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Abstract We use a sparse grid approach to discretize a multi-dimensional
partial integro-differential equation (PIDE) for the deterministic valuation of
European put options on Kou’s jump-diffusion processes. We employ a gen-
eralized generating system to discretize the respective PIDE by the Galerkin
approach and iteratively solve the resulting linear system. Here, we exploit a
newly developed recurrence formula, which, together with an implementation
of the unidirectional principle for non-local operators, allows us to evaluate
the operator application in linear time. Furthermore, we exploit that the
condition of the linear system is bounded independently of the number of
unknowns. This is due to the use of the Galerkin generating system and the
computation of L2-orthogonal complements. Altogether, we thus obtain a
method that is only linear in the number of unknowns of the respective gen-
eralized sparse grid discretization. We report on numerical experiments for
option pricing with the Kou model in one, two and three dimensions, which
demonstrate the optimal complexity of our approach.

1 Introduction

In 1973, Black, Scholes [BS73] and Merton [Mer73] published their seminal
work, which allowed to determine the fair price of an option under a set
of certain given assumptions. Here, for some simple options, e.g. European
vanillas, analytical formulas exist, but for more complex financial instruments
like American put options or arithmetic average Asian options this is no
longer the case and numerical approximations must be made. This gave rise
to the discipline of computational finance, in which most valuation problems
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are solved by means of Monte Carlo simulations or the numerical solution of
partial differential equations.

In recent decades, it has become clear that the assumptions made in the
original paper do not hold in practice. This can be seen e.g. from effects like
the ‘volatility smile’, which means that the implied volatility of an option
is not independent of the strike price. Thus, observable option prices are
not conform with the model assumption that logarithmic returns follow a
Brownian motion with constant volatility. Obviously, the normal distribution
underestimates the probability of extreme events like the Black Monday in
1987, the crash of Long-Term Capital Management in 1998 or the collapse of
Lehman brothers in 2008, just to mention a few. In May 2010, the Dow Jones
plunged without obvious reasons by almost 1000 points, commonly referred
to as “Flash Crash”. In general, daily returns of six standard deviations can
practically be observed in most markets [CT04], although a market move of
that magnitude would theoretically occur only about once in a million years.

By adding jumps to the model of the geometric Brownian motion we
can take such effects into account and fix issues like the volatility smile.
Even though analytical formulas exist for certain option types on jump pro-
cesses [Kou02, Mer76], numerical valuation is nevertheless needed in most
practical cases. Then, additional computational difficulties stem from an in-
tegral term, which makes the usual Black-Scholes PDE a partial integro-
differential equation (PIDE). Due to the non-locality of the integro-operator
we obtain linear systems with densely populated matrices, which, treated
naively, would result in a substantial additional computational complexity
of O(N3), with N being the degrees of freedom. Thus, the convolution inte-
gral is evaluated by the fast Fourier transform in [AA00], which reduces the
complexity of the system matrix application to O(N logN). However, Kou’s
jump-diffusion model admits an even faster operator application with O(N)
complexity for the finite difference case [Toi08]. In this paper, we introduce a
comparable approach for the Galerkin method and exploit it in our numerical
solver.

An additional numerical challenge is the pricing of basket options, i.e. op-
tions on multiple underlyings. This usually leads to the so-called ‘curse of
dimensionality’, which means that the cost complexity for the approximation
to the solution of a problem grows exponentially with the dimension. For ex-
ample, a d-dimensional mesh with a resolution of h in each direction results
in a storage and cost complexity of at least O(h−d). Sparse grid discretiza-
tions [BG04] can circumvent this problem to some extent. They result in a
complexity of only O(h−1 (log h−1)d−1), which allows for huge savings for
higher values of d, whereas – depending on the smoothness assumptions on
the function – the convergence rate of the error is unchanged or only affected
by a small logarithmic term.

In this paper, we show how generalized sparse grid generating systems can
be used in the described PIDE setting, i.e. for the pricing of basket options
with the Kou model. We use the unidirectional principle [BZ96, Bun92] – a
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fast matrix-vector multiplication for sparse grids, which was originally de-
veloped for partial differential operators – and generalize it to our non-local
operator. In combination with the Galerkin recurrence formula for the Kou
model and an optimal preconditioning based on a H1-norm equivalence with
L2-orthogonal subspaces, we obtain a method which altogether scales only
linearly with respect to the degrees of freedom of our sparse grid discretiza-
tion.

The remainder of this paper is organized as follows: In Sect. 2 we present
Kou’s model, its multi-dimensional generalization and we discuss how the
pricing of European options on jump-diffusion processes leads to a PIDE
problem. Section 3 deals with relevant aspects of the numerical treatment of
our PIDE, i.a. optimal preconditioning, the unidirectional principle for non-
local operators and the recurrence formula for Kou’s model in the Galerkin
approach. In Sect. 4 we test our approach on basket put options in one, two
and three dimensions. Final remarks in Sect. 5 conclude the paper.

2 Option pricing with Kou’s model

In this section we describe a one-dimensional model for jump-diffusion pro-
cesses as presented in [Kou02]. Then, we discuss its generalization to the
multi-dimensional setting. Finally, we sketch how a PIDE arises from the
option pricing problem on such a jump-diffusion process.

2.1 One-dimensional model

Kou’s jump-diffusion model [Kou02] assumes that the price of a security S
fulfills the stochastic differential equation (SDE)

dS(t)

S(t−)
= µdt+ σdW (t) + d

N(t)∑
j=1

(Vj − 1)

 , (1)

where t denotes time, W (t) is a standard Brownian motion, µ and σ are the
usual constants for drift and volatility, N(t) is a Poisson process with rate λ
and {Vj}j∈N denotes a sequence of jumps. These jumps are assumed to be
independent identically distributed with density

hp,η,µ(v) =

{
(1− p)ηvη−1 for v < 1 ,

pµv−µ−1 for v ≥ 1 ,
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where p and 1−p denote the probabilities of jumping upwards and downwards,
respectively, while η > 0 and µ > 1 are parameters that control the jump
sizes. The density of Yj := log(Vj), j ∈ N, is then given by

κp,η,µ(z) =

{
(1− p)ηeηz for z < 0 ,

pµe−µz for z ≥ 0 ,
(2)

which is an asymmetric double exponential distribution. Furthermore, in this
model all random variables W (t), N(t), Yj are assumed to be independent.
The dynamics of S in the SDE (1) can then be given by

S(t) = S(0) exp

((
µ− 1

2
σ2

)
t+ σW (t)

)
·
N(t)∏
j=1

Vj

and we have

E(Vj) = E(exp(Yj)) = (1− p) η

η + 1
+ p

µ

µ− 1
.

