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Abstract

It is known that the Brownian bridge or Lévy-Ciesielski construction of Brown-
ian paths almost surely converges uniformly to the true Brownian path. In the
present article the focus is on the error. In particular, we show for geometric
Brownian motion that at level N , at which there are d = 2N points evaluated
on the Brownian path, the expected uniform error has an upper bound of or-
der O(

√
N/2N ), or equivalently, O(

√
ln d/d). This upper bound matches the

known order for the expected uniform error of the standard Brownian motion.
We apply the result to an option pricing example.

1. Introduction

Geometric Brownian motion is the solution S(t) = S(ω)(t) at time t of the
stochastic differential equation

dS(t) = S(t) (r dt+ σ dB(t)) t ∈ [0, 1] (1.1)

for given initial data S(0), where B(t) = B(ω)(t) denotes standard Brownian
motion on a probability space (Ω,F , P ). That is, for each t ∈ [0, 1], B(t)
is a zero-mean Gaussian random variable, and for each pair t, s ∈ [0, 1] the
covariance is

E[B(t)B(s)] = min(t, s).

The solution to (1.1) is given explicitly by

S(t) = S(0) exp

((
r − σ2

2

)
t+ σB(t)

)
, 0 ≤ t ≤ 1. (1.2)
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In this paper we are concerned with the Lévy-Ciesielski (or Brownian bridge)
construction of the Brownian paths. The Lévy-Ciesielski construction expresses
the Brownian path B(t) in terms of a Faber-Schauder basis {η0, ηn,i : n ∈ N, i =
1, . . . , 2n−1} of continuous functions on [0, 1], where η0(t) := t and

ηn,i(t) :=


2(n−1)/2

(
t− 2i− 2

2n

)
, t ∈

[
2i− 2

2n
,

2i− 1

2n

]
,

2(n−1)/2
(

2i

2n
− t
)
, t ∈

[
2i− 1

2n
,

2i

2n

]
,

0 otherwise.

For a proof that this is a basis in C[0, 1], see [10, Theorem 2.1(iii)] or [11]. The
Brownian path corresponding to the sample point ω ∈ Ω is in this construction
given by

B(t) = X0(ω) η0(t) +

∞∑
n=1

2n−1∑
i=1

Xn,i(ω) ηn,i(t), (1.3)

where X0 and all the Xn,i, i = 1, . . . , 2n−1, n ∈ N are independent standard
normal random variables. For N ∈ N we define the truncated Lévy-Ciesielski
expansion by

BN (t) := X0(ω) η0(t) +

N∑
n=1

2n−1∑
i=1

Xn,i(ω) ηn,i(t). (1.4)

Then BN (t) is for each ω ∈ Ω a piecewise-linear function of t coinciding with
B(t) at special values of t: we easily see that

B(0) = BN (0) = 0, B(1) = BN (1) = X0,

and with t = (2`− 1)/2N we have

B

(
2`− 1

2N

)
= BN

(
2`− 1

2N

)
, ` = 1, . . . , 2N−1,

because the terms in (1.3) with n > N vanish at these points. The successive
values returned by the usual (discrete) Brownian bridge construction are the
values of B(t) at the corresponding special t values 0, 1, 12 ,

1
4 ,

3
4 , . . ..

The Lévy-Ciesielski construction has the important property that it con-
verges almost surely to a continuous Brownian path, see the original works by
[2, 5], or for example [9]: on defining the uniform norm with respect to t by

‖u‖∞ := sup
t∈[0,1]

|u(t)|, u ∈ C[0, 1],

the statement is that, almost surely,

‖B −BN‖∞ → 0 as N →∞.
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The precise convergence rate for the expected uniform error of the Lévy-
Ciesielski expansion was obtained in [7, Theorem 2]: written in the language of
this paper, we have

E [‖B −BN‖∞] ∼
√

ln d

2d
, (1.5)

where d is the dimension of the Faber-Schauder basis,

d = 1 +

N∑
n=1

2n−1 = 2N .

The meaning of the expected value E will be made precise in the next section.
The asymptotic notation α(x) ∼ β(x) means that limx→∞ |α(x)/β(x)| → 1.
Thus (1.5) gives the precise leading term for the expected uniform error of the
Lévy-Ciesielski expansion. Actually, the article [7] included much more general
results and it showed also that the Lévy-Ciesielski approximation is in a certain
sense optimal.

The main result of this paper is the following theorem which states that the
expected uniform error of the geometric Brownian motion has an upper bound
of the same order as (1.5).

Theorem 1. Let S be the geometric Brownian motion given by (1.2), and let
SN be the approximation defined by

SN (t) := S(0) exp
((
r − σ2

2

)
t+ σBN (t)

)
, 0 ≤ t ≤ 1. (1.6)

where BN is the truncated Lévy-Ciesielski approximation of B given by (1.4).
Then

E [‖S − SN‖∞] = O

(√
N

2N/2

)
= O

(√
ln d

d

)
,

where d = 2N and the implied constants depend only on r and σ.

