
Friedrich-Hirzebruch-Allee 7 • 53115 Bonn • Germany
phone +49 228 73-69828 • fax +49 228 73-69847

www.ins.uni-bonn.de

S. Rezaeiravesh, C. Gscheidle, A. Peplinski,
J. Garcke, P. Schlatter

In-situ Estimation
of Time-averaging Uncertainties

in Turbulent Flow Simulations

INS Preprint No. 2204

2022

In-situ Estimation of Time-averaging Uncertainties in Turbulent Flow
Simulations

S. Rezaeiravesha,b,c,∗, C. Gscheidled,∗∗, A. Peplinskib,c, J. Garcked,e, P. Schlatterf,b,c

aDepartment of Fluids and Environment, The University of Manchester, M139PL Manchester, UK
bSimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

cSwedish e-Science Research Centre (SeRC), Stockholm, Sweden
dFraunhofer SCAI, 53757 Sankt Augustin, Germany

eInstitute for Numerical Simulation, University of Bonn, 53115 Bonn, Germany
fInstitute of Fluid Mechanics (LSTM), Friedrich–Alexander Universität Erlangen–Nürnberg (FAU), 91058 Erlangen,

Germany

Abstract

The statistics obtained from turbulent flow simulations are generally uncertain due to finite time averaging.
The techniques available in the literature to accurately estimate these uncertainties typically only work in an
offline mode, that is, they require access to all available samples of a time series at once. In addition to the
impossibility of online monitoring of uncertainties during the course of simulations, such an offline approach
can lead to input/output (I/O) deficiencies and large storage/memory requirements, which can be problem-
atic for large-scale simulations of turbulent flows. Here, we designed, implemented and tested a framework
for estimating time-averaging uncertainties in turbulence statistics in an in-situ (online/streaming/updating)
manner. The proposed algorithm relies on a novel low-memory update formula for computing the sample-
estimated autocorrelation functions (ACFs). Based on this, smooth modeled ACFs of turbulence quantities
can be generated to accurately estimate the time-averaging uncertainties in the corresponding sample mean
estimators. The resulting uncertainty estimates are highly robust, accurate, and quantitatively the same as
those obtained by standard offline estimators. Moreover, the computational overhead added by the in-situ
algorithm is found to be negligible. The framework is completely general and can be used with any flow
solver and also integrated into the simulations over conformal and complex meshes created by adopting
adaptive mesh refinement techniques. The results of the study are encouraging for the further development
of the in-situ framework for other uncertainty quantification and data-driven analyses relevant not only
to large-scale turbulent flow simulations, but also to the simulation of other dynamical systems leading to
time-varying quantities with autocorrelated samples.

Keywords: Uncertainty quantification, Time-averaging uncertainty, In-situ estimation, Turbulent flows,
Autocorrelation.

1. Introduction

Turbulent fluid flows are fundamentally unsteady and contain vortical structures of a wide range of spatial
and temporal scales. For numerical simulation of turbulent flows, various approaches have been developed,
see e.g. Sagaut et al. [28]. Due to their capabilities in accurately capturing the physics of turbulent flows,
scale-resolving approaches such as large-eddy simulation (LES) and direct numerical simulation (DNS) are

∗Principal Corresponding Author
∗∗Corresponding Author

Email addresses: saleh.rezaeiravesh@manchester.ac.uk (S. Rezaeiravesh), christian.gscheidle@scai.fraunhofer.de
(C. Gscheidle), adam@mech.kth.se (A. Peplinski), jochen.garcke@scai.fraunhofer.de (J. Garcke),
philipp.schlatter@fau.de (P. Schlatter)

Preprint submitted to Elsevier October 31, 2023

ar
X

iv
:2

31
0.

08
67

6v
1

 [
ph

ys
ic

s.
fl

u-
dy

n]
 1

2
O

ct
 2

02
3

of particular interest for both academic and industrial flows. It is recalled that LES, mostly, and DNS,
fully, resolve the flow structures in time and space. A main challenge when applying these approaches
is the required excessive computational cost, which would become prohibitive for wall-bounded turbulent
flows at high-Reynolds numbers [6]. For such flows, which appear in many engineering applications, the
computational cost of the scale-resolving simulations is driven by the requirement of accurately resolving the
inner part of the turbulent boundary layers (TBL) [5, 11]. In recent decades, the progress in high-performance
computing (HPC) technologies has made it possible to employ scale-resolving turbulence simulations such
as LES and DNS at higher Reynolds numbers and more complex flows.

The HPC developments have, however, led to new requirements and aspects to consider in the design
of the next generation of CFD (computational fluid dynamics) software. In particular, the NASA 2030
vision [31] has listed a technology development roadmap and specified the readiness level of various tech-
nologies. Among such are the uncertainty quantification (UQ) techniques for assessing the reliability and
accuracy of the CFD simulations’ outcomes. Among others, the uncertainties in CFD simulations can be
due to the numerical settings, programming, turbulence modeling, initial/boundary data, and finite time-
averaging [19, 32, 23, 26]. The focus of the present study is on the latter that is also known as statistical
or sampling uncertainty, appearing due to the finite number of samples considered when computing the
time-averaged quantities and turbulence statistics. In practice, after the turbulent flow becomes statistically
stationary, sample mean estimators (SME) are evaluated by averaging the samples which are autocorrelated
by nature. Different techniques for estimating the uncertainty in SMEs of turbulent flow quantities have
been used, see [23, 27, 36, 14], a short review of which is given in Section 2. As extensively discussed in
Ref. [36], the hyperparameters appearing in each of these techniques have to be properly adopted in order
to avoid any bias in the estimated time-averaging uncertainties.

In large-scale CFD simulations, there is an increasing gap between the amount of data that is generated
during the runtime and what can actually be stored to disk. For current HPC systems, this gap due to
the limitations in the data input/output (I/O) can be as large as up to four orders of magnitudes, even
for highly parallel systems [13]. To overcome this limitation, workflows for in-situ visualizations have been
set up to export compressed pictures of the flow field during runtime, see [1] for an in-situ visualization
workflow with Nek5000 [9]. A common technique to visualize turbulence are iso-surfaces of the so-called Q-
criterion exported for each time-step, which can later be integrated into a video. Even though the resolution
and the number of extracted pictures can be increased significantly by an in-situ visualization workflow,
a quantitative analysis based on these will not be possible after the end of the simulation. Moreover, in
the field of data analytics and machine learning, in-situ algorithms, also known as updating, streaming or
incremental, have recently gained attention for two reasons. First, there are cases where not all of the
training data fits into memory. Therefore, the data processing is usually performed out-of-memory, where
only one sample or a small batch of samples is loaded and processed at a time to update the model. This
also applies for scenarios where data is constantly being produced, e.g. by a simulation or measurements of
a system. But here, as soon as new data is available it can be processed step by step in an in-situ fashion.
Note that when processing data in batches, often the accuracy of the results depends on the batch size,
e.g. when computing streaming singular-value decomposition (SVD) [15]. In these cases, a good balance
between memory usage on the HPC system and the accuracy of the results is required. Second, when working
in-situ one can exploit the intermediate data analysis results or measurements for an online monitoring of the
system. Both motivations also apply to CFD simulations. There, very large amounts of data are generated
that cannot be held in memory at once. An in-situ analysis can thus significantly increase the accuracy and
accessibility to the data analysis results. Besides, based on an analysis of intermediate simulation results,
we can build a monitoring system that provides criteria to abort or steer the simulation and eventually save
computing time and resources.

In the literature, studies for the evaluation of time-averaging uncertainties have essentially been based on
the assumption that the uncertainty estimators have access to the whole set of time samples, see [23, 27, 36].
In practice, this requires that for each quantity, the generated samples are stored on disk and then loaded
to the memory. These would lead to both severe memory and computational deficiencies, especially for
large-scale simulations. To rectify these issues, the present study provides the necessary tools in addition
to a framework for an in-situ evaluation of the uncertainties in sample mean estimators for autocorrelated

2

samples. These include updating estimators for the SME and associated uncertainties, as well as an interface
between the CFD solver and UQ module. The memory requirements will be minimized in approaches where
the UQ estimator still needs to keep information in memory at runtime.

The remainder of the paper is organized as follows. Section 2 introduces the problem of estimating time-
averaging uncertainty in SMEs of turbulence time series and proposes a formula for obtaining a smooth
model for the autocorrelation function (ACF) of such time series. The focus of Section 3 is on updating
UQ algorithms. Section 3.1 reviews the updating formulae for an in-situ estimation of the sample mean
and variance of a time series. The formulae are then used in Section 3.2 to derive expressions for an in-situ
estimation of time-averaging uncertainty in SMEs based on batch-based methods. The updating method for
estimating the time-averaging uncertainties proposed in the present study is discussed in Section 3.3, followed
by the description of the workflow and software that implements it in Section 4. Then, in Section 5, the flow
solvers and use cases to which the framework is applied are described. In Section 6, the results are presented
and thoroughly discussed. This includes the assessment of the accuracy, sensitivity and robustness of the
new techniques proposed in Sections 2 and 3.3, as well as the assessment of the computational efficiency of
the framework developed in Section 4 when applied to the use cases. Summary and conclusions are provided
in Section 7.

2. Uncertainty in a Sample Mean Estimator (SME)

In practice when only one simulation (realization) of a physical process is performed, the true expectation
or mean value of a quantity x belonging to the process cannot be obtained. Instead, for each realization of
the process, a set of time samples for x is obtained from which a sample mean estimate can be computed.
Let x denote a time series sample of size n, i.e. x = {xi}ni=1, where xi = x(ti). Henceforth, we assume the
times ti are equi-spaced. The sample mean estimator (SME) for the time series reads as

µ̂ := Ê[x] =
1

n

n∑
i=1

xi . (1)

Note that throughout the text, estimated values/estimators are represented with the overhat symbol ·̂. The
SME is unbiased, see e.g. [34], and converges to the true but unobserved expectation of x, i.e. µ := E[x].
Furthermore, the SME has a Gaussian distribution:

µ̂ ∼ N
(
µ, σ2(µ̂)

)
, (2)

where σ(µ̂) is the standard deviation and hence a measure of uncertainty of µ̂. For many processes including
flow turbulence, the time samples of any flow variable are autocorrelated over a generally unknown number
of time lags. For autocorrelated samples in x, an analytical expression can be derived for the variance of µ̂,
see e.g. [34]:

V[µ̂] = σ2(µ̂) =
1

n

γ0 + 2

(n−1)∑
m=1

(
1− m

n

)
γm

 , (3)

where γm is the autocovariance of x at lag m. Trivially, this expression can be written in terms of the
autocorrelations ρm = γm/γ0 with γ0 denoting the variance of x. The sample-estimated autocovariances are
obtained from

γ̂m = ĉov(xi, xi−m) =
1

n−m

n−m∑
i=1

x′
ix

′
i−m , (4)

where x′
i = xi − Ê[x]. Plugging γ̂m into Eq. (3) leads to estimates for σ̂2(µ̂), which can, however, be

inaccurate noting there are non-vanishing oscillations of γ̂m at higher lags for any finite number of time
samples (sample size).

