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BOSSANOVA: A BOND ORDER DISSECTION
APPROACH FOR EFFICIENT ELECTRONIC

STRUCTURE CALCULATIONS
MICHAEL GRIEBEL, JAN HAMAEKERS, AND FREDERIK HEBER

Abstract. In this article, we present a new decomposition approach for the eff cient approximate calculation of the electronic
structure problem for molecules. It is based on a dimension-wise decomposition of the space the underlying Schrödinger equa-
tion lives in, i.e. R

3(M+N) , where M is the number of nuclei and N is the number of electrons. This decomposition is similar
to the ANOVA-approach (analysis of variance) which is well-known in statistics. It represents the energy as a f nite sum of con-
tributions which depend on the positions of single nuclei, of pairs of nuclei, of triples of nuclei, and so on. Under the assumption
of locality of electronic wave functions, the higher order terms in this expansion decay rapidly and may therefore be omitted. Fur-
thermore, additional terms are eliminated according to the bonding structure of the molecule. This way, only the calculation of the
electronic structure of local parts, i.e. small subsystems of the overall system (plus some additional saturation with hydrogen) is
necessary to approximate the total ground state energy. To determine the necessary subsystems, we employ molecular graph theory
combined with molecular binding knowledge. In principle, the local electronic subproblems may be approximately evaluated with
whatever technique is appropriate, e.g. DFT, CC or CI. From these local energies, the total energy of the overall system is then
approximately put together in a telescope-like fashion. Thus, if the size of the local subproblems is independent of the size of the
overall molecular system, linear scaling is directly obtained. As the size of each subproblem depends on the bond coordination
of the involved atoms, we coined the method BOSSANOVA (Bond Order diSSection ANOVA). We discuss the details of our new
approach and apply it – based on state-of-the-art graph algorithms – to various test systems and to C- and BN-nanotube structures.

1. Introduction. The coupling of the micro- and the mesoscale of chemical reactions is currently
a f eld of intensive research. Where the microscale is the realm of quantum mechanical effects, the
mesoscale is described by statistical mechanics and macroscopic thermodynamics. Nevertheless, there
are additional strong inf uences onto the mesoscale by effects from the microscale. Numerically, the
microscale is usually treated with Hartree-Fock (HF), Coupled Cluster (CC), Conf guration Interaction
(CI) or Density Functional Theory (DFT) methods that yield approximate solutions to the underlying
quantum-mechanical (QM) Schrödinger equation (SE), whereas the mesoscale is the realm of classical
molecular mechanics (MM) methods that use Newton’s mechanics with empirically f tted potential func-
tions.

The ultimate goal would be a seamless coupling of quantummechanical computations where needed
and classical molecular mechanics simulations where suff cient. Such approaches are generally referred
to as multi-scale methods, an extensive overview is given in [1]. Any starting point must be the gen-
eral Schrödinger equation for the electrons and for the nuclei of the system under consideration. The
Schrödinger equation however has a dimensional complexity of 3(M + N), where M denotes the num-
ber of nuclei andN denotes the number of electrons. This renders a direct numerical treatment impossible
due to the curse of dimension and one has to resort to model approximations. As a f rst step, in the Born-
Oppenheimer molecular dynamics (MD) approach, the wave functions of the nuclei and electrons are
separated, the subsystem of the nuclei is treated classically with Newton’s mechanics and the remaining
3N -dimensional electronic Schrödinger equation is further approximated by some of the aforementioned
methods. The potential needed for Newton’s mechanics is obtained from the electronic solution by the
Hellmann-Feynman theorem. This way, QM and MM are globally coupled. However, a global elec-
tronic QM solution is, at least for larger molecules, still too expensive as conventional methods scale with
O(M3) due to the underlying problem of matrix diagonalization.

To this end, general linear scalingelectronic structure methods are employed to overcome the di-
mensionality problem. As a f rst step, for Gaussian basis sets, the use of the fast multipole method [2] has
resulted in O(M2 log M) complexity. Furthermore, a cutoff radius such as for the MP2 theory [3] was
used in a Divide&Conquer approach to take advantage of the exponential decay properties of electronic
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2 1. INTRODUCTION

wave functions. Altogether, this resulted in linear scaling [4]. Another common method is the Density
Matrix Minimization technique [5, 6]. There, the density matrix is unconstrainedly minimised via a con-
jugate gradient scheme, using idempotency and normalization. The Fock matrix is the minimized output,
after off-diagonal elements have also been truncated at a cutoff radius. Also for plane wave basis sets the
electronic localization in non-metallic systems can be exploited [7]. Again, a cutoff then allows for linear
scaling. Note however that there is a crossover point up to which the standard cubic scaling approaches
still perform faster due to smaller prefactors in their computational complexity counts [8].

In order to reduce the constants and thus to shift this crossover point, one tries to somehow further
decompose the full global electronic Hamiltonian into local parts and employs local QM there. Let us
brief y summarize the most common decomposition approachesin the following. One of the f rst, the
Force-Matching Method by Ercolessi [9], tries to automatically generate empirical potentials by a least-
square f tting of the forces of ab-initio calculations to general many-body potential forms such as that of
the Embedded Atom approach [10] or that of Abell-Tersoff [11, 12]. Due to its big parameter space, the
method yields precise results only for a huge data set. Then, there is a range of methods which employ
a decomposition1 directly in R

3: An early idea is the SIBFA (Sum of Interactions Between Fragments
computed Ab initio) procedure [13], where the molecular system is additively built from constitutive
molecular fragments. The electrostatic and polarization components are calculated using multipole ex-
pansions of the fragment electron density, the repulsion part is determined as a sum of bond and lone
pair interactions. Furthermore, Morokuma proposed an ansatz called IMOMM [14] which combines two
molecular orbital (MO) calculations to one calculation. Basically, it describes a telescopic sum over two
regions, here Ω1 and Ω2 ⊆ Ω1, where the energy is split as: EONIOM = EMM

Ω1
+ EQM

Ω2
− EMM

Ω2
.

Later variants and generalizations lead to the so-called ONIOM approach [15] where more regions were
included, adding to the picture of the various layers of an onion. The method is simple, yet practical
and has only little overhead. But to our knowledge no dynamic extension has been proposed yet. A
generalization of SIBFA is the so-called Fragmentation Reconstruction Method (FRM) [16], where the
interaction energy of a molecule is computed from hydrogenated components (closed-shell molecules).
The procedure involves stringent chemical knowledge to choose the cuts as best as possible but to still
keep the ground-state electronic density intact. Furthermore, a scheme for modeling the electrostatic im-
pact of a passive MM environment on the active QM system is described in [17]. There, a short-range
modif ed Coulomb potential is applied. However, there are diff culties choosing its functional form to
obtain correct interaction properties and to avoid spill-out of electron density into the passive regime.
Moreover, in [18] and [19] an interface regime between QM and MM with "link" atoms is proposed to
account for the cutting of bonds. This, however, requires additional parametrization to reproduce geomet-
rical and electronic properties on both scales and has to be adjusted from case to case. Similar techniques
are used in [20, 21].

Another approach divides time instead of space in order to generate a coupling between QM and
MM. One of these methods is learn-on-the-f y [22], which is similar to the Force-Matching method, but
is run during the computation: At intermittent time steps certain clusters of the simulation domain are
locally computed by QM, and the obtained local forces are used to correct the MM calculation. Note
however that QM and MM involve different time step sizes. Here, especially the QM subproblems need
very small time steps which causes additional complexity problems.

While all of the above methods have promising features, we feel that they generally either involve
too many additional parameters, unchemically cut bonds in separating active from passive regions, or
even worse, add unphysical pseudo-atoms in order to compensate for the different energy and time scales
and to avoid spill-out effects of electronic density or energy. Moreover, they are plainly too simple or do
not grasp the problem in its full complexity, if only a matching or interpolation with respect to energy or
forces between the QM and MM parts of the overall approach is considered.

1Ultimately, the aim would be a decomposition of R
3(M+N) , the space where the full Schrödinger equation lives in.
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In this article, we propose a more sophisticated method. Our ansatz is sparked off the idea un-
derlying Tersoff’s [12] many-body potential, where the energy and the forces of an atom are assumed
to depend on its local coordination. Here, for a proof-of-concept, we concentrate on covalent binding,
hence on charge-neutral molecular systems and subsystems.2 We will use this knowledge of coordina-
tion and bonds between nuclei to decompose the R3(M+N) of the underlying Schrödinger equation in a
dimension-wise fashion. This decomposition is similar to the ANOVA-approach (analysis of variance)
which is well-known in statistics. It represents the energy as a f nite sum of contributions which depend
on the positions of single nuclei, of pairs of nuclei, of triples of nuclei, and so on. Under the assumption
of locality of electronic wave functions, the higher order terms in this expansion decay rapidly and may
therefore be omitted. Furthermore, additional terms are eliminated according to the bonding structure of
the molecule. This way, only the calculation of the electronic structure of local parts, i.e. small overlap-
ping subsystems of the overall molecule system is necessary to approximate the total ground state energy.
To determine the necessary subsystems, we employ molecular graph theory combined with molecular
binding knowledge. This way, modern graph algorithms – that involve breadth-f rst and depth-f rst search
techniques – are used to create proper local subproblems as overlapping fragments of the overall molec-
ular system. Furthermore, hydrogenization is used to close shells and saturate bonds that have been cut.
We thus also exploit locality, however not by an explicit cutoff radius as most conventional methods do,
but by implicitly using it in the inherent bond structure of a molecular system. In principle, the local
electronic subproblems may be approximately evaluated with whatever QM technique is appropriate, e.g.
DFT, CC or CI. From these local energies, the total energy of the overall system is then approximately
put together in a telescope-like fashion. Thus, if the size of the local subproblems is independent of the
size of the overall molecular system, linear scaling is directly obtained. The 3(M + N)-dimensional full
global Hamiltonian is broken down within the Born-Oppenheimer Approximation toO(M) components,
each with M

(k)
i degrees of freedom, with an upper bound maxi{M

(k)
i } controlled by a single parameter

k which we name the bond orderof the approximation. This ansatz specif cally combines the smaller
prefactor of the cubic scaling methods with a general linear scaling behavior. As the size of each sub-
problem depends on the bond coordination of the involved atoms, we coined the method BOSSANOVA
(Bond Order diSSection ANOVA).

