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Abstract

Online resource allocation problems play a fundamental role in online decision making.
In these problems, a sequence of agents arrives one-by-one, each with the goal of being
assigned a subset of available items. An allocation decision is required to be made
immediately and irrevocably. This introduces several challenges for the decision-maker:
Future arrivals are unknown, agents can act strategically and the allocation decisions
may be required within milliseconds.

The goal of this thesis is to design algorithms which address these challenges and for
which we can theoretically quantify the loss due to

I. limited information about the future,

II. limited computational power and/or

III. strategic behavior of agents.

In order to bound the loss due to limited information about the future (I.), we work
in the Prophet Inequality model with stochastic prior information about the arriving
agents. Given this prior knowledge, the goal is to design online algorithms which perform
reasonably well compared to the expected offline optimum. For this class of problems,
the contribution in this thesis is twofold: First, we give simplified proofs for existing
pricing-based Prophet Inequalities for combinatorial auctions and matroids. Second, we
show that asymptotically optimal welfare can be achieved once we restrict the class of
distributions from which the values are sampled.

Shifting the perspective to bound the loss due to limited computational power (II.),
we provide a polynomial-time approximation algorithm for the optimal policy once buy-
ers have multi-demand valuations. For these, we show how to use an LP-based rounding
approach in order to beat existing results and derive state-of-the-art guarantees. As
a side remark, all algorithmic approaches mentioned so far can also be applied when
agents behave strategically. In particular, the algorithms are (or can be made) incentive
compatible.

Beyond the assumption that items are always available for sale, we consider the
related model of two-sided markets: Items are initially held by strategic sellers. In
this setting, we are able to bound the loss due to strategic behavior of agents (III.).
In particular, we show that for matroid, knapsack and combinatorial double auctions,
a reasonable fraction of the expected welfare of the optimal allocation is achievable
when restricting to incentive compatibility, individual rationality and budget balance
constraints.

Complementing results in the Prophet model, we also argue about the loss due to
limited information about the future (I.) in the Secretary model. Here, weights are
chosen adversarially, but arrive in random order. We show that in this model, a single
piece of information can help to beat prevalent bounds. In particular, we use a predicted
additive gap as advice and are able to beat the guarantee of 1/e, which was tight in the
classical model.
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Chapter 1

Introduction

After a concert in the local theater, several hundreds to thousands of people would like
rides to destinations including their homes, the railway station, and local restaurants.
Initially, the number of potential passengers exceeds the number of available cabs. Over
time, cabs become available for the remaining concert-goers. How should we assign
passengers to cabs?

Or consider the problem of bringing aid supplies to a region in which a natural
disaster took place. As a transportation plane becomes available, we can pick a subset
of goods which are needed in order to help the people on-site. Still, some goods such as
water or medical equipment might be more urgent than others. How should we proceed
in order to maximize social welfare?

Both these problems can be modeled as online resource allocation problems. Gener-
ally speaking, in this thesis, we will talk about a set of items which is available offline
(in the examples above: the passengers or the aid goods) and a sequence of buyers who
arrive online one-by-one (the cab drivers or the transportation planes). In every time
step, a new buyer arrives and we get to know her preference for being allocated dif-
ferent subsets of items. With this knowledge, we are required to make an immediate
and irrevocable allocation decision. In other words, without knowing the realizations of
future arrivals, we need to decide which subset of items we allocate to the current buyer.
Our goal is to maximize the social welfare: the sum of buyers’ values for their assigned
bundles.

Examples for this kind of problems are widely spread, also beyond the two introduc-
tory examples mentioned above:

• In internet advertising, upon the arrival of an online search query, an immediate
and irrevocable decision for which ads to display must be made. Advertisers may
have different values for their ad appearing below different queries. How should
we decide which ads to display?

• Every airplane has a capacity of seats for a flight. Customers can purchase subsets
of available tickets which they desire the most. Still, some passengers might not
show up at the end. How should we set prices in order to ensure a good allocation
of tickets?

• Another example is the problem faced by an over-demanded hospital: patients
are waiting to be admitted, but all beds are occupied. As soon as beds become
available, we can assign some of the waiting patients. How should we do so to
maximize social welfare?

9



CHAPTER 1. INTRODUCTION

One of the goals of this thesis is to design algorithms which are able to deal with (at
least parts of) the complexity of the introductory examples. Notably, buyers may behave
strategically (as e.g. in ticket purchasing), future arrivals are not necessarily known (as
e.g. in healthcare) and decisions may be required within milliseconds (as e.g. in ad
auctions). To this end, we want to design algorithms for which we can provably bound
the loss due to

I. limited information about the future, in Chapter 3, Chapter 6 and Chapter 7

II. limited computational power, in Chapter 4, or

III. strategic behavior of agents, in Chapter 5.

Before we dive deep into tackling these questions, we start with a vanilla problem
in order to gain a better understanding from a mathematical perspective. In particular,
some of the following online single-selection problems will turn out to be special cases
of many settings which are considered in this thesis.

1.1 Online Single-Selection Problems

Let us start with a highly simplified scenario of the introductory examples: the case of
a single item, which is also called the online selection problem. Here, we assume that
we are given numbers w1, . . . ,wn ∈ R≥0 one-by-one. The number wi corresponds to the
value which buyer i has for being allocated the item. Our goal is to find a policy or an
algorithm which is likely to pick a “reasonably large” number. We determine the quality
of an algorithm by comparing the selected value to the largest value in the sequence.
Since values are not necessarily bounded, we measure the quality by the ratio of the
value selected by the algorithm and maxiwi. This quantity is called the competitive
ratio, the value achieved by an online algorithm divided by the optimal offline solution.

It is fairly easy to see that if we perform a worst-case analysis, we will not learn much
about the structure of favorable algorithms. To see this, consider the following example.
For the first couple of steps until some arrival i∗, the weights are defined as wi := W i

for some very large number W . After this time i∗, we suddenly only observe zero values,
i.e. wi := 0 for all i > i∗. Obtaining a “reasonably good” competitive ratio is hence
only possible by picking the largest number. In other words, we need to find the index
i∗. Still, by an application of Yao’s lemma [Yao, 1977], no algorithm can ever achieve
a competitive ratio better than 1/n in this setting. On the other hand, it is trivial to
obtain this competitive ratio: Simply sample one index uniformly at random upfront
and select the element with this index. Chances are 1/n that we pick the largest number
in the sequence.

The example above shows that with adversarial weights arriving in adversarial order,
there is not much hope to learn anything about how to distinguish promising algorithms
from unfavorable ones for online selection problems. This motivates the study of relax-
ations of these two assumptions which will be the two cornerstones for all problems in
this thesis: The Prophet Inequality model and the Secretary model.

• Prophet Inequality model: We keep the assumption that the arrival order is ad-
versarial, but assume that values are drawn from probability distributions. These
distributions are given to the decision-maker upfront.

10



CHAPTER 1. INTRODUCTION

• Secretary model: Weights are chosen adversarially, but they arrive in an order
sampled uniformly at random from all permutations.

Interestingly, one can achieve constant-factor guarantees in both, the Prophet as well
as the Secretary model, which are independent of the length of the sequence n. We first
give a brief introduction to Prophet Inequalities before discussing the Secretary problem
afterwards.

1.1.1 Prophet Inequalities

In the standard Prophet Inequality model, we assume that in every round, the value1 vi
is sampled independently from a publicly known distribution Di over non-negative real
numbers. The distributions are known upfront, but the realizations are only observed
one at a time. After a new realization is revealed, the decision-maker is required to make
an immediate and irrevocable accept or reject decision.

This problem corresponds to a Markov Decision Process with the two actions “accept”
and “reject”. The value achieved by the optimal policy for this problem can be easily
computed via backwards induction (see e.g. Chow et al. [1971]). Denote by

ω(n) = E [vn] and ω(i) = E
[
max{vi,ω(i+1)}

]
for i < n .

It is not too hard to see that the optimal policy will accept a value vi if and only if it
exceeds ω(i+1). In other words, the optimal policy accepts vi if this value is larger than
what the optimal policy can achieve in the remaining sequence. As a consequence, ω(1)

corresponds to the value which is achievable by the optimal policy starting from the
first element in the sequence. This directly introduces thresholds (or dynamic prices)
for every element via

p(n) = 0 and p(i) = E
[
max{vi+1, p(i+1)}

]
for i < n ,

and the optimal policy accepts vi if and only if vi ≥ p(i).
Having this, a natural question to ask is how much we lose due to not knowing

future arrivals upfront but only having distributional information. In other words, one
might wonder how well this policy performs compared to the expected offline optimum
E [maxi vi], also called prophet. That is, the offline optimum (or the prophet) can see
all realizations upfront and simply pick the largest number. Before we dive into any
algorithmic approaches, let us consider a very simple and well-known example.

Example 1.1.1. (Folklore) The first buyer has a value v1 = 1 deterministically, the
second buyer has a value of zero with probability 1 − ε and a high value of 1/ε with
tiny probability ε. While the expected offline optimum in this case is 2− ε, any online
algorithm (which does only observe the realization for the second buyer after making the
decision for the first buyer) can only achieve a value of one in expectation.

This example limits our expectations. In particular, Example 1.1.1 shows that the
best competitive ratio we can hope for is 1/2. Luckily, there are positive results with
reasonable guarantees, originally introduced by Krengel and Sucheston [1977, 1978]. As a
matter of fact, instead of analyzing the optimal policy and comparing its expected value

1In order to distinguish weights from distributions and adversarial weights, we call weights which
are sampled from distributions “values” and denote them by vi instead of wi.

11



CHAPTER 1. INTRODUCTION

to the offline optimum, we will see that a cleaner and simpler algorithm can already
achieve a 1/2-fraction compared to the prophet.

To this end, consider Algorithm 1 which already dates back to the 80s by Samuel-
Cahn [1984]: Set a static price p for selling the item and the first buyer who is willing
to pay the price, i.e. vi ≥ p, gets the item.

Algorithm 1: Sequential Posted Pricing
1 Compute a price p based on D1, . . . ,Dn before the first arrival
2 Accept the first i with vi ≥ p

For this posted pricing algorithm, there are several different proofs for the following
theorem in the literature.

Theorem 1.1.2 (e.g. in Samuel-Cahn [1984], Kleinberg and Weinberg [2019]). Denote
by ALG the value selected by Algorithm 1. Then, for OPT := maxi vi, we have

E [ALG] ≥ 1/2 ·E [OPT] .

Theorems of this kind are usually referred to as Prophet Inequalities as we compare
the performance of an online algorithm without knowledge of future arrivals to the
above-mentioned prophet who has foresight about all values in the sequence. At the
same time, from the perspective of competitive analysis, Theorem 1.1.2 derives a bound
on the competitive ratio.

The proof techniques for this theorem became a standard tool over the last couple
of years [Feldman et al., 2015, Dütting and Kleinberg, 2015, Gravin and Wang, 2019,
Kleinberg and Weinberg, 2019, Dütting et al., 2020, Dütting et al., 2020, Correa et al.,
2022, Braun and Kesselheim, 2023a] with different choices of the price p. For example,
one can set p = 1/2 ·E [maxi vi], introduced by Kleinberg and Weinberg [2012]2. The
first proof by Samuel-Cahn [1984] in the 1980s uses a price p with the property that
Pr [∃i : vi ≥ p] = 1/2. Also, there are many other prices which lead to the desired
competitive ratio. For example, setting p such that p = E [

∑
i(vi − p)+] [Correa et al.,

2022] or a combination of the different options presented so far [Samuel-Cahn, 1984] also
works.

For the sake of completeness, a proof of Theorem 1.1.2 can be found in Appendix A.1,
which the experienced reader may skip. As an important remark, recall that by Exam-
ple 1.1.1, the guarantee of 1/2 is tight.

1.1.2 The Secretary Problem

In contrast to the Prophet Inequality model, in the Secretary problem, an adversary
fixes non-negative, real-valued weights w1 ≥ w2 ≥ · · · ≥ wn which are revealed online
in random order. We model this by drawing an arrival time ti

iid∼ Unif[0, 1] for every
weight. Weight wi is revealed at time ti and we immediately and irrevocably need to
decide if we want to accept or reject this element. As before, we are allowed to pick at
most one element with the goal of maximizing the selected weight.

A tight competitive ratio of 1/e is known for this problem since the seminal work of
Lindley [1961] and Dynkin [1963] (also see Ferguson [1989] or Freeman [1983]) and can

2Kleinberg and Weinberg [2012] is the conference version of Kleinberg and Weinberg [2019].
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CHAPTER 1. INTRODUCTION

be achieved with a very simple threshold policy: Wait until some time τ ∈ [0, 1] and
only observe weights without accepting. At time τ , take the weight which is best-so-far
as a threshold, i.e. BSF(τ ) = maxi:ti≤τ wi (define BSF(τ ) = 0 if no arrival took place
before time τ). After time τ , accept the first element whose weight exceeds BSF(τ ).

Algorithm 2: Secretary Algorithm
1 Input: Time τ ∈ [0, 1]
2 Before time τ : Observe weights wi
3 At time τ : Compute BSF(τ ) = maxi:ti≤τ wi
4 After time τ : Accept first element with wi ≥ BSF(τ )

The following seminal result dates back to the work from the 1960s.

Theorem 1.1.3 (implied by e.g. Lindley [1961], Dynkin [1963]). Denote by ALG the
weight selected by Algorithm 2. For time τ = 1/e, we have

E [ALG] ≥ 1/e ·OPT ,

where the expectation is over the random arrival times and OPT := maxiwi = w1.

To be precise, Lindley [1961] and Dynkin [1963] provide a stronger guarantee. They
derive a lower bound on the probability of accepting the largest weight which implies
Theorem 1.1.3. Also, they did not model the random order via arrival times but rather
considered one permutation drawn uniformly at random from the set of all permuta-
tions. Still, their ideas are directly applied in order to prove the above guarantee in
Theorem 1.1.3 with arrival times. Even further, the arrival time and random permuta-
tion models are equivalent for this problem, meaning that an algorithm can be used for
an input from the other model and vice versa.

As before, we give a proof for Theorem 1.1.3 in Appendix A.2, which the experienced
reader may skip. Note that the guarantee of 1/e is also tight [Dynkin, 1963, Buchbinder
et al., 2014].

1.2 Beyond Single-Selection: Structure of this Thesis

As a matter of fact, the single-selection problems from Section 1.1 will not be sufficient
to properly model our introductory examples on resource allocation, ad auctions and
purchase processes. To this end, we consider generalizations in several directions in this
thesis. We give a very brief, high-level overview with a connection to the single-selection
problem now and discuss a much more fine-grained picture of the results and techniques
with a comparison to previous work afterwards in Section 1.3 and Section 1.4.

Combinatorial Auctions with Bayesian Priors. In Section 3.2 and Section 3.3 in
Chapter 3, we consider the setting of online combinatorial auctions. That is, instead of
a single item, there is a set of multiple, heterogeneous items M available for sale and
buyers have valuation functions vi : 2M → R≥0 for item bundles which are drawn from
distributions. For these problems, we give a simplified proof for the existence of static
item prices via LP duality. This extends the guarantee of 1/2 from Theorem 1.1.2 to this
more general model.

13



CHAPTER 1. INTRODUCTION

Complementing this, in Chapter 4, we will see that there are classes of valuation func-
tions for which we can even improve the guarantee of 1/2 when changing the benchmark:
Instead of comparing to the expected offline optimum, we now measure the quality of
a polynomial time algorithm with respect to the expected welfare of the optimal online
algorithm with unbounded computational power.

In the extension in Section 5.5 in Chapter 5, we consider the setting in which items
are not always available but are sold by sellers. Here, sellers may act strategically to
maximize their own utility and have a private value for the item. This implies that
items only become available once we offer sellers a price exceeding their value. Also, the
guarantee of 1/2 from Theorem 1.1.2 can be generalized to this model.

In a slightly different model in Chapter 6, we make a stronger assumption on the
distributions from which the valuations are drawn. This allows to obtain much better
guarantees than 1/2.

Resource Allocation with Feasibility Constraints. Complementing the work on
combinatorial auctions, we also work in extensions of the single-selection case towards
settings with constraints on the set of buyers which are allocated an item. Usually, one
assumes that items are homogeneous, so buyers are simply interested in being allocated
one copy. The crux is that the set of buyers with items is required to fulfill a feasibility
constraint. In Section 3.4 in Chapter 3, we give an LP-based proof for a Prophet In-
equality when the set of buyers with items is required to be independent in a matroid.
As an interesting remark, the same guarantee of 1/2 also appears in this context again.

Feasibility constraints also play a role in Chapter 5 when items are held by sellers,
but the set of buyers which are allocated an item is restricted by a constraint family. In
particular, we consider matroid constraints in Section 5.3 and Section 5.4 and knapsack
constraints in Section 5.6 and Section 5.7.

Online Selection in the Secretary Model. In Chapter 7, we turn our perspective
towards random arrival orders for adversarial weights. In contrast to Theorem 1.1.3, we
assume to get a single additional piece of information upfront. One can think of this
information as a prediction from some machine-learning model which the algorithm may
or may not incorporate in order to improve its performance. As we will see, with an
accurate prediction, one can beat the guarantee of 1/e from Theorem 1.1.3.

1.3 Overview of Results and Techniques in this Thesis

In this section, we give a more detailed overview of the results in this thesis and highlight
differences to previous work as well as technical contributions. Additional notes on how
the chapters differ from the papers they are based on as well as the contribution of the
authors to the results are addressed later in Section 1.5.

Quality of Algorithms. Throughout this thesis, we measure the quality of all algo-
rithms by comparing to an optimum benchmark. As we do usually not assume agents’
valuations to be bounded, we aim for multiplicative guarantees. To this end, let us de-
note by ALG the (expected) objective value achieved by our algorithm, assume ζ ∈ [0, 1]

14



CHAPTER 1. INTRODUCTION

and OPT denotes the (expected) optimal objective value3.

I. Loss due to limited information: We say that an online algorithm is ζ-competitive
compared to the (expected) offline optimum OPT if for any instance of the problem,
we have ALG ≥ ζ ·OPT.

II. Loss due to limited computational power : If an optimal solution to a problem
cannot be found efficiently4, we aim for polynomial-time approximation algorithms.
We say that a polynomial-time algorithm is a ζ-approximation if for any instance
of the problem, we have ALG ≥ ζ ·OPT.

III. Loss due to strategic behavior : In settings where agents behave strategically and
may misreport valuations in order to be assigned an allocation, we say that an
allocation algorithm is a ζ-approximation if ALG ≥ ζ ·OPT and OPT has access
to the true valuations directly, i.e. it is not restricted by any strategic behavior.

Expectations are taken over inherent randomness of the algorithm, due to sampling
valuations from distributions or random arrival times. To make this dependence more
clear, we sometimes write E [ALG] and/or E [OPT] instead of ALG and OPT. As the
benchmarks will be different across chapters in the thesis, we give more precise, formal
definitions of what is meant in the preliminaries section in the respective chapters.

The key points of comparison are the following: The main statements in Chapter 3,
Chapter 6 and Chapter 7 derive competitive ratios (I.) for online algorithms. In Chap-
ter 4, we design and analyze a polynomial-time approximation algorithm (II.) and in
Chapter 5, we compare the performance of a mechanism which is required to deal with
strategic behavior to an optimum allocation (III.).

1.3.1 Chapter 3: Simplified Prophet Inequalities for Combinatorial
Auctions and Matroids

In this chapter, we derive simplified proofs5 for Prophet Inequalities in combinatorial
auctions. To this end, we make use of a linear programming formulation capturing the
existence of static item prices, inspired by an LP introduced in Dütting et al. [2020]. An
application of strong LP duality allows us to change our perspective and move into dual
space. The interpretation of the dual variables as probabilities over the presence and
absence of items allows us to draw the conclusion: There exist static item prices which
lead to the desired competitive ratios.

Comparing this to previous work, we can also interpret the static and anonymous
item prices from Feldman et al. [2015] and Dütting et al. [2020] in the context of the
linear program. Their prices are actually feasible solutions to our linear program. Still,
the proofs for competitive ratios in the work of Feldman et al. [2015] and Dütting et al.
[2020] are based on arguments about a specific choice of the price vector (pj)j∈M . In
particular, they argue about prices and valuation functions and show that, on the one
hand, prices are sufficiently high to cover the welfare loss induced by allocating an item.

3For simplicity, whenever appropriate in this thesis, we will overload notation and use ALG and
OPT for the objective value as well as the algorithm itself and the allocation which achieves this value.

4Unless P = NP. By efficient we mean that the running time of the algorithm is polynomial in the
input size of the problem instance.

5We highlight that most of the theorems in this chapter were already known in the literature before,
but with different, more complicated proofs. In addition, Chapter 3 is the only chapter in this thesis in
which the theorems were known already before.

15



CHAPTER 1. INTRODUCTION

On the other hand, they need to argue that prices are low enough such that agents are
willing to buy. In contrast, our approach can avoid any argument on specific buyers’
valuations at all.

Concerning competitive ratios, our LP based proof recovers the tight guarantees of
1/2 for a single item from Theorem 1.1.2 as well as XOS6 valuation functions [Feldman
et al., 2015] and the currently best known 1/4k−2 for MPH-k valuations6 [Dütting et al.,
2020]. As a side remark, for any k ≥ 2, we also get a tiny improvement in the competitive
ratio for MPH-k Prophet Inequalities from 1/4k−2 to 1/

(
2k+2
√
k(k−1)−1

) which is slightly
better than 1/4k−2.

Complementing this, we show that a related LP-based approach can also be used for
Prophet Inequalities with matroid feasibility constraints. To this end, we give a proof
for the existence of dynamic prices in Section 3.4 leading to a tight 1/2-competitive
algorithm, a statement initially shown by Kleinberg and Weinberg [2019].

1.3.2 Chapter 4: Approximating Optimum Online for Multi-Demand
Buyers

Even though the proofs for the competitive ratios from Chapter 3 are simple, the ap-
proach is unfortunately not computationally efficient. Luckily, Dütting et al. [2020]
argue that we can also achieve a polynomial time 1/2-competitive algorithm against
the expected offline optimum. Note that this directly implies a polynomial time 1/2-
approximation algorithm for the (computationally unrestricted) optimal online algo-
rithm7. Still, by Example 1.1.1, there is no hope to get better-than-half approximation
algorithms compared to the optimum online algorithm when using this implication.
Hence, an immediate question is the following: Is there another way to get improved
approximation algorithms for combinatorial auctions when comparing to the (computa-
tionally unrestricted) optimal online algorithm?

We study this problem for buyers with multi-demand valuation functions6 and answer
this question in the affirmative. In particular, we show the following theorem.

Theorem 1.3.1. When buyers have multi-demand valuation functions, there exists a
polynomial time (1/2 + κ)-approximation algorithm with respect to the expected social
welfare of the optimal online algorithm, for a constant κ ≥ 0.0115.

Our approximation algorithm works in the following way: It rounds an LP relaxation
online while introducing a controllable amount of positive correlation among items. For
each buyer i, we apply two rounds of so-called pivotal sampling to the set of items.
Doing so, we guarantee to never “over-allocate” items to buyer i beyond its remaining
demand. In addition, we only randomly allocate a subset of these sampled groups to
avoid large positive correlation between items while still ensuring that items are allocated
with sufficiently high probability.

The LP relaxation uses an “online constraint” which separates online and offline
algorithms, as in Papadimitriou et al. [2021], Torrico and Toriello [2022]. Also, from a
high-level perspective, our algorithm template looks similar to the one in Papadimitriou
et al. [2021] for the unit-demand case. Still, as we highlight in Chapter 4, for the

6We give formal definitions for all valuation functions in Chapter 2.
7The offline optimum is a stronger benchmark than the online optimum. To see this, simply note

that one possible strategy for the offline optimum is to mimic the online optimum by not considering
future realizations.
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algorithm as well as its analysis, new ideas are required when considering more general
multi-demand valuations.

Interestingly, this is a sharp contrast to Chapter 3: Through the lens of Prophet
Inequalities (i.e. comparing to the offline optimum), the unit-demand and the general
multi-demand variant of the problem behave nearly identically. These variants can all be
handled by the same algorithmic template (for example using the one from Chapter 3)
and techniques for the unit-demand case directly carry over. As we will discuss in
Chapter 4, this is no longer true when considering the optimum online algorithm as a
benchmark.

1.3.3 Chapter 5: Truthful Mechanisms for Two-Sided Markets via
Prophet Inequalities

Given the discussion on resource allocation problems in Chapter 3 and Chapter 4 in
which all items are available initially, in this chapter we shift our perspective towards a
more strategic environment. Now, items are initially held by sellers who have a privately
known value for items. In order to make an item available for buyers, we need to ensure
the payment of a sufficiently high price to the seller holding an item. Still, suitable
mechanisms are not allowed to subsidize potential trades. Hence, we end up facing the
following challenge: Are there mechanisms which do not need to subsidize trades and
still achieve nearly optimal social welfare?

To tackle this question, we design pricing-based mechanisms for two-sided markets.
In all our mechanisms, truth-telling is a dominant strategy for every agent. More pre-
cisely, all mechanisms are dominant-strategy incentive-compatible (DSIC) for all buyers
and sellers. Also, participation is not harmful for agents when using this dominant strat-
egy, so our mechanisms are individually rational (IR). In addition, they fulfill different
variants of budget balance.

In other words, we show the following theorem(s) which are further specified in
Table 1.1.

Theorem 1.3.2. There exists mechanisms for matroid/combinatorial/knapsack double
auctions which are DSIC, IR for all buyers and sellers, budget balanced and whose social
welfare are constant-factor approximations to the optimal (first best) social welfare.

Our main results are for matroid double auctions (DA): Sellers hold identical items
and the set of buyers who are allocated an item needs to be independent in a matroid.
For these, we present two mechanisms. The first is strongly budget balanced and a
1/3-approximation of the expected optimal (first best) social welfare (Section 5.3). Still,
it requires agents to trade in a customized order which we compute in the ongoing
mechanism. Our second mechanism is only weakly budget balanced, but achieves half
of the expected optimal social welfare (Section 5.4). In addition, the second mechanism
can handle agents trading in an arbitrary worst-case order.

We extend our techniques to combinatorial double auctions with heterogeneous items
(Section 5.5) and to knapsack double auctions with homogeneous items and a knapsack
constraint over the set of buyers (Section 5.6 and Section 5.7). A complete overview of
the guarantees derived in Chapter 5 can be found below in Table 1.1.

In order to derive our mechanisms, we extend balanced prices [Kleinberg and Wein-
berg, 2019, Feldman et al., 2015, Dütting et al., 2020] from Prophet Inequalities to
two-sided environments. When prices from the corresponding Prophet Inequality are
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Items Budget Bal. Approx. Previous Best
Matroid DA: Identical Strong 1/3 1/16 a and

Identical Weak 1/2 1/(3 +
√

3) b

Combinatorial DA:
XOS + Unit-Supply Heterog. Strong 1/2 1/6 c and
Additive + Additive Heterog. Strong 1/2 1/3 b

Knapsack DA: Identical Strong 1/12
Identical Weak 1/7

Table 1.1: The approximation guarantees for mechanisms in matroid, combinatorial and
knapsack double auctions. Concerning the previous best results, “a” can be found in
Colini-Baldeschi et al. [2016], “b” in Dütting et al. [2021a] and “c” in Colini-Baldeschi
et al. [2020]. We note that the setting in Dütting et al. [2021a] is different from the one
in Chapter 5 as they construct mechanisms with only limited sample-based knowledge
of the distributions. In contrast, we assume in Chapter 5 to have full knowledge of the
distribution.

static and anonymous (as for example in Algorithm 1), results carry over in a straight-
forward manner. On the other hand, once a Prophet Inequality uses dynamic prices (as
for matroid constraints in Section 3.4), we need to be much more careful. Here, our
mechanism will consist of fine-grained trade proposals and requires a careful choice of
the order in which we consider agents for trades. Also, the prices which we use will only
be inspired by the ones in Kleinberg and Weinberg [2019], but are required to capture
the more complex structure of the two-sided problem.

The analysis of the mechanisms is based on the standard base value and surplus
decomposition as in the Prophet Inequality literature. Still, the surplus for buyers and
sellers usually requires two different analyses. However, as a matter of fact, it will turn
out that it does not play a key role which agent purchases or keeps which item — since
any irrevocably allocated item ensures a sufficient contribution to welfare via its price.

1.3.4 Chapter 6: Asymptotically Optimal Welfare of Posted Pricing
with MHR Distributions

In this chapter, we work in the one-sided environment (i.e. all items are available ini-
tially), but strengthen the assumption on the distribution and aim for stronger guaran-
tees. In particular, we assume that the valuation for each buyer is an independent and
identically distributed draw from the same distribution. In other words, there is a single
distribution from which we draw an i.i.d. sample for the valuation function in every
round. Note the contrast to Chapter 3, Chapter 4 and Chapter 5, where we worked in
settings with the assumption that distributions are independent across buyers, but not
necessarily identical.

For the main result, we focus on posted pricing mechanisms for unit-demand com-
binatorial auctions (a.k.a. bipartite matching) with the assumption that different item
values are independent. To stress this point once more: Across buyers, distributions are
independent and identical; across items, distributions are independent, but not neces-
sarily identical. For example, with two items, every buyers’ value for the first could be
an i.i.d. draw from a uniform distribution, the value for the second one an i.i.d. draw
from an exponential distribution.
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We will use the key assumption that the marginal distributions are concentrated;
more precisely that they have a monotone hazard rate (MHR).

Theorem 1.3.3. When marginal distributions are independent across items and each
marginal has a monotone hazard rate, there is a mechanism using dynamic prices whose
expected social welfare ensures a (1−O (1/logn))-fraction of the expected optimal social
welfare.

Complementing this, for static prices, we obtain a (1−O (log log logn/logn))-competitive
algorithm with respect to the expected offline optimum. We also show that these guar-
antees are best possible, even in the case of only a single item. Note that the bounds
are independent of the number of items m.

From a technical perspective, the mechanism on dynamic prices sets prices so that the
offline optimum is mimicked. However, analyzing such a selling process is still difficult
because items are incomparable and bounds for MHR distributions cannot be applied
directly to draws from multiple distributions, which are not necessarily identical. To
bypass this problem, we introduce a reduction that allows us to view item valuations
not only as independent but also as identically distributed. In contrast, the idea of our
mechanism using static prices is to set prices suitably high in order to bound the revenue
of our mechanism with a sufficient fraction of the optimum.

We also demonstrate that our techniques are applicable beyond unit-demand set-
tings by giving mechanisms for the more general class of subadditive valuation func-
tions in Section 6.4. Our dynamic pricing mechanism is 1−O (1+logm/logn)-competitive
for subadditive buyers. We complement this by a static pricing mechanism which is
1−O (log log logn/logn+ logm/logn)-competitive. Both guarantees can be derived by show-
ing that the revenue of the posted pricing mechanism is at least as high as the respective
fraction of the optimal social welfare. As a consequence, these bounds directly imply
the competitive ratios for welfare and revenue. For a constant number of items m, these
bounds are again asymptotically tight by our optimality results. Obtaining tight bounds
for large m remains an open problem.

1.3.5 Chapter 7: The Secretary Problem with Predicted Additive Gap

In all of the Chapters 3 to 6, we are using the key assumption that we have access
to distributions upfront from which valuation functions are drawn. In contrast, in this
chapter, we work in the Secretary model where weights are fixed adversarially, but arrive
in random order. In Chapter 7, we go beyond the classical formulation of the Secretary
problem. In addition to knowing that the adversarial weights arrive in random order, we
are given a single piece of information upfront: An additive gap between the largest and
kth largest weight in the sequence. Following a standard assumption in the literature on
algorithms with predictions (references can be found at Algorithms-with-Predictions),
our algorithm must be able to deal with potentially inaccurate predictions for the additive
gap.

Our contribution for this problem is threefold. First, we show that knowing an exact
additive gap allows us to beat the competitive ratio of 1/e by a constant.

Theorem 1.3.4 (Theorem 7.2.1, simplified form). There exists an online algorithm
which achieves an expected weight of E [ALG] ≥ 0.4 · OPT given access to a single
additive gap ck for ck = w1 −wk and some k.
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Still, as mentioned, getting to know an exact gap might be too much to expect.
Hence, we next introduce a slight modification in the algorithm to make it robust with
respect to errors in the predicted gap while simultaneously outperforming the prevalent
competitive ratio of 1/e by a constant for accurate gaps.

Theorem 1.3.5 (Theorem 7.3.1, simplified form). There exists an online algorithm
which uses a predicted additive gap and is simultaneously (1/e + O(1))-consistent and
O(1)-robust.

Theorem 1.3.5 does not assume any bounds on the error of the predicted additive gap
used by our algorithm. In particular, the error of the prediction might be unbounded
and our algorithm is still constant competitive. However, if we know that the error is
bounded, we can do much better and only incur an additional additive loss with respect
to the guarantee we achieved for exact predictions. In particular, incorporating this error
bound ε in the algorithm allows to obtain an expected weight of E [ALG] ≥ 0.4 ·w1− 2ε.

As a corollary of our main theorem, we show that we can beat the competitive ratio
of 1/e even if we only know the gap w1 − wk but do not get to know the index k. In
particular, this proves that even an information like “there is a gap of c in the instance”
is helpful to beat 1/e, no matter which weights are in the sequence and which value c
attains.

Our algorithms are inspired by the one for the classical Secretary problem, but
additionally incorporate the gap: Wait for some time to get a flavor for the weights
in the sequence, set a threshold based on the past observations and the gap, pick the
first element exceeding the threshold. Even though this might not sound too promising
at first glance, we will show that it allows to beat the prevalent bounds.

From a technical perspective, the analyses are based on a case distinction. We
compare the weight w1 to the weight of the element wk to which we observe the predicted
gap. If this gap is small, any element among w2, . . . ,wk can sufficiently contribute to
the algorithm’s performance. If this gap is large, the gap itself is a good surrogate for
the largest weight in the sequence and can hence help to exclude many elements from
being selected.

1.4 Related Work

In order to embed the results mentioned in Section 1.3 in the existing literature, we
give an overview of related work in Prophet Inequalities and the Secretary problem.
Additional related work which is more topic-specific can be found in the respective
chapters.

1.4.1 A Non-Exhaustive Overview on Prophet Inequalities

As mentioned in the introduction, the first statements like Theorem 1.1.2 already date
back to the 1970s and 80s [Krengel and Sucheston, 1977, 1978, Samuel-Cahn, 1984].
Results of this type regained attention in the mechanism design community by the work
of Hajiaghayi et al. [2007], Chawla et al. [2010] and Kleinberg and Weinberg [2012] due
to the connection to sequential posted-pricing mechanisms. In other words, Algorithm 1
can be interpreted as a dominant-strategy incentive-compatible and individually rational
mechanism: The allocation rule assigns the item to the buyer selected by the algorithm,
her payment is the static price which we initially set in the algorithm. This connection
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established the growth of literature in more general environments: multiple (homo- or
heterogeneous) items are available and buyers compete for subsets of them.

With k identical items for sale, Hajiaghayi et al. [2007] obtain a sequential posted-
pricing mechanism which is

(
1−O(

√
ln k/k)

)
-competitive. Chawla et al. [2010] argue

that we cannot only obtain guarantees for welfare maximization via Prophet Inequalities,
but also get bounds for revenue in single- and multi-parameter settings.

A few years later, Kleinberg and Weinberg [2012] introduce the first pricing-based
algorithm for matroid constraints in Prophet Inequalities with a tight competitive ratio.
That is, there are k identical items for sale and the set of buyers who are allocated an
item needs to be independent in a matroid. Their algorithm based on dynamic prices
obtains the tight 1/2-competitive ratio for this problem.

Balanced Prices and Similar Approaches. Initiated by the work of Kleinberg and
Weinberg [2012] for matroids and Feldman et al. [2015] for combinatorial auctions, there
was a rise of pricing-based approaches for Prophet Inequalities. Feldman et al. [2015]
give the first tight 1/2-competitive algorithm when heterogeneous items are for sale and
buyers have XOS valuation functions. In follow-up work, Dütting et al. [2020] unify and
simplify these two approaches and obtain improved results in several other settings. All
these algorithms are using so-called balanced prices: Prices which are low enough such
that buyers are willing to purchase items, but are also high enough to cover the welfare
loss due to allocating items. The results and techniques in Chapter 3 and Chapter 5 in
this thesis are related to the balanced prices approach.

Using a very similar idea, Gravin and Wang [2019] get a 1/3-competitive algorithm for
edge-arrival bipartite matching using a posted-pricing algorithm with static prices. Edge-
arrival bipartite matching can also be interpreted in the buyer-item-framework: items
are nodes in the graph, every buyer corresponds to one edge and is interested in exactly
two items, namely the ones which are incident to this edge. In other words, the buyer
has a single-minded valuation with only non-negative value for the two items of interest.
As a matter of fact, these single-minded valuation functions have complementarities
— in contrast to the XOS valuations considered in Feldman et al. [2015] which are
complement-free. Correa et al. [2022] extend the approach of Gravin and Wang [2019]
to a broader class of valuation functions with complementarities.

Going beyond XOS valuation functions in the complement-free regime, Dütting et al.
[2020] achieve a guarantee of 1/O(log logm) using static item prices when buyers have
subadditive valuation functions. Obtaining a constant-factor Prophet Inequality for
subadditive valuations was a long-standing open problem. Only recently, Correa and
Cristi [2023] were able to introduce a 1/6-competitive algorithm. Still, it is not pricing-
based but uses a randomized allocation procedure. Obtaining a constant-factor Prophet
Inequality for subadditive valuation functions which uses static and anonymous item
prices remains an open problem.

There is also an excellent survey by Lucier [2017] which gives an overview of tech-
niques and results on Prophet Inequalities through an economic lens.

Online Contention Resolution Schemes. In contrast to the pricing-based ap-
proaches discussed above, there is another line of work which derives Prophet Inequalities
via online rounding. That is, we start with an ex-ante relaxation of the problem, obtain
realizations of buyers in every iteration and round the respective variables of the relax-
ation online. This is done via so-called online contention resolution schemes (OCRS).

21



CHAPTER 1. INTRODUCTION

Alaei [2014] obtains a (1−O(1/
√
k))-competitive algorithm when k identical items are for

sale, improving the result from Hajiaghayi et al. [2007]. Alaei [2014] called his approach
the magician problem. The term “online contention resolution scheme” was only intro-
duced later by seminal work of Feldman et al. [2016] which derive Prophet Inequalities
for several different feasibility families such as matroids or matching constraints. Ezra
et al. [2020] use an OCRS to obtain guarantees for vertex- and edge-arrival matching in
general graphs.

Combining pricing-based approaches and OCRS techniques, Lee and Singla [2018]
show how to transform pricing-based Prophet Inequalities to OCRSes with the same
competitive ratio. In addition, a long line of literature applied OCRS techniques in the
last years in a variety of problems (see e.g. Zhang [2020], Pollner et al. [2022], Fu et al.
[2022], Avadhanula et al. [2023], MacRury et al. [2023]). Our approach in Chapter 4 is
inspired by the underlying ideas from the OCRS literature, and in particular the work
of Ezra et al. [2020]. Still, it uses a different LP relaxation and also the algorithm is
more evolved.

Matroids, Capacities and other Feasibility Constraints. Both of the approaches
mentioned above, pricing-based ones as well as rounding algorithms, are widely applied
to derive Prophet Inequalities when the set of buyers is restricted via a set of feasibility
constraints. As mentioned, matroids are considered by Kleinberg and Weinberg [2019].
This approach was extended to polymatroids by Dütting and Kleinberg [2015]. Also
Chawla et al. [2020] study Prophet Inequalities for matroids and restrict themselves to
non-adaptive algorithms; a setting also studied by Pashkovich and Sayutina [2023].

Dütting et al. [2020] and Jiang et al. [2022] derive guarantees for knapsack (and more
general packing) constraint families, Göbel et al. [2014], Rubinstein [2016], Baek and Ma
[2019] take a look at more complex feasibility constraints such as independent sets in
graphs or arbitrary downward-closed constraint families.

In another line of work, online allocation has also been studied in settings where
offline nodes have capacities and can be allocated simultaneously in different rounds
[Alaei et al., 2013, Alaei, 2014]. Chawla et al. [2017] also consider a combinatorial
generalization with many item copies.

Prophet Inequalities beyond Adversarial Order. All of the results mentioned in
this section so far hold for buyers arriving in adversarial order. A natural other direction
is to study less pessimistic arrival orders. For a random arrival order, Esfandiari et al.
[2017] and Correa et al. [2017] introduced the Prophet Secretary model and obtain a
1 − 1/e when a single item is for sale. This result was later generalized to matroids
and combinatorial auctions by Ehsani et al. [2018] using an algorithm which is based
on dynamic prices. In contrast, Adamczyk and W lodarczyk [2018] and Lee and Singla
[2018] use a rounding-based approach, known as random order contention resolution
schemes. Going beyond the guarantee of 1− 1/e, recent work of Azar et al. [2018] and
Correa et al. [2019b] derives improved competitive ratios for the single item case.

With only two potential arrival orders, namely forward and backward, Arsenis et al.
[2021] are able to prove a competitive ratio of 1/φ for the single item problem, where φ
is the golden ratio.

When the decision maker can choose the order, we enter the terrain of the free-
order model. Abolhassani et al. [2017] show how to beat the guarantee of 1− 1/e when
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the decision maker can select the order, Yan [2011] derives a guarantee of 1− 1/e for
matroids.

As a special case, when assuming that all distributions are identical, we end up in
the i.i.d. Prophet Inequality regime. Initially studied by Hill et al. [1982], Correa et al.
[2017] proved the tight guarantee of approximately 0.745 for this problem. Interestingly,
when not knowing the distribution, the best guarantee is 1/e [Correa et al., 2019a] which
carries over from classical Secretary considerations, as e.g. in Theorem 1.1.3.

Changing the Benchmark: Approximating the Optimal Policy. So far, we
only discussed literature which compares the performance of an online algorithm to the
expected offline optimum which can see all realizations upfront and hence make optimal
decisions. In recent line of work, the question arose what is possible when comparing
to the less pessimistic optimal online algorithm (which has unbounded computational
power, but does not see future realizations). For a single item with known adversarial
order, computing the optimal policy can be done via backwards induction [Chow et al.,
1971].

Anari et al. [2019] get a PTAS for a specific set of laminar matroid constraints.
Dütting et al. [2023] run a similar comparison in the Prophet Secretary model.

Papadimitriou et al. [2021] argue that once we have multiple, heterogeneous items
for sale and unit-demand valuation functions for buyers, it is PSPACE-hard to compute
the optimal policy. They derive a 0.51-approximate algorithm, later improved to 0.52
[Saberi and Wajc, 2021], 1− 1/e ≈ 0.632 [Braverman et al., 2022], and 0.652 [Naor et al.,
2023]. In Chapter 4, we also compare to the online optimum as our benchmark. In
contrast to the results mentioned here, we derive guarantees in a more general setting
beyond unit-demand valuation functions.

Additional Literature on Prophet Inequalities. Complementing the results on
full access to the distribution, Azar et al. [2014] and Rubinstein et al. [2020] study
Prophet Inequalities when the decision maker only has access to a single sample from each
distribution. Interestingly, this is sufficient to recover the guarantee from Theorem 1.1.2
by setting a price equal to the largest sample. Still, the analysis works in a different
way. Finding a unified approach for this and the balanced prices techniques described
above might lead to novel insights which could inspire future research.

Working in a similar direction beyond full access to the distributions, Dütting and
Kesselheim [2019] study Prophet Inequalities when the decision maker has access to
inaccurate prior distributions. They discuss previous approaches and give robustness
guarantees depending on the inaccuracy with respect to distance measures of distribu-
tions, such as Levy, Wasserstein or Kolmogorov distance.

When having the goal of maximizing revenue instead of social welfare, one usually
imposes the additional assumption that items are independent. This makes it possible
to also apply Prophet Inequalities on the sequence of items rather than buyers and thus
maximize revenue for unit-demand buyers via posted prices [Chawla et al., 2007, 2010].
Cai and Zhao [2017] consider more general XOS and subadditive valuations and apply
a duality framework instead. They design a posted-prices mechanism with an entry fee
that gives an O(1) or O(logm) approximation to the optimal revenue. In Dütting et al.
[2020], the approximation of the optimal revenue for subadditive valuations is improved
to O(log logm).
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Beyond independence across buyers, there is work by Immorlica et al. [2020] who
assume linear correlation across buyers as well as Rinott and Samuel-Cahn [1987] for
negatively dependent values.

1.4.2 Some Additional Literature on the Secretary Problem

Since the introduction of the Secretary problem in the 1960s [Lindley, 1961, Dynkin,
1963], there have been a lot of extensions and generalizations of this problem with beau-
tiful algorithmic ideas to solve them. For more details on the early stages of Secretary
problems, there are nice surveys by Ferguson [1989] or Freeman [1983] giving a great
overview on different variants of the problems and results.

Multi Selection and Feasibility Constraints. When having k identical items for
sale, we can obtain a 1 − O(1/

√
k)-competitive algorithm [Kleinberg, 2005]. Beyond

identical items, there are also results when the set of selected buyers needs to satisfy
a knapsack constraint. Babaioff et al. [2007a] study this problem and give a 1/10e-
competitive algorithm.

Probably the most prominent problem among Secretary problems with feasibility
constraints is Matroid Secretary. Initially studied by Babaioff et al. [2018b], currently
the best guarantee is in the order of 1/log log(rank), where “rank” refers to the rank of the
matroid, in Lachish [2014] and follow-up work by Feldman et al. [2018]. Still, achieving a
constant-factor for arbitrary matroids is a long-standing open problem. Along the way,
a lot of special cases of matroids and other variants have been studied, for example in
the ordinal Matroid Secretary problem [Soto et al., 2021].

Concerning the Secretary problem with more general constraints, among others, there
are results for linear packing constraints [Kesselheim et al., 2018], independent set con-
straints [Göbel et al., 2014] and even arbitrary downward-closed feasibility constraints
[Rubinstein, 2016].

Mechanism Design, Matching and Combinatorial Auctions. There is also liter-
ature on the application of Secretary problems in online mechanism design, for example
in Hajiaghayi et al. [2004] and Babaioff et al. [2007b].

Being more precise, in the context of combinatorial auctions, when assuming unit-
demand buyers arriving in random order, we end up with a bipartite matching problem.
Introduced by Korula and Pál [2009], work by Mahdian and Yan [2011] tackled this
max-weight bipartite matching problem with random arrival order of buyers via factor
revealing LPs. The tight guarantee of 1/e for matching was finally obtained by Kesselheim
et al. [2013], who also generalize their result to submodular combinatorial auctions, i.e.
when buyers have submodular valuations functions over item bundles.

Additional Work on Secretary Problems. Complementing the assumption of uni-
form arrival orders, Kesselheim et al. [2015] study different distributions over permu-
tations and give constant-factor guarantees. There are also variants where some of the
weights are sampled upfront and the decision maker can observe these weights, e.g. in
Kaplan et al. [2020] and Correa et al. [2021]. Here, some elements are revealed before
the start of the sequence. The algorithm then tries to pick the best of the remaining
weights. Guarantees are achieved with respect to the best remaining element in the
sequence. Going beyond linear payoffs for the Secretary problem, Bateni et al. [2013]
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and Feldman et al. [2011] study non-linear payoff functions. In particular, they derive
results once the payoff functions are submodular. For a nice overview on random order
models, there is a book chapter by Gupta and Singla [2020] giving a great overview of
techniques and results in this field.

Bridging between the Secretary problem and the Prophet Inequality world, there is
a recent line of work by Correa et al. [2023] or Correa et al. [2019a] and many more
(see e.g. Bradac et al. [2020], Kesselheim and Molinaro [2020], Argue et al. [2022]) which
interpolate between the two models in one way or another.

1.5 Bibliographic Notes and Contributions to the Chap-
ters

The majority of the results which we discussed in Section 1.3 are contained in the
following publications:

• Simplified Prophet Inequalities for Combinatorial Auctions [Braun and Kesselheim,
2023a], which is joint work with Thomas Kesselheim,

• Approximating Optimum Online for Capacitated Resource Allocation [Braun et al.,
2024], which is joint work with Thomas Kesselheim, Tristan Pollner and Amin
Saberi,

• Truthful Mechanisms for Two-Sided Markets via Prophet Inequalities [Braun and
Kesselheim, 2021] (conference version) and [Braun and Kesselheim, 2023b] (journal
version), which is joint work with Thomas Kesselheim,

• Asymptotically Optimal Welfare of Posted Pricing for Multiple Items with MHR
Distributions [Braun et al., 2021], which is joint work with Matthias Buttkus and
Thomas Kesselheim and

• The Secretary Problem with Predicted Additive Gap [Braun and Sarkar, 2023],
which is joint work with Sherry Sarkar.

The remainder of this section gives an overview of the development of the respective
results. As a matter of fact, in my research area, any publication is usually the joint work
of several authors and it is very uncommon to split the contributions on a per-author
level. In addition, results are mainly derived in a dynamic development process during
which discussions of the authors play a pivotal role. That is also the reason why authors
are listed alphabetically in all publications.

Chapter 3: Simplified Prophet Inequalities for Combinatorial Auctions
and Matroids

The results on combinatorial auctions in Section 3.2 and Section 3.3 appeared in Braun
and Kesselheim [2023a], which is joint work with Thomas Kesselheim. The simplified
proof for matroids in Section 3.4 is unpublished work of myself.

Thomas Kesselheim and myself started studying this problem inspired by the work
on subadditive combinatorial auctions by Dütting et al. [2020]. Still, using their LP
directly only implies a competitive ratio of 1/4, even for a single item. Hence, in a first
step, we improved the LP to get the tight 1/2-guarantee for a single item. Afterwards, the
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goal was to see in which generalizations one could make use of this LP: For subadditive
combinatorial auctions, Dütting et al. [2020] were able to improve the competitive ratio
from 1/O(logm) to 1/O(log logm); making this a promising direction for Prophet Inequalities.
While working on more general settings, Thomas Kesselheim and myself discovered the
simplified proof for XOS valuation functions (Lemma 3.3.2) during several discussions,
which I was able to generalize to MPH-k valuations (Lemma 3.3.3 and Lemma 3.3.4).

In addition, even though my proof for matroids in Section 3.4 is not as simple as
the one for combinatorial auctions, it highlights that this approach might have more
potential than we were able to use so far.

Chapter 4: Approximating Optimum Online for Multi-Demand Buyers

The results of this chapter are mainly contained in Braun et al. [2024], which is joint
work with Thomas Kesselheim, Tristan Pollner and Amin Saberi. The paper is currently
under review.

In the paper [Braun et al., 2024], we state the problem in a more general variant
than in this thesis, namely with stochastic rewards. The analysis from Section 4.3 for
the exponential time variant of the algorithm (Algorithm 4) is mainly the same as in
the paper. The only step in Algorithm 4 which requires exponential time is to compute
an expectation exactly. In the paper, we give a detailed proof on how to use samples
to estimate this expectation with a bounded error and obtain a truly polynomial time
algorithm. The sample-based analysis was done by Tristan Pollner and is not included
in this thesis. In contrast, in this thesis, I complement the results from the paper by
showing that beating the prevalent bound of 1/2 by a constant is possible with an even
simpler polynomial-time algorithm which does not use the mentioned expected value at
all. This argument makes use of several lemmas from our paper, but differs in a few
steps in the analysis.

