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Note on 1D quarklet approximation

Peter Oswald

Abstract On the example of the simplest C0 spline quarklet construction of [1], we demonstrate

the possible reduction of the complexity estimates for the approximation of singularity functions

on the unit interval given in [3], to come closer to the complexity estimates known for hp-

methods. To come up with a simplified argument, we explore the fact that the CDF biorthogonal

spline wavelets [2] used in the construction of quarklets can be obtained by the lifting scheme

[4]. Similar results are also possible for spline quarklet systems built from smooth B-splines

with higher order of vanishing moments.
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1 Introduction

It is known that the singularity function

gα(x) = xα , x ∈ I = [0,1], α > 1/2,

admits subexponential convergence rates in H1(I) with free-knot, variable-degree splines in

terms of the number of degrees of freedom of the associated spline space. More precisely, there

is a C0 spline function sα(x) over the geometric partition

Tp : 0 < 2−p < 2−p+1 < 2−p+2 < .. . < 2−2 < 2−1 < 1 (1)

with degree distribution dp := (1,2,3, . . . , p, p+1) such that

‖gα − sα‖H1(I) ≤Cα e−cα p, p = 1,2, . . . . (2)

The dimension of the spline space sα belongs to is obviously proportional to p2. In other words,

with N parameters to represent the approximant sα in the standard Lagrange finite element

basis, subexponential approximation rates of the form O(q−
√

N
α ) with qα < 1 can be expected.

Details can be found in a series of papers by Babuska and Gui [5]. Starting from this result,

a convergence theory for the hp-FEM applied to elliptic and parabolic problems in polygonal

(d = 2) and polyhedral domains (d = 3) has been developed by many contributors.

As was evident from talks delivered at the recent MFO workshop 1936, new approximation

schemes (anisotropic hp-approximation, tensor-product quarklets, nonlinear TT formats, deep
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ReLU networks) are under investigation that target the same class of problems, where smooth

functions with structured singularities appear. Interestingly enough, for the particular family of

singularity functions {gα , α > 1/2} and its multivariate generalizations on cubes, the current

complexity estimates for these new schemes (in terms of the numbers of parameters involved)

look weaker than in the hp-case. E.g., for the quarklet systems from [1], in [3] an N-term ap-

proximation rate of

‖gα −qα,N‖H1(I) ≤Cα e−cα N1/5

, N = 1,2, . . . . (3)

was shown. Here, qα,N is a linear combination of at most N quarklets obtained by decomposing

a suitable free-knot variable-degree spline function (such as sα ) with respect to the quarklet

system.

Our goal is to show that the exponent 1/5 in (3) can be reduced to 1/3 by using the structure

of the quarklet system. We do this for the lowest order quarklet system with m= m̃= 2 (for short:

(2,2)-quarklet system) associated with the CDF spline wavelet

ψ(x) := φ(2x−1)− 1

4
(φ(x)+φ(x−1))

and the hat function φ(x) = (1− |x|)+ as scaling function. It is clear from this example how

to extend the argument to the arbitrary quarklet systems considered in [1,3]. As in [3], we

have used the integer shift-invariant quarklet system defined on R to approximate gα(x) on

the bounded interval I = [0,1], and not the boundary adapted quarklet system introduced in

[6], it remains to check if our argument is valid also in the boundary adapted case. What we

do not know is if the exponent 1/3 can be further reduced, say, by avoiding the intermediate

approximation step via hp-splines and approximating gα by suitable quarklet quasi-interpolants

directly. Finally, extensions to higher spatial dimensions and to compositions of singularity

functions typical for the solutions of PDE problems in polygonal and polyhedral domains are

widely open.

2 Details

The strategy is the same as in [3]: We take a free-knot variable-degree C0 spline function over

Tp with degree distribution dp and write it in an economic way as linear combination of quarks.

In a second step, we determine the index sets of the quarklets needed to express the quarks

appearing in this decomposition, and carefully estimate the size of their union.

We introduce the necessary notation. The basic (2,2)-quarks and (2,2)-quarklets on level

l = 0,1, . . . are defined by

φ l(x)= xlφ(x), ψ l(x)=
3

4
φ l(2x−1)− 1

4
(φ l(2x)+φ l(2x−2))− 1

8
(φ l(2x+1)+φ l(2x−3),

(4)

this follows from the definition in [1] and the fact that φ 0 = φ and ψ0 = ψ . The (2,2)-quarklets

on level j = 0 are given by the integer shifts of the quarks φ l , l ≥ 0, while for level j > 0

the 2− j+1-shifts of the dilated quarklets ψ l(2 j−1x), l ≥ 0, are taken. In other words, the (2,2)-
quarklet system Q(2,2) is given by

Q(2,2) = {φ l(x− k),ψ l(2 j−1x− k) : k, j, l ∈ Z, j ≥ 1, l ≥ 0} (5)

This is, up to weighting and enumeration, the system introduced in [1], formula (22), for which

the frame property in Hs(R), 0 ≤ s < 3/2, was proved.

