solvent interactions for a wide variety of different solvents while still being more than
two orders of magnitude faster than a corresponding approach using DFT calculations.
CPCM-X is tested on various benchmark sets and consistently outperforms the default ALPB solvation
model implemented in the xTB program package. Especially for neutral compounds, CPCM-X
significantly improves the description of the solvation free energy. This is because CPCM-X is
intended to represent the subtle characteristics of solvent molecules in the immediate vicinity of the
solute molecule accurately (near-field interactions). This feature is particularly important for non-ionic
compounds, as opposed to ionic ones, where electrostatic interactions are expected to have a major
impact on solvent molecules that are further away (far-field interactions). For large supramolecular
complexes that exhibit significant non-electrostatic interactions, improvements of up to 30 % in terms
of mean absolute deviation and 40 % in terms of error range were observed.
The CPCM-X solvation model is specifically built and parametrized for the GFN2-xTB semi-empirical
method and natively interfaced with the xTB source code. Still, the theoretical framework is generally
method-agnostic and could, therefore, also be used with any DFT functional and quantum chemistry
software package. To make the task of parameter optimization as simple as possible, CPCM-X is built
as an open source library. This also vastly decreases the effort to implement the method into different
quantum chemistry software packages.
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Chapter 6 Improving Quantum Chemical Solvation Models by Dynamic Radii Adjustment for
Continuum Solvation (DRACO)

While the introduction of a new kind of solvation model for semi-empirical methods in Chapter 5
improved the description of solvation free energies for the low-level side of quantum chemical hierarchy,
it did not solve one of the inherent problems of many state-of-the-art implicit solvation models, which
is the determination of the solute cavity. This cavity is often created by overlapping van der Waals
spheres (see section 2.3.4 and 2.3.3), dependent on atomic radii. In fundamental solvation models
like the conductor-like polarizable continuum model (CPCM), these radii are statically allocated per
element, irrespective of the specific solvent or solute. However, it is a fact that a dynamic variation in
the cavity radius plays a crucial role in solute-solvent interactions.36–39 Yet it is often disregarded for
reasons of simplicity. Taking this aspect into account would certainly lead to a better understanding of
the chemical processes involved and may help to improve the overall result.
To solve this issue, over the course of this work, a generally applicable and efficient approach
for the determination of system-specific atom radii for solute cavity construction based on their
molecular environment is developed. The final method is termed Dynamic Radii Adjustment for
Continuum Solvation (DRACO). The DRACO approach uses atomic partial charges to model the
atomic environment, which are calculated by an interface to several highly efficient charge models
(EEQ92,139 and CEH140). In addition, it uses fractional coordination numbers analogous to the
D3 London dispersion model.91 DRACO relies on three parameters per element that are fitted on
experimental data from the Minnesota Solvation Database (MNSOL).141

While there are many different aspects of solvent-solute interactions, two main aspects are fathomed
by the DRACO approach. The first one is relatively simple and describes the effect of a varying
electron density on the atomic radii, i.e., less electron density should lead to smaller radii. However,
the second one takes the explicit solvent-solute interactions into account, which are influenced by
the local electron density. These interactions should depend on the polarity of the solvent and do not
necessarily align with the direct effect of the varying electron density (see Figure D.1). Therefore, the
different effects of a varying electron density can even partially cancel out each other.
The effects of the DRACO approach are demonstrated for the tautomeric equilibrium reaction of
glycin in water, where the introduction of dynamic radii significantly improves the prediction of the
tautomer equilibrium for all tested solvation models compared to experimental data.
To perform statistical analysis of solvation free energies, the DRACO method is evaluated not only on
the training data, but also on various benchmark sets. These benchmark sets include a wide range of
molecules, from small neutral ones to highly charged ions, as well as large supramolecular molecules.
This testing ensures the robustness of the DRACO approach. Combined with purely electrostatic
solvation models, like CPCM and COSMO, DRACO reduces the mean absolute deviation (MAD)
of the solvation free energy significantly by up to 4.5 kcal/mol (67 %). Even in combination with
the highly empirical universal solvation model based on solute electron density (SMD), DRACO
substantially reduces the MAD for charged solutes by up to 1.5 kcal/mol (39%), while neutral solutes
are still slightly improved (0.2 kcal/mol or 16%). Furthermore, the incorporation of dynamic radii in
implicit solvation models impacts not only static structure evaluations but also dynamic processes,
which is demonstrated by an investigation of the bond dissociation of HCl in water.
The DRACO program, which was developed in this work, is available to download for free as an
open source program on GitHub.142 The program is currently compatible with the Orca143 and
TurboMole144 program packages, but it has the potential to be used with any quantum chemistry
program that permits custom radii for cavity construction. Additionally, the DRACO program can be
easily extended to any radii-based solvation model and solvent in principle.
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CHAPTER 7

Conclusion and Outlook

This thesis explored the potential and limitations of modern computational chemistry, with a special
emphasis on sophisticated solvation models in combination with advanced quantum chemical methods.
Although the chemical space is vast and its enormous complexity seems rather limitless, it is no
longer unfathomable in many cases. Through the understanding of fundamental theory and with
the help of modern computational infrastructure, it is already possible to predict the outcome of
chemical reactions and various properties of unknown compounds for large parts of this space. The
advancement of new technologies, such as artificial intelligence and machine learning, combined
with the ever-increasing amount of readily available computing power through networked virtual
servers ("the cloud"), will continue to push the boundaries of what is possible in terms of accuracy
and processable system size. However, even with the capabilities of the cloud, it is still not possible
to consistently treat every structure with highly accurate methods, as the conformational space of a
single large flexible molecule can consist of hundreds of thousands of conformers. For this reason,
the conformational space is often explored by force fields in combination with efficient sampling
methods, like metadynamics or genetic algorithms that, while suitable enough for the creation of
(crudely ordered) conformer rotamer ensembles, often lack in terms of accuracy.
Because of that, there is a dire need for efficient and robust semi-empirical quantum chemical methods
(SQMs) like GFN2-xTB that allow the sampling of large conformer ensembles. While SQMs are
accurate enough for sorting out relatively high-lying conformers, they are still not able to reach the
accuracy needed for reliable property predictions, which are sensible to small changes in free energy.
Instead, the reduced conformational ensemble after sampling needs to be treated with higher-level
quantum chemical methods, like methods based on density functional theory (DFT). This combination
of various levels of theory for the accurate calculation of molecular properties is called a multi-level
workflow.
In chapters 3 and 4, the capabilities of such an advanced state-of-the-art multi-level quantum chemical
workflow to automatically calculate properties for a large variety of flexible and complicated compounds
were investigated, ranging from smaller organic molecules over typical drugs to large supramolecular
complexes and frustrated Lewis pairs. Non-covalent interactions largely dominate the latter, which
further increases the complexity of these compounds. Through the combination of robust methods
with huge databases containing molecular structures, it was possible to set up an automatic workflow
that enables even non-expert users to get accurate predictions from readily available molecular
identifiers, like Chemical Abstracts Service (CAS) registry numbers or simplified molecular-input
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line-entry system (SMILES) identifiers.15 In addition, this work demonstrated that by utilizing the
appropriate quantum chemical methods, it is possible to achieve comparable or even higher accuracy
than experiments for certain molecular properties, such as very low saturation pressures. This approach
is not only faster but also more accessible than experimental methods and less prone to errors that are
introduced by additional factors like impurities in the investigated compounds, application errors, or
ambient conditions. While there are methods available that allow a faster evaluation of properties
based on highly empirical quantitative structure-activity relationship (QSAR) models, these methods
often exhibit a strong bias if chemically diverse structures are investigated that are not well represented
by the training data used to create these models.
Despite the increasing possibilities, this work also showed that there are still some significant challenges
computational chemistry methods must overcome to provide an accurate and consistent description of
reality. One of the remaining sources of inaccuracies is the description of solute-solvent interactions.
Even the most sophisticated implicit solvation models investigated in this work, such as the Universal
Solvation Model Based on Solute Electron Density (SMD), yield insufficient results for certain
complex systems, especially charged or highly polar ones. This is because implicit solvation models
exhibit a high amount of empiricism and are often parameterized to yield an accurate description of
common small organic molecules. The underrepresentation of complicated systems in the training
data and the inflexibility of the implicit solvation models to adapt to polar systems leads to a wrong
description of the free energy. To further complicate the issue, the inaccuracy in solvation free energy
description on higher levels of theory is not the only possible source of errors, as solvent-solute
interactions can also be crucial in determining the molecular structure and a wrong geometry obtained
by lower-level sampling steps will influence the final result. Therefore, it is necessary to ensure high
accuracy on all levels of theory used in a multi-level workflow with enhanced conformational sampling
(cf. chapter 3).
For this reason, over the course of this work, a new solvation model for semi-empirical methods was
developed (chapter 5), which significantly enhanced the description of solvent-solute interactions
and thus the overall accuracy of the solvation free energy by methods, that are on the low-level
side of quantum chemical hierarchy. The extended conductor-like polarizable continuum model
(CPCM-X) is thereby based on an efficient implementation of a polarizable continuum model into
the extended tight-binding (xTB) program package. The calculated results are then post-processed
based on an approach first introduced by Klamt et al. for the conductor-like screening model for real
solvents (COSMO-RS).27 Additionally, the description of non-electrostatic contributions is enhanced
in comparison to the default analytical linearized Poisson Boltzman (ALPB) solvation model by the
introduction of a cavity-dispersion-solvent formalism, formulated by Marenich et al.30 CPCM-X
improves the description of solvation free energies by up to 30 % in terms of mean absolute deviation
and 40 % in terms of error range in comparison to the ALPB solvation model. In combination with
an efficient method for electronic energy calculations, it has already been utilized to accurately and
efficiently predict molecular properties.145 Nonetheless, while the CPCM-X model is able to enhance
the description of solvation effects significantly, it is inherently built for the semiempirical method
GFN2-xTB and, therefore, not out-of-the-box suitable for improving the final solution description at
the higher levels of theory (e.g. DFT) used for the final property prediction. This limitation could be
tackled by a reparametrization of the method, which would open up the need for accurate reference
data.
This is a problem because even highly sophisticated solvation models, like COSMO-RS,28 still show
inaccuracies, especially for solvents that have significant explicit interactions, like hydrogen bonds,
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or solutes with a strong variation in local electron density, like zwitterions. Creating a sufficient
amount of training data for the creation or the parameterization of solvation models becomes even
more troublesome due to the fact that there is no possibility to improve the solvation description
systematically, e.g., by switching to a higher level of theory. One reason for these inaccuracies may be
an insufficient description of the solute cavity, which plays a crucial role in how the solvent-solute
interactions are approximated. This cavity is mostly determined by overlapping van der Waals spheres,
built from static radii that often only depend on the element type of the atom. In reality, these radii
strongly depend on the chemical environment of the atom in question.
In chapter 6, this work introduced the DRACO approach for dynamically determining solute atomic
radii based on atomic partial charges and fractional coordination numbers that model this environmental
dependence. The DRACO approach systematically improved the solvation description, especially
for ionic and polar solvents, and was made available as an open source program package via GitHub.
During the development of the DRACO approach, it was discovered that the dependence of effective
atomic radii on the atomic partial charge or electron density varies between elements. The counteracting
effects are that the radii increase with smaller and more negative charges, but they decrease due to
shorter average solvent-solute interatomic distances.
The development of quantum chemical solvation models is still an ongoing process. Since solvent
interactions are crucial in many fields of chemistry and electronic structure methods are becoming
more precise, the demand for an improved and consistently improvable solvent description will
continue to increase in the future. Incorporating dynamic radii obtained with the DRACO approach
in current implicit solvation models can significantly advance the field. Alternatively, creating an
entirely new implicit solvation model that considers the insights gained from the development of the
DRACO approach may be a viable option for further improvement. With the increasing amount of
computer processing power, explicit solvation models may also be worth a deeper investigation, as
they have the huge advantage of explicitly modeling the near-field interactions. Combined with an
implicit solvation model that accurately models the far field, this approach could yield consistently
improvable results by using more sophisticated functionals for the explicit solvent calculation or by
adding additional solvent shells to the calculation.
To summarize, this work outlined the huge possibilities of modern computational chemistry with
state-of-the-art quantum chemical methods. In particular, one of the largest remaining sources of error,
the solvation contribution, was investigated in detail, and a new solvation model for semi-empirical
methods was developed that improved the description of solvent interactions for semiempirical
methods. For the general improvement of implicit solvation description with DFT methods, an
approach incorporating the environment of an atom in a molecule with the introduction of dynamic
radii into the continuum calculation was developed, significantly enhancing the description of ionic
and polar solutes. Incorporating these findings into the development of future solvation models may
further enhance their accuracy and robustness over the whole chemical space.
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APPENDIX A

Quantum Chemical Calculation of the Vapor
Pressure of Volatile and Semi Volatile Organic
Compounds

Abstract The vapor pressure is a specific and temperature-dependent parameter that describes the
volatility of a substance and thus its driving force for evaporation or sublimation into the gas phase.
Depending on the magnitude of the vapor pressure, there are different methods for experimental
determination. However, these are usually associated with a corresponding amount of effort and
become less accurate as the vapor pressure decreases. For purposes of vapor pressure prediction,
algorithms were developed that are usually based on quantitative structure–activity relationships
(QSAR). The quantum mechanical (QM) approach followed here applies an alternative, much less
empirical strategy, where the change in Gibbs free energy for the transition from the condensed to the
gas phase is obtained from conformer ensembles computed for each phase separately. The results of
this automatic, so-called CRENSO workflow are compared with experimentally determined vapor
pressures for a large set of environmentally relevant compounds. In addition, comparisons are made
with the single structure-based COSMO-RS QM approach, linear-free-energy relationships (LFER)
as well as results from the SPARC program. We show that our CRENSO workflow is superior to
conventional prediction models and provides reliable vapor pressures for liquids and sub-cooled
liquids over a wide pressure range.
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Figure A.1: Phase diagram with boiling point (b.p.) and vapor pressures for solid (𝑃𝑆) and sub-cooled liquid
(𝑃𝐿) (see dashed curve).

A.1 Introduction

The increasing production of new chemicals makes it hard for producers to accurately determine
or predict their physical properties before being released into the life cycle. The vapor pressure
at a given temperature is of central importance in describing the behavior of a substance in the
environment. The phase transitions from liquid to gaseous and solid to gaseous can be characterized,
the saturation concentration in the gaseous phase can be calculated, the vapor pressure is linked to
Henry’s constant,120 and finally, the adsorption tendency of substances on particle surfaces can be
estimated.146

Even if a pure substance is solid at room temperature, the vapor pressure of its sub-cooled melt can
still be of physical importance. This is the case, for example, when the substance is dissolved in a
liquid medium. Therefore, the vapor pressure of the sub-cooled liquid is always used to describe
partitioning processes.147 In a phase diagram, the sub-cooled liquid state is the extension of the liquid
phase vapor pressure line below the triple point temperature, as shown in A.1.
For many compounds, the vapor pressure can be measured very accurately.148 However, the determ-
ination is methodologically complex. Unless it is a chromatographic method,121 highly purified
substances are needed. Even small amounts of contamination can severely disrupt the measurement.
Moreover, several measurements at different temperatures are usually required. In general, the lower
the vapor pressure, the more sophisticated and error-prone the measurement becomes. Experiments
are therefore often carried out at higher temperatures and the result is then extrapolated to the desired
temperature using the Antoine equation.149 This is a convenient procedure as long as there is no phase
transition between the measuring range and the extrapolated temperature.
Because of these experimental difficulties and uncertainties, there is a need to estimate vapor pressure
using other, more readily available procedures. The simplest theoretical models are based on the
Pictet–Trouton rule, which states that the vaporization entropy reaches a constant value at the boiling
point. From the calculated enthalpy of vaporization at the boiling point and with the help of correction
factors introduced by Fishtine,150 the vapor pressure of a compound can then be linked to the boiling
point.151–153
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An alternative approach is chemical structure-based and calculates the excess Gibbs free energy of a
compound in a liquid from the contributions of its characteristic groups.154,155 Another possibility is
to use empirical linear free energy relationships (LFER) to calculate the vapor pressure of a compound
(see below for a more detailed discussion). The algorithm implemented in SPARC (Sparc Performs
Automated Reasoning in Chemistry)122 is widely used to predict vapor pressures. However, it was
repeatedly found that the values calculated with SPARC for substances with low vapor pressures
(approximately < 10−2 Pa) are too small.123,124 This may be attributed to missing data points in the
calibration for low pressures or that the involved more significant intermolecular interactions cannot
be fathomed with pure empiricism.

Quantum mechanical (QM) methods enable the calculation of fundamental thermodynamic properties
of molecules and compute vapor pressures from the difference in Gibbs free energy between the
condensed and gaseous states of a molecule. The three-dimensional structure of a molecule is
explicitly considered. For several organic compounds, vapor pressures have been estimated using
density functional theory (DFT) based quantum mechanics,156–160 primarily using the COSMO-RS
(conductor-like screening model for realistic solvation) method, developed by Klamt and co-workers.28

While this is straightforward for small, usually quite rigid molecules, open questions arise for larger,
often conformationally rather flexible systems. Most important seems to be the dependence of vapor
pressure on the available conformational space, which to the best of our knowledge, has not been
studied systematically so far. The composition of conformational ensembles and the three-dimensional
structures of individual conformers are highly dependent on the environment and can differ widely
between solution and gas phase, e.g., the shortest n-alkane with a nonlinear global conformer minimum
changes when solvent and temperature (entropy) effects are considered.161 Neglecting conformational
changes from the condensed to the gas-phase state in theoretical procedures could potentially lead to
significant errors in the computed Gibbs free energy difference.

In a previous publication, we proposed a general multilevel QM workflow to determine liquid phase
partition coefficients for molecules and tested it on compounds with environmental relevance.5 Key
aspects of this workflow are an automated, comprehensive exploration of the conformational space
by artificially changing the potential energy surfaces of the compounds in the CREST125 program
to find many energetically low-lying conformers in solution, followed by re-ranking of the resulting
conformer ensembles at higher DFT levels of theory using an energetic sorting and optimization
algorithm (ENSO).12 The combination of these ensemble generation and post-processing methods
was dubbed CRENSO. We showed that depending on the flexibility and complexity of a system, the
conformer space can have a significant impact on the thermally averaged observables. For example, the
computed Kow (octanol/water) values improved by up to 1.8 log units when conformational averaging
was considered. For more conformer-sensitive properties, like optical rotation,116 the effects can be
even more drastic and completely change the computed property value.

In this work, we will therefore mostly focus on flexible organic compounds with low vapor pressures
for which both the theoretical methodology and the data are currently insufficient. After setting
a baseline by comparing our computationally obtained values to reliable reference data from the
literature, we also investigate newly emerging, environmentally relevant compounds like plasticizers,
biocides and pharmaceuticals, for which no reliable vapor pressure data are available.
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A.2 Methods

A.2.1 CRENSO

To accurately describe conformational effects in our workflow, we need to be able to sample the
target compound independently in the condensed and gas phase to calculate the Gibbs free energy
change. This is necessary because different three-dimensional molecular structures can be stabilized
by enhanced or damped interactions in one of the two phases. While the idea of sampling the
conformational space to obtain various solvation-dependent properties is not new,162 widespread
approaches such as COSMOconf still show large errors for flexible compounds with RMSE’s (root
mean square errors) of about 2.16 kcal/mol,163 which can probably be attributed to the heuristic
approach of conformer sampling and low-level DFT reranking,164 making it easy to miss an important
conformer. In addition, it can be hard to find the correct settings and conformer distributions, leading
to errors of up to 4.69 log units for highly flexible systems,165 if used without any customization. This
makes sampling the chemical space of a compound a tedious work, and the CRENSO12 workflow
proved a valuable tool for automatizing such exploration without the need to adjust default settings
manually.
Figure A.2 shows a short schematic overview of the applied workflow, with slight changes applied
here to the solvation treatment (see below). For a more detailed description, we refer to our previous
work on partition coefficients.5

Figure A.2: Abbreviated version of the CRENSO workflow. The sampling solvent is used for the creation of the
CREST ensemble, while the more accurate COSMO-RS based self-solvating procedure is used for the final
CENSO ensemble and property calculations.

