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Abstract

We propose the representation of data from finite element car crash simulations in a graph database
to empower analysis approaches. The industrial perspective of this work is to narrow the gap between
the uptake of modern machine learning methods and the current computer-aided engineering-based
vehicle development workflow. The main goals for the graph representation are to achieve searchabil-
ity and to enable pattern and trend investigations in the product development history.
In this context, we introduce features for car crash simulations to enrich the graph and to
provide a summary overview of the development stages. These features are based on the
energy output of the finite element solver and, for example, enable filtering of the input
data by identifying essential components of the vehicle. Additionally, based on these features,
we propose fingerprints for simulation studies that assist in summarizing the exploration of
the design space and facilitate cross-platform as well as load-case comparisons. Furthermore,
we combine the graph representation with energy features and use a weighted heterogeneous
graph visualization to identify outliers and cluster simulations according to their similarities.
We present results on data from the real-life development stages of an automotive company.

Keywords: FE Analysis, Automotive, Semantic Data, Outlier Detection, CAE Knowledge, Knowledge
Graphs, Graph Database, Heterogeneous Graph

1 Introduction

In the past 30 years, the reliability of the fi-
nite element (FE) method for predicting the crash
behavior of vehicles has steadily improved. FE
modeling improvements resulted in more and more
detailed simulations with continuously intensify-
ing complexity of the data. Moreover, the growth
of computing power has increased the number
of simulations. Due to this data and complexity
growth on the one hand and limited availability

of engineering time on the other hand, simulation
result data is often unexplored.

Furthermore, the complexity and size of the
simulation data also prevent the direct applica-
tion of most machine learning (ML) methods on
the simulation data, e.g., to capture and detect
patterns and trends. We also observe that deter-
mining a simulation data representation based on
engineering principles, which in particular helps
to quantify crash behavior, is a largely unexplored
research area.
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Figure 1: The graph-based analysis and visualization workflow involves loading crash simulations to a
graph database, including the computation of engineering features and a data visualization for knowledge
discovery. The node coloring in the heterogeneous graph reflects different node types and follows the
schema in Figure 6, fingerprints, degree distributions, or force-directed graph layouts are examples of
visualization approaches.

Therefore, we propose a data representation
approach called vehicle knowledge graph (KG),
car-graph in short, which allows the discovery of
patterns and trends in simulation results. The
visionary goal of the car-graph ansatz is to ex-
tract a crash identity of the vehicle. A short-term
outcome is an assistance tool for engineers to effi-
ciently explore and evaluate data, e.g., from pre-
vious simulation studies in different projects. The
assistance functionality shall encompass searcha-
bility and the capturing of patterns and trends,
while the aim is to support the prediction of out-
comes or the recommendation of solutions. To
achieve this, we represent crash simulation data
in a graph database, including suitable physical
properties, to generate a KG and to empower
graph-based ML algorithms.

There are various options available for the se-
lection of physical properties from the different
computer-aided engineering (CAE) outputs. Most
of these depend on the simulation setups and are
too costly for comparing many simulations. Hence,
we propose the usage of a few scalar features stem-
ming from the internal energy (IE) of components,
both in our graph representation of simulation
data and for the analysis of simulation results.
The fundamental physics of a crash accident is to
absorb the energy of the impact through struc-
tural deformations, causing an increase in the IE.

The close physical connection of the IE proper-
ties to the crash problem and their ease of use,
with no need for further simulation pre-processing,
makes them a compelling candidate for further in-
vestigations. First, we demonstrate the capability
of the IE features to capture the differences be-
tween simulations with minor changes. Later we
show that the chosen IE features are character-
istic enough for any given simulation (with 10-12
million elements) to enable graph algorithms to
perform well with the comparatively small number
of simulation data (200-300).

Combined, we build the car-graph, focusing on
the internal energy in the CAE outputs. We in-
troduce features based on the IE, which allow
visualizations that enable the engineer to extract
additional knowledge from and gain insight into
simulations. For example, one can study part sim-
ilarity, summarize development stages, or analyze
crash behavior. Finally, we integrate the proposed
energy features into a heterogeneous weighted
graph, which allows the identification of outliers
and absorption trends, as well as a visual cluster-
ing with force-directed graph algorithms [19].

Figure 1 summarizes our approach, where we
introduce new visualizations for knowledge discov-
ery with the support of graph databases. Next, we
recapture related work in Section 2, followed by
a description of the investigated industrial data
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in Section 3. Then, we introduce features for en-
ergy curves in Section 4. Afterwards, we present
a graph database structure and investigate the
ranking of the design components during devel-
opment stages in Section 5. Later, we explore
energy features for identifying similarities and in-
troduce design of experience (DOE) fingerprints in
Section 6. Further, we use graph visualizations in
Section 7. A conclusion and outlook are presented
in Section 8. Figure 1 summarizes the approach
in this study in introducing new visualization for
knowledge discovery with the support of graph
databases.

2 Related work

The proposed car-graph is inspired by information
retrieval and mining trends that have transferred
from document-centric to entity-centric. Since
IBM Watson won Jeopardy in 2011, knowledge
graphs have gained increasing research interest
due to their capability of storing knowledge, struc-
tured or unstructured, elicited from heterogeneous
domains, and their further querying to realize
question answering [26]. A survey in domain-
specific knowledge graphs [1] summarizes available
knowledge graphs in engineering.

The most relevant engineering domain for our
research is manufacturing. However, ongoing re-
search focuses more on production and manufac-
turing than product development. Moreover, there
are mostly text-based knowledge graphs, and only
limited work exists on 3D shapes as the center of
the product description [3]. Example applications
of knowledge graphs include digital twin mod-
els for industrial production, industry 4.0, and
computer-aided manufacturing (CAM). In [5], an
overview of available research in manufacturing is
provided. Currently, there is no knowledge graph
available for the CAE/FE domain nor specifically
crash, which is the focus of this paper.

However, there are investigations on ontologies
for CAD and CAE integration [4], FE simula-
tion [23], and crash analysis [13, 12]. In the context
of computing, an ontology is a concrete, formal
representation of what terms mean within the
scope in which they are used (e.g., a given do-
main). Similar to other conventions, the usefulness
of an ontology depends on the level of agreement
on what that ontology defines, how detailed it is,
and how broadly and consistently it is adopted.

Adopting an ontology by the parties involved in
one knowledge graph may lead to consistent use of
terms and modeling in that knowledge graph [16].

According to [23], several studies have already
applied a knowledge-based ontology system to
provide simulation knowledge to FE users. These
studies disregard extracting new relationships
among the data or answering analytical questions
of an engineer. In some, the focus was on au-
tomating the generation of the FE simulation [23]
or retrieving simulation solutions from existing
simulation [24]. However, the case studies are sim-
pler [23, 24] than a full crash simulation. [31]
characterized the CAE domain and identified un-
solved challenges for tailored data and metadata
management as a graph. [12, 13] looked explicitly
at a crash simulation ontology and investigated
the reasoning structure of engineers, particularly
regarding report generation. Overall, [12, 13, 31]
have a knowledge management system orientation
to understand data structure and procedures in
the company, while the simulation data itself has
not been studied.

