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We compare the cost complexities of two approximation schemes fatidasd € HP(Q; x Q) which
live on the product domaife, x Q5 of sufficiently smooth domain@; c R™ andQ, c R", namely the
singular value / Karhunenéeve decomposition and the sparse grid representation. Here wesatbgim
suitable finite element methods with associdteedorderr of accuracy are given on the domaiag and

Q5. Then, the sparse grid approximation essentially needs@fdy %) with q = w unknowns
to reach a prescribed accuragyrovided that the smoothness bfsatisfiesp > r%, which is

an almost optimal rate. The singular value decomposition produces thisnly if f is analytical since

otherwise the decay of the singular values is not fast enougp.dﬁ%, then the sparse grid

approach gives essentially the ratée9) with g = %p“? while, for the singular value decomposition,

we can only prove the rat€(¢~%) with g = 2min{(rz"giﬂ;{{?ﬁz}gi’i’gf’g}”l’”2} . We derive the resulting

complexities, compare the two approaches and present numericlit nebich demonstrate that these
rates are also achieved in numerical practice.

Keywords singular value decomposition; sparse grids; complexity.

1. Introduction

The efficient approximate representation of multivariatections is an important task in numerical
analysis and scientific computing. In this paper, we comeémbn functions which live on the product
of two domainsQ; x Q,. Already for this simple situation, there exists a large ammf applications.
For example, radiosity models and radiative transfer (\édet al. (2008)) exhibit a product structure.
Here, Q1 denotes the spatial three-dimensional domain of the geanodiject under consideration and
Q, is the spher&?. Moreover, in the case of space-time discretizations odlpalic problemsQ; is
the time interval wherea®, is the spatial domain (Griebel & Oeltz (2007) and Stevensddchwab
(2009)).

Then, there are various phase space problems whereCho#imd Q, are three-dimensional cubes
or the full three-dimensional real space. Examples are thiezBann equation, kinetic equations or
the Langevin equation, see e.g. Balescu (1997). Furthesnmam-Newtonian flow can be modeled
by a coupled system which consists of the Navier Stokes mnufdr the flow in a three-dimensional
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geometry described b§; and of the Fokker-Planck equation in é&3- 1)-dimensional configuration
space o2,. Herek denotes the number of atoms in a chain-like molecule whictstitnites the non-
Newtonian behavior of the flow, for details see Bargdtal. (2009), Le Bris & Lelevre (2009), and
Lozinskiet al. (2010). Note that the domain of the configuration space éffigggain a product of — 1
spheres.

Another example is two-scale homogenization. After urifdd Cioranesciet al. (2008)), it gives
raise to the product of the macroscopic physical domain hadperiodic microscopic domain of the
cell problem, see Matache (2002). For multiple scales, amgkproduct appears here which still can be
written as the product of two domains, one containing egntacroscopic scale and the other consisting
of the product of the domains of the different microscalesght & Schwab (2005)).

Also the two-point correlation functions of linear ellipboundary value problems with stochastic
source terms, i.6Au(w) = f(w) in Q, are known to satisfy a deterministic partial differengguation
on the product domaif® x Q. Namely, the two-point correlation satisfies the equatidm A) Cor, =
Cors in Q x Q, see Schwab & Todor (2003a). Higher order moments thenvevatger tensor products
(Schwab & Todor (2003b)). This approach extends to stozhdstusion functions and more general
PDEs with stochastic coefficient functions as well as totsistic domains (Harbreckt al. (2008a),
Harbrecht (2010)).

Finally we find the product of two domains in quantum mechsific e.g. the Sclidinger equation
for Helium; systems with more than two electrons involventhaultiple product domains, of course.

In general, some problems are directly given on the prodiutw@ domains, while for other prob-
lems the domains themselves are products of lower-dimeakidomains. Then, the domain of an
n-dimensional problem with e.q being some power of two can be split into the tensor product of
two domains of dimension/2 which can be recursively further split until a terminalsition (a one-
dimensional domain or a truly higher dimensional but namste product domain) is reached. Related
representation methods have recently been consideredoien8erf (2011), Grasedyck (2010), Hack-
busch (2012), Hackbusch &kin (2009), or Oseledets & Tyrtyshnikov (2009).

In this article, we consider the simple case of two dom&pnandQ, only. Here, our analysis covers
the situation of the first bisection step in the above meetibrecursion. To this end, for= 1,2, let
Q; denote a domain iRR" (or alternatively also anj-dimensional manifold ifR"*+1). We consider the
numerical approximation of two-variate functions. Thatis the individual subdomains we suppose to
have given, fixed sequences of nested trial spaces

Vil e el e c L)

which consist of ansatz functions of the same, fixed appration orderr. Based on these ansatz
spaces, we intend to compare the efficient approximationmdtionsf (x,y) € L?(Q; x Qo) by either
the truncated singular value decomposition

M
fm(xy) = ; VA (X)wi(y)
/=1
or by the generalized sparse grid approach

o V) (z@
by = Y % Z2)B(jl,klmz,kz)fjl.kl(x>5jz,k2(y)

j1/0+]20<J kleDﬁ) kzeDEZ

whereo > 0 is an appropriately chosen parameter. In the first reptaten, {¢g}’2":1 and{t,ug}’é"':1 are
sets of orthonormal functions. They are a-priorily unknpean in general not be derived analytically
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and need thus to be approximated in the ansatz s;{s{&@ In other words, the approximation involves
in most applications both, a truncation afddrtermsand an approximate computat|on of the singular

values and the associated left and right singular vectorshd second representatlo[rf] I<}k 00 jen
j

are in general multilevel or wavelet bases associated Wwéltrial spaces, where the ind¢xefers to
the level of resolution and the indéxrefers to the locality of the basis function (the preciserdgdin
will be given in Section 4).

For our comparison we consider the smoothness of the fundtito be measured in isotropic
Sobolev norms. The result of this paper is then as followgerga functionf € HP(Q; x Qy), we have

to spends (¢~ 9) with q = 2m'”{(réz}_wn{{”;l””ﬁz}}ﬁﬁ’;?ﬁ’g}"l7”2} degrees of freedom for the computation of the
approximative truncated singular value decompositiorettch a specific prescribed accuracyFor
the general sparse grid method with associated param@e(/nl/ n, (a precise definition is given in
Section 4) it is known that this cost-complexity rate is af drdere(e~9) with g = max{ "5, 72, %2}
(Griebel & Harbrecht (2011)). We compare the two approaemebspresent numerical results which
demonstrate that these rates are also achieved in practice.

