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CONVERGENCE OF NONSMOOTH DESCENT METHODS VIA

KURDYKA-LOJASIEWICZ INEQUALITY ON RIEMANNIAN

MANIFOLDS

S. HOSSEINI*

Abstract. We develop a subgradient-oriented descent method in nonsmooth

optimization on Riemannian manifolds and prove convergence of the method in

the sense of subsequences for nonsmooth functions whose standard models are
strict. Moreover, we present a nonsmooth version of the Kurdyka-Lojasiewicz

inequality and show that a locally Lipschitz C-function defined on an ana-

lytic manifold satisfies this inequality. Finally, we prove that if the objective
function satisfies the Kurdyka-Lojasiewicz inequality and its standard model

is strict, then the sequence of iterates of the subgradient-oriented descent al-
gorithm converges to a singular critical point.

1. introduction

We consider the optimization problem

(1.1) min
x∈M

f(x),

where M is a complete Riemannian manifold of dimension n and f : M → R is
locally Lipschitz on M . In this paper, we develop subgradient-oriented descent
methods for solving (1.1). Much attention has been paid over centuries to un-
derstanding and solving the problem of minimization of functions. Compared to
linear programming and nonlinear unconstrained optimization problems, nonlinear
constrained optimization problems are much more difficult. Since the procedure of
finding an optimizer is a search based on the local information of the constraints
and the objective function, it is very important to develop techniques using geo-
metric properties of the constraints and the objective function. In fact, differen-
tial geometry provides a powerful tool to characterize and analyze these geometric
properties. Thus, there is clearly a link between the techniques of optimization on
manifolds and standard constrained optimization approaches. Furthermore, there
are manifolds that are not defined as constrained sets in Rn; an important example
is a Grassmann manifold. Hence, to solve optimization problems on these spaces,
intrinsic methods are used.

Unconstrained smooth optimization algorithms on linear spaces can be classified
into two main categories: line-search descent methods and trust-region methods.
The classical convergence results established for these two classes of methods show
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2 S. HOSSEINI*

that accumulation points of the sequence of iterates are critical points of the objec-
tive function. But the convergence of the whole sequence to a single limit-point is
not guaranteed. Though if it is known that a point x∗ is an accumulation point of
the sequence of iterates, then in order to have convergence of the whole sequence
to x∗, it is sufficient to require that the so-called Kurdyka-Lojasiewicz inequality
holds in a neighborhood of x∗; see [2].

In nonsmooth optimization problems on linear spaces, several numerical algo-
rithms have been so far proposed and their convergence results have been studied.
In particular, it has been proved in [18] that convergence of a class of nonsmooth al-
gorithms for locally Lipschitz objective functions, even in the case of subsequences,
only happens if the objective function has a strict standard model. To prove con-
vergence of the whole sequence to a single critical point, nonsmooth generalizations
of Kurdyka-Lojasiewicz were needed to be exploited; see [5, 6].

There are a number of problems that can be expressed as a minimization of a
function over a smooth Riemannian manifold. Applications range from linear alge-
bra to the analysis of shape spaces; see [1] and references therein. Therefore, there
have been some attempts to adapt standard optimization methods to problems on
manifolds. Line-search and trust region techniques were proposed and analyzed on
manifolds by several authors; see, e.g., [1, 19, 20, 21]. For instance; in [19] line-
search optimization methods on Riemannian manifolds are introduced. Moreover,
the requirements on the search direction, focusing on the key property of the an-
gle between the search direction and the negative of the Riemannian gradient are
discussed. Similar to linear cases for proving convergence of the whole sequence of
iterations to a single critical point, an extension of Kurdyka-Lojasiewicz inequality
is required. Lageman [15] extended the Kurdyka-Lojasiewicz inequality for analytic
manifolds and differentiable C-functions in an analytic-geometric category (satis-
fying a certain descent condition, namely, angle and Wolfe-Powell conditions) and
established an abstract result of convergence of the descent method, see [15, Theo-
rem 2.1.22]. It is also worth pointing out [4] which presents an abstract convergence
analysis of inexact descent methods in Riemannian context for functions satisfying
Kurdyka-Lojasiewicz inequality. In particular, without any restrictive assumption
about the sign of the sectional curvature of the manifold, it obtains full convergence
of a bounded sequence generated by the proximal point method, in the case that
the objective function is nonsmooth and nonconvex, and the subproblems are deter-
mined by a quasi distance which does not necessarily coincide with the Riemannian
distance.

Although, the theory and algorithms for optimization of smooth functions on a
Riemannian manifold is a well established topic, the case of nonsmooth function is
not so developed, because results are not so simple. Papers [8, 9, 11, 12] are among
the first papers on numerical algorithms for minimization of nonsmooth functions
on Riemannian manifolds. However, the convergence results established in those
papers show that accumulation points of the sequence of iterates are critical points
of the objective function. But the convergence of the whole sequence to a single
limit-point is not guaranteed.

