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We compare the cost complexities of two approximation schemes for functions f ∈ H p(Ω1×Ω2) which
live on the product domainΩ1×Ω2 of sufficiently smooth domainsΩ1 ⊂R

n1 andΩ2 ⊂R
n2, namely the

singular value / Karhunen-L̀oeve decomposition and the sparse grid representation. Here we assume that
suitable finite element methods with associatedfixedorderr of accuracy are given on the domainsΩ1 and

Ω2. Then, the sparse grid approximation essentially needs onlyO(ε−q) with q=
max{n1,n2}

r unknowns
to reach a prescribed accuracyε provided that the smoothness off satisfiesp > r n1+n2

max{n1,n2} , which is
an almost optimal rate. The singular value decomposition produces this rate only if f is analytical since
otherwise the decay of the singular values is not fast enough. Ifp < r n1+n2

max{n1,n2} , then the sparse grid

approach gives essentially the rateO(ε−q) with q= n1+n2
p while, for the singular value decomposition,

we can only prove the rateO(ε−q) with q =
2min{r,p}min{n1,n2}+2pmax{n1,n2}

(2p−min{n1,n2})min{r,p} . We derive the resulting
complexities, compare the two approaches and present numerical results which demonstrate that these
rates are also achieved in numerical practice.

Keywords: singular value decomposition; sparse grids; complexity.

1. Introduction

The efficient approximate representation of multivariate functions is an important task in numerical
analysis and scientific computing. In this paper, we concentrate on functions which live on the product
of two domainsΩ1×Ω2. Already for this simple situation, there exists a large amount of applications.
For example, radiosity models and radiative transfer (Widmer et al. (2008)) exhibit a product structure.
Here,Ω1 denotes the spatial three-dimensional domain of the geometric object under consideration and
Ω2 is the sphereS2. Moreover, in the case of space-time discretizations of parabolic problems,Ω1 is
the time interval whereasΩ2 is the spatial domain (Griebel & Oeltz (2007) and Stevenson &Schwab
(2009)).

Then, there are various phase space problems where bothΩ1 andΩ2 are three-dimensional cubes
or the full three-dimensional real space. Examples are the Boltzmann equation, kinetic equations or
the Langevin equation, see e.g. Balescu (1997). Furthermore, non-Newtonian flow can be modeled
by a coupled system which consists of the Navier Stokes equation for the flow in a three-dimensional
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geometry described byΩ1 and of the Fokker-Planck equation in a 3(k−1)-dimensional configuration
space onΩ2. Herek denotes the number of atoms in a chain-like molecule which constitutes the non-
Newtonian behavior of the flow, for details see Barrettet al. (2009), Le Bris & Lelìevre (2009), and
Lozinski et al. (2010). Note that the domain of the configuration space is itself again a product ofk−1
spheres.

Another example is two-scale homogenization. After unfolding (Cioranescuet al. (2008)), it gives
raise to the product of the macroscopic physical domain and the periodic microscopic domain of the
cell problem, see Matache (2002). For multiple scales, a general product appears here which still can be
written as the product of two domains, one containing e.g. the macroscopic scale and the other consisting
of the product of the domains of the different microscales (Hoang & Schwab (2005)).

Also the two-point correlation functions of linear elliptic boundary value problems with stochastic
source terms, i.e.Au(ω) = f (ω) in Ω , are known to satisfy a deterministic partial differentialequation
on the product domainΩ ×Ω . Namely, the two-point correlation satisfies the equation(A⊗A)Coru =
Corf in Ω ×Ω , see Schwab & Todor (2003a). Higher order moments then involve larger tensor products
(Schwab & Todor (2003b)). This approach extends to stochastic diffusion functions and more general
PDEs with stochastic coefficient functions as well as to stochastic domains (Harbrechtet al. (2008a),
Harbrecht (2010)).

Finally we find the product of two domains in quantum mechanics for e.g. the Schrödinger equation
for Helium; systems with more than two electrons involve then multiple product domains, of course.

In general, some problems are directly given on the product of two domains, while for other prob-
lems the domains themselves are products of lower-dimensional domains. Then, the domain of an
n-dimensional problem with e.g.n being some power of two can be split into the tensor product of
two domains of dimensionn/2 which can be recursively further split until a terminal situation (a one-
dimensional domain or a truly higher dimensional but non-tensor product domain) is reached. Related
representation methods have recently been considered in Bebendorf (2011), Grasedyck (2010), Hack-
busch (2012), Hackbusch &K̈uhn (2009), or Oseledets & Tyrtyshnikov (2009).

In this article, we consider the simple case of two domainsΩ1 andΩ2 only. Here, our analysis covers
the situation of the first bisection step in the above mentioned recursion. To this end, fori = 1,2, let
Ωi denote a domain inRni (or alternatively also anni-dimensional manifold inRni+1). We consider the
numerical approximation of two-variate functions. That is, on the individual subdomains we suppose to
have given, fixed sequences of nested trial spaces

V(i)
0 ⊂V(i)

1 ⊂V(i)
2 ⊂ ·· · ⊂ L2(Ωi)

which consist of ansatz functions of the same, fixed approximation orderr. Based on these ansatz
spaces, we intend to compare the efficient approximation of functions f (x,y) ∈ L2(Ω1×Ω2) by either
the truncated singular value decomposition

fM(x,y) :=
M

∑
ℓ=1

√
λℓϕℓ(x)ψℓ(y)

or by the generalized sparse grid approach

f̂J(x,y) := ∑
j1/σ+ j2σ6J

∑
k1∈∇(1)

j1

∑
k2∈∇(2)

j2

β( j1,k1),( j2,k2)ξ
(1)
j1,k1

(x)ξ (2)
j2,k2

(y)

whereσ > 0 is an appropriately chosen parameter. In the first representation,{ϕℓ}M
ℓ=1 and{ψℓ}M

ℓ=1 are
sets of orthonormal functions. They are a-priorily unknown, can in general not be derived analytically



APPROXIMATION OF TWO-VARIATE FUNCTIONS 3 of 26

and need thus to be approximated in the ansatz spaces{V(i)
j }. In other words, the approximation involves

in most applications both, a truncation afterM termsand an approximate computation of the singular

values and the associated left and right singular vectors. In the second representation,{ξ (i)
j,k}k∈∇(i)

j , j∈N
are in general multilevel or wavelet bases associated with the trial spaces, where the indexj refers to
the level of resolution and the indexk refers to the locality of the basis function (the precise definition
will be given in Section 4).

For our comparison we consider the smoothness of the function f to be measured in isotropic
Sobolev norms. The result of this paper is then as follows: given a functionf ∈ H p(Ω1×Ω2), we have
to spendO(ε−q) with q= 2min{r,p}min{n1,n2}+2pmax{n1,n2}

(2p−min{n1,n2})min{r,p} degrees of freedom for the computation of the
approximative truncated singular value decomposition to reach a specific prescribed accuracyε. For
the general sparse grid method with associated parameterσ =

√
n1/n2 (a precise definition is given in

Section 4) it is known that this cost-complexity rate is of the orderO(ε−q) with q= max{n1+n2
p , n1

r ,
n2
r }

(Griebel & Harbrecht (2011)). We compare the two approachesand present numerical results which
demonstrate that these rates are also achieved in practice.

Note that we have only an upper bound for the truncated singular value decomposition. Therefore,
our comparison of the truncated singular value decomposition and the sparse grid approach (see Sec-
tion 5) needs to be interpreted carefully. Indeed, the present paper is only a first attempt towards a
“fair” comparison of both approaches, which especially takes into account that the eigenvectors of the
approximative truncated singular value decomposition need to be computed and stored in any practical
numerical approach.

