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Abstract

In the paper [Phys.Rev.D 99 (2019) 9, 094013 of V. Baru et al., the LO and
incomplete NLO potentials were utilised to investigate the line shapes of Z,(10610)
and Z,(10650) and their (yet to be discovered) spin partners. The spin partners
of Z,jt’s are conventionally refereed to as W,;’s with quantum numbers JF¢ =
0F*, 17" and 2*F.

In this thesis, the full next-to-leading order calculations of the effective potentials of
BWB® — B®BE and B®B® — B BX are presented. The Feynman rules
are constructed based on heavy meson chiral perturbation theory and effective
potentials up to NLO are obtained. The subsequent effective potentials are partial
wave decomposed into quantum numbers J©¢ = 0+F, 17+ 17~ and 2+F. For the
first time, we also present results for non-diagonal transition potentials between
different channels. Our results deviate in some aspects from earlier calculations.
Arguments are provided supporting that ours are correct.
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1 Motivation

The study of exotic hadrons within the context of Quantum Chromodynamics
(QCD) presents a challenge to our understanding of the strong force [1]. Exotic
mesons with heavy quarks, known as XYZ states, diverge from conventional quark
model predictions, raising intriguing issues concerning their fundamental structure.
An ideal platform for exploring deeper into exotic states are the Z, states, namely
Z,(10610) and Z,(10650), which were found by the Belle collaboration [2]. Some
of their decays consist of a heavy quarkonium and a pion as final states. Thus,
they contain a bb pair and have isospin one, calling for four valence quarks. Both
Z,(10610) and Z,(106650) have JF¢ = 17~ and appear as two narrow peaks
separated by 45 MeV in the invariant mass distributions of the 7T (nS) (n =
1,2,3) and m*hy(mP) (m = 1,2) subsystems in the dipion transitions from the
vector bottomonium Y (10860) [3]. Furthermore, these states have been observed
in the BB* [| and B*B* invariant mass distributions in the decays Y (10860) —
7B™ B* with dominant branching fractions [4, [5]. The masses of Z;,(10610) and
Z,(10650) using Breit-Wigner analysis were found close to the BB* and B*B*
threshold [6]

(10607.8 £ 2.0) MeV &~ mp + mp- ~ 10603 MeV
(10652.2 + 1.5) MeV = 2mp- ~ 10648 MeV

The proximity of Z,(10610) and Z,(10650) to the BB* and B*B* thresholds, re-
spectively, and the prevalence of open-flavor branching fractions, strongly support
their molecular interpretation [7].

In the recent works of . Wang et al. [§] and V. Baru et al. [9], a chiral EFT-based
method was developed to analyse the experimental data for all measured produc-
tion and decay channels of the bottomonium-like states Z,(10610) and Z,(10650).
This thesis will continue the work done in [8] and [9] in investigating the line shapes
of Zbi’s and their undiscovered spin partners. These studies applied HMyPT to
find the effective potentials of B® B®) — B® B®) gcattering in Leading order
(LO) and incomplete Next-to-Leading order (NLO). The NLO contained just the
Contact Interactions (CI). The resultant potentials were then partial wave pro-
jected to quantum numbers JZ¢ = 17~ and provided as input for the coupled-
channel Lippmann-Schwinger Equation (LSE). The parameters were determined
by fitting line shapes in elastic B*) B®)-channels and inelastic hy(mP) channels
with m = 1,2 [8]. Some of the challenges they encountered are:

e It turns out that one-pion exchange (1PE) in S-D transitions at momenta

'Here, a properly normalized C-odd combination of the BB* and BB* components is under-
stood.



about 100 MeV is expected to be relevant. In contrast, this significance is
not demonstrated experimentally.

e In their investigations, to tame severe regulator dependency originating from
higher-momentum 1PE contributions, especially when several open-flavor
coupled channels are included, a O(Q?) S-to-D-wave counter term is pro-
moted to leading order. In addition to this, two momentum-dependent
O(Q?*) S-wave-to-S-wave contact terms also appear.

e Additionally, treating the pion mass m, and the binding momenta as soft
(ptyp ~ 500MeV) and the hadronic scale as hard (A, ~ 1GeV) provides a
slow convergence of the expansion parameter y of HMyPT

X:Q/Ax"’ptyp/Ax21/2' (1)

Therefore a NLO calculation is needed to address these issues. Anticipating the
yet-to-be-found spin partners, this thesis provides such potentials deconstructed
into its partial waves beyond JP¢ = 1*~. This work will lay the framework for
future inquiries, such as determining the theory’s convergence and the impact of
NLO contributions when employed in the scattering equations.

This thesis has the following structure: Sec. 2| begins with fundamental QCD prin-
ciples, its features and concludes with a brief description on exotic states. Sec.
starts with an introduction to effective field theories (EFTs) and moves on to chiral
perturbation theory (xPT) and heavy-quark effective field theory (HQFT). This
section also includes a theoretical framework for heavy meson chiral perturbation
theory (HMxPT), the EFT utilized in this thesis. The section concludes with the
power counting scheme employed in this work and a brief description of dimen-
sional regularization. Sec. [4] entails the Lagrangian and the vertices derived from
it. In Sec. , the effective potentials at O(x) and a brief discussion on effective
potentials at O(x?) are presented, and Sec. |§| contains partial wave projected po-
tentials in J7¢ = 07+, 1+, 17~ and 2*F channels. Appendices [A| and [B| provide
the calculation of loop integrals found in potentials and partial wave projectors,
respectively. The explicit form of the potentials at O(x?), its partial wave decom-
posed (PWD) form, and calculation of the integrals obtained from partial wave
decomposition are mentioned in Appendices [C] [D] and [E] respectively. In addi-
tion, Appendix [F] contains the complete computations of loop integrals where ¢q
was treated perturbatively. Sec. [7] summarizes the various checks conducted on
our PWD potentials and in Appendix [G] the potentials for triangle diagrams in
BB — BB and BB — BB scatterings are expressed in particle basis. In Sec-
tion 8] we compare our potentials to those of previous works. Sec. [d] concludes this
thesis with a summary and outlook.



2 Introduction

The later half of the 20th century saw the development of the Standard Model of
particle physics, which led to the unified description of the fundamental forces of
nature, with the exception of gravity. The Standard Model is a quantum field the-
ory that describes electroweak and strong interactions [10H12]. It consists of two
types of particles, fermions (matter particles) and bosons (force-carrying particles).
The fermions are particles with spin 1/2 and they follow Pauli’s exclusion princi-
ple |13]. The fermions consist of quarks and leptons with the former taking part
in electroweak and strong interactions whereas the latter in just the electroweak
interactions.

The quarks and leptons as well as their antiparticles come in three generations.
Each generation consists of a doublet under the weak interaction. For leptons,
they are electron e and electron-neutrino v,, muon p and the muon-neutrino v,
and tauon 7 and tau-neutrino v,. Similarly, the quark families are up u and down
d, charm ¢ and strange s and top t and bottom b quarks.

The electroweak and the strong force can be combined into a SU(3)_x SU(2), x
U(1), gauge theory in the Standard Model. The SU(3), gauge group is denoted
by the color corresponding to the strong force. Accordingly, the SU(2), x U(1),
refers to the electroweak force [14-16]. The strong force’s gauge bosons are repre-
sented by the eight gluons, which can be represented by particular combinations
of color and anti-color. Likewise, the W¥* and the Z bosons correspond to the
weak interaction and the photon to the electromagnetic force. In contrast to the
electromagnetic interactions, the gluons themselves carry color charge leading to
gluon self-interactions and resulting in QCD being a non-abelian gauge theory.
Additionally, the Higgs mechanism allows for the inclusion of masses without
breaking the symmetry |17, [I8]. This was done by introducing a scalar Higgs
field which transforms as a doublet in SU(2), and is coupled to quark and lepton
field via a Yukawa term. The Higgs potential has a non-zero vacuum expecta-
tion value which leads to spontaneous symmetry breaking and through this, the
W= and Z bosons as well as quarks and leptons gain masses. Although the mass
of neutrinos can be detected experimentally via neutrino oscillations [19-21], the
mechanism for accumulating neutrino mass remains unexplained.

Since the thesis’s primary focus is on the strong force, the QCD Lagrangian and
its characteristics will be discussed in the sections that follow.

10



2.1 QCD Lagrangian
The QCD Lagrangian is given by [22]:
— 1 uv gg Uvpo oa oa
Loep = Z (Jf@m - mf)(Jf - Z_lg,u,l/,aga - 9@8 gw,gpg ) (2)
f=u,d,s,c,b,t

where ¢y is the quark field with f as the sub-index which denotes the six flavours
and the quark fields are color triplets (with red, blue and green for particles and
the complementary colors for antiparticles), m; is the quark mass.

D is the covariant derivative of QCD and is given by [23]

8 a
DM :a#—ZgSZEAZ y (3)
a=1

with gs as the strong coupling constant and Aj, is the gluon field with color index
a and \* are the Gell-Mann matrices which are given by

010 0 —i 0 1 0 0 00 1
)\1(100), /\2(7L 0 O),)\3(0 —1 0),)\4 000)
000 0 0 0 0 0 0 100
00 —i 000 00 0 7 0 0
)\5(00 0),)\6(001), )\7(001),)\8 0 5 1
i 0 0 010 0 i 0 0o 1 3

They are the eight generators of SU(3), which is similar to the Pauli matrices in
SU(2). They are traceless and Hermitian matrices. The structure of the SU(3)
group is given by the commutation relations of the Gell-Mann matrices

)\a /\b . >\c
|: 92 ) 9 :| Zf b 2 ( )
and the gluon field strength tensor is given by

Gi, = 0,AL — 0,A% + g, f“bCAZAC (5)

v

where f®¢ are the structure constants of QCD and given in Eq. . Their values
are

fi2s =1
1
f147:f246:f257:f345:§
fiss = fasr = —
156 — J367 — 2
3
f458:f678:\/7

11



all other f,. =0 .

The 3-gluon and 4-gluon vertices are generated from the Gp, G term in the
Lagrangian density.

The last term of the Lagrangian contains e**??- the antisymmetric Levi-Civita
tensor. Thus a non-vanishing value of # implies an explicit P and C'P violation of
QCD. Since § < 1071 [24], from here on, this term is dropped from the Lagrangian
and C'P conservation of the strong interaction can be safely assumed. With QCD
Lagrangian defined, one can now focus on the different features of QCD.

2.2 Features of QCD
2.2.1 Asymptotic freedom (running of «;)

Due to gluonic self-interactions, the QCD coupling constant behaves differently
from the QED coupling constant. In QED, the nearby vacuum of an electric
charge produces virtual particle-antiparticle pairs, which ‘screens’ the effect of the
charge over distance. Thus, the running coupling constant “a” of QED decreases
with distance.

In QCD, since the gluons themselves carry color charge, the overall effect of the
gluon cloud surrounding a quark is to change its color (anti-screening) which
strengthens the coupling constant, as opposed to the screening of color charge
by the virtual quark-antiquark pairs. Since, three colors and less than 16 quark
flavours have been observed (6 flavours), the anti-screening effect of the virtual
gluon cloud dominates over the screening effect of virtual quarks. Thus, the QCD
coupling increases with an increase in distance, in contrast to the QED coupling.
This is the difference between the running of o (QED) compared to the running of
as (QCD). Therefore, quarks and gluons interact weakly at very short distances.
This is the “asymptotic freedom” of QCD [25] 26].

The running of strong coupling (as) which was explained phenomenologically in
the above paragraphs, can also be derived formally. The scaling (running) behavior
can be explained using the beta () function [27]. In quantum field theory, the
beta function (5(g)) is used to explain the dependence of the coupling parameter
(g) on an energy scale (@) [28]. Using this, the running of the strong coupling
constant is expressed as

Ooyg Oorg

Q28Q2 - 8an2 = ﬁ(as) : (6)

In the above equation, it is seen that the running of the strong coupling is loga-
rithmic. Further, the beta function is defined as

Bles) = —a (bo + byag + boa? +....) (7)

12



where by is the coefficient for the 1-loop interactions and b, is the coefficient for
2-loop interactions and they are defined as |29

110A - 4TRTLf
bO - )
127
. 170% - 10TRC'Anf — 6TRCATLf
b1 = 2472 ’

where Cy = 3, Tk = %, and ny is the number of quark flavours.

Single gluon loops account for the first term in the by coefficient, while single quark
loops account for the second. Comparably, the first term of the b; coefficient is
caused by double gluon loops, whereas the second and third terms are caused by
quark-gluon mixed loops.

At higher orders, the coefficient b; depends on the renormalisation scheme [29].
Solving the equation for the beta function gives

0@ = ) 1 ). (s)

1+ boas(42) In % + O(a2)

where the strong coupling constant (as(QQ)) is defined using a renormalisation
scale, Q% = u?.

It is noticed that the coefficients by and b; do depend on the number of flavours,
via the presence of ny. This changes the behavior of the running of strong coupling
in relation to the number of flavours (ns). For example, the running of the strong
coupling for ny = 3 (charm threshold), will be different when compared to ny =6
(top threshold). Therefore, if any new colored particles are discovered, then the
running of the coupling should be modified at the threshold of the rest mass of
the newly discovered colored particle.

With the definition of the beta function in Eq. and the result ‘by > 0’ (since
ny < 16), leads to the conclusion that the QCD coupling decreases with an increase
in energy (asymptotic freedom) [29, [30]. For the discovery of asymptotic freedom
in 1973, David Gross, Frank Wilczek and David Politzer were awarded the 2004
Nobel Prize in physics.

Perturbative computations are possible at very high energies because of asymptotic
freedom. It is observed experimentally that the running of a; is what causes the
Bjgrken scaling violation. [29)].

2.2.2 Color confinement

Another phenomenon of QCD is “color confinement” which is seen as the absence
of free colored quarks in nature, only color neutral hadrons exist in nature [31].
The three colors of QCD combine together to form a color neutral state such as

13



baryons and mesons. Due to confinement, the coupling between a quark pair gets
stronger as we try to separate them from each other. Eventually, the force between
the quark pair will get so strong that energy supplied to the field to separate the
pair, will in turn create a new quark-antiquark pair.

With the coupling constant being much greater at lower energies (around 1 GeV),
combined with the formation of gluon flux tube, leads to color confinement [12].
Thus, perturbation theory solely cannot explain the full physical behavior of
QCD [29]. The scale at which the perturbatively described strong coupling di-
verges is called the confinement scale or QCD scale and its value depends on the
renormalisation scheme. For example, rewriting the previous equation for a,(Q?)

1

2
A T 02
(@) = bon &

where

AQCD = (332 + 17)M6V

with ny = 3 (below the charm threshold) and the renormalisation scheme used is
“modified minimal subtraction” (MS) scheme [32]. For 1/Q?2 below this scale, the
perturbative theory for ay fails and just non-perturbative methods prevail. The
phenomenon of color confinement is experimentally observed in many particle ac-
celerators, as the final state consists of jets of many color neutral particles (mesons
and baryons). Additionally, it requires us to use techniques that are outside the
realm of perturbative QCD like: effective theories (such as the Operator product
expansion, Chiral perturbation theory), phenomenological models (such as Regge
theory) and lattice QCD [29]. We still can’t analytically explain the process of
hadronization using QCD and to this day it remains an open problem in physics.
Fig. [1] describes the running of o, against energy.

14
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Figure 1: A pictorial representation of the running of «, in different experimental
processes at different scales [33].

2.3 Exotic states

The traditional quark model |34, 35] assumes that mesons are characterized as
quark-antiquark systems and baryons as three quarks in a color singlet. As a
result, states that do not have the quantum numbers allowed by this model can
be termed exotic [36].

With the advent of QCD, our understanding of the structure of hadrons became
more complicated as compared to what the classical quark model allows because of
possible structures like glueballs (consists of only valence gluons), hybrid (consists
of both valence gluons and valence quarks) and multiquarks (such as pentaquarks
and tetraquarks) [36H41]. With the discovery of the X (3872) (an exotic state due
to unusual decay properties) in 2003, many new exotic states beyond the simple,
yet successful quark model were discovered [42].

States like Z;"(10610), Z;=(10650), ZF(3900) [43] and Z*(4020) [44] and their de-
cays into bottomium or charmonium states and a pion exclude a simple Q@ meson,
with Q(Q) denoting heavy quark (anti-quark). Hence, they consist of at least four
quarks. One notices that all these exotic states of the Z family are located above
the first heavy quark open flavor threshold, which is DD, seen in Fig. [2| [45], for
charmonium and BB, seen in Fig. [3| [45], for bottomium. There are many differ-
ent interpretations of these exotic hadrons with compact tetraquarks (containing

15



four quarks clustered into (anti) diquarks) being the simplest extensions of the
quark model. Many of them have masses close to the meson-meson threshold and
if assumed to be in S-wave, often share their quantum numbers with the exotic
states and in turn, make them ideal candidates for hadronic molecules- composite
systems built out of hadrons [46].

There are many candidates for exotic states in the cé-sector, however, in the bb-
sector there are only two: Zi(10610) and Z;(10650), with quantum numbers
JPC = 1%~ which will be main focus of this thesis. But Heavy Quark Spin Sym-
metry (HQSS) which we will discuss later, predicts an abundance of states in the
bb-sector, with different quantum numbers J*+(J = 0,1,2). These states are the
spin partners Wj; of the Z;(10610) and Z;(10650).

As mentioned in Sec. [1] the Z;"(10610) and Z;"(10650) states have a strong argu-
ment for molecular interpretation due to their proximity to the BB* and B*B*
threshold, coupled with the prevalence of open-flavor branching fractions. We also
mention that a compact tetraquark interpretation of these states is also compati-
ble with the available data [47]. If the molecular picture is correct, it leads to the
prediction of spin partners Wy, of the Z, states [9, 48-50]. The hadronic molecu-
lar picture would be strongly confirmed if the spin partners are detectable in the
decays Y(55) — Wyyy — xos(m)7y at the predicted masses since the pattern of
spin symmetry violation is specific for the assumed structure.

16
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Figure 2: Charmonium-like states with completely determined quantum numbers and
without hidden strangeness (as of July 2019). Established states are depicted with solid
lines, not (yet) established ones with dashed lines. Dashed lines show some relevant
thresholds that open in the considered mass range (details in [45]). D; = D1(2420),
D3 = D3(2460)

17



T(10750)
............................................................................................................................................ 2)(10650)
105ffffﬁfﬁffﬁﬁﬁfﬁfﬁffffff;i;ég;)ﬁfﬁfﬁfffffﬁfffﬁﬁffffffffff)f(;lﬁé%;)ffﬁﬁffﬁfﬁfﬁffff:ffffﬁﬁfﬁﬁﬁﬁﬁﬁm'
. T(35)
3 WEPL L op xw@P) eGP
= T, (1D)
100} _14325). L(zs)
miP_ ip xwP) xR
9.5} T(15)
n(1S)
0—+ 1~ 1+— O++ 1++ 2++ 2=~ 1+

JPC

Figure 3: Bottomium-like states with completely determined quantum numbers and
without hidden strangeness (as of July 2019). Established states are depicted with
solid lines, not (yet) established ones with dashed lines. The fine dots depict open-
bottom thresholds from lowest to highest: BB, B*B, B*B*, BB(5721), BB} (5747),
B*By(5721), B*B(5747).

3 Effective field theory (EFTSs)

The essential notion behind an EFT is that one does not need to know everything
in order to provide a reasonable explanation of the specific part of physics in
question |51}, 52|. Effective field theories are usually low-energy approximations of
fundamental theories [53].

Applying EFTs, allows one to describe the phenomena of low energy QCD using
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perturbative method and make accurate predictions, but in turn, one loses renor-
malizability at all scales and is no longer working in a fundamental theory [54, 55].
EFTs are not renormalisable in the traditional sense [56]. However, divergences
that occur in calculations up to a particular order of p/A can be renormalized by
redefining fields and parameters of the EFT Lagrangian [57, 58], where p repre-
sents the momenta or masses that are smaller than a certain momentum scale A.
This exercise will be explicitly performed later in Sec. [7]

For this thesis, we will use Chiral Perturbation Theory which is the EFT, that
arises due to the global flavor symmetries of QCD at the massless limit of light
quarks.

3.1 Chiral perturbation theory (yPT)

To derive xPT, we first separate the masses of the six quark flavors as light and
heavy quarks. The first three quark flavors (u,d,s) can be titled as light quarks,
since they have masses less than Agep and the other three flavors (¢, b, t) as heavy
quarks as their masses are above Agcp. Using the above inference, we can rewrite
the Locop for light quarks in the chiral limit (m,, mg4, ms=0)

Locp= > @l(iP)q . (9)

l=u,d,s

where we only have the quark terms in the equation above. From Eq. @, it is
possible to decouple the fields by applying the projector operators (Pr, Pg) on the
quark fields and in turn, they decompose as left and right fields

Locp = Z Tri (D) qry + qri(iD)qry (10)

l=u,d,s

where q;, = Pprq is the left-handed quark qr = Pg ¢ is the right-handed quark field
and this Lagrangian in the chiral limit is invariant under flavor rotations

3
. Ao\
qr — exp ( — ZZ ok 7>€ HLQL (11)
a=1
and
N Y
gJr — €xp ( —Z'Z o 7(1) e g . (12)
a=1

The Eq. and Eq. represent the left and right chiral rotations, where ),
is the Gell-Mann matrix. This symmetry generates two conserved currents from
the Noether’s theorem.

A .
LM = ch’y’L?qL with 0,L"* =0, (13)
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Aa .
RM = ch’y“?qR with 0,R"* =0, (14)
LM = (jL")/HqL with 8#[1“ =0 and (15)
R' = gpy'qr with O,R' =0. (16)

Instead of using left and right currents, a linear combination of these two currents
is used, which transforms as a vector and an axial-vector given by

VEF=R‘+L" and (17)

AP = RM — L' (18)

Hence, the chiral symmetry can be decomposed as U(3)r x U(3)gr = SU(3)y %
SUB)axU(1)y xU(1) 4, where SU(3)y and SU(3) 4 is the corresponding symme-
try of vector and axial-vector currents respectively. Furthermore, U(1)y is related
to Baryon number conservation and is always conserved, while U(1) 4 is explicitly
broken by the axial-anomaly [57]. The currents and their subsequent divergences
are

VH =aqyq, 2,VF =0, (19)
AM 1) a AM _ 393 ,ul/paga ga 20)
=4q7 74 , iz - 327T2€ pvIdpo (

Similarly, for the octet currents one finds

Aa Aa

VI =" 0V = ig[M, ] q (21)
A e (N
AR = @y A" = ig{ T M} , (22)

where for finite u-, d- and s-quark masses, one incorporates these quark masses
into a quark-mass matrix M [59] given by

m, 0O 0
M=10 mg 0 ) (23)
0 0 ms

As mentioned above, the singlet vector current V* is always conserved, whereas
the singlet axial-vector current A* is never conserved due to the axial-anomaly.
The octet vector current V' is conserved in the limit of massless quarks (M = 0).
Vi is also conserved in the case of equal quark masses, m, = mg = my, because
[Aa, 1] = 0 [60]. Finally, the octet axial-vector current is only conserved in the
limit of massless quarks, M = 0.
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3.2 Spontaneous symmetry breaking (SSB)

Another feature of yPT is spontaneous symmetry breaking (SSB), which arises
due to chiral symmetry being spontaneously broken. To demonstrate this, consider
the charges of the axial and vector currents as Q% = R% — L% and Qf, = R{, + L,
respectively.