The remainder of this article is organised as follows: In section 2 we brief y summarize the basics
of the underlying Schrödinger equation. In section 3 we describe the ANOVA-like decomposition of the
Schrödinger equation in the context of molecular graph theory. In section 4 we present the details of our
graph-based algorithmic implementation. In section 5 we give numerical results of three model systems
and of carbon and of boron-nitride nanotubes. We end with some concluding remarks in section 6.

2. Schrödinger equation in the Born-Oppenheimer approximation.
Let us consider a molecular system consisting ofM nuclei andN electrons. Its time-dependent state

function can be written in general as Ψ = Ψ(R1, . . . ,RM , r1, . . . , rN , t), whereRi and rj denote posi-
tions in three-dimensional space R

3 associated to the ith nucleus and the jth electron, respectively. The
variable t denotes the time-dependency of the state function. The vector space (space of conf gurations),
in which the coordinates of the particles are given, is therefore of dimension 3(M + N). In the following
we will abbreviate (R1, . . . ,RM ) and (r1, . . . , rN )with the shorter notationR and r, respectively. Also,
we assume that Ψ is normalized to

∫
Ψ∗(R, r, t)Ψ(R, r, t)dRdr = 1.

Nuclei and electrons are charged particles. The electrostatic potential (Coulomb potential) of a point
charge is 1

r
in atomic units, where r is the distance from the position of the charged particle. An electron

moving in this potential possesses the potential energy V (r) = − 1
r
. Neglecting spin and relativistic

interactions and assuming that no external forces act on the system, the Hamilton operator in position

2Note however that our approach should work equally well also in the non-charge neutral case.



4 3. ANOVA DECOMPOSITION SCHEME

representation associated to the system of nuclei and electrons is given as the sum over the operators for
the kinetic energy and the Coulomb potentials,

H(N,M,Z1,m1,...,ZM ,mM)(R, r) :=

−
1

2

N∑

k=1

∆rk
+

N∑

k<j

1

|| rk − rj ||
−

N∑

k=1

M∑

j=1

Zj

|| rk − Rj ||
+

M∑

k<j

ZkZj

|| Rk − Rj ||
︸ ︷︷ ︸

H
(N,M,Z1,m1,...,ZM ,mM )
e (R,r)

−
1

2

M∑

k=1

1

mk

∆Rk
, (2.1)

where we use the numberM of atoms, the numberN of electrons, the nuclei mass in atomic unitsmj and
the atomic number Zj as upper indices of H to distinguish between parameters and degrees of freedom.
Here, ‖rk − rj‖ are the distances between electrons, ‖rk − Rj‖ are distances between electrons and
nuclei and ‖Rk − Rj‖ are distances between nuclei. We will omit parameters from this list if they are
clear from the context. This will later especially be N, M, Z1, m1, . . . , ZM , mM .

Now, a system of equations for the electronic and for the nuclei degrees of freedom is usually derived
with the Born-Oppenheimer approximation. To this end, the large difference in masses between electrons
and atomic nuclei is exploited to decouple the motion of the electrons from that of the nuclei.3 Then,
one assumes that the electrons adapt instantaneously to a change in the nuclear conf guration and are thus
always in the quantum mechanical ground state, denoted by φ

(R(t))
(0) (r), which is associated to the actual

position of the nuclei R(t). Note that this allows us to writeH(R(t))
e (r) instead of He(R(t), r) since the

movement of the nuclei during the adaptation of the electron positions is negligibly small in the sense of
classical dynamics. This justif es to set Ψ(R, r, t) ≈ ΨBO(R, r, t) :=

∑∞
j=0 χj(R, t)φ

(R)
j (r), which

allows to separate the fast from the slow variables. We then obtain the following set of equations:

MkR̈k(t) = −∇Rk
min

φ
(R(t))

(0)

{∫
φ

(R(t))∗

(0) (r)H(R(t))
e (r)φ

(R(t))
(0) (r)dr

}

︸ ︷︷ ︸
=:V BO

e (R(t))

(2.2)

H(R(t))
e (r)φ

(R(t))
(0) (r) = E0(R(t))φ

(R(t))
(0) (r). (2.3)

In the end, after time discretization we have to perform in each time step the following tasks: First,
we have to compute an approximate solution of the electronic Schrödinger equation in (2.3) for f xed
positions R of the nuclei, then we have to compute from its solution the forces on the nuclei and f nally
the positions of the nuclei at the next time step by e.g. a Verlet time step for Newton’s equations of motion
of the nuclei in (2.2). To this end, we use the Hellmann-Feynman Theoremto obtain the electronic forces
Fk(R) = −∇Rk

∫
φ

(R(t))∗

(0) H
(R(t))
e φ

(R(t))
(0) dr acting on the nuclei. Variants of this approach are the

Ehrenfest molecular dynamics and the Car-Parrinello method. For details of the derivation, see [23] and
references therein.

3. ANOVA decomposition scheme.So far, the Born-Oppenheimer molecular dynamics was em-
ployed to split the full Schrödinger problem into two parts, i.e. a classical Newton’s equation of motion for
the nuclei, and, in each discretized time step, the electronic problem of (2.3) which may approximately
be solved by e. g. the Hartree Fock, Coupled Cluster, Conf guration Interaction or Density Functional
method, see [24, 25]. However, such an overall approach is only feasible for small molecules due to
the high complexity of any approximate solution method for the electronic problem. To overcome this
diff culty, the aforementioned coupling techniques and linear scaling methods had been developed. They

3The ratio of the velocity vK of a nucleus to the velocity of an electron ve is in general smaller than 10−2.



3.1 Graph theory 5

basically all exploit locality of the electronic wave function in one way or another to reduce the com-
plexity of the electronic problem. This excludes in general metallic systems, whose electrons may be
delocalized due to a vanishing band gap.4

In the following, we also resort to a certain locality of the electronic wave functionwhich is expressed
in the bond structure of the molecular system and decompose the overall electronic problem into small
subproblems which then may be handled eff ciently. To this end, we introduce an ANOVA decomposition
scheme of a molecular system into local parts by means of the bond order of the nuclei in the system.
Basically, this involves a decomposition into the different many-body interactions. Here, we employ
graph algorithms to derive a proper fragmentation of molecules and associated interaction energies5where
we use bonding information and neighboring relations in the structure of molecular graphs in order to
decide which terms to neglect in the ANOVA expansion of the ground state energy functional of the
molecular system. As we assume the molecular system and its subsystems to be charge-neutral, the
electronic locality is implicitly exploited there.

In the following subsections we describe this approach in more detail. We begin with an introduction
to graph theory in subsection 3.1, where we gather necessary def nitions. In subsection 3.2 we describe the
total energy functional in its dependence on the nuclei coordinates and the method of ANOVA expansion
of this functional. In section 3.3 we elaborate on a hydrogen saturation scheme which results in better
convergence. The technical details of our algorithm used to obtain the proper molecular fragments in the
ANOVA series expansion with a truncation to a certain bond order are given later in section 4.

3.1. Graph theory. Since we will use undirected graphs to represent the structure of molecular
systems, we brief y give some common def nitions for graphs, for further reading we refer to the lit-
erature [26, 27]. The atoms and bonds in a molecular system resemble sets of verticesV and edges
K and form an undirected graphG = (V, K). In the following, for any set B its cardinality shall be
represented by |B|. Furthermore, the vertices of G shall be labeled, i.e. V = {v1, . . . , v|V |}, where
|V | is the number of atoms. Here, each vi is uniquely associated to a nuclei with coordinate vector Ri.
Then, for two vertices vi and vj of G there may be an edge k = (vi, vj). These edges shall be labeled
arbitrarily, i.e. K = {k1, . . . , k|K|}, where |K| is the number of edges. The number |K(v)| of edges
K(v) = {(vi, vj)|vi = v∨vj = v} connected to a vertex v is called the degreeor valencyd(v) of the ver-
tex. Then, the average degreeofG is the number d(G) =

∑
v∈{V } d(v)/|V |. Note that the mean number

of covalent bonds per molecule is in general roughly equal to the number of atoms, i.e. |K| ≈ 2|V |, and
there exists an upper bound to it. A subgraphG′ = (V ′, K ′) is a subset of edges K ′ ⊆ K and vertices
V ′ ⊆ V of a graphG = (V, K). It is called an induced subgraphif it contains all edges k = (vi, vj) ∈ K
with vi, vj ∈ V ′. In the following, we denote subgraphs of a graph G often with G′ or G′′ and, often,
we further equip subgraphs with an index such as G′

i to emphasize their interrelation in a set of graphs
{G′

i}i∈I with index set I .
For a graph G an associated adjacency-listor -matrixA is def ned as

Aij =

{
1, if ∃k = (vi, vj) ∈ K,

0, if not.
(3.1)

A is a symmetric matrix of dimension |V |.6 A pathis a non-empty sequence of edges {k0, k1, . . . , kn} so
that the edges ki−1 and ki for each i = 1, 2, . . . have a common vertex v. The lengthn of a pathfor two
given vertices vi and vj is def ned as the number of edges of the connecting path. It is set to ∞ if there

4Furthermore, the notion of the locality of the wave function is important as it leads to the general chemical understanding of
molecules from the general bond structure up to nucleophilic sites.