Note that we have only an upper bound for the truncated singalue decomposition. Therefore,
our comparison of the truncated singular value decomposénd the sparse grid approach (see Sec-
tion 5) needs to be interpreted carefully. Indeed, the pitegaper is only a first attempt towards a
“fair” comparison of both approaches, which especiallyegakto account that the eigenvectors of the
approximative truncated singular value decompositiordriede computed and stored in any practical
numerical approach.

The remainder of this article is organized as follows: Int®&c2 we give a short introduction to
multilevel approximation. In Section 3 we describe the slagvalue decomposition of a two-valued
function onQ1 x Q, and discuss its approximation properties in detail. Sadfigives the basics of
the so-called general sparse grid approximation of a tvaedafunction onQ; x Q, and presents its
error rates and cost complexities. In Section 5, we compearéwo approximations. In Section 6, we
present numerical results which show that the theoretmalpdexity rates are also achieved in practice.
Section 7 concludes with some final remarks.

Throughout this paper, the notion “essential” in connettidth the complexity estimates means
“up to logarithmic terms”. Moreover, to avoid the repeatseé of generic but unspecified constants, we
denote byC < D thatC is bounded by a multiple dd independently of parameters whi€handD may
depend on. Obviouslg; 2 D is defined a® < C, andC ~ D asC < D andC 2 D.

2. Approximation on the subdomains

Let Q c R" be a sufficiently smooth, bounded domain. In general, ons fisite elements to ap-
proximate functions oh?(Q). In the present paper we focus on the comrhanethod, i.e., on finite
elements of fixed approximation order. Then, particulaolyefpplying multiscale techniques, one has a
sequence of nested trial spaces

VocVicVoC - C L23(Q) (2.1)
such that

:Uvj,

jeNg

which is calledmultiscale analysis Each space/j is defined by a single scale basiy = {¢, «},
i.e.V =spar{@x : k € Aj}, whereA; denotes a suitable index set with cardinalit) ~ 2.
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We say that the trial spaces haapproximation) order = N if

r=sup{seR: vig{/ IV=VillL2(g) < hlIvils W € HS(Q) }, (2.2)
i<V

where the quantiti; ~ 21 corresponds to the mesh width associated with the subspaceQ. Note
that the integer > O refers in general to the maximal order of polynomials wtdohlocally contained
in Vi.

Equation (2.2) implies that a given functiere HP(Q), 0< p <, can be approximated M at a
rateh?, that is

V'Qf/ IV=Villi2i0) < hPIVllupo), O<p<r. (2.3)
] ]

Thus, when we approximate a functie® HP(Q) with 0 < p < r by uniform mesh refinement we
obtain the ratdn? according to (2.3). Since the meshsize and the number ofawr®inV; are related
by dim(V;) ~ 21" ~ h;", we deduce that

N~ g VP (2.4)

unknowns have to be spent to achieve an approximation erfiite best possible ral " is achieved
if p=r,thatisifve H(Q).

For our subsequent analysis, to efficiently approximateamate functions irL?(Q; x Q), we
shall fix the definitions, properties and cost complexitiedividually for each subdomaif®; € R"™,
i =1,2. Thatis, we fix two multiscale analyses

Vil evilevil e cl?@), i=12 (2.9)

which are assumed to provide tkameapproximation order. The construction of the approximative
truncated singular value decomposition in Section 3 andplaese grid in Section 4 are based on these
multiscale analyses. A comparison for the case ofstree 1 i.e., where the underlying finite element
spaces in (2.5) for both, the approximative truncated sargrialue decomposition and the sparse grid,
have the same ordeythen takes place in Section 5. The question we addresssipdiper is as follows:
Given a functionHP(Q4 x Q2), wherep > 0 is arbitrary and where trial spaces with fixed ordeare
used in both approaches, which algorithm provides the areggproximation?

3. Singular value decomposition
3.1 Definition and mapping properties

We intend to numerically represent functioh, y) € L?(Q; x Q,) on tensor product domair; x Q,
in an efficient way. One way to solve this approximation peoiis to use an ansatz by means of tensor
products which separates the variabtemdy. We first consider the approximation

M

f(X,y) ~ fM (X7y) = /Zja(f(p(((x) Lp/(y)v (31)

with certain coefficientsr, € R and normalized functiong, € L?(Q;) and ¢ € L?(Q). Such an
approximation is calletbw rank approximation

Itis well known (see e.g. Ghanem & Spanos (199Dg\e (1978), or Schwab & Todor (2006)) that,
with respect to the numbéul of terms, the best possible representation of a fundtienL?(Q; x Q)
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in theL2-sense is given by the Karhuner4ve / singular value decomposition. Them= \/)\7 are the
eigenvalues of the below defined integral operator (3.2) Wétrnel (3.3). The decay of the eigenvalues
is important for the fast convergence (in term®tfof the series (3.1). As we will see in Subsection 3.2,
the decay depends on the smoothness of the funétiorbe approximated. We analyze the truncation
error in Subsection 3.3 and discuss the smoothness of teefaitctions in Subsection 3.4. In Sub-
section 3.5 we finally consider the numerical treatment df)(3Besides determining the coefficients
{a¢}en, @ numerical scheme needs to approximate the funcligps <y and{ Y} in appropriate

trial spaces/j<11) ande<22>, respectively, up to an accuracy corresponding to that df) (3Recall that
the trial spaces which we consider are elements of the ralésanalyses (2.5) which have the same
approximation order.