Now, it was shown by Vafa and Witten that the vector symmetries, like ()f, cannot
be spontaneously broken given the structure of QCD [61]. But in the case of axial
charge %, we see that QCD ground state is not invariant under axial transforma-
tions. Furthermore, due to the absence of parity doubling (which is two particle
multiplets of equal masses but with opposite parity) in experimental observations,
Q% does not annihilate the QCD vacuum leading to the symmetry being broken
spontaneously [57]. This in turn leads us to the Goldstone theorem, which states
that for every broken symmetry there exists a massless scalar boson (Goldstone
boson) with the related quantum numbers that do not interact for vanishing mo-
menta [62, 63]. In our case, since the symmetry being broken is U(3); x U(3)g,
we expect nine Goldstone bosons. However, Us(1) is broken explicitly hence we
are left with eight Goldstone bosons which are three pions (7,7~ ,7°), four kaons
(K*,K~,K° K° and 7.

The chiral symmetry is preserved much better in the u-quark and d-quark systems
or in the SU(2) isospin limit as compared to the s-quark system, as the s-quark
is an order magnitude heavier than the v and d. Through out this thesis, we will
work in the SU(2) isospin limit for the following reasons: due to the higher mass
of the strange-quark, it plays a lesser role as compared the up and down sector of
the Goldstone bosons. Additionally, we focus on the Z, states that are close to the
B® B® threshold and not B{Y B threshold . Finally, the expansion in terms of
Goldstone bosons converge better in SU(2)xPT as compared to SU(3)xPT.

3.3 Chiral perturbation theory at leading order

In this section, we will define the leading order Lagrangian for xPT from the
aspects mentioned in the earlier sections. The leading order Lagrangian can be
obtained from Weinberg conjecture [64, |65] which states that any Quantum Field
Theory (QFT) only consists of analyticity, unitarity, cluster decomposition and
symmetries and in order the compute the S-matrix for any theory below a partic-
ular scale , one must use the most general effective Lagrangian that is consistent
with the above mentioned principles expressed in the appropriate asymptotic states
(mesons and baryons) [65]. To make this useful, one needs to combine it with a
power counting scheme.

We need an effective field theory that preserves SU(3)y x SU(3)4 x U(1)y in the
chiral limit, and contains the interactions of Goldstone bosons which comes from
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Spontaneous symmetry breaking (SSB). As we are working in the SU(2) isospin
limit, there will be three Goldstone bosons generated from SSB. The three bosons
or in this case pions, can be collected and represented in the matrix U(z) [66).

U(x) = exp <i¢;f)) | (24)

with
3 )
o o 3 T — 179
¢(x) = ZIWZTZ (7?1 + iy —TT3 ) ’ (25)

where f; is the pion decay constant with f, = 92.4 MeV [6, [67]. 7; are the Pauli
matrices which are summed over ¢;. The above representation of ¢ is in Cartesian
basis which when translated to physical fields is

o) —7r— (T moim) (10 Varhy (26)
( ) (\/§7r )

T + @79 —Tr3 -

Now, we have introduced Goldstone boson dynamics into our theory and as they
originate from axial transformations they have the quantum numbers J¥ = 0.
Since EFT is renormalisable order by order therefore we introduce a power count-
ing scheme that allows us to estimate the prominence of different terms. In our
kinematic range (500 MeV), the momenta of the Goldstone bosons are very small
as compared to hadronic scale A,, an expansion in terms of py,, /A, is chosen, with
Pryp being the typical momentum of Goldstone boson. We can now formulate an
effective Lagrangian [68] as an expansion in py,

LT=r2p Lt L5, (27)

where the superscripts refer to the chiral dimension which denotes the Lagrangian’s
number of derivatives or the order in a momentum. In the standard power count-
ing, the quark masses are treated as p?yp, which is different in our case since we
use a different power counting scheme. The even powers of £ is due to Lorentz
symmetry. Using the definition of U-matrix and effective Lagrangian, we can write
the most simple Lagrangian density with the minimal number of derivatives and
obeys chiral and Lorentz symmetry [57, 69

2

L2 = T [0,U0"UT] , (28)

where the order of the above term is O((py,/Ay)?) and the trace is over flavor
space. The masses of the pions need to be included in the Lagrangian due to the
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pions being massive, which is caused by approximate chiral symmetry breaking
(my, mg # 0) [69].
2

L= T [0,U0"UT + m2(U + U], (29)

where m2 = By(m,, + my), which is obtained from the Gell-Mann-Okubo relation
and By is related to the chiral quark condensate as 3f2B2 = —(qq) [70].

In this thesis, the lowest order of effective Lagrangian £2? will suffice since £*
contributes to the matrix elements of interest here only at Next-to-Next-Leading
order (N?LO) which is already beyond Next-to-Leading order (NLO). So, we have
now traded the fundamental theory of QCD for an Effective Field Theory (xPT),
that explains the dynamics of QCD at low energy scales.

3.4 Heavy-quark effective theory (HQFT)

In this section, we will include the heavy quarks in our existing theory.

The Chiral Lagrangian derived in the earlier section can explain the dynamics of
mesons made up of light quarks like pions and kaons, but not for heavy mesons
which consist of charm and bottom quarks (as top quark does not hadronize).
Since, the masses of the charm and bottom quarks are above Agep, we can study
the charm and bottom physics in perturbation theory by expanding in Agep/m.
and Agcp/my respectively.

Let us consider an example of a meson system (Q¢, where ) is the heavy quark
with mg > Agep and @ is the light quark with m, < Agcp, this heavy-light
system has a size of the order Aggch. Now in the mg — oo limit, the change
in velocity of the heavy meson due to the interactions of the light quarks is neg-
ligible, since Av = Ap/mg [71]. Hence, the heavy quark acts as a static color
source [72] and the meson dynamics can be reduced to the light quarks interacting
with this color source. It is evident right away that in the m¢g — oo limit 73],
the mass of the heavy quark has no bearing at all, meaning that all heavy quarks
interact within the heavy mesons in the identical way, which leads us to heavy
quark flavor symmetry (HQFS) [72]. We can also deduce that, the heavy
quark flavor symmetry breaking occurs at the level of (1/mgq, —1/mq,), where Q;
and @); are two different heavy quark flavors. Also in the same limit, the static
heavy quark can only interact through gluons which is spin-independent, due to
spin dependent interactions scaling as Agep/mg, leading to heavy quark spin
symmetry (HQSS). In the leading order of Agcp/my, due to heavy quark spin
symmetry, we find that the B and B* meson are degenerate.

To derive an effective theory with the inclusion of heavy quarks, we decompose
the 4-momenta of the heavy meson as |74, [75]

Pt =mov" + k" | (30)
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where v# is the 4-velocity of the heavy quark defined as v* = (1,0,0,0), with v? = 1
and k* is the small residual momentum with k* < mg. The light quarks typically
have a momenta of k* ~ Agcp in the meson and hence the change in velocity v* of
the heavy quark is of the order of Agep/mg. From this v# can act as a conserved
quantum number for heavy quark up to an order of mél [74]. The momentum
of the light quarks is the largest dynamical scale within this framework and we
usually denote it as py,, thus we can expand our heavy meson fields in py,,/mg
while applying a non-relativistic treatment of the heavy quark and neglecting terms
of the first order O(py,,/mg).

A suitable technique is to treat the multiplet of degenerate states (such as B and
B*) as a single object that transforms linearly under heavy quark symmetry. This
is done through Superfields, which is a linear combination of the physical B and
B* fields, expressed as |76}, 77]

(1+9)
2

HY = (B, " — Bas) (31)
where HLEQ) annihilates a superfield with velocity v, B}, is a field operator that
annihilates a B} meson with four-velocity v and B, is a field operator that an-
nihilates a B, meson with four-velocity v. Here, B, is a pseudoscalar field that
transforms as a spin singlet on the other hand, B}, is a vector field that transforms

as a spin triplet and carries spin . HISQ) contains the heavy antiquark @, which
is the bottom antiquark b in our case. Analogously, the conjugate field |78] is

- 5 . 1+
1,9 = "H@" = (Bl + BJ%)( 5 2 (32)
@

where H, * creates a superfield with velocity v, BZ; is a field operator that creates

a B meson with four-velocity v and Bg is a field operator that creates a B, meson

with four-velocity v. Similarly, the superfield for the corresponding anti-B-mesons
are

O = (B, - B L) (33)

Here, H? contains the bottom quark b and the conjugate field is

_ 1— .
1,9 = gt i By (31)

We have also used the projection operator Py which retains only the particle
components of the heavy quark @ [79] and are defined as

_1EY

Py 5

(35)
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and they follow the relations, P, + P. =1, P,P. = P_P, =0 and P} = P,.
But in this thesis, a two-component notation (2x2 matrix) [49, |80] instead of a
four-component notation (4x4 matrix) is used since it is simpler and preserves the
existing symmetries [80].
H,= B, + B'd' (36)
and the conjugate field
H} = Bl + (B;")o", (37)

where ¢! are Pauli matrices with index ¢ = 1,2, 3. The superfields for the anti-B-
mesons are provided in Sec. 4]

One can start by constructing the terms of the Lagrangian in velocity dependent
quark fields @,(z) which is related to original quark fields Q(z) as [81]

Q(z) = ™ [Qy () + Qu(x)] (38)
where

= 0om). g =erer i ow @)

Qv () produces effects in leading order and Q) effects are suppressed by powers of
1/mg hence we can ignore them in this discussion. We substitute this relation into
the heavy quark field part of the QCD Lagrangian Q (i) — mg)Q and multiplying
(14 %)/2 on either side of ) gives

L =Qu.(iv-D)Q, (40)

and the @, propagator from the Lagrangian [73, 82] is

(1—;¢)U-ki+ie ’ (41)

we can arrive at the same propagator by defining the momentum of the heavy
quark as p* = mgut + k*, applying this definition of p* in Dirac quark propagator

; P+mq . mQ¢+mQ+% Ny 1+9 (42)
PP —mytic  2mqu-k+ k2 +ie vk e

and ignoring k2 terms then it is equivalent to Eq. .

The polarisation vectors of the heavy vector meson fields follow the convention
e, (A)e"(A) = —1 and € - v = 0 for a given spin A, where € and € describes the
polarisation of an incoming meson and an outgoing meson, respectively. The po-
larization vectors may be broken down to €*-€ = 1 since heavy mesons are treated
as static and the contribution of the 0-th component is of the order O(k2/(2my)).
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When adding up all possible spins in the case of heavy internal mesons, one dis-
covers

2
> NE ) = —gu + % = . + 0<m—2) — e (Ne(N) =6 -

N H

The polarization vectors in this thesis will be labeled as 1 for incoming particles
and 1’ for outgoing ones. The anti-mesons shall be indicated as 2 when incoming
and 2’ when outgoing.

3.5 Heavy meson chiral perturbation theory (HMyPT)

HMxPT can be described using the spontaneous symmetry breaking of SU(3)y x
SUB)axU(1)y x U(1) 4 symmetry for light quarks and the conservation of spin-
flavor symmetry of the heavy quarks. The Lagrangian for HMyPT should describe
the strong interactions of the heavy mesons (in our case B and B*) with low
momentum pseudo-Goldstone bosons (pions in our case), it should preserve all the
chiral and heavy quark symmetries and contain the least number of derivatives at
leading order with the inclusion of light quark matrix. The superfields H, which
contain B and B* are referred to as matter fields.

For the construction of a chiral Lagrangian, we use H, fields that preserve the
SU(3)r x SU(3)g chiral symmetry as [81]

H, — H,K] | (44)

where Kga is a 3 x 3 special unitary matrix which is a complicated nonlinear
function of L, R and pseudo-Goldstone-boson field U(x) and the repeated index b
is summed over 1,2,3. Similarly, for the light mesons interactions, it is convenient
to introduce [83]

u(x) = U(z) (45)
which under chiral SU(3), x SU(3)g transformation |66, |76

u— LuK'" = KuR' . (46)

Hence, we see that u transforms using L, R and K whereas H, transforms using
only K. In the chiral Lagrangian, it is better to have combinations of u(x) such
that the transformations only depend on K(x). Two such combinations are [76]

1
DF = 06y +il, , with T, = E(uTﬁuu + u@uuT), (47)
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and

u, = i(uld,u — ud,ul), (48)
where u, has the quantum numbers of a axial-vector field and I', has the quan-
tum numbers of a vector field. The leading effective Lagrangian containing the
interactions of the pseudo-Goldstone bosons with the heavy mesons having just
one derivative is [81, [84]

£V = —iTy[H, v,0" Hy) + Tr[H Hy|o, Tt + g2 Tr[Hy Hyy,ys)ul, (49)
which can be more simplified using a chiral covariant derivative D
LY = —iTr[H, v, D" Hy) + g, Tr[H, Hyy,ys)ul, (50)

where £ denotes the leading order term for the interactions of heavy mesons
with pseudo-Goldstone bosons, where the trace is taken over spin space and v, =
(1,0,0,0). The first term in Eq. denotes the kinetic term of heavy mesons, the
second and the third term denotes the vertices of heavy mesons with the pseudo-
Goldstone bosons. The last term has a factor of g, which indicates the coupling
strength of the heavy mesons to the axial-vector field uj, [85], where the value of
g 1s given in Sec. [

Using the expansion of u =1+ % and similarly uf, in I}, and u}.,

Iy = (7 x O'T) - Ty + O(TH) | (51)

1
Af?
po_ 1 b, 2 =3

g = (0" - Tha) + O(T7) - (52)
The expansion of I'j gives us an even number of pseudo-Goldstone bosons and
the expansion of u, gives us an odd number of pseudo-Goldstone bosons [86), [87].
The Lagrangian we have discussed only contains long-range components or terms
where the heavy mesons interact with pseudo-Goldstone boson, but the Lagrangian
should also contain short-range interactions which are the Contact interac-
tions (CI). These short range interactions which do not include pseudo-Goldstone
bosons are seen as contact-range operators and they act as counter-terms in our
theory.

Thus, the HMyPT Lagrangian of relevance for this work reads [8§]

L0 =L+ L (53)

where the second term 57(:1){ y denotes the long-range part which we derived earlier
and the Efg} denotes vertices with four heavy mesons, an explicit form the ,Cf&), is
given in [88].

In contrast to the Lagrangian mentioned in Eq. which uses a four-component
notation, this thesis will use a two-component Lagrangian with many counter

terms, as seen in Eq. (88).
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3.6 Power counting

The Weinberg conjecture says an EFT Lagrangian will have an infinite number
of terms with an infinite number of free parameters, which is impractical to use
in any case [65]. Hence, to make it practical to use, we first need a scheme to
arrange the effective Lagrangian and an efficient method to assess the ”weight”
or importance of the different diagrams which come from the interaction terms in
the effective Lagrangian.

To make a successful power counting scheme, we need an expansion parameter
x < 1, such that a sum of all contributions converges sufficiently fast. In our
case, we take x = py,,/A,, where py, is the typical momentum and A, is the
hadronic scale (~ 1 GeV) where xPT fails. We calculate the chiral dimension of
the diagrams using the rules provided by Hanhart [89]. In order to find the chiral
dimension of a loop diagram, we need to replace every piece that appears in the
potential by its value when all momenta are of their typical size.

The rules are

e the integral measure scales as

[ om~o(ie)

e The momenta at the vertices scale as O(pyyp).

e The pion propagator scale as O(1/ pfyp).

and py ~ pyy, for irreducible diagrams which will be discussed later.

With these rules for power counting, we can discuss the power counting scheme
which will be used in this thesis. The power counting of the pion loops in the B-
sector is dependent on the heavy and light scales with the heavy scale consisting of
the average mass of the B meson (Mp = 5314 MeV) and the typical hadronic scale
(A, =1 GeV) and the light scale consisting of the mass difference of Mp and Mp-
(0 ~ 45 MeV), the pion mass (m,= 139 MeV) and the typical momentum (py,, ~
VMpd = 490MeV). The LS equation’s solution generates the binding energies
of the Z, states dynamically, therefore the power counting of the potentials does
not require their consideration. As we are dealing with Z,(10610) and Z,(10650),
we in turn require a power counting scheme that covers the energy range from
the BB threshold up to the B*B* (energy range of ~ 90 MeV) and therefore
need to treat py,, dynamically. For an accurate prediction, we need to keep track
of the momentum scales which drive the loop contributions, then the expansion
parameters are

_ Pwp My Y = Ptyp

0
X1 = y X2 = 77— 5 X3 y X4 = 7
A, A My A

(54)
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which numerically take values of about 1/2, 1/7 , 1/10 and 1/20 respectively.
Since in the charm system the mass splitting between the pseudoscalar and vector
ground state mesons are of the order of the pion mass and to keep the scheme
simple we treat these expansion parameters as a one-parameter expansion

X~ X1, XD~ X2~ X3~ X4 - (55)

The consequences of using this power counting can be seen in two examples, namely
two-pion exchange (2PE) triangle contribution to the BB — BB potential and
the one loop vertex correction, as seen in Fig. [

I
I
I
\ / !
I
I
I
I

Triangle diagram Vertex diagram

Figure 4: Typical one loop diagrams that appear at NLO (left panel) and NNLO (right
panel) in the momentum expansion.

The effective potential for the triangle diagram is written as

Z/ T 2l+Q>e (TC)> :
(2m)t a2 0 Ry — M. — (9 + D)2/(2Mp-))

(;ﬁ (ej()\)(—l — q)j> (Tg)d> m (% <6:()\)(l)z) (72)c 12 _im2 , (56)

where

g = (Bs, 1) — (B, p) = (0,9) (57)

and

k= (Ey,p —1) (58)

with 7 and p/ as initial and final momenta, By (Fy) and E; (F,) are the energies
of the meson (anti-meson) in the initial and final states respectively and ¢ ~ pyy, .
The external states are assumed to be on their mass shell and the total energy to
be at the B*B* threshold for the purpose of this discussion. Using

€cdn(T1)n(T2)a(m2)e = —2i(7 - 73) (59)
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and

D aWe(h) =d; (60)

we get

wzéﬁaam, (61)

where the pertinent integral is given by

. :3/ 44l ( 21y + qo )
"2) @2m)* iy 46 + (201 + )/ (2Mp-)
((+q)-T
[(1+ q)? — m2 +ie] [I2 — m2 + ie]

(62)

The mentioned scales enter the integral through |q] ~ [p/[, and the energy of the
pion propagator [ scale as ly ~ py, [89]. Due to this, we can drop all terms in the
heavy-meson propagator except ly, since all other terms appear to be suppressed
as 0/pryp Or Diyp/Mp which are both counted equally. Then the integral to be
evaluated is

M ((+q) -7
m—/( . (63)

2m)4 [(L+ q)? — m2 + ie] [12 — m2 + ie]

In the two scale expansion used here, a particular loop simultaneously contributes
in different orders [89) [90]. However, the power counting simply shows us the
lowest order at which the loop begins to contribute. As an example to clarify the
above statement, solving the integral in Eq. using dimensional regularisation,
one finds

1 5 3 13 m2 (5 m
Ly = — P om2 | R-P = =% +3m2 ) In [ —=
' 167r2{<12q +2m“> 367 73 T\g? )M\

_ 572 | R 13 My A
N 967r2{2 3o+1“<u)+L(q)}+O(x), (64)

where R and L(q) are given by
2
R=—¢+7p— 1= (4n) (65)
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and

Lig) =
(q) . o

/4 2 2 /4 2 2

Since the leading order for the scattering of two heavy particles appears at O(x")
and there are no contributions at O(x), Eq. has contributions at O(x?). The
explicit calculation of Eq. is provided in Appendix

Therefore in the main part of this thesis, we will just present the lowest order
contribution O(x?) that comes from the loops and the loops containing higher
order contributions O(x*) will be mentioned in Appendices [C| and [F]

In the vertex case, the pertinent loop integral in our scheme can be written as

lQ

4
Ivert = / (dl Dl ; (67>

2m)* [lo + ie] [I2 — m2 + ie]

where the D = 4 — € is the number of dimensions and [y is energy of the pion
propagator. For the vertex correction (the right panel in Fig. [4)) the integration
variable can always be chosen such that the pion propagator in the loop does not
contain any external variable. Therefore, contrary to Eq. , the momentum
q ~ piyp does not enter the pion propagator in the loop. Hence we can set [y as
my. At the same time, the momentum scale is also given by m,.. Including all these
points, one can conclude that the vertex correction is suppressed as compared to
the 2PE triangle contribution by a factor of x* = (m./py,,)?* [91].

From this observation, all the vertex contributions are ignored in this thesis as
they start to contribute only at order N3LO. In Sec. [5.5.3] we will see if the
aforementioned observation is true by comparing the triangle loop integral to the
vertex correction integral. The explicit calculations of the vertices and potentials
will presented later in this thesis.

3.7 Dimensional regularisation

Dimensional regularisation is a tool that allows one to isolate the divergence of
integrals in a way that preserves all symmetries [92]. The degree of divergence
of an integral can be estimated by counting the powers of momenta. To provide
some examples, if the integral behaves asymptotically as [ d*l/i* or [ d*l/I*, then
it diverges quadratically or logarithmically respectively. We demonstrate the tech-
nique here, by computing the crossed box loop integral, 152) and the planar box

ox?

integral, Iél) encountered in 2PE BB — BB scattering, seen in Fig. .

ox?
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Figure 5: 2PE box diagrams for BB — BB scattering

The I . integral is given by

d*l 7 g9)2
[ / ( | (4i - &) , (68)

boz 2m)4 (ly — i€)?[q3 — m2 + ie] [¢ — m2 + i€]

where ¢ and ¢ are the momenta of the two pions and can be read from the Fig.
as q1=(lo, p—1), 2=(lo, P'—1) and q=(0, ' —p)=(0, §) with [ as the loop momentum
and € as a small positive real number to be taken to zero at the end of the calcu-
lation. The terms ¢? and ¢? are expanded as ¢? = (I°)? — ¢;* and ¢3 = (I°)* — &>,
respectively. The two pion propagators are joined using Feynman parameters and
then shifting [ — [ — qz. All the odd powers of [ are dropped as the integrand
is antisymmetric under [ — —[ and when integrating over all [, the integral will
vanish. Hence, only terms with even powers of k are kept in the numerator

® —/ldx/ﬂ(ﬁ‘ 4)2
boxr — 0 (27T)3 qi - g2
dly 1
27 (Iy — )2 [(lo)? — (@° — @) — Gi2 — m2 +ie]”

(69)

The lp-integration can be performed using the residue theorem and setting ¢ — 0
as there is no longer a singularity in the integral

3 —
o —— / dx/ it} pr 2<q >2 - (70)
q2 ¢o)x+ +m3r]

Now, sh1ftl—>l+psuchthatq1—p—l—>—l andq}zﬁ—f—) —! + ¢ with

i=p —p
@ Bl (- (-q)
bor - / / 2l—’ (T )l’ 4 m2}5/2 . (71)

In the denominator, complete the square by using [— 1+ gx. The above integral
is divergent for D = 4 and convergent for D < 4. Therefore, one can generalise the
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four-dimensional integral as 4 — D, where D = 4 — £ with ¢ being small positive
real number. For consistency, we have introduced a dimensional parameter p so
that the integral has the same dimension for arbitrary D. Furthermore, the angular
integration is performed in spherical coordinates using, d?~l = (P=2dl d2p_1,

where dQ)p_; is
2r(D-1)/2
dQp_1 = —=—+ 72
/ D—1 F(E) 3 ( )

2

where I'(z) is the Gamma function, then

. 4-D 1
7% = VT _pt )/ dz
0

tor = {4y (BT
[ Al 2 g+ )
0

— , (73)
[lz +q?%x(l—2)+ m?rf)/Q

carrying out the [-integration, inserting D = 4 — ¢ in the limit of ¢ — 0 and
expanding a® = 1+ ¢ - a + O(£?). Then

-1 [t 35 35 15
1(2) — / d _ == 2 i _ 1 —2 -~ 2 R
bor = 172 J, SRR R LA

2¢4 2% (1 — z)?
m2 + q%x(1 — x)

35 5, 35 o 15 7x(1 —z) + m?2
+<[—?x —i-?x—l}q —l—?mﬂ)ln( e , (74)

where R is the singularity of the loop and is given by

+ (—222% 4 222 — 1)@ + 8m?2 +

Rz—%—i—’m—l—ln(@r) (75)

and g is the Euler-Mascheroni constant. The radial integration in Euclidean
space was performed using

o o a1\ () _ atl
/0 dlE lE :Eagl—br( 2 )F(b 2 ) ) (76)



Finally, performing the z- integration:

—1 23 15 5 8 23 m
[(2) _ 49 9 19 9 9 59 O 9 22722 15m2 I (=
bo 16#2{(12(1 + 2mﬂ)7€+36q —|—3m7,+<6q + 5m,r> n(ﬂ)

23 _, 10 , 8m
0 = _ oM\
+(6q + 3mﬂ+4mi+i2) (Q)}

where L(q) is given by

L<q>:\/mln(\/m+Q> ' (78)

q 2my

Next, we will look into the planar box integral [lgi; in the BB — BB scatter-
ing. The integral splits into repeated 1PEs and a 2PE contribution. Since the
Lippmann-Schwinger equation (LSE) takes care of iterated diagrams, the double
1PE needs to be removed from the potential and one finds that the remaining
integral agrees with the crossed box integral that was evaluated above [93].