In short, we utilize very fast force-field (GFN-FF)118 and semi-empirical QM (GFN2-xTB)85 methods
to extensively explore the chemical space and create an initial ensemble with conformer candidates.
Then, by using carefully selected higher-level DFT methods (B97-d,166 def2-SV(P)167 and r2SCAN-
3c126), this initial ensemble is energetically screened, and higher lying conformers are sorted out
before the next higher level of theory is employed. In all steps, we use appropriate solvation
models (ALPB,26,25 and COSMO-RS27,28,), which are selected based on the respective accuracy and
computational effort of the underlying method. Thermostatistical contributions are included using the
single-point Hessian approach.168

The free energy of a molecule in each phase can then be determined by a Boltzmann weighted average
over the free energies of the conformers in the ensemble giving 𝐺

∗
liq for the liquid and 𝐺

∗
𝑣𝑎𝑝 for the

vapor state, both determined at the standard conditions of 1 mol·l−1.169 Following Ben-Naim169 from
these quantities, the vapor pressure P can be obtained from the equilibrium between the liquid and
vapor state via equation A.1,

𝑃 =
𝑅𝑇𝜌liq

𝑀𝑊
· exp

(
1
𝑅𝑇

· (𝐺∗
liq − 𝐺

∗
vap)

)
(A.1)
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where 𝜌liq is the mass density of the liquid and MW is the molar weight. The here considered vapor
pressure of a neat compound refers to the situation of a molecule surrounded by other molecules of
the same chemical structure in the condensed phase, which can be understood as a self-dissolved
compound.25 Note, that we cannot distinguish at this point between a (sub-cooled) liquid and solid
phase, which both are treated here as a liquid. However, standard QM based solvation models like
PCM or SMD30 are usually only parameterized for a fixed set of common solvents and the necessary
self-solvation treatment is impossible. The only available model which consistently can compute
the necessary input data for any solvent on the fly while simultaneously calculating the properties
of the same solute is the sophisticated COSMO-RS solvation approach. It is used at the very end of
our workflow for high accuracy predictions of the remaining most populated conformers and is a
post-processing solvation model based on the conductor-like screening theory (COSMO).136 This
makes it possible to calculate the molecular input data for the solvation calculation, specifically using
the same geometry and QM data for the solute and the solvent using the default COSMO-RS molar
framework. However, the state correction, which incorporates the mass density 𝜌liq of the liquid
state, see A.1, is also used in COSMO-RS and is generally not always known. For this reason, we
use the density of liquid water and set 𝜌liq = 997 kg·m−3. This would introduce an error in terms
of Δ𝐺

∗
= 𝐺

∗
liq − 𝐺

∗
vap of not more than 0.1 kcal/mol, which is smaller than the expected standard

deviation of our workflow which can be estimated from typical errors of COSMO-RS for solvation free
energies of about 0.8 kcal/mol.23 The analytical linearized Poisson Boltzmann (ALPB)25,26 implicit
solvation model used for the initial generation of conformer ensembles in our procedure (CREST step)
is only parameterized for a fixed set of common solvents, and a self-solvation treatment is not feasible.
However, neglecting the influence of the solvent entirely when creating the conformer ensemble can
lead to significant errors. Therefore, in the first steps of the calculations, we used solvents, that
were parameterized for the ALPB solvation model and have a similar dielectric constant as the target
compound. These so-called sampling solvents for each compound can be found in the ESI.
With this approximation, we are still able to create differing conformer ensembles for the condensed
and gas phase in the early stages of the workflow without the need to explicitly parameterize the ALPB
solvation model for each new compound. The final solvation contributions are always computed at the
COSMO-RS level and hence are specific for each target compound.

A.2.2 COSMO-RS

As a post-processing method, COSMO-RS uses input files created by density functional theory (DFT)
calculations. These calculations were once performed as single point calculations on optimized
random conformers (R) obtained from the PubChem database170 and once on the optimized structure
from the lowest lying-conformer (L) obtained after our workflow in the self-solvated phase as described
above with the r2SCAN-3c126 composite method. If there was no 3D conformer available from the
PubChem database, the corresponding 2D conformer was converted to a 3D structure for the random
conformer using the 3D structure converter implemented in the xTB program.171 The COSMO-RS
calculations on these single structures for comparison with the complete CRENSO treatment were also
performed using COSMO-RS version ‘16’ with fine parametrization. Vapor pressures were obtained
using the intrinsic vapor pressure routine implemented in COSMOtherm. These calculations mainly
serve to illustrate the effect of including extended conformer ensembles for the property calculation.
Note that we use the term “COSMO-RS” throughout our work to calculate the COSMO-RS solvation
free energy for a given molecular structure or a complete conformer ensemble after the CRENSO
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workflow. This approach should not be confused with the result of the recommended procedure in the
COSMOconf/COSMOtherm commercial software.

A.2.3 LFER and SPARC

Poly-parameter linear free energy relationships (pp-LFER) describe a set of tools to predict physical
and thermodynamic properties and partition coefficients of organic compounds. The general method
is based on the determination of the following compound descriptors: the molar volume (V𝑖),
the excess molar refraction (E𝑖), the logarithmic hexadecane/air partitioning coefficient (L𝑖), the
H-donor, or electron acceptor property (A𝑖), the H-acceptor or electron donor property (B𝑖) and a
dipolarity/polarizability parameter (S𝑖).

172 Some of the parameters are accessible experimentally, V𝑖 is
usually determined using the McGowan increment method.173 Schwarzenbach et al.147 applied a data
set of 199 apolar, monopolar, and bipolar organic compounds with known, experimentally determined
vapor pressures to obtain an LFER for predicting the vapor pressure of a sub-cooled liquid with L𝑖,
S𝑖, A𝑖, and B𝑖. The experimental vapor pressure range covered more than 12 orders of magnitude
(log 𝑃𝐿 (𝑃𝑎) ≈ −6 → +6). Using multiple regression analysis, equation A.2 was obtained (R2 = 0.99;
SD = 0.30).

log 𝑃𝐿,𝑖 (298𝐾) = −0.89 · 𝐿𝑖 − 0.44 · 𝑆2
𝑖 − 5.43 · 𝐴𝑖 · 𝐵𝑖 + 6.51 (A.2)

Equation A.2 was used to calculate the vapor pressures (in Pa) of the compounds discussed in this work.
The required LFER coefficients L, S, A and B are listed in the ESI. All experimentally determined
coefficients were taken from the UFZ-LSER database.174 If experimental data were not available,
these were calculated based on SMILES (simplified molecular input line entry specification) structure
codes using a QSAR tool implemented in the UFZ-LSER database.
The SPARC algorithm uses a summation over interaction forces between molecules (dispersion,
induction, dipole and H-bonding). The energies are expressed in terms of molecular-level descriptors
(volume, polarizability, dipole moment and donor/acceptor properties). These are calculated from the
molecular structure. The computational approach combines LFER, structure–activity relationships
and molecular orbital theory.122 SPARC needs the melting point to calculate the vapor pressure. If this
was not available, or if the substance was solid at 298 K (see ESI), “assume not solid” was selected in
the SPARC menu. The SPARC vapor pressure algorithm was trained with 747 experimental data for
298 K in a vapor pressure range between approximately 5 · 10−7 atm and 50 atm.175

Both LFER and SPARC use the SMILES notation to calculate descriptors and parameters. Please
note that SMILES only describes the basic structure of molecules, but not specific conformers.

A.2.4 Compounds

Reliable vapor pressure measurements are available for a large number of organic compounds. The
recommended measurement method depends on the corresponding volatility. An OECD publication
lists eight methods for the range between 10−10 Pa and 105 Pa.148 All methods are experimentally
complex and require highly purified substances. In comparison, the gas chromatographic method, as
described by Hinckley et al.,121 needs only small amounts of substance and is much simpler.
For testing and validation of the CRENSO method, a total of 41 volatile and semi volatile organic
compounds, so-called VOCs and SVOCs,176 were selected, for which experimentally determined
vapor pressures are available. Of these, 40 data were rated as reliable, only the experimental vapor
pressure for dihexyl phthalate (DHP) was doubtful. A vapor pressure range of 10−6 Pa to 102 Pa
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Figure A.3: (A) Correlation between experimental (see Table A.1) and calculated data (CRENSO, see Table
A.2) for 40 reference compounds (DHP was not considered), (- - -) is the 1:1 line. (B) Residual analysis of
experimental data versus calculated CRENSO data. The residues are normally distributed (Shapiro–Wilk test,
5 % level) with AM = 0.03 and SD = 0.54.

was covered at 298 K. The molecular flexibility of the substances varies widely, as do properties
such as polarity, water solubility and partition coefficients. All compounds have no or only weak
donor/acceptor properties. These substances (named “reference compounds” in the following) are
compiled in table A.1. The vapor pressures relate to the liquid phase or the sub-cooled melt. If
necessary, the units were converted to Pascal (Pa). In the ESI, the melting point, boiling point and
enthalpy of vaporization are also provided.
For further, unbiased comparison with LFER and QSAR methods, 21 relevant compounds from the
groups of plasticizers, biocides and pharmaceuticals were selected, whose vapor pressures are not
sufficiently known. With some certainty, these compounds have so far not been used for the calibration
of vapor pressure prediction methods. The plasticizers are compounds currently used in products that
have completely or partially replaced classic additives.204 Many of the selected pharmaceuticals were
identified as emerging contaminants in wastewater.205 The biocides are included in the list of biocidal
products that may be made available on the market and used, e.g. in Germany due to an ongoing
decision-making process.206

A.3 Results

All vapor pressure calculations for the 41 reference compounds from table A.1 are summarized in
table A.2. The decimal logarithm of the vapor pressure P𝐿 (Pa) is given in each case. If the respective
substance is solid at 298 K, the value represents the vapor pressure of the sub-cooled liquid.
Figure A.3 (A) shows the direct comparison of the experimental values from Table A.1 with the values
from Table A.2 calculated using CRENSO (COSMO-RS). Because our workflow contains stochastic
elements, the average from three independent runs is provided. The corresponding standard deviation
is usually smaller than the inherent error of the underlying QM methods. DHP was not taken into
account because the experimental value appeared implausible. The data scatter around the 1:1 line,
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Table A.1: Logarithmic saturation vapor pressures log P𝑟𝑒 𝑓 .
𝐿

of the reference compounds. All data for 298 K,
SL = sub-cooled liquid

Compound Abbr. CAS log Pref.
𝑳

n-Decane C10 124-18-5 2.26177

n-Hexadecane C16 544-76-3 –0.72178

n-Tridecylbenzene TDB 123-02-4 –2.15179,180

3-Cresol 3CR 108-39-4 1.26181

Naphthalene (SL) NAP 91-20-3 1.57182

Anthracene (SL) ANT 120-12-7 –1.14182

Fluoranthene (SL) FLU 206-44-0 –2.22182

2-Butoxy ethanol EGBE 111-76-2 2.06183,184

1-Undecanol UDC 112-42-5 –0.36185

Oleyl alcohol OA 143-28-2 –3.43186

Glycerol GLY 56-81-5 –1.60187

Benzophenone (SL) BP 119-61-9 –0.80188

Benzophenone-3 (SL) BP-3 131-57-7 –2.32188

Homosalate HS 118-56-9 –1.96189

Dimethyl phthalate DMP 131-11-3 –0.52190

Diethyl phthalate DEP 84-66-2 –1.00191

Di-n-butyl phthalate DnBP 84-74-2 –2.37192

Butyl benzyl phthalate BBzP 85-68-7 –3.70192

Dihexyl phthalatea DHP 84-75-3 (–2.96)193

Di-(2-ethylhexyl) phthalate DEHP 117-81-7 –4.80124,192

Di-(2-ethylhexyl) terephthalate DEHTP 6422-86-2 –5.27192

Methyl palmitoleate MP 1120-25-8 –2.29194

Glutaric acid (SL) GA 110-94-1 –3.00195

Pimelic acid (SL) PA 111-16-0 –3.66195

Tris-(2-ethylhexyl) phosphate TEHP 78-42-2 –4.52189

Tris-(2-butoxyethyl) phosphate TBOEP 78-51-3 –4.17189,196

2,4,4´-Trichlorobiphenyl (SL) PCB-28 7012-37-5 –1.57197

2,2´,4,5,5´-Pentachlorobiphenyl (SL) PCB-101 37680-73-2 –2.60197

2,4,5,2´,4´,5´-Hexachlorobiphenyl (SL) PCB-153 35065-27-1 –3.21197

2,2´,3,4,4´,5,5´-Heptachlorobiphenyl (SL) PCB-180 35065-29-3 –3.96197

1,10-Dichlorodecane C10Cl2 2162-98-3 –0.30198

1,2,11,12-Tetrachlorododecane (SL) C12Cl4 210115-98-3 –2.46198

2,2´,4,4´-Tetrabromodiphenyl ether (SL) BDE-47 5436-43-1 –3.49199

2,2´,4,4´,5-Pentabromodiphenyl ether (SL) BDE-99 60348-60-9 –4.17199

1,2,3,4,5-Pentabromo-6-ethyl benzene (SL) PBEB 85-22-3 –2.54189

Dodecamethylcyclohexasiloxane D6 540-97-6 0.35200

Hexadecamethylheptasiloxane L7 541-01-5 –1.13200

Octadecamethyloctasiloxane L8 556-69-4 –2.03200

pp´-DDT (SL) DDT 50-29-3 –3.32189,201

Diazinon DZN 333-41-5 –2.23202,203

Fipronil (SL) FIP 120068-37-3 –5.72202
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Table A.2: Calculated logarithmic vapor pressures for liquids and sub-cooled liquids. CRENSO (calculated
with COSMO-RS) represents the recommended method described in this work. SD is the standard deviation
from three independent calculations. The LFER data were calculated from equation A.2. The SPARC data were
obtained from https://archemcalc.com/sparc.html. The COSMO-RS calculations with R = Random and L =
Lowest were obtained as described in the respective section

Compound CRENSO SD CRENSO LFER SPARC COSMO-RS (R) COSMO-RS (L)
C10 2.28 0.12 2.34 2.28 1.93 1.87
C16 –1.14 0.05 –0.41 –0.82 –1.40 –1.48
TDB –2.97 0.23 –1.93 –2.53 –3.39 –3.44
3CR 1.01 0.07 1.28 1.62 0.78 0.81
NAP 1.48 0.00 1.54 1.52 1.14 1.14
ANT –0.81 0.07 –1.02 –1.31 –1.21 –1.22
FLU –1.75 0.08 –2.40 –2.07 –2.11 –2.13
EGBE 2.52 0.15 1.66 1.70 0.57 1.58
UDC –0.76 0.01 0.01 –0.64 –1.21 –1.22
OA –3.51 0.33 –3.50 –4.15 –3.85 –3.56
GLY –0.69 0.03 –0.72 –1.26 –4.00 –4.33
BP –0.87 0.02 –0.58 –0.74 –1.72 –1.30
BP-3 –2.40 0.02 –2.53 –3.79 –6.56 –2.71
HS –2.12 0.02 –1.72 –2.44 –5.23 –2.36
DMP –0.92 0.05 0.26 –1.25 –1.62 –1.23
DEP –1.09 0.31 –0.40 –1.82 –2.38 –1.72
DnBP –2.47 0.22 –2.18 –3.47 –3.14 –3.13
BBzP –4.49 0.09 –4.12 –5.47 –6.26 –4.89
DHP –4.49 0.35 –4.11 –5.40 –4.70 –4.64
DEHP –4.73 0.20 –5.48 –6.85 –9.40 –7.08
DEHTP –5.40 0.30 –4.96 –6.44 –9.40 –6.80
MP –1.68 0.74 –1.59 –1.95 –1.92 –1.98
GA –2.47 0.09 –2.23 –4.03 –4.40 –3.25
PA –3.28 0.43 –3.90 –5.10 –4.92 –4.29
TEHP –4.54 0.43 –4.39 –6.13 –6.56 –5.81
TBOEP –3.85 0.75 –3.76 –4.80 –9.08 –6.63
PCB-28 –1.07 0.06 –1.30 –2.05 –1.51 –1.83
PCB-101 –1.80 0.01 –2.52 –3.59 –2.41 –2.60
PCB-153 –2.56 0.01 –3.35 –4.61 –2.97 –3.04
PCB-180 –2.90 0.04 –4.30 –5.71 –3.61 –3.69
C10Cl2 –0.61 0.06 0.42 –0.24 –0.77 –1.11
C12Cl4 –2.77 0.05 –1.77 –2.59 –4.06 –3.40
BDE-47 –4.18 0.01 –3.90 –5.18 –4.96 –4.95
BDE-99 –5.16 0.00 –4.92 –6.87 –6.08 –5.91
PBEB –2.72 0.00 –3.07 –4.23 –3.21 –3.16
D6 –0.89 0.19 1.09 –0.23 –1.45 –1.80
L7 –1.79 0.01 –0.48 –0.27 –3.38 –2.44
L8 –2.75 0.16 –1.33 –1.08 –3.15 –3.57
DDT –3.11 0.00 –3.77 –4.19 –3.58 –3.58
DZN –2.74 0.39 –1.28 –3.10 –3.03 –3.10
FIP –5.13 0.08 –8.35 –4.60 –9.16 –6.42
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Figure A.4: (A) Correlation between calculated CRENSO data and COSMO-RS data (see Table A.2) for 41
reference compounds, (- - -) is the 1:1 line. (B) Correlation between calculated CRENSO data, calculated LFER
and SPARC data (see Table A.2) for 41 reference compounds, (- - -) is the 1:1 line.

systematic deviations are not recognizable. This is also supported by the residual analysis (difference
between experimental and calculated value) shown in Figure A.3 (B). The data are normally distributed
at the 5 % level, and the Grubbs outlier test was negative. The arithmetic mean is AM = 0.03 and the
standard deviation SD = 0.54.

It is also important which results our CRENSO method delivers in comparison to other calculation
tools. In Figure A.4 (A) this is shown for COSMO-RS, based on both, the random conformer (R) and
the lowest-lying conformer (L). A clear deviation from the 1:1 line is obvious, which increases with
lower vapor pressures. A similar behavior can be seen for the comparison with SPARC, as shown in
Figure A.4 (B). Here, too, large deviations from the 1:1 line can be observed in the area of low vapor
pressures. In contrast, the correlation with the LFER method is comparatively good. However, a clear
exception is the substance fipronil (FIP).

Table A.3 lists 21 relevant substances from the categories of plasticizers, biocides and pharmacologically
active ingredients for which, to the best of our knowledge, no reliable vapor pressure data are available.
For these substances, the vapor pressures or the vapor pressures of the sub-cooled liquid were calculated
using CRENSO, LFER and SPARC. The results are also shown in Table A.3. Substances were
deliberately chosen for which a low vapor pressure (< 1 Pa) was to be expected.

The graphical comparison of the CRENSO versus LFER and SPARC data is displayed in Figure A.5.
For SPARC, the correlation is similar to that of the reference compounds shown in Figure A.4 (B):
larger deviations with decreasing vapor pressure. However, it is immediately apparent that for these 21
compounds of emerging interest, the correlation between log 𝑃𝐿 using CRENSO and LFER is also
significantly lower than for the reference compounds.
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Table A.3: Calculated vapor pressures (Pa) for liquids and sub-cooled liquids. CRENSO (calculated with
COSMO-RS) represents the recommended method described in this work. The LFER data were calculated
from equation A.2. The SPARC data were obtained from https://archemcalc.com/sparc.html

Compound Abbr. CAS CRENSO LFER𝒂 SPARC𝒃

Plasticizers
Di-2-propylheptyl phthalate DPHP 53306-54-0 –5.40 –6.71 –8.87
Di-isononyl phthalate𝑐 DINP 28553-12-0 –5.09 –6.65 –8.04
1,2-Cyclohexane dicarboxylic acid DINCH 166412-78-8 –4.50 –6.22 –6.88
diisononyl ester𝑑

Tri-(2-ethylhexyl) trimellitate TOTM 3319-31-1 –8.22 –9.15 –12.11
Di-iso-butyl adipate DIBA 141-04-8 –1.13 –0.61 –1.35
Di-n-butyl adipate DnBA 105-99-7 –0.75 –1.25 –1.54
Di-2-ethylhexyl adipate DEHA 103-23-1 –3.51 –3.92 –5.08
Di-isononyl adipate𝑒 DINA 33703-08-1 –4.51 –5.16 –7.12

Biocides
Acetamiprid (SL) ACP 135410-20-7 –5.36 –1.59 –2.15
Icaridin (SL) ICD 119515-38-7 –0.71 –2.26 –3.08
Cyromazine (SL) CMZ 66215-27-8 –5.73 –4.76 –5.19
Diflubenzuron (SL) DFB 35367-38-5 –5.17 –3.66 –6.14
Cyphenothrin CPT 39515-40-7 –5.88 –7.07 –6.96
Methoprene (SL) MTP 40596-69-8 –3.00 –1.67 –3.54

Pharmaceuticals
Bisoprolol (SL) BPL 66722-44-9 –4.04 –8.02 –6.47
Diclofenac (SL) DIC 15307-86-5 –4.23 –7.11 –6.68
Dapagliflozin (SL) DLF 461432-26-8 –9.61 –19.56 –17.85
Ibuprofen (SL) IBU 15687-27-1 –1.91 –2.50 –2.3
Metoprolol (SL) MPL 51384-51-1 –2.67 –2.22 –4.58
Naproxen (SL) NPX 22204-53-1 –4.05 –5.66 –4.65
Torasemide (SL) TS 56211-40-6 –8.26 –13.44 –9.66

𝑎 Vapor pressure for the sub-cooled liquid.147 𝑏 It was assumed that the substance is not solid at room temperature.
SMILES are for isomers: 𝑐 bis(7-methyloctyl) phthalate 𝑑 bis(7-methyloctyl) 1,2-cyclohexanedicarboxylate 𝑒 bis(7-methyloctyl) adipate.

A.4 Discussion

A.4.1 Comparison of CRENSO calculations with experimental data

For substances that are liquid at room temperature and have sufficient volatility, the vapor pressure and
enthalpy of vaporization can be determined experimentally with high accuracy. As can be seen from
Figure A.3 (B), the deviations between experimental and CRENSO data have a standard deviation of
approximately 0.5 log units. This means that the vapor pressure can be calculated approximately to a
factor of 3. It is therefore clear that the CRENSO calculations for volatile substances deliver results,
which can be regarded as reasonable trends. A typical example is 2-butoxyethanol (EGBE). Koga183

has accurately determined temperature-dependent values for this substance. At 298 K the experimental
vapor pressure is 105 Pa, while CRENSO gives 331 Pa. This difference is of practical importance
since vapor pressures are used to calculate saturation concentrations for inhalation exposure tests.207

Nevertheless, the deviation is within the predicted error of the CRENSO method.
A completely different situation arises for substances with low volatility, especially at vapor pressures
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Figure A.5: Correlation of the calculated logarithmic vapor pressure using the LFER and SPARC method with
the CRENSO data (see Table A.3) for the 21 compounds of emerging interest, (- - -) is the 1:1 line.