2.2 Multi-dimensional case and dependence modelling

We now consider a d-dimensional price process S = (S1, . . . , Sd) with state
space Rd. The components Si, i = 1, . . . , d, of S follow the dynamics

Si(t) = Si(0) exp

((
µi −

1

2
σ2
i

)
t+ σiWi(t)

)
·
Ni(t)∏
j=1

Vi,j ·
Ñ(t)∏
j=1

Ṽi,j , (3)

where µi and σi denote drift and volatility constants, Ni and Ñ are Poisson
processes with rates λi and λ̃, respectively, and {log Vi,j}j∈N and {log Ṽi,j}j∈N
are sequences of jumps of the component i.

Obviously, the Brownian part of the process is decorrelated across dimen-
sions. A priori, this assumption may look unrealistic, it however can easily be
achieved by a standard principal component transformation of the covariance
matrix, see [Rei04] for example.

In our model (3), every price process Si has two sources of jumps. The first
one leaves other processes Si′ , i

′ 6= i unaffected. It is realized by the Poisson
process Ni(t) and i.i.d. double exponential random variables {log Vi,j}j∈N
with parameters pi, ηi, µi, see (2). The second one takes care of the correla-
tions of jumps over the dimensions. It consists of a jump process Ñ(t) and
the associated random variables {log Ṽi,j}j∈N, which are again assumed to
be i.i.d. double exponential random variables with parameters p̃i, η̃i, µ̃i. It
is noteworthy that even though the jump sizes are independent, dependence
of the d price processes (S1, . . . , Sd) is created nevertheless, as jumps hap-
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pen at the same time in all components of S. This joint jump term can be
understood as a risk factor affecting the whole market and not just a single
company or industrial sector.

2.3 Representation of the multi-dimensional process as
Lévy process

We now identify our d-dimensional generalization (3) of the Kou model as a
Lévy process. To this end, recall the following definition, compare also [CT04].

Definition 1 (Lévy process). A càdlàg stochastic process (X(t))0≤t<∞ on
the filtered probability space (Ω,F , (Ft)0≤t<∞,P) with values in Rd and
X(0) = 0 a.s. is called a Lévy process if it has the following properties:

1. Independent increments: for every sequence t0 < t1 < · · · < tn, the random
variables X(t0),X(t1)−X(t0), . . . ,X(tn)−X(tn−1) are independent.

2. Stationary increments: X(t)−X(s) has the same distribution as X(t− s),
0 ≤ s < t <∞.

3. Stochastic continuity: limt→s X(t) = X(s), where the limit is taken in
probability.

The characteristic exponent ψ : Rd → C of X(t), which satisfies

E
(
ei〈ξ,X(t)〉

)
= etψ(ξ) for ξ ∈ Rd, t ≥ 0 ,

allows for the unique Lévy-Khinchin representation

ψ(ξ) = −1

2
〈ξ,Qξ〉+ i 〈γ, ξ〉+

∫
Rd

(
ei〈ξ,z〉 − 1− i 〈ξ, z〉1{|z|≤1}

)
ν(dz),

where Q ∈ Rd×d is the symmetric covariance matrix of the continuous part
of X, γ ∈ Rd is the drift of X and ν is the Lévy measure, which satisfies∫

Rd

min(1, |z|2)ν(dz) <∞ .

This condition ensures that the activity for large jumps is finite and possibly
infinite for very small jumps only.

For our multi-dimensional Kou model presented in Subsect. 2.2, the loga-
rithmic returns follow a Lévy process. We thus can rewrite (3) as

Si(t) = Si(0) exp (Xi(t)) for i = 1, . . . , d ,

with (X(t))0≤t<∞ being a Rd-valued Lévy process with characteristic triplet

(Q, ν, γ). Here, the elements of covariance matrix Q ∈ Rd×d satisfy
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qij = δijσ
2
i

for all i, j = 1, . . . , d, the drift is

γi = µi −
σ2
i

2
+

∫
Rd

zi1{|z|≤1}ν(dz)

for i = 1, . . . , d, and the Lévy measure ν has finite activity and can be
expressed by

ν(dz) =

d∑
i=1

λiκpi,ηi,µi(zi)dzi ⊗
d⊗

i′=1
i′ 6=i

δ(dzi′) + λ̃

d⊗
i=1

κp̃i,η̃i,µ̃i(zi)dzi . (4)

In (4), the i-th summand represents the jumps in the i-th component
of X generated by the Poisson process Ni(t) and the associated jump
sizes (log Vi,j)j∈N are distributed with density κpi,ηi,µi

, see (2). The remain-
ing components are unaffected by these jumps, which is expressed by the
delta distribution

⊗
i′ 6=i δ(dzi′). The last term in (4) is due to the Poisson

process Ñ(t) with jumps occurring in all components at the same time. The
jump sizes (log Ṽi,j)j∈N in the i-th component are distributed with the prob-
ability density κp̃i,η̃i,µ̃i .

Remark 1. Even though the jump sizes are all independent, the stochastic
processes Xi, and thus Si, are not. Otherwise, the right-hand side of

E
(
ei〈ξ,X(t)〉

)
= e−tψ(ξ)

could be written as a product in ξ1, . . . , ξd, which is not possible since ψ does
in general not decompose into a sum of one-dimensional functions over the
dimensions.

Note here that the product
⊗d

i=1 κp̃i,η̃i,µ̃i
(zi) in (4) can be seen as a rank-

one approximation to a general finite Lévy measure. Then, this concept can
easily be carried over to more complex dependencies by adding further Pois-
son processes in combination with jump sizes that are again independent of
other dimensions. This can be done in the spirit of a low rank approximation,
see [BM02], i.e. as the approximation of a non-separable density function by
a small sum of separable functions. Such a generalization would be treatable
by the numerical approach proposed in this paper as well.

2.4 Option pricing

We now want to price a European option with the payoff g : Rd → R depend-
ing on the state of the process S at the time of maturity T . In this paper, we
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predominantly price put options with strike price K and unit weights, i.e.

g(S(T )) = max(0,K −
d∑
i=1

Si(T )) . (5)

Note, however, that the same approach can also be used to valuate call op-
tions. For the conventional Black–Scholes model, arbitrage considerations
show that the fair price of a European option is given by the discounted
expected value of the payoff function under the unique risk-neutral mea-
sure. Jump-diffusion models lead to incomplete markets and a risk-neutral
measure needs to be selected by, e.g., the rational expectations equilibrium,
see [Kou07]. We assume that the risk-neutral dynamics of our d price pro-
cesses is given by

Si(t) = Si(0) exp (rt+Xi(t)) for i = 1, . . . , d , (6)

where X is a Lévy process with a triplet (Q, ν, γ), s.t.

e−trSi(t)

are martingales for i = 1, . . . , d. Then, the value of a European option at
time t with payoff g can be given by

V (t, s) = E(e−r(T−t)g(S(T )) | S(t) = s) . (7)

This function V is known to satisfy the PIDE (8) of the following theorem,
see [CT04, RSW10] for further information.

