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Abstract

In this paper we develop a multiscale method to solve problems in complicated porous microstructures
with Neumann boundary conditions. By using a coarse-grid quasi-interpolation operator to define a
fine detail space and local orthogonal decomposition, we construct multiscale corrections to coarse-
grid basis functions with microstructure. By truncating the corrector functions we are able to make a
computationally efficient scheme. Error results and analysis are presented. A key component of this
analysis is the investigation of the Poincaré and inverse inequality constants in perforated domains as
they may contain micro-structural information. Using first a theoretical method based on extensions of
functions and then constructive method originally developed for weighted Poincaré inequalities, we are
able to obtain estimates on Poincaré constants with respect to scale and separation length of the pores.
Finally, two numerical examples are presented to verify our estimates.

1 Introduction
Modeling and simulation of porous media has many wide ranging applications in engineering. For example,
to simulate heat or electric conductivity in complicated materials or composites a partial differential equa-
tion (PDE) in complicated microstructures must be solved. Direct numerical simulation of such problems
is difficult, and, in some scenarios is intractable. The main challenge being the many scale nature of the
problem and complex geometries involved. In these applications, where there are many scales and complex
heterogeneities, numerical homogenization procedures are employed to reduce complexity yet remain accu-
rate. In this work, we develop a multiscale method to simulate Neumann problems in domains with porous
microstructures.

The study of multiscale problems in porous or perforated domains has a long history. In the area of
homogenization of partial differential equations, there is a vast literature on the subject [8, 23, 28] and
references therein, to name just a few. In these problems, the fine-scale equations have microstructure, then
through an averaging process of homogenization an effective PDE is derived. In these methods, the strong
assumption of periodicity is usually made, and thus, only one microstructure dependent local problem is
solved to compute effective properties. The coarse-grid, or homogenized problem, does not have explicit mi-
crostructure. More computationally based procedures have also been investigated. Using an approach based
on the Heterogeneous Multiscale Method [2], an algorithm was developed in [15] by solving for an unknown
diffusion coefficient on the coarse-grid by resolving a local perforated domain problem. Then, computation
on the coarse-grid equation is based in an effective non-porous domain. Further work, [6], developed a per-
forated multiscale finite element method for Dirichlet problems utilizing Crouzeix-Raviart non-conforming
finite elements. Using the MsFEM framework [9], a weak Crouzeix-Raviart boundary condition is used to
construct the multiscale finite element basis that include the vanishing Dirchlet condition into the basis
functions. There are also mesoscopic schemes that relax the resolution condition of standard finite elements
insofar as they allow that mesh cells are cut by the domain boundary; see e.g. [4, 5, 10, 11, 19] among many
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others. However, for those schemes there are typically strong restrictions on the topology of the intersection
that rule out the case of perforation on the element level.

We will work in the multiscale framework using a local orthogonal decomposition (LOD) [22], which is
inspired by the variational multiscale method [18, 17, 20]. For a general introduction and discussion we
refer the reader to [26]. The LOD method uses a coarse-grid quasi-interpolation operator to decompose the
space into fine-scale components to build the fine detail space. From the fine detail space we are able to
build multiscale corrections to the coarse-grid functions and construct a multiscale space. These corrections
have global support, thus limiting their practical usage. However, these corrections have fast decay and can
therefore be localized. This procedure has been used effectively for elliptic problems with L∞ coefficients
[13, 16, 22], been extended to semi-linear elliptic equations [14], linear and nonlinear eigenvalue problems
[12, 21], and to the wave equation [1].

In this work, we extend this framework to the case when we have microstructures that generate the
multiscale features as opposed to oscillatory and highly varying coefficients. We first build a coarse-perforated
grid, then by using a quasi-interpolation operator based on local L2 projection build a fine-scale space. We
again follow the process in [13, 16, 22] of multiscale space construction, localization, and subsequent error
estimates. We show that we can obtain the same error estimates with respect to coarse-grid size and
truncation of local problems as in these works. However, in this setting we are particularly concerned
with the tracking of Poincaré constants in perforated domains as these may depend on the micro-structural
features, namely the size of particles and separation length. Using the methods developed in [25], originally
for the setting of high-contrast coefficients and weighted Poincaré inequalities, we are able to create a
constructive procedure to estimate these constants in domains with microstructure. This is carried out for
a few interesting examples. We show that in the case of a reticulated filamented structure it is possible that
the microstructural features can negatively impact this Poincaré constant in the case of very thin structures.
In addition, we show that in the case of isolated particles we obtain uniform (microstructure independent)
Poincaré constants.

The paper is organized as follows. We begin by the problem setting and the description of quasi-
interpolations in perforated domains. This quasi-interpolation will allow us to construct our multiscale
orthogonal splitting and subsequent computational localization algorithm. Then, we will derive error esti-
mates on both global supported and localized basis functions. This is done with the help of technical lemmas
in the Appendix and careful tracking of relevant constants. We then develop a constructive procedure to
estimate Poincaré constants in porous domains. Finally, we give two numerical examples to demonstrate the
rates of convergence with respect to mesh parameters, localization truncation, and microstructure lengths.
In addition, we discuss overall effectiveness of the algorithm and the choices of possible quasi-interpolation
operators.

2 Problem Set Up
We now begin with some notation and problem setting. Let Ω ⊂ Rd be a bounded Lipschitz domain
with polyhedral boundary for d ≥ 2. We denote the solid microstructure to be {Si}Ni=1, a set of Lipschitz
nonintersecting closed subsets of Ω. We denote the perforated domain, often called fluid or porous domain,
Ω̃ = Ω\S, where S = ∪Ni=1Si. We supposed that the solid microstructure or inclusions are so that Ω̃ remains
connected and Lipschitz. We let η be the characteristic size of the microstructure. Moreover, we let η also
be the minimal separation length. These two parameters may be considered separately, but for clarity we
choose them to be on the same order of magnitude. We suppose for simplicity that the perforations do not
intersect the global boundary, but may be η close to it. An example geometry can be seen in Figure 1.

We wish to find a solution u that satisfies

−∆u = g in Ω̃, (1a)
∂u

∂n
= 0 on ∂S, (1b)

u = 0 on ∂Ω. (1c)

2



Figure 1: Domain Ω with microstructure. The porous part of the domain is denoted Ω̃.

Where g ∈ L2(Ω̃), and n denotes the outer normal on ∂S.
We denote the space H1

D(Ω̃) := {v ∈ H1(Ω̃) | v = 0 on ∂Ω̃}. Multiplying by v ∈ H1
D(Ω̃) and integrating

(1), we wish to solve for u ∈ H1
D(Ω̃) such that∫

Ω̃

∇u∇vdz =

∫
Ω̃

gvdz, (2)

here dz is the standard real Lebesgue measure in Rd. The main difficulty in solving the above problem is the
mutliscale nature introduced from the microstructure. We may also add in an oscillatory coefficient inside
the perforated domain Ω̃, however, this case is well studied in [22] and we focus on the issues involved with
the multiscale geometries.

3 Quasi-Interpolation in Perforated Domains
In this section we develop the framework to work on perforated domains. We first define the classical nodal
basis restricted to Ω̃ the perforated domain. Then, we describe how to construct a quasi-interpolation that
is also projective, in contrast to the quasi-interpolation operator used in [22].

3.1 Classical Nodal Basis
Following much of the notation in [22], suppose that we have a coarse quasi-uniform discretization TH of
the unperforated domain Ω with mesh size H. We denote the interior nodes not on the boundary of the
coarse mesh as NH . Let the classical conforming P1 finite element space over TH be given by SH , and let
VH = SH ∩H1

0 (Ω). We denote the nodal basis functions λy, that is for an interior node y ∈ NH , we have

λx(x) = 1 and λy(x) = 0, y 6= x. (3)

This is a basis for VH . Let uH ∈ VH be the function satisfying∫
Ω

∇uH∇vdz =

∫
Ω

gvdz, for all v ∈ VH .

To move to the perforated domain it is useful to have some more notation. We denote the restriction
operator of a function on Ω to Ω̃ by R : H1

0 (Ω) → H1
0 (Ω̃). We denote the space of finite element functions
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(3) restricted to the perforated domain as

ṼH = {w| there exists u ∈ VH , w = Ru} = RṼH .

From here we may define a coarse-grid variational form of (2). Indeed, let ũH ∈ ṼH be the function satisfying∫
Ω̃

∇ũH∇vdz =

∫
Ω̃

gvdz, for all v ∈ ṼH . (4)

However, ũH will not be a good approximation to ũ unlessH is sufficiently small to resolve the microstructure.

3.2 Projective Quasi-Interpolation
In this section, we develop the theory for a quasi-interpolation operator that is also a projection. This
projective quasi-interpolation gives stability properties required for the localization theory without the use
of an auxiliary "closeness to projection" lemma used in the theory of Clément quasi-interpolation theory c.f.
Lemma 1 of [13]. This requires the construction of a function that satisfies certain interpolation properties
and derivative bounds. However, in the case of perforated domains such a construction can be quite tedious
and an alternate approach is utilized here.