< 10−2 Pa. The Knudsen and Langmuir methods are particularly suitable in this range, but require
highly purified substances and temperature-dependent measurements and are only useful if no phase
transition occurs in the temperature interval of interest. Therefore, the vapor pressure of the sub-cooled
liquid 𝑃𝐿 often has to be extrapolated from measurements of the melt using the Antoine equation.149

Here, however, the problem can arise that organic compounds, such as fipronil, decompose at higher
temperatures. This leaves only a small temperature window for the measurements, which further
reduces the accuracy. Alternatively, indirect methods can be applied to determine P𝐿 , for example
via gas chromatography.189 The vapor pressure of a sub-cooled liquid plays a role in atmospheric
chemistry. On the basis of previous work, Pankow146 states that this parameter is more important for
determining a gas/particle equilibrium than the vapor pressure of the subliming solid. Below a vapor
pressure of approximately 10−2 Pa, direct measurements are usually associated with a great deal of
effort and become increasingly inaccurate. For the substance DEHP alone, Mackay et al.208 list more
than 20 values for vapor pressures at room temperature, some of which differ by orders of magnitude.
Attempts were made to develop alternative measurement methods for compounds of low volatility.124

However, these are also associated with larger experimental inaccuracies. In comparison with the
experimental data, we are convinced that in the range between 10−2 Pa and 10−5 Pa, the CRENSO
method does not lead to worse results than direct vapor pressure measurements. Furthermore, we
believe that at vapor pressures < 10−5 Pa, our theoretical method is even more reliable.

A.4.2 Comparison of CRENSO calculations with LFER and SPARC data

Not particularly surprising is the fundamentally good agreement between the CRENSO and LFER
data. Many of the approximately 200 compounds used for the multiple regression of equation A.2 are
also listed in Table A.1. Among others, these include alkanes, PCBs, PAHs, phthalates and brominated
diphenyl ethers, the descriptors of which are well known.147 The CRENSO calculations and the LFER
results were at least partially evaluated using the same reference data, so the comparison is biased.
It is important to note at this point, that while COSMO-RS in itself contains empirical parameters,
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nothing has been specially adapted here or adjusted for the calculation of vapor pressures.
However, the differences between the methods are already clear from Figure A.3 (B) and exemplified
in the case of fipronil (FIP). Here, the LFER descriptors had to be calculated using QSAR. At the
same time, it is known that fluorinated compounds cannot be represented by the descriptors of
hydrocarbon-based compounds.209 The differences for the compounds of emerging interest listed
in Table A.3 are even more striking (see Figure A.4 (B)). Again, most of the descriptors had to be
calculated from the SMILES using QSAR. Overall, as expected, the correlation between CRENSO
and LFER for these compounds is unsatisfactory. For this reason, we also refrained from comparing
the reported statistical errors and standard deviations. We can assume that with the CRENSO method,
there is an uncertainty of 0.5 log units for all substances. In the case of the LFER method, a standard
deviation of 0.3 log units, the standard deviation of equation A.2, can only be assumed if the target
compound is structurally related to the calibration compound.
With regard to SPARC the results are clear and no extensive discussion is required. It was found
earlier that SPARC gives unsatisfactory results in the range of low vapor pressures.123 Here too,
both the reference compounds (see Figure A.4 (B)) and the compounds of emerging interest (see
Figure A.5) clearly show that SPARC fails at vapor pressures < 1 Pa. The reason for this may be
methodological. The SPARC algorithm was trained with 747 substances, but none of them had a
vapor pressure < 5 · 10−7 atm (< 0.05 Pa).175

A.4.3 Conformational flexibility and comparison with COSMO-RS

Common programs that can predict vapor pressures are often based on qualitative structure–activity
relationship methods (QSAR).122 They mostly use group contributions methods based on a single
molecular structure. In addition, empirical methods are highly dependent on the available experimental
data that was used to train the respective methods. This makes these methods prone to errors for
molecules that were not in the scope of the trained data or cannot be described by the same structure
in both phases. This is especially true for compounds with small vapor pressure since the condensed
phase will be dominated by strong interactions between the molecules, whereas these are not present
in the gas phase and, in part, are replaced by intramolecular non-covalent interactions.
For this reason, the SPARC program may yield very reasonable results for compounds with higher
vapor pressure while failing for compounds with lower vapor pressure, which can be seen in Figure
A.4 (B) and A.5. Figure A.6 shows a statistical analysis of the errors made by LFER, SPARC and
CRENSO for lower and higher vapor pressure. The CRENSO workflow and LFER show very similar
statistics for the complete set of molecules, with a mean absolute deviation (MAD) between 0.44
and 0.50 log units depending on the vapor pressure of the compounds. On the other hand, SPARC
significantly undershoots for compounds with small vapor pressures, reaching a MAD between 0.39
log units for higher vapor pressures and 1.23 log units for lower ones. For the entire data set, SPARC
reaches a MAD of 0.87 log units, a standard deviation (SD) of 0.91 log units and a root mean square
deviation (RMSD) of 1.10 log units.
Before going into a detailed analysis of the errors that would arise in quantum chemical approaches
due to the neglect of conformational flexibility, let us use fipronil (FIP) as an example to explain the
difference in conformational energy contributions between two phases. Figure A.7 shows the lowest
conformer of fipronil found in the condensed phase by our workflow and the lowest conformer in
the gas phase. For simplicity, we consider only one structure for each phase instead of a complete
ensemble of conformers. The free energy diagram on the right side of the figure shows the calculated
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Figure A.6: Statistical errors for the tested theoretical methods. The molecule sets are splitted (depending on
the reported literature value for the vapor pressure) in two parts with lower (< 10−2 Pa) and higher (> 10−2 Pa)
vapor pressure.

Figure A.7: Lowest conformer of fipronil (FIP) in gas phase and in condensed phase (blue). The energy
diagram shows the solvation and conformational contribution to the Gibbs free energy. The energies are given
in kcal/mol.
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levels for the two conformers with respect to the lowest conformer in the gas phase. These energy
levels are given once in the gas phase and once with the additional solvation contribution modeling the
condensed phase. Considering only the lowest conformers in each phase, the “real” phase transition
would correspond to the process from CONF1 in the gas phase (beige) to CONF2 in the condensed
phase (blue) with an associated free energy change of –16.74 kcal/mol, which is equivalent to a
saturation pressure of about –5.87 log units. On the other hand, if only the solvation contribution
is added to CONF1, the energy contribution of the conformational rearrangement is absent and an
artificial condensed state would be obtained (black, bottom). The energy change that can be attributed
to this “frozen” phase change is –15.91 kcal/mol and thus would lead to a saturation pressure of –5.26
log units. If we consider the lowest conformer in the condensed phase and remove the contribution
from solvation, this would correspond to an energy change of –16.98 kcal/mol and a saturation pressure
of –6.05 log units. Thus, by neglecting conformational flexibility, we would introduce an error of
about 0.24–0.83 kcal/mol or 0.18–0.61 log units, depending on which structure we assume.
To check the influence of conformations more generally, we applied the COSMO-RS method to
a random and the lowest-lying conformer in the liquid, as described in section COSMO-RS, thus
neglecting the conformational ensembles and their change in both phases. The results can be found
in Table A.2. As expected, completely neglecting the conformational flexibility by using a random
conformer leads to the worst results with a MAD of 1.87 and a SD of 1.49 log units. This shows
the significant effect of a molecule’s actual three dimensional molecular structure (shape) for the
self-solvation free energy, which is difficult to account for by empirical QSAR or LFER models because
linear combinations of intramolecular and intermolecular interactions are involved. Still significant
is the error of the lowest-lying conformer-only approach with a MAD of 0.91 and a SD of 0.78,
which is in the range of the errors made by the SPARC program, and larger than the best performing
complete ensemble method with a MAD of only 0.47 and a SD of 0.62. We attribute the considerable
improvement of about 0.4–0.5 log units mainly to the proper account of the conformational ensemble
change in the gas phase. Although we have shown in our previous work5 that there are significant
variations in the conformational ensembles for flexible molecules in different solvents, they appear to
be much smaller than the structural changes between the gas and condensed phases reported here.

A.5 Conclusion

The quantum mechanical workflow presented here has a decisive advantage over the usual QSAR
tools: the calculated vapor pressure does not depend on structure–activity relationships, but is
calculated individually for each molecule mostly based on fundamental QM and thus less susceptible to
systematic errors. Our basic ansatz is non-empirical and can be systematically improved in the future
by application of better procedures for the involved steps conformational search (xTB and CREST),
structures and free energy ranking of conformers (DFT) and solvation free energy (COSMO-RS). The
necessity of an enhanced conformer sampling workflow for predicting vapor pressures is shown by
comparison to a single conformer COSMO-RS approach. From the comparison of LFER, SPARC with
CRENSO (which is based on COSMO-RS), we conclude that CRENSO is currently the most reliable
approach for predicting the vapor pressures of liquids and the sub-cooled liquids of solids. At high
vapor pressures (> 10−2 Pa), our method is suitable for realistic estimates but cannot compete with
the accuracy of measurements. However, when looking at the variability of data in the range between
10−2 Pa and 10−5 Pa, for example for phthalates, PCBs, BDEs and many other substances,203,208,210,211
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the quality of the CRENSO data is definitely comparable to that of experiments. Furthermore, at
vapor pressures < 10−5 Pa, which are difficult to determine experimentally, our method also opens up
very reliable predictions, so that measurements might no longer be necessary in some circumstances.
With further developed solvation models and/or by inclusion of explicit molecules in the self-solvation
treatment in an automated cluster generation approach,20 even higher accuracy of the predictions over
the entire pressure range probably down to an MAD of 0.1–0.3 log units may be achieved.
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A.6 Supporting Information

This section is an adapted version of the supporting information published with the original manuscript.
See DOI: https://doi.org/10.1039/d2em00271j for the original version of the electronic
supporting information (ESI).

Fundamentals of vapor pressure thermodynamics

As displayed in Figure A.1 two phases of a pure substance at equilibrium are considered. In this
pressure-temperature diagram the functional relationship between the equilibrium pressure 𝑃 and the
equilibrium temperature 𝑇 is given by the Clapeyron equation A.3:

𝑑𝑃

𝑑𝑇
=

Δ𝑡𝑟𝑠𝑆

Δ𝑡𝑟𝑠𝑉
=

Δ𝑡𝑟𝑠𝐻

𝑇Δ𝑡𝑟𝑠𝑉
. (A.3)

Δ𝑡𝑟𝑠𝑆,Δ𝑡𝑟𝑠𝐻 and Δ𝑡𝑟𝑠𝑉 are the changes in molar entropy, molar enthalpy, and molar volume,
respectively, upon phase transition. In the following we only consider the equilibrium between the
condensed phase and the vapor phase. Assuming ideal gas behavior and neglecting the molar volume
of the condensed phase, Δ𝑡𝑟𝑠𝑉 = Δvap ≈ 𝑉𝑚,𝑔 ≈ 𝑃/(𝑅𝑇), the Clausius-Clapeyron equation (A.4)
results in
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𝑑𝑙𝑛𝑃

𝑑𝑇
=
Δvap𝐻

𝑅𝑇
2 , (A.4)

where 𝑅 is the molar gas constant and Δvap𝐻 is the molar enthalpy of vaporization. Equation A.4
can be used for extrapolation of vapor pressure data. Under the assumption that Δvap𝐻 is constant
in the interval between 𝑇1 and 𝑇2, the vapor pressure 𝑃1(𝑇1) given at a temperature 𝑇fus < 𝑇1 can
be used to calculate 𝑃2(𝑇2) for a temperature 𝑇fus < 𝑇2, 𝑇fus being the melting point. If, however,
𝑇2 < 𝑇fus < 𝑇1 use of 𝑃1(𝑇1) and Δvap𝐻 = const. in equation A.4 will result in the vapor pressure
𝑃2(𝑇2) of the sub-cooled liquid (see Figure A.1).

Conversion from vapor pressure 𝑷𝑳 of the sub-cooled liquid to the saturation
concentration 𝑪0 according to the ideal gas law

𝐶0 =
𝑚

𝑉
=
𝑃𝐿𝑀

𝑅𝑇

For 𝐶0 in 𝜇g/m3, T = 298.15K, R = 8.314 J/(K·mol), 𝑃𝐿 in Pa and the molecular weight M in g/mol:

𝐶0 = 𝑃𝐿𝑀 · 403.42

Conversion of energies between Calories and Joule

Please note that in quantum mechanical publications, the use of the unit "Calorie" for energies is still
common and dominant.

1 cal = 4.1868 𝐽, 1 𝐽 = 0.2388 cal .

SMILES

The SMILES (Simplified Molecular-Input Line-Entry System) notation for the selected isomer was
taken from PubChem. (https://pubchem.ncbi.nlm.nih.gov)
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Table A.4: Literature data of the reference compounds (SL = subcooled liquid, DCP = decomposition at higher
temperatures). References in Table A.1.

Compound Abbr. CAS Density MP BP P𝐿 Remark ΔvapH

kg/m3 °C °C Pa kJ/mol

n-Decane C10 124-18-5 730 -29.7 174.1 182 298.15 K 51.4
n-Hexadecane C16 544-76-3 773 18.2 286.9 0.19 298.15 K 81.4
N-Tridecylbenzene TDB 0123-02-04 881 10 346 0.007 298.15 K 90.4
3-Cresol 3CR 108-39-4 1034 12.2 202 18.27 298.05 K 61.8
Naphthalene NAP 91-20-3 1162 80.3 217.9 37 298.15 K (SL) 56.1
Anthracene ANT 0120-12-07 1240 215.8 339.9 0.072 298.15 K (SL) 72.4

Fluoranthene FLU 206-44-0 1252 110.2 384 6.0·10−3 298.15 K (SL) 79.3
2-Butoxy ethanol EGBE 111-76-2 902 -75 171 115 298 K 56.6
1-Undecanol UDC 112-42-5 835 19 243 0.2383 293.18 K 85

Oleyl alcohol OA 143-28-2 849 7 300 3.7·10−4 298.15 K 101.2
Glycerol GLY 56-81-5 1261 18.1 290 0.0249 298.75 K 86.76
Benzophenone BP 119-61-9 1085 48.5 305.4 0.157 298.48 K (SL) 77.1

Benzophenone-3 BP-3 131-57-7 1320 64 315 4.8·10−3 298.15 K (SL) 76.3

Homosalate HS 118-56-9 1045 -20 341 1.1·10−2 298.15 K 95.3
Dimethyl phthalate DMP 131-11-3 1190 5.5 283.7 0.304 298.15 K 77
Diethyl phthalate DEP 84-66-2 1120 -40.5 295 0.099 298.15 K 82.1

Di-n-butyl phthalate DnBP 84-74-2 1049 -35 340 4.3·10−3 298.15 K 95.2

Butylbenzyl phthalate BBzP 85-68-7 1120 -35 370 2.0·10−4 298.15 K 106.2

Dihexyl phthalate DHP 84-75-3 995 -58 350 (1.1·10−3)𝑎 298.15 K 111.2

Di-(2-ethylhexyl)
phthalate

DEHP 117-81-7 990 -55 384 1.6·10−5 298 K 116.7

Di-(2-ethylhexyl)
terephthalate

DEHTP 6422-86-2 982 -48 383 5.4·10−6 298.15 K 123.3

Methyl palmitoleate MP 1120-25-8 875 0 250 5.1·10−3 298.15 K 96.4

Glutaricacid GA 110-94-1 1424 98 303 1.0·10−3 298 K (SL) 118

Pimelicacid PA 111-16-0 1280 106 400 2.2·10−4 298 K (SL) 108

Tris-(2-ethylhexyl)
phosphate

TEHP 78-42-2 926 -74 DCP 3.0·10−5 298.15 K 106

Tris-(2-butoxyethyl)
phosphate

TBOEP 78-51-3 1020 -70 400 6.8·10−5 298.15 K 103

2,4,4’-
Trichlorobiphenyl

PCB-28 7012-37-5 1400 58 207 2.7·10−2 298.15 K (SL) 77.1

Continued on next page
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Table A.4: Literature data of the reference compounds (SL = subcooled liquid, DCP = decomposition at higher
temperatures). References in Table A.1. (continued)

Compound Abbr. CAS Density MP BP P𝐿 Remark ΔvapH

kg/m3 °C °C Pa kJ/mol

2,2’,4,5,5’-
Pentachlorobiphenyl

PCB-101 37680-73-2 1522 77 400 2.5·10−3 298.15 K (SL) 86.2

2,4,5,2‘,4‘,5‘-
Hexachlorobiphenyl

PCB-153 35065-27-1 (1000)𝑏 103 400 6.1·10−4 298.15 K (SL) 91.8

2,2’,3,4,4’,5,5’-
Heptachlorobiphenyl

PCB-180 35065-29-3 1640 112 400 1.1·10−4 298.15 K (SL) 94.1

1,10-Dichlorodecane C10Cl2 2162-98-3 994 15.6 284.3 0.5 298.15 K 67.3

1,2,11,12-
Tetrachlorododecane

C12Cl4 210115-98-3 1100 - 354.6 3.5·10−3 298.15 K (SL) 81.9

2,2’,4,4’-
Tetrabromodiphenyl ether

BDE-47 5436-43-1 2161 84 DCP 3.2·10−4 298.15 K (SL) 92

2,2’,4,4’,5-
Pentabromodiphenyl ether

BDE-99 60348-60-9 2250 92.5 DCP 6.8·10−5 298.15 K (SL) 100.3

1,2,3,4,5-
Pentabromo-6-ethyl benzene

PBEB 85-22-3 (1000)𝑏 138 - 2.9·10−3 298.15 K (SL) 78.3

Dodecamethylcyclohexasiloxane D6 540-97-6 967 -3 245 2.26 298.15 K 65

Hexadecamethylheptasiloxane L7 0541-01-05 901 -78 286.8 7.4·10−2 298.15 K 89

Octadecamethyloctasiloxane L8 556-69-4 913 -63 311.6 9.3·10−3 298.15 K 98

pp‘-DDT DDT 50-29-3 980 109 260 4.8·10−4 298.15 K (SL) 89.3

Diazinon DZN 333-41-5 1117 25 - 5.9·10−3 298.15 K 87.5

Fipronil FIP 120068-37-3 1477 200 DCP 1.9·10−6 298.15 K (SL) 85
𝑎The published reference value for DHP is doubtful. 𝑏Default value – density not available

Table A.5: Log 𝑃𝐿 values of the reference compounds, calculated SPARC and LFER
values (at 298 K), COSMO values from the literature and sampling solvent
for the CRENSO procedure.

