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Abstract. In this paper, we will discuss the discretization error for the regression setting and derive error bounds
relying on the approximation properties of the discretized space. Furthermore, we will point out how the sampling
error and the discretization error interact and how they can be balanced appropriately. We will present two examples
based on tensor product spaces (sparse grids, hyperbolic crosses) which provide a suitable approach in the case of
large sample sets in moderate dimensions.
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1. Introduction. Recent developments in mathematical learning theory [9],[18],[37]
led to successful function regression algorithms and manifold learning methods such as sup-
port vector machines, kernel principal component analysis or principal manifold learning, see
e.g. [19],[25],[31]. Here, error estimates for function regression as introduced in [8] rely on
the approximation properties of the underlying function spaces. While there exist universal
methods and error bounds for which the associated search set is not restricted to a subset of
continuous functions, compare [2],[3],[24], most theory and algorithms rely on search sets
that are subsets of reproducing kernel Hilbert spaces (RKHS). A thorough discussion of the
error behaviour for regression in an RKHS can be found in [9].

The main advantage of reducing the search set to a subset of a reproducing kernel Hilbert
space is the well-posedness of the underlying minimization problem. This is due to the com-
pactness of the employed subsets in the space of continuous functions on a bounded domain.
Furthermore, estimates for bounds on the sampling error in terms of covering numbers of
compact search sets are available. Moreover, compactness is sufficient but not necessary
for bounds on rates of convergence of the sampling error. Thus, there are also approaches
based on non-compact function sets that fulfill the uniform Glivenko-Cantelli property, see
e.g. [30],[40], which characterizes function sets with uniform sampling error convergence.

In a setting where we do not know the kernel function at all or where we do not have
access to a closed form of the kernel function (e.g. for infinite series kernels), a discretized
version of the RKHS must be used for the algorithm, see e.g. [17]. For the case of a large
number of samples n a discretization of the search space is a way to get rid of the cubic
costs with respect to n which standard kernel methods usually suffer from. Note that such
a discretization does not necessarily lead to sample-dependent RKHS as in e.g. [39]. In our
setting arbitrary discretizations of the kernel space can be used. Of course this introduces
a certain discretization error which has to be controlled. This is in general not an easy task
when norm-regularization of the corresponding minimization functional is considered.

In this paper, we will show how to account for the discretization error by using a-priori
knowledge on the convergence rate of best approximation or interpolation errors with respect
to the discretization level.1 For specific settings there exist first results on the convergence
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behaviour when increasing the discretization level, see e.g. [12],[23],[27],[41]. More general
approaches for squared `2 loss can be found in [7],[18],[32],[34]. Note however that spe-
cific convergence rates for the error have just been estimated for balls in infinite-dimensional
Hilbert spaces or whole finite-dimensional spaces as search sets. Up to now only abstract
results for balls in a finite-dimensional vector space can be found. Our results for the squared
`2 loss-function can be seen as a specific instance of Theorem 3 from [7] with additional
smoothness regularization or as versions of Theorem 4.1 from [32] and Theorem 1.5 from
[34] with specific decay rates for the error. The more general concept of the distances be-
tween compact sets and L2 is substituted in our version by the best approximation error in
L2 of finite-dimensional spaces Vh under the premise that the search set is a ball in Vh of
sufficiently large radius. Furthermore, we relax the prerequisite on functions from the search
set by using embedding norms instead of a fixed L∞-bound (which would imply the so-called
M-boundedness), see e.g. [9].

Our main result shows that the discretization error, measured in the so-called regression
functional E to be minimized, can be estimated from above by the best approximation error
in a certain L2 Bochner space, i.e. we have

E ( fVh,b)−E ( f̂ )≤C(b) inf
f∈Vh
‖ f − f̂‖L2,ρT (T ;Rd)

if b is appropriately coupled to the discretization level. Here, fVh,b denotes the minimizer of
E in the ball of radius b in the finite-dimensional space Vh and f̂ denotes a minimizer over
L2. For the case of a squared `2 loss function in the error functional we even get a bound
which depends quadratically on the best approximation error. This error estimate can easily
be applied to discretized settings as in [4],[29]. There, sparse grid regression algorithms are
introduced to deal with large sample sizes and circumvent the curse of dimensionality, i.e. the
exponential growth of the computational costs with respect to the space dimension. Since
no convergence rates have been derived for general sparse grid regression algorithms yet, we
provide a detailed analysis of this case and show how to establish upper bounds for the overall
convergence rate. As regression is closely connected to classification and density estimation,
our general framework can, after a slight modification of the minimization functional, also
be applied to discretized classification, see e.g. [21], and discretized density estimation, see
e.g. [14],[38].

The outline of this paper is as follows: In section 2 we shortly review the minimization
problem for (vector-valued) multivariate regression. Furthermore, we derive some useful
properties of the error functional. In section 3 the splitting of the overall error into bias and
sampling error (commonly used for regression, see e.g. [9]) is introduced. We discuss the
relation of interpolation spaces and the bias for infinite-dimensional search sets in subsection
3.1. The case of finite-dimensional search sets and the induced discretization error is treated
in subsection 3.2. Section 4 illustrates how an application of Hoeffding’s inequality leads to
an upper bound for the sampling error. In section 5 we comment on the specific settings of
regression with piecewise linear ansatz functions and of regression with Fourier polynomials
and apply our error bounds to the corresponding discretization spaces. There, we also discuss
a proper balancing of the different error terms. Section 6 contains some concluding remarks.

2. Function regression. In this section, we introduce the general vector-valued function
regression problem. Here, the measure underlying the data will be denoted by ρ . A short
overview of the relevant functions and spaces/sets can be found in Table 1.

Let T ⊂ Rm be a compact domain (or manifold) and let µ be a measure on T . Further-



Regression on discretized function spaces 3

TABLE 1
Overview of relevant functions and spaces/sets for regression.

L2,ρT (T ;Rd) L2 Bochner space with measure ρT

H ⊂ L2,ρT (T ;Rd) infinite-dimensional Banach space, continuously
embedded into C(T ;Rd)

Hb ⊂H closed ball of radius b in H centered at 0 w.r.t. the
norm ‖ · ‖H

Vh ⊂ L2,ρT (T ;Rd) finite-dimensional Banach space, continuously
embedded into C(T ;Rd)

Vh,b ⊂Vh closed ball of radius b in Vh centered at 0 w.r.t. the
norm ‖ · ‖Vh

f̂ ∈ L2,ρT (T ;Rd) minimizer of (2) in L2,ρT (T ;Rd)

fW ∈W ⊂ L2,ρT (T ;Rd) minimizer of (2) in W
fZn,W ∈W ⊂ L2,ρT (T ;Rd) minimizer of (9) in W

more, let

(1) Lp,µ(T ;Rd) :=

{
f : T → Rd | ‖ f‖Lp,µ (T ;Rd) :=

(∫
T
‖ f (t)‖p

`2
dµ(t)

) 1
p

< ∞

}
denote the Bochner space of Rd-valued functions for 1≤ p≤ ∞ with the usual modification

‖ f‖L∞,µ (T ;Rd) := inf
{

a≥ 0 | µ({t ∈ T | ‖ f (t)‖`2 > a}) = 0
}
< ∞

for the case p = ∞. A general multivariate function regression problem then reads as follows:

(2) Find f̂ := arg min
f∈L2,ρT (T ;Rd)

E ( f ) with E ( f ) :=
∫

T×Rd
ψ( f (t),x) dρ(t,x).

Here, ρ is a probability measure on the Borel algebra of T ×Rd for which the marginal
measure

ρT (·) := ρ(·,Rd)

with respect to T and the conditional measure

ρ(x|t) :=
ρ(t,x)
ρT (t)

with respect to t are also probability measures. Furthermore, ψ : Rd×Rd → [0,∞) is a fixed
cost function which penalizes large distances between the two input vectors. Therefore, for a
specific f ∈ L2,ρT (T ;Rd), the value ψ( f (t),x) can be interpreted as the error which is made
by using f to generate x from a given t. Integrating over T×Rd we obtain E , which resembles
the average error modelled by ψ . The measure ρ resembles the significance of the data,
i.e. how likely it is that a specific t should be matched to a specific x. Since we are looking
for a function which best describes the interplay between t and x (drawn according to ρ) on
average, (2) suits our purpose. Throughout this paper we will be interested in estimating the
error E ( f )−E ( f̂ ) for a given function f ∈ L2,ρT (T ;Rd) which is either analytically defined
or has been computed by an algorithm. Therefore, the difference2 E ( f )−E ( f̂ ) indicates how
close E ( f ) is to the true minimum E ( f̂ ).

