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ITERATED LANDWEBER METHOD FOR RADIAL BASIS
FUNCTIONS INTERPOLATION WITH FINITE ACCURACY

CHRISTIAN RIEGER

ABSTRACT. We consider the reconstruction of a function stemming from a reproducing
kernel Hilbert space using data which is perturbed by a deterministic error of maxi-
mal size €s,. The accuracy e- > 0 provides an upper bound for reconstruction error
estimates. Therefore, the main emphasis of this work is an a priori coupling of the
data error, the error stemming from discretization and the numerical linear algebra.
The coupling should provide an optimized cost-benefit ratio, i.e., we try to spend no
numerical work to solving linear systems of equations if we cannot increase the overall
accuracy of the reconstruction. Following [4], we focus here on the iterated Landweber
method which serves both as numerical solver of the linear system of equations and
as a regularization technique accounting for the inexact data. This method introduces
a regularization parameter which should be chosen small from an error estimate per-
spective. On the other hand this parameter stabilizes the numerical computation. We
outline this balance with the example of in-exact Cholesky decompositions. Here, we
also take the finite precision of number representations in the computer into account.

1. INTRODUCTION
Let Q C R? be a subset and let Xy := {x1,...,xy} C Q be a discrete set. A Hilbert
space (HK(Q), (-, ')HK(Q)) of functions
Hr(Q) CRY:={f: Q> R}
such that there is a function K : Q x  — R satisfying
K(,x) € Hg(Q2) forall x € Q
(f, K(- )3, () = f(®) forallz € Qandall feHg(R)

is called reproducing kernel Hilbert space (RKHS) with kernel K. In the sequel we
will restrict ourselves to positive definite kernels. We consider the reconstruction of a
function f € Hx () using data

(acj,yj):(mj,f(acj)—l—ej)GRde, fOI‘jzl,...,N

where [|€[[;pgry < € for a1l < p < oco.
We define a sampling map

(1) Skixy 1 Hk(Q) = RY, f s (f(z1), ..., f(zn)) |,
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2 CHRISTIAN RIEGER

where we silently endow RY with the usual Euclidean inner product. With respect to
this inner product and the inner product on Hg (€2), we can define the adjoint map by

(Sk:xy (), V) ey = (f, S}‘(;XN('U))HK(Q) for all f € Hx(Q) and all v € RV,
We can explicitly compute the adjoint to be
(2) Skxy RV 5 He(Q), v > (v-e)K(,a) = Y 0K(,x5) € Vixy,
z;EXN z;EXN

where we denote

(3) Vi.xy =span{K(,x;) : ©; € Xy} C Hg ().

We observe that
K(xy,z1) ... K(xi,xn)

(4) SkixnSkxy = Kxyxy = : : e RV,
K(zn,z1) ... K(xn,zN)

where we use the standard basis in RY for the matrix representation. We consider the
orthogonal projection

(5)
-1

HVK;XN :%K(Q)_)VK;XJ\U f%HVK;XN(f):S}((;XN (SK;XNS;(;XN) SK;XN(f)7
which, by construction, yields an interpolation to the function f, i.e., we have that the
residual Sg.x (HVK;XN (f) — f) = 0 vanishes. The fact that we use perturbed data
prohibit to use this best approximation property in the approximation scheme that we
will employ. Nevertheless, we still can use perturbation arguments if we assume that the
data error €., is small.

We have to assume, however, that K x x, € RN XN ig ill-conditioned. This makes the
perturbation analysis more delicate. Moreover, ill-conditioned matrices are in particular
problematic in numerical computations due to the limited accuracy of floating point

operations. Let IF be the floating point numbers as specified in an IEEE standard. As
in [15], we focus on the IEEE 754 standard with a relative rounding error unit

(6) a:=2""x11%1071¢

in double precision. Furthermore, we need sums of floating point numbers

m
(7) F:F[l]CF[m}::{xeR:x:Zxk withxkeF}cR
k=1
for a natural number m € N. Ill-conditioned means in the context of this manuscript
_ -1 -1 . 1016
(8) conda(K xxx) = 1K 0y leyor, [ K3 x|, > 07" = 10"

It is known that a Cholesky decomposition of a matrix A € FN*N might break down

due the rounding errors which in turn might cause complex numbers to show up, see
also [12].