To derive the singular value decomposition, we shall carstige integral operator

7 L2(Qy) = L2(Qy), wmwyzéfuwmmw.

Its adjoint is
P < L), (F00= [ Flxyuly)ay.
2
Then, to obtain the low-rank representation (3.1) we neetbtopute the eigenvalues of the integral
operator

%:ﬁym%méﬂmm(%m@:;umwmw' (3.2)

whose kernel function is given by
kX) = [ fxy)F(X,y)dy € L2(21 % Qa). (33)
Q

This is a Hilbert-Schmidt kernel. Thus, the associatedjirateoperator’z” is compact. Moreover, since
A is self-adjoint, there exists a decomposition into eigésga,, ¢,) which fulfills

H P =Arpy, LEN,

with non-negative eigenvalugs > Az > --- > Ay — 0 and eigenfunction§g, } iy, which constitute
an orthonormal basis i?(Qy).
We now define for all € N with A, > 0 the functiony, € L?(Q,) by

1 1
W) = =800 = = [ 10y)B0x 34

This constitutes a second sequence of orthonormal furecimce

1 1
o (L b, b)2(0y) = ——=(H . P0)12(0y)

vV AkAe
Ak

= m(‘f’kafl’éh}(gl) = -

(Wi W) L2,y =

7
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If A, =0 for somel € N we can extend this collection of functions properly to oftan orthonormal
basis{y}sen of L?(Q,). Due to

VAbi(x fﬂ%)() (7 ) (x / F(x,2) Wz (3.5)

for all x € Q1 and/ € N, we finally obtain the representation
fooy) =3 VA (X)W (Y). (3.6)
=)
With (3.4) and (3.5), this equation is easily verified byitegvith the orthonormal basigpk @ Y} ren

of LZ(_Q]_ X .Qz).

REMARK 3.1 The adjoint kerneﬁ(-, -) is just obtained by interchangin@; andQ>, i.e.,
Ky.y) = [ 100y fixy)dx e L2(Qp x ).
1
Then, one has the integral operator
K =7 7120 5 L), (FW)= [ Ky.y)uly)y
Again there exists a decomposition into eigenpairs
H =N, LEN,

with non-negative eigenvaluas > Xz > > Xm — 0 and eigenfunctiong, ¢ LZ(QZ). We also obtain
a second sequence of orthonormal functiging L?(Q;) analogously to (3.4). The functiof®,} ren
and{; }sen Will be the same as before but now their roles are exchangededter, the eigenvalues

A¢ andxg of # and.# coincide.

We shall prove the following auxiliary result concerningetmapping properties of the integral
operators¥’ and.*. To this end, fois > 0 we mean byH 3(Q) := (HS(Q))' the dual of the Sobolev

spaceHs(Q) (which is usually denoted bl ~5(Q)). Moreover, fors;,s; € R, let

Het? (Q1 x Q2) 1= H(Q1) @ H2(Q2)

mix

denote the Sobolev space of dominating mixed derivatives.

LEMMA 3.1 Assume that € HP(Q; x Q). Then, the operators
S THT(Q1) = HPS(Q2), 7" : H™S(Q2) — HPS(Q)
are continuous for a € [0, p|.

Proof. FromHP(Q; x Q) C H: (Ql x Q7) it follows thatf € Hm,X(Ql x Q7). Therefore, the operator

mix
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7 1 L%(Qq) — HP(Q,) is continuous since

[-LUllpoy = SUP (LU V)1,0,)
”V”H*p(_Q2)=l
= sup  (f,u®V)i2(0,40,
”VllH*p(Qz):l
< sup

”V”H’p(_() =1 ” f HHr?{i‘i(lem) ”u®v||Hr?{i;p(91XQz)
2

~ H f HHr?{i?((QlXQZ) HUHLZ(Ql)'

Note that we have used here tlhﬁ?qi;p(Ql x Q) = L?(Q1) @ H7P(Qy).

In complete analogy one shows that : L?(Q,) — HP(Qy) is continuous which proves the desired
assertion fors= 0. By duality one also infers the assertion &+ p. The assertion fos € (0, p) is
finally obtained by interpolation. O

3.2 Decay of the eigenvalues

With the above lemma we are now able to determine the decayofdahe eigenvalues of the integral
operator?” = .*. with kernel (3.3).

THEOREM3.1 Considerf € HP(Q1 x Q5) with associated kernddfrom (3.3) and associated integral
operator.#” from (3.2). Then, the eigenvaluga, } . of 2 decay like

___2p
Ae S ¢ minimngt gsf — oo, 3.7)

Proof. We shall investigate the dependence of the decay of the\&ilygss of the integral operator
H = .7*.7 on the smoothnesp of f. To this end, we introduceew finite element spacedy C
L?(Qy), which consist ofN discontinuous, piecewise polynomial functions of totaje [p] on a
quasi-uniform triangulation 0f2, with mesh widthhy ~ N~%™. Then, the Bramble-Hilbert lemma
implies the following approximation result for thé-orthogonal projectiomy : L?(Q) — Uy:

(1= AWl 2( ;) < CoN P2 Wlio(ay),

provided thatv € HP(Q,). Then, since”*Ry.7 : L2(Q1) — L?(Qy) is an operator of finite rank, the

1The present proof relies on an approximation argument. Thefinite element spacefUy} are introduced to obtain the
optimal convergence rate with degrees of freedom.
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min-max principle of Courant-Fischer implies

ANg1= Mmin max (Z'u,u)2
L2(Q
VCLZ(Q]_) ueV . ’ (Q1)
dimven Ul2o)=

< ma BZaR 70N

uLimg(Y‘Z(H\jY)( U Uiz
”uHLZ(Ql):l

= (1 -
uLimgr(T}s%my)< (1=F) u’u)l-z(Ql)
”uHLZ(_Ql):l

= I—R)Zu (I — )
uLimgr(T?Ya’*XH\jY) ((=R).7u (=) U)Lz(Qz)

HUHLZ(Ql):l
2
< sup (1R,
HUHLZ(Ql)zl
SN2 sup || AU g,

HUHLZ(Q]_):]'
Since. : L2(Q;) — HP(Q,) is continuous according to Lemma 3.1, we arrive\gt 1 < N—2P/M2,
Applying the same arguments to the operatét, one gets the decay rafe1 < N~2P/™. Thus,

Ang1 < N—2p/min{nuna} - gypstituting finallyN + 1 by ¢ yields the desired result. O

REMARK 3.2 The min-max principle of Courant-Fischer is also use®chwab & Todor (2006) to
estimate the decay of the eigenvalues. There, however,tbalyegularity of the kernel functiok €
HPP(Q1 x Q1) in the first variable enters the estimate which gives the rate

P
Ap S Mzt gsf — oo,

By using the representation” = .*., we are able to exploit the kernel’'s regularity in both valés
which doubles the decay rate.

3.3 Truncation error

Altogether, if f € HP(Q1 x Q»), then Theorem 3.1 implies that the coefficiefitgA, } in the expansion
(3.6) of f decay likev/A, < ¢—P/min{n2} This |eads to the following theorem.

