
Wegelerstraße  •  Bonn • Germany
phone +  - • fax +  -

www.ins.uni-bonn.de

P. Diehl, M. A. Schweitzer

Simulation of wave propagation and impact
damage in brittle materials using peridynamics

INS Preprint No. 1628

December 2016





Simulation of wave propagation and impact
damage
in brittle materials using peridynamics

Patrick Diehl and Marc Alexander Schweitzer

Abstract

In this paper we present the results of simulating wave propagation and impact
damage in brittle materials, like ceramics, using peridynamics, a non-local gener-
alization of continuum mechanics. Two different bond-based material models, the
prototype microelastic material model and its improved version, were used to model
aluminum oxynitride (ALON). To validate the simulations, the speed of the wave
front is compared with measured data of the edge-on impact (EOI) experiment. The
presented simulation results indicate that convergence is attained, however, a mod-
eling error of 10% remains. Which indicates that simple bond-based peridynamics
models may not be sufficient to achieve sufficient accuracy in these applications, but
more sophisticated state-based peridynamics models must be employed.
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1 Introduction

Ceramic materials are of great relevance in industry. For instance, ceramics are an
essential ingredient of batteries in electric/hybrid cars or modern airplanes. An im-
portant feature of this kind of battery is the safety of the ceramic core during a crash
or accident. To this end, the precise approximation of the evolution of the damage
and wave propagation in ceramics is highly important to ensure safe operation of
such devices. A classical benchmark for impact damage in ceramic materials is the
edge-on impact (EOI) experiment [16, 11, 19] developed in the 1980s for the visu-
alization of wave propagation and impact damage.

Different macroscopic ceramic models were used to simulate this experiment
as a benchmark against experimental data. One is the Kayenta material model [3],
which is a generalized plasticity model for ceramics. Employing this material model
in a traditional mesh-based discretization on a Lagrangian hexahedral mesh, yields
an average of 83% of damage velocity of the experimental results, but damage and
the resulting cracks align in a preferential horizontal and vertical fashion [8]. Thus,
the common problem of mesh-alignment is observed. With traditional particle-based
methods like smoothed-particle hydrodynamics (SPH), however, damage and cracks
are usually smeared out [10, 1]. Thus, no satisfactory simulation approach is cur-
rently available for these applications.

We apply the bond-based peridynamics [12, 9], a non-local generalization of
continuum mechanics, with focus on discontinuous solutions as they arise in frac-
ture mechanics. The so-called EMU-peridynamics, a particle-based discretization
approach can be classified as a total-Lagrangian collocation method with nodal in-
tegration. Here no mesh is involved and the alignment of cracks and fractures are
not restricted to any mesh (similar to SPH). Peridynamics, however, allows for non-
smooth kernel functions and with the EMU discretization modeling of local damage
is possible. Thus, we hope to overcome the deficiencies of SPH and attain more ac-
curate and reliable results.

To describe brittle material like ceramics we use the prototype microelastic brittle
(PMB) model [13] and its improved version [7] as constitutive material laws. These
bond-based material models include a notion of failure, but are applicable only to
“Cauchy crystals” where ν = 1/4. The “free” material parameters of both models
can be obtained from the bulk modulus and the critical stress intensity factor of
classical elasticity theory.

The remainder of this paper is structured as follows: In section 2 we shortly
present the simple bond-based peridynamics (PD), whose discrete structure is com-
putationally similar to SPH or molecular dynamics (MD). Here the employed consti-
tutive law, the prototype microelastic brittle Material (PMB) model, is introduced.
Section 3 presents the improvements to the EMU discretized version of the PMB
model, the conversion of the classical materials parameters of elasticity theory to the
employed PD constitutive material model and a comparison of these two models. In
section 4 the model problem, the edge-on impact (EOI) experiment, is briefly in-
troduced and the damage velocity extracted from the simulations is compared with
the experimental data provided in [17, 18]. Finally, we conclude with a compari-
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son of the two material models and discuss the issues of the macroscopic models
of [3, 10, 1] with respect to the presented bond-based peridynamics.

