
AUDIO EMBEDDINGS FOR SEMI - SUPERVISED
ANOMALOUS SOUND DETECTION

dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

kevin wilkinghoff
aus

hamm

Bonn, 2024

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: apl. Prof. Dr. Frank Kurth
2. Gutachter: Prof. Dr. Reinhard Klein

Tag der Promotion: 2. September 2024
Erscheinungsjahr: 2024

ABSTRACT

Detecting anomalous sounds is a difficult task: First, audio data is very high-
dimensional and anomalous signal components are relatively subtle in relation
to the entire acoustic scene. Furthermore, normal and anomalous audio signals
are not inherently different because defining these terms strongly depends on the
application. Third, usually only normal data is available for training a system
because anomalies are rare, diverse, costly to produce and in many cases unknown
in advance. Such a setting is called semi-supervised anomaly detection. In domain-
shifted conditions or when only very limited training data is available, all of these
problems are even more severe.

The goal of this thesis is to overcome these difficulties by teaching an embedding
model to learn data representations suitable for semi-supervised anomalous sound
detection. More specifically, an anomalous sound detection system is designed
such that the resulting representations of the data, called embeddings, fulfill the
following desired properties: First, normal and anomalous data should be easy to
distinguish, which is usually not the case for audio signals because the definition
of anomalies is entirely application-dependent. Second, in contrast to audio signals
that are very high-dimensional and may have different durations or sampling rates
and thus are difficult to handle, embeddings should have a fixed and relatively
low dimension. Third, audio signals may have been recorded under very different
acoustic conditions leading to strong variability between signals that, from an
anomalous sound detection perspective, is not desired. Ideally, embeddings used
for detecting anomalies should be mostly insensitive to these acoustic changes and
only sensitive to their degree of abnormality.

The main contributions of this thesis are the following: First and foremost, an-
gular margin losses, namely sub-cluster AdaCos, AdaProj and TACos, specifically
designed to train embedding models for anomalous sound detection and for few-
shot open-set sound event detection are presented. In various experiments, it is
shown that the embeddings obtained with these loss functions outperform embed-
dings obtained by using other angular margin losses, one-class losses or pre-trained
embeddings. As another contribution, it is proven that angular margin losses can
be seen as a regularized multi-class version of one-class losses, which helps to cope
with background noise. Furthermore, design choices for learning embeddings that
are robust to acoustic domain shifts by generalizing well to previously unseen
domains are presented, which results in an anomalous sound detection system sig-
nificantly outperforming other state-of-the-art systems. As a last contribution, it
is investigated how to obtain good decision thresholds and a novel performance
metric, called F1-EV, that measures the difficulty of estimating a good threshold
is presented.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor
Frank Kurth for his guidance and support throughout the entire time it took me
to write this thesis while granting me academic freedom in choosing the research
topics I wanted to pursue. Likewise, I would like to thank Reinhard Klein for
being willing to serve as a second supervisor as well as Thomas Schultz and Ulrich
Schade for participating in the examination and defense of this thesis.

I am equally thankful to my colleagues at Fraunhofer FKIE with whom I had
the pleasure to work and collaborate: Paul M. Baggenstoss, Alessia Cornaggia-
Urrigshardt, Fabian Fritz, Fahrettin Gögköz, Lukas Henneke, Hans-Christian
Schmitz, Sebastian Urrigshardt and all others not mentioned here but who also
had their contributions if only by making lunch breaks much more enjoyable.

Furthermore, I would like to thank all members of the DCASE community for
discussing ideas and working together on similar research topics. In particular, I
would like to mention Yacine Bel-Hadj and Keisuke Imoto for being interested in
collaborating with me, Toni Heittola, Annamaria Mesaros and Romain Serizel for
including me in organizational duties, and all organizers of the annual anomalous
sound detection task for providing most of the datasets used in this thesis.

Last but not least, I am deeply grateful for the continuous support of my wife
Kristin, my parents André and Sabine, my siblings Dennis and Melina as well as
their other halves Pia and Fabian, my wife’s side of the family Ria, Uwe, Heike,
Tobias, Angi, Smilla, Lunis, Carlotta, and all of my friends whom I will not try to
list here knowing that I will most likely forget to mention too many of them.

v

CONTENTS

1 introduction 1
1.1 Semi-supervised anomaly detection 2
1.2 Audio embeddings . 4
1.3 Example applications . 5
1.4 Main contributions . 7
1.5 Thesis outline . 8
1.6 Notation and Preliminaries . 8

2 audio embeddings for anomaly detection 9
2.1 Contributions of the author . 10
2.2 Input feature representations . 10

2.2.1 Pre-processing audio signals 11
2.2.2 Spectral features . 12
2.2.3 Normalization . 13

2.3 One-class embeddings . 13
2.3.1 Autoencoders . 14
2.3.2 Compactness loss . 16

2.4 Auxiliary task embeddings . 19
2.4.1 Angular margin losses . 19
2.4.2 Handling imbalanced data 24

2.5 Pre-trained embeddings . 24
2.6 Computing an anomaly score . 26
2.7 Data augmentation . 27

2.7.1 Mixup . 27
2.7.2 SpecAugment . 28
2.7.3 Simulating anomalies . 29

2.8 Comparison of different embedding types 30
2.9 Ensembling . 31
2.10 Evaluation metrics . 32

2.10.1 Anomaly detection . 33
2.10.2 Open-set classification . 36
2.10.3 Sound event detection . 37

2.11 Decision threshold estimation . 39
2.12 Summary . 42

3 anomalous sound detection system design 45
3.1 Contributions of the author . 45
3.2 Example application: Machine condition monitoring 45

3.2.1 Experimental setup . 46
3.2.2 Baseline model for extracting embeddings 46

vii

3.3 Relation between one-class and angular margin losses 48
3.3.1 Compactness loss on the unit sphere 48
3.3.2 Relation between the compactness loss and AdaCos 50
3.3.3 Performance evaluation . 51

3.4 Sub-cluster AdaCos . 53
3.4.1 Definition . 53
3.4.2 Relation to the compactness loss 54
3.4.3 Comparison of backends . 58
3.4.4 Utilizing mixup . 60
3.4.5 Determining the number of sub-clusters 61
3.4.6 Replacing embeddings with input data statistics 61
3.4.7 Comparison to other published systems 64

3.5 Summary . 64

4 decision threshold estimation 67
4.1 Contributions of the author . 67
4.2 Estimating a decision threshold . 68

4.2.1 Performance comparison of different estimation methods . . 68
4.2.2 Choosing a set of observed anomaly scores 70

4.3 F1-EV score . 72
4.3.1 Definition . 72
4.3.2 Experimental setup . 75
4.3.3 Experimental comparison with existing evaluation metrics . 76
4.3.4 Choosing the hyperparameter βF1-EV 77

4.4 Summary . 78

5 domain adaptation and generalization 81
5.1 Contributions of the author . 83
5.2 Machine condition monitoring in domain-shifted conditions 84

5.2.1 DCASE2022 ASD dataset 84
5.2.2 DCASE2023 ASD dataset 85

5.3 Designing an ASD system for domain generalization 86
5.3.1 System description . 86
5.3.2 Experimental investigations of individual design choices . . . 89

5.4 Explaining the decisions . 92
5.4.1 Visualizing the input as viewed by the model 94
5.4.2 Visualizing the embedding space 96

5.5 Comparison to pre-trained embeddings 98
5.5.1 System design for pre-trained embeddings 98
5.5.2 Experimental results . 99

5.6 AdaProj . 101
5.6.1 Definition . 101
5.6.2 Choosing a sub-space dimension 103
5.6.3 Performance evaluation . 104

viii

5.7 Self-supervised learning . 104
5.7.1 Approaches . 106
5.7.2 Combining multiple approaches 108
5.7.3 Performance evaluation . 109

5.8 Putting it all together . 111
5.9 Summary . 112

6 few-shot open-set classification 115
6.1 Contributions of the author . 115
6.2 Few-shot open-set classification . 116

6.2.1 Dataset . 118
6.2.2 System design . 118
6.2.3 Experimental results . 119

6.3 Sound event detection application: Keyword spotting 120
6.3.1 Related work . 121
6.3.2 Dataset . 122
6.3.3 System overview . 122
6.3.4 Extracting embeddings . 123
6.3.5 TACos . 124
6.3.6 DTW backend . 128
6.3.7 Baseline systems . 128
6.3.8 Experimental comparison 129

6.4 Summary . 130

7 conclusion 131
7.1 Summary . 131
7.2 Outlook and future work . 133

a appendix 135
a.1 Key publications . 135

a.1.1 Key publication 1 . 135
a.1.2 Key publication 2 . 144
a.1.3 Key publication 3 . 150
a.1.4 Key publication 4 . 163
a.1.5 Key publication 5 . 169
a.1.6 Key publication 6 . 175
a.1.7 Key publication 7 . 183
a.1.8 Key publication 8 . 189
a.1.9 Key publication 9 . 195
a.1.10 Key publication 10 . 201

list of figures 217

list of tables 219

ix

list of acronyms 221

list of symbols 224

bibliography 229

x

1
INTRODUCTION

In general, anomaly detection is the process of distinguishing normal data, which
are the result of measurements or sensor input, from anomalous data, which sub-
stantially deviates from normal data in some way. Other even less formal defini-
tions are to see anomalous data as every data sample that strikes the eye or is
deemed interesting or perhaps surprising. There are several difficulties to overcome
when trying to formalize these vague definitions. First, one needs to define in which
way and to what extent data needs to deviate from normal data in order to be
considered anomalous. One can distinguish weak anomalies, which are essentially
noisy normal samples, and strong anomalies that should always be recognized as
anomalies [3]. Thus, weak anomalies can be considered normal or anomalous, de-
pending on the application. Furthermore, the term normal needs to be precisely
defined since it is highly application-dependent and can be influenced by several
parameters such as the time and location at which data is collected. Data that is
considered normal for a given application can possibly be considered anomalous in
another application or even for the same application if one of the data-influencing
parameters is changed. In conclusion, one needs a well-defined goal when setting
up an anomaly detection system. Sufficient amounts of data need to be collected
in the right conditions for training the system such that the underlying distribu-
tion of normal data is represented sufficiently well for the application in mind.
Otherwise, it cannot be ensured that anomalies detected by the system are truly
the ones that should be detected.

Let X denote an infinite data space such as the space containing all audio sig-
nals. Let Xnormal Ă X and Xanomalous Ă X denote the sets of normal and anomalous
samples, respectively. For the sake of simplicity, set Xanomalous – XzXnormal as this
only requires the choice of normal samples to define both sets. Although using this
definition, i.e. using the complement of the normal samples in the set of all theoret-
ically possible samples, Xanomalous may include samples that never occur in practice,
these samples should certainly not be considered normal. The goal of training most
anomaly detection systems is to obtain a function score : X Ñ R, x ÞÑ score(x)
mapping a data sample x to an anomaly score denoted by score(x) such that all
normal samples can be separated from anomalous samples. This means that there
is a decision threshold θ P R such that

score(xn) ď θ ă score(xa)

for all normal samples xn P Xnormal and for all anomalous samples xa P Xanomalous.
In other words, anomalous samples should be mapped to much higher anomaly
scores than normal samples. It is important to mention that obtaining this function
score is only a desired goal and in practice anomalous samples can only rarely be

1

2 introduction

θ

score(x)

co
u
n
t

ideal anomaly scores

scores belonging to normal samples scores belonging to anomalous samples

θ

score(x)

realistic anomaly scores

Figure 1: Histograms of anomaly scores and corresponding decision thresholds. On the
left, the decision threshold θ perfectly separates the anomaly scores belonging
to the normal and anomalous samples. On the right, a perfect separation is not
possible because the histograms of the normal and anomalous scores overlap.

perfectly detected, i.e. there is an overlap between the anomaly scores of both sets.
This is illustrated in Figure 1.

1.1 semi-supervised anomaly detection

Depending on the structure of the training dataset and the given labels for this
dataset, there are three different settings in which anomaly detection can take
place: Supervised, semi-supervised and unsupervised anomaly detection [3]. These
settings are presented in Table 1 and visualized with examples in Figure 2.

Table 1: Overview of different anomaly detection settings.

training dataset training labels data collection

supervised Xtrain Ă Xnormal Y Xanomalous available (2 classes) difficult
semi-supervised Xtrain Ă Xnormal available (1 class) moderately difficult
unsupervised Xtrain Ă Xnormal Y Xanomalous not available simple

For supervised anomaly detection, the labeled training dataset consists of nor-
mal and anomalous data. In non-trivial applications it is impossible to collect
all variations of data that are considered anomalous to fully capture the space

1.1 semi-supervised anomaly detection 3

ground truth

normal sample normal training sample
anomalous sample anomalous training sample

normal or anomalous test sample normal or anomalous training sample

supervised anomaly detection

semi-supervised anomaly detection unsupervised anomaly detection

Figure 2: Illustration of different anomaly detection settings. The same dataset is shown
with different samples and corresponding labels available for training an
anomaly detection system.

of anomalous samples. Thus, only a limited number of boundaries between nor-
mal and anomalous samples can be learned. This is especially true in case of
high-dimensional data. Still, providing examples of anomalous samples that are
of particular interest and thus should always be recognized as being anomalous is
useful for training the system. By definition, anomalies only rarely occur. There-
fore, it is much more difficult and thus more costly to obtain realistic anomalous
samples for training a system than to collect normal data. Furthermore, determin-
ing whether a sample is normal or anomalous often requires expert knowledge and
can be a cumbersome task. This results in highly imbalanced classes, which poses
a problem that needs to be handled appropriately.

4 introduction

In a semi-supervised setting, the training dataset contains only normal data1.
For most applications, this is a more realistic setting because it substantially sim-
plifies the data collection process as it only needs to be ensured that all collected
samples are in fact normal. However, using only normal data for training leads to
worse performance than using a dataset collected in a supervised setting because
no a priori knowledge about the expected anomalous data is available.

In some cases it is even impossible to ensure that only normal data is collected
and, without explicitly knowing, the training dataset may contain a mixture of nor-
mal and possibly anomalous data. This is referred to as an unsupervised anomaly
detection setting. Compared to both other settings, it is far easier and thus less
costly to collect data in this setting. Furthermore, using such a dataset for training
a system usually leads to significantly worse performance as only noisy information
about the underlying distribution of the normal data is available. In most cases,
at least an estimate of the corruption of the training data, i.e. the ratio between
normal and anomalous training samples, is needed to obtain useful results.

1.2 audio embeddings

Identifying anomalies by analyzing raw audio signals is difficult because of three
reasons: First, there is no inherent property separating normal from anoma-
lous samples since defining the normal (and the anomalous) subset is entirely
application-dependent. Second, audio signals live in a high-dimensional space with
a dimension equal to the duration in seconds times the sampling rate in Hertz and
thus contain much redundant information for a given task. Moreover, an audio
recording may also consist of several recording channels, which leads to an even
higher dimension. Third, individual audio signals may have a different duration, a
different sampling rate or may have been recorded in different acoustic conditions
or using different sensors and thus a comparison between signals is difficult. To
overcome these difficulties for a particular anomalous sound detection (ASD) ap-
plication, it would be very favorable if all audio signals were mapped to the same,
relatively low-dimensional vector space specifically structured such that represen-
tations of normal samples are similar to each other while substantially differing
from anomalous samples and also being robust to acoustic variations. In the con-
text of machine learning, such vector representations of the input data are called
embeddings. To formalize this, an ideal embedding function will be defined as a

1 If only anomalous data is available for training the system, this is also called a semi-supervised
setting. However, for most applications this is rarely the case since it is highly unusual that
normal samples are not available and anomalous samples are usually much more difficult to
collect than normal samples. Within this thesis the term is reserved for a setting with a training
dataset consisting of normal samples only.

1.3 example applications 5

Figure 3: Illustration of an ideal embedding function for ASD.

mapping emb : X Ñ RD with D P N sufficiently small such that there are Ne P N
subsets Ei Ă RD of the embedding space for which

emb(Xnormal) =
Ne
ď

i=1

Ei with Ei X emb(Xanomalous) = H for all i = 1, ...,Ne.

Such an ideal embedding function is depicted in Figure 3. Note that for such an
ideal embedding function it holds that

emb(Xnormal) X emb(Xanomalous) = H.

Hence, normal and anomalous samples can be perfectly separated and one can
define an anomaly score function that yields perfect results. This is the reason
why emb is called an ideal embedding function.

Learning an ideal embedding function can be accomplished by using universal
function approximators such as neural networks. One of the main difficulties of
semi-supervised ASD is the definition of a suitable loss function for training the
network because only normal data is available for training. Obtaining an ideal
embedding function, i.e. developing a neural network for extracting application-
dependent audio embeddings, and designing an ASD system using these embed-
dings is the goal of this thesis.