The remainder of the manuscript is organized as follows: In Section 2 we present the
basic algorithm for the iterated Landweber method and apply it to Gramian matrices
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arising in kernel methods. Moreover, we derive first discrete error estimates, that is, error
estimates for the solutions of the linear systems. In Section 3 we use sampling inequalities
to transfer those discrete error estimates to error estimates for function reconstruction
problems. In order to motivate a non-vanishing choice for the regularization parameter,
we study the influence of finite precision arithmetic on the iterated Landweber method
in Section 4. It turns out that a worst case error analysis motivates rather large choices
for the regularization parameter. We discuss this in a Conclusion, see Section 5.

2. ITERATED LANDWEBER METHOD AS PRECONDITIONER

Here, we follow [4]. Since the matrix K x, x, € RV*Y defined in (4) is symmetric
and positive definite due to the restriction to positive definite kernels, we can write

N
(9) Kxy xy= ZATL;K;XN'Un;K;XN @ Vn; KXy s
n=1
where A\i.x.xy > -+ > AN xy > 0 denote the not necessarily distinct eigenvalues of the

matrix Kx, xy € RY*N and the VK Xy € R denote the corresponding orthonormal
basis of eigenvectors. We can define for g > 0

(10)
N
K xyxy = Kxyxytpldvin = Z (A Xy + 1) Vnik Xy @ Uik Xy € RV*N
n=1

which is by construction also symmetric and positive definite. We start with the obser-
vation that

<1
r—/—

(11) 29 .U«XN,XN Z >‘7LKXN +u Uni KXy @ UnsG Xy

c RNXN

Furthermore, direct calculations yield for 1 <n < N

y4 o0 y4
71 -1 H
E - E S S
< nKXN—'_H) : (60 <)\”§K§XN —I—,u> )

1 AKX~

-1 -1 KXy T H -1

= —_— 1] = ——m =1 = A e
a (1 A g ) a ( )‘H;K;XN > AN

n; KX TH

Hence, we get, see [4]

J4
-1 —1
(12) KXN,XN Z <M NXN7XN) )

This can be rewritten as an iterative method for the solution of the linear system of
equations. We get for the linear system

KXN,Xwa =b
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the following fixed point formulation, see [4]

> l > -1
-1 -1 - - -1
Lo = KXN,XNb —H Z (MK XNaXN) b= Z (MK XN7XN) K#§XN7XNb

l
(’uKu,XN,XN> KMXN,XNb K,u XN7XNb+Z (MKM XN7XN) K#§XN7XNb

1

Iy
[e=)

o
1 —
:KMXN XNb+'u' #XN Xyt Z('u MXN XN) b= KMXN XNb+'uKHXN Xy Lo
/=1

Define
. N N 1
Oy : RY — R, xHKNXNXNbJruKNXNXN
Then, we observed that xp = ®p(xp). The usual fix point iteration now reads,
(13)
mgo) =0 and $1(Jn+1) = Dy (a:I(Jn)) K;XN Xyt “Ku Xn, Xng) ), for n > 0.

An equivalent formulation (see [5] for more details) is provided by the iterative improve-
ment, i.e.,

(n) (n+1)
0) K, .xyXxye€ —Kx, x 0 x

14 -0 d Ny AN b

(14) Lo att ( A ) < Idnxn IdN><N> ( e )

b
where e(™ = a:l()nH) — wén) From equation (12), we can also derive an approximation,
ie.,
(L) 3 ¢
—1 -1 ~ -1
(15) CXN7XN —H Z ('LLKM;XN,XN> ~ KXN:XN
(=1

for L € N large.