Abbr. log P𝐿
(Reference)

log P𝐿
(SPARC)

log P𝐿
(LFER)

log P𝐿
(COSMO-RS)

sampling solvent
(CRENSO)

C10 2.26 2.28 2.34 n-Hexadecane
C16 -0.72 -0.82 -0.41 n-Hexadecane
TDB -2.15 -2.53 -1.93 n-Hexadecane
3CR 1.26 1.62 1.28 Phenol
NAP 1.57 1.52 1.54 1.84 Benzene
ANT -1.14 -1.31 -1.02 -0.37 Benzene
FLU -2.22 -2.07 -2.4 -1.33 Benzene
EGBE 2.06 1.7 1.66 Diethylether

Continued on next page
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Table A.5: Log 𝑃𝐿 values of the reference compounds, calculated SPARC and LFER
values (at 298 K), COSMO values from the literature and sampling solvent
for the CRENSO procedure. (Continued)

UDC -0.36 -0.64 0.01 1-Octanol
OA -3.43 -4.15 -3.5 1-Octanol
GLY -1.6 -1.26 -0.72 Methanol
BP -0.8 -0.74 -0.58 Phenol
BP-3 -2.32 -3.79 -2.53 Phenol
HS -1.96 -2.44 -1.72 Phenol
DMP -0.52 -1.25 0.26 Phenol
DEP -1 -1.82 -0.4 Phenol
DnBP -2.37 -3.47 -2.18 Phenol
BBzP -3.7 -5.47 -4.12 Phenol
DHPd) (-2.96) -5.4 -4.11 Phenol
DEHP -4.8 -6.85 -5.48 Phenol
DEHTP -5.27 -6.44 -4.96 Phenol
MP -2.29 -1.95 -1.59 Acetone
GA -3 -4.03 -2.23 Acetone
PA -3.66 -5.1 -3.9 Acetone
TEHP -4.52 -6.13 -4.39 Acetone
TBOEP -4.17 -4.8 -3.76 Acetone
PCB-28 -1.57 -2.05 -1.3 Phenol
PCB-101 -2.6 -3.59 -2.52 Phenol
PCB-153 -3.21 -4.61 -3.35 Dichloromethane
PCB-180 -3.96 -5.71 -4.3 Phenol
C10Cl2 -0.3 -0.24 0.42 Dichloromethane
C12Cl4 -2.46 -2.59 -1.77 -2.73c) Dichloromethane
BDE-47 -3.49 -5.18 -3.9 Dichloromethane
BDE-99 -4.17 -6.87 -4.92 Dichloromethane
PBEB -2.54 -4.23 -3.07 -2.21 Dichloromethane
D6 0.35 -0.23 1.09 Toluene
L7 -1.13 -0.27 -0.48 Toluene
L8 -2.03 -1.08 -1.33 Toluene
DDT -3.32 -4.19 -3.77 Dichloromethane

Continued on next page
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Table A.5: Log 𝑃𝐿 values of the reference compounds, calculated SPARC and LFER
values (at 298 K), COSMO values from the literature and sampling solvent
for the CRENSO procedure. (Continued)

DZN -2.23 -3.1 -1.28 Aniline
FIP -5.72 -4.6 -8.35 Aniline

Table A.6: LFER parameters of the reference compounds. All data for 298 K. The data were
retrieved from the UFZ-LSER database.174

Compound Abbr. L S A B log P𝐿
(SPARC)

n-Decane C10 4.686 0 0 0 2.34
n-Hexadecane C16 7.771 0 0 0 -0.41
N-Tridecylbenzene TDB 9.376 0.47 0 0.15 -1.93
3-Cresol 3CR 4.31 0.88 0.57 0.34 1.28
Naphthalene NAP 5.161 0.92 0 0.2 1.54
Anthracene ANT 7.568 1.34 0 0.28 -1.02
Fluoranthene FLU 8.827 1.55 0 0.24 -2.4
2-Butoxy ethanol EGBE 3.806 0.5 0.3 0.83 1.66
1-Undecanol UDC 6.128 0.42 0.37 0.48 0.01
Oleyl alcohol OA 9.565 0.58 0.36 0.69 -3.5
Glycerol GLY 3.145 0.72 0.64 1.21 -0.72
Benzophenone BP 6.852 1.5 0 0.5 -0.58
Benzophenone-3 BP-3 8.84 1.63 0 0.62 -2.53
Homosalate HS 8.614 0.87 0.09 0.48 -1.72
Dimethyl phthalate DMP 6.05 1.4 0 0.86 0.26
Diethyl phthalate DEP 6.79 1.4 0 0.88 -0.4
Di-n-butyl phthalate DnBP 8.97 1.27 0 0.95 -2.18
Butylbenzyl phthalate BBzP 10.82 1.51 0 1.13 -4.12
Dihexyl phthalate DHP 11.11 1.29 0 0.96 -4.11
Di-(2-ethylhexyl) phthalate DEHP 12.7 1.25 0 1.02 -5.48
Di-(2-ethylhexyl) terephthalate DEHTP 12.327 1.06 0 0.71 -4.96
Methyl palmitoleate MP 8.853 0.71 0 0.68 -1.59
Glutari cacid GA 4.207 1.28 1.05 0.75 -2.23

Continued on next page
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Table A.6: LFER parameters of the reference compounds. All data for 298 K. The data were
retrieved from the UFZ-LSER database.174 (Continued)

Pimelic acid PA 5.277 1.26 1.1 0.84 -3.9
Tris-(2-ethylhexyl)
phosphate

TEHP 12.091 0.57 0 0.88 -4.39

Tris-(2-butoxyethyl)
phosphate

TBOEP 10.565 1.4 0 2.22 -3.76

2,4,4’-Trichlorobiphenyl PCB-28 7.904 1.33 0 0.15 -1.3
2,2’,4,5,5’-
Pentachlorobiphenyl

PCB-101 8.868 1.61 0 0.13 -2.52

2,4,5,2‘,4‘,5‘-
Hexachlorobiphenyl

PCB-153 9.587 1.74 0 0.11 -3.35

2,2’,3,4,4’,5,5’-
Heptachlorobiphenyl

PCB-180 10.415 1.87 0 0.09 -4.3

1,10-Dichlorodecane C10Cl2 6.466 0.87 0 0.17 0.42
1,2,11,12-Tetrachlorododecane C12Cl4 8.861 0.94 0 0 -1.77
2,2’,4,4’-
Tetrabromodiphenylether

BDE-47 10.66 1.45 0 0.34 -3.9

2,2’,4,4’,5-
Pentabromodiphenylether

BDE-99 11.71 1.51 0 0.44 -4.92

1,2,3,4,5-
Pentabromo-6-ethylbenzene

PBEB 9.848 1.36 0 0 -3.07

Dodecamethylcyclohexasiloxane D6 6.08 -0.12 0 0.74 1.09
Hexadecamethylheptasiloxane L7 7.838 -0.2 0 0.94 -0.48
Octadecamethyloctasiloxane L8 8.787 -0.23 0 1.08 -1.33
pp‘-DDT DDT 10.02 1.76 0 0.16 -3.77
Diazinon DZN 8.001 0.81 0.06 1.18 -1.28
Fipronil FIP 10.065 2.81 0.29 1.54 -8.35

56



A.6 Supporting Information

Table A.7: Log P𝐿 data of the studied compounds with unknown vapor pressure (SL = subcooled liquid). All
data for 298 K.

Compounds Abbr. CAS MP BP log P𝐿 log P𝐿
°C °C (SPARC)𝑎 (LFER)𝑏

Plasticizers
Di-2-propylheptylphthalate DPHP 53306-54-0 25 400 -8.87 -6.71
Di-isononylphthalate𝑐 DINP 28553-12-0 -48 400 -8.04 -6.65

1,2-Cyclohexane dicarboxylic acid diisononyl ester𝑑 DINCH 166412-78-8 0 394 -6.88 -6.22
Tri-2-ethylhexyltrimellitate TOTM 3319-31-1 -46 414 -12.11 -9.15
Di-iso-butyladipate DIBA 0141-04-08 -20 279 -1.35 -0.61
Di-n-butyladipate DnBA 105-99-7 -32 305 -1.54 -1.25
Di-2-ethylhexyladipate DEHA 103-23-1 -67 400 -5.08 -3.92
Di-isononyladipate𝑒 DINA 33703-08-1 0 400 -7.12 -5.16

Biocides
Acetamiprid ACP 135410-20-7 102 352 -2.15 -1.59 SL
Icaridin ICD 119515-38-7 - 296 -3.08 -2.26 SL
Cyromazine CMZ 66215-27-8 222 - -5.19 -4.76 SL
Diflubenzuron DFB 35367-38-5 232 - -6.14 -3.66 SL
Cyphenothrin CPT 39515-40-7 -25 - -6.96 -7.07
Methoprene MTP 40596-69-8 25 256 -3.54 -1.67 SL

Pharmaceuticals
Bisoprolol BPL 66722-44-9 102 445 -6.47 -8.02 SL
Dicloflenac DIC 15307-86-5 158 - -6.68 -7.11 SL
Dapagliflozin DLF 461432-26-8 65 609 -17.85 -19.56 SL
Ibuprofen IBU 15687-27-1 76 320 -2.3 -2.5 SL
Metoprolol MPL 51384-51-1 120 399 -4.58 -2.22 SL
Naproxen NPX 22204-53-1 152 - -4.65 -5.66 SL
Torasemide TS 56211-40-6 164 - -9.66 -13.44 SL

𝑎It was assumed that the substance is not solid at room temperature 𝑏Vapor pressure for the subcooled liquid.
SMILES for 𝑐bis(7-methyloctyl) phthalate 𝑑bis(7-methyloctyl) 1,2-cyclohexanedicarboxylate 𝑒bis(7-methyloctyl) adipate

57



Appendix A Quantum Chemical Calculation of the Vapor Pressure of Volatile and Semi Volatile
Organic Compounds

Table A.8: LFER parameters of the studied compounds with unknown vapor pressure. All data for 298 K. The
data were retrieved from the UFZLSER database.174

Compounds Abbr. CAS L S A B log P𝐿
(SPARC)

Plasticizers
Di-2-propylheptylphthalate DPHP 53306-54-0 14.3 1.06 0 0.9 -6.71
Di-isononylphthalate DINP 28553-12-0 13.99 1.27 0 1.02 -6.65
1,2-Cyclohexane dicarboxylic acid diisononyl ester DINCH 166412-78-8 13.682 1.12 0 0.99 -6.22
Tri-2-ethylhexyltrimellitate TOTM 3319-31-1 17.017 1.08 0 1.02 -9.15
Di-iso-butyladipate DIBA 0141-04-08 7.586 0.92 0 0.97 -0.61
Di-n-butyladipate DnBA 105-99-7 8.102 1.12 0 1.03 -1.25
Di-2-ethylhexyladipate DEHA 103-23-1 11.297 0.92 0 0.97 -3.92
Di-isononyladipate DINA 33703-08-1 12.478 1.13 0 1.1 -5.16

Biocide
Acetamiprid ACP 135410-20-7 7.51 1.57 0.05 1.21 -1.59
Icaridin ICD 119515-38-7 7.397 1.03 0.33 0.96 -2.26
Cyromazine CMZ 66215-27-8 6.929 1.74 0.56 1.24 -4.76
Diflubenzuron DFB 35367-38-5 9.68 1.17 0.18 0.97 -3.66
Cyphenothrin CPT 39515-40-7 12.326 2.29 0.05 1.11 -7.07
Methoprene MTP 40596-69-8 8.976 0.66 0 0.97 -1.67

Pharmaceuticals
Bisoprolol BPL 66722-44-9 11.2 1.5 0.3 2.19 -8.02
Dicloflenac DIC 15307-86-5 11.025 1.85 0.55 0.77 -7.11
Dapagliflozin DLF 461432-26-8 14.465 2.58 0.97 1.95 -19.56
Ibuprofen IBU 15687-27-1 7.184 0.7 0.56 0.79 -2.5
Metoprolol MPL 51384-51-1 9.157 1.61 -0.06 1.72 -2.22
Naproxen NPX 22204-53-1 9.207 2.02 0.6 0.67 -5.66
Torasemide TS 56211-40-6 13.23 2.18 0.7 1.6 -13.44
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APPENDIX B

Dispersion Energy-Stabilized Boron and
Phosphorus Lewis Pairs

Abstract An isostructural series of boron/phosphorus Lewis pairs was systematically investigated.
The association constants of the Lewis pairs were determined at variable temperatures, enabling
the extraction of thermodynamic parameters. The stabilization of the Lewis adduct increased with
increasing size of the dispersion energy donor groups, although the donor and acceptor properties
of the Lewis pairs remained largely unchanged. This data was utilized to challenge state-of-the-art
quantum chemical methods, which finally led to an enhanced workflow for the determination of
thermochemical properties of weakly bound Lewis pairs within an accuracy of 0.6 to 1.0 kcal/mol for
computed association free energies.
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Figure B.1: a) Dispersion energy donor-stabilized all-meta-tBu-substituted hexaphenylethane; b) equilibrium of
a frustrated Lewis pair and its Lewis adduct; c) conceptual approach to the stabilization of B/P-derived Lewis
pairs including acceptor numbers215 for the boranes.

B.1 Communication

Only recently, a deeper understanding of London dispersion interactions by quantum chemical and
preparative experiments has provided answers to fundamental questions in molecular chemistry.212

For example, the exceptional stability of all-meta-tBu hexaphenylethane (1–1) in contrast to the
unstable parent hexaphenylethane was explained by extensive attractive dispersion interactions of the
tBu groups.213,214 Computational studies revealed that there is not only an ethane-type equilibrium
structure as global minimum with an exceptionally long C–C bond of 1.67(3) Å, but also a local
energy minimum which corresponds to the weakly dispersion energy donor-bound dimer of trityl
radicals, here denoted by (1•)2 (Figure B.1 a).
The crucial role of the aliphatic substituents as stabilizing dispersion energy donors (DEDs) has
been established for several other hexaphenylethane derivatives.216 Structural similarities may be
drawn to frustrated Lewis pairs (FLPs)130,217–222 and their Lewis adducts, although these species
mostly are of closed-shell electronic character (Figure B.1 b). Both an unquenched reactivity of the
FLP and the formation of an encounter complex128,129,131 provide the setup e.g. for the heterolytic
splitting of molecular hydrogen (H2).132,223 Crucial for FLP reactivity is the formation of the encounter
complex through the subtle interplay of many, formally weak attractive and repulsive interactions.
The association of the archetype FLP consisting of B(C6F5)3/P(2,4,6-Me3-C6H2)3 (2a/3a) was found
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to be slightly endergonic characterized by the free energy of association at 298 K (ΔGa,298) of 0.4 ±
0.2 kcal/mol,129 although stabilizing polar H–F interactions are present. However, when taking into
account the large stabilization of (1–1) DEDs and the structural similarity to triaryl phosphane/triaryl
borane FLPs (compare Figure B.1 a-c), the formation of an encounter complex predominantly
through dispersion interactions is feasible. Only recently, Slootweg et al. introduced tBu-groups into
inter¬molecular FLPs based on triarylboranes and triarylamines in order to achieve efficient electron
transfer but thermodynamic parameters were not studied in detail by experimental nor computational
methods.133 However, only joined computational and experimental studies can provide the necessary
interface to improve both the quantum mechanical methods and the desired molecular properties. In
this light, high-level quantum chemistry in combination with reliable experimental data is of utmost
importance for advancing the theoretical and molecular understanding.
We selected a series of alkyl-substituted triaryl boranes and phosphanes to study the DED stabilization
of Lewis adducts (Figure B.1 c). The six compounds were characterized by NMR spectroscopy,
and the Lewis acidity of the boranes and the s-character of the lone pair of the phosphorus were
probed by the Gutmann-Beckett method and by the 1

𝐽𝑃−𝑆𝑒 coupling constant of the corresponding
phosphane selenides, respectively (see SI for details). The fact that the 1

𝐽𝑃−𝑆𝑒 coupling constants
of the phosphane selenides are nearly identical at 749 Hz shows that the donor capacity of these
phosphanes is unaffected by the peripheral substituents. In contrast, the Lewis acidity of the borane
(2b-d) decreases (smaller acceptor number) when increasing the size of the DED (compare Figure
B.1 c).
The interaction of equimolar mixtures of all nine combinations of borane (2b-d) and phosphane (3b-d)
were studied in solution (0.1 to 0.05 M in C6D6) by 31P NMR spectroscopy (see SI for details), revealing
Lewis acid/Lewis base interactions through differences in chemical shift in comparison to the pure
compounds. This picture was substantiated by 1H,1H nuclear Overhauser enhancement spectroscopy
(NOESY) experiments showing intermolecular cross peaks with characteristics of chemical exchange
(see SI) and supporting the idea of reversible Lewis adduct formation.∗ Furthermore, the Lewis
adducts 2b•3b, 2b•3d and 2d•3d were characterized by X-ray diffraction (Figure B.2).
All three DED-stabilized Lewis adducts feature the staggered conformation in the solid state similar to
1–1, whereas the molecular structure of B(C6F5)3/PPh3 exhibits an eclipsed conformation stabilized
by the H–F/CH–𝜋 interaction.225 Counterintuitively, the dative P–B bond lengths of 2.102(9) Å
(2b•3b), 2.072(3) Å (2b•3d) and 2.109(9) Å (2d•3d) are significantly shorter than in comparable
structures with fluorinated boranes and uncongested phosphanes like Ph3P–B(C6F5)3

226 (2.181 Å) or
(3,5-Me2-C6H3)3P–B(4-H-C6F4)3

225 (2.172 Å). This may result from the significant interaction of the
DEDs, leading to smaller P–B bond lengths. Such a phenomenon is considered to be responsible for the
exceptionally small intermolecular H–H distance of 1.566(5) Å in (3,5-di-tbuthylphenyl)methane.227

The iPr-substituted borane 2c proved extremely difficult to synthesize, unstable and also very
challenging for quantum chemical methods, so that we decided to continue our studies with the methyl
and tBu derivatives 2b and 2d. In contrast to the 1H NMR spectra (resonance overlaps or severe line
broadening), the 31P NMR spectra were suitable for the determination of the association constant
(K𝑎) by titration in a temperature range of 284 K to 303 K, which ultimately allowed the extraction
of thermodynamic parameters by van ’t Hoff analysis (Table B.1; see SI for details, Figure B.7 and
B.8, Table B.10). The association is exothermic for all Lewis pairs, as indicated by the determined

∗The corresponding isostructural triaryl amino derivatives displayed no intermolecular NOESY NMR interactions and
were therefore not further considered in this study; see SI for details

61



Appendix B Dispersion Energy-Stabilized Boron and Phosphorus Lewis Pairs

Figure B.2: Molecular structures of 2b•3b, 2b•3d and 2d•3d (hydrogen atoms were omitted for clarity); selected
P–B distances: 2b•3b: 2.102(9) Å, 2b•3d: 2.072(3) Å and 2d•3d: 2.109(9) Å.224

enthalpy of association (ΔHa) ranging from -8.0 kcal/mol to -10.2 kcal/mol (Table B.1, entries 1-5).
The difference in Lewis acidity of 2b and 2d is only marginally reflected in ΔHa determined by
titration (entries 1-5). The ΔHa for Lewis pairs containing 2b (acceptor number,215 AN=48) are only
marginally more negative than for Lewis pairs containing 2d (AN=28), whereas the electron pair
donor ability of the phosphane remained constant. The entropy of association (ΔSa) is for all Lewis
pairs negative and becomes continually less negative with increasing size of the DED (Table B.1,
entries 1-5), counterbalancing the negative ΔHa. Based on the calculated ΔGa,298, the association
becomes more exergonic with increasing size of the DED, which thus must be attributed to the
increasing dispersion energy donor ability of the phosphane and borane substituents. As a result of the
increases in dispersion interactions, the free energies are negative and reach up to -3.6 kcal/mol for
the formation of 2d•3c. Unfortunately, the large binding constant paired with the very low solubility
of 2d•3d prohibited the analysis of this adduct by NMR titration. However, for lack of alternatives, we
utilized the determination of K𝑎 by diffusion ordered spectroscopy (DOSY) NMR, keeping in mind
that this method is associated with a large error. We reevaluated all six Lewis pairs with the aim of
substantiating the previously obtained data from the NMR titrations (see SI, B.10). Based on this
method as well, increasing the size of the DED stabilizes the Lewis adducts and maximizes for the
all-meta-tBu-system 2d•3d in a ΔGa,298 of -2.8 kcal/mol.
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Table B.1: Thermodynamic parameters of Lewis pair association determined by 31P NMR titration.[𝑎] Values
are in kcal/mol.

Entry DED[𝒃] Lewis pair 𝚫𝑯◦ 𝚫𝑺◦ 𝚫𝑮◦
298

1 102 2b•3b -8.9 ±0.3 -29.2 ±1.0 -0.2 ±0.6
2 138 2b•3c -10.2 ±0.1 -25.3 ±0.5 -2.6 ±0.3
3 156 2b•3d -9.6 ±0.1 -21.8 ±0.3 -3.1 ±0.2
4 156 2d•3b -8.5 ±0.1 -19.4 ±0.3 -2.7 ±0.1
5 192 2d•3c -8.0 ±0.3 -14.7 ±1.0 -3.6 ±0.6
6[𝑐] 210 2d•3d -16.1 ±1.0 -44.4 ±3.5 -2.8 ±2.1

(-4.7)[𝑑 ]
[a] Average of two independent measurements; [b] sum of atoms in ligands of the Lewis pair; [c] determined by DOSY NMR; [d]

extrapolated from plot ofΔG°298 vs. DED atom number in Lewis pair (see SI, Figure B.5).

The results of the NMR experiments are the basis for a detailed quantum chemical investigation. The
standard approach for modeling the association of FLPs involves starting from gas phase geometries
at 0 K and comparing the corresponding association energies or individual contributions thereof,
such as the dispersion energy.133 Computational studies, especially ones that include free energies of
association, are rare for FLPs,131,228–231 and thermostatistical corrections and solvation contributions
are usually calculated using a protocol that starts from the gas phase geometries at 0 K. This was also
our starting point, but, whereas geometries were described at the PBEh-3c232 level after a CREST125

conformer search with GFN2-xTB85 that provided B–P bond lengths very similar to those in the
crystal structure (see SI Table B.5), but the calculated ΔGa,298 with these geometries were clearly too
exergonic compared to the measured values (Table B.4). Furthermore, the experimentally observed
trend of stronger association with increasing ligand size, due to enhanced dispersion interactions,
was not reproduced either. To resolve this apparent contradiction, the accuracy of the electronic
gas phase energy calculation was first assessed by comparing the density functional theory (DFT)
interaction energies for several, known well-performing functionals to accurate local coupled cluster
("DLPNO-CCSD(T1)/CBS”)233,234 values (see Table B.7). The dispersion contributions were also
investigated in detail. They show the expected trend, with a high correlation of dispersion interactions
and DED atoms. As expected for DED-stabilized Lewis pairs, the intermolecular D492 dispersion
energy significantly contributes to the overall ΔGa,298 with values as large as -59.7 kcal/mol for
2d•3d (depending on the tested functional). However, all of these investigations did not result in a
better description of the association free energies.
We therefore suspected a wrong geometry due to an insufficient description of dynamic effects
(especially a too-short B–P bond length) as the main cause for the too exergonic ΔGa,298 values
calculated with the standard approach, using equilibrium (optimized) molecule geometries.133,231 Due
to partial quenching of the dispersion interactions by solvation interactions134,235 and dynamic effects
(298 K instead of 0 K), the actual (solvated) geometries and P–B distances at finite temperatures are
expected to differ from the equilibrium and from the crystal structure geometries. Because modeling by
molecular dynamics (MD) was not feasible (see SI), we had to resort to a static approach. In the course
of this study, a more advanced approach for conformational sampling and efficient DFT-refinement
was developed, which allowed the usage of larger initial ensembles and more accurate DFT methods
(the “CRENSO” workflow12,14), which had already shown promising results for complicated systems
and properties.119 The CRENSO workflow, while still being a static approach, uses a combination
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Table B.2: Boron-phosphorus distances in Å of the final calculated geometries with r2SCAN-3c after advanced
conformer sampling in comparison with the experimental values.