1.3 example applications

In [3], the following general applications for anomaly detection are listed: Intru-
sion detection, credit-card fraud, interesting sensor events, medical diagnosis, law
enforcement and earth science. Since the focus of this thesis lies on anomaly de-
tection for audio data, concrete applications will only be given for systems using
acoustic data. Numerous applications using other data types will be omitted for
the sake of limiting the length of this section. Note that for many applications, an
acoustic sensor is only one of multiple different sensors and combining all avail-
able information usually leads to much better performance. For example, one can

6 introduction

often utilize video cameras alongside acoustic sensors. Some of the following audio-
specific applications coincide with the aforementioned general applications:

• Machine condition monitoring for predictive maintenance [44, 46, 96, 108]:
Here, normal sounds are recordings of fully-functioning machines in noisy
factory environments and anomalies correspond to mechanical failure. Re-
search for ASD is largely promoted through a machine condition monitoring
task of the annual DCASE challenge and will serve as the main example
application throughout this thesis.

• Intrusion detection in smart home environments to detect burglary [279]:
Here, anomalies are sounds of persons walking through the room and looking
for hidden objects in boxes and drawers. Normal sounds are emitted by
furniture or electronic devices, people or objects outside or in neighboring
rooms and other external sources such as traffic or thunderstorms.

• Medical diagnosis: Normal sounds correspond to a healthy state and any
anomaly indicates a disease or other medical conditions. Concrete examples
are detecting COVID-19 from speech [160] or detecting heart defects from
heart sounds [40].

• Detecting crimes or terrorist attacks with surveillance systems in public
places [75, 216]: Here, anomalous sounds consist of gunshots, shattering glass
or screams whereas normal sounds are a diverse mixture of sounds such as
talking people or passing cars.

• Detecting accidents with road surveillance systems [53, 127]: Normal sounds
consist of regular traffic noise and anomalous sounds are mostly crashing
cars.

• Detecting interesting events in bioacoustic monitoring as for example novel
species or individuals that are seen as anomalies [170] or monitoring the
condition of beehives [23] similarly to machine condition monitoring

• Detecting erroneous sensor measurements: This is especially important for
wireless sensor networks, e.g. in underwater sensor networks [47] where there
can also be issues when collecting and transmitting information.

• Acoustic open-set classification (OSC) problems: In addition to a fixed set
of known classes that should be recognized, a test sample can also belong
to none of these known classes. Therefore, OSC tasks can be decomposed
into the sub-tasks anomaly detection and closed-set classification (CSC):
Anomaly detection is used to decide whether a given sample belongs to one of
the known classes, and thus is considered normal, or to an unknown class, i.e.
is an anomalous sample. CSC is used to predict to which of the known classes
the sample belongs to. One can also view anomaly detection as a special case

1.4 main contributions 7

of OSC with only a single known class denoting all normal samples. Concrete
examples are open-set speaker recognition [205] or open-set acoustic scene
classification [149]. If not only the class but also the temporal position of a
sound event contained in an audio signal of possibly long duration needs to
be recognized, this is referred to as sound event detection (SED) [229, 230].
Typical examples are keyword spotting (KWS) [136] or bioacoustic event
detection [153, 169]. Note that for these applications the a priori likelihood
that a normal event occurs is usually much smaller than the likelihood that
an uninteresting, i.e. unknown, event occurs.

It is important to emphasize that the goal of all these tasks is not to distinguish
specific anomalous sounds from silence or analyze isolated sound events, which
would be relatively simple. The acoustic scenes captured by most recordings con-
tain a complex mixture of many different normal sounds, all of which can possibly
result in false alarms in case the ASD system is not performing sufficiently well.
Handling this mixture of sounds appropriately is one of the major challenges to
overcome in ASD.

1.4 main contributions

The main contributions of this thesis are the following:

• Sub-cluster AdaCos, an angular margin loss for semi-supervised ASD, is
presented in Chapter 3.

• The relation between one-class losses and angular margin losses is investi-
gated in Chapter 3.

• Multiple methods for obtaining decision thresholds are compared to each
other in Chapter 4. Furthermore, F1-EV, a novel performance measure taking
the estimation of decision thresholds into account, is proposed in the same
chapter.

• Several different design choices for making a system robust to (acoustic) do-
main shifts are proposed and compared to each other in Chapter 5. In par-
ticular, the angular margin loss AdaProj, which generalizes the sub-cluster
AdaCos loss, and a self-supervised learning framework are presented.

• TACos, a loss function for obtaining embeddings that capture the temporal
structure of sound events, is presented and evaluated for few-shot KWS in
Chapter 6.

At the beginning of each chapter, additional contributions are stated.

8 introduction

1.5 thesis outline

The remaining parts of this thesis are structured as follows:

• Chapter 2 reviews the state-of-the-art techniques for extracting audio em-
beddings for semi-supervised ASD as well as methods for designing ASD
systems based on these embeddings.

• Chapter 3 studies the design of a semi-supervised ASD system based on
audio embeddings.

• Chapter 4 examines how to estimate good decision thresholds that separate
the anomaly scores of normal and anomalous samples using only anomaly
scores belonging to normal samples.

• Chapter 5 investigates how to design and train an ASD system such that it
is robust against acoustic domain shifts.

• Chapter 6 describes the application of ASD embeddings to acoustic OSC
and SED problems.

• Chapter 7 concludes the thesis by summarizing the results and presenting
possible directions for future work.

1.6 notation and preliminaries

Apart from the notation introduced in the preceding sections, the following nota-
tion will be used throughout the thesis:

• P(X) denotes the power set of X.

• For Nclasses P N pre-defined classes, the class index function is denoted as
class : X Ñ t1, ...,Nclassesu. The categorical class label function is denoted as
lab : X Ñ [0, 1]Nclasses with

řNclasses
j=1 lab(x)j = 1 for all x P X. Note that in

contrast to the class function, this definition explicitly allows that a sample
(partially) belongs to more than a single class.

• Φ denotes the space of permissible neural network architectures for obtaining
embeddings and W denotes the corresponding parameter space of the neu-
ral networks, i.e. Φ = tϕ|ϕ : X ˆ W Ñ RDu. Unless stated otherwise, spe-
cific building blocks of these networks may consist of fully-connected layers,
convolutional layers, recurrent layers or any other layers and will only be
specified if needed to ensure that all presented results are as general as pos-
sible.

All neural networks used for the experimental evaluations of this work are imple-
mented using Tensorflow [1].

2
AUDIO EMBEDDINGS FOR ANOMALY DETECTION

The motivation for and the abstract idea of obtaining audio embeddings for semi-
supervised ASD has already been presented in Section 1.2. This chapter provides
an overview over different audio embeddings and the state-of-the-art methods for
designing an ASD system with them. An overview of all necessary steps is shown
in Figure 4. In general, an ASD system based on audio embeddings consists of a
frontend for extracting input feature representations, a neural network for com-
puting embeddings and a backend for deciding whether an embedding is normal
or anomalous. The same structure is also used for machine condition monitoring,
which serves as the main example application investigated in this thesis.

backend

neural network
frontend

obtain raw
waveform

compute
spectral
features

pre-process
waveform

apply nor-
malization

apply data
augmentation

train neural
network

extract
embeddings
with neural
network

compute
anomaly score

apply decision
threshold

return
“normal” or
“anomalous”

Figure 4: Essential building blocks of a general ASD system based on audio embeddings.
Blocks colored in blue are only used for training the system, blocks colored in
yellow are only used for inference and blocks colored in red are used for training
and inference.

This chapter is structured as follows: Section 2.2 includes all steps needed for
computing input feature representations of the audio signals. These steps are pre-
processing the audio signal, calculating spectral features and, optionally, normal-
izing the features. In Section 2.3, different one-class embeddings and the loss func-
tions for obtaining them are presented as a first type of audio embeddings for ASD.
A second type of audio embeddings based on using an auxiliary classification task
is reviewed in Section 2.4. Section 2.5 contains a description of a few selected audio
embeddings pre-trained on large datasets. In Section 2.6, approaches for calculat-
ing an anomaly score are presented. Data augmentation techniques for training
the embedding extractor are discussed in Section 2.7. Section 2.8 compares the
previously presented three embedding types and Section 2.9 contains approaches
for combining several ASD models. Evaluation metrics for ASD, OSC and SED

9

10 audio embeddings for anomaly detection

are presented in Section 2.10. In Section 2.11, methods for estimating a decision
threshold are reviewed. The chapter is concluded with a summary in Section 2.12.

2.1 contributions of the author

Some content of this chapter is presented similarly in the following publications:

• Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “On choosing decision
thresholds for anomalous sound detection in machine condition monitoring.”
In: 24th International Congress on Acoustics. The Acoustical Society of Ko-
rea, 2022.

• Kevin Wilkinghoff and Fabian Fritz. “On Using Pre-Trained Embeddings for
Detecting Anomalous Sounds with Limited Training Data.” In: 31st Euro-
pean Signal Processing Conference. IEEE, 2023, pp. 186–190. doi: 10.23919/
EUSIPCO58844.2023.10290003.

• Kevin Wilkinghoff and Frank Kurth. “Why do Angular Margin Losses work
well for Semi-Supervised Anomalous Sound Detection?” In: IEEE/ACM
Transactions on Audio, Speech and Language Processing 32 (2024), pp. 608–
622. doi: 10.1109/TASLP.2023.3337153.

• Kevin Wilkinghoff and Keisuke Imoto. “F1-EV Score: Measuring the Like-
lihood of Estimating a Good Decision Threshold for Semi-Supervised
Anomaly Detection.” In: International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2024, pp. 256–260. doi: 10 . 1109 /
ICASSP48485.2024.10446011.

For publications that are not single-authored, individual contributions of the the-
sis author and all co-authors to these publications are stated in Section A.1. If
not stated otherwise, the content listed in the following paragraph is the sole
contribution of the thesis author.

The approaches for estimating a decision threshold as presented in Section 2.11
are also discussed in [252]. Alessia Cornaggia-Urrigshardt assisted with reviewing
the literature containing these approaches. The same pre-trained embeddings as
described in Section 2.5 are also listed in [258]. [262] contains a similar definition
of the compactness loss (Definition 2.3) and the angular margin losses ArcFace
(Definition 2.7) and AdaCos (Definition 2.8). The definition and discussion of
AUC-ROC contained in Section 2.10 is based on [260].

2.2 input feature representations

Before using audio data as input for neural networks that are trained to extract
embeddings, a few pre- and post-processing steps are or may be necessary.

https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.1109/TASLP.2023.3337153
https://doi.org/10.1109/ICASSP48485.2024.10446011
https://doi.org/10.1109/ICASSP48485.2024.10446011

2.2 input feature representations 11

2.2.1 Pre-processing audio signals

In many monitoring applications, all recorded audio signals have the same length.
The reason is that for a continuous observation it is necessary to specify a record-
ing protocol because anomalous sounds may appear arbitrarily in time. For ex-
ample, when monitoring the condition of machines in factories, these machines
are running without interruption. Unless the process of recording shall continue
infinitely, one is forced to decide for a finite recording duration. This duration
is application-dependent and should be long enough to ensure that normal and
anomalous samples can be distinguished but as short as possible to reduce the
total inference time, which also includes the recording time. Furthermore, repeat-
edly recording for the same fixed duration is to be preferred because this simplifies
the recording process and all following steps.

In case a uniform recording length cannot be guaranteed, there are several strate-
gies that can be used to handle recordings with varying lengths. The simplest
solution is to unify the duration of all recorded audio signals. Audio signals that
are too short are padded with silence or repeated and cut appropriately until the
desired length is reached. Audio signals that are too long are cut into overlap-
ping segments of the desired length and the mean of the output of the neural
network obtained from these segments can be used as the result for the entire
initial recording. Another strategy is to use neural network architectures that can
handle varying lengths. One possibility is to use several convolutional layers fol-
lowed by global pooling layers [128] applied to the temporal axis [228]. A popular
example is the x-vector architecture developed for speaker recognition [210]. This
architecture uses statistics such as the temporal mean and the temporal standard
deviation and stacks them into a single representation as the last layer. Another
approach is to use recurrent neural networks such as gated recurrent units [28]
or long short-term memories [83] that are capable of handling data with varying
time dimension by design. More complex approaches are more powerful but re-
quire more computational resources for training as well as more training data to
avoid overfitting. Therefore, there is not a single perfect choice that can be used
for all applications and ASD systems need to be carefully designed depending on
the demands of a specific application.

Similarly to the recording duration, it is advisable to also fix a sampling rate
that is sufficiently high for capturing normal and anomalous sounds when design-
ing the ASD system for a specific task. This is often directly connected to the
acoustic sensor, i.e. microphone to be used and may require expert knowledge. If
using different sampling rates, one can decide for a fixed sampling rate and up-
or downsample all recordings to this sampling rate. In case particular frequency
bands completely contain all anomalous sounds, spectral filtering, e.g. with band-
pass filters, can be applied to remove unimportant information and simplify the
ASD task.

12 audio embeddings for anomaly detection

2.2.2 Spectral features

Waveforms are high-dimensional and thus many training samples are needed for
training a model for ASD or any other non-trivial task [62]. This is the reason
why the dimension of waveforms is often reduced before providing them as input
for neural networks. Usually, this is accomplished by computing features based on
classical signal processing. The most commonly used features are time-frequency
representations such as magnitude spectrograms. These features consist of a fre-
quency and time dimension and thus techniques used in image processing, as for
example two-dimensional convolutional neural networks, can be utilized for com-
puting the embeddings. Due to Heisenberg’s uncertainty principle, time and fre-
quency resolution cannot simultaneously be chosen to be arbitrarily high. Increas-
ing the frequency resolution degrades the time resolution and vice versa. Therefore,
both resolutions have to be balanced and parameter settings have to be adjusted
such that the features capture all sounds of interest for a particular application
sufficiently well. Apart from using standard time-frequency representations ob-
tained by applying a short-time Fourier transform (STFT), there are many other
hand-crafted features with adjustable resolutions such as Mel-frequency scaled
spectrograms [211], Mel-frequency cepstral coefficients [36] or features based on
perceptual linear prediction [79]. One can also use a combination of features with
different resolutions or wavelets [34]. Moreover, multiple hand-crafted features cap-
turing complementary information can be combined to utilize more information
in total and improve the performance [236]. This is called ensembling and will
be discussed in Section 2.9. For ASD, application-dependent a priori knowledge
about the anomalies, needed to design highly sophisticated features, is only rarely
available as this requires to analyze anomalous samples, which are usually not
available for training. One of the major strengths of neural networks is the ability
to learn meaningful data representations by themselves. To utilize this strength,
input feature representations that still capture most information present in the
original data should be chosen instead of highly processed features.

The vast majority of state-of-the-art ASD systems for machine condition moni-
toring utilize log-Mel spectrograms as input features with no adaptations to spe-
cific machine types [21, 25, 59, 60, 85, 95, 164, 184, 186, 187, 212]. There are only a
few minor deviations from this: In [123, 179], a Gammatone filterbank and in [39,
134, 174] regular spectrograms are used instead of or in combination with log-Mel
spectrograms. For some systems [39, 112, 135], parameters for extracting log-Mel
spectrograms such as window size, hop length and number of Mel bins are manually
optimized for different machine types and data domains. In [124], different non-
uniform filterbanks are determined for each machine type using Fisher’s F-ratio.
Again, optimizing these parameters requires access to anomalous data, which is
not available in a semi-supervised ASD setting and thus is infeasible. In [140], it
has been shown that applying high-pass filters is beneficial to detect anomalies

2.3 one-class embeddings 13

in machine condition monitoring showing that high-frequency information is more
important than low-frequency information.

2.2.3 Normalization

To ensure that all dimensions of the input feature representations are scaled sim-
ilarly, a normalization technique can be applied. Some ASD systems perform a
standardization of the input features in cepstral domain by subtracting the mean
and dividing by the standard deviation of all normal training samples [85, 95, 179].
In [184], the waveforms are rescaled to unit variance and in [135] a Teager-Kaiser
energy operator is used to suppress the noise for some machine types with modest
improvements in ASD performance. Another simple denoising approach is to apply
a median filter along the frequency axis [21]. Other works do not explicitly state a
normalization procedure [21, 59, 60, 112, 174, 187] showing that a standardization
of the input representations is an optional step. However, nearly all neural network
based ASD approaches perform a standardization to all intermediate representa-
tions. This is called batch normalization [86] and results in a more stable and faster
convergence of the training algorithm. To simplify notation for the further course
of this thesis, X will denote the space of appropriately pre-processed input feature
representations instead of the raw waveforms unless stated otherwise.

2.3 one-class embeddings

The first type of embedding presented in this chapter is based on directly learning
the distribution of normal data with a neural network. Using this distribution, one
can compute a likelihood or distance of individual samples to distinguish between
normal and anomalous samples. In general, this approach is called inlier modeling
[96]. Since only a single class consisting of normal data is used, this is also known
as one-class classification [156].