2 Peridynamics

In this paper we use simple bond-based peridynamics (PD) [12], a non-local gener-
alization of continuum mechanics, with a focus on discontinuous solutions as they
arise in fracture mechanics. Peridynamics models dynamic cracks and fractures on
a mesocopic scale. The principle of the theory is, that a particle at position x inter-
acts with all other particles x′ inside a finite interaction zone Bδ (x) by exchanging
forces.

For introducing peridynamics, its discretization and the employed material mod-
els we use the following notation: We denote the set of particles (discretization
points) as P := {pi|i = 1, . . . ,n} with initial positions X := {xi|i = 1, . . . ,n} in the
reference configuration R and assign to each particle a the surrounding volume
fragment Vj. The positions of the particles P in the deformed material configuration
Yt = {yi|i = 1, . . . ,n} at time t are obtained by yi(t) := xi + u(xi, t). Assuming all
particles P are placed at the nodes of regular grid, we can define dx := ||x j− xi|| as
the discrete particle spacing. The displacement field u is given by the PD equation
of motion

ρ(x)ü(x, t) =
∫

Bδ (x)
f (u(x′, t)−u(x, t),x′− x)dx′+b(x, t), (1)

with mass density ρ(x), f as the kernel function, modeling the interaction of par-
ticles x and x′ in the initial reference configuration and b(x, t) denotes the external
force. Here Bδ (x) denotes the finite interaction zone of the particle at position x with
the cut-off radius δ , see Figure 1. Discretizing Equation (1) in space by a colloca-

Fig. 1 Shows the reference configuration R of the particles P := {pi|i = 1, . . . ,n} with initial
positions X := {xi|i = 1, . . . ,n}. All particles inside the interaction zone Bδ (xi) of the particle xi
are connected by bonds to exchange forces.
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tion approach, the standard discretization for bond-based PD, using particles P and
initial positions X yields

ρ(xi)ü(xi, t) = ∑
j∈Fi

f (u(x j, t)−u(xi, t),x j− xi)Ṽj +b(xi, t), (2)

with Ṽj := |Vj ∩Bδ (xi)|. The interaction zone Bδ (xi) in the discrete setting is given
by the set Fi =

{
j | ||x j− xi|| ≤ δ , i 6= j

}
. This set depends only on the initial po-

sitions X , see Figure 1. All particles inside the set Fi are connected with so–called
bonds. Equation (2) describes the general principle of the interaction between parti-
cles, but gives no explicit information about the behavior of the material. All infor-
mation about the material and the constitutive material law is hidden in the kernel
function f . For more details see [9, 13]. In the next subsection the prototype micro
elastic brittle (PMB) material model is presented to describe the behavior of brittle
materials, like aluminiumoxynitrid (ALON).

2.1 Prototype microelastic brittle material model

The prototype microelastic brittle (PMB) model was introduced in [13] as a non-
linear microelastic material model with a notion of failure. Let us shortly intro-
duce this model. To this end, we define the relative position of two particles p and
p′ in the reference configuration as ξ := x′− x and their relative displacement as
η(t) := u(x′, t)− u(x, t). So the current relative position is ξ +η(t). In the follow-
ing we drop the time t and simply refer to η(t) by η .

In the PMB model we assume, that the pairwise force function f , which models
internal forces, depends only on the relative normalized bond stretch

s(ξ ,η) :=
||ξ +η ||− ||ξ ||

||ξ || . (3)

For a bond under tension the function s obviously attains positive values.1 The pair-
wise force function in the PMB material model is defined as

f (ξ ,η , t) := c · s(ξ ,η , t) ·µ(ξ ,η , t)
ξ +η

||ξ +η || , (4)

with the material dependent stiffness constant c, s the bond stretch (3) and µ denot-
ing a scalar valued history dependent function to model damage. To this end, the
function

µ(ξ ,η , t) =

{
1 s(ξ ,η , t)< sc−αsmin(t ′),∀0≤ t ′ ≤ t,
0 otherwise.