To summarize, previous articles have a product
management perspective representing the crash
development process structure. CAM, computer-
aided design (CAD), and CAE are different prod-
uct data in the development phases of vehicles.
There are more research studies on knowledge
graphs in CAD and CAM compared to CAE. Ad-
ditionally, automated CAD-CAE model integra-
tion generated ontology models and geometrical
feature extractions. These studies are of inter-
est to connect CAD knowledge to CAE. [25] uses
design change vectors to enable sustained integra-
tion of FE mesh and CAD models. [14] represents
an automatic approach to generate simplified and
idealized geometry models for CAE simulation.

Parametrized CAD models, knowledge man-
agement, and knowledge-based engineering (KBE)
systems have for decades strived to capture, dig-
itize, and automate the application of this kind
of knowledge within product and production de-
velopment [21]. Using the product design knowl-
edge graph, [3] demonstrated the effectiveness of
3D shape retrieval using an approximate near-
est neighbor search. They illustrate using the KG
for design reuse of co-occurring components, rule-
based inference for assembly similarity, and collab-
orative filtering for a multi-modal search of manu-
facturing process conditions. However, KG should
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still expand to include downstream data within
product manufacturing and towards improved rea-
soning and methods to provide actionable sugges-
tions for design bot assistants and manufacturing
automation. Additionally, [17] showed that in a
design context, a cognitive assistant enables the
participants to select applicable design rules more
precisely, allowing them to spend more time on the
CAD modeling activity. However, there is still a
need for a test protocol to confirm the preliminary
results presented in this paper.

In view of the general application of ML for
crash data and knowledge graphs, it is not broadly
used in current CAE workflows compared to typi-
cal machine learning domains. There are two main
applications of ML in crash analysis. First, it pre-
dicts the crash behavior to replace/support the FE
simulation; see [2]. Second, using dimensionality
reduction on the vehicle components’ data dur-
ing crash deformation to explore FE simulations,
e.g., by identifying clusters [18]. Here, an engi-
neer must usually specify the critical components
in advance. While considering all parts together is
time-consuming and inefficient, it may also fail to
highlight the bifurcation behavior. This limitation
emphasizes the importance of auto-detecting and
filtering the essential components.

Regarding energy absorption characteristics
for crash simulation, studies show that energy
absorption characteristics enable quantifying com-
ponent performance for the design of experiments
(DOE) feedback in optimization studies [9, 10].
However, to our knowledge, there is no research on
using energy curve features to calculate the sim-
ilarity of simulations or summarize development
stage results.

3 OEM data from CAE
development stages

We evaluate the proposed data representation
and the resulting data exploration approaches on
industrial data stemming from a vehicle develop-
ment project undertaken at CEVT. In particular,
we consider four development stages and three
load-cases for front impact analysis. The develop-
ment stages are so-called primary, early, middle,
and late development stages, where the names re-
flect the sequence of the stages. The considered
development window covers roughly one-third to

two-thirds of the complete R&D development
phase (before the first real crash test). Table 1
summarizes the three load-cases and the number
of included simulations.

In particular, we aim to assess the scalability
and feasibility of the introduced energy features
and graph algorithms. The focus is on data visu-
alization to summarize the behavior and trends.
Note that data confidentiality hinders illustrating
the developed vehicle platform or giving details
about the FE model. However, we can discuss
the crash behavior using the component name. So
the general knowledge of crashworthiness helps to
interpret and evaluate the results. Tables 3 and
4 summarize the components referred to in this
paper.

Generally, the positions relative to the direc-
tion of the barrier are essential in the analysis of
crash behavior with regard to geometry. There-
fore, one can divide the components into the early,
middle, and late energy absorbent components,
i.e., bumper beam, crash-box, and side-member,
respectively. Additionally, the vehicle’s vertical
axis positioning includes middle and lower load
paths in the absorption, i.e., crash-box and lower
load path component, respectively.

The crash-box and the side-member are thin-
walled structures with well-designed cross-section
shapes and crumple points, e.g., ditches and crash
beads. They may collapse in a particular pat-
tern to absorb energy efficiently. A side-member
is longer and stiffer in comparison to crash boxes.
Further, the deformation modes of longitudinal
beams include folding, tearing, and bending. Here,
reinforcing components strengthen the beams and
optimize the absorption of energy. However, the
lower load path component is a thin-walled struc-
ture positioned vertically lower than the crash-
box. It distributes the load in the subframe.
Finally, the subframe is a structural component
with a discrete structure that supports the axle,
suspension, and powertrain. This component has
minor absorption crashworthiness design aspects
among the mentioned components due to the
required durable performance.

So far, we have introduced the components
of the ffo load-case that are studied in-depth in
Section 6.3. Additional essential components for
the foU and foI load-cases are the A-pillar, cowl,
front fascia, wheel arch, and wheel rim. A-pillar
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Load-case Name No. Sim
KEi* range Velocity
[kNmm] [km/h]

ffo** full front overload 215 328.6 - 389.4 64.0
foU front oblique overlap, new US-NCAP 121 346.4 - 436.2 90.0
foI front small overlap, IIHS 275 778.0 - 890.4 66.9†
* Initial kinetic energy † Over loaded speed, requirement is 40 [mph]
** Internal load-case

Table 1: Properties of the investigated CEVT data. The total number of all simulations from four
development stages in each load-case. The deviation of the KE is due to the changes in vehicle mass
during development.

is the most forward vertical support of the ve-
hicle (among A, B, C, and D pillars). The cowl
separates the front compartment from the pas-
senger cabin between two A-pillars. The rest of
the components are none structural. For further
background on crashworthiness, see e.g. [11].

4 Energy features

The deformation structures of the vehicle shall
absorb the kinetic energy so that the occupants
and pedestrians have the least possible injuries.
In the case of shell structures, this is done by
means of suitable deformation patterns. The main
underlying physics of the crash analysis problem
is the energy dissipation performance. CAE en-
gineers often determine the crash behavior only
by analyzing the intrusion, the acceleration, the
force, the deformation, and the failure. These pa-
rameters are assessed and correlated with reality
visually and quantitatively. They do not take into
account the energy dissipation performance. How-
ever, the energy is a solver output available for
all parts in a simulation, whereas section forces
require specific FE model preparation.

The FE solver outputs energy per part over
time, a so-called energy curve. Parts in the CAE
model preferably refer to each vehicle component.
Despite this, CAE modeling techniques require
arranging vehicle components into several proper-
ties, for example, due to changes in the thickness
and material. Consequently, CAE models have
many parts (1500-4000). The number of parts con-
fronts CAE engineers with a practical assessment
of energy curves. Therefore, it limits the use of
energy curves in the workflow to, e.g., stability in-
vestigations (checks the simulation’s total energy)

Energy Features

ti
initial absorption
time

The initial time that
the energy absorption
starts.

IEmax absorbed energy
The max. internal en-
ergy absorbed by the
part.

tn absorption time
The time in which
IEmax is reached.

∆t tn − ti

Table 2: Introduced scalar features representing
an energy curve.

and outlier entity identifications (e.g., parts with
negative energy).