Our main contributions in this paper are twofold. First, we innovate a non-
smooth descent optimization algorithm for locally Lipschitz functions on Riemann-
ian manifolds. Second, we fill the gap among the convergence results obtained in
previous nonsmooth optimization algorithms on Riemannian manifolds and present
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some requirements to prove the convergence of a nonsmooth descent method to a
single limit-point. To this goal, we extend the Kurdyka-Lojasiewicz inequality for
nonsmooth functions on Riemannian manifolds and prove that a locally Lipschitz C-
function defined on an analytic manifold satisfies this inequality. Then, we consider
a nonsmooth generalization of the Taylor expansion to define a first order model for
a locally Lipschitz function defined on a Riemannian manifold. It is worthwhile to
mention that the generalized directional derivative defines a first order model which
is called a standard model. Moreover, we present a definition of a strict first order
model for a locally Lipschitz function defined on a Riemannian manifold. Finally,
we prove convergence of our proposed descent method to a single limit-point for
a locally Lipschitz objective function defined on a Riemannian manifold satisfying
the Kurdyka-Lojasiewicz inequality with a strict standard model.

2. Preliminaries

In this paper, we use the standard notations and known results of Riemannian
manifolds, see, e.g. [16]. Throughout this paper, M is an n-dimensional complete
manifold endowed with a Riemannian metric 〈., .〉 on the tangent space TxM . As
usual we denote by B(x, δ) the open ball centered at x with radius δ, by intN(clN)
the interior (closure) of the set N .

Recall that the set S in a Riemannian manifold M is called convex if every two
points p1, p2 ∈ S can be joined by a unique geodesic whose image belongs to S.
For the point x ∈ M, expx : Ux → M will stand for the exponential function at x,
where Ux is an open subset of TxM .

We will also use the parallel transport of vectors along geodesics. Recall that,
for a given curve γ : I →M, number t0 ∈ I, and a vector V0 ∈ Tγ(t0)M, there exists
a unique parallel vector field V (t) along γ(t) such that V (t0) = V0. Moreover, the
map defined by V0 7→ V (t1) is a linear isometry between the tangent spaces Tγ(t0)M
and Tγ(t1)M, for each t1 ∈ I. In the case when γ is a minimizing geodesic and
γ(t0) = x, γ(t1) = y, we will denote this map by Lxy, and we will call it the parallel
transport from TxM to TyM along the curve γ. Note that, Lxy is well defined when
the minimizing geodesic which connects x to y, is unique. For example, the parallel
transport Lxy is well defined when x and y are contained in a convex neighborhood.
In what follows, Lxy will be used wherever it is well defined. We use of a class of
mappings called retractions:

Definition 2.1 (Retraction). A retraction on a manifold M is a smooth map
R : TM → M with the following properties. Let Rx denote the restriction of R to
TxM .

• Rx(0x) = x, where 0x denotes the zero element of TxM .
• With the canonical identification T0xTxM ' TxM , DRx(0x) = idTxM ,

where idTxM denotes the identity map on TxM .

By the inverse function Theorem, we have that Rx is a local diffeomorphism. For
example, the exponential function defined by exp : TM →M , v ∈ TxM → expx v,
expx(v) = γ(1), where γ is a geodesic starting at x with γ′(0) = v, is a retraction;
see [1].

To prove our results, the retractions in this paper must satisfy the following
condition: for all x ∈M and g ∈ TxM , there exist m1 > 0 and m2 > 0 such that

m1‖g‖ ≤ dist(x,Rx(g)) ≤ m2‖g‖,
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where dist is the Riemannian distance on M .
In the present paper, we are concerned with the minimization of locally Lipschitz

functions which we now define.

Definition 2.2 (Lipschitz condition). Recall that a real valued function f defined
on a Riemannian manifold M is said to satisfy a Lipschitz condition of constant k
on a given subset S of M if | f(x)−f(y) |≤ k dist(x, y) for every x, y ∈ S, where dist
is the Riemannian distance on M . A function f is said to be Lipschitz near x ∈M
if it satisfies the Lipschitz condition of some constant on an open neighborhood of
x. A function f is said to be locally Lipschitz on M if f is Lipschitz near x, for
every x ∈M .

Let us continue with the definition of the Clarke generalized directional derivative
for locally Lipschitz functions on Riemannian manifolds; see [10, 13].

Definition 2.3 (Clarke generalized directional derivative). Suppose f : M → R is a
locally Lipschitz function on a Riemannian manifold M . Let φx : Ux → TxM be an
exponential chart at x. Given another point y ∈ Ux, consider σy,v(t) := φ−1

y (tw), a
geodesic passing through y with derivative w, where (φy, y) is an exponential chart
around y and D(φx ◦ φ−1

y )(0y)(w) = v. Then, the Clarke generalized directional
derivative of f at x ∈ M in the direction v ∈ TxM , denoted by f◦(x; v), is defined
as

f◦(x; v) = lim sup
y→x, t↓0

f(σy,v(t))− f(y)

t
.

Using the previous definition of a Riemannian Clarke generalized directional
derivative we can also generalize the notion of the subdifferential to a Riemannian
context.

Definition 2.4 (Subdifferential). We define the subdifferential of f at x, denoted
by ∂f(x), as the subset of TxM with support function given by f◦(x; .), i.e., for
every v ∈ TxM ,

f◦(x; v) = sup{〈ξ, v〉 : ξ ∈ ∂f(x)}.