Among the models used for inlier modeling are deep generative models [17]
such as autoregressive models [206], e.g. WaveNet [171] or a masked autoencoder
for distribution estimation (MADE) [58], variational autoencoders (VAEs) [102],
generative adversarial networks (GANs) [121], e.g. AnoGAN [201] or GANomaly
[4], and normalizing flows [105, 172]. VAEs [102] can be seen as a generalization
of autoregressive models [27] and thus a VAE with a sufficient number of hidden
layers should, in theory, be able to achieve the same ASD performance as autore-
gressive models. Furthermore, it was shown that normalizing flows can be modified
to outperform autoencoders such as VAEs [42, 43]. However, it is also known that
normalizing flows have problems when detecting out-of-distribution samples, i.e.
anomalies, [104, 161] and thus, by transitivity, VAEs and autogressive models are
also not an ideal choice. Moreover, deep autoregressive models [59, 75], normaliz-
ing flows [42, 43, 135, 184] or GANs [39, 90] do not aim at projecting data into
an embedding space and thus are out of scope for this thesis. Hence, these ap-

14 audio embeddings for anomaly detection

proaches will not be discussed in detail and the focus will be on (non-variational)
autoencoders [82] in general and deep support vector data description (SVDD) for
one-class classification [196, 197], which has been shown to outperform at least
some generative approaches for ASD, instead.

2.3.1 Autoencoders

In the context of this thesis, an autoencoder [82] is a model consisting of two sub-
models: An embedding model, called encoder, mapping the input to an embedding
space and an additional decoder model mapping an embedding back to the input
space. The formal definition of an autoencoder is as follows.

Definition 2.1 (Autoencoder). Let W denote the parameter space of a neural
network φ : XˆW Ñ X. Then, φ is called an autoencoder if it can be written as

φ = φd ˝ φe (1)

such that φe : X ˆ We Ñ RD, i.e. φe P Φ, and φd : RD ˆ Wd Ñ X for parameter
spaces We and Wd. φe and φd are called encoder and decoder, respectively. Em-
beddings φe(x,w) P RD obtained with an encoder for some x P X and w P We

are also called code.

Autoencoders are trained by minimizing the reconstruction loss aiming at teach-
ing the model to reconstruct input samples as accurately as possible. The recon-
struction loss is given by the mean squared error (MSE) between the reconstructed
input and the input signal and is defined as follows:

Definition 2.2 (Reconstruction loss). Let Y Ă X be finite and let φ denote an
autoencoder. Then, the reconstruction loss is defined as the mean squared error
between input and output of the autoencoder

Lrec : P(X) ˆ tφ|φ : X ˆ W Ñ Xu ˆ W Ñ R+,

Lrec(Y,φ,w) –
1

|Y|

ÿ

xPY

∥φ(x,w) ´ x∥22.
(2)

In order for an autoencoder to yield useful results, it needs to be ensured that
the autoencoder learns a non-trivial mapping, i.e. not the identity mapping [64].
Otherwise, it holds that Lrec ” 0. Hence, the embedding space does not need
to have any structure and consequently embeddings of normal and anomalous
samples do not need to be different. The most commonly used approaches for
ensuring to learn a non-trivial mapping is to increase the difficulty of the task. A
possible way to achieve this is to use a code (embedding) dimension that is much
smaller than the dimension of the input space (undercomplete autoencoders) or to
remove information from input samples, e.g. by randomly masking or modifying
entries of the input vectors during training (denoising autoencoders) [5].

2.3 one-class embeddings 15

Conveniently, the reconstruction loss can also be used as an anomaly score by
assuming that anomalous data substantially deviates from normal data. Then, an
autoencoder trained to encode and reconstruct normal data cannot reconstruct
anomalous data as accurately as normal data and thus yields a higher reconstruc-
tion error for anomalous data. However, in noisy environments an autoencoder
cannot distinguish between noise and the target sounds and thus both signal com-
ponents contribute to the reconstruction error with equal weight. This degrades
performance, e.g. by causing false alarms, when trying to detect anomalous sounds
in noisy environments such as factories.

There are several extensions and variants of basic autoencoders used for ASD.
Most autoencoders encode a few consecutive frames of log-Mel spectrograms to
reduce the dimension of the input to a manageable size. Usually, sub-classes of
the normal data are defined and several autoencoders, one for each sub-class, are
trained leading to specialized and thus more accurately modeled distributions of
normal data [108]. Another idea is to use a single autoencoder for all classes that
is trained to have a low reconstruction error when being conditioned on the correct
sub-class and a high reconstruction error when being conditioned on another sub-
class. In [95], this is accomplished by using the IDs of specific machines as class
labels in the context of machine condition monitoring. In [112], the class labels of
the input samples are also encoded and decoded and in [9, 179] a reconstruction
loss as well as a classification loss are jointly minimized by using a (weighted)
sum of both losses. [186] uses a single hierarchical VAE making use of hierarchical
class labels such as machine types and model IDs, which are concatenated with
the input feature representations as well as with latent representations. Further-
more, there are different asymmetric approaches regarding input and output of
the autoencoder, which all improve ASD performance. In [212], an interpolation
deep neural network has been proposed that reconstructs only the center frame
of several consecutive frames taken from a log-Mel spectrogram with an autoen-
coder to remove the effect of the edge frames on the anomaly score, which are
difficult to reconstruct. [59] relies on MADE [58] for density estimation, which
applies binary masks to the input such that the autoencoder is an autoregressive
(or a time-reversed autoregressive) model. Here, the autoencoder does not learn
to reconstruct input data but learns conditional distributions, parameterized with
Gaussians or a mixture of Gaussians, to predict the likelihood of the input for a
specific time step while only depending on the input of previous (or subsequent)
time steps. Then, the model is trained by minimizing the negative log-likelihood
of the data given by the product of the learned conditional distributions. [235]
generalizes the previous approach using attentive neural processes [99], which di-
vide the input spectrogram into a context and a complementary target set. This is
achieved by masking random time frames or frequency bins and also encoding the
positions of the context set for computing the likelihood of the estimated target
set conditioned on the context set.

16 audio embeddings for anomaly detection

2.3.2 Compactness loss

When using autoencoders to obtain audio embeddings for ASD, decoding the
code is actually not needed. It is sufficient to only train an encoder network by
computing the MSE between the code of input samples and a center c P RD of a
hypersphere in the embedding space. Then, a model can be trained by minimizing
the volume of the hypersphere containing all normal samples. In [197], it has been
shown that such a one-class approach outperforms commonly used autoencoder
architectures or GANs such as AnoGAN [201] when detecting anomalies. The
compactness loss incorporating this idea is defined as follows:

Definition 2.3 (Compactness loss). Let Y Ă X be finite. Then, the compactness
loss is defined as

Lcomp : P(X) ˆ RD
ˆ Φ ˆ W Ñ R+,

Lcomp(Y, c, ϕ,w) –
1

|Y|

ÿ

xPY

∥ϕ(x,w) ´ c∥22.
(3)

The vector c P RD is called center and belongs to the weight parameters of the
neural network.

Remark. The original definition of the compactness loss also includes an additional
weight decay term for regularization [197]. Since using such a regularization term
is not strictly necessary and can be used to complement any loss function, this
term has been omitted here for the sake of simplicity. All presented theoretical
results still hold.

After training, the (squared) Euclidean distance between the embedding of a
given sample and the center can be utilized as an anomaly score: A greater distance
indicates a higher likelihood for the sample to be anomalous. Similarly as for
autoencoders, it needs to be ensured that deep one-class classification models do
not learn a trivial solution for minimizing the compactness loss, which in this
case corresponds to a parameter setting wc P W for a center c P RD such that
ϕ(x,wc) = c for all x P X. It is of utmost importance to prevent that the model
to be trained is able to learn such a trivial solution. Otherwise, it is impossible
to differentiate between normal and anomalous embeddings because all samples
are mapped to the same point. Hence, preventing to learn trivial solutions is one
of the major difficulties to overcome when training a one-class ASD model with
normal data only.

As shown in [197], three conditions can be identified that need to be fulfilled to
learn a non-trivial mapping. For simplicity, it will be assumed that all networks
ϕ P Φsimple have the following structure: Let L(ϕ) P N denote the number of layers
of network ϕ P Φsimple. Then, Hl(ϕ) for l P t0, ..., L(ϕ)u are hidden representation
spaces that can either be vectors, matrices or tensors, each with a well-defined

2.3 one-class embeddings 17

ordering of the entries allowing to index individual entries of the hidden represen-
tations. Now, set H0(ϕ) – X and for l P t1, ..., L(ϕ)u iteratively define

Hl(ϕ) – tσl(w(l) ¨ hl´1(x) + bl) : hl´1(x) P Hl´1(ϕ), x P H0(ϕ) = Xu (4)

such that HL(ϕ)(ϕ) Ă RD where hl(x) P Hl(ϕ) denotes the hidden representation
at layer l for input sample x P X, “¨” denotes a linear operator, which is either
a matrix multiplication or a convolution, σl denotes the activation function of
layer l, w(l) denotes the corresponding weight parameters (excluding the bias
term) and bl denotes the bias term. Using a network with such a structure, the
three conditions that need to be met to avoid learning trivial solutions of the
compactness loss are captured by the following propositions:

Proposition 2.4. Using the same notation as in 2.3, let w0 P W denote
the parameter setting of ϕ P Φsimple with all weights being equal to zero.
Then, c0 – ϕ(x,w0) P RD is a constant function in x P X meaning that
Lcomp(Y, c0, ϕ,w0) ” 0 for all Y P P(X).

Proof. Applying a linear operator, which for the considered neural networks can
either be a matrix multiplication or a convolution, with all parameters of the oper-
ator being zero yields zero in the representation space regardless of the argument.
Therefore, the output of each layer is constant, i.e. ϕ(x,w0) = c0 for all x P X.
Hence, Lcomp(Y, c0, ϕ,w0) ” 0.

This proposition shows that a center c P RD, which is adapted during training
of the model, can be learned to be equal to c0 yielding a trivial solution for
minimizing the compactness loss with w = w0. Thus, when training a network by
minimizing the compactness loss it needs to be ensured that c ‰ c0 by using a
non-trainable center. The following proposition shows that using bias terms also
allow the network to learn a trivial solution.

Proposition 2.5. Using the same notation as in 2.3, if any layer of ϕ P Φsimple

has a bias term, then there is a wc P W such that ϕ(x,wc) = c for all x P X.

Proof. Let lbias be the index of the last layer of ϕ with a bias term blbias . Then,
for wc P W with wc(lbias) = 0, it holds that hlbias(x) = σlbias(blbias) for all x P X,
i.e. hlbias(x) is a constant function. Therefore, all subsequent parameters wc(l) for
l ą lbias can be chosen such that ϕ(x,wc) = c for all x P X if c P Im(ϕ).

The last proposition investigates the effect of using bounded activation func-
tions.

Proposition 2.6. Using the same notation as in 2.3, let Hl(ϕ), Hl+1(ϕ)
denote hidden representation spaces belonging to two connected layers of
ϕ P Φsimple. Let σ : R Ñ R be a monotonic and bounded activation function with
supaPR σ(a) = B ‰ 0 or infaPR σ(a) = B ‰ 0. If there is an i P t1, ..., dim(Hl(ϕ))u

such that h(i)
l ą 0 or h

(i)
l ă 0 for all hl P Hl(ϕ), i.e. one component of the hidden

representation space has always the same sign. Then, there is a parameter setting
wc P W such that ϕ(x,wc) = c for all x P X.

18 audio embeddings for anomaly detection

Proof. Without loss of generality assume supaPR σ(a) = B ‰ 0 and h
(i)
l ą 0 for

all hl P Hl(ϕ) and some i P t1, ..., dim(Hl(ϕ))u. Then, by choosing wc P W such
that wc(l)

(j,k) = 0 for j P t1, ..., dim(Hl+1(ϕ))u and k ‰ i, we obtain

|h
(j)
l+1 ´ B| = |σ(

dim(Hl(ϕ))
ÿ

k=1

wc(l)
(j,k)h

(k)
l) ´ B| = |σ(wc(l)

(j,i) h
(i)
l

loomoon

ą0

) ´ B| ă ϵ

for all ϵ ą 0 and wc(l)
(j,i) large enough. Hence, h(j)

l+1 = B is constant. Because
this emulates a bias term for layer Hl+2(ϕ), using Proposition 2.5 finishes the
proof.

Remark. Note that using the commonly used rectified linear unit (ReLU) as an
activation function is still possible because Proposition 2.6 only holds for activation
functions with an upper or lower bound not equal to zero.

To sum up the previous propositions, a network trained by minimizing the com-
pactness loss should use a non-trainable center that is not equal to c0 = ϕ(x,w0)
as defined in Proposition 2.4, not use any bias terms and not use bounded acti-
vation functions to avoid learning a trivial mapping. These propositions also hold
in case the network contains pooling or normalization layers because these lay-
ers do not utilize any weights and zero is a fixed point if the input is constant.
Hence, most commonly used convolutional neural network architectures used as
embedding models are captured by these statements.

Another way to prevent the model from learning a constant function is to im-
pose an additional classification task. In [177], an additional descriptiveness loss
is used whose goal it is to reduce inter-class similarity between classes of an arbi-
trary, external multi-class dataset, which is only used to regularize the one-class
classification task. This is done by minimizing the categorical cross-entropy loss
for classification on this additional dataset as a secondary task. For each of the
two tasks, another version of the same network with identical structure and tied
weights, i.e. having the same weight settings, is used. During training, both losses
are jointly minimized using a weighted sum ensuring that the so-called reference
network associated with the compactness loss does not learn a constant function
because this would prevent the secondary network to be able to classify correctly.
In [113, 114], a classification task is defined by using available meta information
as classes. During training, a second term consisting of the multiplicative inverse
of the compactness loss for the center of all normal samples not belonging to the
target class is used to avoid learning a trivial solution.

Note that autoencoders can also be viewed as a way to regularize one-class
models. In this context, the encoder is the one-class model mapping the input to
an embedding space. Unless the input space X consists of a single point, learning
a constant function mapping everything to the center is not an optimal solution
for the reconstruction loss because all necessary information for being able to
completely reconstruct an arbitrary input sample needs to be encoded, which
requires obtaining different embeddings for different input samples.

2.4 auxiliary task embeddings 19

2.4 auxiliary task embeddings

Instead of directly modeling the distribution of the data to learn a mapping into
an embedding space, one can also train a neural network to solve other tasks,
so-called auxiliary tasks, not directly related to ASD. The underlying assumption
is that, to solve an auxiliary task, specific information of the data needs to be
captured in the embedding space and that this information is also sufficient to dif-
ferentiate between normal and anomalous samples. Usually, classification tasks are
used for this purpose. By essentially treating the other classes as pseudo anomalies,
decision boundaries are learned for the normal data of each class. The difficulty
of this approach is that one has to define suitable classes. For machine condition
monitoring, possible auxiliary tasks are classifying between machine types [60,
85, 134, 276] or, additionally, between different machine states and noise settings
[39, 168, 218], recognizing augmented and non-augmented versions of normal data
(self-supervised learning) [60] or predicting the activity of machines [168]. Using an
auxiliary task to learn embeddings is also called outlier exposure (OE) [78] because
normal samples belonging to other classes than a target class can be considered
proxy outliers [184].

To compute the output for many classification tasks solved by neural networks,
the softmax function is used while minimizing the categorical crossentropy as a
loss function for training. But when training a neural network for the purpose
of extracting embeddings, the softmax function only reduces inter-class similar-
ity without explicitly increasing intra-class similarity [223]. To address this issue,
losses based on the Euclidean distance as for example triplet loss [233] and center
loss [234] have been proposed. The triplet loss uses an anchor input whose dis-
tance to a positive sample belonging to the same class is minimized and whose
distance to a negative sample belonging to another class maximized. Center loss
avoids constructing these triplets as input for training by minimizing the distance
to learned center vectors for each class. Recently, loss functions ensuring a margin
between different classes such as additive margin softmax layer [223], SphereFace
[133], CosFace [224], ArcFace [38] or AdaCos [274] were shown to have better gen-
eralization capabilities than losses based on the Euclidean distance because these
losses enforce a low intra-class variability. For machine condition monitoring, [85]
uses center loss, [134, 135] the additive margin softmax loss and [10, 39, 60, 112,
154, 276] use ArcFace. All of these losses lead to embeddings with a significantly
better ASD performance than loss functions without a margin. Therefore, only
angular margin losses will be discussed in detail.

2.4.1 Angular margin losses

The underlying idea of angular margin losses is to learn an embedding space on the
unit sphere and compare two embeddings by calculating the angle between them
while ensuring a margin between classes instead of only ensuring linear separability.

20 audio embeddings for anomaly detection

One of the most commonly used representative of angular margin losses is ArcFace
[38], which will now be reviewed.