Theorem 1 (Backward PIDE for European options). Let S be an expo-
nential Lévy model (6) with Lévy triplet (Q, ν, γ), which has a non-vanishing
diffusion matrix Q, and let ν satisfy∫

|z|≥1
eziν(dz) <∞

for i = 1, . . . , d. Then, the function

V ∈ C1,2
(
(0, T )× Rd>0

)
∩ C0

(
[0, T ]× Rd≥0

)
given by (7) is a solution of the backward PIDE for European options

∂V

∂t
(t, s) +

1

2

d∑
i,j=1

sisjqij
∂2V

∂si∂sj
(t, s) + r

d∑
i=1

si
∂V

∂si
(t, s)− rV (t, s)

+

∫
Rd

(
V (t, sez)− V (t, s)−

d∑
i=1

si (ezi − 1)
∂V

∂si
(t, s)

)
ν(dz) = 0 (8)
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on (0, T ) × Rd>0, where V (t, sez) := V (t, s1e
z1 , . . . , sde

zd), with the terminal
condition given by

V (T, s) = g(s) for s ∈ Rd≥0 .

Under the same constraints as in Theorem 1 and with the assumption of
finite activity, i.e. λ := ν(Rd) <∞, which holds in case of the Kou model (3)

with λ =
∑d
i=1 λi + λ̃, we can rewrite the PIDE as

∂

∂τ
u(τ,x)− 1

2

d∑
i,j=1

qij
∂2

∂xixj
u(τ,x)+λu(τ,x)−

∫
Rd

u(τ,x+z)ν(dz) = 0 (9)

with e−rτu(τ,x) = V (t, s). To this end, we use the variable transforms τ =
T − t and

xi = log si + τ(r − ξi −
qii
2

) with ξi =

∫
Rd

(ezi − 1) νi(dzi) (10)

for i = 1, . . . , d, with νi being the marginal distribution of ν in the i-th
direction. Then, the terminal condition becomes an initial condition for τ = 0,
and reads

u(0,x) = g(exp(x))

with the exp-function applied componentwise to the vector x ∈ Rd.

3 Numerical treatment

In this section, we discuss the numerical treatment of the transformed
PIDE (9). We start with a simple θ-scheme for time discretization and a
Galerkin method using generalized sparse grids for space discretization. The
resulting set of linear equations is then solved by an optimally preconditioned
iterative method, which we discuss in Subsect. 3.3. To this end, we present
a fast matrix-vector multiplication for the sparse grid generating systems in
combination with non-local operators and the Galerkin recurrence formula
for the Kou model. All these ingredients are essential to obtain an overall
solution method with optimal linear complexity in the degrees of freedom of
our discretization.

3.1 Time discretization and weak formulation

First, we localize our space domain Rd to a rectangular domain
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D = (α1, β1)× · · · × (αd, βd) (11)

and assume zero boundary conditions. This truncation can be understood as
an approximation of the price of the option by that of a barrier option, i.e. as
an option that has no payoff if the underlying price process has left D during
the time to maturity. It is well-known that the pointwise error introduced
by this approximation decreases exponentially with the domain size, see for
example [CV05].

The upper and lower bounds in (11) are chosen by

αi = xi − γ
√
T · var(Xi(T )) , (12)

βi = xi + γ
√
T · var(Xi(T )) , (13)

where γ is a proportionality constant relating the domain size and the
standard deviation of the stochastic process in that direction. Furthermore,
x = (x1. . . . , xd) denotes a point of interest, which might be, like e.g. in (10),
a transformed initial state vector s for an option we want to price by the
evaluation of e−rTu(T,x) = V (0, s).

We then can write the PIDE (9) with the definition

Lu(τ,x) :=
1

2

d∑
i,j=1

qij
∂2

∂xixj
u(τ,x)− λu(τ,x) +

∫
Rd

u(τ,x + z)ν(dz)

as
∂u(τ,x)

∂τ
− Lu(τ,x) = 0 on (0, T )×D , (14)

with an extension of u by zero outside of D, i.e. u|(0,T )×Rd\D = 0, which is
relevant to the integral term.

For the time discretization, we subdivide the interval [0, T ] into M + 1
equidistant time-steps

ti = i∆t , i = 0, . . . ,M ,

with ∆t = T
M and apply the well-known θ-scheme with θ = 1

2 .1 Then, (14)
can be expressed for i = 0, . . . ,M − 1 as a sequence of stationary elliptic
PIDEs

u(i+1)(x)− u(i)(x)

∆t
− L

(
θu(i+1)(x) + (1− θ)u(i)(x)

)
= 0

on D with u(i)(x) ≈ u(ti,x), i = 0, . . . ,M .
Next, a weak formulation in space will give us a sequence of H1

0 (D)-elliptic
problems: Find u(i+1) ∈ H1

0 (D), s.t.

1 More sophisticated techniques, e.g. space-time sparse grids [GO07], are available, but

this is beyond the scope of this work.
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∆t−1(u(i+1), v)L2
+ θa(u(i+1), v) = r(i)(v) ∀v ∈ H1

0 (D) (15)

with

a(u, v) =
1

2

∫
D

d∑
i,j=1

qij
∂u(x)

∂xi

∂v(x)

∂xj
dx

+λ(u, v)L2
−
∫
D

∫
Rd

u(τ,x + z)ν(dz)v(x)dx

and
r(i)(v) = ∆t−1(u(i), v)L2

− a((1− θ)u(i), v) .

Before equation (15) can be discretized in space, we need to transform the
domain D to Ω := (0, 1)d, see (11). This is done by a linear affine scaling
T : D → Ω

T (x) =

(
x1 − α1

β1 − α1
, . . . ,

xd − αd
βd − αd

)
. (16)

When we apply the domain transformation (16), and take the assumptions
made about (qij)

d
i,j=1 and ν in Subsect. 2.2 into account, the bilinear form

a(u, v) in the variational equation (15) can be given on Ω by

a(u, v) =

d∑
i=1

σ2
i

2(βi − αi)2

∫
Ω

∂u(x)

∂xi

∂v(x)

∂xi
dx + λ

∫
Ω

u(x)v(x)dx (17)

−
d∑
i=1

(βi − αi)λi
∫
Ω

∫
Rd

u(x + ziei)κpi,ηi,µi
((βi − αi)zi)dziv(x)dx

−λ̃
∫
Ω

∫
Rd

u(x + z)

d∏
i=1

(βi − αi)κp̃i,η̃i,µ̃i
((βi − αi)zi)dzi v(x)dx ,

(18)

where ei denotes the i-th unit vector and

λ :=

d∑
i=1

λi(βi − αi) + λ̃

d∏
i=1

(βi − αi) .