_, [ 1 (- 1)
- / : )

[(1)
2m)4 [lo + i€l [lo — i€ [q3 — m2 + i€] [¢} — m2 + i€

box

Like in the earlier case, we expand ¢? = (Ip)*> — ¢1 % and ¢5 = (Ip)? — ¢ and use
Feynman parameters

1 37 0
0o ST, / di 1 1
IO =i [ dr [ 22 (G- « . (80
box Z/O l’/ (271')3 (ql Q2) 27T |:l0 + Z€j| |:l0 _ Z€:| [(ZO)Q . G,Q + Z.E]Z ( )

where a® = (% — ¢1 %)z + ¢1 > + m2 and z is the Feynman parameter.

The [%-integration diverges as ¢ — 0. This is due to the contour of integration ~y
being squeezed between the two poles at [y = +ie leading to a pinch singularity [94],
which is seen in Fig. [6] In contrast, both poles of the crossed box integral are on
the same side of the integration contour. The pinch singularity can be avoided
by including a second order term, which shifts the pole locations and evades the
singularity

2 12
i = - Yic . 1
ie = iC o0, o, T (81)
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Now, replace ie — i,

d3l L [l 1 1
Tin = 2/ dw/ G- &) / 27 T+ 2] [0 — i) [Uof — i id” )

Like in the previous case, we perform the ly- integration using the residue theorem
and setting e — 0, one finds

B d3l G- @)l 7 2a —1¢
T = Z/ dm/ 4 [iCa*(a—i)?] (83)

Expand the fraction for a > i(, and terms of order O(() are dropped.

L 3 2
,m—z/ dm/ i 21 ($+iga4+0(<)) . (84)

The first term of the expansion matches the integral from the crossed box I,Eji, as
claimed above. This is the irreducible Contrlbution from [, b(o; The dropped terms

scale as i¢/a®. Since i¢ ~ ptyp /mp and a* ~ ptyp, the neglected term is suppressed

by a factor of §/pyy, = X* in comparison to I, ,Eg;
To understand the second term, insert i¢ = (p? —[?)/2M3p to find

B3l b q1)?
o= [ [ S B
2} [(Q22 —q?r+q?+ m72r]

undoing the Feynman parameters, one finds

3 S o2
T S / a1 / il (&) o 6)
Pl ]l o]

which is the non- relativistic Version of double 1-pion exchange [95] and the re-

ducible contribution from (Y Therefore, the iterated potential can be written

box*
as

. d3l Veff Pl eff )
Vil = [ o [ 2 IPEﬂ_)lgffjé - 7

As a result of this exercise, we can replace I by its irreducible part which is I, lf )
in the potential.
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Im lo

Figure 6: The contour of integration 7 (shown in red) for ly = +ie and lp = +i( is
shown here. v is pinched between the two poles at g = £ie. Pinch singularity is avoided
for Iy = +i(.
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4 Lagrangian and vertices

The effective Lagrangian describing B®) B® scattering at low energies reads 8,
9] reads:

. 5 o L Y S
£ = To(H] (iDo)u Hy] + S TelH] o' Hy ') + Te[H] (iDo)ay ) + S 1] o Fyo]

Cho

- %?Tr[& gy HIHy) + %QTr[ﬁaﬁg G - i) =~ Tx[H] it HY Hyily Hy)

C _ A A,
- %Tr[H; TcﬁlalHl,Hlef,,a’Hb/}

D 4 -
—%{Tr[VZHT A NH, Hyrdly Hy) + Te[H 7 a,HJ,VZHbT,f,‘),WHb,]}

7D s i3 . Pap—
- gl{Tr[VZHJ A, 09 HY, Hyriy 07 Hy) + Te[HY 72, 07 HI, V' Hyri, ngZHb,]}
88)

D L y L L 92 . .
- 812{Tr {(V”Hl Toa 0V HY + I Hl 700, o'V H], — 269V H] T;}z,alvkﬂg,)

aaa

X HbT£/ aij/} + Tr [HT A o HT (ViHng%/ oIVIHy, + VijTé?)/ oIV Hy
92 L
— 0V  Hyri J]VkHb/>] } ,

where a and b are isospin indices and o’s and 7’s are the spin and isospin
Pauli matrices, respectively. The isospin and spin matrices are normalized as
418 = 2648 and the trace is taken over spin space. The terms proportional
to 6 = Mp- — Mp =~ 45 MeV are the leading terms that violate spin symme-
try and by our power counting scheme ¢ scales as § — p2/Mp, hence they can
be neglected here. They only affect the two-body propagators in the Lippmann-
Schwinger equation (LS-equation), not the loops in the potentials at the order we
are working (NLO in the chiral expansion and in the heavy quark expansion).
The H, and H, are super-fields that contain the B*) and B* ﬁelds respectively,
with H, = B, + B:'o and H, = (B7y)q — (B*'1y).0", where B,(B,) and B:*(B;?)
are the pseudoscalar and vector B mesons, respectively. The 75, acting as the
charge conjugation matrix in isospin space, appears in the expressions for the anti-
B-mesons, since they contain light antiquarks. H; contains B® and (B°)* and H,
contains Bt and (B*)*, while H; and H, contain the respective antiparticles [96].
The zeroth component of the chiral covariant derivative is given by Dy = 0y + '
with

Iy = 4f2 (7r x OpT) - T+ O(F?) . (89)
The spatial components of the axial current read
i=—=0(7-7)/fx+ O . (90)
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In both cases 7 and 7 are 3-dimensional vectors made off the Pauli matrices and
the pions fields, respectively (given in Eq. (26)).
Employing heavy quark spin symmetry, the pion-heavy meson coupling constant
is set to

9o R g = ge = g =057,

extracted from the partial decay width D* — D provided in Ref. [33] (this value
agrees within 10% with that extracted in lattice QCD for static sources [97]).
The terms proportional to Cjy and C; corresponds to the O(p°) S-wave contact
interactions, whereas the terms proportional to Dy and Dy; corresponds to O(p?)
S-wave contact interactions. The term D5 gives rise to S-D transitions — this is
the counter term formally appearing at NLO, however, promoted to L.O as detailed
in [8,19]. As we are only interested in S-S and S-D transitions, terms proportional
to VIHTV/H, leading to P-wave interactions, are ignored [8]. Following Ref. [9],
we define the following linear combinations

1 1
Ca = g(cll + Cho), Cr= g(cll — Cho),
1 1
Dy = g(Dn + D), Dy = g(Dn — Dyp),
2v/2
Dsp = =-Du (91)

where the sub-index d and f label diagonal and off-diagonal terms, respectively.
From the Lagrangian provided in Eq. (88)), we now derive the vertex structures
relevant for this thesis.

4.1 Pion-emission vertex

The Lagrangian term for the pion-emission vertex is given by
g — —
‘CB(*)—>B(*>7r = —ETI"[U * Ugh Hle] . (92)

Using the definition of H,
9 i A\t ok ] (0T T)
Lo ey = —ZTr[(B +(B;)'o’) (B + Bjo )ba} ) (93)
where the indices 1, 7, k refer to the spatial index of the derivative or the B*
polarisation vectors—summation over those is assumed and the factor of (1/2)

comes from the normalisation of the heavy-meson field as shown in Appendix A
of Ref. [98]. When expanded and using trace relations,
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LB(*)B(*M:%aﬁ[BT?(B;‘H(B )17 B-+ie(B))F(B7) | (94)

using O;7 — —ik; , where k; is the momentum of the outgoing pion, then

L56)569m, ;f ki | BI7a(BY) + (BB + i (B)'ma(BY)| - (95)

where a denotes the isospin index of the pion. We thus get the following ver-
tices [99],

UB*%Br, — 2?% (€ k)1, ,
UB—B*n = i(g* ’ E)Ta ]

‘ 2fx

Y B
VB s Brr, = —ZETQ(GXG )k .
The respective vertices for the antimesons are
g I

UB*—Br, 2, (€ k),
VpaBer = (€ E)TC 7

a 2f7—|— a

_ _ _ -9 ol oD

Vg Brn, = —ZETG(EXE )k .

For the antimesons, we use the charge-conjugated Pauli matrix which is related
to the antifundamental representation of the isospin group, which is expressed as
TC = TQFTTQ = -7 lg]

4.2 Weinberg-Tomozawa vertex
The term in the Lagrangian for the Weinberg-Tomozawa vertex is given by
Lptrnspern = Tr[H (iTo)w Hy) . (96)
where Iy is given in Eq. . To the second order in 7 fields, gives
‘CB(*)B(*)mr = 4f2 Eabeﬂ-aa()ﬂ-b [BTTeB + B*JT B*] + O( ) (97>

From this expression, the different vertices are

UBnq,— B, = eabeTe(k + kO) s

4f2
UB*ro—B*m, — 4f2€abe7—e( ' *)(k(,) + kO) 5
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where ko (kj) denotes the zeroth component of the incoming (outgoing) pion four-
momentum. Again, for the corresponding vertices of the anti-B-mesons, one needs
replace the the 7 matrices by their charge conjugate counterparts 7¢, and they are
given by

UB7m—>B7rb - 4_f2€abe7—g(k36 + kO) y
1 = o
VBrmysBrmy = 4—f26abe7'§(6 €Y (ky + ko) -

5 Effective potentials

With the vertices derived, in this section we discuss the effective potentials of
B®B® — B®B® and B®WB® — B® B Further details of the calculations
are provided in the Appendix [A]

5.1 Leading order diagrams

At the leading-order, there are contact interactions (CI) and the 1-pion exchange
(1IPE) diagrams. The contact interactions consist of momentum independent and
the promoted S — D transition terms.
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Figure 7: LO contributions to the B®) B*) — B*) B(*) scattering potential. Here, single
(double) solid lines denote B (B*) mesons and dashed lines pions. The third line in the
diagram shows a properly normalized C-parity of the BB* and BB* components

5.1.1 LO (O(x")) contact interactions (CI)

The relevant Cls diagrams at leading order are shown in the left side of Fig. [7]
The CIs contain the momentum independent term proportional to Cy and C}; as
well as the S — D transition term, D5, promoted to leading order as described in
Sec. As an example, we present the CI for the BB — BB seen in sub-figure
CI, of Fig.

) . 1
iVio.cr, = i(Cq + §Cf) , (98)
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where Cq and C; are given in Eq. . The potentials for all the O(x°) Cls

diagrams are presented in the partial wave decomposed form in Sec. [6]

5.1.2 LO one-pion exchange (1PE)

The vertices for the one-pion exchange were derived in section [4] with ¢ as the
pion momentum. Here, we may safely put the energy of the heavy mesons to zero
because they are suppressed relative to the momenta by py,/mp ~ O(x?).

At the same time, this also implies that the energy transfer, ¢" = E, — E, =
0+ O(k2/(2mp)), can be dropped to the order we are working. Taking all this
together, we get for B*B — BB* potential in Fig.

2

9 o o\
Vo, = —4—ﬁ(71'72)(€21,n€1,z')

where we used 7¢ = —7, ¢ = ];’ —p.

The external polarisation vectors for incoming and outgoing B* meson (B*) is
represented as €,; and €}, (€2, and €, ) respectively. The isospin factor for the
1PE and 2PE potential is 74 - 75 = 3 — 21 (I + 1) which evaluates to 3 for isoscalar
and -1 for isotriplet states. The effective potentials for all the 1PE diagrams in
the BB and BB cases are presented in Sec. and Sec. [5.4] respectively.

q*+mz

(99)

5.2 Next-to-leading order diagrams

At next-to-leading-order, O(x?), there are momentum-dependent contact interac-
tions (CI) and the 2-pion exchange (2PE) diagrams.

There are three types of 2PE diagrams: triangle-diagrams, football-diagrams and
box-diagrams. This section will cover the general properties of a few diagrams in
the BB — BB case, while the complete expressions for each NLO diagram are
presented in Sec. [5.3]

T1.2 Bl Cl

Figure 8: All NLO diagrams for BB — BB
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CIQ BQ C2
Figure 9: All NLO diagrams for BB — B*B*
ClI; F3 T51
T5.0 Ts3 B3,
Bj.o Cs1 Cs.2
Figure 10: All NLO diagrams for B*B — B*B
CI4 B4 C’4

Figure 11: All NLO diagrams for B*B — BB*
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Figure 13: All NLO diagrams for BB* — B*B*
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Figure 15: All NLO diagrams for BB* — BB

5.2.1 NLO, O(x?), contact interactions

The relevant CIs for the NLO case are listed above. The CIs contain the momentum-
dependent term O(x?) which is proportional to Diy and D;; as seen in the La-
grangian. Formally, the chiral expansion also produces momentum independent
subleading contact terms proportional to m?2 (linear in the quark mass matrix),
which would likewise appear at the same order in standard power counting. In
the momentum counting scheme employed here, however, those are suppressed by
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(M /Pryp)*~x* and thus do not need to be taken into account. Like in the previous
cases, we present the CI for the BB — BB seen in sub-figure C'I; of Fig.

D), (100)

where p and (p') stands for the relative momentum of the initial (final) heavy-
meson pair, D, and Dy are given in Eq. . The potentials for all the O(y?) Cls
diagrams are presented in the partial wave decomposed form in Sec. [6]

iVaro.cr, = i(p* +p'?)(Da +

5.2.2 Triangle diagrams

In the B® B®™ case, the sum of all triangle diagrams vanishes. In this section, we
demonstrate this explicitly for the BB — BB channel, however, the same pattern
applies to all the other potentials analogously. For the BB — BB potential, we
have two triangle diagrams. The potential from the first diagram is

Wi =3 R zoecdhmh)ﬁ(%(wx—m)(r;)d)
{ {

Xm<2fﬂ< (A)(l+q)>( ))m, (101)

where the labels on the potentials refer to those in Fig. [8l The potential can thus

be written as /7

8f4
where we used ), €/ (A)e;(A) = 6;; and integral I, is given by

[ ((+q) -1
Ip— / : | (103)

2m)* [(I4q)2—m2+ie] [I2—m2+ie]
The closed form of this integral is given in Appendix [A.I] The second diagram
simplifies to

Vi, =257 B) e (102)

2

8 f 4
where the change in sign resulted from the appearance of the charge conjugate
isospin matrix at the lower, 7B — w5 vertex. The total contribution therefore
cancels. If we had instead looked at the BB potential, it is apparent that the two
triangle contributions would be summed. This can be seen in Appendix [G where
we have calculated the triangle contribution in particle basis for the B® B®) case.
The effective potentials for all the triangle diagrams in the BB case are presented

in Sec. 5.4

VTLQ = (Tl TQ)Itr 5 (104)

46



5.2.3 Football diagrams

The football diagram consists of two contracting Weinberg-Tomozawa vertices with
two pion propagators. The football diagrams are denoted by F;, where sub-index
i denotes the type of BB scattering. We present the potential for the football
diagram in the BB — BB case, seen in sub-figure F} of Fig.

, a1 i1 . i
Vi = / 2n)i1f2 <2lo€cde(ﬁ) )mrﬁ«—?lo)%f(&)f)m :
(105)
Using €cge€car = 20¢5, then

Vi = 557 B (106)

where, we used €cge€cqr = 205 and Iy is given by

=i [ o ) . (107)

(2m)* [(I+q)2—m2+ie] [IP—m2+ie]

A closed form expression for this integral is provided in Eq. (272)) in Appendix .
Once again, the effective potentials for all the football diagrams in the BB and
BB cases are presented in Sec. and Sec. [5.4] respectively.

5.2.4 Box diagrams

The box diagrams consist of either a planar box or a crossed box, formed by
contracting four 1PE vertices with two pion propagators. We refer to the planar
and crossed box as B; and C; in the figures with the sub-index i denoting the
type of BB scattering. To prevent double counting, we keep just the two-heavy
meson irreducible part of the planar box in the potential, see in Sec[3.7], as the
Lippmann-Schwinger equation generates the reducible parts. Again, for illustra-
tion the BB — BB case is discussed explicitly here. For the planar box, seen in
Fig. [8 one finds

iV, = Z/ ( el()\l)( ))(Tl)d>m
(ﬂﬂ(*@ () (7 >>q Z' (zfﬂ(enwx 2)a) (7 >)q_—m

(%(emx—ql)m) <T5>c> s - (108)
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Here, ¢; and ¢» are the momenta of the two pions and we define qlz(lo,ﬁ—l_ﬁ,

QQZ(ZO,Z;/_Z_j and q:(O,];’—ﬁ):(O, q) where [ is the loop momentum. This can be

written as A

_ 9 o= 2 1)
Vi = i1 (3-2(7-7) 1) . (109)
where we used (71)4(71)c(72)a(T2)e = (3 —2(7 73)) and
[ dY (- @)
7 _ / _ 110
box — ! (2m)* [lo—l—ie} [lo—i(—:] [qg—mﬂ [q%—mi] (110)

For crossed box

Ve, = Z/ d*l (9 €i( A1) (— Q2))( )d>m
<2f7r< F(A) (@), )(Tl)c> 2 _imQ (2‘% <€n()\2)(—q1)n> (7—5)0>

s

§;fjg<%ﬂ%MM@Mﬂ@O£{%3.un)

The above expression can be simplified to

4

g S o 2
Ve, = A ( 3 9(f - 72)) @ (112)

where (71)4(71)e(72)e(T2)a = 3+ 2(71 - 72) is used. The loop integral ]éi}c is given by

[ dY (G- q1)?
7% — / . 113
vor =1 | Gyt o —ie P [ —m2] [ =] (113)

A closed expression for this integral is provided in Eq. . The sign in the ie

term in one of the heavy meson propagators is the only distinction between IIS;?:

and [, zgzi The difference in sign indicates that the former integral has a reducible
contribution while the latter does not.
In Ref. [93] and Sec. it was shown that the Iéig)c splits into reducible double

1PE and irreducible crossed box integral I éi; Thus, in Eq. (110 we may replace

I ISL by I, ZEO; Accordingly, the irreducible box contribution to the effective potential
for BB — BB reads
gt
Vit ps = Vi + Vo, = ~1e7 (7 ) I (114)
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Additionally, we also present the calculation of the box diagram in the B*B* —
B*B* case, due to its complicated structure.

The B*B* — B*B* potential, seen in Fig. , has eight box diagrams and the
total contribution is

VJ%%*—)B*B* = VB7A1 + VB7A2 + VB7A3 + VB7,4 + VC7A1 + VC7A2 + VC7A3 + VC7A4
= T \€14€1/ €2 1€ n 1 ; 5
Gafi AR (2m)* [lo — ie]?[q3 — m2] [¢f — m2]

where

A= 2[(Q2)k(Q1)i(Q2)n(Q1)l —(@2)i(q1)k(@2)n(@1) — (@2)(q1)i(q2)i(q1)n
+(@)i(@)r(@2)i(@)n] + 20u(@ - G1) [(2)n(@1): = (g2)i(@)n)]  (116)
and
B = 203461n(¢3 - 1) + 201 (G5 - 41)? [(a2)k(@1)i — (q2)i(@1)] - (117)
The last term in A (proportional to d;;) and the second term in B (proportional
to (g - ¢1)?) will vanish, due to tensor decomposition being symmetric while

the mentioned terms in A and B being antisymmetric under exchange of indices.
Solving the remaining terms using tensor decomposition

4
* * — — 1
Volse spepe = %ﬂ(el,ielﬂkellew,n){ — (7 - )00 L + 5 [0k = dindia] (130

1 3
- Iézi + ?([&)ﬁ - [ég)i)] +-=; [Qan(Sil — @ Gi0in + 4 G10kn — QiQnékl} [[éii - Iéfi] } )

4q4
(118)
where

=i [ 5

box (2m)* (10 —i€)?[q3 — m2 + i€] [q} — m2 +ie]
o 2/ @'l Gi*(¢ - @)’

box (2m)* (10 — i€)?[q3 — m2 + i€] [q} — m2 +ie]
76 _ 2/ 4l B (G - §)? | (119)

box (2m)% (10 — i) [q3 — m2 + i€] [q} — m2 + ie]

The detailed calculation for Iéf;, Iéji, [52 are given in the Appendix . The
effective potentials for all the box diagrams in the BB and BB cases are given in

Sec. [5.3] and Sec. [5.4] respectively.
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5.3 Effective potentials of B®B®* — B®B® at the O(y?)

Following all the steps outlined in the calculation of BB — B_B potential. Here,
we present the 1PE and 2PE potentials of all B® B® — B® B®) scatterings.

5.3.1 BB — BB

Vire(BB — BB) =0, (120)

1
Vars(BB > B8) = 320 (1 - L1

—2
S 23 1 5 5
~ 1672 f1 (7 Tz){R{mg * 24} * (5769 72

(121)
23 1 M 23 1
] L ) s
+(969 +12) n( i >+ (4 )(96 +12)}
5.3.2 B*B — B*B
5.3.3 B*B — BB*
- - g i
%PE(B*B — BB*) = —m(Tl . 7—2)<6317n61,i)m s (124)

Vapp(B*B — BB*) = ey n€10) (0inG” — q@-qn){ —R+1-2L(q)

—2In <”ZL”)} (125)

_ 3
s12m2f17

5.3.4 B*B* — B*B*
2

* D%k * %k g — — * * qTqS
‘/1PE(B B*— BB ) = 4—]?(7‘1 . T2>€ik;r€lns(€1,i€1',k 627562/7n)m s (126)
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72
Vopr(B*B* — B*B*) = 167T2f4( 2)(51 - €1) (e 62,){73[—1929 + = 2

(5 AW 23, 1
—_— _— — n [ JE—
567 7 u ) \o6? T 12

23 1 72 gt
+L(C])( gt + )}_’_&(El,iei’,kezle;’,n)

96 12 51272 f4
(127)
7 15
OinOki — 0i10kn R —-51 LI
( Kl lk){3 n(u) 2((])}
94
+ W(ﬁ,ﬁ/,k%ze;gn) [@rn0it — Qe@idin + G@Okn
3 1 m 7
— G0 = Ly R N .
%4 "’]X64{3 9 (u) 2(‘1)}
5.3.5 BB — B*B*
2
Vipe(BB = B*B*) = =2 (7 - %) (€)1 x€y ) =odn (128)

S q*+mz

Vopp(BB — B*B") =

3 —
5127 2f4g <€1’ k€2’ )(5knq2 — Gk qn){ —R+1-2L(q)

—2In (%)} . (129)

5.3.6 BB* — BB

5.3.7 B*B — B*B*
9 aq
%PE(B B — B* B ) 4f2< T2>€ik7"(€17i€i’,k€;,n)m , (131)

* * Tk . 3 * *
Vopp(B*B — B*B*) =1 512—77%94(6171‘61/71@62/,”) (EnkuQUQi - eniuQqu)

{—R+1—2L( )—21n(”;”)}.

o1

(132)



5.3.8 BB* — B*B*

2
Vipp(BB® = B*B*) = i-2_ (71 - ) eims €265 165 1)

Af7

ks
q*+m3

(133)

Vopp(BB* — B*B*) =1 512—7%94(62,16?,k€§/,n) (Eknulult — €xtutuln)

{—R+1—2L(q)—21n(%)}.