Definition 2.7 (ArcFace). Let Y Ă X be finite and lab(x)j P [0, 1] denote the
j-th component of the categorical class label function lab P Λ(Nclasses) where Λ

denotes the space of all functions lab : X Ñ [0, 1]Nclasses with
řNclasses

j=1 lab(x)j = 1

for all x P X. Let softmax : RNclasses Ñ [0, 1]Nclasses denote the softmax function, i.e.

softmax(x)i =
exp(xi)

řNclasses
j=1 exp(xj)

. (5)

Then, the ArcFace loss is defined as

Lang : P(X) ˆ RNclassesˆD
ˆ Φ ˆ W ˆ Λ(Nclasses) ˆ R+ ˆ [0,

π

2
] Ñ R+

Lang(Y,C,ϕ,w, lab, s,m)

– ´
1

|Y|

ÿ

xPY

Nclasses
ÿ

j=1

lab(x)j log(softmax(s ¨ simmar(ϕ(x,w), cj,m)))

(6)

where C = (c1, ..., cNclasses) and, in this case,

softmax(s ¨ simmar(ϕ(x,w), ci,m))

–
exp(s ¨ simmar(ϕ(x,w), ci,m))

řNclasses
j=1 exp(s ¨ simmar(ϕ(x,w), cj,m ¨ lab(x)j))

(7)

with

simmar(x, y,m) – cos(arccos(sim(x, y)) +m) (8)

and

sim(x, y) –
xx, yy

∥x∥2∥y∥2
P [´1, 1]. (9)

The vectors cj P RD are trainable parameters called class centers. The margin
m P [0, π

2
] and scale parameter s P R+ are both hyperparameters that need to be

chosen in advance.

The following intuitive explanation of why the parameter m ensures a margin
between classes is similar to the one given in [223]. Define the angle α between an
embedding ϕ(x,w) P RD and a class center c P RD as

α(ϕ(x,w), c) – arccos(sim(ϕ(x,w), c)) P [0, π].

2.4 auxiliary task embeddings 21

ci

cj

margin

decision
boundary

shifted decision
boundary for class i

shifted decision
boundary for class j

Figure 5: Ensuring an angular margin between classes i and j by shifting the decision
boundaries. This illustration is inspired by Figure 1 from [223].

Since the softmax function is componentwise strictly monotonically increasing, the
following inequality needs to be fulfilled to predict class i P t1, ...,Nclassesu for a
given sample x P X

α(ϕ(x,w), ci) +m ă α(ϕ(x,w), cj) for all j ‰ i.

Hence, for m = 0 the decision boundary between two classes is the bisector of
the angle between both corresponding class centers. Thus, only linear separability
between the classes is ensured. For m ą 0, the decision boundary is effectively
shifted closer to ci, which consequently reduces intra-class variability. Since all
decision boundaries between two classes are shifted towards their corresponding
class centers and thus the inequality does not depend on the choice of i, a margin
depending on the chosen hyperparameter m is ensured. An illustration of this
explanation can be found in Figure 5.

In [274], it has been shown that the choice of both hyperparameters, the scale
parameter s and the margin m, have a significant impact on the posterior proba-
bilities and thus also on the resulting performance. This is illustrated in Figure 6.
On the one hand, a scale parameter that is too small limits the maximum posterior
probability that can be achieved. This hinders the convergence of training because
the model parameters will also be updated in case the angles between embeddings
and class centers are already very small. Similarly, a margin that is too large im-
pedes convergence of the training procedure because the posterior probabilities are
almost equal to zero even when the angles are very small. On the other hand, a
scale parameter that is too large or a margin that is too small lead to the posterior
probabilities being equal to one, even for large angles, and thus the model is not
sensitive to changes of the angle below a certain point. Therefore, the effect on
the sensitivity of the output with respect to the angle is similar when strongly
varying the magnitude for both of these parameters and a single appropriately

22 audio embeddings for anomaly detection

chosen parameter is sufficient for controlling the posterior probabilities. Moreover,
it has been shown experimentally that an adaptive scale parameter outperforms
using two tuned, but fixed, parameters [274].

Following the main line of argumentation as presented in [274], it will now be
briefly explained how the definition of this so-called dynamically adaptive scale
parameter is motivated. For fixed x P X, the scale parameter should be chosen
such that it maximizes the sensitivity of the softmax probability with respect to
the corresponding angle. Formally, this means to find the scale parameter s0 P R+

that fulfills

B2

Bα2
0

exp(s0 ¨ cos(α0))

exp(s0 ¨ cos(α0)) +
řNclasses

j=1
lab(x)j‰1

exp(s0 ¨ sim(ϕ(x,w), cj))
= 0,

which is a transcendental equation approximately equivalent to

s0 =

log
(

řNclasses
j=1

lab(x)j‰1

exp(s0 ¨ sim(ϕ(x,w), cj))

)

cos(α0)
.

By conducting experimental evaluations, it can be seen that
α(ϕ(x,w), cj) « π

2
, i.e. ϕ(x,w) and cj are approximately orthogonal, and

thus sim(ϕ(x,w), cj) « cos
(
π
2

)
= 0 for all j with lab(x)j = 0. Therefore, choosing

a fixed scale parameter s̃(0) P R+ is the same as choosing a fixed value α(0)
0 P [0, π

2
]

in the equation above. A natural choice for ensuring that the scale parameter
is neither too high nor too low is setting α

(0)
0 to the center of this interval, i.e.

α
(0)
0 = π

4
, resulting in

s̃(0) = (cos
(π
4

)
)´1

¨ log
(Nclasses

ÿ

j=1
lab(x)j‰1

exp(s0 ¨ cos
(π
2

)
)

)
=

?
2 ¨ log(Nclasses ´ 1).

During training, the angle α(ϕ(x,w), ci) is decreasing, which also decreases the
sensitivity of the softmax probability to further changes of this angle (see Fig-
ure 6). To avoid this and preserve the same sensitivity, the scale parameter should
also be decreased. By monitoring the median of all angles between the training
samples and their corresponding class centers at training step t P N0, denoted by
α
(t)
med P [0, π

2
], the training progress can be monitored, too. However, initially these

angles may be relatively large. To increase sensitivity in these early iterations,
the median angle is forced to be smaller than π

4
by setting α

(t)
0 = mintπ

4
, α

(t)
medu.

Furthermore, the term

Nclasses
ÿ

j=1
lab(x)j‰1

exp(s̃(t´1)
¨ sim(ϕ(x,w), cj))

2.4 auxiliary task embeddings 23

π
8

π
4

3π
8

π
2

0.2

0.4

0.6

0.8

1

angle

p
os
te
ri
or

p
ro
b
ab

il
it
y

varying scale parameter with fixed margin

π
8

π
4

3π
8

π
2

0.2

0.4

0.6

0.8

1

angle

p
os
te
ri
or

p
ro
b
ab

il
it
y

varying margin with fixed scale parameter

Figure 6: Effects of varying the margin and the scale parameter of an angular margin
loss on the relationship between angle and posterior probability. Brighter colors
indicate smaller parameters and darker colors indicate higher parameters. This
illustration is based on Figure 2 from [274].

is computed for each sample of a mini-batch and the mean, denoted by B
(t)
avg, is

taken to more accurately reflect the current training progress. In conclusion, the
dynamically adaptive scale parameter for t ą 0 is set to

s̃(t) =
logB(t)

avg

cos(α(t)
0)

=
logB(t)

avg

cos
(
min(π

4
, α

(t)
med)

) .

Using this dynamically adaptive scale parameter, the AdaCos loss [274] is de-
fined as follows.

Definition 2.8 (AdaCos). Using the same notation as in Definition 2.7, let
Y(t) Ă Y denote all samples belonging to a batch of size Nbatch P N, i.e.
|Y(t)| = Nbatch. Let α(ϕ(x,w), c) – arccos(sim(ϕ(x,w), c)) P [0, π] denote the an-
gle between ϕ(x,w) P RD and c P RD. Further, let the dynamically adaptive scale
parameter s̃(t) P R+ at training step t P N0 be defined as

s̃(t) –

$

’

&

’

%

?
2 ¨ log(Nclasses ´ 1) if t = 0

logB(t)
avg

cos
(

min(π
4 ,α

(t)
med)
) else

(10)

where α
(t)
med P [0, π

2
] denotes the median of all angles α(ϕ(x,w), cclass(x)) with

x P Y(t) and class(x) P t1, ...,Nclassesu. For w(t) P W,

B(t)
avg –

1

Nbatch

ÿ

xPY(t)

Nclasses
ÿ

j=1
lab(x)j‰1

exp
(
s̃(t´1)

¨ sim(ϕ(x,w(t)), cj)
)

(11)

24 audio embeddings for anomaly detection

is the sample-wise average over all summed logits belonging to the non-
corresponding classes. Then, the AdaCos loss is defined as

Lada : P(X) ˆ RNclassesˆD
ˆ Φ ˆ W ˆ Λ(Nclasses) Ñ R+

Lada(Y,C,ϕ,w, lab) – Lang(Y,C,ϕ,w, lab, s̃, 0).
(12)

2.4.2 Handling imbalanced data

When using an auxiliary classification task, it may be the case that the numbers
of training samples for each of the considered classes are highly imbalanced. This
leads to a learned bias towards specific classes when training a model, which is
usually not favourable for computing embeddings and thus should be avoided.
There are several techniques to counteract this effect [92, 214] as for example im-
plemented in the imbalanced-learn package [119]. In general, one can distinguish
between two major paradigms: Data-level methods and algorithm-level methods.
Data-level approaches assign different likelihoods to individual samples for being
used as training samples and can be divided into oversampling and undersampling
methods. For oversampling, random training samples belonging to classes with
fewer training samples are used multiple times until there are as many samples for
each class as for the class with the highest number of training samples. For under-
sampling, only as many random training samples as belonging to the class with
the fewest samples are used for each class. There are also more sophisticated sam-
pling methods such as the synthetic minority over-sampling technique (SMOTE)
[24]. Here, existing training samples of the minority classes are not simply sampled
uniformly at random but linear interpolations between training samples and one
of their nearest neighbors are used as synthetic training samples to balance the
number of samples per class. Algorithm-level approaches use weights or so-called
importance factors for different classes with respect to the number of samples
available and apply them during training. One example is weighting the loss asso-
ciated with each sample such that samples belonging to classes with fewer training
samples have a greater contribution to the gradient for updating the parameters
of a neural network. Another example is the Focal loss [129], which assigns more
weight to samples that are not classified correctly during training.

2.5 pre-trained embeddings

Instead of using an auxiliary task for training the embedding model on an
application-dependent dataset, one can also utilize such an auxiliary task on an
external dataset [190]. Usually, large datasets are used for this purpose and the re-
sulting embeddings are called pre-trained embeddings. The assumption is that the
learned embeddings have encountered many diverse data samples and thus should
also encode information useful for detecting anomalies on a small application-
dependent dataset. Using pre-trained embeddings is especially promising when

2.5 pre-trained embeddings 25

the number of training samples for the actual application is very small, making
it difficult to learn useful representations. Another advantage of using pre-trained
embeddings is that these embeddings can be used for multiple applications or
novel sound classes without the need of specifically training an individual model
for each task from scratch.

There are several systems for ASD [68, 239] and OSC [162, 237] based on pre-
trained audio embeddings and studies comparing these embeddings for ASD [158]
or audio classification tasks [67] in settings with sufficient training data. Another
approach is to use image embeddings for ASD [159] or to apply them for zero-
shot audio classification [41]. In [166], it is shown that combining multiple hidden
representations of pre-trained neural networks improves the performance. A few
commonly used pre-trained embeddings will now be briefly reviewed:

• VGGish [80] is a modified version of the VGG network [207], named after
the Visual Geometry Group from the University of Oxford, with a similar
architecture. The network is pre-trained in a supervised manner on a preli-
mary version of YouTube-8M [2], which consists of 2.6 billion audio segments
from YouTube videos belonging to a total of 3628 classes. The resulting em-
beddings have a feature dimension of 128 with an additional time dimension
resulting from a sliding window of 960 ms with no overlap applied to the
waveforms.

• Kumar embeddings [111] are extracted using a convolutional neural network
(CNN) with a VGG-style architecture [207]. The network is pre-trained in
a supervised manner on the so-called balanced subset of AudioSet [57] that
consists of around 22, 000 audio clips from YouTube videos belonging to 527

sound classes. The resulting embeddings have a feature dimension of 1024
and no time dimension because of a global temporal pooling operation inside
the network.

• OpenL3 [32] is a network trained to extract look, listen, and learn (L3)
embeddings [6, 7]. There are multiple versions of this network: One is pre-
trained on a music subset and the other one on an environmental subset
of AudioSet [57] consisting of 296K and 195K YouTube videos, respectively.
The network is trained in a self-supervised manner to decide whether a video
frame and the log-spectrogram of an audio clip with a length of one second
do or do not belong together using a convolutional audio and a convolutional
video sub-network. During training, the embeddings of both sub-networks
are concatenated and further processed with a binary classification module
consisting of two fully-connected and a softmax layer. After training, only the
audio sub-network is needed to extract embeddings from audio data. The
resulting embeddings have a feature dimension of 512 with an additional
time dimension resulting from a sliding window of one second with a hop
size of 0.1 seconds applied to the waveforms.

26 audio embeddings for anomaly detection

• Pre-trained audio neural network (PANN) [110] is a combination of a one-
dimensional sub-network applied to waveforms (Wavegram-CNN) and a
two-dimensional sub-network applied to log-Mel spectrograms. Both out-
put representations are concatenated and further processed with another
two-dimensional sub-network. The entire network is pre-trained in a super-
vised manner on AudioSet [57] using a total of 1, 934, 187 audio clips from
YouTube videos belonging to 527 sound classes. As the difference in per-
formance between including and not including Wavegram-CNN is relatively
small, only the sub-network with a VGG-like architecture pre-trained on
log-Mel spectrograms (CNN14) is used for the experiments conducted in
this thesis. The resulting embeddings have a feature dimension of 2048 with
no time dimension because of a global temporal pooling operation inside the
network.

2.6 computing an anomaly score

After projecting audio data into a suitable embedding space, the next step in the
ASD processing chain is to calculate an anomaly score. As stated in Chapter 1, an
anomaly score of a sample x P X is a value score(x) P R indicating how likely this
sample is to be anomalous with higher values corresponding to higher likelihoods.
To achieve this, a given sample x is first projected into the embedding space RD by
applying a neural network ϕ P Φ with parameters w P W. Afterwards, a scoring
function scoreemb : RD Ñ R is applied to the embedding. Hence, the anomaly
score is actually a composition of two functions, i.e. score = scoreemb ˝ϕ with
score(x,w) = scoreemb(ϕ(x,w)). This section is dedicated to presenting several
possible choices for setting scoreemb.

Depending on the type of model used for extracting the embeddings, there are
often canonical choices for computing an anomaly score: For models trained with
one-class losses, the negative sample-wise loss, e.g. the reconstruction error [33,
95, 123, 174, 186, 212, 235] or the negative log-likelihood [42, 43, 59, 235] of a
single sample, can be utilized as an anomaly score. For models trained with an
auxiliary classification task, the negative posterior probabilities [9, 11, 21, 60, 85,
134, 183, 232], or the cosine distance (CD) between an extracted embedding and
the learned class centers can be used [10, 25, 26, 39, 134, 217, 218, 269, 276]. Other
works utilize the Mahalanobis distance [39, 269] or the Euclidean distance [113,
114, 164].

It is also possible to train an additional model on the set of normal embeddings to
estimate their distribution and being able to calculate an anomaly score by using
this model. In [96], this is called a sequential approach because first an outlier-
exposed model is used to extract embeddings and then inlier modeling is applied
to obtain an anomaly score. Examples of such models are a Gaussian mixture
model (GMM) [68, 76, 114, 115, 155, 158, 159, 187], local outlier factor (LOF)
[10, 39, 114, 115, 154, 155], k-nearest neighbors (k-NN) [39, 115, 154, 155, 164,

2.7 data augmentation 27

219, 276] or probabilistic linear discriminant analysis (PLDA) [185] as done in
[239]. Using such a sequential approach is especially important for pre-trained
embeddings, since there is not always a canonical choice for computing an anomaly
score as the training process of the embedding model is usually not related to the
ASD task. In [159], the ASD performances obtained when using a GMM, a one-
class support vector machine (OCSVM), an isolation forest, a Bayesian GMM, a
kernel density estimator or an autoencoder for pre-trained embeddings have been
compared and concluded that using a GMM or OCSVM yield the best results.
Often, the dimension of pre-trained embeddings is reduced by applying techniques
such as principal component analysis (PCA) [68, 158, 239] or linear discriminant
analysis (LDA) [239] before inserting them into one of the previously mentioned
models for calculating an anomaly score.

