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A b s t r a c t

In this thesis, we develop a system for accurate semantic perception of 3D scene geometry,
persons, and objects in robotic applications. We consider the limitations of interpreting
only a single sensor view with restricted measurement range, field of view, and resolution,
and the challenges posed by centralized approaches that rely on high communication
bandwidth and computational power.

To address these issues, we propose a network of distributed smart edge sensors
equipped with a multi-modal sensor suite and an embedded CNN inference accelerator
for on-device image processing. Real-time vision CNN models for person and object
detection, semantic segmentation, and pose estimation are deployed on the sensors. The
extracted information, such as 2D human keypoints, object poses, and semantic point
clouds, is then passed to a central backend where multiple viewpoints are fused into a
comprehensive 3D semantic scene model. Since image interpretation is computed locally,
only semantic information is sent over the network. The raw images remain on the
sensor boards, significantly reducing bandwidth requirements and mitigating privacy
concerns for the observed persons.

The concept of smart edge sensors is further extended to mobile aerial and ground
robots, enabling anticipatory human-aware navigation and active perception in areas
not covered by stationary sensors. An outdoor smart edge sensor is presented, based on
a UAV platform with on-board multi-modal semantic perception.

We introduce the concept of semantic feedback, enabling collaborative perception
between sensor nodes and the central backend through bidirectional communication at
the semantic level. The incorporation of global context information, such as the fused
multi-view human and robot pose estimates, enhances the local semantic models of the
smart edge sensors, improving pose estimation and enabling preemptive adjustments to
the robot’s navigation path, e.g. when a person emerges from an occluded area.

The proposed methods are evaluated using public datasets and real-world experiments
in challenging cluttered and dynamic environments. The system demonstrates the ability
to generate a real-time semantic scene model that includes semantically annotated 3D
geometry, object instances, and poses of multiple persons.
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Z u s a m m e n f a s s u n g

In dieser Arbeit wird ein System zur semantischen Wahrnehmung von 3D-Szenenge-
ometrie, Personen und Objekten in der Robotik entwickelt. Dabei werden Einschrän-
kungen berücksichtigt, die sich aus der Interpretation einer einzelnen Sensoransicht
mit begrenztem Sichtfeld, begrenzter Messreichweite und Auflösung ergeben, sowie die
Herausforderungen zentralisierter Ansätze, die eine hohe Kommunikationsbandbreite
und Rechenleistung erfordern.

Um diese Einschränkungen zu beheben, wird ein Netzwerk verteilter Smart-Edge-
Sensoren entwickelt, die mit einer multimodalen Sensorsuite und einem eingebetteten
CNN-Inferenzbeschleuniger für die geräteinterne Bildverarbeitung ausgestattet sind.
Auf den Sensoren werden Echtzeit-Vision-CNN-Modelle zur Personen- und Objekter-
kennung, semantischen Segmentierung und Posenschätzung eingesetzt. Die extrahierten
Informationen, wie z. B. 2D-Keypoints von Personen, Objektposen und semantische
Punktwolken, werden dann an ein zentrales Backend gesendet, wo mehrere Blickwinkel
zu einem umfassenden semantischen 3D-Szenenmodell fusioniert werden. Da die Bild-
interpretation lokal berechnet wird, werden nur semantische Informationen über das
Netzwerk übertragen. Die Rohbilder verbleiben auf den Sensorboards, was die Band-
breitenanforderungen erheblich reduziert und Datenschutzbedenken für beobachtete
Personen mindert.

Das Konzept der Smart-Edge-Sensoren wird auf mobile Luft- und Bodenroboter
ausgeweitet und ermöglicht eine vorausschauende, menschenbewusste Navigation und
aktive Wahrnehmung in Bereichen, die von stationären Sensoren nicht erfasst werden. Es
wird ein outdoor Smart-Edge-Sensor vorgestellt, der eine UAV-Plattform mit integrierter
multimodaler semantischer Wahrnehmung nutzt.

Für die kollaborative Wahrnehmung zwischen Smart-Edge-Sensorknoten und dem
zentralen Backend durch bidirektionale Kommunikation auf semantischer Ebene wird
das Konzept des semantischen Feedbacks entwickelt. Die Einbeziehung globaler Kontex-
tinformation, z. B. der fusionierten Multi-View-Personen- und Roboterposenschätzung,
verbessert die lokalen semantischen Modelle der Smart-Edge-Sensoren, indem die Posen-
schätzung unterstützt und eine vorausschauende Anpassung der Bewegung des Roboters,
z. B. wenn eine Person aus einem verdeckten Bereich hervortritt, ermöglicht wird.

Die vorgeschlagenen Methoden werden anhand öffentlicher Datensätze und realer
Experimente in anspruchsvollen, unübersichtlichen und dynamischen Umgebungen
evaluiert. Das System ist in der Lage, in Echtzeit ein semantisches Szenenmodell zu
erstellen, das semantisch annotierte 3D-Geometrie, Objektinstanzen und Posen mehrerer
Personen umfasst.
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NUC Next Unit of Computing

PAF part affinity field

PC personal computer

PCL point cloud library

PCP percentage of correct parts

PnP perspective-n-point

PSM pictorial structures model

RAM random-access memory

RANSAC random sample consensus

RGB red green blue

R-CNN region-based CNN

RGB-D red green blue and depth

RMS root mean square

RMSE root mean square error

ROS robot operation system

SIFT scale-invariant feature transform

SLAM simultaneous localization and mapping

SLIC simple linear iterative clustering

SMPL skinned multi-person linear

SMPL-X SMPL-expressive

SoC system-on-chip

SSD single shot detector

SVD singular value decomposition

TOPS trillion operations per second

TPU tensor processing unit

TSDF truncated signed distance field

UAV unmanned aerial vehicle

UGV unmanned ground vehicle

USB universal serial bus

VGA video graphics array

VSD visible surface discrepancy

YCB-V Yale-CMU-Berkeley-video

YOLO you only look once





1
I n t r o d u c t i o n

The field of robotics and artificial intelligence (AI) has seen tremendous progress
in recent years, leading to the deployment of intelligent robots in a wide range of
applications. One of the key challenges in enabling these robots to interact effectively
and safely in real-world environments is achieving a comprehensive understanding of the
surrounding scene. Semantic scene perception plays a crucial role in empowering robots
to perform complex tasks such as safe and predictive collision-free navigation around
people, object manipulation, and human-robot interaction. Building and updating a
semantic scene model is a challenging task and requires accurate semantic perception of
three-dimensional (3D) scene geometry, objects, robots, and people.

Traditionally, semantic scene understanding has been approached using single sensor
views, which have inherent limitations such as a restricted field of perception, measure-
ment range, and resolution. They are further prone to frequent occlusion in cluttered
real-world scenes. Multiple consecutive viewpoints of a scanning trajectory are aggre-
gated over time to build a comprehensive scene model, but only a single input view is
available at a time. SemanticFusion (McCormac et al., 2017) uses the video stream of
a single, moving RGB-D camera to build semantic maps of room-scale environments.
A simultaneous localization and mapping (SLAM) system (Whelan et al., 2015) is
employed to estimate the sensor poses during the scanning trajectory. MID-Fusion (B.
Xu et al., 2019) generates an object-level dynamic volumetric map from a single RGB-D
camera, estimating geometric, semantic, and motion properties for arbitrary objects in
the scene. Kimera (Rosinol et al., 2021) is a modular metric-semantic stereo-inertial-
SLAM framework that builds a hierarchical multi-level scene graph to represent an
environment at different levels of abstraction such as buildings, rooms, places, and a
detailed metric-semantic mesh. The scene model can further be extended to a dynamic
scene graph that includes dynamic agents such as humans or robots. It may take about
30 minutes to create a building-scale semantic scene model, as only a single input view
is processed at a time.

The constraints of single-view systems can be overcome by employing a collaborative
approach using distributed sensor networks or multi-robot systems to enable faster
coverage of large scenes. Kimera-multi (Tian et al., 2022) presents a system of multiple
ground robots that collaboratively build a globally consistent metric-semantic scene
model in a distributed manner, relying only on local peer-to-peer communication.
When multiple robots meet, they perform inter-robot place recognition and relative
pose estimation to fuse their local map and trajectory estimates. As communication
is limited to sparse time points at rendezvous points between agents, the amount of
information sharing and collaboration is limited in decentralized systems, and map
redundancy between agents can arise. With CCM-SLAM, Schmuck and Chli (2019)
propose a centralized approach for collaborative SLAM with multiple unmanned aerial
vehicles (UAVs). The agents communicate relevant data, such as keyframes and map
points to a central backend server, where observations are fused and a joint map is
built. A bidirectional information flow between the agents and the server is implemented

1
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that allows the robots to augment their local maps with information from the global,
joint map. Nevertheless, each agent keeps local autonomy based on their local map
of limited size. The approach is extended to visual-inertial data (Karrer, Schmuck,
and Chli, 2018) and to a generic backend that can handle agents with arbitrary local
odometry systems (Patel et al., 2023). These systems build sparse feature-based maps
but no dense semantic scene models.

Advances in edge computing have spurred interest in processing sensor data at
the source, as the centralized fusion of raw data from multiple sensors requires high
communication bandwidth and processing power on the central computer, leading to
issues when scaling multi-view methods to a larger number of sensor nodes. Embedded
inference accelerators, such as Google edge tensor processing units (TPUs) and Nvidia
Jetson embedded graphics processing units (GPUs) have enabled deep-learning models,
e.g. for object detection or human pose estimation, to process sensor data on mobile edge
devices in real time in an energy-efficient manner. Efficient, light-weight convolutional
neural network (CNN) architectures (Howard et al., 2019, 2017; Tan and Le, 2019)
were developed for inference on embedded devices that can further be optimized using
techniques such as quantization (Jacob et al., 2018) or reduced floating point accuracy.
A network of smart cameras transmitting only abstract image features to a central
processing station was proposed by Naikal, Lajevardi, and Sastry (2014) to build a
system for human joint detection and action recognition and J. Zhang et al. (2020)
investigate human pose estimation on smartphone SoCs. L. Zhang, Lixing Chen, and
J. Xu (2021) propose to partition neural network inference for object detection between
a mobile edge sensor and a backend server and to determine the partitioning point in an
online manner, depending on the compute capability of the edge device and the network
transmission speed. They further build an energy-efficient multi-camera system with
onboard two-dimensional (2D) pose estimation for real-time 3D human pose estimation
using adaptive camera selection to choose a subset of sensor nodes to process redundant
views (L. Zhang and J. Xu, 2023).

Despite these recent advances in semantic scene understanding, collaborative percep-
tion, and edge computing, to the best of our knowledge, the comprehensive integration
of stationary smart edge sensors and mobile robots coupled with a central backend
has not been extensively explored in the context of collaborative 3D semantic scene
perception. This thesis aims to bridge the gap by proposing a novel framework that
effectively combines the capabilities of distributed stationary and mobile smart edge
sensors and a central backend through bidirectional communication at the semantic
level. To build an intelligent, interconnected, and efficient system for collaborative 3D
semantic scene perception, we develop a network of distributed sensors with onboard
compute capabilities for local semantic interpretation of the sensor data. We refer to
the developed sensor platforms, which consist of multi-modal sensors (e.g. red green
blue (RGB), red green blue and depth (RGB-D), and thermal cameras) and an embed-
ded CNN inference accelerator for local image processing on the device, as smart edge

sensors. The term emphasizes the ability of the sensor boards to semantically interpret
data directly at its source, at the edge of the network. The smart edge sensor platforms
used throughout this thesis are depicted in Fig. 1.1.

Powerful image processing CNN models, optimized for the inference accelerators,
run in real time on the device in a time- and energy-efficient manner. They provide
semantic percepts such as person and object detections, pixel- or point-wise semantic
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(a) (b) (c) (d)

Figure 1.1: Smart edge sensor platforms used throughout this thesis: (a) stationary smart edge
sensor with RGB camera and Edge TPU accelerator, (b) stationary smart edge sensor
with RGB-D and thermal cameras and Jetson NX embedded GPU, (c) unmanned
aerial vehicle (UAV) with 3D LiDAR, RGB-D and thermal cameras, iGPU and
Edge TPU accelerators, (d) human support robot (HSR) with 2D LiDAR, RGB-D
camera, and Jetson TX2 embedded GPU.

segmentation, and human, object, or robot poses. Since image interpretation is computed
locally on the smart edge sensors, only semantic information is sent over the network.
The raw images remain on the sensor boards, which significantly reduces the required
bandwidth and mitigates privacy issues.

Using static viewpoints of distributed smart edge sensors and changing viewpoints
of mobile robots, we develop methods for temporal multi-view fusion of semantic
perceptions of individual sensors into an allocentric 3D semantic scene model.

In a first iteration, the scene model comprises dynamic 3D human poses estimated in
real time from the observations of the multiple perspectives of the sensor network. Each
sensor locally computes person detections and 2D heatmaps of human joint keypoint
locations and their uncertainties that are then fused into allocentric 3D skeleton models
on a central backend. The movement of multiple persons through the lab-scale capture
space is tracked in real time using up to 16 smart edge sensors with RGB cameras. As
the multi-view fusion of local joint detections to 3D pose estimates requires the relative
camera poses to be known, we develop methods for online marker-free extrinsic camera
calibration requiring only a rough, tape-measure-based initialization.

We then extend the smart edge sensor network with additional sensor nodes with
enhanced computational capabilities and RGB-D and thermal cameras to build a
complete 3D semantic scene model that includes semantically annotated 3D scene
geometry as a volumetric map with additional object-level pose and shape information
for specific object classes in addition to the dynamic 3D human poses.

The distributed sensors are coupled with a central backend through a feedback loop for
bidirectional communication at the semantic level. The concept of semantic feedback is
a key element of the presented research work. Relevant parts of the allocentric semantic
model, which fuses all available sensor perspectives, are reprojected into the local views
of individual sensors and sent back to them. This allows the local semantic models
on each sensor to be improved and made more robust by incorporating global context
information, thereby implementing collaborative information sharing among distributed
sensors. For example, occluded or ambiguous joint detections in a local sensor view can
be resolved by fusing the local detections with the reprojected allocentric multi-view
human pose estimate received as semantic feedback. The high-level data processing
architecture of the approaches developed in this thesis is illustrated in Fig. 1.2.
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Figure 1.2: Data processing architecture of the approaches developed in this thesis: Stationary
and mobile smart edge sensors interpret images locally and send semantic percepts
such as person and object detections, pose estimates, and semantic point clouds
to a central backend. The backend fuses semantic percepts from multiple smart
edge sensors with prior information such as skeleton models or building plans into
an allocentric 3D semantic scene model. Parts of the scene model are sent back to
individual sensors as semantic feedback to improve local view interpretation.

We extend the concept of smart edge sensors with local on-device semantic image
processing from static sensor boards to mobile aerial and ground robots. We propose
a UAV platform with onboard real-time multi-modal semantic perception as a mobile
smart edge sensor operating outdoors. Here we use a single, but moving, sensor node,
whereas in the previous scenarios, we worked with multiple, static smart edge sensors.
The semantic information from point cloud, RGB, and thermal modalities is fused into a
joint image segmentation mask and a semantically labeled 3D point cloud in a Bayesian
manner. In addition, we investigate the use of label propagation from an aggregated
image-based semantic map to the LiDAR modality to overcome the problems of domain
adaptation when generalizing between different sensor types. Consequently, the accuracy
of the point cloud semantic segmentation is significantly improved.

Finally, we combine the previous ideas by incorporating a mobile service robot into the
network of static smart edge sensors to collaboratively build a more complete semantic
scene model. To fuse its semantic observations into the allocentric scene model, the
robot pose is estimated from the external smart edge sensors and sent to the robot as
semantic localization feedback. The robot extends the coverage and level of detail of
the semantic map by actively perceiving the areas not observed by the static sensors.
In addition, by incorporating semantic feedback of human pose observations from the
external sensors, the robot can anticipate people emerging from behind occlusions and
preemptively adjust its navigation path to maintain a safe distance.

The proposed methods are evaluated on various public datasets for single and multi-
person multi-view human and object pose estimation. We further present a series of real-
world experiments with the sensor network and the mobile service robot in a challenging,
highly cluttered, and dynamic indoor lab environment, as well as with the UAV system
in outdoor flights in an urban campus area and at a disaster test site. The proposed
perception systems provide a complete semantic scene model including semantically
annotated 3D geometry, 3D object instances with pose and shape information, and 3D
poses of multiple persons estimated in real time and prove to be robust to real-world
situations.
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1.1 Key Contributions

The key contributions of this thesis are summarized as follows:

Smart Edge Sensor Network and Platforms. We develop two different
sensor platforms comprising multi-modal cameras and embedded inference accelerators
for local on-device image processing that we refer to as smart edge sensors. The first
smart edge sensor platform is based on the Google Edge TPU Dev Board1 and an
RGB camera. The second smart edge sensor platform uses an Nvidia Jetson Xavier NX
Developer Kit2 and RGB-D and thermal cameras. With up to 20 instances of these
heterogeneous sensor boards, we build a distributed sensor network covering a lab-scale
environment of ∼240 m2. We further employ different mobile robots as sensor nodes,
i.e. a UAV with RGB-D, thermal, and LiDAR sensors and onboard processing using
an Edge TPU or an iGPU as inference accelerator, and a human support robot (HSR)
with an RGB-D camera and onboard processing using a Jetson TX2 accelerator.

For real-time processing on board these embedded inference accelerators (Edge TPU,
Jetson NX and TX2, iGPU), we adapt efficient CNN architectures for image and point
cloud semantic segmentation, person and object detection, and human, robot, and
object pose estimation, and retrain or fine-tune them on task-specific datasets.

Collaborative Semantic Perception. We develop methods for temporal
multi-view fusion of semantic percepts from individual sensors into an allocentric 3D
semantic scene model, using static viewpoints of distributed smart edge sensors and
changing viewpoints of mobile robots. The scene model thereby contains dynamic 3D
human poses estimated in real time and semantically annotated 3D scene geometry as
a volumetric map with additional object-level information. To estimate the poses of
the different static and moving sensors contributing to the allocentric scene model, we
develop methods for online marker-free extrinsic camera calibration and mobile robot
pose estimation using multi-view keypoint detections.

Semantic Feedback. The proposed architecture for collaborative semantic per-
ception divides the computation between smart edge sensors performing image analysis
locally for each camera view and a central backend fusing the semantic interpretations
of individual views. In this context, we propose semantic feedback, a scheme that enables
bidirectional communication on a semantic level between distributed sensors and the
central backend. Relevant parts of the allocentric semantic scene model are sent back
to the individual sensors. This allows them to incorporate global context information,
e.g. the fused multi-view human pose estimate or occlusion information for human
joints computed via ray-tracing through the estimated 3D scene geometry, into their
local semantic models, thus improving local view interpretation. Furthermore, mobile
robots can anticipatorily adjust their navigation path to people emerging from behind
occlusions through semantic feedback of human pose observations from external sensors.

1 https://coral.ai/docs/dev-board/datasheet, accessed: 2023-08-01
2 https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit, accessed: 2023-08-01

https://coral.ai/docs/dev-board/datasheet
https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
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Multi-Modality Fusion and Cross-Domain Adaptation using La-

bel-Propagation. Chapter 4 presents an approach for the Bayesian fusion of
semantic information from point cloud, RGB, and thermal modalities into a joint image
segmentation mask and a semantically labeled 3D point cloud. We further investigate
using label propagation from image to LiDAR modalities to overcome domain adapta-
tion issues of LiDAR segmentation when generalizing between different sensor types,
thereby significantly improving the accuracy of the point cloud segmentation.

1.2 Publications

Parts of this thesis have been published in peer-reviewed conference proceedings and
journals. The most relevant publications covering the main chapters of this thesis are
listed below in chronological order:

Simon Bultmann and Sven Behnke (2021). “Real-time multi-view 3D human pose
estimation using semantic feedback to smart edge sensors.” In: Robotics: Science

and Systems (RSS). doi: 10.15607/RSS.2021.XVII.040

Simon Bultmann, Jan Quenzel, and Sven Behnke (2021). “Real-time multi-modal
semantic fusion on unmanned aerial vehicles.” In: European Conference on Mobile

Robots (ECMR). doi: 10.1109/ECMR50962.2021.9568812

Simon Bultmann and Sven Behnke (2022). “3D semantic scene perception us-
ing distributed smart edge sensors.” In: International Conference on Intelligent

Autonomous Systems (IAS), pp. 313–329. doi: 10.1007/978-3-031-22216-0_22

Simon Bultmann, Jan Quenzel, and Sven Behnke (2023). “Real-time multi-modal
semantic fusion on unmanned aerial vehicles with label propagation for cross-
domain adaptation.” In: Robotics and Autonomous Systems 159, p. 104286. doi:
10.1016/j.robot.2022.104286

Simon Bultmann, Raphael Memmesheimer, and Sven Behnke (2023). “External
camera-based mobile robot pose estimation for collaborative perception with smart
edge sensors.” In: IEEE International Conference on Robotics and Automation

(ICRA), pp. 8194–8200. doi: 10.1109/ICRA48891.2023.10160892

The following publications (organized in chronological order) were written in close
collaboration with bachelor and master students under my supervision. Sections of these
publications are also presented in this thesis.

Moritz Zappel, Simon Bultmann, and Sven Behnke (2021). “6D object pose estima-
tion using keypoints and part affinity fields.” In: RoboCup International Symposium,
pp. 78–90. doi: 10.1007/978-3-030-98682-7_7

Bastian Pätzold, Simon Bultmann, and Sven Behnke (2022). “Online marker-free
extrinsic camera calibration using person keypoint detections.” In: 44th DAGM

German Conference on Pattern Recognition (GCPR), pp. 300–316. doi: 10.1007/

978-3-031-16788-1_19

https://doi.org/10.15607/RSS.2021.XVII.040
https://doi.org/10.1109/ECMR50962.2021.9568812
https://doi.org/10.1007/978-3-031-22216-0_22
https://doi.org/10.1016/j.robot.2022.104286
https://doi.org/10.1109/ICRA48891.2023.10160892
https://doi.org/10.1007/978-3-030-98682-7_7
https://doi.org/10.1007/978-3-031-16788-1_19
https://doi.org/10.1007/978-3-031-16788-1_19
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Julian Hau, Simon Bultmann, and Sven Behnke (2022). “Object-level 3D semantic
mapping using a network of smart edge sensors.” In: 6th IEEE International

Conference on Robotic Computing (IRC), pp. 198–206. doi: 10.1109/IRC55401.

2022.00041

The following publications, listed in chronological order, are related to the topics
presented in this thesis and were written with my contribution as a co-author during
the time the presented research was conducted. They are cited as external literature in
this thesis and do not cover significant parts of the chapters:

Marius Beul, Simon Bultmann, Andre Rochow, Radu Alexandru Rosu, Daniel
Schleich, Malte Splietker, and Sven Behnke (2020). “Visually guided balloon popping
with an autonomous MAV at MBZIRC 2020.” In: IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR), pp. 34–41. doi: 10.1109/SSRR50563.

2020.9292612

Marius Beul, Max Schwarz, Jan Quenzel, Malte Splietker, Simon Bultmann, Daniel
Schleich, Andre Rochow, Dmytro Pavlichenko, Radu Rosu, Patrick Lowin, Bruno
Scheider, Michael Schreiber, Finn Süberkrüb, and Sven Behnke (2022). “Target
chase, wall building, and fire fighting: Autonomous UAVs of team NimbRo at
MBZIRC 2020.” In: Field Robotics 2, pp. 807–842. doi: 10.55417/fr.2022027

1.3 Open Source Software Releases

To facilitate future research on collaborative perception using smart edge sensor networks,
implementations for some of the developed methods are publicly available, including:

• The source code of the backend processing for multi-view 3D human pose estima-
tion using semantic feedback, introduced by Bultmann and Behnke (2021)3.

• The source code for 3D semantic scene perception using distributed smart edge
sensors, introduced by Bultmann and Behnke (2022), for both onboard processing
on the sensor boards4 and multi-view fusion, semantic mapping, and semantic
feedback on the central backend5.

1.4 Outline

This thesis comprises six chapters, of which Chapters 2 to 5 present the scientific
contributions (cf. Sec. 1.1). The approaches presented usually build on the content of
the preceding chapters. The chapters are written to be self-contained so that they can
be read individually.

Chapter 2 presents a method for 3D multi-person pose estimation from a multi-camera
setup and introduces the network of distributed smart edge sensors that is used and
extended throughout the thesis. The distributed sensors are coupled with a central
backend through a semantic feedback loop that enables the local semantic models on
each sensor to incorporate global context information.

3 https://github.com/AIS-Bonn/SmartEdgeSensor3DHumanPose

4 https://github.com/AIS-Bonn/JetsonTRTPerception

5 https://github.com/AIS-Bonn/SmartEdgeSensor3DScenePerception

https://doi.org/10.1109/IRC55401.2022.00041
https://doi.org/10.1109/IRC55401.2022.00041
https://doi.org/10.1109/SSRR50563.2020.9292612
https://doi.org/10.1109/SSRR50563.2020.9292612
https://doi.org/10.55417/fr.2022027
https://github.com/AIS-Bonn/SmartEdgeSensor3DHumanPose
https://github.com/AIS-Bonn/JetsonTRTPerception
https://github.com/AIS-Bonn/SmartEdgeSensor3DScenePerception
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In Chapter 3, the smart edge sensor network is extended for 3D semantic scene
perception. New sensor nodes with RGB-D perception are added and a volumetric
semantic map of the scene is created. Certain furniture objects further are explicitly
represented in the scene model via object-centric sub-maps and their movement is tracked
through the scene. The semantic feedback for human pose estimation is extended with
occlusion information for each joint using the 3D scene geometry from the semantic
map and a ray-tracing approach.

Chapter 4 introduces a UAV with onboard real-time multi-modal semantic perception
as a mobile smart edge sensor node. Whereas in previous chapters, we worked with
multiple, static smart edge sensors, here we employ a single but moving sensor node.
Label propagation from an image-based semantic map for the semantic segmentation of
individual LiDAR scans allows for sensor-specific adaptation of the LiDAR semantic
segmentation CNN with cross-modality and cross-domain supervision. This brings back
the idea of semantic feedback: Parts of the allocentric semantic map are reprojected
into individual sensor views and used as a reliable source of semantic information.

Chapter 5 combines the previous approaches to the final extent of the proposed
system for collaborative semantic scene perception: A mobile service robot is employed
together with the network of static smart edge sensors to collaboratively build a more
complete semantic map. The robot’s pose is estimated from the external smart edge
sensors such that its semantic observations can be fused into the allocentric semantic
scene model. The robot actively perceives the areas not observed by the static sensors
and extends the coverage and level of detail in the semantic map. In addition, the robot
can anticipate people emerging from behind occlusions and anticipatorily adjust its
navigation path to maintain a safe distance through semantic feedback of human pose
observations from the external sensors.

Finally, Chapter 6 concludes the thesis. The achieved scientific results and developed
approaches are summarized and discussed, and possible future work directions and
applications are suggested.
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M u lt i - V i e w 3 D H u m a n P o s e E s t i m at i o n

Preface

This chapter is adapted from Bultmann and Behnke (2021), previously published by the
RSS Foundation and presented at Robotics: Science and System XVII (RSS 2021), and
Pätzold, Bultmann, and Behnke (2022), previously published by Springer and presented
at the 44th DAGM German Conference on Pattern Recognition (GCPR 2022).

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of the publication (Bult-
mann and Behnke, 2021), including the literature survey, the conception, formalization,
design, and implementation of the proposed methods, the preparation and conduct of
experiments for the evaluation of the proposed approach, the analysis and interpretation
of the experimental results, the preparation of the manuscript, as well as the revision
and final editing of the version to be published.

The author of this thesis substantially contributed to the following aspects of the
publication (Pätzold, Bultmann, and Behnke, 2022): the literature survey, the conception,
formalization, and design of the proposed methods and experiments, the analysis and
interpretation of the experimental results, and the preparation of the manuscript, as
well as the revision and final editing of the version to be published. He further provided
support for the implementation and evaluation as well as supervision over all other
aspects.

The content presented in this chapter, unless otherwise stated, is the contribution of
the author of this thesis.

Abstract

In this chapter, we present a novel method for the estimation of three-dimensional (3D)
human poses from a multi-camera setup, employing distributed smart edge sensors
coupled with a backend through a semantic feedback loop. Two-dimensional (2D) joint
detection for each camera view is performed locally on a dedicated embedded inference
accelerator. Only the semantic skeleton representation is transmitted over the network
and raw images remain on the sensor board. 3D poses are recovered from 2D joints
on a central backend, based on triangulation and a body model which incorporates
prior knowledge of the human skeleton. A feedback channel from backend to individual
sensors is implemented on a semantic level. The allocentric 3D pose is backprojected
into the sensor views where it is fused with 2D joint detections. The local semantic
model on each sensor can thus be improved by incorporating global context information.
The whole pipeline thereby is capable of real-time operation at up to 30 Hz.

9



10 multi-view 3d human pose estimation

We further propose a novel, marker-free online method for the extrinsic calibration of
multiple smart edge sensors, relying solely on the 2D human joint detections computed
locally on the smart edge sensors and associated to person hypotheses on the central
backend. We use these person hypotheses to repeatedly solve optimization problems
in the form of factor graphs. Given suitable observations of one or multiple persons
traversing the scene, the estimated camera poses converge towards a coherent extrinsic
calibration within a few minutes.

We evaluate our method for 3D human pose estimation on three public datasets, where
we achieve state-of-the-art results and show the benefits of our feedback architecture.
Further evaluation is performed in our own setup for real world multi-person experiments.
Using the feedback signal improves the 2D joint detections and in turn the estimated
3D poses. The marker-free extrinsic camera calibration based on human joint detections
is evaluated in our real-world setup and we show that the calibration with our method
achieves better results in terms of reprojection errors in the targeted application domain
of 3D multi-person pose estimation, compared to a reference calibration generated by
an offline method using a traditional calibration target.

2.1 Introduction

Accurate perception of humans is a challenging task with many applications in robotics
and computer vision. It is a prerequisite e. g. for safe navigation and anticipatory
movement of robots in the vicinity of people and can enable human-robot interaction or
augmented reality scenarios. Utilizing a multi-camera setup for this task permits to cover
a large workspace, increases robustness e. g. against occlusions and enables to lift 2D
detections into 3D space. To successfully interpret and fuse the measurements of multiple
sensors, they need to be transformed into a common coordinate frame which requires
the sensor poses in a common reference frame—their extrinsic calibration. Camera
calibration is typically achieved using offline methods that use checkerboard calibration
targets. These methods, however, often are cumbersome and lengthy, considering that a
new calibration is required each time any camera pose changes. Instead, we propose an
online, marker-free approach for extrinsic camera calibration that uses person keypoint
detections as calibration targets, allowing efficient calibration updates by just one or
multiple people walking around the scene.

In this chapter, we address the task of 3D human pose estimation in allocentric world
coordinates from a calibrated multi-camera setup together with the task of obtaining and
updating the extrinsic camera calibration. Most state-of-the-art methods for 3D human
pose estimation (Long Chen et al., 2020; J. Dong et al., 2019; Pavlakos et al., 2017b;
Qiu et al., 2019; Remelli et al., 2020) follow a two-step approach: First, 2D keypoint
detections are generated for each available view (cf. Fig. 2.1 bottom). Second, detections
from multiple views are fused into a 3D human pose estimate and post-processed using a
skeleton model (cf. Fig. 2.1 top-left). Many recent methods focus more on accuracy than
efficiency and are difficult to employ in real-world scenarios with real-time constraints.

To enable online human pose estimation in real-world settings, we propose a novel
architecture for real-time multi-view 3D human pose estimation using distributed smart
edge sensors for the 2D pose estimation part. With the term smart edge sensor, we refer
to our sensor platform comprising a camera and an embedded inference accelerator for
local on-device image processing (cf. Fig. 2.1 top-right). This enables each camera view to
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Figure 2.1: Multi-view 3D human pose estimation using smart edge sensors: Sensor board with
attached camera (top-right). 2D pose detections from four views of the H3.6M
dataset (Ionescu et al., 2014) (bottom). Estimated 3D human skeleton (top-left).

be interpreted locally on the respective sensor board, where 2D human joint positions are
inferred from the images. The 2D human poses are streamed over a network to a central
backend, where synchronization, data association, triangulation and post-processing
are performed to fuse the 2D detections into 3D skeletons. Additionally, we propose a
semantic feedback channel from backend to smart edge sensors. The allocentric 3D pose
estimate is projected into the respective local views where it is combined with the joint
detections. Thus, global context information can be incorporated into the local semantic
model of the individual smart edge sensor, improving the pose estimation result.

The use of distributed smart edge sensors has several advantages over the centralized
approaches more common in literature. As the images are processed directly on the sensor
boards, raw images are not sent to the backend and only the 2D pose information has to
be transmitted over the network. This significantly reduces the required communication
bandwidth and mitigates privacy issues, as the abstract semantic information contains no
personal details. Moreover, using a dedicated inference accelerator for each camera lessens
the hardware requirements on the backend side, which, in a centralized architecture, can
quickly become the bottleneck. On the other hand, using an embedded sensor platform
poses challenges, as the employed vision models need to meet the limitations of the
hardware. For this, we propose a lightweight 2D pose estimation model for efficient
image processing locally on the smart sensors, at the edge of the network.

An essential prerequisite for multi-view 3D human pose estimation is a precise
calibration of the camera network. For multiple reasons, this task is an inherently difficult
one to solve (Maye, Furgale, and Siegwart, 2013): First, the calibration parameters
change over time, by normal usage, e.g. due to vibration, thermal expansion, or moving
parts. Therefore, it is not sufficient to calibrate the parameters only once during the setup
of the smart edge sensor network. Instead, calibration must be performed repeatedly



12 multi-view 3d human pose estimation

Figure 2.2: Extrinsic camera calibration using person keypoint detections computed locally on
smart edge sensors: 3D person hypotheses, initialized from synchronized 2D keypoint
observations from multiple views, are accumulated over time on a central backend
and a factor graph optimization is solved to obtain the optimal camera poses (shown
as coordinate systems with the blues axis being the viewing direction).

throughout its lifetime. Second, the calibration parameters cannot be measured directly
with sufficient precision; they must be inferred from the data captured by the considered
cameras. Further challenges for inferring calibration parameters from image data involve
accounting for noisy measurements and collecting a sufficient amount of data points
spread over the entirety of the image planes. Typically, the calibration is performed by
actively deploying a calibration target of known correspondences in front of the cameras,
e.g. a checkerboard pattern (Z. Zhang, 2000). However, this requires expertise and might
be perceived as cumbersome and lengthy when it has to be applied repeatedly for a
large multi-camera system.

We develop a novel, marker-free method to obtain and update the extrinsic calibration
of the network of static smart edge sensors, where each sensor runs inference for 2D
human pose estimation. The person keypoint detections can be used for either 3D
human pose estimation, where the camera poses are assumed to be fixed and known,
or for extrinsic camera calibration, where the keypoints are the calibration targets for
updating and refining the camera poses from a rough initial estimate.

2D keypoints from multiple views are synchronized, filtered, and assigned to 3D
person hypotheses on a central backend, where observations are accumulated over time,
as illustrated in Fig. 2.2. Factor graph optimizations (Dellaert and Kaess, 2017) are
repeatedly solved in an online manner to obtain the optimal camera poses from the
observations. The method can handle multiple persons in the scene, as well as arbitrary
occlusions, e.g. from tables or pillars. We assume the intrinsic parameters of the cameras
to be known and a rough initial estimate of the extrinsic calibration to be available,
which can easily be obtained, e.g. from a floor plan or by tape measure.

The proposed calibration method alleviates many of the issues mentioned above:
No specific calibration target is required; it suffices for one or several persons to walk
through the scene. The method handles data association between multiple observed
persons and their unknown dimensions. We propose an efficient online algorithm that
optimizes the camera poses on-the-fly, giving direct feedback on success and when
enough data has been captured. The calibration procedure can easily be repeated to
account for parameter change over time, without expert knowledge. Furthermore, person
keypoints can be detected from a significantly larger range of viewing angles (e.g. front,
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back, or side-view) than the pattern of a classical checkerboard calibration target, which
is well detected only from a frontal view. This facilitates the collection of a sufficient
amount of corresponding data points visible in multiple cameras that well constrain the
factor graph optimization, further reducing the time required for calibration.

In summary, the main contributions presented in this chapter are:

• a new real-time method for multi-view 3D human pose estimation dividing the
computation between smart edge sensors performing image analysis locally for
each camera view and a backend fusing the semantic interpretations of individual
views and using a computationally efficient skeleton model to incorporate prior
knowledge,

• a novel, marker-free online method for the extrinsic calibration of multiple smart
edge sensors, relying on 2D human joint detections as calibration targets,

• a novel 3D / 2D feedback architecture enabling bidirectional communication on a
semantic level between sensors and backend, and

• an extensive evaluation of the proposed approach for 3D human pose estimation on
the single-person H3.6M dataset (Ionescu et al., 2014), the multi-person Campus
and Shelf datasets (Belagiannis et al., 2014), and in own multi-person experiments
in a less-controlled real-world environment, where the proposed method for online
marker-free camera calibration is applied.