2In other settings, e.g. if one estimates the density ρ directly, another error measure such as the Kullback-Leibler
divergence or a other divergences might be more appropriate here.
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For the remainder of this paper we assume that

(3) ψ(x,y) = ψ̃(x−y)

for an even and convex function ψ̃ , which fulfills the following weakened Lipschitz condition:
For each M̃ > 0, there exists a C > 0 such that

(4) |ψ̃(x1)− ψ̃(x2)| ≤C‖x1−x2‖`2 .

for all x1,x2 ∈ Rd with max
(
‖x1‖`2 ,‖x2‖`2

)
≤ M̃. The so-called ε-insensitive loss function

ψ(x,y) =
{
‖x−y‖`2 − ε if ‖x−y‖`2 > ε

0 else

is an example for a cost function which fulfills these requirements and is often used in ma-
chine learning, see e.g. [31, 37]. While most of our results hold for a much larger class of
cost functions, the Lipschitz-property is needed to establish the results of section 3.

Another widely used cost function is the squared norm

(5) ψ(x,y) = ‖x−y‖2
`2
,

which also fulfills the above requirements since

‖x1‖2
`2
−‖x2‖2

`2
=
(
‖x1‖`2 +‖x2‖`2

)(
‖x1‖`2 −‖x2‖`2

)
≤ 2M̃

(
‖x1‖`2 −‖x2‖`2

)
≤ 2M̃‖x1−x2‖`2

holds if max
(
‖x1‖`2 ,‖x2‖`2

)
≤ M̃. Thus, C = 2M̃ is a valid choice in (4).

We assume3 that there exists an r > 0 such that

(6) ρ(T ×Ud
r (0)) = 1

where Ud
r (0) denotes the open `2-ball of radius r with center 0 in Rd . Then, it can easily be

seen that

(7) fρ(·) :=
∫
Rd

x dρ(x|·) ∈ L∞,ρT (T ;Rd)⊂ L2,ρT (T ;Rd).

Therefore, for the choice (5), fρ is a solution to (2) and we have f̂ = fρ .
In real-world applications the measure ρ is however unknown and we only have access

to a set Zn of finitely many sample points

(8) Zn := ((ti,xi))
n
i=1 ∈

(
T ×Rd

)n

which we assume to be drawn independently and to be distributed according to ρ . Let us
introduce the new measures

δZn :=
1
n

n

∑
i=1

δti,xi and δt :=
1
n

n

∑
i=1

δti

3Note that this condition can be relaxed to∫
Rd
‖x‖`2 dρ(x|t)≤ r ∀ t ∈ T

if we assume the so-called M-boundedness, which is introduced in section 4, see e.g. [9] for this case.
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on T ×Rd and T , respectively. Here δti,xi is the usual Dirac measure centered in (ti,xi) ∈
T ×Rd and δti is the Dirac measure centered in ti ∈ T . Then, substituting ρ by δZn , the
regression problem for a finite sample set (8) reads as follows:

(9) Find arg min
f∈L2,ρT (T ;Rd)

EZn( f ) where EZn( f ) :=
1
n

n

∑
i=1

ψ( f (ti),xi).

In the following, we will rely on the Lipschitz continuity of the functionals E and EZn

which relies on the Lipschitz continuity of ψ̃ .

LEMMA 1. Let f1, f2 be such that ‖ fi‖L∞,ρT (T ;Rd) ≤ M for i = 1,2 and let C > 0 be a

constant such that (4) holds for the norm bound M̃ := M+ r with r from (6). Then

(10) |E ( f1)−E ( f2)| ≤C‖ f1− f2‖L1,ρT (T ;Rd) ≤C‖ f1− f2‖L2,ρT (T ;Rd)

and

(11) |EZn( f1)−EZn( f2)| ≤C‖ f1− f2‖L1,δt (T ;Rd) ≤C‖ f1− f2‖L2,δt (T ;Rd).

Proof. Since max
(
‖ f1(t)−x‖`2 ,‖ f2(t)−x‖`2

)
≤M+ r for i = 1,2 and ρ-almost every

t and x, we have

|E ( f1)−E ( f2)| ≤
∫

T×Rd
|ψ( f1(t),x)−ψ( f2(t),x)| dρ(t,x)

≤C
∫

T×Rd
‖ f1(t)− f2(t)‖`2dρ(t,x)

=C
∫

T
‖ f1(t)− f2(t)‖`2

∫
Rd

dρ(x|t)dρT (t)

=C
∫

T
‖ f1(t)− f2(t)‖`2 dρT (t)

=C‖ f1− f2‖L1,ρT (T ;Rd).

Jensen’s inequality then yields ‖ f1− f2‖L1,ρT (T ;Rd) ≤ ‖ f1− f2‖L2,ρT (T ;Rd) for all f1− f2 ∈
L1,ρT (T ;Rd) which finally shows (10).

The proof for the inequality (11) works analogously: We have

|EZn( f1)−EZn( f2)| ≤
1
n

n

∑
i=1
|ψ( f1(ti),xi)−ψ( f2(ti),xi)|

≤ C
n

n

∑
i=1
‖ f1(ti)− f2(ti)‖`2 =C‖ f1− f2‖L1,δt (T ;Rd).

Applying Jensen’s inequality to ‖ f1− f2‖L1,δt (T ;Rd) gives the final result (11).

In most papers, the bound M - and thus also M̃ - is assumed to be fix. We will here
discuss both, the case of fixed M and the case where we only rely on norm bounds in the
corresponding search set instead. We suggest the second approach to reflect the situation in
specific regression algorithms more appropriately, since there a fixed bound on the L∞ norm
is usually not present in the first place.

We now derive another representation of E ( f )−E ( fρ) for the specific cost function (5).

LEMMA 2. Let f ∈ L2,ρT (T ;Rd) and let ψ(x,y) = ‖x−y‖2
`2

, cf. (5). Then

(12) |E ( f )−E ( fρ)|= ‖ f − fρ‖2
L2,ρT (T ;Rd)

.
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Proof. It holds

E ( f ) =
∫

T×Rd
‖ f (t)− fρ(t)+ fρ(t)−x‖2

`2
dρ(t,x)

=
∫

T×Rd
‖ f (t)− fρ(t)‖2

`2
dρ(t,x)+

∫
T×Rd

‖ fρ(t)−x‖2
`2

dρ(t,x)

+
∫

T×Rd
2〈 f (t)− fρ(t), fρ(t)−x〉dρ(t,x)

= ‖ f − fρ‖2
L2,ρT (T ;Rd)

+E ( fρ)+2
∫

T×Rd
〈 f (t)− fρ(t), fρ(t)−x〉dρ(t,x).

Here, 〈·, ·〉 denotes the standard scalar product in Rd . Note that the last summand is zero
because of the definition of fρ . Therefore (12) is proven.

3. The Bias. We now further decompose the overall error into its bias error part and its
sampling error part.

The original task was to solve the minimization problem (2) for f ∈ L2,ρT (T ;Rd). How-
ever, since we deal with point evaluations of functions in (9), it makes sense to restrict our
search to a space which is continuously embedded into the space C(T ;Rd) of vector-valued
continuous functions equipped with the maximum norm ‖ f‖∞ := supt∈T ‖ f (t)‖`2 . For an ac-
tual implementation of a minimization algorithm, the search set is then often restricted to a
bounded ball in this search space. To this end, we have to distinguish two cases: First, we
may consider an infinite-dimensional search space H which is dense in L2,ρT (T ;Rd). For
this case some results on the bias are already known in the literature. For the sake of com-
pleteness, we will recap them in subsection 3.1. Then, in subsection 3.2 we consider the case
of a finite-dimensional search space Vh. Note here that the known results from subsection 3.1
cannot be applied. We therefore will derive new results on the bias in this case.