3.2 Space discretization by a sparse grid generating
system

What is finally missing is a discretization of (15) with bilinear form (17) in
space. To this end, we introduce a sparse grid generating system based on
linear splines. First, we consider a one-dimensional multilevel system on the
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interval (0, 1). On level l, nl = 2l − 1 hat functions

φl,i(x) = max(1− 2l |x− xl,i| , 0)

exist, which are centered at the points of an equidistant mesh

xl,i = 2−li

for i = 1, . . . , nl. The left side of Fig. 1 shows all functions on the first four

L
e
v
e
l

Fig. 1 The first four levels of a one-dimensional multilevel generating system (left). Two-

dimensional tensorization and the sparse subspace (right)

levels. The spaces

Vl = span{φl,i | 1 ≤ i ≤ nl}, l ∈ N

possess the simple inclusion relation Vl ⊂ Vl+1. This makes the union of their

basis functions
⋃k
l=1{φl,1, . . . , φl,nl

} a generating system and not a basis. The
multi-dimensional case is based on the domain Ω = (0, 1)d. By tensorization,
we obtain spaces associated to a multi-index l = (l1, . . . , ld) ∈ Nd

Vl =

d⊗
i=1

Vli .

For a given l, Vl is the space of d-linear functions on a possibly anisotropic
full grid space with

|Vl| =
d∏
i=1

(2li − 1) = O(2|l|1)
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degrees of freedom. It is spanned by the functions

φl,i(x) = φl1,i1(x1) · · ·φld,id(xd)

with

i ∈ χl := {i = (i1, . . . , id) ∈ Nd : 1 ≤ ij ≤ nj , j = 1, . . . , d} .

The space

Ṽ =
∑
l∈Nd

Vl

is equal to the underlying Sobolev space H1
0 (Ω) up to completion with the

H1-norm, see [BG04]. For our numerical computation, we have to resort to a
finite-dimensional subset. To this end, we use an index set I ⊂ Nd, |I| <∞,
which defines the subspaces included in the discretization as

VI =
∑
l∈I

Vl .

A proper choice of I now depends – besides the error we want to achieve – on
the smoothness of the function class we want to approximate. For example,
the full grid space with index set

I(∞)
k = {l ∈ Nd : |l|∞ ≤ k}

has the approximation property

inf
v∈V

I(∞)
k

‖u− v‖2Hs(Ω) ≤ c2
−2(t−s)k‖u‖2Ht(Ω)

with rate2 t − s and u ∈ Ht
0(Ω). Its number of degrees of freedom grows

by O(2kd). Thus the accuracy as function of the degrees of freedom deteri-
orates exponentially with rising d, which resembles the well-known ‘curse of
dimensionality’, cf. [Bel61].

Assuming additional mixed smoothness u ∈ Ht
0,mix(Ω), the sparse grid

index set
I(1)k = {l ∈ Nd : |l|1 ≤ k + d− 1} (19)

circumvents this problem to some extent. The rate of the best approximation
in dependence of k

inf
v∈V

I(1)
k

‖u− v‖2Hs(Ω) ≤ c2
−2(t−s)k‖u‖2Ht

mix(Ω)

2 This holds for a range of parameters 0 ≤ s < t ≤ r with r being the order of the spline

of the space construction. In our case of linear splines r = 2 holds.
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is the same3 as for the full grid space, i.e. t − s, but the number of degrees
of freedom now only grows by O(2kkd−1). This is a substantial improvement
in comparison to the full grid case. For further details, see [GK09]. A re-
lated approach, adaptive sparse grids based on a linear spline basis, has been
employed for option pricing without jumps in [BHPS11].

Next, to compensate for the transformation (16), we want our discretiza-
tion to have a refinement level in each dimension i = 1, . . . , d, which is loga-
rithmically proportional to the size βi−αi of the respective dimension in D.
This then leads to anisotropic sparse grids. First, we need to determine the
level shifts

ρi =

[
log2

β1 − α1

βi − αi

]
+ 1

for i = 1, . . . , d, that are necessary to compensate for the former anisotropies.
Then, the index set

I(∗)k = {l ∈ Nd :
l1 − 1

max(k − ρ1, 1)
+ · · ·+ ld − 1

max(k − ρd, 1)
≤ 1} (20)

gives us an anisotropic sparse grid on level k, with the classical sparse grid as
a special case for ρ1 = · · · = ρd = 1. Anisotropies may reduce the sparse grid
cost complexity even further, see [GH12] for a discussion in this direction.

Remark 2. It is furthermore possible to adapt the index set I a-posteriori to
a given function by means of a proper error estimation and successive re-
finement procedure. This approach results in adaptively refined sparse grids,
see e.g. [Feu10, GG03]. For algorithmic reasons, we then need the additional
condition

l ∈ I,k ∈ Nd,k ≤ l⇒ k ∈ I , (21)

where k ≤ l is understood componentwise.

Now we present the final equations that are being solved numerically for
the parameters and model assumptions specified in Subsect. 2.2, where also
the domain transformation (16) is being considered. For any valid index set
I ⊂ Nd, let us denote by u = (bl,i)l∈I,i∈χl

a block vector of N :=
∑

l∈I |χl|
coefficients used to represent functions

u(x) =
∑
l∈I

∑
i∈χl

ul,iφl,i(x) ∈ VI .

Then, our variational problem (15) can be discretized as follows: For i =
0, . . . ,M − 1 find u(i+1) s.t.(

∆t−1M + θA
)
u(i+1) =

(
∆t−1M + (θ − 1)A

)
u(i), (22)

with the block-structured mass matrix M ∈ RN×N

3 For s = 0 an additional logarithmic term appears in the error estimate.
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(M)(l,i),(k,j) =

∫
Ω

φl,i(x)φk,j(x)dx

and the stiffness matrix A ∈ RN×N

(A)(l,i),(k,j) = a(φl,i, φk,j)

with the bilinear form a(·, ·) from (17). The initial value u(0) is set to the
L2-projection of the payoff function into the space VI .

Note here that the representation of functions in VI =
∑

l∈I Vl is not
unique, since all subspaces Vl, l ∈ I appear in our discretization. This means
that operator matrices A and M for this discretization have a non-trivial
kernel and the system matrix cannot be inverted. However, Krylov subspace
methods will converge as long as the right-hand side is within the range of
the operator matrix, see [Kaa88, Gri94] for further details.