2b•3b 2d•3b 2b•3d 2d•3d
𝐵 − 𝑃calc 2.103 2.084 2.103 2.077
𝐵 − 𝑃exp 2.102(9) 2.072(3) - 2.109(9)

Figure B.3: Geometries with r2SCAN-3c after advanced conformer sampling of the lowest-lying conformers of
2b•3b, 2d•3b, 2b•3d and 2d•3d Lewis pairs.

of advanced sampling techniques and a refinement with the r2SCAN-3c126 DFT composite method,
which also performed well in our evaluation of interaction energies, to obtain thermally populated
ensemble averages in solution (for more details see SI). Only with this refined workflow, we could
achieve a good agreement of the calculated ΔGa,298 with the experimentally determined ones. This is
probably mainly due to the better conformer sampling, which led to structures that better reproduce
the actual geometries in solution at room temperature, even if the P–B bond lengths still tends to
correspond to that in the crystal structure (cf. Table B.2, Figure B.3). For even higher accuracy,
however, explicit consideration of dynamic effects via MD simulations would be required, which
would then presumably lead to elongated P–B bonds. However, this approach was not feasible in terms
of computational effort for these large systems. Notably, the slightly reduced bond B–P bond length
in 2b•3d compared to 2b•3b was reproduced. This may be caused by a delicate balance between
repulsive and attractive interactions in 2b•3d because the electronic properties of the phosphanes
are nearly identical as evidenced by the identical 1JP-Se coupling constants and the identical highest
occupied molecular orbital (HOMO) energies.236
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Table B.3: Comparison of experimentally obtained free energies of association of Lewis pairs with the calculated
ones; energies in kcal/mol (∗extrapolated, compare Supporting Information Figure B.4).

Contribution 2b•3b 2b•3d 2d•3b 2d•3d
DED[𝑎] 102 156 156 210
ΔE -24.9 -31.2 -31.7 -37.2
ΔGmRRHO 19.7 20.5 20.4 19.3
ΔGsolv 4.4 6.8 9.2 12.1
ΔGassoc.,calc. -0.8 -3.9 -2.0 -5.8
ΔGassoc.,exp. -0.2 ±0.6 -3.1 ±0.2 -2.7 ±0.1 -4.7*

[𝑎] Sum of atoms in the ligands of the boron and phosphorus.

Energetically, the ΔGa,298 values are nearly on point with the experimental values (Table B.3), which
may be attributed to the rigorous sampling and the refinement of the conformer ensembles at finite
temperature in solvation, and therefore already includes significant parts of the missing contributions
in contrast to the initial GFN2-xTB/PBEh-3c approach. However, the used solvation models were
typically developed for small, relatively rigid organic molecules and are, therefore, of limited accuracy
for the here investigated large and flexible systems, which marks these good results quite unexpected.
While the overall trend is replicated almost perfectly, considering the complexity of the problem
and excepting the ΔGa,298 of 2d•3b, the calculated stability of the investigated Lewis pair is still
slightly overestimated. We attribute this to the fact that the dynamic effects on the geometry are
still not fully accounted for within the employed workflow. Only the ΔGa,298 of 2d•3b shows a
minor inconsistency from the expected trend using this system. To better comprehend this cause, we
examined the individual contributions to the ΔGa,298 as a function of the number of DED atoms and
found an irregularity in the solvation-free energy contribution. This can be attributed to an inaccurate
description of the non-electrostatic contributions to the ΔGsolv by the employed solvation model.†

Implicit solvation of bulky complexes is still a challenge for modern solvation models, for which,
however, no better option is yet available.
In summary, we systematically investigated the association of six isostructural Lewis pairs that differed
only by their dispersion energy donors. Joined synthetic and computational experiments determined
the exergonic association of the boron- and phosphorus-centered Lewis pairs within an accuracy of
0.5 to 1.0 kcal/mol. In general, the association becomes more exergonic with the increasing number
of atoms in the dispersion energy donors within the Lewis pair, and is unaffected by changes to the
electron pair donor/acceptor properties of the phosphane and borane. The experimentally determined
association constants and derived thermodynamic parameters were utilized for the great challenge of
developing a quantum chemical workflow for the calculation of weakly bound Lewis pair complexes.
Solvation contributions have a significant impact on the stability of Lewis pairs. Furthermore, dynamic
effects, such as the B–P bond elongation of weakly bound Lewis pairs in solution are highly important
for the accurate energy description by density functional theory, which is impossible to be captured
through a solely static approach. However, by employing state-of-the-art workflows, that use advanced
sampling and the refinement of the conformer ensembles at finite temperature with modern DFT
functionals, combined with the Boltzmann averaging of the thermally populated ensemble, a large
part of these missing contributions can be fathomed, and the free energy of association of complicated

†A more detailed investigation of this can be found in the supporting information.
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systems were very accurately calculated. Incorporating these findings into future investigations will
enhance the accuracy and robustness of studies in frustrated Lewis pair chemistry.
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This section is an (adapted) excerpt of the supporting information, containing the tables and
figures referenced in the main text and the computational details for completeness. See DOI:
https://doi.org/10.1002/anie.202308752 for the full supporting information.

Computational Details

The association free energy, e.g. of a frustrated Lewis pair (FLP), is given by the difference of Gibbs
free energies between the pair (A-B) and the acid (A) and base (B) as

Δ𝐺assoc. = Δ𝐺𝐴−𝐵 − Δ𝐺𝐴 − Δ𝐺𝐵, (B.1)

The theoretical Gibbs free energy for a single compound can be computed by DFT as96

Δ𝐺 total = 𝐸gas + 𝐺𝑇 + 𝛿𝐺solv. (B.2)

Here, 𝐸gas is the electronic energy in the gas phase at 0 K, 𝐺𝑇 is a thermostatistical contribution at
temperature 𝑇 including the zero-point vibrational energy and temperature-dependent vibrational
frequency contributions, and 𝛿𝐺solv is the free energy of solvation, corresponding to the phase change
from gas to liquid phase.
The association free energy of a frustrated Lewis pair can therefore be calculated as237

Δ𝐺
◦
298 = Δ𝑅𝐺assoc. = Δ𝐸gas + Δ𝐺T,298 + Δ𝛿𝐺solv. (B.3)

Δ𝑅𝐺assoc. is the reaction free energy of a reaction of an acid and a base to an FLP and Δ𝐸gas, Δ𝐺T,
and Δ𝛿𝐺solv are the corresponding decomposed contributions.
In the present case, this single structure approach may not be adequate since the complex structure
is rather flexible. This gives rise to several energetically close conformers, significantly impacting
energies and properties at standard temperature. Hence, a Boltzmann-weighted ensemble over the
relevant conformational space must be considered. Therefore, as a first check to evaluate the complexity
of the system, a conformer search was performed with the conformer rotamer ensemble sampling tool
(CREST)125 utilizing the GFN2-xTB85 semiempirical method combined with implicit solvation26 in
toluene and a search energy cutoff of 1.5 kcal/mol (”crude” conformational screening). The resulting
geometries were then re-optimized with the PBEh-3c232 composite method and the DCOSMO-RS238

implicit solvation. PBEh-3c frequencies were calculated in a modified rigid rotor harmonic oscillator
(mRRHO) approach.96 The solvation-free energies were computed using the conductor-like screening
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model for realistic solvation (COSMO-RS)28 with the 2016 parametrization. Table B.4 shows the
results for the various conformers and contributions. All contributions were also calculated by a
Boltzmann weighted average over the conformer ensemble. The results for the total association free
energy differs by about 0.1-0.3 kcal/mol if the conformer ensemble is taken into account.
However, while the geometries seemed to agree very well with the crystal structure ones (Table
B.5), these theoretically obtained values did not agree very well with the experimental data (see
Table B.4). To shed some light on this issue, first the accuracy of the electronic gas phase energy
calculation was assessed by comparing the DFT interaction energies to accurate reference values at
the “DLPNO-CCSD(T1)/CBS” level of theory.233 Using these higher-level reference energies did not
significantly improve the description of the association free energy.
As a wrong description of the electronic energy could therefore be ruled out as the leading cause
of the discrepancy, after extensive investigations and detailed comparison with the experimental
structures, we suspected a wrong geometry as the major source for the deviation of the calculated
from the measured association free energies. Due to partial quenching of the dispersion interactions
in solution and dynamic effects (298 K instead of 0 K), the solvated geometries at finite temperatures
are expected to differ from the ones in the crystal structure (e.g. longer P-B bonds should lead to
mitigated interactions). One approach to resolve this issue is to apply metadynamics239,240 (MD)
with a scaled tight binding Hamiltonian.241 By manually down-scaling the P–B interaction in the
GFN2-xTB Hamiltonian, we would be able to simulate this effect, which would consequently lead
to a more realistic B–P bond length and this, in turn, to a less exergonic free energy. Unfortunately,
down-scaling the P–B interactions in the MDs at room temperatures led to a dissociation of the FLPs.
Therefore, we had to stick to the static approach and try to include the missing contributions in another
way.
As further investigations and new geometry optimizations were therefore necessary, we assessed the
electronic energies calculated with selected DFT functionals, which proved robust and reliable in
benchmarks,242 as single point calculations on the optimized geometries, to find a suitable one for
these investigations. All investigated DFT functionals, except for the range separated 𝜔B97X-V243

hybrid functional, which already includes non-local long-range correlation, were evaluated together
with the DFT-D492 dispersion correction. It is apparent from the results in Table B.6 that neglecting
these dispersion interactions would introduce a huge error since the investigated FLP association
reactions are highly dominated by dispersion interactions.
The D4 correction to the interaction energy reaches values of up to -59.7 kcal/mol for the 2d•3d
FLP (depending on the underlying functional). The association energies based on the electronic gas
phase single point energies Δ𝐸𝑔𝑎𝑠,0𝐾 (including dispersion interactions) can be found in Table B.7.
The hybrid functional PBE0-D4244 as well as the range separated hybrid 𝜔B97X-V systematically
underestimate the association energy (MD = MAD). The latter error can be attributed to the missing
many-body dispersion effects in the used VV10 dispersion model. This can lead to sizeable errors
for larger complexes, where cooperative effects become important.245 The more accurate double
hybrid functionals PWPB95246-D4 and revDSD247-BLYP-D4 but also the efficient r2SCAN-3c126

composite method perform very well for the investigated systems. Hence, r2SCAN-3c was considered
for all further DFT calculations as the established default method in our workflow.5,12,14 We have also
checked the calculated solvation free energies (on the geometries obtained from ”crude” screening) by
comparing them with to the corresponding values obtained with the conductor-like screening model
(CPCM)248 and, to evaluate the importance of nonelectrostatic interactions, with the universal solvent
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Table B.4: Association free energies and individual contributions calculated after “crude” conformational
screening on the PBEh-3c level of theory. The final association free energy is derived by a Boltzmann weighted
average over the conformer ensemble. Energies are given in kcal/mol. The lowest-lying conformer is denoted
by an asterix.

Δ𝐸𝑔𝑎𝑠,0𝐾 Δ𝛿𝐺𝑠𝑜𝑙𝑣 Δ𝐺𝑇 Δ𝐺𝑎𝑠𝑠𝑜𝑐

2b•3b
111 -25.0 4.8 18.3 -1.9
121∗ -26.9 4.7 18.0 -4.2
112 -20.4 4.2 17.8 1.6
122 -22.3 4.1 17.7 -0.5
Δ𝐺𝑎𝑠𝑠𝑜𝑐. // exp. -4.2 // -0.2

2d•3b
111 -30.9 9.6 19.1 -2.2
121∗ -32.9 9.6 -19.1 -4.2
Δ𝐺𝑎𝑠𝑠𝑜𝑐. // exp. -4.5 // -2.7

2b•3d
111 -30.9 6.7 18.2 -6.0
121 -31.1 6.7 19.0 -5.4
151∗ -32.9 7.8 17.7 -7.4
112 -30.7 6.5 18.8 -5.4
122 -31.0 6.5 19.7 -4.8
152 -32.8 7.6 18.3 -6.9
113 -30.6 6.2 18.8 -5.6
123 -30.9 6.2 19.6 -5.1
153 -32.7 7.3 18.3 -7.1
Δ𝐺𝑎𝑠𝑠𝑜𝑐. // exp. -7.0 // -3.1

2d•3d
111 -38.5 11.7 20.3 -6.3
121 -38.6 11.7 21.5 -5.4
151 -40.4 12.8 19.8 -7.8
112 -39.5 11.7 20.7 -7.1
122 -39.6 11.7 21.5 -6.4
152∗ -41.5 12.8 20.2 -8.5
113 -38.3 11.8 20.7 -5.8
123 -38.5 11.8 21.5 -5.2
153 -40.3 12.9 20.2 -7.2
114 -37.9 11.3 21.7 -4.9
124 -38.1 11.3 21.7 -5.1
154 -39.9 12.4 20.4 -7.1
Δ𝐺𝑎𝑠𝑠𝑜𝑐. // exp., extrapolated -8.1 // -4.7
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Table B.5: B-P bond lengths of the original lowest-lying PBEh-3c geometries (after “crude” conformational
screening) in comparison to experimental ones in Å.

2b•3b 2d•3b 2b•3d 2d•3d
B–Pcalc 2.107 2.078 2.100 2.073
B–Pexp 2.102(9) 2.072(3) - 2.109(9)

Table B.6: DFT-D4 dispersion contribution to the association energies for selected functionals in kcal/mol.

Conf. PBE0-D4 B3LYP-D4 PWPB95-D4 revDSD-BLYP-D4

2b•3b
111 -25.2 -37.6 -12.0 -12.1
121 -25.4 -37.8 -12.1 -12.1
112 -25.7 -38.4 -12.1 -12.0
122 -25.8 -38.6 -12.1 -12.1

2d•3b
111 -31.5 -45.7 -14.9 -14.1
121 -31.6 -45.9 -14.9 -14.1

2b•3d
111 -29.1 -42.4 -13.9 -13.4
121 -29.2 -42.6 -13.9 -13.4
151 -29.9 -43.4 -14.0 -13.4
112 -29.3 -42.8 -14.1 -13.6
122 -29.5 -43.1 -14.2 -13.7
152 -30.2 -43.9 -14.2 -13.6
113 -29.3 -42.8 -14.1 -13.6
123 -29.5 -43.1 -14.2 -13.7
153 -30.2 -43.9 -14.2 -13.6

2d•3d
111 -38.9 -55.6 -18.7 -17.2
121 -39.1 -55.9 -18.8 -17.2
151 -39.8 -56.7 -18.9 -17.2
112 -40.2 -57.8 -19.6 -18.2
122 -40.4 -58.0 -19.6 -18.2
152 -41.0 -58.8 -19.7 -18.2
113 -40.3 -57.9 -19.6 -18.2
123 -40.5 -58.1 -19.7 -18.2
153 -41.1 -58.9 -19.8 -18.2
114 -40.8 -58.7 -20.0 -18.6
124 -40.9 -58.9 -20.0 -18.6
154 -41.6 -59.7 -20.1 -18.5
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model based on density (SMD)30 (see Table B.8). As expected, SMD agrees much better with COSMO-
RS than CPCM. However, the differences between SMD and COSMO-RS are more pronounced for
FLPs that include 3d monomers, which can probably be attributed to a different description of the
solvent accessible surface area (SASA, see below). In contrast to SMD and COSMO-RS, the purely
electrostatic approach utilized in CPCM misses the important non-electrostatic contributions leading
to an even stronger overbinding of the FLPs.
Still, the investigated systems are complicated and the problem to include all relevant contributions
with a static approach remained. Fortunately, while this investigation took place, a more advanced,
and rigorous approach for conformational sampling consisting of a combination of CREST and an
energetic sorting algorithm (ENSO)12 employing the efficient r2SCAN-3c composite method was
developed in our group. Since r2SCAN-3c reproduced the FLP association energies exceptionally
well (see above), it seemed particularly promising to try this new workflow for the systems in question.
Other than this promising composite method, the CRENSO12 workflow employs an advanced sampling
technique, adopting a force-field approach with GFN-FF118 to sample conformations on artificially
modified potential energy surfaces. This approach is far superior to using a single potential energy
surface obtained with a semi-empirical method and has already proven to deliver accurate and robust
results for complicated and flexible molecules5. Solvation contributions were included using the
ALPB26 solvation model. The thermostatic contributions were obtained from a single point hessian
(SPH) approach168 (”fine” conformational screening). The general applicability of the SPH approach
was already established by comparison to DFT values and saves hours of computational time, while
also being able to calculate frequencies for solvated compounds.5 Solvation free energies for the
r2SCAN-3c/DCOSMO-RS238 optimized geometries were again obtained using the COSMO-RS
method with the 2016 parametrization and benzene as a solvent, and all contributions were calculated
as Boltzmann weighted average. Using this advanced workflow, we obtained more realistic association
free energies (see Table B.3, Figure B.4).
Still, there remains a slight overestimation of the association free energies, which may be due to
dynamic effects on the geometries not accessible with this static approach. Interestingly, the association
free energy is now slightly underestimated for the 2d•3d FLP (see Figure B.4). Hence, we looked
at the various contributions to the association free energy via an energy decomposition analysis
(EDA) dependent on the number of atoms in the ligands (see Figure B.5). The EDA was performed
using the supermolecular approach on the B3LYP-D469,70,76/def2-TZVP level of theory with the
TURBOMOLE144 V7.3.1 program package.
The relative contribution of the intermolecular dispersion energy Δ𝐸disp increases linearly with the
number of atoms (R2 = 0.98) and the thermostatistical contribution Δ𝐺𝑇 is nearly constant, which is
the expected behavior. These contributions are also practically identical for the medium-size FLPs
2d•3b and 2b•3d. The energy differences between these FLPs are negligible for the electronic gas
phase energy Δ𝐸gas,no disp. Therefore, we conclude that these contributions are not the source of the
observed error. However, the solvation contribution ΔGsolv shows an irregularity: it is significantly
larger for 2d•3b compared to2b•3d. We attribute this mainly to an overestimation of the solvation
free energies of the monomers. Attractive non-electrostatic interactions with the solvent are usually
approximated by considering the compound’s solvent-accessible surface area (SASA). The SASA
describes a modified van der Waals surface areas taking into account that, due to steric reasons, not all
parts of the surface of a compound are accessible for a given solvent. Hence, the SASA depends not
only on the elemental distribution of the compound but also on its geometry. Due to the free electron
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Table B.7: Reference values for the gas phase association energies at 0 K calculated with “DLPNO-
CCSD(T1)234/CBS” in comparison with energies calculated with several DFT functionals after basic conforma-
tional screening in kcal/mol. Furthermore the mean deviation (MD), the mean absolute deviation (MAD), the
standard deviation (SD), and the absolute maximum error (AMAX) of the presented data

Conf. PBE0-D4 B3LYP-D4 𝜔B97X-V PWPB95-D4 revDSD-BLYP-D4 r2SCAN-3c ref.

2b•3b
111 -30.4 -26.4 -27.2 -26.9 -25.8 -25.1 -26.0
121 -32.1 -28.1 -28.8 -27.7 -27.4 -26.8 -27.7
112 -25.3 -22.6 -22.3 -22.3 -21.1 -20.0 -20.7
122 -27.1 -24. -23.9 -23.1 -22.7 -21.7 -22.3

2d•3b
111 -36.3 -32.5 -36.0 -31.4 -30.9 -33.6 -31.4
121 -38.1 -34.2 -37.6 -32.2 -32.5 -35.3 -33.1

2b•3d
111 -35.8 -31.7 -34.5 -30.8 -30.6 -30.9 -30.7
121 -36.0 -31.9 -34.8 -31.0 -30.8 -31.0 -30.9
151 -38.1 -33.6 -36.8 -32.1 -32.2 -33.2 -32.8
112 -35.9 -32.0 -34.6 -30.6 -30.7 -30.8 -30.6
122 -36.1 -32.2 -34.9 -30.8 -30.9 -30.9 -30.8
152 -38.2 -33.9 -36.8 -31.9 -32.3 -33.1 -32.7
113 -35.9 -32.0 -34.4 -30.7 -30.6 -30.7 -30.4
123 -36.1 -32.2 -34.7 -30.9 -30.8 -30.8 -30.6
153 -38.2 -33.9 -36.7 -32.0 -32.3 -32.9 -32.5

2d•3d
111 -42.8 -38.9 -45.5 -37.2 -36.6 -37.1 -37.5
121 -43.0 -39.1 -45.8 -37.4 -36.8 -38.2 -37.7
151 -45.1 -40.8 -47.7 -38.5 -38.2 -39.4 -39.6
112 -43.6 -40.1 -46.4 -38.7 -37.8 -38.0 -38.2
122 -43.8 -40.2 -46.7 -38.9 -38.0 -38.2 -38.4
152 -46.0 -42.0 -48.7 -40.0 -39.5 -40.3 -40.3
113 -42.7 -39.0 -45.3 -38.1 -36.5 -37.0 -37.1
123 -42.8 -39.1 -45.6 -38.4 -36.7 -37.2 -37.7
153 -45.0 -40.8 -47.6 -39.4 -38.2 -39.3 -39.2
114 -42.2 -38.6 -44.9 -38.2 -36.0 -36.7 -36.8
124 -42.4 -38.7 -45.2 -38.4 -36.2 -36.8 -37.0
154 -44.5 -40.5 -47.1 -39.5 -37.7 -39.0 -38.9

MD -5.27 -1.41 -5.54 -0.22 0.42 -0.10
MAD 5.27 1.41 5.54 0.59 0.53 0.45
SD 0.38 0.44 2.61 0.73 0.48 0.72
AMAX 5.8 1.9 8.4 1.6 1.4 2.2
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Table B.8: Comparison of implicit solvation models after “crude” conformational screening. Reaction solvation
free energies Δ𝛿𝐺𝑠𝑜𝑙𝑣 refer to averages over conformer ensembles and are given in kcal/mol.