The potentials presented above, only have terms at the O(x?), and terms of higher
order have been neglected. The potentials containing all terms from the loop
contribution are mentioned in Appendix [C]

(134)

5.4 Effective potentials of B®B®*) — B®B® at the O(x?)

The same topologies discussed above also contribute to B®) B®) scattering, except
as already mentioned in Section in this case the triangle diagrams do not can-
cel. For the same reason the one-pion exchange and the football diagrams change
their sign. The reason for these differences is the absence of charge-conjugated
Pauli matrix (7¢ = —7). It is evident that this change does not affect the box di-
agrams as there is an even number of pion-emission vertices on each heavy meson
line. The evaluated forms of the B®B® — B®BX potentials are mentioned

below.

5.4.1 BB — BB

Vipp(BB — BB) =0, (135)
1 . . 2 4
Vopp(BB — BB) = 2—f4(71 " T2) ( — I+ %Itr - %Iéii)

-2
@ 23 , 5, 1 5,
=1 (7. RIZZ b= 22— 2
To2ga 72){ {1929 w89 "2 T \576?
13, 5 ma\ (23, 5, 1
=2 P i (Em ) (224 22l
+144g+72)+n(u>(969 247 12)
23, 5 1
L) 2g4 - 22— =) .
* (Q)(%g 247 12)}

52
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5.4.2 DB*B— B*B

Vips(B*B — B*'B) =0 , (137)
Vop(B*B — B*B) = (¢, - €,)Vap (BB — BB) . (138)
5.4.3 B*B— BB*
g’ aiq
‘/1PE(B B — BB ) = 4—]2(7'1 . T2)(€2/7n€17i)m s (139)
* * 3 40 % —2

—2In (%)} . (140)

544 DB*B*— B*D*
2

ap?

L 4 q
(71 T2)€ibr€ins (€161 1, €2.60 1)) =5 ——
I b q2

Vipp(B*B* — B"B") = T2

(141)

—2
Vopr(B*B* — B*B*) = —mﬂﬁ (71 - ) (€1 €))(e2 - 62,){73{—1929 A

(5 18 BN (ma\ (2B 5
—_— —_— —_— n E— —_— _— —
5767 T 1aa? T2 067 ~ 249

72" .
* 512—7ﬂﬁrl(el’i61’»k627l62’,n) (0inOrt — 00 ?R (142)

1
[ak@n0it — Qe@iOin + GGOkn — GiGn O]

3] -1 1 m 7
—{—R—-——In(—=) - =¢*L :
X64{3R 9 n(u) 2 (Q)}

23

M 15 94 * *
—5In (—) — 7[1((])} + W(617i61/7k627l62/’n)



5.4.5 BB — B*B*

2

g — qrqn
Vire(BB — B*B*) = 4f2( 72) (€] k€3, )m ; (143)

3

e K€, o) (0kn G — Qn){ —R+1-2L(q)

—2In (%)} . (144)

5.4.6 BB* — BB

Vips(BB* — BB) = Vapp(BB* — BB) =0 . (145)

5.4.7 B*B — B*B*

2

* * * g - * * qrqn
WPE(B B — B*B ) = —24—f2(7'1 TZ)eikT(Elyiel’,kEZ’,n)m , (146)
Vopp(B*B — B*B*) =i 512—7%194(61,i6’{/,k63/,n) (€nkuudi — €niuGul)
N (147)
~R4+1-2L(qg) — 2In ( ”) .
L
5.4.8 BB*— B*B*
. ! 9 kg
%PE(BB* — B*B*) = —ZE(Tl 7—2)61"5(627l€>{’,/€€;’7n)m y (148)
V2PE(BB* — B*B*> =1 512—7%94(62,l€?,k€;’,n) (EkanUQI - Eklu‘]u‘]n)

{—R+1—2L()—2ln(”;“>}. e

As mentioned in Section [5.3] the potentials containing all terms from the loop
contribution are mentioned in Appendix [C]
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5.5 Potentials with qg treated perturbatively

The calculations done so far, follow the power counting scheme mentioned Sec [3.6]
which means we have dropped terms like gy, § and m?2 from our loop integrals that
appear in our potentials. But in this part, we perform the calculations in which
all terms that appear in our potentials are kept to confirm that there are no large
enhancements of the corrections generated by the integrals. We also confirm that
the vertex correction is suppressed by a factor of x* = (my/p,,)*> when compared
to the 2PE triangle contribution.

When including the mass difference 6 = Mpg- — Mp in the loop integrals, we
find that the heavy meson kinetic terms or the recoil terms (p?/2Mp) scale as the
mass difference term, since p'~ /Mg 0, such that 52/2Mp — §/2. Due to this, we
cannot drop the recoil terms when including the mass difference term in the heavy
meson propagator. As ¢ and p?/2Mp scale equally, therefore if we keep ¢ in the
expression then we need to keep the recoil terms also in the expression. To solve
the loop integrals with § and recoil terms, we treat § and p?/2Mp perturbatively
(i.e. they appear only in the numerator and not in the denominator). With the
perturbative approach of ¢y, we expand the heavy meson propagator in inverse
power of Mp. One then finds that the results for the loop integral results closely
match the power counting expectations.

To confirm these statements, we conduct this exercise for Iy, I, Iffi, and the pertinent
integral for the vertex correction. Furthermore, we employ the most general form
of the vertices, the ones containing 4-momenta instead of 3-momenta. We start
with the triangle contribution for BB — BB scattering. The explicit calculations
of the integrals appearing in this section are provided in Appendix

5.5.1 The triangle loop integral

Consider once again the triangle diagram in the BB — BB case,

B B
(B, p) (E3,p")
(5t
=1
B B
(B2, —p) (B, — ")

Figure 16: Triangle diagram for BB — BB
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The potential is given by

di 1 i
iVa = Z 27) 44f2 (2l + %)th(ﬁ)h)m

9 (. . i i
(E@(A)(—l) )(TQ)d> EEyry <2fﬂ ( LN+ q), )( 2)e >—(z p
(150)

which simplifies to
2

161

Va= (i B)a (151)

with the loop integral

o= () < (sl 052

where we used ), €te, = —gu, + v,v,. The loop integral is simplified to
[l (200 + go) (=1 - (I + @) + 15 + logo)
In =1 7 : —— — . (153)
(2m)* [(L+ q)2 — m2 +ie] [I2 — m2 +ie] [(P — )2 — M. + ie]

where P = (E,, p') and P2 = M2. We split the momentum P* = Mgv* + r# and
v* = (1,0), then

P)P=M%—2P 1+

e 2 (154)
=Mp —2Mpv -1 —2r-14+1°.

Applying these expressions

e — / d*l (2lo + qo) (=1 - (I + q) + 15 + logo)

A (2m)* [(L+ q)? — m2 +ie] [I2 — m2 + ie]
y < (200 + go) (=1 - (I + @) + 15 + logo) >
[—2Mpv-1—2r -1+ 1>+ M} — M3 +ie] )

Now, we expand the heavy meson propagator in (Mpg)™!

IA:'/ ¢l (2l + qo) (=1~ (I +q) + 1§ + logo)
(2m)* [(L+ q)? — m2 +ie] [I2 — m2 +ie] [ — 2v - | + ie] Mp

Cfd Qo qo) (L (L4 q) + B+ logo) [I2 — 27 - 1+ ME — M3.]
- /(2ﬁ)4 (1 +q)? — m2 + i€ [12—m72r+ie][—2v-l+ie}2M§

. (155)
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which when simplified gives

Ie— z/ d'l (2l + qo)(=1- (I + ) + 1§ + logo)
A (2m)* [(L+ q)? — m2 +ie] [I2 — m2 +ie] [ — 2v - | + ie] Mp
Il\TA

—i/ d'l (2lg+qo) (=1 (I +q) + 1§ + logo)
Cm)* (14 q)2 —m2 +ie] [ — 20 1 + ie}zM%

N

-~

Iz A

_Z./ Al (2l + qo)(=1- (I +q) + 1§ + logo) [m3 + ME — ME.]  (156)
M) [(1 + q)2 — m2 + €] [12 — m2 +i€] [ — 20 - 1 + ie] "M

IZA
—H'/ d'l (2l + qo) (=1~ (1 + @) + 1§ + logo) (27 - 1)
(2m)* (1 +q)2—m2 +ie] [I2—m2 +ie|] [ —2v- 1 + ie}QM%
Iia

=ha+Ion+I3a+Isn -

The explicit calculations of these four integrals are presented in Appendix [F.1]
As an additional note, most of the integrals appearing in this calculation are also
seen in Appendix B of [100]. The integrals that are not presented there will be
solved in Appendix . The explicit forms of I1 o, I A, Is A, Isa are provided in
Eq. , Eq. , Eq. , and Eq. , respectively.

We can verify that the results of the calculation match our expectations from the
power counting. This is accomplished by examining the influence of the correction
terms on the formally leading term. One observes from the expansion of Ia, that
I A is the leading order term (since I; o ~ O(Mg")) and Iy o, I3 and I, o are
the NLO terms (as they ~ O(My?)) hence, we take the ratio of the sum of I A,
Is A and Iy A over I; A to see the effect of corrections.

The total effect of corrections of In integral

Ion + I3 A+ Iy
I a

~ 14% (157)

where we used 7= ¢ = 500 MeV, rqg = gy = 50 MeV and § = 46 MeV. This result
is consistent with the power counting, which predicts for this ratio ~ 11%, which
is in the order of (M /piyp)*~x>.

5.5.2 The crossed-box loop integral

Consider the crossed box diagram for BB — BB scattering,
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(E37ﬁ,)

(Elvm

we]

(E47 - ﬁ/)

(EQv _ﬁ)

Figure 17: Crossed box diagram for BB — BB

W= | (if) (i(euun(—%)“) <n>d> — (% (@) <ﬁ>c>

T (% () (—ar)?) <Ts>c> T (% (¢ 0a)aa)) 7 ”) el
(158)

where ¢; = 1 = (lo, f), @ =1+qand g = (Es— Ey,p/ —p) . Simplifying the above

relation gives
4

9 (_3_97.7
‘/bor—16f#( 3—2(m 7'2)>fcb. (159)

The loop integral is given by
I, = / d'l ((_guu + quu)(_gpo + UPUU)) ( [+ g)[P (17 + q7)] )
cb =1 ( X [ )

2m) I\ [k2 — M2.][k2 — M2.] (14 )% —m2] [12 — m2]
(160)

where k; = P —1, ky = P' — [ with P = (E,p) and P’ = (E,, —];’) Renaming the
numerator as II = (=g, +v,0,)(—Gpo +V,0,) [I*(I¥ 4+ ¢")][17(17 +¢7)] for simplicity

[ dY 11
Lo = Z/ 2m)* [(L+ q)? — m2 +ie] [I2 — m2 +ie] [(P' — 1) — M. + €]

XQQ—WEM§+H)’OM)
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where P’ = P? = M?. We split the momentum as P* = Mpv* +r* and (P')* =
Mpv* + st

(P'—1)* =M} —2P -1 +1*

162
=Mz —2Mpv-1—25-1+ (162)
and
(P?—=1)?=Mz—2P-1+1? (163)
= M3z —2Mpgv-1—2r-1+1*.
Expanding the heavy meson propagator in (Mpg)~! as in the previous case
. d*l I1
Iy =1 4 2
Cm)* (14 )2 — m2 + €] [12 — m2 +ie] [ — 20 - | +ie] " M3
B z/ d*l (2 —r-l—s-1+ M — M3.) ~(164)
(2m)* [(1+q)2 —m2 +ie| [I2—m2 +ie| [2v- 1 + ie}SMg
By adding and subtracting m?2 in the numerator and using v - [ = [y, then
. d4l IT
[cb =1 1 3
Cr)YAME[(L+ q)2 — m2 +ie] [12 — m2 + ie] [lo — ie]
e
/ d*l IT
T 1 . 3
(2m)* a3 (1 +q)? — m2 +ie] [lg — ie]
e
N 2/ d*l (m?2 + M% — M3.) (165)
(2m)* AMB[(1 + q)2 — m2 + ie] [12 — m2 +ie] [lo — ie]3
Isep

_i/ il (r-1+4s-1)
(

20 AM (1 + q)? — m2 + €] [12 — m2 + ] [l — ie]

J/

~~
I4,cb

= ]l,cb + IZ,cb + -[3,cb + ]4,cb .

As in the previous case, we have four integrals to solve and the calculations of
these four integrals are presented in Appendix [F.2]

The integrated forms of Iy o, I2.ch, L3.ch, 14,5 are mentioned in Eq. , Eq. ,
Eq. and Eq. , respectively.
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Once again, we verify the results of the calculation by checking the power counting
expectations. From the expansion of I, we see that I o is the leading order term
and Iy o, I3 and Iy q are the NLO terms. So, we take the ratio of the sum of
I b, I3, and Iy over I to see the effect of corrections.

and the total effect of the corrections with respect to the leading order term

]2,cb + I3,cb + ]4,cb
Il,cb

~12.3% (166)

where, ¢ = 500 MeV, gy = 50 MeV, 7 = § = 250 MeV and ry = so = 25 MeV
with § = 46 MeV. Again, this result is consistent with the power counting, which
predicts for this ratio ~ 9%. Therefore, the effect of corrections are in the order

of (1 /pryp)*~x*.

5.5.3 The vertex loop integral

Consider the vertex diagram

Figure 18: Vertex diagram

WVert = ;/ (5;34 <% (6;3()\1)(—1)”) (71)d> m

(% (00" <ﬁ>c) = qf; Ve <% (a0)0) Wd) e+ (167

—

where k = (E, + lo, p+ 1), simplifying the potential gives
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g3 g;w
Viert = 8_ﬁ(71)c(_gup + UPUM)QPEVFIUEN

; (168)

g (e q)
= _8_f3(7_1)cT[vert .

The loop integral is

o=t | e ) < () 0

where we used [,l, — %lzgw, due to symmetry inside loops, D is the number of
dimensions D =4 — e and ), €6, = —gup + V0.
We split the momentum P* = Mpgv* + r#, such that
k* — M3. = (1+ P)* — M3.
=Mz — Mp. +2Mpv-1+27r -1 +1?

(170)

and
(k—q)* = M= (l+ P —q)* — M. )
=P+ ¢ +2Mpv-1+2r-1—2Mpv-q—2r-q—21-q .

Next, we expand the heavy meson propagator in the inverse powers of Mp like in
the previous cases

— / dl &
(2m) M2 [12 — m2 + i) [20 - + ie]”

_Z,/ d 2P+ =20 q+4r-1—2r-q+ M} — MR ar)
(2m)* M3[12 = m2 +i€] [20 -1 + ic]” ’
by adding and subtracting m?2 in the numerator and v - I = I

(2m)* AMZ[12 — m2 + i€] [ly + i€]®

) Livert
_Z,/ d*l 21 _Z_/ d [2m2 4+ ¢* =21 q+ M} — ME.]P
(2m)* 8 M3 1o + ic]” 2m)* 8MB[12 — m2 + ie] [lo + ie]”
Dopvert I et (173)

/ d'l [4r-1—21-q]12
—i
(2m)* 8M3 12 — m2 +ie] [lo + z‘e}g

N J/
-~

I4,'Uert

= [l,vert + IQ,vert + [3,vert + I4,'vert
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We solve for each of the four integrals like in the previous case, the calculations of
the four integrals are given in Appendi. The integrated forms of Iy yert, 12 vert,

I3 pert and Iy yere are provided in Eq. (b11)), Eq. (512)), Eq. (514) and Eq. (516)),

respectively.

Like in the earlier cases, we check if the results of the calculation are in line with
the power counting. From the expansion of [, we see that I ;¢ is the LO term
and 15 yert, I3pert and Iy yery are the NLO terms.

The total effect of corrections with respect to the LO term is

IQ,Uert + I3,vert + I4,U6Tt

Il,ve'rt

~ 39% | (174)

for ¢ = 1= 500 MeV, ¢y = 19 = 50 MeV and ém = 46 MeV.
Once again, this result is consistent with the power counting, which predicts for
this ratio ~ 37%.

From our power counting scheme in Sec. [3.6], we observed that the vertex correction
potential is suppressed by a factor of (m./pyp)? = x* in comparison to 2PE
triangle diagram potential. We can check this statement, by comparing the effect
of the leading term in /A to the leading term in I,..;, employing the leading term
I A as the loop integral in Va (Eq. ) and similarly Iq et in Viers (Eq. )
One finds for the ratio of potentials when considering the integrals

Va
‘/vert

~ 0.06 ~ x? , (175)

for ¢ = 500 MeV and gy = 50 MeV. This result agrees with the power counting
which predicts for this ratio ~ 0.05 = (m/pyp)? = x?. Therefore, the vertex
corrections are indeed suppressed, in line with the power counting.

6 Partial wave decomposition

In this section, the effective potentials from the Sec. are decomposed into four
channels J¢ = 0*+ 17+ 17~ 2%+, For those we picked the following bases [9)]:
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0"+ a,8={BB('S), B'B'("S), B'B" (Do) |
1 a8 = {BB(*S1,+), BB (*Dy,+), B'B"(Dy) |
1"+ a,8={BB'(S, ), BB'(D,-),

B*B*(3Sl),B*B*(3D1)}
2+ a,8={BB('D,), BB (D), B'B'(°S,),
B*B*(lDz),B*B*(5D2),B*B*(5G2)} . (176)

The individual partial waves are labeled as 2*'L; with S, L and J denoting the
total spin, the angular momentum and the total momentum, respectively. For
BB* states, the sign included in parenthesis corresponds to their C-parity, which
is provided by
1

V2
The partial wave projection of the potentials is done using the formalism of Ref. 9],
which gives

|BB*,+) = —(|BB*) + |B*B)) . (177)

1 dQ, dQ -
Vo (JFC) = D T [P, BV P(B, 1 1
o7 = e [ S Pla v PE D] (1)
where 7 = §/|p| , n' = p//|p|, P'(a, @) and P(B,n) are outgoing and incoming
normalised projectors respectively with a and  being the bases states mentioned
in Eq. (176). The projectors are normalised as:

a2, - .

/ T P, @) P(a, 1) = 2J + 1. (179)
s

Finally, V are the potentials calculated in Sec. [5.3] Due to the spatial symmetry

of this 2 — 2 reaction, we are only required to consider the angle 6 between the

incoming and outgoing momentum, denoted by = = 7 -n/ = cos(#). Then the

above expression simplifies to

1 oy

Voo (I7) =57 /_ S TP )V P, (180)

with the trace taken over the indices of angular momentum, since J is conserved.
The partial wave projectors used to calculate the potentials are presented in Ap-

pendix [B]
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The partial wave projected potentials for B®B® — B®WBM in the JPC =
0F*, 17+ 177, 27" channel are presented here. The pertinent integrals of the de-
composition are abbreviated as Q(p’, p) R(p',p), S(¢',p). Their explicit expression
are given in Appendix |[El We denote ]p | = p' and |p] = p.

