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To my parents,
Rüdiger and Gudrun





I saw my life branching out before me like the green fig tree in the story.
From the tip of every branch, like a fat purple fig,

a wonderful future beckoned and winked.
One fig was a husband and a happy home and children,

and another fig was a famous poet
and another fig was a brilliant professor,

and another fig was Ee Gee, the amazing editor,
and another fig was Europe and Africa and South America,

and another fig was Constantin and Socrates and Attila
and a pack of other lovers with queer names and offbeat professions,

and another fig was an Olympic lady crew champion,
and beyond and above these figs were many more figs I couldn’t quite make out.

I saw myself sitting in the crotch of this fig tree, starving to death,
just because I couldn’t make up my mind which of the figs I would choose.

I wanted each and every one of them, but choosing one meant losing all the rest,
and, as I sat there, unable to decide, the figs began to wrinkle and go black,

and, one by one, they plopped to the ground at my feet.

A quote from the book The Bell Jar by Sylvia Plath





Abstract

To this day, describing the interaction of hadrons poses a challenge. Although quantum
chromodynamics is well established by now, its non-perturbative nature at low energies
renders it impossible to perform perturbative calculations in this energy regime, as, e.g.,
feasible in the realm of quantum electrodynamics. Conjectured to be related to this
behavior is the observation of confinement, stating that quarks and gluons cannot exist as
free particles under ordinary conditions but invariably form hadronic bound states, which
thus represent the pertinent degrees of freedom at low and intermediate energies.

Together with the weak force, quantum chromo- and electrodynamics provide the
framework that describes the non-gravitational interactions of the fundamental building
blocks of nature we know of today, as compiled in the standard model of particle physics.
Crucially, the standard model is known to be incomplete, reasons for this being, e.g., its in-
compatibility with gravity, dark matter, and the apparent matter–antimatter asymmetry
in the universe. However, the proper extension of the standard model remains to be identi-
fied, and to this end, it is necessary to scrutinize this model with the utmost diligence.

In this thesis, we discuss various probes of the standard model at the precision frontier.
One such test is the anomalous magnetic moment of the muon, (g−2)µ, which is the subject
of discussion in Part I and its Addendum. Therein, we analyze the transition form factors
of axial-vector mesons, which are essential input quantities for an improved evaluation of
the axial-vector contributions to hadronic light-by-light scattering. For our analysis, we
use the framework of vector-meson dominance, include short-distance constraints from the
light-cone expansion, and constrain the free parameters from experiment. Our final result
consists of novel parameterizations for the transition form factors of the f1, f ′1, and a1,
which are eligible for a revised estimate of the axial-vector contributions to (g − 2)µ.

Another test of the standard model at the precision frontier is provided by rare semilep-
tonic η(′) decays, which are investigated in Part II. Due to the strong suppression of
these decays within the standard model, they are excellent candidates for searches for
physics beyond this theory. For the analysis of the semileptonic η(′) decays, we consider
vector-meson-dominance parameterizations and determine the free parameters from phe-
nomenological input. Using the constructed framework, we calculate branching ratios and
differential distributions, which can be confronted with experimental measurements.

In Part III, we study B → γ∗ form factors, which entail valuable information on the
leading-twist B-meson light-cone distribution amplitude. Our study is based on a set of
dispersion relations that link these form factors to their B → V analogs. This is accom-
panied by a parameterization that employs a series expansion in a conformal variable and
a vector-meson-dominance ansatz, with the free parameters fixed from input on B → V .
The phenomenological analysis is performed in terms of integrated as well as differential
branching ratios and forward–backward asymmetries for the four-lepton decay, which can
probe our understanding of the standard model when compared with experiment.
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Prolegomena

According to current knowledge, the universe originated from an incredibly microscopic,
extremely hot cluster of space, matter, and energy of yet unknown genesis during what is
commonly referred to as the big bang, nearly 14 billion years ago. The initially unified
forces acting in this newborn entity are expected to have split into the four fundamental
forces of nature we know of today, that is gravity, the strong, the weak, and the electro-
magnetic force, only a small fraction of a second after the universe came into existence.
After the expansion and cooling of the universe had advanced for roughly nine billion
years—with many more intriguing events such as the emergence of hadrons from quarks,
the formation of nuclei from nucleons, and the production of atoms from nuclei and elec-
trons having occurred throughout that time—the star of humankind’s planetary system,
the sun, was born in the galaxy that we inhabit, the milky way. From the matter that
orbited the sun, many planets and among these the one us human beings populate formed
and cooled down in the following several hundred million years—earth was spawned [1, 2].

Life on earth made its debut in the form of self-replicating underwater organisms of
primarily single-celled bacteria and slowly developed into more complex lifeforms in the
following era—a fauna and flora rich in diversity emerged. From early on, planet earth was
plagued by disastrous events, including collisions with comets and asteroids; changes in
earth’s climate, in particular recurring ice ages and periods of global warming, required the
living organisms to adapt to unprecedented conditions. Although such disasters repeatedly
led to mass extinctions amongst the otherwise blooming life, they did, perhaps, play a key
role in paving the way for the genus we represent, homo. It is widely agreed upon by
scientists that the modern human whose genes we are composed of to a large extent today,
the species homo sapiens, evolved and populated earth as early as 150 000–200 000 years
ago. There is, however, no prevailing consensus about when our direct ancestors first
wandered earth, with some estimates presently dating back around 300 000 years [2–7].

One crucial reason for the dominance of homo sapiens over its fellow inhabitants is
believed to be its language capabilities. Not only did our ancestors forge the most sophis-
ticated tools and deadliest weapons of their time, but they were capable of communicating
with increasing complexity. There is no doubt that other types of extant apes, our closest
relatives in the animal kingdom, are capable of vocally alerting their tribe members to
approaching enemies, and they might even acquire primitive problem-solving and reason-
ing skills that require more cognitive ability than, e.g., fetching a stick does, but they
most certainly cannot grasp or talk about abstract concepts such as religion or political
institutions, let alone calculus. Ultimately, homo sapiens itself brought death and mass
extinction to nowadays long-forgotten genera of animals, becoming the deadliest species
in the annals of biology and the nemesis of many precedent rulers of planet earth [3, 8, 9].
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Prolegomena

With the above timescales in mind, it seems almost ironic that it was not until the pub-
lication of Newton’s Philosophiae Naturalis Principia Mathematica in 1687—less than
400 years ago—that physics started to develop into the natural science it has become
today. Newton’s work obviated the once prevalent idea of absolute space and laid the
foundations for classical mechanics by formulating universal laws of motion and gravi-
tation, thus also providing a well-founded framework for the fundamental description of
planetary motion. To this day, these laws can account for a vast amount of the physical
phenomena of our everyday lives, where the involved velocities are not “too high”, the
involved masses not “too large”, and the involved length scales not “too small” [10].

The next major revolution in the realm of physics was initiated in 1865—almost 200
years later—when Maxwell completed his work on the unification of electric and mag-
netic fields into an integral theory of electromagnetism, thereby also providing a proper
theory for the propagation of light. According to Maxwell’s theory, electromagnetic
fields propagate through space and time as waves of fixed speed, which, at that time,
inevitably gave rise to the nowadays discarded notion of an ether, a supposedly ubiquitous
substance that acts as a carrier of light. Although Michelson and Morley were able to
experimentally debunk the ether already in 1887, it was only after Einstein published his
special theory of relativity in 1905 that the ether was condemned to oblivion. In addition
to giving up absolute space, as had been established through Newton’s work, the special
theory of relativity also abandoned the idea of absolute time; instead, it postulated that
light travels at the same constant speed for every observer, irrespective of the observer’s
velocity relative to the light source, with space and time being intimately related manifes-
tations of a concept called space-time. Special relativity becomes essential when describing
physical phenomena where the involved velocities are not negligible compared to the speed
of light. The theory’s postulates have far-reaching consequences for the daily business of
modern-day physicists, including the equivalence of mass and energy, E = mc2, and the
fact that nothing can travel faster than the speed of light, preventing any kind of informa-
tion from being transferred faster than that. Despite its great success, special relativity is
thus irreconcilable with Newton’s theory of gravity, which, on the contrary, predicts an
instantaneous propagation of gravitational effects. This inconsistency was only resolved
with the publication of Einstein’s general theory of relativity in 1915, which gives us our
modern understanding of gravity and, once more, revolutionized the way we think about
space and time. According to the general theory of relativity, space-time is curved by the
mass and energy present in it—as opposed to the flat space-time of special relativity—and,
conversely, the curvature of space-time dictates the trajectories of the matter contained in
it. General relativity is most relevant when dealing with strong gravitational fields, i.e., in
the proximity of massive bodies and high energy densities, or when describing phenomena
that Newton’s law of gravitation cannot consistently account for, e.g., the deflection and
energy loss of light in a gravitational field [2, 10–12].

Around the same time, in 1900, Planck found that the radiation spectrum of a black
body can be explained by assuming the energy in electromagnetic waves to be quantized,
with each quantum having an energy that is directly proportional to the frequency it is
emitted at.1 This discovery and a host of further developments ultimately led Heisen-
berg, Schrödinger, and others to the formulation of quantum mechanics in the 1920s.

1This interpretation of Planck’s observation was only conceived in 1905 when Einstein postulated
what we now call photons as the quanta of the electromagnetic field to explain the photoelectric effect.
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Crucially, quantum mechanics dispenses with the notion of classical particles and—in the
formalism devised by Schrödinger in 1926—instead adopts the concept of wave func-
tions that describe probability distributions, e.g., of an electron’s location in space. An
important implication is Heisenberg’s uncertainty principle, which states that pairs of
conjugate variables, such as the position and momentum of an electron, cannot both be
known, say measured, with arbitrary precision at the same time. In essence, quantum
mechanics continues to provide our modern account of physical phenomena that proceed
on small length scales; however, it was realized promptly that a single-particle theory of
relativistic quantum mechanics, as obtained by the naive incorporation of special relativity
into the framework of quantum mechanics, results in severe difficulties. While a proper
quantum-mechanical treatment of the electromagnetic field required the application of
the quantization rationale to classical fields either way, it was rather soon understood
that a wholly consistent unification of special relativity and quantum mechanics imposes
a field-quantization procedure also for particles that were once considered classical.2 In
such a formalism, not only is all matter described in a single framework, but the re-
sulting quantum theory of fields, or, in short, quantum field theory, corresponds to an
intrinsically many-body theory that allows for observable processes such as the creation of
particle–antiparticle pairs from the vacuum as well as their annihilation. Here, a particular
milestone was Dirac’s derivation of a relativistic wave equation for the electron in 1928,
which forced physicists to postulate the existence of the positron, the electron’s antiparti-
cle. Although it is widely accepted today that a crucial next step would be the unification
of general relativity and quantum mechanics, these two understandings of nature presently
seem to be hardly compatible with one another. Besides a certain elegance of a coherent
quantum theory of gravity, some phenomena such as the big bang or black holes are be-
lieved to be fully comprehensible only in a theory that integrates general relativity into
the quantum realm. In fact, the space-time singularities that general relativity predicts at
these points might even disappear in such a theory, just like quantum mechanics resolved
the problem of electrons crashing into the atomic nucleus, as a classical picture suggests.
So far, the attempts to construct a theory of quantum gravity have been inconclusive, but
potential candidates include string theory and loop quantum gravity [2, 10–14].3

By the end of the 1940s, the field-quantized formulation of electrodynamics—quantum
electrodynamics—had been refined by, among others, Feynman and Schwinger. The
success of this theory in explaining various experimental observations played an important
role in establishing quantum field theory as a paradigm to construct theories for the weak
and the strong interactions. A unification of the weak and electromagnetic forces into
a theory of electroweak interactions was accomplished in 1967, based on work published
by Glashow, Salam, and Weinberg throughout the 1960s and utilizing the Higgs
mechanism as proposed in 1964. Furthermore, the quark hypothesis devised by Gell-
Mann and Zweig in 1964 culminated in the development of quantum chromodynamics
as a means to describe the strong force, which was completed in the early 1970s [2, 10–12].

2Photons as the quanta of the electromagnetic field are a quantum-mechanical concept to begin with;
the description of the native electromagnetic field is based on Maxwell’s theory. This is opposite to
other matter such as the electron, which was initially thought of as a classical particle that behaves ac-
cording to Newton’s laws. While an electron’s wave function in quantum mechanics admits a probabilistic
interpretation, this is still different from the quantization of a classical field as is essential for the photon.

3String theory actually emerged as a byproduct of an attempt to find a theory for the strong force in
the 1960s and only regained interest in the 1980s, partly due to its by then identified relation to gravity.
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Figure 1: The particle content of the standard model, with the numerical values of the
masses taken from Ref. [15]. A few remarks are in order: (i) antifermions have an electric
charge that is opposite to that of the corresponding fermion; (ii) while quarks carry one
of the color charges red, green, or blue, antiquarks carry one of the respective anticolors;
(iii) gluons carry color plus anticolor, with the physical composition being specified by non-
trivial linear combinations, in particular leading to the fact that there are eight instead
of the naively expected nine gluons; (iv) the W boson is charged and as such can interact
with the photon; (v) as explained in the preceding discussion, no consistent quantum
theory of gravity is known, so that the graviton is, in principle, a hypothetical tensor
boson that lies beyond the standard model. Further extensions of the standard model,
e.g., supersymmetry or additional Higgs bosons, are not considered for this illustration.

Together, the strong, weak, and electromagnetic forces constitute the ensemble of
interactions that are accounted for within the so-called standard model of particle physics.
More specifically, the standard model is a gauge theory that is based on the symmetry
group

GSM = SU(3)c × SU(2)L ×U(1)Y , (1)

with the particle or rather field content as given in Fig. 1. Here, SU(3)c is the color group of
the strong interactions, which corresponds to a Yang–Mills theory that implicates eight
massless, color-carrying gauge bosons—the gluons—as the mediators of the strong force.4

Since this part of the symmetry group acts on particles that carry (notional) color charges,
it is also referred to as quantum chromodynamics. The product SU(2)L × U(1)Y relates
to the electroweak sector, with SU(2)L involving three massless (unphysical) gauge bosons
denoted by (W1,W2,W3) and U(1)Y implicating one additional such gauge boson called B.

4By a Yang–Mills theory, we refer to a gauge theory that is based on the non-abelian group SU(N),
resulting in the emergence of N2 − 1 massless gauge bosons.
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While the former group acts on left-chiral fermions that live in doublets and carry weak
isospin, the latter group pertains to those particles that hold a weak hypercharge Y . Up
to this point, the electroweak symmetry has been assumed unbroken, which presumably
reflected nature shortly after the big bang, just before the temperature of the universe
dropped below ΛEW ∼ 100GeV (TEW ∼ 1015K), the scale of electroweak symmetry
breaking.5 Below this scale, however, the vacuum, i.e., the ground state of the theory,
acquires a definite expectation value and thus ceases to respect the symmetry. In this way,
a symmetry on the level of Lagrange densities gets broken, or rather hidden, in a process
referred to as spontaneous symmetry breaking due to the system (spontaneously) falling
into a singled-out ground state.6 For the standard model, this mechanism is implemented
in terms of an SU(2)L Higgs doublet, which has four degrees of freedom and upon attaining
a vacuum expectation value breaks the symmetry group according to

GSM → GB
SM = SU(3)c ×U(1)EM, (2)

where U(1)EM is the group associated with electromagnetic interactions, as described by
quantum electrodynamics. Within the broken symmetry, the photon and the massive
gauge bosons (W+,W−, Z0) of the weak sector correspond to specific linear combinations
of the (unphysical) gauge bosons (W1,W2,W3) and B; here, the masses of the weak gauge
bosons derive from three of the four degrees of freedom of the Higgs doublet, with the
remaining degree of freedom accounting for the physical Higgs field. The fermion masses
in the standard model are generated on the basis of the Higgs doublet as well, albeit
through a different process, namely via so-called Yukawa couplings. To the present day,
the Higgs mechanism is the only known method to consistently generate masses for gauge
bosons and fermions in the standard model without violating gauge invariance [11, 16–20].

At low and intermediate energies, the electroweak sector is perturbative, that is it is
feasible to calculate electromagnetic and weak processes proceeding at such energies, order
by order, using a perturbative expansion. The underlying expansion parameter is given
by the coupling constant that determines the strength of interactions mediated via the
respective force; this coupling varies with the energy scale, and, accordingly, the property
of being perturbative is a consequence of the coupling constant’s numerical value being
sufficiently small at the implied energies, which renders a perturbative series meaningful
in the first place.7 Going to (very) high energies, the coupling of electroweak interactions
formally becomes strong, and the perturbative expansion eventually breaks down as higher-
order terms gain in relevance until, at some point, they even exceed those of low order.

5In so-called grand unified theories, the strong and electroweak interactions are merged into a single
force; it is speculated that such a symmetry might have been realized in the very early universe when the
temperature was above the grand-unification scale ΛGUT ∼ 1016 GeV (TGUT ∼ 1029 K). Even before this,
when the temperature of the universe was beyond the Planck scale ΛPl ∼ 1019 (TPl ∼ 1032 K), gravity is
conjectured to have been part of this synergy as well, forming a theory of everything.

6With the symmetry initially being manifest, it is impossible to distinguish between the members of a
weak-isospin doublet, similar to how quantum chromodynamics does not allow to differentiate between the
members of a quark color triplet. In this sense, it is the vacuum that perceives a difference between the
members of a weak-isospin doublet below ΛEW, thus leading to the spontaneous breaking of the symmetry.

7In fact, these perturbative expansions are known to have limitations also for low and intermediate
energies. Although quantum electrodynamics, for example, yields meaningful results in all practical cal-
culations, the series is expected to diverge when going beyond a certain order in the expansion. When
thinking in terms of Feynman diagrams, this is due to the fact that the growth in the number of diagrams
for higher orders outweighs the suppression from the corresponding power of the coupling constant.
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Prolegomena

The theory of the strong interactions, on the other hand, behaves exactly opposite to this:
quarks and gluons interact weakly at high energies, thereby allowing for the use of per-
turbative methods in the ultraviolet regime, but the coupling strength grows large for low
and intermediate energies, rendering a perturbative expansion ill-defined in this region.8

Having a coupling constant that diminishes with increasing energy, quantum chromody-
namics is said to be asymptotically free, meaning that the interactions between quarks and
gluons become asymptotically weaker and that both building blocks resemble free, i.e.,
non-interacting, particles at high energies. Crucially, however, the theory shows another
peculiar feature, namely color confinement, stating that quarks and gluons do not actually
materialize as tangible particles under ordinary conditions but only manifest themselves
in color-neutral hadronic bound states, which thus represent the pertinent degrees of free-
dom.9 The spectrum of hadrons consists of so-called mesons, which are quark–antiquark
bound states and thus bosons, and baryons, which are bound states of three (anti-)quarks
and thus fermions, as well as further exotic structures such as tetra- or pentaquarks, that
is bound states of four or five quarks. While the strong force also mediates interactions
among hadrons, it shows rather distinct characteristics within this scope, in particular a
comparatively short effective range due to the color-neutral nature of hadrons [16, 18–21].

To treat the non-perturbative domain of quantum chromodynamics, various approaches
have been developed over the years. Among these methods are effective field theories, dis-
persion relations, and quantum chromodynamics on the lattice, as will be briefly discussed
in turn below. The first of these techniques follows the rationale to alter the degrees of
freedom, i.e., instead of expressing strong interactions at low and intermediate energies
using occult quarks and gluons, effective field theories provide a formulation in terms of
hadrons—similar to how it is non-essential to know anything about atoms to describe the
motion of a ball. By constructing Lagrange densities that implement the relevant sym-
metries and establishing an ordering scheme that allows one to organize all possible contri-
butions with regard to their relative importance, effective field theories yield a perturbative
framework to calculate processes involving hadrons. The paradigm of such a theory is chi-
ral perturbation theory, which is based on the approximate chiral symmetry of quantum
chromodynamics for light quarks. Dispersion relations, in contrast, are based on a non-
perturbative ansatz and thus represent a very different approach. Here, the main ingre-
dients are the fundamental principles of analyticity (relating to causality), unitarity (cor-
responding to probability conservation), and crossing symmetry, which can be translated
into a model-independent tool to reconstruct physical amplitudes from their discontinu-
ities (containing information on intermediate states and their interactions). Finally, solving
quantum chromodynamics on the lattice provides a numerical, likewise non-perturbative,
approach in which space-time is discretized on a finite grid of points with non-zero spac-
ing. To recover the continuum limit of quantum chromodynamics, it is necessary to con-
sider (the limit of) an infinitely large grid and take the lattice spacing to zero [22–25].

8This behavior of quantum chromodynamics invariably holds true as long as there are no more than 16
quark flavors in nature, which all observations to date seem to confirm.

9The phenomenon of confinement is commonly visualized by means of an untearable rubber band
that is attached to the quarks; separating the quarks from each other by exerting a force increases the
potential energy of the system, to the point where it becomes energetically favorable to create, e.g., a
quark–antiquark pair from the vacuum to form two hadrons with each having one (shorter) rubber band.
As opposed to asymptotic freedom, confinement currently still lacks an analytic proof and is therefore
merely a hypothesis, albeit a heuristically well-founded one.
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The great success of the standard model in explaining a large variety of phenomena
quickly led to its general acceptance in the scientific community. However, the standard
model in its current form is known to be incomplete. Besides the discussed incompatibility
with gravity, the theory also fails to account for several cosmological phenomena such as
dark matter and the apparent matter–antimatter asymmetry in the universe. More specif-
ically, measurements suggest that the mass of the visible matter in the universe adds up
to a mere ∼ 5% of the total mass–energy content of the universe. Another ∼ 27% can be
attributed to some hypothetical substance that seems to be hidden from our sight because
it does not interact with light—the so-called dark matter—and the remaining ∼ 68% are
ascribable to an enigmatic drive referred to as dark energy. While dark matter is needed
to interpret a number of astronomical observations related to gravitational effects within
the general theory of relativity, dark energy is conceived as the origin of the force that
induces the accelerated expansion of the universe. These two entities share the property
of being oblivious to photons but, other than that, manifest very differently: dark matter
pulls galaxies together, whereas dark energy counters gravity and pushes them apart.10

The asymmetry between matter and antimatter, on the other hand, relates to the pecu-
liarity that there appears to be an enormous abundance of matter against antimatter in
the universe—in fact, everything around us almost exclusively consists of matter.11 In
addition to these phenomena, the standard model is presently also ineligible to address
oscillations between different flavors of neutrinos; such transitions are experimentally ob-
served, though, and require non-vanishing neutrino masses, whereas neutrinos are assumed
to be massless within the standard model. There are further open questions that, to some
degree, have a philosophical character and to which the standard model does not provide
an answer either. These are questions that can be classified as problems of naturalness,
in particular the hierarchy and the fine-tuning problem; a discussion of these is, however,
beyond the scope of these prolegomena [1, 11, 26–28].

Today, there exist a plethora of extensions of the standard model that attempt to
resolve, at least partially, issues like those described above. Still, identifying the proper
extension to account for these so-called physics beyond the standard model proves to be
a formidable task. Aside from cosmological studies of, e.g., dark matter or the matter–
antimatter asymmetry, the search for new physics can be divided into two main categories:
the energy frontier and the precision frontier. Of these, the energy frontier is mostly con-
cerned with the discovery of (very) heavy particles in collisions performed at unprecedented
energies, as, e.g., predicted by grand unified theories or possible within the framework of
supersymmetry. The precision frontier, on the contrary, involves scrutinizing imprints of
physics beyond the standard model on observables that either have a minor background
from the standard model or can be calculated to a very high precision within the theory. In
this thesis, we discuss three such precision observables: the anomalous magnetic moment of
the muon, which is the subject of discussion in Part I and its Addendum; rare semileptonic
η(′) decays, which are investigated in Part II; and B → γ∗ form factors, which are studied
in Part III. The Synthesis of the thesis summarizes the main results of these parts and gives
a condensed outlook; some fundamental material is collected in the Foundations part.

10An illustrative analogy for the expansion of the universe is a lightly inflated balloon with two dots on its
surface; similar to how the balloon expands upon further inflation, space-time can be pictured to expand,
and similar to how the distance between the dots increases upon inflation—albeit the dots themselves are
stationary—stellar objects can be visualized to move apart.

11Only a fraction of this imbalance can be explained within the standard model.
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Foundations

In this part of the thesis, we establish the definitions and conventions that will be used
throughout this work. Furthermore, we collect and derive several formulae and identities
that are employed in the main part, and we outline certain topics that are essential for
this dissertation. For easy reference, the contents presented here are collectively listed in
the Foundations index, right after the Glossary, at the end of this work.

Definitions and conventions

Minkowski space

The Minkowski space is one of the most prominent concepts of modern particle physics.
It unifies time and three-dimensional space into a four-dimensional vector space M = R1,3

referred to as space-time and thus allows for an elegant incorporation of Einstein’s theory
of relativity into the formulation of, e.g., quantum field theory. We equip this vector space
with a scalar product using the metric tensor

g = diag(1,−1,−1,−1) (3)

of signature (+,−,−,−), as opposed to sg = diag(−1, 1, 1, 1) with signature (−,+,+,+),
which, on the contrary, is more common in mathematics and other fields of physics [1, 2].
For two vectors a, b ∈ M, this induces

a · b = aµbµ = aµb
µ = aµg

µνbν = aµgµνb
ν

= a0b0 −
3∑

i=1

aibi = a0b0 −
3∑

i=1

aibi. (4)

Here, we implicitly introduced the Einstein summation convention, implying a summa-
tion over all values of Greek indices appearing once as an upper and once as a lower index
in a single term. Likewise, two lower or two upper Latin indices in a single term commonly
involve a summation, but we will generally make such sums explicit to avoid ambiguity.
It is customary in many applications to omit the multiplication sign in the scalar product,
i.e., to write ab ≡ a · b. Most notably, this abuse of notation facilitates the differentiation
between the Minkowski scalar product and the Euclidean scalar product

c · d =
3∑

i=1

cidi =
3∑

i=1

cidi, (5)

with c,d ∈ R3, which can further be distinguished by the boldface font that we use to
depict three-dimensional vectors.
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Foundations

Levi-Civita symbol

We define the four-dimensional Levi-Civita symbol as

ϵµ0µ1µ2µ3 = ϵπ(0)π(1)π(2)π(3) = ϵ(π)ϵ0123, (6)

where π ∈ Sym({0, 1, 2, 3}) is the permutation that fulfills π(i) = µi and ϵ(π) is its
signature. Throughout this thesis, we adopt the convention ϵ0123 = +1 (or, equivalently,
ϵ0123 = −1). Disregarding any mathematical details on the notion of tensors [3], we will
refer to the Levi-Civita symbol as the Levi-Civita tensor in this work.

Natural units

Throughout this thesis, we work in natural units, i.e., we set the speed of light c and the
reduced Planck constant ℏ to unity.

Fermionic field operators

In quantum field theory, particles are represented as the quanta of field operators. Fermions,
i.e., particles of half-integer spin, in particular, are described by fermionic field operators
Ψ(x), which are multi-component objects Ψi(t,x) = [Ψ(x)]i that obey the equal-time
anticommutation relations [4]

{Ψi(x),Ψj(y)} = 0, {Ψ†i (x),Ψ
†
j(y)} = 0, {Ψi(x),Ψ

†
j(y)} = δ(3)(x− y)δij . (7)

Here, the components i, j of two fermionic fields that describe distinct fermion species act
as if they were two independent components of a single type of fermion.

For spin-1/2 fermions, the free fields can be expanded according to [5]

Ψ(x) =

∫
d3p

(2π)3
1√
2Ep

∑

s

[
aspu

s(p)e−ipx + bsp
†vs(p)eipx

]
, (8)

where the sum extends over the two spin projections s; asp
(†) and bsp

(†) are annihilation
(creation) operators for fermions and antifermions of spin projection s, three-momentum
p, and energy Ep = (p2 + m2)1/2, respectively, with m being the mass of the fermion
species; us(p) and vs(p) are the corresponding four-component Dirac spinors. Similar
expressions apply for bosons, i.e., particles of integer spin, with the anticommutators
replaced by commutators, which, however, will not be needed for this thesis.

Gamma matrices

The gamma matrices {γµ}µ=0,1,2,3 are generators of the Dirac algebra; they satisfy the
defining anticommutation relation [4]

{γµ, γν} = 2gµν . (9)

In the course of this thesis, we will use the Feynman slash notation /A = Aµγ
µ and denote

the Dirac adjoint by sB = B†γ0. We further define a fifth gamma matrix via

γ5 = iγ0γ1γ2γ3 = − i

4!
ϵµνρσγ

µγνγργσ, (10)

where the sign in the last equality is due to the chosen convention of the Levi-Civita
tensor.
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Definitions and conventions

Chirality projection operators

Using the fifth gamma matrix, we introduce the projection operators PL/R = (1∓ γ5)/2,
which project onto the left- and right-chiral components of a Dirac spinor, respectively [5].
The properties PL + PR = 1, P 2

L/R = PL/R, and PL/RPR/L = 0 are readily verified.

Time ordering

Time ordering will be denoted by an operation T acting on a product of either bosonic or
fermionic field operators {Oµi

i (xi)}i=1,...,N , µi = (µ1i , . . . , µ
Mi
i ), according to [6]

T{Oµ1
1 (x1) . . .OµN

N (xN )} =

{
Oµσ(1)

σ(1) (xσ(1)) . . .O
µσ(N)

σ(N) (xσ(N)), if bosonic,

ϵ(σ)Oµσ(1)

σ(1) (xσ(1)) . . .O
µσ(N)

σ(N) (xσ(N)), if fermionic.
(11)

Here, with all x0i different, σ ∈ SN is the permutation that orders the expression such
that x0σ(1) > . . . > x0σ(N) and ϵ(σ) is its signature. The potential sign for fermionic field
operators arises from their anticommutative property. We will only encounter the special
cases N = 2, Mi ≤ 1 in this thesis, for which time ordering reduces to [5]

T{O(µ)
1 (x)O(ν)

2 (y)} = θ(x0 − y0)O(µ)
1 (x)O(ν)

2 (y)± θ(y0 − x0)O(ν)
2 (y)O(µ)

1 (x), (12)

where θ(x0) = 1x0>0 is the Heaviside step function; the upper sign holds for bosonic
and the lower sign for fermionic field operators. In this dissertation, we will further only
consider bosonic field operators in time-ordered products, so that, in principle, we do not
have to bother about this relative sign.

Källén function

The Källén function

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc (13)

frequently appears as a kinematic function in the description of scattering and decay
processes in particle physics. It is readily verified to be symmetric in all of its arguments.

Fine-structure constant

The dimensionless fine-structure constant α = e2/(4π) is commonly used in place of the
electric charge e. Its numerical value can be approximated as α ≈ 1/137.036 [7].

Particle abbreviations

For convenience, we introduce the following abbreviations in the notation of vector mesons:

ρ ≡ ρ(770), ω ≡ ω(782), ϕ ≡ ϕ(1020),

ρ′ ≡ ρ(1450), ω′ ≡ ω(1420), ϕ′ ≡ ϕ(1680),

ρ′′ ≡ ρ(1700), ω′′ ≡ ω(1650), ϕ′′ ≡ ϕ(2170), (14)

K∗ ≡ K∗(892). Furthermore, we write

a1 ≡ a1(1260), f1 ≡ f1(1285), f ′1 ≡ f1(1420) (15)

for the relevant axial-vector mesons and η′ ≡ η′(958) as well as a2 ≡ a2(1320).
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Foundations

Formulae and identities

Lorentz transformations

Lorentz transformations are those transformations Λ that leave the Minkowski scalar
product invariant, i.e., (Λa) · (Λb) = a ·b for a, b ∈ M. In practice, we will use the elements
referred to as boosts and rotations [5] to transform between different reference frames in
a way consistent with relativity; parity and time reversal are irrelevant for our purposes.

Consider a particle with momentum p = (E,p)⊺, i.e., energy E and three-momentum
p, in a fixed frame of reference; its velocity β is given by [7]

β =
p

E
. (16)

We denote the momentum of the particle in a frame that moves with velocity βf relative
to the fixed frame by p∗ = (E∗,p∗)⊺. The three-momenta can be split into parts that are
parallel and parts that are perpendicular with respect to the velocity of the moving frame
as per p(∗) = p

(∗)
∥ + p

(∗)
⊥ . Defining p(∗)∥ = |p(∗)

∥ | and βf = |βf |, we then have

p
(∗)
∥ = p

(∗)
∥

βf

βf
=

βf · p(∗)

βf

βf

βf
. (17)

The momenta p and p∗ are related by a Lorentz transformation according to [7]


E∗

p∗∥
p∗⊥


 =




γf −γfβf 0
−γfβf γf 0

0 0 1





E
p∥
p⊥


 , (18)

where γf = (1− β2f )
−1/2 is the so-called Lorentz factor and p

(∗)
⊥ = |p(∗)

⊥ | are the magni-
tudes of the perpendicular components of the three-momenta p(∗). Note that, in fact, we
have p∗⊥ = p⊥ also for the vectors and not only for their magnitudes p∗⊥ and p⊥. Hence,
the full momentum p∗ after the Lorentz transformation is given by

(
E∗

p∗

)
=

(
E∗

p∗∥ + p∗⊥

)
=

(
γfE − γfβfp∥[

γfp∥ − γfβfE
]βf
βf

+ p⊥

)
=

(
γfE − γf

(
βf · p

)

γfp∥ − γfEβf + p⊥

)

=

(
γfE − γf

(
βf · p

)

γf
βf ·p
βf

βf
βf

− γfEβf + p⊥

)
. (19)

Given the particle’s momentum in the frame moving with velocity βf instead, its
momentum in the initially fixed frame can be obtained with the inverse transformation



E
p∥
p⊥


 =




γf γfβf 0
γfβf γf 0
0 0 1





E∗

p∗∥
p∗⊥


 , (20)

which is equivalent to the transformation in Eq. (18) with βf → −βf . The full momentum
p then turns out to be

(
E
p

)
=

(
γfE

∗ + γf
(
βf · p∗

)

γf
βf ·p∗

βf

βf
βf

+ γfE
∗βf + p∗⊥

)
. (21)

It is straightforward to verify that the above group of transformations indeed leaves the
scalar product p1 · p2 of two momenta p1, p2 ∈ M invariant.
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Formulae and identities

Dirac equation

The motion of free spin-1/2 particles is governed by the Dirac equation [4]

(i/∂ −m)Ψ(x) = 0, (22)

where Ψ(x) is a fermionic field whose quanta have mass m. For the corresponding Dirac
spinors us(p) and vs(p), this implies

(/p−m)us(p) = 0, (/p+m)vs(p) = 0 (23)

in momentum space. The Dirac equation for the adjoint fermionic field sΨ(x) reads

sΨ(x)(i
←
/∂ +m) = 0, (24)

as readily obtained from Eq. (22), and the spinor analogs become

ūs(p)(/p−m) = 0, v̄s(p)(/p+m) = 0. (25)

Translation of field operators

Consider a pair of field operators O(µ)
i=1,2(x) that are allowed to have vector structure in

Lorentz space. Their transformation property under translations is given by [4]

O(µ)
i (x+ a) = eiaP̂O(µ)

i (x)e−iaP̂ , (26)

with P̂α = i∂α being the four-momentum operator from the Poincaré algebra that gen-
erates infinitesimal translations. For the time-ordered product of the two field operators,
we then deduce

⟨k, β|T{O(µ)
1 (x)O(ν)

2 (y)}|p, α⟩ = e−iypθ(x0 − y0) ⟨k, β|O(µ)
1 (x)eiyP̂O(ν)

2 (0)|p, α⟩
± eiykθ(y0 − x0) ⟨k, β|O(ν)

2 (0)e−iyP̂O(µ)
1 (x)|p, α⟩

= e−iy(p−k)θ(x0 − y0) ⟨k, β|O(µ)
1 (x− y)O(ν)

2 (0)|p, α⟩
± eiy(k−p)θ(y0 − x0) ⟨k, β|O(ν)

2 (0)O(µ)
1 (x− y)|p, α⟩

= eiy(k−p) ⟨k, β|T{O(µ)
1 (x− y)O(ν)

2 (0)}|p, α⟩ (27)

and, in complete analogy,

⟨k, β|T{O(µ)
1 (x)O(ν)

2 (y)}|p, α⟩ = eix(k−p) ⟨k, β|T{O(µ)
1 (0)O(ν)

2 (y − x)}|p, α⟩ . (28)

Two special cases that are particularly relevant for this thesis follow for |k, β⟩ = |0⟩ being
the vacuum and y = x, i.e., a set of local field operators, namely

⟨0|T{O(µ)
1 (x)O(ν)

2 (y)}|p, α⟩ = e−iyp ⟨0|T{O(µ)
1 (x− y)O(ν)

2 (0)}|p, α⟩
= e−ixp ⟨0|T{O(µ)

1 (0)O(ν)
2 (y − x)}|p, α⟩ (29)

and

⟨k, β|T{O(µ)
1 (x)O(ν)

2 (x)}|p, α⟩ = eix(k−p) ⟨k, β|T{O(µ)
1 (0)O(ν)

2 (0)}|p, α⟩ . (30)

15



Foundations

Equal-time commutators

In the following, we investigate equal-time commutators of the type

C = [ψ†a(x̄)O(µ)
1 ψb(x̄), ψ

†
c(ȳ)O(ν)

2 ψd(ȳ)], (31)

where x̄ = (x0 = 0,x)⊺, ȳ = (y0 = 0,y)⊺, and f ∈ {a, b, c, d} labels the flavor of the
corresponding fermionic field ψf (x̄). Here, the operators O(µ)

i=1,2 are assumed to have a
structure in Dirac space and, potentially, Lorentz space, e.g., composed of gamma
matrices and numerical factors such as charges.

It is instructive to first consider a similar commutator for a single flavor of fermions
and operators without Lorentz structure, namely

c = [ψ†(x̄)Õ1ψ(x̄), ψ
†(ȳ)Õ2ψ(ȳ)]

= (Õ1)ij(Õ2)mn[ψ
†
i (x̄)ψj(x̄), ψ

†
m(ȳ)ψn(ȳ)], (32)

where s ∈ {i, j,m, n} labels the respective spinor component in Dirac space, as induced
by the four-component fermionic fields, and we used that the components of the operators
Õi correspond to commuting numbers. Here and in the following, a summation over
repeated Latin indices is implicit. We then apply the identity

[AB,CD] = A{B,C}D −AC{B,D}+ {A,C}DB − C{A,D}B (33)

to obtain

c = (Õ1)ij(Õ2)mn

(
ψ†i (x̄){ψj(x̄), ψ

†
m(ȳ)}ψn(ȳ)− ψ†i (x̄)ψ

†
m(ȳ){ψj(x̄), ψn(ȳ)}

+ {ψ†i (x̄), ψ†m(ȳ)}ψn(ȳ)ψj(x̄)− ψ†m(ȳ){ψ†i (x̄), ψn(ȳ)}ψj(x̄)
)
. (34)

Inserting the canonical equal-time anticommutation relations for fermionic fields, Eq. (7),
we find

c = (Õ1)ij(Õ2)mn

(
δ(3)(x− y)δjmψ

†
i (x̄)ψn(ȳ)− δ(3)(x− y)δinψ

†
m(ȳ)ψj(x̄)

)

= δ(3)(x− y)
(
ψ†(x̄)Õ1Õ2ψ(ȳ)− ψ†(ȳ)Õ2Õ1ψ(x̄)

)
. (35)

Let us now consider Eq. (31), for which analogous arguments—in particular the com-
muting property of the components of the operators O(µ)

i —lead to

C = (O(µ)
1 )ij(O(ν)

2 )mn[ψ
†
a,i(x̄)ψb,j(x̄), ψ

†
c,m(ȳ)ψd,n(ȳ)]

= (O(µ)
1 )ij(O(ν)

2 )mn

(
ψ†a,i(x̄){ψb,j(x̄), ψ

†
c,m(ȳ)}ψd,n(ȳ)− ψ†a,i(x̄)ψ

†
c,m(ȳ){ψb,j(x̄), ψd,n(ȳ)}

+ {ψ†a,i(x̄), ψ†c,m(ȳ)}ψd,n(ȳ)ψb,j(x̄)− ψ†c,m(ȳ){ψ†a,i(x̄), ψd,n(ȳ)}ψb,j(x̄)
)

= (O(µ)
1 )ij(O(ν)

2 )mn

(
δ(3)(x− y)δjmδbcψ

†
a,i(x̄)ψd,n(ȳ)− δ(3)(x− y)δinδadψ

†
c,m(ȳ)ψb,j(x̄)

)

= δ(3)(x− y)
(
δbcψ

†
a(x̄)O(µ)

1 O(ν)
2 ψd(ȳ)− δadψ

†
c(ȳ)O(ν)

2 O(µ)
1 ψb(x̄)

)
. (36)

Here, we used that the anticommutation relations for fields of different flavors act as if these
were different spinor components of a single flavor. The rationale behind this behavior
is that each spin component of a single fermionic field, just like the field components of
different flavors, actually represents an independent degree of freedom.
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Formulae and identities

Chisholm identity

Due to the four-dimensional nature of space-time, the identity [8]

iϵµνρσγσγ5 = γµγνγρ − gµνγρ + gµργν − gνργµ (37)

holds, which we refer to as the Chisholm identity in the course of this thesis. It is
straightforward to show its validity via a proof by cases, for which we introduce the abuse
of notation12

(−1)µ =

{
1, µ = 0,

−1, µ = 1, 2, 3.
(38)

We first consider the case with at least two indices from the tuple (µ, ν, ρ) being equal,
so that, due to the antisymmetry of the Levi-Civita tensor, Eq. (37) reduces to

γµγνγρ = gµνγρ − gµργν + gνργµ. (39)

Using the defining property of the Dirac algebra, Eq. (9), and (γ0)2 = 1 = −(γk)2 [4] for
k = 1, 2, 3, we then find

γµγνγρ =





(−1)µγµ, µ = ν = ρ,

(−1)µγρ, µ = ν ̸= ρ,

−(−1)µγν , µ = ρ ̸= ν,

(−1)νγµ, ν = ρ ̸= µ,

(40)

and the right-hand side of Eq. (39) agrees with this expression because the metric tensor
fulfills gµν = (−1)µ for µ = ν and zero otherwise.

For the second case, we assume all indices from the tuple (µ, ν, ρ) to take distinct
values. In this case, gµν = 0 for all metric tensors of Eq. (37), so that the Chisholm
identity becomes

−ϵµνρσγσγ0γ1γ2γ3 = γµγνγρ, (41)

where we inserted the definition of γ5, Eq. (10). Here, the implicit sum over the index σ
collapses to a single term because σ necessarily needs to be different from µ, ν, and ρ. We
note that the left-hand side of the above equation is antisymmetric under the exchange
of any of the two indices µ ↔ ν, µ ↔ ρ, or ν ↔ ρ; naturally, the same applies to the
right-hand side due to the Dirac algebra. Hence, we can, without loss of generality,
restrict ourselves to the permutations (µ, ν, ρ) = (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3). Using
that γµ = (−1)µγµ numerically, the left-hand side of Eq. (41) yields

−ϵµνρσγσγ0γ1γ2γ3 =





ϵ0123γ0γ1γ2, (µ, ν, ρ) = (0, 1, 2),

−ϵ0132γ0γ1γ3, (µ, ν, ρ) = (0, 1, 3),

ϵ0231γ0γ2γ3, (µ, ν, ρ) = (0, 2, 3),

−ϵ1230γ1γ2γ3, (µ, ν, ρ) = (1, 2, 3),

(42)

which trivially equals the right-hand side.
12This notation is to be understood numerically, i.e., it makes sense only for a given value of the index,

but it does not induce any kind of Lorentz covariance.
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N -body phase space

For the description of scattering and decay processes, we need the differential n-body
phase space [7]

dΦn(P ; p1, . . . , pn) = (2π)4δ(4)
(
P −

n∑

l=1

pl

) n∏

i=1

d3pi
(2π)32p0i

. (43)

Here, P is the total momentum of the incoming state and {pi}i=1,...,n are the momenta of
the outgoing particles, with p0i = (p2

i + m2
i )

1/2 their energies and mi the corresponding
masses. For decay processes, P is a single momentum, while for scattering processes, P is a
sum of the momenta of the incoming particles; in practice, we will only encounter scattering
reactions with two incoming particles, so that here, P = P1 + P2 for our purposes. The
integration of Eq. (43) is performed over the whole domain of the integration variables pi.
Given that the integration volumes d3pi/[(2π)

32p0i ] are Lorentz-invariant quantities [5],
the integrations can be carried out in distinct, conveniently chosen reference frames.

The phase space takes a remarkably simple form for n = 2, namely [5]

dΦ2(P ; p1, p2) = θ
(
ECMS − (m1 +m2)

) |pout
CMS|

16π2ECMS
dΩCMS. (44)

Here, all quantities are given in the center-of-mass system, as indicated by the subscript
“CMS”. The differential solid angle is denoted by dΩCMS, which needs to be integrated over
the two-sphere S2 = {r ∈ R3 : |r| = 1}; ECMS is the total energy of the incoming state,
and |pout

CMS| depicts the magnitude of the three-momentum of either outgoing particle.
In the following, we derive the recursion relation [7]

dΦn(P ; p1, . . . , pn) = dΦj(q; p1, . . . , pj) dΦn−j+1(P ; q, pj+1, . . . , pn)
dq2

2π
, (45)

where j < n and q =
∑j

m=1 pm. This formula allows one to split the n-body phase space
into a product of two smaller phase spaces, which is particularly useful for the description of
processes with subsequent decays of other decay products. Since the integration measures
are intertwined, the order of the differentials becomes crucial in the integral form of the
relation,

∫
dΦn(P ; p1, . . . , pn) =

∫
dq2

2π

∫
d3q

(2π)32q0

∫ n∏

i=j+1

d3pi
(2π)32p0i

(2π)4δ(4)
(
P − q −

n∑

l=j+1

pl

)

×
∫ j∏

k=1

d3pk
(2π)32p0k

(2π)4δ(4)
(
q −

j∑

m=1

pm

)
. (46)

The Lorentz invariance of the integration measures implies that one can choose different
frames to perform the various integrations separately. Note that we omitted brackets
around the products of phase-space measures in Eq. (46) for notational convenience; it is
important to keep in mind, however, that these products implicitly refer to the integral
measures only here and in the following.
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Formulae and identities

To prove the recursion relation, we observe the following representations of unity:

1 =

∫
d4q

(2π)4
(2π)4δ(4)

(
q −

j∑

m=1

pm

)
=

∫
d4q

(2π)4
(2π)4δ(4)

(
q −

j∑

m=1

pm

)
θ(q0),

1 =

∫
ds

2π
(2π)δ(s− q2). (47)

Here, θ(q0) in the first representation eliminates unphysical negative-energy solutions; it
can be inserted without changing the result due to the assumption of positive energies,∑j

m=1 p
0
m ≥ 0. We can obtain a third representation of unity by combining the two

representations, leading to

1 =

∫
ds

2π

∫
d4q

(2π)4
(2π)δ(s− q2)(2π)4δ(4)

(
q −

j∑

m=1

pm

)
θ(q0)

=

∫
ds

2π

∫
d3q

(2π)32q0
(2π)4δ(4)

(
q −

j∑

m=1

pm

)∣∣∣
q0=(q2+s)1/2

. (48)

In the second line, we applied the formula [9]

δ
(
f(x)

)
=

∑

x0 : zeroes
of f

δ(x− x0)

|f ′(x0)|
, (49)

which holds for functions f(x) that possess a finite set of simple zeroes and implies

δ(s− q2) = δ
(
(q0)2 − q2 − s

)
=
δ
(
q0 −

√
q2 + s

)
− δ
(
q0 +

√
q2 + s

)

2
√

q2 + s
. (50)

Next, we rewrite the differential n-body phase space, Eq. (43), as

dΦn(P ; p1, . . . , pn) = (2π)4δ(4)
(
P −

n∑

l=1

pl

) j∏

k=1

d3pk
(2π)32p0k

n∏

i=j+1

d3pi
(2π)32p0i

. (51)

By multiplying this equation with the representation of unity given in Eq. (48) and per-
forming the remaining integrations over the phase-space variables pi, we obtain

∫
dΦn(P ; p1, . . . , pn) =

∫
ds

2π

∫
d3q

(2π)32q0

∫ n∏

i=j+1

d3pi
(2π)32p0i

(2π)4δ(4)
(
P −

n∑

l=1

pl

)

×
∫ j∏

k=1

d3pk
(2π)32p0k

(2π)4δ(4)
(
q −

j∑

m=1

pm

)∣∣∣
q0=(q2+s)1/2

(52)

This formula is readily verified to be equivalent to Eq. (46). To this end, we note that
both delta distributions have to be fulfilled simultaneously, so that δ(4)(P −∑n

l=1 pl) =
δ(4)(P − q −∑n

l=j+1 pl) in the first line; furthermore, q0 = (q2 + s)1/2 implies s = q2.
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Decay rate

For an unstable particle with momentum P and mass M decaying into n particles with
momenta {pi}i=1,...,n and masses mi, the differential decay rate is given by [7]

dΓ(P → p1, . . . , pn) =
1

2M
|M(P → p1, . . . , pn)|2 dΦn(P ; p1, . . . , pn), (53)

where M(P → p1, . . . , pn) is the invariant amplitude describing the process. In many
cases, one is interested in unpolarized decay widths; in this case, the absolute square of
the amplitude further needs to be averaged over the polarizations as well as the spins of
the initial particles, if applicable, and summed over those of the final state. This procedure
is commonly referred to as spin-averaging or spin-summing, which we also follow in this
thesis. We reserve for ourselves to not make this procedure explicit in all formulae and,
where not otherwise stated, assume squared amplitudes to also involve spin-averaging and
spin-summing. With indistinguishable particles in the final state, an additional symmetry
factor needs to be taken into account upon integrating Eq. (53); more specifically, one
gets a factor 1/m! per m identical particles. The rationale behind this factor is that
one is counting the possible momentum configurations (pi1 , . . . ,pim) = (piσ(1)

, . . . ,piσ(m)
),

σ ∈ Sm and {i1, . . . , im} ⊆ {1, . . . , n}, multiple times in the naive phase-space integration.
Dividing the calculated decay width by the total width Γ of the decaying particle, one
obtains the so-called branching ratio B(P → p1, . . . , pn).

Using Eq. (44), the differential decay rate for two outgoing particles, n = 2, becomes

dΓ(P → p1, p2) = θ
(
M − (m1 +m2)

) |pout
CMS|

32π2M2
|M(P → p1, p2)|2 dΩCMS. (54)

Here, the magnitude of the three-momentum is given by |pout
CMS| = λ(M2,m2

1,m
2
2)

1/2/(2M)
and we used ECMS = M . Consequently, the integration is trivial to carry out if the
amplitude does not induce any angular dependence, leading to

Γ(P → p1, p2) = S
|pout

CMS|
8πM2

|M(P → p1, p2)|2 θ
(
M − (m1 +m2)

)
. (55)

For indistinguishable final-state particles, we have S = 1/2 because (p1,p2) = (p2,p1) is
counted twice in the integration, whereas S = 1 otherwise.

Cross section

Together with decay rates, cross sections are among the most important observables in
particle physics. Consider two particles with momenta P1, P2 and masses M1,M2 that
scatter into n particles with momenta {pi}i=1,...,n. Once M(P1, P2 → p1, . . . , pn) is known,
the differential cross section is determined according to [7]

dσ(P1, P2 → p1, . . . , pn) =
1

4F
|M(P1, P2 → p1, . . . , pn)|2 dΦn(P1 + P2; p1, . . . , pn). (56)

Here, the kinematic factor F = [(P1 · P2)
2 −M2

1M
2
2 ]

1/2 becomes F = |pin
CMS|

√
s in the

center-of-mass system, where |pin
CMS| = λ(s,M2

1 ,M
2
2 )

1/2/(2s1/2) is the magnitude of the
three-momentum of either incoming particle and s = (P1+P2)

2. If the final state contains
indistinguishable particles, symmetry factors similar to those considered for the decay
width need to be accounted for upon performing the phase-space integration.
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Three-body phase space for decays

In the following, we deduce several convenient forms for the phase space of three-body
decays. The description of two-particle scattering reactions with three particles in the
final state is more intricate and, in essence, equals that of decays with four particles in
the final state; due to one more particle being involved, two additional angles need to be
taken into account here. Although such phase spaces will also be used throughout this
thesis, we restrict ourselves to the phase space for three-body decays as an example here.

We start by using the recursion relation stated in Eq. (45) to write

dΦ3(P ; p1, p2, p3) = dΦ2(q; p1, p2) dΦ2(P ; q, p3)
dq2

2π
, (57)

where q = p1 + p2 is the momentum of the subsystem that consists of the particles with
momenta p1 and p2. In order to insert the explicit form of the two-body phase space
given in Eq. (44), it is convenient to first analyze the kinematics of the process in the
corresponding center-of-mass systems. For dΦ2(q; p1, p2), we consider the center-of-mass
frame of the particles with momenta p1 and p2. In this frame, we denote the explicit
four-momenta by p∗1 = (E∗1 ,p

∗
1)

⊺ and p∗2 = (E∗2 ,−p∗1)
⊺, where the magnitude of the three-

momentum and the corresponding energies are found to be

|p∗1| =
√
λ(q2,m2

1,m
2
2)

2
√
q2

, E∗1 =
q2 +m2

1 −m2
2

2
√
q2

, E∗2 =
q2 −m2

1 +m2
2

2
√
q2

, (58)

with E∗CMS = E∗1 +E∗2 =
√
q2. To evaluate dΦ2(P ; q, p3), we look at the rest frame of the

decaying particle; this frame coincides with the center-of-mass system of the subsystem
described by q and the particle with momentum p3. Here, we write q = (Eq, q)

⊺ and
p3 = (E3,−q)⊺, where

|q| =
√
λ(M2, q2,m2

3)

2M
, Eq =

M2 + q2 −m2
3

2M
, E3 =

M2 − q2 +m2
3

2M
, (59)

with ECMS = Eq + E3 =M .
Using Eq. (44), together with the above kinematics, Eq. (57) becomes

dΦ3(P ; p1, p2, p3) = θ
(√

q2 − (m1 +m2)
)
θ
(
M − (

√
q2 +m3)

) |p∗1||q|
512π5M

√
q2

dq2 dΩ∗1 dΩq.

(60)
The solid angles dΩ∗1 = (cos θ∗1, ϕ

∗
1) and dΩq = (cos θq, ϕq) are given with respect to the par-

ticle with momentum p1 and the subsystem with momentum q in the coordinate systems
associated with the center-of-mass frames investigated above, see Fig. 2.13 When inter-
ested in spin-averaged observables, it is possible to perform all but one angular integrations
of Eq. (60) by rotating the coordinate systems appropriately. For this purpose, we align
the three-vector q along the z-axis and place p∗1 in the xz-plane, which we choose to match
the x∗z∗-plane, i.e., q = |q|(0, 0, 1)⊺ and p∗1 = |p∗1|(sin θ, 0, cos θ)⊺, with θ = θ∗1 = ∢(p∗1, q)
the only non-trivial angle of the process, see Fig. 2. Performing the integrations over the
trivial angles in Eq. (60), we then find

dΦ3(P ; p1, p2, p3) = θ
(√

q2− (m1+m2)
)
θ
(
M − (

√
q2+m3)

) |p∗1||q|
64π3M

√
q2

dq2 d cos θ. (61)
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x

y

z

q

ϕq

θq

x∗

y∗

z∗

p∗
1

ϕ∗1

θ∗1

x = x∗

y = y∗

q

z = z∗

p∗
1

θ∗1

Figure 2: The coordinate systems associated with the center-of-mass frames discussed in
the text before (left) and after (right) performing the rotations that render three angles
trivial in the phase-space integration. Note that we chose the z∗ axis to be aligned with
the direction of q already in the initial illustration for pure convenience. Moreover, the
origins of the coordinate systems are put on top of each other in the final representation.

It is further possible to replace the angular integration by an integration over k2, where
k = p2+p3. To this end, we use Eq. (21) and perform a Lorentz transformation from the
center-of-mass system of the particles with momenta p1 and p2, described by the explicit
four-vectors p∗1 and p∗2 in this frame, to the rest frame of the decaying particle, where
p1 = (E1,p1)

⊺ and p2 = (E2,p2)
⊺. This leads to

p1 =




γq(E
∗
1 + βq|p∗1| cos θ)
|p∗1| sin θ

0

γq(βqE
∗
1 + |p∗1| cos θ)


 , p2 =




γq(E
∗
2 − βq|p∗1| cos θ)
−|p∗1| sin θ

0

γq(βqE
∗
2 − |p∗1| cos θ)


 , (62)

where βq = |q|/Eq and γq = (1 − β2q )
−1/2. With p2 and p3 given in a unique reference

frame, we can then calculate k2 = (E2 + E3)
2 − (p2 − q)2 to obtain

∣∣∣∣
dk2

d cos θ

∣∣∣∣ =
2M |p∗1||q|√

q2
, (63)

and, hence,

dΦ3(P ; p1, p2, p3) = θ
(√

q2 − (m1 +m2)
)
θ
(
M − (

√
q2 +m3)

) 1

128π3M2
dq2 dk2. (64)

13By noting that dq2/d
√

q2 = 2
√

q2, we can also replace the differential dq2 by 2
√
q d

√
q2.
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The integration over k2 is to be performed over a fairly complicated region. This
is most conveniently seen by repeating the above calculation with q∗ = (E∗q , q

∗)⊺ and
p∗3 = (E∗3 ,p

∗
3)

⊺, i.e., by using Eq. (19) to transform the momenta q and p3 from the rest
frame of the decaying particle to the center-of-mass system of the particles with momenta
p1 and p2 instead. In this case, we find q∗ = (E∗q , 0, 0, 0)

⊺ and p∗3 = (E∗3 , 0, 0,−|p∗3|)⊺, with

|p∗3| =
√
λ(M2, q2,m2

3)

2
√
q2

, E∗q =
√
q2, E∗3 =

M2 − q2 −m2
3

2
√
q2

. (65)

Then, we have
k2 = (E∗2 + E∗3)

2 − (|p∗1|2 + |p∗3|2 + 2|p∗1||p∗3| cos θ), (66)

which reproduces Eq. (60) due to |p∗3| = |q|M/
√
q2. For the integration domain of k2, we

now note that θ ∈ [0, π], that is cos θ ∈ [−1, 1], so that the minimum and maximum are
obtained if the three-vectors are (anti-)parallel [7],

k2min/max = (E∗2 + E∗3)
2 −

(√
(E∗2)

2 −m2
2 ±

√
(E∗3)

2 −m2
3

)2
. (67)

In order to simplify calculations with the integration domain, we can perform yet
another variable transformation to ν = k2 − l2, where l = p1 + p3. To this end, we define
the Lorentz invariant Σ = q2 + k2 + l2, which fulfills Σ =M2 +m2

1 +m2
2 +m2

3 because
of momentum conservation, P = p1 + p2 + p3. With Σ, we can write

k2 =
Σ− q2 + ν

2
, l2 =

Σ− q2 − ν

2
, ν = 2k2 + q2 − Σ, (68)

so that the Jacobian of the transformation (q2, k2) → (q2, ν) is given by

Jν =




dq2

dq2
dq2

dν

dk2

dq2
dk2

dν


 =


 1 0

−1
2

1
2


 , (69)

where |det Jν | = 1/2.14 Hence, Eq. (64) becomes

dΦ3(P ; p1, p2, p3) = θ
(√

q2 − (m1 +m2)
)
θ
(
M − (

√
q2 +m3)

) 1

256π3M2
dq2 dν. (70)

For the domain of integration, we can use the explicit four-momenta to calculate

ν =
(M2 −m2

3)(m
2
2 −m2

1)− cos θ
√
λ(M2, q2,m2

3)
√
λ(q2,m2

1,m
2
2)

q2
, (71)

with cos θ ∈ [−1, 1], or insert Eq. (67) into ν = 2k2+q2−Σ, both leading to the boundaries

νmin/max =
(M2 −m2

3)(m
2
2 −m2

1)∓
√
λ(M2, q2,m2

3)
√
λ(q2,m2

1,m
2
2)

q2
. (72)

Here, the integration region vanishes (νmin = νmax) at the boundaries of the phase space
in q2 ∈ [(m1 +m2)

2, (M −m3)
2].

14In our case, the same result is obtained by differentiating k2 with respect to ν, yielding dk2 = dν/2.
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Unitarity and dispersion relations

The principle of maximal analyticity [10] states that physical amplitudes are functions in
the complex plane that are analytic in all continuous variables except for a countable set
of poles and branch points associated with physical states. In particular, the connection
between singularities and physical intermediate states can be made explicit by means of
the unitarity relation. Due to probability conservation, the S-matrix—which describes
the transition between initial and final states—fulfills S†S = 1 [4]. Writing S = 1 + iT ,
we separate the interaction part T of the S-matrix from the trivial component that is
accounted for by unity; the amplitude M(i→ f) is then defined via

⟨f |T |i⟩ = (2π)4δ(4)(pi − pf )M(i→ f), (73)

where pi and pf denote the total momenta of the initial state |i⟩ and final state |f⟩,
respectively. Consequently, unitarity of the S-matrix implies

T − T † = iT †T, (74)

and, hence,

M(i→ f)−M(f → i)∗ = i
∑

n

∫
dΦn(pi; pn)M(i→ n)M(f → n)∗, (75)

where we inserted a complete set of (discrete and continuous) n-body intermediate states [5]
with momentum pn, ∑

∫
n |n⟩ ⟨n| = 1,15 and omitted a common factor of δ(4)(pi − pf ) for

overall momentum conservation on both sides of the equation.
For practical purposes, we restrict ourselves to two-particle initial and final states in

the following, |i⟩ = |i1, i2⟩, |f⟩ = |f1, f2⟩, with the corresponding momenta denoted by
p1 through p4. In this case, Lorentz covariance dictates the amplitude to be a function
of the Mandelstam variables s = (p1 + p2)

2, t = (p1 − p3)
2, and u = (p1 − p4)

2 only,
M(i → f) = M(s, t, u), where s + t + u =

∑4
j=1m

2
j , and mj is the mass of the particle

described by pj . The case of forward scattering, |i⟩ = |f⟩ with pi = pf , leads to the
so-called optical theorem [5]

ImM(i→ i) = 2|pin
CMS|

√
s
∑

n

σ(i→ n), (76)

see Eq. (56). To go beyond the scattering in forward direction, we note that [11]

M(i→ f) = lim
ϵ→0+

M(s+ iϵ, t, u),

M(f → i)∗ = lim
ϵ→0+

M(s− iϵ, t, u), (77)

so that Eq. (75) translates to

discsM(s, t, u) = lim
ϵ→0+

[
M(s+ iϵ, t, u)−M(s− iϵ, t, u)

]

= i
∑

n

∫
dΦn(pi; pn)M(i→ n)M(f → n)∗. (78)

15Note the abuse of notation in generically labeling an n-body intermediate state by |n⟩ for, in particular,
there can be more than one n-body intermediate state, e.g., |ñ⟩.
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Formulae and identities

Re z

Im z

R

s C

sthr

Figure 3: The closed contour C that encircles s and avoids the branch cut starting at sthr,
leading to the dispersion relation given in Eq. (80) upon R→ ∞.

Assuming that Schwarz’ reflection principle [9] holds further implies M(s − iϵ, t, u) =
M(s + iϵ, t, u)∗,16 leading to discsM(s, t, u) = 2i limϵ→0+ ImM(s + iϵ, t, u) and thus a
purely imaginary discontinuity, in analogy to Eq. (76). Taken together, the amplitude
acquires a contribution to its imaginary part—or, more generally, a discontinuity—with
each intermediate state that can go on shell; neglecting effects from crossed-channel sin-
gularities and denoting the threshold of the lowest-lying intermediate state by sthr, the
discontinuity consequently vanishes for s < sthr.

Dispersion relations provide a tool to reconstruct physical amplitudes from their discon-
tinuities. The foundation of dispersion relations is given by Cauchy’s integral formula [9],
stating that

f(s) =
1

2πi

∮

C
dz

f(z)

z − s
(79)

for a complex function f(z) that is analytic within the region bounded by and on the closed
contour C encircling the (arbitrary) point s. Supposing that f(s) has a single branch cut
that starts at sthr and choosing the contour as depicted in Fig. 3,17 one then finds

f(s) =
1

2πi

∫ ∞

sthr

dx
discf(x)
x− s

(80)

if the function falls of sufficiently fast for |s| → ∞, f(s) = O(sd), d < 0. As will be
discussed next, a weaker asymptotic decrease of f(s) requires the introduction of so-called
subtractions: for one thing, the contribution from the arc depicted in Fig. 3 does not
vanish and for another thing, the integral given in Eq. (80) does not converge in this case.

16Here, the usual (but restrictive) argument from the physical perspective is that M(f → i) = M(i → f)
due to symmetry, which, together with Eq. (77), yields the desired property; see also Ref. [11].

17For simplicity, we disregard further right-hand cuts (s ≥ 0) as well as left-hand cuts (s < 0) here. The
latter, especially, may emerge from crossed-channel singularities in, e.g., t or u; see also Eq. (78).
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Foundations

Subtracted dispersion relations

The dispersion relation given in Eq. (80) is valid provided that the integrand falls off suffi-
ciently fast, f(s) = O(sd), d < 0. For f(s) ∼ sa, a ∈ [n−1, n), n ∈ N>0, asymptotically, in
particular, it is possible to establish the convergent, n-times subtracted dispersion relation

f(s) = Pn−1(s) +

∏n
i=1(s− si)

2πi

∫ ∞

sthr

dx
discf(x)

(x− s)
∏n

j=1(x− sj)
. (81)

Here, {si}i=1,...,n is a set of subtraction points that fulfill si < sthr; Pn−1(s) is a polynomial
of degree n− 1 in s, which induces n undetermined subtraction constants. The dispersion
relation is thus rendered convergent at the cost of introducing a set of free parameters.

We prove Eq. (81) by induction, starting with the initial case n = 1. To this end,
assume f(s) ∼ sb asymptotically with some b ∈ [0, 1) and consider the function

f̃(s) =
f(s)− f(s1)

s− s1
. (82)

Since f̃(s) ∼ sb̃, b̃ ∈ [−1, 0), for s→ ∞, with f̃(s1) finite due to L’Hôspital’s rule [9], we
can use Eq. (80) to write f̃(s) in terms of an unsubtracted dispersion relation as per

f̃(s) =
1

2πi

∫ ∞

sthr

dx
discf̃(x)
x− s

=
1

2πi

∫ ∞

sthr

dx
discf(x)

(x− s)(x− s1)
. (83)

Here, we used that (x± iϵ− si)
−1 = (x− si)

−1 +O(ϵ) and thus

discx
[
f(x)− f(si)

x− si

]
=
f(x+ iϵ)− f(si)

x+ iϵ− si
− f(x− iϵ)− f(si)

x− iϵ− si
=

discf(x)
x− si

. (84)

Hence, we find

f(s) = f(s1) +
s− s1
2πi

∫ ∞

sthr

dx
discf(x)

(x− s)(x− s1)
, (85)

where P0(s) = f(s1) is a polynomial of degree zero in s, in accordance with Eq. (81).
For the induction step n→ n+ 1, take f(s) ∼ sc for c ∈ [n, n+ 1) and define

f̃(s) =
f(s)− f(sn+1)

s− sn+1
. (86)

Since f̃(s) ∼ sa with a ∈ [n− 1, n), we can use our induction statement for n to write

f̃(s) = Pn−1(s) +

∏n
i=1(s− si)

2πi

∫ ∞

sthr

dx
discf̃(x)

(x− s)
∏n

j=1(x− sj)
. (87)

Using Eq. (84), i.e., discf̃(x) = discf(x)/(x − sn+1), and rearranging the resulting equa-
tion, we obtain

f(s) = f(sn+1) + (s− sn+1)Pn−1(s) +

∏n+1
i=1 (s− si)

2πi

∫ ∞

sthr

dx
discf(x)

(x− s)
∏n+1

j=1 (x− sj)
, (88)

with Pn(s) = f(sn+1) + (s− sn+1)Pn−1(s) a polynomial of degree n in s, as claimed.
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Formulae and identities

An alternative representation of n-times subtracted dispersion relations is found by
performing an n-fold differentiation of Eq. (81) with respect to s, leading to

dnf(s)

dsn
=

n!

2πi

∫ ∞

sthr

dx
discf(x)
(x− s)n+1

, (89)

which is equivalent to

dn

dsn

[∏n
i=1(s− si)

2πi

∫ ∞

sthr

dx
discf(x)

(x− s)
∏n

j=1(x− sj)

]
=

n!