The remainder of the paper is organized as follows. In Section 2 we express
the expected value of a geometric Brownian motion, i.e. its path integral, as an
infinite dimensional integral over a sequence space. To this end, we focus on the
Lévy-Ciesielski expansion and discuss its properties. In Section 3 we show that
E [‖B − BN‖2L2

] = 2−N/6, which is of the same order as that for the Karhunen-
Loève expansion known to be optimal in L2. In Section 4 we first recall the result
from [7] which gives the asymptotic bound (1.5) on E [‖B − BN‖∞]. Then we
proceed to prove an upper bound of the same order using a different line of
argument to [7], namely extreme value statistics. In Section 5 we generalize
this new line of argument to geometric Brownian motion, and give the proof
of Theorem 1. In Section 6, we give an application to the problem of pricing
an arithmetic Asian option. Finally in Section 7 we give some brief concluding
remarks.
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2. The expected value as an integral over a sequence space

In this section we show that the expected value in Theorem 1 can be ex-
pressed as an integral over a sequence space. We remark that we will sometimes
find it convenient to use interchangeably the language of measure and integra-
tion and that of probability and expectation.

Recall that the Lévy-Ciesielski expansion (1.3) expresses the Brownian path
B(t) in terms of an infinite sequence X(ω) = (X0, (Xn,i)n∈N,i=1,...,2n−1) of in-
dependent standard normal random variables. In the following we will denote
a particular realization of this sequence X by

x =
(
x0, (xn,i)n∈N,i=1,...,2n−1

)
= (x1, x2, . . .) ∈ R∞,

where for convenience we will switch freely between the double-index labeling
(x0, x1,1, x2,1, x2,2, . . .) and a single-index labeling (x1, x2, . . .) as appropriate,
with the indexing convention that x1 ≡ x0, and x2n−1+i ≡ xn,i for n ≥ 1 and
1 ≤ i ≤ 2n−1.

It is clear from (1.3) that, for t ∈ [0, 1] and a fixed ω ∈ Ω,

|BN (t)| ≤ |X0| +

N∑
n=1

(
max

1≤i≤2n−1
|Xn,i|

)( 2n−1∑
i=1

ηn,i(t)

)

≤ |X0| +

N∑
n=1

max
1≤i≤2n−1

|Xn,i| 2−(n+1)/2, (2.1)

where in the last step we used the fact that for a given n ≥ 1 the disjoint nature
of the Faber-Schauder functions ensures that at most one value of i contributes
to the sum over i, and also that the ηn,i for i = 1, . . . , 2n−1 have the same
maximum value 2−(n+1)/2.

Motivated by the bound (2.1), and following [4], we define a norm of the
sequence x =

(
x0, (xn,i)n∈N,i=1,...,2n−1

)
by

‖x‖X := |x0|+
∞∑
n=1

max
1≤i≤2n−1

|xn,i| 2−(n+1)/2,

and we define a corresponding normed space X by

X := {x ∈ R∞ : ‖x‖X <∞}.

It is easily seen that X is a Banach space.
Each choice of x ∈ X corresponds to a particular ω ∈ Ω (but not vice versa,

since there are sample points ω ∈ Ω corresponding to sequences x for which the
norm ‖x‖X is not finite). Hence to each x ∈ X there corresponds a particular
Brownian path via (1.3), or expressed in terms of x,

B(x)(t) = x0 η0(t) +

∞∑
n=1

2n−1∑
i=1

xn,i ηn,i(t), t ∈ [0, 1]. (2.2)
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That the resulting path is continuous on [0, 1] follows from the observation that
the path is the pointwise limit of the truncated series

BN (x)(t) = x0 η0(t) +

N∑
n=1

2n−1∑
i=1

xn,i ηn,i(t), t ∈ [0, 1], (2.3)

which is uniformly convergent since

‖BN‖∞ ≤ |x0|+
∞∑
n=1

max
1≤i≤2n−1

|xn,i| 2−(n+1)/2 = ‖x‖X < ∞ for x ∈ X ,

so that (2.2) does indeed define a continuous function for x ∈ X .
We define AR∞ to be the σ-algebra generated by products of Borel sets of

R, see [1, p. 372]. On the Banach space X , we now define a product Gaussian
measure (see [1, p. 392 and Example 2.35])

ρ(dx) :=

∞⊗
j=1

φ(xj) dxj ,

where φ is the standard normal probability density

φ(x) :=
1√
2π

exp(− 1
2x

2). (2.4)

We next show that the space X has full Gaussian measure, i.e. that

P
(
|X0|+

∞∑
n=1

max
1≤i≤2n−1

|Xn,i| 2−(n+1)/2 <∞
)

= 1.

This fact is at the heart of the classical proof that the Lévy-Ciesielski con-
struction almost surely converges uniformly to the Brownian path. For a brief
explanation, we define

Hn(ω) :=

{
|X0(ω)| for n = 0,

max1≤i≤2n−1 |Xn,i(ω)| 2−(n+1)/2 for n ≥ 1.

