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Introduction

Today’s world is driven by the increasing computing power of computer chips like the
one shown in Figure 1. More and more parallel cores and components are added to
today’s chips, from specialized cryptography units to AI-accelerators.

© Arithmeum/Rocca

Figure 1: A photography of the PC layer of the chip Nina, published in “Mathematik
und Ästhetik des Chipdesigns” [Hou+19].

To make this possible, feature sizes had to decrease significantly. It has also become
impossible to design a state-of-the-art computer chip without electronic design automa-
tion (EDA) tools.
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© Arithmeum/Prinz

(a) The placement of the chip Nina, pub-
lished in “Mathematik und Ästhetik des
Chipdesigns” [Hou+19].

© Arithmeum/Prinz

(b) The routing of the chip Nina, published in
“Mathematik und Ästhetik des Chipde-
signs” [Hou+19].

Figure 2: The colored data of the placement and the routing of the chip Nina that is
also shown in Figure 1.

The BonnTools are a set of EDA tools that are developed by the Research Institute for
Discrete Mathematics at the University of Bonn in collaboration with IBM. They deal
with physical design. In physical design, millions of logic gates that together form the
chip’s logical functions need to be placed on the chip (see Figure 2a) and the connections
transferring the signals between these gates (interconnect) have to be planned (see Figure
2b). The connections can in total make up several meters of wiring on a chip the size of
a fingernail. Examples of the placement and routing of a chip can be seen in Figure 2.

There are the clear physical constraints. For example that the wiring should not
contain short circuits and obeys more complex rules imposed by the manufacturing
process. There are also optimization targets, like the cycle time and the power usage.
Nonetheless, the cycle time is usually treated as a constraint. If the chip is specified to
run at 4GHz for example, it must complete a cycle in 250ps. To put this into a relation:
Light travels roughly 7.5cm in vacuum in this time. Our test chips range from 0.04mm
to 5.4mm from one side to the other (see Chapter 6).

To meet the cycle time, we need to optimize the interconnect between gates with
respect to timing, but we also need to keep power usage, netlength (total length of
the wiring) usage and other objectives in mind. The interconnect distributes the signal
from a gate’s output, called source, to the inputs, called sinks, of subsequent gates. It
consists of wiring and of additional gates, called repeaters. An example of interconnect
with repeaters is depicted in Figure 3. A repeater implements a logical identity (buffer)
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Figure 3: A buffered route (see Chapter 1.1.5) distributing a signal from the source in the
center (red) to sinks (green) on some of the blockages. Blockages are shown
in gray. Repeaters are orange, the wiring is black. The buffered route has
been computed using our algorithm. This plot has been modified to make the
repeaters and terminals visible, while still showing the whole instance. The
solution contains 8 repeaters, but some of them are hidden beneath others in
this picture.

or inversion (inverter) function. It shields away its downstream capacitance from its
upstream wiring and strengthens the signal. The process of adding repeaters is called
buffering. It is one of the hardest problems in chip design, because it combines discrete
decisions with non-linear signal delays. No exact algorithm is known for the general
buffering problem.

The delay through a wiring segment is roughly proportional to the wire’s resistance and
its capacitance with respect to other wires. We can change these properties by selecting

3
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Figure 4: A cross-section of a metal stack in 10nm technology by Intel [Aut+17]. The
wiring layers are numbered M1 – M10. They are connected by via layers. The
upper layers feature both higher and wider wires.

different widths, spacings and materials. Higher widths lead to lower resistances, but
higher capacitances. Higher spacing decreases the capacitance. Typically, chips have
wider widths and spacings on higher layers, providing lower signal delays. A cross-
section of a chip, showing the layers can be seen in Figure 4. The capacitance that
a gate can drive is limited. So it is also required to add repeaters if the capacitance
becomes too large.

With decreasing feature sizes, the influence of the wire resistance has increased more
and more. With that, buffering has become a significant part of timing optimization. As
resistance and capacitance of a wire grow about linear in their length, wire delay grows
roughly quadratically. The delay through an optimally buffered long connection only
grows approximately linear [Bar+10] in its length. Additionally, buffers can speed up
timing critical connections by shielding away the capacitance of uncritical connections.

Because buffering is so important, it has been widely studied and many algorithms
have been proposed and used in practice. From algorithms to limit the load at each
source ([BCD89], [Tou90]) over van Ginneken’s dynamic program [Van90] that inserts
buffers (of a single type) into given wiring with respect to timing and its derivatives,
to global solutions like BonnRouteBuffer [Dab+23]. They add aspects like choosing
from multiple buffers and also inverters [LCL96a], selecting wire types and layers for the
wiring [Zho+99] and trading off resource usage globally [Dab+23]. An extensive review
of the literature can be found in Chapter 2.1.

Despite the extensive research on buffering, even state-of-the-art algorithms often
leave a few instances optimized insufficiently. In these cases designers buffer them by
hand. Figure 3 shows our solution to an instance that had been buffered by a designer
for the chip release. Another problem is that it is hard to judge if a buffering is good or
how it could be improved. Our goal is to solve these problems.
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In this thesis, we aim to provide a flexible formulation of the buffering problem that
allows to capture today’s most important aspects of the buffering problem, and provide
an optimum but exponential time algorithm for this formulation. We created a frame-
work that can be used to solve buffering problems with varying levels of accuracy. From
an almost optimum at a high running time — for example for benchmarking — to a
reasonably fast, but more inaccurate variant that can be used in a high effort mode for
very timing critical instances in real world applications as part of the BonnTools.
In Chapter 1 we present some foundations. We start by presenting the mathematical

objects that describe the chips and tasks that have to be performed during physical
design. Then we give an introduction to (static) timing analysis for integrated circuits.
Finally, we give a quick introduction to path searches, Steiner trees and resource sharing,
which will occur multiple times in this thesis.
Then we take an in-depth look at the buffering problem in Chapter 2. We review the

existing literature and previous work. Then we give an overview over the constraints
and objectives of the buffering problem and how they can be taken into account. Finally,
we present our new formulation of the buffering problem, enhancing [Rot17]. Similar to
previous works it can not place repeaters or wires at arbitrary positions, but it covers a
wider range of objectives and constraints than its predecessors. To our best knowledge,
it is the first formulation that can accurately optimize with respect to realistic delay
models with slew propagation.
Once we have presented our problem formulation, we propose our new algorithm in

Chapter 3. We show that it can be used for finding approximate and optimum solutions
to our problem. Afterwards, we present two extensions to our algorithm that are joint
work with Benjamin Ihme.
In Chapter 4 we present speed up techniques that we developed for our algorithm.

Among these is a new timing based iterative clustering heuristic that uses a non-timing
aware clustering algorithm as a black box.
As the black box clustering algorithm, we use a new 3-approximation algorithm for

the Capacitated Tree Covering Problem with Edge Loads, which we present in Chapter
5. A short version of this chapter has been accepted at the SWAT 2024 conference
[Roc24].
Finally, in Chapter 6, we will test our new algorithm and speedup techniques on

practical instances. First, we run a comparison of the base implementation of our algo-
rithm (benchmark setting) that can give us an approximation guarantee to versions with
speedup techniques that do not give us any guarantee. These experiments are conducted
on small instances, because the base version is too slow for larger instances. We show
that some of the techniques have only a small negative impact on the result, but reduce
the running time significantly on these instances. In a second set of experiments, we
then test our faster version in practical settings and show that it can be useful for hard
cases.
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1 Preliminaries

Before we can start to deal with the buffering problem, we need to lay some foundations.
This chapter aims at providing basic knowledge on the problems and constraints that we
encounter, as well as concepts and ideas that are used during this thesis. Furthermore,
we set up the basic notation that is used during this thesis for the different problems.
We start off by giving an introduction to VLSI design (Very Large Scale Integration),

based on the lecture notes of the “Chip Design” lecture at the University of Bonn by
Stephan Held and Jens Vygen [HV22]. First, we explain the basics of integrated circuits.
Then we present the basic data structures used during the physical design process. From
there, we set up the main steps of physical design and explain which constraints have
to be satisfied. Finally, we give the basic formulation of the buffering problem, which is
the main problem discussed in this thesis.
In the second section, we give an introduction to timing analysis, based on the book

“Timing” by Sachin Sapatnekar [Sap04]. As our main goal will be to optimize inter-
connect with respect to timing, timing analysis naturally plays an important role, both
for the modelling of our problems and for the solution. We start by explaining how
circuits are modelled for the purpose of fast timing analysis and then go from a simple
simulation of the interconnect wiring to deriving two commonly used delay computation
methods: The Elmore delay and the asymptotic waveform evaluation.
In the last section of this chapter, we present basic problems of combinatorial opti-

mization that play an important role for our approach to the buffering problem. We
start off with the basics of path search. Then we inspect different Steiner tree problems
and finally, we take a quick look at the min-max resource sharing problem, because it
can be used to derive a global formulation of many of the problems that have to be
solved during VLSI design.
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1 Preliminaries

1.1 VLSI Design
The design of a computer chip is split into several steps. After specification and high-
level-design the logic of the chip is defined in a hardware description language. Logic
synthesis transforms the high-level description of the chip’s logic into small Boolean
functions like NAND or NOR, so-called gates, and a specification how these gates have
to be connected. The physical design task then takes this set of logical gates and the
description how these gates have to be connected, called a netlist, as input. It aims at
selecting physical implementations of these gates from a so-called library, positions for
all of them and interconnect wiring, such that this can be physically realized, does not
consume too much power and meets the cycle time of the chip. Afterwards, verification
checks that all goals are met in simulations. If there are still errors present, we go back
to a previous step and fix these errors. Finally, test versions of the chip are produced
and checked again.
We will focus on the physical design. In order to be able to algorithmically handle

this process or parts of it, we require precise language and modelling. This section will
establish the most important concepts, models and subtasks required to understand this
thesis.
We will start off by giving a short introduction to the basic building blocks of computer

chips, transistors, and the so called leaf-cells that are built from them. We continue by
giving the basic definitions of a chip image, a netlist and a library. Then we will explain
the basic notions of placement and routing. These are the tasks to find positions and
interconnect wiring. And finally we will take a look at buffering, which is part of the
effort made to meet the cycle time.
This section is based on and uses the notation of the lecture notes on “Chip Design”

by Jens Vygen and Stephan Held [HV22].

1.1.1 Transistors and Leaf Cells
Modern computer chips consist of millions of transistors. A transistor is a semiconductor
that, given a voltage between source and drain, lets an electrical current flow from its
drain to its source contact, only if there is a high potential at its gate contact. This
type of transistor is called an n-transistor. A p-transistor will let the current flow only
if there is no potential at the gate contact. An example is shown in Figure 1.1.
A field effect transistor (FET) is built by doping the silicon crystal with atoms that

have either an additional electron (n-type region) or a missing electron (p-type region).
For an n-transistor, source and drain are n-type regions that are isolated by a p-type
region. The p-type region is enclosed by a thin insulation and the gate, as shown in
Figure 1.1. If a strong enough positive electric field is induced by the gate, an n-channel
will open between source and drain. Otherwise, the additional electrons in the n-regions
will fill the holes left in the p-region and the material will not be conductive. For p-type
transistors, n- and p-regions are exchanged.
Figure 1.1 shows a FinFET transistor. The Fin in FinFET means that the p- and

n- regions are organized such that the gate may surround them on multiple sides. This

8



1.1 VLSI Design

p+n− n−

gate oxide

gate

source drain

Fin

Figure 1.1: Cross-section of an n-transistor in FinFET technology.

technology has been used for the 14-nm and 7-nm technology nodes. Older technologies
used planar transistors, where the gate would contact the substrate only from the top.
For newer technologies, gate-all-around concepts are explored that increase the contact
area even further [Kam22].
A chip’s base layer is manufactured in rows with a p- and an n-stack in each row,

allowing to place p- and n-transistors respectively. Each stack may have multiple fins,
such that a transistor can use multiple fins [Cre19]. A piece of such a circuit row is
shown in Figure 1.2.
Creating a state-of-the-art chip on transistor level is not feasible. This is why small

logic functions are pre-built in a separate step called leaf cell design and can then be
used to realize these logic functions. Often these small logic cells are called logic gates.
Modern chips are built in Complementary Metal-Oxide-Semiconductor (CMOS) tech-
nology. This means that the gates are realized with complimentary p- and n- transistors
such that for each output, a power-output channel is open if the output has the value
1, and a ground-output channel is open if the output has value 0. Figure 1.3 shows the
diagram of a CMOS inverter.

1.1.2 Chip Image, Netlist and Library
We first give the definition of a chip image, which is a data structure capturing the
boundary conditions of the chip. The chip image [HV22] is a tuple

I = (A(I), B(I), P (I), (p(t))t∈P (I)).

Here A(I) = [xmin , xmax ]× [ymin , ymax ]× {0, . . . , zmax} denotes the chip area. The third
dimension denotes the layer, where layer 0 is the placement layer and the others are
called routing layers and will contain wires. B(I) is the set of blockages, which are
rectangular subsets of the chip area on a single layer. P (I) denotes the input and
output pins of the chip and p(t) ∈ A(I) denotes the position of the pin t ∈ P (I).

9
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power

fins gate

p-stack

n-stack

Figure 1.2: A small piece of a circuit row in FinFET technology.

GND

VDD

Input Output

Figure 1.3: An inverter in CMOS technology. The p-transistor on the top will connect
the output to VDD only if a positive potential is applied to the input, while
the n-transistor on the bottom will connect the output to ground only if no
potential is applied to the input.
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1.1 VLSI Design

The logic of a chip is realized by logical elements, so-called circuits, that are connected
by nets. Circuits are predesigned realizations of logical functions (logic gates) like NAND
or NOR. However, circuits may also encode more complex functions like an adder circuit,
or even a larger piece of the chips logic like a floating point unit or an IO-controller.
These large functions are called macros and are designed using the same techniques as
described here. There is a third class of circuits that do not encode logical functions:
Memory elements like latches or flip-flops are able to store single bits and carry them over
to the next cycle. The logic of the chip without memory elements is called combinational
logic and is acyclic. The nets carry the input signals of a chip and the output signals of
circuits to inputs of other circuits or outputs of the chip.

Formally, we store this information in a netlist

(C, P = Pin∪̇Pout , γ,N ).

C is the set of circuits. P is the set of input/output pins, where Pin stores the inputs,
and Pout stores the outputs. γ : P → C ∪ {□} maps the pins to the circuits, or to □ if
the pin is an input/output of the chip. The pins belonging to the chip are called primary
inputs/outputs. N ⊂ 2P contains the nets. The pins N of a net are called terminals.
A net contains exactly one source pin that is either a primary input or an output of a
gate. Additionally, it contains at least one sink pin that is either a primary output or
an input of a gate.

To each gate, we need to associate the information, how it is built. This information
is stored in a so called book b. It need not be complete during each step of the design
process. But we will assume that it always contains a (rectangular) outline A(b) =
[0,width(b)] × [0, height(b)] ⊂ R2, called its shape, the pins of the book P (b) togther
with positions for its pins p : P (b) → R2

≥0×{1, . . . , zmax}. The x- and y- coordinates
of the pins are relative to the lower left corner of its shape. Additionally, information
on the book’s power consumption and on its timing properties are stored. For macros,
there is typically only one book, but standard gates like NANDs or inverters usually
have different possible sizes and Vt-levels, represented by different books. The Vt level
refers to a gates switching voltage. A lower switching voltage will decrease the delay
through a gate, but increase its power consumption. For increasing sizes, the gate is
built of larger or multiple parallel transistors that can drive a higher load. This usually
increases the area of its shape and its power consumption, but decreases the delay for
larger loads. The process of choosing the sizes for the gates is called gate sizing.

The set of all books L is called library. During physical design, we will always have
a technology mapping (β, π), where β : C → L ∪ {I} maps the circuits to books or the
chip I itself and π : P → {I} ∪⋃b∈L P (b) is a one to one mapping of the pins of each
gate to the pins of the circuits book and the primary pins to I. We require that β and
π are consistent with the netlist and logic of the chip. This means that β(C) is a book
realizing the logical function of C ∈ C and π(t) must map primary inputs and outputs
to I and outputs of circuits to outputs of the book, as well as sink pins to inputs of the
book.

11



1 Preliminaries

(a) A legal placement of a chip. The gray
boxes are blockages, the coloured boxes
are the placed gates.

(b) A small region of the chip in Figure 1.4a.
On the top we see a state after global
placement and before legalization, on the
bottom we see the state after legalization.

Figure 1.4: A placement of a chip. Once complete, and once a small subregion before
and after legalization.

1.1.3 Placement

The task of placement is to find positions and orientations for each circuit in the chip
area, such that the design rules are satisfied. The most basic rule is that the outlines
of the circuits should not overlap. The rules can be more complicated than that. One
important example is that the substrates for the transistors are usually organized in
rows, such that on one row, only p-transistors can be placed and on another row only
n-transistors can be placed (see Figure 1.2). The circuits must be placed aligning with
the circuit rows.

Let us formally define a placement. We will ignore orientations here, as we do not
need them for the core of this thesis. A placement of the circuits C is a mapping
(x, y) : C → R2. The placement shape of C ∈ C is then the rectangle resulting from
moving the lower left corner of A(β(C)) to the position (x(C), y(C)). The position of a
pin t ∈ P is then (x(γ(t)), y(γ(t))) + p(π(t)).

We call a placement legal if it obeys the design rules. In particular, we require that
the placement shapes of all circuits lie completely within the chip area, they do not
intersect with each other, and they do not intersect with blockages. For an example see
Figure 1.4.

12



1.1 VLSI Design

Additionally, being legal with respect to the design rules is not sufficient. A placement
must allow a wiring to exist and since the delay increases with the distance, it also heavily
influences the timing of the chip.
There are two main placement steps. Global placement starts with no given placement

and tries to spread the circuits across the chip such that the density of circuits is not
too large and an estimate of the length of the wiring and the future timing is minimized.
Legalization starts with a given, possibly non-legal placement and tries to move the
circuits to legal positions, often while minimizing the total squared movement. The
picture in Figure 1.4b shows a small region of a chip after global placement in the top
half and after subsequent legalization in the bottom half.

1.1.4 Routing
When all circuits are placed, we can compute a routing. The task here is to find wires
for each net that connect all the pins of the net. Let us view this more formally. A
routing of net {r}∪̇T = N ∈ N with source r and sinks T is an arborescence A,
rooted at r and with leaves T , together with positions pos : V (A) → A(I) and a set
of rectangles S, called shapes, that represent the wires’ outlines in the plane. All edges
must correspond to either horizontal or vertical lines or connect two points with the same
x and y coordinate on subsequent layers. This means that for (v, w) ∈ E(A), pos(v)
and pos(w) should differ in exactly one coordinate. Edges with both endpoints on the
same routing layer are called wires, while edges with endpoints on different layers are
called vias. The direction of a wire is horizontal if the x-coordinate changes and vertical
if the y-coordinate changes. Examples of wires and their shapes can be seen in Figure
1.5b. Each routing layer has a preferred direction in which the wires are supposed to
go. If a wire’s direction is orthogonal to the layer’s preferred direction, we call it a jog.
However, we will not allow jogs in this thesis.
In reality, a wire is a cuboidal piece of metal with the wire’s edge centered in its

cross-section and enclosed by it. Its height is fixed for each layer, so we may represent it
by a rectangle on the wire’s layer (see also Figure 4). The length of the rectangle in the
wire’s direction is called the wire’s length, while the length in the orthogonal direction
is called its width.
Usually there is a discrete set of allowed widths for the wires, together with a minimum

required spacing to parallel wires on the same layer. These sets of width and spacing
combinations are called wire types. With increasing width the capacitance of a wire
grows, but its resistance shrinks. With increasing spacing the capacitance shrinks.
Vias can be represented by two rectangles: A top shape on the upper layer, and a

bottom shape on the lower layer.
S contains exactly the rectangles belonging to the wires and vias.
A legal routing of the chip is a routing for all nets that does not violate any design

rules. These incorporate, at least, that no shapes of routes for two different nets may
intersect, but there may also be more complicated rules like a minimum length of wires.
Because routing is so computationally complex, it is often split into two steps: Global

routing and Detailed routing.
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© Universität Bonn

(a) A global route (in blue). The root is
shown in red, the sinks in black. Black
lines connect the terminals and the tile
center they are projected to. Blue ver-
tices are Steiner points of the global
route.

(b) A small region of a chip with detailed
routing. The dark blue rectangles are
pins, the remaining rectangles are the
shapes of wires and vias. The colours
show the layers. More blue means lower,
more red means higher. The white lines
are the edges in the arborescence belong-
ing to a route. Power connections are left
out for clarity.

Figure 1.5: A global route and a small region of the chip with detailed wires.
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For global routing, we partition the chip into rectangular tiles. Then we construct the
global routing graph. We insert a vertex in the center of each tile. Then we connect
vertices of neighbouring tiles in preferred direction by an edge. Furthermore, we add
edges between the vertices of tiles with the same x and y coordinates on subsequent
layers. Now we assign a capacity to each edge, based on the number of detailed edges
that may cross the tile border belonging to that edge. We project each pin to the vertex
of the tile it is contained in. Then we can compute a routing in the global routing graph
connecting the projected pins. Instead of requiring that the routes do not intersect, we
require that not too many routes use the same global routing edge. This can be done
by computing an estimate of how much of the capacity of a global routing edge is used
by each route and minimizing the overusage. An example of a global route is shown in
Figure 1.5a.
Detailed routing then tries to find routes that obey all the design rules (see Figure

1.5b). It uses the global routes as a basis to reduce the search space.

1.1.5 Buffering
Placing the circuits and connecting them by wires will not be sufficient to meet the
cycle times on modern chips. We will informally define the delay from one pin of a
chip to a pin that lies downstream as the time it takes for a signal originating at the
first pin to reach the second pin. We will discuss timing and delay in more detail in
the second section of this chapter. The delay through a gate depends roughly on the
total capacitance of the wiring connected to its output pin. The delay through a wire
segment depends on the resistance of the segment, its capacitance and the downstream
capacitance at the end of the segment. Since resistance and capacitance of a wire grows
roughly linearly with its length, the delay from a source of a net to a sink of the same
net depends roughly quadratically on the length of the wiring in between. Furthermore,
it also depends on the capacitance of wiring that connects other sinks in the same net to
the source. To meet the cycle times, it is necessary to speed up connections by inserting
repeaters. Repeaters are logical identity functions, called buffers, or negation functions,
called inverters. If inverters are inserted, we also need to make sure that the logic does
not change. A repeater shields away the capacitance of its downstream wiring from the
wiring before the repeater. By inserting a repeater on a side branch of a path, we can
shield away the capacitance of the side branch, thus reducing the influence of the side
branch on the delay through our path. By inserting repeaters on a path, we can reduce
the quadratic dependence on the length of the path roughly to a linear dependence. An
example for the development of the delay per length with and without a repeater is
depicted in Figure 1.6. Historically, only buffers were used as repeaters. This is why
this process of inserting repeaters is called buffering. This process changes the netlist.
Let us now give a basic formulation of the buffering problem. We will spend the

whole chapter 2 of this thesis to discuss how to model the buffering problem such that
we incorporate as many constraints as possible, while still being able to solve it.
We are given a net {r}∪̇T := N ∈ N with source r and sinks T . Additionally, we are

given polarities pol : T → {ident , invert} and a repeater library L consisting of buffers
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Figure 1.6: A path with a repeater in the center. The graph shows the delay to the
point on the path at the x-coordinate. The solid graph is the delay with the
inverter, the dashed line without the repeater.

and inverters. We want to construct a buffered route (see Figure 1.7). Its base is a
repeater tree that encodes the changes to the netlist, that we need to make. It stores
the nets as an arborescence, where each non-leaf vertex and its children make up a net.
The repeaters are stored information on the vertices. In order to keep the logic correct,
we must make sure that the number of inverters on each path from the source to a sink
with invert polarity is odd. An example is depicted in Figure 1.7a. The buffered route
then also adds a route for each new net and is shown in Figure 1.7b. Formally we define
repeater tree and buffered route as follows:

Definition 1.1.1. A repeater tree for (r, T, pol) is an arborescence A, rooted at r with
leaves T and positions pos : V (A)\ ({r}∪T ) → R2, together with a mapping b : V (A) →
L∪{□}, such that b(r) = b(t) = □ for each t ∈ T and b(v) ∈ L for v ∈ V (A)\ ({r}∪T )
and we have

∣∣{v ∈ V (A[r,t]) | b(v) inverter}
∣∣ odd iff pol(t) = invert .

Denote by vsource the source pin and by vsink the sink pin of b(v) for v ∈ V (A) \ {r} ∪ T .
For simplicity, we use the convention that rsource := r and tsink := t for t ∈ T .
A buffered route is a repeater tree (A, b) together with a route for each net Nv :=

{vsource} ∪ {wsink | (v, w) ∈ E(A)} for v ∈ V (A) \ T .

The task of buffering is to find buffered routes for each net in the netlist, such that
the cycle times are met and the placement and routes are legal. This task is extremely
complex. So usually the constraints are relaxed.
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(a) A repeater tree. The polarities are
shown as black text. The repeaters
are drawn in orange at their respec-
tive node. The sizes indicate different
repeater sizes.
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(b) A buffered route based on the re-
peater tree from Figure 1.7a. The
black lines show the projection of the
routes into the plane. Polarities and
the arborescence are left out for clar-
ity.

Figure 1.7: A repeater tree together with a buffered route. The root is red, the sinks are
green and the repeaters are orange.
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1.2 Timing Analysis
In this section, we will deal with the question of how to compute the delay through
the combinational logic of the chip. The modelling choices for the buffering problem
heavily rely on properties of the selected method of timing computation. This is usually
not part of the curriculum of the studies of mathematics. This is why we provide the
basics of timing computation here. For further reading we refer to the book “Timing”
by Sapatnekar [Sap04], on which this section is based.
We will start by showing how to model circuits and how to describe them by a system

of algebraic and differential equations. This system can be used to model the voltages
at every pin of the chip over time. However, doing this is computationally expensive
and requires knowledge of the whole chip. So it is not suitable for use in optimization
algorithms.
We will make the assumption that each stage of the logic can be considered separately.

A stage consists of a logic gate together with the subsequent wiring. Knowing the curve
of voltage over time at the inputs of the logic gate, we can simulate the voltage curves
at the input pins of subsequent logic gates. The curve of voltage over time is also called
waveform. Simulating the waveforms is still too slow. So we restrict to two features of
the waveform that have proven to be very helpful in timing analysis. The 50% voltage
pass and the slew, which is a measure for the slope of the curve. Then we will derive
the two most commonly used delay computation methods: The Elmore delay and the
AWE technique.
Finally, we will define the timing graph and show how to use it to compute the timing

of the chip.

1.2.1 Modeling Circuits
Suppose we are given the schematic of an electrical circuit, like the one in Figure 1.9b.
We want to model the circuit as a directed graph with an electrical device associated to
each edge, as described in [Sap04, Chapter 2.2]. This can be achieved by first inserting
one node n0 for ground. Then we insert nodes at each electrical node and between
electrical devices on the same branch. Finally, we add edges between the enclosing
nodes of each electrical device, directed in the same direction as the electrical flow. Note
that a voltage or current source counts as an electrical device as well. An example of a
circuit with its model is depicted in Figure 1.9 b and c.
Formally, a model of a circuit is a directed graph G = (V,E) with a ground node

n0 ∈ V , together with electrical devices D and a mapping of the edges to the devices
d : E → D. We are interested in the potentials π : V → R on the nodes, where we fix
π(n0) := 0, as well as the voltages v : E → R and currents I : E → R≥0 on the edges.
They are subject to Kirchhoff’s laws. Kirchhoff’s current law (KCL) states that the

sum of the outgoing current of each node must equal the sum of the incoming current:

∑

e∈δ−(n)

I(e) =
∑

e∈δ+(n)

I(e) for each node n ∈ V.
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Kirchhoff’s voltage law (KVL) states that the voltage around an undirected cycle in G
must be 0. This means, if we walk around a cycle, adding up voltages of edges that we
use in their direction and subtracting voltages of edges that we use in reverse direction,
this sum must be 0. However, this law is implied by the definition of voltages as the
difference of the potentials at their endpoints:

v((p, q)) = π(p)− π(q) for each edge (p, q) ∈ E.

Note that we may set π(n0) := 0 without violating Kichhoff’s voltage law and that the
current equation for n0 is implied by the other KCL equations. So we may remove n0

and its KCL equation.
The relation between voltages and currents is then given by the device equations, which

may be nonlinear or even differential equations. We will provide the most important
device equations for our purpose.
The simplest device that we will see is a resistor. Let e ∈ E be an edge such that

d(e) is a resistor with resistance R. Then v(e) = R · I(e). Another simple device is a
constant voltage source. If d(e) is a constant voltage source providing a voltage w, then
v(e) = w.
Finally, we need the device equation of a capacitor. This will be a differential equation,

as the capacitor has to be charged and thus is time-dependent. If d(e) is a capacitor

with capacitance C, the equation becomes: I(e, t) = C · dv(e,t)
dt

.
Suppose now that we had a circuit that consists of a constant voltage source at the

input and some capacitors and resistors. Then we have everything required to numer-
ically compute the voltage curves on every edge. Indeed, we now have everything that
we need to describe the response of interconnect wiring to a step input. This type of
timing model that we describe here is called voltage source model. The source can also
be a current source. In this case, we speak of current source models.

1.2.2 Modeling Interconnect Wires
The three important characteristics of interconnect wires that have an impact on the
waveform are the resistance, the self inductance and capacitance to ground and to other
wires. These three properties are typically referred to as RLC (derived from their phys-
ical symbols). However, for our purposes, we can ignore the self inductance. The
resistance depends on the wire’s length, and its cross-section. For now, we can assume
the cross-section to be constant. This means that the resistance depends mainly on the
length of the wire. The capacitance of a wire mainly depends on the surface area directly
facing the surface of wires of other nets (coupling capacitance) and ground (ground ca-
pacitance). We will make another simplification and assume that there are evenly spread
wires with some given density placed around our wires. This way, we can get an estimate
for the capacitance that mainly depends on the length, the spreading, and the width
and height of the wire. The latter three can be considered to be constant for now. So
the wire’s capacitance also mainly depends on its length.
Optimally, we would then model a wire by infinitesimally small segments of resistors

and at each node an infinitesimally small capacitor to ground. This is not feasible for
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Figure 1.8: A π model for a wiring segment with resistance R and capacitance C.

repeated computations. So, we instead approximate our wire by first cutting it into
segments of some fixed finite length. Let C be the capacitance of this segment, and R
be its resistance. Each of these wiring segments will be modeled by two nodes connected
by an edge. At each node, we insert a capacitor to ground with capacitance C

2
and

we connect the two nodes by a resistor with resistance R. This is called a π model
[Sap04, Chapter 3.2] and can be seen in figure 1.8. If we represent a whole net like
this, we call the representation an RC-tree. An example can be seen in figure 1.9b.
If we merge parallel capacitors and resistors in a row, we can make two observations
for the resulting RC-tree. First, each edge that is not incident to ground, belongs to a
resistor. Second, each node that is not incident to the power source is incident to exactly
one capacitor. This leads us to the definition of a canonical RC-tree, which will make
subsequent notation much easier.

Definition 1.2.1. Let N := {r} ∪ T be a net, A an arborescence that represents its
wiring, cap : E(A) ∪ T : R≥0 be the capacitance of the edges and sinks and res : E(A) ∪
{r} → R≥0 the resistance of the edges and the root.

We define the canonical RC-tree G for A by the following construction: Start with a
copy of A and add nodes n0 and npwr together with edges epwr = (n0, npwr) and (npwr , r).
Then add edges (v, n0) for v ∈ V (A). For each node v ∈ V (A) denote by ev the unique
incoming edge of v in G and by cv the edge from v to n0. Set d(epwr) to be the power source
and for v ∈ V (A) let d(ev) be a resistor with resistance Rv := res(ev) and let d(cv) be a

capacitor with capacitance Cv := cap(v) + cap(ev)
2

if v ∈ T and Cv :=
1
2
·∑e∈δA(v) cap(v)

otherwise.

1.2.3 Computing a Voltage Curve

As an example, let us numerically approximate the voltage curve at the sinks for a step
input to the wiring given in Figure 1.9a using the techniques from [Sap04, Chapters 2.2,
2.5]. We model the driver as a constant voltage source and a resistor. Furthermore, the
capacitance of the vias in our example is negligible, so we only model them as resistors.
We end up with the circuit diagram that is shown in Figure 1.9b. We create the canonical
RC-Tree G that is shown in Figure 1.9c. Setting X := V (G) \ {n0, npwr}, we end up
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(a) An example wiring for a small net.
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(b) The circuit diagram of an RC-tree modelling the
wiring in Figure 1.9a with a root resistance. Par-
allel capacitances with no separating resistor are
joined to a single capacitor. Via capacitance is
negligible, so we only model the resistance.
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(c) The canonical RC-tree for the
wiring in Figure 1.9a and the
graph model arising from the di-
agram in Figure 1.9b.

Figure 1.9: Example of a wiring, the circuit diagram belonging to its canonical RC-tree
and the canonical RC-tree.
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with the following set of equations, describing our system:

∑

e∈δ−(n)

I(e, t) =
∑

e∈δ+(n)

I(e, t) for n ∈ V (G) \ {n0} (KCL)

v(en, t) = π(p, t)− π(n, t) for (p, n) = en with n ∈ X

v(cn, t) = π(n, t) for (n, n0) = cn with n ∈ X (KVL)

π(npwr , t) = VDD (VDD)

v(en, t) = Rn · I(en, t) for n ∈ X (resistors)

I(cn, t) = Cn · v̇(en, t) for n ∈ X (capacitors)

Now we want to transform our system to reduce the number of variables and equations.
First, we will replace all voltages by the potentials using the KVL equations. This
changes the equations for the resistors and capacitors:

π(p, t)− π(n, t) = Rn · I(en, t) for en = (p, n) with n ∈ X (resistors)

I(cn, t) = Cn · π̇(n, t) for cn = (n, n0) with n ∈ X (capacitors)

The voltages do no longer occur in other equations than the KVL equations. So we can
remove the voltages and KVL equations from our system and compute the voltages on
demand, when we know the potentials. Next, we rewrite the resistor equations as

I(en, t) =
π(p, t)− π(n, t)

Rn

for en = (p, n) with n ∈ X.

We use this to replace all currents of edges belonging to resistors in the KCL equations.
Then, we remove the resistor equations and currents for edges belonging to resistors from
our system. We can again compute them on demand, when we know the potentials.
Finally, we need to deal with the differential equations for the capacitors. Let cn =

(n, n0) with n ∈ X. We want to approximate the solution using the forward Euler
method [Sap04, Chapter 2.5]. This method examines the Taylor expansion of π(n, t)
around some known point a

π(n, a+ h) =
∞∑

k=0

hk

k!

dkπ(n, t)

dtk

∣∣∣∣
a

.

The equation for our capacitor gives us the first derivative of π(n, t). So we truncate the
Taylor expansion after the first derivative to approximate the value at the point a + h
for some step h > 0:

π(n, a+ h) ≈ π(n, a) + hπ̇(n, a) = π(n, a) +
h

Cn

I(cn, a).

The right-hand side here is a constant that depends on the state of the system at a
previous point in time. This means that, if we know the values of the system at one
point in time, we can approximate its value at a small timestep in the future using this
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equation. We will choose a timestep h > 0 and set τk := k · h for k ∈ N, and replace the
equations for the capacitors at timestep k > 0 using the forward Euler method:

π(n, τk) = π(n, τk−1) +
h

Ci

I(cn, τk−1) for cn = (n, n0) with n ∈ X

Let us write the whole system of linear equations at time step k > 0:
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π(npwr , τk)
π(r, τk)
π(n1, τk)
π(t1, τk)
π(n2, τk)
π(n3, τk)
π(t2, τk)
I(epwr , τk)
I(cr, τk)
I(cn1

, τk)
I(ct1, τk)
I(cn2

, τk)
I(cn3

, τk)
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=




0
0
0
0
0
0
0
VDD

π(r, τk−1) +
h
Cr
I(cr, τk−1)

π(n1, τk−1) +
h

Cn1
I(cn1

, τk−1)

π(t1, τk−1) +
h
Ct1
I(ct1, τk−1)

π(n2, τk−1) +
h

Cn2
I(cn2

, τk−1)

π(n3, τk−1) +
h

Cn3
I(en3

, τk−1)

π(t2, τk−1) +
h
Ct2
I(et2, τk−1)




For this system, we do not even need to invert the matrix, as we can compute the
potentials directly from the previous values, then put them into the KCL equations and
compute the current values.
It remains to find an initial state. We assume that the system starts in the resting

state at time τ0. This means all voltages across the capacitors are 0. The corresponding
solution is π(npwr , τ0) = VDD and π(n, τ0) = 0 for all n ̸= npwr . Then I(epwr , τ0) =
I(cr, τ0) =

VDD

Rr
and I(e, τ0) = 0 for all other edges e.

Now, we insert values and simulate our system. The following values are realistic for
short uncritical nets that are driven by a small inverter. We assume a source resistance
of 3.1kΩ and a sink capacitance of 0.9fF for t1 and 1.2fF for t2. Furthermore, we
assume that a via has a resistance of 30Ω. Wires have a resistance per length of 0.15 Ω

nm

and a capacitance per length of 0.24 aF
nm

. VDD is at 1V . Then we choose a step length of
0.001ps to simulate our system until both sinks reach 0.93%VDD . The resulting curve
of t1 is depicted in figure 1.10. The techniques used here are a very simple version of
what is known as SPICE simulation [Nag75].

1.2.4 Computing Delay
Let us now take a look at the resulting waveform if we instead approximate a rising
voltage at the input by a piecewise linear function and run our simulation on that. The
result is shown in Figure 1.11.
We consider a node in our model to be carrying a logical 1 if the voltage is above 50%

of VDD and a 0 if the voltage is below that. Then we define the arrival time of a signal
at a node as the time, when 50%VDD is passed at that node. The delay from one node
to a subsequent node is the difference between their arrival times. It should be noted
that with this definition, the delay can actually be negative.
For a reasonably good approximation of the delay curves, we also need to know how

fast the voltage at a node is rising. This is captured by the slew, which is defined as
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Figure 1.10: The waveform at sink t1 of the net from Figure 1.9 for a step input.
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Figure 1.11: The waveform at t1 (black) for a piecewise linear input voltage (red).
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the time it takes for the voltage to rise from 10%VDD to 90%VDD on a rising flank or
reverse on a falling flank.
It should be noted here that, while these are common definitions of delay and slew,

the percentages in the definitions may vary depending on the work. For example the
slew is sometimes defined as the time it takes from 20%VDD to 80%VDD .
To approximate the delay for a step input, we will be using a technique called model

order reduction [Sap04, Chapter 3.5]. Suppose, we want to compute the waveform v(t),
which is equal to the potential curve π(t) (because we set π(n0) := 0) at some node n of
our model. The overall idea is to transform our system to the frequency-domain using a
Laplace transform. There, we will be able to write the transfer function of the potential
as a power series, which we can approximate by a Padé-approximant [Bak+96].
Let us first recall the Laplace transform in a very naive definition: For a function

f : R≥0 → R, we denote by Lf : C → C its Laplace transform

Lf(s) =
∫ ∞

0

f(t)e−stdt .

Then we speak of f being in the time domain and L f being in the frequency domain. It
should be noted that the Laplace transform does not necessarily exist for all functions
and all values s ∈ C. However, for the step response of an RC-tree everything works out
nicely, so we will assume that all functions are well-behaved.
The transfer function of our potential in the frequency domain is the ratio (in the

frequency domain) of the potential to the input waveform. If we are given a function
p : R≥0 → R≥0 that describes the waveform of our voltage source, then the transfer
function for our potential π(n, t) is a function f : R≥0 → R≥0 such that

L π(s) = L f(s) · L p(s).

We transform f to the frequency domain and denote F (s) := L f . Then we rewrite
F as a power series and approximate that by a using a [L/M ]-Padé-approximant for
natural numbers L ≥ 0 and M ≥ 1:
Replacing the exponential function in the definition of the Laplace transform using its

series characterization (which is equivalent to doing a Taylor expansion about s = 0),
we get

F (s) =

∫ ∞

0

f(t)e−stdt =

∫ ∞

0

f(t)
∞∑

i=0

(−1)i
siti

i!
dt =

∞∑

i=0

si · (−1)i

i!

∫ ∞

0

tif(t)dt .

We define the moments of f as

mi :=
(−1)i

i!

∫ ∞

0

tif(t)dt for i ∈ N.

Now, we want to find polynomials u of order L and q of order M with q(0) = 1, such

that the first N := L+M + 1 moments of F and u(s)
q(s)

are the same. This means that, if
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we write the power series q(s) · F (s) =:
∞∑
i=0

zis
i, we have

N∑

i=0

zis
i = u(s).

The function R(s) := u(s)
q(s)

is our [L/M ]-Padé-approximant. Let us now apply this scheme
to find a first delay model.

Elmore Delay

While Elmore [Elm48] arrived at his formula by a different path, the Elmore delay
[Elm48] can be derived from a first order-approximation to the unit step response. We
will mostly follow [Sap04, Chapters 3.4, 3.5].
Let H : R → R be the unit step. That is H(t) = 1 for t > 0 and H(t) = 0 for t ≤ 0.

Then we have

π(n, t) =

∫ t

0

π̇(n, τ)dτ =

∫ ∞

0

π̇(n, τ)H(t− τ)dτ = π̇(n, ·) ∗H(t)

and in particular L π = L[π̇ ∗ H] = L π̇ · LH. So our transfer function is the time
derivative of π with LH(s) = 1

s
. We start by computing the [0/1]-Padé-approximant,

setting p(s) := a0 and q(s) := 1 + b1s. By setting

m0 + (m1 + b1m0)s = a0

and matching the coefficients, we get the system

m0 = a0

m1 + b1m0 = 0

Solving it yields

R(s) =
p(s)

q(s)
=

m0

1− m1

m0
s
.

Now we normalize VDD to 1 to simplify the notation. We know that asymptotically,
each node must reach a voltage of 1. This means that we have the boundary condition
limt→∞ π(t) = 1. We use the final value theorem to compute

1 = lim
t→∞

π(t) = lim
s→0

sL π(s) = lim
s→0

s
1

s

∞∑

i=0

mis
i = m0.

So our approximation simplifies to

R(s) =
1

1−m1s
.
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We use this to reconstruct our approximated voltage in the frequency domain:

L π̃(s) = 1

s
R(s) =

1

s−m1s2
.

From this, we can retrieve our approximation to the voltage in the time domain.

π̃(t) = 1− e
t

m1 .

As we are interested in the delay and slew, we now find the value that t ∈ R≥0 has to
take for the voltage to be at value x ∈ [0, 1):

x = 1− e
t

m1 ⇐⇒ t = log(1− x)m1

So the delay is − ln(2)m1 and the slew is −(ln(10)− ln(10
9
))m1 = − ln(9)m1. This means

that the delay and slew to a node are essentially given by its negative first moment

−m1 =

∫ ∞

0

tπ̇(t)dt =

∫ ∞

0

t
d

dt
(π(t)−1)dt = t [π(t)− 1]∞0 −

∫ ∞

0

π(t)−1dt =

∫ ∞

0

1−π(t)dt .