COSMO-RS SMD CPCM
2b•3b 4.64 5.72 1.90
2d•3b 9.56 6.68 2.11
2b•3d 7.50 6.32 2.12
2d•3d 12.57 9.21 2.40
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Figure B.4: Comparison of experimentally obtained association free energies with the calculated ones for 2b/3b,
2d/3b, 2b/3d, 2d/3d.
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Figure B.5: Various contributions to the association free energy obtained via an energy decomposition analysis.
The energies are given with respect to the number of ligand atoms. For the dispersion contribution, a linear
regression is performed.

Table B.9: Comparison of the SASA of the 2d and the 3d monomer calculated with a solvent radius of 1.3 Å
and with a probe radius of 0.4 Å in Å2.

𝑟𝑝𝑟𝑜𝑏𝑒 1.3 Å 0.4 Å
2d 858 799
3d 901 795

pair of the 3d monomer, the ligands are oriented trigonal pyramidal, making some parts of the surface
inaccessible to the solvent. This is not the case for the 2d monomer, leading to a significant difference
in the SASA of 43 Å2 between these two monomers when calculated with a probe radius of 1.3 Å. A
visualization of this effect is depicted in Figure B.6. Hence, a significant difference in the attractive
solvent interactions destabilizing the 3d monomer compared to the 2d monomer is found, which in
turn stabilizes the 2b•3d complex.
This also explains the more pronounced differences in the solvation free energy between SMD and
COSMO-RS when the calculation involves a 3d monomer. The SMD model uses a solvent radius of
just 0.4 Å.30 As can be seen from the calculations of the SASA in Table B.9 changing the probe radius
leads to a nearly identical size of the SASA for both, the 2d monomer and the 3d monomer, which can
also be observed from the total solvation free energies in table B.8.
Therefore, we attribute the major source for remaining deviations of the calculated association free
energies from the measured ones to the implicit solvation treatment, for which, however, no better
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Figure B.6: SASA of the 2d and the 3d Monomer calculated with a probe radius of 1.3 Å.

alternative is available at the moment.

Supporting Tables and Figures

Table B.10: Comparison of thermodynamic parameters determined by 31P NMR titration and DOSY experiments
(values in kcal/mol, free energy calculated for 298K)

P NMR titration
Lewis Pair ΔH ΔΔH ΔS ΔΔS ΔG ΔΔG

[10−2] [10−3] [10−3]
2b•3b -8.9 ±29.4 -29.1 ±1.0 -0.2 ±0.6
2b•3c -10.2 ±14.0 -25.3 ±0.5 -2.6 ±0.3
2b•3d -9.6 ±7.3 -21.8 ±0.3 -3.1 ±0.2
2c•3b n.a.
2d•3b -8.5 ±7.0 -19.4 ±0.2 -2.7 ±0.1
2d•3c -8.0 ±29.5 -14.7 ±1.0 -3.6 ±0.6
2d•3d n.a.

DOSY experiments
Lewis Pair ΔH ΔΔH ΔS ΔΔS ΔG ΔΔG

[10−2] [10−3] [10−3]
2b•3b -7.6 ±0.29 -21.8 ±1.0 -1.2 ±0.6
2b•3c -21.2 ±1.21 -67.5 ±4.1 -1.1 ±2.4
2b•3d -22.0 ±2.67 -0.1 ±0.0 -1.6 ±5.4
2c•3b -38.3 ±5.1 -121.4 ±17.3 -2.1 ±10.2
2d•3b -28.9 ±2.2 -93.0 ±7.7 -1.2 ±4.5
2d•3c -23.1 ±0.4 -71.1 ±1.5 -1.9 ±0.9
2d•3d -16.1 ±1.0 -44.3 ±3.5 -2.8 ±2.1
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Figure B.7: Van’t Hoffs plot of Lewis pairs from 31P NMR titration and their linear fit.

Figure B.8: Van’t Hoffs plot of Lewis pairs from 31P NMR titration and their linear fit.
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APPENDIX C

Extended Conductor-like Polarizable Continuum
Solvation Model (CPCM-X) for Semiempirical
Methods

ALPB

CPCM-X

COSMO-RS
SMD

         implicit solvation

Abstract We have developed a new method to accurately account for solvation effects in semiempirical
quantum mechanics (SQM) based on a polarizable continuum model (PCM). The extended conductor-
like polarizable continuum model (CPCM-X) incorporates a computationally efficient domain
decomposition conductor-like screening model (ddCOSMO) for extended tight binding (xTB) methods
and uses a post-processing approach based on established solvation models, like the conductor-like
screening model for real solvents (COSMO-RS) and the universal solvent model based on electron
density (SMD). According to various benchmarks, the approach performs well across a broad range of
systems and applications, including hydration free energies, non-aqueous solvation free energies, and
large supramolecular association reactions of neutral and charged species. Our method for computing
solvation free energies is much more accurate than the current methods in the xtb program package.
It improves the accuracy of solvation free energies by up to 40% for larger supramolecular association
reactions to match even the accuracy of higher-level DFT-based solvation models like COSMO-RS
and SMD while being computationally more than two orders of magnitude faster. The proposed
method and the underlying ddCOSMO model are readily available for a wide variety of solvents and
are accessible in xtb for use in various computational applications.
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C.1 Introduction

In the past decades, quantum chemical (QC) methods transitioned from a niche topic to an essential
component of modern research. Starting from fundamental wave function theory (WFT), the develop-
ment of approximate methods, like density functional theory (DFT), led to enhanced efficiency enabling
the treatment of bigger, more complex molecules. However, even the most efficient DFT methods
are still limited by costly integral calculations. For this reason, over the last years, semi-empirical
quantum chemical methods (SQM), like GFN2-xTB85 and DFTB,83 were developed, introducing
drastic integral approximations to treat larger systems in a reasonable amount of computational time.
Most current QC methods calculate the investigated compounds first without any thermostatistical
contribution (i.e., at 0 K) and in the gas phase (𝐸gas,0 K). Naturally, this is far from reality, where
experiments predominantly occur in laboratories at room temperature and in a solvent. Therefore,
additional contributions must be considered to compare theoretical calculations to experimental data
or to use calculations for screening purposes.
The mostly relevant total free energy 𝐺 total includes the solvation free energy (Δ𝐺solv), which corres-
ponds to the transition of a compound from the gas phase to the solvent phase and a thermostatistical
contribution Δ𝐺𝑇

𝐺 total = 𝐸gas,0 K + Δ𝐺𝑇 + Δ𝐺solv. (C.1)

While theΔ𝐺𝑇 term is typically approximated by a modified rigid rotor harmonic oscillator (mRRHO)96

scheme, there are several choices to model the solvation part.14,98 The adequacy of these choices
strongly depends on the used quantum chemistry package, the QC methods, and the investigated
system. Solvation effects are essential for various properties and should always be considered when
conducting a theoretical study referring to a solvated state. Furthermore, some properties, which
depend on fluid phase equilibria (e.g., partition coefficients or vapor pressures), cannot even be
fathomed without considering these effects.
In recent work, we introduced a solvation model for semiempirical methods based on the analytical
polarizable Poisson-Boltzmann method (ALPB).25,26 While we showed that reasonable agreement
with experimental data can be obtained with this approach, there are more accurate solvation models
out there, like the conductor-like screening model for real solvents (COSMO-RS),27,28 the COSMO
segment activity coefficient (COSMO-SAC)29 model or the universal solvent model based on solute
electron density (SMD),30 which are based on polarizable continuum models (PCMs),21 which can
reach an accuracy far out of range of ALPB.23

However, these models are based on DFT calculations and are therefore not readily available for use
with GFN2-xTB or SQM methods developed in the future, which limits their usability for very large
systems due to computational cost. Moreover, we showed that even the less sophisticated ALPB method
can be an essential part of a computational workflow that combines rigorous conformational screening
and multi-level refinement (CRENSO).12 By utilizing more sophisticated PCM-type solvation models
in the later parts of the workflow, it allowed us to accurately calculate vapor pressures119 and partition
coefficients5 for a large variety of different compounds, even for very flexible ones.
In this work, we describe the implementation of a PCM-type domain-decomposition conductor-like
screening model (ddCOSMO)137,249 in our xtb code and develop a post-processing solvation model,
that is based on established solvation models for DFT methods, to further refine the description of the
solvation free energy with SQM methods.
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C.2 Theory

The standard state solvation free energy (Δ𝐺solv) can usually be partitioned as

Δ𝐺solv = Δ𝐺ES + Δ𝐺NE + Δ𝐺corr., (C.2)

where Δ𝐺ES is the electrostatic contribution and Δ𝐺NE is the non-electrostatic contribution to the
solvation free energy. Δ𝐺corr. is a standard state correction factor, which is dependent on the solvent’s
temperature and density. The standard state correction is further dependent on the theoretical reference
framework of the method, which is a stoichiometric ratio of solute and solvent, and the final reference
state, chosen to be a concentration of 1 𝑚𝑜𝑙

𝐿
. The standard state correction can then be calculated as

Δ𝐺corr = 𝑅𝑇 ln
𝜌𝑆𝑉IG
𝑀𝑠

, (C.3)

where 𝜌𝑠 is the density of the solvent, 𝑉IG is the ideal gas molar volume and 𝑀𝑠 is the molecular
weight of the solvent.
The extended conductor-like polarizable continuum model (CPCM-X) proposed in this work is based
on an approach developed by Klamt et al.27,28 for the electrostatic part of the energy and therefore
further splits this contribution into an ideal screening part (Δ𝐺IS) and a restoring free energy part
(Δ𝐺res) as

Δ𝐺ES = Δ𝐺IS + Δ𝐺res. (C.4)

Δ𝐺IS can be obtained from the difference of a GFN2-xTB calculation in the gas phase and in
an ideal conductor using a specially parametrized version of a computationally efficient COSMO
implementation (ddCOSMO). Δ𝐺res. is calculated in a post-SCF approach using COSMO-RS theory
(see below).
Because early versions of our model showed insufficient agreement with experimental data, we replaced
part of the gas phase term introduced in the original version of COSMO-RS with another, more
sophisticated term introduced by Marenich et al.,30 which is called the Cavity-Dispersion-Solvent-
Structure (CDS) Formalism (Δ𝐺𝐶𝐷𝑆). Staying in the framework of splitting the solvation free energy
into electrostatic and non-electrostatic parts, Δ𝐺𝐶𝐷𝑆 replaces the non-electrostatic contributions,
which leads to the following equation for the solvation free energy

Δ𝐺solv = Δ𝐺IS + Δ𝐺res + Δ𝐺CDS + Δ𝐺corr. (C.5)

C.2.1 Ideal Solvation

The free energy contribution in the domain decomposition COSMO model137 is defined as

Δ𝐺IS = 𝑓 (𝜀)
∑︁
A

𝐿max∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

[ΨA]
𝑚
ℓ [𝑋A]

𝑚
ℓ (C.6)

where 𝑓 (𝜀) is the dielectric function of the dielectric constant 𝜀, 𝐿max is the maximum angular
momentum for the spherical harmonics basis, ®𝑋 is the solution of the direct ddCOSMO equation
(cf. Eq. C.8) and ®Ψ the charge distribution mapped on the spherical harmonic basis functions with
angular momentum (ℓ, 𝑚) centered on atom A. For xtb, a point charge distribution is assumed,
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leading to
[ΨA]

𝑚
ℓ =

√
𝜋𝑞A𝛿𝑙0𝛿𝑚0. (C.7)

with 𝑞A being the atomic partial charge obtained by Mulliken population analysis in the self-consistent
solution of the xTB Hamiltonian and 𝛿𝑎𝑏 being the Kronecker delta. We obtain ®𝑋 by solving the
direct ddCOSMO equation given by

L ®𝑋 = ®𝑔 (C.8)

with L being the block sparse matrix for the interaction in spherical harmonic basis (cf. eq. C.13) and
g is the spherical harmonics expansion of the molecular potential, given as

[𝑔A]
𝑚
ℓ = −

𝑁g∑︁
𝑔

𝑤𝑔𝑌
𝑚
𝑙 (®𝑦𝑛)𝑈

A
𝑔Φ

A
𝑔 (C.9)

where we use the molecular potential ®Φ, the spherical harmonics𝑌𝑚𝑙 , the number of angular integration
points 𝑁𝑔, the point on the radial integration grid on a unit sphere ®𝑦𝑔, the integration weight of the
angular grid 𝑤𝑔, and a switching function ®𝑈 to ensure smoothness when the number of buried grid
points changes. The molecular potential is given as

Φ
A
𝑔 =

𝑁at∑︁
B

𝑞B

| ®𝑅A + 𝑟A®𝑦𝑔 − ®𝑅B |
, (C.10)

with ®𝑅A being the Cartesian coordinates of atom A and ®𝑟A the van-der-Waals radius of atom A. For
the switching function𝑈 is given by

𝑈
A
𝑔 = 1 −

∑︁
B

min(1, 𝑓 A
𝑔 )

𝑓
A
𝑔

· 𝜒AB
𝑔 with 𝑓

A
𝑔 =

∑︁
B
𝜒

AB
𝑔 (C.11)

and the function 𝜒𝜂 is defined as

𝜒
AB
𝑔 =


1 if 𝑡AB

𝑔 ≤ 1 − 𝜂
𝜂
−5(1 − 𝑡AB

𝑔 )3
(
6(𝑡AB

𝑔 )2 + (15𝜂 − 12)𝑡AB
𝑔 + 10𝜂2 − 15𝜂 + 6

)
if 1 − 𝜂 < 𝑡AB

𝑔 < 1
0 if 𝑡AB

𝑔 ≥ 1
(C.12)

where 𝜂 is a regularization parameter provided as adjustable numeric parameter and 𝑡AB
𝑔 is a distance

dependent metric (cf. eq. C.14). The ddCOSMO matrix is given by

[𝐿AB]
𝑚𝑚

′

ℓℓ
′ = −

𝑁𝑔∑︁
𝑔

𝑤𝑔𝑌
𝑚
ℓ (®𝑦𝑔)𝑌

𝑚
′

ℓ
′ (®𝑠AB

𝑔 ) · 𝜔𝐴𝐵𝑔
4𝜋

2ℓ′ + 1
(𝑡AB
𝑔 )ℓ

′
. (C.13)

The distance metric 𝑡 and 𝑠 are given as

𝑡
AB
𝑔 =

| ®𝑅A + 𝑟A®𝑦𝑔 − ®𝑅B |
𝑟B

and ®𝑠AB
𝑔 =

®𝑅A + 𝑟A®𝑦𝑔 − ®𝑅B

| ®𝑅A + 𝑟A®𝑦𝑔 − ®𝑅B |
. (C.14)
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To obtain the potential contribution FIS of the ddCOSMO to the xTB Hamiltonian, we evaluate the
derivative of the molecular potential with respect to the density matrix P as

𝐹
IS
𝜆𝜅 =

𝑁at∑︁
A

𝑁𝑔∑︁
𝑔

𝜁
A
𝑔

𝜕Φ
A
𝑔

𝜕𝑃𝜆𝜅
(C.15)

where we construct the potential contribution using with 𝜁 being defined as

𝜁
A
𝑔 =

∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑤𝑔𝑈
A
𝑔𝑌

𝑚
𝑙 (®𝑦𝑔) [𝑆A]

𝑚
ℓ . (C.16)

Here the S is obtained by solving the adjoint ddCOSMO equation given by

L∗ ®𝑆 = ®Ψ (C.17)

This way, the ddCOSMO contribution to the electronic energy can be included self-consistently in the
xTB Hamiltonian.

C.2.2 Realistic Solvation

The ddCOSMO model falls under the category of PCM-type models which assume that the solvent is
a uniform dielectric continuum. This is a reasonable assumption for non-polar or alkane solvents.
However, it may not hold true for solvents with permanent dipole moments (polar solvents) as the
solvent can hardly be considered a homogeneous dielectric continuum due to the orientation and
explicit interactions, such as hydrogen bonding. This, in turn, significantly impacts the interactions
between solvent and solute, leading to changes in the solvation free energy. Klamt et al. introduced an
improvement to the COSMO136 solvation model known as the conductor-like screening model for real
solvents (COSMO-RS).28 COSMO-RS employs a reliable approach by initiating a DFT+COSMO
calculation for a molecule in a perfect conductor (𝜖 = ∞), eliminating the requirement for empirical
scaling of the dielectric screening energy. The original COSMO-RS theory remains unchanged for the
chemical potential of the condensed phase, but it has been reparametrized for use with the semiempirical
method GFN2-xTB. The following section provides an overview of the underlying theory, and for a
more detailed explanation, we refer to the original publications by Klamt et al.27,28,250,251

In a perfect conductor, all molecules are ideally screened, i.e., the molecules do not interact
electrostatically. The electrostatic energy gained in the complete screening process can be directly
taken from the COSMO calculation and is depicted as Δ𝐺IS in equation C.5 and C.24. However, the
molecules would still be frozen in their ideal gas state. Because there are no interactions, we could, in
theory, rearrange the molecules to their condensed state without changing the system’s energy29.

To finally get a realistic description of the energy of the condensed phase, we need to remove this
hypothetical ideal conductor by adding compensation charges to each molecular surface segment that
are of opposite charge to their ideal screening ones. However, these new compensation charges will
interact, adding an energy contribution to the system called the misfit energy Δ𝐸misfit(𝜎, 𝜎

′). It is
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dependent on the two surface charges 𝜎 and 𝜎′ according to

𝐸misfit(𝜎, 𝜎
′) = 𝛼

′

2

seq.∑︁
𝑣

(𝜎𝑣1 + 𝜎
′
𝑣2)

2
, (C.18)

where 𝛼′ is dependent on an effective area of the surface segments and the response of the charges to
the removal of the compensation patches and is treated as a free parameter. Because, in reality, the
surface segments will not be frozen in position but move in a fluid state, we will not use the ideal
screening charges 𝜎id in equation C.18, but averaged screening charges over a region of an averaging
radius 𝑟av. The averaging is done as

𝜎𝑣 =

seg.∑
𝑖

𝜎
∗
𝑖 𝑓 (𝑟𝑖 , 𝑟av, 𝑑iv)

seg.∑
𝑖

𝑓 (𝑟𝑖 , 𝑟av, 𝑑iv)
, (C.19)

where 𝑓 (𝑟𝑖 , 𝑟av, 𝑑iv) is a function, that depends on the distance between the segments 𝑖 and 𝑣 (𝑑iv), the
averaging radius 𝑟av, which is treated as a free parameter for the reparametrization of the method, and
the mean radius of the segment (𝑟𝑖).

28,29

To calculate the misfit energy in equation C.18, the complete geometric information of an ensemble
of condensed molecules would have to be known. This is generally not possible because, in a real
solvent, the molecules are not frozen in time. Again, Klamt et al. introduced an approximation also
employed here. Instead of considering an ensemble of molecules, an ensemble of surface patches is
treated, and their corresponding ideal screening charges are normalized to a single molecule.
After normalizing these so-called sigma profiles to the area of the surface segments as

𝑝
′
𝑆 (𝜎) =

𝑝𝑆 (𝜎)
𝐴
𝑋

, (C.20)

the chemical potential 𝜇′𝑆 (𝜎) of the a single additional patch 𝜎 in one mole of patches can be obtained
as

𝜇
′
𝑆 (𝜎) = −𝑘𝑇 ln

∫
𝑑𝜎

′
𝑝
′
𝑆 (𝜎

′) exp
(
−
𝐸 (𝜎, 𝜎′) − 𝜇𝑆 (𝜎

′)
𝑘𝑇

)
, (C.21)

where 𝐸 (𝜎, 𝜎′) is the interaction energy between the patches with the screening charge density 𝜎
and 𝜎′. This interaction energy is composed of the misfit energy from equation C.18, as well as an
additional hydrogen bonding term, as

𝐸hb(𝜎, 𝜎
′) = 𝑐hb max [0, 𝜎acc − 𝜎hb] min [0, 𝜎don + 𝜎hb], (C.22)

where 𝑐hb and 𝜎hb are parameters that need to be fitted to the method and 𝜎acc and 𝜎don denotes the
larger and the smaller values of 𝜎 and 𝜎′, respectively.
The chemical potential of a solute X in the solvent S can finally be obtained by integrating the
𝜎-potential of the solvent weighted by the 𝜎-profile of the solute as

𝜇
𝑋
𝑆 =

∫
𝑑𝜎𝑝

𝑋 (𝜎)𝜇𝑆 (𝜎). (C.23)
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We call this chemical potential 𝜇𝑋𝑆 the restoring free energy Δ𝐺res in equation C.5.