We will construct a quasi-interpolation operator that is also projective and satisfies the requisite local
stability properties. For non-perforated domains, this is a modification of the operator of Clément [24]. We
denote the local patch supp(λx) = ωx for x ∈ NH and, subsequently, the perforated patch as ω̃x = ωx ∩ Ω̃.
First, we define the local patch L2 projection Px : L2(ω̃x)→ VH |ωx , as the operator such that for u ∈ H1

D(ω̃x)∫
ω̃x

(Pxu)vHdz =

∫
ω̃x

uvHdz for all vH ∈ VH |ωx (5)

From this we define the interpolation operator ĨH : H1
D(Ω̃)→ ṼH for u ∈ H1

D(Ω̃) as

ĨHu =
∑
y∈NH

(Pyu)(y)Rλy(x). (6)

Given a function φ ∈ H1
D(Ω̃) with support contained in a patch of triangles ω̃x, then, by the definition of

the quasi-interpolation (6), it is clear that supp(ĨH(φ)) 6⊂ ω̃x in general, as the boundary nodes on the patch
ω̃x will add a contribution smearing out the function. To deal with this issue we require some notation and
definitions. Using the definition and notation in [13], we define for any patch ωx the extension patch

ωx = ωx,0 = supp(λx) ∩ Ω, (7a)
ωx,k = int(∪{T ∈ TH |T ∩ ω̃k−1 6= ∅} ∩ Ω, (7b)

for k = 1, 2, 3, 4, . . . , and denote {ω̃x,k}k∈N to be the corresponding perforated domains. With this notation
we have supp(ĨH(φ)) ⊂ ω̃x,1 if supp(φ) ⊂ ω̃x,0 for the interpolator (6).

Remark Further with some slight more notation. Throughout this entire work, we will use the symbol
A . B to mean A ≤ CB, where C > 0 and is independent of microstructure parameters and coarse grid size
H.

It will be important to note that we have a Poincaré constant in the estimate below. Since our domain
can have complicated microstructure we must be careful when analyzing estimates that contain this constant.
We suppose that we have the following general Poincaré inequality for each patch ω̃x for x ∈ NH . Moreover,
we shall suppose that this constant serves as a global bound with respect to H and η. The analysis of such
a constant will be considered in Section 6.

We recall the Poincaré inequality here. For all ω̃x with x ∈ NH , we have for φ ∈ H1(Ω̃)∥∥φ− φ̄∥∥
L2(ω̃x)

≤ HCxP (η,H) ‖∇φ‖L2(ω̃x) , (8)
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Where CxP (η,H) may depend on the diameter of the triangulation, and subsequently ωx, and its characteristic
microstructure parameter η. We denote CP (η,H) = maxx∈NH C

x
P (η,H) and will drop the notation (η,H)

in many of the estimates throughout the paper when there is no ambiguity.
In addition, the finite element inverse inequality on perforated domains contains a volumetric constant

that also must be tracked throughout. This constant is further analyzed and discussed in Appendix A. In
particular, we have the general result Lemma 3.1. It can be seen here that this constant behaves like φ−1,
where φ is the porosity or volume fraction. Thus, we expect this constant to interfere with our estimates in
the case where the domain is very perforated. We state this inequality briefly here.

Lemma 3.1 Let K ∈ TH be a simplex in Rd and p ∈ P1(K). Let K̃ ⊂ K be a finite union of polygons, then

‖∇p‖L2(K̃) .

(
|K|
|K̃|

)
H−1 ‖p‖L2(K̃) , (9)

We will denote
Cinv = max

K∈TH ,K̃⊂K

(
|K|
|K̃|

)
,

and track this constant throughout the analysis.

Proof See Appendix A.

We have the following stability and local approximation of the quasi-interpolation operator ĨH defined
by (6), along with the desired projective properties.

Lemma 3.2 There exists a constant CIH,1 , CIH,2 > 0, for all u ∈ H1
D(Ω̃), such that∥∥∥u− ĨHu∥∥∥

L2(ω̃x,0)
≤ CIH,1H ‖∇u‖L2(ω̃x,1) , (10a)∥∥∥∇(u− ĨHu)

∥∥∥
L2(ω̃x,0)

≤ CIH,2 ‖∇u‖L2(ω̃x,1) , (10b)

where CIH,1 . (1 + Cinv)CP and CIH,2 .
(
1 + (1 + Cinv)CP

)
. We denote CIH to be

max(CIH,1 , CIH,2) . CIH . C
invCP .

Here CP is the Poincaré constant and Cinv the finite element inverse inequality constant in perforated
domains. Moreover, the interpolation ĨH is a projection.

Proof See Appendix B.

4 Multiscale Splitting and Basis
We now will construct our multiscale approximation space to handle the oscillations created by the perforated
microstructure. The main ideas of this splitting can be found in [13, 22] and references therein. As noted
before the coarse mesh space restricted to Ω̃ can not resolve the features of the microstructure and these
fine-scale features must be captured in the multiscale basis. We begin by constructing fine-scale spaces.

We define the kernel of the perforated interpolation operator to be

Ṽ f = {v ∈ H1
D(Ω̃) | ĨHv = 0},

where ĨH is defined by (6). This space will represent the small scale features not captured by ṼH . We define
the fine-scale projection QΩ̃ : ṼH → Ṽ f to be the operator such that for v ∈ ṼH we compute QΩ̃(v) ∈ Ṽ f as∫

Ω̃

∇QΩ̃(v)∇wdz =

∫
Ω̃

∇v∇wdz, for all w ∈ Ṽ f . (11)
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This projection gives an orthogonal splitting H1
D(Ω̃) = Ṽ msH ⊕ Ṽ f with Ṽ msH = (ṼH − QΩ̃(ṼH)). We can

decompose any u ∈ H1
D(Ω̃) as u = ums + uf with

∫
Ω̃
∇ums∇ufdz = 0. This modified coarse space is

referred to as the multiscale space and contains fine-scale geometric information. The multiscale Galerkin
approximation umsH ∈ Ṽ msH satisfies∫

Ω̃

∇umsH ∇vdz =

∫
Ω̃

gvdz for all w ∈ Ṽ msH . (12)

To construct the basis for the multiscale space Ṽ msH we construct an adapted coarse grid basis. We define
the corrector φx = QΩ̃(λx) to be the solution to∫

Ω̃

∇φx∇wdz =

∫
Ω̃

∇λx∇wdz, for all w ∈ Ṽ f . (13)

We then define the perforated multiscale space Ṽ msH to be the functions spanned by

Ṽ msH = span{Rλx − φx|x ∈ NH}. (14)

Note that the corrector problem (11) is posed on the global domain. Thus, the corrections will have global
support and as such have limited practical use. However, in the following analysis we show that the basis
can be localized.

The key issue with constructing the solution to (12) is the calculation of the corrector on a global basis.
However, it can be shown that the corrector decays exponentially fast. To this end, we define the localized
fine-scale space to be the fine-scale space extended by zero outside the patch, that is Ṽ f (ω̃x,k) = {v ∈
Ṽ f | v|Ω̃\ω̃x,k = 0}. It is convenient to introduce some notion here similar to that introduced in [13]. We let

for some x ∈ NH and k ∈ N the local corrector operator Qx,k : ṼH → Ṽ f (ω̃x,k), be defined such that given
a uH ∈ ṼH ∫

ω̃x,k

∇Qx,k(uH)∇wdz =

∫
ω̃x

λ̂x∇uH∇wdz, for all w ∈ Ṽ f (ω̃x,k), (15)

where λ̂x = λx∑
y∈NH

λy
is augmented so that the collection {λ̂x}x∈NH is a partition of unity. This is done

because the Dirchlet condition makes the standard basis not a partition of unity near the boundary. For a
practical evaluation of Qx,k, we may precompute for any neighbor y ∈ NH ∩ ω̃x of x the following∫

ω̃x,k

∇Qx,k(λy)∇wdz =

∫
ω̃x

λ̂x∇λy∇wdz, for all w ∈ Ṽ f (ω̃x,k). (16)

We then write Qx,k(uH) =
∑
y∈NH∩ω̃x uH(y)Qx,k(λy) and so must only compute over small number of nearby

nodes for each x. Moreover, we are able to exploit local periodic structures due to the fact that a drastically
reduced number of corrector problems must be computed, assuming the coarse-grid is chosen properly.

We denote the global corrector operator as

Qk(uH) =
∑
x∈NH

Qx,k(uH).

With this notation, we write the truncated multiscale space as

Ṽ msH,k = span{uH −Qk(uH)|uH ∈ ṼH}.

Moreover, note also that for sufficiently large k, we recover the full domain and obtain the ideal corrector
with functions of global support, denoted QΩ̃. The corresponding multiscale approximation to (2) is∫

Ω̃

∇umsH,k∇vdz =

∫
Ω̃

gvdz for all w ∈ Ṽ msH,k. (17)
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5 Error Analysis
In this section we present the error introduced by using (12) on the global domain to compute the solution
to (2). Then, we show how localization effects the error when we use (17) on truncated domains to compute
the same solution. Meanwhile, we must carefully account for the effects of the Poincaré constant from (8)
in the estimate as in certain domains this may depend on the microstructure or coarse grid diameters.