In the literature, two main approaches have been suggested to circumvent the issues arising by the use
of γ̂m in Eq. (3). In the batch-based approaches, the original samples are divided into a set of batches and

3

then one works with the mean values of the samples in each batch without using Eq. (3). Depending on how
particularly the batch means are used, different approximations of σ̂(µ̂) are achieved. For a review of the
batch-based uncertainty estimators as well as the more efficient Batch-Means Batch-Correlation (BMBC)
algorithm, see [27]. In Section 3.2, we provide a brief overview of the batch-based methods relevant to the
present study.

In the second type of approaches, Eq. (3) is directly evaluated by introducing a modeled autocorrelation
function (ACF) or autocovariance function (ACovF) that is smooth for all lags. As first applied to turbulent
flow simulations by Oliver et al. [23], an autoregressive model (ARM) can be fitted to the original samples x,
and then the estimated ARM coefficients are used to fit a smooth power-law ACF for m ∈ [0,∞), see
Appendix A. This approach is believed to be the most accurate method of estimating uncertainty in the
SME in turbulent flows conditioned on adopting appropriate values for the hyperparameters involved. The
latter include the order of the ARM and the set of sample-estimated autocorrelations to construct a smooth
ACF model, see Xavier et al. [36]. The described method is not of interest in the present study, because
it requires the entire time-series data to be in memory for fitting the ARM and is therefore unsuitable for
an in-situ implementation. Instead, we can rely on ad-hoc algebraic functions to create smooth models for
the ACFs, meaning that fitting an ARM to the time samples is skipped. Along this line of thought, in the
studies mainly relevant to atmospheric turbulence the following function proposed in Ref. [14] is widely used
to model the ACFs:

ρ(m) = exp(−am) , (5)

for m = 0, 1, 2, . . ., where 1/a is the turbulence integral time-scale. There have been other forms of functions
for modeling ACF, see e.g. [29] and the references therein. However, as discussed in Section 6.1, the model
function (5) may not be appropriate for data obtained from wall-bounded turbulence simulations. Instead,
we propose to use the slightly modified function

ρ(m) = a exp(−bm) + (1− a) exp(−cm) , (6)

to model ACFs of turbulence time series. Here, m ≥ 0 is the time lag (integer), and parameters b and c are
strictly positive. Obviously, ρ(0) = 1 and ρ(m → ∞) → 0. In comparison to Eq. (5), the suggested function
has two more parameters to estimate. To construct a smooth ACF model using Eq. (6), a set of training
sample-estimated autocorrelations {ρi}ntrain

i=1 at lags {mi}ntrain
i=1 are used. As discussed in Section 6.1, as one

of its main advantages, the model function (6) is flexible in terms of how the training lags are selected. To
estimate the model parameters a, b, and c, a non-linear least-squares method can be employed. Hereafter,
we refer to the estimation of the σ(µ̂) using the ACF model (6) as the MACF method.

3. Updating UQ Algorithms

To the author’s knowledge, there has not been any prior study addressing the in-situ formulation of
neither batch-based methods nor estimators relying on the modeling of the ACF function. In what follows,
first the basic definitions for constructing updating uncertainty estimators are provided. Then, updating
versions of the batch-based methods as well as the proposed MACF method are presented. In all the
following derivations, the samples are assumed to be equidistant in time. For the special case of statistically
stationary turbulent flows, the variable x in the following formulations can be any of the flow variables at
any spatial location inside the flow domain.

3.1. Updating sample mean and variance estimators

Following Chan et al. [4], the sample mean of a time series considering the i-th to the j-th time samples
is defined as

Mi,j =
1

(j − i+ 1)

j∑
k=i

xk . (7)

4

Correspondingly, the sample variance estimation is given by Si,j/(j − i+ 1) where,

Si,j =

j∑
k=i

x2
k − (j − i+ 1)M2

i,j . (8)

Welford [35] proposed updating formulations for Mi,j and Si,j :

Mi,j = Mi,j−1 +
1

(j − i+ 1)
(xj −Mi,j−1) = Mi,j−1 +∆Mi,j , (9)

Si,j = Si,j−1 + (j − i)(j − i+ 1)∆M2
i,j . (10)

These formulae are the building blocks for the updating batch-based estimators of σ(µ̂), as detailed below.

3.2. Updating batch-based methods

In the standard (offline) batch-based methods, see Ref. [27], first a set of batches are created using
the time samples collected from a turbulence time series. For the non-overlapping batch mean (NOBM)
method that we discuss here, the set of samples {xi}ni=1 are divided into K batches of size Nb. Then, x̄k for
k = 1, 2, . . . ,K is computed as the sample mean of the samples included in the k-th batch. Using {x̄k}Kk=1,
the sample mean of the original time series is estimated by

µ̂ =
1

K

K∑
k=1

x̄k , (11)

the variance of which is estimated as

σ̂2(µ̂) =
1

K(K − 1)

K∑
k=1

(x̄k − µ̂)2 . (12)

Performing these steps in an in-situ (updating) manner is straightforward. The main point is that two sets
of sample means should be updated using Eq. (9): one for computing the batch-means, and the other one
for computing the sample mean of the time series using the updated batch-means. But Eq. (10) is used only
“per request” to update the estimated variance of the SME of the time series. These steps are summarized
below and also schematically represented in Figure 1.

1. Specify the batch size Nb;

2. In the flow simulation’s time loop, with a given sampling interval:

(a) compute sample mean of every Nb samples using updating formula (9) → M̄i;
(b) update the SME of the time series and its variance via Eqs. (9) and (10), respectively → Mµ, Sµ.

To improve the accuracy of σ̂(µ̂) estimated by the NOBM method, Russo and Luchini [27] suggested con-
sidering the first-lag correlation between the batch means. The resulting batch-means and batch-correlation
(BMBC) estimator for the SME uncertainty reads as,

σ̂2(µ̂) =
1

(K − 1)(K − 2)

(
K∑

k=1

(x̄2
k − µ̂2) + 2

K−1∑
k=1

(x̄kx̄k+1 − µ̂2)

)
, (13)

which, compared to Eq. (12), has the second summation on its right-hand-side (RHS). In order to formulate
an updating formula for this term, Eq. (16) below can be used with m = 1 and substituting x by x̄. The
implementation of the updating BMBC (iBMBC) method requires the last computed batch mean to be
stored in memory.

5

f Batch B1

of size Nb

M1

Mμ, Sμ

B2 B3 BK

M2 M3 MK

1. Choose batch size Nb

2. Update Mi in each batch using eq. (9)

3. Update Mμ using eq. (9) and Sμ using

 - eq. (10) (NOBM) or

 - eqs. (13) - (16) with m = 1 (BMBC)

Before simulation:

Updating NOBM and BMBC approaches

During runtime:

Every N
b samples:

t

Figure 1: Schematic representation of the updating algorithm applied to the NOBM and BMBC methods. The batch
means and the SME of x are updated using Eq. (9). The variance of the SME for the NOBM and BMBC methods
is computed using Eqs. (10) and (13), respectively.

3.3. Updating MACF (iMACF) method

As a main drawback, the accuracy of the NOBM and BMBC methods is controlled by the batch size Nb,
which, in general, cannot be chosen intuitively prior to the simulations. Moreover, the optimal value of Nb

depends on the flow variable and also changes with the spatial location [36]. These restrict the suitability of
adopting the batch-based uncertainty estimators for in-situ applications. Therefore, we focus on the approach
of modeling the autocorrelation ρm = γm/γ0 in Eq. (3) for any lag m > 0. In particular, the proposed
MACF method outlined in Section 2 is considered, where a set of modeling parameters are estimated using
the training sample-estimated ACF values {ρi}ntrain

i=1 corresponding to the time lags {mi}ntrain
i=1 . The only

potential subjectivity in this method could be due to the choice of the training data set which, however, as
discussed in Section 6.1, does only have a negligible influence on the accuracy of the predicted uncertainties.
This is a clear indication of the robustness of the proposed ACF model (6).

The standard estimation of the sample autocovariance at lag m ≥ 0 via Eq. (4) using n time samples
requires having all n−m samples at once. Instead, we aim at deriving a formulation for sample-estimated
ACF which is updating and requires a minimum amount of storage. As the first step, we define the sample-
estimated ACovF at lag m by including the samples from i to j, as:

Γ̃m
i,j = Γm

i,j/(j − i+ 1) , (14)

where,

Γm
i,j =

j∑
k=i

(xk −Mi,j)(xk−m −Mi,j) , (15)

where Mi,j is the updating SME of x defined in Eq. (7). Expanding this definition results in the following
expression:

Γm
i,j = Γm

i,j−1 −∆Mi,j

j−1∑
k=i

(xk + xk−m) + (j − i−m+ 1)M2
i,j − (j − i−m)M2

i,j−1

+ xjxj−m −Mi,j(xj + xj−m) , (16)

where i is, in practice, fixed (i.e. chosen after the statistically stationary condition of the turbulent flow
is established), and for a given m it is needed that i > m. As detailed in Appendix B, for m = 0 this
expression becomes identical to Eq. (10) for the variance of x. For computing all the terms on the RHS of
Eq. (16) except the last two, no storage of the samples of x is needed. The storage demanded by the two
terms containing xj−m can basically increase with j and m, however, our optimal implementation requires a

6

Algorithm 1: Updating MACF (iMACF) method.

Input: Choose mmax and Ts, where mmax is sufficiently larger than Ts. Although these choices are,
in general, arbitrary, choose the mmax such that mmax = MmaxTs with Mmax being an
integer. This makes the initialization step more efficient.