2πi

∫ ∞

sthr

dx
discf(x)
(x− s)n+1

(90)

because Pn−1(s) is a polynomial of degree n− 1, vanishing upon n-fold differentiation.
To prove Eq. (89), we again proceed by induction. With

f(s) = P0(s) +
s− s1
2πi

∫ ∞

sthr

dx
discf(x)

(x− s)(x− s1)
, (91)

the initial case n = 1 follows as

df(s)

ds
=

1

2πi

∫ ∞

sthr

dx
discf(x)(x− s) + discf(x)(s− s1)

(x− s)2(x− s1)
=

1

2πi

∫ ∞

sthr

dx
discf(x)
(x− s)2

. (92)

For the induction step n→ n+ 1, we start from Eq. (81) for n+ 1,

f(s) = Pn(s) +

∏n+1
i=1 (s− si)

2πi

∫ ∞

sthr

dx
discf(x)

(x− s)
∏n+1

j=1 (x− sj)
, (93)

so that, using
∏n+1

i=1 (s− si) = (s− sn+1 + x− x)
∏n

i=1(s− si),

dn+1f(s)

dsn+1
=

dn+1

dsn+1

[∏n
i=1(s− si)

2πi

∫ ∞

sthr

dx
discf(x)

(x− s)
∏n

j=1(x− sj)

−
∏n

i=1(s− si)

2πi

∫ ∞

sthr

dx
discf(x)∏n+1
j=1 (x− sj)

]
. (94)

Here, the second term is a product of a polynomial of degree n in s and an integral that
is independent of s; hence,

dn+1f(s)

dsn+1
=

d

ds

dn

dsn

[∏n
i=1(s− si)

2πi

∫ ∞

sthr

dx
discf(x)

(x− s)
∏n

j=1(x− sj)

]

=
d

ds

n!

2πi

∫ ∞

sthr

dx
discf(x)
(x− s)n+1

(95)

upon inserting the induction statement in the form Eq. (90). Finally, performing the
derivative leads to

dn+1f(s)

dsn+1
=

(n+ 1)!

2πi

∫ ∞

sthr

dx
discf(x)
(x− s)n+2

, (96)

as claimed in Eq. (89). Note that one can in principle start from an unsubtracted dispersion
relation for f(s) to arrive at Eq. (89) in a straightforward manner. However, since the
corresponding integral does not necessarily converge, swapping the order of differentiation
and integration is a potentially invalid operation.
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Foundations

Cauchy principal value and Sokhotski–Plemelj theorem

The Cauchy-principal-value prescription allows to assign meaningful values to certain
types of otherwise ill-defined integrals. To illustrate the concept, we consider the exam-
ple [9]

∫ b

−a
dx

1

x
= lim

δ1→0+

∫ −δ1
−a

dx
1

x
+ lim

δ2→0+

∫ b

δ2

dx
1

x
= lim

δ1→0+

∫ δ1

a
dx

1

x
+ lim

δ2→0+

∫ b

δ2

dx
1

x

= lim
δ1→0+

log δ1 − log a+ log b− lim
δ2→0+

log δ2, (97)

with a, b > 0, which is not well-defined due to the logarithmic divergence at x = 0 and the
independence of the limits in approaching zero, e.g., δ2 = 2δ1. For such an integral over
a function f(x) with an isolated singularity at x0, xl < x0 < xu, the Cauchy principal
value is defined as [9]

−
∫ xu

xl

dx f(x) = lim
δ→0+

[ ∫ x0−δ

xl

dx f(x) +

∫ xu

x0+δ
dx f(x)

]
. (98)

By imposing the use of a single infinitesimal parameter δ for the limit, the Cauchy
principal value of the integral investigated in Eq. (97) thus evaluates to a finite and definite
result,

−
∫ b

−a
dx

1

x
= lim

δ→0+

[ ∫ −δ

−a
dx

1

x
+

∫ b

δ
dx

1

x

]
= log b− log a. (99)

For our purposes, in particular, the Cauchy principal value becomes relevant when
calculating integrals of the form [12]

I±(x0) = lim
ϵ→0+

∫ xu

xl

dx
f(x)

x− x0 ± iϵ
, (100)

with xl < x0 < xu, as before, and f(x) continuous on the integration interval and non-
singular in a neighborhood of it; through the infinitesimal shift of x0 into the complex
plane, the integration along the real line avoids the pole of the integrand for ϵ = 0 at
x = x0. We can rewrite Eq. (100) according to

I±(x0) = −
∫ xu

xl

dx
f(x)

x− x0
+ lim

δ→0+

∫

C±δ
dx

f(x)

x− x0
, (101)

where C±δ is the arc specified by the contour x±δ = x0 − δe∓it, t ∈ [0, π]. The integral over
the arc evaluates to

lim
δ→0+

∫

C±δ
dx

f(x)

x− x0
= ∓i lim

δ→0+

∫ π

0
dt f(x0 − δe∓it) = ∓iπf(x0) (102)

by expanding f(x0 − δe∓it) = f(x0) − δe∓itf ′(x0) + O(δ2) under the integral. Hence, we
obtain the Sokhotski–Plemelj formula,18

I±(x0) = −
∫ xu

xl

dx
f(x)

x− x0
∓ iπf(x0). (103)

If x0 was not contained in the integration interval, the imaginary part would vanish.
18For a more general version of the Sokhotski–Plemelj theorem, see, e.g., Ref. [13].
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Advanced topics

Advanced topics

Symmetries and quantum numbers

Symmetries are among the most important concepts of modern physics. They enable us to
group the vast amount of particles we know of today into certain categories and determine
whether a given scattering or decay process is forbidden, suppressed, or allowed. Here,
a crucial role is played by the discrete symmetries parity, charge conjugation, and time
reversal, the product of which is conserved in all cases relevant to us according to the ven-
erable CPT theorem [14, 15]. Electromagnetic interactions do, in fact, conserve all three
of these symmetries separately. Phenomenologically, the same holds true for the strong
interactions, even though the θ-term of quantum chromodynamics in principle implicates
violations of parity and time reversal while conserving charge conjugation. The weak
sector, on the other hand, generally induces parity, charge-conjugation, and time-reversal
violations; when disregarding the complex phase of the Cabibbo–Kobayashi–Maskawa
matrix, though, the weak interactions still conserve the combination of parity and charge
conjugation, i.e., time reversal as per the CPT theorem.19 Presently, no conventional
mechanism to generate an interaction that conserves only parity—and thus violates charge
conjugation and time reversal—is known within the realm of the standard model [16, 17].

Beyond the (potential) conservation of the quantum numbers associated with the dis-
crete symmetries discussed above, charge, (angular—including spin) momentum, and en-
ergy are paradigms of universally conserved quantities. For a system of particles, the
allowed values of total angular momentum are obtained following the rules of angular-
momentum addition. Furthermore, the total parity is given by the product of the intrinsic
parities of the individual particles and, for the example of a two-particle system, an addi-
tional contribution P = (−1)L from a relative orbital angular momentum L between these.
Since the intrinsic parity of antifermions is opposite to that of fermions—contrary to (an-
ti-)bosons with equal parities—fermion–antifermion systems have a parity of P = (−1)L+1.
Regarding charge conjugation, we note that a definite charge parity can only be assigned to
electrically neutral particles that are their own antiparticles, neutral particle–antiparticle
systems, and systems composed of such eigenstates. In the second case, in particular, the
charge parity reads C = (−1)L+S for scalar bosons and fermions, where S is the total spin
of the system and L is the relative orbital angular momentum between its constituents. For
systems of particles or compounds thereof with a definite behavior under charge conjuga-
tion, the total charge parity is given by the product of the corresponding charge parities.

To classify particles, one commonly uses the notation JP (C), denoting the total angular
momentum, parity, and charge-conjugation parity of the state, respectively. Another
(approximately conserved) quantum number of paramount importance to us is isospin,
which is associated with an approximate symmetry of the strong interactions and coupled
in analogy to spin. By combining charge conjugation with isospin, we can assign a so-called
G-parity to a broader spectrum of particles than possible with charge parity. Together
with isospin and G-parity, the classifying notation for particles as described above can then
be extended to IG(JPC). There are further (additive) quantum numbers like the baryon
and lepton number or the flavor quantum numbers strangeness, charm, bottomness, and
topness; a discussion of these is, however, beyond the scope of this summary.

19Describing a parity-conserving process with an odd number of particles behaving unnatural under
parity, e.g., pseudoscalar and axial-vector mesons, requires the amplitude to involve a Levi-Civita tensor.
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Foundations

Form factors and vector-meson dominance

In the context of this thesis, form factors refer to functions that parameterize the (non-
perturbative) electromagnetic interactions of hadronic matter. One of the most basic
examples in this regard is the pion vector form factor FV

π (q2), which is defined via

⟨π+(p′)π−(p)|Jµ
EM(0)|0⟩ = (p′ − p)µFV

π (q2), (104)

with q = p′ + p and

Jµ
EM(x) = q̄(x)Qγµq(x), q(x) = (u(x), d(x), s(x))⊺, Q =

1

3
diag(2,−1,−1). (105)

This form factor entails information on the respective ππγ coupling, that is either the
creation (annihilation) of a pair of charged pions from (into) a photon or—through crossing
symmetry—the scattering of a charged pion in an electromagnetic field. If the scattering
induces the conversion of a hadron into another particle, the functions are commonly called
transition form factors;20 a simple example is the electromagnetic transition of a vector
into a pseudoscalar meson or crossed processes thereof, i.e., the coupling V Pγ in general.
In particular, this definition includes the conversion of a hadron into an additional photon,
e.g., the vertex Aγγ, which describes the coupling of an axial-vector meson to two photons.

The interaction of hadrons with photons (JPC = 1−−) can be modeled using the
framework of vector-meson dominance [18–25]; see Refs. [26–28] for pedagogical and more
recent reviews. At the foundation of vector-meson dominance is the assumption that the
electromagnetic interactions of hadrons are mediated by neutral ρ-, ω-, and ϕ-like vector
mesons (JPC = 1−−). Without requiring insights into the underlying theory of quantum
chromodynamics, this hypothesis leads to a remarkably accurate description of the low-
and intermediate-energy region in a vast amount of applications. More specifically, some
form factor F(q21, . . . , q

2
N ), with photons of momenta {qi}i=1,...,N coupling to hadronic

matter via the vector mesons {Vi,j}j=1,...,M specified above, can then effectively be param-
eterized as a sum of propagator poles and a priori undetermined (dimensionless) coupling
constants {Cj}j=1,...,M according to

F(q21, . . . , q
2
N ) = (−1)N

M∑

j=1

Cj

N∏

i=1

M2
Vi,j

q2i −M2
Vi,j

+ iϵ
. (106)

In principle, the sum extends over all combinations of vector mesons that are allowed
by symmetry, and the factor (−1)N ensures the normalization F(0, . . . , 0) =

∑M
j=1Cj ;

in practice, it usually suffices to take into account the few lowest-lying vector mesons to
obtain an adequate representation. In writing Eq. (106), we assumed the narrow-width
approximation for the vector mesons, i.e., that their widths are negligible compared to
their masses. To provide a realistic description of broad resonances, especially, we will
incorporate the (in general energy-dependent) widths of the vector mesons by means of
Breit–Wigner propagators, which implies M2

Vi,j
→M2

Vi,j
− i
√
q2i ΓVi,j (q

2
i ) in the denomi-

nators. We will also consider dispersively improved variants of the propagators—so-called
spectral representations—which improve the analyticity properties of the form factors.
Further extrinsic information on the form factors, such as their high-energy behavior, can
be implemented, e.g., by an appropriate choice of the coupling constants Cj .

20We will not be strict about this naming scheme throughout the dissertation and, in some cases, refer
to what are actually transition form factors merely as form factors.
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Advanced topics

Energy-dependent widths and spectral representation

The width of a particle is a result of its instability and the decay into other particles in
an interacting theory. For an unstable resonance R with mass MR, the energy-dependent
width can be parameterized in terms of its partial widths ΓR→Xi into the available decay
channels Xi as per21

ΓR(q
2) =

∑

Xi

γR→Xi(q
2)

γR→Xi(M
2
R)

ΓR→Xi . (107)

Here, ΓR(M
2
R) = ΓR corresponds to the total width of the resonance, and the functions

γR→Xi(q
2) can be constructed by considering the formulae of the decay widths Γ(R→ Xi)

for variable mass, MR →
√
q2. The proper threshold behavior is implicit in the above,

i.e., γR→Xi(q
2) = 0 for q2 ≤ sithr, with sithr being the threshold for the decay R → Xi. If

ΓR/MR ≪ 1, the precise parameterization of the energy-dependent width in the Breit–
Wigner propagator

PBW
R (q2) =

1

q2 −M2
R + i

√
q2 ΓR(q2)

(108)

plays a minor role. Consequently, using a constant width,
√
q2 ΓR(q

2) ≈ MRΓR in the
propagator, is expected to yield a reasonable approximation; in general, this does, however,
induce unphysical imaginary parts below the threshold and spoil the analytic structure.

While the above energy-dependent widths have the proper threshold behavior, they
typically feature an unphysical steep rise for large q2, which can be particularly prob-
lematic once inserted into loop processes. In the following, we will establish a spectral
representation of the Breit–Wigner propagators to improve their analyticity proper-
ties. To this end, we postulate an unsubtracted dispersion relation, see Eq. (80), for a
dispersively improved propagator P disp

R (q2) according to

P disp
R (q2) =

1

2πi

∫ ∞

sthr

dx
disc [P disc

R (x)]

x− q2
=

1

π

∫ ∞

sthr

dx
Im [P disc

R (x)]

x− q2
, (109)

where sthr = min{sithr} is the lowest threshold immanent in Eq. (107), marking the onset of
the (first) branch cut; the evaluation of the imaginary part along the branch cut implicitly
involves x → x + iϵ (ϵ → 0+). By identifying the spectral function with the imaginary
part of the Breit–Wigner propagator, Im [P disc

R (x)] = Im [PBW
R (x)], we find

P disp
R (q2) = − 1

π

∫ ∞

sthr

dx
Im [PBW

R (x)]

q2 − x
, (110)

with
Im [PBW

R (x)] =
−√

xΓR(x)

(x−M2
R)

2 + xΓR(x)2
. (111)

Using the Sokhotski–Plemelj theorem, Eq. (103), we can compute this expression in-
finitesimally close to the branch cut, especially, by means of

lim
ϵ→0+

P disp
R (q2 ± iϵ) = − 1

π
−
∫ ∞

sthr

dx
Im [PBW

R (x)]

q2 − x
± i Im [PBW

R (q2)], (112)

where θ(q2 − sthr) for the imaginary part is implied by the factor ΓR(x) in Im [PBW
R (q2)].

21For all practical purposes, we will only take into account the dominant decay channels. In this case,
the partial widths have to be rescaled such that ΓR(M

2
R) = ΓR holds true.
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Foundations

Bardeen–Tung–Tarrach procedure

In the following, we outline a procedure that allows one to decompose amplitudes for
processes involving photons into Lorentz structures and form factors free of kinematic
singularities and zeroes, as developed by Bardeen, Tung, and Tarrach [29, 30]. While
dynamic singularities, i.e., poles and cuts of genuinely physical nature, are inherent to
the amplitude and dictate the analytic structure of the form factors, those of kinematic
origin correspond to redundant singularities in the external momenta. Kinematic zeroes,
in contrast, refer to sets of constraints in the form of linear dependencies. Crucially, the
singularity-free property of the form factors is a requirement to set up dispersion relations,
with the zero-free property rendering any ad hoc subtractions unnecessary [29].

To illustrate the convenience of the method established by Bardeen, Tung, and Tar-
rach, let us consider a generic tensor matrix element Mµ1...µN (q1, . . . , qN , p1, . . . , pM ),
with Q = {qi}i=1,...,N being photon momenta and P = {pj}j=1,...,M the momenta of the
remaining external particles;22 for ease of notation, we omitted further Lorentz indices
from, e.g., massive spin-1 particles, as may be present among the particles described by pj .
The full amplitude is obtained upon contracting the tensor matrix element with the po-
larization vectors of the photons and, potentially, multiplying by any additional fermionic
spinors. We now expand the tensor matrix element in terms of a basis of Lorentz struc-
tures {Lµ1...µN

k }k=1,...,L and associated form factors {Fk}k=1,...,L according to

Mµ1...µN (Q,P ) =

L∑

k=1

Lµ1...µN

k (Q,P )Fk({Q,P}2), (113)

where {Q,P}2 indicates all independent scalar invariants that can be built with the two
sets of momenta. With the holistic amplitude having only dynamic singularities [29], kine-
matic singularities in the structures imply that the form factors must develop kinematic
zeroes at the same points to mutually cancel and vice versa; similarly, linear dependencies,
i.e., kinematic zeroes, in the structures are linked to kinematic singularities in the form
factors. Had we considered an amplitude for a process without massless gauge bosons, the
construction of a basis free of kinematic singularities and zeroes would be rather straight-
forward: singularities in the structures could be avoided by choosing polynomials in the
four-momenta to construct the tensor basis,23 and apparent zeroes from, e.g., the discrete
symmetries parity, charge conjugation, and time reversal could readily be eliminated; see
Refs. [29–31] and references therein. In what follows, we assume Eq. (113) to consist of
such a polynomial tensor basis with the trivial kinematic zeroes removed.

On account of the Ward identity, which is a special case of the Ward–Takahashi
identity in quantum electrodynamics and intimately related to gauge invariance, the pho-
tons, for all qi, enforce [4, 5]

qiµi
Mµ1...µN (q1, . . . , qN , p1, . . . , pM ) = 0 (114)

in physical kinematic configuration, i.e., with non-photon external asymptotic-state par-
ticles assumed on shell. Hence, Eq. (113) must additionally obey equations of the form

0 =

L∑

k=1

[
qiµi

Lµ1...µN

k (Q,P )
]
Fk({Q,P}2), (115)

22Momentum conservation does, in fact, reduce the number of linearly independent momenta by one.
23Note that the structures possibly hold gamma matrices and might thus also reside in Dirac space.
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which induce a linear dependence, i.e., kinematic zeroes, among the form factors and
thus lead to non-trivial complications in the procedure described above. In principle, the
resulting equations can be solved manually to obtain a subset of independent form factors;
however, besides posing an in general tedious task, such an approach does not guarantee
the absence of further kinematic zeroes in the remaining form factors [29].

Instead, we follow Refs. [29, 30] and define a set of gauge projectors {Iνiµi
i }i=1,...,N ,

Iνiµi
i = gνiµi − kνii q

µi
i

ki · qi
, (116)

where ki is any momentum from Q or P that is distinct from qi.24 Let us start by
investigating the properties of these gauge projectors. First of all, we observe that

qiνi Iiνiµi = 0, (117)

so that contracting the gauge projectors with any tensor, e.g., Tµ1...µN , gives a gauge-
invariant quantity, qiνiIiνiµi

Tµ1...µN = 0. Furthermore, given a gauge-invariant tensor,
e.g., Gµ1...µN with qiµi

Gµ1...µN = 0, we have

Iiνiµi
Gµ1...µi...µN = Gµ1...νi...µN . (118)

In other words, applying the gauge projectors to already gauge-invariant quantities has
no effect beyond some trivial relabeling. Another property reads

Iiνiµi
kµi
i = 0, (119)

i.e., terms proportional to kµi
i vanish upon contraction with the gauge projectors.

Applying the full set of projectors to the matrix element given in Eq. (113) leads to

M̃ν1...νN (Q,P ) =
L∑

k=1

[( N∏

i=1

Iiνiµi

)
Lµ1...µN

k (Q,P )
]
Fk({Q,P}2)

=
∑

m∈J
L̃ν1...νN
m (Q,P )Fm({Q,P}2), (120)

where J ⊆ {1, . . . , L}. Due to the properties of the gauge projectors shown above, the
structures {L̃ν1...νN

m }m∈J and thus M̃ν1...νN (Q,P ) satisfy gauge invariance by construction.
At the same time, the number of (non-zero) structures is potentially reduced, eliminating
linear dependencies induced by Eq. (115) at least partly, with the form factors {Fm}m∈J
remaining free of kinematic singularities as a subset of the initial form factors. How-
ever, due to kinematic singularities in the structures L̃ν1...νN

m that arise from the poles
P (ki, qi) = ki · qi of the projectors, additional kinematic zeroes can be present among the
form factors [29]. To remove the singularities in the structures, we proceed as follows [30]:

• eliminate as many highest-order poles
∏

i P (ki, qi) as possible by constructing linear
combinations of the structures with non-singular coefficients;

• if no more highest-order poles can be removed in this way, reduce the order of these
poles by one by multiplying the corresponding structures with some P (ki, qi);

24The results obtained with different choices for ki will be physically equivalent [29].
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• repeat this procedure with the now highest-order poles and continue until no poles
are left in the structures.

We thus obtain a basis of structures {L̂ν1...νN
n }n∈I and associated form factors {F̂n}n∈I ,

with I ⊆ J , that are free from kinematic singularities and zeroes originating from gauge
invariance.25 With all other kinematic singularities and zeroes eliminated already in
Eq. (113), the final form of the matrix element is given by

M̂ν1...νN (Q,P ) =
∑

n∈I
L̂ν1...νN
n (Q,P ) F̂n({Q,P}2). (121)

In order to compare different tensor bases with each other, we consider two such bases
{Lµ1...µN

i }i=1,...,H and {Sµ1...µN
j }j=1,...,H , with any dependence of the structures on the

momenta being suppressed for notational convenience.26 Either of these bases can be
expressed in terms of the respective other by means of

Lµ1...µN
i =

H∑

j=1

βijS
µ1...µN
j ⇔ Lµ1...µN = βSµ1...µN , (122)

where βij are the corresponding coefficients, |{βij}i,j=1,...,H | = H2. Contracting both sides
of this equation with the structures {Sµ1...µN

k }k=1,...,H results in the system of equations

Lµ1...µN
i Skµ1...µN

=

H∑

j=1

βijS
µ1...µN
j Skµ1...µN

, (123)

which gives H independent equations for each i = 1, . . . ,H that can be solved for βij .
Let us further denote the form factors associated with the two bases by {Fi}i=1,...,H

and {Gj}j=1,...,H , respectively, again suppressing any dependence on the scalar invariants.
For the tensor matrix elements, we then write

Mµ1...µN
L =

H∑

i=1

Lµ1...µN
i Fi, Mµ1...µN

S =
H∑

j=1

Sµ1...µN
j Gj . (124)

With the two bases describing the same process, we have Mµ1...µN
L = Mµ1...µN

S and thus

H∑

i=1

Lµ1...µN
i Fi =

H∑

i,j=1

βijS
µ1...µN
j Fi =

H∑

j=1

Sµ1...µN
j Gj . (125)

Consequently, the form factors are related according to

Gj =
H∑

i=1

βijFi =

H∑

i=1

β⊺jiFi ⇔ G = β⊺F . (126)

25Here, we assume the existence of such a basis, which is not necessarily given; see, e.g., Refs. [30, 32].
26Although, in principle, similar relations as derived here can be obtained if the two sets of structures

have different dimensions HL and HS , such a comparison would lack definiteness because at most one of
the sets can constitute a basis. In this case, β would not correspond to a square matrix and the relations
between the bases could, in particular, not be inverted.
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Anomalous magnetic moment of the muon

The spin s of the muon induces an intrinsic magnetic moment [33, 34]

µ = −gµ
e

2mµ
s, (127)

which leads to an interaction ∝ µ · B with a magnetic field B (or, in general, with an
electromagnetic field, i.e., a photon). For the gyromagnetic ratio, the Dirac equation
predicts gµ = 2; the corresponding tree-level process is illustrated in the top-left diagram
of Fig. 4. This value is subject to higher-order corrections, motivating the definition of
the anomalous magnetic moment of the muon as the relative deviation from gµ = 2,

aµ =
gµ − 2

2
. (128)

Within the standard model, the corrections are conveniently divided into contributions
from quantum electrodynamics, the electroweak sector, and those of hadronic nature ac-
cording to aSM

µ = aQED
µ + aEW

µ + ahad
µ . Regarding the first of these, Schwinger pioneered

the calculation of the leading-order result [35, 36]

aQED, LO
µ =

α

2π
≈ 116 140 972× 10−11, (129)

which, by far, gives the largest contribution to aSM
µ ;27 see the top-right diagram of Fig. 4.

Beyond this one-loop result, corrections from quantum electrodynamics have presently
been calculated up to five-loop order, yielding [37, 38]

aQED, O(α5)
µ = 116 584 718.931(104)× 10−11, (130)

as also compiled in Ref. [39]. This figure accounts for all but 1 − aQED
µ /aexp

µ = 63 parts
per million of the current experimental world average’s central value [40–45],

aexp
µ = 116 592 059(22)× 10−11. (131)

Electroweak corrections comprise at least one of the electroweak gauge bosons W , Z
or the Higgs boson H; two of the dominant one-loop diagrams are obtained by replacing
the photon in the top-right diagram of Fig. 4 by a Z or H boson. The final result quoted
in Ref. [39], including two-loop contributions, reads [46, 47]

aEW
µ = 153.6(1.0)× 10−11. (132)

While the uncertainties on aQED
µ and aEW

µ are under sufficient control, the non-pertur-
bative nature of the strong interactions impedes a reliable determination of the hadronic
contributions. Here, the coupling of hadrons to muons necessarily proceeds via photons,
W , Z, or Higgs bosons since quantum chromodynamics does not allow for a direct cou-
pling to leptons. The hadronic corrections then decompose further into those attributable
to either hadronic vacuum polarization or hadronic light-by-light scattering as per ahad

µ =

aHVP
µ + aHLbL

µ ; the leading-order insertions of hadronic vacuum polarization and hadronic
light-by-light scattering as related to the magnetic moment of the muon are depicted in the
bottom-left and bottom-right diagrams of Fig. 4. Given the high precision of the experi-
mental value, Eq. (131), and the expected improvements beyond this result, higher-order
insertions have to be taken into account as well, which include the following [48–50]:

27Note that Schwinger’s result was misprinted in the original publication, Ref. [35]; see also Ref. [36].
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µ µ µ µ

µ µ µ µ

Figure 4: Diagrammatic illustration of the magnetic moment of the muon at tree level (top
left), its leading-order correction in quantum electrodynamics (top right), and the leading-
order insertions of hadronic vacuum polarization (bottom left) and hadronic light-by-light
scattering (bottom right). The shaded blobs represent hadronic intermediate states.

• an additional photon exchange between the muon legs or a second hadronic/leptonic
vacuum polarization bubble on the photon line in the bottom-left diagram of Fig. 4;

• a leptonic vacuum polarization bubble on one of the photon lines connected to the
muon legs in the bottom-right diagram of Fig. 4;

see also the compilation in Ref. [39]. Furthermore, the interpretation in terms of hadronic
intermediate states as the relevant degrees of freedom has to be reconciled with quark-loop
contributions and matched to short-distance constraints, a discussion of which is, however,
beyond the scope of this compendium; for extensive reviews, see Refs. [33, 34, 39]. After all,
there are two modern approaches to calculate ahad

µ : either using a data-driven dispersive
method or by solving quantum chromodynamics numerically on the lattice; see Ref. [39]
and references therein. The former strategy requires data on e+e− → hadrons to compute
aHVP
µ and, inter alia, information on the axial-vector transition form factors A → γ∗γ∗,
A = f1, f

′
1, a1, to determine aHLbL

µ . According to the theory consensus of Ref. [39], the
total standard-model prediction, including results from both approaches, is then given
by [37, 38, 46–63]

aSM
µ = 116 591 810(43)× 10−11, (133)

which differs from Eq. (131) by 5.2σ and potentially hints at physics beyond the standard
model. Rather recently, the CMD-3 measurement of e+e− → π+π− [64, 65] raised a
puzzle in the data-driven evaluation of hadronic vacuum polarization, which Ref. [39]
quotes as aHVP

µ = 6845(40) × 10−11 [48, 49, 51–55]; this puzzle and further tensions with
determinations from the lattice community are briefly addressed in Part I of this thesis.
Therein, we also discuss the contribution from hadronic light-by-light scattering obtained
with the phenomenological approach in more detail. When including results from both
approaches, on the contrary, Ref. [39] quotes aHLbL

µ = 92(19)×10−11 [34, 50, 56–63, 66–70].
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Tensor loop integrals and Passarino–Veltman decomposition

The Passarino–Veltman decomposition [71, 72] is based on the fact that any one-loop
integral can be reduced to a finite sum of predefined master integrals. To illustrate the
reduction procedure, we consider the one-loop topology of Feynman diagrams depicted
in Fig. 5. Such an N -point one-loop diagram leads to the generic expression [73]

DN =

∫
d4k

(2π)4
F (k, p1, . . . , pN )

[k2 −m2
1] [(q1 + k)2 −m2

2] [(q2 + k)2 −m2
3] . . . [(qN−1 + k)2 −m2

N ]
, (134)

where qi =
∑i

j=1 pj , with qN = 0 due to momentum conservation; for notational conve-
nience, we suppress the (+iϵ)-prescription in the propagators here and in the following
and, ad libitum, omit the arguments of, e.g., DN that remain after performing the loop
integration.28 The function F (k, p1, . . . , pN ) can consist of scalar invariants formed with
polarization vectors, spinors, gamma matrices, and polynomials in the loop momentum k
and the external momenta {pi}i=1,...,N .29 We can separate the dependence on the loop mo-
mentum in F (k, p1, . . . , pN ) from the rest, e.g., by writing k · pi = kµp

µ
i . Hence, Eq. (134)

can be written as a sum of integrals of the form

IµN =

∫
d4k

(2π)4
fµ(k)

[k2 −m2
1] [(q1 + k)2 −m2

2] [(q2 + k)2 −m2
3] . . . [(qN−1 + k)2 −m2

N ]
, (135)

multiplied by and contracted with the corresponding polarization vectors, spinors, gamma
matrices, and polynomials in the external momenta as well as scalar invariants thereof. In
general, the IµN are tensor loop integrals and the fµ(k) tensor fields, µ = (µ1, . . . , µr). If
fµ(k) ∼ 1 does not depend on k, the integral is referred to as a scalar loop integral. With
fµ(k) ∼ f(k2) being a scalar function of k2 only, we can use k2 = k2 −m2

i +m2
i and shift

the loop momentum as per k → k−pi to decompose the expression into a sum of scalar and
purely tensor loop integrals, where the latter have no dependence on k2 in the numerator
left, i.e., fµ(k) ∼ kµ1 . . . kµr . Similarly, the most general case, with fµ(k) containing both
factors of k2 and tensor structures kµj , can be reduced to a sum consisting of scalar and
purely tensor loop integrals only. Consequently, we will, without loss of generality, assume
fµ(k) ∼ {1, kµ1 . . . kµr} in the following.

From a dimensional analysis, one finds that IµN holds ultraviolet divergences, i.e.,
divergences that are due to the integration region of large momenta, if the rank r of loop
momenta in fµ(k) is such that r ≥ 2N − 4; here, equality yields a logarithmic divergence.
Since r = 0 for scalar loop integrals, only one- and two-point scalar loop integrals can
be ultraviolet divergent. Renormalizable quantum field theories, such as the standard
model [74], obey r ≤ N [73], so that ultraviolet divergences are restricted to a very narrow
set of integrals in these theories, see Table 1. A discussion of other types of divergences,
e.g., infrared divergences, which originate from integration regions of small momenta and
are related to the presence of massless particles, is beyond the scope of this compendium.
Divergent loop integrals are most conveniently regularized in the framework of dimensional
regularization [75], in which Eq. (135) becomes an integral in D = 4− 2ϵ dimensions,

IµN = µ4−D
∫

dDk

(2π)D
fµ(k)

[k2 −m2
1] [(q1 + k)2 −m2

2] [(q2 + k)2 −m2
3] . . . [(qN−1 + k)2 −m2

N ]
.

(136)
28To include (energy-dependent) widths, one can use the spectral representation given in Eq. (110).
29Closed fermion loops yield an additional factor of (−1).
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p1

p2

pN

q1 + k

m2

q2 + k

m3

qN−1 + k

mN

k

m1

Figure 5: A topological subset of one-loop Feynman diagrams, leading to a generic ex-
pression of the form given in Eq. (134), as discussed in the main text.

Here, µ is a dimensionful parameter that is introduced to retain the mass dimension of IµN ,
and the generalization of the four-vectors and the Minkowski scalar product to D space-
time dimensions is implicitly understood.30 In what follows, we will write all integrals
in their dimensionally regularized form, irrespective of their convergence; if the integral
converges in D = 4, the implied limit ϵ→ 0+ can, in principle, be taken at any stage.

The condition r ≤ N in renormalizable theories motivates the definition of the following
scalar and tensor loop integrals [71–73]: the tadpole diagram

A0(m1) = µ4−D
∫

dDk

iπ2
1

k2 −m2
1

, (137)

the bubble diagrams

B0(p1,m1,m2) = µ4−D
∫

dDk

iπ2
1

[k2 −m2
1][(q1 + k)2 −m2

2]
,

Bµ;µν(p1,m1,m2) = µ4−D
∫

dDk

iπ2
kµ; kµkν

[k2 −m2
1][(q1 + k)2 −m2

2]
, (138)

the triangle diagrams

C0(p1, p2,m1,m2,m3) = µ4−D
∫

dDk

iπ2
1

[k2 −m2
1][(q1 + k)2 −m2

2][(q2 + k)2 −m2
3]
,

Cµ;µν;µνα(p1, p2,m1,m2,m3) = µ4−D
∫

dDk

iπ2
kµ; kµkν ; kµkνkα

[k2 −m2
1][(q1 + k)2 −m2

2][(q2 + k)2 −m2
3]
,

(139)

30Note that the external quantities that we separated from the tensor integral, as, e.g., the gamma
matrices, have to be analytically continued to D dimensions as well. For the fifth gamma matrix, γ5, in
particular, this is problematic on its own [75].
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N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

r = 0 ∞ ∞
r = 1 0 ∞
r = 2 [∞] ∞ ∞
r = 3 [ 0 ] [∞] ∞
r = 4 [∞] [∞] [∞] ∞
r = 5 [ 0 ] [∞] [∞] [∞]

r = 6 [∞] [∞] [∞] [∞] [∞]

r = 7 [ 0 ] [∞] [∞] [∞] [∞] [ ]

Table 1: The ultraviolet behavior for loop integrals of the form given in Eq. (135). Here,
infinities and empty cells indicate diverging and converging integrals, respectively; zeroes
symbolize integrals that show up as divergent from simple power counting but vanish upon
explicit calculation. Square brackets flag integrals that do not exist in renormalizable
quantum field theories such as the standard model.

and the box diagrams

D0(p1, p2, p3,m1,m2,m3,m4)

= µ4−D
∫

dDk

iπ2
1

[k2 −m2
1][(q1 + k)2 −m2

2][(q2 + k)2 −m2
3][(q3 + k)2 −m2

4]
,

Dµ;µν;µνα;µναβ(p1, p2, p3,m1,m2,m3,m4)

= µ4−D
∫

dDk

iπ2
kµ; kµkν ; kµkνkα; kµkνkαkβ

[k2 −m2
1][(q1 + k)2 −m2

2][(q2 + k)2 −m2
3][(q3 + k)2 −m2

4]
, (140)

and an extension of this scheme to higher (N, r) is straightforward; writing the integration
measures with a factor 1/(iπ2) is purely conventional. Note that a tadpole integral with
r = 1, Aµ(m1), vanishes for symmetry reasons, as readily verified via the transformation
k → −k; see also Table 1 for N = 1 and odd r. This is in line with the observation
that Lorentz covariance would dictate such an integral to be proportional to a structure
with a free Lorentz index, of which there is none among the arguments of a tadpole
diagram. Since the scalar integrals have no structure in Lorentz space, they can only
depend on scalar invariants formed with the specified arguments, which we refrained from
making explicit in their arguments to ensure a consistent notation with the tensor integrals.
Following the procedure developed by Passarino and Veltman [71], the tensor integrals
can—based on Lorentz covariance—be reduced to a linear combination of scalar loop
integrals. Crucially, the intrinsically four-dimensional nature of space-time further allows
to reduce scalar loop integrals with N > 4 to a sum of scalar loop integrals with N = 4; see
Refs. [73, 76] and references therein. Consequently, any one-loop integral can be written
in terms of the four master integrals A0(m1), B0(p1,m1,m2), C0(p1, p2,m1,m2,m3), and
D0(p1, p2, p3,m1,m2,m3,m4), whose analytic expressions can be fairly complicated, being
composed of functions including (di-)logarithms and terms singular in D − 4 [72, 76].
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In order to outline the modus operandi of the Passarino–Veltman decomposition,
we observe that Lorentz covariance dictates an expansion of the tensor loop integrals
according to

Bµ(p1,m1,m2) = pµ1B1,

Bµν(p1,m1,m2) = gµνB00 + pµ1p
ν
1B11 (141)

for the bubble integrals,

Cµ(p1, p2,m1,m2,m3) = pµ1C1 + pµ2C2,

Cµν(p1, p2,m1,m2,m3) = gµνC00 +

2∑

i,j=1

pµi p
ν
jCij ,

Cµνα(p1, p2,m1,m2,m3) =
2∑

i=1

(gµνpαi + gµαpνi + gναpµi )C00i +
2∑

i,j,k=1

pµi p
ν
j p

α
kCijk (142)

for the triangle integrals, and

Dµ(p1, p2, p3,m1,m2,m3,m4) = pµ1D1 + pµ2D2 + pµ3D3,

Dµν(p1, p2, p3,m1,m2,m3,m4) = gµνD00 +
3∑

i,j=1

pµi p
ν
jDij ,

Dµνα(p1, p2, p3,m1,m2,m3,m4) =

3∑

i=1

(gµνpαi + gµαpνi + gναpµi )D00i +

3∑

i,j,k=1

pµi p
ν
j p

α
kDijk,

Dµναβ(p1, p2, p3,m1,m2,m3,m4) = (gµνgαβ + gµαgνβ + gµβgνα)D0000

+
3∑

i,j=1

(gµνpαi p
β
j + gµαpνi p

β
j + gµβpνi p

α
j + gναpµi p

β
j + gνβpµi p

α
j + gαβpµi p

ν
j )D00ij

+

3∑

i,j,k,l=1

pµi p
ν
j p

α
kp

β
l Dijkl (143)

for the box integrals. Here, the coefficient functions {B1, B00, B11, . . .} carry indices in
a suggestive way, indicating the momenta they are associated with; their dependence
on the available Lorentz invariants is suppressed for notational convenience. Due to
the symmetry of the tensor integrals under permutations of the indices, see Eq. (138)–
Eq. (140), the coefficient functions fulfill certain relations; some of these, e.g., a unique
C00i, have already been incorporated in Eq. (141)–Eq. (143), while others, such as C12 =
C21, are straightforward to deduce. Similarly, symmetry forbids the parity-odd Levi-
Civita tensor to be part of the above expansions. By contracting Eq. (141)–Eq. (143)
with the respectively available Lorentz structures, one obtains a system of equations that
can be solved to yield expressions for the coefficient functions in dependence of scalar loop
integrals only. We demonstrate this procedure exemplarily for the two-point loop integrals
here; the three- and four-point integrals require significantly more algebraic effort, which
is most conveniently performed using Gram matrices [71, 73, 76].
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In the two-point case, the available quantities to contract Eq. (141) with are pµ1 , gµν ,
and pµ1p

ν
1 , leading to

p1µB
µ(p1,m1,m2) = µ4−D

∫
dDk

iπ2
p1 · k

[k2 −m2
1][(p1 + k)2 −m2

2]
= p21B1, (144)

gµνB
µν(p1,m1,m2) = µ4−D

∫
dDk

iπ2
k2

[k2 −m2
1][(p1 + k)2 −m2

2]
= DB00 + p21B11,

p1µp1νB
µν(p1,m1,m2) = µ4−D

∫
dDk

iπ2
(p1 · k)2

[k2 −m2
1][(p1 + k)2 −m2

2]
= p21B00 + (p21)

2B11,

where we inserted q1 = p1. Rewriting

p1 · k =
[(p1 + k)2 −m2

2]− (k2 −m2
1) + (m2

2 −m2
1 − p21)

2
(145)

and shifting k → k− p1 in one of the resulting integrals, the first integral equation gives31

B1 =
A0(m1)−A0(m2) + (m2

2 −m2
1 − p21)B0(p1,m1,m2)

2p21
. (146)

For the second equation, we proceed in analogy, using k2 = k2 −m2
1 +m2

1, to find

DB00 + p21B11 = A0(m2) +m2
1B0(p1,m1,m2). (147)

The third equation requires some more algebra but otherwise similar techniques, resulting
in

p21B00 + (p21)
2B11 = µ4−D

p1µ
2

[ ∫
dDk

iπ2
kµ

k2 −m2
1

−
∫

dDk

iπ2
kµ

(p1 + k)2 −m2
2

+ (m2
2 −m2

1 − p21)

∫
dDk

iπ2
kµ

[k2 −m2
1][(p1 + k)2 −m2

2]

]

=
p21A0(m2) + (m2

2 −m2
1 − p21)p

2
1B1

2
, (148)

where we additionally used that a one-point tensor loop integral vanishes. We can solve
the two equations containing B00 and B11 to obtain

B00 =
A0(m2) + 2m2

1B0(p1,m1,m2)− (m2
2 −m2

1 − p21)B1

2(D − 1)
,

B11 =
A0(m2) + (m2

2 −m2
1 − p21)B1 − 2B00

2p21
, (149)

with B1 as specified in Eq. (146). In principle, we can thus write B1, B00, and B11 solely in
terms of the scalar loop integrals A0 and B0, each with fairly complicated expressions, how-
ever. Similar relations apply for the higher tensor integrals, where the coefficient functions
{C1, C2, C00, . . .} can be written in terms of scalar loop integrals with smaller or equal N .

31Note that the case p21 = 0 is a known limitation of the Passarino–Veltman procedure and needs to
be treated separately. Similar problems can appear in other loop integrals and particle kinematics, which,
in matrix notation, correspond to vanishing Gram determinants [73, 76].
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Scalar loop integrals

In the following, we derive an analytic expression for the scalar loop integral A0(m1) and
outline the calculation of B0(p1,m1,m2) [72]. To this end,32 we will use the formula [12]

∫
dDk

1

[k2 −∆+ iϵ]n
= (−1)niπD/2∆D/2−nΓ(n−D/2)

Γ(n)
, (150)

with the gamma function Γ(z) being expandable around its poles at z ∈ {0,−1,−2, . . .}
according to [12]

Γ(ϵ) =
1

ϵ
− γE +O(ϵ),

Γ(−n+ ϵ) =
(−1)n

n!

[
1

ϵ
− γE +

n∑

j=1

1

j
+O(ϵ)

]
, for n ∈ N>0. (151)

Here, ϵ→ 0+ is infinitesimal and γE ≈ 0.5772 is the Euler–Mascheroni constant. The
tadpole integral, for D = 4− 2ϵ, then becomes

A0(m1) = −m2
1

(
µ2

πm2
1

)ϵ

Γ(−1 + ϵ) = m2
1

[
1

ϵ
− γE + 1 + log

(
µ2

πm2
1

)
+O(ϵ)

]
, (152)

where we used xϵ = eϵ log x = 1+ϵ log x+O(ϵ2). Crucially, the simplification of logarithms,
e.g., using log(a/b) = log a − log b, needs to be done with due diligence here, depending
on the actual values of their possibly complex arguments.

For the calculation of B0(p1,m1,m2), we rewrite the bubble integral by introducing a
Feynman parameter [5], leading to

B0(p1,m1,m2) =
µ4−D

iπ2

∫
dDk

∫ 1

0
dα

1
[
α[(p1 + k)2 −m2

2 + iϵ] + (1− α)[k2 −m2
1 + iϵ]

]2

=
µ4−D

iπ2

∫
dDk

∫ 1

0
dα

1

[k2 −∆B + iϵ]2
, (153)

where we defined ∆B ≡ ∆B(α) = p21α(α − 1) − m2
1(α − 1) + αm2

2 and shifted the loop
momentum k → k − αp1. Hence, we can use Eq. (150) to find

B0(p1,m1,m2) =

∫ 1

0
dα

(
µ2

π∆B

)ϵ

Γ(ϵ) =
1

ϵ
− γE +

∫ 1

0
dα log

(
µ2

π∆B

)
+O(ϵ), (154)

and performing the remaining integration, one obtains [77]

B0(p1,m1,m2) =
1

ϵ
− γE + 2 + log

(
µ2

πm2
2

)
+
m2

2 −m2
1 − p21

2p21
log

(
m2

1

m2
2

)
(155)

+

√
λ(p21,m

2
1,m

2
2)

p21
log

(√
λ(p21,m

2
1,m

2
2) +m2

1 +m2
2 − p21

2m1m2

)
+O(ϵ).

Closed expressions for the three- and four-point scalar loop integral are more intricate
and, among other things, additionally involve dilogarithms [72, 76]; a further discussion
of analytic expressions for these integrals is, however, beyond the scope of this summary.

32Alternatively to the strategy pursued here, the finite parts of the scalar loop integrals could also be
calculated by determining the discontinuity of the respective diagram and evaluating a dispersion relation.
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Conformal mappings and z expansion

Complex functions f(z) that preserve the magnitude and orientation of angles at which
curves intersect are called conformal mappings [13]. It can be shown that this prop-
erty follows for holomorphic—that is analytic—functions that fulfill f ′(z) ̸= 0; as being
a holomorphic bijection implies f ′(z) ̸= 0, biholomorphic mappings, especially, are con-
formal [78]. A vast collection of examples of conformal mappings can, e.g., be found in
Ref. [79]. By Riemann’s mapping theorem [13, 78], we further know that every simply
connected and open proper subdomain of the complex plane is conformally equivalent to
the open unit disk D = {z ∈ C : |z| < 1}, i.e., there exists a conformal mapping from that
subdomain to D.33 Hence, conformal mappings provide a tool to bring physical problems
into a canonical form and allow for the application of certain techniques related to func-
tional optimization [80]. In particular, this applies to the analyticity domain of scattering
amplitudes and form factors, which can thus be mapped onto the unit disk D.

In the following, we will study a specific conformal mapping in more detail. Consider
the function34

z(t) = z(t, t0) =

√
tR − t−√

tR − t0√
tR − t+

√
tR − t0

, (156)

which, as we will demonstrate, maps the complex plane cut along the real axis for t ≥ tR,
C− = C\[tR,∞), conformally onto the open unit disk, z(t) : C− → D, see Fig. 6. Here, t0 is
a free parameter from the analyticity domain that gets mapped to the origin, z(t0) = 0; for
definiteness, we choose this parameter to be real, t0 < tR [80]. The square-root branch cut
of Eq. (156) requires the introduction of two Riemann sheets to provide a continuous func-
tion. If not otherwise stated, we will restrict ourselves to the first (physical) sheet in what
follows, arg[tR−t] ∈ (−π, π), where the evaluation on the cut is defined by the infinitesimal
limit from above, t→ t+ = t+ iϵ (ϵ→ 0+) for t ≥ tR, corresponding to arg[tR − t] = −π;
taking the limit t→ t− = t− iϵ, on the other hand, results in arg[tR− t] = π. The analytic
continuation to the second Riemann sheet will be outlined at the end of our discussion.

We start by showing that Eq. (156) maps the cut complex plane C− into D, i.e.,

1. |z(t)| < 1 for t ∈ C−.

Indeed, for t ∈ C−, we have tR − t = reiφ with φ ∈ (−π, π) and 0 < r = |tR − t| < ∞, so
that

|z(t)| =
∣∣∣∣
√
r cos(φ/2)−√

tR − t0 + i
√
r sin(φ/2)√

r cos(φ/2) +
√
tR − t0 + i

√
r sin(φ/2)

∣∣∣∣

=

(
r + tR − t0 − 2

√
r
√
tR − t0 cos(φ/2)

r + tR − t0 + 2
√
r
√
tR − t0 cos(φ/2)

)1/2

< 1. (157)

In particular, the analytic segments of the real axis map onto the reals according to

2. z(−∞ < t ≤ t0) ∈ [0, 1);

3. z(t0 ≤ t < tR) ∈ (−1, 0].
33The Osgood–Carathéodory theorem asserts the existence of a continuous extension of the mapping

to the boundary if the subdomain is bounded by a simple closed contour [13].
34In the literature, this mapping is sometimes written with an additional prefactor of (−1); see, e.g.,

Ref. [80]. The generalization of the results presented here to this convention is straightforward.
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Re t

Im t

tRtRt0t0 Re z

Im z

|z(t)| = 1

z(tR)z(tR) z(±∞)z(±∞)z(t0)z(t0)

Figure 6: Illustration of the cut complex plane C− (left) that is mapped onto the open
unit disk D (right) by z(t), Eq. (156). The upper (lower) rim of the branch cut is mapped
onto the lower (upper) unit semicircle; see text for more information.

For the former of these, we note that z(t≤t0) ≥ 0 for t≤t0 ∈ (−∞, t0] and thus also

z(t≤t0) = |z(t≤t0)| <
√
tR − t≤t0 +

√
tR − t0√

tR − t≤t0 +
√
tR − t0

= 1 (158)

by the triangle inequality |a+ b| ≤ |a|+ |b|, with equality holding if and only if a and b are
both non-negative or non-positive. Concerning the latter interval, t≥t0 ∈ [t0, tR) results in
z(t≥t0) ≤ 0 and z(t≥t0) = −|z(t≥t0)| > −1 by a similar argument to the above.

Evaluating Eq. (156) infinitesimally close to the branch cut, we observe that

4. the upper (lower) rim of the cut, t+ = t + iϵ (t− = t − iϵ), t ≥ tR, is mapped onto
the unit semicircle ξ = eiθ with θ ≤ 0 (θ ≥ 0).

To deduce this, we first establish |z(t±)| = 1 for t ≥ tR, as can be obtained from the
second equality of Eq. (157), with t = t+ (t = t−) corresponding to φ = −π (φ = π) and
r = t− tR ≥ 0. Furthermore,

z(t) =
r − tR + t0 + 2i

√
r
√
tR − t0 sin(φ/2)

r + tR − t0 + 2
√
r
√
tR − t0 cos(φ/2)

(159)

gives

z(t±) =
r − tR + t0 ∓ 2i

√
r
√
tR − t0

r + tR − t0
, (160)

and since |z(t±)| = 1, we may write z(t±) = eiθ(t
±). For some general z = Reiθ, the

argument can be determined via

θ = sgn[Im z] arccos

(
Re z
R

)
, (161)

which, in our case, leads to

θ(t±) = ∓ arccos

(
1− 2

tR − t0
r + tR − t0

)
∈ [0,∓π]. (162)
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Moreover, we find the special values

5. z(tR) = −1;

6. limt→±∞ z(t) = 1.

Both z(tR) = −1 and limt→−∞ z(t) = 1 are, in fact, direct consequences of Eq. (156),
whereas limt→∞ z(t) = limt→∞ z(t±) = 1 follows from θ(t±) = 0 for r → ∞, see Eq. (162).

Next, we want to prove that

7. z(t) : C− → D is biholomorphic, with the inverse mapping

t(z) =
t0(1 + z)2 − 4tRz

(1− z)2
. (163)

In order to show injectivity, we take t1, t2 ∈ C− and calculate

z(t1) = z(t2) ⇔
(√
tR − t1 −

√
tR − t0

)(√
tR − t2 +

√
tR − t0

)

=
(√
tR − t2 −

√
tR − t0

)(√
tR − t1 +

√
tR − t0

)
⇔ t1 = t2, (164)

where we used that the denominator of Eq. (156) does not vanish anywhere (|z(t)| ≤ 1).
For surjectivity, we need to find a tx ∈ C− ∀zx ∈ D such that z(tx) = zx. This tx = t(zx)
is readily found with Eq. (163), which thus gives the inverse mapping, as claimed:35

z(t(zx)) =

√
(1 + zx)2/(1− zx)2 − 1√
(1 + zx)2/(1− zx)2 + 1

=
(1 + zx)/(1− zx)− 1

(1 + zx)/(1− zx) + 1
= zx. (165)

Here, squaring 1 + zx = ρeiα, α ∈ (−π/2, π/2), and subsequently taking the square
root is a trivial operation to carry out since we remain on the principal branch, that is
arg[(1 + zx)

2] ∈ (−π, π). For w = 1 − zx, however, squaring leads to w2 = w̃2, with
w̃ = zx − 1, and we have to choose the proper value of

√
w2 =

√
w̃2 by hand. To this end,

we note that upon squaring w̃ = ρeiα, π/2 < |α| ≤ π, the value of the argument exceeds the
domain of the principal branch, thus necessitating the addition of an appropriate multiple
of 2π to remain on the first Riemann sheet. For w = ρeiα, on the contrary, we have
α ∈ (−π/2, π/2), as for 1+ zx, and thus remain on the principal branch, argw2 ∈ (−π, π).
The proper choice for the square root is then found to be given by

√
w2 =

√
w̃2 = w;

see Fig. 7 for a graphical illustration. What remains to be proven is that z(t) : C− → D
is holomorphic, which we will do by writing it as the composition of three (trivially)
holomorphic functions with matching (co-)domains. Consider [13, 79]

f(t) = tR − t, holomorphic on C, g(z) =
√
z, holomorphic on C \ (−∞, 0],

h(z) =
z −√

tR − t0
z +

√
tR − t0

, holomorphic on C \ {−
√
tR − t0}, (166)

in terms of which z(t) = h(g(f(t))). We start by observing that f(t) is holomorphic on
C− because it is holomorphic on C, and the domain is mapped according to f(C−) = C̃−,
with C̃− = C \ (−∞, 0]. The function g(z) is holomorphic on the resulting region C̃− and
we have g(C̃−) = H, H = {z ∈ C : Re z > 0}. Furthermore, h(z) is holomorphic on H as
its only non-analytic point is −√

tR − t0 ̸∈ H; here, we already know that h(H) = D.
35The value provided by Eq. (163) for zx ∈ D necessarily also fulfills t(zx) ∈ C− because otherwise,

zx = z(t(zx)) ∈ D for some t(zx) ∈ [tR,∞), which contradicts what we have shown before.
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Figure 7: Illustration of
√
w2 =

√
w̃2 = w for w = 1 − zx (top left and top right) and

w̃ = zx − 1 (bottom left and bottom right) by choosing the appropriate branch of the
square-root function for two exemplary values of zx ∈ D; see text for details.

As we have argued in the beginning, the square-root branch cut of Eq. (156) leads to
the emergence of a second (unphysical) Riemann sheet, with our discussion having been
restricted to the first (physical) sheet up to this point. To show that

8. the analytic continuation to the second Riemann sheet is given by zII(t) = 1/z(t),

we impose zII(t−) = z(t+) upon crossing the cut on the negative real axis at φ = −π and
use Schwarz’ reflection principle [9], z(t∗) = z(t)∗.36 Accordingly, we obtain

zII(t
−) = z(t+) = z(t−)∗ =

1

z(t−)
, (167)

where we used that 1 = |z(t−)|2 = z(t−)z(t−)∗ in the last step, and the continuation away
from the cut, zII(t) = 1/z(t), follows by uniqueness. Since |z(t)| ≤ 1 on the first Riemann
sheet, points on the second sheet are mapped to the exterior of the unit disk, |zII(t)| ≥ 1.

The mapping given in Eq. (156) can be modified to additionally account for a left-hand
cut along t ≤ tL [80],

z(t) =

√
tR − t− C

√
t− tL√

tR − t+ C
√
t− tL

, C =

√
tR − t0√
t0 − tL

. (168)

A further discussion of this extension is, however, beyond the scope of this compendium.
36The conditions needed for Schwarz’ reflection principle to hold are readily checked to be met. How-

ever, it is also straightforward to verify explicitly that z(t) fulfills, especially, z(t+) = z(t−)∗, see Eq. (160).
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The usage of conformal mappings in solving physical problems has a long history,
including but not being restricted to applications in high-energy physics [81–84]. One
such application is the determination of dispersive bounds for hadronic form factors, as
will be discussed in the following, based on an example from Ref. [80]. To this end, we
consider the vacuum–vacuum two-point correlation function

ΠV
µν(q) = i

∫
d4x eiqx ⟨0|T{JV

µ (x)JV†
ν (0)}|0⟩ , (169)

where JV
µ (x) = q̄2(x)γµq1(x) is a vector quark-transition current, and the corresponding

correlator for, e.g., the axial-vector current JA
µ (x) = q̄2(x)γµγ5q1(x) can be treated in

complete analogy. By means of Lorentz covariance, we may expand this tensor in terms
of two polarization functions according to37

ΠV
µν(q) =

(
qµqν
q2

− gµν

)
ΠV

T(q
2) +

qµqν
q2

ΠV
L (q

2), (170)

with ΠV
T(q

2) and ΠV
L (q

2) denoting the transversal (spin-1) and longitudinal (spin-0) com-
ponents, respectively. To project ΠV

µν(q) onto these scalar functions, we can use

Pµν
T (q) =

1

3

(
qµqν

q2
− gµν

)
, Pµν

L (q) =
qµqν

q2
, Pµν

L (q)− 3Pµν
T (q) = gµν , (171)

i.e., ΠV
T,L(q

2) = Pµν
T,L(q)Π

V
µν(q), as readily verified. Crucially, ΠV

T(q
2) and ΠV

L (q
2) fulfill

dispersion relations of the form given in Eq. (89), with the number of subtractions deter-
mined from the asymptotic behavior predicted by perturbative quantum chromodynamics
in the deep Euclidean region [85], which, in our case, leads to [80]

χV
T(q

2) =
1

2

d2ΠV
T(q

2)

d(q2)2
=

1

2πi

∫ ∞

0
dt

disctΠV
T(t)

(t− q2)3
,

χV
L (q

2) =
dΠV

L (q
2)

dq2
=

1

2πi

∫ ∞

0
dt

disctΠV
L (t)

(t− q2)2
. (172)

Perturbative quantum chromodynamics can further be used to compute χV
T,L(q

2) in the
region of (space-like) q2 where non-perturbative effects are absent. The hypothesis of
quark-hadron duality then states that the resulting spectral functions can be analytically
continued to match the description in terms of hadrons [80]. Consequently, we can equally
use unitarity to write [86, 87]

discq2Π
V
T,L(q

2) = Pµν
T,L(q)

[
i
∑

n

∫
dΦn(q; p1, . . . , pn) ⟨0|JV

µ (0)|n⟩ ⟨n|JV†
ν (0)|0⟩

]
, (173)

with the sum, in principle, extending over all hadronic n-body intermediate states that
couple the given vector current to the vacuum. In practice, however, one usually takes
into account the lowest terms only, which allows us to obtain lower bounds on the spectral
functions in Eq. (172) as the higher states, in particular, yield positive contributions [80].

37For a conserved current, ∂µJV
µ (x) = 0, we would have 0 = qµΠV

µν(q) = qνΠ
V
L (q

2), so that the longitu-
dinal polarization function needed to vanish, ΠV

L (q
2) = 0.
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For illustrative purposes, we will restrict ourselves to the lightest pair of pseudoscalar
mesons in what follows, with one of them containing a quark q1 and the other a quark q̄2,
in line with the content specified by JV

µ (x). The corresponding matrix element required
to calculate the contribution to the unitarity sum is related to [80]

⟨P ′(p′)|JV
µ (0)|P (p)⟩ =

(
pµ+p

′
µ−

m2 −m′2

q2
qµ

)
f+P→P ′(q

2)+
m2 −m′2

q2
qµ f

0
P→P ′(q2) (174)

via crossing symmetry, where m and m′ are the meson masses and q = p− p′. Using the
kinematics of the crossed process, p′ → −p′, q = p+ p′, and inserting the two-body phase
space, Eq. (44), we thus obtain

discq2Π
V
T,L(q

2) ≥ θ
(√

q2 − (m+m′)
) i
√
λ(q2,m2,m′2)

8πq2
AT,L(q

2), (175)

with38

Aλ(q
2) = Pµν

λ (q) ⟨0|JV
µ (0)|P (p) sP ′(p′)⟩ ⟨0|JV

ν (0)|P (p) sP ′(p′)⟩∗

=





λ(q2,m2,m′2)
3q2

|f+P→P ′(q
2)|2, λ = T,

(m2 −m′2)2

q2
|f0P→P ′(q2)|2, λ = L.

(176)

Hence, Eq. (172) becomes

χV
T(q

2) ≥ 1

2πi

∫ ∞

t+

dt
wT(t)|f+P→P ′(t)|2

(t− q2)3
, wT(t) =

i(t− t+)
3/2(t− t−)3/2

24πt2
,

χV
L (q

2) ≥ 1

2πi

∫ ∞

t+

dt
wL(t)|f0P→P ′(t)|2

(t− q2)2
, wL(t) =

i t+t−(t− t+)
1/2(t− t−)1/2

8πt2
, (177)

where we defined t± = (m±m′)2 for the (pseudo-)threshold.39 By including more states
in the unitarity sum, i.e., other two-particle and higher intermediate states but also the
disregarded one-particle intermediate states, these bounds can gradually be refined.

For the parameterization of the form factors, we will postulate a series expansion in
the conformal variable z(t), Eq. (156), which shows an improved rate of convergence as
compared to an expansion in, e.g., t [88, 89]; this effect can be enhanced by optimizing
the choice of the parameter t0 [80], in such a way that, generally, only the first few terms
of the expansion are needed to obtain a reasonable approximation. More specifically, the
z expansion for some form factor F (t) that is analytic within the complex plane cut for
t ≥ t+ reads

F (t) =

∞∑

n=0

anz(t)
n, (178)

38We omit a discussion about potential isospin degeneracy factors arising from different charge channels.
39The common notation t± = (m±m′)2 for the (pseudo-)threshold—instead of tR = (m+m′)2—is not

to be confused with t± = t± iϵ (ϵ → 0+), as introduced for the preceding discussion of Eq. (156).
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where an ∈ R if F (t) obeys Schwarz’ reflection principle and dim[an] = dim[F (t)]. The
monomials z(t)n = ξn = einθ are orthonormal on the unit circle ∂D = {z ∈ C : |z| = 1 }
with respect to the scalar product

⟨f, g⟩ = 1

2πi

∫

∂D

dz

z
f(z)∗g(z), (179)

that is
⟨ξn, ξm⟩ = 1

2π

∫ π

−π
dθ ei(m−n)θ = δnm. (180)

To find the Jacobian for the variable transformation t→ z(t) in the integrals of Eq. (177),
we note that Eq. (163) yields

t(z) = t+ − (t+ − t0)[1−R2(4−R2) + 2R2 cos(2θ)] + 4iR(1−R2)(t+ − t0) sin θ

(1 +R2 − 2R cos θ)2
(181)

for some general z = Reiθ. From the upper and lower unit semicircles, i.e., z± = eiθ
± with

θ± ∈ [0,±π], we thus recover t∓ = t(θ±) infinitesimally below and above the cut,

t(θ±) = t0 + 2
t+ − t0

1− cos θ±
∓ iϵ. (182)

Here, the inverse function

θ(t±) = ∓ arccos

(
1− 2

t+ − t0
t− t0

)
(183)

is in accordance with Eq. (162) upon inserting t+ − t = reiφ and taking φ = ∓π, and we
identify θ± = θ(t∓). Consequently, we have

1

2πi

∫

∂D

dz

z
|F (t(z))|2 = 1

2π

(∫ 0

−π
dθ− |F (t(θ−))|2 +

∫ π

0
dθ+ |F (t(θ+))|2

)

=
1

2π

(∫ ∞

t+

dt
dθ(t+)

dt
|F (t+)|2 +

∫ t+

∞
dt

dθ(t−)
dt

|F (t−)|2
)

=
1

π

∫ ∞

t+

dt

∣∣∣∣
dθ(t±)
dt

∣∣∣∣ |F (t±)|2, (184)

where
dθ(t±)
dt

= ±
√
t+ − t0

(t− t0)
√
t− t+

(185)

and we assumed Schwarz’ reflection principle for F (t) in the last step. Since |z(t±)| = 1
on the cut, we can further replace the Jacobian by

∣∣∣∣
dz(t±)
dt

∣∣∣∣ =
∣∣∣∣
dz(t±)
dθ∓

dθ(t±)
dt

∣∣∣∣ =
∣∣∣∣
dθ(t±)
dt

∣∣∣∣, (186)

with the identification z± = z(t∓). Moreover, we can use the scalar product defined
in Eq. (179) to project onto the coefficients of the expansion in Eq. (178). Due to the
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orthonormality of the monomials z(t)n = ξn = einθ on the unit circle, we deduce

am = ⟨ξm, F (t)⟩ = 1

2π

(∫ 0

−π
dθ− F (t(θ−))e−imθ− +

∫ π

0
dθ+ F (t(θ+))e−imθ+

)

=
1

π

(∫ π

0
dθ+ Re [F (t(θ+))] cos(mθ+) +

∫ π

0
dθ+ Im [F (t(θ+))] sin(mθ+)

)

=
1

π

(∫ 0

−π
dθ−Re [F (t(θ−))] cos(mθ−) +

∫ 0

−π
dθ− Im [F (t(θ−))] sin(mθ−)

)
, (187)

where we used that
∫ 0

−π
dθ− F (t(θ−))e−imθ− =

∫ ∞

t+

dt
dθ(t+)

dt
F (t+)e−imθ(t+) =

∫ t+

∞
dt

dθ(t−)
dt

F (t−)∗eimθ(t−)

=

∫ π

0
dθ+ F (t(θ+))∗eimθ+ ,

∫ π

0
dθ+ F (t(θ+))e−imθ+ =

∫ t+

∞
dt

dθ(t−)
dt

F (t−)e−imθ(t−) =

∫ ∞

t+

dt
dθ(t+)

dt
F (t+)∗eimθ(t+)

=

∫ 0

−π
dθ− F (t(θ−))∗eimθ− . (188)

Hence, we find

a0 =
1

π

∫ π

0
dθ+ Re [F (t(θ+))] =

1

π

∫ 0

−π
dθ−Re [F (t(θ−))], (189)

and since F (t) was assumed to be analytic, i.e., am<0 = 0 [90], we obtain
∫ π

0
dθ+ Re [F (t(θ+))] cos(mθ+) =

∫ π

0
dθ+ Im [F (t(θ+))] sin(mθ+),

∫ 0

−π
dθ−Re [F (t(θ−))] cos(mθ−) =

∫ 0

−π
dθ− Im [F (t(θ−))] sin(mθ−), (190)

which leads to (m > 0)

am =
2

π

∫ π

0
dθ+ Re [F (t(θ+))] cos(mθ+) =

2

π

∫ π

0
dθ+ Im [F (t(θ+))] sin(mθ+),

=
2

π

∫ 0

−π
dθ−Re [F (t(θ−))] cos(mθ−) =

2

π

∫ 0

−π
dθ− Im [F (t(θ−))] sin(mθ−). (191)

Transforming to the variable t, the above formulae become (m > 0)

a0 =
1

π

∫ ∞

t+

dt

∣∣∣∣
dθ(t±)
dt

∣∣∣∣ReF (t±), (192)

am =
2

π

∫ ∞

t+

dt

∣∣∣∣
dθ(t±)
dt

∣∣∣∣ReF (t±) cos(mθ(t±)) =
2

π

∫ ∞

t+

dt

∣∣∣∣
dθ(t±)
dt

∣∣∣∣ ImF (t±) sin(mθ(t±)).
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Coming back to Eq. (177), we use Eq. (184) and rewrite these inequalities as

1 ≥ 1

π

∫ ∞

t+

dt

√
t+ − t0

(t− t0)
√
t− t+

|ϕT(t, q
2)f+P→P ′(t)|2 =

1

2πi

∫

∂D

dz

z
|ϕT(t(z), q

2)f+P→P ′(t(z))|2,

1 ≥ 1

π

∫ ∞

t+

dt

√
t+ − t0

(t− t0)
√
t− t+

|ϕL(t, q
2)f0P→P ′(t)|2 = 1

2πi

∫

∂D

dz

z
|ϕL(t(z), q

2)f0P→P ′(t(z))|2,

(193)

where we defined

|ϕT(t, q
2)|2 = (t− t+)

2(t− t−)3/2(t− t0)

48πχV
T(q

2)(t+ − t0)1/2t2(t− q2)3
,

|ϕL(t, q
2)|2 = t+t−(t− t+)(t− t−)1/2(t− t0)

16πχV
L (q

2)(t+ − t0)1/2t2(t− q2)2
. (194)

Performing series expansions for F+,0(t) = ϕT,L(t, q
2)f+,0

P→P ′(t) as given in Eq. (178) re-
quires analyticity within the open unit disk D. Here, ϕT,L(t, q

2) are so-called outer func-
tions, which can, in principle, be continued to functions analytic within D from their
modulus on the boundary through an integral representation [80]. A mathematically rig-
orous treatment of this is, however, beyond the scope of this summary and also involves
a discussion of Hardy spaces; see, e.g., Refs. [91–95] for extensive reviews. For our pur-
poses, it suffices to observe that the functions ϕT,L(t, q

2) =
√
|ϕT,L(t, q2)|2 can effectively

be rendered analytic within D by replacing poles and branch points as per40

(
1

t−X

)k

→
(−z(t,X)

t−X

)k

. (195)

Crucially, we have z(X,X) = 0, and |z(t,X)| = 1, t ≥ t+, leaves the modulus on the unit
circle unchanged, see Eq. (156) and the discussion thereof; various applications of this
method can, e.g., be found in Refs. [96–101]. For our example, this procedure results in

ϕT(t, q
2) =

t− t+

[48πχV
T(q

2)]1/2(t+ − t0)1/4

(
z(t, 0)

−t

)(
t− − t

z(t, t−)

)3/4( t0 − t

z(t, t0)

)1/2(z(t, q2)
q2 − t

)3/2

,

ϕL(t, q
2) =

t+t−
[16πχV

L (q
2)]1/2(t+ − t0)1/4

(
z(t, 0)

−t

)(
t+ − t

z(t, t+)

)1/2( t− − t

z(t, t−)

)1/4( t0 − t

z(t, t0)

)1/2

×
(
z(t, q2)

q2 − t

)
, (196)

with the trivial simplification z(t, t+) = 1. Another complication arises if the form factors
f+,0
P→P ′(t) possess subthreshold singularities—that is poles on the real axis below the onset

of the branch cut—since the form factors will be non-analytic at these points.41 Let tp
be the position of such a subthreshold pole and zp = z(tp, t0), where |zp| < 1 as tp < t+.
To render the corresponding form factor analytic within the open unit disk D without
changing its modulus on the boundary, we can multiply it by the Blaschke factor [80]

B(z, zp) =
z − zp
1− z∗pz

, (197)

40We use −z(t,X) instead of z(t,X) because z(t,X) ≥ 0 for −∞ < t ≤ X and z(t,X) ≤ 0 for X ≤ t < t+.
41Above-threshold poles are, e.g., discussed in Refs. [102, 103].
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which is a representative from a class of functions called inner functions [91–93]; as for
outer functions, a general discussion of these is beyond the scope of this compendium.
Trivially, we have B(zp, zp) = 0 and zp is the only zero of the function.42 Furthermore,
the Blaschke factor indeed has the following properties:

1. B(z, zp) is analytic for |z| < 1;

2. |B(z, zp) | < 1 for |z| < 1;

3. |B(z, zp)| = 1 for |z| = 1.