Note that many ASD systems utilize multiple ways for computing an anomaly
score by choosing a different method for each class to optimize the ASD perfor-
mance or by ensembling multiple metrics or models (see Section 2.9). Examples
are to use the sum of the MSE and posterior classification probabilities [9] or using
the frame-level reconstruction errors of a one-class model as input features for a
GMM [76]. In [68], the dimension of the temporal mean of openL3 embeddings is
reduced with PCA and the result is concatenated with reconstruction errors from
autoencoders to use them as input features for a GMM.

2.7 data augmentation

To increase the generalization capabilities of a data-driven model, one should use
as much proper training data as possible. However, available training data is usu-
ally limited and recording additional training data requires at least some effort
or may not be feasible. A more efficient approach is to modify available training
samples to simulate additional training data, which is called data augmentation
[64]. In this section, the three data augmentation approaches most frequently used
for ASD, namely mixup [272], SpecAugment [173] and different methods for sim-
ulating anomalous data, will be presented.

2.7.1 Mixup

Due to its simplicity and effectiveness, one of the most popular data augmentation
techniques for audio data is mixup [272]. It is also used for several ASD systems
[9–11, 21, 25, 60, 112, 164, 182]. The idea of mixup is to linearly interpolate
between random training samples and their corresponding categorical class labels
to generate new samples during training. Formally, mixup is defined as follows:

Definition 2.9 (Mixup). Let x1, x2 P X be random training sam-
ples. Then, for λ P [0, 1] with λ „ Beta(βmix, βmix) the sample mix-

28 audio embeddings for anomaly detection

ing function mixx : X ˆ X ˆ [0, 1] Ñ X and the label mixing function
mixlab : [0, 1]Nclasses ˆ [0, 1]Nclasses ˆ [0, 1] Ñ [0, 1]Nclasses are defined as

mixx(x1, x2, λ) = λx1 + (1 ´ λ)x2,

mixlab(x1, x2, λ) = λ lab(x1) + (1 ´ λ) lab(x2).

Usually, βmix = 1 is used without any significant difference in the resulting
performance and thus λ „ U(0, 1). Also, note that

Nclasses
ÿ

j=1

mixlab(x1, x2, λ)j = λ

Nclasses
ÿ

j=1

lab(x1)j + (1 ´ λ)
Nclasses

ÿ

j=1

lab(x2)j

= λ+ (1 ´ λ) = 1.

and therefore mixlab(x1, x2, λ) P [0, 1]Nclasses is a valid categorical class label.
There are several variants of mixup. For machine condition monitoring, it has

been proposed to only mix samples of individual machines or parameter settings
belonging to the same machine type [25]. Mixup can also be applied to intermediate
representations of a network instead of the input representations. This modification
is called manifold mixup [220]. One can also combine two samples in multiple other
ways than using linear interpolations as for example by concatenating different
parts of two audio signals or spectral features. A collection of ways to mix samples
can be found in [213].

2.7.2 SpecAugment

SpecAugment is the combined application of three different data augmentation
techniques, namely frequency masking, time masking and time warping. Originally,
SpecAugment [173] has been developed to modify time-frequency representations
for automatic speech recognition (ASR) but is also used for ASD [9, 11, 112, 164,
219]. For frequency and time masking, random frequency bands or time frames of
random size are masked with zeros. Usually, multiple time and frequency masks of
relatively small size are used. For time warping, the time dimension is randomly
split into two regions of which one is squeezed and the other is stretched with a
random degree. An illustration of SpecAugment can be found in Figure 7. To ad-
just the effects of SpecAugment, manually tuned hyperparameters for controlling
the number of time and frequency masks as well as their maximum size and a time
warp parameter are used. In [9], masking randomly sized squares of time-frequency
representations while training an autoencoder led to a better ASD performance
than when applying SpecAugment, when only masking frequencies or when only
masking time frames during training. Furthermore, some works used similar meth-
ods as SpecAugment such as shifting time frames in time [21] or spectral warping
[60].

2.7 data augmentation 29

time

fre
qu

en
cy

regular log-Mel spectrogram

time

fre
qu

en
cy

time masking

time

fre
qu

en
cy

frequency masking

time

fre
qu

en
cy

time warping

Figure 7: Illustration of the three different data augmentation techniques used when
applying SpecAugment. This Figure strongly resembles Figure 1 contained in
[173].

2.7.3 Simulating anomalies

A data augmentation approach with a completely different goal than creating ad-
ditional normal samples is to simulate anomalies by modifying normal samples.
However, to have a significant impact on the ASD performance simulated anoma-
lies need to be realistic, i.e. very similar to real anomalies. Since acquiring specific
knowledge about anomalies still requires access to anomalous training samples,
this is in many cases out of scope for a specific semi-supervised ASD task. Still,
there are some non-specific methods that can be applied to simulate anomalies for
various tasks.

In the context of machine condition monitoring, normal data belonging to other
machine IDs and machine types from the same dataset are used as proxy outliers
and a binary classifier is trained for each machine ID [183, 184]. In [112], only
normal data belonging to the same machine type but to other machine IDs is used
to train a binary classifier. Similarly, [43] uses normal data belonging to other
machine types as outliers for training a normalizing flow. Note that this is very
similar to using an auxiliary classification task. The only difference is that another
model is trained for each class instead of training a single model for all classes.
Hence, all models trained to extract auxiliary task embeddings can also be viewed
as utilizing data belonging to other classes as proxy-outliers without explicitly
stating this and thus other normal sounds are implictly used as pseudo-anomalies
by many state-of-the-art ASD systems.

Another idea to simulate anomalies is to modify normal samples and treat these
modified samples as if they belong to an additional anomalous class, which is a

30 audio embeddings for anomaly detection

Table 2: Advantages and disadvantages of different types of audio embeddings. The rat-
ing scale consists of ++ (very advantageous), + (advantageous), ´ (disadvan-
tageous) and ´´ (very disadvantageous).

one-class embeddings auxiliary task embeddings pre-trained embeddings

ASD performance + ++ ´

OSC and SED performance ´ ++ ´

data requirements + ´ ++

training effort ´´ + ++

expandability + ´´ ++

data augmentation possibilities + ++ ´

affected by imbalanced data ++ ´´ ++

anomaly score computation ++ ++ ´

anomaly localization + ´ ´´

self-supervised learning (SSL) approach. In [85], pitch shifting, time stretching
and image transformations of the spectrograms are used to simulate anomalies.
In [134] mixup with a fixed small mixing coefficient is used to create pseudo-
anomalies. [26] proposes a method called statistics exchange and shows that this
approach outperforms applying mixup when simulating anomalies. This method
consists of swapping first- and second-order statistics of two normal samples for
randomly chosen consecutive frequency bands or time frames. Utilizing SSL for
training an embedding model will be discussed in more detail in Section 5.7. A
more complex procedure to simulate anomalous samples is described in [107]. Here,
the authors propose a rejection sampling algorithm that uses latent representations
of an autoencoder and a GMM to generate anomalous sounds.

2.8 comparison of different embedding types

To recapitulate the different types of embeddings presented in the previous sec-
tions, their advantages and disadvantages as summarized in Table 2 will now be
discussed. When comparing the embeddings with respect to the resulting ASD
performance, auxiliary task embeddings usually perform best [50, 72], followed
by one-class embeddings. Pre-trained embeddings perform worst but still yield
better results than random guessing. For OSC and SED tasks, the performances
obtained with different embedding types are ranked similarly because the auxiliary
task can be chosen as the classification task between the known classes of interest
and thus the auxiliary task embeddings are well-suited for discriminating between
the known classes. For one-class embeddings, the performance is slightly worse
due to differently scaled anomaly scores obtained for each class making it difficult
to determine the correct known class via maximum likelihood. When comparing
the data requirements for training the different types of embeddings, pre-trained
embeddings do not need any training data by definition but only a few normal
samples, down to a single one, to be able to compare given test samples to them.

2.9 ensembling 31

One-class embeddings need more normal samples for training the model. Train-
ing auxiliary task embeddings not only requires access to a sufficient number of
training samples but also additional meta information to be used as class labels
and thus have the strongest data requirements. One can also choose to use a self-
supervised auxiliary task to artificially generate class labels, but the performance
is usually worse when using manually created class labels. The effort of training a
model is lowest for pre-trained embeddings because the model is already trained.
For auxiliary task embeddings, a single model is trained for all normal classes
whereas for one-class embeddings usually several models are trained, one for each
normal sound event class, unless an extended approach consisting of training a
single model for multiple classes is used. This also means that when expanding
the ASD system with an additional normal sound event class, for single-class em-
beddings one can train an additional model for this class and, for the other classes,
keep the remaining models as they were. For auxiliary task embeddings, the whole
system needs to be re-trained. For pre-trained embeddings, no additional training
is required. There are several possibilities to apply data augmentation techniques
when training an ASD system based on auxiliary task embeddings as presented
in Section 2.7. Some of these techniques can also be applied when training mod-
els based on one-class embeddings. However, for pre-trained embeddings the use
of data-augmentation techniques is very limited unless one applies some form of
transfer learning [265] because otherwise no training is taking place. Because of
the same reason, pre-trained embeddings are not affected by imbalanced classes.
Furthermore, imbalanced classes do not affect one-class embeddings because the
class-specific models are trained independently of each other. Although there are
techniques to counter the effects of imbalanced classes for auxiliary task embed-
dings, severely imbalanced classes are still a problem. To compute an anomaly
score, for one-class and auxiliary task embeddings there are canonical as well as
several other choices (see Section 2.6) whereas for pre-trained embeddings there
are in general no canonical ways to calculate anomaly scores. Last but not least,
at least some one-class models can be used for localizing anomalies in time, e.g. by
utilizing a time-wise reconstruction error. When using auxiliary task embeddings,
in general the only direct way to localize anomalies is to use a windowing approach,
which often degrades the ASD performance. For many pre-trained embeddings, it
is not even possible to choose a window size because the model has been trained
with a fixed, relatively large, window size.

2.9 ensembling

Different models or the embeddings obtained with them correspond to different
views on the input data. Since these different views may result in complementary
information about the data, multiple models can be utilized in a single system.
Such a system is called an ensemble [54]. Usually, an ensemble outperforms all
individual sub-systems but inherently requires much more computational resources.

32 audio embeddings for anomaly detection

For ASD with audio embeddings, there are two main ensembling approaches: The
first approach is to utilize multiple backends for a single embedding model [168,
198, 218] and the second approach is to train multiple sub-systems with different
embedding models and combine their output [59, 60, 76, 85, 95, 112, 135, 219].
Often both approaches are applied at once, resulting in even larger ensembles [33,
39, 115, 232]. Another more complex ensembling approach is presented in [21].
Here, an autoencoder and a supervised classification model are combined with
an additional contrastive loss between both resulting embeddings and the system
is jointly trained by minimizing all three loss functions. Note that, in general,
the higher the number of models used for an ensemble the smaller the obtained
performance improvements while the computational overhead in terms of memory
and time is constant and thus the return on investment is diminishing. Hence, while
for academic purposes one may choose to use a huge ensemble to outperform other
published ASD systems, for practical applications the size of an ensemble should
be considered economically.

Usually, an ensemble is created by taking the mean of anomaly scores of several
models or systems [59, 60, 85, 112, 115, 168, 198, 232]. To take differently scaled
anomaly scores resulting from using different backends into account, the anomaly
scores are often normalized before combining them by using the anomaly scores of
normal training samples as reference values. Some systems use a weighted mean
of (normalized) anomaly scores [33, 39, 76, 95, 135, 218, 219] with weights that
are optimized to improve the ASD performance on a development dataset. Hence,
these systems also use anomalous samples as training data, which, strictly speak-
ing, is not allowed in a semi-supervised ASD setting. However, one could also
argue that every ASD system is evaluated with some anomalous samples during
development and therefore uses anomalous data for training. Moreover, one can
raise the questions of whether it is possible at all to define the term normal with-
out having access to application-dependent anomalous samples and, in conclusion,
whether unsupervised or semi-supervised anomaly detection settings truly exist.
Answering these questions is out of scope for this thesis as they appear to be of
purely philosophical nature. Still, the dataset of an ASD task can be designed to
prevent explicitly utilizing anomalous samples for tuning hyperparameters, e.g. by
using data belonging to different machine types for developing and evaluating the
system (see Section 5.2).

2.10 evaluation metrics

Evaluating the performance of a trained system is important to be able to com-
pare different design choices, optimize hyperparameters during the development
of a system and allows to objectively compare different systems. For this purpose,
specifically designed evaluation metrics are used. In this section several commonly
used metrics will be reviewed for ASD, OSC and SED.

2.10 evaluation metrics 33

2.10.1 Anomaly detection

For ASD, several evaluation metrics can be used. In general, one can distinguish
between threshold-dependent and threshold-independent evaluation metrics.

Threshold-dependent evaluation metrics are based on a fixed decision threshold
θ P R. When viewing anomaly detection as a binary classification problem with
anomalies as positive samples and normal samples as negative ones, there are two
errors that can occur for a test sample x P Xtest Ă X = Xnormal Y Xanomalous:

x P Xnormal but score(x) ą θ (false positive) (13)

or

x P Xanomalous but score(x) ď θ (false negative). (14)

Let Apred(Xtest, score, θ) – tx P Xtest : score(x) ą θu Ă Xtest denote the set of
predicted anomalies. Let Xnormal and Xanomalous be fixed. To count both errors for
the entire test set Xtest, we define the cardinality of the set of false positives (FP)
and the set of false negatives (FN) as

FP(Xtest, score, θ) – |Apred(Xtest, score, θ) X Xnormal| (15)

and

FN(Xtest, score, θ) – |(XtestzApred(Xtest, score, θ)) X Xanomalous|. (16)

Similarly, one can define the cardinality of the set of true positives (TP) and the
set of true negatives (TN) as

TP(Xtest, score, θ) – |Apred(Xtest, score, θ) X Xanomalous| (17)

and

TN(Xtest, score, θ) – |(XtestzApred(Xtest, score, θ)) X Xnormal|. (18)

Since the final evaluation metrics are based on these cardinalities, they are also
called intermediate statistics. By normalizing these cardinalities, we obtain the
corresponding error rates

FPR(Xtest, score, θ) –
FP(Xtest, score, θ)
|Xtest X Xnormal|

P [0, 1]

FNR(Xtest, score, θ) –
FN(Xtest, score, θ)
|Xtest X Xanomalous|

P [0, 1]

TPR(Xtest, score, θ) –
TP(Xtest, score, θ)
|Xtest X Xanomalous|

P [0, 1]

TNR(Xtest, score, θ) –
TN(Xtest, score, θ)
|Xtest X Xnormal|

P [0, 1].

(19)

34 audio embeddings for anomaly detection

Note that one can easily see that FPR(Xtest, score, θ) = 1´TNR(Xtest, score, θ) and
FNR(Xtest, score, θ) = 1´ TPR(Xtest, score, θ). Thus, false positive rate (FPR) and
true negative rate (TNR) measure one error type and false negative rate (FNR)
and true positive rate (TPR) measure the other error type. For directly comparing
two different anomaly detection systems, a single metric incorporating both error
types is much easier to handle. The most commonly used metric for this purpose
is the F1 score given by

F1(Xtest, score, θ)

–
TP(Xtest, score, θ)

TP(Xtest, score, θ) + 0.5(FP(Xtest, score, θ) + FN(Xtest, score, θ))

=
2 ¨ TP(Xtest, score, θ)

|Apred(Xtest, score, θ)|+ |Xtest X Xanomalous|
P [0, 1],

(20)

which is the harmonic mean of precision and recall defined as

precision(Xtest, score, θ) –
TP(Xtest, score, θ)

|Apred(Xtest, score, θ)|
P [0, 1] (21)

and

recall(Xtest, score, θ) – TPR(Xtest, score, θ) P [0, 1]. (22)

Determining an optimal decision threshold in a semi-supervised setting is highly
non-trivial (see Section 2.11) and threshold-dependent evaluation metrics largely
depend on the quality of the estimated decision threshold. Hence, threshold-
dependent evaluation metrics may not accurately reflect the performance of an
ASD system.

Threshold-independent evaluation metrics are more objective since they do not
rely on a chosen threshold and thus give a more complete picture of the perfor-
mance of an anomaly detection system [3, 48]. Nevertheless, for any practical appli-
cation determining a decision threshold is still needed and thus the F1 score is still
an important evaluation metric despite being less suitable for comparing system
performances than threshold-independent metrics. A commonly used approach is
to utilize both error types, false positives and false negatives, for all possible thresh-
olds and plot the results against each other. Examples are the receiver operating
characteristic (ROC)-curve, which uses FPR and TPR, and the detection error
tradeoff (DET)-curve, which uses FPR and FNR as depicted in Figure 8. Since
the curves themselves are difficult to compare to each other for different anomaly
detection systems, metrics expressed as a single number are derived from these
curves. One possibility is to take the area under the receiver operating character-
istic curve (AUC-ROC) [19], which is also the most commonly used metric for
evaluating ASD systems.