C.2.3 Gas Phase

The realistic description of the solvated phase may already be sufficient for pure solvent-dependent
properties, like partition coefficients between various liquid phases. However, to calculate a solvation
free energy Δ𝐺𝑠𝑜𝑙𝑣 , additional information about the chemical potential of the solute molecule in the
gas phase is needed. Following the COSMO-RS28 approach we used an independent function for
calculating the gas phase chemical potential as

𝜇
𝑋
gas = Δ𝐺IS −

atoms∑︁
𝑘

𝛾𝑘𝐴
𝑋
𝑘 − 𝜔𝑛𝑟𝑎

𝑋 − 𝜂𝑅𝑇, (C.24)

where Δ𝐺IS is the ideal screening energy directly from the ideal conductor calculation with ddCOSMO
(see above), 𝜔𝑛𝑟𝑎

𝑋 is an effective ring atom correction, and 𝜂𝑅𝑇 is a thermodynamic correction based
on the temperature. Here, 𝛾𝑘𝐴

𝑋
𝑘 represents the van-der-Waals (vdW) term, where 𝛾𝑘 is an element-

based parameter and 𝐴𝑋𝑘 is the exposed surface area of element k in molecule X. However, using this
term in combination with GFN2-xTB did not yield satisfying results. For this reason, after extensive
literature research, we decided to replace the vdW term with the enhanced cavity-dispersion-solvent
(CDS) formalism, introduced by Marenich et al. in their SMD30 model. The Δ𝐺CDS contribution is
given by

Δ𝐺CDS =

atoms∑︁
𝑘

𝛾𝑘𝐴
𝑋
𝑘 + 𝛾 [𝑀 ]

atoms∑︁
𝑘

𝐴
𝑋
𝑘 , (C.25)

where 𝛾𝑘 is the surface tension of atom k in molecule X and 𝛾 [𝑀 ] is the molecular surface tension of
the solvent. Like in equation C.24, 𝐴𝑘 is the exposed surface area, or solvent-accessible surface area
(SASA), of the atom k. However, in contrast to the more straightforward approach in equation C.24,
𝛾𝑘 and 𝛾 [𝑀 ] are not just simple parameters. Instead, 𝛾𝑘 depends on a parameter for a specific element
𝛾𝑍𝑘

but also on parameters for neighboring elements 𝛾𝑍𝑘 ,𝑍𝑘′ and a geometry-dependent switching
function 𝑇𝑘

𝛾𝑘 = 𝛾𝑍𝑘
+
𝑎𝑡𝑜𝑚𝑠∑︁
𝑘
′
𝛾𝑍𝑘 ,𝑍𝑘′

𝑇𝑘 . (C.26)

These parameters, as well as the molecular surface tension 𝛾 [𝑀 ] , are further dependent on solvent-
specific descriptors, e.g., the refractive index of the solvent or the macroscopic surface tension at
air/solvent interface at 298.15 K. More detailed information on this can be found in the respective
publication.30

C.3 CPCM-X Training Set

While CPCM-X is based on a combination of existing implicit solvation models, the empirical
parameters used must be refitted entirely to the underlying method (GFN2-xTB). Because obtaining
sufficient experimental data for a robust fit proved to be difficult, we resorted to theoretically obtained
reference data using standard COSMO-RS in the ’19 parametrization. This is a reasonable approach,
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as, due to the limited accuracy of the underlying GFN2-xTB method used to generate the COSMO
files compared to DFT, we cannot expect the highest accuracy possible. Rather, we aim for a
computationally efficient and robust approximation of the solvation free energy with no additional
computational overhead.
The training set was established in the parametrization of several semiempirical methods, with the
latest version created to develop a new density matrix tight binding scheme (PTB).252 From this
versatile set, only compounds containing the elements H,C,N,O,P,F,Cl and Br were used. Due to the
questionable performance of implicit solvation models (and thus uncertainty in the reference data) for
highly charged molecules, the scope of the set was reduced by removing compounds that were more
than doubly charged.
The fit itself was performed using the Levenberg-Marquardt least-squares fitting algorithm. Higher-
charged compounds tend to have much larger solvation free energies than neutral ones. Hence, to
prevent a bias in the parametrization in favor of charged molecules, the deviations with respect to their
reference data were Gaussian weighted.

C.4 Results

The results shown here were calculated with the CPCM-X module, implemented in the xtb code,
which is freely available on GitHub. The module can be invoked by using the command line keyword
–cpcmx, followed by the respective solvent name. xtb supports all solvents included in the Minnesota
solvation database (MNSOL)141 by default. Additional solvents can be included by defining their
solvent properties. The GFN2-xTB/ALPB and GFN2-xTB/GBSA solvation free energies shown
for comparison were also calculated with xtb using the difference in energy of a gas phase and a
solvation phase single-point calculation. The COSMO-RS results were calculated using COSMO files
obtained with TURBOMOLE 7.5.1144 on a BP-8669/def2-TZVP level of theory and post-processed
using the program COSMOtherm in the ’19 parametrization. For evaluation, all solvation free energies
are transferred to the Ben-Naim169 standard state (𝑚𝑜𝑙

𝐿
), to match the experimental reference state

used in the MNSOL database.

C.4.1 Hydration free energies

hydration free energies were evaluated on the FreeSolv253 benchmark set and on the water subset
of the MNSOL database. The water subset was divided into neutral and ionic compounds to better
compare the method’s accuracy with the implicit solvation models used as default in xtb. As geometry
optimizations tend to have only a slight influence on solvation free energies for smaller, relatively
rigid organic compounds26, and to enable a direct comparison of the methods, all calculations were
performed on GFN2-xTB optimized gas phase optimized geometries. A visual representation of the
results for the FreeSolv Benchmark set can be found in figure C.1.
GFN2-xTB/GBSA and GFN2-xTB/ALPB already perform reasonably well on this benchmark set, with
a MAD of 1.79 kcal/mol and 1.65 kcal/mol, and a SD of 2.34 kcal/mol and 2.14 kcal/mol, respectively.
For comparison, the theoretical reference data (explicit solvation using a generalized Amber force
field (GAFF)) that was published together with the benchmark set yields a MAD of 1.11 kcal/mol and
an SD of 1.51 kcal/mol, while more sophisticated solvation models, like COSMO-RS and SMD, can
yield even better results. GFN2-xTB/CPCM-X yields an excellent MAD of 1.38 kcal/mol and an SD

84



C.4 Results

−10

−5

0

5

10

ALPB CPCM−X GBSA

∆G
so

lv
, c

al
c 

−
 ∆

G
so

lv
, e

xp

Figure C.1: The distribution of deviations from the reference hydration free energies, contained in the FreeSolv
benchmark set, when compared with theoretical values obtained with ALPB, CPCM-X, and GBSA, in
conjunction with GFN2-xTB.

of 1.88 kcal/mol, corresponding to an improvement of about 20 % in both statistics over the default
solvation models used in the xtb code.

The results for the Minnesota solvation database can be found in Table C.1. For the neutral compounds,
this trend in favor of CPCM-X is even more pronounced with MADs of 1.95, 1.88, and 1.46 for
GFN2-xTB/GBSA, GFN2-xTB/ALPB, and GFN2-xTB/CPCM-X. However, for ionic compounds, its
advantage becomes less apparent. GFN2-xTB/CPCM-X still performs best of the three methods in
terms of MAD (6.93), while GFN2-XTB/ALPB yields a MAD of 7.40 kcal/mol and GFN2-xTB/GBSA
yields an even higher MAD of 10.55 kcal/mol. However, the SD for CPCM-X is worse compared to
the older models.

Splitting the ionic compound set into cations and anions, the reason for this unexpected result becomes
apparent (Table C.2). CPCM-X systematically underestimates the solvation free energy for cations
with an MD of 10.01 kcal/mol. The same trend is observable for GBSA, which seems less pronounced
for ALPB with an MD of 4.23. The reason for this observation may be attributed to the choice of
reference method for the parametrization of GBSA and CPCM-X. While these methods were purely
fitted on theoretical data, the ALPB method was partially fitted on experimental reference data from
the Minnesota solvation database, emphasizing the improvement of CPCM-X over ALPB for anionic
and neutral compounds even more. Comparing results for the same dataset obtained with COSMO-RS
in the ’19 parametrization shows that the same systematic underestimation can be seen for cationic
compounds (MD=9.75 kcal/mol). This may be partially attributed to varying solvation free energies of
the proton utilized in the fitting procedure for COSMO-RS and the determination of the experimental
data.254 However, this could not be evaluated due to the undisclosed nature of this procedure.
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Table C.1: MD, MAD and SD for the water subset of the Minnesota Solvation Database for the methods GBSA,
ALPB and CPCM-X. The statistic is additionally calculated for a split subset depending on the total charge of
the investigated molecules.

GBSA ALPB CPCM-X
neutral compounds

MD 0.05 -0.21 -0.24
MAD 1.95 1.88 1.46
SD 2.56 2.47 2.16

ionic compounds
MD 10.46 6.77 4.50
MAD 10.55 7.40 6.93
SD 5.15 5.71 7.32

full subset
MD 2.85 1.67 1.03
MAD 4.26 3.36 2.93
SD 5.76 4.77 4.71

Table C.2: MD, MAD and SD for the ionic water subset of the Minnesota Solvation Database for the methods
GBSA, ALPB, CPCM-X and the reference method COSMO-RS. The statistic is splitted into anionic and
cationic compounds.

GBSA ALPB CPCM-X COSMO-RS
anionic compounds

MD 11.16 8.61 0.51 -4.12
MAD 11.32 9.39 4.68 6.18
SD 5.77 6.21 6.37 5.66

cationic compounds
MD 9.49 4.23 10.01 9.75
MAD 9.49 4.65 10.03 9.75
SD 3.98 3.70 4.39 2.75
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Figure C.2: Theoretical results calculated with GFN2-xTB/CPCM-X in respective to experimental data for the
full non-ionic, non-aqueous MNSol Database.

C.4.2 Non-aqueos solvation free energies

As there are no special solvent parametrizations for CPCM-X (see above), it can be easily used for any
solvent for which the needed solvent descriptors are available. This is true for all 91 solvents, that
are present in the Minnesota database and for this reason, we can fully evaluate with reference to the
experimental data given. The results are visualized in figure C.2. Because of the mentioned deviations
of the reference method for the ionic cases in this database, we limit ourselves to neutral solvation free
energies for this evaluation. Most of the results are in excellent agreement with experimental data with
errors < 1 kcal/mol. With a MAD of 0.74 kcal/mol and a SD of 1.05 kcal/mol, CPCM-X performs
better for the non-aqueous solvents than for the hydration free energies, which is expected, since more
complicated noncovalent interactions, like hydrogens bonds, are less pronounced in non-polar solvents,
than in water.
However, the ALPB and GBSA solvation models, which are routinely used with GFN2-xTB, need to
be parametrized for each solvent individually and are therefore only available for a limited number
of solvents, which makes their full evaluation compared to CPCM-X impossible. Excluding water,
GBSA is available for eleven additional solvents, while ALPB is available for 22 additional solvents.
As ALPB performed better than GBSA in all our previous tests, we limit the comparison to ALPB and
the solvents contained in the MNSOL Database, for which ALPB was parametrized. The results can
be found in table C.3. GFN2-xTB/ALPB reaches a MAD of 1.00 kcal/mol and a SD of 1.41 kcal/mol
for this limited data set, which is a very good result for a semi-empirical method. However, with a
MAD of 0.86 kcal/mol and a SD of 1.26 kcal/mol CPCM-X performs even better on this limited
dataset, with an improvement that falls in line with previous results for the hydration free energies
(≈ 15%). The statistics are also summarized in table C.3.
We also calculated COSMO-RS solvation free energies for this limited data set to assess the to be
expected accuracy. The results show an enhanced performance over the semiempirical solvation
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Table C.3: MD, MAD, SD and error range for a total of 15 non-aqueous subsets of the Minnesota solvation
database for the methods ALPB, CPCM-X, and the reference method COSMO-RS. Further information about
the subsets can be found in the supporting information.

ALPB CPCM-X COSMO-RS
GFN2-xTB GFN2-xTB BP86/def2-TZVP

MD -0.26 -0.14 0.02
MAD 1.00 0.86 0.52
SD 1.41 1.26 0.91
error range 16.2 13.7 13.0

models, probably due to the enhanced description of the electron density by the underlying DFT method.
Nevertheless, these results validate the choice of this reference method for the parametrization of the
CPCM-X method. However, the difference between GFN2-xTB/CPCM-X and DFT/COSMO-RS is
rather small considering the significantly reduced computational cost of the former method.

C.4.3 Solvation free energies of larger systems

A critical aspect of the new CPCM-X solvation model is its usability with semiempirical methods
regarding the enhanced computational cost of the ddCOSOMO compared to the underlying SCF
procedure, especially for larger molecules. In order to test the computational performance also
compared to a (usually much slower) DFT-based treatment on a statistically solid basis, we used
the well-established S30L255 supramolecular benchmark set. For this set, back-corrected solvation
free energies, as well as theoretical solvation free energies calculated GFN2-xTB/GBSA, GFN2-
xTB/ALPB, SMD (BP86/def2-SVP) and COSMO-RS (BP86/def2-TZVP) are available from previous
works.26,255 Because ALPB and GBSA are limited by the parametrized solvents, for some of the
compounds, an alternative solvent was used in the original publication of the ALPB solvation model.26

As CPCM-X does not have this restriction, we use the correct solvents for this method. In addition,
we compare our results also to the DFT-based models to assess the loss of accuracy we suffer in the
trade of enhanced computational efficiency. We restrict this investigation to non-aqueous compounds
because of the previously identified irregularity for ionic hydration free energies (see above). The
results are given in table C.4.
With a MAD of 3.56 kcal/mol, CPCM-X performs clearly better than ALPB or GBSA with a MAD
of 5.04 kcal/mol and 5.25 kcal/mol, respectively. With a SD of 4.53 kcal/mol and an error range
of 18.89 kcal/mol, it is also more robust in comparison to ALPB (SD = 6.51 kcal/mol, range =
25.37 kcal/mol) and GBSA (SD = 8.07 kcal/mol, range = 38.75 kcal/mol). As expected, SMD and
COSMO-RS still show slightly better performance with MADs of 2.82 kcal/mol and 2.65 kcal/mol,
respectively.
However, the better accuracy of COSMO-RS or SMD has to be set in relation to the increased
performance of the new GFN2-xTB/CPCM-X method. To evaluate this, the wall computation time for
calculating the whole data set was determined on an Intel(R) Core(TM) i7-10700K CPU on a single
core. The results are displayed in figure C.3. As expected, the ALPB method is the fastest, with a
wall time of 45 seconds, followed by the CPCM-X method, with a wall time of 196 seconds. The
increased computation time can be attributed to the relatively costly ddCOSMO calculation. SMD
and COSMO-RS are significantly slower than the semi-empirical solvation models with wall times of
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Table C.4: Statistics for the S30L subset using the methods ALPB and CPCM-X with GFN2-xTB, as well as
COSMO-RS (BP86/def2-TZVP) and SMD (BP86/def2-SVP).

GBSA ALPB CPCM-X COSMO-RS SMD
GFN2-xTB GFN2-xTB GFN2-xTB BP86/def2-TZVP BP86/def2-SVP

MD 0.52 -0.04 0.77 0.76 0.94
MAD 5.25 5.04 3.56 2.65 2.82
SD 8.07 6.51 4.53 3.22 3.66
Range 38.75 25.37 18.89 13.13 15.38
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Figure C.3: Timings for the non-aqueous reaction solvation free energies (Δ𝑅𝐺𝑠𝑜𝑙𝑣) of the S30L subset for the
methods ALPB, CPCM-X, COSMO-RS, and SMD.

∼ 21.4 hours and ∼ 15.1 hours, respectively, which is due to the higher level DFT treatment, that is
used for the COSMO/CPCM solvation model. This translates to an increase of more than two orders
of magnitude (factor ∼ 280) in computational efficiency for CPCM-X (GFN2-xTB) in comparison to
COSMO-RS (BP86/def2-TZVP).

C.5 Conclusion

In this work, we introduced the extended conductor-like polarizable continuum model (CPCM-X) in
combination with the semiempirical method GFN2-xTB for the computation of solvation free energies
of molecules. This model consistently outperforms the default solvation models ALPB and GBSA for
a wide range of compounds. However, we did observe a slight systematic overestimation of cationic
hydration free energies, which may be attributed to the parametrization with the reference method
COSMO-RS. Nevertheless, CPCM-X has shown a significant improvement for neutral compounds.
This is because CPCM-X is designed to accurately reproduce the fine structure of solvents in the near
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field of the solute molecule, which is more important for neutral compounds than for ionic ones where
the electrostatic interactions also affect distant solvent molecules.
Additionally, our model has demonstrated increased performance and robustness for larger supra-
molecular complexes of the S30L benchmark set. We observed improvements of about 30% in terms
of mean absolute deviation and up to 40% in terms of standard deviation and error range. While more
sophisticated DFT-based solvation models may be even more accurate, CPCM-X is computationally
more efficient, with computation times two orders of magnitude faster than the reference method.
Furthermore, our CPCM-X model and its implementation into the xtb program suite is open-source
and not tied to any specific theory level or software package. This allows it to be refit for use with other
methods and packages, providing a consistent solvation treatment over multiple levels of theory. This,
in turn, provides a computationally efficient multi-level approach to calculate solvation-dependent
properties.
In summary, our implementation of the CPCM-X model in xtb provides a significant improvement in
the description of solvation at the ’low-level’ side of a quantum chemistry method hierarchy. We are
optimistic that this model will be a valuable addition to the GFN family, particularly for cases where
an accurate solvation description is necessary.

Author Contributions

MS: conceptualization, methodology, software, validation, formal analysis, investigation, data curation,
writing - original draft, visualization, and software; SE: software and writing - original draft; SG:
resources, writing - review & editing, supervision, project administration, and funding acquisition.

C.6 Supporting Information

The following files are available free of charge (DOI: https://doi.org/10.1021/acs.jpca.
3c04382).

• Excel spreadsheet containing the statistical evaluations in kcal/mol.

90

https://doi.org/10.1021/acs.jpca.3c04382
https://doi.org/10.1021/acs.jpca.3c04382


APPENDIX D

Improving Quantum Chemical Solvation Models
by Dynamic Radii Adjustment for Continuum
Solvation (DRACO)

Abstract. We present the Dynamic Radii Adjustment for COntinuum solvation (DRACO) approach,
which employs precomputed atomic partial charges and coordination numbers of the solute atoms to
improve the solute cavity. As such, DRACO is compatible with major solvent models, improving
their performance significantly and robustly at virtually no extra cost, especially for charged solutes.
Combined with the purely electrostatic CPCM and COSMO models, DRACO reduces the mean
absolute deviation (MAD) of the solvation free energy by up to 4.5 kcal/mol (67 %) for a large dataset
of polar and ionic solutes. Even in combination with the highly empirical universal solvent model
(SMD), DRACO substantially reduces the MAD for charged solutes by up to 1.5 kcal/mol (39 %),
while neutral solutes are slightly improved (0.2 kcal/mol or 16 %). We present an interface of DRACO
with two computationally efficient atomic charge models that enables fully automated, out-of-the-box
calculations with the widely used program packages Orca and TurboMole.
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D.1 Introduction

A variety of complex chemical problems that could once only be studied through costly and lengthy
laboratory experiments can nowadays be addressed with computational studies that use advanced
quantum mechanical (QM) methods like density functional theory (DFT) at a much-reduced effort.
However, without further modification, standard QM methods are often limited to the calculation
of molecules in the gas phase at a temperature of 0 K. To be able to describe chemical processes at
typical reaction conditions, additional factors such as thermodynamic effects at finite temperature, or
the influence of a solvent have to be included.
Incorporation of solvent effects into computational studies has been facilitated by the development
of various solvation models.109,256 This also gave rise to the class of implicit solvation models,
which are frequently used because they are fast and easily accessible via various QM program
packages. Prominent methods in this regard are polarizable continuum models (PCMs)99 such as
the conductor-like screening model (COSMO)136 or the conductor-like polarizable continuum model
(CPCM)248. They are based on continuum electrostatics21 and, as such, treat the solvent as a uniform
dielectric continuum that primarily depends on the dielectric constant (𝜀). This approximation is
generally appropriate for solvents that are only weakly interacting with the solute, but, in addition
to the complete lack of non-electrostatic interactions, it introduces even larger errors for systems
with very strong electrostatic solute–solvent interactions causing a significant solvent response to the
solute.251 To overcome this limitation, various solvation models evolved that introduce additional
correction terms, such as the conductor-like screening model for real solvents (COSMO-RS)27,28 or the
universal solvation model based on solute electron density (SMD).30 Nevertheless, all of these PCM
models are based on the same principle: they endeavor to solve the generalized Poisson equation by
reformulating it into an apparent surface charge method based on a three-dimensional solute cavity.98

Its construction is most prominently done by overlapping atom spheres that are based on fixed atom
radii. As the cavity of the solute greatly influences the performance of the models,257 determining
suitable radii is rather important, which, however, proved difficult.33 For example, experimentally
determined radii34,35 can produce unsatisfactory results,257 because they are often derived from crystal
structures34 and are expected to differ from effective solution values.
Consequently, the applied radii are commonly regarded as empirical parameters and are fine-tuned
using experimental reference data, such as vapor pressures or solvation free energies.258 In fundamental
solvation models like CPCM and COSMO, these radii are statically allocated per element, irrespective
of the specific solvent or solute, despite the fundamental variability of the cavity radius being an
inherent aspect of solute-solvent interactions.36–39 This static assignment renders them incapable
of adapting to the electronic structure of the solute, potentially limiting the maximum achievable
accuracy.259,260

Previous efforts to include information about the system for the determination of the solute cavity have
been made. However, these attempts are mostly focusing on water as solvent and are either limited to
certain atoms or functional groups,40 or are developed for specific applications with a narrow range
of training data.41,42 Other, more sophisticated approaches based on an isocontour of the electron
density introduce a significant additional computational effort and typically lack analytical energy
gradients.43,44

Here, we present a generally applicable and efficient approach for determining system-specific atom
radii for solute cavity construction based on their molecular environment. To do so, we employ
atomic partial charges computed with the highly efficient charge models EEQ92,139 and CEH140 as
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Figure D.1: A, B: Comparison of the scaled radii 𝑟𝑖,scaled and default radii 𝑟𝑖 in the CPCM model for hydrogen
and oxygen using water and DMSO as a solvent. The varying electron density is modeled by atomic partial
charges using the Hirshfeld analysis. C: Visualized static and dynamic radii for the water molecule.

well as (fractional) atom coordination numbers, which allow a fast on-the-fly solute evaluation and
radii computation. While in principle possible for all elements, DRACO presented in this work is
limited to elements that are well represented in the training data. Analytical energy gradients for
the dynamic radii are also provided, if the derivatives of the partial charges are available, which is
currently the case for e.g., the EEQ model. Both charge models were tested against Hirshfeld charges
derived from DFT and work robustly for all elements up to 𝑍 = 86 (radon). This so-called Dynamic
Radii Adjustment for COntinuum solvation (DRACO) approach is implemented in a freely available
open-source program on GitHub,142 including readily available parameters for CPCM, SMD, and
COSMO. To ensure easy applicability, only a single command line call is needed before performing
the actual DFT calculation in order to add the new radii to the input of the supported QC program
(currently ORCA143 and TurboMole144).