(5)

1 Note that we assume isotropic material behavior due to the fact that s depends on ||ξ ||.
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indicates if a bond is broken. Here, denotes sc the critical bond stretch for bond
failure in a particular material and smin(t ′) := minξ s(ξ ,η , t ′). The parameter α is
usually fixed at 0.25 [13]. The influence of this parameter on the material behavior
has been studied in [6] and with respect to this study we fixed the parameter α to
the suggested value of 0.25. Figure 2 shows the plot of the pairwise bond force f as

Fig. 2 Plot of the pairwise bond force f as a linear valued function with the stiffness constant c as
slope and the critical bond stretch for bond failure sc as the decrease to zero.

a function of the bond stretch s. This function is linear with the stiffness constant c
as slope and drops to zero for s > sc, which means that the bond between these two
particles is broken. To attain in the continuum model conservation of linear momen-
tum f must satisfy f (−ξ ,−η) =− f (ξ ,η) ∀η ,ξ and hold to attain the conservation
of angular momentum (η +ξ )× f (ξ ,η) = 0 ∀η ,ξ .

Thus, the stiffness constant c and the critical bond stretch for failure sc are the
only material dependent parameters in the PMB model. The next step is to obtain
these parameters from well-known material parameters of classical elasticity.

To this end, we assume that a microelastic material is derivable from a scalar
micro potential ω

f (ξ ,η) = f (x′− x,η) =
∂ω

∂η
(x′− x,η) ∀η ,ξ = x′− x. (6)

This gives the energy of a single bond and the total strain energy density WPD of all
bonds in Bδ (x) is obtained by

WPD =
1
2

∫

Bδ (x)
ω(x′− x,η)dx′. (7)
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Assuming ω = 1/2cs2ξ is a valid micro potential for a large homogeneous body
under isotropic tension and applying (7) yields

WPD =
∫

δ

0

1
4

cs2
ξ

2dx′ =
1
4

πcs2
δ

4. (8)

To obtain the stiffness constant c, we assume, that the energy density WPD is equiva-
lent to the classical strain energy density W = 9Ks2/2 Nmm−2 of classical elasticity
for this material. Such that the energy for the deformation in the PMB model is the
same as the energy for the same deformation in classical elasticity. This energy
equivalence delivers

1
4

πcs2
δ

4 =
9
2

Ks2⇒ c(K,δ ) =
18K
πδ 4 . (9)

With this energy equivalence the stiffness constant c(K,δ ) depends on the bulk
modulus K a material parameter and the horizon δ , a discretization parameter.

To obtain the critical stretch for bond failure sc we consider a large homogeneous
body and the energy to break the body (i.e. Bδ (x)) vertically into two halves Uδ and
Lδ . Thus, the bonds of all particles in Uδ to any particle in Lδ must be stretched
beyond the critical value sc.

Fig. 3 The body R in the reference configuration vertically divided in Uδ and Lδ . To obtain the
critical stretch for bond failure sc the energy to break all bonds of particles along z to particles
inside the interaction zone Bδ (xi) in the other half is estimated.

Figure 3 shows the body R in the reference configuration divided into Uδ and
Lδ . To compute the total energy to break all bonds connected to particles in the other
half, we first need to consider all particles along the z-direction, this yields the first
integral in Equation (10).
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GPD =

δ∫

0

δ∫

0

2π∫

0

arccos
(

z
ξ

)
∫

0

1/2cs2
ξ

2 sinφdθdφdξ dz =
πcs2

cδ 5

10
(10)

The second integral is the integration over Uδ , the third one is the rotation with the
angle θ and the last one the condition, that only particles connected in the reference
configuration R are connected with bonds. To obtain the critical bond stretch for
failure Equation (10) is solved for sc which gives

sc =

√
10GPD

πcδ 5
(9)
=

√
10GPDπδ 4

π18Kδ 5 =

√
5GPD

9Kδ
. (11)

Again, the energy GPD is assumed to be equal to the energy release rate G :=
K2

Ic(1− ν2)/E of classical elasticity theory with ν = 1/4 and the Young modulus
E = 3K(1−2ν). Thus, that we end up with

sc(K,KIc,δ ) =
5

12

√
2

√
K2

Ic
K2δ

. (12)

Note, that in the continuum model (1) we integrate over the interaction zone Bδ (x)
and assume that each particle x′ has the same influence independent on the the dis-
tance to the cut-off radius. In the discrete model in Equation (2) the volume Vj of
the particle p j is Ṽj = |Vj ∩Bδ (xi)|, such that particles x′ further away from x have
less influence. In a computational point of view a expensive intersect operation is
applied to compensate the over prediction in the continuum model.