1 Initialize the list of training lags as mtrain = [Ts, 2Ts, . . . ,MmaxTs]. For each m ∈ mtrain, a buffer
array is created to store the corresponding Γm

i,j .

2 while CFD simulation is not finished do
3 if time t is divisible by Ts then
4 if t ≤ mmax = MmaxTs then
5 fill the buffer array with the samples of x.
6 else
7 Compute ∆Mi,j in Eq. (9),
8 Update Si,j using Eq. (10),
9 forall m ∈ mtrain do

10 update Γm
ij using Eq. (16),

11 end forall
12 Update the buffer array,
13 Update Mi,j in Eq. (9).
14 (optional) Use the training autocorrelations at lags mtrain to fit the ACF model (6)

which is then plugged into Eq. (3) to estimate σ̂(µ̂).

15 end if

16 end if

17 end while

buffer of a fixed size. In fact, this size can be kept small even for obtaining a high accuracy of the estimated
uncertainty of an SME, thanks to the flexibility of the uncertainty estimation techniques described below.
In principle, going from j− 1 to j, first the sample at j−m that is already available in the buffer is used to
update the last two terms in Eq. (16). Then, the oldest stored sample is removed from the buffer followed
by adding the most recent sample xj to the buffer.

Our investigation in Section 6.1 shows that, for accurately modeling the ACF of a time series using Eq. (6),
only a few sample-estimated autocorrelations are required. Moreover, there is a great flexibility regarding
the selection of the training samples. Therefore, Eq. (16) should be evaluated at a set of m ∈ mtrain. Bearing
in mind the issue with xj−m, the maximum value of m, hereafter mmax, can be a main factor in driving the
overall cost of the in-situ estimation of the sample-estimated autocorrelations using Eq. (16).

In practice, to enhance the computational efficiency and minimize the required memory storage of the
iMACF method for in-situ estimation of the uncertainty of an SME, see Algorithm 1, time samples can
be taken with a frequency of Ts∆t, where, Ts is a positive integer and ∆t is the time-step size in the flow
simulation. The selection mtrain can be linked to Ts to create an efficient computational algorithm.

Line 14 in Algorithm 1 is executed upon a user request or automatically following a preset schedule, as
this step is used for monitoring the convergence of the turbulence statistics. The procedure for computing
the sample training autocovariances is shown schematically in Figure 2. Recall that the buffer is required
for the purpose of in-situ evaluation of the terms containing xj−m in Eq. (16). The low-storage feature of
the algorithm can be inferred from Line 12: the sample at the smallest lag in the array is removed, other
samples are shifted, and the new sample is appended to the end of the buffer array. However, to increase
the efficiency in practice, the oldest value in the buffer is overwritten by the newest value while keeping all
other values untouched, resulting in a cyclic writing to the buffer array. In particular, for the Python library
Numpy [10] used in the present work, this has been implemented by using numpy.roll which creates copies
of the buffer array for each execution.

7

Buffer
New sample

j-m

Update
the buffer

New sample

. . .

. . .

. . .

. . .

Remove Add

Figure 2: Schematic representation of the updating algorithm to compute sample autocovariances from Eq. (14)
using the updating expression (16), see Algorithm 1. The operations within the shaded area are repeated in a loop
over m ∈ mtrain.

4. Workflow Design and Software Implementation

The updating UQ methods from Section 3 are implemented in Python as an extension of UQit [25] to
allow for a flexible adaptation of the algorithms during the development and validation of the framework.
In this section, the proposed workflow applied to the CFD simulations and its components are described.

The CFD simulation mesh is processed block-wise on each MPI (Message Passing Interface) rank to take
advantage of the matrix manipulations in linear algebra libraries, more specifically Numpy [10], and provide
a straight-forward high-level parallelization of our code. For the purpose of benchmarking the algorithms in
a realistic simulation environment, we utilize the ParaView Catalyst [2] interface. Therefore, algorithms are
wrapped as VTK (Visualization Toolkit) filters and executed in a Catalyst pipeline together with native VTK
filters, for instance, to extract slices from the original mesh. Although this setup is generally independent
of the flow solver, the tests in the following sections were performed using Nek5000 [9] with an additional
Catalyst interface [2]. The performance analysis of the entire in-situ workflow is discussed in Section 6.5.

Referring to Section 3.3, we note that the algorithm can be split into three major parts: the updating
formula to compute the ACF at different lags, the estimation of the continuous ACF via curve-fitting
(i.e. Eq. (6)), and finally the estimation of uncertainty in the SME of turbulence quantities. While all three
steps could, in principle, be executed during the runtime of a simulation, we may prefer to run the second and
third steps offline. This allows us to take advantage of the reduced data I/O due to the online computation
of sample-estimated ACF with only a small amount of additional runtime and memory allocation. On the
other hand, the UQ results are only needed at the end of the simulation or at a few intermediate time steps
preset or requested by a user. Thus, the computationally intense curve-fitting step can be detached from
the workflow to avoid slowing down the simulation for which the in-situ UQ is enabled. Following this,
we implemented the second and third steps of the algorithm in a ParaView plugin to further process the
data that is generated during the simulation. Note that if the computational architecture allows it, idle
computational resources can be used for the detached steps, see [12].

The verification of the framework has been carried out by comparing the proposed updating algorithm
to the corresponding offline algorithms from the statsmodels Python library [30], which has access to the
full time series, using the data from a DNS of the 3D flow around a cylinder at Re = 3900 as introduced
in Section 5. For this purpose, we set up a Catalyst workflow to extract a 2D slice from the original mesh

8

Use-case Probe history data
for verification

Region of interest

UQ Method

Final UQ results

e.g. iBMBC, iMACF

e.g. slice, box

Intermediate UQ
results on
high resolution,
global mesh

Nek5000
+

VTK Writer

VTK Filter
+

VTK Reader

VTK Slice/Box

ParaView Plugin
+

Catalyst Pipeline

ParaView Pipeline

Figure 3: The workflow of the in-situ UQ framework proposed in Section 3.3 to be applied to CFD simulations.

that gets both processed in-situ by the described algorithm and written to disk in a VTK format, at the
same time steps. That way, we can process the exact same data in both online and offline modes, see
Figure 3. For test data from the cylinder use case with a set of 100000 time-steps, both results are identical
up to around 14 significant figures, providing a strong indication that the implementation of the in-situ UQ
algorithm is practically error-free. As there are many additions of values that differ by several orders of
magnitude during the evaluation of the updating algorithm, we also investigated the influence of reducing
the floating point precision to 32-bit. In this case, after 100000 time-steps the accuracy drops down to
around 4 significant figures. Thus, single precision floats should provide sufficient accuracy of the results for
most cases, as the numerical error is still much smaller than the sampling uncertainty in the sample mean
estimations.

5. Flow Solver and Use Cases

5.1. Flow solver

The described workflow can be applied to any flow solver, however, we consider Nek5000 [9] in the
present study. Nek5000 is an open-source spectral-element [24] flow solver developed at Argonne National
Laboratory (US). The low numerical dissipation and high parallel performance [20] makes this software
perfect for high-fidelity simulation of large-scale advection-diffusion problems, and in particular turbulent
flows, see e.g. Refs. [7, 18, 33]. In the spectral-element method, the computational domain is decomposed
into a set of non-overlapping spectral subdomains called elements. The Navier–Stokes equations in their
weak form are then discretized over such elements treated as spectral domains. We focus here on the
staggered grid formulation, so-called PN −PN−2 formulation, in which velocity and pressure are represented
on different meshes. In this case, the functional spaces of the primitive variables velocity and pressure are
spanned by the Lagrangian interpolants on the Gauss–Lobatto–Legendre (GLL) and Gauss–Legendre (GL)
quadrature points, respectively. A high spatial resolution is obtained by adopting high-order polynomials
with order N . In the simulations discussed in the present work, we have used N equal 5 for the rotating parts
simulation, 7 for the channel flow and 11 for the NACA4412 flow. For integration in time, a semi-implicit

9

scheme is adopted in which the nonlinear terms in the Navier–Stokes equations are treated explicitly and
the remaining unsteady Stokes problem is solved implicitly. More in-depth discussion of the algorithm can
be found in e.g. Ref. [8].

The domain decomposition into elements is a main source of both the algorithm parallelism and meshing
flexibility. The latter can be significantly improved by including an adaptive mesh refinement (AMR) strat-
egy, which is a self-adapting algorithm allowing to dynamically modify the mesh according to the estimated
computational error. An AMR version of Nek5000 [21, 22] was developed at KTH using h-type refinement, in
which the total number of grid points is modified by splitting/merging the elements while keeping the number
of collocation points per elements fixed. This implementation follows a conforming-space/nonconforming-
mesh approach [8], in which a special interpolation operator is applied at nonconforming interfaces avoiding
the construction of the so-called mortar elements [16]. Although this approach limits the permitted mesh
configurations, it allows to use simple and efficient mesh management tools based on the octree refinement
(e.g. p4est library [3]), and has a relatively small impact on the solver parallel performance. Regarding the
AMR simulations in Section 5.2.2, the mesh refinement was driven by a spectral error indicator formulated
by Mavriplis [17].

5.2. Use cases

In this section, the flow cases to which the in-situ UQ framework is applied are briefly introduced. Due to
their complexity and engineering relevance, wall-bounded turbulent flows are considered. In order to show
the generality of the UQ framework, the simulations include both conformal and non-conformal (AMR)
computational grids.

5.2.1. Simulations with conformal mesh

As one of the most canonical wall-bounded turbulent flows, the turbulent channel flow is considered
which comprises of two parallel flat walls separated by distance 2δ. This internal flow is periodic in the
streamwise and spanwise directions, which correspond to x and z, respectively. The wall-normal direction
is represented by y. The absence of uncertainty due to initial and boundary conditions makes the turbulent
channel flow suitable for fundamental studies. For a-priori assessment of the proposed UQ algorithm, the
data of turbulent channel flow at the friction Reynolds number Reτ = 300 are used in Sections 6.1 and
6.2. This Reynolds number is defined as Reτ = uτδ/ν, where uτ is the averaged wall friction velocity
and ν denotes the kinematic viscosity. The data includes the wall-normal profile of the streamwise velocity
component and wall friction velocity averaged over time and the periodic directions. The simulation was
performed using polynomial order N = 7 in Nek5000 and a total number of 105 time samples at time
intervals 0.008δ/Ub (Ub is the bulk velocity) were collected to analyze the UQ algorithm in an offline mode.

