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REPRODUCING KERNEL HILBERT SPACES FOR PARAMETRIC PARTIAL
DIFFERENTIAL EQUATIONS

MICHAEL GRIEBEL⇤ AND CHRISTIAN RIEGER†

Abstract. In this article, we present kernel methods for the approximation of quantities of interest which are
derived from solutions of parametric partial di↵erential equations. We explicitly construct a reproducing kernel
Hilbert space containing the quantity of interest as a function of the parameters from a priori information on
parameters in the di↵erential equation. Based on the problem-adapted reproducing kernel, we suggest a regularized
reconstruction technique from machine learning in order to approximate the quantity of interest from a finite number
of point values. We present a deterministic a priori error analysis for this reconstruction process yielding a sub-
exponential convergence order due to the smoothness of the quantity of interest as function of the parameters. The
error estimates explicitly take into account the error of the numerical evaluation of the quantity of interest for fixed
sets of parameters. This leads to a coupling condition between this evaluation error which contains the error of the
numerical solution of the associated partial di↵erential equation and the error due to the sampling approximation of
the quantity of interest.

1. Introduction. In many practical applications, there is a growing interest in modeling phys-
ical processes with random input parameters. The random input usually accounts for inaccurate
or incomplete measurements of some initial state or material property. We assume in the following
that the physical process is modeled as a partial di↵erential equation. As model example, we will
restrict ourselves to a Dirichlet-Poisson problem with parametric di↵usion coe�cient. The uncer-
tain input is given by the parametric di↵usion coe�cient a(NP ) : R

NP ⇥D ! R where R
NP ⇢ RNP

is a finite dimensional parameter space. We will consider the most simple example for a parameter
space: for numbers r

j

< 1 and 1  j  N
P

we use R
NP :=

Q

NP

j=1 (�r
j

, r
j

) ⇢ (�1, 1)NP (see also
(2.4)). The number N

P

determines the e↵ective dimension of the parameter space. The restriction
to this high but finite dimensional parameter space, i.e., N

P

< 1, is referred to as finite noise

assumption in the literature, see [7, 28]. The parametric partial di↵erential equation is now given
on a su�ciently nice domain D ⇢ Rd and G 2 L2(D)

� div
⇣

a(NP ) (y,x)ru(NP ) (y,x)
⌘

= G (x) for all x 2 D and all y 2 R
NP (1.1)

u(NP ) (y,x) = 0 for all x 2 @D and all y 2 R
NP .

The solution of (1.1) is, by construction, a function u(NP ) : R
NP ⇥D ! R. Motivated by practical

considerations, we do not consider u(NP ) but instead we work directly with some derived quantity
of interest which will be modeled by a linear functional q(NP ) on the solution space, i.e.,

Q(NP ) (y) := q(NP )
⇣

u(NP ) (y, ·)
⌘

2 R. (1.2)

Hence, Q(NP ) : R
NP ! R is a parameter-dependent function itself. The basic task is now to

reconstruct the map Q(NP ) from sampled data Q(NP )
k

⇠= Q(NP )(y
k

) at parameter values y
k

2 Y
NS =

�

y1, . . . ,yNS

 

⇢ R
NP , 1  k  N

S

, where here and in the following we shall denote the number

of sampling points by N
S

2 N. The values Q(NP )
k

are generated by solving the parametric Poisson
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problem (1.1) for y

k

2 R
NP and applying q(NP ). In general, this cannot be done analytically but

only numerically. To this end, we have to introduce a discrete spacial trial space V
ND ⇢ V := H1

0 (D).
Then we can solve for a u(NP ,ND)(·,y

k

) 2 V
ND satisfying

� div
⇣

a(NP ) (y
k

, ·)ru(NP ,ND) (y
k

, ·)
⌘

= G and u(NP ,ND) (y
k

, ·) |
@D ⌘ 0. (1.3)

Since the numerical solution u(NP ,ND) (y
k

, ·) will only approximate the true solution u(NP ) (y
k

, ·),
we can compute only perturbed samples

Q
(NP ,ND)
k

:= q(NP )
⇣

u(NP ,ND) (y
k

, ·)
⌘

⇡ Q
(NP )
k

= q(NP )
⇣

u(NP ) (y
k

, ·)
⌘

. (1.4)

We will use the quantities1

✏
k

(ND) :=
�

�

�

u(NP ,ND) (y
k

, ·)� u(NP ) (y
k

, ·)
�

�

�

V
and ✏

ND := max
yk2YNS

✏
k

(ND) (1.5)

to denote the numerical error measured in the energy norm k ·kV with V := H1
0 (D). Here, we do not

discuss any specific method to solve equation (1.3). We only assume that it is possible to design
a discretization space V

ND such that ✏
ND ! 0 for ND ! 1. The maximum in the error term

✏
k

(ND) in (1.5) for a fixed parameter value reflects the fact that we do not assume any di↵erence
in importance for the parameter values.

The final task is then to reconstruct a high-dimensional function from perturbed (possibly
scattered) samples. But this is the classical setup for many machine learning algorithms. At this
point, we stress the fact that it is necessary to use a regularized reconstruction method since we
will never have exact data at our disposal. Many approaches in the literature are interpolatory
by nature (see [5] and succeeding articles). In our opinion, this seems somewhat questionable in
view of inexact data and the resulting ill-posedness of the associated interpolation problem. Thus,
we will present an algorithm for semi–supervised learning by means of a regularization method.
Other non-interpolatory methods, which are in particular based on polynomial projections, can be
found in [22]. The basic structure is a variational problem over a reproducing kernel Hilbert space
(RKHS) H

K

containing real-valued functions of the form

Q̃(NS ;�K ,�M;✏ND ;NP ) := arg min
h2HK

NS
X

k=1

V
⇣

Q
(NP ,ND)
k

, h (y
k

)
⌘

+ �
K

khk2HK
+ �M khk2M , (1.6)

where V : R⇥R ! [0,1) denotes a loss function, �
K

,�M > 0 are fixed regularization parameters

and k·kM encodes geometric information on the samples Q
(NP ,ND)
k

. The sum in (1.6) acts as a
fidelity term which is weighted by the number of sampling points N