5.1 Error with Global Support

Theorem 5.1 Suppose that u ∈ H1
D(Ω̃) satisfies (2) and that umsH ∈ Ṽ msH , with correctors of global support

in (13), satisfies (12). Then, we have the following error estimate

‖∇u−∇umsH ‖L2(Ω̃) ≤ CIH,1H‖g‖L2(Ω̃). (18)

Proof Again we use the local stability property of ĨH the local interpolation operator in (10). From the
orthogonal splitting of the spaces it is clear that u − umsH = uf ∈ Ṽ f and ĨH(uf ) = 0. Thus, using the
stability inequality we have

‖∇u−∇umsH ‖
2
L2(Ω̃) =

∥∥∇uf∥∥2

L2(Ω̃)
=

∫
Ω̃

g
(
uf − ĨH(uf )

)
dz

‖g‖L2(Ω̃)

∥∥∥uf − ĨH(uf )
∥∥∥
L2(Ω̃)

≤ CIH,1H‖g‖L2(Ω̃)

∥∥∇uf∥∥
L2(Ω̃)

Taking uf = u− umsH and dividing, we arrive at the estimate (18). �

5.2 Error with Localization
In this section we show the error due to truncation with respect to patch extensions. The key lemma needed
is the following estimate, the proof can be found in Appendix C.

Lemma 5.2 Let uH ∈ ṼH , let Qm be constructed from (15), and QΩ̃ defined to be the "ideal" corrector
without truncation, then∥∥∇(QΩ̃(uH)−Qm(uH))

∥∥
L2(Ω̃)

≤ m d
2C4θ

m
∥∥∇QΩ̃(uH)

∥∥
L2(Ω̃)

, (19)

with θ ∈ (0, 1), C3 . (1 + C1 + CIH ) . (CinvCP )3/2 and C4 = C3(1 + C2
1 )

1
2 . (CinvCP )3.

The lemma gives the decay in the error as the truncated corrector approaches the ideal corrector of global
support. With this lemma we are able to state and prove Theorem 5.3.

Theorem 5.3 Suppose that u ∈ H1
D(Ω̃) satisfies (2) and that umsH,m ∈ Ṽ msH,m, with local correctors calculated

from (15), satisfies (17). Then, we have the following error estimate∥∥∇u−∇umsH,m∥∥L2(Ω̃)
≤
(
CIH,1H +m

d
2C5θ

m
)
‖g‖L2(Ω̃), (20)

with θ ∈ (0, 1) a constant depending on Poincaré and inverse inequality constants. In addition, with respect
to these constants we have

CIH,1 . C
invCP , and C5 . C

4
P (Cinv)3.

Remark Note from Lemma C.2, we have θ = e
− 1
dC2ee+2 ∈ (0, 1), here C2 = (C1 + CCIH ) . (CinvCP )3/2.

Thus, the Poincaré and inverse constants effect the estimate in Lemma C.2 insofar as it may slower the decay
rate of the exponential and not lead to some sort of exponential "blow-up" with respect to patch extensions.
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Proof of Theorem 5.3 We let umsH = uH − QΩ̃(uH) be the ideal global multiscale solution satisfying
(12), and umsH,m = uH,m − Qm(uH,m) the corresponding truncated solution to (17). Then, by Galerkin
approximations being minimal in energy norm we have

‖∇u−∇(uH,m −Qm(uH,m))‖L2(Ω̃) . ‖∇u−∇(uH −Qm(uH))‖L2(Ω̃).

Using this fact and Theorem 5.1 and Lemma C.3 we have∥∥∇u−∇umsH,m∥∥L2(Ω̃)
≤
∥∥∇u−∇(uH −QΩ̃(uH) +QΩ̃(uH)−Qm(uH))

∥∥
L2(Ω̃)

≤ ‖∇u−∇umsH ‖L2(Ω̃) +
∥∥∇(QΩ̃(uH)−Qm(uH))

∥∥
L2(Ω̃)

≤ CIH,1H‖g‖L2(Ω̃) +
∥∥∇(QΩ̃(uH)−Qm(uH))

∥∥
L2(Ω̃)

≤ CIH,1H‖g‖L2(Ω̃) +m
d
2C4θ

m
∥∥∇QΩ̃(uH)

∥∥
L2(Ω̃)

.

Finally, noting that from (15) and (12) we have∥∥∇QΩ̃(uH)
∥∥
L2(Ω̃)

≤ ‖∇umsH ‖L2(Ω̃) ≤ CP ‖g‖L2(Ω̃),

applying this above we obtain the required estimate.
To obtain the relationship on the above estimate to the relevant constants note from (10) that CIH .

CinvCP . From Lemma C.1, we have C2
1 = C2

lipCIH + C3
IH , thus C1 . (CinvCP )

3
2 . From Lemma C.3,

C4 = C3(1 + C2
1 )

1
2 = (1 + C1 + CIH )(1 + C2

1 )
1
2 . (CinvCP )3,

and so C5 = CPC4 . C4
P (Cinv)3. �

6 Estimates for Poincaré Constants
In this section, we discuss the tools required to estimate the constant CP in certain physically interesting
cases. We will give two alternative approaches. The first is the case where the particles are of size η > 0
and have minimal separation from each other and the boundary also of order η > 0. This is accomplished
by using extension approaches that preserve the Sobolev seminorm [7] and we will primarily use a slightly
more modern presentation as in [30]. This more theoretical approach works very well for isolated particles
and proves to be a powerful tool in estimating these constants.

In addition, we will also consider a constructive approach that could be extended to the case where
there are high contrast coefficients inside the domain and can be used when the particles are not isolated
in a simple way. The following techniques were developed and used effectively in the context of weighted
Poincaré inequalities in the setting of contrast dependence [25] and references therein. We follow much of the
notation presented in that work, however, here we adapt the techniques to complex domain geometries and
not contrast independent estimates. The case of high-contrast for non-perforated domains will be discussed
in the forthcoming preprint [27].

We begin by building the necessary framework to effectively estimate CP by a theoretical extension
approach. Then, we present a constructive approach by building the some what complicated machinery for
weighted Poincaré inequalities. Throughout this section we shall suppose that H > η, the characteristic
separation and length scale size.

6.1 Poincaré Constants: Extension Techniques
In this section, we will show that estimates for isolated particles in two-dimensions can be shown to be uni-
formly bounded. The key ingredient of this is utilizing a construction of the Stein-Whitney extension [31] for
domains with small isolated particles and showing that the related constants do not contain microstructural
information.
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We will now outline how such an extension is constructed. We suppose that as in [7, 30, 29], that the
maximal diameter of the isolated particles is η and this is also the minimal separation length from each
of the particles and the boundary. To be more precise, we suppose that we have non intersecting subsets
S1, S2, · · · , SN ⊂ ω (removing the x label for this section), such that diam(Sj) := ηj . η, for j = 1, 2, . . . N ,
and naturally define

ω̃ = ω\
N⋃
j=1

S̄j

We suppose that each Sj can be enclosed by a shape regular polygonal Uj , and its homothetic expansion Vj ,
for j = 1, 2, . . . N , such that

Sj ⊂ Uj ⊂ Vj ⊂ ω,
Vj ∩ Vi = ∅, for i 6= j,

∆i := Vj\Ūj , is simply connected. (21)

Remark Note that the boundaries above can be taken to just be minimally smooth in the sense of Stein
[31] as seen in [30, 29]. However, assuming that they can be enclosed in shape regular polygons is enough
for our applications.

Further we assume that the boundaries are properly separated for that there exists constants C1, C2 > 0
such that

C1ηj ≤ dist(∂Vj , ∂Sj) ≤ C2ηj , (22)

for j = 1, 2, . . . N . We denote the Stein extension operator on ∆i to be Ei : H1(∆i) → H1(Rd), such that
Eiu = u on ∆i and |Eiu|H1(Rd) . |u|H1(∆i), [7]. We then take the extension of u ∈ H1(ω̃) to ω to be defined
as

uext =

{
E(u|∆i

) in Ui,
u elsewhere in ω.

Then, it is shown in [30, 29] that ∥∥uext∥∥
H1(ω)

. Cext ‖u‖H1(ω̃) , (23)

where Cext depends only on diam(ω) and is independent of the diameter and separation of the holes. Thus,
we see that∥∥u− 〈uext〉ω∥∥L2(ω̃)

≤
∥∥u− uext∥∥

L2(ω̃)
+
∥∥uext − 〈uext〉ω∥∥L2(ω̃)

≤
N∑
j=1

∥∥u− uext∥∥
L2(Uj\Sj)

+
∥∥uext − 〈uext〉ω∥∥L2(ω)

≤ CFP
N

max
j=1

(diam(Uj))

N∑
j=1

|u− uext|H1(Uj\Sj) +
∥∥uext − 〈uext〉ω∥∥L2(ω)

,

where CFP is a Frederich’s type constant since u−uext vanishes on the boundaries of ∂Uj , and this constant
is known to be an advantageous constant with respect to perforations. Using a global Poincaré inequality,
independent of the holes, on the second term and the extension estimate (23) we obtain using the minimality
of the average that

‖u− 〈u〉ω̃‖L2(ω̃)
≤
∥∥u− 〈uext〉ω∥∥L2(ω̃)

. diam(ω̃) ‖u‖H1(ω̃) , (24)

or that CP . 1 and is independent of η. Finally, applying this estimate to Theorem 5.3 we have∥∥∇u−∇umsH,m∥∥L2(Ω̃)
≤
(
CinvH +m

d
2 (Cinv)3θm

)
‖g‖L2(Ω̃). (25)
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Recall here that from Appendix A, the constant Cinv depends only volumetrically on the microstructure
and under the separation assumptions, will not contribute very much error and one can suppose that order
one.