6.1 B®BH 5 BHRBH
6.1.1 JPC =0""

VNLO(0++> —
Ca+ 5C; + (Da+ 3Dp)(p* +p?) 3V3(Cs +Dy(p* + 1)) —/3Dgpp”
5V3(Cr + Dy (p* + 1)) Ca—5Cs + (Da— 5Dp)(p* +p?)  —Dspp®
—V/3Dspp? —Dspp? 0
(181)
92
Vipp(0TH) = — W( A T3)
0 \/LgQQ %(QQ - 3@11’)
) \%Qz X ;%Qz , \%(%_Qn/) (182)
5(Q2—3Qn) 75 —@n) 5(5Q2 —6Qn —6Quw + 18Q, — 9Q;2)
and
. So(p', p) Y3 g (Vg e % 9 (Vipp)1s
i " -
Vopp(0FF) = 1672/ \1/65 g*(Vipp )21 (Vipg )22 m94(‘/2();1§)23
Ao _ Ao -+
32\/ (‘/2(}3E) 64\%9 (VQOPE) (V2OPE)33 )
(183)
where
1
dx 23 1 5 5 m 23 1
Sy = e m) a2l R A — A S rn =) A
0 /_1 y (772) { {1929 +24]+(5769 72)““( i )(9 ANET
23 1
L Y 4 el 4
+ (Q)<969 + 12) + O(x )}

23 1 5 5
— (= .= 12 2 e 4 el /2 2 s < /2 2
= (71 72){R(P +p)<1929 +24)+(p +p)(5769 18)+(p +p°)

23 , 1 M C (23, 1 )
(30 + 15 ) (7)) + et (oot + 12)}+0<x ). (s)
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o+t

Ve = (Vi = 0/ + %) - R 1= 2 ()| 4 2l )

+O(x*) (185)

3
+ 0", (186)

2 My 2
(Vipp)is =[50 { ~R+1-2In (7)} — 2Ry (p/,p) + S Ra(/, p)

4

(Vim)as = So+

G {273(19’2 +p7) - é(p’2 +p7) + [4(' " +p*)] In (%)

+ 4R2(p',p)} +0(x"Y), (187)

Mgy

5 =20 R= g (22 - Hsrar - i f+ 0000 (139

0

2 My 2
(Vapg a1 = g(p2) { ~R+4+1-2In (7)] —2R,(p',p) + §R2(p’,p)

+0(xY), (189)

1 My 7
(VO )30 = 22 {273— 5 —In (—M )} — 5{zaRn(p’,p) —Rz(p’,p)} +0(x*) , (190)
4 4 p'+p
o++ g —15 |p 4 45 21 /
Z 2 4 - = _ =
(Vopg)ss = Sa + 16{64p,p { Y (p)]p,_p S R.2(p', p) < R, (¢, p)

+ Ry (p',p) — %Rg(p’,p) - BRm(p’,p)) } +0(x*"), (191)

and
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Ydr (32% - 1) ) 23 , 1 5 , 5 m
— [ YT T = 2 gt S S N W s
5 /_1 > g Rngg * 24} * (5769 72) * n( P )
23 , 1 23 , 1 \
= il I - il
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(195)
where

4

(Vapg)n = 50+f—6{(p’2+p2) {—RH—QIH (%)} —2R2(p’,p)}+(9(x4) , (196)

2 My 2
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3 3
+0K"Y, (197)
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(Viow)as = (Vo )so = gRg(p ,p) +3R.(p',p) — Rw (P, p) — Ru(p',p) — Re2 (¥, p)
+O(x*"), (200)
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+ 8Ry(p', p) — 45R,(p', p) — 39R,2 (p’,p)) } +O0(x*") . (201)

6.1.3 JPC =1+t"
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(202)
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(203)
where
(Vipg)2e = 3Qu(p,p) + 3Quw (P .p) — 9Qu(V.p) — Qu(p,p) ,  (204)
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(Vg ) = %Qn(p’,p)Jr%an(p’,p) — ng(p’,p)Jrngz(p’,p) —%QQ(p’,p) . (205)

1
1) =
Vapp(177) 1672/
(Vipg ) e g*(Vipg )z (—2¢")(Viep s o 9*(Vapg )14
_ - - _ - -
259 (Vapp)a (Vapp )22 Z 9 (Vapg)2 9*(Vipg ) (206)
1+ _ - - - )
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(209)
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. ) 9 927 9 9
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)
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I
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2
(Vipg )as = 2p° {273— % —1In (%)} - g {3Rn(p’,p) - Rz(p’,p)l +0(x") , (215)

4

. 15 45 21
(Vopg Jas = —Sa + %{ERz(p’,p) = 5 B (', p) + ) (2Rn(p’,p) + 2R, (p', p)
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(Ve )er = 63Rp02 (0, p) — 90R.: (1, p) — 360R (1, p) — 90R, (1, p) + 36 Ry (1, p)
+18Ry(p,p) + O(x") , (246)

2++
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+ 2Ry (0, p) — 5R.2(0,p)| + O(x*Y), (248)
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(Vipg Jos = S 35R,(p,p) — 30R2(p', p) + 3Ra(p, p)} + i{ -5
(105Rn/x2(p’, p) + 105R,02 (1, p) — 15Rw (1, p) — 15R,(p', p) + 45R. (1, p)

+ 3R2(p/7p) - 15Rx2 (p/ap) - 245Rnn’x3 (pl7p)) } + O(X4) (249>
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1 4 2
dr (3524 —3022+3) _ . o[ [23 , 1 5 , 5
S, = [ = : R|=2 — B
! /1 2 8 (7i - 72)d { [1929 Tl T \5wd T m

() G+ ) o G ) o)

= —(ﬁ'?) (35p8+35p’8+20p6p’ +18p*p"* + 20pp/ )RH(?lOp +300p°p"”
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4 210p™)Rg — <14Op2 + 140p/2> Rs — (140p +180p 2 + 180p%pt + 140p’6) R,

+ 35R10] (329 + 214)} + 0 . (250)

All the @ and R functions mentioned above are functions of p and p’ (asin Q(p/, p)).
Here, only the terms contributing at NLO in the momentum counting scheme are
shown. The PWD potentials containing all terms that arise from the loop integrals
(namely m2) are mentioned in Appendix [D}

6.2 BHBH 5 BHRBH

The PWD potentials are exactly the same as B®B® — B B® except with
additional triangle diagram contribution and with an opposite sign for 1PE and
football contribution as mentioned in the section 5.4 The additional triangle con-
tributions are included in the PWD potentials of B®*) B™*) by changing the Sy (p’, p)
functions (which includes Sy(p',p), So(p',p) and S4(p,p)) to Ti(p',p) functions
(To(p', p), Ta(p', p) and Ty(p', p)), where Ti(p, p) is given by
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T.(p = —P M 7) — g ——g—= e VLA
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me\ (23 , 5 1 23, 5 1
1 o /4 22 L e 4 22 4
* n< L )(969 247 12) * (q><96g 247 12) Ok )} ’
(251)

where Py(x) denotes the k-th Legendre polynomial (k = 0,2,4 ; in our case).

7 Checks of the results

A non-trivial verification of our results is provided by the renormalisation of the
formally divergent loops, which must work at each order in the power counting
separately. For that we need to relate the divergent terms (R-terms—see Eq. ),
contained in the loop contributions of B® B®) and B®* B®) 2PE potentials, to the
low-energy constants (LECs) of the CI. We take the case of (Vg )11 and (V2 )i
in the 07" channel as an example. By equating the divergence of 2PE loop integral
with the LECs (Cq4, Cy, etc..) for g* contribution, one finds for the divergent parts
of the counter terms

Ci=0, (252)
C;=0, (253)
Ryg* 23,
Dd = 25671’2.](# <E<7'1 . T2> + 1) and (254)
—Rg4

D, = . 9
T 128724 (255)

Using the same approach for (V2 )13 and (Vipp )13 with its prefactors, one finds
the divergent part of Dgp as

V2Rg*

= , 256
P 512n2 (256)
Similarly, when performing this exercise for ¢° contribution, one finds
Cd:Cf:Df:DSDZO, (257)
R
Dy=———(11-7). 258
4= Togpal ) (258)
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In the ¢? case

Ci=C;=Dy=Dgp=0, (259)
Dy = ﬂ(f ) (260)
R CTPCH T

The renormalisation program provides a non-trivial cross check of the calculations.
For example, the divergent terms of the PWD potentials of BB(*Sy)—B*B*(°Dy)
and B*B*(1Sy)—B*B*(°Dy) must be related such that their infinities can be
absorbed into one single Dgp term. Repeating the calculation for remaining
transitions, we confirm that Cq4, Cy, Dq and Dy absorb all the divergences of
BB(lso)%BB(lso), BB(lso)—)B*B*(lso) and B*B*<1SO)—>B*B*(1SO) PWD po-
tentials.

As a further non-trivial cross-check, we find that the triangle contributions add up
in the B® B®™ case and cancel for B®*) B®) | by performing the triangle diagram
calculations in particle basis for both the cases. This is shown in Appendix [G]

8 Comparison to earlier works

We compared our 1PE results with the ones calculated by Q. Wang et al. [§] (given
in Egs. (22)-(28)) and found that the results agreed with ours (seen in Eq.
for I = 0 (since, 71 - 3 = —1 ). Furthermore, the PWD contact interactions of
V. Baru et al. [9] (seen in Egs. (12)-(15)) agree with ours (seen in Egs. (193
03, 217

For the 2PE contribution in B*) B™)  however, our results disagree with those of
B. Wang et al. |[101] (given in Eq. (10)). In the mentioned paper, there is a net
triangle contribution (terms proportional to ¢?) in the total 2PE potentials, which
is not present in our case. At the same time, their total 2PE potential does not
have any box contributions (terms proportional to g*), which are present in our
case. We agree with Ref. [101] results only in the case of the football diagrams
(terms proportional to go).

Furthermore, we compared our results to the 2PE potentials of B. Wang et al. [102]
for B®) B®™) scattering. In contrast to the meson-anti-meson scattering amplitudes
of Ref. [101] mentioned above, the 2PE potentials for anti-meson—anti-meson scat-
tering in [102] contain all types, namely football, triangle and box contributions.
However, a direct comparison with our potentials is difficult, since the results are
given in a quite different form compared to ours.
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9 Summary and outline

In this thesis, we calculated the full potential of B®B™) and B®) B®) systems up
to to NLO and decomposed them into partial waves with quantum numbers J©¢ =
0F*, 17", 17~ and 2**. The motivation to work beyond the LO stemmed from the
relatively slow convergence of the chiral expansion y ~ 0.5, provided in Q. Wang
et al. [8] and V. Baru et al. [9]. Furthermore, observations of exotic multiquark
states in the cé-sector coupled with HQFS suggests the existence of several, still
to be discovered, spin partners Wy of the Z;(10610) and Z;7(10650). Thus, we
performed the partial wave analysis beyond the quantum number JF¢ = 17~.
Following an introduction to QCD and its properties, we utilised HMxPT to cal-
culate the effective potentials in the expansion of x = py,,/A,. Using our power
counting scheme detailed in [3.6], we could separate the terms in the potentials as
O(x?), O(x?) and O(x*), with O(x?) terms ignored in the main part of the the-
sis. The effective potentials were computed at LO, O(x"), comprising the CI and
1PE, and at NLO, O(x?), comprising the O(x?) CI and 2PE. Moreover, it was
observed that 2PE loops were made up of terms contributing at g2 ~ O(x?) and
m?2 ~ O(x*), with the O(x*) potentials presented in the Appendix |[Cl We also cal-
culated the triangle (I4), crossed-box (7, lfi;) and vertex correction loop integrals by
treating qo, 0 and the recoil terms perturbatively and expanding the heavy meson
propagator in (Mpg)~!. The results of these calculations were validated to comply
with the power counting expectations. The renormalisation program further con-
firmed our results by providing us with a non-trivial check. Finally, we compared
our potentials with those mentioned in previous works.

This thesis lays the groundwork for future investigations into the yet-to-be-
discovered spin partners Wy of the Z;(10610) and Z;(10650). The potentials
reported in this thesis can be used as input for the full scattering equation (cou-
pled channel LSE). Subsequently, the scattering equation output can be utilized
to investigate the theory’s convergence and the impact of NLO contributions.
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Appendices

A Calculation of pertinent Integrals

Here, we present the calculation of all the loop integrals encountered in this thesis.
The calculation follow the same steps as mentioned in Sec. [3.7]

A.1 Calculation of triangle Integral
We start with the triangle loop integral I,
d*l I+q) -7
i £ BN
(2m)* [(1 4 q)* — m2 + i€ [I2 — m2 + ie]

Now, introduce the Feynman parameters, shift [ — [ — gz and dropping all odd
powers of | due to symmetry

3 2 _ 2r(l —
_Z/ / B3l /dlo I —¢z(l —x) iy (262)
[(10)? —P—22(1—2)—m2+ i€]

Executing the [y- integration with the residue theorem and setting ¢ — 0, since
there is no singularity in the integral

/ / B3l —q 220(1 — x) ‘ (263)
S[B+ q2a(1 — ) +m2)’

Going to (D —1) - dimensional spherical coordinates as the integral is divergent at
four-dimensions and inserting dimensional scale parameter u to to keep the correct
units for the integral

_ 4-D D-222.(1 —
VT / dx / gt =) (264)
l2+q

~ (4m)PRT(L) 22(1 — &) + m2]”

Performing the [-integration and inserting D = 4 — ¢ and doing the z-integration

I = 72 __2_ iy _—»2 2 1 T
LS {(12q +2m)R 560 73 +<6q +3m’f)n(u)
27+ om? )L
+ (4 3m2) <q>}
-2
—q 5 13 5 My 5 A
- o3 T L 0 265
167r2{12 56 6" (M)+6 ()}+ (x"), (265)
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where R and L(q) are given by

2
R:—Z+7E—1—ln(47r) : (266)
VAm2E + ¢? VaAmZ +¢? + ¢
L(q) = . In ( v (267)

and g is the Euler-Mascheroni constant.

A.2 Calculation of football integral

_ d*l (Io)?
" / (2m)1 [(1+q)? —m2 +ie] [P —m2 +ie] (268)

Like in the previous calculation, Introduce Feynman parameters, shift [ — [ — gz,
drop all odd powers of [ due to symmetry and perform the [y-integration.

Bl 1
/ / o (269)
l2 +q%x(1—2)+ mz]

Going to (D —1) - dimensional spherical coordinates and inserting p for consistent
units for the integral

4 ZD72
T e / do / dl . (270)
~ (am) I'(5~ l2—|—q2x(1—x)+m2 + ie]

Executing the [-integration and inserting D =4 — ¢

! N
_ 3217T2/0 de(7%e(1—z) +m2) [_gﬂrl_ln(%)ﬂn (q2x<1;§:)+mg)]
(271)

and doing the z-integration

-1 7>  m? D 277”&2 q* 2 Mx
Iy = (L e\ 22 e (L In (27
b 167r2{ (12+ 2) Tl T3 Gt




A.3 Calculation of box integrals

Now, we present the calculation of Ibom, IIE(A)‘Q):, Iég’i, lm

of I' and I? . were shown in Sec.

box box

and 7

box, as the calculation

A31 [P

box

We see this loop integral in B*B* — B*B* and B*B* — B*B* potential, given by

d'l Gl
1(3) = / . 273
bor — ! (2m)* (Iy — ie€)? [q% —m2 + ie} [q% —m2 + ie} (273)

Expanding ¢ = (Io)? — ¢i°> and ¢3 = (Iy)?> — ¢3°, using Feynman parameters and
executing the {’-integration and setting € — 0

B3l n2q°
I, = / dx/ e (274)
G — @)+ q +m72r]

Now, shlftl%l—i-psuchthatql—p—l%—l and g3 = p/ —l—>—l—|—qw1th

qg=yp —p:
B3l 12(1— )
¥ = / da / 5 - (275)

20§+ )z +m2]

As in earlier calculation, complete the square through [+ qx:

-3 [t
fzfj’i:j/o dx

/ BU T+ Pg2(20% —x+ 1) + 410 Pa(z — 1) + (7%2(1 — 2))
(2m)? [l2 +q%x(1l —x)+ m?r]5/2

(276)

Transforming to (D — 1)-dimensional spherical coordinates to make the integral
convergent and inserting u

B _3ﬁ :U’4_D /1 "
(4m)P2T(254) Jo

0 [ﬁ+§2$(1—$)+m%}5/2
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solving the [-integration, inserting D = 4 — ¢ and then performing x-integration

-1 15 1 8
[(3) — Y2 42 1 2
bor = G2 {( 5 M 12q R—l— + 3m + | 1om;

A.3.2 W

box

We also see this loop integral in B*B* — B*B* and B*B* — B*B* potential,
given by

0 _ / d'l G (¢ - Q) (279)
(2m)% (10 — i€)?[q3 — m2 + i€] [} — m2 + ie]
"

where ¢ = p’ — p. Using Feynman parameters

d*l L (- )

2m)* (lo — i€)? [(10) (" — @*)z—¢i° —m2 + ZG]

Executing the lo- integration, setting e — 0 and shifting [ — [+ P such that
g = —l—>—landq2 p—l—)—l—i—q

Ly =1 —/ / il AQW_CD'QTQ o (281)

—2- 7+ q*)x +m2

Completing the square in the denominator through =1+ gx and dropping terms
odd in [:

4 _
Ly, = — 1 dx
0
— f4ﬁ'2 —4

/ 231 31+Dq[ 2(D—4)—2x(D+2)+ D — 1] + ¢%22(1 — x)?
(27) [+ g2a(1 — x) + m2]™? '

N

)

(282)

Like in the previous case, going to (D — 1)-dimensional spherical coordinates and
inserting u
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/oodl D;{ + 5T [22(D — 4) — 22(D + 2) + D — 1] +1P2¢%2%(1 — 2)?
i .

[f? + q?z(1 — x) +m§r]5/2
(283)

Solving the [-integration, inserting D = 4 — ¢ and doing the z- integration:

A.3.3 O

box

The 1

box

integral seen in B*B* — B*B* and B*B* — B*B* potential is given by
1 _ / d*l (41 - )’ (285)
box (27T)4 (lo — 2'6)2 [q% — ’I’)”L72r —I— ’LE:| [q% — 7’)’L72T + 'LE} ’

following the same steps as in the earlier integrals,
d*l B2 (4 - §)?
=i [ oy B ew
(2m)* (lg — i€)2[(19)2 — (B2 — @)z — Gi* — m2 +ic]

Executing the lo- mtegratlon setting ¢ — 0 and shifting I — [+ p such that
q = —l—>—landq2 p—l—>—l—|—q

7O _ / / &l (q QA= )* ‘ (287)

box
9[- q+q2)x+m2]5/2

1(5)

box

Completing the square in the denominator through =1+ gz and dropping terms
odd in I:

76 _ __3/1 d:c/ @l 55+ philA(D +4) — 62+ 1] - §°*(1 — 2’ (288)
box 4 0 (271')3 [lz + qu(l . {L‘) + mzr} 5/2 .
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Now, going to (D — 1)-dimensional spherical coordinates and inserting p

B _3ﬁ ,LL4_D /l "
PR () y

/oodl D*? +D 1[ (‘D+4)_6x+ ]+1D_2§6x2(1—x)2
0 [+ q22(1 — 2) + m2]>?

(289)

Solving the [-integration, inserting D = 4 — ¢ and doing the z- integration:

1 5 1 1 1 m
Ji— 2_ 7?2 )R- —q%+3 om? — ~q? ) In [ 2%
bor = Tep2? |\ 2" T 41 [0 3mn | 2y = ) In P

6
A34 (19,
We encounter this integral in B*B — BB* and BB — B*B* and in the subsequent
B® B® counterparts. The (1, (6))m integral is given by,

box

_Z d4l Eijsenrm<q2)j(q1>s(q2 r( )
Yo = / : (291)

(19, )
. 2m)4 [lg — i€ [q3 — m2 + €] [q} — m2 +ie]

box

repeating the same steps as in the earlier cases

dP-1
(Ilgfi)in = —u'” D/ d$/ )D- (9 D1 CigsEnrm

[lj + q](l‘ - 1)](ls + q$5>[lr + QT(x - 1)](lm + qu)
[+ q22(1 — 2) +m2]”? ’

(292)

due to anti-symmetry of the Levi-Civita tensor, most of the numerator vanishes,

_3 4 D/ / dD 1l ez]s‘fm"m( lst)(_lmQT> ) (293>

2m)P7H (22 4 g2a(1 — @) + m2]™?
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126

Again, Going to (D — 1)-dimensional spherical coordinates and using I;[; — 5=,

we get

=3y ptP /1 -2 = D—1
dx(8ing —qiqn)/ dl— . (294)
=Y T

Performing the - and z- integration and inserting D =4 — ¢

(Lie))in _12 (Oing? — QiQn){ —R+1-2L(g) —2In (m“) } . (295)

" 167 W

A3.5 (1)

ox

We encounter this integral in B*B — B*B*, BB* — B*B* and in the subsequent
B®B® counterparts . The (1(7))ikn integral is given by,

box

(296)

box

(M
(I (27)4 [l — i€]? [q% — mi] [q% — mﬂ

Introducing Feynman parameters, executing the lo-integration, and Shlftmg [ —
l+psuchthatq1 —l—>—landq2 p—l—>—l—|—qw1thq—p—p

/ /d?’l (=@ D = = @) D) emum(l = QD)
[22 4 (

_9. 7+ 7%z + m%r/z

(297)

All terms proportional to €,umlulm O €umGugm and every term of odd power in [
vanishes due to symmetry:

e

Solving the remaining integral like in the earlier integral,

-1 My
(ke = 1yt — em-uqqu{ ~ Rt 1-21(g) - 2 (22 } (209

B Partial wave projectors

In this section, we have presented the complete set of partial wave projectors used
for calculating the potentials [9)].
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P(BB(*Sy)) =1, (300)

_ 1
P(B*B*(*Sy)) = —3(5* = (301)
* % (D 3
P(B B ( DO)) = — ngyvxy , (302)
P(BB*(*51))s = €24 , (303)
P(B*B(S\)n = €1y » (304)
_ 3
P(BB*(3D1))m = _EEQ,yvzy ) (305)
* 1D 3 *
P(B*B(*D)). = — 5 L0t (306)
* % \/g
P(B*B (5D1))h = _TZGhijnyjy ) (307)
P(B*B*(*D1)) —%Axv,m , (309)
- 15
P(BB("Dg))uy = — gvxy ’ (310)
P(BB <3D2))2y = _7152,h(€zhxvmy + eyhxvzz) ) (311>
_ 1
P(B*B*(SS2))wy = §Swy ) (312)
_ /v
P(B*B*('Dg))uy = —\/;(61 C63)Usy (313)
* g (D 45 2
P(B B*( Dg))zy = — %(Szxvxy + Syxﬂa:z - gdxyslxle) ) (314>
_ 175
P(B*B*(5G2))Zw - 3_25a:yvxyzw 9 (315)
where 1
Ugy = Mgy — géxy , (316)
* * 2 =k —
Sy = €] €2y + €] €20 — 55“/ (61 . 62) , (317)
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A:p - LnyzE?yGQ,z ) (318)

V2

and

1
Vpyzw = MMy My — = (M0 200 F 10102 Oy F100 My Oy F10y 102 0 0 F10y M O 102100 Oy
Y 7

1
+ = (629020 + 0220y + Ozuwdy:)  (319)

The projectors are normalised as:

Q
/ d4 “PH o, it)P(a, i) = 2J + 1
7

C The effective potentials with whole loop con-
tribution

In this section, all the 2PE potentials of B®B® — B® B and B®BX —
B®B®) scatterings containing all the terms arising from the loop integrals are
presented.

C.1 BB — BB

Vopp(BB — BB) = —= (71 - 73) (Ifb - glﬁi)

23 , 1 (15, 1 (23, 1
= il - bl I = il
(969 +12) +m”(169 o) | HHD| T (gg9 15

C.2 B*B— B*B
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C.3 B*B— BB*

* %) 3 40 * ) o2 . -
%PE<B B — BB ) - 5127‘(‘2]{;19 (EQ’,nel,z)((st Qan){ R+1 2L(q)
m
—2In | —=Z . (322
(52)} - o
C.4 B*B* — B*B*
B B 1o ) \ 2 o 15

_|_£2_|_m2} +q’2<ig _i) +m2(1g4_1)

24 4 576 72 T\ 6 3

o (%) |7 (ot + ) + (3 + )
7 96 12 16 2

23 1 5 1 gim?
Lala2 (2244 2 of 2 4 1 _gmy;
* (q)[q <969 +12>+m”<249 3) T 3am 1 )

4

51272 f4

e

+

7. 16
(61,¢€T/,k62,l€§r,n) (5m5kl 5zl5kn) {?Q "R — Emfr
(323)
v 15 — g4 ES *
. ) . ?q 2L(q)} + —167T2f4 (61,i€1/’k€2,l62/’n)

3 -1
néz - 5171 % d n — n5 X e _’QR
[qu I = qkQ10in + ¢iQ10kn — ¢iq kl} 64@4{ 3

— a4

Lo2 _ Emi +In (%) [3m2 — 7]

9 3

+ L) [6m? — L°) } .
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C.5 BB — B*B*

D, * D 3 * * —
Vapp(BB = B'B*) = 20" (€11 1€ ) (0knG* — a1 qn){ —R+1-2L(q)

C.6 BB*— BB

C.T B*B — B*B*

Vopp(B*B — B*B*) =i ———¢"
2l )= g

{—R+1—2L(q)—21n(%)}. 920)

(El,ig{’,keg,n) (enkuqu%' - EniUQqu)

C.8 BB* — B*B*

oY * Dk : 3 4 * *
%PE(BB BB ) - 51271'2]"7%9 (627l€1’,k€2’,n) (€kanUQZ - EkIUQUQn)

{—R+1—2L(q)—21n(%>}. e

88



C9 BB — BB

4
Vapp(BB — BB) = 2—(ﬁ - Th) ( — I+ g—ltr - %Iﬁi)

2
R T 23 . 15 2\ 4 (5
167r2f;‘;( ! TQ){ {(1 21 +32m”)g (48q
3 5\ o ¢ m of O 4 13 5, 00
T3 ”)g 20 2| T \5w? Taad T m
1, 1, 1 m 23 , 5
of Lt 4 1 o 1 1 (M —»2_4__2_%%2
+m”(69+12g+3)+n(u){q oY 519 ~ 55
15, 3, 1 23, 5 1
212 4 9o 1 L2 (24— 22— 2
+m”(169 19 2)} +L{4) [q 067 ~ 219 T 12
5 1 1 g*m?
2( <~ 4 - 2 - I A S
o (g5 3) i |
C.10 B*B — B*B
Vopp(B*B — B*B) = (¢, - ¢)Vapp(BB — BB) . (329)
C.11 B*B — BB*
* * 3 * —
‘/épE<B B — BB ) = 512—7'('2f494<62l’n61’i)<5inQ2 — qZQn){ - R+ 1-— 2L(q)

~2In (%)} . (330)
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C.12 B*B* — B*B*

* % * % 1 — — * * 23 —2 15 2 4
Vopp(B*B* — B*B") = wﬁ—%(ﬁ'7'2)(61'€1f)(€2'€2f){73[(ﬁq +3—2mw)9

5.5 .3 5\ & m of 5 4 13,
(48q +8m”>g o1~ 2 | T \5re? Taad

5 (1, 1, 1 ma\ [0 (23 .