Every element of ∂f(x) is called a subgradient of f at x. If x is a solution of the
problem (1.1), then 0 ∈ ∂f(x). Moreover, if 0 ∈ ∂f(x), then x is called a critical
point for f . We say p is a descent direction at x, if there exists α > 0 such that for
every t ∈ (0, α), we have

f(Rx(tp))− f(x) < 0.

It is obvious that if f◦(x; p) < 0, then p is a descent direction at x.
We know that the search direction for a smooth optimization problem often has

the form p = −P grad f(x), where grad f(x) denotes the Riemannian gradient of f
at x and P is a symmetric non-singular linear map. Therefore, it is not far from
expectation to use elements of the subdifferential of f at x in Definition 2.5 and
produce a subgradient-oriented descent sequence in nonsmooth problems.

Definition 2.5 (Subgradient-oriented descent sequence). A sequence {pk} of nor-
malized descent directions is called subgradient-oriented if there exist a sequence of
subgradients {gk} and a sequence of positive definite linear maps {Pk : Txk

M →
Txk

M} satisfying

λ ≤ λmin(Pk) ≤ λmax(Pk) ≤ Λ for some 0 < λ < Λ <∞ and all k ∈ N,
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where λmin(Pk) and λmax(Pk) denote respectively the smallest and largest eigen-

values of Pk, such that pk =
−Pkgk
‖Pkgk‖

.

3. Nonsmooth Kurdyka-Lojasiewicz inequality on Riemannian
manifolds

In this section, we present a nonsmooth version of the Kurdyka-Lojasiewicz
inequality. Then, we prove that a locally Lipschitz C-function defined on an analytic
manifold satisfies the Kurdyka-Lojasiewicz inequality at every point of its domain.

Definition 3.1 (The Kurdyka-Lojasiewicz inequality). A locally Lipschitz function
f : M → R satisfies the Kurdyka-Lojasiewicz inequality at x ∈ M iff there exist
η ∈ (0,∞), a neighborhood U of x, and a continuous concave function κ : [0, η] →
[0,∞) such that

• κ(0) = 0,
• κ is of class C1 on (0, η),
• κ′ > 0 on (0, η),
• For every y ∈ U with f(x) < f(y) < f(x) + η, we have

κ′(f(y)− f(x)) dist(0, ∂f(y)) ≥ 1,

where dist(0, ∂f(y)) = inf{‖v‖ : v ∈ ∂f(y)}.

The following lemma states that a locally Lipschitz function f defined on a Rie-
mannian manifold M satisfies the Kurdyka-Lojasiewicz inequality at any noncritical
point x.

Lemma 3.2. Let f : M → R be a locally Lipschitz function defined on a Rie-
mannian manifold M and 0 /∈ ∂f(x). Then, f satisfies the Kurdyka-Lojasiewicz
inequality at x.

Proof. First we claim that there exist a neighborhood U(x) and a scalar δ > 0 such
that for every y ∈ U(x), dist(0, ∂f(y)) > δ. We prove the claim by contradiction,
assume that there exist sequences yi ∈ B(x, 1

i ) ⊂ clB(x, 1) and vi ∈ ∂f(yi) such

that ‖vi‖ ≤
1

i
. Since f is Lipschitz on clB(x, 1), we conclude from Theorem 2.9 in

[10] that Lyix(vi) is a bounded sequence in TxM and has a convergent subsequence
to zero. Moreover, {yi} has a subsequence converging to x, hence Theorem 2.9 in

[10] implies that 0 ∈ ∂f(x) as a contradiction. We consider κ(t) :=
t

δ
, and η :=

δ

2
.

It is obvious that for every y ∈ U(x),

κ′(f(y)− f(x)) dist(0, ∂f(y)) =
dist(0, ∂f(y))

δ
> 1,

which completes the proof. �

Now we aim to present a class of locally Lipschitz functions satisfying the
Kurdyka-Lojasiewicz inequality on their domains. First we need to recall some
definitions referring to o-minimal structures on (R,+, .) and analytic geometric
categories; see [6].

Definition 3.3 (o-minimal structure). Let O := {On}n∈N be a sequence such that
every On is a collection of subsets of Rn. O is said to be an o-minimal structure
on the real field (R,+, .) if for every n ∈ N the following conditions are satisfied:
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• On is a Boolean algebra.
• If A ∈ On, then A× R ∈ On+1 and R×A ∈ On+1.
• If A ∈ On+1, then πn(A) ∈ On, where πn is the projection on the first n

coordinates.
• On contains the family of algebraic subsets of Rn.
• O1 consists of all finite unions of points and open intervals.

We say the elements of O are definable in O. Moreover, a function f : Rn → R
is called definable in O if its graph belongs to On+1.

Definition 3.4 (An analytic-geometric category). An analytic-geometric category
C assigns to each real analytic manifold M a collection of sets C(M) such that for
all real analytic manifolds M and N the following conditions are satisfied:

• C(M) is a Boolean algebra of subsets of M , with M ∈ C(M).
• If A ∈ C(M), then A× R ∈ C(M × R).
• If f : M → N is a proper analytic map and A ∈ C(M), then f(A) ∈ C(N).
• If A ⊂M and {Ui : i ∈ Λ} is an open covering of M , then A ∈ C(M) if

and only if A ∩ Ui ∈ C(Ui), for all i ∈ Λ.
• For every bounded set A ∈ C(R), the topological boundary ∂A consists of a

finite number of points.