We claim that energy curves hold informa-
tion to characterize the simulation crash behavior.
Data analysis on energy curves will simplify data
processing to represent the crash behavior based
on a few features. Figure 2a shows the energy
curve for the most energetic part of a complete ve-
hicle simulation in a front overload load-case, ffo,
with a total initial kinetic energy of 453 [kNmm]
(initial velocity of 64 [km/h]). The shape of inter-
nal energy over time is approximately a sigmoid
curve, except for parts with negative energy due
to numerical error. From the crash analysis per-
spective, measures with the potential to analyze
the crash behavior from this curve are initial ab-
sorption time, absorption end-time/period, and
absorbed energy, Table 2. These features indi-
cate three abstract characteristics of the energy
curve. We define absorption time with ∆t and tn
as relative (to initial time) and absolute measur-
ing, respectively. For now, we keep both features
and study the functionality of each in different
applications.
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Figure 2: (a) The internal energy output of the solver over time for a single property with the three
features ti,∆t, tn that characterize the energy absorption. The dashed blue lines that intersect with the
energy curve visualize the standard deviation approach. (b) Diversity of internal energy output over time
for the five most energetic parts, Table 3, in three load-cases, Table 1, with calculated initial and end of
the absorption time and standard deviations. x and y axes are normalized.

load-case 1st 2nd 3rd 4th 5th

ffo side-member RHS-I crash-box LHS-V side-member LHS-I subframe LHS-U subframe RHS-U
foU side-member RHS-I crash-box LHS-V side-member LHS-I subframe LHS-U subframe RHS-U
foI A-pillar LHS-I-L front fascia wheel Arch -F cowl -L wheel rim LHS-F

RHS: right-hand side, LHS: left-hand side -U: upper, -V: vertical, -L: lower, -I: inner, -F: front

Table 3: Part name for Figure 2b, load-case information Table 1.

Figure 2b shows representative examples of in-
ternal energy curves and the features extraction
over several simulations and parts. These curves
belong to three simulations from three different
front impact load-cases (Table 1) that we selected
randomly. For each simulation, the five most en-
ergetic parts are plotted (part names in Table 3
and part definition in Section 3). In these exam-
ples, the shape of the curve during the absorption
time (∆t) is nonlinear for some parts (first and
fifth part in foI load-case). This nonlinearity indi-
cates the probable necessity of additional features
or more complex methods for characterizing the
absorption interval.

We define IEmax as the max of the internal
energy curve, and in the following, we describe
the time extraction features ti, tn, and ∆t. Here,
the preciseness of the timings depends on the

solver’s time interval output. We investigate three
approaches to estimate the features based on
the IE behavior: thresholding, derivative change,
and standard deviation spread. With threshold-
ing, one considers the time when the IE crosses a
pre-defined threshold value. The derivative-based
method calculates the internal energy derivative
( ˙IE) and determines a significant change. How-
ever, using the spread µ ± σ, we consider upper
and lower thresholds depending on the mean µ
and standard deviation σ of the IE for the part
over time.

Figure 2 shows the methods for ti and tn ver-
sus the time standard deviation. To summarize
our observations, the derivative method is more
suitable for ti due to its sensitivity in captur-
ing trigger time. However, thresholding performs
more desirable for tn since IE growth is saturating
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at the end. Furthermore, the standard deviation
approach fails for the parts with a long absorp-
tion time or negative IE in the initialization. In
the following sections, we will compare threshold-
ing and derivative-based methods for ti and tn in
more detail. For this, we use visual engineering
judgment. We consider both methods on random
samples from three complete vehicle front load-
cases in four development stages, Table 1. For
each simulation, we consider the 20 most energetic
parts.

As mentioned, the features are not continuous
values. Their resolution depends on the solver set-
tings for the timestep output, which can vary from
1 [ms] to 0.001 [ms]. Consequently, the features
binning is according to the timestep definition. We
consider a further and detailed investigation into
binning and resolution as out of the scope of our
initial study into energy features. Further, we fo-
cus on these three features, although considering
other features during the absorption may contain
more component characteristics during a crash
simulation. However, extracting more features is
out of the scope of this work, where our focus is
to investigate the potential of features from en-
ergy curves, but not to find the best approach to
achieve this. The described features were selected
because of their simplicity to use and interpret.

4.1 Initial time

The initial time ti for each part reflects when a
part begins to absorb the impact energy. In crash
simulations, there is a gap between the start time
and the time when a specific structural part gets
affected by the crash, which makes finding the ex-
act time imprecise. Here, the extracted ti from
the thresholding and derivative-based methods are
close for most of the studied parts. Further, we in-
vestigated parts with significant differences in the
two calculated ti for visual comparison. Figure 3
presents an example of such a part with signifi-
cant differences, together with a part where both
approaches give similar ti. From visual engineer-
ing judgment, part two starts to absorb energy
earlier than part one, whereas the thresholding
method extracts the same time (ti ≈ 65) for
both parts. However, the derivative-based method
computes for part two an earlier time (ti ≈ 40)
than the thresholding method, which is preferred
from an engineering perspective. Consequently, we
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Figure 3: (a) IE curves for two different parts.
(b) zoomed view of (a), the derivative-based
method for part two (left marker) gives an earlier,
and preferred, ti than thresholding (right marker).

perform further investigations with the derivative-
based method.

The derivative-based method requires curve fil-
tering due to the non-smoothness of the curve. We
investigate filtering methods from SciPy.signal.
From lfilt1, filtfilt2 and sosfilt3 we select the FIR
filter (lfilt, sample number n=75, b=1/n a=1),
which smoothens the curve without any time shift,
Figure 4a. With this filter and a min-max nor-
malization of the IE derivative, ti is extracted
as the time when the derivative is above 0.005.
Both methods’ lower limits are selected based on
visual engineering judgment and visual tuning of
the explored data. Figure 4b shows the result for
a selected part.

4.2 Absorption time

We define the absorption time interval ∆t as the
time interval from when the part’s internal energy
increases until it stabilizes to its maximum. The
start time is ti from the last subsection, and the
time at the end of absorption is tn. To extract
tn, we compare the outcome of thresholding of
IEmax and consider the derivative. For threshold-
ing, we introduce a factor y for IEmax to exclude
the gradual energy increase at the end of the
simulation:

1Filter data along one-dimension with an IIR or FIR filter
2A digital filter forward and backward to a signal.
3Filter data along one dimension using cascaded second-

order sections
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Figure 4: (a) Several filters are applied to the
derivative of the IE over time, where filtfilt2 and
sosflit3 miss the ramp-up time. (b) Normalized IE
and normalized ˙IE that is filtered with lfilter1, ti
extracted based on ˙IE.

tn = max
t

{t | IE(t) ≤ y × IEmax},

∆t = tn − ti.
(1)

The factor y is set to 0.95 based on a visual
judgment from an engineering perspective on ran-
domly selected simulations. For the method using
derivatives, we consider the second derivative of
the IE equal to zero as the time for tn. This cal-
culation requires filtering, where we evaluate the
same filters as for ti. However, here a time shift
of the filtering is inevitable; see Figure 4b. Con-
sequently, the second derivative does not allow
the reasonable extraction of the absorption time.
Therefore, the maximum percentage time provides
the best result for tn.

4.3 Discussion

Lastly, the standard deviation of IE is calculated
for the parts, Figure 2b. The crossing of IE with
µ ± σ refers to ti and tn. However, there is a de-
viation in the result for different parts compared
to the other method. Two extreme examples, not
shown in the figure, show undesired results are
curves with long absorption time and the compo-
nents with spring-back FE modeling, i.e., negative
IE in the initialization. In both situations, the
standard deviation is relatively tiny and causes
a higher value for ti and a smaller value for tn,
respectively.