The remainder of this article is organized as follows: In Section 2 we give a short introduction to
multilevel approximation. In Section 3 we describe the singular value decomposition of a two-valued
function onΩ1×Ω2 and discuss its approximation properties in detail. Section 4 gives the basics of
the so-called general sparse grid approximation of a two-valued function onΩ1×Ω2 and presents its
error rates and cost complexities. In Section 5, we compare the two approximations. In Section 6, we
present numerical results which show that the theoretical complexity rates are also achieved in practice.
Section 7 concludes with some final remarks.

Throughout this paper, the notion “essential” in connection with the complexity estimates means
“up to logarithmic terms”. Moreover, to avoid the repeated use of generic but unspecified constants, we
denote byC. D thatC is bounded by a multiple ofD independently of parameters whichC andD may
depend on. Obviously,C& D is defined asD .C, andC∼ D asC. D andC& D.

2. Approximation on the subdomains

Let Ω ⊂ R
n be a sufficiently smooth, bounded domain. In general, one uses finite elements to ap-

proximate functions onL2(Ω). In the present paper we focus on the commonh-method, i.e., on finite
elements of fixed approximation order. Then, particularly for applying multiscale techniques, one has a
sequence of nested trial spaces

V0 ⊂V1 ⊂V2 ⊂ ·· · ⊂ L2(Ω) (2.1)

such that
L2(Ω) =

⋃

j∈N0

Vj ,

which is calledmultiscale analysis. Each spaceVj is defined by a single scale basisΦ j = {φ j,k},
i.e.Vj = span{φ j,k : k∈ ∆ j}, where∆ j denotes a suitable index set with cardinality #(∆ j)∼ 2n j.
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We say that the trial spaces have(approximation) order r∈ N if

r = sup
{

s∈ R : inf
v j∈Vj

‖v−v j‖L2(Ω) . hs
j‖v‖s ∀v∈ Hs(Ω)

}
, (2.2)

where the quantityh j ∼ 2− j corresponds to the mesh width associated with the subspaceVj onΩ . Note
that the integerr > 0 refers in general to the maximal order of polynomials whichare locally contained
in Vj .

Equation (2.2) implies that a given functionv∈ H p(Ω), 06 p6 r, can be approximated inVj at a
ratehp

j , that is
inf

v j∈Vj
‖v−v j‖L2(Ω) . hp

j ‖v‖H p(Ω), 06 p6 r. (2.3)

Thus, when we approximate a functionv∈ H p(Ω) with 06 p6 r by uniform mesh refinement we
obtain the ratehp

j according to (2.3). Since the meshsize and the number of unknowns inVj are related
by dim(Vj)∼ 2 jn ∼ h−n

j , we deduce that

N ∼ ε−n/p (2.4)

unknowns have to be spent to achieve an approximation errorε. The best possible rateN−n/r is achieved
if p= r, that is ifv∈ Hr(Ω).

For our subsequent analysis, to efficiently approximate two-variate functions inL2(Ω1×Ω2), we
shall fix the definitions, properties and cost complexities individually for each subdomainΩi ∈ R

ni ,
i = 1,2. That is, we fix two multiscale analyses

V(i)
0 ⊂V(i)

1 ⊂V(i)
2 ⊂ ·· · ⊂ L2(Ωi), i = 1,2 (2.5)

which are assumed to provide thesameapproximation orderr. The construction of the approximative
truncated singular value decomposition in Section 3 and thesparse grid in Section 4 are based on these
multiscale analyses. A comparison for the case of thesame r, i.e., where the underlying finite element
spaces in (2.5) for both, the approximative truncated singular value decomposition and the sparse grid,
have the same orderr, then takes place in Section 5. The question we address in this paper is as follows:
Given a functionH p(Ω1×Ω2), wherep> 0 is arbitrary and where trial spaces with fixed orderr are
used in both approaches, which algorithm provides the cheaper approximation?

3. Singular value decomposition

3.1 Definition and mapping properties

We intend to numerically represent functionsf (x,y)∈ L2(Ω1×Ω2) on tensor product domainsΩ1×Ω2

in an efficient way. One way to solve this approximation problem is to use an ansatz by means of tensor
products which separates the variablesx andy. We first consider the approximation

f (x,y)≈ fM(x,y) =
M

∑
ℓ=0

αℓϕℓ(x)ψℓ(y), (3.1)

with certain coefficientsαℓ ∈ R and normalized functionsϕℓ ∈ L2(Ω1) and ψℓ ∈ L2(Ω2). Such an
approximation is calledlow rank approximation.

It is well known (see e.g. Ghanem & Spanos (1991), Lòeve (1978), or Schwab & Todor (2006)) that,
with respect to the numberM of terms, the best possible representation of a functionf ∈ L2(Ω1×Ω2)
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in theL2-sense is given by the Karhunen-Lòeve / singular value decomposition. Then,αℓ =
√

λℓ are the
eigenvalues of the below defined integral operator (3.2) with kernel (3.3). The decay of the eigenvalues
is important for the fast convergence (in terms ofM) of the series (3.1). As we will see in Subsection 3.2,
the decay depends on the smoothness of the functionf to be approximated. We analyze the truncation
error in Subsection 3.3 and discuss the smoothness of the eigenfunctions in Subsection 3.4. In Sub-
section 3.5 we finally consider the numerical treatment of (3.1). Besides determining the coefficients
{αℓ}ℓ∈N, a numerical scheme needs to approximate the functions{ϕℓ}ℓ∈N and{ψℓ}ℓ∈N in appropriate

trial spacesV(1)
j1

andV(2)
j2

, respectively, up to an accuracy corresponding to that of (3.1). Recall that
the trial spaces which we consider are elements of the multiscale analyses (2.5) which have the same
approximation orderr.

To derive the singular value decomposition, we shall consider the integral operator

S : L2(Ω1)→ L2(Ω2), (S u)(y) :=
∫

Ω1

f (x,y)u(x)dx.

Its adjoint is

S
⋆ : L2(Ω2)→ L2(Ω1), (S ⋆u)(x) :=

∫

Ω2

f (x,y)u(y)dy.

Then, to obtain the low-rank representation (3.1) we need tocompute the eigenvalues of the integral
operator

K = S
⋆
S : L2(Ω1)→ L2(Ω1), (K u)(x) :=

∫

Ω1

k(x,x′)u(x′)dx′ (3.2)

whose kernel function is given by

k(x,x′) =
∫

Ω2

f (x,y) f (x′,y)dy ∈ L2(Ω1×Ω1). (3.3)

This is a Hilbert-Schmidt kernel. Thus, the associated integral operatorK is compact. Moreover, since
K is self-adjoint, there exists a decomposition into eigenpairs (λℓ,ϕℓ) which fulfills

K ϕℓ = λℓϕℓ, ℓ ∈ N,

with non-negative eigenvaluesλ1 > λ2 > · · · > λm → 0 and eigenfunctions{ϕℓ}ℓ∈N, which constitute
an orthonormal basis inL2(Ω1).

We now define for allℓ ∈ N with λℓ > 0 the functionψℓ ∈ L2(Ω2) by

ψℓ(y) =
1√
λℓ

(S ϕℓ)(y) =
1√
λℓ

∫

Ω1

f (x,y)ϕℓ(x)dx. (3.4)

This constitutes a second sequence of orthonormal functions since

(ψk,ψℓ)L2(Ω2)
=

1√
λkλℓ

(S ϕk,S ϕℓ)L2(Ω2)
=

1√
λkλℓ

(K ϕk,ϕℓ)L2(Ω1)

=
λk√
λkλℓ

(ϕk,ϕℓ)L2(Ω1)
= δk,ℓ.
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If λℓ = 0 for someℓ ∈ N we can extend this collection of functions properly to obtain an orthonormal
basis{ψℓ}ℓ∈N of L2(Ω2). Due to

√
λℓϕℓ(x) =

1√
λℓ

(S ⋆
S ϕℓ)(x) = (S ⋆ψℓ)(x) =

∫

Ω2

f (x,z)ψℓ(z)dz (3.5)

for all x ∈ Ω1 andℓ ∈ N, we finally obtain the representation

f (x,y) =
∞

∑
ℓ=0

√
λℓϕℓ(x)ψℓ(y). (3.6)

With (3.4) and (3.5), this equation is easily verified by testing with the orthonormal basis{ϕk⊗ψℓ}k,ℓ∈N
of L2(Ω1×Ω2).