It is known that (see [3, Proof of Theorem 3]), as a consequence of the Borel-
Cantelli lemma, one can construct a sequence (βn)n≥1 of positive numbers such
that

∞∑
n=1

βn <∞, and P (Hn(·) > βn infinitely often) = 0.

We now define Ω̃ to be the subset of Ω consisting of the sample points ω for
which Hn(ω) > βn for only finitely many values of n. Then Ω̃ is of full Gaussian
measure, and for each ω ∈ Ω̃ there exists N(ω) ∈ N such that

Hn(ω) ≤ βn for n > N(ω),
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leading to

∞∑
n=1

Hn(ω) ≤
N(ω)∑
n=1

Hn(ω) +

∞∑
n=N(ω)+1

βn < ∞ for ω ∈ Ω̃.

Thus P(
∑∞
n=0Hn <∞) = 1, as claimed, and the proof that X is of full Gaussian

measure is complete.
We now study integration on the measure space (X ,AR∞ , ρ), and we denote

the integral, or the expected value, of a measurable function f by

E[f ] :=

∫
X
f(x) ρ(dx).

In particular, for the proof of Theorem 1 we need the expected value of the
uniform error ‖S − SN‖∞. Before we proceed with that proof, it is instructive
to first obtain bounds on the expected value of the L2 error ‖B − BN‖L2

and
the uniform error ‖B −BN‖∞; we do this in the next two sections.

3. Expected L2 error of standard Brownian motion

It follows from (1.3) and (1.4) that the random variable B(t)−BN (t) is the
sum

B(t)−BN (t) =

∞∑
n=N+1

2n−1∑
i=1

Xn,i ηn,i(t), t ∈ [0, 1]. (3.1)

It turns out that there is an explicit formula for the expected value of the squared
L2 norm of B −BN .

Lemma 2. Let B be the Lévy-Ciesielski expansion of the standard Brownian
motion as in (1.3), and let BN be the corresponding truncated expansion as in
(1.4). Then, with d = 2N ,

E [‖B −BN‖2L2
] =

1

6 · 2N
=

1

6 d
.

Proof. A proof can be found in e.g., [12] (note that the indexing there differs
from ours by 1). The lemma is also a direct consequence of the results in [7] for
the L2 norm (take q = 2 and p = 1 in that paper). For completeness and for
expository reasons (later we will consider the L∞ norm) we give a short proof
here.

The key is

E [Xn,iXn′,i′ ] = δn,n′ δi,i′ E [X2
n,i] = δn,n′ δi,i′ ,
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which holds because the Xn,i are independent mean-zero random variables with
variance one. As a result we have

E [‖B −BN‖2L2
] = E

[∥∥∥∥ ∞∑
n=N+1

2n−1∑
i=1

Xn,i ηn,i(·)
∥∥∥∥2
L2

]

=

∞∑
n=N+1

2n−1∑
i=1

∞∑
n′=N+1

2n
′−1∑

i′=1

E [Xn,iXn′,i′ ]︸ ︷︷ ︸
δn,n′ δi,i′

∫ 1

0

ηn,i(t) ηn′,i′(t) dt

=

∞∑
n=N+1

2n−1∑
i=1

∫ 1

0

(ηn,i(t))
2 dt =

∞∑
n=N+1

2n−1
1

3 · 22n
=

1

6

∞∑
n=N+1

2−n =
1

6
2−N ,

which completes the proof. 2

It is interesting to compare this result with the corresponding result based
on the Karhunen-Loève expansion of the standard Brownian motion which is
known to be optimal in L2, see e.g., [6],

E [‖BKL −BKL
d ‖2L2

] =
1

π2

∞∑
j=d+1

1

j2
≤ 1

π2 d
.

We see that the Lévy-Ciesielski expansion yields the same order, with only a
slightly worse constant.

4. Expected uniform error of standard Brownian motion

The following theorem is a special case of [7, Theorem 2] where p = 1.

Theorem 3. Let B be the Lévy-Ciesielski expansion of the standard Brownian
motion as in (1.3), and let BN be the corresponding truncated expansion as in
(1.4). Then, with d = 2N ,

E [‖B −BN‖∞] ∼
(

ln d

2d

)1/2

.

This article [7] shows also that the Brownian bridge approximation is optimal
among all constructions that use information at d points and Wiener measure.
Note that, in contrast to here, zero boundary conditions are employed in [7] at
both ends of the time interval, but this is immaterial, since the only difference
is that in the present work we have an additional basis function η0(t) = t, which
disappears in the difference B(t)−BN (t).

We will now derive the upper bound part of this result (with a slightly worse
constant, larger by a factor of 2 +

√
2 ≈ 3.41421), using a different proof which

relies on extreme value theory. It will lay the foundations for our proof for the
case of geometric Brownian motion.
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Proposition 4. Let B be the Lévy-Ciesielski expansion of the standard Brow-
nian motion as in (1.3), and let BN be the corresponding truncated expansion
as in (1.4). Then, with d = 2N ,

E[‖B −BN‖∞ ≤ (2 +
√

2)

(
ln d

2d

)1/2(
1 +O

(
1√
ln d

))
.