S

. As loss function for the
error analysis, we will choose Vapnik’s ✏-insensitive loss function [30]. We will present a choice for
the geometric term in Section 5. The intuition behind this optimization problem is to implicitly

make use of the fact that the samples Q(NP ,ND)
k

will lie on a low dimensional structure due to the
covariance decay of the input field a(NP ). This decay will also lead to a natural choice for the
RKHS which we will present in Section 2. For an approach to employ the regularity properties in a
polynomial setting we refer to [8]. We would like, however, to make use of the superior properties

1Note here that we could allow also for a perturbed functional q̃NP without changing our error model. Such a
perturbation may stem from a further numerical discretization process for qNP .
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of kernel-based reconstruction methods. Most of the additional features of kernel-based methods
stem from the fact that the interpolant is also a best-approximand in the norm of the Hilbert space.
Reproducing kernels in the context pf parametric partial di↵erential equations also arise in [14, 19,
21] and in the context of kriging [15]. It is well known in the theory of uncertainty quantification
that the dependence of the quantity of interest on the parameter, i.e., y 7! Q(NP ) (y) 2 R is an
analytical map around the origin if a(NP ) is regular enough. Hence, one would expect to obtain sub-

exponential convergence rates for the approximation Q̃(NS ;�K ,�M;✏ND ;NP ) ! Q(NP ) for N
S

! 1
and ✏

ND ,�K ,�M ! 0 with a reasonable loss function V . Note here that N
P

is considered as
fixed constant. For practical purposes, it is important to balance all error contributions. We will
derive such a coupling by means of a deterministic a priori error analysis provided by a sampling

inequality given in Theorem 2.2, which is in the spirit of recent work on such estimates, see, e.g.,
[1, 2, 3, 17, 20, 23, 24, 26, 27, 29, 31]. We will show (see Corollary 5.4) that there are (a priori
known) parameters of (1.6) such that a sub-exponential bound of the form

�

�

�

Q̃(NS ;�K ,�M;✏ND :NP ) �Q(NP )
�

�

�

L

1(R)
 exp(�C1/

q

hYNS
,RNP

)

✓

�

�

�

Q(NP )
�

�

�

HK

+
�

�

�

Q(NP )
�

�

�

M

◆

+ c
p
✏
ND ,

holds, where Q̃(NS ;�K ,�M;✏ND :NP ) is given in (1.6), and Q(NP ) 2 H
K

is the true solution of (1.1).
Moreover,

hYNS
,RNP

:= sup
x2RNP

min
xj2YNS

kx� x

j

k2 (1.7)

denotes the fill distance of the discrete set Y
NS ⇢ R

NP (see also [32] for more discussion on this
quantity) and the regularization parameters satisfy

p

�
K

⇠ exp(�C1/
q

hYNS
,RNP

) ⇠
p

�M.

This finally allows us to couple2 the numerical discretization error ✏
ND to the number of sampling

nodes via
p
✏
ND ⇠ exp

⇣

�C1/
q

hYNS
,RNP

⌘

.

Note at this point that we treat here only an easy model problem and implicitly assume a short
correlation length by using the isotropic fill-distance hYNS

,RNP
.

The remainder of this paper is organized as follows: In section 2, we derive a sampling inequality
for a specific class of multivariate Taylor kernels. This generalizes [35, Sec. 6] to our situation. In
Section 3, we collect basic regularity results from uncertainty quantification. In particular, we
demonstrate the relation to Taylor kernels. Furthermore, we identify a geometric substructure in
the parameter space associated with the quantity of interest. In Section 5, we present a classical
approach to semi–supervised learning which takes this geometric insight into account. Finally,
we show how sampling inequalities can be used to derive an exponential convergence rate of the
reconstruction scheme. Here, the rate depends on the covariance decay of the input field aNP .

2The choice presented here is optimized for good approximation rates. If the data is severely corrupted by noise,
other statistically motivated choices for the regularization parameters could lead to slightly di↵erent results. We
view the error in the data as numerical residual and hence as deterministic. Furthermore, the error in the data
could at least theoretically be made arbitrarily small by allowing more numerical work in the solution of the partial
di↵erential equation for a fixed parameter.
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2. Power series kernels. In this section, we follow mainly [26, 34, 35]. We will denote multi-

indices by small bold Greek letters, e.g., ⌫ 2 NNP
0 , and set ⌫! =

Q

NP

j=1 ⌫j ! and ⌫

↵ =
Q

NP

j=1 ⌫
↵j

j

for ↵ � 0. We write ↵ � 0 if ↵
j

� 0 for all 1  j  N
P

. Furthermore, we use the notation
|⌫|1 := ⌫1 + · · ·+ ⌫

NP for ⌫ 2 NNP
0 and |⌫|1 := maxNP

j=1 |⌫j |.
Let ⌫ 2 NNP

0 be a multi-index and w
⌫

be a sequence of positive numbers such that the summa-
bility condition

P

⌫2NNP
0

w⌫
⌫!2 < 1 holds. Then, a power series kernelK : (�1, 1)NP ⇥(�1, 1)NP ! R

K (x,y) :=
X

⌫2NNP
0

w
⌫

⌫!2
x

⌫

y

⌫ (2.1)

is well-defined. Such kernels are known to reproduce in Hilbert spaces H
K

of functions

H
K

�

(�1, 1)NP
�

:=

(

f : (�1, 1)NP ! R : f(x) =
X

⌫2NNP
0

f̂
⌫

x

⌫ s.t. kfkHK((�1,1)NP ) < 1
)

(2.2)

with the inner product given by

(f, g)HK((�1,1)NP ) :=
X

⌫2NNP
0

w�1
⌫

D⌫f(0)D⌫g(0). (2.3)

Next, we define the anisotropic hypercube R
NP for r = (r1, . . . , rNP )

T with r
j

< 1 as

R
NP :=

NP
Y

j=1

(�r
j

, r
j

) ⇢ (�1, 1)NP ⇢ RNP . (2.4)

Following [26], we consider the embedding constants of the non-standard function spaces given by
(2.2) into classical Sobolev spaces. To this end, we introduce for s 2 {1,1} the function spaces