5Note that we neglect long-range Coulomb interaction in this article. Coulomb interaction may later be incorporated via Ewald
summation or P3M techniques.

6In the case of a sparsematrix – i. e. for |K| ∼ |V | which is typical for molecules – it is recommended to store the adjacency
matrix as a list for cost complexity reasons and as a matrix only in the case of a densegraph, i. e. for |K| ∼ |V |2.
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is no such path. The shortest pathbetween two vertices vi and vj is then the minimum of the lengths of
all possible paths in G with these two vertices as endpoints, its length shall be denoted by dG(vi, vj). A
non-empty graph is called connectedif any two of its vertices vi and vj are linked by a path in G. A cycle
is a closed path. Its vertices can be labeled v0, . . . , vn such that the edges are (vi−1, vi), ∀i ∈ {1, . . . , n}
and vn = v0. It is also called a circuit of lengthn. A forestis a graph with no cycles, a connected forest
is also called tree. If A, B ⊆ V andX ⊆ V ∪K are such that every path betweenA and B in G contains
a vertex or edge from X , then X separatesthe sets A and B and X is called a separator. Two special
kinds of separators are as follows: A cutvertexseparates two other vertices of the given component. A
bridgeor tree edge ki is an edge, for which there are two sets A, B that are separated byX = {ki}, i. e. it
is an edge that when removed separates the graph. Clearly, bridges are those edges that do not belong to
any cycle.

Obviously, the structure of the graph which represents a given molecular system may be analyzed to
a certain detail with the help of the above def nitions.7 To compute such properties of graphs, so-called
depth-f rst search (DFS) and breadth-f rst search (BFS) methods are used which typically involveO(|V |)
cost, see [27].

3.2. ANOVA expansion. We will now def ne the energy function for a molecular system and its
ANOVA series expansion. To this end, consider a molecular system which consists of N electrons and
M nuclei, each with coordinate vector Ri ∈ R

3 and atomic number Zi ∈ N, i ∈ {1, . . . , M}. Let G
be the associated graph that represents the bond structure of this molecular system. This graph may be
derived from the molecular system as later described in section 4.2. Furthermore, we restrict ourselves
to charge-neutral systems, i.e. the number of electrons N is equal to

∑M

i Zi and we assume that the
associated graph is connected, both for reasons of simplicity. Finally, we consider the systems only in
their electronic ground state in the framework of the Born-Oppenheimermolecular dynamics. To this end,
we separate the time-independent electronic Schrödinger equation as in (2.3) and def ne a total ground
state energy functionE(M) : (N × R

3)M → R. It depends on the parameters that completely identify the
system under consideration, namely the coordinates Ri and the atomic number Zi of each nuclei with
f xed and unique label i ∈ {1, . . . , M}, i.e.

E(M)((Z1, R1)︸ ︷︷ ︸
=: eR1

, . . . , (ZM , RM )︸ ︷︷ ︸
=: eRM

) :=

min˛̨
˛φ(R(t))

(0)

˛̨
˛=1

∫
φ

(R(t))∗

(0) (r)H
(N=

PM
i=1 Zi,(Z1,R1),...,(ZM ,RM))

e φ
(R(t))
(0) (r)dr. (3.2)

In the following, we further simplify the notation by def ning R̃i := (Zi, Ri), i. e. R̃i combines the atomic
number and the coordinates of the nuclei i. Note that, due to the charge-neutrality conditionN =

∑M

i Zi,
the parameter N may now be eliminated from the parameter list of the HamiltonianH.

Now we will decompose the function E(M) in a multivariate telescopic sum, i.e. in a f nite series ex-
pansion in the nucleic parameters, in the same way as the ANOVA decomposition (analysis of variance)8
which is well-known in statistics [28]. This decomposition involves a splitting of the M -dimensional
function into contributions which depend on the positions of single nuclei and associated charges, of

7Note that to each graph there is an associated dual graph, where the edges are the vertices of the primal graph and the vertices
are the edges. We may thus def ne all of the above edge relations also for vertices and vice versa.

8The ANOVA decomposition of a M -dimensional function f : [0, 1]M → R reads f =
P

u⊆{1,...,M} fu with fu

depending only on the variables indicated in u. The functions fu satisfy the recurrence relation f{} = L{1,...,M}(f),
fu = L{1,...,M}/u(f) −

P
v⊆u

fv with Lw(f) = (
Q

j∈w
Lj)(f) where Lj(f)(x1, ..., xM ) =

R 1
0

(x1, ..., xM )dxj . Thus,
f is decomposed into a constant, a sum of one-dimensional functions, a sum of two-dimensional functions, and so on. The involved
functions are generated by proper partial integration and telescopic corrections according to the recurrence relation.
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pairs of nuclei and associated charges, of triples of nuclei and charges, and so on. To this end, we con-
sider the subset of the nuclei parameters {R̃i}i∈I described by a set of labels I with cardinality |I| = k
and call it the molecular fragmentassociated to I with size k. Note that we here need not to consider the
electronic degrees of freedom r, as the system is assumed to be in ground state and, hence, the electronic
state functions are all f xed by the minimum condition in (3.2).

First, we def ne the total electronic ground state energy of lower-dimensional subsystems of the
molecular system under consideration, described by the set of indices I = {i1, . . . , ik},

Ei1,...,ik
(R̃1, . . . , R̃k) := min

|φ(0)|=1

∫
φ∗

(0)(r)H
(
Pk

j=1 Zij
,(Zi1 , eRi1),...,(Zik

, eRik
))

e φ(0)(r)dr. (3.3)

Note that this is in form very similar to (3.2). In the notation of the electronic ground state wave functions
φ(0), the dependency onR(t)was dropped as it is clear from the context. Furthermore, eachEi1,...,ik

still
depends on the whole graphG as a parameter, which is not indicated explicitly here to simplify notation.

Then, the energy functionE(M) is decomposed analogously to the ANOVA approach as

E(M)(R̃1, . . . , R̃M ) = F0

+

M∑

i1

Fi1 (R̃i1)

+
M∑

i1<i2

Fi1,i2(R̃i1,i2)

+

M∑

i1<i2<i3

Fi1,i2,i3(R̃i1,i2,i3)

+ . . .

+ Fi1,...,iM
(R̃i1,...,iM

) (3.4)

=:
∑

U⊆{1,...,M}

FU (R̃U ),

where RU denotes the set of variables {Ri}i∈U and U ⊆ {1, . . . , M}.
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Here, each term Fi1,...,ik
is def ned as follows:

F0 = 0

Fi1(R̃i1 ) = Ei1(R̃i1) − F0

Fi1,i2(R̃i1,i2) = Ei1,i2(R̃i1,i2) − Fi1 (R̃i1) − Fi2(R̃i2 ) − F0

. . . . . .

Fi1,...,ik
(R̃i1,...,ik

) = Ei1,...,ik
(R̃i1,...,ik

) (3.5)

−
∑

U⊆I,|U|=k−1

FU (R̃U )

−
∑

U⊆I,|U|=k−2

FU (R̃U )

. . .

−
∑

U⊆I,|U|=1

FU (R̃U ) − F0

. . . . . . ,

where the constant function F0 is set equal to zero since it corresponds to the energy of an empty molec-
ular system.

Let us note that the decomposition is exact and contains 2M different terms due to the power set
construct. In general it might be that all terms are equally important up to the last, M -dimensional one,
or in the extreme case, that the last term might be the only important one and thus nothing is gained from
this decomposition. However, if the size of the terms decay fast with e.g. the order of the terms, then
a proper truncation of the ANOVA series expansion results in a substantial reduction in computational
complexity. We then only have to deal with a sequence of lower-dimensional subproblems which are
associated to the remaining lower-dimensional energy terms of the decomposition. To this end, let us
remark that the energy functions Fi1,...,ik

in (3.4) may be recognized as an expansion of many-body
interaction contributions, as in [29]. This leads us to the following assumption which is central to our
further approach: There is a certain decay in the contribution of each order of the ANOVA expansion and
this results in a monotone convergence of the approximation error with rising order. Consequently, from
a certain order onward, we may neglect the higher higher-order terms in the ANOVA decomposition.
This will gain a good approximation to the true result9 with an accuracy which is related to the order
parameter at which the truncationwas executed. This assumption is also strongly supported by the success
of conventional two- and many-body potential functions used in classical molecular dynamics, such as
short range pair-potentials like harmonic springs, the Morse potential and the Lennard-Jones potential,
three- and four-body potential like angle and dihedral potential functions and more advanced many-body
potential functions which involve a local coordination number (that is the local density of atoms) like
Tersoff’s potential [12], the embedded atom method [10] or Brenner’s reactive bond order potential for
hydrocarbons [30]. Here, in any case, only a small number of neighboring atoms are involved in the
potential forms, for further details see [23].

Thus, our ansatz is as follows: We decompose the total energy function (3.2) in an ANOVA se-
ries expansion as in (3.4) and truncate this series to a certain order k, which we call the bond orderof
the approximation. Note that each set I = {i1, . . . , i|I|} of nucleic parameters indices for each term
Ei1,...,i|I|(R̃i1,...,i|I|) in (3.5) is directly connected to an induced subgraph GI = (VI , KI) of the total
graph G with Vij

= {vij
}ij∈I . On top of that, we neglect in a second step even further terms in the

9Note that, in practise, the global electronic problem is only solved approximately anyway, by e.g. DFT, CC, CI.
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3.1.2: Edge ki disconnected

FIGURE 3.1. Cut of an edgeki between two vertices and replacement with two edgesk
(H)
1 andk

(H)
2 to two newly introduced

terminal vertices (hydrogen atoms H1 and H2).

truncated series. These terms contain as parameters the degrees of freedom which belong to nuclei in
I that are not connected by a path in the graph GI , i. e. we additionally eliminate those terms whose
induced subgraph GI is not connected. This second elimination step is motivated by the locality of the
electronic wave functions: Atoms that share a bond to a nearby atom will be much inf uenced by changes
in the chemical vicinity of nearest or next-nearest binding partners whereas atoms that share no bond to a
nearby atom will not.