Let us now go back to our equation system describing the RC-tree. At each node n that
is not incident to the power source, the potential of this node π(n) is described by the
differential equation of the capacitor Cn and the KCL equation with inserted resistor
equations. Denote by par(n) the unique predecessor of n. The equations at n are

I(cn, t) = Cnπ̇(n, t)

I(cn, t) =
1

Rn

(π(par(n), t)− 1− π(n, t) + 1) +
∑

(n,q)∈E(G)

1

Rq

(π(q, t)− 1− π(n, t) + 1)

Combining both equations for each node, the resulting system can be written as

R(Π(t)− 1) = −CΠ̇(t)

where C is the diagonal matrix containing all capacitances, R contains all the resistance
factors and Π is the vector of potentials for each node that is not incident to the power
source. We can leave npwr out, because we are considering the step input and hence
π(npwr)− 1 = 0.
For RC-trees R is invertible. We make use of this fact to rewrite

R(Π(t)− 1) = −CΠ̇(t) ⇐⇒ 1− Π(t) = R−1CΠ̇(t).

Now, we can use this and the fact that Π(0) = 0 and limt→0Π(t) = 1 to compute the
first moments of all nodes at once

−M1 =

∫ ∞

0

1− Π(t)dt =

∫ ∞

0

R−1CΠ̇(t)dt = R−1C1,
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where M1 is the vector of first moments. Since the resistor edges form a tree for an RC-
tree, we can give an explicit expression of the moments at each node, which is known as
the Elmore delay. Let downcap(n) be the sum of all downstream capacitances of node
n and Pn be the unique path from r to n in G. Then

m1(n) =
∑

q∈V (Pn)

Rp · downcap(q).

We can even define the Elmore delay directly for routed nets. If we are given an
arborescence A rooted at r and with leaves T that represents a routing of the net
{r} ∪ T with edge lengths l : E(A) → R≥ 0, a root resistance resroot , wire resistance per
length reswire , wire capacitance per length capwire and sink capacitances capt for t ∈ T ,
we can recursively define the downstream capacitance of each vertex v ∈ V (A) as

downcap(v) :=




capv, if v ∈ T∑
e=(v,w)∈δ−A (v)

downcap(w) + capwire ·l(e) otherwise.

And subsequently the delay to vertex v ∈ V (A) as

delay(v) := ln 2·


resroot · downcap(r) +

∑

e=(v,w)∈E(A[r,v])

reswire ·l(e)·
(
downcap(w) +

capwire ·l(e)
2

)
.

Asymptotic Waveform Evaluation

For more accurate timing results, we can use Asymptotic Waveform Evaluation (AWE)
[PR90]. It is a more general technique for model order reduction that includes the
Elmore delay as a special case. There are many numerical concerns that have to be
taken care of in order to practically apply it, but we will only review the basic technique
here, as described in [Sap04, Chapter 3.5].
Assume now a more general voltage source given by the function p : R≥0 → R≥0.

Similarly to the previous section, we can write our system of inequalities as

R(Π(t)− p(t)1) = −CΠ̇(t).

We want to transform this system to the frequency domain. The Laplace transform of
the RHS is given as

L[CΠ̇](s) =
∫ ∞

0

CΠ̇(t)e−stdt =
[
CΠ(t)e−st

]∞
0
−
∫ ∞

0

−sCΠ(t)e−stdt = sCLΠ(s).

So our system becomes

R(LΠ(s)− L p(s)1) = −sC LΠ(s) ⇐⇒ (R + sC)LΠ(s) = RL p(s)1.
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So if f is the transfer function for our power source and we set F := L f , we can instead
solve

(R + sC)F (s) = R1 = RL δ(s)1,
which corresponds to a system excited by the unit impulse δ(t) (, because L δ(s) = 1).
If we multiply the solution by L p, we retrieve a solution to our original system.
We replace F by its power series

(R + sC)
∞∑

i=0

Mis
i = R1

and match the powers to find that (for invertible R)

M0 = 1

RMi = −CMi−1 for i = 1, . . . ,∞.

In other words, we can compute the 0-th moment by M0 = 1 and then iteratively
compute the remaining moments for i ≥ 1 by Mi = −R−1CMi−1. We want to compute
a [q − 1/q]-Padé-approximant for F , where typically q ≤ 4. So we need to compute the
first 2q− 1 moments. To find the voltages at node n, let m0, . . . ,m2q−1 be its moments.
We want to find coefficients a0, . . . , aq−1 and b1, . . . , bq, such that

∑q−1
i=0 ais

i

1 +
∑q

i=1 bis
i
=

2q−1∑

i=0

mis
i,

which we can do by solving the linear system

q∑

i=1

mk−ibi = mk for k = q, . . . , 2q − 1

and then by inserting the values for the bi (for i = 1, . . . , q) to compute

ak = mk +
k∑

i=1

mk−ibi for k = 1, . . . , q − 1.

Finally, we can transform our approximant back to the time domain by applying the
inverse Laplace transform. This way, we retrieve the transfer function of the potential
at our node. The waveform is the convolution of the waveform at the source and the
transfer function.
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Gate Delay

To this point, we have always modeled gates by a resistor. However, most gates will
show nonlinear behaviour. The problem is that the fast delay computation methods we
have seen rely on the linearity of the systems. So the key to keeping a fast evaluation,
while improving the accuracy of the gate delay, is to separate the nonlinearities from
the linearities. As a first step, we will assume that for gates with more than one input,
only one of them is switching.
Then there are multiple methods to achieve the separation. The simplest and fastest

one is to neglect the effect of the wiring resistance on the gate delay [Sap04, Chapter
4.3]. Instead, we assume that only the input waveform or slew and the capacitance of
the wiring and sinks have an influence on the gate delay. This way, we can simulate the
behaviour of the gate at a set of sampling points using SPICE [Nag75]. Then we store
them in a table and approximate them by piecewise linear functions. To reduce the
memory overhead, the delay of a gate can be computed by a fitted curve. This improves
the accuracy significantly, in particular when the model resistance of the gate is large
compared to the wiring resistance. These approximations of the gate delay are usually
shipped with a library and are referred to as timing rules.
If the wiring resistance is larger, resistive shielding has to be taken into account [Sap04,

Chapter 4.4]. This describes the effect that the gate delay behaves as if it were driving a
lower capacitance, if the wiring resistance is high. The resistance is shielding away part
of the wiring (and sink) capacitance from the gate.
To take this effect into account, we approximate our wiring by a simple π-model

consisting of a capacitance Cnear close to the voltage source and a capacitance Cfar

further away from the voltage source, separated by some resistance R and driven by
an impulse voltage source. This can be achieved by computing the first three moments
of the current through an impulse voltage source applied to our original RC-tree and
matching them to the moments of the reduced model. A piecewise linear interpolation
can then be used to compute the gate delay for given input slew, R, Cnear and Cfar .
However, a 4-dimensional table is very memory consuming. Often another reduction

is applied to compute an effective capacitance Ceff from this simple π-model that can
be used with 2-dimensional lookup tables or fitted curves.
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1.2 Timing Analysis

Figure 1.12: An example for a small part of the coarse timing graph.

1.2.5 Timing Propagation
Now that we know how to compute the timing of a combinational stage, we can review
the timing properties of a chip. We stick to the notation and base our explanation on
the book “Chip Design” by Stephan Held and Jens Vygen [HV22].
We start by defining the coarse timing graph of a chip. It has a vertex for each pin.

Then it has edges from each input of a combinational gate to the gate’s outputs and for
each net, it has edges from all sources to all sinks of the net. A small part of a timing
graph is shown in Figure 1.12.

Definition 1.2.2. Let (C, P = Psource∪̇Psink , γ,N ) be the netlist of a chip. The coarse
timing graph is the graph Gcoarse = (V,E) with

• V = P and

• E = {(v, w) ∈ Psource × Psink | v, w ∈ N } ∪ (Net edges)

{(v, w) ∈ Psink × Psource | γ(v) = γ(w) = C ∈ C combinational } (Gate edges)

For most of the gates the flank of the waveform, that is whether we have a rising
or falling signal, also changes the delay through that gate. Gates, like inverters for
example, may also change a rising signal at the input to a falling signal at the output
or vice versa. We denote by Ψ := {rise, fall}2 the set of possible transitions. Then
we denote by Ψid := {(rise, rise), (fall , fall)} the set of identical transitions and by
Ψinv := {(rise, fall), (fall , rise)} the set of inverting transitions.

Definition 1.2.3. Let C be a gate of the chip implementing the logical function b :
{0, 1}k → {0, 1} for some k ∈ N. Let e ∈ E(Gcoarse) be a gate edge in the coarse timing
graph, belonging to the i− th input of C, for i ∈ [k]. We call u, v ∈ {0, 1}k an i-flipping
pair, if uj = vj for i ̸= j ∈ [k] and ui = 1− vj.

• The edge e is identical if there is an i-flipping pair u, v such that b(u) = ui and
b(v) = vi.

• The edge e is inverting if there is an i-flipping pair u, v such that b(u) = vi and
b(v) = ui.
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Note that an edge can have both properties at the same time.

Furthermore for different clock-phases, the arrival times or required arrival times may
change. So we encode this information in the fine timing graph.

Definition 1.2.4. Let Gcoarse be a coarse timing graph and Φ the set of available phases.
Let e ∈ E(Gcoarse) be an edge of the coarse timing graph. We denote by Ψe the set of
allowed transitions of e. If e is a net edge, we have Ψe := Ψid . If e is a gate edge, we
have Ψid ⊆ Ψe iff e is identical and Ψinv ⊆ Ψe iff e is inverting.
Then we define the fine timing graph Gfine as

• V (Gfine) = V (Gcoarse)× {rise, fall} × Φ and

• E(Gfine) =
{
((v, ψ, ϕ), (w,ψ′, ϕ)) | (v, w) ∈ E(Gcoarse), (ψ, ψ

′) ∈ Ψ(v,w), ϕ ∈ Φ
}

Assume that we are given a capacitance function for the nets cap : N → R≥0 and
two timing functions: One for the net edges of the coarse timing graph timingnet ,e :

R≥0 → R2
≥0 mapping an input slew to a delay and output slew and one for the gate

edges timinggate,e : R2
≥0×Ψe → R2

≥0 mapping a capacitance and an input slew for a
given transition to a delay and an output slew.
An example for such timing functions would be an effective capacitance computation

for cap, an AWE computation for timingnet ,e and a fitted curve for timinggate,e.
For a pin p ∈ P , denote by N(p) ∈ N the unique net that this pin belongs to.

Then we define a timing function timing : E(Gfine) × R≥0 → R2
≥0 mapping an edge

and input slew to a delay and output slew for the edges of the fine timing graph. For
e := ((v, ψ, ϕ), (w,ψ′, ϕ)) ∈ E(Gfine) with ê = (v, w) ∈ E(Gcoarse), we set

timing(e, s) :=

{
timingnet ,ê(s), if ê net edge,

timinggate,ê(cap(N(w)), s, (ψ, ψ′)), if ê gate edge.

Now we want to compute arrival times at : V (Gfine) → R≥0, slews slew : V (Gfine) →
R≥0 and required arrival times rat : V (Gfine) → R≥0 for the signals at each node in
the fine timing graph. For nodes without incoming edges (nodes belonging to primary
inputs and sources of memory elements), the arrival times and slews are given and for
nodes without outgoing edges (nodes belonging to primary outputs and sinks of memory
elements), the required arrival times are given. Then we will propagate these values
through the fine timing graph. However, for nodes with multiple incoming edges (nodes
belonging to sources of gates with multiple inputs) it is not obvious, how to define the
arrival time and slew.
Suppose we knew a constant that bounds the impact of a small slew change on the

delay through all edges. Then there is a way to merge the slews and arrival times, such
that the arrival times are upper bounds on the real arrival times.

Definition 1.2.5. Let ν ∈ R≥0. Let (a, s), (a′, s′) ∈ R2
≥0 be pairs of arrival times and

slews. We say that (a, s) ν-dominates (a′, s′) if

a− a′ ≥ νmax(0, s− s′).
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For a set S ⊂ R2
≥0 of arrival time-slew pairs, we define their ν-supremum as supν(S) :=

(â, ŝ), where

â := sup
(a,s)∈S

a and ŝ := sup
(a,s)∈S

[
s+

a− â

ν

]
.

So let us assume that we have a ν for a vertex v ∈ V (Gfine), such that the downstream
delay from v increases by at most νϵ, if we increase the slew by ϵ at v for any ϵ > 0. Then
picking an arrival time-slew pair at v that ν-dominates all incoming signals will lead to
higher arrival times downstream than any of the incoming arrival time-slew pairs.
Now we can define what it means to propagate the arrival times and slews through

the timing graph. Let νv for v ∈ V (Gfine) be constants that bound the total downstream
delay impact of a slew change at v. We traverse the nodes w ∈ V (Gfine) that have
incoming edges in topological order and set at(w) := a and slew(w) := s, where

(a, s) := supνv

{
(at(v), 0) + timing((v, w), slew(v)) | (v, w) ∈ δ−(w)

}
.

For the required arrival times, we then traverse the nodes v ∈ V (Gfine) that have outgoing
edges in reverse topological order and set

rat(v) := min
e=(v,w)∈δ+(v)

[rat(w)− de − νv ·max(0, se − slew(w))] ,

where (de, se) := timing((v, w), slew(v)), for e ∈ δ−(v).
Vygen [Vyg06] proved that indeed, we can find such constants νv, such that all arrival

times are upper bounds on the real arrival times.
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1.3 Path Search, Steiner Trees and Resource Sharing
In this section, we discuss the basic concepts and algorithms of combinatorial optimiza-
tion that the following work is based on. It does not aim at providing the full theory,
but rather tries to provide the ideas that are used later on. We will use the notation of
the book “Combinatorial Optimization” by Korte and Vygen [KV18].
We start by giving the basic ideas of shortest path searches. Here, we will focus on

Dijkstra’s algorithm [Dij59], which is the simplest version of a type of dynamic program
that we will see multiple times in this thesis.
Then we will state the Steiner tree problem and give basic properties of Steiner trees,

as well as some algorithms for the Steiner tree problem. We will also review some
variations of the Steiner tree problem that are important later on. Most formulations
of the buffering problem are generalizations of the Steiner tree problem. We will use
concepts from Steiner tree computation, as well as Steiner trees themselves.
Finally, we will discuss the resource sharing problem which can be solved with an

algorithm by Müller, Radke und Vygen [MRV11]. The problem of finding buffered routes
for each net, such that the timing constraints are met on each path and some density
constraints on the placement and routing are met can be formulated as a resource sharing
problem [Hel+17]. This leads to a Lagrangian relaxation formulation of the buffering
problem, which we also will consider later [Dab+23].

1.3.1 Path Search
Finding shortest paths is an essential subtask in many applications. In the shortest path
problem, we are given a directed graph G with edge costs c : E(G) → R and two vertices
s, t ∈ V (G). The task is to find an s-t-path P in G that minimizes the cost of the path
length(P ) :=

∑
e∈E(G) c(e).

This problem is NP-hard for arbitrary costs [KV18], but can be solved efficiently with
Dijktstra’s algorithm [Dij59] if the edge costs are nonnegative. During the algorithm,
we maintain a distance dist : V (G) → R≥0 to each vertex and a predecessor p : V (G) →
V (G) of each vertex. In the beginning each vertex is its own predecessor: p(v) = v
for v ∈ V (G). We initialize dist(s) := 0 and dist(v) := ∞ for v ∈ V (G) \ {s}. Then
we put all vertices v ∈ V (G) into a heap Q, with dist(v) as a key. Furthermore, we
keep a set of permanent vertices P that is empty in the beginning. While there are
vertices in Q, we extract the minimum vertex v from Q and add it to P . If v = t,
we are done. We reconstruct the path using the predecessor function and return it.
Otherwise, we check for all outgoing edges (v, w) = e ∈ δ−(v), with w not permanent, if
dist(v) + c(e) < dist(w). If this is the case, we set dist(w) := dist(v) + c(e) and store v
as the predecessor of w. Otherwise, we do nothing. If Q is empty and we did not find
t, we return that there is no s-t-path. The algorithm is written down as pseudocode in
Algorithm 1.

Theorem 1.3.1 (Dijkstra 1959 [Dij59],Fredman and Tarjan 1987 [FT87]). Dijkstra’s
algorithm is correct and can be implemented to run in O(m+ n log n).
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Algorithm 1: Dijktra’s algorithm. [Dij59]

Input : An instance (G, c, s, t) of the shortest path problem with nonnegative
edge cost.

Output: A shortest s-t-path in G if there is one, the information that there is
no s-t-path otherwise.

1 dist(s) := 0, dist(v) := ∞ for v ̸= s, p(v) := v for v ∈ V (G), P := ∅;
2 Create heap Q with V (G) as elements and dist as keys;
3 while Q ̸= ∅ do
4 Let v be the minimum element of Q;
5 Remove v from Q and add it to P ;
6 if v = t then
7 return Recursively reconstructed s-t-path;

8 for (v, w) = e ∈ E(G) with w /∈ P do
9 if dist(v) + c(e) < dist(w) then

10 p(w) := v;
11 dist(w) := dist(v) + c(e);
12 Decrease key of w in Q to dist(w);

13 return There is no s-t-path;

This is not the end of the story yet. While we are not able to reduce the running time
guarantee of Dijkstra’s algorithm in general, we can improve its practical running time.
The basic version of Dijktstra’s algorithm presented in Algorithm 1 first finds all vertices
that have a lower distance to s than t and only then it returns t. The idea to improving
the practical running time is to direct the search towards t [HNR68]. We achieve this
by changing the objective function in such a way that shortest paths remain shortest,
but their length decreases compared to non-shortest paths.

Definition 1.3.2. Let G be a directed graph with edge cost c : E(G) → R. A function
π : V (G) → R is a feasible potential, if

cπ(e) := π(w) + c(e)− π(v) ≥ 0 for each (v, w) = e ∈ E(G).

We call cπ the reduced cost of π.

Such a feasible potential exists if and only if the edge costs are conservative. Conser-
vative edge costs are costs such that each cycle has nonnegative total cost.
Let P be a s-t-path and π be a feasible potential. Then the reduced cost of this path,

∑

e∈E(P )

cπ(e) = π(t)− π(s) +
∑

e∈E(P )

c(e),

does not depend on the potential of the inner vertices of the path.
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As the cost of every s-t-path is shifted by the same constant, shortest paths remain
shortest and since the reduced costs are nonnegative, we can use Dijkstra’s algorithm
on an instance with reduced costs to find a shortest path.
Suppose now that π is the minimum distance from t to every vertex. Then the

distance from s to any vertex v with respect to the reduced costs is 0 if and only if v
lies on a shortest s-t-path. This is why Dijktstra’s algorithm potentially requires fewer
iterations. Of course computing this potential is as hard as computing the s-t-path,
but for nonnegative costs, a lower bound on the distances to t can be much easier to
compute, but still reduce the number of iterations significantly. In geometric settings,
often the geometric distance is used as such a lower bound.

1.3.2 Steiner Trees
The task of finding a route for a net with minimum amount of wiring is the search for a
minimum Steiner tree. Naturally, Steiner trees appear in almost every aspect of physical
design. We start with the minimum Steiner tree problem in graphs.
Apart from that there are many variants of the minimum Steiner tree problem, for

example the minimum Steiner tree problem in metric spaces. The rectilinear Steiner
tree problem, where the metric space is (R2, l1), is the most important special case for
VLSI design. We will later see that it can be reduced to the Steiner tree problem in
graphs. Most variants of the minimum Steiner tree problem, like the rectilinear version
[GJ77] and the version in graphs [Kar72], are NP-hard.

Steiner Trees in Graphs

We are given a connected graph G with nonnegative edge cost c : E(G) → R≥0 and a
subset of the vertices T ⊂ V (G), called terminals. The task is to find a tree S in G with
T ⊂ V (S) that minimizes the total cost

c(S) :=
∑

e∈E(S)

c(e).

A 2-approximation to the minimum Steiner tree problem in graphs [KMB81] can be
computed by first computing the metric closure of the terminals. Then we compute a
minimum spanning tree (MST) in the metric closure. Finally, we take the union of the
shortest paths belonging to the edges in the metric closure and remove cycles.
It is easy to verify that the resulting tree is a 2-approximation. The first observation

we need to make is that the resulting tree has cost at most that of a MST in the metric
closure. Now assume, we had a minimum Steiner tree. If we double all edges, the
resulting graph is Eulerian. We take an Eulerian tour through this graph. Let t1, . . . , tk
for k := |T | be the order, in which the terminals are visited for the first time. The path
between consecutive terminals in that order is at most as long as a shortest path and all
of them sum up to at most the cost of the Steiner tree with the doubled edges, which
is twice the cost of the minimum Steiner tree. The path in the metric closure of the
terminals visiting the terminals in the order of the tour is a spanning tree in the metric
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closure, so it costs at least as much as a minimum spanning tree in the metric closure.
Hence, the MST in the metric closure of the terminals can cost at most as much as twice
the cost of a minimum Steiner tree.
As a next step, we want to solve the minimum Steiner tree problem in graphs optimally.

This can be done with the Dijkstra-Steiner algorithm [HSV17], an extension to Dijkstra’s
algorithm. Similarly to Dijkstra’s algorithm, we can direct our search with an extension
to feasible potentials.

Definition 1.3.3 (Hougardy, Silvanus and Vygen 2017 [HSV17]). Let (G, c, T ) be an
instance of the minimum Steiner tree problem and r ∈ T . A function L : V (G)× 2T →
R≥0 is a valid lower bound to r, if L(r, {r}) = 0 and

L(v, I) ≤ L(w, I ′) + smt((I \ I ′) ∪ {v, w}),
for v, w ∈ V (G) and {r} ⊆ I ′ ⊆ I ⊆ T , where smt(J) denotes the cost of a minimum
Steiner tree in G for terminals J ⊂ V (G).

The algorithm proceeds similar to Dijkstra’s algorithm. We first choose a target
r ∈ R. Then we traverse the graph from the other terminals towards the target. Instead
of storing the distance from the source to each vertex, we store for each subset of the
non-target terminals I ⊆ T \ {r} and vertex v ∈ V (G) the minimum known length of a
Steiner tree for the terminal set I ∪ {v}. We call a pair (v, I) ⊂ V (G)× 2T a label. In
the beginning length(t, {t}) := 0 for each t ∈ T \ {r}. This time, the domain of length
has an exponential size, so we only store the values for labels that have been assigned a
finite value. Again, we store a set of permanent labels P that is empty in the beginning.
We store a set of non-permanent labels in a heap Q, that contains the labels (t, {t}) for
t ∈ T \ {r} in the beginning. Furthermore, we store a set of predecessor labels for each
label. We start off with p(t, {t}) := □ for t ∈ T \ {r}.
While Q is not empty, we pick a label l := (v, I) from Q that minimizes length(v, I)+

L(v, T \ I). We remove it from Q and add it to P . If l already belongs to a minimum
Steiner tree on T (so v = r and I = T \ {r}), we reconstruct the Steiner tree using our
predecessor function p. Otherwise, we check for each edge e = {v, w} ∈ E(G), if (w, I)
is already contained in P ∪Q. If not, or otherwise if length(v, I) + c(e) < length(w, I),
we update length(w, I) := length(v, I) + c(e) and set p(w, I) := {l}. Additionally, we
now try to merge the Steiner tree belonging to l with Steiner trees that belong to other
permanent labels at v and that are connecting terminal sets which are disjoint to I. For
each permanent label (v, J) ∈ P with J ∩ I = ∅, we check if (v, I ∪J) is not in Q yet, or
otherwise, if length(v, I) + length(v, J) < length(v, I ∪ J). If this is the case, we update
length(v, I ∪ J) := length(v, I) + length(v, J) and set p(v, I ∪ J) := {(v, I), (v, J)} to
store both labels as predecessors.
If Q is empty, there was no Steiner tree for T and we return this information instead.

The pseudocode of the algorithm is shown in Algorithm 2.

Theorem 1.3.4 (Hougardy, Silvanus and Vygen 2017 [HSV17]). The Dijkstra-Steiner
algorithm is correct and can be implemented to run in O(3kn+2k(n log n+m)+2knfL),
where n := |V (G)|, m := |E(G)|, k := |T | and fL is an upper bound on the time required
to evaluate L.
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Algorithm 2: The Dijkstra-Steiner algorithm. [HSV17]

Input : An instance (G, c, T ) of the minimum Steiner tree problem in graphs
with r ∈ T and a valid lower bound L to r.

Output: A minimum Steiner tree.

1 length(t, {t}) := 0 and p(t, {t}) := ∅ for t ∈ T \ {r};
2 P := ∅;
3 Insert (t, {t}) for t ∈ T \ {r} into Q;
4 while Q ̸= ∅ do
5 Take (v, I) ∈ Q minimizing length(v, I) + L(v, T \ I);
6 Remove (v, I) from Q and add it to P ;
7 if v = r and I = R \ {r} then
8 return Recursively reconstructed minimum Steiner tree;

9 for {v, w} = e ∈ E(G) with (w, I) /∈ P do
10 if (w, I) /∈ Q or length(v, I) + c(e) < length(w, I) then
11 p(w, I) := {(v, I)};
12 length(w, I) := length(v, I) + c(e);
13 Add (w, I) to Q, if it is not contained yet;

14 for (v, J) ∈ P with I and J disjoint do
15 if (v, I ∪ J) /∈ Q or length(v, I) + length(v, J) < length(v, I ∪ J) then
16 p(v, I ∪ J) := {(v, I), (v, J)};
17 length(v, I ∪ J) := length(v, I) + length(v, J);
18 Add (w, I ∪ J) to Q, if it is not contained yet;

19 return There is no Steiner tree;
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Rectilinear Steiner Trees

In the rectilinear Steiner tree problem, we are given a set of terminals T together with
positions p̄ : T → R2 of the terminals. Our goal is to find a tree S with T ⊂ V (S) and
positions p := V (S) → R2, with p(t) = p̄(t) for t ∈ T that minimizes

length(S) :=
∑

{v,w}∈E(S)

∥p(v)− p(w)∥l1 .

In this case a minimum spanning tree on the terminals (in the complete graph on the
terminals with edge cost given by the l1-distance between the endpoints) is even a 1.5-
approximation [Hwa76]. Furthermore, there are heuristics that solve almost all VLSI-
instances of Steiner trees within a few percent of optimality in practice. For optimum
solutions, there is a lookup table approach, which is very efficient for |T | ≤ 9 [CW07].
There is an optimal solver called GeoSteiner [Juh+18] that also solves most instances
with |T | ≤ 200 in reasonable time.

An idea that we will borrow from rectilinear Steiner trees is that the problem can be
reduced to the Steiner tree problem in graphs. This can be achieved with the Hanan
grid [Han66], which is a grid graph containing the terminals.

Definition 1.3.5. Let (T, p̄) be an instance of the rectilinear Steiner tree problem. Let
X := {p̄x(t)|t ∈ T} be the x-coordinates and Y := {p̄y(t) | t ∈ T} be the y-coordinates of
the terminals. We define the Hanan graph of (T, p̄) as H := (V (H), E(H)) with

V (G) := X × Y and

E(G) := {{(x, y), (x′, y′)} | exactly one of x = x′ or y = y′} .

We define the edge costs c : E(H) → R≥0 as c(e) = ∥v − w∥l1 for {v, w} = e ∈ E(H).
We call the instance (H, c, p̄(T )) of the Steiner tree problem in graphs the Hanan graph
instance of (T, p̄).

Let (H, c, p̄) be the Hanan graph instance for (T, p̄). Note that this instance might
have fewer terminals than |T |. Suppose, we have a Steiner tree SH for the graph instance.
Then we can construct a rectilinear Steiner tree S with the same total cost by adding T
to SH and adding the edges {t, p̄(t)} for t ∈ T . The positions are given by p(t) := p̄(t)
for t ∈ T and p((x, y)) := (x, y) for (x, y) ∈ SH .

Theorem 1.3.6 (Hanan 1966 [Han66]). Let (T, p̄) be an instance of the rectilinear
Steiner tree problem and (H, c, p̄(T )) be its Hanan graph instance. The optimum values
of both instances are equal.

This allows us to use the Dijkstra-Steiner algorithm to solve the rectilinear Steiner
tree problem.
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Linear Delay Steiner Arborescences

Steiner trees are often used as a starting point or an estimate for routing and buffering.
But in the basic form, timing properties of the Steiner trees are not part of the problem.
We want to use Steiner trees as a basis for decisions during buffering. To achieve this,

we need to estimate the delay after buffering. For long evenly spaced repeater chains,
the delay grows roughly linear in the distance to the root of the repeater tree. Each side
branch will also increase the delay on a path. These considerations lead to the following
model [Bar+10].
We are given a net N := {r} ∪ T with source r and sinks T , as well as positions

p̄ : N → R2. A Steiner arborescence for (N, p̄) is an arborescence A, rooted at r with
leaves T together with positions p : V (A) → R2 such that p(t) = p̄(t) for t ∈ N and

• r has outdegree 1 and

• each Steiner vertex v ∈ V (A) \N has outdegree 2.

Now we can define a linear delay model for a Steiner arborescence A, p. We are
additionally given a delay per length w ∈ R>0 and a branch delay b ≥ 0. Then the
linear delay to the vertices v ∈ V (A) is defined as

delayA,p(v) := b · (|V (A[r,v])| − 2) + w ·
∑

(v,w)∈E(A[r,v])

∥p(v)− p(w)∥l1 .

This way, we have a measure for the delay that includes the distance in the tree from
the root to each vertex and also the number of branches on a path.
In the delay-bounded Steiner arborescence problem (DBSA), we are given a net N :=

{r}∪̇T , with root r and sinks T , positions p̄ : N → R2, a wire delay w > 0, branch
delay b ≥ 0 and required arrival times rat : T → R≥0. Our goal is to find a Steiner
arborescence A, p minimizing

length(A, p) :=
∑

(v,w)∈E(A)

∥p(v)− p(w)∥l1 ,

such that the worst slack is nonnegative

wsl(A, p) := min
t∈T

[
rat(t)− delayA,p(t)

]
.

There is no constant factor approximation algorithm for the DBSA problem, unless
P = NP [HR13]. So finding a good DBSA is hard.
For checking feasibility of an instance, we can find a Steiner arbeorescence that max-

imizes the worst slack by using Huffman coding [Huf52] [HR13]. We first build up the
arborescence A. In the beginning, we add N to A. We always maintain a set of active
vertices H and a slack bound σ : H → R for the active vertices. We initialize H := T
and set the slack bound

σ(t) := rat(t)− ∥p(t)− p(r)∥l1 for t ∈ T.
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While |H| ≥ 2, we pick the two vertices s1, s2 from H with maximum slack bound.
We add a vertex v to A with edges (v, s1) and (v, s2). Then we add v to H and set
σ(v) := min{σ(s1), σ(s2)} − b. Finally, we remove s1 and s2 from H.
When |H| = 1, let {s} := H. We add the edge (r, s) to A and set p(t) := p̄(t) for

t ∈ N and p(v) := p̄(r) for v ∈ V (A) \N . Then we return the Steiner arborescence A, p.
If we are willing to accept a small violation of the required arrival times, we can

find good solutions. There is a bicriteria approximation algorithm by Held and Rotter
[HR13] that starts with a rectilinear Steiner tree S for N and finds for ϵ > 0 a Steiner
arborescence A, p with delayA,p(t) ≤ (1 + ϵ) · rat(t) + 2b for t ∈ T that has cost at most(
1 + 2

ϵ

)
· length(S) + 4b|N |

ϵ
.

For a given Steiner arborescence A without positions, Held and Rockel-Wolff [HR18]
presented a Min-Cost-Flow formulation that can be used to find positions p in time
O(|T |2 log |T |) such that the delay bounds are met and the length is minimized, if such
positions exist. This can be used in a branch-and-bound approach to find a minimum
length DBSA.
For many applications it is also interesting to look at the Lagrangian relaxation version

of this problem. Instead of required arrival times, we are given delay weights λt ∈ R≥0

for t ∈ T and look for a Steiner arborescence A, p that minimizes netlength plus the
weighted sum of delays

length(A, p) +
∑

t∈T
λt delayA,p(t).

For this problem, the bicriteria approximation algorithm, with well-chosen ϵ, serves as a
constant factor approximation [Rot17]. The Minimum-Cost-Flow formulation can also
be adapted to find optimum positions for a given arborescence in this case. So we can
again use a branch-and-bound algorithm to solve this problem optimally (in exponential
worst case running time).

1.3.3 Resource Sharing
For many of the problems we encounter in VLSI design, it is already NP-hard to find
solutions to single instances, like a minimum Steiner tree as a route for a net. Addi-
tionally, the solutions of single instances are typically not independent. Two wires can
not occupy the same space and the timing properties of a net influence the timing re-
quirements downstream and upstream of that net. Even if we had a Steiner tree oracle,
packing Steiner trees is still NP-hard [Kar72] (even in grid graphs [KV84]).
One approach to overcome this obstacle in practice is to use Lagrangian relaxation for-

mulations and move the constraints into the objective function. For timing constrained
routing and buffering, it can be shown that we can formulate the problem as a resource
sharing problem [Dab+23].
In the Min-Max resource sharing problem, we are given a finite set of resources R and

customers N , as well as an approximation factor σ ≥ 1. For each customer C ∈ N , we
have a compact set of feasible solutions BC ⊆ RR

≥0 and an oracle function fC : RR
≥0 → BC

that maps a price vector p ∈ RR
≥0 to a solution with pTfC(p) ≤ σ infb∈BC

pT b.

41



1 Preliminaries

Our goal is to find for each C ∈ N a bC such that the bC minimize

max
r∈R

∑

C∈N
(bc)r.

Since we will only consider an approximation algorithm to the resource sharing prob-
lem, we can drop the compactness constraint for the solution sets. We can find a σ(1+ω)-
approximation for ω > 0 using an algorithm by Müller, Radke and Vygen [MRV11]. Its
running time has been improved by Blankenburg [Bla22] to O(θ log |R|(|N |+ |R|)ω−2),
where θ denotes the time needed for an oracle call.
Now let us give an overview over different objectives that we might want to optimize

during buffering and routing and how to incorporate them in a resource sharing problem.
We will only give the core ideas. In practice a lot of work is spent to accurately model
all important aspects of the objectives.
Routing and placement have the simplest models. They provide a polynomial number

of fixed constraints. For routing, the edges of the global routing graph are the resources.
We assign as capacity to an edge half the area of each tile it belongs to. The area
consumed by blockages is considered as fixed usage. Each net is a customer, using the
area that is blocked by its wires. That is, the wires width and spacing and possibly
some estimate of the additional blocked area that is required to obey all design rules.
Similarly, for placement, some tiling of the placement area serves as resources and the
placement area of each tile is used as a capacity. Blocked placement area is considered as
constant usage. For our purposes, we also consider the non-buffering gates as blockages.
The nets are the customers and use the area that is blocked by repeaters in the tiles
the repeaters are placed in. To arrive at a suitable formulation for the resource sharing
problem, we divide the usages by the capacities.
Power and netlength are both objectives that we want to minimize. For them, we

use an estimate for the final values as a budget. The main problem is to find a budget
that is as low as possible, but achievable. Then we divide the usages by the budgets
[Dab+23].
Timing is more complicated, because the timing on each path is relevant. The natural

formulation is to have a resource for each path from primary input to primary output
in the fine timing graph. The difference between required arrival time at its endpoint
and arrival time at its start is its capacity. Each edge in the timing graph is a customer,
using its delay on paths that it is contained in. However, there are exponentially many
of these paths. So this is not feasible. Instead, arrival time customers can be used.
They are a method, proposed by Held et al. [Hel+17] that allows us to define a timing
resource for each edge in the fine timing graph. With these resources, the cycle time is
met, if and only if the timing resource usage of each edge is at most 1.
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The buffering problem in its basic formulation in 1.1.5 is too vague to produce good
results in practice and has search space that is too large to be tractable.1

This is why many different formulations have been proposed, ranging from buffering
a given planar Steiner tree to models on given routes or on grids. They incorporate
different objectives and respect different constraints.
The purpose of this chapter is to discuss different formulations and their drawbacks

and present a flexible model framework for buffering based on [Rot17] and [Roc18] that
is tractable, but allows a wide variety of objectives to be incorporated.
The most important questions, that a formulation of the buffering problem needs to

answer, are the following. How do we model the placement and routing space? How
do we model the shapes and connection of repeaters? How do we model the timing, in
particular, how accurate can we make the timing model? Which additional objectives
do we want to cover?
We will start by reviewing the literature on buffering problems. Then we will summa-

rize different possibilities to answer the above questions. Finally, we present the model
framework that we are proposing.

2.1 Previous work
Buffering started out as a process to reduce the load on gates with high fanout, because
gate delay was the limiting factor. This is, why it is often referred to as the fanout
reduction problem or the fanout tree problem in the older literature [BCD89][Tou90].
With ever decreasing feature sizes, the influence of wire resistance became more rel-

evant and buffering became more important and more complicated. With this change,
buffering algorithms became more and more sophisticated. Probably the most impor-
tant work in the field is the dynamic program by van Ginneken [Van90], which is the
basis of many other algorithms. In its first version, it was only able to handle a library
with a single buffer. It inserts buffers into a given 2D-route such that the Elmore delay
is minimized in time O(n2), where n is the number of possible buffer positions on that

1For Elmore delay, and arbitrary repeater positions, we do not know if it is in NP. The obvious
encoding of a solution by the repeater positions may contain square roots. Thus, a checking oracle
would have to answer the question if a sum of square roots is below a given number.
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route. This version of the buffering problem, where the route is fixed and we try to
insert repeaters, is often referred to as the buffer insertion problem.
Van Ginneken’s dynamic program was extended by Lillis et al. [LCL96a] to consider

a larger library L that may also contain inverters in O(|L|2n2). Their algorithm is also
able to consider wire sizing. Alpert and Devgan [AD97] presented a way to subdivide
long edges of the route for good timing properties.
Later on Shi and Li [SL05] were able to reduce the running time of the dynamic pro-

gram to O(|L|2n log n) by a clever candidate tree data structure. They also introduced
the idea of pruning dominated candidates. Li et al. [LZS12] were able to reduce the
running time even further to O(|L|2n+ |L||T |n).
Since the Elmore delay does not consider resistive shielding and hence may lead to

excessive use of buffers, Alpert et al. [ADQ99] combined van Ginneken’s algorithm with
a bottom up moment and Ceff computation to allow for AWE-computations. Gao and
Wong [GW01] extended this idea even further by presenting a technique for single sink
nets that allows to use SPICE simulation in the algorithm.
The buffer insertion problem for minimizing slack, required arrival time or delay allows

for these optimal polynomial time algorithms. The cost based variant on the other hand,
where we want to insert buffers, minimizing a cost function, like power, subject to delay
constraints, is NP-complete [SLA04].
For the cost based variant, a pseudo-polynomial algorithm was given in [LCL96a] and

a FPTAS, minimizing simple costs per buffer was developed by Hu et al. [HLA09].
The FPTAS was then extended by Romen [Rom15] to 3D-routes and more general cost
functions, which allowed him to incorporate routing costs as well. Furthermore, Permin
[Per16] gave a bicriteria-approximation algorithm that is also able to include slew limits.
The work that we considered so far only inserts repeaters into a given route. Comput-

ing good interconnect wiring with respect to timing also became more important with
the rising wire resistance. Boese et al. [Boe+94] showed that finding Steiner trees that
minimize the maximum Elmore delay or the sum of Elmore delays to the sinks is already
NP-hard. They were able to show that there are instances of the min-max problem such
that the Hanan grid does not contain an optimal solution. However, they were also able
to show that the Hanan grid does always contain an optimal solution to the sum-version
and gave an optimal algorithm for this version. Lillis et al. [Lil+96] provided the P-tree
algorithm that computes a route minimizing the maximum Elmore delay for a subset of
the topologies that arises from a fixed permutation of the sinks. Scheifele [Sch17] gave
an approximation algorithm for both variants that has been improved by Glubrecht
[Glu23]. For the slack minimization variant, a heuristic has been proposed by Lin et al.
[LCL11] that also takes blockages into account.
Of course computing a route and buffering are not independent of each other, so per-

forming the tasks one after the other does limit the solution space. Multiple approaches
for achieving a combination of both have been explored. We will split these algorithms
into four categories.
We start with those that fix the topology, and perform routing and buffering at the

same time. For paths, Zhou et al. [Zho+99] gave an algorithm that is able to consider
blockages, congestion costs and perform layer assignment. Hu et al. [Hu+03] gave an
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extension to van Ginneken’s algorithm that is able to adapt the routing to blockage
positions in a 2D route without incorporating all blockage corners into a Hanan grid.
An algorithm that works in a global routing graph and is also able to avoid blockages,
consider placement costs and incorporate slew limits has been presented by Natura
[Nat17].
Next, we consider algorithms that heuristically build up the topology. Okamoto and

Cong [OC96] presented a heuristic that tries to maximize the slack by using the A-tree
algorithm for Steiner trees as a basis and simultaneously inserting buffers for a library
consisting of only one buffer.
Starting from a given 2D route computed with a linear delay model, the heuristic

by Bartoschek et al. [Bar+09] allows changes to the topology by inserting two parallel
wires and merging at later nodes. Furthermore, it dynamically computes buffer positions
based on optimal buffer distances on a long wire and it allows more accurate delay models
than Elmore delay. It has been extended to work on 3D-routes [Rom15] and with a more
sophisticated cost function [Rot17].
Then there are algorithms which explore a restricted subspace of the topologies. Lillis

et al. [LCL96b] used their P-tree algorithm in combination with a simultaneous buffer
insertion dynamic program to minimize cost subject to delay constraints, exploring the
topologies with fixed permutation. Salek et al. [SLP98] gave an algorithm that explores
the space of LT-trees (of type I) [Tou90] for a fixed permutation, where a buffer is placed
at each vertex and the wiring of each stage is a P-tree. LT-trees are trees, where each
vertex must have at least two children and at most one child may be an inner vertex.
Then they used local changes of the permutation to iteratively improve the solution in
[SLP99].
Finally, there are algorithms that explore all topologies as well. The algorithm of

Cong and Yuan [CY00] constructs a tree, maximizing the required arrival time for Elmore
delay. Their algorithm is meant to work with fixed sets of buffer locations, where a yes/no
decision can be made for placing the buffer. They always pick the subtree maximizing
the required arrival time, and extend it by an edge and directly merge with all other
solutions at that vertex. Hrkić and Lillis [HL02] iteratively extend all trees connecting
a given sink set by all buffered paths to the vertices in the grid graph, pruning those
labels that can be proved to be redundant by an estimate of the upstream delay. Then
they merge these extended subtrees to subtrees spanning more sinks.
Rockel-Wolff [Roc18] then presented an algorithm based on the Dijkstra-Steiner al-

gorithm that combines the advantages of both algorithms. It proceeds in a Dijkstra
like order and introduces a lower bound function that can be used to guide the search.
Furthermore, it extends the delay model to also incorporate a discrete slew function and
it is able to work in general graphs and perform layer and wire assignment.
All these algorithms only work on single instances. But on a chip, the instances are

not really separate from each other, but rather compete for the same resources. Thus,
it is important to also take a global view on buffering. This has been done by Lin and
Marek-Sadovska [LM91] for the fanout problem. They partition all cells into critical and
uncritical and then insert buffer trees into the fanout of the critical cells. As a recovering
step, they then remove buffers from uncritical fanouts, as long as no timing constraints
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are violated. Hu et al. [Hu+18] tackle this problem via a new metric, the pFOM, which
is the p-norm of the deviation from a slack target. It generalizes the total negative slack.
They also provide a variant of the van Ginneken algorithm that optimizes pFOM.
While these two approaches heuristically incorporate global competition for the re-

sources, BonnRouteBuffer, which was first presented by Rotter [Rot17] is a tool that
uses a resource sharing formulation as a basis for buffering. In theory, it can use any
of the above algorithms that allow minimizing a cost function incorporating placement,
routing and timing costs. In practice, it first computes a 2D topology, then computes
a global route with the same topology for a linear timing model and finally uses an
improved version of the algorithm from [Bar+09] and [Rom15] to compute a buffering
based on this. For hard cases, it instead uses the routing and buffering oracle from
[Nat17]. Its practical implementation has been improved to be competitive to industrial
tools by Daboul [Dab21]. The overall approach is captured in [Dab+23].