The elements of C(M) are called C-sets. If the graph of a continuous function
f : A→ B with A ∈ C(M) and B ∈ C(N) is contained in C(M×N), then f is called
a C-function. The following theorem proves that a locally Lipschitz C-function
defined on an analytic manifold satisfies the Kurdyka-Lojasiewicz inequality at
every point of its domain.

Theorem 3.5. Let f : M → R be a locally Lipschitz C-function defined on an ana-
lytic Riemannian manifold M . Then, f satisfies the Kurdyka-Lojasiewicz inequality
at every x̄ ∈M .

Proof. Using Lemma 3.2, it is enough to prove that f satisfies the Kurdyka-Lojasiewicz
inequality at every critical point x̄. Assume that (Φ, V ) is a local analytic chart of
M around x̄. We can suppose that V is bounded, therefore by the Lipschitzness of
f we conclude that f(V ) is also bounded. From [15, Proposition 1.1.5], we deduce
that f ◦Φ−1 is definable. Moreover, using Theorem 11 of [6] and Theorem 4.1 of [3],
we result that the Kurdyka-Lojasiewicz inequality for f ◦ Φ−1 holds at ȳ := Φ(x̄).
Therefore, there exist η ∈ (0,∞) and a concave function κ : [0, η] → [0,∞) such
that

• κ(0) = 0,
• κ is of class C1 on (0, η),
• κ′ > 0 on (0, η),
• For every y ∈ Φ(V ) = U with f ◦Φ−1(ȳ) < f ◦Φ−1(y) < f ◦Φ−1(ȳ) + η we

have

κ′(f ◦ Φ−1(y)− f ◦ Φ−1(ȳ)) dist(0, ∂(f ◦ Φ−1)(y)) ≥ 1.

Since Φ is analytic on V , we have DΦ is continuous on V and therefore for ev-
ery compact subset K in V , there exists CK such that CK := supy∈K ‖DΦ(y)‖,
where ‖.‖ denotes the operator norm. Now we prove that f satisfies the Kurdyka-
Lojasiewicz inequality at x̄. We assume that V ′ is an open set containing x̄ in V
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such that K := clV ′ ⊂ intV is compact, then we define κ̃ := CKκ. It is clear that
for every x ∈ V ′ with f(x̄) < f(x) < f(x̄) + η, we have

κ̃′(f(x)− f(x̄)) dist(0, ∂f(x)) ≥ 1.

�

4. Subgradient-oriented descent methods

In this section, our aim is to present a subgradient-oriented descent optimization
algorithm on a Riemannian manifold and to study the convergence analysis of the
proposed algorithm. Our approach is based on the concept of a first order model
function of the objective function f in a neighborhood of the current iterate, which
can be considered as a nonsmooth generalization of the Taylor expansion. First, we
present the notion of a first order model for a locally Lipschitz function defined on
a Riemannian manifold. The generalized directional derivative defines a first order
model which is called a standard model. Moreover, we present the definition of a
strict first order model for a locally Lipschitz function defined on a Riemannian
manifold. Using an approximation of the standard first order model, we develop
a subgradient-oriented descent optimization algorithm on a Riemannian manifold.
Finally, we prove convergence of our proposed descent algorithm to a single limit-
point for a locally Lipschitz objective function defined on a Riemannian manifold
satisfying the Kurdyka-Lojasiewicz inequality with a strict standard model.

Definition 4.1 (First order model function). Let f : M → R be a locally Lipschitz
function on a Riemannian manifold M . A function Φ : TM → R is called a first
order model of f if the following conditions are satisfied:

• Φ|TxM for every x ∈M is convex.
• Φ(0x) = f(x) and ∂Φ(0x) ⊂ ∂f(x) for every x ∈M .
• Φ is upper semicontinuous.
• For every x and ε > 0, there exists δ > 0 such that B(x, δ) is convex

and f(y) ≤ Φ(exp−1
x (y)) + εdist(x, y) whenever dist(x, y) ≤ δ, where dist

denotes the Riemannian distance on M .

Definition 4.2 (Standard first order model). Every locally Lipschitz function f
has a first order local model, called standard model, defined as follows:

Φ(vx) := f(x) + f◦(x; vx).

Definition 4.3 (Strict first order model). A first oder model Φ : TM → R is called
strict at x̄ ∈M if the following condition is satisfied:

• For every ε > 0, there exists δ > 0 such that B(x̄, δ) is convex and f(y) ≤
Φ(exp−1

x (y)) + εdist(x, y) whenever x, y ∈ B(x̄, δ).

For a convex function f : M → R, we can define a strict model function Φ(vx) :=
f◦expx(vx). For a concave function defined on a Riemannian manifold, the standard
model is strict.

Remark 4.4. A locally Lipschitz function f : M → R is called prox-regular at x̄
with respect to v̄ ∈ ∂f(x̄) if there exist ε > 0 and r > 0 such that B(x̄, ε) is convex
and

f(y) > f(x) + 〈v, exp−1
x (y)〉 − r

2
dist(y, x)2,
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whenever dist(y, x̄) < ε and dist(x, x̄) < ε with y 6= x and |f(x)− f(x̄)| < ε, while
‖Lxx̄v − v̄‖ < ε with v ∈ ∂f(x); see [13]. Assume that f is a locally Lipschitz
function and −f is prox-regular at x̄. Then the standard model of f is strict on a
neighborhood of x̄.