The turbulent flow around a cylinder at Re = 3900 as well as a NACA4412 wing-section at Re = 75000
is considered as an external aerodynamic use case to which the UQ framework is integrated in an in-situ
way. Figure 4 represents the iso-surfaces of the Q-criterion of a snapshot of the turbulent flow fields. In
the spanwise direction, a periodic boundary condition is applied. The flows contain several interesting flow
features, such as laminar separation and periodic structures in the wake region. Estimation of the uncertainty
in the flow statistics in the wake region is especially challenging due to the strong autocorrelation of the
time samples over large time averaging intervals. In Section 6.3, the in-situ UQ framework is applied to
estimate the uncertainty in the sample mean velocity at all GLL points of the three-dimensional mesh.
Furthermore, an analysis of the computational performance of the in-situ UQ framework integrated into the
CFD simulations is detailed in Section 6.5.

5.2.2. AMR simulation of a rotor

The most complex flow case presented in this work is a “toy” rotor studied within the EU project
EXCELLERAT1 in cooperation with CINECA2. The rotor was built out of four blades with NACA0012

1https://www.excellerat.eu/
2https://www.cineca.it/en

10

(a) (b)

Figure 4: Flow around a (a) circular cylinder at Re = 3900 and (b) a NACA4412 wing section at Re = 75000
computed with Nek5000. Visualization of the instantaneous flow fields using isosurfaces of the Q-criterion colored
by the velocity magnitude.

airfoil of length 3 (using an airfoil chord as a unit length), rounded wing tips and an angle of attack equal
to 5◦. The simulation was performed in a rotating reference frame using an AMR framework [21, 22].
The simulation time unit and an angular rotation speed of the reference frame, Ω, were adjusted to set a
linear velocity of an external blade tip (located at radius r0 = 6.5) to 1. This gives the rotation period
T = 2π/Ω = 2πr0 equal 40.84. The Reynolds number based on the chord length and the rotation speed at
the position of the external blade tip was equal to Re = 10000. The spectral error indicator was based on
the Cartesian components of the velocity field averaged over 0.2 simulation time units. At each refinement
stage 10% of the elements with the highest estimated computational error were refined, and the elements
with an indicated error below 5.0 × 10−7 were marked for coarsening. This process was repeated multiple
times until the required resolution was reached by increasing the number of elements from 346336 (initial
conforming mesh) up to 1088595. A maximum allowed mesh resolution was defined by setting the maximum
refinement level to 3. The rotor was embedded in a cylindrical domain of radius 33.2 and extended in the
vertical direction (y axis in the simulation coordinate system) from −18.2 to 13.2. The simulation was run
for 1.9 full rotations before the UQ framework was executed. The visualization of the instantaneous flow
field at a simulation time t = 77.6 together with the cut through the domain mid-plane showing the element
boundaries is presented in Figure 5.

6. Results and Discussion

In this section, we elaborate on the application and performance assessment of the proposed in-situ UQ
framework. Section 6.1 is focused on the assessment of the accuracy and robustness of the proposed ACF
model (6). The use of this model to estimate uncertainty in the sample mean estimator (1) is discussed in
Section 6.2. The assessment of the in-situ estimation of such uncertainties for turbulent flow simulations
introduced in Section 5.2 is detailed in Section 6.3. This is followed by Section 6.5 where the computational
performance of the algorithm is discussed.

6.1. Accuracy and robustness of the proposed ACF model

The core requirement for precisely estimating the uncertainty of an SME using the iMACF method of
Section 3.3 is to accurately model the ACF that is plugged into Eq. (3). For this purpose, we proposed the
algebraic function (6), the optimality of which is motivated in this section. For quantitative assessment of
the accuracy and robustness of the proposed ACF model, two sets of time series data are employed: velocity
samples of a turbulent channel flow introduced in Section 5.2.1, and synthetic samples generated from a
first-order autoregressive model, AR(1). In particular, AR(1) is defined as

xi = axi−1 + bεi , i = 1, 2, . . . , n , (17)

11

Figure 5: Flow around a toy rotor at Re = 10000 in a rotating reference frame computed with the AMR version of
Nek5000 [21, 22]. The plot presents the iso-surfaces of the λ2-criterion of the instantaneous flow field and the cut
through the domain mid-plane showing the element boundaries. Variable resolution and nonconforming interfaces
are clearly visible in the wake region behind the blades.

where εi are uniformly-distributed as εi ∼ U [0, 1] and a, b ∈ R. To ensure the time series is statistically
stationary, it is required that |a| ≤ 1. The particular values of a = 0.1 and b = 0.9 are considered for the
analyses in the present section and Section 6.2. For any n samples, the analytical value of the variance of
the expectation of x can be obtained from

nV[E[x]] = b2/(12(1− a)2) . (18)

This expression can be used to validate the values of σ̂2(µ̂) estimated by employing the UQ approaches
introduced in Section 3. Both of the data sets used in the section (channel flow and AR(1)) have a sample
size of n = 105.

Figure 6 shows the sample-estimated (black lines) and modeled ACFs (dashed red lines) of the time series
samples of the AR(1), and also the channel flow streamwise velocity samples at a distance from the wall.
The modeled ACF is obtained by the proposed MACF model (6) using different sets of the training sample-
estimated ACFs (shown by markers) which are subsets of the available samples of each of the two time
series data sets. The training sample-estimated ACFs in Figure 6 are particularly chosen in two different
ways over the range of lag zero and a given maximum lag: i) at a set of sparse lags with non-equal spacings
(middle column), and ii) a set of lags with a fixed spacing that is a multiplication of the time lag between
the original samples (right column). For reference, the modeled ACF from a power-law model, see Appendix
A, is also shown (left), which is computed using the training sample ACFs at all the original sampled times.
For all the cases, the modeled ACF is found to be accurate for both AR(1) and channel flow data up to the
point where the sample-estimated ACFs show spurious wiggles. This particularly confirms the robustness
and accuracy of the ACF model (6), since even with a small number of training samples an accurate smooth
prediction of the ACF is achieved.

As explained in Section 3.3, for the in-situ MACF estimator (iMACF), the size of the training data must
be as small as possible and at fixed sampling intervals to ensure the low-storage (memory-efficient) property.
Furthermore, the training samples should be taken at the lowest possible lags. These requirements are met
in the construction represented in the right column of Figure 6, which is also used in practice in the in-situ
UQ framework as detailed in Sections 6.3 and 6.5.

A general rule found in the present study is to choose the sampling frequency Ts for selection of the
training data such that the first non-zero time lag does not exceed ≈ 15 to obtain an accurate ACF model.

12

0 100 101 102 103 104 105

Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

0 100 101 102 103 104 105

Lag

0.0

0.2

0.4

0.6

0.8

1.0

0 100 101 102 103 104 105

Lag

0.0

0.2

0.4

0.6

0.8

1.0

(a) Data: AR(1) defined in Eq.(17) (synthetic data).

0 100 101 102 103 104 105

Lag

0.25

0.00

0.25

0.50

0.75

1.00

AC
F

0 100 101 102 103 104 105

Lag

0.25

0.00

0.25

0.50

0.75

1.00

0 100 101 102 103 104 105

Lag

0.25

0.00

0.25

0.50

0.75

1.00

(b) Data: ⟨u⟩xz at y+ = 94 of a turbulent channel at Reτ = 300. Note that ⟨·⟩xz represents averaging over the wall-parallel
directions x and z. The inner-scaled wall distance y+ is defined as y+ = yuτ/ν.

Figure 6: Sample estimated ACF (solid black line), sample training ACF data (markers), and modeled ACF (dashed
red line) for 105 samples. The modeled ACFs are obtained using: (left) The power-law model (see Appendix A), (mid-
dle) the ACF model (6) with a sparse set of training lags [0, 1, 5, 10, 20] for the synthetic data and [0, 10, 50, 100, 200]
for the channel flow data, and (right) the ACF model (6) with sampling intervals 5 for the synthetic and 15 for the
channel flow data, respectively. The maximum lag at which the sample-estimated ACF data are used for training
the ACF model is 20 for the synthetic and 200 for the channel flow data.

Less important is the maximum training lag (i.e. MmaxTs in Section 3.3), which could be chosen to minimize
the number of elements in the buffer by considering the training ACF up to ≈ 0.8. This value was found
through experimentation to make a balance between the size of the buffer array and the accuracy of the
modeled ACFs. In any case, this upper limit should not be so large to include the wiggles around zero
ACF. These guidelines are important to be imposed in practice noting that driven by the physics, the
characteristics of the ACF of turbulence time series depends on the quantities as well as the locations in the
flow domain (more specifically at different wall-distances in wall-bounded flows).

The final point regarding Figure 6 is that the most optimal scenario in terms of the number of training
data required, is to use a sparse set of sample ACFs with non-uniform lag distances, i.e. the middle column in
the figure. However, constructing an automatic procedure for updating the buffer in the in-situ algorithm, as
it is made with a fixed sampling interval Ts in Figure 2, may not be possible. Another interesting observation
is that the ACF modeled by the power-law method (see Appendix A), which is more involved than the
proposed MACF, may deviate more from the sample ACF and thus result in less accurate estimates for
uncertainties, see the plots in the bottom of Figure 6.

As briefly mentioned in Section 2, in some previous studies in the literature, function (5) has been used
to model the ACF. However, Figure 7 shows that the use of this model is limited to processes such as AR(1),
where the integral time scale, i.e. the area below the ACF-time curve, is small. Conversely, for the turbulence
time series where the history effects last for a longer time and the corresponding autoregressive model is
of high order, the ACF model (5) fails to accurately obtain a smooth function for the ACF. In particular,
in Figure 7, the ACF inaccurately modeled by Eq. (5) is extended over longer time lags compared to the
sample-estimated ACF, resulting in an over-estimation of the uncertainty in the associated SME when it is
employed in Eq. (3).

13

0 100 101 102 103 104 105

Lag

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Modeled ACF, 1(m)
Modeled ACF, 2(m)
Full sample ACF
Training sample ACF

0 100 101 102 103 104 105

Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Modeled ACF, 1(m)
Modeled ACF, 2(m)
Full sample ACF
Training sample ACF

Figure 7: Impact of the function used for modeling the ACF from 105 time samples taken from (left) ARM(1) defined
in Eq. (17), and (right) the turbulent channel flow averaged streamwise velocity ⟨u⟩xz at y+ = 94. The training
sample-estimated ACF data are taken at the first 10 lags for the AR(1) and 100 lags for the channel flow data,
respectively. The ACF models ρ1(m) and ρ2(m) refer to Eqs. (6) and (5), respectively.