We use the following notation:

φ
l, j
k (x) := φ l(2 jx− k), φ̃

l, j
k (x) := xlφ(2 jx− k), k, j, l ∈ Z, j, l ≥ 0}, (6)

ψ
l, j
k (x) := ψ l(2 j−1x− k), ψ̃

l, j
k (x) := xlψ(2 j−1x− k), k, j, l ∈ Z, j ≥ 1, l ≥ 0}. (7)
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Obviously,

span{φ
s, j
k (x) : 0 ≤ s ≤ l}= span{φ̃

s, j
k (x) : 0 ≤ s ≤ l}, (8)

coincides with the set of all products of polynomials of degree ≤ l times φ(2 jx− k) for all

choices of indices.

For later use, we write down a more explicit expression for ψ
l, j
k (x). From the definition (4),

we see that for l = 0

ψ
0, j
k (x) = ψ̃

0, j
k (x) = ψ(2 j−1x− k)

=
3

4
φ(2 jx−2k−1)− 1

4
(φ(2 jx−2k)+φ(2 jx−2k−2))

−1

8
(φ(2 jx−2k+1)+φ(2 jx−2k−3))

=
3

4
φ

0, j
2k+1(x)−

1

4
(φ 0, j

2k (x)+φ
0, j
2k+2(x))−

1

8
(φ 0, j

2k−1(x)+φ
0, j
2k+3(x)).

However, for l ≥ 1 the two functions ψ
l, j
k and ψ̃

l, j
k do not coincide, and their expression is more

involved. We have

ψ
l, j
k (x) =

3

4
(2 jx−2k−1)lφ(2 jx−2k−1)

−1

4
((2 jx−2k)lφ(2 jx−2k)+(2 jx−2k−2)lφ(2 jx−2k−2))

−1

8
((2 jx−2k+1)lφ(2 jx−2k+1)+(2 jx−2k−3)lφ(2 jx−2k−3))

= (2 jx)l

(

3

4
φ(2 jx−2k−1)− 1

4
(φ(2 jx−2k)+φ(2 jx−2k−2))

−1

8
(φ(2 jx−2k+1)+φ(2 jx−2k−3)

)

+
2k+2

∑
i=2k−1

φ
0, j
i (x)ql, j

k,i(x)

=
3

4
2 jlψ̃

l, j
k (x)+

2k+2

∑
i=2k−1

l−1

∑
s=0

c
l, j
k,i,sφ̃

s, j
i (x).

Here, by q
l, j
k,i we denoted some polynomials of degree l − 1, and by c

l, j
k,i,s constants whose con-

crete values do not matter. The fact of later use is that

ψ̃
l, j
k − 4

3
2− jlψ

l, j
k ∈ span{φ̃

s, j
i : i = 2k−1, . . . ,2k+3, 0 ≤ s < l} (9)

holds for all indices l, j ≥ 1 and k ∈ Z.

Lemma 1 Let Sp be the set of all splines with degree distribution dp on the partition Tp. The

restriction of the set

{φ̃
0,p
0 }∪

(

∪p
j=1{φ̃

0,p+1− j
1 , . . . , φ̃ j,p+1− j

1 }
)

∪{φ̃
0,0
1 , . . . , φ̃ p,0

1 }

to the unit interval I is a spanning set for Sp.

Proof. Let s ∈ Sp be arbitrary. Subtracting a suitable linear combination of φ̃ 0
p,k = φ 0

p,k,

k = 0,1, from s, we arrive at a spline s1 ∈ Sp which vanishes on [0,2−p]. On the interval I1 :=
[2−p,2−p+1], s1 coincides with quadratic polynomial that vanishes at the left endpoint. Thus,

for x ∈ I1 we have

s1(x) = (x−2−p)(ax+b) = φ
0,p
2 (x)(ax+b) = (φ 0,p−1

1 (x)− 1

2
φ

0,p
1 (x))(ax+b).
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This shows that by subtracting a suitable linear combination of φ̃
l,p−1
1 (x), φ̃

l,p
1 (x), l = 0,1,

we arrive at a spline s2 ∈ Sp that vanishes on [0,2−p+1]. By similar reasoning, for x ∈ I2 :=
[2−p+1,2−p+2] we have

s2(x) = (x−2−p+1)p2(x) = φ
0,p−1
2 (x)p2(x) = (φ 0,p−2

1 (x)−φ
0,p−1
1 (x))p2(x)

for some quadratic polynomial p2(x). Consequently, by subtracting a linear combination of

φ̃
l,p−2
1 (x), φ̃

l,p−1
1 (x), l = 0,1,2, from s2(x), one arrives at s3 ∈ Sp such that s3(x) = 0 for x ∈

[0,2−p+2], and so on. After altogether p such subtraction steps, we arrive at sp+1(x) = 0 on

I = [0,1]. This shows the statement, and finishes the proof of Lemma 1.