We initiated this project while participating in the program on Data-Driven Deci-
sion Processes at the Simons Institute for the Theory of Computing at UC Berkeley, CA,
USA. I went up to Tristan Pollner who had recently published a paper on unit-demand
combinatorial auctions [Papadimitriou et al., 2021] comparing against the online bench-
mark. Since their techniques felt fairly related to online contention resolution schemes,
I was interested in seeing if one could use their techniques also in a broader setting. In
particular, since the OCRS approach works similar for unit-demand valuations as well
as XOS valuations, I proposed discussing their approach for XOS valuations to see if
results carry over. As a starting point during the semester, Tristan Pollner, Thomas
Kesselheim and myself were considering a mix of additive and unit-demand valuations.
As we figured out, a lot of properties from the purely unit-demand setting in Papadim-
itriou et al. [2021] and Braverman et al. [2022] do not carry over once we are required
to allocate more than one item per round.

In weekly discussions after returning to our home universities, Tristan Pollner and
myself continued studying the problem on additive and unit-demand valuations. Only
several months later, we had a breakthrough, which was proposed by Tristan Pollner:
When using the pivotal sampling subroutine, we can control the number of items being
allocated. Adapting ideas from the two-proposal algorithm [Papadimitriou et al., 2021],
we had the hope that this would allow us to solve the problem. In order to get the
correlation bound to work, Tristan Pollner and myself tried several candidates for the
function f used in the induction in Lemma 4.3.11. After several weeks, we ended up
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finding one to prove the main ingredient. Afterwards, I was able to extend the results
beyond two-point distributions in Section 4.5 fairly easily. Also, coming up with the
simplified variant in Section 4.4 took me only a couple of days afterwards.

Chapter 5: Truthful Mechanisms for Two-Sided Markets via Prophet
Inequalities

The results of this chapter are contained in Braun and Kesselheim [2021] and Braun and
Kesselheim [2023b], which is joint work with Thomas Kesselheim.

This work was started after attending a talk by Bart de Keijzer at the Day of Com-
putational Game Theory 2020 in Enschede, Netherlands about bilateral trade and two-
sided markets. After attending the talk, I discussed with Thomas Kesselheim that the
techniques from the Prophet Inequality literature could easily be applied to get a (not
tight) 1/2-approximation for bilateral trade, as stated in Section 5.2.

To learn more about how to use Prophet Inequalities in two-sided environments,
Thomas Kesselheim and myself started studying further directions. During this process,
we figured out that the Prophet Inequality for XOS combinatorial auctions [Feldman
et al., 2015, Dütting et al., 2020] could also be applied to two-sided markets, leading
to the results in Section 5.5. Looking for other generalizations, I proposed studying
matroid double auctions. As constant-factor Prophet Inequalities for matroids require
dynamic prices, it was clear from the beginning that results could not be directly ap-
plied in a black-box manner. Still, we had the hope to make use of the tools from
Prophet Inequalities to improve the previous guarantees for this problem mentioned in
Section 1.3.3.

Thomas Kesselheim and myself made significant progress in this problem during
independent work of each of us and joint discussions over a period of several months.
After several months, the first breakthrough was my proof in Section 5.4 which uses a
weaker variant of the budget balance constraint that we were initially hoping for. Having
this proof, Thomas Kesselheim suggested a relaxation of the optimal (first best) social
welfare which we use in Section 5.3. Given our previous insights from the last couple
of months and this relaxation, I could finally prove the main result with the stronger
notion of budget balance.

To make use of all the insights we had gained, I developed mechanisms and proved
complementing theorems for knapsack double auctions with strong (Section 5.6) and
weak budget balance (Section 5.7).

Chapter 6: Asymptotically Optimal Welfare of Posted Pricing with
MHR Distributions

The results in this chapter are contained in Braun et al. [2021], which is joint work with
Matthias Buttkus and Thomas Kesselheim.

This project was initiated before I started my PhD studies. In particular, Matthias
Buttkus and Thomas Kesselheim had already worked on this project and were able to
prove results on separable valuation functions (these results are not contained in this
thesis, but appear in the paper) and the optimality results from Section 6.3.

Thomas Kesselheim and myself were then complementing this work by considering
independent item valuations. As a starting point, we discussed several relaxations of the
expected offline optimum. In the case that we have exactly as many items as buyers, we
ended up using E [OPT] ≤ E

[∑
j maxi∈[n] vi,j

]
. After several months of independent
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work of Thomas Kesselheim and myself and joint discussions, Thomas Kesselheim pro-
posed a simplified version of the quantile allocation rule from Algorithm 12 for which we
were able to show the desired result. With this proof in mind, Thomas Kesselheim pro-
posed to use the ex-ante relaxation for E [OPT] instead of E

[∑
j maxi∈[n] vi,j

]
. Having

this, we were able to prove the main result for dynamic prices, leading to Section 6.2.1.
On the way, we also discovered the bound for static prices and independent item values
which can be found in Section 6.2.2.

With this in mind, we were able to introduce the notion of MHR marginals for
subadditive valuations and I could extend the guarantees to more general valuation
functions in Section 6.4.

Chapter 7: The Secretary Problem with Predicted Additive Gap

The results in this chapter are contained in Braun and Sarkar [2023], which is joint work
with Sherry Sarkar. The paper is currently under review.

Sherry Sarkar and myself started working on this project during the program on
Data-Driven Decision Processes at the Simons Institute for the Theory of Computing
at UC Berkeley, CA, USA. In particular, Sherry Sarkar was interested in studying the
Secretary problem when we have access to a piece of information which measures the
spread of the weights in the sequence. During several discussions, we were considering,
for example, the range of the values or the entropy as possible pieces of information.
While for some of them we were able to prove improved guarantees fairly easily, for
others it was sometimes even impossible due to impossibility results we could come up
with.

In a joint discussion of Sherry Sarkar, Thomas Kesselheim and myself at the Simons
Institute, we came up with the idea of considering an additive or multiplicative gap
between the highest and second highest weight in the sequence. In follow-up discussions,
Sherry Sarkar and myself were able to prove a better-than-1/e guarantee for this setting.

After returning to our home universities, Sherry Sarkar and myself continued work-
ing on this problem and synchronized via weekly meetings. After several months of
discussions, I was able to also prove a generalized variant of our statement which did
hold for any gap and not only for the gap between the best and second best element,
leading to the results in Section 7.2. Also, we could use the same approach and make
the argument work for inaccurate gaps with bounded error, the results in Section 7.4.

Sherry Sarkar and myself also discussed several extensions and proved the robust
and consistent variant of our algorithm which can now be found in Section 7.3. To
complement results, I ran simulations on several classes of weights of potential interest
whose outcome is stated in Section 7.5.
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Chapter 2

A Few General Preliminaries

Before we dive into the technical part, we discuss a couple of preliminaries which are
important throughout this thesis. Precise problem formulations, definitions and notation
which is chapter-specific can be found in the preliminaries section in the respective
chapter. We recap different classes of valuation functions, feasibility constraints and
discuss how to model strategic behavior of agents.

Notation

For a natural number N , we denote by [N ] the set of natural numbers which are at most
N , that is [N ] := {1, . . . ,N}. For a set X, we denote by 2X the power set of X. By
R≥0 we denote the set of non-negative real numbers.

By (·)+ we mean max(·, 0). The indicator function 1A is equal to one if A holds,
otherwise it is zero. We use 1A and 1[A] interchangeably.

For q ∈ [0, 1], we denote by Ber(q) a Bernoulli random variable which is one with
probability q and zero otherwise.

Valuation functions

For a set of m (potentially heterogeneous) items M , a valuation function is a mapping
v : 2M → R≥0 which maps every subset of items to a non-negative real number. Usually,
we assume that valuation functions are non-negative and finite for any bundle as well
as monotone and normalized, i.e. v(S) ≤ v(S′) for S ⊆ S′ ⊆ M and v(∅) = 0. In this
thesis, different classes of valuation functions will play an important role:

• Additive: A valuation function v : 2M → R≥0 is additive if and only if there are
numbers c1, . . . , cm ∈ R≥0 such that for any S ⊆M we have v(S) = ∑

j∈S cj .

• Unit-Demand: A valuation function v : 2M → R≥0 is unit-demand if and only if
there are numbers c1, . . . , cm ∈ R≥0 such that for any S ⊆ M we have v(S) =
maxj∈S cj .

• K-Demand/Multi-Demand: A valuation function v : 2M → R≥0 is K-demand,
also called multi-demand, if and only if there are numbers c1, . . . , cm ∈ R≥0 such
that for any S ⊆M we have v(S) = maxS′⊆S:|S′|≤K

∑
j∈S′ cj .
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We usually denote the numbers cj by v({j}) if the context is clear. Also, as we usually
assume that valuation functions are buyer specific, we call the valuation function vi and
denote the respective vi({j}) by vi,j for shorter notation.

• XOS : A valuation function v : 2M → R≥0 is XOS (also called fractionally sub-
additive) if and only if there are additive functions a1, . . . , at such that for every
S ⊆M we have v(S) = max`∈[t] a`(S).

• Subadditive: A valuation function v : 2M → R≥0 is subadditive if and only if for
every two sets S and S′, we have v(S ∪ S′) ≤ v(S) + v(S′).

Subadditive valuation functions are also called complement-free. Interestingly, all of
the above valuations are complement-free. In other words, we have

Unit-Demand ⊆ K-Demand ⊆ XOS ⊆ Subadditive ,

and of course also Additive ⊆ XOS. A natural extension of XOS to functions which
admit complementarities are MPH-k valuations [Feige et al., 2015].

• MPH-k: Consider a valuation function v : 2M → R≥0. A hypergraph representa-
tion of the function v is a set function which satisfies v(S) = ∑

X⊆S w(X). We call
a set X with w(X) 6= 0 a hyperedge of w, and a positive-hyperedge if w(X) > 0.
The rank of a hypergraph representation w is the cardinality of the largest hy-
peredge in w. If the hypergraph representation of v only contains non-negative
hyperedges, we call this a positive-hyperedge-k function (PH-k) as introduced by
Abraham et al. [2012]. The definition of the MPH-k hierarchy now represents a
valuation function v as the maximum over a set of PH-k functions.

Definition 2.0.1. (Maximum-over-Positive-Hypergraph-k [Feige et al., 2015])
A monotone valuation function v : 2M → R≥0 is MPH-k if there is a set {v`}`∈L
of PH-k functions such that v(S) = max`∈L v`(S) for any S ⊆ M and arbitrary
index set L.

This MPH-k hierarchy is containing very general valuation functions. In particular,
any monotone valuation function is contained in one level of the MPH-k hierarchy. Also,
note the inclusions

XOS = MPH-1 ⊆ MPH-2 ⊆ · · · ⊆ MPH-k ⊆ · · · ⊆ MPH-m = All Monotone Valuations.

As a side remark, there are also similar hierarchies which contain submodular or subad-
ditive valuations in their lowest level instead of XOS valuations [Feige and Izsak, 2013,
Chen et al., 2019].

Feasibility Constraints

In several chapters of this thesis, we assume that there is a constraint family over the
set of buyers which we can accept. That is, for a set of buyers1 [n], there is a family
I ⊆ 2[n]. Any set of buyers X ⊆ [n] who are allocated (at least) one item needs to satisfy
X ∈ I. Most important for this thesis are matroid and knapsack constraints which are
defined as follows.

1We note that in Chapter 5, we denote the set of buyers by B instead of [n]. Still, the following
definitions also apply.
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• Matroid: A matroid ([n], I) over ground set [n] with non-empty set system I ⊆ 2[n]
is defined via the following properties. For two subsets X ⊆ Y of [n] with Y ∈ I,
also X ∈ I. And for X,Y ∈ I with |X| < |Y | there is a y ∈ Y \X such that
X ∪ {y} ∈ I. We call sets in I independent.

• Knapsack: Without loss of generality, we assume a knapsack with capacity one.
Each of the buyers in [n] has a weight wi ∈ [0, 1]. The set of buyers X who are
allocated (at least) one item needs to satisfy ∑i∈X wi ≤ 1.

For a matroid ([n], I), we define its contraction by T ⊆ [n] as the following matroid
with ground set [n] \ T : A set S is independent in the contracted matroid if S ∪ T0 is
independent in the original matroid for any maximal independent subset T0 ∈ I of T .
For additional basic concepts concerning matroids, such as rank or span, we refer the
reader to standard textbooks, for example Chapter 39 in Schrijver [2003].

Strategic Considerations

When buyers are behaving strategically, we aim to design allocation mechanisms. A
(direct revelation) mechanism takes as input a vector of valuation functions which are
reported by agents. Agents can report any possible valuation in their space of valuation
functions Vi, not necessarily their true one. A mechanism outputs an allocation of
items to agents (X1, . . . ,Xn), as well as payments (P1, . . . ,Pn). Agents are assumed to
maximize utility. Fixing a valuation function vi for buyer i, the (quasi-linear) utility of
buyer i for being allocated bundle Xi ⊆M at price Pi is given by ui(Xi) = vi(Xi)−Pi.

Mechanisms are usually designed to fulfill the following desirable properties:

• Dominant Strategy Incentive Compatibility (DSIC): It is a dominant strategy for
every agent to report her true valuation independent of the other agents’ behavior.
That is, no matter which valuation functions other agents report, it is always in
the interest of an agent to report her true valuation.

• Individual Rationality (IR): When playing this dominant strategy, no agent de-
creases her utility by participating in the mechanism.

An important class of mechanisms which will be used multiple times in this thesis
are sequential posted prices mechanisms. Every item j ∈ M has a price p(i)j which can
either be anonymous, static or dynamic. In the latter case, prices may depend on the
partial allocation at the arrival of buyer i. Prices which do not depend on the partial
allocation are called static. Prices are called anonymous if they do not depend on the
identity of the agent under consideration.

In sequential posted pricing mechanisms, buyers arrive sequentially and purchase the
most desirable available bundle given the item prices. Buyers’ payments are determined
via the received bundle, so buyer i receiving item bundle Xi pays ∑j∈Xi p

(i)
j . Posted

prices mechanisms are DSIC and IR by design, so it is without loss to assume that buyers
purchase their most preferred bundle with respect to their true valuation function vi.

In the following pseudo code in Algorithm 3, we state the posted pricing mechanism
with static item prices. In the variant with dynamic prices, pj can depend in addition
on the identity of buyer i as well as the set of previously allocated items.

Mechanisms like this will play a key role in Chapter 3 and Chapter 6.
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Algorithm 3: Sequential Posted Pricing Mechanism
1 Compute item prices pj based on D1, . . . ,Dn before the first arrival
2 As buyer i arrives:
3 Buyer i buys bundle Xi ⊆ M \ (∪i′<iXi′) among the available items maximizing

her utility vi(Xi)−
∑
j∈Xi pj

Objective Functions

Throughout this thesis, our goal is to maximize a linear objective function. More pre-
cisely, we take the sum over the contribution of each individual agent and aim to

maximize
∑
i

vi(Xi) ,

where (X1, . . . ,Xn) is the allocation computed by our algorithm (which may need to
satisfy the feasibility constraints). In single-selection settings, this is simply the value
of the agent who is allocated the item. There will be more detailed interpretations on a
per-chapter basis in the respective preliminaries section.

As stated in Section 1.3, our goal is to derive bounds on the competitive/approximation
ratios of our algorithms.
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Chapter 3

Simplified Prophet Inequalities
for Combinatorial Auctions and
Matroids

Prophet Inequalities are an important tool to understand posted-pricing mechanisms for
combinatorial auctions. In particular, the competitive ratio of a pricing-based Prophet
Inequality directly implies a DSIC and IR posted-prices mechanism with the same ap-
proximation guarantee. In the past years, our understanding of pricing-based Prophet
Inequalities rose constantly and significantly by a line of inspiring work, see e.g. Feldman
et al. [2015], Dütting et al. [2020], Gravin and Wang [2019], Dütting et al. [2020] and
Correa et al. [2022] among others.

For XOS and MPH-k combinatorial auctions [Feldman et al., 2015, Dütting et al.,
2020], the common approach so far was to state a vector of static and anonymous item
prices. Agents arrive one-by-one and can choose their most desired bundle among the
remaining items. In order to derive a desirable competitive ratio with respect to the
expected offline optimum, the algorithm designer is required to define prices carefully
and tailored with respect to the class of valuation functions under consideration. In
Feldman et al. [2015], item prices for XOS combinatorial auctions were set to be half of
the expected contribution of an item to the expected offline optimum. Later, Dütting
et al. [2020] discovered that it is sufficient to argue in the full information setting in con-
trast to dealing with random valuation profiles. Still, also their arguments are involved
and require a deep understanding of the underlying habits. In contrast, easily accessible
ideas concerning pricing-based Prophet Inequalities in combinatorial auctions are rare in
the literature. Therefore, we try to advance our understanding of the following question:

What is the simplest way to prove pricing-based Prophet Inequalities?

In this chapter, in order to address this question, we derive simplified proofs for
existing Prophet Inequalities in XOS and MPH-k combinatorial auctions which work as
follows: First, we make use of a linear program with variables pj for any item j corre-
sponding to the static and anonymous item prices. For a variable assignment (pj)j∈M ,
the objective function of the LP will be non-negative if the posted-pricing mechanism
with price vector (pj)j∈M achieves a competitive ratio of ζ ∈ [0, 1] (Section 3.2.1). To
show that there exists a solution to the LP whose corresponding prices achieve the
competitive ratio, we want to argue that there always is a feasible primal solution with
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non-negative objective value. To prove this, we use strong LP duality and move into dual
space. We interpret dual variables and constraints (Section 3.2.2) and show that every
dual feasible solution has a non-negative objective value (Section 3.3). In particular, in-
terpreting dual variables as probabilities over subsets of items, the dual constraints give
a bound on the probability with which an item can be absent. With this interpretation
in mind, we reformulate the dual objective to argue that it is non-negative for any dual
feasible solution. As a consequence, at least the optimal primal solution also has to have
a non-negative objective value. This implies that the corresponding prices (pj)j∈M lead
to a sequential posted-pricing mechanism with a competitive ratio ζ.

Using this technique, we can proof the following guarantees for XOS valuations.
Originally, this statement was shown by Feldman et al. [2015].

Theorem 3.0.1. If all buyers have XOS valuation functions, there exist static item
prices (pj)j∈M such that the sequential posted-pricing mechanism (Algorithm 3) satisfies

E [v (ALG(v))] ≥
1
2 ·E [v (OPT(v))] ,

where OPT(v) is the offline optimum allocation on valuation profile v, i.e. OPT(v) :=
arg max(X1,...,Xn)

∑
i vi(Xi).

To allow complementarities across items in the valuations, if all buyers have MPH-k
valuation functions, we can prove the following theorem for any k ≥ 2 which slightly
improves the previous best guarantee of 1/4k−2 by Dütting et al. [2020].

Theorem 3.0.2. If all buyers have MPH-k valuation functions, there exist static item
prices (pj)j∈M such that the sequential posted-pricing mechanism (Algorithm 3) satisfies

E [v (ALG(v))] ≥ ζ ·E [v (OPT(v))] ,

where ζ = 1/(2k+2
√
k(k−1)−1) and OPT(v) is again the offline optimum allocation as

defined before.

Chapter Organization and Remarks

The part on combinatorial auctions in this chapter is based on Simplified Prophet In-
equalities for Combinatorial Auctions [Braun and Kesselheim, 2023a], which is joint work
with Thomas Kesselheim. Further bibliographic notes can be found in Section 1.5.

We discuss the framework for combinatorial auctions in Section 3.2 and Section 3.3.
A proof for matroid feasibility constraints using LP duality is given afterwards in Sec-
tion 3.4.

3.1 Notation and Preliminaries

In the first part of this chapter, we consider combinatorial auctions. Afterwards, in
Section 3.4, we shift our perspective towards matroid feasibility constraints.

Combinatorial Auctions

Formally, in this chapter, we consider the following setting: There is a set of m heteroge-
neous items M and a sequence of n agents arriving online one-by-one. As agent i arrives,
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we get to know her valuation function vi : 2M → R≥0 and agent i buys the bundle of
(currently unassigned) items which maximizes her quasi-linear utility. We assume that
each vi ∼ Di is drawn independently from a publicly known, not necessarily identical
distribution Di and denote by v ∼ ×ni=1Di the valuation profile of all agents.

An allocation X = (Xi)i∈[n] is a vector of item bundles such that agent i is allocated
bundle Xi and for two agents i 6= i′, we have Xi ∩Xi′ = ∅. The social welfare of an allo-
cation X given valuation profile v is defined as v(X) :=

∑
i∈[n] vi(Xi). We compare the

performance of the sequential posted-pricing mechanism to the expected offline optimal
social welfare and aim for guarantees of the form Ev [v(X)] ≥ ζ ·Ev [maxX∗ v(X∗)].

Matroids

In Section 3.4, we consider matroid Prophet Inequalities. That is, we have m homoge-
neous items which are all of the same kind. Every buyer has a unit-demand valuation
function. As items are homogeneous, every unit-demand valuation function boils down
to a single non-negative real number vi which is buyer i’s value for being allocated one
of the items. Buyers in [n] arrive one-by-one and the value vi is drawn independently
from a publicly known distribution Di.

In addition, we are given a matroid ([n], I) upfront and we can allocate items to
buyers in [n] as long as they form an independent set in the matroid. Our goal is to
show the existence of dynamic prices such that the posted-pricing mechanism achieves
a reasonable fraction of the expected offline optimal social welfare achievable in the
matroid. In order words, we compare to the expected maximum weight basis in the
matroid Ev [v (OPT(v))] = Ev [maxX∈I

∑
i∈X vi].

3.2 General Framework

In order to derive proofs for the competitive ratios in the combinatorial auction set-
ting, we start with a lower bound on the expected social welfare of our algorithm. By
OPTi(v) we denote the (possibly empty) bundle of items which agent i gets in the
optimal allocation on valuation profile v.

Lemma 3.2.1. For any combinatorial auction with monotone valuation functions, the
social welfare of the sequential posted-prices mechanism with price vector p = (pj)j∈M
fulfills for any β ∈ [0, 1]

Ev [v (ALG(v))] ≥ min
T⊆M

∑
j∈T

pj +
n∑
i=1

Ev

 ∑
S⊆M

β

vi(S \ T )− ∑
j∈S\T

pj

1S=OPTi(v)

 .

The proof of this lemma follows standard steps in the Prophet Inequality literature
[Feldman et al., 2015, Dütting et al., 2020, Dütting et al., 2020, Gravin and Wang, 2019,
Correa et al., 2022]. In particular, we split the social welfare into revenue and utility
and bound each quantity separately. As a final step, we lower bound the social welfare
by allowing an adversary to choose the set of allocated items T .

Proof of Lemma 3.2.1. We first split Ev [v (ALG(v))] into revenue and utility and bound
each separately.

Let T (v) denote the state of the set of allocated items T at the end of the allocation
process when running the algorithm on valuation profile v. In addition, let Ti(v) denote
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the state of the set of allocated items T before the arrival of buyer i.

Revenue. The expected revenue of the algorithm is

Ev [rev(v, p)] = Ev

 ∑
j∈T (v)

pj

 .

Utility. In order to lower bound the utility, consider an arbitrary buyer i. First, we
consider an independent sample v′ from the joint distribution ×ni=1Di. Note that buyer
i could either buy nothing and hence obtains a utility which is non-negative. Another
option is to buy the bundle OPTi((vi, v′−i)) \ T ((v′i, v−i)). To see that this is a feasible
bundle, observe that the set of allocated items before the arrival of buyer i is independent
of her valuation vi. In particular, we have Ti(v) = Ti((v′i, v−i)) ⊆ T ((v′i, v−i)), where
the last inclusion is due to the fact that we only assign more items in the ongoing
allocation process.

Taking the expectation over v′, the utility of buyer i can be lower bounded by

Ev [ui(v, p)]

≥ Ev,v′

 ∑
S⊆M

vi(S \ T ((v′i, v−i)))− ∑
j∈S\T ((v′i,v−i))

pj

+

1S=OPTi((vi,v′−i))


≥ Ev,v′

 ∑
S⊆M

β

vi(S \ T ((v′i, v−i)))− ∑
j∈S\T ((v′i,v−i))

pj

+

1S=OPTi((vi,v′−i))


≥ Ev,v′

 ∑
S⊆M

β

vi(S \ T ((v′i, v−i)))− ∑
j∈S\T ((v′i,v−i))

pj

1S=OPTi((vi,v′−i))


= Ev,v′

 ∑
S⊆M

β

vi(S \ T (v′))− ∑
j∈S\T (v′)

pj

1S=OPTi(v)

 .

Observe that in the second inequality we multiply a non-negative term by β ∈ [0, 1]
and drop the (·)+ in the third inequality1. The last equality uses independence and the
fact that v and v′ are identically distributed.

Combination. As a consequence, summing over the lower bound of the utility for all
1Correa et al. [2022] use an equivalent line of arguments, but keep the (·)+ term in the utility instead

of multiplying by β. Still, as a matter of fact, this will make the problem non-linear and hence, our
arguments do not apply. Also, their arguments do not transfer to MPH-k functions, but require to bound
the bundle size of requested items.

36



CHAPTER 3. SIMPLIFIED PROPHET INEQUALITIES

i and adding the revenue, we get

Ev [v (ALG(v))]

= Ev [rev(v, p)] +
n∑
i=1

Ev [ui(v, p)]

≥ Ev

 ∑
j∈T (v)

pj

+ n∑
i=1

Ev,v′

 ∑
S⊆M

β

vi(S \ T (v′))− ∑
j∈S\T (v′)

pj

1S=OPTi(v)


≥ min

T⊆M

∑
j∈T

pj +
n∑
i=1

Ev

 ∑
S⊆M

β

vi(S \ T )− ∑
j∈S\T

pj

1S=OPTi(v)

 ,

where in the last inequality we lower bound the expectation by the worst possible choice
for the set of allocated items T .

3.2.1 An LP Formulation and its Dual

Having the lower bound on the social welfare obtained by the algorithm, we actually
want to show that for any set T ⊆M , the lower bound in Lemma 3.2.1 is at least as large
as a ζ-fraction of the expected offline optimum. Interpreting this as a constraint for any
set T ⊆M , we can formulate an LP which has a non-negative objective value whenever
the desired competitive ratio ζ can be achieved. Thus, in order to prove a competitive
ratio, we only need to argue about the LP. For convenience in the remainder of this
chapter, we define α such that ζ = 1

α .
The LP has variables pj for any item j ∈M where pj corresponds to the static and

anonymous item price for item j. In addition, there are slack variables `+ and `− which
indicate if the desired competitive ratio can be achieved or not.

max `+ − `−

s.t.
∑
j∈T

pj +
n∑
i=1

Ev

 ∑
S⊆M

β

vi(S \ T )− ∑
j∈S\T

pj

1S=OPTi(v)


≥ 1
α

Ev [v(OPT(v))] + `+ − `− for all T ⊆M

pj ≥ 0 for all j ∈M
`+, `− ≥ 0.

We note that Dütting et al. [2020] use a similar variant of this LP and its dual in order
to show the existence of prices for subadditive combinatorial auctions2. Concerning the
constraints for any set T ⊆M , observe that they can be rearranged to

2In contrast to our LP, they draw the bundle S from some probability distribution whereas we set
it equal to the bundle of items which agent i gets in the offline optimum on v. In addition, they do
subtract the prices for all items in S whereas in our formulation, it is essential to only consider prices of
items in S \ T . Subtracting prices for any item in S will result in a worse competitive ratio already in
the case of a single item.
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∑
j∈M

pj

(
β

n∑
i=1

Prv [j ∈ OPTi(v)]1j/∈T − 1j∈T

)
+ `+ − `−

≤ β
n∑
i=1

∑
S⊆M

Ev
[
vi(S \ T )1S=OPTi(v)

]
− 1
α

Ev [v(OPT(v))] .

In order to argue that the LP has a non-negative objective value, we can consider the
dual program and use strong duality. In particular, we will argue that any feasible dual
solution has an objective value which is non-negative. Via strong duality, this directly
implies that at least the optimal primal solution has a non-negative objective value and
hence, the corresponding prices lead to the desired competitive ratio.

The dual of the LP introduced above has variables µT ≥ 0 for every set T ⊆M and
is given by

min
∑
T

µT

 n∑
i=1

βEv

 ∑
S⊆M

vi(S \ T )1S=OPTi(v)

− 1
α

Ev [v(OPT(v))]


s.t.

∑
T

µT

(
β

n∑
i=1

Prv [j ∈ OPTi(v)]1j/∈T − 1j∈T

)
≥ 0 for all j ∈M∑

T

µT = 1

µT ≥ 0 for all T ⊆M .

Having this, we are able to state the lemma which will simplify the proof of pricing-
based Prophet Inequalities.

Lemma 3.2.2. For any combinatorial auction with monotone valuation functions, there
exists a sequential posted-prices mechanism with price vector p = (pj)j∈M which is 1/α-
competitive with respect to the expected offline optimum if the objective value of the dual
program is non-negative for any feasible dual solution.

Observe that by the construction above, showing the existence of suitable prices boils
down to arguing about the dual of a linear program.

3.2.2 Understanding the Dual Program

Before we continue to derive our competitive ratios, we will start by gaining a better
understanding of the dual.

Dual Constraints. First, note that ∑T µT = 1 and µT ≥ 0 for any T . Hence, we can
interpret the vector (µT )T as a probability distribution over subsets T ⊆M .

Second, by the monotonicity of valuations, we can without loss of generality assume
that ∑n

i=1 Prv [j ∈ OPTi(v)] = 1 as the optimum will always allocate any item in any
realization v. As a consequence, we can reformulate the dual constraints

∑
T

µT

(
β

n∑
i=1

Prv [j ∈ OPTi(v)]1j/∈T − 1j∈T

)
≥ 0
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for any item j ∈M as follows:

∑
T

µT

(
β

n∑
i=1

Prv [j ∈ OPTi(v)]1j/∈T − 1j∈T

)
=
∑
T

µT
(
β1j/∈T − 1j∈T

)
= β

∑
T

µT1j/∈T −
∑
T

µT1j∈T

= βPrµ [j /∈ T ]−Prµ [j ∈ T ] ≥ 0 ,

where we denote by Prµ [j /∈ T ] the probability that some item j is not contained in a
set T ⊆M sampled with respect to distribution (µT )T . In other words, Prµ [j /∈ T ] :=
PrT∼µ [j /∈ T ] :=

∑
T µT1j/∈T .

Using that Prµ [j /∈ T ] + Prµ [j ∈ T ] = 1, the dual constraints for any item j ∈ M
are equivalent to our first key property:

Prµ [j /∈ T ] ≥
1

1 + β
and Prµ [j ∈ T ] ≤

β

1 + β
. (3.1)

We will later set β = 1 for a single item and XOS functions. In this case, Inequality (3.1)
simply states that any item j can only be in T with probability at most 1

2 .

Dual Objective. To make the dual objective more accessible, we change the order of
summation:

dual obj. =
∑
T

µT

n∑
i=1

βEv

 ∑
S⊆M

vi(S \ T )1S=OPTi(v)

− 1
α

Ev [v(OPT(v))]

=
n∑
i=1

∑
S⊆M

Ev

[
1S=OPTi(v)β

∑
T

µT vi(S \ T )
]
− 1
α

Ev

 n∑
i=1

∑
S⊆M

1S=OPTi(v)vi(S)


=

n∑
i=1

∑
S⊆M

Ev

[
1S=OPTi(v)

(
β
∑
T

µT vi(S \ T )−
1
α
vi(S)

)]

Instead of arguing that the dual objective is non-negative, we will show the following for
suitable choices of α and β: If a vector (µT )T is feasible with respect to the dual, then
the term

β
∑
T

µT vi(S \ T )−
1
α
vi(S)

is non-negative for any vi and S. In particular, we will show the following equivalent
claim for the respective choices of α and β:

Claim 3.2.3. For any set S, any XOS/MPH-k function vi and any dual feasible solution
(µT )T , the following holds:

β
∑
T

µT vi(S \ T ) ≥
1
α
vi(S) or equivalently for β > 0

∑
T

µT vi(S \ T ) ≥
1
αβ

vi(S)

(3.2)
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This will be our second key ingredient.
We can interpret it as follows: When drawing a set T with respect to distribution
(µT )T , the value that remains from some fixed set S after removing T is still at least a
1
αβ -fraction of the original value vi(S).

Having our two key ingredients, we are ready to derive the competitive ratios.

3.3 Deriving Competitive Ratios Easily

By the construction in Section 3.2, we are only required to argue that the dual objective
is non-negative for the choices of α and β in the respective settings. As mentioned, we
will show a stronger result, namely that Inequality (3.2) holds for any subset of items
S ⊆ M and any valuation function vi which is XOS or MPH-k. We summarize the
respective statements first and give proofs for each afterwards.

Lemma 3.3.1. In the case of a single item, Inequality (3.2) in Claim 3.2.3 holds for
α = 2 and β = 1.

Note that Lemma 3.3.1 implies a proof for Theorem 1.1.2 based on LP duality.

Lemma 3.3.2. For XOS valuation functions, Inequality (3.2) in Claim 3.2.3 holds for
α = 2 and β = 1.

Observe that these two lemmas directly correspond to the best known competitive
ratios and are tight. In addition, note that the class of XOS valuation functions contains
e.g. submodular functions and is equivalent to the class of MPH-1 valuations.

For MPH-k valuation functions, we first give a simplified proof of the competitive
ratio of Dütting et al. [2020]. In particular, Dütting et al. [2020] introduced a reduction
which allows to only argue about deterministic valuation functions instead of randomly
drawn ones. Our proof will be even simpler: our argument only requires to consider the
sizes of sets which are relevant in MPH-k valuations, the valuations as such do not play
a role at all.

Lemma 3.3.3. For MPH-k valuation functions, Inequality (3.2) in Claim 3.2.3 holds
for α = 4k− 2 and β = 1

2(k−1) when k ≥ 2.

Finally, for all k ≥ 2, we show that we can get a tiny improvement in the competitive
ratio compared to previously known results for MPH-k valuations as 2k+ 2

√
k(k− 1)−

1 < 4k− 2.

Lemma 3.3.4. For MPH-k valuation functions, α = 2k + 2
√
k(k− 1) − 1 and β =√

k
k−1 − 1, Inequality (3.2) in Claim 3.2.3 holds when k ≥ 2.

3.3.1 Warm-Up: A Single Item

Observe that in the case of a single item, the vector (µT )T only has two entries µ∅ and
µ{item}.
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Proof of Lemma 3.3.1. We overload notation and denote by vi the value of agent i for
the item in order to rewrite the left-hand side of Inequality (3.2) as follows:

∑
T

µT vi(S \ T ) =
∑
T

µT
(
vi1S={item}1T=∅

)
=

(∑
T

µT1T=∅

)
vi1S={item}

= µ∅ · vi(S) = Prµ [T = ∅] · vi(S) .

Hence, what remains is to show that Prµ [T = ∅] ≥ 1
2 for any dual feasible solution.

Indeed, observe that by Inequality (3.1) for β = 1, we have

Prµ [T = ∅] = Prµ [item /∈ T ] ≥
1
2 .

Note that we did only argue about the value of the dual variables µT and did not at
all need to take a specific value vi into account. In particular, it is only important that
the probability distribution (µT )T does not put too much mass on T = {item} or in
other words, µ∅ is sufficiently large. The remarkable thing is that this argument nicely
extends to XOS and MPH-k valuation functions without becoming much more involved.
In the more general settings, we will consider (subsets of) items separately and argue in
an equivalent way about (µT )T .

3.3.2 XOS valuation functions

We proceed in a similar way as in the proof of Lemma 3.3.1. Still, we need to take the
combinatorial structure of the valuation functions into account.

Proof of Lemma 3.3.2. First, observe that for any XOS valuation function vi, when fix-
ing one of the additive supporting functions, we obtain a lower bound on the function’s
value. In particular, we can bound the value of vi(S \ T ) from below by considering the
additive function with which buyer i would evaluate the set S. We denote this function
by wSi . Using this property, we can lower bound the left-hand side of Inequality (3.2) as
follows: ∑

T

µT vi(S \ T ) ≥
∑
T

µTw
S
i (S \ T ) =

∑
T

µT
∑
j∈S

wSi ({j})1j/∈T

=
∑
j∈S

wSi ({j})
∑
T

µT1j/∈T =
∑
j∈S

wSi ({j})Prµ [j /∈ T ]

≥ 1
2
∑
j∈S

wSi ({j}) =
1
2vi(S) .

The first inequality holds due to the XOS property of vi, the second step exploits that
the function wSi is additive. In the last inequality, we made use of Inequality (3.1) for
β = 1 to see that Prµ [j /∈ T ] ≥ 1

2 .

3.3.3 MPH-k valuation functions

Also the proof for MPH-k valuations follows a similar template. In contrast to XOS
valuation functions, we have to take into account that items can complement each other.
Further, we give a combined proof for Lemmas 3.3.3 and 3.3.4 with general α ≥ 1 and
β ∈ (0, 1] and use two observations afterwards to show the desired competitive ratios.

41



CHAPTER 3. SIMPLIFIED PROPHET INEQUALITIES

Proof of Lemmas 3.3.3 and 3.3.4. As in the case of XOS valuation functions, also for
MPH-k valuations we can fix one of the supporting PH-k functions to obtain a lower
bound on the value. In particular, we can bound the value of vi(S \ T ) from below by
only considering the PH-k function with which buyer i would evaluate the set S, denoted
by vSi (·) with corresponding weights on hyperedges denoted by wSi (·). This implies the
following lower bound on the left-hand side of Inequality (3.2):∑

T

µT vi(S \ T ) ≥
∑
T

µT v
S
i (S \ T )

=
∑
T

µT
∑
X⊆S

wSi (X)1X∩T=∅

=
∑
X⊆S

wSi (X)

(∑
T

µT1X∩T=∅

)

=
∑
X⊆S

wSi (X)Prµ [X ∩ T = ∅] .

Next, we argue that for the respective choices of α ≥ 1 and β ∈ (0, 1], the term
Prµ [X ∩ T = ∅] is at least as large as 1

αβ for any X with |X| ≤ k and any feasible
dual solution.

To this end, first note that by the union bound and Inequality (3.1)

Prµ [∃ j ∈ X : j ∈ T ] ≤
∑
j∈X

Prµ [j ∈ T ] ≤
∑
j∈X

β

1 + β
≤ kβ

1 + β
,

where in the last inequality, we used that |X| ≤ k via the MPH-k property. Hence, we
can lower bound Prµ [X ∩ T = ∅] via

Prµ [X ∩ T = ∅] = Prµ [∀ j ∈ X : j /∈ T ] = 1−Prµ [∃ j ∈ X : j ∈ T ] ≥ 1− kβ

1 + β
.

As a consequence, we obtain that

∑
T

µT vi(S \ T ) ≥
∑
X⊆S

wSi (X)

(
1− kβ

1 + β

)
=

(
1− kβ

1 + β

)
vi(S) .

We can conclude the proof of Lemma 3.3.3 by observing that for α = 4k − 2 and
β = 1

2(k−1) , we have 1− kβ
1+β = 1

αβ .

The proof of Lemma 3.3.4 follows by checking that for α = 2k + 2
√
k(k− 1)− 1 and

β =
√

k
k−1 − 1, also 1− kβ

1+β = 1
αβ which again leads to the desired result.

One might wonder what is really going on. As a matter of fact, we made use of
the property that the probability distribution (µT )T cannot put too much mass on any
item. In other words, the dual constraints ensure the following: When drawing a set T
with respect to (µT )T , any item j ∈M is ensured to be not in T with a reasonably high
probability. This implies for XOS and MPH-k functions that the values of vi(S \T ) and
vi(S) are sufficiently close to each other.
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3.4 Matroid Prophet Inequality via LP Duality

Let us now consider the setting of matroid Prophet Inequalities as studied in Kleinberg
and Weinberg [2019]. Recall from Section 3.1 that we assume items to be identical and
hence, buyers’ valuations boil down to a single, non-negative, real number for being
allocated one of the items. We denote by T the set of chosen buyers who are allocated
an item and by Ti the set of chosen buyers before the arrival of buyer i. Our algorithm
is based on dynamic prices for buyers. As buyer i arrives, if she can be feasibly added
to Ti with respect to the matroid constraint I, we offer a price pi(Ti). As prices are
dynamic, the price pi(Ti) will depend on Ti.

Now, OPT(v) is a maximum weight basis in the matroid with weights v. In addi-
tion, OPT (v | T ) denotes the maximum weight basis in the matroid contracted by T .
Observe, that we need to ensure that T ∈ I.

Theorem 3.4.1. Let M = ([n], I) be a matroid. There exist prices pi(Ti) for any i
and Ti ⊆ [i− 1] with Ti ∈ I which ensure

Ev [v (ALG(v))] ≥
1
2Ev [v (OPT(v))] .

Note that the competitive ratio of 1/2 is tight here, as it is already tight in the single-
item case (which corresponds to the 1-uniform matroid) by Example 1.1.1. Theorem 3.4.1
was originally shown by Kleinberg and Weinberg [2019]. Their original proof did not
use LP duality but proceeded in a different way: They state a particular choice of prices
pi(Ti) and show that these prices lead to the desired competitive ratios. Even though
the following proof differs from their original one, we will later in Lemma 3.4.3 make use
of a desirable property for matroids from Kleinberg and Weinberg [2019].

For the proof via LP duality, we start by proving the following lemma.

Lemma 3.4.2. The value achieved by the algorithm with prices pi(Ti) for any i and
Ti ⊆ [i− 1] with Ti ∈ I ensures

Ev [v (ALG(v))] ≥ min
T∈I

∑
i∈T

pi(Ti) +Ev

 ∑
i∈OPT(v|T )

(vi − pi(Ti))

 .

Proof. In order to prove this theorem, we split Ev [v (ALG(v))] into revenue and utility
and consider each quantity separately.

Revenue. The expected revenue of the algorithm is

Ev [rev(v, p)] = Ev

 ∑
i∈T (v)

pi(Ti(v))

 ,

where T (v) (and Ti(v) respectively) denotes the set of chosen agents by the algorithm
when the valuation profile is v.

Utility. In order to lower bound the utility, consider an arbitrary buyer i. Note that
we could add i to our solution, if her value exceeds her price pi(Ti(v)) and she can be
feasibly added to Ti with respect to the matroid constraint I. In addition, observe that
Ti is independent of vi, because only agents 1, . . . , i− 1 are taken into account for Ti.
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In particular, for any v′i, we have Ti(v) = Ti((v′i, v−i)). As a consequence, we get the
following bound:

Ev [ui(v, p)] ≥ Ev
[
(vi − pi(Ti(v)))+ 1i/∈span(Ti(v))

]
= Ev

[
(vi − pi(Ti((v′i, v−i))))

+
1i/∈span(Ti((v′i,v−i)))

]
≥ Ev

[
(vi − pi(Ti((v′i, v−i))))1i∈OPT((vi,v′−i)|T (v′i,v−i))

]
.

In the last inequality we used that for any valuation profile ṽ, the following holds:
if i ∈ OPT (ṽ | T (v′i, v−i)), then i can be added to T (v′i, v−i) without violating the
matroid constraint. In particular, as T (v′i, v−i) ⊇ Ti(v′i, v−i), the inequality holds.

Choosing v′ ∼ ×ni=1Di to be an independent and identically distributed sample from
distribution ×ni=1Di, we get

Ev [ui(v, p)] ≥ Ev,v′

[
(vi − pi(Ti((v′i, v−i))))1i∈OPT((vi,v′−i)|T (v′i,v−i))

]
= Ev,v′

[
(vi − pi(Ti(v′)))1i∈OPT(v|T (v′))

]
Summing over all i, we get

n∑
i=1

Ev [ui(v, p)] ≥ Ev,v′

 ∑
i∈OPT(v|T (v′))

(vi − pi(Ti(v′)))


Combination. Combining revenue and utility, we get

Ev [v (ALG(v))] = Ev [rev(v, p)] +
n∑
i=1

Ev [ui(v, p)]

≥ Ev

 ∑
i∈T (v)

pi(Ti(v))

+Ev,v′

 ∑
i∈OPT(v|T (v′))

(vi − pi(Ti(v′)))


≥ min

T∈I

∑
i∈T

pi(Ti) +Ev

 ∑
i∈OPT(v|T )

(vi − pi(Ti))



Our task now is to show that for any set T ∈ I, we have

∑
i∈T

pi(Ti) +Ev

 ∑
i∈OPT(v|T )

(vi − pi(Ti))

 ≥ 1
2Ev [v (OPT(v))] .

In particular, we can again formulate a linear program which has a non-negative objective
value if there are prices pi(Ti) leading to the desired competitive ratio. To this end, we
state the following LP with variables pi(Ti) for every i and Ti ∈ I such that Ti ⊆
{1, . . . , i− 1} and slack variables `+ and `−.
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max `+ − `−

s.t.
∑
i∈T

pi(Ti) +Ev

 ∑
i∈OPT(v|T )

(vi − pi(Ti))


≥ 1

2Ev [v (OPT(v))] + `+ − `− for all T ∈ I

pi(Ti) ≥ 0 for all i and Ti

`+ ≥ 0
`− ≥ 0.

In order to derive the dual, let us reformulate the constraints to
n∑
i=1

pi(Ti) · (Prv [i ∈ OPT (v | T )]− 1i∈T ) + `+ − `−

≤ Ev

 ∑
i∈OPT(v|T )

vi

− 1
2Ev [v (OPT(v))]

Observe that if the optimal solution to this LP has a non-negative objective value,
then the corresponding prices ensure a 1/2-competitive algorithm. In order to show
this, by strong LP duality, we can argue in dual space in the same way as we did in
Section 3.2.1. In particular, using strong duality, having a non-negative objective is
equivalent to showing that any feasible dual solution has a non-negative dual objective.
To this end, we consider the dual LP with variables µT for T ⊆ [n] with T ∈ I.

min
∑
T :T∈I

µT

Ev

 ∑
i∈OPT(v|T )

vi

− 1
2Ev [v (OPT (v))]


s.t.

∑
T :T∈I

µT = 1
∑

T :T∈I and
T ′=T∩[i−1]

µT (Prv [i ∈ OPT (v | T )]− 1i∈T ) ≥ 0 for all i, T ′ ⊆ [i− 1] with T ′ ∈ I

µT ≥ 0 for all T with T ∈ I.

In order to show that the dual objective is always non-negative, we will next present
our three key ingredients.

Dual constraints. We can rewrite the second set of constraints for all buyers i and
T ′ ⊆ [i− 1] with T ′ ∈ I in a more useful way:

∑
T :T∈I and
T ′=T∩[i−1]

µT ·Prv [i ∈ OPT(v | T )] ≥
∑

T :T∈I and
T ′=T∩[i−1]

µT · 1i∈T . (3.3)
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Dual objective. We use that ∑T :T∈I µT = 1 as well as linearity of expectations to
rearrange the terms in the dual objective:

dual obj. =
∑
T :T∈I

µT

(
Ev [v (OPT(v | T ))]−

1
2Ev [v (OPT(v))]

)

= Ev

[ ∑
T :T∈I

µT v (OPT(v | T ))
]
− 1

2Ev [v (OPT(v))]

= Ev

[ ∑
T :T∈I

µT v (OPT(v | T ))−
1
2v (OPT(v))

]
.

In order to argue that the dual objective is always non-negative, we will show that the
following inequality holds pointwise for any v:∑

T :T∈I
µT v (OPT(v | T )) ≥

1
2v (OPT(v)) . (3.4)

Observe that instead of arguing in the incomplete information setting, we can now
restrict to the full information setting with a known valuation profile v.

Further useful ingredients. We cite a useful statement from Kleinberg and Weinberg
[2012] concerning matroids which we will apply in the following.

Lemma 3.4.3. [Kleinberg and Weinberg, 2012, Proposition 2] Fix valuation profile v
and let T ∈ I. For any W ∈ I with T ∩W = ∅ and T ∪W ∈ I, it holds

v (OPT (v | T )) ≥
∑
i∈W

(v (OPT (v | Ti))− v (OPT (v | Ti ∪ {i}))) .

Having this, we are ready to state our final claim which proves Theorem 3.4.1.

Claim 3.4.4.
∑
T :T∈I µT v (OPT(v | T )) ≥ 1

2v (OPT(v))

Once we have shown this claim, as an immediate consequence, we get that the dual
objective is always non-negative by the above considerations.

Proof of Claim 3.4.4. Observe that we can set W := OPT(ṽ | T ) in Lemma 3.4.3 for
some valuation profile ṽ. Hence, we get

v (OPT(v | T )) ≥
∑

i∈OPT(ṽ|T )
(v (OPT(v | Ti))− v (OPT(v | Ti ∪ {i}))) .

If we assume that ṽ ∼ ×ni=1Di is an independent fresh draw from ×ni=1Di, the lemma
still holds pointwise for any realization. Taking expectations over ṽ yields the following
sequence of inequalities:∑

T :T∈I
µTv (OPT(v | T ))

≥
∑
T :T∈I

µTEṽ

 ∑
i∈OPT(ṽ|T )

(v (OPT(v | Ti))− v (OPT(v | Ti ∪ {i})))


=
∑
i

∑
T :T∈I

µTPrṽ [i ∈ OPT(ṽ | T )] (v (OPT(v | Ti))− v (OPT(v | Ti ∪ {i}))) .
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Next, we will reorder the sums in order to make use of the dual constraints as stated in
Equation (3.3). To simplify notation, we define COST (v, i | Ti) := v (OPT(v | Ti))−
v (OPT(v | Ti ∪ {i})) as the marginal loss in OPT(v | Ti) when adding i to Ti. Hence,
we get∑

i

∑
T :T∈I

µTPrṽ [i ∈ OPT(ṽ | T )] (v (OPT(v | Ti))− v (OPT(v | Ti ∪ {i})))

=
∑
i

∑
T :T∈I

µT ·Prṽ [i ∈ OPT(ṽ | T )] ·COST (v, i | Ti)

=
∑
i

∑
Ti :Ti∈I
Ti⊆[i−1]

∑
T :T∈I

Ti=T∩[i−1]

µT ·Prṽ [i ∈ OPT(ṽ | T )] ·COST (v, i | Ti)

=
∑
i

∑
Ti :Ti∈I and
Ti⊆[i−1]

COST (v, i | Ti)

 ∑
T :T∈I and
Ti=T∩[i−1]

µT ·Prṽ [i ∈ OPT(ṽ | T )]



≥
∑
i

∑
Ti:Ti∈I and
Ti⊆[i−1]

COST (v, i | Ti)

 ∑
T :T∈I and
Ti=T∩[i−1]

µT · 1i∈T


=
∑
i

∑
T :T∈I

µT · 1i∈T ·COST (v, i | Ti) ,

where the inequality simply uses Constraints (3.3). Finally, by reordering the sums, we
make use of a telescopic sum argument:

∑
i

∑
T :T∈I

µT · 1i∈T ·COST (v, i | Ti)

=
∑
T :T∈I

µT
∑
i∈T

(v (OPT(v | Ti))− v (OPT(v | Ti ∪ {i})))

=
∑
T :T∈I

µT (v (OPT(v))− v (OPT(v | T )))

= v (OPT(v))−
∑
T :T∈I

µTv (OPT(v | T )) ,

where in the last equality we made use of the fact that ∑T :T∈I µT = 1 by the first dual
constraint. Combining all of this, we get∑

T :T∈I
µTv (OPT(v | T )) ≥ v (OPT(v))−

∑
T :T∈I

µTv (OPT(v | T ))

or equivalently ∑
T :T∈I

µTv (OPT(v | T )) ≥
1
2v (OPT(v))

which proves the desired statement.
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Chapter 4

Approximating Optimum Online
for Multi-Demand Buyers

In the previous chapter, we compared the performance of pricing-based online algorithms
to the expected offline optimum. For example, Theorem 3.0.1 from Chapter 3 shows the
existence of static item prices which imply a 1/2-competitive algorithm for combinatorial
auctions when buyers have XOS valuation functions. Using the results from Dütting
et al. [2020], there are even prices which can be computed in polynomial time.