As our focus in this paper is on subgradient-oriented methods, we use the gener-
alized directional derivative to define our first order model. What is important in
our approach is that we do not use the generalized directional derivative directly
to generate the sequence of directions, because this may be too costly. Instead we
build a so-called working model which we define as follows.

Definition 4.5 (First order working model). A function Φx : TxM → R is called
a first order working model of f around x if

• Φx is convex,
• Φx(vx) ≤ f◦(x; vx) + f(x) for all vx ∈ TxM ,
• Φx(0x) = f(x) and ∂Φx(0x) ⊂ ∂f(x).

If G is a set containing a finite number of subgradients of f around x, then we
can define Φx(vx) := f(x) + maxg∈G〈g, vx〉.

4.1. Descent step finding algorithm. Our minimization algorithm contains an
inner loop called descent step finding algorithm, in which we find a descent direction
at the current iterate of the minimization algorithm by using first order working
models. Here, we will explain our approach in the descent step finding algorithm:

The idea is that after some iterations of this algorithm, the obtained descent
direction will improve the current x and define the new iterate x+. Indeed, at
counter k of Algorithm 1, we produce a descent direction d∗k by solving the following
tangent program with proximity control

(4.1) d∗k = argmin{Qxk(d) = Φxk(d) +
1

2tk
〈Pd, d〉 : d ∈ TxM},

where 1/tk > 0 is the proximity control parameter and the first order working
model Φxk : TxM → R is defined by

Φxk(d) = f(x) + max
g∈Gk
〈g, d〉

where Gk is a finite subset of ∂f(x). If d∗k = 0x, then 0x ∈ ∂Φxk(0x) ⊂ ∂f(x) and
therefore x is a critical point of f . If the solution d∗k 6= 0x gives sufficient decrease
in f , it defines by using the retraction the new iterate x+ = Rx(d∗k). If d∗k is not
satisfactory, we keep x and use the information transmitted by d∗k to improve the
first order working model. In order to decide whether d∗k is satisfactory or not, we
introduce a constant c1 ∈ (0, 1), and compute the quotient

ρk =
f(x)− f(Rx(d∗k))

f(x)− Φxk(d∗k)
,

which reflects the agreement between f and the first order working model. Indeed,
if the working model is close to the true f , we expect ρk to be close to one. We
say that agreement between f and the first order working model is acceptable if
ρk > c1. Note that in this case, d∗k defines a descent direction, because

f(x)− Φxk(d∗k) = Φxk(0x)− Φxk(d∗k) ≥ Qxk(0x)−Qxk(d∗k) > 0.

Therefore, f(x)− f(Rx(d∗k)) > 0.
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Algorithm 1 Descent step finding by backtracking; (x+, t+, ρ) = Descent(x, P, t)

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R
and a retraction R from TM to M .

2: Parameters: Scalars c1 ∈ (0, 1), c2 ∈ (c1, 1), 0 < θ < Θ < 1.
3: Input: Current iterate x, a positive definite matrix P ∈ Rn×n and t > 0.
4: Output: New iterate x+, step size t+ and ρ.
5: Initialize: k = 1, t1 = t, g0 ∈ ∂f(x) and G1 = {g0}.
6: find

(4.2) d∗k = argmin{Qxk(d) = Φxk(d) +
1

2tk
〈Pd, d〉 : d ∈ TxM}.

where Φxk : TxM → R is defined by Φxk(d) = f(x) + maxg∈Gk〈g, d〉.
7: Compute

ρk =
f(x)− f(Rx(d∗k))

f(x)− Φxk(d∗k)
.

8: if ρk ≥ c1 then x+ = Rx(d∗k), t+ = tk and ρ = ρk and stop.
9: end if

10: Pick gk ∈ ∂f(x) such that f◦(x; d∗k) = 〈gk, d∗k〉. Include gk into the new Gk+1.

Moreover, include g∗k =
−1

tk
Pd∗k into the new Gk+1.

11: Compute the test quotient

ρ̃k =
−f◦(x, d∗k)

f(x)− Φxk(d∗k)
.

12: if ρ̃k ≥ c2 then select tk+1 ∈ [θtk,Θtk], k = k + 1 and go to line 6.
13: else tk+1 = tk, k = k + 1 and go to line 6.
14: end if

Suppose that d∗k is not satisfactory. Then the first order working model was not
entirely useful, and we need to improve it. Since the quadratic term 〈Pd, d〉 in (4.1)
remains unchanged during the step finding algorithm, we have to improve the first
order working model, which is done through adding elements to the set Gk. As the
first order working model is an approximation of the standard first order model,
we need to make sure if the agreement between the first order working model and
Φ(d∗k) = f◦(x; d∗k) + f(x) is good. In order to decide, we introduce another control
parameter

ρ̃k =
f(x)− Φ(d∗k)

f(x)− Φxk(d∗k)
,

which reflects the agreement between the first order working model and the standard
first order model. We fix a constant c2 with 1 > c2 > c1, which plays a role similar
to c1. We say that the first order working model is far from the standard first order
model if ρ̃k < c2.