These statements are direct consequences of the identity

B(z, zp) = B(z(t, t0), z(tp, t0)) =
z(t, t0)− z(tp, t0)

1− z(tp, t0)∗z(t, t0)
= z(t, tp) (198)

and the properties we have shown for Eq. (156); in fact, B(z, zp) : D → D thus maps
the open unit disk D conformally onto itself. Since the modulus of the Blaschke factor
on the unit circle is unity, the form factors F̃+,0(t) = B

(
z(t), z(t+,0

p )
)
ϕT,L(t, q

2)f+,0
P→P ′(t)

fulfill the same boundary conditions as specified in Eq. (193), namely

1 ≥ 1

2πi

∫

∂D

dz

z
|B(z, z+p )ϕT(t(z), q

2)f+P→P ′(t(z))|2,

1 ≥ 1

2πi

∫

∂D

dz

z
|B(z, z0p)ϕL(t(z), q

2)f0P→P ′(t(z))|2. (199)

For simplicity, we here assume t+,0
p to be the only subthreshold poles of the form factors,

where z+,0
p = z(t+,0

p ); the extension to several subthreshold poles is trivial and requires
the multiplication with additional Blaschke factors. Expanding F̃+,0(t) in a series in
powers of the conformal variable z(t),

F̃+,0(t) =

∞∑

n=0

a+,0
n z(t)n, (200)

and using Eq. (180) for z(t) on the unit circle, we obtain the so-called dispersive (or
unitarity) bounds

1 ≥
∞∑

n=0

(a+,0
n )2. (201)

Depending on the context, the Blaschke factor B(z, zp) is sometimes replaced by the
inverse of a simple pole R(t) = (1− t/tp)

−1, in which case the series expansion is referred
to as a simplified series expansion [100, 104]; see also the application in Part III of this
thesis.

42Note that the only pole of the function, 1/z∗p , is not contained in D, as |1/z∗p | > 1 due to |zp| < 1.
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Prologue

The anomalous magnetic moment of the muon aµ is one of today’s most precisely mea-
sured quantities and as such demands similarly precise calculations on the theoretical
side, with a longstanding tension between the experiment and the standard-model pre-
diction potentially hinting at physics beyond the standard model. For the data-driven
calculations, robust input for the transition form factors of axial-vector mesons—i.e., the
scalar functions that parameterize their non-perturbative coupling to two electromagnetic
currents—is crucial for estimating the hadronic light-by-light contribution to aµ, in partic-
ular, for intermediate photon virtualities and the transition to short-distance constraints.*

At present, the axial-vector contribution included in the standard-model prediction for
aµ [9–33, 66–68] is responsible for a large fraction of the final phenomenological uncer-
tainty, aHLbL

µ = 92(19) × 10−11 [9, 22–31, 59–64], especially, when taking into account
the interplay with short-distance constraints. In view of the (expected) experimental im-
provements beyond the world average including run-1 data from Fermilab [34–38]—with
the latter providing a precision comparable to that of the Brookhaven measurement—the
uncertainty in the hadronic light-by-light contribution should be reduced by another factor
of 2 to ensure that it does not play a role in the interpretation of the experiment [54, 56].

The author of this thesis investigated the transition form factors of axial-vector mesons
already throughout his master’s thesis [115]. Therein, many foundations have been out-
lined in great detail, including an evaluation of some of the data available at that time
in a preliminary vector-meson-dominance framework, which eventually formed the basis
for the analysis presented in this part of the dissertation. Since the formalism has been
thoroughly refined and a comprehensible account would otherwise be cumbersome, some
important contents and formulae of the author’s master’s thesis are recapitulated in this
work; chapters that contain such peculiarities are provided with a footnote that summa-
rizes any potential parallels. However, it shall be emphasized that no parts of the author’s
master’s thesis have been replicated for this work, and possible duplications are condensed
in such a way that the overlap is minimized.

The data-driven analysis of the axial-vector transition form factors performed in this
thesis is based on the decomposition of the corresponding amplitude into the three Lo-
rentz structures and form factors obtained in Ref. [93], which follows from a procedure
by Bardeen, Tung, and Tarrach [94, 95] and ensures the absence of kinematic singu-
larities, thus allowing for a dispersive treatment. This decomposition is briefly reviewed
by the author of this dissertation, along with a discussion of the short-distance constraints
on the form factors that follow from the light-cone expansion, as derived in Ref. [93]. In

*If U(3) symmetry is assumed, it suffices to determine the transition form factors for the f1 to be able
to estimate the effect of the entire triplet including the f ′

1 and a1.
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the next step, the form factors are decomposed into their isospin components, which are
subsequently linked to each other by the author under the assumption of U(3) symmetry
and using the mixing angle of the JPC = 1++ axial-vector nonet determined by the L3
collaboration [7, 8].

Following these general considerations, the isovector components of the transition form
factors are parameterized using two distinct vector-meson-dominance ansätze, includ-
ing the implementation of energy-dependent widths and dispersively improved variants,
which have been constructed in joint efforts by the author of this dissertation, Martin
Hoferichter, and Bastian Kubis; here, an implicit change of basis for the transition
form factors that proves convenient for the vector-meson-dominance framework has been
worked out by the author of this thesis and its consequences on the asymptotic constraints
are analyzed accordingly. For the isoscalar components of the form factors, a simplified
vector-meson-dominance parameterization is utilized by the author, as agreed upon with
Martin Hoferichter and Bastian Kubis in extensive discussions. In order to arrive at
a description of the transition form factors that is valid in the whole energy range, the
vector-meson-dominance parameterizations are then complemented by asymptotic con-
tributions, obtained by rewriting the expressions resulting from the light-cone expansion
into double-spectral representations, which the author of this thesis deduced in analogy
to Refs. [26, 27, 135].

Due to the Landau–Yang theorem [1, 2], see also Ref. [115], any experiment sensitive
to the axial-vector transition form factors needs to involve at least one virtual photon,
which complicates their measurement. Phenomenologically, the situation is best for the
f1 resonance, for which available data on e+e− → e+e−f1 [5–7], f1 → 4π [99], f1 →
ργ [99, 100], f1 → ϕγ [99, 101], and f1 → e+e− [102] is studied in this part of the thesis.
To extract information from these processes, the corresponding observables are calculated
within the scope of the established vector-meson-dominance framework by the author of
this dissertation. For the one-loop process f1 → e+e−, the calculation is performed by
means of a Passarino–Veltman reduction by the author, carried out and evaluated in
an automated way using FeynCalc [139–141], FeynHelpers [142–144], and LoopTools [145].
This is supplemented by an alternative strategy pursued by Martin Hoferichter, who
performed the calculation in a direct way via the introduction of Feynman parameters,
resulting in analytic expressions that lead to numerical values in agreement with those from
the automated method, as has also been cross-checked by the author of this thesis.‡ Using
the compiled constraints, a global χ2 fit is carried out; for this combined phenomenological
analysis, the fit for the branching ratio of f1 → ργ from the Particle Data Group [99] is
further assessed to be flawed, so that, instead, a revised fit is used by the author.

In the appendices of this part of the thesis, the asymptotic contributions in their
double-spectral form are generalized to partly include mass effects from the light-cone ex-
pansion, as derived by the author of this thesis with the assistance of Martin Hoferichter.
Furthermore, the phenomenological Lagrangians and couplings needed for the main part
of the analysis are discussed in the appendices, where the author benefitted from keen
insights of Martin Hoferichter and Bastian Kubis. The appendices also contain a
comparison—worked out by the author of this dissertation—of the proposed form-factor

‡The calculation using Feynman parameters provides an independent cross-check of the evaluation
with LoopTools [145], which acts as a black box, in particular regarding the proper analytic continuation
in the arguments of the loop functions.
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parameterizations with previous ansätze from the literature. Finally, the appendices in-
clude a calculation of the branching ratio for f1 → 4π via the a1π intermediate state, which
was performed by the author of this thesis to explain the discrepancy observed between
the calculation of f1 → 4π proceeding via the ρρ intermediate state and the experimental
value.§

§Note also that all plots in this part of the thesis have been created by the author of the dissertation.
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Chapter 1

Introduction

The interaction of an axial-vector resonance A with two electromagnetic (EM) currents, as
parameterized in terms of their transition form factors (TFFs), is subject to the venerable
Landau–Yang theorem [1, 2], which states that a spin-1 particle cannot decay into two
on-shell photons. Accordingly, the decay A → γγ is forbidden, and the simplest process
from which information on the general A → γ∗γ∗ matrix element can be extracted is
the singly-virtual process. Such measurements are available from the (space-like) reaction
e+e− → e+e−A for A = f1 and A = f ′1 [3–8], providing results for the so-called equivalent
two-photon decay width Γ̃γγ—from which the mixing angle between the two f1 states can
be deduced—as well as some constraints on the momentum dependence of the process.
Assuming U(3) symmetry then allows some inference also for A = a1, but other direct
phenomenological input is scarce.

Recently, renewed interest in the EM properties of axial-vector resonances has been
triggered by hadronic corrections to the anomalous magnetic moment of the muon, with
the standard-model (SM) prediction [9–33] according to the theory consensus of Ref. [9],

aSM
µ = 116 591 810(43)× 10−11, (1.1)

differing from experiment including run-1 data from Fermilab [34–38],

aexp
µ = 116 592 061(41)× 10−11, (1.2)

by 4.2σ.1 While the uncertainty is at present dominated by hadronic vacuum polarization
(HVP), with an emerging tension between the determination from e+e− data [9, 14–20]
and quantum chromodynamics (QCD) on the lattice [9, 40–49], see Refs. [50–53], the
precision (expected) from the Fermilab [54] and J-PARC [55] experiments demands that
also the second-most-uncertain contribution, hadronic light-by-light (HLbL) scattering,
be further improved [56].2 The uncertainty of the current phenomenological estimate,
aHLbL
µ = 92(19) × 10−11 [9, 22–31, 59–64], is dominated by the intermediate- and high-

energy regions of the loop integral. In fact, while at low energies the few dominant hadronic
1The tension increases to 5.2σ when comparing to the experimental world average including, in addition,

the recent analysis of run-2 and run-3 data from Fermilab [39], aexp
µ = 116 592 059(22)× 10−11.

2Using the latest e+e− → π+π− data from CMD-3 [57, 58] to determine the HVP contribution, the
tension in aµ reduces drastically. The origin of the disagreement with the other e+e− measurements is
subject to ongoing research and requires further investigation before a conclusive judgement can be made.
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channels can be taken into account explicitly in a dispersive approach [65–71]—in terms
of pseudoscalar TFFs and partial-wave amplitudes for γ∗γ∗ → ππ [72–77]—multi-hadron
channels become relevant between (1–2)GeV, which ultimately need to be matched to
short-distance constraints for the HLbL amplitude [22, 29–31, 78–83]. At these interme-
diate energies, though, the potentially most sizable contribution originates from hadronic
channels that include axial-vector resonances, especially in view of the role they may play
in the transition to the asymptotic constraints [22, 61, 64, 84–87]. So far, however, the
available estimates of axial-vector contributions are model dependent, both because eval-
uated with a Lagrangian model for the HLbL tensor itself and because of uncertainties
in the interaction with the EM currents, i.e., their TFFs. Further efforts to improve the
uncertainty of the HLbL contribution in lattice QCD are ongoing as well [88–92].

As a first step to improving this situation, a systematic analysis of the axial-vector
TFFs has been presented recently in Ref. [93], including the decomposition into Lorentz
structures that guarantee the absence of kinematic singularities in the TFFs, following
the recipe of Bardeen, Tung, and Tarrach (BTT) [94, 95], and the derivation of
short-distance constraints in analogy to the light-cone expansion (LCE) of Brodsky and
Lepage (BL) [96–98]. Here, we provide a comprehensive analysis of the TFFs of the f1,
for which the most phenomenological input is available. In addition to e+e− → e+e−f1 [5–
7], there is data available for f1 → 4π [99], f1 → ργ [99, 100], f1 → ϕγ [99, 101], and,
more recently, f1 → e+e− [102], all of which probe different aspects of the TFFs, as we
will study in detail in this part of the thesis.

Given that there are three independent TFFs, in contrast to just one in the case of
pseudoscalar mesons, a full dispersive reconstruction, as done in Refs. [26, 27, 103–107]
for the π0 or in progress for η, η′ [108–112], appears not feasible given the available
data. Accordingly, we will study the simplest vector-meson-dominance (VMD) ansatz
to elucidate which parameters can presently be determined from experiment. In con-
trast to previous work [113, 114], our parameterization ensures the absence of kinematic
singularities, includes short-distance constraints, and accounts for the spectral functions
of the isovector resonances. In particular, we critically examine which of the processes
listed above do allow for an unambiguous extraction of TFF properties. We focus on the
f1 → e+e− decay, evidence for which has been observed only recently by the SND collab-
oration [102], with future improvements possible in the context of the ongoing program
to measure e+e− → hadrons cross sections. Further, since this process involves a loop
integration that depends on all three TFFs, it should provide some sensitivity also to the
doubly-virtual TFFs, which are particularly difficult to measure otherwise.

The outline of this part of the thesis is as follows: in Ch. 2, we review the BTT
decomposition of the A→ γ∗γ∗ matrix element and the asymptotic constraints. In Ch. 3,
we then construct a minimal VMD ansatz as well as an extended version and study their
asymptotic behavior. The tree-level processes e+e− → e+e−f1, f1 → 4π, and f1 → V γ
(V = ρ, ϕ, ω) used to constrain the parameters are discussed in Ch. 4, followed by the
f1 → e+e− decay in Ch. 5. The full phenomenological analysis is provided in Ch. 6, before
we summarize our findings in Ch. 7. Further details are provided in the appendices.
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Chapter 2

Lorentz decomposition and
Brodsky–Lepage limit†

The matrix element for the decay of an axial-vector meson into two virtual photons,
A(P, λA) → γ∗(q1, λ1)γ∗(q2, λ2), is given by [93]

⟨γ∗(q1, λ1)γ∗(q2, λ2)|A(P, λA)⟩ = i(2π)4δ(4)(q1 + q2 − P )M
(
{A, λA} → {γ∗, λ1}{γ∗, λ2}

)

(2.1)
in terms of the helicity amplitudes

M
(
{A, λA} → {γ∗, λ1}{γ∗, λ2}

)
= e2ϵλ1

µ
∗
(q1)ϵ

λ2
ν
∗
(q2)ϵ

λA
α (P )Mµνα(q1, q2), (2.2)

where we introduced the tensor matrix element Mµνα(q1, q2) by means of

Mµν({P, λA} → q1, q2) = ϵλA
α (P )Mµνα(q1, q2)

= i

∫
d4x eiq1·x ⟨0|T{Jµ

EM(x)Jν
EM(0)}|A(P, λA)⟩. (2.3)

In deriving these relations, the axial-vector meson is treated as an asymptotic state in the
narrow-width approximation; furthermore, the EM quark current is given by

Jµ
EM(x) = q̄(x)Qγµq(x), q(x) = (u(x), d(x), s(x))⊺, Q =

1

3
diag(2,−1,−1). (2.4)

2.1 Lorentz structures

Following the BTT approach [94, 95], the tensor matrix element Mµνα(q1, q2) can be
decomposed into three independent Lorentz structures and scalar functions Fi(q

2
1, q

2
2)

that are free of kinematic singularities, with the result [93]

Mµνα(q1, q2) =
i

m2
A

3∑

i=1

Tµνα
i (q1, q2)Fi(q

2
1, q

2
2), (2.5)

†The decomposition of the amplitude into structures and form factors, including their symmetry prop-
erties, and the formula for the equivalent two-photon decay width briefly summarized in this chapter have
already been detailed in the master’s thesis of the author [115].
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where mA is the mass of the respective axial-vector meson and

Tµνα
1 (q1, q2) = ϵµνβγq1βq2γ(q

α
1 − qα2 ),

Tµνα
2 (q1, q2) = ϵανβγq1βq2γq

µ
1 + ϵαµνβq2βq

2
1,

Tµνα
3 (q1, q2) = ϵαµβγq1βq2γq

ν
2 + ϵαµνβq1βq

2
2. (2.6)

Under photon crossing (µ ↔ ν and q1 ↔ q2), the structures transform according to
T νµα
1 (q2, q1) = −Tµνα

1 (q1, q2) and T νµα
2 (q2, q1) = −Tµνα

3 (q1, q2), so that for the form fac-
tors we find F1(q

2
2, q

2
1) = −F1(q

2
1, q

2
2) and F2(q

2
2, q

2
1) = −F3(q

2
1, q

2
2) on account of Bose

symmetry, Mµνα(q1, q2) = Mνµα(q2, q1). The prefactor i/m2
A in Eq. (2.5) has been chosen

to obtain dimensionless TFFs Fi(q
2
1, q

2
2) with real-valued normalization.

The Landau–Yang theorem [1, 2] forbids the decay into two on-shell photons, i.e., at
least one photon has to be virtual. In particular, the decay width3

Γ(A→ γγ) =
1

32πmA
|M(A→ γγ)|2 (2.7)

vanishes [93], where |M(A→ γγ)|2 is the squared spin-average of the helicity amplitudes,
Eq. (2.2), for on-shell photons. Instead, the so-called equivalent two-photon decay width
is defined as [5]4

Γ̃γγ = lim
q21→0

1

2

m2
A

q21
Γ(A→ γ∗LγT), (2.8)

where the spin-averaged (longitudinal–transversal) width is given by

Γ(A→ γ∗LγT) =
1

3

∑

λA=0,±
λ2=±

∫
dΓ

0λ2|λA

A→γ∗γ∗

∣∣∣
q22=0

, (2.9)

and the differential decay width for fixed polarization reads

dΓ
λ1λ2|λA

A→γ∗γ∗ =
1

32π2m2
A

√
λ(m2

A, q
2
1, q

2
2)

2mA
|M({A, λA} → {γ∗, λ1}{γ∗, λ2})|2dΩ, (2.10)

with the center-of-mass solid angle Ω. In terms of the Fi(q
2
1, q

2
2), one has [93]

Γ̃γγ =
πα2

12
mA|F2(0, 0)|2 =

πα2

12
mA|F3(0, 0)|2. (2.11)

2.2 Asymptotic constraints

In analogy to the asymptotic limits of the pseudoscalar TFF derived in Refs. [96–98], one
can use a LCE to obtain the asymptotic behavior of the axial-vector TFFs. Using the

3This expression includes a factor 1/2 due to the indistinguishability of the two on-shell photons.
4The equivalent two-photon decay width is sometimes defined without the factor of 1/2, see Ref. [116].
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distribution amplitudes from Refs. [117, 118], the asymptotic behavior is given by [93]

F1(q
2
1, q

2
2) = O(1/q6i ),

F2(q
2
1, q

2
2) = F eff

A m3
A

∫ 1

0
du

uϕ(u)

(uq21 + (1− u)q22 − u(1− u)m2
A)

2
+O(1/q6i ),

F3(q
2
1, q

2
2) = −F eff

A m3
A

∫ 1

0
du

(1− u)ϕ(u)

(uq21 + (1− u)q22 − u(1− u)m2
A)

2
+O(1/q6i ), (2.12)

where we generically denoted powers of asymptotic momenta by qi = q1, q2, and the
wave function ϕ(u) = 6u(1 − u) is the asymptotic form that already contributes to the
pseudoscalar case. In writing Eq. (2.12), we furthermore introduced an effective decay
constant

F eff
A = 4

∑

a

CaF
a
A, (2.13)

where the decay constants F a
A are defined via

⟨0|q̄(0)γµγ5
λa

2
q(0)|A(P, λA)⟩ = F a

AmAϵµ. (2.14)

The Gell-Mann matrices λa and the conveniently normalized unit matrix λ0 =
√
2/31

determine the flavor decomposition, with the flavor weights Ca in the effective decay
constant given by Ca = 1/2Tr[Q2λa], i.e., C0 = 2/(3

√
6), C3 = 1/6, and C8 = 1/(6

√
3).

We retained the leading mass effects in the denominators of Eq. (2.12) but stress that
this does not suffice for a consistent treatment of such corrections; we will thus mostly
set mA = 0 in the denominators when implementing the short-distance constraints and
address the treatment of the leading mass effects in App. A. Rewriting the results in terms
of the average photon virtuality Q2 and the asymmetry parameter w,

Q2 =
q21 + q22

2
∈ [0,∞), w =

q21 − q22
q21 + q22

∈ [−1, 1], (2.15)

one finds the scaling [93]

F1(q
2
1, q

2
2) = O(1/Q6),

Fi(q
2
1, q

2
2) =

F eff
A m3

A

Q4
fi(w) +O(1/Q6), i = 2, 3, (2.16)

with
f2/3(w) =

3

4w3

(
3∓ 2w +

(3± w)(1∓ w)

2w
log

1− w

1 + w

)
. (2.17)

The asymmetry functions f2/3(w) are shown in Fig. 2.1, where we also illustrate the values
of the function f2(w) for the limiting cases w = −1 (q21 = 0), w = 0 (q21 = q22), and w = 1
(q22 = 0); since f2(−w) = −f3(w), the analogous limits for f3(w) follow accordingly.

More specifically, the symmetric doubly-virtual and singly-virtual asymptotic O(1/q4)
limits of the TFFs—the latter often being referred to as the BL limit—become

F2(q
2, q2) =

F eff
A m3

A

2q4
+O(1/q6), F2(q

2, 0) =
3F eff

A m3
A

q4
+O(1/q6),

F3(q
2, q2) = −F

eff
A m3

A

2q4
+O(1/q6), F3(0, q

2) = −3F eff
A m3

A

q4
+O(1/q6), (2.18)
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−1 −0.5 0 0.5 1
w
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f i
(w

)

f2(0) = 1/2
f2(1) = 3/4

f2(−1)→∞

f2(w)

f3(w)

Figure 2.1: Asymmetry functions f2(w) and f3(w), Eq. (2.17), with values for the limiting
cases w = −1, 0, 1 of f2(w), corresponding to q21 = 0, q21 = q22, and q22 = 0, respectively.
The analogous limits for f3(w) follow from f2(−w) = −f3(w).

while the expressions for F2(0, q
2) and F3(q

2, 0) diverge. Given that the derivation of
Eq. (2.12) can only be justified from the operator product expansion (OPE) for |w| <
1/2 [119, 120], the singly-virtual limits need to be treated with care.5 However, physical
helicity amplitudes only depend on the well-defined limits in Eq. (2.18), in such a way
that the problematic limits F2(0, q

2) and F3(q
2, 0) do not contribute to observables. We

will return to this point in the context of the f1 → e+e− loop integral.

5In soft-collinear effective theory (SCET), the BL factorization can be derived with the kernel corre-
sponding to the perturbatively calculable SCET Wilson coefficient and the wave function to the non-
perturbative matrix element of a SCET operator [121–123]. The asymptotic result as given in Eq. (2.12)
follows in the limit of conformal symmetry of QCD [124].
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Chapter 3

Vector-meson dominance†

Given the scarcity of data for axial-vector resonances, we will perform our phenomenolog-
ical analysis in the context of a VMD description, which has proven to provide successful
approximations for a plethora of low-energy hadron–photon processes [125–130]. Most
notably, the underlying assumption that the interaction is dominated by the exchange of
vector mesons predicts the charge radius of the pion at the level of 10%. Even though
the ensuing model dependence is hard to estimate a priori, this approach allows us to
analyze all experimental constraints simultaneously in a common framework, which could
be refined as soon as improved data becomes available.

To construct VMD representations of the TFFs as defined in Ch. 2, it is convenient to
recast them in terms of their symmetric (s) and antisymmetric (a) combinations

Fa1(q
2
1, q

2
2) = F1(q

2
1, q

2
2),

Fa2(q
2
1, q

2
2) = F2(q

2
1, q

2
2) + F3(q

2
1, q

2
2),

Fs(q
2
1, q

2
2) = F2(q

2
1, q

2
2)−F3(q

2
1, q

2
2), (3.1)

with the indicated symmetry properties under the exchange of momenta, q21 ↔ q22. Con-
sequently, the basis of structures transforms according to

Tµνα
a1 (q1, q2) = Tµνα

1 (q1, q2)

= ϵµνβγq1βq2γ(q
α
1 − qα2 ),

Tµνα
a2 (q1, q2) =

1

2

[
Tµνα
2 (q1, q2) + Tµνα

3 (q1, q2)
]

=
1

2
q1βq2γ

(
ϵανβγqµ1 + ϵαµβγqν2

)
+

1

2
ϵαµνβ(q2βq

2
1 + q1βq

2
2),

Tµνα
s (q1, q2) =

1

2

[
Tµνα
2 (q1, q2)− Tµνα

3 (q1, q2)
]

=
1

2
q1βq2γ

(
ϵανβγqµ1 − ϵαµβγqν2

)
+

1

2
ϵαµνβ(q2βq

2
1 − q1βq

2
2), (3.2)

†The (anti-)symmetrization of the form factors carried out in this chapter has already been performed
in the master’s thesis of the author [115], along with a preliminary estimate for the ratio of isoscalar
to isovector contributions. Moreover, a predecessor model of the (dispersively improved) minimal VMD
representation for the isovector contributions presented here has already been discussed therein, using,
however, more elementary parameterizations for the energy-dependent widths and spectral representations.
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Chapter 3. Vector-meson dominance

where these functions fulfill the same symmetry properties under photon crossing. Given
this alternative basis, the equivalent two-photon decay width, Eq. (2.11), becomes

Γ̃γγ =
πα2

48
mA|Fs(0, 0)|2, (3.3)

and the tensor matrix element of Eq. (2.5) takes the form

Mµνα(q1, q2) =
i

m2
A

∑

i=a1,a2,s

Tµνα
i (q1, q2)Fi(q

2
1, q

2
2). (3.4)

3.1 Quantum numbers and mixing effects

Since by far the best phenomenological information is available for the f1, we will focus on
this resonance in this part of the thesis but remark that information on the f ′1 and the a1
can be derived when assuming U(3) flavor symmetry. As a first step towards constructing
our VMD ansatz for the TFFs,6 we review the relevant quantum numbers and mixing
patterns. From the G-parity of the f1, G = +, it is immediately clear that both photons
have to be either in their isoscalar or isovector state when neglecting isospin-breaking
effects. Hence, the VMD coupling can only proceed via ρρ-like or via some combination
of an ω- and ϕ-like vector meson, each of which will in turn be discussed in Sec. 3.2 and
Sec. 3.3, respectively. As we will show in the following, it is the isovector channel that
dominates, with isoscalar corrections typically at the level of 5%.

To this end, we have to take into account mixing effects between the (physical) mesons
of the corresponding JPC = 1++ axial-vector nonet, i.e., the mixing pattern [99]

(
f1

f ′1

)
=

(
cos θA sin θA

− sin θA cos θA

)(
f0

f8

)
, (3.5)

where f0 and f8 denote the isoscalar singlet and octet states of the JPC = 1++ nonet
and θA is the corresponding mixing angle. Pure octet/singlet mixing is reproduced for
θA = π/2, whereas ideal mixing is obtained for θA = arctan(1/

√
2).

Including only the two resonances f1 and f ′1, the U(3) parameterization of the JPC =
1++ axial vectors reads

ΦA
µ =




√
2
3f

0 + 1√
3
f8 0 0

0
√

2
3f

0 + 1√
3
f8 0

0 0
√

2
3f

0 − 2√
3
f8




µ

, (3.6)

and when splitting the charge matrix into isovector and isoscalar components according
to Q = Q3 +Q8,

Q3 =
1

2
diag(1,−1, 0), Q8 =

1

6
diag(1, 1,−2), (3.7)

6Related models for the f1 have previously been constructed in the literature [113, 114]; see App. C for
a more detailed comparison.
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3.2. Isovector contributions

one finds

Tr[ΦA
µQ3Q3] =

f1µ(
√
2 cos θA + sin θA) + f ′1µ(cos θA −

√
2 sin θA)

2
√
3

,

Tr[ΦA
µQ8Q8] =

f1µ(
√
2 cos θA − sin θA)− f ′1µ(cos θA +

√
2 sin θA)

6
√
3

. (3.8)

Using the mixing angle θA = 62(5)◦, as determined by the L3 collaboration [7, 8], see
Sec. 4.1, one thus finds that the ratio RS/V of isoscalar to isovector contributions for the
f1γγ coupling is given by

RS/V =

√
2− tan θA

3(
√
2 + tan θA)

= −4.7(3.4)%. (3.9)

3.2 Isovector contributions

For the isovector contributions to the TFFs in Eq. (3.1), we include the ρ and the ρ′ since
this is the minimal particle content that produces a non-vanishing contribution for the
antisymmetric TFFs. We propose the minimal parameterizations

FI=1
a1/2 (q

2
1, q

2
2) =

Ca1/2M
2
ρM

2
ρ′

(q21 −M2
ρ + i

√
q21 Γρ(q21))(q

2
2 −M2

ρ′ + i
√
q22 Γρ′(q

2
2))

− (q1 ↔ q2),

FI=1
s (q21, q

2
2) =

CsM
4
ρ

(q21 −M2
ρ + i

√
q21 Γρ(q21))(q

2
2 −M2

ρ + i
√
q22 Γρ(q22))

, (3.10)

where Γρ(q
2) and Γρ′(q

2) are yet to be specified energy-dependent widths.7 Moreover,
ρρ′ and ρ′ρ′ terms will be added to Fs(q

2
1, q

2
2) below, to help incorporate the asymptotic

constraints from Sec. 2.2. We adopt the dispersion-theoretical point of view to model
the singularities of the TFFs based on vector-meson poles and refrain from constructing
these using effective Lagrangians in order to facilitate the implementation of high-energy
constraints.

Concerning the energy-dependent width Γρ(q
2), the decay ρ→ ππ is described by

Γρ(q
2) = θ

(
q2 − 4M2

π

) γρ→ππ(q
2)

γρ→ππ(M2
ρ )

Γρ, γρ→ππ(q
2) =

(q2 − 4M2
π)

3/2

q2
, (3.11)

where γρ→ππ(q
2) is constructed to be in accordance with the behavior of the decay width

for variable M2
ρ = q2, see Eq. (B.9), and Γρ is the total width of the ρ meson. For

the energy-dependent width Γρ′(q
2), on the other hand, we will consider two different

parameterizations: first, we assume the decay channel ρ′ → 4π to be dominant and thus
adopt the near-threshold behavior of the four-pion phase space [131, 132]. Secondly, we
construct a spectral shape from the decay channels ρ′ → ωπ (ω → 3π) and ρ′ → ππ,

7In writing the propagator poles of our VMD model with energy-dependent widths, we stick to the
convention of Ref. [106].
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Chapter 3. Vector-meson dominance

neglecting, however, another significant contribution from ρ′ → a1π (a1 → 3π) [99]. These
parameterizations read

Γ
(4π)
ρ′ (q2) = θ

(
q2 − 16M2

π

) γρ′→4π(q
2)

γρ′→4π(M
2
ρ′)

Γρ′ , γρ′→4π(q
2) =

(q2 − 16M2
π)

9/2

(q2)2
, (3.12)

where γρ′→4π(q
2) is taken from Refs. [131, 132] and Γρ′ is the total decay width of the ρ′

meson, and

Γ
(ωπ,ππ)
ρ′ (q2) = θ

(
q2 − (Mω +Mπ)

2
) γρ′→ωπ(q

2)

γρ′→ωπ(M
2
ρ′)

Γρ′→ωπ

+ θ
(
q2 − 4M2

π

) γρ′→ππ(q
2)

γρ′→ππ(M
2
ρ′)

Γρ′→ππ, (3.13)

where

γρ′→ωπ(q
2) =

λ(q2,M2
ω,M

2
π)

3/2

(q2)3/2
, γρ′→ππ(q

2) =
(q2 − 4M2

π)
3/2

q2
. (3.14)

Estimates for the branching fractions required to evaluate these expressions are provided
in App. B. Finally, the standard form of the ρ→ ππ spectral function in Eq. (3.11) proves
disadvantageous for the evaluation of the superconvergence relations in Sec. 3.4 due to
its high-energy behavior. We thus follow Refs. [133, 134] and introduce barrier factors
according to

Γ(1)
ρ (q2) = Γρ(q

2)
M2

ρ − 4M2
π + 4p2R

q2 − 4M2
π + 4p2R

, pR = 202.4MeV,

Γ(2)
ρ (q2) = Γ(1)

ρ (q2)

√
q2

Mρ
, (3.15)

where concurrent adjustments to the ρ′ → ππ channel of Γ
(ωπ,ππ)
ρ′ (q2), Eq. (3.13), are

implied. In the end, the numerical impact of the choice of the ρ spectral function is
subdominant, and our results will be shown for Γ

(2)
ρ (q2) (both for the ρ and the 2π com-

ponent of Γ(ωπ,ππ)
ρ′ (q2)), which is identified as the best phenomenological description for

the ρ meson in Ref. [133].
For the one-loop process f1 → e+e− discussed in Ch. 5, we will use dispersively im-

proved variants of the isovector form factors to ensure the correct analyticity properties
when inserting the TFFs into the loop integral. The corresponding spectral representations
are constructed from the energy-dependent widths, i.e.,

F̂I=1
a1/2 (q

2
1, q

2
2) =

Ca1/2M
2
ρM

2
ρ′

Na

[
P disp
ρ (q21)P

disp
ρ′ (q22)− P disp

ρ′ (q21)P
disp
ρ (q22)

]
,

F̂I=1
s (q21, q

2
2) =

CsM
4
ρ

Ns
P disp
ρ (q21)P

disp
ρ (q22), (3.16)

where the dispersive ρ and ρ′ propagators are given by

P disp
ρ (q2) = − 1

π

∫ ∞

4M2
π

dx
Im
[
PBW
ρ (x)

]

q2 − x+ iϵ
,

P disp
ρ′ (q2) = − 1

π

∫ ∞

sthr

dy
Im
[
PBW
ρ′ (y)

]

q2 − y + iϵ
. (3.17)
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3.2. Isovector contributions

Γρ′(q
2) Na Ns Ñs

Γ
(4π)
ρ′ (q2) 0.577−0.037+0.045 0.805 0.805(1− ϵ1 − ϵ2) + 0.577−0.037+0.045ϵ1 + 0.414−0.051+0.067ϵ2

Γ
(ωπ,ππ)
ρ′ (q2) 0.642−0.039+0.046 0.805 0.805(1− ϵ1 − ϵ2) + 0.642−0.039+0.046ϵ1 + 0.512−0.060+0.076ϵ2

Table 3.1: Numerical values of the normalization constants given in Eq. (3.19) and
Eq. (3.22). The uncertainties refer to the variation Γρ′ = (400± 60)MeV, see App. E.

The Breit–Wigner (BW) spectral functions are

Im
[
PBW
ρ (x)

]
=

−√
xΓρ(x)

(x−M2
ρ )

2 + xΓρ(x)2
,

Im
[
PBW
ρ′ (y)

]
=

−√
y Γρ′(y)

(y −M2
ρ′)

2 + yΓρ′(y)2
, (3.18)

and the threshold sthr = 16M2
π , 4M

2
π depends on the choice of Γρ′(q

2), Eq. (3.12) or
Eq. (3.13). The normalization constants Na and Ns are introduced in order to retain the
normalizations Ca1/2 and Cs of the form factors from Eq. (3.10),

Na =M2
ρM

2
ρ′P

disp
ρ (0)P disp

ρ′ (0),

Ns =M4
ρP

disp
ρ (0)P disp

ρ (0), (3.19)

i.e., to ensure that the constants Ca1/2 and Cs carry the same meaning in the original
and the dispersively improved VMD parameterizations, see Table 3.1. With these conven-
tions, we will drop the distinction between Fi(q

2
1, q

2
2) and F̂i(q

2
1, q

2
2) in the following, the

understanding being that f1 → e+e− is evaluated with the dispersively improved variants.
Given that excited ρ mesons need to be introduced for the antisymmetric TFFs, it is

natural to consider an extended VMD parameterization of the symmetric form factor that
includes ρρ′ and ρ′ρ′ terms,

F̃I=1
s (q21, q

2
2) = Cs

[
(1− ϵ1 − ϵ2)M

4
ρ

(q21 −M2
ρ + i

√
q21 Γρ(q21))(q

2
2 −M2

ρ + i
√
q22 Γρ(q22))

+
(ϵ1/2)M

2
ρM

2
ρ′

(q21 −M2
ρ + i

√
q21 Γρ(q21))(q

2
2 −M2

ρ′ + i
√
q22 Γρ′(q

2
2))

+
(ϵ1/2)M

2
ρ′M

2
ρ

(q21 −M2
ρ′ + i

√
q21 Γρ′(q

2
1))(q

2
2 −M2

ρ + i
√
q22 Γρ(q22))

+
ϵ2M

4
ρ′

(q21 −M2
ρ′ + i

√
q21 Γρ′(q

2
1))(q

2
2 −M2

ρ′ + i
√
q22 Γρ′(q

2
2))

]
, (3.20)

which is normalized in such a way that F̃I=1
s (0, 0) = Cs = FI=1

s (0, 0). Here, ϵ1 and ϵ2
could be treated as additional free parameters, but we will instead use this freedom to
match to the asymptotic constraints in Sec. 3.4. Similarly to Eq. (3.16), the spectral
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representation for F̃I=1
s (q21, q

2
2) is given by

F̃I=1
s (q21, q

2
2) =

Cs

Ñs

[
(1− ϵ1 − ϵ2)M

4
ρP

disp
ρ (q21)P

disp
ρ (q22) +

ϵ1M
2
ρM

2
ρ′

2
P disp
ρ (q21)P

disp
ρ′ (q22)

+
ϵ1M

2
ρ′M

2
ρ

2
P disp
ρ′ (q21)P

disp
ρ (q22) + ϵ2M

4
ρ′P

disp
ρ′ (q21)P

disp
ρ′ (q22)

]
, (3.21)

with normalization

Ñs = (1− ϵ1 − ϵ2)M
4
ρP

disp
ρ (0)P disp

ρ (0)

+ ϵ1M
2
ρM

2
ρ′P

disp
ρ (0)P disp

ρ′ (0) + ϵ2M
4
ρ′P

disp
ρ′ (0)P disp

ρ′ (0), (3.22)

see Table 3.1.

3.3 Isoscalar contributions

In the following, we estimate the isoscalar contributions to the TFFs of Eq. (3.1) under
the assumption of U(3) flavor symmetry, where we will include the resonances ω and ϕ
as well as their excited equivalents ω′ and ϕ′ into our parameterization. Mixing effects
between the (physical) mesons of the corresponding JPC = 1−− vector-meson nonets are
taken into account via the pattern [99]

(
ω(′)

ϕ(
′)

)
=

(
cos θV (′) sin θV (′)

− sin θV (′) cos θV (′)

)(
ω0(′)

ω8(′)

)
, (3.23)

where ω0(′) and ω8(′) denote the isoscalar singlet and octet states of the respective vector-
meson nonet with mixing angle θV (′) . For our considerations, we assume both nonets to be
ideally mixed, i.e., θV = arctan(1/

√
2) = θV ′ . Finally, we need the U(3) parameterization

of the JPC = 1−− vector mesons, which reads

ΦV (′)
µ =




ρ0(
′) + ω(′) 0 0

0 −ρ0(′) + ω(′) 0

0 0 −
√
2ϕ(

′)




µ

(3.24)

when including only the aforementioned resonances.
Since the U(3) couplings f1ωϕ, f1ω′ϕ, and f1ωϕ′ vanish for ideally mixed vector mesons,

we propose the minimal parameterizations

FI=0
a1/2 (q

2
1, q

2
2) =

Cωω′
a1/2M

2
ωM

2
ω′

(q21 −M2
ω)(q

2
2 −M2

ω′)
+

Cϕϕ′
a1/2M

2
ϕM

2
ϕ′

(q21 −M2
ϕ)(q

2
2 −M2

ϕ′)
− (q1 ↔ q2),

FI=0
s (q21, q

2
2) =

Cωω
s M4

ω

(q21 −M2
ω)(q

2
2 −M2

ω)
+

Cϕϕ
s M4

ϕ

(q21 −M2
ϕ)(q

2
2 −M2

ϕ)
. (3.25)

The resonances ω and ϕ should be well described by a narrow-resonance approximation—
with M2

V → M2
V − iϵ for time-like applications—while for a realistic description of the

76



3.4. Asymptotics

excited-state isoscalar resonances, their widths would need to be taken into account. Due
to the expected smallness of the isoscalar contributions, see Eq. (3.9), we refrain from
giving an extended VMD parameterization analogous to Eq. (3.20).

With the U(3) parameterization of the axial-vector mesons, ΦA
µ , and the charge matrix

Q from Sec. 3.1, the ratios of isoscalar to isovector couplings are found to be8

Cωω′
a1/2

Ca1/2
=
Cωω

s
Cs

=

Tr[ΦA
µΦ

V
ν Φ

V (′)
κ ]|

f1µωνω
(′)
κ

Tr[ΦV
αQ]|ωαTr[ΦV (′)

β Q]|
ω
(′)
β

Tr[ΦA
µΦ

V
ν Φ

V (′)
κ ]|

f1µρνρ
(′)
κ

Tr[ΦV
αQ]|ραTr[ΦV (′)

β Q]|
ρ
(′)
β

=
1

9
, (3.26)

Cϕϕ′
a1/2

Ca1/2
=
Cϕϕ

s

Cs
=

Tr[ΦA
µΦ

V
ν Φ

V (′)
κ ]|

f1µϕνϕ
(′)
κ

Tr[ΦV
αQ]|ϕαTr[ΦV (′)

β Q]|
ϕ
(′)
β

Tr[ΦA
µΦ

V
ν Φ

V (′)
κ ]|

f1µρνρ
(′)
κ

Tr[ΦV
αQ]|ραTr[ΦV (′)

β Q]|
ρ
(′)
β

=
2(
√
2− 2 tan θA)

9(
√
2 + tan θA)

,

which, using the mixing angle θA = 62(5)◦ as determined by the L3 collaboration [7, 8],
see Sec. 4.1, implies

Rω =
Cωω′

a1/2

Ca1/2
=
Cωω

s
Cs

=
1

9
, Rϕ =

Cϕϕ′
a1/2

Ca1/2
=
Cϕϕ

s

Cs
= −0.158(34). (3.27)

The additional suppression in Eq. (3.9) then results from a cancellation between ω and ϕ
contributions

RS/V = Rω +Rϕ = 11.1%− 15.8(3.4)% = −4.7(3.4)%. (3.28)

In practice, we will restrict the analysis of isoscalar contributions to the symmetric TFF.
For one thing, Fs(q

2
1, q

2
2) gives the dominant contribution to the observables, so that the

most important isoscalar correction is expected from there. In addition, we would need
to include the excited ω′ and ϕ′ states for the antisymmetric TFFs, incurring significant
uncertainties from their spectral functions and, especially for the f1 → e+e− application,
the asymptotic matching due to their large masses. Alternatively, isoscalar antisymmetric
TFFs could be produced via deviations from ideal ϕ–ω mixing, but, again, the uncertainties
would be difficult to control. For these reasons, we conclude that the isoscalar contributions
to the antisymmetric TFFs should be irrelevant at present, with future refinements possible
once better data becomes available.

3.4 Asymptotics

The VMD representations for the TFFs should comply with the asymptotic constraints
reviewed in Sec. 2.2, mainly to ensure that the f1 → e+e− loop integral does not receive
unphysical contributions in the high-energy region; we will focus on the isovector ampli-
tudes, given the strong suppression of the isoscalar contributions. Translated to the basis

8The notation is to be understood in such a way that, for each term, the prefactor of the fields indicated
as a subscript is taken, with the U(3) parameterizations from Eq. (3.6), Eq. (3.7), and Eq. (3.24). In the
ratios, only the traces are relevant as the common Lagrangian parameters cancel.
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fa2(1)→ −∞

fa2(w)

fs(w)

Figure 3.1: Asymmetry functions fa2(w) and fs(w), Eq. (3.29), with values for the limiting
cases w = −1, 0, 1, corresponding to q21 = 0, q21 = q22, and q22 = 0, respectively.

of (anti-)symmetric TFFs, we have

Fa1(q
2
1, q

2
2) = O(1/Q6),

Fa2(q
2
1, q

2
2) =

F eff
f1
m3

f1

Q4
fa2(w) +O(1/Q6), fa2(w) =

3

4w3

(
6 +

3− w2

w
log

1− w

1 + w

)
,

Fs(q
2
1, q

2
2) =

F eff
f1
m3

f1

Q4
fs(w) +O(1/Q6), fs(w) = − 3

2w3

(
2w + log

1− w

1 + w

)
, (3.29)

see Fig. 3.1. The symmetrical doubly-virtual O(1/q4) limits become (λ ≈ 1)

Fa2(q
2, λq2) = −

6F eff
f1
m3

f1

q4
k(λ) +O(1/q6), Fs(q

2, q2) =
F eff
f1
m3

f1

q4
+O(1/q6),

k(λ) =
3λ2 − (λ2 + 4λ+ 1) log λ− 3

(λ− 1)4
= O(λ− 1), (3.30)

but, upon symmetrization, all singly-virtual limits of Fa2/s(q
2
1, q

2
2) diverge. For this reason,

the asymptotic limits for Fa2/s(q
2
1, q

2
2) cannot be considered in isolation but need to be

implemented in such a way as to reproduce the physical behavior of F2/3(q
2
1, q

2
2).

We first consider the asymptotic behavior of the minimal VMD parameterization,
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3.4. Asymptotics

Fa1(q
2
1, q

2
2) Fa2(q

2
1, q

2
2) Fs(q

2
1, q

2
2) F2(q

2
1, q

2
2)

q21/2 ≈ q2 q22 = 0 q21/2 ≈ q2 q21/2 = q2 q22 = 0

LCE 1/q6 1/q61 1/q4 1/q4 1/q41

VMD (isovector) 1/q6 1/q21 1/q6 1/q4 1/q21

ṼMD (isovector) 1/q6 1/q21 1/q6 1/q6 1/q41

Table 3.2: Comparison of the asymptotic behavior of the TFFs as predicted by the LCE,
Eq. (3.29) and Eq. (3.30), with the implementation in the VMD representations, Eq. (3.10)
and Eq. (3.20). The doubly-virtual limits of ṼMD are tailored to decrease as 1/q6, so that
the behavior of the LCE is reproduced by adding Eq. (3.47). Note that from the LCE,
both F2(0, q

2) and F3(q
2, 0) and thus also all singly-virtual limits of Fa2/s(q

2
1, q

2
2) diverge,

whereas F3(0, q
2) = −F2(q

2, 0) for the well-defined singly-virtual limits.

Eq. (3.10),

FI=1
a1/2 (q

2, λq2) ∝ λ− 1

λ2
1

q6
, FI=1

a1/2 (q
2, 0) ∝ 1

q2
,

FI=1
s (q2, q2) ∝ 1

q4
, FI=1

s (q2, 0) ∝ 1

q2
. (3.31)

In this case, the scaling is correct in the doubly-virtual direction of FI=1
a1/s(q

2
1, q

2
2), while

FI=1
a2 (q21, q

2
2) drops too fast and the well-defined singly-virtual limits too slowly, see Ta-

ble 3.2. Phenomenologically, the symmetric TFF gives the dominant contribution to
f1 → e+e−, see Ch. 5, so that the coefficient also deserves some attention here. Com-
paring the asymptotic limit of Eq. (3.10) with Eq. (3.30), the VMD ansatz for Fs(q

2
1, q

2
2)

implies the estimate

F eff
f1

∣∣∣
VMD

=
CsM

4
ρ

m3
f1

= 159(19)MeV (3.32)

for the effective decay constant defined in Eq. (2.13), where we already used the L3 result
for Cs including the isoscalar contribution; see Eq. (4.7) below. Within uncertainties, this
value agrees with the result from light-cone sum rules (LCSRs) [93, 118],

F eff
f1

∣∣∣
LCSRs

= 146(7)LCSRs(12)θA MeV, (3.33)

so that even the minimal VMD ansatz should display a reasonable asymptotic behavior.
To go beyond this minimal implementation, we now turn to the extended VMD ansatz

for Fs(q
2
1, q

2
2). We follow the strategy from Refs. [26, 27] and add an explicit asymp-

totic term that incorporates the correct doubly-virtual behavior, obtained by rewriting
Eq. (2.12) in terms of a dispersion relation; see also Ref. [135]. Accordingly, we need to
ensure that the isovector VMD contribution to Fs(q

2, q2) behaves ∝ 1/q6, resulting in

ϵ2 =
(1− ϵ1)M

4
ρ + ϵ1M

2
ρM

2
ρ′

M4
ρ −M4

ρ′
. (3.34)
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This leaves the freedom to choose ϵ1, which we use to implement the physical singly-virtual
scaling of FI=1

2 (q2, 0) = [FI=1
a2 (q2, 0) + F̃I=1

s (q2, 0)]/2 ∝ 1/q4, leading to

ϵ1 = −2
Ca2(M

4
ρ −M4

ρ′) + CsM
2
ρM

2
ρ′

Cs(M2
ρ −M2

ρ′)
2

. (3.35)

Further, the coefficient of 1/q4 in the resulting FI=1
2 (q2, 0) only depends on Cs, and match-

ing to Eq. (2.18) implies

F eff
f1

∣∣∣
ṼMD

=
CsM

2
ρM

2
ρ′

6m3
f1

= 95(12)MeV, (3.36)

reasonably close to the LCSR estimate of Eq. (3.33). In general, the choice for ϵ1 in
Eq. (3.35) enforces the expected singly-virtual behavior at the expense of a large coefficient,
e.g., ϵ1 = −1.08 for Ca2 = 0, so that a better low-energy phenomenology might be achieved
when considering ϵ1 a free parameter instead. We will continue to use Eq. (3.35) as
a benchmark scenario in comparison to the minimal VMD ansatz, keeping this caveat
regarding ϵ1 in mind.

In choosing the above ϵ1/2, we did not take the spectral representations of Eq. (3.16)
and Eq. (3.21) into account, which would lead to a set of superconvergence relations that
need to be fulfilled, but instead made an approximate choice in terms of Eq. (3.20) and
Eq. (3.10). More specifically, these superconvergence relations read

O(1/q6) =
Cs

Ñsq4

[
(1− ϵ1 − ϵ2)M

4
ρP

0
ρP

0
ρ + ϵ1M

2
ρM

2
ρ′P

0
ρP

0
ρ′ + ϵ2M

4
ρ′P

0
ρ′P

0
ρ′

]
,

O(1/q4) = −
Ca2M

2
ρM

2
ρ′

2Naq2

[
P 0
ρ

sP 0
ρ′ − P 0

ρ′
sP 0
ρ

]
(3.37)

− Cs

2Nsq2

[
(1− ϵ1 − ϵ2)M

4
ρP

0
ρ

sP 0
ρ +

ϵ1M
2
ρM

2
ρ′

2

(
P 0
ρ

sP 0
ρ′ + P 0

ρ′
sP 0
ρ

)
+ ϵ2M

4
ρ′P

0
ρ′

sP 0
ρ′

]
,

where we defined

P 0
ρ = − 1

π

∫ ∞

4M2
π

dx Im
[
PBW
ρ (x)

]
, sP 0

ρ = − 1

π

∫ ∞

4M2
π

dx
Im
[
PBW
ρ (x)

]

x
,

P 0
ρ′ = − 1

π

∫ ∞

sthr

dy Im
[
PBW
ρ′ (y)

]
, sP 0

ρ′ = − 1

π

∫ ∞

sthr

dy
Im
[
PBW
ρ′ (y)

]

y
. (3.38)

Solving this for ϵ2 and ϵ1, we find (note that sP 0
ρ and sP 0

ρ′ drop out)

ϵ2 =
(1− ϵ1)

(
M2

ρP
0
ρ

)2
+ ϵ1M

2
ρP

0
ρM

2
ρ′P

0
ρ′(

M2
ρP

0
ρ

)2 −
(
M2

ρ′P
0
ρ′
)2 ,

ϵ1 = −2

Ca2
Na

[(
M2

ρP
0
ρ

)2 −
(
M2

ρ′P
0
ρ′
)2]

+ Cs
Ns
M2

ρP
0
ρM

2
ρ′P

0
ρ′

Cs
Ns

(M2
ρP

0
ρ −M2

ρ′P
0
ρ′)

2
, (3.39)

in accordance with Eq. (3.34) and Eq. (3.35) upon the replacements

M2
ρ →M2

ρP
0
ρ , M2

ρ′ →M2
ρ′P

0
ρ′ ,

Ca2 → Ca2
Na

, Cs →
Cs

Ns
. (3.40)
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3.4. Asymptotics

Γρ(′)(q
2) Γ

(2)
ρ (q2) Γ

(4π)
ρ′ (q2) Γ

(ωπ,ππ)
ρ′ (q2)

P 0
ρ(′)

1.023 0.718−0.057+0.070 0.918−0.073+0.087

Table 3.3: Numerical values of P 0
ρ and P 0

ρ′ , Eq. (3.38), as obtained with the parameter-

izations Γ
(2)
ρ (q2), Γ(4π)

ρ′ (q2), and Γ
(ωπ,ππ)
ρ′ (q2), Eq. (3.15), Eq. (3.12), and Eq. (3.13), and

needed for Eq. (3.39). The uncertainties refer to the variation Γρ′ = (400 ± 60)MeV, see
App. E.

Numerical values for P 0
ρ and P 0

ρ′ are collected in Table 3.3. These results show that most
correction factors are close to unity, in which case the only potentially significant correction
arises from the different normalizations Na and Ns for ϵ1, see Table 3.1. However, our
central results will employ Γ

(ωπ,ππ)
ρ′ (q2), and given the abovementioned caveats in the choice

of ϵ1, we conclude that the naive VMD expressions Eq. (3.34) and Eq. (3.35) are sufficient
at the current level of accuracy.

The doubly-virtual behavior is implemented as follows [26, 27]: first of all, we rewrite
the asymptotic form factors F2(q

2
1, q

2
2) and F3(q

2
1, q

2
2) from Eq. (2.12) into a double-spectral

representation, which allows us to isolate the different energy regions, in particular those
that give rise to the correct asymptotic limits. Setting mA = 0 in the respective integrands
of Eq. (2.12), we observe that

F2(q
2
1, q

2
2) = −F eff

A m3
A

∂

∂q21

∫ 1

0
du

ϕ(u)

uq21 + (1− u)q22
+O(1/q6i ),

F3(q
2
1, q

2
2) = F eff

A m3
A

∂

∂q22

∫ 1

0
du

ϕ(u)

uq21 + (1− u)q22
+O(1/q6i ) (3.41)

take exactly the same form as for the pseudoscalar case, except for the partial derivatives
with respect to q2i . Accordingly, the same arguments as in Refs. [26, 27, 135] apply,
and the integral over the wave function can formally be expressed by a double-spectral
representation,

I(q21, q
2
2) =

∫ 1

0
du

ϕ(u)

uq21 + (1− u)q22
=

1

π2

∫ ∞

0
dx

∫ ∞

0
dy

ρasym(x, y)

(x− q21)(y − q22)
. (3.42)

To identify the double-spectral density ρasym(x, y), we transform u → −q22/(x − q22) for
space-like q22, leading to

I(q21, q
2
2) =

1

π

∫ ∞

0
dx

Im I(x, q22)

x− q21
, Im I(x, q22) = − π

x− q22
ϕ

(
x

x− q22

)
. (3.43)

We then write Im I(x, q22) in terms of another dispersion relation to obtain

ρasym(x, y) =
1

2i
discy

[
Im I(x, y)

]
=

3πxy

2i

∂2

∂x2
discy

[
1

x− y

]
, (3.44)

where we inserted ϕ(u) = 6u(1− u). Using the Sokhotski–Plemelj theorem, we have

discy
[

1

x− y

]
=

[
1

x− y − iϵ
− 1

x− y + iϵ

]
= 2iπδ(x− y), (3.45)
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Chapter 3. Vector-meson dominance

and, hence,
ρasym(x, y) = 3π2xyδ′′(x− y). (3.46)

The asymptotic form arises from the high-energy part of these integrals, so that, to avoid
overlap with the VMD contribution at low energies, we impose a lower cutoff sm, which, in
the language of LCSRs, could be identified with the continuum threshold. Evaluating the
partial derivatives and dropping surface terms in the evaluation of the δ distribution [26,
27], we find (note that the chain rules gives δ′′(x− y) = −∂x∂yδ(x− y))

Fasym
2 (q21, q

2
2) = −F eff

A m3
A

∂

∂q21

[
1

π2

∫ ∞

sm

dx

∫ ∞

sm

dy
ρasym(x, y)

(x− q21)(y − q22)

]
+O(1/q6i )

= 3F eff
A m3

A

∂

∂q21

∫ ∞

sm

dx
q21q

2
2

(x− q21)
2(x− q22)

2
+O(1/q6i )

= 3F eff
A m3

A

∫ ∞

sm

dx
q22(x+ q21)

(x− q21)
3(x− q22)

2
+O(1/q6i ),

Fasym
3 (q21, q

2
2) = −3F eff

A m3
A

∫ ∞

sm

dy
q21(y + q22)

(y − q21)
2(y − q22)

3
+O(1/q6i ). (3.47)

By construction, the asymptotic contributions in this form saturate the doubly-virtual
limits of Eq. (3.30), while not affecting the singly-virtual contributions F2(q

2, 0), F3(0, q
2)

already taken into account via the extended VMD representation. The opposite (unphys-
ical) cases F2(0, q

2), F3(q
2, 0), which do not contribute to helicity amplitudes, yield

F2(0, q
2) =

3F eff
A m3

A

smq2
+O(1/q4), F3(q

2, 0) = −3F eff
A m3

A

smq2
+O(1/q4) (3.48)

in the double-spectral form and are equally suppressed in the f1 → e+e− loop integral,
see Ch. 5. Given that mA > 1GeV, it is also worthwhile to consider the potential impact
of mass corrections to the asymptotic constraints; a formulation in terms of a generalized
double-spectral density is given in App. A.

In conclusion, the extended VMD ansatz together with the asymptotic contribution
of Eq. (3.47) complies with the short-distance constraints of Eq. (2.12), apart from the
singly-virtual behavior of Fa1(q

2
1, q

2
2) and small violations due to the isoscalar contributions

of the form factors, see Eq. (3.9). As we will demonstrate below that Fa1(q
2
1, q

2
2) gives

the smallest contribution to the f1 → e+e− loop integral, see Eq. (5.5), the resulting
VMD representation should provide a decent approximation to its high-energy part. In
particular, the sensitivity to the high-energy assumptions can be monitored by comparing
the two VMD variants constructed in this chapter.
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Tree-level processes†

The VMD parameterizations constructed in the previous chapter involve the free pa-
rameters Ca1 , Ca2 , and Cs (and, for the extended variant, the onset of the asymptotic
contributions sm). In the following, we collect the available data that can, in principle, be
used to determine these parameters, starting with the processes in which the TFFs appear
at tree level:

1. e+e− → e+e−f1, which mainly determines the equivalent two-photon decay width
Γ̃f1
γγ , see Sec. 4.1;

2. f1 → 4π, sensitive to the TFFs via f1 → ρρ→ 4π, see Sec. 4.2;

3. f1 → ργ, whose branching fraction and helicity components encode information on
the TFFs, see Sec. 4.3.

In a more rigorous, dispersive reconstruction of the TFFs, the (partially) hadronic final
states would serve as input to a determination of their discontinuities. The strategy to in-
vestigate the impact of these reactions on a determination of the various TFFs has already
been followed in Refs. [113, 114], albeit with rather different form factor parameterizations.
Moreover, we investigate the following tree-level decays:

4. f1 → ϕγ and f1 → ωγ, where the measured branching fraction of the former al-
lows for a consistency check of our U(3) assumption for the isoscalar TFFs, and
the latter predicts a branching ratio that can be confronted with potential future
measurements, see Sec. 4.4.

4.1 e+e− → e+e−f1

In contrast to (pseudo-)scalar or tensor resonances, axial-vector resonances are only visible
in e+e− collisions, see Fig. 4.1, provided that at least one of the photons is off shell—an

†The L3 data for e+e− → e+e−f1 analyzed in this chapter has already been studied to some extent
in the author’s master’s thesis [115], in particular regarding the matching of a monopole ansatz to the L3
dipole parameterization. Furthermore, formulae for the branching ratios of f1 → 4π and f1 → ργ as well
as the ratio of the ρ-meson’s helicity amplitudes for the latter process were derived therein; however, this
was done only for the simplest variant possible, i.e., in the minimal VMD parameterization and without
potential contributions from excited vector mesons.
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e

e

A

p p′

q1

q2

Figure 4.1: Feynman diagram for two-photon hadron formation in electron–positron
scattering.

immediate consequence of the Landau–Yang theorem [1, 2]. The required challeng-
ing measurements have been performed for the f1 and f ′1, by the MARK II [3, 4], the
TPC/Two-Gamma [5, 6], and, more recently, by the L3 [7, 8] collaborations. With both
measurements required to constrain the mixing angle θA from the data, we will restrict
our analysis to the L3 data, given that it is more accurate than the results from the
preceding experiments. The L3 analyses are based on the model of Ref. [136], which as-
sumes F1(q

2
1, q

2
2) = 0 for the first form factor from Eq. (2.5) and uses a dipole ansatz for

F2(q
2, 0) = −F3(0, q

2), with

FD(q
2, 0) =

FD(0, 0)

(1− q2/Λ2
D)

2
. (4.1)

Under the assumption B(f ′1 → K sKπ) = 1—which appears justified in light of the small-
ness of the other available channels [99]—the measured parameters are

Γ̃f1
γγ = 3.5(6)(5) keV, Λf1 = 1.04(6)(5)GeV,

Γ̃
f ′
1

γγ = 3.2(6)(7) keV, Λf ′
1
= 0.926(72)(32)GeV, (4.2)

where the quoted uncertainties are statistical and systematic, respectively. Employing the
two-photon decay widths of the f1 and f ′1, the mixing angle of the JPC = 1++ axial-vector
nonet as defined in Eq. (3.5) can be extracted as follows: one calculates the coupling of
the axial-vector mesons f1 and f ′1 to two photons in analogy to Eq. (3.8), yielding

Tr[ΦA
µQQ] =

f1µ(2
√
2 cos θA + sin θA) + f ′1µ(cos θA − 2

√
2 sin θA)

3
√
3

, (4.3)

so that using the formula for the equivalent two-photon decay width Γ̃γγ , Eq. (2.11), one
finds

Γ̃f1
γγ

Γ̃
f ′
1

γγ

=
mf1

mf ′
1

∣∣∣∣
2
√
2 + tan θA

1− 2
√
2 tan θA

∣∣∣∣
2

=
mf1

mf ′
1

cot2(θA − θ0), (4.4)

where θ0 = arcsin(1/3). Solving for θA and inserting the above values for Γ̃f1
γγ and Γ̃

f ′
1

γγ ,
one finds the result of Refs. [7, 8],

θA = 62(5)◦, (4.5)

where the statistical and systematic uncertainties have been added in quadrature.
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4.1. e+e− → e+e−f1

Next, the measurement of Γ̃f1
γγ determines the normalization of the symmetric TFF,

|Cs| = |FI=1
s (0, 0)| when neglecting the isoscalar contributions, according to Eq. (3.3),

|Cs| = 0.89(10). (4.6)

Taking into account the isoscalar contributions and, in particular, the ratios Rω and Rϕ

of isoscalar to isovector couplings, Eq. (3.27), the normalization of the symmetric TFF
becomes |FI=1

s (0, 0) + FI=0
s (0, 0)| = (1 +Rω +Rϕ)|Cs| = 0.953(34)|Cs|, resulting in

|Cs| = 0.93(11), (4.7)

which is slightly larger than Eq. (4.6), as expected from the negative ratio found in the
estimate of Eq. (3.9). In the following, we will use Eq. (4.7) for the normalization of the
symmetric TFF.

In addition, Eq. (4.2) determines the slope of F2(q
2, 0), based on the assumption of a

dipole form. The asymptotic behavior matches onto Eq. (2.18) with [93]

F eff
f1

∣∣∣
L3

=
CsΛ

4
f1

6m3
f1

= 86(28)MeV, (4.8)

below both the LCSR estimate, Eq. (3.33), and the effective decay constant implied by
VMD, Eq. (3.32), though close to the scale derived from the singly-virtual behavior of
the extended VMD representation, Eq. (3.36).9 The uncertainty in Eq. (4.8) is mainly
driven by the dipole parameter ΛD. In fact, most of the data points measured by the L3
collaboration lie well below the obtained dipole scale, in such a way that the data should
be similarly well described by a monopole ansatz,

FM(q2, 0) =
FM(0, 0)

1− q2/Λ2
M
, (4.9)

when adjusting the slopes of the parameterizations to coincide at q2 = 0. The correspond-
ing monopole scale becomes

ΛM =
ΛD√
2
= 0.74(6)GeV ≈Mρ, (4.10)

thus providing strong motivation for the VMD representation constructed in Ch. 3.
To constrain the singly-virtual VMD limits further, we need to match the L3 param-

eterization onto the full description of the e+e− → e+e−f1 cross section, which depends
on the combination [93]
∣∣∣∣
(
1− q2

m2
f1

)
F1(q

2, 0)− q2

m2
f1

F2(q
2, 0)

∣∣∣∣
2

− 2q2

m2
f1

∣∣F2(q
2, 0)

∣∣2 = −q2
m2

f1

(
2− q2

m2
f1

)
|FD(q

2, 0)|2.

(4.11)
9Matching the effective decay constant in the doubly-virtual direction to the quark model of Ref. [136]

instead, one would obtain F eff
f1

∣∣
L3 = CsΛ

4
f1
/(4m3

f1
) = 129(42)MeV, closer to Eq. (3.32) and Eq. (3.33).

This reflects the factor 3/2 by which the relative coefficients of the singly- and doubly-virtual limits differ
between the quark model and the BL prediction [93].
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The normalization agrees by construction, while matching the slopes at q2 = 0 leads to

2

Λ2
D

=
1

Nωϕ

[
1

M2
ρ

+
Rω

M2
ω

+
Rϕ

M2
ϕ

+
M2

ρ′ −M2
ρ

M2
ρM

2
ρ′

Ca1 + Ca2
Cs

−
m2

f1
(M2

ρ′ −M2
ρ )

2

M4
ρM

4
ρ′Nωϕ

(
Ca1
Cs

)2
]

(4.12)

for the minimal VMD representation and

2

Λ2
D

=
1

Nωϕ

[
1

M2
ρ

+
1

M2
ρ′
+
Rω

M2
ω

+
Rϕ

M2
ϕ

+
M2

ρ′ −M2
ρ

M2
ρM

2
ρ′

Ca1
Cs

−
m2

f1
(M2

ρ′ −M2
ρ )

2

M4
ρM

4
ρ′Nωϕ

(
Ca1
Cs

)2
]

(4.13)

for the extended one. The factor Nωϕ = 1 + Rω + Rϕ arises from accounting for the
isoscalar terms in the normalization, see Eq. (4.7).

4.2 f1 → 4π

In addition to e+e− → e+e−f1, the normalization of the symmetric TFF would be ac-
cessible in the process f1 → ρρ → 4π if the ρ intermediate states largely saturated the
decay within regions of the phase space reasonably close to their mass shell. In fact, up
to corrections due to the two-pion channel ρ′ → π+π−, such an identification appears
natural within the VMD approach. In constructing an amplitude M(f1 → π+π−π+π−),
which can be obtained by means of M(f1 → ρ0

∗
ρ0
∗
) and the ρππ coupling dictated by

Eq. (B.8), only the symmetric form factor FI=1
s (q21, q

2
2) and the symmetric Lorentz struc-

ture Tµνα
s (q1, q2) are relevant under the above assumptions and when restricting to the

minimal VMD parameterization. More specifically, we use the amplitude M(f1 → γ∗γ∗)
in the decomposition of Eq. (3.4) and remove the external photons by dropping the rele-
vant ρ-meson propagator poles and the factors of e, at the same time dividing by the ργ
coupling g̃ργ , Eq. (B.7), for each cut photon. In doing so, we arrive at

M(f1 → ρ0
∗
ρ0
∗
) =

Cfρρ

2
ϵ∗µ(q1)ϵ

∗
ν(q2)ϵα(P )

×
[
q1βq2γ

(
ϵανβγqµ1 − ϵαµβγqν2

)
+ ϵαµνβ(q2βq

2
1 − q1βq

2
2)
]
, (4.14)

where we defined Cfρρ = CsM
4
ρ/(m

2
f1
g̃2ργ). Observing that there exist two diagrams for

f1 → π+π−π+π− due to the indistinguishability of the two π+ and π−—see Fig. 4.2—we
use the ρππ coupling as prescribed by Eq. (B.8) to deduce

M(f1 → π+π−π+π−) =
2Cfρρg

2
ρππ(

q21 −M2
ρ + i

√
q21 Γρ(q21)

)(
q22 −M2

ρ + i
√
q22 Γρ(q22)

)ϵα(P )ϵαµνβ

×
[(
M2

π + (p1 · p2)
)
k1βk2ν(p2 − p1)µ −

(
M2

π + (k1 · k2)
)
p1βp2µ(k2 − k1)ν

]

+ (p1 ↔ k1). (4.15)

Here, the momenta are defined as in Fig. 4.2 and the pions are on shell, p21/2 =M2
π = k21/2.