2.2 Search Space
Before we present our model framework, we want to take a look at the search space.
Recall the notion of a repeater tree and buffered route from 1.1.1. Our goal is to find such
a buffered route for each net, such that all timing, placement and routing constraints are
met, and the power consumption is as small as possible. This task includes selecting the
topology, finding repeater positions and the nets they belong to, selecting the repeaters
computing all the routes. The search space is too large to be able to find a solution for
each net in reasonable running time.
This is why we and all the works we have cited in the previous section, will restrict

the search space. This section will show options for restrictions of the search space and
give some motivation why we are choosing the ones we use.

2.2.1 Routing, Placement and Repeaters
For very simple timing models and no repeaters, like a linear timing model ([HR18],
[HR13]) or the Elmore delay ([Boe+94]), the routing space (placement is not necessary
in this case) is often modelled by the rectilinear plane. If we have repeaters, then
the placement grid gives us a discrete set of possible repeater positions. A natural
representation for possible wiring between these positions are edges. So we end up with
a graph as our representation of the routing and placement space. By adding or removing
positions or edges, we can scale the accuracy with which we represent our search space.
Graph based models usually assume that the repeaters are points, in the sense that

x- and y- coordinates of the repeater, and both the input and output pins are the same.
We will call this type of repeater model point repeaters.
All the graph models we are covering assign x/y-coordinates to each vertex. Based on

this, we will define a graph model.

Definition 2.2.1. A graph model is a graph G together with positions p : V (G) → R2,
such that p(v) and p(w) differ in at most one coordinate if (v, w) ∈ E(G).
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The base B(G, p) of a graph model (G, p) is the graph that arises from G by contracting
all sets of vertices S ⊆ V (G) with p(v) = p(w) for each pair v, w ∈ S and then removing
duplicate edges.
A graph model (G, p) is called flat if B(G, p) = G.

If a model is flat, that does not mean that it can not model different layers. A typical
strategy is to assign a pair of x- and y-layers. But we can also model the layers directly.

Definition 2.2.2. A layered graph model is a graph model (G, p) together with a layer
for each vertex layer : V (G) → [zmax ].

An easy way of creating a layered graph model is to start with its base. Then, we
copy the vertices of the base for each layer and add edges. If we want to adhere to the
preferred directions of the layers, the edges in x-direction of the base would be added
on the layers with preferred x-direction and the edges in y-direction on the layers with
preferred y-direction. We may leave out blocked edges, or add a penalty in an objective
function if they are used. Additionally, edges between two copies of the same vertex on
subsequent layers are added to model vias.
Models that have a grid graph as a base are very common ([Hu+03], [CY00], [HL02],

[Roc18], [Dab+23]). An example is the global routing graph, or a Hanan graph like the
one presented in Chapter 4.2. Simpler models use a Steiner tree or a linear delay Steiner
arborescence as a base, possibly with subdivisions on long edges ([Van90], [Bar+09]).
All these models are used both in a flat or in a layered variant. Some algorithms also
use a global or even detailed route as a base, again with subdivisions on long edges.
In a graph model, there are two ways to model repeaters. We can model a repeater as

an attribute to vertices or we can model it as an edge. For flat models, it is usually enough
to model repeaters as attributes at vertices. For layered models however, modelling
repeaters as edges has the advantage that the repeater-edge can connect the layer of
the input pin to the layer of the output pin of the repeater. This way, we are able to
accurately model that we may have to use vias to connect to the pins of the repeater
and that they may not lie on the same layer. In flat models with repeaters as attributes
and layers chosen per net, we can make up for that by including the layer-changes in
the objective, when adding a repeater. In layered models, we can do the same, but we
will have trouble modelling a layer-change at a repeater correctly.
We can also model repeaters by edges in flat models. Using a repeater edge corresponds

to placing the repeater somewhere on that edge in this case. This has the advantage
that it does not restrict repeater placement to positions at vertices. Transferring this to
layered models is possible, but if we want to model layer changes accurately, we would
have to add the cross product of layer changes and repeaters as edges. Furthermore,
for these models that allow a continuous placement of the repeaters, we need to make
sure that our objective function is convex in these positions, or at least has a unique
minimum. Otherwise, it is hard to find the global optimum.
For the placement, it is sufficient to look at the base of the graph model. We can

require the repeaters to fit at exactly the position that they are placed at. This may
be too restrictive in cases, where the graph does not contain every possible placement
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position. So we can require the repeater to exactly fit at a position that is close to the
position that we place it on, or we can use a density based approach. A density based
approach can either check if the repeater fits into a placement tile, or in a resource
sharing formulation, can include the placement cost of the repeater into the objective.
Finally, we need to take a closer look at solutions of the buffering problem in a graph

model. For a buffering problem on a net N := {r}∪T in a graph model (G, p) with a set
of vertex attributes XV and edge attributes XE, a solution consists of an arborescence
A, with an embedding κ : A→ G of A into G and maps b : V (A) → XV and w : E(A) →
XE.

Definition 2.2.3. Let A be an arborescence. Let A be the graph that arises from A by
replacing each maximal path such that all its inner vertices are of degree 2 by an edge.
We call A the topology of A.

Some models, in particular those that are based on a route or Steiner tree also restrict
the topology. Either to a single topology, or a class of topologies.

2.2.2 Objectives
The reason why we are inserting repeaters is that we want to improve timing properties
of our interconnect. However, repeaters also consume additional resources, like place-
ment space and power. This is why in the literature different types of objectives have
been considered, with more and more aspects being taken into account. Examples of
objectives that have been considered, range from the maximum slack in Elmore delay
in [Van90]

max
A buffered route

min
t∈T

rat(t)− delayElmore,A(r, t)− delay(r, downcap(r))

to the minimization of a weighted sum of delay costs, routing congestion costs, power
consumption costs and placement density costs in a Lagrangian relaxation formulation
in [Dab+23]

min
A buffered route

∑

t∈T
λt ·

[
delayRC,A(r, t) + delay(r, downcap(r))

]

+
∑

v∈V (A)\T

∑

e∈Rv

λe · length(e)

+
∑

v∈V (A)
b(a)̸=□

λpower power(b(a)) + λbin(v)
area(b(v))

area(bin(v))
.

Here the λ-values are the factors from the Lagrangian relaxation, Rv denotes the route
with source v ∈ V (A) \ T and bin(v) refers to the placement bin of v.
We will now take a look on how these objectives can be included in a model of the

buffering problem.
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Timing

For timing models, the main question is, how accurate we can make it and still have an
algorithm with practical running times. In general, the more accurate, the longer the
timing evaluation takes.
We split our timing models into two categories. Stage based models are models that

require to time a whole stage (see Chapter 1.2), or at least consider the whole wiring
to compute the delay. An example would be AWE. Piece wise models can compute the
delay segment by segment.
For the stage based models there is not a lot to discuss. They are more accurate, but

much slower, since we have to evaluate the timing for a whole net or even a complete
subsolution each time we want to know timing values.
Piece wise models comprise linear delay models and the Elmore delay, as well as

extensions of it. They can be computed by traversing the solution in reverse topological
order. We will use the more accurate Elmore delay. There, we only need to know the
downstream capacitance at each vertex. Hence, it can easily be used in a dynamic
program. A major deficiency is that it does not consider input slews. Furthermore, it
may be too pessimistic in many cases, such that we insert too many repeaters. This can
degrade other objectives, like power and placement or routing congestion.
To mitigate these problems we augment it by a slew computation for wires. Further-

more, we use timing rules that are given as input to approximate the gate delay, like
we described in Chapter 1.2.4. We use the simple variant that ignores the effect of the
wiring resistance instead of Ceff computations, because they require knowledge of the
upstream net.
Timing rules come with ranges for slews and downstream capacitances, in which the

behaviour is modeled accurately. Gates may also show unwanted behaviour outside these
ranges. Values outside these ranges are treated as timing violations and we can assume
the presence of upper bounds. Sometimes, constraints like slew- or capacitance- limits
are relaxed a bit, such that we are able to find a solution for infeasible instances. In this
case violations of the original constraints are moved into the objective.
A problem with using slew in this kind of model is that we have to know the slew at

the inputs of the segments. This can be dealt with by restricting slew and capacitance
to ranges, where the slew function is invertible. Then we can compute the slew from the
output to the input.
Additionally, we assume that there is a lower bound on the delay through a repeater.

This is the case in practice, because repeaters always have at least a small output wiring
segment that has to be charged.
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These considerations lead to the definition of an RC-timing model that we will be
using as input:

Definition 2.2.4. Given a graph model G with a library L and a net N := {r}∪T , a RC-
timing model on (G,L,N) is a tuple (delay , cap, slew , caplim, S, sr, (St)t∈T ), consisting
of

• a delay function delay : E(G) ∪ L × R{c,s}
≥0 → R≥0, computing for each (routing)

edge or repeater a ∈ E(G)∪L the delay delay(a, c, s) through a for the downstream
capacitance c ∈ R≥0 and the input slew s ∈ R≥0, such that

– delay is nondecreasing in c and s and

– each repeater b ∈ L has a base delay Cb > 0 such that delay(b, ·, ·) ≥ Cb,

• a capacitance function cap : E(G) ∪ L→ R≥0, mapping each edge e ∈ E(G) to its
capacitance and each repeater b ∈ L to its input pin capacitance,

• a slew function slew : E(G)∪L×R{c,s}
≥0 → R≥0, computing for each edge or repeater

a ∈ E(G) ∪ L the output slew slew(a, c, s) of a if the downstream capacitance is
c ∈ R≥0 and the input slew is s ∈ R≥0, such that

– slew(a, c, ·) is strictly increasing and continuous for all c ∈ R≥0,

– slew(a, ·, s) is nondecreasing for all s ∈ R≥0,

• a capacitance limit caplim : {r} ∪ L → R≥0 mapping the root r and each repeater
in L to an upper bound on the capacitance they can drive,

• an upper bound on the allowed slews S ∈ R≥0,

• an output slew function sr : R≥0 → R≥0 for the source, computing the output
slew of the source sr(c) for a given downstream capacitance c ∈ R≥0 that is also
nondecreasing,

• an upper bound St > 0 on the slew at each sink t ∈ T

Other Objectives

Apart from timing, we might want to model some other objectives. The most common
objective is power. Power consumption depends on the repeaters we are using and the
netlength. Static consumption may be modeled as a constant, while dynamic power
consumption may depend on the wiring driven by the repeater. In both cases, we can
include it in the repeater cost.
Routing resources like netlength or usage of global routing edges have a limited mean-

ing in graph models that are based on routes or Steiner trees, in particular if the topology
is fixed. There, we may restrict to a penalty for the layers and wire widths we are using.
For grid graph based models, in particular for the global routing graph, it makes more
sense to add the netlength or edge prices into our objective.
Of course, we can also add placement costs or area consumption into our objective

cost. This can again be modeled as part of the repeater cost.
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Figure 2.1: A mapped arborescence on the left in the graph that we will construct in
Section 2.3.2 on the right. Repeater edges are orange and wiring edges are
black, the mapping is shown with dashed edges.

2.3 New Framework
In this section, we present the basic framework for solving buffering problems that we
are proposing. The high level idea of our framework is to reduce formulations with a
wide variety of objective functions and graph models to a search for an arborescence
with a mapping into a graph. It is centered around an abstract combinatorial problem
that we call Timing-Driven Min-Cost Mapped Arborescence Problem or TMCMAP in
short. A mapped arborescence is defined as follows.

Definition 2.3.1. For a directed graph H and a net {r} ∪ T ⊂ V (H), a mapped
arborescence, is an Arborescence A, together with a mapping κ of A into H that identifies
r with the root of A and the leaves with T . Formally, κ : V (A)∪E(A) → V (H)∪E(H),
with κ(V (A)) ⊆ V (H) and κ(E(A)) ⊆ E(H) and for each (v, w) ∈ E(A), we have
κ((v, w)) ∈ E(H) that starts in κ(v) and ends in κ(w). Note that we allow to map
to vertices and edges multiple times, except for the root and leaves, which are mapped
exactly to the source r and sinks T .

An example of a mapped arborescence in the practical setting of Section 2.3.2 can be
seen in Figure 2.1. Separating the arborescence and the graph and relating them with
a mapping will allow us to represent both wires (black) and repeaters (orange) as edges
in our graph.
The exact formulation of the TMCMAP will be given in Subsection 2.3.1. It is quite

complex, but we can solve it optimally and it is very flexible. This allows us to capture
almost all of the aspects of buffering that we have considered so far.
It is an extension of the models presented in ([Rot17], [Dab+23], [Roc18]). The idea

of turning a buffering problem into a search for a mapped arborescence was used in
[Rot17] and [Dab+23]. This formulation requires to explicitly consider polarities during
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the search. It is able to minimize a cost function that takes the form of a weighted
sum and only propagates slew limits to avoid slew violations. Furthermore, it requires a
topology to be given. We use some ideas from [Roc18]. There, polarities are no longer
modeled explicitly, but moved into the graph. The algorithm is able to enumerate all
topologies and minimizes either a weighted sum of delays or the maximum delay. It uses
slews in the delay functions, but requires the slew to be discrete. This turns out to be
a severe restriction in practice.
In our framework, we will be able to use continuous slews with mild but realistic

assumptions on the slew. We split the objective into a multidimensional objective space
that represents the different subobjectives with an objective function that gives us values
in this objective space and an evaluation operator that gives us the single value that is
to be minimized. This objective function and evaluation operator capture the essence
of the different objective functions. This way, we are able to minimize all kinds of
combinations of weighted sums and weighted maxima. An example objective function
is the maximum delay plus weighted power. Another one is a weighted sum objective
from a Lagrangian relaxation like the one presented in [Dab+23].
Nonetheless, the TMCMAP can be solved optimally, or by returning early, with an

approximation guarantee. We will show this in Chapter 3. Both variants require expo-
nential worst case running time.
Here, we will first present the formulation of the TMCMAP. Then we show how we

can construct an instance of it for graph models and a certain set of objective functions.
We will see that this construction works for most formulations and practical objectives
considered in Section 2.2.

2.3.1 Problem Formulation
We are given a directed graph H and a net N := {r} ∪ T with N ⊆ V (H). For
the sinks t ∈ T , we are given slew limits St > 0. Additionally, we are given a global
slew limit S > 0 and an objective space Ω := Rd

≥0 for some d ∈ N. The entries of
the objective space will contain our different objectives, like the delay for each branch
or the power consumption. On this objective space, we have an evaluation operator
χ : Ω → R≥0 ∪{∞} that is

• sublinear : for all ω, ν ∈ Ω, α > 0

– χ(αω) ≤ αχ(ω),

– χ(ω + ν) ≤ χ(ω) + χ(ν) and

• nondecreasing : χ(ω) ≤ χ(ν) for all ω, ν ∈ Ω with ω ≤ ν entrywise.

The evaluation operator is supposed to condense our separate objectives into a single
objective cost that we are optimizing.
Finally, we are given some functions for the edges that dictate the behaviour of the

objective and timing values.
The first type are limits and bounds. A slew lower bound for each edge that might

be influenced by the capacitance minslew : E(H) × R≥0 → R≥0 (since we are going
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to propagate the slew from the sinks to the source, we need lower bounds instead of
upper bounds), as well as a constant capacitance limit from above for each edge caplim :
E(H) → R≥0. The second type are the timing functions slew -1 : E(H)× R≥0×R≥0 →
R≥0 and cap : E(H) × R≥0 → R≥0 that dictate how the slew and capacitance change
from the head of an edge to its tail.
For these functions, we require that for each edge e ∈ E(H), the following hold:

• Either cap(e, c) ≥ c for each capacitance c ∈ R≥0 or cap(e, ·) is constant. We call
edges with the latter property constant edges.

• slew -1(e, c, ·) is strictly increasing and surjective (onto R≥0) for each capacitance
c ∈ [0, caplim(e)] and slew -1(e, ·, s) is nonincreasing for each slew s ∈ R≥0.

• slew -1(e, c, s) ≤ s for constant edges e and all c, s ∈ R≥0.

Note that we are defining slew -1 and cap outside the limits as well. This simplifies the
notation. Instead of making the functions undefined for some values, we will require the
objective cost to be infinite outside these ranges (see Definition 2.3.3). That allows us
to define values at all vertices of a mapped arborescence and avoid case distinctions.
Given a mapped arborescence (A, κ) in H. Denote by Av the subarborescence of A,

rooted in v ∈ V (A). If I is the leaveset of A (then κ(I) = T ) denote by Iv the leaves of
Av and by TA,v := κ(Iv) the sinks connected by Av.

For slews at the sinks (st)t∈T and a function obj : E(H) × 2T × R{c,s}
≥0 → Ω, we

recursively define objective values ωA : V (A) → Ω× R{c,s}
≥0 for the vertices v ∈ V (A):

ωA(v)o :=




0 if κ(v) ∈ T∑
(v,w)∈δ+(v)

ωA(w)o + obj(κ((v, w)), TA,w, ωA(w)c, ωA(w)s) otherwise,

ωA(v)c :=




0 if κ(v) ∈ T∑
(v,w)∈δ+(v)

cap(κ((v, w)), ω(w)c) otherwise,

ωA(v)s :=




st if κ(v) = t ∈ T

min
(v,w)∈δ+(v)

slew -1(κ((v, w)), ω(w)c, ω(w)s) otherwise.

Note that this means that for each v ∈ V (A), ωA(v)o is also given by

ωA(v)o =
∑

(v,w)∈E(Av)

obj(κ((v, w)), TA,w, ωA(w)c, ωA(w)s).

For the TMCMAP, we require obj to be a feasible objective function. Before we
define what a feasible objective function is, we introduce a preobjective that does not
know about the sink sets. It will be helpful in the construction of new feasible objective
functions.
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Definition 2.3.2. A function f : E(H)×R{c,s}
≥0 → Ω is a preobjective for the evaluation

operator χ if for each edge e ∈ E(H), we have

• f(e, ·, s) is nondecreasing in each entry and s ∈ R≥0.

• χ(f(e, c, s)) = ∞ if s < minslew(e, c), slew -1(e, c, s) > S or c > caplim(e)

• f(e, c, ·) nondecreasing in each entry on the interval [minslew(e, c),∞) for all c ∈
R≥0.

It is called increasing if there is a constant C > 0, such that χ(ω+f(e, c, s)) > χ(ω)+C
for all constant edges e and c, s ∈ R≥0, ω ∈ Ω.

Using this preobjective, we can now define a feasible objective function.

Definition 2.3.3. A function obj : E(H) × 2T × R{c,s}
≥0 → Ω is a feasible objective

function if for each ∅ ≠ I ⊆ T ,

• the function obj(·, I, ·, ·) is a preobjective and

• there is a constant C > 0, such that χ(ω+obj(e, I, c, s)) > χ(ω)+C for all constant
edges e and c, s ∈ R≥0, ω ∈ Ω(obj, I),

where Ω(obj, I) is defined as follows. For I ⊆ T , we denote by

imsuppI(obj) := {i ∈ [d] | obj(e, J, c, s)i ̸= 0 for any e ∈ E(H), J ⊆ I and c, s ∈ R≥0}

the support of the image of obj for all subsets of I. Then

Ω(obj, I) := {ω ∈ Ω | ωi = 0 for all i ∈ [d] \ imsuppI(obj)}

is the set of objective values that are only positive on entries in imsuppI(obj).

Remark. The second condition is not exactly the same as the condition for increasing
preobjectives. Instead, we only require the objective cost to increase on the objective
values that could arise as the objective values of a subarborescence connecting the sinks
in I ⊆ T .

Remark. There are a lot of different objects that belong to the objective. For clarity, we
will always refer to Ω as the objective space, to elements ω ∈ Ω as objective values, to
evaluated objective values χ(ω) as objective cost and to feasible objective functions obj
by at least objective function.

We are looking for a mapped arborescence (A, κ) for the net N and slews at the sinks
st ∈ [0, St] for each t ∈ T that minimize χ(ωA(κ

−1(r))o). A solution is infeasible if
χ(ωA(v)) = ∞ for any vertex v ∈ V (A). Let us summarize this:
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Definition 2.3.4 (The Timing-Driven Min-Cost Mapped Arborescence Problem).
We are given a directed graph H, a net N := {r} ∪ T in H, sink slew limits (St)t∈T , a
global slew limit S > 0, slew lower bounds minslew : E(H) × R≥0 → R≥0, capacitance
limits caplim : E(H) → R≥0, a slew inverse slew -1 : E(H) × R≥0×R≥0 → R≥0, a
capacitance function cap : E(H) × R≥0 → R≥0, an objective space Ω := Rd

≥0 for some
d ∈ N, an evaluation operator χ : Ω → R≥0 ∪{∞} and a feasible objective function

obj : E(H)× 2T × R{c,s}
≥0 → Ω.

Then we want to find a mapped arborescence (A, κ) for the net N and slews at the
sinks st ∈ [0, St] for each t ∈ T that minimize χ(ωA(κ

−1(r))o), such that for all vertices
v ∈ V (A), we have χ(ωA(v)) ̸= ∞.

2.3.2 Problem Construction
The problem formulation is very abstract. However, in order to encode a buffering
problem, we need to construct our graph and timing functions in a suitable way. Let
a graph G be given that models our routing space. An example is the global rout-
ing graph. Let the net N := {r} ∪ T with N ⊆ V (G) be given with polarities
pol : N → {ident , invert}. Let L be a repeater library and let an RC-timing model
(delayG, capG, slewG, caplimG, S, sr, (St)t∈T ) on (G,L,N) be given.

We will construct an instance of the TMCMAP in such a way that each edge in a
solution will correspond to either inserting a wire segment or a repeater.

First we construct the graph H. The first step is to duplicate G. The two copies will
be denoted Gident and Ginvert . Edges within one of these two graphs that belong to an
edge in G correspond to the wiring segment they represent in G. For each vertex v and
repeater b ∈ L, we add edges (vident , vident)b and (vinvert , vinvert)b if b is a buffer and edges
(vident , vinvert)b and (vinvert , vident)b if b is an inverter. Then we add a vertex r̄ with an
edge (r̄, rident) and vertices t̄ with edges (tpol(t), t̄) for each sink t ∈ T . An example for
this construction is shown in Figure 2.2.

Now each mapped Steiner arborescence for r̄ and T̄ in H can be transformed into
a unique buffered route, by inserting a repeater, whenever a repeater edge is used and
replacing wiring edges in H by their corresponding edges in G. Vice versa, we cannot
create a unique Steiner arborescence from a buffered route. However, the possible Steiner
arborescences differ only in the order, in which multiple branches at the same node are
merged. This poses no problem, as the order of the sum at a node does not influence
the objective value.

Remark. If G is a layered model, we can connect start and end-layer of a repeater to
improve the accuracy.

Then we can use the timing functions of our RC-timing model to define timing func-
tions and an increasing preobjective for the TMCMAP that, given an edge e ∈ E(H),
compute the new values at the tail of that edge. For all edges e ∈ E(H), and c, s ∈ R≥0,
we define the timing functions as follows:
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Figure 2.2: The construction of H on the right from G on the left and a simple library
L consisting of one repeater and one inverter. (Some dashed edges to the
repeater edges are left out for simplicity)

We start with the slew lower bound. We set minslew(e, c) := a for the minimum a ≥ 0
such that a value σ exists with slewG(e, c, σ) = a. Then we set delay(e, c, s) := ∞ and
slew -1(e, c, s) := s if s < minslew(e, c).

Let now s ≥ minslew(e, c). If e belongs to a repeater or the source b ∈ L ∪ {r}, let σ
be the slew, such that slewG(b, c, σ) = s. We set

cap(e, c) := capG(b)

slew -1(e, c, s) := σ

delay(e, c, s) :=

{
delayG(b, c, σ), if σ ≤ S

∞ otherwise

and if e belongs to a wire edge ê ∈ E(G), let σ be the slew, such that slew -1(ê, c, σ) = s.
We set

cap(e, c) := c+ capG(ê)

slew -1(e, c, s) := σ

delay(e, c, s) :=

{
delayG(ê, c, σ), if σ ≤ S

∞ otherwise

If e belongs to a sink t ∈ T , we set

cap(e, c) := c+ capG(t)

slew -1(e, c, s) := s

delay(e, c, s) := 0
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And if e belongs to the root, we set cap(e, c) := c and slew -1(e, c, s) := sr(c). Then
we check if sr(c) ≤ s. If this is the case, we set delay(e, c, s) := delayG(r, c, sr) and
otherwise delay(e, c, s) := ∞.
Now only the capacitance limit is missing. We set caplimmax := maxb∈L∪{r} caplimG(b)

and for all e ∈ E(H), we set caplim(e) := caplimmax if e is a wiring edge and caplim(e) :=
caplimG(b) if e is an edge for b ∈ L ∪ {r}.
Our algorithm will only be guaranteed to return if there is a solution to our instance

or if we give it an upper bound on the objective cost. We can always make the instance
feasible or decide a-priori that it is infeasible. First, we check that there is a path from
the source to each sink. If not, there is no buffered route that connects our net and the
instance is infeasible. Otherwise, we compute a tree in H that connects the source to
each sink, for example by combining the previously found paths. Then we compute all
timing values for the corresponding buffered route by using our RC-timing model. We
increase the limits caplim and S, (St)t∈T to the values assumed in this buffered route
and store the old limits as caplimold and Ŝ, (Ŝt)t∈T . Finally, we add a penalty as an
additional objective: penalty(e, c, s) := max{0, c − caplimold(e)} + max{0, s − Ŝ} for
edges e ∈ E(H) belonging to wires or repeaters and penalty(et, c, s) := max{0, s − Ŝt}
for edges et ∈ E(H) belonging to sinks t ∈ T .
This way, the resulting instance will be feasible and we can derive an upper bound on

its value. Of course, we can use other initial solutions like a previously present buffered
route or one computed by another algorithm as the initial solution that we base our
changes on.

2.3.3 Evaluation and Objective Functions
We have prepared timing functions for the TMCMAP. For the objective, we need a
feasible objective function and evaluation operator. We will first prove for some general
operations that they can be used to construct evaluation operators and feasible objective
functions. Then we show some examples how we can use that to build up specific
formulations.

Evaluation Operators

As a start, we make the following observation.

Observation. For Ω := R≥0, the identity function is an evaluation operator.

Now, we will prove that we can join multiple arbitrary evaluation functions on pro-
jections of Ω to some entries. First, we show, that we can join them by a (weighted)
maximum operator.

Proposition 2.3.5. Let q ∈ N and di ∈ N for i ∈ [q]. Let Ω := Ω1 × . . . × Ωq with
Ωi = Rdi

≥0 and an evaluation operator χi : Ωi → R≥0 for each i ∈ [q]. Denote by pi the
projection of Ω onto Ωi. Then χ : Ω → R≥0 given by

χ(ω) := max
i=1,...,q

λi χi(pi(ω)),
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for scaling factors λi > 0 for i ∈ [q], is an evaluation operator.

Proof. Let ω, ν ∈ Ω. First, we show subadditivity. We know that for each i ∈ [q], we
have

χi(pi(ω + ν)) = χi(pi(ω) + pi(ν))) ≤ χi(pi(ω)) + χi(pi(ν)).

Using this and the fact that λi > 0 for i ∈ [q], we see that

χ(ω + ν) = max
i=1,...,q

λi χi(pi(ω + ν)) ≤ max
i=1,...,q

λi [χi(pi(ω)) + χi(pi(ν))] .

By the subadditivity of the maximum operator, we conclude

χ(ω + ν) ≤ max
i=1,...,q

λi χi(pi(ω)) + max
i=1,...,q

λi χi(pi(ν)) = χ(ω) + χ(ν).

Similarly, for α > 0, we see that

χ(αω) = max
i=1,...,q

λi χi(pi(αω)) = max
i=1,...,q

λi χi(αpi(ω)) ≤ max
i=1,...,q

αλi χi(pi(ω)) = αχ(ω).

To show that it is nondecreasing, also assume that ω ≤ ν. For each i ∈ [q], we have
χi(pi(ω)) ≤ χi(pi(ν)). So each single element is increasing. Hence,

χ(ω) = max
i=1,...,q

λi χi(pi(ω)) ≤ max
i=1,...,q

λi χi(pi(ν)) = χ(ν).

The same holds for weighted sums.

Proposition 2.3.6. Let q ∈ N and di ∈ N for i ∈ [q]. Let Ω := Ω1 × . . . × Ωq with
Ωi = Rdi

≥0 and an evaluation operator χi : Ωi → R≥0 for each i ∈ [q]. Denote by pi the
projection of Ω onto Ωi. Then χ : Ω → R≥0 given by

χ(ω) :=
∑

i=1,...,q

λi χi(pi(ω)),

for scaling factors λi > 0 for i ∈ [q], is an evaluation operator.

Proof. We proceed analogously to the proof of Proposition 2.3.5. Let ω, ν ∈ Ω, α > 0.
By our assumption each χi is subadditive for i ∈ [q]. Thus,

χ(ω + ν) =
∑

i=1,...,q

λi χi(pi(ω + ν)) ≤
∑

i=1,...,q

λi [χi(pi(ω)) + χi(pi(ν))] = χ(ω) + χ(ν)

and

χ(αω) =
∑

i=1,...,q

λi χi(pi(αω)) =
∑

i=1,...,q

λi χi(αpi(ω)) ≤
∑

i=1,...,q

αλi χi(pi(ω)) = αχ(ω).

Now assume that ω ≤ ν. Then

χ(ω) =
∑

i=1,...,q

λi χi(pi(ω)) ≤
∑

i=1,...,q

λi χi(pi(ν)) = χ(ν).

These propositions allow us to successively build up evaluation operators. With
matching objective functions, we can model all the objectives we have mentioned.
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2.3 New Framework

Objective Functions

Similar to the evaluation operator, a preobjective can be used as a feasible objective
function for an identity evaluation operator:

Observation. Let f be an increasing preobjective for an evaluation operator χ : R≥0 →
R≥0. Then obj(e, I, c, s) := f(e, c, s) is a feasible objective function.

Let us recall that imsuppI(obj) denotes the support of the image of obj for all subsets
of I (including I), and that Ω(obj, I) ⊆ Ω denotes the set of objective values that are
nonzero only on imsuppI(obj) (for Ω objective space, obj objective function and I ⊆ T ).
We want to prove the analogue to Propositions 2.3.5 and 2.3.6 for feasible objective

functions:

Proposition 2.3.7. Let Ω1,Ω2 with evaluation operators χ1 and χ2, as well as feasible
objective functions obj1 and obj2. Then obj := (obj1, obj2) is a feasible objective function
for the evaluation operators χ+, χmax : Ω1,Ω2 → R≥0, where we define

χ+((ω1, ω2)) := λ1 χ1(ω1) + λ2 χ2(ω2)

and
χmax((ω1, ω2)) := max{λ1 χ1(ω1), λ2 χ2(ω2)},

for any λ1, λ2 > 0.

Proof. We check Definition 2.3.3. Let ∅ ̸= I ⊂ T . We need to show that obj(·, I, ·, ·) is
a preobjective. Both entrywise conditions clearly still hold. Furthermore, if one of the
entries has value ∞, then our new evaluation function has value ∞.
Now we check the second condition that is required for feasible objective functions.

Let ω1 ∈ Ω1(obj1, I), ω2 ∈ Ω2(obj2, I), C1, C2 be the constants from the second condition
for obj1 and obj2 and e ∈ E(H) a constant edge, c, s ∈ R≥0. Then

χ+((ω1, ω2) + obj(e, I, c, s)) = λ1 χ1(ω1 + obj1(e, I, c, s)) + λ2 χ2(ω2 + obj2(e, I, c, s))

> λ1(C1 + χ1(ω1)) + λ2(C2 + χ2(ω2)) = λ1C1 + λ2C2 + χ+((ω1, ω2))

and

χmax((ω1, ω2) + obj(e, I, c, s))

=max{λ1 χ1(ω1 + obj1(e, I, c, s)), λ2 χ2(ω2 + obj2(e, I, c, s))}
>max{λ1(C1 + χ1(ω1)), λ2(C2 + χ2(ω2))}
≥min{λ1C1, λ2C2}+ χmax((ω1, ω2)).

This shows that the second condition holds as well.

Since timing is one of our main goals, let us note here that the delay-function from Sec-
tion 2.3.2 is an increasing preobjective, when we use the identity function as evaluation
operator. The most important objectives include the delay on each source-sink-path, ei-
ther as a weighted sum, or as a maximum. These objectives are defined by their branch
based structure. We capture this in the definition of branch based objectives:
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2 The Buffering Problem

Definition 2.3.8. A branch based objective, is an objective space of the form Ω := RT
≥0

together with an objective function obj : E(H)× 2T × R{c,s}
≥0 → Ω of the form

obj(e, I, c, s)t :=

{
f(e, c, s) if t ∈ I

0 otherwise,

where f : E(H)× R{c,s}
≥0 → R≥0 is an increasing preobjective for the identity evaluation

operator.

Indeed, with both a weighted sum or weighted maximum, a branch based objective
leads to a feasible objective function.

Proposition 2.3.9. Let Ω and obj be a branch based objective. Then it is a feasible
objective function for both χ+(ω) :=

∑
t∈T λtωt and χmax := maxt∈T λtωt for any λt > 0

for t ∈ T .

Proof. As before, let ∅ ≠ I ⊂ T . Clearly obj(·, I, ·, ·) is a preobjective, because it is a
preobjective in each entry and both sum and maximum are ∞ if one entry is ∞.
For the second condition, let f be the increasing preobjective of obj, and C the

constant by which it increases. Furthermore, let e ∈ E(H) be constant and c, s ∈ R≥0.
Let ω ∈ Ω(obj, I). Then

χ+(ω + obj(e, I, c, s)) =
∑

t∈T
λtωt +

∑

t∈I
λtf(e, c, s)

>
∑

t∈T
λtωt +

∑

t∈I
λtC = χ+(ω) +

∑

t∈I
λtC.

For the maximum note that max
t∈T\I

λtωt = 0, because imsuppI(obj) = I and so ωt = 0 for

t ∈ T \ I. Then

χmax(ω + obj(e, I, c, s)) = max{max
t∈T\I

λtωt,max
t∈I

λt(ωt + f(e, c, s))}

> max{max
t∈T\I

λtωt,max
t∈I

λt(ωt + C)} ≥ χmax(ω) + min
t∈I

λtC.

This finishes the proof.

Now we have everything we need to build up the objectives that we listed in Section
2.2. So let us give two examples of objective functions. The first one minimizes the
maximum delay to a sink:

Example 1. Let delay as in Section 2.3.2. We set Ω := RT
≥0 and store in each entry the

delay to the respective sink. We set as objective function obj(e, I, c, s) := d ∈ Ω, where

dt :=

{
delay(e, c, s), if t ∈ I,

0 otherwise.

In order to evaluate to the maximum, we set χ(ω) := max
t∈T

ωt, which is an evaluation

function by Proposition 2.3.5. Together this is a feasible objective by Proposition 2.3.9.
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2.3 New Framework

The maximum of delays can be used to optimize the worst slack as well. Suppose we
have required arrival times rat(t, s) for each sink t ∈ T and input slew s ∈ [0, St]. Then
we compute a constant M ∈ R≥0 such that rat(·, ·) ≥ M . The delay through the sink
edges et from Subsection 2.3.2 then changes to delay(et, ·, s) :=M − rat(t, s).

The second example minimizes the weighted sum of delays and power:

Example 2. Let delay as in Section 2.3.2. Let additionally a power function power :
E(H) × R≥0 → R≥0 be given that produces a power consumption value from an edge
and is nondecreasing in the capacitance and has a static component on constant edges
(repeaters). Let a power weight γ > 0 be given. We set ΩP := R≥0 and objP (e, I, c, s) :=
power(e, c).

Furthermore, we set ΩD := RT
≥0 with objD as in Example 1 and assume, we have

weights λt > 0 for t ∈ T . We can use Proposition 2.3.6 to construct an evaluation oper-
ator χ(ω) :=

∑
t∈T

λtωt+γωP . By Propositions 2.3.9 and 2.3.7, we know that (objD, objP )

is a feasible objective function.

Similarly, we can add placement costs, netlength costs or routing costs. Even though
the latter two are not necessarily preobjectives by themselves, everything works out if
they are combined with other objectives.

Tree monotonicity

Before we leave the problem-specific objective and evaluation functions and treat them
as abstract objects, we need to examine one very important property that some, but not
all of them have. If we take a mapped arborescence and replace a subarborescence by
a different one with a smaller objective cost, then this smaller cost propagates through
the rest of the original arborescence. A picture illustrating this idea is shown in Figure
2.3.

Definition 2.3.10. A feasible objective function obj : E(H) × 2T × R{c,s}
≥0 → Ω for an

evaluation operator χ has the tree-monotonicity property, if the following holds: Let
v ∈ V (H) and ∅ ̸= J ⊆ T . Let (A, κ) be a mapped arborescence for {x} ∪ J , y ∈ V (A)
and D ⊆ δ+A(y). Let I :=

⋃
(y,w)∈D TA,w ⊆ J and (B, ϕ) be a mapped arborescence on

{κ(y)} ∪ I. Denote by Ay,D the subarborescence of A that arises from Ay by removing
the branches belonging to the edges in δ+A(y) \ D and by ωAy,D

:=
∑

e=(y,w)∈D ωA(w)o +

obj(e, ωA(w)c, ωA(w)s). If χ(ωB(y)) ≤ χ(ωAy,D
), then

χ


ωB(y) +

∑

(v,w)∈E(A)\E(Ay,D)

obj(κ((v, w)), Tw, ωA(w)c, ωA(w)s)




≤ χ


ωAy,D

+
∑

(v,w)∈E(A)\E(Ay,D)

obj(κ((v, w)), Tw, ωA(w)c, ωA(w)s)


 = χ(ω(x))
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I

y
D

J \ I

x

Ay,D

II

y

B

χ(ωB(y)) ≤ χ(ωAy,D
)

≤
propagates

Figure 2.3: An illustration of the tree-monotonicity property (Definition 2.3.10). If the
value at the vertex y in the arborescence B is lower than the value of the
subarborescence Ay,D of A at y, then this property “propagates” through A.

This property will prove to be useful in our algorithm. There we will split up the
objective into tree-monotone parts. Then we will use the tree-monotonicity of these
parts to define a dominance relation. For practical applications, we need to know which
objectives have the tree-monotonicity property. First we show that branch based objec-
tives with our previously used evaluation functions have the tree-monotonicity property.
Note that the conditions in Lemma 2.3.11 are the two relevant properties of maximum
and sum that we need. It is helpful to imagine χ(ω) as maxt∈T λtωt, χI as maxt∈I λtωt

and MI as max.

Lemma 2.3.11. Let Ω, obj be a branch based objective and χ an evaluation operator
that additionally fulfills the following. For each I ⊆ T there are evaluation operators
χI : RI

≥0 → R≥0, χĪ : RT\I
≥0 → R≥0 and MI : R2

≥0 → R≥0, such that MI(χI , χĪ) = χ,
MI(x, 0) = x for each x ∈ R≥0 and χI(ωI + C · 1I) = χI(ωI) + χI(C · 1I). Then obj
and χ have the tree-monotonicity property.

Proof. Let (A, κ) and (B, κ), x ∈ E(H), y ∈ V (A), D ⊆ δ+A(y) and I as in definition
2.3.10. To shorten the notation, set

ωA\Ay,D
:=

∑

(v,w)∈E(A)\E(Ay,D)

obj(κ((v, w)), Tw, ωA(w)c, ωA(w)s).

Since A is an arborescence, we have for each v ∈ (V (A) \ V (Ay,D)) ∪ {y}, that either
I ⊆ TA,v or I ∩ Tv = ∅. Hence, (ωA\Ay,D

)t = (ωA\Ay,D
)u for all t, u ∈ I. So we set

ωA,I := (ωA\Ay,D
)t for any t ∈ I. Furthermore, (ωAy,D

)t = (ωB(y))t = 0 for all t ∈ T \ I.
Then we have

χI((ωB(y))I) = MI(χI(ωB(y)I), 0) = χ(ωB(y))

≤ χ(ωAy,D
) = MI(χI((ωAy,D

)I), 0) = χI((ωAy,D
)I)
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and hence

χI(ωB(y)I + ωA,I · 1I) = χI(ωB(y)I) + χI(ωA,I · 1I)

≤ χI((ωAy,D
)I) + χI(ωA,I · 1I) = χI((ωAy,D

)I + ωA,I · 1I).

We conclude

χ(ωB(y) + ωA\Ay,D
) = MI

(
χI(ωB(y)I + ωA,I · 1I) , χĪ((ωA\Ay,D

)Ī)
)

≤ MI

(
χI((ωAy,D

)I + ωA,I · 1I) , χĪ((ωA\Ay,D
)Ī)
)
= χ(ωA(x)).

Since both, weighted maximum and sum function, have the required properties, we can
conclude, that together with branch based objectives, they have the tree-monotonicity
property.

Corollary 2.3.12. A branch based objective together with a maximum or weighted sum
as evaluation operator has the tree-monotonicity property.

If the evaluation consists only of a weighted sum, then any feasible objective function
has the tree-monotonicity property.

Proposition 2.3.13. Let q ∈ N and Ω := Rq
≥0×RT

≥0 with a feasible objective function

obj : E(H) × 2T × R{c,s}
≥0 → Ω. Let χ : Ω → R≥0 be a weighted sum for scaling factors

λi > 0 for i ∈ [q], as in Proposition 2.3.6. Then they have the tree-monotonicity property.

Proof. Let (A, κ) and (B, κ), x ∈ E(H), y ∈ V (A), D ⊆ δ+A(y) and I as in definition
2.3.10. Set ωA\Ay,D

as in the proof of Lemma 2.3.11. In this case, we know that

χ(ωB(y) + ωA\Ay,D
) = χ(ωB(y)) + χ(ωA\Ay,D

) ≤ χ(ωAy,D
) + χ(ωA\Ay,D

) = χ(ωA(x)).

Unfortunately, not all objective/evaluation combinations have the tree-monotonicity
property. Consider the example shown in Figure 2.4. Our evaluation operator computes
the maximum of the delays to the sinks t1 and t2 and adds to this value the penalty.
Then the subsolutions at y have values 2<3, but the values at x are 5>4.
In cases like this, it is helpful to instead split the objective into its tree-monotone

components:

Definition 2.3.14. Let q ∈ N and Ω := Rq
≥0 be an objective space with obj a feasible

objective function for an evaluation operator χ. A tree monotone objective decomposi-
tion of these three is a decomposition Ω1× . . .×Ωp := Ω with projections proji : Ω → Ωi,
(obj1, . . . , objp) := obj with evaluation operators χ1, . . . , χp and M : Rp

≥0 → R≥0 for
p ≤ q, such that for all i ∈ [p] we have:

• obji is the projection of obj onto the subspace Ωi (proji(obj) = obji(proji)),
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2 The Buffering Problem

• χi : Ωi → R≥0,

• Ωi, χi, obji have the tree-monotonicity property

and we have that
M(χ1(proj1(ω)), . . . , χp(projp(ω))) = χ(ω)

for all ω ∈ Ω.