2 e = il D Y i
+72)+m”(69 T 199 +3)+n<u){q 0967
_ 22— S S B L

519 12)+m7r(169 29 5| tLa)|g

23, 5, 1 (5, 1, 1
(969 247 12)+mﬂ<24g 3973

g4m;1r + 94 (61 iGT/ k€2 162/ )
2(4m2 + ¢?) b12m2 fas r b En (331)
-7 16 -
(5m5k1 - 5il6kn) —@*R — —m2 —57%In Mx
3 3 0

15 _, g' ) \
—7 L(Q) +16W—2ﬁ<61’i61/’k62’l€2/’"> [Qan(Sil

3 -1 1
Qi + GO0 — Ga0ut] X —7] =GR — ="
qk410in + 4iQ1%kn — 4iq kl}x64(f4{ 34 4
16 ™ — 7—5
3 m2 4 In (—ﬂ; )[3m72r—q2} +L(q)[6m72r—§q2]} )

C.13 BB — B*B*

X * 3 k ES —
Vopp(BB — B*B”) = 512—7T2f494(€1/,k€2/,n)(5knq2 — Gk qn){ —R+1-2L(q)
m
—2In | —= 332
(5:)f o

C.14 BB*— BB
Vaps(BB* — BB) =0 . (333)
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C.15 B*B — B*B*

3
‘/QPE(B B — B B ) 512—2f49 (61 161/ kEQ/ ) (EnkUQUQZ - Enququ)

{—R+1—2L()—2ln(ﬂ;")}. .

C.16 BB* — B*B*

) * D . 3 * *
Vopp(BB* — B*B*) =1 512—7%194(62,161/,;@62/7”) (EkanuQZ - EkluQuqn)

{—R+1—2L()—21n(”;”>}. .

D PWD with whole loop contribution

D.1 JPC=0f"

Here, we present the PWD potentials which contains all terms (namely m?2 terms)
which arise from loop integrals

. So(p',p) Y3 g (Vg )iz %94(‘/5};)13
+ + _ +
Vapp(0FT) = T6-271 Y3 g (Vipg )2 (Vapg )22 i3 9 (Vapp )23
™ fr 3v3 0+t -1 4700+ 0+t
32\/59 (Vapg)n 612 9 (Vopg )32 (Vapp )33
(336)

23 1 ) 1 g*m?
(96 * 12) + (249 * 3> * 2(4m3r+c]’2)]} (337)

/ s
(Vapg )iz = (Vap)zr = (9 +p2)[ R+1-— 2111(

p )} +2Ry(p',p)  (338)

2

W= 20 R+ om ()] < omew 4 S0 30
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4
ot+

(Vapg )22 = So + 7= g

1
G {2R(p’ 2+ p?) — §(p’ 2+ p°) + [4(0' 7 + p*) + 3m2]

In (%) + 4Ry (p', p) + GmiRo(p’,p)} (340)

My 7
5=~ 310 (22)] - ] s

—16 2 M 1
|:3Rn//q2 (plap) - RO(p/7p>1 + |:Tm7r + 3m7‘r In ( 1 >} (16pp/3> |:2O
—12p%p' +3(p" —p'*)*In ( £ +p )] (341)

(Vapg)n = \/g(pz) { —R+1-2h <%>} —2R,(¢,p) + §R2(p’,p) (342)

"
(Vipg )2 = 20° {27% ~s- (’%)

sttt ]« [ o (3] () o
— 120" *p +3(p'% — p*)*In (M)} (343)

—_

{ R,(p',p) — Rz(p’,p)} + 6m;;

15 45 9
(Vapg )33 52+i]6{ 3 Ry(p/, p)—ngz(p p)+2m (Rn/q2(p’,p)+Rn//q2(p’,p)

21
8

—16 My 1 4 9 19
+ [Tm + 3m2 ln( p )] (W) [4pp’(3p — 2% 2+ 3’

+3(° =) (p" +p7) In (Ei;—p/)z)} } (344)

—%Ro( p) = 3Ry (P, p)) (Rn(p’,p)+Rn'(p’,p)—%Rz(p’,p)—«?Rx(p’,p))

and,
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1 2 —2 2
de (3z*—=1), ., 23 , 15 q m 9
S, = [ = T e RI(Z2 i 4 M)y e
2 /12 ;7 72){ [(192’1 METIC) AT ie R
15 4
167

i‘l_i +m? l4_1 +1n Mz 23 +1 _|_m
5767 72 \67 73 1 T\g69 12

1 23 1 5 1 g*m?
N+ L@)| 2 =g + — 2( 2gty - )L | L (345
+2>] * ((-’){q (969 +12)+m”(249 3) Y smme ey (Y

. (Vapr ) 55 0" (Vapp)ie —15751 9" (Vapr )13
Vrp(1') = oo | mad' (Varp)n (appl 500" (Vapp)
519 (Vabr)s 25 64 (Vo )2 <v21;;>33
(346)
where,

4

(Vo )11 = So + 16{(19’2 +p?) [[—R+ 1—2In <%)} - 2R2(p/,p)} (347)

(Vape)iz = (Vapr )1

2(29’2) {[—R +1-2Mh (%)] + Rz(p p) — 2Ry (P, p)

~3 3
(348)
(Ve = (V52 = 507 | [=R + 12t ()| 4 Zte') — 2R00')
(349)

3 / /
(Vipp)az = Sa+ g 3—2{R0(p p) — 3Ro, (P, p) + 3R (', p) — R (P, p)

— R.(p',p) + %Rz(p’,p)} (350)

1++ 1++

9
(Vapg)2s = (Vopp a2 = 532(19’,19) + 3R, (p',p) — Ry (p',p) — Ru(p',p) — Rz (P, p)
(351)
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45 135
(Vipp )as = 75 + 16{ Ro(p',p) = =~ Ra(P', ) + 6m?2 (15Rn/q2(p’,p)

7
+ 15R, /2(p', p) + 8Ro(p', p) — 45R,/2(p', ) — 39Rm(p’,p)> 03 (15R (v, p)
—16
+ 15R,(p', p) + 8R2(p', p) — 45R.(p', p) — 39R,2 (p’,p)) + {?mi

+3m2In (%)} (ﬁ) [4pp’(3p4 =2’ 2+ 30" ) + 300" = ') (PP +1'?)
m(%i%gﬂ} (352)

D.3 JPC —1*-
1

Varp(177) = 1672 f
(Vapp)nn 505 0" Vapp )z (=20 (Vapp s 5505 9" (Vapp s
50 9 (Valpp a1 (Vap )22 29" Vipp)s  9*(Vapp) 53)
(=20 (Vapp)st 2 9* (Vi )s2 (Valprs )33 615 9" (Vi )sa
559 Vipp)u  0'(Vipp)ar 559" (Varp)is  (Vipp)u
where,

4

e == T f e e [FR e 12w (M2) | “2mrn) ) a0

(Vi e = (e o = (Ve = 507 [[-R o+ 1= 2 ()| 4 2rty')

— 2R (p',p) (355)
Viiea = (Vg = 1607+ |[-R o+ 1= 2 () | 2yt p) (350

(Ve = (Vo) = 50 |- 1200 (22) | 4 2ty — 2R 0')
(357)

3
(Vipg)o2 = So — 945{Ro(p’,p) — 3Ry (p',p) + 3R, (P, p) — R (¥, p) — Ru(p', p)

F )} G5
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27

- - 9 9 9
(Vipp)as = (Vapp )iz = Ra2 (0 p) = - Rat.0) + R (0. 0) + J Bl )

4 4 4
3
—éRz(P,:P) (359>
1+ g L, /2 2 2 /2 My
(Vap )33 =5 = 351 2R+ (" +p7) = Bmz + 4(p” + ") In m

— 6m2Ro(p',p) — 4Ry (p’,p)} (360)

(Vapp)as = 29" {273 - % —In (T)] - ; {3Rnf(p’,p) - Rz(p’,p)]

16 My 1
+6m72.r [BRH’/qQ(pI,p) — Ro(p/,p):| + |:Tm +3m ln ( lu ):| (16pp/3)

[zopp’?’ —12p°p" + 3(p* — p'?)*In <%)] (361)

(Vipg )as = 2p° {273 - % —In (%)] - g {3Rn(p’,p) - Rz(p’,p)l
+6my {3Rn/q (v,p) — Ro(p’,p)} + {_Tmmi +3m; In (%ﬂ <;3)

% 16p'p
/ / / + ')?
[20]93]9 — 120" *p +3(p' % — p*)*In <%)] (362)
1115 ) 45 ) ,
(Vapg)aa = —Ss + g4 {33’2(19 D) — 5 R (',p) — 18m> (2Rn/q2(p D)

, 8 21
+ 2R, /2(p', p) + 6Raa(p', p) — 6R, 2 (0, 1) — gRo(pﬁp)) (QR v,

8 16
+ 2R, (p',p) — ng(p’,p) —6R,(p',p) + 6R,2 (p’,p)> — [Tm +3m21n ( )}

1
(1619/ 3193) {4pp,(3p4 2%+ 3 )+ 30" —p' )’ (P +p’2)1n }

(363)
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D.4 JPC = 2f+

1
Vapp(2t) = ———
2re(27) = 515 Iz
3255, p) 0 % 9 Vapp s V39 (Vipp)us 7‘[ (Vapp)is g7z 9" (Vape 6
++ ++ " ++
0 0 7 9" (Vipp )2 0 59 (Vapp)s 759" (Vipg )2
%94(‘/22%)31 5 9* (Vapg )a ?2(‘/22;1;&3 515 9 (Vapg ) 2%9 (‘/22%)35 0 .
V3¢' (Vapp ) 0 5715 9" (Vapp )13 32(Vpg as 57 9" (Vibg)as Tg Y(Vabg )as
/3 o+ _ Tt T+ T+ T+
%94(‘/21%) \/ﬁg Y(Vipp )52 27\\/[%94(‘/221%)53 Tﬁg '(Vipp )sa 32(‘/2PE) 79 Y(Vipg )so
++ " ++ ~ ++ ++
4\/11R 9 (Vspg a1 \/7%9 (Vi )62 0 7%94(‘/2213]9)64 mg (Vspr )es 32(Vim s
(364)
where,

2
Vi = ik = 37 - Rt 1= 2 (22) | 4+ 2maton) —2mati'n) (365)

0

(Vi = (Vig)a = 3Re (9, p) — 9Ra (9, p) + 3Ro(p', p) — Ro(p',p)  (366)

2
(Viop)is = (Viog)as = (Ving)s1 = (Vapg )s2 = ng(P';P) + 3R, (¢, p)

— R, (p),p) — R (p',p) — Re2(p',p) (367)

(Vipg )16 = 63 Rz (0, p) — 90R,2(p, p) — 360R,.(p, p) — 90R (p, p) + 36 R, (0, p)
+ 18Ry(p',p) (368)
(Vg )26 = 35Ra2 (0, p) = 5Raz (1, p) — 2R (p', p) — 5 R (1, p) + 2R (9, ) + Ro (1, p) (369)

2
Vi = (Vb = 502 =R 1200 (22) | 4 S Relon) — 2utiln) (30)

4

1 My
(Vi )as = So + 32{ — 2R + 5(1?2 +p'%) = [3Bml +4(p* +p' )] In (7) — 6m2Ro(p', p)

— 4R, (p’7p)} (371)
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/ mﬂ' 7 / /
(Vapr)sa = (Vipp )ss = 2p 2{272— g ( . )] - 5[3Rnf(p,p) —Rz(p,p)l

—16 m 1
6m?2|3R,, Ro(p/ —m2+3m2n| —=
S B C e O G

[QOpp’3 —12p°0 +3(p* — p'*)’In (%)] (372)

My 7
(Vioi)is = (Ving )53 = 2p {272 g~ ( . )} —3 {3Rn(p’7p) - R2(p/,p)}

—16 m 1
6m2 3R, Ro(p —m2+3m2In | —
+6m [ 120 p) — o(p,p)} +{ 5 M+ 31y n( p ﬂ (16p,p3)

[20p3p/ — 120" p +3(p'% — p*)*In (%)] (373)

4

gt [ 45 15 7
(Vips)aa = Sa + 32{ 5 B 20, p) — 7R2(p’,p) + §R0(P’7P) — 6m2Ry (v, p)
21 16 m 1
2 2 2 s
+ 18m; Ry /2 (0, p) — ?sz(p',p) + [gmr —3m; In (7)] (W)

{122919’(172 +p'%) + (3p' + 20 %+ 3p ) In (%)} } (374)

(Vip)as = (Vipg )sa = 6m> [SR 112 (P'sp) + 3802 (0, p) — IR y2 (P, p)
3R 5) = 2R0lp )| = L [3R0,5) + 3R 0) — Ry ) + 3l )
— 2Rz(p’,p)} + (ﬁ) {4pp’(3p4 —2p%p" 2+ 3" ) + 300" — ') (0P +0'?)

n ()] o
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(‘/22;};)46 - (VQZI;F;)% - 6m [35R ’/q? (p p) 5Rn’/q2 (p/>p) - QORx/qQ (p/>p)

7
—5Rou (', p) +2R 2 (0, p)+ Ro (1, p)} 3 {35Rnfx2 (p',p)—5Rw(p',p)—20R,(p, p)

16 1
+ Ro(p,p) + 2R, (0, p) — 5Rp2(p',p) | + | 5 m2 —3m2 | ———— | | — 4pp/(105p°
3 192/ 5p3

/
—145p"p" 2+ 15p%p" 99" ©) +3(p* —p' ) (35p" +-10p°p' > +-3p'*) In (E’” v )}

4
g ] 15 45 3
(Vipg)ss = Sa+ 64{532(19/7]?) — 5 fa2 ¥, p) + ?mi( —9R,2(p', D)

/ / / ]‘
— IR, /2(p',p) — 51R2,(p', p) + 27R,2(p', p) + 20Ro(p ,p)> v

< —9R, (P, p) — IR (P, p) — B1R.2(p',p) + 27TR,(p',p) + 2032(19’,19))

—16 My 1
e[t (5)| (s ) | ot =m0

PG — 2 (P 4 D) (M)} } (377)

(p—p)?

2++

(‘/QPE)Gl = 63Rnr2 (p/a p) - 90Rx2 (p/, p) - 36OR:1: (p/7p) - QORn(p/a p) + 36Rn/ (pla p)
+18Ry(p',p) (378)

o++

(Vapg Jo2 = 35Rna2(p', p) =5 Re2 (1, p) —2Re (1, p) =5 R (1, 0) +2 R (p', p)+ Ra(p, 1)
(379)

(Ving )or = (Vaps o5 = 6m?2 {35Rn/q (0, p) = 5Ryyq2(p',p) — 20R, 02 (p', p)
7
—5Ro, (P, p) +2 R0 sg2 (', p) + Ro (P, p)} —3 {35Rm2 (v, p) =5R.(p', p) —20R.(p', p)
1
Ry(pf 2R (p',p) — SR (1 ———— | | — 4pp’(105p"® — 145p" *p®
+ Ra(p',p) + 2R (p', p) xa(p,p)} + (192p,3p5){ pp'(105p 5p""p

N\ 2
+ 15p" 2p* + 9p°) + 3(p* — p' ?)? (35p"* 4+ 10p*p’ ? + 3p*) In (—g fi/;)} (380)

98



15¢%
512

3 4
(Vipe)os = S 35R+(p,p) = 30R (v, p) + 3R2<p’,p>} b {6m

<1O5Rn’x2/q2 (p/, p) -+ 105Rnx2/q2 (p/, p) — 15Rn//q2 (p/, p) — 15Rn/q2 (p/, p)

7
+45R, /2(p', p) +3Ro(p', p) — 15 R0 (9, p) =245 Ry 3 102 (1, p)) 3 <105Rn/m2 ?',p)

+105R,,2(p', p) = 15R, (p', p) — 15R, (', p) +45R,(p', p) +3R2(p', p) — 15R,2(p', p)

—16 2 Mz 1 9% 7y 3

2 \2
= 34p°p'? = 40p%p "+ 105p °p) + 15(p — ') (p+ )’ (p* +1/*) In (Eﬁﬁ@?)”

(381)

and

Udr (3504 — 302 +3) . 23
S4—/_17 3 (71 72) RK@Q +— )9 +—+—}
5 , 5 1, 1 m 15, 1
22 Y 4 Y 2( - 4 = 1 ™ — 4
i (5769 72>+m”(6g 3)+ n( " ){ ( ( 2”

+ L(q) {52(;29 n 112) g (254g + ;) + Mg—ﬂf)]} (382)

E Calculation of integrals of partial wave decom-
position

The calculations of integrals from partial wave decomposition are shown here.
Specifically, we present the integration of (), R, S and T terms encountered in the
Partial wave decomposition here.

With |p/| = p', || = p|dl = ¢, i = §/p, ' = P//p’. In addition, §% = p* +p* —
2p'pz and n' - i and

p/2_p2_q2
i cjzp’x—pzT (383)
2 2 2
- P —p°+q
"qu’—pxz—Qp, (384)



E.1 Q-integrals

1 9 9 .
de ¢ m 2'p
/, = —_— 2 - 1—- " actanh[ —""F— | =140 B
QZ(p p) .2 q2 _|_m3r 2p'p <p,2 +p2 +m72r (Z( ) )
385
On(p,p) = /1 de (i-q)° | pipttmd (- ml)
o 1 240 my 4p? 8p'p’
2 /
arctanh (%) (386)
p P+ mz
p,2 + p2 (p/2 B p2)2 2p/p A
=1- tanh [ —————— O
4p2 + 8plp3 arctan (p/Z +p2 +mgr) + (X )
Qu (P, p) = Yo (-q? | pPptemi | (P4 pt i)
" p ’p B —1 2 52 +m72r - 4p/2 8p/3p
2
arctanh (%)
p p°+mz
p/2 +p2 (_p/Z +p2>2 Qp'p (387)
=1- 42 + 89 arctanh (m) + 0()(4)
Q (p’p>:/ldﬁm:i_w
o 12 Pmi 12 8p/2p2
((P'2 —p°)? - mf;)(p’2 + p? + m2) 2'p
+ 16p/3p3 x arctanh m
5 14 4 2 2\2 ,2+ 2 o
- -2 2L +((p p))(p p)arctanh ___“pp + oY
12 Sp/2p2 16p/3p3 p’2 n p2 e
(388)
Qa2(p,p)
= _Ii:1+mi(p’2+p2+m72r) _mi(p’2+p2+m$r)2
2G%+mz 3 4p%p? 8p°p?
2p'p 1
arctanh [ ————2 ) = Z - O(v*) (389
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_ AP my) = p® —m§ = 3mgp” — 3map — p°
16p/2p4
3my +2map” —pt = @7 mD)P 2p'p
2,1/2 + 13,75 arctan /2 2 2
48p?p 32p"°p P+ p°+m:
Pt =t —p® (- p)? L 2p'p O
o 12,4 2,1/2 + 13,75 arctan 2 2 2 + (X )
16p"“p 48p°p 32p"”p P +p +m;
(390)
Q,Q(p/p):/ld_xm
_ PEp 4 mR) —p — m — 3myp® — 3mip! — pf
16p2p/4
3mi 4+ 2m2p? —pt  (p" — (p® + m2)?)? - 2p'p
12,2 15,3 arctan 12 2 2
48p"“p 32p"°p P+ pc+m:
) =t ) . 2p'p O
- 2.4 + 12,2 + 15,3 arctan 2 2 2 + (X )
16p=p 48p"“p 32p”p P +p +m;
(391)
Qo = [ 20D
’ ’ 1 2 7%+ m72r
_3mS 4+ 8mip? + 3m2p” — 2p° — p!(3m2 + 2p?)
- 48p/4p2
15m2 +59p°  mS — pd 4+ 2m8p® — 2m2p’® — p®
240p'? 32p/4pt
122\ _ .54 12 2 2\3 2/
n ((p"” —p*) mw)gp +p® +m3) arctanh { — p'p
64p’°p° PP +m:
e ¢ N it AN Vol )|
48]9’4p2 240p’2 32p’4p4 64p’5p5
2p'p
arctanh [ ———————— ) + O(x1) (392
() +ont) 69
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E.2 R-integrals
Since §2 = p'’* + p? — 2p'px, we can substitute = inside the R-integrals:

dx q
- = _2p’pdq (393)

In the following, ¢ is relabeled as p to avoid ambiguity between the transferred
momentum and an integration variable. The limits of integration are:

w=1—=p=p —p (394)

To=—1—=p.=p +p (395)

The R-integrals are now written as,

15’(—2)(10/,10):/1 dellg) _ 1 /p/ﬂ)dp Lip) _ 1 (p’+p)

402§ 2pp

- p 2pp \p-—p

nr . (396)
1 1 p2 L2 ) L( ) p+p
2p'p | 2 4m2 + p? G P o p

Ro(p@p)z/1 @L(Q) . /p+pdppL(p)=—1+ : { iat” L*(p)

12 % )y, 2 2p'p[Am: +p?
2 p'+p
p
+§L(P)]
p'—p
1+ L [2 ()r+p+0( 4 (397)
=3 p L(p X
2 4p'p p'—p
1 /4 2
dx P —1[p
Ry(p',p) = | —q°L(g) = / pp’Lip) = [— 4m? + p°
W)= | GTH@ =5 | e L) = 5| T )
m4p2 p2 p'+p
T L2 _ 2 2 2 L
+ T £ 72 (p) 4( mz + p”)L(p) .
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1 6 2 4 6,2
dx 1 p m:p 4m? p
Ri(v.p) — ar ar AL 4 2 ™ 2
m2 o2 4 p'+p
+ (— omi + gp + %)pQL(p)]

p'—p

1 P6 6 v 4
— BN §
12p,p[ g tr (p)] +O(x*) (399)

p'—p
1 8 2 6 4 4
dx 1 |p map p
R / — _—’6 _ L U e 10 6 2
2 2 4 4 2 p'+p
P 2 2 6 2mxp”  10mzp 6
40m?® —p°L — 20
A (p) = p"L(p) (p +—3 5 t20m, .
L {ps S )],,,+p+0( 4 (400)
= - o — P L\p X
16p'p | 8 o
1 10 2 8 4 6 6 4
dx 1 p m:p mop ™. p
R / hated 8L — = s s . s 14 8 2
2 8 2 6 4 4 6 .2 p'+p
p 20°  mzp®  ldmzp®  1ldmzp
™ p'—p
1 _p10 2p10 p'+p
= L O(x*) (401
ol + )] +on o
Rioly >—/1 101 (q) = —
)= [ a0 M) =50
{p2(—75600m,1r0 + 6300m8 p? — 840mS p* + 135m p — 24m?2 p® — 50p'°)
7200
o2 P 2 P (o) (1260m™ — 210m® ) + 428 p* — Ot S
—azmy 2 1 2 (P)Jr@ (p)(1260m;” — 210m3p* + 42m7p* — 9mzp
p'+p
+2m72rp8+5p10):|
p'—p

1 —,012 p12 p'+p O
= —L 402
| T i Ee)] o6

/

p—p
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Ra) = | G a7 Lia)
- 2;])3 (o — 270 — )+ (= )0 L(o)
4]1)2 <R4(p p) —2(p" — p*)Ra(p. p) + (p” —pz)QRo(p/,p)> (403)

Ry (p',p) = /_1%1:( -0)*L(q)
= 4;/2 <R4(p’,p) +2(p° = P)Re(p ) + (0 — ) Ro(p, p)) (404)

Ry (0, p) = /_ 1;(%? L(q)

= %( ,p) — 20" — P Ro (1, p)+(p'2—p2)2R(_2)(p’,p)> (405)

1

it

R w'0) = [ %”%n L)
.