We devote the remainder of this section to proving Proposition 4. We have from
(1.3) and (1.4)

‖B −BN‖∞ = sup
t∈[0,1]

|B(t)−BN (t)| ≤
∞∑

n=N+1

max
1≤i≤2n−1

|Xn,i| 2−(n+1)/2 .

Thus

E [‖B −BN‖∞] ≤
∞∑

n=N+1

E
[

max
1≤i≤2n−1

|Xn,i|
]

2−(n+1)/2

=
∑

`=2N ,2N+1,2N+2,...

E [M`]

2
√
`
, (4.1)

where we substituted ` := 2n−1 and introduced a new random variable

M` := max
1≤i≤`

|Xi| for ` a power of 2 , (4.2)

for independent N (0, 1) random variables X1, X2, . . . , X`.
Now we are in the territory of extreme value statistics. It is known that the

distribution function of the maximum of the absolute value of ` independent
Gaussian random variables converges (after appropriate centering and scaling, as
below) to the Gumbel distribution. A first step is to obtain an explicit expression
for the distribution function of M`. Because X1, X2, . . . , X` are N (0, 1) random
variables, for x ∈ R+ and i = 1, . . . , `, we have

P(Xi ≤ x) =

∫ x

−∞
φ(t) dt =: Φ(x),

where φ is the standard normal density defined by (2.4). Similarly,

P(|Xi| ≤ x) =

∫ x

−x
φ(t) dt = Φ(x)− Φ(−x) = 2Φ(x)− 1.

Therefore (since |X1|, |X2|, . . . , |X`| are independent random variables) we have

P(M` ≤ x) = P(|X1| ≤ x and |X2| ≤ x and · · · and |X`| ≤ x) = (2Φ(x)− 1)`.

Thus the distribution function of M` is

Ψ`(x) := (2Φ(x)− 1)`, x ∈ R+. (4.3)
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We now define a new random variable Y`, which is a recentered and rescaled
version of M`:

Y` :=
M` − a`

b`
, ` ≥ 0, a` > 0, b` > 0, (4.4)

or equivalently
M` = a` + b`Y`. (4.5)

It is known (see below) to be appropriate to take a` and b` to satisfy

a` =
√

2 ln `+ o(1), and b` =
1

a`
. (4.6)

More precisely, for later convenience we will define a` to be the unique solution
of

1

`
=

√
2

π

e−a
2
`/2

a`
= 2

φ(a`)

a`
. (4.7)

We now show that (4.7) implies (4.6).

Lemma 5. Equation (4.7) for ` ≥ 1 has a unique positive solution of the form
a` =

√
2 ln `+ o(1). Moreover, for ` ≥ 3 we have a` ∈ (1,

√
2 ln `).

Proof. The fact that any solution of (4.7) is positive is immediate. Now observe
that

g(y) :=

√
2

π

e−y
2/2

y

is monotonically decreasing from +∞ to 0 for y ∈ (0,∞). It follows immediately
that there is a unique solution a` ∈ (0,∞) for (4.7). Moreover, we have

a` > 1 ⇔ 1

`
<

√
2

π

e−1
2/2

1
=

√
2

πe
= 0.484 . . . ,

which holds if and only if ` ≥ 3. Now observe that (4.7) is equivalent to

a` =

√
2

(
ln `− ln

(√
π

2
a`

))
. (4.8)

For ` ≥ 3 we have a` > 1 and hence ln(
√
π/2 a`) > ln(

√
π/2) > 0, so from (4.8)

we have a` <
√

2 ln `. In turn it follows that

a` >

√
2 ln `− ln

(√
π

2

√
2 ln `

)
.

Thus for ` ≥ 3 we have 1 ≤ a` =
√

2 ln ` + o(1) ≤
√

2 ln `. This completes the
proof. 2

It is well known that the distribution function of Y` converges in distribu-
tion to a random variable with the Gumbel distribution exp(−e−y). For later
convenience we state this as a lemma and give a short proof.
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Lemma 6. The random variable Y` defined in (4.4), with a` defined by (4.7)
and b` = 1/a`, converges in distribution to a random variable Y with Gumbel
distribution function P(Y ≤ y) = exp(−e−y).

Proof. The proof is based on the asymptotic version of Mill’s ratio [8],

1− Φ(x) ∼ φ(x)

x
, x→ +∞.

From this it follows that for y ∈ R

P(Y` ≤ y) = P(M` ≤ a` + b`y) = (2Φ(a` + b`y)− 1)`

= (1− 2[1− Φ(a` + b`y)])`

∼
(

1−
√

2

π

exp(− 1
2 (a` + b`y)2)

a` + b`y

)`
∼
(

1−
√

2

π

exp(− 1
2a

2
` − a`b`y)

a`

)`
=

(
1− exp(−y)

`

)`
∼ exp(−e−y) as `→∞,

where in the second step we dropped a higher order term, and in the second
last step we used (4.7) and a`b` = 1, thus proving the lemma. 2

A deeper result, which we need, is that Y` converges in expectation to the
limit Y . This is proved in the following lemma.