3.1. Infinite-dimensional search spaces. Most concepts introduced in this section fol-
low [8],[9]. We assume that (H ,‖ · ‖H ) is an infinite-dimensional Banach space which is
dense in L2,ρT (T ;Rd) and fulfills the relation

(13) H ⊂C(T ;Rd)⊂ L∞,ρT (T ;Rd)⊂ L2,ρT (T ;Rd).

Furthermore, we assume that all embeddings

(H ,‖ · ‖H ) ↪→ (C(T ;Rd),‖ · ‖∞)(14)
↪→ (L∞,ρT (T ;Rd),‖ · ‖L∞,ρT (T ;Rd)) ↪→ (L2,ρT (T ;Rd),‖ · ‖L2,ρT (T ;Rd))

are continuous.4 In addition to reproducing kernel Hilbert spaces, we can here also incorpo-
rate certain Banach spaces, e.g. Sobolev spaces with respect to the Lp norm for p 6= 2. More
information on reproducing kernel Hilbert spaces of vector-valued functions and operator-
valued kernels can be found in [26].

4 Note that this assumption is not only fulfilled by reproducing kernel Hilbert spaces, but also by any space which
is continuously embedded into an RKHS. To this end, let G be an RKHS with norm ‖ · ‖G and let the embedding
(H ,‖ · ‖H ) ↪→ (G ,‖ · ‖G ) be continuous. Then, for any probability measure µ it holds

‖g‖L2,µ (T ;Rd ) ≤ ‖g‖L∞,µ (T ;Rd ) ≤ ‖g‖∞ ≤ sup
t∈T

√
‖K(t, t)‖2‖g‖G ≤ cH ,G sup

t∈T

√
‖K(t, t)‖2‖g‖H

for all g ∈H . Here, cH ,G denotes the operator norm of the continuous embedding id : H ↪→ G , K : T × T →
L (Rd ,Rd) denotes the reproducing kernel of G and ‖ · ‖2 is the operator norm for matrices in Rd×d .
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We now employ the bounded ball

Hb := { f ∈H | ‖ f‖H ≤ b}

as our actual search set. Thus, we encounter the specific situation

(15) Hb ⊂H ⊂C(T ;Rd)⊂ L∞,ρT (T ;Rd)⊂ L2,ρT (T ;Rd),

compare (13).5 From now on, we assume that Hb is a compact subset of C(T ;Rd). Using
the Arzela-Ascoli Theorem, one can show that this assumption is fulfilled for a reproducing
kernel Hilbert space, see e.g. section 2.6 of [9]. For a continuously embedded subspace H
of an RKHS we obtain the compactness of Hb if it is closed with respect to ‖ · ‖∞. The
restriction to Hb corresponds to a specific regularization which eliminates the ill-posedness6

of the original problems (2) and (9).

PROPOSITION 3. Let b > 0. The minimizers to (2) and (9) exist if we restrict the search
set to Hb.

Proof. Note that

‖ f‖L∞,ρT (T ;Rd) ≤ cH ,C(T ;Rd)‖ f‖H ≤ b · cH ,C(T ;Rd)

for all f ∈Hb, where cH ,C(T ;Rd) is the corresponding embedding constant. Therefore, the
error functionals E and EZn are Lipschitz-continuous on Hb with respect to the L2,ρT (T ;Rd)
norm or the L2,δt(T ;Rd) norm, respectively, see Lemma 1. Thus, they are also Lipschitz-
continuous on C(T ;Rd). Due to the compactness of Hb in C(T ;Rd) for every b > 0 we
obtain existence of the minimizers of E over Hb and EZn over Hb.

Here, b > 0 is a free parameter. To fix our notation, let fHb be a minimizer of (2) where the
search set is restricted to Hb. Then, we can write the so-called bias as

(16) E ( fHb)−E ( f̂ )

which is a measure for the error that occurs due to the restriction of the search set from
L2,ρT (T ;Rd) to Hb.

Next, let us define the interpolation space (X ,Y )
ζ

of a Banach space X and a subspace
Y ⊂ X for ζ ∈ (0,1). Following [28], this is the space which consists of all functions g ∈ X
with

‖g‖ζ := sup
t>0

K(g, t)
tζ

< ∞,

where the so-called K-functional is defined by

K(g, t) := inf
h∈Y

(‖g−h‖X + t‖h‖Y ).

Observe here that the value of the K-functional approaches the best approximation error
infh∈Y ‖g− h‖X for small t. Therefore, the norm ‖ · ‖ζ expresses the decay properties of
this best approximation error.

As the embedding H ↪→ L2,ρT (T ;Rd) is continuous, see (14), we have the following
result: Error bounds for the bias are determined by the largest 1 > ζ > 0 such that f̂ is an
element of the interpolation space

(
L2,ρT (T ;Rd),H

)
ζ

, see [9]. More precisely, the following
theorem holds.

5There also exist results on the minimization in the L2,ρT -setting, see e.g. [2],[24]. We restrict ourselves here to
the more practical situation where the search set is a compact (in C(T ;Rd)) ball in H .

6If f̂ ∈ L2,ρT (T ;Rd), e.g. for the cost function (5), the problem (2) is already well-posed and only the discrete
sample problem (9) has to be regularized.
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THEOREM 4. Let f̂ ∈ L∞,ρT (T ;Rd) be a minimizer of (2) and let ψ be a cost function as
in (3). Let furthermore C be the constant from Lemma 1 for M = max f∈Hb∪{ f̂} ‖ f‖L∞,ρT (T ;Rd).

If f̂ ∈
(
L2,ρT (T ;Rd),H

)
θ

θ+2
for a θ ∈ (0,∞), we obtain

(17) E ( fHb)−E ( f̂ )≤C‖ f̂‖
θ+2

2
θ

θ+2
·b−

θ
2

Furthermore, for the cost function ψ(x,y) = ‖x−y‖2
`2

, see (5), we have the following equiv-
alence:

(18) f̂ ∈
(

L2,ρT (T ;Rd),H
)

θ

θ+2

⇔ E ( fHb)−E ( f̂ )≤ ‖ f̂‖θ+2
θ

θ+2
·b−θ < ∞.

Proof. The statement (17) follows directly from Lemma 1 and Theorem 4.16 of [9]. In
the special case ψ(x,y) = ‖x− y‖2

`2
we have f̂ = fρ and the proof of (18) follows from

Lemma 2 and Theorem 4.16 of [9].

For a reproducing kernel Hilbert space, the convergence rate of the bias (for b→ ∞) is there-
fore mainly governed by the decay of the eigenvalues of the kernel’s integral operator. For
more details, we refer to [10] for an introduction to interpolation spaces and to [9] for details
on the connection between these spaces and the bias.

Note that C in Theorem 4 might depend on b. Thus, assuming that C ∼ bκ for some
κ > 0, the exponent of the rate in (17) becomes − θ

2 +κ compared to −θ as in (18) for the
squared `2 costs.

3.2. The discretization error. To be able to solve the minimization problem (9) over
Hb on a computer, we consider a further restriction of the search space to a finite-dimensional
space Vh. This can be understood as solving a different, finite-dimensional problem instead of
considering a minimization over Hb. Alternatively, we could consider Vh as a discretization
to H . Here, the subscript h refers to the mesh-width or, more generally, to the approximation
properties of the finite-dimensional space. Then, as we will point out later in this section, we
cannot rely on the bounds for the bias we derived in section 3.1 when dealing with finite-
dimensional search spaces.

To be precise, similarly as in the infinite-dimensional case, Vh is a (finite-dimensional)
normed subspace of C(T ;Rd). Let us denote a ball in Vh by

Vh,b = { f ∈Vh | ‖ f‖Vh ≤ b}.