Suppose that ρ < c1 and ρ̃k ≥ c2, it means that the first order working model
is not close to f , however the agreement between the first order model and first
order working model is good. Adding new elements to Gk would make the first
order working model closer to the standard first order model, but would not suffice
to make the first order working model close to f . Therefore, we have to tighten
proximity control, which means decreasing tk.
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It is left to explain how the first order working model is built. We start with one
subgradient g0 and define

Φx1(d) = f(x) + max
g∈G1={g0}

〈g, d〉.

As along as the found direction is not satisfactory, two subgradients will be added
to improve the first order working model. At counter k of Algorithm 1, we pick
gk ∈ ∂f(x) such that

f◦(x; d∗k) = 〈gk, d∗k〉
and include gk into the new Gk+1. Moreover, as we have

0 ∈ ∂Φxk(d∗k) + t−1
k Pd∗k,

therefore g∗k := −t−1
k Pd∗k ∈ ∂Φxk(d∗k) ⊂ ∂f(x). We include

g∗k =
−1

tk
Pd∗k

into the new Gk+1.

Remark 4.6. Note that if G0 = ∂f(x), then ρ̃k is always equal to one and therefore
we always reduce the step size in case of non-satisfactory directions. Therefore,
d∗k = −tkP−1g, where g ∈ ∂f(x) is the projection of 0x onto ∂f(x) with respect to

‖.‖P−1 = 〈., P−1.〉1/2; see[11, 12].

The following theorem proves that Algorithm 1 terminates after a finite number
of iterations. It can be proved along the same lines as Theorem 3.1 of [17].

Theorem 4.7. Let f be a locally Lipschitz function on a Riemannian manifold
M and 0 /∈ ∂f(x). Then after a finite number of iterations k the descent step
finding algorithm finds a subgradient g∗k ∈ ∂f(x) and a step size tk > 0 such that
x+ = Rx(−tkP−1g∗k) satisfies the descent condition ρk ≥ c1.

4.2. Minimization algorithm. Now, we present the main algorithm and prove
the convergence result. This algorithm contains all subgradient-oriented algorithms.
Moreover, it is beneficial in practical situations, where the full subdifferential is
inaccessible. In the minimization algorithm, we deal with updating the step size t∗j
and the matrix Pj . Recall that in Algorithm 1 we had a constant c1 ∈ (0, 1), and
computed the quotient

ρk =
f(x)− f(Rx(d∗k))

f(x)− Φxk(d∗k)
,

which reflects the agreement between f and the first order working model at every
point x. Indeed, if the working model is close to the true f around x, we expect
ρk to be close to one. We mentioned that agreement between f and the first order
working model around x is acceptable if ρk ≥ c1. In the following algorithm, we
introduce another constant Γ ∈ (c1, 1) and we say that agreement between f and
the first order working model around x is good if the quotient is bigger than Γ.

As in Algorithm 1 the step size is never increased, we increase the step size if
the agreement between f and the first order working model around the current
iteration is good. If the agreement is only acceptable, then we memorize the last
step size. As we wish to avoid too small step sizes in our convergence analysis,
we put a lower bound T on the step sizes. This part is not obligatory in practice
though.
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The sequence of matrices in the minimization algorithm can be constant or
even can be considered equal to identity. But we can also use the BFGS strategy
presented in [12] to update this sequence.

Algorithm 2 Minimization algorithm

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R
and a retraction R from TM to M .

2: Parameters: 0 < θ < Θ < 1, 0 < c1 < Γ < 1, 0 < λ < Λ <∞, T ≥ 0.
3: Initialize: j = 1, t∗1 > 0, x1 ∈M and P1 is a positive definite matrix such that
λ‖.‖ ≤ ‖.‖1 ≤ Λ‖.‖, with ‖x‖21 := 〈x, Px〉.

4: for j = 1, 2, . . . do
5: if 0 ∈ ∂f(xj) then Stop
6: end if
7: (xj+1, t

∗
j+1, ρ) = Descent(xj , Pj , t

∗
j ) and choose a new Pj+1 such that λ‖.‖ ≤

‖.‖j+1 ≤ Λ‖.‖.
8: if ρ ≥ Γ then t∗j+1 = max{T, θ−1t∗j+1}.
9: end if

10: end for

The following theorem proves the convergence in the sense of subsequence of
Algorithm 2. Moreover, convergence to a single critical point can also be proved if
the Kurdyka-Lojasiewicz inequality is satisfied.

Theorem 4.8. Let f : M → R be locally Lipschitz on a Riemannian manifold M
and L = {x ∈ M : f(x) ≤ f(x1)} be bounded. Assume that xj is the sequence
generated by Algorithm 2.

• If the standard model of f is strict and T > 0, then every accumulation
point of xj is critical.
• If the standard model of f is strict and T = 0, then there exists at least one

accumulation point of xj which is critical.
• If the standard model is strict and f satisfies the Kurdyka-Lojasiewicz in-

equality, then xj converges to a single critical point. (In this case, T ≥ 0.)