2.2 Related Work

Human Pose Estimation. Human pose estimation from multi-camera input
has been investigated for many years in the computer vision and robotics communities.
It refers to the task of detecting anatomical keypoints of persons on images. 2D keypoint
detections from multiple, calibrated camera views are fused to obtain 3D human poses.

Early works (Belagiannis et al., 2014, 2015; Burenius, Sullivan, and Carlsson, 2013)
use manually designed image features, such as histograms of oriented gradients (HOG)
descriptors (Dalal and Triggs, 2005) or pictorial structures (Felzenszwalb and Hutten-
locher, 2005; Fischler and Elschlager, 1973), for 2D part detection and combine multiple
views using a graph-based body model. With the increasing success of deep-learning
methods, more recent approaches (J. Dong et al., 2019; Pavlakos et al., 2017b; Qiu
et al., 2019) employ 2D CNNs for human joint detection (Cao et al., 2021; J. Li et al.,
2019; Xiao, Wu, and Wei, 2018) and recover the 3D pose using variants of the pictorial
structures model (PSM) (Belagiannis et al., 2014; Burenius, Sullivan, and Carlsson,
2013). In these approaches, the body model consists of a graph with 3D joint locations
as nodes and pairwise articulation constraints on the edges. While the PSM body
model recovers 3D poses accurately, it is computationally very expensive and generally
not real-time capable, due to a large volumetric grid used as discrete state space for
optimization. In our work, we also employ a graph-based body model but use a fast,
iterative optimization scheme (Kaess et al., 2012), achieving real-time operation.

Iskakov et al. (2019) propose a volumetric aggregation of 2D feature maps from
multiple views into 3D voxel feature maps for the estimation of 3D body joints. Tu,
Chunyu Wang, and Zeng (2020) extend the volumetric approach to multi-person
scenarios, making data association decisions in the 3D feature volume, which increases the
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robustness. The voxel-based approaches provide good performance, but computationally
and memory-intensive 3D convolutions make these approaches infeasible for real-time
and large-area applications.

Several recent methods with a focus on computational efficiency have been pro-
posed (Long Chen et al., 2020; Remelli et al., 2020). In these approaches, 3D pose
estimation is based on direct triangulation of 2D joint detections without the usage of
an expensive body model. Long Chen et al. (2020) propose a fast, iterative triangulation
scheme but assume 2D pose detections as given. Remelli et al. (2020) consider the whole
pipeline including 2D keypoint estimation but use a fully centralized approach while
our method employs distributed sensors for 2D pose estimation.

Naikal, Lajevardi, and Sastry (2014) proposed a system for human joint detection and
action recognition using a network of smart cameras transmitting only abstract image
features to a central processing station. However, at the time, no CNN-based vision
models were available for pose estimation on mobile devices, limiting the performance of
their framework. Furthermore, their communication channel is purely feed-forward—no
feedback for viewpoint fusion is implemented.

Qiu et al. (2019) present an approach for cross-view fusion to improve the estimated
2D poses of individual camera views. 3D poses are recovered using an offline recursive
PSM implementation with a processing time of several seconds per frame (Remelli et al.,
2020). While Qiu et al. propose to learn attention weights representing epipolar lines
between pairs of views from data, Y. He et al. (2020) extend the approach to changing
camera configurations by explicitly using extrinsic calibration parameters. This reduces
the number of learnable parameters and prevents retraining the attention weights when
the multi-camera setup changes.

In our work, we take up the idea of across-sensor viewpoint fusion but propose a
different formulation. Qiu et al. (2019) and Y. He et al. (2020) implement the fusion
between perspectives on a purely 2D basis, using epipolar constraints. Hence, a 2D joint
in one view will be associated with all features on the corresponding epipolar lines of
other views, which can be ambiguous. In contrast, we implement a semantic 3D / 2D
feedback channel from backend to sensors based on reprojection of the estimated 3D
skeleton into the individual camera views. Our work considers a network of smart edge
sensors where each sensor node performs 2D human pose estimation, processing the
image data locally on the sensor boards in real time and transmitting only the obtained
keypoint data. A central backend fuses the data received by the sensors to perform 3D
human pose estimation in real time via direct triangulation and a lightweight body
model. The semantic feedback loop improves the 2D pose estimation on the sensor
boards by incorporating global context information.

After the publication of our original work in 2021, the idea of using smart edge sensor
networks for 3D human pose estimation was taken up by other authors: L. Zhang and
J. Xu (2023) propose an energy-efficient multi-camera system with onboard 2D keypoint
estimation for real-time 3D human pose estimation, adaptively selecting a subset of
sensor nodes to process redundant views. They implement backward communication
from backend to sensors only on a control level, to choose which sensor board processes
a respective detection, but not on the data level to improve the local semantic models
via semantic feedback. Recent works on centralized 3D human pose estimation, that
do not distribute the computation to smart edge sensors, improve the generalizability
of epipolar fusion-based methods to novel camera configurations using a stochastic
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approach (Bartol, Bojanić, and Petković, 2022), improve the efficiency of voxel-based
methods through the decomposition of the 3D feature volume to different orthogonal
projections (Ye et al., 2022), and propose the direct regression of 3D poses of multiple
persons from multiple views with a transformer-based model (T. Wang et al., 2021).

Lightweight CNN Models for Human Joint Detection. Research
interest in computer vision models that run efficiently on mobile and embedded devices
has significantly increased in recent years. For human joint detection, OpenPose (Cao
et al., 2021) is a groundbreaking work that enables real-time 2D multi-person keypoint
detection. MobiPose (J. Zhang et al., 2020) investigates human pose estimation on
smartphone SoCs without dedicated inference accelerators, using motion vector-based
tracking. Xiao, Wu, and Wei (2018) propose a simple CNN architecture consisting only of
a feature extractor and a deconvolutional head but use a standard ResNet backbone (K.
He et al., 2016). Popular lightweight backbone architectures include EfficientNet (Tan
and Le, 2019) and MobileNets (Howard et al., 2019, 2017). These architectures greatly
reduce the number of parameters w.r.t. standard CNN feature extractors like ResNet,
e. g. by replacing convolutions with depthwise-separable convolutions. Moreover, tensor
processors for inference acceleration, like the Google Edge TPU (Seshadri et al., 2022),
can be employed to efficiently run a CNN vision model within a limited size and energy
budget. For compatibility with the Edge TPU, weights and activations of the model
need to be quantized to 8-bit integer values using a quantization scheme as proposed by
Jacob et al. (2018).

In our work, we employ the CNN architecture of Xiao, Wu, and Wei (2018) with a
MobileNetV3 backbone (Howard et al., 2019) and apply 8-bit quantization for inference
on the Edge TPU.

Camera Calibration. Traditional methods for camera calibration are based
on using artificial image features, so-called fiducials. Their common idea is to deploy a
calibration target with known correspondences in the overlapping field of view (FoV) of
the considered cameras. Z. Zhang (2000) utilizes a checkerboard pattern on a planar
surface to perform intrinsic camera calibration. The kalibr toolkit (Rehder et al., 2016)
uses a planar grid of AprilTags (Olson, 2011) to perform offline extrinsic and intrinsic
calibration of multiple cameras, which allows to fully resolve the target’s orientation
towards the cameras and is robust against occlusions. We apply this method to obtain
a reference calibration for evaluating our work.

Reinke, Camurri, and Semini (2019) propose an offline method to find the relative
poses between a set of (two) cameras and the base frame of a quadruped robot. They
use a fiducial marker mounted on the endeffector of a limb as the calibration target. The
camera poses are resolved using a factor graph (Dellaert and Kaess, 2017), modeling
kinematic constraints between the marker frame and the base frame together with the
visual constraints. We take up the idea of using factor graphs to model calibration
constraints in our work.

To cope with the issues of traditional approaches, methods for camera calibration
have been proposed that do not extract fiducial features from calibration targets but use
naturally occurring features instead. Komorowski (2012) extracts scale-invariant feature
transform (SIFT) features (Lowe, 1999) and finds correspondences between multiple
views using random sample consensus (RANSAC) (Fischler and Bolles, 1981). They use
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segmentation to remove dynamic objects and validate their approach on stereo vision
datasets. Their method is targeted towards one or a few small-baseline stereo cameras
and offline processing of a small batch of images. Bhardwaj et al. (2018) calibrate
traffic cameras by extracting vehicle instances via deep neural networks (DNNs) and
matching them to a database of popular car models. The extracted features and known
dimensions of the car models are then used to formulate a perspective-n-point (PnP)
problem (Fischler and Bolles, 1981). They assume a planar ground surface in the vicinity
of the cars and process results offline.

A variety of methods considering surveillance scenarios use pedestrians as calibration
targets. Lv, T. Zhao, and Nevatia (2006) track head and feet detections of a single
pedestrian walking on a planar surface during the leg-crossing phases to perform
offline extrinsic calibration of a single camera based on the geometric properties of
vanishing points. Following a tracking approach, they resolve the corresponding intrinsic
parameters based on Z. Zhang (2000). Hödlmoser and Kampel (2010) use a similar
approach, but expand the method to calibrate a camera network from pairwise relative
calibrations. The absolute scale of the camera network is resolved by manually specifying
the height of the walking person. Jingchen Liu, Collins, and Y. Liu (2011) require a
moderately crowded scene to perform online intrinsic and extrinsic calibration of a
single camera by assuming strong prior knowledge regarding the height distribution
of the observed pedestrians. The approach is based on computing vanishing points
using RANSAC. Jingchen Liu, Collins, and Y. Liu (2013) expand their method by
introducing a joint calibration for a network of cameras based on the direct linear
transform (DLT) (Hartley and Zisserman, 2003). Henning, Laidlow, and Leutenegger
(2022) jointly optimize the trajectory of a monocular camera and a human body mesh
by formulating an optimization problem in the form of a factor graph. They apply a
human motion model to constrain sequential body postures and to resolve scale.

Guan et al. (2016) and Truong et al. (2019) detect head and feet keypoints for each
observable pedestrian and perform pairwise triangulation assuming an average height
for all visible persons in the image pair. They then compute the calibration offline, using
RANSAC, followed by a gradient descent-based refinement scheme. Their resulting
calibration is only defined up to an unknown scale factor, which must be resolved
manually. The method assumes the center lines between all pedestrians to be parallel,
in other words, all persons are assumed to stand upright during the calibration, whereas
other poses, e.g. sitting persons, are not supported.

Our method, in contrast, extracts up to 17 keypoints per person (Lin et al., 2014)
using CNNs and assumes neither the dimensions or height of the persons, nor their pose
or orientation towards the cameras to be known. As for the unknown dimensions of the
persons, the scale of our calibration is also ambiguous up to a single scale factor. To
address this issue, we force the scale of the initial estimate of the extrinsic calibration
to be maintained throughout the calibration procedure.

2.3 Preliminaries

We consider a multi-camera system SN of N ≥ 2 projective cameras Ci, i ∈ [0 . . N − 1]
with projection matrices Pi ∈ R

3×4. The projection matrices Pi project a 3D point
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x ∈ R
3 defined by its homogeneous coordinates x̃ = [xT, 1]T ∈ R

4 onto the image plane
of the respective camera Ci and are given as:

Pi = KiCi , (2.1)

with

Ki =









fx 0 cx

0 fy cy

0 0 1









∈ R
3×3 (2.2)

the intrinsic camera calibration consisting of the focal length parameters fx, fy and the
optical center (cx, cy), and the extrinsic camera calibration given by the pose of the
optical center of each camera

Ci =
(

Ri ti

)

∈ R
3×4 , (2.3)

defined by the translation ti ∈ R
3 and rotation Ri ∈ SO(3) ⊂ R

3×3.
In Sec. 2.4 we consider the cameras to be fully calibrated, i.e. the intrinsic and

extrinsic calibration parameters are given and, hence, the projection matrices Pi are
known, while in Sec. 2.5 we consider only the intrinsic parameters Ki of the cameras
to be known and seek to obtain the extrinsic calibration parameters Ci from a rough
initial estimate.

Both approaches, for 3D human pose estimation (Sec. 2.4) and for extrinsic camera
calibration (Sec. 2.5) use 2D keypoint detections of a fixed set of J human joints as input.
If not stated otherwise, we use the set of J = 17 joints as defined in the common objects
in context (COCO) dataset (Lin et al., 2014): nose, left eye, right eye, left ear, right ear,
left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right

hip, left knee, right knee, left ankle, right ankle. The Human 3.6M dataset (Ionescu et al.,
2014), used in Sec. 2.6.2 and for visualization in Fig. 2.1, Fig. 2.3, and Fig. 2.8, employs
a slightly different skeleton model, with only one head keypoint instead of eyes and ears,
and additional neck, belly, and pelvis keypoints. Our 3D body model always comprises
the neck and pelvis joints, for compatibility between different datasets, calculated as
mean of both shoulders, or hips, respectively, if not part of the 2D detections.

Each joint keypoint detection Dj , j ∈ [0 . . J − 1] is given as

Dj = {uj , cj , Σj} , (2.4)

where uj = [uj , vj ]T are the image coordinates, cj is the confidence value, and Σj ∈ R
2×2

is the covariance matrix of the detection.
Keypoint detections are calculated locally on the smart edge sensors and the 2D

pose information is transmitted over a network to a central backend, using the robot
operation system (ROS) (Quigley et al., 2009) as middleware for communication. The
clocks of sensors and backend are software-synchronized and each 2D pose message
includes a timestamp representing the capture time of the corresponding image. Sets of
N corresponding 2D pose messages, one for each view, are determined based on the
timestamps and further processed by the respective methods as detailed in the following.
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Figure 2.3: Overview of the proposed pipeline for 3D human pose estimation using smart edge
sensors and semantic feedback. Images are analyzed locally on the sensor boards.
Semantic pose information is transmitted to the backend where multiple views are
fused into a 3D skeleton. The 3D pose is reprojected into local views and sent to
sensors as semantic feedback.

2.4 Multi-View 3D Human Pose Estimation

Multi-view 3D human pose estimation refers to the task of estimating 3D positions
of anatomical joint keypoints of persons observed from multiple viewpoints to create
a skeleton-like representation of the human body. It is a prerequisite for many down-
stream tasks in computer-vision and robotics, such as action recognition, human-robot
interaction, and anticipatory robot navigation.

We consider scenarios where N calibrated cameras Ci, i ∈ [0 . . N − 1] with known
projection matrices Pi perceive a scene with one or several individuals from multiple
viewpoints. Our method is described for the single person case in the following. Ex-
tensions to handle multiple persons are described in Sec. 2.4.5. An overview of our
proposed approach for multi-view 3D human pose estimation is given in Fig. 2.3.

2D human joint detections {Dj,i}
J
j=1, as defined in (2.4), are calculated for each

camera view Ci, i ∈ [0 . . N − 1] directly on the respective smart edge sensor board using
the vision model described in Sec. 2.4.1. The 2D pose information is then transmitted
over a network to a central backend, where sets of N corresponding messages are
synchronized based on the detection timestamps, and raw 3D poses are recovered via
triangulation as detailed in Sec. 2.4.2.

A skeleton model (cf. Sec. 2.4.3), incorporating prior information on the typical
bone-lengths of the human skeleton, is applied and outputs the final estimated 3D pose.

A semantic feedback channel from backend to sensors is implemented as described in
Sec. 2.4.4, which enables each individual view to benefit from the fused 3D information.
For this, first, a prediction step is performed to compensate for the pipeline delay.
Second, the predicted 3D skeleton is reprojected into each camera view and sent to the
sensors where it is incorporated into the local 2D pose estimation.

2.4.1 2D Human Pose Estimation on Smart Edge Sensor

The smart edge sensor platform employed in this work (cf. Fig. 2.1 top-right) is based
on the Google Edge TPU Dev Board1, equipped with an ARM Cortex-A53 quad-core

1 https://coral.ai/docs/dev-board/datasheet, accessed: 2023-08-01

https://coral.ai/docs/dev-board/datasheet
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Figure 2.4: Heatmaps and derived covariances (3σ ellipses).

processor, the Edge TPU inference accelerator and 1 GB of shared RAM. A 5 Mpx RGB
camera is connected to the board via the MIPI-CSI2 interface.

We adopt the CNN architecture of Xiao, Wu, and Wei (2018) for 2D human pose
estimation, consisting of a backbone feature extractor and three transposed convolution
layers to extract heatmaps from image features. To achieve real-time performance on the
mobile sensor platform, we exchange the ResNet backbone used by Xiao, Wu, and Wei
(2018) with the significantly more lightweight MobileNetV3 feature extractor (Howard et
al., 2019). Furthermore, for execution on the Edge TPU, the model is quantized for 8-bit
integer inference using post-training quantization (Jacob et al., 2018) as implemented in
the TensorFlow machine learning (ML) framework (Abadi et al., 2016). In multi-person
scenarios, a detector is also run on the sensor boards to provide person crops for the pose
estimation network. It is based on the single shot detector (SSD) architecture (W. Liu
et al., 2016), also using the MobileNetV3 backbone.

The output heatmaps Hdet of the pose estimation model are a multi-channel image
with one channel per joint, encoding the confidence of a joint being present at the pixel
location. 2D joint locations uj = [uj , vj ]T are inferred as global maxima of the resp.
heatmap channel, as single person crops are processed. The value of the heatmap at the
joint position gives the corresponding confidence cj . Only joints with confidence above
a minimum threshold are considered as valid detections.

The covariance matrices Σj are determined as proposed by Pasqualetto Cassinis
et al. (2020): Heatmap pixels with values above a threshold contribute to the empirical
covariance with their x- and y-locations, weighted by the respective confidence:

Σj =





σ2
xx σ2

xy

σ2
xy σ2

yy



 , (2.5)

σ2
xy =

1

K

K
∑

k=1

cj,k (xk − uj) · (yk − vj) , (2.6)

where K is the number of contributing pixels and the mean is replaced by the peak
uj to model a distribution about the detected 2D joint location. Some representative
examples of heatmaps and extracted covariances are shown in Fig. 2.4. The uncertainty
in the heatmaps, including their directionality, is well captured by the covariance ellipses.
Note, that the dispersion for asymmetric heatmaps, as in the third example of Fig. 2.4,
is overestimated by the proposed procedure. Joint location, confidence and covariance
are summarized as a joint detection Dj (2.4).



20 multi-view 3d human pose estimation

2.4.2 Multi-View Fusion

The 3D position x̂j of each joint j is recovered from a set of 2D detections {Dj,i}
N
i=1 via

triangulation using the direct linear transform (DLT) (Hartley and Zisserman, 2003).
The relationship between 2D points ui = [ui, vi]T from camera view i ∈ {1, . . . , N} and
3D point x̂ can be written as (omitting the joint index j for readability):

Ax̃ = 0 , (2.7)

with

A =
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∈ R
2N×4 , (2.8)

where x̃ ∈ R
4 are the homogeneous coordinates of x̂ and pT

i,k denotes the k-th row of
projection matrix Pi ∈ R

3×4. According to the DLT algorithm (Hartley and Zisserman,
2003), (2.7) is solved by a singular value decomposition (SVD) on A, taking the unit
singular vector corresponding to the smallest singular value of A as solution for x̃.
Finally, x̃ is divided by its fourth coordinate to obtain the 3D vector x̂ = x̃/(x̃)4.

The above formulation (2.7) assumes that all 2D detections make a similar contribution
to the triangulation. However, 2D joint positions cannot be estimated reliably on some
views, e. g. due to occlusions, which in turn degrades the result. The reliability of a
detection is expressed by the heatmap confidence value ci and can be incorporated into
the DLT by multiplying each row of A with the corresponding element of a weight
vector w, reformulating (2.7) as:

(w ◦A) x̃ = 0 , (2.9)

with
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 (2.10)

and ◦ the Hadamard product, similar to the approach of Long Chen et al. (2020). The
confidence values in w are divided by the L2-norm of the corresponding row of A to
compensate for the different image locations of the joints in each view.

To obtain the 3D joint position x̂j and its covariance Σ̂
3D

j , deterministic samples are
propagated through the triangulation according to the Unscented Transform (Julier and
Uhlmann, 2004). Sigma points are generated from the mean vector µj = [uT

j,1, . . . ,uT
j,N ]T

and the block-diagonal matrix containing the 2D covariances Σj,i extracted from each

heatmap. Each set of samples is triangulated according to (2.9) and x̂j and Σ̂
3D

j are
determined as sample mean and covariance of the resulting points using weights given
by the Unscented Transform.
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2.4.3 Skeleton Model

We employ a factor graph model (Kaess et al., 2012) representing the tree structure of
the human body, with 3D joint positions xj as nodes connected by unary and pairwise
factors on the edges.

The unary constraints are given by the triangulated joint positions x̂j and covariances

Σ̂
3D

j and follow a 3D Gaussian noise model:

f (xj) ∼ N
(

xj | x̂j , Σ̂
3D

j

)

. (2.11)

The pairwise factors model typical limb lengths of the human body and also follow a
Gaussian noise model:

g (xj ,xk) ∼ N (‖xj −xk‖ | ljk, σl) , (2.12)

with ‖xj −xk‖ the Euclidean distance between joints xj and xk. ljk and σl denote
mean and standard deviation of the length of the corresponding limb determined from
the statistics of the H3.6M dataset (Ionescu et al., 2014).

The final 3D human poses are obtained by optimizing the factor graph using the
Levenberg-Marquardt algorithm and the GTSAM framework (Kaess et al., 2012). The
optimization is initialized with the poses from the previous frame, predicted using a
linear velocity model.

2.4.4 Semantic Feedback

To enable the local semantic models of each sensor to benefit from the globally fused
3D pose, a feedback channel from backend to sensors is implemented in our framework.

First, the motion of the 3D skeleton is predicted using a linear velocity model for each
joint to compensate for the pipeline delay ∆t. Second, predicted 2D joint positions {ûj,i}

and their image-plane covariances {Σ̂j,i} are determined by reprojecting the predicted
3D pose and its covariance extracted from the factor graph into each sensor view i using
the projection matrix Pi and the Unscented Transform (Julier and Uhlmann, 2004).

The reprojected feedback skeleton is sent to the smart edge sensors, where a feedback
heatmap Hfb is rendered to be fused with the detected heatmap Hdet of the current
image crop. For each joint ûj , a 2D Gaussian blob is rendered in the corresponding
heatmap channel according to the reprojected covariance matrix Σ̂j .

The heatmaps are fused via weighted addition of detection, feedback, and their
element-wise multiplication:

Hfused = s ((1 − α − β)Hdet + αHfb + β (Hfb ◦Hdet)) , (2.13)

with α + β < 1. The scale s is set as (1 − α − β)−1 to ensure that positive feedback
always increases the joint confidence. The feedback gains α and β are important design
parameters of our method. A sufficient weight must be accorded to the feedback to
improve the raw detections, but too high gains can cause instability. Hence, the feedback
gains are learned using a hyper-parameter search (Bergstra, Yamins, and Cox, 2013)
optimizing the 3D pose error.

The above formulation models an arbitrary combination of additive and multiplicative
feedback and can efficiently be executed on the embedded processor of the sensor board.
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Examples of the heatmap fusion are shown in Fig. 2.8. Through the feedback loop,
evidence for joint occurrence from detection and feedback is combined in the fused
heatmap, improving the accuracy of the joint locations and reducing their uncertainty.

2.4.5 Multi-Person Pose Estimation

To handle real-world scenes (cf. Sec. 2.6.3 and 2.6.4), we extend our method to estimate
the poses of multiple persons at a time. Person detections are associated across camera
views based on the epipolar distance of their joints using the efficient iterative greedy
matching proposed by Tanke and Gall (2019). The rest of the pipeline is then run for
each person observed in at least two views to compute 3D poses and feedback. A feedback
skeleton is associated to its corresponding 2D detection based on the intersection over
union (IoU) of their bounding boxes.

2.5 Extrinsic Camera Calibration

While in the previous section, we assumed a multi-camera network with known intrinsic
and extrinsic calibration, in this section we introduce our method to obtain and refine
the camera poses using person keypoint detections as calibration targets. A precise
calibration of the camera network is an important prerequisite for the multi-view human
pose estimation approach described in the previous section where errors in calibration
quickly lead to a degradation in performance. Furthermore, the extrinsic calibration
of the smart edge sensor network must be updated repeatedly throughout its lifetime,
when sensors are added or moved, or due to environmental effects such as vibration,
thermal expansion, or moving parts.

Our method uses the 2D keypoint detection streams of the multi-camera system SN

with the projective cameras Ci, i ∈ [0 . . N − 1], to extract and maximize knowledge
about the camera poses w.r.t. a reference coordinate frame in real time. Concretely, the
task is to find the pose of the optical center Ci (Eq. (2.3)) of each camera Ci. We call
this the extrinsic calibration of the multi-camera system SN . Without loss of generality,
we set the camera C0 as the origin of the global reference frame with C0 = I4×4. In its
local coordinate system, the view direction of each camera is the z-axis.

Fig. 2.5 gives an overview of our proposed pipeline. Each camera stream is fed into a
person keypoint detector on the connected inference accelerator (cf. Sec. 2.4.1) of the
smart edge sensor. The keypoint detections are transmitted to a central backend where
they are time-synchronized and processed further.

The preprocessing stage removes redundant and noisy detections after which data

association is performed, where correspondences between person detections from multiple
views are established. Corresponding person detections are fused to form a person
hypothesis and attached to a queue, which serves to decouple the preprocessing stage
from the rest of the pipeline. The optimization stage continuously reads from this
queue, selects several person hypotheses, and uses them to construct and solve an
optimization problem in the form of a factor graph (Dellaert and Kaess, 2017). The
refinement stage updates the current estimate of the extrinsic calibration by smoothing
the intermediate results generated by the optimization and compensates for scaling drift
w.r.t. the initialization.
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Figure 2.5: Proposed pipeline for extrinsic camera calibration using smart edge sensors and
person keypoint detections. Images are analyzed locally on the sensor boards. Key-
point detections are transmitted to the backend where multiple views are fused to
construct and solve optimization problems using factor graphs. A queue decouples
the preprocessing and optimization stages.

As prerequisites for our method, we assume the intrinsic parameters Ki (2.2) of the
cameras to be known, e.g. from factory calibration, and a rough initial estimate of the
extrinsic calibration to be available, e.g. by tape measure or from a floor plan. The
FoVs of all cameras must overlap such that SN forms a connected graph.

2.5.1 Preprocessing

The backend receives N streams of keypoint detections {D} (Eq. (2.4)), and synchronizes
and preprocesses them so that they can be used for optimization.

First, incoming streams are synchronized into sets of time-corresponding detection
messages of size N , subsequently referred to as framesets. The preprocessing then rejects
false, noisy, redundant, and low-quality detections and passes through only accurate
detections suitable for improving the extrinsic calibration. We do this by checking
different conditions for each frameset, regarding the number of detections per sensor,
the timestamps associated to each sensor, or the confidence value of each detection.

In particular, we reject all framesets where the maximum span or standard deviation
of timestamps exceeds a threshold and consider only joint detections with a minimum
confidence of cj ≥ 0.6. We further require the hip and shoulder detections of each person
to be valid, which is necessary for robust data association.

After filtering, we use the distortion coefficients of each camera to undistort the
coordinates of all valid detections using the OpenCV library (Bradski, 2000).

2.5.2 Data Association

In the data association step, we find correspondences between detections from different
sensors based on the current estimate of the multi-view geometry of the camera network,
which can still be inaccurate. Each keypoint detection Dj,p is associated to a person
hypothesis p. First, we back-project each 2D detection D into 3D, obtaining a ray rD

with undetermined depth originating at the optical center of the respective camera.
Next, we reduce each ray rD to a line segment lD by estimating the depth interval

[zmin, zmax] of each detection D, as illustrated in Fig. 2.6. For the depth interval
estimation, we assume a minimum and maximum torso height and width for the detected
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Figure 2.6: Data association: 3D back-projection rays embedded in the global coordinate system
for the joint detections of one person (black), the corresponding reduction to line
segments after applying depth estimation (green), and the center of mass of the
corresponding person hypothesis (black). 3D human poses shown for illustration
purposes only.

persons, derived from a specified minimum and maximum person height to be expected
during calibration. The four torso keypoints (shoulders and hips) are empirically the
most stable and least occluded, and their physical distances are approximately constant
for a person, regardless of their pose, due to the human anatomy. The respective keypoint
distance on the image plane, however, depends on the persons’ orientation towards the
cameras. Here, we assume worst-case orientations, leading to larger depth intervals.

In summary, we do not require persons to always stand upright but support arbitrary
poses and orientations towards the cameras instead. Specifying a short person height
interval leads to a more constrained search space during data association, accommodating
for an inaccurate initial estimate of the extrinsic calibration or a crowded scene. A wider
interval, however, yields equal results in common scenarios, while supporting small and
tall persons as calibration targets alike. Depth estimation is the only component in the
pipeline, where human anatomy is exploited.

To find the correspondences between person detections from multiple views, we deploy
an iterative greedy search method similar to the approach of Tanke and Gall (2019),
using the distances between the estimated line segments as data association cost. We
define the distance of two line segments l1, l2 as the Closest Point-distance described
by Wirtz and Paulus (2016):

dclosestpoint(l1, l2) = min (d⊥ (l1, l2) , d⊥ (l2, l1)) . (2.14)

To further improve the robustness of the approach, as the extrinsic calibration is not
precisely known during the calibration procedure, we iterate over all person detections,
sorted in ascending depth order, utilizing the depth estimation (zmin + zmax)/2 of each
person detection. This exploits the fact that near person detections have a relatively
short interval [zmin, zmax] and, thus, a more constrained localization in 3D space.

Finally, we compute the center of mass for each person hypothesis, which serves to
roughly localize them in 3D space by averaging the line segment centers of all assigned
torso keypoints. The data association stage outputs a list of person hypotheses Hp

observed by at least two different cameras, which will be used to construct a factor
graph optimization problem in the following.
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Figure 2.7: Factor graph with camera variable nodes Ci for the camera poses Ci and landmark
variable nodes Lj for the 3D person joint positions xj . Camera and landmark nodes
can be connected via binary projection factors to constrain the reprojection error of
a person keypoint detection. Each landmark node must be connected to at least two
projection factors to allow triangulation. All camera nodes are connected to a unary
prior factor that encodes the initial uncertainty of the camera pose.

2.5.3 Factor Graph Optimization

The optimization stage processes the person hypotheses Hp obtained through data
association to extract knowledge about the extrinsic calibration of the utilized multi-
camera system. To this end, we construct a factor graph (Kaess et al., 2012) encoding
projective constraints, based on a selection of person hypotheses, as well as prior
knowledge about the camera poses given by the initial estimate of the extrinsic calibration
or the results of previous optimization cycles.

The optimal selection of person hypotheses to be used in an optimization cycle
is determined by a selection algorithm from all available hypotheses. The algorithm
ensures an optimal spatial and temporal distribution of observations to obtain a well-
constrained optimization problem, while maintaining a reasonable degree of entropy
between selections over successive optimization cycles.

For this, we generate a random permutation of the indices of all available person
hypotheses, biased towards selecting newer hypotheses. Selecting newer hypotheses with
higher probability is advantageous because their data association and centers of mass
are estimated more reliably as the extrinsic calibration improves over time.

Additionally, we ensure a minimum spacing between all selected person hypotheses,
w.r.t. to their center of mass, by only including the next person hypothesis within the
permutation if its distance towards all previously selected person hypotheses is above a
spacing threshold s = 0.2 m.

For each optimization cycle t, we construct a factor graph Gt by using a selection of
person hypotheses Ht ⊂ Hp. A factor graph is a bipartite graph consisting of variable

nodes and factor nodes (Dellaert and Kaess, 2017). Variable nodes represent the unknown
random variables of the optimization problem, i.e. the 3D joint positions xj of the
person hypotheses in Ht (landmark nodes Lj) and the considered camera poses Ci of
the multi-camera system SN (camera nodes Ci).

Factor nodes constrain the variable nodes by encoding the available knowledge
about the underlying distribution of the considered random variables. Specifically, the
constraints are obtained from the observations contained in Ht and the resulting camera
poses from previous optimization cycles. Each factor node uses a Gaussian noise model
that reflects the confidence in the constraint it represents. The constructed factor graph
is illustrated in Fig. 2.7.
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We equip each camera node Ci with a unary prior factor that encodes prior knowledge
about the camera pose and its uncertainty, and use binary projection factors connecting
camera nodes to landmark nodes to encode observation constraints based on person
keypoint detections. Projection factors calculate the reprojection error for a 2D detection
w.r.t. the corresponding camera pose and landmark position using the known intrinsic
parameters Ki.

Camera nodes are initialized with the current estimate for the extrinsic calibration
(for t = 0, we use the initial estimate and for t > 0, we reuse the result of the previous
time step). Landmark nodes are initialized by triangulation of the 2D observations
(cf. Sec. 2.4.2) using the latest camera geometry estimate. Note, that we perform
triangulation in every optimization cycle, even when using a person hypothesis that
was already utilized in a previous optimization cycle. Hence, the triangulation results
are updated based on the current estimate of the extrinsic calibration.

We solve each factor graph Gt for the most likely camera poses by applying a Levenberg-
Marquardt optimization scheme, provided by the GTSAM framework (Kaess et al.,
2012). A successful optimization yields a new candidate for the extrinsic calibration of
SN . We forward this candidate to the refinement stage where the current estimate of
the extrinsic calibration will be updated based on this candidate. The updated estimate
for the extrinsic calibration will then be used for constructing and initializing the factor
graph in the next optimization cycle.

2.5.4 Camera Pose Refinement

After each successful optimization, we obtain new candidates Ĉi,t for the extrinsic
calibration of a subset of cameras {Ci} ⊆ SN that were constrained by the factor
graph Gt. We smooth between the previous state and the new measurement using a
Kalman filter to obtain the current estimate of the extrinsic calibration Ci,t. As each
optimization cycle contains only a limited number of observations in the factor graph to
enable real-time operation, smoothing prevents overconfidence towards a specific set of
observations and improves the convergence behavior. We update the previous estimate
with the result of the factor graph optimization, using its marginalized uncertainty
as measurement noise. Between optimization cycles, we add a constant process noise
to the uncertainty of each predicted camera pose, enabling convergence over longer
time horizons. Finally, we prevent scaling drift of the updated extrinsic calibration by
applying the scaling factor that minimizes the distance towards the initial estimate of
the extrinsic calibration according to Umeyama’s method (Umeyama, 1991).

2.6 Evaluation and Experiments

We evaluate the proposed approach for multi-view 3D human pose estimation on three
widely-used public datasets: The Human 3.6M dataset (Ionescu et al., 2014) and the
multi-person Campus and Shelf datasets (Belagiannis et al., 2014). We further run
experiments in real-world multi-person scenarios in our lab, where we also evaluate the
proposed method for extrinsic camera calibration.
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2.6.1 Dataset and Metrics

2.6.1.1 Human 3.6M

The Human 3.6M dataset (Ionescu et al., 2014) is a large-scale public dataset for
single-person multi-view 3D human pose estimation. It contains 3.6 million frames of
eleven different actors, captured by four synchronized cameras together with ground
truth 2D and 3D poses.

We measure the 2D pose estimation accuracy as the percentage of correctly detected
joints, the joint detection rate (JDR). A joint is correctly detected when its distance
towards the corresponding ground-truth annotation is smaller than a threshold. We set
the JDR threshold to half the head size as proposed by Qiu et al. (2019).

The 3D pose accuracy is measured by the mean per joint position error (MPJPE)
between estimated 3D joints xj and ground truth 3D joints xj,gt:

MPJPE =
1

J

J
∑

j=1

‖xj −xj,gt‖ . (2.15)

2.6.1.2 Campus and Shelf

The Campus dataset (Belagiannis et al., 2014) consists of three people interacting
outdoors, captured by three calibrated cameras. The Shelf dataset (Belagiannis et al.,
2014) consists of four people interacting and disassembling a shelf in a small indoor
area, captured by five cameras. It is a more complex setting compared to Campus, as
frequent occlusions occur between persons and with the shelf. The same evaluation
protocol as in previous works (Belagiannis et al., 2014, 2015; Long Chen et al., 2020;
J. Dong et al., 2019) is used, employing the 3D percentage of correct parts (PCP)
metric (Burenius, Sullivan, and Carlsson, 2013). A body part is considered as correctly
estimated if the average of the Euclidean distances of start and end point of the limb
with the ground-truth is smaller than half the limb length.

2.6.2 Evaluation on the H3.6M Dataset

2.6.2.1 Implementation Details

We adopt the network for pose estimation described in Sec. 2.4.1 and use two different
training schemes: (i) training solely on H3.6M training data and (ii) pretraining the
network on person keypoints from the COCO dataset (Lin et al., 2014) and finetuning
on H3.6M. The input resolution is set to 256×256 pixels and we use the joint classes as
defined in the H3.6M skeleton model (cf. Sec. 2.3).

As is common practice in literature (Pavlakos et al., 2017b; Qiu et al., 2019; Tome
et al., 2018), we use subjects 1, 5, 6, 7, 8 for training and subjects 9 and 11 for testing.
Input images are cropped using the provided ground-truth bounding box and evaluation
is performed for every 5th frame as subsequent frames are highly similar at the original
frame rate of 50 Hz.

All four image streams are processed simultaneously, each on its own smart edge
sensor board. The estimated 2D skeletons are transmitted to the backend, where they
are triangulated, and the skeleton model is applied. We report evaluation results with
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Table 2.1: 2D joint detection rate (JDR) (%) for different feedback modes and training data.