Given this amplitude, one can calculate the decay width and thus branching ratio via
the four-body phase-space integration of

dΓ(f1 → π+π−π+π−) =
1

2mf1

∣∣M(f1 → π+π−π+π−)
∣∣2dΦ4(P ; p1, p2, k1, k2). (4.16)
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Figure 4.2: Feynman diagrams for f1 → π+π−π+π− via two ρ mesons. Since the two π+

and π− are each mutually indistinguishable, there exist two contributions (left and right).

We use the differential four-body phase space dΦ4(P ; p1, p2, k1, k2) in the form [99]

dΦ4(P ; p1, p2, k1, k2) = dΦ2(q1; p1, p2) dΦ2(q2; k1, k2) dΦ2(P ; q1, q2)
dq21
2π

dq22
2π

, (4.17)

where dΦ2(P ; q1, q2), dΦ2(q1; p1, p2), and dΦ2(q2; k1, k2) are the respective two-body phase
spaces of the subsystems {ρ(q1), ρ(q2)}, {π+(p1), π−(p2)}, and {π+(k1), π−(k2)}. Since the
integration volumes of the phase spaces are Lorentz invariant, each two-body phase space
can be evaluated in the corresponding center-of-mass frame, and we have to perform an
explicit Lorentz transformation from the center-of-mass frames of {π+(p1), π−(p2)} and
{π+(k1), π−(k2)} into the one of {ρ(q1), ρ(q2)} in order to evaluate scalar products of the
kind (pi · kj), i, j ∈ {1, 2}, appearing in |M(f1 → π+π−π+π−)|2; see, e.g., Ref. [137]
for more details.10 We perform the phase-space integration numerically with the Cuhre
algorithm from the Cuba library [138], where the energy-dependent width Γρ(q

2) is as
specified in Eq. (3.15), and obtain [115]

Γ(f1 → π+π−π+π−) = |Cs|2|gργ |4|gρππ|4 × 0.63× 10−10 GeV. (4.18)

Combining the above result with the values |gργ | = 4.96 and |gρππ| = 5.98, Eq. (B.3) and
Eq. (B.11), we find the branching ratio to be given by

B(f1 → π+π−π+π−) = |Cs|2 × 0.215(10)%. (4.19)

The comparison with the experimental ratio B(f1 → π+π−π+π−) = 10.9(6)% [99] yields

|Cs| = 7.1(3), (4.20)

in serious disagreement with Eq. (4.7).
Including ρ′ contributions within the minimal VMD representation, there are four

additional diagrams as compared to Fig. 4.2, that is two for the intermediate state (ρ, ρ′)

10While two diagrams contribute, as shown in Fig. 4.2, the decay rate involves an additional symmetry
factor of S = 1/(2!)2 because of the two pairs of indistinguishable particles in the final state.
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Γ
(1)
s Γ

(2)
s Γ

(3)
s Γ

(4)
s Γ

(5)
s Γ

(6)
s

0.63 0.01 0.00 0.16 0.01 0.00

Γa1 Γa2 Γa1,a2

0.02 0.18 −0.06

Γ
(1)
a1,s Γ

(1)
a2,s Γ

(2)
a1,s Γ

(2)
a2,s Γ

(3)
a1,s Γ

(3)
a2,s

−0.12 0.54 −0.01 0.05 0.00 0.00

Table 4.1: Decay rates (in units of 10−10 GeV) needed for the evaluation of Eq. (4.21) and
Eq. (4.23). The ρ and ρ′ spectral functions are evaluated with Eq. (3.15) and Eq. (3.13),
respectively. The latter variant is chosen for consistency with the estimate of the ρ′ → ππ
coupling via Eq. (4.22), see App. B.

and two for (ρ′, ρ). The corresponding master formula then takes the form

Γ(f1 → π+π−π+π−) = |gργ |4|gρππ|4
[
C2

a1κ
2Γa1 + C2

a2κ
2Γa2 + C2

s Γ
(1)
s + Ca1Ca2κ

2Γa1,a2

+ Ca1CsκΓ
(1)
a1,s + Ca2CsκΓ

(1)
a2,s

]
, (4.21)

where

κ =
M2

ρ′

M2
ρ

g̃ργ
g̃ρ′γ

gρ′ππ
gρππ

=
gρ′γgρ′ππ
gργgρππ

≈ −0.7, (4.22)

see Eq. (B.23); the numerical values of the defined decay rates are collected in Table 4.1.
For the extended VMD representation, yet two additional diagrams with the intermediate
state (ρ′, ρ′) have to be taken into account, resulting in the master formula

Γ(f1 → π+π−π+π−) = |gργ |4|gρππ|4

×
[
C2

a1κ
2Γa1 + C2

a2κ
2Γa2 + C2

s

[
(1− ϵ1 − ϵ2)

2Γ(1)
s + ϵ21κ

2Γ(2)
s + ϵ22κ

4Γ(3)
s

+ (1− ϵ1 − ϵ2)ϵ1κΓ
(4)
s + (1− ϵ1 − ϵ2)ϵ2κ

2Γ(5)
s + ϵ1ϵ2κ

3Γ(6)
s

]

+ Ca1Ca2κ
2Γa1,a2 + Ca1Cs

[
(1− ϵ1 − ϵ2)κΓ

(1)
a1,s + ϵ1κ

2Γ(2)
a1,s + ϵ2κ

3Γ(3)
a1,s

]

+ Ca2Cs

[
(1− ϵ1 − ϵ2)κΓ

(1)
a2,s + ϵ1κ

2Γ(2)
a2,s + ϵ2κ

3Γ(3)
a2,s

]]
; (4.23)

see Table 4.1 for the numerical values of the decay rates. The numerical pattern shows
that even though the coupling κ itself is O(1), ρ′ contributions are significantly suppressed,
both due to the propagators in Eq. (4.15) and because the ρ′ can never be on shell in the
available phase space. For the solutions of the global phenomenological analysis in Ch. 6,
we find that the interference effects tend to even slightly reduce the branching ratio in the
minimal VMD case, while the large values of (1− ϵ1 − ϵ2) in the extended VMD fits can
increase B(f1 → π+π−π+π−) to the level of 1%, still far below the experimental value.

The reason for this incompatibility can be understood as follows: the available phase
space prohibits the two ρmesons from being simultaneously on shell, and the corresponding
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Figure 4.3: Feynman diagram for f1 → ργ consistent with M(f1 → γ∗γ∗).

loss of resonance enhancement for two intermediate ρ mesons implies that other decay
mechanisms become more important. A candidate for such a mechanism is given by the
decay f1 → a1π → ρππ → 4π; see App. D for an estimate of this decay channel. From this
analysis, we indeed infer that the intermediate state a1π likely saturates the decay width
to a large extent, so that we have to conclude that the decay f1 → 4π does not allow one
to extract further information on the f1 TFFs. We will thus disregard this input entirely
and adopt Eq. (4.7) for the symmetric normalization. With the couplings Ca1 , Ca2 , and
Cs all assumed real, we will further fix the global sign by demanding that Cs be positive,

Cs = 0.93(11). (4.24)

4.3 f1 → ργ

The construction of the amplitude for f1 → ργ proceeds along the same lines as for
f1 → 4π, via M(f1 → γ∗γ∗), either by using the minimal or the extended VMD parame-
terization. By definition, this decay channel only probes the isovector contribution, up to
negligible isospin-breaking effects.

For the amplitude M(f1 → ργ), we then proceed as stated above, starting with the
minimal VMD ansatz, and consider the ρ meson and photon on shell, q21 = M2

ρ , q22 = 0,
and ϵ∗(q1) · q1 = 0 = ϵ∗(q2) · q2, which also implies Γρ(q

2
2 = 0) = 0 = Γρ′(q

2
2 = 0) according

to Eq. (3.11)–Eq. (3.15). The corresponding diagram is depicted in Fig. 4.3, and we find

M(f1 → ργ) = Cfργϵ
∗
µ(q1)ϵ

∗
ν(q2)ϵα(P )

×
[
Ca1ϵ

µνβγq1βq2γ(q
α
1 − qα2 ) +

M2
ρ

2
Ca2ϵ

αµνβq2β +
M2

ρ

2
Csϵ

αµνβq2β

]
, (4.25)

where we introduced Cfργ = eM2
ρ/(g̃ργm

2
f1
). The branching ratio of the decay is given by

B(f1 → ργ) =
B1C

2
a1 +B2

(
C2

a2 + C2
s + 2Ca2Cs

)
−B3

(
Ca1Ca2 + Ca1Cs

)

Γf
, (4.26)

where—as throughout this part of the thesis—the coupling constants are assumed to be
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Figure 4.4: Surface plot of B(f1 → ργ) (blue-yellow textured), Eq. (4.26), using the
central value of Cs = 0.93(11), Eq. (4.24), together with the central value of B(f1 →
ργ) = 4.2(1.0)% (red), see Ch. 6.

purely real and we defined the coefficients

B1 =
α|gργ |2

(
m2

f1
−M2

ρ

)5

24m9
f1

, B2 =
α|gργ |2M2

ρ

(
m2

f1
−M2

ρ

)3(
m2

f1
+M2

ρ

)

96m9
f1

,

B3 =
α|gργ |2M2

ρ

(
m2

f1
−M2

ρ

)4

24m9
f1

. (4.27)

As depicted in Fig. 4.4, the solution of Eq. (4.26) in terms of the unknown couplings
Ca1 and Ca2 represents an ellipse, where we used the central values of Cs = 0.93(11)
and B(f1 → ργ) = 4.2(1.0)%, see Ch. 6, to illustrate the cut surfaces. Although it is
straightforward to actually solve Eq. (4.26) for such an equation, we refrain from doing so
here as there exists no unique solution without further input.

The equivalent amplitude in the extended VMD representation reads

M̃(f1 → ργ) = Cfργϵ
∗
µ(q1)ϵ

∗
ν(q2)ϵα(P ) (4.28)

×
[
Ca1ϵ

µνβγq1βq2γ(q
α
1 − qα2 ) +

M2
ρ

2
Ca2ϵ

αµνβq2β +
M2

ρ

2
Cs

(
1− ϵ1

2
− ϵ2

)
ϵαµνβq2β

]
,

the only difference compared to the minimal VMD parameterization being that Cs →
C̃s = (1− ϵ1/2− ϵ2)Cs. Hence, the branching ratio given in Eq. (4.26) becomes

B̃(f1 → ργ) =
B1C

2
a1 +B2

(
C2

a2 + C̃2
s + 2Ca2C̃s

)
−B3

(
Ca1Ca2 + Ca1C̃s

)

Γf
, (4.29)

which, when inserting ϵ1 and ϵ2 from Sec. 3.4, simplifies to

B̃(f1 → ργ) =
B1C

2
a1 + B̃2C

2
s − B̃3Ca1Cs

Γf
, (4.30)
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Figure 4.5: Feynman diagram for f1 → ργ → π+π−γ consistent with M(f1 → γ∗γ∗).

where we defined the coefficients

B̃2 =
M4

ρ′

(M2
ρ′ −M2

ρ )
2
B2, B̃3 =

M2
ρ′

M2
ρ′ −M2

ρ

B3. (4.31)

In this variant, the dependence on Ca2 thus drops out of the branching fraction, which is
a subtle consequence of the correlation between Ca2 and Cs imposed via the singly-virtual
high-energy behavior, see Eq. (3.35).

Another measured quantity of interest with regard to f1 → ργ is the ratio of the ρ-
meson’s helicity amplitudes in its rest frame, which is accessible through the subsequent
decay ρ → π+π−. In a similar manner to how we obtained the f1 → ργ amplitudes in
Eq. (4.25) and Eq. (4.28), we can construct an amplitude for f1 → ργ → π+π−γ, where
we indeed consider the subsequent decay of an on-shell ρ meson and furthermore use the
ρππ coupling given by Eq. (B.8); the process is depicted in Fig. 4.5.

Imposing q21 = M2
ρ , thus also Γρ(q

2
1 = M2

ρ ) = Γρ according to Eq. (3.15), q22 = 0 =
ϵ∗(q2) · q2, and p21 =M2

π = p22, we find

M(f1 → ργ → π+π−γ) =
Cfργgρππ
MρΓρ

ϵ∗ν(q2)ϵα(P )(p2 − p1)µ (4.32)

×
[
Ca1ϵ

µνβγq1βq2γ(q
α
1 − qα2 ) +

M2
ρ

2
Ca2ϵ

αµνβq2β +
M2

ρ

2
Csϵ

αµνβq2β

]

with the minimal VMD parameterization, where the constant Cfργ = eM2
ρ/(g̃ργm

2
f1
) is

defined as in Eq. (4.25). The equivalent expression M̃(f1 → ργ → π+π−γ) in the extended
VMD variant is obtained for Cs → C̃s = (1 − ϵ1/2 − ϵ2)Cs. Transforming into the rest
frame of the ρ meson, one finds the spin-averaged amplitude squared to be of the form

∣∣M(f1 → ργ → π+π−γ)
∣∣2 = MTT sin2 θπ+γ +MLL cos2 θπ+γ , (4.33)

where θπ+γ is the angle between the final-state π+ and photon, and

rργ =
MLL

MTT
=

2m2
f1
M2

ρ[
M2

ρ − 2
(
m2

f1
−M2

ρ

)
Ca1/

(
Ca2 + Cs

)]2 (4.34)

is the corresponding ratio of the longitudinal and transversal ρ-meson helicity amplitudes.
In the extended VMD case, one again needs to replace Cs → C̃s = (1− ϵ1/2− ϵ2)Cs, which
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Figure 4.6: Surface plots of rργ (blue-yellow textured), Eq. (4.34), using the central value
of Cs = 0.93(11), Eq. (4.24), together with the central value of the measurement rργ =
3.9(1.3) [100] (red) from two different perspectives (left and right).

then further simplifies to

r̃ργ =
M̃LL

M̃TT
=

2m2
f1
M2

ρM
4
ρ′[

M2
ρM

2
ρ′ − 2

(
m2

f1
−M2

ρ

)
(M2

ρ′ −M2
ρ )Ca1/Cs

]2 (4.35)

when inserting ϵ1 and ϵ2 from Sec. 3.4. The coupling Ca2 therefore does not contribute to
either f1 → ργ observable in the extended VMD ansatz.

The solution of Eq. (4.34) in terms of the unknown couplings Ca1 and Ca2 is given by
four unconnected straight lines, as apparent from Fig. 4.6, where we used the central values
of Cs = 0.93(11), Eq. (4.24), and the measurement rργ = 3.9(0.9)(1.0) = 3.9(1.3) [100] for
illustration. Similar to the discussion regarding B(f1 → ργ), we refrain from giving the
explicit form of the solution here and postpone the phenomenological analysis to Ch. 6.

4.4 f1 → ϕγ and f1 → ωγ

The branching ratio of f1 → ϕγ has been measured experimentally, B(f1 → ϕγ) =
0.74(26) × 10−3 [99, 101], and thus allows for another consistency check of our VMD
representations, in particular the U(3) assumptions for the isoscalar TFFs. Similarly, we
can predict the branching fraction for f1 → ωγ once all the parameters are determined,
which could be confronted with potential future measurements.

In complete analogy to Sec. 4.3, we construct amplitudes for f1 → V γ, V = ϕ, ω, i.e.,

M(f1 → V γ) = CfV γϵ
∗
µ(q1)ϵ

∗
ν(q2)ϵα(P ) (4.36)

×
[
CV V ′

a1 ϵµνβγq1βq2γ(q
α
1 − qα2 ) +

M2
V

2
CV V ′

a2 ϵαµνβq2β +
M2

V

2
CV V

s ϵαµνβq2β

]
,
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where we defined CfV γ = eM2
V /(g̃V γm

2
f1
). In terms of the ratio RV = Rϕ, Rω of isoscalar

to isovector couplings, Eq. (3.27), the branching ratio of the decay is given by

B(f1 → V γ) = (RV )2
BV

1 C
2
a1 +BV

2

(
C2

a2 + C2
s + 2Ca2Cs

)
−BV

3

(
Ca1Ca2 + Ca1Cs

)

Γf
, (4.37)

cf. Eq. (4.26), where we defined the coefficients

BV
1 =

α|gV γ |2
(
m2

f1
−M2

V

)5

24m9
f1

, BV
2 =

α|gV γ |2M2
V

(
m2

f1
−M2

V

)3(
m2

f1
+M2

V

)

96m9
f1

,

BV
3 =

α|gV γ |2M2
V

(
m2

f1
−M2

V

)4

24m9
f1

. (4.38)

The generalization to the extended VMD representation would be straightforward once
applied to the isoscalar sector.
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Chapter 5

f1 → e+e−†

As the discussion in Ch. 4 shows, the constraints from e+e− → e+e−f1, f1 → 4π, and
f1 → ργ do, in general, not suffice to reliably determine all three free VMD parameters,
with the branching fraction of f1 → 4π not providing any additional input at all due to
significant contamination from decay channels not related to the TFFs. In this way, the
evidence for the decay f1 → e+e− reported by the SND collaboration [102] is extremely
interesting because future improved measurements of the decay have the potential to
overconstrain the system of Ca1 , Ca2 , and Cs, as we will demonstrate in Ch. 6. In this
chapter, we provide the required formalism to extract information on the f1 TFFs from
its decay into e+e−; cf. also Ref. [113].

The Feynman diagram for the one-loop process is depicted in Fig. 5.1, and the general
form of the amplitude is

M(f1 → e+e−) = e4ϵµ(P )ū
s(p1)γ

µγ5A1

(
m2

f1 ,m
2
e = 0,m2

e = 0
)
vr(p2), (5.1)

which implies
∣∣M(f1 → e+e−)

∣∣2 =
4e8m2

f1

3
|A1|2 (5.2)

for the spin-averaged amplitude squared and a decay width of

Γ(f1 → e+e−) =
64π3α4mf1

3
|A1|2. (5.3)

Here and in the following, the arguments of the reduced amplitude A1 will be suppressed
and we will work in the limit me = 0. To extract A1 from the full amplitude, we first
consider the amplitude M(f1 → γ∗γ∗) and recast it into the more convenient form

M(f1 → γ∗γ∗) =
ie2

m2
f1

ϵµνβγ
[
Fa1(q

2
1, q

2
2)ϵ
∗
µ(q1)ϵ

∗
ν(q2)ϵα(P )q1βq2γ(q

α
1 − qα2 ) (5.4)

− 1

2

[
Fa2(q

2
1, q

2
2) + Fs(q

2
1, q

2
2)
]
ϵ∗ν(q2)ϵµ(P )q2β

[
q1γϵ

∗
α(q1)q

α
1 − ϵ∗γ(q1)q

2
1

]

+
1

2

[
Fa2(q

2
1, q

2
2)−Fs(q

2
1, q

2
2)
]
ϵ∗ν(q1)ϵµ(P )q1β

[
q2γϵ

∗
α(q2)q

α
2 − ϵ∗γ(q2)q

2
2

]]
.

†The generic forms of the amplitude and decay width for f1 → e+e− stated in this chapter have already
been derived in the master’s thesis of the author [115]; the explicit expressions and calculations have,
however, been thoroughly refined for this thesis, among other things regarding novel contributions not
considered in Ref. [115] and an analytic cross-check for the numerical evaluation of the loop integral.
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f1

e

e

P

q1

q2

p2

k

p1

Figure 5.1: Feynman diagram for the decay of the axial-vector meson f1 into an electron–
positron pair.

Inserting this amplitude into the quantum-electrodynamics (QED) loop, the full amplitude
can be written as

M(f1 → e+e−) =
4ie4

m2
f1

ϵα(P )Pµū
s(p1)γβγ

5vr(p2)

∫
d4k

(2π)4
kµkβkα

k2q21q
2
2

Fa1(q
2
1, q

2
2) (5.5)

+
ie4

m2
f1

ϵβ(P )ū
s(p1)γµγ

5vr(p2)

×
∫

d4k

(2π)4
kµkβ

k2q21q
2
2

[
(q22 − q21)Fa2(q

2
1, q

2
2)− (q22 + q21)Fs(q

2
1, q

2
2)
]

+
ie4

2m2
f1

ϵµ(P )ū
s(p1)γ

µγ5vr(p2)

×
∫

d4k

(2π)4

[
2q21q

2
2 + k2(q21 + q22)

]
Fs(q

2
1, q

2
2) + k2

(
q21 − q22

)
Fa2(q

2
1, q

2
2)

k2q21q
2
2

,

where we have used the on-shell condition for the fermions, neglected their masses, and
written the loop integration in the most symmetric way.11 In particular, rewriting the
TFF combinations as

(q22 − q21)Fa2(q
2
1, q

2
2)− (q22 + q21)Fs(q

2
1, q

2
2) = −2q21F2(q

2
1, q

2
2) + 2q22F3(q

2
1, q

2
2),[

2q21q
2
2 + k2(q21 + q22)

]
Fs(q

2
1, q

2
2) + k2

(
q21 − q22

)
Fa2(q

2
1, q

2
2) = 2(k2 + q22)q

2
1F2(q

2
1, q

2
2) (5.6)

− 2(k2 + q21)q
2
2F3(q

2
1, q

2
2)

shows that the ill-defined BL limits—see Eq. (2.18) and the subsequent comment—always
appear suppressed by the respective on-shell virtuality, as expected from the form of the
physical helicity amplitudes. We conclude that these integration regions will therefore
be of minor importance. Moreover, all remaining integrals are ultraviolet and infrared
convergent by inspection of the parameterization of the form factors in Eq. (3.10) and
Eq. (3.20). However, inserting the (isovector) VMD expressions directly into the loop
integral would produce unphysical imaginary parts, which can be avoided by using the
spectral representations of Eq. (3.16) and Eq. (3.21) instead, ensuring the correct analytic
properties.

11By the most symmetric way, we refer to a symmetrization over two forms of the initial term [115]
Is =

∫
d4k q−2

1 q−2
2 [2(p1 · p2) + 2k2]Fs(q

2
1 , q

2
2), namely Is =

∫
d4k q−2

1 q−2
2 (m2

f1
+ 2k2)Fs(q

2
1 , q

2
2) and Is =∫

d4k q−2
1 q−2

2 (m2
f1

+ 2(p1 − p2 − k)2)Fs(q
2
1 , q

2
2), which are related via a momentum shift k′ = p1 − p2 − k

in the loop integral and the symmetry property of Fs(q
2
1 , q

2
2).
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We performed the remaining Passarino–Veltman (PV) reduction in two ways:

(i) in an automated way using FeynCalc [139–141], FeynHelpers [142] (which merges
FeynCalc with FIRE [143] and Package-X [144]), and LoopTools [145];

(ii) directly by introducing Feynman parameters in Eq. (5.5).

Decomposing the amplitude as

M(f1 → e+e−) = e4ϵµ(P )ū
s(p1)γ

µγ5A1v
r(p2), (5.7)

A1 =
(
DI=1

1 +DI=0
1

)
Ca1 +

(
DI=1

2 +DI=0
2

)
Ca2 +

(
DI=1

3 +DI=0
3

)
Cs +Dasym,

the latter approach, in the minimal VMD ansatz, leads to the representation

DI=1
1/2 =

M2
ρM

2
ρ′

16π4Nam4
f1

∫ ∞

4M2
π

dx

∫ ∞

sthr

dy

∫ 1

0
dz Im

[
PBW
ρ (x)

]
Im
[
PBW
ρ′ (y)

]
f1/2(x, y, z,mf1),

DI=1
3 =

M4
ρ

16π4Nsm4
f1

∫ ∞

4M2
π

dx

∫ ∞

4M2
π

dy

∫ 1

0
dz Im

[
PBW
ρ (x)

]
Im
[
PBW
ρ (y)

]
f3(x, y, z,mf1),

(5.8)

where

f1 =
x̄− ȳ

x̄ȳ

[
x̄z log ∆(x̄,ȳ,z)

−x̄z
∆(ȳ, z)

− (1− z) log∆(x̄, ȳ, z)

]

+
z

x̄ȳ

[
x̄ log(−x̄z)− ȳ log(−ȳz)

]
+

(1− z)(1− 3z) log ∆(ȳ,z)
∆(x̄,z)

2x̄ȳ
− (x↔ y),

f2 =
x̄− ȳ

2x̄ȳ

[
x̄z log ∆(x̄,ȳ,z)

−x̄z
∆(ȳ, z)

+ z log∆(x̄, ȳ, z) +
1

4

]
− 3z − 2

2x̄ȳ

[
x̄ log∆(x̄, z)− ȳ log∆(ȳ, z)

]

− z

x̄ȳ

[
x̄ log(−x̄z)− ȳ log(−ȳz)

]
−

(1− z)(1− 3z) log ∆(ȳ,z)
∆(x̄,z)

2x̄ȳ
− (x↔ y),

f3 = − 2z − 1

2x̄ȳ∆(ȳ, z)3

×
[
2z3x̄2 log
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(
1− 3z + 2(x̄+ ȳ)

)]]

+
z(4z − 2 + x̄(22z − 5))

4x̄ȳ∆(ȳ, z)2

[
x̄z log

∆(x̄, ȳ, z)

−x̄z + (1− z)∆(ȳ, z)
]
− z2(5 + 9x̄)

2ȳ

log ∆(x̄,ȳ,z)
−x̄z

∆(ȳ, z)

+
(1− z)

[
5(8z2 − 7z + 1) + 18(2x̄z + ȳ(1− z))

]
log∆(x̄, ȳ, z)

4x̄ȳ
+
x̄2 − 1

4ȳ
log

1− x̄

−x̄

+
ȳ2 − 1

4x̄
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1− ȳ
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2ȳ
log(−x̄)− 3

2x̄
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24x̄ȳ
, (5.9)

with

∆(x, y, z) = z(1− z)− zx− (1− z)y, ∆(x, z) = z − x, x̄ =
x

m2
f1

, ȳ =
y

m2
f1

, (5.10)
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and the correct analytic continuation is specified by x→ x−iϵ, y → y−iϵ in the logarithms.
Similar expressions apply for the isoscalar parts and the extended VMD parameterization,
the latter including the asymptotic contribution

Dasym =
3F eff

f1

8π2m3
f1

∫ ∞

sm

dx

∫ 1

0
dz fasym(x, z,mf1),

fasym =
z4(1− z)2

2x̄(x̄− z)4(z(1− z)− x̄)2

[
(2− z)z2

(
8− 23z + 27z2 − 14z3

)

− x̄z
(
32− 100z + 131z2 − 76z3 + 14z4

)
+ x̄2

(
16− 46z + 51z2 − 18z3

)]

+
z(1− z)

2x̄(x̄− z)3

[
z2
(
17− 37z + 37z2 − 14z3

)
+ x̄
(
2 + 11z − 17z2 + 10z3

)
− 3x̄2(2z + 1)

]

− z2(z(z + 2) + 2x̄(5− 2z)− 9x̄2)

2(x̄− z)4
log

z(1− z)− x̄

−x̄z . (5.11)

In all cases, the numerical integration is performed with the Cuhre algorithm from the
Cuba library [138].

For the numerical analysis, we further write the coefficients in Eq. (5.7) according to

Di = DI=1
i +DI=0

i , i = 1, 2, 3, Dasym =
F eff
f1
m3

f1

M4
ρ

sDasym,

DI=1
i =

Dρρ′

i

Na
, DI=0

i = 0, i = 1, 2, DI=0
3 = RωDωω

3 +RϕDϕϕ
3 ,

DI=1
3

∣∣
ṼMD

=
Dρρ

3 (1− ϵ1 − ϵ2) +Dρρ′

3 ϵ1 +Dρ′ρ′

3 ϵ2

Ñs
, DI=1

3

∣∣
VMD =

Dρρ
3

Ns
, (5.12)

where the prefactor for Dasym is motivated from Eq. (3.32) to ensure that the resulting
dimensionless coefficients can be compared in a meaningful way. Our numerical results are
shown in Table 5.1, including the uncertainties from the variation in Γρ′ . Even after taking
the change in the normalizations into account, see Table 3.1, these results show that the
uncertainties due to the spectral shape and the width itself can lead to comparable effects.

To be able to better compare the various contributions, we also show the coefficients
including their normalizations, see Table 5.2, where we used the value of Eq. (3.33) for
the asymptotic contribution. These numbers show that the symmetric contribution still
produces the largest coefficient, but not by much. Accordingly, the f1 → e+e− decay
proves sensitive to the antisymmetric TFFs, about which not much is known at present.
For the extended VMD ansatz, this observation implies an important caveat regarding
the numbers shown in the table, which have been produced under the assumption that
Ca2 = 0. In this case, one observes distinct differences between the two VMD versions,
which can be traced back to the different weight given to the ρρ′ contribution. Finally,
the real part of the isoscalar coefficient comes out larger than expected from Eq. (3.9);
this is due to the fact that the loop integral is effectively regularized by the vector-meson
mass, and the masses of ω and ϕ differ by a sufficient amount that the cancellation in
Eq. (3.28) between the two contributions becomes less effective. The imaginary part of
the loop integral is finite also in the infinite-mass limit, so that its size complies better
with the expected isoscalar suppression.

98



Γ
(4π)
ρ′ (q2) Γ

(ωπ,ππ)
ρ′ (q2)

Dρρ′

1 × 103 (−0.126)+0.026
−0.031 + (−1.501)+0.099

−0.121 i (−0.173)+0.030
−0.034 + (−1.659)+0.107

−0.126 i

Dρρ′

2 × 103 (−0.978)+0.030
−0.038 + 1.593−0.119+0.144 i (−1.032)+0.030

−0.036 + 1.755−0.129+0.150 i

Dρρ
3 × 103 3.189 + 2.338 i

Dρρ′

3 × 103 4.66−0.30+0.37 + 0.88−0.05+0.06i 5.26−0.33+0.39 + 0.99−0.05+0.06 i

Dρ′ρ′

3 × 103 6.78−0.90+1.19 + 0.06+0.00
−0.00 i 8.85−1.14+1.45 + 0.09+0.01

−0.01 i

Dωω
3 × 103 3.835 + 3.193 i

Dϕϕ
3 × 103 8.736 + 3.775 i

sDasym × 103 0.146 0.038 0.019 0.011

Table 5.1: Numerical results for the constants defined in Eq. (5.12) for the two ρ′ spectral
functions Γρ′(q

2) = Γ
(4π)
ρ′ (q2), Eq. (3.12), and Γρ′(q

2) = Γ
(ωπ,ππ)
ρ′ (q2), Eq. (3.13). The

uncertainties refer to the variation Γρ′ = (400 ± 60)MeV, see App. E, which gives the
dominant parametric effect. The constant sDasym is given for the reference points

√
sm =

1.0GeV, 1.3GeV, 1.5GeV, 1.7GeV.

Since the coupling constants are real, we use the decay width from Eq. (5.3) to obtain
a branching ratio of

B(f1 → e+e−) =
E1C

2
a1 + E2C

2
a2 + E3C

2
s + E1,2Ca1Ca2 + E1,3Ca1Cs + E2,3Ca2Cs

Γf

+
E1,asymCa1 + E2,asymCa2 + E3,asymCs + Easym

Γf
, (5.13)

where we defined

Ei =
64π3α4mf1

3
|Di|2, i = 1, 2, 3,

Ei,j =
128π3α4mf1

3
Re [DiD

∗
j ], (i, j) = (1, 2), (1, 3), (2, 3), (5.14)

Ei,asym =
128π3α4mf1

3
Re [DiDasym], i = 1, 2, 3, Easym =

64π3α4mf1

3
|Dasym|2,

and the terms involving Dasym are only included in the extended VMD representation.
Similarly to Eq. (4.26), the solution of Eq. (5.13) in terms of the unknown couplings

Ca1 and Ca2 represents an ellipse in the minimal VMD case, which, however, changes for
the extended VMD representation, see Fig. 5.2. Here, we used the central value of Cs =
0.93(11), Eq. (4.24), to remove one unknown and set

√
sm = 1.3GeV for the asymptotic

contribution [26, 27]. In fact, the results in Table 5.1 and Table 5.2 show that Dasym
remains small for a wide range of matching scales sm, so that the details of the matching
play a minor role in view of the present experimental uncertainties. For definiteness, we
will continue to use

√
sm = 1.3GeV in the following, with the understanding that the

matching can be refined once improved data becomes available, along the lines described
in App. A.
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Γ
(4π)
ρ′ (q2) Γ

(ωπ,ππ)
ρ′ (q2)

DI=1
1 × 103 (−0.218)+0.033

−0.034 + (−2.601)+0.007
−0.007 i (−0.269)+0.032

−0.032 + (−2.583)+0.011
−0.010 i

DI=1
2 × 103 (−1.695)−0.060+0.062 + 2.760−0.033+0.031 i (−1.606)−0.053+0.054 + 2.732−0.038+0.036 i

DI=1
3

∣∣
VMD × 103 3.961 + 2.904 i

DI=1
3

∣∣
ṼMD

× 103 2.163+0.121
−0.148 + 3.592−0.061+0.077 i 1.930+0.128

−0.147 + 3.685−0.070+0.085 i

DI=0
3 × 103 −0.95(30)− 0.24(13) i

Dasym × 103 0.125(12) 0.032(3) 0.017(2) 0.009(1)

Table 5.2: Coefficients from Eq. (5.12), based on Table 5.1 and the normalizations from
Table 3.1. For the extended VMD version, the result in general depends on ϵ1/2; here,
we show the special case for Ca2 = 0. For DI=0

3 and Dasym, the error is propagated from
Eq. (3.27) and Eq. (3.33), respectively.

In order to solve for all couplings, we need to consider a combined analysis of all
constraints, see Ch. 6. However, given that the biggest contribution tends to come from
the symmetric term, see Table 5.1, it is instructive to study the case Ca1 = 0 = Ca2 and
consider the f1 → e+e− decay as an independent determination of Cs. For the minimal
VMD ansatz, we find

Cs = 1.7+0.6
−0.5, (5.15)

where the isoscalar contribution implies an increase by about 0.3(1). The extended variant
gives12

Cs = 1.9+0.8
−0.6, (5.16)

where the uncertainties from the dependence on the ρ′ spectral function, its width, and the
asymptotic contribution, ∆Cs ≲ 0.03, are negligible compared to both the experimental
error and the uncertainty from the isoscalar contribution. Both values are larger than the
L3 result given in Eq. (4.24), indicating that a significant contribution from the antisym-
metric TFFs should indeed be expected, which in view of the results from Table 5.2 is
well possible with plausible values of Ca1/2 . Finally, the difference between Eq. (5.15) and
Eq. (5.16) gives a first estimate of the sensitivity to the chosen VMD ansatz.

12Due to the interference with the asymptotic contribution, there are, in principle, two solutions, which,
however, are very close in magnitude.
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Figure 5.2: Surface plots of B(f1 → e+e−) (blue-yellow textured), Eq. (5.13), as obtained
with the minimal (top) and extended (bottom) VMD parameterization (reference point√
sm = 1.3GeV for the latter) and using the central value of Cs = 0.93(11), Eq. (4.24),

Γρ′(q
2) = Γ

(4π)
ρ′ (q2) (left), Eq. (3.12), and Γρ′(q

2) = Γ
(ωπ,ππ)
ρ′ (q2) (right), Eq. (3.13), to-

gether with the central value of the measurement B(f1 → e+e−) = 5.1+3.7
−2.7 × 10−9 [102]

(red).
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Chapter 6

Combined phenomenological
analysis

In this chapter, we perform a global analysis of the experimental constraints from e+e− →
e+e−f1, f1 → ργ, and f1 → e+e−. We will also consider f1 → ϕγ due to its relation via
U(3) symmetry but not include f1 → 4π for the reasons stated in Sec. 4.2 and App. D.
Most of the input quantities follow in a straightforward way from the experimental ref-
erences and the compilation in Ref. [99], see Table 6.1, except for the branching fraction
of the ργ channel, for which the fit by the Particle Data Group (PDG) and the direct
measurement by VES [100] disagree by 2.5σ.

The PDG fit proceeds in terms of the five branching fractions for f1 → 4π, a0(980)π
(excluding a0(980) → K sK), ηππ (excluding a0(980)π), K sKπ, and ργ, including data on

1. Γ(f1 → K sKπ)/Γ(f1 → 4π) [146–148],

2. Γ(f1 → 4π)/Γ(f1 → ηππ) [149, 150],

3. Γ(f1 → ργ)/Γ(f1 → 4π) [151],

4. Γ(f1 → a0(980)π [excluding K sKπ])/Γ(f1 → ηππ) [149, 152, 153],

5. Γ(f1 → K sKπ)/Γ(f1 → ηππ) [149, 152–156],

6. Γ(f1 → ηππ)/Γ(f1 → ργ) [153, 154, 157],

however, with the notable exception of the constraint from Ref. [100].13 This fit has
a reduced χ2/dof = 24.0/14 = 1.71, reflecting the significant tensions in the data base.
These tensions become aggravated when including Ref. [100] in the fit, leading to a slightly
smaller ργ branching fraction of 5.3%, with χ2/dof = 33.5/15 = 2.23. The origin of the
tensions can be traced back to the input for Γ(f1 → ηππ)/Γ(f1 → ργ), which is measured
as 21.3(4.4) [153], 10(1)(2) [154], and 7.5(1.0) [157],14 with some additional sensitivity to
the ργ channel from Γ(f1 → ργ)/Γ(f1 → 4π) [151].

13Reference [100] only quotes the final ργ branching fraction but not Γ(f1 → ηππ)/Γ(f1 → ργ), as
measured in the experiment; however, the ηππ branching fraction from Ref. [158] is very close to the one
from Ref. [99], rendering the systematic error from the conversion negligible.

14The latter value is given as 5.0(7) in Ref. [157] for ηπ+π− and has thus been increased by the isospin
factor 3/2 in the PDG listing. There is also a limit B(f1 → ργ) < 5% at 95% confidence level from
Ref. [159], in tension with Refs. [154, 157].
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Reference B(f1 → ργ) rργ B(f1 → ϕγ) B(f1 → e+e−)

VES [100] 2.8(9)% 3.9(1.3)

PDG [99] 6.1(1.0)%

Our fit 4.2(1.0)%

Serpukhov [99, 101] 0.74(26)× 10−3

SND [102] (5.1+3.7
−2.7)× 10−9

Table 6.1: Summary of the experimental measurements used in our global analysis. In
addition, we use the L3 data for e+e− → e+e−f1, see Sec. 4.1.

The main reason why the fit prefers the ργ branching fraction from Refs. [154, 157]
is that the χ2 minimization is set up in terms of Γ(f1 → ηππ)/Γ(f1 → ργ) rather than
the inverse quantity, as would be canonical given that Γ(f1 → ργ) is the smallest of the
fit components and could thus be treated perturbatively. Using Γ(f1 → ργ)/Γ(f1 → ηππ)
in the minimization instead gives a similar χ2/dof = 24.9/14 = 1.78 but reduces the ργ
branching fraction to 4.9(9)% (including the scale factor from Ref. [99]), close to the naive
average of Refs. [151, 153, 154, 157] when taking the respective normalization channel
from the fit. Including, in addition, the measurement from Ref. [100], we find χ2/dof =
28.6/15 = 1.91 and

B(f1 → 4π) = 33.4(1.8)% [32.7(1.9)%],

B(f1 → a0(980)π [excluding a0(980) → K sK]) = 38.6(4.2)% [38.0(4.0)%],

B(f1 → ηππ [excluding a0(980)π]) = 14.6(4.1)% [14.0(4.0)%],

B(f1 → K sKπ) = 9.2(4)% [9.0(4)%],

B(f1 → ργ) = 4.3(8)% [6.1(1.0)%], (6.1)

where the results of the PDG fit are indicated in brackets (for better comparison, the
same channel-specific scale factors have been applied as in Ref. [99]). Finally, the limit
from Ref. [159] tends to further reduce the average a little, which, together with a slightly
increased scale factor when including Refs. [100, 159], leads us to quote

B(f1 → ργ) = 4.2(1.0)% (6.2)

as our final average for the subsequent analysis, see Table 6.1. While our main argument
in favor of this procedure is the avoidance of a fit bias towards the larger ργ branching
fractions, one may also compare with theoretical expectations. The models considered in
Refs. [153, 160–163] do, in general, prefer smaller ργ branching fractions, but the spread
among the models is too large to make that comparison conclusive.

The results of the global analysis are shown in Table 6.2 and Table 6.3, restricted to
the parameterization Γ

(ωπ,ππ)
ρ′ (y) due to the dominant experimental uncertainties. The

latter are propagated as given in Table 6.1, except for B(f1 → ϕγ), for which we use
B(f1 → ϕγ)/(Rϕ)2 = 3.0(1.6)% in the minimization, including the uncertainty on Rϕ

from Eq. (3.27). As a side result, Table 6.2 and Table 6.3 also contain predictions for
the branching fraction of the yet unmeasured decay f1 → ωγ. The outcome in the four
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f1 → ϕγ No Yes

Solution 1 Solution 2 Solution 1 Solution 2

χ2/dof 2.72/2 = 1.36 6.60/2 = 3.30 8.67/3 = 2.89 8.28/3 = 2.76

p-value 0.26 0.04 0.03 0.04

Cs 0.97(13) 1.01(18) 0.95(18) 0.99(17)

Ca1 −0.23(13) 0.91(21) −0.09(14) 0.80(17)

Ca2 0.51(21) 0.53(39) 0.17(25) 0.34(30)

ρsa1 0.43 0.41 0.21 0.31

ρsa2 −0.42 −0.13 −0.50 −0.37

ρa1a2 −0.44 0.77 −0.29 0.66

B(f1 → e+e−)× 109 2.7(6) 0.7(3) 1.8(6) 0.7(3)

B(f1 → ϕγ)× 103 2.5(1.3) 1.5(1.1) 1.3(8) 1.1(7)

B(f1 → ωγ)× 103 5.6(1.7) 4.4(2.2) 2.7(1.3) 3.3(1.4)

Table 6.2: Best-fit results for the three VMD couplings Cs, Ca1 , and Ca2 in the minimal
VMD representation. Each fit includes the constraints from the normalization and slope of
the TFF measured by L3 in e+e− → e+e−f1 as well as from B(f1 → ργ), rργ , and B(f1 →
e+e−). In addition, we show the variants including B(f1 → ϕγ) as a sixth constraint,
assuming U(3) symmetry. The uncertainties include the scale factor S =

√
χ2/dof. We

also show the correlations ρij among the three couplings and the value of B(f1 → e+e−)
preferred by each fit. Since the experimental uncertainties dominate by far in the case of
B(f1 → e+e−), we only show the results for Γ

(ωπ,ππ)
ρ′ (y) and

√
sm = 1.3GeV and do not

include the theory uncertainties discussed in detail in Ch. 5. The uncertainties quoted for
B(f1 → V γ) refer to the fit errors and RV but do not include any U(3) uncertainties.

cases considered—minimal and extended VMD representations, each with and without
the constraint from B(f1 → ϕγ)—is illustrated in Fig. 6.1 and Fig. 6.2. In all cases, the
parameter Cs is by far best constrained; its value hardly changes compared to the L3
reference point given in Eq. (4.24), with a slight preference for a small upward shift. The
main distinctions concern the couplings Ca1 and Ca2 , with qualitative differences between
the two VMD scenarios. In each case, we find two sets of solutions, corresponding to a
small negative value of Ca1 (Solution 1) or a sizable positive one (Solution 2), respectively,
both of which are shown in the tables and figures. In most cases, Solution 1 is strongly
preferred, the exception being the minimal VMD fit including B(f1 → ϕγ), in which
Solution 2 displays a slightly better fit quality.

In the minimal VMD representation, all constraints are sensitive to Ca2 , but especially
once including B(f1 → ϕγ), a significant tension among the different bands emerges. In
Solution 2, the region preferred by all constraints but B(f1 → e+e−), which thus dominate
the fit, would imply a much smaller value of B(f1 → e+e−) than reported by SND [102],
while Solution 1 is better in line with the SND result. An improved measurement of
B(f1 → e+e−) could therefore differentiate between these scenarios. In addition, we
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Chapter 6. Combined phenomenological analysis

f1 → ϕγ No Yes

Solution 1 Solution 2 Solution 1 Solution 2

χ2/dof 2.25/2 = 1.12 4.40/2 = 2.20 4.01/3 = 1.34 7.53/3 = 2.51

p-value 0.33 0.11 0.26 0.06

Cs 1.00(10) 1.02(14) 1.00(11) 1.02(15)

Ca1 −0.18(12) 0.85(14) −0.19(12) 0.85(15)

Ca2 1.03(36) 1.17(32) −0.20(29) 0.13(47)

ρsa1 0.10 0.86 0.10 0.86

ρsa2 0.00 0.21 −0.34 −0.32

ρa1a2 0.08 0.19 0.18 −0.27

ϵ1 2.59(1.33) 3.00(1.15) −1.79(1.01) −0.64(1.65)

B(f1 → e+e−)× 109 5.1(3.3) 5.1(4.7) 1.5(4) 0.3(4)

B(f1 → ϕγ)× 103 4.4(2.4) 3.4(2.0) 0.8(6) 0.8(7)

B(f1 → ωγ)× 103 9.1(3.1) 6.8(2.2) 1.9(1.0) 3.3(1.1)

Table 6.3: The same as Table 6.2 but for the extended VMD case, including the resulting
parameter ϵ1.

compare the resulting relevant form factor combination to the L3 dipole fit—see Sec. 4.1—
in Fig. 6.3. While some tension is expected due to the singly-virtual asymptotic behavior
of Fa1(q

2
1, q

2
2), see Table 3.2, the resulting curves for Solution 2 start to depart from the

L3 band already around
√
Q2 = 0.5GeV, which further disfavors this set of solutions.

In the extended VMD representation, the dependence on Ca2 disappears in all ob-
servables apart from B(f1 → e+e−) and, where applicable, B(f1 → ϕγ). Accordingly,
in the fit without the latter, the value of Ca2 is solely determined by B(f1 → e+e−),
and the best-fit value of this branching fraction thus coincides with the input. There is
good consistency among the other constraints, as reflected by a reduced χ2 around unity;
in this case, an improved measurement of B(f1 → e+e−) could thus be interpreted as a
determination of Ca2 . Once B(f1 → ϕγ) is included, one obtains an additional constraint
on Ca2 , which, however, needs to be treated with care. First, the uncertainties on Rϕ have
been included in the fit, but in addition, there are U(3) uncertainties that are difficult to
quantify. Moreover, the isoscalar contributions have been treated in their minimal variant
throughout, but if excited ω′ and ϕ′ states were included, the dependence on Ca2 would
again change, even disappear in a scenario similar to the extended VMD representation
constructed for the isovector contributions. Since the fit including B(f1 → ϕγ) favors
a value of B(f1 → e+e−) smaller than SND (for Solution 1 similar in size to the ones
for Solution 1 in the minimal VMD case), an improved measurement of B(f1 → e+e−)
would also allow one to differentiate between these scenarios. In addition to the worse χ2,
Solution 2 is again disfavored by the comparison to L3, see Fig. 6.3.

In contrast, for Solution 1 of both the minimal and the extended VMD fit, departures
from the L3 dipole only arise around

√
Q2 = 1GeV, which implies agreement with all data
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Figure 6.1: Contours in the Ca1–Ca2 plane for the best-fit value of Cs in the minimal VMD
representation: for Solution 1 (left) and Solution 2 (right), without (upper) and including
(lower) the constraint from B(f1 → ϕγ). The best-fit region is indicated by the ∆χ2 = 1
ellipse (inflated by the scale factor).

points of Ref. [7] but the last one (centered around
√
Q2 = 1.8GeV, where the curves still

agree within uncertainties). In fact, a large part of the pull is a result of the slightly
increased value of Cs from the global fit, while the impact of the asymptotic behavior of
Fa1(−Q2, 0) remains small. Finally, we observe that most extended VMD fits require a
substantial ρ′ contribution, as reflected by the large values of ϵ1 shown in Table 6.3. In
fact, for the fit without B(f1 → ϕγ), it even exceeds the coefficient of the ρ contribution,
which could be considered an indication that smaller values of B(f1 → e+e−) are preferred.
We also implemented a variant of the extended VMD fit in which ϵ1 was allowed to float
freely, but this did not improve the fit quality, with results for ϵ1 consistent with the ones
imposed via Eq. (3.35).

107



Chapter 6. Combined phenomenological analysis

−5 −4 −3 −2 −1 0 1 2 3 4 5

Ca1

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

C
a 2

L3 Slope

B(f1 → ργ)

rργ

B(f1 → e+e−)

−0.4 −0.2 0
0.6

0.8

1

1.2

1.4

−5 −4 −3 −2 −1 0 1 2 3 4 5

Ca1

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

C
a 2

L3 Slope

B(f1 → ργ)

rργ

B(f1 → e+e−)

0.6 0.8 1 1.2
0.8

1

1.2

1.4

1.6

−5 −4 −3 −2 −1 0 1 2 3 4 5

Ca1

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

C
a 2

L3 Slope

B(f1 → ργ)

rργ

B(f1 → φγ)

B(f1 → e+e−)
−0.4 −0.2 0

−0.6

−0.4

−0.2

0

0.2

−5 −4 −3 −2 −1 0 1 2 3 4 5

Ca1

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

C
a 2

L3 Slope

B(f1 → ργ)

rργ

B(f1 → φγ)

B(f1 → e+e−)

0.6 0.8 1 1.2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 6.2: Contours in the Ca1–Ca2 plane for the best-fit value of Cs in the extended
VMD representation: for Solution 1 (left) and Solution 2 (right), without (upper) and
including (lower) the constraint from B(f1 → ϕγ). The best-fit region is indicated by the
∆χ2 = 1 ellipse (inflated by the scale factor). We do not consider equivalent solutions
with very large negative Ca2 , as arise without the B(f1 → ϕγ) constraint. Further local
minima when including B(f1 → ϕγ) mirror the indicated Solutions 1 and 2 on the lower
branch of the ellipse but display a worse χ2/dof and are thus discarded.
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Figure 6.3: Comparison of the fit solutions for the effective form factor probed in e+e− →
e+e−f1 with the L3 measurement [7], according to Eq. (4.11), for the minimal VMD
representation (left) and the extended one (right). The L3 dipole band includes the
uncertainties on |FD(0, 0)| and ΛD, as given by Eq. (4.2), added in quadrature; our bands
propagate the uncertainties from Table 6.2 and Table 6.3, respectively.
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Chapter 7

Summary and outlook

In this part of the thesis, we performed a comprehensive analysis of the TFFs of the axial-
vector resonance f1, motivated by its contribution to HLbL scattering in the anomalous
magnetic moment of the muon. Our study is based on the available constraints from
e+e− → e+e−f1, f1 → 4π, f1 → ργ, f1 → ϕγ, and f1 → e+e−, all of which are sensitive
to different aspects of the f1 → γ∗γ∗ transition. Since the amount of data is limited, a
completely model-independent determination of all three TFFs is not feasible at present,
leading us to consider parameterizations motivated by VMD. To assess the sensitivity to
the chosen parameterization, we constructed two variants: a minimal one that produces
non-vanishing results for all TFFs and an extension that improves the asymptotic behavior
by matching to short-distance constraints. In each case, this leaves three coupling con-
stants as free parameters, Cs, Ca1 , and Ca2 , for the symmetric and the two antisymmetric
TFFs, in terms of which the analysis is set up.

As a first step, we derived master formulae for all processes in terms of these couplings
and performed cross-checks when analyzing each process in terms of the dominant coupling
Cs. This reveals that the decay f1 → 4π does not provide further information on the TFFs,
as the mechanism f1 → a1π → ρππ → 4π likely dominates with respect to f1 → ρρ→ 4π
and only the latter can be related to the f1 TFFs. The process is thus discarded in the
subsequent analysis. For the remaining observables, we performed detailed uncertainty
estimates, including the subleading isoscalar contributions, the properties of the ρ′ meson
and its spectral function, and the matching to short-distance constraints. In all cases, we
conclude that the dominant uncertainties are currently of experimental origin.

Combining all constraints in a global fit, we found that the symmetric coupling Cs is
by far best determined, with substantial differences in Ca1 and Ca2 among the different
scenarios; see Table 6.2, Table 6.3, Fig. 6.1, and Fig. 6.2 for our central results. Out
of two sets of solutions—Solution 1 with a small negative value of Ca1 and Solution 2
with a sizable positive one—the former is in general preferred by the fit, with Solution 2
further disfavored by the comparison to space-like e+e− → e+e−f1 data, see Fig. 6.3. In
the case of the minimal VMD representation, we observed some tension between B(f1 →
e+e−) and the remaining constraints especially when including B(f1 → ϕγ) in the fit,
leading to a preference for a branching fraction below the value recently reported by the
SND collaboration. In the extended parameterization, the dependence on Ca2 disappears
from all observables but B(f1 → e+e−) and, where applicable, B(f1 → ϕγ), but limited
information about the isoscalar sector together with necessary U(3) assumptions render
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Chapter 7. Summary and outlook

the latter constraint less reliable. While the f1 → ϕγ branching fraction seems to prefer
a smaller value of B(f1 → e+e−) (similar to the minimal VMD fit), we conclude that the
parameter that controls its size, Ca2 , is largely unconstrained at the moment and would
thus profit most from an improved measurement of B(f1 → e+e−).

In general, new measurements of B(f1 → e+e−)—as possible in the context of e+e− →
hadrons energy scans at SND and CMD-3—would be highly beneficial to further constrain
the f1 TFFs, given that the resulting constraints are complementary to other observables,
in particular, providing sensitivity to doubly-virtual kinematics and the antisymmetric
TFFs. Apart from a more reliable determination of Ca2 , one could also validate and, if
necessary, refine the underlying VMD assumptions. Furthermore, improved measurements
of e+e− → e+e−f1 would be valuable to further constrain the singly-virtual TFFs—in par-
ticular the asymptotic behavior of Fa1(q

2, 0)—ideally adding new data points above 1GeV
and using the full momentum dependence given in Eq. (4.11) to avoid the corresponding
limitation in the interpretation of the L3 data. Such analyses are possible at BESIII [164]
and Belle II [165]. To go beyond VMD parameterizations, the energy dependence in the
(dispersively improved) BW propagators would need to be constrained by data, which
would require differential information on f1 decays. At the moment, our analysis gives a
first summary of the combined information on the f1 TFFs that can be extracted from
the available data in terms of simple parameterizations.
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Appendix A

Asymptotic behavior including
mass effects

In this appendix, we generalize the considerations of Refs. [26, 27] regarding a double-
spectral representation of the BL scaling to include mass effects that arise from the kine-
matic variables in the denominator. Starting from

F2(q
2
1, q

2
2) = −F eff

A m3
A

∂

∂q21

∫ 1

0
du

ϕ(u)

uq21 + (1− u)q22 − u(1− u)m2
A

+O(1/q6i ),

F3(q
2
1, q

2
2) = F eff

A m3
A

∂

∂q22

∫ 1

0
du

ϕ(u)

uq21 + (1− u)q22 − u(1− u)m2
A

+O(1/q6i ), (A.1)

see Eq. (2.12), we see that the asymptotic behavior of the axial-vector TFFs can still be
deduced from the simpler pseudoscalar case, which leads us to study the generic integral

Ĩ(q21, q
2
2,m

2) =

∫ 1

0
du

ϕ(u)

uq21 + (1− u)q22 − u(1− u)m2
, (A.2)

which, in the case q21 = −Q2 = q22, evaluates to

Ĩ(−Q2,−Q2,m2) = − 6

Q2ξ

[
1− 2√

ξ(4 + ξ)
log

√
4 + ξ +

√
ξ√

4 + ξ −√
ξ

]

= − 1

Q2

(
1− ξ

5
+

3

70
ξ2 − ξ3

105
+O

(
ξ4
))
, ξ =

m2

Q2
. (A.3)

Given the large masses of the axial-vector mesons, m = mA, such corrections in ξ may
become relevant and Eq. (A.2) defines a convenient test case to study their impact.

As a first step, we observe that Eq. (A.2) can still be formulated as a single dispersion
relation [135] via the transformation x = −

(
q22 −m2u

)
(1− u)/u,

Ĩ(q21, q
2
2,m

2) =
1

π

∫ ∞

0
dx

Im Ĩ(x, q22,m
2)

x− q21
,

Im Ĩ(x, y,m2) =
3π

m4

(
(x− y)2 −m2(x+ y)√

λ(x, y,m2)
− x+ y

)
, (A.4)
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where y = q22 has been assumed space-like. Analytic continuation in q22 then allows one to
rewrite the imaginary part in Eq. (A.4) in terms of another dispersion relation, leading to

Ĩ(q21, q
2
2,m

2) =
1

π2

∫ ∞

0
dx

∫ ∞

0
dy

ρ̃(x, y,m2)

(x− q21)(y − q22)

= − 6

m2

[
1 +

q21
m2

log

(
1− m2

q21

)
+

q22
m2

log

(
1− m2

q22

)]

+
q21q

2
2

π2

∫ ∞

0
dx

∫ ∞

0
dy

ρ̃(x, y,m2)

x(x− q21)y(y − q22)
, (A.5)

with the double-spectral function

ρ̃(x, y,m2) =
1

2i
discy

[
Im Ĩ(x, y,m2)

]
=

3π

m4

(x− y)2 −m2(x+ y)√
−λ(x, y,m2)

θ
(
− λ(x, y,m2)

)
. (A.6)

Here, the unsubtracted and subtracted dispersion relations of Eq. (A.5) are related via

1

x− q21
=

1

x
+

q21
x(x− q21)

,
1

y − q22
=

1

y
+

q22
y(y − q22)

. (A.7)

Restricting the integration in x, y should then allow one to isolate the asymptotic con-
tributions while keeping the leading mass corrections. In the subtracted version, the
singly-virtual limits become explicit since, with one q2i = 0,

− 6

m2

[
1 +

q2i
m2

log

(
1− m2

q2i

)]
=

∫ 1

0
du

ϕ(u)

uq2i − u(1− u)m2
. (A.8)

Further, to make the connection with the massless limit of Eq. (3.47), which amounts
to

Ĩ(q21, q
2
2,m

2)
m→0→ I(q21, q

2
2) → −3q21q

2
2

∫ ∞

sm

dx

(x− q21)
2(x− q22)

2
, (A.9)

see Eq. (3.42), we first note that this variant had been constructed in such a way that the
singly-virtual contributions are removed, suggesting a matching in the limit q21 = −Q2 =
q22, in which

−3q21q
2
2

∫ ∞

sm

dx
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2(x− q22)

2
= − 1
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Q2

)3

+O
((

sm
Q2

)4)]
.

(A.10)
To evaluate Eq. (A.5) in the same limit, we symmetrize the integration to v = x + y,
w = x− y and introduce a step function θ(v − vm). In these variables, the w integration
extends between w± = ±

√
2m2v −m4, which shows that in the massless limit, the double-

spectral density indeed collapses to a δ distribution, see Eq. (3.46). For q21 = −Q2 = q22,
the w integration can be performed analytically, leading to

Ĩ(−Q2,−Q2,m2) =
6

m4

∫ ∞

vm

dv

(
(v + 2Q2)2 −m2v

(v + 2Q2)
√
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− 1
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= −12Q2
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(A.11)

= − 1

Q2

[
1− 3
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4Q2

+ 6

(
vm
4Q2

)2

− 8

(
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4Q2

)3

+O
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vm
Q2

)5)]
+O

(
m2
)
.

The first three terms in the expansion thus match upon the identification vm = 4sm.
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Appendix B

Phenomenological Lagrangians†

In this appendix, we define the Lagrangians used for the ργ, ρππ, and ρωπ couplings and
discuss the information that can be extracted for their ρ′ analogs. In particular, we derive
estimates for the branching ratios B(ρ′ → ππ) and B(ρ′ → ωπ), which are necessary
inputs for the construction of the energy-dependent width Γ

(ωπ,ππ)
ρ′ (q2) in Eq. (3.13).

For the coupling of photons to the vector mesons {ρ, ω, ϕ, ρ′, . . .}, we use the effective
interaction Lagrangian [129]

LV γ = −e
2
Fµν

(
ρµν
gργ

+
ωµν

gωγ
+
ϕµν
gϕγ

+
ρ′µν
gρ′γ

+ . . .

)
, (B.1)

where Fµν = ∂µAν − ∂νAµ is the EM field strength tensor with the photon field Aµ,
{ρ(′)µν , ρ(′)µ }, {ωµν , ωµ}, and {ϕµν , ϕµ} are the respective vector-meson equivalents, and the
ellipsis refers to excited isoscalar vector mesons that we omit from the following discussion
for simplicity. The couplings of the three ground-state vector mesons are linked via SU(3)
symmetry according to gργ : gωγ : gϕγ = 1 : 3 : 3/

√
2 [129], with the sign of gϕγ adjusted

according to Eq. (3.24). In the following, we neglect complex phases associated with actual
pole residues (which are known to be tiny [166]) and work with the phase convention
sgn gργ = +1. From the Lagrangian, the partial decay width of the vector mesons into
e+e− follows as

Γ(V → e+e−) =
4πα2

3|gV γ |2
(
1 +

2m2
e

M2
V

)√
M2

V − 4m2
e. (B.2)

For the ρ meson, one can solve for the coupling and insert the (experimental) value Γ(ρ→
e+e−) = 7.04 keV [99] to find

gργ = 4.96. (B.3)

This value agrees well with the residue |gργ | = 4.9(1) extracted from the pion vector form
factor [166] and is also close to the expectation from SU(3) symmetry, gSU(3)

ργ = gωγ/3 =
5.6, where gωγ can similarly be extracted from Γ(ω → e+e−) = B(ω → e+e−)Γω =
0.625 keV [99],

gωγ = 16.7. (B.4)
†The momentum-independent coupling of photons to vector mesons as well as the coupling of vector

mesons to pions obtained in this appendix have already been derived in a less sophisticated manner and
only for the non-excited vector mesons in the master’s thesis of the author [115].
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Furthermore, one can use Γ(ϕ → e+e−) = 1.27 keV to solve for the coupling of the ϕ
meson, yielding

gϕγ = 13.38. (B.5)

For the VMD application considered in this part of the thesis, we also need a formu-
lation in which the coupling of photons to vector mesons is momentum independent, with
the respective vector meson considered on shell. Such a coupling can formally be defined
via the Lagrangian

L̃V γ = eAµ
(
g̃ργρµ + g̃ωγωµ + g̃ϕγϕµ + g̃ρ′γρ

′
µ + . . .

)
, (B.6)

where matching the amplitudes resulting from Eq. (B.1) and Eq. (B.6) for on-shell mesons
determines

g̃V γ =
M2

V

gV γ
. (B.7)

In particular, we carry over the sign convention for the coupling constants g̃V γ from gV γ

above.
In order to describe the coupling of (uncharged) isovector vector mesons to two pions,

we employ the effective interaction Lagrangian [129]

Lρ(′)ππ =
(
gρππρµ + gρ′ππρ

′
µ

)(
π+∂µπ− − π−∂µπ+

)
, (B.8)

where π± denote the pion fields of definite charge and the coupling to two neutral pions
is forbidden by Bose symmetry. For ρ(′) → π+π−, we thus find the decay width

Γ
(
ρ(′) → π+π−

)
=
Mρ(′) |gρ(′)ππ|2

48π

(
1− 4M2

π

M2
ρ(′)

)3/2

. (B.9)

A VMD ansatz for the pion vector form factor,15

FV
π (q2) ≈ gρππ

gργ

M2
ρ

M2
ρ − q2 − i

√
q2Γρ(q2)

+
gρ′ππ
gρ′γ

M2
ρ′

M2
ρ′ − q2 − i

√
q2Γρ′(q2)

, (B.10)

dictates gρππ to have the same sign as gργ , so that under the assumption Γ(ρ→ π+π−) =
Γρ [99], we obtain

gρππ = 5.98, (B.11)

again close to the actual residue |gρππ| = 6.01+0.04
−0.07 [167].

Finally, starting from the anomalous interaction Lagrangian L(3)
V Φ given in Ref. [129],

we write down the Lagrangian that describes the coupling of the neutral isovector vector
mesons to ωπ0,

Lρ(′)ωπ =
ϵµναβ

2
(∂βπ

0)
[
gρωπ

[
(∂µ ρν)ωα + (∂µων)ρα

]
+ gρ′ωπ

[
(∂µ ρ

′
ν)ωα + (∂µων)ρ

′
α

]]
.

(B.12)
15Strictly speaking, this form is based on Eq. (B.6) rather than Eq. (B.1), but the difference essentially

amounts to a constant that does not affect the relative signs.
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The corresponding ρ′ → ωπ decay width is given by

Γ(ρ′ → ωπ) =
|gρ′ωπ|2
96πM3

ρ′
λ
(
M2

ρ′ ,M
2
ω,M

2
π

)3/2
. (B.13)

In the following, we estimate the couplings |gρ′γ |, |gρ′ππ|, and |gρ′ωπ| as well as the
relevant signs between these. One purpose is the construction of the energy-dependent
width Γ

(ωπ,ππ)
ρ′ (q2) in Eq. (3.13), which—besides the shape of the decay widths Γ(ρ′ → ππ)

and Γ(ρ′ → ωπ)—requires the branching ratios B(ρ′ → ππ) and B(ρ′ → ωπ) as input. In
addition, this allows us to assess the relative importance of ρ′ contributions in f1 → γ∗γ∗

as compared to those in f1 → 4π.
Analyses of the pion vector form factor using improved variants of Eq. (B.10) suggest

a ρ′ contribution relative to the dominant ρ therein of an approximate strength [104, 168,
169]

gρ′ππ/gρ′γ
gρππ/gργ

≈ − 1

10
. (B.14)

On the other hand, the ω → πγ∗ TFF [104, 170] can be approximated in a VMD framework
according to

fωπ(q
2) ≈ gρωπ

gργ

M2
ρ

M2
ρ − q2 − i

√
q2Γρ(q2)

+
gρ′ωπ
gρ′γ

M2
ρ′

M2
ρ′ − q2 − i

√
q2Γρ′(q2)

. (B.15)

The asymptotic behavior fωπ(q2) = O(q−4) [96, 97, 171, 172] implies the superconvergence
sum-rule constraint

gρ′ωπ/gρ′γ
gρωπ/gργ

= −
M2

ρ

M2
ρ′

≈ −1

4
(B.16)

on the couplings of Eq. (B.15), which is consistent with the experimental analysis of
Ref. [170]. From the experimental width Γ(ω → πγ) = 0.71MeV [99] and the correspond-
ing formula [104]

Γ(ω → πγ) =
α(M2

ω −M2
π)

3

24M3
ω

|fωπ(0)|2, (B.17)

we furthermore obtain the normalization |fωπ(0)| = 2.3GeV−1 and thus

gρωπ ≈ 15.4GeV−1 (B.18)

when combined with Eq. (B.16), choosing a positive sign convention for fωπ(0). Moreover,
from Eq. (B.14) and Eq. (B.16), one deduces the ratio

gρ′ωπ
gρ′ππ

≈ 6.4GeV−1, (B.19)

so that under the assumption Γρ′ ≈ Γ(ρ′ → ππ) + Γ(ρ′ → ωπ)—neglecting another
significant contribution from ρ′ → a1π (a1 → 3π)16 —one can use Eq. (B.9) and Eq. (B.13)
to obtain

|gρ′ππ| ≈ 1.60, |gρ′ωπ| ≈ 10.3GeV−1. (B.20)
16References [173, 174] show that e+e− → a1π, the second-largest subchannel of e+e− → 4π beyond

e+e− → ωπ, is already important at the ρ′ mass. Adding the a1π channel will decrease the gρ′ππ and
gρ′ωπ couplings in parallel, with the ratio of branching fractions B(ρ′ → ππ)/B(ρ′ → ωπ) kept fixed, but
they will not add up to 100% anymore.
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The branching ratios then become

B(ρ′ → ππ) ≈ 6%, B(ρ′ → ωπ) ≈ 94%, (B.21)

and, for completeness, the ρ′γ coupling is estimated as

|gρ′γ | ≈ 13.3. (B.22)

The estimate Eq. (B.21) agrees with the expectation that the ρ′ should be largely inelastic,
and the resulting spectral function in Eq. (3.13) thus essentially defines an estimate of
the 4π channel dominated by ωπ. We stress that these considerations should only be
considered rough estimates, the main point being to define another plausible variant that
allows us to assess the sensitivity of our results to the assumptions made for the ρ′ spectral
function. Finally, for our analysis of f1 → 4π including effects of the ρ′, we require the
ratio of coupling constants

gρ′ππ gρ′γ
gρππ gργ

≈ −0.7. (B.23)
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Appendix C

Comparison to the literature†

In this appendix, we briefly compare the basis of Lorentz structures and TFFs as well as
the parameterization of the latter for the f1 used in this part of the thesis to the previous
analysis of Refs. [113, 114]. Since the TFFs are not (anti-)symmetrized in Ref. [113], we
use the basis introduced in Ch. 2 for our comparison, that is, in particular, the structures
from Eq. (2.6). When using Eq. (2.2) to translate the amplitude M(f1 → γ∗γ∗) from
Ref. [113] to the tensor matrix element given in Eq. (2.5), we find the structures to be
related by

Tµνα
1 [113](q1, q2) = −Tµνα

1 (q1, q2),

Tµνα
2 [113](q1, q2) = −Tµνα

3 (q1, q2),

Tµνα
3 [113](q1, q2) = Tµνα

2 (q1, q2) (C.1)

and the TFFs to be linked via

F [113]
1 (q21, q

2
2) = −4πF1(q

2
1, q

2
2),

F [113]
2 (q21, q

2
2) = −4πF3(q

2
1, q

2
2),

F [113]
3 (q21, q

2
2) = 4πF2(q

2
1, q

2
2). (C.2)

While the structures are thus identical to ours except for two global signs and a permuta-
tion, the additional factor of 4π in the TFFs appears due to the fact that the fine-structure
constant α is used in the definition of their matrix element instead of the factor e2. The
symmetry properties of the TFFs in their basis are given by F [113]

1 (q22, q
2
1) = −F [113]

1 (q21, q
2
2)

and F [113]
2 (q22, q

2
1) = F [113]

3 (q21, q
2
2), where an (anti-)symmetrization similar to Eq. (3.1)

would be straightforward. Moreover, the two-photon decay width, Eq. (2.11), becomes

Γ̃[113]
γγ =

α2

192π
mA|F [113]

2 (0, 0)|2 = α2

192π
mA|F [113]

3 (0, 0)|2. (C.3)

The strategy that is used in Ref. [113] to determine the explicit parameterization of the
TFFs in line with a VMD model is, in fact, quite different from our approach—above all,

†The mapping to the basis of structures and form factors of Ref. [113] performed in this appendix has
already been detailed in the master’s thesis of the author [115], however, with no further discussion, e.g.,
about the actual VMD nature of the reference’s parameterization of the form factors.
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their model does not correspond to a strict VMD ansatz. Instead of proposing a VMD-
like parameterization for the form factors F [113]

i (q21, q
2
2) as we did in Eq. (3.10), three

form factors hi(q21, q
2
2) are introduced, based on which an amplitude M(f1 → ρ0

∗
ρ0
∗
) is

constructed by replacing F [113]
i (q21, q

2
2) → hi(q

2
1, q

2
2) in M(f1 → γ∗γ∗); analogously, two

complex coupling constants g1 and g2 are introduced to construct an amplitude M(f1 →
ργ). We object that such complex couplings are allowed since the resulting imaginary
parts need to reflect the actual analytic structure of the amplitude. Moreover, the explicit
form of the hi(q21, q

2
2), accounting for an off-shell dependence of the ρ mesons, introduces

unphysical kinematic singularities.
By employing a ργ coupling similar to the one we introduced by means of Eq. (B.1),

the form factors F [113]
i (q21, q

2
2) and hi(q

2
1, q

2
2) are then related to each other in Ref. [113],

where the latter can further be linked to the coupling constants g1 and g2. Using the ργ
coupling in the convention of this thesis, the form factors are found to be

F [113]
1 (q21, q

2
2) =

eg1(M
2
ρ − iMρΓρ)(q

2
2 − q21)

gργ(q21 −M2
ρ + iMρΓρ)(q22 −M2

ρ + iMρΓρ)
,

F [113]
2/3 (q21, q

2
2) = −

eg2M
2
ρ (M

2
ρ − iMρΓρ)

gργ(q21 −M2
ρ + iMρΓρ)(q22 −M2

ρ + iMρΓρ)
, (C.4)

the width Γρ being the (energy-independent) total width of the ρ meson, as opposed to our
energy-dependent parameterization of Eq. (3.11) and Eq. (3.15). Moreover, the magnitude
of the couplings g1 and g2 is determined in Ref. [113] by making use of experimental data
on f1 → ργ, see Ch. 3; the relative phase between these coupling constants remains
undetermined, despite using, in addition, input from f1 → 4π.