Here, ‖ · ‖Vh serves as regularization norm,7 which is allowed to depend on the discretization
parameter h. We assume that the embedding Vh ↪→C(T ;Rd) is continuous with embedding
constant

cVh := ‖id : Vh ↪→C(T ;Rd)‖L (Vh,C(T ;Rd)),

where ‖ · ‖L (X ,Y ) is the standard norm for linear operators from X to Y . Thus Vh,b is a
compact subset of C(T ;Rd) and we have

Vh,b ⊂Vh ⊂C(T ;Rd)⊂ L∞,ρT (T ;Rd)⊂ L2,ρT (T ;Rd).

The restriction to the set Vh,b in the finite-dimensional space Vh introduces an associated
bias, see section 3.1. As we now deal with finite-dimensional search spaces, we call this bias

7Later on, for the examples in this paper, we will only use the Sobolev norm of mixed smoothness of order 1,
i.e. ‖ · ‖Vh = ‖ · ‖H1

mix
, which is independent of h anyway.
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“discretization error”. A straightforward way to account for this discretization error would
be to apply results from interpolation theory. Let us discuss this approach shortly: Since
dim(Vh) < ∞, the space Vh corresponding to the search set Vh,b is no longer dense in L2,ρT .
Thus, the known results from Theorem 4 are no longer useful. This is due to the fact that
the K-functional for the pair

(
L2,ρT ,Vh

)
cannot approach zero for t → 0 if the considered

function f̂ is not an element of Vh. Therefore, f̂ is not an element of the interpolation space(
L2,ρT ,Vh

)
θ

2+θ

for any θ > 0 and we cannot derive a convergence rate for this new bias with
the conventional methods from section 3.1.

To deal with our discretization error we could employ a result from [32]. There, it was
shown that for certain sequences of linear operators Ln : L2,ρT →H , n> 0, for which specific
Jackson and Bernstein inequalities hold, there exists n0 > 0 such that the error f̂ −Ln f̂ is
dominated by the bias E ( fHb)−E ( f̂ ) for all n > n0. This can also be used to incorporate
interpolation or best approximation operators Ln mapping into Vh ⊂H . Although this result
is very general, the spaces Vh have to be a subset of the space H , i.e. the space for which
a Jackson inequality is provided. In other words, this means that the discretization needs
to be conforming. But since we want to apply our method to e.g. spline spaces on sparse
grids, which are not conforming due to the fact that Vh * H2

mix for a piecewise linear spline
space Vh, we cannot apply the results from [32] directly. The definition of H2

mix and a more
detailed discussion on this subject can be found in section 5.1. We will therefore introduce
a related technique which also relies on Jackson and Bernstein inequalities of certain best
approximation operators but which is not restricted to conforming discretization spaces.

To this end, let us denote the minimizer of (2) over Vh,b by fVh,b and let us denote the
minimizer of (9) over Vh,b by fZn,Vh,b . Note that the existence of these minimizers follows
from Proposition 3 by substituting H by Vh there. As usual, the overall error is decomposed
as

E ( fZn,Vh,b)−E ( f̂ ) = E ( fVh,b)−E ( f̂ )(19)
+ E ( fZn,Vh,b)−E ( fVh,b),

where the first part is the bias/discretization error and the second part describes the sampling
error in the finite-dimensional setting which we deal with in section 4. The basic idea of our
approach is to choose the norm bound b such that

(20) inf
f∈Vh,b

‖ f − f̂‖L2,ρT (T ;Rd) = inf
f∈Vh
‖ f − f̂‖L2,ρT (T ;Rd).

Then, the first part E ( fVh,b)− E ( f̂ ) of (19) can be bounded by the L2-best approximation
error in Vh. Now, the norm bound b influences just the upper bound for the second part
E ( fZn,Vh,b)− E ( fVh,b) of (19). As we will see in section 4, this term grows if b increases.
Therefore, we will choose b as small as possible such that (20) is fulfilled.

We will first prove a Lemma that shows how b has to be chosen with respect to the L2
norm of f̂ .

LEMMA 5. Let Vh be such that the inverse (Bernstein) inequality

(21) ‖ f‖Vh ≤ c(h) ‖ f‖L2,ρT (T ;Rd)

holds for every f ∈Vh. Then, the best L2,ρT (T ;Rd) approximation f BA
h,ρT

from Vh to the function
f̂ fulfills

‖ f BA
h,ρT
‖Vh ≤ c(h) · ‖ f̂‖L2,ρT (T ;Rd)
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Therefore, f BA
h,ρT
∈Vh,b for

(22) b := c(h) · ‖ f̂‖L2,ρT (T ;Rd).

Proof. In the following, we write L2 for L2,ρT (T ;Rd) to simplify notation. Note that
〈 f̂ − f BA

h,ρT
, f BA

h,ρT
〉L2 = 0 since Id−P is orthogonal on Vh for the orthogonal projector P : L2→

Vh. Therefore, it holds

‖ f̂‖2
L2

= ‖ f̂ − f BA
h,ρT

+ f BA
h,ρT
‖2

L2
= ‖ f̂ − f BA

h,ρT
‖2

L2
+‖ f BA

h,ρT
‖2

L2
≥ ‖ f BA

h,ρT
‖2

L2

and we get

(23) ‖ f BA
h,ρT
‖L2 ≤ ‖ f̂‖L2 .

Thus, since f BA
h,ρT
∈Vh, we have with (21)

‖ f BA
h,ρT
‖Vh ≤ c(h)‖ f BA

h,ρT
‖L2 ≤ c(h)‖ f̂‖L2 .

We are now in the position to establish a bound for the discretization error.

THEOREM 6. Let f̂ ∈ L∞,ρT (T ;Rd) solve (2), let b be chosen as in Lemma 5 and let
ψ be a cost function as in (3). Let furthermore C fulfill the prerequisite of Lemma 1 for
M = max f∈Vh,b∪{ f̂} ‖ f‖L∞,ρT (T ;Rd). Then, the discretization error can be bounded by

(24) E ( fVh,b)−E ( f̂ )≤C inf
f∈Vh
‖ f − f̂‖L2,ρT (T ;Rd).

Furthermore, if ψ(x,y) = ‖x−y‖2
`2

we even have

E ( fVh,b)−E ( f̂ ) = inf
f∈Vh
‖ f − f̂‖2

L2,ρT (T ;Rd)
.

Proof. It holds

E ( fVh,b)−E ( f̂ ) ≤ inf
f∈Vh,b

|E ( f )−E ( f̂ )|

Lemma 1
≤ C inf

f∈Vh,b
‖ f − f̂‖L2,ρT (T ;Rd)

Lemma 5
= C inf

f∈Vh
‖ f − f̂‖L2,ρT (T ;Rd),

which proves (24). For the special case ψ(x,y) = ‖x−y‖2
`2

we have f̂ = fρ and thus

E ( fVh,b)−E ( f̂ ) Lemma 2
= inf

f∈Vh,b
‖ f − fρ‖2

L2,ρT (T ;Rd)

Lemma 5
= inf

f∈Vh
‖ f − fρ‖2

L2,ρT (T ;Rd)
.

Note that the prerequisite f̂ ∈ L∞,ρT (T ;Rd) in Theorem 6 is not a severe restriction at all
since f̂ approximates the data which is almost surely bounded by ‖x‖`2 ≤ r anyway, see (6).
Altogether, we have obtained a bound (24) for the discretization error which is determined
by the error of the best approximation in the discretized space Vh and the constant C from
Lemma 1. When estimating the latter, note that we deal in Theorem 6 with functions from
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Vh,b. Therefore, if we do not assume C to be an universal constant the growth of C will be
governed by the behaviour of b. The price we paid to achieve the error bounds of Theorem 6
is the coupling (22) of the norm-bound b to the Bernstein-factor c(h).

From our results we see that we obtain a small error bound for the discretization error if
the L2-best approximation error to f̂ is small for functions in Vh. Therefore, the smoothness
of f̂ has to be exploited by a suitable Jackson inequality. On the other hand, the discretized
sampling error becomes small for small b and small spaces Vh. These relations have to be
taken into account when balancing the two error terms later on.