Lemma 7. The random variable Y` defined in (4.4), with a` defined by (4.7)
and b` = 1/a`, converges in expectation to a random variable Y with Gumbel
distribution exp(−e−y), thus

lim
`→∞

E[Y`] = E[Y ] =

∫ ∞
−∞

y exp(−y − e−y)dy = γ,

where γ is Euler’s constant.

Proof. For a sequence of real-valued random variables Y1, Y2, . . . converging in
distribution to a random variable Y , it is well known that a sufficient condition
for convergence in expectation is uniform integrability of the Y`. In turn a
sufficient condition for uniform integrability is that for sufficiently large `

P(Y` ≥ y) ≤ Q(y) for y > 0, and

P(Y` ≤ y) ≤ R(y) for y < 0,

where Q(y) is integrable on R+ and R(y) is integrable on R−.
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First assume y > 0. We have from (4.3) that

P(Y` ≥ y) = P(M` ≥ a` + b`y) = 1− P(M` ≤ a` + b`y)

= 1− (2Φ(a` + b`y)− 1)` = 1− (1− 2[1− Φ(a` + b`y)])`

≤ 1−
(

1− 2
φ(a` + b`y)

a` + b`y

)`
= 1−

(
1−

√
2

π

exp(− 1
2 (a` + b`y)2)

a` + b`y

)`

≤ 1−

(
1−

√
2

π

exp
(
− 1

2a
2
` − a`b`y

)
a`

)`
,

where we used the upper bound form of Mills’ ratio [8],

1− Φ(x) <
φ(x)

x
, x ∈ R+, (4.9)

and dropped harmless terms in both the denominator and the exponent in the
numerator. Using now (4.7) and also a`b` = 1 we have

P(Y` ≥ y) ≤ 1−
(

1− exp(−y)

`

)`
≤ exp(−y) =: Q(y) ,

where we used the fact that the function (1− 1/x)x is increasing on [1,∞), and
hence takes its minimum at x = 1. It follows that∫ ∞

0

P(Y` ≥ y) dy ≤
∫ ∞
0

exp(−y) dy = 1.

Now we consider y < 0. Note first that M` = a` + b`Y` takes only non-
negative values, thus we may restrict y to y ≥ −a`/b`. We have

P(Y` ≤ y) = P(M` ≤ a` + b`y) = (2Φ(a` + b`y)− 1)` .

Now for t > 0 the standard normal distribution Φ has negative second derivative,

Φ′′(t) = φ′(t) < 0 for t > 0,

and first derivative Φ′(t) = φ(t), from which it follows that

Φ(a` + b`y) ≤ Φ(a`) + b`y φ(a`) for y ≥ −a`/b`.

Thus on using b` = 1/a`, we obtain

P(Y` ≤ y) ≤
(

2Φ(a`) + 2a−1` yφ(a`)− 1

)`
≤
(

1− 2a−1` φ(a`)(1− y − a−2` )

)`
=

(
1− 1

`
(1− y − a−2` )

)`
,
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where in the second last step we used the lower bound form of Mills’ ratio, see
[8, p. 44]

1− Φ(t) ≥ φ(t)

t
(1− t−2) for t > 0, (4.10)

and in the last step we used (4.7). If we now take ` ≥ L then we have

P(Y` ≤ y) ≤
(

1− 1

`
(1− y − a−2L )

)`
≤ exp

(
−(1− y − a−2L )

)
= exp

(
−(1− a−2L )

)
exp(y) =: R(y),

since the convergence in the last limit is monotone increasing. The function
R(y) so defined is integrable on R−, completing the proof that Y` converges in
expectation.

It then follows from the previous lemma that this limit of E[Y`] is precisely
E[Y ] = γ. 2

Since the above lemma establishes the convergence of E[Y`] as `→∞, it can
be inferred that there exists a positive constant c such that

E[Y`] ≤ c for ` ≥ 0.

From this and (4.5) it follows that

E[M`] ≤ a` + b` c ≤ a` + c,

where we used b` = a−1` ≤ 1 for ` ≥ 3. We then conclude from (4.1) that

E [‖B −BN‖∞] ≤ 1

2

∑
`=2N ,2N+1,2N+2,...

a` + c√
`
. (4.11)

It only remains to estimate the sum in (4.11). Using Lemma 5 with N ≥ 2
(and hence ` ≥ 3), we have a` <

√
2 ln `, and on setting ` = 2N+j ,

∑
`=2N ,2N+1,2N+2,···

a`√
`
≤
∞∑
j=0

√
2(ln 2)(N + j)√

2N+j
(4.12)

= 2−(N−1)/2
√

ln 2

∞∑
j=0

√
N + j

2j/2
.