By rewriting Eq. (C.4) as

F [113]
1 (q21, q

2
2) =

eg1(M
2
ρ − iMρΓρ)

gργ(q21 −M2
ρ + iMρΓρ)

−
eg1(M

2
ρ − iMρΓρ)

gργ(q22 −M2
ρ + iMρΓρ)

, (C.5)

one observes that F [113]
1 (q21, q

2
2) does not correspond to a VMD ansatz in the strict sense

but rather arises from two diagrams, each being composed of one direct photon coupling
and one VMD-like ρ coupling. As we argued in Ch. 3, an actual VMD representation of the
antisymmetric TFFs requires the introduction of a second multiplet. Further, Eq. (C.4)
shows that the second and third TFFs are parameterized symmetrically, i.e., the antisym-
metric part is neglected. In either case, we contend that the f1 → 4π decay does not
allow one to extract information on the f1 TFFs, for the reasons described in Sec. 4.2 and
App. D.

Finally, we would like so stress that, in addition to using complex couplings, con-
stant widths are problematic when inserted into the f1 → e+e− loop integral, leading to
imaginary parts below the respective thresholds and thus distorting the analytic struc-
ture. Given, in addition, the appearance of kinematic singularities and a different high-
energy behavior, it is difficult to compare our phenomenological results to the ones of
Refs. [113, 114].
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Appendix D

f1 → a1π → ρππ → 4π

In order to investigate whether the intermediate state a1(→ ρπ)π can account for the
discrepancy in the branching ratio of f1 → 4π found in Sec. 4.2, we use the effective
interaction Lagrangians

Lf1a1π =
gf1a1π

2
ϵµναβ(∂βπ

∓)
[
(∂µ a

±
1 ν)f1α + (∂µf1ν)a

±
1 α

]
,

La1ρπ = ga1ρπ
(
a−1 µρ

µπ+ − a+1 µρ
µπ−

)
, (D.1)

where Lf1a1π is constructed in analogy to Eq. (B.12) and La1ρπ represents the simplest
Lagrangian possible, the relative sign originating from isospin symmetry.17 Before con-
structing an amplitude for f1 → a1π → ρππ → 4π, we will in the following estimate the
couplings gf1a1π and (the magnitude of) ga1ρπ.

For the estimate of gf1a1π, we start from the observation that the Wess–Zumino–
Witten anomaly [99, 175, 176]

Fπ0γ∗γ∗(0, 0) =
1

4π2Fπ
= 0.2745(3)GeV−1 (D.2)

is largely saturated by the VMD ansatz

Fπ0γ∗γ∗(0, 0) ≈ gρωπ
gργgωγ

[
M2

ρM
2
ω

(M2
ρ − q21 − i

√
q21Γρ(q21))(M

2
ω − q22)

+ (q1 ↔ q2)

]∣∣∣∣∣
q21=0=q22

=
2gρωπ
gργgωγ

=
2gρωπFρFω

MρMω
≈ 0.37GeV−1, (D.3)

where we used Eq. (B.3), Eq. (B.4), and Eq. (B.18). The decay constants of the ρ and ω
meson,

⟨0|Jµ
EM(0)|V (p, λV )⟩ = FVMV ϵµ(p), V = ρ, ω, (D.4)

are related to our previous notation by gV γ = MV /FV . The rough agreement between
Eq. (D.2) and Eq. (D.3) suggests that an estimate of the axial-vector analogs can be
obtained in a similar manner, leading to the axial-vector-meson-dominance ansatz

Fπ0γ∗γ∗(0, 0) ≈ 2gf1a1πFa1Ff1

ma1mf1

, (D.5)

17To see this, consider La1ρπ ∝ Tr[ρ [a1,π]], where, e.g., ρ = ρiτ i, with ρi the isospin fields and τ i the
Pauli matrices. Then, La1ρπ ∝ ϵijkρ

iaj
1π

k, and transforming from the isospin basis to charge states, e.g.,
ρ± = (ρ1 ± iρ2)/

√
2, ρ0 = ρ3, gives La1ρπ ∝ a−

1 ρ
0π+ − a+

1 ρ
0π− + a+

1 ρ
−π0 − a−

1 ρ
+π0 + a0

1ρ
+π− − a0

1ρ
−π+.
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with the corresponding decay constants defined by

⟨0|q̄(0)γµγ5Qq(0)|A(p, λA)⟩ = FAmAϵµ(p), A = a1, f1. (D.6)

Comparing the two parameterizations results in

gf1a1π
gρωπ

≈ FρFω

MρMω

ma1mf1

Fa1Ff1

≈ 1.3, (D.7)

where we used Fa1 = 168(7)MeV, Ff1 = 87(7)MeV [93, 118].
An estimate of |ga1ρπ| is obtained by calculating the decay width of a1 → ρπ and

matching to the experimental width under the assumption Γ(a1 → ρπ) = Γa1 , taking into
account that Γ(a1 → ρπ) = Γ(a±1 → ρ±π0) + Γ(a±1 → ρ0π±) = 2Γ(a±1 → ρ0π±) for the
charged channel due to the two possible final states for a decaying a+1 or a−1 . We find18

Γ(a1 → ρπ) =
|ga1ρπ|2

8π

|pρ|
m2

a1

(
1 +

|pρ|2
3M2

ρ

)
→ |ga1ρπ|2

8π

|pρ|
m2

a1

, (D.8)

where |pρ| =
√
λ(m2

a1 ,M
2
ρ ,M

2
π)/(2ma1) is the magnitude of the three-momentum in the

center-of-mass frame, yielding

|ga1ρπ| = (3.7 . . . 5.7)GeV, (D.9)

where the given variation is due to the width of the a1.
The amplitude for f1 → a1π → ρππ → 4π can be constructed with Eq. (D.1) and

Eq. (B.8), where eight diagrams have to be taken into account, see Fig. D.1, leading to

Ma1π(f1 → π+π−π+π−) =
gf1a1πga1ρπgρππ(

p2a1 −m2
a1 + i

√
p2a1Γa1(p

2
a1)
)(
p2ρ −M2

ρ + i
√
p2ρΓρ(p2ρ)

)

× ϵµ(P )ϵµναβ

[
2kν−p

α
−p

β
+ + kν−k

α
+(p+ − p−)β

]
+ (p− ↔ k−) + (p+ ↔ k+)

+ (p+ ↔ k+, p− ↔ k−)− (k+ ↔ k−)− (k+ ↔ k−, p− ↔ k−)

− (k+ ↔ k−, p+ ↔ k+)− (k+ ↔ k−, p+ ↔ k+, p− ↔ k−), (D.10)

with the momenta defined as in Fig. D.1 and the pions on shell, p2± = M2
π = k2±. For the

energy-dependent width of the a1 meson, we choose an ansatz based on Eq. (D.8),

Γa1(q
2) = θ

(
q2 − (Mρ +Mπ)

2
) γa1→ρπ(q

2)

γa1→ρπ(m2
a1)

Γa1 , γa1→ρπ(q
2) =

√
λ(q2,M2

ρ ,M
2
π)

(q2)3/2
,

(D.11)

and the energy-dependent width Γρ(q
2) is as specified in Eq. (3.15). The decay width and

thus branching ratio can then be calculated via the four-body phase-space integration of

dΓa1π(f1 → π+π−π+π−) =
1

2mf1

∣∣Ma1π(f1 → π+π−π+π−)
∣∣2dΦ4(P ; p+, p−, k+, k−).

(D.12)
18Note that, in addition to the expected S-wave phase space, the Lagrangian La1ρπ also produces a

numerically small D-wave contribution proportional to |pρ|3, which—strictly speaking—would only vanish
when performing a partial-wave projection. Given the uncertainties inherent in the f1 → a1π → ρππ → 4π
estimate presented here, especially in view of the width and spectral shape of the a1, a more refined
treatment is not warranted and we simply remove these terms in Eq. (D.8).
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Figure D.1: Feynman diagrams for f1 → π+π−π+π− via a1π. Since the two π+ and π−

are each mutually indistinguishable, there exist eight diagrams in total, that is four dia-
grams with a+1 (left) and four diagrams with a−1 (right), which are obtained by permuting
the momenta appropriately.

Although we could proceed in complete analogy to Sec. 4.2, see in particular Eq. (4.16)
and Eq. (4.17), it is instructive to write the differential four-body phase space differently
from Eq. (4.17), namely in the form [99]

dΦ4(P ; p+, p−, k+, k−) = dΦ2(pρ; p+, p−) dΦ2(pa1 ; pρ, k+) dΦ2(P ; pa1 , k−)
dp2a1
2π

dp2ρ
2π

,

(D.13)
where dΦ2(P ; pa1 , k−), dΦ2(pa1 ; pρ, k+), and dΦ2(pρ; p+, p−) are the respective two-body
phase spaces of the subsystems {a1(pa1), π−(k−)}, {ρ(pρ), π+(k+)}, and {π+(p+), π−(p−)}.
As argued in Sec. 4.2, each two-body phase space can be evaluated in the correspond-
ing center-of-mass frame, and we have to perform an explicit Lorentz transformation
from the center-of-mass frames of {a1(pa1), π−(k−)} and {π+(p+), π−(p−)} into the one
of {ρ(pρ), π+(k+)} in order to evaluate all the scalar products appearing in |Ma1π(f1 →
π+π−π+π−)|2.19 We perform the phase-space integration numerically with the Cuhre
algorithm from the Cuba library [138], obtaining

Γa1π(f1 → π+π−π+π−) = |gf1a1π|2|ga1ρπ|2|gρππ|2 × (3.27 . . . 2.46)× 10−9 GeV. (D.14)

Combining the above result with |gf1a1π| ≈ 1.3 × 15.4GeV−1, |ga1ρπ| = (3.7 . . . 5.7)GeV,
and |gρππ| = 5.98, Eq. (D.7), Eq. (B.18), Eq. (D.9), and Eq. (B.11), we find the branching
ratio to be given by

Ba1π(f1 → π+π−π+π−) ≈ (2.8 . . . 5.0)%, (D.15)

in fair agreement with the experimental value B(f1 → π+π−π+π−) = 10.9(6)% [99]. We
also considered the variant of this estimate obtained when further approximating the decay
f1 → a1π → ρππ → 4π by f1 → a1π → ρππ, assuming that the ρ decays into two charged
pions only:

Γa1π(f1 → ρππ) = |gf1a1π|2|ga1ρπ|2 × (2.40 . . . 2.06)× 10−7 GeV (D.16)
19As in Sec. 4.2, the decay rate involves an additional symmetry factor of S = 1/(2!)2 due to the two

pairs of indistinguishable particles in the final state.
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and
Ba1π(f1 → ρππ) ≈ (5.8 . . . 11.8)%, (D.17)

leading to a result closer to the experimental branching fraction, which indicates that ρ
dominance in this decay mode is again subject to sizable corrections. In both estimates,
given that the VMD saturation of the anomaly, Eq. (D.3), actually overpredicts the ex-
pected value, Eq. (D.2), a somewhat smaller value of |gf1a1π| may be favored.

We stress that the estimates presented here are merely supposed to give an indication
for why the VMD description of f1 → 4π in Sec. 4.2 is in serious disagreement with
the experimental branching ratio, i.e., we do not claim to have a reliable prediction for
Ba1π(f1 → π+π−π+π−), as, in particular, the uncertainty in assuming an axial-vector
saturation of the anomaly is difficult to quantify. Still, the arguments leading to Eq. (D.15)
and Eq. (D.17) should make plausible that the intermediate state a1π can indeed cover
the experimental branching ratio to a large degree, thus rendering the f1 → 4π decay
unsuitable for extracting information on the f1 TFFs.

124



Appendix E

Constants and parameters

In this appendix, we collect the particle masses and decay widths used throughout this part
of the thesis, see Table E.1. Isospin-breaking effects can safely be neglected, in particular,
the pion mass is identified with the mass of the charged pion. Some comments are in
order, however, regarding the treatment of broad resonances, most notably the ρ′ and, to a
lesser extent, the ρ. Especially for the former, the quoted masses and widths are strongly
reaction dependent, as referring to BW parameters rather than the model-independent
pole parameters. We thus need to make sure that we use determinations that apply to
the channels we consider here. Since the main application concerns the description of
multi-pion decay channels in the VMD propagators, both for the ρ and the ρ′, it appears
most natural to consider reactions that provide access to both resonances, which points
towards the decay τ → ππντ from Ref. [168] and the scattering process e+e− → ππ from
Ref. [177]. In particular, this allows us to see if there are relevant systematic differences
between the charged and neutral channel. For the ρ, the mass parameter agrees well
between all channels, but while there is also good agreement between Refs. [168, 177] for
the width, the compilation from Ref. [99] quotes a significantly lower value for the neutral
channel. Accordingly, we will use its ρ parameters from the charged channel in our analysis.
Regarding the ρ′, the mass from Ref. [99] lies halfway between Refs. [168, 177], with a
width that agrees well with both channels within uncertainties. We will therefore take
over the recommended parameters for the ρ′.
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Appendix E. Constants and parameters

Quantity Variable Value Reference

Mass pion Mπ 139.57MeV

[99]

Mass a1(1260) ma1 1230(40)MeV

Mass f1(1285) mf1 1281.9(5)MeV

Mass f1(1420) mf ′
1

1426.3(9)MeV

Mass ω(782) Mω 782.65(12)MeV

Mass ϕ(1020) Mϕ 1019.461(16)MeV

Mass ρ(770) (charged) Mρ 775.11(34)MeV

Mass ρ(1450) Mρ′ 1465(25)MeV

Total width a1(1260) Γa1 (250 . . . 600)MeV

Total width f1(1285) Γf1 22.7(1.1)MeV

Total width f1(1420) Γf ′
1

54.5(2.6)MeV

Total width ρ(770) (charged) Γρ 149.1(8)MeV

Total width ρ(1450) Γρ′ 400(60)MeV

Mass ρ(770) (charged) Mρ 774.9(6)MeV

[168]
Mass ρ(1450) (charged) Mρ′ 1428(30)MeV

Total width ρ(770) (charged) Γρ 148.6(1.8)MeV

Total width ρ(1450) (charged) Γρ′ 413(58)MeV

Mass ρ(770) (neutral) Mρ 775.02(35)MeV

[177]
Mass ρ(1450) (neutral) Mρ′ 1493(15)MeV

Total width ρ(770) (neutral) Γρ 149.59(67)MeV

Total width ρ(1450) (neutral) Γρ′ 427(31)MeV

Table E.1: Selected masses and decay widths from Ref. [99], in comparison to the ρ and
ρ′ parameters from Refs. [168, 177].
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Prologue

With the publication of Ref. [32], the author of this thesis calculated the cross section of the
process e+e− → f1π

+π− within the framework established in Part I. This cross section had
been measured by the BaBar collaboration in the year 2007 [11], where the f1 was observed
in the decay f1 → ηπ+π−, and, rather recently, in 2022 [12], with an f1 signal reported in
the channel f1 → K0

SK
±π∓. Although the analysis presented in Ref. [32] suggests that the

cross section for e+e− → f1π
+π− displays prominent resonance features from excited ρ

resonances not included in the parameterization proposed in Part I, such as the ρ(2150), the
underlying formalism ought to largely respect the data when the latter is interpreted as an
upper limit, in particular in the asymptotic regime. Contrary to this constraint, however,
the cross section that the author of this dissertation calculated exceeded the data by at
least an order of magnitude. By a thorough investigation and from insightful discussions
with Martin Hoferichter and Bastian Kubis, the author was able to identify the major
reason for this mismatch to be related to the asymptotic behavior of the transition form
factors in the singly-fixed direction, i.e., in kinematic configurations with one virtuality
kept fixed at a finite but non-zero value.¶ The idea to use the e+e− → f1π

+π− data
as an upper bound on the non-resonant background then evolved further into the revised
analysis presented in this addendum. Crucially, besides implying stringent limits on the
high-energy behavior of the transition form factors, the inclusion of the e+e− → f1π

+π−

data within an improved vector-meson-dominance framework allows for an unambiguous
determination of the couplings corresponding to the two antisymmetric TFFs.

The fundamental ideas for the refined parameterizations considered in this addendum
were developed in joint efforts by the author of this dissertation, Martin Hoferichter,
and Bastian Kubis during a one-week visit of Martin Hoferichter to the University
of Bonn. More specifically, this concerns the assessment of the minimal particle content
necessary to construct transition form factors in a vector-meson-dominance framework that
individually obey the asymptotic constraints predicted by the light-cone expansion [8], in
particular with regard to the steep decrease in the singly-fixed direction required by the
e+e− → f1π

+π− data [11, 12]. Ultimately, and with the aim to treat the isovector and
isoscalar components of the transition form factors equally, this required the inclusion of
yet another multiplet of isovector and isoscalar vector mesons.

After an extensive discussion of the revised parameterizations and an analysis of
¶Limits of this type have not been analyzed in Part I at all, where, instead, only the singly- and doubly-

virtual limits of the transition form factors were considered. Besides the issue in the singly-fixed direction,
there is also some potential finetuning involved in this parameterization, given that two of the form factors
are intertwined according to Eq. (3.35). Note furthermore that the isovector and isoscalar transition form
factors were not treated equally in Part I, since no extended vector-meson-dominance parameterization
was constructed for the isoscalar component therein.
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Prologue

their asymptotic properties, formulae for the observables related to e+e− → e+e−f1 [4],
f1 → V γ [1–3], V = ρ, ω, ϕ, and f1 → e+e− [5] are derived by the author of this thesis,
which is done in close analogy to Part I. While the f1 → e+e− calculation is performed via a
Passarino–Veltman reduction by the author, carried out and evaluated in an automated
way using FeynCalc [42–44] and Collier [45–48], Martin Hoferichter contributed an in-
dependent cross-check of those results by using the analytic expressions—obtained in a di-
rect way by introducing Feynman parameters—provided in Part I.‖ Furthermore, the cal-
culation of the e+e− → f1π

+π− cross section within the refined vector-meson-dominance
framework is outlined in great detail by the author of this dissertation. With the com-
piled constraints, a combined phenomenological analysis is performed in terms of a χ2 fit;
here, the author benefitted, in particular, from discussions with Martin Hoferichter
and Bastian Kubis on how to include the e+e− → f1π

+π− data in the fit in a meaningful
way. Finally, under the assumption of U(3) symmetry, parameterizations for the transi-
tion form factors of the f ′1 and a1 are proposed by the author, where the assistance of
Martin Hoferichter proved valuable in constructing, especially, the form factors of the
a1, given its different isospin structure and the resulting intricacy.×

‖The native Fortran library Collier is used in C++ through the interface published in Ref. [49], to the
development of which the author of this dissertation made significant contributions.

×Note also that all plots in this addendum have been created by the author of this dissertation.
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Chapter 8

Introduction

With the compilation of the constraints on the f1 TFFs that follow from the radiative
decays f1 → ργ [1, 2] and f1 → ϕγ [1, 3] as well as e+e− → e+e−f1 [4] and f1 → e+e− [5]
in Part I, we improved on previous work [6, 7] by employing parameterizations that ensure
the absence of kinematic singularities [8–10], include short-distance constraints [8], and
incorporate the spectral functions of the isovector resonances. However, our conclusion
was that the exploited data is not sufficient to identify a unique solution for all three
TFFs; especially the normalizations of the two antisymmetric TFFs and the momentum
dependence of all three TFFs were only poorly determined. In the future, these limitations
could be overcome by better data for e+e− → e+e−f1 and f1 → e+e−, the latter process, in
particular, being a very interesting observable, yet not at the current level of precision [5];
in this addendum, we instead propose to study existing data for e+e− → f1π

+π− [11, 12].20

This process is also sensitive to all three TFFs, for one photon virtuality centered at the
ρ mass and the other one determined by the center-of-mass energy of the e+e− pair.
Phenomenologically, the reaction displays prominent resonance features from excited ρ
resonances [32], primarily the ρ(2150), but, when interpreted as a limit on the non-resonant
contribution, entails powerful constraints on the TFFs of the f1, both on the asymptotic
behavior and the respective normalizations.

The outline of this addendum is as follows: in Ch. 9, we define improved VMD pa-
rameterizations that implement the asymptotic behavior observed in e+e− → f1π

+π−.
We then summarize the relevant observables in the new VMD framework and present the
formalism in which we will analyze e+e− → f1π

+π− in Ch. 10. The phenomenological
analysis, including a review of the data base, a global fit, and a summary of the resulting
TFF parameterizations, will be presented in Ch. 11, before concluding in Ch. 12. Finally,
in App. F, we collect the constants and parameters used throughout this addendum.

20The measurement of the e+e− → 2(π+π−)η [11] and e+e− → KSK
±π∓π+π− [12] cross sections, in

which the f1 peak can be identified, is partly motivated by HVP. The impact of such high-multiplicity chan-
nels on the HVP contribution to aµ, though, is much smaller than the current tensions observed between
data-driven evaluations [13–24] and lattice QCD [25–29], e.g., aHVP

µ [2(π+π−)η] = 0.8(1)×10−11 [18], which
is at the same level as potential uncertainties from O(α4) hadronic corrections [30]. The CMD-3 measure-
ment of e+e− → 3(π+π−)π0 [31] includes results for e+e− → 2(π+π−)η but no additional information on
e+e− → f1π

+π−.
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Chapter 9

Vector-meson dominance

The minimal particle content necessary for a VMD construction of TFFs that individually
obey the asymptotic constraints [8] discussed in Sec. 3.4 requires the inclusion of three
multiplets. More specifically, we will use ρ, ρ′, and ρ′′ for the isovector contributions and
ω, ω′, ω′′ as well as ϕ, ϕ′, ϕ′′ for the isoscalar contributions. The introduction of a third
multiplet, as required to obtain the correct asymptotic behavior for the antisymmetric
TFFs, goes beyond the parameterizations of Ch. 3, ultimately, because the data on e+e− →
f1π

+π− demands such a steep decrease, including in kinematic configurations in which
one virtuality is kept fixed at a finite but non-zero value.

9.1 Isovector contributions

In the space-like region, q2i < 0, we propose to extend the isovector parameterizations from
Sec. 3.2 as follows:

FI=1
a1/2 (q

2
1, q

2
2) = Ca1/2

[
(1− ϵ

(1)
a1/2 − ϵ

(2)
a1/2)M

2
ρM

2
ρ′

(q21 −M2
ρ )(q

2
2 −M2

ρ′)
+

ϵ
(1)
a1/2M

2
ρM

2
ρ′′

(q21 −M2
ρ )(q

2
2 −M2

ρ′′)

+
ϵ
(2)
a1/2M

2
ρ′M

2
ρ′′

(q21 −M2
ρ′)(q

2
2 −M2

ρ′′)

]
− (q1 ↔ q2),

FI=1
s (q21, q

2
2) = Cs

[
(1− ϵ

(1)
s − ϵ

(2)
s )M4

ρ

(q21 −M2
ρ )(q

2
2 −M2

ρ )
+

(ϵ
(1)
s /2)M2

ρM
2
ρ′

(q21 −M2
ρ )(q

2
2 −M2

ρ′)

+
(ϵ

(1)
s /2)M2

ρ′M
2
ρ

(q21 −M2
ρ′)(q

2
2 −M2

ρ )
+

ϵ
(2)
s M4

ρ′

(q21 −M2
ρ′)(q

2
2 −M2

ρ′)

]
, (9.1)

first given in this form to emphasize that, upon a partial-fraction decomposition, each term
corresponds to adding vector-meson propagators with fixed coefficients. To implement the
correct singly-virtual asymptotic behavior, we choose

ϵ(1)a1/2 = −
M2

ρ′

M2
ρ′′ −M2

ρ′ +M2
ρ

, ϵ(2)a1/2 =
M2

ρ

M2
ρ′′ −M2

ρ′ +M2
ρ

,

ϵ(1)s = −
2M2

ρM
2
ρ′

(M2
ρ′ −M2

ρ )
2
, ϵ(2)s =

M4
ρ

(M2
ρ′ −M2

ρ )
2
, (9.2)
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Chapter 9. Vector-meson dominance

leading to

FI=1
a1/2 (q

2
1, q

2
2) =

Ca1/2ζρM
4
ρM

4
ρ′M

4
ρ′′(q

2
1 − q22)

(q21 −M2
ρ )(q

2
2 −M2

ρ )(q
2
1 −M2

ρ′)(q
2
2 −M2

ρ′)(q
2
1 −M2

ρ′′)(q
2
2 −M2

ρ′′)
,

FI=1
s (q21, q

2
2) =

CsM
4
ρM

4
ρ′

(q21 −M2
ρ )(q

2
2 −M2

ρ )(q
2
1 −M2

ρ′)(q
2
2 −M2

ρ′)
, (9.3)

with

ζV =
(M2

V ′′ −M2
V ′)(M2

V ′′ −M2
V )(M

2
V ′ −M2

V )

M2
V ′′M2

V ′M2
V (M

2
V ′′ −M2

V ′ +M2
V )

. (9.4)

The resulting asymptotic behavior of the TFFs becomes

FI=1
a1/2 (q

2
1, q

2
2) ∝

1

q42
, FI=1

a1/2 (q
2, λq2) ∝ 1− λ

λ3
1

q10
,

FI=1
s (q21, q

2
2) ∝

1

q42
, FI=1

s (q2, λq2) ∝ 1

q8
, (9.5)

with q21 fixed to a finite value distinct from q22 (left) and in the doubly-virtual direction
(right). Crucially, the singly-virtual asymptotics now match the LCE result from Sec. 3.4
for arbitrary fixed q21, which, for q21 = M2

ρ , is mandatory for a realistic description of the
e+e− → f1π

+π− data (the opposite case with fixed q22 follows from symmetry).21 For
time-like applications, the replacements M2 → M2 − iMΓ apply in the denominators of
Eq. (9.3), i.e., after imposing the asymptotic behavior of the TFFs; due to the large widths
of the ρ-like mesons, a narrow-width approximation, M2 →M2 − iϵ in the denominators,
in general becomes insufficient here. A consequence of the faster decrease in the singly-
virtual directions concerns an even faster decrease in the doubly-virtual case, much below
the LCE expectation. Accordingly, in the final representation for the TFFs, we add the
asymptotic contribution [8, 33–35]

Fasym
a2 (q21, q

2
2) = 3F eff

f1 m
3
f1

(
q21 − q22

) ∫ ∞

sm

dx
q21q

2
2 − x2 + x(q21 + q22)

(x− q21)
3(x− q22)

3
,

Fasym
s (q21, q

2
2) = 3F eff

f1 m
3
f1

∫ ∞

sm

dx
(q21 + q22)(x

2 − q21q
2
2)− x(q21 − q22)

2

(x− q21)
3(x− q22)

3
, (9.6)

as derived in Sec. 3.4, where sm is a parameter that determines the scale of the transition.
The implementation of these asymptotic contributions, or their variant including mass
effects, see App. A, becomes relevant for the axial-vector contributions in the HLbL loop
integral. Here, we focus on the determination of the low-energy couplings in the VMD
component of the parameterization, as can be obtained from, inter alia, e+e− → f1π

+π−.
21For FI=1

a1 (q21 , q
2
2), the LCE predicts an even faster decrease in the singly-virtual direction, but we do

not consider yet another multiplet for the following reasons: (i) information from the LCE on this TFF
is limited, i.e., no non-vanishing contribution survives at O(1/Q4), in such a way that, in contrast to
the other TFFs, we cannot add an LCE term to repair the behavior in the doubly-virtual direction and
thus need to choose a compromise; (ii) the fit to e+e− → f1π

+π− produces a small coupling Ca1 , in line
with the LCE suppression; (iii) another multiplet would have a mass already in the energy range in which
the data is to be described, so that no meaningful suppression could be generated even when introducing
another state.
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9.2. Isoscalar contributions

9.2 Isoscalar contributions

In complete analogy to the above, the isoscalar parts of the form factors are parameterized
according to22

FI=0
a1/2 (q

2
1, q

2
2) =

∑

V=ω,ϕ

CV
a1/2ζVM

4
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4
V ′M4
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2
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V ′)

, (9.7)

with the same asymptotic properties as in Eq. (9.5). Again, time-like applications imply
the replacements M2 → M2 − iMΓ in the denominators since the large widths of the
excited isoscalar resonances do not allow for a narrow-width approximation. Finally,
under the assumption of U(3) symmetry, the isoscalar coupling constants can be related
to the isovector analogs, leading to the same approximations as in Sec. 3.3,

Rω =
Cω

a1/2

Ca1/2
=
Cω

s
Cs

=
1

9
,

Rϕ =
Cϕ

a1/2

Ca1/2
=
Cϕ

s

Cs
=

2
√
2

9
cot(θA + θ1) = −0.158(34), (9.8)

with θ1 = arctan
√
2 = (π + 2θ0)/4, θ0 = arcsin(1/3), and θA = 62(5)◦ [4, 36].

22We assume ideal mixing for the vector mesons, which prevents crossed terms involving ω and ϕ states.
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Chapter 10

Observables

10.1 e+e− → e+e−f1

Within the modified VMD framework, the determination of the normalization of the sym-
metric TFF via the equivalent two-photon decay width, Eq. (3.3), naturally remains un-
changed. Taking into account the isoscalar contributions, |FI=1

s (0, 0) + FI=0
s (0, 0)| =

(1 +Rω +Rϕ)|Cs| = 0.953(34)|Cs|, we thus carry over Eq. (4.7),

Cs = 0.93(11), (10.1)

adopting the sign convention established in Part I.
The singly-virtual VMD limits can be further constrained according to Eq. (4.11),

where matching the slopes at q2 = 0 with the parameterizations from this addendum
leads to

2

Λ2
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=
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[
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(
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)
(10.2)

+ (ζρ + ζωR
ω + ζϕR

ϕ)
Ca1 + Ca2

Cs
−
m2

f1
(ζρ + ζωR

ω + ζϕR
ϕ)2

Nωϕ

(
Ca1
Cs

)2
]
.

Here, the factor Nωϕ = 1+Rω +Rϕ accounts for the isoscalar terms in the normalization
and ΛD = 1.04(6)(5)GeV [4] is as specified in Eq. (4.2).

10.2 f1 → ργ and f1 → ϕγ

From the procedure outlined in Ch. 4, it is straightforward to obtain the branching ratio
of f1 → V γ, V = ρ, ω, ϕ, for the improved VMD parameterizations in the form

B(f1 → V γ) = (RV )2
BV

1

(
C̃V

a1

)2
+BV

2

(
C̃V

a2 + C̃V
s
)2 −BV

3 C̃
V
a1

(
C̃V

a2 + C̃V
s
)

Γf
, (10.3)

where the coefficients BV
i are as defined in Eq. (4.38) and the couplings

C̃V
a1/2 = JV

a Ca1/2 , C̃V
s = JV

s Cs (10.4)
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are rescaled by

JV
a =

M2
V ′′ −M2

V ′

M2
V ′′ −M2

V ′ +M2
V

, JV
s =

M2
V ′

M2
V ′ −M2

V

. (10.5)

The normalizations RV , V = ω, ϕ, are given by Eq. (9.8) and Rρ = 1.
Similarly, for V = ρ, the ratio of helicity amplitudes for f1 → ργ → π+π−γ results

from a straightforward modification of the result presented in Sec. 4.3,

rργ =
MLL

MTT
=

2m2
f1
M2

ρ[
M2

ρ − 2
(
m2

f1
−M2

ρ

)
C̃a1/

(
C̃a2 + C̃s

)]2 , (10.6)

where MLL and MTT are as defined in Eq. (4.33).

10.3 f1 → e+e−

We follow Ch. 5 and write the decay rate for f1 → e+e− as

Γ(f1 → e+e−) =
64π3α4mf1

3
|A1|2, (10.7)

where the scalar amplitude A1 is implicitly defined by Eq. (5.1) and, according to Eq. (5.7),
further decomposes into terms proportional to the three VMD couplings (with isoscalar
and isovector coefficients DI

i ) and an asymptotic contribution Dasym,

A1 =
(
DI=1

1 +DI=0
1

)
Ca1 +

(
DI=1

2 +DI=0
2

)
Ca2 +

(
DI=1

3 +DI=0
3

)
Cs +Dasym. (10.8)

For the case of products of narrow-resonance propagators as in Eq. (9.1), with squared
masses x and y, the integral representation

Di =
xy

16π2m4
f1

∫ 1

0
dz fi(x, y, z,mf1) (10.9)

applies, with the analytic expressions for the functions fi(x, y, z,mf1) given in Ch. 5.
In that chapter, we also provided evaluations of the asymptotic contribution Dasym and
studied in detail the sensitivity of the integrals to the spectral functions assumed for
ρ and ρ′ resonances when going beyond a narrow-resonance picture, to avoid unphysical
imaginary parts in the loop integrals [37–39]. In the decay region of the f1, by far the most
important correction arises from the width of the ρ; here, we provide a simple evaluation
of B(f1 → e+e−) for the representations constructed in Ch. 9 that captures this main
effect, to ensure that our final solutions do not conflict with the SND measurement [5].
To this end, we replace
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(10.10)
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10.4. e+e− → f1ρ

Narrow-resonance limit Spectral function for ρ

DI=1
1 × 103 0.23− 1.68i 0.15− 1.42i

DI=1
2 × 103 −1.70 + 1.81i −1.36 + 1.64i

DI=1
3 × 103 1.25 + 4.38i 3.00 + 4.10i

Dω
1 × 103 0.30− 1.65i

Dω
2 × 103 −1.89 + 1.81i

Dω
3 × 103 1.06 + 4.61i

Dϕ
1 × 103 −0.98− 1.09i

Dϕ
2 × 103 0.19 + 2.42i

Dϕ
3 × 103 6.02 + 5.97i

Dasym × 103 0.125(12) 0.032(3) 0.017(2) 0.009(1)

Table 10.1: Numerical values for the coefficients DI
i in Eq. (10.8) (obtained using the Cuba

library [51]). The total isoscalar one follows as DI=0
i = RωDω

i +R
ϕDϕ

i , and Dasym is given
for the matching points

√
sm = 1.0GeV, 1.3GeV, 1.5GeV, 1.7GeV. The left column gives

the reference point for which the widths of all vector mesons are neglected and the right
column the more realistic case that includes the spectral function of the ρ (used as input
for Table 11.2).

in Eq. (9.3), where the normalizations Na1/2 , Ns of the spectral function ρ(x) (taken from
Eq. (3.15) [40, 41]) are determined by demanding that the meaning of the couplings Ca1/2 ,
Cs remain unaltered compared to the zero-width limit; numerical results for the coefficients
Di are collected in Table 10.1.23 Once improved data on B(f1 → e+e−) becomes available,
more refined analyses can be performed along the lines of Part I and Ref. [50].

10.4 e+e− → f1ρ

The scattering process e+e− → f1π
+π− probes the f1 TFFs in the time-like region via

e+e− → γ∗ → f1ρ → f1π
+π−, see Fig. 10.1. For our analysis, we thus define amputated

f1 → ργ∗ form factors, which are related to γ∗ → f1ρ via crossing symmetry, according to
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→ − Cssζs
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, (10.11)

23Besides the analytic evaluation using the functions fi(x, y, z,mf1), we performed cross-checks by means
of a PV decomposition, obtained with FeynCalc [42–44], and the subsequent calculation of the loop integrals
with Collier [45–49].
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e
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π+
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ρ p+
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Figure 10.1: Feynman diagram for e+e− → f1ρ → f1π
+π− consistent with M(γ∗ →

f1ρ
0∗).
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M2
ρ′ −M2

ρ

, (10.12)

and a width has been inserted into the denominators for the time-like application.
As a first approximation, we consider the case in which the process e+e− → f1π

+π−

is described by e+e− → f1ρ, see Fig. 10.2, whose amplitude can be constructed from
Eq. (3.4) and Eq. (9.1) by amputating the ρ propagator,

M(γ∗ → f1ρ
0∗) =

e

g̃ργm2
f1

ϵ∗µ(q1)ϵν(q2)ϵ
∗
α(P ) (10.13)

×
[
Tµνα

a1 (−q1, q2) sFa1(q
2
2) + Tµνα

a2 (−q1, q2) sFa2(q
2
2) + Tµνα

s (−q1, q2) sFs(q
2
2)
]
,

and the prefactor follows in analogy to the derivation of f1 → V γ in Ch. 4, with g̃ργ as
defined in Eq. (B.7). In order to determine the amplitude for e+e− → γ∗ → f1ρ, we
calculate the diagram shown in Fig. 10.2, leading to

M(e+e− → f1ρ) =
e2

g̃ργm2
f1

ϵ∗µ(q1)ϵ
∗
α(P )

v̄s(p1)γνu
r(p2)

q22
(10.14)

×
[
Tµνα

a1 (−q1, q2) sFa1(q
2
2) + Tµνα

a2 (−q1, q2) sFa2(q
2
2) + Tµνα

s (−q1, q2) sFs(q
2
2)
]∣∣∣

q21=M2
ρ

,

where we dropped an unobservable overall phase.
Spin-averaging the squared amplitude and performing the angular integration, we find

σ(e+e− → f1ρ)(s) =
e4|gργ |2|pρ|(s+ 2m2

e)

384πm6
f1
M4

ρ s
3|pe|

×
[
Ta1,a1(q

2
1, s)

∣∣ sFa1(s)
∣∣2 + Ta2,a2(q

2
1, s)

∣∣ sFa2(s)
∣∣2 + Ts,s(q

2
1, s)

∣∣ sFs(s)
∣∣2

+ 2Ta1,a2(q
2
1, s)Re

[
sFa1(s)

sF∗a2(s)
]
+ 2Ta1,s(q

2
1, s)Re

[
sFa1(s)

sF∗s (s)
]

+ 2Ta2,s(q
2
1, s)Re

[
sFa2(s)

sF∗s (s)
]]∣∣∣

q21=M2
ρ

(10.15)
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10.5. e+e− → f1π
+π−

e

e

f1

ρ

p1

p2

q2

P

q1

Figure 10.2: Feynman diagram for e+e− → f1ρ consistent with M(γ∗ → f1ρ
0∗).

for the total cross section, with s = q22, initial- and final-state momenta

|pe| =
√
s− 4m2

e

2
, |pρ| =

√
λ(s, q21,m

2
f1
)

2
√
s

, (10.16)

and the kinematic functions

Ta1,a1(q
2
1, s) = 4λ(s, q21,m

2
f1)

2, (10.17)

Ta2,a2(q
2
1, s) = m6

f1(s+ q21)−m4
f1(s

2 + q41 − 6sq21)−m2
f1(s− q21)

2(s+ q21) + (s− q21)
4,

Ts,s(q
2
1, s) = m2

f1(s+ q21)
(
m4

f1 − s2 − q41 + 18sq21
)
−m4

f1(s
2 + q41 + 14sq21) + (s2 − q41)

2,

Ta1,a2(q
2
1, s) = 2λ(s, q21,m

2
f1)
[
(s− q21)

2 −m2
f1(s+ q21)

]
,

Ta1,s(q
2
1, s) = −2λ(s, q21,m

2
f1)(s− q21)(s+ q21 −m2

f1),

Ta2,s(q
2
1, s) = −(s− q21)

[
m6

f1 −m4
f1(s+ q21)−m2

f1(s
2 + q41 − 6sq21) + (s− q21)

2(s+ q21)
]
.

In a compact way, the cross section can be expressed in terms of the amputated helicity
amplitudes [8]

sH++;0(q
2
1, s) =

λ(s, q21,m
2
f1
)

2m3
f1

sF1(s)−
q21(m

2
f1

− q21 + s)

2m3
f1

sF2(s)−
s(m2

f1
+ q21 − s)

2m3
f1

sF3(s),

sH+0;+(q
2
1, s) =

q21s

ξ2m2
f1

sF2(s) +
s(m2

f1
− q21 − s)

2ξ2m2
f1

sF3(s),

sH0+;−(q21, s) = −
q21(m

2
f1

− q21 − s)

2ξ1m2
f1

sF2(s)−
q21s

ξ1m2
f1

sF3(s), (10.18)

with polarization-vector normalizations ξ21 = q21, ξ
2
2 = s, leading to

σ(e+e− → f1ρ)(s) =
e4|gργ |2|pρ|(s+ 2m2

e)

24πM4
ρ s

3|pe|
∑

λ

∣∣ sHλ(M
2
ρ , s)

∣∣2, (10.19)

and the sum extends over the three amplitudes in Eq. (10.18).

10.5 e+e− → f1π
+π−

To obtain a reasonable threshold behavior, it is mandatory to go beyond the approximation
of a narrow ρ and instead consider the full amplitude e+e− → f1π

+π−. To this end, we
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use
M(ρ→ π+π−) = gρππϵµ(pρ)(p− − p+)

µ, (10.20)

see also Eq. (B.8), to calculate the diagram shown in Fig. 10.1, leading to

M(e+e− → f1π
+π−) =

e2gρππ
g̃ργm2

f1

ϵ∗α(P )
(p− − p+)µ

q21 −M2
ρ + iMρΓρ

v̄s(p1)γνu
r(p2)

q22
(10.21)

×
[
Tµνα

a1 (−q1, q2) sFa1(q
2
2) + Tµνα

a2 (−q1, q2) sFa2(q
2
2) + Tµνα

s (−q1, q2) sFs(q
2
2)
]
,

where we again dropped an unobservable phase. From the spin-averaged squared matrix
element and after carrying out the angular integrations, we obtain the differential cross
section

dσ(e+e− → f1π
+π−)

dq21
(s) =

e4|gρππ|2|gργ |2|pρ|(s+ 2m2
e)(q

2
1 − 4M2

π)
3/2

18432π3m6
f1
M4

ρ s
3
√
q21|pe|

[
(q21 −M2

ρ )
2 +M2

ρΓ
2
ρ

]

×
[
Ta1,a1(q

2
1, s)

∣∣ sFa1(s)
∣∣2 + Ta2,a2(q

2
1, s)

∣∣ sFa2(s)
∣∣2 + Ts,s(q

2
1, s)

∣∣ sFs(s)
∣∣2

+ 2Ta1,a2(q
2
1, s)Re

[
sFa1(s)

sF∗a2(s)
]
+ 2Ta1,s(q

2
1, s)Re

[
sFa1(s)

sF∗s (s)
]

+ 2Ta2,s(q
2
1, s)Re

[
sFa2(s)

sF∗s (s)
]]
, (10.22)

with the kinematic functions Ti,j(q21, s) as in Eq. (10.17); in terms of the amputated helicity
amplitudes, we obtain

dσ(e+e− → f1π
+π−)

dq21
(s) =

e4|gρππ|2|gργ |2|pρ|(s+ 2m2
e)(q

2
1 − 4M2

π)
3/2

1152π3M4
ρ s

3
√
q21|pe|

[
(q21 −M2

ρ )
2 +M2

ρΓ
2
ρ

]
∑

λ

∣∣ sHλ(q
2
1, s)

∣∣2.

(10.23)
In general, the remaining integration over q21 needs to be performed numerically, but it is
instructive to consider the limit of a narrow resonance [52],

1

(q21 −M2
ρ )

2 +M2
ρΓ

2
ρ

→ π

MρΓρ
δ
(
q21 −M2

ρ

)
. (10.24)

In this approximation, together with Eq. (B.9),

Γρ =
|gρππ|2(M2

ρ − 4M2
π)

3/2

48πM2
ρ

, (10.25)

the q21 integration of Eq. (10.23) indeed reproduces Eq. (10.19). For the phenomenological
analysis of the e+e− → f1π

+π− data, we will use the full expression given in Eq. (10.22).
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Phenomenological analysis

11.1 Data input for e+e− → e+e−f1 and f1 → V γ

The experimental data we will use for the space-like reaction e+e− → e+e−f1 and the
radiative decays f1 → V γ is summarized in Table 11.1. For the former, this concerns
normalization and slope from the L3 experiment [4], with isoscalar corrections evaluated
using the mixing angle that follows from a combined analysis with the analogous quantities
for the f ′1 [36], see Sec. 4.1 and Sec. 10.1. For B(f1 → ργ), we use the results of the global
fit from Ch. 6, including data on Γ(f1 → K sKπ)/Γ(f1 → 4π) [53–55], Γ(f1 → 4π)/Γ(f1 →
ηππ) [56, 57], Γ(f1 → ργ)/Γ(f1 → 4π) [58], Γ(f1 → a0(980)π [excluding K sKπ])/Γ(f1 →
ηππ) [56, 59, 60], Γ(f1 → K sKπ)/Γ(f1 → ηππ) [56, 59–63], and Γ(f1 → ργ)/Γ(f1 →
ηππ) [2, 60, 61, 64]. For B(f1 → ϕγ), there is a single measurement from Ref. [3], and,
similar to Part I, we will consider fit variants with and without this additional input,
given both the tenuous data situation and the required U(3) assumptions.24 Finally, two
event candidates for f1 → e+e− have been observed in Ref. [5], which, when interpreted
as a signal, translates to B(f1 → e+e−) = 5.1+3.7

−2.7 × 10−9, while being quoted as B(f1 →
e+e−) < 9.4× 10−9 (90% C.L.) in Ref. [1]. In Part I, we performed a detailed analysis of
the constraints that can be obtained from the dilepton decay, but in view of its unclear
status and large uncertainties, we do not include this channel in our global fit here and
instead focus on e+e− → f1π

+π−. Further input parameters are collected in App. F.

11.2 Data input for e+e− → f1π
+π−

The process e+e− → f1π
+π− has been measured in two different decay channels, f1 →

ηππ [11] and f1 → K sKπ [12]. The data for the cross section from both reconstruction
methods is well compatible, indicating that systematic errors are smaller than the statis-
tical uncertainties of the measurements. In the following, we will therefore assume that
the data is indeed dominated by statistics.

Next, around
√
s ≃ 2GeV, the cross section displays resonance structures [32], most

prominently the ρ(2150) and, potentially, further excited ρ states. This implies that we
cannot expect our theoretical description based on Eq. (10.22) to provide an adequate

24The limit B(f1 → ϕγ) < 0.45× 10−3 [1, 61] (95% C.L.) supports a rather small branching fraction to
ϕγ, indicating a value at the lower end of the range from Ref. [3]. Both measurements are also consistent
with B(f1 → ϕγ) < 0.9× 10−3 [2] (95% C.L.).
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Chapter 11. Phenomenological analysis

Quantity Value Reference

Γ̃f1
γγ [keV] 3.5(6)(5) [4]

Λf1 [GeV] 1.04(6)(5) [4]

B(f1 → ργ) 4.2(1.0)% Ch. 6

rργ 3.9(1.3) [2]

B(f1 → ϕγ) 0.74(26)× 10−3 [1, 3]

Table 11.1: Data for e+e− → e+e−f1 and f1 → V γ used in our analysis.

fit to the data, because ρ excitations beyond the ρ′′ are not included. However, the
data still provides a valuable upper bound for the background contributions that our
TFF parameterizations do describe; in fact, this constraint proves extremely stringent,
immediately ruling out, by at least an order of magnitude, parameterizations that do not
implement the doubly-virtual asymptotic behavior of Eq. (9.5). Even more, writing the
cross section in terms of the couplings Ca1/2 , Cs, one observes that moderate cancellations
among the different terms are required to obey the upper limit implied by the e+e− →
f1π

+π− data. With Cs reasonably well determined from the L3 equivalent two-photon
decay width, this thus implies a valuable constraint on the antisymmetric TFFs.

To quantify this constraint, we proceed as follows: we first define the χ2 function

χ2
BaBar(Cs, Ca1 , Ca2) =

nBaBar∑

i=1

(σ(si, Cs, Ca1 , Ca2)− σexp
i )2

(∆σexp
i )2

θ
[
σ(si, Cs, Ca1 , Ca2)− σexp

i

]
,

(11.1)
where nBaBar = 52 is the combined number of data points from Refs. [11, 12], σexp

i and
∆σexp

i are central value and error at center-of-mass energy
√
si, respectively, and the

Heaviside function demands that contributions to χ2
BaBar only arise when the theoretical

model exceeds the central value of the data, thus not penalizing a potential excess of the
latter due to excited ρ resonances. Interpreting this χ2 function in the usual statistical
sense, however, puts an undue emphasis on the e+e− → f1π

+π− data, especially in view
of the uncertainties from the contamination of resonant contributions. For this reason, we
instead study contours in the Ca1–Ca2 plane for which χ2

BaBar/dof = 1 at a given value
of Cs, which should provide a reasonable measure of the consistency of the encompassed
values of Ca1/2 with the experimental constraints. We repeat this procedure for the relevant
range of Cs and formulate the resulting constraint on Ca1/2 in terms of an ellipse whose
parameters are interpolated as a function of Cs. The final constraint is then written as

χ2
BaBar, eff(Cs, Ca1 , Ca2) = ∆y⊺

aC
−1
a ∆ya, (11.2)

where

∆ya =

(
Ca1 − C

(0)
a1

Ca2 − C
(0)
a2

)
, (11.3)

with the central values C(0)
a1/2 and the covariance matrix Ca—which are determined via the

χ2
BaBar/dof = 1 contour ellipse—implicitly depending on Cs; this effective χ2 function is
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11.3. Global fit

f1 → ϕγ

No Yes

χ2/dof 5.6/3 = 1.86 18.1/4 = 4.52

p-value 0.13 1.2× 10−3

Cs 0.95(13) 0.76(16)

Ca1 −0.16(18) −0.07(18)

Ca2 0.47(25) 0.09(32)

ρsa1 0.34 0.31

ρsa2 −0.11 −0.34

ρa1a2 −0.52 −0.35

B(f1 → ϕγ)× 103 3.4(1.7) 1.6(1.0)

B(f1 → ωγ)× 103 5.5(1.6) 2.5(1.1)

B(f1 → e+e−)× 109 2.2(6) 1.2(5)

B(f ′1 → ϕγ)× 103 11.0(3.0) 5.2(2.2)

B(f ′1 → ργ)× 103 4.8(2.6) 2.2(1.4)

Table 11.2: Best-fit results for the three VMD couplings Cs, Ca1 , and Ca2 . The fit includes
the constraints from the normalization and slope measured by L3 in e+e− → e+e−f1,
from B(f1 → ργ), rργ , and σ(e+e− → f1π

+π−) as well as, in the right column, from
B(f1 → ϕγ). All uncertainties are inflated by the scale factor S =

√
χ2/dof. The table

also shows the correlations ρij among the three couplings and the values of B(f1 → V γ),
V = ω, ϕ, and B(f1 → e+e−) implied by the fit result (the latter for

√
sm = 1.3GeV). The

uncertainties for B(f1 → V γ) include the fit errors and ∆Rϕ but no additional estimate
of U(3) uncertainties. The predictions for B(f ′1 → ϕγ) and B(f ′1 → ργ) use the U(3)
relations from Eq. (11.5).

then used as input in the global fit, counted as two data points in the number of degrees
of freedom. Our procedure is further motivated by the fact that the constraints imposed
by the cross-section measurements at different energies will be highly correlated: if the
upper limit is fulfilled at some point si for a set of couplings Ca1 , Ca2 , Cs, the smoothness
of the cross section makes it likely that the same holds true at neighboring points.

11.3 Global fit

The results of the global fit are summarized in Table 11.2, Fig. 11.1, and Fig. 11.2, for
variants with and without the U(3) constraint from B(f1 → ϕγ). Without this input, we
observe reasonable consistency among the various constraints, with a final value for Cs
close to the L3 value in Eq. (10.1). The coupling Ca1 comes out consistent with zero, while
a non-zero value of Ca2 is obtained at 2σ significance. Crucially, owing to the inclusion of
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Figure 11.1: Left : constraints in the Ca1–Ca2 plane for the respective best-fit value of
Cs (see Table 11.2) from L3 normalization and slope, B(f1 → ργ), rργ , and σ(e+e− →
f1π

+π−). The gray ellipse represents the result of the global fit. Right : the same figure
for the global fit including, in addition, B(f1 → ϕγ).

the BaBar data on e+e− → f1π
+π− [11, 12], we are now able to provide an unambiguous

solution for all three TFFs, including the two antisymmetric ones encoded in Ca1/2 . The
best-fit point lies within the ellipse from σ(e+e− → f1π

+π−), and, accordingly, the central
line in Fig. 11.2 respects the bound for almost all data points, leaving a deficit that could
be well explained by a ρ(2150)-resonance signal. Moreover, the resulting prediction for
B(f1 → e+e−) is consistent with SND [5], suggesting a potential signal at the lower end
of their range. In contrast, the prediction for B(f1 → ϕγ) comes out slightly too large in
comparison to Ref. [3], in tension at the level of 1.5σ.

The same tension is visible in the global fit including B(f1 → ϕγ), as the χ2/dof
deteriorates appreciably. Including the resulting scale factor S = 2.1 in the error estimates,
all three couplings are consistent with the global fit without B(f1 → ϕγ), but Cs decreases
compared to L3 and the central value of Ca2 moves much closer to zero. Within the sizable
uncertainties, the cross section for e+e− → f1π

+π− is still consistent with the experiment,
but the central line exceeds the data above the ρ(2150), in accordance with the best-fit
point in Fig. 11.1 lying slightly outside the σ(e+e− → f1π

+π−) ellipse. The resulting
prediction for B(f1 → e+e−) is still consistent with SND, and B(f1 → ϕγ) now agrees by
construction. Table 11.2 also includes the predictions for B(f1 → ωγ), B(f ′1 → ϕγ), and
B(f ′1 → ργ), the latter two being related to the already determined couplings via the U(3)
arguments in Sec. 11.4.

11.4 Final representations

To summarize, we propose that the low-energy contributions to the TFFs of the f1 be
described by the parameterizations

Ff1,I=1
a1/2 (q21, q

2
2) =

RρCa1/2ζρM
4
ρM

4
ρ′M

4
ρ′′(q

2
1 − q22)

(q21 −M2
ρ )(q

2
2 −M2

ρ )(q
2
1 −M2

ρ′)(q
2
2 −M2

ρ′)(q
2
1 −M2

ρ′′)(q
2
2 −M2

ρ′′)
,
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Figure 11.2: Comparison of our global fit results to the BaBar data [11, 12] for σ(e+e− →
f1π

+π−), without (left) and including (right) the constraint from B(f1 → ϕγ). The red
line denotes the central result, and the band reflects the uncertainties propagated from
Cs, Ca1 , and Ca2 .

Ff1,I=1
s (q21, q

2
2) =

RρCsM
4
ρM

4
ρ′

(q21 −M2
ρ )(q

2
2 −M2

ρ )(q
2
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2
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,

Ff1,I=0
a1/2 (q21, q

2
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V=ω,ϕ

RV Ca1/2ζVM
4
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4
V ′M4
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V )(q
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V )(q
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Ff1,I=0
s (q21, q

2
2) =

∑

V=ω,ϕ

RV CsM
4
VM

4
V ′

(q21 −M2
V )(q

2
2 −M2

V )(q
2
1 −M2

V ′)(q22 −M2
V ′)

, (11.4)

see Eq. (9.3), Eq. (9.4), Eq. (9.7), and Eq. (9.8), with the couplings Cs, Ca1 , and Ca2 as
determined in Table 11.2 (and Rρ = 1). These low-energy contributions are then to be
supplemented by the asymptotic contributions from the LCE, see Sec. 3.4, to arrive at a
complete description.

In order to estimate the impact of f ′1 and a1, we also quote the corresponding expres-
sions that follow from U(3) symmetry. For the f ′1, the analogous results are obtained by
replacing

Rρ → Rρ
f ′
1
= cot(θA + θ1) = −0.50(11),

Rω → Rω
f ′
1
=

1

9
cot(θA + θ1) = −0.06(1),

Rϕ → Rϕ
f ′
1
= −2

√
2

9
= −0.31, (11.5)

where the errors only refer to the uncertainties propagated in θA, cf. Eq. (9.8). The coef-
ficients in Eq. (11.5) show that isoscalar contributions will become much more important
for the f ′1 than for the f1, especially the ϕ. This observation is reflected by some evidence
for a signal in the decay to the ϕγ final state, B(f ′1 → ϕγ) = 3(2) × 10−3 [61], which,
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within uncertainties, agrees with the predictions from Table 11.2 for the fit including
B(f1 → ϕγ), while the fit without B(f1 → ϕγ) predicts a larger branching fraction. The
same reference also gives a limit B(f ′1 → ργ) < 0.02 (95% C.L.), in agreement with both
fits from Table 11.2.

The TFFs of the a1 display a different isospin structure, with one isoscalar and one
isovector photon each. Moreover, for ideal mixing, there is no contribution from the ϕ
and its excitations, so that only contributions of the type ρ–ω survive. Accordingly, the
overall scaling compared to the couplings in the f1 TFFs is measured relative to the sum
of all isovector and isoscalar contributions, leading to

Ra1 =
1 +Rω +Rϕ

√
3 cos(θA − θ0)

=
2

3 sin(θA + θ1)
= 0.75(3). (11.6)

Choosing a symmetric decomposition of ζV onto the ρ and ω contributions, we obtain

Fa1
a1/2(q

2
1, q

2
2) =

Ra1Ca1/2
√
ζρζωM

2
ρM

2
ρ′M

2
ρ′′M

2
ωM

2
ω′M2

ω′′(q21 − q22)

2(q21 −M2
ρ )(q

2
2 −M2

ω)(q
2
1 −M2

ρ′)(q
2
2 −M2

ω′)(q21 −M2
ρ′′)(q

2
2 −M2

ω′′)

+ (ρ↔ ω),

Fa1
s (q21, q

2
2) =

Ra1CsM
2
ρM

2
ρ′M

2
ωM

2
ω′

2(q21 −M2
ρ )(q

2
2 −M2

ω)(q
2
1 −M2

ρ′)(q
2
2 −M2

ω′)
+ (ρ↔ ω). (11.7)
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Conclusions

The TFFs of axial-vector mesons are key input quantities for a data-driven evaluation of
HLbL scattering in the anomalous magnetic moment of the muon, yet they are notoriously
poorly determined from experiment. Here, we performed a global analysis of all experi-
mental constraints available for the f1 and outlined how the f ′1 and a1 contributions can
be estimated from U(3) symmetry. A crucial role is played by data for the cross section of
e+e− → f1π

+π−, which provides valuable input on the asymptotic behavior and allowed
us to find an unambiguous solution also for the antisymmetric TFFs.

The process e+e− → f1π
+π− probes all three TFFs at one photon virtuality deter-

mined by the center-of-mass energy and the other one by the π+π− invariant mass, which,
in turn, is dominated by the ρ. Accordingly, the data extending from threshold up to
about 4.5GeV is sensitive to the asymptotic behavior for one virtuality fixed at the ρ
mass. The corresponding constraint demonstrates that the asymptotic behavior predicted
by the LCE needs to set in early, for otherwise, the cross section exceeds the data by an
order of magnitude. We implemented this conclusion using a VMD ansatz, leading to the
parameterizations summarized in Sec. 11.4. To account for contributions from even higher
excited ρ resonances, such as the ρ(2150), we formulated the quantitative analysis as an
upper limit, which still entails valuable constraints especially on the otherwise poorly de-
termined couplings characterizing the antisymmetric TFFs. The global fit, see Sec. 11.3,
shows good consistency with the data for e+e− → e+e−f1 and f1 → ργ, predicting a
branching fraction for f1 → e+e− at the lower end of the signal strength reported by
SND. Some tension is observed with f1 → ϕγ, which might point towards limitations of
U(3) symmetry and/or the data base.

The final parameterizations describe the TFFs at low and intermediate virtualities, to
be supplemented by an additional term from the LCE [8], see also Part I, that ensures
the correct asymptotic behavior also in the doubly-virtual direction. Using this combined
input, work is ongoing to evaluate the axial-vector contributions both in the HLbL basis
of Ref. [65] and in the formalism of Ref. [66]. In combination with the short-distance
constraints from Refs. [67–69], the results presented here will thus be instrumental to arrive
at a complete data-driven evaluation of HLbL scattering and to reduce the uncertainties
to the level required by the final precision expected from the Fermilab experiment.
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Appendix F

Constants and parameters

In Table F.1, we collect the masses and decay widths used in this part of the thesis, in
large part taken from Ref. [1]. For most quantities, possible effects from isospin breaking
can be safely neglected, but some ambiguity arises for the mass and width of the ρ. For
the e+e− → f1π

+π− process as the focus of this part, it would be natural to identify
the ρ parameters with the ρ0, whose width is quoted at an appreciably lower value than
for the charged channel. However, we follow the arguments from App. E, observing that
determinations sensitive also to the excited ρ states both in the neutral [70] and charged
mode [71] tend to support the charged-channel values from Ref. [1] and, therefore, use the
latter ones throughout. In particular, via Eq. (10.25), this determines |gρππ| = 5.98, in
good agreement with dispersive determinations [72, 73]; see also App. B. Similarly, the
photon couplings are calculated from Eq. (B.2) with the branching fractions from Ref. [1],
leading to

|gργ | = 4.96, |gωγ | = 16.51, |gϕγ | = 13.40, (F.1)

slightly deviating from the values given in App. B due to updated input quantities. Fi-
nally, we quote the values for masses and decay widths of the axial-vector resonances
from Ref. [1]. For the a1, the (reaction-dependent) BW parameters can also be com-
pared to attempts to extract the pole position from τ → 3πντ data, √

sa1 = ma1 −
iΓa1/2 =

[
1209(4)(+12

−9 ) − i288(6)(+45
−10)

]
MeV [74]. In addition, Ref. [1] quotes the aver-

age Γa1 = 420(35)MeV [75, 76], in line with the center of the estimated range quoted
in Table F.1. Based on the same two references, one would conclude the mass average
ma1 = 1250(20)MeV.
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Appendix F. Constants and parameters

Quantity Variable Value Reference

Mass pion Mπ 139.57MeV

[1]

Mass f1(1285) mf1 1281.9(5)MeV

Mass f1(1420) mf ′
1

1426.3(9)MeV

Mass a1(1260) ma1 1230(40)MeV

Mass ω(782) Mω 782.66(13)MeV

Mass ω(1420) Mω′ 1410(60)MeV

Mass ω(1650) Mω′′ 1670(30)MeV

Mass ϕ(1020) Mϕ 1019.461(16)MeV

Mass ϕ(1680) Mϕ′ 1680(20)MeV

Mass ϕ(2170) Mϕ′′ 2163(7)MeV

Mass ρ(770) (charged) Mρ 775.11(34)MeV

Mass ρ(1450) Mρ′ 1465(25)MeV

Mass ρ(1700) Mρ′′ 1720(20)MeV

Total width f1(1285) Γf1 22.7(1.1)MeV

Total width f1(1420) Γf ′
1

54.5(2.6)MeV

Total width a1(1260) Γa1 (250 . . . 600)MeV

Total width ρ(770) (charged) Γρ 149.1(8)MeV

Total width ρ(1450) Γρ′ 400(60)MeV

Total width ρ(1700) Γρ′′ 250(100)MeV

Mass ρ(770) (charged) Mρ 774.9(6)MeV

[70]

Mass ρ(1450) (charged) Mρ′ 1428(30)MeV

Mass ρ(1700) (charged) Mρ′′ 1694(98)MeV

Total width ρ(770) (charged) Γρ 148.6(1.8)MeV

Total width ρ(1450) (charged) Γρ′ 413(58)MeV

Total width ρ(1700) (charged) Γρ′′ 135(62)MeV

Mass ρ(770) (neutral) Mρ 775.02(35)MeV

[71]

Mass ρ(1450) (neutral) Mρ′ 1493(15)MeV

Mass ρ(1700) (neutral) Mρ′′ 1861(17)MeV

Total width ρ(770) (neutral) Γρ 149.59(67)MeV

Total width ρ(1450) (neutral) Γρ′ 427(31)MeV

Total width ρ(1700) (neutral) Γρ′′ 316(26)MeV

Table F.1: Masses and decay widths from Ref. [1] as used in this part of the thesis (first
panel), in comparison to the ρ, ρ′, and ρ′′ parameters from Refs. [70, 71].
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Prologue

Due to their strongly suppressed decay rates within the standard model, the semilep-
tonic decays η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ−, ℓ = e, µ, are considered rare processes.
The reason for this strong suppression is an implicit consequence of the conservation of
charge-conjugation symmetry within strong and electromagnetic interactions—the pri-
mary forces mediating these decays. More specifically, the positive intrinsic charge parity
of the pseudoscalar mesons requires the underlying decay mechanism to involve an even
number of photons—each possessing an odd intrinsic charge parity—so that the processes
are driven in terms of a one-loop diagram with two photons at lowest order. Contribu-
tions from physics beyond the standard model [1–6], on the other hand, can be mediated
through charge-conjugation-violating mechanisms, i.e., via a one-photon exchange, and
thus proceed at tree-level, potentially countering the suppression that would otherwise
be characteristic for such a contribution in comparison to the standard-model prediction.
For this reason, the aforementioned semileptonic η(′) decays are excellent candidates for
searches for physics beyond the standard model, with any signal conclusively deviating
from the standard-model value giving a distinctive indication of new physics. In order
to unambiguously interpret experimental measurements [16–18, 46–48] in this regard, the
theoretical calculations need to be performed with high precision and specify a reasonable,
conservative uncertainty estimate, in particular in light of the improved results expected
from the REDTOP collaboration [49, 50], which plans to search for rare decays with an
unprecedented number of η(′) events.