The remaining terms in our decomposition will be determined from the bond order parameter and
from the graph of the overall molecular system by means of modern graph algorithms whose details will
be explained later in subsection 4.

3.3. Saturation with hydrogen. After the motivation of the basic principles of our decomposition
scheme in the last section, we now have to face a technical diff culty: Let us consider the behavior of
our approach for simple organic chain-like molecules, i.e. for various n-alkane molecules up to heptane,
which are well suited to our proposed dissection scheme. In particular, due to their linear chain structure,
there should be a clear decay of the magnitude of higher order contributions in the ANOVA expansion and
thus a monotone convergence behavior of our approach with rising order k. For details on the algorithm,
the parameters and the approximate DFT-solver, we refer to section 5. The resulting approximate energy
and relative error, calculated by our BOSSANOVA series expansion approach (3.4), truncated to k-th
order, is given in the upper half of table 3.1. We clearly see the anticipated convergencewith rising values
of k to the solution of the full electronic problem, but the results are not yet completely satisfactory with
respect to the monotonicity of the convergence. One reason for that is the inept direct cutting of bonds
at the end of fragments. A general concept in most fragmentation schemes is the conservation of the
total electronic ground state density within each fragment as best as possible. This is also the central
guideline in the choice of cuts in the Fragmentation Reconstruction Method (FRM) [16]. Clearly, if we
create fragments and induced subgraphs in the ANOVA approach, we remove atoms and electrons and
thus signif cantly change the local ground state density in the fragment with respect to the total ground
state density of the molecular system.

A step to remedy this situation is a saturation of the dangling bonds of the fragments by adding
hydrogen at the places where edges were cut. This correction is schematically depicted in f gure 3.1
where we just show two atoms and its vertex but omitted for simplicity any further vertices and edges
these atoms might be connected to. Here, let us assume that, after cutting the edge ki, Atom1 should
belong to an induced subgraph G′, while Atom2 should not. Then, edge ki = (Atom1, Atom2) is
not present in this subgraph. Now, we insert two new terminal vertices H1 and H2 and two new edges
k

(H)
1 = (Atom1, H1) and k

(H)
2 = (Atom2, H2) so that all dangling bonds are closed. Hence, the new

vertex H1 and the edge k
(H)
1 would be added to G′ next to Atom1. By this saturation procedure, we only

calculate closed-shell atoms. In particular, the electronic density of the cut edges is thus conserved to a
higher degree. Note that this approach is still tunable by the bond length used between new hydrogen
vertices and cutvertices. In our subsequent implementation we use here the equilibrium hydrogen bond
lengths of certain small molecules taken from [31].

This procedure can be understood as a re-def nition of the electronic HamiltonianHe in (3.3): From
the known graph G of the molecular system l additional hydrogen vertices, bonds and their graph-
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TABLE 3.1

Hydrogen saturation: Convergence of approximated n-alkane total energies in Hartree and relative error with respect to full DFT calculation withk-truncated ANOVA expansion.
From top to bottom: Total energy without saturation, relative error without saturation, total energy with saturation, relative error with saturation. From left to right the orderk of the
truncation of the ANOVA series expansion from 1 (single-body only) to 6 (up to six-body contributions) and the full DFT calculation of the given molecule.

Order/
Molecule

1 2 3 4 5 6 full DFT

C7H16 −48.0531 −49.7134 −49.1314 −49.2745 −49.3436 −49.3478 −49.3398
C6H14 −41.3865 −42.7421 −42.2959 −42.4153 −42.4629 −42.4570
C5H12 −34.7199 −35.7708 −35.4604 −35.5560 −35.5743
C4H10 −28.0533 −28.7996 −28.6249 −28.6915
C3H8 −21.3867 −21.8283 −21.8086
C2H6 −14.7201 −14.9251

C7H16 2.6078 · 10−2 7.5722 · 10−3 4.2246 · 10−3 1.3235 · 10−3 7.7828 · 10−5 1.6255 · 10−4

C6H14 2.5214 · 10−2 6.7149 · 10−3 3.7958 · 10−3 9.8382 · 10−4 1.3732 · 10−4

C5H12 2.4016 · 10−2 5.5262 · 10−3 3.2009 · 10−3 5.1245 · 10−4

C4H10 2.2243 · 10−2 3.7669 · 10−3 2.3209 · 10−3

C3H8 1.9345 · 10−2 9.0258 · 10−4

C2H6 1.3737 · 10−2

C7H16 −56.3229 −49.3201 −49.3425 −49.3402 −49.3398 −49.3398 −49.3398
C6H14 −48.2768 −42.4411 −42.4590 −42.4573 −42.4570 −42.4570
C5H12 −40.2307 −35.5621 −35.5755 −35.5744 −35.5743
C4H10 −32.1845 −28.6831 −28.6921 −28.6915
C3H8 −24.1384 −21.8041 −21.8086
C2H6 −16.0923 −14.9251

C7H16 −1.4153 · 10−1 4.0049 · 10−4 −5.3912 · 10−5 −6.8910 · 10−6 4.0535 · 10−7 0
C6H14 −1.3707 · 10−1 3.7605 · 10−4 −4.6400 · 10−5 −5.4172 · 10−6 2.3553 · 10−7

C5H12 −1.3089 · 10−1 3.4216 · 10−4 −3.5981 · 10−5 −3.3732 · 10−6

C4H10 −1.2175 · 10−1 2.9235 · 10−4 −2.0215 · 10−5

C3H8 −1.0683 · 10−1 2.0561 · 10−4

C2H6 −7.8200 · 10−2
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FIGURE 3.2. Hydrogen vertices in blue are combined with their binding partners in red to new single vertices. The remaining
edges and new vertices have been relabeled, denoted by single digits.

dependent coordination RH
i (G), 1 ≤ i ≤ l, are derived and the ground state energy evaluated for this

system is def ned as:

Êi1,...,ik
(R̃1, . . . , R̃k) :=

min
|φ(0)|=1

∫
φ∗

(0)(r)H

(
l+

Pk
j=1 Zij

,(Zi1 , eRi1),...,(Zik
, eRik

),RH
1 (G),...,RH

l (G)
)

e φ(0)(r)dr. (3.6)

Note that this saturated energy function is denoted by Ê.
For the example of n-alkane molecules, we give the approximated energy and the relative error in the

lower half of table 3.1, this time evaluated from saturated fragments. Clearly, we obtain a more satisfying
result. The error is substantially reduced, the convergence rate for the bond order k is improved and it is
now clearly decaying with rising values of k.

At this point, the following remarks on the saturation procedure are in order. Note that there has
to be suff cient space for the newly introduced hydrogen atoms. If the edge ki, where the subgraph
G′ is separated off, is a bridge then there is in general suff cient space. However, if ki belongs to a
cycle, there will in general not be suff cient space for the placement of additional hydrogen nuclei in the
fragment molecule. Furthermore, the saturation hydrogens at either end of the remainder of the cycle
may inf uence each other negatively. Hence, we suggest to either keep cycles always as a whole fragment
if possible, or to at least create only fragments of cycles with a bond order which is particularly smaller
than the cycle length. Note furthermore that the saturation procedure by means of hydrogen renders the
role of hydrogen special in our approach. Thus, it is is useless to cut out a fragment at an edge involving
only one hydrogen nucleus, as this will only create an additional hydrogen molecule while leaving the
edge as it was before. Here, the best procedure is to remove the hydrogen nuclei degrees of freedom from
the ANOVA decomposition algorithm, i. e. to drop them completely from the graph G, or to combine
them with their binding partners since they are always terminal vertices anyway, see f gure 3.2 for an
illustration. Hence, in the following, we will not take further heed of the hydrogen atoms which are
present in the molecular system.
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3.4. A simple example.Let us now discuss these various aspects of our overall decomposition
algorithm by means of a simple example. To this end, we consider the molecule butane, a chain molecule
of four carbon atoms, which may be labeled according to their sequence 1, 2, 3 and 4, see f gure 3.2.
Let I = {1, 2, 3, 4} be the set of indices. In order to simplify notation we now only note the label of
each parameter and not its coordinate. We thus def ne E(4)[1, 2, 3, 4] := E(4)(R̃1, R̃2, R̃3, R̃4). For the
lower-dimensional terms (3.6) we simply drop the parameters, as they are clear from the set of lower
indices, Êi1,...,il

:= Êi1,...,il
(R̃i1 , . . . , R̃il

).10 For example, the two-body term Ê1,2 = Ê1,2(R̃1, R̃2)
is then the total energy of the induced subgraph G′ = (V ′, K ′) with the set V ′ = {v1, v2} ⊆ V of
the two vertices which are associated to the non-hydrogen nuclei coordinates R1 and R2, and the set
K ′ = {k = (vi, vj) ∈ K |vi, vj ∈ V ′} of edges induced from G = (V, K). Note here that the indices of
a subset of vertices of a given graph G uniquely def ne the induced subgraphG′.

First, let us write down the ANOVA expansion, here explicitly only up to second order.

E(4)[1, 2, 3, 4] = Ê1 + Ê2 + Ê3 + Ê4

+ Ê1,2 − (Ê1 + Ê2) + Ê1,3 − (Ê1 + Ê3) + Ê1,4 − (Ê1 − Ê4) + Ê2,3 − (Ê2 − Ê3)

+ Ê2,4 − (Ê2 + Ê4) + Ê3,4 − (Ê3 − Ê4)

+ . . .