≤ 2−(N−1)/2
√

ln 2
√
N (2 +

√
2) (1 +O(N−1/2)),

where in the final step we used
√
N + j ≤

√
N +
√
j and

∑∞
j=0 1/2j/2 = 2+

√
2,

while noting that
∑∞
j=0

√
j/2j/2 is finite and independent of N . Moreover, by a

similar argument we conclude that
∑
`=2N ,2N+1,2N+2,··· c/

√
` = O(2−N/2), thus

12



altogether we obtain from (4.11)

E [‖B −BN‖∞] ≤ 1

2
· 2−(N−1)/2

√
ln 2
√
N (2 +

√
2) (1 +O(N−1/2))

= (2 +
√

2)

√
N ln 2√
2 · 2N

(1 +O(N−1/2))

= (2 +
√

2)

√
ln d√
2d

(
1 +O

(
1√
ln d

))
,

which concludes the proof of Proposition 4.

5. Expected uniform error of geometric Brownian motion

We are now in the position to give a proof of Theorem 1. From (1.2) and
(1.6) it follows that

S(t)− SN (t) = S(0) e(r−σ
2/2)t

(
exp(σB(t))− exp(σBN (t))

)
,

and thus

‖S − SN‖∞ ≤ S(0) e|r−σ
2/2| ∥∥ exp(σB)− exp(σBN )

∥∥
∞. (5.1)

In turn it follows that

‖S − SN‖∞ ≤ S(0) e|r−σ
2/2| ∥∥ exp(σBN )

(
exp(σ(B −BN ))− 1

)∥∥
∞

≤ S(0) e|r−σ
2/2| exp

(
σ‖BN‖∞

)(
exp(σ‖B −BN‖∞)− 1

)
. (5.2)

We now consider the expected value of ‖S − SN‖∞. We recall that the
random variable B − BN is the sum (3.1), in which the set of i.i.d. Gaussian
normal random variables Xn,i (with n ≥ N + 1) is disjoint from the Xn,i ap-
pearing in BN (for which n ≤ N). Thus we can express the expected value of
the right-hand side as the product

E [‖S − SN‖∞] ≤ S(0) e|r−σ
2/2| JN KN ,

where

JN := E [exp(σ‖BN‖∞)] and KN := E [exp(σ‖B −BN‖∞)]− 1 .

To show that the JN are bounded uniformly in N it is convenient to briefly
switch to the language of measure and integration. We have

JN =

∫
X

exp
(
σ‖BN (x)‖∞

)
ρ(dx) ≤

∫
X

exp
(
σ‖B(x)‖∞

)
ρ(dx) =: J < ∞.

The integral J is finite because Fernique’s theorem [1, Theorem 2.8.5] (appli-
cable because the measure is a centered Gaussian measure) asserts that there
exists α > 0 such that ∫

X
exp

(
α‖x‖2∞

)
ρ(dx) <∞,
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and because ‖B(x)‖∞ ≤ ‖x‖X ≤ (2 + 1/
√

2)‖x‖∞, which in turn is dominated
by (α/σ)‖x‖2∞ for large ‖x‖∞.

Switching back to the language of probability and expectation, we now have

E [‖S − SN‖∞] ≤ S(0) e|r−σ
2/2| J KN . (5.3)

It follows, using (3.1), that

KN ≤ E
[

exp

(
σ

∞∑
n=N+1

max
1≤i≤2n−1

|Xn,i| 2−(n+1)/2

)]
− 1

= E

[ ∞∏
n=N+1

exp

(
σ max

1≤i≤2n−1
|Xn,i| 2−(n+1)/2

)]
− 1

=

∞∏
n=N+1

(
E
[

exp

(
σ max

1≤i≤2n−1
|Xn,i| 2−(n+1)/2

)])
− 1,

On substituting ` := 2n−1, we have

KN ≤
∏

`=2N ,2N+1,2N+2,···

I` − 1, (5.4)

where

I` := E
[

exp

(
σ

2
√
`
M`

)]
for ` a power of 2, (5.5)

with M` as defined in (4.2). We thus need explicit bounds on the factors I`.
We follow the argument in the previous section. Recall that the random

variable Y` defined in (4.4), which is a recentred and rescaled version of M`,
converges in expectation to a random variable Y with Gumbel distribution
exp(−e−y). We now introduce another random variable W` which also converges
in expectation to the limit Y . For σ > 0 we define

W` :=
2
√
`

σb`

(
exp

(
σb`

2
√
`
Y`

)
− 1

)
. (5.6)

It follows from the definitions of Y` and W` that

exp

(
σ

2
√
`
M`

)
= exp

(
σ

2
√
`
(a` + b`Y`)

)
= exp

(
σa`

2
√
`

)
exp

(
σb`

2
√
`
Y`

)
= exp

(
σa`

2
√
`

)(
1 +

σb`

2
√
`
W`

)
,

and hence from (5.5)

I` = exp

(
σa`

2
√
`

)(
1 +

σb`

2
√
`
E [W`]

)
. (5.7)

14



Lemma 8. The random variable W` defined by (5.6) converges in expectation
to a random variable Y with distribution exp(−e−y), thus

lim
`→∞

E[W`] = E[Y ] = γ,

where γ is Euler’s constant.