6.2 Poincaré Constants: Constructive Approach
Now that we have given a theoretical extension approach for domains with isolated and regularly separated
particles, we will outline a constructive approach that may have wider applicability at the cost of complexity
and elegance of the proof. This constructive approach is used in [25] in the context of high-contrast elliptic
problems, whereby the Poincaré inequalities are weighted so that they do not depend on the contrast. This
approach may have wider applicability in problems of the form

−div(A∇u) = f in Ω̃,

where A ∈ L∞ and α ≤ |A| ≤ β, for α, β > 0 and β/α is very large.
We begin by examining a domain ω̃ (removing the x as above) that is assumed in this section to be

partitionable into non overlapping polytopes. In essence, the perforations must be (or approximated by )
polygons. Further, we begin as in [25], let Y = {Yl}nl=1 be a non overlapping partitioning of ω̃ into open,
connected Lipschitz polytopes so that

ω̃ =

n⋃
l=1

Y l,

with H = diam(ω). For u ∈ H1(ω̃) and (d− 1) dimensional manifold X ⊂ ω̃ we define the average

ūX =
1

|X|

∫
X

uds,

here the above integral is taken with respect to the (d− 1) dimensional real Lebesgue measure ds.
We call a region Pl1,ls = (Y l1 ∪ Y l2 ∪ · · · ∪ Y ls) a path if for each i = 1, . . . , s − 1, the regions Y li and

Y li+1
share a common (d− 1)-dimensional manifold. Here, s is the length of the path Pl1,ls . Suppose there

is a path Pk,l∗ from Yk to Yl∗ we denote path length

sk = {# of Yl in Pk,l∗ = (Y k ∪ · · · ∪ Y l∗)}

Let X∗ ⊂ Ȳl∗ be a (d−1) dimensional manifold, then for each k = 1, 2, . . . , n let cX
∗

k > 0 be the best constant
so that ∥∥∥u− ūX∗∥∥∥2

L2(Yk)
≤ (cX

∗

k )2H2‖∇u‖2L2(Pk,l∗ ), (26)

for all u ∈ H1(Pk,l∗). Note here we make a change of notation compared to [25], in that we replace cX
∗

k with
its square, similarly with CP and related constants.

We now define the Poincaré inequality for a non-perforated domain. For any Lipschitz domain Y ⊂ Rd
and for any (d−1) dimensional manifold X ⊂ Ȳ , we denote CP (Y ;X) > 0 to be the best constant such that∥∥u− ūX∥∥2

L2(Y )
≤ C2

P (Y ;X)diam(Y )2‖∇u‖2L2(Y ), (27)

for all u ∈ H1(Y ). We have the following lemma relating the constants in (26) and (27).

Remark In our application we suppose this to be a simplicial domain such as a triangle, tetrahedron, or
perhaps nonsimplicial, but regular, such as quadrilaterals, parallelepiped, or curved elements. The key here
being that each simplex has a trivially bounded Poincaré constant.
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Lemma 6.1 Suppose Pk,l∗ is a path as defined above of length s with l1 = k and ls = l∗. We let X0 = X1

and Xs = X∗. Then, the constant from (26) can be bounded by the constants related to inequality (27)

(cX
∗

k )2 ≤ 4

s∑
i=1

|Yk|
|Yli |

diam(Yli)
2

H2
max(C2

P (Yli , Xi−1), C2
P (Yli , Xi)) (28)

Proof We proceed as in [25], by using the standard telescoping argument∥∥∥u− ūX∗∥∥∥
L2(Yk)

≤
∥∥u− ūX1

∥∥
L2(Yk)

+

s∑
i=2

√
|Yk||ūXi−1 − ūXi |,

and the use of (27) we have∥∥u− ūX1
∥∥2

L2(Yk)
≤ C2

P (Yk;X1)diam(Yk)2‖∇u‖2L2(Yk).

Fixing i we have for the second term

|ūXi−1 − ūXi |2 ≤ 2

|Yli |

(∥∥u− ūXi−1
∥∥2

L2(Yli )
+
∥∥u− ūXi∥∥2

L2(Yli )

)
≤ 2

|Yli |

(
(C2

P (Yli ;Xi−1) + C2
P (Yli ;Xi))diam(Yli)

2‖∇u‖2L2(Yli )

)
≤ 4max(C2

P (Yli ;Xi−1), C2
P (Yli ;Xi))

diam(Yli)
2

|Yli |
‖∇u‖2L2(Yli )

.

A final application of the Cauchy inequality yields the desired result. �

We define (CP )2 =
∑n
k=1(cX

∗

k )2 and we have the general full Poincaré inequality

∥∥u− 〈u〉ω̃∥∥2

L2(ω̃x)
≤
∥∥∥u− ūX∗∥∥∥2

L2(ω̃x)
≤ C2

PH
2‖∇u‖2L2(ω̃x), (29)

recall here 〈u〉ω̃ = 1
|ω̃x|

∫
ω̃x
udz is the optimal minimizing constant.

To obtain better bounds on CP we must in turn obtain a systematic way to obtain bounds on cX
∗

k . To
this end, we will use the following two technical lemmas. The first of which estimates the constant CP (K;F )
for a simplex.

Lemma 6.2 Let K be a simplex (or parallelepiped), and F one of its faces, then

C2
P (K;F ) ≤ 7

5
.

Proof See Appendix of [25].

We also state a common estimate for regular triangulation.

Lemma 6.3 Let K a nondegenerate simplex and ρ(K) the diameter of the largest sphere inscribed in K̄,
then

|K| ≥ diam(K)

(
ρ(K)

2

)d−1

.

Proof See Appendix of [25].
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Let Y = {Yl}nl=1 be a conforming simplicial triangulation of ω̃ and we define the geometric parameters for
l = 0, . . . , n, ηl = diam(Yl), η = max(ηl), and ηmin = min(ηl). We define the shape-regularity constant

CYreg =
n

max
l=1

(
diam(Yl)

ρ(Yl)

)
.

We call a partition of ω̃ shape regular if there is a uniform bound for CYreg and quasi-uniform if in addition
to shape regular we have η/ηmin uniformly bounded. With this type of a partition we are able to obtain a
useful tool to estimate CP .

Lemma 6.4 Let Y = {Yl}nl=1 be a shape regular simplicial partition of ω̃, with X∗ a facet of Yl∗ . We denote
the path length for Yk to Yl∗ by sk. Then, we have the bound

C2
P ≤

(
28

5

)
2d+1(CYreg)

d−1
n∑
k=1

sk|Yk|
H2ηd−2

min

. (30)

Proof From Lemma 6.1 we have for a fixed k and path Pk,l∗ of simplicial domains that

(cX
∗

k )2 ≤ 4

sk∑
i=1

|Yk|
|Yli |

diam(Yli)
2

H2
max(C2

P (Yli , Xi−1), C2
P (Yli , Xi)).

For i = 1, . . . sk, using Lemma 6.2 we see, taking K = Yli and F = Xi−1 or F = Xi, that

max(C2
P (Yli , Xi−1), C2

P (Yli , Xi)) ≤
7

5
.

From shape regularity and Lemma 6.3 we have

diam(Yli)
2

|Yli |
≤ 2d+1(CYreg)

d−1η2−d
li

.

Taking the minimum ηli we have

(cX
∗

k )2 ≤
(

28

5

) sk∑
i=1

2d+1(CYreg)
d−1 |Yk|

H2ηd−2
min

≤
(

28

5

)
2d+1(CYreg)

d−1 sk|Yk|
H2ηd−2

min

.

Summing from k = 1, . . . n over the simplices we obtain the estimate. �

Remark As noted in [25], the above lemma can give "worst case" scenarios for estimates on Poincaré con-
stants. To illustrate the usefulness of the above estimate (30) to obtain rough bounds we give an illustrative
example. It can be easily seen that the estimate (30) will grow when the path lengths, sk, are large. This can
be especially bad in highly tortuous microstructures. We illuminate this by considering a two-dimensional
filamented microstructure.

Suppose we take our domain to be ω = [0, H]2, and inside we have the solid microstructure, Sη, given by
thin filamented structures. More precisely,

Sη =

Nη⋃
j=0

(([4ηj, 4ηj + η]× [0, H − η]) ∪ ([4ηj + 2η, 4ηj + 3η]× [η,H])) ,

where Nη ≤
⌊
H
4η

⌋
. Note we take here the floor of H

4η to ensure Nη is such that we have the right hand side
boundary free of microstructure intersections. This is done since we will suppose that X∗ = {H} × [0, H]
and we wish this boundary to be a part of the domain ω̃ defined as

ω̃ = ω\Sη.

12



Suppose we have a uniform shape regular square elements of ω̃ denoted again by Y = {Yl}nl=1. Moreover,
we suppose that |Yk| ≈ η2, for all k = 1, . . . n. We denote

smax =
n

max
k=1

sk,

to be the maximal path length from Yk to X∗. Then, (30) becomes

C2
P . C

Y
reg

nsmaxη
2

H2
, (31)

To estimate smax, we take the simplex farthest from the right hand side boundaryX∗ denoted Y1 to construct
the longest path. Suppose that Y1 is formed by [0, η]× [H−η,H]. Then, we partition the rest of the filaments
into square elements as seen in Figure 2, where the dots denote continuation. We can see that in each filament
has path length is O(Hη ) and there are O(Nη) ≈ O(Hη ) filaments. Hence smax ≈ O((Hη )2), and in addition,
we see also that n ≈ O((Hη )2) as this is the number of triangles in the partition of ω̃. We thus obtain the
estimate for the Poincaré constant

C2
P . C

Y
reg

(
H

η

)2

. (32)

Taking the maximum over the possible constants over the patches, and applying this estimate to Theorem

Figure 2: Filamented domain partitioned with squares and showing the longest paths.