Let (θsorted(k))k=1,...,|Xtest| Ă R denote a monotonically increasing sequence of
threshold values. Calculating the AUC-ROC with linearly spaced thresholds re-
quires an infinitesimally fine resolution to yield exact results. Because of this,

2.10 evaluation metrics 35

AUC-ROC
pAUC

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

FPR

T
P
R

ROC-curve

0.01 0.1 1

0.01

0.1

1

EER

EER

FPR

F
N
R

DET-curve

Figure 8: Examples of ROC- and DET-curves including the metrics AUC-ROC, pAUC
(with p = 0.4) and EER. For DET-curves, usually a logarithmic scaling of the
axis is used.

only the threshold values for which the intermediate statistics, i.e. FPR and TPR,
change are used as this leads to improved computational efficiency and higher ac-
curacy than linearly spaced thresholds [48]. Formally, this corresponds to setting
θsorted(k) – sort(score(Xtest))(k) where sort denotes a function sorting real val-
ues from low to high and score(Xtest) – tscore(x) P R : x P Xtestu Ă R. Using the
trapezoidal rule, the AUC-ROC score can be approximated by

AUC-ROC(Xtest, score)

«

|Xtest|´1
ÿ

k=1

∆meanTPR(Xtest, score, k) ¨ ∆diffFPR(Xtest, score, k)
(23)

where

∆diffFPR(Xtest, score, k)
–FPR(Xtest, score, θsorted(k+ 1)) ´ FPR(Xtest, score, θsorted(k))

(24)

and

∆meanTPR(Xtest, score, k)

–
TPR(Xtest, score, θsorted(k+ 1)) + TPR(Xtest, score, θsorted(k))

2
.

(25)

For all experiments conducted in this thesis, the implementation provided in scikit-
learn [176], which is based on the trapezoidal rule, was used. A more intuitive
interpretation of the AUC-ROC is given by the following theorem [3, 71]:

Theorem 2.10. The AUC-ROC score is equal to the probability that
score(xn) ă score(xa) holds for random samples xn P Xnormal X Xtest and
xa P Xanomalous X Xtest.

36 audio embeddings for anomaly detection

The evaluation metric partial area under the receiver operating characteristic
curve (pAUC) is the AUC-ROC for a restricted part of the ROC-curve to any
range of FPR [143], TPR [91] or both [266]. The idea is that some parts of the
ROC-curve are often irrelevant in practice and by restricting the evaluation metric
to a range of FPR or TPR relevant for a particular application the metric becomes
more meaningful. For anomaly detection, this usually means to ensure a low FPR
because for high FPR values users of an anomaly detection system will not take any
occurring alarms, i.e. detected anomalies, seriously because too many of them are
false alarms. Therefore, throughout this thesis pAUC will denote the AUC-ROC
under low FPR ranging from 0 to a parameter p P (0, 1] to be specified.

In biometric applications such as speaker verification, often the equal er-
ror rate (EER) is used as an alternative threshold-independent evaluation met-
ric. The EER is the point on the DET-curve where FPR and FNR are
equal to each other. Due to the inverse relation of FNR and TPR given by
FNR(Xtest, score, θ) = 1 ´ TPR(Xtest, score, θ), the EER can also be easily deter-
mined using the ROC-curve.

2.10.2 Open-set classification

OSC can be decomposed into two subtasks: Anomaly detection and closed-set clas-
sification. Hence, there are not only false positives and false negatives as possible
errors but also a so-called confusion error corresponding to true positive samples
for which an incorrect class is predicted. One can evaluate multiple evaluation
metrics for both subtasks, i.e. anomaly detection and CSC individually or com-
bine them into a single metric. Let

(
X
(i)
normal

)
i=1,...,Nclasses

be a partition of Xnormal

where X
(i)
normal Ă Xnormal for i = 1, ...,Nclasses denotes the i-th known class. Let

predclass : X Ñ t1, ...,Nclassesu denote a classifier and

C
(i)
pred(Xtest, predclass) – tx P Xtest : predclass(x) = iu Ă Xtest (26)

denote all samples classified as belonging to class i P t1, ...,Nclassesu. A simple way
to combine two metrics, one for each subtask, is to use a weighted sum of the
accuracy obtained when classifying between the known classes and the accuracy
obtained for anomaly detection viewed as a binary classification task [149]:

ACC(Xtest, score, θ, predclass, X
(1)
normal, ..., X

(Nclasses)
normal , βacc)

–βacc

Nclasses
ÿ

i=1

|C
(i)
pred(Xtest, predclass) X X

(i)
normal|

|X
(i)
normal X Xtest|

+ (1 ´ βacc)
TP(Xtest, score, θ) + TN(Xtest, score, θ)

|Xtest|
P [0, 1]

(27)

with βacc P [0, 1]. A common choice is to set βacc = 0.5 since, without prior
knowledge, both subtasks are equally important.

2.10 evaluation metrics 37

Threshold-independent evaluation metrics for OSC can be defined similarly to
the ones defined for anomaly detection. In fact, the metric top-Nclasses EER [205]
is the same as EER for anomaly detection. The idea of using this metric is that
the lowest anomaly score should be obtained for any of the known classes and not
for one of the unknown classes. However, this evaluation metric ignores the CSC
subtask of an OSC problem and thus has only limited meaning. Another more
meaningful metric, also incorporating the CSC subtask, is the top-1 EER [205].
For this evaluation metric, FNR is the same as before but the FPR is different
because confused classes are another error type for normal samples and are also
treated as false positives. Formally, define

FPtop-1(Xtest, score, θ, predclass, X
(1)
normal, ..., X

(Nclasses)
normal)

–FP(Xtest, score, θ)

+
Nclasses

ÿ

i=1

|Xtestz(Apred(Xtest, score, θ) Y C
(i)
pred(Xtest, predclass)) X X

(i)
normal|

(28)

as well as

FPRtop-1(Xtest, score, θ, predclass, X
(1)
normal, ..., X

(Nclasses)
normal)

–
FPtop-1(Xtest, score, θ, predclass, X

(1)
normal, ..., X

(Nclasses)
normal)

|Xtest X Xnormal|
P [0, 1].

(29)

Using these definitions, one can determine the top-1 EER as the point where top-
1 FPR and FNR are equal. Similarly, the top-1 AUC-ROC and top-1 pAUC can
be defined by replacing the regular FPR with the top-1 FPR for the ROC-curve.
Hence, all threshold-independent metrics used for anomaly detection have been
generalized for OSC.

2.10.3 Sound event detection

When detecting sound events, not only the correct sound event class but also the
temporal position of a detected event has to be recognized. Therefore, specifically
designed evaluation metrics have to be used that also take the temporal position
of a detected sound event into account. In this section, we will mainly follow [148]
and [48] to give an overview of evaluation metrics for SED, which in most cases
are threshold-dependent evaluation metrics.

First, one can distinguish between segment-based, event-based (also called collar-
based) and intersection-based [16, 51] evaluation metrics [48] for SED. Segment-
based metrics divide the audio signal into temporal segments of fixed size and each
annotated event that is contained in a given segment needs to be detected by the
SED system. However, this causes long events ranging over multiple segments to
have a higher contribution to the score. Furthermore, interruptions of detections
belonging to single events may occur unnoticed. Event-based evaluation metrics

38 audio embeddings for anomaly detection

solve these issues by comparing on- and offsets of annotated and detected events
and checking whether the differences are below a pre-defined value, called collar. If
they are below this collar, the corresponding detections are regarded as errors. But
for these metrics, ambiguous definitions of sound events that can either be labeled
or detected as a single long event or multiple short events have a strong impact
on the performance. Intersection based metrics solve these issues by comparing
the size of the intersection of a detected event and the corresponding annotation
of the same event, normalized by the total length of the annotated event, to a
pre-defined threshold [51].

Another distinction to be made is between micro-averaged or macro-averaged
evaluation metrics, which are also being referred to as instance-based averaging
and class-based averaging, respectively [148]. For micro-averaging, each individual
segment or sound event has the same influence on the evaluation metric. This is
achieved by evaluating each segment or sound event independently. For macro-
averaging, each class has the same influence on the evaluation metric. This is
achieved by computing class-wise evaluation metrics and taking their mean. Micro-
averaged metrics emphasize classes for which more samples are evaluated whereas
macro-averaged metrics put more weight on samples belonging to classes with
fewer test samples. Hence, both strategies handle imbalanced classes differently.

One possibility to calculate an evaluation metric for SED is to determine inter-
mediate statistics such as TPs and FPs for each segment or sound event. These
statistics can be combined by applying micro- or macro-averaging and then an
evaluation metric such as the F1 score can be computed. Another commonly used
evaluation metric is the error rate that is based on three types of errors: Sub-
stitutions, deletions and insertions. Substitutions are identified as sound events
that are mistakenly recognized as belonging to a different class than they actu-
ally do, similar to the confusion error. Deletions are annotated sound events that
have not been detected (false negatives) and insertions are detections for which
no corresponding sound event has been annotated (false positives). Using these
three error types, the error rate is the sum over all errors divided by the total
number of annotated instances to be detected. Note that macro-averaging does
not consider substitutions as each class is processed individually and thus only a
micro-averaged error rate can be computed.

Although, threshold-dependent evaluation metrics are usually used for SED,
threshold-independent metrics can also be defined by generalizing the threshold-
independent metrics for OSC but are still subject to active research [16, 48, 51].
In [16], the main idea is to compute ROC-curves for each sound event class and
summarize these class-wise curves into a single curve called polyphonic sound
detection (PSD)-ROC to compute a threshold-independent metric. Due to the
large number of possible thresholds, these curves are often approximated using a
finite set of thresholds, which may result in underestimating the true evaluation
metric. [48] solves this computational issue by jointly monitoring changes of the
intermediate statistics as for example TP and FP caused by changing the decision

2.11 decision threshold estimation 39

thresholds for all sound event classes and computing the final evaluation metrics
from the cumulative sums of these statistics.

2.11 decision threshold estimation

Regardless of whether threshold-dependent or threshold-independent evaluation
metrics are used when developing an ASD system, for practical applications a
decision threshold is needed to decide whether a given sample is normal or anoma-
lous. For semi-supervised ASD, i.e. without access to anomalous training samples,
it is impossible to directly optimize a decision threshold through evaluation and
the decision threshold needs to be estimated using normal data only. Experienced
users of an ASD system can also manually adjust the decision threshold based
on their expertise. But even then, a well-tuned default setting of the threshold
is still helpful. Moreover, their experience is based on observing real anomalies
and access to these anomalous samples would also allow to automatically set the
decision threshold by optimizing a threshold-dependent evaluation metric. In a
semi-supervised setting, the general idea of most estimation methods boils down
to finding a decision threshold that separates the most extreme values, e.g. the
largest 10 percent, of the anomaly scores belonging to normal samples from the
remaining anomaly scores. By doing so, one hopes that this decision threshold is
also a good estimate for separating the anomaly scores of normal and anomalous
data. Most of these methods are based on the assumption that the anomaly scores
have a specific distribution, typically a normal distribution, and that normal and
anomalous samples belonging to the training and test dataset follow the same dis-
tributions. Hence, the quality of the estimated decision threshold does not depend
on the estimation method alone but also on the chosen method for computing the
anomaly scores.

There are many different approaches for finding decision thresholds [189, 267].
Arbitrary anomaly scores, which are potentially biased, can be calibrated by con-
verting them into (pseudo-)probabilities for which thresholds can be determined
[55, 56]. Then, a fixed probability of 0.5 can be used as a decision threshold for
these calibrated scores. However, this does not solve the problem of estimating a
decision threshold but only reformulates the problem to estimating a calibration
function. For multivariate data or scores, a threshold can be determined by using
the empirical distribution function of the squared Mahalanobis distance and using
a critical value such as a small quantile of the chi-squared distribution, which is the
theoretical distribution function of this empirical distribution, as a threshold [195].
An extension of this approach uses an adaptive threshold [52]. However, anomaly
scores used for ASD are usually univariate and thus multivariate approaches are
not needed. When continuously monitoring audio data streams for anomalies, these
data streams themselves consist of sound events of which most are normal and only
a few are anomalous. Therefore, one can utilize previously encountered events and
try to detect changes occurring in the stream of anomaly scores [31, 63, 273]. As

40 audio embeddings for anomaly detection

most publicly available datasets for academic use consist of multiple short record-
ings instead of a long audio stream, only estimation techniques that process the
anomaly scores of each recording individually will be discussed in this thesis. Note
that the 90th percentile used by most of these methods is the standard value that
can be found in the literature but is not guaranteed to be optimal.

In the following, several threshold estimation techniques will be listed. Let
score(Y) denote the anomaly scores belonging to a finite number of normal training
samples Y Ă Xtrain Ă Xnormal.

• Gamma distribution percentile (GDP) assumes that the anomaly scores fol-
low a gamma distribution. The inverse of the 90th percentile of the empirical
cumulative distribution function is used as the decision threshold. This is the
most commonly used approach for ASD in machine condition monitoring [11,
46, 96, 126, 163, 182, 270].

• Histogram percentile (HP) directly uses the histogram of the anomaly scores
without fitting a distribution first. Note that this silently assumes a uniform
distribution. Again, the 90th percentile is used as the decision threshold.

• Standard deviation (SD) assumes the anomaly scores to be normally dis-
tributed. The decision threshold is set to

θSD(Y, score, βSD) – mean(score(Y)) + βSD ¨ std(score(Y)) (30)

where mean(score(Y)) and std(score(Y)) denote the mean and standard devi-
ation of the anomaly scores and βSD P R+ is a hyperparameter to be chosen.
To have a consistent evaluation with the previous two approaches, one can
use βSD = 1.28, which approximately corresponds to the 90th percentile.

• Interquartile range (IQR) utilizes the first and third quartile of the anomaly
scores, denoted by Q1(score(Y)) P R and Q3(score(Y)) P R, respectively.
This means that score(y) ě Q1(score(Y)) for 75% of the samples y P Y and
score(y) ě Q3(score(Y)) for 25% of the samples y P Y. Then,

θIQR(Y, score, βIQR) – Q3(score(Y)) + βIQR ¨ (Q3(score(Y)) ´ Q1(score(Y)))
(31)

is used as a decision threshold. Therefore, the approach assumes a uniform
distribution, similar to HP. Typically, a value of βIQR = 1.5 is used [194].
This approach is also known as boxplot [189].

• Mean absolute deviation (MAD) is based on the assumption that the median
is more robust against anomalies than the mean. Here, the decision threshold
is set to

θMAD(Y, score, βMAD, δMAD) – median(score(Y))
+ δMAD ¨ βMAD ¨ medianyPY(|score(y) ´ median(score(Y))|),

(32)

2.11 decision threshold estimation 41

where median(score(Y)) denotes the median of the score values score(Y)
and the hyperparameter δMAD is usually set to δMAD = 1.4826 [194]. For
the hyperparameter βMAD, [267] proposes to use βMAD = 3 and [189] uses
βMAD = 2.

• OCSVMs [202] can be used to estimate the support of a distribution. This
is done by discriminating between regions of high and low density using
a hyperplane in a high-dimensional space. When training a OCSVM with
anomaly scores, the learned hyperplane can be used as a decision threshold.
For the hyperparameter νSVM, a value of 0.1 can be used which corresponds
to treating 10% of the anomaly scores as anomalous, i.e. using the 90th
percentile as done for the previously presented approaches.

• Generalized extreme studentized deviate (GESD) [193] is an iterative ap-
proach based on the Grubbs’s test [69]. This statistical test assumes a normal
distribution and is calculated on the so-called Grubbs statistic defined as

Grubbs(score(Y)) =
|maxyPY score(y) ´ mean(score(Y))|

std(score(Y))
(33)

where mean(score(Y)) and std(score(Y)) denote the mean and standard de-
viation of the anomaly scores, respectively. The Grubbs statistic, denoted
by Grubbs(score(Y)), is evaluated against the upper critical value of the stu-
dent’s t-distribution with a significance level δGrubbs = 0.05 and data size |Y|:

Grubbs(score(Y)) ą
|Y| ´ 1
a

|Y|

g

f

f

e

t2δGrubbs/(2|Y|),|Y|´2

|Y| ´ 2+ t2δGrubbs/(2|Y|),|Y|´2

. (34)

Note that the Grubbs test only determines whether the highest anomaly
score corresponds to an anomalous sample. For GESD, Grubbs is repeated
by iteratively removing the highest anomaly score until the Grubbs condition
is not met. The last anomaly score, which is removed by this procedure, is
the resulting decision threshold.

• CleverSD [20] is another iterative approach. The idea is to iteratively apply
SD to determine a decision threshold and remove the highest anomaly score
from the training scores in case it is above this decision threshold. This
procedure is repeated until the highest anomaly score is below the decision
threshold estimated by SD. Again, the last anomaly score removed by this
approach is the resulting decision threshold.