REMARK 3.1 The adjoint kernel̃k(·, ·) is just obtained by interchangingΩ1 andΩ2, i.e.,

k̃(y,y′) =
∫

Ω1

f (x,y) f (x,y′)dx ∈ L2(Ω2×Ω2).

Then, one has the integral operator

K̃ = S S
⋆ : L2(Ω2)→ L2(Ω2), (K̃ u)(y) :=

∫

Ω2

k̃(y,y′)u(y′)dy′.

Again there exists a decomposition into eigenpairs

K̃ ϕ̃ℓ = λ̃ℓϕ̃ℓ, ℓ ∈ N,

with non-negative eigenvalues̃λ1 > λ̃2 > · · ·> λ̃m→ 0 and eigenfunctions̃ϕℓ ∈ L2(Ω2). We also obtain
a second sequence of orthonormal functionsψ̃ℓ ∈ L2(Ω1) analogously to (3.4). The functions{ϕ̃ℓ}ℓ∈N
and{ψ̃ℓ}ℓ∈N will be the same as before but now their roles are exchanged. Moreover, the eigenvalues
λℓ andλ̃ℓ of K andK̃ coincide.

We shall prove the following auxiliary result concerning the mapping properties of the integral
operatorsS andS ⋆. To this end, fors> 0 we mean byH−s(Ω) :=

(
Hs(Ω)

)′
the dual of the Sobolev

spaceHs(Ω) (which is usually denoted bỹH−s(Ω)). Moreover, fors1,s2 ∈ R, let

Hs1,s2
mix (Ω1×Ω2) := Hs1(Ω1)⊗Hs2(Ω2)

denote the Sobolev space of dominating mixed derivatives.

LEMMA 3.1 Assume thatf ∈ H p(Ω1×Ω2). Then, the operators

S : H−s(Ω1)→ H p−s(Ω2), S
⋆ : H−s(Ω2)→ H p−s(Ω1)

are continuous for alls∈ [0, p].

Proof. FromH p(Ω1×Ω2)⊂H0,p
mix(Ω1×Ω2) it follows that f ∈H0,p

mix(Ω1×Ω2). Therefore, the operator
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S : L2(Ω1)→ H p(Ω2) is continuous since

‖S u‖H p(Ω2) = sup
‖v‖H−p(Ω2)

=1
(S u,v)L2(Ω2)

= sup
‖v‖H−p(Ω2)

=1
( f ,u⊗v)L2(Ω1×Ω2)

6 sup
‖v‖H−p(Ω2)

=1
‖ f‖

H0,p
mix(Ω1×Ω2)

‖u⊗v‖
H0,−p

mix (Ω1×Ω2)

∼ ‖ f‖
H0,p

mix(Ω1×Ω2)
‖u‖L2(Ω1)

.

Note that we have used here thatH0,−p
mix (Ω1×Ω2) = L2(Ω1)⊗H−p(Ω2).

In complete analogy one shows thatS ⋆ : L2(Ω2)→ H p(Ω1) is continuous which proves the desired
assertion fors= 0. By duality one also infers the assertion fors= p. The assertion fors∈ (0, p) is
finally obtained by interpolation. �

3.2 Decay of the eigenvalues

With the above lemma we are now able to determine the decay rate of the eigenvalues of the integral
operatorK = S ⋆S with kernel (3.3).

THEOREM 3.1 Considerf ∈ H p(Ω1×Ω2) with associated kernelk from (3.3) and associated integral
operatorK from (3.2). Then, the eigenvalues{λℓ}ℓ∈N of K decay like

λℓ . ℓ
− 2p

min{n1,n2} asℓ→ ∞. (3.7)

Proof. We shall investigate the dependence of the decay of the eigenvalues of the integral operator
K = S ⋆S on the smoothnessp of f . To this end, we introducenew1 finite element spacesUN ⊂
L2(Ω2), which consist ofN discontinuous, piecewise polynomial functions of total degree⌈p⌉ on a
quasi-uniform triangulation ofΩ2 with mesh widthhN ∼ N−1/n2. Then, the Bramble-Hilbert lemma
implies the following approximation result for theL2-orthogonal projectionPN : L2(Ω2)→UN:

‖(I −PN)w‖L2(Ω2)
6 cpN−p/n2‖w‖H p(Ω2),

provided thatw∈ H p(Ω2). Then, sinceS ⋆PNS : L2(Ω1)→ L2(Ω1) is an operator of finite rankN, the

1The present proof relies on an approximation argument. The newfinite element spaces{UN} are introduced to obtain the
optimal convergence rate withN degrees of freedom.
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min-max principle of Courant-Fischer implies

λN+1 = min
V⊂L2(Ω1)

dimV⊥6N

max
u∈V

‖u‖L2(Ω1)
=1

(K u,u)L2(Ω1)

6 max
u⊥img(S ⋆PNS )
‖u‖L2(Ω1)

=1

(S ⋆
S u,u)L2(Ω1)

= max
u⊥img(S ⋆PNS )
‖u‖L2(Ω1)

=1

(
S

⋆(I −PN)S u,u
)

L2(Ω1)

= max
u⊥img(S ⋆PNS )
‖u‖L2(Ω1)

=1

(
(I −PN)S u,(I −PN)S u

)
L2(Ω2)

6 sup
‖u‖L2(Ω1)

=1
‖(I −PN)S u‖2

L2(Ω2)

. N−2p/n2 sup
‖u‖L2(Ω1)

=1
‖S u‖2

H p(Ω2)
.

SinceS : L2(Ω1) → H p(Ω2) is continuous according to Lemma 3.1, we arrive atλN+1 . N−2p/n2.
Applying the same arguments to the operator̃K , one gets the decay rateλN+1 . N−2p/n1. Thus,
λN+1 . N−2p/min{n1,n2}. Substituting finallyN+1 by ℓ yields the desired result. �

REMARK 3.2 The min-max principle of Courant-Fischer is also used inSchwab & Todor (2006) to
estimate the decay of the eigenvalues. There, however, onlythe regularity of the kernel functionk ∈
H p,p

mix(Ω1×Ω1) in the first variable enters the estimate which gives the rate

λℓ . ℓ
− p

min{n1,n2} asℓ→ ∞.

By using the representationK = S ⋆S , we are able to exploit the kernel’s regularity in both variables
which doubles the decay rate.

3.3 Truncation error

Altogether, if f ∈ H p(Ω1×Ω2), then Theorem 3.1 implies that the coefficients{
√

λℓ} in the expansion
(3.6) of f decay like

√
λ ℓ . ℓ−p/min{n1,n2}. This leads to the following theorem.