The author of this thesis started to work on the project presented in this part of
the dissertation in the year 2021. At that time, Hannah Schäfer was investigating
semileptonic η(′) decays as part of her master’s thesis [91], providing an estimate within
the framework of plain vector-meson dominance that improved on previous analyses [30]
by taking into account the dependence on the photon virtualities in the parameterizations.
Indeed, this additional momentum dependence has significant effects on the final results,
as will be demonstrated in this part of the thesis. Given the initially underestimated
complexity of the problem, the early advisory role of the author soon came to be a full-
time involvement in the project, which took another one and a half years to be finalized;
ultimately, this culminated in the development of a C++ interface [75] for the native Fortran
library Collier [77–80], which—somewhat obscurely—solved many of the difficulties that
formerly had to be overcome with Collier ’s competitor LoopTools [81], as will be explained
in the course of this dissertation.*

The analysis of the semileptonic η(′) decays performed in this thesis is based on the
*Moreover, in the process of work on this project, the author of this thesis found an error in the

calculations of Ref. [30], which eventually led to the publication of an Erratum to that article.
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Prologue

assumption that the underlying two-photon processes η(′) → π0γ∗γ∗ and η′ → ηγ∗γ∗ are
dominated by the exchange of vector mesons [12–14, 29]. Accordingly, the calculation
of the full semileptonic amplitudes requires knowledge of the corresponding vector-to-
pseudoscalar transition form factors [31, 32], the normalizations of which are determined
from phenomenological input [15] in this thesis, as carried out independently by the author
of this dissertation and Hannah Schäfer.

Having spelled out the amplitudes for the semileptonic decays, the momentum de-
pendence of the form factors is modeled using vector-meson dominance—including con-
straints from isospin and U(3) flavor symmetry—for which various parameterizations are
discussed by the author. More specifically, this includes a monopole as well as a dipole
ansatz, with the latter tailored such that the expected high-energy behavior [41–45] is
ensured; furthermore, for each of these, a variant that assumes constant widths for the
vector mesons as well as a modification thereof that incorporates the energy dependence of
the significant widths [69–71] is examined, implemented in terms of dispersively improved
Breit–Wigner propagators. For reference, an ansatz corresponding to a point-like in-
teraction is considered, which drops any dependence on the photon virtualities in the
vector-to-pseudoscalar transition form factors [30]. The foundations for all these parame-
terizations have been worked out by the author of this dissertation in collaboration with
Hannah Schäfer and Bastian Kubis, following which Hannah Schäfer focused on the
explicit construction of the monopole form factors for both constant and energy-dependent
widths, benefitting from the assistance and cross-checks of this thesis’ author; the thesis’
author, on the other hand, concentrated on the construction of the dipole variants, which
were subsequently cross-checked by Hannah Schäfer. Next, contributions beyond the
vector-meson-dominance model are analyzed by studying S-wave rescattering effects for
the decay η → π0ℓ+ℓ−, which is based on a dispersive framework established by, among
others, Yannis Korte [28, 82–86, 92]. Although the author of this thesis contributed to
several discussions on this part, the actual implementation of the scalar rescattering effects
was developed by Hannah Schäfer, Yannis Korte, and Bastian Kubis.

The following phenomenological analysis is performed in terms of integrated branch-
ing ratios as well as singly- and doubly-differential decay widths, obtained by performing
a Passarino–Veltman decomposition of the amplitude with FeynCalc [72–74] and the
subsequent numerical evaluation with Collier ; here, the differential distributions are re-
stricted to the variants assuming constant widths for the vector mesons. Crucially, the
numerical evaluation of certain loop functions with LoopTools resulted in severe numeri-
cal instabilities for the variant with energy-dependent widths, as is discussed in detail by
the author of this dissertation. Through insightful discussions with Bastian Kubis, the
author was able to ascribe these problems to very specific regions of the phase space and
was the first to suggest the use of the library Collier. Ultimately, this led to the devel-
opment of a C++ interface for the native Fortran library Collier, with an instrumental
role played by the author of this thesis, benefitting, in particular, from the assistance of
Andreas Nogga. The numerical computations for the phenomenological analysis were
split as follows: while the benchmark scenario of a point-like interaction has been calcu-
lated independently by the author of this dissertation and Hannah Schäfer, the author
mainly focused on calculating the observables with the monopole form factors for both
constant and energy-dependent widths; of these, the integrated branching ratios were
cross-checked by Hannah Schäfer. Hannah Schäfer, on the other hand, concentrated
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on calculating the integrated branching ratios with the dipole parameterizations, which
were subsequently cross-checked by the author of this thesis.‡ The numerical evaluation
of the scalar rescattering effects was entirely performed by Hannah Schäfer and Yannis
Korte. Furthermore, to normalize the integrated branching ratios of the semileptonic
decays to their corresponding two-photon analogs, the branching ratios for η(′) → π0γγ
and η′ → ηγγ, along with the complementary differential distributions, are calculated by
the author of this thesis, which have also been reproduced by Hannah Schäfer.

In the appendices of this part of the thesis, arguments needed for the construction
of the vector-meson-dominance form factors and the determination of the relative signs
between these are outlined, which were obtained independently by the author of this thesis
and Hannah Schäfer, resorting to keen insights of Bastian Kubis.§

‡The differential distributions for the dipole variant given in this part of the thesis were calculated by
the author of the dissertation and are not included in the published article.

§Note also that all plots except for Fig. 5.1 and Fig. 5.2 in this part of the thesis have been created by
the author of the dissertation.
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Chapter 1

Introduction

Within the SM of particle physics, both the strong and EM interactions conserve the
symmetries parity (“P”), charge conjugation (“C”), and time reversal (“T”) separately. For
this reason, the decays η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ− can—mediated via the strong and
EM force—only proceed via a C-even two-photon mechanism due to C(η(′)) = +1 = C(π0),
that is they appear as one-loop processes at lowest order.1 As a result, the SM contribution
to those decays is strongly suppressed, rendering them well-suited candidates for searches
for physics beyond the SM (BSM). In fact, BSM contributions to the discussed decays,
either mediated via a C-odd one-photon exchange [1–4] or due to other BSM mechanisms
such as new light scalars [5] and unconventional sources of CP violation [6], are themselves
subject to ongoing analyses.

Historically, calculations of η → π0ℓ+ℓ− were based on different models for the η →
π0γ∗γ∗ vertex as the conversion γ∗γ∗ → ℓ+ℓ− depends solely on QED and is thus straight-
forward. This is not unlike the rare dilepton decays of the lightest flavor-neutral pseu-
doscalars, P → ℓ+ℓ−, P = π0, η, η′, similarly loop-induced and completely calculable
once the corresponding P → γ∗γ∗ TFFs are known; see Refs. [7–9] for recent work and
references therein. For these decays, a reasonable behavior of the TFFs for large photon
virtualities is not only a requirement for a precision calculation but a necessity to regular-
ize the otherwise ultraviolet-divergent loop integral. This was equally recognized in early
theoretical work on η → π0ℓ+ℓ− in the late 1960s, which was based on the simplest possi-
ble, point-like effective operator for η → π0γγ [10, 11]: the loop was rendered finite either
with an ad hoc form factor [10] or reconstructed dispersively from the unambiguously
calculable imaginary part with a finite energy cutoff [11]. As the effective operator only
contained S-wave interactions in both cases—leading to helicity suppression of the result-
ing dilepton mechanism—these calculations only determined a subdominant contribution,
underestimating, in particular, the η → π0e+e− rate by orders of magnitude.

On the other hand, a first VMD model calculation [12], which based the η → π0γγ
amplitude on ρ and ω exchange, required no such further regularization: the additional
vector-meson propagators, singularities in the crossed channels providing so-called left-
hand cuts, dampen the high-energy behavior sufficiently such that the loop integral is
convergent, see Fig. 1.1. Here, the coupling constants for the V → Pγ transition, V = ρ, ω,
P = η, π0—largely unknown at the time—had to be estimated in a quark model; in
this way, realistic rates B(η → π0e+e−)/B(η → π0γγ) ≈ 10−5 were obtained. In the

1Contributions from the weak interactions are also required to vanish at tree level.
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η(′)(P )

ℓ+(p+)

ℓ−(p−)

π0/η(p0)

k

V

l − k

η(′)(P )

ℓ+(p+)

ℓ−(p−)

π0/η(p0)

k

V

l − k

Figure 1.1: The t- (left) and u-channel (right) diagrams that contribute to η(′) →
[π0/η]ℓ+ℓ− under the assumption that the underlying two-photon amplitudes are dom-
inated by the exchange of the vector mesons V = ρ, ω, ϕ.

1990s, the two decays η → π0e+e− and η → π0µ+µ− were reconsidered by calculating
unitarity bounds [13, 14]. These are based on the observation that the amplitude η → π0γγ
(with real photons) model-independently determines the imaginary part of the dilepton
amplitude, thus providing a lower limit on the corresponding rates. The diphoton decays
were calculated in VMD, supplemented with scalar a0(980) exchange [13], or based on
a constituent-quark-box model [14]; the numerical results of these older calculations are
collected in Table 1.1.

Today, we understand the mechanism for η → π0γγ (and the related η′ decays) much
better, while precision calculations are still a challenge. Chiral perturbation theory [19]
allows us to understand this reaction in terms of a systematic expansion at low momenta,
where the dominant contribution originates from a set of next-to-next-to-leading-order
counterterms [20, 21], whose size can phenomenologically be estimated in terms of vector-
meson exchanges. The resulting predictions agree with the data [22–24] rather well [25],
and rescattering corrections in the scalar channel [26, 27] are moderate in size [28]. Sim-
ilarly, vector-meson exchanges dominate the decays η′ → π0γγ and η′ → ηγγ [29], with
only minor S-wave corrections to the γγ spectra.

The most recent theoretical work on the decays η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ− [30]
employs this modern knowledge to a large extent. Using the current phenomenological
information on vector–pseudoscalar–photon couplings, it once more models the two-photon
amplitudes with a VMD ansatz, superseding Ref. [12] by retaining all lepton-mass effects
and Ref. [13] by calculating the real parts of the amplitudes explicitly. Perhaps surprisingly,
what has still not been implemented is the dependence on the photon virtualities, i.e., the
vector-to-pseudoscalar TFFs [31, 32]. These have garnered significant interest in the last
few years, both phenomenologically [33–36] and, in particular for the ρ → π TFF, on
the lattice [37–40]. Furthermore, the behavior of these form factors for asymptotically
large momentum transfers is known [41–45]. This is the major novelty of the analysis
presented in this part of the thesis and the main advance compared to Ref. [30]: by
providing a realistic model for η(′) → π0γ∗γ∗ and η′ → ηγ∗γ∗, including the dependence
on the photon virtualities, we are able to give a more reliable prediction for the rates of the
corresponding dilepton decays in the SM. Furthermore, by lifting the (somewhat artificial)
dependence of the loop regularization on the left-hand cuts, we can, for the first time, also
test the effect of S-wave rescattering contributions. Varying the form-factor models allows
us to assess the remaining theoretical uncertainties of our predictions.

Experimentally, the decay η → π0e+e− has been searched for since the 1960s [46–48],
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Branching ratio Ancillary information Reference

η → π0e+e− 9.9× 10−9 VMD model [12]

η → π0e+e− 8.4+4.6
−3.8 × 10−10 Unitarity bounds, VMD model [13]

η → π0e+e− 9.2(1.5)× 10−10 Quark-box model, mq = 330MeV [14]

η → π0µ+µ−
3.8+2.3
−1.5 × 10−10 Unitarity bounds, VMD model

[13]
6.9+4.6
−3.8 × 10−10 As above, supplemented by a0

η → π0µ+µ− 3.3(5)× 10−9 Quark-box model, mq = 330MeV [14]

η → π0e+e− < 7.5× 10−6 3× 107 η events WASA-at-COSY [16]

η → π0µ+µ− < 5× 10−6 2× 107 η events Dzhelyadin et al. [17]

η′ → π0e+e− < 1.4× 10−3 1.3× 106 η′ events CLEO [18]

η′ → π0µ+µ− < 6× 10−5 107 η′ events Dzhelyadin et al. [17]

η′ → ηe+e− < 2.4× 10−3 1.3× 106 η′ events CLEO [18]

η′ → ηµ+µ− < 1.5× 10−5 107 η′ events Dzhelyadin et al. [17]

Table 1.1: Historical theoretical results on the branching ratio for η → π0ℓ+ℓ− and ex-
perimental upper limits for the different decay channels η(′) → [π0/η]ℓ+ℓ−, the latter at
90% confidence level. For reasons of consistency with the experimental upper limits, we
converted the theoretical results from decay widths to branching ratios by using an up-to-
date central value [15] for the η width; see Table D.1 for the numerical values used in this
part of the thesis.

motivated by the search for possible C violation in the strong and EM interactions. To
date, only upper limits have been established for all decays studied in this part of the
thesis, the most rigorous ones being collected in Table 1.1.2 The most stringent upper
limits, those for η → π0e+e− from WASA-at-COSY [16] and for η → π0µ+µ− from
Lepton-G [17], are still more than three orders of magnitude above the theoretical SM
branching ratios; for the η′ decays, this margin is even larger. There is, even so, the
prospect of improved experimental results by the REDTOP collaboration [49, 50], which
plans to search for rare decays with an unprecedented number of η and η′ events.

This part of the thesis is structured as follows: in Ch. 2, we construct the amplitudes
for η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ− as well as the corresponding two-photon analogs, with
the latter serving as normalization channels. For the semileptonic decays, a set of form
factors that incorporate the non-perturbative physics of the process is introduced and their
normalizations are determined from phenomenological input. These form factors are then
parameterized in Ch. 3 by means of two distinct VMD models, including the construction
of dispersively improved variants. In Ch. 4, we discuss the calculation of observables—
branching ratios as well as differential distributions—via a PV decomposition, and scalar
rescattering contributions are analyzed in Ch. 5. Our numerical results are discussed

2Note that those upper limits were obtained assuming a flat Dalitz-plot distribution, which our results
indicate to be an insufficient assumption; see the discussion in Sec. 6.1.
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in Ch. 6, and we summarize our findings in Ch. 7. Further details are provided in the
appendices.
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Chapter 2

Amplitudes

The construction of the C-even decay amplitudes for

η(′)(P ) → π0(p0)ℓ
+(p+)ℓ

−(p−),

η′(P ) → η(p0)ℓ
+(p+)ℓ

−(p−), (2.1)

where ℓ = e, µ, is based on the assumption that the underlying η(′) → π0γ∗γ∗ and η′ →
ηγ∗γ∗ amplitudes are dominated by the exchange of the vector mesons V = ρ, ω, ϕ, see
Fig. 1.1. For our analysis, we define the Mandelstam variables

s = (p+ + p−)2, t = (p− + p0)
2, u = (p+ + p0)

2, (2.2)

which describe the invariant mass squares of the lepton pair and the lepton–pseudoscalar
subsystems, respectively; they fulfill the relation Σ = s + t + u = M2

η(′)
+M2

π0/η + 2m2
ℓ .

The relevant vector-to-pseudoscalar TFFs FV P (q
2) are defined as per

⟨P (p)|JEM
µ (0)|V (pV )⟩ = eϵµναβϵ

ν(pV )p
αqβFV P (q

2), (2.3)

where JEM
µ (x) = e(2ū(x)γµu(x)− d̄(x)γµd(x)− s̄(x)γµs(x))/3 denotes the EM current and

q = pV − p. The normalizations |FV P (0)| at the real-photon point can be derived from
phenomenological input in a straightforward manner,

Γ(V → Pγ) =
α(M2

V −M2
P )

3

24M3
V

|FV P (0)|2,

Γ(P → V γ) =
α(M2

P −M2
V )

3

8M3
P

|FV P (0)|2, (2.4)

leading to Table 2.1 with input from Ref. [15].
Using Eq. (2.3) and summing over the t- and u-channel diagrams shown in Fig. 1.1 as

well as V = ρ, ω, ϕ, we find the amplitude M ≡ M(η(′) → [π0/η]ℓ+ℓ−) to be given by

M =
iα2

π2

∑

V

∫
d4k gβ1β2ϵµ1ν1α1β1ϵµ2ν2α2β2P

α1kµ1
(
Pα2kµ2 − Pα2 lµ2 + kα2 lµ2

)

× PBW
V

(
(P − k)2

)
Pγ(k

2)Pγ

(
(l − k)2

)
FV η(′)(k

2)FV [π0/η]

(
(l − k)2

)

× ūs

[
γν2

/k − /p+ +mℓ

(k − p+)2 −m2
ℓ

γν1 + γν1
/p− − /k +mℓ

(p− − k)2 −m2
ℓ

γν2
]
vr, (2.5)
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Γ/ keV [15] |FV P (0)|/GeV−1

ρ→ π0γ 69(12) 0.73(6)

ω → π0γ 725(26) 2.33(4)

ϕ→ π0γ 5.61(21) 0.1355(26)

ρ→ ηγ 44.2(3.1) 1.58(6)

ω → ηγ 3.91(35) 0.449(20)

ϕ→ ηγ 55.3(1.1) 0.691(7)

η′ → ργ 55.5(1.9) 1.299(23)

η′ → ωγ 4.74(20) 0.401(9)

ϕ→ η′γ 0.264(9) 0.712(12)

Table 2.1: The normalizations |FV P (0)| at the real-photon point obtained from Eq. (2.4)
and phenomenological input determined from Ref. [15]; see also Table D.1.

with ūs ≡ ūs(p−) and vr ≡ vr(p+). Here, we defined l = p++p− and the BW propagators

PBW
V (q2) =

1

q2 −M2
V + iMV ΓV

, Pγ(q
2) =

1

q2 + iϵ
, (2.6)

where MV is the mass of the respective vector meson and ΓV its width. Due to their
narrowness, a constant-width approximation is well justified for the ω and ϕ, whereas
the broad ρ meson necessitates an energy-dependent width to avoid sizable (unphysical)
imaginary parts below threshold. We will implement such a parameterization for the ρ in
Sec. 3.3 using a dispersively improved BW propagator. Our final results will be quoted
for both a variant “CW” with constant widths for all vector mesons and a variant “VW”
that instead employs an energy-dependent width for the ρ.

For the eventual computations, it will turn out useful to apply the Dirac equation
and make the replacements

ūsγ
ν̃(/k − /p+ +mℓ)γ

νvr = ūs(γ
ν̃/kγν − 2pν+γ

ν̃)vr,

ūsγ
ν(/p− − /k +mℓ)γ

ν̃vr = ūs(2p
ν
−γ

ν̃ − γν/kγν̃)vr (2.7)

in Eq. (2.5).
The branching ratios of the semileptonic decays are commonly normalized to the two-

photon analogs

η(′)(P ) → π0(p0)γ(q1)γ(q2),

η′(P ) → η(p0)γ(q1)γ(q2); (2.8)

see also Fig. 2.1. For these decays, we define the Mandelstam variables3

s = (q1 + q2)
2, tγ = (q2 + p0)

2, uγ = (q1 + p0)
2, (2.9)

3Note that the Mandelstam variable s = (P − p0)
2 is identical in the semileptonic and the diphoton

case.
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η(′)(P )

π0/η(p0)

γ(q1)

γ(q2)
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V

η(′)(P )

π0/η(p0)

γ(q2)

γ(q1)

p̃V

V

Figure 2.1: The two diagrams contributing to the two-photon decays η(′) → [π0/η]γγ,
which are related via q1 ↔ q2 (left and right).

which fulfill Σγ = s + tγ + uγ = M2
η(′)

+M2
π0/η, and denote the corresponding helicity

amplitudes by Hλλ′ ≡ Hλλ′(s, tγ),

⟨γ(q1, λ)γ(q2, λ′)|S|η(′)(P )[π0/η](p0)⟩ = i(2π)4δ(4)(P + p0 − q1 − q2) 4πα e
i(λ−λ′)φHλλ′ .

(2.10)
Here, λ(′) are the helicities of the photons and we factored out the dependence of the electric
charge e2 = 4πα and the azimuthal angle φ. Using Eq. (2.3) and the normalization of
the form factors, |CV Pγ | = |FV P (0)|, as will be introduced in Ch. 3, we obtain the VMD
helicity amplitudes

Hλλ′ = ϵα1
λ
∗(q1)ϵ

α2
λ′
∗(q2)

∑

V

CV η(′)γCV [π0/η]γ

[
PBW
V (tγ)H

t
α1α2

+ PBW
V (uγ)H

u
α1α2

]
, (2.11)

where ϵ∗λ(qi) denote the polarization vectors of the outgoing photons and

Ht
α1α2

= gµ1µ2ϵµ1ν1α1β1ϵµ2ν2α2β2p
ν1
V q

β1
1 p

ν2
0 q

β2
2 ,

Hu
α1α2

= gµ1µ2ϵµ1ν1α1β1ϵµ2ν2α2β2p
ν1
0 q

β1
1 p̃

ν2
V q

β2
2 , (2.12)

with pV = q2+p0 and p̃V = q1+p0 being the momenta of the intermediate vector mesons.
In principle, the contractions can be carried out, leading to the cumbersome expressions

Ht
α1α2

=
1

2

[
gα1α2

2

(
M2

π0/η(M
2
π0/η − Σγ) + tγ(uγ − s)

)
+ (M2

π0/η − tγ)p
α1
0 qα2

1 + spα1
0 pα2

0

+ spα1
0 qα2

2 + (M2
π0/η − uγ)q

α1
2 pα2

0 + (M2
π0/η + tγ)q

α1
2 qα2

1 + (M2
π0/η − uγ)q

α1
2 qα2

2

]
,

Hu
α1α2

= Ht
α2α1

∣∣
q1↔q2 (tγ↔uγ)

. (2.13)

However, when discussing observables related to the two-photon decays in Ch. 4, the form
given in Eq. (2.12) proves more convenient for the actual calculations.4

4Similarly, the contractions in Eq. (2.5) could be carried out. In this case, the resulting expression is even
more cumbersome and the to-be-performed loop integration renders such an operation rather pointless.
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Chapter 3

Form factors

In order to parameterize the form factors FV P (q
2), we use the framework of VMD. As a

consequence, the photon couplings at the V Pγ∗ vertices of the diagrams in Fig. 1.1 are
mediated via two intermediate vector mesons V1 and V2, see Fig. 3.1. We will construct two
distinct such models: a monopole parameterization “MP” with Vi = ρ, ω, ϕ and a dipole
ansatz “DP” with Vi = ρ(′), ω(′), ϕ(′) that ensures the expected high-energy behavior of the
form factors [41–45]. For reference, we also include a model calculation “PL” with constant
form factors, i.e., a point-like interaction, which closely resembles the parameterization of
Ref. [30].

The conservation of isospin—and thus G-parity combined with C—imposes fundamen-
tal constraints on V1 and V2 in dependence of the initial and final states as well as the t-
or u-channel vector meson V . However, some of the couplings, namely η(′)ωϕ(′), η(′)ϕω(′),
π0ρϕ(′), and π0ϕρ(′), are, although isospin-allowed, vanishing under the assumption of U(3)
flavor symmetry and ideally mixed vector-meson multiplets, see App. A. Since the contri-
bution of V = ϕ would otherwise vanish entirely for η(′) → π0ℓ+ℓ−, we nonetheless include
the Okubo–Zweig–Iizuka-suppressed (OZI-suppressed) [51–53] couplings π0ϕρ(′) in our
calculations; the remaining vector mesons Vi are collected in Table 3.1.

3.1 Monopole model

The MP model only takes the lowest-lying vector mesons ρ, ω, and ϕ into account, so that
the form factors are parameterized according to

FV P (q
2) = CV PγM

2
Vi
PBW
Vi

(q2), (3.1)

with the assignments of Vi ∈ {ρ, ω, ϕ} specified in Table 3.1. Here, we assume |CV Pγ | =
|FV P (0)| at the real-photon point, see Table 2.1, which determines the coupling constants
CV Pγ up to an overall phase. This assumption omits corrections due to the constant,
non-zero widths in the BW propagators, which are negligible for V = ω, ϕ but potentially
significant for V = ρ.5 Since the energy-dependent width of the ρ meson will be chosen to
have the proper threshold behavior, these complications only exist for the variant CW but
not VW. In the following, all coupling constants are assumed to be real; to fix the relative

5Note that PBW
V (0) ≃ −1/M2

V , so that FV P (0) = −CV Pγ , which, however, corresponds to an unob-
servable overall phase.
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η(′)

π0/η

V

V1

V2

Figure 3.1: The modeling of the two-photon decay mechanism in the VMD framework via
two vector mesons V1 and V2. Constraints on (V1, V2) in dependence of the initial and
final state as well as V are given in Table 3.1.

signs between them, we resort to U(3) flavor symmetry and analyses of e+e− → 3π and
e+e− → πγ [54–56], see App. A. Without loss of generality, we adopt a positive sign for
the coupling Cρηγ and establish the consistent sign convention compiled in Table 3.2.

3.2 Dipole model

By including the next-higher multiplet of vector mesons, ρ′, ω′, and ϕ′, and tuning a
free parameter ϵV accordingly, the expected asymptotic behavior FV P (q

2) ∝ q−4 of the
vector-to-pseudoscalar TFFs [41–45] can be obtained.6 For the DP model, we thus make
the ansatz

F̃V P (q
2) = CV Pγ

[
(1− ϵVi)M

2
Vi
PBW
Vi

(q2) + ϵViM
2
V ′
i
PBW
V ′
i

(q2)
]
, (3.2)

where we assume the excited vector states to couple according to the exact same symmetry
restrictions as the ground-state multiplet, cf. Table 3.1; PBW

V ′ (q2) is defined as in Eq. (2.6),
with MV ′ and ΓV ′ the mass and width of the respective excited vector meson. Due to
the large widths of the excited vector mesons, a constant-width approximation leads to a
rather poor description of these mesons, however. We will therefore, analogously to the ρ
and based on energy-dependent widths, construct dispersively improved BW propagators
for ρ′, ω′, and ϕ′ in Sec. 3.3, leading to replacements of the kind PBW

V ′ (q2) → P disp
V ′ (q2).

Similarly to the MP, our final results for the DP will be quoted for both the variant
CW with constant widths for all vector mesons and the variant VW, i.e., using constant
widths for the ω and ϕ but energy-dependent ones for ρ(′), ω′, and ϕ′. The form factors
in Eq. (3.2) are assumed to be normalized such that F̃V P (0) = −CV Pγ , which, as for the
MP, holds up to potential corrections due to the constant widths in the propagators. In
order to obtain the desired high-energy behavior, the free parameter needs to be chosen
as ϵV =M2

V /(M
2
V −M2

V ′).

3.3 Spectral representation

While the variant CW yields a simple approximate description, the large widths of the
mesons ρ(′), ω′, and ϕ′ actually require an energy-dependent parameterization to avoid

6Data on both e+e− → ωπ0 [57] and e+e− → ρ0η [58–60] suggests that the required cancellation indeed
largely occurs between the contributions of the two lowest vector states, i.e., ρ and ρ′ in those cases.

184



3.3. Spectral representation

V π0γ V η(′)γ

V ρ ω ϕ ρ ω ϕ

Vi ω(′) ρ(′) ρ(′) ρ(′) ω(′) ϕ(′)

Table 3.1: The constraints on the vector mesons Vi of Fig. 3.1 in dependence of V derived
from isospin conservation and U(3) flavor symmetry with ideally mixed vector-meson
multiplets. We include the OZI-suppressed couplings ϕπ0ρ(′); see text and App. A for
more information.

significant (unphysical) imaginary parts below threshold.7 In this section, we construct
these energy-dependent widths; to ensure the correct analytic properties when inserting
the form factors into the amplitude, Eq. (2.5), we will furthermore introduce dispersively
improved variants [68] of the form factors that contain a ρ(′)-, ω′-, or ϕ′-meson propagator,
which lay the foundation for the variant VW in both the MP and DP model.

For the ρ meson, we will use the energy-dependent width [69]

Γρ(q
2) = θ(q2 − 4M2

π±)
γρ→π+π−(q2)

γρ→π+π−(M2
ρ )
f(q2)Γρ,

γρ→π+π−(q2) =
(q2 − 4M2

π±)
3/2

q2
, (3.3)

where the so-called barrier factor [70, 71]

f(q2) =

√
q2

Mρ

M2
ρ − 4M2

π± + 4p2R
q2 − 4M2

π± + 4p2R
, pR = 202.4MeV, (3.4)

has been introduced to ensure convergence of the superconvergence relations evaluated in
Eq. (3.14) below. We calculate the dispersive ρ propagator via

P disp
V (q2) = − 1

π

∫ ∞

sthr

dx
Im [PBW

V (x)]

q2 − x+ iϵ
,

Im [PBW
V (x)] =

−√
xΓV (x)

(x−M2
V )

2 + xΓV (x)2
, (3.5)

where sthr = 4M2
π± is the threshold for ρ → π+π−. The spectral representations of the

form factors FV P (q
2) for V P ∈ {ρη(′), ωπ0, ϕπ0} are thus given by

F̂V P (q
2) =

CV Pγ

Nρ
M2

ρP
disp
ρ (q2), (3.6)

where the normalization constant

Nρ = −M2
ρP

disp
ρ (0) ≈ 0.898 (3.7)

7In principle, such unphysical imaginary parts could be avoided for the ρ exchange by reconstructing
the latter in terms of dispersion relations for γ(∗)π → ππ [40, 61, 62] and η(′) → ππγ(∗) [60, 63–65]; cf.
also Refs. [66, 67]. We refrain from further refining the amplitude in such a way here.
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Chapter 3. Form factors

Cρπ0γ Cωπ0γ Cϕπ0γ

+ + −
Cρηγ Cωηγ Cϕηγ

+ + −
Cρη′γ Cωη′γ Cϕη′γ

+ + +

Table 3.2: The signs sgn[CV Pγ ] of the coupling constants defined in Eq. (3.1). Here, we
fixed the global sign of Cρηγ to be positive; see App. A for details.

is introduced to retain F̂V P (0) = −CV Pγ , i.e., to ensure that the coupling constants have
the same meaning in the original and the dispersively improved VMD parameterization.
For reasons of consistency, we also replace the ρ propagator in the left-hand cuts, PBW

ρ (q2)
in Eq. (2.5), by a dispersively improved variant,

PBW
ρ (q2) → 1

NLHC
ρ

P disp
ρ (q2), (3.8)

where the normalization constant

NLHC
ρ = iMρΓρP

disp
ρ (M2

ρ ) ≈ 1 (3.9)

is introduced in order to retain PBW
ρ (M2

ρ ) = 1/(iMρΓρ), in line with the VMD assump-
tion.8 To evaluate P disp

ρ (M2
ρ ), we use the Sokhotski–Plemelj theorem, leading to

P disp
ρ (M2

ρ ) =
1

π
−
∫ ∞

sthr

dx
Im [PBW

ρ (x)]

x−M2
ρ

+ i Im [PBW
ρ (M2

ρ )]. (3.10)

With the above conventions, we will drop the distinction between FV P (q
2) and F̂V P (q

2)
in the following, and it will always be clear from context which representation is used.

For the dipole variant, the widths of the excited vector mesons ρ′, ω′, ϕ′ are modeled
using the dominant quasi-two-particle thresholds. We condense the decays ρ′ → ωπ,
ω′ → ρπ, and ϕ′ → K∗ sK in the notation V ′ → V P , such that

ΓV ′(q2) = θ
(
q2 − (MV +MP )

2
) γV ′→V P (q

2)

γV ′→V P (M
2
V ′)

ΓV ′ ,

γV ′→V P (q
2) =

λ(q2,M2
V ,M

2
P )

3/2

(q2)3/2
. (3.11)

Here, we disregard any distinction between the various charge channels and use the neutral
masses for the numerical evaluation. The dispersive ρ′, ω′, and ϕ′ propagators and spectral
functions are defined similarly to Eq. (3.5), with the threshold sthr = (MV +MP )

2. In
analogy to Eq. (3.2), the dipole form factors read

F̃V P (q
2) =

CV Pγ

ÑVi

[
(1− ϵVi)M

2
Vi
PVi(q

2) + ϵViM
2
V ′
i
PV ′

i
(q2)

]
, (3.12)

8We ignore the fact that the ρ pole in the complex plane does not exactly agree with the BW parameters.
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3.3. Spectral representation

ϵρ (−0.47)−0.07+0.06 Ñρ 0.99+0.04
−0.03

ϵω (−0.43)−0.25+0.16 Ñω 1.10+0.17
−0.10

ϵϕ (−0.42)−0.08+0.06 Ñϕ 1.03+0.05
−0.04

Table 3.3: The values of the parameter ϵV derived from the superconvergence relations,
Eq. (3.15), and the normalization constants of Eq. (3.13). Here, tiny imaginary parts in
the normalization constants have been neglected. The uncertainties refer to the variations
of Γρ′ , Γω′ , and Γϕ′ , see Table D.1, and are omitted in the subsequent analysis.

with PV ′
i
(q2) ∈ {PBW

V ′
i

(q2), P disp
V ′
i

(q2)}, where the simplifying assumption of constant widths
for ω and ϕ propagators is always implicitly understood. Here, we introduced the normal-
ization constants

ÑV = −
[
(1− ϵV )M

2
V PV (0) + ϵVM

2
V ′PV ′(0)

]
, (3.13)

which ensure F̃V P (0) = −CV Pγ . The parameters ϵV have to be tuned differently in the
dispersively improved variant, namely via the superconvergence relations

0 = (1− ϵV )M
2
V P

0
V + ϵVM

2
V ′P 0

V ′ ,

P 0
V =





1, V = ω, ϕ,

− 1

π

∫ ∞

sthr

dx Im [PBW
V (x)], V = ρ(′), ω′, ϕ′,

(3.14)

such that terms of O(1/q2) in the form factors cancel. We collect the numerical results for

ϵV =
M2

V P
0
V

M2
V P

0
V −M2

V ′P 0
V ′

(3.15)

and ÑV in Table 3.3, where we include the uncertainties due to the large errors on ΓV ′ ;
in what follows, their effect is, however, assumed to be insignificant and thus discarded.
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Chapter 4

Observables

The phenomenological analysis in this part of the thesis will be performed in terms of
doubly- and singly-differential decay widths as well as integrated branching ratios. We
define ν = t − u, in terms of which the twofold differential decay width dΓ ≡ dΓ(η(′) →
[π0/η]ℓ+ℓ−) is given by [15]

dΓ =
1

512π3M3
η(′)

| ĎM|2ds dν. (4.1)

Here, | ĎM|2 is the spin-summed square of the amplitude, Eq. (2.5), and the integration
region is bounded by the available phase space

s ∈ [4m2
ℓ , (Mη(′) −Mπ0/η)

2], ν ∈ [−νmax, νmax], νmax = σ(s)
√
λ(s), (4.2)

with

σ(s) =

√

1− 4m2
ℓ

s
, λ(s) ≡ λ(M2

η(′) , s,M
2
π0/η). (4.3)

The singly-differential decay width dΓ/ds follows from an integration of Eq. (4.1) over ν,
and the branching ratio

B(η(′) → [π0/η]ℓ+ℓ−) =
Γ

Γη(′)
(4.4)

is obtained after performing the full three-body phase-space integration, i.e., by addition-
ally integrating over s.

In order to calculate | ĎM|2, we perform a PV decomposition of Eq. (2.5) with Feyn-
Calc [72–74] after inserting explicit expressions for the form factors. For both the MP and
DP model and in both variants CW and VW, this results in an expression of the generic
form

M = 16π2α2
[
Muv

QEDMuv
H +Mu0v

QEDMu0v
H
]
, Mu(0)v

H =
∑

V

CV Mu(0)v
V ,

Muv
QED = mℓūsvr, Mu0v

QED = ūs/p0vr, CV = CV η(′)γCV [π0/η]γ , (4.5)
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Cρ/GeV−2 Cω/GeV−2 Cϕ/GeV−2

η → π0ℓ+ℓ− 1.16(11) 1.05(5) 0.0936(20)

η′ → π0ℓ+ℓ− 0.95(8) 0.937(26) −0.0965(25)

η′ → ηℓ+ℓ− 2.05(8) 0.180(9) −0.492(10)

Table 4.1: Numerical values of the coupling constants defined in Eq. (4.5) for the different
processes.

where the quantities Mu(0)v
V account for the different vector-meson contributions in the

result of the PV decomposition, cf. the sum in Eq. (2.5); they amount to cumbersome ex-
pressions containing PV functions.9 The numerical values of the process-specific coupling
constants CV are provided in Table 4.1. Upon squaring and spin-summing, the above
amplitude leads to

| ĎM|2 = 256π4α4
[
C2
ρ | ĎMρ,ρ|2 + C2

ω | ĎMω,ω|2 + C2
ϕ | ĎMϕ,ϕ|2

+ CρCω | ĎMρ,ω|2 + CρCϕ | ĎMρ,ϕ|2 + CωCϕ | ĎMω,ϕ|2
]
, (4.6)

where we defined

| ĎMV,V |2 = | ĎMuv
QED|2|Muv

V |2 + | ĎMu0v
QED|2|Mu0v

V |2 + 2 ĎMuv,u0v
QED Re

[
Muv

V Mu0v
V
∗]
,

| ĎMV1,V2 |2 = 2 | ĎMuv
QED|2Re

[
Muv

V1
Muv

V2

∗]+ 2 | ĎMu0v
QED|2Re

[
Mu0v

V1
Mu0v

V2

∗]

+ 2 ĎMuv,u0v
QED Re

[
Muv

V1
Mu0v

V2

∗
+Mu0v

V1
Muv

V2

∗] (4.7)

for V1 ̸= V2, with

| ĎMuv
QED|2 = 2m2

ℓ (s− 4m2
ℓ ), | ĎMu0v

QED|2 =
λ(s)− ν2

2
,

ĎMuv,u0v
QED = −2m2

ℓν. (4.8)

Similarly to the semileptonic decays, the branching ratio of the two-photon analogs is
defined by

B(η(′) → [π0/η]γγ) =
Γγ

Γη(′)
, (4.9)

where Γγ ≡ Γ(η(′) → [π0/η]γγ) and

dΓγ =
α2

32πM3
η(′)

| sH|2ds dνγ , (4.10)

with the phase space being bounded by

s ∈ [0, (Mη(′) −Mπ0/η)
2], νγ ∈ [−νmax

γ , νmax
γ ], νmax

γ =
√
λ(s). (4.11)

9These expressions are attached as text files to the published article [75].
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Due to the indistinguishability of the two photons in the final state, an additional factor
of 1/2 has to be taken into account upon integration. From Eq. (2.11), one finds the
polarization-summed amplitude squared

| sH|2 = 1

8

[∑

V

C2
V

(∣∣PV (tγ)
∣∣2|Ht,t|2 +

∣∣PV (uγ)
∣∣2|Hu,u|2 + 2Re

[
PV (tγ)P

∗
V (uγ)

]
|Ht,u|2

)

+
∑

(V1,V2)

2CV1CV2

(
Re
[
PV1(tγ)P

∗
V2
(tγ)

]
|Ht,t|2 + Re

[
PV1(uγ)P

∗
V2
(uγ)

]
|Hu,u|2

+ Re
[
PV1(tγ)P

∗
V2
(uγ) + PV1(uγ)P

∗
V2
(tγ)

]
|Ht,u|2

)]
, (4.12)

where the second sum extends over (V1, V2) = (ρ, ω), (ρ, ϕ), (ω, ϕ) and we introduced

|Ht,t|2 = gα1α̃1gα2α̃2Ht
α1α2

Ht
α̃1α̃2

,

|Hu,u|2 = gα1α̃1gα2α̃2Hu
α1α2

Hu
α̃1α̃2

,

|Ht,u|2 = gα1α̃2gα2α̃1Ht
α1α2

Hu
α̃1α̃2

. (4.13)

As in Eq. (3.12), the propagators PV (x) are to be understood as BW propagators for all
V in the CW approximation and BW propagators for V = ω, ϕ but dispersively improved
variants for V = ρ in the variant VW. For the numerical implementation of the dispersively
improved variants in Eq. (4.12), we use the Sokhotski–Plemelj theorem to rewrite
Eq. (3.5) according to

P disp
V (s) =

1

π
−
∫ ∞

sthr

dx
Im [PBW

V (x)]

x− s
+ i Im [PBW

V (s)], (4.14)

and θ(s − sthr) for the imaginary part is implied by Im [PBW
V (s)]. The principal-value

integral can then be written in terms of a once-subtracted dispersion relation,

P disp, p.v.
V (s) =

1

π
−
∫ ∞

sthr

dx
Im [PBW

V (x)]

x− s
= P disp, p.v.

V (0) +
s

π
−
∫ ∞

sthr

dx
Im [PBW

V (x)]

x(x− s)
, (4.15)

where

−
∫ ∞

sthr

dx
Im [PBW

V (x)]

x(x− s)
= −
∫ ∞

sthr

dx
Im [PBW

V (x)]− Im [PBW
V (s)]

x(x− s)
+

Im [PBW
V (s)]

s
log
∣∣∣ sthr

sthr − s

∣∣∣,
(4.16)

with −
∫∞
sthr

1/[x(x − s)] solved analytically.10 Inserting the kinematics of the process, the
expressions given in Eq. (4.13) simplify to

|Ht,t|2 = |H0|2 + t2γ(s
2 + u2γ),

|Hu,u|2 = |H0|2 + u2γ(s
2 + t2γ),

|Ht,u|2 = |H0|2 + tγuγ(s
2 + tγuγ), (4.17)

where we defined

|H0|2 =M4
π0/η

(
s2 + t2γ + u2γ +2stγ +2suγ +4tγuγ

)
− 2M2

π0/ηΣγtγuγ − 2M6
π0/ηΣγ +M8

π0/η.
(4.18)

10Had we not subtracted the dispersion relation, the analytic integration would not have converged.
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Finally, we consider the normalized semileptonic branching ratio

B̂(η(′) → [π0/η]ℓ+ℓ−) =
B(η(′) → [π0/η]ℓ+ℓ−)
B(η(′) → [π0/η]γγ)

, (4.19)

which is particularly useful from the theoretical point of view since it reduces the effect of
the uncertainties from the coupling constants.

We perform the phase-space integrations of the differential decay widths, Eq. (4.1) and
Eq. (4.10), numerically with the Cuhre and Vegas algorithm from the Cuba library [76].
For the numerical evaluation of the PV functions contained in the quantities Mu(0)v

V , see
Eq. (4.5), we use Collier [77–80].11 The integration is carried out following the decompo-
sition of Eq. (4.6) and Eq. (4.12),

Γ(γ) = C2
ρΓ

(γ)
ρ,ρ + C2

ωΓ
(γ)
ω,ω + C2

ϕΓ
(γ)
ϕ,ϕ + CρCωΓ

(γ)
ρ,ω + CρCϕΓ

(γ)
ρ,ϕ + CωCϕΓ

(γ)
ω,ϕ; (4.20)

numerical results for the decay rates Γ
(γ)
V1,V2

are listed in App. B.12

11A C++ interface to the native Fortran library Collier written for this purpose, including an executable
demo file, is attached as supplemental material to the published article [75].

12In App. B, we also discuss some peculiar problems that we observed when evaluating the PV functions
with LoopTools [81] instead of Collier.
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Chapter 5

Scalar rescattering contributions

While there are strong arguments in favor of the VMD model capturing the most significant
contribution to the semileptonic η(′) decays, we will furthermore assess the numerical
impact of scalar rescattering contributions based on a paradigmatic calculation for η →
π0ℓ+ℓ−. For the η′ channels, the vector mesons have sufficient energy to go quasi on shell,
so that an even stronger leverage of the VMD mechanism is expected.

5.1 Isolating the S-wave in the hadronic subamplitude

With the decay η → π0ℓ+ℓ− being driven by the two-photon intermediate state, as dis-
cussed in Ch. 1, we first revisit the hadronic subprocess η → π0γγ. The corresponding
subamplitude Hλλ′ , see Eq. (2.10), can be written by means of a tensor amplitude Hµν

according to
ei(λ−λ

′)φHλλ′ = ϵ∗µλ (q1)ϵ
∗ν
λ′ (q2)Hµν ; (5.1)

the explicit polarization vectors are chosen as

ϵ±(q1) =
1√
2
(0,∓1,−i, 0)⊺, ϵ±(q2) =

1√
2
(0,∓1, i, 0)⊺ (5.2)

in the following. For on-shell photons, the tensor amplitude Hµν can be expanded in terms
of two tensor structures Tµν

1/2 that manifestly fulfill the Ward identity [28],

Tµν
1 =

s

2
gµν − qµ2 q

ν
1 ,

Tµν
2 = 2s∆µ∆ν + 4(q1 ·∆)(q2 ·∆)gµν − 4(q2 ·∆)∆µqν1 − 4(q1 ·∆)qµ2∆

ν , (5.3)

with ∆µ = (P + p0)
µ, and two scalar amplitudes as per

Hµν = A(s, tγ)T
µν
1 +B(s, tγ)T

µν
2 . (5.4)

Contracting Eq. (5.4) with the polarization vectors yields

H++(s, tγ) = −s
2
A(s, tγ)− s

[
2(M2

η +M2
π0)− s

]
B(s, tγ),

H+−(s, tγ) =
[
(tγ − uγ)

2 − λπ0η(s)
]
B(s, tγ), (5.5)
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η/K

π0/K̄

γ

γ

η/K

π0/K̄

Figure 5.1: The two intermediate states π0η/K sK that contribute to the two-photon am-
plitudes; the dispersive representation of the amplitudes is constructed in Ref. [28].

where we introduced the abbreviation λπ0η(s) ≡ λ(s,M2
π0 ,M

2
η ). In order to isolate the

S-wave, we neglect D- and higher partial waves, which requires the elimination of the
entire contribution from H+−(s, tγ) since its partial-wave expansion starts with D-waves.
Consequently, we have to impose B(s, tγ) = 0, and, hence, the S-wave contributes only
through the tensor structure Tµν

1 . Furthermore, setting B(s, tγ) = 0 allows us to use the
S-wave amplitude hL++(s)|L=0 to fix the scalar amplitude A(s, tγ) via Eq. (5.5),

A0(s) = −2

s
h0++(s). (5.6)

Note that h0++(s) features a soft-photon zero at s = 0, so that A0(s) has no singularity at
s = 0 despite the factor of 1/s.

5.2 Rescattering effects in the hadronic subprocess

In Ref. [28], the rescattering effects in η → π0γγ are described through a coupled-channel
analysis, taking into account π0η and K sK intermediate states, cf. Fig. 5.1. Using the
Omnès matrix Ω(s) for the π0η/(K sK)I=1 system constructed therein, one obtains the
dispersive representation

(
h0++(s)

k01,++(s)

)
= Ω(s)

[(
a

b

)
s+

s2

π

(∑

V

∫ sV

−∞
dz

Ω−1(z)
z2(z − s)

Im
(
h0,V++(z)

k0,V++(z)

)

−
∫ ∞

sπ0η

dz
Im
[
Ω−1(z)

]

z2(z − s)

(
0

k0,Born
1,++ (z)

))]
(5.7)

for the S-wave amplitudes, with sπ0η = (Mπ0 + Mη)
2 being the threshold for the π0η

intermediate state and sV = −(M2
V −M2

π0)(M
2
V −M2

η )/M
2
V the onset of the left-hand cut.

Here, we include the VMD contributions from the ρ, ω, and ϕ mesons for the π0η channel
(h0,V++(s)) and theK∗ for theK sK channel (k0,V++(s)) in the zero-width approximation. Using
the polarization vectors from Eq. (5.2) and the coupling constants CV defined in Eq. (4.5),
the π0η-channel VMD amplitude for photons with (λ, λ′) = (+,+) and the corresponding
S-wave amplitude are given by

HV
++(s, tγ) =

CV

4

stγ
M2

V − tγ − iϵ
+ (tγ ↔ uγ), (5.8)

h0,V++(s) =
CV

2

[
sM2

V

λ
1/2
π0η

(s)
log

XV (s) + 1

XV (s)− 1
− s

]
, XV (s) =

2M2
V − (M2

η +M2
π0) + s

λ
1/2
π0η

(s)
,
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iH̃µν

η

π0

ℓ−

ℓ+

V1

V2

Figure 5.2: The triangle loop contributing to π0η → ℓ+ℓ−, which contains the tensor
amplitude H̃µν that captures the rescattering effects in π0η → γ∗γ∗, with the photon
virtualities modeled via vector-meson propagators. This process is related to the corre-
sponding η decay via crossing symmetry.

where the logarithm induces the left-hand cut starting from sV . The VMD contribution
to the K sK channel, KV

++(s, tγ), can be treated in complete analogy; for this channel, our
representation additionally includes the QED Born term projected onto isospin I = 1,

KBorn
1,++ (s, tγ) =

√
2 sM2

K

(tγ −M2
K)(uγ −M2

K)
,

k0,Born
1,++ (s) =

2
√
2M2

K

sσK(s)
log

1 + σK(s)

1− σK(s)
, σK(s) =

√
1− 4M2

K

s
. (5.9)

Moreover, the soft-photon zero is already implemented in Eq. (5.7); the remaining subtrac-
tion constants a and b are determined in accordance with Ref. [28], where one of them is
fixed by incorporating an Adler zero at sA =M2

η and the other one is fit to experimental
data.

Subtracting the VMD contributions, Eq. (5.8), from the full S-wave amplitude h0++(s),
Eq. (5.7), allows us to isolate the rescattering effects in Eq. (5.6) according to

A0
resc(s) = −2

s

(
h0++(s)−

∑

V=ρ,ω,ϕ

h0,V++(s)

)
. (5.10)

With this, we can construct an S-wave tensor amplitude that only contains the rescattering
contributions in the form

H̃µν = A0
resc(s)T

µν
1 . (5.11)

5.3 Loop calculation

To calculate the contribution of S-wave rescattering effects to the decay η → π0ℓ+ℓ−, we
use Eq. (5.11) for the η → π0γ∗γ∗ vertex, which reduces the loop from a box to a triangle
topology, see Fig. 5.2. The QED subamplitude for γ∗γ∗ → ℓ+ℓ− is denoted by Lµν in
the following; its construction (at tree level) is straightforward and after simplifying with
Eq. (2.7), one finds

Lµν = −ūs
2pµ− − γµ /q1

(p− − q1)2 −m2
ℓ + iϵ

γνvr. (5.12)

Note that we do not have to perform the S-wave projection of the QED subamplitude,
since this is implicit in the loop integration. Furthermore, to avoid double counting, we
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Chapter 5. Scalar rescattering contributions

do not include the crossed channel, which is described by the same amplitude due to the
symmetry of the triangle loop.

When taking into account the photon virtualities, the gauge-invariant tensor structure
Tµν
1 , in particular, acquires additional terms [82–84],

Tµν
1 (q21, q

2
2) =

(s− q21 − q22)

2
gµν − qµ2 q

ν
1 . (5.13)

The dependence on the photon virtualities is then further modeled by including factors of
M2

V P
BW
V (q2) for both photons, resulting in the hadronic tensor amplitude

H̃µν(q21, q
2
2) =M2

V1
PBW
V1

(q21)M
2
V2
PBW
V2

(q22)A
0
resc(s)T

µν
1 (q21, q

2
2). (5.14)

This is a naive generalization to virtual photons that corresponds to a scalar-resonance
approximation, which we deem a sufficient approximation in the context of the semileptonic
decays. It avoids the known complications from, e.g., the modified partial-wave projections
of the VMD amplitudes; see Refs. [85, 86] for a more rigorous treatment. The prescription
in Eq. (5.14) is consistent with the monopole model for the form factors constructed in
Ch. 3. The rescattering contributions to the η → π0ℓ+ℓ− amplitude are then given by

iM̃(s) =
α2

π2

∫
d4q1

H̃µν(q21, q
2
2)Lµν

(q21 + iϵ)(q22 + iϵ)
, (5.15)

with q2 = p+ + p− − q1.
Understanding the S-wave amplitude as an enhancement due to the a0(980) resonance

with IG(JPC) = 1−(0++), only the combination of ρ and ω is allowed for the vector
mesons V1 and V2, so that the S-wave rescattering contributions become

M̃(s) = − iα2

π2
M2

ρM
2
ωA

0
resc(s)

∫
d4q1 P

BW
ρ (q21)P

BW
ω (q22)

Tµν
1 (q21, q

2
2)Lµν

(q21 + iϵ)(q22 + iϵ)
. (5.16)

As a consequence of the reduction from a box to a triangle loop, and with Tµν
1 (q21, q

2
2) ∝

O(q21), the integral is convergent only because of the dependence on the photon virtual-
ities introduced in Eq. (5.14). Contracting the tensor structures and performing a PV
decomposition allows one to separate a factor of mℓs/(M

2
ρM

2
ω), with only the ūsvr spinor

structure from Eq. (4.5) contributing, resulting in

M̃(s) = 16π2iα2sA0
resc(s)M̃uv

H (s)Muv
QED, (5.17)

where M̃uv
H (s) contains the remaining PV master integrals.

196



Chapter 6

Results and discussion

We present the results for the semileptonic decays in the form of branching ratios as well as
singly- and doubly-differential decay widths; of these, the branching ratios are particularly
convenient to demonstrate the effects of the different form-factor models. Furthermore,
we examine the contribution of scalar rescattering effects to the branching ratios and
normalize the latter to the corresponding two-photon analogs. For all of our results, the
quoted uncertainties stem from the experimental uncertainties that enter via the coupling
constants and amount to ∼ 10%. The uncertainties from the numerical integration, on
the other hand, are at least one order of magnitude smaller and therefore omitted.

6.1 Differential decay width

The doubly- and singly-differential distributions of the semileptonic decays exhibit distinct
characteristics, with the most prominent differences being observable between the decays
with electrons and muons in the final state, see Fig. 6.1–Fig. 6.3. While the majority
of the doubly-differential distribution for the electron channels is contained in a small
fraction close to the threshold in the invariant lepton mass, the decays with muons in the
final state display a spread-out distribution that covers large parts of the available phase
space. For the electron final state, in particular, it is important to take into account the
region close to the threshold in the invariant lepton mass, both when integrating over
the phase space and when performing measurements, as significant parts of the decay
width are readily missed otherwise. Furthermore, the logarithmic scale shows that the
distributions possess a minimum for ν = 0, where ν ∝ cos θs, with θs the s-channel
scattering angle. With only even partial waves contributing to the decays, this feature can
be attributed to the dominance of D-waves over the helicity-suppressed S-waves—which
do not show such an angular distribution—whereas for the muon channels, this suppression
is less pronounced. Beyond the difference in the final-state leptons, the principal visible
differentiations concern the size of the phase space, which is significantly larger for η′ →
π0ℓ+ℓ− than for η → π0ℓ+ℓ− and η′ → ηℓ+ℓ−.

For all decay channels, the obtained Dalitz plots do not follow a flat distribution,
which was assumed for the experimental analysis of η → π0e+e− in Ref. [16]. While
this assumption is justified for a potential C-violating contribution [4], it is insufficient
for the SM result; we therefore propose a reevaluation of the experimental data and a
reassessment of the reported upper limit.
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Figure 6.1: Dalitz plots for the MP model in the variant CW, normalized to the max-
imum value within the available phase space of the respective channel, dΓ̂/(ds dν) =
[dΓ/(ds dν)]/[max dΓ/(ds dν)].
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Figure 6.2: Logarithmic Dalitz plots for the electron channels with the MP model in
the variant CW, normalized to the respective maximum value within the available phase
space; see also Fig. 6.1.

The singly-differential distributions for the electron channels explicitly resolve a strong-
ly peaked structure for invariant lepton masses close to the threshold and a subsequent
rapid decrease. For muons in the final state, the singly-differential distribution is much
different, with a broad peak that is situated further in the center of the phase space.
This behavior is in correspondence with the observation that for mℓ ≈ 0, the threshold in
s approximately collapses to the threshold of the two-photon intermediate state, s = 0,
where the two-photon cut induces a behavior ∝ log(s) [12]. Hence, for the electron final
state, this logarithmic divergence manifests itself as a peak close to the threshold in s,
regularized by a phase-space factor and forced to zero at s = 4m2

ℓ , see Eq. (4.2), whereas
the muon channels have a much higher threshold, far from the logarithmic divergence.

6.2 Branching ratios in the different models

The sensitivity of the semileptonic decays to the different form-factor parameterizations,
i.e., a point-like, monopole, or dipole interaction, each with constant or energy-dependent
widths, can be probed by comparing the results for the branching ratios collected in
Table 6.1.

Our results for η → π0ℓ+ℓ− obtained with constant form factors and widths are com-
patible with the results of Ref. [30], which similarly assumed a point-like interaction.
Instead of determining the coupling constants purely from phenomenology, the authors
modeled these using a symmetry-driven quark model, which results in only slightly differ-
ent numerical values. For the η′ decays, on the other hand, we find significant disagree-
ment, which might be due to numerical difficulties when calculating the box diagrams in
a non-automated way via Feynman parameters.

Implementing non-trivial form factors leads to a significant decrease of the branching
ratio for all decays, with the muon channels being subject to a larger reduction than the
electron channels and the η′ decays to less reduction than the η decays. More specifically,
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Figure 6.3: Singly-differential decay widths in the Mandelstam variable s, obtained with
the MP model in the variant CW. Here, the inlays amplify the behavior close to the
lower threshold of the phase space, where the distribution shows a strong peak for the
channels with electrons in the final state. The uncertainty is entirely due to the dominant
phenomenological uncertainty of |FV P (0)|, see Table 2.1.
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Branching ratio/10−9

PL MP DP Ref. [30]

η → π0e+e−
CW 2.10(23) 1.35(15) 1.33(15)

2.0(2)
VW 2.06(22) 1.40(15) 1.36(15)

η → π0µ+µ−
CW 1.37(15) 0.70(8) 0.66(7)

1.1(2)
VW 1.32(14) 0.71(8) 0.67(7)

η′ → π0e+e−
CW 3.82(33) 3.08(27) 3.14(27)

4.5(6)
VW 3.81(33) 3.30(28) 3.30(28)

η′ → π0µ+µ−
CW 2.57(23) 1.69(15) 1.68(15)

1.7(3)
VW 2.53(23) 1.81(16) 1.81(16)

η′ → ηe+e−
CW 0.53(4) 0.48(4) 0.49(4)

0.4(2)
VW 0.51(4) 0.50(4) 0.50(4)

η′ → ηµ+µ−
CW 0.287(26) 0.213(18) 0.207(18)

0.15(5)
VW 0.280(25) 0.225(20) 0.240(21)

Table 6.1: The branching ratios of the semileptonic decays, Eq. (4.4), resulting for the
models PL, MP, and DP in both variants CW and VW. The uncertainty is entirely due to
the dominant experimental uncertainty of |FV P (0)|, see Table 2.1. For reference, we also
give the corresponding results from Ref. [30], where we added the quoted uncertainties in
quadrature.

the decrease amounts to ∼ 35% for η → π0e+e− and ∼ 50% for η → π0µ+µ−. For
η′ → π0ℓ+ℓ−, the branching ratio is reduced by ∼ 20% for electrons and ∼ 35% for muons
in the final state. Regarding η′ → ηℓ+ℓ−, the branching ratio decreases by ∼ 10% for
electrons and ∼ 25% for muons in the final state. This gives strong indication that the
photon virtualities cannot be neglected in the analyzed processes, since constant form
factors are likely to overestimate the decay widths.

The dipole form factors, which feature the expected high-energy behavior ∼ 1/q4, fur-
ther assess the sensitivity on the precise parameterization of the form factors. Compared
to the variation observed between constant form factors and the monopole parameteri-
zation, their effect is, however, negligible, leading to a further decrease for η → π0ℓ+ℓ−,
η′ → π0µ+µ−, and η′ → ηµ+µ− and a slight increase for η′ → π0e+e− and η′ → ηe+e−,
both not exceeding the level of 5%.

Using spectral representations to implement energy-dependent widths for the broad
vector mesons, i.e., ρ(′), ω′, and ϕ′, leads to a decrease in the branching ratio of less than
4% for all decays with constant form factors and an increase of not more than 8% both in
the monopole and dipole models, with the exception of η′ → ηµ+µ−, where the increase
even reaches ∼ 15%.

201



Chapter 6. Results and discussion

Branching ratio

VMD Rescattering Mixed

η → π0e+e− 1.36(15)× 10−9 2.5× 10−13 4.6× 10−13

η → π0µ+µ− 0.67(7)× 10−9 2.8× 10−11 −2.6× 10−11

Table 6.2: The scalar rescattering contributions to the branching ratio of η → π0ℓ+ℓ−,
Eq. (6.1), separated into the pure rescattering and mixed term, as well as the corresponding
VMD contributions from Table 6.1 for comparison.

All these variations are more or less small compared to the difference between the
results in the PL model and any other model and mostly even small compared to the phe-
nomenological uncertainties. We thus infer the semileptonic decays to be rather insensitive
to the precise parameterization of the photon virtualities in the form factors. At the same
time, this justifies why we restricted our discussion of the Dalitz and singly-differential
plots in Sec. 6.1 to the monopole model, as finer details are hardly discernible; see the
dipole analogs provided for completeness in App. C.

6.3 Scalar rescattering contributions

Adding the S-wave rescattering contributions for η → π0ℓ+ℓ− to the VMD amplitude
leads to two additional terms on the level of the squared amplitude: one pure rescattering
term and one interference term,

∣∣M+ M̃
∣∣2 = |M|2 + |M̃|2 + 2Re

[
MM̃∗]; (6.1)

see Table 6.2 for the contributions to the branching ratio.13 For η → π0e+e−, both
the rescattering and the mixed contribution are suppressed by O(10−4) compared to the
VMD result. This order of magnitude seems reasonable, given that coupling a scalar
resonance to two leptons requires a spin flip, resulting in an amplitude proportional to
mℓ. For η → π0µ+µ−, the rescattering and mixed contributions are at the level of 5% in
comparison to the VMD contributions, still notably below the uncertainties of the latter.
In addition, the two contributions have opposite signs and thus largely cancel, leading to
a suppression of O(10−3).

A similar order of magnitude is expected for the corrections to the decays η′ →
[π0/η]ℓ+ℓ−, an explicit demonstration of which is, however, beyond the scope of this
thesis.

6.4 Photonic decays and normalized branching ratios

The primary motivation for calculating the branching ratio of the two-photon decays
η(′) → [π0/η]γγ within our VMD framework is the normalization of the corresponding

13In light of their negligible contribution, we refrain from calculating uncertainties on the rescattering
effects. Apart from the impact of the errors on the coupling constants CV within the dispersive integral
in Eq. (5.7), such a calculation would also have to take into account the uncertainties from fixing the
subtraction constants as estimated in Ref. [28].
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Branching ratio/10−4

CW VW

η → π0γγ 1.21(13) 1.18(13)

η′ → π0γγ 27.8(1.7) 28.1(1.8)

η′ → ηγγ 1.10(8) 1.10(8)

Table 6.3: Branching ratios of the two-photon decays, Eq. (4.9), in both variants CW
and VW. The uncertainty is entirely due to the dominant experimental uncertainty of
|FV P (0)|, see Table 2.1.

semileptonic decays, Eq. (4.19); numerical results for both observables are collected in
Table 6.3 and Table 6.4, respectively. Currently, however, there is also thriving inter-
est in resolving a discrepancy arising from an updated experimental measurement of the
η → π0γγ decay [87]. The effect of implementing dispersively improved ρ propagators
for the two-photon decays amounts to less than 2% and is therefore insignificant as the
phenomenological uncertainties range between (6–11)%.

Our branching ratios with constant widths are in agreement with the VMD results of
Ref. [29]; supplementing those with a linear-σ-model scalar contribution and chiral loops,
the authors quote B(η → π0γγ) = 1.35(8) × 10−4, B(η′ → π0γγ) = 2.91(21) × 10−3,
and B(η′ → ηγγ) = 1.17(8) × 10−4 based on empirical couplings. These results are
slightly larger than the plain VMD numbers but still compatible within uncertainties,
indicating that the effects of these model extensions are insignificant at the current level
of precision [29].

The dispersive analysis of η → π0γγ [28] referenced in Ch. 5 also includes the a2 tensor
resonance as well as isospin-breaking π+π− contributions, with the result B(η → π0γγ) =
1.81+0.46

−0.33 × 10−4 showing a ∼ 50% discrepancy with the VMD model. This deviation can
be traced back largely to the a2 contribution, suggesting that the impact of this resonance
might be relevant for η → π0γγ, specifically at very low diphoton invariant masses.

In light of this finding, it is important to note that we have not included any tensor-
meson effects for η → π0ℓ+ℓ− in Ch. 5. For electrons in the final state, the lower threshold
in s is close to the two-photon threshold, so that an effect of similar size as in the photonic
case is within the bounds of possibility; the higher threshold for muons, on the other
hand, is expected to exclude the region where the a2 resonance is most relevant. For the
η′ decays, the exchanged vector mesons can go quasi on shell, so that the VMD mechanism
is even more likely to dominate the effect of the tensor resonance.

While our results for the two-photon decays of the η′ meson are compatible with the
experimental results from BESIII, B(η′ → π0γγ) = 3.20(24) × 10−3 [88] and B(η′ →
ηγγ) = 8.3(3.4) × 10−5 [89],14 the experimental situation for η → π0γγ is presently
inconclusive. For this decay, the PDG average B(η → π0γγ) = 2.55(22)× 10−4 [15]—the
main input being B(η → π0γγ) = 2.52(23)×10−4 from the A2 experiment at MAMI [24]—
is in agreement with the theoretical calculation performed in Ref. [28] but in severe tension

14Here and in the following, we combine statistical and systematic uncertainties of experimental branch-
ing ratios in quadrature for simplicity.
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Normalized branching ratio/10−6

PL MP DP

η → π0e+e−
CW 17.422(28) 11.197(11) 11.032(9)

VW 17.510(20) 11.855(7) 11.531(4)

η → π0µ+µ−
CW 11.371(20) 5.781(7) 5.450(6)

VW 11.197(25) 6.020(10) 5.647(5)

η′ → π0e+e−
CW 1.37(7) 1.11(6) 1.13(6)

VW 1.36(7) 1.17(6) 1.18(6)

η′ → π0µ+µ−
CW 0.92(5) 0.610(35) 0.603(35)

VW 0.90(5) 0.64(4) 0.65(4)

η′ → ηe+e−
CW 4.77(7) 4.38(6) 4.41(6)

VW 4.65(7) 4.56(7) 4.56(7)

η′ → ηµ+µ−
CW 2.60(6) 1.93(4) 1.88(4)

VW 2.54(5) 2.05(4) 2.18(4)

Table 6.4: The same as Table 6.1 but for the normalized branching ratios of the semilep-
tonic decays, Eq. (4.19). Due to partial cancellations in this ratio, the quoted uncertainties
are given with the caveat that they are likely to underestimate the true uncertainty; see
main text.

with the preliminary result from the KLOE-2 collaboration, B(η → π0γγ) = 0.99(26) ×
10−4 [87], which corroborates the older KLOE measurement B(η → π0γγ) = 0.84(30) ×
10−4 [90] and is consistent with the VMD-only result.

The results for the normalized branching ratio can be found in Table 6.4, and the
discussion of the differences between the distinct form-factor parameterizations is analo-
gous to Sec. 6.2. Due to partial cancellations in this ratio, the quoted uncertainties are
reduced drastically, however with the caveat that they are likely to underestimate the true
uncertainty, given that some neglected systematic effect beyond the error estimates of the
couplings potentially becomes dominant here. At the same time, potential corrections to
the semileptonic branching ratios that are not included in the plain VMD model, e.g., the
a2 resonance, are assumed to partially cancel as well because they emerge in the hadronic
part of the amplitudes that is shared with the photonic decays.

The doubly- and singly-differential decay widths for the two-photon decays are de-
picted in Fig. 6.4. While the η decay does not show much structure in either plot—being
dominated by a D-wave at low and an S-wave at high diphoton invariant masses—the
η′ decays are dominated by vector-meson resonances that can go quasi on shell. The ω
resonance is clearly visible as two narrow bands in the Dalitz plots and as a peak in
the singly-differential distributions, whereas the ρ is disguised in comparison due to its
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6.4. Photonic decays and normalized branching ratios
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Figure 6.4: Dalitz plots for the two-photon decays in the variant CW (top), normal-
ized to the maximum value within the available phase space of the respective channel,
dΓ̂γ/(ds dνγ) = [dΓγ/(ds dνγ)]/[max dΓγ/(ds dνγ)], and singly-differential decay widths
in the Mandelstam variable s, obtained in the variant CW (bottom).

much larger width and the scaling ∝ Mρ/Γρ. The angular dependence perceivable as a
less saturated band in the Dalitz plots and as a dip in the singly-differential distributions
can be attributed to the fact that the ω → [π0/η]γ decay must be in a P -wave due to
parity.
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Chapter 7

Summary

We have reanalyzed the SM contribution to the semileptonic decays η(′) → π0ℓ+ℓ− and
η′ → ηℓ+ℓ−, where ℓ = e, µ. Since C parity is conserved in the strong and EM inter-
actions, these processes are mediated via a two-photon mechanism and therefore loop-
induced. This two-photon mechanism is known to be dominated by vector exchanges; as
a major improvement compared to the existing literature, we have, for the first time, im-
plemented a realistic dependence of the hadronic subprocess on the photon virtualities via
vector-to-pseudoscalar TFFs. To assess the sensitivity to the chosen parameterizations,
we compared three different schemes: constant couplings (as a reference point), monopole
form factors, and dipole form factors, with the dipole model being motivated by having
the correct asymptotic behavior at high virtualities; in addition, we probed the impact
of using energy-dependent widths for the vector mesons by constructing dispersively im-
proved variants of the form factors. Non-trivial form factors turn out to be important in
order not to overestimate the branching ratios, and we thereby improve previous theoreti-
cal results for the semileptonic η(′) decays. On the other hand, the observables are mostly
insensitive to the details of the parameterization at the level of uncertainty induced by
the phenomenological coupling constants.