Feedback Training Data Hips Knees Ankls Shlds Elbs Wrists Avg

w/o fb H3.6M 99.2 96.1 90.3 93.3 93.3 89.1 95.1

w fb H3.6M 99.5 97.6 96.1 97.2 96.5 94.8 97.5

w/o fb COCO + H3.6M 99.3 97.1 96.9 98.9 96.2 92.8 97.6

w fb COCO + H3.6M 99.3 98.0 97.8 99.0 97.1 94.8 98.2

Table 2.2: 3D pose error (MPJPE) (mm) for different joints, feedback modes, and training data.

Feedback Training Data Hips Knees Ankls Shlds Elbs Wrists Avg

w/o fb H3.6M 22.2 29.4 58.6 40.5 43.8 39.8 32.9

w fb H3.6M 22.1 28.0 47.2 36.7 38.6 33.9 29.8

w/o fb COCO + H3.6M 19.2 25.5 38.0 25.6 30.7 29.4 24.0

w fb COCO + H3.6M 19.2 24.9 36.9 25.5 29.9 28.3 23.5

and without using the proposed feedback channel. The parameters for the heatmap
fusion (2.13) are determined as α = 0.15 and β = 0.75.

2.6.2.2 Quantitative Results

Tab. 2.1 shows evaluation results for the accuracy of the 2D pose estimation calculated
on the smart edge sensors, depending on the employed feedback mode and training data.
Our experiments indicate that using the feedback channel (cf. Sec. 2.4.4) significantly
improves the JDR accuracy. The improvement is highest for the often-occluded wrist
and ankle joints, 5.7 % resp. 5.8 % for the H3.6M-only model. For the better visible
joint classes, detection is easier also without feedback and the improvement is smaller.

Pretraining the model on the COCO keypoint dataset generally improves performance,
as the model trained on a larger and more varying dataset generalizes better to unknown
scenes. For the stronger model, the gain from using the feedback signal is smaller, but
still amounts to 2 % for the wrists which are the most difficult joints to detect.

The improved 2D joint detections in turn lead to more accurate 3D poses, as is evident
from the results in Tab. 2.2, which shows the 3D pose error. As in the 2D case, the
improvement from the feedback channel is more significant for the weaker model and
highest for ankles and wrists, around 11 mm resp. 6 mm for the H3.6M-only network.

In Tab. 2.3, the MPJPE 3D pose error is shown per action category and compared
to other approaches from literature. 3D pose errors after application of the resp. post-
processing step or skeleton model are reported. The recent approaches by Qiu et al.
(2019) and Remelli et al. (2020) as well as our method provide significant improvements
over the older methods of Pavlakos et al. (2017b) and Tome et al. (2018). Comparing
the models trained on H3.6M only, the results of our approach using feedback are better
than Qiu et al. (2019) and Remelli et al. (2020) for 10 of the 15 action categories
and reduce the average error. The proposed semantic feedback channel is key to this
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Table 2.3: Evaluation result on H3.6M dataset: MPJPE 3D pose error (mm) per action type.
3D poses after application of the resp. post-processing or skeleton model are reported.
+ denotes using additional training data.

Method Dir. Disc. Eat GreetPhonePhoto Pose Purch. Sit SitD.SmokeWaitWalkD.WalkWalkT. Avg

Pavlakos et al. (2017b) 41.2 49.2 42.8 43.4 55.6 46.9 40.3 63.7 97.6 119.9 52.1 42.7 51.9 41.8 39.4 56.9

Tome et al. (2018) 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8

Qiu et al. (2019) 28.9 32.5 26.6 28.1 28.3 29.3 28.0 36.8 42.0 30.5 35.6 30.0 28.3 30.0 30.5 31.2

Remelli et al. (2020) 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2

Ours, w/o fb 27.7 36.5 27.8 27.1 33.9 33.1 29.3 33.6 41.3 42.5 32.8 33.5 33.3 27.8 27.2 32.9

Ours, w fb 27.1 29.9 27.0 26.5 31.3 28.9 27.1 29.8 36.5 36.0 30.8 29.3 29.7 27.3 26.3 29.8

Qiu et al. (2019)+ 24.0 26.7 23.2 24.3 24.8 22.8 24.1 28.6 32.1 26.9 31.0 25.6 25.0 28.1 24.4 26.2

Ours+, w/o fb 22.4 24.3 22.4 21.7 24.6 24.7 22.4 22.6 26.8 28.4 25.0 23.1 24.5 22.0 21.5 24.0

Ours+, w fb 22.4 24.0 22.2 21.7 24.0 23.9 22.1 22.6 26.0 26.8 24.5 22.8 24.6 21.8 21.3 23.5

Table 2.4: Average inference time and model size for H3.6M dataset (Values for (Qiu et al., 2019)
taken from (Remelli et al., 2020)).

Qiu et al. (2019) Remelli et al. (2020) Ours

Inference Time 8.4 s 0.040 s 0.024 s

Model Size 2.1 GB 251 MB 4 × 12 MB

improvement over the literature. When using additional training data, our method also
achieves state-of-the-art results.

In Tab. 2.4, we compare the inference time per frameset (i. e. for a set of four images)
and model size of our approach with the recent approaches (Qiu et al., 2019) and
(Remelli et al., 2020). The approach of Qiu et al. (2019) is an offline method with
a run time of several seconds. The approach of Remelli et al. (2020) achieves near
real-time performance on a powerful desktop GPU. The run time of our method is still
about 40 % faster while running on efficient embedded sensor boards and a backend
that doesn’t require a GPU. Our pose estimation model, optimized for the Edge TPU
inference accelerator, requires only 12 MB of memory, significantly less than the models
of other approaches.

Results of an ablation study on the impacts of different parts of our proposed pipeline
are shown in Tab. 2.5. Using the skeleton model to post-process the raw 3D poses
obtained by triangulation significantly improves the average MPJPE. Employing the
directional covariances extracted from the heatmaps, instead of modeling uncertainties
only by the confidence value, again reduces the error. The semantic feedback further
improves the result, where the proposed combination of additive and multiplicative
feedback is more efficient than using only a single type. The impact of the feedback
signal for each action class can also be observed in Tab. 2.3. It improves the results for
all actions for the H3.6M-only trained model, with an average improvement of 3.1 mm.
When using the stronger pose estimation model trained on additional data, the average
improvement amounts to 0.5 mm. The feedback signal is more important when the raw
pose estimates are less accurate but reduces the average 3D pose error in both cases.
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Table 2.5: Ablation study on the impact of various components on the MPJPE (mm).

skeleton
model

heatmap
covariance

additive
feedback

multiplicative
feedback

MPJPE

- - - - 38.08
X - - - 33.41
X X - - 32.94
X X X - 30.07
X X - X 30.10
X X X X 29.82

(a) ground-truth (b) detected (c) feedback (d) fused

Figure 2.8: Samples of the heatmap fusion approach for left wrist (Rows 1-2) and right elbow
(Row 3): Detected heatmap (b) and feedback heatmap (c) are combined into the
fused heatmap (d). In difficult situations such as occlusions (Rows 1-2) or left-right
inversions (Row 3), feedback results in a heatmap closer to the ground-truth (a).

2.6.2.3 Qualitative Results

In addition, we qualitatively show how the proposed feedback loop improves the pose
estimation result. Fig. 2.8 shows three example situations where the feedback heatmap
helps to recover from incorrect or imprecise 2D joint detections. The images are overlaid
with the respective heatmaps for a specific joint. In the first and second row, the left
wrist of the actors is occluded by their body and the detected heatmap is very inaccurate.
However, from the perspectives of other cameras, the joint is visible, and its 3D position
can be estimated. This is reflected in the feedback heatmap which predicts the joint
detection close to the ground truth location. The resulting fused heatmap, obtained by
combining detection and feedback according to (2.13), permits to accurately estimate
the respective joint despite the imprecise local detection. In Row 3 of Fig. 2.8, a similar
situation is shown, but for the right elbow, which here cannot be distinguished from
the left elbow due to the challenging pose.
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Table 2.6: Evaluation result on Campus and Shelf dataset: Percentage of Correct Parts (PCP) (%)
and average run time of 2D and 3D pose inference. ‘-’ means offline pre-computation.

PCP (%) Inference Time

Campus Actor 1 Actor 2 Actor 3 Avg 2D pose 3D pose

Belagiannis et al. (2015) 83.0 73.0 78.0 78.0 - 1 s

J. Dong et al. (2019) 97.6 93.3 98.0 96.3 - 105 ms

Long Chen et al. (2020) 97.1 94.1 98.6 96.6 - 1.6 ms

Ours, w/o fb 98.8 93.4 97.5 96.6 30 ms 8.8 ms

Ours, w fb 99.2 93.6 98.3 97.0 30 ms 8.8 ms

Shelf Actor 1 Actor 2 Actor 3 Avg 2D pose 3D pose

Belagiannis et al. (2015) 75.0 67.0 86.0 76.0 - 1 s

J. Dong et al. (2019) 98.8 94.1 97.8 96.9 - 105 ms

Long Chen et al. (2020) 99.6 93.2 97.5 96.8 - 3.1 ms

Ours, w/o fb 99.4 94.6 96.8 96.9 40 ms 20 ms

Ours, w fb 99.3 95.7 97.3 97.4 40 ms 20 ms

2.6.3 Evaluation on the Campus and Shelf Datasets

2.6.3.1 Implementation Details

To process multi-person scenes, a person detector is employed together with the pose
estimation model (cf. Sec. 2.4.1). The detector is trained for 130 epochs on the person
class of the COCO dataset (Lin et al., 2014), for input images of 640×480 px and
achieves a mean average precision (mAP) of 44.6 %. The pose estimation network is
trained for 140 epochs on COCO for person crops of 192×256 px using the joint classes
as defined in the COCO skeleton model (cf. Sec. 2.3). It achieves a mAP of 69.6 % in
FP32-mode and 68.4 % in INT8-mode on the COCO validation set using ground-truth
detections. Note, that the generic detector and pose estimation networks are employed
without any fine-tuning on the evaluated datasets.

The three or five image streams of the respective dataset are processed simultaneously
on the sensor boards. The entire image is passed to the detector and image crops of
the detected persons are analyzed by the pose estimation network. To improve the
processing speed, the detector is run only once per second. In between, the crops are
determined based on the detections of the previous frame. This is necessary because
alternating between models is inefficient on the Edge TPU as parameter caching cannot
come into effect in this case (Seshadri et al., 2022).

On the backend, the estimated 2D poses are synchronized based on their timestamps
and the framework is run in multi-person mode as detailed in Sec. 2.4.5. The feedback
delay amounts to one frame during dataset processing.
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Figure 2.9: Evaluation on Shelf dataset: 2D pose detections and estimated 3D pose without
(top) and with feedback (bottom). 3D annotations for Actor 1 (red) and Actor 2
(orange). Highlighted are improvements due to the feedback signal.

2.6.3.2 Quantitative Results

We report evaluation results of PCP score and run time on the Campus and Shelf
datasets in Tab. 2.6 and compare our method with other approaches: Belagiannis et al.
(2015) proposed an early 3D PSM-based method for multi-person pose estimation and
exploit temporal consistency in videos. J. Dong et al. (2019) reduce the PSM state-space
by using only clusters of 2D joints as 3D proposals instead of a volumetric grid, and
exploit appearance information for data association. Long Chen et al. (2020) propose a
fast, iterative triangulation scheme performing data association in 3D space.

In terms of PCP score, our method largely outperforms the older method (Belagiannis
et al., 2015) and is on par with the recent approaches (Long Chen et al., 2020; J. Dong
et al., 2019). The overall result is improved by our method using feedback for both
Campus and Shelf dataset in comparison to the literature. The improvement is most
significant for Actor 2 of the Shelf dataset, whose arms are often severely occluded,
which can be resolved by the semantic feedback signal.

In terms of processing speed, our method does not reach the high frame rates of
Long Chen et al. (2020) but achieves significant improvements over J. Dong et al. (2019)
and Belagiannis et al. (2015). Furthermore, 2D poses are estimated online, at run times
of 30-40 ms per frame, while other methods use offline pre-computed keypoint detections.
Our method is the only approach in the comparison providing a fully online multi-person
pose estimation.

2.6.3.3 Qualitative Results

Fig. 2.9 shows an exemplary scene of the Shelf dataset. The proposed semantic feedback
improves the estimation of occluded wrist joints in 2D and 3D. Annotations for evaluation
are only provided for two of the four actors in this scene.
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Table 2.7: Evaluation in own experiments with up to 16 cameras and 6 persons: Reprojection
error (px) per joint class between detected 2D poses and fused 3D poses.

Feedback Cams Pers Hips Knees Ankls Shlds Elbs Wrists Avg

w/o fb 4 1-4 5.4 4.6 5.0 2.8 4.0 5.2 4.2

w fb 4 1-4 4.4 3.5 3.4 2.3 3.2 3.7 3.3

w/o fb 16 6 5.4 5.2 6.4 3.9 5.1 6.4 5.1

w fb 16 6 4.3 3.8 4.7 3.4 4.0 4.9 4.1

2.6.4 Experiments in Multi-Person Scenes

We further evaluate the proposed framework in online experiments in multi-person
scenarios in our lab, a large room with an area of ∼240 m2 and a height of 3.2 m. As
the room is partly a robotics workshop and partly a desk-based workspace, it is densely
filled with different objects and furniture, which can cause false detections and occlusion,
providing a challenging real-world setting.

2.6.4.1 Implementation Details

16 sensor boards are mounted under the ceiling of the lab in a roughly 12×16 m area.
The cameras face downwards towards the center and run at 30 Hz and VGA resolution.
We conduct experiments with a subset of 4 cameras, similar to the setting of the H3.6M
dataset, as well as with all 16 sensors to demonstrate the scalability of our method to
large-scale camera systems. The same detection and pose estimation models as for the
Campus and Shelf dataset are employed in the experiments and the pipeline runs in
multi-person mode (cf. Sec. 2.4.5).

2.6.4.2 Quantitative Results

To analyze the consistency of the online pose estimation, we evaluate the error between
detected 2D poses and fused 3D poses reprojected into the camera views in Tab. 2.7.
The reprojection error decreases for all joints when using semantic feedback, indicating
that the locally estimated 2D poses are more consistent with the globally fused 3D
poses through the proposed feedback architecture. The error is slightly higher with
16 than with 4 sensors, probably due to the more difficult camera calibration and
synchronization in the large-scale setup.

2.6.4.3 Qualitative Results

Exemplary real-world scenes from the experiments conducted in our lab are shown
in Fig. 2.10 for the experiment with four cameras and in Fig. 2.11 for the large-scale
experiment with 16 cameras. The camera views contain complex scenes with cluttered
background and up to six persons.

Estimated 3D poses are reprojected onto the corresponding images to provide a visual
evaluation. The reprojected skeletons closely fit the persons in the images, indicating
that 3D and 2D poses are reliably estimated. Even large occlusions by objects (i.e. the
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Camera 0 Camera 1 Camera 2 Camera 3 3D Pose

Figure 2.10: Evaluation in multi-person scenarios with four cameras: Estimated 3D poses repro-
jected into the corresponding camera images for three different scenes with different
numbers of persons.

chair, Fig. 2.10, Camera 1, Rows 1, 2) or by other people (Fig. 2.10, Camera 2, Row 3)
can be resolved through the multi-view architecture and the proposed semantic feedback.
Persons are reliably detected also at large distances to the cameras (Fig. 2.11).

The human poses are estimated online, in real time, and could directly be used, e. g.
for human-robot interaction or augmented reality scenarios. Note, that the camera
images are not transmitted during operation of our framework but are only shown for
visualization. A video of the experiments is available on our website2.

2.6.4.4 Run Time Analysis

The average processing time per image crop on the sensor boards consists of 4.5 ms for
pose estimation on the TPU and 6 ms on the ARM-CPU for pre- and post-processing
and sums to 10.5 ms per detected person. Once per second, the person detector requires
additional 20 ms on the TPU. Up to three persons can thus be tracked at the full camera
frame rate of 30 Hz, six persons still at 15 Hz.

The backend processing on a desktop PC with an Intel i9-9900K CPU takes 10.7 ms in
average per frameset for the 4-camera setup and 60.8 ms during the experiments with 16
cameras and six persons. Especially the computational load of multi-view triangulation
grows with larger number of cameras.

Camera images and semantic feedback are processed asynchronously on the sensors
during the online experiments, the frequencies of the feedback and forward parts of
the pipeline do not need to match. The most recent feedback message not older than a
threshold is used for a camera image. The average pipeline delay ∆t including processing
on sensors and backend as well as network and synchronization delays sums to 89 ms
in the 4-camera setup and to 200 ms with 16 cameras. This delay does not limit the
feed-forward pose inference frequency due to the asynchronous parallel processing. The
latency is compensated by the prediction step in the feedback channel (cf. Sec. 2.4.4).

2 https://www.ais.uni-bonn.de/videos/RSS_2021_Bultmann

https://www.ais.uni-bonn.de/videos/RSS_2021_Bultmann
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Figure 2.11: Evaluation in multi-person scenarios with 16 cameras: Estimated 3D poses repro-
jected into the corresponding camera image for the experiment with six persons.
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Figure 2.12: Sketched floor plan with camera poses for evaluation of extrinsic camera calibration.

2.6.4.5 Network Bandwidth and Power Consumption

The required network bandwidth when processing a 30 Hz video stream only amounts to
15 kB/s per detected person, as only semantic skeletons are transmitted between sensors
and backend. This is an over 99 % reduction compared to 27 MB/s when transmitting
the raw VGA images. The power consumption of a sensor board was measured as
approx. 7 W when running inference on the 30 Hz multi-person video stream.

2.6.5 Evaluation of Camera Calibration

To evaluate the proposed method for extrinsic camera calibration, we extend the camera
network with four new sensor nodes and change the positions of several sensors: The
indices of the cameras from Sec. 2.6.4 are offset by 4, and the new cameras C0– C3

are mounted to the columns in the middle of the room. Cameras C4– C7 are moved to
additionally cover the entry hall of the lab (left part in Fig. 2.12) and C19 is moved to
the bottom left corner. The resulting updated positions and viewing directions of the
N = 20 cameras are illustrated in Fig. 2.12. All cameras are mounted at ∼2.6 m height.

For evaluation, we apply our pipeline to recordings of one and two persons (1.96 m
resp. 1.70 m tall) crossing the room and generating detections in all cameras over a
duration of ∼180 s. We repeat the experiment 10 times with different initializations and
compare our results towards a marker-based reference calibration obtained using the
kalibr toolkit (Rehder et al., 2016) and an AprilTag target.

We apply an initial error of a magnitude of 0.25 m and 10◦ in a random direction
w.r.t. the reference calibration for all cameras Ci for i > 0 and use default parameters
provided in the linked repository3. We empirically verified that errors of this order of
magnitude are easily attainable via manual initialization utilizing a floor plan, height
measurements, and RGB images from all cameras.

Tab. 2.8 shows the statistics of the final position and orientation error distributions
towards the reference calibration averaged over all repetitions of the experiments with
one or two persons present in the scene, respectively. The position error is obtained by
rigid alignment of the calibration result towards the reference according to Umeyama’s

3 https://github.com/AIS-Bonn/ExtrCamCalib_PersonKeypoints

https://github.com/AIS-Bonn/ExtrCamCalib_PersonKeypoints
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Table 2.8: Statistics of the position and orientation error towards the reference calibration
averaged over 10 repetitions of the experiment.

1 Person 2 Persons

Error Avg. Std. Min. Max. Avg. Std. Min. Max.

Position 0.053 m 0.030 m 0.011 m 0.119 m 0.052 m 0.030 m 0.017 m 0.122 m

Orientation 0.390◦ 0.184◦ 0.120◦ 0.891◦ 0.436◦ 0.177◦ 0.154◦ 0.818◦

Table 2.9: Position error towards the reference calibration for different initial errors.

Initial Error 0.10 m, 5◦ 0.25 m, 10◦ 0.35 m, 15◦ 0.50 m, 20◦ 0.75 m, 20◦

Final Error 0.050 m 0.052 m 0.067 m 0.118 m 0.214 m

Std. 0.003 m 0.030 m 0.011 m 0.073 m 0.164 m
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Figure 2.13: Evolution of mean and min–max span of (a) position and (b) orientation error
towards the reference. Convergence is faster when observing multiple persons.

method (Umeyama, 1991) without rescaling. The orientation error is computed as the
angle between two orientations via the shortest arc (Huynh, 2009).

We do not observe a significant difference in the final result between calibrating with
one or two persons. However, convergence is faster in the two-person case, as all cameras
provide detections earlier in the procedure.

Fig. 2.13 shows the evolution of the error over time for one exemplary repetition of
the resp. experiment with one or two persons. The majority of the convergence takes
place in the first ∼50 optimization cycles or ∼35 s and after ∼100 optimizations, the
camera poses and errors remain stable in the two-person experiment. With only a single
person, convergence is slower. Observations from all cameras are obtained after ∼110
optimization cycles and it takes ∼150 iterations for the poses to remain stable.

Tab. 2.9 shows the final position error for different initialization errors with two
persons. Convergence remains stable for initial errors up to 35 cm and 15◦ but becomes
less reliable for larger errors. In particular, the likelihood of the camera poses being
stuck in a local minimum consistent with queued person hypotheses containing false
data association increases with larger initialization errors, as the accuracy of the data
association relies on the geometry of the provided initialization.
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Table 2.10: Comparison of the average reprojection error of our method and the reference cali-
bration for keypoint- and AprilTag-based evaluations, averaged over 10 repetitions.

Calibration Keypoints AprilGrid

Reference 4.57 px 1.95 px

Our Method 4.01 px 5.00 px
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Figure 2.14: Comparison of the reprojection error per camera between our method and the
reference calibration using (a) keypoint- and (b) marker-based evaluation pipelines.

Additionally, we compare reprojection errors, measured using two different evaluation
pipelines, using the calibration obtained from our experiments with two persons. The
first evaluation pipeline processes keypoint detections for 3D human pose estimation
(cf. 2.4) and matches the data domain from which our calibration was obtained. We use
a distinct recording for the evaluation, unseen during the calibration.

The second pipeline uses a sequence of multi-view images of the AprilGrid used to
obtain the reference calibration (Rehder et al., 2016), thus matching its data domain. In
general, the keypoint-based evaluation is biased towards our keypoint-based calibration
method, while the AprilTag evaluation is biased towards the reference calibration.

Fig. 2.14 shows the reprojection error per camera for both evaluation pipelines and
Tab. 2.10 reports the averaged reprojection error. For the keypoint-based evaluation, our
calibration method achieves lower reprojection errors for all but two cameras. For the
marker-based evaluation, our calibration method achieves similar reprojection errors as
for the keypoint-based pipeline, while the reprojection errors of the reference calibration
are significantly lower.

Our flexible, marker-free method achieves lower reprojection errors for the envisaged
application of 3D multi-person pose estimation and still achieves a coherent result when
evaluating with a traditional calibration target. The difference in accuracy for the second
evaluation is mainly due to our method being marker-free using features from persons
of unknown dimensions for calibration, while the reference method knows the exact
scale of the calibration (and evaluation) target. Also, the noise in the joint detections
may be larger than for the tag detections.

The averaged reprojection error per joint group for the keypoint-based evaluation is
shown in Tab. 2.11. Our method achieves lower reprojection errors in all categories. The
reprojection error is larger for faster-moving joints like ankles and wrists, while it is
smaller for more stable joints. This can be explained by limitations in the synchronization
within framesets.
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Table 2.11: Comparison of the reprojection errors per joint group between our method and the
reference calibration averaged over 10 repetitions of the experiment.

Calibration Head Hips Knees Ankles Shlds Elbows Wrists

Reference 4.02 px 5.10 px 4.83 px 5.88 px 3.61 px 4.29 px 5.14 px

Our Method 3.55 px 4.28 px 4.20 px 5.27 px 3.21 px 3.75 px 4.55 px

It is worth noting that the measured reprojection error does not exclusively originate
from the provided extrinsic calibration, but also from other factors, e.g. the intrinsic
camera calibration, or the approach for detection, data association, and triangulation.

2.7 Discussion

In this chapter, we presented a novel method for real-time 3D human pose estimation
using a network of smart edge sensors, together with a marker-free online method for
the extrinsic calibration of the camera network.

Our main idea is to process each camera view locally, on-board the embedded sensor
boards, and transmit only semantic person keypoint detections to a central backend
where they are fused into 3D skeleton models or used to update the camera poses.
The communication only on a semantic level drastically reduces the required network
bandwidth and mitigates privacy issues, as the abstract semantic information contains
no personal details.

The smart edge sensor network can be operated either in 3D human pose estimation
mode, where the camera poses are assumed to be fixed and known, and the goal is
to estimate and track the poses of all persons present in the scene, or in calibration
mode, where the person keypoint detections are used as calibration targets to update
and refine the camera poses from a rough initial estimate. With this approach, the
extrinsic camera calibration can efficiently be updated before every new set of pose
estimation experiments, to compensate for environmental effects such as vibration,
thermal expansion, or moving parts, or when sensors are added or moved.

For 3D human pose estimation, sets of corresponding keypoint detection messages
are synchronized based on the detection timestamps, associated across camera views to
person hypotheses based on the epipolar distance of their joints, and raw 3D poses are
recovered via triangulation. The 3D poses are further refined using a skeleton model
that incorporates prior information on the typical bone lengths of the human skeleton.

We implement a 3D / 2D semantic feedback channel that lets the local semantic models
of individual sensors incorporate fused multi-view information, enabling bidirectional
communication between sensors and backend.

The pipeline is able to track up to three persons at 30 Hz and up to six persons at
15 Hz, achieving real-time performance. It is evaluated on the H3.6M, Campus, and Shelf
datasets where it achieves state-of-the-art results, as well as on own data in challenging
real-world scenarios with up to 16 cameras and six persons.

For camera calibration, factor graph optimization problems are repeatedly solved
to estimate the camera poses constrained by the synchronized sets of person keypoint
observations. The camera poses obtained from the optimization of one factor graph are
used to construct the next factor graph, allowing the accumulation of knowledge and
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the convergence of all cameras to an accurate pose. Finally, the convergence behavior is
improved by a refinement scheme based on a Kalman filter.

Our calibration method is designed to be robust against false or sparse sets of
detections and occlusions, and is free of many typical assumptions of similar methods:
It does not require a specific calibration target, can cope with and exploit the detections
of multiple persons simultaneously, and handles arbitrary person poses.

We evaluate the calibration method in a series of experiments and compare our results
to a reference calibration obtained by an offline method based on traditional calibration
targets. We show that our calibration results are more accurate than the reference
calibration by reliably achieving lower reprojection errors in the 3D multi-person pose
estimation pipeline used as application scenario. Not only does our method provide a
quick and easy-to-use calibration utility, but it also achieves state-of-the-art accuracy.

While we show in the evaluation that our methods perform well in various challenging
real-world scenarios, there also are limitations: The embedded inference accelerator of
the smart edge sensor boards is very space- and energy-efficient, but has severely limited
computational capabilities. This restricts the use of higher resolution images or more
powerful network architectures that could improve the keypoint detection accuracy,
especially for farther away persons. Also, the processing speed and synchronization
accuracy will drop when many persons are present in the scene.

The 3D human pose estimation could use a more elaborate motion model in the
prediction step when generating the semantic feedback on the central backend to
compensate better for the pipeline delay and improve the feedback signal, especially for
fast motions. Furthermore, data association in multi-person scenes currently only relies
on geometric cues and could be improved by using visual re-id descriptors, especially
during the calibration procedure where it needs to be robust to inaccurate initial
estimates of the extrinsic calibration.

The calibration method inherently cannot resolve the scale of the extrinsic calibration,
as the dimensions of the persons used as calibration targets are unknown. The scale of
the initial estimate of the extrinsic calibration is maintained throughout the calibration
procedure but can be erroneous in case the initialization is biased or inaccurate. The
calibration method could be extended by including intrinsic camera parameters in the
optimization which are currently assumed to be known. Finally, the approach could be
improved by also using additional environment features for calibration.

In follow-up research work, we extend the semantic scene model to also include objects
and 3D scene geometry (Chapter 3) and include mobile robots carrying a smart edge
sensor in the network for collaborative perception to add further viewpoints (Chapter 5).
The estimated human pose information then enables safe human-robot interaction and
anticipatory robot behavior in a workspace shared with people.
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and final editing of the version to be published.
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Abstract

In this chapter, we extend the network of distributed smart edge sensors to a system
for 3D semantic scene perception. New sensor nodes are added to the camera network,
based on a more powerful embedded CNN inference accelerator and RGB-D and thermal
cameras. Efficient vision CNN models for object detection, semantic segmentation, and

41
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human and object pose estimation run on-device in real time. As the image interpretation
is computed locally, only semantic information is sent over the network. The raw
images remain on the sensor boards, significantly reducing the required bandwidth, and
mitigating privacy risks for the observed persons.

2D human keypoint estimations, augmented with the RGB-D depth estimate, as
well as semantically annotated point clouds are streamed from the sensors to a central
backend, where multiple viewpoints are fused into an allocentric 3D semantic scene model.
Additionally, pose and shape information for detected object instances is computed
on the sensor boards and fused on the backend to include object-level information
into the semantic map. Using the 3D scene model and a ray-tracing approach, the
semantic feedback for human pose estimation (cf. Chapter 2) is extended with occlusion
information for each joint so that unreliable, locally occluded joint detections can be
improved by the more reliable global context.

Human poses are represented via 3D skeleton models, as in Chapter 2, and the 3D
scene geometry via an allocentric volumetric semantic map. Objects are represented
in the map via their 3D mesh model or as an object-centric volumetric sub-map that
can model arbitrary object geometry when no detailed 3D model is available. We
propose a keypoint-based approach for object pose estimation via PnP from 2D-3D
correspondences between detected and model keypoints. The object poses are further
refined via ICP alignment of the 3D object model with the observed point cloud segments.
Object instances are tracked over time to be robust against temporary occlusions.

We evaluate the object pose estimation approach on the YCB-V dataset (Xiang
et al., 2018) and the proposed system for 3D semantic scene perception on the Behave
dataset (Bhatnagar et al., 2022) for multi-view object pose estimation and in real-world
experiments with the sensor network in a challenging lab environment where multiple
persons and different furniture objects are tracked through the scene online, in real time
even under high occlusions.

The proposed perception system provides a complete scene view containing seman-
tically annotated 3D geometry, 3D object instances with pose and shape information,
and 3D poses of multiple persons, estimated in real time.

3.1 Introduction

Autonomous robots that interact with their environment require a detailed semantic
scene model to enable applications such as safe and anticipatory robot movement in
the vicinity of people, object manipulation, or human-robot interaction. Creating and
updating a semantic scene model is a challenging task and requires accurate semantic
perception of 3D scene geometry, persons, and objects.

In this work, we propose a system for 3D semantic scene perception consisting of a
network of distributed smart edge sensors. The environment is captured with various
sensors from different view points and a semantic scene model is created from the
interpreted measurements. Our system provides a complete scene view containing se-
mantically annotated 3D geometry, 3D object instances with pose and shape information,
and estimates 3D poses of multiple persons in real time.

We build upon our previous work on real-time 3D human pose estimation using
semantic feedback to smart edge sensors presented in Chapter 2. While this existing
pipeline is able to track poses of multiple persons in real time, it lacks modeling of other
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Figure 3.1: Semantic perception with distributed smart edge sensors: (a) developed sensor node,
(b) volumetric 3D semantic scene model with 3D human skeleton, (c) RGB and
(d) thermal detections, (e) semantic segmentation. Person detections in red and
skeleton keypoints colored by joint index. Occluded joints are marked in orange. CNN
inference runs online on distributed sensors and semantic information is aggregated
into an allocentric 3D scene model on the backend including 3D geometry (e.g.,
furniture, walls, floor) and 3D human pose.

aspects of the scene, i.e. 3D geometry, object detections, and surface categorization.
Semantically annotated 3D geometry, however, is required to explain and predict
interactions between persons and objects in the scene, and to handle occlusions. Temporal
aggregation and fusion of semantic point clouds from multiple sensor perspectives further
leads to a consistent and persistent 3D semantic scene model with the field of perception
not limited by the measurement range or occlusions of a single sensor.

To enable perception of these additional characteristics of the scene, the sensor
network is extended with updated smart edge sensors with higher compute capabilities
and greater flexibility w.r.t. the employed vision CNNs, as shown in Fig. 3.1. This
enables to run object detection and semantic image segmentation together with human
and object pose estimation on the sensors in real time. RGB-D cameras estimate 3D
scene geometry and thermal cameras increase the person detection performance in
low-light conditions. Semantic information from detections and image segmentation is
fused into the point cloud computed from the depth image. 2D human joint detections
are augmented with the depth measured at the keypoint location. Additionally, pose
and shape information for object detections of the considered furniture classes (chair

and table) are estimated on the sensor boards. Semantic point cloud, object instance
hypotheses, and human poses are communicated to a central backend where they are
fused into an allocentric 3D metric-semantic scene model. Only the semantic information
is sent over the network; the raw images remain on the sensor boards, significantly
reducing the required bandwidth, and mitigating privacy issues for the observed persons.

The semantic point clouds from multiple viewpoints are aggregated into an allocentric
map of 3D scene geometry and semantic classes on the backend. The map is further
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Figure 3.2: Object-level 3D semantic mapping: (a) object detection and keypoint estimation for
the chair and table class; (b) semantic segmentation from an exemplary smart edge
sensor view (Cam 2); (c) 3D scene view with five chairs and a table, represented by
their resp. 3D mesh and colored by instance ID, and human skeleton models.

updated via ray-tracing to account for moving objects. 3D human poses are estimated in
real time via multi-view triangulation. The allocentric 3D human poses are projected into
the local camera views and sent back to the sensors as semantic feedback (cf. Chapter 2),
where they are fused with the local detections. The 3D scene geometry enables to compute
occlusion information for each joint in the respective camera view. This information is
included into the semantic feedback from backend to sensors, improving the local scene
model of each sensor by incorporating global context information. Unreliable, occluded
joint detections can be discarded, and the local model is completed by the more reliable
semantic feedback reprojected from the global, fused 3D model.

To include object-level information into the semantic map, object instance hypotheses
from the different viewpoints are fused and tracked through the scene model. We
represent objects in the map via their 3D mesh model, if available, or via an object-
centric volumetric sub-map that can model arbitrary object geometry.

For object pose estimation, we employ a keypoint-based approach using CNNs for
keypoint detection trained only on synthetic data obtained through randomized scene
generation (Boltres et al., 2022; Schwarz and Behnke, 2020). Object poses are recovered
from keypoint detections in each camera view, using known correspondences between
the predicted 2D keypoints from the image and the keypoints defined on the 3D object
models via a variant of the perspective-n-point (PnP) algorithm (Lepetit, Moreno-
Noguer, and Fua, 2008). The PnP object pose estimates are then refined via iterative
closest point (ICP) alignment of the 3D object model with the observed point cloud
segments. The pose estimates from multiple viewpoints are fused on the backend via
weighted interpolation.

Fig. 3.2 illustrates the object-level semantic mapping, showing object detections,
keypoint estimation for the chair and table class, and semantic segmentation from an
exemplary smart edge sensor view together with the fused 3D semantic scene model
with five chairs and a table represented by their respective 3D mesh tracked in the
allocentric semantic map.

In a first set of experiments, the approach for 6 DoF object pose estimation from a
single camera view is evaluated on the challenging Yale-CMU-Berkeley-video (YCB-V)
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dataset (Xiang et al., 2018). Different ways to define keypoints on the object models and
to scale the keypoint estimation CNNs to handle multiple object classes are compared.

We then evaluate our method for multi-view object pose estimation and object-level
mapping on the public Behave dataset (Bhatnagar et al., 2022), containing various scenes
with human-object interactions, and the full system for 3D semantic scene perception
in real-world experiments with the sensor network in a challenging, highly cluttered
and dynamic lab environment with multi-person scenes.

In summary, the main contributions presented in this chapter are:

• the development of a smart edge sensor platform based on the Nvidia Jetson
Xavier NX development kit and an RGB-D and thermal camera, running efficient
vision CNN models for object detection and semantic segmentation together with
human and object pose estimation on-device in real time,

• temporal multi-view fusion of semantic point clouds from individual sensors into
an allocentric semantic map of 3D scene geometry,

• a novel multi-view object-level 3D semantic mapping approach, adding object
instance information to the semantic scene model,

• a keypoint-based object pose estimation approach trained solely on synthetic data,

• and the integration of multiple instances of the proposed novel sensor nodes
into the network of distributed smart edge sensors for real-time multi-view 3D
human pose estimation using semantic feedback, complementing the feedback from
backend to sensors with occlusion information for human joints in the respective
camera views, computed via ray-tracing through the estimated 3D scene geometry.

3.2 Related Work

Semantic Mapping. Many approaches exist in the literature to create three-
dimensional (3D) maps to be used for localization and navigation of mobile robots.
A common approach are occupancy grid maps. Octomap (Hornung et al., 2013), a
widely-used 3D occupancy mapping framework, uses an efficient octree-based data
structure to save occupancy probabilities of the environment divided into discrete
volume elements (voxels). A second popular map representation are truncated signed
distance fields (TSDFs). A TSDF map saves the distance to the closest surface in each
voxel. Voxblox (Oleynikova et al., 2017) is a commonly-used framework for building
TSDF-based maps.