Such a decomposition always exists.

Remark. For ω, obj, χ each individual entry of obj together with the identity function
is tree-monotone. Thus decomposing obj into its entries with identity functions as eval-
uation operators and setting M = χ is a tree monotone decomposition.

x

t1 t2

y

0, 0/0

0, 1/0

0, 3/0

0, 0/0

1, 0/0

1, 0/1
3, 0/0

3, 3/01, 3/1

4, 4/02, 4/1

Figure 2.4: Two solutions with their respective objective values, one in red and one in
blue. Edges and values that belong to both solutions are shown in purple.
The objective is <delay to t1>,<delay to t2>/<penalty>.
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3 Optimum Algorithm for the
Timing-Driven Min-Cost Mapped
Arborescence Problem

In this chapter, we will describe the algorithm to compute an optimum solution to the
TMCMAP. To this end, let an instance (H,N = {r} ∪ T, (St)t∈T , S,Ω, χ, obj) be an
instance of TMCMAP (see Chapter 2.3.1, Definition 2.3.4).

Additionally, we are given a tree monotone objective decomposition of our objective
and evaluation operator (see Definitions 2.3.14 and 2.3.10).

We will use a bottom up dynamic program that starts with a discrete set of slews
at each sink. Though our algorithm is not guaranteed to find the optimum solution,
when guessing the sink slews of a single optimum solution, we can prove that it finds an
optimum solution if we start with a special constructed finite set of slews at every sink.

The algorithm extends the Dijkstra-Steiner algorithm [HSV17] for Steiner trees (a
description can be found in Chapter 1.3.2). Like the Dijkstra-Steiner algorithm, our
algorithm builds up a solution in a bottom up order from the sinks to the source. It
iteratively extends subarborescences by an edge, or joins two subarborescences. The
three main advantages it has over previously published buffering algorithms (without
fixed topology) are the following.

First, we make use of a feasible lower bound function which is an extension to the
feasible lower bounds in the Dijkstra-Steiner algorithm [HSV17]. This function guides
the search and allows us to arrive at an optimum solution faster in practice. While the
approach by Cong and Yuan [CY00] uses a similar enumeration order as the Dijkstra-
Steiner algorithm, it is missing the concept of lower bounds and an optimality proof.

The approach by Hrkić and Lillis [HL02] uses lower bounds to prune partial solutions
that can not lead to optimum solutions, but it has an ineffective enumeration order. For
k = 1, . . . , |T |, they first enumerate all partial solutions with sink sets of size k, before
they merge partial solutions. We enumerate partial solutions in order of their (effective)
objective cost. Thus, a promising partial solution with large sink set can be completed
to a solution before other partial solutions that connect smaller sink sets.

And third, we can use the input slew in our timing function and prove an approxima-
tion guarantee based on the used slew accuracy and even compute optimum solutions.
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To our knowledge, there is no other algorithm that can do this. The algorithms by
Rotter [Rot17], Romen [Rom15] and Permin [Per16] only propagate slews as an upper
bound that is used to avoid slew violations. The algorithms by Hrkić and Lillis [HL02]
and Cong and Yuan [CY00] do not consider slews at all.
In [Roc18] a prototype of our algorithm was presented, however, it had many defi-

ciencies. The most important improvement we make is that we use continuous slews,
where the prototype assumed a slew discretization that does not exist in practice. As-
suming the slew only takes discrete values always leads to problems. Enabling us to use
continuous slews will take most of the work in this chapter.
Furthermore, we are now able to handle much more general objective functions, com-

pared to only delay. Even the delay is more accurate. We can now optimize both the
rise and fall transition, which have different delays through inverters.
We start by giving the description of the algorithm in Section 3.1, where we require

that we are additionally given slews at the sinks. In Section 3.2, we will then show how
to construct slews at the sinks from arbitrary, finite sets of sink slews and sink slews of
an optimum solution. We show that with a set of slews that was constructed by our
procedure, the algorithm can find an optimum solution. Then, in Section 3.3, we will
show how we can generate finite sets of sink slews without knowing an optimum solution
and slightly modify the algorithm, such that we can use it to find approximately optimum
and optimum solutions. The key idea is that we want the algorithm to produce optimum
solutions with slightly overestimated slews. By comparing to the solutions from Section
3.2, we can show that the modified version finds such a solution.
Finally, we will outline two extensions to the algorithm in Section 3.4. They are

joint work with Benjamin Ihme [Ihm23]. The first extension incorporates higher order
delay models in the algorithm by repeated calibration. The second extension allows to
optimally choose repeater positions on edges under a pure RC-delay model. For the
second change, I provided the initial idea and recursive formula, as well as key ideas for
the proof of correctness.

3.1 Algorithm Description
We start by giving the basic description of the algorithm. This version will also be used
in the correctness proof in Section 3.2, but we will change it slightly for the practical
version in Section 3.3.
Since we are building up a solution from the sinks, but have only upper bounds for the

slews at the sinks, we need to guess our actual slew values there. For now, we assume
that we are given a set of slews Σt at each sink t. For the correctness we will have to
assume that these slew sets contain slews of optimum solutions at the sinks. In a later
section, we will show how to get rid of this assumption, by allowing small errors.
During our algorithm, we will store our subarborescences indirectly via labels. We

define a label as a tuple l := (v, e, P, ω, I). Here, v ∈ V (H) is a vertex, e ∈ E(H)∪ {□}
is either an edge in H or □ if we did not use an edge, P is a set of up to two predecessor
labels, ω ∈ Ω×R{c,s}

≥0 is our objective value with capacitance and slew and I ⊆ T contains
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k

w

I

v

l

(a) A new label k is created from l by
extending the corresponding ar-
borescence by an edge from v to
w.

m

v

I J

l k

(b) A new label m is created by join-
ing the arborescences correspond-
ing to the labels l and k at the
vertex v.

Figure 3.1: Illustration of propagate and merge.

the sinks that are connected by the subarborescence. We will denote the objective value
with capacitance and slew of our label by ω(l) := ω.

We have two main operations that create new labels. The propagate step allows us to
create a new subarborescence that extends our current subarborescence by an edge. The
merge step allows us to create a new subarborescence by merging two subarborescences
with disjoint sink sets at the same vertex. An illustration of these operations can be
seen in Figure 3.1. Their pseudocode is shown in Algorithm 3.

The algorithm will always pick the best label that has not been marked as permanent,
mark it as permanent and then use the propagate and merge functions to create new
labels that extend the current solution.

We can guide the search by a feasible lower bound function that extends feasible
potentials for Dijkstra’s algorithm, or feasible lower bounds for the Dijkstra-Steiner
algorithm [HSV17]. The idea is that it gives us a lower bound on what it would cost
to complete a given subarborescence to a solution. For a feasible potential, we need to
make sure that the reduced cost does not become negative. We need to fulfill a similar
constraint here.

Algorithm 3: The two main operations of the algorithm

1 Function propagate(l = (w, el, Pl, ω, I), e = (v, w) ∈ E(G), Non-Permanent
labels Q, Labels L):

2 k := (v, e, {l}, (ωo + obj(e, I, ωc, ωs), cap(e, ωc), slew
-1(e, ωc, ωs)), I);

3 if χ(ωo(k)) <∞ then
4 insertLabel(k, Q, L);

5 Function merge(l = (v, el, Pl, ω, I), k = (v, ek, Pk, ν, J), Non-Permanent labels
Q, Labels L):

6 m := (v,□, {l, k}, (ωo + νo, ωc + νc,min(ωs, νs)), I ∪ J);
7 if χ(ωo(m)) <∞ then
8 insertLabel(m, Q, L);
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The algorithm will always pick the best label that has not been marked as permanent,
mark it as permanent and then use the propagate and merge functions to create new
labels that extend the current solution.
We can guide the search by a feasible lower bound function that extends feasible

potentials for Dijkstra’s algorithm, or feasible lower bounds for the Dijkstra-Steiner
algorithm [HSV17]. The idea is that it gives us a lower bound on what it would cost
to complete a given subarborescence to a solution. For a feasible potential, we need to
make sure that the reduced cost does not become negative. We need to fulfill a similar
constraint here.
For a (tree-monotone) component i ∈ [ι] of the objective, let OPTi(w, Sw, cw, J +

(v, ω)) denote the minimum objective cost for obji, χi of a new instance Inst = (G,w, T ′)
of our problem. This instance uses J ∪ {v} = T ′ as sinks, w as source, and adds
the additional restriction that each solution (A, κ) fulfills proji(ωA(v)o) = proji(ωo),
ωA(w)c ≤ cw and ωA(w)s ≥ Sw. Let then

opti(w, Sw, cw, J + (v, ω)) :=

{ν ∈ Ωi | proji(ωo) + ν is the objective value of a solution of Inst ,

with χi(proji(ωo) + ν) = OPTi(w, Sw, cw, J + (v, ω))}.

Definition 3.1.1. A function Lb : V (G)× R{c,s}
≥0 ×2T → Ω is a feasible lower bound if

Lb(r, ·, ·, ·) = 0 and for each component i ∈ ι of the objective and ν ∈ opti(w, Sw, cw, J \
J ′ + (v, ω)), we have

χi(proji(Lb(v, (ωc, ωs), J))) ≤ χi (proji(Lb(w, (cw, Sw), J
′)) + ν)

for all v, w ∈ V (G), ∅ ⊊ J ′ ⊊ J ⊆ T , ω ∈ Ω× R{c,s}
≥0 ,(cw, Sw) ∈ R{c,s}

≥0 .
Additionally, we require that proji(Lb) is consistent with the tree monotonicity prop-

erty of χi in the following sense: For ω, ν ∈ Ω×R{c,s}
≥0 and c′, s′ ∈ R≥0 with χi(proji(ωo)) ≤

χi(proji(νo)), ωc, νc ≤ c′, ωs, νs ≥ s′ and both belong to arborescences connecting v ∈
V (H) to ∅ ≠ I ⊆ T we have

χi(proji(Lb(v, (c
′, s′), T \ I + ωo)) ≤ χi(proji(Lb(v, (ωc, ωs), T \ I) + νo)).

A picture of the feasibility constraint of feasible lower bounds can be found in Figure
3.2.
Note that Lb ≡ 0 is a trivial feasible lower bound. Given a feasible lower bound

Lb, we can now define the effective objective of a label l = (v, e, P, ω, I) as ωeff (l) :=
χ(ω(l)o + Lb(v, (ωc, ωs), T \ I)).
Two essential concepts that decrease the running time of our algorithm are the equiv-

alence and the dominance of labels.

Definition 3.1.2. Let l = (v, el, Pl, ω, I) and k = (w, ek, Pk, ν, J) be two labels. They are
equivalent if v = w, I = J and χi(ω) = χi(ν) for all components i ∈ [ι] of the objective.
And l dominates k, if v = w, I = J and ωs ≥ νs and ωc ≤ νc and χi(proji(ωo)) ≤
χi(proji(νo)) for all components i ∈ [ι] of the objective and this last inequality is strict
for at least one value of i.
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3.1 Algorithm Description

I

v

Label

T \ I

r

Lb

(a) Lb is a lower bound on the cost of an ex-
tension of a label to a complete solution.

T \ (I ∪ J)

I

Jv

w

r

OPT

Lb

(b) In the right-hand side of the feasibility
constraint, we replace the lower bound to
one point in our search space by a lower
bound to another point and an optimum
connection between the two points.

Figure 3.2: For a feasible lower bound, we require that the difference between the lower
bounds on two different points in our search space does not exceed the cost
of an optimum connection between these points. This is an extension to
feasible potentials, where we want that the difference between the potentials
of two vertices does not exceed the length of a shortest path between them.

We will only insert labels if they are not dominated and there is no equivalent label
already present, this is captured in the insert function in algorithm 4.

Remark. While we could include equivalent labels in the dominance relation, differen-
tiating between both will be helpful in our proofs.

Algorithm 4: The function for inserting labels.

1 Function insertLabel(Label l, Non-Permanent labels Q, Labels L):
2 if there is no label in L that is equivalent to l or dominates l then
3 L := L ∪ {l};
4 Insert l into Q;
5 Remove all non-permanent labels from L that are dominated by l;

Now, we have all tools required to describe the algorithm. We start by inserting
labels (t,□, ∅, (0, 0, s), {t}) for each s ∈ Σt into the set of labels L and the set of non-
permanent labels Q. As long, as Q is not empty, we pick a label l = (v, e, P, ω, I) from
Q ∩ L that lexicographically minimizes (ωeff (l), ωc,−ωs), remove it from Q and mark
it as permanent. If v = r and I = T , we are done and recursively reconstruct the
arborescence from l. Otherwise, we remove all non-permanent labels from L that are
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dominated by l. We propagate l along all incoming edges δ−(v) of v in G and merge
l with all permanent labels with vertex v and sink set disjoint from I. If Q is empty
and we did not find a solution, we report that there is no solution. The pseudocode is
written down in algorithm 5.

Algorithm 5: Our algorithm for optimum nonlinear delay Steiner arbores-
cences.
Input : An instance of the TMCMAP, a lower bound function Lb, and slew

sets (Σt)t∈T .
Output: (A, κ) minimizing χ(ωA(κ

−1(s))), or the information that there is no
solution.

1 L := Q := {(t,□, ∅, (0, 0, s), {t})|t ∈ T, s ∈ Σt};
2 while Q ̸= ∅ do
3 Choose l = (v, e, P, ω, I) ∈ Q ∩ L lexicographically minimizing

(ωeff (l), ωc,−ωs);
4 Remove l from Q and mark it permanent;
5 if v = r and I = T then
6 Recursively construct (A, κ) from l;
7 return (A, κ);

8 Remove all labels except permanent labels from L that are dominated by l;
9 for k = (v, e′, P ′, ω′, J) ∈ L permanent, with I and J disjoint do

10 merge(l,k,Q,L);

11 for (w, v) = e ∈ δ−G(v) do
12 propagate(l,e,Q,l);

13 Report that there is no solution.

3.2 Correctness Knowing Optimum Slews
In order to prove that the algorithm can find an optimum solution, we need to show that
there are slew sets (Σt)t∈T at the sinks, such that the following holds. The algorithm
constructs a label that encodes an optimum solution and the algorithm does not remove
all of these labels via the dominance relation. And we need to show that the returned
label encodes an optimum solution.
The majority of this section will deal with these first two parts of finding such slew

sets. At first glance, one would assume that it is sufficient to start with an optimum
solution and the slew values it attains at the sinks. This would be true, if the objective
were a weighted sum. However, in general the algorithm can not recover this optimum
solution (or one with the same slew values).
To understand this, we take a look at Figure 3.3, where we try to optimize the maxi-

mum delay to the sinks t1 and t2. We start out with the same label at t1. It is propagated
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r

v

t1 t2

x

Σt1 := {42} Σt2 := {25}

(0, 0), 1, 25

(0, 5), 6, 20

(0, 0), 1, 42
(0, 0), 1, 42

(3, 0), 5, 28
(2, 0), 4, 34

(5, 0), 6, 20
(6, 0), 5, 30

(5, 5), 12, 20 (6, 5), 11, 20

(7, 7), 14, 18 (8, 7), 13, 18

Figure 3.3: An example, where the red label at v dominates the blue label at v, but
red leads to an overall worse solution. The objective is the delay to t1 and
t2 respectively. They are evaluated by a maximum function. The numbers
show: (delay to t1, delay to t2), capacitance, slew.

once through the blue path and once through the red path. We end up with the red
and blue labels at v. Here, the red label dominates the blue label. We should note
that the red label has a much higher slew than the blue label. When we now propagate
both labels through the same edge (x, v), we are confronted with our main dilemma.
A higher slew is both better and worse in some sense. A higher slew is better in the
sense, that it is less restricted during backwards propagation, because the difference to
slew lower bounds is higher. However, a lower slew leads to less delay. After merging
both labels with the purple label that was propagated from t2 and has the same slew
as the blue label, both labels end up with the same slew. We propagate to the root
and end up with a value of 8 for the red label and 7 for the optimum blue label. The
algorithm would return the red label, because we pruned the blue label that belongs to
an optimum solution at v.

Note that for this to happen, we do need multiple sinks and it does not work for
weighted sums. It may seem like that when looking at the example, but in these cases,
we could prove that the blue solution was not optimum. This will become clear, when
reading the proof of Lemma 3.2.6.

What happened here? While the value of the maximum is optimum, this does not
mean that each branch is optimum under this condition. It can happen that a branch of
the solution, that does not attain the maximum, would be represented by a dominated
label. A dominating label may now have a lower objective value at this point in the
solution, but have a much higher slew. This higher slew may lead to a higher objective
value at the point, where the branch connects to the remaining solution. This difference
can be high enough to increase the objective cost at the source.

This seems counterintuitive. Why should we use a dominance relation that removes
optimum solutions in favour of suboptimum ones? The answer here is that it only
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r

v

t1 t2

x

Σt1 := {42} Σt2 := {25}

(0, 0), 1, 25

(0, 5), 6, 20

(0, 0), 1, 42 (3, 0), 5, 28

(5, 0), 6, 20

(5, 5), 12, 20

(7, 7), 14, 18

(a) We start with the initial optimum solu-
tion in blue from Figure 3.3.

r

v

t1 t2

x

Σt2 := {25}

(0, 0), 1, 25

(0, 5), 6, 20

(0, 0), 1, 42 (2, 0), 4, 34

(5, 0), 6, 20

(5, 5), 12, 20

(7, 7), 14, 18

(b) The blue dominated label at v is formally
replaced by the dominating red label.

r

v

t1 t2

x

Σt2 := {25}

(0, 0), 1, 25

(0, 5), 6, 20

(0, 0),1, 32 (1, 0),4, 24

(3, 0),5, 20

(3, 5),11, 20

(5, 7),13, 18

(c) The values of the labels are updated to
create new labels.

Figure 3.4: Constructing new optimum solution.

removes the label, but we can still use the dominating label to construct an optimum
solution. This new solution will have different slews at the sinks and the labels will have
different values. Let us show this on the same example as before.

Take a look at Figure 3.4. We construct a new optimum solution, by starting with
the blue optimum solution in Figure 3.4a. As a first step, we formally replace the blue
dominated label at v by the dominating red label in Figure 3.4b. By doing this, we
change the structure of the associated mapped arborescence. This means that we are
replacing the blue v-t1-path by the red one. Afterwards, we update the values of the
labels, by first recomputing the capacitances, then computing new slews from the source
to the sinks (we make use of the fact that slew -1 is invertible) and finally computing new
objective values, using obj. We end up with a new optimum solution that has different
sink slews in Figure 3.4c. In particular, these may not be part of our initial sink sets.
Here 32 was not in Σt1 . Note that our new solution has lower delay to t1 than the old
one. This process is formalized in Lemma 3.2.6.

The problem here is that the algorithm can only find this new optimum solution, if
the new slews at the sinks are in the initial sink sets. So we will show that we can
construct finite sets of slews at the sinks, such that this is always possible. The key idea
is to iteratively construct new optimum solutions using dominating labels. Each new
solution will improve in some entry, until we find a solution such that none of its entries
can be improved.
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Unfortunately, we need to know an optimum solution to find this set. In Section 3.3
we will then show how to work around this problem.
Let us start by showing that we can encode each (partial) solution with labels. Recall

from Chapter 2.3.1 that a solution consists of a mapped arborescence and a slew value
for each sink. Also, we defined the objective values for a mapped arborescence together
with a slew value for each sink.
Now, we want to show that if the sink slews of a solution are elements of the sink slew

sets (Σt)t∈T that are given to the algorithm as input, then we can construct a label that
represents this solution and has the same objective values. In short, we can represent
this solution by labels. Note that this means only that we can construct this label, not
that the algorithm can find it, nor that the algorithm does not prune it.

Proposition 3.2.1. Let A, κ be a mapped arborescence for H,N and st ∈ [0, St] for
t ∈ T . If st ∈ Σt for all t ∈ T , then we can construct a label lv for each vertex v ∈ V (A),
by only using initial labels from the algorithm and propagate and merge operations, such
that lv encodes the subarborescence Av,κ, rooted at v with objective ω(l) = ωA(v), where
ωA(v) is the objective value at v for the sink slews (st)t∈T .

Proof. We prove this by induction. For each t ∈ T this certainly holds, as the label
lt(t,□, ∅, (0, 0, st), {t}) is in the initial labels, encodes At, κ and (0, 0, st) = ωA(t).
Now let v ∈ V (A) and assume that for each outgoing edge (v, w) ∈ δ+(v), there

is a label lw that encodes Aw, κ with ω(lw) = ωA(w). Then we first create the labels
le := (κ(v), κ(e), {lw}, ωe, TA,w) for each e = (v, w) ∈ δ+(v), where ωe := (ω(lw)o +
obj(κ(e), TA,w, ω(lw)c, ω(lw)s), cap(κ(e), ω(lw)c), slew

-1(κ(e), ω(lw)c, ω(lw)s)). These are
exactly the labels resulting from propagating the existing labels lw along the edges e.
Then we choose an order of the outgoing edges {e1, . . . , ek} := δ+(v). We set (v, wi) :=

ei and create the merge labels l2 := (v,□, {le1 , le2}, (ωe1
o +ωe2

o , ω
e1
c +ωe2

c ,min{ωe1
s , ω

e2
s }, I2),

with I2 := TA,w1 ∪ TA,w2 and

li := (v,□, {li−1, lei}, (ω(li−1)o + ωei
o , ω(li−1)c + ωei

c ,min{ω(li−1)s, ω
ei
s }, Ii)

with Ii := Ii−1 ∪ TA,wi
for i = 3, . . . , k. Then Ik = TA,v and lk =: lv encodes Av, κ.

We have

ω(lv)o =
∑

e=(v,w)∈δ+(v)

ω(lw)o + obj(κ(e), TA,w, ω(lw)c, ω(lw)s) = ωA(v)o,

ω(lv)c =
∑

e=(v,w)∈δ+(v)

cap(κ(e), ω(lw)c) = ωA(v)c and

ω(lv)s = min
e=(v,w)∈δ+(v)

slew -1(κ(e), ω(lw)c, ω(lw)s) = ωA(v)s.

This shows that we can, in theory, explore the whole solution space (generated by the
input slews) by repeatedly applying propagate and merge functions. We notice that a
label and its predecessors form an arborescence:
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Definition 3.2.2. The label arborescence of l = (v, e, P, ω, I) is the arborescence Al

constructed by starting with l as the root and recursively adding the label arborescences
Ap and edges (l, p) to the graph for all p ∈ P . We call a label a ∈ V (Al)\{l} an ancestor
of l.

We will say that a label exists if it is either one of the initial labels

{(t,□, ∅, (0, 0, s), {t}) | t ∈ T, s ∈ Σt}
or it can be created from the initial labels by a finite sequence of propagates and merges.
Before we construct the sink slew sets, let us finish the easy part. If the algorithm

creates a label that encodes a complete optimum solution in some iteration, then it also
returns an optimum solution. We take a closer look at the order, in which the algorithm
explores the labels. We start by proving the first invariant.

Lemma 3.2.3. During the algorithm, the minimum effective objective of the labels in Q
in line 3 never decreases.

Proof. First, we prove that the lowest effective objective is assumed at an initial label:

Claim (1). For any t ∈ I ⊆ T , and any label k = (v, e, P, ω, I) that originates from
l = (t,□, ∅, (0, 0, s), {t}) (l ∈ Ak) with s ∈ Σt, it holds that

ωeff (l) ≤ ωeff (k).

We start by observing that ωeff ((t,□, ∅, (0, 0, s), {t})) = χ(Lb(t, (0, s), T\{t})). By the
definition of feasible lower bounds, we know for each component i ∈ [ι] of the objective
and ν ∈ opti(v, ωs, ωc, I \ {t}+ (t, (0, 0, s))) that

χi(proji(Lb(t, (0, s), T \ {t}))) ≤ χi(proji(Lb(v, (ωc, ωs), T \ I)) + ν).

Since k cannot be better than the optimum, we have χi(ν) ≤ χi(proji(ωo)) and hence

χ(Lb(t, (0, st), T \ {t})) = M
i∈[ι]

χi(proji(Lb(t, (0, st), T \ {t})))

≤ M
i∈[ι]

χi (proji(Lb(v, (ωc, ωs), T \ I) + ωo)) = ωeff (k).

This proves Claim (1).

Second, we prove that the effective objective cannot decrease due to a merge.

Claim (2). Let the label m be created from l = (v, e, P, ω, I) by a merge with k =
(v, f, P ′, µ, J) in line 10. Then ωeff (m) ≥ ωeff (l).

For each component i ∈ [ι] of the objective, let ν ∈ opti(v, ω(m)s, ω(m)c, J + (v, ω)).
For the effective objective, we get

ωeff (l) = χ(ωo + Lb(v, (ωc, ωs), T \ I)) = M
i∈[ι]

χi(proji(ωo + Lb(v, (ωc, ωs), T \ I)))

≤ M
i∈[ι]

χi(proji(Lb(v, (ω(m)c, ω(m)s), T \ (I ∪ J)) + ν + proji(ωo))).
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However, we know that

χi(ν + proji(ωo)) = OPTi(v, ω(m)s, ω(m)c, J + (v, ω)) ≤ χi(proji(ω(m)o)),

because χi(proji(ω(m)o)) cannot be better than the optimum. By tree monotonicity, we
get that

ωeff (l) ≤ M
i∈[ι]

χi(proji(Lb(v, (ω(m)c, ω(m)s), T \ (I ∪ J)) + ω(m)o)) = ωeff (m).

This proves Claim (2).

Third, the effective objective cannot decrease due to a propagate.

Claim (3). Let the label p = (w, f, {l}, µ, I) be created from l = (v, e, P, ω, I) by propa-
gating l through f ∈ E(H) in line 12. Then ωeff (p) ≥ ωeff (l).

For each component i ∈ [ι] of the objective, let ν ∈ opti(w, µs, µc, ∅+(v, ω)). We have

ωeff (l) = χ(ωo + Lb(v, (ωc, ωs), T \ I)) = M
i∈[ι]

χi(proji(ωo + Lb(v, (ωc, ωs), T \ I)))

≤ M
i∈[ι]

χi(proji(Lb(w, (µc, µs), T \ I)) + ν + proji(ωo)). (3.1)

The optimum value in the last sum is at most the increase of the objective value in
the propagate step. This means that χi(proji(ωo) + ν) = OPT(w, µs, µc, ∅ + (v, ω)) ≤
χi(proji(µo)). By inserting into the above inequality, we again get ωeff (l) ≤ ωeff (p). This
proves Claim (3).

By Claim (1), the minimum effective objective is assumed in the first iteration. Now
consider an iteration of the algorithm. When we remove l from Q in line 4, the minimum
cannot decrease, because we picked a minimum label from Q in line 3. All labels that are
added to Q in this iteration are created either in line 10 by a merge step or by a propagate
step in line 12. For the merged labels Claim (2) shows that this cannot decrease the
minimum (below ωeff (l)). For the propagate labels Claim (3) shows that this cannot
decrease the minimum (below ωeff (l)). So the minimum has not decreased. This proves
the first invariant that the minimum effective objective in Q never decreases.

With this result, we can prove our second invariant:

Lemma 3.2.4. Let L be the set of all labels that are added to L and never removed
during the algorithm. In each iteration the following holds: Each label l ∈ L with

ωeff (l) < M := max
l′∈L permanent

ωeff (l
′),

is also in L and permanent.
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Proof. First, we observe that if a label is in L, then its ancestors are in L as well. A label
is only added to L if it is an initial label or all its parents are in L and permanent. Since
the algorithm does not remove permanent labels and initial labels are never dominated,
they have to be in L as well.
In the beginning, all initial labels are in L and Q.
For any initial label i = (t,□, ∅, (0, 0, s), {t}) and any non-initial label k = (v, e, P, ω, I)

derived from i, we have ωeff (i) ≤ ωeff (k). By the lexicographic ordering, the first chosen
label i minimizes ωeff (i) among the initial labels (and thus among all labels). Thus, the
claim holds after the first iteration.
Now suppose the invariant holds up to iteration n, but it does not hold in iteration

n + 1. This means that after making some label m = (v, e, P, ω, I) permanent in line 4
of the algorithm, there is label k ∈ L that is not permanent and maybe not in L, but
ωeff (k) < M := ωeff (m).
This implies that there is a label l ∈ L, with ωeff (l) < M that is not permanent, such

that all its predecessors are in L and permanent or it is an initial label: If k does not
fulfill this, we take a look at its label arborescence Ak. We know that all ancestors a of
k are in L as well and M > ωeff (k) ≥ ωeff (a) by Lemma 3.2.3. In particular, we know
that the leaves of Ak were in L and cannot be dominated. So we start with a = k. As
long as a is not an initial label or has a predecessor p that is not permanent, we replace
a by p. We either end up at a non-permanent initial label, which fulfills our criteria,
or at another label, which is not permanent but all its predecessors are permanent. Let
the resulting label be l.
Then merge and propagate have been called on its predecessors and insertLabel has

been called for l. Since l ∈ L, l or an equivalent label must have been added to L and
Q and was also not removed from L. As it has not been chosen from Q, because it is
not permanent, it must hold that

ωeff (l) ≥ min
l′∈Q

ωeff (l
′) = ωeff (m) > ωeff (l).

This is a contradiction. Thus, the invariant must hold in iteration n + 1 as well. By
induction, the invariant holds in each iteration.

This invariant means in particular that, when the algorithm returns a solution, it has
minimum value among the solutions that it is able to find.

Corollary 3.2.5. If Algorithm 5 returns a solution and the set L of labels that are added
and never removed contains a label that encodes an optimum solution, then the returned
solution is optimum.

Proof. When the first label at r with complete sink set is made permanent, it must have
minimum objective cost among all labels at r with complete sink set by Lemma 3.2.4.
As L contains a label that encodes an optimum solution, this minimum must be the
value of an optimum solution. So the returned solution must be optimum.

So now we know that the algorithm is correct under two assumptions. First, its
runtime is finite and second, during the runtime, we do not remove all optimum solutions.
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For both these assumptions we will show that they are true because of our choice of the
dominance relation. On the one hand, it will guarantee that we can find a finite set of
starting slews and only need to consider a finite number of labels before we exceed the
value of an optimum solution. On the other hand, it will guarantee that not all optimum
solutions are pruned.
This is due to its main property. In essence, it says that if we have a solution to our

problem (optimum or not), and a label representing a subarborescence of that solution
is dominated, then we can use the dominating label to construct a better solution.

Lemma 3.2.6. Let (A, κ) be a solution to our problem with initial slew values S =
{ωA(κ

−1(t))s|t ∈ T} and let α := ωA(κ
−1(r)). Let l be a label that belongs to a sub-

arborescence of A and is dominated by or equivalent to a label k. Let (B, ϕ) be the
solution that arises from (A, κ) by replacing the subarborescence corresponding to l by
the subarborescence corresponding to k. Then there are slew values S ′ = {s′t|t ∈ T} with
an updating procedure that computes S ′ and only depends on (B, ϕ) and αs, such that
starting with ωB(ϕ

−1(t))s := s′t we have for β := ωB(ϕ
−1(r))) that

• αs = βs and χ(βo) ≤ χ(αo),

• ωB(v)s ≤ ωA(v)s and ωB(v)c ≤ ωB(v)c for each vertex v ∈ V (A) ∩ V (B) and

• χi(proji(ωB(v)o)) ≤ χi(proji(ωA(v)o)) for each component i ∈ [ι] of the objective
and each vertex v ∈ V (A) ∩ V (B).

Proof. Let m be a label representing (A, κ) with its label arborescence Am that contains
l. Our goal is to construct a new label arborescence by replacing the label arborescence
of l by the one belonging to k and then updating only the objective values.
So let A′

m be the arborescence that arises from Am by replacing the subarborescence
rooted at l by the label arborescence of k. A′

m does not necessarily belong to a sequence
of propagates and merges yet. For each label a of A′

m, we denote by ω′(a) the objective
value of a after updating all values.
We start by updating all the capacitances. To do this, we traverse A′

m in reverse
topological order. For each label a = (v, e, P, ω, I). If k is not an ancestor of a, then
we do nothing, because none of its ancestors have changed and the capacitance value is
still correct. In particular, we know that ω′(a)c = ω′(a). For a = k, we set ω′(k)c :=
ω(k)c ≤ ω(l)c. The final case is that k is an ancestor of a. Assume that for all parents
p ∈ P , we already have ω′(p)c ≤ ω(p)c. If a is a merge label, let P = {p1, p2} and set
ω′(a)c := ω′(p1)c + ω′(p2)c ≤ ω(a)c. Otherwise, a is a propagate label and we denote
P =: {p}. Set ω′(p)c := cap(e, ω′(p)c) ≤ cap(e, ω(p)c) = ω(a)c, because cap(e, ·) is either
constant or nondecreasing. By induction, we now have that ω′(a)c ≤ ω(a)c for each label
a of A′

m.
Next, we update the slews. We start by setting ω′(m)s := βs := αs. Then we tra-

verse A′
m in topological order. Let a = (v, e, P, ω, I) be the current label and assume

that ω′(a)s ≤ ω(a)s. If a is created by a merge step, we denote the predecessors by
P =: {p1, p2} and set ω′(p1) := ω′(p2) := ω′(a). Since ω(a) = min{ω(p1)s, ω(p2)s},

77



3 Optimum Algorithm for the Timing-Driven Min-Cost Mapped Arborescence Problem

capacitance

tail slew

ω′(p)c

slew -1(e, ω′(p)c, ω(p)s)

ω(p)c

ω(a)s

slew -1(e, ·, ω(p)s)

(a) The slew -1 function is nonincreasing in
the capacitance for fixed slew ω(p)s at
the head of the edge e.

head slew

tail slew

s

ω′(a)s

s′

ω(a)s

ω(p)s

slew -1(e, ω′(p)c, ω(p)s)

slew -1(e, ω′(p), ·)

(b) The slew function is strictly increasing
(on [minslew(e, ω(p′)c),∞)) in its slew
entry for fixed downstream capacitance
ω(p′)c.

Figure 3.5: Using the properties of the slew function, we first establish the order of the
slew values at the tail in (a). Then we use them to find the order of the head
slew values in (b).

we know that also ω′(p) ≥ ω(p)s for p ∈ P . If the label was created by a propa-
gate step, let P := {p}. We note that slew -1(e, ω′(p)c, ·) is invertible and surjective
onto R≥0 on the interval [minslew(e, ω′(p)c),∞). So we let s ∈ R≥0 be the unique
value such that slew -1(e, ω′(p)c, s) = ω′(a)s. Let furthermore s′ be the value such that
slew -1(e, ω′(p)c, s′) = ω(a)s and recall that slew -1(e, ω(p)c, ω(p)s) = ω(a)s. Then we
know

slew -1(e, ω′(p)c, s
′) = ω(a)s = slew -1(e, ω(p)c, ω(p)s) ≤ slew -1(e, ω′(p)c, ω(p)s)

and since slew -1 is strictly increasing in its slew entry, we know that s′ ≤ ω(p)s. Similarly,
we use the fact that

slew -1(e, ω′(p)c, s) = ω′(a)s ≤ ω(a)s = slew -1(e, ω′(p)c, s
′)

to see that s ≤ s′. Hence, ω′(p)s = s ≤ ω(p)s. Figure 3.5 visualizes the relation of the
slew values. By induction, we again see that ω′(a)s ≤ ω(a)s for all a in Am. Furthermore,
we note that by this definition, no slew can be below the slewlimit of its nodes incoming
edge.
Then finally, we need to update the objective values. We traverse A′

m in reverse
topological order and compute the objective values as normal. Let a = (v, e, P, ω, I) be
the current label. If a is an initial label, we set ω′(a)o := 0. If a is a propagate label, let
p be the predecessor of a. We set ω′(a)o := ω′(p)o + obj(e, I, ω′(p)c, ω′(p)s). Note that
obj(e, I, ω′(p)c, ω′(p)s) ≤ obj(e, I, ω(p)c, ω(p)s). If a is a merge label, let its predecessors
be {p1, p2} := P . We set ω′(a)o := ω′(p1)o + ω′(p2)o.
Now we set S ′ := {s′t := ω′(lt)s | lt leaf of A′

m with vertex t}. Then the root of A′
m

encodes (B, ϕ) and for the initial slew values S ′, we have ωB(v) = ω′(a) if a ∈ V (A′
m)

encodes the subarborescence of (B, ϕ) rooted in v ∈ V (B).
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Now let v ∈ V (A) be the vertex that belongs to l and k and let D ⊆ δ+A(v) be the set
of outgoing edges at v that is connected by the subarborescence encoded by l. Denote
by D̄ := δ+A(v) \D the remaining edges. Then D̄ ⊂ δ+B(v). Denote by D′ := δ+B(v) \ D̄.
We have

βo =
∑

e=(x,y)∈E(B)

obj(ϕ(e), TB,y, ωB(y)c, ωB(y)s)

=
∑

(x,y)∈E(Bv,D′ )

obj(ϕ((v, w)), TB,w, ωB(w)c, ωB(w)s)

+
∑

e=(v,w)∈E(B)\E(Bv,D′ )

obj(ϕ(e), TB,y, ωB(y)c, ωB(y)s)

≤ ω(k)o+
∑

e=(v,w)∈E(A)\E(Av,D′ )

obj(ϕ(e), TB,y, ωB(y)c, ωB(y)s) .

But since k dominates l or is equivalent to it, we know for each of the components i ∈ [ι]
of the objective that χi(proji(ω(k)o)) ≤ χi(proji(ω(l)o)). Hence, by using that χi is
nondecreasing and has the tree-monotonicity property,

χi(proji(βo)) ≤ χi


proji(ω(k)o) +

∑

e=(x,y)∈E(A)\E(Av,D′ )

obji(ϕ(e), TB,y, ωB(y)c, ωB(y)s)




≤ χi


proji(ω(l)o) +

∑

e=(x,y)∈E(A)\E(Av,D′ )

obji(ϕ(e), TB,y, ωB(y)c, ωB(y)s)


 = χi(proji(αo)).

Thus

(χ1(proj1(βo)), . . . , χ|T M|(proj|T M|(βo))) ≤ (χ1(proj1(αo)), . . . , χ|T M|(proj|T M|(αo))))

elementwise. Since M is nondecreasing, we conclude

χ(βo)) = M((χ1(proj1(βo)), . . . , χ|T M|(proj|T M|(βo))))

≤ M((χ1(proj1(αo)), . . . , χ|T M|(proj|T M|(αo)))) = χ(αo).

Remark. Recall, that we said in the beginning of this section, that for weighted sum
objectives we do not remove labels that belong to optimum solutions. If our evaluation
operator is a weighted sum, the above inequalities regarding the objective costs become
strict. So we construct a strictly better solution in this case, which cannot happen for
optimum solutions.

There are some key implications from this Lemma. The first one is that when we
construct a new solution with this procedure, we do not change the slew at the root.
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But the slews at the sinks only depend on the arborescence and the slew at the root. We
will use this to construct the slew sets (Σt)t∈T . If we start from an optimum solution,
only the arborescence will matter. The second one is that we can neglect optimum
solutions that have a label which is dominated by one of its ancestors.

Proposition 3.2.7. Let l belong to any optimum solution. If Al contains a label k that
is dominated by or equivalent to one of its ancestors a ∈ Ak, we can construct slews S ′

and an optimum solution encoded by a label l′ such that no label in Al′ is dominated by
or equivalent to one of its ancestors.

Proof. Since they both a and k connect the same sink set, there is a path from k to a
with no branches on it. We can replace k by a and thus remove this path. By Lemma
3.2.6, we can retrieve a new optimum solution this way. But since we removed the path,
its label arborescence contains less labels. We should note here for later that in this case
the objective value at k/a has decreased in at least one of the tree monotone components
and the others did not increase.
We iterate this process as long as there are still labels that are dominated by or

equivalent to their ancestors in our label arborescence. Since we reduce the size of the
label arborescence each time, this must terminate. For the resulting l, we now know that
Al contains no labels that are dominated by or equivalent to one of their ancestors.

The algorithm does not consider labels with ancestors that are dominated by their
ancestors, but the proposition tells us that this is not a problem. However, this restriction
of not having an ancestor that is dominated by or equivalent to any of its ancestors limits
the depth of arborescences that we need to consider.

Proposition 3.2.8. Let OPT be the objective cost of an optimum solution. Let L
denote the subset of the labels that can be generated from the sink slews (Σt)t∈T that only
contains labels with objective cost at most OPT and that do not have an ancestor that
is dominated by or equivalent to one of its ancestors. The depth of any arborescence
encoded in L is at most n · (

⌈
OPT
C

⌉
+ k), where n := |V (H)|, k := |T | and C is the

constant from the definition of a feasible objective function(2.3.3).

Proof. Let n := |V (H)| denote the number of vertices in H, k := |T | the number of
sinks. Let l be a label with no dominated ancestor, no two equivalent ancestors and
χ(ω(l)) ≤ OPT. The label arborescence of l contains at most k − 1 labels that arise
from a merge operation, because after k − 1 merges, all sinks are connected by the
corresponding mapped arborescence.
Now consider a path P in Al from l to a leaf (an initial label). First note that by

a merge the objective value (and cost) and capacitance do not decrease and the slew
does not increase. The path can be partitioned into m ≤ k subpaths P1, . . . , Pm, each
ending in either a merge label or an initial label and all other labels of the subpaths are
propagate labels. Let Pi be one of those paths. Assume that |V (Pi)| > n and take a
subpath P ′ of Pi of length n + 1. The corresponding walk in H must contain a loop,
because H has n vertices and the walk visits n+ 1 vertices.
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3.2 Correctness Knowing Optimum Slews

Let us examine a subsequence L of P ′ that defines a loop. Let x be the start of L and
y be the end. Then x and y store the same vertex and sink set I. Assume that none
of the edges on the loop was constant. By the definitions of obj, cap, slew -1, we have
ω(x)o ≥ ω(y)o, ω(x)c ≥ ω(y)c and ω(x)s ≤ ω(y)s. This means that either x and y are
equivalent or x is dominated by y. This is a contradiction. So we know that the loop
must contain a constant edge. This implies that χ(ω(x)o) > χ(ω(y)o) + C, where C is
the constant from the definition of a feasible objective function (Definition 2.3.3). This
works, because our path is part of an arborescence connecting the root to the sinks. So
in particular, for all z ∈ L, ω(z)o ∈ Ω(obj, I) (see Definition 2.3.3).
Since any subpath of length n+1 must contain a loop, we know that each of the paths

Pi for i = 1, . . . ,m must contain at least ⌊V (Pi)
n

⌋ loops (n, because the ends of subpaths
are allowed to overlap). We also know that the whole path P can contain at most ⌈OPT

C
⌉

loops, because χ(ω(l)) ≤ OPT. So the length of P is bounded by

|V (P )| ≤
⌈
OPT

C

⌉
·n+(n−1) ·m+m ≤

⌈
OPT

C

⌉
·n+(n−1) ·k+k = n · (

⌈
OPT

C

⌉
+k).