THEOREM3.2 Letf € HP(Qq x Q) andp > min{ny,ny}/2. Then it holds

P

< M%_min{nl‘nz} . (38)

~

L2(Q1xQp)

H f ﬁo\/xé(¢é® W)

Proof. Assume without loss of generality that < np. Then, due to\; ~ ¢—2p/™ from Theorem 3.1,
we obtain by the orthonormality of the function sétg} and{y,} that

2 2

00

VAdde® )

(=M+1

L2(Qyx Q)

Hf —/M%\//Tz(¢z®¢é)

L2(Q1xQp)  (=M+1 (=M+1
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Since 2/n; > 1 we can estimate the sum by an integral as

* o 2 MY
Z ik </ X nldX:T
=W+ M 1

which leads to the desired result (3.8).
Consequently, to ensure the error bound

M
1= 3 Vatoeu) <e
/=0 L2(Q1%xQ2)
we need to choose the expansion dedvieas
2min{nq,np}

M ~ emin{nlnz}—Zp.

REMARK 3.3 The following comments are in order.

9 of 26

(3.9)

(3.10)

1. Regularity in terms of mixed derivatives does not furtingprove the results. The properfyc

HPP(Q;1 x Q) again yields the estimate < ¢~2P/m{M.n2} for the eigenvalues of.
. The use of the Sobolev regularity might give a too low deedg (3.7). For example, for the
exponential kernek(x,y) = exp(—|x—y|) on the unit square, we hake= H32-9((0,1) x (0,1))
for all 5 > 0 but we observe,/A; ~ ¢~2 instead of\/A, ~ ¢~%/2, see Figure 5 in Section 6.
Here, we expect that the use of Besov regularity in the appration argument in the proof
of Theorem (3.1) would give the correct decay since it alléorsan adaptive refinement at the
diagonalx =Y.

. Our considerations and thus estimate (3.8) do not apflydifp < min{ns,n2}/2. However, it
still holds 372 oA, < o since.#” is a Hilbert-Schmidt operator.

3.4 Smoothness of the eigenfunctions

Depending on the smoothness fafwe are able to prove the following result on the regularityhe

functions in the collection$¢,} and{{y}. This result will be essential for any numerical computatio

of the truncated singular value decomposition.

LEMMA 3.2 Letf € HP(Qy x Qy). Then, the eigenfunctionsg,} and {(,} are inHP(Q;) and

HP(Q,), respectively, and satisfy

1 1
||¢eHHp(Ql)5ﬁ> ||L»U€||HP(QZ)5W, leN. (3.11)
¢ ¢

Proof. In view of (3.5) and Lemma 3.1, we deduce

1 1

n 1
H¢4||Hp(gl)=\//\7|\«5ﬂ WZHHP(Ql)gﬁ”LﬂIJHLZ(QZ):\/)T[

for all ¢ € N. The second estimate is shown in complete analogy. O
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3.5 Numerical approximation

So far, we used aexactdescription of the eigenfunctions. However this does ndd lo practice.
Instead, the eigenvalug\,}M , and eigenfunctiong¢,}) ; and {¢;})" ; need to be approximately
computed in the finite element spaces which have been irtestlin Section 2.

Recall that, on both subdomains, the finite element spa#éi L?(Q;) provide the same approx-
imation orderr, which results in the same approximation property (2.3), depending on the subdo-
mains’ spatial dimensions;, ny, in different cost complexities (2.4).

According to (2.3) and (3.11), when we spegl ~ 2iM degrees of freedom for an approximation

of ¢, in Vj(1> andNy ~ 2in2 degrees of freedom for an approximationyofin Vj(2>, we conclude
_ minli p.r} _ ming p.r}
||¢£ - ¢£,N|||_2(Ql) 5 Nq) ! ||¢é||Hmin{p,r}(Q) 5 7N¢ ! s
A 3.12)
_ min{pr} 1 _ min{pr} ( '

@ —enllizoy SNy ™ [Wellyminen (o) S —=Ny ™
(Q2) H (Q) \/)\7

Here, ¢, n andy, n denote the numerical approximationsftoand i, respectively.

According to (3.12), to ensutigp, — unll 2 o,) S €/ AM (we will later see that this is the proper
accuracy), we have to spent (cf. (3.10))

n
£ - min{lr.p} ] 2pny
N¢ ~ | — ~ g (min{ny,np}—2p) min{r,p}

vM
unknowns for the representationgfy and, to ensuréy, — Y n ||L2(Qz) < &/+/AM, we have to spent

ny
__Mn 2p
NlIJ ~ (£> e} ~ g(mi"{nl-nz}*ngp)min{np}

VM

unknowns for the representation gf n, respectively. In the sequel, we will spend alwdys=
max{Ny, Ny } degrees of freedom which does not deteriorate the cost exitylIn particularN does
not depend od, i.e., all eigenfunctiong¢n (} and{yn (} are approximated in the same ansatz spaces.

REMARK 3.4 If p>r, then we even may estimate

1 \p 1\
nmwgs<,),nwmgs(,)

by using interpolation arguments. Hence, (3.12) can beadxgat by

—minftp} _ min{pr}
¢ — denllizoy SA, ® N ™
_ min{r,p} _ min{pr}

1w =Nz, SA, ® N7

As a consequence, i > r, the number of unknowns for approximating the eigenfumgtioan be
reduced wherf increases. However, to exploit this fact for the computatib the truncated singular
value decomposition, one needs the specific informatiomesimoothness indgx
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We assume that the approximate eigenfunctions are nomdasind pairwise orthogonal, i.e., for
1< /4,0 < M we have

/ beN(X) P N (X)X = Oy g1, / WeN(Y)We N(Y)dy = O ¢
JQ JQp

Concerning the approximation of tiv largest eigenvalues in the spagg defined via their Rayleigh
quotients

AN = / / KX, X') e n(X) o n(X)dxdX, £=1,2,... .M.
0/ '
we assume the following estimate
0<Ar—Aen S A9 — benllz g,y £=12, M. (3.13)

We emphasize that these assumptions, in particular (Zat@xll satisfied if one computes the ap-
proximation{ (A, ¢ ) }M ; to the eigenpair§(A,, ¢¢)}M ; with a Ritz-Galerkin method in the space

vV with dimvj(l) ~ N, i.e., with j ~ logN. For the details we refer the reader to Dyakonov (1996).
Based on (3.8), (3.12) and (3.13), we can now estimate tbe@fthe discretized truncated singular
value decomposition.