Proof. We follow closely the proof of Lemma 7. We note, from (5.6) and (4.4),
that W` ≥ w if and only if M` ≥ x(w), where

x(w) := a` +
2

σ

√
` ln

(
1 +

σb`

2
√
`
w

)
. (5.8)

First assume w > 0. We have

P(W` ≥ w) = P(M` ≥ x(w))

= 1− (2Φ(x(w))− 1)` = 1− (1− 2[1− Φ(x(w))])`

≤ 1−
(

1− 2
φ(x(w))

x(w)

)`
= 1−

(
1−

√
2

π

exp(− 1
2x(w)2)

x(w)

)`

≤ 1−

1−
√

2

π

exp
(
− 1

2a
2
` −

2a`
√
`

σ ln
(

1 + σb`
2
√
`
w
))

a`

`

= 1−

(
1−

√
2

π

exp
(
− 1

2a
2
`

)
a`

(
1 +

σb`

2
√
`
w

)−2a`√`/σ)`

= 1−

(
1− `−1

(
1 +

σb`

2
√
`
w

)−2√`/(σb`))`
=: Q`(w) ,

where we used the upper bound form of Mills’ ratio (4.9), dropped some terms
in both the denominator and the exponent in the numerator, and used (4.7)
and also a` = 1/b`.

It is well known that (1 + 1/x)−x is a decreasing function of x ∈ R+. Simi-
larly, (1− 1/x)x is an increasing function for x ∈ [1,∞). Using the first of these
monotonicity properties, for arbitrary L ∈ N and ` ≥ L we have

P(W` ≥ w) ≤ 1−

(
1− `−1

(
1 +

σbL

2
√
L
w

)− 2
√
L

σbL

)`
,

and the second monotonicity property then gives

P(W` ≥ w) ≤ 1−

(
1− L−1

(
1 +

σbL

2
√
L
w

)− 2
√
L

σbL

)L
= QL(w),
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and hence ∫ ∞
0

P(W` ≥ w) dw ≤
∫ ∞
0

QL(w) dw.

To show that the integral
∫∞
0
QL(w) dw is finite, it suffices to use the bino-

mial theorem,

QL(w) =

L∑
j=1

(
L

j

)
(−1)j−1L−j

(
1 +

σbL

2
√
L
w

)−2√L j/(σbL)
,

in which it is important that there is no j = 0 term, and as a result this finite
sum is integrable over R+ term by term. Thus for the case w > 0 the result is
proved.

Now we consider w < 0. We have

P(W` ≤ w) = P(M` ≤ x(w))

where as above x(w) is given by (5.8). Note that x(w) is an increasing function
of w, and, for w ≤ 0, it has the maximum value a` at w = 0. On the other hand
P(M` ≤ x(w)) vanishes if x(w) < 0, thus the left-hand side vanishes for w < w̃,
where

w̃ := −2
√
`

σb`

(
1− exp

(
− σa`

2
√
`

))
= −a`

b`

[
2
√
`

σa`

(
1− exp

(
− σa`

2
√
`

))]
.

We note that w̃ = −a`/b`+o(1) = −2 ln(`) +o(1). For w ∈ [w̃, 0] we have, from
(4.3),

P(W` ≤ w) = P(M` ≤ x(w)) = (2Φ(x(w))− 1)`.

Now again for t > 0 the standard normal distribution Φ has negative second
derivative, and so

Φ(x(w)) ≤ Φ(a`) + (x(w)− a`)φ(a`)

= Φ(a`) +
2
√
`

σ
ln

(
1 +

σb`

2
√
`
w

)
φ(a`) ≤ Φ(a`) + b`wφ(a`),

where in the last step we used ln(1+t) ≤ t for t > −1. Thus, on using b` = 1/a`,
we have

P(W` ≤ w) ≤
(

2Φ(a`) + 2a−1` wφ(a`)− 1

)`
≤
(

1− 2a−1` φ(a`)(1− w − a−2` )

)`
=

(
1− 1

`
(1− w − a−2` )

)`
where in the second last step we used the lower bound form of Mills’ ratio (4.10)
and in the last step used (4.7). If we now take ` ≥ L then we have

P(W` ≤ w) ≤
(

1− 1

`
(1− w − a−2L )

)`
≤ exp

(
− (1− w − a−2L )

)
=: R(w),
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since the convergence in the last limit is monotone increasing, The function R(w)
so defined is integrable on R−, completing the proof of uniform integrability of
the random variable W`, from which it follows that W` converges in expectation.