5.3 we have

∥∥∇u−∇umsH,m∥∥L2(Ω̃)
.

((
Cinv

H

η

)
H +m

d
2

(
H

η

)4

(Cinv)3e−( η

HCinv
)

3
2m

)
‖g‖L2(Ω̃). (33)

Thus, it is possible to see how the closeness of the microstructure could theoretically effect the convergence
estimate via the Poincaré. The constant in the exponential may also effect the decay with respect to patch
extension. However, the above example is meant to represent a very poor scenario as different and more
optimized partitions of the Figure 2 could clearly be constructed, thus improving the estimate. Again here
from Appendix B the constant Cinv depends only volumetrically on the microstructure.
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7 Numerical Examples
In this section we will present a two numerical examples. We apply our algorithm to (1) using our multiscale
method and compare with standard P1 finite elements. By gridding around the perforations, we will imple-
ment the micro-structural features into the domain. We will do this for two relevant examples. The first
being a periodic square domain with square particles, and the second an dumbbell-shaped domain contain-
ing the microstructure of the first experiment. We will demonstrate the validity of our estimates based on
varying patch size (truncation of the localization) and by varying microstructure lengths η. When we vary
the microstructure lengths we will also fix our truncation patch parameter k to be proportional to log(H).

We begin by describing the geometry of the domains. First, we take our unperforated domain to be
Ω = [0, 1]2 and define the unit cell to be Y = [0, 1]2\[ 1

4 ,
3
4 ]2. We define the perforated domain to be

Ω̃η =
⋃
k∈Z2

(η(Y + k)) ∩ Ω, (34)

where η is chosen so that the domain is periodically tessellated. This domain for η = 1
8 can be seen in Figure

3.

Figure 3: Square domain with periodic microstructure.

Since this geometry will clearly be in the same class as the uniform bound estimate (24), we choose
our second geometry to be an dumbbell-shaped domain. As noted in [25], such a shaped domain has a
theoretical bound C2

P ≤ 1 + log(diam(Ω))/η. Here η is the separation of the narrowest part of the domain.
More concretely, we let

ΩH,η = Ω\
((

[
3

8
,

5

8
]× [0,

1− η
2

]

)
∪
(

[
3

8
,

5

8
]× [

1 + η

2
, 1]

))
.

In addition to the H structure we also take out some of the square perforations as in (34) for a fixed period
of 1

16 . We define the following domain

Ω̃H,η =
⋃
k∈Z2

(
1

16
(Y + k)

)
∩ ΩH,η, (35)

this domain can be seen in Figure 4. Note here, the size of the perforations are fixed and the varying quantity
is the size of the narrowest part of the domain in the middle strip.
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Figure 4: Dumbbell-shaped domain with periodic microstructure

To solve the problems in the porous domains, we will explicitly grid the perforations on the fine scale,
not on the coarse scale. A penalization scheme could also be utilized to relax the restrictiveness of gridding
the fine scale. Note, there is a fine scale h to solve the local problems and we take this value to be h = 2−8.
For all the following examples we will use the forcing

g(x1, x2) =

{
1, x2 ≥ .5
0, x2 < .5.

In addition to using the projective quasi-interpolation operator (6), we also present results from the
Clément interpolation operator [22],

ĨHu =
∑
x∈NN

(ĨHu)(x)Rλx, (36)

where (ĨHu)(x) =
∫
Ω̃
vλxdz∫

Ω̃
λxdz

. Recall, we chose the projective quasi-interpolator only to simplify the proofs, and
here we present numerical results to show that, in these cases, good results hold for the Clément interpolation
operator also.

We present results for both media (34) and (35) while using both interpolation operators (6) and (36).
We have two types of numerical tests. First, varying the microstructure parameter η while keeping the
k-patch growth fixed to log(H). The idea here to see the effect of the error estimates from the possibly
error degrading Poincaré constant. Second, we fix the microstructure length to the smallest value and vary
the patch size to observe the rates of exponential convergence. All of these results are compared against an
"overkill" fine-scale solution with h = 2−8 in the H1 norm.

The results from the geometry (34) are contained in Figure 5 and 6. In Figure 5, we use the projective
interpolator (6) and in Figure 6 we use the Clément interpolator (36). Varying the microstructure, in the
case period size η, while fixing the patch extension k ≈ log(H) we plot the results for both interpolators in
Figure 5a and Figure 6a. In both examples we see that the Poincaré constant does not effect the estimate
negatively in agreement with (24). In Figure 5b and Figure 6b we fix the geometric parameter to the smallest
value η = 2−6 and vary the patch size parameter k. We note that projective quasi-interpolator performs
better in this case at exponential convergence of the patch extensions.

The results from the geometry (35) are contained in Figure 7 and 8. In Figure 7, we use the projective
interpolator (6) and in Figure 8 we use the Clément interpolator (36). Keeping the period fixed but varying
η, the width of the thinnest part, and again fixing the patch extension k ≈ log(H) we plot the results for
both interpolators in Figure 7a and Figure 8a. In Figure 7b and Figure 8b we fix the geometric parameter
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(b) Varying patch size k for η = 2−6.

Figure 5: Results for example geometry in Figure 3, using projective quasi-interpolation (6).
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(b) Varying patch size k for η = 2−6.

Figure 6: Results for example geometry in Figure 3, using Clément quasi-interpolation (36).

to the smallest value η = 2−6 and vary the patch size parameter k. Again we see slightly better performance
with respect to exponential convergence of the patch extensions for the projective quasi-interpolation.

8 Conclusion
In this work we developed a multiscale procedure to compute Laplacian problems with zero Neumann data
in domains with complicated porous microstructure. We are were able to determine the error with respect to
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Figure 7: Results for example geometry in Figure 4, using projective quasi-interpolation (6).
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Figure 8: Results for example geometry in Figure 4, using Clément quasi-interpolation (36).

the ideal corrector and error due to truncation and localization of the multiscale correctors. As was noted,
keeping track of Poincaré constants was critical in our analysis as they may contain information about
the microstructure. We used a constructive procedure to estimate these constants and obtain bounds with
respect to H and η. This procedure was demonstrated on two interesting examples. Finally, we implemented
numerical tests to validate our theoretical estimates. We found our numerical experiments were in agreement
with the theory and the quasi-interpolator based on local L2 projections to perform slightly better than the
Clément type.
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A Inverse Estimates on Perforated Domains
We will first need the inverse inequality in perforated domains. For K ∈ TH and p ∈ P1(K), the standard
inverse inequality is given by

‖∇p‖L2(K) . H
−1‖p‖L2(K), (37)

where H = diam(K). However, for a perforated domain we shall be more careful and track the constants
that may depend on the microstructure. Thus, we prove Lemma 3.1.

Proof of Lemma 3.1 Since for p = c, c ∈ R, there is nothing to show, thus we suppose that p 6= c and
thus, ∇p 6= 0. Since ∇p is a non-zero constant on K and by standard trace inequality (37)

‖∇p‖2L2(K̃) =
|K̃|
|K|
‖∇p‖2L2(K) =

|K̃|
|K|
‖∇(p− 〈p〉K)‖2

L2(K)

.

(
|K̃|
|K|

)
H−2 ‖p− 〈p〉K‖

2
L2(K)

. (38)

Since p 6= c, we can rewrite the right-hand-side as(
|K̃|
|K|

)
H−2 ‖p− 〈p〉K‖

2
L2(K)

=

(
|K̃|
|K|

)
H−2

‖p− 〈p〉K‖
2
L2(K)

‖p− 〈p〉K̃‖
2
L2(K̃)

‖p− 〈p〉K̃‖
2
L2(K̃)

. (39)

Noting that since the average is the minimal constant, we have ‖p− 〈p〉K̃‖L2(K̃)
≤ ‖p‖L2(K̃) , and thus

‖∇p‖2L2(K̃) .
|K̃|
|K|

H−2

(
‖p− 〈p〉K‖

2
L2(K)

‖p− 〈p〉K̃‖
2
L2(K̃)

)
‖p‖2L2(K̃) . (40)

It remains to bound the ratio of L2 norms in K and K̃. First note that we may write in K

p− 〈p〉K = ∇p · (x− 〈x〉K).

The upper bound is clear, indeed we have that

‖p− 〈p〉K‖
2
L2(K)

= |∇p|2
∫
K

|x− 〈x〉K |
2dx . |∇p|2H2|K|. (41)

For the denominator bound, we introduce the notation for the zero set of p− 〈p〉K̃ as

G := {x ∈ Rd : p(x)− 〈p〉K̃ = 0}.