Note that parts with common ti and tn in one
simulation are simultaneously involved during the
crash. Identifying such simultaneous parts can be
used to identify parts for grouping as one absorp-
tion block. But, such a grouping is out of the
scope of this paper and part of future work. Fur-
thermore, we can filter out the parts that behave
similarly from the energy absorption perspective
by considering parts that share all three features
for several simulations.

5 Graph database

Knowledge graphs are typically created using a
top-down approach, which involves the creation of
an ontology that is then populated with data to
create the KG. However, an ontology-based ap-
proach is time-consuming to initialize and update.
Automating the acquisition, processing, and use of
knowledge has high value when dealing with large
amounts of diverse domain data [3]. Moreover, it
is essential to consider the questions one wants
to address with the data. We aim to introduce a
data representation that allows us to answer CAE
questions and works for complete crash FE mod-
els. These observations guided us to work with an
evolving schema developed in a feedback loop.

In Figure 5, we summarize the workflow for
loading data into the graph database and explor-
ing graph mining methods. When evaluating the
workflow components, we aim to consider the reli-
ability of the methods, particularly for a full-scale
CAE crash FE model, as well as their computa-
tional efficiency. A primary concern is that the
workflow components can detect slight and sig-
nificant crash behavior deviations in view of the
different changes engineers perform during the
development stages.

In this work, we build a first graph schema for
car crash simulations to gain insight into their us-
age in the CAE-based development process. We
consider a knowledge graph, as defined in [16], as
a way to accumulate and convey knowledge of the
real world. Its purpose is searchability and anal-
ysis of the data, which shall provide additional
insight for the user obtained from the data. The
current graph modeling addresses mainly two out-
puts, an intuitive graph analysis of CAE data,
reflecting semantics or behavior, and a graph rep-
resentation of the data that enables ML methods.
Our workflow has two stages: first, we process the
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Figure 5: Feedback process during car-graph de-
velopment with a focus on the identification of
trends in the simulations. Green zone: Stages of
the construction and population of the graph rep-
resentation. Orange zone: Usage of the graph rep-
resentation and feedback loops to earlier stages.

data and store it in a graph database, and sec-
ond, we extract the computational graph from the
database for visualization and ML studies. In this
section, we describe the data schema.

5.1 Database schema

We now introduce our database schema, with
building blocks illustrated in Figure 6, where we
aim to build a graph representation that allows the
application of graph analytics and ML methods.

A Sim node represents a FE simulation out-
come, where its properties stem from global fea-
tures of the simulation, e.g., total mass or ki-
netic energy. The vehicle development and crash
test protocols separate each simulation into a
vehicle and a barrier/impactor. Observing that,
we introduce nodes for the FE model Model ,
barrier Barr , and impactor Imp and conse-

quently the relationships SIM MODEL and

SIM BARR/IMP , Figure 6a. With this setup,

different crash scenarios (load-cases) share the
same FE model from the vehicle design. Further,
the focus is on the vehicle input independent of
the load-case, i.e., barrier or impactor. Besides
addressing different load-cases this choice also
enables multidisciplinary design.

In addition, each part in a FE model and simu-
lation is modeled as a Part node individually and
connected to a Sim node with INCL PART

relations, Figure 6b. A Part node contains in-
formation from its simulation states or the FE
modeling level. Here, simulation states can consist
of the energy absorption features that we defined

in Section 4, while the FE modeling info consists
of properties ID (PID), box center, material (name
and ID), the center of gravity, or, when it applies,
thickness (average and distribution). Geometrical
features are a part’s length, width, and height,
along with the coordinate system of the FE model
(L-x, W-y, H-z).

The basic schema so far is independent of any
data analysis. Design Des and behavior Behav

nodes contain outcomes from specific analysis
steps, such as feature extraction or dimensionality
reduction. Moreover, Des and Behav nodes are
connected to Part nodes with PART DES ,
Figure 6c, and PART BEHAV , Figure 6d,
edges, respectively. Here, a Des node col-
lects parts that are similar at the FE model-
ing level, where in this work, the input for a

PART DES connection is the similarity of
PIDs in one development stage. In contrast, a
Behav node collects parts that show similar be-
havior during the simulation, where energy fea-
tures, introduced in the next section, are used in
this work for PART BEHAV connections.

Moreover, we add two types of edges between
simulations to the FE data model. Firstly, one
usually knows the predecessor of a simulation
configuration model based on the so-called de-
velopment tree used in the CAE development
process; we connect these two simulations with a

MODEL REF edge. Secondly, as a weighted
edge, we introduce SIM SIM , where the
weight refers to a similarity prediction between the
simulations and is the outcome of a graph analyt-
ics algorithm, for example, SimRank [20]. Note, we
study such similarity predictions and their usage
as edge weights in a companion paper [29]. What
we presented here is part of a more extensive graph
modeling for automotive CAE data. We give fur-
ther details of our graph modeling for CAE data,
with a passive safety focus, in [28].

5.2 Query database

Graph analysis methods allow simple data explo-
rations, discover non-trivial patterns in the data,
and reveal behaviors. One of the used proper-
ties is the node’s degree, and one can rank the
nodes accordingly. A ranking of Des nodes ex-
tracts common parts in a development stage and
reflects fundamental parts. Further, low degree
Des nodes reflect components that are outliers
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Figure 6: Illustration of the building blocks of our graph modeling. (a) A high-level simulation consists
of one model and one impactor/barrier depending on the crash scenario (b). More detailed components
of a simulation are the parts that are filtered as energetic parts (c), while design and (d) behavior nodes
connect parts of simulations based on the similarity of the design or the crash behavior, respectively.

or are in an essentially unexplored design space.
A degree ordering of Behav nodes can, for ex-
ample, extract common timings of behavior in a
development stage, e.g., using the introduced en-
ergy features, which reflects essential times during
the energy absorption. Such selection procedures
allow automated post-processing scripts to sup-
port the CAE-ML workflow instead of requiring
interactive user selections. High-ranked parts in a
development stage for a load-case identify required
parts in energy absorption. High-ranked parts are
more reliable than just filtering the most energetic
part in a simulation since there are outlier parts
with high energy due to FE modeling errors.

We conjecture that a ranking of Des nodes,
i.e., according to PID, can summarize information
relevant to the engineering process for problem-
solving. While the node degrees in real-world,
large-scale networks often follow a power-law dis-
tribution, i.e., a fast decline in the degrees [27],
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Figure 7: Degree distribution for the Des nodes
for the CEVT data from the early stages.

we do not observe this for the Des nodes that
reflect PIDs, Figure 7. Here, the distributions for
each load-case show some parts with high degrees,
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some in the middle, and the remainder with small
degrees. Generally, high and low-ranked parts cor-
respond to essential and outlier parts, respectively.
Additionally, a significant degree drop can help
identify the number of essential parts in a load-
case. Additionally, the middle-degree parts are
the ones that are not dominant in all the sim-
ulations and are neither outliers. Consequently,
these parts are interesting structural components
that potentially change the crash behavior and
summarize the simulation design scenarios. Such
middle-degree parts can be valuable input for in-
experienced CAE engineers to identify parts that
affect the crash behavior. For example, the fast
transition of the degree in the foI load-case, Fig.
7c, compared to the rest, indicates that the num-
ber of parts affecting the load-case is limited,
or that the engineer has performed a limited
exploration of the design space.