Lemma 1. For the matrix Cgszzr,XN defined in (15) we have the following identity

L L
C’g(])V?XNb = “"t(; ),

Moreover, we have the bound

L
- H
<\ 1 K 1- .
rosty = min (K Xy xx) < (,u,—i-)\min(KXNvXN)) >

Proof. We use proof by induction. For L = 0, we get Cg?l)v x, = 0and hence Cg?])v xy 0=

:1:,(70) = 0. Furthermore, for L = 1, we have

1

(1) N | -1 _ _ (D

Cxyxnb= (“ > (”KM;XN,XN> )b K,y xyb =2
/=1

1) || x,
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For the induction step, we assume ngv XNb = wl(,) for all 1 < /¢ < L. Now, we have

(L L+1 L+1 1
-1 +1) -1 § —1 E -1

¢
/flb + C&;7XNb =p o+ :1:57 ),
Hence, we obtain
L+1 -1 (L) _ . (L+1)

which concludes the first part of the proof. We recall that we have for 0 < ¢ < 1

L
qu:i_1:q_qL+1:ql_qL
1—g¢q 1—¢q 1—¢q

e q  q—q"t ¢
Zq_l_ - -

(=L+1 q 1-q 1-q

, and

L+1

We apply those results to ¢ = ﬁ €
n; KX v

L ¢ L
% () “ w1 ()
-1 An;K;XN‘f‘N An;K;XN‘f‘Ml_WI;N_HL An;K;XN+M

L
_ ok <u>
An; KXy AniKiXy 1
Hence, we obtain

N L 14
(L) _ -1
n=1 (=1

N L
Z L (1= (,u) VK Xy @ UnikX
o1 AKXy Ans KXy e

We consider for ¢ > 0 and L € N

(0,1) to get

(17)

L
(18) fM;L : (Amin(KXN,XN)7AmaX(KXN7XN)) - R, fM;L(w) =z (xi,u> :
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Direct calculations yield
d of 1 \* p \" -
— furn(z) = (=)~ +271L
gz et (@) = (=) (m+u> v (x—i—u) (@ + p)?

(19) = (-1)z <x i M)L (i + (xiu)> <o0.

In order to find the maximal value in the sum (17), we consider

L
h#;L : (Amin(KXN,XN);Amax(KXN,XN)) - R, x+— th(ac) =gt <1 — < K ) ) .

T+ W
d _ _ 7 L L
4 _ .2 1 2 '
g wl(@) = <x+u> <w+(w+u)>

We claim that %hu;L(x) <0, ie.,

e e (25) Gratm) 2 (75) (at)

where we used that x > 0. To show (20), we define

We obtain

L
W Lx
9L+ (Amin (K xy Xy )s Amax(Kxy xy)) 2 R, 2 gur(z) = <5B+M> <1 + (@ _1_#)) .

We observe g,,.1,(0) =1 and

%g’“(x) N _:c—jiﬂ (xfiﬂ)L <1+ (:rqu)) i <$iu>L gc(::fu_);L
- (xiu>L (erlu)2 (FLe b p) = Lot L) = - <xiu>L L(ix:;)? =

This shows the inequality (20) and hence proves that h,r, is decreasing in x. This shows
that we can estimate

(L)

C < hy,. < hy.n. (Amin (K
H XNXN | gy, _ze(Amin(KXN,XmN?ﬁmaX(KXN,XN))‘ pit ()] < Pyt Aomin (K, xv))
L
(K 1— H ) :
min (B0 ( < 1+ i (K xy X ) )
which finishes the proof. O

2.1. Error Estimates for exact Landweber iteration. In this Section we assume
to be given data y = Sx, (f)+ € where f € Hi(Q2) is a fixed but unknown function. We

study the influence of the approximation if we replace the matrix K )_(}V Xy DY CE(LJZ; Xn

for the interpolation process, c.f. (5).
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Lemma 2. Let the data y = Sx, (f) + € with some f € Hi(Q) be given. We consider
the error in the reproducing kernel Hilbert space norm by

- * L
g";?{(y) KX}\vaNy_SK;XNCg(Ji,XNyHHK(Q)
m 2L )
21 <\ (K
( ) — mm( XN,XN) <,LL—|— )\min(KXN,XN)> ||y||€2(]RN)

Moreover, we have for the error in the discrete norm on the sampling nodes

(22)

E2(y) == H (10K xy xCK) xy ) ¥ ’

2L
H 2

< .