Now, we neglect terms which are, due to non-existent bonds, close to zero. For example, since there is no
bond between atom 1 and 3 in our butane molecule we assume that the energy of the combined system
of 1 and 3 is close to the sum of the two single systems and therefore Ê1,3 − (Ê1 + Ê3) nearly vanishes.
Analogously, also certain telescopic terms disappear which involve more than two coordinate labels. The
remaining ANOVA expansion, now written explicitly out up to highest order, then reads

E (4)[1, 2, 3, 4] =

Ê1 + Ê2 + Ê3 + Ê4

+ Ê1,2 − (Ê1 + Ê2) + Ê2,3 − (Ê2 + Ê3) + Ê3,4 − (Ê3 + Ê4)

+ Ê1,2,3 −
(
Ê1,2 − (Ê1 + Ê2) + Ê2,3 − (Ê2 + Ê3) + Ê1 + Ê2 + Ê3

)

+Ê2,3,4 −
(
Ê2,3 − (Ê2 + Ê3) + Ê3,4 − (Ê3 + Ê4) + Ê2 + Ê3 + Ê4

)

+ E(4)[1, 2, 3, 4]−
(
Ê1,2,3 −

(
Ê1,2 − (Ê1 + Ê2) + Ê2,3 − (Ê2 + Ê3) + Ê1 + Ê2 + Ê3

))

−
(
Ê2,3,4 −

(
Ê2,3 − (Ê2 + Ê3) + Ê3,4 − (Ê3 + Ê4) + Ê2 + Ê3 + Ê4

))

−(Ê1,2 − (Ê1 + Ê2)) − (Ê2,3 − (Ê2 + Ê3)) − (Ê3,4 − (Ê3 + Ê4))

−Ê1 − Ê2 − Ê3 − Ê4. (3.7)

Thus, in f rst order we simply have all single-body terms as the four one-body fragments. In second order
we get all remaining two-body fragments, e. g. Ê1,2. However, since they still contain certain single-body
energies, we have to subtract these, i. e.−(Ê1 + Ê2), such that the remainder corresponds to the true two-
body energy. The same occurs in third order, e. g. Ê1,2,3. Here, two-body terms have to be subtracted
again, i. e.−(Ê1,2 + Ê2,3), now inherently with subtracted single-body terms, i. e.+

(
(Ê1 + Ê2)+ (Ê2 +

Ê3)
)
. Furthermore, as the three-body term itself also contain certain single-body energies, these also

have to be subtracted, i. e. −(Ê1 + Ê2 + Ê3), and so on. In the end, many terms cancel in this telescopic
sum.

10Note that the full term E(4)[1, 2, 3, 4] is never saturated, only lower order terms bEi1,...,il⊆I with l < 4 are.
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Altogether, if the ANOVA expansion is truncated at k-th order with the bond structure of the molecule
taken into consideration, the terms f nally remaining for each k are for our butane example

1st order: E(4)[1, 2, 3, 4] ≈ Ê1 + Ê2 + Ê3 + Ê4

2nd order: E(4)[1, 2, 3, 4] ≈ Ê1,2 + Ê2,3 + Ê3,4 − Ê2 − Ê3

3rd order: E(4)[1, 2, 3, 4] ≈ Ê1,2,3 + Ê2,3,4 − Ê2,3

4th order: E(4)[1, 2, 3, 4] = E(4)[1, 2, 3, 4]. (3.8)

Note that in highest order the equality is still valid due to the telescopic sum effect of the ANOVA
expansion. The neglecting of certain terms due to the bond structure of the molecule merely inf uences
the lower order approximations. Note furthermore that most of the terms in the ANOVA expansion (3.4)
cancel. The combination of f nally remaining terms depends strongly on the the underlying molecular
graph structure and the chosen order k at which the expansion was truncated.

Now, an eff cient procedure is needed which creates these remaining fragments and their proper
combination for a prescribed order parameter k from general molecular structures. Its algorithmic details
are described in the following section.

4. Algorithms for the decomposition. We now discuss our present implementation of the BOSS-
ANOVA decomposition scheme for a molecular system. We start from the bond structure expressed in
the associated graph G where hydrogen vertices have been already properly combined with their respec-
tive binding partners, compare f gure 3.2. Let I = {1, . . . , M} be the set of nucleic indices. The goal
of the algorithm is to create all necessary molecular fragments, i. e. all the possible induced subgraphs
G′ = (V ′, K ′) from G with cardinality |V ′| equal to k and smaller, which appear in the ANOVA ex-
pansion truncated after the k-th term while additionally taking the bonding structure of the graph into
account, compare the example (3.7).

Note that this procedure is naturally split up into two basic parts that correspond to (3.4) and (3.5):
First, we have to construct the subgraph of each term F0, Fi1 , . . . , Fi1,...,ik

, with i1 < . . . < ik ⊆ I ,
for the given bond order k, compare (3.4). Next, we have to construct each term Fi1,...,il

, 1 ≤ l ≤ k,
in a recursive fashion from the terms Êi1,...,im

, where 1 ≤ m ≤ l, compare (3.5), since only these can
be put forward to the approximate solver. We then perform the respective telescopic sum, eliminate this
way a substantial amount of terms in the decomposition and thus determine the remaining ones plus their
associated prefactors.11 Let us remark again that the indices of the subset of vertices of a given graph
G uniquely def ne the induced subgraph G′. Hence, only the associated labels have to be stored for
each term in the ANOVA series. In the end, only the remaining terms with prefactors not equal to zero
after f nal combination are forwarded to the approximate solver for the evaluation of the energies of the
involved fragments which are f nally combined to the total ground state energy.

The proposed scheme can be split into the following parts:
Graph recognition: In order to generate the graph G from a given molecular system with nuclei coor-

dinates Ri, i ∈ {1, . . . , M}, we resort to the linked-cell technique [23]. It scales linearly in the
number of nuclei M . We then use use a depth-f rst search algorithm to recognize tree edges and
cycles in the obtained graph structure which is also of O(M) complexity. Details will be given
in subsections 4.1 and 4.2.

Order-by-order fragmentation: Now, the total energyE(M) has to be decomposed into terms Fi1,...,il
,

with 1 ≤ l ≤ k, compare (3.4). To this end, for each l, every summand has to be constructed
via a power set generation method. It produces all possible unordered vertex subsets V ′ ⊆ V

11Another possibility would be to try to determine the f nally remaining terms directly. As we do not yet aim for maximum
eff ciency but for a proof of the linear scaling complexity of the approach, we will use the simpler approach via the explicit evaluation
of the telescopic sums.
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FIGURE 4.1. Illustration of the orderk = 3-restricted BFS-exploration of a graph structure. Gray spheres are not included
in the subgraphG′. The vertices are labeled in order of their discovery starting from the root which is labeled "1". Color indicates
the shortest path distance to the root in red from blue(1) and green(2). This sample graphG was derived from the non-hydrogen
atoms in acetanilide.

with cardinality |V ′| = l from the graph G = (V, K). Thereby we drop all terms, whose
induced subgraph G′

(l) = (V ′, K ′) is not connected, where |V ′| = l with set K ′ given by the
induced subgraph constraint. Then, each remaining term Fi1,...,il

, with 1 ≤ l ≤ k, is constructed
recursively from the terms Êi1,...,im

, where 1 ≤ m ≤ l and {i1, . . . , im} ⊆ {i1, . . . , il}, by
calling again the power set generating method. Here, each term Êi1,...,im

is assigned a prefactor
of (−1)(l−m) for the later series summation, compare (3.5). In section 4.3 we discuss the details
of a suitable memory arrangement of all these terms.

Power set generation:Now, given a specif c cardinality m, there is the following task: Create all in-
duced subgraphs G′ = (V ′, K ′) with |V ′| = m of a given graph G. That is, for any two
subgraphs G′

1 = (V ′
1 , K ′

1) and G′
2 = (V ′

2 , K ′
2) it has to hold: V ′

1 ∪ V ′
2 6= V ′

1 ∩ V ′
2 . This routine

shall return a list of subgraphs {G′
i = (V ′

i , K ′
i)}i. Details are discussed in subsection 4.4.

Fragment list reduction: Finally, recognize all identical subgraphs G′
i by a "f ngerprint" and combine

to a single one. Furthermore determine the corresponding prefactor as the sum of the prefactors
of all identical subgraphs. For details see subsection 4.5.

And at last, we construct the geometry of each molecular fragment from the remaining set of all unique
subgraphs, call the approximate solver of the local Schrödinger problem for each fragment and sum up
the returned energies, each multiplied with its associated prefactor, to obtain the k-th order BOSSANOVA
approximation to the total ground state energy of the molecular system.

4.1. Graph exploration algorithms. There are two basic graph exploration algorithms, breadth-
f rst and depth-f rst search. For variants and advanced implementations, we refer to [27]. Both search
algorithms have a cost complexity ofO(|V |) as they step over each vertex exactly once. Theymake use of
a stack. Here, the order of putting and retrieving items from the stack decides on the type of algorithm: a
f rst-in-f rst-out stack yields depth-f rst search, whereas a f rst-in-last-out stack yields breadth-f rst search.
In algorithm 1, a sample implementation is given for the BFS variant. We use this procedure to construct
a subgraphG′ from G = (V, K). To this end, we start from a root vertex s ∈ V and an empty set G′ and
successively build up the desired subgraph, see f gure 4.1 for an illustration. We may limit the exploration
to the bond order k. Then, the maximum of the shortest path length during the exploration for any vertex
v must be dG(s, v) < k. The length of the stack S represents this limitation in the exploration of the
graph. Furthermore, vertices are coloured during the exploration in order to distinguish between new and
already visited vertices: We use here white at the beginning, gray for all visited vertices, and black for all
visited vertices whose edges were all used. The array l(v) labels the vertices in the order of discovery.