• Multi-stage thresholding (MST) [267] is yet another iterative approach that
generalizes cleverSD. The idea is to simply apply a non-iterative method mul-
tiple times. In contrast to cleverSD, not only the highest score but all scores
above the decision threshold are removed. In [267] it has been experimentally
shown that two iterations are usually sufficient.

42 audio embeddings for anomaly detection

Note that the estimation methods listed above can also be applied for unsuper-
vised ASD where the extreme values of the anomaly scores are likely to be truly
anomalous and thus the estimated decision thresholds are also more likely to be
a good estimate of the optimal threshold. In a semi-supervised setting there is no
guarantee that the extreme values of the anomaly scores belonging to normal sam-
ples have a similar magnitude as anomaly scores belonging to anomalous samples.
Both can can be very different, which is the reason why these estimated thresholds
usually do not lead to optimal results. In conclusion, to some extend it is even
more difficult to estimate a decision threshold in a semi-supervised setting than
it is in an unsupervised setting. However, training the embedding model is more
difficult in an unsupervised setting.

2.12 summary

In this chapter, state-of-the-art audio embeddings for semi-supervised ASD and
the building blocks for designing an ASD system that utilizes these embeddings
have been reviewed. Such a system consists of a frontend for pre-processing the
audio data, an embedding model and a backend for deciding between normal and
anomalous samples. Each of these three components will now be briefly summa-
rized.

The frontend consists of computing feature representations from the raw audio
signals to be used as input for the embedding models. The main goal is to reduce
the high dimension of the audio signals while not losing or even highlighting infor-
mation relevant for the ASD task. This consists of three steps: 1) Pre-processing
the audio signals such that they have the same sampling rate and possibly the
same duration, 2) computing spectral features to reduce their dimension and 3)
normalizing them to ensure that all dimensions of the input representations are
scaled similarly.

Next, three different types of embeddings that are computed by further pro-
cessing the input feature representations with neural networks were presented:
One-class embeddings, auxiliary task embeddings and pre-trained embbedings.
One-class embeddings aim at learning embedding spaces that are suitable for au-
toencoding the input data or learn a hypersphere of minimal volume. The major
difficulty is to prevent learning trivial solutions that do not require the embed-
dings to contain useful information for identifying anomalous data. Auxiliary task
embeddings are learned by classifying between classes provided by available meta
information or by applying SSL and thus may require additional knowledge about
the data. Pre-trained embeddings are obtained by training an embedding model
on a large dataset that does not need to be related to the target application as-
suming that the learned embeddings also contain useful information for the target
application, which may not always be a valid assumption.

Using one of the embeddings, different ways of computing an anomaly score
were presented. These mainly consist of estimating the distribution of embeddings

2.12 summary 43

belonging to normal samples and can be as simple as calculating the Euclidean
distance to the mean of the embeddings. To train an embedding model, multiple
data augmentation techniques that can be used to improve the ASD performance
were examined, namely mixup, SpecAugment and simulating anomalous samples
for training by modifying normal training samples. Furthermore, the three different
embedding types were compared to each other with respect to multiple criteria
such as performance, computational requirements and usability showing that each
embedding type has advantages and disadvantages over the other two types and
none is superior for every possible application. In addition, ensembling methods
used to combine multiple models for boosting the ASD performance such as using
a weighted sum of anomaly scores were listed, which may be used to combine the
strengths of several approaches.

To measure the performance of a system and be able to compare multiple sys-
tems, evaluation metrics for ASD, OSC and SED were presented in Section 2.10.
Mainly, one can differentiate between threshold-dependent performance measures
that depend on a specifically chosen decision threshold applied to the anomaly
scores, and threshold-independent performance measures. Estimating a decision
threshold for semi-supervised ASD is a difficult task and requires sophisticated
techniques. The reason is that only anomaly scores belonging to normal samples
are available. Thus, one needs to assume that the extreme values of these anomaly
scores, e.g. all scores above the 90th percentile have a similar magnitude as the
anomaly scores belonging to anomalous samples. Then, the value separating the
extreme values from the rest can be used as a decision threshold.

As seen above, semi-supervised ASD is an active research area providing many
different choices when designing a system for a particular application. The goal
of the next chapter is to identify approaches that perform particularly well by
comparing several of the methods presented above as well as novel methods and
design an ASD system based on these findings.

3
ANOMALOUS SOUND DETECTION SYSTEM DES IGN

In the previous chapter, several possibilities to design an ASD system were pre-
sented. The goal of this chapter is to design an ASD system based on audio embed-
dings that yields state-of-the-art performance. To this end, several design choices
will be compared. As the main difficulty for semi-supervised anomaly detection is
to be able to train a model without access to anomalous data, the focus will be
on choosing a suitable loss function for training the embedding model and how to
calculate anomaly scores.

This chapter is structured as follows: First, the experimental setup consisting
of an ASD dataset and a baseline model, whose performance will be optimized, is
presented. Then, different loss functions, namely one-class losses and angular mar-
gin losses will be compared to each other, both theoretically and experimentally.
Third, the sub-cluster AdaCos loss, which is a generalization of the AdaCos loss,
will be defined and investigated.

3.1 contributions of the author

The sections of this chapter are largely based on the following key publications:

• Kevin Wilkinghoff. “Sub-Cluster AdaCos: Learning Representations for
Anomalous Sound Detection.” In: International Joint Conference on Neu-
ral Networks. IEEE, 2021. doi: 10.1109/IJCNN52387.2021.9534290.

• Kevin Wilkinghoff and Frank Kurth. “Why do Angular Margin Losses work
well for Semi-Supervised Anomalous Sound Detection?” In: IEEE/ACM
Transactions on Audio, Speech and Language Processing 32 (2024), pp. 608–
622. doi: 10.1109/TASLP.2023.3337153.

For publications that are not single-authored, individual contributions of the the-
sis author and all co-authors to these publications are stated in Section A.1. If
not stated otherwise, the content listed in the following paragraph is the sole
contribution of the thesis author.

Section 3.2.2 and Sections 3.4.3 to 3.4.7 are based on [242]. Sections 3.3, 3.4.1
and 3.4.2. The experimental results shown in Figure 9 and Table 5 are adapted
from [262] by changing the dataset used for the experiments.

3.2 example application: machine condition monitoring

As already announced in Section 1.3, acoustic machine condition monitoring will
serve as the main example application for semi-supervised ASD in this thesis.

45

https://doi.org/10.1109/IJCNN52387.2021.9534290
https://doi.org/10.1109/TASLP.2023.3337153

46 anomalous sound detection system design

The main reason for this choice is that most recently published works on semi-
supervised ASD utilize publicly available datasets for acoustic machine condition
monitoring that belong to the annual DCASE Challenge. Also utilizing these
datasets ensures that the results are reproducible and there is a commonly used ex-
perimental setup in the community to compare findings experimentally. Another
advantage is that the task is well-defined because normal recordings belong to
fully functioning machines and all anomalies indicate mechanical failure caused
on purpose in a controlled environment. Last but not least, the dataset provides
a difficult task because real factory background noise was added to all recordings,
which fosters research for semi-supervised ASD.

3.2.1 Experimental setup

For the experiments conducted in this chapter, the dataset belonging to the task
“Unsupervised Detection of Anomalous Sounds for Machine Condition Monitoring”
of the DCASE2020 Challenge [108] is used1. The dataset contains recordings of
the machine types “fan”, “pump”, “slider” and “valve” from MIMII [188] as well
as “ToyCar” and “ToyConveyor” from ToyADMOS [106], which also contain real
factory background noise. Each recording has a length of 10 s and a sampling
rate of 16 kHz. The dataset is divided into two subsets, a development set and an
evaluation set. Each of these sets consists of a training split, which only contains
normal data, and a test split, which contains normal and anomalous data. There
are multiple individual machines of each type. The set of all recordings belonging
to a specific machine ID is called section. During testing, the section a given
recording belongs to is known and can also be used as input to the ASD system.
The sections contained in the development set and evaluation set are mutually
exclusive but are the same for the training and test splits. In total, there are
41 different sections. Further details about the dataset structure can be found in
Table 3.

To evaluate the performance of an ASD system, the AUC-ROC and pAUC with
p = 0.1 are determined for each section of the dataset. To obtain a single value
that can be used as a performance measure to rank the systems, the arithmetic
mean of all AUC-ROCs and pAUCs over all sections is calculated.

3.2.2 Baseline model for extracting embeddings

As stated in Section 2.4, training a model that uses an auxiliary classification task
is a commonly used approach for ASD that attains state-of-the-art performance.
Because of this, such an embedding model is used as a baseline model, whose
performance serves as a basis for measuring improvement. The structure of the
baseline model is shown in Table 4. It is based on a modified ResNet architecture

1 Although the name of the task implies an unsupervised ASD setting, it is actually semi-
supervised.

3.2 example application: machine condition monitoring 47

Table 3: Structure of the DCASE2020 ASD dataset containing recordings of 6 machine
types. The set containing all recordings belonging to one individual machine is
called a section.

number of sections number of recordings
subset (per machine type) split (per section)

normal anomalous

development set 3 ´ 4
training „ 1000 0

test 100 ´ 200 100 ´ 200

evaluation set 3 ´ 4
training „ 1000 0

test „ 200 „ 200

Table 4: Modified ResNet architecture used as the baseline model. © 2021 IEEE

layer name structure output size

input - 313 ˆ 128

2D convolution 7 ˆ 7, stride= 2 157 ˆ 64 ˆ 16

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 78 ˆ 31 ˆ 16

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 39 ˆ 16 ˆ 32

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 20 ˆ 8 ˆ 64

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 10 ˆ 4 ˆ 128

max pooling 10 ˆ 1, stride= 1 1 ˆ 4 ˆ 128

flatten - 512

dense (embedding) no activation 128

48 anomalous sound detection system design

[77] mainly consisting of four residual blocks. In each convolutional layer, batch
normalization [86] is applied and leaky ReLU [139] with a slope coefficient of
0.1 is used as an activation function. As input feature representations, log-Mel
spectrograms with 128 Mel bins, a window size of 1024 and a hop size of 512

are computed using a high-pass filter with a cutoff frequency of 200Hz. These
features are standardized by subtracting the temporal mean and dividing with
the temporal standard deviation computed by using all normal training samples.
To train this embedding model, the angular margin loss AdaCos [274] is minimized
by using the sections of the DCASE2020 ASD dataset corresponding to different
machine IDs as classes and applying mixup [272]. More concretely, the model is
trained for 400 epochs using Adam [101] with a batch size of 64. Individual design
choices for improving the performance of this model will be investigated in the
following sections. The minimum cosine distance of a test sample to all centers
of the AdaCos loss is used to compute an anomaly score. Since only threshold-
independent evaluation metrics are used to compute the performance, a decision
threshold does not need to be estimated. Before evaluating the performance of
this baseline model, it will be shown that using the angular margin loss AdaCos
to train the model is a reasonable choice.

3.3 relation between one-class and angular margin losses

When designing an ASD system based on audio embeddings, one of the major
choices to make is to decide on how to train the embedding model. Compared
to directly trained models, pre-trained models are known to have inferior perfor-
mance in case enough training data is available because pre-trained models are less
specialized. Therefore, one needs to decide between a one-class loss or an angular
margin loss, which are the other two commonly used loss functions for training
an embedding model, to obtain state-of-the-art performance. In this section, the
relation between the compactness loss and AdaCos as representatives of one-class
losses and angular margin losses, respectively, will be investigated. Before doing
this, it will be shown that projecting the embeddings onto the unit sphere when
using a compactness loss has several advantages.

3.3.1 Compactness loss on the unit sphere

The following lemma shows that the squared Euclidean distance and the cosine
similarity are closely related on the unit sphere.

Lemma 3.1. For e1, e2 P RD with ∥e1∥2 = ∥e2∥2 = 1, it holds that

sim(e1, e2) = 1 ´
∥e1 ´ e2∥22

2
. (35)

3.3 relation between one-class and angular margin losses 49

Proof. Using only basic identities, we obtain

∥e1 ´ e2∥22 = xe1 ´ e2, e1 ´ e2y = ∥e1∥22 + ∥e2∥22 ´ 2xe1, e2y

= 2

(
1 ´

xe1, e2y

∥e1∥2∥e2∥2

)
= 2(1 ´ sim(e1, e2)),

which finishes the proof.

Hence, the Euclidean distance and the cosine distance, which in this case is
equal to the standard scalar product, are equivalent for computing an anomaly
score for embeddings on the unit sphere. Projecting embeddings onto the unit
sphere can be easily accomplished by dividing an embedding with its Euclidean
norm because for all 0 ‰ e P RD it holds that

∥∥∥∥
e

∥e∥2

∥∥∥∥
2

=
∥e∥2
∥e∥2

= 1.

The following definition captures this simple fact by introducing additional nota-
tion.

Definition 3.2 (Projection onto unit sphere). Let
SD´1 – te P RD : ∥e∥2 = 1u Ă RD denote the D-sphere, in the following
also referred to as unit sphere. Then

PSD´1 : RD
Ñ SD´1

PSD´1(e) –
e

∥e∥2
(36)

is the projection onto the D-sphere.

Restricting the embedding space to the unit sphere essentially reduces the em-
bedding dimension by 1 as evident by using stereographic projection. Since the
dimension of the embedding space is just a hyperparameter to be chosen and,
in most cases, is higher than it needs to be, the resulting performance does not
degrade. On the contrary, projecting the embeddings onto the unit sphere when
using the compactness loss has several advantages. First of all, doing so prevents
that the network may learn 0 P RD as a trivial solution in case only linear op-
erators, such as matrix multiplications or convolutions, and activation functions
with 0 as a fixed point are used. Furthermore, normalizing the embedding stabi-
lizes the training by preventing numerical issues similar to batch normalization
[86]. Another advantage is that the initialization of the (non-trainable) center is
simplified since two random elements of the unit sphere have equal distance with
very high probability if the dimension is sufficiently high. Therefore, the center
can be initialized randomly.

50 anomalous sound detection system design

3.3.2 Relation between the compactness loss and AdaCos

The relation between the compactness loss and AdaCos is characterized by the
following corollary.

Corollary 3.3. For Im(ϕ) Ď SD´1, minimizing Lada(Y,C,ϕ,w, lab) with gradient
descent is equivalent to minimizing

´
s̃

2

1

|Y|

ÿ

xPY

Nclasses
ÿ

i=1

lab(x)i
Nclasses

ÿ

k=1

softmax(ŝ ¨ sim(ϕ(x,w), ck))

¨

(
B

Bw
∥ϕ(x,w) ´ ci∥22 ´

B

Bw
∥ϕ(x,w) ´ ck∥22

)
.

(37)

Proof. The proof of this corollary will be postponed to Section 3.4 because the
statement directly follows from a more general theorem.

This corollary shows that minimizing the AdaCos loss increases intra-class sim-
ilarity, i.e. reduces the compactness loss for each class, while at the same time
decreasing inter-class similarity. Hence, AdaCos can be seen as a multi-class ver-
sion of the compactness loss that explicitly ensures a margin between classes. Note
that a constant function can only be a solution for a single class as a classifier re-
quires different solutions for different classes. Therefore, using multiple normal
classes prevents that the model learns a constant function as a trivial solution. In
the case of a classification task, a trivial solution corresponds to learning a perfect
classifier that maps each point exactly to the center of the corresponding class and
is practically impossible to obtain for non-trivial classification tasks.

As already mentioned in Section 2.3, a similar strategy is employed in [85, 177]
where an auxiliary classification task on a second dataset is used as a so-called
descriptiveness loss. Compared to an angular margin loss, there are several differ-
ences even when the same dataset is used for both tasks. First and foremost, for
angular margin losses the inter-class compactness loss is increased instead of only
using a discriminative objective with a categorical crossentropy (CXE). Further-
more, a margin between different classes is explicitly ensured, which is not the case
for the descriptiveness loss. Third, an angular margin loss uses a different weight
for individual classes by utilizing softmax probabilities as shown in Corollary 3.3.

To experimentally verify the relation between the different loss functions, the
development of different loss functions over time is depicted in Figure 9. It can
be seen that training a model by minimizing the AdaCos loss indeed minimizes
the intra-class compactness losses while maximizing the inter-class compactness
losses. Note that, according to Lemma 3.1, a mean squared Euclidean distance
equal to 2, as attained by the inter-class loss, corresponds to an angle equal to π

2
,

i.e. orthogonality. This is an expected behavior in the embedding space because
two random elements of a relatively high-dimensional vector space are orthogonal
with very high probability [65]. Furthermore, a smaller loss does not mean that

3.3 relation between one-class and angular margin losses 51

20 40 60 80 100

0.03125

0.0625

0.125

0.25

0.5

1

2

4

epoch

lo
ss

train splits of development and evaluation set

AdaCos loss
mean of intra-class compactness losses
mean of inter-class compactness losses

20 40 60 80 100

0.03125

0.0625

0.125

0.25

0.5

1

2

4

epoch

test split of development set (normal data)

Figure 9: Temporal development of different losses obtained on the DCASE2020 dataset
when training by minimizing the AdaCos loss.

the resulting ASD performance is better because minimizing any of these losses is
only an auxiliary task not directly related to the ASD task.