The above works represent only geometry and don’t contain any semantics. Semantic
information about the environment, however, is a prerequisite for many high-level
robotic tasks. For this, semantic mapping systems build an allocentric model of 3D
scene geometry with semantic class information. To extend geometric 3D maps with
semantic information, Stückler, Biresev, and Behnke (2012) fuse probabilistic object
segmentations from multiple RGB-D camera perspectives into a voxel-based 3D map
using a Bayesian framework. SemanticFusion (McCormac et al., 2017) builds semantic
maps from RGB-D camera input using surface elements (Surfels), where a Gaussian
approximates the local point distribution. Pixel-wise class probabilities are obtained
from the color image via semantic segmentation and fused into the map using a Bayesian
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approach assuming independence of individual measurements. Literature on allocentric
semantic mapping is discussed in more depth in Chapter 4 while we focus on object-level
mapping in the following.

The scene understanding can further be improved by including object-level information
into the semantic map through explicit modeling of object instances. MaskFusion (Rünz,
Buffier, and Agapito, 2018) is an RGB-D SLAM system that can reconstruct and track
multiple objects in a scene without knowing prior models of the objects. The constructed
map uses Surfels to represent surfaces and Mask-RCNN (K. He et al., 2017) to obtain a
semantic instance segmentation of the RGB images. MID-Fusion (B. Xu et al., 2019)
uses an octree-based TSDF-map to implement RGB-D SLAM. On top of the scene
geometry, RGB-color, semantic classes, and a foreground probability are represented in
the map. Voxblox++ (Grinvald et al., 2019) uses both geometric and semantic instance
segmentation to build a semantic map with object-level information for static scenes.
With TSDF++, Grinvald et al. (2021) propose to create TSDF sub-volumes for object
instances. The object sub-volumes are included in an allocentric volumetric map that
can reference multiple objects at each location. Thus, temporally occluded objects or
surfaces remain in the map and do not need to be reconstructed anew when they become
visible again, and dynamic scenes can be represented. Dengler et al. (2021) proposed
an object-centric 2D/3D map representation for real-time service robotics applications,
using RGB-D data as input. A geometric segmentation of small objects in the point
cloud is obtained via Euclidean clustering.

While the above works use a single, moving camera, we propose to fuse percepts from
multiple static viewpoints to create a voxel-based semantic map of static scene geometry
that includes object-centric sub-maps or mesh models for tracked object instances.

Lightweight Vision CNNs for Embedded Hardware. Convolutional
neural networks (CNNs) set the state-of-the-art for image processing and computer
vision. However, on systems with limited computational resources, such as mobile
embedded sensor platforms, lightweight, efficient models must be employed to achieve
real-time performance. A popular approach is to replace classical backbone networks
such as ResNets (K. He et al., 2016) with MobileNet (Howard et al., 2019; Sandler et al.,
2018) or EfficientNet (Tan and Le, 2019) architectures, as the main computational
load of CNN inference often lies in the backbone feature extractor. These architectures
decrease the number of parameters and the computational cost significantly, e. g. by
replacing standard convolutions with depthwise-separable convolutions.

For object detection on embedded devices, single-stage architectures such as SSD (W.
Liu et al., 2016) or YOLO (Redmon et al., 2016), which use predefined anchors instead of
additional region proposal networks, have proven to be efficient. In our work, we employ
the recently proposed MobileDets (Xiong et al., 2021), that are optimized for embedded
inference accelerators using the SSD architecture with a MobileNet v3 backbone.

The DeepLab v3+ architecture (L.-C. Chen et al., 2018) for semantic segmentation
leverages elements of MobileNets, such as depthwise-separable convolutions, for efficiency
on embedded hardware, and shows state-of-the-art performance on large, general datasets.
We employ a DeepLab v3+ model with a MobileNet v3 backbone in our work.

For human pose estimation, OpenPose (Cao et al., 2021) set a new standard by
detecting body parts of multiple persons in an image and associating them to individuals
via part affinity fields (PAFs). This keypoint-based approach can also be generalized to
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object pose estimation by defining distinct points on the respective object model that
are then detected in the camera image. The assignment of detected keypoints to person
or object instances is commonly implemented in two different manners: bottom-up or
top-down. The bottom-up approaches scale well with the number of persons or objects
present in the image but can wrongly associate keypoints of different instances and have
difficulties handling detections of small scales. Top-down approaches, on the other hand,
first detect instances and then estimate body or object keypoints for each single-instance
crop. These approaches achieve higher accuracy and better scale invariance, as the
detections are interpolated to a fixed input resolution before pose inference. However,
they have the risk of early commitment due to errors in person or object detection and
scale linearly with a higher number of detected instances.

Xiao, Wu, and Wei (2018) propose an efficient CNN architecture for 2D human pose
estimation consisting of a backbone feature extractor and deconvolutional layers. We
adopt this architecture for human and object keypoint estimation, replacing the ResNet
backbone with MobileNet v3 for better efficiency on the embedded hardware.

6 DoF Object Pose Estimation. The task of 6 degrees of freedom (DoF) ob-
ject pose estimation consists of detecting known objects and estimating their orientation
and translation in 3D space from a single RGB image. 6 DoF object pose estimation
methods from the literature can roughly be divided into two classes.

Direct methods infer pose parameters directly from the image (Kendall, Grimes,
and Cipolla, 2015; Xiang et al., 2018). Xiang et al. (2018) define a CNN architecture,
called PoseCNN, that segments objects from 2D images, predicts their depth, and
regresses the 6 DoF pose parameters. Capellen, Schwarz, and Behnke (2020) extend
this approach to a fully convolutional network for dense prediction of pose parameters
not depending on prior object segmentation. Amini, Periyasamy, and Behnke (2021)
propose a transformer-based architecture for multi-object direct 6 DoF pose regression.
However, direct pose regression is a difficult task—especially for the rotation parameters
as the 3D rotation space is highly nonlinear.

In contrast, keypoint-based approaches adopt a two-step pipeline: First, 2D keypoints
are predicted for each object instance in the image and the 6 DoF pose is computed in a
second step from 2D-3D correspondences with a variant of the PnP-Algorithm (Lepetit,
Moreno-Noguer, and Fua, 2008). Approaches mainly differ in how the keypoints are
defined on the object model and how they are inferred from the image. In BB8 (Rad
and Lepetit, 2017), a segmentation mask is computed for each object and the keypoints
are then inferred as the eight corners of the 3D object bounding box. The coordinates
of the keypoints are directly regressed by the network. The corners of the 3D bounding
box, however, often are not located on the object surface and are thus difficult to
infer from local object image features. Pavlakos et al. (2017a) define keypoints on the
object surface and infer them as maxima of pixel-wise heatmaps. With PVNet, Peng
et al. (2019) also define keypoints on the object surface but infer them in a dense
manner: Each pixel in the object segmentation mask predicts vectors that point to
every keypoint. The keypoint locations are then computed through RANSAC-based
voting, choosing locations where the predicted directions intersect. This permits to also
represent keypoints that are occluded or outside of the image. Amini, Periyasamy, and
Behnke (2022) develop a transformer-based model for object keypoint regression and
propose to use interpolated bounding box keypoints, i.e. the corners of the 3D object
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bounding box and additional interpolated points on the bounding-box edges. They use
learnable rotation and translation estimators instead of the analytical PnP algorithm
to infer the 6 DoF object pose from the keypoints.

Some approaches apply additional refinement after the initial pose estimation to fur-
ther improve performance. Cosypose (Labbé et al., 2020), e.g., implements an additional
network that refines a given pose with the input image as additional input. When depth
information is available, e.g., in the RGB-D variant of PoseCNN (Xiang et al., 2018),
ICP can also be used for pose refinement. Periyasamy, Denninger, and Behnke (2022)
propose a probabilistic approach to improve the pose estimation of symmetric objects.

In this work, we adopt a keypoint-based approach using keypoints on the object surface.
We employ a top-down approach for object keypoint detection on embedded smart
edge sensors using the efficient CNN architecture introduced in the previous paragraph.
The 6 DoF object poses are recovered using the PnP-RANSAC Algorithm (Fischler
and Bolles, 1981; Lepetit, Moreno-Noguer, and Fua, 2008) to calculate the object’s
translation and rotation in the camera frame from 2D–3D correspondences of keypoints
on rigid objects. The PnP pose estimates are further refined via ICP alignment with
the observed point cloud segments and pose estimates from multiple sensor views are
fused via weighted interpolation.

3D Human Pose Estimation. Literature on 3D human pose estimation was
discussed in depth in Chapter 2, where we proposed a pipeline for real-time 3D human
pose estimation using multiple calibrated smart edge sensors that perform 2D pose
estimation on-device. Semantic pose information is transmitted to a central backend
where multiple views are fused into a 3D skeleton via triangulation and an efficient,
factor graph-based skeleton model. The fused allocentric 3D joint positions, after motion
prediction to compensate for the pipeline delay, are reprojected into local views and sent
back to the sensors as semantic feedback, where they are fused with the detected keypoint
heatmaps. This enables the sensors to incorporate global context information into their
local scene view interpretation. The pipeline delay is estimated as the difference between
the timestamps of the current detection and the latest received feedback message on a
sensor and updated using a moving average filter.

We build upon this work and extend the sensor network with new smart edge sensor
nodes with significantly increased computational power and RGB-D cameras that enable
the perception of 3D geometry. In addition to human pose estimation, object detection
and pose estimation as well as semantic image segmentation are computed on the
sensor boards and fused via 3D projection into a semantic point cloud. Semantic point
clouds from multiple sensor views are fused into a sparse voxel hash-map with per-voxel
full semantic class probabilities on the backend. Pose and shape information of object
instances is included into the map, representing objects through their posed 3D mesh
model or an object-centric volumetric sub-map and robustly tracking their movement
over time. The semantic map is used to obtain occlusion information for person keypoints
in the local camera views, which is added to the semantic feedback to increase the
robustness of the human pose estimation pipeline.

Also related to our work are recent studies on tracking human-object interactions from
multi-view RGB-D data (Bhatnagar et al., 2022; Huang et al., 2022). Bhatnagar et al.
(2022) propose to jointly track humans, objects, and their interactions in real-world
environments using multiple RGB-D cameras as input. Humans are represented via the
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Figure 3.3: Overview of the multi-sensor pipeline for 3D semantic mapping and human pose
estimation: The Jetson NX smart edge sensors extend the sensor network of nodes
with lower compute capabilities (cf. Chapter 2). Semantic point clouds from multiple
sensor views are aggregated into an allocentric 3D semantic map and 3D human
poses are estimated in real time. The map is used to check reprojected joints for
occlusion in the resp. sensor view via ray-tracing and this information is added to
the semantic feedback sent to the smart edge sensors.

parametric SMPL 3D body mesh model (Loper et al., 2015), objects via their pre-scanned
3D mesh model, and interactions as surface contacts. Huang et al. (2022) additionally
provide detailed hand and finger poses, using the SMPL-X body model (Pavlakos
et al., 2019), and focus on realistic hand-object contacts. These methods implement a
centralized, offline multi-view fusion, they do not run inference in real time on distributed
sensors. Their focus is on a single human interacting with a single object, but not on
building a complete semantic scene model.

3.3 Method

Figure 3.3 illustrates the proposed multi-sensor pipeline for 3D semantic scene perception
and human pose estimation combining two types of smart edge sensors. The proposed
Jetson NX sensors are integrated into the sensor network from Chapter 2, consisting of
nodes based on the Google Edge TPU with lower compute capabilities and RGB image-
only 2D human pose estimation, without local depth estimation. We consider a calibrated
camera network, with known projection matrices from sensor to world coordinates,
where the sensors are software-synchronized via the network time protocol (NTP).
Semantic mapping is only performed with the newly added Jetson NX sensor nodes,
while data from both sensor types is combined for 3D human pose estimation.

An overview of the proposed approach for semantic perception onboard each Jetson NX
smart edge sensor is given in Fig. 3.4. We detail individual components of the data
processing on each sensor board, as well as the fusion of multiple sensor views for
3D semantic mapping and 3D human pose estimation in the following. The semantic
mapping and point cloud branches in Figs. 3.3 and 3.4 illustrate the allocentric volumetric
semantic mapping, while object pose estimation and object-level mapping are detailed
in Sec. 3.3.4 and Sec. 3.3.6.
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Figure 3.4: Smart edge sensor semantic perception system overview. Human poses are estimated
in real time, while the semantic point cloud of the static or slowly moving scene
geometry is output at a lower frequency to save compute resources.

3.3.1 Smart Edge Sensor Hardware

We developed smart edge sensors based on the Nvidia Jetson Xavier NX developer kit1

(cf. Fig. 3.1 (a)), equipped with a 6-core ARM processor, 384 CUDA cores, and 8 GB of
RAM. The Jetson NX embedded system achieves a CNN inference performance of 21
trillion operations per second (TOPS), a significant increase compared to the 4 TOPS
of the sensor platform employed in Chapter 2. For visual perception, we connect an
Intel RealSense D455 RGB-D camera and a FLIR Lepton 3.5 thermal camera to the
Jetson NX board.

3.3.2 Single-View Embedded Semantic Perception

Person and Object Detection. We employ the recent MobileDet architec-
ture (Xiong et al., 2021) for person and object detection. The RGB detector is trained
on the COCO dataset (Lin et al., 2014) using the person and 12 indoor object classes
(e.g., chair, table, screen), with an input resolution of 848 × 480 px. The same network
architecture is used for the thermal detector, taking one-channel 8-bit thermal images
at the camera resolution of 160 × 120 px as input. The thermal detector is trained only
for the person class on the ChaLearn IPHD dataset (Clapés et al., 2020).

Person and Object Keypoint Estimation. We adopt a top-down ap-
proach for person and object keypoint estimation on the smart edge sensors, where crops
of single persons or objects are analyzed by the keypoint estimation CNN. These crops
are extracted from the input RGB image using bounding boxes obtained through the
detection network introduced above. The CNN architecture of Xiao, Wu, and Wei (2018)
is the basis of our keypoint estimation, but we exchange the ResNet backbone with
the significantly more lightweight MobileNet v3 feature extractor (Howard et al., 2019).
This architecture proved efficient on embedded hardware in prior work (Chapter 2). We
train keypoint estimation networks for human pose estimation using the person keypoint
annotations of the COCO dataset (Lin et al., 2014) and for object pose estimation for
chairs and tables using synthetic training data (see Sec. 3.3.4).

Person detections from RGB and thermal images are forwarded to the person keypoint
estimation CNN. The RGB-D depth thereby is used to project detections from the

1 https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit, accessed: 2023-08-01

https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
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thermal camera to the color image. Redundant detections of the same person in both
modalities are filtered via non-maximum suppression (NMS). Each person crop is
then resized to the fixed 192 × 256 input resolution of the keypoint estimation CNN
and inference is run for all crops together in batched mode. Batch processing gives a
significant improvement in the scaling of inference time with the number of persons
compared to previous work, where the embedded hardware only supported processing a
single crop at a time (cf. Sec. 2.6.4.4 and Sec. 3.4.3.4).

The pose estimation model outputs multi-channel images, called heatmaps, encoding
the confidence of a joint being present at the pixel location. As single-person crops
are processed, 2D joint locations are determined as global maxima of the respective
heatmap channel. The RGB-D range image is used to augment the 2D keypoints to a
2.5D pose representation. For each joint, the median depth of a 5 × 5 px region around
the joint location is obtained from the depth image. The local depth estimate enables
the projection of keypoints into three-dimensional space but often suffers from noise
and occlusions, as is further analyzed in Sec. 3.3.7. The 2.5D pose estimate for each
detected person is sent to a central backend, where multiple sensor views are fused into
a coherent 3D pose representation. The person pose estimation pipeline runs with the
highest real-time priority on the sensor boards, to enable tracking of dynamic human
motions. To save computational resources, the detector is run only once per second and
the crops are updated based on the keypoint estimations between detector runs.

Similarly, for object keypoint estimation, chair and table detections from the RGB
image are forwarded to the respective object keypoint estimation CNN. Object keypoints,
together with corresponding point cloud segments obtained from the depth data, are
used for object pose estimation as detailed in Sec. 3.3.4. Object pose estimates from
multiple views are sent to a central backend, where multiple viewpoints are fused and
the object movement is tracked through the allocentric map. To limit computational
resource usage as the motion of the considered furniture object classes is significantly
less dynamic than human motions, object keypoint estimation is only executed once
per second, together with the detector runs.

Semantic Segmentation. We adopt the DeepLab v3+ (L.-C. Chen et al.,
2018) architecture with MobileNet v3 (Howard et al., 2019) backbone for semantic
segmentation. We train the model on the indoor scenes of the ADE20K dataset (Zhou
et al., 2019) and reduce the labels to the 16 classes most relevant for the intended indoor
application scenarios (cf. Fig. 3.1). The input image size is set to 849 × 481 px, fitting
the 16:9 aspect ratio of our camera. The semantic segmentation is run only once per
second, similar to the person and object detector, to save computational resources.

3.3.3 Semantic Point Cloud Fusion

We obtain a geometric point cloud by projecting the RGB-D range image into 3D. The
point cloud is uniformly subsampled using a voxel-grid filter with 5 cm resolution to
reduce the amount of data, economizing computational resources, and later network
bandwidth for transmission to the backend. Sparse outlier measurements are removed
by a statistical outlier filter, as implemented in the point cloud library (PCL) (Rusu
and Cousins, 2011). A point is deleted when the distance to its neighbors is outside an
interval defined by the mean and standard deviation of the entire point cloud.
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Semantic information from RGB and thermal detections, as well as RGB semantic
segmentation, is fused into the point cloud using a projection-based approach. For this,
the points are projected into the segmentation mask inferred from the RGB image. The
semantic class scores csegm ∈ R

C are obtained from semantic segmentation via bilinear
interpolation at the projected point location. A normalized probability distribution over
the employed C = 16 classes is then approximated by applying the soft-max operation:

pi = σ (ci) =
exp ci

∑C
j=1 exp cj

, (3.1)

obtaining psegm ∈ R
C , with pi ∈ [0, 1] and

∑

i pi = 1.
If a projected point falls inside a detection bounding box in either thermal or

color images, we further fuse the detector result with the semantic segmentation. We
reconstruct the detection probability distribution pdet from the score for the detected
class following the maximum entropy principle: The probability of the detected class
pdet is given by the detector score and the remaining probability mass 1 − pdet is equally
distributed over the remaining C − 1 classes. Both estimates are fused following the
Bayesian update rule (McCormac et al., 2017), assuming independence of segmentation
and detection:

pfused =
psegm ◦ pdet

∑C
i=1 pi,segm pi,det

, (3.2)

with ◦ the coefficient-wise product. For better numerical stability, we use a logarithmic
implementation of the Bayesian fusion (Bultmann, Quenzel, and Behnke, 2023).

As the detection bounding boxes are axis-aligned, border-effects have to be considered
for non-rectangular or non-axis-aligned objects before detection fusion. Inclusion of all
points projected into the bounding box in the fusion would falsely label points on the
ground and in the background as the detected class. To alleviate this issue, the ground
plane is removed and the remaining points are clustered in 3D Euclidean space by a
distance threshold. Only the clustered points are included into detection fusion. Further
details on the clustering approach are given in Sec. 4.3.3.

The output semantic point cloud includes the class probability vector and the argmax
class color per point (cf. Fig. 3.7 (a)), and is sent to the central backend over the
network. Additionally, points of the chair and table semantic classes are extracted and
geometrically clustered into object instance segments used for object pose estimation
together with the object keypoint detections. The semantic point cloud is computed
at a reduced update frequency of 1 Hz on the sensors, as it targets the static or slowly
moving scene geometry. Thus, computational resources are kept free for the real-time
estimation of dynamic human motions in the pose estimation pipeline.

3.3.4 Keypoint-based Object Pose Estimation

For keypoint-based pose estimation, keypoint locations need to be defined at distinct
points of the object model. We perform keypoint estimation for the chair and table

object classes in this work and aim to represent different types of chairs and tables
with the defined keypoints. For this, we define Lchair = 6 keypoints on chairs: four
keypoints on the corners of the seating and two keypoints at the top of the backrest
of a chair. These keypoints can be consistently defined for most types of chairs and
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Figure 3.5: Frames from two synthetic training scenes with corresponding ground truth keypoint
annotations for the table or chair class, respectively. Background textures and object
models are randomly selected.

have less variance in appearance and geometry than, e.g., armrests or legs of chairs.
Similarly, we define Ltable = 8 keypoints on tables: four keypoints on the corners of the
tabletop and four on the points of the table legs (cf. Fig. 3.5).

To avoid costly manual annotation of training data and to facilitate generalization to
different object classes, we only use synthetic training images for the keypoint estimation.
We employ the sl-cutscenes framework (Boltres et al., 2022), an extension of the stillleben

framework (Schwarz and Behnke, 2020), for randomized photorealistic indoor scene
generation with physically interacting objects. We create a dataset of ∼13k training and
∼2.5k validation images per object class where between three and six randomly selected
chairs or tables move around a room with randomly selected textures and background
objects. Fig. 3.5 shows samples of the generated training images.

The detected object keypoints are used in a second step to recover the object’s
translation and rotation in the camera coordinates via the PnP-RANSAC algorithm.
For this, we assume a 3D model of the specific type of chair or table visible in the
respective scene to be available and exploit the known correspondences between 2D
image keypoint and keypoints defined on the 3D object model. A 3D object skeleton in
camera coordinates is then obtained by transforming the object model keypoints with
the estimated PnP pose. As we consider chairs and tables standing or moving on the
ground plane, the PnP pose estimate is further projected to the ground plane (xy-plane
in allocentric coordinates), to obtain a stable and plausible object pose, compensating
for noise or outliers in the keypoint detections.

To further improve the estimated object pose, the keypoint-based PnP pose estimate
is refined via ICP alignment with the point cloud segments of the observed objects
obtained from the semantic point cloud (cf. Fig. 3.9). For this, 3D object skeletons are
assigned to point cloud segments in a data association step. For each frame, we obtain a
set of 3D keypoint skeletons K and a set of point cloud segments S of the corresponding
semantic class. For each segment sj ∈ S, we find the corresponding object skeleton
ki ∈ K with the minimum average distance between 3D object keypoints xl,ki

and their
nearest neighbor in the respective point cloud segment yl,sj

:

dkps-segm (ki, sj) =
1

L

L
∑

l=1

∥

∥

∥xl,ki
− yl,sj

∥

∥

∥ , (3.3)

kmin = arg min
∀ki∈K

(dkps-segm (ki, sj)) . (3.4)
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(a) (b) (c) (d)

Figure 3.6: 2D keypoint detections and corresponding 3D poses calculated with PnP-RANSAC
and ICP refinement. Top-row: keypoint detections in four different perspectives of a
scene from the Behave dataset (Bhatnagar et al., 2022). Bottom-row: object pose
estimation and associated point cloud segments. For (a)–(c), the method was able
to estimate a pose for the object, while no valid pose estimate and data association
could be obtained for perspective (d) due to the high occlusion.

Data association is performed in a greedy manner, starting with the largest point
cloud segment, and associations are valid only when the obtained average keypoint
to nearest point cloud neighbor distance dkps-segm(kmin, sj) is below a threshold τdist.
Segments and keypoint detections without a valid data association are discarded.

The object model point cloud, sampled from the 3D object mesh model and initialized
with the PnP pose, is then aligned with the associated observed point cloud segment
via ICP, resulting in the final object pose estimate.

The semantic object information, comprising the refined pose estimate, the data
association distance dkps-segm(kmin, sj), and the statistical distribution of the points
in the cluster, is then streamed to a central backend, where object observations from
multiple sensor perspectives are synchronized and fused. If the sub-map representation
is chosen on the backend (cf. Sec. 3.3.6), the associated point cloud segments are
additionally transmitted to the backend, significantly increasing the used network
bandwidth (cf. Sec. 3.4.3.4). Fig. 3.6 shows object keypoint detections and resulting
pose estimates with associated point cloud segments for an exemplary scene of the
Behave dataset (Bhatnagar et al., 2022) with the chair object class.

3.3.5 Allocentric Semantic Mapping

Semantic point clouds from multiple calibrated camera perspectives are fused into an
allocentric semantic map on the central backend, as illustrated in Fig. 3.7. For this,
the 3D space is uniformly subdivided into cubic volume elements (voxels). We employ
sparse voxel hashing (Quenzel and Behnke, 2021) as a memory-efficient data structure.

For indoor environments, prior information on building structure is often easily
available, e.g., via floor plans or 3D models. To incorporate this prior information, we
initialize the scene model with a prior map of the empty building (Fig. 3.7 (b)). Here,
the prior map was obtained from aggregated laser scans of the empty rooms, but it
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(a) (b) (c)

Figure 3.7: 3D semantic mapping: (a) semantic point cloud of a single sensor, (b) prior map,
(c) fused semantic map. The smart edge sensors send semantic point clouds of their
resp. perspectives to the backend. Here, the fused map is initialized with a prior
map and updated with the observations including semantic classes.

(a) (b)

Figure 3.8: Map update: 3D semantic map and 3D person skeleton (a) before and (b) after
moving a chair (highlighted with red circle). The semantic map is updated via
ray-tracing to account for moving objects.

could also be replaced, e.g., by a floor plan with a fixed wall height or an architectural
computer aided design (CAD) model of the building.

To include semantic information and current observations into the map, we trans-
form the semantic point clouds from individual sensors (Fig. 3.7 (a)) into allocentric
coordinates using the known camera calibration and bin the points into voxels of 10 cm
side length. The semantic probabilities of all points falling into a voxel are fused proba-
bilistically, using Bayes’ rule (McCormac et al., 2017), assuming independence between
observations P (li|Xk) for the semantic point cloud Xk with label li for class i:

P (li|X1:k) =
P (li|X1:k−1)P (li|Xk)

∑

i P (li|X1:k−1)P (li|Xk)
. (3.5)

We again use the implementation of Bayesian fusion in logarithmic form proposed by
Bultmann, Quenzel, and Behnke (2023) for better numerical stability. Points labeled as
person are not included in the semantic map, as dynamic human segments are tracked
at a higher update rate via the 3D skeleton representation (cf. Sec. 3.3.7).

The fused semantic map (Fig. 3.7 (c)) contains 3D geometry and semantic classes of
the areas observed by the smart edge sensors and is completed by the prior information
for currently unobserved areas.

To account for moving objects, we adopt a simple ray-tracing approach to update
occupancy information of the voxels (Schleich et al., 2021), as illustrated in Fig. 3.8.
Starting from the sensor pose towards the measured voxels, we ray-trace using a 3D
implementation of Bresenham’s algorithm (Amanatides and Woo, 1987). All voxels
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Figure 3.9: Overview of the object-level mapping pipeline: Smart edge sensors generate se-
mantically and geometrically segmented point clouds. Simultaneously, 3D object
poses are estimated via PnP using 2D keypoint detections. With the results, we
calculate information about each observed instance. On the backend, observations
from multiple views are fused and objects are tracked over time.

between the start and endpoint of the ray are updated as being free space, while the
measured voxels are updated as being occupied. The semantic class probability is reset
when a voxel state transitions from occupied to free.

The ray-tracing update, however, reacts gradually to object movement and does not
implement any instance-level object representation. Hence, object trajectories cannot
be reconstructed. To improve the scene understanding, instances of different furniture
object classes are explicitly represented in the map through their 3D model or an
object-centric sub-map and tracked through the static scene, as detailed in the following.

3.3.6 Object-level Semantic Mapping

Fig. 3.9 gives an overview of our proposed pipeline for multi-view object-level semantic
mapping. In each sensor view, point clouds for the considered object classes are extracted
via semantic segmentation of the RGB image and projection of the depth data (Sec. 3.3.3).
The object point clouds are then geometrically segmented via the Euclidean cluster
algorithm and a statistical outlier filter (Rusu and Cousins, 2011) to obtain a point
cloud segment per detected object instance.

Simultaneously, object keypoint detection is performed on the RGB images and
6 DoF object poses are recovered via the PnP-RANSAC Algorithm using 2D–3D
correspondences between detected image keypoints and 3D object model keypoints
(Sec. 3.3.4). We assume 3D models of the considered object classes to be available as
prior information on the sensor boards and the backend. The PnP pose estimate is
projected to the ground plane, as the considered objects are standing or moving on the
ground plane with only 3 degrees of freedom.

The keypoint-based pose estimates are then associated to point cloud segments via the
closest distance between object keypoints and their nearest neighbor in the respective
point cloud segment. The pose estimate is further refined via ICP alignment of the
object model, initialized with the PnP pose estimate, with the corresponding point
cloud segment (Sec. 3.3.4). Various semantic object properties are calculated from the
associated point cloud segments and keypoint detections.

The semantic object information is streamed to a central backend, where the ob-
servations from multiple smart edge sensors are fused. We discern two different cases,
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(a) (b)

Figure 3.10: Fusion of keypoint poses and point cloud variance: (a) fused keypoint skeleton
and the point cloud variance from smart edge sensor observations (cf. Fig. 3.6);
(b) object mesh transformed with the fused pose estimate. Merged point cloud
segments are shown as a reference in (a).

depending on the available network bandwidth and the used object representation: The
transmitted information always comprises the pose estimate, the mean distance between
object keypoints and nearest neighbors in the associated point cloud segment, and the
statistics of the point distribution, visualized as a covariance ellipsoid anchored at the
object model origin. Objects are represented in this case by a 3D keypoint skeleton with
an associated point distribution ellipsoid or by their 3D mesh model.

If a 3D mesh model is not available, objects are represented by an object-centric
volumetric sub-map, which can model arbitrary geometric shapes. For this, the point
cloud segments are additionally transmitted to the backend, requiring higher network
bandwidth (cf. Sec. 3.4.3.4).

A tracking module enables to robustly follow object trajectories through the scene
and a clean-up step removes object hypotheses that moved out of view or were falsely
initialized from noisy measurements.

The central backend receives semantic object pose and shape information from mul-
tiple smart edge sensor views. The data streams are software-synchronized according
to their timestamps. Fused object pose estimates are obtained by i) transforming
the object pose estimates of individual cameras to allocentric coordinates, using the
known extrinsic camera calibration, and ii) weighted interpolation between the sensor
views. The interpolation weights are inversely proportional to the data association dis-
tance (3.3), giving the highest confidence to perspectives where the keypoint-based pose
estimate is most consistent with the point cloud segments. Spherical linear interpolation
of quaternions is used for the orientations. The point segment distribution variance
parameters are averaged using the same interpolation weights. Observations from at
least one sensor view are required for a valid object instance. The fusion of multiple
perspectives increases the robustness and accuracy of the pose and shape estimation.
Fig. 3.10 shows the fused pose estimate using the individual poses from the three valid
perspectives of Fig. 3.6.

If the sub-map representation is used for objects in the allocentric map, an object-
centric sub-volume is maintained for each object instance, using a sparse voxel grid
data structure, similar to the allocentric semantic map (cf. Sec. 3.3.5). Its size and
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(a) (b)

Figure 3.11: Sub-map update with fused point cloud data: The point measurements of the merged
point cluster (a) are integrated into a volumetric sub-map (b). Simultaneously, the
sub-map is updated with the estimated object pose.

resolution are chosen according to the represented object, independent of the resolution
of the allocentric map. We use a voxel edge length of 5 cm in our experiments. To
initialize and update the object sub-map, the point cloud segments associated to the
detected object instances are additionally transmitted to the backend. In a first step,
point cloud segments from individual views are transformed to allocentric coordinates,
using the camera extrinsics, and concatenated to form a merged object point cluster.
The merged object point cluster is then transformed into local object coordinates using
the fused object pose estimate and integrated into the object-centric sub-map. Each
point measurement increments the occupancy count of its corresponding voxel. Once
the occupancy is above a threshold τocc, the voxel is considered occupied. The updated
local sub-map is displayed at the estimated object pose in the allocentric scene model.
Fig. 3.11 illustrates the sub-map update with the fused point cloud cluster from the
three valid perspectives of Fig. 3.6. Fig. 3.12 shows 2D keypoint detections and fused
3D pose estimate for a sample scene of the Behave dataset with the table object class
for both mesh and sub-map object representations.

Object instances are tracked over time on the backend via data association using a
constant velocity model. The position of known objects is predicted using a moving
average velocity, computed over a fixed time window of past positions, and the passed
time ∆t since the last synchronized frame-set was received from the sensors. For each
observed object instance, the nearest neighbor from the tracked object hypotheses is
used, using their predicted position. Data associations are valid only if the distance
between observation and corresponding track is below a threshold τtrack. For observations
with no valid association, new tracking hypotheses are initialized. In a clean-up step,
object hypotheses that have not been observed for a longer time are removed.

3.3.7 3D Human Pose Estimation with Occlusion Feedback

The 3D joint positions of detected persons are recovered from a set of 2D keypoint
detections from multiple viewpoints via triangulation, and the result is refined using a
factor graph skeleton model, as introduced in Chapter 2. Furthermore, our framework
implements a semantic feedback channel from backend to sensors that enables the local
semantic models of each sensor to incorporate globally-fused 3D pose information.
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(a)

(b)

(c)

(d)

Figure 3.12: 2D keypoint detections for the table class from two perspectives of the Behave
dataset (a, b); fused 3D pose represented through (c) mesh or (d) sub-map.

Using the allocentric 3D semantic map (cf. Fig. 3.3), we add occlusion information
for each human joint to the semantic feedback. We employ ray-tracing to check each
joint for occlusion in the respective local sensor view. For this, we traverse the ray from
the respective camera pose to the 3D joint through the 3D map using Bresenham’s 3D
line-search (Amanatides and Woo, 1987). When the ray hits a minimum number of
k = 2 occupied voxels, the joint is marked as occluded in the respective local view.

The benefits of the occlusion information for the local sensor model are illustrated
in Fig. 3.13. Without occlusion feedback, heavy occlusion causes the pose estimation
to collapse to the visible side only (Fig. 3.13 (b)), which cannot be recovered by the
feedback on the heatmap level (Sec. 2.4.4). With occlusion information (Fig. 3.13 (a)),
unreliable, occluded joint detections can be discarded, and the local model is completed
by the more reliable semantic feedback. Completely occluded persons can also be added
back into the local model (Fig. 3.13 (d)), making the sensor aware of persons that are
going to re-appear in the future. Furthermore, the known occluded joints are excluded
from multi-view triangulation in the next forward pass, as no new information can be
gained from the respective sensor view. In Sec. 3.4.3.2, we show that the added occlusion
information improves the overall consistency in terms of reprojection error.

We further investigate the reliability of the local depth estimate of skeleton joints from
the Jetson NX smart edge sensors. The local depth enables estimating 3D joint positions
from a single camera only, without dependence on other sensors. However, the RGB-D
depth suffers from significant noise at larger distances and the depth measurement for a
joint often is obstructed by occlusions or self-occlusions, as illustrated in Fig. 3.14. The
local depth estimate results in a good approximation of the 3D skeleton for a front view,
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(a) (b) (c) (d)

Figure 3.13: Occlusion information in semantic feedback: Local 2D pose estimation (a) with
and (b) without occlusion information via semantic feedback, (c) reference view
without occlusion, (d) fully occluded person. Person detections in red and skeleton
keypoints colored by joint index. Occluded joints are marked in orange. Heavy
occlusion causes the pose estimation to collapse to the visible side only. With
occlusion information, unreliable, occluded joint detections can be discarded, and
the local model is completed by the more reliable semantic feedback.

(a) (b) (c)

Figure 3.14: Comparison of multi-view triangulation and local depth for estimating person
keypoints in 3D: (a) multi-view triangulated 3D skeleton, (b) local depth from
front view, and (c) local depth from side view. The local depth estimate results in
a good approximation of the 3D skeleton for a front view, but is inaccurate in case
of self-occlusion, e.g. from a side view. Multi-view triangulation is more robust.

but is inaccurate in case of self-occlusion, e.g. from a side view. Multi-view triangulation
is more robust to these issues but requires synchronization with other sensors.

The local depth estimate, however, can still be used as an indication to constrain the
data association between cameras for multi-view triangulation. Person detections from
different camera views are associated based on the epipolar distance of their joints using
the efficient iterative greedy matching proposed by Tanke and Gall (2019). Keypoint
detections from one image are projected as epipolar lines into the other cameras, where
the distance from corresponding joint detections to the epipolar line is used as data-
association cost. When a depth estimate is available, including an uncertainty interval
computed from the keypoint confidence and the distribution of local depth readings, the
matching can be restricted to a line segment. This helps to resolve ambiguous situations,
where keypoints from multiple persons have a low distance to the epipolar line but
are located at different positions along the line. Keypoints located on the line segment
close to the projected depth estimate will receive lower data association cost while
correspondences outside the projected depth interval will be discarded.



3.4 evaluation and experiments 61

3.4 Evaluation and Experiments

In a first set of experiments, we evaluate our keypoint-based approach for 6 DoF object
pose estimation from a single camera view on the YCB-V dataset (Xiang et al., 2018)
(Sec. 3.4.1). Second, our method for multi-view object pose estimation and object-
level mapping is evaluated on the public Behave dataset (Bhatnagar et al., 2022),
using different scenes with human-object interactions (Sec. 3.4.2). Lastly, we evaluate
the full system for 3D semantic scene perception in real-world experiments with the
sensor network in a challenging, highly cluttered and dynamic lab environment with
multi-person scenes (Sec. 3.4.3).