The implementation of DFS is analogous, now however a FIFO stack is used.12

12Now, to f nd cycles, tree or back edges, separation vertices and non-separable components we have to resort to the scanning
variant also given in [27]. There, a lowpoint ofv is def ned as the least label k(u) of a vertex u which can be reached from v
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Algorithm 1 : Breadth-f rst search
Data: Graph G = (V, K), Root vertex s ∈ V , current vertex v, FILO vertex stack S with push()

and pop(), desired bond order k, label array l(v) of size |V |
Result: subset V ′ of subgraphG′ of G with ∀v ∈ V with dG(s, v) < k then v ∈ V ′

G′ = ∅;
for ∀V ∈ V do

mark e white;
Add s to G′;
push(s);
i=0;
l(v) = (i + +);
while S 6= ∅ do

v = pop();
for ∀ei = (v, t) with t ∈ V do

if t is whitethen
l(v) = (i + +);
color t gray;
ShortestPath(t) = ShortestPath(v)+1;
if ShortestPath(t) < k then

Add t to G′;
push(t);

color v black;

4.2. Graph recognition. In order to recognize the bond structure of a molecular system, a naive
ansatz would compare the distance between every atom. This however would result in a cost complexity
of O(M2). Instead, we employ the linked-cell technique [23]. It combines the nuclei into groups by
putting them into virtual, non-overlapping cells of a certain edge length. The edge length has to be
greater than the largest bond distance. Then, it is guaranteed that possible bond neighbours can be found
only in the very same and all directly adjacent cells. To this end, at most the neighbouring nuclei in 27
cells have to be scanned for each nuclei. Altogether, a run time complexity results which scales linearly
with the number of atomsM . The procedure is described in algorithm 2. Note that the typical cutoff bond
distance may be chosen freely, i. e. as twice the typical bond length, as an interelement cutoff distance. In
our implementation we used the largest typical bond length in a given molecule plus an additional small
safety margin.

4.3. Order-by-order fragmentation. In this step, we break down the problem of creating all terms
Fi1,...,il

, 1 ≤ l ≤ k, from the terms Êi1,...,im
, 1 ≤ m ≤ l, in their necessary multiplicities into the

problem of creating all the induced subgraphs ofGwith given vertex cardinality equal tom. The solution
to this subproblem is then described in the section 4.4.

This is generally a matter of correct accounting. There are two steps: First, create each Fi1,...,il
,

second for each Fi1,...,il
create all necessary Êi1,...,im

. As described before, step one is executed by a
loop over 1 ≤ l ≤ k, calling a power set generating method for a given cardinality l working on the
graph G. We obtain k sets of terms {Fi1,...,il

}{i1,...,il}⊆I with 1 ≤ l ≤ k or k sets of subgraphs {G′
l,p}p,

respectively. Next, we work on each of these subgraphs G′
l,p to recursively create all terms Êi1,...,im

,

via a possible empty path consisting of tree edges followed by at most one back edge. This property can be built up during the
exploration and henceforth can be exploited to f nd cyclic bonds, i.e. when both its vertices have the same lowpoint number.
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Algorithm 2 : Graph recognition
Data: Graph G = (V, K = ∅) with |V | = M atoms, each associated to coordinate vector Ri, list

of atoms cell[], cutoff bond distance d(bond)

Result: Graph G = (V, K) with |V | = M and each vi ∈ V representing atom i and its bonds
k = (vi, vj) ∈ K

divisor[i] = f oor(cell[i]/d(bond));
foreachvi ∈ V do

for 0 ≤ i ≤ 2 do
n[j] = Ri/d(bond) · divisor[i];
index = n[2] · (n[1] + n[0] · divisor[1]) · divisor[2];
Add vi to list cell[index];

foreach0 < n[i] < divisor[i] and for each0 ≤ i ≤ 2 do
index = n[2] + (n[1] + n[0] · divisor[1]) · divisor[2];
foreachvi in cell[index] do

foreachindex2 ∈ {index, all indices that belong to adjacent cells} do
foreachvj ∈ cell[index2] do

dist = |Ri − Rj | ;
if dist < d(bond) then

Add bond Aij = 1 to adjacency list;

5
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3 3

22 22

11 11 11 11

Suborder no. of lists
5 1
4 1
3 2
2 4
1 8∑

16

FIGURE 4.2. The order-by-order fragmentation explained, here for the line associated to orderl = 5 in a decomposition with
bond orderk ≥ 5. The numbers{1, 2, 3, 4, 5} stand for the suborder of a group of ANOVA series expansion terms, i. e. the number
of bodies they contain. The top node "5" here resembles the set of subgraphsG′

(l=5)
. We observe that the number of lists is always

2l−m−1 if l is the order and1 ≤ m < l is the suborder and at the same time
Pl−1

m=1 2l−m−1 + 1 = 2l−1.

1 ≤ m ≤ l. The order of the recursion fromm = l down to m = 1 is depicted in an example dependence
graph in f gure 4.2: Given a molecular fragment graphG′

l,p with vertex cardinality l = 5, corresponding to
one such term Fi1,...,il

, the edges indicate in what order the subgraphs with vertex cardinality 1 ≤ m ≤ l

of G′
l,p may be constructed which correspond to the terms Êi1,...,im

. From the f gure 4.2, we also make
the following observation: For a given order l we will obtain 2l−1 sets of indices in the end, or each
Fi1,...,il

in (3.5) consists of 2l−1 terms Ei1,...,im
, 1 ≤ m ≤ l. This gives the idea to employ an array of

size 2l−1 as a temporal memory structure for the sets of indices which correspond to a termEi1,...,im
. For

an illustration, compare f gure 4.3. The arrows indicate the sequence of f lling. They are derived directly
from the tree graph structure in f gure 4.2.
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5 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1

FIGURE 4.3. Explanation of the temporary storage structure for list of subgraphs of orderl = 5 and derived subordersm.
The arrows indicate the dependence of every field on the first. Color indicates the order of creation: Black, red, green and blue. For
a better understanding compare with figure 4.2.

The overall procedure is given in algorithm 3. Note that "PowerSetGenerator" is the method de-
scribed in the next section. It works on list of subgraphs, not on single subgraphs alone.

Algorithm 3 : Order-by-order fragmentation
Data: Graph G = (V, K), bond order k, function PowerSetGenerator()
Result: list[i], i ∈ {1, . . . , 2k − 1}, of subsets V ′

i of subgraphG′
i of G, with ∀v ∈ V ′ with

dG(s, v) < l, 1 ≤ l ≤ k, and prefactor[], for storage structure list[] see f g. 4.3

foreach1 ≤ i ≤ k do
NumberLevels = 2i−1;
Allocate memory for list[] of subgraphs and prefactor[] with NumberLevels;
Call PowerSetGenerator() with graph G, order i;
Store return list in list[0];
Set prefactor[0] = 1;
foreach0 ≤ sourceF ield < NumberLevels/2 do

foreach i > j > 1 do
destF ield = sourceF ield + 2i−j ;
Call PowerSetGenerator() with list[sourceF ield], order j;
Store return list in list[destF ield];
Set prefactor[destF ield] = (−1)j−1;

Let us f nally consider the complexity involved in algorithm 3. As the fragment generation will
already scale linearly with the cardinality of the vertex set |V | in the given graph G, we need to show
that the number of lists only scales with the bond order k and not with the number of nuclei M . Since
for each order 1 ≤ l ≤ k of the ANOVA terms we get 2l−1 list of subgraphs, we have a total number
of lists of

∑k

l=1 2l−1 = 2k − 1 and, indeed, the complexity of the order-by-order fragmentation scales
(exponentially) with k but not with M .

4.4. Power set generation.Now we deal with the problem to uniquely create all possible induced
subgraphsG′

(j) = (V ′
(j), K

′
(j)) for a given graphG and a given |V ′| = j. Note that any induced subgraph

G′
(j) with f xed |V ′

(j)| and root vertex s ∈ V ′
(j) cannot contain a vertex v ∈ V with dG(s, v) ≥ j. This

motivates the following approach: Generate a subgraph G′ = (V ′, K ′) induced by all vertices which
can possibly be reached from a root vertex s. Then, from this smaller subgraph, construct uniquely all
possible power set combinations of vertices in V ′ that yield a connected subgraph and restrict it in such
a way that each generated subgraph G′ has to be a tree. We def ne the shortest path length of an edge
k = (v, w) with respect to a root vertex s to be min{dG(s, v), dG(s, w)} of all shortest paths whose
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last edge is k. We describe brief y this algorithm which is the subroutine called "PowerSetGenerator" in
algorithm 3.

1. Starting once from every vertex vi, use a breadth-f rst search algorithm and explore the graph up
to paths with length less than or equal to k. Give each newly found vertex a label which is then
kept f xed in the following.

2. At the same time, construct a list of all found edges and sort those with equal path lengths n
with respect to vi into the same list Kn.

3. Now, we have 1 ≤ l ≤ (k − 1) sets of edges Kl. We start with an empty subset V ′ = ∅ and add
here the root vertex s.

4. For level l = 1 to k − 1 do the following:
(a) Construct the reduced set of edgesK ′

l = {k = (vi, vj) ∈ Kl|vi or vj ∈ V ′}, i. e. all edges
k = (vi, vj) for which either vi or vj exists in the current set of vertices V ′.

(b) For level l < k, generate the power set of all possible unordered combinationsCi ⊆ K ′
l of

this reduced set of edges K ′
l . Note that |Ci| = 2|K

′
l |.

(c) Go through the edges of each combinationCi and do the following:
i. Add all other endpoints of the edges e = (vj , vk) ∈ Ci, i. e. all vertices vj , vk not
contained in V ′ so far.

ii. If |V ′| = k, store the set of vertex indices, remove all vertices added on this level.
iii. If not and if |V ′| < k, go into recursion at step 4a with level l + 1 and the current set

V ′.
iv. Return from the recursion, i. e. go to lower level l − 1 and proceed.