This means that the depth of a label arborescence belonging to such a label is bounded
by n · (

⌈
OPT
C

⌉
+ k) and hence the depth of the encoded mapped arborescence is bounded

by the same number as well.

This depth limit also implies that the number of arborescences that we need to consider
is finite. Now we have all that we need, in order to construct our slew set.

Lemma 3.2.9. For each sink t ∈ T let Ut ⊂ [0, St] be a finite set of slews. And let o be
an optimum solution with sink slews st ∈ [0, St] for each t ∈ T (that has a representation
as a label such that no ancestor is dominated by or equivalent to any of its ancestors).
There is a finite set of slews (Σt)t∈T for each sink with Ut ⊆ Σt such that the following
holds:
Let L be the set of labels from Proposition 3.2.8. We recursively define the sets Oi for

i ∈ N. We set O0 := {o}. For i > 0, Oi is the set of optimum solutions that can be
derived by the following procedure: If l ∈ L represents an optimum solution o′ ∈ Oi−1

and a label m ∈ Al is dominated by another label k ∈ L, then we replace m by k as in
Lemma 3.2.6 to retrieve a new optimum solution and take all shortened versions as in
3.2.7. Then all optimum solutions in

⋃
i∈NOi are represented by a label in L.

Proof. We iteratively construct the slew sets by always adding missing slews. We start
with the slew sets Σ

(0)
t := Ut∪{st} for t ∈ T . Let L0 be the set of labels from Proposition

3.2.8 for the starting slews (Σ
(0)
t )t∈T . Furthermore, we set O′

0 := {o}. By construction
L0 contains O′

0. Furthermore, L0 is finite. This is a direct consequence of Proposition

3.2.8 and the fact that Σ
(0)
t is finite for each t ∈ T . The idea now is to always add

missing slews. But since all new slews are generated by the updating procedure from
Lemma 3.2.6, the slew at the root does not change. Since we can only represent a finite
number of arborescences and the sink slews from the updating procedure only depend
on the slew at r and arborescence, we end up with a finite set of slews. In detail:
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Let Σ
(i)
t ,Li, O

′
i be already constructed for some i ∈ N and all t ∈ T . Let Õ contain

all solutions that can be generated from solutions in O′
i by replacing a label that is

dominated by another one in Li. Then all solutions in Õ have the same slew at r as o.
Let Pt for t ∈ T be all slews that solutions from Õ have at sink t. We set O′

i+1 := O′
i∪ Õ,

Σ
(i+1)
t := Σ

(i)
t ∪ Pt and Li+1 to be the set from 3.2.8 for sink slews (Σ

(i+1)
t )t∈T . Then

all solutions from O′
i+1 are represented in Li+1 by construction and all of them have the

same slew at r as o.
We set O′ :=

⋃
i∈NO

′
i and Σt :=

⋃
i∈N Σ

i
t for t ∈ T . Σt consists exactly of the union of

Ut and the slews of solutions in O′ at t ∈ T .
All solutions in O′ have the same slew at r as o. Furthermore, all solutions in O′ are

representable by a label that has no ancestors that are equivalent to or dominated by any
of their ancestors. By Proposition 3.2.8 this means that there are only a finite number
of arborescences in O′. As all elements of O′ (except for o) have been constructed by
the replacement procedure from Lemma 3.2.6, we can conclude that the (Σt)t ∈ T are
finite. Thus, O′ is finite as well.
This finiteness, implies that there is a number k ∈ N, such that O′ =

⋃k
i=0Oi, Σt =⋃k

i=0Σ
i
t for t ∈ T and Lk is the set from Proposition 3.2.8 for the starting slews Σt.

Finally, this means that
⋃

i∈NOi ⊆ O′.

We have constructed sink slews that are finite and thus generate a finite set of labels
that are relevant for us. Furthermore, we know that the labels generated by this set
of slews contain an optimum solution such that we do not leave our set of labels if we
apply repeated replacement operations. With this basis, we will be able to show that
the algorithm does not remove all optimum solutions.

Lemma 3.2.10. For each sink t ∈ T let Ut ⊂ [0, St] be a finite set of slews. And let o
be an optimum solution. Let (Σt)t∈T be the sink slews generated by Lemma 3.2.9. Let L
denote the set of labels generated from (Σt)t∈T that are not dominated by, or equivalent
to one of their ancestors. There is a label l ∈ L that belongs to an optimum solution and
none of its ancestors (nor itself) is dominated by another label in L.
Proof. Let l ∈ L be a label that represents o. First, we note that for k ∈ V (Al), we
have χ(ω(k)o) ≤ OPT, because it belongs to an optimum solution. Additionally, k is
never dominated by a label with value greater than OPT. So we may restrict now to
LOPT := {l ∈ L | χ(ω(l)o) ≤ OPT}. This set is finite by Proposition 3.2.8 and the fact,
that the (Σt)t∈T are finite.
Now consider the label arborescence Al. Let A′

l be a subarborescence of Al that is
rooted at l, such that none of its labels is dominated in LOPT and none of its labels can
become dominated in LOPT by an exchange operation as in the proof of Lemma 3.2.6
on a label a ∈ V (Al) \ V (Al)

′. Note that the label l forms such a subarborescence.
For the remainder of this proof, we will only write dominated, when we refer to

dominated by a label in LOPT.
We want to transform Al (and with it A′

l) by repeated replacement operations on
labels in V (Al) \ V (Al)

′, such that in each iteration either A′
l grows, or Al does not

contain a dominated label.
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3.2 Correctness Knowing Optimum Slews

If A′
l = Al or Al contains no labels that are dominated in LOPT, we are done. Other-

wise, there is at least one dominated label in V (Al) \ V (A′
l).

Let l1, . . . , lk for some k ≤ |T | be the labels of A′
l such that at least one predecessor is

in V (Al)\V (A′
l). Let a ∈ V (Al)\V (A′

l) be a label that is dominated by another label b.
If we replace a by b, as in Lemma 3.2.6, there are three observations. First, we can apply
the procedure from Proposition 3.2.7 in order to get to a label that is in LOPT. This is
guaranteed by Lemma 3.2.9. Second, the new objective value at a/b has decreased in at
least one of the tree monotone components and the others did not increase. Technically,
a/b could have been removed by the shortening procedure. Then this holds for the label
that is closest to a/b on the path from l to a/b and still exists. Third, no label in A′

l has
been replaced or removed, only their objective values might have changed.
The second observation implies that b cannot dominate a label in V (Al)\V (A′

l) again,
unless a label on the path from l to a/b is replaced.
As long as there is a child a of li for i ∈ [k] that is not dominated and cannot become

dominated by an exchange operation, we add a to A′
l. If there is none, but there is a

dominated label in V (Al) \ V (A′
l), we choose one such label a with no dominated labels

on the path from A′
l to a. Then we replace a by a dominating label b. We keep a set Q of

all the labels with replacements that are still part of Al. So we add the vertex a/b ∈ Al

to Q, but remove all ancestors of a from Q (if there were any). By our observations,
b can only be used again for dominance if a/b is removed from Q (not replaced). This
however, means that we add a label to Q that is closer to A′

l than a/b. Furthermore,
labels in A′

l can never be replaced. Thus, the vertices of Al that are incident to A′
l will

not be removed from Q and the labels that have been used for dominating them become
permanently unavailable for dominance.
So each time we do one of these replacements, one label becomes temporarily unavail-

able for dominance. Additionally, maybe some labels become available for dominance
again, but then a label in Q comes closer to A′

l.
However, the number of available labels, as well as the path length in A′

l and thus
the size of Q are finite. This means that either we run out of labels that can dominate.
Then we are done. Or one of the vertices of Al that are incident to A′

l cannot become
dominated by exchange operations any longer, so A′

l grows.
As A′

l cannot grow indefinitely, this must stop at some point. Then we have found
our solution without dominated ancestors.

Finally, we can prove correctness in our theoretical setting.

Theorem 3.2.11. If there is an optimum solution to the given instance, there are sink
slews (Σt)t∈T , such that Algorithm 5 returns after a finite number of iterations and the
returned solution is optimum.

Proof. Since there is an optimum solution, we can choose one and generate the slews from
Lemma 3.2.9. By Proposition 3.2.8, we know that the algorithm considers only finitely
many labels with value at most that of an optimum solution. Lemma 3.2.10 shows that
there is at least one optimum solution that is considered by the algorithm, because none
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(a) A plot of accconst .
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(b) A plot of accfactor .

Figure 3.6: Examples of accuracy functions. The gray dashed line marks the identity
function.

of the labels it consists of are dominated. By Corollary 3.2.5 this is sufficient to show
optimality.

In total, we have proved that, if we knew all the slews at the outputs for a large set of
optimum solutions, we would be able to compute the optimum solution using algorithm
5. Of course, we do not know them in the beginning. We can fix this by essentially
guessing the values. If we do it correctly, we can still guarantee that the solution we
find is only a small fraction away from the optimum.

3.3 Guessing the Slews
The idea to getting rid of the assumption that we know all the slews of optimum solutions
is to guess some slews that are close by. This way, we allow a small error in the slew.
If we are able to bound the error in the objective cost induced by this slew error, we
can get an approximation guarantee. This is similar to ν-dominance [Vyg06] used in the
timing propagation in Chapter 1.2.5.
The proofs are easier, if we use a simple guessing strategy, like guessing slews with

a constant distance in between. However, the practical running time both increases
with a higher number of slew guesses and with an increasing error. This is why it can
make sense to tailor the way we guess the slews to the actual objective functions. So we
instead use a more abstract and flexible slew accuracy function.
Let acc : [0, S] → [0, S] be a slew accuracy function, where S is the slew upper bound

from our instance. For a slew accuracy function, we require that it is continuous, strictly
increasing, except on an interval [0, s′] for 0 < s′ ≤ S, where it is constant 0, acc(s) ≤ s
and s − acc(s) is nondecreasing. An easy example of such a function is accconst(s) :=
max{0, s − δ} for some δ > 0 (Figure 3.6a), or accfactor(s) := min{accconst(s), s

1+γ
} for

an additional γ > 0 (Figure 3.6b). Our goal will be to guess a discrete set of starting
slews and modify Algorithm 5 in such a way, that it explores solutions that are optimum
(in the sense that the encoded mapped arborescence is optimum), but have a wrong
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b := slew -1(e, ωc, acc(ωs))

u := slew -1(e, ωc, ωs)

acc(ωs)

ωs

σ1(u) = acc(u)

v w

l = (w, el, Pl, ω, I)

e

slew -1(e, ωc, ·)slew guesses Σ(b, u)

Figure 3.7: The slew interval [acc(ωs), ωs] for the slew ωs on the right is mapped by the
slew function to the interval [b, u] on the left, when we propagate l through
e. We need to guess the slews in Σ(u, b).

slew s, such that the optimum solution has a slew sopt ∈ [acc(s), s]. Then we can get an
approximation guarantee based on the error in the slew. In this sense, while we are using
the slews we have for computing the objective values, the slew values can be considered
an upper bound on the slew value that an actual solution would have.
To make this work, we guess some starting slews, but also we need to guess some slews

during the propagate steps. For an upper bound u ∈ [0, S], we define the sequence of
slew guesses as σ(u)0 := u and σ(u)i := acc(σ(u)i−1) for i > 0. We are generally only
interested in the elements of the sequence that are above some lower bound. Thus, we
define the set of slew guesses for the upper bound and a lower bound l ∈ [0, S] as

Σ(l, u) := {min{S, u}} ∪ {σi(u) | i ∈ N, σi(u) > l}.

Then, we define the starting slew guesses for each sink t ∈ T as Σt := Σ(0, St). Now,
we know for the starting slews that for each slew s ∈ [0, St], there is an element σ ∈ Σt

with s ∈ [acc(σ), σ].
However, this is not enough, as this property is not guaranteed to be stable under

propagates: If for an edge e ∈ E(H), a slew s ∈ [0, S] and capacitance c ∈ R≥0, we have
that

slew -1(e, c, s)− slew -1(e, c,max{minslew(e, c), acc(s)})
> slew -1(e, c, s)− acc(slew -1(e, c, s)),

we need to guess slews in the propagate step as well. We do this by creating labels with
all slews in Σ(slew -1(e, c,max{minslew(e, c), acc(s)}), slew -1(e, c, s)). The new function,
called propagate+, is written down in Algorithm 6. Figure 3.7 illustrates the slew
guesses. Finally, we need to use a weaker version of dominance:
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Definition 3.3.1. Let α > 1. A label l α-dominates a label k if l dominates k, we have
for each component i ∈ [ι] of the objective that α · χi(proji(ω(l)) ≤ χi(proji(ω(k))) and
one of these inequalities is strict.

This α in the α-dominance will be our approximation guarantee. It depends on the
choice of the slew accuracy function. Let q ∈ N such that Ω = Rq

≥0. The error we make
is

α := max
e∈E(H),
∅≠I⊆T,
i∈[q]

sup
c∈[0,caplim(e)],

s∈[minslew(e,c),S]

obj(e, I, c, s)i
obj(e, I, c,max{acc(s),minslew(e, c)})i

.

If we replace dominance by α-dominance in our algorithm, it becomes an (exponential
time) α-approximation algorithm.

Algorithm 6: The propagation with slew guesses.

1 Function propagate+(l = (w, el, Pl, ω, I), e = (v, w) ∈ E(G), Non-Permanent
labels Q, Labels L):

2 u := slew -1(e, ωc, ωs);

3 b := slew -1(e, ωc,max{acc(ωs),minslew(e, c)});
4 for σ ∈ Σ(b, u) do
5 k := (v, e, {l}, (ωo + obj(e, I, ωc, ωs), cap(e, ωc), σ), I);
6 if ω(k) <∞ then
7 insertLabel(k, Q, L);

In fact we will prove that the explored search space of our algorithm (if we run it long
enough) contains a label that encodes the same structure as an optimum solution, but
has slightly higher slews at each label. Let us define, what this means:

Definition 3.3.2. Let O := (A, κ, (st)t∈T ) be an optimum solution to our problem. Let
l be a label that encodes our optimum solution (produced from initial labels with starting
slews (st)t∈T ). A slew-approximate optimum solution for O is a label arborescence Al′

with a label l′ such that there is a bijection φ : V (Al) → V (Al′) with

1) φ((v, e, P, ω, I)) = (v, e, φ(P ), ω′, I),

2) ωs ∈ [acc(ω′
s), ω

′
s] and ω

′
s ∈ [minslew(e, ωc), S]

3) ωc = ω′
c and

4) ω′
o ≤ α · ωo entrywise,

for each (v, e, P, ω, I) ∈ V (Al).

First, we show that we can construct a slew-approximate optimum solution for each
optimum solution using only our starting slews and propagate+ and merge.
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Proposition 3.3.3. Let a slew accuracy function acc be given. Let O := (A, κ, (st)t∈T )
be an optimum solution to our problem. Let l be a label that encodes O. Let Σt := Σ(0, St)
for each t ∈ T . We can construct a slew-approximate optimum solution (Al′ , φ) for O
from our initial labels {(t,□, ∅, (0, 0, s), {t}) | t ∈ T, s ∈ Σt}, using propagate+ and
merge.

Proof. We do this by traversing Al in reverse topological order and constructing a label
satisfying 1) – 4) from Definition 3.3.2 for each label in Al,.
Let us start with the initial labels. For an initial label a ∈ V (Al) at sink t ∈ T , we

select the lowest slew s ∈ Σt with s ≥ ω(a)s. By definition of Σt, we have s = σ(St)i for
some i ∈ N and by selection of s, we have acc(s) = σ(St)i+1 < ω(a)s. So we select the
initial label (t,□, ∅, (0, 0, s), {t}) =: φ(a) as our matching label in Al′ and it fulfills our
requirements.
Now let a ∈ Al, such that we already constructed labels meeting the requirements

for the children of a. If a = (v, e, {p}, ω, I) resulted from a propagate step, we execute
propagate+ on p′ := φ(p).
Denote by b := slew -1(e, ωc,max{minslew(e, ωc), acc(ω(p

′)s)}) the lower bound of our
guessing interval and by u := slew -1(e, ωc, ω(p

′)s), the upper bound of our guessing
interval. In propagate+, we create a label as with ω(as)s = s for each slew s ∈ Γ :=
Σ(b, u). We have ω(as)c = ω(a)c, because ωc = ω(p′)c and we propagated through the
same edge. Then we select the lowest slew s ∈ Γ with s ≥ ωs. We know that s ≤ S,
because ωs ≤ S ∈ Γ.
Since slew -1(e, ω(p)c, ·) is strictly increasing and max{minslew(e, ωc), acc(ω(p

′)s)} ≤
ω(p)s ≤ ω(p′)s, we know that b ≤ ωs ≤ u. Let i ∈ N be maximum such that s ≤
σ(slew -1(e, ωc, ω(p

′)s))i ∈ Γ. There are two possibilities.
If σ(slew -1(e, ωc, ω(p

′)s))i+1 ∈ Γ, we know acc(s) ≤ σ(slew -1(e, ωc, ω(p
′)s))i+1 < ωs by

our choice of s. Otherwise, acc(s) ≤ σ(slew -1(e, ωc, ω(p
′)s))i+1 ≤ b ≤ ωs. It remains to

prove that ω(as)o ≤ αω entrywise. For each i ∈ [q] with Ω = Rq
≥0, let proji : Ω → R≥0

be the projection on the i-th entry of Ω. We have

proji(ω(as)o) = proji(ω(p
′
s)o + obj(e, I, ω(p)c, ω(p

′)s))

≤ proji(αωo + α obj(e, I, ωc, ωs)) = α proji(ωo)

So as fulfills our requirements and we set φ(a) := as.
If a = (v,□, {p1, p2}, ω, I) resulted from merging two labels, we construct the new

label a′ =: φ(a) by merging p′1 := φ(p1) and p′2 := φ(p2). Since ω(p′1)c = ω(p1)c and
ω(p′2)c = ω(p2)c, we know that ω(a′)c = ω(p′1)c + ω(p′2)c = ω(a)c. For the slews, we have
acc(ω(p′i)s) ≤ ω(pi)s ≤ ω(p′i)s for i = 1, 2. Furthermore, acc(min{ω(p′1)s, ω(p′2)s}) =
min{acc(ω(p′i)s), acc(ω(p′i)s)}. So we know that acc(min{ω(p′1)s, ω(p′2)s}) ≤ ω(a)′s ≤
min{ω(p′1)s, ω(p′2)s} = ω(a′)s. So the requirement on the slew is met as well. Finally,
ω(a′)o = ω(p′1)o + ω(p′2)o ≤ α(ω(p1)o + ω(p2)o) = αω(a)o.
We conclude that if we apply this process in reverse topological order, we construct a

label l′ with label arborescence A′
l and a bijection φ between them that has the required

properties.
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This is, however, not sufficient, because the algorithm could remove all of these slew-
approximate optimum solutions. By comparing to our optimum solutions, we can show
that at least one of the slew-approximate optimum solutions only requires non-dominated
labels.

Lemma 3.3.4. Let a slew accuracy function acc be given. If we use Σt as above for the
initial slews, replace propagate by propagate+, and dominance by α-dominance, then
the set L of labels that are added to L by the algorithm and never removed (if we were
to run it infinitely long) contains a slew-approximate optimum solution.

Proof. We need to prove that we do not remove all slew-approximate optimum solutions
when removing α-dominated labels.
Let l, l′ be a pair of an optimum and a slew-approximate optimum solution with

bijection φ. If there is a label k′ ∈ V (Al′) that is α-dominated by another label m
during our algorithm, then we know that

αχi(proji(ω(m)o)) ≤ χi(proji(ω(k
′)o)) ≤ αχi(proji(ω(φ

−1(k′))o)) for each i ∈ [ι]

and one of these inequalities is strict. Furthermore, ω(m)c ≤ ω(k′)c = ω(φ−1(k′))c and
ω(m)s ≥ ω(k′)s ≥ ω(φ−1(k′))s. In other words, φ−1(k′) is dominated by m.
Now we observe, that Lemma 3.2.9 still holds with propagate+, because the number

of arborescences is still finite. We recall, that Lemma 3.2.9 allowed us to add arbitrary
finite sets of slews at each sink. Thus, we may use our slew guesses as these additional
slews. Our finiteness argument in Lemma 3.2.10 still holds and we can apply it here.
This means that there is an optimum solution and a label l encoding this optimum

solution, such that no ancestor of l is dominated by another label that is found by the
algorithm. So the slew-approximate optimum solution that belongs to l cannot have an
α-dominated ancestor.

Finally, this means that when the algorithm returns, the returned solution cannot
have a worse objective cost than our slew-approximate optimum solution.

Theorem 3.3.5. Let a slew accuracy function acc be given. If we use Σt as above for
the initial slews, replace propagate by propagate+, and dominance by α-dominance,
Algorithm 5 computes an α-approximate solution if a solution exists.

Proof. By Lemma 3.3.4, we know that the set of labels that the algorithm will create
and not remove contains a slew-approximate optimum solution l′. Let l encode a corre-
sponding optimum solution. When the algorithm returns then the value of the returned
label can be at most χ(ω(l′)) by Lemma 3.2.4. We know that ω(l′) ≤ αω(l) entrywise.
Thus, χ(ω(l′)) ≤ αχ(ω(l)).

Note that this does not mean, that the algorithm returns an optimum solution with
wrong slews. It can return a suboptimal solution if there is a solution that, using these
overestimated slews, has a better value than the slew-approximate optimum solution.
In this case, we may be able to retrieve a better a-posteriori bound. From the returned

solution, we can derive a lower bound on the optimum value (value of the returned
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solution divided by the approximation guarantee). Then we can recompute the slews
and objective values of our solution and compare to the lower bound.
We even guarantee that there is a slew-approximate optimum solution in our search

space. If we do not return immediately, but rather let the algorithm run longer, then
one of the labels at the source will belong to this slew-approximate optimum solution.

Corollary 3.3.6. Algorithm 5 can be modified to return an optimum solution, even
when we use slew guesses as described above.

Proof. We replace propagate by propagate+, and dominance by α-dominance. This
guarantees that there is a slew-approximate optimum solution. In line 7 of the algorithm,
we do not return the solution, but rather store it in a set R. We denote the value
of the first solution by x and stop the algorithm only if the solution in line 7 has
value greater than αx or we reach line 13. When the algorithm stops, either R is
empty and we know that there is no solution, or we know that R contains a slew-
approximate optimum solution. So we iterate through our set R. For each solution,
we compute the minimum valid slews and recompute the objective values. Then we
return the solution with the minimum updated objective value. As the updated value of
the slew-approximate optimum solution matches the optimum, we return an optimum
solution.

There is another insight, we can gain from the proof of Theorem 3.3.5. We know that
at least one slew-approximate optimum solution will not be removed. By construction,
for the slews s1 ≤ s2 of all pairs of labels that are merged in this solution s1 ∈ [acc(s2), s2]
and acc(s2) ∈ [acc(s1), s1]. Hence, it is sufficient to only merge labels that fulfill this
condition.
In practice, we can improve α by not copying the label and replacing the slew value

during propagate. Instead, we compute the slew at the head that would be required to
achieve the changed slew value at the tail and compute a new objective value. In this
case, we can decrease α to the highest change that this would cause, which is typically
lower than the original definition.

3.4 Extensions
In addition to the base algorithm, I have worked together with Benjamin Ihme, whom I
(unofficially) co-supervised in his master’s thesis, on two extensions or modifications of
the algorithm [Ihm23]. The first one is a way to incorporate more accurate delay models
by recomputing the delay of labels with a higher order delay model occasionally. The
second one uses a pure RC-delay model to allow for continuous repeater placements on
segments between two vertices of a graph.
It should be noted here that I only provided technical assistance on the first extension.

For the second extension, I provided the initial idea and formula for the optimum delay
based on the closest downstream repeater in the path variant. Additionally, we discussed
some of the bigger hurdles, like the problem with concave delay functions or blockages
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and came up with the idea of creating two fixed labels. The details and proofs, as well
as some key components like the interval propagation have been worked out by Ihme.
This is, why we only give an outline of the two extensions here and refer to [Ihm23] for
further reading.

3.4.1 More Accurate Delay Models
We want to heuristically include more accurate delay models in our computations with-
out losing the advantages of our piecewise model [Ihm23, Chapter 3.6.2]. The idea is
to periodically update the delay with a more accurate delay model that may be stage
based. To do this, we use our usual RC-timing model from Definition 2.2.4 as a basis.
Additionally, we store the delay difference δ since our last update as part of our label.
This means that, whenever we perform a propagate step, we add the delay part (see
2.3.2) to this difference, which is identical for all currently connected sinks. If we merge,
we take the maximum of both differences. We choose a value ∆ and whenever δ ≥ ∆ for
a label l after a propagate step, we reconstruct the partial solution that is represented
by l and time it with a separate timing engine. Then we use the newly computed delays
to the sinks to update our objective and reset δ := 0.
One key problem with this is that the delay and thus the objective may be reduced

during an update. It is not trivial that this does not lead to endless loops. However,
Ihme was able to show that this is not the case. The idea is that at least one of the
latest exact delay and the δ increases in the upstream direction.

3.4.2 Interval-Based Buffering
In our original formulation, repeaters are placed at vertices of our graph model. However,
this can lead to inaccuracies. In order to avoid being too inaccurate, we need to make sure
that the distance between vertices is short. This leads to the usage of many vertices, even
if only few are actually used for repeater placement in an optimum solution. With the
Interval-Based Buffering [Ihm23, Chapter 4], we instead place repeaters on continuous
intervals between vertices. To make this possible, we need some simplifications. First, we
will work on a flat model (see Definition 2.2.1), where the input graph is embedded into
the rectilinear plane. Second, we will use a less accurate RC-delay without slew. This
means that we model the delay through wires by the Elmore delay and each repeater is
represented by a constant base delay, an internal resistance and an input pin capacitance.
Our goal is now to optimize the (weighted) sum of delays from the source to the sinks.
Let us start with an instance with only one sink and a graph that is a path in order

to explain the idea. Additionally, we only allow a single wire type per stage. Again we
start at the sink and produce labels by iteratively extending partial solutions. However,
instead of storing a fixed delay, we store a function and a legal interval in each label.
The function takes as input a position in the interval. It computes the delay from our
current vertex to the sink if the next downstream repeater is fixed at the given position
and all other downstream repeaters are placed at optimum positions (in their respective
interval) w.r.t. the input position.
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Each time we propagate through an edge, we create new labels for the possibility of
using the whole edge as a wire and for all available repeaters. Using the edge with a
repeater means that we place a repeater anywhere on that edge.

Now let us take a look at the different situations, we may encounter, when we propa-
gate a label l at w through an edge e = (v, w) to create the new label l′:

Case 1: The solution encoded by l has no downstream repeater and we want to extend
it by a wire.

The legal interval is the whole edge, that is [0, length(e)]. The Elmore delay from v
to the sink is a constant. So delay l′ : [0, length(e)] → R≥0 is given by a constant h > 0:
delay l′(x) := h.

Case 2: The solution encoded by l has no downstream repeaters and we want to extend
it by a repeater.

The legal interval represents the positions at which the repeater may be placed on the
edge e, measured from w to v. In this case the repeater may be placed anywhere on the
edge, so the legal interval is [0, length(e)]. The delay from v to the sink is a quadratic
function delay l′ : [0, length(e)] → R≥0 of the form delay l′(x) := fx2+gx+h for constants
f > 0, g, h ∈ R. In particular, we can compute an optimum position for the repeater on
the edge. It lies either on one of the endpoints of [0, length(e)] or at value of x, where
delay ′

l′(x) = 0. This happens at x = −g
2f
.

Case 3: The solution encoded by l has a downstream repeater and we want to ex-
tend it by a wire.

Not much happens here. The legal interval is the same as the legal interval of l and
only the constants of the quadratic function describing the delay may change.

Case 4: The solution encoded by l has a downstream repeater and we want to ex-
tend it by a repeater.

This is the most interesting case. Let us first assume that there is exactly one down-
stream repeater on the path to the sink. Let the respective edge be called e′. From Case
2 and 3, we know that the legal interval is [0, length(e′)]. The delay from w to the sink is
a quadratic function delay l(x1) := flx

2
1 + glx1 + hl for x1 ∈ [0, length(e′)] with constants

fl > 0, gl, hl ∈ R. Now we want to place the second repeater on e. So our delay becomes
a quadratic function in two variables: delay : [0, length(e′)] × [0, length(e)] → R≥0. Let
R be the resistance, B the base delay and C the input pin capacitance of the repeater
that we want to insert. Let additionally rv, cv be the resistance of the wire connecting to
the input of the repeater and rw, cw be the resistance of the wire connecting to its out-
put. Denote by C(x1) the downstream capacitance at w with respect to the downstream

91



3 Optimum Algorithm for the Timing-Driven Min-Cost Mapped Arborescence Problem

repeaters position x1. Then the delay function at v is

delay(x1, x2) = flx
2
1 + glx1 + hl + x2rw ·

(
x2
cw
2

+ C(x1)
)
+B +R(x2cw + C(x1))

+(length(e)− x2)rv ·
(
(length(e)− x2)

cv
2
+ C

)

= f1x
2
1 + f2x

2
2 + g1x1 + g2x2 + g12x1x2 + h,

for constants f1, f2 > 0 and g1, g2, g12, h ∈ R. In particular, if we fix a position for x2, this
is a convex function in x1. Similar to Case 2, we can find its global minimum at p(x2) =
−g1+g12x2

2f1
. Thus, delay(p(x2), x2) is a quadratic function again. We set delay l′(x) :=

delay(p(x), x). And we can show that it is again of the form delay l′(x) = fx2 + gx + h
for f > 0, g, h ∈ R. But we need to be careful, because this function is only valid, as
long as p(x) ∈ [0, length(e′)]. This is where the legal intervals come into play. Now we
need to define the legal interval of l′ as the interval such that p(x) ∈ [0, length(e′)].
Until now, we have assumed that we only have one downstream repeater. As we can

see, we have transformed our delay function in such a way, that it only depends on the
closest downstream repeater. So we are in the same setting as we were with only one
downstream repeater. Thus, we can use the same procedure in any case.

Now we can use this method in our dynamic program (without a dominance relation).
Once we have found a permanent solution at the source, we can recursively compute the
optimum positions of all repeaters. Ihme was able to show that this procedure is able
to find an optimum solution. It should be noted here that this approach can only place
one repeater per edge. This is still an inaccuracy. Ihme was also able to extend this
procedure to multiple sinks and wire types per stage. In these cases, we need to be more
careful, because it is possible that the functions become concave. This can be dealt with
by creating two labels, fixing the repeater at the opposing endpoints of its legal interval.
One of the two positions will be optimum, depending on the upstream tree.
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While the model and algorithm can be implemented as described in the previous chap-
ters, the actual runtime is too high to be usable on a wide range of practical instances.
In this chapter, we will describe the speedup techniques and heuristics we are using to
allow solving larger instances. Most of the techniques described here will remove the
approximation guarantee. However, the idea is to find ways to reduce the practical
complexity in such a way that the instances can be solved in reasonable time, but the
solutions remain good.
We start by presenting a way to efficiently manage the labels. The described data

structure puts its emphasis on reducing the number of operations that took the most
time in a first naive implementation. They were identified by multiple iterations of
profiling and improvement.
Then we present a construction for a graph structure extending the one presented

in [Roc18]. It allows us to model the constraints that appear in an industrial flow.
Simultaneously, it tries to reduce the number of vertices without reducing the accuracy
too much. Additionally, we show how we can reduce the number of vertices even further.
Next we present a simple way to compute a practical lower bound function and that

it is indeed a feasible lower bound.
Sometimes it is helpful to restrict the topology. For example, we will use a fixed

topology to compute a first solution. We also use it as a fallback in case we can not find
an optimum solution in reasonable time. Moreover, we use its value as an upper bound
during our unconstrained run. This speeds up the computation notably. We achieve
this by the merge arborescence that we present in Section 4.4.
We conclude with some simpler ideas of heuristics that we have tested during the

development of the algorithm and framework.
Since instances can have many sinks, and our running time is exponential in the

number of sinks, we will finally present a heuristic to reduce the instance sizes. We
achieve this by clustering sinks and solving the smaller instances with respect to carefully
chosen virtual roots. This is embedded in a second dynamic program which uses the
clustering and solving steps to build up a solution of the initial instance.
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4.1 Maintaining the Labels
When running algorithm 5, we need to maintain millions of labels. We need to

• find the minimum effective delay,

• identify permanent labels,

• check for dominance,

• find labels to merge with and

• reconstruct a solution in the end.

Since these are our core routines that will be called millions of times, we need to optimize
the running time of these operations, while keeping the memory usage in a feasible range.
In this section, we explain how we achieve this.
We store the data of all labels in a large dynamic array and only reference them by

their index throughout the rest of the implementation. This way, we have fast (for our
purposes constant time) and stable access under resizes. Labels in this vector can have
two states. They are valid as long as they are not invalid. When we find that a label is
dominated, we do not remove it from the vector, but instead, we mark it as invalid.
For the purpose of finding the label with minimum effective delay, we use a priority

queue with logarithmic time insert and logarithmic time removal of the top (minimum)
element. When a label in the priority queue becomes invalid, we do not directly remove
it, but rather leave it in the queue, as this has only a small effect on running time, but
finding and removing them is slow.
Whenever we extract an invalid label from the priority queue, we add its index to a

list of free indices instead of performing an actual delete operation. When a new label is
inserted, we add it at one of the free indices. The vector is only extended if all available
indices are exhausted. This helps to reduce memory usage and reallocations.
To keep the number of labels lower, we do not create labels that belong to an invalid

solution and we use an upper bound. We store the value of the minimum label at the
source. Before we try to insert a label, we check if its effective value is above the upper
bound. If this is the case, we do not insert it.
Next, we discuss how we check for dominance. This makes up a significant amount of

the running time. For each vertex and terminal set, we store one data structure for the
permanent labels and one for the non-permanent labels. Note that we store them lazy,
that is, we only create them if there are labels with that terminal set at the respective
vertex.
For the permanent labels, we split the range of valid slews into a constant number of

buckets. In each bucket, we store an array of indices of permanent labels. When a label
becomes permanent, we push it to the end of the respective bucket. Note that they are
automatically sorted by effective delay in this case.
The data structure for the valid non-permanent labels is more involved. Here we

again split by slew buckets. We extend the ordering for the priority queue from line
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3 of Algorithm 5 to a total order in the sense that either two labels are equivalent, or
comparable. An example is a lexicographic order on the values of the tree-monotone
components. By making sure that the label indices in each bucket are sorted by this
order, we can guarantee that if a label is chosen in line 3, it is at the first position in its
bucket. Thus, we get constant time removal in this case.
By splitting into the buckets, we only need to check in buckets with higher or the same

slew when searching for labels that dominate a given label, and we only need to check
in buckets with lower or the same slew if we want to find labels that are dominated by
our current label. Furthermore, we can ignore the slew in comparisons if we know that
the labels are in different buckets. Finally, we can limit the number of buckets to check,
when merging.
Next, we need the following:

Proposition 4.1.1. If l = (v, e, P, ω, I) dominates k = (v, e′, P ′, ν, I) then ωeff (l) ≤
ωeff (k).

Proof. For each tree-monotone component i ∈ T M, we compute

χi(proji(ωo + Lb(v, (ωc, ωs), T \ I)))
≤χi(proji(ωo + Lb(v, (νc, νs), T \ I)))) + OPT(v, νc, νs, ∅+ (v, ω))

=χi(proji(ωo + Lb(v, (νc, νs), T \ I))))
≤χi(proji(νo + Lb(v, (νc, νs), T \ I)))),

where the first inequality is from the definition of feasible lower bound together with
sublinearity. The equality holds, because νc ≥ ωc and νs ≤ ωs. This means that ω
already fulfills the conditions for the optimum, so no edge has to be used in an optimum
solution. The second inequality follows from the inequality χi(proji(ωo)) ≤ χi(proji(νo))
from the definition of dominance (see Definition 3.1.2) and the condition that feasible
lower bounds must be consistent with tree-monotonicity.
Hence, all tree monotone components are smaller, which implies that

χ(ωo + Lb(v, (ωc, ωs), T \ I)) ≤ χ(νo + Lb(v, (νc, νs), T \ I)).

Since all buckets are sorted by the effective objective, we can now find the position at
which we would insert a new label by binary search. Using the extended order described
earlier, we either hit an equivalent label or we find the position in which the label should
be placed. Then we know that we only need to search in one direction for dominating
labels and in the other for dominated labels. As an extra speedup, if we find a dominated
label next to our labels position, we can replace this label to save a shift in the bucket.
The last remaining task is to find labels for merging. Since we stored the permanent

labels by vertex and sink set, we can simply find the permanent labels at a vertex. Then
we iterate through the sink sets that have an entry and check if they are disjoint to our
current sink set.
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4.2 Graph Construction
While we already presented a construction for the TMCMAP based on a graph that
models the routing space, we did not specify yet how we model the routing space. This
section will cover the construction we use, which is based on the Hanan grid. We will
first present the basic construction and then show how we reduce the number of vertices.

4.2.1 Basic Construction
We base our graph on the Hanan grid. Since placing buffers on blockages is not possible,
it may happen that the interconnect has to go around a blockage. Delay-, slew-, or
capacitance constraints may make it impossible to have a wire that is long enough to go
over a blockage without splitting it by a repeater. So we need to add blockage corners
as well for our Hanan grid construction.

The basic idea was already used in [Roc18], but we extend it to properly handle the
width/spacing assignments and present some new vertex reduction techniques.

Given a net N := {r}∪T , and a set of blockages B, we compute the subset of blockages
that intersect the bounding box of N . For simplicity, we will assume that these are all
blockages in B. Then let P be the set of positions of the pins and the blockage corners.
First, we construct the Hanan grid H ′ on the positions P . We call the vertices V (H ′)
Hanan vertices. Then, for a given maximum vertex distance distv > 0, we subdivide
the edges in H ′ until no edge is longer than distv. We go through the edges in direction
of increasing coordinates and always insert a vertex on that edge, when the distance to
the last vertex is distv, but other ways to subdivide can be used. The resulting graph is
called our base layout H and will later also be the base of our graph model. An example
construction is shown in Figure 4.1a.

This base layout has some helpful properties. It always contains shortest (blockage
avoiding) source sink paths and shortest Steiner trees on subsets of the sinks. Since no
edge is longer than distv, we can place repeaters at most distv away from their optimum
positions on the grid. Additionally, all placement constraints at the vertices can be
precomputed.

From this base layout, we construct a layered graph G. For this purpose, let L be the
set of routing layers, and Wl for each layer l ∈ L be the set of allowed width-spacing
combinations on that layer. For each layer l ∈ L, we take a copy Hl of our base layout.
We remove all edges in Hl that are not going in the preferred direction of l. Then we
replace all remaining edges el ∈ Hl by one edge el,w for each wire type w ∈ Wl. Finally,
we add edges (vl, vl′)w,w′ for all layer combinations l, l′ ∈ L with |l − l′| = 1 and wire
type combinations w ∈ Wl, w

′ ∈ Wl′ that have a via between them. An example for the
layered graph is depicted in Figure 4.1b.

This version of the graph allows wire tapering. If this is not allowed, we need to alter
the construction of the graph. It is not sufficient to only allow edges of the same width
and spacing as the previous one, because that would violate one of the core assumptions
of the problem: The objective function only depends on the capacitance, slew, edge and
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(a) The base layout arising from our
blockages and net. Hanan vertices are
shown slightly larger than the subdi-
visions.
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(b) The graph arising from the base lay-
out for two layers and only one wire
code.

Figure 4.1: An example construction of our graph for the net {r}∪{t1, t2, t3}. Placement
blockages are marked in gray.

connected sinks. Or in terms of the algorithm: We are only allowed to compare labels
(for dominance) if the possible propagates and merges are the same.
If we want to forbid wire tapering or subsets of the changes, we can instead create

copies Hl,w of the base layout for each l ∈ L and w ∈ Wl. Then, as before, we remove
the edges against preferred direction and add edges (vl,w, wl,w′) if (vl,w, wl,w) ∈ Hl,w and
the transition from w to w′ is allowed. For vias, we add edges (vl,w, vl′,w′) if |l − l′| = 1
and the via w to w′ is allowed.

4.2.2 Vertex Reduction
The construction can have many vertices and edges, which may increase the running
time to be infeasible. This is why we want to reduce the number of vertices. The layer
copies are required to accurately model layer changes in the TMCMAP, but we can try
to shrink the base layout.
The first step is to remove the non-Hanan vertices on blockages. Since we can not

place buffers there, this has no influence on buffer placement. We have to assume that we
do not lose too much by not being able to merge on non-Hanan vertices over blockages.
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t

r

(a) The available repeaters
are strong enough to
drive a wire that crosses
the blockage and di-
rectly connects to the
sink.

t

r

(b) The available repeaters
can drive a wire across
the blockage, but the
sink pin capacitance is
high, or the slew limit
low. A repeater has to
be placed on the closest
border of the blockage.

t

r

(c) The available repeaters
are not able to drive a
wire that crosses the
whole blockage. The
connection must go
around the blockage.

Figure 4.2: Different scenarios how a blocked sink has to be connected depending on the
strength of available repeaters, size of the blockage, sink pin capacitance and
slew limit.

The second step is more complicated. We want to remove points from the set P of
input positions for the Hanan grid. We want to maintain the property that there is at
least one shortest blockage-avoiding r − t path in the grid for each sink t ∈ T . This
guarantees that we keep at least an optimum (up to the buffer placement discretization)
single target solution for each sink. If a sink lies on a blockage, it is unclear from which
direction we should access it, judging just by the coordinates.
Take this example: We have a sink that could be reached by a straight axis parallel

line from the source. It is located on a blockage, closer to the opposite of the side of the
blockage that is facing the root. One possibility is that we have large enough buffers,
such that we can go straight into the direction of the root from the sink. It may as well
happen that we have to go into the opposite direction, because the next possible buffer
location is closer and we would create a violation otherwise. This is shown in Figure 4.2.
For sinks on blockages, we instead want to have the property that there is a shortest

path from the sink to each of the four projections of the sink onto the blockage borders.
In summary, we have a set of targets and a source in a Hanan grid. We want to find

a shortest path tree that minimizes the number of different x-coordinates of y-directed
edges and y-coordinates of x-directed edges that are used by the tree. Since this is a
quite complex objective, we simplify the objective. We want to minimize the number
of times that the tree is switching between x- and y-edges. When we have such a tree,
we can reduce P to consist of the source, the targets, and all the points where a switch
between x- and y-edges happens. An example of this reduction can be seen in Figure
4.3. The problem of finding such a tree can be modeled by the bend-avoiding shortest
path tree problem.
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4.2 Graph Construction

(a) The initially computed positions for our
Hanan grid, marked with black x-es.
They are based on the pin positions (red
and green) and the corners of blockages
that intersect with the bounding box of
the pins.

(b) The positions (marked with black x-es)
in our Hanan graph based on the blue
bend-avoiding (and blockage avoiding)
shortest paths.

Figure 4.3: An example of the vertex reduction. Figure 4.3a shows the positions that
we initially computed. Figure 4.3b shows the final vertex positions (with
subdivisions) in our Hanan graph and the bend-avoiding shortest paths. The
root is red, the sinks are green and the blockages that may be relevant for our
positions are dark gray. The light gray blockages are only used for repeater
placement checking.