As a by-product of the proof of this lemma and (8), we have shown that any s ∈ Sp can be

represented by ≤ (1+2+ . . .+2(p+1)) = (p+2)(p+3)/2 = O(p2) quark functions φ
l, j
k .

Now we proceed with trying to find a minimal spanning set of quarklets φ
l,0
k , ψ

l, j
k for Sp by

expressing each φ̃
l, j
k appearing in the statement of Lemma 1. This will be done in a recursive

way using the following notation. Denote by

Sl, j
m = span{φ̃

s, j
k : (k,s) ∈ Jl, j

m }|I , m = 1,3, . . . ,

where J
l, j
m := {k = 0,1, . . . ,min(m,2 j), s = 0, . . . , l} is the corresponding set of indices (k,s),

and m is odd. By Lemma 1, we have

Sp ⊂
p

∑
j=0

S
p− j, j
1 . (10)

The recursion argument uses the following

Lemma 2 If j, l ≥ 1, j+ l ≤ p, and m ≥ 0 is odd then

Sl, j
m ⊂ span{ψ

l, j
k |I}k=0,...,(m−1)/2 +S

l−1, j
m+2 +S

l, j−1

m′ ,

where m′ = 1+2⌊(m+1)/4⌋.

Proof. Functions with support outside of I are silently dropped in the computations below. For

even 0 ≤ k = 2r < m, using the refinement equation for the scaling function φ , we can write

φ̃
l, j
2r (x) = xlφ

l, j
2r (x) = φ̃ l, j−1

r (x)− 1

2
(φ̃ l, j

2r−1(x)+ φ̃
l, j
2r+1(x)).

Thus any linear combination of φ̃
l, j
k (x) can be expressed by functions φ̃

l, j
k (x) with k = 1,3, . . . ,m

and φ̃
l, j−1
r (x) with 0 ≤ r ≤ (m−1)/2 ≤ m′. The latter belong to S

l, j−1

m′ .

Let us now consider the φ̃
l, j
k (x) with odd index 0 < k = 2r+1 ≤ m. By the definition of ψ ,

ψ
l, j
k , and ψ̃

l, j
k , we have

φ̃
l, j
2r+1(x) = xlφ

l, j
2r+1(x) = xl(ψ l, j

r (x)+
1

4
(φ l, j−1

r (x)+φ
l, j−1
r+1 (x)))

= ψ̃ l, j
r (x)+

1

4
(φ̃ l, j−1

r (x)+ φ̃
l, j−1
r+1 (x))).

Consequently, up to functions φ̃
l, j−1
r and φ̃

l, j−1
r+1 belonging to S

l, j−1

m′ (since the largest appearing

index is (m+ 1)/2 ≤ m′), these φ̃
l, j
2r+1(x) can be expressed by linear combinations of ψ̃

l, j
r (x),

r = 0, . . . ,(m− 1)/2. But by (9), ψ̃
l, j
r (x) can be replaced by ψ

l, j
r (x), at the expense of some

corrections leading to the additional space S
l−1, j
m+2 . This proves Lemma 2.

We now use an induction argument based on the previous lemma, starting from the repre-

sentation (10). Spaces S
p,0
1 and S

0,p
1 are not touched, to all other spaces S

p− j, j
1 we apply Lemma
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2 with m = 1. Since m′ = 1 and m+ 2 = 3, this shows that any s ∈ Sp can be represented by a

linear combination of n1 = p−1 quarklets ψ
p− j, j
0 , j = 1, . . . , p−1, and a spline

s1 ∈ S
p,0
1 +

p−1

∑
j=1

(Sp− j, j−1
1 +S

p− j−1, j
3 )+S

0,p
1

= S
p,0
1 +

p−2

∑
j=1

S
p− j−1, j
3 +(S0,p−1

3 +S
0,p
1 ) =: Sp,1.

Here and in the following, we use that S
l′,0
m ⊂ S

l, j
1 , l′ < l, and S

l, j
n ⊂ S

l, j
m , n < m.