W k

2;s(RNP ) :=

(

f 2 L2(R
NP ) : kfk2

W

k
2;s(RNP

) :=
k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

(D↵f(x))2 dx < 1
)

. (2.5)

The choice s = 1 corresponds to the classical isotropic setting, whereas the choice s = 1 corresponds
to tensor product Sobolev spaces. The embedding constant is given as norm of the injection

W
s

(k) : H
K

�

(�1, 1)NP
�

,! W k

2;s(RNP ). (2.6)

Lemma 2.1. Suppose that there is a ĉ < 1 such that the weights w
↵

satisfy w
⌫

 ĉ|⌫|1⌫!2 for

all ⌫ 2 NNP
0 . Then, there is a constant C > 0 such that

kW
s

(k)k  exp (C/2k) k! (2.7)

for every R
NP as in (2.4) and for s 2 {1,1}.
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Proof. Let f 2 H
K

�

(�1, 1)NP
�

be arbitrary but fixed. Then, we get

kfk2
W

k
2;s(RNP

) =
k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

⇣

D↵f(x)
⌘2

dx =
k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

⇣

D↵

X

⌫2NNP
0

f̂
⌫

x

⌫

⌘2
dx

=
k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

⇣

X

⌫2NNP
0

f̂
⌫

D↵

x

⌫

⌘2
dx

=
k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

 

X

⌫2NNP
0

⌫�↵

f̂
⌫

⌫!

(⌫ �↵)!
x

⌫�↵

!2

dx

=
k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

 

X

⌫2NNP
0

⌫�↵

f̂
⌫

⌫!p
w

⌫

p
w

⌫

(⌫ �↵)!
x

⌫�↵

!2

dx.

We can use the Cauchy Schwartz inequality to obtain with e = (1, . . . , 1)T 2 RNP

kfk2
W

k
2;s(RNP

) 
k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

 

X

⌫2NNP
0

⌫�↵

f̂2
⌫

⌫!2

w
⌫

! 

X

⌫2NNP
0

⌫�↵

w
⌫

(⌫ �↵)!2
x

2⌫�2↵

!

 kfk2HK((�1,1)NP )

k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

X

⌫2NNP
0

⌫�↵

w
⌫

(⌫ �↵)!2
x

2⌫�2↵

= kfk2HK((�1,1)NP )

k

X

j=0

X

↵2NNP
0

|↵|s=j

Z

RNP

X

⌫2NNP
0

w
⌫+↵

⌫!2
x

2⌫

= kfk2HK((�1,1)NP )

k

X

j=0

X

↵2NNP
0

|↵|s=j

X

⌫2NNP
0

w
⌫+↵

⌫!2
2r2⌫+e

 

NP
Y

`=1

(2⌫
`

+ 1)

!�1

= 2 kfk2HK((�1,1)NP )

k

X

j=0

X

↵2NNP
0

|↵|s=j

NP
Y

`=1

X

⌫`2N0

w
⌫`+↵`r

2⌫`+1
`

⌫
`

!2 (2⌫
`

+ 1)
.

Hence, we are left with the term
Q

NP

`=1

P

⌫`2N0

w⌫`+↵`
r

2⌫`+1
`

⌫`!2(2⌫`+1) . We can invoke [34, Lemma 5], where

it is shown that, for w
⌫

 ĉ|⌫|1⌫!2 for all ⌫ 2 NNP
0 and for a fixed ĉ < 1, there is a constant C > 0
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such that

jNP max
�2NNP

0
|�|1=j

X

⌫2NNP
0

w
⌫+�

⌫!2
 exp (Cj) j!2 (2.8)

holds for all k 2 N. We have the following two results from combinatorics

#
n

↵ 2 NNP
0 : |↵|1 = j

o

=

✓

j +N
P

� 1

N
P

� 1

◆

#
n

↵ 2 NNP
0 : |↵|1 = j

o

= #
n

↵ 2 NNP
0 : |↵|1  j

o

�#
n

↵ 2 NNP
0 : |↵|1  j � 1

o

= (j + 1)NP � jNP .

For the case s = 1, Stirling’s formula yields the estimate with a constant c > 0
✓

j +N
P

� 1

N
P

� 1

◆

 cjNP .

For the second case, i.e., s = 1, we also have obviously (j + 1)NP � jNP  cjNP with a possibly
di↵erent constant c > 0. Hence, we get

k

X

j=0

X

↵2NNP
0

|↵|s=j

NP
Y

`=1

X

⌫`2N0

w
⌫`+↵`r

2⌫`+1
`

⌫
`

!2 (2⌫
`

+ 1)


k

X

j=0

jNP max
�2NNP

0
|�|1=j

X

↵2NNP
0

NP
Y

`=1

X

⌫`2N0

w
⌫`+↵`r

2⌫`
`

⌫
`

!2


k

X

j=0

jNP max
�2NNP

0
|�|1=j

X

↵2NNP
0

X

⌫2NNP
0

(⌫ +↵)!2

⌫!2
ĉ|⌫|1


k

X

j=0

exp (Cj) j!2  exp (Ck) k!2

This results in the assertion for s = 1 and s = 1.
Now we are in the position to state a sampling inequality which includes derivatives on the

left-hand side. For similar arguments see also [26, Thm. 3.5] and [35, Thms 6.1 & 6.2].
Theorem 2.2. Suppose that there is ĉ < 1 such that w

⌫

 ĉ|⌫|1⌫!2 for all ⌫ 2 NNP
0 . Then, for

R
NP as in (2.4) and for all 1  q  1 and all ↵ 2 NNP

0 , there are constants C1, C2 and h0 > 0
depending only on N

P

, q, R
NP ,↵ and ĉ such that for all data sets Y

NS ⇢ R
NP ⇢ RNP

with fill

distance hYNS
,RNP

 h0 the inequality

kD↵fk
L

q(RNP
)  exp

0

@� C1
q

hYNS
,RNP

1

A kfkHK((�1,1)NP ) + C2

�

�

�

f |YNS

�

�

�

`

1(YNS
)

(2.9)

holds for all f 2 H
K

�

(�1, 1)NP
�

and for

3 s 2 {1,1}.