Still, comparing to the expected offline optimum as a benchmark might be too pes-
simistic in several applications. Its access to future realizations is unattainable for online
algorithms. Therefore, a recent line of work (e.g. Papadimitriou et al. [2021], Anari et al.
[2019], Braverman et al. [2022] or Dütting et al. [2023]) has started to complement pre-
vious results by shifting attention towards the following question:

How well can we approximate the optimal (computationally unbounded) online algo-
rithm in polynomial time?

In other words, how much must we lose when restricting to efficient algorithms in-
stead of solving the optimal dynamic program? On the one hand, even for buyers
with unit-demand valuations it is PSPACE-hard to approximate the optimum online
algorithm within some absolute constant 1− ε [Papadimitriou et al., 2021]. Luckily, ap-
proximations strictly better than 1/2 exist for unit-demand buyers: Papadimitriou et al.
[2021] gave a 0.51-approximate algorithm, later improved to 0.52 [Saberi and Wajc,
2021], 1− 1/e ≈ 0.632 [Braverman et al., 2022], and 0.652 [Naor et al., 2023]. Motivated
by this, we ask:

Can we obtain a better than 1/2-approximate algorithm to the optimal (computation-
ally unbounded) online algorithm beyond unit-demand valuation functions?

As we will see in this chapter, this is indeed possible. In particular, we show the
following theorem for multi-demand buyers1.
Theorem 1.3.1. When buyers have multi-demand valuation functions, there exists a
polynomial time (1/2 + κ)-approximation algorithm with respect to the expected social
welfare of the optimal online algorithm, for a constant κ ≥ 0.0115.

1We assume that every agent has a ki-demand valuation function as defined in Chapter 2, where
ki denotes the buyer-specific demand size of agent i. This class of valuation functions is studied with
the name “multi-demand buyers”, e.g. by Berger et al. [2020]. We will sometimes refer to multi-demand
buyers as ki-demand buyers to make the demand size more clear.
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Our algorithm for Theorem 1.3.1 is based on an LP relaxation of the welfare obtained
by the optimal online algorithm. This LP relaxation is rounded online given the observed
valuations. Inspired by the work of Papadimitriou et al. [2021], we make use of a two-
proposal approach for the rounding procedure: We first propose a set of items to buyer
i from which a random subset is allocated. Given the remaining space in the demand ki,
we fill this space with another random proposal while ensuring that we never allocate
more than ki items to buyer i.

It is crucial that the algorithm has access to the exact valuations of all buyers. Still,
using recent work of Banihashem et al. [2024], we are also able to deal with strategic
buyers who may misreport their own valuations. In particular, we can argue that our
algorithm can be made dominant-strategy incentive-compatibility (DISC) if we bound
the demand size ki of buyers by a constant. In particular, Theorem 1.3.1 implies the
following result.

Theorem 4.0.1. If every buyer i has a ki-demand valuation function and ki is upper
bounded by a constant, then there exists a polynomial-time DSIC mechanism giving a
(1/2 + κ)-approximation to the social welfare of the optimal online algorithm.

Proof. We apply Theorem 19 of Banihashem et al. [2024], as our problem with ki-demand
valuation functions can be viewed exactly as what they call a “Prophet Inequalities
problem” in their paper. Using their notation, we take Ainp to be our algorithm which
we use to prove Theorem 1.3.1, with expected social welfare E

[
v(Ainp)

]
. Note that

our algorithm is what Banihashem et al. [2024] call “past-valuation-independent” as its
allocation decision for buyer i depends only on the set of available items, the arriving
buyer’s valuation vi(·), and knowledge of the input distributions. Note also that for
each buyer i, the outcome space is of size at most (nki) = poly(n), because ki is upper
bounded by a constant. Finally, although our distribution over vi(·) is not continuous,
it is not hard to satisfy the required assumption by adding a tie-breaking coordinate (as
mentioned in Banihashem et al. [2024]).

Hence, there is a pricing-based algorithm Aout which uses poly(n, ( n
maxi ki), 1/ε) many

samples, runs in time poly(n, ( n
maxi ki), 1/ε) and whose expected social welfare satisfies

E
[
v(Aout)

]
≥ (1− ε) ·E

[
v(Ain)

]
.

Note that our main Theorem 1.3.1 does not require any upper bounds on the demand
size ki. In particular, the demand ki can be as large as the number of items (which
corresponds to an additive valuation function). The upper bound on ki in Theorem 4.0.1
is only required such that the algorithm from Banihashem et al. [2024] runs in polynomial
time.

Concerning the analysis of our algorithm, we distinguish for each buyer-item pair
(i, j) whether it is assigned with sufficiently large probability already from the first
proposal, or if it requires the second proposal. In the first case, the analysis proceeds
in a straightforward way similar to the OCRS literature (see e.g. Ezra et al. [2020]). In
the second case, we are required to be much more careful. In particular, the number
of allocated items via the first proposal is affecting our second proposal. To this end,
we need to consider the correlation between the presence and absence of items after the
first proposal. Controlling this correlation will be the major technical challenge in this
chapter.
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As a side remark, in previous work with unit-demand valuations, this challenge was
readily handled by using negative correlation. Unfortunately, simple examples show that
in our case positive correlation is required to go beyond an approximation ratio of 1/2.
Observation 4.0.2. Any algorithm for buyers with ki-demand valuations which has
an approximation ratio better than 1/2 with respect to the LP relaxation LPon (to be
defined in Section 4.1) must create positive correlation between the events of items being
available.
Proof. Let Fi,j denote the event of item j being free just before the arrival of buyer
i. Consider buyer i with demand size ki = 2 arriving with probability ε and having
unit values only for two items j and j′. With probability 1− ε, buyer i is not arriving
(or equivalently, buyer i samples a valuation function which is zero for any subset of
items). Imagine the LP sets a value of ε on each pair (i, j) and (i, j′). To achieve
an approximation factor of (0.5 + κ) against the LP, we are required to have that the
expected number of items assigned to i is at least (0.5 + κ) · 2ε. Equivalently, we must
have

Pr [Fi+1,j ] +Pr [Fi+1,j′ ] < 2− (0.5 + κ) · 2ε
implying

Pr [Fi+1,j ] ·Pr [Fi+1,j′ ] < (1− (0.5 + κ) · ε)2 = 1− (1 + 2κ)ε+O(ε2).

However, because j and j′ can only be allocated if i arrives, we have

Pr [Fi+1,j ∧ Fi+1,j′ ] ≥ 1− ε > Pr [Fi+1,j ] ·Pr [Fi+1,j′ ] ,

where the final inequality holds for sufficiently small ε.

While this unfortunately shows that it is not possible to obtain negative correlation
for general ki-demand valuation functions, we show that our algorithm obtains a good
approximation if it can just avoid introducing a “large” amount of positive correlation.

Chapter Organization and Remarks

This chapter is based on Approximating Optimum Online for Capacitated Resource Allo-
cation [Braun et al., 2024], which is joint work with Thomas Kesselheim, Tristan Pollner
and Amin Saberi. Further bibliographic notes can be found in Section 1.5.

We start with some preliminaries and a formal problem definition in Section 4.1.
Afterwards, the algorithm is stated for two-point distributions in Section 4.2 and an-
alyzed in Section 4.3. The algorithm as stated in Section 4.2 is not polynomial time.
While we can estimate the crucial quantity via samples as shown in our paper [Braun
et al., 2024], we follow a different path in this thesis: We show in Section 4.4 that it is
not even necessary to use these estimates as even a simpler algorithm allows us to beat
the approximation ratio of half. In Section 4.5, we finally discuss how to extend the
algorithm and its analysis towards general distributions.

4.1 Formal Problem Statement and Preliminaries

There is a set of m heterogeneous items M and a sequence of buyers [n] arrives online in
known order2. In the special case of Bernoulli distributions, we are given a ki-demand

2We highlight that knowing the arrival order is important – in contrast to the results in Chapter 3,
where results hold also against an adaptive adversary.
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valuation function vi for every buyer i upfront. To simplify notation, we denote buyer
i’s value for item j by vi,j ≥ 0. As a consequence, the valuation function of buyer i can
be expressed as

vi(S) = max
S′⊆S:|S′|≤ki

∑
j∈S′

vi,j .

In step i, buyer i arrives (also noted as active) independently with known probability qi
and does not arrive otherwise.

Every item can be allocated to at most one buyer; any buyer is interested in up to
ki many items. We call ki the demand size or capacity of buyer i and emphasize that ki
can be buyer-specific, i.e. we allow different buyers to have different demand sizes. Upon
the arrival of buyer i, we observe the random realization if the buyer is active, and can
choose which items Xi ⊆M (if any) we would like to allocate, subject to the constraints
that each item can be assigned to at most one buyer and |Xi| ≤ ki. If buyer i does not
arrive, for convenience, we take Xi = ∅.

Our objective is to maximize the expected social welfare, defined as E [ALG] :=
E
[∑

i

∑
j∈Xi vi,j

]
, where ALG is required to run in polynomial time.

Benchmark. As mentioned before, we want to compare to the optimal (computation-
ally unbounded) online algorithm. In other words, we aim for a statement of the form
E [ALG] ≥ ζ ·OPTon, where OPTon is the expected welfare achieved by the optimal
online algorithm. The optimal online algorithm has unlimited computational power and
also knows all distributions upfront, but only observes realizations one at a time and
needs to make an irrevocable decision before observing the next realization. Formally,
we can define OPTon via a Bellman equation. To this end, let OPTon(i, J) denote the
optimum gain achievable from buyers {i, i+ 1, . . . ,n} with items J ⊆M available. Then,
recursively we have

OPTon(i, J) := (1− qi) ·OPTon(i+ 1, J)

+ qi · max
J ′⊆J ,|J ′|≤ki

∑
j∈J ′

vi,j + OPTon(i+ 1, J \ J ′)

 .

We recall that even in the special case of unit-demand valuations, it is PSPACE-hard to
approximate OPTon within a (1− ε)-factor [Papadimitriou et al., 2021].

LP Relaxation. We will use an LP relaxation of the optimum online algorithm which
generalizes the one from the unit-demand case [Papadimitriou et al., 2021, Braverman
et al., 2022, Torrico and Toriello, 2022]. It has a variable xi,j for every buyer-item pair
(i, j):
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max
∑
i,j
vi,j · xi,j (LPon)

s.t.
∑
i

xi,j ≤ 1 for all j ∈M (4.1)∑
j

xi,j ≤ qi · ki for all i ∈ [n] (4.2)

0 ≤ xi,j ≤ qi ·

1−
∑
i′<i

xi′,j

 for all j ∈M , i ∈ [n] . (4.3)

This LP indeed relaxes the optimal online algorithm, as we will see in the following
observation.
Observation 4.1.1. The optimum objective value of LPon upper bounds the gain of
optimum online. In other words, OPT(LPon) ≥ OPTon.

Proof. Define an indicator random variable Xi,j for every pair (i, j) which is one if and
only if the optimum online algorithm allocates item j to buyer i. Denote by x∗i,j =
E [Xi,j ] its expectation.

First, note that the welfare achieved by the optimum online algorithm is

OPTon = E

∑
i,j
vi,jXi,j

 =
∑
i,j
vi,j · x∗i,j ,

coinciding with the objective of LPon.
Next, we observe that any algorithm can allocate items at most once, hence for any

item j ∈M , we have ∑
i

x∗i,j =
∑
i

E [Xi,j ] = E
[∑

i

Xi,j

]
≤ 1 .

Also, note that for any buyer i, we have ∑j Xi,j = 0 if the buyer does not arrive,
and ∑j Xi,j ≤ ki if the buyer arrives, as the optimum online algorithm will assign at
most ki items to buyer i if the buyer arrives. Hence

∑
j

x∗i,j = E

∑
j

Xi,j

 = Pr [i arrives] ·E

∑
j

Xi,j

∣∣∣∣∣∣ i arrives

 ≤ qi · ki.
Finally, observe that if buyer i arrives, the optimum online algorithm can only allo-

cate item j if it is available. Item j is available if it was not allocated to some previous
buyer i′ < i. Crucially, for any online algorithm, the event that item j is available at
time i is independent of the arrival of buyer i (this does not hold for an offline algorithm).
Hence, we obtain

x∗i,j = E [Xi,j ] = Pr [i arrives] ·E [Xi,j | i arrives]

≤ qi ·E

1−
∑
i′<i

Xi′,j

∣∣∣∣∣∣ i arrives


= qi ·E

1−
∑
i′<i

Xi′,j

 = qi ·

1−
∑
i′<i

x∗i′,j

 .
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As a consequence, {x∗i,j}i,j is a feasible solution to LPon and hence, OPT(LPon) ≥
OPTon.

Generalized Problem Definition. In the above problem definition, we made the
simplifying assumption that the buyer arriving at time i has a simple Bernoulli distri-
bution determining if she is active or not. In the general model, in every round, a buyer
randomly realizes one of many possible valuation functions. More formally, buyer i re-
alizes one of L possible demand sizes ki,` together with a vector of values (vi,j,`)j , where
each realization ` is sampled with probability qi,`. We highlight that demand sizes and
values for a single buyer i can be arbitrarily correlated, although across different rounds
we assume independence. In Section 4.5 we argue that our LP, algorithm, and analysis
can be extended to this general setting.

Pivotal Sampling

As a part of our online algorithm we invoke the randomized offline rounding framework
of pivotal sampling (also called Srinivasan rounding or dependent rounding) [Srinivasan,
2001, Gandhi et al., 2006]. To simplify the description, denote the set of items M =
{1, . . . ,m}.

Imagine we are given marginals x1, . . . ,xm with each xj ∈ [0, 1] and ∑
j xj ≤ K

for some positive integer K. We would like to randomly select at most K indices from
{1, 2, . . . ,m} such that j is selected with probability xj . Pivotal sampling selects such a
subset while also guaranteeing strong negative correlation properties between individual
indices. It does so by sequentially choosing a pair of fractional marginals, and applying a
randomized “pivot” operation that makes at least one integral. We formally state some
of the properties of the algorithm below which will be used in our analysis in Section 4.3.

Theorem 4.1.2 (as in Srinivasan [2001]). The pivotal sampling algorithm with input
(xj)mj=1 where

∑
j xj ≤ K efficiently produces a random subset PS(x1, . . . ,xm) ⊆M with

the following properties:

(P1) For every j ∈M , we have Pr [j ∈ PS(x1, . . . ,xm)] = xj.

(P2) The number of elements in PS(x1, . . . ,xm) is always at most K.

(P3) (Negative cylinder dependence) For any J ⊆M , we have

Pr

∧
j∈J

j ∈ PS(x1, . . . ,xm)

 ≤ ∏
j∈J

Pr [j ∈ PS(x1, . . . ,xm)] ,

and

Pr

∧
j∈J

j /∈ PS(x1, . . . ,xm)

 ≤ ∏
j∈J

Pr [j /∈ PS(x1, . . . ,xm)] .

4.2 The Algorithm: A Two-Step Approach

We begin with a short description of our algorithm before presenting the pseudo code
in Algorithm 4. To this end, we say item j is “free at i” or “available at i” (or
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“free”/“available”, if the context is clear) if just before the arrival of buyer i, item j
has not yet been allocated to any previous buyer.

Our algorithm uses an optimal solution {xi,j}i,j to LPon as input. After observing
if buyer i arrives, if so, we sample a set of at most ki items FPi (denoting the f irst
proposal for i) using pivotal sampling, such that each item j is included in FPi with
marginal probability xi,j/qi. For every item j ∈ FPi, if j is still available, we toss a coin
independently with probability αi,j := min

(
1, 0.5+κ

1−(0.5+κ)·
∑

i′<i xi′,j

)
, and allocate item j

to buyer i if this coin toss is successful.
After this procedure, we have a number Ai of items allocated to buyer i, where

Ai is a random variable which can take values in {0, . . . , ki}. In order to make use of
the remaining space in the demand size of buyer i, we make a second proposal. Again
via the pivotal sampling subroutine, this time with a reduced marginal probability of
(1− Ai

ki
) · xi,j/qi for every item j, we sample a set of items SPi, denoting the second

proposal with size at most ki −Ai. Among these items, we consider only those items j
for which αi,j = 1, j was free at i, and j was not allocated to i via a first proposal. For
each such item j, we allocate j to i with probability βi,j . The factor βi,j is chosen in a
way to ensure that Pr [j allocated to i] = (0.5 + κ) · xi,j .

Algorithm 4: Allocation Algorithm
1 κ← 0.0115
2 Solve LPon for {xi,j}i,j
3 for each buyer i, if i arrives do
4 Define items FPi := PS((xi,j/qi)j)
5 for each item j ∈ FPi do
6 if j is available then

7 Allocate j to i with probability αi,j := min
(

1, 0.5+κ
1−(0.5+κ)·

∑
i′<i xi′,j

)
8 Ai ← number of items allocated to i thus far
9 Define items SPi := PS(((1− Ai

ki
) · xi,j/qi)j)

10 for each item j ∈ SPi with αi,j = 1 do
11 if j is available then
12 Compute ρi,j := E

[
1[j available after Line 8] · (1− Ai

ki
) | i arrived

]
13 βi,j ← min

(
1, ((0.5 + κ) ·

∑
i′<i xi′,j − (0.5− κ)) · 1

ρi,j

)
14 Allocate j to i with prob. βi,j

Concerning the definition of ρi,j , we note that the expectation is over the randomness
in the arrivals and the algorithm up to when Algorithm 4 reaches Line 8 for arrival i
(in particular, we consider “re-running” the algorithm as defined thus far on a fresh
instance). The indicator 1[j available after Line 8] refers to the event that j was not
allocated to some i′ < i and is also not allocated to i via a first proposal. This indicator
is potentially correlated with the number of allocated items Ai.

The min(1, ·) in the definition of βi,j is for convenience only; in particular, it is thus
easy to see that the algorithm is well-defined. As a crux of our analysis, we will show
that using κ = 0.0115 ensures that the min(1, ·) in the definition of βi,j is actually
redundant.
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In the remainder of this section, we will argue that Algorithm 4 is well-defined and
guarantees to respect the demand constraints of buyers.

Observation 4.2.1. Algorithm 4 is well-defined.

Proof. Note first that in Line 4, our call to the pivotal sampling algorithm PS(·) is
well-defined as each marginal xi,j/qi is in [0, 1] by LPon-Constraint (4.3). Each αi,j as
defined in Line 7 is clearly a probability by construction. Our second call to PS(·) is
similarly well-defined. Note that βi,j is always a probability — if αi,j = 1, it implies that
(0.5 + κ) ·

∑
i′<i xi′,j ≥ (0.5− κ) by definition. This in turn shows that βi,j is always in

the interval [0, 1].
Finally, note that item j is allocated only if available, and hence never allocated to

two different buyers (or to the same buyer twice).

We also have that our algorithm respects the demand sizes for each buyer arriving
online.

Observation 4.2.2. The number of items allocated to buyer i by Algorithm 4 is always
at most ki.

Proof. By Property (P2) of pivotal sampling, the size of FPi is never larger than ki as∑
j
xi,j
qi
≤ ki by Constraint (4.2). In addition, as we scale the marginals down for the

second proposal set SPi, we are guaranteed that buyer i is only allocated at most ki−Ai
many items during the second proposal.

We also note that every line except Line 12 can be implemented in polynomial time.
Indeed, note Line 2 can be run efficiently as LPon has polynomial size. Also, our calls
to pivotal sampling can be implemented efficiently [Srinivasan, 2001].

Line 12 requires exponential time as written, and for ease of presentation, first, we
analyze the above exponential time algorithm. In Braun et al. [2024], we show that we
can replace this computation with a sample average and appeal to concentration bounds,
while only losing an arbitrarily small ε in the approximation ratio. The main point of care
is to argue that ρi,j is bounded away from 0 so that we can get an approximation with
good multiplicative error. This will be a consequence of our analysis of the approximation
ratio in Section 4.3.

In this thesis, we complement this result by pursuing a different path. As we will
see, the subsampling with βi,j is not required to beat the approximation ratio of 1/2.
In particular, in Section 4.4, we show that we can set βi,j = 1 for any pair (i, j) and
still outperform the prevalent bound of half by a constant. Hence, any computation or
estimation of the ρi,j can be avoided while still getting an improved guarantee.

4.3 Analysis: Beating a 1/2-Approximation

Our main result is as follows.

Theorem 4.3.1. For κ = 0.0115, the social welfare achieved by Algorithm 4 satisfies

E [ALG] ≥ (0.5 + κ) ·OPTon .

This section is dedicated to the proof of this theorem. As mentioned before, in this
section we analyze the algorithm which has access to the expectation ρi,j exactly and
recall that we can use samples to estimate the quantity in Line 12 [Braun et al., 2024].
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Outline. Before diving into details we outline the ingredients in our proof of Theo-
rem 4.3.1. First, we note that by Observation 4.2.2, the size of the set of items allocated
to i (denote this set by Xi) is always at most ki, so

E [ALG] = E

∑
i

max
S⊆Xi,|S|≤ki

∑
j∈S

vi,j

 =
∑
i,j
vi,j ·Pr [j allocated to i] .

Next, observe that bounding the term Pr [j allocated to i] naturally brings us into
one of two cases. If (i, j) is such that αi,j < 1, the allocation of j to i can only happen
in Line 7 of our algorithm, and consequently it is straightforward to bound the resulting
welfare (which we do in Observation 4.3.4). We then turn our perspective towards pairs
(i, j) with a subsampling probability αi,j = 1; for these, the analysis requires much more
care. Again, we start by considering the contribution of allocating via a first proposal
in Lemma 4.3.5 (i). Here the first proposal alone is not sufficient, and we are required
to compensate for this via a suitable bound on the allocation probability via a second
proposal. We do so by proving Lemma 4.3.5 (ii) which gives a sufficient bound of the
contribution from a second proposal. This is the main technical contribution and will use
lemmas analyzing the evolution of the correlation between offline items in Section 4.3.3.

Notation. For convenience, we let yi,j :=
∑
i′<i xi′,j . Note that αi,j < 1 exactly when

yi,j < (0.5− κ)/(0.5 + κ). We hence define τ := (0.5− κ)/(0.5 + κ) as this threshold
for yi,j after which the subsampling probability αi,j becomes one. If for buyer i and item
j we have yi,j ≤ τ , then we call the pair (i, j) early. Otherwise, we call the pair (i, j)
late. In addition, we define A1 as the set of all pairs (i, j) such that item j was allocated
to buyer i in Line 7, and A2 as the set of all pairs (i, j) such that j was allocated to i
in Line 14.

As j is not allocated more than once in our algorithm, we quickly observe the fol-
lowing claim.

Observation 4.3.2. For any buyer i, we have

E

 max
S⊆Xi,|S|≤ki

∑
j∈S

vi,j

 =
∑
j

vi,j · (Pr [(i, j) ∈ A1] +Pr [(i, j) ∈ A2]).

To analyze the probabilities Pr [(i, j) ∈ A1] and Pr [(i, j) ∈ A2], we consider two
separate cases based on whether (i, j) is early (Section 4.3.1) or late (Section 4.3.2).

4.3.1 Analysis for Early Pairs

It will be crucial to bound the probability of an item j being free at time i. We denote
the event that item j is free or available (i.e., not allocated) at the arrival of buyer i by
Fi,j . The following observation gives an expression of the probability with respect to the
LP variables. As an important remark, note that if a pair (i, j) is early, so is every pair
(i′, j) with i′ < i.

Observation 4.3.3. For early pairs (i, j), we have Pr [Fi,j ] = 1− (0.5 + κ) · yi,j.
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Proof. We proceed via induction on i. Before the arrival of the first buyer, the claim is
trivially true, as all items are available with probability one. Afterwards, note that

Pr [(i, j) ∈ A1] = qi ·Pr [j ∈ FPi] ·Pr [Fi,j ] · αi,j (4.4)

as i’s arrival, j being included in FPi, Fi,j and the algorithm’s Ber(αi,j) coin flip are
mutually independent events. As (i, j) is early, then αi,j =

0.5+κ
1−(0.5+κ)·yi,j , so we have

Pr [(i, j) ∈ A1] = qi ·
xi,j
qi
· (1− (0.5 + κ) · yi,j) ·

0.5 + κ

1− (0.5 + κ) · yi,j
= (0.5 + κ) · xi,j ,

where we also use the induction hypothesis for the probability of item j being free at
the arrival of buyer i. For early (i, j), we also clearly have Pr [(i, j) ∈ A2] = 0, so

Pr [Fi+1,j ] = Pr [Fi,j ]−Pr [(i, j) ∈ A1] = 1− (0.5 + κ) · yi+1,j .

As a consequence we can bound the contribution of an early pair (i, j) to A1 and
A2, as follows.
Observation 4.3.4. For early pairs (i, j), we have

(i) Pr [(i, j) ∈ A1] = (0.5 + κ) · xi,j and

(ii) Pr [(i, j) ∈ A2] = 0.
Thus for early pairs (i, j), our algorithm achieves the desired allocation probability.

4.3.2 Analysis for Late Pairs implies Theorem 4.3.1

For late pairs, we show the following lemma which will be sufficient to prove our main
Theorem 4.3.1.
Lemma 4.3.5. For late pairs (i, j), the following two statements hold:

(i) Pr [(i, j) ∈ A1] = (1− (0.5 + κ) · yi,j) · xi,j, and

(ii) Pr [(i, j) ∈ A2] = ((0.5 + κ) · yi,j − 0.5 + κ) · xi,j.
We note that this immediately implies our main result.

Proof of Theorem 4.3.1. We have Pr [(i, j) ∈ A1] +Pr [(i, j) ∈ A2] = (0.5+ κ) ·xi,j for
any pair (i, j) by Observation 4.3.4 and Lemma 4.3.5. Hence, using the decomposition
in Observation 4.3.2, we have

E [ALG] = E

∑
i,j
vi,j1j∈Xi


=
∑
i

∑
j

vi,j · (Pr [(i, j) ∈ A1] +Pr [(i, j) ∈ A2])

=
∑
i

∑
j

vi,j · (0.5 + κ) · xi,j

= (0.5 + κ) ·OPT(LPon) ≥ (0.5 + κ) ·OPTon .

Thus, it remains to prove Lemma 4.3.5. Our analysis here requires significantly
more care as it must bound the gain from the second proposal. As the second proposal’s
marginal probabilities are dependent on which items were allocated in the first proposal,
a complete analysis must consider the correlation introduced.
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Proof of Lemma 4.3.5 (i)

As for early pairs, the remainder of our proof will proceed by induction on i. Thus, for
every late pair (i′, j) with i′ < i, by the inductive hypothesis we have Pr [(i′, j) ∈ A1] +
Pr [(i′, j) ∈ A2] = (0.5 + κ) · xi′,j . Recall also that for every early pair (i′, j) we know
from Observation 4.3.4 that Pr [(i′, j) ∈ A1] +Pr [(i′, j) ∈ A2] = (0.5+ κ) · xi′,j . Thus,
we may assume that for the late pair (i, j) we have

Pr [Fi,j ] = 1− (0.5 + κ) · yi,j . (4.5)

With this, bounding the probability of allocation along a first proposal is very straight-
forward.

Proof of Lemma 4.3.5 (i). Note that

Pr [(i, j) ∈ A1] = qi ·Pr [Fi,j ] ·Pr [j ∈ FPi] · αi,j (via Equation (4.4))

= qi · (1− (0.5 + κ) · yi,j) ·
xi,j
qi
· 1 (via Equation (4.5))

= (1− (0.5 + κ) · yi,j) · xi,j .

This completes the proof of Lemma 4.3.5 (i), and the remainder of this section is
dedicated to the proof of Lemma 4.3.5 (ii).

Proof of Lemma 4.3.5 (ii)

We begin by bounding Pr [(i, j) ∈ A2] for late pairs (i, j), in the natural way which
depends on the number of allocated items during the first proposal in Line 7. Recall
that this is because for second proposals, we reduce the marginal probabilities for the
pivotal sampling algorithm by a factor of 1− Ai/ki. Note that for (i, j) to be assigned
via a second proposal we need all of the following to happen: (i) i should arrive, (ii) j
must be available after Line 8, and included as a second proposal, and (iii) the pair (i, j)
should survive the final downsampling by βi,j . This lets us observe

Pr [(i, j) ∈ A2]

= qi ·Pr [j available after Line 8∧ j ∈ SPi | i arrived] · βi,j

= qi ·E
[
1[j available after Line 8] ·

(
1− Ai

ki

)
· xi,j
qi

∣∣∣∣ i arrived
]
· βi,j

= xi,j · ρi,j · βi,j . (4.6)

Note that for the second equality, we relied on Property (P1) of pivotal sampling,
which guarantees that individual elements are sampled with exactly their marginal
probability. Note that the marginal probability is random. In addition, the indica-
tor 1[j available after Line 8] and the marginal probability for the pivotal sampling are
correlated.

Recall that βi,j := min
(

1, ((0.5 + κ) · yi,j − (0.5− κ)) · 1
ρi,j

)
. If the min(1, ·) here is

redundant, we are immediately done; this is concretized in the following observation.
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Observation 4.3.6. If ρi,j ≥ (0.5 + κ)yi,j − (0.5− κ), then

Pr [(i, j) ∈ A2] = xi,j · ((0.5 + κ) · yi,j − (0.5− κ)) .

Thus it suffices to show that the hypothesis of this observation holds. In other
words, in order to conclude the proof, the only thing we need to show is the following
proposition.

Proposition 4.3.7. For any late pair (i, j), we have ρi,j ≥ (0.5 + κ)yi,j − (0.5− κ).

As a first step, we start with the following lower bound on ρi,j .

Lemma 4.3.8. For late pairs (i, j),

ρi,j ≥ (1− (0.5 + κ) · yi,j) ·
(
τ − E [Ai | i arrived,Fi,j ]

ki

)
.

Proof of Lemma 4.3.8. We can expand

ρi,j = E
[
1[j available after Line 8] ·

(
1− Ai

ki

) ∣∣∣∣ i arrived
]

= Pr [Fi,j | i arrived] ·E
[
1[j not allocated in Line 7] ·

(
1− Ai

ki

) ∣∣∣∣ i arrived,Fi,j
]

= Pr [Fi,j ] ·E
[
1[j not allocated in Line 7] ·

(
1− Ai

ki

) ∣∣∣∣ i arrived,Fi,j
]

.

As the pair (i, j) is late, we have αi,j = 1. Hence, conditioned on being free and the
arrival of buyer i, item j is not allocated in Line 7 if and only if it is not contained in
the set FPi. This allows us to bound

E
[
1[j not allocated in Line 7] ·

(
1− Ai

ki

) ∣∣∣∣ i arrived,Fi,j
]

= E
[
1[j /∈ FPi] ·

(
1− Ai

ki

) ∣∣∣∣ i arrived,Fi,j
]

=

(
1− xi,j

qi

)
·E
[(

1− Ai
ki

) ∣∣∣∣ i arrived,Fi,j , j /∈ FPi
]

≥ τ ·E
[(

1− Ai
ki

) ∣∣∣∣ i arrived,Fi,j , j /∈ FPi
]

.

To argue about the resulting expectation, we apply the following bound to remove the
conditioning on j /∈ FPi:

E [Ai | i arrived,Fi,j , j /∈ FPi] =
E
[
Ai · 1j/∈FPi

∣∣ i arrived,Fi,j
]

Pr [j /∈ FPi | i arrived,Fi,j ]

≤ E [Ai | i arrived,Fi,j ]
Pr [j /∈ FPi | i arrived,Fi,j ]

.

In addition, note that Pr [j /∈ FPi | i arrived,Fi,j ] = 1− xi,j
qi
≥ yi,j ≥ τ as pair (i, j) is

late. Thus we get

E [Ai | i arrived,Fi,j , j /∈ FPi] ≤
1
τ
·E [Ai | i arrived,Fi,j ] .

60



CHAPTER 4. APPROXIMATING OPTIMUM ONLINE

By substitution and using Equation (4.5), we directly conclude

ρi,j ≥ Pr [Fi,j ] · τ ·
(

1− E [Ai | i arrived,Fi,j ]
ki

· 1
τ

)
(4.7)

= (1− (0.5 + κ) · yi,j) ·
(
τ − E [Ai | i arrived,Fi,j ]

ki

)
(via Equation (4.5))

as claimed.

In order to exploit the bound obtained in Lemma 4.3.8, we need to control the
conditional expectation E [Ai | i arrived,Fi,j ]. In particular, our goal is to show that
E [Ai | i arrived,Fi,j ] is bounded away from ki by a multiplicative constant smaller than
one. If there was no conditioning on Fi,j , it is easy to check that

E [Ai | i arrived] =
∑
j′

Pr [Fi,j′ ] ·Pr [j′ ∈ FPi] · αi,j′ ≤ (0.5 + κ) · ki .

The conditioning could however lead us into trouble in the following way: When facing
the conditioning, we end up with the expression

E [Ai | i arrived,Fi,j ] =
∑
j′

Pr [Fi,j′
∣∣ Fi,j ] ·Pr [j′ ∈ FPi] · αi,j′ .

If Fi,j implies Fi,j′ for every other item j′ 6= j, and αi,j′ ≈ 1 for every j′ 6= j, then
E [Ai | i arrived,Fi,j ] ≈

∑
j′ 1 ·

xi,j′
qi
· 1 where the right-hand side could equal ki. This, in

particular, would make the second proposal in our algorithm completely useless as we
would reduce the marginal probabilities for the pivotal sampling in Line 9 to (almost)
zero. The most crucial part of our analysis is to demonstrate that this cannot happen,
by bounding the positive correlation introduced between items.

Lemma 4.3.9. For any distinct items j and j′, and ∆κ :=
(
1 + (0.5+κ)2

0.5−κ

)
·
(

0.5+κ
0.5−κ

)2
, for

any i we have
Pr [Fi,j ∧ Fi,j′ ] ≤ ∆κ ·Pr [Fi,j ] ·Pr [Fi,j′ ] .

The proof of Lemma 4.3.9 is deferred to Section 4.3.3; in the remainder of this section
we demonstrate why it implies our bound on the approximation ratio. We note that for
κ = 0.0115 (the value we choose in Algorithm 4), we have ∆κ ≈ 1.68. As a concrete
example, note that if (i, j) and (i, j′) are both late with Pr [Fi,j ] ≈ Pr [Fi,j′ ] ≈ 1/2, this
bound quantifies that we avoid perfect positive correlation between Fi,j and Fi,j′ .

Having Lemma 4.3.9, we can prove the bound on E [Ai | i arrived,Fi,j ] which we
state formally in Corollary 4.3.10 via

E [Ai | i arrived,Fi,j ] =
∑
j′

Pr [Fi,j′
∣∣ Fi,j ] ·Pr [j′ ∈ FPi] · αi,j′

=
xi,j
qi

+
∑
j′ 6=j

Pr [Fi,j′ ∧ Fi,j ]
Pr [Fi,j ]

·
xi,j′

qi
· αi,j′ (4.8)

≤ xi,j
qi

+
∑
j′ 6=j

∆κ ·Pr [Fi,j′ ] ·
xi,j′

qi
· αi,j′

≤ xi,j
qi

+ ∆κ · (0.5 + κ) · ki.
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The last inequality uses the fact that Pr [Fi,j′ ] · αi,j′ ≤ 0.5 + κ and upper bounds∑
j′ 6=j

xi,j′
qi

by ki. By Constraint (4.3) and the property that yi,j > τ for late pairs
(i, j), we have that xi,j

qi
≤ 1− τ . Hence, we can conclude that

E [Ai | i arrived,Fi,j ] ≤ 1− τ + ∆κ · (0.5 + κ) · ki (4.9)
≤ (1− τ + ∆κ · (0.5 + κ)) · ki.

Although the last inequality appears quite loose if ki is larger than 1, in Section 4.3.4
we show that a fine-grained bound in terms of mini ki only results in limited improve-
ments in the analysis. So, we use in the remainder that Equation (4.9) implies the
following corollary of our correlation bound.

Corollary 4.3.10. Let ∆κ :=
(
1 + (0.5+κ)2

0.5−κ

)
·
(

0.5+κ
0.5−κ

)2
. For any late (i, j) we have

E [Ai | i arrived,Fi,j ] ≤ (1− τ + ∆κ · (0.5 + κ)) · ki.

We are now able to conclude the proof of Lemma 4.3.5 (ii), as follows.

Proof of Lemma 4.3.5 (ii). By Observation 4.3.6, it suffices to show that ρi,j ≥ (0.5 +
κ)yi,j − (0.5− κ). Combining the bound of Lemma 4.3.8 with Corollary 4.3.10 implies

ρi,j ≥ (1− (0.5 + κ) · yi,j) · (τ − (1− τ + ∆κ · (0.5 + κ))) . (4.10)

For convenience let g(κ) := 2τ − 1− ∆κ · (0.5 + κ), recalling that τ is a function of
κ. Then, it suffices to show (1− (0.5 + κ) · yi,j) · g(κ) ≥ (0.5 + κ)yi,j − (0.5− κ), or
equivalently

g(κ) + 0.5− κ ≥ (0.5 + κ+ (0.5 + κ)g(κ)) · yi,j .

For κ = 0.0115, we can confirm that the coefficient of yi,j on the right-hand side is
positive, and hence it suffices to show this inequality when yi,j = 1. This reduces to

g(κ) ≥ 2κ
0.5− κ

which is readily confirmed by direct computation at κ = 0.0115.

As a side remark, using Equation (4.10), we can observe that for our choice of
κ = 0.0115, the expectation ρi,j is bounded away from zero by a constant. In particular,
for κ = 0.0115, we have that ρi,j ≥ 0.02389. This can be used to estimate ρi,j via
sampling with small multiplicative error using standard Chernoff-Hoeffding-bounds.

In order to finalize our proof of Lemma 4.3.5 (ii), it only remains to prove our bound
on the correlation introduced between items, which we do in the following section.

4.3.3 Bounding the Correlation — Proof of Lemma 4.3.9

To conclude the proof of Theorem 4.3.1, we need to control the correlation of the events
that two items j and j′ are free simultaneously. In particular, our goal is to prove the
bound from Lemma 4.3.9. To this end, we first state and prove Lemma 4.3.11 which
uses the assumption that yi−1,j and yi−1,j′ are at most τ . Afterwards, we discuss its
implications towards Lemma 4.3.9 with no restrictions on yi−1,j and yi−1,j′ .
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Lemma 4.3.11. Define γκ := 1 + (0.5+κ)2

0.5−κ . For any distinct items j and j′, and any
time i such that yi−1,j , yi−1,j′ ≤ τ , we have

Pr [Fi,j ∧ Fi,j′ ] ≤ γκ ·Pr [Fi,j ] ·Pr [Fi,j′ ] .

In order to prove this, we consider the function

f(z) := 1 + z ·
(

(0.5 + κ)2

1− z · (0.5 + κ)

)
,

which depends on our choice of κ. Also, note that γκ = f(1). For this function, we can
prove the following claim.

Claim 4.3.12. For any distinct items j and j′, and any buyer i with yi−1,j , yi−1,j′ ≤ τ ,
we have

Pr [Fi,j ∧ Fi,j′ ] ≤ f(yi,j) ·Pr [Fi,j ] ·Pr [Fi,j′ ] ,

where f(z) := 1 + z ·
(

(0.5+κ)2

1−z·(0.5+κ)

)
.

In order to prove Lemma 4.3.11 from Claim 4.3.12, it suffices to note that f is
monotonically increasing in [0, 1], and hence, f(z) ≤ f(1) = γκ for all z ∈ [0, 1].

Proof of Claim 4.3.12. We give a proof by induction. As f(0) = 1 and all items are
available initially, the base case is clear. Assuming the claim is true for fixed i, we will
prove it for i+ 1 with the assumption yi,j , yi,j′ ≤ τ .

Proof outline for the inductive step. Our proof proceeds with the following steps:

(S1) We find an upper bound for the probability that both j and j′ are not assigned to
i via a first proposal conditioned on being free.

(S2) We compute Pr [Fi+1,j ] /Pr [Fi,j ], in order to apply the induction hypothesis.

(S3) We apply the induction hypothesis, and use Step (S2) to rewrite our bound in
terms of Pr [Fi+1,j ] and Pr [Fi+1,j′ ].

(S4) We argue that we can upper bound the coefficient in front of Pr [Fi+1,j ] ·Pr [Fi+1,j′ ]
with f(yi+1,j).

Step (S1): Bounding the probability of not assigning both items via a first
proposal. As yi,j , yi,j′ ≤ τ , items can only be assigned as first proposals; hence the
probability that both j and j′ are free at time i+ 1 is

Pr [Fi+1,j ∧ Fi+1,j′ ] = Pr [Fi,j ∧ Fi,j′ ] ·Pr [(i, j) /∈ A1 ∧ (i, j′) /∈ A1
∣∣ Fi,j ∧ Fi,j′ ]︸ ︷︷ ︸

(?)

.

(4.11)

The first term on the right-hand side of Equation (4.11) will later be bounded via the
induction hypothesis. The second term (?) := Pr [(i, j) /∈ A1 ∧ (i, j′) /∈ A1

∣∣ Fi,j ∧ Fi,j′ ]
can be equivalently written as

(?) = 1−Pr [(i, j) ∈ A1
∣∣ Fi,j ∧ Fi,j′ ]−Pr [(i, j′) ∈ A1

∣∣ Fi,j ∧ Fi,j′ ] (4.12)
+Pr [(i, j) ∈ A1 ∧ (i, j′) ∈ A1

∣∣ Fi,j ∧ Fi,j′ ] .
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Now, observe that Pr [(i, j) ∈ A1
∣∣ Fi,j ∧ Fi,j′ ] = qi ·Pr [j ∈ FPi] · αi,j = xi,j · αi,j . The

analogous equality holds for j′. Hence, it remains to get a suitable bound on the joint
probability that both items j and j′ are assigned via a first proposal given they were
both free. To this end, we make use of the negative cylinder dependence in pivotal
sampling, observing

Pr [(i, j) ∈ A1 ∧ (i, j′) ∈ A1
∣∣ Fi,j ∧ Fi,j′ ]

= qi ·Pr [j ∈ FPi ∧ j′ ∈ FPi] · αi,j · αi,j′
≤ qi ·Pr [j ∈ FPi] ·Pr [j′ ∈ FPi] · αi,j · αi,j′ (Pivotal Sampling Property (P3))

= qi ·
xi,j · xi,j′

q2
i

· αi,j · αi,j′

=
xi,j · xi,j′

qi
· αi,j · αi,j′ .

Combining all of the above, we can bound the conditional probability that neither
j nor j′ is allocated to i via a first proposal. In other words, the left-hand side of
Equation (4.12) is at most

Pr [(i, j) /∈ A1 ∧ (i, j′) /∈ A1
∣∣ Fi,j ∧ Fi,j′ ]

≤ 1− xi,jαi,j − xi,j′αi,j′ +
1
qi
· xi,jαi,jxi,j′αi,j′ (4.13)

= (1− xi,jαi,j)(1− xi,j′αi,j′) +
( 1
qi
− 1

)
xi,jαi,jxi,j′αi,j′ .

Step (S2): Comparing Pr [Fi+1,j ] to Pr [Fi,j ]. To prepare for the use of the induc-
tive hypothesis, we compute Pr [Fi+1,j ] /Pr [Fi,j ] via a straightforward calculation:

Pr [Fi+1,j ] = 1− (0.5 + κ) · yi+1,j = Pr [Fi,j ] ·
1− (0.5 + κ) · yi+1,j
1− (0.5 + κ) · yi,j

= Pr [Fi,j ] · (1− xi,j · αi,j) . (4.14)

In the final line, we used that (i, j) is early. For j′, we analogously have

Pr [Fi+1,j′ ] = Pr [Fi,j′ ] · (1− xi,j′ · αi,j′) .

Step (S3): Applying the induction hypothesis. Applying the induction hypoth-
esis to Equation (4.11), plugging in Inequality (4.13) and using Equation (4.14), we can
bound

Pr [Fi+1,j ∧ Fi+1,j′ ]

= Pr [Fi,j ∧ Fi,j′ ] ·Pr [(i, j) /∈ A1 ∧ (i, j′) /∈ A1
∣∣ Fi,j ∧ Fi,j′ ]

≤ Pr [Fi,j ∧ Fi,j′ ] ·
(
(1− xi,jαi,j)(1− xi,j′αi,j′) +

( 1
qi
− 1

)
xi,jαi,jxi,j′αi,j′

)
≤ f(yi,j) ·Pr [Fi,j ] ·Pr [Fi,j′ ] ·

(
(1− xi,jαi,j)(1− xi,j′αi,j′) +

( 1
qi
− 1

)
xi,jαi,jxi,j′αi,j′

)
= f(yi,j) ·Pr [Fi+1,j ] ·Pr [Fi+1,j′ ] + f(yi,j)

( 1
qi
− 1

)
·Pr [Fi,j ] ·Pr [Fi,j′ ] · xi,jαi,jxi,j′αi,j′ .

Here, the first inequality uses Inequality (4.13) from Step (S1), i.e. the upper bound
on the probability of both items not being allocated via a first proposal. The second
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inequality applies the induction hypothesis for Pr [Fi,j ∧ Fi,j′ ], the last equality uses
Equation (4.14) from Step (S2) for both items j and j′ and rearranges terms.

Having this, we pause for a moment to bound the second summand of the expression
above, i.e., f(yi,j)

(
1
qi
− 1

)
·Pr [Fi,j ] ·Pr [Fi,j′ ] · xi,jαi,jxi,j′αi,j′ . To this end, we will use

the following inequality.

Fact 4.3.13. For any (i, j) we have

xi,j · αi,j ·
( 1
qi
− 1

)
≤ (0.5 + κ) · (1− xi,jαi,j) . (4.15)

Proof. By Constraint (4.3) of the LP, we have that 1
qi
≤ 1−yi,j

xi,j
. Thus it suffices to show

that
αi,j(1− yi,j)− xi,jαi,j ≤ (0.5 + κ)(1− xi,jαi,j)

which is equivalent to

αi,j(1− yi,j − (0.5− κ)xi,j) ≤ 0.5 + κ.

As αi,j ≤ 0.5+κ
1−(0.5+κ)yi,j , the claim follows.

We can apply Fact 4.3.13 to item j′ and combine it with Equation (4.14) in order to
bound the second summand via

f(yi,j)

( 1
qi
− 1

)
·Pr [Fi,j ] ·Pr [Fi,j′ ] · xi,jαi,jxi,j′αi,j′

≤ f(yi,j) ·Pr [Fi,j ] ·Pr [Fi,j′ ] · (0.5 + κ) · (1− xi,j′αi,j′) · xi,jαi,j
= (0.5 + κ) · f(yi,j) ·Pr [Fi+1,j′ ] · xi,jαi,j ·Pr [Fi+1,j ] · (1− xi,j · αi,j)−1.

Overall, we thus have

Pr [Fi+1,j ∧ Fi+1,j′ ] ≤ f(yi,j) ·Pr [Fi+1,j ] ·Pr [Fi+1,j′ ] ·
(

1 + (0.5 + κ) · xi,jαi,j
1− xi,jαi,j

)
.

Step (S4): Upper bounding the coefficient by f(yi+1,j). In order to complete
the inductive step, we would like to show that

f(yi,j) ·
(

1 + (0.5 + κ) · xi,jαi,j
1− xi,jαi,j

)
≤ f(yi,j + xi,j).

First, note that as we only consider early pairs, αi,j is always equal to 0.5+κ
1−(0.5+κ)·yi,j , so

we know
xi,jαi,j

1− xi,jαi,j
=

(0.5 + κ) · xi,j
1− (0.5 + κ) · (xi,j + yi,j)

.

Thus to conclude the proof, we are required to show that

f(yi,j) ·
(

1 + (0.5 + κ) · (0.5 + κ) · xi,j
1− (0.5 + κ) · (xi,j + yi,j)

)
≤ f(yi,j + xi,j).
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In fact, this property is a consequence of our definition of

f(z) := 1 + z ·
(

(0.5 + κ)2

1− z · (0.5 + κ)

)
.

In particular the following claim completes the inductive step by providing exactly the
required property.

Claim 4.3.14. For any x, y ∈ [0, 1] with x+ y ≤ 1 and f(·) as stated above, we have

f(y) ·
(

1 + (0.5 + κ) · (0.5 + κ) · x
1− (0.5 + κ) · (x+ y)

)
≤ f(y+ x).

Proof of Claim 4.3.14. Plugging in the definition of f(z) = 1 + z ·
(

(0.5+κ)2

1−z·(0.5+κ)

)
, the

claim is equivalent to(
1 + (0.5 + κ)2y

1− (0.5 + κ)y

)(
1 + (0.5 + κ)2x

1− (0.5 + κ)(x+ y)

)
≤ 1 + (0.5 + κ)2(x+ y)

1− (0.5 + κ)(x+ y)
.

Multiplying out the left-hand side and subtracting 1+ (0.5+κ)2x
1−(0.5+κ)(x+y) on both sides, this

is equivalent to

(0.5 + κ)2y

1− (0.5 + κ)y
+

(0.5 + κ)2y

1− (0.5 + κ)y
· (0.5 + κ)2x

1− (0.5 + κ)(x+ y)
≤ (0.5 + κ)2y

1− (0.5 + κ)(x+ y)
.

If y = 0, the claim is trivially true. If y > 0, we can divide both sides by (0.5 + κ)2y to
get

1
1− (0.5 + κ)y

+
1

1− (0.5 + κ)y
· (0.5 + κ)2x

1− (0.5 + κ)(x+ y)
≤ 1

1− (0.5 + κ)(x+ y)
.

Multiplying both sides by (1− (0.5 + κ)y) · (1− (0.5 + κ)(x+ y)), we get

1− (0.5 + κ)(x+ y) + (0.5 + κ)2x ≤ 1− (0.5 + κ)y.

Subtracting 1− (0.5 + κ)y on both sides, we finally end up with

−(0.5 + κ)x+ (0.5 + κ)2x ≤ 0.

If x = 0, this is trivially true; for x > 0, we can divide by (0.5 + κ)x to see that the
claim follows.

This concludes the proof of Claim 4.3.12.

Now, we can finally prove Lemma 4.3.9 which is the last ingredient in the proof of
Theorem 4.3.1. Recall Lemma 4.3.9:

Lemma 4.3.9. For any distinct items j and j′, and ∆κ :=
(
1 + (0.5+κ)2

0.5−κ

)
·
(

0.5+κ
0.5−κ

)2
, for

any i we have
Pr [Fi,j ∧ Fi,j′ ] ≤ ∆κ ·Pr [Fi,j ] ·Pr [Fi,j′ ] .
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Proof of Lemma 4.3.9. We assume that both yi,j > τ and yi,j′ > τ ; if neither inequality
holds the result is clear and follows directly from Lemma 4.3.11 while if just one holds
the proof proceeds nearly identically with a slightly better guarantee.