4. The sampling error. In this section we consider the sampling error in more detail.
Here, we follow [9]. Although we deal with the sampling error for finite-dimensional search
spaces Vh, the concept can also be applied for the case of infinite-dimensional search spaces
H without any changes. We will need an cψ ∈ R+, such that

(25) ψ( f (t),x)≤ cψ

for ρ-almost every (t,x) and every f ∈Vh,b. Here, for the case (5), we can e.g. choose

(26) cψ = (M+ r)2

where M = max f∈Vh,b ‖ f‖L∞,ρT (T ;Rd) denotes the L∞ norm bound of functions in Vh,b. If M is
assumed to be bounded independently of h and b (M-boundedness), i.e.

(27) sup
b>0

max
f∈Vh,b

‖ f‖L∞,ρT (T ;Rd) < ∞,

then cψ is a universal constant. While (27) does not hold for many choices of Vh, this con-
dition could be enforced by considering { f ∈ Vh,b | ‖ f‖L∞,ρT (T ;Rd) ≤ τ} for some constant τ

with ‖ f̂‖L∞,ρT (T ;Rd) ≤ τ < ∞ as search set instead of Vh,b. Without this assumption we achieve

(28) cψ = (cVhb+ r)2

as an upper bound for functions in Vh,b since ‖ f (t)‖`2 ≤‖ f‖∞ ≤ cVh‖ f‖Vh ≤ cVhb and ‖x‖`2 ≤
r for ρ-almost every (t,x). Note that cψ depends quadratically on b without the assumption
of M-boundedness.

As mentioned earlier, we usually do not know the measure ρ but are given only a finite
sample Zn of size n. Therefore, we have to solve (9) over Vh,b instead of (2). This gives rise
to the so-called sampling error

(29) E ( fZn,Vh,b)−E ( fVh,b),

which is just the second part of the error splitting (19).
As we consider functions f ∈ Vh,b ⊂ L2,ρT (T ;Rd) and ψ is continuous on Vh,b, see (4),

we can conclude that ψ( f (·), ·) is a ρ-measurable function. Therefore, for an η > 0, the
application of Hoeffding’s inequality leads to

(30) P [E ( f )−EZn( f )> η ]≤ exp

(
−nη2

2c2
ψ

)
for one particular f . Applying Proposition 3.13 of [9], we obtain8

(31) P

[
sup

f∈Vh,b

|E ( f )−EZn( f )|> η

]
≤N

(
Vh,b,

η

4C
,L∞(T ;Rd)

)
· exp

(
−nη2

8c2
ψ

)
8A result based on the L2 covering number instead of L∞ would be more natural since this reflects the norm in

which the overall error is measured, cf. Lemma 1 and Lemma 2. However, it has been shown in [24] that such a
result cannot hold in full generality.
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where C is the constant from Lemma 1 for M = max f∈Vh,b ‖ f‖L∞,ρT (T ;Rd) and N (X ,ε,Y )
denotes the covering number of X for balls of radius ε measured in the norm of Y . Using this
result, we can now easily derive a bound for the sampling error.

LEMMA 7. Let C be the constant from Lemma 1 for M = max f∈Vh,b ‖ f‖L∞,ρT (T ;Rd) and
let cψ fulfill (25). It holds

(32) P
[
E ( fZn,Vh,b)−E ( fVh,b)> η

]
≤N

(
Vh,b,

η

8C
,L∞(T ;Rd)

)
exp

(
− nη2

32c2
ψ

)
.

Proof. The proof works completely analogously to the proof of Lemma 2 in [8], which
deals with the special case (5) only. To this end, note that

E ( fZn,Vh,b)−E ( fVh,b) = E ( fZn,Vh,b)−EZn( fZn,Vh,b)+EZn( fZn,Vh,b)−EZn( fVh,b)

+ EZn( fVh,b)−E ( fVh,b)

≤ E ( fZn,Vh,b)−EZn( fZn,Vh,b)+EZn( fVh,b)−E ( fVh,b),

since fZn,Vh,b minimizes EZn over Vh,b and therefore EZn( fZn,Vh,b)−EZn( fVh,b)≤ 0. We obtain

P
[
E ( fZn,Vh,b)−E ( fVh,b)≤ η

]
≥ P

[
E ( fZn,Vh,b)−EZn( fZn,Vh,b)≤

η

2

and EZn( fVh,b)−E ( fVh,b)≤
η

2

]
≥ P

[
sup

f∈Vh,b

|E ( f )−EZn( f )| ≤ η

2

]
(31)
≥ 1−N

(
Vh,b,

η

8C
,L∞(T ;Rd)

)
· exp

(
− nη2

32c2
ψ

)
,

which proves (32).

If we use the fact that the set Vh,b is a convex subset of C(T ;Rd)-functions, we can even
get rid of the quadratic dependence on η for the cost function (5), i.e.

(33) P
[
E ( fZn,Vh,b)−E ( fVh,b)> η

]
≤N

(
Vh,b,

η

12√cψ

,L∞(T ;Rd)

)
· exp

(
− nη

300cψ

)
,

see Theorem 3.3 of [9]. Moreover, under the premise that the bias is small enough it can be
shown that we get rid of the quadratic dependence on η also in the case of non-convex search
sets, see Theorem 3.2 of [34].

5. Examples. In this section we will apply the error bounds introduced in the earlier
sections to two example settings. Our first example deals with piecewise linear functions
with compact support on a sparse grid. The second one considers a spectral method with
Fourier polynomials on hyperbolic crosses. Both examples are motivated by the fact that
algorithms which employ finite-dimensional grid-based search sets can overcome the prob-
lem of (quadratic or even) cubic costs with respect to the amount of data points n which
standard data-based approaches inherently suffer from, see chapter 10 of [31]. Therefore,
grid-based search sets are a good alternative to kernel methods especially for the case of
lower-dimensional problems on large data sets. However, conventional grid based methods
encounter the curse of dimensionality, i.e. for an m-dimensional problem the number of de-
grees of freedom of a tensor product grid is of the order of O

(
2Lm
)
, where 2L is the resolution
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in one direction. To circumvent this issue and to be able to deal with moderate-dimensional
(up to m ≈ 20) problems, the sparse grid ansatz space or the hyperbolic cross space, respec-
tively, is chosen instead of the standard full tensor grid. Regression methods based on these
spaces have been successfully applied in the recent years, see e.g. [4],[29].

For both examples we will use the cost function (5), i.e. ψ(x,y) := ‖x− y‖2
`2

. As we
deal with functions from Vh,b when considering the sampling error, we have the upper bound
cψ = (M + r)2 with M = max f∈Vh,b ‖ f‖L∞,ρT (T ;Rd), see (26). Under the condition (27) of M-

boundedness, cψ is an absolute constant. Without this condition, we have cψ = (cVhb+ r)2,
see (28). We will also comment on the specific choices of b, see (22), which are needed to
apply Theorem 6.

After we fixed our grid-based search spaces Vh, we still have the choice of the regular-
ization norm9 ‖ · ‖Vh . Here, several sparsity-inducing norms of the coefficient vectors (e.g.
‖ · ‖`1 ) and gradient-based norms of the functions (e.g. ‖ · ‖H1 ) are only a few of the alterna-
tives that can be found in the literature, see e.g. [1],[12]. For our examples, we deliberately
choose ‖ · ‖Vh to be the H1

mix Sobolev norm of dominating mixed smoothness which will be
introduced in detail in the next subsection. Thus, the embedding constant cVh can be chosen
independently of the discretization parameter h since the norm ‖ · ‖H1

mix(T ;Rd) is uniformly
bounded by ‖ · ‖C(T ;Rd) for any dimension m ∈ N. This is a main advantage of our choice
compared to the standard Sobolev norm ‖ · ‖H1(T ;Rd) for which this only holds for m = 1 due
to the Sobolev embedding theorem. Note that the H1

mix norm fits our first example where we
deal with sparse grids based on piecewise linear functions10, see also [4]. Note furthermore
that the Hs

mix(T ;Rd) norms which will appear in our examples with s > 0 are solely used
to measure the smoothness of the solution f̂ from (2). They must not be confused with the
regularization norm which we have fixed to ‖ · ‖Vh = ‖ · ‖H1

mix
.