By means of this algorithm, we divide the neighborhood of a root vertex into levels of different
shortest path lengths, see f gure 4.1 for an example. Edges who connect13 vertices v ∈ V to the root s
by the same shortest path length dG(v, s) = l are put into level l of a set of edges Kl. Note that it is
advantageous to work with edges instead of vertices, as edges inherently contain a direction due to the
known set V ′.

We now will show that this algorithm scales at most linearly in M . First note that the BFS algorithm
scales with |V ′| < (maxi∈{1,...,M} d(vi))

k of the created subgraph and not with |V | = M of the whole
graph as the exploration frontier in BFS is limited to k. Second, we have to check the number of subgraphs
created from the power set. The number of possible combinations is 2|K

′
l | per level l for a reduced

set of edges K ′
l . Thus, we overall obtain

∑k−1
l=1 2|K

′
l |. Let now the maximum bond degree be c :=

(maxi∈{1,...,M} d(vi)). Then, since at least one edge per vertex is a incident one from the next lower
level l − 1, |K ′

l | is bound by (c − 1) · |Il−1| with a given set Il−1 that represents all vertices added on
level l − 1. Furthermore, |Il| is bounded by k − l, because at least one vertex per level has to be added
and there already is one root vertex. Using now partial sums of a geometric series, the cardinality of all
sets of vertices for a single root can be bounded by

k−1∑

l=1

2(c−1)·(k−l) =

k−1∑

l=1



2(c−1)
︸ ︷︷ ︸
=:C≥1




k−l

=

k−1∑

l=1

Ck−l C>1
=

Ck − C

C − 1
≤ Ck (4.1)

and thus depends only on the bond order k and the highest degree c of any vertex v in G. Since the
loop runs over all possible root vertices, this algorithm scales with O(M · Ck). Finally, as 2k − 1 lists
of at most O(M · Ck) fragments are generated altogether, we obtain a an overall scaling behaviour of
O(M · Ĉk) with Ĉ := 2C.

Since we restrict ourselves to the ANOVA truncation order k as the largest shortest path length, we
consider from a root vertex vi only an induced subgraphG′ of G that contains all vertices whose shortest

13Uniquely, because the subgraph is a tree.
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path length is less than or equal to k, see f gure 4.1 for an illustration. It holds that this subgraph G′

is a tree, if k is below the minimum of all cycle lengths in the graph G. So far, we did not guarantee
the uniqueness of each constructed fragment as an induced subgraph of G′. This is however simple for
a tree:14 We demand that the root vertex vi has always the lowest label of all vertices in a constructed
subgraph. This can be realized already in the BFS step where we now exclude any bond that would lead
to edges whose other endpoint’s label is lower than that of our current root vi. In order to guarantee that
the constructed subgraph is indeed a tree, we must scan the molecular graphG in advance, determine the
minimum of all cycle lengths n and set the ANOVA truncation order k to at most n − 1.15

Note that the described algorithm creates each possible induced subgraph G′ = (V ′, K ′) with
|V ′| = k and each only once. This is easy to prove if the power set generation, the unique, exploration-
limited subgraph, its property of being a tree graph and the resulting edge sets K are taken properly into
consideration.

4.5. Fragment list reduction. Finally, we have to identify equivalent subgraphs and combine their
prefactors by summation. Only the set of indices of each subgraph is stored as a unique identif cation.
Hence, the reduction may easily be achieved inO(M log M) if eff cient sorting algorithms are employed.

We brief y describe the procedure. Let Ul := {G′
l,p = ({vi1 , . . . , vil

, }, K ′
l,i}{i1,...,il}⊆I , 1 ≤ l ≤ k,

be the set of all subgraphs, each corresponding to an energy function term Êi1,...,il
in the ANOVA series

expansion. Note that I is the set of labels of all vertices v ∈ V of the molecular graphG = (V, K). Note
that only subgraphs belonging to the same Ul can possibly be equal.

1. Heapsort [32] each set Ul with the following comparator function: For two subgraphs G′
l,p and

G′
l,q , if the vertex index of the f rst element of G′

l,p is smaller than that of G′
l,q return −1, if it

is larger return 1 and if it is equal continue with comparing the next element. If all elements are
equal return 0. The sorted lists are denoted by U ′

l

2. In each sorted list U ′
l equivalent subgraphs can only be situated next to each other. Use this

property to pick out a representative of each unique subgraph and set its prefactor to the sum of
all equal ones. The resulting set is denoted by U ′′

l ⊆ U ′
l .

3. Go through each set U ′′
l and drop any subgraph with prefactor of 0. This gives the f nal set

U ′′′
l ⊆ U ′′

l .

5. Numerical results. Now, we present our numerical results obtained so far. This section is divided
into two parts. In the f rst part, we study small test molecules – f rst heptane, benzene and acetanilide – and
then carbon and boron-nitride nanotubes to assess the the quality and correctness of our BOSSANOVA
decomposition approach. In the second part, we study chain molecules, namely n-alkanes and periodic
carbon and boron-nitride nanotubes, both with chirality (6,0), and discuss the scaling of the code with the
bond order and with the number of molecules.

As approximate computational method for the electronic subproblems associated with the different
fragments we have chosen the density functional theory with a plane wave basis set and Troullier-Martins
pseudopotentials. The fragment-molecules have been evaluated employing a super cell ansatz with a
minimum distance of 5 Å of every nuclei to any cell wall in order to reduce boundary effects. We have
employed an energy cutoff of 128 Hartree. The nanotube fragments have been evaluated with a cutoff
of 96 Hartree. We use evaluations with these cutoffs as reference results (full DFT) to compare the
approximation error against. The stop condition of the conjugate gradient minimisation scheme was a
relative change in the kinetic energy part of less than 10−5 and less than 10−7 in the relative change
of the total energy. Hence, we expect the minimisation to be roughly converged to 10−5 relative error

14Note that an induced subgraph of a tree is again a tree.
15We believe that it is possible to easily create also non-tree subgraphs in a unique manner. However, common molecular

structures mostly have a minimum cycle length of as large as 6, c. f. aromatic rings, and we therefore decided for the to above-
described simpler tree-subgraph approach in our present implementation.
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5.1.1: Heptane 5.1.2: Benzene 5.1.3: Acetanilide

FIGURE 5.1. Illustration of our small test molecules.

and thus aim for an approximation error of our BOSSANOVA decomposition method of up to the same
accuracy.

Qualitative study.The numerical results obtained with our BOSSANOVA approach for various n-
alkanes were already presented in table 3.1 (lower part). Now, beside to heptane, we applied the method
also to benzene, acetanilide and periodic carbon and boron-nitride nanotube structures. Illustrations of
these molecules can be found in the f gure 5.1 and of the nanostructures in f gure 5.2. The results are
given up to order k = 3 in table 5.1 with relative errors in table 5.2.

We have chosen heptane here because it is a simple chain molecule and thus should be well suited
to the fragmentation process. Its graph forms a tree, each vertex represents only a single bond. It is very
symmetric and fragments easily. Here, we expect to see a very fast decay in the higher-order many-body
contributions. Benzene on the other hand is completely different and way more complicated. Due to its
aromatic ring, there should be signif cant 6-body contributions. Here, we are interested in how good the
BOSSANOVA approximation is if the series expansion is truncated at orders less than k = 6. Finally,
we picked acetanilide as an example of a simple organic molecule which combines both of the above
features. It consists of an aromatic ring anda long, chain-like ligand and additionally features an oxide
atom which is often hard to capture precisely in DFT calculations due to its strong electronegativity.

These small molecules were particularly used as benchmarks to assess the correctness of the imple-
mentation.16 The results for these molecules with our BOSSANOVA approach are given in the tables 5.1
and 5.2. We see that the obtained accuracy for heptane is excellent with a relative error around 10−5

already at order k = 3, compare also table 3.1 (lower half) for analogous results with other n-alkanes.
For the case of benzene the relative error is however worse by two orders of magnitude for k < 4. This

16Note that the fragments needed in the BOSSANOVA expansion may still be determined manually for these small molecules.

5.2.1: CNT (6,0) 5.2.2: BNNT (6,0)

FIGURE 5.2. Illustration of the periodic cells of the carbon and boron-nitride nanotube structures, each with chirality (6,0).
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TABLE 5.1
Results for thek-th order BOSSANOVA approximation and the full DFT, total energy in Hartree.

Molecule/Order 1st 2nd 3rd full DFT
Heptane −56.3229 −49.3201 −49.3425 −49.3398
Benzene −48.238996 −37.558394 −37.68375 −37.73463

Acetanilide −93.13398 −76.546419 −76.825011 −76.79198
CNT (6,0) −385.442438 −271.134204 −273.903358 −273.8944

BNNT (6,0) −385.63609 −286.3467 −289.30785 −299.0197

TABLE 5.2
Results for thek-th order BOSSANOVA approximation and the full DFT, relative error to the full DFT result.