Let ij denote the latest buyer in [n] such that yij−1,j ≤ τ and yij ,j > τ and similarly
let ij′ denote the latest buyer in [n] such that yij′−1,j′ ≤ τ and yij′ ,j′ > τ .

Let Aj denote the event that j is allocated to some arrival in [ij , i− 1] and let Aj′
denote the event that j′ is allocated to some arrival in [ij

′ , i− 1]. By the hypothesis that
Pr [(i′, j) ∈ A1] +Pr [(i′, j) ∈ A2] = (0.5 + κ) · xi′,j for all i′ < i, we have

Pr [Aj ] =
∑

i′∈[ij ,i−1]
(0.5 + κ) · xi′,j = (0.5 + κ) · (yi,j − yij ,j) ≤ (0.5 + κ) · (1− τ ) = 2κ.

An analogous upper bound holds for Pr [Aj′ ].
To simplify notation, let us assume for a moment that ij ≤ ij

′ (if ij > ij
′ , simply

swap the roles of j and j′ in the following line). We apply Lemma 4.3.11 to get

Pr [Fi,j ∧ Fi,j′ ] ≤ Pr
[
Fij ,j ∧ Fij′ ,j′

]
= Pr

[
Fij ,j ∧ Fij ,j′

]
·Pr

[
Fij ,j ∧ Fij′ ,j′

∣∣∣ Fij ,j ∧ Fij ,j′]
≤ γκ ·Pr

[
Fij ,j

]
·Pr

[
Fij ,j′

]
·Pr

[
Fij ,j ∧ Fij′ ,j′

∣∣∣ Fij ,j ∧ Fij ,j′] (via Lemma 4.3.11)

= γκ ·Pr
[
Fij ,j

]
·Pr

[
Fij ,j′

]
·Pr

[
Fij′ ,j′

∣∣∣ Fij ,j ∧ Fij ,j′] .

In this expression, we aim to combine the last two factors concerning the events if item
j′ is free at some point in time. To this end, observe that

Pr
[
Fij ,j′

]
·Pr

[
Fij′ ,j′

∣∣∣ Fij ,j ∧ Fij ,j′] = Pr
[
Fij ,j′

]
·
ij
′−1∏

i′=ij

(1− qi′ ·Pr [j′ ∈ FPi′ ] · αi′,j′)

= Pr
[
Fij ,j′

]
·
ij
′−1∏

i′=ij

(1− xi′,j′ · αi′,j′)

= Pr
[
Fij′ ,j′

]
,

where the last equality uses the reasoning from Step (S2) in the proof of Claim 4.3.12.
So, overall, we have

Pr [Fi,j ∧ Fi,j′ ] ≤ Pr
[
Fij ,j ∧ Fij′ ,j′

]
≤ γκ ·Pr

[
Fij ,j

]
·Pr

[
Fij′ ,j′

]
. (4.16)
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With this in mind, we are ready to prove the final statement as

Pr [Fi,j ∧ Fi,j′ ] ≤ Pr
[
Fij ,j ∧ Fij′ ,j′

]
≤ γκ ·Pr

[
Fij ,j

]
·Pr

[
Fij′ ,j′

]
(via Equation (4.16))

= γκ · (Pr [Fi,j ] +Pr [Aj ]) · (Pr [Fi,j′ ] +Pr [Aj′ ])
≤ γκ · (Pr [Fi,j ] + 2κ) · (Pr [Fi,j′ ] + 2κ)

≤ γκ ·
(

1 + 4κ
0.5− κ +

4κ2

(0.5− κ)2

)
·Pr [Fi,j ] ·Pr [Fi,j′ ]

= γκ ·
(0.5 + κ

0.5− κ

)2
·Pr [Fi,j ] ·Pr [Fi,j′ ]

= ∆κ ·Pr [Fi,j ] ·Pr [Fi,j′ ] ,

where in the last inequality we used Pr [Fi,j ] , Pr [Fi,j′ ] ≥ 0.5− κ and the last equality
applies γκ := 1 + (0.5+κ)2/0.5−κ.

Having this, we concluded the proof of the approximation guarantee in Theorem 4.3.1.

4.3.4 A Bound Depending on miniki.

As mentioned in Section 4.3.2, the bound from Equation (4.9) in the proof of Corol-
lary 4.3.10 is not tight if all ki are strictly greater than one. At first glance, this step
looks quite lossy. Still, we are not losing much in our analysis by replacing mini ki with
one. To see this, consider replacing the last inequality in the proof of Corollary 4.3.10
with a bound depending on mini ki. Doing so, we get

E [Ai | i arrived,Fi,j ] ≤ 1− τ + ∆κ · (0.5 + κ) · ki

=

(1− τ
ki

+ ∆κ · (0.5 + κ)

)
· ki

≤
( 1− τ

mini′ ki′
+ ∆κ · (0.5 + κ)

)
· ki . (4.17)

As a consequence, in order to show the desired lower bound on ρi,j , we can use the
same reasoning as before, but apply Inequality (4.17) instead:

ρi,j ≥ (1− (0.5 + κ) · yi,j) ·
(
τ −

( 1− τ
mini′ ki′

+ ∆κ · (0.5 + κ)

))
.

Thus, the right-hand side needs to be at least as large as (0.5 + κ)yi,j − (0.5− κ). In
other words, we are required to show that

(1− (0.5 + κ) · yi,j) ·
(
τ −

( 1− τ
mini′ ki′

+ ∆κ · (0.5 + κ)

))
≥ (0.5 + κ)yi,j − (0.5− κ) .

Hence we can choose any κ such that

τ −
( 1− τ

mini′ ki′
+ ∆κ · (0.5 + κ)

)
≥ 2κ

0.5− κ . (4.18)
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mini ki 1 2 3 4 5 6 7 8
κ 0.0115 0.0126 0.0131 0.0133 0.0134 0.0135 0.01362 0.01367

Table 4.1: Values of κ depending on mini ki

When solving Equation (4.18) for κ, we get some small improvement upon the con-
stant of 0.0115 as a function of mini ki. In Table 4.1, we state these constants for
mini ki ∈ {2, . . . , 8}, demonstrating that there is little loss in our analysis of Algorithm 4
when replacing mini ki with one.

Also, even for large values of mini ki, this approach is limited. In particular, for
mini ki →∞, the best κ one can hope for is approximately 0.01402 when being restricted
to Equation (4.18). Therefore, in order to get a significant improvement, a more fine
grained technique is required.

4.4 Beating Half with a Simplified Algorithm

We state a slightly modified variant of Algorithm 4 which can avoid sampling estimates
to run in polynomial time. We remove the subsampling step with the βi,j , or in other
words, we set βi,j = 1 for all j and i. As we will see, this is still sufficient to improve the
approximation guarantee of 1/2 by a constant. The algorithm is stated in Algorithm 5
below and is clearly running in polynomial time.

Algorithm 5: Simplified Allocation Algorithm
1 κ̃← 0.0076
2 Solve LPon for {xi,j}i,j
3 for each buyer i, if i arrives do
4 Define items FPi := PS((xi,j/qi)j)
5 for each item j ∈ FPi do
6 if j is available then

7 Allocate j to i with probability αi,j := min
(

1, 0.5+κ̃
1−(0.5+κ̃)·

∑
i′<i xi′,j

)
8 Ai ← number of items allocated to i thus far
9 Define items SPi := PS(((1− Ai

ki
) · xi,j/qi)j)

10 for each item j ∈ SPi with αi,j = 1 do
11 if j is available then
12 Allocate j to i

In addition, we can state the following theorem.
Theorem 4.4.1. Denote by Xi the set of items which are allocated to buyer i via Algo-
rithm 5. Then, for κ̃ = 0.0076, we have

E

∑
i

max
S⊆Xi,|S|≤ki

∑
j∈S

vi,j

 ≥ (0.5 + κ̃) ·OPTon.

The proof of this theorem proceeds fairly similar to the one of Theorem 4.3.1. Still,
we need to be more careful as it is not always guaranteed that Pr [Fi,j ] = 1− (0.5+ κ̃)yi,j
due to possibly allocating with too high probability in Line 12 of Algorithm 5.
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We discuss the modifications in the key observations and steps from the analysis of
Algorithm 4 in the following section and show how extend it to prove Theorem 4.4.1.

4.4.1 Beating 1/2 via the Analysis from Section 4.3

Again, the proof proceeds by induction on i. We start with a few observations concerning
the modified algorithm. First, we mention that τ now depends on κ̃ instead of κ, so does
αi,j . Then, note that any early pair (i, j) is not affected by the replacement of βi,j . The
reason for this is that for early pairs (i, j), we have αi,j < 1 and hence, we never allocate
these via a second proposal. As a consequence, Observation 4.3.3 and Observation 4.3.4
directly carry over (as they did not use any assumption on the exact choice of κ). These
observations imply that the probability for any early pair (i, j) to be assigned is exactly
(0.5 + κ̃) · xi,j .

So, using Observation 4.3.2 which also still holds, we only need to argue about the
late pairs (i, j) and in particular, we need to prove a modified variant of Lemma 4.3.5.
Once we have that for late pairs (i, j), the probability of being assigned is at least
(0.5 + κ̃) · xi,j via first and second proposals together, we can conclude as in the proof
of Theorem 4.3.1.

So, in order to argue that Algorithm 5 allows to outperform 1/2 by a constant, we
are going to prove the following modified variant of Lemma 4.3.5.

Lemma 4.4.2. For late pairs (i, j) in Algorithm 5, the following two statements hold:

(j) Pr [(i, j) ∈ A1] ≥ (0.5− 3κ̃) · xi,j and

(ii) Pr [(i, j) ∈ A2] ≥ 4κ̃ · xi,j.

Note that if we sum the contribution of (i) and (ii) in the lemma above, we get that
the probability of assigning the pair (i, j) either via a first or second proposal is at least
(0.5+ κ̃) ·xi,j as desired. In order to prove this lemma, we will make use of the following
observations.

Observation 4.4.3. For any late pair (i, j), when using Algorithm 5, we have

Pr [Fi,j ] ≤ 0.5 + κ̃ .

Proof. Note that for any late (i, j), we have that yi,j > τ . Therefore, we can bound

Pr [Fi,j ] ≤ 1−Pr [j assigned to some i′ < i where (i′, j) was early]
= 1− (0.5 + κ̃)

∑
i′<i:(i′,j) early

xi′,j

≤ 1− (0.5 + κ̃) · τ = 1− (0.5 + κ̃) · 0.5− κ̃
0.5 + κ̃

= 0.5 + κ̃ ,

where the first equality uses that for early pairs (i′, j), by Observation 4.3.4, the proba-
bility of assigning is exactly (0.5+ κ̃) ·xi′,j . For the second inequality, as (i, j) is late, the
sum of the LP variables of early pairs (i′, j) with i′ < i exceeds τ , so∑i′<i:(i′,j) early xi′,j ≥
τ .

In addition, we can also find a lower bound on the probability of item j being free
at the arrival of buyer i.
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Observation 4.4.4. For any late pair (i, j), when using Algorithm 5, we have

Pr [Fi,j ] ≥ 0.5− 3κ̃ .

Proof. For any late pair (i′, j) with i′ < i, the probability of assigning j to i′ via a first
proposal equals

Pr [(i′, j) ∈ A1] = qi′ ·Pr [Fi′,j ] ·
xi′,j
qi′

= Pr [Fi′,j ] · xi′,j ≤ (0.5 + κ̃) · xi′,j ,

where the last inequality uses Observation 4.4.3.
In a more rude manner, the probability of assigning j to i′ via a second proposal can

be upper bounded by qi′ ·Pr [Fi′,j ] · xi′,j/qi′ as well. To see this, observe that in order to
assign pair (i′, j) via a second proposal, first of all j needs to be free before the arrival of
i′, i′ needs to arrive, the first pivotal sampling cannot sample j and the second pivotal
sampling with reduced marginals needs to pick j in the second proposal set. Of course,
the reduced marginals for the second proposal are at most xi′,j/qi′ . Therefore, we can
bound

Pr [(i′, j) ∈ A2] ≤ Pr [Fi′,j ] · qi′ · xi′,j/qi′ = Pr [Fi′,j ] · xi′,j ≤ (0.5 + κ̃) · xi′,j ,

where the last inequality uses Observation 4.4.3 again.
Any early pair (i′, j) is assigned via a first proposal exactly with probability (0.5 +

κ̃) · xi′,j via Observation 4.3.4. As a consequence, we get that for a late pair (i, j),

Pr [Fi,j ] = 1−
∑
i′<i

Pr [(i′, j) ∈ A1]−
∑
i′<i

Pr [(i′, j) ∈ A2]

≥ 1−
∑
i′<i

(0.5 + κ̃) · xi′,j −
∑

i′<i:(i′,j) late
(0.5 + κ̃) · xi′,j

≥ 1− (0.5 + κ̃)− (0.5 + κ̃)

1−
∑

i′<i:(i′,j) early
xi′,j


≥ 1− (0.5 + κ̃)− (0.5 + κ̃)(1− τ )
= 0.5− 3κ̃ .

Here, the first inequality uses the bounds which we just derived before and the second
inequality exploits constraints from the LP on the sum of LP variables. The last in-
equality is based on the fact that (i, j) is late and hence, the sum of LP variables of
previously arrived early pairs (i′, j) is at least τ .

Having these two observations, we can prove Lemma 4.4.2 (i) fairly easily.

Proof of Lemma 4.4.2 (i). Note that if pair (i, j) is late, αi,j = 1. Hence, by the use of
Observation 4.4.4

Pr [(i, j) ∈ A1] = qi ·Pr [Fi,j ] ·Pr [j ∈ FPi] · αi,j
= qi ·Pr [Fi,j ] ·

xi,j
qi
· 1

= Pr [Fi,j ] · xi,j
≥ (0.5− 3κ̃) · xi,j .
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So what remains is to prove Lemma 4.4.2 (ii) in order to conclude the proof of
Theorem 4.4.1. To this end, we proceed similarly to Section 4.3.2.

Lemma 4.4.5. For late pairs (i, j), we have

Pr [(i, j) ∈ A2] ≥ xi,j · (0.5− 3κ̃) ·
(
τ − E [Ai | i arrived,Fi,j ]

ki

)
.

Proof. The proof proceeds equivalently to the one in Section 4.3.2. Still, we need to use
Observation 4.4.4 when lower bounding the probability of j being free at time i.

Therefore, we get

Pr [(i, j) ∈ A2] = qi ·Pr [Fi,j ] ·Pr [j not allocated in Line 7 ∧ j ∈ SPi | i arrived,Fi,j ]

≥ qi ·Pr [Fi,j ] · τ ·
(

1− E [Ai | i arrived,Fi,j ]
ki

· 1
τ

)
· xi,j
qi

≥ xi,j · (0.5− 3κ̃) ·
(
τ − E [Ai | i arrived,Fi,j ]

ki

)
,

where the first inequality uses exactly the same reasoning as the proof of Lemma 4.3.8
and the second inequality applies Observation 4.4.4.

So, in order to bound E [Ai | i arrived,Fi,j ], we are required to adapt the bound
on the correlation with respect to the modified algorithm. To this end, first observe
that Lemma 4.3.11 is considering early pairs only and hence holds identically also for
Algorithm 5. Using this, we can obtain a bound for the joint probability of two items j
and j′ being available at time i in Algorithm 5.

Lemma 4.4.6. For any distinct items j and j′, and any time i, we have

Pr [Fi,j ∧ Fi,j′ ] ≤ γκ̃ ·
( 0.5 + κ̃

0.5− 3κ̃

)2
·Pr [Fi,j ] ·Pr [Fi,j′ ] .

Proof. Again, let us assume that both yi,j > τ and yi,j′ > τ ; if neither inequality holds
the result is clear and follows directly while if just one holds the proof proceeds nearly
identically.

Let ij denote the latest buyer in [n] such that yij−1,j ≤ τ and yij ,j > τ and similarly
let ij′ denote the latest buyer in [n] such that yij′−1,j′ ≤ τ and yij′ ,j′ > τ . Let Aj denote
the event that j is allocated to some buyer in [ij , i− 1] and let Aj′ denote the event that
j′ is allocated to some buyer in [ij

′ , i− 1].
Now, observe that

Pr [Aj ] =
∑

i′<i:(i′,j) late
(Pr [(i′, j) ∈ A1] +Pr [(i′, j) ∈ A2])

≤
∑

i′<i:(i′,j) late
2 · (0.5 + κ̃) · xi′,j

≤ 2 · (0.5 + κ̃) · (1− τ )
= 4κ̃ ,

where the first inequality holds due to the same arguments as in the proof of Observa-
tion 4.4.4. An analogous upper bound can be stated for Pr [Aj′ ].
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With this, we can use the same reasoning as in Lemma 4.3.9 by an application of
Lemma 4.3.11 and Equation (4.16) to bound

Pr [Fi,j ∧ Fi,j′ ] ≤ Pr
[
Fij ,j ∧ Fij′ ,j′

]
≤ γκ̃ ·Pr

[
Fij ,j

]
·Pr

[
Fij′ ,j′

]
(via Equation (4.16))

= γκ̃ · (Pr [Fi,j ] +Pr [Aj ]) · (Pr [Fi,j′ ] +Pr [Aj′ ])
≤ γκ̃ · (Pr [Fi,j ] + 4κ̃) · (Pr [Fi,j′ ] + 4κ̃)

≤ γκ̃ ·
(

1 + 8κ̃
0.5− 3κ̃ +

16κ̃2

(0.5− 3κ̃)2

)
·Pr [Fi,j ] ·Pr [Fi,j′ ]

= γκ̃ ·
( 0.5 + κ̃

0.5− 3κ̃

)2
·Pr [Fi,j ] ·Pr [Fi,j′ ] ,

where in the last inequality we used Observation 4.4.4 for both j and j′.

Having this, we can now turn towards bounding E [Ai | i arrived,Fi,j ].

Lemma 4.4.7. Let γκ̃ := 1 + (0.5+κ̃)2

0.5−κ̃ . For any buyer i, we have

E [Ai | i arrived,Fi,j ] ≤
(

1− τ + γκ̃ ·
(0.5 + κ̃)3

(0.5− 3κ̃)2

)
· ki .

Proof. Applying Lemma 4.4.6, we can bound the probability of item j′ being free con-
ditioned on item j being also free via

Pr [Fi,j′
∣∣ Fi,j ] = Pr [Fi,j′ ∧ Fi,j ]

Pr [Fi,j ]
≤ γκ̃ ·

( 0.5 + κ̃

0.5− 3κ̃

)2
·Pr [Fi,j′ ] .

Using this for all items j′ 6= j, we can compute

E [Ai | i arrived,Fi,j ] =
∑
j′

Pr [Fi,j′
∣∣ Fi,j ] ·Pr [j′ ∈ FPi] · αi,j′

≤ xi,j
qi

+
∑
j′ 6=j

γκ̃ ·
( 0.5 + κ̃

0.5− 3κ̃

)2
·Pr [Fi,j′ ] ·

xi,j′

qi
· αi,j′

≤ xi,j
qi

+ γκ̃ ·
( 0.5 + κ̃

0.5− 3κ̃

)2
· (0.5 + κ̃) · ki .

The second inequality first uses the fact that Pr [Fi,j′ ] ·αi,j′ ≤ 0.5 + κ̃: For early (i, j′),
this is indeed an equality, for late (i, j′), we can use that αi,j′ = 1 together with Obser-
vation 4.4.3. Afterwards, we upper bound ∑j′ 6=j

xi,j′
qi

by ki. Using that xi,j/qi ≤ 1− τ
for late pairs (i, j), we can conclude that

E [Ai | i arrived,Fi,j ] ≤ 1− τ + γκ̃ ·
(0.5 + κ̃)3

(0.5− 3κ̃)2 · ki

≤
(

1− τ + γκ̃ ·
(0.5 + κ̃)3

(0.5− 3κ̃)2

)
· ki .
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Having all of this, we are now able to conclude the proof of Lemma 4.4.2 (ii).

Proof of Lemma 4.4.2 (ii). We start with the lower bound on Pr [(i, j) ∈ A2] from
Lemma 4.4.5. Combined with the bound on E [Ai | i arrived,Fi,j ] from Lemma 4.4.7,
we get

Pr [(i, j) ∈ A2] ≥ xi,j · (0.5− 3κ̃) ·
(
τ − E [Ai | i arrived,Fi,j ]

ki

)
≥ xi,j · (0.5− 3κ̃)

(
τ −

(
1− τ + γκ̃ ·

(0.5 + κ̃)3

(0.5− 3κ̃)2

))

= xi,j · (0.5− 3κ̃)
(

2τ − 1− γκ̃ ·
(0.5 + κ̃)3

(0.5− 3κ̃)2

)
.

Plugging in our choice of κ̃ = 0.0076, we obtain

(0.5− 3κ̃)
(

2τ − 1− γκ̃ ·
(0.5 + κ̃)3

(0.5− 3κ̃)2

)
≥ 4κ̃ ,

which implies our desired bound.

4.5 Beyond Two-Point Distributions

When not restricting the model to two-point distributions for the arrivals, for every buyer
i, there is a known distribution {qi,`}` over valuation functions vi,1, . . . , vi,L. Equivalently,
we can also think about distributions over vectors {vi,j,`}j and demand sizes ki,`. In this
section, we do the latter and hence, we have ∑` qi,` = 1 and each pair ({vi,j,`}j , ki,`) is
sampled in step i with probability qi,`.

That said, upon the arrival of buyer i, she samples one index ` ∈ {1, . . . ,L} with
probability qi,`3 and realizes demand size ki,` and values {vi,j,`}j over items.

Generalized LP. We generalize LPon as follows.

max
∑
i,j,`

vi,j,` · xi,j,` (General-LPon)

s.t.
∑
i

∑
`

xi,j,` ≤ 1 for all j ∈M (4.19)∑
j

xi,j,` ≤ qi,` · ki,` for all i ∈ [n], ` ∈ [L] (4.20)

0 ≤ xi,j,` ≤ qi,` ·

1−
∑
i′<i

∑
`′

xi′,j,`′

 for all j ∈M , i ∈ [n], ` ∈ [L] (4.21)

As in Observation 4.1.1, it is easy to see that General-LPon is a relaxation of the
expected welfare achieved by the optimum online algorithm for general distributions, so
OPT(General-LPon) ≥ OPTon.

3We assume without loss of generality that all buyers share the same space of valuation functions as
we can set qi,` = 0 if realization ` is not feasible for buyer i. Also, we assume that buyers always arrive
by adding a valuation function evaluating any set of items by zero which is sampled with the probability
of buyer i not arriving.
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Generalized Algorithm. In order to round any fractional LP solution to an integral
one in an online fashion, we extend our Algorithm 4 as follows: In round i, we see
the realization of index `. We replace all previous LP variables with the ones from the
generalized LP for index ` and run the slightly modified Algorithm 6.

Algorithm 6: Allocation Algorithm for General Distributions
1 κ← 0.0115
2 Solve General-LPon for {xi,j,`}i,j,`
3 for each buyer i do
4 Observe index ` sampled from (qi,`)`
5 Define items FPi,` := PS((xi,j,`/qi,`)j)
6 for each item j ∈ FPi,` do
7 if j is available then

8 Allocate j to i with probability αi,j := min
(

1, 0.5+κ
1−(0.5+κ)·

∑
i′<i

∑
`′ xi′,j,`′

)
9 Ai,` ← number of items allocated to i with sampled index ` thus far

10 Define items SPi,` := PS
(((

1− Ai,`
ki,`

)
· xi,j,`/qi,`

)
j

)
11 for each item j ∈ SPi,` with αi,j = 1 do
12 if j is available then
13 Compute ρi,j,` :=

E
[
1[j available after Line 9] ·

(
1− Ai,`

ki,`

)
| i sampled index `

]
14 βi,j,` ← min

(
1, ((0.5 + κ) ·

∑
i′<i

∑
`′ xi′,j,`′ − (0.5− κ)) · 1

ρi,j,`

)
15 Allocate j to i with prob. βi,j,`

As in the previously studied Bernoulli case, observe that we choose βi,j,` in a way
so that the following holds: Pr [(i, j) assigned with sampled index `] = (0.5+ κ) · xi,j,`.
Also, note that this algorithm can be implemented in polynomial time in the number
of buyers and items and the size of the support of the distributions. Concerning the
computation of ρi,j,`, we can observe that for our choice of κ = 0.0115, the general-
ized analysis also shows that any ρi,j,` is lower bounded by a constant; equivalently to
the Bernoullli case. As before, this can be used to estimate ρi,j,` via samples with a
multiplicative error as small as desired, implying a (0.5+ κ− ε)-approximate algorithm.
Also, the simplified version where we set βi,j,` = 1 for all i, j and ` carries over while
suffering a slightly worse improvement than κ = 0.0115. In the following paragraph, we
restrict to a sketch on how to extend the analysis for Algorithm 4 to the more general
case beyond Bernoulli distributions.

A Sketch on a Generalized Analysis. In order to prove the generalization of Theo-
rem 4.3.1, the major work is to change the syntax of the lemmas. We do not give details
for all lemmas but rather provide the key steps on what to change and how to overcome
obstacles.

First, we extend and change several definitions such as yi,j :=
∑
i′<i

∑
` xi′,j,` or A`1,

A`2 as the set of assignments (i, j) if the realized index is ` via a first or second proposal.
The lemmas, observations and statements which referred to “i arriving” are now with
respect to the event “i realizes index `”. For example, when talking about assigning j to
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i via a first proposal, we replace this by saying that we assign j to i via a first proposal
when i realized the valuation function with index `.

The proofs for the analysis of early pairs directly carry over after adapting the syntax.
For late pairs, the generalization of the proof of Lemma 4.3.5 (i) is also straightforward,
as is the combination of both cases at the end.

We need to take some care in generalizing the proof of Lemma 4.3.5 (ii). The majority
of the steps can be extended directly via a syntactic generalization from Section 4.3. In
contrast, the proof of the generalized version of the correlation bound from Section 4.3.3,
and in particular Claim 4.3.12 need some updates. Note however that as Claim 4.3.12
only concerns early pairs, it is not affected by the choice of βi,j,`.

To see why Claim 4.3.12 also holds in the more general variant, we go through its
proof steps one-by-one. Concerning the generalization of Step (S1) we note that the
probability of both items being free after time i + 1 can still be decomposed as the
product of the probability of both being free before buyer i+ 1 times the conditional
probability of assigning neither via a first proposal (as in Equation (4.11)). Still, we
are required to sum the latter conditional probabilities for all possible realizations of `.
Doing so, we first follow Steps (S1) and (S2) from the Bernoulli case. During Step (S3),
we need to show that for two distinct items j, j′ and buyer i, the following inequality
holds:

αi,jαi,j′Pr [Fi,j ]Pr [Fi,j′ ]
(∑

`

xi,j,`xi,j′,`
qi,`

−
(∑

`

xi,j,`

)(∑
`

xi,j′,`

))
(4.22)

≤ Pr [Fi,j ]Pr [Fi,j′ ] (0.5 + κ)

(
1− αi,j′

∑
`

xi,j′,`

)
αi,j

(∑
`

xi,j,`

)
.

In order to argue that this inequality is indeed true, we depart from the proof of the
Bernoulli case by controlling the term ∑

`
xi,j,`xi,j′,`

qi,`
via the online constraint for item j′.

By Constraint (4.21), we know that

xi,j′,`
qi,`

≤ 1− yi,j′ .

Using this, we can bound ∑
`

xi,j,`xi,j′,`
qi,`

≤ (1− yi,j′)
∑
`

xi,j,`.

Plugging this into the left-hand side of Equation (4.22) and rearranging terms, we can
conclude in a similar way as we did using Fact 4.3.13 in the Bernoulli case. Afterwards,
Step (S4) of the correlation bound can again proceed via a syntactic generalization.
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Chapter 5

Truthful Mechanisms for
Two-Sided Markets via Prophet
Inequalities

The algorithms in Chapter 3 and Chapter 4 can be interpreted (or imply) pricing-based
mechanisms in one-sided markets: All items are initially held by the auctioneer who
does not have any value for any of them and strategic buyers are willing to purchase
bundles. For these types of markets, various different other auction formats and alloca-
tion procedures have been developed, such as VCG [Groves, 1973, Vickrey, 1961, Clarke,
1971], posted-prices mechanisms (as e.g. in Chawla et al. [2010], Dütting et al. [2020])
and many more (see e.g. Dobzinski et al. [2012], Dughmi et al. [2011], Assadi and Singla
[2019], Assadi et al. [2021]).

Still, there are several applications, in which the assumption fails that all items are
held by the auctioneer. Examples are widely spread, as to mention stock exchanges, ad
auctions, online marketplaces such as eBay or ride sharing platforms.

In this chapter, we ask how the story from Chapter 3 and Chapter 4 changes once
strategic sellers hold items initially. In other words, each seller brings a set of items to the
market and has a valuation over her bundle. In addition, every seller acts strategically
with the goal of maximizing her own utility. So, for example, a seller might keep an item
for herself if the offered price is too low.

To deal with this challenge, our goal is to construct a mechanism which specifies
trades between buyers and sellers and determines suitable prices for each trade with the
objective of maximizing the overall social welfare.

Standard requirements for mechanisms are individual rationality (IR) and dominant
strategy incentive compatibility (DSIC). Furthermore, as one cannot assume that there
is a superior authority funding beneficial trades in two-sided markets, an additional
natural requirement is budget balance. Its stronger version, strong budget balance (SBB),
means that the mechanism can neither subsidize trades nor is allowed to extract money
from trades. In other words, this requires that all money which is spent by buyers is
transferred to sellers. The weaker form, weak budget balance (WBB), only requires the
first property, namely that subsidizing trades is prohibited, but the mechanism is allowed
to extract money from trades.

Unfortunately, in their seminal work in the 80s, Myerson and Satterthwaite [1983]
showed that no mechanism can simultaneously be individually rational, incentive com-
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patible, budget balanced and optimize social welfare1. This result is a sharp contrast to
one-sided markets where optimal results are possible [Vickrey, 1961, Myerson, 1981]. As
a consequence, approximating the optimal social welfare becomes the typical workaround.
Going one step further, trying to approximate the optimal social welfare with a rather
simple mechanism which can be easily understood by all participants may be an even
more desirable goal.

Double Auction Formats. Probably the most fundamental problem in this field is
bilateral trade (see e.g. Myerson and Satterthwaite [1983], Blumrosen and Dobzinski
[2021], Kang and Vondrák [2018]), studied in Section 5.2: There is one seller holding
one indivisible item and one buyer. In more general double auctions, there might be
multiple buyers, multiple sellers, multiple items, and complex combinatorial constraints.
In matroid double auctions (see e.g. Dütting et al. [2014], Colini-Baldeschi et al. [2016])
in Section 5.3 and Section 5.4, each seller initially holds one of m identical items, each
buyer wants to purchase at most one of them and the set of buyers who receive an
item needs to be an independent set in a matroid. In combinatorial double auctions
(see e.g. Blumrosen and Dobzinski [2014], Colini-Baldeschi et al. [2020]) in Section 5.5,
there are k sellers holding m heterogeneous items and the agents have combinatorial
valuation functions over item bundles. For knapsack double auctions in Section 5.6 and
Section 5.7, the setting is very similar as in matroid double auctions. Still, the matroid
constraint over the set of buyers is replaced by a knapsack constraint (see e.g. Dütting
et al. [2014]). That is, each buyer has a weight and we need to select buyers in a way
such that the sum of weights does not exceed a certain capacity.

Mechanisms based on Balanced Prices. In order to derive the mechanisms for
two-sided markets in this chapter, we extend the idea of balanced prices [Kleinberg and
Weinberg, 2019, Feldman et al., 2015, Dütting et al., 2020] from Prophet Inequalities
to two-sided environments. We use prices that are low enough and high enough at the
same time: On the one hand, prices should be low enough so that agents may have
values exceeding the prices and hence, either keep items (as sellers) or purchase items
(as buyers). On the other hand, prices should be high enough so that we can cover the
loss in social welfare once an item is allocated.

In the example of bilateral trade in Section 5.2, this extension is fairly easy. We can
use Algorithm 1 from Chapter 1 which is based on a static and anonymous price for the
item and apply an “interpret-seller-as-buyer”-argument: Interpret the seller as a buyer
which is considered first and ask her if she want to keep or sell the item for a given price.
If she agrees to try selling, ask the buyer if she wants to purchase for the same price.
This directly implies a 1/2-approximation which is strongly budget balanced by design.

Extending this idea to more complex settings can turn out to be relatively easy if
the corresponding Prophet Inequality uses static and anonymous item prices (as e.g.
using the Prophet Inequality of Feldman et al. [2015] for combinatorial double auctions
in Section 5.5). In particular, the guarantees of strong budget balance and a reasonable
approximation for the two-sided market problem directly follow again by a generalized
version of the “interpret-seller-as-buyer”-argument described above. The reason is that

1The original result from Myerson and Satterthwaite is for bilateral trade instances, i.e. one seller
holding one item and one buyer. They show that even individual rationality and (Bayesian) incentive
compatibility cannot be combined with achieving the optimal ex-post social welfare.
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due to prices being static and anonymous, we get strong budget balance in the two-sided
environment for free.

Still, in settings where the Prophet Inequality is required to have dynamic or agent-
specific prices (as e.g. the Prophet Inequality of Kleinberg and Weinberg [2019] for
matroids or Dütting et al. [2020] for knapsacks), this straightforward extension does not
work anymore. The reason is that prices heavily depend on the identity of an agent
and her role in the corresponding feasibility constraint. To address the key difficulty of
fulfilling incentive as well as budget balance constraints simultaneously, we will have to
carefully select when to offer a trade to which pair of agents.

The proofs concerning the approximation guarantees mimic the spirit of revenue and
utility based-ones in one-sided markets: we split the contribution to welfare of each
agent into the base value, defined by the price of the proposed trade, and surplus, which
is the amount by how much the agent’s value exceeds the price. Afterwards, we bound
each quantity separately. As a matter of fact, it does not play a key role which agent
purchases or keeps which item — since any irrevocably allocated item ensures a sufficient
contribution to welfare via its price.

Additional Related Work on Two-Sided Markets

Two-sided markets have been studied for a long time, including the mentioned impossi-
bility result by Myerson and Satterthwaite [1983] and pioneering work on trade-reduction
mechanisms and their generalizations as e.g. considered in McAfee [1992], Dütting et al.
[2014], Babaioff and Walsh [2003], Babaioff and Nisan [2004]. Only much more recently,
worst-case approximation ratios have been considered. There has been a lot of progress
on improving the guarantees for bilateral trade ([Blumrosen and Dobzinski, 2014, 2021,
Kang and Vondrák, 2018, Gerstgrasser et al., 2019] among others). However, determin-
ing the optimal guarantee is still an open problem.

Most relevant for the content of this chapter is the work of Colini-Baldeschi et al.
[2016] and Colini-Baldeschi et al. [2020], which derive mechanisms for matroid and com-
binatorial double auctions in Bayesian settings. The focus of Colini-Baldeschi et al. [2016]
is on matroid double auctions. Here, mechanisms are designed with pricing strategies
based on quantiles, whereas our approach uses balanced prices. In Colini-Baldeschi et al.
[2020], the authors consider combinatorial double auctions using very similar prices as
the ones we use in this chapter. However, the analysis is different as their proofs rely on
case distinctions while our proofs use charging arguments from balanced prices. Another
important contribution of Colini-Baldeschi et al. [2020] is the introduction and discussion
of direct-trade budget balance, which we also adopt in this paper. Dütting et al. [2021a]
consider the same constraints. Besides giving improved approximation guarantees, they
change the fundamental assumption of the Bayesian setting: They design mechanisms
given only sample-based access to the underlying distribution.

Our mechanisms can also be viewed trough the lens of simplicity vs. optimality.
There is related work in this direction e.g. by Deng et al. [2022a] or Niazadeh et al.
[2014].

We focus on maximizing the overall social welfare of the mechanisms in this chapter.
Complementing this direction, there is also a line of work using different objective func-
tions in two-sided markets, most prominently gain from trade [Blumrosen and Mizrahi,
2016, Brustle et al., 2017, Colini-Baldeschi et al., 2017, Babaioff et al., 2018a, Segal-
Halevi et al., 2016, Feldman and Gonen, 2018, Cai et al., 2021]. In this setting, only
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the increase in welfare by transferring items from sellers to buyers is measured. An α-
approximation with respect to gain from trade is also an α-approximation with respect
to social welfare but not vice versa. Indeed, Blumrosen and Dobzinski [2021] and Blum-
rosen and Mizrahi [2016] show that approximating the gain from trade is harder than
social welfare: There is no DISC, IR and SBB mechanism which can achieve a constant
factor approximation to the optimal gain from trade. Only recently, Deng et al. [2022a]
could provide a breakthrough and prove the first constant factor approximation to the
optimal (first best) gain-from-trade via a BIC mechanism. Babaioff et al. [2020] tackle
the question by how many buyers and sellers the size of the two-sided market needs to
be increased in order to recover the optimal gain from trade from the original market,
mirroring the seminal work of Bulow and Klemperer [1996]. Another interesting objec-
tive function is the profit of the sellers in two-sided markets as considered by Cai and
Zhao [2019].

Chapter Organization and Remarks

This chapter is based on Truthful Mechanisms for Two-Sided Markets via Prophet In-
equalities [Braun and Kesselheim, 2021] (conference version) and [Braun and Kesselheim,
2023b] (journal version), which is joint work with Thomas Kesselheim. Further biblio-
graphic notes can be found in Section 1.5.

In this chapter, we start by giving some specific preliminaries in Section 5.1. In
Section 5.3, we state our mechanism for matroid double auctions which satisfies strong
budget balance. In Section 5.4, we give the corresponding weakly budget balanced
mechanism with an improved approximation guarantee. Section 5.5 addresses combina-
torial double auctions. In Section 5.6, we consider knapsack double auctions with strong
budget balance and give a proof for the approximation guarantee. In Section 5.7, we
complement this by allowing weak budget balance in knapsack double auctions.

5.1 Formal Problem Statement and Preliminaries

We consider the following setup for two-sided markets: There is a set of n buyers2 B, a
set of k sellers S and a set of m items M . We assume that B ∩ S = ∅, so any agent can
either act as a buyer or a seller. Before running any (reallocation) mechanism, the set
of items is initially held by the sellers. We denote by Il the set of items which is hold by
seller l initially and call the vector (I1, . . . , Ik) the initial allocation. Note that the sets
Il are pairwise disjoint, i.e. for any two sellers l 6= l′ we have Il ∩ Il′ = ∅, and further all
items are allocated to some seller before running our mechanism, i.e. ⋃l∈S Il =M .

Any agent i ∈ B ∪ S has a privately known valuation function vi : 2M → R≥0. Any
seller l is assumed to have only positive value for items in her initial bundle Il, i.e. for
any seller l ∈ S and T ⊆M it holds that vl(T ) = vl(T ∩ Il).

We consider a Bayesian setting where each agent i’s valuation function is drawn
independently from a publicly known, not necessarily identical probability distribution
Di. That is, Di is a probability distribution over the space of valuation functions Vi. We
denote by D = ×i∈B∪SDi the joint probability distribution of the space of all agents’
valuation functions V = ×i∈B∪SVi and we refer to v as a valuation profile which consists
of one valuation function per agent.

2As the set of buyers is not required to arrive sequentially in two-sided markets, we differ from the
notation in Chapter 3 and Chapter 4 for the set of buyers in order to highlight this difference.
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An allocation X = (Xi)i∈B∪S is a vector of item bundles such that agent i is allocated
bundle Xi and for two agents i 6= i′, we have Xi ∩Xi′ = ∅. Our goal is to maximize
the social welfare of an allocation X given valuation profile v, defined as v(X) :=∑
i∈B∪S vi(Xi). Concerning feasibility, as said, any seller l ∈ S can only receive items

in her initial allocation, i.e. Xl ⊆ Il for any l ∈ S. For buyers, we address feasibility
constraints in the respective sections below.

Mechanisms in Two-Sided Markets and their properties

A (direct revelation) mechanism takes as input a vector of valuation functions which are
reported by agents. Agents can report any possible valuation in their space of valuation
functions Vi, not necessarily their true one. A mechanism outputs an allocation of items
to agents X as well as payments P. Buyers pay money to the mechanism whereas sellers
receive money.

Agents are assumed to maximize utility. Fixing a valuation profile v, an allocation X
and payments P, the (quasi-linear) utility of buyer i for being allocated bundle Xi ⊆M
is given by ui(Xi) = vi(Xi)−Pi whereas the utility for seller l who remains with bundle
Xl ⊆ Il is given by ul(Xl) = vl(Xl) + Pl.

Mechanisms in this context are designed to fulfill the following desirable properties:

• Dominant Strategy Incentive Compatibility (DSIC): It is a dominant strategy for
every agent to report her true valuation independent of the other agents’ behavior.

• Individual Rationality (IR): When playing this dominant strategy, no agent de-
creases her utility by participating in the mechanism. So, for buyers vi(Xi)−Pi ≥
0 and for sellers vl(Xl) + Pl ≥ vl(Il).

• Weak/Strong Budget Balance (WBB/SBB): The money received by sellers is at

most/equals the payments made by buyers, i.e. ∑i∈B Pi
(=)
≥
∑
l∈S Pl.

Concerning budget balance, Colini-Baldeschi et al. [2020] showed a weakness in the orig-
inal definition of strong budget balance: cross subsidizing trades with already received
money is not prohibited as long as the sum of payments is equal for buyers and sellers3.
The stronger notion of direct-trade weak/strong budget balance (DWBB/DSBB) requires
that the outcome of the mechanism can be obtained by a composition of bilateral trades.
In each trade, an item is reallocated from seller l to buyer i, payments are transferred
from some buyer i to some seller l and each item may only be traded at most once
[Colini-Baldeschi et al., 2020]. If the buyer’s payment exceeds the seller’s receiving for
at least one of the trades, the mechanism is DWBB; if payments in each of these bilateral
trades are equal for buyers and sellers, we refer to DSBB. Our mechanisms will be DSIC,
IR and satisfy the respective DSBB/DWBB property.

As a benchmark, we compare the expected social welfare achieved by our mechanism
to the expected optimal (first best) social welfare Ev [maxX∗ v(X∗)]. We aim to design ζ-
approximative mechanisms. In the case that our mechanism can deal with online arrivals
of agents, we may use the wording ζ-approximation and ζ-competitive interchangeably
in this chapter.

3Colini-Baldeschi et al. [2020] argue that turning a WBB into an SBB mechanism is rather easy with
a small loss in the approximation guarantee as one can simply draw one seller uniformly at random and
give all the surplus money in the WBB mechanism to this seller.
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5.2 Warm-Up: Bilateral Trade via Balanced Prices

In order to gain a better understanding on how to apply Prophet Inequality techniques
in two-sided markets, we start by considering the problem of bilateral trade. In bilateral
trades, there is one seller, initially equipped with one item and one buyer.

For this setting, there is the following – almost trivial – mechanism: Let vs denote
the seller’s value and vb denote the buyer’s value for the item. Fix a price p and trade the
item if and only if vb ≥ p ≥ vs. Among others, Blumrosen and Dobzinski [2014, 2021]
and Gerstgrasser et al. [2019] set p to be the median of the seller’s distribution which
recovers an expected welfare of at least 1/2 ·E [max{vs, vb}], so it is a 1/2-approximation.

Our mechanism uses a different price. We set p = 1/2 ·E [max{vs, vb}] and trade the
item if and only if vb ≥ p ≥ vs. As an important remark, note that we can interpret this
mechanism as a sequential posted-prices mechanism with price p: First, ask the seller
s if she would like to keep or try selling the item for price p. Afterwards, buyer b may
buy the item for price p if the seller herself wanted to sell the item. This mechanism is
DSIC, IR and SBB by design. Concerning the approximation guarantee, we can state
the following proposition.

Proposition 5.2.1. The bilateral trade mechanism with p = 1
2 · E [max{vs, vb}] is a

1
2 -approximation to the optimal social welfare.

We give a proof applying the ideas from Prophet Inequalities.

Proof. We distinguish several cases: the mechanism extracts welfare if the item is either
allocated as vs ≥ p (the seller initially keeps the item), vb ≥ p > vs (a trade occurs), or
vb < p and vs < p (both agents’ values do not exceed the price, so the item remains at
the seller). Observe that the social welfare achieved by the first two cases is clearly a
lower bound on the overall social welfare achieved by the mechanism. In other words,
we only consider contributions to social welfare if at least one of the agents exceeds price
p.

We begin by splitting the social welfare achieved by the mechanism in base value
and surplus.

For the base value, observe that if there exists i ∈ {b, s} with vi ≥ p, we get a
contribution to social welfare of p (actually, we get p+ (vi− p), but the second summand
is considered in the surplus). Hence,

E [Base Value(v)] = Pr [There exists i ∈ {b, s} with vi ≥ p] · p .

For the surplus, we first argue about the contribution of the seller, afterwards about
the buyer. Note that the seller may keep the item initially if vs ≥ p. As a consequence,
we can extract a surplus of vs − p if this quantity is non-negative. In other words, we
get (vs − p)+ as a surplus from seller s. Buyer b can buy the item if the seller initially
agreed to try selling, i.e. vs < p and if her value vb ≥ p exceeds the price. Hence, we get
(vb − p)+ 1vs<p as a surplus. Observe that vs and vb are independent and hence, taking
the expectation over v, we can bound the expected surplus of buyer b via

E [surplusb(v)] ≥ E
[
(vb − p)+ 1vs<p

]
= E

[
(vb − p)+

]
·Pr [vs < p] .
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Now, observe that 1 ≥ Pr [vs < p] ≥ Pr [vs < p, vb < p], which allows to bound the
sum of the seller’s and buyer’s surplus as

E [Surplus(v)] = E [surpluss(v)] +E [surplusb(v)]

≥
(
E
[
(vs − p)+

]
+E

[
(vb − p)+

])
·Pr [vs < p, vb < p] .

Next, we use that (vs − p)+ + (vb − p)+ ≥ maxi∈{s,b} (vi − p)+ ≥ max{vs, vb} − p.
Further, by our choice of p, we get that

E [Surplus(v)] ≥ E [max{vs, vb} − p] ·Pr [vs < p, vb < p] = p ·Pr [vs < p, vb < p] .

Combining base value and surplus, we get

E [Base Value(v)] +E [Surplus(v)]
≥ p · (Pr [There exists i ∈ {b, s} with vi ≥ p] +Pr [vs < p, vb < p])

= p · 1

=
1
2 ·E [max{vs, vb}] .

As a remark, recall that we did not consider any contribution to social welfare from
the case that neither agent has a value which exceeds the price, i.e. vs < p and vb < p.
Still, in these cases, seller s keeps the item, so we could extract the welfare contribution in
addition to the ones considered above in order to improve the approximation guarantee
for bilateral trade instances. Nonetheless, when considering generalizations to matroid,
knapsack and combinatorial double auctions, restricting to social welfare contributions
of agents who exceed prices will turn out to simplify the arguments.

5.3 Matroid Double Auctions with Strong Budget Balance

Our first mechanism is for double auctions where the set of n buyers B is equipped with a
matroid constraint. That is, there is a matroidMB = (B, IB) and the set of buyers who
receive an item in the mechanism needs to be an independent set in the matroid MB.
For this section, we assume buyers to be unit-demand and sellers to be unit-supply,
i.e. every seller initially holds a single, indivisible item and hence k = m. Items are
identical, meaning that vi(T ) is zero if T = ∅ and (as buyers are unit-demand) equal
to some fixed value for any T 6= ∅. Our mechanism requires an offline setting in which
buyers and sellers can trade in any order. We determine the order adaptively during the
mechanism. In particular, we assume that we can pick one buyer and one seller in any
step out of the remaining ones and offer a trade at some price to both agents. Further,
we simplify notation in this section. In the setting of this section, a valuation profile v
can be interpreted as a |B ∪ S|-dimensional vector over the non-negative real numbers
in which each entry vi corresponds to the value of an agent for being allocated an item.
Further, we denote any unit-supply seller and the corresponding item by j.

In the following, we start by a description of the mechanism in Section 5.3.1, the
pricing is described afterwards in Section 5.3.2. In particular, the definition of the prices
will be based on the order in which we offer trades in the mechanism. In Section 5.3.3,
we discuss properties of our mechanism such as DSBB, DSIC and IR followed by proofs
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of the approximation guarantee. We give a proof of the approximation guarantee in
the full information case first and only consider the general incomplete information case
afterwards.

5.3.1 The Mechanism

We formally state our mechanism in Algorithm 7 and start with an informal description.
Throughout the algorithm, we maintain a set of agents A = AB ∪AS who are irrevocably
allocated an item with AB ∈ IB. In addition, in the set MSELL we store all sellers (or
equivalently items) who may still be considered for a possible trade. In particular, this
set contains all sellers which have neither rejected a price yet nor participated in a trade.
Analogously, the set MBUY denotes the set of buyers who have not been considered for
a trade yet and can feasibly be added to the current set of accepted buyers.

We maintain buyer-specific thresholds pi and seller-specific ones pj . The exact de-
scription of these thresholds will be discussed afterwards. The price for a trade between
seller j and buyer i will then be defined as pi,j = constant · (pi+ pj). In every iteration,
among all available sellers j ∈MSELL, we consider the one with the smallest threshold4

pj . We try to match her to buyers i ∈ MBUY in decreasing order of thresholds pi. To
this end, we first ask seller j if she wants to sell or keep her item for a price of pi,j . If she
wants to keep her item, we remove seller j from the set of available sellers. Otherwise, if
seller j considers selling her item, we ask buyer i if she wants to buy the item for price
pi,j . If buyer i agrees, the item is transferred from j to i, both are removed from the set
of available agents, i is irrevocably allocated an item, j is irrevocably discarded for hold-
ing an item and i pays pi,j to seller j. Else, buyer i is removed from the set of available
buyers and irrevocably discarded while seller j remains available. As a consequence, as
soon as an agent turned down an offer, she is not considered in our mechanism anymore.
Then we move to the next iteration, in which we consider a different pair for trading.

5.3.2 The Pricing

We start by giving an intuitive approach to prices and describe them formally afterwards.
As mentioned already, the price for a trade between buyer i and seller j will be a scaled
sum of thresholds pi and pj .

The intuition behind the thresholds pi and pj is as follows: We consider a relax-
ation of the expected optimal social welfare to Ev [v (OPTB(v))] +Ev

[∑
j∈S vj

]
, where

OPTB(v) is the optimal choice when restricting to the set of buyers. That is, in our
relaxation, each item can be counted twice: It will contribute to the first term by being
assigned to a buyer while in the second term it is assumed that the seller keeps it. The
buyer-specific thresholds pi will compensate for the loss in the first term once we allocate
an item. The thresholds pj will do so in the second term of the relaxation of the optimal
social welfare. In particular, once a trade occurs, the price for this trade covers the loss
of both, the seller and the buyer, in the relaxed optimal social welfare. In addition, the
remaining share of the social welfare will be covered by the surplus. By the choice of the
order in which trades are offered, we ensure that prices are monotone for a fixed seller
which is crucial concerning truthfulness and budget balance.