THEOREM 3.2 Let f ∈ H p(Ω1×Ω2) andp> min{n1,n2}/2. Then it holds

∥∥∥∥ f −
M

∑
ℓ=0

√
λℓ(ϕℓ⊗ψℓ)

∥∥∥∥
L2(Ω1×Ω2)

. M
1
2−

p
min{n1,n2} . (3.8)

Proof. Assume without loss of generality thatn1 6 n2. Then, due toλℓ ∼ ℓ−2p/n1 from Theorem 3.1,
we obtain by the orthonormality of the function sets{φℓ} and{ψℓ} that

∥∥∥∥ f −
M

∑
ℓ=0

√
λℓ(ϕℓ⊗ψℓ)

∥∥∥∥
2

L2(Ω1×Ω2)

=

∥∥∥∥
∞

∑
ℓ=M+1

√
λℓ(ϕℓ⊗ψℓ)

∥∥∥∥
2

L2(Ω1×Ω2)

=
∞

∑
ℓ=M+1

λℓ .
∞

∑
ℓ=M+1

ℓ
− 2p

n1 .
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Since 2p/n1 > 1 we can estimate the sum by an integral as

∞

∑
ℓ=M+1

ℓ
− 2p

n1 6

∫ ∞

M
x
− 2p

n1 dx=
M

1− 2p
n1

2p
n1

−1

which leads to the desired result (3.8). �

Consequently, to ensure the error bound

∥∥∥∥ f −
M

∑
ℓ=0

√
λℓ(ϕℓ⊗ψℓ)

∥∥∥∥
L2(Ω1×Ω2)

. ε (3.9)

we need to choose the expansion degreeM as

M ∼ ε
2min{n1,n2}

min{n1,n2}−2p . (3.10)

REMARK 3.3 The following comments are in order.

1. Regularity in terms of mixed derivatives does not furtherimprove the results. The propertyf ∈
H p,p

mix(Ω1×Ω2) again yields the estimateλℓ . ℓ−2p/max{n1,n2} for the eigenvalues ofK .

2. The use of the Sobolev regularity might give a too low decayrate (3.7). For example, for the
exponential kernelk(x,y) = exp(−|x−y|) on the unit square, we havek∈ H3/2−δ ((0,1)× (0,1)

)

for all δ > 0 but we observe
√

λℓ ∼ ℓ−2 instead of
√

λℓ ∼ ℓ−3/2, see Figure 5 in Section 6.
Here, we expect that the use of Besov regularity in the approximation argument in the proof
of Theorem (3.1) would give the correct decay since it allowsfor an adaptive refinement at the
diagonalx= y.

3. Our considerations and thus estimate (3.8) do not apply if0 6 p 6 min{n1,n2}/2. However, it
still holds∑∞

ℓ=0 λℓ < ∞ sinceK is a Hilbert-Schmidt operator.

3.4 Smoothness of the eigenfunctions

Depending on the smoothness off , we are able to prove the following result on the regularity of the
functions in the collections{ϕℓ} and{ψℓ}. This result will be essential for any numerical computation
of the truncated singular value decomposition.

LEMMA 3.2 Let f ∈ H p(Ω1 × Ω2). Then, the eigenfunctions{ϕℓ} and {ψℓ} are in H p(Ω1) and
H p(Ω2), respectively, and satisfy

‖ϕℓ‖H p(Ω1) .
1√
λℓ

, ‖ψℓ‖H p(Ω2) .
1√
λℓ

, ℓ ∈ N. (3.11)

Proof. In view of (3.5) and Lemma 3.1, we deduce

‖ϕℓ‖H p(Ω1) =
1√
λℓ

‖S ⋆ψℓ‖H p(Ω1) .
1√
λℓ

‖ψℓ‖L2(Ω2)
=

1√
λℓ

for all ℓ ∈ N. The second estimate is shown in complete analogy. �
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3.5 Numerical approximation

So far, we used anexactdescription of the eigenfunctions. However this does not hold in practice.
Instead, the eigenvalues{λℓ}M

ℓ=1 and eigenfunctions{ϕℓ}M
ℓ=1 and{ψℓ}M

ℓ=1 need to be approximately
computed in the finite element spaces which have been introduced in Section 2.

Recall that, on both subdomains, the finite element spacesV(i)
j ⊂ L2(Ωi) provide the same approx-

imation orderr, which results in the same approximation property (2.3), but, depending on the subdo-
mains’ spatial dimensionsn1, n2, in different cost complexities (2.4).

According to (2.3) and (3.11), when we spendNϕ ∼ 2 jn1 degrees of freedom for an approximation

of ϕℓ in V(1)
j andNψ ∼ 2 jn2 degrees of freedom for an approximation ofψℓ in V(2)

j , we conclude

‖ϕℓ−ϕℓ,N‖L2(Ω1)
. N

−min{p,r}
n1

ϕ ‖ϕℓ‖Hmin{p,r}(Ω) .
1√
λℓ

N
−min{p,r}

n1
ϕ ,

‖ψℓ−ψℓ,N‖L2(Ω2)
. N

−min{p,r}
n2

ψ ‖ψℓ‖Hmin{p,r}(Ω) .
1√
λℓ

N
−min{p,r}

n2
ψ .

(3.12)

Here,ϕℓ,N andψℓ,N denote the numerical approximations toϕℓ andψℓ, respectively.
According to (3.12), to ensure‖ϕℓ−ϕℓ,N‖L2(Ω1)

. ε/
√

λℓM (we will later see that this is the proper
accuracy), we have to spent (cf. (3.10))

Nϕ ∼
(

ε√
M

)− n1
min{r,p}

∼ ε
2pn1

(min{n1,n2}−2p)min{r,p}

unknowns for the representation ofϕℓ,N and, to ensure‖ψℓ−ψℓ,N‖L2(Ω2)
. ε/

√
λℓM, we have to spent

Nψ ∼
(

ε√
M

)− n2
min{r,p}

∼ ε
2pn2

(min{n1,n2}−2p)min{r,p}

unknowns for the representation ofψℓ,N, respectively. In the sequel, we will spend alwaysN :=
max{Nϕ ,Nψ} degrees of freedom which does not deteriorate the cost complexity. In particular,N does
not depend onℓ, i.e., all eigenfunctions{ϕN,ℓ} and{ψN,ℓ} are approximated in the same ansatz spaces.

REMARK 3.4 If p> r, then we even may estimate

‖ϕℓ‖Hr (Ω) .

(
1√
λℓ

) r
p

, ‖ψℓ‖Hr (Ω) .

(
1√
λℓ

) r
p

by using interpolation arguments. Hence, (3.12) can be improved by

‖ϕℓ−ϕℓ,N‖L2(Ω1)
. λ

−min{r,p}
2p

ℓ N
−min{p,r}

n1 ,

‖ψℓ−ψℓ,N‖L2(Ω2)
. λ

−min{r,p}
2p

ℓ N
−min{p,r}

n2 .

As a consequence, ifp > r, the number of unknowns for approximating the eigenfunctions can be
reduced whenℓ increases. However, to exploit this fact for the computation of the truncated singular
value decomposition, one needs the specific information on the smoothness indexp.
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We assume that the approximate eigenfunctions are normalized and pairwise orthogonal, i.e., for
16 ℓ,ℓ′ 6 M we have

∫

Ω1

ϕℓ,N(x)ϕℓ′,N(x)dx = δℓ,ℓ′ ,
∫

Ω2

ψℓ,N(y)ψℓ′,N(y)dy = δℓ,ℓ′ .

Concerning the approximation of theM largest eigenvalues in the spaceVN, defined via their Rayleigh
quotients

λℓ,N =
∫

Ω1

∫

Ω1

k(x,x′)ϕℓ,N(x)ϕℓ,N(x
′)dxdx′, ℓ= 1,2, . . . ,M.

we assume the following estimate

06 λℓ−λℓ,N . λℓ‖ϕℓ−ϕℓ,N‖2
L2(Ω1)

, ℓ= 1,2, . . . ,M. (3.13)

We emphasize that these assumptions, in particular (3.13),are all satisfied if one computes the ap-
proximation{(λN,ℓ,ϕN,ℓ)}M

ℓ=1 to the eigenpairs{(λℓ,ϕℓ)}M
ℓ=1 with a Ritz-Galerkin method in the space

V(1)
j with dimV(1)

j ∼ N, i.e., with j ∼ logN. For the details we refer the reader to Dyakonov (1996).
Based on (3.8), (3.12) and (3.13), we can now estimate the error of the discretized truncated singular

value decomposition.