6 Scatter visualization

Data visualization is a key component in a typical
data analytics project. The main aim of data visu-
alization is to identify patterns and trends that are
hidden behind the data. An explorative visualiza-
tion of the data rather than descriptive analytics,
which describes the data in a summarized way,
provides a way for generating insights from the
data [30].

Here, we propose several data visualization
techniques for better data exploration of crash
simulation data. In particular, we consider energy
features from Section 4 as a data representa-
tion for each part, where we use a scatter plot
for visualization. Each point in the scatter plot
refers to one part (PID) of the simulation, and
its coordinates are the part’s energy features.
This visualization allows for assessing the simi-
larity of the underlying energy curves, identifying
outlier parts, finding the similarity in component-
wise crash behavior, and generating a visual DOE
fingerprint for numerous simulations.

6.1 Curve similarity

The energy features were selected to extract the
main properties of the energy curves. Therefore,
they enable the assessment of the similarities of
energy curves. For example, Figure 8 shows a scat-
ter plot for three pairs of parts from two different
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Figure 8: IE curves similarity with scatter vi-
sualization (a) IE curves from three identical
components in two simulations with the same
load-case and (b) the scatter plot for their energy
features.

simulations and the corresponding energy curves.
This figure indicates that the similarities of energy
features of parts are related to the similarity of
the corresponding curves. Consequently, the scat-
ter plot of the parts’ energy features facilitates
visualizing clusters with similar behavior from an
absorption perspective.

Note that for a three-dimensional visualiza-
tion, it is more illustrative to have independent
variables, which facilitates the separate investi-
gation of each feature. Therefore, in the three-
dimensional scatter plot, we employ ∆t as the
energy absorption time because tn includes the
effect of ti, whereas ∆t is independent of ti.
However, if one wants to include ti information,
using tn in two-dimensional visualizations can be
advantageous.

Generally, the weighted sum of the energy
features can be used to measure the curve simi-
larity. Here an open question is the normalization
and weighting of the energy features, which likely
also depends on the analysis goal in the appli-
cation. For simplicity, we concentrate on visual
exploration and individual energy features.

6.2 Part similarity

Here we investigate the detection of geometrically
corresponding components with energy features.
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Figure 9: Energy features for symmetric com-
ponents, side-member, and crash-box plates. The
coloring of the points is based on the semantics of
the parts.

We say that components are geometrically cor-
respondent if they are located symmetrically in
the vehicle, their undeformed geometries mainly
overlap symmetrically, and their deformations are
symmetrical. One straightforward use case is cap-
turing similar energy absorption by symmetric
parts of the vehicle structure in a full-frontal
impact. The similarity is due to the almost sym-
metrical design of the vehicle on the left-hand side
(LHS) and right-hand side (RHS). Moreover, the
full-frontal load-case affects the LHS and RHS of
the vehicle structure symmetrically.

Figure 9 illustrates this use case. It contains
the four most energetic parts of 50 simulations of
a full-front load-case in one development stage.
A similar PID of the thereby selected parts im-
plies that their geometries are more relevant than
the remaining parts in the vehicles4. This data
overview shows that the four most energetic parts
generate two distinct point clusters. Each cluster
holds two parts, and each pair consists of the RHS
and LHS of the corresponding geometrical part.

As a final result, we observe that energy fea-
tures detect symmetrical behavior in crash sim-
ulations. While here we imposed constraints on
the data set, i.e., considered only one load-case

4Assuming the PID remains fixed during one development
stage.

and development stage, this holds more generally.
An example, which we further discuss in Section
6.3.1, is for distinct point clusters, where if the
PID changes for a component, one can now con-
nect components between different development
stages.

6.3 DOE fingerprint

Summarizing the behavior of a DOE with many
simulations is an additional application of en-
ergy features. We introduce a DOE fingerprint as
a data visualization, which is the scatter distri-
bution of the energy features. The scatter plot
contains energy features from energetic parts of
many simulations in one or several development
stages. A DOE fingerprint of a group of simula-
tions assists in assessing the vehicle’s development
process. We study four color schemes that visually
group the data points differently during the explo-
ration. The color schemes are according to PID,
IEmax order, development stage, and load-case,
respectively.

The color schemes reflect different use cases for
the data exploration. The PID color scheme visu-
alizes the design space for each part. Nonetheless,
due to possible PID variations between load-case
or development stages, the PID color scheme is
limited to simulations in one development stage
and one load-case. The second color scheme uses
the IEmax order in a simulation, which visu-
alizes the parts order in the energy absorption
for each simulation. This visualization is infor-
mative if coupled with the PID color scheme
to highlight the permutation of parts in absorp-
tion behavior. Additionally, the fingerprint with
the development stage color scheme emphasizes
load-cases in one/several development stages. Fi-
nally, the load-case color scheme demonstrates
the evolvement of the platform in several/single
development stages independent of PID change
between several load-cases.

We now show examples of data visualization
by DOE fingerprints for the real-life develop-
ment stages from CEVT. These examples show
the types of engineering information that a DOE
fingerprint can visualize. To better demonstrate
a three-dimensional plot in a two-dimensional
figure, we present the DOE fingerprint as a ma-
trix scatter plot; see Figure 10. In matrix scatter
plots, we use two features for absorption time (∆t
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Figure 10: DOE fingerprint load-case scheme,
five most energetic components in simulations
from four development stages. Simulation specifi-
cation in Table 1 (ti [ms], ∆t [ms],IEmax [kNmm])

and tn) since the coupling between ti and ∆t is
lost in a two-dimensional visualization. Addition-
ally, the range of end-time or absorption period
difference remains identifiable, i.e., when compar-
ing the spread shape between different platform
structures, by just considering tn or ∆t.

Note that an interactive application is the
most helpful visualization for exploring the data
using DOE fingerprints. For example, the applica-
tion can enrich the data by connecting each point
in the scatter plot to additional information such
as pictures, deformation videos, or metadata of
the part and simulation.

6.3.1 PID scheme

The DOE fingerprint in each plot is an imprint
of the distribution of the energy features indepen-
dent of the PID. Consequently, the pattern shown
by the PID color scheme conveys the parts be-
tween development stages even though the PID
has changed. Figure 11 uses the PID scheme
for an early and a middle development stage in
a two-dimensional IEmax − tn fingerprint. This
visualization shows that even though the part
numbering differs in these two development stages,
the shape of the scatter plot and absorption order
identify the pairwise components that correspond

in energy absorption, see the point clouds (a) and
(b) in Figure 11 and Table 4. Here, cloud (a) con-
sists of the inner plate of the side-member. For
both stages, the cloud includes only 2 PIDs refer-
ring to the LHS and RHS parts. However, an offset
along the y-axis shows a decrease in the mean of
IEmax.

Likewise, cloud (b) contains two components.
The upper points belong to the subframe, and
the lower ones to the outer wall of the side-
member. However, this cloud holds many different
PIDs. The variation of the PID for the subframe
highlights the critical components studied in the
CAE-based analyses.

Additionally, the cloud distribution shapes a
pattern where it addresses the difference between
development stages, e.g., a change in the FE mod-
eling technique or a change in the vehicle concept.
In this example, the vertical and horizontal plates
of the crash-box have separate PIDs for RHS
and LHS. However, these are modeled as one in
the mid-stage. Consequently, the absorption has
doubled; see clouds (c) and (e) in Figure 11.