Proof. Assuming 0 /∈ ∂f(xj), then by Theorem 4.7 we deduce that after a finite
number of iterations kj the descent step finding algorithm finds a subgradient g∗kj ∈
∂f(xj) and a step size tkj > 0 such that xj+1 = Rxj

(−tkjP−1
j g∗kj ) satisfies the

descent condition ρ ≥ c1. Set d∗kj = −tkjP−1
j g∗kj . Therefore,

(4.3) f(xj)− f(xj+1) ≥ c1
(
f(xj)− Φ

xj

kj
(d∗kj )

)
.

Since d∗kj = argmin{Φxj

kj
(d) +

1

2tkj
〈Pjd, d〉 : d ∈ Txj

M}, we have g∗kj =
−1

tkj
Pjd
∗
kj
∈

∂Φ
xj

kj
(d∗kj ), hence the subgradient inequality gives

〈g∗kj ,−d
∗
kj 〉 ≤ Φ

xj

kj
(0)− Φ

xj

kj
(d∗kj ) = f(xj)− Φ

xj

kj
(d∗kj ).

Consequently,

(4.4)
1

tkj
‖d∗kj‖

2
j ≤

1

c1

(
f(xj)− f(xj+1)

)
,
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where ‖d∗kj‖
2
j = 〈Pjd∗kj , d

∗
kj
〉. Now summing (4.4) over j = 1, ..., J − 1 on both sides

implies
J−1∑
j=1

1

tkj
‖d∗kj‖

2
j ≤

1

c1

(
f(x1)− f(xJ)

)
.

Since d∗kj is a descent direction, the sequence {f(xj)} is decreasing and {xj} ⊂ L

is bounded. Moreover, since f is locally Lipschitz on the compact set L, it can be
proved that it is Lipschitz of some constant K on L which implies that

J−1∑
j=1

1

tkj
‖d∗kj‖

2
j ≤

1

c1

(
f(x1)− f(xJ)

)
≤ K

c1
d(x1, xJ).

Therefore, the series
∑
j

1

tkj
‖d∗kj‖

2
j is summable and

1

tkj
‖d∗kj‖

2
j → 0. Since the

norms ‖ · ‖j are uniformly equivalent, we conclude that
1

tkj
‖d∗kj‖

2 → 0. Now we

shall have to deal with two cases;
i)An infinite subsequence {g∗kj}j∈N converging to zero. We claim that every

accumulation point of {xj}j∈N is critical. Let x∗ be an accumulation point of
{xj}j∈N , without loss of generality, we assume that xj → x∗, j ∈ N . Since
g∗kj ∈ ∂f(xj), by Theorem 2.9 in [10], 0 ∈ ∂f(x∗).

ii) Let {g∗kj}j∈J be an infinite subsequence of g∗kj with ‖g∗kj‖ ≥ η > 0 for all j ∈ J
and some positive number η. We first prove that under this assumption, {tkj}j∈J
converges to zero. To prove the claim, we assume on the contrary that there exists
τ > 0 such that tkj ≥ τ > 0. Moreover, we assume that x∗ is an accumulation point
of {xj}j∈J , then there exist subsequences {Lxjx∗(Pj)}j∈J ′ , {Lxjx∗(d

∗
kj

)}j∈J ′ and

{ 1

tkj
}j∈J ′ converging to P, δx,

1

t
, respectively. Consequently,

1

t
‖Pδx‖ ≥ η. But

we proved that
1

tkj
‖d∗kj‖

2 → 0, which means
1

t
‖δx‖2 = 0. Hence, either δx = 0 or

1

t
= 0, which is a contradiction. Therefore, we conclude that {tkj}j∈J converges

to zero.
Now we divide J into two classes;

J1 ⊂ {j ∈ N : t∗j > tkj}, J2 ⊂ {j ∈ N : t∗j = tkj}.

Let x̂ be an accumulation point of a subsequence in J1, we show that x̂ is a critical
point. Without loss of generality, we may assume that xj → x̂, for j ∈ J1. Suppose
that for j ∈ J1 the backtracking rule was applied for the last time at step kj − νj
with νj ≥ 1. Consequently,

ρkj−νj =
f(xj)− f(Rxj

(d∗kj−νj ))

f(xj)− Φ
xj

kj−νj (d∗kj−νj )
< c1,

and

ρ̃kj−νj =
f(xj)− Φ(d∗kj−νj )

f(xj)− Φ
xj

kj−νj (d∗kj−νj )
≥ c2.

Moreover, tkj = θkj−νj tkj−νj for uniformly bounded θkj−νj and g̃∗j = −θkj−νj t−1
kj
Pjd
∗
kj−νj ∈

∂Φ
xj

kj−νj (d∗kj−νj ). We prove that g̃∗j → 0 and therefore 0 ∈ ∂f(x̂). First, it is clear
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that that {g̃∗j : j ∈ J1} is bounded. Moreover, ‖d∗kj−νj‖ is convergent to zero. Now

if g̃∗j does not converge to zero, there exists θ > 0 such that ‖g̃∗j ‖ ≥ θ for all j ∈ J1.
Note that

〈g̃∗j ,−d∗kj−νj 〉 ≤ f(xj)− Φ
xj

kj−νj (d∗kj−νj ).