3.3 Preconditioning

We now want to find an optimal preconditioner for our linear system (22).
To this end, we need to bound the quotient λ̃max(A)/λ̃min(A) independently
of dimVI , where

λ̃min(A) = min
u⊥ker(A)

〈Au,u〉
‖u‖22

and

λ̃max(A) = max
u⊥ker(A)

〈Au,u〉
‖u‖22

denote the minimum and the maximum of the Rayleigh-quotient restricted
to the subspace {u : u ⊥ ker(A)}.

The preconditioning of generating systems on regular sparse grid spaces
with index set (19) is discussed in [GO94, GO95] within the framework of
multilevel subspace splittings. A simple diagonal scaling results in condition
numbers that are bounded by O(kd−2), which is a substantial improvement,
but does not give an optimal method yet.

To obtain optimal condition numbers of O(1) we proceed as follows: We
rely on the stable subspace splitting

{H1; ‖ · ‖2H1} =
∑
l

{Wl; 22|l|∞‖ · ‖2L2
} , (23)

where l ∈ Nd denotes a d-dimensional multi-index and Wl is the respective
L2-orthogonal complement space, see [GK09]. As the nodal basis on level l
is a stable splitting for Vl with a condition number independent of l and
Wl ⊂ Vl, we can derive an optimal preconditioner by splitting a function into
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its orthogonal complements and then representing them in our generating
system subspaces Vl.

To explain this in more detail, let us first describe the case of a one-
dimensional discretization up to level k, i.e. I = {(l) : 1 ≤ l ≤ k} and d = 1.
Let Ql : Vk → Vl be the L2-orthogonal projection to Vl and Q0 = 0. Because
of the nestedness

Vl ⊂ Vl′ for l ≤ l′,

the telescopic expansion

uk =

k∑
l=1

(Ql −Ql−1)uk , uk ∈ Vk

is an orthogonal decomposition with (Ql −Ql−1)uk ∈Wl.
The multi-dimensional case can be obtained by tensorization arguments.

Then, for uI ∈ VI with an index set I ⊂ Nd satisfying (21), the expression

wl =
∑

m∈{0,1}d
(−1)|m|1Ql1−m1,...,ld−md

uI (24)

denotes the orthogonal complement of uI in the space Wl, l ∈ I.
The algorithmic implementation is straightforward. We first have to com-

pute the projections by

(QluI , vl)L2
= (uI , vl)L2

for all vl ∈ Vl, l ∈ I . (25)

To this end, all right-hand sides for l ∈ I are extracted from the result of one
single mass matrix multiplication applied to uI . The operator matrix on the
left-hand side of (25) is just a d-fold tensor-product of one-dimensional mass
matrices, which themselves are tridiagonal, and thus is easily invertible in
O(2|l|1) operations for a fixed l. Secondly, after having calculated all discrete
functions QluI , we have to sum them up according to (24). This can also be
done in O(2|l|1) operations, which is again linear in the degrees of freedom.
After scaling with the l-dependent weights in the norm equivalence (23) we
then obtain an optimal preconditioner with a condition number bounded
independently of the space VI . Note that this is achieved without explicitly
discretizing the subspaces Wl and the overall system matrix with prewavelets
or similar, more complicated basis functions, but merely by sticking to the
more simple and natural generating system. A one-dimensional example4 is
given in Fig. 2. We observe that the oscillations on finer scales occur mainly
at the position of the non-differentiable kink.

4 The discretization in this example includes boundary functions otherwise not used for

computation.
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Fig. 2 The payoff function of a one-dimensional put option in the log-space (top). The

first six orthogonal complements of this function (middle and bottom)

3.4 Operator application

Within such an iterative solver the matrix-vector multiplication must be fre-
quently processed. Here, a complexity issue may occur due to the non-trivial
interactions between the different subspaces involved in the generating sys-
tem approach and, additionally, due to the integro-operator in the stiffness
matrix. We now describe how a general linear tensor product operator5

A(1) ⊗A(2) ⊗ · · · ⊗A(d) (26)

can be applied to a sparse grid approximation uI = [ul]l∈I of u using a

number of operations, which is of optimal order, e.g. of O(2kkd−1) for regular

5 Note that the numbers (1), . . . , (d) in the exponents are no powers but indices, indicating

that different operations may be carried out in different dimensions.
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sparse grids (19). Consequently, all sums of tensor-product operators can then
also be applied with optimal cost complexity.

If the index set I of our sparse grid would allow a representation I =
I1 × · · · × Id with Ii ⊂ N, i = 1, . . . , d, we could easily apply the tensor-
product operator (26) dimension by dimension. But since the index I can
in general not be represented as a simple cross product, we need a sophis-
ticated algorithm known as the unidirectional principle to maintain optimal
complexity. Our aim is to calculate

vl =
∑
l′∈I

(
A

(1)
l1,l′1
⊗A

(2)
l2,l′2
⊗ · · · ⊗A

(d)
ld,l′d

)
ul′

for all l ∈ I, where A
(j)
lj ,l′j

, j = 1, . . . , d, denotes the operator matrix of A(j)

in the weak formulation for discretization level l′j and test function level lj .

First, let us investigate the one-dimensional case6. Up to the level k, we have

vl =

k∑
l′=1

Al,l′ul′

=

l∑
l′=1

Al,l′ul′ +

k∑
l′=l+1

Al,l′ul′ . (27)

Both sums in (27) need to be treated separately. To this end, we introduce the
matrices Il,l′ which serve as restriction operators for l < l′ and as prolongation
operators for l > l′. The matrices Al,l′ can then be written as

Al,l′ =

{
Al,lIl,l′ for l ≥ l′ ,
Il,l′Al′,l′ for l < l′ .

In the following two algorithms, the prolongations and restrictions are of
central importance to efficiently transport intermediate results.

3.4.1 BottomUp algorithm

The BottomUp algorithm calculates all sums

vl =

k∑
l′=l+1

Al,l′ul′ (28)

6 For notational convenience we drop the dimension index (j) in A
(j)

lj ,l
′
j

in the following

calculations.
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for l = 1, . . . , k in linear time. If we express these operations (28) by means
of a matrix including all levels, we obtain an upper diagonal form

0 A1,2 A1,3 . . . Ak,k

0 A2,3 . . . A2,k

. . .
. . .

...
0 Ak−1,k

0

 =


0 I1,2A2,2 I1,3A3,3 . . . I1,kAk,k

0 I2,3A3,3 . . . I2,kAk,k

. . .
. . .

...
0 Ik−1,kAk,k

0

 .

Obviously, the matrix can be expressed using the restrictions Il,l′ , l < l′,
and the isotropic matrices Al,l. This gives rise to a recursive formulation for
l = k − 1, . . . , 1

vl =

k∑
l′=l+2

Al,l′ul′ + Al,l+1ul+1

= Il,l+1

 k∑
l′=(l+1)+1

Al+1,l′ul′ + Al+1,l+1ul+1


= Il,l+1 (vl+1 + Al+1,l+1ul+1) . (29)

Clearly, all vl for 1 ≤ l ≤ k can be precalculated in linear time provided that
the restrictions Il,l+1 and the application of the matrices Al,l work in linear
time.