6.2. Validation and robustness of the uncertainties estimated by the MACF method

As motivated above, function (6) can lead to accurate smooth models for the ACF, which can be plugged
into Eq. (3) to accurately estimate σ̂(µ̂), i.e. the standard-deviation of a sample mean estimation µ̂. This
will be shown in this section with two different studies applied to the data of the AR(1) defined in Eq. (17),
and the turbulent channel flow velocity data.

For the first study, several realizations of a time series are generated, and the distribution of their sample-
estimated SME’s uncertainty is compared to the associated empirical uncertainty obtained from Eq. (20).
The latter can reflect the true or population uncertainty. For this purpose, an ensemble of size Ne of the
computationally inexpensive AR(1), Eq. (17), is considered. Here, each of the AR(1) simulations starts from
an independent random sample taken from the uniform distribution U [0, 1] and continues to 1.5n samples.
The first 0.5n samples are discarded to account for the burn-in. Hence, for each of the Ne realizations there
are n samples of the AR(1) to which the MACF estimator is applied for estimating the corresponding σ̂(µ̂).
For the MACF estimator to be consistent, the probability density function (PDF) of the resulting σ̂(µ̂)
should contain the empirically-estimated uncertainty of the ensemble expectation µe,

µe = E[µ̂] ≈ 1

Ne

Ne∑
i=1

µ̂i , (19)

measured by σe that is given by,

σ2
e = V[µ̂] ≈ 1

Ne

Ne∑
i=1

(µ̂i − µe)
2
. (20)

Figure 8 illustrates the outcome of the described procedure for different values of the sample size n where
the ACF modeled by Eq. (6) is constructed using two different sets of training sample-estimated ACFs. In
all cases, the empirical σe is very close to the exact σ(µ̂) (given by Eq. (18)), and falls within the PDF
of the σ̂(µ̂) estimated by the MACF method. Note that as expected, by increasing the sample size n the
PDF of σ̂(µ̂) becomes narrower, but more importantly the mode of the PDF (most probable value of σ̂(µ̂))
becomes almost the same as the exact σ(µ̂).

For a single realization of the turbulent channel flow, a study to validate the σ̂(µ̂) estimated by the
MACF method is to make a comparison with the power-law method which has been used in the literature
as in Refs. [23, 36], see Appendix A. According to Figure 9, at all wall-normal locations, the agreement
between the MACF and power-law methods is good, in general. There is a small discrepancy in the outer
layer of the mean velocity profile, i.e. y+ ≳ 150, which originates from the slight imperfection of the modeled
ACF potentially by both methods (although in Figure 6, the power-law method is found to be slightly less
accurate than MACF for modeling the ACF). To ensure the robustness of the MACF method, the estimated

14

0.005 0.010 0.015
[]

0

100

200

300

PD
F

MACF1
MACF2
Empirical
Exact

0.0025 0.0030 0.0035
[]

0

1000

2000

3000

PD
F

MACF1
MACF2
Empirical
Exact

0.0008 0.0009 0.0010
[]

0

10000

20000

PD
F

MACF1
MACF2
Empirical
Exact

Figure 8: Validation of the σ̂(µ̂) estimated by the MACF method using the samples of the ARM(1) defined in
Eq. (17). The plots show the PDF of the σ̂(µ̂) using the sample-estimated ACF at the first time lags (MACF1)
and lags [0, 2, 5, 8, 15] (MACF2) for training the ACF model (6). The PDFs are obtained by 2000 repetitions of
the independent realizations of the AR(1) with the sample size n per realization being equal to (left) 103, (middle)
104, and (right) 105. The solid and dash-dotted vertical lines respectively show the empirical estimate σe given by
Eq. (20), and the exact value of σ(µ̂) obtained from Eq. (18).

100 101 102

y +

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(
)

Power Law
MACF1
MACF2
BMBC1
BMBC2
BMBC3
BMBC4

Figure 9: Estimated standard deviation of the SME of ⟨u⟩xz, the averaged streamwise velocity of the turbulent
channel flow, versus the inner-scaled wall distance y+ (105 time samples are used). The following hyperparameters
are used for different uncertainty estimators; power-law method (see Appendix A): the order of the ARM is p = 100
and the sample-estimated ACFs at first 300 time lags are used for training the ACF model; MACF1 and MACF2:
the MACF method with the ACF model (6) trained by the sample-estimated ACF at first 300 lags (MACF1) and
lags corresponding to [0,10,50,100,200,250,300] (MACF2); BMBC1 to BMBC4: the BMBC method with the batch
size equals to 100, 500, 1000, 2000, respectively.

uncertainties associated to two different sets of ACF training samples are found to be almost the same. This
is in fact a main advantage of the proposed ACF model (6) for estimating σ̂(µ̂), i.e. the resulting estimates
are not biased with respect to the choice of the hyperparameters. To make this point clearer, plots from
the BMBC approach [27] are also provided in Figure 9. Clearly, the estimated σ̂(µ̂) are sensitive to the
batch-size and for none of the considered batch sizes the estimates would be close enough to those by the
MACF and power-law methods. As formerly stated, this potential bias in the σ̂(µ̂) values is the main barrier
for using the batch-based methods for in-situ applications. But if we need to choose one of such approaches,
the BMBC approach of [27] is preferred to the NOBM, see the discussion in Appendix C.

6.3. Robustness of the in-situ UQ algorithm

In this section, we consider the iMACF algorithm 1, the in-situ version of the MACF method described in
Section 3.3. The aim is to assess the impact of the relevant hyperparameters on the accuracy of the modeled
ACF and the resulting σ̂(µ̂) when the sample ACFs are computed in an in-situ way following Eq. (16). To
this end, the time series of the streamwise velocity of the turbulent channel flow at any distance from the
wall can be considered. The three hyperparameters of the iMACF method investigated here are mmax, the
maximum lag up to which the sample-estimated ACF from Eqs. (14) and (16) are used to train the ACF
model (6), Ts, the sampling interval, and, n the sample size.

15

6 8 10 12 14 16 18 20
Sampling Frequency, Ts

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Er
ro

r i
n

Sa
m

pl
e

AC
F

Max Training Lag
800
1000
1200

6 8 10 12 14 16 18 20
Sampling Frequency, Ts

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Er
ro

r i
n

(
)

Max Training Lag
800
1000
1200

(a) (b)

Figure 10: Impact of the maximum training lag mmax, sampling frequency Ts and sample size n on the error in (a)
the sample-estimated ACF, eρ, and (b) the standard deviation of the SME of ⟨u⟩, eσ̂, obtained from the iMACF
method. The data belong to the channel flow streamwise velocity ⟨u⟩xz at the wall distance y+ = 262 with size n
equal (black lines) 100000 and (gray lines) 50000. The error in the plots (a) and (b) is defined by Eqs. (21) and (22),
respectively.

The two metrics evaluated and plotted in Figure 10 are the error in the sample-estimated ACF, eρ, (left
plot) and the error in estimated σ̂(µ̂), eσ̂, (right plot) that are respectively defined as,

eρ = ∥ρst(m)− ρup(m)∥2/Mmax , (21)

eσ̂ = |σ̂st(µ̂)− σ̂up(µ̂)|/σ̂st(µ̂) . (22)

The subscripts st and up denote the standard (offline using all data) and updating (in-situ) values, re-
spectively. When evaluating eρ, the Mmax is set as Mmax = int(mmax/Ts). According to Figure 10, for
fixed values of n and mmax, less frequent sampling (i.e. higher Ts) leads to higher values of eρ, however,
the corresponding impact on the estimated eσ̂ is negligible. What, instead, has the highest influence on eσ̂
is the variation of n and Mmax. As the number of samples decreases, meaning that the averaging is run
for a shorter time interval, both eρ and eσ̂ increase. Considering more lags for modeling an ACF, i.e. in-
creasing Mmax, can lead to more accurate ACF computed in an updating fashion and consequently more
accurate σ̂. In any case, as shown for the particular data set here, the largest error in σ̂ estimated by the
updating algorithm for the considered range of hyperparameters is less than 5% compared to what could be
estimated by the standard method. This confirms the robustness and accuracy of the iMACF algorithm 1.

6.4. Application to complex flows

In this section, we study the application of the in-situ UQ framework to the scale-resolving simulations
of the turbulent flow around a NACA4412 wing section and a moving rotor with an adaptively refined
mesh as introduced in Sections 5.2.1 and 5.2.2, respectively. In the former case, we compare the iMACF
approach with an incremental implementation of the BMBC method for three different batch sizes, while
the latter demonstrates the integration of the in-situ UQ framework with a transient AMR simulation. In
both cases, the iMACF approach is applied to all points of the three-dimensional computational grid. As
explained in Section 3.3, in the iMACF algorithm 1 we only run lines 7 to 13 during the simulation while
line 14 is executed offline. There are multiple reasons for this choice. First, the fitting of the ACF model
to the training data in line 14 usually contributes most to the overall computing time of the UQ workflow
and can thus extend the total simulation time. However, there is no need to do this step online unless we
want to monitor the uncertainty of the turbulence statistics during the runtime. Second, the user might
only be interested in the UQ results for a specific region of the simulation domain, such as a 2D slice or
a 3D subdomain. Selection of these can be done after the termination of the simulation to cut down the
computing time significantly. Third, there are a few hyperparameters that can influence the convergence of
fitting the MACF model, including the selection of training lags. Thus, by running Line 14 in Algorithm 1
offline we can avoid faulty results that would require a rerun of the entire CFD simulation. Therefore, at

16

the end of the simulation, the ACF training values are saved on disk, where the values have been updated
during the simulation using the streaming algorithm. Depending on the maximum number of the training
lags, Mmax, the size of data to be stored is equivalent to only a couple of flow snapshots, and hence a small
fraction of the data processed during the in-situ iMACF algorithm.