4Break ties arbitrarily, but always in the same way.
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Algorithm 7: Mechanism for Matroid Double Auctions with Strong Budget
Balance

Result: Set A of agents to get an item with A∩B ∈ IB and |A| = |S|
1 AB ←− ∅; AS ←− ∅; r ←− |S| ; MSELL ←− S ; MBUY ←− B
2 while MBUY 6= ∅ and MSELL 6= ∅ do
3 Recompute the thresholds pi(AB, r) and pj(AB, r) with respect to current

AB, r, MSELL and MBUY
4 j ∈ arg minj′∈MSELL pj′(AB, r); i ∈ arg maxi′∈MBUY pi′(AB, r)
5 if AB ∪ {i} /∈ IB or |AB ∪ {i}| > r then
6 MBUY ←−MBUY \ {i}
7 go to next iteration
8 p←− pi,j (AB, r)
9 if vj > p then

10 AS ←− AS ∪ {j}; MSELL ←−MSELL \ {j}; r ←− r− 1
11 if vj ≤ p then
12 MBUY ←−MBUY \ {i}
13 if vi > p then
14 AB ←− AB ∪ {i}; MSELL ←−MSELL \ {j}
15 return A := AB ∪AS ∪MSELL

In order to address feasibility issues first, by construction, our mechanism never offers
trades to buyers who cannot be feasibly added to AB. Hence, the mechanism ensures
that the set of buyers AB who receive an item in our mechanism is an independent set
in the matroid, i.e. AB ∈ IB. Additionally, we do not promise items to agents once all
items are irrevocably allocated. The price for any feasible trade is calculated in an agent-
specific way extending the method of balanced thresholds by Kleinberg and Weinberg
[2019] and balanced prices by Dütting et al. [2020] to two-sided markets.

Recall that AB contains all buyers who receive an item and AS contains all sellers who
irrevocably keep their item. By r we denote the number of items which may be allocated
to buyers in total, i.e. which are not irrevocably kept by a seller, so r = |S| − |AS |.
Observe that r is decreasing in our mechanism every time a seller decides to irrevocably
keep her item. Given the matroid over the set of buyers, we need to ensure that we do
not pick more than r buyers in our mechanism.

Fixing a valuation profile v, we let

OPTB(v|AB, r) ∈ arg max
B′⊆B\AB,B′∪AB∈IB,|B′∪AB|≤r

∑
i∈B′

vi

 .

That is, OPTB(v|AB, r) denotes the following allocation. Assume that we are only al-
lowed to assign items to buyers (not to sellers) and we have already allocated items to
buyers inAB and at most r items can be allocated to buyers in total. Then OPTB(v|AB, r)
is the allocation that maximizes the welfare increase. The value of this partial allocation
is denoted by v (OPTB(v | AB, r)). Further, we define OPTB(v) = OPTB(v | ∅, |S|) to
be the optimal allocation of all items to buyers.

The threshold of buyer i is defined with respect to the current state of AB and the
number of items r. For a fixed valuation profile v, let

pi(AB, r, v) = v (OPTB(v|AB, r))− v (OPTB(v|AB ∪ {i}, r))
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if AB ∪ {i} ∈ IB and |AB ∪ {i}| ≤ r. So, pi(AB, r, v) is the difference in welfare which
we can achieve by allocating r items to buyers given we have already allocated items to
buyers in AB and AB ∪{i} respectively. To simplify notation, we define pi(AB, r, v) =∞
if AB ∪ {i} 6∈ IB or |AB ∪ {i}| > r.

Based on this, define buyer i’s threshold as pi(AB, r) = Eṽ∼D [pi(AB, r, ṽ)]. For
a seller j, we set the seller-specific threshold to pj = Eṽj∼Dj [ṽj ], which is simply the
expected value of the distribution of seller j’s value for an item. Now, fix a buyer-seller-
pair (i, j) which is available for trading and denote the price for a trade between i and
j by

pi,j(AB, r) :=
1
3 (pi(AB, r) + pj) :=

1
3
(
Eṽ∼D [pi(AB, r, ṽ)] +Eṽj∼Dj [ṽj ]

)
.

5.3.3 Properties of Our Mechanism

Note that our mechanism ensures that the final allocation is a feasible solution with
respect to the matroid constraint on the buyers’ side as we discard any buyer who
cannot be added feasibly to the set of allocated agents. Further, we do not allocate more
than |S| items in total among all agents in our allocation process.

Theorem 5.3.1. The mechanism for matroid double auctions is DSBB, DSIC and IR
for all buyers and sellers and a 1

3 -approximation to the optimal social welfare.

By construction, Mechanism 7 consists of several bilateral trades, where an item is
transfered from seller j to buyer i and a price of pi,j is paid by buyer i, received by seller
j, so the mechanism satisfies DSBB.
We offer any buyer the possibility to participate in a trade at most once, so DSIC and
IR for buyers follows directly. Also IR for sellers is rather simple as we ask seller j
every time if she would like to participate in a trade for a given price. In order to show
DSIC for sellers, we have to exploit the order in which trades are offered. By this choice,
prices offered to a fixed seller are only non-increasing as the mechanism evolves. As a
consequence, selling the item as early as possible is only beneficial for a seller (if she
would like to sell the item at all). Truthfulness follows as misreporting the value for an
item might allow or block unfavorable trades.

Proof of the Approximation Guarantee of Theorem 5.3.1 in the full informa-
tion setting.

In order to illustrate the proof concerning the approximation guarantee, we give a sim-
plified proof in the full information setting first. That is, the value vi of an agent is not
a random variable anymore, but rather deterministic. The general case with incomplete
information can be found afterwards. In the full information setting, the price for a
feasible trade between buyer i and seller j simplifies to

1
3 (v(OPTB(v|AB,ij , rij))− v(OPTB(v|AB,ij ∪ {i}, rij)) + vj) ,

where AB,ij and rij are the states of AB and r as we consider buyer i and seller j for a
trade. First, note that any agent who keeps or purchases an item has a value exceeding
some price. So for any agent i ∈ A, there is a price Pi which agent i’s value did exceed
when we added i to A. For sellers to which we did not offer any trade in our mechanism,
we set Pi to zero as they keep their items anyway; for buyers who cannot be feasibly
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added to our set of chosen agents, we set Pi to infinity. We split the social welfare
achieved by our mechanism in two parts, calling them base value and surplus:∑

i∈A
vi =

∑
i∈A

Pi +
∑
i∈A

(vi − Pi)

Now, we bound each of these quantities separately.

Base Value. When irrevocably allocating an item during the offer of a trade to buyer-
seller-pair (i, j), either the seller keeps the item or the buyer purchases it. In the first
case, we reduce r by one, in the second, we add i to AB. In order to bound the loss
incurred by a seller keeping her item, observe that

v(OPTB(v|AB,ij ∪ {i}, rij)) ≤ v(OPTB(v|AB,ij , rij − 1)) .

This is true as any feasible choice of buyers for the left-hand side is also feasible for the
right-hand side. It further directly implies that

v(OPTB(v|AB,ij , rij))− v(OPTB(v|AB,ij ∪ {i}, rij))
≥ v(OPTB(v|AB,ij , rij))− v(OPTB(v|AB,ij , rij − 1)) .

As prices in the next iteration are computed with respect to rij − 1 and AB,ij , the
loss in the buyers’ optimal welfare when allocating an item to a seller is bounded by
the buyer’s contribution to the price. Summing the prices which we offered to agents in
AB ∪AS combined with this bound leads to a telescopic sum over the buyers’ thresholds
in the prices. Therefore, we can derive a bound of∑

i∈A
Pi ≥

1
3v(OPTB(v))−

1
3v(OPTB(v|AB, r)) + 1

3
∑

j∈S\MSELL

vj (5.1)

for the base value.

Surplus. Concerning the surplus, we consider buyers and sellers separately. For the
sellers, note that any seller who remains in MSELL after the mechanism keeps her item.
Therefore, the contribution to the surplus is vj for any j ∈ MSELL. In the incomplete
information setting, this turns out to be much more involved and a more sophisticated
argument needs to be applied. As a consequence, we are only able to bound the sellers’
surplus from below via∑

i∈AS∪MSELL

(vi − Pi) ≥
2
3

∑
j∈MSELL

vj −
1
3v(OPTB(v|AB, r)) . (5.2)

For the buyers, we note that the prices for a fixed buyer are only non-decreasing as the
allocation process evolves (see Lemma 5.3.5 which is a generalized version of Lemma 3
in Kleinberg and Weinberg [2012]). Further, any buyer to which we offer a trade gets an
item if her value exceeds her price. Using this, we can bound the surplus of any buyer i
to which we proposed a trade via

(vi − Pi)+ = (vi − pi,ji(AB,iji , riji))
+ ≥ (vi − pi,ji(AB, r))+

≥
(
vi − min

j∈MSELL
pi,j(AB, r)

)+

,
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where we denote by ji the seller which is matched to buyer i. Now, we consider all
buyers which are in OPTB(v|AB, r). Any of these buyers could have purchased an item
if her value had exceeded the price. To see this, note that AB ∪OPTB(v|AB, r) needs
to be independent. Further, if OPTB(v|AB, r) 6= ∅, we have that r > 0 and so there
are still items available after running the mechanism. As a consequence, any agent
i ∈ OPTB(v|AB, r) has a surplus of (vi − Pi)+ which is positive only if i ∈ AB after
running the mechanism5. For a buyer who does not exceed her price, this is zero as is
her contribution to the surplus. Summing the surplus of all these buyers implies a lower
bound on the overall buyers’ surplus of∑

i∈AB
(vi − Pi) ≥

∑
i∈OPTB(v|AB,r)

(vi − Pi)+

≥
∑

i∈OPTB(v|AB,r)
vi −

∑
i∈OPTB(v|AB,r)

min
j∈MSELL

pi,j(AB, r) .

Having a closer look at the sum of prices, we can apply a proposition from Kleinberg and
Weinberg [2012, Proposition 2] on the buyers’ contribution in order to derive a suitable
bound: ∑

i∈OPTB(v|AB,r)
min

j∈MSELL
pi,j(AB, r) ≤ 1

3

(
v(OPTB(v|AB, r)) + |MSELL| · min

j∈MSELL
vj

)

≤ 1
3

v(OPTB(v|AB, r)) +
∑

j∈MSELL

vj

 .

And so we get
∑
i∈AB

(vi − Pi) ≥
2
3v(OPTB(v|AB, r))− 1

3
∑

j∈MSELL

vj .

Hence, in combination with (5.2), we can lower-bound the overall surplus of all agents
via∑
i∈A

(vi − Pi) ≥
2
3

∑
j∈MSELL

vj −
1
3v(OPTB(v|AB, r)) + 2

3v(OPTB(v|AB, r))− 1
3

∑
j∈MSELL

vj

=
1
3

∑
j∈MSELL

vj +
1
3v(OPTB(v|AB, r)) . (5.3)

Adding base value (5.1) and surplus of all buyers and sellers (5.3) proves the claim as
v(OPTB(v)) +

∑
j∈S vj ≥ v(OPT(v)).

Proof in the incomplete information setting.

Now, we give a complete proof of the approximation guarantee of Theorem 5.3.1.

Lemma 5.3.2. Mechanism 7 for matroid double auctions is a 1
3 -approximation of the

optimal social welfare.
5This argument might sound strange in the full information case as buyers can either be included in

AB or OPTB(v|AB, r). It will make much more sense in the incomplete information case later.
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Proof. We start by a quick reformulation of the prices. Assume, we introduced a counter
t starting at zero which increases by one in every iteration of the while-loop as soon as a
buyer or a seller accepts a price. Every time the counter increases, one item is allocated
irrevocably: Either the sellers decides to keep the item or a trade occurs and the item is
allocated to the current buyer. Denote by AB,t the state of set AB (similarly with AS,t
for AS etc.) as the counter shows t (i.e. t items are already allocated) and as before, if
AB,t ∪ {i} ∈ IB and |AB,t ∪ {i} |≤ rt, let

pi,j(AB,t, rt) =
1
3
(
Eṽ∼D [pi(AB,t, rt, ṽ)] +Eṽj∼Dj [ṽj ]

)
be the price for buyer-seller-pair (i, j). Otherwise, as already mentioned, we will not
consider buyer i and set any price pi,j for trades offered to buyer i to infinity. Note that
this formulation is equivalent to our initial definition of the prices but rather allows to
refer to the t-th irrevocably allocated item.

The set of agents who receive an item A depends on v, so we denote by A(v) the set
A under valuation profile v (the same for AB,t(v) and AS,t(v) etc.). We want to compare
Ev [v(A(v))] to Ev [v(OPT(v))]. To this end, we split the welfare of our algorithm into
two parts, the base value and the surplus, and bound each quantity separately. (When
thinking about one-sided markets, this corresponds to revenue and utility of buyers.) The
base value is hereby defined as follows: let agent i receive an item in our mechanism,
i.e. i ∈ A. Any buyer who gets an item has paid some price for the item. Any seller
who decided to keep her item was asked to keep it for some specific price. The part
of agent i’s value which is below this price is denoted the base value. The surplus is
the part of agent i’s value above this threshold if it exists, otherwise it is zero. There
might be sellers who are left unconsidered in our mechanism, i.e. we did never ask them
if they would like to participate in a trade. These sellers keep their item without any
contribution to the base value in our calculations. All their value is considered in the
surplus.

Base Value. As said, all buyers and sellers who are irrevocably allocated an item
(i.e. which are in A before adding the remaining sellers) have a value which exceeds
some price. For any agent i, denote this price by Pi. Further, every time the counter t
increases, we are allocating an item irrevocably in our mechanism.

As a first step, we need to argue about the two different scenarios which can occur in
our mechanism as an item is allocated after offering a trade to buyer i and seller j with
counter t. On the one hand, a trade may occur and buyer i is allocated seller j’s item.
In this scenario, the prices in the next iteration(s) with counter t+ 1 are computed with
respect to AB,t+1 = AB,t ∪ {i} and rt+1 = rt. In addition, seller j is not available for a
trade anymore. On the other hand, seller j may keep the item, so we compute prices at
counter t+ 1 with respect to AB,t+1 = AB,t and rt+1 = rt − 1. Note that our prices are
adapted to mirror the first scenario. Taking the expectation over the inequality from
Lemma 5.3.3 (which is formally stated only after the proof), we see that the impact of
the second scenario (a seller keeping the item) can be bounded by the loss of the first
one concerning the optimal social welfare.

Fixing a valuation profile v and summing over all agents in A(v) in the order that
they were added to A is equivalent to summing over all steps in which we increased the
counter t. Denote by it and jt the buyer and seller considered in this particular time
step.
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This allows to use a telescopic sum argument to obtain

∑
i∈AB(v)∪AS (v)

Pi =
∑
t

1
3
(
Eṽ∼D [pit(AB,t, rt, ṽ)] +Eṽjt∼Djt [ṽjt ]

)
=

1
3
∑
t

(
Eṽ [ṽ (OPTB(ṽ | AB,t, rt))− ṽ (OPTB(ṽ | AB,t ∪ {it}, rt))] +Eṽjt∼Djt [ṽjt ]

)
(??)
≥ 1

3 (Eṽ [ṽ (OPTB(ṽ)]−Eṽ [ṽ (OPTB(ṽ | AB(v), r(v)))]) +
1
3
∑
t

Eṽjt∼Djt [ṽjt ] .

To see why the last inequality (??) holds, we use Lemma 5.3.3. Consider the step
with counter t. If buyer it gets the item, we argued that AB,t+1 = AB,t ∪{it} and hence,
the sum telescopes. On the other hand, if seller jt decided to keep the item, we note
that by Lemma 5.3.3,

Eṽ [ṽ (OPTB(ṽ | AB,t, rt))− ṽ (OPTB(ṽ | AB,t ∪ {it}, rt))]
≥ Eṽ [ṽ (OPTB(ṽ | AB,t, rt))− ṽ (OPTB(ṽ | AB,t, rt − 1))]

and again, the sum telescopes since the prices in the next step are computed with respect
to rt − 1.

Further, denote by MSELL(v) the set MSELL after running our mechanism with
valuation profile v. Note that any seller who is not in MSELL(v) either participated in
a trade or irrevocably kept the item during our mechanism. Therefore,∑

t

Eṽjt∼Djt [ṽjt ] =
∑

j∈S\MSELL(v)
Eṽj∼Dj [ṽj ] .

Taking the expectation over all valuation profiles v, exploiting linearity of expectation
and using that ṽ ∼ D is an independent and identically distributed draw from the same
distribution, we get

Ev

 ∑
i∈AB(v)∪AS (v)

Pi


≥ 1

3Ev [v (OPTB(v))]−
1
3Ev,ṽ [ṽ (OPTB(ṽ | AB(v), r(v)))] +

1
3Ev,ṽ

 ∑
j∈S\MSELL(v)

ṽj

 .

Surplus. The part of the welfare which is not covered by the base value is captured
in the surplus. In order to talk about the surplus of any agent who receives an item, we
split the set of agents and consider buyers and sellers separately.

Sellers: Fix seller j. Note that any seller whose value exceeds a price which we
offered keeps her item. By construction of our mechanism, seller j is matched to some
buyer(s) in the mechanism and asked if she would like to keep or try selling the item for
price pi,j . Let ij denote the first buyer to which j is matched in the mechanism. This
matching is independent of seller j’s actual valuation since it only depends on the prices
for seller j and buyer ij . In the case that ij does not exist (i.e. seller j was never offered
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a trade), we can simply set ij =⊥ and pij ,j = 0 and apply the same argument. The last
price offered to seller j is Pj (maybe 0 if seller j was never offered a trade) and let the
counter show t at this point.
Note that the prices which we offered to seller j cannot have increased in the process.
Hence, the last price Pj which we offered to seller j is clearly upper bounded by the
first price pij ,j which we offered to j. Further, by Lemma 5.3.4, the price for the trade
between j and ij is only non-decreasing compared to offering a trade between buyer ij
and seller j later in the process again. Therefore, we can bound the surplus of seller j
as follows:

(vj − Pj)+ ≥
(
vj − pij ,j(AB,t(v), rt)

)+
≥
(
vj − pij ,j(AB((v′j , v−j)), r((v′j , v−j)))

)+
≥
(
vj − pij ,j(AB((v′j , v−j)), r((v′j , v−j)))

)+
· 1j∈MSELL(v′j ,v−j) .

Taking expectations on both sides and exploiting that v and v′ are independent and
identically distributed allows to bound

Ev
[
(vj − Pj)+

]
≥ Ev,v′

[(
vj − pij ,j(AB((v′j , v−j)), r((v′j , v−j)))

)+
· 1j∈MSELL(v′j ,v−j)

]
= Ev,v′

[(
v′j − pij ,j(AB(v), r(v))

)+
· 1j∈MSELL(v)

]
.

Next, we can sum over all sellers and use linearity of expectation to obtain

∑
j∈S

Ev
[
(vj − Pj)+

]
≥ Ev,v′

∑
j∈S

(
v′j − pij ,j(AB(v), r(v))

)+
· 1j∈MSELL(v)


= Ev,v′

 ∑
j∈MSELL(v)

(
v′j − pij ,j(AB(v), r(v))

)+
≥ Ev,v′

 ∑
j∈MSELL(v)

v′j

−Ev

 ∑
j∈MSELL(v)

pij ,j(AB(v), r(v))

 .

Let us pause for a moment and consider the sum over the prices. First of all, note
that by construction of our mechanism, at most one seller j∗ ∈ MSELL(v) is offered
(maybe multiple times) a trade at all. Therefore, any other seller j satisfies that ij =⊥
and hence for all sellers except j∗, we can set pij ,j = 0.
Having a look at the seller j∗ ∈MSELL(v) who is offered a trade (if j∗ exists), the price
for a trade between j∗ and ij∗ was well-defined in the iteration that j∗ and ij∗ were
considered for a trade. Note that AB and r did not change after this iteration anymore,
so if ij∗ could be feasibly added to AB at the step we offered a trade, she also can be
feasibly added to AB after the mechanism. Therefore, combining the price given by

pij∗ ,j∗(AB(v), r(v)) =
1
3
(
Eṽ∼D

[
pij∗ (AB(v), r(v), ṽ)

]
+Eṽj∗∼Dj∗ [ṽj∗ ]

)
with

pij∗ (AB(v), r(v), ṽ) = ṽ (OPTB(ṽ | AB(v), r(v)))− ṽ (OPTB(ṽ | AB(v) ∪ {ij∗}, r(v)))
≤ ṽ (OPTB(ṽ | AB(v), r(v)))
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allows to bound the sum of prices as follows:

Ev

 ∑
j∈MSELL(v)

pij ,j(AB(v), r(v))


≤ 1

3Ev,ṽ [ṽ (OPTB(ṽ | AB(v), r(v)))] +
1
3Ev

[
Eṽj∗∼Dj∗ [ṽj∗ ]

]
≤ 1

3Ev,ṽ [ṽ (OPTB(ṽ | AB(v), r(v)))] +
1
3Ev,ṽ

 ∑
j∈MSELL(v)

ṽj

 .

Now, we use that v, v′ and ṽ are independent and identically distributed. Therefore,
we can bound the surplus of all sellers by the following expression:

∑
j∈S

Ev
[
(vj − Pj)+

]
≥ Ev,v′

 ∑
j∈MSELL(v)

v′j

−Ev

 ∑
j∈MSELL(v)

pij ,j(AB(v), r(v))


≥ 2

3Ev,v′

 ∑
j∈MSELL(v)

v′j

− 1
3Ev,ṽ [ṽ (OPTB(ṽ | AB(v), r(v)))] .

(5.4)
Buyers: First, observe that initially, all buyers can be feasibly added to AB. During

the mechanism, buyers may become infeasible at some point in time. Once a buyer
cannot be feasibly added anymore, this buyer will remain infeasible for the remainder
of the mechanism. On the other hand, if a buyer can be feasibly added at some point
in time, she could also be feasibly added at any time before. During our mechanism, we
offer trades to all buyers except of those who did become infeasible on the way. Any of
the buyers to which we offer a trade for a finite price gets an item if her value exceeds the
offered price. As a consequence, we are allowed to consider (vi − Pi)+ as the contribution
to the surplus for all buyers. We can define Pi for buyer i to be infinity if buyer i was
not offered a trade in our mechanism due to the fact that buyer i became infeasible. In
the same way, if pi,j(AB, r) is not well-defined for a buyer due to the fact that this buyer
did become infeasible, we defined the price to be infinity. This directly implies a zero
contribution to the surplus, so we do not need to focus on these buyers anymore in our
considerations. Otherwise, as before, Pi denotes the price which we offered to buyer i.

Observe that by Lemma 5.3.5, the prices which are proposed to buyer i are non-
decreasing as the allocation process proceeds. As said, any buyer who is offered a trade
and exceeds her price gets an item in our mechanism. Note that the price which we
offered to buyer i only depends on the sellers and all buyers which we did consider
before i. In particular, being offered a trade and its price are independent of buyer i’s
value.

Having this, let jt denote the seller which is matched to buyer i in round t, i.e. in
the round in which buyer i receives an item (if she does). Hence, for all buyers which
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are offered trades, we are allowed to calculate

(vi − Pi)+ = (vi − pi,jt(AB,t(v), rt))+

≥
(
vi − min

j∈MSELL((v′i,v−i))
pi,j(AB((v

′
i, v−i)), r((v′i, v−i)))

)+

≥
(
vi − min

j∈MSELL((v′i,v−i))
pi,j(AB((v

′
i, v−i)), r((v′i, v−i)))

)+

· 1i∈OPTB((vi,v′−i)|AB((v′i,v−i)),r((v′i,v−i)))
.

Note that if MSELL((v
′
i, v−i)) is empty, then the minimum is taken over the empty set

and we do not consider buyer i anymore as in this case buyer i cannot be feasibly added
to AB. Taking expectations on both sides and exploiting that v and v′ are independent
and identically distributed allows the following:

Ev
[
(vi − Pi)+

]
≥ Ev,v′

(vi − min
j∈MSELL((v′i,v−i))

pi,j(AB((v
′
i, v−i)), r((v′i, v−i)))

)+

·1i∈OPTB((vi,v′−i)|AB((v′i,v−i)),r((v′i,v−i)))

]

= Ev,v′

(v′i − min
j∈MSELL(v)

pi,j(AB(v), r(v))
)+

· 1i∈OPTB(v′|AB(v),r(v))

 .

Now, taking the sum over all buyers, we get

.....
∑
i∈B

Ev
[
(vi − Pi)+

]

≥ Ev,v′

∑
i∈B

(
v′i − min

j∈MSELL(v)
pi,j(AB(v), r(v))

)+

· 1i∈OPTB(v′|AB(v),r(v))


= Ev,v′

 ∑
i∈OPTB(v′|AB(v),r(v))

(
v′i − min

j∈MSELL(v)
pi,j(AB(v), r(v))

)+


≥ Ev,v′

 ∑
i∈OPTB(v′|AB(v),r(v))

v′i

−Ev,v′

 ∑
i∈OPTB(v′|AB(v),r(v))

min
j∈MSELL(v)

pi,j(AB(v), r(v))


= Ev,v′ [v′ (OPTB (v′ | AB(v), r(v)))]−Ev,v′

 ∑
i∈OPTB(v′|AB(v),r(v))

min
j∈MSELL(v)

pi,j(AB(v), r(v))

 .

Let us take a closer look at the sum over the prices. Using Lemma 5.3.6 (to be stated
later), we can upper bound the prices as follows:
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Ev,v′

 ∑
i∈OPTB(v′|AB(v),r(v))

min
j∈MSELL(v)

pi,j(AB(v), r(v))


=

1
3Ev,v′

 ∑
i∈OPTB(v′|AB(v),r(v))

Eṽ [pi(AB(v), r(v), ṽ)]

+ 1
3Ev

[
|MSELL(v)| · min

j∈MSELL(v)
Eṽ [ṽj ]

]

≤ 1
3Ev,v′ [v′ (OPTB (v′ | AB(v), r(v)))] +

1
3Ev,ṽ

 ∑
j∈MSELL(v)

ṽj

 .

Overall, the surplus of all buyers can be bounded as follows:

∑
i∈B

Ev
[
(vi − Pi)+

]
≥ 2

3Ev,v′ [v′ (OPTB (v′ | AB(v), r(v)))]−
1
3Ev,ṽ

 ∑
j∈MSELL(v)

ṽj

 .

(5.5)
Combination: Having discussed the surplus of buyers and sellers separately, we com-

bine the two bounds in order to bound the total surplus of our mechanism by summing
over all buyers and sellers. Therefore, we sum inequalities (5.4) and (5.5) and use that
v, v′ and ṽ are independent and identically distributed:

Ev

[ ∑
i∈B∪S

(vi − Pi)+
]
≥ 2

3Ev,v′

 ∑
j∈MSELL(v)

v′j

− 1
3Ev,v′ [v′ (OPTB(v′ | AB(v), r(v)))]

+
2
3Ev,v′ [v′ (OPTB (v′ | AB(v), r(v)))]−

1
3Ev,v′

 ∑
j∈MSELL(v)

v′j


=

1
3Ev,v′ [v′ (OPTB (v′ | AB(v), r(v)))] +

1
3Ev,v′

 ∑
j∈MSELL(v)

v′j

 .

Combining Base Value and Surplus. Adding base value and surplus and again,
using that v, v′ and ṽ are independent and identically distributed, we can lower bound
the social welfare of our mechanism by

Ev [Base Value] +Ev [Surplus]

≥ 1
3Ev [v (OPTB(v))]−

1
3Ev,ṽ [ṽ (OPTB(ṽ | AB(v), r(v)))]

te+
1
3Ev,ṽ

 ∑
j∈S\MSELL(v)

ṽj

+ 1
3Ev,v′ [v′ (OPTB (v′ | AB(v), r(v)))]

te+
1
3Ev,v′

 ∑
j∈MSELL(v)

v′j


=

1
3Ev [v (OPTB(v))] +

1
3Ev

∑
j∈S

vj

 .
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We can conclude as Ev [v (OPTB(v))] + Ev
[∑

j∈S vj
]
= Ev

[
v (OPTB(v)) +

∑
j∈S vj

]
and for each valuation profile v, we have that v (OPTB(v)) +

∑
j∈S vj is an upper bound

on the optimal social welfare which can be achieved by allocating the items among all
agents.

In order to conclude the proof of the approximation guarantee of Theorem 5.3.1, we
show the remaining lemmas used in the proof. First, we aim for a bound of

pi(AB, r, v) = v (OPTB(v | AB, r))− v (OPTB(v | AB ∪ {i}, r))

with respect to a change in r instead of adding i to the set AB.

Lemma 5.3.3. Fix some buyer i and a valuation profile v. Let AB and r be such that
AB ∪ {i} ∈ IB and |AB ∪ {i}| ≤ r. Then

v (OPTB(v | AB, r))− v (OPTB(v | AB ∪ {i}, r))
≥ v (OPTB(v | AB, r))− v (OPTB(v | AB, r− 1)) .

Proof. We argue that v (OPTB(v | AB ∪ {i}, r)) ≤ v (OPTB(v | AB, r− 1)) which im-
mediately proves the claim. As the key insight, note that any possible choice of agents
for OPTB(v | AB ∪ {i}, r) is also a feasible choice for OPTB(v | AB, r − 1) and hence,
the claim follows.

Second, we show that for a fixed buyer-seller-pair (i, j), the prices which we consider
in our mechanism are only non-decreasing as the process evolves.

Lemma 5.3.4. Fix buyer i and seller j. Let the price for trading between buyer i and
seller j be pi,j(X, r) for some set of remaining sellers MSELL. Then we have pi,j(X, r) ≤
pi,j(X ′, r′) for any superset of allocated agents X ′ ⊇ X and r′ ≤ r.

Proof. First, if a buyer is infeasible with respect to X and r, or if she could be feasibly
added with respect to X and r, but not to X ′ with r′, the claim is trivial. Therefore,
it remains to consider the case where both sides of the inequality are finite. So let
us consider X,X ′ and r, r′ such that i can feasibly be added and let j ∈ MSELL. By
definition, pi,j(X, r) = 1

3

(
Eṽ∼D [pi(X, r, ṽ)] +Eṽj∼Dj [ṽj ]

)
. We show the inequality

pointwise for any ṽ in the first summand (the second is independent of X and r anyway)
and conclude by taking the expectation. Therefore, fix a valuation profile v and consider
pi(X, r, v). We show that

pi(X, r, v) = v (OPTB(v | X, r))− v (OPTB(v | X ∪ {i}, r))
(1)
≤ v (OPTB(v | X, r′))− v (OPTB(v | X ∪ {i}, r′))
(2)
≤ v (OPTB(v | X ′, r′))− v (OPTB(v | X ′ ∪ {i}, r′)) = pi(X

′, r′, v) .

To show Inequality (1), we first use that the basis OPTB(v | X, r′) can be chosen to
be a subset of OPTB(v | X, r). To see this, denote by {b1, . . . , bm} the basis OPTB(v |
X, r) in decreasing order of weights. We show that there is an m′ such that {b1, . . . , bm′}
is equal to OPTB(v | X, r′), where m′ is chosen in a way that |X ∪ {b1, . . . , bm′}| ≤ r′

and that X ∪ {b1, . . . , bm′} has maximum size with respect to this property (i.e. either

95



CHAPTER 5. TRUTHFUL MECHANISMS FOR TWO-SIDED MARKETS

we have equality or r′ is larger than the cardinality of any independent set — in the
latter case, we can just choose a basis without considering r′).
Assume there is a set {b′1, . . . , b′m′} such that∑m′

k=1 vb′k >
∑m′
k=1 vbk , so {b1, . . . , bm′} would

not be a maximum weight basis with respect to X and r′. We know that {b′1, . . . , b′m′}
also needs to be independent with respect to X and r and further m′ ≤ m. Therefore,
there are m−m′ elements in {b1, . . . , bm} which we can add to {b′1, . . . , b′m′} in order to
get a basis in the matroid with respect to X and r. Denote these m−m′ elements with
bπ1 , . . . , bπm−m′ . Note that ∑m−m′

k=1 vbπk ≥
∑m
k=m′+1 vbk . Combining this with the sum

from above leads to
m′∑
k=1

vb′
k
+

m−m′∑
k=1

vbπk ≥
m′∑
k=1

vb′
k
+

m∑
k=m′+1

vbk >
m′∑
k=1

vbk +
m∑

k=m′+1
vbk =

m∑
k=1

vbk ,

which is a contradiction to the fact that {b1, . . . , bm} is a maximum weight basis in the
matroid given X truncated by r.

Having this, we can argue about the impact of adding i to X on {b1, . . . , bm} and
{b1, . . . , bm′} respectively. Consider two parallel executions of the Greedy algorithm
computing OPTB(v | X, r) and OPTB(v | X ∪ {i}, r). The first Greedy will compute
{b1, . . . , bm} whereas the second Greedy will choose exactly the same elements except for
an element b(i) for which {b1, . . . , b(i)} ∪ {i} contains a circuit. Therefore, the difference
on the left-hand side of Inequality (1) is equal to vb(i) .
Applying the same argument for the difference on the right-hand side of Inequality (1),
there is an element b(i)′ which is chosen in the first Greedy execution but not in the
second one as {b1, . . . , b(i)′} ∪ {i} contains a circuit in the matroid contracted with X
and truncated with r′. Therefore, the difference on the right-hand side is equal to vb(i)′ .
We argue that b(i)′ cannot be later than b(i) in the basis {b1, . . . , bm} which allows us to
conclude as elements in b1, . . . , bm are sorted by weight in decreasing order.
We show the claim by contradiction, so assume that b(i)′ is an element after b(i) and b(i)′
is the first element such that X ∪ {b1, . . . , b(i)′} ∪ {i} contains a circuit in the matroid
truncated with r′. Now, b(i)′ is later than b(i), so X ∪ {b1, . . . , b(i)′} ∪ {i} is a superset
of Y := X ∪ {b1, . . . , b(i)} ∪ {i}. Note that |Y | ≤ |X ∪ {b1, . . . , b(i)′} ∪ {i}| ≤ r′. By
assumption on b(i), X ∪ {b1, . . . , b(i)} ∪ {i} contains a circuit in the matroid truncated
with r and hence also needs to contain a circuit in the matroid truncated with r′, so
either b(i)′ is not the first element in {b1, . . . , bm′} which leads to a circuit with i or
b(i)′ is before b(i) in the order of the basis. In the first case, apply the same argument
again iteratively, in the second case, we showed the desired contradiction. Since there
are only finitely many elements, the iterative application of the argument will terminate
and hence, we proved the first inequality.

To see that Inequality (2) holds, we consider the matroid M truncated to rank
r′. Denote this matroid by Mr′ . Expressed differently, this is the intersection of the
matroid M with the r′-uniform matroid defined on the same ground set. Using Lemma
3 from Kleinberg and Weinberg [2012], the function fr′(Y ) = v(OPTB(v | Y , r′)) is
submodular in Y where now OPTB(v | Y , r′) is a maximum weight basis in the matroid
Mr′ . This implies Inequality (2).

Next, we consider a fixed buyer i. Note that by the order in which we approach the
sellers, pricing buyer i is equivalent to choosing the cheapest current seller out of all
available ones and compute the price with respect to the current AB and r. In other
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words, as buyer i arrives, the price we offer is minj∈T pi,j(AB, r), where T denotes the
set of available sellers.

Lemma 5.3.5. (Non-decreasing prices for buyers) Fix any buyer i. Then for any T ′ ⊆
T ⊆ S, A′B ⊇ AB and r′ ≤ r, we have minj∈T pi,j(AB, r) ≤ minj∈T ′ pi,j(A′B, r′).

As a short remark, we never delete agents from the set AB in our mechanism. Fur-
ther, the number r never increases and sellers are only removed from MSELL and never
added. Therefore, in other words, Lemma 5.3.5 states that for any fixed buyer i, the
prices are non-decreasing as the allocation process proceeds.

Proof. Observe that the minimum over T contains at least any possible seller j ∈ T ′.
Hence the minimum on the left is taken over a superset of T ′. Therefore, the claim follows
by applying Lemma 5.3.4, i.e. pi,j(AB, r) is non-decreasing with respect to adding agents
to AB and decreasing the number r.

In addition to the properties shown above, we used the inequality

Ev,v′

 ∑
i∈OPTB(v′|AB(v),r(v))

Eṽ [pi(AB(v), r(v), ṽ)]


≤ Ev,v′ [v′ (OPTB (v′ | AB(v), r(v)))]

in our proof. This inequality is a direct application of a proposition from Kleinberg
and Weinberg [2012]. Adapted to our setting, we consider the matroid Mr which is the
matroid over the set of buyersMB truncated to rank r (note that the intersection ofMB
with the r-uniform matroid over the same ground set is again a matroid). Denote by
Ir the independent sets in Mr. We apply Proposition 2 from Kleinberg and Weinberg
[2012] to our setting.

Lemma 5.3.6. [adapted version of Kleinberg and Weinberg, 2012, Proposition 2] Fix
valuation profile ṽ and r and let AB ∈ Ir. For any from AB disjoint set V ∈ Ir with
AB ∪ V ∈ Ir, it holds

∑
i∈V pi(AB, r, ṽ) ≤ ṽ (OPTB(ṽ | AB, r).

Setting V = OPTB (v′ | AB(v), r(v)) as well as AB = AB(v), we get the desired
inequality pointwise for any fixed v and v′. Hence, we can conclude by taking the
expectation on both sides, using linearity and the fact that ṽ and v′ are independent
and identically distributed.

5.4 Matroid Double Auctions with Weak Budget Balance
and Online Arrival

We consider the same setting as in Section 5.3, so the set of buyers who receive an item
needs to be an independent set in MB = (B, IB) and each sellers brings one identical
item to the market. In contrast to Section 5.3, our mechanism can deal with buyers
arriving online with an adversary specifying the order. The adversary may even adapt
the choices depending on the set of already considered agents and their valuations.

Also in this section, we start by a description of the mechanism in Section 5.4.1, the
pricing is described afterwards in Section 5.4.2. Properties of the mechanism and a proof
of the approximation guarantee are discussed in Section 5.4.3.
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5.4.1 The Mechanism

Let AB be the set in which we will store all buyers who receive an item, hence AB ∈ IB.
Further, AS denotes the set of sellers who decide to keep the item irrevocably. In
addition, we define a set A′ = A′B ∪A′S , which is the set of agents that we eventually
use to set the prices. We first go through all the sellers asking whether seller j wants
to irrevocably keep her item or try selling it knowing that she will receive at most an
amount of pj (in case we sell the item). Afterwards, we go through all buyers in any
order one-by-one. When considering buyer i, we match i to an arbitrary seller who still
tries selling her item (if available).

For this buyer-seller pair, we propose the following trade: Buyer i pays the specific
price pi but seller j only receives min {pi,Tj}, where Tj is the lowest price that we have
ever offered to seller j up to this point. If seller j does not agree to trade, she irrevocably
keeps the item; j is added to A but i is added to A′. Otherwise, if buyer i does not agree,
she is irrevocably discarded. Seller j might get matched again but the price offered to
her can only decrease.

Note that this mechanism does not require any specified order in which we process
the agents — even further, the matching which we consider for possible trades can be
arbitrary, even determined by an adversary. This is a sharp contrast to Section 5.3,
where we consider buyer-seller pairs in a tailored way.

Algorithm 8: Mechanism for Matroid Double Auctions with Online Arrival
Result: Set A = AB ∪AS of agents to get an item with AB ⊆ B, AB ∈ IB,

AS ⊆ S and |A| = |S|
1 A←− ∅ ; A′ ←− ∅ ; MSELL ←− ∅; T = (0, . . . , 0) (T is vector of zeros of size |S|)
2 for j ∈ S do
3 if vj ≥ pj then
4 A←− A∪ {j}; A′ ←− A′ ∪ {j}
5 if vj < pj then
6 MSELL ←−MSELL ∪ {j}; Tj ←− pj
7 for i ∈ B do
8 if MSELL 6= ∅ then
9 select j ∈MSELL arbitrarily

10 if pi ≥ Tj then
11 if vi ≥ pi then
12 A←− A∪ {i}; A′ ←− A′ ∪ {i}; MSELL ←−MSELL \ {j}
13 buyer i pays pi to the mechanism and seller j receives Tj
14 if pi < Tj then
15 if vj ≥ pi then
16 A←− A∪ {j}; A′ ←− A′ ∪ {i}; MSELL ←−MSELL \ {j}
17 if vj < pi then
18 Tj ←− pi
19 if vi ≥ pi then
20 A←− A∪ {i}; A′ ←− A′ ∪ {i}; MSELL ←−MSELL \ {j}
21 buyer i pays pi to the mechanism and seller j receives Tj
22 return A∪MSELL
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5.4.2 The Pricing

The key to setting the prices is the set A′ = A′B ∪A′S with A′B ⊆ B and A′S ⊆ S, which
is maintained in addition to the sets AB and AS . The idea is that for agents in A′ the
respective agent-specific price can be charged to someone in our mechanism. For a buyer
i ∈ A′, this can mean that the buyer herself received an item and paid for it or that the
corresponding seller decided to keep the item. We calculate prices with respect to the
set A′ in the spirit of the pricing schemes of matroid Prophet Inequalities by Kleinberg
and Weinberg [2019] and Dütting et al. [2020].

In more detail, concerning the buyers, we set prices to infinity if there are no items
available anymore or if buyer i cannot be added to A′B, i.e. pi(A′) =∞ if A′B ∪ {i} /∈ IB
or MSELL = ∅. In particular, this pricing only affects the buyers and will never occur
as long as we go through the sellers (in the first for-loop) in our mechanism. Hence, for
sellers, there will always be a finite seller-specific price.

Now, for any agent who can be feasibly added to A′ (i.e. all sellers and all buyers in
cases different to the ones mentioned above), we compute prices in the following way.
Fix a valuation profile v and denote by OPT(v | X) the set of agents who receive an
item in an optimal allocation given that we have already irrevocably allocated items to
agents in X. In contrast to the mechanism in Section 5.3, the optimum is now computed
over all agents, not only over the set of buyers. The value of this partial allocation is
denoted by v (OPT(v | X)), that is, the sum over the value vi of all agents i who receive
an item. Further, define OPT(v) = OPT(v | ∅).

Denote by Ai and A′i the state of set A and A′ after processing agent i (also for AB
and AS) and let pi(A′i−1, v) = v

(
OPT(v | A′i−1)

)
− v

(
OPT(v

∣∣ A′i−1 ∪ {i})
)
. For any

seller and all buyers such that A′B;i−1 ∪ {i} ∈ IB, as long as there are items remaining,
the price for agent i is computed as

pi(A
′
i−1) =

1
2Eṽ∼D [pi(A

′
i−1, ṽ)]

=
1
2Eṽ∼D [ṽ (OPT(ṽ | A′i−1))− ṽ (OPT(ṽ | A′i−1 ∪ {i}))] .

This way of setting prices also ensures feasibility with respect to the matroid con-
straint, meaning that AB ∈ IB. The reason is that A′B ⊇ AB at all times as every time
we add a buyer to AB, the buyer is also added to A′B. We even have A′B ∈ IB because
buyers have infinite prices as soon as they cannot be feasibly added to A′.

5.4.3 Properties of Our Mechanism

Now, we can state the following theorem.

Theorem 5.4.1. The mechanism for matroid double auctions is DWBB, DSIC and IR
for all buyers and sellers and 1

2 -competitive with respect to the optimal social welfare.

Proof for DWBB, DSIC and IR. First, observe that DWBB is obtained via the price
comparison of our mechanism: either a trade between some seller j and some buyer i
happens at price pi, or buyer i pays pi ≥ Tj to the mechanism whereas seller j only
receives Tj . The difference pi − Tj is extracted and never used again. Satisfying DSIC
and IR for buyers can be seen easily as we only offer a trade to any buyer at most
once. Also IR for sellers follows naturally. In order to obtain DSIC for sellers, the key
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observation is that the amount of money which we may pay to seller j is only non-
increasing in the allocation process. Hence, as a seller, if she wants to sell her item, she
wants to do so as early as possible which implies DSIC for sellers.

Proof of approximation ratio via a reduction to matroid Prophet Inequality. Next, we
prove the competitive ratio via a reduction to matroid Prophet Inequalities as in Klein-
berg and Weinberg [2019] and Dütting et al. [2020]. For the sake of completeness, there
is a self-contained proof in this thesis after the reduction-based one.

As we are optimizing over a set of agents which is partially (on the buyers’ side)
equipped with a matroid constraint, we start by extending this to an equivalent setting
with a matroid over the whole set of agents. The ground set of this extended matroid
is B ∪ S. Afterwards, we show a correspondence of our setting to the one in Kleinberg
and Weinberg [2019] and Dütting et al. [2020].

There is the matroid MB = (B, IB) over the set of buyers. On the sellers’ side
we construct an artificial matroid by considering the |S|-uniform matroid over the set
of sellers, denoted by MS = (S, IS). Afterwards, we consider the union of the two
matroids M̂ = (B ∪ S,J ), where a set I = IB ∪ IS is now independent, if IB ∈ IB
and IS ∈ IS . In order to mirror the feasibility constraint of having only |S| items, we
intersect M̂ with the |S|-uniform matroid over B ∪ S and denote this matroid by M.
Observe that by construction, M is again a matroid. As a consequence, we can relate
all feasible allocations with respect to MB to independent sets in the extended matroid
M.

Concerning our pricing scheme, first, observe that we calculated prices with respect
to the set A′ by setting pi =∞ if A′B ∪ {i} /∈ IB or if all items are irrevocably allocated.
This corresponds to sets which are not independent in the extended matroid M over
the ground set B ∪ S. A finite price for i (in case i can feasibly be added to A′) can
also be interpreted in the extended matroid M: If A′ ∪ {i} ∈ I, the price for agent i is
computed to be pi(A′i−1). Note that this is exactly the pricing scheme used in Kleinberg
and Weinberg [2019] and Dütting et al. [2020]. In addition, we ensure that OPT(v) ∈ I
and also X ∪OPT(v | X) ∈ I for any X ∈ I. Note that in particular, the matroid M
combines the feasibility constraints for buyers and the constraint of having |S| items. As
a consequence, computing prices with respect toM is equivalent to our pricing strategy
from Section 5.4.2.

It remains to argue why the competitive ratio of the matroid Prophet Inequality in
Kleinberg and Weinberg [2019] and Dütting et al. [2020] also implies our approximation
guarantee for matroid double auctions. To this end, let us first interpret sellers as buyers
who keep their items if they exceed the offered price.

Base Value. Once an item is irrevocably allocated to agent i, denote the price for the
offered trade by Pi. Summing over all agents who are allocated an item, we get

Ev

 ∑
i∈A(v)

Pi

 = Ev

 ∑
i∈A′(v)

1
2Eṽ [ṽ (OPT(ṽ|A′i−1(v)))− ṽ (OPT(ṽ|A′i−1(v) ∪ {i}))]


=

1
2Ev [v (OPT(v)]−

1
2Ev,ṽ [ṽ (OPT(ṽ|A′(v)))] .

100



CHAPTER 5. TRUTHFUL MECHANISMS FOR TWO-SIDED MARKETS

As a consequence, the base value of our mechanism equals the revenue of the mecha-
nism from Kleinberg and Weinberg [2019] and Dütting et al. [2020] in one-sided markets.

Surplus. Kleinberg and Weinberg [2019] use the following lower bound: consider
agents in OPT (v′ | A′(v)) and the sum of their surpluses is a lower bound on the overall
surplus.

Now, also in our two-sided environment, the only agents who cannot contribute to
the overall surplus are the ones contained in A′(v) \A(v) as they do not receive an item.
Note that by construction, any agent i ∈ A′(v) \A(v) is a buyer. We observe that any
other agent i /∈ A′(v) \ A(v) whose value vi exceeds her corresponding price gets an
item in our mechanism. Overall, any agent i /∈ A′(v) \A(v) had the chance to obtain
an item in our process if her value exceeded her price.

Next, we discuss why a buyer i is in A′(v) \A(v). We see that buyer i is in A′(v) \
A(v) if and only if her buyer-specific price pi, the value vj of seller j (the seller who
is matched to i once she entered the market) and the lowest price Tj offered to seller j
satisfy

pi < Tj and pi ≤ vj .

In particular, the decision whether buyer i is in A′(v) \A(v) does not depend on her value
vi at all. So, for any deviation of buyer i to v′i, buyer i would end up in A′(v) \A(v) in the
same cases as she would with valuation vi. In addition, observe that i ∈ OPT(w | A′(v))
implies i /∈ A′(v) for any valuation profile w.

Combining this with the above observation, any agent i ∈ OPT(w | A′(v)) has a
considerable surplus if she exceeds her price. For an independently sampled valuation
profile v′ ∼ D, we get

surplusi ≥ (vi − pi(A′i−1(v)))
+
1i/∈A′((v′i,v−i))\A((v

′
i,v−i))

≥ (vi − pi(A′((v′i, v−i)))
+
1i/∈A′((v′i,v−i))\A((v

′
i,v−i))

≥ (vi − pi(A′((v′i, v−i)))
+
1i∈OPT((vi,v′−i)|A′((v′i,v−i)))

,

where we use that prices are non-decreasing for any fixed agent in the second inequality
(which follows from the pricing structure in the matroid Prophet Inequality from Klein-
berg and Weinberg [2019]). Taking expectations on both sides and exploiting that v and
v′ are independent and identically distributed, our lower bound for the surplus coincides
with the one from the one-sided environment Ev,v′

[
(v′i − pi(A′(v)))

+
1i∈OPT(v′|A′(v))

]
.

As also the welfare of the expected (offline) optimum is the same, we obtain the same
guarantee as the competitive ratio of 1/2 in Kleinberg and Weinberg [2019].

For the reader not familiar with the literature on matroid Prophet Inequalities, we
also provide a full proof of the approximation guarantee without reducing to Kleinberg
and Weinberg [2019] and Dütting et al. [2020]. It is mainly based on the insights from
the reduction-based proof.

Proof of Approximation Guarantee without Reduction. In order to give a full proof of
the approximation guarantee without using a reduction to the Prophet Inequality proof
of Kleinberg and Weinberg [2019] and Dütting et al. [2020], we start as follows. Denote
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by A(v) and A′(v) the sets A and A′ under valuation profile v. We want to compare
Ev [v(A(v))] to Ev [v(OPT(v))]. To this end, again, we split the welfare of our algo-
rithm into two parts, the base value and the surplus, and bound each quantity separately.
The base value is defined as follows: let agent i receive an item in our mechanism, i.e.
i ∈ A. Any buyer who gets an item has paid her agent-specific price for an item. Any
seller who decided to keep her item was asked to keep it for her agent-specific price or
for the buyer-specific price she was matched to. The part of any agent i’s value which is
below this price is denoted the base value. The surplus is the part of any agent i’s value
above this threshold if it exists, otherwise it is zero.

Base Value. Our base part of the social welfare is defined via the prices. Note that
all agents who are irrevocably allocated an item (i.e. which are in A before adding the
remaining sellers) have a value which exceeds her agent-specific price, except for sellers
j ∈ A \A′ whose value for an item exceeds the price of the corresponding buyer. Denote
this final price by Pi for agent i. For any seller j ∈ A \A′, the corresponding buyer
is stored in A′ \A, so we can replace the seller and the buyer when summing the base
value of all agents who get an item. Fixing a valuation profile v and summing over all
agents in A(v) in the order that they were added to A, we can compute by a telescopic
sum argument that∑

i∈A(v)
Pi =

∑
i∈A′(v)

pi(A
′
i−1(v)) =

1
2

∑
i∈A′(v)

Eṽ [pi(A
′
i−1(v), ṽ)]

=
1
2

∑
i∈A′(v)

Eṽ [ṽ (OPT(ṽ | A′i−1(v)))− ṽ (OPT(ṽ | A′i−1(v) ∪ {i}))]

=
1
2 (Eṽ [ṽ (OPT(ṽ))]−Eṽ [ṽ (OPT(ṽ|A′(v)))]) .