THEOREM3.3 Letf € HP(Q; x Q,) and choose

2min{nq,ny} 2pmax{ny.np}
M ~ gmin{nn2}=2p = N ~ g (min{ng.nz}—2p)min{r.p}

Then, the truncated singular value decomposition satidfeesrror estimate

Hf —/i\/a(d’w @ YN)

<g

~

LZ(Q]_ ><.Qz)

uniformly in € > 0.

Proof. It holds

o0 M
E:= /;\//\7(4’@ Q) — /Z)\/ Aen(Pen @ YiN)
= = L2(Q1%x Q)
) M
<|| > VA be® ) + %\/)TA‘I’Z@LIJIJ)_\/)‘IJ,N(‘I’Z.N@LW.N)
(=M+1 L2(Q1xQp) = L2(QqxQy)

According to (3.8) and (3.9) the truncation error, i.e., tingt term, is bounded bge. Moreover, we
split the second term into appropriate differences:

VA0 ® W) =/ Aen(en @ Win) = (\/)Tz— \/)\Z,N>(¢Z®'~W)+ Aen (60 ® (W — W)
+ /AN (e — den) @ W)
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Thus, we arrive at

AT Y bCECETRY
leQg ’
N i\/ﬂ (8= den) © Win)

We now estimate the three terms on the right hand side separat view of (3.13), we have/x\7 >
V/Aen and, with (3.12), we obtain

2
0< ‘\/)TE_\/AZ,N </\z—}\z,NSMHW—W,NHEz(Ql 5

forall 0 < ¢ < M. This yields

MO(\/)TZ— M)(WQQW

ESe+

LZ(Q]_X.Qz)

L2(Q1x Q)

&2
M

_;‘\F \/F’ <,ZM , (3.14)

Q]_X_Qz
Next, withA,n < Ay, we have
i 2
Aen (e ® (W —Win)) = /z Aenll00® (W — Wen)lIEz 0, < 0y)
LZ(Q]_X_QZ =0
< /Z)Mll¢e\\ 19— WinliZq,) (3.15)
- <
M N
and likewise
M 2
%\/)\Z,N((‘pﬁ—(p&N)@w&N) S (3.16)
- L2(Q1xQp)
Plugging (3.14)—(3.16) into the above estimat&dinally leads to the desired estimdies< ¢. O

Altogether, since we have to deal with eigenfunctions witiN coefficients each, we arrive at the
following theorem.

THEOREM3.4 The number of degrees of freedom needed to approximatecidnf € HP(Q1 x Qy)
by the singular value decomposition approach (3.1) withdBand (3.13) to a prescribed accuraag

2min{r,p} min{nq,np } +2pmax{ny .no }

dofeyg(€) =M N~ g @p-mningnpfjmn(rp] (3.17)

We emphasize that the estimate (3.17) does not include thk tode spent foromputingthe
singular values nor the eigenfunctions. Here, a naive ambravould result in a cost complexity of order
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M - N2, the use of fast methods for nonlocal operators would réswn almost linear or even linear
complexity per eigenpair. Note that in any case at leasaticemplexity?’(M -N) is required, which is
indeed achieved with modern algorithms, see e.g. Datehah (2008), Daiet al. (2008), and Schwab
& Todor (2006). Therefore, our analysis is based on the bessiple situation for the approximative
truncated singular value decomposition and our later coisqawill be fair in this respect.

4. Sparsegrids

Based on the multiscale analyses (2.5) on each individdal@uain, one naturally obtains a second
method to approximate functions in tensor product spacgshBosing complementary spaces

W =span{gy ke Ol :=a\al}, =12

such that

(i) _
Vit =W,

we can define the so callggneral sparse grid spacsee Bungartz & Griebel (2004) and Griebel &
Harbrecht (2011),

(i) @Vj(L)17 VO(I) :WO(')7

\jO . 1 2
Vi= P wlew? (4.)

j10+j2/0<d

whereo > 0 is a given parameter. Thus, a functibne \73’ is represented as

f; 1 2
Dy)= Y Y Y Biaak Sk Ok )- (4.2)
10°+12/0 9 00 10

Sparse grids can be constructed via hierarchical basespaits and wavelet-like bases (see e.qg.
DeVoreet al. (1998), Griebel & Knapek (2009), Stmberg (1998), and Zenger (1991)) or even directly
by finite elements in terms of frames (see e.g. Griebel (1,99d&bel & Oswald (1994), and Harbrecht
et al. (2008b)). For a survey on sparse grids we refer the readeung&@tz & Griebel (2004) and the
references therein. R

The dimension of the general sparse grid spagés essentially equal to the dimension of the finest
univariate finite element spaces which enter its constnciie., it is essentially equal to the value of
max{ dimvj/lzr, dimVJ(CZ,) } Nevertheless, by considering smoothness in terms of nBxdxblev spaces,
its approximation power is essentially the same as in tHegnsor product space. Precisely, we have

THEOREM4.1 (Griebel & Harbrecht (2011)) The sparse grid spagepossesses

2.]max{nl/0,n20}7 if nl/U £ ny0,

dimVg ~
J {ZJ“ZUJ, if n1/0 =m0

degrees of freedom. Moreover, for a given functfos H:2(Q1 x Qo) with 0 < 51,5, <, there holds

mix
the approximation estimate

inf ||f fAH . 27Jmin{51/0.,520}||fHHsl_sz(QlX_Qz), if s1/0 # s0,
In — J S B mix .
feve L2(Q1x Q) 2 JSL/U\HHfHHﬁ]li;(SZ(QlXQZ)7 if s1/0 = s0.
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In this theorem, the convergence rate is given for a functi@1—|ns$if?(£21 x Q). In the following,
however, we are interested in the convergence rate if the@gmess off is measured in the isotropic
Sobolev spacéiP(Q; x Q). Since for alls; +s, = p it holds H:%(Q1 x Qp) € HP(Q1 x Q5), we
have to balance; ands, carefully if we want to compute the convergence rate of anHP(Q1 x Q)
in the sparse grid spa&aj’. The analysis given in Griebel & Harbrecht (2011) shows thatbest space
for approximating functions in isotropic Sobolev spacestitined for the choice = /n;/ny. With

this choice, the cost complexity to approximate a functionHP(Q4 x Q) is given as follows.