Molecule/Order 1st 2nd 3rd
Heptane 1.4153 · 10−1 4.0049 · 10−4 5.3912 · 10−5

Benzene 2.7837 · 10−1 4.6704 · 10−3 1.3484 · 10−3

Acetanilide 2.1228 · 10−1 3.1977 · 10−3 4.3014 · 10−4

CNT (6,0) 4.0727 · 10−1 1.0078 · 10−2 3.2713 · 10−5

BNNT (6,0) 2.8967 · 10−1 4.238 · 10−2 3.2477 · 10−2

indicates that the ring structure is not completely captured at the orders k ≤ 3. Here, larger values of k are
needed for good results. We furthermore see that the molecule acetanilide results in a better convergence
than benzene despite its included aromatic ring. The results for carbon and boron-nitride nanotubes are
also given in the tables 5.1 and 5.2. Here, we constructed both geometries using typical C-C and B-N
bond lengths of such nanotubes. The periodic cell consisted of 48 atoms overall. The comparison of the
results for the two geometrically identical but chemically different structures gives additional clues: A
large difference in their relative error per order k indicates that the fragmentation process is sensitive to
the chosen hydrogen bond length used in the saturation of dangling bonds. To this end, especially the
results for the carbon nanotube are quite promising where an error of 10−5 is already achieved at order
k = 3. Note however that the approximated total ground state energy is slightly lower than the value ob-
tained from the full DFT calculation. Here, an overcompensation might have taken place in our method,
which needs to be further investigated with nanotubes of varying chiralities and numbers of atoms in the
unit cell. The results for the boron nitride nanotube do not show the good accuracy of the carbon tube. We
believe that this is due to the imprecise B-H and N-H bond lengths and angles that, after hydrogenization
of the fragments, do not maintain the total ground state density suff ciently well.17 The C-H bond lengths
and angles used in the carbon nanotube are of substantially better quality in this respect. Here, further
investigations and improvements are needed in the future.

Scaling study.In the second part of this subsection we investigate the computational scaling be-
haviour of our BOSSANOVA implementation with respect to the number of nuclei M and with respect
to the truncation order k. From the theoretical considerations of the previous section, we here expect a
linear scaling complexity with M .

To this end, we studied n-butane with n = 1, 2, 3, 4, 5, i.e. periodically repeated and concatenated
butane molecules with M from 4 to 64 that correspond to 4-alkane, 8-alkane and so on. We furthermore
constructed larger nanotubes by periodically repeating the unit cell of 48 atoms along the symmetry
direction where n indicates again the number of repeat cells and denote these conf gurations as n-CNT

17In order to maintain it as good as possible, one has to know the position of the center of the electronic wave function in the cut
bond as the distance to either binding partner and the position of the center in the corresponding hydrogenated bonds. Then, one
has to scale the hydrogen bond distance in such a way that the electronic wave function basically remains centered around the same
position in the hydrogenated bond as it was in the bond before cutting. Here, we have made no investigations so far. We believe
that the used C-H bond lengths reproduce such a scaling well while the used N-H and B-H bond lengths do not.
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5.3.2: n-butane: Number of atoms vs. time

0

10

20

30

T
im

e
[s

]
T

im
e

[s
]

1 2 3 4

ANOVA truncation orderANOVA truncation order

1-CNT (6,0)

2-CNT (6,0)

3-CNT (6,0)

4-CNT (6,0)

5.3.3: nCNT (6,0): Order k vs. time
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5.3.4: nCNT (6,0): Number of atoms vs. time
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5.3.5: nBNNT (6,0): Order k vs. time
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FIGURE 5.3. Truncation orderk versus computing time (left), number of nucleiM versus time (right) for n-butane, n-CNT
(6,0) and n-BNNT (6,0).

and n-BNNT. For n = 1, 2, 3, 4, we thus obtained nanotubes of size one, two, three and four times that of
the unit cell tube along with 48, 96, 144, 192 atoms. We then computed the BOSSANOVA fragmentation
for each of these butanes and nanotubes and measured the necessary computing time.18 The results are
given in f gure 5.3. Here, we can clearly see the anticipated linear scaling behaviour in the M -time-
plots, especially for CNT- and BNT-systems with larger values of M . Let us remark that we naturally
obtain an exponential behavior with respect to the scaling with the order k. Furthermore, we performed

18Here, only the time for the fragmentation process is determined. The time for the DFT solutions of the fragment problems is
not included.
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TABLE 5.3
Results for the least square fit with the values from figure 5.3: Exponenta in theM - and10k-scaling for varying values ofk. .

(a) Bond order scaling

test system a in k-scaling
M -factor n 1 2 3 4 5
n-butane 0.40 0.66 0.84 0.80 0.75

n-CNT (6,0) 0.67 0.66 0.68 0.64
n-BNNT (6,0) 0.89 0.88 0.87 0.86

(b) Atom count scaling

test system a in M -scaling
bond order k 1 2 3 4

n-butane 1.35 1.38 1.27 1.17
n-CNT (6,0) 1.32 1.36 1.17 1.02

n-BNNT (6,0) 1.33 0.94 1.03 1.03

a least square f t to the assumed linear increase to obtain the power of the scaling with either order k,
i.e. f(k) = 10a·k+c, or number of nuclei M , i. e. log f(M) = b · Ma + c. These f t values a are given
in table 5.3. The found slopes a in log f(M) = b · Ma + c underline the linear scaling. Note that the
linearity is overshadowed by the principal function overhead below M = 50.

In the f gures 5.4 and 5.5, we give the number of generated fragments for n-butane and n-CNT19
versus the number M of atoms and versus the bond order k with our BOSSANOVA method. Note that
the increase is linear withM . Furthermore, we see that there is basically no dependence on the bond order
k for purely linear systems such as the n-butanes for which the average number of bonds per vertex is 2,
i. e. C ≈ 1. For more strongly connected systems such as the carbon and boron-nitride nanotubes, with
an average bond per atom of c = 3, the number of fragments scales with M ·

(
(c − 1)k−2 + c1 + c0

)
for

k > 2 and with M · ck−1 for k = 2. The upper bound on the scaling behaviour, which was theoretically
derived in the previous section 4.4, was

(
2 · 2c−1

)k which is fairly well reproduced in our practical
measurements.
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FIGURE 5.4. Final number of fragments versus the number of atoms in the ANOVA decomposition scheme.

Note f nally that we gave no measured times for the overall calculation which also would involve
the DFT solution of the electronic subproblems associated to the fragments. The exact cross-over point

19Note that, due to the equivalent graphs, n-CNT and n-BNNT yield the same fragment counts.
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FIGURE 5.5. Final number of fragments versus bond orderk in the BOSSANOVA decomposition scheme.

– that is when our linear scaling k-th order BOSSANOVA method will evaluate faster than the full QM
code – depends on the specif c molecular graph and on the approximate subproblem solver which can
be chosen freely. We have shown that our fragmentation scheme scales linearly. It is also clear that the
overall complexity is linear in the number of nuclei M , if the number of nuclei M (k)

i of each fragment
is bounded, since this bound does not depend on M but on the truncation order k, and if the number
of fragments scales linearly with M . Thus, for each approximate subproblem solver there will be a
corresponding cross-over point at a certain number of nucleiMc. For our DFT solver we found this point
to be around 1000 nuclei for bond order k = 3.

6. Concluding Remarks. In this article we presented the BOSSANOVA decomposition approach
for the approximate solution to the electronic Schrödinger equation for a given molecular system. It
involves an ANOVA series expansion of an electronic energy function in the framework of the Born-
Oppenheimer molecular dynamics. A truncation of this series at a certain bond orderand the elimination
of certain further terms by a locality constraint of the electronic wavefunction plus some additional hydro-
gen saturation results in a set of fragments of the overall molecule and associated electronic subproblems
which may be solved with e.g. DFT, CI or CC methods. A proper combination of these solutions of the
subproblems then leads to an approximate total ground state energy.

We gave an algorithmic description of how to derive this truncated BOSSANOVA expansion on any
given graph. Furthermore we showed theoretically as well as practically that our new method indeed
scales linearly with the number M of atoms in the overall problem. We gave numerical results for small
organic molecules, carbon nanotubes and boron-nitride nanotubes. So far, we have seen that the BOSS-
ANOVA approach works very well for n-alkanes and carbon based nanostructures. The obtained relative
accuracy was below 10−5 for k = 3. The boron-nitride nanotube results might be further improved if the
typical bond lengths to hydrogen are properly corrected. Also, more complex molecules like acetanilide,
which contains various elements and bond structures at the same time, gave suff ciently accurate results.
They nevertheless may be further improved by better suited hydrogen bond lengths in subsequent inves-
tigations.

Note that the impact of the neglected long-range Coulomb energy on the accuracy of the method is
not yet studied. The Coulomb energies must be incorporated in a future implementation by e.g. Ewald
summation or P3M techniques. Note furthermore that our BOSSANOVA approach is not rid of empirical
parameters due to the necessity to saturate dangling bonds with hydrogen in the fragmentation process.
Since the typical bond lengths and angles of hydrogenated systems are well assessed by measurements,
we hope that a careful collection of robust values into a database may enable a broad range of application
for the BOSSANOVA method.
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Let us also point out that our approach is trivial to parallelize since the evaluation of each fragment
by an appropriate solver can be done independently. Furthermore, since each fragment only contains a
number of atoms roughly equal to the bond order k (neglecting hydrogen), the evaluation of the subprob-
lems is possible already on very small machines with minimal memory prerequisites. Of course, also the
memory cost scales only linearly. Thus, if the energy of a single fragment is calculated in seconds by
e.g. a solver which is specif cally tailored to the fast but precise evaluation of small and isolated systems,
even a number of 105 or 106 fragments is within reach and the approximate total ground state energy
evaluation of huge homogeneous molecular systems would become computationally feasible.

Finally, let us remark on how the BOSSANOVAmethod may be incorporated into a general coupling
scheme of QM and MM. The BOSSANOVA fragmentation would be executed only in a given local
domain, i.e. the active region where QM is locally needed. The resulting fragments are then forwarded
to a suitable QM solver, whereas the surrounding passive environment would not be fragmented but is
directly passed on to a MM solver. Our BOSSANOVA scheme is closely related to conventional many-
body potentials (however in an ab-initio fashion) and to a variable many-body order. Furthermore, due
to the fragmentation process, the interface region is not sharply def ned. Therefore, we believe that
this approach also remedies the problems of energy and electron density leaking of other local coupling
methods to a certain extent.
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