3.4.1 Object Pose Estimation on YCB-Video Dataset

In this study, some general design choices for the keypoint-based object pose estimation
method are evaluated and justified. We compare different ways to define keypoints on
object models and to scale keypoint estimation CNNs to handle multiple object classes.

The YCB-V dataset (Xiang et al., 2018) comprises over 130k images at VGA resolution
of 21 different object classes and is widely used for robot manipulation and object pose
estimation tasks. For each object, a textured mesh is included as 3D model with the
origin of the object coordinate frame defined at its center. All objects are household
objects relevant for real-world robot experiments in domestic service scenarios (cf.
Fig. 3.15). The images contain multiple objects in realistic settings with changing
lighting conditions, significant image noise and cluttered backgrounds.

3.4.1.1 Implementation Details

As we target the YCB-V dataset (Xiang et al., 2018) for generic object pose estimation in
this set of experiments, without focus on real-time inference on the embedded hardware,
we employ a more generic and powerful CNN architecture compared to the network
used on the sensor boards (cf. Sec. 3.3.2), less optimized for computational efficiency, to
achieve results comparable to the literature.

We base the following evaluations on the OpenPose framework (Cao et al., 2021).
OpenPose is a keypoint-based bottom-up approach for human pose estimation in images.
Together with heatmaps of keypoints, the CNN computes vector fields, called part
affinity fields (PAFs), connecting the keypoints of an object instance. This allows to
directly predict keypoints on the input image without prior segmentation or detection
required. Local maxima in the heatmaps are assembled into instances via the PAFs.

The network architecture is adjusted to the YCB-V dataset as well as the used
keypoints and PAFs. For an input image of size H × W and C object classes, the output
shape is H

8
× W

8
× (C · 8 + 1) for the heatmaps and H

8
× W

8
× (C · 12 · 2) for the PAFs.

Heatmaps consist of eight keypoint channels per object class and the background, while
PAFs consists of x and y channels for the 12 keypoint connections per class. Training
labels are generated from the object model keypoints projected into the images of
the video sequences from the dataset, using the annotated poses. A Gaussian blob is
rendered at the keypoint position in the respective heatmap channel and the respective
PAF channels represent the unit vector in the direction of the connection, within a fixed
width along the connecting line, as proposed by Cao et al. (2021).



62 3d semantic scene perception
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Figure 3.15: Objects of the YCB-V dataset with heatmaps of the manually defined keypoints
and their interconnections.

To enable the network to estimate the poses for multiple object classes, the layer
width of the intermediate stages needs to be scaled accordingly to the output layers. A
network for all 21 object classes would require huge amounts of GPU memory. Because
of this, we train a separate model for each object class. We verify in the ablation studies
that the performance of these 1-object models is superior to models trained for multiple
object classes.

The input image is processed by the network and heatmaps and PAFs are estimated.
The local maxima of each heatmap are candidates for the respective keypoint. These
keypoint candidates are grouped into object instances using the PAFs, as in the OpenPose
framework (Cao et al., 2021). This step is repeated for every object class. The PnP
and RANSAC algorithms are used to calculate the 6 DoF poses of the found object
instances with four or more valid keypoints2 using correspondences between detected
2D image keypoints and 3D model keypoints, as detailed in Sec. 3.3.4. In this study, no
ICP refinement or multi-view fusion is employed.

All experiments run on a workstation PC with an RTX 2080 GPU, i7-8700K CPU,
and 32 GB of RAM. Pose estimation takes 50 ms in average per object and image,
thereof 8 ms for pre-processing, 8 ms for inference, and 34 ms for post-processing and
PnP. The network requires 1.24 GB of GPU memory during inference.

3.4.1.2 Selection of Object Model Keypoints

The choice of the object model keypoints is an important design parameter of any
keypoint-based method for object pose estimation. They need to be well localized on
the object geometry and texture, to facilitate their CNN-based detection, and should
be spread out on the object surface such that a stable and well-defined solution of the
PnP-problem can be found. We compare two different ways to define keypoints and
PAFs on the 3D object models in this study: They are chosen manually or automatically.
Eight keypoints and twelve PAFs are defined per object class.

The manually defined keypoints are located on easy-to-find spots of the object geome-
try and texture and represent the object contour. If applicable, the keypoints are placed
to form a cuboid. This set of keypoints is shown in Fig. 3.15. The automatically defined
set of keypoints is chosen with the farthest-point-algorithm, inspired by PVNet (Peng

2 The PnP algorithm requires at least four correspondences for a unique solution.
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Figure 3.16: Objects of the YCB-V dataset with heatmaps of the automatically defined keypoints
and their interconnections.

et al., 2019): Starting with the object center, points on the object surface which are
farthest from the already chosen points are added to the keypoint set. Eight points on
the object surface are retained—the center point is not part of the final keypoint set.
The set of automatically chosen keypoints is shown in Fig. 3.16. The PAFs for both sets
of keypoints are defined by hand. The objective is to choose connections that run along
distinctive features and to form one upper and one lower polygon that are connected
with vertical PAFs. The PAFs run along the keypoint connections displayed in Figs. 3.15
and 3.16 and have a fixed width. The automatically picked keypoints are less intuitively
placed and harder to find than the manually picked ones. The reason for this is, that
the automatically picked keypoints are often located on edges instead of corners and on
surfaces instead of edges. Furthermore, the texture is ignored in the automatic selection
although it is important to localize keypoints on images. The inferior performance of the
automatically chosen keypoints is confirmed by the evaluation results in the ablation
studies. Therefore, the manually chosen keypoints are used for the comparison of our
results with other methods from the literature. Consequently, keypoints on the objects
tracked in the real-world object-level mapping with the sensor network are also manually
defined (cf. Sec. 3.3.4).

The YCB-V dataset contains several symmetric objects: 13, 16, 19, 20, and 21. The
bowl (Obj. 13) is rotationally symmetric while the other objects possess discrete sym-
metry transformations. For each symmetric object, some poses are not distinguishable
from each other. Hence, keypoints of the symmetric objects cannot be learned by the
network if the symmetries are ignored. A simple elimination of symmetric poses during
training is implemented in this work. All symmetry-equivalent poses are mapped to the
same pose which ensures same relative position of keypoints on the image plane.

3.4.1.3 Metrics

We employ two standard metrics for evaluation: average 3D distance of model points
(ADD) (Hinterstoisser et al., 2012) and 2D projection error (Brachmann et al., 2016).
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Both metrics employ the meshes of the object models to calculate the pose error. The
ADD metric is defined as:

ǫADD =
1

|V |

∑

v∈V

‖(Rv + t) − (R̃v + t̃) ‖ , (3.6)

with R̃ and t̃ being the estimated rotation and translation, R and t defining the
ground-truth pose and V the set of vertices of the object model mesh. For symmetric
objects, the point-to-point correspondences can be ambiguous and the metric is adapted
to compute the average distance using the closest point from the mesh (Xiang et al.,
2018):

ǫADD-S =
1

|V |

∑

v1∈V

min
v2∈V

‖(Rv1 + t) − (R̃v2 + t̃) ‖ . (3.7)

The 2D projection metric computes the average 2D pixel distances between corresponding
points projected onto the image plane of the evaluated view:

ǫ2DProj =
1

|V |

∑

v∈V

‖proj(Rv + t) − proj(R̃v + t̃) ‖ . (3.8)

The evaluation scores are given in terms of the area under the curve (AuC). For this, the
threshold for the respective distance metric is varied and the pose accuracy is computed
for each threshold value. The maximum thresholds are set to 10 cm for ADD(-S) and
40 px for the 2D projection metric.

3.4.1.4 Quantitative Results

In Tab. 3.1, we give detailed evaluation results of the AuC scores for all 21 objects
of the YCB-V dataset and compare them to the results of PoseCNN (Xiang et al.,
2018). The proposed approach outperforms PoseCNN in terms of ADD for most of
the non-symmetric objects and on average over all objects. The improvement is most
significant for the box-shaped Objects 2, 3, 7, and 8 as well as for Objects 11, 15, and 17
which have a more complex shape (cf. Fig. 3.15). PoseCNN, on the other hand, achieves
better results for the symmetric objects in terms of ADD-S. The proposed approach
provides less accurate results for these objects, where several keypoint configurations
can result in visually equivalent poses. This makes the keypoint estimation harder
to learn and cannot be fully compensated by the symmetry handling during training
(cf. Sec. 3.4.1.2). Also, keypoints are difficult to infer for objects with little prominent
geometric features (e.g., edges or corners) such as Objects 10 and 18. The 2D projection
metric scores per object are not reported by the authors of PoseCNN.

In Tab. 3.2, we further compare the overall results of our method with the recent
benchmark for 6D object pose estimation (BOP) challenge 2020 (Hodaň et al., 2020,
2018). The BOP challenge defines slightly different evaluation metrics: The maximum
symmetry-aware surface distance (MSSD) and maximum symmetry-aware projection
distance (MSPD) metrics are similar to the ADD and 2D projection metrics, but give
the maximum value instead of the average error and deal with symmetries. The visible
surface discrepancy (VSD) metric is the percentage of pixels that are visible in the
estimated and ground truth pose and are close in the image space. The formal definitions
are given by Hodaň et al. (2020). We achieve the third-best result. In comparison to
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Table 3.1: Area under accuracy Curve (AuC) for pose estimation of YCB-V objects. ∗ denotes
symmetric objects. Best results are marked bold.

Object Ours PoseCNN

ADD ADD-S 2D Proj. ADD ADD-S

1 49.9 80.7 54.8 50.9 84.0

2 80.5 88.4 84.3 51.7 76.9

3 85.5 92.4 88.8 68.6 84.3

4 68.5 81.4 84.8 66.0 80.9

5 87.0 93.3 89.8 79.9 90.2

6 79.3 89.7 81.7 70.4 87.9

7 81.8 89.5 88.7 62.9 79.0

8 89.4 94.0 92.9 75.2 87.1

9 59.6 70.0 69.0 59.6 78.5

10 36.5 58.3 55.0 72.3 85.9

11 78.1 86.9 78.0 52.5 76.8

12 56.7 67.1 66.2 50.5 71.9

∗13 12.2 23.5 4.1 6.5 69.7

14 54.0 76.9 75.2 57.7 78.0

15 82.8 91.0 88.2 55.1 72.8
∗16 16.7 29.6 29.5 31.8 65.8

17 46.0 64.1 76.7 35.8 56.2

18 9.8 11.9 20.8 58.0 71.4

∗19 20.0 47.4 8.9 25.0 49.9

∗20 14.1 45.5 3.5 15.8 47.0

∗21 12.1 29.7 2.3 40.4 87.8

average 59.0 72.7 65.0 53.7 75.9

Table 3.2: Results on YCB-V of the five best methods using only RGB images for the BOP
challenge 2020 (Hodaň et al., 2020) in comparison with our work.

Name AR ARV SD ARMSSD ARMSP D training data

CosyPose (Labbé et al., 2020) 0.821 0.772 0.842 0.850 pbr+real

EPOS (Hodaň et al., 2020) 0.696 0.626 0.677 0.783 pbr

Ours 0.575 0.506 0.567 0.654 pbr+real

CosyPose (Labbé et al., 2020) 0.574 0.516 0.554 0.653 pbr

Leaping (Jinhui Liu et al., 2020) 0.543 0.443 0.499 0.687 pbr+real

CDPNv2 (Z. Li et al., 2019) 0.532 0.396 0.570 0.631 pbr+real
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(a) Object skeletons (b) 6D Poses

Figure 3.17: Qualitative results on the YCB-V dataset: (a) keypoints and connections, (b)
transformed object models overlay on input image.

CosyPose (Labbé et al., 2020), which achieves the best result by a significant margin,
we do not refine the initially estimated pose, which could further improve our result.

In Fig. 3.17, qualitative results on the YCB-V dataset are shown. 6 DoF object poses
are estimated accurately despite occlusions and outlier keypoint detections.

3.4.1.5 Ablation Studies

Several systematic ablation studies are conducted in this work to evaluate the influences
of different components and parameters of the proposed method.

PAFs. We investigate the benefit of PAFs for the YCB-V dataset, where a maximum
of one instance per object class is present in an image. For this, we infer the keypoints
of an object instance as the global maximum of the respective heatmaps and do not
use the PAFs computed by the CNN to assemble keypoints into object instances. This
heatmaps-only approach is compared to the full approach using the PAF output. The
results are presented in Tab. 3.3. Using the PAFs improves the pose estimation result
for almost all objects as well as the average accuracy. Without PAFs, recovering from
wrong or ambiguous heatmap maxima is not possible, leading to inaccurate results
especially in the case of occlusions and truncation. An exception is Object 18, where
the pose estimation without PAFs is more accurate. This is due to the small object
size leading to very short PAF vectors at the faces of the marker (cf. Fig. 3.15). These
cannot be well detected by the model, leading to problems parsing the object skeleton.

Fig. 3.18 shows the accuracy-threshold curves for each metric with and without using
PAFs. The improvement using PAF is most significant for small accuracy thresholds,
demanding a precise estimation of the object pose. The two curves approach each other
for higher thresholds.

(a) ADD (b) ADD-S (c) 2D projection

Figure 3.18: Accuracy curves for all YCB-V objects using PAFs vs. heatmaps only.
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Table 3.3: AuC when using PAFs to connect keypoints into instances vs. only using global
heatmap maxima. ∗ denotes symmetric objects. Best results marked bold.

Object using PAFs heatmaps only

ADD ADD-S 2D Proj. ADD ADD-S 2D Proj.

1 49.9 80.7 54.8 48.0 80.1 50.2

2 80.5 88.4 84.3 73.1 83.3 72.7

3 85.5 92.4 88.8 79.2 89.4 76.6

4 68.5 81.4 84.8 59.5 75.6 75.0

5 87.0 93.3 89.8 80.4 90.8 79.3

6 79.3 89.7 81.7 68.3 84.5 72.4

7 81.8 89.5 88.7 74.0 84.3 81.2

8 89.4 94.0 92.9 81.8 90.3 81.0

9 59.6 70.0 69.0 54.3 66.3 60.4

10 36.5 58.3 55.0 35.2 55.3 53.0

11 78.1 86.9 78.0 72.9 84.3 67.4

12 56.7 67.1 66.2 51.7 64.3 57.8
∗13 12.2 23.5 4.1 11.5 23.2 4.1

14 54.0 76.9 75.2 49.1 72.0 63.3

15 82.8 91.0 88.2 76.8 88.3 77.1
∗16 16.7 29.6 29.5 15.7 27.4 23.2

17 46.0 64.1 76.7 37.3 56.2 65.1

18 9.8 11.9 20.8 36.1 43.1 65.1

∗19 20.0 47.4 8.9 17.8 45.1 10.1

∗20 14.1 45.5 3.5 11.8 43.0 4.7

∗21 12.1 29.7 2.3 6.2 18.3 0.2

average 59.0 72.7 65.0 54.5 70.4 58.9

Selection of Keypoints on Object Models. In Tab. 3.4, we compare
evaluation results using manually and automatically chosen object keypoints for an
exemplary subset of the object classes. The estimated pose generally is more accurate
using the manually defined keypoints. As discussed in Sec. 3.4.1.2, these keypoints are
easier to find and can be more precisely localized by the CNN architecture, as they are
placed on distinct spots of the object geometry and texture (cf. Figs. 3.15 and 3.16).
The locations of the automatically chosen keypoints, on the other hand, are often weakly
constrained along edges or on the object surface, thus being predicted less precisely.

Number of Object Classes per Model. We also investigate the influence
of training the CNN model to detect keypoints and PAFs for objects of one or of several
classes. The results of this comparison are shown in Tab. 3.5 exemplary for a subset
of the object classes. The performance of the models trained for only one object class
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Table 3.4: AuC for manually and automatically picked keypoints.

Object manually picked keypoints automatically picked keypoints

ADD ADD-S 2D Proj. ADD ADD-S 2D Proj.

1 49.9 80.7 54.8 47.7 78.5 56.7

2 80.5 88.4 84.3 81.0 89.8 87.1

3 85.5 92.4 88.8 82.4 90.8 89.6

4 68.5 81.4 84.8 68.4 80.8 84.3

5 87.0 93.3 89.8 83.7 92.0 92.0

6 79.3 89.7 81.7 77.3 88.9 85.2

7 81.8 89.5 88.7 75.9 85.0 85.2

8 89.4 94.0 92.9 81.0 89.6 92.4

Table 3.5: AuC for ADD(-S) and 2D-projection metrics comparing models trained to detect one
object class versus models detecting two object classes.

Object 1-Object models 2-Object models

ADD ADD-S 2D Proj. ADD ADD-S 2D Proj.

1 49.9 80.7 54.8 18.0 31.5 23.0

4 68.5 81.4 84.8 38.5 43.6 46.8

5 87.0 93.3 89.8 20.3 23.8 23.9

6 79.3 89.7 81.7 53.6 63.1 60.3

7 81.8 89.5 88.7 38.5 42.3 42.5

8 89.4 94.0 92.9 39.8 44.4 45.3

9 59.6 70.0 69.0 25.2 33.3 35.5

10 36.5 58.3 55.0 8.3 12.4 16.9

average 66.2 81.3 75.2 32.2 39.8 39.2

is significantly better. The plot of the accuracy-threshold curves shown in Fig. 3.19
confirms these results. Also, rescaling the width of the CNN model, i.e., doubling the
number of channels at each stage of the network, does not significantly improve the
results of the 2-object model, as is shown in Tab. 3.6. Therefore, a separate model per
object class is used in this work.

3.4.2 Multi-View Object-Level Mapping on Behave Dataset

In the following set of experiments, we evaluate our approach for multi-view object pose
estimation and object-level mapping on parts of the public Behave dataset (Bhatnagar
et al., 2022). Keypoint estimation CNN, ICP pose refinement and multi-view fusion
are employed as introduced in Sec. 3.3 and deployed on the embedded sensor boards.
As indicated by the results of the previous study, keypoints are manually defined on
distinct points of the considered object models, and a separate keypoint CNN is trained
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Table 3.6: AuC using a 2-object model with and without rescaling layer width.

Object doubled layer width normal layer width

ADD ADD-S 2D Proj. ADD ADD-S 2D Proj.

1 19.1 31.5 25.8 18.0 31.5 23.0

4 41.5 47.1 47.4 38.5 43.6 46.8

average 32.2 40.7 38.5 32.2 39.8 39.2

(a) ADD (b) ADD-S (c) 2D projection

Figure 3.19: Accuracy curves for all YCB-V objects using models that detect one object class
vs. models detecting two object classes.

per object class. PAFs are not part of the efficient model deployed on the smart edge
sensors, where a top-down approach is employed for better scale invariance, as the
sensor nodes are mounted significantly farther away from the observed objects than the
camera in the YCB-V dataset. A detector provides bounding boxes of object instances
and keypoints are estimated for each single-instance crop.

The Behave dataset comprises 321 video sequences totaling ∼15k frames, captured
from four Kinect RGB-D cameras at a frame rate of 1 Hz. In the different scenarios,
eight different persons interact with 20 different objects in five different environments.
For each frame, annotations of the camera poses, 2D object and person segmentation
masks, and pseudo-ground-truth object poses are available.

3.4.2.1 Accuracy of Pose and Geometry Estimation

We evaluate the accuracy of the proposed keypoint-based pose estimation with ICP
refinement on five sequences of the Behave dataset, comprising ∼1k frames, where a
person interacts with two different chairs and a table. We use the 3D mesh models of
the chairs and table provided by the dataset as the basis for the PnP pose estimate.

We calculate translation and orientation error w.r.t. the pseudo ground-truth object
poses from the dataset, using the quaternion geodesic distance for the orientation, and
compare the PnP-only raw pose estimate with the proposed ICP refinement in Tab. 3.7
and Tab. 3.8. We discern two different options for the pose refinement via ICP alignment:
refinement locally on the sensor boards, as described in Sec. 3.3.4, and refinement with
the merged point cluster on the backend. The latter requires transmitting the point
cloud segments from sensors to backend.

Tab. 3.7 reports the mean and standard deviation of the pose error when using the
ground-truth point cloud segments and object boxes from the dataset as input to our
keypoint estimation CNNs. The evaluation thus focuses on the keypoint-based pose
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Table 3.7: Pose evaluation with ground-truth segmentation: transl. error (cm) and rot. error (◦).

Scenario Type Etrans σtrans Erot σrot

chairblack
hand

PnP only 5.87 3.60 4.48 3.98
PnP + ICP (local) 3.40 3.08 3.33 2.78

PnP + ICP (backend) 2.88 3.11 3.52 2.92

chairblack
sit

PnP only 5.23 2.46 5.64 6.97
PnP + ICP (local) 5.03 2.70 5.74 6.95

PnP + ICP (backend) 6.16 2.38 6.24 6.78

chairwood
hand

PnP only 10.79 6.21 10.09 11.14
PnP + ICP (local) 6.37 4.68 8.23 11.37

PnP + ICP (backend) 6.35 4.73 6.16 8.73

chairwood
sit

PnP only 13.17 5.03 7.14 6.23
PnP + ICP (local) 5.50 1.31 5.44 5.98

PnP + ICP (backend) 5.30 1.53 5.38 5.73

tablesquare
move

PnP only 12.56 7.81 17.51 11.65
PnP + ICP (local) 7.82 8.29 3.37 3.69

PnP + ICP (backend) 8.01 8.19 3.93 6.08

Table 3.8: Pose evaluation with online segm. and det.: transl. error (cm) and rot. error (◦).

Scenario Type Etrans σtrans Erot σrot

chairblack
hand

PnP only 7.48 9.22 7.27 8.49
PnP + ICP (local) 6.99 8.23 6.50 10.05

PnP + ICP (backend) 7.42 7.93 6.75 9.53

chairblack
sit

PnP only 8.09 6.49 11.34 13.02
PnP + ICP (local) 7.54 6.48 8.71 8.58

PnP + ICP (backend) 8.18 6.53 10.79 11.34

chairwood
hand

PnP only 9.05 6.05 10.52 15.37
PnP + ICP (local) 6.47 4.42 10.51 15.16

PnP + ICP (backend) 7.36 4.04 8.32 14.09

chairwood
sit

PnP only 5.42 3.40 8.52 4.63
PnP + ICP (local) 5.38 3.04 6.96 3.37

PnP + ICP (backend) 5.50 3.17 6.29 2.56

tablesquare
move

PnP only 15.76 11.12 18.34 11.39
PnP + ICP (local) 8.65 6.85 6.83 8.95

PnP + ICP (backend) 8.95 6.51 7.52 9.19

estimation part, excluding other error sources present in real-world input data. The
ICP-based pose refinement significantly improves the translation error in all cases and
the orientation error in all but one scenario. There are only little differences in accuracy
between the refinement locally on the sensor board and on the backend.
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(a) (b)

Figure 3.20: Mesh backprojected into the camera images: The object model mesh (a) transformed
with the estimated object pose is rendered in each camera view (b). The mesh is a
3D scan of the used object. Therefore, even fine elements align well.

(a) (b)

Figure 3.21: Sub-map backprojected into the camera images: Each voxel of the sub-map (a)
is backprojected into the individual camera views (b). Because of the discrete
resolution, fine elements like the legs are not accurately represented.

Tab. 3.8 reports the mean and standard deviation of the pose error when using
online segmentation and object detection together with our keypoint estimation CNNs
and thus evaluates the method’s performance in real-world conditions. The ICP-based
refinement again significantly decreases both translation and orientation errors in all
scenarios. The ICP-refinement locally on the sensor boards consistently performs better
w.r.t. the translation error than refinement on the backend. Therefore, we use the local
ICP refinement for further evaluation and real-world experiments. In this case, the
transmission of the point cloud segments is not necessary when using the mesh-based
representation, significantly decreasing the required network bandwidth (cf. Sec. 3.4.3.4).

We further evaluate the pose and geometry estimation accuracy by calculating the
intersection over union (IoU) between the estimated object models reprojected into the
individual camera views and the respective ground-truth segmentation mask from the
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Table 3.9: IoU scores for scenarios with ground truth segmentation and PnP + ICP refinement
on sensor boards.

Cam 1 Cam 2 Cam 3 Cam 4 Total

Scenario Type EIoU σ EIoU σ EIoU σ EIoU σ EIoU

chairblack
hand

Mesh 0.77 0.08 0.81 0.08 0.78 0.08 0.57 0.08 0.73

Sub-map 0.61 0.07 0.68 0.09 0.57 0.09 0.54 0.08 0.60

chairblack
sit

Mesh 0.39 0.16 0.55 0.19 0.50 0.13 0.57 0.13 0.50

Sub-map 0.42 0.12 0.33 0.16 0.46 0.10 0.65 0.09 0.47

chairwood
hand

Mesh 0.62 0.1 0.65 0.09 0.62 0.07 0.69 0.10 0.61

Sub-map 0.66 0.11 0.63 0.14 0.68 0.12 0.67 0.12 0.66

chairwood
sit

Mesh 0.57 0.13 0.56 0.07 0.57 0.09 0.64 0.16 0.59

Sub-map 0.61 0.10 0.56 0.11 0.61 0.08 0.54 0.11 0.58

tablesquare
move

Mesh 0.75 0.13 0.75 0.11 0.69 0.11 0.53 0.09 0.68

Sub-map 0.72 0.14 0.74 0.15 0.78 0.15 0.65 0.15 0.72

dataset annotations. The reprojection of the 3D object model into the camera views is
illustrated in Fig. 3.20 and Fig. 3.21 for the object model mesh and volumetric sub-map
representations, respectively. As the 3D object mesh originates from an offline 3D scan
of the object, it represents fine structures, such as armrests or legs in high detail. The
fine structures of the chair align well with the images of all four camera perspectives in
Fig. 3.20, showing high accuracy of the estimated object pose. The sub-map, on the
other hand, has a discrete spatial resolution and cannot accurately represent the chair
legs. Furthermore, it is affected by noisy point cloud measurements.

Tab. 3.9 and Tab. 3.10 report quantitative results of the IoU evaluation, using ground-
truth and online point cloud segments and object detections as input, respectively, and
compare the mesh- and sub-map-based object representations. For a fair comparison
between mesh and sub-map, the annotated image segmentation masks are extended with
a 10 × 10 dilation kernel to match the discrete 5 cm spatial resolution of the sub-maps.
With ground-truth point cloud segment inputs, the mesh-based object representation
performs better than the sub-maps in three of five scenarios, averaged over the four
cameras. With online segmentation and detection inputs, the mesh-based representation
performs better or equal in all five scenarios. The IoU is slightly lower in the real-world
scenarios, accounting for the higher noise in the input data.

3.4.3 Real-World Experiments

We evaluate the proposed sensor network for 3D semantic scene perception system
in challenging, cluttered real-world indoor scenes with multiple persons and different
furniture objects.
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Table 3.10: IoU scores for scenarios with online segmentation and detection and PnP + ICP
refinement on sensor boards.

Cam 1 Cam 2 Cam 3 Cam 4 Total

Scenario Type EIoU σ EIoU σ EIoU σ EIoU σ EIoU

chairblack
hand

Mesh 0.70 0.10 0.75 0.09 0.68 0.11 0.56 0.11 0.67

Sub-map 0.55 0.10 0.64 0.08 0.54 0.10 0.56 0.09 0.57

chairblack
sit

Mesh 0.48 0.26 0.50 0.26 0.53 0.27 0.52 0.16 0.51

Sub-map 0.43 0.13 0.32 0.16 0.41 0.16 0.61 0.11 0.44

chairwood
hand

Mesh 0.56 0.10 0.57 0.11 0.61 0.09 0.65 0.12 0.59

Sub-map 0.51 0.09 0.49 0.10 0.55 0.08 0.58 0.09 0.53

chairwood
sit

Mesh 0.56 0.14 0.61 0.08 0.55 0.10 0.60 0.12 0.58

Sub-map 0.43 0.16 0.43 0.10 0.31 0.11 0.33 0.14 0.38

tablesquare
move

Mesh 0.68 0.13 0.68 0.12 0.67 0.09 0.46 0.11 0.62

Sub-map 0.60 0.10 0.61 0.11 0.69 0.10 0.58 0.14 0.62

3.4.3.1 Implementation Details

Our sensor network consists of 20 smart edge sensors, thereof 4 based on the Jetson NX
board, as introduced in this chapter, and 16 based on the Google Edge TPU(cf. Chap-
ter 2). The boards are connected to mains power supply and the power consumption
of an NX board is 20-25 W during inference, thereof ∼5 W for powering the RGB-D
camera, compared to 7 W for the Edge TPU board. The sensors cover an area of roughly
12×22 m. The cameras face downward towards the center and run at 30 Hz. We conduct
experiments with the proposed, extended sensor network, with 8 persons moving in the
covered area, which are evaluated in the following using a sequence of 106 s containing
∼3,000 frames per camera. Further evaluation is performed on three shorter sequences
with a focus on object-level mapping and interactions between persons and objects

3.4.3.2 Quantitative Results

To analyze the consistency between local and globally-fused human pose estimation, we
evaluate the error between 2D poses detected in the individual sensor views and repro-
jected fused 3D poses in Tab. 3.11. The reprojection error decreases for all joint classes
when using the semantic feedback introduced in Sec. 2.4.4 over a purely feed-forward
pipeline. Adding the occlusion information, as proposed in Sec. 3.3.7, further decreases
the reprojection error, as unreliable occluded keypoint detections can be discarded and
excluded from multi-view triangulation. Constraining the data association using the
local depth estimates of the RGB-D cameras gives a further small improvement. The
proposed pipeline leads to the lowest reprojection error for all joint classes, amounting
to 4.51 px on average, indicating that the consistency between local and globally-fused
pose estimation increases through the semantic feedback with occlusion information and
by using local depth estimates in the data association step for multi-view triangulation.
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Table 3.11: Evaluation in real-world multi-person scenes with 20 cameras and 8 persons: Repro-
jection error (px) per joint class between detected 2D poses and fused 3D poses.

Feedback Cams Pers Head Hips Knees Ankls Shlds Elbs Wrists Avg

w/o fb 20 8 5.09 5.98 5.75 6.87 4.67 5.53 6.95 5.69

fb 20 8 4.76 5.51 4.98 5.94 4.34 4.88 5.66 5.08

fb + occl. 20 8 4.36 4.68 4.37 5.44 3.97 4.38 5.04 4.56

fb + occl. +
local depth

20 8 4.30 4.63 4.32 5.42 3.91 4.33 5.04 4.51

Cam 1

Cam 2 3D Scene View

Cam 1

Cam 2

Figure 3.22: Experiments in real-world multi-person scenes: Local detections in two reference
sensor views and 3D semantic scene model with 3D poses of eight persons estimated
in real time. The room geometry is accurately represented, fusing prior map (black)
and observations of smart edge sensors with semantic classes (e.g., tables, chairs,
computers). Interactions between persons and the scene, e.g., persons sitting on
chairs (violet), are explained in a physically plausible way.

3.4.3.3 Qualitative Results

Multi-Person Pose Estimation and 3D Scene Geometry. An ex-
emplary scene of the real-world multi-person experiments is shown in Fig. 3.22. Local
detections and pose estimation in two reference camera views are depicted together
with the 3D semantic scene view. 3D poses of eight persons are estimated online, in
real time during the experiment. The semantic map represents the 3D geometry of
the scene, fusing prior map and current sensor observations, including semantic class
probabilities. Interactions between persons and objects in the scene, e.g., persons sitting
on chairs, are explained in a physically plausible manner by the scene model. Here,
the scene is represented by a single, allocentric voxel-map, without object instances.
Experiments with object-level mapping are shown in the following paragraph. A video
of the experiments is available on our website3.

3 https://www.ais.uni-bonn.de/videos/IAS_2022_Bultmann

https://www.ais.uni-bonn.de/videos/IAS_2022_Bultmann
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t = 0 t = 12 s t = 38 s

Figure 3.23: Scenario 1: Two persons interacting with five chairs and a table, colored by instance
ID, in our cluttered lab environment. Four chairs and the table are being moved.
The purple chair is standing still.

(a) Mesh (b) Sub-map

Figure 3.24: Scenario 2: A chair being occluded by a sitting person. The pose estimate and
geometry representation remain stable under high occlusion and interaction between
person and object is explained in a physically plausible manner by the scene model.

Object-Level Scene Perception in three Scenarios. We further
demonstrate the performance of our object-level mapping in the highly-cluttered, dy-
namic environment in three different scenarios. Here, we employ offline 3D scans of
the office chairs and table present in the environment as object models. Object pose
estimation and geometry update are calculated online, in real time. A video of the
experiments is available on our website4.

In Scenario 1, two persons interact with five chairs and a table in our lab environment,
as shown in Fig. 3.23. Point measurements of the tracked objects are not included in
the allocentric map of the static geometry. The chairs and table are represented by their
respective prior 3D mesh model transformed to the estimated pose. The movement of
the objects through the scene is tracked online, in real time.

In Scenario 2 (Fig. 3.24), a person is sitting on a chair, occluding it partially. The
estimated object models remain stable also under high occlusion and interactions
between persons and objects are explained in a physically plausible manner.

In Scenario 3 (Fig. 3.25), a chair is being moved while being occluded by a sitting
person. The movement of the object through the scene can be tracked by our proposed
approach even under high occlusions.

4 https://www.ais.uni-bonn.de/videos/IRC_2022_Hau_Bultmann

https://www.ais.uni-bonn.de/videos/IRC_2022_Hau_Bultmann
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(a) Mesh

(b) Sub-map

Figure 3.25: Scenario 3: The yellow chair is being moved (from left to right) while being occluded
by a sitting person. The object movement can be tracked consistently despite the
occlusion.

3.4.3.4 Run Time and Network Bandwidth

Run Time Analysis. We analyze the run time of CNN inference and the validation
score on the respective training dataset (cf. Sec. 3.3.2) on different embedded hardware
accelerators and for different numerical precision for the employed models in Tab. 3.12.
Thermal detector and RGB segmentation are only executed on the Jetson NX, as the
Edge TPU does not have enough computational power to run all models in parallel.
The run times on Jetson NX in 16-bit floating-point mode (fp16) are comparable to
8-bit quantized (int8) inference on the Edge TPU. The inference times roughly halve
when using int8 precision on Jetson NX for the detectors and also decrease for the
segmentation. For pose estimation, here stated for a single crop and batch size 1, the
difference is less significant. The inference time is only about 4 ms, and the numerical
precision is less relevant compared to other overhead from the inference framework.

The validation score is given as bounding-box or keypoint mean average precision
(mAP) for the person class as defined for the COCO dataset (Lin et al., 2014) for the
detectors or pose estimation, respectively, and as mean intersection over union (mIoU)
for the semantic segmentation. It decreases between 0.2 and 1.2 % when using int8
precision instead of fp16. The slightly better performance of the RGB detector on the
Edge TPU can be explained as it was trained for the person class only, while the detector
used on Jetson NX was trained for person and 12 indoor object classes.

Table 3.13 shows the scaling of processing time for pose estimation, including CNN
inference and post-processing, with an increasing number of person detections per image.
During our experiments with 8 persons in the scene, a maximum of 6 persons were
visible at a time in one camera. On the Edge TPU sensors, crops are processed one by
one, as only a batch size of one is supported, and the run time scales linearly. Up to
three persons can be tracked at the full camera frame rate of 30 Hz. On the Jetson NX
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Table 3.12: Average inference time and validation score (given as mAP for detectors and pose
estimation and mIoU for segmentation) of CNN models (batch size 1) on different
embedded hardware and for different numerical precision.

Model Input Res. Edge TPU (int8) Jetson NX (fp16) Jetson NX (int8)

time val. score time val. score time val. score

RGB det. 848 × 480 - - 24.1 ms 36.2 % 11.8 ms 36.0 %

RGB det. 640 × 480 21.5 ms 36.7 % - - - -

Pose est. 192 × 256 4.5 ms 68.4 % 4.0 ms 69.3 % 3.5 ms 68.6 %

Thermal det. 160 × 120 - - 13.9 ms 25.4 % 6.0 ms 24.9 %

RGB segm. 849 × 481 - - 27.0 ms 50.0 % 20.0 ms 48.8 %

Table 3.13: Average processing time for pose estimation (inference + post-processing) for in-
creasing number of person detections per image. Batch processing can be used on
Jetson NX while crops are processed one by one on the Edge TPU.

Sensor Type Precision 1 2 3 4 5 6

Edge TPU int8 14.4 ms 23.6 ms 33.0 ms 43.9 ms 54.3 ms 65.9 ms

Jetson NX int8 12.1 ms 15.0 ms 18.0 ms 27.4 ms 31.0 ms 38.8 ms

Jetson NX fp16 11.8 ms 17.4 ms 21.9 ms 26.4 ms 31.7 ms 41.5 ms

platform, batch-processing is possible, and therefore the run times scale sub-linearly. Up
to five persons can be tracked at the full camera frame rate. For pose inference, there is
only a small difference in run time between fp16 and int8 mode on Jetson NX.

We run CNN inference in fp16 mode on the Jetson NX smart edge sensors during our
online experiments to benefit from the higher numerical precision, as 8-bit quantization
gives only little gains in run time for the pose estimation with strong real-time constraints,
and the fp16 inference time is sufficient for the other models that run with lower priority
at a 1 Hz update rate.