THEOREMA4.2 (Griebel & Harbrecht (2011)) The number of degrees @fdren needed to approximate
a functionf € HP(Qq x Qy) in the sparse grid spas& with o = /n1/n, to a prescribed accuraey
is essentially

Nq-+n: np n
dofsg(g) = N ~ g~ M7 )

(4.3)
REMARK 4.1 The sparse grid spa&ﬁ’ has substantially less unknowns than the corresponditg ful
tensor product space
o._ (1) (2
Vi= @ ijl ®\NJ'2 :

10,j2/0<3

In this space, a functiofi € HP(Q; x Q) is approximated by the rate

fJiQ\i;U 1f—1 ||L2(.Ql><Qz) S {27\] mintpri/e + 27Jmin{p’r}a} It HHmin{p'r}(Ql><92)
J

atthe cost dinv§ ~ 2)(M/9+n9) The choice for = 1 yields thus the cost complexiy~ ™M P}/ (mn2)
i.e.,N < g~ (ntm)/min{pr} which is known to be Kolmogorov's-width for Sobolev balls in the space
HMN{PTH Qg x Q), see Kolmogorov (1936). Indeed, up to logarithmic terme gparse grid spadéy
with o = y/n1/ny also achieves this rate. Moreover, in the case+ np)/p < max{ny,nz}/r, it even
achieves a higher rate.

5. Comparison of the two approximations

Now, for given and fixed approximation ordeand spatial dimensiong andn,, we will compare the
two different approximation schemes when approximatingreetion f € HP(Q1 x Q). We are inter-
ested for which values gb, the sparse grid approach is asymptotically superior taffpgroximative
singular value decomposition. To this end, we shall distisig three regimes of the smoothness param-
eterp where one should have in mind the conditipe: min{n;,n;}. The subsequent discussion has to
be carefully interpreted since we deal with upper boundg, @hl Remark 3.3.

5.1 The case p r%

In this case it holds according to Theorem 4.2 that the spgnigdeapproach produces essentially the
highest possible approximation rate"/™n{n.n2}  whereas the approximative truncated singular value
decomposition reaches this rate onlyfifis analytical. The latter follows from the fact thist ~
|log(g)|mMin{nn2} dominating singular values are needed, see Schwab & To806§2 Thus the sparse
grid approach is clearly superior.
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5.2 The Case fraumy ot > p>r

According to Theorems 3.4 and 4.2, the truncated singulaevdecomposition has the complexity

~ 2rmin{ng,np}+2pmax{ny ,np }
dofsvd(g) ~ & (2p—min{ng.ny })r

and the sparse grid approach has the complexity

nq+n:
dofsg(€) ~ £ P

The sparse grid approximation is asymptotically supeadhé truncated singular value decomposition

if dofsg(€) < dofsyg(€) which holds if

Ny +no . 2rmin{ng, 2} +2pmax{ny, ny}
p (2p—min{ng,nx })r

One readily infers that this inequality is equivalent to

min{ny,n2} (N1 +ny)
<p?— =: )

The polynomialg(p) might be bounded from below by

min{ny, N2} (N1 +ny)

>0
2maxX{ng, ny}

g(p) =rp—rp+r

due top > r. Thus, the sparse grid approach exhibits a higher rate ofcgance.

5.3 Thecaser-p>0
Theorems 3.4 and 4.2 lead to the complexity

_2(ng+np)
dofsyg(€) ~ € 2p—min{ny,n}

for the singular value decomposition and to the complexity

nq+n;
dofsg(g) ~ &~ LN

for the sparse grid approach. Now, it holds gj¢f) < dofsyq(€) if the inequality

n+n _ 2(n1+ny)
p 2p—min{ng,ny}

is fulfilled. As one easily checks, this inequality is indegd/ays satisfied. Thus, the sparse grid

approach exhibits again a higher rate of convergence.

Let us remark here that in the situatipr< r an approximation in théull tensor product spacéy
with o = y/n1/n, is of the same complexity as the approximation by the spaidesgacef/j’.

Altogether, we clearly see from these three cases that therglesparse grid approach is approx-
imately at least as good as the approximative truncatedilsingalue decomposition and is better in

most situations (i.e., for ah which is less regular).
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6. Numerical results

First, we present an analytical example where the sparseagproach is superior to the truncated
singular value decomposition. Afterwards, we give the ltssaf two numerical experiments for the ex-
ponential kernel and Gaussian kernel which are importaoigwint correlation kernels from stochastic
applications. In these examples, we thus consider theapstiation thatf is a symmetric function
(i.e., f(x,y) = f(y,x) andQ := Q; = Q, C R" with n:=n; = ny). Then, the singular value decompo-
sition is simply the spectral decomposition.

6.1 An analytic example

Let f be defined as

[es]

f(x,y)= aj kY k()P k(Y)
X,y J;Z i kWi k(X)W k(y

kell;

where{y; «} denotes am.2-normalized orthogonal wavelet basis on the don®inDue to the inverse
estimate we have

[Wikllpo) ~ 2P forallp<y (6.1)

wherey denotes the regularity of the wavelets. Consequently, duhetion f is in HP(Q X Q) with
0 < p < yprovided that

00

22Pa2 ) < w. (6.2)
gokezmj 3

The kernel (3.3) of the integral operatér” is given by

0

)= 555 apnapseuned ([ UuOwc ) )

j,)'=0kel; k’EDj/

- 20 S af Wi k(W k(X).
j= kEDJ‘

Hence, the associated eigenvalues and eigenfunctioss afe{a?, } and{(; x}, respectively.
Estimate (6.2) implies . ‘
22Paty < c27 " ke, jeN,

since otherwise we would have

Z) Y 22Pat) > 2)21“2*jn S
J=0kelj =
due to #01j) ~ 2in. Consequently, the eigenvalu{saﬁ?’k} of % decay essentially like

<271 ke, jeNy

which is faster than '
a<c2dP kel jeNo
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as predicted by Theorem 3.1. To this end, we exploited

2N > = > p-(i+In

As a consequence, the eigenfunctions oscillate less $yrtran shown in Lemma 3.2. In fact, we have
(6.1) instead of|j kll1p() S 1/+/Ajk ~ 21(PV2) (cf. (3.11)). However, by choosing— y, we see
that the estimates in Section 3 related with the eigenvalndseigenfunctions are sharp except for the
factorn/2.

According to (6.2), we deduce

fes]

ZJ Z ajzvkszfz\]pz‘l Z 223p <2 ZJDZ’ z 22JP <2*23p
J J J

=Jkel; =Jkellj kellj

which implies that the truncated singular value decomjmsibased on the first'2 singular values
approximated with the errore; ~ 2P in theL?-norm.