The NACA4412 use case is run for overall 5.37 time units equivalent to 200000 time steps. For the UQ
estimate of the streamwise component of the velocity, u, we apply both the iMACF and iBMBC methods
considering every 20-th time sample of the simulation (i.e. Ts = 20). For the iMACF algorithm 1, we
choose Mmax = 50 to ensure sample ACF values are computed over a long enough range of lags at all spatial
locations within the region of interest. However, to improve the quality of the modeled ACF especially at
larger lags m, only a selection of the training ACFs was used by i) neglecting lags with the ACF values
below ≈ 0.4 and ii) using ACFs at every 5-th lag. Both decisions are drawn from what was observed from
the a-priori tests in Figure 6 (bottom row, left and middle). Altogether, the UQ results only show weak
dependence on these parameters. It is noteworthy that we did not use a larger Ts during the in-situ process
to avoid increasing the uncertainties in the updating SMEs and also due to the fact that the first non-zero
lag at which the sample ACF is computed should not be too large to avoid errors in the modeled ACF, see
the discussion in Section 6.1.

The UQ results of applying the iBMBC and iMACF to the NACA4412 wing are shown in Figures 11
and 12, respectively. The plots are made at a 2D slice through the midplane in the spanwise direction of
the wing at z = 0.025. As expected, the estimated uncertainties by the BMBC method strongly depend on
the batch size. For small batch sizes, the BMBC method underestimates the uncertainty and convergences
towards the sample variance where the correct impact of the autocorrelations is ignored. For large batches,
the number of batch means falls below the limit necessary for unbiased estimation of the uncertainties. These
findings are in accordance with Eq. (3): The uncertainty in an SME depends on both the variance of the
time series and the variation of the ACF with time lag. Thus, an underestimated uncertainty means failing
in accurate estimation of these two contributors, where the role of the modeled ACF is more probable. We
should bear in mind that the batch size imposes a cut-off to a modeled ACF, see [36]. Therefore, there is
only a small range of batch sizes that could lead to reliable uncertainty estimates, where the range depends
on the spatial location and QoI. In fact, for the NACA4412 simulation, we observed a difference in the
inflection point of the ACF of up to two orders of magnitude depending on the specific location in the flow
domain. In conclusion, applying the BMBC method in an in-situ way cannot be automated since the proper
batch sizes cannot be chosen adaptively, instead they have to be chosen a priori. For the batch size of 100
samples, the BMBC results are found to be most similar to those of the MACF approach. However, we still
see slightly lower values of the BMBC uncertainties and small differences in their spatial distribution that
can be explained by the observations described above.

The NACA0012 rotor use case with a 5°AoA is simulated for a total 3.6 time units equivalent to 32400
time steps with variable size. For estimating the uncertainties, the data are interpolated during runtime to
equi-distant time steps with a fixed ∆t = 2·10−3 that approximately corresponds to every 18-th sample of the
simulation (i.e. Ts = 18). As a result of this, a total number of 1800 samples are considered for the iMACF
approach and Mmax = 20 is chosen for the UQ estimates. The sample-estimated ACF values below 0.4 are
neglected when constructing the ACF model (6). The SME of the streamwise velocity component at two
planar slices, y = 0 and z = 6, together with their uncertainty estimated by the iMACF method are shown
in Figure 13. Similar to the NACA4412 wing case, the largest uncertainty can be found in the regions with
large turbulence fluctuations and/or long autocorrelations (long-lasting history effects). The examples of the
latter can be found in the regions of slowly convecting fluctuations or laminar separated flows. It should be
emphasized that the uncertainty does not necessarily increase with the SME of the velocity, and particularly
regions can be identified with SME values close to zero but with high uncertainties, e.g. downstream of the
trailing edge of the rotor.

6.5. Computational performance of the in-situ UQ framework

In this section, we discuss the computational performance of the in-situ UQ framework for different mesh
sizes and number of MPI ranks considering the NACA4412 wing use case. The weak and strong scaling
tests of the framework are carried out using Nek5000 version 19.0, ParaView Catalyst 5.9 and Python 3.8 on

17

(a) (b)

(c) (d)

Figure 11: Contours of the (a) sample variance of the streamwise velocity component u of the NACA4412 wing
simulation at z = 0.025 plane, and (b)-(d) estimated variance of associated SME using the iBMBC method with the
batch size equal to (b) 50, (c) 100, and (d) 250.

multiple computing nodes that are equipped with 128 physical cores and 256 GB of memory each. Based on
previous experiences with ParaView Catalyst, we compiled a small edition of the package with only essential
functionality that was necessary to execute the UQ framework excluding any rendering features. For the
simulations, at all points of the 3D mesh, the updating ACF algorithm is applied every 20-th time step
(Ts = 20) and with a maximal training lag mmax = 400 resulting in 20 different training lags mtrain to be
cached. These settings can lead to accurate uncertainty estimates in most practical cases as shown in the
previous sections. The computing time without data I/O and the maximal memory consumption throughout
the simulation are measured for different number of MPI ranks, Np, normalized by Np,ref = 128. The time
required to initialize the simulation and to write final results to disk, as well as transition to statistically
stationary turbulence were not considered in the tests. For each test we ran six simulations, three runs
with 1000 and three runs with 2000 time steps, based on which the computational performance measures
with and without UQ were computed as the average time spent per each simulation time step. In addition,
the stand-alone performance of the implementation of Eq. (3) in Python was investigated offline independent
of any CFD code but for the same data matrix sizes provided by the CFD test case.

6.5.1. Analytical estimation of the memory consumption

A lower estimate for the memory consumption of the updating algorithm 1 can be derived by considering
the sizes of the three arrays Mi,j , Γ

m
ij and the values of a time series that have to be buffered during runtime.

For a single flow variable and N spatial points in the mesh, the memory consumption per rank Mr can then
be estimated by,

Mr = 3N(mmax/Ts)SB , (23)

with mmax being the maximum lag, Ts the sampling frequency and SB the size of the floating point values,
usually 8 bytes. In addition, there is a small memory overhead due to the scalar variables and Python
objects that Eq. (23) does not account for. However, for all investigated configurations the overhead is in
the order of 1 MB and can be neglected compared to the data arrays. Hence, the maximum lag as well as the
sampling interval of the UQ algorithm have a major influence on the memory consumption. In simulation

18

(a) (b)

Figure 12: Contours of (a) the SME of streamwise velocity u and (b) associated variance estimated by the iMACF
method for the NACA4412 wing use case.

cases with large local matrices, these two parameters can be reduced in order to save memory but up to a
limit that the uncertainty estimates are still accurate, see Section 6.1.

6.5.2. Strong scaling

For the strong scaling tests of a fixed problem size and increasing number of MPI ranks, see Figure 14(a),
we observe a super-linear scaling for Nek5000 simulations with and without including the updating UQ
framework for all investigated numbers of MPI processors. This behavior can be explained by the very
small size of the local matrices due to the large number of MPI ranks used. In these cases, the matrix
sizes can be on the order of the processor’s cache size leading to an increase in performance. For large local
mesh sizes above around 10000 points per MPI rank, the entire in-situ framework including Nek5000, the
catalyst interface and our UQ code, leads to only a small increase in the overall computing time (less than
5% compared to the UQ-excluded case). However, for smaller local meshes the framework does not scale
linearly. At Np/Np,ref = 32 and around 7000 GLL points per rank, the in-situ UQ framework adds an
additional computing time of approximately 11%. This is most likely due to intermediate steps required for
interpolating the data at the GLL points and transferring the mesh from Nek5000 into VTK objects and
then to Numpy arrays. Therefore, we expect that the performance can be further increased by implementing
Eq. (16) directly into the CFD solver and working on the same data objects as provided there.

An analysis of the memory consumption in the strong scaling tests is shown in Figure 14(b). We observe
an almost constant overhead of around 160 MB taken up by the Catalyst library with VTK that does not
decrease with an increasing number of MPI ranks as the VTK library has to be loaded with each process.
The updating iMACF algorithm 1 itself scales well up to large number of MPI ranks. As compared to the
memory consumption of the pure Nek5000 simulations, the iMACF algorithm leads to a 20% increase in
memory requirement (144.8 MB per rank) at Np/Np,ref = 1 that goes down to 3% (4.15 MB per rank) at
Np/Np,ref = 32.

6.5.3. Weak scaling

In a second study, we evaluate the performance of the in-situ UQ framework for an increasing problem
size with a constant number of 42000 GLL points per rank. In order to vary the problem size for these weak
scaling tests, we gradually increase the order of the polynomials in each spatial dimension in the spectral
elements from 5 to 17 alongside with increasing the number of MPI ranks from 54 to 1458. This increases the
total number of GLL points from 2.27 million to 61.2 million for changing the polynomials order from 5 to
17. The computing time is increased by around 3% after adding the in-situ UQ framework, which is similar
to what we observed in the strong scaling tests. Both memory consumption per rank and the additional
computing time of the framework remain approximately constant over all investigated core counts. This
agrees with the expectation, as the updating in-situ algorithm acts only on the local mesh and does not
require any intense communication between ranks that would cause a drop in the performance.

19

(a) (b)

(c) (d)

Figure 13: Contours of the SME of the streamwise velocity u of the rotor case at (a) y = 0 and (b) z = 6 planes.
Corresponding variance of the SMEs obtained from the iMACF method with Mmax = 20 are plotted in (c) and (d),
respectively.

7. Summary and Conclusions

This work introduces a novel framework for in-situ (online/streaming/updating) estimation of time-
averaging uncertainties in turbulence statistics. This development can be of interest for large-scale simula-
tions of turbulent flows, as it allows for monitoring such uncertainties on-the-fly without any need to store
potentially large amounts of time series data on disk. A main characteristic of the turbulence time series
(signals) considered here is that the samples are autocorrelated up to a generally unknown time lag.

On the algorithmic side, the present work introduces a streaming formulation for the batch-based meth-
ods to estimate time-averaging uncertainties, see Section 3.2. To remove the natural shortcoming of such
approaches, that is the bias in the estimates with respect to the batch size (a user’s predefined parameter),
we propose a new function, Eq. (6), to accurately model the autocorrelation function (ACF) of time series
using a limited number of sample-estimated ACFs. The resulting modeled ACF is smooth and removes os-
cillations in the sample ACFs at high time lags. Furthermore, we propose an updating formula to evaluate
the training sample-estimated ACFs. These two developments are then integrated into the iMACF method
for in-situ estimation of time-averaging uncertainties, see Section 3.3, where only a minimal memory usage
is required. A versatile and computationally efficient workflow based on VTK tools is designed and imple-
mented to link an arbitrary CFD solver to the UQ module supplied with the proposed iMACF estimator, see
Section 4, as well as the updating versions of the non-overlapping batch means (NOBM) and batch-means
batch-correlation (BMBC) [27] methods. It is also possible to implement the in-situ Algorithm 1 (iMACF
method) directly into a CFD solver without any interface.