3The s dependence is only in the lower order terms of the embedding constant which does not a↵ect the rate but
may a↵ect the constants in the sampling inequality.
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Proof. Note that Lemma 2.1 yields

kW
s

(k)k  exp (C/2k) k!  exp (1 + C/2k � k + 1/2 ln(k)) kk

for all k 2 N using Stirling’s formula. Hence, we can apply [26, Thm. 3.5] directly with � = 1
which shows (2.9).

3. Basic parametric partial di↵erential equation. In this section, we mainly follow [13],
see also [5] for an early result on collocation. Let D ⇢ Rd be a physical domain which is assumed
to be smoothly bounded. We consider the model problem (1.1) and we assume the right–hand side
G 2 L2 (D) to be su�ciently regular in order not to spoil the usual elliptic regularity theory. The
energy space is V := H1

0 (D). The weak form of (1.1) (see also [6]) reads
Z

D
a(NP ) (y,x)ru(NP ) (y,x)rv (x) dx =

Z

D
G (x) v (x) dx for all v 2 V = H1

0 (D) (3.1)

where we used the truncated input

a(NP ) (y,x) = a0(x) +
NP
X

k=1

�
k

(x) y
k

,

where y = (y1, . . . , yNP )
T . Note at this point that there is no need for the finite noise assumption,

i.e., N
P

< 1, see [13] for the corresponding results in the infinite dimensional setting. We will
state therefore the (general) results from [13] but restricted to the finite dimensional setting. We
invoke the uniform (complex) ellipticity assumption (see [13, Eq. 1.26] for the finite noise case, i.e.,

0 < r  Ra(NP ) (y,x) 
�

�

�

a(NP ) (y,x)
�

�

�

 R for all x 2 D and all y 2 R
NP . (3.2)

Here, we denote by R the real part of a complex number. Simple rearranging yields that (3.2) is
satisfied if the bounds

NP
X

k=1

|�
k

(x)| 
1
X

k=1

|�
k

(x)|  Rmin {a0(x)� r,R� a0(x)} ,

hold, where we used the fact that y 2 R
NP ⇢ (�1, 1)NP . The crucial observation in [13] is to

sharpen this conditions into �–admissibility. A sequence (⇢
k

)
k2N with ⇢

k

> 0 is called �–admissible
if

X

k2N
⇢
k

|�
k

(x)|  Ra0(x)� �, (3.3)

for some number 0 < � < 2R. For � < r, one can achieve ⇢
k

> 1 for all k 2 N. The map
y 7! u(Np) (y, ·) 2 V is analytical (see [13, Thm 1.2 & Lemma 2.4] or [5, Lemma 3.2]). To be
precise, we have the following proposition from [13, Lemma 2.4].

Proposition 3.1. Suppose that the uniform (complex) ellipticity assumtion (3.2) holds with

parameters 0 < r  R < 1 and suppose that k�
k

k
L

1(D) is bounded for 1  k  N
P

. Then, we get

u(NP ) (y, ·) =
X

k2N

X

⌫2NNP

|⌫|1=k

u(NP )
⌫

(·)y⌫ , (3.4)

7



for u
(NP )
⌫

2 V and convergence will be understood with respect to the k·kV–norm. Furthermore,

there is a bound on the coe�cient functions u
(NP )
⌫

2 V, i.e., for a �–admissible sequence (⇢
k

)
k

with

� < r, we have

�

�

�

u(NP )
⌫

�

�

�

V
 kGkV?

�
⇢

�⌫ . (3.5)

We clearly see a product structure in (3.5). If the �–admissibility assumption is skipped, (3.5)
deteriorates to (see [13, Eq. 1.17])

�

�

�

u(NP )
⌫

�

�

�

V
 kGkV?

r

|⌫|1!
⌫!

b

⌫ , (3.6)

with the sequence (b
k

)
k

k 2 {1, . . . , N
P

} defined by

b
k

:=

 

inf
x2D

Z

RNP

a (y,x) dy

!�1

k�
k

k
L

1(D) . (3.7)

Then, the product structure in (3.6) is lost due to the term |⌫|1!. This can be repaired by slightly
changing the sequence (b

k

), see the appendix for the computations, but we will stick to (3.5).
Therefore, we will not consider this case separately in the following. The assumptions in Proposition
3.1 are simpler than those in [13] since in the finite dimensional case the summability for the
⇣

k�
k

k
L

1(D)

⌘

k2N
is trivial. We denote by h·, ·i the dual pairing between V and V?. Furthermore,

we denote the Riesz representer of a linear functional � by R(�). We are mainly interested in
reconstructing the quantity of interest (1.2), here written in the parametric form

Q(NP ) (y) = q(NP )
⇣

u(NP ) (y, ·)
⌘

=

*

X

k2N

X

⌫2NNP

|⌫|1=k

u(NP )
⌫

y

⌫ ,R(q(NP ))

+

V

=
X

k2N

X

⌫2NNP

|⌫|1=k

D

u(NP )
⌫

,R(q(NP ))
E

V
y

⌫

where we used (3.4). This directly yields the following corollary:
Corollary 3.2. Suppose that the uniform (complex) ellipticity assumption (3.2) holds with

parameters 0 < r  R < 1 and that k�
k

k
L

1(D) is bounded for 1  k  N
P

. Then, we get

Q(NP ) (y) =
X

k2N

X

⌫2NNP

|⌫|1=k

D

u(NP )
⌫

,R(q(NP ))
E

V
y

⌫ . (3.8)

Furthermore, let (⇢
k

)
k

be a �–admissible sequence with � < r. Then, the coe�cients are bounded by

D

u(NP )
⌫

,R(q(NP ))
E

V

�

�

�

u(NP )
⌫

�

�

�

V

�

�

�

R(q(NP ))
�

�

�

V


kGkV?

�

�q(NP )
�

�

V?

�
⇢

�⌫ . (3.9)
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Without the �–admissibility assumption, we get (3.6) and hence the bound deteriorates to

D

u(NP )
⌫

,R(q(NP ))
E

V


kGkV?