Clearly, for a non-constant linear polynomial this is simply a hyperplane. We introduce the notation that
PGx be the orthogonal projection of x onto G. It is clear that 〈x〉K̃ ∈ G and ∇p ⊥ G, thus we may write

p− 〈p〉K̃ = ∇p · (x− PGx).
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For simplicity, and without loss of generality, we suppose that G = {x ∈ Rd : xd = 0}, then x − PGx =
(0(d−1), xd). Thus, since ∇p is constant

‖p− 〈p〉K̃‖
2
L2(K̃)

=

∫
K̃

|∇p · (x− PGx)|2dx =

∫
K̃

|∇p · (0, xd)|2dx =

∣∣∣∣ ∂p∂xd
∣∣∣∣2 ∫

K̃

x2
ddx.

We will now examine the quantity
∫
K̃
x2
ddx. We define the small δ-band around G to be Uδ = Rd−1× [− δ2 ,

δ
2 ].

Then, choose δ > 0, so that |K̃| = |Uδ ∩K|. We have that∫
K̃

x2
ddx ≥

∫
Uδ∩K

x2
ddx ≥

∫
(Uδ∩K)\Uδ/2

x2
ddx ≥

δ2

4
|(Uδ ∩K)\Uδ/2|.

Noting that |(Uδ ∩K)\Uδ/2| ≈ |(Uδ ∩K)| = |K̃| and δ ≈ |K̃|/|G ∩K| & |K̃|/Hd−1, we have

|K̃|3

H2d−2
.
∫
K̃

x2
ddx.

Using this above estimate and returning to a general configuration, i.e. not necessarily on the line xd = 0,
we have the estimate

|K̂3|
|K|
|∇p|2 . ‖p− 〈p〉K̃‖

2
L2(K̃)

. (42)

Combining the lower bound (42), with the upper bound (41), we obtain the ratio

‖p− 〈p〉K‖
2
L2(K)

‖p− 〈p〉K̃‖
2
L2(K̃)

.
|∇p|2H2|K|

|∇p|2 |K̂
3|
|K|

.

(
|K|
|K̃|

)3

.

Thus, using (40) and the above estimate of the ratio, we obtain

‖∇p‖2L2(K̃) .

(
|K|
|K̃|

)2

H−2 ‖p‖2L2(K̃) , (43)

and taking square roots yields the result. �

Thus, for many small (in the volumetric sense) perforations one would not expect too much contribution
from the inverse inequality constant.

B Stability and Approximation Properties of Quasi-Interpolation
We now will prove the stability estimate used throughout for this projective quasi-interpolation operator (6).
The proof of this lemma is based on that presented in [24].

Proof of Lemma 3.2 Note that we have easily from this definition taking vH = (Pxu) and applying
Cauchy-Schwarz thus, ‖Pxu‖L2(ω̃x) ≤ ‖u‖L2(ω̃x). We use u− 〈u〉ω̃x , here again 〈u〉ω̃x = 1

|ω̃x|
∫
ω̃x
udz, the fact

that the L2 projection of a constant is itself, and the fact that (1− Px) is also a projection we obtain

‖u− Pxu‖L2(ω̃x) ≤
∥∥u− 〈u〉ω̃x∥∥L2(ω̃x)

≤ HCP ‖∇u‖L2(ω̃x) . (44)

Here, we used the inequality (8) to obtain the gradient bound. To obtain the derivative bound note that by
a use of the inverse inequality from Lemma 3.1 and (8) we have

‖∇(u− Pxu)‖L2(ω̃x) =
∥∥∇(u− Px(u− 〈u〉ω̃x)

∥∥
L2(ω̃x)

≤ ‖∇u‖L2(ω̃x) +
∥∥∇Px(u− 〈u〉ω̃x)

∥∥
L2(ω̃x)

≤ ‖∇u‖L2(ω̃x) + CinvH−1
∥∥Px(u− 〈u〉ω̃x)

∥∥
L2(ω̃x)

≤ (1 + CinvCP ) ‖∇u‖L2(ω̃x) (45)

19



This is merely the H1 stability of the L2 projection c.f. [3] and references therein.
We suppose that the basis functions form a partition of unity, that is

∑
y∈NH λy = 1, as we will deal with

the elements adjacent to the boundary with a slight technical difference. We first treat the elements that do
not meet the boundary. If the elements meet the boundary the Friedrichs’ inequality can be utilized and we
will briefly discuss this later. Thus, we have for the L2 norm

∥∥∥u− ĨHu∥∥∥
L2(ω̃x)

=

∥∥∥∥∥∥u−
∑
y∈NH

(Pyu)(y)λy

∥∥∥∥∥∥
L2(ω̃x)

=

∥∥∥∥∥∥
∑
y∈NH

(u− (Pyu)(y))λy

∥∥∥∥∥∥
L2(ω̃x)

≤
∑

y∈NH(ω̃x)

‖u− (Pyu)(y)‖L2(ω̃x)

≤
∑

y∈NH(ω̃x)

‖u− Pyu‖L2(ω̃x) +
∑

y∈NH(ω̃x)

‖Pyu− (Pyu)(y)‖L2(ω̃x) , (46)

where NH(ω̃x) denotes the coarse nodes in the patch ω̃x. We can easily estimate the first term by using (44),
taking a closer look at the second term, again using the partition of unity property, we have for x′ ∈ NH(ω̃x)
that

‖Pyu− (Pyu)(y)‖L2(ω̃x) =

∥∥∥∥∥∥
∑

x′∈NH(ω̃x)

((Pyu)(x′)− (Pyu)(y))λx′

∥∥∥∥∥∥
L2(ω̃x)

≤
∑

x′∈NH(ω̃x)

‖(Pyu)(x′)− (Pyu)(y)‖L2(ω̃x)

≤
∑

x′∈NH(ω̃x)

|ω̃x|
1
2 |(Pyu)(x′)− (Pyu)(y)|

.
∑

x′∈NH(ω̃x)

|ω̃x|
1
2H ‖∇Pyu‖L∞(ω̃x)

.
∑

x′∈NH(ω̃x)

H ‖∇Pyu‖L2(ω̃x)

Returning to (46), and using inequalities (44) and (45) we have∥∥∥u− ĨHu∥∥∥
L2(ω̃x)

≤
∑

y∈NH(ω̃x)

‖u− Pyu‖L2(ω̃x) + ‖Pyu− (Pyu)(y)‖L2(ω̃x)

.
∑

y∈NH(ω̃x,1)

HCP ‖∇u‖L2(ω̃x,1) +
∑

x′∈NH(ω̃x)

H ‖∇Pyu‖L2(ω̃x)

.
∑

y∈NH(ω̃x,1)

HCP ‖∇u‖L2(ω̃x,1) +
∑

x′∈NH(ω̃x)

Cinv
∥∥(Py(u− 〈u〉ω̃x))

∥∥
L2(ω̃x)

. (1 + Cinv)CPH ‖∇u‖L2(ω̃x,1) . (47)

Using the estimate (45), and a similar argument as above for the L2 estimate [24], we will obtain the
derivative estimate ∥∥∥∇(u− ĨHu)

∥∥∥
L2(ω̃x)

.
(
1 + (1 + Cinv)CP

)
‖∇u‖L2(ω̃x,1) . (48)
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We proceed similarly as with the L2 estimate for the H1 and have

∥∥∥∇(u− ĨHu)
∥∥∥
L2(ω̃x)

=

∥∥∥∥∥∥∇
u− ∑

y∈NH

(Pyu)(y)λy

∥∥∥∥∥∥
L2(ω̃x)

=

∥∥∥∥∥∥∇
∑
y∈NH

(u− (Pyu)(y))λy

∥∥∥∥∥∥
L2(ω̃x)

≤
∑

y∈NH(ω̃x)

‖∇ (u− (Pyu)(y))λy)‖L2(ω̃x)

≤
∑

y∈NH(ω̃x)

‖(u− (Pyu)(y))∇λy)‖L2(ω̃x) + ‖∇ (u− (Pyu)(y))λy)‖L2(ω̃x)

.
∑

y∈NH(ω̃x)

H−1 ‖(u− (Pyu)(y)))‖L2(ω̃x) + ‖∇ (u− (Pyu)(y))‖L2(ω̃x) , (49)

here we used that that |∇λy| . H−1 and |λy| . 1. Clearly we can estimate the first term by (47), however,
we will lose an order H. To estimate the second term we note since (Pyu)(y) is constant, we have∑

y∈NH(ω̃x)

‖∇ (u− (Pyu)(y))‖L2(ω̃x) . ‖∇u‖L2(ω̃x,1) . (50)

To handle an element on the boundary we use the Friedrich’s inequality which has a constant that is benign
with respect to the perforations. Suppose we have ω̃x that meets ∂Ω. Then, u = ĨH(u) = 0 on ∂Ω, and so∥∥∥u− ĨH(u)

∥∥∥
L2(ω̃x)

≤ CFPH
∥∥∥∇(u− ĨH(u))

∥∥∥
L2(ω̃x)

≤ CinvCFPH‖∇u‖L2(ω̃x,1), (51)

and so we have trivially CinvCFP . CinvCP .
To see the ĨH is a projection note for Px, the local patch L2 projection, acting on Rλx is a projection,

and moreover is identity. By definition we have∫
ω̃x

(P2
xλx)vHdz =

∫
ω̃x

λxvHdz for all vH ∈ VH |ωx (52)

and thus it is trivial to see P2
xλx = Pxλx = λx on ω̃x for all x ∈ NH . Thus,

ĨH(Rλx) =
∑

x′∈NH

(Px′(Rλx′))(x)Rλx =
∑

x′∈NH

(Rλx′)(x′)Rλx = Rλx,

and so Ĩ2
H(Rλx) = ĨH(Rλx) = Rλx, and so by linearity

Ĩ2
H(u) = ĨH

( ∑
x∈NH

(Pxu)(x)Rλx

)
=
∑
x∈NH

(Pxu)(x)ĨH(Rλx) =
∑
x∈NH

(Pxu)(x)Rλx.