D.2 Theory and Implementation

DRACO relies on a dynamic scaling of the original static radii 𝑟𝑖
28,30,261 for atom 𝑖 of the respective

implicit solvation model used for electrostatic evaluation. The radii are dynamically scaled according
to

𝑟𝑖,scaled = 𝑓𝑖,scale · 𝑟𝑖 (D.1)

with the scaling factor determined by the effective partial charges 𝑞eff,𝑖 as

𝑓𝑖,scale = erf (𝑎𝑍 · (𝑞eff,𝑖 − 𝑏𝑍 )) + 1, (D.2)

where, 𝑎𝑍 , and 𝑏𝑍 are element-specific parameters. 𝑞eff is defined as

𝑞eff,𝑖 = 𝑞𝑖 + 𝑘𝑍 · 𝑞𝑖 · 𝐶𝑁𝑖 , (D.3)

where 𝑞𝑖 is the atomic partial charge and 𝑘𝑍 an additional parameter. 𝐶𝑁𝑖 is the corresponding
fractional coordination number and whose construction is adapted from the D3 model93. The error
function in Equation D.2 describes a continuous increase/decrease of the scaled radii depending on
the partial charges and CNs with plateaus at large absolute values. This prevents artificially large
or small radii. Thereby, 𝑎𝑍 defines the sensitivity of an atomic radius towards the change in the
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environment while the parameter 𝑏𝑍 adapts the scaled radii relative to the original values. The cross
term and its corresponding parameter 𝑘𝑍 in Equation D.3 allows to differentiate between various
bonding motifs. The parameters were determined through least-squares optimization of computed
solvation free energies against experimental reference data from the Minnesota solvation (MNSOL)
database that have an average uncertainty of 0.2 kcal/mol for neutral and 3 kcal/mol for ionic solutes
for the single experiment.141 However, due to the large number of data points, the uncertainty for
the whole data set is expected to be lower. Solvation free energies are based on the r2SCAN-3c
composite DFT method126 in conjunction with the CPCM, COSMO, and SMD solvation models.
Similar to the procedure used for the creation of the SMD model,30 we optimized a separate set of
parameters for water as a solvent and a combined parameter set for all other solvents. The latter
includes acetonitrile, dimethylsulfoxide (DMSO), and methanol for which solvation free energies
of ionic solutes are included in the database. For oxygen atoms, following the same procedure, we
introduced an additional correction for solvents using Abraham’s hydrogen bond acidity (𝛼) based on
a parameter 𝑐𝑂 according to

𝑓
𝑂
𝑖,scale = 𝑓𝑖,scale + 𝑐𝑜 · (0.43 − 𝛼). (D.4)

This correction yields larger oxygen radii for less hydrogen bond donating solvents and only applies to
solvents that have an 𝛼 value lower than 0.43 like DMSO or acetonitrile.
In principle, there are two main effects that are described by DRACO: On the one hand, a varying
electron density should directly be reflected in the atomic radii, i.e., less electron density results
smaller effective radii. On the other hand, the local electron density influences the solute–solvent
interaction and thus the equilibrium solute–solvent distance, which should depend on the polarity
of the solvent. These two effects do not necessarily align and can partially cancel each other. Their
influence on the radii used for the construction of the solute cavity is represented by the DRACO
scaling function, which is exemplified for H and O in Figure D.1. The variation in electron density is
modeled by atomic partial charges. Thereby, oxygen is representative for other electron donors, like
nitrogen and fluorine, that show similar behavior. For hydrogen, the above-described effects align as
the attraction to a polar solvent increases with less local electron density and a more positive atomic
partial charge. In contrast, as the electron density increases for oxygen, the expected enlargement of
the atomic radius is counteracted by the enhanced attraction to a polar solvent. This leads to opposing
trends depending on the polarity of the solvent as seen for water and DMSO in Figure D.1.

D.3 Results and Discussion

The demonstrated effect of DRACO does not only impact static structure evaluation, e.g., equilibrium
structures but is also visible for dynamic processes like bond dissociation. As an example, the radii
change during the heterolytic bond cleavage of HCl in water is depicted in Figure D.2. With increasing
bond distance, both atoms become more strongly charged (positive in the case of hydrogen and
negative in the case of chlorine), and the fractional coordination numbers decrease. As a result,
the respective radii decrease towards ion formation, which matches the expected picture of stronger
hydrogen bonding interaction between the solvent water and ions than for neutral molecules. The
resulting potential energy curves are given in the SI.
For a more complex example, we demonstrate the impact of DRACO on the neutral-to-zwitterionic
equilibrium of the amino acid glycine in water, specifically the equilibrium constant (𝐾𝐷) of the
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Figure D.2: Dynamic radii (r) and effective atomic partial charge (𝑞eff) for the heterolytic bond cleavage of HCl
in water. The equilibrium distance (𝑟𝑒) is 1.28 Å. For energies, see SI.

Figure D.3: A: Neutral-zwitterionic equilibrium reaction between glycine in its normal state and as an inner salt
with static radii used by CPCM as a default and DRACO radii. For clarity, only radii with a significant dynamic
change during the tautomeric reaction are shown. B: Calculated reaction free energies (Δ𝑅𝐺) in kcal/moland
equilibrium constants (K𝐷) with and without DRACO.

reaction. The DRACO radii obtained with Hirshfeld charges from DFT calculations are visualized in
Figure D.3A. The experimental 𝐾𝐷 of this reaction is 2.4 · 105 at room temperature,262 corresponding
to a standard Gibbs free energy of reaction (Δ𝑟𝐺) of −7.3 kcal/mol. For the computation of Δ𝑟𝐺, we
follow a multi-level workflow14, which combines high-level DFT for electronic energies, with efficient
DFT for solvation and thermostatistical contributions (see Computational Methods section). Since
the reaction occurs in aqueous solution, the solvation free energy Δ𝐺𝑠𝑜𝑙𝑣 for each tautomer must be
considered. Δ𝑟𝐺 is then calculated by the difference of all contributions as

Δ𝑟𝐺 = Δ𝐸𝑔𝑎𝑠 + Δ𝐺𝑇 + ΔΔ𝐺𝑠𝑜𝑙𝑣 . (D.5)

95



Appendix D Improving Quantum Chemical Solvation Models by Dynamic Radii Adjustment for
Continuum Solvation (DRACO)

where ΔΔ𝐺𝑠𝑜𝑙𝑣 is the reaction solvation free energy. CPCM with standard static radii provides a Δ𝑟𝐺
of −0.9 kcal/mol, which translates to an equilibrium constant of about 4.5, i.e., five orders of magnitude
below the experimental value. This means that only about 82 % would be in zwitterionic form, which
is qualitatively wrong compared to the experiment (99.999 % zwitterion). In stark contrast, CPCM
with DRACO radii based on Hirshfeld charges provides 𝐾𝐷 = 2.0 · 103 (Δ𝑟𝐺 = −4.5 kcal/mol or
99.95 % zwitterionic form, Figure D.3B), which is in much better agreement with the experiment.
Similarly, DRACO radii also improve the Δ𝑟𝐺 values of other solvation models like SMD (−1.9 to
−2.7 kcal/mol) and COSMO (−3.4 to −6.0 kcal/mol).
This non-trivial example illustrates that DRACO is physically sound in combination with DFT-based
Hirshfeld charges. Nevertheless, obtaining charges on such high levels of theory is computationally
costly. Accordingly, the applied method can be more expensive than the solvation calculation itself,
especially if DRACO is combined with efficient semi-empirical solvation models such as CPCM-X135.
Therefore, it is desirable to use a computationally more efficient charge model. Two promising
candidates for this task are the EEQ92,139 and CEH140 charge models. To evaluate their usability, we
calculated 𝜔B97M-V/def2-TZVPPD167,263,264 Hirshfeld charges for the molecules contained in the
water subset of the MNSOL database and compared them with EEQ and CEH partial charges. The
EEQ model already shows a reasonable agreement with the DFT charges, with a standard deviation
(SD) of about 0.12 electrons, while the CEH model performs even better with an SD of only 0.04
electrons. The overall superior description of atomic charges by the CEH model is illustrated by
the distribution of the Pearson correlation coefficients per molecule that accumulate in the region of
0.9-1.0 for CEH (cf. SI, Figure S2). Regarding computational timings, the EEQ model is typically a
factor of about 50 times faster than CEH (0.05 s vs. 2.5 s for a small protein with about 900 atoms
at one Intel® Core™ i7-10700K CPU). However, both offer a speed-up on the order of 103 − 104

compared to a DFT/Hirshfeld calculation and thus add only a negligible overhead to a typical DFT
calculation, which makes both models (EEQ and CEH) suitable for DRACO.
First, the parameters 𝑎𝑍 , 𝑏𝑍 , 𝑐𝑍 , and 𝑘𝑍 according to Equations D.2 and D.4 were determined by
a least-squares optimization against the MNSOL database for both charge models and the atoms
sufficiently represented by the MNSOL database (H, C, N, O, F, S, Cl, and Br). For atoms of other
elements, default radii of the respective model are used. The evaluation of DRACO on this training
data is shown in Figure D.4 divided into the water set and the combined set consisting of the solvents
acetonitrile, DMSO, and methanol.
DRACO generally improves the description of the solvation free energies compared to those obtained
with unscaled radii. Both the mean absolute deviations (MADs) and standard deviations (SDs)
decrease significantly in all cases, which indicates that DRACO does not merely introduce a shift but
generally improves the physical description. The charged solutes are more strongly affected by the
adjusted radii due to their high atomic partial charges. However, also neutral species are improved. In
case of water, the MADs are reduced from 1.1 kcal/mol to 0.9 kcal/mol for SMD, 2.1 kcal/mol to
1.6 kcal/mol for CPCM, and 2.3 kcal/mol to 1.8 kcal/mol for COSMO. The choice of the charge model
has a relatively minor effect (0.1 − 0.2 kcal/mol in terms of MAD), as the residual errors introduced
by either CEH or EEQ are small enough to be compensated upon parameter optimization. Looking at
the individual models, COSMO and CPCM behave similarly, as they differ only in details and the
specific implementation. Their MADs with default radii for water are 3.4 and 3.5 kcal/mol and for the
other solvents 7.5 and 7.2 kcal/mol. With DRACO, MADs are reduced to about 2 kcal/mol for water
and 2.5 − 2.7 kcal/mol for the other solvents. This corresponds to an improvement of 44 % for water
and 67 % for the other solvents.
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Figure D.4: Results for COSMO, CPCM, and SMD on the MNSOL database. Shown are Δ𝐺solv for the solvent
water (A, C, E) and the combined acetonitrile, DMSO, and methanol sets (B, D, F). MSD = mean signed
deviation.

97



Appendix D Improving Quantum Chemical Solvation Models by Dynamic Radii Adjustment for
Continuum Solvation (DRACO)

Figure D.5: Host-guest complex Ad2(NMe3)2@CB7 with the experimental association free energy, electronic
as well as thermostatistical contributions, taken from the S30L Benchmark set255. The association solvation
free energy (ΔΔ𝐺𝑠𝑜𝑙𝑣) is given for SMD with and without DRACO.

For SMD, DRACO consistently improves the MAD from 2.3 kcal/mol to 1.5 kcal/mol for water and
from 3.9 kcal/mol to 2.5 kcal/mol for the other solvents, corresponding to about 26-39 % reduction
(depending on the solvent and charge model). This improvement is especially remarkable since SMD
was originally optimized on the MNSOL database that is used here. This further corroborates that
DRACO improves the physical description of the solute-solvent interaction. Moreover, it suggests that
further improvement can be achieved by re-parameterizing SMD with DRACO included.
To evaluate DRACO beyond the training sets, we tested the C10 set265 containing solvation free
energies of 10 charged organic molecules in water. To further verify its robustness, we investigated
the 227 neutral organic molecules of the Freesolv database253. The results are given in Table D.1
Here, DRACO increases the accuracy of all tested implicit solvation models significantly, also for
systems beyond the training set (Table D.2). Especially for the charged solutes of the C10 set, the SDs

Table D.1: Statistical evaluation of the DRACO approach for the C10 dataset and the Freesolv systems not
contained in the Minnesota database calculated with COSMO, CPCM, and SMD using the r2SCAN-3c composite
DFT method. Values are given in kcal/mol.

C10 Freesolv
COSMO CPCM SMD COSMO CPCM SMD

MAD SD MAD SD MAD SD MAD SD MAD SD MAD SD
Default 5.0 3.7 5.7 4.9 3.5 2.6 2.4 1.6 2.1 1.7 0.8 1.2
EEQ 1.7 1.3 1.4 1.0 1.3 1.5 1.8 1.6 1.6 1.6 0.8 1.4
CEH 1.3 1.4 1.1 1.2 1.2 1.5 1.7 1.5 1.6 1.6 0.8 1.3

and MADs are drastically improved. The latter are even reduced by more than 50 %, approaching
chemical accuracy (MAD< 1 kcal/mol). Considering the neutral species contained in the Freesolv set,
the already accurate result of SMD, which is almost within chemical accuracy (MAD 0.8 kcal/mol), is
kept with DRACO, whereas the MADs for COSMO and CPCM are improved.
For additional validation on a more application-oriented set containing larger molecules, we used
back-corrected solvation free energy differences for association reactions (ΔΔ𝐺𝑠𝑜𝑙𝑣) of host-guest
complexes of the S30L benchmark set.255) These reactions are especially challenging because the
solvation contributions are large, particularly for the charged systems (up to about 90 kcal/mol, see
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Table D.2: Statistical evaluation of the DRACO approach for back-corrected experimental association solvation
free energies (ΔΔ𝐺𝑠𝑜𝑙𝑣) of the S30L dataset calculated with SMD using the r2SCAN-3c composite method.
Values are given in kcal/mol.

Total Ionic Neutral
MAD

Default 3.7 4.8 3.3
EEQ 3.2 3.7 3.1
CEH 3.5 4.0 3.3

SD
Default 4.7 5.8 4.2
EEQ 4.3 4.0 4.0
CEH 4.4 4.3 4.0

Figure D.5 for an example). Because the non-electrostatic contributions to the solvation are also
rather large here, we limit our test to SMD, which, in contrast to COSMO and CPCM, includes the
corresponding terms.
The results are depicted in Table D.2. For the whole S30L set containing charged and neutral
species, the MAD in ΔΔ𝐺𝑠𝑜𝑙𝑣 for SMD with default static radii is 3.7 kcal/mol , which is reduced
significantly by 0.5 kcal/mol (about 14 %) with DRACO radii using the EEQ model. As noted
before, the description improves more for the ionic systems than for the neutral ones (0.8 − 1.1 vs.
0.0 − 0.2 kcal/mol in MAD). Surprisingly, the more sophisticated quantum mechanical CEH charge
model performs slightly worse for these larger and more complicated systems than the EEQ model.
We tentatively attribute this to fortuitous error compensation with the empirical SMD model, which
suggests that re-fitting SMD with DRACO(CEH) radii might yield even better results.

D.4 Summary

We presented DRACO: a general, robust, and efficient approach to improve implicit solvation models
by including molecular information in the atomic radii determination for the construction of the solute
cavity. DRACO employs fractional coordination numbers and atomic partial charges, the latter of
which are obtained with the efficient semi-empirical charge models EEQ or CEH.
With DRACO, we significantly reduce the errors of the CPCM, COSMO, and SMD models. The
biggest impact of DRACO was observed for charged solutes, but also neutral systems were improved
considerably, even when DRACO is combined with empirical models like SMD. DRACO itself
introduces only three physically motivated additional parameters per element.
The most important physical insight obtained in the course of this study is that the effective atomic
radii dependence on the atomic partial charge (electron density) differs qualitatively between elements.
Counteracting effects are radii increase with smaller (more negative) charge and corresponding
decrease due to shorter average solvent-solute interatomic distances.
We would like to highlight that DRACO represents the third instance of successful implementation of
the atoms-in-molecules approach developed in our group, which makes use of rapid semi-empirical
models to derive atom-specific properties from molecules prior to the actual (DFT or semi-empirical)
calculation. These properties are then applied to refine previously static (element-specific) parameters.
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The foremost example of this idea is the D4 dispersion correction, where atomic charges and
coordination numbers modulate precomputed C6 coefficients.91,92 It was followed by the development
of adaptive "breathing" minimal basis sets, of which q-vSZP has been published recently.140 Finally,
this work extends this concept to the adjustment of atomic radii in implicit solvation models.
The DRACO program developed in the course of this work is made available free of charge as
an open-source program on GitHub.142 It comes with an interface to the computationally efficient
EEQ/CEH charge model implementations to evaluate the chemical environment of the solute atoms at
almost no computational overhead compared to the required DFT calculation. It is currently interfaced
to the program packages ORCA and TurboMole but could, in principle, be used with any quantum
chemistry program that allows custom radii for the cavity construction. Further, it is in principle easily
extendable to any radii-based solvation model and any solvent.

D.5 Computational Methods

Dynamic radii were calculated using the DRACO program available on GitHub.142 Hirshfeld charges,
as well as energies for the glycine reaction, were computed at the 𝜔B97M-V/def2-TZVPPD level of
theory. Geometries, as well as frequencies, for the tautomeric equilibrium of glycine were computed
with r2SCAN-3c and the default CPCM solvation model using water as a solvent. SMD and CPCM
solvation free energies, as well as high-level gas-phase energies, geometry optimizations and Hirshfeld
charges were obtained using the Orca program package143 (version 5.0.4). The default radii used for
CPCM in the ORCA program package are obtained using a scheme proposed by Lange & Herbert261.
COSMO solvation free energies are obtained using TurboMole144 7.6 using the default out-lying
charge correction266. Except for the scaled radii for solvation, the default settings were employed in
both program packages. If not stated otherwise, original geometries from the benchmark sets were
used.
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D.6 Supporting Information

The following files are available free of charge.

• Excel spreadsheet containing the statistical evaluations in kcal/mol.

• PDF document containing electronic supporting information, also adapted in this section.

The full Supporting Information is available free of charge at https://pubs.acs.org/doi/10.
1021/acs.jpclett.3c03551

Statistical error measures

In this work, the following statistical measures were used.
Statistical measure for a set 𝑥1, · · · , 𝑥𝑛 of data points with references 𝑟1, · · · , 𝑟𝑛 are:

• Mean deviation (MSD):

𝑀𝐷 =
1
𝑛

𝑛∑︁
𝑖

(𝑥𝑖 − 𝑟𝑖) (D.6)

• Mean absolute deviation (MAD):

𝑀𝐴𝐷 =
1
𝑛

𝑛∑︁
𝑖

��𝑥𝑖 − 𝑟𝑖 �� (D.7)

• Standard deviation (SD):

𝑆𝐷 =

√√
1

𝑛 − 1

𝑛∑︁
𝑖=1

( (
𝑥𝑖 − 𝑟𝑖

)
− 𝑀𝐷

)2 (D.8)

• Pearson correlation coefficient (𝜌𝑝)

𝜌𝑝 =

∑𝑛
𝑖 (𝑥𝑖 − 𝑥) (𝑟𝑖 − 𝑟)√︃∑𝑛
𝑖 (𝑥𝑖 − 𝑥)

2(𝑟𝑖 − 𝑟)
2

(D.9)
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Supporting Figures

Figure D.6: Total energies for the heterolytic bond cleavage of HCl in water in respect to the dissociation limit
in kcal/mol.

Figure D.7: Density plot of Pearson correlation coefficients per molecule between EEQ/CEH charges and
Hirshfeld charges obtained at the 𝜔B97M-V/def2-TZVPPD level of theory for all molecules in the water subset
of the MNSOL database.
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