Finally, point cloud (d) belongs to the lower
load path components RHS and LHS. It keeps its
dual behavior, but this visualization summarizes
that the absorption interval is more stable in the
later stage.

6.3.2 Order scheme

The ordering scheme visualizes the IEmax or-
der for each part in a simulation. The ordering
scheme visualizes the point cloud for the energy
absorption order combined with the PID scheme.
Figure 12 compares the ffo load-case in two de-
velopment stages using the IEmax order scheme
for each simulation’s eight most energetic parts.
The number of point clouds for each placement
captures the number of scenarios for evaluating
the permutation of the energy absorption (e.g.,
for third-order, it is one and two, respectively,
in the primary and early-stage). In the primary
stage, bifurcation exists for the sixth, seventh, and
eighth-ordered components; however, in the early
stage, bifurcation starts right after the second
part. Besides the number of scenarios, the density
of the point clouds can reflect outlier simulations
or an unexplored design space. For example, a few
simulations in the early stage have the fifth and
sixth parts in the left point cloud.
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Figure 11: DOE fingerprint with PID color scheme, CEVT data ffo load-case, Part name in Table 4.

Early stage Middle stage Part Name

(Cloud Label)

10020420 10021870 LHS-I (a)

10021520 10021320 RHS-I side-member

10022010 10021830 LHS-O

10021350 10021220 RHS-O (b)

18620080 18620090 LHS-V (c)

18620120 RHS-V crash-box

18620070 18620070 LHS-H

18620110 RHS-H (e)

55021040 LHS lower load
path (d)55021060 RHS

55131390, 55132410 55132390, 55131220 LHS subframe
(b)55131400 55131440, 55132820, 55131010 RHS

RHS: right-hand side, LHS: left-hand side

-U: upper, -V: vertical, -H: horizontal, I: inner, O: outer

Table 4: PID part name in two development stages for Figure 11.

So far we looked at IEmax, tn, and ∆t features.
Additionally, the ti fingerprint achieves a differ-
ent knowledge summarization. Figure 13 shows
the initial time for the same development stages
as Figure 12. Here we see that the two most en-
ergetic parts, the side-members, have noticeable
differences in the ti spread. The deviation is also
captured in the tn−∆t plot, Figure 12. The early

development stage is more stable in trigger time
than the primary development stage and limits
the DOE. Consequently, the tn and ∆t relation
becomes more linear. Therefore, IEmax −∆t and
IEmax − tn provide similar DOE fingerprints in
the early stage. However, in the primary stage, the
relation of tn and ∆t is non-linear for the side-
member. Consequently, the point cloud shape of
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IEmax−∆t and IEmax− tn differs in the primary
development stage.

6.3.3 Development stage scheme

This coloring scheme is beneficial for summariz-
ing the trends of the development stages. In this
visualization, tn is preferable to ∆t since an ab-
solute value is better for comparing development
stages. Figure 14 shows the pair-wise comparison

of four development stages with the development
stage scheme coloring. In summary, remarkable
detections are:
a) The initial time absorption span has been the

smallest for the early development stage, and
absorption initialization varies a lot for the
rest.

b) The inner side-member part with the highest
IEmax has been declining in the maximum
absorbed energy during the development.
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c) The 2d visualization overlays point clouds in
initial absorption time.

d) The inner side-member stays almost steady
in absorption time spread.

e) The spread of absorption time declines as the
development stages evolve for the rest of the
parts.

6.3.4 Load-case scheme

This visualization enables the comparison of
DOEs between load-cases, which supports de-
tecting multi-disciplinary development challenges
with different crash requirements. Figure 10 is a
matrix scatter plot for three load-cases of the front
crash in four development stages of the CEVT
data with a load-case scheme, Table 1. It includes
611 simulations with five parts with high-ranked
IEmax. The visualization indicates that the ffo
load-case has discontinuous absorption compared
to the other two. This gap exists for tn values
that make two clusters: early (≈ 10 ms) and late
absorption (≈ 60 ms).

7 Graph visualization

We now investigate graph visualization techniques
for knowledge discovery in simulation studies,
where we use energy features as weights in these

graphs. Visual exploration in an interactive way
allows one to apprehend the underlying graph
and thereby gain insight. Visual representations
of graphs can be classified into three major cat-
egories: node-link diagrams, matrix representa-
tions, and hybrid methods. Here we focus on the
application of node-link diagrams. Among node-
link diagram methods, the most widely used are
force-directed layout algorithms [6]. They have of-
ten been preferred over other algorithms since the
1980s. Force-directed algorithms can be divided
into classical and hybrid algorithms according to
their characteristics and computational model-
ing. Classical force-directed algorithms are usually
based on physical laws, specifically in ways that
simulate a spring system. For large and complex
networks, hybrid force-directed algorithms are de-
signed, which use heuristics to improve the per-
formance of classical force-directed algorithms [8].
Classical algorithms are still suitable in our case
due to the relatively small size of the graph.

Following the survey [8] the three methods of
Fruchterman–Reingold [15], Kamada–Kawai [22],
and ForceAtlas2 [19] are suitable for our purposes.
We investigated the three methods on our data,
where ForceAtlas2 showed the best results5. In

5We use the ForceAtlace2 implementation available at https:
//github.com/bhargavchippada/forceatlas2.

https://github.com/bhargavchippada/forceatlas2
https://github.com/bhargavchippada/forceatlas2
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simulation nodes with eight Des nodes for each simulation and weighted with Pe. Design nodes’ edge
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general, more successful force-directed techniques
are those that have avoided certain principles to
show off other structural properties of the graph,
such as ForceAtlas2 [19]. The method is still fol-
lowing the idea of a physical system, but the
principle the authors have tried to optimize is one
of clustering rather than being concerned with
edge lengths or uniform node distributions, for ex-
ample. In the following, we summarize the use of
such graph visualization methods.

Here, we extract a sub-graph by using nodes
with Sim SIM DES Des edges. The result is
a bipartite graph consisting of two types of ob-
jects, namely Des and Sim nodes. The edges
of the Sim SIM DES Des bipartite graph are
weighted by the energy power absorption (Pe =
IE/∆t), which can be seen as an aggregation of
energy features.

Due to the widespread energy power absorp-
tion, specifically in the networks that include
outlier simulations, it is challenging to get an in-
terpretable view of the network. Consequently,
from the available options to improve the graph
visualizations, we deactivate the gravity option to
simplify the equibalance of the forces. Instead, we
study two options of this method, scaling ratio
and edge weight influence. The scaling ratio R
refers to the repulsion required and is claimed to
result in a more sparse graph. Furthermore, the

edge weight influence einf scales from zero, for no
weight influence, to one as normal.

Note that our graph is relatively small com-
pared to graphs in many other domains, with
less than 26000 nodes considering all the types.
Consequently, the primary computational time is
loading the data to the graph database, which
is done offline in a pre-processing step. The
ForceAtlace2 calculation depends on the number
of included nodes and the needed iterations. For
our data, both only take a couple of seconds.
The timings for the rest are less than a second,
which overall makes it easy to explore the data
interactively.

The visualizations presented in the following
are for three scenarios:

• one load-case in one development stage,
• different load-cases in one development stage,
• one load-case in several development stages.

All approaches mentioned in the following are
practical options for an interactive user interface
to assist engineers in data cleaning and knowledge
discovery.