We apply properly chosen ansatz functions of approximaimmerr to approximate the continuous
eigenfunctiong y; «} by their discrete counterpar{g); xn}. Thus, in view of (2.3) and by using (6.1)
with p=min{y,r}, we have

Wik Gpsenllege) < Ny T2,

Note that we use here an ansatz which spends the optimal mwhlbeknowns to approximate the
eigenfunction{y; «}, i.e., we employ; degrees of freedom to approximate the funcgn} instead
of a fixed numbemN which is identical for all eigenfunctions. This is diffeteilom Section 3 and
even favours the approximative truncated singular valuw®iposition over the sparse grid approach,
cf. Remark 3.4.

To ensure the necessary accuragy,/MjA| , we have to balance

| & 2-Jp
~ /M.])\j K ~ 2dn/29—j(p+n/2)’
compare Section 3. To this end, we essentially have to spend

2*(37])!3 —n/min{y,r} G-i)pen2n .
NJ ~ (2(J-J)n/22j min{y,r} ) ~ 2 min{yr} 2

Wik = Wiknllza)

unknowns. Therefore, to represent the firSt@genfunctions, we need at least (up to a constant)

J (J=j)(p+n/2—=2min{y.r})n
Z)szjn %2 mln{yr} 22Jn 22Jn%2 e min{y,r} BT (6.3)

degrees of freedom. Altogether, for our special exampis stihows that the truncated and approximated
singular value decomposition involves the cost completg) to obtain the error accuragy ~ 2P,

In contrast to that, the general sparse grid approachavith,/n; /n, = 1 produces essentially the
same error rate; ~ 2P with 22" unknowns. Ifp+n/2 > 2min{y,r}, the cost complexity (6.3) is
significantly larger than?". For example, choosing— y andr > y, we get

n>2y
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which describes a situation where the sparse grid appreadymptotically superior to the correspond-
ing approximative truncated singular value decompositi@therwise, the approximative truncated
singular value decomposition is superior to the corresppansparse grid approach.

In case of the singular value decomposition, we have tworaditting effects. On the one hand,
the eigenfunctions can be arbitrarily smooth as for exarmplfie case of Fourier series. Then, the
smoothness is limited by the decay rate of the singular gal@» the other hand, also the eigenvalue
decay can be arbitrarily fast while the eigenfunctions aesmooth. A simple example are functions
of finite rank but with eigenfunctions of low regularity asthre above example. Both properties affect
the cost complexity of the truncated singular value decaitipm differently. Compared with this, the
convergence of the general sparse grid approach rathendiepa the smoothness of the function to be
approximated.

6.2 Gaussian kernel

In the second example 1€ be the unit interva(0,1) (i.e.n=1). On levelj, we subdividg0, 1) into
21 intervals of length 21 which leads to 2+ 1 ansatz functions. The approximation spadesnder
consideration are then generated by continuous pieceinear Ipolynomials on an equidistant partition
of the interval(0,1) (i.e.,r = 2).

We discuss the approximation of the Gaussian kernel

1 IxyF)
= ——exp| — , 8>0.
V210 p( 62
Sincef is known to be analytical and thus arbitrarily smooth, patarly f € Hri'if(((o, 1) x (O, 1)), the
general sparse grid approach with= \/n;/n, = 1 converges with the optimal raté\/T ~ 471/
This is also observed by our numerical results, see Figu@f tourse, the smaller the value &fgets
the larger the constant becomes which appears in front afdhmplexity estimate.

f(xy)

Sparse grid convergence of the Gaussian kernel

s
[}
§10"
T
£
x
<]
2. 6
<10 fe—p=1 7
——08=1/2 A
N
—~—0=1/4 .
N
10° || —4-6=18 NR
——0=1/16 NN
- - - Asymptotics S

: 10*
Degrees of freedom

10

FIG. 1. Thel2-error of the sparse grid approximation of the Gaussian keoreerges essentially likd—2.
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According to Schwab & Todor (2006), the singular values otaalytical kernel decay exponen-
tially (if n; =ny =1). In fact, in case of the Gaussian kernel the eigenvaluesydeven double expo-
nentially, cf. Figure 2, where the decay is the faster thgdif is. Since the eigenfunctions are also
analytical, it holds

19¢ll202) SA; S foranys> 0.

Therefore, it suffices to compute the eigenfunctions Witl:ua@cyﬁ(hjz) (see Schwab & Todor (2006)
for the details) which leads to a quadratic rate of convergesith &'(N Iogl/z(N)) cost. This rate is
also validated by Figure 3. Here, we computedltRerror of the truncated and approximated singular
value decomposition for all discretization levégls- 6,7, ...,15 and truncation lengthd = 2,4, ..., 40.

We observe that an increase of the truncation length imgrdeeble exponentially the approximation
quality until a certain limit is reached which is induced the tapproximation error of the discrete
eigenfunctions. Vice versa, the increase of the discritizdevel gives a convergence radte? ~ 4~
until a certain limit is reached which is induced by the trathen error. We thus obtain the quadratic
rateN—2 ~ 4~ by proportionally increasing/M andN = 2/ + 1 which yields the above predicted cost
complexity.

Eigenvalues of the Gaussian kernel

—a—0=1

——0=1/2
~ —v—06=1/4
~ —A—0=1/8
RS ——0=1/16
= = = Asymptotics ||

Modulus

10 20 30 40 50 60 70
Number of eigenvalue

FIG. 2. The eigenvalues of the Gaussian kernel decay doublenergionally.

Altogether, both approaches converge in our setting forGhassian kernel with essentially the
same rate. As itis seen in Figure 4, the particular constahish are involved in the estimates of the
cost complexities seem to be comparable as well. We plotteaddst complexities of the sparse grid
approach (blue lines) and the truncated and approximateglisir value decomposition (green lines)
for different values o€ and6. The resulting graphs are quite similar. Moreover, it isestied that the
cost complexities increase for both approaches by abowdaime factors ib decreases. Note that the
slightly different slopes of the graphs result from the thett the sparse grid approach produces the rate
N—2,/logN at the costNlogN whereas the truncated and approximated singular valuemjsssition
produces the ratid 2 at the costN,/TogN.
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Relative error (log10-scale)

)

Discretization level
Truncation length

FIG. 3. Truncation lengtiM and discretization level versus accuracy in case of the Gaussian kernel.