3.4.2 TopDown algorithm

The TopDown algorithm uses a similar recursive relation to calculate the
left-hand sides of

vl =

l∑
l′=1

Al,l′ul′ (30)

for 1 ≤ l ≤ k. The equations (30) can be rewritten as a matrix-vector multi-
plication with matrix

A1,1

A2,1 A2,2

A3,1 A3,2 A3,3

...
...

...
. . .

Ak,1 Ak,2 Ak,3 . . . Ak,k

 =


A1,1

A2,2I2,1 A2,2

A3,3I3,1 A3,3I3,2 A3,3

...
...

...
. . .

Ak,kIk,1 Ak,kIk,2 Ak,kIk,3 . . . Ak,k

 ,

which can solely be expressed using the prolongations Il,l′ , l > l′, and
the isotropic operator matrices Al,l. We can precalculate vectors wl for
l = 2, . . . , k using the recursive relationship
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wl :=

l∑
l′=1

Il,l′ul′

=

l−1∑
l′=1

Il,l−1Il−1,l′ul′ + ul

= Il,l−1wl−1 + ul

starting with w1 := u1. Now (30) can be expressed by

vl =

l∑
l′=1

Al,lIl,l′ul′ = Al,l

l∑
l′=1

Il,l′ul′ = Al,lwl . (31)

As long as the prolongations Il,l−1 and the application of the matrices Al,l

work in linear time, the TopDown algorithm is of optimal order.

3.4.3 Multi-dimensional case

The multi-dimensional case can be reduced to the application of the one-
dimensional algorithms by a splitting and rearrangement of the sum

vl =
∑
l′∈I

A
(1)
l1,l′1
⊗A

(2)
l2,l′2
⊗ · · · ⊗A

(d)
ld,l′d

ul′ ,

which then leads to the equation

vl =
∑

l′1≤l1with

(l′1,l2,...,ld)∈I

(A
(1)
l1,l′1
⊗ I⊗ · · · ⊗ I) · (32)

∑
(l′2,...,l

′
d) with

(l′1,l
′
2,...,l

′
d)∈I

(
I⊗A

(2)
l2,l′2
⊗ · · · ⊗A

(d)
ld,l′d

)
u(l′1,l

′
2,...,l

′
d)

(33)

+
∑

(l′2,...,l
′
d) with

(l1,l
′
2,...,l

′
d)∈I

(
I⊗A

(2)
l2,l′2
⊗ · · · ⊗A

(d)
ld,l′d

)
· (34)

∑
l′1>l1 with

(l′1,l
′
2,...,l

′
d)∈I

(A
(1)
l1,l′1
⊗ I⊗ · · · ⊗ I)u(l′1,l

′
2,...,l

′
d)
. (35)

Now, (32) resembles the application of the one-dimensional TopDown algo-
rithm, and (35) resembles the application of the one-dimensional BottomUp
algorithm. The sums (33) and (34) are the result of a recursive application
of the multi-dimensional algorithm with the first dimension left unchanged.
The condition (21) ensures that the storage of intermediate results requires
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space and time just in the same order as for uI and vI . Specifically, we know
that

(l1, . . . , ld) ∈ I, l′1 ≤ l1 ⇒ (l′1, l2, . . . , ld) ∈ I

in (32) and
(l′1, . . . , l

′
d) ∈ I, l′1 > l1 ⇒ (l1, l

′
2, . . . , l

′
d) ∈ I

in (34), which means that intermediate results can be represented as gener-
alized sparse grid functions on the same index set I.

The origins of this algorithm trace back to [Bun92, BZ96] with focus on
partial differential operators. Now, with the generic concept presented in this
paper, it is no longer necessary to specifically tailor the TopDown/BottomUp
algorithms to the operator in use. Moreover, it can be employed with non-
local operators like integro-differential operators. Note here that the cost
complexity of the algorithm is only linear with respect to the degrees of
freedom if the cost complexity of the univariate operator application is linear.
But this is possible in the special case of the Kou model, which we will show
in the next subsection. Note furthermore that, independently of this work, a
similar abstraction of the unidirectional principle for multilevel discretizations
has been presented in [Zei11].

3.5 Galerkin recurrence formula for the Kou model

In Subsect. 3.4, we have assumed that the matrices A
(1)
l1,l′1

, . . . ,A
(d)
ld,l′d

can

be applied in linear time. This is possible for differential operators, as their
matrices are inherently sparse for nodal basis functions. However, integral
operators do not have this nice property. In [Toi08], a recurrence formula is
used to apply the integral operator of the Kou model for the finite difference
case in linear time. We now derive a similar result for the Galerkin method.

In the following, let {φi}nl
i=1 be a set of one-dimensional linear spline basis

functions on level l with mesh-width h = 2−l and the relation

φi(x) = φi+1(x+ h), i = 1, . . . , nl − 1 . (36)

In the Galerkin approach for the integro-operator of the Kou model, we need
to calculate for all i = 1, . . . , nl the expression7

vi =

∫
[0,1]

∫
R
u(x+ z)κp,η,µ(z)dzφi(x)dx .

Here, κp,η,µ is the Kou density function from (2), and u : [0, 1]→ R denotes
a function that can be represented by

7 Here and in the following, we have omitted time related indices and the dependence on

other dimensions.
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u(x) =

nl∑
j=1

ujφj(x) .

This translates to the matrix-vector-product

v = Au

with v = (v1, . . . , vnl
), u = (u1, . . . , unl

) and

(A)i,j =

∫
[0,1]

∫
R
φj(x+ z)κp,η,µ(z)dzφi(x)dx (37)

=

∫
[0,1]

∫
R
φj(z)κp,η,µ(z − x)φi(x)dzdx .

The matrix A is dense but has Toeplitz structure: Applying (36) to both, φi
and φj in (37) gives (A)i,j = (A)i+1,j+1. This property of the matrix would
allow us to execute the matrix-vector multiplication in O(nl log nl) instead
of O(n2l ).

A different approach that takes also the structure of κp,η,µ into account
achieves even a linear runtime complexity. To this end, let us assume that
i, j ∈ N, nl ≥ j ≥ i+ 2. Then we know that the interior of the supports of φi
and φj is disjoint and that z > x for φj(z) 6= 0 and φi(x) 6= 0. This allows us
to obtain

(A)i,j =

∫
[0,1]

∫
R
φj(z)k(z − x)φi(x)dz dx

=

∫
[0,1]

∫
R
φj(z)pµe

−µ(z−x)φi+1(x+ h)dz dx

=

∫
[h,1+h]

∫
R
φj(z)pµe

−µ(z−x+h)φi+1(x)dz dx

= e−hµ(A)i+1,j .