The accuracy and validity of the MACF and iMACF estimators are thoroughly discussed in Sections 6.1
to 6.3 using the data from a first-order autoregressive model (ARM) and a fully resolved simulation of a
turbulent channel flow. According to Figure 7, for statistically stationary time series of turbulent channel
flow (equivalent to high-order ARMs) the proposed ACF model (6) results in much more accurate modeled
ACFs compared to the existing function (5) used in literature. Moreover, the ACF modeled by function (6)
is found to be robust with respect of the choice of the training sample-estimated ACFs, see Figure 6. The
accuracy of the MACF method is validated by synthetic data, Figure 8, and compared to the power-law and

20

0 5 10 15 20 25 30
Np/Np, ref

0

10

20

30

40

50

60

Sp
ee

du
p

NEK5000 + Cat. + InSitu UQ
NEK5000
InSitu UQ
Linear Speedup

0 5 10 15 20 25 30
Np/Np, ref

0.0

0.2

0.4

0.6

0.8

M
em

or
y
pe
r m

pi
-ra

nk NEK5000 + Catalyst + InSitu UQ
NEK5000 + InSitu UQ
NEK5000

(a) (b)

Figure 14: Variation of the (a) speedup and (b) memory consumption (GB) with the number of cores in the strong
scaling test. The NACA4412 wing use case is considered with Np,ref = 128.

0 2 4 6 8 10
Np/Np, ref

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sp
ee

du
p

NEK5000
NEK5000 + Catalyst + InSitu UQ

0 2 4 6 8 10
Np/Np, ref

0.0

0.2

0.4

0.6

0.8
M

em
or

y
pe

r m
pi

-ra
nk NEK5000 + Catalyst + InSitu UQ

NEK5000 + InSitu UQ
NEK5000

(a) (b)

Figure 15: Variation of the (a) speedup and (b) memory consumption (GB) with the number of cores in the weak
scaling test. The NACA4412 wing use case is considered with Np,ref = 128.

batch-based methods for turbulent channel flow data, see Figure 9. The detailed investigations represented
in Figure 10 show a negligible influence of the hyperparameters of the iMACF method on the estimated
uncertainties as compared to the offline MACF estimator.

In a final step, our new software is successfully applied to a number of more involved use cases including
the turbulent flow over a circular cylinder and a wing with structured mesh, as well as a rotor simulated with
adaptive mesh refinement. In all cases, accurate estimation of uncertainties was obtained by the iMACF
method, without any bias that would exist upon using in-situ batch-based methods, see Figures 11 to 13.
The detailed analyses in Section 6.5, including the weak and strong scaling tests, prove the efficiency of the
framework from both computational time and memory usage aspects.

Although the focus of the present framework is on turbulent flow simulations, the methodology and
framework are completely general, thus applicable to statistically stationary time series produced in any
application, including laboratory experiments performed using e.g. hotwire anemometry or particle image
velocimetry (PIV). Future extension of the present framework can be towards including other relevant in-situ
data analysis techniques.

CRediT author statement

SR and CG: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation,
Writing–Original Draft, Visualization. AP: Investigation, Writing–Original Draft. JG: Writing–Review
& Editing, Supervision, Funding acquisition. PS: Conceptualization, Writing–Review & Editing, Funding
acquisition.

21

Acknowledgments

This work has been supported by the EXCELLERAT project which has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement No 823691.
This work has received funding from the European High Performance Computing Joint Undertaking (JU)
and Germany, Italy, Slovenia, Spain, Sweden, and France under grant agreement No 101092621. The authors
would like to thank Dr. Marco Atzori from The Polytechnic University of Milan, Italy, for providing the
Nek5000 case for the wing simulation, and Dr. Antonio Memmolo from CINECA, Italy, for sharing the
data of the ”toy” rotor simulation. The computation of the rotor case was enabled by resources provided
by the Swedish National Infrastructure for Computing (SNIC) at the PDC Center for High Performance
Computing, KTH Royal Institute of Technology, partially funded by the Swedish Research Council through
grant agreement no. 2018-05973. The simulations of the NACA4412 wing case were carried out on Hawk
at the High Performance Computing Center Stuttgart (HLRS). Funding for Hawk was provided by Baden-
Württemberg Ministry for Science, Research, and the Arts and the German Federal Ministry of Education
and Research through the Gauss Centre for Supercomputing (GCS).

Appendix A. The Power-law Method to Model an ACF

A smooth model for ACF, to be plugged into Eq. (3), can be obtained by first fitting an autoregressive
model (ARM) of order p to samples {x′

i}ni=1 where x′
i = xi − µ̂x [34]:

x′
i =

p∑
j=1

αjx
′
i−j + ϵi . (A.1)

The noise term is Gaussian, ϵi ∼ N (0, σ2
d) where the standard deviation σd and the coefficients {αj}pj=1 can

be obtained by various methods, see [34]. The starting point for deriving a smooth model for ACF is the
Yule-Walker equation, see [34]:

ρk =

p∑
j=1

αjρk−j , k = 1, 2, · · · , p , (A.2)

where ρk is the autocorrelation of x at lag k. Plugging the ansatz ρk = λk in this equation leads to an
algebraic characteristic equation with roots {λk}pk=1 by which the ACF at lag k can be expanded as,

ρk =

p∑
i=1

ciλ
k
i . (A.3)

To compute the coefficients {ci}pi=1 from a linear system of equations, a set of KACF sample-estimated
ACF at lower lags (to avoid the issue of wiggles at high lags) are considered in Eq. (A.3). This results in a
smooth model for the ACF at any lag k ≥ 0. The utilization of modeled ACF in Eq. (3) is referred to as
the ARM-based or power law uncertainty estimation method. The hyperparameters of this method are the
ARM order p and the set of training sample-estimated ACFs with size KACF .

Appendix B. Reduction of Eq. (16) to Eq. (10)

By setting m = 0, i.e. lag zero in Eq. (16), we can recover Eq. (10). The main steps of the derivation are
given below.

Γ0
i,j = Γ0

i,j−1 −∆Mi,j

j−1∑
k=i

2xk + (j − i+ 1)M2
i,j − (j − i)M2

i,j−1 + x2
j − 2xjMi,j

= Γ0
i,j−1 − 2(j − i)∆Mi,jMi,j−1 + (j − i)M2

i,j + (Mi,j − xj)
2 − (j − i)M2

i,j−1

= Γ0
i,j−1 − 2(j − i)∆Mi,jMi,j−1 + (j − i)(Mi,j−1 +∆Mi,j)

2 + (j − i)2∆M2
i,j − (j − i)M2

i,j−1

= Γ0
i,j−1 + (j − i)(j − i+ 1)∆M2

i,j , (B.1)

22

0.00 0.01 0.02 0.03 0.04 0.05 0.06
[]

0

200

400

600

800

PD
F

0.0000 0.0005 0.0010 0.0015 0.0020
[]

0

10000

20000

30000

40000

PD
F

Nb=10
Nb=20
Nb=50
Nb=100
Nb=500
Nb=1000
Nb=5000
Nb=10000
Empirical
Exact

Figure C.16: Impact of the batch size on the estimated σ̂(µ̂) for the synthetic samples generated by the ARM(1)
defined in Eq. (17) for (top) NOBM and (bottom) BMBC methods. The PDFs are obtained by 1000 repetitions of
independent simulations with the number of samples n in each simulation being equal to 105.

where Γ0
i,j−1 = Si,j−1.

Appendix C. Impact of the Batch Size on the Batch-based Uncertainty Estimators

The batch-based methods are the most frequently used approaches for estimating time-averaging uncer-
tainties in autocorrelated turbulence time series. However, the batch size introduces a bias in such estimated
uncertainties [36]. This is shown here by adopting the procedure described in Section 6.2 with the samples
generated from the first-order ARM defined in Eq. (17). Figure C.16 represents the PDF of the SME’s un-
certainties obtained by the non-overlapping Batch Means (NOBM) and the Batch-Means Batch-Correlation
(BMBC) methods proposed in Ref. [27]. In both plots, the empirical and exact uncertainties in the SME
are also shown. The bias introduced by the batch size is clearly more evident for the NOBM method, but
it is interesting that even for ARM(1), the BMBC method is still affected. Another important observation
is that for the NOBM method, the confidence in the estimated σ̂(µ̂) is not changing significantly with the
variation of the batch size, but for the BMBC method, the confidence in the estimations is reduced as the
batch size increases. The latter is due to the reduction of the number of batches as the batch size increases
while the total number of available samples is fixed. This issue is the main barrier to the use of batch-based
methods in an in-situ way, noting that no valid estimates can be made for the optimal batch size for the time
series prior to the simulations. Furthermore, any preset batch size may not be applicable for all quantities of
interest and the spatial points in a region of interest, noting the dependence of the time series and associated
ACF to these factors.

23

References

[1] M. Atzori, W. Köpp, W. Chien, D. Massaro, F. Mallor, A. Peplinski, M. Rezaei, N. Jansson, S. Markidis, R. Vinuesa,
E. Laure, P. Schlatter, and T. Weinkauf. In-situ visualization of large-scale turbulence simulations in Nek5000 with
paraview catalyst. The Journal of Supercomputing, 78, 02 2022. doi: 10.1007/s11227-021-03990-3.

[2] A. C. Bauer, B. Geveci, and W. Schroeder. The ParaView Catalyst User’s Guide, 2019.
https://www.mn.uio.no/astro/english/services/it/help/visualization/paraview/paraviewcatalystguide-5.8.1.pdf.

[3] C. Burstedde, L. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of
octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011. doi: 10.1137/100791634.

[4] T. F. Chan, G. H. Golub, and R. J. LeVeque. Algorithms for computing the sample variance: Analysis and recommenda-
tions. The American Statistician, 37(3):242, Aug. 1983. doi: 10.2307/2683386. URL https://doi.org/10.2307/2683386.

[5] H. Choi and P. Moin. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Physics of
Fluids, 24(1):011702, 2012. doi: 10.1063/1.3676783. URL https://doi.org/10.1063/1.3676783.