5.1. Multivariate regression with piecewise linear basis functions on sparse grids.
First, let us consider a multivariate regression setting with sparse grids which are based
on piecewise linear ansatz functions. To this end, let T = [0,1]m and let ρT = λT be the
Lebesgue measure. For simplicity we will here only deal with the scalar-valued case d = 1,
the vector-valued case works analogously. We denote by Hs

mix(T )⊂ L2(T ) the (Bessel poten-
tial) Sobolev space of mixed smoothness of order s, i.e.

(34) ‖ f‖2
Hs

mix(T )
:= ∑

i∈Nm,‖i‖∞≤s
‖Di f‖2

L2(T )

for s ∈ N. For s /∈ N the norm can be defined as restriction of the norm on the whole space
Rm which measures the decay of coefficients of the Fourier transform F , i.e.

‖ f‖Hs
mix(Rm) := ‖F−1

m

∏
i=1

(1+ |ti|2)
s
2 F f‖L2(Rm),

where ti denotes the i-th coordinate in Rm. Then

(35) ‖ f‖Hs
mix(T )

= inf
g∈Hs

mix(Rm),g|T= f
‖g‖Hs

mix(Rm)

gives a norm for all s ∈ R+ which is equivalent to (34) for s ∈ N. An alternative is the
definition by complex interpolation theory. For details, see [22],[35].

9Note at this point that ‖ ·‖Vh can be chosen quite freely since we deal here with regularization and Vh itself is a
finite-dimensional space anyway.

10For the case of smoother ansatz functions in Vh the choice of Sobolev norms of mixed smoothness of higher
degree is also valid.
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Discretization error. Now we construct a piecewise linear basis for Vh. Here, we de-
cided to use the so-called piecewise linear prewavelets, see [15], because of their L2 stability.
To this end, let us first define the univariate hat functions

(36) φ(x) :=
{

1−|x| if x ∈ [−1,1]
0 else and φl,i(x) := 2

l
2 φ(2l · x− i)|[0,1]

for l ∈ N and i ∈ {0,1, . . . ,2l − 1,2l}. With this definition, we construct the univariate pre-
wavelet basis as follows: Let

γ0,0 := φ0,0, γ0,1 := 2 ·φ0,1−1, γ1,1 := 2 ·φ1,1−1.

For l ≥ 2 let Il :=
{

i ∈ N | 1≤ i≤ 2l−1, i odd
}

and

γl,i :=
1

10
φl,i−2−

6
10

φl,i−1 +φl,i−
6

10
φl,i+1 +

1
10

φl,i+2

for i ∈ Il , i 6= 1,2l−1 and

γl,1 :=−6
5

φl,0 +
11
10

φl,1−
3
5

φl,2 +
1

10
φl,3, γl,2l−1(t) := γl,1(1− x).

The construction of an m-variate prewavelet function is then straightforward via the ten-
sor product

γl,i(t) :=
m

∏
j=1

γl j ,i j(t j),

where l = (l1, . . . , lm) ∈ Nm is the multivariate level and i = (i1, . . . , im) ∈ Nm denotes the
multivariate position index. Now let

(37) Il :=
{

i ∈ Nm
∣∣∣∣ 0≤ i j ≤ 1, if l j = 0

1≤ i j ≤ 2l j −1, i j odd if l j > 0
for all 1≤ j ≤ m

}
.

Then, Wl := span
{

γl,i | i ∈ Il
}

is the so-called hierarchical increment space (or detail space)
of level l. We define

(38) Vl :=
⊕
k≤l

Wk = span{Bl}

with the hierarchical prewavelet basis

Bl :=
{

γk,i | i ∈ Ik,k≤ l
}
,

where k ≤ l has to be understood elementwise. For more details on the construction and the
properties of multivariate prewavelet bases, see [15].

Now we are able to define the sparse grid space of level L > 0 by

(39) Vh =V L :=
⊕

k∈Nm

ζm(k)≤L

Wk ,

where h = 2−L denotes the minimal mesh width. Here, ζm(0) := 0 and

ζm(k) := |k|1−m+
∣∣{ j | k j = 0}

∣∣+1
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for every other k ∈ Nm. This specific definition of ζm guarantees that the resolution of grids
on the boundary is the same as the resolution of grids in the interior of the domain. The
dimension of Vh is bounded from above by

(40) dim(Vh) = 3m ·
(

2L Lm−1

(m−1)!
+O

(
Lm−2))= O

(
2LLm−1) ,

see e.g. [11]. The sparse grid space (39) copes with the curse of dimensionality which is
induced by the dimension m. Note here that a properly adjusted sparse grid space might be
more appropriate if the regression function is known to belong to a mixed smoothness class
of degree larger than 2 or to a mixed smoothness class of varying degrees for different direc-
tions, see [13]. Furthermore, adaptive sparse grids can be employed to deal with non-smooth
solutions. An exhaustive consideration of appropriate sparse grid discretization spaces Vh is
beyond the scope of this paper, but see e.g. [5],[22] for details in this direction.

In [4] the regularization was realized in the Sobolev space of mixed smoothness H1
mix(T ).

Note again that then the embedding constant cVh is bounded from above independently of the
discretization parameter h for arbitrary dimension m.

For the prewavelet basis it is known, see [15], that there exists a cm > 0 depending only
on m such that

‖ f‖Vh ≤ cm2L‖ f‖L2(T )

for all f ∈Vh. Therefore, the Bernstein factor from Lemma 5 can be chosen as c(h)= cmh−1 =
cm2L.

We now apply Lemma 5 and get

(41) ‖ f BA
h ‖Vh ≤ cm2L‖ fρ‖L2(T ) =: b

for the best L2 approximation f BA
h to fρ from Vh. Thus, from Lemma 5 and Theorem 6, we

obtain
E ( fVh,b)−E ( fρ) = inf

f∈Vh
‖ f − fρ‖2

L2(T )
.

The L2 error rate for the approximation of fρ ∈ Hs
mix(T ) for some 0≤ s≤ 2 with piece-

wise linear splines on a sparse grid11 of level L is known to be bounded by

inf
f∈Vh
‖ f − fρ‖L2(T ) ≤ O

(
2−sLLm−1) ,

for L→ ∞, see Theorem 4 of [22]. Note that only the periodic case has been treated there.
However, to prove the result for the non-periodic case just the Riesz-stability of the basis and
specific Jackson and Bernstein inequalities are needed, all of which are fulfilled in our case,
see [5],[15],[16]. Thus, Theorem 4 of [22] also holds.

Sampling error. We employ the bound (33) with functions from the ball Vh,b ⊂Vh, i.e.

P := P
[
E ( fZn,Vh,b)−E ( fVh,b)> η

]
≤N

(
Vh,b,

η

12√cψ

,L∞(T ;Rd)

)
exp
(
− nη

300cψ

)
with cψ from (26). First, we have to provide an upper bound for the covering number. Let us
denote the degrees of freedom in Vh by N := dim(Vh).

11 Note that the spline space spanned by the piecewise linear hat functions on a sparse grid of level L and the
prewavelet space Vh coincide.
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LEMMA 8. For b > 0 bounded away from zero and η > 0 bounded from above there
exists a constant cN such that

N

(
Vh,b,

η

12√cψ

,L∞(T ;R)

)
≤
(

cN cVh
√cψ b

η

)N

.

Proof. We have ‖ · ‖L∞
≤ cVh‖ · ‖Vh for functions in Vh. Therefore, every ε

cVh
covering12

with respect to the Vh norm is an ε covering with respect to the L∞(T ;R) norm and we have

N

(
Vh,b,

η

12√cψ

,L∞(T ;R)

)
≤N

(
Vh,b,

η

12cVh
√cψ

,Vh

)

≤
(

24cVh
√cψ b

η
+1
)N

.

The last inequality13 is proven in Theorem 5.3 from [9]. It holds for any finite-dimensional
Banach space Vh. As b

η
is bounded away from zero there exists a cN such that(

24cVh
√cψ b

η
+1
)N

≤
(

cN cVh
√cψ b

η

)N

.