A similar argument gives (A)i,j = e−hη(A)i−1,j for 1 ≤ j ≤ i − 2. Now we
can introduce the splitting

vi = v←i + v◦i + v→i

with

v←i =

i−2∑
j=1

(A)i,juj , v◦i =

i+1∑
j=i−1

(A)i,juj , v→i =

nl∑
j=i+2

(A)i,juj .

With the recursive relationships
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v←i =

i−3∑
j=1

(A)i,juj + (A)i,i−2ui−2

= e−hη
(i−1)−2∑
j=1

(A)i−1,juj + (A)i,i−2ui−2

= e−hηv←i−1 + (A)i,i−2ui−2

for i = 4, . . . , nl and

v→i =

nl∑
j=i+3

(A)i,juj + (A)i,i+2ui+2

= e−hµ
nl∑

j=(i+1)+2

(A)i+1,juj + (A)i,i+2ui+2

= e−hµv→i+1 + (A)i,i+2ui+2

for i = 1, . . . , nl − 3, all v←i , v◦i and v→i can be precalculated in linear time.
Altogether, we can compute the matrix-vector product v = Au in O(nl)
complexity even though the matrix A is dense.

So far, we have described the application of the integro-operator of the
Kou model to a one-dimensional linear spline discretization on level l only.
This approach now easily carries over to the multi-dimensional generating
system case by the unidirectional principle with the dimension-recursive form
of the algorithm (32)–(35), which exploits a given tensor product structure
and requires only one-dimensional non-hierarchical applications of the Kou
integral-operator in (29) and (31). This altogether allows the application of
the operator matrices in the discretized equation (22) in just linear time.

4 Numerical experiments

In the following numerical experiments we use the described PIDE solver for
the pricing of European basket put options. The focus of our studies is on
space discretization, that means we have chosen the domain of computation
large enough and the time steps small enough such that the main error now
stems from the space discretization only. We are especially interested in the
spatial convergence rates of our method. To this end, we look at the L2-error
of the the solution at τ = T and at the relative error of the option price at a
predefined point of evaluation. Assuming a relationship

e ≤ cN−α
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with e being the error and N the total number of degrees of freedom, we can
estimate the convergence rate α by computing

α ≈ − log e2 − log e1
logN2 − logN1

for two successive discretization spaces with N1 and N2 degrees of freedom
and associated errors e1 and e2, respectively. As all computational steps can
be carried out in linear complexity, this is a relevant measure for the efficiency
of our method.

4.1 European put option

We now price a European put option on a single asset, i.e. d = 1, with the
parameters

T = 0.2 , K = 1.0 , r = 0.00 , S = 1.0 , σ = 0.2 ,

and a jump part

λ = 0.2 , η = 2.0 , µ = 3.0 and p = 0.5

using the equations (22). The domain is chosen as

D = (−35.781, 35.773)

before being scaled down to Ω by (16), and the choice of ∆t = 2−11T results
in 2048 equidistant time steps. The reference price is given by 0.042647805,
compare [Toi08]. Without the jump part, the correct Black–Scholes price of
the option can be given analytically as 0.035670591. We will use both models
to test our method. Figure 3 shows the convergence plots of the relative
pricing error with respect to the degrees of freedom8 with and without the
jump part. Here and in Table 1 we see that we essentially get the same rate
of 2 as for the simple Black–Scholes PDE. The last measured rate decreases
slightly to about 1.8, which can be explained by the time discretization and
domain truncation error starting to kick in at that level.

Figure 4 shows that the integro-term just adds a small constant factor to
the runtime. Moreover, we see that the runtime is asymptotically proportional
to the degrees of freedom as claimed in Subsect. 3.5.

8 In one dimension, full and sparse grids are of course the same.
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Fig. 3 The relative pricing error at S1 = 1.0 versus the degrees of freedom of the dis-

cretization for the Black–Scholes model without jumps (left) and with Kou jumps (right)
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Fig. 4 The run time versus the degrees of freedom. The slope of 1 in this log-log plot

relates to the formula 3 · 10−3x, which indicates that the runtime grows linearly with the

degrees of freedom

4.2 Two-dimensional example

We now define two underlyings by

r = 0.00 and

{
S1 = 1.0 , σ1 = 0.2 ,

S2 = 1.0 , σ2 = 0.2 .

The first jump term
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Table 1 Relative errors and rates α for the one-dimensional option pricing problem with

and without jumps. The degrees of freedom (DOFs) refer to the size of the multilevel
generating system

without jumps with jumps

level DOFs pricing error rate α pricing error rate α

2 4 8.53 · 100 N/A 6.98 · 100 N/A

3 11 8.23 · 100 0.03 6.75 · 100 0.03

4 26 5.23 · 100 0.53 4.26 · 100 0.54

5 57 2.07 · 100 1.18 1.66 · 100 1.20

6 120 2.35 · 10−1 2.93 1.68 · 10−1 3.07

7 247 3.54 · 10−1 −0.57 2.94 · 10−1 −0.77

8 502 3.14 · 10−1 0.17 2.55 · 10−1 0.20

9 1013 1.04 · 10−1 1.58 8.38 · 10−2 1.59

10 2036 2.14 · 10−2 2.26 1.73 · 10−2 2.26

11 4083 5.18 · 10−3 2.04 4.21 · 10−3 2.04

12 8178 1.33 · 10−3 1.96 1.09 · 10−3 1.95

13 16369 3.79 · 10−4 1.81 3.12 · 10−4 1.80

λ = 0.3

{
η1 = 8.0 , µ1 = 8.0 , p1 = 0.0 ,

η2 = 8.0 , µ2 = 8.0 , p2 = 0.0 ,
(38)

introduces negative jumps in both underlyings, while the second jump term

λ = 0.2 , η1 = 10.0 , µ = 10.0 and p1 = 0.5 (39)

only affects the first dimension. First, we consider the geometric call option
with payoff

g(x) = max(0, e
x1
2 +

x2
2 −K) (40)

on the domain D = (K2 ,
3K
2 )2 for K = 1 as suggested in [NHW10] for the

Black-Scholes model. Note here that with this particular choice the non-
differentiable kink is not included in the domain of computation, which is
favorable for discretizations that rely on additional smoothness constraints
like sparse grids. We include both jump terms and calculate the solution
approximation uI(∗) based on our PIDE solver approach with anisotropic
sparse and full grids, compare (20). In this and in all following experiments,
we choose ∆t = 2−8T , which results in 256 equidistant time steps. In Fig. 5
the L2-error at T = 0.2 is measured against a full grid solution on level 10
after the linear transformation (16) to the unit square Ω = (0, 1)2. As we
can see, we achieve roughly a rate of 2 with respect to the degrees of freedom
used for the sparse grids, while the full grid rate deteriorates to 2

d = 1 for
d = 2.