Taking the expectation over all valuation profiles v, exploiting linearity of expectation
and using that ṽ ∼ D implies

Ev

 ∑
i∈A(v)

Pi

 =
1
2Ev [v (OPT(v)]−

1
2Ev,ṽ [ṽ (OPT(ṽ | A′(v)))] .

Surplus. We start with two observations which will be helpful later. First of all,
we will see in Lemma 5.4.2 that agent-specific prices are non-decreasing: For a fixed
agent i, it holds that pi(A′i−1) ≤ pi(A′i′) for any step i′ > i, so in particular it holds
pi(A′i−1) ≤ pi(A′).

Second of all, we will interrupt for a moment and focus on the set A′(v) \ A(v).
This set contains all buyers whose agent-specific price was paid by a seller, i.e. the seller
decided to keep the item for price pi. Hence, any buyer i ∈ A′(v) \A(v) does not get an
item in the end, so their surplus is necessarily zero. Note that by construction, any agent
i ∈ A′(v) \A(v) is a buyer. We observe that any other agent i /∈ A′(v) \A(v) whose
value vi exceeds her corresponding price gets an item in our mechanism. Additionally,
there might be some sellers keeping their items in the end and some sellers keeping items
for buyer-specific prices later in the process, but we will not take these contributions to
the surplus into account. Overall, any agent i /∈ A′(v) \A(v) had the chance to obtain
an item in our process if her value exceeded her price.
Next, we want to observe why a buyer i is in A′(v) \A(v). Having a closer look at our
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algorithm, we see that buyer i is in A′(v) \A(v) if and only if her buyer-specific price
pi, the value vj of seller j (the seller who is matched to i once she entered the market)
and the lowest price Tj offered to seller j satisfy

pi < Tj and pi ≤ vj .

In particular, the decision whether buyer i is in A′(v) \A(v) does not depend on her
value vi at all. So, for any deviation of buyer i to v′i, buyer i would end up in A′(v) \A(v)
in the same cases as she would with valuation vi. Therefore, i ∈ A′(v) \A(v) holds if
and only if i ∈ A′((v′i, v−i)) \A((v′i, v−i)).

Further, any agent who can be feasibly added to a set A′(v) cannot be contained in
the set A′(v). Hence, i ∈ OPT(w | A′(v)) implies i /∈ A′(v) for any valuation profile w
and in particular, i ∈ OPT(w | A′(v)) implies i /∈ A′(v) \A(v). Combining this with
the above observation, any agent i ∈ OPT(w | A′(v)) has a considerable surplus if she
exceeds her price.

We can now consider the surplus of an agent i. Let v′ ∼ D be an independently
sampled valuation profile. Now, the price for agent i depends on A′i−1(v). But A′i−1
only depends on agents 1, . . . , i− 1, so in particular we could replace vi by v′i and use
that prices are non-decreasing for any fixed agent (which we show later in Lemma 5.4.2).
Combining this with the above observations, we can bound the surplus of agent i from
below via

surplusi ≥ (vi − pi(A′i−1(v)))
+
1i/∈A′(v)\A(v)

= (vi − pi(A′i−1(v)))
+
1i/∈A′((v′i,v−i))\A((v

′
i,v−i))

≥ (vi − pi(A′((v′i, v−i)))
+
1i/∈A′((v′i,v−i))\A((v

′
i,v−i))

≥ (vi − pi(A′((v′i, v−i)))
+
1i/∈A′((v′i,v−i))\A((v

′
i,v−i))1i∈OPT((vi,v′−i)|A′((v′i,v−i)))

= (vi − pi(A′((v′i, v−i)))
+
1i∈OPT((vi,v′−i)|A′((v′i,v−i)))

.

Taking expectations on both sides and exploiting that v and v′ are independent and
identically distributed leads to

Ev
[
(vi − pi(A′i−1(v)))

+
1i/∈A′(v)\A(v)

]
≥ Ev,v′

[
(vi − pi(A′((v′i, v−i)))

+
1i∈OPT((vi,v′−i)|A′((v′i,v−i)))

]
= Ev,v′

[
(v′i − pi(A′(v)))

+
1i∈OPT(v′|A′(v))

]
.

Summing over all agents (i.e. buyers and sellers), we can lower bound the overall surplus
by
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Ev

 ∑
i∈A(v)

(vi − Pi)+
 ≥ Ev

[ ∑
i∈B∪S

(vi − Pi)+ 1i/∈A′(v)\A(v)

]

≥ Ev,v′

 ∑
i∈OPT(v′|A′(v))

(v′i − pi(A′(v)))
+


≥ Ev,v′

 ∑
i∈OPT(v′|A′(v))

v′i

−Ev,v′

 ∑
i∈OPT(v′|A′(v))

pi(A
′(v))


= Ev,v′ [v′ (OPT (v′ | A′(v)))]−Ev,v′

 ∑
i∈OPT(v′|A′(v))

pi(A
′(v))


≥ 1

2Ev,v′ [v′ (OPT (v′ | A′(v)))] .

The last inequality follows by bounding

Ev,v′

 ∑
i∈OPT(v′|A′(v))

pi(A
′(v))

 ≤ 1
2Ev,v′ [v′ (OPT (v′ | A′(v)))]

which we prove below in Lemma 5.4.3.
Summing the base value and the surplus proves our claim as we can exploit that v′

and ṽ are independent and identically distributed.

In order to conclude, we need to prove two remaining facts: first, agent-specific prices
are non-decreasing, second, we need to show that

Ev,v′

 ∑
i∈OPT(v′|A′(v))

pi(A
′(v))

 ≤ 1
2Ev,v′ [v′ (OPT (v′ | A′(v)))] .

As mentioned in the reduction-based proof before, we can interpret the problem
in an extended matroid containing buyers and sellers. This allows to directly apply
propositions from Kleinberg and Weinberg [2012] and Dütting et al. [2020] with respect
to our pricing scheme.

Properties of Prices. Looking at our optimization problem and in particular on the
prices from the viewpoint of the matroid M over all agents, we can use Lemma E.2 in
Dütting et al. [2020] to show that agent-specific prices are non-decreasing for any fixed
agent i.

Lemma 5.4.2. [Dütting et al., 2020, Lemma E.2] Consider any independent sets X,Y ∈
I with X ⊆ Y . Then, for any agent i, we have pi(X) ≤ pi(Y ).

Having that agent-specific prices are only non-decreasing, it remains to show that
Ev,v′

[∑
i∈OPT(v′|A′(v)) pi(A

′(v))
]
≤ 1

2Ev,v′ [v′ (OPT (v′ | A′(v)))] in order to conclude.
Again, we use the matroidM as constructed above and apply a proposition from Klein-
berg and Weinberg [2012].
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Lemma 5.4.3. [Kleinberg and Weinberg, 2012, Proposition 2] Fix valuation profile ṽ
and let A′ ∈ I. For any disjoint set V ∈ I with A′ ∪ V ∈ I, it holds

∑
i∈V pi(A

′, ṽ) ≤
ṽ (OPT(ṽ | A′).

Setting V = OPT (v′ | A′(v)) as well as A′ = A′(v), we get the desired inequality
pointwise for any fixed v and v′. Hence, we can conclude by taking the expectation and
using that ṽ and v′ are independent and identically distributed.

5.5 Combinatorial Double Auctions with Strong Budget
Balance

In combinatorial double auctions, there is a set of n buyers B, a set of k sellers S
and a set of m possibly heterogeneous items M . Agents have valuation functions over
item bundles, so in contrast to Section 5.3 and Section 5.4, buyers may be interested
in multiple items. As before, our mechanism is described first in Section 5.5.1, the
pricing is discussed afterwards in Section 5.5.2, followed by proofs for the properties of
the mechanism in Section 5.5.3.

5.5.1 The Mechanism

Our mechanism which is stated in Algorithm 9 works as follows: Given static and
anonymous item prices pj , we first ask any seller l which of her items in Il she would
like to keep and which to sell at prices pj . After this, we have a set of available items
MSELL which we try to sell to the buyers via a sequential posted pricing procedure.
That is, buyers are considered online one-by-one. Once buyer i is considered, she buys
a utility-maximizing bundle among the available items and pays the respective prices
to any seller from whom she gets an item. After running the mechanism, all items
which are unallocated are returned to their corresponding sellers. As a side remark, the
mechanism is robust concerning the arrival order of buyers; the order can even be chosen
by an adversary.

5.5.2 The pricing

We restrict the class of valuation functions for both, buyers and sellers, to valuations
which can be represented by XOS functions. In order to compute suitable prices, we
mimic the pricing approach from Feldman et al. [2015] and Dütting et al. [2020] and
apply this to two-sided markets. As a side remark, one could also use the LP-based
approach from Chapter 3 to argue about the existence of static item prices.

Let ALLOC be an algorithm which allocates all items among the agents. We assume
that ALLOC can only allocate items to sellers which are in their initial bundle. Fix a
valuation profile ṽ and denote by ALLOCi(ṽ) the set of items allocated to agent i when
running allocation algorithm ALLOC on valuation profile ṽ. Using the XOS property,
we can denote the additive function with which buyer i would evaluate set ALLOCi(ṽ)
by wALLOCi(ṽ)

i .
Then, for any j ∈ ALLOCi(ṽ), we can interpret wALLOCi(ṽ)

i ({j}) as the contribution
of item j to the overall social welfare of allocation algorithm ALLOC given valuation
profile ṽ. In other words, for fixed valuation profile ṽ, we consider the allocation of
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Algorithm 9: Mechanism for Combinatorial Double Auctions
Result: Allocation X = (Xi)i∈B∪S of items to agents such that for any seller l

we have Xl ⊆ Il and ⋃i∈B∪S Xi =
⋃
l∈S Il =M

1 Xi ←− ∅ for all i ∈ B ∪ S ; MSELL ←− ∅
2 for l ∈ S do
3 Show prices pj for each item j ∈ Il to seller l
4 Ask seller l which items she wants to keep or try selling
5 Xl ←− {j ∈ Il : seller l wants to keep item j}
6 MSELL ←−MSELL ∪ {j ∈ Il : seller l tries selling item j}
7 for i ∈ B do
8 Show prices pj for each item j ∈MSELL to buyer i
9 Ask buyer i which items she wants to buy

10 Xi ←− {j ∈MSELL : buyer i wants to buy item j}
11 MSELL ←−MSELL \Xi

12 Buyer i pays ∑j∈Xi pj
13 Any seller with j ∈ Il for some j ∈ Xi receives pj and item j is traded to buyer i
14 for l ∈ S do
15 Xl ←− Xl ∪ (MSELL ∩ Il)
16 return X

ALLOC, the additive set function w
ALLOCi(ṽ)
i which represents ṽi(ALLOCi(ṽ)) and

evaluate this only for a single item j ∈ ALLOCi(ṽ). Now, we compute the price for item
j as

pj =
1
2Eṽ∼D

[ ∑
i∈B∪S

w
ALLOCi(ṽ)
i ({j})1j∈ALLOCi(ṽ)

]
.

Observe that these prices are static and anonymous item prices for any item j ∈ M .
Further, note that for ALLOC we have multiple choices: if we do not care about compu-
tational issues, we could use an optimal algorithm which computes an optimal allocation
with respect to social welfare.

5.5.3 Properties of Our Mechanism

We consider two different settings for the chosen classes of valuation functions for buyers
and sellers. First, we restrict to the case of unit-supply sellers, i.e. each seller bringing
one non-identical item to the market. For buyers, we assume XOS valuation functions.
Note that the valuation functions for sellers can also be represented by fractionally
subadditive functions and hence, in order to prove the competitive ratio, we can apply
Lemma 5.5.3 which allows to state the following theorem.

Theorem 5.5.1. The mechanism for combinatorial double auctions with unit-supply
sellers and buyers having XOS valuation functions is DSBB, DSIC and IR for all buyers
and sellers and 1/2-competitive with respect to the optimal social welfare for any online
adversarial arrival order of agents.

For our second result, we assume buyers and sellers to have additive valuation func-
tions. Note that this allows sellers to bring more than one item to the market. Since
any additive valuation function can trivially be represented by a fractionally subadditive
one, we can again apply Lemma 5.5.3 and hence, state the following theorem.
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Theorem 5.5.2. The mechanism for combinatorial double auctions with buyers and sell-
ers having additive valuation functions is DSBB, DSIC and IR for all buyers and sellers
and 1/2-competitive with respect to the optimal social welfare for any online adversarial
arrival order of agents.

Concerning the proof of these theorems, observe that by construction, the mechanism
consists of bilateral trades where an item is transferred from one seller to one buyer and
in exchange, a static and anonymous item price is paid by this buyer to the corresponding
seller. Hence, we satisfy DSBB. In addition, IR is also satisfied as any agent can withdraw
by buying nothing (as a buyer) or keeping the initial bundle (as a seller). The mechanism
is further DSIC for buyers as any buyer is asked once in our mechanism which bundle
she wants to purchase. As a unit-supply seller l only has one item and we offer her a
price of pj for the item, the mechanism is also DSIC for unit-supply sellers.
In the case of additive valuations for buyers and sellers, the mechanism is still DSIC for
sellers: By additivity, any seller has a value vl({j}) for any j ∈ Il and hence, we can
rewrite the utility as ∑j∈Xl vl({j}) +

∑
j∈Il\Xl pj . Since all buyers also have additive

valuations, some buyer i will buy an available item j if and only if vi({j}) > pj . In the
case that for all buyers vi({j}) < pj , the item is returned to the seller anyway. Hence,
for any seller it is a dominant strategy to try selling all items for which vl({j}) ≤ pj and
keeping the items with vl({j}) > pj in order to maximize utility.

Hence, what remains to show is the desired guarantee with respect to the social
welfare obtained by our mechanism.

Lemma 5.5.3. The mechanism for combinatorial double auctions is 1/2-competitive
with respect to the social welfare of ALLOC for any (possibly adversarial) arrival order
of buyers and sellers when buyers have valuation functions which can be represented
by fractionally subadditive functions and sellers are unit-supply or both have additive
valuation functions over item bundles.

Concerning the competitive ratio, we give a reduction-based proof of Lemma 5.5.3
first, a self-contained proof can be found afterwards.

Proof of Approximation Ratio via Reduction to Prophet Inequalities. In order to show
that our mechanism achieves the desired competitive ratio, we already argued that in
any of the two settings, a seller l will initially keep an item j if and only if vl({j}) ≥ pj .
As a consequence, the competitive ratio directly follows by an application of the results
from Feldman et al. [2015] and Dütting et al. [2020]: Interpret the sellers as buyers
which are considered first, offer each to keep any item in Il and sell the remaining items
afterwards to all buyers via a sequential posted-prices mechanism.

For any reader not familiar with the literature on Prophet Inequalities for combina-
torial auctions, there is a self-contained proof below.

Proof of Approximation Guarantee without Reduction. Instead of applying a reduction,
we can also mimic the techniques from Feldman et al. [2015] and Dütting et al. [2020].
Therefore, we split the contribution to social welfare into base value and surplus and
bound each quantity separately.
Before we start, note that our mechanism consists of three phases. First, we ask all
sellers which items should be sold and which they would like to keep. Afterwards, in the
second phase, we ask all buyers which items they would like to buy. In the last phase,
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all unsold items are returned to the corresponding sellers. Note that the last phase only
increases the welfare of our mechanism compared to a mechanism which would stop after
the second phase and dispose all unallocated items. We do not consider the increase in
welfare in the third phase and argue about the welfare which we achieved in the first
and second phase. This is a lower bound on the overall social welfare of our mechanism.

Base Value. Note that any item which is irrevocably allocated in the first two phases
of the mechanism is allocated to an agent who has an item-specific value at least as high
as the item price. Denote by A the set of irrevocably allocated items after the second
phase, i.e. all items which are allocated before the last for-loop in the mechanism where
we return unallocated items to their corresponding sellers. Note that A depends on the
valuation profile v. We write A(v) in order to specify this dependence. Therefore, we
can state the base value as

Ev [Base Value(v)] =
∑
j∈M

Prv [j ∈ A(v)] · pj .

Surplus. For the surplus, we split the set of agents in buyers and sellers and consider
them separately.

Sellers: Fix seller l. If l is holding one item j initially, then seller l irrevocably keeps
the item if vl({j}) ≥ pj . Therefore, seller l has a considerable surplus if vl({j})− pj ≥ 0.
The same argument extends to the case of additive valuation functions, as seller l will
initially keep all items for which vl({j}) ≥ pj in order to maximize utility. Counting the
surplus of seller l only for items in ALLOCl

(
(vl, v′−l)

)
is a feasible lower bound for the

surplus of seller l in our mechanism. Choosing v′ ∼ D to be an independent sample, we
can bound the surplus via

Ev [surplusl(v)] ≥ Ev,v′

 ∑
j∈ALLOCl((vl,v′−l))

(
w

ALLOCl((vl,v′−l))
l ({j})− pj

)+


= Ev′

 ∑
j∈ALLOCl(v′)

(
w

ALLOCl(v′)
l ({j})− pj

)+ ,

where we used that v and v′ are independent and identically distributed.

Buyers: Fix buyer i. Extending the notation from above, denote by Ai(v) the set of
irrevocably allocated items as agent i is considered in the mechanism. Note that the set
Ai does not depend on vi but only on the agents which were considered before i. Hence,
Ai(v) = Ai ((v′i, v−i)) for any other valuation v′i of buyer i. Buyer i could purchase
the set ALLOCi

(
(vi, v′−i)

)
\ Ai ((v′i, v−i)). As buyer i maximizes utility, the utility

which buyer i obtains must be at least as high as the utility when purchasing items in
ALLOCi

(
(vi, v′−i)

)
\Ai ((v′i, v−i)) for which the marginal surplus is non-negative when

evaluating with the additive function in the XOS support wALLOCi((vi,v′−i))
i (·). As the
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utility of buyer i is captured in the surplus, we can bound the surplus of buyer i via

Ev [surplusi(v)] ≥ Ev,v′

 ∑
j∈ALLOCi((vi,v′−i))\Ai((v′i,v−i))

(
w

ALLOCi((vi,v′−i))
i ({j})− pj

)+


= Ev,v′

 ∑
j∈ALLOCi(v′)\Ai(v)

(
w

ALLOCi(v′)
i ({j})− pj

)+ .

Combination. Next, we sum over all buyers and sellers. Further, we use that once
an item is irrevocably allocated, it remains so until the end of the mechanism, hence
Ai(v) ⊆ A(v) for any agent i and any valuation profile v. In order to simplify notation,
note that Al(v) ∩ Il = ∅ as we ask seller l which items she wants to keep or try selling.
As ALLOCl(v) ⊆ Il, we know that ALLOCl(v) \Al(v) = ALLOCl(v) as seller l arrives.
Hence, we get

Ev

[ ∑
i∈B∪S

surplusi(v)
]

≥ Ev,v′

 ∑
i∈B∪S

∑
j∈M

(
w

ALLOCi(v′)
i ({j})− pj

)+
· 1j∈ALLOCi(v′) · 1j/∈Ai(v)


≥
∑
j∈M

∑
i∈B∪S

Ev,v′

[(
w

ALLOCi(v′)
i ({j})− pj

)+
· 1j∈ALLOCi(v′) · 1j/∈A(v)

]

≥
∑
j∈M

Prv [j /∈ A (v)] ·Ev′

[ ∑
i∈B∪S

(
w

ALLOCi(v′)
i ({j})− pj

)
· 1j∈ALLOCi(v′)

]

≥
∑
j∈M

Prv [j /∈ A (v)] · pj ,

where the last inequality uses the definition of the prices as well as the fact that ALLOC
can allocate any item at most once.

Finally, adding base value and surplus implies the desired guarantee using that∑
j∈M pj =

1
2Ev [

∑
i∈B∪S vi(ALLOCi(v))].

Note that we bound the competitive ratio of our mechanism with respect to the social
welfare of the algorithm ALLOC. As said, ALLOC can either be an optimal algorithm,
leading to the desired 1/2-competitive mechanism with respect to the optimal welfare.
Still, it is known that for deterministic XOS valuation functions, computing the optimal
allocation is NP-hard [Lehmann et al., 2001]. Hence, we can also set ALLOC to be an
approximation algorithm for the optimal social welfare. In this case, an α-approximation
algorithm ALLOC leads to an α/2-competitive mechanism. For example, one could use
the algorithm by Feige [2009] with an approximation ratio of 1− 1/e. As a side remark,
Dobzinski et al. [2010] show that it is NP-hard to approximate the optimal allocation
for XOS valuations within any constant factor better than 1− 1/e.
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5.6 Knapsack Double Auctions with Strong Budget Bal-
ance and Online Customized Arrival

As in Sections 5.3 and 5.4, we assume buyers to be unit-demand and sellers to be unit-
supply each bringing exactly one identical item to the market, hence k = m. In contrast
to matroid double auctions, we now work in a setting with a knapsack constraint. That
is, each of the n buyers has a publicly known weight wi ∈ [0, 1]. The set of buyers AB
who are allocated an item after our mechanism needs to satisfy ∑i∈AB wi ≤ 1. Notation
is simplified by interpreting v as the |B ∪ S|-dimensional vector with non-negative real
entries in which each entry vi corresponds to the value of an agent for being allocated
an item. Also, we denote by j the seller as well as the corresponding item.

In this section, we start by a description of the mechanism and the pricing strat-
egy in Section 5.6.1. Afterwards, we discuss properties as DSBB, DSIC, IR and the
approximation guarantee in Section 5.6.2.

5.6.1 The Mechanism

We start by a restriction to the case of wi ≤ 1
2 for all buyers i ∈ B. The general case

will be discussed later.

Algorithm 10: Mechanism for Knapsack Double Auctions with Strong Budget-
Balance

Result: Set A = AB ∪AS of agents to get an item with AB ⊆ B, ∑i∈AB wi ≤ 1,
AS ⊆ S and |A| = |S|

1 A←− ∅ ; W ←− 0; i←− 1; j ←− 1
2 while i ≤ n and j ≤ k do
3 if W +w∗i > 1 then
4 i←− i+ 1
5 if W +w∗i ≤ 1 then
6 if vj ≥ pi then
7 A←− A∪ {j}; W ←−W +w∗i ; j ←− j + 1
8 if vj < pi then
9 if vi ≥ pi then

10 A←− A∪ {i}; W ←−W +w∗i ; j ←− j + 1
11 transfer item from seller j to buyer i for price pi
12 i←− i+ 1
13 return A∪ {j′ ∈ S : j ≤ j′ ≤ k}

We state our mechanism in Algorithm 10 and give a quick description: We sort
buyers in a way such that w1 ≥ w2 ≥ · · · ≥ wn and compute artificial weights w∗i for
any buyer via w∗i := max

(
wi; 1

k

)
. Now, let the buyer-specific price be

pi :=
2
9 ·w

∗
i ·Eṽ [ṽ (OPT(ṽ))] ,

where OPT(ṽ) denotes the optimal allocation of all items among all agents such that
the set of selected buyers satisfies the knapsack constraint. We choose ṽ to be drawn
independently from the same distribution as v. Further, we initialize W = 0 which will
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be our variable controlling feasibility with respect to w∗i . In particular, if for some buyer
i we have W +w∗i > 1, we will not consider buyer i for a trade. In the other case where
buyer i’s artificial weight w∗i can feasibly be added to W , we first ask the current seller
j if she wants to keep or try selling the item for price pi. If she considers selling, we ask
buyer i if she wants to purchase the item.

Feasibility Considerations

We need to compute a feasible allocation A. In other words, the set AB = A∩B needs
to be feasible with respect to the knapsack constraint. In our mechanism, we instead
compute an allocation with respect to the artificial weights w∗i . To see that this is also
feasible with respect to the initial weights wi, observe that we always ensure W +w∗i ≤ 1
for any buyer i to whom we propose a trade. Since wi ≤ w∗i for any buyer i and we add
w∗i to W any time an item is irrevocably allocated, we ensure ∑i∈AB wi ≤

∑
i∈AB w

∗
i ≤ 1.

Further, every time an item is allocated, we add some w∗i to W . Since any w∗i ≥ 1
k , we

do never allocate more than k items in total.

5.6.2 Properties of Our Mechanism

Theorem 5.6.1. Let all buyers’ weights be no larger than half of the total capacity.
Then, Mechanism 10 for knapsack double auctions is DSBB, DSIC and IR for all buyers
and sellers and 1

9 -competitive with respect to the optimal social welfare when ordering
buyers such that w1 ≥ w2 ≥ · · · ≥ wn.

Using this theorem allows also to state a generalized version without restrictions on
the weights.

Theorem 5.6.2. There is a mechanism for knapsack double auctions which is DSBB,
DSIC and IR for all buyers and sellers and 1

12 -competitive with respect to the optimal
social welfare.

We now give a proof of Theorem 5.6.1. The generalized version is discussed below.

Proof of Theorem 5.6.1. Again, the arguments for DSBB, IR and DSIC for buyers fol-
low in similar ways as in the previous sections. Concerning DSIC for sellers, note that
we sorted buyers by non-increasing weight. Hence, the price for trades is non-increasing
in the ongoing process. As a consequence, as a seller, you would like to sell your item
as early as possible (if you want to sell it at all). Therefore, reporting a lower valuation
might end in a trade at some price lower than your actual value. On the other hand,
reporting a higher valuation may block a possibly beneficial trade. Overall, misreporting
does not increase the seller’s utility compared to truth-telling.

Again, denote by A(v) the set of agents who receive an item A under valuation
profile v. Also W depends on v, so in the same way we denote by W (v) the value of W
under valuation profile v. We want to compare Ev [v(A(v))] to Ev [v(OPT(v))]. To
this end, again, we split the welfare of our algorithm into two parts, the base value and
the surplus, and bound each quantity separately. The base value is defined as follows:
let agent i receive an item in our mechanism, i.e. i ∈ A. Any buyer who gets an item
has paid her buyer-specific price for an item. Any seller who decided to keep her item
was asked to keep it for some buyer-specific price. The part of any agent’s value which
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is below this price is denoted the base value. The surplus is the part of any agent’s value
above this threshold if it exists, otherwise it is zero.

Base Value. Our base part of the social welfare is defined via the prices. Summing
over all agents in A(v), we can compute the following. In particular, we sum over all
prices for which either a buyer purchased an item or a seller irrevocably kept it:

Ev

 ∑
i∈A(v)

pi

 =
2
9Eṽ [ṽ (OPT(ṽ))] ·Ev [W (v)]

≥ 2
9Eṽ [ṽ (OPT(ṽ))] ·

1
2Prv

[
W (v) ≥ 1

2

]
.

Surplus. We consider buyers and sellers separately and combine their respective con-
tributions to the surplus afterwards.

Sellers: We observe that a seller j might be matched to some buyer i in the mecha-
nism. Denote by ij the first buyer that seller j is matched to and let ij =⊥ and w∗ij = 0
if seller j is never matched to a buyer. Note that this initial matching is independent of
seller j’s value. Further, prices are only non-increasing in the ongoing process. Thus, we
use that v and v′ are independent and identically distributed combined with linearity
of expectation to get

Ev
[
surplusj

]
≥ Ev

[(
vj − pij

)+]
≥ Ev,v′

[(
vj − pij

)+
· 1W((v′j ,v−j))≤

1
2
· 1j∈OPT((vj ,v′−j))

]
= Ev,v′

[(
v′j − pij

)+
· 1W (v)≤ 1

2
· 1j∈OPT(v′)

]
.

Buyers: When considering the buyers, we first argue under which circumstances
buyer i gets an item in our mechanism. First, buyer i’s value needs to exceed her price
pi. Second, there needs to be a time step t such that Wt + w∗i ≤ 1, where Wt denotes
the value of W at time step t. Third, there needs to exist a seller j such that vj ≤ pi
as otherwise, there will be no item available for buyer i. We make use of the following
observation: Buyer i is never asked to purchase an item until we either can offer her an
item for price pi or buyer i becomes infeasible with respect to W and w∗i . Therefore,
everything happening before this event is independent of buyer i’s value. Hence, when
considering the value of W on a hallucinated valuation profile v′i drawn independently
from the same distribution as vi, we get the following: if W ((v′i, v−i)) ≤ 1/2, i.e. the
value of W on valuation profile (v′i, v−i) is at most 1/2 after running the mechanism,
then buyer i could be feasibly added at the end of the mechanism. As W is only non-
decreasing, buyer i could have also been feasibly added at time t. Using this, we can
bound the surplus of buyer i via

surplusi ≥ (vi − pi)+ · 1W((v′i,v−i))≤
1
2
≥ (vi − pi)+ · 1W((v′i,v−i))≤

1
2
· 1i∈OPT((vi,v′−i))

.

Again, using linearity of expectation as well as exploiting that v′ and v are indepen-
dent and identically distributed, we get

Ev [surplusi] ≥ Ev,v′
[
(v′i − pi)

+ · 1W (v)≤ 1
2
· 1i∈OPT(v′)

]
.
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Combination. Summing over all buyers and sellers, we can combine the two bounds:∑
i∈B∪S

Ev [surplusi]

≥
∑
i∈B

Ev,v′
[
(v′i − pi)

+ · 1W (v)≤ 1
2
· 1i∈OPT(v′)

]
+
∑
j∈S

Ev,v′

[(
v′j − pij

)+
· 1W (v)≤ 1

2
· 1j∈OPT(v′)

]

= Prv

[
W (v) ≤

1
2

]
·

Ev′

 ∑
i∈OPT(v′)∩B

(v′i − pi)
+

+Ev′

 ∑
j∈OPT(v′)∩S

(
v′j − pij

)+
≥ Prv

[
W (v) ≤

1
2

]
·

Ev′ [v′ (OPT(v′))]−Ev′

 ∑
i∈OPT(v′)∩B

pi

−Ev′

 ∑
j∈OPT(v′)∩S

pij

 .

Again, for the first equality we use that v and v′ are independent and the respective
terms each only depend on one of the two. In order to bound the sums of prices, we
note that also OPT is restricted with a total capacity of one as well as OPT can also
not allocate more than k items, so∑

i∈OPT(v′)∩B
w∗i ≤

∑
i∈OPT(v′)∩B

wi +
∑

i∈OPT(v′)∩B

1
k
≤ 1 + 1 = 2 .

In a similar way, we can bound the sum for the sellers ∑i∈OPT(v′)∩S w
∗
ij

. First, it is
crucial that we only go to the next seller in our mechanism once the previous seller has
either sold or kept her item. Second, note that buyers are sorted such that weights are
non-increasing. As a consequence, we can charge the weight of buyer ij always to the
previous seller, except for the first buyer-seller-pair. Still, the weight of the first buyer
is upper bounded by half. Using that we only make an offer if the buyer is feasible with
respect to the current status of W , we obtain ∑j∈OPT(v′)∩S w

∗
ij
≤
∑
j∈S w

∗
ij
≤ 2.

Therefore, the overall surplus fulfills

Ev

[ ∑
i∈B∪S

surplusi

]
≥ Prv

[
W (v) ≤

1
2

]
·
(

1− 4 · 29

)
Eṽ [ṽ (OPT(ṽ))] .

Summing the base value and the surplus proves our claim as we can exploit that v,
v′ and ṽ are independent and identically distributed.

In order to extend this to the general case in Theorem 5.6.2 when wi ∈ [0, 1] instead
of wi ≤ 1/2, we split the set of buyers in high- and low-weighted ones and use our
constructed mechanism on the latter — for the former, we use the DSBB-mechanism for
matroids from Section 5.3. Estimating the better of the two mechanisms upfront and
running it allows to formulate Theorem 5.6.2.

To be a bit more precise, high-weights buyers are the ones with wi > 1
2 , low-weighted

ones satisfy wi ≤ 1
2 . Observe that in an instance of high-weighted buyers, we can allocate

at most one item which corresponds to a 1-uniform matroid constraint over the set of
buyers. Concerning the use of the mechanism for matroid double auctions, note that
we do not need to insist on a offline order of buyers now. We can rather fix the arrival
sequence of buyers beforehand as we consider the 1-uniform matroid over all buyers. This
implies that all buyers face the same take-it-or-leave-it buyer-specific contribution to the
prices and hence allow easier arguments concerning the properties of the mechanism from
Section 5.3.
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5.7 Knapsack Double Auctions with Weak Budget Balance
and Online Adversarial Arrival

Next, we would like to argue that when allowing the mechanism to be only weakly
budget balanced, we can improve the approximation ratio while even allowing a worst-
case trading order. The setting is equivalent to the one of Section 5.6. Each of the n
unit-demand buyers has a weight wi ∈ [0, 1] with the constraint that ∑i∈AB wi ≤ 1.
In contrast, our mechanism can handle online adversarial arrival orders of agents, even
with an (adaptive) adversary specifying the order.

The Mechanism

As in Section 5.6, we first restrict weights to the case of wi ≤ 1
2 for all buyers i ∈ B. The

generalization to weights in wi ∈ [0, 1] is equivalent to the reasoning from Section 5.6.

Algorithm 11: Mechanism for Knapsack Double Auctions with Weak Budget
Balance

Result: Set A = AB ∪AS of agents to get an item with AB ⊆ B, ∑i∈AB wi ≤ 1,
AS ⊆ S and |A| = |S|

1 A←− ∅ ; MSELL ←− ∅
2 for j ∈ S do
3 if vj ≥ pj then
4 A←− A∪ {j}
5 if vj < pj then
6 MSELL ←−MSELL ∪ {j}
7 for i ∈ B do
8 if

∑
i′∈Aw

∗
i′ ≤ 1−w∗i then

9 if vi ≥ pi then
10 A←− A∪ {i}
11 pick one j ∈MSELL, transfer item from j to i, i pays pi, j receives pj
12 MSELL ←−MSELL \ {j}
13 A←− A∪MSELL

Algorithm 11 works as follows: Compute artificial weights w∗i for all buyers as w∗i :=
max

(
wi; 1

k

)
and for all sellers as w∗j := 1

k . For any agent, we set the agent-specific price
to be

pi :=
2
5 ·w

∗
i ·Eṽ [ṽ (OPT(ṽ))] ,

where OPT(ṽ) denotes the optimal allocation of all items among all agents such that
the set of selected buyers satisfies the knapsack constraint. Now, we first go through all
sellers asking each if she wants to keep or try selling the item if we might pay an amount
of pj to her later-on. Afterwards, we go through all buyers, asking each of them if she
wants to purchase an item for price pi if buyer i can be feasibly added to the chosen set
of agents with respect to the artificial weights w∗i .
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Feasibility Considerations

Arguing about the feasibility of our solution, we can proceed similar to Section 5.6, as
we again compute a feasible allocation with respect to the artificial weights w∗i . To
see that this is also feasible with respect to the initial weights wi, note that we ensure
1 ≥ ∑i∈Aw

∗
i ≥

∑
i∈AB w

∗
i ≥

∑
i∈AB wi throughout our mechanism. Further, we need to

ensure that we do not allocate more than k items in total. This is mirrored by the fact
that w∗i ≥ 1

k for any agent i and, as we do not allocate items if ∑i∈Aw
∗
i > 1, we get

that |A| = k ·
∑
i∈A

1
k ≤ k ·

∑
i∈Aw

∗
i ≤ k.

Properties of Our Mechanism

Theorem 5.7.1. The mechanism for knapsack double auctions is DWBB, DSIC and
IR for all buyers and sellers and 1

5 -competitive with respect to the optimal social welfare
if all buyers’ weights are no larger than half of the total capacity.

Proof. Our mechanism is DWBB, as by construction, the mechanism consists of bilateral
trades where an item is traded from one seller to one buyer. For any seller j we have
that w∗j ≤ w∗i for all buyers i, and hence pj ≤ pi for any buyer-seller pair (i, j). The
buyer pays pi to the mechanism and the seller receives pj , so we get DWBB. IR follows
naturally, DSIC from the fact that any agent is asked at most once in our mechanism.

The set of agents who receive an item A depends on v, so we denote by A(v) the
set A under valuation profile v. We want to compare Ev [v(A(v))] to Ev [v(OPT(v))].
To this end, again, we split the welfare of our algorithm into two parts, the base value
and the surplus, and bound each quantity separately.

Base Value. Our base part of the social welfare is defined via the prices. Summing
over all agents in A(v), we can compute the following:

Ev

 ∑
i∈A(v)

pi

 =
2
5Eṽ [ṽ (OPT(ṽ))] ·Ev

 ∑
i∈A(v)

w∗i


≥ 2

5Eṽ [ṽ (OPT(ṽ))] ·
1
2Prv

 ∑
i∈A(v)

w∗i ≥
1
2

 .

Surplus. We consider buyers and sellers separately and combine their respective con-
tributions to the surplus afterwards.

Sellers: Note that any seller whose value exceeds her corresponding price can keep
the item, so

surplusj ≥ (vj − pj)+ ≥ (vj − pj)+ · 1∑
i′∈A((v′j ,v−j ))

w∗
i′≤

1
2
· 1j∈OPT((vj ,v′−j))

.

Now, we use that v and v′ are independent and identically distributed combined with
linearity of expectation to get

Ev
[
surplusj

]
≥ Ev

[
(vj − pj)+

]
≥ Ev,v′

[(
v′j − pj

)+
· 1∑

i′∈A(v)
w∗
i′≤

1
2
· 1j∈OPT(v′)

]
.
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Buyers: Concerning the buyers, note that buyer i gets an item if buyer i’s value
exceeds her price and if the sum of the weights of agents in A does allow i to be added.
That is, denote by Ai−1 the set of accepted agents A after processing buyer i− 1. Then,
we ensure ∑i′∈Ai−1(v) w

∗
i′ ≤ 1− w∗i . Note that Ai−1 does not depend on buyer i, so

in particular Ai−1(v) = Ai−1 ((v′i, v−i)). Further, an even stronger condition is that∑
i′∈A((v′i,v−i))

w∗i′ ≤
1
2 as wi ≤ 1

2 by assumption and we can assume that k ≥ 2 (the case
k = 1 can be easily understood via our results in the previous sections with improved
approximation guarantees). Therefore, we can bound

surplusi ≥ (vi − pi)+ · 1∑
i′∈A((v′i,v−i))

w∗
i′≤

1
2

≥ (vi − pi)+ · 1∑
i′∈A((v′i,v−i))

w∗
i′≤

1
2
· 1i∈OPT((vi,v′−i))

.

Again, using linearity of expectation as well as choosing v′i and vi to be independent and
identically distributed, we get

Ev [surplusi] ≥ Ev,v′

[
(v′i − pi)

+ · 1∑
i′∈A(v)

w∗
i′≤

1
2
· 1i∈OPT(v′)

]
.

Combination: Summing over all buyers and sellers, we can combine the two bounds:

Ev

[ ∑
i∈B∪S

surplusi

]
≥

∑
i∈B∪S

Ev,v′

[
(v′i − pi)

+ · 1∑
i′∈A(v)

w∗
i′≤

1
2
· 1i∈OPT(v′)

]

= Prv

 ∑
i′∈A(v)

w∗i′ ≤
1
2

 ·Ev′

 ∑
i∈OPT(v′)

(v′i − pi)
+


≥ Prv

 ∑
i′∈A(v)

w∗i′ ≤
1
2

 ·
Ev′ [v′ (OPT(v′))]−Ev′

 ∑
i∈OPT(v′)

pi

 .

To get the equality, note that v and v′ are independent and the respective terms
each only depend on one of the two.

Now, in order to bound the sum of prices, we calculate

Ev′

 ∑
i∈OPT(v′)

pi

 =
2
5Eṽ [ṽ (OPT(ṽ))] ·Ev′

 ∑
i∈OPT(v′)

w∗i

 .

We can bound w∗i = max(wi, 1
k ) ≤ wi +

1
k on the buyers’ side as well as w∗i = 1

k for all
sellers to get ∑

i∈OPT(v′)
w∗i ≤

∑
i∈OPT(v′)∩B

wi +
∑

i∈OPT(v′)

1
k
≤ 1 + 1 = 2

as the sum over the weights of all buyers in any feasible allocation is upper bounded
by one and further, we cannot allocate more than k items in any feasible allocation, so
|OPT(v′)| ≤ k.

Therefore, we can bound the overall surplus by

Ev

[ ∑
i∈B∪S

surplusi

]
≥ Prv

 ∑
i′∈A(v)

w∗i′ ≤
1
2

 ·(1− 4
5

)
Eṽ [ṽ (OPT(ṽ))] .

Summing the base value and the surplus proves our claim as we can exploit that v,
v′ and ṽ are independent and identically distributed.
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In order to extend this to the general case, the only difference to Section 5.6 is to
use the mechanism from Section 5.4 for the high-weighted items. Again, estimating the
expected welfare of each of the two options and selecting the better one allows us to
state the following theorem.

Theorem 5.7.2. There is a mechanism for knapsack double auctions which is DWBB,
DSIC and IR for all buyers and sellers and 1

7 -competitive with respect to the optimal
social welfare for any adversarial online arrival order of agents.
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Chapter 6

Asymptotically Optimal Welfare
of Posted Pricing with MHR
Distributions

For the design of the algorithms in the previous chapters, a crucial assumption is that
distributions are independent across buyers (or more general, for Chapter 5, buyers and
sellers), but are not required to be identical. Still, Example 1.1.1 shows that for non-
identical distributions, competitive ratios better than half are impossible. This naturally
raises the question if insisting on stronger assumptions concerning the distributions al-
lows to improve guarantees. In this chapter, we follow this path and shift our perspective
to independent and identically distributed (i.i.d.) valuation functions.

As before, we assume that the valuation functions v1, . . . , vn are unknown a priori.
Still, in this chapter, all valuation functions are drawn independently from the same,
publicly known distribution. Our algorithms under consideration are pricing based: For
every item, we can either set a static item price or change the prices dynamically over
time. Buyers arrive one-by-one and each of them chooses the set of items that maximizes
her utility given the current prices among the remaining items. Static prices have the
advantage that they are easier to explain and thus give easier mechanisms. However,
dynamic prices can yield both higher welfare and revenue because they can be adapted
to the remaining supply and the remaining number of buyers to appear.

We would like to understand which fraction of the expected offline optimal welfare
E [OPT] can be guaranteed by posted-pricing mechanisms when distributions are iden-
tical. The case of a single item is well understood: For a static price and a single item,
the best competitive ratio is ζ = 1− 1

e ≈ 0.63 [Correa et al., 2017, Ehsani et al., 2018];
for dynamic pricing and a single item, it is ζ ≈ 0.745 [Abolhassani et al., 2017, Cor-
rea et al., 2017]. There are a number of extensions of these results to multiple items,
many of which are O(1)-competitive. The competitive ratios of ζ = 1− 1

e ≈ 0.63 and
ζ ≈ 0.745 are optimal in the sense that there are distributions and choices of n such that
no better guarantee can be obtained. Importantly, they are still tight when imposing a
lower bound on n. That is, even for large n, there is a distribution such that if all values
are drawn from this distribution the respective bound cannot be beaten.

Distributions with Monotone Hazard Rate. Faced by these tight guarantees, in
this chapter, we strengthen previous results by restricting the class of distributions to
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ones with monotone hazard rate. The single-item case is defined as follows. Consider
a probability distribution on the reals with probability density function (PDF) f and
cumulative distribution function (CDF) F , its hazard rate h is defined by h(x) = f (x)

1−F (x)

for x with F (x) < 1. It has a monotone hazard rate (MHR) — more precisely, increasing
hazard rate — if h is a non-decreasing function. It has become a common and well-
studied approach to model buyer preferences by MHR distributions. One of the reasons
is that many standard distributions exhibit a monotone hazard rate such as, for example,
uniform, normal, exponential and logistic distributions1. Furthermore, the monotone
hazard rate of distributions is also preserved under certain operations; for example,
order statistics of MHR distributions also have an MHR distribution. Additionally,
every MHR distribution is regular in the sense that its virtual value function [Chawla
et al., 2007, Myerson, 1981] is increasing.

Multiple Items with MHR Distributions. Our assumption for multiple items will
be as follows: We consider independent item valuations, i.e. vi,j ∼ D(j) is an independent
draw from a distribution D(j). In other words, the value of item j is independent of the
value of item j′ and both values are drawn from (possibly different) MHR distributions
as defined above.

As we will see, asymptotically optimal welfare can be guaranteed. That is, if n
grows large, the social welfare when suitably choosing prices is within a 1− o(1) factor
of the optimum, where the o(1) term is independent of the distribution as long as its
marginals satisfy the MHR property. Stated differently, there is a sequence (ζn)n∈N with
ζn → 1 for n → ∞ such that for every number of buyers n there exists a posted-prices
mechanism that takes any distribution with MHR marginals as input and guarantees
E [ALG] ≥ ζn ·E [OPT].

The technically most interesting contribution is the one on dynamic pricing when
values are independent across items. The idea is to set prices so that the offline opti-
mum is mimicked. If item j is allocated in the optimal allocation with probability qj ,
then we would like it to be sold in every step with an ex-ante probability of qj

n . How-
ever, analyzing such a selling process is still difficult because items are incomparable
and bounds for MHR distributions cannot be applied directly to draws from multiple
distributions, which are not necessarily identical. To bypass this problem, we introduce
a reduction that allows us to view item valuations not only as independent but also as
identically distributed. To this end, we compare the selling process of our mechanism to
a hypothetical setting, in which buyers do not make their decisions based on the actual
utility but in quantile space. Only afterwards, we can apply a concentration bound due
to the MHR property.

Additional Related Work on MHR Distributions

There are surprisingly few results on pricing and Prophet Inequalities that derive better
guarantees by imposing additional assumptions on the distribution. Babaioff et al. [2017]
consider the problem of maximizing revenue when selling a single item to one of n buyers
drawn i.i.d. from an unknown MHR distribution with bounded support [1,h]. If n is large
enough compared to h, they get a constant-factor approximation to the optimal revenue
using dynamic posted prices. Note that in contrast, in this chapter, we assume to know
the underlying distributions perfectly. Giannakopoulos and Zhu [2018] consider revenue

1For a much more extensive list, see Rinne [2014].
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maximization in the single-item setting with valuations drawn independently from the
same MHR distribution. They show that achieving asymptotically optimal revenue is
possible by offering the item for the same static price to all bidders. More precisely, one
of their main results is that one gets within a factor of 1−O

(
ln lnn
lnn

)
. While they claim

this result is “essentially tight”, we will see that the best factor is indeed 1−Θ
(

ln ln lnn
lnn

)
because it is a special case of the results in Section 6.3 and Section 6.4. Jin et al.
[2019] also consider revenue maximization in the single-item setting with identical and
independent MHR values but in a non-asymptotic sense, providing a bound for every n.

Chapter Organization and Remarks

This chapter is based on Asymptotically Optimal Welfare of Posted Pricing for Multiple
Items with MHR Distributions [Braun et al., 2021], which is joint work with Matthias
Buttkus and Thomas Kesselheim. More detailed bibliographic notes can be found in
Section 1.5.

In Section 6.1, we give some preliminaries as well as useful properties of MHR distri-
butions which we will use in the technical sections. Afterwards, we discuss our algorithms
for independent item values in Section 6.2, followed by providing impossibility results in
Section 6.3. Also, an extension of the techniques to subadditive valuations is possible,
as we will see in Section 6.4.

6.1 Preliminaries

For the main results in this chapter, we consider a setting of n buyers [n] and a set
M of m items. Every buyer has a unit-demand valuation function. The functions
v1, . . . , vn are unknown a priori but all drawn independently from the same, publicly
known distribution D. In this chapter, we abuse notation and denote by vi the valuation
function as well as the vector vi = (vi,1, . . . , vi,m) with the corresponding value per item
as entries.

Let D(j) be the marginal distribution of vi,j , which is the value of a buyer for being
allocated item j. We assume that D(j) is a continuous, real, non-negative distribution
with monotone hazard rate. That is, let Fj be the cumulative distribution function of
D(j) and fj its probability density function. The distribution’s hazard rate is defined as
hj(x) = fj(x)/(1−Fj(x)) for all x such that Fj(x) < 1. We assume a monotone hazard
rate, which means that hj is a non-decreasing function. Equivalently, we can require
x 7→ log(1− Fj(x)) to be a concave function.

We work in an online setting: Buyers arrive one-by-one and have the choice between
all items which have not been allocated so far. Let M (i) denote the set of available items
as buyer i arrives. The mechanism presents buyer i a menu of prices p(i)j for all items
j ∈M (i). The buyer then picks the item ji ∈M (i) which maximizes her utility vi,ji − p

(i)
ji

if positive. Buyer i and item ji are matched immediately and irrevocably. If buyer i has
negative utility for all items j ∈M (i), then buyer i does not buy any item and remains
unmatched.

We denote by ji the item allocated to buyer i (set ji =⊥ if i remains unmatched in
the algorithm). Our goal is to maximize the expected social welfare of the mechanism,
given by E [

∑n
i=1 vi,ji ] =: E [ALG]. We compare this quantity to the expected offline
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optimum, denoted by E
[∑n

i=1 vi,j∗i

]
=: E [OPT] and aim for a desirable competitive

ratio.

6.1.1 Useful Properties of MHR Distributions

Before we start with the main technical part, we first state a few useful properties of
MHR distributions. The first important property of MHR distributions is a useful lemma
from Babaioff et al. [2017]. It allows to compare the expectation of the maximum of n
and n′ ≤ n draws from independent and identically distributed random variables, if the
distribution has a monotone hazard rate.

Lemma 6.1.1 (Lemma 5.3 in Babaioff et al. [2017]). Consider a collection (Yi)i of
independent and identically distributed random variables, where their distribution has a
monotone hazard rate. Then, for any n′ ≤ n, we have

E
[
maxi∈[n′] Yi

]
E
[
maxi∈[n] Yi

] ≥ Hn′

Hn
≥ logn′

logn .

In addition, we can reformulate a useful lemma from Giannakopoulos and Zhu [2018]
which nicely complements the previous lemma. To this end, given any sequence of real
numbers (w1, . . . ,wn), we let w(k) denote the k-th highest order statistic. That is, w(k) is
the largest x such that there are at least k entries in (w1, . . . ,wn) whose value is at least
x. For random numbers, denote its expectation by E

[
w(k)

]
= µk. As a side remark,

for MHR distributions, also order statistics w(k) are distributed according to an MHR
distribution [Rinne, 2014].

Lemma 6.1.2. For the expected k-th order statistic µk of n i.i.d. draws from an MHR
distribution, we have that for all q and k such that exp(Hk−1 −Hn) ≤ q ≤ 1, it holds

F−1(1− q) ≥ − log(q)
Hn −Hk−1

µk .

Proof. Use Lemma 3 in Giannakopoulos and Zhu [2018] with c = − log(q)
Hn−Hj−1

and apply
the quantile function on both sides to prove the result.

In addition to these two lemmas, we provide another useful bound for MHR distri-
butions.

Lemma 6.1.3. Let z ∈ [0, 1] and Γ ∈N. Further, let D be a distribution with monotone
hazard rate with CDF F , let X, (Yi)i ∼ D be independent and identically distributed. For
max

(
1, 1+log(1/z)

HΓ

)
≤ α ≤ 1

Γ·z ,we have

E
[
X
∣∣∣ X ≥ F−1 (1− z)

]
≤ α ·E

[
max
i∈[Γ]

Yi

]
.