C(RN) T <N+>\min(KXN,XN)> Iyl )

Proof. We have

2 —1 * (L) 2
SH(y) KXN,XNy_SK§XNCXN:XNyH
1 (L) 2 (L)
(KXNvXN B CXN’XN) yHHK E XNyH’HK(Q
_ (L) (L)
= (KXN,XNEXN,XNy’ EXMXNy) 2(RN)
gD i (L)
( XN,XNy> KXN7XNEXN,XNy
yT (L) (L)
EXN XNKXNvXNEXN,XNy’
where we define the symmetric matrix
(L) -1 ¢ 1 (L) NxN
(23) EXN7XN ’ Z ('uKM i XN, XN) KXN,XN CXN7XN € R
{=L+1
We observe using again the geometric series with ¢ = ﬁ (0,1) that
J

‘

E¢ =ut ( ) VK Xy @ UK
X X E E KX N KX n
NN AKXy T+ 1

n=1/¢=L+1

L+1
)‘n;k;XN +p
VjK Xy © VjiK Xy
A
AKXy + 1 NG X N

L
I
\ Un; K; XN & Un; K; XN

(24)
KXy T 1

Combining (9) and (24), yields

N 2L
L) (L) 1 p
(25) EY) ¢ KxyxyE =S Ak <) VniKixy ® VnskiXx -
XNaXN N N XNvXN — TL,K,XN )\n7K7XN+/,L n N n N
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To see which is the largest eigenvalue of the matrix we recall the function (18) and get
’ 2L
-1
or(z) =2 —_— :
Su2r(2) <x n #)

Since f,, 1, is decreasing (see (19)), we obtain

L L
Amax (E&}V,XNKXN,XNE&}V,XN) = fu2r (Amin (K x5, xy))

2L
- 1
=21 (K .
mln( XNuXN) (/J:‘i_ Amln(KXN7XN)>

This implies

L L
872'[< ) TE,(XJZI XNKXN,XNEA(X]Z“XNy

2L
- 7
(20 < b o) (s ) Wl

Moreover, we have for a given f € Hg ()

ea(w) = || (10K, O ) w

We get

2 2

L
- HKXviNE,(Xg],XNy

£2(RN) 2@RN)

N L
L) H
K xy xyE = § <) Un KXy © Ui Xy -
N> AN XN, XN —~ An;K;XN+M n N n N

We consider for > 0 and L € N

L
gu;L : ()\min(KXN,XN)a)\maX(KXN7XN)) — Ra T gM;L<x) = <$i/~/u> .

Direct calculations yield

d . L " L
=5, - _ 0
a0 = (xw) <

and hence

L
Mnas (B x5 B x ) = 0t Oonin (K X))

L
~(rtman)
e+ Amin (K x5, Xy )
This implies

gD K 'K Q)
Xy, Xy B XN, XN X XnExy xnY

Ep(y) =y’
2L )
<,U + )\mln KXN, )) Hy”ﬁ(RN) .

(27)

IN
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3. ERROR ESTIMATES FOR THE FUNCTION APPROXIMATION

In this section, we provide an estimate of the approximation error based on Lemma 2.
In order to describe the spatial distribution of the point set Xy, we use the fill-distance

(28) hxy:0 :=sup min |z —xg,,.
zeQTn€XN

To transfer the discrete error from Lemma 2 to the function setting, we employ so-
called sampling inequalities, see e.g., [1, 2, 3, 6, 7,9, 11, 13, 14]. Those estimates are all
of the form

[ell oo () < Pr(xy ) [l ) + P2(hxn.0) Sk xntllp@ny  for all uw € Hi (),

where p1(hxy ) = 0 as hxy.o — 0 and pa(hx,,.0) = Cnp. There are also sampling
inequalities expressed in the number of sampling points NV, if for instance sparse grids
are used as discrete sets X, see [10]. The following analysis does not depend on the
specific form of those sampling inequalities and hence, we work with a generic sampling
inequality.