THEOREM 3.3 Let f ∈ H p(Ω1×Ω2) and choose

M ∼ ε
2min{n1,n2}

min{n1,n2}−2p , N ∼ ε
2pmax{n1,n2}

(min{n1,n2}−2p)min{r,p} .

Then, the truncated singular value decomposition satisfiesthe error estimate

∥∥∥∥∥ f −
M

∑
ℓ=0

√
λℓ,N(ϕℓ,N ⊗ψℓ,N)

∥∥∥∥∥
L2(Ω1×Ω2)

. ε

uniformly in ε > 0.

Proof. It holds

E :=

∥∥∥∥∥
∞

∑
ℓ=0

√
λℓ(ϕℓ⊗ψℓ)−

M

∑
ℓ=0

√
λℓ,N(ϕℓ,N ⊗ψℓ,N)

∥∥∥∥∥
L2(Ω1×Ω2)

6

∥∥∥∥∥
∞

∑
ℓ=M+1

√
λℓ(ϕℓ⊗ψℓ)

∥∥∥∥∥
L2(Ω1×Ω2)

+

∥∥∥∥∥
M

∑
ℓ=0

√
λℓ(ϕℓ⊗ψℓ)−

√
λℓ,N(ϕℓ,N ⊗ψℓ,N)

∥∥∥∥∥
L2(Ω1×Ω2)

.

According to (3.8) and (3.9) the truncation error, i.e., thefirst term, is bounded bycε. Moreover, we
split the second term into appropriate differences:

√
λℓ(ϕℓ⊗ψℓ)−

√
λℓ,N(ϕℓ,N ⊗ψℓ,N) =

(√
λℓ−

√
λℓ,N

)
(ϕℓ⊗ψℓ)+

√
λℓ,N

(
ϕℓ⊗ (ψℓ−ψℓ,N)

)

+
√

λℓ,N
(
(ϕℓ−ϕℓ,N)⊗ψℓ,N

)
.
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Thus, we arrive at

E . ε +

∥∥∥∥∥
M

∑
ℓ=0

(√
λℓ−

√
λℓ,N

)
(ϕℓ⊗ψℓ)

∥∥∥∥∥
L2(Ω1×Ω2)

+

∥∥∥∥∥
M

∑
ℓ=0

√
λℓ,N

(
ϕℓ⊗ (ψℓ−ψℓ,N)

)
∥∥∥∥∥

L2(Ω1×Ω2)

+

∥∥∥∥∥
M

∑
ℓ=0

√
λℓ,N

(
(ϕℓ−ϕℓ,N)⊗ψℓ,N

)
∥∥∥∥∥

L2(Ω1×Ω2)

.

We now estimate the three terms on the right hand side separately. In view of (3.13), we have
√

λℓ >√
λℓ,N and, with (3.12), we obtain

06
∣∣∣
√

λℓ−
√

λℓ,N

∣∣∣
2
6 λℓ−λℓ,N . λℓ‖ϕℓ−ϕℓ,N‖2

L2(Ω1)
.

ε2

M

for all 06 ℓ6 M. This yields

∥∥∥∥∥
M

∑
ℓ=0

(√
λℓ−

√
λℓ,N

)
(ϕℓ⊗ψℓ)

∥∥∥∥∥

2

L2(Ω1×Ω2)

=
M

∑
ℓ=0

∣∣∣
√

λℓ−
√

λℓ,N

∣∣∣
2
.

M

∑
ℓ=0

ε2

M
. ε2. (3.14)

Next, withλℓ,N 6 λℓ, we have

∥∥∥∥∥
M

∑
ℓ=0

√
λℓ,N

(
ϕℓ⊗ (ψℓ−ψℓ,N)

)
∥∥∥∥∥

2

L2(Ω1×Ω2)

=
M

∑
ℓ=0

λℓ,N‖ϕℓ⊗ (ψℓ−ψℓ,N)‖2
L2(Ω1×Ω2)

6
M

∑
ℓ=0

λℓ‖ϕℓ‖2
L2(Ω1)

‖ψℓ−ψℓ,N‖2
L2(Ω2)

.
M

∑
ℓ=0

ε2

M
. ε2,

(3.15)

and likewise
∥∥∥∥∥

M

∑
ℓ=0

√
λℓ,N

(
(ϕℓ−ϕℓ,N)⊗ψℓ,N

)
∥∥∥∥∥

2

L2(Ω1×Ω2)

. ε2. (3.16)

Plugging (3.14)–(3.16) into the above estimate ofE finally leads to the desired estimateE . ε. �

Altogether, since we have to deal withM eigenfunctions withN coefficients each, we arrive at the
following theorem.

THEOREM 3.4 The number of degrees of freedom needed to approximate a function f ∈ H p(Ω1×Ω2)
by the singular value decomposition approach (3.1) with (3.12) and (3.13) to a prescribed accuracyε is

dofsvd(ε) = M ·N ∼ ε−
2min{r,p}min{n1,n2}+2pmax{n1,n2}

(2p−min{n1,n2})min{r,p} (3.17)

We emphasize that the estimate (3.17) does not include the work to be spent forcomputingthe
singular values nor the eigenfunctions. Here, a naive approach would result in a cost complexity of order
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M ·N2, the use of fast methods for nonlocal operators would resultin an almost linear or even linear
complexity per eigenpair. Note that in any case at least linear complexityO(M ·N) is required, which is
indeed achieved with modern algorithms, see e.g. Dahmenet al. (2008), Daiet al. (2008), and Schwab
& Todor (2006). Therefore, our analysis is based on the best possible situation for the approximative
truncated singular value decomposition and our later comparison will be fair in this respect.

4. Sparse grids

Based on the multiscale analyses (2.5) on each individual subdomain, one naturally obtains a second
method to approximate functions in tensor product spaces: By choosing complementary spaces

W(i)
j = span

{
ξ (i)

j,k : k∈ ∇(i)
j := ∆ (i)

j \∆ (i)
j−1

}
, i = 1,2,

such that
V(i)

j =W(i)
j ⊕V(i)

j−1, V(i)
0 =W(i)

0 ,

we can define the so calledgeneral sparse grid space, see Bungartz & Griebel (2004) and Griebel &
Harbrecht (2011),

V̂σ
J :=

⊕

j1σ+ j2/σ6J

W(1)
j1

⊗W(2)
j2

(4.1)

whereσ > 0 is a given parameter. Thus, a functionf̂J ∈ V̂σ
J is represented as

f̂J(x,y) = ∑
j1σ+ j2/σ6J

∑
k1∈∇(1)

j1

∑
k2∈∇(2)

j2

β( j1,k1),( j2,k2)ξ
(1)
j1,k1

(x)ξ (2)
j2,k2

(y). (4.2)

Sparse grids can be constructed via hierarchical bases, interpolets and wavelet-like bases (see e.g.
DeVoreet al. (1998), Griebel & Knapek (2009), Strömberg (1998), and Zenger (1991)) or even directly
by finite elements in terms of frames (see e.g. Griebel (1994), Griebel & Oswald (1994), and Harbrecht
et al. (2008b)). For a survey on sparse grids we refer the reader to Bungartz & Griebel (2004) and the
references therein.