99



4 Speedup Techniques and Heuristics

4.2.3 The Bend-Avoiding Shortest Path Tree Problem
We define a bendgraph as a connected graph G = (V1 ∪ V2, E1 ∪ E2 ∪ Ebend) with a
bijection φ : V1 → V2, such that Ebend := {{v1, v2} | v1 ∈ V1, v2 ∈ V2, φ(v1) = v2} and
removing Ebend decomposes G into two graphs G1 = (V1, E1), G2 = (V2, E2).
In the Bend-Avoiding Shortest Path Tree Problem (BASPTP), we are given a bend-

graph G with a cost function c : E1 ∪ E2 → R≥0, a root r ∈ V (G) and a set S ⊆ V (G)
of terminals. The task is to compute a tree T in G with {r} ∪ S ⊆ V (T ) that con-
tains a shortest r-s-path for all s ∈ S and among these minimizes the number of bends
bend(T ) := |Ebend ∩ E(T )|.
In our setup, the two graphs are two copies of the Hanan grid, where one only contains

the x-edges and the other only contains the y-edges. The two copies of each vertex are
connected by a bend edge. Unfortunately, this problem is NP-complete.

Theorem 4.2.1. It is NP-complete to decide, given an instance of the BASPTP (G, c, r, S)
and a number k ∈ N, to decide if there is a BASPT with at most k bends.

Proof. The problem is in NP, as a tree with less than k bends suffices as a certificate.
We use a reduction from SAT. Given an instance of SAT with variables x1, . . . , xn and
clauses C1, . . . , Cm, we define a bendgraph. We start by defining V1 := {r} ∪ {lxi

, lx̄i
|

i = 1, . . . , n} as the set containing r and a vertex for each literal. Then we define
V2 := {uxi

, ux̄i
| i = 1, . . . , n} ∪ {Ci | i = 1, . . . ,m} ∪ {cix | x literal in Ci, i = 1, . . . ,m} ∪

{xi | i = 1, . . . , n}. We identify ux and lx via the bijection φ and add to V1 and V2 for
each unmatched vertex as a pendant a vertex in the respective other set. Finally, we
add edges {r, lx} for every literal x and edges {ux, x}, {ux̄, x} for each variable x. We
add edges {Ci, c

i
x} for every literal x appearing in Ci and each i = 1, . . . ,m. Finally, we

add edges {ux, cix} for each appearance of the literal x in a clause Ci. The cost function
c is set to 1 and S := {xi | i = 1, . . . , n} ∪ {Ci | i = 1, . . . ,m}.
We claim that this instance of the BASPTP has a tree with n bends if and only if there

is a satisfying truth assignment to the SAT instance. An example of this construction
can be seen in Figure 4.4.
Given a satisfying truth assignment, we can construct such a tree, by adding for each

true variable x a path r, lx, ux, x and for each false variable y a path r, lȳ, uȳ, y. Finally,
we choose for each clause Ci one fulfilling literal x and add the path ux, c

i
x, Ci. All added

paths are shortest and since we added only one bend per variable, the resulting tree has
n bends.
Now assume, we are given a tree T with at most n bends. First note that all shortest

r-xi paths are of the form r, lxi
, uxi

, xi or r, lx̄i
, ux̄i

, xi. As there is a shortest r− xi path
in T for each xi and each of these paths introduces a bend, T must contain exactly one
of uxi

and ux̄i
for each variable xi. This yields our truth assignment. On the other hand

all r-Ci paths are of the form r, lx, ux, c
i
x, Ci, for x a literal appearing in Ci. This means

that for each Ci, there must be a path ux, c
i
x, Ci in T for x appearing in Ci with x a true

literal. Hence Ci is satisfied.

It turns out that we cannot even get a constant factor approximation unless P=NP,
because we may reduce set cover to our problem.
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r

lx1 lx̄1 lx2 lx̄2 lx3 lx̄3 lx4 lx̄4

ux1

x1 ux̄1
ux2

x2

ux̄2
ux3

x3

ux̄3

ux4 x4
ux̄4

c1x1
c1x̄2

c1x3
c2x̄1

c2x̄3
c2x4

C1 C2

Figure 4.4: An example construction for the clauses C1 := {x1, x̄2, x3}, C2 := {x̄1, x̄3, x4}
on the variables x1, x2, x3, x4. The blue vertices are the terminals. Dashed
edges mark bend-edges. The green edges mark a shortest path tree with
4 bends, corresponding to a satisfying truth assignment. The complements
added in the completion step are left out as a simplification.

Theorem 4.2.2. There is no ln(n) − ε approximation algorithm for any ε > 0 for the
BASPT problem unless P=NP.

Proof. Given an instance of unweighted set cover with sets S and universe U , we con-
struct an instance of the BASPTP.
The bendgraph will consist of two copies V1, V2 of the vertices {r} ∪ S ∪ U . The

bijection φ will identify the two copies of each vertex. Finally we will add edges {r1, S1}
for each S ∈ S and edges {S2, u2} for each u ∈ S. All edges will have weight 1. The
root is r1 and the terminals will be {u2 | u ∈ U}.
Each shortest r1-u2-path is of the form r1, S1, S2, u2 with u ∈ S ∈ S. Given a solution

of the BASPTP with k bends, the sets corresponding to the bend-edges in this solution
form a set cover of size k. On the other hand, given a set cover X of size k, we can
construct a solution to the BASPTP with k bends, by choosing a tree with the bend-
edges {S1, S2} corresponding to the chosen sets S ∈ X, adding the edges from r1 to S1

for S ∈ X and since X is a set cover, we may choose one Su with u ∈ Su ∈ X for each
u ∈ U and then add the edges {Su2 , u2} to complete our BASPT with exactly k bends.
Hence, we could use a ln(n) − ε approximation algorithm for the BASPTP in an

approximation with the same guarantee for set cover. But such an algorithm does not
exist unless P=NP .

101



4 Speedup Techniques and Heuristics

By this construction, we can not achieve a constant factor approximation, even if we
allow the paths to be a bit longer than a shortest path. We can prove that we need to
allow paths to be at least a factor 3 times longer for this construction to be insufficient.

Corollary 4.2.3. For any 1 ≤ δ < 3, there is no ln(n) − ε approximation algorithm
for any ε > 0 for the BASPT problem unless P=NP, even if we allow the paths to be a
factor δ longer than a shortest path.

Proof. In the proof of the previous theorem, any r1-u2-path that is not of the form
r1, S1, S2, u2, needs at least three edges in G2. However, we may increase the cost of the
{S2, u2}-edges arbitrarily. Consequently, for any such δ, we may construct an instance
such that all r1-u2-paths, that are not more than a factor δ longer than a shortest path
are again of the form r1, S1, S2, u2.

Due to these results, we instead use a heuristic. Let G be the Hanan graph before
subdividing. We can compute shortest paths from the source to all sinks with the
minimum number of bends in O(n2 log n), where n = |V (G)|. To achieve this, we first
observe that a shortest path can have length at most n, so we can have at most n bends
on each of these paths. We use Dijkstra’s algorithm to compute for all vertices v ∈ V (G)
and numbers of bends b = 0, . . . , n the shortest path from r to v that uses exactly b
bends. Then we select at each sink the minimum b, for which the path has the same
length as a shortes path without the bend-restriction.

4.3 A Feasible Lower Bound
In this section we will show how we can construct a lower bound function for the delay
part of our objective if we use the Hanan graph from Section 4.2 and an RC-timing
model (see Chapter 2.2.4), in which the capacitance and resistance of a wiring segment
grow linearly with the length of that segment.
For our lower bound function, we extend an idea from [Roc18]. We want to make use

of the fact that a buffering solution can be computed very fast, if the instance is a path
with one sink at the end. Each vertex in our Hanan graph has a fixed distance to the
root. So we set dist(v) := ∥p(r)−p(v)∥l1 for all vertices v ∈ V (G) of the (routing) graph
model G. We take each distance that is occurring in the Hanan graph and create one
vertex for that distance. Then we connect them in ascending order of their distance.
Indeed, we can prove that if we have a lower bound with respect to a single target,

then we can construct a multi-target lower bound function from it.

Lemma 4.3.1. Let obj be a branch based objective on Ω := RT
≥0. Let χ be an evaluation

operator on Ω.
Let D := {dist(v) | v ∈ V (G)} be the set of vertex distances and f : D×R{c,s}

≥0 → R≥0

a function that fulfills

f(dist(v), c, s)) ≤ f(dist(w), c′, s′) + OPT(w, s′, c′, ∅+ (v, (0, c, s))) (*)
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for all v, w ∈ V (G) and (c, s), (c′, s′) ∈ R{c,s}
≥0 . Define F : D × R{c,s}

≥0 ×I → Ω as

Ft(d, c, s, I) :=

{
min
σ∈Σt

f(dist(t), 0, σ) if t ∈ I

f(d, c, s) otherwise.

Then
Lb(v, (c, s), J) := F (dist(v), c, s, I)

and Lb(r, ·) := 0 is a feasible lower bound.

Proof. Let v, w ∈ V (G) and ω ∈ Ω× R{c,s}
≥0 , (c′, s′) ∈ R{c,s}

≥0 , as well as ∅ ⊊ J ′ ⊊ J ⊆ T .
Let ν ∈ opt(w, s′, c′, J \ J ′ + (v, ω)). Our goal is to show that

χ(Lb(v, (ωc, ωs), J)) ≤ χ (Lb(w, (c′, s′), J ′) + ν) .

First we observe that for each t ∈ J ′, we have that νt ≥ 0. Then for each t ∈ J \ J ′,
we have νt ≥ min

σ∈Σt

OPT(w, c′, s′, ∅ + (t, (0, 0, σ))), because any w − t-path in a solution

ending up with objective value ν, is also considered in this optimum. With the same
reason, we have for all t ∈ T \ J that νt ≥ OPT(w, c′, s′, ∅ + (v, (0, c, s)). So, for all
t ∈ T , we define

bt :=





0 if t ∈ J ′

min
σ∈Σt

OPT(w, c′, s′, ∅+ (t, (0, 0, σ))) if t ∈ J \ J ′,

OPT(w, c′, s′, ∅+ (v, (0, c, s)) otherwise

and know that b ≤ ν entrywise. Then we observe that

Lb(v, (c, s), J)t ≤





min
σ∈Σt

f(dist(t), 0, σ) if t ∈ J ′

min
σ∈Σt

f(dist(w), c′, s′) + OPT(w, c′, s′, ∅+ (t, (0, 0, σ))) if t ∈ J \ J ′,

f(dist(w), c′, s′) + OPT(w, c′, s′, ∅+ (v, (0, c, s)) otherwise,

by applying inequality (*) for each entry t ∈ T . Thus, we have

Lb(v, (c, s), J) ≤ Lb(w, c′, s′, J ′) + b ≤ Lb(w, c′, s′, J ′) + ν entrywise.

We conclude
χ(Lb(v, (c, s), J)) ≤ χ(Lb(w, c′, s′, J ′) + ν).

This means that we can construct a feasible lower bound if we are able to compute a
function f as in 4.3.1. So our goal will be to construct this function in such a way that
we can compute it as fast as possible.
We start by building the base of our graph L. We take V (L) := D := {d1, . . . , dk}

as vertex set ordered by increasing value. Then we add edges (di, dj) and (dj, di) for
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i = 1, . . . , k − 1 and j = i + 1, . . . , k to retrieve a directed path. We use this path as a
base to do the same construction as for our Hanan graph, just without blockages. That
is, we build a layered model from there by copying the path once for every layer. Then
we replace the edges we currently have by sets of edges, one for each wire width and
spacing that are allowed on the layer. Finally, we insert edges for the allowed vias. We
then use this graph to apply the construction from Chapter 2.3.2 with a root r̃ connected
to each copy of d1 = 0.
With this graph, we define f(d, c, s) := OPTL(r̃, caplim(r), 0, ∅ + (d, (0, c, s))) as the

optimum delay of a path from r̃ to d that has a downstream capacitance of c at d and
at most slew s.

Lemma 4.3.2. Let f(d, c, s) := OPTL(r̃, caplim(r), 0, ∅ + (d, (0, c, s))) as constructed
above. Then f fulfills the inequality (*) from Lemma 4.3.1.

Proof. Let v, w ∈ V (G) and ω ∈ Ω × R{c,s}
≥0 , (c′, s′) ∈ R{c,s}

≥0 . First, we observe that
OPTL(dist(w), s

′, c′, ∅+(dist(v), (0, c, s))) ≤ OPTH(w, s
′, c′, ∅+(v, (0, c, s))). Note that

we compare optima in different graphs. We can show this by taking an optimum solution
in H and then projecting it into L. This means that we map vertices in H to their
respective distance and edges to the corresponding edge between the two distances. We
would end up with a solution in L that has the same value as the solution in H, so the
optimum in L must be lower.
Now we just need to use the fact that

OPTL(r̃, caplim(r), 0, ∅+ (dist(v), (0, c, s)))

≤ OPTL(r̃, caplim(r), 0, ∅+ (dist(w), (0, c′, s′)))

+ OPTL(dist(w), s
′, c′, ∅+ (dist(v), (0, c, s))),

because this combined solution on the right-hand side is one solution that is considered
in the optimum on the left-hand side. Using our first inequality and the definition of f
implies

f(dist(v), c, s) ≤ f(dist(w), c′, s′) + OPTH(w, s
′, c′, ∅+ (v, (0, c, s))).

With such a function, we would have to compute the lower bound for each label by
solving an instance on this path graph. This is too slow to be of help in our algorithm.
So our goal is to build a table for f and compute approximate values in constant time
by linearly interpolating between the entries. Then, if we are solving multiple instances,
we also want to generalize the source delay and the distances. So we end up with a
general approximate lower bound that we can compute during a preprocessing step.

Lemma 4.3.3. Let obj be a branch based objective on Ω := RT
≥0. Let χ be an evaluation

operator on Ω. Let α ≥ 1 and f : D × R{c,s}
≥0 → R≥0 with

OPTL(r̃, caplim(r), 0, ∅+ (d, (0, c, s))) ≤ f(D, c, s)

≤ αOPTL(r̃, caplim(r), 0, ∅+ (d, (0, c, s))).
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If we use f to construct a lowerbound Lbα as in Lemma 4.3.1 (note that this is not a
feasible lower bound), then the following variant of Lemma 3.2.4 holds:
Let L be the set of all labels that are added to L and never removed during the algo-

rithm. In each iteration the following holds: Each label l ∈ L with

ωeff (l) <
M

α

is also in L and permanent, where M := max
l′∈L permanent

ωeff (l
′).

Proof. Let (v, e, P, ω, I) = l ∈ L be a label and (w, e′, P ′, ν, J) = p ∈ V (Al) an ancestor
of l. Out first goal will be to prove that

ωeff (p) ≤ αωeff (l).

For all t ∈ T , we define

gt :=

{
min
σ∈Σt

OPTL(r, caplim(r), sr, ∅+ (t, (0, 0, σ))) if t ∈ T \ J,
OPTL(r, caplim(r), sr, ∅+ (w, (0, νc, νs)) otherwise,

as well as

at :=

{
min
σ∈Σt

OPTL(r, caplim(r), sr, ∅+ (t, (0, 0, σ))) if t ∈ T \ I,
OPTL(r, caplim(r), sr, ∅+ (v, (0, ωc, ωs))) otherwise

and

bt :=





0 if t ∈ T \ I,
min
σ∈Σt

OPTL(v, ωc, ωs, ∅+ (t, (0, 0, σ))) if t ∈ I \ J,
OPTL(v, ωc, ωs, ∅+ (v, (0, νc, νs))) otherwise

Then a ≤ Lbα(v, (ωc, ωs), I) by our assumption on f and g ≤ a + b entrywise, because
every path from the combination of a and b is also considered in the optima in g. We
use this to compute

ωeff (p) = χ(νo + Lbα(w, (νc, νs), I))

≤ χ(νo + αg)

≤ αχ(νo + a+ b)

≤ αχ(ωo + a) (**)

≤ αχ(ωo + Lbα(v, (ωc, ωs), I)) = αωeff (l).

For inequality (**), we use the same argument as in the proof of Lemma 4.3.1 that none
of the paths from v to w, nor the paths from v to t ∈ I \ J can be realized with a lower
cost than the path in L. Thus, ωo ≥ νo + b entrywise.
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After the first iteration, our Lemma certainly holds. Now assume it holds up to
iteration i, but it does not hold in iteration i+1. This means there is a label l ∈ L with
Mi

α
≤ ωeff (l) <

Mi+1

α
that is not permanent or in L.

Let a be an ancestor of l. Then ωeff (a) ≤ αωeff (l) < Mi+1. So a can not be in Q,
because otherwise it would have been chosen by the algorithm. This means that none
of the ancestors of l can be in Q. Since they are never removed by the algorithm and
the initial labels must be in L, they must all be in L and permanent. But then l ∈ Q.
So ωeff (l) ≥Mi+1 > ωeff (l), because it has not been chosen. This is a contradiction.

This means that if we can only approximate the function for Lemma 4.3.2 by a factor
α, we are still able to compute an optimum solution. We can achieve this, by waiting
until the lowest valued permanent label and the highest valued label at the root differ
by a factor larger than α. Then we know that the lowest valued label has minimum
value. If we are guessing the slews, we also have to wait for this approximation factor
to the lowest value in order to find the optimum solution.
This construction is sufficient for a per-instance lower bound table. For a general

table, where we need to lower bound the source resistance and interpolate between
predetermined distances, we can not guarantee the first inequality in 4.3.3. It could
happen that the general distances are a slightly better discretization of the line. So we
might underestimate the delay.
We are able to prove an even weaker result though, that still allows us to find optimum

solutions:

Lemma 4.3.4. Let obj be a branch based objective on Ω := RT
≥0. Let χ be an evaluation

operator on Ω. Let α ≥ 1 and f : D × R{c,s}
≥0 → R≥0 with

f(D, c, s) ≤ αOPTL(r̃, caplim(r), 0, ∅+ (d, (0, c, s))).

If we use f to construct a lowerbound Lbα as in Lemma 4.3.1 (note that this is not a
feasible lower bound), then the following holds:
Let L be the set of all labels that are added to L and never removed during the algo-

rithm. In each iteration, if l ∈ L encodes a complete solution and

χ(ω(l)o) <
M

α
,

where M := max
l′∈L permanent

ωeff (l
′), then l is in L and permanent.

Proof. The proof is a special case of the proof of Lemma 4.3.3. Let (r, e, P, ω, T )l ∈ L
be a label that encodes a complete solution. Let (w, e′, P ′, ν, J) = p ∈ V (Al) be an
ancestor of l and µ ∈ OPTH(r, caplim(r), sr, J + (w, ν)). Then Lbα(w, (νc, νs), J) ≤ αµ
entrywise. Hence,

ωeff (p) = χ(ν + Lbα(w, (νc, νs), J))

≤ αχ(ν + µ)

≤ αχ(ω).
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Using the same argument as in the proof of Lemma 4.3.3, we conclude that if M >
αχ(ω), then all ancestors of l and l itself must have been made permanent already.

Again, we can compute the optimum solution by running the algorithm until the factor
between the lowest valued and highest valued permanent solution at the root exceeds α.
It remains to find a bound on the error that is induced by an approximation. How-

ever, this depends on the exact delay model that is used and may be upper bounded
numerically.

4.4 Topology Restriction
One of the key sources of possible improvements in our algorithm is that we do not
fix the topology of the solutions. Yet, it might be helpful to restrict the topology
sometimes to speed up the algorithm. We can use a restricted topology, if we can not
compute a solution with no restrictions in reasonable time, or to provide an upper bound.
Sometimes the positioning of the sinks may already dictate parts of the topology, or a
designer wants to enforce certain parts of the topology.
To be able to do this, we present an efficient way to add a topology restriction to our

problem. We achieve this by using merge arborescences, which are a data structure that
tells us that certain sink sets have to be merged, before they may be merged with other
sink sets.

Definition 4.4.1. Let a net {r}∪T be given. A merge arborescence is an arborescence
M rooted in r and with T as its leaves and bijective map ϕ : V (M) → Img(ϕ), such that

• each vertex v ∈ V (M) \ T has outdegree δ−(v) ≥ min(|T |, 2),

• ϕ(t) = {t}

• and recursively ϕ(v) :=
⋃

w∈δ−(v)

ϕ(w) for v ∈ V (M) \ T

Given a merge arborescence (M,ϕ), we apply it to the TMCMAP by only allowing
solutions such that we can transform the topology of the solution to M by contracting
a (unique) subset of its edges.
We can enforce this in our algorithm by choosing for each sink set I ∈ 2T a representant

R(I) ∈ V (M). Denote by p(v) the unique parent of v for each v ∈ V (M) \ {r}. We
require that R(ϕ(v)) = v for each v ∈ V (M) and ϕ(R(I)) ⊆ I ⊆ ϕ(p(R(I))) for each
I ⊊ T . In a practical implementation, the representants can be chosen when the sink
set occurs for the first time.
Then for two labels that we want to merge, we require that their sink sets I, J ⊆ T

are disjoint and additionally that p(R(I)) = p(R(J)), which we can check in constant
time.
We can even restrict the area, in which certain sink sets are allowed to move. In many

cases, we can speedup the algorithm this way by not allowing labels to be created that
would turn out to be suboptimal later. It may also be advantageous in some practical
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use cases. If we need to connect some sinks through a small channel between two blocks
for example. A designer may want to force the sinks to be joined before they pass the
channel. The area restriction can be achieved, by associating it to the vertices of M . A
label with sinks set I can then be not allowed to leave the area associated to p(R(I)).

4.5 Additional Heuristics
We can additionally speed up our computation by the simple heuristics that we explain
in this section. We separate them into those that are present in our implementation and
those that have not shown to be promising in our evaluations.

4.5.1 Implemented Heuristics
The heuristics that proved to be helpful both have an influence mainly on repeater
placements. While working on the implementation, we have discovered two problems.

Repeater Map

The first one regards, where and how many repeaters are placed. When crossing a large
blockage, the best positions for repeaters tend to be the ones just before or after the
blockage. If the repeaters have to be placed, a placement cost does not really have
an influence on whether a repeater is placed. This is, why it happens that multiple
parallel wires end up on the same point on the other side of a blockage and all of them
place repeaters there. While this is no problem in the model, a final placement must be
legal. However, legalizing many repeaters from the same spot, while keeping the timing
properties, is a hard problem in itself. So we either require another very specialized and
possibly slow postprocessing, or we destroy the timing during legalization.
However, it is often actually possible for parallel segments to cross the blockage in

different spots. We can enforce this by limiting the number of repeaters that may be
placed in a certain area.
We achieve this by laying a tiling over our graph and creating a map from each vertex

to each tile. Then we limit the number of repeaters per tile (we use 2 as a limit in
practice). We add one entry per tile to the objective. If the upper bound is two, we
only need 3 bits per entry. We store the map as an array of unsigned integers. If we
view this as a contiguous range of bits, every 3 bits represent one entry. Then we can
add two maps by adding the integers. Checking for invalid placements after adding two
maps amounts to checking every third bit for a 1 or even faster by computing the logic
AND between the integers and a fixed set of masks. The value of a repeater map is an
additional 0 if it is valid and ∞ if not.
We can leave this map out of our dominance relation. In this case, it becomes a heuris-

tic. Otherwise, we can additionally compare the entries of the map during dominance
checks. Then it encodes the restriction that there must be at most two repeaters per
tile.
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Repeater Penalty

The second heuristic tries to discourage implausible repeater placements. Since the al-
gorithm tries all possible repeater placements, it also tries out some that are unlikely
to lead to good solutions, but are not dominated. A prime example of this is placing
repeaters that have a higher input pin capacitance than the current downstream capac-
itance. This typically leads to the solutions assuming a high input slew at the repeater.
So they are unlikely to be dominated. We discourage these solutions by adding a penalty
in these cases. We can not remove them, because they might be necessary to cross large
blockages. The penalty we came up with depends on the decrease in downstream ca-
pacitance ∆c, the current vertex and the currently connected sink sets. It is computed
as

penalty(∆c, v, I) := max

{
0, B −∆c ·

(
1 +

|I|
|T | ·R ·

(
1− dist(v)

D

))}
,

where B ∈ R≥0 is a base penalty, R is a source resistance, used to approximate delay
through the source, and D is an upper bound on the distance, for which we scale based
on the resistance. We only use it if dist(v) < D. Otherwise, we use

penalty(∆c, v, I) := max {0, B −∆c} .

We do not apply this penalty if the repeater is an inverter and changes the polarity from
invert to ident. We have to place an inverter on the path to the root and we want the
dynamic program to take the best inverter.
The reasoning behind these formulas is the following. In general, we want to discourage

adding repeaters if it increases the downstream capacitance or only decreases it slightly.
However, if we are close to the source we want to recognize the impact that a capacity
change has on the source delay. So we scale the impact of the source delay based on the
number of connected sinks and distance to the source.

4.5.2 Dropped Heuristics
The heuristics that did not prove helpful focus on the reduction of labels that are kept.
We tested them in an evaluation phase and did not include them into our final imple-
mentation. The problem was that they did not decrease the running time. Some even
increased the running time. And they were leading to a slight degradation in the final
results.
We explain them nonetheless, so that they are not reimplemented in the same way for

future research.

Dominance Cache

Since we allow placing all repeaters at almost all positions, we will be propagating
through all of them at the same time. They originate from the same label and end up
at the same vertex, only differing in the used repeater and guessed input slew. The idea
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of the dominance cache is to eliminate those labels that are already dominated within
this set of labels that are created by propagating a single label.

Let E1, . . . , Ea for some a ∈ N be groups of parallel edges. We assume that two edges
are identical if they contain the same objective function. One way to think of it is as
two edges encoding the same repeater. We assume that they are maximal and distinct.
Then we choose a capacitance delta and limit δc, Cmax > 0 and a slew delta δs > 0. For
all pairs i, j ∈ N with δc · i ≤ Cmax and j ≤ S and for all edges of the same group e ∈ Ek,
we compute all objective values that we could get using δc · i and δs · j as input. Then
we compute which of them are dominated. In the end, we store for each (e, k, i, j) the
input slew values that were not dominated.

In the algorithm, when we propagate through e, we find our group k by the vertex
from which we are starting and the closest values for i and j. Here we search for the
closest lower capacitance and the closest higher slew. Then we only create labels for
the slew values that we have cached, slews that are below the covered range and the
accurate value of the upper bound.

This technique of course only works if the objective function and evaluation operator
allow that we can precompute the dominance.

Unfortunately the speedup gained through this technique was negligible and the result
quality degraded slightly.

Capacitance Decrease Estimate

If the objective models only the maximum delay (or worst slack), then we can leave out
some merges. Suppose, we want to merge two labels. One with a high value, call it l,
and one with a low value, call it k. Due to the nature of the maximum function, the
objective cost of the merged solution will be the higher of the two values. Furthermore,
we know that a lower downstream capacitance at this merge will lead to a lower objective
values upstream.

These two observations lead to the following conclusion. If we are able to reduce the
capacitance on the branch of k, while keeping at least the minimum slew of both labels
and not increasing the objective value of k over the value of l, then the resulting solution
will be better than the one we would get by directly merging.

This leads to an idea for a speedup heuristic. We compute a table that can give us
an upper bound on the delay we need to spend in order to reduce the capacitance to
a certain value, while not decreasing the slew. When we want to merge two labels, we
use the table to look up how much delay we need to spend, in order to decrease the
capacitance of the label with the lower value. If this delay is less than the absolute
difference between the two, we do not merge. Otherwise, we merge as usual.

Unfortunately, this also had only a small impact on the running time, while taking
quite a while to compute itself. Also, it encourages solutions that are not good in
practice. An example are solutions that have many repeaters in the same spot.
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Heuristic Label Pruning

The running time depends mostly on the number of labels that are created before the
algorithm finishes. However, most of the created labels never lead to good solutions.

So a natural idea is to restrict the number of labels at each vertex or in each bucket
(see 4.1). We restrict the number of labels per bucket here. In order to achieve this,
we have to rigorously prune labels that we assume to not be promising. We can not
just take the labels with the best objective cost or effective objective, because we may
only keep labels with too high capacitance this way. However, it is also not helpful to
always prefer labels with low capacitance on uncritical branches, because this leads to
too many repeaters being placed.

The selection criterion that we tested, was to always keep the best objective cost and
best capacitance label. Then we would sort the remaining labels by objective cost times
capacitance, normalized by the values of the two already selected labels, and keep the
best k labels (for some k ∈ N).
However, this increased the number of iterations that were required drastically. Which

means that we were removing the wrong labels.

4.6 Iterative Clustering
Sometimes it is not enough to restrict the topology, but we rather want to reduce the
size of the instances. In this case, we can try to cluster sinks and use the clusters as
subinstances. In this section, we will describe an iterative clustering approach.

The first question that we should answer is what goals are we trying to achieve with
our clustering? Ideally, we would want to partition the sinks into subsets of at most
constant size and at least one of these sets should contain more than one sink. For each
of these sets we want to be able to determine a new root, such that there is an optimum
solution which connects each of the roots to their respective sink set.

Of course this problem is as hard as the original problem. Even for simple formulations
like the linear delay Steiner arborescence problem, we can not hope to find a constant
factor approximation algorithm, as we can use such a clustering algorithm to find a
constant factor approximation for the linear delay Steiner arborescence problem. Since
we still want to use clustering approaches, we will tackle the problem heuristically.

Intuitively, it is better to cluster sinks that are in some sense close to each other. For
VLSI-design the Steiner netlength or spanning tree netlength of the sink sets is a good
measure. It helps to keep netlength and routing congestion down, as well as the number
or size of repeaters. This also influences power and area consumption. However, if we
connect a timingwise critical sink very deep in the repeater tree, we will likely create
(timing) violations. This is why we have to consider timing as well.

For this purpose, we take inspiration in a variation of Huffman coding [Huf52] that
is used in [HR13]. It can be used to compute shorter solutions to the linear delay
Steiner arborescence problem than standard Huffman coding. In this algorithm, we first
determine an upper bound on the slack of each sink. It is defined as the required arrival
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time minus the linear delay of connecting the sink directly to the root. Then we iterate
the following: We find the minimum value H such that the instance remains feasible, if
we reduce the slack to H on all sinks with higher slack. On the sinks with slack at least
H, we compute a (almost) perfect matching with low (or minimum) weight. Then we
use the normal Huffman coding step on each of these sink-pairs, except that we place
the new vertices on the median of the two sinks and the root.
We want to do something similar, but instead of clustering two sinks, we will allow

larger clusters. Furthermore, we do not have a fixed timing cost per merge. So we choose
our cutoff value heuristically.
Let rat(t, s) be the required arrival time for each sink t ∈ T and input slew s ∈ [0, St].
We define a sink candidate as a tuple C := (pos(C), pol(C), c(C), s(C), ratC) con-

sisting of a point on the chip pos(C), a polarity with respect to the root pol(C), a
capacitance c(C) ∈ R≥0, a slew limit s(C) ∈ [0, S] and a required arrival time function
ratC : [0, s(C)] → R that computes a required arrival time for an input slew. For a sink
candidate C, we denote by P (C, s) an estimate for the delay of an optimum buffered
route from r to C with slew limit s. A virtual sink is a pair (I, C) of a subset of the sinks
∅ ̸= I ⊊ T and a set C of sink candidates with pos(C) = pos(C ′) for each C,C ′ ∈ C.
Now we define the slack of a sink candidate (I, C) as

sl(I, C) := min
C∈C

min
s′∈[0,s(C)]

[ratC(s)− P (C, s′)]

During the heuristic, we will maintain a set Q of virtual sinks. Initially, Q will consist
of virtual sinks {{t}, {Ct}} for the original sinks t ∈ T . Here Ct is the sink candidate
consisting of the same attributes of the original sink. Then we iterate the following.
We choose a cutoff value for the slacks. Virtual sinks above that cutoff value will

be considered uncritical. To the uncritical sinks, we apply a clustering algorithm that
allows to limit the sizes of the clusters. Then we choose a root position for each the sets.
Each cluster, together with its root will be used to construct a modified instance of the
TMCMAP.
The modified instance for a cluster will be constructed as follows. We build our Hanan

graph on the positions of the virtual sinks in the cluster and the root position. Then
we use this to construct our graph for the TMCMAP. For each virtual sink and each of
its sink candidates, we add a vertex and an edge from the corresponding vertex in our
graph to that vertex. Initial labels at that specific vertex will then be generated from
the values of its sink candidate. For the root, we allow connecting to the root vertex
from each layer and polarity at the root position. When a label is propagated to the
root, we first compute the sink candidate C that this would generate except for the rat
function. Then the delay through the root will be P (C, s), where s is the slew of the
label.
We also do not stop when we find the first solution. Instead, we compute a set of

non-dominated solutions. Each of these labels will form a sink candidate for the next
iteration. To limit the number of candidates, we can require that the capacitance of
the labels differs by at least some amount. Practical experiments also show that after
a while, the capacitance reduction is only achieved by adding chains of repeaters at
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Figure 4.5: An example for an iterative clustering used to compute the buffered route in
Figure 3 in the introduction. Black dots mark the sinks, the source is in the
center. Each cluster sink is connected to its cluster source by an edge. The
colours indicate the criticality (from uncritical blue through green, yellow,
red to purple for very critical).

the virtual source. Candidates that are generated from these solutions with chains of
repeaters at the virtual source do not transfer new information to the next iteration. If
they are necessary, the chains would be computed in the next iteration. Furthermore,
the repeaters may be spread, in the next iteration. Thus, we can stop the computation,
when the delay-increase per capacitance reduction exceeds a given threshold. Finally, the
roots from this iteration become virtual sinks, with additional candidates. An example
of an iterative clustering computed with this process is shown in Figure 4.5.

It remains to specify, how we are choosing the cutoff value and how we compute a
clustering. First we explain how we choose the cutoff value. Driven by the idea that
we can afford more errors in the topology for sinks with higher slack, we choose a cutoff
value σ ∈ (0, 1) and consider the range of slacks R := [mint∈Q sl(q),maxt∈Q sl(t)]. We
want to choose sinks from the top σ-fraction of R. Sometimes, we will have outliers
though. And in that case, we will likely select too many, or too few sinks. So we want
to skew this cutoff a little into the direction of the median. We do this by taking the
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arithmetic mean of the median value and the boundary of the σ-fraction of the interval.
Then we need to compute a clustering. One approach to doing this, is to solve a

Capacitated Tree Covering Problem with Edge Loads. This problem will be discussed
in detail in Chapter 5. Here, we will require the following properties and consider
the exact way, we can compute this as a black box. We want to be able to assign a
load b to the sinks and an upper bound on the total load of a cluster u, as well as a
cluster price γ. Our clustering black box should give us a forest containing the sinks
T with trees {C1, . . . , Ck} that approximately minimizes

∑
i=1,...,k length(Ci) + kγ such

that length(Ci) + |Ci|b ≤ u.
Using the sink loads and upper bound, we can limit the number of sinks in each

cluster. However, if the length of a tree is small, we can expect the Hanan graph we are
using to have few vertices. So we can allow instance sizes to grow in this case. We can
use the parameters to allow the algorithm to increase the number of sinks per cluster
slightly, if the corresponding tree has a low length. Furthermore, we can use the cluster
price γ to change the maximum edge length inside the clusters. Next, we describe how
we select these parameters.
Let a (weak) upper bound k on the cluster size be given, as well as a maximum

distance of the vertices in the Hanan graph D. We start by computing minimum length
L of a tree on all sinks and the root. Our base unit l will be the minimum of L

|T | and
D
2
. To select the cluster cost γ, we search for the minimum multiple of l for b < 1 and

u > L+ b|T |, such that the average size of a nontrivial cluster is at least 3
4
k. Let Li for

i = 1, . . . , k denote the maximum length of a cluster with i sinks, or γ if there is no such
cluster. Then we use a binary search to find the minimum value for b ≥ l such that using
u := maxi=1,...,k i · b + Li no cluster has more than k sinks. Finally, we add a budget of
(k+ 1) · l to u to allow for trading off small amounts of netlength with additional sinks.
The last remaining question is how to choose the root positions. We want to maintain

the property that the root of a cluster lies on a shortest path from each sink to the root
of the whole instance, such that we do not introduce arbitrary detours. The first step
is to compute the projection of the instance root to the bounding box of the cluster.
If this position does not lie on a blockage, we use it. Otherwise, we need to choose a
different position, because we might force solutions to the clusters subinstance to go
onto the blockage with high capacitance, such that in a subsequent iteration, we need
to leave the blockage again. Choosing the projection of the source onto the bounding
box instead may lead to multiple roots at the same position, if the bounding boxes of
multiple clusters intersect the same blockage. So instead, we choose the closest point to
our first candidate on the border of the blockage that still lies on a shortest path from
the root to all sinks. This process is illustrated in Figure 4.6d.
The need for a clustering in this procedure also motivated our research on the Ca-

pacitated Tree Cover Problem. We developed a new O(n log n) time 3-approximation
algorithm for the Capacitated Tree Cover Problem, which we will present in the next
chapter.
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(a) The projection of
the root onto the
bounding box of
the sinks is not
blocked.

(b) The projection
of the root onto
the bounding
box of the sinks
is blocked. We
instead project
onto the block-
age.

(c) The process from
4.6b places both
roots on the same
spot.

(d) By picking the
closest point to
our first candi-
date on the bor-
der of the block-
age that still lies
on a shortest path
from the root to
all sinks, we find
separate root lo-
cations.

Figure 4.6: Configurations that are taken into account when we are choosing a location
for a cluster root. The chosen root is marked in blue. Blockages are gray.
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5 A Fast 3-Approximation for the
Capacitated Tree Cover Problem with
Edge Loads

In this chapter, we present a new 3-approximation algorithm for the Capacitated Tree
Cover Problem with Edge Loads. A shortened version of this chapter has been accepted
as a single-authored paper at the SWAT 2024 conference [Roc24]. It is published as:
Benjamin Rockel-Wolff. “A Fast 3-Approximation for the Capacitated Tree Cover Prob-
lem with Edge Loads”. In: 19th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2024). Ed. by Hans L. Bodlaender. Vol. 294. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024, 39:1–39:14.
The full version in this thesis contains the full proofs and an additional estimate for

a special case that did not fit into the conference paper. It is also available on arXiv.
The capacitated tree cover problem with edge loads is a variant of the tree cover

problem, where we are given facility opening costs, metric edge costs and loads, as well
as vertex loads. We try to find a tree cover of minimum cost such that the total edge
and vertex load of each tree does not exceed a given bound. This variant has, to our
best knowledge, not been considered so far.
We start by giving a formal definition of the problem and reviewing the literature on

similar problems in Section 5.1.
We then take a closer look at solutions to our problem in Section 5.2. Let G = (V,E)

be the input graph. We observe that each induced subgraph F [A] of a solution F (for
A ⊆ V ) can have at most |A| − 1 edges and at most |A| minus total load edges. We use
this fact to derive a LP-formulation of the problem. Additionally, we derive a second
equivalent formulation by scaling the values on the edges.
Although these LP-formulations have an exponential number of inequalities, we are

able to present a O(m log n) time greedy algorithm that can solve the second formulation
optimally in Section 5.3. The main running time is spent in ordering the edges, while
the greedy value assignment can be implemented to run in almost linear time (linear
times inverse Ackermann function).
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We spend the remainder of this section on proving the algorithm’s correctness. In a
first part, we show that the solution returned by the algorithm is a solution to the LP. In
the second part, we show that it is optimum. We prove this by contradiction. Assuming
that our solution is not optimum, we pick an optimum solution that maximizes the index
i of the first edge, where the two solutions differ. Among these, it should minimize the
difference in that edge. It remains to show that we can increase the value of the i-th edge
in the optimum solution without changing the objective or violating the constraints, by
decreasing the value of an edge with a higher index.
Once we have obtained an optimum solution, we round up all edges that exceed a value

α that we determine later and round the remaining edges down in Section 5.4. This may
lead to components that violate the load bounds. We fix the solution by applying a well
known splitting technique that is also used in [MV08] and [TT22]. While the overall
approach of solving the LP, then rounding and splitting is similar to the one used in
[TT22], edges with load require a different algorithm for solving the LP. Furthermore,
we need to be more careful in the analysis of our rounding step.
We then thoroughly analyse the structure of such a rounded solution to find bounds

on the increase in the number of components that we get by rounding and splitting.
The components in a rounded solution are divided into three categories: Singletons,
good trees that do not exceed the bound, and large trees that have to be split. For
each rounded up edge, we closely examine, in which tree it can occur and bound its
contribution to the total number of components. For each rounded down edge, we
examine the configurations of trees that it may be incident to and bound the edge’s
contribution to the total number of components. In a final step, we sum over all edges
and their estimates to derive our final bound.
We are able to show that with α = 2

3
, we can bound the number by 3 times the

fractional number of components in the LP solution. The edge cost itself is no problem,
because it can only increase by a factor of 1.5 (for α = 2

3
) with our rounding strategy.

In total, we are able to show our main theorem:

Theorem. There is a 3-approximation algorithm for the capacitated tree cover problem
with edge loads that runs in time O(m log n).

Additionally, we show that we can get a better approximation guarantee if all edge
loads are below 1

2
and we use α = 1

2
. Then the approximation guarantee is bounded by

2 · (1 + umax), where umax is the highest edge load that appears in the instance.
Finally, in Section 5.5, we give a series of examples that prove that the integrality gap

of our LP is at least 3. This shows that the integrality gap of the LP is exactly 3, which
means that we can not improve the rounding step in general.
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5.1 Introduction
Graph cover problems deal with the following base problem. Given a graph G, the task
is to find a set of (connected) subgraphs of G, the cover, such that each vertex of G is
contained in at least one of the subgraphs. Usually, the subgraphs are restricted to some
class of graphs, like paths, cycles or trees. Different restrictions can be imposed on the
subgraphs, like a maximum number of edges, or a total weight of the nodes for some
given node weights. Recently, Schwartz [Sch22] published an overview of the literature
on different covering and partitioning problems.
We consider the capacitated tree cover problem with edge loads. It is a variation of

the tree cover problem that has not been studied so far to the best of our knowledge.
In the capacitated tree cover problem with edge loads, we are given a complete graph

G = (V,E), metric edge costs c : E → R+, vertex loads b : V → [0, 1), metric edge loads
u : E → R≥0 with u(e) < u(f) ⇒ c(e) ≤ c(f), and a facility opening cost γ ≥ 0. The
task is to find a number of components k ∈ N≥1 and a forest F in G consisting of k trees
minimizing ∑

e∈E(F )

c(e) + γk,

such that each tree Ti has total load

u(Ti) :=
∑

e∈E(Ti)

u(e) +
∑

v∈V (Ti)

b(v) ≤ 1.