Theorem 1. We assume a generic sampling inequality of the form
(29) [ull ooy < pr(hxy.) Ul ) + P2(hxy Q) 1Sxyull 2@y
for all v € Hi(S2). Let :c(yL) € RY be the L-th iterate stemming from (13)
:c?(lo) =0 and mg(fﬂ) = K;;IXN’XNy + uK;}XN’XN:U‘,(Jn), forn >0
where y = Sk x (f) + €. Then, we get the following error estimate

fHLoo(Q) < (g xxn Clp1.2, X, K) + 21 (hixy 0)) [N YTy

(30) + ((ap k.xy +1) Clpra, X, K) + pa(hixy 0)) €cos

where we used the abbreviations

st

7
31 = € (0,1
( ) G F X 1% + A111i11(I{XN7X1\7) ( )
and
h
(32) C(pr2, Xn,K) :=VN _pithxve) + p2(hxy.0)

1
)\IQnin(KXNvXN)
Proof. We denote by x,, :I:’JZ € RV the solutions to the linear systems
(33) KXN7XNmy =Yy and KXN,XNm} == SXNf-

We note that these vectors are only for theoretical purposes and not numerically not
available. We also consider the associated approximation corresponding to the vectors
from (33), i.e., we consider

(34) Sky®y and Sk, x},
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which are the interpolant to the inexact and the exact data. Please note that the latter
is the usual kernel based interpolant to the function f. We split the overall error

Ej&er Edata
|55y - mem < [[sx,2 - S;NmyHLm(m + 8% — Sk @i o
(35) 1155y @ = fll oy -
Einterpol

We consider the terms on the right hand side separately. First, we get for Fjii, from
(35) inserting (26) and (27) into (29)

L L
Eitor = ‘ S;{;XNQ}'«SJ ) _ S;(';XwaHLoo(Q) < pl(hXN,Q) ‘ S;(;XNw:SJ ) _ S;(;XNmyHHK(Q)
(L)
+ p2(hxy.0) HKXN,XNmy — Sxnf 2(RN)
< pi(hxy 0)En(y) + pa(hxy 0)Ee(y)
L
I p1(hxy,0)
< ( ST )) . N + p2(hxy,0) | 1Yl @)
H Amin {8 Xy, Xy Amin (K Xy, X )
L
m p1(hxy.0)
S m( e )) D)) | (1 ey + o)
Hr Amin {8 Xy, Xy Amin (K Xn X )

For the second error term Egut, from (35), we observe

* * * (|2 T — _
HSK;XNCB?J - SK§XNmeHK(Q) =y —Sxy/) KX}V,XN (y = Sxn f) = ETKX}V’XNG

AT (K ) ey < e
)‘min(KXNny)

and by construction
2 2
HSK;XN (S;(;szwy - S}((;XN:E})HEQ(RN) = H€Hg2(RN) < NGZO-

Hence, using again (29), we obtain

hxy .o
Eaata = ||S;(§XN$?J - S;(;XNw}HLOO(Q) < exVN M + p2(hxy,0)

)\ranin(KXN,XN)

The third error contribution Eje,; from (35) is the most straight forward to analyze and
we get

Einterpol = HS;(,XNm} - fHLoo(Q) < 2p1(h‘XN,Q) ||f”HK(Q) :
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Finally, we obtain that for all L € N the total error as in (35) is bounded as

* L
‘ SK;XNm'EI )

fHLOO(Q) < Eiter + Edata + Einterpol = Eupper =

h
eV [ 20l o ) ) 201 ) | 1
)\r2nin(KXN7XN)

h
(36)  + | (txxy + VN 0 ) | ] e
Anin (B Xy X )
Using the abbreviations (31) and (32) the error estimate (36) reduces to (30). This
finishes the proof. O

We would like to choose a number of iterations to obtain a quasi-optimal error esti-
mate. Such a choice is provided by the following corollary.