3 Improved prototype microelastic brittle material model

Here the PMB model is adjusted to the EMU discretization method, because it is
assumed that all particles P have the same surrounding volume V . Thus, all particles
have the same stiffness constant c and the same critical failure for bond stretch sc.
For non-homogeneous materials or modeling material defects, a non-uniform spatial
partitioning is preferable. Then, that each particle pi has its own stiffness constant
ci and critical bond stretch for failure sci , depending on the interaction zone Fi.
In [7] a normalization of the PMB model is suggested to obtain the stiffness constant
ci and the critical bond stretch for failure sci . Here, some experiments with sound
wave propagation shows that the PMB model over-predict the speed of sound by
13%. The improved model agrees with the theoretical result with an error of 1%.
Thus, we want to look at the improvements of this model and employ it also in our
benchmark. Note, that in [7] the computation for the critical bond stretch for failure
sc is only presented for two dimensional case.

In the original PMB model, described in section 2.1, the stiffness constant is
derived from an analytic solution of the integral (8). In the discrete EMU setting the
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integral is approximated via a summation over the particles in Fi, the same way as
in Equation (2), which yields

1
2

∫

Bδ (x)
ω(ξ ,η)dx′ ≈ 1

2 ∑
j∈Fi

ω(ξ ,η)Vj. (13)

In the discrete version of the improved PMB model the symmetry of the pairwise
force function f (−ξ ,−η) = − f (ξ ,η) does not hold necessarily, since the overall
volume of all particles in the interaction zone Bδ (x) can differ, due to the fact that
particles can have different volumes. We define the potential ω(ξ ,η) = (wi, jcs2

i j)/2
with the weights wi j = 1∀i, j and si j = s∀i, j, so that the sum over all bonds is the
overall stretch s yields

1
2 ∑

j∈Fi

ω(ξ ,η)Vj =
1
2 ∑

j∈Fi

1
2

wi, jcs2
i jVj =

1
4 ∑

j∈Fi

cs2Vj. (14)

Here the energy equivalence for the strain energy density W = 9
4 Ks2 in two dimen-

sions is used, such that

1
4 ∑

j∈Fi

cs2Vj =
9
4

Ks2⇒ ci(K,dx) =
9K
∑

j∈Fi

Vj
. (15)

Due to the assumption that the volume of the interaction zone Bδ (x) of each particle
pi can differ, each particle has its own stiffness constant ci. It depends on the bulk
modulus K and only differs in the volume of the interaction zone.

For the critical bond stretch for failure sci we look at the two dimensional plane,
see Figure 4, and assume, that the energy release rate GPD is obtained by the integra-
tion of the energy density ω(η ,ξ )V (h,δ ) over all fracture planes with the heights
h. The volume of a fracture plane V (h,δ ) is the thickness t of the plane multiplied
by the area of the circular segment δ 2 arccos( δ−h

δ
)− (δ − h)

√
2δh−h2. These as-

sumptions yield

GPD = 2ω(η ,ξ )

δ∫

0

V (h,δ )dh =
2
3

cs2tδ 3. (16)

Note, that in the discrete model each particle p has a own stiffness constant and
ci 6= c j, to enforce symmetry, due to conversation of linear momentum, we introduce
the average ci j = (ci + c j)/2.

Here the same energy equivalence as in the PMB model is used to obtain the
energy release rate GPD from values of the classical elasticity theory

2
3

ci, j s2tδ 3 =
5K2

Ic
8K
⇒ sci j(K,KIc,δ , t) =

1
4

√
15

KIc√
Kci, jtδδ

(17)
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fracture plane

Fig. 4 To obtain the fracture energy we look at the neighborhood Bδ (xi) of an particle pi. To
obtain the energy release rate GPD the energy density is integrated over the interaction zone Bδ (x)
by varying the height h of the fracture plane.

Note, that in this discrete model each particle pi has its own stiffness constant ci and
critical bond stretch for failure sci j derived from the classical material parameters as
in the original model, however, accounting for numerical integration errors.