The dimension of the general sparse grid spaceV̂σ
J is essentially equal to the dimension of the finest

univariate finite element spaces which enter its construction, i.e., it is essentially equal to the value of

max
{

dimV(1)
J/σ ,dimV(2)

Jσ
}

. Nevertheless, by considering smoothness in terms of mixedSobolev spaces,
its approximation power is essentially the same as in the full tensor product space. Precisely, we have

THEOREM 4.1 (Griebel & Harbrecht (2011)) The sparse grid spaceV̂σ
J possesses

dimV̂σ
J ∼

{
2Jmax{n1/σ ,n2σ}, if n1/σ 6= n2σ ,

2Jn2σ J, if n1/σ = n2σ

degrees of freedom. Moreover, for a given functionf ∈ Hs1,s2
mix (Ω1×Ω2) with 0< s1,s2 6 r, there holds

the approximation estimate

inf
f̂J∈V̂σ

J

∥∥ f − f̂J
∥∥

L2(Ω1×Ω2)
.

{
2−Jmin{s1/σ ,s2σ}‖ f‖H

s1,s2
mix (Ω1×Ω2)

, if s1/σ 6= s2σ ,

2−Js1/σ√J‖ f‖H
s1,s2
mix (Ω1×Ω2)

, if s1/σ = s2σ .
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In this theorem, the convergence rate is given for a functionf ∈ Hs1,s2
mix (Ω1×Ω2). In the following,

however, we are interested in the convergence rate if the smoothness off is measured in the isotropic
Sobolev spaceH p(Ω1×Ω2). Since for alls1+ s2 = p it holds Hs1,s2

mix (Ω1×Ω2) ⊂ H p(Ω1×Ω2), we
have to balances1 ands2 carefully if we want to compute the convergence rate of anf ∈ H p(Ω1×Ω2)

in the sparse grid spacêVσ
J . The analysis given in Griebel & Harbrecht (2011) shows thatthe best space

for approximating functions in isotropic Sobolev spaces isobtained for the choiceσ =
√

n1/n2. With
this choice, the cost complexity to approximate a functionf ∈ H p(Ω1×Ω2) is given as follows.

THEOREM4.2 (Griebel & Harbrecht (2011)) The number of degrees of freedom needed to approximate
a function f ∈ H p(Ω1×Ω2) in the sparse grid spacêVσ

J with σ =
√

n1/n2 to a prescribed accuracyε
is essentially

dofsg(ε) = N ∼ ε−max{ n1+n2
p ,

n1
r ,

n2
r }. (4.3)

REMARK 4.1 The sparse grid spacêVσ
J has substantially less unknowns than the corresponding full

tensor product space

Vσ
J :=

⊕

j1σ , j2/σ6J

W(1)
j1

⊗W(2)
j2

.

In this space, a functionf ∈ H p(Ω1×Ω2) is approximated by the rate

inf
fJ∈Vσ

J

‖ f − fJ‖L2(Ω1×Ω2)
.

{
2−Jmin{p,r}/σ +2−Jmin{p,r}σ}‖ f‖Hmin{p,r}(Ω1×Ω2)

at the cost dimVσ
J ∼ 2J(n1/σ+n2σ). The choice forσ = 1 yields thus the cost complexityN−min{p,r}/(n1+n2),

i.e.,N . ε−(n1+n2)/min{p,r}, which is known to be Kolmogorov’sn-width for Sobolev balls in the space
Hmin{p,r}(Ω1×Ω2), see Kolmogorov (1936). Indeed, up to logarithmic terms, the sparse grid spacêVσ

J

with σ =
√

n1/n2 also achieves this rate. Moreover, in the case(n1+n2)/p< max{n1,n2}/r, it even
achieves a higher rate.

5. Comparison of the two approximations

Now, for given and fixed approximation orderr and spatial dimensionsn1 andn2, we will compare the
two different approximation schemes when approximating a function f ∈ H p(Ω1×Ω2). We are inter-
ested for which values ofp, the sparse grid approach is asymptotically superior to theapproximative
singular value decomposition. To this end, we shall distinguish three regimes of the smoothness param-
eterp where one should have in mind the conditionp> min{n1,n2}. The subsequent discussion has to
be carefully interpreted since we deal with upper bounds only, cf. Remark 3.3.

5.1 The case p> r n1+n2
max{n1,n2}

In this case it holds according to Theorem 4.2 that the sparsegrid approach produces essentially the
highest possible approximation rateN−r/min{n1,n2}, whereas the approximative truncated singular value
decomposition reaches this rate only iff is analytical. The latter follows from the fact thatM ∼
| log(ε)|min{n1,n2} dominating singular values are needed, see Schwab & Todor (2006). Thus the sparse
grid approach is clearly superior.
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5.2 The case r n1+n2
max{n1,n2} > p> r

According to Theorems 3.4 and 4.2, the truncated singular value decomposition has the complexity

dofsvd(ε)∼ ε−
2r min{n1,n2}+2pmax{n1,n2}

(2p−min{n1,n2})r

and the sparse grid approach has the complexity

dofsg(ε)∼ ε−
n1+n2

p .

The sparse grid approximation is asymptotically superior to the truncated singular value decomposition
if dofsg(ε). dofsvd(ε) which holds if

n1+n2

p
6

2r min{n1,n2}+2pmax{n1,n2}
(2p−min{n1,n2})r

.

One readily infers that this inequality is equivalent to

06 p2− rp+ r
min{n1,n2}(n1+n2)

2max{n1,n2}
=: g(p).

The polynomialg(p) might be bounded from below by

g(p)> rp− rp+ r
min{n1,n2}(n1+n2)

2max{n1,n2}
> 0

due top> r. Thus, the sparse grid approach exhibits a higher rate of convergence.

5.3 The case r> p> 0

Theorems 3.4 and 4.2 lead to the complexity

dofsvd(ε)∼ ε−
2(n1+n2)

2p−min{n1,n2}

for the singular value decomposition and to the complexity

dofsg(ε)∼ ε−
n1+n2

p

for the sparse grid approach. Now, it holds dofsg(ε). dofsvd(ε) if the inequality

n1+n2

p
6

2(n1+n2)

2p−min{n1,n2}

is fulfilled. As one easily checks, this inequality is indeedalways satisfied. Thus, the sparse grid
approach exhibits again a higher rate of convergence.

Let us remark here that in the situationp6 r an approximation in thefull tensor product spaceVσ
J

with σ =
√

n1/n2 is of the same complexity as the approximation by the sparse grid spacêVσ
J .

Altogether, we clearly see from these three cases that the general sparse grid approach is approx-
imately at least as good as the approximative truncated singular value decomposition and is better in
most situations (i.e., for anf which is less regular).
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6. Numerical results

First, we present an analytical example where the sparse grid approach is superior to the truncated
singular value decomposition. Afterwards, we give the results of two numerical experiments for the ex-
ponential kernel and Gaussian kernel which are important two-point correlation kernels from stochastic
applications. In these examples, we thus consider the special situation thatf is a symmetric function
(i.e., f (x,y) = f (y,x) andΩ := Ω1 = Ω2 ⊂ R

n with n := n1 = n2). Then, the singular value decompo-
sition is simply the spectral decomposition.