Proof. First, we define by g(y) = 1−y
f (F−1(y)) the inverse of the hazard rate at point

F−1(y) for y ∈ [0, 1]. In other words, for the hazard rate h(x) = f (x)
1−F (x) , we have

h
(
F−1(y)

)
= f (F−1(y))

1−F (F−1(y))
= f (F−1(y))

1−y = 1
g(y) . Observe that by the MHR property, h(x)

is non-decreasing and hence g(y) is non-increasing.
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Second, we aim for a suitable expression of E
[
X
∣∣ X ≥ F−1 (1− z)

]
which we can

compute as follows:

E
[
X
∣∣∣ X ≥ F−1 (1− z)

]
− F−1(1− z) = 1

z

∫ ∞
F−1(1−z)

1− F (x)dx

=
1
z

∫ ∞
F−1(1−z)

1− F (x)
f(x)

f(x)dx

=
1
z

∫ ∞
F−1(1−z)

1
h(x)

f(x)dx

=
1
z

∫ 1

1−z
g(y)dy .

In addition, observe that we can write F−1(1− z) =
∫ 1−z

0
g(y)
1−ydy.

Third, note that we can calculate

E
[
max
i∈[Γ]

Yi

]
=
∫ ∞

0
1− F Γ(x)dx =

∫ ∞
0

1− F Γ(x)

f(x)
f(x)dx

=
∫ ∞

0

1
h(x)

1− F Γ(x)

1− F (x) f(x)dx

=
∫ 1

0
g(y)

1− yΓ

1− y dy .

As a consequence, the claim of our lemma holds if and only if

α

∫ 1

0
g(y)

1− yΓ

1− y dy−
∫ 1−z

0

g(y)

1− ydy−
∫ 1

1−z

g(y)

z
dy ≥ 0 .

We can split the left-hand side in the following (possibly empty) integrals: First, split
the first integral into two ranges from 0 to 1− z and the remainder starting from 1−
z. Then, combine the respective integrals over equal ranges and define a threshold
y∗ = min

{
Γ
√

1− 1
α , 1− z

}
as the point at which the sign of α

(
1− yΓ

)
− 1 changes from

positive to negative. This allows to rewrite the integrals of the left-hand side as∫ y∗

0

g(y)

1− y
(
α
(
1− yΓ

)
− 1

)
dy+

∫ 1−z

y∗

g(y)

1− y
(
α
(
1− yΓ

)
− 1

)
dy+

∫ 1

1−z
g(y)

(
α

Γ−1∑
i=0

yi − 1
z

)
dy .

Observe that g(y) is non-increasing by the MHR property. Further, note that α∑Γ−1
i=0 y

i−
1
z ≤ 0 as αΓ ≤ 1

z . Setting c = g(y∗), we can compute∫ y∗

0

g(y)

1− y
(
α
(
1− yΓ

)
− 1

)
dy+

∫ 1−z

y∗

g(y)

1− y
(
α
(
1− yΓ

)
− 1

)
dy+

∫ 1

1−z
g(y)

(
α

Γ−1∑
i=0

yi − 1
z

)
dy

≥
∫ y∗

0

c

1− y
(
α
(
1− yΓ

)
− 1

)
dy+

∫ 1−z

y∗

c

1− y
(
α
(
1− yΓ

)
− 1

)
dy+

∫ 1

1−z
c

(
α

Γ−1∑
i=0

yi − 1
z

)
dy

= cα

∫ 1

0

Γ−1∑
i=0

yidy− c
∫ 1−z

0

1
1− ydy− c

∫ 1

1−z

1
z
dy = cαHΓ − c

(
1 + ln

(1
z

))
.

By our choice of α ≥ 1+ln( 1
z )

HΓ
, observe that αHΓ −

(
1 + ln

(
1
z

))
≥ 0. So the integral

is non-negative for any c ≥ 0. As a consequence, the claim holds.

These will be the key lemmas for exploiting the MHR property of the distributions
in the next sections.
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6.2 Asymptotically Tight Bounds for Independent Item
Values

In this section, we show how to derive bounds if the buyers’ values are independent
across items. That is, each vi,j ∼ D(j) is drawn independently from a distribution with
monotone hazard rate. This is a standard assumption when considering multiple items
[Chawla et al., 2007, 2010]. As a consequence, the distribution over item values is a
product distribution vi = (vi,1, . . . , vi,m) ∼ D = ×mj=1D(j) for any i ∈ [n] and every
marginal D(j) satisfies the MHR condition.

6.2.1 Dynamic prices

We first consider the case of dynamic pricing mechanisms. Without loss of generality,
we can assume that m ≥ n. If we have less items than buyers, i.e. m < n, we can add
dummy items with value 0 to ensure m = n. Matching i to one of these dummy items
in the mechanism then corresponds to leaving i unmatched. Observe that technically a
point mass on 0 is not a MHR distribution. However, all relevant statements still apply.

Our mechanism is based on a pricing rule which balances the probability of selling a
specific item. Let M (i) be the set of remaining items as buyer i arrives. We determine
dynamic prices such that one item is allocated for sure in every step. Therefore, always
|M (i)| = m− i+ 1. We can now define q(i)j to be the probability that item j is allocated
in the “remaining” offline optimum on M (i) and n − i + 1 buyers if j ∈ M (i) and 0
else. In other words, if j ∈ M (i), q(i)j is the probability that item j is allocated in the
offline optimum constrained to buyers 1, . . . , i− 1 receiving the items from M \M (i).
The prices (p

(i)
j )j∈M (i) are now chosen such that buyer i buys item j with probability

q
(i)
j

n−i+1 and one item is allocated for sure2. This allows us to state the following theorem.

Theorem 6.2.1. The posted-prices mechanism with dynamic prices and independent
item-valuations is 1−O

(
1

logn

)
-competitive with respect to the expected offline optimal

social welfare.

The remainder of Section 6.2.1 is dedicated to the proof of Theorem 6.2.1. The
roadmap will be as follows: We first introduce a quantile allocation rule in which we
allocate items with respect to quantiles rather than allocating the item which maximizes
utility. Then, in Lemma 6.2.3, we argue about the distribution of the value of buyer
i for item j conditioned on allocating j to i in the quantile allocation rule. Using two
observations on the probability of allocating item j in the remaining offline optimum
allows to bound the expected contribution of item j to the social welfare. More precisely,
we can guarantee to achieve a reasonable fraction of the contribution to the ex-ante
relaxation of the offline optimum.

Proof. In order to bound the social welfare obtained by the posted-prices mechanism, we
consider the following quantile allocation rule. For any j ∈M (i) with q

(i)
j > 0, compute

2To see that such prices exist, we can use Theorem 4 in Banihashem et al. [2024] and argue in
a similar way as we did in the proof of Theorem 4.0.1. In particular, we can use our Algorithm 12
introduced below as input to Theorem 4 of Banihashem et al. [2024] and get an algorithm as output
which uses dynamic prices with our described properties.
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the weighted quantile

R
(i)
j := Fj(vi,j)

1
q
(i)
j

and allocate buyer i the item j which maximizes R(i)
j , formally stated in Algorithm 12.

Algorithm 12: Quantile Allocation Rule for Independent Item Values
1 M (1) ←−M
2 for i ∈ [n] do
3 Compute Fj(vi,j)

1/q(i)
j for any j ∈M (i) with q

(i)
j > 0

4 Set ji such that it attains maxj∈M (i) Fj(vi,j)
1/q(i)

j and remove ji from M (i+1)

Observe that by this definition for any i, any j and any t ∈ [0, 1],

Pr
[
R

(i)
j ≤ t

]
= Pr

[
Fj(vi,j) ≤ tq

(i)
j

]
= Pr

[
vi,j ≤ F−1

j

(
tq

(i)
j

)]
= Fj

(
F−1
j

(
tq

(i)
j

))
= tq

(i)
j . (6.1)

To get some intuition, note that for q(i)j = 1, this is exactly the CDF of a random variable
drawn from Unif[0, 1].

Next, we define indicator variables Xi,j which are one if buyer i is allocated item j
in the quantile allocation rule. Then, we can observe the following for the conditional
probability of allocating item j to buyer i.

Observation 6.2.2. It holds

Pr
[
Xi,j = 1

∣∣∣M (i)
]
=

q
(i)
j

n− i+ 1 .

Note that by this, conditioned on the set of available items M (i), the probability of
allocating item j in step i via the quantile allocation rule is q

(i)
j /n−i+1, exactly as in the

posted-prices mechanism.

Proof of Observation 6.2.2. We allocate item j in the quantile allocation rule if R(i)
j ≥

R
(i)
j′ for any j′ ∈ M (i). For fixed M (i), also the values of q(i)j are fixed. We can use this

as well as the independence of the vi,j variables to compute:

Pr
[
Xi,j = 1

∣∣∣M (i)
]
= Pr

[
max
j′ 6=j

R
(i)
j′ ≤ R

(i)
j

∣∣∣∣M (i)
]

=
∫ 1

0
Pr

[
max
j′ 6=j

R
(i)
j′ ≤ t

∣∣∣∣M (i),R(i)
j = t

]
q
(i)
j tq

(i)
j −1dt

=
∫ 1

0

∏
j′ 6=j

Pr
[
R

(i)
j′ ≤ t

∣∣∣M (i),R(i)
j = t

]
q
(i)
j tq

(i)
j −1dt

=
∫ 1

0

∏
j′ 6=j

t
q
(i)

j′

 q(i)j tq
(i)
j −1dt

= q
(i)
j

∫ 1

0
t(n−i+1)−1dt =

q
(i)
j

n− i+ 1 ,
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where we use that ∑j∈M (i) q
(i)
j = n− i+ 1 for any value of i.

Now, the crucial observation is that the expected contribution of any buyer to the
social welfare in the posted-prices mechanism is at least as large as under the quantile
allocation rule. To see this, fix buyer i and split buyer i’s contribution to the social
welfare into revenue and utility. Concerning revenue, note that in both cases the prob-
ability of selling any item j to buyer i is equal to q

(i)
j /n−i+1 and we allocate one item for

sure. So, the expected revenue is identical. Further, since we maximize utility in the
posted-prices mechanism, the achieved utility is always at least as large as the utility of
the quantile allocation rule. So, overall, we get E [ALG] ≥ E [ALGquantile].

Next, we aim to control the distribution of vi,j given that Xi,j = 1 in order to get
access to the value that agent i has when being allocated item j in the quantile allocation
rule. To this end, we use the following lemma.

Lemma 6.2.3. For all i, j and M (i), we have

Pr
[
vi,j ≤ t

∣∣∣ Xi,j = 1,M (i)
]
= Fj(t)

n−i+1

q
(i)
j .

Proof. Fix a set of available items M (i) and let us assume for simplicity that all items
j′ ∈M (i) satisfy q(i)j′ > 0 (e.g. by removing all items from the set M (i) for which q(i)j′ = 0).
Observe that in the vector

(
R

(i)
j

)
j∈M (i)

, we choose j to maximize R(i)
j . As a consequence,

conditioned on picking item j ∈M (i), we have R(i)
j = maxj′∈M (i)

(
R

(i)
j′

)
.

Recall that R(i)
j′ are random variables with support [0, 1] and cumulative distribu-

tion function t
q
(i)

j′ by Equation (6.1). By independence across items and using the fact
that ∑j′∈M (i) q

(i)
j′ = n− i + 1, the random variable maxj′∈M (i)

(
R

(i)
j′

)
has cumulative

distribution function tn−i+1.
As a consequence, the conditional cumulative distribution function of R(i)

j condi-
tioned on Xi,j = 1 becomes tn−i+1. Using that we can rewrite

vi,j = F−1
j

((
R

(i)
j

)q(i)j ) ,

we get

Pr
[
vi,j ≤ t

∣∣∣ Xi,j = 1,M (i)
]
= Pr

[
F−1
j

((
R

(i)
j

)q(i)j ) ≤ t ∣∣∣∣∣ Xi,j = 1,M (i)

]

= Pr
[
R

(i)
j ≤ Fj(t)

1/q(i)
j

∣∣∣∣ Xi,j = 1,M (i)
]

= Fj(t)

n−i+1

q
(i)
j .

For integral values of n−i+1/q(i)j (in particular, if e.g. q(i)j = 1), observe that this is
exactly the CDF of the maximum of n−i+1/q(i)j independent draws from distribution Fj .
This mirrors the following intuition: Say all q(i)j = 1. If we assign item j in the quantile
allocation rule, item j’s quantile needs to be the largest of n− i+ 1 independent draws
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in quantile space. Transforming all quantiles back into the value space of item j, the
value of buyer i for item j is the maximum of n− i+ 1 i.i.d. draws from distribution
D(j).

Having this, our overall goal is to show the following bound.

Proposition 6.2.4. Let OPTj denote the random variable indicating the contribution
of item j to the social welfare of the optimal offline solution. Then, we have

E
[
n∑
i=1

vi,jXi,j

]
≥
(

1−O
( 1

logn

))
E [OPTj ] .

Note that showing this proposition proves the claim by taking a sum over all j ∈M .
To this end, we argue on the random variables q(i)j . As a first remark, the variables q(i)j
are independent of the values vi,j as we define q(i)j without any knowledge on the vi,j .
The following observation shows that E

[
q
(i)
j /n−i+1

]
is exactly q

(1)
j /n. Note that q(1)j is

deterministic because it is the a priori probability that item j is allocated in the offline
optimum.

Observation 6.2.5. For all i, we have E
[

q
(i)
j

n−i+1

]
=

q
(1)
j

n .

Observe that the left-hand side is the expected probability that we allocate item j
in step i of the generalized quantile allocation rule.

Proof. Let M (i)
∗ be the set of items not allocated buyers 1, . . . , i− 1 by the optimal offline

solution. Note that M (i) and M
(i)
∗ are identically distributed. Therefore, the optimal

offline solution assigns item j to one of the buyers i, . . . ,n with a probability of E
[
q
(i)
j

]
a priori. By symmetry across buyers, each buyer is assigned item j in the optimal offline
solution with the same probability, namely 1

n−i+1E
[
q
(i)
j

]
= 1

nq
(1)
j .

In other words, Observation 6.2.5 states that E
[
q
(i)
j

]
= n−i+1

n · q(1)j , i.e. in expecta-
tion, the probability of assigning item j in steps i, . . . ,n is exactly a n−i+1/n-fraction of
the a priori probability. Complementing this, we can also argue that the probabilities
q
(i)
j are always upper bounded by the a priori probability that item j is allocated in the

offline optimum.

Observation 6.2.6. We have q(i)j ≤ q
(1)
j for all i and j.

Proof. If j 6∈M (i), we have q(i)j = 0, so the statement is clear. Otherwise, recall that q(i)j
is the probability that item j is allocated in the offline optimum constrained to buyers
1, . . . , i − 1 receiving the items from M \M (i). Next, note that we always allocate
exactly one item to every buyer, so the offline optimum which is constrained to the
previous allocation only has the flexibility to allocate items to the remaining n− i+ 1
buyers.

We aim to show that q(i)j ≥ q
(i+1)
j for every buyer i which allows us to conclude. To

this end, consider the edge which we add to our allocation in step i, denoted by (i, j′).
In other words, the optimum matchings which contribute to q(i+1)

j are restricted in the
way that buyer i and item j′ are not available.
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Next, consider item j for which we would like to bound the probability of allocating
in the remaining offline optimum starting from step i, i.e. q(i)j . We can distinguish two
cases: First, we consider all valuation profiles for which item j′ is not allocated in the
offline optimum among i, . . . ,n. When comparing these to the offline optima which are
restricted to match (i, j′), we observe that from the perspective of item j, there is one
additional buyer available when not matching i to j′. Hence, as buyers are symmetric,
the probability of matching j in the offline optimum is at least as large as in the restricted
case.

Second, for all valuation profiles in which item j′ is allocated to some buyer in the
remaining offline optimum among buyers i, . . . ,n, we can use symmetry across buyers
again. In particular, by symmetry, we end up in the same situation as when adding the
edge (i, j′) to the matching and hence, the probability of allocating j in the remaining
offline optimum is the same.

Combining these two cases, the probability that item j is allocated in the remaining
offline optimum among buyers i, . . . ,n is at least as large as allocating item j in the
remaining offline optimum among buyers i+ 1, . . . ,n. Hence, the claim follows.

Having these observations, we consider the contribution of buyer i and item j con-
ditioned on M (i). First, observe that conditioned on M (i), q(i)j is not random anymore.
Hence, by the use of Observation 6.2.2, we get that

E
[
vi,jXi,j

∣∣∣M (i)
]
= Pr

[
Xi,j = 1

∣∣∣M (i)
]
·E
[
vi,j

∣∣∣ Xi,j = 1,M (i)
]

=
q
(i)
j

n− i+ 1 ·E
[
Yi,j

∣∣∣M (i)
]

,

where we use Lemma 6.2.3 to introduce Yi,j , a random variable with CDF Fj(t)

n−i+1

q
(i)
j .

By Observation 6.2.6, we can bound E
[
Yi,j

∣∣∣M (i)
]
≥ E

[
Y ′i,j

]
where Y ′i,j is a random

variable with CDF Fj(t)
n−i+1/q(1)

j . Note that the latter CDF does not depend on q
(i)
j

anymore, but only on q
(1)
j which is deterministic. As a consequence, we can bound

E
[
vi,jXi,j

∣∣∣M (i)
]
≥

q
(i)
j

n− i+ 1 ·E
[
Y ′i,j

]
.

Taking the expectation over all possible sets M (i), we get

E [vi,jXi,j ] ≥ E

 q
(i)
j

n− i+ 1 ·E
[
Y ′i,j

] =
q
(1)
j

n
·E
[
Y ′i,j

]
.

Now, we can sum over all buyers i to bound the contribution of one item to the quantile
allocation rule. Recall that Y ′i,j has CDF Fj(t)

n−i+1/q(1)
j . When rounding the value of

n−i+1/q(1)j to the next smaller integer, we get a random variable which is the maximum

of
⌊
n−i+1
q
(1)
j

⌋
draws from Fj . Hence, we get

E
[
n∑
i=1

vi,jXi,j

]
≥

n∑
i=1

q
(1)
j

n
·E
[
Y ′i,j

]
≥

n∑
i=1

q
(1)
j

n
·E

 max
i′∈
[⌊

n−i+1/q(1)
j

⌋] {vi′,j}
 .
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Now, define Γ :=
⌈
n/2q(1)j

⌉
and Γi :=

⌊
n−i+1/q(1)j

⌋
. We make a case distinction if

Γi ≥ Γ or not. Denote by i∗ the last i for which Γi ≥ Γ.

Case 1: Γi ≥ Γ. Note that for all i with Γi =
⌊
n−i+1/q(1)j

⌋
≥ Γ, i.e. i = 1, . . . , i∗, we

get

E
[

max
i′∈[Γi]

{
vi′,j

}]
≥ E

[
max
i′∈[Γ]

{
vi′,j

}]
≥ log(n− i)

log(n) E
[
max
i′∈[Γ]

{
vi′,j

}]
,

where the last inequality trivially multiplies the non-negative expectation with a number
smaller than one.

Case 2: Γi < Γ. For all i such that
⌊
n−i+1/q(1)j

⌋
< Γ, we can exploit the MHR

property via an application of Lemma 6.1.1 in order to bound

E
[

max
i′∈[Γi]

{
vi′,j

}]
≥

log
(⌊

n−i+1/q(1)j
⌋)

log (Γ) ·E
[
max
i′∈[Γ]

{
vi′,j

}]

≥
log (n− i)− log

(
q
(1)
j

)
log (n+ 2)− log

(
2q(1)j

) ·E [max
i′∈[Γ]

{
vi′,j

}]
.

For the last inequality, we use that

log(Γ) = log
(⌈

n/2q(1)j

⌉)
≤ log

 n

2q(1)j

+ 1


= log

n+ 2q(1)j

2q(1)j

 = log
(
n+ 2q(1)j

)
− log

(
2q(1)j

)
≤ log (n+ 2)− log

(
2q(1)j

)
.

By similar calculations, we get that log
(⌊

n−i+1/q(1)j
⌋)
≥ log (n− i)− log

(
q
(1)
j

)
. Observe

that for i = n, the latter expression is not well defined. We will not consider these
variables and only take the sum until n− 1 into account.

Combination: Now, we aim to apply Lemma 6.1.3 for suitably chosen values of α,

Γ and z. We set z =
q
(1)
j

n and Γ =
⌈

1
2z

⌉
=

⌈
n

2·q(1)j

⌉
as above and α = 1+ln(n)

Hn/2
. Let us

denote by vj a draw from distribution D(j). Then, we can compute

E
[
n∑
i=1

vi,jXi,j

]
≥

i∗∑
i=1

q
(1)
j

n
· log(n− i)

log(n) ·E
[
max
i′∈[Γ]

{
vi′,j

}]

+
n−1∑

i=i∗+1

q
(1)
j

n
·

log (n− i)− log
(
q
(1)
j

)
log (n+ 2)− log

(
2q(1)j

) ·E [max
i′∈[Γ]

{
vi′,j

}]

≥
i∗∑
i=1

q
(1)
j

n
· 1
α
· log(n− i)

log(n) ·E

vj
∣∣∣∣∣∣ vj ≥ F−1

j

1−
q
(1)
j

n


+

n−1∑
i=i∗+1

q
(1)
j

n
· 1
α
·

log (n− i)− log
(
q
(1)
j

)
log (n+ 2)− log

(
2q(1)j

) ·E
vj

∣∣∣∣∣∣ vj ≥ F−1
j

1−
q
(1)
j

n

 .
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Now, observe that q(1)j E
[
vj

∣∣∣∣∣ vj ≥ F−1
j

(
1− q

(1)
j

n

)]
≥ E [OPTj ] because the former is

exactly the contribution of item j to the ex-ante relaxation and hence it is an upper
bound for the expected contribution of item j to the offline optimum. In addition, we
can use the integral estimation ∑n

i=1 log(i) =
∑n
i=1 log(n − i + 1) ≥ n logn − n + 1.

Therefore,

E
[
n∑
i=1

vi,jXi,j

]
≥ E [OPTj ] ·

1
α
·

 i∗∑
i=1

1
n
· log(n− i)

log(n) +
n−1∑

i=i∗+1

1
n
·

log (n− i)− log
(
q
(1)
j

)
log (n+ 2)− log

(
2q(1)j

)


≥ E [OPTj ] ·
1
α
· 1
n · log(n)

(
n−1∑
i=1

log(n− i)
)

≥
(

1−O
( 1

logn

))
E [OPTj ] ,

which allows us to conclude the proof of Theorem 6.2.7.

6.2.2 Static prices

Next, we would like to demonstrate how to use static prices. We consider the case that
the number of items m is upper bounded by n

(log logn)2 . We set the price for item j to

pj = F−1
j (1− q) , where q = log logn

n
,

which allows us to state the following theorem.

Theorem 6.2.7. For m ≤ n
(log logn)2 , the posted-prices mechanism with static prices and

independent item-valuations is 1−O
(

log log logn
logn

)
-competitive with respect to the expected

offline optimum social welfare.

The proof will work as follows: First, observe that we can bound the probability of
selling item j to buyer i by the probability of the event that buyer i has only non-negative
utility for this item. This implies a bound on the probability of selling item j in our
algorithm. Finally, we combine this with a lower bound on the price pj and hence are
able to bound the revenue (and thus the welfare) obtained by our algorithm. Observe
that our guarantee only applies if the number of items m is bounded by n

(log logn)2 . We
leave the extension to the general case as an open problem. As a first step, one could
try to derive a suitable bound on the utility of agents in order to extend the result.

Proof of Theorem 6.2.7. We start by considering the probability of selling a fixed item
j. We can lower bound the probability that buyer i buys the item by the event that
buyer i only has positive utility for item j, i.e.

Pr
[
i buys item j

∣∣∣M (i)
]
≥ (1− Fj(pj))

∏
j′∈M (i)\{j}

Fj′(pj′) ≥
log logn

n

(
1− log logn

n

)m

≥ log logn
n

(
1−m · log logn

n

)
≥ log logn

n

(
1− 1

log logn

)
,
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where the third inequality is an application of Bernoulli’s inequality (1 + x)r ≥ 1 + xr
for any x ≥ −1 and integer r and the last inequality follows as m ≤ n

(log logn)2 . Taking
the expectation over all possible sets M (i), the probability of the counter event, namely
that buyer i does not buy item j, is upper bounded by

Pr [i does not buy item j] ≤ 1− log logn− 1
n

.

As a consequence, the probability that item j is not sold during the process is upper
bounded by

Pr [j unsold] ≤
(

1− log logn− 1
n

)n
≤ exp (1− log logn) = e

logn .

Therefore, the probability of selling item j is lower bounded by Pr [j sold] ≥ 1− e
logn .

Additionally, we can bound the price of item j by Lemma 6.1.2 via

pj = F−1
j

(
1− log logn

n

)
≥ logn− log log logn

Hn
·E
[
max
i∈[n]

vi,j

]

≥
(

1− log log logn+ 1
logn

)
·E
[
max
i∈[n]

vi,j

]
.

Having this, we can conclude by the some fundamental calculus to get

E [ALG] ≥ E [revenuepp] ≥
m∑
j=1

Pr [j sold] · pj

≥
m∑
j=1

(
1− e

logn

)(
1− log log logn+ 1

logn

)
E
[
max
i∈[n]

vi,j

]

≥
(

1−O
( log log logn

logn

)) m∑
j=1

E
[
max
i∈[n]

vi,j

]
≥
(

1−O
( log log logn

logn

))
E [OPT] .

6.3 Asymptotic Upper Bounds on the Competitive Ratios

The competitive ratios from Section 6.2 are asymptotically tight. To see this, we provide
matching upper bounds in this section showing asymptotic optimality. We consider the
case of selling a single item with static and dynamic prices respectively. In any of the
two cases, we can achieve asymptotic upper bounds on the competitive ratio of posted
prices mechanisms which match our results from the previous section. In particular, we
prove that these bounds are the best possible ones for any choice of pricing strategy.

6.3.1 Dynamic prices

We consider the guarantee of our dynamic-pricing algorithm first. Even with a single
item and types drawn from an exponential distribution, the best competitive ratio is
1−Ω

(
1

logn

)
. We simplify notation by omitting indices when possible.
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Proposition 6.3.1. Let v1, . . . , vn ∈ R≥0 be random variables where each vi is drawn
i.i.d. from the exponential distribution with rate one, so v1, . . . , vn ∼ Exp(1). For all
dynamic prices, the competitive ratio of the mechanism picking the first vi with vi ≥ p(i)
is upper bounded by 1−Ω

(
1

logn

)
.

In order to prove Proposition 6.3.1, we use that the expected value of the optimal
offline solution (the best value in hindsight) is given by E

[
maxi∈[n] vi

]
= Hn [Arnold

et al., 2008]. Therefore, it suffices to show that the expected value of any dynamic
pricing rule is upper bounded by Hn − c for some constant c > 0.

To upper-bound the expected social welfare of any dynamic pricing rule, we use
the fact that this problem corresponds to a Markov decision process and the optimal
dynamic prices3 are given by

p(n) = 0 and p(i) = E
[
max{vi+1, p(i+1)}

]
for i < n .

Furthermore, p(0) is exactly the expected social welfare of this mechanism. Therefore,
the following lemma with k = n directly proves our claim.

Lemma 6.3.2. Let v1, . . . , vn ∈ R≥0 be random variables where each vi is drawn
i.i.d. from the exponential distribution Exp(1). Moreover, let p(n) = 0 and p(i) =

E
[
max{vi+1, p(i+1)}

]
for i < n. Then, we have p(n−k) ≤ Hk − 1

8 for all 2 ≤ k ≤ n.

Proof. We are going to prove the statement by induction on index variable k.

First, consider the induction base k = 2. By definition of the thresholds we know
that p(n) = 0 and p(n−1) = E

[
max{vn, p(n)}

]
= E [max{vn, 0}] = E [vn] = 1. Next,

consider the threshold p(n−2) defined by

p(n−2) = E
[
max{vn−1, p(n−1)}

]
= E [max{vn−1, 1}]

=
∫ ∞

0
Pr [max{vn−1, 1} ≥ x] dx =

∫ 1

0
1dx+

∫ ∞
1

e−xdx = 1 + 1
e ≈ 1.368 .

Thus, we can easily verify that p(n−2) ≤ 1.375 = H2 − 1
8 .

For the inductive step, we move from k to k + 1. By the induction hypothesis, we
have

p(n−(k+1)) = E
[
max{vn−k, p(n−k)}

]
≤ E

[
max

{
vn−k,Hk −

1
8

}]
.

Furthermore,

E
[
max

{
vn−k,Hk −

1
8

}]
=
∫ ∞

0
Pr

[
max

{
vn−k,Hk −

1
8

}
≥ x

]
dx

=
∫ Hk− 1

8

0
1dx+

∫ ∞
Hk− 1

8

e−xdx

= Hk −
1
8 + e−Hk+

1
8 .

3See e.g. Chow et al. [1971].
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We now use the fact that the k-th harmonic number Hk for k ≥ 2 is bounded from below
by Hk ≥ log k + γ, in which γ ≈ 0.577 denotes the Euler-Mascheroni constant. So for
k ≥ 2

e−Hk+
1
8 ≤ e−(log k+γ)+ 1

8 =
e 1

8−γ

k
≤ e 1

8−0.57

k
≤ 1

3
2 · k

≤ 1
k+ 1 .

In combination, this gives us

p(n−(k+1)) ≤ Hk −
1
8 +

1
k+ 1 = Hk+1 −

1
8 .

6.3.2 Static prices

For static pricing rules, we show that any mechanism is 1−Ω
(

log log logn
logn

)
-competitive.

Again, this bound even holds for a single item and the valuations being drawn from an
exponential distribution.

Proposition 6.3.3. Let v1, . . . , vn ∈ R≥0 be random variables where each vi is drawn
i.i.d. from the exponential distribution with rate one, so v1, . . . , vn ∼ Exp(1). For all
static prices p ∈ R≥0 the competitive ratio of the mechanism picking the first vi with
vi ≥ p is upper bounded by 1−Ω

(
log log logn

logn

)
.

The idea of the proof is as follows. The expected welfare obtained by a static pricing
mechanism using price p is given by E [ALG] = E [v | v ≥ p] ·Pr [∃i : vi ≥ p] = (p+ 1) ·(
1− (1− e−p)n

)
. This has to be compared to the expected value of the optimal offline

solution E
[
maxi∈[n] vi

]
= Hn [Arnold et al., 2008].

Proof of Proposition 6.3.3. Consider n ≥ exp(exp(exp(4))).
Observe that always E [OPT] = E

[
maxi∈[n] vi

]
= Hn [Arnold et al., 2008]. Now, we

will bound E [ALG] for any choice of a static price p ∈ R≥0. Regardless of p, we have

E [ALG] = E [v | v ≥ p] ·Pr [∃i : vi ≥ p] = (p+ 1) ·
(
1−

(
1− e−p

)n) .

We will show that for any choice of a static price p,

(p+ 1) ·
(
1−

(
1− e−p

)n) ≤ Hn − c log log logn

for some constant c, which then immediately proves the claim as Hn = Θ(logn).
To this end, we will consider three cases for the choice of p.

Case 1: 0 ≤ p < logn− 1
2 log log logn: We use the trivial upper bound of 1 for the

probability term in E [ALG], so

(p+ 1) ·
(
1−

(
1− e−p

)n) ≤ (p+ 1) < logn− 1
2 log log logn+ 1

≤ logn− 1
2 log log logn+ 1

4 log log logn

= logn− 1
4 log log logn

as we assumed that n ≥ exp(exp(exp(4))).
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Case 2: logn− 1
2 log log logn ≤ p ≤ Hn − 1: Again, observe that the expected value

of the algorithm can be upper bounded by

(p+ 1) ·
(
1−

(
1− e−p

)n) ≤ Hn ·
(
1−

(
1− e−p

)n)
≤ Hn ·

(
1−

(
1− e− logn+ 1

2 log log logn
)n)

= Hn ·
(

1−
(

1−
√

log logn
n

)n)
.

Next, we want to lower bound
(
1−

√
log logn
n

)n
in order to get the desired upper

bound on E [ALG]. For this purpose, we use the following inequality. For n > 1 and
x ∈ R with |x| ≤ n, we have

(
1 + x

n

)n ≥ ex ·
(
1− x2

n

)
. This way, we get

(
1−
√

log logn
n

)n
≥ e−

√
log logn ·

(
1− (−

√
log logn)2

n

)
= e−

√
log logn ·

(
1− log logn

n

)
︸ ︷︷ ︸

≥ 1
2 , ∀n

≥ 1
2e−

√
log logn .

Note that if log logn ≥ 4, then also
√

log logn ≤ 1
2 log logn, and hence, we get that

e−
√

log logn ≥ e− 1
2 log logn = 1√

logn . This gives us

(p+ 1) ·
(
1−

(
1− e−p

)n) ≤ Hn ·
(

1−
(

1−
√

log logn
n

)n)
≤ Hn ·

(
1− 1

2e−
√

log logn
)

≤ Hn ·
(

1− 1
2
√

logn

)
≤ Hn ·

(
1− 1

2 ·
log log logn

logn

)
,

where in the last step we use that
√

logn ≥ log log logn and therefore
√

logn ≤ logn
log log logn .

Case 3: p > Hn − 1: In this case we use the fact that Giannakopoulos and Zhu
[2018] showed that the revenue function p 7→ p ·

(
1− (1− e−p)n

)
is non-increasing on

[Hn − 1,∞).
This implies that

(p+ 1) ·
(
1−

(
1− e−p

)n) ≤ p · (1−
(
1− e−p

)n)
+ 1 ≤ Hn ·

(
1−

(
1− e−(Hn−1)

)n)
+ 1

≤ Hn ·
(

1−
(

1− e
n

)n)
+ 1

≤ 99
100 ·Hn + 1 = Hn ·

( 99
100 +

1
Hn

)
,

where the last inequality holds for n ≥ 4. Now, we can use that for n large enough, we
have 99

100 + 1
Hn
≤ 1− c log log logn

Hn
and hence, we get the desired bound.

6.4 Extensions to Subadditive Buyers and Revenue Con-
siderations

In this section, we illustrate that the same style of mechanisms used for unit-demand
buyers can be extended to buyers with subadditive valuations. To generalize the MHR
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property, we assume that the subadditive valuation functions are drawn from distribu-
tions with MHR marginals. That is, vi ∼ D and we assume that vi ({j}) has a marginal
distribution with monotone hazard rate. Buyers arrive online one-by-one and purchase
the bundle of items which maximizes the buyer’s utility.

We construct a dynamic-pricing mechanism which is 1 − O
(

1+logm
logn

)
-competitive

in Section 6.4.1. In the static pricing environment, our mechanism in Section 6.4.2 is
1−O

(
log log logn

logn + logm
logn

)
-competitive for subadditive buyers. Note that the guarantees

now depend on the number of items m. To make them meaningful, we need m = o(n).
This makes them significantly worse than the ones we obtain for unit-demand functions
in Section 6.2 with a much more careful treatment. However, they are stronger in one
aspect, namely that in both cases we will bound the revenue of the mechanism in terms
of the optimal social welfare. In particular, this means that they are also approximations
of the optimal revenue.

Distributions with MHR Marginals

Concerning subadditivity, we first start with a straightforward extension of the defini-
tions from Section 6.1 to the case of buyers’ valuation functions being subadditive. As
before, we assume that the functions v1, . . . , vn are drawn independently from a publicly
known distribution D. Now, the distribution has MHR marginals. We define MHR
marginals as follows. Let D(j) be the marginal distribution of vi({j}), which is the value
of a buyer for being allocated only item j. We assume that D(j) is a continuous, real,
non-negative distribution with monotone hazard rate. Note that this allows arbitrary
correlation between items.

Some Additional Remarks for Subadditive Valuations

We quickly recall that in posted-pricing mechanisms, we assume that buyer i picks
the bundle of items S ⊆ M (i) which maximizes her utility vi(S) −

∑
j∈S p

(i)
j if posi-

tive. Also, remember that the expected social welfare of the mechanism is given by
E [
∑n
i=1 vi(Si)] =: E [ALG]. Its expected revenue is given by E

[∑n
i=1

∑
j∈Si p

(i)
j

]
=:

E [revenuepp].
Our benchmark is the expected welfare of the offline optimum allocation, denoted

by E [OPT] := E [
∑n
i=1 vi(S

∗
i )]. Using the subadditivity of buyers’ valuations, we can

upper-bound the expected optimal social welfare by

E
[
n∑
i=1

vi(S
∗
i )

]
≤ E

 n∑
i=1

∑
j∈S∗i

vi({j})

 ≤ m∑
j=1

E
[
max
i∈[n]

vi({j})
]

.

Furthermore, let E [revenueopt] denote the maximum expected revenue of any indi-
vidually rational mechanism. Due to individual rationality, we have E [revenueopt] ≤
E [OPT] and E [revenuepp] ≤ E [ALG].

6.4.1 Dynamic Pricing for Subadditive Valuations with MHR marginals

We first consider dynamic prices. That is, buyer i faces prices depending on the set of
available items. Our strategy is to sell specific items only to a subgroup of buyers in
order to gain control over the selling process. We can implement this by imposing the
following item prices which decrease as the selling process proceeds.
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We split the set of buyers in groups of size bn/mc =: n′ and sell item j only to the
group of buyers {

(j − 1) · n′ + 1, ..., (j − 1) · n′ + n′
}
=: Nj .

For the k-th buyer in Nj , we set the price for item j to

p
((j−1)n′+k)
j = F−1

j

(
1− 1⌊

n
m

⌋
− k+ 1

)
(6.2)

and the prices for all other unsold items to infinity. This choice of prices ensures that
the first item is sold among the first

⌊
n
m

⌋
buyers, the second item among the second

⌊
n
m

⌋
buyers, and so on. As a consequence, all items are sold in our process.

Theorem 6.4.1. The posted-prices mechanism with subadditive buyers and dynamic
prices is 1−O

(
1+logm

logn

)
-competitive with respect to the expected optimal offline social

welfare.

Proof. We start by considering the case of selling one item among n′ =
⌊
n
m

⌋
buyers

where the prices for the item are as in Equation (6.2). Note that we simplify notation in
this context and omit the index of the item. Let Xi be a random variable which is equal
to one if buyer i buys the item and zero otherwise. Note that by our choice of prices,
the item is sold in step i with probability 1

n′−i+1 what leads to

E [Xi] = Pr [Xi = 1] = 1
n′ − i+ 1 ·

i−1∏
i′=1

(
1− 1

n′ − i′ + 1

)
=

1
n′

.

Further, buyer i only buys the item if vi exceeds the price. Using Lemma 6.1.2 allows
to calculate

p(i) = F−1
(

1− 1
n′ − i+ 1

)
≥ log (n′ − i+ 1)

Hn′
·E
[

max
i∈[n′]

vi

]
.

Note that this bound is deterministic. We will next make use of an application of
the integral estimation ∑n′

i=1 log (n′ − i+ 1) ≥ n′ logn′ − n′ + 1 as well as bound the
harmonic number Hn′ ≤ logn′ + 1. This leads to a lower bound for the expected social
welfare via the expected revenue of

n′∑
i=1

E
[
p(i)Xi

]
≥

n′∑
i=1

log (n′ − i+ 1)
n′Hn′

E
[

max
i∈[n′]

vi

]
≥ n′ logn′ − n′ + 1

n′Hn′
E
[

max
i∈[n′]

vi

]

≥
logn′ − 1 + 1

n′

logn′ + 1 E
[

max
i∈[n′]

vi

]
≥
(

1− 2
logn′

)
E
[

max
i∈[n′]

vi

]
.

Now, we apply Lemma 6.1.1 which states that the quotient of the expectation of the
maximum of n′ and n i.i.d. random draws from an MHR distribution is lower bounded
by logn′/logn for n′ ≤ n. This leads to the bound

n′∑
i=1

E
[
p(i)Xi

]
≥
(

1− 2
logn′

)
E
[

max
i∈[n′]

vi

]
≥
(

1− 2
logn′

) logn′
logn E

[
max
i∈[n]

vi

]
.

In order to generalize this to the case of m items, our pricing strategy ensures that
we can apply the received bound for every item separately. To this end, note that only
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buyers in Nj will consider buying item j. Further, also by our prices, every buyer will
buy at most one item. By the introduction of indicator random variables Xij indicating
if buyer i buys item j, we can conclude

E [revenuepp] =
m∑
j=1

n∑
i=1

E
[
p
(i)
j Xi,j

]
=

m∑
j=1

∑
i∈Nj

E
[
p
(i)
j Xi,j

]

≥
(

1− 2
logn′

) m∑
j=1

E
[

max
i∈[n′]

vi({j})
]

≥
(

1−O
(1 + logm

logn

)) m∑
j=1

E
[
max
i∈[n]

vi({j})
]

≥
(

1−O
(1 + logm

logn

))
E [OPT] .

Corollary 6.4.2. The expected revenue of the posted-prices mechanism with subadditive
buyers and dynamic prices is a 1−O

(
1+logm

logn

)
-fraction of the expected optimal revenue.

Note that the assumption of buyers’ valuations being identically distributed is actu-
ally a too strong requirement for these results. For the proofs in this chapter it would
be sufficient to consider buyers having identical marginals on single item sets, but cor-
relations between items might be buyer-specific.

6.4.2 Static Pricing for Subadditive Valuations with MHR marginals

For the case of static prices, we give a 1−O
(

log log logn
logn + logm

logn

)
-competitive mechanism.

The general design idea for our mechanism is as follows. Setting fairly low prices
will put high probability on the event of selling all items. Although we cannot control
which buyer will buy which bundle of items, we can extract all social welfare of the
posted prices mechanism as revenue. Therefore, having prices which still ensure that the
revenue can be lower bounded by a suitable fraction of the optimal social welfare will
lead to the desired bound.

For any item, we set the price of item j to

pj = F−1
j (1− q) , where q = m log logn

n

and Fj denotes the marginal distribution of vi({j}). Observe the similarity to the pricing
structure in Section 6.2.2. This allows us to prove the following theorem.

Theorem 6.4.3. The posted-prices mechanism with subadditive buyers and static prices
is 1−O

(
log log logn

logn + logm
logn

)
-competitive with respect to the expected optimal offline social

welfare.

Proof. Lower bounding the expected revenue by a suitable fraction of the optimal social
welfare will allow us to prove the theorem.
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We start with an application of Lemma 6.1.2 to get a bound on pj exploiting the
MHR property:

pj = F−1
j (1− q) ≥ − log q

Hn
E
[
max
i∈[n]

vi({j})
]

=
logn− log log logn− logm

Hn
E
[
max
i∈[n]

vi({j})
]

≥
(

1− log log logn+ logm+ 1
logn

)
E
[
max
i∈[n]

vi({j})
]

.

Now, we aim for a lower bound on the probability that all items are sold in our
mechanism. To this end, let M (i) denote the (random) set of items that are still unsold
as buyer i arrives. Observe that buyer i will buy at least one item if vi({j}) > pj for
some j ∈ M (i). We defined the prices such that Pr [vi({j}) > pj ] = q. Consequently,
Pr

[
buyer i buys an item

∣∣∣M (i) 6= ∅
]
≥ q for all i.

To bound the probability of selling all items, consider the following thought exper-
iment: For every buyer i, we toss a coin which shows head with probability q. Denote
by Z the random variable counting the number of occurring heads in n coin tosses. By
the above considerations, the probability for tossing head in our thought experiment is
a lower bound on the probability that buyer i buys at least one item as long as there
are items remaining. As a consequence, the probability for the event of seeing at least
m times head is a lower bound on the probability of selling all items in our mechanism.

Using that
E [Z] = nq = m log logn ,

a Chernoff bound with δ = 1− 1
log logn yields

Pr [Z < m] = Pr [Z < (1− δ)E [Z]] ≤ exp
(
−1

2δ
2E [Z]

)

= exp
(
−1

2
(log logn− 1)2

log logn m

)
(�)
≤ exp (− log logn+ 2) = e2

logn ,

where in (�) we assumed that m ≥ 2. Observe that the case of m = 1 is covered by our
results in Section 6.2.

Combining these, we can lower bound the expected social welfare of the posted prices
mechanism by

E [ALG] ≥ E [revenuepp] ≥ Pr [all items are sold]

 m∑
j=1

pj


≥ Pr [Z ≥ m]

m∑
j=1

F−1
j (1− q)

≥
(

1− e2

logn

)(
1− log log logn+ logm+ 1

logn

) m∑
j=1

E
[
max
i∈[n]

vi({j})
]

≥
(

1−O
( log log logn

logn +
logm
logn

))
E [OPT] .
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Observe that the proof of Theorem 6.4.3 only requires to bound the expected revenue
of our mechanism. Bounding the expected optimal revenue by the expected optimal
social welfare, we can state the following corollary.

Corollary 6.4.4. The expected revenue achieved by the posted prices mechanism with
subadditive buyers and static prices yields a 1 − O

(
log log logn

logn + logm
logn

)
-fraction of the

expected optimal revenue.
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Chapter 7

The Secretary Problem with
Predicted Additive Gap

In Chapter 3 to Chapter 6, we made the crucial assumption that values of buyers for
items are always drawn from known probability distributions. Now, we change the model
and enter the terrain with adversarial weights which are revealed in random order, a.k.a.
the Secretary problem.

In this chapter, we assume that there is a single item for sale, every buyer has a
weight wi for being allocated the item which is fixed by an adversary, and buyers arrive
in random order. To fix notation, we assume that w1 ≥ w2 ≥ · · · ≥ wn. Still, the
assumption from Section 1.1.2 on the Secretary problem of having no prior information
on the weights at all is highly pessimistic in the modern era. Usually, there is a huge
amount of data and past information which we can use to predict the weights in (more
or less) accurate ways.

To capture this access to information, we study the Secretary problem in the re-
cently very popular model of algorithms with predictions as introduced by Lykouris and
Vassilvitskii [2021] and Purohit et al. [2018]. Antoniadis et al. [2020] and Dütting et al.
[2021b] already studied the Secretary problem with a prediction of the largest weight in
the sequence, and resolve this setting with an algorithm which yields a nice robustness-
consistency trade-off. Fujii and Yoshida [2023] consider the Secretary problem with an
even stronger prediction: a prediction for every weight in the sequence. Given the prior
work, we ask the meta question:

What is the weakest piece of information we can predict that still allows us to break
the 1/e barrier from Theorem 1.1.3?

Stated another way, is there a different parameter we can predict, one that does not
require us to learn the best value, but is still strong enough to beat 1/e? This brings
us to the idea of predicting the gap between the highest and k-th highest weight, or in
other words, predicting how valuable wk is with respect to w1. To this end, we consider
predicting an additive gap w1 −wk.

Predicting the additive gap versus w1 can be motivated when considering markets
displaying some sort of translation invariance. For example, imagine we are trying to sell
cars and buyers are arriving each day with an offer. Different car models will typically
have very different highest offers. However, the additive gap between the highest and
second highest offer may be a more stable parameter to learn. From a more theoretical
perspective, the additive gap between w1 and wk can also be viewed as interpolating
between two previously studied setups: when w1 −wk gets small, we get closer towards
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the k-best Secretary problem (see e.g. Gilbert and Mosteller [1966], Buchbinder et al.
[2014]), and when w1 −wk is very large, the additive gap acts as a surrogate prediction
of w1, the prediction setting in Antoniadis et al. [2020] and Dütting et al. [2021b]. As we
will see, even though the additive gap is much weaker than a direct prediction for w1, it
strikes the perfect middle ground: it is strong enough to beat 1/e by a constant for any
possible value of the gap w1 −wk (and even if we do not know what k is upfront).

Algorithms Inspired from Classical Secretary

The algorithms in this chapter are inspired by Algorithm 2 for classical Secretary, but
additionally incorporate the gap: Wait for some time to get a flavor for the weights in
the sequence, set a threshold based on the past observations and the gap, afterwards
pick the first element exceeding the threshold.

At first glance, this might not sound promising: In cases when the gap is small,
incorporating the gap in the threshold does not really affect the best-so-far term. Hence,
it may seem that beating 1/e is still hard. However, in these cases, even though the
threshold will be dominated by the best-so-far term most of the time, the gap reveals
the information that the best value and all other values up to wk are not too far off.
That is, accepting any weight which is at least wk ensures a sufficient contribution.

Our analyses use this fact in a foundational way: Either the gap is large in which
case we do not consider many elements in the sequence for acceptance at all. Or the gap
is small which implies that accepting one of the k highest weights is reasonably good.
For each of the cases we derive lower bounds on the weight achieved by the algorithm.

Since we do not know upfront which case the instance belongs to, the waiting time
cannot be tailored to the respective case but rather needs to be able to deal with both
cases simultaneously. This introduces some sort of tension: For instances which have a
large gap, we would like the waiting time to be small. By this, we could minimize the loss
which we incur by waiting instead of accepting high weighted elements at the beginning
of the sequence. For instances which have a small gap, the contribution of the gap to
the algorithm’s threshold can be negligible. This results in the need of a longer waiting
time at the beginning to learn the magnitude of weights reasonably well. We solve this
issue by using a waiting time which balances between these two extremes: It is (for most
cases) shorter than the waiting time of 1/e from the classical Secretary algorithm. Still,
it is large enough to gain some information on the instance with reasonable probability.

As a corollary of the main theorem, we will see that we can beat the competitive
ratio of 1/e even if we only know the gap w1−wk but do not get to know the index k. In
particular, this proves that even an information like “there is a gap of c in the instance”
is helpful to beat 1/e, no matter which weights are in the sequence and which value c
attains.

Additional Related Work on Algorithms with Predictions for the Sec-
retary Problem

We already scratched the surface of the field on algorithms with predictions. Here,
the algorithm has access to some machine learned advice upfront and may use this
information to adapt decisions. Initiated by the work of Lykouris and Vassilvitskii
[2021] and Purohit et al. [2018], there have been many new and interesting results in
many different problems within the last years, including ski rental [Wei and Zhang, 2020],
online bipartite matching [Lavastida et al., 2021], load balancing [Ahmadian et al., 2023],
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and many more (see e.g. Im et al. [2021], Zeynali et al. [2021], Almanza et al. [2021]).
Since this area is developing very fast, we refer the reader to the website Algorithms-
with-Predictions for references of literature.

As mentioned before, also the Secretary problem itself has been studied in this frame-
work. Antoniadis et al. [2020] consider the Secretary problem when the machine learned
advice predicts the weight of the largest element w1. Their algorithm’s performance de-
pends on the error of the prediction as well as some confidence parameter by how much
the decision maker trusts the advice. In complementary work, Dütting et al. [2021b] give
a bigger picture for Secretary problems with machine learned advice. Their approach
is LP based and can capture a variety of settings. They assume that the prediction is
one variable for each weight (e.g. a 0/1-variable indicating if the current element is the
best overall or not). Fujii and Yoshida [2023] assume an even stronger prediction: Their
algorithm has access to a prediction for every weight in the sequence. In contrast, we go
into the opposite direction and deal with a less informative piece of information in this
chapter.

Chapter Organization and Remarks

This chapter is based on The Secretary Problem with Predicted Additive Gap [Braun and
Sarkar, 2023], which is joint work with Sherry Sarkar. More detailed bibliographic notes
can be found in Section 1.5.