3.1 Comparison of the material models

Table 1 gives an overview of the material parameters in the two different material
models. The stiffness constant depends in both materials on the bulk modulus K and

Table 1 Overview of the two material parameters in the two different models.

Model stiffness constant c critical bond stretch for failure sc

PMB c(K,δ ) =
18K
πδ 4 sc(K,KIc,δ ) =

5
12

√
2

√
K2

Ic
K2δ

Normalized PMB ci(K,dx) =
9K

∑
j∈Fi

Vj
sci j (K,KIc,δ , t) =

1
4

√
15

KIc√
Kci, jtδδ

the discretization parameter dx. The critical bond stretch for failure depends with
respect to the materials parameters ancillary on the critical stress intensity factor
KIc. Note, that in the normalized PMB model the thickness of the geometry t is
added as a further parameter. In [13] the assembly of the particles as the nodes
of a regular grid with the lattice constant dx and a horizon δ = 3dx is suggested.
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According to the assembly on a regular grid the volume of an particle pi is chosen
as Vi = dx3. Figure 5 shows the dependency of the material parameters with respect
to the lattice constant dx and a constant bulk modulus K = 210×109 Pa and critical
stress intensity factor KIc=2×106 Pa

√
m, which are common values for ALON. The

0.00 0.02 0.04 0.06 0.08 0.101013
1014
1015
1016
1017
1018
1019
1020

[ N m
2

]
Stiffness constant

c

ci

0.00 0.02 0.04 0.06 0.08 0.10
dx [m]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0 ×10 5 Crtitical bond stretch for failure

sc

sc

Fig. 5 Plot of the two material constants with respect to the lattice constant dx for ALON with
common values for the bulk modulus K = 210×109 Pa and critical stress intensity factor KIc =
2×106 Pa

√
m.

stiffness constant differs by two orders of the magnitude and the critical stretch for
bond failure differs marginal.

4 Numerical Results

In this chapter we compare the results for our bond-based peridynamics simulations
with the experimental data from [17, 18]. The initial positions X are the nodes of a
uniform grid with mesh-width dx = dy = dz. As the cut-off radius δ of the interac-
tion zone Bδ (xi) we choose δ = 3dx, as suggested in [13].

Note, that we used a single GPU-based implementation of peridynamics [4] for
the simulations and we are therefore restricted to the memory limitations of the
Nvidia Tesla M2090 GPU with 6GB memory. Due to the computationally expen-
sive improvements of the PMB model, e.g storing two additional constant for each
particle, the number of particles that can be used in the simulations with the im-
proved model is (substantially) smaller for the PMB model.

As indicated by the sketch given in Figure 6, there are various convergence
scenarios considered in PD [5]. The most common limit u0,0 considered is δ =
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3dx,dx→ 0. In our study we consider additionally the limit uδ ,0 for δ = const,dx→
0 and the limit u0,dx for δ → 0,dx = const.

Discrete

Continuum

Discrete

Local

Continuum
Local PDE

Non−local

Non−local

δ → 0

δ → 0

dx→
0

dx→
0

u0,dxuδ ,dx

uδ ,0 u0,0

δ > dx

δ < dx

Fig. 6 Various convergence issues and limits as δ ,h→ 0.

4.1 Model problem: Edge-On Impact experiment

The edge-on impact (EOI) experiment was developed by the Ernst-Mach-Institute
to visualize dynamic fracture in brittle materials using the high-speed photographic
technique [16]. First tests with a glass plate were completed in the late 1930s [11].
In the 1980s this technique was rediscovered to visualize impact damage and wave
propagation in ceramic materials [19]. This experimental data obtained in [16] was
moreover used as a benchmark for the Kayenta model [3, 8] and SPH with a La-
grangian hydrocode approach [10]. Thus, we use this experiment as a benchmark
for the bond-based peridynamics for wave propagation and impact damage and com-
pare our simulations results with the Kayenta model and SPH.