Network Bandwidth. We further evaluate the required communication band-
width for the different object representations in the semantic map. Object detection
and tracking run at an update rate of 1 Hz. The semantic object properties, consisting
of object pose, point segment variance, and data association score amount to only 84
Bytes per detected object instance, requiring very low network bandwidth. The object
model and keypoint definitions are a-priori known on both backend and sensors and
need not be transmitted during online operation. The required network bandwidth
significantly rises when using the sub-map representation, as raw point cloud segments
are transmitted from sensors to backend for each detected object. A point cloud segment
of an average size of 250 points amounts to ∼9 kB of transmitted data.
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3.5 Discussion

In this chapter, we presented a network of distributed smart edge sensors for multi-view
3D semantic scene perception, including static or slowly moving geometry, furniture
objects, and dynamic human motions. RGB-D and thermal camera images are processed
locally on the sensor boards with vision CNNs for person and object detection, semantic
segmentation, and human and object pose estimation. 2D human keypoint detections,
augmented with the RGB-D depth estimate, pose and shape information of detected
chair and table objects, and semantically annotated point clouds are streamed from the
sensors to a central backend, where multiple viewpoints are fused into an allocentric 3D
semantic scene model.

The individual sensors incorporate global context information into their local models
via a semantic feedback channel. For this, the globally fused 3D human poses are
projected into the sensor views, where they are fused with the local detections. The
estimated 3D geometry enables to add occlusion information for each joint to the
semantic feedback, so that unreliable, occluded joint detections can be discarded and
the local models complemented by the more reliable feedback joint positions.

Our method enables pose estimation and tracking of dynamic objects through the
static scene geometry. Objects are represented via an a-priori known 3D mesh model
or a volumetric sub-map that is learned online. Only a few semantic object properties,
such as estimated pose and point distribution variance are transmitted from the sensors
to the backend, requiring little network bandwidth. Only when volumetric sub-maps are
required on the backend, the raw point cloud segments associated to object instances
are additionally transmitted, significantly increasing the network traffic.

The object pose estimation follows a two-stage approach of keypoint detection and
PnP pose estimation. Keypoints are defined on prominent geometric features of the
object model (i.e., corners) to form a cuboid-like structure. Object poses are then
calculated via the PnP-RANSAC algorithm using 2D-3D correspondences between
detected and model keypoints. When depth data is available, poses are further refined
using associated point cloud segments via ICP alignment. As the keypoint detection
CNNs for deployment on the embedded sensor boards are trained only on synthetic
data, the method can easily be extended to different object classes.

In a first study, our approach for object pose estimation from a single view is evaluated
on the YCB-V dataset, containing 21 typical household objects important for domestic
service robot applications. Our method achieves accuracy comparable to recent state-of-
the-art methods using RGB images only. The usage of manually selected keypoints is
advantageous over automatically defined keypoint locations. Models trained for a single
object class perform significantly better than models trained for multiple object classes.

We then quantitatively evaluate the pose estimation accuracy of our approach for
multi-view object pose estimation and object-level mapping on the public Behave
dataset, showing pose errors below 9 cm and 9◦ with online input data processing using
lightweight CNN architectures efficient on the embedded sensor hardware.

We built a sensor network of 20 smart edge sensors, thereof 4 based on the novel
Jetson NX board, covering an area of about 12×22 m in a real-world lab environment.
We demonstrate the application of the proposed system for multi-view 3D semantic
scene perception in challenging, cluttered real-world scenes with up to 8 persons and
different furniture objects and evaluate its performance. Dynamic human motions are
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estimated in real time and the semantically annotated 3D geometry provides a complete
scene view that also explains interactions between persons and objects in the scene.
Multiple chairs and a table are tracked through the scene online, in real time, even
under high occlusions.

Future work includes using the 3D semantic scene model and human poses estimated
by the smart edge sensors to enable anticipatory robot behavior and safe human-robot
interaction in a shared workspace. Mobile sensor nodes could further be added to the
sensor network for active exploration of areas not covered by the permanently installed
sensors (cf. Chapter 5). With regards to object pose estimation, directions for future
work include improving the handling of symmetric objects, which show sub-optimal
performance in our evaluation. Furthermore, a method for automatic keypoint selection
without sacrificing accuracy compared to manual selection should be investigated,
enabling an efficient extension the method to novel object classes.
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propagation for cross-domain adaptation that extend the conference version, including
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be published.
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by the co-author Jan Quenzel. Hence, Sec. 4.3.4 was significantly adapted to match
the thesis author’s contributions and a reference to the original publication (Bultmann,
Quenzel, and Behnke, 2023) is given for a detailed description of the implementation.

Abstract

Unmanned aerial vehicles (UAVs) equipped with multiple complementary sensors have
tremendous potential for fast autonomous or remote-controlled semantic scene analysis,
e. g. for disaster examination.

Here, we propose a UAV system for real-time semantic inference and fusion of multiple
sensor modalities. Semantic segmentation of LiDAR scans and RGB images, as well as
object detection on RGB and thermal images, run online onboard the UAV computer
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Figure 4.1: Semantic perception with UAV (a): (b) Person detections in thermal camera, (c)
fused image segmentation, and point cloud segmentation (d) before and (e) after
label propagation. Persons inside (outside) camera FoV are highlighted with blue
rectangles (circles) in (d), (e). Right side: employed semantic classes.

using lightweight CNN architectures and embedded inference accelerators. We follow
a late fusion approach where semantic information from multiple sensor modalities
augments 3D point clouds and image segmentation masks while also generating an
allocentric semantic map. Label propagation on the semantic map allows for sensor-
specific adaptation with cross-modality and cross-domain supervision.

Our system provides augmented semantic images and point clouds with ≈ 9 Hz. We
evaluate the integrated system in real-world experiments in an urban environment and
at a disaster test site.

4.1 Introduction

Semantic scene understanding is an important prerequisite for solving many tasks with
unmanned aerial vehicles (UAVs) or other mobile robots, e. g. for disaster examination in
search and rescue scenarios (Kruijff-Korbayová et al., 2021), inspection, or surveillance
tasks. Modern robotic systems employ a multitude of different sensors to perceive their
environment, e. g. 3D light detection and ranging (LiDAR) scanners, RGB, RGB-D,
and thermal cameras, that capture complementary information about the environment.
A LiDAR provides accurate range measurements independent of the lighting conditions,
while cameras provide dense texture and color in the visible spectrum. Thermal cameras
are especially useful in search and rescue missions as they detect persons or other
heat sources regardless of lighting or visibility conditions. The combination of all these
sensor modalities enables a complete and detailed interpretation of the environment.
A semantic map aids inspection tasks (Nguyen et al., 2019), perception-aware path
planning (Bartolomei, Teixeira, and Chli, 2020), and increases robustness and accuracy
of simultaneous localization and mapping (SLAM) through the exclusion of dynamic
objects during scan matching (X. Chen et al., 2019). In the 2020 Mohamed Bin Zayed
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International Robotics Challenge (MBZIRC 2020), robust real-time on-board semantic
perception enabled our UAVs to autonomously track and chase different targets through
visually guided control, i.e. stationary balloons anchored to the ground (Beul et al.,
2020) and a dynamically moving target UAV with attached payload (Beul et al., 2022).

In this chapter, we propose a framework for online multi-modal semantic fusion
onboard a UAV combining 3D LiDAR range data with 2D color and thermal images.
We use label propagation for cross-modality supervision to significantly improve the
LiDAR point cloud semantic segmentation compared to a baseline network pre-trained
on a large automotive LiDAR-semantic dataset. Our method is evaluated with real-world
UAV flights in an urban campus environment and on a disaster test site. We extend and
adapt approaches from the previous chapters, where we proposed a network of multiple,
stationary sensors with local, on-board perception in lab-scale indoor environments
to the fundamentally different domain of large-area outdoor UAV flights, where we
use a single, but moving sensor suite with different sensor modalities and perspectives.
Examples of the semantic perception onboard the UAV are illustrated in Fig. 4.1.

An embedded inference accelerator and the integrated graphics processing unit (iGPU)
run inference online, onboard the UAV for mobile optimized CNN architectures to obtain
pixel- resp. pointwise semantic segmentation for RGB images and LiDAR scans, as
well as object bounding box detections on RGB and thermal images. We aggregate
extracted semantics for two different output views: (i) A fused segmentation mask
for the RGB image which can, e. g. be streamed to the operator for direct support
of their situation awareness, and (ii) a semantically labeled point cloud, providing a
3D semantic scene view which is further integrated into an allocentric map. This late
fusion approach is beneficial for multi-rate systems, increasing adaptability to changing
sensor configurations and enabling pipelining for efficient hardware usage. The semantic
map further allows to adapt specific CNNs to new sensors with unique characteristics
using cross-modality supervision from, e. g. thermal and color segmentation, through
propagating labels via 3D projection.

In summary, our main contributions are:

• the adaptation of efficient CNN architectures for image and point cloud semantic
segmentation and object detection for processing onboard a UAV using embedded
inference accelerator and iGPU,

• the Bayesian fusion of semantic information from point cloud, RGB, and thermal
modalities into a joint image segmentation mask and a semantically labeled 3D
point cloud,

• using label propagation to overcome domain adaptation issues of the LiDAR
segmentation network, thereby significantly improving the accuracy of point cloud
segmentation, and

• the real-world deployment, proof of viability, and evaluation of the proposed
system with large-area UAV flights in an urban environment and at a disaster
test site.
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4.2 Related Work

Lightweight Vision and Point Cloud CNNs for UAVs. Lightweight
vision CNN architectures for efficient inference on embedded hardware have already
been discussed in Sec. 3.2. These include e.g., replacing classical backbone networks
such as ResNets (K. He et al., 2016) with MobileNets (Howard et al., 2019; Sandler
et al., 2018) that replace standard convolutions with depthwise-separable convolutions,
or using single-stage architectures such as SSD (W. Liu et al., 2016) or YOLO (Redmon
et al., 2016) for object detection that use predefined anchors instead of additional region
proposal networks.

P. Zhang, Zhong, and X. Li (2019) further optimize YOLOv3 for usage onboard a
UAV through channel pruning of convolutional layers using L1 regularization to enforce
sparsity. The network is trained and evaluated on a dataset with drone-specific aerial
perspectives. However, the authors evaluate their network, called Slim-YOLOv3, only
on a powerful discrete GPU which is not feasible for integration onboard a typical
UAV. In our work, we employ a MobileDet detector optimized for embedded inference
accelerators such as the Google Edge TPU, similar to the network used on the static
smart edge sensors (cf. Chapter 3).

For semantic image segmentation, efficient architectures for inference onboard UAVs
have mostly been proposed for specific applications, such as UAV tracking and visual
inspection (Nguyen et al., 2019), or weed detection for autonomous farming (Sa et al.,
2018). The DeepLab v3+ architecture (L.-C. Chen et al., 2018) shows state-of-the-art
performance on large, general datasets and includes elements of MobileNet architectures
such as depthwise-separable convolutions for efficient computation. In our work, we
employ a DeepLab v3+ model with MobileNet v3 backbone for image segmentation.

For point cloud semantic segmentation, projection-based methods (Cortinhal, Tzelepis,
and Aksoy, 2020; Milioto et al., 2019; C. Xu et al., 2020) utilize the image-like 2D
structure of rotating LiDARs. This allows to perform efficient 2D convolutions and
use well-known techniques from image segmentation. The downside of this approach
is the restriction to single LiDAR scans in contrast to larger aggregated point clouds
(Charles R Qi et al., 2021). In this work, we adopt the SalsaNext architecture (Cortinhal,
Tzelepis, and Aksoy, 2020), trained on the large-scale SemanticKITTI dataset (Behley
et al., 2019) for autonomous driving, as it shows a good speed-accuracy trade-off.

Multi-Modal Semantic Fusion. Mobile robotic systems, such as UAVs or
self-driving cars, are often equipped with both camera and LiDAR sensors, as they
provide complementary information. A LiDAR accurately measures ranges sparsely and
independent of lighting conditions while cameras provide dense textures and colors.
Hence, research focused on the fusion of camera and LiDAR for 3D detection and
segmentation in the context of autonomous driving.

D. Xu, Anguelov, and Jain (2018) propose PointFusion, a two-stage pipeline for 3D
bounding-box detection. It first processes a LiDAR scan with PointNet (Charles R. Qi
et al., 2017) and an image with ResNet (K. He et al., 2016) independently, before fusing
them on the feature level with a multi-layer perceptron (MLP).

Meyer et al. (2019) take a similar sequential feature-level fusion approach, addressing
both 3D object detection and dense segmentation. The LiDAR scan is represented as a
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range image and the 360◦ horizontal FoV of the LiDAR is reduced to only 90◦, as range
and color image are cropped to the overlapping FoV for the feature-level fusion.

By projecting LiDAR points into the image and assigning segmentation scores of the
pixels to the corresponding points, Sourabh Vora et al. (2020) propose to in-paint point
clouds with image semantic segmentation. The augmented point cloud is then processed
by a 3D object detection network.

LIF-Seg by L. Zhao et al. (2023) improves upon the LiDAR segmentation network
Cylinder3D (Zhu et al., 2021) through early- and mid-level fusion with color images.
Image patches around the projected points provide per-point color context for early-
fusion. Additionally, mid-fusion concatenates semantic features from LiDAR and image,
processed with Cylinder3D and DeepLab v3+, respectively, before refining them with
an additional Cylinder3D-based sub-network to obtain the final semantic labels.

Semantic Mapping. Many high-level robotic tasks benefit from or require seman-
tic information about the environment. For this, semantic mapping systems build an
allocentric semantic environment model, anchored in a fixed, global coordinate frame.

SemanticFusion (McCormac et al., 2017) uses surfels, where a Gaussian approximates
the point measurement distribution to model surfaces. The approach uses an RGB-D
camera and builds on ElasticFusion (Whelan et al., 2015) for SLAM. A CNN generates
pixel-wise semantic class probabilities from the color image. Their semantic fusion takes
a Bayesian approach, storing a probability vector over all semantic classes per surfel,
and assuming that individual semantic segmentations are independent. Kimera (Rosinol
et al., 2021) is a modular metric-semantic stereo-inertial-SLAM framework. Its semantic
mapping module builds truncated signed distance field (TSDF) maps of the surface
geometry of room-scale indoor environments, adopting Voxblox (Oleynikova et al., 2017).
It integrates semantic class probabilities per voxel via a similar Bayesian fusion approach.
A metric-semantic mesh, with the argmax semantic class per vertex, is extracted from
the TSDF volume via marching cubes. Grinvald et al. (2019) provide object-level
information for higher-level reasoning by representing individual object instances of
known and previously unseen classes in the semantic map. For long-term mapping
within changing environments, Sun et al. (2018) propose Recurrent-OctoMap. Each cell
within the OctoMap (Hornung et al., 2013) contains a long short-term memory (LSTM)
fusing point-wise semantic features. All LSTMs share weights to learn a fusion model
that generalizes over the entire map without over-fitting to individual cells.

Landgraf et al. (2020) compare different fusion strategies, namely labeling individual
views followed by Bayesian fusion versus labeling a joint map in a single step. Both
strategies show similar results with the view-based fusion more strongly influenced by
noise in the depth measurements while the map-based fusion depends on correct poses.

Other works propose alternatives to the probabilistic Bayesian update for fusing
semantic labels from multi-view 2D images into a 3D map. Mascaro, Teixeira, and Chli
(2021) build a sparse diffusion graph connecting 2D pixels to 3D points and 3D points
to their K nearest neighbors to propagate labels from a 2D image segmentation to
the 3D model. After graph construction, iterative multiplication of the label matrix
with a probabilistic transition matrix yields the diffused semantic labels. Berrio et al.
(2022) use an adapted softmax weighting scheme based on class prevalence within SLIC
superpixels to weight individual per-pixel class scores. Motion correction and masking
of occluded points are further employed to improve the semantic projection accuracy.
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For more specific application scenarios, Maturana, Arora, and Scherer (2017) propose
to extend existing digital elevation maps (DEMs) with detections of cars from UAVs.
For real-time service robotics applications, Dengler et al. (2021) propose an object-
centric 2D/3D map representation including a 2D polygon of object shape and an
object-oriented bounding box in the x-y-plane together with the center of mass and
object point cloud. The approach uses an RGB-D camera and faster R-CNN (Ren et al.,
2017) to detect objects from the color images. Small objects are geometrically segmented
from the depth measurements via Euclidean clustering and projected onto the x-y-
plane. Larger clusters, where multiple instances of the same object class may have been
erroneously merged e.g. due to incorrect odometry, are refined after a certain number of
fusion steps to separate them again. In surfel-based LiDAR mapping, a surfel’s semantic
class can be used to further improve the registration accuracy by penalizing associations
of different semantic classes during scan matching and surfel update (X. Chen et al.,
2019). In their approach called SuMa++, the projection-based RangeNet++ (Milioto
et al., 2019) provides semantic class probabilities per point measurement.

Rosu, Quenzel, and Behnke (2020) propose to represent semantics and geometry at
different resolutions. The scene is represented by a geometric mesh, extracted from
an aggregated point cloud coupled with a semantic texture at independent resolution.
The transfer from image segmentation masks to the semantic texture is enabled by the
projection of mesh faces into the images. While projection and fusion happen in real
time, the required mesh generation and UV-unwrapping are done in pre-processing.
Semantic classes are sparsely represented in the texture that retains only a small number
of classes with high probability and discards all others to meet GPU memory limitations
and since only the argmax class is of interest for the output semantic scene model. The
textured semantic mesh enables label propagation to generate pseudo ground-truth for
retraining the image segmentation network to obtain more consistent segmentations
between different views. While Rosu et al. only improve consistency within one modality,
we use propagated labels for sensor-specific adaptation across modalities.

Domain Adaptation and Label Propagation. In real-world robotics
scenarios, a lack of annotated training data is a major issue. In recent years, substantial
research efforts have been made to develop domain adaptation techniques that help neural
networks to transfer perceptual skills learned from widely-available standard datasets
to application-specific target environments. This often includes adaptation to other
sensors with differing characteristics, such as wavelength, resolution, or FoV, compared
to the sensor used for capturing the source dataset. In this context, label propagation
automatically provides annotations for the target domain in a semi-supervised manner,
e. g. by projecting labels from one sensor modality to another.

A first line of work investigates domain adaptation between different LiDAR sensors
and datasets. Langer et al. (2020) tackle domain transfer between LiDAR sensors
with different sampling patterns (i.e. 64-beam vs. 32-beam) by fusing scans from the
source data domain and raycasting into the target sensor to obtain transferred training
examples. During retraining, weights are shared for source and target and geodesic
correlation alignment prevents unwanted domain shift. Yi, Gong, and Funkhouser
(2021) perform a similar adaptation between LiDAR sensor types but instead use a
two-stage CNN, where first, scene completion obtains a denser canonical point cloud
before labeling it in the second stage. Alonso et al. (2021) examine data alignment
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strategies to make different LiDAR datasets more similar and include an alignment
loss between source and target dataset based on the KL-divergence. While these works
efficiently handle different LiDAR resolutions, the evaluated sensors have similar FoVs,
and datasets all stem from urban driving scenarios. Our work, in contrast, handles
more drastic viewpoint changes to aerial UAV perspectives and a LiDAR with different
resolution and a significantly larger vertical FoV compared to the source data domain.

Several recent works cope with the limited availability of annotated training data
through label propagation. Z. Liu, X. Qi, and Fu (2021) use weak supervision to generate
pseudo-labels for 3D data using partitioned super-voxels. A graph relates the super-
voxels and propagates pseudo-labels to iteratively train two complementary networks
for point segmentation and super-voxel relations. B. Liu et al. (2019) propagate labels
for 2D image data from a small target data domain towards a large unlabeled set with
a similarity function pretrained on a source domain.

Most closely related to our approach are methods that apply cross-modal label
propagation from 2D images to 3D point clouds. Piewak et al. (2018) transfer semantic
annotations automatically inferred by an image segmentation CNN from the closest
image to point clouds by projection, taking linear ego-motion from wheel odometry
into account. We use a similar approach to automatically obtain labels for point clouds
from the image modality, but use a spatio-temporally aggregated 3D semantic map as
pseudo-label source, instead of one or multiple individual cameras.

Jaritz et al. (2020) present a two-branch network for 3D semantic segmentation.
Individual networks compute feature maps for LiDAR and camera before retaining only
features at valid projected points in the camera FoV. In parallel to the concatenation
of both feature maps before a fused segmentation head, each branch performs single-
modality segmentation. During training, the single heads should mimic the fused output
by minimizing a cross-modal loss based on the KL-divergence. This requires labels
for both modalities within the source domain. After initial adaptation to the target
data domain, e. g. a different dataset without labels, the generation of pseudo-labels
in the target data domain and retraining from scratch provides further improvements.
Similarly, Z. Wang et al. (2021) use a two-branch network for 3D bounding box detection
from LiDAR and images. A gated adaptive fusion sub-network introduces point-wise
projected image features into the LiDAR branch on every layer within the feature
encoder. A KL-divergence loss regularizes class predictions between the image and
LiDAR branch. Due to the close coupling between image and LiDAR modalities, the
above two methods only use 3D points inside the camera FoV. Our method, on the
other hand, segments all LiDAR points in the complete 360◦ horizontal FoV.

In our work, different networks process LiDAR scan, RGB, and thermal images
individually. We adopt a projection-based approach similar to Sourabh Vora et al. (2020)
for multi-modal fusion in a multi-rate system. When multiple modalities are available,
class probabilities from different sensors are merged using Bayesian fusion. Semantic
mapping integrates augmented point clouds into a sparse voxel hash-map with full class
probabilities per voxel.

While being less popular in recent work, such a late fusion approach has important
practical advantages for deployment on an integrated robotic system. Different FoVs and
data rates are easy to handle and intermediate results, such as image segmentation or
detections, are useful as stand-alone outputs. Pipelining allows for reducing the latency
of sequentially executed individual networks during online operation. Furthermore, the
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Figure 4.2: UAV system setup and hardware design.

smaller, simpler standard architectures of individual networks are easier to adapt and
optimize for the embedded inference accelerators employed in this work.

As our target data domain of UAV aerial perspectives with large vertical FoV differs
significantly from available large-scale training datasets from autonomous driving sce-
narios with different viewpoints and LiDAR sensors more focused towards the ground,
we use label propagation to retrain the point cloud segmentation CNN with supervision
for the target environment. Pseudo-labels are automatically obtained via 3D projec-
tion from RGB and thermal camera modalities, spatio-temporally aggregated into a
semantic map to compensate for their narrower FoV compared to the LiDAR scanner.
Through retraining with this cross-domain supervision, the point cloud segmentation
is significantly improved, achieving higher mIoU scores on our dataset than the image
segmentation used as pseudo-label source, and generalizing to the full LiDAR FoV.

4.3 Method

4.3.1 System Setup

An overview of our UAV system, based on the commercially available DJI Matrice
210 v2 platform, is shown in Fig. 4.2. We use an Intel Bean Canyon NUC8i7BEH
with a Core i7-8559U processor and 32 GB of random-access memory (RAM) as the
onboard computer. A Google Edge TPU is connected to the NUC over USB 3.0 and
accelerates CNN inference together with the Intel Iris Plus Graphics 655 iGPU of
the main processor. An Ouster OS0-128 3D-LiDAR1 with 128 beams, 360◦ horizontal,
and 90◦ vertical opening angles provides range measurements for 3D perception and
odometry. For visual perception, our UAV additionally carries two Intel RealSense D455
RGB-D cameras, mounted on top of each other to increase the vertical field-of-view, and
a FLIR ADK thermal camera for, e. g. person detection in search and rescue scenarios.

1 https://ouster.com/products/scanning-lidar/os0-sensor/, accessed: 2023-08-01

https://ouster.com/products/scanning-lidar/os0-sensor/
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Figure 4.3: Online perception system overview.

4.3.2 Semantic Perception

An overview of the proposed architecture for multi-modal semantic perception is given
in Fig. 4.3. We detail individual components in the following.

Image Segmentation

We employ the DeepLabv 3+ architecture (L.-C. Chen et al., 2018) with MobileNet v3
backbone (Howard et al., 2019) optimized for the Google Edge TPU Accelerator for
semantic segmentation. We train the model on the Mapillary Vistas Dataset (Neuhold
et al., 2017), reducing the labels to the 15 most relevant classes for the envisaged UAV
tasks (cf. Fig. 4.1). We use an input image size of 849 × 481 px during inference, fitting
the 16:9 aspect ratio of our camera.

Object Detection

The recent MobileDet architecture (Xiong et al., 2021) is the basis for our object
detection. We train the RGB detector on the COCO dataset (Lin et al., 2014) for
person, vehicle, and bicycle classes with an input resolution of 848 × 480 px. The thermal
object detector uses the same architecture taking one-channel 8-bit thermal images
at the full camera resolution of 640 × 512 px as input. We enable automatic gain
correction (AGC) for the thermal camera to scale the 16-bit raw images down to 8-bit,
exploiting the full 8-bit value range to provide contrast-rich images. The network is
trained on the FLIR ADAS dataset2, recorded with the previous generation of the
employed sensor in autonomous driving scenarios, with annotations for persons, vehicles,
and bicycles.

Point Cloud Segmentation

We adopt the projection-based SalsaNext architecture (Cortinhal, Tzelepis, and Aksoy,
2020) taking advantage of the image-like structure of LiDAR measurements. The
network is pretrained on the large-scale SemanticKITTI dataset (Behley et al., 2019).

2 https://www.flir.com/oem/adas/adas-dataset-form, accessed: 2023-08-01

https://www.flir.com/oem/adas/adas-dataset-form
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The OS0 LiDAR sensor provides measurements at a resolution of 1024 × 128. We
compare using the full sensor resolution to subsampling the scans by a factor of two
in both vertical and horizontal directions, leading to a network input resolution of
512 × 64. Subsampling enables real-time inference on our hardware. The input channels
are range, x-, y-, z-coordinate, and intensity, normalized with the mean and standard
deviation of the training dataset. Our LiDAR has a significantly larger vertical FoV of
90◦ compared to the 26.9◦ opening angle of the Velodyne HDL-64E sensor employed
in the SemanticKITTI dataset. The HDL-64E mostly measures downward from the
horizontal plane, thus seldomly measuring treetops or other higher obstacles. A different
laser wavelength also changes the characteristics of intensity and reflections. Hence,
we adjust the normalization parameters for z-coordinate and intensity to facilitate the
cross-domain adaptation between training and observed data according to the statistics
of the test data captured with our sensor setup, taking up the idea of input data
distribution alignment from Alonso et al. (2021). The x- and y-coordinate normalization
parameters remain the same, as the horizontal field-of-view is identical (360◦) for both
sensors. Fig. 4.11 highlights improvements of the segmentation results through the
adaptation of the normalization parameters. The point cloud segmentation nonetheless
remains noisier and less detailed than the image segmentation. To further overcome the
domain adaptation issues, we retrain the point cloud segmentation network using label
propagation (cf. Sec. 4.3.5).

Inference Accelerators

We run CNN model inference on two different accelerators onboard the UAV PC: The
Google Edge TPU3, attached as an external USB device, and the integrated graphics
processing unit (iGPU) included in most modern processors which is otherwise unused in
our system. The Edge TPU supports network inference via TensorFlow-lite (Abadi et al.,
2016) and requires quantization of the network weights and activations to 8-bit (Jacob
et al., 2018). The iGPU supports inference via the Intel OpenVINO framework4 in 16-
or 32-bit floating-point precision.

4.3.3 Multi-Modality Fusion

We adopt a projection-based approach to fuse semantic class scores from image and
point cloud CNNs into the semantically labeled output cloud, similar to the semantic
point cloud fusion on the stationary smart edge sensors (cf. Sec. 3.3.3), but additionally
combining the LiDAR with the RGB and thermal modalities. Projection onto the
image plane requires the transformation of LiDAR points into the respective camera
coordinate frame. As we consider a moving sensor suite and LiDAR and cameras operate
with different frame rates, the motion between the respective capture times has to be
considered. The full transformation chain T from LiDAR to camera frame is:

T = camTbase
basetcTbasetl

baseTLiDAR , (4.1)

using the continuous-time trajectory of the UAV base frame estimated by the LiDAR
odometry (Quenzel and Behnke, 2021). Thus, the transformation chain models perspec-
tive changes between LiDAR and camera that occur due to dynamic UAV motions.

3 https://coral.ai/docs/accelerator/datasheet, accessed: 2023-08-01
4 https://docs.openvinotoolkit.org/, accessed: 2023-08-01

https://coral.ai/docs/accelerator/datasheet
https://docs.openvinotoolkit.org/
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Bilinear interpolation at the projected point location gives the semantic class scores
cimg ∈ R

C from image segmentation. We apply the soft-max operation (Eq. (3.1)) to
approximate a normalized probability distribution over all C = 15 classes used in this
chapter (cf. Fig. 4.1), obtaining pimg ∈ R

C , with its elements pi ∈ [0, 1] and
∑

i pi = 1.
Similarly, the application of soft-max to the output of the point cloud CNN for a
LiDAR point gives the LiDAR segmentation probability pLiDAR. The Bayesian update
rule (McCormac et al., 2017) allows to compute the fused class probability under the
assumption of independence between sensor modalities:

pfused =
pimg ◦ pLiDAR

∑C
i=1 pi,img pi,LiDAR

, (4.2)

with ◦ the coefficient-wise product. For better numerical stability, we use a logarithmic
implementation of the Bayesian fusion (Bultmann, Quenzel, and Behnke, 2023).

Furthermore, if a projected point falls inside a detection box in either thermal or color
images, the detected class is included in the result. We base the detection probability
pdet on the detector score multiplied with a Gaussian factor with mean at the bounding
box center and standard deviation of half the bounding box width resp. height, to
reduce unwanted border effects for non-rectangular or non-axis-aligned objects. As the
detector only outputs a score for the detected class, we reconstruct the full probability
distribution pdet following the maximum entropy principle: The remaining probability
mass 1 − pdet is equally distributed over the remaining C − 1 classes. Again, both
estimates are fused using a Bayesian update:

pfused_det =
pfused ◦ pdet

∑C
i=1 pi,fused pi,det

. (4.3)

However, side-effects of the rectangular detection bounding boxes have to be handled
before detection fusion, as illustrated in Fig. 4.4 with the example of fusing person
detections from the RGB or thermal image into the point cloud. Simple projection
of all points into the bounding box will falsely label points in the background as the
detected class (cf. Fig. 4.4 (b)). To alleviate this issue, points are clustered w.r.t. their
distance in the camera frame before detection fusion. As a baseline approach, we include
only points within a fixed threshold of the 25 % quantile of distances per cluster to
focus on foreground objects (cf. Fig. 4.4 (c)). We extend this approach to Euclidean
point clustering with an adaptive cluster tolerance threshold τcluster. This yields a more
accurate segmentation and better generalizes to different object sizes and distances.
Starting from the seed point at 25 % quantile distance dseed, bounding box points
within the distance τcluster are recursively added to the cluster. The cluster tolerance is
proportional to dseed and the angle increment between two adjacent scan lines, adapting
to the LiDAR spatial resolution which covers a vertical FoV of 90◦ with 128 lines:

τcluster = s · dseed ·
FoVvert

Resvert
= s · dseed ·

π

2 · 128
, (4.4)

where s = 1.5 is a tolerance factor set to yield complete foreground clusters without
adding points on the floor or background (cf. Fig. 4.4 (d)). We assume that there is only
one valid foreground cluster per bounding box. Only the clustered points are included
into detection fusion. Furthermore, points not added to the cluster that are erroneously
labeled as the cluster class, are reset to their original class probability from LiDAR
segmentation to correct for border effects in the previous fusion stage (cf. background in
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(a) (b) (c) (d)

Figure 4.4: Person segmentation included into point cloud fusing (a) image segmentation only,
(b) additionally detection bounding boxes, (c) clustering foreground points within
the detection bounding boxes via depth threshold, and (d) Euclidean clustering. The
initial segmentation (a), is incomplete and slightly misaligned. Naive bounding box
fusion (b) creates many false positives in the background and on the floor. With
depth threshold clustering (c), the person is completely segmented without adding
many misclassified points in the background. With Euclidean clustering (d), the
person is completely segmented and misclassified points in the background and on
the floor are reset to their original label from LiDAR segmentation.

Fig. 4.4 (a) vs. (d)). The final segmented point cloud includes the full class probability
vector and the argmax class color per point.

We proceed similarly for fusing the initial image segmentation and detections from
RGB and thermal cameras into the output semantic image and additionally apply
temporal smoothing. The RGB-D depth enables projection from RGB to thermal image
and temporal smoothing provides a more coherent fused segmentation. For temporal
fusion, we project the previous image at time t − 1 with its depth into the current frame
at time t and perform exponential smoothing:

psmoothed_imgt
= normalize

(

α ◦ pimgt
+ (1−α) ◦ pfused_imgt−1

)

, (4.5)

pfused_imgt
=

psmoothed_imgt
◦ pdett

∑C
i=1 pi,smoothed_imgt

pi,dett

. (4.6)

The smoothing weights α differ between the individual semantic classes. For (po-
tentially) dynamic foreground objects, such as persons and vehicles, less smoothing is
applied than for static structures such as buildings and roads. We chose αdyn = 0.80 for
dynamic object classes and αstat = 0.25 for static background classes in our experiments.
The higher α-coefficients for dynamic objects make the fused segmentation mask cor-
rectly follow dynamic foreground objects moving over image areas that were previously
segmented as a background class, as the current frame’s segmentation more directly
influences the fused output for these semantic classes. The smoothing for background
classes significantly reduces temporal jitter in the segmentation w.r.t. the initial CNN
output. The temporal smoothing (4.5) can only be applied to pixels with valid depth
measurements that have a corresponding projected point from the previous image. We
directly use the segmentation class probabilities from the current frame pimgt

for fusion
with the detections in (4.6) otherwise.
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4.3.4 Semantic Mapping

We again employ a voxel-based representation of the environment as a semantic map,
using sparse voxel hashing (Quenzel and Behnke, 2021) as a memory-efficient data
structure, since a dense voxel grid may require a prohibitively large amount of memory
although only sparse access occurs. In contrast to the previous scenario (cf. Chapter 3),
where multiple stationary RGB-D sensors with calibrated poses provided the measure-
ments to fill the map, here we use point clouds from a single, moving LiDAR sensor
mounted on the UAV as input. The input point clouds are augmented with semantic
class probabilities fused from multiple sensor modalities, as described above.

MARS LiDAR Odometry (Quenzel and Behnke, 2021) provides the sensor poses to
integrate all augmented point clouds within a common map. The map origin is defined
at the starting pose of the UAV. For each voxel, occupancy count and mean position
are computed based on the corresponding point measurements. Only voxels with at
least one associated measurement are instantiated into memory.

The semantic class probabilities of all point measurements falling into a voxel are
fused in a probabilistic manner following the reasoning of SemanticFusion (McCormac
et al., 2017) to use Bayes’ rule assuming independence between semantic segmentations
of the individual point measurements in the augmented point clouds (Eq. (3.5)). A naive
implementation, as in SemanticFusion, suffers from numerical instability due to the
finite floating-point precision of the multiplication of the normalized class probability
vectors with multiple entries in the numerator of Eq. (3.5). In practice, this can lead to
information loss also after the application of the normalization term and needs continuous
re-initialization. An implementation using logarithmic probabilities (Bultmann, Quenzel,
and Behnke, 2023) alleviates this issue.

4.3.5 Label Propagation

The employed LiDAR segmentation CNN, pretrained on the SemanticKITTI dataset
(Behley et al., 2019), shows limited performance in our test scenarios (cf. Sec. 4.4.2).
This is due to cross-domain adaptation issues between training and observed data,
as the UAV employs a LiDAR sensor different from SemanticKITTI, with different
vertical FoV, laser wavelength, and optical system. To the best of our knowledge, no
large-scale semantically annotated training datasets are available using the employed
Ouster OS0-128 sensor.

To overcome these issues, we retrain the CNN using our sensor’s FoV parameters
by (1) complementing the SemanticKITTI training data with the recently published
Paris-CARLA-3D dataset (Deschaud et al., 2021) and (2) automatically generating
pseudo-labels for cross-modal supervision from the fused semantics of RGB and thermal
camera from outdoor flights with our UAV system.

The Paris-CARLA-3D dataset contains aggregated point clouds from three streets in
Paris over about 550 m linear distance and a Velodyne HDL32 LiDAR sensor similar
to the one used for SemanticKITTI. However, the sensor was tilted, allowing high
structures such as buildings to be fully mapped. We only utilize the real-world part of
the dataset. To obtain labeled single scans to complement the training data, we project
points from the aggregated cloud into simulated viewpoints with the characteristics of
the Ouster OS0 LiDAR at positions following the original vehicle trajectory from the
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(a) (b) (c)

Figure 4.5: Paris-CARLA-3D dataset: Projection of dynamic persons (yellow) into the virtual
OS0 LiDAR view using dataset scans from (a) only the current, (b) ±2, and (c) ±5
adjacent positions. The foreground person is incomplete when using just a single
scan (a) but significant movement artifacts appear for a larger scan window (c). We
use a window of ±2 (b) for our experiments as a compromise between complete
scans and remaining artifacts.