The capacitated tree cover problem with edge loads is closely related to the facility
location problem with service capacities discussed by Maßberg and Vygen in [MV08].
Their problem uses Steiner trees to connect the nodes, not spanning trees. Furthermore,
in their case edge cost and edge load are the same. They make use of this fact to prove
a lower bound on the value of an optimum solution. Both problems have important
practical applications in chip design. In [Hel+11] they are called the sink clustering
problem and used for clock tree construction. In [Bar14] they are used for repeater tree
construction. In these applications terminals and edges have an electrical capacitance.
A source can drive only a limited capacitance. Edge cost and capacitance usually are
proportional to the length of an edge. As the edge length is given by the l1-distance
between its endpoints, this naturally matches our problem.
Our problem is also related to other facility location and clustering problems, like

the (capacitated) k-center problem ([HS85], [KS00]) or the k-means problem ([Kan+02],
[Llo82]).
Other tree cover problems include the k-min-max tree cover problem and the bounded

tree cover problem ([AHL06], [Eve+04], [KS14]). In the k-min-max tree cover problem,
we are given edge weights and want to find k trees such that the maximum of the total
weights of the trees is minimized. In the bounded tree cover problem, we are given a
bound on the maximum weight of a tree in the cover and try to minimize the number of
trees that are required. For these problems Khani and Salavatipour [KS14] gave a 3- and
2.5-approximation respectively. They improve over the previously best known results by
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Arkin et al. [AHL06], who presented a 4-approximation algorithm for the min-max tree
cover problem and a 3-approximation algorithm for the bounded tree cover problem.
Even et al. [Eve+04] independently gave a 4-approximation algorithm for the min-max
tree cover problem. Furthermore, a rooted version of these problems has been studied.
The best known approximation ratio for the capacitated tree case is 7 and was developed
by Yu and Liu [YL19].
Many algorithms for cycle cover problems are also based on tree cover algorithms

([Eve+04], [TT22], [XXZ12]). An example is the capacitated cycle covering problem,
where the cover consists of cycles (and singletons) and are given an upper bound on the
total nodeweight of the cycles. The task is to minimize the total weight of the cycles plus
the facility opening costs. Traub and Tröbst [TT22] presented a 2 + 2

7
-approximation

for this problem. They use an algorithm for the capacitated tree cover problem as a
basis for their 2 + 2

7
-approximation. In particular, they present a 2-approximation for

the capacitated tree cover problem without edge loads.

5.2 The LP-formulation
We may assume that γ ≥ c(e) for all e ∈ E, as an edge with c(e) > γ will never be
used in an optimum solution (and could be removed from the solution of the algorithm
without increasing the cost).
For simplicity, we will introduce some notation here: For any function f : A→ B ⊆ R

from a finite set A into a set B ⊆ R and X ⊆ A we write f(X) :=
∑

x∈X f(x).

Given a solution F to our problem with k components {T1, . . . , Tk}, we know that each
tree Ti contains exactly |V (Ti)| − 1 edges and hence k = |V | − |E(F )|. Each induced
subgraph of F is a forest. So we know

|E(F [A])| ≤ |A| − 1 for each A ⊆ V.

Let us now consider the load on the subgraph of F , induced by A ⊆ V . Each connected
component in F [A] can have load at most 1. So there must be at least b(A)+u(E(F [A]))
components in F [A]. As each of the components is a tree, the inequality

|E(F [A])| ≤ |A| − (b(A) + u(E(F [A])))

must be fulfilled. Using these properties, we can formulate the following LP relaxation
of this problem:

min ctx+ γ(|V | − x(E)) (5.1)

s.t. x(E(G[A])) ≤ |A| − 1 for each A ⊆ V (5.2)
∑

e∈E(G[A])

(1 + u(e))x(e) ≤ |A| − b(A) for each A ⊆ V (5.3)

0 ≤ x(e) ≤ 1 for each e ∈ E (5.4)
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Here x(e) denotes the fractional usage of the edge e. We will call an edge e active if
x(e) > 0. The LP can be reformulated by using variables y(e) := x(e)(1 + u(e)):

min
∑

e∈E

c(e)

1 + u(e)
y(e) + γ

(
|V | −

∑

e∈E

y(e)

1 + u(e)

)
(5.5)

s.t.
∑

e∈E(A)

y(e)

1 + u(e)
≤ |A| − 1 for each A ⊆ V (5.6)

y(E(G[A])) ≤ |A| − b(A) for each A ⊆ V (5.7)

0 ≤ y(e) ≤ 1 + u(e) for each e ∈ E (5.8)

For simplicity, we will always consider solutions x, y of both LPs at once. In the
following, we will denote by ux(e) := x(e) · u(e) the fractional load of edge e.

Definition 5.2.1. For a solution x, y to the LP, we define the support graph Gx :=
(V, {e ∈ E | x(e) > 0}), i.e. the graph consisting of the vertices V and all active edges.
We call an edge tight if y(e) = 1 + u(e), and we call a set A ⊆ V of vertices tight if

inequality (5.7) is tight.

Our goal will be to solve the LP exactly and then round to a forest that may violate
the capacity constraints. This increases the edge cost by at most a factor of 2. In a final
step each tree T in the forest with a load b(V (T )) + u(E(T )) > 1 can be split into at
most 2 · (b(V (T )) + u(E(T ))) trees. This may decrease the edge cost, but loses a factor
of 3 in the number of components, compared to the LP solution.

5.3 Solving the LP
Although the LP has an exponential number of inequalities, we can solve it using a
simple greedy algorithm, shown in Algorithm 7. We will focus on solving the second LP
(5) – (8).
As a first step, we sort the edges {e1, . . . , em} = E(G) such that

c(e1)− γ

1 + u(e1)
≤ . . . ≤ c(em)− γ

1 + u(em)
.

In each iteration, we compute a partition Ai ⊂ 2V (G) of the vertices of G, based on the
previous partition Ai−1. We initialize y to 0 and start with A0 := {{v}|v ∈ V (G)}.
Then we iterate through the edges from e1 to em. For each edge ei, we do the following:
If ei has endpoints in two different sets of the partition A1

i , A
2
i ∈ Ai−1, we increase

y(ei) to the maximum possible value. This maximum value is the sum of the slacks of
inequalities (5.7) for the sets A1

i and A2
i : |A1

i | − b(A1
i ) − y(E(G[A1

i ])) + |A2
i | − b(A2

i ) −
y(E(G[A2

i ])). However, we assign at most 1+u(ei), such that we do not violate inequality
(5.8).
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Finally, if we increased y(ei) by a positive amount, we create the new partition Ai

that arises from Ai−1 by removing A1
i and A2

i and adding their union.
We set A :=

⋃
i=1,...,m Ai. Observe that A is a laminar family. This guarantees that

the support graph is always a forest and inequality (5.6) is automatically fulfilled.

Algorithm 7: Algorithm for solving the LP (5) – (8).

Input : G, c, u.
Output: y optimum solution of the LP (5) – (8).

1 Sort edges such that c(e1)−γ
1+u(e1)

≤ . . . ≤ c(em)−γ
1+u(em)

;

2 Set A0 := {{v}|v ∈ V (G)} and y := 0;
3 for i = 1 . . .m do
4 if there are sets A1

i , A
2
i ∈ Ai−1 with ei ∩ A1

i ̸= ∅, ei ∩ A2
i ̸= ∅ and A1

i ̸= A2
i

then
5 y(ei) := min{1+u(ei), |A1

i |−b(A1
i )−y(E(A1

i ))+ |A2
i |−b(A2

i )−y(E(A2
i ))};

6 if y(ei) > 0 then
7 Ai := (Ai−1 \ {A1

i , A
2
i }) ∪ {A1

i ∪ A2
i };

8 else
9 Ai := Ai−1

Lemma 5.3.1. Let x, y be the solution computed by Algorithm 7. If a set A ∈ A from
the algorithm is not tight, then all the edges in its induced subgraph Gx[A] of the support
graph are tight.

Proof. Assume this were false. Take a minimal counterexample A. As the claim certainly
holds for sets consisting only of one vertex (Gx[A] has no edges if |A| = 1), we know that
|A| ≥ 2. We can write A = A1

i ∪A2
i with their associated edge ei (for some i). We know

that ei has to be tight by line 5, as A is not tight. Otherwise, the algorithm could have
increased y(ei) further. At least one of the subsets A

1
i and A

2
i of A is not tight, otherwise,

A were tight. W.l.o.g we may assume that A1
i is not tight. Then all of its edges are

tight, by minimality of A. However, then we know that x(E(G[A1
i ])) = |A1

i | − 1. Thus,

|A1
i | − b(A1

i )− y(E(G[A1
i ])) = |A1

i | − b(A1
i )− x(E(G[A1

i ]))− ux(E(G[A
1
i ]))

= |A1
i | − b(A1

i )− (|A1
i | − 1)− ux(E(G[A

1
i ])) = 1− (ux(E(G[A

1
i ]) + b(A1

i )) ≤ 1 + u(ei).

This implies that ei uses up all the slack of A1
i , when it is made tight. Thus, there must

be slack remaining on A2
i and it cannot be tight. As A contains an edge that is not tight

in its support graph, this edge must be contained in A2
i . We can conclude that A2

i is a
smaller counterexample. This contradicts the minimality of A.
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Corollary 5.3.2. Let ei ∈ E, A1
i and A2

i such that they fulfill the requirements in line
4 of the algorithm. If ei is tight then exactly one of the following is true:

• Neither A1
i , nor A

2
i are tight.

• Aj
i is tight, A3−j

i is not tight and u(ei) = ux(E(G[A
3−j
i ])) + b(A3−j

i ) = 0.

Proof. If one of the sets is tight. W.l.o.g. we can assume that this set is A1
i . If the other

set A2
i is tight, we know that y(ei) = 0, which contradicts our assumption. Otherwise, by

Lemma 5.3.1, all edges in E(Gx[A
2
i ]) are tight. Then y(ei) = |A2

i |−b(A2
i )−y(E(G[A2

i ])) =
1− (ux(E(G[A

2
i ])) + b(A2

i )) ≤ 1+ u(ei) = y(ei). Hence, ux(E(G[A
2
i ])) + b(A2

i ) = u(ei) =
0.

Theorem 5.3.3. Algorithm 7 works correctly and has running time O(m log n).

Proof. The running time is dominated by sorting.
For the correctness, we first check that the algorithm outputs a solution to our LP. The
minimum in line 5 guarantees that inequality (5.8) is fulfilled. We have already seen
that the support graph of our solution is a forest, which means that inequality (5.6) is
also satisfied. It remains to check that inequality (5.7) holds. Each A ∈ A fulfills the
inequality, when it is introduced by line 5. Since A is a laminar family, we never change
the value of y(E(G[A])) after A has been introduced, so we already know that all A ∈ A
satisfy inequality (5.7) when the algorithm is finished.
We define the slack of a set A ⊆ V as the slack of inequality 5.7 for that set and

denote it by

σ(A) := |A| − b(A)− y(E(G[A])).

Then we can prove that when the algorithm introduces a new set A, it has no more slack
than each of the joined subsets.

Claim (1). Let A1
i , A

2
i , A ∈ A such that A = A1

i ∪A2
i . We claim that σ(A) ≤ σ(Aj

i ) for
j = 1, 2.

First, note that

σ(A) = |A| − b(A)− y(E(G[A]))

= |A1
i |+ |A2

i | − (b(A1
i ) + b(A2

i ))− (y(E(G[A1
i ])) + y(E(G[A2

i ])) + y(ei))

= σ(A1
i ) + σ(A2

i )− y(ei). (b)

So it is sufficient to show that y(ei) ≥ max{σ(A1
i ), σ(A

2
i )}. By Line 5 of the algorithm,

we have

y(ei) = min{1 + u(ei), σ(A
1
i ) + σ(A2

i )}.
If we are in the second case, then y(ei) = σ(A1

i ) + σ(A2
i ) and we are done. Otherwise,

y(ei) = 1+ u(ei), so ei is tight. By Corollary 5.3.2, at least one of the sets A1
i , A

2
i is not

tight. W.l.o.g. let this set be A1
i . Then all edges in E(Gx[A

1
i ]) are tight and we have

σ(A1
i ) = |A1

i | − b(A1
i )− y(E(G[A1

i ])) = 1− (b(A1
i ) + ux(E(G[A

1
i ]))) ≤ 1 + u(ei) = y(ei).
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For the other set, we have two cases. Either A2
i is not tight and we can apply the

same proof again, or it is tight, then σ(A2
i ) = 0 ≤ y(ei). This proves the claim.

As a next step, we extend Claim (1) to all subsets of A.

Claim (2). Let A ∈ A. We claim that each subset B ⊆ A has slack σ(B) ≥ σ(A).

We prove this by induction on the number of iterations. Let i′ be the first index such
that the algorithm sets y(ei′) > 0. The claim holds for all iterations before that, because
all sets are singletons until this point. The algorithm creates A := A1

i′ ∪A2
i′ with |A| = 2.

Since all subsets of A are in A, we are in the situation of Claim (1) and there is nothing
left to prove.
Now let i > i′ and assume, that our claim holds in all previous iterations. The

algorithm creates A := A1
i ∪ A2

i . Let B ⊆ A. For |B| = 1, we have B ∈ A, because all
singletons are in A. So we can apply the Claim (1). If |B| > 1, we split B into two sets
B1 := B∩A1

i and B2 := B∩A2
i . We observe that E(G[B])\(E(G[B1])∪E(G[B2])) ⊆ {ei}

and thus

σ(B) = |B| − b(B)− y(E(G[B]))

= |B1|+ |B2| − b(B1)− b(B2)− y(E(G[B1]))

−y(E(G[B2]))− y(E(G[B]) \ (E(G[B1]) ∪ E(G[B2])))

≥ σ(B1) + σ(B2)− y(ei).

We use our induction hypothesis on B1 and B2, if they are nonempty, to see that
σ(B1) ≥ σ(A1

i ) and σ(B2) ≥ σ(A2
i ) respectively. So we can use equation (b) to compute

σ(B) ≥
∑

j=1,2

σ(Bi)− y(ei) ≥
∑

j=1,2

σ(Aj
i )− y(ei) = σ(A).

This proves Claim (2).
Finally, we observe that for B1 ⊆ V and B2 ⊆ V from different connected components

of Gx, we have σ(B1∪B2) = σ(B1)+σ(B2). This means that we can split any subset of
the vertices B ⊆ V into subsets of the toplevel sets of A, which are exactly the connected
components of Gx. Then we can use Claim (2) on each of the subsets to see that they
have nonnegative slack. The observation implies that B also has nonnegative slack. So
inequality 5.7 is always satisfied.

Next we want to prove optimality. Assume that y were not optimum. Let y∗ be
an optimum solution which maximizes the index of the first edge in the order of the
algorithm in which y and y∗ differ and among those minimizes the difference in this
edge. Let this index be denoted by k. As the algorithm always sets the values to the
maximum that is possible without violating an inequality, we know that y∗(ek) < y(ek).
By the ordering of the algorithm, we know that

c(ek)− γ

1 + u(ek)
≤ c(ei)− γ

1 + u(ei)
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for all i > k. Our goal will be, to find an edge ei with i > k such that we can increase
y∗(ek) and avoid violating constraints or increasing the objective by decreasing y∗(ei) in
x∗, y∗.
Let Gk be the connected component of ek in the subgraph of G containing only ek

and the active edges with index less than k. Define

Γ := {ei ∈ E(Gx∗) | i > k and ei incident to v ∈ V (Gk)}.

Note that Γ ̸= ∅, because otherwise, we could increase y∗(ek) to y(ek) without violating
any constraints. Since c(e) ≤ γ, this would not increase the objective value.
We will prove that all tight sets containing the vertices of Gk must have a common

edge in Γ.

Claim (3). Let T := {B ⊆ V | V (Gk) ⊆ B and B tight} be the family of tight sets of
x∗, y∗ containing the vertices of Gk. We claim that

Γ ∩
⋂

B∈T
E(Gx∗ [B]) ̸= ∅.

If there is an edge in Γ between vertices of Gk, then this certainly holds. Otherwise,
we know that V (Gk) is not tight, because the algorithm was able to set y(ek) > y∗(ek).
Observation: Unions of tight sets are tight and there are no active edges between tight
sets.
Let A,B be tight sets. Let ∆ := E(G[A ∪ B]) \ (E(G[A]) ∪ E(G[B])) be the edges

between A and B. We have

y(E(G[A ∪B])) ≤ |A ∪B| − b(A ∪B)

= |A| − b(A) + |B| − b(B)− (|A ∩B| − b(A ∩B))

= y(E(G[A])) + y(E(G[B]))− (|A ∩B| − b(A ∩B))

= y(E(G[A ∪B]))− y(∆) + y(E(G[A ∩B]))− (|A ∩B| − b(A ∩B))

≤ y(E(G[A ∪B]))− y(∆),

where we used LP inequality (5.7) in the first and in the last step. As y ≥ 0, we must
have equality everywhere, and y(E(G[A∪B]) \ (E(G[A])∪E(G[B]))) = 0. This proves
our observation.
Let S := {S1, . . . , Sp} ⊆ T be a set of p ≥ 2 tight sets containing the vertices of Gk

and set Z :=
⋃

Si∈S Si. By our observation, Z is tight as well. We will introduce some
notation to write down the proof of the claim. For a ∈ N, we write [a] := {1, . . . , a}.
Then for any index-set ∅ ⊊ I ⊆ [p], denote by VI :=

⋂
i∈I Si \ V (Gk) the vertices of the

intersection of the Si belonging to the indices in I outside of Gk, by EI := E(Gx∗ [VI ])
the active edges in VI and by ∆I := Γ ∩ E(Gx∗ [

⋂
i∈I Si]) the active edges between VI

and Gk. These sets are illustrated in Figure 5.1. Furthermore, we denote for A ⊂ V (G)
by σ∗(A) := |A| − b(A)− y∗(E(G[A])) the slack of the inequality for A in the optimum
solution.
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Gk

V{1}

V{2}

V{3}
V{1,2}

V{2,3}

V{1,3}

V{1,2,3}

S1

S2

S3

Z
∆{1,2,3}

∆{1,3}

∆{3}

Figure 5.1: An illustration of the sets Z, Gk, Si, VI and ∆I for p = 3 and i ∈ [3], I ⊆ [3].
The set V{1} for example contains the vertices in the red, the purple, the
orange and the brown area, while the set V{1,2} contains only the vertices in
the purple and the brown area.

We will prove a stronger statement than our claim by induction on p: For each p ≥ 2
and I ⊆ [p] with |I| ≥ 2, it holds that

y∗(∆I)− σ∗(VI) = σ∗(V (Gk)).

Since V (Gk) is not tight, the right-hand side must be greater than zero. By our LP-
inequalities, σ∗(VI) ≥ 0. Hence, y∗(∆I) > 0 and ∆I ̸= ∅.
We start with p = 2. Using the tightness of S1 ∪ S2, we get

y∗(E(G[Z])) = |Z| − b(Z)

= |S1| − b(S1) + |S2| − b(S2)− (|V{1,2}| − b(V{1,2}))− (|V (Gk)| − b(V (Gk))).

Our observation that edges between tight sets can not be active implies that

y∗(E(Gk)) + y∗(E{1}) + y∗(E{2})− y∗(E{1,2}) + y∗(∆{1}) + y∗(∆{2})− y∗(∆{1,2})

=y∗(E(G[Z])).

Using the tightness of S1 and S2, we compute

y∗(E(G[Z])) = y∗(S1) + y∗(S2)− (|V{1,2}| − b(V{1,2}))− (|V (Gk)| − b(V (Gk)))

= 2 · y∗(E(Gk)) + y∗(E{1}) + y∗(E{2}) + y∗(∆{1}) + y∗(∆{2})

−(|V{1,2}| − b(V{1,2}))− (|V (Gk)| − b(V (Gk)))

= y∗(E(G[Z])) + y∗(E(Gk)) + y∗(E{1,2}) + y∗(∆{1,2})

−(|V{1,2}| − b(V{1,2}))− (|V (Gk)| − b(V (Gk)))

= y∗(E(G[Z])) + y∗(∆{1,2})− σ∗(V{1,2})− σ∗(V (Gk)).
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We conclude

y∗(∆{1,2})− σ∗(V{1,2}) = σ∗(V (Gk)).

For the induction step, let p > 2 and assume we have for any index-set I ⊆ [p] with
2 ≤ |I| < p that

y∗(∆I)− σ∗(VI) = σ∗(V (Gk)).

Similarly as in the case p = 2, we want to write |Z| − b(Z) as a sum of the |Si| − b(Si)
minus the values that we counted multiple times. We added |V (Gk)| − b(Gk) with each
of the Si, but only needed it once. So we have to subtract it (p− 1) times. Then for the
remainder, we use the following observation:
Observation: Let C1, . . . , Cp be some sets and f :

⋃
i=1,...,pCi → R a function on the

elements of the sets. Then

f

( ⋃

i=1,...,p

Ci

)
=

p∑

j=1

(−1)j−1
∑

I∈([p]j )

f

(⋂

i∈I
Ci

)
.

We compute

y∗(E(G[Z])) = |Z| − b(Z)

=

p∑

j=1

[|Sj| − b(Sj)]− (p− 1) · (|V (Gk)| − b(Gk))

−
p∑

j=2

(−1)j
∑

I∈([p]j )

[|VI | − b(VI)] .

Then we use tightness of the Sj for j = 1, . . . , p and the fact that we can split y∗(E(G[Sj])) =
y∗(Ej) + y∗(∆j) + y∗(E(Gk)) to rewrite this as

y∗(E(G[Z])) =
p∑

j=1

y∗(E(G[Sj]))− (p− 1) · (|V (Gk)| − b(Gk))

−
p∑

j=2

(−1)j
∑

I∈([p]j )

[|VI | − b(VI)]

=

p∑

j=1

[y∗(Ej) + y∗(∆j) + y∗(E(Gk))]− (p− 1) · (|V (Gk)| − b(Gk))

−
p∑

j=2

(−1)j
∑

I∈([p]j )

[|VI | − b(VI)] .
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We use the reverse argument of the first step to assemble y∗(Z) and add the remaining
values:

y∗(E(G[Z])) = y∗(Z) +
p∑

j=2

(−1)j
∑

I∈([p]j )

[y∗(EI) + y∗(∆I)] + (p− 1)y∗(E(Gk))

−(p− 1)(|V (Gk)| − b(Gk))−
p∑

j=2

(−1)j
∑

I∈([p]j )

[|VI | − b(VI)] .

And finally we simplify this to

y∗(E(G[Z])) = y∗(Z)− (p− 1)σ∗(V (Gk))

+

p∑

j=2

(−1)j
∑

I∈([p]j )

[y∗(∆I) + y∗(EI)− (|VI | − b(VI))]

= y∗(Z)− (p− 1)σ∗(V (Gk)) + (−1)p(y∗(∆[p])− σ∗(V[p]))

+

p−1∑

j=2

(−1)j
∑

I∈([p]j )

[y∗(∆I)− σ∗(VI)] .

Now we can use our induction hypothesis to retrieve

p−1∑

j=2

(−1)j
∑

I∈([p]j )

[y∗(∆I)− σ∗(VI)] =
p−1∑

j=2

(−1)j
∑

I∈([p]j )

σ∗(V (Gk))

= (p− 1 + (−1)p+1)σ∗(V (Gk)),

which can be put back into our previous equation:

y∗(E(G[Z])) = y∗(E(G[Z]))− (p− 1)σ∗(V (Gk)) + (−1)p(y∗(∆[p])− σ∗(V[p]))

+(p− 1 + (−1)p+1)σ∗(V (Gk))

= y∗(E(G[Z])) + (−1)p(y∗(∆[p])− σ∗(V[p])− σ∗(V (Gk)))

As before, we conclude
y∗(∆[p])− σ∗(V[p]) = σ∗(V (Gk)).

Finally, we can pick an edge f ∈ Γ that is contained in all tight sets that contain
the vertices of Gk. If u(f) ≤ u(ek), we know that 1

1+u(f)
≥ 1

1+u(ek)
. So we can decrease

y∗(f) and increase y∗(ek) by the same amount without violating any constraints. By
the ordering of our algorithm, this can not increase the objective value. This would
contradict our choice of y∗. Hence, u(f) > u(ek). But then c(f) ≥ c(ek) and we could
decrease x∗(f) and increase x∗(ek) without increasing the objective value. Furthermore,
we also do not create a violation this way, because ϵ · (1 + u(f)) > ϵ · (1 + u(ek)) for
ϵ > 0. This contradicts our choice of y∗ and concludes the proof.
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The support graph of the LP solution computed by Algorithm 7 is always a forest.
Thus, Theorem 5.3.3 implies the following:

Corollary 5.3.4. There is always a solution x, y to both LPs, such that the support
graph Gx is a forest.

5.4 The Rounding Strategy
Now we want to round the LP solution, computed by Algorithm 7, to get an integral
solution. We do so by rounding up edges e with x(e) ≥ α, for some 0 ≤ α ≤ 1 to
be determined later. All other edges are rounded down. The forest arising from this
rounding step may contain components T with b(V (T )) + u(E(T )) > 1. These large
components will be split into at most 2 · (b(V (T )) + u(E(T ))) legal components. We
achieve this by using a splitting technique that is often used for these cases, for example
in [MV08] and also in [TT22].
We will start by explaining how the splitting technique works in Section 5.4.1. How-

ever, for the analysis, we only require the result that it is possible to split the trees
into 2 · (b(V (T )) + u(E(T ))) legal components. In Section 5.4.2, we will study the LP
solution, that we get from Algorithm 7. We will exploit the structure of this solution in
our analysis. Then we will bound the number of components that we get after rounding
and splitting in Section 5.4. We do this by providing an upper bound on the value of
each edge after rounding and splitting. Finally, we determine two different α and the
implied bounds on the value of our solution compared to the LP solution. The first
bound in Section 5.4.3 will depend on the edge loads that are occurring in the instance
and is better, when only light edges (with load < 1

2
) occur. The second one in Section

5.4.3 will give a factor of 3 independent of the edge loads.

5.4.1 Splitting large trees
Given a rounded component T with total load b(V (T )) + u(E(T )) > 1, we want to split
this tree into a forest consisting only of trees with total load less or equal to 1.

Lemma 5.4.1 (Maßberg and Vygen 2008 [MV08]). There is a linear time algorithm that
splits a tree with total load b(V (T )) + u(E(T )) > 1 into at most 2 · (b(V (T )) + u(E(T )))
legal trees.

Proof. We choose an arbitrary vertex r ∈ V (T ) as a root and direct the tree away from
r. This way, we get an arborescence. During the algorithm, we will maintain a set of
trees T , as well as an upper bound on the total load of each tree l : T → [0, 1] and
an assignment of vertices to trees t : V (G) → T . We initialize T := {{v}|v ∈ V (T )},
l({v}) := b(v) and t(v) := {v}. Furthermore, we denote for all v ∈ V \ {r} by ev the
unique incoming edge of the vertex v.
We traverse the arborescence in reverse topological order. At the leaves, we do nothing.

At each other vertex v, we construct an instance of the bin packing problem. The
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maximum size of a bin is 1. Let C be the children of v. Then we want to pack {v} ∪C,
where we assign to v the weight w(v) := l(t(v)) and to the children c ∈ C the weight
w(c) := l(t(c)) + u(ec).
Then we optimize this bin packing instance. For our purposes, the first fit approach

will be enough. For our splitting, we only require, that each bin except for one is packed
with at least weight 1

2
and that the last bin could not have been added to any of the

other bins.
Let B1, . . . , Bk be the resulting bins ordered in decreasing order of their weight. For

i = 1, . . . , k, we do nothing, if |Bi| = 1. Otherwise, we join the trees t(p) for p ∈ Bi to
a new tree U by shortcutting the paths in T that are connecting them. This can only
decrease the load (and cost), because u was metric (and c was metric). Then we remove
t(p) from T for each p ∈ Bi and we add U to T . We set l(U) := w(Bi). This is an upper
bound on the total load of U because we included the weight of the connecting edges in
the element weights of the bin packing instance. For the last bin with i = k, we also set
t(v) := U .
Note that due to the reverse topological order, we do not access t(c) or l(t(c)) for

c ∈ C again after this point. Also, T will always contain a partition of T and each edge
load will have been counted exactly once.
In the end, each tree in T will correspond to a bin that we produced during our

algorithm. Since we always assign the smallest bin to the current vertex, we make sure
that it gets passed on to the next iteration. This way, we can guarantee that at most
one of the trees has total load less than 1

2
. Furthermore, there was at least one bin,

where this tree did not fit. Consequentially the loads of these two trees sum up to more
than 1. This means that on average they have total load at least 1

2
. Since every other

tree has total load at least 1
2
, we have created at most 2 · (b(V (T ))+u(E(T ))) trees this

way.

5.4.2 The general structure of the LP solution
Let x, y be a solution found by the algorithm. Recall that for edges e ∈ E(G), ux(e) :=
x(e) · u(e) was the fractional load of the edge e in our solution. Note that then it holds
for each set A ⊆ V (G) and edge e ∈ E(G) that

y(E(G[A])) = x(E(G[A])) + ux(E(G[A])) and y(e) = x(e) + x(e)u(e).

Without loss of generality, we can assume that 0 < x(e) for all edges. We simply remove
all edges with x(e) = 0. Then we contract all inclusionwise maximal sets A ∈ A such
that all edges in their respective induced support graph are tight and set the load of
the new vertex to b(A) + ux(E(G[A])). This only makes the approximation guarantee
worse, because these components will have the same value in the rounded solution as in
the LP-solution. Corollary 5.3.2 implies that all remaining edges e ∈ E with x(e) = 1,
are edges with load u(e) = 0. In the remaining graph the following assertions hold:

1. |{v}| − b({v})− y(E(G[{v}])) = 1− b(v) ≤ 1 for all v ∈ V .
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2. All A ∈ A containing more than 1 vertex are tight, by Lemma 5.3.1.

Now, we will take a closer look at the sets Aj
i for i = 1, . . . ,m and j = 1, 2. In

the following analysis, we will assume without loss of generality that |A1
i | ≤ |A2

i | and
σ(A1

i ) ≥ σ(A2
i ). By the above assertions, we have for an edge ei and the two associated

sets A1
i , A

2
i , either

(i) both A1
i and A2

i contain only one vertex and one of them (A1
i ) is not tight, or

(ii) A1
i contains only one vertex and is not tight and A2

i contains more vertices and is
tight

To make the following easier to read, we add the following definitions

Definition 5.4.2. Edges that fulfill condition (i) are called seed edges and edges that
fulfill condition (ii) are called extension edges. For each edge ei we denote by vei the
unique vertex in set A1

i .

Note that every edge ei is either a seed edge or an extension edge, but this only holds
after contracting the sets of tight edges as described above.
Thus, whenever ei is a seed edge, the algorithm sets

y(ei) := |A1
i |−b(A1

i )−y(E(G[A1
i ]))+ |A2

i |−b(A2
i )−y(E(G[A2

i ])) = 1−b(A1
i )+1−b(A2

i ),

where we use the fact that E(G[Aj
i ]) = ∅ for j = 1, 2. Since both A1

i and A2
i were

singletons, we can conclude

x(ei) + u(ei)x(ei) = y(ei) = 2− b(A1
i ∪ A2

i ).

Similarly, for extension edges, we get

x(ei) + u(ei)x(ei) = 1− b(A1
i ).

In the analysis of the rounding step, we need some further observations:

Observation. Let T be a connected component in Gx. Then

• T is a tree.

• If |V (T )| > 1, then T contains exactly one seed edge and all other edges are
extension edges.

• If T contains a seed edge ei, then i = min
ej∈E(T )

j or in other words, ei was the first

edge of T considered in the algorithm.

Proof. As Gx is a forest, each connected component must be a tree.
Suppose there were two seed edges e, f ∈ E(T ) (e ̸= f). Let A be the set that the
algorithm creates, when increasing e, and B the same for f . By the definition of seed
edges, |A| = |B| = 2. Let C = A1

i ∪̇A2
i be the smallest set in the laminar family A with

A,B ⊂ C. Then A ⊆ Ak
i and B ⊆ A3−k

i for some k ∈ {1, 2}. Hence, |Aj
i | ≥ 2 for j = 1, 2

and both must be tight. Thus, y(ei) = 0, contradicting the fact that Algorithm 7 has
joined A1

i and A2
i . This implies that T can only contain one seed edge.

Let |V (T )| > 1 and ei be the first edge in T that was considered during the algorithm.
Then |Aj

i | = 1 for j = 1, 2. So by definition, it is a seed edge.
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5.4.3 Analyzing the rounding step
First note that by our rounding procedure, the sum of the edge-weights can increase by
at most 1

α
. So for the edge-weights it is sufficient to make sure that α ≥ 1

2
and the main

difficulty is to bound the number of components.
Before we choose α, let us estimate how many components we get after rounding and

splitting. To do this, we take a look at the connected components after rounding. Let
T be such a component. We denote by comp(T ) the number of connected components
we need to split T into.
Let C∗ be the set of components before splitting and C be the set of components

after splitting. Our goal here is to estimate |C| by a contribution est(e) of each edge
e ∈ E(G), such that the number of components after splitting is

|C| =
∑

T∈C∗

comp(T ) ≤
∑

T∈C∗

|V (T )| −
∑

e∈E(G)

est(e) = |V (G)| −
∑

e∈E(G)

est(e)

There are three cases:

1. singletons : T consists of only one vertex.

2. good trees : T consists of more than one vertex and u(E(T )) + b(V (T )) ≤ 1

3. large trees : T consists of more than one vertex and u(E(T )) + b(V (T )) > 1

Case 1: T is a singleton. Its number of components is

comp(T ) := 1 = |V (T )| − 0.

Case 2: T is a good tree. So we can keep this component for a solution to the problem.
The number of components is

comp(T ) := 1 = |V (T )| − (|V (T )| − 1) ≤ |V (T )| −
∑

e∈E(T )

[1− 2b(ve)− 2u(e)] .

For all e ∈ E(T ), we set est(e) := 1− 2b(ve)− 2u(e).

Case 3: T is a large tree. So we have to split this component to get a feasible so-
lution. Denote by e′ the edge in T with the lowest index according to the sorting of the
algorithm. Let v̄ ̸= ve′ be incident to e

′. Note that this does not have to be a seed edge,
as the components after rounding do not necessarily contain a seed edge. We rewrite
the number of components:

comp(T ) ≤ 2 · (u(E(T )) + b(V (T )))

= |V (T )| − [2− 2b(ve′)− 2u(e′)− 2b(v̄)]−
∑

e′ ̸=e∈E(T )

[1− 2b(ve)− 2u(e)] .
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If T contains a seed edge, then this edge is e′. This means that the number of components
can be estimated by edges in T . We set est(e′) := 2 − 2b(ve′) − 2u(e′) − 2b(v̄) and
est(e) := 1− 2b(ve)− 2u(e) for all e ∈ E(T ) \ {e′}.
Otherwise, T only consists of extension edges. In this case, we write

[2− 2b(ve′)− 2u(e′)− 2b(v̄)] +
∑

e′ ̸=e∈E(T )

[1− 2b(ve)− 2u(e)]

= [1− 2b(v̄)] +
∑

e∈E(T )

[1− 2b(ve)− 2u(e)] .

Then, we set est(e) := 1−2b(ve)−2u(e) for all e ∈ E(T ). However, in this case we need
to account for the additional 1 − 2b(v̄). To do so, we call the edge incident to v̄ that
is not contained in T a filler edge. For all filler edges {v, w} = e ∈ E(G), we w.l.o.g.
assume that e is a filler edge for the component that contains v and set

est(e) :=

{
2− (b(v) + b(w)), if e is the filler edge of two components

1− b(v), otherwise.

For all edges not considered before, we set est(e) := 0.
Now we have that

|C| ≤ |V (G)| −
∑

e∈E(G)

est(e)

Our next goal is to find a lower bound on
∑

e∈E(G)

est(e).

Lower bounds for the extension edges

We start with the simpler case of extension edges. An overview over the cases in which
they can appear is shown in Figure 5.2. Let e be an extension edge. If it appears inside
a good tree or a large tree. Then

est(e) = 1− 2b(ve)− 2u(e)

= 1− 2(1− x(e)− x(e)u(e) + u(e))

= 1− 2 + 2x(e) + 2x(e)u(e)− 2u(e)

= 2x(e)− 1− 2u(e)(1− x(e)).

If it is incident to a singleton or a good tree, we can estimate

est(e) = 0 ≥ 2x(e)− 1− (2x(e)− 1).

If it is a filler edge, we can estimate

est(e) = 1− 2b(ve) = 1− 2(1− x(e)− x(e)u(e)) = 2x(e)− 1 + x(e)u(e) ≥ 2x(e)− 1.
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(a) Inside a (good or large)
tree.

(b) Leading towards a good
tree or a singleton.

(c) As a filler edge leading to
a large tree.

Figure 5.2: The cases in which extension edges can occur. Dashed edges have been
rounded down, while solid ones have been rounded up. Thick edges belong
to a large tree. For each edge e the arrowhead points towards ve.

Lower bounds for the seed edges

Next we consider seed edges. An overview over the cases in which they can appear
is shown in Figure 5.3. Let e be a seed edge. e = {ve, v̄} can not be contained in a
singleton. It can only be contained in a good tree, if e is tight, as otherwise we have

1 + u(e) > y(e) = 1− b(ve) + 1− b(v̄) ⇔ b(ve) + b(v̄) + u(e) > 1.

If it is tight, we are in the second case of Corollary 5.3.2 and u(e) = 0. Recall that then
one of the sets A1

i , A
2
i was tight for e = ei. By our labelling this was A2

i = v̄. So, we
know that b(v̄) = 1. We estimate

est(e) = 1− 2b(ve)− 2u(e)

= 1− 2(2− x(e)− x(e)u(e)− b(v̄) + u(e))

= 1− 4 + 2x(e) + 2b(v̄)

= 2x(e)− 3 + 2b(v̄)

≥ 2x(e)− 2.

If it is contained a large tree, it was the first edge considered in this component. We
estimate

est(e) = 2− 2b(ve)− 2u(e)− 2b(v̄)

= 2− 2(2− x(e)− x(e)u(e) + u(e))

= 2− 4 + 2x(e) + 2x(e)u(e)− 2u(e)

= 2x(e)− 2− 2u(e)(1− x(e)).

Otherwise both endpoints are incident to different components. This means that it was
rounded down. If these components are singletons or good trees, we can estimate

est(e) = 0 ≥ 2x(e)− 2.

If both are large trees, then e is a filler edge for both and we have

est(e) = 2−2(b(ve)+b(v̄)) = 2−2(2−x(e)−x(e)u(e)) = 2x(e)−2+2u(e)x(e) ≥ 2x(e)−2.
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(a) Inside a good or
large tree.

(b) Incident only to
good trees or
singletons.

(c) As a filler edge for
two large trees.

(d) As a filler edge for
one large tree and
incident to a good
tree or a single-
ton.

Figure 5.3: The cases in which seed edges can occur. Dashed edges have been rounded
down, while solid ones have been rounded up. Thick edges belong to a large
tree. For each extension edge e the arrowhead points towards ve. Seed edges
have arrowheads on both ends.

The last case is that e is incident to one large tree and a good tree or a singleton. This
means it is a filler edge for only one endpoint. W.l.o.g. let this endpoint be ve. We set
y1 := (1+u(e)), x1 := 1− b(ve) and y2 := (1+u(e)), x2 := 1− b(v̄). For a later estimate
note that then x2 ≤ α as x(e) ≤ α. We can estimate

est(e) = 1− 2b(ve)

= 1− 2(1− x1 − u(e)x1)

= 1− 2 + 2x1 + 2u(e)x1

= 2x1 − 1 + 2u(e)x1

= 2x1 + 2x2 − 2 + 2u(e)x1 + 1− 2x2

≥ 2x(e)− 2− (2x2 − 1).

Now almost all estimates are of the same form.
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Summary of the estimates

Before we choose α and derive the approximation guarantee, let us summarize the derived
estimates.

est(e) ≥
seed edges

2x(e)− 2− 0 incident to good trees or singletons,

in a good tree, filler for both ends

2x(e)− 2− (2x2 − 1) filler for one end

2x(e)− 2− 2u(e)(1− x(e)) in a large tree

extension edges

2x(e)− 1− 0 filler edge

2x(e)− 1− (2x(e)− 1) incident to good tree or singleton

2x(e)− 1− 2u(e)(1− x(e)) inside a component

The base part, which is left in black, now sums up to at most 2x(E(G))−|V (G)|, because
there is exactly one seed edge for every component in G that is not a singleton. So it
remains to estimate the parts marked in blue. Our goal will be to estimate this part in
terms of |V (G)| − x(E(G)). That is, find a β, such that we have “sum of blue parts” ≤
β(|V (G)| − x(E(G)). We will achieve this by first estimating for each {ve, w} ∈ E(Gx)
that

“blue part” ≤
{
β(b(ve) + b(w) + x(e)u(e)) for seed edges

β(b(ve) + x(e)u(e)) for extension edges.

Then, we can use that to sum up the estimates of the differences

“sum of blue parts” ≤ β(b(V (G)) + u(x(E(G)))) ≤ β(|V (G)| − x(E(G))),

where the last inequality follows directly from the LP-inequalities.
In total, we are left with

|C| ≤ |V (G)| −
∑

e∈E(G)

est(e)

≤ |V (G)| − (2x(E(G))− |V (G)| − β(|V (G)| − x(E(G))))

= (2 + β)(|V (G)| − x(E(G)))

A first approximation guarantee

Let umax := max
e∈E(G)

u(e)

Lemma 5.4.3. If we set α := 1
2
, the number of components after splitting is at most

(2 + 2 umax )(|V (G)| − x(E(G))).
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Proof. We will show the following claim:
If α = 1

2
, then

est(e) ≥ 2x(e)− 2− 2 umax (b(v) + b(w) + x(e)u(e))

for all seed edges e = {v, w} and

est(e) ≥ 2x(e)− 1− 2 umax (b(v) + u(e)x(e))

for all extension edges e = {v, w}.
These estimates are exactly of the form, we required in Section 5.4.3. Thus, they

directly imply the statement of the lemma.
First we observe that −u(e)(1−x(e)) ≥ − umax (1−x(e)). Second, that for seed edges

e = {v, w}, we have

1− x(e) = b(v) + b(w) + u(e)x(e)− 1 ≤ b(v) + b(w) + u(e)x(e)

and for extension edges e = {ve, w},
1− x(e) = b(ve) + u(e)x(e).

Furthermore of course 0 ≥ −2 umax (b(v) + b(w) + u(e)x(e)) and 0 ≥ −2 umax (b(ve) +
u(e)x(e)). With these observations the claim already holds for most edges. It remains
to show that it holds for extension edges e that are incident to good trees or singletons.
These edges are rounded down, as they are in no component. This means x(e) ≤ 1

2
. We

have

est(e) ≥ 2x(e)− 1− (2x(e)− 1) ≥ 2x(e)− 1 ≥ 2x(e)− 1− 2 umax (b(ve) + u(e)x(e)).

And we need to show the inequality for seed edges that are filler edges for only one large
tree. These are also rounded down. There we estimated est(e) ≥ 2x(e)− 2− (2x2 − 1).
With x2 ≤ 1

2
, we get

est(e) ≥ 2x(e)− 2 ≥ 2x(e)− 2− 2 umax (b(v) + b(w) + u(e)x(e)).

This proves the claim.

A general approximation guarantee

However, these estimates were not optimal, as we may choose α in a better way. Specif-
ically, we will choose α := 2

3
to achieve a 3-approximation.

We want to determine β ≤ 1 optimal, such that we get a 2 + β-approximation. The
only step, that required α ≤ 1

2
in the previous proof was to estimate −(2x(e) − 1) ≥ 0

for edges that were not rounded up. However, if we want a 2+β-approximation, we may
choose α, such that −(2x(e)− 1) ≥ −β(1− x(e)) (for edges that are rounded down).