Now we get back to our usual basket payoff
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Fig. 5 L2(Ω) error of the solution for the geometric call option (40) at τ = T with a full

grid level 10 as reference solution.

g(x) = max(0,K −
d∑
i=1

exi) , (41)

which is equivalent to (5) after the logarithmic transformation of the coordi-
nates (10). Strike and maturity are chosen as K = 2 and T = 0.2, respectively.
We want to price the option on the underlyings with both jump terms and
choose the domain

D = (−0.984, 0.989)× (−0.942, 0.948) ,

which now includes the non-differentiable kink of the payoff function. In terms
of the L2-error at T = 0.2, we achieve asymptotically the rate 2 for the
sparse grid approach in contrast to the rate 1 for the full grid, see Fig. 6.
This is a noteworthy result, as the payoff function lacks the mixed smooth-
ness regularity, which is typically required by sparse grids. However, it is
well-known [Tho97] that the finite element solutions to parabolic problems
converge to full order due to the smoothing effect of the solution/propagation
operator even when the initial data are nonsmooth.
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Fig. 6 L2(Ω) error of the solution for the basket put option (41) at τ = T with a full grid
level 10 as reference solution

4.3 Three-dimensional option

As an example for a three-dimensional option we set

T = 0.2 , K = 3.0 , r = 0.00 and


S1 = 1.0 , σ1 = 0.2 ,

S2 = 1.0 , σ2 = 0.1 ,

S3 = 1.0 , σ1 = 0.05 ,

and choose a jump term

λ = 0.2


η1 = 4.0 , µ1 = 5.0 , p1 = 0.5 ,

η2 = 10.0 , µ2 = 11.0 , p2 = 0.3 ,

η3 = 13.0 , µ3 = 16.0, p3 = 0.7 .

The option’s reference price of 0.04476 has been determined using a Monte
Carlo simulation. For our PIDE approach, the parameter choice γ = 30
results in a domain

D = (−3.302, 3.292)× (−1.554, 1.555)× (−0.873, 0.870) ,

which includes the non-differentiable kink. Figure 7 shows the relative pricing
error with respect to the degrees of freedom for an anisotropic sparse grid
and an anisotropic full grid discretization.
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We observe that the convergence rate of the full grid approach is close
to 2

d like in the former experiments. The sparse grid error convergence is
somewhat erratic, but we clearly achieve a higher accuracy with less degrees
of freedom.

Note here that the computation of a reference solution for the L2-error
measurement of the solution at maturity would be extremely demanding. We
therefore omitted experiments for the L2-norm and d = 3 here. Nevertheless,
we expect analogous results as for the case d = 2, compare Figs. 5 and 6.
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Fig. 7 Relative pricing error at S1=S2=S3=1.0 with respect to the number of unknowns

5 Concluding remarks

We have presented a numerical method for the pricing of multi-dimensional
basket options under Kou’s jump-diffusion model. It involves a PIDE, i.e. a
sum of tensor-product operators, and employs a general sparse grid discretiza-
tion, which allows us to compute the solutions of moderate-dimensional prob-
lems. With the implementation of the unidirectional principle for non-local
operators, an optimal preconditioner and a recurrence formula for the Kou
model, we achieve linear runtime complexity with respect to the total number
of degrees of freedom. The concept can easily be carried over to price more
complex option types, e.g. early exercise options. It can also be generalized to
a discretization by space-time sparse grids along the lines of [Oel06, GO07].
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diffusion and exponential Lévy models. SIAM J. Numer. Anal., 43:1596–1626,

2005.

[Feu10] C. Feuersänger. Sparse Grid Methods for Higher Dimensional Approximation.
Dissertation, Institut für Numerische Simulation, Universität Bonn, September

2010.

[GG03] T. Gerstner and M. Griebel. Dimension–adaptive tensor–product quadrature.
Computing, 71(1):65–87, 2003.

[GH12] M. Griebel and H. Harbrecht. On the construction of sparse tensor product

spaces. Mathematics of Computations, 2012. to appear. Also available as INS
Preprint No. 1104, University of Bonn.

[GK09] M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces
for operator equations. Mathematics of Computations, 78(268):2223–2257, 2009.

[GO94] M. Griebel and P. Oswald. On additive Schwarz preconditioners for sparse grid

discretizations. Numer. Math., 66:449–464, 1994.
[GO95] M. Griebel and P. Oswald. Tensor product type subspace splitting and multilevel

iterative methods for anisotropic problems. Adv. Comput. Math., 4:171–206,

1995.
[GO07] M. Griebel and D. Oeltz. A sparse grid space-time discretization scheme for

parabolic problems. Computing, 81(1):1–34, 2007.

[Gri94] M. Griebel. Multilevelmethoden als Iterationsverfahren über Erzeugendensyste-
men. Teubner Skripten zur Numerik. Teubner, Stuttgart, 1994.

[Kaa88] E. Kaasschieter. Preconditioned conjugate gradients for solving singular sys-
tems. Journal of Computational and Applied Mathematics, 24(1-2):265 – 275,
1988.

[Kou02] S. Kou. A jump-diffusion model for option pricing. Management Science,
48(8):1086–1101, 2002.

[Kou07] S. Kou. Jump-diffusion models for asset pricing in financial engineering. In

John R. Birge and Vadim Linetsky, editors, Financial Engineering, volume 15
of Handbooks in Operations Research and Management Science, pages 73 – 116.

Elsevier, 2007.



30 M. Griebel and A. Hullmann

[Mer73] R. Merton. Theory of rational option pricing. Bell Journal of Economics,

4(1):141–183, 1973.
[Mer76] R. Merton. Option pricing when underlying stock returns are discontinuous.

Journal of Financial Economics, 3:125–144, 1976.

[NHW10] C. Schwab N. Hilber, S. Kehtari and C. Winter. Wavelet finite element method
for option pricing in highdimensional diffusion market models. Research Report

2010-01, Seminar for Applied Mathematics, Swiss Federal Institute of Technol-

ogy Zurich, 2010.
[Oel06] D. Oeltz. Ein Raum-Zeit Dünngitterverfahren zur Diskretisierung parabolis-

cher Differentialgleichungen. Dissertation, Institut für Numerische Simulation,
Universität Bonn, 2006.

[Rei04] C. Reisinger. Numerische Methoden für hochdimensionale parabolische Gle-

ichungen am Beispiel von Optionspreisaufgaben. Dissertation, Ruprecht-Karls-
Universität Heidelberg, 2004.

[RSW10] N. Reich, C. Schwab, and C. Winter. On Kolmogorov equations for anisotropic
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