All predicted branching ratios are, as expected, well below the current experimental
upper limits. For the latter, we however recommend a reanalysis, given the far-from-flat
Dalitz-plot distributions of the SM contributions. With improved experimental sensitiv-
ities in the future, our theoretical branching ratios of these rare η(′) decays can hopefully
be compared to experiment and thus help cast a light on possible symmetry violations
and BSM physics in the light-meson sector.
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Appendix A

U(3) flavor symmetry

For the U(3) parameterizations of the pseudoscalar and vector-meson multiplets, we write

ΦP =




π0 +
√
2 η+η′√

3
0 0

0 π0 +
√
2 η+η′√

3
0

0 0 −
√
2 η+2η′√

3


 ,

ΦV (′)
µ =




ρ0µ
(′)

+ ω
(′)
µ 0 0

0 −ρ0µ
(′)

+ ω
(′)
µ 0

0 0 −
√
2ϕ

(′)
µ


 , (A.1)

where we only retain flavor-neutral states. Here, mixing effects between the (physical)
mesons are taken into account via the pattern

(
η′

η

)
=

(
cos θP sin θP

− sin θP cos θP

)(
η1

η8

)
,

(
ω(′)

ϕ(′)

)
=

(
cos θV (′) sin θV (′)

− sin θV (′) cos θV (′)

)(
ω
(′)
1

ω
(′)
8

)
, (A.2)

with η1, η8 and ω(′)
1 , ω(′)

8 denoting the isoscalar singlet and octet states of the pseudoscalar
and vector-meson multiplets, respectively. In the above, the mixing angles are assumed
to be given by θP = arcsin(−1/3) for the pseudoscalar nonet (canonical mixing) and
θV (′) = arcsin(1/

√
3) for the vector mesons (ideal mixing). We furthermore introduce the

charge matrix according to

Q =
1

3
diag(2,−1,−1). (A.3)

Using Eq. (A.1), we calculate Tr[ΦPΦV
µΦ

V (′)
ν ] to find the allowed couplings η(′)ρρ(′),

η(′)ωω(′), η(′)ϕϕ(′), π0ρω(′), and π0ωρ(′). To derive the relative signs between the corre-
sponding coupling constants CV Pγ introduced in Sec. 3.1, we calculate Tr[ΦPΦV

µQ] and
take the appropriate ratios of coefficients that emerge in Eq. (2.5). For our analysis, we
furthermore include the OZI-suppressed coupling Cϕπ0γ , whose sign cannot be determined
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Chapter A. U(3) flavor symmetry

from U(3) symmetry. Instead, we resort to analyses of e+e− → 3π and e+e− → πγ [54–
56], which suggest that the product of the ϕγ and ϕπγ couplings carries a relative sign
as compared to the product of the ωγ and ωπγ couplings. Hence, calculating Tr[ΦV

µQ]
indicates a relative sign between Cϕπ0γ and Cωπ0γ . Fixing the sign of Cρηγ to be positive,
the sign convention of Table 3.2 follows.
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Appendix B

Intermediate results

The numerical values of the decay rates Γ
(γ)
V1,V2

defined in Eq. (4.20), for a point-like
interaction (“PL”), monopole form factors (“MP”), and dipole form factors (“DP”), are
collected in Table B.1 and Table B.2; for ΓV1,V2 , we used Collier to evaluate the PV
functions contained in Mu(0)v

V . Using LoopTools for the evaluation of the PV functions
instead, we observed severe numerical instabilities for some integrations in the variant
VW. These issues were most extreme in ΓV1,V2 with at least one Vi = ϕ for the decays
η(′) → π0e+e− but also notably problematic in Γω,ω for η′ → π0e+e−. They can be
traced back to problems with the evaluation in certain regions of the phase space and
might be related to vanishing Gram determinants in the PV reduction procedure; their
exact origin remains obscure to us, however, in particular because a decomposition into
coefficient functions does not improve this behavior and the evaluation with Collier using
scalar functions does not suffer from such instabilities. In Fig. B.1, we illustrate the
described issues by calculating the MP model in the variant CW, with both Collier and
LoopTools, using a mass of the ρ that varies around its physical value and Γρ = 0 in the
BW propagator of the ρ. This breakdown mimics the variant VW to the effect that the
shown curves correspond to the integrands that subsequently would have to be integrated
over the spectral parameter y =Mρ + xΓρ.
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Appendix B. Intermediate results

Γρ,ρ/MeV5 Γω,ω/MeV5 Γϕ,ϕ/MeV5 Γρ,ω/MeV5 Γρ,ϕ/MeV5 Γω,ϕ/MeV5

η → π0e+e−

PL
CW 0.5302

0.5684 0.1864
1.077 0.6041

0.6485
VW 0.4992 1.065 0.6060

MP
CW 0.3463 0.3627 0.1093 0.6914 0.3707 0.3966

VW 0.3422 0.3814 0.1151 0.7226 0.3945 0.4174

DP
CW 0.3419 0.3573 0.1033 0.6814 0.3615 0.3835

VW 0.3285 0.3630 0.09942 0.7160 0.3869 0.3903

η → π0µ+µ−

PL
CW 0.3440

0.3686 0.1383
0.7022 0.4222

0.4498
VW 0.3123 0.6785 0.4136

MP
CW 0.1772 0.1870 0.06392 0.3569 0.2029 0.2173

VW 0.1697 0.1972 0.06742 0.3657 0.2123 0.2293

DP
CW 0.1674 0.1764 0.05756 0.3366 0.1888 0.2009

VW 0.1603 0.1802 0.06073 0.3473 0.1916 0.2102

η′ → π0e+e−

PL
CW 154.6

283.5 57.20
405.1 125.7

183.3
VW 152.8 406.5 138.9

MP
CW 125.8 227.7 37.08 323.0 82.41 126.6

VW 133.7 241.9 39.93 349.2 103.0 135.4

DP
CW 128.1 232.0 35.95 328.3 84.42 128.8

VW 131.5 253.1 38.66 340.9 101.0 134.6

η′ → π0µ+µ−

PL
CW 121.2

169.8 55.13
284.5 131.0

168.1
VW 116.9 281.7 139.1

MP
CW 80.02 111.0 30.42 185.6 70.21 94.91

VW 83.84 119.3 32.79 199.8 84.77 101.9

DP
CW 79.10 109.8 28.68 183.4 68.78 92.80

VW 80.95 121.1 29.78 201.0 82.23 97.28

η′ → ηe+e−

PL
CW 19.68

50.07 6.701
60.79 8.303

14.86
VW 19.47 60.64 10.11

MP
CW 16.44

48.33 5.100
48.56 −1.684

10.79
VW 18.50 57.98 6.724

DP
CW 16.54 51.24 4.902 47.02 −2.518 12.45

VW 18.37 46.79 4.827 57.81 6.109 10.82

η′ → ηµ+µ−

PL
CW 12.45

20.56 4.847
31.57 10.52

15.70
VW 12.38 31.86 11.66

MP
CW 8.240

16.03 3.170
19.66 2.342

9.959
VW 9.471 24.59 6.988

DP
CW 7.980 16.28 2.944 18.15 1.682 10.13

VW 10.05 15.35 2.937 23.61 6.266 9.555

Table B.1: Numerical results for the decay rates defined in Eq. (4.20) for the models PL,
MP, and DP in both variants CW and VW, rounded to four significant digits.
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Γγ
ρ,ρ/MeV5 Γγ

ω,ω/MeV5 Γγ
ϕ,ϕ/MeV5 Γγ

ρ,ω/MeV5 Γγ
ρ,ϕ/MeV5 Γγ

ω,ϕ/MeV5

η → π0γγ
CW 3.154× 104

3.193× 104 8.719× 103
6.175× 104 3.218× 104

3.335× 104
VW 2.921× 104 6.108× 104 3.189× 104

η′ → π0γγ
CW 3.088× 107

4.586× 108 4.286× 106
1.097× 108 1.115× 107

1.884× 107
VW 3.341× 107 1.130× 108 1.386× 107

η′ → ηγγ
CW 3.203× 106

6.537× 107 4.473× 105
1.425× 107 2.031× 105

7.406× 105
VW 3.280× 106 1.411× 107 5.056× 105

Table B.2: Numerical results for the decay rates defined in Eq. (4.20) in both variants CW
and VW, rounded to four significant digits.
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Appendix B. Intermediate results
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Figure B.1: Benchmark between Collier and LoopTools for the MP model in the variant
CW with a varying ρ mass and Γρ = 0 in the BW propagator; see also main text. The
uncertainties on the problematic values resulting with LoopTools—which are not shown
here—are rather large, some of them reaching ∼ 100%, whereas all other, compliant values
have uncertainties below 1%.
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Appendix C

Plots for the dipole model

In Fig. C.1–Fig. C.3, we depict the singly- and doubly-differential decay widths for the
DP model in the variant CW, which are virtually indistinguishable from the MP analogs,
Fig. 6.1–Fig. 6.3.
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Appendix C. Plots for the dipole model
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Figure C.1: The same as Fig. 6.1 but for the DP model.
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Figure C.2: The same as Fig. 6.2 but for the DP model.
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Figure C.3: The same as Fig. 6.3 but for the DP model.
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Appendix D

Constants and parameters

We collect the masses and widths used throughout the calculations in this part of the
thesis in Table D.1.
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Appendix D. Constants and parameters

Quantity Variable Value [15]

Mass π0 Mπ0 134.9768(5)MeV

Mass π± Mπ± 139.57039(18)MeV

Mass K MK 497.611(13)MeV

Mass η Mη 547.862(17)MeV

Width η Γη 1.31(5) keV

Mass η′(958) Mη′ 957.78(6)MeV

Width η′(958) Γη′ 188(6) keV

Mass ρ(770) Mρ 775.26(23)MeV

Width ρ(770) Γρ 147.4(8)MeV

Mass ω(782) Mω 782.66(13)MeV

Width ω(782) Γω 8.68(13)MeV

Mass K∗(892) MK∗ 895.55(20)MeV

Mass ϕ(1020) Mϕ 1019.461(16)MeV

Width ϕ(1020) Γϕ 4.249(13)MeV

Mass ρ(1450) Mρ′ 1465(25)MeV

Width ρ(1450) Γρ′ 400(60)MeV

Mass ω(1420) Mω′ 1410(60)MeV

Width ω(1420) Γω′ 290(190)MeV

Mass ϕ(1680) Mϕ′ 1680(20)MeV

Width ϕ(1680) Γϕ′ 150(50)MeV

Table D.1: The masses and widths needed for the calculations in this part of the thesis,
with the values taken from Ref. [15]. For the ρ(′) and theK(∗), the parameters are identified
with those of the neutral mesons.
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Prologue

The Cabibbo–Kobayashi–Maskawa matrix determines the strength of charged-current
weak transitions by parameterizing the mismatch between mass and weak eigenstates.
Two of its elements, |Vub| and |Vcb|, are, for instance, accessible in weak decays of charged
B mesons, that is hadrons containing one b and one u (anti-)quark. More specifically, the
former of these matrix elements can be extracted from, e.g., B− → ℓ−ν̄ℓ, an important
background to which is given by B− → ℓ−ν̄ℓγ [1, 45]. This radiative process is of interest in
itself and has been studied extensively in the literature, in particular regarding its factor-
ization properties [46–49], for which so-called B-meson light-cone distribution amplitudes
are of special importance [50–52]. These distribution amplitudes involve a set of a priori
undetermined parameters, among other things the inverse moment λB, which, conversely,
is relevant also for non-leptonic B-meson decays [51]. Since a reliable calculation of λB is
difficult with theoretical methods [1], an experimental determination using the branching
ratio of B− → ℓ−ν̄ℓγ has been proposed in the literature [1]. While such measurements
are possible with the Belle II experiment [53], they are difficult to perform with the LHCb,
given that the photon cannot be reconstructed easily with its detector [3]. The four-lepton
decay B− → ℓ−ν̄ℓℓ(′)−ℓ(′)+, with the production of a lepton–antilepton pair from a virtual
photon, on the other hand, has been identified as a suitable candidate for studies with
both the Belle II and the LHCb experiment [28], at the same time retaining some sensitiv-
ity to λB [3]. Beyond providing valuable information on B-meson light-cone distribution
amplitudes, the four-lepton decay can also be used to probe our understanding of the
standard model [3], which is the main objective of the analysis in this part.

The analysis of the four-lepton decay B− → ℓ−ν̄ℓℓ′−ℓ′+, ℓ = e, µ, τ , ℓ′ = e, µ, presented
in this part of the thesis employs dispersive methods to study the underlying B → γ∗ form
factors. While a dispersive treatment naturally implies that the form factors comply with
the fundamental principles of analyticity and unitarity, it also involves some challenges.
Most importantly, the decomposition of the amplitude describing the process needs to
be chosen such that the basis of form factors is free of kinematic singularities; dynamic
singularities, i.e., poles and cuts of genuinely physical nature, on the contrary, are inherent
to the amplitude and dictate the complex analytic structure of the form factors. Although a
procedure to obtain such a singularity-free basis for photon processes—the crucial property
being gauge invariance—has been developed by Bardeen, Tung, and Tarrach [10, 11],
it is not straightforward to apply this method to the amplitude in question; this is due
to the fact that gauge invariance is only manifest when including the charged lepton’s
final-state radiation, which, in turn, leads to an ambiguity, as will be explained in detail
in this part. The derivation of a basis with form factors free of kinematic singularities
was indeed an open problem for this project, which Stephan Kürten had been working
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on already before the author of this dissertation started to investigate B → γ∗ form
factors. Having familiarized himself with the Bardeen–Tung–Tarrach procedure for
the analyses presented in Part I and its Addendum, the author eventually joined this
project in the year 2021.

After introducing a hadronic and a final-state-radiation tensor by splitting the ampli-
tude for the process B− → ℓ−ν̄ℓγ∗ into its (non-)perturbative parts—performed indepen-
dently by the author and Stephan Kürten—explicit formulae for the final-state-radiation
piece, including lepton-mass effects, are derived by the author of this thesis. While Stephan
Kürten focused on calculating the final-state-radiation tensor in the limit mℓ = 0 [1, 3],
the author extended this result to also account for non-vanishing lepton masses [16, 17].
The formula including lepton masses, in particular, needs to be recast into a form that
allows for a unified analysis of the hadronic and the final-state-radiation tensor, which is
carefully deduced in this dissertation. Next, the role of gauge invariance for B− → ℓ−ν̄ℓγ∗

is discussed, which is shown to be fulfilled only for the sum of both tensors and thus
rules out a straightforward application of the Bardeen–Tung–Tarrach procedure. In
order to transfer the ideas developed by Bardeen, Tung, and Tarrach to the problem
at hand, the hadronic tensor is then decomposed into homogeneous and inhomogeneous
parts by the author of this dissertation, with the homogeneous part referring to a contribu-
tion that individually complies with gauge invariance. Furthermore, the hadronic tensor
is demonstrated to contain a pseudoscalar component, which is described in terms of an
associated tensor, similar to the hadronic equivalent. Performing an analogous decompo-
sition of the pseudoscalar tensor into homogeneous and inhomogeneous parts, an essential
condition on the established inhomogeneities is derived by the author of this thesis, who
benefitted from insightful discussions with Bastian Kubis and Danny van Dyk as well
as cross-checks by Stephan Kürten along the way of the derivation. With the defined
quantities, amplitudes for the process B− → ℓ−ν̄ℓℓ′−ℓ′+ are calculated, which, for ℓ ̸= ℓ′,
was done independently by the author and Stephan Kürten.*

Following these general considerations, the homogeneous part of the hadronic tensor
is decomposed into a set of Lorentz structures and form factors free of kinematic sin-
gularities, which is done using a method based on the procedure by Bardeen, Tung,
and Tarrach, as developed by the author of this thesis in collaboration with Stephan
Kürten, Bastian Kubis, and Danny van Dyk. For the inhomogeneous parts of the
hadronic and the pseudoscalar tensor, generic parameterizations consistent with all the
priorly imposed gauge constraints are specified by the author. These parameterizations
induce a set of free parameters, which are studied by comparing with previous choices
from the literature [1, 4, 5, 14–17, 19]; this comparison was carried out by both the author
of this dissertation and Stephan Kürten.‡ Here, particular emphasis is put on the aspect
of the singularity-free property of the form factors, i.e., which choices lead to an extension
of the homogeneous part of the hadronic tensor that is eligible for a dispersive treatment.
Having analyzed explicit choices for the free parameters, the inhomogeneity is shown to
be restricted to a very specific form under three reasonable assumptions, as deduced by
the author of this thesis. Together, these considerations lead to definite choices for the

*The amplitude for ℓ = ℓ′ given in this part of the thesis was calculated by the author of the dissertation
and is not discussed in the published article.

‡Studying the parameterization from Ref. [5], the author of this thesis, Stephan Kürten, and Danny
van Dyk found an error that led to the publication of an Erratum to that article.
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inhomogeneous parts of the hadronic and the pseudoscalar tensor, for which projectors—
derived independently by the author and Stephan Kürten—are given that allow one to
obtain singularity-free form factors from a hadronic tensor in an arbitrary basis.

By establishing a set of dispersion relations [23, 24], the B → γ∗ form factors are then
related to the well-known B → V , V = ω, ρ, analogs [9]; the corresponding calculation
was first performed by Stephan Kürten and subsequently cross-checked by the author of
this dissertation. Here, the structures and form factors needed to describe B → V [25] are
reviewed in great detail, including the parameterization of the form factors by means of a
series expansion in a conformal variable [9]. Proposing a similar expansion for the B → γ∗

form factors, with the additional momentum dependence of the photon being modeled
using a vector-meson-dominance ansatz, explicit parameterizations for the B → γ∗ form
factors are obtained by inferring the undetermined parameters from the available input
on B → V through the dispersion relations; this result was derived by Stephan Kürten
with the assistance of this thesis’ author as well as keen insights of Bastian Kubis and
Danny van Dyk.

The phenomenological application of the formalism consists of the calculation of in-
tegrated branching ratios and forward–backward asymmetries for B− → ℓ−ν̄ℓℓ′−ℓ′+ as
well as differential distributions for ℓ ̸= ℓ′.§ In the case of distinct lepton flavors, ℓ ̸= ℓ′,
the angular integrations are performed analytically by the author of this thesis. The
remaining integrations need to be carried out numerically, where the analysis was split
as follows: while the author focused on propagating the uncertainties using an analytic
method, Stephan Kürten concentrated on conducting a statistical error analysis; both
approaches yielded results that are in good agreement within uncertainties and were even-
tually also reproduced by the respective other party. Additional cross-checks for ℓ ̸= ℓ′

are obtained by also performing the angular integrations numerically, as implemented by
the author of this thesis. In fact, for ℓ = ℓ′, all integrations are carried out numerically by
necessity, which is clarified in detail in this part.

In the appendices, formulae related to the hadronic and the pseudoscalar tensor are
derived [1, 3] by the author, which were also verified by Stephan Kürten. Further-
more, the appendices elaborate on the arguments that lead to the constrained form of
the inhomogeneity. Besides giving additional information on the modified Bardeen–
Tung–Tarrach procedure, the appendices also contain the explicit formulae for the
form-factor projectors. Further details on the kinematics of the processes B− → ℓ−ν̄ℓγ∗

and B− → ℓ−ν̄ℓℓ′−ℓ′+ are included in the appendices as well, which were deduced inde-
pendently by the author and Stephan Kürten. Moreover, the asymptotic behavior of the
transition form factors is discussed in the appendices [15], which was first obtained by
Stephan Kürten and subsequently cross-checked by this thesis’ author.¶

§The results for the observables with ℓ = ℓ′ as well as the differential distributions given in this part of
the thesis were obtained by the author of the dissertation and are not included in the published article.

¶Note also that all plots except for Fig. D.1 in this part of the thesis have been created by the author
of the dissertation.
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Chapter 1

Introduction

The radiative leptonic decay B− → ℓ−ν̄ℓγ is considered an excellent source of information
on the leading-twist B-meson light-cone distribution amplitude (LCDA) by elucidating the
inner structure of the B meson [1–3]. However, measurements of this decay are likely only
possible with the ongoing Belle II experiment, which precludes leveraging the upcoming
large datasets from the LHC—primarily the LHCb—that will become available from run 3
onwards. The four-lepton decay of the B meson, B− → ℓ−ν̄ℓℓ′−ℓ′+, with ℓ′ ̸= ℓ, ℓ(′) = e, µ,
has been identified as a suitable candidate for studies with data from both Belle II and
the LHC. This decay has been studied to some extent in the literature, with a variety of
models for the relevant B → γ∗ form factors [4–7]. Nevertheless, its usefulness to extract
B-meson LCDA parameters is hampered by the need to describe a virtual photon in the
time-like region, which requires a particularly careful treatment.

We propose a dispersive approach for B → γ∗, which is based on the fundamental prin-
ciples of analyticity and unitarity, where we apply methods that were originally developed
for dispersive analyses of low-energy processes in the time-like region—see, e.g., Ref. [8]
and references therein for an application to the pion vector form factor—to hadronic TFFs
of B mesons. By establishing a set of dispersion relations in the photon momentum, we
relate the isoscalar and isovector components of the B → γ∗ transition inherent to the
hadronic part of the amplitude through B− → ℓ−ν̄ℓγ∗(→ ℓ′−ℓ′+) to available input on
B → ω and B → ρ [9]. In doing so, we use a VMD ansatz, but our results provide the
foundation for more sophisticated future analyses. Here, our approach, in particular, has
the potential to enable the transfer of information from the region of time-like photon
momenta to the space-like region, where the sensitivity to the LCDA parameters is less
affected by soft interactions [3]. Since using dispersion relations requires the form fac-
tors to be free of kinematic singularities, we present a modification of the BTT [10, 11]
procedure—which has not been designed for hadronic form factors in weak transitions—
that allows us to obtain such a set of form factors. At this, we face a problem: the
separation of the amplitude into a hadronic term—containing the non-perturbative dy-
namics of the process—and a final-state-radiation (FSR) term turns out ambiguous; the
two terms are not individually gauge invariant but only their sum is. A further issue is
the lack of definite angular-momentum and parity quantum numbers of the form factors.
Our modification to the BTT procedure addresses this issue, where we take special care
not to spoil the singularity-free structure.

To ensure a consistent treatment of lepton-mass effects, we work with non-zero lepton
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Chapter 1. Introduction

masses throughout our analysis; taking the limitmℓ(′) → 0 in our formulae remains possible
at all reasonable stages. While the considerations in this part of the thesis are restricted
to the decay of a negatively charged B meson, the decay of a positively charged B meson
can be calculated in complete analogy, with minor adjustments to the given formulae and
identical numerical results.

The outline of this part of the thesis is as follows: in Ch. 2, we introduce the Lagrangian
of the weak effective theory (WET) that describes semileptonic b→ uℓν̄ transitions. The
amplitude for B− → ℓ−ν̄ℓγ∗(→ ℓ′−ℓ′+) and its decomposition into a hadronic tensor and an
FSR piece is discussed in Ch. 3. Using our modified BTT procedure, the hadronic tensor is
then parameterized in terms of four form factors that are free of kinematic singularities in
Ch. 4, where the ambiguity arising from the separation of the full amplitude is a subject of
special attention. In Ch. 5, we establish a set of dispersion relations that relate the B → γ∗

transition inherent to the hadronic part of the amplitude to available input on B → V
form factors, V = ω, ρ, and provide predictions for the B → γ∗ form factors. Using these,
we present numerical results for the branching ratios and integrated forward–backward
(FB) asymmetries of the process B− → ℓ−ν̄ℓℓ′−ℓ′+, with ℓ = e, µ, τ and ℓ′ = e, µ, in
Ch. 6, where we additionally provide differential distributions of the decay width and FB
asymmetry for ℓ′ ̸= ℓ. We conclude and give a brief outlook in Ch. 7. Some supplementary
material is outsourced to the appendices.
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Chapter 2

Weak effective theory

At the energy scale of the B meson, the SM’s flavor-changing processes are conveniently
described within an effective field theory [12, 13]. The leading terms in this theory arise
at mass dimension six, with higher-dimensional operators being suppressed by at least
m2

B/M
2
W ≈ 0.4%. Moreover, such an effective field theory allows us to transparently

include potential BSM effects as long as new matter fields and mediators live above the
scale of electroweak symmetry breaking. For b → uℓν̄ℓ transitions, in particular, we use
the effective Lagrangian

Lubℓν
WET =

4GF√
2
Vub
∑

i

Cubℓν
i Oubℓν

i + h.c., (2.1)

where GF is the Fermi constant as measured in muon decays, Vub is the Cabibbo–
Kobayashi–Maskawa (CKM) matrix element for the b → u transition, and Cubℓν

i ≡
Cubℓν
i (µ) are the so-called Wilson coefficients at the scale µ that are multiplied with the

local field operators Oubℓν
i ≡ Oubℓν

i (x). A convenient basis of operators up to dimension
six and with only left-handed neutrinos is given by

Oubℓν
V,L(R) =

[
ū(x)γµPL(R)b(x)

][
ℓ̄(x)γµPLνℓ(x)

]
,

Oubℓν
S,L(R) =

[
ū(x)PL(R)b(x)

][
ℓ̄(x)PLνℓ(x)

]
,

Oubℓν
T =

[
ū(x)σµνb(x)

][
ℓ̄(x)σµνPLνℓ(x)

]
, (2.2)

where, in the SM, Cubℓν
V,L |SM = 1+O(α) and Cubℓν

i |SM = 0 for all other Wilson coefficients.
To leading order in the EM interaction, matrix elements of the above operators factorize
into matrix elements of a purely hadronic and a purely leptonic current. For our analysis,
we limit ourselves to the SM operator Oubℓν

V,L and—implicitly—to the scalar operator Oubℓν
S,L .
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Chapter 3

Hadronic tensor

We first study the decay B−(p) → ℓ−(pℓ)ν̄ℓ(pν)γ∗(q), k = pℓ + pν , whose amplitude in the
SM is given by [1]

M(B− → ℓ−ν̄ℓγ
∗) =

4GFVub√
2

⟨ℓ−ν̄ℓγ∗|Oubℓν
V,L |B−⟩ (3.1)

up to corrections of O(α). It is convenient to write the WET operator in terms of the
leptonic and hadronic weak currents Jν

W(x) = ℓ̄(x)γν(1−γ5)νℓ(x) and Jν
H(x) = ū(x)γν(1−

γ5)b(x) according to1

Oubℓν
V,L =

1

4
JHν(0)J

ν
W(0). (3.2)

Within the framework of the WET, there are two possible diagrammatic ways for the
emission of the (virtual) photon: either from the constituents of the B meson or from the
charged final-state lepton; the respective diagrams are shown in Fig. 3.1.

At leading order in the EM coupling, the hadronic matrix element on the right-hand
side of Eq. (3.1) can be written as

⟨ℓ−ν̄ℓγ∗|JHν(0)J
ν
W(0)|B−⟩ = eϵ∗µ

[
⟨ℓ−ν̄ℓ|JWν(0)|0⟩

∫
d4x eiqx ⟨0|T{Jµ

EM(x)Jν
H(0)}|B−⟩

+ ⟨0|JHν(0)|B−⟩
∫

d4x eiqx ⟨ℓ−ν̄ℓ|T{Jµ
EM(x)Jν

W(0)}|0⟩
]

= eϵ∗µ
[
QBLνT

µν
H (k, q) +QℓT

µ
FSR(pℓ, pν , q)

]
, (3.3)

where e is the elementary charge and ϵ∗µ ≡ ϵ∗µ(q;λ) the polarization vector of the outgoing
photon with momentum q and polarization λ. Furthermore,

Jµ
EM(x) = q̄(x)Qγµq(x) +

∑

ℓ

Qℓℓ̄(x)γ
µℓ(x) (3.4)

is the EM current, with q(x) = (u(x), d(x), s(x), c(x), b(x))⊺, Q = diag(2,−1,−1, 2,−1)/3
the quark charge matrix, and QB = −1 = Qℓ the charge of the B meson and lepton in
units of e. With the aim to render the transfer of our analysis to the positively charged
channel more transparent, we will explicitly retain factors of QB = Qℓ in our formulae; it

1Translational invariance implies that we can fix x = 0 for the WET operator in the matrix elements
evaluated below; see also the Foundations part of this thesis.
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Chapter 3. Hadronic tensor

ℓ−

ν̄ℓ

p

B−

pν

pℓq γ∗
ℓ−

ν̄ℓ

p

B−

pν

pℓ

q

γ∗

Figure 3.1: The Feynman diagrams contributing to the decay B− → ℓ−ν̄ℓγ∗ at dimension
six in the WET on the hadronic level: pole and cut contributions of Tµν

H (k, q), e.g., from
the intermediate states B in k2 or ππ in q2 (left) and emission from the charged final-
state lepton in Tµ

FSR(pℓ, pν , q) (right). The hadronic tensor Tµν
H (k, q) and the FSR tensor

Tµ
FSR(pℓ, pν , q) are defined in Eq. (3.5) and Eq. (3.6), respectively. Note that an effective

four-particle vertex is discarded here since it contributes at dimension eight in the WET.

is, however, to be kept in mind that further modifications of the spinor structure apply
beyond this simple alteration. In Eq. (3.3), we moreover introduced the leptonic matrix
element Lν = ūℓγν(1 − γ5)vν̄ , with ūℓ ≡ ūℓ(pℓ) and vν̄ ≡ vν̄(pν), the hadronic tensor
Tµν

H (k, q),

QBT
µν
H (k, q) =

∫
d4x eiqx ⟨0|T{Jµ

EM(x)Jν
H(0)}|B−⟩ , (3.5)

and the FSR tensor Tµ
FSR(pℓ, pν , q),

QℓT
µ
FSR(pℓ, pν , q) = −ifBpν

∫
d4x eiqx ⟨ℓ−ν̄ℓ|T{Jµ

EM(x)Jν
W(0)}|0⟩ , (3.6)

where fB is the decay constant of the B meson, ⟨0|ū(0)γνγ5b(0)|B−⟩ = ifBp
ν . While the

hadronic tensor Tµν
H (k, q) describes the genuinely non-perturbative physics of the process,

Tµ
FSR(pℓ, pν , q) comprises the FSR from the charged lepton and can be reduced to the B-

meson decay constant fB and an entirely perturbative remainder. The hadronic tensor can
be decomposed into a set of Lorentz structures and associated scalar-valued functions,
which are customarily referred to as the B → γ∗ form factors. It is the purpose of this
part of the thesis to study these form factors within a dispersive framework, which requires
knowledge of their singularity structure in the two independent kinematic variables and
of the form factors’ asymptotic behavior, see Ch. 4.

In the case of a massless charged lepton, one finds the remarkably simple result [1, 4,
5, 14, 15]

Tµ
FSR,0(pℓ, pν , q) = fBL

µ (3.7)

for the FSR tensor, whereas the case of non-zero mass leads to the more intricate for-
mula [16, 17]

Tµ
FSR,mℓ

(pℓ, pν , q) = fB(pℓ + pν + q)ν ūℓγ
µ /pℓ + /q +mℓ

(pℓ + q)2 −m2
ℓ

γν(1− γ5)vν̄

= fB

[
Lµ +mℓūℓ

2pµℓ + γµ/q

(pℓ + q)2 −m2
ℓ

(1− γ5)vν̄

]
. (3.8)
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For our purpose, it proves convenient to bring the FSR contribution into such a form that
it shares a common factor of Lν with its hadronic counterpiece, i.e.,

⟨ℓ−ν̄ℓγ∗|Jν
W(0)JHν(0)|B−⟩ = eQBϵ

∗
µ

[
Tµν

H (k, q) + Tµν
FSR(pℓ, pν , q)

]
Lν . (3.9)

It is straightforward to achieve such a description for the massless case, mℓ = 0, from
Eq. (3.7). For the massive case, mℓ ̸= 0, we make use of the Dirac equation and the
Chisholm identity2 in Eq. (3.8) to obtain

Tµ
FSR,mℓ

(pℓ, pν , q) = fB

[
gµνLν +

2pµℓ p
ν
ℓ

(pℓ + q)2 −m2
ℓ

Lν + ūℓ
(pℓ)νqρ

(pℓ + q)2 −m2
ℓ

γνγµγρ(1− γ5)vν̄

]

= fB

[
gµνLν +

2pµℓ p
ν
ℓ

(pℓ + q)2 −m2
ℓ

Lν + ūℓ
pµℓ q

ρ

(pℓ + q)2 −m2
ℓ

γρ(1− γ5)vν̄

− ūℓ
pℓ · q

(pℓ + q)2 −m2
ℓ

γµ(1− γ5)vν̄ + ūℓ
qµpνℓ

(pℓ + q)2 −m2
ℓ

γν(1− γ5)vν̄

− iϵνµρσūℓ
(pℓ)νqρ

(pℓ + q)2 −m2
ℓ

γσ(1− γ5)vν̄

]
, (3.10)

leading to

Tµν
FSR(pℓ, pν , q) = fB

[
gµν +

2pµℓ p
ν
ℓ + pµℓ q

ν + qµpνℓ − (pℓ · q)gµν + iϵµνρσ(pℓ)ρqσ

(pℓ + q)2 −m2
ℓ

]
, (3.11)

which is valid only when contracted with the leptonic matrix element Lν .3

Due to gauge invariance, the full amplitude necessarily complies with the Ward iden-
tity

qµ
[
Tµν

H (k, q) + Tµν
FSR(pℓ, pν , q)

]
Lν = 0. (3.12)

However, the hadronic and the FSR tensor are not individually gauge invariant but sat-
isfy [1, 4, 5]

qµT
µν
H (k, q) = −fB(k + q)ν ,

qµT
µν
FSR(pℓ, pν , q) = fB(k + q)ν , (3.13)

see App. A, so that gauge invariance indeed only holds for the sum of both contributions.
Based on Eq. (3.13), we split the hadronic tensor into a homogeneous and an inhomoge-
neous part by means of Tµν

H (k, q) = Tµν
H,hom.(k, q) + Tµν

H,inhom.(k, q), which obey

qµT
µν
H,hom.(k, q) = 0,

qµT
µν
H,inhom.(k, q) = −fB(k + q)ν . (3.14)

Up to this point, we have not made any choice on the Lorentz decomposition of the
hadronic tensor Tµν

H (k, q) or its (in-)homogeneous part. In App. A, we demonstrate that
any such choice leads to the relation

kνT
µν
H,hom.(k, q) = Tµ

P (k, q) + fB(k + q)µ − kνT
µν
H,inhom.(k, q), (3.15)

2The Chisholm identity is derived in the Foundations part of this thesis.
3Note that one can, in principle, further make the replacement pνℓ → kν in Eq. (3.11) by virtue of the

Dirac equation for the neutrino.
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Chapter 3. Hadronic tensor

where the pseudoscalar tensor Tµ
P (k, q) is defined in terms of the pseudoscalar weak current

JP(x) = ū(x)γ5b(x) via

QBT
µ
P (k, q) = (mb +mu)

∫
d4x eiqx ⟨0|T{Jµ

EM(x)JP(0)}|B−⟩ , (3.16)

with mb and mu being the MS masses of the b- and u-quarks. As also shown in App. A,
this tensor is not gauge invariant but, similar to Eq. (3.13), fulfills

qµT
µ
P (k, q) = −fBm2

B. (3.17)

For this reason, we proceed in analogy to Eq. (3.14) and split Tµ
P (k, q) = Tµ

P,hom.(k, q) +

Tµ
P,inhom.(k, q), where

qµT
µ
P,hom.(k, q) = 0,

qµT
µ
P,inhom.(k, q) = −fBm2

B. (3.18)

In the following, we additionally impose that the homogeneous part of the hadronic tensor
fulfills

kνT
µν
H,hom.(k, q)

!
= Tµ

P,hom.(k, q), (3.19)

which, using Eq. (3.15), leads to the condition

Tµ
P,inhom.(k, q) + fB(k + q)µ − kνT

µν
H,inhom.(k, q) = 0. (3.20)

The constraint given in Eq. (3.19) corresponds to an intrinsically natural choice because it
links one of the hadronic form factors of the axial-vector current to that of the pseudoscalar
current, as is the case with hadronic form factors in other weak transitions, too.

The tensors Tµν
H (k, q) and Tµν

FSR(pℓ, pν , q) emerge in predictions for the decay B−(p) →
ℓ−(pℓ)ν̄ℓ(pν)ℓ′−(q1)ℓ′+(q2), with ℓ′ ̸= ℓ, q = q1 + q2,

M(B− → ℓ−ν̄ℓℓ
′−ℓ′+) =

4GFVub√
2

⟨ℓ−ν̄ℓℓ′−ℓ′+|Oubℓν
V,L |B−⟩

=
GFVub√

2

e2

q2
QB

[
Tµν

H (k, q) + Tµν
FSR(pℓ, pν , q)

]
lµLν , (3.21)

where we introduced the leptonic matrix element lµ = ūℓ′γµvℓ̄′ , with ūℓ′ ≡ ūℓ′(q1) and
vℓ̄′ ≡ vℓ̄′(q2). It is straightforward to calculate the spin-summed amplitude squared,

| ĎM(B− → ℓ−ν̄ℓℓ
′−ℓ′+)|2 = e4G2

F|Vub|2
2q4

[
Tµν

H (k, q) + Tµν
FSR(pℓ, pν , q)

]

×
[
Tαβ

H (k, q) + Tαβ
FSR(pℓ, pν , q)

]†∑

spins

lµl
†
α

∑

spins

LνL
†
β, (3.22)

where taking the trace in Dirac space yields
∑

spins

lµl†α = 4
[
qµ1 q

α
2 + qµ2 q

α
1 − [(q1 · q2) +m2

ℓ′ ]g
µα
]
,

∑

spins

LνL†β = 8
[
pνℓ p

β
ν + pννp

β
ℓ − (pℓ · pν)gνβ − iϵνβρσ(pℓ)ρ(pν)σ

]
. (3.23)
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Figure 3.2: Two of the four diagrams contributing to the decay B− → ℓ−ν̄ℓℓ−ℓ+ with
identical lepton flavors; see also Fig. 3.1. The other two diagrams are obtained by inter-
changing pℓ ↔ q1, which implies k → k̃ = q1 + pν and q → q̃ = pℓ + q2.

The discussion of the decay with identical lepton flavors, ℓ′ = ℓ, is more involved [4, 18]
since an additional set of diagrams has to be taken into account due to the interchange-
ability of two final-state fermions, see Fig. 3.2. In this case, the amplitude can be written
as

M(B− → ℓ−ν̄ℓℓ
−ℓ+) = M(B− → ℓ−ν̄ℓℓ

′−ℓ′+)
∣∣
ℓ′=ℓ

− (pℓ ↔ q1), (3.24)

where concurrent adjustments to the Dirac spinors in the expressions lµ and Lν are
implied, and we have k → k̃ = q1 + pν and q → q̃ = pℓ + q2 for the term indicated by
(pℓ ↔ q1); the relative minus sign between the two contributions arises from a simple
counting of permutations in the corresponding Wick contractions. For the spin-summed
amplitude squared, we then find

| ĎM(B− → ℓ−ν̄ℓℓ
−ℓ+)|2 =

[
| ĎM(B− → ℓ−ν̄ℓℓ

′−ℓ′+)|2
∣∣
ℓ′=ℓ

+ (pℓ ↔ q1)
]

−
∑

spins

[
M(B− → ℓ−ν̄ℓℓ

′−ℓ′+)
∣∣
ℓ′=ℓ

× (pℓ ↔ q1)
† + h.c.

]
. (3.25)

Upon integration over the phase space, the first two terms are related by a Lorentz trans-
formation, | ĎM(B− → ℓ−ν̄ℓℓ′−ℓ′+)|2

∣∣
ℓ′=ℓ

+ (pℓ ↔ q1) =̂ 2 | ĎM(B− → ℓ−ν̄ℓℓ′−ℓ′+)|2
∣∣
ℓ′=ℓ

,4 so
that the complications of the decay B− → ℓ−ν̄ℓℓ−ℓ+ with identical leptons in principle
reduce to the evaluation of the interference term. An additional peculiarity of the interfer-
ence term is that the summation over the spins does not factorize into two separate sums
as in Eq. (3.22) but needs to be performed with a single trace, leading to a cumbersome
expression that we refrain from providing here.

4The factor of 2 is eventually countered by an additional factor of 1/2 that has to be taken into account
for the decay with identical lepton flavors to avoid double counting in the phase-space integration.
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Chapter 4

B → γ∗ form factors

For the parameterization of the homogeneous part of the hadronic tensor, we develop
a method that closely resembles the BTT procedure [10, 11]; in contrast to the native
BTT procedure, our modification ensures that the emerging form factors have definite
angular-momentum and parity quantum numbers, see App. B, leading to the result

Tµν
H,hom.(k, q) =

1

mB
[(k · q)gµν − kµqν ]F1(k

2, q2)

+
1

mB

[ q2
k2
kµkν − k · q

k2
qµkν + qµqν − q2gµν

]
F2(k

2, q2)

+
1

mB

[k · q
k2

qµkν − q2

k2
kµkν

]
F3(k

2, q2) +
i

mB
ϵµνρσkρqσF4(k

2, q2). (4.1)

Here, the factors of mB and the imaginary unit render the form factors dimensionless
and—with the phase of the B meson chosen appropriately—real-valued below the onset
of the first branch cut. The form factors F1(k

2, q2) and F2(k
2, q2) have axial-vector,

F3(k
2, q2) has pseudoscalar, and F4(k

2, q2) vector quantum numbers with respect to the
weak current;5 assuming no modification due to the inhomogeneous part Tµν

H,inhom.(k, q),
they are free of kinematic singularities in k2 and q2 as well as kinematic zeroes in q2.
However, to ensure a finite amplitude at k2 = 0, the relation F2(0, q

2) = F3(0, q
2) must

hold for all q2.
The relations given in Eq. (3.14) constrain the inhomogeneous part of the hadronic

tensor to the generic form

Tµν
H,inhom.(k, q) = −fB

[
agµν + b

kµkν

k · q + c
kµqν

k · q + (1− b)
qµkν

q2
+ (1− a− c)

qµqν

q2

]
, (4.2)

where a ≡ a(k2, q2), b ≡ b(k2, q2), and c ≡ c(k2, q2) are arbitrary real-valued coefficients.
Given that the inhomogeneity is entirely due to the axial-vector part of Eq. (3.5), see
App. A, the Levi-Civita tensor does not carry the proper quantum numbers to be part
of this expression. On account of Eq. (3.18), the inhomogeneous part of the pseudoscalar
tensor furthermore takes the generic form

Tµ
P,inhom.(k, q) = −fBm2

B

[
d
kµ

k · q + (1− d)
qµ

q2

]
, (4.3)

5Note that for on-shell photons, only the form factors F1(k
2, q2) and F4(k

2, q2) contribute, which
correspond to transverse polarizations.
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a b c Tµν
H,inhom.(k, q) d Tµ

P,inhom.(k, q) References

A 1 2(k·q)
2(k·q)+q2

0 −fB
[
gµν + (2kµ+qµ)kν

2(k·q)+q2

]
2(k·q)

2(k·q)+q2
−fBm

2
B

2kµ+qµ

2(k·q)+q2
[15–17, 19]

B 0 k·q
k·q+q2

k·q
k·q+q2

−fB
(k+q)µ(k+q)ν

k·q+q2
k·q

k·q+q2
−fBm

2
B

kµ+qµ

k·q+q2
[1, 14]

C 0 1 1 −fB
kµ(k+q)ν

k·q
2(k·q)+k2

2(k·q)+k2+q2
−fB

[
m2

B
kµ

k·q − q2kµ−(k·q)qµ
k·q

]
[4]

D 0 0 0 −fB
qµ(k+q)ν

q2
k·q

2(k·q)+k2+q2
−fB

[
m2

B
qµ

q2
− (k·q)qµ−q2kµ

q2

]
[5]

Table 4.1: The ansätze for the inhomogeneous part of the hadronic tensor used in the
literature, expressed as in Eq. (4.2) for specific choices of the coefficients a, b, and c. Also
shown are the resulting inhomogeneous parts of the pseudoscalar tensor, Eq. (4.3), and
its associated coefficient d, Eq. (4.4). The basis for the homogeneous part of the hadronic
tensor differs from our choice, Eq. (4.1), in some of the references. A thorough discussion
of the various choices can be found in the main text.

where d ≡ d(k2, q2) is an arbitrary real-valued coefficient. Adopting the condition imposed
in Eq. (3.20), we find that

d =
(1 + a+ c)(k · q) + bk2

m2
B

, (4.4)

which fixes Tµ
P,inhom.(k, q) once Tµν

H,inhom.(k, q) is specified. We collect four different choices
for the coefficients, labeled A through D, in Table 4.1. With regard to the dispersive
treatment of the form factors in our analysis, i.e., the requirement of their singularity-
free structure, we are faced with the question of what an appropriate choice for these
coefficients is.

Among the inhomogeneous parts of the hadronic tensor listed in Table 4.1, A is the
only choice that introduces a term singular in [2(k · q) + q2] = (m2

B − k2). It is evident
that this k2-pole is associated with an intermediate B meson [19], as sketched in the left
diagram of Fig. 3.1; see also Fig. 4.1. The choices B and C, on the other hand, introduce
terms singular in [(k · q) + q2] and (k · q), respectively, which correspond to q2-dependent
pole positions in the variable k2; these are not associated with any hadronic intermediate
state and are therefore not of dynamic but kinematic origin. Choice D corresponds to
a structure that is orthogonal to all BTT structures and might thus lead to the false
conclusion that it leaves the form factors of Eq. (4.1) unaffected and accordingly free of
kinematic singularities. However, this choice exhibits a pole in q2, adversely suggesting
the emergence of a dynamic photon pole, which, working at fixed order in QED, cannot
arise. In fact, the behavior ∝ 1/q2 would lead to a double pole ∝ 1/q4 in Eq. (3.21),
a feature that is to be avoided in any amplitude. As a consequence of this double pole,
choice D is—in addition to the kinematic nature of the q2 pole—disqualified by its effect
on the longitudinal B− → ℓ−ν̄ℓγ∗ helicity amplitude.

To further illustrate this effect, we investigate the B− → ℓ−ν̄ℓγ∗ amplitude in more
detail. From Eq. (3.1) and Eq. (3.9), one finds the squared spin-summed amplitude for
photons with polarization λ to be given by

| ĎM(B− → ℓ−ν̄ℓγ
∗(λ))|2 = e2G2

F|Vub|2
2

ϵ∗µ(q;λ)ϵα(q;λ)
[
Tµν

H (k, q) + Tµν
FSR(pℓ, pν , q)

]
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ℓ−

ν̄ℓ

p

B−

k

B−

pν

pℓ
q γ∗

Figure 4.1: Feynman diagram illustrating the B-meson pole in the variable k2 as part of
the hadronic tensor Tµν

H (k, q); see also the left diagram of Fig. 3.1.

×
[
Tαβ

H (k, q) + Tαβ
FSR(pℓ, pν , q)

]†∑

spins

LνL
†
β; (4.5)

see App. D for details on the kinematics. For a longitudinal photon, λ = 0, this matrix
element ought to vanish in the limit q2 → 0, i.e., for an on-shell photon. Using choice D,
one does, however, find that the matrix element diverges ∝ f2B, independent of any choice
of form factors. The discussion of such divergent contributions is not purely academic: in
Ref. [5], a supposed collinear enhancement of the B− → ℓ−ν̄ℓℓ′−ℓ′+ decay rate is discussed,
which is caused by such an unphysical behavior as q2 → 0. Therein, a different choice
is made for the decomposition of the homogeneous tensor, in combination with choice D
for the inhomogeneous part and an inconsistent treatment of the charged lepton’s finite
mass in the FSR term. Using the formulae of Ref. [5] and our result for the FSR tensor,
Eq. (3.11), we validated that treating the effects of a finite lepton mass consistently resolves
this issue and eliminates the supposed contribution due to a longitudinal on-shell photon.6

This leads us to infer that the supposed collinear enhancement is not a physical feature of
the B− → ℓ−ν̄ℓℓ′−ℓ′+ decay rate.

Moreover, we can draw conclusions from the results for the hadronic tensor in the de-
cay K± → ℓ±νℓγ∗(→ ℓ′−ℓ′+), where an explicit calculation in chiral perturbation theory
at next-to-leading order [16, 17] confirms that choice A yields form factors that are free of
kinematic singularities. Transforming between choice A and any other choice of Table 4.1
modifies the homogeneous part through the incorporation of kinematic singularities; con-
sequently, the assumption that choice A leads to form factors free of kinematic singularities
unavoidably implies the emergence of such singularities for all the other choices considered
here.

Under some rather general, reasonable assumptions, it is possible to deduce that the
inhomogeneous part of the hadronic tensor ought to be of the form

Tµν
H,inhom.(k, q) = −fB

[
âgµν +

(2kµ + qµ)kν + (1− â)(2kµ + qµ)qν

2(k · q) + q2

]
(4.6)

in combination with the BTT basis of Eq. (4.1) for the homogeneous part, see App. A.
Here, â is an a priori undetermined real-valued coefficient that does not depend on any
of the momenta. The assumptions underlying the above form are the following:

6This has since been confirmed to us by the authors of Ref. [5] and is revised in an Erratum.
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Chapter 4. B → γ∗ form factors

• there exists a unique choice for the coefficients in Eq. (4.2) that leaves the form
factors free of kinematic singularities;

• the apparent kinematic poles in Tµν
H,inhom.(k, q) cancel and no new such poles are

introduced;

• a dynamic B-meson pole appears at most in the pseudoscalar form factor F3(k
2, q2).

Consequently, the inhomogeneous part of the pseudoscalar tensor, Eq. (4.3), turns out to
be given by

Tµ
P,inhom.(k, q) = −fB

[
m2

B

2kµ + qµ

2(k · q) + q2
− (1− â)

q2kµ − (k · q)qµ
2(k · q) + q2

]
. (4.7)

Furthermore, assuming that â = 1 meets the above requirements, which corresponds to
choice A from Table 4.1, it is straightforward to verify that any other choice of â would
introduce a dynamic pseudoscalar B-meson pole in the axial-vector form factors F1(k

2, q2)
and F2(k

2, q2).
For the reasons stated above, we make A the default choice and parameterize the

hadronic tensor as

Tµν
H (k, q) = Tµν

H,hom.(k, q)− fB

[
gµν +

(2kµ + qµ)kν

2(k · q) + q2

]
(4.8)

in the following. This yields a total of six independent Lorentz structures, which form a
basis—see the discussion in the appendix of Ref. [4]—and thus allow us to find projectors
Pµν
i (k, q) that fulfill

Piµν(k, q)T
µν
H (k, q) =

{
Fi(k

2, q2), i = 1, . . . , 4,

fB/mB, i = 5, 6.
(4.9)

Explicit formulae for these projectors are provided in App. C.
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Chapter 5

Dispersion relations and z
expansion

For our analysis, we split the form factors with respect to the photon’s isospin according
to Fi(k

2, q2) = FI=0
i (k2, q2)+FI=1

i (k2, q2), i = 1, . . . , 4. To parameterize the form factors
in accordance with analyticity and unitarity, we will establish a set of dispersion relations
for each component and assume the underlying discontinuities to be dominated by the
one-body intermediate states ω and ρ, respectively, which allows us to relate the B → γ∗

form factors to the B → V , V = ω, ρ, analogs. In doing so, we neglect contributions due to
B → ϕ in the isoscalar components for two reasons: first, these contributions are expected
to be small due to the OZI mechanism [20–22], and secondly, we lack non-perturbative
input for the B → ϕ form factors. Beyond that, we also do not model contributions from
further excited states, such as ω′ and ρ′. As a consequence, we provide our principal
phenomenological results for the region q2 ≲ 1GeV2.

Based on Eq. (3.5), the discontinuity7 of the form factors with respect to q2 and for
fixed k2 is given by [23, 24]

discq2 [QBFi(k
2, q2)] = discq2 [Piµν(k, q)QBT

µν
H (k, q)] (5.1)

= Piµν(k, q)
[
i
∑

n

∫
dΦn(q; p1, . . . , pn) ⟨0|Jµ

EM(0)|n⟩ ⟨n|Jν
H(0)|B−⟩

]
.

Here, we use the n-body phase-space volume

dΦn(q; p1, . . . , pn) = (2π)4δ(4)(q − Pn)
∏

j

d3pj
(2π)32p0j

= (2π)4δ(4)(q − Pn)
∏

j

d4pj
(2π)4

(2π)δ(p2j −M2
j )θ(p

0
j ), (5.2)

where Pn =
∑

j pj is the total momentum of the intermediate state. Assuming the dis-
continuities of the isoscalar and isovector components to be dominated by the one-body
intermediate states ω and ρ, respectively, we use

∫
dΦn(q; p1, . . . , pn) f(Pn) = 2πδ(q2 −M2

n)f(q) (5.3)

7Note that in the discontinuity, the x-dependence of the EM current Jµ
EM(x) turns into the δ distribution

for momentum conservation, which, on the other hand, is absorbed into dΦn(q; p1, . . . , pn) here.

247



Chapter 5. Dispersion relations and z expansion

for the one-body phase-space volume to obtain

discq2 [QBFI
i (k

2, q2)] = Piµν(k, q)
[
2πi
∑

λ

δ(q2 −M2
V ) ⟨0|Jµ

EM(0)|V (q, λ)⟩

× ⟨V (q, λ)|Jν
H(0)|B−⟩

]
, (5.4)

with V = ω for I = 0 and V = ρ for I = 1. For the above matrix elements, we employ [9]

⟨0|Jµ
EM(0)|V (q, λ)⟩ = ηµ

cV
dVMV fV ,

⟨V (q, λ)|Jν
H(0)|B−⟩ =

η∗α
cV

[
P να
1 (k, q)V B→V (k2) + P να

2 (k, q)AB→V
1 (k2)

+ P να
3 (k, q)AB→V

3 (k2) + P να
P (k, q)AB→V

0 (k2)
]
, (5.5)

where the structures are given by [9]

P να
P = −2MV

k2
kνkα, P να

2 = − 1

mB −MV

[
(m2

B −M2
V )g

να − (kν + 2qν)kα
]
,

P να
1 =

2i

mB +MV
ϵναβγqβkγ , P να

3 =
2MV

k2

[
kν − k2

m2
B −M2

V

(kν + 2qν)
]
kα, (5.6)

with the phases adjusted to our convention. Here, dω = Qu+Qd = 1/3, dρ = Qu−Qd = 1,
and the composition of the ω and ρ wave function is accounted for by the factors cω =√
2 = cρ. Furthermore, the decay constant of the respective vector meson is denoted by

fV and ηµ ≡ ηµ(q;λ) represents the polarization vector of the incoming vector meson with
momentum q and polarization λ. The form factors V B→V (k2), AB→V

1 (k2), AB→V
3 (k2),

and AB→V
0 (k2) in Eq. (5.5) are given in the so-called traditional basis and account for a

vector-, two axial-vector-, and a pseudoscalar-like B → V transition. Using the additional
relation [9, 25]

AB→V
12 (k2) =

k2(mB +MV )(m
2
B − k2 + 3M2

V )A
B→V
1 (k2) + 2MV λV (k

2)AB→V
3 (k2)

16mBM2
V (m

2
B −M2

V )
,

(5.7)
where λV (k2) ≡ λ(m2

B, k
2,M2

V ), we can express all form factors in terms of V B→V (k2),
AB→V

1 (k2), AB→V
12 (k2), and AB→V

0 (k2), which fulfill the exact relation [9]

A0(0) =
8mBMVA12(0)

m2
B −M2

V

. (5.8)

The generic parameterization of FB→V (k2) ∈ {V (k2), A1(k
2), A12(k

2), A0(k
2)} in terms

of a simplified series expansion in the conformal variable

zV (t) =

√
t+ − t−√

t+ − t0√
t+ − t+

√
t+ − t0

∣∣∣∣
V=ω,ρ

, (5.9)

with t0 = (1−
√

1− t−/t+)t+ and t± = (mB ±MV )
2, is given by [9]

FB→V (k2) = RJP (k2)
∑

j≥0
αF,V
j [zV (k

2)− zV (0)]
j , (5.10)
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FB→V (k2) JP mJP αF,ω
0 αF,ω

1 αF,ω
2 αF,ρ

0 αF,ρ
1 αF,ρ

2

V B→V (k2) 1− mB∗ 0.304(38) −0.83(29) 1.7(1.2) 0.327(31) −0.86(18) 1.80(97)

AB→V
1 (k2) 1+ mB1 0.243(31) 0.34(24) 0.09(57) 0.262(26) 0.39(14) 0.16(41)

AB→V
12 (k2) 1+ mB1 0.270(40) 0.66(26) 0.28(98) 0.297(35) 0.76(20) 0.46(76)

AB→V
0 (k2) 0− mB 0.328(48) −0.83(30) 1.4(1.2) 0.356(42) −0.83(20) 1.3(1.0)

Table 5.1: The quantum numbers JP , resonance masses mJP , and numerical values
(rounded to two significant digits) of the series coefficients αF,V

j [9] for the z expansion
of the form factors FB→V (k2), truncated after three summands, see Eq. (5.10). The
corresponding values of the resonance masses can be found in App. G. Due to parity
conservation of the strong interactions, no form factor with JP = 0+ exists. For the exact
numerical values of αF,V

j and the covariances as well as correlations between these, see
Ref. [9]. Note that αA0,V

0 and αA12,V
0 are not independent but have to fulfill the exact

relation given in Eq. (5.8).

where the series is truncated after three summands; this truncation is imposed by the B →
V parameters provided in Ref. [9]. In this expansion, the dominant subthreshold poles of
the B → V form factors are taken into account through the term RJP = (1− k2/m2

JP )
−1,

where JP refers to the angular-momentum and parity quantum number of the respective
form factor, see Table 5.1.

The isoscalar and isovector form factors can then be reconstructed from

QBFI
i (k

2, q2) =
1

2πi

∫ ∞

sthr

ds
discs[QBFI

i (k
2, s)]

s− q2
, (5.11)

where sthr = 9M2
π , 4M

2
π for I = 0, 1, respectively. In the above, no subtractions are needed

for convergence since the discontinuities drop off as 1/q2 asymptotically, see App. E.
Inserting Eq. (5.4) into Eq. (5.11) and using the polarization sum of the ω and ρ mesons,

∑

λ

ηµ(q;λ)η
∗
ν(q;λ) = −gµν +

qµqν
M2

V

, (5.12)

we obtain the VMD result for the B → γ∗ form factors,

QBFI
1 (k

2, q2) =MV CV
16mBM

2
VA

B→V
12 (k2)− (mB +MV )(m

2
B − k2 −M2

V )A
B→V
1 (k2)

λV (k2)(q2 −M2
V )

,

QBFI
2 (k

2, q2) = 2MV CV
4mB(m

2
B − k2 −M2

V )A
B→V
12 (k2)− (mB +MV )k

2AB→V
1 (k2)

λV (k2)(q2 −M2
V )

,

QBFI
3 (k

2, q2) = CV
AB→V

0 (k2)

q2 −M2
V

,

QBFI
4 (k

2, q2) =MV CV
V B→V (k2)

(mB +MV )(q2 −M2
V )
, (5.13)

where CV = mBfV dV . Compared to F1(k
2, q2) and F4(k

2, q2), the form factors F2(k
2, q2)

and F3(k
2, q2) enter observables with a relative suppression factor of q2, thereby ensuring

that unphysical longitudinal on-shell photons do not contribute.
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Fi(k
2, q2) JP mJP Nω

i,0 Nω
i,1 Nω

i,2 Nρ
i,0 Nρ

i,1 Nρ
i,2

F1(k
2, q2) 1+ mB1 0.0156(30)−0.033(19) 0.003(85) 0.0557(88)−0.115(48) 0.01(24)

F2(k
2, q2) 1+ mB1 −0.186(27) 0.39(14) −0.17(52) −0.676(79) 1.34(41) −0.6(1.5)

F3(k
2, q2) 0− mB −0.186(27) 0.47(17) −0.80(71) −0.676(79) 1.58(39) −2.5(2.0)

F4(k
2, q2) 1− mB∗ −0.0222(28) 0.061(21)−0.125(91)−0.0795(75) 0.209(44)−0.44(23)

Table 5.2: The quantum numbers JP , resonance masses mJP , and numerical values
(rounded to two significant digits) of the normalizations NV

i,j for the z expansion of the
form factors Fi(k

2, q2), truncated after three summands, see Eq. (5.14). The corresponding
values of the resonance masses can be found in App. G. Our uncertainties on the normal-
izations take into account the uncertainties on the series coefficients αF,V

j only, which, by
far, give the dominant contribution. For the covariances between the normalizations, see
App. F. Note that NV

2,0 and NV
3,0 are identical due to the exact relation given in Eq. (5.8)

(or, equivalently, the condition F2(0, q
2) = F3(0, q

2) imposed below Eq. (4.1)).

Naturally, we now aim to use an expansion similar to Eq. (5.10) for the B → γ∗ form
factors,

QBFI
i (k

2, q2) = RJP (k2)
∑

j≥0
βVi,j(q

2)[zV (k
2)− zV (0)]

j , (5.14)

where the form factors have definite angular-momentum and parity assignments, with the
term RJP (k2) again accounting for the dominant subthreshold poles in the variable k2. In
contrast to Eq. (5.10), the series coefficients have a dependence on q2, for which we will
assume VMD and use an ad hoc BW ansatz,

βVi,j(q
2) = NV

i,jP
BW
V (q2). (5.15)

At this, it is justified to use a monopole ansatz since the form factors drop off as 1/q2

asymptotically, see App. E. Because of its smallness, we use a constant approximation
for the ω decay width above the 3π threshold, whereas we incorporate the broad ρ width
energy-dependently,

PBW
ω (q2) =

M2
ω

M2
ω − q2 − iMω Γω

, PBW
ρ (q2) =

M2
ρ

M2
ρ − q2 − i

√
q2 Γρ(q2)

. (5.16)

Here, the proper threshold behavior is implied for the ω, i.e., Γω = 0 for q2 < 9M2
π , and

the energy-dependent width of the ρ is parameterized according to [26]

Γρ(q
2) = θ(q2 − 4M2

π)
γρ→ππ(q

2)

γρ→ππ(M2
ρ )

Γρ, γρ→ππ(q
2) =

(q2 − 4M2
π)

3/2

q2
. (5.17)

The normalizations NV
i,j can be computed by inserting Eq. (5.10) and Eq. (5.14) into

QBFI
i (k

2, q2) =
KI

i,A12
(k2)

q2 −M2
V

AB→V
12 (k2) +

KI
i,A1

(k2)

q2 −M2
V

AB→V
1 (k2) +

KI
i,A0

(k2)

q2 −M2
V

AB→V
0 (k2)

+
KI

i,V (k
2)

q2 −M2
V

V B→V (k2), KI
i,F (k

2) =
∑

j≥0
κI,ji,F [zV (k

2)− zV (0)]
j , (5.18)
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Figure 5.1: Three-dimensional plots showing the absolute values of the full form factors,
Eq. (5.19), in the range k2 ∈ [0, 10]GeV2 and q2 ∈ [0, 1]GeV2. The peak of the ω resonance
is clearly visible, while the ρ resonance is lower in magnitude due to the scaling ∝Mρ/Γρ

and hardly discernible here.

with coefficients κI,ji,F that can be determined from an expansion of Eq. (5.13) around
zV (k

2) = zV (0). Using the numerical values from Table 5.1 to match both sides of the
above equation at q2 = 0, order by order in the conformal variable, results in the normal-
izations collected in Table 5.2. Adding both isospin components, the full form factors can
further be written as

QBFi(k
2, q2) = QB[FI=0

i (k2, q2) + FI=1
i (k2, q2)]

= RJP (k2)
∑

V=ω,ρ
j≥0

NV
i,jP

BW
V (q2)[zV (k

2)− zV (0)]
j . (5.19)

We present three-dimensional plots of the absolute values of the full form factors, Eq. (5.19),
in Fig. 5.1. In addition, we provide two-dimensional plots, including uncertainties and
with k2 = 1GeV2 and q2 = 1GeV2 fixed, in Fig. 5.2 and Fig. 5.3, where we also show the
absolute values of the isoscalar and isovector components separately.
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Figure 5.2: Two-dimensional plots of the absolute values of the form factors’ isoscalar
and isovector components as well as the sum of these for k2 = 1GeV2 fixed in the range
q2 ∈ [0, 1.25]GeV2. Additionally shown are the uncertainties of the corresponding contri-
butions.
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Figure 5.3: The same as Fig. 5.2 but with q2 = 1GeV2 fixed and in the range k2 ∈
[0, 10]GeV2.
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Chapter 6

Phenomenology

The decay B− → ℓ−ν̄ℓℓ′−ℓ′+ provides a rich phenomenology through a large number
of angular observables, which arise from the differential decay width dΓ ≡ dΓ(B− →
ℓ−ν̄ℓℓ′−ℓ′+),

dΓ =
1

2mB
| ĎM|2dΦ4(p; pℓ, pν , q1, q2). (6.1)

Here, | ĎM|2 ≡ | ĎM(B− → ℓ−ν̄ℓℓ′−ℓ′+)|2 is given by Eq. (3.22) for ℓ′ ̸= ℓ and Eq. (3.25)
for ℓ′ = ℓ; the Lorentz-invariant four-body phase space is conveniently split according
to [27]

dΦ4(p; pℓ, pν , q1, q2) = dΦ2(p; k, q) dΦ2(k; pℓ, pν) dΦ2(q; q1, q2)
dk2

2π

dq2

2π
, (6.2)

where dΦ2(p; k, q), dΦ2(k; pℓ, pν), and dΦ2(q; q1, q2) are the respective Lorentz-invariant
two-body phase spaces of the {ℓ−ν̄ℓ(k), ℓ′−ℓ′+(q)}, {ℓ−(pℓ), ν̄ℓ(pν)}, and {ℓ′−(q1), ℓ′+(q2)}
subsystems. The fivefold differential decay rate reads

d5Γ

dk2 dq2 d cosϑW d cosϑγ dφ
=

|pγ ||pℓ||pℓ′ |
4096m2

Bπ
6
√
k2
√
q2

| ĎM|2, (6.3)

where ϑW and ϑγ are the polar angles of ℓ−(pℓ) and ℓ′−(q1) in the center-of-mass frames
of {ℓ−(pℓ), ν̄ℓ(pν)} and {ℓ′−(q1), ℓ′+(q2)}, respectively, and φ is the relative azimuthal
angle between the planes of these two subsystems. Moreover, |pγ |, |pℓ|, and |pℓ′ | are the
magnitudes of the three-momenta of the photon and the negatively charged leptons in
the respective center-of-mass frame; further details on the kinematics and the four-body
phase space are provided in App. D. For ℓ′ ̸= ℓ, the angular integrations can be performed
analytically, leading to

d2Γ

dk2 dq2
= N

[ 4∑

i=1

fi,i
m2

B

|Fi(k
2, q2)|2 + 2

4∑

i=1
j>i

fi,j
m2

B

Re [Fi(k
2, q2)F∗j (k2, q2)] (6.4)

+ 2fB

4∑

i=1

fi,5
mB

Re [Fi(k
2, q2)] + f5,5f

2
B

]
, N =

G2
F|Vub|2e4|pγ ||pℓ||pℓ′ |
8192m2

Bπ
6
√
k2
√
q10

,

255



Chapter 6. Phenomenology

where the dependence of the functions fi,j ≡ fi,j(k
2, q2) on the lepton masses mℓ(′) is

suppressed; the resulting expressions for these functions are collected in App. F. The
remaining integrations over k2 and q2 have to be performed numerically,

Γ =

∫
dq2

∫
dk2

d2Γ

dk2 dq2
, (6.5)

where the available phase space is bounded by the region k2 ∈ [m2
ℓ , (mB −

√
q2)2] and

q2 ∈ [4m2
ℓ′ , (mB −mℓ)

2]. Our results will be quoted for the branching ratio, B = Γ τB/ℏ,
where τB is the lifetime of the charged B meson.