Corollary 1. Let the constant C(p12, XN, K) from (32) satisfy

h
(37) Clpra, Xn, K) = VN M +pa(hxyn) | > 1.
Ain (K xy xx)

If we choose

h
In (pl (hXN7Q)) —In (V N (}\%pl((KXNQ)) + p?(hXN79)>>
38 E _ min XN XN ’
@) I (gpore )

then, we obtain an error estimate of the form

L
(39)  |Sxeai - < 2C(p12, X, Koo + 4p1(hx 2) | gy

e
Note that the assumption (37) is trivially satisfied if Cyp ~ 1.
Proof. We observe that the choice (38), i.e., L = L, yields
<

0 k. xyClpr2, XN, K) < pi(hxy.0)-
Observing pi(hxy ) <1~ C(p1,2, Xn, K) due to (37) finishes the proof. O

In order to take the numerical costs into account, we have to bound the number of
iterations. We observe that due to assumption (37) and the fact that 0 < ¢,k x, < 1,
the expression for L is positive. Hence, we choose for L* = [L] € N. We also observe
that

1
1+ Amin (K xy, xy)

f : (07 1) - (07 1)1 U= QuK Xy =

satisfies

Amin(KX X )
f/ — N,AN 2 O
W) = G A (K )2
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and hence, we obtain that 0 = inf,c( 1) f() = lim, 0 f(u). Hence, considering only
the number of iterations would suggest to choose a very small pu. But, then we loose
the stabilizing effect that K. x xy = Kxy x5y + #Idyxn is better conditioned than
K x, x,- At this point, there are several choices for u possible. The practical approach
is to choose y1 large enough to make K .. x, x, numerically positive definite which means
that the smallest eigenvalue is far enough away from zero. Then, one can use an ordinary
Cholesky decomposition of K. x, x, in the iteration (13). The problem with this
approach is that the errors due to the floating point arithmetic can accumulate during
the iteration. Furthermore, the Cholesky factors inherit the conditioning issues from
the original matrix and hence the solution of the linear system in each step is still ill-
conditioned. We therefore propose to use the inverse Cholesky decomposition which is
developed for ill conditioned linear systems in a finite floating point arithmetic.

4. NUMERICAL LINEAR ALGEBRA IN THE PRESENCE OF FINITE PRECISION

The main observation is the fact that in the iteration (13)

331()0) =0 and xénﬂ) = Py (:I;g")> =K} (n)

b+uK N ay’, forn>0

wXN, XN
we have to solve a linear system with matrix K, x, x, in every iteration step. This
motivates to precompute a decomposition of the matrix K. x, x, or K ;;1XN’ x, and to
use this decomposition to speed up the calculation in every iteration step. Since we need
to invert the matrix K, x, x, in every iteration step and since this matrix is symmetric
positive definite for all ;1 > 0, we can use a Cholesky decomposition. We face, however,
the problem of the high condition number in (8) and hence the direct decompositions of
K ,.x\,xy might break down for too small values of . In particular, we have with (8)

Cond(KMXN,XN) ~ Cond(KXJ\hXN) > ot

for © < «. For the numerical computations, we fix an error level Fi, > 0. We first
discuss the Cholesky decomposition. We note that K,.x, xy € RN*N s symmetric
and that we have e;rKM;XN7XNeZ~ = K(x;,2;) + p > 0. Having these properties we can
apply a result from [15, Algorithm 1] to obtain for an accuracy

(40) N2 < By < 1

an upper triangular matrix U € Ff:; TN with m € N such that

(41) HUTK;L;XN,XNU —Idnxn < Byl
fz—)fz

Note that (40) limits the number of points N if we fix an error tolerance Ei since « is
the constant from (6). Having such a decomposition, we can use this to solve a linear
System

(42) Kuxyxyr=p0.
We get
U'B=U"K,xyxyz=U"K,x,x,UU 'z
= (U Kpixwxy U = Tdyun ) U2 + Ul
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which yields
Tg_ T 1.,
UU B =x+U (U K/J,;XN,XNU_ IdeN) U 'z~
We hence get for the relative error
T
[vv's Kb, uuTe-al, _

], ]l

We compute

HUUTKM;XN,XN —Idnxn

fz—)fz '