In the first case study, we consider the eight
most energetic parts for 115 simulations in a pri-
mary development stage and foI load-case. We
visualize the bipartite graph in Figure 15a. The
graph has 115 Sim and 33 Des nodes. The



Springer Nature 2021 LATEX template

18 A. Pakiman et al.

(a) einf = 2 (b) einf = 0.5 (c) einf = 0.02

Figure 16: Improving visualization by varying
edge weight influence, einf , from 2 to 0.02. Case
one, foI load-case in the primary development
stage.

number of design nodes is more than eight due
to differences in the most energetic parts of the
simulations. This basic visualization can only dis-
tinguish the density of the degree of Des nodes.

However, the ForceAtlas2 method reveals more
information about this network, Figure 15b. By
positioning them off-centered, this visualization
emphasizes the outlier Des and Sim nodes. Most
of the Des outliers are related to the connection
modeling, which is very sensitive to the model-
ing. Therefore, the solver tries to rectify it, which
causes high internal energy in the corresponding
connection part. However, connections are not the
study object of these FE simulations. As a result,
these are unreliable simulations and designs.

Additionally, the Sim nodes are distributed
based on their similar structural connection to
Des nodes, which shapes clusters of simulations,
zones (b), (c), and (d) in Figure 15b. From a sim-
ulations clustering perspective, ForceAtlas2 has
an outstanding result. The other two methods,
Fruchterman–Reingold and Kamada–Kawai, sep-
arate only the outlier Des nodes. The Des nodes
located in the center of simulations are the Des

nodes with the highest degree. These nodes are
essential parts of most of the simulations. This
visualization highlights that Des nodes cause
the split of the simulations point cloud. In this
example, each cluster has several design nodes po-
sitioned outwards and with high degrees, Figure
15b green nodes. Additionally, there are simula-
tions further away from the central simulation
clouds. This can indicate less explored design
space, Figure 15b orange nodes.

The initial visualization of ForceAtlas2 has the
edge influence set to zero, which means we see
mostly the structural effect of the network, Figure

17. There are several ways to get a good visu-
alization, including the weights. One is to take
advantage of the ForceAtlas2 method options. The
other approach is deactivating the distant nodes,
which are outliers. For initial visualization, we
look at only eight designs. Next, we increased the
designs to 20 for each simulation, ending with 62
designs. First, we consider two options of einf and
R from ForceAtlas2 to improve the visualization.
Figure 16 summarizes the effect of edge weight
influence for the network above. This figure visual-
izes that by decreasing the edge weight influence,
we can keep the whole DOE graph and have the
resolution in the graph’s structure. Consequently,
we still see outliers and DOE clusters, similar to
Figure 17. Note changing the scale factor does
not seem to have a noticeable influence on the
resulting visualization of our data.

The next option is to remove outliers, where we
take an iterative approach to identify and remove
distant nodes using the ForceAtlas2 algorithm. In
each iteration, we calculate all edge lengths based
on the ForceAtlas2 positioning of the nodes. After-
wards, we remove the edges with a length higher
than a specified threshold. We remove the discon-
nected nodes before we recalculate the positions
for the reduced network in the next iteration.
Figure 17 visualize several iteration steps in which
we removed the distant nodes with a thresholding
factor of 0.8. Here, the red nodes are the identi-
fied outliers, and we remove them before the next
iteration. Thus, we can quickly identify the out-
liers and clean the data. In this method, there is
no consideration of the labeling of the nodes, so
the identified nodes are either Des or Sim .

As the final investigation for this case, we con-
sider the visualization with ForceAtlas2, where we
exclude the outliers simulations from the graph,
Figure 18. The difference between this visual-
ization to Figure 17 is that in removing the
nodes, we consider the node labeling, and we re-
move the Sim and its corresponding edges and,
consequently, the disconnected nodes. In this visu-
alization, keeping the edge influence smaller than
0.5 allows us to detect the clusters. This factor
may differ depending on the intensity of the graph
and its node numbers. Next, we look into two
other study cases of graph visualization.

The example for different load-cases in one
development stage includes the primary develop-
ment stage of three load-case of foI, foU, and ffo,
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(a) itr 1 (b) itr 3 (c) itr 5 (d) itr 7

Figure 17: Odd stages when iteratively removing distant nodes from the foI load-case in a primary stage,
115 Sim simulation nodes with 20 Des nodes for each simulation and weighted with Pe, The red nodes
are the outliers identified to be removed. Case one, foI load-case in the primary development stage, the
threshold of 0.8, einf = 1, R = 1.

(a) einf = 1 (b) einf = 0.8 (c) einf = 0.5

Figure 18: Improving visualization for network
without outlier simulations with varying edge
weight influence, einf , from 1 to 0.5. Case one, foI
load-case in the primary development stage.
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(b) DOE fingerprint

Figure 19: Case two, several load-cases in the
primary development stage. (a) Des nodes are
colored in gray and Sim nodes are following the
scatter plot coloring (b). R = 1 and einf = 0.5.

Figure 19a. This graph contains 20 Des nodes
for each Sim node, resulting in 204 simulations
and 94 designs. We exclude outlier simulations and
corresponding design nodes from this network.
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(b) DOE fingerprint

Figure 20: Case three, ffo load-case in several
development stages. (a) Des nodes are colored in
gray and Sim nodes are following the scatter plot
coloring (b). R = 1 and einf = 0.5.

Figure 19 compares the ForceAtlas2 visualization
with the DOE fingerprint. Similar to Figure 10,
this visualization indicates that the ffo load-case
contains a limited design of experiments. An addi-
tional discovery based on comparing to the DOE
fingerprint is the relation of these three load-cases
with each other: foI and foU have more in common
than the ffo load-case. This can be visualized with
several design nodes between blue and red point
clouds vs. green and red. Furthermore, the Des

nodes between each load-case cluster identify the
essential parts in common.

The last case study is one load-case (ffo) in sev-
eral development stages, Figure 20a. This graph
also considers 20 Des for each Sim , including 196
simulations and 123 designs. Besides the scarcity
of each DOE compared to others, it is possible to
discover the essential parts in common between
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Figure 21: The workflow of the knowledge discovery assistant for dynamic reporting.

different development stages. The ones in the cen-
ter are in common for several stages. Moreover,
the late development stage, green cloud, differs
more from the other three. The DOE fingerprint in
Figure 20b visualizes this difference with the low-
est absorption feature of that development stage.
An important note is that the commonality of
Des nodes between different development stages
is uncertain. However, the DOE fingerprint is in-
dependent of this assumption for comparing parts.
We present this network as a potential for knowl-
edge discovery and note that better semantics for
Des nodes are required than the used PID.

In the last two use cases, we set einf = 0.5 to
visualize the clustering of the parts. However, due
to the increase in the graph constraint by hav-
ing several DOEs included, this value needs to be
higher to highlight the additional outlier. A good
example is the parts in the scatter plot in Figure
20b whose absorption time is more than 100[ms].
These parts are not as noticeable as in Figure 20a.
However, increasing einf makes these parts more
outstanding.

8 Conclusion and outlook

The complexity of the raw data from simulations
and the lack of semantics in the current vehicle de-
velopment workflow causes design engineers and

attribute leaders to rely on the reporting from the
CAE engineers working with them. However, such
static reporting restricts an independent explo-
ration of the data. The lack of semantics in CAE
data makes the data disconnected and hinders
multi-disciplinary collaboration, which degrades
efficient problem-solving. Disconnected data in an
OEM, and even more between OEMs, is one of the
obstacles we aim to address with the car-graph vi-
sion for an efficient data exploration that exploits
semantics.