Let us shortly summarize the simulation setup. For detailed information, espe-
cially for the visualization of the wave propagation, see [11, 16]. We used the exper-
iments, described in [17, 18] to compare our simulation results with experimental
data. Figure 7(a) shows the experimental assembly and Figure 7(b) the dimensions
of the steel projectile and the ALON specimen. Table 2 shows the measured wave
velocities at a nominal impact velocity of 380 ms−1.
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(a) Experimental assembly.

(b) Blueprint of the projectile and specimen.

Fig. 7 The experimental assembly (a) of the experiment with a steel projectile and a speci-
men of aluminiumoxynitrid (ALON). The blueprint (b) shows the measurements of the pro-
jectile, a cylinder with the diameter of 30 mm and a length of 23 mm, and the specimen
(100 mm×100 mm×10 mm). The force b(xi, t) the indenter exerts to the plate is 3.8×105N.

4.2 Comparison of Results

Here we compare the obtained speed at the wave front with the experiments
in [17, 18]. Figure 8-10 show the speed of the wave front and the speed of the
coherent damage front obtained for a nominal velocity of 380 ms−1 at time 8.7 µs
(Table 2) and the resulting wave speed from the simulations for each limiting pro-
cess described in Figure 6.
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Table 2 Measured wave velocities for aluminum oxynitride (ALON) at a nominal impact velocity
of 380 ms−1 at time 8.7 µs [17, 18].

Wave Velocity [ms−1]

Wave front 9367
Coherent damage/fracture front 8381
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Wave front
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NPMB

Fig. 8 Measured velocity of the wave front for the continuum local PDE u0,0 limit. Here both
parameters dx and δ = 3dx decreases to zero.

Figure 8 shows the results for the continuum local PDE u0,0 limit. For this process
both parameter δ = 3dx and dx go to zero. For the PMB model the propagation of
the wave starts with decreasing dx. The obtained wave speed is close to the speed
at the experimental damage front, but overshoots the experimental value for the
speed at the wave front for the next dx. For the NPMB model we can not obtain the
front wave in our simulations with the fitted parameter for δ = 3dx and the initial
displacement of the particles as suggested in [9].

Figure 9 shows the results for the continuum local uδ ,0 limit, here for both bond-
based peridynamic materials models no wave propagation is obtained. In this set-
ting δ = 3max(dx) is fixed and for decreasing values of dx the maximal amount of
neighbors |Fi| grows up to 1972. Thus, the interaction zone of the particle is too
wide and the locality of the wave propagation can not be resolved. In [2] the sug-
gested that smaller horizons get better results, since wave dispersion due to the size
of the non-locality is reduced as the horizon decrease.

Figure 10 shows the discrete local limit where dx = min(dx) is fixed and the
horizon delta is varied. We used the suggested δ = 3dx in [13] and decrease it to
2dx, because for a horizon δ = dx the interaction zone is too small and crack and
fracture align between the initial positions X of the particles. Thus, we have the
same limitations as a mesh-based approach. Here for PMB we get the best result,
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Fig. 9 Measured velocity of the wave front for the continuum local uδ ,0 limit. Here δ = const is
fixed and dx decreases to zero.
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Fig. 10 Measured velocity of the wave front for the discrete local u0,dx limit. Here dx is fixed and
δ → dx. Note, that for δ < dx an empty interaction zone Fi is attained.

as suggested in [14], to adjust the horizon so that the peridynamic results produce
the same dispersion curves as those measured for a specific material. For the NPMB
material model we used the same adjusted horizon and can not obtain the wave
propagation process. Thus, the horizon should be adjusted for the NPMB model to
reproduce the dispersion curves to get reliable results.
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5 Conclusion and Outlook

We present the simulation of wave propagation and impact damage with two bond-
based peridynamic materials model. As the reference we used the experimental val-
ues for the speed at the wave front and the coherent damage front in [17, 18]. For
the prototype microelastic material model we obtain, that for the suggested horizon
δ = 3dx in [13] the wave propagation is applicable. One reason is, that the horizon is
adjusted for this model to reproduce the same dispersion curves as those measured
for a specific material [14]. For the discrete local u0,dx limit (Figure 10), we see the
effect, that smaller horizons get better results, since wave dispersion due to the size
of the non-locality is reduced as the horizon decrease [2].