Note that the prerequisites of Lemma 8 are no restriction for our analysis as we are
interested in the case b→ ∞ and η → 0. Applying the Lemma we have

P≤
(

cN cVh

√
cψ

b
η

)N

exp
(
− nη

300cψ

)
⇔ exp

(
nη

300cψ

)
η

N ≤
(

cN cVh

√
cψ bP−

1
N

)N

⇔ exp(αη)η ≤ β(42)

with α := n
300cψ N and β := cN cVh

√cψ bP−
1
N . Therefore, applying the monotone Lambert

function W : [0,∞)→ [0,∞) defined by

W (t exp(t)) = t

on both sides of (42), we obtain

αη ≤W (αβ )≤max(1, log(αβ ))

⇔ η ≤ 1
α

max(1, log(αβ )) .

The probability P can be interpreted as a function P(η ,N,b,n). Let us now choose 0 < δ < 1
such that the following assumption14 holds: There exists an ε > 0 such that jumps of the

12A subset B⊂ A of points such that for every a ∈ A there exists a b ∈ B which fulfills ‖a−b‖ ≤ δ is called a δ

covering of the set A with respect to the norm ‖ · ‖.
13Note that our estimate for the covering number is not exploiting the fact that the norm ‖ · ‖Vh is stronger than

‖ · ‖L∞
.

14Note that apart from the trivial case where the sampling error is already 0 for most choices of Zn, the assump-
tion of small (or zero) jump sizes for large enough N,b and n is quite natural since E is continuous and the measure
ρ(T ×·) is usually not singular.
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function P along direction η are of size δ − ε or less for large enough N,b and n, i.e. there
exist ε,N0,b0,n0 > 0 such that

(43) lim
η↗η̄

P(η ,N,b,n)− lim
η↘η̄

P(η ,N,b,n)≤ δ − ε ∀ η̄ > 0,N > N0,b > b0,n > n0.

Now let us choose ηδ as the smallest η (depending on N,b,n) such that P(η ,N,b,n) ≤ δ .
Because of assumption (43) we know that

δ − ε ≤ P(ηδ ,N,b,n)≤ δ

and therefore P(ηδ ,N,b,n)−1/N ≤ (δ − ε)−1/N is bounded from above for all N ≥ 1. Alto-
gether we obtain the result that with probability at least 1−δ we have

(44) E ( fZn,Vh,b)−E ( fVh,b)≤ ηδ = O

(
cψ

N
n

max

(
log

(
nbcVh√cψ N

)
,1

))
,

with the factor − log(δ − ε) appearing in the O-constant.
On the assumption that we have M-boundedness, it holds cψ =O(1), see (27). Therefore,

we obtain

ηδ = O

(
N
n

max
(

log
(

bn
N

)
,1
))

.

Substituting b∼ 2L and N ∼ 2LLm−1, see (41) and (40), we get

(45) ηδ = O

(
2LLm−1

n
max

(
log
( n

Lm−1

)
,1
))

.

If we use (28) instead we choose the embedding constant cVh independently of the dis-
cretization since ‖ · ‖Vh = ‖ · ‖H1

mix(T )
. This leads to cψ = O(b2) and b√cψ

= O(1) for b→ ∞.
Thus, (44) becomes

ηδ = O

(
b2 N

n
max

(
log
( n

N

)
,1
))

.

Finally, substituting b∼ 2L and N ∼ 2LLm−1, we get

(46) ηδ = O

(
23LLm−1

n
max

(
log
( n

2LLm−1

)
,1
))

in L and n.

Overall rate. Now we choose the largest 0 < ŝ ≤ 2 such that fρ ∈ H ŝ
mix(T ) ⊂ L2(T ).

Furthermore, let ‖ · ‖Vh be the H1
mix(T ) norm and let b = cm2L‖ fρ‖L2 with a specific constant

cm depending only on m. Then, using the results from the previous subsections, we add
discretization error and sampling error to obtain the rate

(47) E ( fZn,Vh,b)−E ( f̂ ) = O

(
2−2ŝLL2(m−1)+

2LLm−1

n
max

(
log
( n

Lm−1

)
,1
))

under the assumption of M-boundedness, see (27), and the rate

(48) E ( fZn,Vh,b)−E ( f̂ ) = O

(
2−2ŝLL2(m−1)+

23LLm−1

n
max

(
log
( n

2LLm−1

)
,1
))
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without M-boundedness. These rates for the overall error are obtained for L,n→ ∞ by fixing
a confidence 1−δ and using the assumption (43) which leads to a factor − log(δ − ε) in the
O-constant. Here, the first term 2−2ŝLL2(m−1) of (48) resembles the best approximation error
in H ŝ

mix(T ).
Note at this point that another way to estimate the discretization error from above is to

apply Theorem 4.1 of [32]. It gives a rate for the discretization error for any finite-dimensional
space Vh under the assumption that certain Jackson and Bernstein inequalities hold. In the
case of sparse grids, these inequalities can be found in e.g. [22]. Then, Theorem 4.1 of
[32] states that the discretization error can asymptotically be bounded by 2−2ŝL+ε for any
ε > 0. This comes close to our result. However, the theorem requires the discretization to be
conforming, i.e. Vh ⊂ H ŝ

mix(T ) and can not be applied for 3
2 ≤ ŝ ≤ 2 since Vh * H ŝ

mix(T ) for
ŝ≥ 3

2 .
Now, let us consider (47) in more detail. The first term of (47) only depends on the

discretization parameter L and not on the number of data n. It thus converges to 0 with L→∞

for any value of n. But the second term depends on both L and n and may diverge. In the limit
case L,n→∞ it can only go to zero if the maximum in the second term becomes log

(
n

Lm−1

)
.

Then, we have to fulfill the additional, necessary and sufficient condition

(49) 2LLm−1 log
( n

Lm−1

)
!
= o(n)

to achieve convergence of the second term for L,n→ ∞. Note that similar conditions are
derived in [6],[7],[18],[27] for other examples. Most of these results also show that n has to
grow faster (up to a log-factor) than the basis size (in our case 2LL(m−1)) to achieve a stable
and convergent method.

An analogous consideration for (48) leads to the necessary and sufficient condition

(50) 23LLm−1 log
( n

2LLm−1

)
!
= o(n)

to achieve convergence of the second term of (48). Since we did not use M-boundedness here,
we cannot rely on fixed L∞ bounds of the approximant and the scaling of (28) influences the
error bound, see (44). Therefore, the condition (50) is more restrictive than (49).

Balancing the overall error. To balance the overall error we choose L and n such that
the two summands are approximately of equal size. We here omit the computational costs
when balancing the error terms since the mathematical derivation of the optimal choice of n
and L for the corresponding cost-benefit-ratio is quite involved and beyond the scope of this
paper. Let us first consider the rate (47) under the assumption of M-boundedness, see (27).
We will stick to the convergent case and therefore have to couple L and n such that

2−2ŝLL2(m−1) ≈ 2LLm−1

n
log
( n

Lm−1

)
,

which leads to

n≈ 2(1+2ŝ)LL−m+1(log(n)− (m−1) log(L)).

Thus, up to logarithmic factors in the basis size and the amount of sample points, the optimal
scaling is

n≈ 2(1+2ŝ)L.

Substituting this into (47) we obtain an overall rate

E ( fZn,Vh,b)−E ( f̂ )≈O
(

n−
2ŝ

1+2ŝ

)
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up to logarithmic factors. Thus, for the case of maximal smoothness, i.e. ŝ = 2, the resulting
rate is O

(
n−

4
5

)
. Note that this corresponds to the best possible rate which can be achieved at

all since already for the simple case of univariate linear spline functions this rate is observed,
see e.g. [7, 18]. Moreover, note that, in our m-dimensional case, the exponential dependence
on m only affects the logarithmic terms (as it is common for sparse grids). This is in contrast
to e.g. [18] where the overall rate deteriorates to n−

4
m+4 for non-regularized regression on a

full grid of multivariate linear tensor product splines.
Without the assumption of M-boundedness, we have to balance

2−2ŝLL2(m−1) ≈ 23LLm−1

n
log
( n

2LLm−1

)
,

and get

n≈ 2(3+2ŝ)LL−m+1(log(n)−L log(2)− (m−1) log(L)).