Therefore, the left hand side behaves asymptotically like c‖g̃∗j ‖‖d∗kj−νj‖ for some

c > 0. Hence, we have

cθ‖d∗kj−νj‖ ≤ f(xj)− Φ
xj

kj−νj (d∗kj−νj ).

Now using the fact that f has a strict standard model, there exists εj → 0 such
that

f(expxj
(d∗kj−νj ))− Φ(d∗kj−νj ) ≤ εj‖d∗kj−νj‖.

Hence, using the fact that any retraction is a first order approximation for the
exponential map on the manifold, we have that

ρ̃kj−νj = ρkj−νj +
f(Rxj

(d∗kj−νj ))− Φ(d∗kj−νj )

f(xj)− Φ
xj

kj−νj (d∗kj−νj )

≤ ρkj−νj +
f(expxj

(d∗kj−νj ))− Φ(d∗kj−νj )

f(xj)− Φ
xj

kj−νj (d∗kj−νj )
+
f(Rxj

(d∗kj−νj ))− f(expxj
(d∗kj−νj ))

f(xj)− Φ
xj

kj−νj (d∗kj−νj )

≤ ρkj−νj +
εj
cθ

+
K dist(Rxj

(d∗kj−νj ), expxj
(d∗kj−νj ))

cθ‖d∗kj−νj‖
,

which shows that lim supj→∞ ρ̃kj−νj ≤ lim supj→∞ ρkj−νj ≤ c1 < c2, contradicting
the fact that ρ̃kj−νj ≥ c2 for every j ∈ J1. This shows that g̃∗j converges to zero.

Now assume that x̂ is an accumulation point of a subsequence of {xj}J2
. There-

fore, t∗j = tkj . But this cannot happen. Since tkj is convergent to zero and t∗j > T .
To prove the second part of the theorem; we proved that if g∗kj has an infinite sub-

sequence {g∗kj}j∈N converging to zero, then every accumulation point of {xj}j∈N is

critical. If g∗kj has an infinite subsequence which is bounded below, then as before

we define J1 and J2, since tkj converges to zero in this case, hence there exists an
infinite subsequence of {xj}j∈J1 converging to some x̂. Using the same argument
as in the first part of the theorem, we can prove x̂ is critical.

To prove the third part of the theorem, assume that f satisfies the Kurdyka-
Lojasiewicz inequality. We prove that xj converges to a single critical point x∗. We
have shown that the sequence xj has at least one accumulation point x∗, which is
critical. Assume that L′ is the set of all accumulation points of xj , it is obvious
that L′ is closed. Since f(xj) is decreasing, f is constant on the set L′. Using the
Kurdyka-Lojasiewicz inequality for every x ∈ L′, we may find a neighborhood U(x)
of x and a continuous concave function κx : [0, ηx] → [0,∞) of class C1 on (0, ηx)
with κx(0) = 0, κ′x > 0 on (0, ηx), such that

κ′x(f(x′)− f(x)) dist(0, ∂f(x′)) ≥ 1, x′ ∈ U(x) with f(x) < f(x′) < f(x) +ηx.

By compactness of L′, we find finite points x1, ..., xr ∈ L′ such that U(x1), ..., U(xr)
cover L′. Then, we choose ε > 0 such that V := {x ∈ M : dist(x, L′) <
ε} ⊂

⋃r
i=1 U(xi). Set η = mini=1,...,r ηxi , κ

′(t) = maxi=1,...,r κ
′
xi

(t) and κ(t) =∫ t
0
κ′(τ)dτ . We claim that for every x ∈ L′ and x′ ∈ V with f(x) < f(x′) < f(x)+η,

we have

κ′(f(x′)− f(x)) dist(0, ∂f(x′)) ≥ 1.
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To prove the claim, we find xi such that x′ ∈ U(xi), then

κ′(f(x′)− f(x)) dist(0, ∂f(x′)) ≥ κ′xi
(f(x′)− f(xi)) dist(0, ∂f(x′)) ≥ 1,

which proves our claim. We assume without loss of generality that f is zero on L′.
We know that

1

tkj
‖d∗kj‖

2
j ≤

1

c1

(
f(xj)− f(xj+1)

)
.

By concavity of κ, we have

κ(f(xj))− κ(f(xj+1)) ≥ κ′(f(xj))(f(xj)− f(xj+1)) ≥ c1κ′(f(xj))
1

tkj
‖d∗kj‖

2
j ,

whenever 0 < f(xj) < η, 0 < f(xj+1) < η. By the Kurdyka-Lojasiewicz inequality,
we conclude that κ′(f(xj)) ≥ ‖g‖−1 for every Clarke subgradient g ∈ ∂f(xj).
Therefore, κ′(f(xj)) ≥ ‖g∗kj‖

−1, which implies that

κ(f(xj))− κ(f(xj+1)) ≥ c1
tkj
−1‖d∗kj‖

2
j

tkj
−1‖Pjd∗kj‖

≥ λ′‖d∗kj‖,

for some constant λ′ > 0. This proves the summability of ‖d∗kj‖, hence d∗kj → 0

and dist(Rxj
(d∗kj ), xj) → 0. Therefore, xj is a Cauchy sequence converging to x∗

and L′ = {x∗}. Since L′ has at least one critical point of f , we deduce that x∗ is
critical and the proof is complete.

�
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