In Section 7.2, we show how to beat 1/e when having access to the additive gap
exactly. As this might be too much to hope for, we complement this result by studying
the robustness-consistency trade-off in Section 7.3. It is crucial to mention that the error
in the prediction might be unbounded. To complement this, when having an upper bound
on the error of the prediction, we can get an improved guarantee, as shown in Section 7.4.
In addition to the theoretical results, simulations can be found in Section 7.5 to support
our theoretical findings.

7.1 Preliminaries

Recall that in the classical Secretary problem as introduced in Section 1.1.2, an adversary
fixes n non-negative, real-valued weights, denoted w1 ≥ w2 ≥ · · · ≥ wn. For each, there
is an arrival time ti

iid∼ Unif[0, 1]. Weight wi is revealed at time ti and we immediately
and irrevocably need to decide if we want to accept or reject this element.

Our goal is to maximize the selected weight and we measure the quality of an al-
gorithm by the competitive ratio of OPT = maxiwi compared to E [ALG], where the
expectation is taken over the random arrival times of elements (and possible internal
randomness of the algorithm).

In addition to the random arrival order, we assume to have access to a single predic-
tion ĉk for one additive gap together with its index k. The additive gap for some index
2 ≤ k ≤ n is ck := w1−wk. We say that an algorithm has access to an exact or accurate
gap if ĉk = ck (as in Section 7.2).

When the algorithm gets a predicted additive gap ĉk which might not be accurate
(as in Section 7.3 or Section 7.4), we say that ĉk has error η = |ĉk − ck|. We call an
algorithm ρ-robust if the algorithm is ρ-competitive regardless of error η and we say the
algorithm is ψ-consistent if the algorithm is ψ-competitive when η = 0.
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When clear from the context, we drop the index k at the gap and only call the gap
c or ĉ respectively.

7.2 Knowing an Exact Gap

We start with the setting of getting an accurate prediction for the gap, before diving
into the cases where the predicted gap may be inaccurate in Section 7.3 and Section 7.4.
Crucially for this section, we are given the exact gap ck = w1 −wk for some 2 ≤ k ≤ n.
We assume that we get to know the index k as well as the value of ck, but neither w1
nor wk.

Our algorithm takes as input the gap c as well as a waiting time τ . This gives us
the freedom to potentially choose τ independent of k if required. As a consequence, we
could make the algorithm oblivious to the index k of the element to which the gap is
revealed. We will use this in Corollary 7.2.4.

Algorithm 13: Secretary with Exact Additive Gap
1 Input: Additive gap c, time τ ∈ [0, 1]
2 Before time τ :
3 Observe weights wi
4 At time τ :
5 Compute BSF(τ ) = maxi:ti≤τ wi
6 After time τ :
7 Accept first element with wi ≥ max(BSF(τ ), c)

This algorithm beats the prevalent competitive ratio of 1/e ≈ 0.368 by a constant.

Theorem 7.2.1. Given any additive gap ck = w1 −wk, for τ = 1− (1/k+1)
1/k, Algo-

rithm 13 achieves a competitive ratio of

max
(

0.4, 1
2

( 1
k+ 1

)1/k
)

.

Note that as k tends towards n and both become large, the competitive ratio ap-
proaches 1/2.

We split the proof of Theorem 7.2.1 in the following two lemmas. Each of them gives
a suitable bound on the performance of our algorithm for general waiting times τ in
settings when wk is small or large. We will only plug in our choice of τ in the conclusion
later.

The first lemma gives a lower bound in cases when wk is small in comparison to w1.

Lemma 7.2.2. If wk < 1
2w1, then

E [ALG] ≥ (1− τ )
(1

2 +
1

2(k− 1)

)
·w1 .

The second lemma will be used to give a bound when wk is large compared to w1.
More precisely, we will give two bounds which both capture the weight achieved by the
algorithm. The first bound is tighter for larger k, the second bound is independent of k.
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Lemma 7.2.3. If wk ≥ 1
2w1, then the following two bounds hold:

(i) E [ALG] ≥ k+1
2k

(
1− τ − (1− τ )k+1

)
·w1 and

(ii) E [ALG] ≥
(

3
2τ ln

(
1
τ

)
− 1

2τ (1− τ )
)
·w1 .

As a consequence, E [ALG] is also at least as large as the maximum of the two bounds.

We start with a proof of Lemma 7.2.2 when wk is small compared to w1.

Proof of Lemma 7.2.2. Let wk < 1
2w1. Observe that in this case, the gap is quite large,

as
ck = w1 −wk > w1 −

1
2w1 =

1
2w1 > wk ≥ · · · ≥ wn .

In particular, the gap is large enough such that the algorithm either selects nothing (if
w1 arrives before τ) or some element among w1, . . . ,wl for some 1 ≤ l ≤ k − 1. To
see this, first observe that the gap never overshoots w1 as we are always ensured that
w1 ≥ ck. In addition, we only accept elements strictly larger than wk in this case. Let l
be the index of the element for which wl ≥ ck > wl+1, i.e. the last element which is not
excluded from a possible acceptance by ck.

Hence, we can bound

E [ALG] = Pr [w1 arrives after τ ] ·E [ALG | w1 arrives after τ ]

≥ (1− τ )
(1

2w1
l− 1
l

+
1
l
w1

)
≥ w1(1− τ )

(1
2 +

1
2(k− 1)

)
.

To see why the first inequality holds, note that the probability of an element to arrive
after τ is precisely 1− τ . In addition, conditioned on the best element arriving after
τ , we are ensured to accept some element among the first l elements. By the random
arrival times, we accept the best element w1 in at least a 1/l-fraction of scenarios. In the
remainder, we will select an element of weight at least 1

2w1. The second inequality uses
l ≤ k− 1.

In this case, we actually accept w1 with much higher probability than 1/l. In partic-
ular, observe that we exclude wl+1, . . . ,wn by the gap in the threshold, so the problem
boils down to solving a Secretary instance with l elements. However, the bound presented
in the proof of Lemma 7.2.2 is sufficient for our purposes.

Next, we turn to the regime when wk is large and prove the two bounds from
Lemma 7.2.3.

Proof of Lemma 7.2.3 (i). Let wk ≥ 1
2w1. In this case, the gap can be quite small. Still,

we are guaranteed that selecting any element among w2, . . . ,wk achieves at least a weight
of 1

2w1.
We condition on the event wi = BSF(τ ) for i ∈ {2, . . . ,n}. For any i ≤ k + 1,

having element wi as BSF(τ ), we will always accept the first element among w1, . . . ,wi−1
arriving after τ . To see this, note that none of these elements will be excluded by the
gap ck in the threshold of the algorithm as

ck = w1 −wk ≤ w1 −
1
2w1 =

1
2w1 ≤ wk .
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We first give a bound on the expected weight achieved by the algorithm conditioned on
seeing wi as the BSF(τ ) for some 2 ≤ i ≤ k + 1. When seeing wi as the BSF(τ ), we
select w1 in a 1

i−1 -fraction of scenarios. In addition, any element w2, . . . ,wi−1 is ensured
to have a weight at least 1

2w1. As a consequence, using that we only consider i ≤ k+ 1,

E [ALG | wi is BSF(τ )] ≥ 1
i− 1w1 +

i− 2
i− 1 ·

1
2w1 ≥

1
2

(
1 + 1

k

)
·w1 . (7.1)

Using this, we can derive the following lower bound. Note that if w1 is BSF(τ ), we will
select nothing:

E [ALG] ≥
k+1∑
i=2

Pr [wi is BSF(τ )] ·E [ALG | wi is BSF(τ )]

=
k+1∑
i=2

τ (1− τ )i−1 ·E [ALG | wi is BSF(τ )]

(7.1)
≥ w1 ·

1
2

(
1 + 1

k

)
τ
k+1∑
i=2

(1− τ )i−1

= w1 ·
1
2

(
1 + 1

k

)
τ

(
1− (1− τ )k+1

τ
− 1

)

= w1 ·
1
2

(
1 + 1

k

)(
1− τ − (1− τ )k+1

)
.

The second equality uses a geometric sum to simplify the expression.

In addition, we can use an alternate analysis, which is tighter for small k.

Proof of Lemma 7.2.3 (ii). Let wk ≥ 1
2w1. We only consider the probability of selecting

the best or second best element. Observe that the second best element satisfies w2 ≥
wk ≥ 1

2w1 by the case distinction, no matter for which k we observe the gap. Our goal
will be to lower bound the acceptance probabilities of w1 and w2 with the ones from
the classical Secretary problem. To this end, we first observe that for any element wi, if
wi ≥ ck, then

Pr [Algorithm 13 selects wi] ≥ Pr [An algorithm with threshold BSF(τ ) selects wi] .
(7.2)

To see why this inequality holds, let wi arrive after time τ . If wi is the first element
to surpass BSF(τ ), by the hypothesis that wi ≥ ck, wi is also the first to surpass the
threshold used by Algorithm 13.

Using this, we can lower bound the selection probabilities of w1 and w2 by the ones of
an algorithm which is just using BSF(τ ) as a threshold. The next few lines of calculations
are very similar to folklore techniques for the classical Secretary problem, and we have
seen those arguments in the proof of Theorem 1.1.3.

To bound the probability of selecting w1 by an algorithm which uses BSF(τ ) as a
threshold, observe that if w1 arrives before τ , it will be rejected. If it arrives at some
time x ∈ (τ , 1], there are two cases in which we accept w1: Either no other element
arrived before (by the i.i.d. arrival times, this happens with probability (1− x)n−1) or
the best element before did arrive before τ . The latter happens with probability τ

x . As
a consequence, we get

146



CHAPTER 7. SECRETARY WITH PREDICTED ADDITIVE GAP

Pr [Algorithm 13 selects w1]
(7.2)
≥ Pr [An algorithm with threshold BSF(τ ) selects w1]

=
∫ 1

τ
(1− x)n−1 +

(
1− (1− x)n−1

) τ
x
dx

≥
∫ 1

τ

τ

x
dx = τ ln

(1
τ

)
.

Similarly, for w2 we can compute the same integral after conditioning on w1 arriving
after time x. Observe that the probability of w1 arriving after time x is precisely 1− x.

Pr [Algorithm 13 selects w2]
(7.2)
≥ Pr [An algorithm with threshold BSF(τ ) selects w2]

=
∫ 1

τ
(1− x)

(
(1− x)n−2 +

(
1− (1− x)n−2

) τ
x

)
dx

≥
∫ 1

τ
(1− x) τ

x
dx = τ ln

(1
τ

)
− τ (1− τ ) .

Using that w2 ≥ 1
2w1, we obtain

E [ALG] ≥ w1τ ln
(1
τ

)
+w2

(
τ ln

(1
τ

)
− τ (1− τ )

)
≥ w1

(
τ ln

(1
τ

)
+

1
2

(
τ ln

(1
τ

)
− τ (1− τ )

))
= w1

(3
2τ ln

(1
τ

)
− 1

2τ (1− τ )
)

.

Having these two lemmas, we can now conclude the proof of the main theorem.

Proof of Theorem 7.2.1. We use the lower bound obtained by Lemma 7.2.2. From
Lemma 7.2.3, we take the maximum of the two bounds into consideration. Since we
do not know upfront to which case our instance belongs, we can only obtain the mini-
mum of the two as a general lower bound on the weight achieved by the algorithm.

As a consequence, we obtain E [ALG] ≥ α ·w1 for

α := min
(
(1− τ )k
2(k− 1) ; max

(
k+ 1

2k
(
1− τ − (1− τ )k+1

)
; 3
2τ ln

(1
τ

)
− 1

2τ (1− τ )
))

(7.3)

which depends on the waiting time τ . Now, we plug in τ = 1−
(

1
k+1

)1/k
. First, note

that we can bound the maximum in α with the first of the two terms. Factoring out a
1− τ , we get

α ≥ (1− τ ) ·min
(

k

2(k− 1) ; k+ 1
2k

(
1− (1− τ )k

))
=

( 1
k+ 1

)1/k
·min

(
k

2(k− 1) ; k+ 1
2k · k

k+ 1

)
=

1
2

( 1
k+ 1

)1/k
.
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To compensate for the poor performance of this bound for small k, we can use basic
calculus to state the following.

After plugging in our choice of τ into Expression (7.3), the first term is minimized
for k = 7 for a value of at least 0.43. For 2 ≤ k ≤ 11, the last term is always at least
0.404 and for any k ≥ 12, the second term exceeds 0.403. Hence, we always ensure that
α ≥ 0.4.

As a corollary of the proof of Theorem 7.2.1, we also get a lower bound on the weight
achieved by the algorithm if we are only given the gap, but not the element which obtains
this gap. That is, we are given ck but not the index k.

Corollary 7.2.4. If the algorithm only has access to ck, but not k, setting τ = 0.2
achieves E [ALG] ≥ 0.4 ·w1.

The proof mainly relies on the fact that the lower bound we obtained in the proof
of Theorem 7.2.1 holds for any choice τ ∈ [0, 1]. Also, the algorithm itself only uses
the gap to contribute to the threshold. The index k is only used to compute τ . As a
consequence, when choosing τ = 0.2 independent of k, the algorithm is oblivious to the
exact value of k, but only depends on the gap ck. For this choice of τ , we can show that
α ≥ 0.4.

Proof of Corollary 7.2.4. Note that the lower bound in Expression (7.3) holds for any
choice of τ ∈ [0, 1]. For τ = 0.2, the value of α in Expression (7.3) satisfies

α = min
(

0.8 · k

2(k− 1) ; max
(
k+ 1

2k
(
0.8− 0.8k+1

)
; 0.3 ln(5)− 0.08

))
≥ min

(
0.8 · 12; max

(
k+ 1

2k
(
0.8− 0.8k+1

)
; 0.4

))
≥ 0.4

and hence, we get a competitive ratio of at least 0.4.

As a consequence, very surprisingly, even if we only get to know some additive gap ck
and not even the index k, we can outperform the prevalent bound of 1/e. Also, observe
that this is independent of the exact value that ck attains and holds for any small or
large gaps.

As mentioned before, Algorithm 13 is required to get the exact gap as input. In
particular, once the gap we use in the algorithm is a tiny bit larger than the actual gap
ck, we might end up selecting no element at all. In order to see this, we consider the
following example.

Example 7.2.5. We get to know the gap to the smallest weight cn = w1 − wn and
the smallest weight wn in the sequence satisfies wn = 0. Let the gap which we use in
Algorithm 13 be only some tiny δ > 0 too large. In other words, we use cn + δ as a
gap in the algorithm. Still, this implies that our threshold max(BSF(τ ), cn+ δ) after the
waiting time satisfies

max(BSF(τ ), cn + δ) ≥ cn + δ = w1 + δ > w1 ≥ w2 ≥ · · · ≥ wn .

As a consequence, we end up selecting no weight at all and have E [ALG] = 0.
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This naturally motivates the need to introduce more robust algorithms in this set-
ting. To this end, the results in Section 7.3 will show that a slight modification in the
algorithm and its analysis allows to obtain robustness to errors in the predictions while
still outperforming 1/e for accurate gaps.

7.3 Robustness-Consistency Trade-off

Motivated by the weakness of Algorithm 13 revealed in Example 7.2.5, we now shift our
perspective towards the following question: how well can an algorithm perform when
equipped with a potentially erroneous prediction?

We show how to modify our algorithm in order to still beat 1/e when getting the
correct gap as input, but still be constant competitive in case the predicted gap is
inaccurate. The modification leads to Algorithm 14 and works as follows: Initially, we
run the same algorithm as before. After a certain amount of time 1− γ, if the algorithm
has not terminated yet, we will lower our threshold in order to hedge against an incorrect
prediction.

Algorithm 14: Robust-Consistent Algorithm
1 Input: Predicted gap ĉ, times τ ∈ [0, 1), γ ∈ [0, 1− τ )
2 Before time τ :
3 Observe weights wi
4 At time τ :
5 Compute BSF(τ ) = maxi:ti≤τ wi
6 Between time τ and time 1− γ:
7 Accept first element with wi ≥ max(BSF(τ ), ĉ)
8 After time 1− γ:
9 Accept first element with wi ≥ BSF(τ )

Note that by γ ∈ [0, 1− τ ), we ensure that τ < 1− γ, i.e. the waiting time τ is not
after time 1− γ and hence, the algorithm is well-defined. Now, we can state the following
theorem which gives guarantees on the consistency and the robustness of Algorithm 14.
We will discuss afterwards how to choose τ and γ in order to outperform the classical
bound of 1/e by a constant for accurate predictions while satisfying constant robustness
simultaneously.

Theorem 7.3.1. Given a prediction ĉk for the additive gap ck, define

• α1 := (1−τ−γ)·k
2(k−1) ,

• α2 := k+1
2k

(
1− τ − (1− τ )k+1

)
and

• α3 := 3
2τ ln

(
1
τ

)
− 1

2τ (1− τ ).

Then, Algorithm 14 is

(i) min (α1, max (α2,α3))-consistent and

(ii) min (τγ, τ ln (1/τ))-robust.
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We split the proof of Theorem 7.3.1 into two parts: first, we argue about the consis-
tency of our algorithm, second, we show that it is also robust.

Proof of Theorem 7.3.1 (i). For consistency, we assume that our prediction error is zero,
hence our predicted gap ĉk equals the actual gap ck. We can perform the same case
distinction as we did in the proof of Theorem 7.2.1.

In the first case, let wk < 1
2w1, hence,

ĉk = ck = w1 −wk >
1
2w1 ≥ wk ≥ wk+1 ≥ · · · ≥ wn .

Now, we lower bound the expected weight obtained by Algorithm 14 via the expected
weight if w1 arrives between time τ and 1− γ.

E [ALG] ≥ Pr [w1 in [τ , 1− γ]] ·E [ALG | w1 in [τ , 1− γ]]
= (1− τ − γ) ·E [ALG | w1 in [τ , 1− γ]]

≥ w1

(
(1− τ − γ) · k

2(k− 1)

)
.

Here, the first inequality lower bounds the expected weight of our algorithm obtained
when w1 arrives after 1− γ by zero. In particular, we only considers contributions which
are made if w1 arrives in [τ , 1− γ]. The second inequality uses the same reasoning as in
the proof of Lemma 7.2.2. So, for this case, we have E [ALG] ≥ α1 ·w1.

In the second case, let wk ≥ 1
2w1, hence,

ĉk = ck = w1 −wk ≤
1
2w1 ≤ wk .

Interestingly, the analysis of Algorithm 13 directly carries over in this case. Recall in
this case, we only relied on the gap not excluding high weight elements (with indices
1, . . . , k), and dropping the gap as a threshold after time 1− γ all together preserves
this property. When following the proof of Lemma 7.2.3 step by step, we can use
exactly the same arguments also for Algorithm 14. Hence, we get the same bounds as
in Lemma 7.2.3 (i) and (ii). Therefore, defining α2 := k+1

2k

(
1− τ − (1− τ )k+1

)
and

α3 := 3
2τ ln

(
1
τ

)
− 1

2τ (1− τ ), we obtain that

E [ALG] ≥ α ·w1

for α = min (α1, max (α2,α3)).

With the desired consistency guarantees in mind, we can now shift our perspective
towards robustness.

Proof of Theorem 7.3.1 (ii). For robustness, we need to protect our algorithm against
inaccurate gaps – no matter how bad the predicted gap is. To this end, we consider two
cases.

When the predicted gap is larger than the actual gap (and perhaps even overshoots
w1), note that Algorithm 14 will correctly pick w1 if w2 appears before time τ and w1
appears after time 1− γ. Therefore, Algorithm 14 will pick w1 with probability at least
τ · γ and hence, is at least (τ · γ)-competitive in this case.
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When the predicted gap is smaller than the actual gap (and in particular, does not
overshoot w1 and therefore is still a valid threshold), we will select w1 with probability
at least τ ln (1/τ), as detailed in the proof of Lemma 7.2.3 (ii). Taking the minimum of
these two cases yields the desired robustness.

For example, when using a waiting time τ = 0.2 as in Corollary 7.2.4 independent of
the index k and a value of γ = 0.05, we get the following: Algorithm 14 is at least 0.375-
consistent and 0.01-robust. In particular, we can outperform the prevalent bound of 1/e
by a constant if the predicted gap is accurate while ensuring to be constant competitive
even if our predicted gap is far off. Of course, when being more risk averse, one could
also increase the robustness guarantee for the cost of decreasing the competitive ratio in
the consistent case. Still, we note that the analysis for robustness as well as consistency
is not tight. Finding a tight trade-off remains an open problem.

As a side remark, we highlight that these guarantees as well as Theorem 7.3.1 hold
independent of any bounds on the error of the predicted gap. However, eventually, it
might be reasonable to assume that the gap is bounded. We turn towards this setting in
Section 7.4 and show that we can achieve much better competitive ratios when we know
a range for the error.

7.4 Improved Guarantees for Bounded Errors

Complementing the previous sections where we had either access to the exact gap (Sec-
tion 7.2) or no information on a possible error of the prediction (Section 7.3), we now
assume that the error is bounded1. That is, we get to know some c̃k ∈ [ck − ε; ck + ε]
which is ensured to be at most an ε off. Also, the bound ε on the error is revealed to us.
Still, the true gap ck remains unknown.

Our algorithm follows the template which we discussed before. Still, we slightly
perturb c̃k to ensure that the threshold is not exceeding w1.

Algorithm 15: Secretary with Bounded Prediction Error
1 Input: Approximate gap c̃, time τ ∈ [0, 1], error bound ε
2 Before time τ :
3 Observe weights wi
4 At time τ :
5 Compute BSF(τ ) = maxi:ti≤τ wi
6 After time τ :
7 Accept first element with wi ≥ max(BSF(τ ), c̃− ε)

This algorithm allows to state an approximate version of Theorem 7.2.1. As a matter
of fact, we can obtain the same lower bounds of α as in the exact gap case. Still, we
suffer an additive loss depending on the range of the error ε.

Theorem 7.4.1. Given any prediction of the gap c̃k ∈ [ck − ε; ck + ε], where ck =
w1 −wk, Algorithm 15 satisfies E [ALG] ≥ α ·w1 − 2ε.

1In order to distinguish a bounded error from a possibly unbounded one, we use c̃ instead of ĉ for
the predicted gap in this section.
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As in Section 7.2, for τ = 1− (1/k+1)1/k we get α ≥ max
(
0.4, 1

2 (
1/k+1)1/k

)
and for

waiting time τ = 0.2, we are still guaranteed α ≥ 0.4. Hence, also the results when not
knowing the index k carry over. In particular, this nicely complements the robustness
result from Theorem 7.3.1 as follows: Once we can bound the error in a reasonable range,
even not knowing the gap exactly does not cause too much of an issue.

In the proof, we perform a case distinction whether wk is at least 1
2w1 − 2ε or not.

Afterwards, we derive bounds for the two cases separately and combine them to obtain
the competitive ratio, similar to the proof of Theorem 7.2.1.

Proof of Theorem 7.4.1. First, we argue that the threshold in the algorithm is never too
high to avoid acceptance of w1 if w1 arrives after τ . To see this, note that c̃k − ε ≤
(ck + ε)− ε = ck = w1 −wk ≤ w1.

For the case distinction, we consider the cases that wk is small or large with respect
to w1. Still, we need to incorporate the fact that we know a prediction with bounded
error and not the exact gap.

Case 1. wk <
1
2w1 − 2ε.

Observe that in this case, the term c̃k− ε in the threshold is quite large. In particular,

c̃k − ε ≥ (ck − ε)− ε = w1 −wk − 2ε > w1 −
(1

2w1 − 2ε
)
− 2ε = 1

2w1 . (7.4)

As mentioned before, c̃k − ε never exceeds w1. Also, observe that 1
2w1 >

1
2w1 − 2ε >

wk ≥ · · · ≥ wn by our case distinction.
As a consequence, in this case, the algorithm either selects nothing or some element

among w1, . . . ,wl for some 1 ≤ l ≤ k− 1. As in the proof in Section 7.2, we can define l
to be the index of element with wl ≥ c̃k − ε > wl+1. Also, any element which is selected
has a weight of at least 1

2w1 by Inequality (7.4).
Hence, we achieve the same bound as in the exact gap scenario of

E [ALG] ≥ Pr [w1 arrives after τ ] ·E [ALG | w1 arrives after τ ]

≥ (1− τ )
(1

2w1
l− 1
l

+
1
l
w1

)
≥ w1(1− τ )

(1
2 +

1
2(k− 1)

)
.

Case 2. wk ≥ 1
2w1 − 2ε.

Observe that selecting any element among w2, . . . ,wk achieves at least a weight of
1
2w1 − 2ε. We now bound the expected weight of the algorithm in a similar way as in
Section 7.2 by deriving two lower bounds.

Bound (i):
We condition on seeing elements w2, . . . ,wk+1 as BSF(τ ). As before,
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E [ALG] ≥
k+1∑
i=2

Pr [wi is BSF(τ )] ·E [ALG | wi is BSF(τ )]

=
k+1∑
i=2

τ (1− τ )i−1 ·E [ALG | wi is BSF(τ )]

≥
k+1∑
i=2

τ (1− τ )i−1 ·
( 1
i− 1w1 +

i− 2
i− 1 ·

(1
2w1 − 2ε

))

≥
(
w1 ·

1
2

(
1 + 1

k

)
− 2ε

)
τ
k+1∑
i=2

(1− τ )i−1

≥ w1 ·
1
2

(
1 + 1

k

)(
1− τ − (1− τ )k+1

)
− 2ε .

The only difference to Section 7.2 is the lower bound for w2, . . . ,wk which are only guar-
anteed to be at least 1

2w1 − 2ε.

Bound (ii):
As before, in order to compensate for the weak lower bound in the small k regime,

we only consider the probability of selecting the best or second best element. Observe
that Inequality (7.2) also holds for Algorithm 15 when replacing the condition on the
weights with wi ≥ c̃k − ε.

Still, for the following reason, we need to argue in a slightly different way than in
the exact gap case. Setting the contribution to the threshold to c̃k − ε ensures that
the threshold never overshoots w1. Still, the weight w2 can now fall in two ranges: (a)
w2 ≥ c̃k − ε and hence, w2 is not affected by the gap in the threshold or (b) w2 < c̃k − ε
in which case the algorithm does not select w2 as the threshold is too high. The latter
case might occur as w2 ≥ wk ≥ 1

2w1− 2ε, but c̃k − ε ≤ ck + ε− ε = w1−wk ≤ 1
2w1 + 2ε.

Still, this will not introduce any problems.
Concerning (a), we argue as before. The second best element satisfies w2 ≥ wk ≥

1
2w1 − 2ε by the case distinction. Similar to the proof for the exact gap, we bound the
probabilities of selecting w1 or w2 and use the lower bound on w2. This implies that

E [ALG] ≥ w1τ ln
(1
τ

)
+w2

(
τ ln

(1
τ

)
− τ (1− τ )

)
≥ w1τ ln

(1
τ

)
+

(1
2w1 − 2ε

)(
τ ln

(1
τ

)
− τ (1− τ )

)
≥ w1

(3
2τ ln

(1
τ

)
− 1

2τ (1− τ )
)
− 2ε .

Concerning (b), note that if w2 is excluded from acceptance by the threshold, so
is any wi 6= w1. Hence, the algorithm will always either select nothing (if w1 appears
before τ) or accept w1 (if w1 appears after τ). Here it is important that the contribution
of c̃k − ε never exceeds w1. As a consequence, in this case,

E [ALG] = w1(1− τ ) ≥ w1

(3
2τ ln

(1
τ

)
− 1

2τ (1− τ )
)
− 2ε .
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Combination. When combining everything, we obtain E [ALG] ≥ α ·w1 − 2ε for

α := min
(
(1− τ ) k

2(k− 1) ; max
(
k+ 1

2k
(
1− τ − (1− τ )k+1

)
; 3
2τ ln

(1
τ

)
− 1

2τ (1− τ )
))

,

which is the same bound as in Expression (7.3) with an additional additive loss of 2ε.

7.5 Simulations

In order to gain a more fine-grained understanding of the underlying habits, we run
experiments2 with simulated weights and compare our algorithms among each other and
to the classical Secretary algorithm.

In Section 7.5.1, we compare our Algorithm 13 to the classical Secretary algorithm
stated in Algorithm 2. To this end, we draw weights i.i.d. from distributions and execute
our algorithm and the classical one. As we will see, instances which are hard in the
normal Secretary setting (without knowing any additive gap) become significantly easier
with additive gap; we can select the best candidate with a much higher probability. We
also demonstrate that for some instances, knowing the gap has a smaller impact, though
Algorithm 13 still outperforms the classical one.

Second, in Section 7.5.2, we focus on inaccurate gaps and compare Algorithm 13
developed in Section 7.2 to the robust and consistent Algorithm 14 from Section 7.3.
As a matter of fact, we will see that underestimating the exact gap is not as much of
an issue as an overestimation. In particular, underestimating the gap implies a smooth
decay in the competitive ratio while overestimating can immediately lead to a huge drop.
Note that these findings align with Example 7.2.5, in which overestimating turned out
to ruin all guarantees.

7.5.1 The Impact of Knowing the Gap

We compare our algorithm with additive gap to the classical Secretary algorithm (stated
in Algorithm 2, see e.g. [Dynkin, 1963]) with a waiting time of 1/e.

Experimental Setup

We run the comparison on three different classes of instances:

(i) Pareto: We first draw some θ ∼ Pareto(5/n, 1). Afterwards, each weight wi is
determined as follows: Draw Yi ∼ Unif[0, θ] i.i.d. and set wi = Y

(n1.5)
i (for more

details on Pareto distributions and Secretary problems, see e.g. Ferguson [1989]).

(ii) Exponential: Here, all wi ∼ Exp(1).

(iii) Chi-Squared: Draw wi ∼ χ2(10). That is, each wi is drawn from a chi-squared
distribution which sums over ten squared i.i.d. standard normal random variables.

For each class of instances, we average over 5000 iterations. In each iteration, we draw
n = 200 weights i.i.d. from the respective distribution together with 200 arrival times
which are drawn i.i.d. from Unif[0, 1].

2All experiments were implemented in Python 3.9 and executed on a machine with Apple M1 and 8
GB Memory.
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The benchmark is Algorithm 2 with a waiting time of τ = 1/e : Set the largest
weight up to time τ as a threshold and accepts the first element afterwards exceeding
this threshold. Algorithm 13 is executed with waiting times τ = 0.2 as well as τ =
1− (1/k+1)

1/k.

Experimental Results

When weights are sampled based on the procedure explained in (i), we observe an inter-
esting phenomenon (see Figure 7.1). For the classical Secretary algorithm, we achieve
approximately the tight guarantee of 1/e ≈ 0.368. Our algorithm, however, achieves a
competitive ratio of approximately 0.8 for τ = 0.2. When having a waiting time de-
pending on k, we improve the competitive ratio for large k while suffering a worse ratio
for small k.

Figure 7.1: Competitive ratios for weights based on (i). On the x-axis, we have the
index k from 2 to n. The y-axis shows the competitive ratios.

This can be explained as follows. Weights which are distributed according to (i)
almost always have a very large gap between the highest and second highest weight.
Hence, no matter which gap we observe, it will always be sufficiently large to exclude
all elements except the best one. Therefore, we only incur a loss if we do not accept
anything (which happens if and only if the best element arrives before the waiting time).
As a consequence, for τ = 0.2, we observe the ratio of 0.8 (which is the probability of
the highest weight arriving after time τ). For the waiting times depending on k, the
waiting time turns out to be larger for smaller k and vice versa. The improvement in
the competitive ratio for large k is due to the reduced waiting time and hence a smaller
probability of facing an arrival of w1 during the waiting period.

Interestingly, this shows that there are instances for which Algorithm 2 almost obtains
its tight guarantee of 1/e while these instances become easy when knowing an additive
gap.

Given these observations, one might wonder if it is always true that the index k
does not play a key role when using a constant waiting time τ = 0.2. For exponentially
distributed weights as in (ii), one can see that even with a static waiting time τ = 0.2,
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larger indices (and hence automatically larger gaps) are helpful to boost the competitive
ratio (see Figure 7.2).

Figure 7.2: Competitive ratios for weights based on (ii)

In addition, for k = 2, the waiting time which depends on k does even worse than the
classical algorithm. This phenomenon can also be observed for the weights produces by
procedure (iii) (see Figure 7.3). It seems that the waiting time for k = 2 of 1− 1/

√
3 ≈

0.423 is simply too large and suffers from losing too much during the exploration phase.
Still, also for weights from a Chi-Squared distribution, we can observe that, first, knowing
a gap helps most of the time, and second, larger gaps outperform smaller ones.

Figure 7.3: Competitive ratios for weights based on (iii)

Summing up, empowering the algorithm with the additional information of an addi-
tive gap helps to improve the competitive ratio. As a downside, it turned out that in a
few cases it seems that using the index k to compute the waiting time is not beneficial.
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Still, as a matter of fact, the waiting time depending on k is an artifact from our analy-
sis. In particular, the waiting time which we used in the simulations was introduced to
give provable guarantees. Hence, in the settings studied above, it is beneficial to use a
waiting time of e.g.

τ = min
(

0.2; 1−
( 1
k+ 1

)1/k
)

when having access to the index k in order to avoid the waiting time to be too long.

7.5.2 Dealing with Inaccurate Gaps

In order to get a better understanding concerning inaccuracies in the gap, we run a
simulation with different errors.

Experimental Setup

Again, we average over 5000 iterations. In each iteration, we set n = 200, draw arrival
times as before and weights as follows:

(iv) Exponential: Here, all wi ∼ Exp(1).

(v) Exponential with superstar : Here, wi ∼ Exp(1) for n− 1 weights and we add a
superstar element with weight 100 ·maxiwi.

We compare Algorithm 13 to Algorithm 14 both with waiting time τ = 0.2. In
addition, Algorithm 14 will drop the gap from the threshold after a time of 1− γ = 0.95,
in other words γ = 0.05.

The comparison is done for three different gaps: A small one where k = 2, i.e. the
gap between largest and second largest element, k = n/2 and k = n, i.e. the gap to the
smallest element.

Given a multiplication factor σ for the error, we feed our algorithm with a predicted
gap ĉk = σ · ck for σ going from zero to three in step size of 0.1. In other words, for σ = 1,
we get an accurate gap, for σ < 1, we underestimate the gap, for σ > 1 we overestimate
the gap and for σ = 0, the algorithms are equivalent to the classical Secretary algorithms
with waiting time τ .

Experimental Results

For exponentially distributed weights (see Figure 7.4), we can observe that underestimat-
ing the gap does not cause too many issues. In particular, when highly underestimating
the gap (say, σ < 0.5), both algorithms achieve a competitive ratio of approximately
0.65, similar to an algorithm not knowing any gap. For an accurate gap, σ = 1, larger
gaps are more helpful as they block more elements from being considered. Still, σ > 1
introduces a transition. For σ > 1 and gaps between the best and a small element (e.g.
k = 100 or k = 200), overestimating the gap reduces the selection probability of any
weight of Algorithm 13 to zero: The predicted gap is too large and even exceeds w1.
Still, Algorithm 14 is robust in a sense that we still achieve a competitive ratio of ap-
proximately 0.15. This constant depends on our choice of γ. As mentioned before, there
is the natural trade-off: Increasing γ for an improved robustness and suffer a decrease
in the competitive ratio for σ = 1.
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Figure 7.4: Competitive ratios for weights based on (iv). The x-axis shows σ, where the
predicted gap ĉk used by the algorithms satisfies ĉk = σ · ck for σ ∈ [0, 3].

Interestingly, for the gap between the best and second best element, both algorithms
are much more robust. This can be explained as the gap is small in this case anyway,
so overestimating by a factor of three does not cause any severe issues yet. One would
require to overestimate by a much larger factor here to see a significant difference in the
performance of both algorithms.

Next, we show what happens when shifting our perspective towards the more adver-
sarial setting of exponential weights with one additional superstar as listed in (v). Note
that in this setting, any algorithm can only achieve a reasonable competitive ratio by
selecting the superstar. As illustrated in Figure 7.5, no matter if we consider the gap
to k = 2, k = 100 or k = 200, the gap is always large enough to exclude mainly all
elements.

In addition, even underestimating the gap by a lot (with σ = 0.1) does not cause
any problems. On the other hand, once we overestimate only by a tiny bit, we mainly
lose all guarantees and Algorithm 13 becomes not competitive. Our more robust variant
in Algorithm 14 achieves a constant competitive ratio which could be increased when
choosing larger values of γ. Again, this would lead to a decrease in the competitive ratio
at σ = 1.
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Figure 7.5: Competitive ratios for weights based on (v). The x-axis shows σ, where the
predicted gap ĉk = σ · ck for σ ∈ [0, 3].
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Chapter 8

Conclusion and Further
Directions

In this thesis, we have seen new results and techniques which are related to three different
areas in the intersection of algorithm theory, game theory and economics. In Bayesian
online selection, we derived simplified proofs for the existence of prices for pricing-based
mechanisms in Chapter 3. When changing the benchmark from the offline optimum to
the (computationally unbounded) online optimum, we could give improved guarantees
for valuation functions with bounded demand in Chapter 4. For a restricted class of
distributions, pricing-based algorithms even allow to extract the optimal social welfare
asymptotically, as illustrated in Chapter 6.

Once we have sellers which bring items to the market, we end up in strategically more
complex scenarios as in Chapter 5. Still, also for these, we could design pricing-based
algorithm with state-of-the-art approximation guarantees.

In a complementing direction where weights are chosen adversarially and not sampled
from a distribution, we have seen in Chapter 7 that a single piece of information can
help to beat prevalent bounds.

That said, there are a lot of directions for future research and open problems which
are either related or inspired by the results of this thesis. As a concluding remark, we
discuss some of them in more detail.

8.1 Future Directions in Bayesian Online Selection

The simplified proofs from Chapter 3 avoid to use arguments on specific valuations but
only talk about the presence or absence of items. Still, solving the LP in Section 3.2.1
may require exponential time. When applying the proof steps from Section 3.3 con-
structively to the LP, one can solve for item prices. These prices are exactly the ones
obtained by Feldman et al. [2015] and Dütting et al. [2020] for combinatorial auctions.
Still, it remains an open problem if the general LP can be solved efficiently, for example
by the help of demand oracles.

Open Question 8.1.1. Can the LP from Section 3.2.1 be solved in polynomial time?
Or is there another LP formulation which also leads to simplified proofs for the existence
of prices and which can be solved efficiently?

Complementing this, it would also be interesting to see the power of the approach via
LP duality beyond combinatorial auctions and matroids. As such, one could consider
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arbitrary downward-closed feasibility constraints [Rubinstein, 2016] or other structures.
Also, unifying several previous approaches would be a very desirable goal.

This LP-based approach is inspired by a paper on posted-pricing mechanisms for
subadditive combinatorial auctions [Dütting et al., 2020]. They derive a Prophet In-
equality whose competitive ratio depends on the number of items. Hence, one of the
main open questions in this area still remains as follows.

Open Question 8.1.2. Are there static and anonymous item prices such that a posted-
pricing algorithm is constant-factor competitive for buyers with subadditive valuation
functions?

As a first step in this direction, Correa and Cristi [2023] showed that one can be within
a constant-factor for some online policy compared to the expected offline optimum. Still,
their algorithm is not pricing-based, and also using the reduction by Banihashem et al.
[2024] only leads to dynamic prices rather than static ones.

One of the fundamental assumptions in the proofs for Prophet Inequalities in Sec-
tion 3.2, Feldman et al. [2015] or Dütting et al. [2020] for combinatorial auctions is
that buyers are utility-maximizers. That is, every buyer buys the bundle among the
available items which maximizes vi(S) −

∑
j∈S pj for prices pj . What is happening if

we replace this with another model. For example, buyers could maximize their return-
of-investment (ROI) meaning that they maximize their value vi(S) subject to the set S
leading to non-negative utility.

Open Question 8.1.3. Can we also achieve a 1/2-competitive Prophet Inequality for
combinatorial auctions with static item prices when buyers maximize their return-of-
investment rather than quasi linear utilities?

Deng et al. [2022b] give a 1/4-competitive Prophet Inequality by using previous tech-
niques similar to Feldman et al. [2015] or Dütting et al. [2020]. Still, getting the tight
guarantee could be interesting as it probably requires modified techniques.

Talking about combinatorial auctions, the results from Chapter 4 use the assumption
that buyers sample a multi-demand valuation function. A natural open question is to
find tight guarantees for these valuation functions.

Open Question 8.1.4. Can the guarantee of 0.5 + κ for κ = 0.0115 from Algorithm 4
be improved? Maybe by using a stronger LP relaxation?

Another crucial aspect of multi-demand valuation functions is the property that
the contribution of one item is either zero or some fixed value. An inspiring extension
would be to consider more general valuation functions, for example gross-substitutes,
submodular or XOS functions.

Open Question 8.1.5. Can we find better-than-half approximation algorithms for the
optimal online policy for combinatorial auctions beyond multi-demand valuation func-
tions?

In other words, can we beat the approximation guarantee of half for more general
classes of valuations than the ones in Chapter 4? To achieve this goal, one is probably
required to use a different LP as well as a different approach than the one from Chapter 4
for several reasons: The current LP is heavily tailored to the multi-demand functions,
so is the algorithm. For example, when considering submodular valuations, it is by far
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not clear how to bound the contribution of one item in a two proposal algorithm. Is an
approach related to the one of Braverman et al. [2022] maybe more promising? Solving
this problem could lead to new insights and technical novelties which might have a much
broader impact.

In Chapter 6, we have seen that asymptotically optimal welfare can be achieved via
pricing-based algorithms. As a crucial assumption, we used the MHR property of the
distribution from which buyers’ valuations are drawn.

Open Question 8.1.6. Which other classes of distributions allow to extract the optimal
welfare asymptotically via a pricing-based algorithm?

To this end, the quantile allocation rule introduced in Section 6.2 seems very powerful
when combined with Theorem 4 in Banihashem et al. [2024] to turn it into a dynamic
pricing mechanism. Maybe, it can be used as a starting point to tackle this question.

8.2 Future Directions in Two-Sided Mechanism Design

As we have seen in Chapter 5, using the ideas from one-sided markets related to the ones
in Chapter 3 allows to design truthful mechanisms in two-sided environments as well.
Even though the mechanisms in Chapter 5 are DSIC and IR and fulfill budget balance
constraints, tight approximation guarantees remain open.

Open Question 8.2.1. What are the tight approximation guarantees for matroid, com-
binatorial and knapsack double auctions when restricting to DISC, IR and budget bal-
anced mechanisms?

To tackle this question, a useful starting point might be to extend the pricing tech-
niques from Ehsani et al. [2018] or Correa et al. [2017] to two-sided markets in the spirit
of our extension of Prophet Inequalities to two-sided markets in Chapter 5. As a first
step, it could be even interesting to see which other techniques from Prophet Inequalities
can be applied to the special case of bilateral trade instances.

Open Question 8.2.2. Can we get improved guarantees for bilateral trade instances us-
ing techniques from Prophet Inequalities (e.g. free-order Prophet or Prophet Secretary)?

When talking about combinatorial double auctions, in order to obtain DSIC and IR
mechanisms for buyers and sellers, we were required to work with restrictive classes of
valuations: Either, all agents are additive across items or sellers only bring a single item
to the market. What is happening beyond? Can we also get reasonably good approxi-
mation guarantees when buyers and sellers have more complex valuation functions?

Open Question 8.2.3. Can we design mechanisms which are DSIC and IR for buyers
and sellers with more general (e.g. submodular or XOS) valuation functions, budget
balanced and have a “reasonably good” approximation ratio?

As a first step in this direction, Colini-Baldeschi et al. [2020] already developed a
mechanism which is Bayesian incentive-compatible when combining additive sellers and
buyers with XOS valuations. But still, the question remains open if there is a mechanism
which is DSIC.
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8.3 Future Directions on Secretary Problems with Gaps

When tackling the single-selection problem in the Secretary model, we have seen in
Chapter 7 that a single, simple piece of information of the form “there is a gap of c in
the instance” helps to improve the competitive ratio. In addition, we can also obtain
guarantees with respect to robustness and consistency when having a prediction for the
additive gap. Still, the guarantees seem to be not tight.

Open Question 8.3.1. Can we achieve a better competitive ratio for any gap for the
algorithm in Section 7.2? Or is there a matching hardness result?

Maybe one is also required to use another algorithm in order to get a tight competitive
ratio for the Secretary problem when knowing an exact additive gap.

Discussing the trade-off between robustness and consistency, our guarantees are also
not tight.

Open Question 8.3.2. What is the tight trade-off between robustness and consistency
for Secretary problems with predicted additive gaps?

Recall that we considered gaps of the form w1−wk for some k. Still, it might be too
much to hope for a prediction of the gap to the largest weight. Hence, can we maybe do
something once we get a gap between two arbitrary elements?

Open Question 8.3.3. Can we also beat the competitive ratio of 1/e by a constant when
obtaining a gap wi −wj for some 1 ≤ i < j ≤ n?

As a side remark, it seems unlikely that we can beat 1/e for any gaps. To see this,
consider knowing that wn−1 −wn = 0, or in other words, the smallest element appears
twice in the sequence. Still, there are also gaps for which the information is helpful, such
as w2 −w3 = 0. In the latter case, we can indeed improve the guarantee and select the
largest weight with a probability larger than 1/e.

One of the main motivation to study additive gaps as a prediction model was to see
the power of less informative predictions than getting an estimate for the best weight in
the sequence. It is also interesting to see the power of less informative predictions beyond
the single-selection case, for example in multi-selection or knapsack environments.

Open Question 8.3.4. For the multi-selection Secretary problem: Can we obtain im-
proved competitive ratios when having access to an additive gap? And if yes, can the
algorithm be made robust to inaccurate predictions?

Also, understanding weaker notions of predictions in combinatorial auctions with
random arrival would be a desirable goal. To this end, one potential starting point
is to find a reasonable prediction model for unit-demand combinatorial auctions with
random arrivals (a.k.a. matching) and maybe extend this later to submodular valuation
functions, in a similar spirit as Kesselheim et al. [2013] do this for the classical setting.

Open Question 8.3.5. Which prediction models for combinatorial auctions (with unit-
demand or submodular valuations) in the random order model allow to break the 1/e-
barrier?

As mentioned, finding prediction models which do not give an advice for the maxi-
mum weight matching but rather give some indirect prediction could lead to very inter-
esting technical challenges.
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A.1 Proof of Theorem 1.1.2

To familiarize the reader with fundamental techniques, we recall a standard proof for
Theorem 1.1.2 from the literature below. As mentioned, the ideas will be a fundamental
cornerstone for Chapter 3 and Chapter 5.

Proof of Theorem 1.1.2. First, we reformulate the expected value selected by Algorithm 1
via

E [ALG] = E
[∑

i

vi1i selected by ALG

]
= E

[∑
i

(vi − p+ p)1i selected by ALG

]

= E
[∑

i

(vi − p)1i selected by ALG

]
+E

[∑
i

p1i selected by ALG

]

= E
[∑

i

(vi − p)1i selected by ALG

]
+ p ·Pr [ALG selects someone] .

Let us pause here for a moment to define some notation which will be useful later as
well. The second summand can be interpreted as the revenue or base value obtained by
running ALG which uses a price of p. We denote this revenue by rev. On the other
hand, the term (vi − p)1i selected by ALG can be thought of as the utility or surplus of
buyer i who is selected by the algorithm, denoted by ui. Note that for any buyer who is
not selected, the utility ui is simply zero.

Having this, we bound each of the two quantities separately.

Revenue. Observe that for the revenue, we have

E [rev] = p ·Pr [ALG selects someone] = p ·Pr [∃i : vi ≥ p] .

Utility. We first bound the utility of a single buyer i and use linearity of expectation
afterwards. To this end, note that

E [ui] = E [(vi − p)1i selected by ALG] = E
[
(vi − p)1vi≥p and v1,...,vi−1<p

]
.

Now, we can exploit the independence across buyers, i.e. the value of buyer i is inde-
pendent of the value of previously arrived buyers. In addition, we use (·)+ to denote
max(·, 0). Hence, we get

E [ui] = E
[
(vi − p)+

]
·Pr [v1, . . . , vi−1 < p] ≥ E

[
(vi − p)+

]
·Pr [∀i′ : vi′ < p] .

Summing over all buyers i, we get

E
[∑

i

ui

]
≥ Pr [∀i : vi < p] ·E

[∑
i

(vi − p)+
]
≥ Pr [∀i : vi < p] ·E

[
max
i

(vi − p)+
]

≥ Pr [∀i : vi < p] ·E
[
max
i

(vi − p)
]
= Pr [∀i : vi < p] ·

(
E
[
max
i
vi

]
− p

)
.
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Combining Revenue and Utility. Overall, we end up with

E [ALG(v)] ≥ p ·Pr [∃i : vi ≥ p] +Pr [∀i : vi < p] ·
(

E
[
max
i
vi

]
− p

)
. (A.1)

Observe that Pr [∃i : vi ≥ p] + Pr [∀i : vi < p] = 1. In addition, note that we still did
not define how to set the price p yet. This will turn out to be crucial in order to prove
Theorem 1.1.2. In the literature, there are different choices for the price p, two of which
we present in the following.

Option 1: Set p = 1/2 ·E [maxi vi]. This option was introduced by Kleinberg and
Weinberg [2012]. Plugging this choice for p into the right-hand side of Equation (A.1),
we obtain

E [ALG(v)] ≥
1
2E

[
max
i
vi

]
·Pr [∃i : vi ≥ p] +Pr [∀i : vi < p] ·

1
2E

[
max
i
vi

]
=

1
2E

[
max
i
vi

]
.

Option 2: Set p such that Pr [∃i : vi ≥ p] = 1/2. Samuel-Cahn [1984] introduced
this variant already in the 1980s. Again, using Equation (A.1), we get

E [ALG(v)] ≥ p ·Pr [∃i : vi ≥ p] + (1−Pr [∃i : vi ≥ p]) ·
(

E
[
max
i
vi

]
− p

)
= p · 12 +

1
2

(
E
[
max
i
vi

]
− p

)
=

1
2E

[
max
i
vi

]
.

It is easy to see that such a p exists for continuous distributions without point masses. In
the case of distributions with point masses, one can introduce a randomized tie-breaking
rule to achieve this property.
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A.2 Proof of Theorem 1.1.3

The proof for Theorem 1.1.3 is a folklore result and well-known in the existing literature,
but will also be useful to understand the results and proofs in Chapter 7.

Proof of Theorem 1.1.3. Note that as weights are chosen adversarially, we cannot control
by how much w1 exceeds any other weight wi. Hence, we bound

E [ALG] ≥ w1 ·Pr [select w1] ,

and continue by finding a suitable expression for Pr [select w1]. To this end, fix an
arrival time x ∈ [0, 1] for weight w1. Observe that we select w1 if x is later than τ and
one of the following two cases happens. Either no arrival took place before x which
happens with probability (1− x)n−1 due to the independence across arrival times. Or
the highest weight which arrived before x did arrive before time τ . This event happens
with probability τ/x. As a consequence, we get

Pr [select w1] =
∫ 1

τ
(1− x)n−1 +

(
1− (1− x)n−1

) τ
x
dx ≥

∫ 1

τ

τ

x
dx = τ ln

(1
τ

)
.

Plugging in our choice of τ = 1/e proves the claim.
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