From here we see that Ĩ2
H = ĨH . �

C Auxiliary Lemmas
Now we will prove and state the auxiliary lemmas used to prove estimate (18). These proofs are largely
based on the works [13, 22] and references therein. However, here we must carefully track the occurrence of
Poincaré constants.
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First, we begin with the quasi-incusion property. For x, x′ ∈ NH and l, k ∈ N and m = 0, 1, · · · , with
k ≥ l ≥ 2 we have if

ω̃x′,m+1 ∩ (ω̃x,k\ω̃x,l) 6= ∅, then ω̃x′,1 ⊂ (ω̃x,k+m+1\ω̃x,l−m−1.) (53)

We will use the cutoff functions defined in [13]. For x ∈ NH and k > l ∈ N, let ηk,lx : Ω̃ → [0, 1] be a
continuous weakly differentiable functions so that(

ηk,lx
)
|ω̃x,k−l = 0, (54a)(

ηk,lx
)
|Ω̃\ω̃x,k = 1, (54b)

∀T ∈ TH ,
∥∥∇ηk,lx ∥∥L∞(T )

≤ Cco
1

lH
, (54c)

where Cco is only dependent on the shape regularity of the mesh TH . We may choose here the cutoff function
as in [22] where we choose a function, ηk,lx , in the space of P1 Lagrange finite elements over TH such that

ηk,lx (y) = 0 for all y ∈ NH ∩ ωx,k−l,
ηk,lx (y) = 1 for all y ∈ NH ∩ (Ω\ωx,k),

ηk,lx (y) =
j

l
for all y ∈ NH ∩ ωx,k−l+j , j = 0, 1, . . . , l,

then, restrict the above function to the perforated domain without relabeling.
Unlike in [13], we are using a quasi-interpolation that is also a projection. This simplifies the proofs

since there is no need to construct an approximate projection. Here we will need the following simplified
quasi-invariance of the fine-scale space under multiplication by cutoff functions. We write this estimate in
the following lemma.

Lemma C.1 Let k > l ∈ N and x ∈ NH . Suppose that w ∈ Ṽ f , then we have the estimate∥∥∥∇ĨH(ηk,lx w)
∥∥∥
L2(Ω̃)

≤ C1l
−1‖∇w‖L2(ω̃x,k+2\ω̃x,k−l−2), (55)

here C1 = (C2
lipCIH + C3

IH )1/2 . (CinvCP )3/2.

Proof Fixing x and k, we denote the average as 〈ηk,lx 〉ω̃x′,1 = 1
|ω̃x′,1|

∫
ω̃x′,1

ηk,lx dz. We estimate on a single

patch ω̃x, using the fact that ĨH(w) = 0 and the estimate (10) we have∥∥∥∇ĨH(ηk,lx w)
∥∥∥
L2(ω̃x′ )

=
∥∥∥∇ĨH((ηk,lx − 〈ηk,lx 〉ω̃x′,1)w)

∥∥∥
L2(ω̃x′ )

≤ CIH
∥∥∥∇((ηk,lx − 〈ηk,lx 〉ω̃x′,1)w)

∥∥∥
L2(ω̃x′,1)

≤ CIH
(∥∥∥(ηk,lx − 〈ηk,lx 〉ω̃x′,1)∇w

∥∥∥
L2(ω̃x′,1)

+
∥∥∥∇ηk,lx (w − ĨH(w))

∥∥∥
L2(ω̃x′,1)

)
.

Summing over all x ∈ NH , using the quasi-inclusion property (53), and the above calculation yields∥∥∥∇ĨH(ηk,lx w)
∥∥∥2

L2(Ω̃)
≤

∑
x′∈NH

∥∥∥∇ĨH(ηk,lx w)
∥∥∥2

L2(ω̃x′ )

≤ CIH
∑

ω̃x′⊂ω̃x,k+2\ω̃x,k−l−2

∥∥∥∇((ηk,lx − 〈ηk,lx 〉ω̃x′,1)w)
∥∥∥2

L2(ω̃x′,1)

≤ CIH
∑

ω̃x′⊂ω̃x,k+2\ω̃x,k−l−2

∥∥∥(ηk,lx − 〈ηk,lx 〉ω̃x′,1)∇w
∥∥∥2

L2(ω̃x′,1)

+ CIH
∑

ω̃x′⊂ω̃x,k+2\ω̃x,k−l−2

∥∥∥∇ηk,lx (w − ĨH(w))
∥∥∥2

L2(ω̃x′,1)
.
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Noting that ∇ηk,lx 6= 0 only in ω̃x,k\ω̃x,k−l and (ηk,lx − 〈ηk,lx 〉ω̃x′,1) 6= 0 only if ω̃x′,k intersects ω̃x,k\ω̃x,k−l
hence we obtain the tighter estimate

∥∥∥∇ĨH(ηk,lx w)
∥∥∥2

L2(Ω̃)
≤ CIH

∑
ω̃x′⊂ω̃x,k+1\ω̃x,k−l−1

∥∥∥(ηk,lx − 〈ηk,lx 〉ω̃x′,1)∇w
∥∥∥2

L2(ω̃x′,1)

+ CIH
∑

ω̃x′⊂ω̃x,k+1\ω̃x,k−l−1

∥∥∥∇ηk,lx (w − ĨH(w))
∥∥∥2

L2(ω̃x′,1)
.

Using the fact that ηk,lx is taken to be P1 and thus constant on each element, we have the bound∥∥∥ηk,lx − 〈ηk,lx 〉ω̃x′,1∥∥∥L∞(ω̃x′,1)
. |ω̃x′,1|−1/2Cinv

∥∥∥ηk,lx − 〈ηk,lx 〉ω̃x′,1∥∥∥L2(ω̃x′,1)

. |ω̃x′,1|−1/2CinvCPH
∥∥∇ηk,lx ∥∥L2(ω̃x′,1)

. |ω̃x′,1|−1/2CinvCPH
∑

K̃∈ω̃x′,1

∥∥∇ηk,lx ∥∥L2(K̃)

. |ω̃x′,1|−1/2CinvCPH
∑

K̃∈ω̃x′,1

|K̃|1/2
∥∥∇ηk,lx ∥∥L∞(K̃)

. CinvCPH
∥∥∇ηk,lx ∥∥L∞(ω̃x′,1)

, (56)

where we will denote in this section Clip = CinvCP . Using the above relation on the first term and (10) on
the second we obtain∥∥∥∇ĨH(ηk,lx w)

∥∥∥2

L2(Ω̃)
≤ C2

lipCIHH
2
∥∥∇ηk,lx ∥∥2

L∞(Ω̃)
‖∇w‖2L2(ω̃x,k+1\ω̃x,k−l−1)

+ C3
IHH

2
∥∥∇ηk,lx ∥∥2

L∞(Ω̃)
‖∇w‖2L2(ω̃x,k+1\ω̃x,k−l−1).

Finally, taking another layer on the outside and inside of the annulus patch we arrive at∥∥∥∇ĨH(ηk,lx w)
∥∥∥2

L2(Ω̃)
≤ l−2(C2

lipCIH + C3
IH )‖∇w‖2L2(ω̃x,k+2\ω̃x,k−l−2),

here C2
1 = C2

lipCIH + C3
IH . Note that trivially Clip . CinvCP , thus, C1 . (CinvCP )3/2. �

We now will demonstrate the decay of the fine-scale space in the next lemma.

Lemma C.2 Fix some x ∈ NH and F ∈ (Ṽ f )′ the dual of Ṽ f satisfying F (w) = 0 for all w ∈ Ṽ f (Ω̃\ω̃x,1).
Then, for u ∈ Ṽ F the solution of ∫

Ω̃

∇u∇wdz = F (w) for all w ∈ Ṽ f . (57)

Then, there exists a constant θ ∈ (0, 1) such that for k ∈ N we have

‖∇u‖L2(Ω̃\ω̃x,k) ≤ θ
k‖∇u‖L2(Ω̃). (58)

We have θ = e
− 1
dC2ee+2 ∈ (0, 1), here C2 . (C1 + CIH ) . (CinvCP )3/2

Proof Letting ηk,lx be the cut-off function as in the previous lemma for l < k−3. Let ũ = ηk,lx u−ĨH(ηk,lx u) ∈
Ṽ f (Ω̃\ω̃x,k−l−2), and note that from Lemma C.1 we have∥∥∇(ηk,lx u− ũ)

∥∥
L2(Ω̃)

=
∥∥∥∇ĨH(ηk,lx u)

∥∥∥
L2(Ω̃)

≤ C1l
−1‖∇u‖L2(ω̃x,k+2\ω̃x,k−l−2), (59)
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from this estimate and the properties of F we have∫
Ω̃\ω̃x,k−l−2

∇u∇ũdz =

∫
Ω̃

∇u∇ũdz = F (ũ) = 0. (60)

We have via Caccioppoli type argument that

‖∇u‖2L2(Ω̃\ω̃x,k) ≤
∫

Ω̃\ω̃x,k−l−2

ηk,lx |∇u|2dz (61)

≤
∫

Ω̃\ω̃x,k−l−2

∇u
(
∇(ηk,lx u)− u∇ηk,lx

)
dz. (62)

Using the fact that ĨH(u) = 0, estimate (59), and the relation (60) we have

‖∇u‖2L2(Ω̃\ω̃x,k) ≤
∫

Ω̃\ω̃x,k−l−2

∇u(∇(ηk,lx u)− ũ)dz

−
∫

Ω̃\ω̃x,k−l−2

∇u(u− ĨH(u))∇ηk,lx dz

. C1l
−1‖∇u‖2L2(Ω̃\ω̃x,k−l−2)

+ (lH)−1‖∇u‖L2(Ω̃\ω̃x,k−l−2)

∥∥∥u− ĨH(u)
∥∥∥
L2(Ω̃\ω̃x,k−l−2)

. l−1C2‖∇u‖2L2(Ω̃\ω̃x,k−l−2).