“UUTKM;XN,XN — Idyxn

— [0 (VT Kpxy U = Tawsn ) U™

lo—0o lo—La

= HKM Xy Xy Euxn xyU <UTKu;XN,XNU - IdeN) v

fg—)fg

UﬁTUTKU;X]\HXNU (UTKN§XN7XNU - IdNXN) v

HK/‘L7XN7XN

52 —>€2 ZQ —%2

T
U Ku;XN,XNU Etor.
fg—%g

HK ‘U71H£24>£2

#7XN7XN HZ2_>Z2

Using the arguments from [15, Analysis 2], we get

T N -1 ~
HU KIUXNxXNUHZZ_%Z ~1 and ||U He2—>e2 ~ K pxn X gy e, -

This leaves us with

HUUTKM;XN,XN —Idnxn

S conds (K xy xn) Erol S (

lo—La

)\maX(KXN:XN) > E
tol-
[ )\min(Ksz,XN)

Hence, we get
(43)

|louTB - Kk, x, B

>\max K -
- ( ] )) Pl KleN,XN’@Hz for all § € R,
9 2

[ )\min(KXN,XN

Similar arguments apply for the approximate inverse QR decomposition as in [§].

4.1. Error analysis for iteration. In this section we bound the error influence of the
inexact iteration. Again, we start with the errors measured in discrete norms.

Lemma 3. We assume

(44) we (0,1) and N > 3.
Then, we get for the error eém) = m(()m) — ul()m)

m Amax K " )\max K
MH (m+1) H < <1+ ( XN,XN) Etol) ( ( XN7XN) >Etol||b”g2+
(45)

L m
maXK
e (e (1 (1 e p )"
Amin (K Xy, Xy ) o+ Amin (K x5y, Xy ) e+ Amin (K Xy, Xy )
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for m > 1 and with wl(,m) given by the iteration (13) and ugm) through the modified
iteration

(46) ué ) =0 and uémﬂ) =Py (u,()m)> =UU"b+ ,uUUTugm), form > 0.

(n) (0)

Proof. For the error e, ’, we observe e, ” = 0 and
VN = [ouTe - Kk 8| < MmaxBxyxv) g 111 b
Heb “XN XNy = \ 4 Amin (K xy Xy ) fol || X X Pl
_ )\max(KX X ) )
47 <put ( NN Eio1 |10, ,
47) =N 1+ Amin (K xy xn) ) 1Bl
where we use (43) and (47). Next, we obtain for any m > 1
(48)
(m+D) || _ || .(m+1) (m+1) (1) (m) T, (m)
o], - e -], <, b -,

For the second term, we get for any m > 1 using (43)

<

HK;}XN XNwE)) UUT (m) ZQ

(K3 -v0) ol

<yt ( Amax(KXN,XN) >Etol
B A+ Amin(Ksz,XN)

ke (=7 =),

o, e el
Uy, £2+M e |,

) -1 )\maX(KXN:XN) >
+ FE x
P (wxmm(KxN,xN) o

)\max(KXN,XN)

B, He(m (m)
M‘i‘)‘min(KXN,XN) tl) b b

<u (1 )
_u<+ }

we use Lemma 1 to get

In order the get a bound on Ha:ém) ,
2

=4

<||e% s, 1l

< AL (K 1- a bll,, -
<k XN,XN>< (s Am(MMN)) ) 1ol

Inserting the bounds into (48) implies that

< <1+ Amax(KXN,XN ) H
Lo N+)\m1n(KXN XN

1 Amax (K FE m
N <1+> ( (K xy,Xv) ) tol <1_ ( o > )HbHEQ.
1 w+ )‘min(KXNny) Amin(KXN,XN) ®+ )‘min(KXNny)

Schematically, we have the following situation:

= e,

Hel(Jm+1)

Hel()m-i-l) + B,

<A

Lo
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with the choices

Amax (K
a. ( XNvXN) Etol) > 1
M+ )\min(KXN,XN)

B = (1+1) ( )\max(KXN,XN) ) Etol <1_ < M >m>
) \ g+ Amin(Kxy xy) /) Amin(K xy xy) 4 Amin (K x5, Xy )

Iterating this inequality yields

A= <1+

1-—A™
B
42+ 1—A"°

A R W

where we used the formulas for the geometric series. Hence, we obtain

Amax (K " Amax (K
< (1+ ( XN,XN) Etol> ( ( XN,XN) )Etolubuzg""
12 o+ /\min(KXN,XN) w+ Amin(KXN,XN)

T e M
D (- 1 (1+ Xn) g ,
Amin (K x5y, Xn) 1A+ Amin (K x4 Xy ) f 4 Amin (K x4 Xy ) tel

which concludes the proof.