)+ 2(p” = p?)Ro(p',p) + (0 — p*)*R(_y (p’,p)> (406)

Rltto) = [ G0 it D0L(0) = s (Relwl o) = 0+ ) Rt )

= PP Rolp ) + (0 PP P Baled ) (40T

/ ldx(ﬁq_j(ﬁ(j)x 1 / /2 2 /
Ry2(p',p) = /1 7TL(Q) = W(&(p ,p) — (0" +p*)Ra(p, p)
— (=) Ro(p,p) + (0% — P20 + PP R (p@p)) (408)
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Yde
R.2(p',p) =/17q2x2L(Q)
1

=—5 (Re(p’,p) —2(p” + ) Ra(p,p) + (0* + p2)2R2(p’,p)) (409)
4p'~p?

0 <R4(p’,p) —2(p" + ") Ra(t/,p) + (0 +p2)2Ro(p’7p)> (410)

Vde a2
RQ 2 / = __L
x/q(p7p> /_1 2(72 (q)
1

= (Ra(p’,p) —200”° + P)Ro(P, p) + (0 + p*)*R () (p’,p)> (411)

U dx

1
/ _ w4 _ / . /2 2 /
Ry (p/,p) = 27 L(q) 6571 (Rs(p ,p) — 4" +p ) Re(p, p)
+6(p” + p?)Ra(p,p) — 4% + p?)°Ra(p, p) + (0° +p2)4Ro(p’7p)> (412)
Ydr , ., 1 2 9
Rua(p',p) = /_1 - % L(q) = W@m(p’,p) —4(p” + p°)Rs(p', p)
+6(p” + p*)Rs(p, p) — 407 + P Ralp,p) + (0 +p2)4R2(p’7p)> (413)

Roolt,p) = [ (0 0L

-1

1
6% (Rs(p',p) — 4p” Re(p/, p) + (6" — 20*) Ru(p', p)

+ 4 = ) Rl p) + (0~ PR ) (414)
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Vdx (7 - §)a? 1
Rya2yq2 (1 p) = / 1 7%[@) ~ 16p%p (Ra(p’,p) — 4" Ry(p/,p)

+ (6p™ = 20" Ro(p, p) + 4p (" — M Ro(p',p) + (0" — pY)?R(_y (p’,p)> (415)

U dg

- 1
Russtp) = [ G0 02 L0) = for (Relp'.0) = 4 Re(o'p)

+ (6p* — 20 Ru(p, p) + 4p*(p* — P Ro(p 1) + (0" — p’4)2Ro(p’,p)> (416)

1 Y 2
dzx (n' - q)x 1
Ruywzse(pp) = | ——="—L(q) = —5—

+ (6" — 29" )Ry (9, p) + 4p° (0* — P )Ro(p', p) + (p* — ') ?R(_y (p’,p)> (417)

(Re (p',p) — 4p*Ra(Y', p)

Vdxe - 1

Rpws (', p) —/ 7(%"@(5'61756%(61) = W(Rm(p’?p)—3(p’2+p2)Rs(p/,p)
—1
Iz

+2(pt + 4p”p* + Y Re (1, p) + 2(p° — 37t — 3p"p? + ) Ru(p, p)
—3(p" — PR (0 p) + (0P — )PP+ p’2)4Ro(p’,p)> (418)

Ydae (n' - q)(7 - )a® 1
/ f— —_— = — /
Rnn’a::“/q2 (p 7p) - /_1 2 qog L(Q) 16p,2p4 <R8(p 7p)

—3(p”*+p?) Rs(p, p)+2(p*+4p” P>+ Ra(p', p)+2(p° —3p p* =3p"* p*+p'*) Ro (1, p)
—3(p* — "2 Ro(1,p) + (0* — P)2(* + ) R (p’,p)) (419)

L(p) is given by,

4 2 2 4 2 2
L(p) = VM= TP 1n(V m’é“’ +p) (420)
p M
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E.3 S-integrals and T-integrals

The S-integrals can be written in general as,

dx 23 7> m?
Se(p',p)= | —P RI( =2 4
k(D' p) /1 5 (@) { [(192q +32 )g +ort
5 5 1 m 23 1 15
sof 9 4 9 2 2t 1 T\ |s2(%2 4, L 2( 19 4
T4 (5769 72) m (69 3) * n( i ) [q 67 T 12 ~\ 167

+

1 23 1 5 1 gimi
Z L 72 4, = _ J
)] ol (Gt 5) + (G +3) + e
dx 23 1 5 5 my (23
— —P e s 4 v v 1 i aY 4
/_1 y D) (7 7)d RLgQg i 24} i (5769 72) * n( 0 )(969
1 23 1
L * 421
+15) + 1) (et + 35 ) + Ol )} (421)
where Py (z) denotes the k-th Legendre polynomial.

23 1 15, 1 5 5

/ _ 2, 2 2 4_ 5
So(p'sp) =R | (P +p )(1929 +24>+ (329 +4) +(p*+p )(5769 18)

1, 1 23, 1 15, 1 m 23
2 4 2 2 x 4

S (=) R, (22
+m”(69 3)+ (p +p)(%’g +12)+ (169 +2) n( P )+ 2(969

1 5 A 1 g4m4 p2 ) p'+p
— R L
>+(24g —|—3)m 0 8p'p [4m2 + p? (v) /

B 23 1 o o[ 5 5 23 ,
= (717 { 1929 +24)+(p +p)(5769 )+(p +p)(96g
1 m.\  —1[pt 7" 23 ) 1 )
— (== AL A= O(*Y) (422
12>n(u>+8p’p[4 ¢ (p)}_ “”2 * )
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In the case of Sy(p/, p) and Sy(p/, p), with the exception of L(q) terms, every other
term vanishes after the x-integration.

, Vde (322 —1 23 1 5 1
Sz(p,p)z/lj( 5 )L(Q){q (9694+12) +m2 (24g4+3)

g4m4
+ e
2(4m2 + q?)
1

23 1
- 3R —6 12 2R 3 12 22_4 /22R) 4 <3R
8p,2p2{( 6 —6(p"" +p°)Rs+ (30" +p%)* — 4p"p°) 59 T 5) (38

) 1 1 [ 3g*m2
(0% 2R 3% 4 p2)2 — dp'? R> 4 1 L T 3,2 )2
(P + 1) R+ (3" +p°)* — 49" p*) Ro 24g+3 TR L

4 2,4 p'+p
P 2 2 2 12p°mz 5 g'm 2
- = —6 L L L —2p%L
4 TP (=Gme+p7) (p)+4m72r+p2 (p)L p+ o (p +p){p p~L(p)
apPm2 o 17 29t mi[307 + 0% - 4% v
mﬂ' + p p’—p pp m + p plip

= V—ﬂ{ (336—6(p’2+p2)R4+(3(p’2+p )2—dp*p 2)m) (32 g +112> }+0(X4)

(423)
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1 4 2
dz (35z* — 30x° + 3 23 1 5 1
/ L 4 4
S1(v',p) /_1 2 ( 8 ) (Q){q (96 24) mn <24g 3

g4m4
+ 2 2
2(4m3z + q*)

1
_ 128,44{ [(35}? + 35p"° + 20p%p'% + 18p*p'* + 20p%p )R2 + (210p* + 300p%p"°
P/ p

+ 2109 R — (140p2 n 140p’2) Rs — (140p +180p4p% + 180p%pt + 14Op/6) Ry

967 " 12
+300p%p% + 210p™ )Ry — <140p2 n 140p/2) Re — (140p5 + 180p*p’® + 180p%p"*

5 1 1 (140g*m2
14 —{ =
+ 140p’ )R2+35R8] <24g +3)+16{ o

p2(T0m2 p? — 420m8 — 14m2p* + 3p9) 35m8
54 L(p) +

5040mSp? — 420m*p* + 56m2p5 — 9817 4gtm?
e n;?’é + o0m7p p} v gm”(140p + 140p')
P

23 4 1
+ 35R10} < gt + ) + [(35;08 + 35p/8 + 20pﬁp/2 + 18104]0/4 + 20p2p/6) Ry + (210p"

7rp 2
7[1
4m2 + p? ()

p'—p
L2(p) B &6 N 5m72r,04 _ 607’)’1;%.[)2 p'+p
36 24

{ (30m2 — 5m 2p? + p4)L(p) _1omSp?
4m + p? p'=p
4 2 4

p
Lz(ﬂ) 16

4g4
p'p
L
/

3mp
4m2 + p?

+

2002 _ G2
™ (210p* + 300p%p’ + 210p'%) [WL(/)) +

2
P

EL(P')
p'—p

B m72rp2 2([0) B p2:| p'+p 4g4m4 [35p 4 35p/8 + 20p6 12 + 18p4 14 4 20p2p16j|
v p'p

p2 ) p'+p
o), |
[4771% -+ p2 ( ) p'—p

{ [(35198 +35p"° + 20p%p + 18p%p™* + 20pr’6>}22 + (210p* + 300p2p/

(140p° + 180p*p'? + 180p%p* + 140p'°%) [

_ (-7)
128p/4pt

+210p")Rg — (140;02 + 140p/2) Rg — (140]96 + 180p*p? + 180p%p'* + 140p’6) R,
23 1 .
424
+35R10] <96g + 24>}+0(x ) (424)
The T-integrals which differs from S-integrals by an additional triangle diagram
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contribution,

— m%} +q” (%94 + %gz + %) +m? (%94 + %92 + %) +In (%) |:672
(%g“ - %92 - %) +m; (1—294 - 292 - %ﬂ +L(q) {62 (394 - 25—492 - %)
i (g - 3 3) +%H
- [ e w5 - 3] + (gt )

m,\ (23 5 1 23 5 1
1 o e 4 Y2 - L e 4 Y2 - 4 49
+n<u>(96g 519 12)+ (Q)<969 517 12>}+C9(X) (425)

Starting with To(p’, p)

23 5 1 15, 3, 1
T (o ) — 2 oonf 29 4 9 o L o124 9o 1
5 , 13, 5 1, 1, 1 23 , 5
2 2 4 2 2 (1 4 2, 1 2 2 4 2
TP ><5769 1Y +72>+m“<69 1Y +3>+ W=+ >(969 247

1 of15 4, 3 45 1 My 23 , 5 45 1
= A2 (2 Rl 2204 - 22 —
12>+m“(16 19 72|\ ) T e T T

5 4, 1, 1 2 94mfr /02 2 rer

+<249 ~ 39 _§)m”R0+ / 7L7(p)

23 5 1 5 13 5

— (7 - VR0 2t = 2 — R N B e N

(i 72){ P+ 129 ~ 89 “ag ) TP 569 Y T 7

23, 5, 1 m 23, 5, 1
/2 2 /e 4 Y2 o /e 4 22 4
T )(969 247 12> hl( m )+R2(969 247 12>}+O(X)

(426)

Similar to the earlier case (Sa2(p/, p), Sa(p',p)), only the L(q) terms contribute in
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TQ(p,7p) and T4(p/7p)’

1 2

dr (3z° -1 23 5 1 1
. p) = | — LR 7| 29" —=—g*— | +m’ —59' 5
2(P, p) /1 2( 5 ) (Q){q (969 519 12)+ g g 3

23 4 1

96

1
- W{ (386 = 6" +p))Ru+ (36" + ") — 495" Rz (

5 , 1, 1\ 13
+ (3Ra= 6" +p?) R+ (3 +p%)2 49" Ry 2( 9——92——)+—{ -

24 3 3 16| pp
4 12p2m4 p'+p 69 m
Im2 2 P 2(_gm2 27, T2 /
2t = 54 O+ L) + g 1) -
4p*m? :|p/+p 2g*m? [3(1)’2 + p?)? 4]9’2 2}
—2p°L(p) + ——"=L? + =
p (p) 4mgr+p2 (p) p/_p p/p

p2 ) P’ +p
), )
|:4777,72r + p2 ( ) p—p

(ﬁ 7:5) 2 2 12 2\2 /2 2 ) 23 4 5 5 1
=-—"2< (3Rs—6 Ri+(3 —4 R ——g'——
8p/2p2 {( 6 (p +p ) 4+( (p +p ) PP ) 96g 249 12

+O(x") (427)

111



dz (35z* — 30z° + 3 23 5 1
T /7 — R L —2 = 4_ 2 2 T
wer) /1 2 < 8 > (Q){q <969 249 12)
5 1, 1 gtm?
2l gt —=g*— = _ I Mr
+m7r(249 39 3)+2(4m727+672)}

+ 2109 R — (140p2 + 140p’2> Ry — (140p6 +180p4p% + 180p%p" + 140p’6> R,
23 4 b 2 1 8 /8 6 /12 4 14 2 16

F35R| [ 2290 22— =) 4 (35p + 350" 4 2005 + 18pp’t 4 20p%p )RO
967 " ud T 12

4 (210p14+-300p%p% +-210p" ) Ry — <140p2 + 140p’2) Re— (140p°+180p"p +180p*p'"

5 1 1 1 (140g*m?*
+ 140p/6R2 + 35R8):| m?r (_94 — —92 — _> + _{ Og mﬂ'

24 3 3 16 p'p
2(70m2 p? — 420m8 — 14m2p* + 3p° 35mS p?
p°(70m;p n =P p)L(p)+ Mal_ 12 ()
24 4m2 + p?
5040m®p? — 420m*p* + 56m2p8 — 99817 P dgim?
N p m*p m?p® — 9p A9 4002 4 140p)
576 vy DD
p*(30mz — 5m2p* + p*) 10msp* pb 5m2pt — 60mipt ]
Lp) — —5"—L(p) — o=+
6 Am2 + p 36 24 e
4g'm; 4 2 /2 4 Pz(PQ - 6m2) 3myp? p*
4 ™ (210p* + 300p%p° + 210p'Y) | N — T 2w 12(p) - £
3m72rp2 v 4g4m;1r 2 4 6 ,02
- pr -2 (140p6 +180p'p’? + 180p%p"* + 140p/ ) {5L(p)
merQ p2 p'+p
- ———L*(p) — =
4mﬂ. + p 4 p'—p
. 4g*m [35p® + 35p"° + 20p°p" + 18p'p* + 20p*p'°] { e Z(p)] p/+p}
P'p 4m2 + p? o p
(- %)

+210p") R — (140p? + 140p% ) Ry — (140° + 180p"p” + 180p%* + 140p° ) R,

1

§ 4 _ i 2 _ - 4
+ 35310] <969 519 12) } + O(x") (428)
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F Potentials with ¢, terms

This section discusses the explicit computations of loop integrals containing the
perturbative treatment of go, as well as the recoil terms of the heavy meson prop-
agator. We begin with the triangle diagram for BB — BB potential as indicated

in Sec. (5.5.1)

F.1 Triangle diagram
We start with the first integral mentioned in Eq. ((156)).

F.1.1 The first integral

The first integral is given as

/ d'l (2l + qo)[=1 - (1 + ) + 1§ + logo]
(2m)* [(L+ q)? — m2 +ie] [I2 — m2 +ie] [ — 20 - | + ie] Mp
( —i ) / d'l (200 + go)[=1 - (I + @) + 1§ + logo]

2Mp (2m)* [(L+ q)? — m2 +ie] [I2 — m2 + ie] [lg — €]

N
(429)

where, we used v -1 =1 .
We will start with the [—-(I+¢)] term in the Eq. (429)), which can be decomposed

as,

1 1 q>
l-(l+q)=5((Z+q)2—mfr)+§(l2—mi)+mfr—E (430)
bt I

For simplicity, the numerator will be solved term by term. I, is the integral
from the first term of the [ - (I + ¢) decomposition, and it is given by

s = <M)%/ <2d7rl) (2zl—+ q) ~ (ﬁ) (431)

For the [y term in the numerator of Eq. (431}

(Z%;>/ka4prjmﬂ::<2&3)V4AH (432)

where A, is mentioned in [100] and evaluated as,

1 1 m
A, = 2m? R In—=
m“(327r2 LT =R

)+om—4) (433)
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and for the gy term in the numerator of Eq. (431}

(i) () ] o~ () (5200 a3

where Jy(w) is,

1 d*l 1
i / i I mz =)~ W) (435)

and the evaluated expression is [100],

-1 i 1 _
Jo(w) = —=Rw+ Tl (1 —2In %) - m\/m% — w? arccos (m_w) (436)

872 2 -

here w = 0 hence Jy(0) = _STTW :

The evaluated expression for integral 1, A is

toam () () « () - (s )
(437)

I A is the integral from the second term of the [ - (I 4 ¢) decomposition ,

o (L E2) () o

we perform a shift [ — [ — ¢, but ¢o = 0 in the denominator since we treat qq
perturbatively. After following the same steps as in the earlier case,

o= (i )3 [ s ) (g

_ (Aﬂ - %JO(O)) 5 AZB (439)

Finally, the last term of the [ - (I 4+ ¢) decomposition,

lien = (2]\23) (mfr - %2> / (5234 (2;00_+2?> . ([(l +q)? — 77113] 12— mgr])

(440)

For the [y term in the numerator of Eq. (440]),

(MLB) (m’% N %2) / (5;5)4 [+ g7 n{bg} =] (441)
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Since this integral is not given [100], we perform the calculation of this integral
here.

Introducing Feynman parameters, shifting [ — | — gx, dropping all odd powers of
[ due to symmetry and using ¢° = 0 in the denominator

() (-5 [ iy

(442)
executing the {°- integration with the residue theorem and setting ¢ — 0.

(i) =D)L | S 09

going to (D —1) - dimensional spherical coordinates, inserting y and using d” -7 =
P=2dl dQYp_q, where dQp_; is,

9 (D-1)/2

r(%%)

then
- 2 4 1 o0 D—2
_(L)w_q) SV /dx/ P y
Mp 2 ) (4m)PRT(E51) Jo 0 (2 + q%2x(1 — z) + m2]
(445)
Using,
o0 a a r(e=Hrp— ot
/ dlE . lE}_\ = ;l—b ( 2 ) ( 2 ) ’ (446)
0 %+ =2 2T°(b)

we perform the [-integration

() (= %) et [ el = e (52)]

Using I'(x + 1) = 2 I'(z) and inserting D = 4 — ¢, then

) - Lol ()]

expanding the I'-function,

F(%) = —% +yp—140(e) . (449)
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We get,

' 2 ; 1 72 2
i , ¢\ —i -2 7Cx(l—x)+m2
— -L dv| ==+~ —1—In (47) +1
(MB) (m7T 2)167T2/0 w{ e e () + n( T 7
(450)

performing the z-integration

m. 5

) D)l e T (ST

MB 1672 q 2m,
m
—2In | —= 451
()] o
where,
-2
R:?+7E—l—ln(47r) (452)
Therefore,
) 2 4 2
¢ 2 g d*l 1 (—1)( ) q)
EV Y = — — |
(MB><m” 2)/ e [+ a —m] [P =]~ \agp )\~ 2 )00
(453)
where,
SAm2 + 2 A2 + g2 4
Io(q) = LR VAR T (VAR T AT oy (M) | (g5
1672 q 2m, 1

Now for the gy term in the numerator of Eq. (440)) ,

(QJ\ZB)QO (mfr - q;) / (5:)4 (lo i i) [(I+q)?— ;g] 2 —m2] (455)

This is also not a standard integral, so we do the same procedures we did in the
earlier case.

Introducing Feynman parameters, shifting [ — [ — gz, executing the [°- integration
and setting € — 0

- (2;43) (m’% - q;> (%) /01 d‘”/ (Qd;l); P +(72x(11_ ]’ (456)
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Following the same steps as in the earlier calculation,

(2A23>q° <m3f N g) / (5125)4 (o i ie) [(1+q)2 — 771”L72T} (2= m2]

. 2 . —

{ s g \1iqo [2 q
_ L )22 arct 457
(QMB) <m’f 2 )1 {q arctan <2mﬁ)} (457)

where

2 q
== 4
So(q) (jarctan <2m ) (458)

Now, including i, A, Iip A, Lica

( i >/ il (2lo + o) (1 (I + q))
2Mp (2m)* [(L+ )2 — m2 +ie] [I2 — m2 + ie] [lo — €]

:&“'PM@+%?MMQﬁ_%)b&aMM

Now, for the second term in the Eq. (429))

—i dl (2l + q0)l5
<2MB) / (2m)4 [(l +q)? —m2 + ie] [l2 —m2 + ie} [lo — ie} (460)

The first term in Eq. (460)) is the football integral Iy, which we solved earlier and
the second term (qo) in Eq. (460) is of the O(e). Therefore,

—1 / d*l (2[0+Qo)lg
2Mp ) ) (2m)* [(1+ q)? — m2 + i€ [1> — m2 + ie] [lo — ie]
1 1 7 m? 5 o 2m? 7> ) My
== (L T\ g2y S (L In [ 27
(MB)167T2{ (12+ 2) T30 T3 6 )M\ L
-2
q 4
—|=4+= L 461
(% +5m) <q>} (a61)
Finally for the last term, for the second term in the Eq. (429))

—i d*l (2lo + q0)logo
<2MB) / (2m)4 [(l +q)? —m2 + ie] [l2 —m2 + ie} [lo — ie} (462)
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The first term of Eq. (462)) is of the O(¢e) and the second term of Eq. (462)) is Io(q
which was solved earlier in Eq. (454)).