On the last term we used the projection estimate (10) and here C2 . (C1 + CIH ). Note here that this C is
the benign constant from the estimate of ∇ηk,jx . Taking l = dC2ee and successive applications of the above
estimate yields

‖∇u‖2L2(Ω̃\ω̃x,k) ≤ e
−1‖∇u‖2L2(Ω̃\ω̃x,k−l−2)

≤ e−b
k−1
l+2 c‖∇u‖2L2(Ω̃\ω̃x,1) ≤ e

−b k
l+2 c‖∇u‖2L2(Ω̃).

Finally, taking θ = e
− 1
dC2ee+2 yields the result. �

We now are ready to state our result on the error introduced from localization. The heart of this argument
is to estimate the error between the truncated corrector Qk constructed, after summing over x from (15)
and the ideal corrector when k is large enough so that we obtain QΩ̃.

Lemma C.3 Let uH ∈ ṼH , let Qm be constructed from (15), and QΩ̃ defined to be the "ideal" corrector
without truncation, then∥∥∇(QΩ̃(uH)−Qm(uH))

∥∥
L2(Ω̃)

≤ m d
2C4θ

m
∥∥∇QΩ̃(uH)

∥∥
L2(Ω̃)

, (63)

with C3 . (1 + C1 + CIH ) . (CinvCP )3/2 and C4 = C3(1 + C2
1 )

1
2 . (CinvCP )3.

Proof Recall that Qm(uH) =
∑
x∈NH Qx,m(uH) with∫

ω̃x,m

∇Qx,m(uH)∇wdz =

∫
ω̃x

λ̂x∇uH∇w, dz for all w ∈ Ṽ f (ω̃x,m). (64)

For all x ∈ NH , and letting Fx(w) :=
∫

Ω̃
λ̂x∇uH∇wdz. Note that for w ∈ Ṽ f (Ω̃\ω̃x), we have Fx(w) = 0. Let

x ∈ NH and choose a x′ ∈ NH such that ω̃x′ ∩ ω̃x 6= ∅. We have ω̃x ⊂ ω̃x′,1 and so Ṽ f (Ω̃\ω̃x′,1) ⊂ Ṽ f (Ω̃\ω̃x).
Thus, Fx satisfies the conditions of Lemma C.2.
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Choosing k ≥ m, we have that ω̃x′,k ⊂ ω̃x,m. We denote v = QΩ̃(uH) − Qm(uH)) ∈ Ṽ f , subsequently
ĨH(v) = 0. Taking the cut-off function ηk,1x′ we have

‖∇v‖2L2(Ω̃) =
∑
x∈NH

∫
Ω̃

∇(Qx,Ω̃(uH)−Qx,m(uH))∇(v(1− ηk,1x′ ))dz (65)

+
∑
x∈NH

∫
Ω̃

∇(Qx,Ω̃(uH)−Qx,m(uH))∇(vηk,1x′ )dz. (66)

Estimating the right hand side of (65) for each x we have∫
Ω̃

∇(Qx,Ω̃(uH)−Qx,m(uH))∇(v(1− ηk,1x′ ))dz

≤
∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))

∥∥∥
L2(Ω̃)

∥∥∥∇(v(1− ηk,1x′ ))
∥∥∥
L2(ω̃x′,k)

≤
∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))

∥∥∥
L2(Ω̃)

(
‖∇v‖L2(ω̃x′,k) +

∥∥∥v∇(1− ηk,1x′ ))
∥∥∥
L2(ω̃x′,k\ω̃x′,k−1)

)
≤
∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))

∥∥∥
L2(Ω̃)

(
‖∇v‖L2(ω̃x′,k) + CH−1

∥∥∥v − ĨH(v)
∥∥∥
L2(ω̃x′,k\ω̃x′,k−1)

)
≤
∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))

∥∥∥
L2(Ω̃)

(1 + CCIH ) ‖∇v‖L2(ω̃x′,k+1).

As in the proof of Lemma C.2, ṽ = ηk,1x′ v − ĨH(ηk,1x′ v) ∈ Ṽ f (Ω̃\ω̃x′,k−3). Letting m be large enough so that
k ≥ 4, then ṽ ∈ Ṽ f (Ω̃\ω̃x) and so we have∫

Ω̃

∇(Qx,Ω̃(uH)−Qx,m(uH))∇ṽdz = 0. (67)

We have now the estimate for (66) for x ∈ NH using the above identity and (59)∫
Ω̃

∇(Qx,Ω̃(uH)−Qx,m(uH))∇(vηk,1x′ − ṽ)dz

≤
∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))

∥∥∥
L2(Ω̃)

∥∥∥∇(vηk,1x′ − ṽ)
∥∥∥
L2(Ω̃)

≤
∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))

∥∥∥
L2(Ω̃)

C1‖∇v‖L2(ω̃x′,k+2)

Combing the estimates for (65) and (66) we obtain

‖∇v‖2L2(Ω̃) ≤
∑
x∈NH

∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥
L2(Ω̃)

(1 + CCIH ) ‖∇v‖L2(ω̃x′,k+1)

+
∑
x∈NH

∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥
L2(Ω̃)

C1‖∇v‖L2(ω̃x′,k+2)

≤
∑
x∈NH

∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥
L2(Ω̃)

(1 + C1 + CCIH )‖∇v‖L2(ω̃x′,k+2)

≤ k d2C3

( ∑
x∈NH

∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥2

L2(Ω̃)

) 1
2

‖∇v‖L2(Ω̃), (68)

supposing the #{x ∈ NH |ω̃x ⊂ ω̃x′,k+2} ≤ k
d
2 , as is guaranteed by quasi-uniformity of the coarse grid.

Here we have C3 = (1 + C1 + CCIH ). To estimate
∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))

∥∥∥
L2(Ω̃)

we use the Galerkin
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orthogonality of the local problem, that is∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥
L2(Ω̃)

≤ inf
q∈Ṽ f (ω̃x′,k)

∥∥∥∇(Qx,Ω̃(uH)− q)
∥∥∥
L2(Ω̃)

. (69)

Taking qx = (1− ηk,1x′ )Qx,Ω̃(uH)− ĨH((1− ηk,1x′ )Qx,Ω̃(uH)) ∈ Ṽ f (ω̃x′,k), we have∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥2

L2(Ω̃)
≤
∥∥∥∇(ηk,1x′ Qx,Ω̃(uH)− ĨH((1− ηk,1x′ )Qx,Ω̃(uH)))

∥∥∥2

L2(Ω̃)

≤
∥∥∥∇Qx,Ω̃(uH)

∥∥∥2

L2(Ω̃\ω̃x′,k−2)
+
∥∥∥∇(ĨH((1− ηk,1x′ )Qx,Ω̃(uH)))

∥∥∥2

L2(Ω̃)
.

Using Lemma C.1 and Lemma C.2 on the second term we arrive at∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥2

L2(Ω̃)
≤
∥∥∥∇Qx,Ω̃(uH)

∥∥∥2

L2(Ω̃\ω̃x′,k−2)
+ C2

1

∥∥∥∇Qx,Ω̃(uH))
∥∥∥2

L2(ω̃x′,k+2\ω̃x′,k−3)

≤ (1 + C2
1 )
∥∥∥∇Qx,Ω̃(uH)

∥∥∥2

L2(Ω̃\ω̃x′,k−3)

≤ (1 + C2
1 )θ2(k−3)

∥∥∥∇Qx,Ω̃(uH)
∥∥∥2

L2(Ω̃)

≤ (1 + C2
1 )θ2m

∥∥∥∇Qx,Ω̃(uH)
∥∥∥2

L2(Ω̃)
.

Combining this estimate into (68) we arrive at the final estimate that

‖∇v‖L2(Ω̃) ≤ k
d
2C3

( ∑
x∈NH

∥∥∥∇(Qx,Ω̃(uH)−Qx,m(uH))
∥∥∥2

L2(Ω̃)

) 1
2

≤ k d2C3

( ∑
x∈NH

(1 + C2
1 )θ2m

∥∥∥∇Qx,Ω̃(uH)
∥∥∥2

L2(Ω̃)

) 1
2

≤ m d
2C4θ

m
∥∥∇QΩ̃(uH)

∥∥
L2(Ω̃)

.

Here we used QΩ̃ =
∑
x∈NH Qx,Ω̃ and denoted C4 = C3(1 + C2

1 )
1
2 . �
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