Our research aim for this work was to in-
troduce semantics for crash simulations, which
enables searchability or filtering of FE crash sim-
ulations. Based on graph representations of the
data, we proposed energy features and used them
for data visualization while leveraging them as
weights in the data graph to empower knowledge
discovery. We showed the sensitivity of energy
features for differentiating FE crash simulations
during development stages. Moreover, it intro-
duces a simple way of filtering the necessary parts
to be studied in ML deformation-based workflows.
Besides, applying ForceAtlas2 visualization fur-
ther empowered outlier detection, data cleaning,
and the clustering of the parts and simulations.
This visualization allows vehicle DOE knowledge
discovery, e.g., by assessing a single load-case in
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one development stage and comparing different
load-cases and development stages.

Overall, DOE fingerprint, design ranking, and
graph visualization are three new visualization
concepts for CAE data and allow further knowl-
edge discovery6. In a broader view, we envision
a web-based platform to enable semantic report-
ing for CAE7 as a practical tool, which targets
CAE attribute leaders, CAE engineers, design en-
gineers, and data analysts in automotive R&D.
It should enable project members from differ-
ent teams to access the CAE results, understand
the design performance limitations, compare sim-
ulations, and use algorithms on the car-graph.
For example, we can support a data exploration
with two- and three-dimensional views of DOE
fingerprints (Section 6.3). Interpreting a DOE fin-
gerprint involves further investigation, where a
dynamic interaction and filtering facilitate the
data exploration. For example, each scatter point
can link to the corresponding energy curve, meta-
data, pictures, and deformation videos of the
simulations/parts.

Figure 21 summarizes the interactions of such
a workflow. Here design ranking and DOE graph
visualization was the use case of trend and out-
lier detection at a high level. In comparison, the
DOE fingerprint can find some extreme outliers
and is best used for summarizing the exploration
and more detailed investigations.

However, it is still an early stage for research
on a vehicle knowledge graph, and additional data
should be loaded into the graph database to enrich
it. For example, in the model level as the input,
it will be material, geometrical semantics, group-
ing the parts as functional components. Moreover,
examples of extra data in the simulation output
are accelerometers, cross-section forces, deforma-
tions, and safety requirements. Moreover, there is
a necessity for grouping parts and features, where,
for example, a higher level of grouping may enable
load-path detection. Furthermore, link prediction
and similarity assessment will support engineers
in exploring a simulation database to search the
data. We give examples for similarity assessment
or part grouping in a companion paper [29].

6The databases example and a user tutorial are at
github.com/Fraunhofer-SCAI/GAE-vehicle-safety

7Accessible at CAEWebVis.scai.fraunhofer.de/.

For graph visualization, additional improve-
ments can still be made. One additional study can
be on extending the types of nodes and relations
included in the network. For example, including
development tree connections, impactor/barrier
nodes, and simulation similarity predictions. The
edge bundling method can also reduce the visual
clutter caused by edge overlaps. It can provide
a global overview of complex connection graphs
while providing information on the primary con-
nection relationships in the graph by the thickness
and color of the edges [7].

A mid-term goal is to predict simulations for
unexplored design spaces and recommend solu-
tions to the engineer. Likewise, predicting cause-
effect relations between the model and simulations
will further enrich the data. Finally, a long-term
target is to enable the evaluation of performance
robustness. Correspondingly, the car-graph shall
allow an extension of the safety evaluation from
regulated tests, which are just examples of real
crash scenarios, to more diverse crash scenarios.
Finally, the handling of unlabeled data still re-
mains a big challenge in this domain. In our case,
we needed to verify the overall discoveries with
an inefficient process of manual engineering feed-
back that limited ML applications. Consequently,
empowering the semantics using web technology
to increase data labeling will further support the
uptake of analysis approaches in this application
domain.

References

[1] Abu-Salih B (2021) Domain-specific knowl-
edge graphs: A survey. Journal of Network
and Computer Applications 185:103,076

[2] Belaid MK, Rabus M, Krestel R (2021)
Crashnet: An encoder–decoder architecture
to predict crash test outcomes. Data Mining
and Knowledge Discovery 35(4):1688–1709

[3] Bharadwaj AG, Starly B (2022) Knowledge
graph construction for product designs from
large CAD model repositories. Advanced En-
gineering Informatics 53:101,680

[4] Boussuge F, Tierney CM, Vilmart H, et al
(2019) Capturing simulation intent in an

https://github.com/Fraunhofer-SCAI/GAE-vehicle-safety
https://CAEWebVis.scai.fraunhofer.de/


Springer Nature 2021 LATEX template

22 A. Pakiman et al.

ontology: CAD and CAE integration appli-
cation. Journal of Engineering Design 30(10-
12):688–725

[5] Buchgeher G, Gabauer D, Martinez-Gil J,
et al (2021) Knowledge graphs in manufactur-
ing and production: A systematic literature
review. IEEE Access 9:55,537–55,554

[6] Chen W, Guo F, Han D, et al (2018)
Structure-based suggestive exploration: a
new approach for effective exploration of
large networks. IEEE transactions on visual-
ization and computer graphics 25(1):555–565

[7] Chen Y, Guan Z, Zhang R, et al (2019) A
survey on visualization approaches for explor-
ing association relationships in graph data.
Journal of Visualization 22(3):625–639

[8] Cheong SH, Si YW (2020) Force-directed
algorithms for schematic drawings and place-
ment: A survey. Information Visualization
19(1):65–91

[9] Du X, Zhu F (2018) A new data-driven
design methodology for mechanical systems
with high dimensional design variables. Ad-
vances in Engineering Software 117:18–28.
doi:10.1016/j.advengsoft.2017.12.006

[10] Du X, Zhu F (2019) A novel princi-
pal components analysis (PCA) method
for energy absorbing structural design
enhanced by data mining. Advances
in Engineering Software 127:17–27.
doi:10.1016/j.advengsoft.2018.10.005, using
pca to generate simulation

[11] Du Bois P, Chou CC, Fileta BB, et al (2004)
Vehicle crashworthiness and occupant protec-
tion. Am Iron Stell Inst pp 27–280, 304–330

[12] Fatfouta N, Stal-Le Cardinal J (2020) To-
wards a framework for integrated and collab-
orative knowledge management for engineer-
ing design – a case study. Proc Des Soc Des
Conf pp 559–568. doi:10.1017/dsd.2020.136

[13] Fatfouta N, Stal-Le Cardinal J, Royer C
(2019) Empirical study of car crash simula-
tion analysis within the development phase.

Proc Int Conf Eng Des ICED pp 2843–2852.
doi:10.1017/dsi.2019.291

[14] Feng Q, Zhou X, Li J (2020) A hybrid and au-
tomated approach to adapt geometry model
for CAD/CAE integration. Engineering with
Computers 36:543–563. doi:10.1007/s00366-
019-00713-4

[15] Fruchterman TMJ, Reingold EM (1991)
Graph drawing by force-directed placement.
Force-Directed Placement, in: Software-
Practice and Experience pp 21no11pp1129–
1164

[16] Hogan A, Blomqvist E, Cochez M, et al
(2021) Knowledge graphs. ACM Computing
Surveys (CSUR) 54(4):1–37
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