The improvements to the discrete model agree better to the theoretical results
for sound wave propagation [7]. The results consider one idealized material, with a
material density ρ = 1kg/m3 and a bulk modulus K = 1Pa. For the simulation of
wave propagation and impact damage we see no effect of these improvements to the
discrete model. To get reliable results, the horizon δ should be adjusted as in [14].

The alignment of the damage and cracks in a horizontal and vertical fashion [3]
is not observed for the PMB model. Due to the non-smooth kernel functions the
crack and fractures locally develop for a “good” choice of the horizon δ , and do not
smear out, like in other particle methods, like SPH [10]. Thus, simple bond-based
peridynamics is applicable to simulate wave propagation and impact damage, but
the adjustment of the horizon is very important for reliable results.

To achieve sufficient accuracy the more sophisticated state-based peridynam-
ics [15] must be employed.
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6. Franzelin, F., Diehl, P., Pflüger, D.: Non-intrusive uncertainty quantification with sparse grids
for multivariate peridynamic simulations. In: M. Griebel, M.A. Schweitzer (eds.) Meshfree
Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and
Engineering, vol. 100, pp. 115–143. Springer (2014)

7. Ganzenmüller, G.C., Hiermaier, S., May, M.: Improvements to the Prototype Micro-Brittle
Linaear Elasticity Model of Peridynamics. In: M. Griebel, M.A. Schweitzer (eds.) Meshfree



16 Patrick Diehl and Marc Alexander Schweitzer

Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and
Engineering, vol. 100, pp. 163–183. Springer (2014)

8. Leavy, R.B., Clayton, J.D., Strack, O.E., Brannon, R.M., Strassburger, E.: Edge on impact
simulations and experiments. Procedia Engineering 58(0), 445–452 (2013). Proceedings of
the 12th Hypervelocity Impact Symposium

9. Parks, M.L., Lehoucq, R.B., Plimpton, S.J., Silling, S.A.: Implementing peridynamics within
a molecular dynamics code. In: EL (ed.) Computer Physics Communications, vol. 179, pp.
777–783 (2008)

10. Riedel, W., Hiermaier, S., Thoma, K.: Transient stress and failure analysis of impact experi-
ments with ceramics. In: Materials Science and Enginnering B, vol. 173, pp. 139–147. ELSE-
VIER (2010)

11. Schradin, H.: Physikalische Vorgänge bei hohen Belastungen und Belastungs-
geschwindigikeiten (Physical Processes at High Loadings and Loading Rates). In:
Scripts for German Academy for Aeronautical Research, vol. 40, pp. 21–68 (1939)

12. Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. Jour-
nal of the Mechanics and Physics of Solids 48(1), 175 – 209 (2000)

13. Silling, S., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics.
In: ELSEVIER (ed.) Computer & Structures, vol. 83, pp. 1526–1535 (2005)

14. Silling, S.A.: A coarsening method for linear peridynamics. Int. J. Multiscale Com. Eng. 9 6,
609–621 (2011)

15. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic States and Constititive
Modeling. In: Journal of Elaasticity, vol. 88, pp. 151–184. Springer Science + Business Media
B. V. (2007)

16. Strassburger, E.: Visualization of Impact Damage in Ceramics Using the Edge-On Impact
Technique. In: International Journal of Applied Ceramic Technology, vol. 1, pp. 1:235–242
(2004)

17. Strassburger, E., Patel, P., McCauley, J.W., Tempelton, D.W.: Visualization of wave propaga-
tion and impact damage in a polycrystalline transparent ceramic - AlON. In: 22nd Interna-
tional Symposium on Ballistics, 2, pp. 769–776. DEStech Publications (2005)

18. Strassburger, E., Patel, P., McCauley, J.W., Templeton, D.W.: High-Speed Photographic Study
Of Wave Propagation And Iimpact Damage In Fused Silcia And Alon Using The Edge-On
Impact (EOI) Method. AIP Conf. Proc. 892 (2006). DOI http://dx.doi.org/10.1063/1.2263465

19. Winkler, S., Senf, H., Rothenhausler, H.: Wave and Fracture Phenomena in Impacted Ceram-
ics. EMI-Report V5/89, FRAUNHOFER-INST fuer Werkstoffmechanik Freiburg (1989)