�

�q(NP )
�

�

V?

r

|⌫|1!
⌫!

b

⌫ (3.10)

with the sequence (b
k

)
k

defined in (3.7).
At this point, we can characterize the reproducing kernel Hilbert space of the form (2.2) using

the weights defined in (3.9).
Lemma 3.3. Suppose that the uniform (complex) ellipticity assumption (3.2) holds with pa-

rameters 0 < r  R < 1 and suppose that k�
k

k
L

1(D) is bounded for 1  k  N
P

. Furthermore,

let (⇢
k

)
k

be a �–admissible sequence with � < r. Then, we get

Q(NP ) 2 H
Ka

�

(�1, 1)NP
�

:=

8

>

<

>

:

f : (�1, 1)NP ! R : f(x) =
X

⌫2NNP
0

f̂
⌫

x

⌫ , kfkHKa((�1,1)NP ) < 1

9

>

=

>

;

with inner product

(f, g)HKa((�1,1)NP ) :=
X

⌫2NNP
0

D⌫f(0)D⌫g(0)

c

⌫

⌫!2
,

where the weights c satisfy c
j

2 (⇢�1
j

, 1) for all 1  j  N
P

.

Proof. Under the assumptions of Corollary 3.2, we have according to (3.9), the bound

Q(NP )(y) =
X

⌫2NNP
0

Q̂(NP )
⌫

y

⌫ with
�

�

�

Q̂(NP )
⌫

�

�

�

 kGkV kqkV?

�
⇢

�⌫ .

Comparing the functions in (2.2) with the representation from (3.8), we see that we need weights

w
(a)
⌫

such that

X

⌫2NNP
0

⌫!2

w
(a)
⌫

D

u(NP )
⌫

,R(q(NP ))
E

V
< 1.

For the bound on the coe�cients given in (3.9). i.e.
D

u
(NP )
⌫

,R(q)
E

V
 kGkV?kq(NP )kV?

�

⇢

�⌫ , we get

X

⌫2NNP
0

⌫!2

w
(a)
⌫

D

u(NP )
⌫

,R(q(NP ))
E

V


kGkV?

�

�q(NP )
�

�

V?

�

X

⌫2NNP
0

⌫!2

w
(a)
⌫

⇢

�⌫


kGkV?

�

�q(NP )
�

�

V?

�

X

⌫2NNP
0

⇣

w(a)
⌫

⌘�1 NP
Y

j=1

⌫
j

!2⇢
�⌫j

j

.

We now make an ansatz with c < 1 component wise for the weights

w(a)
⌫

=
NP
Y

j=1

w(a)
⌫j

=
NP
Y

j=1

c
j

⌫

j

!2 = c

⌫

⌫!2. (3.11)
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We then see that for the choice (3.11) we get

X

⌫2NNP
0

⌫!2

w
(a)
⌫

D

u(NP )
⌫

,R(q)
E

V


kGkV?

�

�q(NP )
�

�

V?

�

NP
Y

j=1

X

⌫j2N
(c

j

⇢
j

)�⌫j < 1,

for c
j

⇢
j

> 1. Hence we have an admissibility condition for the constant given as

c
j

2 (⇢�1
j

, 1) for all 1  j  N
P

. (3.12)

This is possible since we have ⇢
j

> 1 for all 1  j  N
P

. Hence, we can identify the reproducing
kernel Hilbert space H

Ka

�

(�1, 1)NP
�

as a special case of (2.2) where the inner product has the

weights w(a)
⌫

:= c

⌫

⌫!2.

The reproducing kernel for H
Ka

�

(�1, 1)NP
�

is explicitly given by

K
a

(x,y) :=
X

⌫2NNP
0

c

⌫

⌫!2

⌫!2
x

⌫

y

⌫ =
X

⌫2NNP
0

c

⌫

x

⌫

y

⌫ =
NP
Y

k=1

X

⌫k2N0

c⌫k
k

x⌫k
k

y⌫k
k

=
NP
Y

k=1

1

1� c
k

x
k

y
k

.

Using the notation S
c

(x, y) := 1
1�cxy

for the univariate Szegö kernel with paramter c < 1, we get

K
a

(x,y) = ⌦NP
k=1Sck(xk

, y
k

). (3.13)

Hence the reproducing kernel is a tensor product of Szegö kernels with parameters c
k

. These
kernels can already be found in [18]. There it is also mentioned that for a suitable normalization,
i.e., S̃

c

(x, y) = c�1S
c

(x, y), we can reproduce polynomials for c ! 1. This might explain the fact
that polynomial approximation methods work so well in these function spaces.

4. Geometric structure. In this section, we show that the support of the map Q(NP ) is
approximately given by a geometric substructure of the parameter space. The important ingredient
is a coupling of the dimension-wise decay and the numerical discretization process which is used
to solve the partial di↵erential equation for a given parameter ỹ 2 R

NP . The usual procedure in
conforming methods is to fix a finite dimensional subspace V

ND = span { 1, . . . , ND} ⇢ V and to
consider the spatially discretized version of (3.1), i.e., the equation (1.3). The weak form of this
equation reads: Find u(NP ,ND) (ỹ, ·) 2 V

ND ⇢ V such that

Z

D
a(NP ) (ỹ,x)ru(NP ,ND) (ỹ,x)rv(ND) (x) dx =

Z

D
G (x) v(ND) (x) dx (4.1)

for all v(ND) 2 V
ND ⇢ V. Without loss of generality we can assume that the set { 1, . . . , ND} is a

basis in V
ND and use the usual isomorphism between finite dimensional spaces to get V

ND
⇠= RND

via

E : V
ND ! RND with f (ND) =

ND
X

j=1

f̂
j

 
j

7!
⇣

f̂ (1), . . . , f̂ (ND)
⌘

T

2 RND .

10



By the expansion (3.4), we obtain for the solution u(NP ,ND) of (4.1) for fixed ỹ 2 R
NP that

u(NP ,ND)(ỹ, ·) 2 V
ND , and hence

Eu(NP ,ND) (ỹ, ·) = E
 

X

k2N0

X

⌫2NNP
0

|⌫|1=k

u(NP ,ND)
⌫

(·) ỹ⌫

!