Beyond the integrated decay rate, another observable of interest is the FB asymmetry,
AFB ≡ AFB(k

2, q2), which is defined as

AFB =

(
d2Γ

dk2 dq2

)−1 ∫
d cosϑW d cosϑγ dφ sgn[cosϑW ]

d5Γ

dk2 dq2 d cosϑW d cosϑγ dφ
(6.6)

and provides a complementary probe of the form factors. As for the decay width, the
integration over the angles can be performed analytically for ℓ′ ̸= ℓ, resulting in

AFB =

(
d2Γ

dk2 dq2

)−1
N
[ 4∑

i=1

gi,i
m2

B

|Fi(k
2, q2)|2 + 2

4∑

i=1
j>i

gi,j
m2

B

Re [Fi(k
2, q2)F∗j (k2, q2)]

+ 2fB

4∑

i=1

gi,5
mB

Re [Fi(k
2, q2)] + g5,5f

2
B

]
, (6.7)

where the functions gi,j ≡ gi,j(k
2, q2) also depend on the lepton masses mℓ(′) and their

explicit expressions are collected in App. F. Experimentally, it is convenient to access the
integrated asymmetry

⟨AFB⟩ =
〈

d2Γ

dk2 dq2

〉−1 ∫
d cosϑW d cosϑγ dφ sgn[cosϑW ]

〈 d5Γ

dk2 dq2 d cosϑW d cosϑγ dφ

〉
,

(6.8)

where ⟨· · · ⟩ denotes the integration over a suitable bin in the variables k2 and q2.
We provide numerical results for both observables for the process B− → ℓ−ν̄ℓℓ′−ℓ′+,

with ℓ ∈ {e, µ, τ} and ℓ′ ∈ {e, µ}; see Table 6.1 for ℓ′ ̸= ℓ and Table 6.2 for ℓ′ = ℓ.
Decays involving a τ−τ+ pair are not considered here, since the corresponding threshold
is large compared to our asserted upper cutoff in the variable q2. While parts of the
decay with identical lepton flavors can, in principle, be treated in complete analogy to the
case with distinct leptons—see the discussion at the end of Ch. 3—the interference term
necessarily requires all integrations to be performed numerically because the variables k̃2

and q̃2 introduce an angular dependence in the form factors. Furthermore, an additional
factor of 1/2 has to be taken into account for the decay with identical lepton flavors in
order to avoid double counting in the phase-space integration. Our results are obtained

(i) after integrating over the full phase space in k2 and q2;

(ii) after integrating over the phase space with an upper cutoff at q2 = 1GeV2;
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Upper cutoff Branching ratio/10−8 AFB

B− → e−ν̄eµ−µ+
None 3.19(43)N (25)Vub

−0.358(31)N

q2 = 1GeV2 3.13(42)N (25)Vub
−0.361(32)N

B− → µ−ν̄µe−e+
None 3.78(47)N (30)Vub

−0.398(38)N

q2 = 1GeV2 3.72(46)N (30)Vub
−0.401(38)N

B− → τ−ν̄τe−e+
None 2.75(27)N (22)Vub

−0.500(18)N

q2 = 1GeV2 2.72(27)N (22)Vub
−0.502(18)N

B− → τ−ν̄τµ−µ+
None 1.77(23)N (14)Vub

−0.458(15)N

q2 = 1GeV2 1.75(23)N (14)Vub
−0.460(15)N

Table 6.1: Numerical results for the branching ratio and FB asymmetry, see Eq. (6.5) and
Eq. (6.8), for B− → ℓ−ν̄ℓℓ′−ℓ′+, ℓ′ ̸= ℓ, in the SM. The quoted uncertainties originate from
the uncertainties on the normalizations NV

i,j and Vub, respectively. Due to the absence
of CP violation in the SM, the results for the CP-conjugated decay modes are identi-
cal. Within uncertainties, our predictions for the branching ratio of the process B− →
e−ν̄eµ−µ+ agree well with Ref. [5], B(B− → e−ν̄eµ−µ+) = (3.01×10−8, 2.96×10−8), with-
out and with an upper cutoff, respectively. For the process B− → µ−ν̄µe−e+, however, our
results are in strong tension with Ref. [5], B(B− → µ−ν̄µe−e+) = (6.38×10−7, 6.37×10−7),
which can be attributed to the unphysical collinear enhancement inferred therein;a see the
discussion in Ch. 4. The results of Ref. [4], table 2, are—within their uncertainties—
compatible with our results; note the numerically insignificant impact of the slight differ-
ence in the upper integration boundary used therein.

aThe tension with our result for the electron channel is reduced but not removed entirely with the
results quoted in the Erratum to Ref. [5].

and for ℓ′ = ℓ, due to the indistinguishability of the two final-state fermions, additionally

(iii) with a cutoff at min{q2, q̃2} = 1GeV2, mimicking the LHCb measurement [28].8

Beyond the q2 = 1GeV2 cutoff, the omission of the ϕ meson and further resonances intro-
duces a hardly quantifiable model uncertainty, so that variant (ii) provides our principal
results for ℓ ̸= ℓ′; modeling the contributions beyond the cutoff seems possible in light
of similar efforts in the case of B → ππ form factors [29, 30] and is left for future work.
For ℓ = ℓ′, the situation is more intricate: while a cutoff according to variant (ii) is in-
appropriate here for physical reasons, it is important to note that the cutoff implied by
variant (iii) still entails the critical region through one of the variables. With the caveat
that a more realistic comparison to the experiment inevitably requires the inclusion of the
ϕ meson and, potentially, yet higher resonances, we thus designate variant (iii) to yield
our principal results for ℓ = ℓ′.

8For the variant with the LHCb cutoff, the integrations of all terms—as opposed to the interference
term only—have to be performed numerically since q̃2 and thus the cutoff depends on the angles.
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Upper cutoff Branching ratio/10−8 AFB

B− → e−ν̄ee−e+
None 3.43(43)N (27)Vub

−0.410(41)N

q2 = 1GeV2 3.31(42)N (26)Vub
−0.416(42)N

LHCb 3.35(42)N (27)Vub
−0.413(40)N

B− → µ−ν̄µµ−µ+
None 3.15(42)N (25)Vub

−0.366(31)N

q2 = 1GeV2 3.07(41)N (24)Vub
−0.370(31)N

LHCb 3.08(42)N (25)Vub
−0.372(32)N

Table 6.2: The same as Table 6.1 but for ℓ′ = ℓ. Here, the interference term yields a
negative correction to both observables at the level of 10% for the electron channel and
1% for the muon channel. This observation is in line with what was found in Ref. [18],
with consistent numerical results for the branching ratio of the muon channel within
uncertainties, B(B− → µ−ν̄µµ−µ+) = (2.82× 10−8, 2.73× 10−8), without cutoff and with
the LHCb cutoff, respectively. Our values are also compatible with Ref. [4]. Although
our result for the muon channel is incompatible with the current experimental upper limit
B(B− → µ−ν̄µµ−µ+) < 1.6× 10−8 determined by the LHCb collaboration [28], it is in far
better agreement than the prediction cited therein, B(B− → µ−ν̄µµ−µ+) = 1.3×10−7 [31].

In order to cross-check the results obtained with the functions fi,j and gi,j after per-
forming the angular integrations analytically for ℓ′ ̸= ℓ, we further implemented a variant
with the phase-space integration performed numerically over all variables also in this case,
leading to results that are consistent with Table 6.1. Moreover, we performed a statistical
error analysis for these decays, using 50 000 samples drawn from a multivariate normal
distribution, to assess the relevance of subtleties such as the distinction between the mean
and median or regarding the propagation of uncertainties. Doing so, we found results
compatible with the analytic method, with a difference ∼ 1% between mean and median
being overshadowed by the uncertainty and a ∼ 1% asymmetry between upper and lower
uncertainties corresponding to approximately symmetrical errors. Naturally, both margins
are expected to decrease further once increasing the sample size.

Besides the integrated observables, we additionally provide two-dimensional plots of
the doubly-differential distributions of the decay width d2Γ/(dk2 dq2) and the angular
FB asymmetry AFB(k

2, q2) for ℓ′ ̸= ℓ in Fig. 6.1 and Fig. 6.2, respectively, with either
k2 = 1GeV2 or q2 = 1GeV2 fixed.
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Figure 6.1: Two-dimensional plots of the doubly-differential decay width d2Γ/(dk2 dq2)
for ℓ′ ̸= ℓ, with k2 = 1GeV2 (left) and q2 = 1GeV2 (right) fixed. In order to verify
the—in some cases—numerically problematic limits, we performed analytic expansions of
our formulae at the phase-space boundaries.
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Figure 6.2: The same as Fig. 6.1 but for the doubly-differential FB asymmetry AFB(k
2, q2).
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Chapter 7

Summary and outlook

In this part of the thesis, we used dispersive methods to study the B → γ∗ form fac-
tors underlying the decay B− → ℓ−ν̄ℓℓ′−ℓ′+. We separated the full B− → ℓ−ν̄ℓℓ′−ℓ′+

amplitude into a non-perturbative hadronic tensor and a perturbative FSR piece and, in
doing so, thoroughly investigated the properties of these individual objects. From our
studies of these, we inferred that the separation leads to an ambiguity concerning the
dispersive treatment; more specifically, it complicates the effort to find a decomposition of
the hadronic tensor into Lorentz structures and form factors that are free of kinematic
singularities. As a remedy, we discussed in great detail how the hadronic tensor can be
split into a homogeneous and an inhomogeneous part, with the homogeneous part being
chosen such that it contains form factors with well-defined angular-momentum and par-
ity quantum numbers. From these considerations, we proposed a decomposition of the
homogeneous part into a set of Lorentz structures and four form factors that are free
of kinematic singularities in both the weak momentum and the photon momentum, thus
rendering a dispersive treatment possible. For the parameterization of the inhomogeneous
part, we considered several choices from the literature and investigated their effect on the
full amplitude in great detail, in particular with regard to the singularity-free property of
the form factors. Under a few reasonable assumptions, we were able to deduce that the
inhomogeneous part ought to be of a very specific form, which allowed us to eliminate
all choices from the literature but one for our analysis. Another major advancement of
our analysis is the consistent treatment of non-zero lepton masses in the FSR piece at all
stages.

Having found a decomposition of the hadronic tensor with form factors that are free
of kinematic singularities, we split these into their isospin components and established a
set of dispersion relations that relate the B → γ∗ form factors to the well-known B → V ,
V = ω, ρ, analogs. The B → V form factors were expanded in a series in the conformal
variable z(t), with the dominant subthreshold poles taken into account via a plain pole
factor. Performing a similar series expansion for the B → γ∗ form factors and using a
VMD ansatz for the virtual photon, we provided a parameterization of these form factors
in the region below the onset of the ϕ meson.

Using our framework, we carried out a phenomenological analysis by means of the
branching ratio and the integrated FB asymmetry of the decay B− → ℓ−ν̄ℓℓ′−ℓ′+, with
ℓ = e, µ, τ and ℓ′ = e, µ, and, for ℓ′ ̸= ℓ, the doubly-differential distributions of the decay
width and FB asymmetry. The numerical results obtained for the branching ratio and
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Chapter 7. Summary and outlook

FB asymmetry agree with recent determinations from the literature to a large extent but
exceed the current experimental upper limits for ℓ′ = ℓ, albeit showing less tension than
earlier theoretical estimates.

Possible future improvements of our framework involve the inclusion of the contribution
from the ϕ meson and the replacement of the resonant ρ by a description of the two-pion
intermediate state, in which the ρ can be included model-independently through pion–
pion rescattering [32]. The B → γ∗ form factors are then obtained via a dispersion
relation in a similar way to the reconstruction of, e.g., the η(′) TFFs from ππ intermediate
states [33, 34].
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Appendix A

Tensor identities9

In this appendix, we derive the identities for the hadronic tensor Tµν
H (k, q) and the pseu-

doscalar tensor Tµ
P (k, q) given in Eq. (3.13), Eq. (3.15), and Eq. (3.17), where we further

argue that the Levi-Civita tensor cannot be present in the inhomogeneous part of the
hadronic tensor, Eq. (4.2). Moreover, we elaborate on the arguments that lead to the
constrained form of the inhomogeneity in Eq. (4.6).

A.1 Hadronic tensor

The identity for the hadronic tensor stated in Eq. (3.13) can be derived in two instructive
ways. For both variants, we start from Eq. (3.5) and perform an integration by parts,
assuming that the surface term can be dropped, leading to

qµ[QBT
µν
H (k, q)] = −i

∫
d4x [∂µe

iqx] ⟨0|T{Jµ
EM(x)Jν

H(0)}|B−⟩

= i

∫
d4x eiqx∂µ ⟨0|T{Jµ

EM(x)Jν
H(0)}|B−⟩ . (A.1)

Inserting the definition of the time-ordered product and using that the EM current is
conserved, ∂µJ

µ
EM(x) = 0, we find

qµ[QBT
µν
H (k, q)] = i

∫
d4x eiqx ⟨0|δ(x0)[J0

EM(x), Jν
H(0)]|B−⟩

= i

∫
d3x e−iq·x ⟨0|[J0

EM(x̄), Jν
H(0)]|B−⟩ , (A.2)

where x̄ = (x0 = 0,x)⊺. For the first variant of the derivation, we then apply an appro-
priate Lorentz transformation and write q = (

√
q2, 0), so that

qµ[QBT
µν
H (k, q)] = i ⟨0|[Q̂EM, J

ν
H(0)]|B−⟩ , (A.3)

where the charge Q̂EM =
∫
d3xJ0

EM(x̄) associated with the conserved EM current acts as
the generator of the global U(1)EM symmetry. Under this symmetry, qf (x) → e−iQf qf (x),

9Some of the commutation relations and formulae for the time-ordered product of two currents implicitly
utilized in this appendix are derived for generic expressions in the Foundations part of the thesis.
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where the quark field qf (x) ∈ {u(x), b(x)} holds the U(1)EM charge Qu = 2/3, Qb = −1/3,
with the hadronic weak current Jν

H(x) = ū(x)γν(1− γ5)b(x) transforming according to

Jν
H(0) → Jν

H(0)
′ = e−i(Qb−Qu)Jν

H(0). (A.4)

Infinitesimally, this corresponds to the variation

δJν
H(0) = −i(Qb −Qu)J

ν
H(0), (A.5)

and thus, by Noether’s theorem,

qµ[QBT
µν
H (k, q)] = −i(Qb −Qu) ⟨0|Jν

H(0)|B−⟩ . (A.6)

Inserting the definition of the hadronic weak current and using ⟨0|ū(0)γνb(0)|B−⟩ = 0,
which holds due to the pseudoscalar nature of the B meson, as well as the defining relation
of the B-meson decay constant, ⟨0|ū(0)γνγ5b(0)|B−⟩ = ifBp

ν , we finally arrive at

qµ[QBT
µν
H (k, q)] = −QBfBp

ν , (A.7)

where QB = Qb − Qu. An interesting by-product from the last step is the observation
that the inhomogeneity of the hadronic tensor is entirely due to its axial-vector part. In
other words, the vector part of the hadronic tensor is completely homogeneous, so that
the Levi-Civita tensor indeed cannot be part of the inhomogeneity.

Since the Lorentz transformation performed in the above calculation is somewhat
problematic—in particular in view of the photon’s massless nature—we additionally give
a derivation that starts from Eq. (A.2) and spares such an intermediate step. To this end,
we explicitly calculate the commutator

[J0
EM(x̄), Jν

H(0)] =
[∑

f

Qfq
†
f (x̄)qf (x̄) +

∑

ℓ

Qℓℓ
†(x̄)ℓ(x̄), u†(0)γ0γν(1− γ5)b(0)

]

= δ(3)(x̄)
(
Quu

†(x̄)γ0γν(1− γ5)b(0)−Qbu
†(0)γ0γν(1− γ5)b(x̄)

)
, (A.8)

where we inserted the definition of the hadronic weak current and the EM current Jµ
EM(x) =

q̄(x)Qγµq(x) +∑ℓQℓℓ̄(x)γ
µℓ(x) as well as the canonical equal-time anticommutation re-

lations for fermionic fields. Hence, Eq. (A.2) yields

qµ[QBT
µν
H (k, q)] = −i(Qb −Qu) ⟨0|Jν

H(0)|B−⟩ , (A.9)

which is equivalent to Eq. (A.6), so that following the remaining steps of the first derivation
again results in Eq. (A.7).

In order to prove Eq. (3.15), we start by using translational invariance of the vacuum
to rewrite the hadronic tensor, Eq. (3.5), as

QBT
µν
H (k, q) =

∫
d4x e−ix(p−q) ⟨0|T{Jµ

EM(0)Jν
H(−x)}|B−⟩

=

∫
d4x eikx ⟨0|T{Jν

H(x)J
µ
EM(0)}|B−⟩ , (A.10)
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where we transformed x → −x in the integral and used that k = p − q. By means
of an integration by parts and a differentiation of the Heaviside step function in the
time-ordered product, we then find, similar to Eq. (A.2),

kν [QBT
µν
H (k, q)] = i

∫
d4x eikx ⟨0|T{∂νJν

H(x)J
µ
EM(0)}|B−⟩

+ i

∫
d3x e−ikx ⟨0|[J0

H(x̄), J
µ
EM(0)]|B−⟩ . (A.11)

Here, the Dirac equation implies

∂νJ
ν
H(x) = i(mu −mb)JS(x)− i(mu +mb)JP(x), (A.12)

with the scalar weak current JS(x) = ū(x)b(x) and the pseudoscalar weak current JP(x) =
ū(x)γ5b(x), so that

kν [QBT
µν
H (k, q)] = (mb +mu)

∫
d4x eikx ⟨0|T{JP(x)J

µ
EM(0)}|B−⟩

+ i

∫
d3x e−ik·x ⟨0|[J0

H(x̄), J
µ
EM(0)]|B−⟩ , (A.13)

where we used that a scalar–vector current–current matrix element for the transition
B-meson to vacuum vanishes due to conservation of angular momentum and parity,
⟨0|T{JS(x)J

µ
EM(0)}|B−⟩ = 0. Using translational invariance of the vacuum once more,

we thus obtain

kν [QBT
µν
H (k, q)] = QBT

µ
P (k, q) + i

∫
d3x e−ik·x ⟨0|[J0

H(x̄), J
µ
EM(0)]|B−⟩ , (A.14)

with the pseudoscalar tensor

QBT
µ
P (k, q) = (mb +mu)

∫
d4x eiqx ⟨0|T{Jµ

EM(x)JP(0)}|B−⟩ . (A.15)

From an explicit calculation of the commutator in the second term of Eq. (A.14),

[J0
H(x̄), J

µ
EM(0)] =

[
u†(x̄)(1− γ5)b(x̄),

∑

f

Qfq
†
f (0)γ

0γµqf (0) +
∑

ℓ

Qℓℓ
†(0)γ0γµℓ(0)

]

= δ(3)(x̄)
(
Qbu

†(x̄)γ0γµ(1− γ5)b(0)−Quu
†(0)γ0γµ(1− γ5)b(x̄)

)
, (A.16)

similar to Eq. (A.8), we finally arrive at

kν [QBT
µν
H (k, q)] = QBT

µ
P (k, q) +QBfB(k + q)µ, (A.17)

which is equivalent to Eq. (3.15) after inserting the decomposition of the hadronic tensor
into its homogeneous and inhomogeneous parts, Tµν

H (k, q) = Tµν
H,hom.(k, q)+T

µν
H,inhom.(k, q).
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A.2 Pseudoscalar tensor

For the derivation of Eq. (3.17), we proceed in analogy to the previous section and use the
definition of the pseudoscalar tensor, Eq. (3.16), to calculate

qµ[QBT
µ
P (k, q)] = i(mb +mu)

∫
d4x eiqx∂µ ⟨0|T{Jµ

EM(x)JP(0)}|B−⟩

= i(mb +mu)

∫
d3x e−iq·x ⟨0|[J0

EM(x̄), JP(0)]|B−⟩ . (A.18)

An explicit calculation of the commutator, similar to Eq. (A.8),

[J0
EM(x̄), JP(0)] =

[∑

f

Qfq
†
f (x̄)qf (x̄) +

∑

ℓ

Qℓℓ
†(x̄)ℓ(x̄), u†(0)γ0γ5b(0)

]

= δ(3)(x̄)
(
Quu

†(x̄)γ0γ5b(0)−Qbu
†(0)γ0γ5b(x̄)

)
, (A.19)

results in
qµ[QBT

µ
P (k, q)] = −i(mb +mu)(Qb −Qu) ⟨0|JP(0)|B−⟩ . (A.20)

In order to calculate ⟨0|JP(0)|B−⟩ = ⟨0|ū(0)γ5b(0)|B−⟩, we observe that, due to translation
invariance of the vacuum,

ifBp
ν = ⟨0|ū(0)γνγ5b(0)|B−⟩ = ⟨0|ū(x)γνγ5b(x)|B−⟩ eixp, (A.21)

and differentiating both sides of the equation gives

0 = ⟨0|ū(x)
↔
/∂γ5b(x)|B−⟩ eixp + ipν ⟨0|ū(x)γνγ5b(x)|B−⟩ eixp

= i(mb +mu) ⟨0|ū(x)γ5b(x)|B−⟩ eixp − fBm
2
B, (A.22)

where we used the Dirac equation and p2 = m2
B. Then, again by translational invariance

of the vacuum, we obtain

⟨0|ū(0)γ5b(0)|B−⟩ = −ifB
m2

B

mb +mu
, (A.23)

so that Eq. (A.20) finally becomes

qµ[QBT
µ
P (k, q)] = −QBfBm

2
B. (A.24)

A.3 Constrained form of the inhomogeneity

The inhomogeneity in the constrained form stated in Eq. (4.6) was based on the three
assumptions that

(i) there exists a unique choice for the coefficients in Eq. (4.2) that leaves the form
factors free of kinematic singularities;

(ii) the apparent kinematic poles in Tµν
H,inhom.(k, q) cancel and no new such poles are

introduced;
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A.3. Constrained form of the inhomogeneity

(iii) a dynamic B-meson pole appears at most in the pseudoscalar form factor F3(k
2, q2).

In the following, we analyze the consequences of (i)–(iii) in more detail and outline how
Eq. (4.6) follows from these assumptions. We start by examining (ii) with the additional
constraint that the coefficients of the generic inhomogeneity

Tµν
H,inhom.(k, q) = −fB

[
agµν + b

kµkν

k · q + c
kµqν

k · q + (1− b)
qµkν

q2
+ (1− a− c)

qµqν

q2

]
, (A.25)

see Eq. (4.2), cancel the trivial poles but do not show an explicit dependence on q2 (and,
for a, also on k2) beyond that, i.e.,

a = â, b = (k · q)b̂, c = (k · q)ĉ, (A.26)

with some reduced coefficients â, b̂ ≡ b̂(k2), and ĉ ≡ ĉ(k2); that this is indeed a necessary
condition to also fulfill (i) and (iii) will be shown subsequently.10 For the residual poles in
Tµν

H,inhom.(k, q) to be cancelled, we thus need

(1− b) = 1− b̂

2
(m2

B − k2 − q2)
!∝ q2,

(1− a− c) = 1− â− ĉ

2
(m2

B − k2 − q2)
!∝ q2, (A.27)

which implies11

b̂ =
2

2(k · q) + q2
, ĉ =

2(1− â)

2(k · q) + q2
. (A.28)

Inserting this into the generic form of the inhomogeneity leads to Eq. (4.6),

Tµν
H,inhom.(k, q) = −fB

[
âgµν +

(2kµ + qµ)kν + (1− â)(2kµ + qµ)qν

2(k · q) + q2

]
. (A.29)

In order to show that (i) and (iii) require â to have no dependence on k2 or q2 and b̂
as well as ĉ to have no dependence on q2, we consider the family of vectors

S[ân, b̂n, ĉn] =
(

1

mB

[
(k · q)gµν − kµqν

]
,

1

mB

[
q2

k2
kµkν − k · q

k2
qµkν + qµqν − q2gµν

]
,

1

mB

[
k · q
k2

qµkν − q2

k2
kµkν

]
,

i

mB
ϵµνρσkρqσ,mB

[
âng

µν + b̂nk
µkν + ĉnk

µqν

+ [1− (k · q)b̂n]
qµkν

q2
+ [1− ân − (k · q)ĉn]

qµqν

q2

])⊺

, (A.30)

composed of the homogeneous and inhomogeneous basis structures, Eq. (4.1) and Eq. (4.2),
with the trivial (k · q) poles of the latter cancelled according to (ii). The corresponding
vector with the form-factor basis is given by

G[ân, b̂n, ĉn] =
(
Fn
1 (k

2, q2),Fn
2 (k

2, q2),Fn
3 (k

2, q2),Fn
4 (k

2, q2),−fB/mB

)⊺
, (A.31)

10The independence of â on k2 is not needed to deduce Eq. (A.28) but still follows from our assumptions.
11Note that [2(k · q) + q2] = (m2

B − k2) is not considered an explicit dependence on q2.
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i.e., Tµν
H (k, q) = S[ân, b̂n, ĉn] · G[ân, b̂n, ĉn]. Let (âf , b̂f , ĉf ) be the unique choice of reduced

coefficients that yields form factors free of kinematic singularities and with a dynamic B-
meson pole at most in Ff

3 (k
2, q2), in line with our assumptions (i)–(iii). We then consider

the transformation to a basis arising from a different choice (âs, b̂s, ĉs) ̸= (âf , b̂f , ĉf ),

S[âs, b̂s, ĉs] =MS[âf , b̂f , ĉf ], M =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
M51 M52 M53 0 1



, (A.32)

where

M51 = m2
B(ĉf − ĉs), M52 = m2

B

(âf − âs) + (ĉf − ĉs)(k · q)
q2

,

M53 = m2
B

(âf − âs) + (b̂f − b̂s)k
2 + (ĉf − ĉs)(k · q)

q2
, (A.33)

with the form factors accordingly being subject to the transformation

G[âs, b̂s, ĉs] = (M⊺)−1G[âf , b̂f , ĉf ] (A.34)

=
(
Fs
1(k

2, q2),Fs
2(k

2, q2),Fs
3(k

2, q2),Fs
4(k

2, q2),−fB/mB

)⊺

=
(
Ff
1 (k

2, q2) +mBfB(ĉf − ĉs),Ff
2 (k

2, q2)−mBfB
ĉf − ĉs

2
+mBfB

× 2(âf − âs) + (ĉf − ĉs)(m
2
B − k2)

2q2
,Ff

3 (k
2, q2)−mBfB

ĉf − ĉs
2

+mBfB

× 2(âf − âs) + 2(b̂f − b̂s)k
2 + (ĉf − ĉs)(m

2
B − k2)

2q2
,Ff

4 (k
2, q2),−fB/mB

)⊺
.

In contradiction to the assumed uniqueness of (âf , b̂f , ĉf ), the form factor basis G[âs, b̂s, ĉs]
could be rendered free of kinematic singularities and with a dynamic B-meson pole at most
in the pseudoscalar form factor if either of the coefficients â, b̂, or ĉ were allowed to depend
on q2, e.g., by choosing âf = âs, b̂f = q2 = 2b̂s, ĉf = q2 = 2ĉs. We thus infer that all of
the reduced coefficients ought to be independent of q2, for otherwise, an infinite tower of
valid bases would emerge. Even then, choosing the reduced coefficients such that b̂f = b̂s
and

ĉf − ĉs =
2(âs − âf )

m2
B − k2

(A.35)

leads to Fs
2(k

2, q2) and Fs
3(k

2, q2) being free of kinematic singularities; for a basis consistent
with (iii), however, we would need (âs − âf ) ∝ (m2

B − k2) to cancel the dynamic B-meson
poles arising in Fs

1(k
2, q2) and Fs

2(k
2, q2). Consequently, to ensure uniqueness, we require

â to also be independent of k2, making it a constant parameter.
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Bardeen–Tung–Tarrach
decomposition

In this appendix, we outline the modification to the BTT procedure [10, 11] that leads
to the decomposition of the homogeneous part of the hadronic tensor into the Lorentz
structures and form factors given in Eq. (4.1). To this end, we recall that the homogeneous
part fulfills

qµT
µν
H,hom.(k, q) = 0 (B.1)

and that we additionally impose

kνT
µν
H,hom.(k, q)

!
= Tµ

P,hom.(k, q), (B.2)

see Eq. (3.14) and Eq. (3.19), with qµT
µ
P,hom.(k, q) = 0. Hence, we can split Tµν

H,hom.(k, q)
according to

Tµν
H,hom.(k, q) = T̃µν

H,hom.(k, q) + Tµ
P,hom.(k, q)

kν

k2
, (B.3)

where qµT̃
µν
H,hom.(k, q) = 0 = kν T̃

µν
H,hom.(k, q). In the above, Tµ

P,hom.(k, q) enters with a
factor kν/k2 due to its pseudoscalar nature; cf. the fact that the spin-0 component of a
spin-1 field is of time-like polarization. Since the explicit k2-pole attached to Tµ

P,hom.(k, q)
is thus an inherent feature of the pseudoscalar contribution, it needs to be regularized
either by a zero in the accompanying form factor or by a corresponding pole contribution
within T̃µν

H,hom.(k, q). We follow the second approach and perform the BTT procedure for
Tµ

P,hom.(k, q) and T̃µν
H,hom.(k, q) separately, where we use the native blueprint for the former

and a variant that introduces an explicit k2-pole to cancel the aforementioned pole of the
pseudoscalar contribution for the latter.

We first perform the BTT procedure for Tµν
P,hom.(k, q), where the only available building

blocks for the Lorentz structures are

{Lµ
P,hom.,i} = {kµ, qµ}, (B.4)

and gauge invariance in the form qµT
µ
P,hom.(k, q) = 0 is imposed by means of

{
L̃µ

P,hom.,i
}
= Iµ

α

{
Lα

P,hom.,i
}
, Iµν = gµν − kµqν

k · q . (B.5)
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The resulting set
{
L̃µ

P,hom.,i
}
=
{
0, qµ − q2

k · q k
µ
}

(B.6)

consists of a single non-vanishing structure with a pole in (k · q). Following the original
recipe, this irreducible pole is to be eliminated by multiplying with (k · q), leading to the
structure

L̂µ
P,hom. = (k · q)qµ − q2kµ. (B.7)

In order to perform the BTT procedure for T̃µν
H,hom.(k, q), we note that the interaction

is of the form V −A. Hence, the available building blocks for the Lorentz structures are
given by

{Lµν
H,hom.,i} =

{
gµν , kµkν , kµqν , qµkν , qµqν , ϵµναβkρqσ

}
, (B.8)

and we impose qµT̃
µν
H,hom.(k, q) = 0 = kν T̃

µν
H,hom.(k, q) by means of

{
L̃µν

H,hom.,i
}
= Iµ

α

{
Lαβ

H,hom.,i
}
Ĩ ν
β , Ĩµν = gµν − kµkν

k2
. (B.9)

The resulting set

{
L̃µν

H,hom.,i
}
=
{
gµν − kµqν

k · q , 0, 0, 0,
q2

k2
kµkν − q2

k · q k
µqν − k · q

k2
qµkν + qµqν , ϵµνρσkρqσ

}

(B.10)
contains structures with poles in (k ·q) as well as k2. While we explicitly keep the k2 poles,
as mentioned above, we remove one of the two poles in (k · q) by following the original
procedure, i.e., by taking an appropriate linear combination with non-singular coefficients
and multiplying the remaining pole by (k · q). This leads to the minimal [10, 11] set

{
L̂µν

H,hom.,i
}
=
{
(k · q)L̃µν

H,hom.,1, L̃
µν
H,hom.,5 − q2L̃µν

H,hom.,1, L̃
µν
H,hom.,6

}
(B.11)

=
{
(k · q)gµν − kµqν ,

q2

k2
kµkν − k · q

k2
qµkν + qµqν − q2gµν , ϵµνρσkρqσ

}
.

Combining Eq. (B.7) and Eq. (B.11) with Eq. (B.3), the homogeneous part of the
hadronic tensor thus takes the form given in Eq. (4.1).
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Form-factor projectors

In this appendix, we collect the formulae for the projectors Pµν
i (k, q) introduced in Ch. 4

that fulfill Piµν(k, q)T
µν
H (k, q) = Fi(k

2, q2), i = 1, . . . , 4, and Piµν(k, q)T
µν
H (k, q) = fB/mB,

i = 5, 6, for an arbitrary choice of basis for Tµν
H (k, q) [35–38]:

1

mB
Pµν
1 (k, q) =

k · q
2[(k · q)2 − k2q2]

gµν +
3q2(k · q)

2[(k · q)2 − k2q2]2
kµkν − (k · q)2 + 2k2q2

2[(k · q)2 − k2q2]2
kµqν

− 3(k · q)2
2[(k · q)2 − k2q2]2

qµkν +
3k2(k · q)

2[(k · q)2 − k2q2]2
qµqν ,

1

mB
Pµν
2 (k, q) =

k2

2[(k · q)2 − k2q2]
gµν +

2(k · q)2 + k2q2

2[(k · q)2 − k2q2]2
kµkν − 3k2(k · q)

2[(k · q)2 − k2q2]2
kµqν

− 3k2(k · q)
2[(k · q)2 − k2q2]2

qµkν +
3k4

2[(k · q)2 − k2q2]2
qµqν ,

1

mB
Pµν
3 (k, q) =

1

(k · q)2 − k2q2
kµkν − 2k2

[(k · q)2 − k2q2][2(k · q) + q2]
qµkν

− k2

[(k · q)2 − k2q2][2(k · q) + q2]
qµqν ,

1

mB
Pµν
4 (k, q) = − i

2[(k · q)2 − k2q2]
ϵµνρσkρqσ,

mBPµν
5 (k, q) = − k · q

(k · q)2 − k2q2
qµkν +

k2

(k · q)2 − k2q2
qµqν ,

mBPµν
6 (k, q) =

q2

(k · q)2 − k2q2
qµkν − k · q

(k · q)2 − k2q2
qµqν . (C.1)

At this, an ambiguity is hidden in how to collect the terms of the inhomogeneous part
into basis structures in Eq. (4.8) since different such choices will lead to another set of
projectors than the one given above. However, any difference Pµν

i (k, q) between two sets
of valid projectors is of the form

Pµν
i (k, q) = Aiq

µ
[
kν [(k · q) + q2]− qν [(k · q) + k2]

]
(C.2)

271



Appendix C. Form-factor projectors

for i = 3, 5, 6, with the coefficients Ai ≡ Ai(k
2, q2) given by

A3 =
2m2

Bk
2

sD

[
x1(z2 − y2) + x2(y1 − z1)− y1z2 + y2z1

]
,

A5 = −2(k · q) + q2

sD

[
2
[
x1(y2 − 1)− x2(y1 − 1) + y1 − y2

]
(k · q)

+
[
x1(z2 − 1)− x2(z1 − 1) + z1 − z2

]
q2
]
,

A6 = −2(k · q) + q2

sD

[
2(x1y2 − x2y1)(k · q) + (x1z2 − x2z1)q

2
]
, (C.3)

sD = mB

[
(k · q)2 − k2q2

][
2(x1 − y1)(k · q) + (x1 − z1)q

2
][
2(x2 − y2)(k · q) + (x2 − z2)q

2
]
.

Here, xi, yi, and zi account for the splitting of the inhomogeneous contribution in Eq. (4.8)
into two basis structures according to

Tµν
H,inhom.(k, q) =̂− fB

{
xig

µν + yi
2kµkν

2(k · q) + q2
+ zi

qµkν

2(k · q) + q2
,

(1− xi)g
µν + (1− yi)

2kµkν

2(k · q) + q2
+ (1− zi)

qµkν

2(k · q) + q2

}
, (C.4)

where the projectors of Eq. (C.1) correspond to xi = 1, yi = 0 = zi. Hence, we find

P iµν(k, q)T
µν
H,hom.(k, q) = Ai

[
qµT

µν
H,hom.(k, q)

][
kν [(k · q) + q2]− qν [(k · q) + k2]

]

= 0,

P iµν(k, q)T
µν
H,inhom.(k, q) = Ai

[
qµT

µν
H,inhom.(k, q)

][
kν [(k · q) + q2]− qν [(k · q) + k2]

]

= Ai[−fB(k + q)ν ]
[
kν [(k · q) + q2]− qν [(k · q) + k2]

]

= 0. (C.5)

For i = 1, 2, 4, on the other hand, the projectors are independent of the particular choice of
how the terms of the inhomogeneous part are collected into basis structures, i.e., Ai = 0.
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Appendix D

Kinematics

In this appendix, we present some details on the kinematics for the processes B− → ℓ−ν̄ℓγ∗

and B− → ℓ−ν̄ℓℓ′−ℓ′+, which are needed to calculate the squared spin-summed amplitudes
| ĎM(B− → ℓ−ν̄ℓγ∗)|2 and | ĎM(B− → ℓ−ν̄ℓℓ′−ℓ′+)|2.

D.1 B− → ℓ−ν̄ℓγ
∗

For a consistent treatment of the kinematics in the process B− → ℓ−ν̄ℓγ∗, all momenta and
polarization vectors have to be evaluated in a single frame of reference. To this end, we
calculate the corresponding quantities in the center-of-mass frames of the {ℓ−ν̄ℓ(k), γ∗(q)}
and {ℓ−(pℓ), ν̄ℓ(pν)} subsystems and perform a Lorentz transformation of the latter to
the former frame.

In the center-of-mass frame of {ℓ−ν̄ℓ(k), γ∗(q)}, one finds the magnitude of the photon’s
three-momentum and the energies

|pγ | =

√
λ(m2

B, k
2, q2)

2mB
, EW =

m2
B + k2 − q2

2mB
, Eγ =

m2
B − k2 + q2

2mB
. (D.1)

The four-momentum of the leptonic subsystem thus reads

k = (EW , 0, 0, |pγ |)⊺, (D.2)

and, accordingly, the four-momentum of the photon and its polarization vectors are given
by

q = (Eγ , 0, 0,−|pγ |)⊺, ϵ(q;λ = ±1) = ∓ 1√
2
(0, 1,∓i, 0)⊺,

ϵ(q;λ = 0) =
1

ξ
(−|pγ |, 0, 0, Eγ)

⊺, ϵ(q;λ = T ) =
1

ξ
(Eγ , 0, 0,−|pγ |)⊺, (D.3)

where any physical observable is necessarily independent of ξ =
√
q2.

In the center-of-mass frame of {ℓ−(pℓ), ν̄ℓ(pν)}, we have

|pℓ| =
k2 −m2

ℓ

2
√
k2

, Eℓ =
k2 +m2

ℓ

2
√
k2

, Eν =
k2 −m2

ℓ

2
√
k2

(D.4)
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for the magnitude of the negatively charged lepton’s three-momentum and the correspond-
ing energies. Hence, transforming the subsystem {ℓ−(pℓ), ν̄ℓ(pν)} to the center-of-mass
frame of {ℓ−ν̄ℓ(k), γ∗(q)}, the four-momenta of the leptons are found to be

pℓ =




γW (Eℓ + βW |pℓ| cosϑW )

|pℓ| sinϑW
0

γW (βWEℓ + |pℓ| cosϑW )


 , pν =




γW (Eν − βW |pℓ| cosϑW )

−|pℓ| sinϑW
0

γW (βWEν − |pℓ| cosϑW )


 , (D.5)

where βW = |pγ |/EW , γW = (1 − β2W )−1/2, and ϑW is the polar angle of ℓ−(pℓ) in the
center-of-mass frame of {ℓ−(pℓ), ν̄ℓ(pν)}.

D.2 B− → ℓ−ν̄ℓℓ
′−ℓ′+

In addition to the magnitudes of three-momenta |pγ | and |pℓ| in the center-of-mass frames
of {ℓ−ν̄ℓ(k), γ∗(q)} and {ℓ−(pℓ), ν̄ℓ(pν)}, respectively, we need the three-momentum and
energy of the leptons in the center-of-mass frame of {ℓ′−(q1), ℓ′+(q2)} to describe the
process B− → ℓ−ν̄ℓℓ′−ℓ′+,

|pℓ′ | =

√
q2 − 4m2

ℓ′

2
, Eℓ′ =

√
q2

2
. (D.6)

Furthermore, two additional angles besides ϑW are necessary here: the polar angle ϑγ
of ℓ′−(q1) in the center-of-mass frame of {ℓ′−(q1), ℓ′+(q2)} and the azimuthal angle φ
between the decay planes of the subsystems {ℓ−(pℓ), ν̄ℓ(pν)} and {ℓ′−(q1), ℓ′+(q2)}, see
Fig. D.1. A transformation of the subsystem {ℓ′−(q1), ℓ′+(q2)} to the center-of-mass frame
{ℓ−ν̄ℓ(k), ℓ′−ℓ′+(q)} then yields the four-momenta

q1 =




γγ(Eℓ′ + βγ |pℓ′ | cosϑγ)
−|pℓ′ | sinϑγ cosφ
−|pℓ′ | sinϑγ sinφ

γγ(−βγEℓ′ − |pℓ′ | cosϑγ)


 , q2 =




γγ(Eℓ′ − βγ |pℓ′ | cosϑγ)
|pℓ′ | sinϑγ cosφ
|pℓ′ | sinϑγ sinφ

γγ(−βγEℓ′ + |pℓ′ | cosϑγ)


 , (D.7)

where βγ = |pγ |/Eγ , γγ = (1− β2γ)
−1/2.

For the four-body phase space, we used

dΦ4(p; pℓ, pν , q1, q2) = dΦ2(p; k, q) dΦ2(k; pℓ, pν) dΦ2(q; q1, q2)
dk2

2π

dq2

2π
(D.8)

in Eq. (6.2), where

dΦ2(p; k, q) =
1

16π2
|pγ |
mB

dΩB, dΦ2(k; pℓ, pν) =
1

16π2
|pℓ|√
k2

dΩW ,

dΦ2(q; q1, q2) =
1

16π2
|pℓ′ |√
q2

dΩγ (D.9)

are the two-body phase spaces of the subsystems {ℓ−ν̄ℓ(k), ℓ′−ℓ′+(q)}, {ℓ−(pℓ), ν̄ℓ(pν)},
and {ℓ′−(q1), ℓ′+(q2)}, respectively. Here, dΩB, dΩW , and dΩγ denote the differential solid
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D.2. B− → ℓ−ν̄ℓℓ′−ℓ′+

Figure D.1: Illustration of the decay B− → ℓ−ν̄ℓℓ′−ℓ′+, with the two decay planes of the
leptonic subsystems and the three angles necessary to describe the process.

angles in the corresponding center-of-mass frames. Three of the six angular integrations
can be rendered trivial by rotating the coordinate system appropriately, leading to the
expression

dΦ4(p; pℓ, pν , q1, q2) =
1

2048π6
|pγ |
mB

|pℓ|√
k2

|pℓ′ |√
q2

d cosϑW d cosϑγ dφdk2 dq2 (D.10)

for the four-body phase space, with the remaining angles being as illustrated in Fig. D.1.
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Appendix E

Asymptotics

In this appendix, we show that the form factors FI
i (k

2, q2) introduced in Ch. 5 as well
as their discontinuities drop off as 1/q2 asymptotically. This behavior was assumed to
avoid subtracting the dispersion relation of Eq. (5.11) and justified the monopole ansatz
for the form factors in Eq. (5.15). We determine the form factors’ asymptotic behavior for
q2 → ∞ by inspecting the results of a calculation of the B → γ∗ form factors within an
OPE [15]. For our purposes, it suffices to inspect the leading-power terms within this OPE,
which are illustrated diagrammatically in Fig. E.1. The OPE uses an interpolating quark
current for the B meson, namely [15] JB(x) = ū(x)γ5b(x), which fulfills ⟨0|JB(0)|B−⟩ =
−ifBm

2
B/(mb +mu), see Eq. (A.23). Calculating the sum of the two diagrams depicted

in Fig. E.1, we find

XI
µν(k, q) = e

∫
d4l

(2π)4
Tr
[
− γ5

i(/l − /q +mu)

(l − q)2 −m2
u

QI
uγµ

i(/l +mu)

l2 −m2
u

γν(1− γ5)
i(/l + /k +mb)

(l + k)2 −m2
b

− γ5
i(/l − /k +mu)

(l − k)2 −m2
u

γν(1− γ5)
i(/l +mb)

l2 −m2
b

QI
bγµ

i(/l + /q +mb)

(l + q)2 −m2
b

]
,

(E.1)

where l is the loop momentum, q2 < 0 is large, and the isospin charges are given by
(QI=0

u , QI=0
b ) = (1/6,−1/3) and (QI=1

u , QI=1
b ) = (1/2, 0).

For the discontinuities, it then follows that

discq2FI,OPE
i (k2, q2) ∝ discq2

[
Pi

µν(k, q)XI
µν(k, q)

]
, (E.2)

and the asymptotic behavior for large q2 < 0 is found to be given by [38]

discq2FI,OPE
i (k2, q2) ∼ 1/q2, (E.3)

rendering the dispersion integrals convergent without any subtractions.
Similarly, we find

FI,OPE
i (k2, q2) ∼ 1/q2 (E.4)

for the asymptotic behavior of the form factors, which justifies a monopole ansatz in the
framework of VMD.
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p

JB

u

b

u

k

Jν
H

q

Jµ
EM

p

JB

u

b

b

q

Jµ
EM

k

Jν
H

Figure E.1: The leading-order diagrams in the OPE for the form factors Fi(k
2, q2). Dia-

grams contributing at a higher order in the OPE are neglected here.
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Appendix F

Intermediate results

In this appendix, we collect the covariance matrices for the normalizations NV
i,j from

Table 5.2 and the functions fi,j and gi,j introduced in Eq. (6.4) and Eq. (6.7).

F.1 Covariance matrices

For reasons of consistency with the rounding of the normalization uncertainties, we round
the numerical values in the covariance matrices to four significant digits. Since the input
used to determine the normalizations does not exhibit a correlation between the param-
eters of the ω and ρ mesons, the normalizations Nω

i,j and Nρ
i,j are uncorrelated, i.e.,

Cov(Nω
i,j , N

ρ
k,l) = 0 for all i, j, k, l, so that our results can be collected in two independent

(12× 12) matrices.
For the covariances between the normalizations Nω

i,j , we find

106 × Cov(Nω
i,j , N

ω
k,l)mn (F.1)

=




9.186 −11.29 66.84 16.05 −65.26 739.2 16.05 57.91 −371.5 −7.348 −37.43 135.1

−11.29 378.7 −1444 −151.5 491.6 −3209 −151.5 −186.7 1270 2.220 −241.8 353.4

66.84 −1444 7180 991.8 −5858 24670 991.8 −911.2 −1778 −6.404 558.3 −1611

16.05 −151.5 991.8 740.4 −1134 7731 740.4 2429 −6410 13.70 3.901 134.0

−65.26 491.6 −5858 −1134 20370 −52440 −1134 14440 −31960 −9.187 986.6 −2592

739.2 −3209 24670 7731 −52440 266600 7731 −9322 46070 −305.2 −3351 16080

16.05 −151.5 991.8 740.4 −1134 7731 740.4 2429 −6410 13.70 3.901 134.0

57.91 −186.7 −911.2 2429 14440 −9322 2429 28910 −63340 15.82 682.5 204.0

−371.5 1270 −1778 −6410 −31960 46070 −6410 −63340 498000 144.6 −1346 13990

−7.348 2.220 −6.404 13.70 −9.187 −305.2 13.70 15.82 144.6 7.794 34.85 −134.1

−37.43 −241.8 558.3 3.901 986.6 −3351 3.901 682.5 −1346 34.85 450.4 −1108

135.1 353.4 −1611 134.0 −2592 16080 134.0 204.0 13990 −134.1 −1108 8249




,

where m = (3i+ j − 2) and n = (3k + l − 2) denote the rows and columns of the matrix,
respectively. At this, it is to be noted that Nω

2,0 = Nω
3,0, see the discussion in Ch. 5, so

that one row and one column of the matrix is, in fact, redundant, reducing the degrees of
freedom to an (11× 11) matrix.12

12Due to this redundancy, the covariance matrix becomes positive definite only after removing the
respective row and column.
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In the same way and with the analogous caveat Nρ
2,0 = Nρ

3,0, we find the covariances
between the normalizations Nρ

i,j to be given by

105 × Cov(Nρ
i,j , N

ρ
k,l)mn (F.2)

=




7.758 −25.35 132.8 17.88 −47.77 705.8 17.88 70.38 −233.2 −5.403 −18.46 46.61

−25.35 231.1 −988.0 −151.1 393.9 −3906 −151.1 −389.7 7.717 12.95 −55.78 −26.32

132.8 −988.0 5543 1059 −5304 26800 1059 411.8 −3620 −55.19 −90.41 −25.79

17.88 −151.1 1059 631.5 −1626 7978 631.5 1294 −2278 9.762 −23.75 −12.89

−47.77 393.9 −5304 −1626 17200 −43390 −1626 7476 −12080 −44.36 814.8 −1798

705.8 −3906 26800 7978 −43390 224000 7978 2795 15740 −248.9 −2166 8948

17.88 −151.1 1059 631.5 −1626 7978 631.5 1294 −2278 9.762 −23.75 −12.89

70.38 −389.7 411.8 1294 7476 2795 1294 14980 −16040 −29.65 443.1 795.0

−233.2 7.717 −3620 −2278 −12080 15740 −2278 −16040 396500 42.62 123.5 27430

−5.403 12.95 −55.19 9.762 −44.36 −248.9 9.762 −29.65 42.62 5.693 16.05 −56.63

−18.46 −55.78 −90.41 −23.75 814.8 −2166 −23.75 443.1 123.5 16.05 197.2 −383.9

46.61 −26.32 −25.79 −12.89 −1798 8948 −12.89 795.0 27430 −56.63 −383.9 5497




.

F.2 Functions fi,j and gi,j

For the functions fi,j introduced in Eq. (6.4), we obtain

f1,1 =
64πk2−q

2
+(k

2
+ + k2)[λ(m2

B, k
2, q2) + 6k2q2]

9k2
, f3,3 = m2

ℓ

32πk2−q
2
+q

2λ(m2
B, k

2, q2)

3k4
,

f1,2 = −64πk2−q
2
+q

2(k2+ + k2)∆(k2, q2)

3k2
, f4,4 =

64πk2−q
2
+(k

2
+ + k2)λ(m2

B, k
2, q2)

9k2
,

f2,2 =
32πk2−q

2
+q

2(k2+ + k2)[λ(m2
B, k

2, q2) + 12k2q2]

9k4
(F.3)

and

f1,5 = m2
ℓ

128πq2+
3k2−

[
k2−
[
∆(k2, q2)− k2+

]
− k2Bk

2
[
∆(k2, q2)− 2m2

ℓ

]
LD(k

2, q2)
]
,

f2,5 = −m2
ℓ

128πq2+q
2

3k2−

[
3k2− −

[
3k2Bk

2 + (k2−)
2
]
LD(k

2, q2)
]
,

f3,5 = −m2
ℓ

64πq2+q
2

3k2Bk
2
−k2

[
k2−
[
k2−∆(k2, q2) + 2k2(k2B + 2k2−)

]

− 2k2Bk
2(k2Bk

2 + k2−k
2
+)LD(k

2, q2)
]
,

f4,5 = −m2
ℓ

128πq2+
3k2−

[
k2−∆(k2, q2)− k2

[
k2B∆(k2, q2)− 2k2−q

2
]
LD(k

2, q2)
]
,

f5,5 = −m2
ℓ

128πq2+
3(k2B)

2k2−[k
2
−q2(k

2
B + k2−) +m2

ℓ (k
2
B)

2]

×
[
k2−
[
k2−(k

2
B + k2−)

[
k2B −∆(k2, q2)

][
4(k2−)

2 + k2−[3k
2
B +∆(k2, q2)] + 4(k2B)

2
]

+m2
ℓ

[
4(k2−)

3[k2B −∆(k2, q2)] + 8k2B(k
2
−)

2[2k2B −∆(k2, q2)]
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+ (k2B)
2k2−[13k

2
B − 5∆(k2, q2)] + 2(k2B)

3[2k2B −∆(k2, q2)]
]

+ 8m4
ℓ (k

2
B)

2(k2B + k2−)
]

+ 2k2Bk
2
[
k2B
[
∆(k2, q2)− 2k2B

]
− 2k2−(k

2
B + k2−)− 4m2

ℓ (k
2
B + k2−)

]

×
[
k2−q

2(k2B + k2−) +m2
ℓ (k

2
B)

2
]
LD(k

2, q2)

]
, (F.4)

where we defined

k2B = m2
B − k2, k2± = k2 ±m2

ℓ , q2+ = q2 + 2m2
ℓ′ , ∆(k2, q2) = k2B − q2,

LD =
L+(k

2, q2)− L−(k2, q2)√
λ(m2

B, k
2, q2)

, L±(k2, q2) = log

(
1±

k2−
√
λ(m2

B, k
2, q2)

k2Bk
2
+ + k2−q2

)
. (F.5)

All other, unlisted functions vanish, i.e., f1,3 = f1,4 = f2,3 = f2,4 = f3,4 = 0. Given the
scaling with the lepton mass, one finds that this set further reduces to four functions in
the chiral limit mℓ = 0.

For the functions gi,j introduced in Eq. (6.7), we find

g1,3 = m2
ℓ

32πk2−q
2
+q

2
√
λ(m2

B, k
2, q2)

3k2
, g1,4 =

32πk2−q
2
+∆(k2, q2)

√
λ(m2

B, k
2, q2)

3
, (F.6)

g2,3 = −m2
ℓ

16πk2−q
2
+q

2∆(k2, q2)
√
λ(m2

B, k
2, q2)

3k4
, g2,4 = −

64πk2−q
2
+q

2
√
λ(m2

B, k
2, q2)

3

and

g1,5 = m2
ℓ

32πq2+
3k2Bk

2
−

[
2(k2−)

2
√
λ(m2

B, k
2, q2)− 4(k2B)

2k2
[
∆(k2, q2)− 2m2

ℓ

]
L̃D(k

2, q2)
]
,

g2,5 = m2
ℓ

32πq2+q
2

3k2Bk
2
−k2

[
(k2−)

2
√
λ(m2

B, k
2, q2) + 4k2Bk

2
[
3k2Bk

2 + (k2−)
2
]
L̃D(k

2, q2)
]
,

g3,5 = m2
ℓ

128πq2+q
2

3k2−
(k2Bk

2 + k2+k
2
−)L̃D(k

2, q2),

g4,5 = m2
ℓ

128πk2q2+
3k2−

[
2k2−

[
∆(k2, q2)− k2B

]
+ k2B∆(k2, q2)

]
L̃D(k

2, q2),

g5,5 = m2
ℓ

256πk2q2+
3k2Bk

2
−[k

2
−q2(k

2
B + k2−) +m2

ℓ (k
2
B)

2][k2+∆(k2, q2) + 2k2q2]

×
[
k2B(k

2
−)

2(k2B + k2−)(q
2 + 2m2

ℓ )
√
λ(m2

B, k
2, q2)

+
[
k2+∆(k2, q2) + 2k2q2

][
m2

ℓ (k
2
B)

2 + k2−q
2(k2B + k2−)

]
(F.7)

×
[
4m2

ℓ (k
2
B + k2−) + 2

[
(k2B)

2 + (k2−)
2 + k2Bk

2
−
]
− k2B∆(k2, q2)

]
L̃D(k

2, q2)

]
,

where we additionally defined

L̃D =
1√

λ(m2
B, k

2, q2)
log

4k2−k
2q2(k2B + k2−) + 4m2

ℓ (k
2
B)

2k2

[k2+∆(k2, q2) + 2k2q2]2
. (F.8)
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All other, unlisted functions vanish, i.e., g1,1 = g2,2 = g3,3 = g4,4 = g1,2 = g3,4 = 0.
Again, from the scaling with the lepton mass, one finds that this set further reduces to
two functions in the chiral limit mℓ = 0.
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Appendix G

Constants and parameters

We collect the constants and parameters used throughout the analysis in this part of the
thesis in Table G.1.

283



Appendix G. Constants and parameters

Quantity Variable Value Reference

Mass π± Mπ 139.57039(18)MeV

[27]

Mass B± mB 5279.34(12)MeV

Mass B∗ mB∗ 5324.71(21)MeV

Mass B1 mB1 5725.9+2.5
−2.7 MeV

Mass ρ(770) Mρ 775.26(23)MeV

Mass ω(782) Mω 782.66(13)MeV

Lifetime B± τB 1638(4) fs

Width ρ(770) Γρ 147.4(8)MeV

Width ω(782) Γω 8.68(13)MeV

Decay constant ρ(770) fρ 216(3)MeV
[9]

Decay constant ω(782) fω 197(8)MeV

Decay constant B± fB 190.0(1.3)MeV [39–43]

CKM matrix element b→ u |Vub| 3.77(15)× 10−3 [44]

Table G.1: The masses, widths, and other physical parameters needed for the calculations
in this part of the thesis. For the ρ meson, the parameters are identified with those of the
neutral ρ0.
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Synthesis

The standard model of particle physics has proven extremely successful in describing a
plethora of phenomena at small length scales. However, besides its fundamental incom-
patibility with gravity, the existence of dark matter and the apparent matter–antimatter
asymmetry in the universe are examples that give definite proof of its incompleteness.
Naturally, any substantial extension of the standard model either needs to involve heavy
or weakly coupled particles as experimental evidence from particle colliders remains scarce.
There is further indication of physics beyond the standard model from so-called precision
observables, which aim at scrutinizing the imprint of new physics on observables that ei-
ther are strongly suppressed in the standard model or can be calculated to a very high
precision within the theory. In this thesis, we discussed three different standard-model
probes at the precision frontier: the anomalous magnetic moment aµ of the muon, rare
semileptonic η(′) decays, and B → γ∗ transition form factors.

The longstanding tension between the experiment and the standard-model prediction
for aµ potentially hints at physics beyond the standard model. With the uncertainty on the
standard-model value being dominated by hadronic contributions, efforts on the theoretical
side are mostly concentrated on the improvement of the latter. Although the subprocess
hadronic light-by-light scattering contributes with a comparably small central value, its
uncertainty presently comes close to the one of hadronic vacuum polarization. Here, an
important role is played by axial-vector mesons—so far evaluated with a Lagrangian model
for the hadronic light-by-light tensor—since they are responsible for a large fraction of the
current light-by-light uncertainty. In order to improve this situation, we performed a data-
driven analysis of the axial-vector transition form factors—the relevant input quantities
for a dispersive evaluation of aµ—in Part I and its Addendum. Given the available data,
the analysis is set up for the transition form factors of the f1, and information on the
entire triplet including the f ′1 and a1 is obtained under the assumption of U(3) symmetry.

In view of the intended dispersive application, we employed a decomposition of the
A→ γ∗γ∗ amplitude into Lorentz structures and form factors free of kinematic singular-
ities. Using this basis, we put forward various vector-meson-dominance parameterizations
for the transition form factors, which primarily differ in their high-energy behavior, as
motivated by the inclusion of distinct short-distance constraints from the light-cone ex-
pansion. To obtain a description of the form factors that is valid in the whole energy range,
the vector-meson-dominance components were further complemented by asymptotic con-
tributions from this expansion. For each of the proposed parameterizations, we performed
a combined phenomenological analysis to extract information on the free parameters of the
model. Our final result given in the Addendum to Part I consists of two sets of solutions
for the coupling constants that emerge within the vector-meson-dominance framework.
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Synthesis

Together, the form-factor parameterizations for the triplet of axial-vector mesons estab-
lished in this thesis pave the way for a revised evaluation of the axial-vector contributions
to aµ. Here, the two scenarios of coupling constants following from our global fit serve as
an estimate for the systematic uncertainty, and work is ongoing to determine their effect
on the anomalous magnetic moment of the muon. Crucially, the dominant uncertainties
of our result are of experimental origin; the process f1 → e+e−, especially, presently suf-
fers from large error bands and needs experimental clarification, but the majority of the
remaining data demands a revision as well. One naive leverage point to refine our anal-
ysis thus is the improvement of the existing experimental data or measurements of novel
observables that entail additional constraints on the axial-vector transition form factors.
While a full dispersive analysis does not seem feasible at the moment as it requires differ-
ential data on f1 decays, it might become viable in the distant future. To go beyond the
essential solicitation for improved data, it would furthermore be interesting to study the
form factors by means of a completely different approach. Performing a calculation using,
e.g., a dynamic model instead of a data-driven analysis might, in particular, give further
insight into the hierarchy of the three transition form factors of axial-vector mesons.

The semileptonic decays η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ−, ℓ = e, µ, analyzed in Part II
provide another probe of the standard model at the precision frontier. Due to the strong
suppression of the corresponding decay rates within the standard model, they are consid-
ered rare processes, and any experimental signal conclusively deviating from the standard-
model value would hint at new physics. Currently, experimental results are limited to up-
per bounds on the branching ratios, but the prospect of improved measurements from the
REDTOP collaboration calls for updated high-precision calculations—thus far carried out
under rather radical assumptions—with reasonable, conservative uncertainty estimates.

For our analysis, we constructed amplitudes for the respective semileptonic η(′) decays
by assuming the underlying processes η(′) → π0γ∗γ∗ and η′ → ηγ∗γ∗ to be dominated
by the exchange of vector mesons. The relevant V → Pγ∗ transitions were modeled in
terms of a set of form factors, for which we proposed numerous vector-meson-dominance
parameterizations. In essence, these variants differ in the assumptions about their high-
energy behavior, with the normalizations and relative signs determined from phenomeno-
logical input and U(3) symmetry. Using the established framework, we calculated singly-
and doubly-differential decay widths as well as integrated branching ratios for both the
semileptonic and the two-photon decays. Our results for the former demonstrated that the
Dalitz plots exhibit a non-flat behavior and that the additional, non-trivial momentum
dependence of the vector-to-pseudoscalar transition leads to a significant decrease in the
decay rates; the precise parameterization of this dependence was found to be of secondary
importance, however. To go beyond the vector-meson-dominance model, we also analyzed
S-wave rescattering effects for η → π0ℓ+ℓ−, which were found to be negligible.

The semileptonic η(′) decays investigated in this thesis are considered promising can-
didates to search for a host of effects beyond the standard model, including

• a tree-level contribution to the processes from a C- and CP-violating one-photon
exchange. Given the loop- and coupling-induced suppression of the symmetry-
conserving two-photon mechanism, such a contribution has the potential to produce
branching ratios that exceed those from within the standard model. Since our analy-
sis showed that the relative standard-model background is even smaller than priorly
estimated, the scenario of observing a discernable excess seems yet more likely than
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before; here, our results obtained with the different models allow one to assess the
systematic uncertainty. While the C-conserving and C-violating mechanisms do not
interfere at the level of decay rates, they can lead to an asymmetry in the Dalitz
plots, which, in fact, gains in sensitivity if both contributions are of comparable size.
The differential distributions provided in this thesis are to nurture the endeavor of
corresponding measurements, illustrating that the flat behavior that was previously
assumed for the Dalitz plots yields an insufficient description.

• Another source of new physics that can be probed with the discussed η(′) decays is the
simultaneous violation of P and CP. Similar to the violation of C described above,
signals of this type can manifest themselves in interference patterns, where the viola-
tion of P requires an analysis of polarization observables instead of differential decay
distributions. Not only are these quantities more difficult to measure, but the P-
violating mechanism underlies stringent bounds from studies on the neutron’s electric
dipole moment, which renders these effects less favorable to search for physics beyond
the standard model. Still, the formalism established in this thesis provides the means
to calculate the standard-model contribution to the implied polarization observables,
which would be useful for the interpretation of prospective measurements.

• The decays η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ− can further be used to search for new light
scalar particles; detecting these weakly coupled particles requires the identification
of resonance structures in the corresponding lepton–lepton spectra. Although such
degrees of freedom could additionally violate the symmetries of the standard model,
they may also emerge as symmetry-conserving features, e.g., a Higgs-like scalar.

There are further effects beyond the standard model that can be tested with the semilep-
tonic η(′) decays considered in this thesis, e.g., the simultaneous violation of C and P
together with CP. Moreover, the two-photon decays η(′) → π0γ∗γ∗ and η′ → ηγ∗γ∗

themselves provide an excellent playground to scrutinize new physics.
In Part III, we investigated B → γ∗ form factors in the context of the four-lepton

decay B− → ℓ−ν̄ℓℓ′−ℓ′+, ℓ = e, µ, τ , ℓ′ = e, µ. Besides entailing valuable information
on the leading-twist B-meson light-cone distribution amplitude through the transition
form factors, the four-lepton decay also qualifies as a candidate for performing precision
tests of the standard model. While we utilized a vector-meson-dominance ansatz for the
phenomenological analysis in this thesis, the developed framework is based on dispersive
methods and, as such, provides the foundation for more sophisticated future analyses.

To construct an amplitude for the process B− → ℓ−ν̄ℓℓ′−ℓ′+, we first studied the decay
B− → ℓ−ν̄ℓγ∗, improving on previous results from the literature by retaining the effects
from non-zero lepton masses. The deduced amplitude was decomposed into Lorentz
structures and form factors free of kinematic singularities, with the latter parameterized
in terms of a series expansion in a conformal variable and the momentum dependence of
the virtual photon being incorporated under the assumption of vector-meson dominance.
By establishing a set of dispersion relations for the transition form factors, we determined
the free parameters of our model using available input from the literature. As a phe-
nomenological application of our formalism, we calculated integrated branching ratios and
forward–backward asymmetries for B− → ℓ−ν̄ℓℓ′−ℓ′+, for both ℓ ̸= ℓ′ and ℓ = ℓ′, as well
as the corresponding differential distributions for the case of distinct lepton flavors.
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The theoretical predictions for the decay B− → ℓ−ν̄ℓℓ′−ℓ′+ provided in this thesis can
be confronted with experimental measurements from, e.g., the Belle II and the LHCb
experiment to probe our understanding of the standard model. Currently, though, there
exists only a single measurement for this process, which sets an upper limit for the branch-
ing ratio of the identical-lepton channel B− → µ−ν̄µµ−µ+. Improving this measurement
and determining a central value is a crucial step to stimulate further progress at this
frontier, but experimental analyses of the other channels—preferably also for the case of
distinct lepton flavors—are needed likewise. As soon as the experimental results attain a
sufficiently high precision, our formalism can be refined by, e.g.,

• including additional contributions from the ϕ meson and other—excited—states in
our vector-meson-dominance framework. Such an extension requires non-pertur-
bative input on, inter alia, B → ϕ form factors—as relevant for B− → ℓ−ν̄ℓϕ—which
is presently lacking; the determination of these form factors would thus also prove
advantageous for a better understanding of the B → γ∗ analogs.

• Additionally, the resonant contribution from the ρ meson could be replaced by a
dispersive description in terms of the two-body intermediate state ππ, for which
the formalism developed in this thesis is an essential requirement. However, this
refinement necessitates currently unavailable input on B → ππ form factors—as
pertinent to B− → ℓ−ν̄ℓπ−π+; here, too, one could thus leverage the knowledge on
the B → ππ transition to improve one’s understanding of B → γ∗ form factors.

The B → γ∗ form factors can further be used to extract information on the leading-twist
B-meson light-cone distribution amplitude by comparing with predictions from collinear-
factorization approaches. Here, our dispersive framework allows for the transfer of infor-
mation from the region of time-like photon momenta—as accessible experimentally or by
studying quantum chromodynamics on the lattice—to the space-like region; in this way,
the sensitivity to the extracted parameters is enhanced because the contamination from
soft contributions within the collinear-factorization approaches is reduced.
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Glossary

Acronyms

BL Brodsky–Lepage
BSM beyond the standard model
BTT Bardeen–Tung–Tarrach
BW Breit–Wigner
CKM Cabibbo–Kobayashi–Maskawa
EM electromagnetic
FB forward–backward
FSR final-state radiation
HLbL hadronic light-by-light
HVP hadronic vacuum polarization
LCDA light-cone distribution amplitude
LCE light-cone expansion
LCSR light-cone sum rule
OPE operator product expansion
OZI Okubo–Zweig–Iizuka
PDG Particle Data Group
PV Passarino–Veltman
QCD quantum chromodynamics
QED quantum electrodynamics
SCET soft-collinear effective theory
SM standard model
TFF transition form factor
VMD vector-meson dominance
WET weak effective theory

Particles

a1 a1(1260)

a2 a2(1320)

f1 f1(1285)

f ′
1 f1(1420)

ϕ ϕ(1020)

ϕ′ ϕ(1680)

ϕ′′ ϕ(2170)

η′ η′(958)
K∗ K∗(892)
ρ ρ(770)

ρ′ ρ(1450)

ρ′′ ρ(1700)

ω ω(782)

ω′ ω(1420)

ω′′ ω(1650)
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Foundations index
anomalous magnetic moment, 35
⌊ hadronic light-by-light scattering
⌊ hadronic vacuum polarization
Bardeen–Tung–Tarrach procedure, 32
⌊ gauge invariance, Ward identity
⌊ kinematic singularities and zeroes
⌊ transforming between tensor bases
Cauchy principal value, 28
chirality projection operators, 13
Chisholm identity, 17
conformal mappings, 43
⌊ z mapping

cross section, 20
decay rate, 20
⌊ double counting, symmetry factors
⌊ spin-averaging, spin-summing
Dirac equation, 15
dispersion relations, 25
⌊ crossed-channel singularities
⌊ right- and left-hand cuts

energy-dependent widths, 31
⌊ constant-width approximation

equal-time commutators, 16
fermionic field operators, 12
⌊Dirac spinors
⌊ equal-time anticommutation relations

fine-structure constant, 13
form factors, 30
⌊ pion vector form factor
⌊ transition form factors

gamma matrices, 12
⌊Dirac adjoint
⌊Feynman slash notation
Källén function, 13
Levi-Civita tensor, 12
Lorentz transformations, 14
Minkowski space, 11
⌊ scalar product, summation convention
⌊ space-time

natural units, 12
N -body phase space, 18
⌊ recursion relation
⌊ two-body phase space
Passarino–Veltman decomposition, 40
⌊ coefficient functions

quantum numbers, 29
⌊ angular momentum, spin
⌊ charge parity, parity
⌊G-parity, isospin

scalar loop integrals, 42
⌊Feynman parameters
Sokhotski–Plemelj theorem, 28
spectral representation, 31
⌊ dispersively improved propagators
⌊ spectral function

subtracted dispersion relations, 26
symmetries, 29
⌊ charge conjugation
⌊ parity
⌊ time reversal

tensor loop integrals, 37
⌊master integrals
⌊ ultraviolet and infrared divergences

three-body-decay phase space, 21
time ordering, 13
⌊Heaviside step function

translation of field operators, 15
unitarity relation, 24
⌊ amplitude M, S-matrix, T -matrix
⌊ branch points, poles
⌊ discontinuity

vector-meson dominance, 30
⌊Breit–Wigner propagator
⌊ narrow-width approximation
z expansion, 47
⌊ dispersive bounds, unitarity bounds
⌊ subthreshold poles
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