(m—+1)
b

e

4.2. Error analysis for numerical linear algebra. As in Section 3, we can bound
the influence of the discrete (numerical linear algebra) error on the continuous function
approximation. Using (29), we get

Corollary 2. Under the assumption of Corollary 1 and Lemma 3, we get for m > f/u
from (38) the bound

| .
bt <\/)\max(KXN,XN)p1(hXN,Q) + )\maX(KXN,XN)pQ(h’XNvQ)) X

max " Ama‘x K
% <1 + A (KXN7XN) Etol> < ( XN7XN)

e () 5 ) (- (1 2] ")
SR Vot R 1-(1+ Xn) g
Amin (K Xy, Xy ) o+ Amin (K x5y, Xy ) o+ Amin (K x5y, Xy ) to!

for all f € Hi(Q).

S%n ug(/m) —

<2C(p12, X, K)eoo +4p1(hxy 0) 1 f 3,0

) Erot[Sxx g, +

Proof. We use the abbreviation b = Sx, f. We bound the terms separately to get

Moreover, we get

2

S0 = ) Kol b R [

o

|5 S5 el

< Ama‘x (KXN,XN) Hel(,m+

£2(RN) .
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We have the ingredients to apply the generic sampling inequality to get

3,67 o) 55l

e~ [P

< p1(hxy.0) HS§(Ne§)m) (m)

+ pQ(hXN,Q) HSXNS;(Neb

HHK(Q) 2(RN)

Hence, we end up with

HSF(Nel(,m)HLOO(Q) < <\/>\max(KXN,XN)p1(hXN,Q) + Amax (K x v, x5 ) 02(hx 5.0 ) H

Since we choose m > IN/M from (38), we obtain by triangle inequality

[Ssed” = 1] gy = 85088y * [S50528™ = 1]
< 2C(pr2, XN, K)eso + 4p1(hxy.0) HfHHK Q)
<\/)\max Kx, xy)p1(hxy,0) + Amax (K xy, xx5)p2(hxy 0 > H
< 20(p1,2, Xnv, K)eoo + 4p1(hxy,0) 1 f )
7 (B i) + Amax<KxN,xN>p2<th,a>) x

)\max(KX X ) >m < )\maX(KX X ) )
x |1+ N XN N, XN E bl &
( 1A+ Amin (K xy Xy ) tol A4 Amin (K x v Xy ) tol | ”42

(M +1) < ( 1% >m> < < )\maX(KXN XN) >m>
PR el N (f 1— (14 : B ,
Amin (K Xy, Xy ) o+ Amin (K x5y, Xy ) o+ Amin (K x4, Xy ) tol

where we used (39) in the last step. O

The last result shows that we have to choose large values for p to get a reasonable
error. Such error estimates are of course far from being sharp since they assume in each
step the worst possible case.

5. CONCLUSION

We analyzed the iterative Landweber regularization technique to solve kernel-based re-
construction problems with inexact data. We derived deterministic a priori error bounds
which are explicit in the various parameters. Since it turned out that from a pure error
analysis perspective small regularization appears to be favorable we demonstrated that
a finite precision arithmetic might produce small errors in each step of the Landweber
iteration which, however, might in a worst case scenario blow up. Those accumulat-
ing errors make large regularization parameters beneficial. We consider this worst case
scenario as a first step towards a more realistic averaged case analysis is still work in
progress. Nevertheless we believe that such deterministic error estimates will gain more
and more importance as computations can be made accurate enough to make also the
machine precision an important quantity.
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