6.1 An analytic example

Let f be defined as

f (x,y) =
∞

∑
j=0

∑
k∈∇ j

a j,kψ j,k(x)ψ j,k(y)

where{ψ j,k} denotes anL2-normalized orthogonal wavelet basis on the domainΩ . Due to the inverse
estimate we have

‖ψ j,k‖H p(Ω) ∼ 2 jp for all p< γ (6.1)

whereγ denotes the regularity of the wavelets. Consequently, the function f is in H p
(
Ω ×Ω

)
with

06 p< γ provided that
∞

∑
j=0

∑
k∈∇ j

22 jpa2
j,k < ∞. (6.2)

The kernel (3.3) of the integral operatorK is given by

k(x,x′) =
∞

∑
j, j ′=0

∑
k∈∇ j

∑
k′∈∇ j′

a j,ka j ′,k′ψ j,k(x)
(∫

Ω
ψ j,k(y)ψ j ′,k′(y)dy

)
ψ j ′,k′(x

′)

=
∞

∑
j=0

∑
k∈∇ j

a2
j,kψ j,k(x)ψ j,k(x

′).

Hence, the associated eigenvalues and eigenfunctions ofK are{a2
j,k} and{ψ j,k}, respectively.

Estimate (6.2) implies
22 jpa2

j,k < c2− jn, k∈ ∇ j , j ∈ N0,

since otherwise we would have

∞

∑
j=0

∑
k∈∇ j

22 jpa2
j,k &

∞

∑
j=0

2 jn2− jn = ∞

due to #(∇ j)∼ 2 jn. Consequently, the eigenvalues{a2
j,k} of K decay essentially like

a2
j,k < c2− j(2p+n), k∈ ∇ j , j ∈ N0

which is faster than
a2

j,k < c2−2 jp, k∈ ∇ j , j ∈ N0
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as predicted by Theorem 3.1. To this end, we exploited

2− jn 2p
n & ℓ−

2p
n & 2−( j+1)n2p

n .

As a consequence, the eigenfunctions oscillate less strongly than shown in Lemma 3.2. In fact, we have
(6.1) instead of‖ψ j,k‖H p(Ω) . 1/

√
λ j,k ∼ 2 j(p+n/2) (cf. (3.11)). However, by choosingp→ γ, we see

that the estimates in Section 3 related with the eigenvaluesand eigenfunctions are sharp except for the
factorn/2.

According to (6.2), we deduce

∞

∑
j=J

∑
k∈∇ j

a2
j,k . 2−2Jp

∞

∑
j=J

∑
k∈∇ j

22Jpa2
j,k . 2−2Jp

∞

∑
j=0

∑
k∈∇ j

22 jpa2
j,k . 2−2Jp,

which implies that the truncated singular value decomposition based on the first 2Jn singular values
approximatesf with the errorεJ ∼ 2−Jp in theL2-norm.

We apply properly chosen ansatz functions of approximationpowerr to approximate the continuous
eigenfunctions{ψ j,k} by their discrete counterparts{ψ j,k,N}. Thus, in view of (2.3) and by using (6.1)
with p= min{γ , r}, we have

‖ψ j,k−ψ j,k,N‖L2(Ω) . N−min{γ ,r}/n
j 2 j min{γ ,r}.

Note that we use here an ansatz which spends the optimal number of unknowns to approximate the
eigenfunction{ψ j,k}, i.e., we employNj degrees of freedom to approximate the function{ψ j,k} instead
of a fixed numberN which is identical for all eigenfunctions. This is different from Section 3 and
even favours the approximative truncated singular value decomposition over the sparse grid approach,
cf. Remark 3.4.

To ensure the necessary accuracyεJ/
√

MJλ j,k, we have to balance

‖ψ j,k−ψ j,k,N‖L2(Ω)
!∼ εJ√

MJλ j,k
∼ 2−Jp

2Jn/22− j(p+n/2)
,

compare Section 3. To this end, we essentially have to spend

Nj ∼
(

2−(J− j)p

2(J− j)n/22 j min{γ ,r}

)−n/min{γ ,r}
∼ 2

(J− j)(p+n/2)n
min{γ,r} 2 jn

unknowns. Therefore, to represent the first 2Jn eigenfunctions, we need at least (up to a constant)

J

∑
j=0

Nj2
jn =

J

∑
j=0

2
(J− j)(p+n/2)n

min{γ,r} 22 jn = 22Jn
J

∑
j=0

2
(J− j)(p+n/2−2min{γ,r})n

min{γ,r} (6.3)

degrees of freedom. Altogether, for our special example, this shows that the truncated and approximated
singular value decomposition involves the cost complexity(6.3) to obtain the error accuracyεJ ∼ 2−Jp.

In contrast to that, the general sparse grid approach withσ =
√

n1/n2 = 1 produces essentially the
same error rateεJ ∼ 2−Jp with 22Jn unknowns. Ifp+n/2 > 2min{γ , r}, the cost complexity (6.3) is
significantly larger than 22Jn. For example, choosingp→ γ andr > γ, we get

n> 2γ
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which describes a situation where the sparse grid approach is asymptotically superior to the correspond-
ing approximative truncated singular value decomposition. Otherwise, the approximative truncated
singular value decomposition is superior to the corresponding sparse grid approach.

In case of the singular value decomposition, we have two contradicting effects. On the one hand,
the eigenfunctions can be arbitrarily smooth as for examplein the case of Fourier series. Then, the
smoothness is limited by the decay rate of the singular values. On the other hand, also the eigenvalue
decay can be arbitrarily fast while the eigenfunctions are not smooth. A simple example are functions
of finite rank but with eigenfunctions of low regularity as inthe above example. Both properties affect
the cost complexity of the truncated singular value decomposition differently. Compared with this, the
convergence of the general sparse grid approach rather depends on the smoothness of the function to be
approximated.

6.2 Gaussian kernel

In the second example letΩ be the unit interval(0,1) (i.e. n= 1). On level j, we subdivide(0,1) into
2 j intervals of length 2− j which leads to 2j +1 ansatz functions. The approximation spacesVj under
consideration are then generated by continuous piecewise linear polynomials on an equidistant partition
of the interval(0,1) (i.e., r = 2).

We discuss the approximation of the Gaussian kernel

f (x,y) =
1√
2πθ

exp

(
− |x−y|2

θ 2

)
, θ > 0.

Since f is known to be analytical and thus arbitrarily smooth, particularly f ∈ H2,2
mix

(
(0,1)× (0,1)

)
, the

general sparse grid approach withσ =
√

n1/n2 = 1 converges with the optimal rateh2
j
√

j ∼ 4− j√ j.
This is also observed by our numerical results, see Figure 1.Of course, the smaller the value ofθ gets
the larger the constant becomes which appears in front of thecomplexity estimate.
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FIG. 1. TheL2-error of the sparse grid approximation of the Gaussian kernel converges essentially likeN−2.
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According to Schwab & Todor (2006), the singular values of ananalytical kernel decay exponen-
tially (if n1 = n2 = 1). In fact, in case of the Gaussian kernel the eigenvalues decay even double expo-
nentially, cf. Figure 2, where the decay is the faster the larger θ is. Since the eigenfunctions are also
analytical, it holds

‖ϕℓ‖H2(0,1) . λ−s
ℓ for anys> 0.

Therefore, it suffices to compute the eigenfunctions with accuracyO(h2
j ) (see Schwab & Todor (2006)

for the details) which leads to a quadratic rate of convergence withO
(
N log1/2(N)

)
cost. This rate is

also validated by Figure 3. Here, we computed theL2-error of the truncated and approximated singular
value decomposition for all discretization levelsj = 6,7, . . . ,15 and truncation lengthsM = 2,4, . . . ,40.
We observe that an increase of the truncation length improves double exponentially the approximation
quality until a certain limit is reached which is induced by the approximation error of the discrete
eigenfunctions. Vice versa, the increase of the discretization level gives a convergence rateN−2 ∼ 4− j

until a certain limit is reached which is induced by the truncation error. We thus obtain the quadratic
rateN−2 ∼ 4− j by proportionally increasing

√
M andN = 2 j +1 which yields the above predicted cost

complexity.
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FIG. 2. The eigenvalues of the Gaussian kernel decay double exponentionally.