−(2x(e)− 1) ≥ −β(1− x(e))

⇔ 1− 2x(e) ≥ −β + βx(e)

⇔ 1 + β ≥ (2 + β)x(e)

⇔ 1 + β

2 + β
≥ x(e)
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This means for all edges e that we round down, we need

x(e) ≤ 1 + β

2 + β
.

So we set α := 1+β
2+β

. Now we know for all edges e that we round up, x(e) ≥ 1+β
2+β

. In this

case we have 1− x(e) ≤ 1
2+β

. So we can estimate

x(e) ≥ 1 + β

2 + β
≥ (1 + β)(1− x(e)).

Then we can use this to estimate

−2u(e)(1− x(e)) ≥ − 2

1 + β
u(e)x(e),

as the only edges, where the term −2u(e)(1−x(e)) appeared, were edges that we rounded
up. Of course then for seed edges this implies

− 2

1 + β
u(e)x(e) ≥ − 2

1 + β
(u(e)x(e) + b(v) + b(w))

and for extension edges

− 2

1 + β
u(e)x(e) ≥ − 2

1 + β
(u(e)x(e) + b(ve)).

For a 2 + β-approximation, we need

2

1 + β
= β ⇔ β ∈ {−2, 1}.

Since β ≥ 0, we choose β := 1 and hence α := 2
3
for a 3-approximation.

5.5 The integrality gap of the LP
We will now prove that the integrality gap of the LP is 3. This means that using the
approach discussed here, we can not achieve a better approximation guarantee.

Theorem 5.5.1. The integrality gap of the LP-relaxation given in Section 5.2 is at least
3.

Proof. For an instance I denote by OPT(I) the value of an optimum (integral) solution
and by OPTLP(I) the value of an optimum LP-solution. We will provide a sequence Ik
of instances, such that lim

k→∞
OPT(Ik)

OPTLP(Ik)
= 3.

Let 0 < ϵ < 1
2
. For some k ≥ 3, let G be a k-star. That is a graph with k+ 1 vertices

{C} ∪ {v1, . . . , vk} and edges {{C, vi} | i = 1, . . . , k}. We set c ≡ 0 and γ := 1. For
all edges e ∈ E(G), we set u(e) := 1

2
. Finally, we set b(C) := 1 − ϵ and b(vi) := ϵ for
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Figure 5.4: A picture showing the instance described in the proof of Theorem 5.5. The
solid edges belong to the k-star. Edge loads are marked in blue and node
loads are marked in green. The dashed edge is an example for the edges
added to complete the graph.

i = 1, . . . , k. In order to get to a complete graph, we extend G, by adding edges between
all pairs vi, vj for i < j and set c({vi, vj}) = 0 and u({vi, vj}) := 1 − ϵ. Clearly, the
resulting u and c are metric. We will denote this instance by Ik,ϵ. A depiction of Ik,ϵ is
shown in Figure 5.4.
In an optimum integral solution to this instance, no edge can be used. This means

that OPT(Ik,ϵ) = k + 1. Now we solve the LP using the algorithm from section 2. It
will first consider the edges {C, vi} and only afterwards the others. W.l.o.g. we may
assume that the edges are considered in the order e1 := {C, v1}, . . . , ek := {C, vk}. The
first edge will get the value y(e1) := 2− (1− ϵ+ ϵ) = 1 and hence

x(e1) =
y(e1)

1 + 1
2

=
2

3
.

The edge ei will get the value y(ei) := i+ 1− (i+ ϵ) = 1− ϵ and hence

x(ei) =
2

3
− 2ϵ

3
.

After edge ek has been considered, the support graph is a tree. This means, that the
algorithm will not consider the remaining edges. This shows that

OPTLP(Ik,ϵ) = |V | −
∑

i=1,...,k

x(ei) = k + 1− 2

3
− (k − 1)

(
2

3
− ϵ

3

)
=
k

3
+

(k − 1)ϵ

3
+ 1.

Setting Ik := I
k,

1
k2
, we get

lim
k→∞

OPT(Ik)

OPTLP(Ik)
= lim

k→∞

k + 1
k
3
+ (k−1)

3k2
+ 1

= 3
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Remark. Adding inequalities that forbid edges that can not be taken in an integral
solution will not help to lower the integrality gap. We can replace the central vertex C
in the proof of Theorem 9 by a Kl for some l ∈ N with small edge and vertex loads that
add up to 1. This will only change the “+1” by a constant depending on l and hence not
change the asymptotic ratio of OPT to OPTLP.

Together with the upper bound of 3 given by the analysis of the algorithm, we can
conclude:

Corollary 5.5.2. The integrality gap of the LP is 3.
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6 Experimental Results

In the previous chapters, we have developed new algorithms and a framework for solving
the buffering problem. Now we test the framework and speedups in practice.
We conducted experiments on real-world instances taken from the industrial flow at

IBM. Unfortunately, no public benchmarks are available. Our goal is to evaluate our
base algorithm and different versions using our speedup techniques in terms of running
time and quality.
We start by explaining our experimental setup and the different combinations of ob-

jectives and speedups that we will test our algorithm with in Section 6.1. Furthermore,
we try to give some insight into the testbed we are using for our experiments.
In our first set of experiments in Section 6.2, we test the base version of our algorithm

that can give us an approximation guarantee and various variants that use different sets
of speedup techniques. Since the base version is very slow, we keep the objective simple
and the instances small. We compare the variants with heuristic speedups to the base
version. For the results, we use the objective value of the solutions as a metric. We
show that we can gain significant speedups without a significant loss in result quality in
these small instances. Additionally, we show that we can gain even higher speedups if
we sacrifice some quality of results.
Finally, we test the fastest variants of our algorithm in a more practical setting in

Section 6.3. In this setting, we do not restrict the instance sizes. Furthermore, we
evaluate the solutions using higher order delay models and also measure the power
usage. Then we compare our solutions to the input solutions. These are taken from the
end of the main timing and power optimization step of an industrial flow. Note that
the designs we are using are not yet timing clean. Moreover, we compare our solutions
to solutions of two other algorithms that are used in practice: The fast buffering by
Bartoschek et al. [Bar+09] and a dynamic program similar to the one by Shi and Li
[SL05], but with additional net-based layer assignment.
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6 Experimental Results

6.1 Setup and Testbed
All experiments were run on an Oracle Linux 8.9 server with two AMD EPYC 7742
64-core processors and 2TB memory.

We ran at most 15 jobs at once, each using up to 8 threads. Each buffering instance
is optimized by only one thread if it is solved by a single dynamic program. If it is
split into smaller instances by the iterative clustering heuristic, each sub instance may
be solved by a different thread. Nonetheless, all running times will be total sequential
running times, if not explicitly stated otherwise.

The buffering instances occur as a part of the IBM industrial design flow on 5nm
designs. An overview of the designs is displayed in Table 6.2 in the end of this section.
The names are anonymized to protect the intellectual property of our industrial partner.
The designs labeled C1 – C7 are taken from a testbed of smaller macros, while the designs
labelled I1 – I6 are taken from real integration level runs that designers were interested
in at the time of extraction.1 No design could meet all constraints after finishing the
main timing and power optimization section of the flow. For each name, the table lists
the width and height of the chip image, the maximum distance between vertices that
we used in our Hanan graph, the number of routing layers available, as well as the
number of width/spacing + layer assignments that were available. Furthermore, we
show the minimum and maximum slew that was allowed, as well as the δ for our accconst
slew-accuracy function (see Chapter 3.3). Finally, we show the capacitance limit, and
some information about the available repeater library, consisting of the minimum and
maximum repeater sink capacitance and the number of buffers and inverters available.
This should give some context for the running times.

In order to evaluate the different heuristic speedup techniques for our dynamic pro-
gram, we tested our implementation in various settings that will be explained in the
following. Table 6.1 shows a summary of the different setups.

Since we are optimizing real world instances, we also include the required arrival times
augmented by a linear approximation of their dependencies in the sink slews. In order
to achieve this, we use the negated required arrival time as an initial delay. This means
that value in the entry for each sink t ∈ T becomes the negated slack − rat(t)+delay(t),
which we then minimize. Furthermore, we have to shift the negated required arrival
times by a constant to make them nonnegative, so that we can apply α-dominance in
the algorithm. This will only change the slack at the root by a constant.

For each instance (created from a cluster or solved directly), we try to solve it three
times. First with a merge arborescence (see Chapter 4.4) that fixes the topology and
additional guide penalties. The merge arborescence is based on a delay bounded Steiner
arborescence (see Chapter 1.3.2) that we compute using the bicriteria algorithm by Held
and Rotter [HR13]. The guide penalties are realized by an additional delay penalty in
the lower bound function. They depend on the rectilinear distance of the current vertex
to the parent vertex in the merge arborescence, and the number of merges that still have
to be performed before all sinks are connected.

1Time of extraction is November 2023.
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6.1 Setup and Testbed

Configuration Transition Slew com-
parison

by Bucket

Repeater
Map

Pruning by
objective

cost

no α-
dominance

Heuristic
future cost
increase

singsimpld rise × × × × ×
singsimpld heurfc rise × × × × ✓
singsimpld objcostp rise × × ✓ × ×
singsimpld noappr rise × × ✓ ✓ ×
singsimpld noappr objcostp heurfc rise × × × ✓ ✓
singbuckld rise × × × × ×
singbuckld heurfc rise ✓ × × × ✓
singbuckld objcostp rise ✓ × ✓ × ×
singbuckld noappr rise ✓ × × ✓ ×
singbuckld noappr objcostp heurfc rise ✓ × ✓ ✓ ✓
simpld noappr objcostp heurfc rise/fall × × ✓ ✓ ✓
buckld noappr objcostp heurfc rise/fall ✓ × ✓ ✓ ✓
repbuckld noappr objcostp heurfc rise/fall ✓ ✓ ✓ ✓ ✓

Table 6.1: The different configurations that we will be testing in this chapter. The first
column shows the shorthand that we will use in tables. The second column
shows, which transitions we are optimizing at the source. The remaining
columns show which speedup heuristics for our dynamic program are active
in the respective setting.

The second pass takes the upper bound that we computed in the first pass. It still
uses the merge arborescence, but no guide penalties. Finally, we use the best upper
bound that we have found so far to start our third pass that does not fix the topology.
In order to increase our chances of finding a solution, we also return the best solution

label so far if the algorithm stops for other reasons than finishing (if it runs into its
iteration limit: 20000000 for the first two passes each and 10000000 for the second pass;
or if it becomes too slow ≤50 iterations per second).
For our slew accuracy function, we use the constant shift (accconst , see Chapter 3.3)

by the amount denoted as δ in the Table 6.2. When we generate multiple slew guesses
with accconst , two consecutive guesses differ exactly by the constant δ.
The first objective is denoted by simpld in our tables. It optimizes the maximum

delay over all sinks and both transitions (rise and fall) plus a penalty for slew or load
violations (1000 times the difference to the limit). It also includes both rise and fall slew.
A solution is dominated, when both rise and fall slew fulfill the dominance requirements.
We add labels for all pairs of slew guesses for rise and fall.
The objective buckld additionally to simpld defines a bucket for each label. The bucket

is identical the bucket from Chapter 4.1. Here, we use the buckets for the slew part of
the dominance checks.
The objectives singsimpld and singbuckld work as buckld and simpld, but only op-

timize the rise delay at the source. For the other transition, the slew limit is still
propagated and used to detect slew violations.
Finally, there is the objective repbuckld, which works just like buckld, but uses the

repeater map from Chapter 4.5.1. The repeater map is supposed to increase the cor-
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6 Experimental Results

relation between a solution of our algorithm and a legalized solution by dividing the
placement area into cells and only allowing a limited number of repeaters to be placed
in each cell. It is used as a heuristic component. This means that it is not used for
dominance checking, but when too many repeaters are placed in the same cell the eval-
uation operator will evaluate it to ∞. This also means that we might not find a solution
if more than the maximum number of repeaters have to be placed in the cell. However,
we did not observe this.
The variant singsimpld without any appended modifiers denotes the implementation

that yields an approximation guarantee.
Additionally, we also test multiple heuristic speedup techniques.
The shorthand objcostp means objective cost pruning. Instead of comparing each tree-

monotone component separately for dominance checking, we compare only the objective
cost (χ(ω(l)o) for a label l).
Next, we have noappr, where we are not using the α-dominance from Chapter 3.3, but

normal dominance, losing the approximation guarantee α.
Finally, we have heurfc, which heuristically modifies the lower bounds. When running

with required arrival times, it can happen that one of the sinks is uncritical compared
to the others. The algorithm would first only select labels that connect only this sink,
because they have the lowest value. It will do this until the cost reaches the lower bounds
for the total tree cost. To balance this difference, we increase the lower bound a label if
its connected sinks are much cheaper to connect than the remaining sinks. In detail:
For t ∈ T , denote by pred(t) the minimum lower bound cost to connect to that sink.

Informal it is − rat(t) + Lb(t). If l connects the sink set I ⊊ T , we increase the lower
bound of l for each t ∈ I by

0.95 ·max

{
0, max

t′∈T\I
pred(t′)−max

t′∈I
pred(t′)

}
.

Additionally, we test two other modifications. Their use is marked separately. The
first one is to only allow merges at Hanan vertices, that is, not at the subdivisions. The
second one is the repeater penalty from Chapter 4.5.1.
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Max Num Num Slew values in ps Repeater Sink Cap in fF Num Num

Name Width Height Vertex Distance Routing Layers Assignments Lower limit Upper limit δ Cap Limit Min. Max. Buffers Inverters
in nm in nm in nm in fF

C1 144000 134784 15711 8 3 2.80 70.00 5.60 208.64 0.41 18.90 0 19
C2 218880 513216 15622 10 6 2.80 70.00 5.60 208.64 0.41 18.90 0 19
C3 215040 114048 15622 17 11 2.80 70.00 5.60 208.64 0.41 18.90 0 19
C4 51840 37584 15622 8 3 2.80 70.00 5.60 208.64 0.41 18.90 0 19
C5 90240 73872 15622 8 3 2.80 70.00 5.60 208.64 0.41 18.90 0 19
C6 387840 181440 15548 12 6 2.52 63.00 5.04 210.43 0.41 19.31 0 31
C7 215040 114048 15622 17 11 2.80 70.00 5.60 208.64 0.41 18.90 0 19
I1 209280 207360 15517 10 6 2.52 63.00 5.04 337.41 0.66 20.15 0 29
I2 414720 282528 15618 10 6 2.80 70.00 5.60 217.86 0.43 19.91 0 19
I3 280320 199584 15618 12 6 2.52 63.00 5.04 217.86 0.43 19.91 0 19
I4 1505280 5412096 15618 16 12 2.52 63.00 5.04 217.86 0.43 19.91 0 19
I5 211200 178848 15517 12 6 2.52 63.00 5.04 337.41 0.66 20.15 0 29
I6 691200 736128 15539 16 11 2.52 63.00 5.04 321.54 0.63 61.83 14 44

Table 6.2: Our testbed in anonymized form. The numbers are supposed to give an idea of the complexity of the buffering
problem on the respective chip. “Width” and “Height” refer to the dimensions of the chip image. “Max Vertex
Distance” means the maximum distance between two vertices in the Hanan graph after subdividing longer edges.
“Num Routing Layers” shows the number of available routing layers. “Num Assignments” lists the number of
width/spacing + minimum layer assignments that are allowed at that point in the flow. The “Slew values” show
the lower and upper slew limits and the δ that we used for our accconst slew accuracy function. We additionally
list the capacitance limit as “Cap Limit”. Finally, we show the minimum and maximum sink pin capacitances of
the available repeaters, as well as the number of available buffers and inverters in the library.
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6 Experimental Results

Running time in s Add Fraction

Config Min. Max. Total Avg. Successes Fails Min. Max. Avg.

singsimpld 0.0132 8361.01 12394.42 263.71 47 44 0.013 0.938 0.357
singbuckld 0.0126 34903.03 99847.80 2627.57 38 56 0.013 0.981 0.356
singsimpld objcostp 0.0134 293263.95 307407.96 6027.61 51 57 0.013 0.862 0.328
singbuckld objcostp 0.0075 35972.14 103413.26 2522.27 41 70 0.013 0.981 0.343
singsimpld noappr 0.0051 2066.92 5979.77 52.45 114 7 0.003 0.652 0.100
singbuckld noappr 0.0044 40.13 266.98 3.14 85 36 0.004 0.301 0.084
singsimpld noappr objcostp heurfc 0.0042 1298.83 4456.52 39.09 114 7 0.003 0.650 0.100
singbuckld noappr objcostp heurfc 0.0041 46.39 288.22 3.39 85 36 0.004 0.299 0.084

Table 6.3: Runtimes of our algorithm in its base version (singsimpld) that can give us
an approximation guarantee and with the different speedup heuristics for
instances with 1 sink. Running times are only measured on the successful
instances. Successful means that the algorithm returned a solution for which
we could prove that its cost is within the approximation guarantee. “Add
Fraction” shows the number of labels that are not immediately dominated
divided by the total number of labels that are created.

6.2 Evaluation of the Speedup Techniques
In our first set of experiments, we want to evaluate the different speedup heuristics for
our dynamic program against the correct base version (singsimpld, without any heuristic
speedups) that will give us an approximation guarantee. Since the base version is very
slow, we only optimize a single transition and instances with only 1–3 sinks. From each
chip of our testbed and for each number instance size (1-3 sinks), we selected the 5
instances with the highest worst slack and up to 5 instances with load or slew violations.
Some designs did not have 5 instances with load or slew violations in each instance size.
Note that for instances with at most 2 sinks, there is only one topology. For instances
with only one sink, we directly test our algorithm without guide penalties or merge
arborescence. For instances with two sinks, we only use the merge arborescence with
guide penalties and do not run the test with fixed topology without guide penalties.

We compare the configurations regarding their running time and result. Here result
means the objective cost given by the algorithm, not the worst slack after timing with a
higher order delay model. We consider an instance as successful if we are able to prove
that our result is within the approximation guarantee. This means that if a run with
fixed topology or guide penalties returned a solution, but not the unconstrained run,
then we count the instance as unsolved or fail. This can happen if the algorithm does
not find a solution at all or if is stopped due to our iteration limits (see Section 6.1.

For the running time on instances with one sink, we present two tables. In Table 6.3,
we show the overall result for the whole testbed. The first column shows the name of the
configuration. The next few columns show the running time of the successful instances.
The number of successful instances and failed instances is shown in the last two columns.
Table 6.4 contains only the running times on the instances where all different versions
of the algorithm finished successfully.
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6.2 Evaluation of the Speedup Techniques

Running time in s

Config Min. Max. Total Avg.

singsimpld 0.0273 2684.48 3241.13 111.76
singbuckld 0.0126 31569.88 32555.61 1122.61
singsimpld objcostp 0.0265 2665.08 3223.40 111.15
singbuckld objcostp 0.0075 22307.28 23153.41 798.39
singsimpld noappr 0.0051 0.56 4.98 0.17
singbuckld noappr 0.0044 0.06 0.68 0.02
singsimpld noappr objcostp heurfc 0.0042 0.47 4.58 0.16
singbuckld noappr objcostp heurfc 0.0041 0.07 0.69 0.02

Table 6.4: Runtime comparison of the algorithm with different heuristics for instances
with 1 sink, restricted to the set of instances that finished for all configura-
tions.

We observe that the greatest speedup is achieved by adding the noappr heuristic
to our dynamic program, which uses dominance instead of α-dominance to prune the
labels. Only pruning by the objective cost (objcostp) leads to small improvements in
running time, when using the non-bucket implementation as a base. With buckets, it
only decreases the running time when not paired with the noappr heuristic.

Interestingly, using buckets increases the running time in the base implementation on
the instances where both the bucket and non-bucket version finish. In the runs that use
the noappr heuristic on the other hand, it decreases the running time significantly.

Additionally, we can take a look at the successes and fails in Table 6.3. We observe
that using buckets decreases the success rate, when paired with the noappr heuristic.
So it is faster on the instances it solves, but does not solve all instances.

Let us try to give some explanations for these effects. The effect that fewer instances
are solved by the bucket version could be explained by over-pruning. This could also play
a role in the increased running time of the bucket version without additional heuristic
speedups. When the base version without buckets already solves the instance, it must
have found “good” labels fast. If too many of those are pruned in the bucket version,
but the overall number of labels is not sufficiently reduced, then it takes longer to find
a solution. The decrease in running time if the buckets are paired with the noappr
heuristic could then be explained by the radical label reduction.

To support these explanations, let us take a look at Figures 6.1, 6.2 and 6.3.

In Figure 6.1, we can see the number of labels that have been added over the course
of the algorithm without immediately being pruned, over the total number of iterations
that the algorithm performed before finding the solution. If we take a closer look, we see
that the configurations without the noappr heuristic add almost an order of magnitude
more labels for the same number of iterations.

The plot in Figure 6.2 confirms that the running time increases with the number of
labels added, even if the algorithm returns after the same number of iterations. Nonethe-
less, we can see in Figure 6.3 that the dependence of the running time on the number
of iterations still is polynomial.
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Figure 6.1: Total number of labels added per total number of iterations of individual
runs. Labels added means that they were not immediately pruned by domi-
nance or checking against the upper bound.
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Figure 6.2: Total number of labels added per total number of iterations as a scatter plot,
with marker size depending (logarithmically) on running time.
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6.2 Evaluation of the Speedup Techniques
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Figure 6.3: Total runtime plotted over total number of iterations used per run.

Running time in s

Config Min. Max. Total Avg. Successes Fails

singsimpld 39080.7108 93604.60 310246.52 62049.30 5 114
singsimpld heurfc 22820.5229 71316.02 295020.24 49170.04 6 113
singsimpld noappr 67.3058 81257.95 2232914.99 25665.69 87 32
singbuckld noappr 10.7877 51371.01 582282.17 14930.31 39 80
singsimpld noappr objcostp heurfc 1.8127 10292.97 110601.77 1189.27 93 26
singbuckld noappr objcostp heurfc 4.3770 4503.82 8341.49 208.54 40 79

(a) Running times on instances with 2 sinks. Only the guided and unconstrained version run.

Running time in s

Config Min. Max. Total Avg. Successes Fails

singsimpld inf -inf 0.00 0.00 0 109
singsimpld heurfc inf -inf 0.00 0.00 0 109
singsimpld noappr 211.1966 49578.58 271741.58 13587.08 20 89
singbuckld noappr 6499.3575 42479.43 110455.77 15779.40 7 102
singsimpld noappr objcostp heurfc 3.7465 13038.88 96787.24 3337.49 29 80
singbuckld noappr objcostp heurfc 150.0600 10272.97 26593.70 3799.10 7 102

(b) Running times on instances with 3 sinks. Merge arborescence with guides, merge ar-
borescence without guides and the unconstrained version are tried. The singsimpld and
singsimpld heurfc were not able to solve any instances within the iteration limit.

Table 6.5: Running times of our algorithm in its base version (singsimpld) that can give
us an approximation guarantee and with speedup heuristics for instances with
2 and 3 sinks. Running times are only measured on the successful instances.
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6 Experimental Results

Absolute difference in ps Relative difference

Config Min. Max. Total Avg. Min. Max. Avg.

singsimpld -0.97 0.07 -2.03 -0.04 0.722 1.018 0.991
singbuckld 0.00 11.36 98.82 2.60 1.000 2.702 1.382
singsimpld objcostp -0.97 0.21 -1.81 -0.04 0.722 1.024 0.992
singbuckld objcostp 0.00 11.36 106.46 2.60 1.000 2.730 1.396
singsimpld noappr 0.00 0.00 0.00 0.00 1.000 1.000 1.000
singbuckld noappr -0.64 9.57 277.74 3.35 0.975 3.414 1.416
singsimpld noappr objcostp heurfc 0.00 0.00 0.00 0.00 1.000 1.000 1.000
singbuckld noappr objcostp heurfc -0.64 9.57 277.74 3.35 0.975 3.414 1.416

Table 6.6: The per instance difference in the result values for instances with 1 sink.
singsimpld noappr serves as the basis, because it has the most successful runs
(see Table 6.3). A negative value (value <1 for relative differences) means
that the configuration was better than the reference singsimpld noappr.

Absolute difference in ps Relative difference

Config Min. Max. Total Avg. Min. Max. Avg.

singsimpld -0.28 5.11 8.32 1.66 0.589 1.338 1.024
singsimpld heurfc -0.31 5.11 10.72 1.79 0.548 1.338 1.028
singsimpld noappr -8.92 0.41 -49.36 -0.46 0.411 1.021 0.984
singbuckld noappr -1.39 20.56 209.40 5.37 0.412 2.045 1.151
singsimpld noappr objcostp heurfc 0.00 0.00 0.00 0.00 1.000 1.000 1.000
singbuckld noappr objcostp heurfc -1.12 20.56 214.92 5.37 0.970 2.045 1.165

Table 6.7: The per instance difference in the result values for instances with 2–3 sinks.
singsimpld noappr objcostp heurfc serves as the basis, because it has the most
successful runs (see Table 6.5). A negative value (value <1 for relative dif-
ferences) means that the configuration was better than the reference singsim-
pld noappr objcostp heurfc.

For instances with 2 and 3 sinks the running time results are shown in Table 6.5.
The observed trends continue. The largest runtime reduction is achieved by adding the
noappr heuristic. For the larger instances, we see the effect of the heuristic future cost
increase for the first time. It leads to a notable reduction as well. We were not able to
solve instances with 3 sinks in the base version.
Finally, we compare the results of the different configurations for only one sink in Table

6.6. For each instance, we can only compare runs that finished. Since singsimpld noappr
had the most successful runs, we are using it as a baseline.
We can see that we only lose very little by adding the noappr heuristic and even less

by using the objcostp heuristic. Using buckets comes with a significant loss in quality.
Similarly, for the instances with 2–3 sinks in Table 6.7, we see that the loss due to

the noappr heuristic is within the error of the algorithm. We also see that the heurfc
extension to the lower bounds only leads to mild loss in quality.
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6.3 Evaluation in a Practical Setting

Absolute difference in ps Relative difference

Config Min. Max. Total Avg. Min. Max. Avg.

Guided 2 Sinks -1.13 22.74 260.85 3.14 0.899 1.731 1.102
Guided 3 Sinks -1.14 8.79 46.11 2.43 0.901 1.640 1.113
Free 3 Sinks -0.00 1.43 2.69 0.13 1.000 1.080 1.008

Table 6.8: The per instance difference in the result values from the pre-solve runs to
the solution with unconstrained topology. We are using runs with singsim-
pld noappr here, since it has the most solutions while being very accurate. A
negative value (value <1 for relative differences) means that the configuration
was better than the reference (unconstrained topology).

In total, we conclude that using both the noappr and objcostp heuristics on the base
version without buckets has the best tradeoff in terms of running time and quality. For
instances with more sinks, we will nonetheless have to resort to the bucket variants,
because the running time would get too high.
Another interesting question is: How much worse are solutions if we constrain the

topology. This is answered for at most 3 sinks in Table 6.8. In practice, we lose almost
nothing by constraining the topology for 3 sinks. By adding the guides, we only lose
2-3ps on average, but can be significantly worse. We see degradations up to 22ps or a
factor of 1.7.

6.3 Evaluation in a Practical Setting
We do not only want to use our algorithm for benchmarking, but also in practice.
We have seen in the previous section, that the high accuracy versions of our dynamic
program are too slow for this. For the faster variants however, the running times are
good enough. In this second set of experiments, we want to find out how the faster
versions of our dynamic program perform in practice.
For this purpose, we will first take a look at the practical running times of the fast

variants. Then we compare our solutions to the input solutions (recall that they are
taken from the end of the main timing optimization step) and to solutions computed
with a dynamic program similar to the one by Shi and Li [SL05], but with additional
net based layer and wire-width/spacing assignment. We evaluate the timing by AWE
with Ceff -computations for the gate delay.
Let us first review the detailed parameters and settings that we use. For this practical

mode, we directly solve instances with up to 5 sinks. Instances with more sinks will be
solved with the iterative clustering approach from Chapter 4.6. It assigns a criticality to
each sink. Then, it iteratively chooses a cutoff criticality and applies a clustering algo-
rithm to the instances that are more critical than the cutoff. The clustering guarantees
that the clusters do not become too large. Then a root is chosen for each cluster to
create a smaller instance of the TMCMAP. The new instances are solved with multiple
solution candidates and finally the roots are used as sinks for the next iteration.
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6 Experimental Results

Runtimes 1-5 Sinks in min Runtimes 6-10 Sinks in min Runtimes >10 Sinks in min

Algorithm Min. Max. Total Avg. Min. Max. Total Avg. TW Min. Max. Total Avg. TW Successes Fails

simpld noappr objcostp heurfc <1 672 1167 31 722 722 722 722 727 inf -inf <1 <1 <1 39 25
simpld noappr objcostp heurfc + OH <1 672 1054 30 766 766 766 766 782 inf -inf <1 <1 <1 37 37
simpld noappr objcostp heurfc + OH + RP <1 1358 3238 76 209 209 209 209 220 566 566 566 566 1791 45 32
buckld noappr objcostp heurfc <1 1083 2738 54 667 667 667 667 672 4196 4196 4196 4196 2263 53 17
buckld noappr objcostp heurfc + OH <1 1022 2869 63 566 566 566 566 576 5101 5103 10204 5102 7214 49 28
buckld noappr objcostp heurfc + OH + RP <1 91 395 8 4 10 14 7 21 239 2629 3969 1323 2714 56 14
repbuckld noappr objcostp heurfc <1 877 2704 62 115 115 115 115 147 inf -inf <1 <1 <1 45 17
repbuckld noappr objcostp heurfc + OH <1 930 2744 60 96 96 96 96 137 5861 5861 5861 5861 5426 48 27
repbuckld noappr objcostp heurfc + OH + RP <1 117 496 10 6 388 406 136 294 18 910 2937 588 2502 58 22

Table 6.9: Running times of the different algorithm variants. They are grouped by sink
sizes. “Min.”, “Max.”, “Total”, “Avg.” show sequential running times (also
running times of different threads are summed up). “TW” shows the summed
Wall (start to finish) running times. Instances with 1–5 sinks were directly
solved, while instances with more sinks use the iterative clustering heuristic
from Chapter 4.6. The last two columns show the number of runs that re-
turned a solution (successes) and the number of runs that did not return a
solution.

We test the configurations (see Table 6.1)

• simpld noappr objcostp heurfc,

• buckld noappr objcostp heurfc and

• repbuckld noappr objcostp heurfc,

which in particular all optimize the maximum of rise and fall delay. There are two
additional settings that we will use with them. The first one will be denoted as an
appended + OH, which stands for “only merge at Hanan vertices”. So if this is added,
we do not allow merges at subdivisions of the edges in the Hanan grid. The second
one is denoted as an appended + RP and refers to the repeater penalty from Chapter
4.5.1. The repeater penalty adds a penalty for each inserted repeater. It is based on
the capacitance change that we get by inserting the repeater. A decrease in capacitance
reduces the penalty, while an increase increases the penalty.
As test instances, we take the 5 instances with the worst slack on each of our chips

(see Table 6.2) and up to 5 instances with capacitance or slew violations.
Now let us take a look at the results. We start with the running time results in Table

6.9. It shows the sequential running times grouped by number of sinks. The first column
that shows the running time on instances with 1–5 sinks coincides with the directly
solved instances. The remaining running time columns all show results obtained using
the iterative clustering. Since we are using multiple threads in the clustering approach,
we also show the summed up wall times (TW). Here, wall time means the time from start
to finish, regardless of the number of threads that were used. In the last two columns,
we see the number of successes and fails. In contrast to Section 6.2, we count runs as
successful that returned any solution (even if the algorithm was stopped).
We see that the versions with both additions OH and RP perform best, both in

the number of successes and average running time. They are also able to solve much
larger instances. Among the three configurations, repbuckld noappr objcostp heurfc is
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6.3 Evaluation in a Practical Setting
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Figure 6.4: A plot of the average sequential running times (instances with the same
number of sinks are averaged) of the different algorithm versions over the
number of sinks.

the most successful one. We can also see that the running times for up to 10 sinks are
reasonable enough to use in some scenarios. Instead of solving these instances by hand,
a designer could let our algorithm run on them during the night. This could also be
viable for larger running times, as a designer can only solve one instance at a time, but
a computer can solve multiple instances in parallel. Finally, we see that we get a factor
of roughly 1.5 in the wall time compared to the sequential running time. Though, for
solving single instances, we would be able to gain a higher speedup, because here some
of the threads may be occupied with solving their own instance.

For a better view of the development of the running times with growing instance
sizes, we also show the average sequential running per instance size in Figure 6.4. This
further undermines our conclusion that adding OH and RP leads to a significant speedup.
Furthermore, we see that the running time grows roughly linear in the instance size for
the clustering approach. This is what we would expect.

Finally, we take a look at the results. In Table 6.10, we see differences of our solutions
to the input solutions. It shows the three metrics worst slack (Wsl), total negative slack
(Tns) and power usage. Total negative slack refers to the sum of all negative slacks
at the sinks of our instance. The timing values have been computed by the timing
engine EinsTimer, using AWE+Ceff . We always show the improvement, so that positive
numbers mean that we are better than the input, while negative numbers mean that
we are worse. Furthermore, we show one additional algorithm: Fast Buffering. It is
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6 Experimental Results

Wsl Improvement in ps Tns Improvement in ps Power Improvement in nW

Algorithm Min. Max. Total Avg. Min. Max. Total Avg. Min. Max. Total Avg. Rel. [%]

Fast Buffering, ξ = 0.8 -82.62 100.19 169.74 18.86 -437.62 852.92 781.96 86.88 -4.47 1.99 -2.28 -0.25 -5.8
simpld noappr objcostp heurfc inf -inf 0.00 0.00 inf -inf 0.00 0.00 inf -inf 0.00 0.00 0.0
simpld noappr objcostp heurfc + OH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -8.00 -8.00 -8.00 -8.00 -26.7
simpld noappr objcostp heurfc + OH + RP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -2.79 -1.18 -3.97 -1.99 -13.2
buckld noappr objcostp heurfc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.68 -1.68 -1.68 -1.68 -1680.0
buckld noappr objcostp heurfc + OH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -8.25 -1.68 -9.93 -4.96 -33.1
buckld noappr objcostp heurfc + OH + RP 0.00 96.06 202.75 40.55 -151.08 871.35 638.38 127.68 -8.03 1.06 -12.92 -2.58 -34.6
repbuckld noappr objcostp heurfc inf -inf 0.00 0.00 inf -inf 0.00 0.00 inf -inf 0.00 0.00 0.0
repbuckld noappr objcostp heurfc + OH 0.00 130.36 130.36 65.18 0.00 1028.07 1028.07 514.04 -7.40 -1.08 -8.48 -4.24 -27.9
repbuckld noappr objcostp heurfc + OH + RP -0.94 96.66 192.53 32.09 0.00 871.35 1016.66 169.44 -8.03 0.27 -11.27 -1.88 -33.0

Table 6.10: The improvement in worst slack (Wsl), Total negative slack (Tns) and Power
of our (and fast buffering) solutions over the input solutions. Positive num-
bers mean that we were better. “Fast Buffering” refers to the fast buffering
routine by Bartoschek et al. [Bar+09].

Wsl Improvement in ps Tns Improvement in ps Power Improvement in nW

Algorithm Min. Max. Total Avg. Min. Max. Total Avg. Min. Max. Total Avg. Rel. [%]

Fast Buffering, ξ = 0.8 -82.19 8.97 -166.12 -18.46 -1175.37 155.95 -1731.08 -192.34 -0.75 5.36 3.70 0.41 8.2
simpld noappr objcostp heurfc inf -inf 0.00 0.00 inf -inf 0.00 0.00 inf -inf 0.00 0.00 0.0
simpld noappr objcostp heurfc + OH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.83 1.83 1.83 1.83 4.6
simpld noappr objcostp heurfc + OH + RP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.92 7.04 6.12 3.06 15.3
buckld noappr objcostp heurfc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.42 -1.42 -1.42 -1.42 -394.4
buckld noappr objcostp heurfc + OH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.42 1.58 0.16 0.08 0.4
buckld noappr objcostp heurfc + OH + RP -28.20 52.04 31.69 6.34 -981.76 452.14 -764.92 -152.98 -6.20 1.80 -7.12 -1.42 -16.5
repbuckld noappr objcostp heurfc inf -inf 0.00 0.00 inf -inf 0.00 0.00 inf -inf 0.00 0.00 0.0
repbuckld noappr objcostp heurfc + OH -3.35 0.00 -3.35 -1.67 0.00 0.00 0.00 0.00 -1.06 2.43 1.37 0.69 3.4
repbuckld noappr objcostp heurfc + OH + RP -1.39 52.63 59.08 9.85 -3.04 452.14 457.45 76.24 -1.44 1.80 -2.14 -0.36 -4.9

Table 6.11: The improvement of our (and fast buffering solutions) over solutions by
a dynamic program similar to the one by Shi and Li [SL05]. For more
information see Table 6.10.

the dynamic program by Bartoschek et al. [Bar+09] that is also allowed to change the
topology slightly. We run it with ξ = 0.8, which means the costs in the algorithm are
computed as 0.8 · slackcost + 0.2 · powercost .
We see that repbuckld noappr objcostp heurfc + OH + RP gives us significant im-

provements in timing. It outperforms the fast buffering both on average and in total,
even though the fast buffering was able to find solutions on all instances, while our
algorithm did not. Another observation is that the runs without the repeater penalty
improve even more in the timing. In terms of power, it is exactly the reverse. We use
more power than the input solutions, and more power than fast buffering. Among our
tests, the version with repeater penalty uses less power than the versions without it.
This is part of the desired effect. Furthermore, the versions with repeater map use less
power for higher delay reductions. This again, was part of the desired effect.

In Table 6.11, we show the same columns as in Table 6.10, but this time we compare
to a dynamic program similar to the one by Shi and Li [SL05], but with net based layer
and wire-width/spacing assignment. In this comparison, our improvements are no longer
as great as before, but still, we are able to improve by almost 10ps on average in the
repbuckld noappr objcostp heurfc + OH + RP setting. On the other hand the increase
in power usage is much lower.
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6.3 Evaluation in a Practical Setting

(a) Input solution.
Wsl= −86ps. The solu-
tion uses too few and too
small repeaters and chains
sinks.

(b) Solution by dynamic pro-
gram similar to Shi and Li
[SL05].
Wsl= −42ps. The so-
lution uses too small re-
peaters and chains sinks.

(c) Our solution.
Wsl= 2ps. The solution
connects multiple sinks in
parallel to medium-sized
repeaters.

Figure 6.5: Three different solutions of the same instance. Blockages are gray, sinks are
green and the root is red (bottom left). Repeaters are the orange rectangles.
They have been inflated to make them visible on this picture.

Let us conclude by comparing the solutions in Figure 6.5. The input solution in
Figure 6.5a has a worst slack of −86ps (1.84nW power usage). It uses too few and small
repeaters. The solution by the dynamic program similar to the one by Shi and Li [SL05]
in Figure 6.5b has a worst slack of −42ps (1.17nW power usage). It uses more, but still
too few repeaters. Furthermore, the sinks are connected into a long path one by one
similar to the input solution, so that the delay to the furthest sinks is large. Finally, our
solution in Figure 6.5c has a worst slack of 2ps (2.03nW power usage). It connects the
furthest sinks in parallel to a medium-sized repeater. And only after that uses a single
path to connect them, which leads to the improvements.
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Conclusion

In this thesis, we took a closer look at the buffering problem. We first reviewed the
literature and examined how different algorithms try to solve it. We saw that the general
trend is to include more aspects into the modeling, e.g. power consumption, placement
space usage, routing congestion. Then, we gave an overview over the different aspects
that are relevant for buffering, explained how they can be modelled and what decisions
we made in modelling. Based on these considerations, we presented a new problem
formulation that captures more aspects and allows more degrees of freedom than all the
previous algorithms and formulations.

We presented an (exponential time) algorithm that is able to solve this problem either
approximately, or even optimally, with higher running time. Both variants depend on a
slew accuracy function. We proved that the algorithm finds an optimum solution if start
with a certain set of initial slews. Then, we showed how to guess slews that allow us to
find an optimum solution. In this way, we solved the inherent problem of including slew
in buffering algorithms. Then, we demonstrated that the algorithm can be extended or
modified to include higher order delay models or increase the degrees of freedom at the
cost of ignoring the slew.

We also developed multiple speed up techniques. We propose a data structure that
efficiently maintains the labels in our algorithm. Then, we showed how to construct a
sparse graph representing the routing space and buffering positions that retains certain
properties that are helpful for finding good solutions. We presented a way to compute
an (almost) feasible lower bound function in practice. From there, we turned towards
heuristics for which we cannot prove performance guarantees. Among those, we devel-
oped a fast way to restrict the topology of solutions. As a final step, we presented a new
iterative clustering heuristic that is timing aware. It uses the Capacitated Tree Cover
Problem with Edge Loads as a black box.

We present a new 3-approximation algorithm for this problem that runs in O(m log n)
time. An underlying LP-relaxation can be solved optimally using a greedy algorithm,
despite its exponential number of inequalities. We round this LP and applied a well-
known splitting technique to get to a feasible solution. In a final step, we proved that
the integrality gap of our LP-relaxation is 3, which means that our analysis was optimal.

Finally, we tested our algorithm both in a benchmark setting and a practical setting.
We showed that we can gain significant speedups by augmenting our algorithm with
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Conclusion

heuristic speedup techniques. For some of these speedup techniques, we saw that in
practice they do not lead to a notable loss in result qualities. Then, we examined how
the fastest variants of our algorithm perform in a practical setting and saw that it can
give us significant improvements at a high runtime cost. Unfortunately, it is still too
slow to use it as a default tool in a design flow, but it can be used to optimize a few
hard instances that otherwise would have to be optimized manually by a designer.
Our algorithm allows us for the first time to benchmark existing buffering algorithms

and heuristics. By comparing solutions of other algorithms to our solutions, we can find
out if other solutions are good or if they can be improved. By examining the structural
differences, we can improve other algorithms in practice. In fact, BonnRouteBuffer has
been improved this way multiple times during the time I was working on this thesis.
Nonetheless, there are still open questions:
We are proving that there is a slew-approximate optimum solution in the search space

that our algorithm explores. This is much stronger than just finding a solution with
an approximation guarantee. Is it possible to relax the α-dominance and keep the
approximation guarantee?
In Section 4.3, we saw that we can still obtain an optimum solution, when our lower

bound does not exactly satisfy the feasibility constraints. Can we obtain additional
benefits from a correct feasible lower bound?
Can we extend the interval-based buffering to also use slews? A possible idea for

that would be to guess slews similar to the main algorithm. Then we store a separate
resistance for ranges of input slews of repeaters and shrink the legal intervals to also
keep the slew in the respective range.
Can we leave the selection of sinks in the iterative clustering heuristic to the algo-

rithm for the Capacitated Tree Cover Problem with Edge Loads, by including criticality
differences in the model?
Can we get rid of the assumption that u(e) < u(f) ⇒ c(e) ≤ c(f) for the Capacitated

Tree Cover Problem with Edge Loads, or is the problem harder if we drop it? I was not
able to show that the problem becomes harder. On the other hand, I suspected that if
we drop this, there might be instances where all optimum solutions to the LP contain
cycles in the support graph. But I was unable to construct a (metric) example, where
this is the case, nor was I able to show that this can not happen.
Finally, there is still a lot of practical work that could be done to improve the corre-

lation between solutions from my implementation of the TMCMAP algorithm and the
inserted solutions.
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