Here the optimal scaling is
n≈ 2(3+2ŝ)L.

up to logarithms. Therefore, the sample size n has to grow 22L times faster than under the
assumption of M-boundedness. Substituting this into (48) leads to

E ( fZn,Vh,b)−E ( f̂ )≈O
(

n−
2ŝ

3+2ŝ

)
up to logarithmic factors. Therefore, the smooth case ŝ = 2 results in the rate O

(
n−

4
7

)
.

5.2. Multivariate periodic regression for Fourier polynomials on hyperbolic crosses.
In the last example we dealt with the so-called h-version of sparse grids where the degree of
the (piecewise) polynomials was fixed and their support was refined. In the following, we
consider global Fourier-polynomials where we increase the maximum frequency. This cor-
responds to a spectral/p-version. Here, we consider a multivariate regression setting with
polynomials on hyperbolic crosses. To this end, let T = [−π,π]m where we identify opposite
hyperplanes and let ρT = λT

(2π)m be the rescaled Lebesgue measure. Furthermore, we assume
that fρ is 2π-periodic in every coordinate. Again, we deal with the scalar-valued case d = 1.
We now write H̄s

mix,ρT
(T ) to denote the periodic Sobolev space on T for 0 < s < ∞. Similar

to (35), the norm is defined by

‖ f‖H̄s
mix,ρT

(T ) :=

∥∥∥∥∥ ∑
k∈Zm

ck( f )
m

∏
j=1

(1+ |k j|2)
s
2 eikT t

∥∥∥∥∥
L2,ρT (T )

,

where t ∈ T is the spatial variable and

ck( f ) :=
1

(2π)m

∫
T

f (t)e−ikT tdt

denotes the k-th Fourier coefficient.

Discretization error. Following [33], let

(51) Vh =V2−L := T (ΓL) :=

{
f ∈ L2,ρT (T )

∣∣∣∣∣ f (t) = ∑
k∈ΓL

αk exp
(
ikT t

)}
,
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where

ΓL :=

{
k ∈ Zm

∣∣∣∣∣ m

∑
j=1

log2(max(|k j|,1))≤ L

}
is the hyperbolic cross of level L. Similarly to the sparse grid construction in the last example,
N := dim(Vh) is bounded from above by

dim(Vh) = O
(
2LLm−1) ,

see [33]. Analogously to the first example, we choose ‖ ·‖Vh = ‖ ·‖H̄1
mix,ρT

(T ) as regularization

norm. For the hyperbolic cross construction above, it thus holds

‖ f‖Vh = ‖ f‖H̄1
mix,ρT

(T ) ≤ cm2L‖ f‖L2,ρT (T )

for all f ∈Vh, see Theorem III.2.3 of [33]. Therefore, c(h) = cmh−1 = cm2L is a valid choice
in Lemma 5. Applying Theorem 6 for the corresponding b := c(h)‖ fρ‖L2,ρT (T ) we obtain

E ( fVh,b)−E ( fρ) = inf
f∈Vh
‖ f − fρ‖2

L2,ρT (T ).

The rate of the L2 best approximation error for fρ ∈ H̄s
mix,ρT

(T ) with 0 < s < ∞ by
functions in the hyperbolic cross space is bounded by

inf
f∈Vh
‖ f − fρ‖L2,ρT (T ) = O

(
2−sL) ,

for L→ ∞, see Theorem III-3.2 of [33].15

Sampling error. The sampling error bound is derived analogously to the last example.
Assuming that (43) holds we obtain

ηδ = O

(
2LLm−1

n
max

(
log
( n

Lm−1

)
,1
))

under the assumption of M-boundedness from (45) and

ηδ = O

(
23LLm−1

n
max

(
log
( n

2LLm−1

)
,1
))

without the assumption of M-boundedness from (46), respectively.

Overall rate. Let 0 < ŝ < ∞ be the largest real number such that fρ ∈ H̄ ŝ
mix,ρT

(T ). We
choose ‖ ·‖Vh = ‖ ·‖H̄1

mix,ρT
(T ) and b = cm2L‖ fρ‖L2,ρT

, with a constant cm which depends only

on m. Then, fixing a confidence 1− δ which fulfills (43), we add discretization error and
sampling error to obtain the rate

(52) E ( fZn,Vh,b)−E ( f̂ ) = O

(
2−2ŝL +

2LL(m−1)

n
max

(
log
( n

Lm−1

)
,1
))

15The function classes MWs
2 in [33] correspond to the unit ball of our spaces H̄s

mix(T ), see section 2.7 of [36] for
a thorough proof.
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under the assumption of M-boundedness, see (27), and

(53) E ( fZn,Vh,b)−E ( f̂ ) = O

(
2−2ŝL +

23LL(m−1)

n
max

(
log
( n

2LLm−1

)
,1
))

without the assumption of M-boundedness. Again, a factor of − log(δ − ε) enters the O-
constants. Note here that, since Vh ⊂ H̄ ŝ

mix,ρT
(T ) for any ŝ > 0, a similar result can be shown

by applying Theorem 4.1 of [32].
Analogously to the discussion in the previous example, we will now consider (52) in

more detail. Again, the first term of (52) only depends on L and not on n. It thus converges to
0 with L→ ∞ for any value of n. The second term may however diverge since it depends on
both L and n. Let us now consider the limit case L,n→ ∞. We can use the same arguments
as in the last example. In the convergent case, i.e. if (52) approaches 0, the maximum term in
(52) becomes log

(
n

Lm−1

)
. Therefore, a necessary and sufficient condition on the amount of

samples n to achieve convergence is

2LLm−1 log
( n

Lm−1

)
!
= o(n)

for L,n→ ∞.
The same consideration for (53) leads to

23LLm−1 log
( n

2LLm−1

)
!
= o(n)

for L,n→ ∞. without the assumption of M-boundedness.

Balancing the overall error. Analogously to the last example we will now balance the
overall error in the convergent case. Under the assumption of M-boundedness a comparison
of the discretization error and the sampling error yields

2−2ŝL ≈ 2LLm−1

n
log
( n

Lm−1

)
which leads to

n≈ 2(1+2ŝ)LLm−1(log(n)− (m−1) log(L)).

Therefore, the optimal scaling is
n≈ 2(1+2ŝ)L

up to logarithms in the basis size N = O(2LLm−1) or the sample size n. Substituting this into
(52) we again obtain

E ( fZn,Vh,b)−E ( f̂ )≈ O
(

n−
2ŝ

1+2ŝ

)
.

Thus, the main rate is independent of m and the curse of dimensionality only appears in the
logarithmic terms.

Without the assumption of M-boundedness we obtain the scaling

n≈ 2(3+2ŝ)L

and with this the rate
E ( fZn,Vh,b)−E ( f̂ )≈ O

(
n−

2ŝ
3+2ŝ

)
.
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6. Concluding remarks. In this article we introduced the discretization error for regres-
sion problems with finite-dimensional search space Vh. We summarized recent developments
on the bias and the sampling error and explained why these results cannot directly be applied
to the finite-dimensional setting. We coupled the norm bound of functions from the search set
Vh,b to the discretization level by exploiting a Bernstein inequality in Vh. The corresponding
sampling error had to be estimated for Vh,b. Finally, two examples for multivariate regression
concluded the article. For both, piecewise linear splines on sparse grids and Fourier polyno-
mials on hyperbolic crosses, we have shown that an optimal scaling in the sample size n and
the dimension of the finite-dimensional ansatz space N leads, up to logarithmic terms, to the
same convergence rate which is obtained for the univariate case.

An actual algorithm usually employs the method of Lagrangian multipliers instead of
dealing with a constrained optimization problem. This alternative has not been discussed
here. However, there is a direct relation between the primal (constrained optimization) prob-
lem and the dual (Lagrangian multiplier) problem, see e.g. [9]. Furthermore, more general
methods can be considered as well, e.g. Hilbert scales for Tikhonov regularization, see [20].

Modifications of the methods introduced in this paper can be used to treat the case of
principal manifold learning, see [19],[31].

Finally, the derivation of tight upper bounds for specific settings as well as generic lower
bounds for the overall error in regression will be a task for future research. To this end,
note that e.g. in the setting of noise-free regression without explicit function norm regu-
larization, our results can be improved for specific finite-dimensional function classes, see
e.g. [6],[7],[27].
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