( —i ) / d*l (2lo + q0)logo
2Mp 2m)* [(L+ q)? — m2 +ie] [12 — m2 + ie] [lo — ie]

2 4 2 ~2 4 2 ~2 ~
(B L | gy g VAMRTGT (VEAME TN (1
2Mp ) 1672 q 2m, 1
(463)

Finally, the evaluated expression for Eq. (429)) is

( —1 ) / d'l (200 + qo)[—1 - (1 + @) + 1§ + logo]
2Mp 2m)* [(L+ q)? — m2 + ie] [12 — m2 + ie] [lo — ie]

2

1 qo 2 4 1
{mﬂ + [2[0((7) - 16750@] (m,r - 5) + (@ + 5

2Mp

-2 2
q me
(12 3 )

5 2m? q? m q? 4
Rt P+ (—4+m2)In({—) - (—+-m2|L . (464
+ o350 T3 <6+mﬂ>n(u> (6+6mﬂ (2) (464)
The second integral is defined as,

F.1.2 The second integral
—i d'l (2l +qo)[—l-(I4+q)+ 15 +1
]27A — ( 5 > / 7 ( 0 QO)[ ( q) 0 ' 030] (465)
4Mp (2m) (1 +q)2 — m2 +ie] [lg — ie]
Following all the same steps as in the earlier case,

Lo = ( i )/ d'l 2l +q0)(1- (1 + )

AME ) ] (2m)* [(1+ q)2 — m2 + €] [lo — i€]”

= { [2J5(0) — qoGo(0)] (m2 — ¢°) + qoAx — 443Jo(0) + 2 ¢°Jo(0)

—q 4 — (4
q"qoGo(0) + QOJO(O)}ZLM% (466)
where, we have used the ref (|100]) for Go(w) and it is defined as
0
- 4
Go(w) % Jo(w) (467)
with Jy(w) is given in Eq. (436)). The evaluated expression for Gy(w),
—1 1 1 m
— —————In[— 4
Golw) = 55 R ~ 52 ~ 12 n( i ) (468)



F.1.3 The third integral
The third integral is defined as,

i 2 2

/ d'l (200 + qo)[=1- (I + q) + 15 + loqo]
(2m)* [(1+q)? — m2 +ie] [I2 — m2 +ie] [lg — i€]

5 (469)

After following the same as for the above integrals, one obtains

( m; >(m + Mp, — M} )/ o (2l +qo)[=L- (1 + @) + 15 + loao]
AM? B (2m)4 (l-l—q)Q—m?r—i-Zf} [ZQ—m%—i—ie} [lo—ief

[
= Lon0) - [ @+ o5o(@)| (m2 - £ ) + 3@ + @)}

(m3 + M3 — M)
AMZ

(470)

where FPy(q) is gained from the solving the integral,
d*l 1 1
471
/ (2m)* (lo — i€)? [(1 + )2 — m2] [I2 — m2] (471)

Since this is not a standard integral, we solve this like the earlier integrals by
introducing Feynman parameters and executing the [y integration,

/ / al ! (472)
SR+ (1 — x) +m2]?
and following the same steps as in the Sy(q) integral,
d*l 1 1 i
= P 473
/ (2m)* (lo —i€)* [(1 + q)2 = m2] [I2 = m2] ~ 8x2 (@) (473)
where
PO(q_) = q_\/m arctan \/T_(TQ (474)

F.1.4 The fourth integral

Here, we have

(L Ny [ W@+ o)=L (4 q) + B+ logo)
I4,A - <4Mé) (2 )/ (27‘()4 [(l N (])2 _ m72r N Z‘E} [ZQ _ m72r n ie] [lo ~ z’gf (475)
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which can be decomposed as

o P d'l L2l + qo)[—1 - (1 + q) + 1§ + loqo]
(4M123) . )/ 2m) [(1+ q)2 — m2 +i€] [12 — m2 +ic] [l — ie]”

1
_ <4Mé)2r“[qﬂB +0,C] (476)

_ qo d'l lo(2lo + qo)[=1 - (I + @) + 1§ + logo]
b= (q > / (2m)* [(1+q)? — m2 +ie] [I2 — m2 +ie| [l — ie}2

~\~
«

[\

_ ( 1 > / d'l L-q2lo+qo)[—1- (I + ) + 1§ + logo] (477)

% — ¢ (2m)* (1 +q)? — m2 +ie] [I2 — m2 +ie] [lo — ie}z
B
similarly for C'
C:( o )/ dit 1-qlo+qo)[=1- (14 q) + 1 + loao]
@ — q° (2m)* [(L+q)? —m2 +ie] [I2 — m2 + i€] [lo — ie]2
B

_ ( ¢’ > / d'l lo(2lo + qo)[—1 - (1 + ) + 1§ + logo] (478)

@ — q° (2m)* (1 +q)? — m2 +ie] [I2 — m2 +ie] [lo — ie}z

N~
«

where we have two integers labelled as @ and . We start with « term, solving the
integral term by term gives,

o= / d'l (200 + qo)[—1 - (I +q) + 1§ + logo]
2m)* [(1 + )2 — m2 + ie] [12 — m2 + ie] [lo — ie]

. . @ . 1 qo 2 @
=1 2Aﬂ- — ZqOJ()(O) + ZEGO(()) -+ [22 Io(d) — ES@(@] m, — 3

—iqylo(q) — 2Ly (479)
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For 8 term,

d*l q (21 I-(1 241
5= / 0o+ q)[—l-(+q+ 9+ 090]. i (481)
l—i—q —m2 + i€ [12 — m2 + i€] [lo — ie]
we can decompose [ - g as,
1 1 2
Log=5((1+q7 —m2) =5 (2 =m2) = 5 (482)

and repeating the same steps as in the earlier cases,

5 — / ' Tq o+ qo)[—1- (1 +q) + 1§ + logo]

l—l—q —m?r—l—ze] [12 — m2 +i€] [l — i]”
2

1

+iq0Go(0)] (m2 — ¢*) + 21 qoAr — i ¢5Jo(0) — 20 ¢*Jo(0) + i q2QOGO(O)}

4L 2000+ [ R0 + )] (m D) - S na+ s

1 . )
3 [3610Aw — 5¢5Jo(0) + 4(10J0(0)} — % [ — 3igolo(q) + lg—;so(ff)} (483)

Now we can write the fourth integral,

N o d*l (2l + qo)[—1 - (14 q) + 1§ + logo]
fa = < B)(2 )/ M)  [(1 + q)2 — m2 +i€] [12 — m2 + i€] [lo — i€]?

7 7
- <4Mé)2r“[tu+vMC] (2M2)[r qB+1oC]|

(484)
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Putting all the terms of B and C together we can write I, as

I = (;M%)( o 2){—2Aﬂ+qojo(0)—%gGo(0)+[ 210@+—SO(*)}

qy — 4
¢
<m3r - 5) + CIOIO(j + 21

() {3t o

— q0Go(0)] (m2 = ¢*) — 2qoAr + g3 Jo(0) + 22 Jo(0) — quoGo@)}

2

+ %{ +2J5(0) + [QT‘JSPO@ - Siﬂso@] (mi - %2)} + gfo@ 25-50(@)

2

N % {3% Ar — 562Jo(0) + 4q0J0(0)} - % {3%10@ - —So@] }

qo — ¢

+ (2;2%) < = ){ = m2o(0) = T m2Go(0) = g0l — D ol0) + %{ [2(0)
— q0Go(0)] (m2 — ¢°) — 2 qoAr + ¢3J0(0) +2¢*Jo(0) — qquGo(O)}

L v 200)+ | S8 R@ - g-si@)] (2 - 5 ) b+ I - s

2 2

() (= i 5 {—QAWJrC]oJo(O)—%gGO(O)Jr[—210(®+1(é—07r50(@] (m—%)

+ g5 Io(q) + 2Ifb} (485)

1 [3%& — 5¢3.J0(0) + 4QOJ0<0>] -¢ [3‘10]0@ - 1q6_07r50@] }
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Hence we have solved for all the four integrals that make up I, once again I is
given by

In — Z/ d'l (200 + qo)[=1- (I + q) + 15 + loqo]
2 (2m)* [(1 4 q)? — m2 + i€ [I2 — m2 +ie] [ — 2v - | +ie] Mp
B / A (2l 4 qo) (12 — 21 - 1+ ME — M2)[—1- (I + q) + 12 + loqo]
@m)* (14 )2 — m2 +i€] [12 — m2 +ie] [ = 20 - 1 + ie] "M,
=hLa+Ion+ I3+ 1Iin (486)

where I} A, Ion, I3a and Iy A are given in Eq. (464), Eq. (466]), Eq. (470) and
Eq. (485]) respectively.

F.2 Crossed-box diagram

Here, we will perform the same exercise for crossed-box diagram mentioned in

Sec. We start with the first integral mentioned in Eq. (165)).

F.2.1 The first integral

The first integral is

(487)

L = Z/ A (=g + vu00) (= Gpor + 0,00 [ (1” + ¢")][I°(17 + ¢7)]
- (2m)* a2 (1 + q)2 — m2 + i€] [12 — m2 + i€] [lo — ie}Q 7

which when solved gives

_ i d*l (=G + Vu00) (= Gpo + 0,00 [I*(1” + ¢")I[IP (17 + ¢7)]
D = (4Mg> / 2m)* [+ q)? — m2 + i€ [12 — m2 + ie] [lo — i€]”

_ (4]\149 {gmic()(o) - ‘]2—2G0<0) + (mi -~ g) [GO(O) — 8—; (mi - q;) Po@}

— 2+ 2(mi - %) =L@ — @] + I+ fo@} (488)

F.2.2 The second integral

The second integral can be written as,
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3

b= (i )/dﬂ(ﬁW+%wmﬂw+WHWW+qMWP+fﬂ

0T

1 2
:{M@H—@mw—mﬁ%@—%hwo+%

(2m)* (1 + q)2 — m2 +ie] [lg — ie]

4J0

+mz Ho(0)] + 2(m3 — ¢%) [a5 Ho(0) — Jo(0) + 2q0Go(0)] — 2g0Go(0) + 24 Ho (0)

—290Ax + g5 Jo(O)} (489)

where Hy(0) obtained from the solving the integral

/ d4l 1
(2m)4 (2 —m2 +ie] [lo — ie]g 7

after performing the [, integration, one finds

/ Bl 1
(2m)? [ﬁ + m?r]2 ’

which when integrated over gives

d'l 1 .
/ (@m)* [12 — m2 +ie] [l — i€]” = #H(0)

where
—1

16mm2

Hy(0) =
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(493)



F.2.3 The third integral

The third integral can be written as,

i(m2 + M3 — M3.)
I3,cb - 3
AN

/ d'l (_g;w + qul/)(_gpa + Up”a)[lMUV + ¢”)[17 (17 + q7)]
@m)* [+ q)2 = m2 + €] [12 — m2 + i€] [l — i]”

_ (mi +(Z§g_) Mé) {gmiHo(O) _ %(mi _ %2) (Go(0) + Ho(0)]

_ (mg - q—;)zKO(O) — 2Jo(0) + g5 Ho(0) + 290 Go(0) + iﬂ (mi = i) S0(q)

2

2
+ 20060(0) + B Ho(O) 2 (2 = T ) o) 18

50@ - 2610[0@} (494)

where Kj(0) is obtained from computing the integral,

/ il 1 3 (495)

@)1+ q)2 — m2 + €] [12 — m2 +i€] [lo — ie]

with the [y integration one obtains,

BU 1 — 24
[of]& S
32w (2 + 22(1 — z) + m2]

where x is the Feynman parameter and solving the integral

[ 1 i) (497)

2m)* [(1+ q)? — m2 + i€] [I> — m2 + i€] [lo — i€]

where,

1
8T (4m2 + §2)

Ko(0) = (498)
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F.2.4 The fourth integral

The fourth integral

—
L= (=5
o= ()

/ d'l(r- 1+ s D(=gu + 0u00) (=gpo + v,00) [I" (I + ¢")][I(17 + ¢7)]
(2m)4 [( }

AM3 ‘
2 = )| 3G - Ri1a)] - 5| 2 10(0) + 000) - om0
+4J0(0))] +‘17G (0) + < '2‘-’)‘1 Ho(0) — DT g0y 4 <m - g) [ 0Go(0)
+ (r;ﬁH (0)] + (m2 - %)2 {%—ﬁ (8q—P (@) - %QKO(O)) + -2 (%KO(O)
872 )= olr

0°7b " 327TS0 7
~ (@ )| B s0Gu(0) + E [ (0) + 1(0)] — 2 [4(0) + 2 )]
2 = )| 2Gal0) - L) - 5D 2 i0(0) + 00) - 2 m2 (0
4, (0))} + % (s~ a)a = 22 {SOG (0)

0q2

(s-a)f @ o,z @ so ( qoq” ¢ R
Nz ——50(q) @Po(fj) "‘? mpo(ff) 16_7TSO<Q)



Since all the four integrals have been worked out we can write I,

. d*l I1
Iy = Z/ 1 2
! [(1+ )2 — m2 + €] [12 — m2 +i€] [ — 20 - | +ie] " M3
_2./ d*l M2 —r-l—s-1+ M} — Mz.]
(2m)* [(1+q)? —m2 +ie] [I2—m2 +ie] [2v- |+ i6}3Mg
=L+ low+ I3+ Lo (500)

where I, Iow, I3 and Iy are given by Eq. (488), Eq. (489), Eq. (494) and
Bq. (99) respectively and IT = (=g, + 0,0, )(=gpo + vovo) [I* (I + ¢)][I7(17 + ¢7)]

F.3 Vertex diagram

Here, we will solve the four integrals encountered in Sec. [5.5.3|

F.3.1 The first integral

[ dYl 12
[l,vert =1 o) 5 - 5 - (501)
(2m)* 402 (12 — m2 + i€] [lo + i€]

Using 12 = 2 — I

[ dY 12— 2
Doy = - 5 (502)
m)* 4MZ 12 — m2 +ie] [l + ie]

for 2 term,

i 2
=1 o) 2 112 5 - 12 (503)
(2m)* AME[12 — m2 + ie] [lo + ie]
doing the [y integration,
Bl s
504
4M2D/ 27r327r m2]1/2 ' (504)
going to (D —1) - dimensional spherical coordinates, inserting ;¢ and using d? =1 =
1D-241 A,
11 4 4D e D2
_ L1 dvn ’“‘D / d— (505)
AME 2 (4m)PR2T(BSL) 2 + ]1/2
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Performing the [ integration and expanding in D = 4 — ¢,

R+ 2l (%)] (506)

2
-1 m:

~ 4ME 1672

Now for 12 term,

—

=i / a1 - (507)
2m)  aME[12 — m2 +ie] [l + i)

doing the [y integration,

—

i Bl _im

™

which can be simplified as,

11 [ &1 2
/( | (509)

T aMz2 | (2n)? 7+ m2]”"

Following the same steps as in the previous case we get,

1 3m? m
=———C2IR+2In{— || . 510
e |t n( [ )] (510)
Now, we write [ as
[ dl 2—?
Il,vert =1 4 2
(2m)TaMZ 12 — m2 +ie] [lo + ie]
-1 m? [ m ] 1 3m? m
=———"IR+2In|— —— 2L |R+2In| — 11
e |t n(,,L) Tt |t n<u)] (511)

2 m?

m
= = Tt R4om (=
nrziee |t n(u>

F.3.2 The second integral

i 202 — 2
]2,vert = _i/ 1 ( 0 ) 3 (512)
(2m)* 8 M3 [l + ie]

The dl integration tends to infinity. Hence with upper and lower included, this
term vanishes.
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F.3.3 The third integral
The third integral is

Lo — _Z,/ A 2m2 42 =27 q+ M} — M. (513)
’ 2m)* 8MB[12 — m2 + ic] [lo + ic]”
Following the same procedures as before
I3 pert = —i/ d4l4 [2m72r I + M - M%*NQ
(2m) 8M3 (12 — m2 + ie] [ly + ie] (514)

_—mg[2m2 4+ ¢® =27 q+ Mj — Mp. |
1287 M}

F.3.4 The fourth integral

The fourth integral is

1 Ar1—21-q|2
Lijert = —i/ a1 [4- a . (515)
(2m) 8ME [12 — m2 + ie] [Io + ie]

Solving this integral as in the earlier cases,

[ dll [4r-1—21-q|
I4,ve7"t = _Z/ (2 4 3 . .13
™) M3, (12 —m2 + €| [lo + i€]

R+2mn (m_) (q_o_ro)
W 2

Having solved all the four integrals that make up 1., we write

(516)
1 m2

~ M3 1677

[ dY 1
[vert =1 4 D)
(27)t M2 12 — m2 +i€] [20 - | + ie]
/ di 224+ q?—2l-q+4r-1—2r-q+ M — M3,
(2m)* ME[12 = m2 +i€] [20 -1 + ie]®
= ]l,vert + IZ,vert + ]3,vert + ]4,’1)€T‘t (517)

where 11 yerts Ioverts I3vert a0d Iy pere are given in Eq. (511)), Eq. (512), Eq. (514))
and Eq. (516]) respectively.
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G Particle basis

In this section, we derive the vertices from the Lagrangian (given in Eq. ) in
particle basis. Then using these vertices, we will express the triangle diagrams in
BB — BB and BB — BB case.

We will start with the pion-emission vertex.

G.1 Pion-emission vertex

The Lagrangian is given by Eq. , but here we assign a =1 and b =1
EBO<*)~>BO(*)7r0 = —gTI'[HIHl 0'] . A11 (518)

Using the definition of Hq,

L 5oy, o0 = —%Tr[( B + (BY)0?) (B° + BY'o") Ul} <_?ZTO> (519)
where used Eq. .
Using the trace relations, one finds
L go) ., got)z0 = Q%aﬂo [BOTB?* +(B)) B + i e (B?*)TBQ*} ) (520)
replacing 0;w = —tk , where k is the momentum of the outgoing pion, then
Loty = gfg Bi[BUBY + (BY) B +ieu (BY)BY]  (521)

From here, we get the various vertices

g > 1
VRBO* _y B00 = E(G . k) 5
VB0 _y BO* 0 = L(g* . E) 5
2fr
VBOo*_y BOx 0 = 1 9 €ilk 6_’*6_;;]{?
* e = €0 € .
d ™ 2f7r gkt ) )



Similarly, the vertices for all the combinations of a and b isospin index.

g2 _9v2 .,

UBtBort = o € k), UBt Bt = o & k),
L2 _g9V2
UB+*BOs g+ = 2f7r o7 Eiki€j €k, VUB0x »B+7— 2> (€ )
UVBO s B+*r— g\/_< E) y VB0 s Btsxg— = g\/_e ki E_’*e_l’ckz 5
2fx 2fr T
UB+*—B+70 S (€ k") ; UBt—B+ea0 = 9( E) ’
2fx 2fs
VBt yBtegd = — i—— I e i €5 €nki
2f,

In the same way, we can also derive the corresponding vertices for the anti-mesons

with the only difference being to use the charge-conjugated Pauli matrix, which

reads as 7€ = o 71 7 = —T.

G.2 Weinberg-Tomozawa vertex

The Lagrangian for Weinberg-Tomozawa vertex is
Lpenospern = Te[H (iDo)pa Hy (522)

where (Dy)p, the chiral covariant derivative is given by Dy = 0y + 'y and

FO = % [UTaou + u@ouT]
00— B 6
812

Eaﬁc
= 4f2 ¢a80¢ﬁ70 .

(523)

Expanding the H fields

ﬁB@)HB@)W:—Z?;%ao%[ LBy + (BDalroal Bl (524)

We disregard the vector mesons term because this exercise is limited to pseu-
doscalar scatterings.

Liseosin = = 75020003 | Bl (525)
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Deriving the term in the square brackets for different cases of 7.
For ¢ =1,

Bl (11)0aBy = Bl(11)21Bs + Bl(m1)12B1

526
— BOTB'F + (B'f')TBO ( )
where (7‘1)21 = (7‘1)12 =1.
Similarly for ¢ = 2,
B!(1\)paBy = i(B"" BT — (BT)'B° (527)
and finally for ¢ = 3,
Bl (1) By = B"B° — (BM)'BT . (528)

Solving for 7t as the initial and 7~ final pions, one obtains for the non vanishing
vertices,

VBOr+ B+ = (k/ + kO) )

4f2
UB+nt+ B+t = 4f2 — (kg + ko) - (529)

where, k' and k are the momentum of the initial and final pions respectively .
Similarly, the vertices for all combinations of pions and B mesons

VBOr— —BOx— 4f2 (ko + kO) ) UB+n——B+n- 4f2 (k() + k’o) )
V2 _—iV2
UB+70_BOn+ 4f2 —— (k) + ko) , VBO0_yB+n— Ve —— (kg + ko) -

Following the same steps, one can derive the corresponding vertices for the anti-
mesons by replacing the 7 matrices with the charge-conjugated counterparts.

Using these vertices, we express the triangle diagram for BB — BB and BB —
BB

G.3 Triangle Diagrams for BB — BB

In this section, B = (B°, BT) and B = (B°, B~) and starting with B°B° — B°B°
scattering, which consists of two diagrams,
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G.3.1 B'B"_— BYRO

B B

iV = / (5724 4%%@0 + g0 + lo) <L\/§(€;* (I + Q)j)) ,{;2_;2

2f7T mB*

i —gV2 i
(=1);) )] ———— (53
o (B 60 g
The second diagram,
k
BO e BO
R
BO ., BO
, d*l —i a2, ., i
Vo= /er?(lo +qo + lo) (E(@ (l)j)) e
i V2 i
ot (57 G100 g O
Adding the two diagrams,
Vi, (B°B° — B°B%) =0 (532)
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G.3.2 BB — B*B-

BY Bt

z'V:/ a'l _iﬁ(2zo+qo)(

e (& 0400

2/ ma,. |
s (B G0 i

(533)

The second diagram,

BO

W= / (20;5)4 2.4\]{3(2[0 +qo) (wa( 5 (D) )) m
1 gV/2 1
s (D00 s 59)

Adding the two diagrams, V;,(B°B® — BTB~) =0
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G.3.3 B°B™ — B'B~

BO

(535)
The second diagram,
B° B
B~ \ B~
4 V2 o, i
1V = / (271')44_f7%(2l0 + (]0)( 2, ( J (Z)J)) 12 m2B*

7 g\/§ . 7

oz (B 6 =00 g 5

and, V;,.(B°B~ — B°B™) =0

135



G.34 B'B  — BB~

B+

: dt i
ZV:/WZL_JCQ(2ZO+QO

The second diagram,

B+

B+

iV = / (d4l>4 4}2(2zo+q0)(

and the total contribution vanishes.

(537)

(538)



G.3.5 BTB- — B'BY

B+ BO

dil - '
zv/ 4Z4\J{2_2lo )(ﬁ(q*(wq)))m

7 g\/_ 1

iz (576 00 g 69
The second diagram,
BT B°
B~ s B°
A4 —i2 . i
V= i o (545 00 )

7 g\/§ . 7

(36 1) gy 600

the total contribution is 0.
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G.3.6 B+*B° — B+R°

Bt B

iV:/%%};(Qlo—l—qo)(gQ}f( “(1+q); )>m

i (gV2 N P
. <2f7r( (—0); ))<l+q)2_m% (541)

The second diagram,

Bt B

W= [ s w526 0))

i (g\/_ :

e (37, 100 gy o

Adding the two diagrams gives 0
Therefore all the triangle diagrams cancel with each other for BB — BB.
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G.4 Triangle Diagrams for BB — BB

In this section, we express the triangle contribution for BB — BB scattering

G.4.1 BB’ — B°B°

B° B

B BY

iV:/%;—f;(?lo+ )(Z}{r( T )))W

(2260
E 2/ (I+qP —m2
The second diagram,
BO 4]{;» BO
B

(E37ﬁ,)

= [ (5206 0))

li (gf

?
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2f,r( i (—1— Q)i)>m

(543)

(544)



The total contribution is

BB B8 = [ (5206 00
i gV2 i
—— (2 (-1 q>i>) s (61)
G.4.2 B*Bt - BTB*t
Bt Bt
Bt Bt
1V = / %%(%o + QO) (gz}/f(ﬁ_j* (l -+ C]) )> ﬁ
i gVv2 i
(576 00 g 60

The second diagram,

BT Bt

Bt C Bt




T
i (g\@

12—m2\ 2f;

Adding both the diagrams,

-1
ez
i (g\/_

2

Vi (B*BY — BTB") = /

G.4.3 B'B"— BTB°

BT B

BO

. d*l V2
= | @nyiafz Hota

The second diagram,

141

2fﬂ( i (=1 — @J)m

(547)

(548)

(549)



(Ehp) BO B+
<E27 _ ]5’) B+ BO
o df V2 9 i
W= [ Garag o o) (56 00
7 g\/§ N 7
2 m2 ( of. (& (=1 — Q)i)) Trgr—m? (550)
with the total contribution
_ _ d*l V2 V2, ., '
Vom0 578 = [ ka0 (526 0))
i V2 i
(37 0 g O

Therefore, we can conclude from this exercise that the triangle is contribution
vanishes for BB — BB scattering and adds up in BB — BB scattering.
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