[6] S. Deck, F. Gand, V. Brunet, and S. Ben Khelil. High-fidelity simulations of unsteady civil aircraft aerodynamics:
stakes and perspectives. application of zonal detached eddy simulation. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 372(2022):20130325, 2014. doi: 10.1098/rsta.2013.0325. URL
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0325.

[7] G. K. El Khoury, P. Schlatter, A. Noorani, P. F. Fischer, G. Brethouwer, and A. V. Johansson. Direct numerical simulation
of turbulent pipe flows at moderately high Reynolds numbers. Flow Turbulence Combust., 91:475–495, 2013.

[8] P. F. Fischer, G. W. Kruse, and F. Loth. Spectral element methods for transitional flows in complex geometries. J. Sci.
Comput., 17(1-4):81–98, Dec. 2002. ISSN 0885-7474. doi: 10.1023/A:1015188211796. URL http://dx.doi.org/10.1023/A:

1015188211796.
[9] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier. Nek5000 Web page, 2008. http://nek5000.mcs.anl.gov.

[10] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL https:

//doi.org/10.1038/s41586-020-2649-2.
[11] J. Jiménez. Near-wall turbulence. Physics of Fluids, 25(10):101302, 2013. doi: 10.1063/1.4824988. URL http://dx.doi.

org/10.1063/1.4824988.
[12] Y. Ju, A. Perez, S. Markidis, P. Schlatter, and E. Laure. Understanding the impact of synchronous, asynchronous, and

hybrid in-situ techniques in computational fluid dynamics applications. In 2022 IEEE 18th International Conference
on e-Science (e-Science). IEEE, Oct. 2022. doi: 10.1109/escience55777.2022.00043. URL https://doi.org/10.1109/

escience55777.2022.00043.
[13] A. Khan, H. Sim, S. Vazhkudai, A. Butt, and K. Youngjae. An analysis of system balance and architectural trends based

on top500 supercomputers. pages 11–22, 01 2021. doi: 10.1145/3432261.3432263.
[14] D. H. Lenschow, J. Mann, and L. Kristensen. How long is long enough when measuring fluxes and other turbulence

statistics? Journal of Atmospheric and Oceanic Technology, 11(3):661–673, June 1994. doi: 10.1175/1520-0426(1994)
011⟨0661:hlilew⟩2.0.co;2. URL https://doi.org/10.1175/1520-0426(1994)011<0661:hlilew>2.0.co;2.

[15] F. Liang, R. Shi, and Q. Mo. A split-and-merge approach for singular value decomposition of large-scale matrices. Statistics
and Its Interface, 9:453–459, 01 2016. doi: 10.4310/SII.2016.v9.n4.a5.

[16] Y. Maday, C. Mavriplis, and A. T. Patera. Nonconforming mortar element methods - Application to spectral discretiza-
tions. In Domain Decomposition Methods, pages 392–418, 1989.

[17] C. Mavriplis. Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics, chapter A poste-
riori error estimators for adaptive spectral element techniques, pages 333–342. Vieweg+Teubner Verlag, Wiesbaden, 1990.
ISBN 978-3-663-13975-1. doi: 10.1007/978-3-663-13975-1 34. URL http://dx.doi.org/10.1007/978-3-663-13975-1_34.

[18] E. Merzari, A. Obabko, P. Fischer, and M. Aufiero. Wall resolved large eddy simulation of reactor core flows with the
spectral element method. Nuclear Engineering and Design, 364, 2020.

[19] J. Meyers, B. Geurts, and P. Sagaut, editors. Quality and Reliability of Large-Eddy Simulations. Springer, Netherlands,
2010.

[20] N. Offermans, O. Marin, M. Schanen, J. Gong, P. Fischer, P. Schlatter, A. Obabko, A. Peplinski, M. Hutchinson, and
E. Merzari. On the strong scaling of the spectral element solver Nek5000 on petascale systems. In Proceedings of the
Exascale Applications and Software Conference 2016, pages 1–10, 2016.

[21] N. Offermans, A. Peplinski, O. Marin, and P. Schlatter. Adaptive mesh refinement for steady flows in Nek5000. Computers
& Fluids, 197:104352, 2020. ISSN 0045-7930. doi: https://doi.org/10.1016/j.compfluid.2019.104352. URL http://www.

sciencedirect.com/science/article/pii/S0045793019303111.
[22] N. Offermans, D. Massaro, A. Peplinski, and P. Schlatter. Error-driven adaptive mesh refinement for unsteady turbulent

flows in spectral-element simulations. Computers & Fluids, 251:105736, 2023. ISSN 0045-7930. doi: https://doi.org/10.
1016/j.compfluid.2022.105736. URL https://www.sciencedirect.com/science/article/pii/S0045793022003280.

[23] T. Oliver, N. Malaya, R. Ulerich, and R. Moser. Estimating uncertainties in statistics computed from direct numerical
simulation. Physics of Fluids, 26, 02 2014. doi: 10.1063/1.4866813.

[24] A. T. Patera. A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of computational
Physics, 54(3):468–488, 1984.

[25] S. Rezaeiravesh, R. Vinuesa, and P. Schlatter. UQit: A Python package for uncertainty quantification (UQ) in com-

24

https://doi.org/10.2307/2683386
https://doi.org/10.1063/1.3676783
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0325
http://dx.doi.org/10.1023/A:1015188211796
http://dx.doi.org/10.1023/A:1015188211796
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1063/1.4824988
http://dx.doi.org/10.1063/1.4824988
https://doi.org/10.1109/escience55777.2022.00043
https://doi.org/10.1109/escience55777.2022.00043
https://doi.org/10.1175/1520-0426(1994)011<0661:hlilew>2.0.co;2
http://dx.doi.org/10.1007/978-3-663-13975-1_34
http://www.sciencedirect.com/science/article/pii/S0045793019303111
http://www.sciencedirect.com/science/article/pii/S0045793019303111
https://www.sciencedirect.com/science/article/pii/S0045793022003280

putational fluid dynamics (CFD). Journal of Open Source Software, 6(60):2871, 2021. doi: 10.21105/joss.02871. URL
https://doi.org/10.21105/joss.02871.

[26] S. Rezaeiravesh, R. Vinuesa, and P. Schlatter. An uncertainty-quantification framework for assessing accuracy, sen-
sitivity, and robustness in computational fluid dynamics. Journal of Computational Science, 62:101688, 2022. ISSN
1877-7503. doi: https://doi.org/10.1016/j.jocs.2022.101688. URL https://www.sciencedirect.com/science/article/

pii/S1877750322000941.
[27] S. Russo and P. Luchini. A fast algorithm for the estimation of statistical error in DNS (or experimental) time averages.

Journal of Computational Physics, 347:328 – 340, 2017. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2017.07.005.
URL http://www.sciencedirect.com/science/article/pii/S0021999117305077.

[28] P. Sagaut, S. Deck, and M. Terracol. Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid
RANS/LES Methods : Applications and Guidelines. Imperial College Press, 2013. ISBN 9781848169876. URL https:

//books.google.se/books?id=MzW6CgAAQBAJ.
[29] S. T. Salesky, M. Chamecki, and N. L. Dias. Estimating the random error in eddy-covariance based fluxes and other

turbulence statistics: The filtering method. Boundary-Layer Meteorology, 144(1):113–135, Mar. 2012. doi: 10.1007/
s10546-012-9710-0. URL https://doi.org/10.1007/s10546-012-9710-0.

[30] S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with python. In 9th Python in Science
Conference, 2010.

[31] J. P. Slotnick, A. Khodadoust, J. J. Alonso, D. L. Darmofal, W. D. Gropp, E. A. Lurie, and D. J. Mavriplis. CFD vision
2030 study: A path to revolutionary computational aerosciences, 2014.

[32] R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2013. ISBN 161197321X, 9781611973211.

[33] R. Vinuesa, P. Negi, M. Atzori, A. Hanifi, D. Henningson, and P. Schlatter. Turbulent boundary layers around wing sections
up to rec=1,000,000. International Journal of Heat and Fluid Flow, 72:86–99, 2018. ISSN 0142-727X. doi: https://doi.org/
10.1016/j.ijheatfluidflow.2018.04.017. URL https://www.sciencedirect.com/science/article/pii/S0142727X17311426.

[34] W. Wei. Time Series Analysis: Univariate and Multivariate Methods. Pearson Addison Wesley, 2006. ISBN
9780321322166. URL https://books.google.se/books?id=aY0QAQAAIAAJ.

[35] B. P. Welford. Note on a method for calculating corrected sums of squares and products. Technometrics, 4(3):419–
420, 1962. doi: 10.1080/00401706.1962.10490022. URL https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.

10490022.
[36] D. Xavier, S. Rezaeiravesh, R. Vinuesa, and P. Schlatter. On the use of batch-means estimators for quantifying uncertainties

in time averages of turbulence simulations. To be submitted, 2023.

25

https://doi.org/10.21105/joss.02871
https://www.sciencedirect.com/science/article/pii/S1877750322000941
https://www.sciencedirect.com/science/article/pii/S1877750322000941
http://www.sciencedirect.com/science/article/pii/S0021999117305077
https://books.google.se/books?id=MzW6CgAAQBAJ
https://books.google.se/books?id=MzW6CgAAQBAJ
https://doi.org/10.1007/s10546-012-9710-0
https://www.sciencedirect.com/science/article/pii/S0142727X17311426
https://books.google.se/books?id=aY0QAQAAIAAJ
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022

	INS_Preprint.pdf
	2204a.pdf
	Introduction
	Uncertainty in a Sample Mean Estimator (SME)
	Updating UQ Algorithms
	Updating sample mean and variance estimators
	Updating batch-based methods
	Updating MACF (iMACF) method

	Workflow Design and Software Implementation
	Flow Solver and Use Cases
	Flow solver
	Use cases
	Simulations with conformal mesh
	AMR simulation of a rotor

	Results and Discussion
	Accuracy and robustness of the proposed ACF model
	Validation and robustness of the uncertainties estimated by the MACF method
	Robustness of the in-situ UQ algorithm
	Application to complex flows
	Computational performance of the in-situ UQ framework
	Analytical estimation of the memory consumption
	Strong scaling
	Weak scaling

	Summary and Conclusions
	The Power-law Method to Model an ACF
	Reduction of Eq. (16) to Eq. (10)
	Impact of the Batch Size on the Batch-based Uncertainty Estimators