=
X

k2N0

X

⌫2NNP
0

|⌫|1=k

⇣

û(1)
⌫

, . . . , û(ND)
⌫

⌘

T

ỹ

⌫

=

 

X

k2N0

X

⌫2NNP
0

|⌫|1=k

û(1)
⌫

ỹ

⌫ , . . . ,
X

k2N0

X

⌫2NNP
0

|⌫|1=k

û(ND)
⌫

ỹ

⌫

!

T

. (4.2)

Due to the decay of the coe�cients (3.9), it is natural to also truncate the polynomial series, i.e.,
to consider

Eu(NP ,ND,NT ) (ỹ, ·) :=
 

NT
X

k=0

X

⌫2NNP
0

|⌫|1=k

û(1)
⌫

y

⌫ , . . . ,

NT
X

k=0

X

⌫2NNP
0

|⌫|1=k

û(ND)
⌫

y

⌫

!

T

, (4.3)

whereN
T

is the global maximal polynomial index. For the sake of simplicity, we do not consider indi-
vidual polynomial degrees for each coordinate direction. We can consider ỹ 7! Eu(NP ,ND,NT )(ỹ, ·) 2
RND as a vector of polynomials, since each component

�

Eu(NP ,ND,NT )(ỹ, ·)
�

t

2 R[y1, . . . , yND ],
where R[x] denotes the formal ring of polynomials, for 1  t  ND, see also [16]. Now, following
[33, p. 8], since a hypercube such as R

NP is a simple polytope, we can invoke [4, Thm 1.2] to infer
that R

NP itself is a semi–algebraic set. Therefore, as a consequence of the Tarski–Seidenberg The-
orem (cf. [12]) the image of a polynomial map (semi–algebraic map) of R

NP is itself semi-algebraic
[16, p. 242]. To be precise, we have

M :=

✓

⇣

Eu(NP ,ND,NT )
⌘

1
(R

NP , ·) , . . . ,
⇣

Eu(NP ,ND,NT )
⌘

ND
(R

NP , ·)
◆

T

. (4.4)

This semi-algebraic set approximates the support of the map Q(NP ). To make use of this informa-
tion, we follow the approach of manifold learning. We propose to consider a proper discretization of
the Laplace-Beltrami operator, treating the semi-algebraic set M as if it was a Riemannian mani-
fold. Here, we describe a popular discretization of the Laplace-Beltami operator on a Riemannian
manifold. We follow mainly [9, 11]. The basic assumption is that M is a compact dM�dimensional
manifold which is isometrically embedded into the ambient Euclidean space R

NP ⇢ RNP and the
Riemannian metric ⇢M is assumed to be induced by the standard Euclidean metric of RNP . In
order to infer any information about the manifold M from discrete samples modeled as a point
cloud4

Y
NS := {y1, . . . ,yN

} ⇢ R
NP ⇢ RNP , (4.5)

4Note at this point that we could consider in principle a set L 6= YNS
. This is a common approach in semi-

supervised learning applications. Here and in the following, we restrict ourselves for reasons of simplicity to use the
sample points YNS

also as point cloud in the parameter space.
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it is necessary to have some density property. This is formalized by the following quantity

hYNS
,M := sup

x2M
min

z2YNS

kx� zk2 .

If hYNS
,M ! 0, we say that the point cloud resolves the underlying manifold M. A key observation

from [9] is that the intrinsic distance is comparable to the ambient Euclidean distance, i.e.,

⇢M(x1,x2) = kx1 � x2k2,RNP +O
⇣

kx1 � x2k32
⌘

for x1,x2 2 M. Following [9], the heuristic behind the discrete Laplace-Beltrami operator stems
from the heat equation in the ambient Euclidean space. One has for an f 2 C1(RNP )

��RNP f(x) = @
t

✓

Z

RNP

f(z)(4⇡t)�
NP
2 exp

✓

�kx� yk22
4t

◆

dy

◆

�

�

�

�

t=0

= lim
t!0

t�1(4⇡t)�
NP
2

✓

Z

RNP

f(y) exp

✓

�kx� yk22
4t

◆

dy � f(x)

Z

RNP

exp

✓

�kx� yk22
4t

◆

dy

◆

⇡ (4⇡t̃)�
NP
2

t̃N
S

0

@

NS
X

j=1

f(y
j

) exp

 

�
kx� y

j

k22
4t

!

� f(x)
NS
X

j=1

exp

 

�
kx� y

j

k22
4t

!

1

A (4.6)

=: � (4⇡t̃)�
NP
2

t̃N
S

L(t̃)
NS

f(x)

for a small enough time t̃ > 0. In (4.6) a simple equal weight quadrature was employed. This
heuristic argument can be made rigorous as outlined in [9, Thm. 1] in the sense of point-wise con-
vergence. There, it is shown that if the points Y

NS ⇠ U(M) are drawn from a uniform distribution

on M and the parameter t̃ is chosen as t̃ := t̃(N
S

) = N
� 1

dM+2+✏

S

for some ✏ > 0, then

�Mf(x) = lim
NS!1

(4⇡t̃)�
NP
2

t̃N
S

L(t̃)
NS

f(x).

Here dM denotes the intrinsic dimension of M. By construction, we have dM  N
P

. The limit
N

S

! 1 for uniformly distributed points implies also hYNS
,M ! 0. It is important to see that the

discrete Laplace operator L(t̃)
NS

depends only on the point values. We formalize this observation in
the following way: We introduce a sampling operator

SYNS
: C(RNP ) ! RNS , f 7! (f(y1), . . . , f(yN

))T . (4.7)

Next, we can restate the action of the discrete Laplace operator by using the sampling operator.
In particular, we use the identity

SYNS

⇣

L(t̃)
NS

f
⌘

= (D �W )SYNS
(f)

with the matrices D,W 2 RNS⇥NS given by

(D)
i,j

=

(

P

NS

k=1 exp
⇣

�kyi�ykk2
2

4t̃

⌘

, i = j

0, i 6= j
and (W )

i,j

= exp

 

�
ky

i

� y

j

k22
4t̃

!

.
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Then,

SYNS
(f) · SYNS

⇣

L(t̃)
NS

f
⌘

= SYNS
(f) · (D �W )SYNS

(f)

=
NS
X

i,j=1

exp

 

�
ky

i

� y

j

k22
4t̃

!