The second step is the application of Lemma 2 with m = 3. We compute m′ = 3 < m+2 =
5 and see that s1 ∈ Sp,1 can be expressed as linear combination of n2 = 2(p − 2) quarklets

ψ
p−1− j, j
k , k = 0,1, j = 1, . . . , p−2, and a spline

s2 ∈ S
p,0
1 +S

p−2,0
3 +

p−1

∑
j=1

(Sp− j, j−1
3 +S

p− j−1, j
5 )+S

0,p−1
3 +S

0,p
1

= S
p,0
1 +

p−3

∑
j=1

S
p− j−2, j
5 +(S0,p−2

5 +S
0,p−1
3 +S

0,p
1 ) =: Sp,2.

It is clear that we can continue this procedure for altogether p− 1 steps. In the t-th step,

we apply Lemma 2 to spaces S
p+1−t− j, j
m , j = 1, . . . , p− t, where m = 2t − 1. This produces

nt = t(p− t) new quarklets ψ
p+1−t− j, j
k , and a new remainder spline st . After p− 1 steps, we

arrive for each s ∈ Sp at a representation

s =
p

∑
t=1

p−t

∑
j=1

t−1

∑
k=0

d
p+1−t− j, j
k ψ

p+1−t− j, j
k + sp−1,

where d
p+1−t− j, j
k are suitable constants, and sp−1 is a spline in

Sp,p−1 := S
p,0
1 +

p

∑
t=1

S
0,p+1−t
2t−1 .

Obviously, S
p,0
1 is the space of polynomials of degree ≤ p+ 1, spanned by p+ 2 suiably

chosen quarklet functions φ
l,0
k , k = 0,1, of level 0. The remaining spaces S

0,p+1−t
2t−1 are spanned

by the CDF wavelets of level j ≥ 1. By a similar argument, using the formulas

φ
0,l
2r+1 = ψ0,l

r +
1

4
(φ 0,l−1

r +φ
0,l−1
r+1 )

and

φ
0,l
2r =−1

2
(ψ0,l

r−1 +ψ0,l
r )+

1

8
(φ 0,l−1

r−1 +6φ 0,l−1
r +φ

0,l−1
r+1 ),

one shows that for t = 1, . . . , p any s ∈ S
0,p+1−t
2t−1 can be represented by a linear combination of t

CDF wavelets ψ
0,p+1−t
r , r = 0, . . . , t −1, and an element of S

0,p−t
t ⊂ S

0,p−t
2t+1 . Thus, by recursion

no more than 1+2+ . . .+ p = p(p+1)/2 CDF wavelets ψ
0, j
r with j = p, . . . ,1 (plus an element

from S
0,0
1 ⊂ S

p,0
1 ) are needed to represent sp−1.

Altogether, we have

Theorem 1 Any s ∈ Sp (and in particular the approximant sα in (2)) can be represented by

Np := dim(Sp)≤
p

∑
t=1

t(p− t)+(p+2)+
p(p+1)

2
≍ p3

quarklets from the quarklet system Q(2,2).
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Remarks. 1) The estimate for Np is not sharp. E.g., we have not used the fact that also φ̃
l, j
k

with k > 2 j can be neglected. Such quarks appear in the above recursions for small j. However,

we claim that the estimate is sharp in order, i.e., a bound O(p3−ε) is not expected to hold for

any ε > 0. A formal proof is probably very technical, and imho not worth pursuing.

2) The O(p3) result is expected to hold for all quarklet systems Q(m,m̃) constructed in [1], with

some obvious changes. E.g., Sp must be replaced by a space of Cm−2-smooth splines over Tp

with degree distribution (m− 2)+ dp, and sα by the corresponding Hermite interpolant used

in [3]. The basic scaling funcion φ will be a (centered or not) B-spline of order m. The coun-

terparts of Lemma 1 and 2 will hold, with constants depending on m and m̃ (obviously, the m

in Lemma 2 is not related to the spline order m in the definition of Q(m,m̃)). This is because

essentially all we use is the boundedness of supports of the masks of the primal and dual MRA

associated with the underlying spline wavelet system. If one keeps m = 2 (which is enough for

conforming FEM-type applications to second-order PDE problems) then only Lemma 2 needs

minor changes: Instead of S
l−1, j
m+2 , the space S

l−1, j
m+m̃ will appear which is due to the larger dual

mask size. Moreover, the formula for m′ also depends on m̃, however m′ ≤ m+ m̃ will always

remain true.

3) The boundary modification introduced in [6] has not been taken into account but should not

present serious difficulties.
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