The random variable W` has the same limit in distribution as the Gumbel
distribution. The argument follows the line of the proof above, with the upper
bounds of P(W` ≤ w) replaced by asymptotics. Hence we conclude that W`

converges in expectation to the expectation of the Gumbel distribution. 2

Since the above lemma establishes the convergence of E[W`] as ` → ∞, it
follows that there exists a positive constant cσ such that

E[W`] ≤ cσ for ` ≥ 0.

From this and (5.7) it follows that

I` ≤ exp

(
σa`

2
√
`

)(
1 +

σb`

2
√
`
cσ

)
.

It is convenient now to use the (non-sharp) inequality

exp(t) ≤ 1 + 2t for t ∈ [0, 1]. (5.9)

Noting that σa`/(2
√
`)→ 0 as `→∞, we define

`0 :=

⌈
max

{
` ∈ N :

σa`

2
√
`
> 1

}⌉
,

so that for ` ≥ `0 we have σa`/(2
√
`) ≤ 1. Then for ` ≥ `0 we have

I` ≤
(

1 +
σa`√
`

)(
1 +

σb`

2
√
`
cσ

)
≤ 1 + (2 + 3cσ)

σa`

2
√
`
,

where in the second step we used the elementary inequality

(1 + at)(1 + bt) ≤ 1 + (a+ b+ ab)t for t ∈ [0, 1],

and also, for the sake of simplicity, b` = a−1` ≤ a`.
It now follows from (5.4) that

KN ≤
∏

`=2N ,2N+1,2N+2,···

(
1 + (2 + 3cσ)

σa`

2
√
`

)
− 1

= exp

( ∑
`=2N ,2N+1,2N+2,···

ln

(
1 + (2 + 3cσ)

σa`

2
√
`

))
− 1

≤ exp

(
σ(2 + 3cσ)

2

∑
`=2N ,2N+1,2N+2,···

a`√
`

)
− 1.

N0 :=

⌈
max

{
N ∈ N :

σ(2 + 3cσ)

2

∑
`=2N ,2N+1,2N+2,···

a`√
`
≥ 1

}⌉
,
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then for N ≥ N0 we have, using again (5.9),

KN ≤ σ(2 + 3cσ)
∑

`=2N ,2N+1,2N+2,···

a`√
`
.

Our final upper bound on E [‖S − SN‖∞] is obtained by substituting the
above bound onKN into (5.3) and using the bound (4.12). This finally completes
the proof of Theorem 1.

6. Application to option pricing

Now we consider a continuous version of a path-dependent call option with
strike price K in a Black-Scholes model with risk-free interest rate r > 0 and
constant volatility σ > 0. Recall that the asset price S(t) at time t is given
explicitly by (1.2). The discounted payoff for the case of a continuous arithmetic
Asian option with terminal time T = 1 is therefore

P := e−rT max

(
1

T

∫ T

0

S(t) dt−K, 0

)

= e−r max

(
S(0)

∫ 1

0

exp

((
r − σ2

2

)
t+ σB(t)

)
dt−K, 0

)
. (6.1)

The pricing problem is then to compute the expected value E(P ).
We use the Lévy-Ciesielski expansion for the Brownian motion B(t), see

(2.2), and we define

PN := e−r max

(
S(0)

∫ 1

0

exp

((
r − σ2

2

)
t+ σBN (t)

)
dt−K, 0

)
, (6.2)

where BN (t) is as in (2.3). We are interested in estimating how fast E [|P −PN |]
converges to 0 as N →∞.

Corollary 9. For P and PN defined by (6.1) and (6.2), we have

E [|P − PN |] = O

(√
N

2N/2

)
= O

(√
ln d

d

)
,

where d = 2N and the implied constants are independent of N .

Proof. Note that we have

|max(α−K, 0)−max(β −K, 0)| ≤ |α− β|. (6.3)

Indeed, if both α ≤ K and β ≤ K then the left-hand side is 0 and the result
holds trivially. If α ≥ K and β ≥ K then the equality holds. If α ≤ K ≤ β
then the left-hand side is β −K ≤ β − α = |α− β|. The case β ≤ K ≤ α holds
analogously.
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Using (6.3) we obtain

|P − PN | ≤
∣∣∣∣e−rS(0)

∫ 1

0

e(r−σ
2/2)t

(
exp(σB(t))− exp(σBN (t))

)
dt

∣∣∣∣
≤ e−rS(0) e|r−σ

2/2|
∫ 1

0

∣∣∣ exp(σB(t))− exp(σBN (t))
∣∣∣dt

≤ e−rS(0) e|r−σ
2/2|‖ exp(σB)− exp(σBN )‖∞,

where the last upper bound differs from the upper bound (5.1) on ‖S − SN‖∞
only by a factor of e−r. Hence the result follows from Theorem 1. 2

7. Concluding remarks

We obtained an upper bound on the expected uniform error of geometric
Brownian motion under the Lévy-Ciesielski expansion, with a convergence rate
matching that of the standard Brownian motion. We used a new proof technique
based on extreme value statistics, and we extended our argument to a path
dependent option pricing application – a continuous version of an arithmetic
Asian option.
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