�

f(y
i

)� f(y
j

)
�2

.

We can use this expression to define the geometric regularization term in (1.6) as

kfk2M :=
(4⇡t̃)�NP

t̃2N2
S

SYNS
(f) · (D �W )SYNS

(f). (4.8)

5. Manifold learning. Now we are in the position to consider the optimization problem (1.6).
To this end, we briefly recall the setting for the reconstruction of the function Q(NP ) : R

NP ! R.
The input for the learning task are the perturbed samples

Q
(NP ,ND)
k

:= q(NP )
⇣

u
(NP ,ND)
k

⌘

⇡ Q
(NP )
k

= q(NP )
⇣

u(NP ) (y
k

, ·)
⌘

.

We note that the quantity

✏
k

:= Q
(NP ,ND)
k

�Q(NP ) (y
k

) = q(NP )
⇣

u
(NP ,ND)
k

⌘

� q(NP )
⇣

u(NP )(y
k

, ·)
⌘

= q(NP )
⇣

u
(NP ,ND)
k

� u(NP )(y
k

, ·)
⌘

is bounded by the numerical error which occurs in the solution of the equation (4.1). We have

|✏
k

| 
�

�

�

q(NP )
�

�

�

V?

�

�

�

u
(NP ,ND)
k

� u(NP )(·,y
k

)
�

�

�

V
.

The basic variational problem over the reproducing kernel Hilbert space H
Ka

�

(�1, 1)NP
�

is
given in (1.6) and we recall its definition here. We define

J
Q

(NP ,ND)
k ,�K ,�M

: H
Ka((�1,1)NP ) ! R where (5.1)

J
Q

(NP ,ND)
k ,�K ,�M

(f) :=
NS
X

k=1

V
⇣

Q
(NP ,ND)
k

, f (y
k

)
⌘

+ �
K

kfk2HKa((�1,1)NP ) + �M kfk2M

and set

Q̃(NS ;�K ,�M;✏ND ;NP ) := arg min
f2HKa (�1,1)NP

J
Q

(NP ,ND)
k ,�K ,�M

(f). (5.2)

In this situation, there is a numerically useful observation, namely a representer theorem (see [10,
Thms 1&2]). It states that, although the minimization (5.2)

Q̃NS ;�K ,�M;✏ND ;NP := arg min
f2HKa((�1,1)NP )

J
Q

(NP ,ND)
k ,�K ,�M

(f)

= arg min
f2HKa((�1,1)NP )

NS
X

k=1

V
⇣

Q
(NP ,ND)
k

, f (y
k

)
⌘

+ �
K

kfk2HKa((�1,1)NP ) + �M
(4⇡t̃)�NP

t̃2N2
S

SYNS
(f) · (D �W )SYNS

(f)
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with the functional J
Q

(NP ,ND)
k ,�K ,�M

defined in (5.1) is done over the infinite dimensional Hilbert

space H
Ka

�

(�1, 1)NP
�

, the solution resides in a finite dimensional space. To be precise, [10, Thm.
2] yields that

Q̃(NS ;�K ,�M;✏ND ;NP ) 2 VYNS
:= span

�

K(·,y
j

) : y

j

2 Y
NS

 

⇢ H
Ka

�

(�1, 1)NP
�

. (5.3)

Numerically, this has the advantage that the computation reduces to a finite dimensional optimiza-
tion problem. In the following, we will restrict ourselves to a specific loss function, namely Vapnik’s
✏ insensitive loss function (see [30])

V
(✏)
Va (x, z) :=

(

|x� z|� ✏ if |x� z| � ✏,

0 otherwise.
(5.4)

Note that ✏ > 0 plays the rôle of an accuracy level, i.e., the parameter ✏ limits the numerical

accuracy for the solution of the equation (1.3) which produces the sampling values Q(NP ,ND)
k

.
Basically following [31, 25], we derive from the optimization problem (5.2) two important esti-

mates for the solution Q̃ := Q̃(NS ;�K ,�M;✏ND ;NP ) (c.f. (5.2)). First, recall that the data is corrupted

by additive errors, i.e., Q(NP ,ND)
k

⇡ Q
(NP )
k

:= q(NP )(u(NP )(y
k

, ·)). Then
�

�

�

Q
(NP ,ND)
k

� Q̃(y
k

)
�

�

�

 V ✏

Va(Q
(NP ,ND)
k

, Q̃(y
k

)) + ✏  J
Q

(NP ,ND)
k ,�K ,�M

(Q̃) + ✏

 J
Q

(NP ,ND)
k ,�K ,�M

(Q(NP )) + ✏

=
NS
X

k=1

V
(✏)
Va

⇣

Q
(NP ,ND)
k

, Q(NP ) (y
k

)
⌘

+ �
K

�

�

�

Q(NP )
�

�

�

2

HKa ((�1,1)NP )
+ �M

�

�

�

Q(NP )
�

�

�

2

M
+ ✏.

Here, we have again that the sum can be made small by increasing the spatial accuracy in the
numerical solver. Following [25], we can further estimate the consistency error. We get for the
point wise error at the sampling nodes the bound

�

�

�

Q(NP ) (·,y
k

)� Q̃(y
k

)
�

�

�


�

�

�

Q(NP ,ND) (·,y
k

)� Q̃(y
k

)
�

�

�

+
�

�

�

Q(NP ) (·,y
k

)�Q(NP ,ND)(y
k

)
�

�

�

 2✏+ V
(✏)
Va

⇣

Q(NP ,ND)(·,y
k

), Q(NP ) (y
k

)
⌘

+ V
(✏)
Va

⇣

Q(NP ,ND)(·,y
k

), Q̃ (y
k

)
⌘

 2✏+ V
(✏)
Va

⇣

Q(NP ,ND)(·,y
k

), Q(NP ) (y
k

)
⌘

+
NS
X

k=1

V
(✏)
Va

⇣

Q
(NP ,ND)
k

, Q(NP ) (y
k

)
⌘

+ �
K

�

�

�

Q(NP )
�

�

�

2

HKa ((�1,1)NP )
+ �M

�

�

�

Q(NP )
�

�

�

2

M
. (5.5)