(a)

(b)

Figure 4.6: Point cloud labels projected into the FoV of the employed Ouster OS0 LiDAR for
sample scenes from (a) SemanticKITTI (Behley et al., 2019) and (b) Paris-CARLA-
3D (Deschaud et al., 2021) datasets. SemanticKITTI covers a significantly smaller
vertical FoV than our sensor, while the aggregated cloud from Paris-CARLA-3D
covers the entire FoV.

dataset, but at larger height, further adapting to our UAV use case. The projection of
a LiDAR point (x, y, z)⊺ in the sensor frame to image coordinates (u, v)⊺ is given as
in (Cortinhal, Tzelepis, and Aksoy, 2020) by:
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 , (4.7)

with h, w denoting the height, resp. width of the projected image, r =
√

x2 + y2 + z2 the
range of each point and f = |fdown|+ |fup| the vertical field-of-view (fdown = fup = 45◦

for OS0). When multiple points are projected to the same image coordinates, only the
closest one is retained. The maximum range is set to 50 m.

To avoid artifacts from dynamic objects (e.g. cars and persons), points of these
semantic classes are only projected from a limited number of scans captured close to
the current simulated position. Here, a compromise must be made between complete,
dense scans and remaining artifacts as illustrated in Fig. 4.5. We choose a window of
±2 scans for our experiments.

The differences between the two datasets are illustrated in Fig. 4.6, where labels from
SemanticKITTI and Paris-CARLA-3D are shown projected in the Ouster OS0 sensor
FoV. The SemanticKITTI data covers only a small part of the vertical FoV with the
top of buildings rarely visible, while the scans obtained from Paris-CARLA-3D cover
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Figure 4.7: Overview of label propagation approach: Image segmentation is projected to point
cloud and aggregated into camera-only semantic map, used as source for pseudo labels.
LiDAR segmentation is retrained combining own data with pseudo-labels, Paris-
CARLA-3D, and SemanticKITTI. Resulting semantic point clouds, fusing image
and retrained point cloud segmentation, are completely and accurately annotated.

the full FoV and show complete building structures, similar to the data observed by
the UAV system. Yet, the variability of Paris-CARLA-3D (550 m distance, single city
area) is limited compared to SemanticKITTI (39.2 km distance, different urban, rural,
and highway areas (Geiger, Lenz, and Urtasun, 2012)), and some artifacts from moving
objects remain. Furthermore, as a different LiDAR sensor is used, the intensity channel,
computed from the magnitude of laser reflection, is still only partially comparable to
the Ouster OS0 which uses a different wavelength and optical system.

To obtain training data from the actual sensor, we use label propagation for cross-
modal domain adaptation to automatically generate pseudo-labels for data captured
during flights with our UAV system. An overview of the proposed approach is given in
Fig. 4.7. We again take up the idea of semantic feedback at this point (red arrow): Parts
of the fused allocentric semantic model are reprojected into individual sensor views and
used as a reliable source of semantic information (i.e., more reliable than individual
single-scan segmentation).

We only use the camera semantics as a pseudo-label source because the semantic
information from the RGB and thermal modalities is significantly more reliable than the
initial point cloud segmentation (cf. Sec. 4.4.2). For this, we fuse the RGB and thermal
camera semantic information into the point cloud, without including the outputs of the
initial, SemanticKITTI-pretrained LiDAR segmentation CNN. The obtained pseudo-
labels are illustrated in Fig. 4.8. As the FoV of the cameras is significantly smaller
than that of the LiDAR, only a small part of each individual scan can be labeled
with this cross-modal supervision. However, after aggregation over the complete flight,
the semantic map can provide pseudo-labels for almost the complete scan. Only the
operator of the UAV (person to the bottom right of Fig. 4.8) is not annotated as they
always stayed behind the UAV and never were in the camera FoV. For reference, we also
compare to using pseudo-labels from the map aggregated from fused semantic clouds. We
find, however, that this supervision is too imprecise to achieve significant improvements
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(a)

(b)

(c)

(d)

Figure 4.8: Label propagation using cross-modal supervision: (a) range channel of projected
scan, (b) pseudo-labels from single camera overlay, (c) from aggregated camera-only
map, and (d) from aggregated fused map (cf. Fig. 4.13 (b, c)). Unlabeled areas are
depicted in grayscale. UAV legs lead to areas without valid measurements (black)
at close range. Single camera overlay provides supervision only for a small part of
the scan. Supervision from aggregated maps is more complete and the camera-only
map (c) is more accurate than the fused map (d).

(cf. Tab. 4.5) since the noisier raw point cloud segmentation is included (e. g. wrongly
labeled vegetation to the left and person to the bottom right of Fig. 4.8 (d)). It is crucial
that the pseudo-labels used for re-training are as accurate as possible and it is better to
leave uncertain parts unlabeled than to fill them with imprecise labels.

The semantic map which serves as source for pseudo-labels was generated fully auto-
matically from captured data, using the proposed system for multi-modality fusion and
semantic mapping, without any manual supervision. Additionally, a single, automated
post-processing step improves the label quality: Points on the ground plane that are not
labeled as a ground class (i.e. road, sidewalk, or vegetation) are reset to background, to
correct for unwanted artifacts at object borders. Similar to Rosu, Quenzel, and Behnke
(2020), we use only high-confidence pseudo-labels (minimum confidence of 80 %) leading
to unlabeled gray regions between areas of different semantic classes in Fig. 4.8 (b). After
aggregation of multiple viewpoints in the semantic map, most labels have confidence
close to 1 and the borders between semantic classes are sharp.

For retraining the point cloud segmentation network, we complement the Semantic-
KITTI training data with scans obtained from Paris-CARLA-3D and self-recorded UAV
flights with pseudo-labels. The amount of additional data is chosen to be comparable to
the original ≈ 20k scans of SemanticKITTI, as proposed by Rosu, Quenzel, and Behnke
(2020). We increase the batch size to 64 to compensate for the lower signal-to-noise ratio
due to the noisier pseudo-labels. Furthermore, we increase the magnitude of the data
augmentation transformations w.r.t. the original SalsaNext training parameters (Cort-
inhal, Tzelepis, and Aksoy, 2020), to account for the lower variability of the additional
scenes. After retraining, we compare networks using the five original input channels
(range, x-, y-, z-coordinate, and intensity) against ones not using intensity information,
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RGB segmentation (iGPU)

RGB detector (EdgeTPU)

RGB detector (iGPU)

Thermal detector (EdgeTPU)

Thermal detector (iGPU)

LiDAR segmentation (iGPU)

Figure 4.9: CPU load of the CNN inference of different models depending on the used accelerator
and the output frame rate. The iGPU (dashed lines) results in higher CPU load
than the Edge TPU (solid lines) for all models.

as this channel is the most difficult one to adapt for between changing sensor types.
If not stated otherwise, the network is retrained with an input resolution of 512 × 64,
using SemanticKITTI, Paris-CARLA-3D, and scans from our own data collection with
pseudo-labels from the camera-only semantic map. Different parameters are compared
in the ablation studies in Sec. 4.4.

4.4 Evaluation

We first evaluate inference speed and computational efficiency of the employed CNN
models and then show results from outdoor UAV flights in an urban environment and
on a disaster test site.

4.4.1 CNN Model Efficiency

In real-time systems with limited computational resources, such as UAVs, efficiency is
of key importance and resources need to be distributed with care between the different
system components. Semantic perception, while important for many high-level tasks, has
less severe real-time constraints than, e. g. flight control or odometry. It is thus important
that the CNN inference uses as few central processing unit (CPU) resources as possible
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Table 4.1: Average inference time on the respective accelerator.

Model Input Resolution Edge TPU iGPU

RGB segmentation 849 × 481 40.5 ms 50.0 ms

RGB detector 848 × 480 17.5 ms 24.0 ms

Thermal detector 640 × 512 12.0 ms 18.0 ms

LiDAR segmentation 512 × 64 - 32.0 ms

LiDAR segmentation 1024 × 128 - 140.0 ms

Table 4.2: Average CPU load and output frame rate of different model combinations. Image
segmentation and detection models run on Edge TPU and point cloud segmentation
on iGPU.
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to not interfere with the hard real-time constraints of low-level control, localization, and
state estimation. For this, we analyze the CPU load of the employed CNNs for object
detection and segmentation, depending on the used accelerator. Although the main
computational load of inference is distributed to a dedicated accelerator (Edge TPU
or iGPU), the preparation of input data, data transfer, and post-processing require
CPU resources. This is handled with differing degrees of efficiency w.r.t. CPU load and
depends on the in- and output frame rate, as shown in Fig. 4.9. Models running on the
Edge TPU produce lower CPU load in all cases while achieving higher or equivalent
maximum frame rates. Tab. 4.1 shows the average inference latency per model. The
LiDAR segmentation is only executed on the iGPU, as the pixel-shuffle layer from
SalsaNext (Cortinhal, Tzelepis, and Aksoy, 2020) is not supported by the Edge TPU
and the model thus cannot be converted to the required 8-bit quantized format.

For the following experiments, we choose to run the image CNNs on the Edge TPU,
while the LiDAR segmentation runs on the iGPU at 512 × 64 input resolution. Tab. 4.2
shows the average computational load and output rate for different combinations of
CNNs. As to be expected, the maximum achievable output frame rate drops and CPU
load increases with a growing number of vision models used. The computation of RGB
segmentation and detections, as well as thermal detections, achieves an average frame
rate of 12.6 Hz at a CPU load of about 60 %. The inclusion of the image fusion module
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(a) (b) (c)

(d) (e)

Figure 4.10: Semantic interpretation of RGB and thermal images: (a) RGB input image, (b) RGB
and (c) thermal detections. (d) RGB segmentation. (e) fused segmentation mask.
Persons and bicycle, not or only partially segmented in the initial segmentation
mask, are fully visible in the fused output.

almost doubles the CPU utilization while the frame rate drops to 9.9 Hz. This is due
to the transformations and projections necessary to calculate at image resolution for
temporal smoothing and to include thermal detection into the fused image segmentation.
The total CPU usage for the fusion of both image and point cloud semantics sums up
to about 2 CPU cores with an output rate of around 9 Hz.

Reducing the input frequency of the semantic segmentation and detection can free
additional resources for other system components if necessary while still providing
semantic image and point cloud, e. g. at 1-5 Hz—sufficient for many high-level tasks like
planning or keyframe-based mapping.

4.4.2 Outdoor Experiments

In Fig. 4.10, we show results of semantic image fusion for an exemplary scene from
our test flights. Fig. 4.10 (b) - (d) show the outputs of the individual CNNs. While
the large structures are well segmented (d), the persons are only partially recognized.
A bicycle and the person at the right image border are missed altogether. The RGB
detector (b) recognizes all persons and the bicycle. The thermal detector (c) confirms
both person detections inside the thermal camera’s FoV. The fused output segmentation
mask (e) includes all detections together with the initial segmentation. All persons and
the bicycle are clearly visible.

Fig. 4.11 shows the point cloud segmentation results for the same scene. When using
the original LiDAR segmentation, without adaptation of the normalization parameters,
parts of buildings are misclassified as vegetation or vehicle. This is likely due to differing
vertical field-of-views of our and the trained LiDAR. In the KITTI dataset (Geiger,
Lenz, and Urtasun, 2012), the FoV is only 2◦ upwards and ≈ 25◦ downwards (compared
to ±45◦ of our sensor). Therefore, in SemanticKITTI the top of building structures is
rarely visible while treetops are measured from below. Furthermore, the intensity input
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(a)

(b) (c)

Figure 4.11: Point cloud segmentation: (a) Initial LiDAR segmentation without adaptation of
z and intensity normalization parameters and (b) after adaptation to our dataset
mean and std. (c) fused point cloud segmentation. Persons inside (outside) camera
FoV are highlighted with blue rectangles (circles). After normalization adaptation,
the CNN segments large structures well within the LiDAR scan but misses small
objects. Persons, vegetation, and small structures are well segmented in the fused
output scan inside the camera FoV.

channel, measured as the magnitude of laser reflection, differs between the sensors, as
they use a different wavelength and optical system. After normalization adaptation,
SalsaNext segments the building and road structures well within the LiDAR scan,
and the person closest to the sensor is recognized (Fig. 4.11 (b)). Independent of the
normalization, the point cloud network does not detect persons at larger distances,
often misclassifying them as barrier or building. Fig. 4.11 (c) shows the fused point
cloud segmentation, combining image segmentation and detections with the initial point
cloud segmentation. Persons, also at larger distances, vegetation, and the car are well
segmented in the output scan and exhibit less noise when inside the camera FoV.

The point cloud segmentation after retraining with label propagation is shown in
Fig. 4.12. The scene is segmented very accurately, including persons and small structures,
even when using the LiDAR segmentation alone, without fusing the image semantics. The
difference between including intensity as input channel or not becomes apparent for the
UAV operator (person to the bottom of the scene), who was not annotated in the pseudo-
labels used as supervision for label propagation (cf. Sec. 4.3.5). Without intensity input,
the generalization works better and this person is also correctly segmented. Additional
fusion with the camera semantics makes only little difference after retraining. The
LiDAR CNN has learned the relevant segmentation skills from cross-modal supervision.

Figure 4.13 depicts the aggregated semantic map of the outdoor test flight with
manually annotated semantic labels (a) and with scans either labeled from image
segmentation (b) or fused semantic point clouds (c, d). The camera-only map (b) misses
annotations due to the camera’s limited FoV but depicts most classes, such as persons,
cars, or vegetation, more accurately since the noisier raw point cloud segmentation is
not included. The tracks of moving persons are visible in yellow on the maps. Only the
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(a)

(b) (c)

Figure 4.12: Point cloud segmentation after retraining with label propagation: (a) LiDAR
segmentation with intensity input channel and (b) without intensity. (c) fused
point cloud segmentation (based on (b)). Persons inside (outside) camera FoV are
highlighted with blue rectangles (circles). The scene is accurately segmented in
all cases, including persons and small structure. Without intensity input (b) the
CNN generalizes better and the bottom person is correctly segmented. Fusing with
image semantics gives little gain after retraining.

track of the operator, who always stayed behind the UAV and thus was not visible in
the camera, is not segmented (b) or mislabeled (c). The direct segmentation of persons
or small structures in the LiDAR scans initially is noisy due to domain adaptation
issues with the CNN. Label propagation for cross-domain supervision is employed to
overcome these issues. We use the accurate, but incomplete camera-only map as source
for pseudo-labels for retraining the LiDAR segmentation. The resulting semantic map,
Fig. 4.13 (d), aggregated from fused semantic point clouds using the retrained LiDAR
CNN, depicts the semantics of the entire scene very accurately with the person tracks
completely segmented, including the parts unlabeled in the camera-only map. This
underlines the efficiency of label propagation and shows the generalization capabilities
of the resulting CNN. Note, that the manually annotated map is not included during
retraining and is only used for evaluation. For visual assessment of the map quality,
Fig. 4.14 depicts detailed closeups of the static parts of the final semantic map after
removing the dynamic person tracks.

The aggregated maps from fused semantic clouds of two further experiments are shown
in Fig. 4.15 and Fig. 4.16. For the first flight, the scene semantics are shown (a) before
and (b) after retraining with label propagation. Before retraining, person detection
works sufficiently well within the camera frustum (right part of the scene), while they
are misclassified as vehicle or vegetation elsewhere. After retraining, person tracks are
segmented in all parts of the scene and the lawn is correctly labeled as vegetation. The
semantic map from the second, significantly longer UAV flight around the university
campus, using the retrained LiDAR CNN, is shown in Fig. 4.16. A coherent 3D semantic
representation of the environment can be created also at large scale by our proposed
system. Please note, that data from these two flights was not used for label propagation.
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(a) (b)

(c) (d)

Figure 4.13: Semantic map of the urban campus outdoor flight. (a) manually annotated ground-
truth. Map created from (b) scans labeled only by projected image semantics or
from fused semantic clouds (c) before and (d) after retraining with label propagation.
The camera-only map (b) misses annotations due to the camera’s limited FoV but
depicts most classes more accurately than (c). The semantic map after retraining (d)
depicts all person tracks accurately and is very close to the ground-truth.

(a) (b)

Figure 4.14: Closeups from Fig. 4.13 for detailed view of the semantic map of the urban campus
outdoor flight after removing the tracks of dynamic persons.
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(a) (b)

Figure 4.15: Aggregated maps from fused semantic clouds of another experiment (a) before and
(b) after retraining with label propagation. Within the camera frustum (right part
of the scene), person detection works sufficiently well, while they are misclassified
elsewhere by the original LiDAR CNN. After retraining (b), persons tracks are
segmented in the entire scene and the lawn is correctly labeled as vegetation.

(a) (b)

Figure 4.16: Aggregated semantic map for large area flight: (a) side-view, (b) top-view.

IoU Evaluation

To quantitatively evaluate the coherence of different point cloud segmentations, we
calculate the intersection over union (IoU):

IoUc =
TPc

TPc + FPc + FNc

, (4.8)

where TP, FP, and FN are the true positives, false positives, and false negatives, respec-
tively. We compare for each segmented point its arg max class against the corresponding
aggregated voxel label and average per class over the whole dataset. Tab. 4.3 shows the
results for all classes that occur for a significant number of points in our recorded data.
We use the manually annotated aggregated semantic map with a voxel size of 25 cm as
ground-truth (cf. Fig. 4.13 (a)).

Applying the proposed adaptation of the normalization parameters improves the
overall segmentation accuracy. The improvement is most significant for the building
class, as the top half of the buildings are correctly labeled (cf. Fig. 4.11). The fused
semantic cloud improves the segmentation coherence for all classes, especially for persons
and vegetation. Persons and small objects, such as bicycles, are more reliably detected in
the RGB and thermal modalities, improving the fused output inside the camera frustum.
Using a higher input resolution for LiDAR segmentation gives significant improvements
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Table 4.3: IoU evaluation against manually annotated semantic map: Average IoU per class
(in %) and mean IoU for different point cloud segmentations, LiDAR CNN input
resolutions, and FoVs.

Method Res FoV Build. Road Veg. Pers. Bike Car Obj. Mean

single w/o adapt∗ 512 LiDAR 32.7 72.9 2.2 2.7 3.7 0.6 3.4 16.9

single w/ adapt∗ 512 LiDAR 83.4 75.5 2.2 17.7 7.2 2.8 5.5 27.8

single w/ adapt 1024 LiDAR 82.7 71.8 4.0 43.3 6.3 4.1 7.4 31.4

fused 512 LiDAR 84.3 77.0 17.8 23.3 8.4 3.9 8.0 31.8

fused 1024 LiDAR 84.0 73.8 18.7 47.2 7.0 5.3 9.5 35.1

fused 512 camera 94.0 62.2 48.6 36.6 17.1 34.0 32.1 46.4

fused 1024 camera 94.3 63.8 50.3 36.9 17.6 35.2 37.1 47.9

img proj. n/a camera 92.6 76.5 77.1 37.1 17.2 46.4 39.1 55.1

∗differences w.r.t. original results from Bultmann, Quenzel, and Behnke (2021) are due to a bug-fix in
exporting the pixel-shuffle layer of the LiDAR CNN to the employed OpenVINO inference framework.

Table 4.4: IoU evaluation against manually annotated semantic map after retraining with label
propagation: Average IoU per class (in %) and mean IoU for point cloud segmentation
after retraining with label propagation.

Method Res Intensity Build. Road Veg. Pers. Bike Car Obj. Mean

single 512 X 95.8 88.7 77.6 49.4 14.4 56.2 22.8 57.8

single 512 - 95.5 88.3 75.3 65.0 19.5 66.9 31.6 63.2

single 1024 - 95.4 88.5 74.1 67.7 21.3 55.2 22.9 60.7

fused 512 X 95.9 88.7 77.8 49.5 14.5 55.2 22.7 57.8

fused 512 - 95.6 88.4 75.8 65.4 19.1 60.8 31.2 62.3

fused 1024 - 95.5 88.5 74.4 67.8 21.2 53.7 22.7 60.5

for the person class (43.3 % vs. 17.7 %) and a small improvement of mean IoU. The
track of the operator, who always stayed behind the UAV and was not visible in the
camera, is often misclassified, significantly impacting the mIoU of the person class as it
constitutes a large number of the points annotated as person in the ground-truth map.
The LiDAR segmentation with full input resolution segments larger parts of the operator
track correctly. Results for the semantic cloud from projected image segmentation and
the fused semantic cloud in the reduced FoV of the camera show significantly improved
mIoU values also for vegetation, cars, and other foreground objects.

The semantic fusion without retraining the LiDAR segmentation CNN with label
propagation successfully creates a coherently labeled 3D semantic interpretation of
global structure in the full 360◦ LiDAR FoV and for both global structure and small
dynamic objects in the camera FoV.

To improve the accuracy for the difficult semantic classes in the entire FoV, label
propagation is used to retrain the LiDAR segmentation with pseudo-labels obtained
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Table 4.5: Ablation on data used for label propagation: Mean IoU (in %) of point cloud segmen-
tation using different datasets measured against the manually annotated map.

Datasets Label Propagation Intensity Mean IoU

Sem.KITTI (pretrained∗) - X 27.8

Sem.KITTI + Paris - X 32.7

Sem.KITTI + Paris - - 41.2

Sem.KITTI + Paris fused map X 37.5

Sem.KITTI + Paris fused map - 38.5

Sem.KITTI + Paris single scan X 49.4

Sem.KITTI + Paris single scan - 57.0

Sem.KITTI camonly map X 57.6

Sem.KITTI camonly map - 60.4

Sem.KITTI + Paris camonly map X 57.8

Sem.KITTI + Paris camonly map - 63.2

∗pretrained by Cortinhal, Tzelepis, and Aksoy (2020).

from the camera-only map (cf. Sec. 4.3.5). The results are shown in Tab. 4.4. The
segmentation accuracy for the whole 360◦ horizontal FoV almost doubles from 31.8 %
to 62.3 % and also is significantly higher than the 55.1 % previously achieved in the
camera FoV only. The retrained LiDAR segmentation CNN generalizes better without
using the intensity input channel for the person and small object classes. Fusing the
LiDAR segmentation with the image semantics gives a small gain for the person class
but overall performs slightly worse. This underlines that the LiDAR CNN has learned
the relevant segmentation skill from the RGB and thermal image modalities through
cross-modal supervision during retraining. Small gains from an increased input resolution
can still be observed for person and bicycle classes, but the mean IoU does not improve.
Furthermore, the inference speed drops below the 10 Hz measurement frequency of the
LiDAR at the 1024 × 128 input resolution (cf. Tab. 4.1). Therefore, we use the CNN at
512 × 64 input resolution in our online experiments.

We further perform an ablation study on the employed training data and pseudo-label
sources in Tab. 4.5. The addition of data from Paris-CARLA-3D (Deschaud et al., 2021),
covering the entire sensor FoV, improves the mean IoU by 5-13 %, with or without using
intensity input, respectively. As observed in Tab. 4.4, networks not using the intensity
channel generalize better to our dataset. The most significant gain is achieved adding
data recorded by our sensor, using label propagation from the camera modality as
cross-domain supervision. This also reduces the differences between using or not using
intensity. Pseudo-labels obtained from the fused semantic map, including the noisy raw
point cloud segmentation, are too imprecise to achieve significant improvements after
retraining. Using pseudo-labels from the camera overlay of single scans improves the
segmentation quality despite only a small part of each scan being labeled (cf. Fig. 4.8 (b)).
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Table 4.6: Mean IoU (in %) of aggregated semantic maps measured against the manually
annotated ground-truth.

Method fused cloud camera-only
camera-only

(camera FoV)

fused cloud with

label propagation

mIoU 29.5 41.8 60.3 68.0

The best results are achieved using pseudo-labels from the spatio-temporally aggregated
camera-only semantic map, with an improvement of 35.4 % over the initial point cloud
segmentation in our scenario. Using only own data for retraining, without Paris-CARLA-
3D, performs slightly worse, as the training data is less diverse.

While in the previous evaluations, the IoU was calculated for individual semantic
point clouds and averaged over the dataset, we show the IoU of the aggregated semantic
maps in Tab. 4.6. As for the single scans, the semantic segmentation of the camera
modalities is significantly more accurate than the fused cloud including the raw point
cloud segmentation. For the camera FoV evaluation, we use only points inside the camera
frustum and do not count unlabeled points as false negatives. With label propagation,
the improvement upon the camera-only map, used as source for pseudo-labels during
retraining, amounts to ≈ 8 % for the limited camera FoV and ≈ 26 % for the full 360◦

horizontal FoV. The accurate, automatically generated supervision from the image
domain with narrow FoV generalizes to the full LiDAR FoV via label propagation.

Disaster Test Site

For qualitative evaluation, further flights were conducted on a disaster test site of the
German Rescue Robotics Center (Kruijff-Korbayová et al., 2021). These experiments
demonstrate the generalization capabilities of the proposed system to environments
significantly different from the urban campus area where the data used for label
propagation was recorded. The retrained LiDAR CNN is directly employed for these
experiments, without any further adaptation.

Figure 4.17 shows the semantic perception of the disaster test site. Multiple persons,
a fire truck, and even distant cars are reliably detected in the image and included
into the fused image segmentation and point cloud. The point cloud segmentation also
labels persons not visible in the camera correctly. Figure 4.17 (d) depicts the aggregated
semantic map of the scenario. Some noise is visible in one of the person tracks and the
higher trees are erroneously labeled as building structure, but the overall perception
remains coherent also in this challenging scenario.

Figure 4.18 highlights the benefits of the thermal camera also at daylight: Persons
are detected great distance, while only larger vehicles are detected in the RGB image.
For the thermal camera, transfer from the training dataset with autonomous driving
scenarios to the aerial perspectives of the UAV flights was possible without explicit
domain transfer techniques, as the sensor characteristics in the dataset and of the
employed thermal camera are similar.

To further improve the results for the disaster test site, another iteration of label
propagation could be performed, using pseudo-labels automatically obtained from the
aggregated semantic map of the environments.
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(a) (b)

(c) (d)

Figure 4.17: Semantic perception on disaster test site: (a) RGB detections, (b) fused RGB
segmentation, (c) fused semantic cloud, (d) aggregated semantic cloud. Persons
and fire truck inside the camera FoV are highlighted with blue rectangles in (c).

(a) (b)

Figure 4.18: Comparison of (a) RGB and (b) thermal detections on disaster test site. Persons
are detected in the thermal image also at very high distance, while only the larger
vehicles are detected in the RGB image.

4.5 Discussion

In this chapter, we presented a UAV system for semantic image and point cloud analysis
as well as multi-modal semantic fusion. The inference of the lightweight CNN models
runs onboard the UAV computer, employing an inference accelerator and the integrated
GPU of the main processor for computation. The Edge TPU performs inference in 8-bit
quantized mode and showed more efficient CPU usage. The iGPU is more flexible, e. g.
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to directly run pre-trained models, as it uses 16- or 32-bit floating-point precision and
does not require model quantization.

The proposed framework for semantic scene analysis provides a 2D image segmentation
overlay and a 3D semantically labeled point cloud which is further aggregated into an
allocentric semantic map. The initial point cloud segmentation suffered from domain
adaptation issues since available large-scale training datasets stem from autonomous
driving scenarios with different viewpoints and sensors more directed towards the
ground compared to the the UAV’s LiDAR sensor. We addressed this issue by retraining
the LiDAR segmentation CNN with data captured on our UAV using pseudo-labels
automatically obtained from the aggregated semantic map. The pseudo-labels thereby
stem from the RGB and thermal camera modalities, providing cross-domain supervision
for the 3D point cloud. This takes up the idea of semantic feedback introduced in previous
chapters, reprojecting parts of the fused allocentric semantic model into individual
sensor views to provide a reliable source of semantic information.

With label propagation, the 3D segmentation accuracy of the proposed system
significantly improves for the full LiDAR FoV. We evaluated the system in real-world
experiments in an urban environment and at a disaster test site, showing coherent
semantic perception of diverse and challenging scenes.

Future work includes retraining also the image CNNs with label propagation to
improve task-specific performance, and adding RGB color channels to the point cloud
segmentation input, e. g. using a 360◦ fisheye camera together with the LiDAR sensor.

The UAV system with onboard real-time perception can be considered as a mobile
smart edge sensor compared to the stationary sensor boards introduced in the previous
Chapters 2 and 3. Moving sensors provide changing viewpoints and can cover significantly
larger areas than stationary sensors with fixed perspectives, thus extending the coverage
of the scene model. However, it would be difficult to integrate the outdoor UAV platform
into the lab-scale indoor environment covered by the previously proposed smart edge
sensor network. To this end, we will instead use a mobile service robot that is tracked
by the sensor network and integrate observations from its changing viewpoints into the
allocentric scene model, as introduced in the following chapter.
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In addition to the above publication, this chapter contains further unpublished content.
In particular, Section 5.4.5, which describes an experiment on human-aware anticipatory
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Abstract

We present an approach for estimating a mobile robot’s pose w.r.t. the allocentric
coordinates of a network of static cameras using multi-view RGB images. The images
are processed online, locally on smart edge sensors by deep neural networks to detect the
robot and estimate 2D keypoints defined at distinctive positions of the 3D robot model.
Robot keypoint detections are synchronized and fused on a central backend, where the
robot’s pose is estimated via multi-view minimization of reprojection errors. Through
the pose estimation from external cameras, the robot’s localization can be initialized
in an allocentric map from a completely unknown state (kidnapped robot problem) and
robustly tracked over time. We conduct a series of experiments evaluating the accuracy
and robustness of the camera-based pose estimation compared to the robot’s internal
navigation stack, showing that our camera-based method achieves pose errors below
3 cm and 1◦ and does not drift over time, as the robot is localized allocentrically. With
the robot’s pose precisely estimated, its observations can be fused into the allocentric
scene model. We show a real-world application, where observations from mobile robot
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and static smart edge sensors are fused to collaboratively build a 3D semantic map of a
∼240 m2 indoor environment. Furthermore, through semantic feedback of human pose
observations from the external sensors, the robot can anticipate persons appearing from
behind occlusions and anticipatorily adapt its navigation path to keep a safe distance.

5.1 Introduction

Semantic scene understanding is an important requirement for intelligent robot action,
such as collision-free navigation, object manipulation, or human-robot interaction. Scene
interpretation from a single sensor view, however, has a limited field of perception,
measurement range, and resolution, and suffers from occlusions. Collaborative perception
between mobile robots and distributed static smart edge sensors alleviates these issues
and enables to build 3D semantic models of large scenes without being limited by the
measurement range or occlusions of a single sensor.

A key prerequisite for fusing observations from different perspectives is knowing the
relative sensor poses. While the extrinsic calibration of static sensors can be performed
beforehand, a mobile sensor’s pose w.r.t. the sensor network must be initialized and
tracked to fuse the robot observations into the allocentric model in a consistent manner.

In this chapter, we propose to estimate a mobile robot’s pose w.r.t. the allocentric
coordinates of a network of static smart cameras using multi-view RGB images. For
this, we build upon previous work on 3D semantic scene perception using distributed
smart edge sensors (cf. Chapter 3), where images are processed locally on smart edge
sensor boards by deep neural networks for semantic image interpretation. For robot pose
estimation, we process the images with convolutional neural networks (CNNs) for robot
detection and estimation of 2D projections of keypoints defined at distinctive positions
of the 3D robot model. Unlike classical robot-to-camera pose estimation systems, our
method does not require attaching fiducial markers to the robot. Furthermore, the CNN
for keypoint estimation is trained only on synthetic data obtained through randomized
scene generation (Schwarz and Behnke, 2020). Robot keypoint detections are streamed
to a central backend where they are synchronized and the robot’s pose is estimated
via multi-view minimization of reprojection errors. Through the pose estimation from
external camera views, the robot’s localization is initialized in the global map from a
completely unknown state, and robustly tracked over time. Furthermore, using multiple
sources for localization, i.e. the external camera views together with the robot’s internal
2D LiDAR-based navigation, increases robustness in highly cluttered, dynamic real-
world environments, where few distinct features, such as walls or columns, are visible in
the LiDAR due to occlusions.

With the robot’s pose precisely estimated, it is integrated as a mobile sensor node
into the camera network. We deploy the CNNs for semantic image interpretation from
Chapter 3 onto the robot’s inference accelerator and use its RGB-D camera to obtain
semantically annotated point clouds of the robot’s view. The robot’s observations are
then fused into the allocentric scene model to build a 3D semantic map of a large room
in collaboration with the static smart edge sensors.

Fig. 5.1 shows the employed Toyota human support robot (HSR) and static smart
edge sensors together with a 3D view of the robot’s semantic observations to be fused
into the 3D scene model, initialized from a prior without any semantic annotations. As
the robot pose is initialized globally coherently through the external keypoint-based



5.2 related work 111

bg

wall

floor
ceiling

window

door

stairs

table

chair

lamp

person

bike

box

trashbin

screen

other

HSR

(a)

(b) (c)

Cam 2

Cam 1

Robot
Cam

Figure 5.1: Robot pose estimation for collaborative perception: (a) Toyota Human Support Robot
(HSR) with 2D bounding box and keypoints used for pose estimation detected by
static smart edge sensors (b). (c) 3D scene view with robot model and 3D keypoints
at the estimated robot pose (green arrow) and robot’s semantic observations (colored
point cloud) to be fused into the allocentric scene model (black squares). Robot
observations fit the allocentric model, showing that the robot’s pose is initialized
globally coherently through localization by the smart edge sensors.

pose estimation, its observations consistently fit the allocentric model.
In summary, the main contributions of this chapter are:

• A novel method for marker-less mobile robot pose estimation using multi-view
keypoint detections to initialize the robot’s localization in a global map (kidnapped

robot problem) and robustly track it over time,

• integration of a mobile robot into a network of static smart edge sensors, fusing
the robot’s observations from changing viewpoints into the global scene model,

• quantitative evaluation of the pose estimation accuracy and robustness, and

• demonstration of collaborative perception in real-world scenes between mobile
robot and sensor network to build a globally consistent 3D semantic map.

5.2 Related Work

Visual robot detection and localization have been research topics of high interest for a
variety of autonomous systems like drones (Ashraf, Sultani, and Shah, 2021), mobile
robot platforms (Meger et al., 2009; Pizarro et al., 2008, 2010), humanoids (Amini,
Farazi, and Behnke, 2022), autonomous cars (Gawel et al., 2018), and underwater
robots (Joshi et al., 2020; Shkurti et al., 2017). External localization of moving objects
is also employed for traffic monitoring (Severi et al., 2018; Strand, Honer, and Knoll,
2022) or action recognition (W. Wang et al., 2016).

Detection methods localize robots in images and allow for tracking applications like
underwater convoying (Shkurti et al., 2017) or monitoring (Ashraf, Sultani, and Shah,
2021). In contrast, we aim to estimate a robot’s pose from multiple views to initialize
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its localization in a map and to compensate for localization errors in highly cluttered,
dynamic environments.

Gawel et al. (2018) presented a semantic graph-based multi-view approach for robot
localization in autonomous driving scenarios. They use semantic estimates from various
views like front and aerial views and integrate them in separate target and query graphs.
Lu, Richter, and Yip (2022) presented an approach for marker-less robot pose estimation
via keypoint detection (Mathis et al., 2018). They aim to define keypoints on the robot
maximizing the localization performance in 2D and 3D. Their approach utilizes synthetic
training data and transfers well to real sensor data. They estimate the pose of stationary
robots from single views, whereas our approach globally tracks a mobile manipulation
platform. Lee et al. (2020) consider the inverse problem of localizing the camera in
relation to an articulated robot. They estimate 2D keypoints of robot joints and recover
the camera extrinsics w.r.t. the robot manipulator given that the camera is intrinsically
calibrated and the robot joint positions are available.

Pizarro et al. (2008, 2010) presented approaches for robot localization from a sin-
gle view. Shim and Cho (2015) proposed an approach for multi-view mobile robot
localization. They first project the camera images onto a common plane and then
localize the robot using its contours after removing shadows. Similarly, Chakravarty
and Jarvis (2009) utilize a surveillance camera system to localize the robot in the image
plane by background subtraction of a color thresholded image. Similar to our work,
the surveillance camera view is extended by the robot’s view. Obviously, such simple
approaches would fail in highly dynamic and cluttered environments.

The field-of-view of autonomous mobile robots can be extended in comparison to
single-view systems using smart edge sensors for global collaborative perception. In
prior work, we utilized smart edge sensors to estimate 3D human poses from multiple
views (cf. Chapter 2) and integrate 3D semantic scene perception (cf. Chapter 3). In
this chapter, we focus on the integration of a mobile robot as an additional smart
edge sensor node, laying the foundations for many potential applications like external,
camera-based control and task planning as well as augmentation of the internal robot
view by the integration of human poses or semantic segmentation estimates that are
robust against occlusions.

Rekleitis et al. (2001) presented an approach for collaborative exploration of visual
maps using two mobile robots of different capability levels, where one robot was actively
collecting visual data for mapping and the second, passive robot visually refined the
pose of the moving robot. S. Dong et al. (2019) proposed a multi-robot collaborative
approach for dense reconstruction. They associate task views of uncertain or unexplored
map areas to the robots based on the traveling salesman problem. In contrast to our
approach, they concentrate on an actively moving set of mobile robot platforms and
omit semantics. Similarly, Yue et al. (2020), propose to combine an unmanned aerial
vehicle (UAV) and an unmanned ground vehicle (UGV) for collaborative semantic
mapping. Ahmed et al. (2021) propose to integrate top-view surveillance cameras for
collaborative robotics but assume that the estimations from the surveillance cameras
are provided to the robot without actively fusing information of the robot’s sensors.