6.3 Exponential kernel

Again, letQ = (0,1) and consider piecewise linear ansatz functions. Our thieangle is concerned
with the approximation of the exponential kernel

f(xy) = exp(—[x—yl]).

Sincef is only Lipschitz continuous at the diagonak v, it follows thatf ¢ H3/2‘5((07 1) x (0, 1)) for
anyd > 0. Therefore, according to Theorem 3.4, we can essentiadlyamtee the rate dgfi(e) ~ £ 2.
Nonetheless, as already mentioned in Remark 3.3, the singalues decay |ikQ/)Tg ~ (=2 which is
faster than predicted. In addition, it turned out in our nuoa tests that also the eigenfunctiof, }
are more regular than expected, i.e., they safi¢fyl2 (g 1) ~ 1/+/A¢ ~ £2. The first nine eigenfunctions
are depicted in Figure 6 which clearly shows the smoothne#seceigenfunctions. By repeating our
analysis with these settings (that s=r = 2 andn; = n, = 1) one can show that

dofsyq(g) ~ £74/3 (6.4)

which is much better than predicted. In particular, it is aene rate as produced by a approximation
on a uniform grid on(0,1) x (0,1). This fact is also seen in the left plot of Figure 7 where weldiged
theL?-error of the truncated and approximated singular valuemigosition for all discretization levels
j=6,7,...,15 and truncation lengthd = 2K, k =0,1,...,j. The best cost complexity is offered by
choosingN ~ M ~ £-2/3 which results in the rate (6.4).

On the other hand, in accordance with Theorem 4.2, the sgetdsapproach witto = /n; /np =1
realizes (essentially) the same rate:sg@f) ~ £~%3. Indeed, this is validated by our computations (see
the left plot of Figure 8).

In the left plot of Figure 9, we compare the cost complexitiéshe sparse grid approach (blue
line) and the truncated and approximated singular valuerdposition (red line). We observe that
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Cost complexity of the Gaussian kernel
10 T T .

10715

10°F

Cost
o / 4 l‘,, g
J

1031 —=—svD: =1 N SN
—4—SVD: 8=1/2 .

—e—SVD: 6=1/4
»|| ——SVD: 8=1/8
—=—SG: 6=1 LN
—A—SG: 8=1/2 ] s A\
—e—SG: 6=1/4 ; : Ny
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10

107" 107
Accuracy €

L
—6

8 10

10 10

FIG. 4. Comparison of the cost complexities in case of the Gaugsiarel.

both approaches possess essentially the gaté& (dashed black line). The cost complexity of the
truncated and approximated singular value decomposiidtentical to the cost complexity of the full
tensor product approximation. Hence, it is somewhat b#tger the cost complexity of the sparse grid
approach which involves an additional logarithmic factor.

Note here that only a conventional general sparse grid @ved and no locally adapted sparse grid
is used, see e.g. Bungartz & Griebel (2004) and the refesetiegein. For this approach, we expect
a doubling of the convergence rate, i.e., essentially tteeNal®. The analysis of such a nonlinear
approximation scheme is however beyond of the scope of #gsip

6.4 Matérn kernel

For our last example, we choose the Bfatkernel

fOy) = (1+ [x—y) exp(—[x—yl)

and use the same numerical set-up as before. The funict&®@?-smooth with second derivatives which
are Lipschitz-continuous at the diagomat y. Hence, it follows thaf € H7/2-2 ((O, 1) x (0, 1)) for any

d0 > 0. As can be seen in the right plot of Figure 5, the singularesdecay now Iike/)\»f ~ ¢~*which

is again by the factor/2 better than predicted in Theorem 3.1. Moreover, from thietylot of Figure 7,
by fixing the truncation lengtM, it can be inferred that the eigenfunctions are approxichat¢he rate
N—2. This is slightly better than to be expected from (3.12) lmrpare here Remark 3.4. Altogether,
for the truncated and approximated singular value decoitiposwe get the cost complexity1%/14
by balancing—2 ~ M~7/2 ~ e. Compared with this, Theorem 3.4 gives only the &té&/3.

In comparison, the sparse grid approach Wttlegrees of freedom converges essentiallyMNké/4,
see the right plot of Figure 8. This is in agreement with Tlkeo#.2 which states the cost complexity
dofsg(g) ~ =47, Consequently, for this example, the sparse grid appraaaidieed superior to the
truncated and approximated singular value decomposifitnis is also confirmed by the right plot of
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Modulus

Eigenvalues of the exponential kernel

—— Eigenvalues
Asymptotics 0272

Modulus

Eigenvalues of the Matern kernel

—— Eigenvalues
Asymptotics 05x7*

-7
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900
Number of eigenvalue Number of eigenvalue
FiIG. 5. The eigenvalues of the exponential kernel (left) andMiagern kernel (right).

FIG. 6. The first nine eigenfunctions of the exponential kernel.
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FiG. 7. Truncation lengtiM and discretization levej versus accuracy in case of the exponential kernel (left)ttadvagrn
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FiG. 8. The sparse grid approximations of the exponential kgtef) and the Magrn kernel (right) converge essentially like
N=075 andN—175, respectively.
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Cost complexity of the exponential kernel Cost complexity of the Matern kernel

—e— Sparse grid —&—Sparse grid
—e— Singular value decomposition s - - - Asymptotics e
10° - - - Asymptotics g 10°¢ —e— Singular value decomposition|]
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Cost
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FIG. 9. The cost complexities of the exponential kernel (left) tre Maérn kernel (right).

Figure 9. The cost complexity of the sparse grid approaake(bhe) admits a better rate than the cost
complexity of the truncated and approximated singularevalecomposition (red line).

7. Concluding remarks

In the present paper we compared the cost complexities aigpeoximative truncated singular value
decomposition and the general sparse grid approach. Weshaven that the sparse grid provides an
efficient tool to approximate two-variate functions. Itstoomplexity is at least equal to the approxi-
mative truncated singular value decomposition. In manyasions it is even superior.

In case of the sparse grid approach we envision further ivgonents by the use of local adaptivity,
which would further increase its performance.

In case of the singular value decomposition the truncagagth is determined by the smoothness of
the function under consideration and is thus fixed. Theegfionprovements for the truncated singular
value decomposition can only be achieved by a more efficepresentation of the eigenfunctions.
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