Furthermore, we directly obtain

�
K

�

�

�

Q̃
NS ;�K ,�M;✏ND ;NP

�

�

�

2

HKa ((�1,1)NP )
 J

Q

(NP ,ND)
k ,�K ,�M

(Q̃)  J
Q

(NP ,ND)
k ,�K ,�M

(Q(NP ))

=
NS
X

k=1

V
(✏)
Va

⇣

Q
(NP ,ND)
k

, Q(NP ) (y
k

)
⌘

+ �
K

�

�

�

Q(NP )
�

�

�

2

HKa ((�1,1)NP )
+ �M

�

�

�

Q(NP )
�

�

�

2

M
,
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from which we infer
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M
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We collect these results in the following lemma using the notation from (5.2).
Lemma 5.1. Denote by Q̃ := argmin

f2H
Ka((�1,1)NP )

J
Q
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k ,�K ,�M
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Proof. The central observation is that Q(NP ) 2 H
Ka((�1,1)NP ) due to Lemma 3.3.

Note that both terms get simpler for large ND, i.e., if the discretization error is small.
Corollary 5.2. Under the assumptions of Lemma 5.1 and if ND � ND(✏) is large enough to

guarantee
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We are now in the position to derive an error estimate by applying (2.9) to the error Q̃�Q(NP ).
Theorem 5.3. There exist h0(RNP ) > 0 and a > 0 such that for all point sets Y

NS ⇢ R
NP

with hYNS
,RNP

< h0(RNP ) and all u 2 H
Ka((�1, 1)NP ) with w

(a)
⌫

= c

⌫

⌫!2 and c satisfying the

admissibility condition (3.12), we have for Q̃ := argmin
f2HKa ((�1,1)NP ) J

Q
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(f) the

error estimate
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where c > 0 is a constant.
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Proof. We can use the bound (5.5), i.e.
�
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Furthermore, we have the bound (5.6) which results here in
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From the last estimate, we directly infer
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Inserting these bounds into (5.7) concludes the argument.
For large ND � ND(✏), i.e., for small discretization errors, the error bounds simplify dramati-

cally.

Corollary 5.4. If ND � ND(✏) is large enough to guarantee

�

�

�

Q
(NP ,ND)
k

�Q(NP ) (y
k

)
�

�

�

 ✏

for 1  k  N
S

and under the assumptions of Theorem 5.3 we get for the choice
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Proof. From the estimate
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and from the choice for the regularization parameters �
K

⇠ �M, we get �M
�K

�

�Q(NP )
�

�

2

M ⇠ 1. This
concludes the proof.

This result directly allows us to couple the numerical error ✏ and the number of sampling points
N

S

in order to achieve a prescribed accuracy.

6. Concluding remarks and future directions. We presented a link between reproducing
kernel Hilbert spaces and the regularity theory of parametric elliptic partial di↵erential equations.
In general, one needs to consider non-standard power series kernels. These kernels contain by con-
struction the dimension-decay properties of the problem under consideration. Such kernels and
their corresponding Hilbert spaces open the door to any kernel based method from the rich field of
machine learning. Here, regularized approaches are important because in a non-intrusive method
the data we have at hand are necessarily corrupted by a (numerical) error. This error stems from the
discretization procedure of the partial di↵erential equation. Usually these errors are well-known and
controllable by the user. Hence, the question of an optimal cost-benefit strategy arises naturally.
For this purpose sampling inequalities are well-suited tools because they allow for deterministic a
priori error estimates which contain the numerical error in an explicit way. Hence an a priori cou-
pling between the evaluation error which contains the discretized solution of a partial di↵erential
equation and the number of parameters for which we evaluate the quantity of interest is possible
in such a situation. The drawback of the sampling inequalities is the fact that they measure the
convergence in terms of the isotropic fill-distance. This is however only a realistic discretization
parameter if one considers the situation of a few almost equally important coordinates in the pa-
rameter space and a rapid decay of the importance of the later coordinates. This assumption is
valid for problems with a short correlation length as they often appear in the literature, but this is
not true in general applications. Our approach needs then to be further modified and adopted for
such situations.
Finally, we also discussed intrinsic low-dimensional manifold-like structures. This is, in our opinion,
an important topic because all numerically feasible methods in high dimensions need an intrinsic
low-dimensional object to overcome the curse of dimensionality in the first place. Any information
on the geometric nature of the underlying structure will enable us to develop individually tai-
lored algorithms. Here, we expect the recent developments for data analysis in a non-Riemannian
manifold setting to have great impact.
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Appendix. We want to estimate the quantity |⌫|! for ⌫ 2 NNP in terms of products. We
make use of Euler’s integral representation of the factorial and Hoelder’s inequality with � 2 NNP

satisfying
P

NP

j=1
1
�j

= 1:
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Making the special isotropic choice �
j

= N
P

leads to |⌫|! 
Q

NP

j=1 ((NP

⌫

j

)!)
1

NP . For a single factor,
we use Stirling’s approximation formula (where we use the asymptotic expressions here in order to
avoid more lengthy formulas) to get
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Finally, we obtain
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where we used the fact that N
P

� 1 to get rid of the polynomial term. Hence, we can modify the
b in (3.6) to get a product structure decay estimate. Precisely, we have
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defined by b̃
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and thus, with (3.7), we obtain
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inf
x2D

Z
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a (y,x) dy

!�1

k�
k

k
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1(D) . (6.1)

Altogether, we have seen that we can slightly change the sequence b
k

to b̃
k

to get a product structure
decay bound. Note here that we only work in the finite dimensional case (N

P

< 1). This allows
us to have dimension dependent factors in the estimates which are hidden in the ⇠ notation and in
the NP

e

factor. In order to move to the infinite dimensional case, one has additionally to assume an
appropriate dimension dependent decay of the sequence b

k

. A typical a priori way to ensure this
is a �-admissibility condition as (3.3), see [13, Lemma 2.4]. Moreover, an anisotropic dimension
dependent way to choose �

k

and (6.1) open the way for various a posteriori techniques to also
obtain estimates in the limit N

P

! 1 with still sub-exponential convergence rates and accordingly
modified constants.
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