With PoseCNN, Xiang et al. (2018) propose a 6D pose estimation approach jointly
estimating semantic labels on a pixel level. The translation is estimated by regressing the
object center in camera coordinates and the rotation is separately regressed using a newly
introduced ShapeMatch-Loss. Chen Wang et al. (2019) present a dense fusion method
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for 6D pose estimation. They first estimate semantic segmentation and bounding boxes,
and then densely fuse RGB and depth images in an embedding. Finally, an iterative
pose integrator refines the 6D pose. Keypoint-based approaches for 6D pose estimation,
as introduced in Chapter 3, adopt a two-stage pipeline, first estimating keypoints
for each object instance and, second, retrieving the object poses via PnP (Lepetit,
Moreno-Noguer, and Fua, 2008). They have been widely used in recent years (Amini,
Periyasamy, and Behnke, 2022; Lee et al., 2020; Peng et al., 2019; Rad and Lepetit,
2017). Although most pose estimation approaches are object-centric, here, we propose
to use a keypoint-based estimator for the visual pose estimation of a mobile robot.

5.3 Method

We consider scenarios where N externally mounted cameras Ci, i = 1, . . . , N observe
a mobile robot from different viewpoints. The intrinsic and extrinsic calibration of
the external cameras are performed beforehand (cf. Sec. 2.5), i.e., we assume the
transformation Ci

WT ∈ R
4×4 from world to camera coordinates and the projection Πi(·)

to the image plane of Ci to be known. The cameras observe 2D projections kij ∈ R
2 of

M keypoints pj ∈ R
3, j = 1, . . . , M defined on distinct positions of the 3D robot model.

From these observations, we aim to estimate the robot’s pose in world coordinates
W
R T ∈ R

4×4. As the employed mobile robot moves on the ground plane, we consider
three degrees of freedoms (DoFs): x = [x, y]⊤ ∈ R

2, and θ ∈ (−π, π], with

W
R T (x, θ) =









R (θ) 0 x

0
⊤ 1 0

0
⊤ 0 1









, R (θ) ∈ SO (2) . (5.1)

Extending this formulation to more DoFs is straightforward. We estimate the robot
pose in a two-stage process, similar to Lee et al. (2020) but exploiting multi-view
observations: First, robot keypoints are detected on the images, locally on the sensor
boards (Sec. 5.3.1), and, second, the robot pose is estimated from a synchronized set of
observations via multi-view minimization of reprojection errors (Sec. 5.3.2).

5.3.1 Robot Keypoint Detection

We aim to estimate the robot’s base pose, independent of the articulation of the robot
head or arm, and therefore define the keypoints used for pose estimation on distinct
points of the rigid robot base (see Fig. 5.2 (c)). Keypoints defined manually at distinct
points of the 3D model were shown to perform better than automatically defined ones
in Sec. 3.4.1.2.

5.3.1.1 Network Architecture

We employ a top-down approach for robot keypoint detection, i.e., first detecting
a bounding box of the robot in the full image (848 × 480 px) and then estimating
keypoints on the crop of the robot. Top-down methods achieve better scale invariance
than estimating keypoints on the full input image, as the crop of a detected robot is
interpolated to a fixed resolution for keypoint estimation (here 192 × 256 px).
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(a) (b)

(c)

Figure 5.2: Examples of training images: (a) synthetic and (b) real images used for the detector;
(c) synthetic images used for the keypoint estimation.

Camera images are processed locally on the smart edge sensors, using an Nvidia
Jetson Xavier NX embedded inference accelerator (cf. Fig. 5.1 (b)). We employ the
CNN architectures used in prior work for efficient person keypoint estimation on the
embedded hardware (cf. Chapters 2 and 3): The recent MobileDet architecture (Xiong
et al., 2021) is used for robot detection and the network of Xiao, Wu, and Wei (2018)
with a MobileNet V3 backbone (Howard et al., 2019) for keypoint estimation.

5.3.1.2 Training Data

To reduce the labeling effort to a minimum, we train the networks predominantly on
synthetic data. The CNN for keypoint estimation is trained purely on simulated data
(36k samples), while we combine synthetic data and manually annotated real images
(12k resp. 3.5k samples) for robot detection. The combination of real and synthetic data
helps to boost detector performance in highly cluttered real-world environments and
bounding-box labels are less costly to obtain than keypoint annotations. The keypoint
estimation CNN generalizes well from only synthetic data.

We employ an extension of the stilleben-framework (Boltres et al., 2022; Schwarz
and Behnke, 2020) for photorealistic, randomized scene rendering to generate multiple
scenes of our robot moving through varying indoor environments, using the 3D robot
model. Randomizing scene parameters in addition to image augmentation helps to
bridge the reality gap for sim-to-real transfer. Fig. 5.2 shows examples of the employed
training data. Note, that the network also learns to detect occluded keypoints from the
surrounding image context.

5.3.2 Robot Pose Estimation

2D robot keypoints are sent over a network to a central backend, where detections from
multiple cameras are software-synchronized via their timestamps and associated to
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corresponding framesets. The robot pose W
R T (5.1) is recovered by solving a weighted

nonlinear least squares problem via minimization of multi-view reprojection errors:

W
R T = arg min

W
R

T

N
∑

i=1

M
∑

j=1

wij

∥

∥

∥kij − Πi

(

Ci

WTW
R Tpj

)∥

∥

∥

2
, (5.2)

with the weights wij depending on the confidence of the keypoint detection in the
respective camera, similar to the human pose triangulation introduced in Sec. 2.4.2. We
use the Levenberg-Marquardt algorithm as implemented in the Ceres library (Agarwal,
Mierle, and Team, 2022) for optimization. We discern two different ways to initialize
the optimization:

(i) When the robot pose has already been initialized in the global map and a current
pose estimate is available from its internal navigation stack, we use this to initialize the
optimization.

(ii) When no prior estimate is available, e.g., to initialize the robot’s pose or when
the communication link to the robot is unavailable, we use the PnP algorithm (Lepetit,
Moreno-Noguer, and Fua, 2008) to obtain pose candidates from each individual camera
view with M ≥ 4 detected keypoints. The candidate poses are transformed to world
coordinates using Ci

WT−1 and projected to the ground plane. The initialization for
Eq. (5.2) is then obtained via interpolation between the candidates, using spherical
linear interpolation for the orientation.

In our experiments (Sec. 5.4), we observe that the pose estimation is well constrained
when the robot is detected in N ≥ 2 cameras, but less stable when visible in only a single
camera and far away from the camera. This is due to the small width of 35 cm of the
robot body, providing only a narrow baseline for orientation and depth estimation. To
alleviate this issue, we implement a simple yet effective bearing-only heuristic for outlier
detection: For pose estimates from a single camera view, we prevent unrealistically high
changes in orientation or distance to the camera above a threshold dθ resp. ddepth by
updating only the translation orthogonal to the camera’s viewing direction.

Lastly, we employ a pose graph (Dellaert and Kaess, 2017) to fuse the absolute
pose estimations from external cameras, which occur sparsely at waypoints where the
robot is static (cf. Sec. 5.3.3), with the continuous robot-internal odometry. The pose
estimates from the robot’s internal navigation stack are inserted into the pose graph
as binary odometry constraints, while the pose estimates from external cameras are
used as absolute, unary constraints. The covariance of the camera pose estimates is
proportional to the reprojection error residual (5.2) and inversely to the number of
cameras used in the optimization, giving the highest confidence to consistent estimates
with low reprojection error in a large number of cameras. The pose graph is optimized
each time a new external camera pose estimate occurs.

5.3.3 Collaborative Localization and Perception

Fig. 5.3 gives an overview of the proposed sensor network architecture for collaborative
localization and perception. The mobile HSR robot is integrated into the network of
static smart edge sensors for 3D semantic scene perception from Chapter 3. The robot
pose is initialized in the allocentric scene from the external cameras. During operation,
external robot pose estimates are sent as pose-correction feedback to the robot sparsely
at waypoints where the robot is static, updating the robot’s internal particle filter-based
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Figure 5.3: Overview of the proposed sensor network architecture for collaborative localization
and perception. N external smart edge sensors observe mobile HSR robot and scene
from static viewpoints. Robot pose is initialized and corrected via external camera
pose estimation. Robot observations from changing viewpoints are fused into the
allocentric scene model.

localization (Thrun et al., 2001) to keep it globally coherent within the scene model. The
interface provided by the robot’s navigation stack permits to update the localization
from external measurements only when not in movement. To simplify system integration
and for better interoperability, we use the robot’s navigation stack as provided by the
manufacturer and consider it as a closed module. We do not aim to fully control the
robot localization via the external cameras for the robot to keep its local autonomy: Its
navigation stack integrates information from the camera network when available, but
does not depend on it. When, e.g., the communication link is lost, the robot can still
navigate autonomously using its integrated sensors.

For collaborative perception, the mobile robot provides changing viewpoints of areas
outside the field-of-view of the static smart edge sensors, and its semantic percepts are
fused into the allocentric scene model.

5.3.3.1 Semantic Perception onboard the Robot

The HSR’s computing system comprises a main PC used for communication, robot nav-
igation, and control and an embedded CNN inference accelerator (Nvidia Jetson TX2).
We employ the latter to deploy CNNs for object detection and semantic segmentation as
introduced in Sec. 3.3.2 and obtain semantic point clouds using the Asus Xtion RGB-D
camera mounted on the robot’s head. The robot’s inference accelerator hardware is a
previous generation of the compute boards of the static smart edge sensors, with lower,
but sufficient resources for semantic point cloud estimation at 1 Hz.
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Figure 5.4: Robot setup (a) and exemplary robot keypoint detections (b, c).

5.3.3.2 Semantic Map Fusion

The robot’s semantic observations from changing viewpoints are integrated into the
allocentric 3D semantic map using the Bayesian probabilistic fusion proposed in Sec. 3.3.3.
Because we consider the mobile robot’s pose less reliable than the a-priori calibrated
static sensor poses, we perform an ICP alignment step before integrating the robot’s
data into the map. This compensates for the drift accumulated between pose corrections
and tolerances in the robot’s forward kinematics. As a good initialization is critical for
ICP, precise robot localization is necessary for initializing the alignment.

5.4 Evaluation

5.4.1 Experiment Setup

During the experiments, the HSR robot operates in a challenging, cluttered indoor
environment of ∼240 m2 size. Four external smart edge sensors are mounted at ∼2.5 m
height in the center of the room to initialize and correct the robot localization. As
a reference for pose estimation, we employ the affordable and easy-to-use HTC Vive
Pro tracking system, which was shown to yield position accuracies within a few mil-
limeters (Bauer, Lienhart, and Jost, 2021). For this, we place an HTC tracker on the
robot’s head. Fig. 5.4 shows the robot setup and exemplary keypoint detections from
two external camera views.

To evaluate the pose estimation accuracy, we define seven waypoints in the observed
area, visible from different numbers of cameras, as shown in Fig. 5.5, and connect them
to three different trajectories (cf. Fig. 5.6). As the tracking system and the camera
network don’t operate in the same reference frame, trajectories are rigidly aligned via
Procrustes analysis (Sturm et al., 2012) before evaluation.

A video of the experiments described in the following is available on our website1.

1 https://www.ais.uni-bonn.de/videos/ICRA_2023_Bultmann/

https://www.ais.uni-bonn.de/videos/ICRA_2023_Bultmann
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Figure 5.5: Evaluation of robot pose estimation: Room-setup with camera positions and way-
points colored by number of cameras from which they are visible.

5.4.2 Pose Estimation Accuracy

During a first set of experiments, we record a dataset of three iterations of each
trajectory in both forward and reverse direction, resulting in 18 sample trajectories. At
the beginning of each trajectory, the robot’s pose is initialized from observations of all
four cameras and we verify that robot observations are consistent with the global model
(cf. Fig. 5.1 (c)) to confirm a good initialization. The 2D grid map used by the robot
for LiDAR navigation is initialized with the prior model of the empty room. The pose
correction from external cameras is not sent to the robot during these experiments to
measure the deviation over the full trajectory.

Fig. 5.6 shows an exemplary iteration of each trajectory, comparing the path estimated
by the robot’s internal navigation stack and the fused trajectory estimate, obtained
using pose corrections from the external cameras and pose graph optimization, with
the ground-truth obtained from the HTC reference tracking system. Furthermore, the
evolution of translation error is shown over the traveled distance. While the robot’s
internal localization quickly accumulates errors of 20-30 cm, the error of the external
camera pose estimation stays below 5 cm when the robot is observed from at least two
cameras. The error can be higher when observing the robot in only a single camera,
e.g. WP 1 (1st WP of Traj. 1, resp. 5th WP of Traj. 2), but always improves upon the
robot’s internal estimate. The single-camera observations can further be improved by
fusing with robot odometry via the pose graph. In Fig. 5.6 (Traj. 1), we illustrate the
outlier detection for pose estimation from a single camera: The raw pose estimate shows
an unrealistically high change in distance to the observing camera; therefore, the pose
correction is restricted to the lateral direction.

Tab. 5.1 and 5.2 report a quantitative evaluation of the translation and orientation
errors at the waypoints, ordered by the number of cameras from which the robot is
observed. The pose error is lowest when the robot is observed from two or four cameras
and amounts to 2.93 cm and 0.88◦ averaged over all waypoints, significantly improving
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Figure 5.6: Evaluation of robot pose estimation: Plots of one resp. iteration of the three trajec-
tories used for evaluation of the translation error over the traveled distance; Traj. 1:
example for outlier detection at WP 1 observed from only a single camera. The pose
correction from the external cameras is not sent as feedback to the robot during these
experiments to measure the deviation over the full trajectory length. See Sec. 5.4.2
for further explanations.

over the robot internal localization with an average error of 19.1 cm and 1.11◦. The
outlier detection for single-camera pose estimation significantly improves the accuracy in
the resp. waypoints by 5.6 cm resp. 2.0◦ w.r.t. the raw estimate and prevents a worsening
of the average orientation estimate w.r.t. the robot’s internal localization. Averaging
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Table 5.1: Translation error (mean ± std) at waypoints, by number of cameras with robot
detections and pose estimation source.

Pose Esti-
mation

1 Camera 2 Cameras 4 Cameras Average

Robot 20.6 ± 7.6 cm 17.1 ± 6.9 cm 25.0 ± 6.9 cm 19.1 ± 7.6 cm

Cameras
(raw)

13.8 ± 10.1 cm 2.59 ± 1.49 cm 2.88 ± 1.42 cm 4.65 ± 6.22 cm

Cameras
(1 frame)

8.23 ± 5.23 cm 2.59 ± 1.49 cm 2.88 ± 1.42 cm 3.65 ± 3.36 cm

Cameras
(5 frames)

7.77 ± 5.47 cm 2.58 ± 1.48 cm 2.82 ± 1.43 cm 3.54 ± 3.31 cm

Fused 4.25 ± 1.57 cm 2.64 ± 1.48 cm 2.73 ± 1.41 cm 2.93 ± 1.60 cm

Table 5.2: Orientation error (mean ± std) at waypoints, by number of cameras with robot
detections and pose estimation source.

Pose Esti-
mation

1 Camera 2 Cameras 4 Cameras Average

Robot 1.17 ± 1.19◦ 1.03 ± 1.23◦ 1.30 ± 1.96◦ 1.11 ± 1.38◦

Cameras
(raw)

3.39 ± 2.87◦ 0.97 ± 0.79◦ 1.02 ± 0.76◦ 1.44 ± 1.72◦

Cameras
(1 frame)

1.40 ± 1.31◦ 0.97 ± 0.79◦ 1.02 ± 0.76◦ 1.06 ± 0.92◦

Cameras
(5 frames)

1.18 ± 1.27◦ 0.86 ± 0.68◦ 0.97 ± 0.74◦ 0.94 ± 0.84◦

Fused 1.12 ± 1.08◦ 0.79 ± 0.65◦ 0.97 ± 0.76◦ 0.88 ± 0.77◦

the pose estimates of multiple framesets and fusion with the robot odometry via the
pose graph give further improvements.

Tab. 5.3 shows the root mean square (RMS) of the translation error for the trajectories.
The shorter Traj. 3, without WP 1 and WP 6 visible in only one camera, has the lowest
trajectory error. The fused trajectory estimate using external camera pose estimation
and robot odometry gives a significant improvement from 18.5 cm to 4.48 cm, averaged
over the dataset.

In a second set of experiments, we compare the fused trajectory calculated on
the central backend with the robot’s internal estimate when integrating the pose
correction feedback at static waypoints. For this, we record two iterations of a longer
trajectory (∼40 m, 3 times Traj. 3), with and without applying the feedback on the
robot. Fig. 5.7 shows the translation error over the traveled distance. The pose correction
feedback significantly improves the robot’s localization, reducing the error to the order of
magnitude of the fused path calculated on the backend. Comparing the RMS translation
error of the complete trajectories, the robot-internal estimate without correction gives an
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Table 5.3: Root mean square translation error in cm.

Pose
Estimation

Traj. 1 Traj. 2 Traj. 3 Avg.

Robot 20.5 19.4 15.8 18.5

Fused 5.76 4.64 3.03 4.48

0 10 20 30 40
travelled distance [m]

0.0

0.1

0.2

0.3

er
ro
r
[m

]

Translation Error
robot (no corr)
robot (corr)
fused
correction

Figure 5.7: Translation error with and without applying pose correction feedback to the robot’s
localization for the second experiment.

error of 17.5 cm that is improved significantly to 5.51 cm by the pose correction feedback.
The pose graph fusion, calculated on the central backend, further improves the RMSE
to 3.34 cm. To integrate the pose graph fusion onto the robot, a closer coupling with
the backend or a re-implementation of the robot navigation stack would be required.

5.4.3 Collaborative Semantic Mapping

In further experiments, we demonstrate the integration of the robot as a mobile sensor
node into the smart edge sensor network. Fig. 5.8 shows the consistency of the robot
observations with the allocentric scene model. Without pose correction feedback, error
accumulates in the localization and the observations have low consistency with the
model. After pose correction through the feedback from the smart edge sensors, the
observations fit the model well and can consistently be fused into the semantic map.

We show the collaborative semantic mapping in a lab-scale experiment in Fig. 5.9.
The semantic map is initialized from a prior model of the empty room, without any
semantic information. The static smart edge sensors observe the room only partly, due
to occlusions and limited measurement range, providing semantic information for ∼50 %
of the voxels. The mobile robot provides changing sensor perspectives and can actively
perceive the areas not observed by the static sensors. The waypoints for completing
the map were defined manually in the experiment but could be set automatically using
approaches for exploration and viewpoint optimization (S. Dong et al., 2019). Through
collaboration, mobile robot and static sensors build a complete semantic map of the
∼240 m2 environment with semantic information for over 90 % of the voxels.
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(a) (b) (c) (d)

Figure 5.8: Consistency of robot observations with global map: (a) local robot view; (b) 3D
view with accumulated drift after Traj. 3 and (c) after pose correction (green arrow);
(d) robot observations fused into map.

(a)

(b) (c)

Figure 5.9: Completion of semantic map by fusing with robot observations: (a) initial 3D map,
(b) incomplete semantic map with observations from static smart edge sensors, (c)
semantic map completed with robot observations and exploration path.

5.4.4 Localization Robustness

To evaluate the robustness of our collaborative localization approach, we repeat the
lab-scale experiment ten times, five times with pose correction feedback and five times
without, and report the success rate in Tab. 5.4. Using only the internal LiDAR-based
localization, the robot cannot reach all waypoints in three of five trials, an emergency
stop due to collision with an obstacle occurred in one trial, and, hence, the success rate
reaches only 1 / 5. Failures occur after 38 m of traveled distance, on average.

With the proposed localization feedback, the robot completes the ∼60 m long trajec-
tory successfully in all trials. The external camera-based pose estimation compensates
for the difficulties of the robot-internal navigation to localize in the highly cluttered,
dynamic environment where only few distinctive features, such as walls or columns, are
visible in the LiDAR, significantly increasing the system’s robustness.

5.4.5 Human-Aware Anticipatory Navigation

In an additional experiment, we use the real-time 3D human pose tracking by the
external smart edge sensors (cf. Chapters 2 and 3) to generate a semantic feedback
message informing the robot about people in its vicinity but out of sight of its internal
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Table 5.4: Robustness during 5+5 lab-scale experiments.

WP not reached Emergency Stop Success Rate

w/o correction fb 3 / 5 1 / 5 1 / 5

w/ correction fb 0 / 5 0 / 5 5 / 5

sensors, e.g. due to occlusions or limited FoV. This enables anticipatory human-aware
robot navigation where the robot can foresightedly adapt its navigation path e.g. to
persons appearing from behind occlusions. This scenario is common in many household
or office environments, e.g. at corridor intersections, as well as for warehouses with
narrow aisles between high shelves, where people suddenly emerging from behind
occlusions can be at risk of collision with autonomously operating robots. Fusing the
root internal sensor views with semantic feedback from the instrumented environment,
i.e. the network of external smart edge sensors, alleviates these issues and can enable
the robot to “see around corners”.

In our experiments, we implement the anticipatory human-aware robot navigation
on a low planning level, using the local dynamic obstacle map of the robot navigation
stack. This 2D grid map in robot coordinates can include multiple sensor sources (i.e.
robot-internal 2D LiDAR and RGB-D camera, as well as semantic feedback from the
sensor network) that provide information about occupied areas in the vicinity of the
robot and is used to dynamically update the navigation path to avoid them.

We employ the 3D person skeletons and their respective linear root joint velocity
estimated on the central backend to generate the semantic feedback message for the
robot. For this, the joints of persons in the vicinity of the robot are transformed from
allocentric to robot-centric coordinates, using the tracked robot pose and projected onto
the ground plane. The projected joints are inflated by a safety margin and extrapolated
2 s into the future using the root velocity estimate. The calculated regions that are
and will be occupied by persons are sent to the robot for integration into its dynamic
obstacle avoidance map.

The anticipatory human-aware robot navigation experiment is illustrated in Fig. 5.10
for a scenario where a person emerges from behind an occluding wall and crosses the
robot’s path. Without feedback (Column (a)), the robot can react to the person only
after they emerge from behind the wall and are visible in its own sensors. Robot and
person come dangerously close (bottom row). With semantic feedback from the external
sensors about tracked persons (Column (b)), the person with its linear velocity estimate
is included in the robot’s dynamic obstacle map, where regions they (prospectively)
walk through are marked as occupied (dark gray color) even before they appear from
behind the occlusion. The robot adapts its navigation path foresightedly and keeps a
safe distance from the person crossing its originally planned path.

Table 5.5 further gives a quantitative evaluation of the minimum safety distance
towards the human maintained by the robot during five iterations of the experiment
with and without human pose feedback, respectively. We indicate the distance of the
person’s root joint projected to the floor towards the outer surface of the robot base.
With semantic feedback about tracked persons, human and robot never come closer
than 80 cm, keeping a safety distance of 86 cm on average over the iterations of the



124 external camera-based mobile robot pose estimation

(a) without feedback (b) with feedback

Cam 1

Cam 2 Cam 3

Cam 4

Robot
Cam

External Cam. 3

Robot Cam

3D Scene Viewt = t1

Cam 1

Cam 2 Cam 3

Cam 4

Robot
Cam

External Cam. 3

Robot Cam

3D Scene Viewt = t2

Cam 1

Cam 2 Cam 3

Cam 4

Robot
Cam

External Cam. 3

Robot Cam

3D Scene Viewt = t3

Cam 1

Cam 2 Cam 3

Cam 4

Robot
Cam

External Cam. 3

Robot Cam

3D Scene Viewt = t̃1

Cam 1

Cam 2 Cam 3

Cam 4

Robot
Cam

External Cam. 3

Robot Cam

3D Scene Viewt = t̃2

Cam 1

Cam 2 Cam 3

Cam 4

Robot
Cam

External Cam. 3

Robot Cam

3D Scene Viewt = t̃3

Figure 5.10: Human-aware anticipatory navigation: External and robot camera view, and 3D
scene view for three time steps (from top to bottom) of a person walking out from
behind an occluding wall and crossing the robot’s path. The 3D scene view includes
semantic map, tracked person and robot, planned robot path (green line), and
obstacle avoidance map with free (white), unknown (light gray), and occupied (dark
gray) areas. Semantic feedback from external smart edge sensors about tracked
persons and their velocity (red arrow) enables the robot to anticipatorily adapt its
navigation path to people emerging from behind occlusions.

experiment. Without feedback, the minimum safety distance between person and robot
decreases to 10 cm or less in some iterations, posing a serious risk of collision. The safety
distance only amounts to 29 cm on average.

Through the semantic human pose feedback, the HSR robot can anticipate a person
emerging from behind an occlusion significantly earlier and anticipatorily adjust its
navigation path to always maintain a sufficient safety distance.
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Table 5.5: Minimum person–robot safety distance during anticipatory navigation experiment.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg.

w/o fb 54 cm 11 cm 7 cm 37 cm 35 cm 29 cm

w/ fb 89 cm 91 cm 82 cm 85 cm 83 cm 86 cm

5.5 Discussion

We presented a novel method for marker-less mobile robot pose estimation using multi-
view keypoint detections from a network of external smart cameras. We use this to
initialize and continuously update a mobile robot’s localization in the allocentric scene
model of the smart edge sensor network and build a system for collaborative perception
between mobile robot and static smart edge sensors. The typical position error of our
proposed method for mobile robot pose estimation is below 2.8 cm when detected in at
least two cameras, and below 4.3 cm when detected in a single camera, while the robot
localization typically deviates more than 19 cm after only 5 m of traveled distance.

Precisely initializing and tracking the robot’s localization w.r.t the camera network
allows to fuse its semantic observations in a globally consistent way into the allocentric
scene model. The robot as a mobile sensor node provides changing viewpoints and
can explore areas not covered by the static sensors due to occlusions and limited
measurement range. We demonstrate a real-world application where a mobile robot and
distributed smart edge sensors collaboratively build a 3D semantic map of a large room
and the robot shows robust long-term operation capabilities in the challenging, cluttered
environment. Furthermore, in an additional experiment on anticipatory human-aware
robot navigation, we show that the robot can anticipate persons emerging from behind
occlusions and anticipatorily adjust its navigation path to maintain a safe distance by
incorporating semantic feedback of human pose observations from the external sensors.

In future work, we plan to use our system for collaborative perception to enable human-
robot interaction in a shared workspace. The anticipatory human-aware navigation
could be implemented on a higher planning level, instead of using the local obstacle
avoidance map, taking long-term goals and intents of the persons into account.





6
C o n c l u s i o n s a n d O u t l o o k

In this thesis, we developed a system for multi-view 3D semantic scene perception using
a network of distributed smart edge sensors and mobile robots with on-board compute
accelerators for local image processing. The smart edge sensors and robots communicate
with a central backend that fuses all available sensor perspectives into an allocentric
semantic scene model. The instrumentalization of the lab-scale workspace environment
by installing numerous smart edge sensors with on-board semantic perception allows to
efficiently and robustly build a comprehensive and detailed 3D semantic scene model
online, in real time. Since the sensor data is semantically interpreted on-device, directly
at its source, the communication between the sensor nodes and the central backend
runs on a purely semantic level, and the raw images remain on the sensor boards. This
significantly reduces the required network bandwidth and mitigates privacy issues for
the observed persons.

We introduced the concept of semantic feedback to couple static and mobile smart
edge sensors with the central backend through bidirectional communication at the
semantic level, enabling information sharing among distributed sensors for collaborative
perception. Semantic feedback allows global context information, such as fused multi-
view human and robot pose estimates, to be incorporated into the local semantic model
of each smart edge sensor. This improves pose estimation results, e.g., by resolving
occlusions or detections that are ambiguous from a single sensor view, and enables
mobile robots to preemptively adjust their navigation path, e.g., when a person emerges
from an occluded area.

Since there are many different sensor perspectives, the failure of individual sensor nodes
can be tolerated and compensated for by other overlapping views through collaborative
information sharing. Mobile robots need less on-board perception when collaborating
with the external sensor network as they can incorporate context information from the
allocentric scene model via semantic feedback. On the other hand, all sensor nodes,
including the mobile robots, maintain local short-term autonomy through on-board
interpretation of their local sensor views, even in the case of communication failure.
Semantic feedback sends relevant parts of the fused, allocentric scene model back to
the individual sensor nodes, where the feedback information, if available, is fused with
the local detections. Thus, semantic feedback expands the local perception fields of the
sensors with global context information whenever an up-to-date feedback message is
received, but the local view interpretation does not depend upon its availability.

Through collaborative information sharing via semantic feedback, mobile robots
and static smart edge sensors deployed in challenging, cluttered, and dynamic real-
world environments were demonstrated in this thesis to be able to build complete 3D
semantic scene models including scene geometry, persons, and objects. We presented
methods for real-time multi-view 3D human pose estimation and 3D semantic scene
perception to build an allocentric 3D semantic scene model using static viewpoints of
distributed smart edge sensors and changing viewpoints of mobile robots. The scene
model contains dynamic 3D human poses estimated in real time and semantically
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annotated 3D scene geometry as a volumetric map with additional object-level pose
and shape information. For real-time sensor data interpretation onboard the embedded
inference accelerators, we adapted efficient CNN architectures for image and point cloud
semantic segmentation, person and object detection, and human, robot, and object pose
estimation, and retrained or fine-tuned them on task-specific datasets.

For real-time multi-view 3D multi-person pose estimation, each camera view is
processed locally, onboard the respective embedded sensor, and only semantic person
keypoint detections are transmitted to a central backend where they are fused into 3D
skeleton models. Sets of corresponding keypoint detection messages are synchronized
based on the detection timestamps, associated across camera views to person hypotheses
based on the epipolar distance of their joints, and raw 3D poses are recovered via
triangulation. The 3D poses are further refined using a skeleton model that incorporates
prior information on the typical bone lengths of the human skeleton. Semantic feedback
is implemented by reprojecting the allocentric multi-view human pose estimate into
individual sensor views, where it is fused with the local detections to resolve occluded or
ambiguous joint detections. The pipeline was evaluated on the Human 3.6M, Campus,
and Shelf datasets where it achieves state-of-the-art results, as well as on own data in
challenging real-world scenarios with up to 16 cameras and six persons. Up to three
persons can be tracked at the full sensor frame rate of 30 Hz and up to six persons at
15 Hz, achieving real-time performance.

As the multi-view fusion of local joint detections to 3D pose estimates requires
the relative camera poses to be known, we developed methods for online marker-free
extrinsic camera calibration requiring only a rough, tape-measure-based initialization.
Factor graph optimization problems are repeatedly solved to estimate the camera poses
constrained by the synchronized sets of person keypoint observations. The calibration
method was designed to be robust against occlusions and false or sparse sets of detections,
and is free of many typical assumptions of similar methods: It does not require a
specific calibration target, can cope with and exploit detections of multiple persons
simultaneously, and handles arbitrary person poses. We showed that our results are
more accurate than the reference calibration obtained by an offline method based on
traditional calibration targets. Our calibration reliably achieved lower reprojection errors
in the 3D multi-person pose estimation pipeline used as an evaluation scenario.

To build a complete 3D semantic scene model containing 3D geometry and object
instances in addition to dynamic human poses, we extended the smart edge sensor
network with additional sensor nodes with enhanced computational capabilities and
RGB-D and thermal cameras. Semantically annotated point clouds and pose and shape
information of detected furniture objects are streamed from the sensors to a central
backend in addition to the 2D human keypoint estimates, which are augmented with
the RGB-D depth.

The semantic point clouds from multiple views are aggregated into an allocentric
volumetric semantic map through Bayesian fusion. Individual objects are represented
in the semantic map via an a-priori known 3D mesh model or a volumetric sub-map
that is learned online. Only a few semantic object properties, such as estimated pose
and point measurement distribution variances are transmitted from the sensors to the
backend, and object candidates from multiple views are associated and fused.

A two-stage approach of keypoint detection and PnP pose estimation was implemented
for object pose estimation. Keypoints were defined on prominent geometric features of
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the respective object model and synthetic data for training keypoint detection CNNs
was generated using a photo-realistic rendering framework. The usage of only synthetic
training data allows to extend the method easily to different object classes. From the
keypoint detections, object poses are calculated via the PnP-RANSAC algorithm using
2D-3D correspondences between detected and model keypoints and refined via ICP
alignment when depth data is available. We evaluated the method for object pose
estimation on the single-view YCB-V dataset and the multi-view Behave dataset where
it achieved pose errors below 9 cm and 9◦ with online input data processing using
lightweight CNN architectures deployed on the embedded sensor hardware.

The extended sensor network consists of 20 smart edge sensors, thereof 4 based on
the novel Jetson NX board, covering an area of about 12×22 m in a real-world lab
environment. We evaluated the performance and robustness of the proposed system for
multi-view 3D semantic scene perception in challenging, cluttered real-world scenes with
up to 8 persons and different furniture objects. Dynamic human motions are estimated
in real time and the semantically annotated 3D geometry provides a complete scene
view that explains interactions between persons and objects in a physically plausible
manner. Multiple chairs and a table are tracked through the scene online, in real time,
even under high occlusions.

The concept of smart edge sensors with local on-device semantic image processing
was further extended from static sensor boards to mobile aerial and ground robots. We
proposed a UAV platform with on-board real-time multi-modal semantic perception
as a mobile smart edge sensor operating outdoors. We evaluated the computational
efficiency of different embedded inference accelerators connected to the UAV computer.
The Edge TPU performs inference in 8-bit quantized mode and showed more efficient
CPU usage. The iGPU is more flexible, e. g. to directly run pre-trained models, as it uses
16- or 32-bit floating-point precision and does not require model quantization. While
the previous scenarios used multiple, static smart edge sensors, here we used a single,
but moving, sensor node. A LiDAR sensor was used in addition to the RGB-D cameras,
providing precise range measures also at large distance. We addressed domain adaptation
issues between sensors with different FoVs for the LiDAR semantic segmentation CNN,
retraining it with data captured on our UAV using pseudo-labels automatically obtained
from the aggregated image-based semantic map, providing cross-domain supervision.
This takes up the idea of semantic feedback, reprojecting parts of the fused allocentric
semantic model into individual sensor views to provide a reliable source of semantic
information. With label propagation, the 3D segmentation accuracy of the proposed
system significantly improved for the full 360◦ LiDAR FoV. We evaluated the system
in real-world experiments in an urban environment and at a disaster test site, showing
coherent semantic perception of diverse and challenging scenes.

We combined the previous approaches to the final extent of the proposed system
for collaborative semantic scene perception: A mobile service robot was incorporated
into the network of static smart edge sensors to collaboratively build a more complete
semantic scene model. The external smart edge sensors estimate the mobile robot’s
pose using multi-view keypoint detections to initialize and continuously update its
localization in the allocentric scene model. We evaluated the accuracy of the external
pose estimation using an additional marker-based tracking system as a reference. The
typical position error is below 2.8 cm when the robot is detected in at least two cameras,
and below 4.3 cm when detected in a single camera.
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Using the robot as a mobile sensor node, we built a system for collaborative perception
between mobile robot and static smart edge sensors. The robot provides changing
viewpoints and actively perceives areas not observed by the static sensors. Fusing its
semantic observations in a globally consistent way into the allocentric scene model
extends the coverage and level of detail of the semantic map. Through semantic feedback
of human pose observations from the external sensors, the robot can anticipate people
emerging from behind occlusions and preemptively adjust its navigation path to maintain
a sufficient safety distance.

The proposed approaches using semantic feedback for collaborative semantic scene
perception lay the foundations for many potential human-robot interactive and col-
laborative application tasks that go beyond the collaborative semantic mapping and
human-aware navigation demonstrated in this thesis.

Future applications of the developed system for collaborative semantic perception
include service robot tasks with human–robot interaction based on the semantic scene
model built from the distributed smart edge sensors. In a collaborative assembly task, a
mobile service robot could anticipatorily bring parts or tools needed by a person for
the upcoming assembly steps. These parts and tools could be localized throughout the
capture space by the distributed sensors. Also, the transformation of room layouts by
autonomously or collaboratively moving chairs and tables in a shared office–teaching
space, or household tasks like laying the table could be realized. The human-aware
anticipatory navigation could be implemented on a higher planning level instead of the
local obstacle avoidance map, taking longer-term intentions of persons into account.

Further directions for future work are related to extending and improving the semantic
scene model. The data association in multi-person scenes could be improved by using
visual re-id descriptors on top of geometric cues and modeling multiple hypotheses
for data association could help to resolve ambiguities. Predictions locally in sensor
coordinates could provide additional input complementary to local detections and
received semantic feedback. Additionally, the semantic feedback of dynamic human
poses could be improved by using a more elaborate, deep-learning-based predictive
motion model on the central backend. Methods from federated learning (Brecko et al.,
2022) could be applied to collaboratively improve the local CNN models without sharing
privacy-sensitive raw data. Last but not least, a more unified scene representation could
be found, based on semantic neural radiance fields (Suhani Vora et al., 2022; Zhi et al.,
2021) that implicitly model the scene geometry, semantics, and person, object, and
robot models which currently are explicitly instantiated in the scene model.
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