Altogether, both approaches converge in our setting for theGaussian kernel with essentially the
same rate. As it is seen in Figure 4, the particular constantswhich are involved in the estimates of the
cost complexities seem to be comparable as well. We plotted the cost complexities of the sparse grid
approach (blue lines) and the truncated and approximated singular value decomposition (green lines)
for different values ofε andθ . The resulting graphs are quite similar. Moreover, it is observed that the
cost complexities increase for both approaches by about thesame factors ifθ decreases. Note that the
slightly different slopes of the graphs result from the factthat the sparse grid approach produces the rate
N−2√logN at the costN logN whereas the truncated and approximated singular value decomposition
produces the rateN−2 at the costN

√
logN.
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FIG. 3. Truncation lengthM and discretization levelj versus accuracy in case of the Gaussian kernel.

6.3 Exponential kernel

Again, letΩ = (0,1) and consider piecewise linear ansatz functions. Our third example is concerned
with the approximation of the exponential kernel

f (x,y) = exp(−|x−y|).

Since f is only Lipschitz continuous at the diagonalx= y, it follows that f ∈ H3/2−δ ((0,1)×(0,1)
)

for
anyδ > 0. Therefore, according to Theorem 3.4, we can essentially guarantee the rate dofsvd(ε)∼ ε−2.
Nonetheless, as already mentioned in Remark 3.3, the singular values decay like

√
λℓ ∼ ℓ−2 which is

faster than predicted. In addition, it turned out in our numerical tests that also the eigenfunctions{ϕℓ}
are more regular than expected, i.e., they satisfy‖ϕℓ‖H2(0,1) ∼ 1/

√
λℓ ∼ ℓ2. The first nine eigenfunctions

are depicted in Figure 6 which clearly shows the smoothness of the eigenfunctions. By repeating our
analysis with these settings (that is,p= r = 2 andn1 = n2 = 1) one can show that

dofsvd(ε)∼ ε−4/3 (6.4)

which is much better than predicted. In particular, it is thesame rate as produced by a approximation
on a uniform grid on(0,1)× (0,1). This fact is also seen in the left plot of Figure 7 where we displayed
theL2-error of the truncated and approximated singular value decomposition for all discretization levels
j = 6,7, . . . ,15 and truncation lengthsM = 2k, k = 0,1, . . . , j. The best cost complexity is offered by
choosingN ∼ M ∼ ε−2/3 which results in the rate (6.4).

On the other hand, in accordance with Theorem 4.2, the sparsegrid approach withσ =
√

n1/n2 = 1
realizes (essentially) the same rate: dofsg(ε)∼ ε−4/3. Indeed, this is validated by our computations (see
the left plot of Figure 8).

In the left plot of Figure 9, we compare the cost complexitiesof the sparse grid approach (blue
line) and the truncated and approximated singular value decomposition (red line). We observe that
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FIG. 4. Comparison of the cost complexities in case of the Gaussiankernel.

both approaches possess essentially the rateε−4/3 (dashed black line). The cost complexity of the
truncated and approximated singular value decomposition is identical to the cost complexity of the full
tensor product approximation. Hence, it is somewhat betterthan the cost complexity of the sparse grid
approach which involves an additional logarithmic factor.

Note here that only a conventional general sparse grid is involved and no locally adapted sparse grid
is used, see e.g. Bungartz & Griebel (2004) and the references therein. For this approach, we expect
a doubling of the convergence rate, i.e., essentially the rate N−1.5. The analysis of such a nonlinear
approximation scheme is however beyond of the scope of this paper.

6.4 Matérn kernel

For our last example, we choose the Matérn kernel

f (x,y) = (1+ |x−y|)exp(−|x−y|)

and use the same numerical set-up as before. The functionf isC2-smooth with second derivatives which
are Lipschitz-continuous at the diagonalx= y. Hence, it follows thatf ∈H7/2−δ ((0,1)×(0,1)

)
for any

δ > 0. As can be seen in the right plot of Figure 5, the singular values decay now like
√

λℓ ∼ ℓ−4 which
is again by the factor 1/2 better than predicted in Theorem 3.1. Moreover, from the right plot of Figure 7,
by fixing the truncation lengthM, it can be inferred that the eigenfunctions are approximated at the rate
N−2. This is slightly better than to be expected from (3.12) but compare here Remark 3.4. Altogether,
for the truncated and approximated singular value decomposition, we get the cost complexityε−11/14

by balancingN−2 ∼ M−7/2 ∼ ε. Compared with this, Theorem 3.4 gives only the rateε−4/3.
In comparison, the sparse grid approach withN degrees of freedom converges essentially likeN−7/4,

see the right plot of Figure 8. This is in agreement with Theorem 4.2 which states the cost complexity
dofsg(ε) ∼ ε−4/7. Consequently, for this example, the sparse grid approach is indeed superior to the
truncated and approximated singular value decomposition.This is also confirmed by the right plot of
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FIG. 5. The eigenvalues of the exponential kernel (left) and theMatérn kernel (right).
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FIG. 6. The first nine eigenfunctions of the exponential kernel.
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FIG. 7. Truncation lengthM and discretization levelj versus accuracy in case of the exponential kernel (left) andthe Mat́ern
kernel (right).
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FIG. 9. The cost complexities of the exponential kernel (left) and the Mat́ern kernel (right).

Figure 9. The cost complexity of the sparse grid approach (blue line) admits a better rate than the cost
complexity of the truncated and approximated singular value decomposition (red line).

7. Concluding remarks

In the present paper we compared the cost complexities of theapproximative truncated singular value
decomposition and the general sparse grid approach. We haveshown that the sparse grid provides an
efficient tool to approximate two-variate functions. Its cost complexity is at least equal to the approxi-
mative truncated singular value decomposition. In many situations it is even superior.

In case of the sparse grid approach we envision further improvements by the use of local adaptivity,
which would further increase its performance.

In case of the singular value decomposition the truncation length is determined by the smoothness of
the function under consideration and is thus fixed. Therefore, improvements for the truncated singular
value decomposition can only be achieved by a more efficient representation of the eigenfunctions.
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HACKBUSCH, W. & K ÜHN, S. (2009). A new scheme for the tensor representation.J. Fourier Anal.
Appl., 15(5), 706–722.

HARBRECHT, H. (2010) A finite element method for elliptic problems withstochastic input data.Appl.
Numer. Math., 60, 227–244.

HARBRECHT, H. & SCHNEIDER, R. & SCHWAB, C. (2008) Sparse second moment analysis for elliptic
problems in stochastic domains.Numer. Math., 109, 167–188.

HARBRECHT, H. & SCHNEIDER, R. & SCHWAB, C. (2008) Multilevel frames for sparse tensor product
spaces.Numer. Math., 110, 199–220.



26 of 26 REFERENCES

HOANG, V.H. & SCHWAB, C. (2005) High-dimensional finite elements for elliptic problems with
multiple scales.SIAM Multiscale Model. Simul., 3, 168–194.
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STRÖMBERG, J. (1998) Computation with wavelets in higher dimensions.In Proceedings of the
International Congress of Mathematicians, Vol. III, Berlin, 1998, Doc. Math., Extra Vol. III, 523–
532.

WIDMER, G. & HIPTMAIR , R. & SCHWAB, C. (2008) Sparse adaptive finite elements for radiative
transfer.J. Comp. Phys., 227(12), 6071–6105.

ZENGER, C. (1991) Sparse grids. InParallel algorithms for partial differential equations, Proceedings
of the 6th GAMM-Seminar, Kiel/Germany, 1990, Notes Numer. Fluid Mech. 31, pages 241–251,
Vieweg, Braunschweig.