3.3.3 Performance evaluation

In this section, the ASD performances obtained with different loss functions and
using a different number of classes for an auxiliary classification task are com-
pared. The results can be found in Table 5. It can be seen that the performance
improves when increasing the number of classes used for training (see second col-
umn). Using more classes increases the difficulty of the classification task and thus
more information needs to be captured by the embedding model to still be able
to predict the correct class. When using only a single class for the entire dataset,
the performance is the same as random guessing. The most likely reason is the
strong and highly diverse background noise that consists of several other sound
sources and thus drowns out the anomalous signal components, which are very sub-
tle in comparison. In contrast, using an auxiliary classification task teaches the
model to closely monitor frequency bands or temporal patterns that are character-
istic for the target machine sounds. This enables the embedding model to ignore
the background noise whereas a one-class model does not know the difference be-
tween noise and target machine sounds and thus considers all signal components
as equally important. Using the pre-defined sections of the dataset as sub-classes
improves the overall performance, even when training another model for each sub-
class. This indicates that individual machines, represented by the sections of the
dataset, have a very distinct acoustic pattern and thus the only variability between

52 anomalous sound detection system design

Table 5: Arithmetic means of all AUC-ROCs and pAUCs obtained with different losses
using different auxiliary tasks over all sections of the DCASE2020 dataset. For
intra-class compactness losses, non-trainable class centers and no bias terms
are used to avoid learning trivial solutions. Best results in each column are
highlighted with bold letters.

DCASE2020 development set

loss classes of auxiliary task (number of classes) AUC pAUC

intra-class compactness loss none (1) 49.78 ˘ 0.66% 50.36 ˘ 0.28%
intra-class compactness loss machine types (7) 70.61 ˘ 1.89% 62.58 ˘ 1.49%
intra-class compactness loss machine types and sections, models trained individually (1) 67.68 ˘ 0.54% 57.57 ˘ 0.35%
intra-class compactness loss machine types and sections (41) 89.67 ˘ 0.58% 83.20 ˘ 0.88%
intra-class compactness loss + CXE machine types and sections (41) 90.12 ˘ 0.35%90.12 ˘ 0.35%90.12 ˘ 0.35% 83.86 ˘ 0.60%83.86 ˘ 0.60%83.86 ˘ 0.60%
AdaCos loss machine types and sections (41) 89.30 ˘ 0.57% 83.03 ˘ 0.52%

DCASE2020 evaluation set

loss classes of auxiliary task (number of classes) AUC pAUC

intra-class compactness loss none (1) 50.08 ˘ 1.07% 50.39 ˘ 0.59%
intra-class compactness loss machine types (7) 73.74 ˘ 2.35% 65.57 ˘ 1.92%
intra-class compactness loss machine types and sections, models trained individually (1) 70.60 ˘ 0.68% 61.10 ˘ 0.71%
intra-class compactness loss machine types and sections (41) 90.55 ˘ 1.07% 83.54 ˘ 1.00%
intra-class compactness loss + CXE machine types and sections (41) 90.84 ˘ 0.43%90.84 ˘ 0.43%90.84 ˘ 0.43% 83.85 ˘ 0.37%
AdaCos loss machine types and sections (41) 90.54 ˘ 0.09% 84.09 ˘ 0.68%84.09 ˘ 0.68%84.09 ˘ 0.68%

different recordings of the same machine is the background noise. Still, training
a joint embedding model leads to much better results than using individual mod-
els. Moreover, using an explicit classification task with a CXE slightly improves
the performance over only increasing the intra-class similarity or using an angular
margin loss. The most likely reason is that the classification task for this dataset
is relatively simple due to the low variability between different recordings of the
same machine, which leads to almost perfect classification results even when only
using an intra-class compactness loss.

In the previous discussion of the results it was silently assumed that the back-
ground noise is similar for each class. However, if the background noise is specific
for some or even all classes, then using a classification task will probably not help
to improve the performance because the noise contains useful information for dis-
criminating between the classes as well. Hence, assuming that the background
noise is not class-specific is essential. For realistic applications, this is often a valid
assumption because one would expect that at least some machines of different
type or with a different ID are running in the same factory and share the same
acoustic environment. Otherwise, defining additional sub-classes, e.g. by also pro-
viding parameter settings of machines as meta information as done in Chapter 5,
may be beneficial. In any case, using an angular margin loss also decreases the
intra-class compactness losses and thus will not perform worse than when only
using an intra-class compactness loss.

3.4 sub-cluster adacos 53

3.4 sub-cluster adacos

Using an angular margin loss to learn distributions of normal data enforces a
Gaussian distribution for each class because the mean squared error, which is
strongly related to the cosine distance (cf. Lemma 3.1), is proportional to the
negative log-likelihood of a Gaussian distribution. As Gaussian distributions are
relatively simple, this may be a choice that is too restrictive to accurately model
the true distribution and thus may not be optimal to distinguish between normal
and anomalous samples. The fact that using a CXE as a descriptiveness loss led to
slightly better performance in the experiments conducted in Section 3.3.3 provides
additional evidence for this claim. The goal of this section is to relax these restric-
tions by utilizing multiple Gaussians for each class instead of a single one and
investigate the impact on the resulting ASD performance. Introducing sub-classes
enables the model to learn more sophisticated distributions for each class.

The idea of allowing multiple sub-classes for each class is also used for discrim-
inant analysis [29, 278] and was shown to outperform standard approaches such
as LDA. A similar approach for angular margin losses is sub-center ArcFace [37]
that has been proposed to handle noisy class labels. Apart from the non-adaptive
scale parameter, the main difference to sub-cluster AdaCos is that only the closest
sub-center is considered by using the minimum over all cosine-similarities. For sub-
cluster AdaCos, the sum of all softmax probabilities belonging to a single class
is computed during training. Taking the sum still enables the model to handle
noisy class labels by assigning them to other sub-classes. Furthermore, summing
the probabilities has the advantage that it is continuously differentiable whereas
using the minimum distance is not.

3.4.1 Definition

The following formal definition of the sub-cluster AdaCos loss is similar to the def-
inition of the AdaCos loss (cf. Definition 2.8) but uses Ncenters P N centers instead
of a single center for each class. Furthermore, the term B

(t)
avg includes the distances

to all samples and not just the samples belonging to non-target classes. The rea-
son is that sub-cluster AdaCos is intended to be used with mixup. In this, mixed
up samples should be treated as anomalous samples. This modification results in
a larger value for B

(t)
avg and thus also a larger scale parameter leading to sharper

boundaries around the distributions of the classes (cf. Figure 6).

Definition 3.4 (Sub-cluster AdaCos). Let Cj P P(RD) with |Cj| = Ncenters P N de-
note all centers belonging to class j P t1, ...,Nclassesu. Let the dynamically adaptive
scale parameter ŝ(t) P R+ at training step t P N0 be set to

ŝ(t) –

$

’

&

’

%

?
2 ¨ log(Nclasses ¨ Ncenters ´ 1) if t = 0

sim(t)
max + log B̂(t)

avg

cos
(

min(π
4 ,α̂

(t)
med)
) else

(38)

54 anomalous sound detection system design

with

B̂(t)
avg –

1

Nbatch

ÿ

xPY(t)

Nclasses
ÿ

j=1

ÿ

cPCj

exp
(
ŝ(t´1) sim(ϕ(x,w(t)), c) ´ sim(t)

max

)
(39)

where α̂
(t)
med P [0, π

2
] denotes the median of all mixed-up angles

λ
ÿ

c(1)PCclass(x1)

α(ϕ(mixx(x1, x2, λ), w), c(1))

+(1 ´ λ)
ÿ

c(2)PCclass(x2)

α(ϕ(mixx(x1, x2, λ), w), c(2))

with x1, x2 P Y(t), λ P [0, 1], and for w(t) P W the stability term is given by

sim(t)
max – max

xPY(t)

Nclassesmax
j=1

max
cPCj

ŝ(t´1)
¨ sim(ϕ(x,w), c). (40)

Then, the sub-cluster AdaCos loss is defined as

Lsc-ada : P(X) ˆ P(P(RD)) ˆ Φ ˆ W ˆ Λ(Nclasses) Ñ R+

Lsc-ada(Y,C, ϕ,w, lab) – ´
1

|Y|

ÿ

xPY

Nclasses
ÿ

j=1

lab(x)j log(softmax(ŝ ¨ sim(ϕ(x,w), Cj)))

(41)

where |C| = Nclasses and, in this case,

softmax(ŝ ¨ sim(ϕ(x,w), Cj)) –
ÿ

cjPCj

exp(ŝ ¨ sim(ϕ(x,w), cj))
řNclasses

k=1

ř

ckPCk
exp(ŝ ¨ sim(ϕ(x,w), ck))

(42)

Remark. The only reason for including the stability term ´ sim(t)
max when calculat-

ing B̂
(t)
avg is to improve numerical stability by reducing the argument of the exponen-

tial function. After this computation and taking the logarithm in the computation
of ŝ(t), the effects of the term ´ sim(t)

max are reversed by adding sim(t)
max.

3.4.2 Relation to the compactness loss

Similar to Corollary 3.3, the relation between the sub-cluster AdaCos loss and
the compactness loss is presented in the following theorem.

3.4 sub-cluster adacos 55

Theorem 3.5. Let Yj – tx P Y : lab(x)j = 1u for j P t1, ...,Nclassesu. Then, for
Im(ϕ) Ď SD´1 minimizing Lsc-ada(Y,C, ϕ,w, lab) with gradient descent minimizes
all intra-class compactness losses with weighted gradients given by

ŝ

2

Nclasses
ÿ

i=1

1

|Yi|

ÿ

xPYi

ÿ

ciPCi

P(τ(ϕ(x,w),C) = ci|τ(ϕ(x,w),C) P Ci)

¨
B

Bw
∥ϕ(x,w) ´ ci∥22

(43)

while maximizing all inter-class compactness losses with weighted gradients given
by

´
ŝ

2

Nclasses
ÿ

i=1

1

|Yi|

ÿ

xPYi

Nclasses
ÿ

k=1

ÿ

ckPCk

P(τ(ϕ(x,w),C) = ck) ¨
B

Bw
∥ϕ(x,w) ´ ck∥22 (44)

where

P(τ(ϕ(x,w),C) = ci|τ(ϕ(x,w),C) P Ci) –
exp(ŝ ¨ sim(ϕ(x,w), ci))

ř

c 1
iPCi

exp(ŝ ¨ sim(ϕ(x,w), c 1
i))

(45)

and

P(τ(ϕ(x,w),C) = ck) –
exp(ŝ ¨ sim(ϕ(x,w), ck))

řNclasses
k=1

ř

c 1
kPCk

exp(ŝ ¨ sim(ϕ(x,w), c 1
k))

(46)

with a cluster assignment function τ : RD ˆ P(P(RD)) Ñ RD given by

τ(e,C) = arg max
CPC

(arg max
cPC

(sim(e, c))). (47)

Proof. Let x P Y, ϕ P Φ and ŝ P R+ be fixed and i P t1, ...,Nclassesu

such that lab(x)i = 1 and lab(x)j = 0 for j ‰ i. To simplify notation, define
z(w, c) – exp(ŝ ¨ sim(ϕ(x,w), c)). Note that, in each iteration t ą 0, ŝ(t) is set
to a fixed value before computing the gradient of the loss function by using the
current weights w(t) P W of the network. Therefore, Bŝ(t)

Bw
= 0 although the dy-

namically adaptive scale parameter depends on the weights. Using Lemma 3.1, it
holds that

B

Bw
log
(

ÿ

ciPCi

z(w, ci)

)
=

ř

ciPCi
z(w, ci) ¨ ŝ ¨ B

Bw
sim(ϕ(x,w), ci))

ř

c 1
iPCi

z(w, c 1
i)

= ´
ŝ

2

ÿ

ciPCi

z(w, ci) ¨ B

Bw
∥ϕ(x,w) ´ ci∥22

ř

c 1
iPCi

z(w, c 1
i)

56 anomalous sound detection system design

and similarly

B

Bw
log
(Nclasses

ÿ

k=1

ÿ

ckPCk

z(w, ck)

)

=

řNclasses
k=1

ř

ckPCk
z(w, ck) ¨ ŝ ¨ B

Bw
sim(ϕ(x,w), ck))

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

= ´
ŝ

2

Nclasses
ÿ

k=1

ÿ

ckPCk

z(w, ck) ¨ B

Bw
∥ϕ(x,w) ´ ck∥22

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

= ´
ŝ

2

ÿ

ciPCi

z(w, ci) ¨ B

Bw
∥ϕ(x,w) ´ ci∥22

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

´
ŝ

2

Nclasses
ÿ

k=1
k‰i

ÿ

ckPCk

z(w, ck) ¨ B

Bw
∥ϕ(x,w) ´ ck∥22

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

.

Combining both identities yields

B

Bw

Nclasses
ÿ

j=1

labj(x) log(softmax(ŝ ¨ sim(ϕ(x,w), Cj)))

=
B

Bw
log
(

ÿ

ciPCi

z(w, ci)
řNclasses

k=1

ř

ckPCk
z(w, ck)

)

=
B

Bw
log
(

ÿ

ciPCi

z(w, ci)

)
´

B

Bw
log
(Nclasses

ÿ

k=1

ÿ

ckPCk

z(w, ck)

)

= ´
ŝ

2

ÿ

ciPCi

z(w, ci) ¨ B

Bw
∥ϕ(x,w) ´ ci∥22

ř

c 1
iPCi

z(w, c 1
i)

+
ŝ

2

ÿ

ciPCi

z(w, ci) ¨ B

Bw
∥ϕ(x,w) ´ ci∥22

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

+
ŝ

2

Nclasses
ÿ

k=1
k‰i

ÿ

ckPCk

z(w, ck) ¨ B

Bw
∥ϕ(x,w) ´ ck∥22

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

= ´
ŝ

2

(
ÿ

ciPCi

z(w, ci) ¨
B

Bw
∥ϕ(x,w) ´ ci∥22

¨

(
1

ř

c 1
iPCi

z(w, c 1
i)

´
1

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

)

´

Nclasses
ÿ

k=1
k‰i

ÿ

ckPCk

z(w, ck) ¨ B

Bw
∥ϕ(x,w) ´ ck∥22

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

)

3.4 sub-cluster adacos 57

= ´
ŝ

2

(
ÿ

ciPCi

z(w, ci) ¨
B

Bw
∥ϕ(x,w) ´ ci∥22

¨

(Nclasses
ÿ

k=1
k‰i

ÿ

ckPCk

z(w, ck)

(
ř

c 1
iPCi

z(w, c 1
i))(

řN
k=1

ř

c 1
kPCk

z(w, c 1
k))

)

´

Nclasses
ÿ

k=1
k‰i

ÿ

ckPCk

z(w, ck) ¨ B

Bw
∥ϕ(x,w) ´ ck∥22

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

)

= ´
ŝ

2

Nclasses
ÿ

k=1
k‰i

ÿ

ckPCk

z(w, ck)
řNclasses

k=1

ř

c 1
kPCk

z(w, c 1
k)

¨

(
ÿ

ciPCi

z(w, ci)
ř

c 1
iPCi

z(w, c 1
i)

¨
B

Bw
∥ϕ(x,w) ´ ci∥22 ´

B

Bw
∥ϕ(x,w) ´ ck∥22

)

= ´
ŝ

2

Nclasses
ÿ

k=1

ÿ

ckPCk

z(w, ck)
řNclasses

k=1

ř

c 1
kPCk

z(w, c 1
k)

looooooooooooooomooooooooooooooon

=P(τ(ϕ(x,w),C)=ck)

¨
ÿ

ciPCi

z(w, ci)
ř

c 1
iPCi

z(w, c 1
i)

loooooooomoooooooon

=P(τ(ϕ(x,w))=ci|τ(ϕ(x,w),C)PCi)

¨

(
B

Bw
∥ϕ(x,w) ´ ci∥22 ´

B

Bw
∥ϕ(x,w) ´ ck∥22

)

where it is used that

1
ř

c 1
iPCi

z(w, c 1
i)

´
1

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k)

=

řNclasses
k=1

ř

ckPCk
z(w, ck) ´

ř

ciPCi
z(w, ci)

(
ř

c 1
iPCi

z(w, c 1
i))(

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k))

=
Nclasses

ÿ

k=1
k‰i

ÿ

ckPCk

z(w, ck)

(
ř

c 1
iPCi

z(w, c 1
i))(

řNclasses
k=1

ř

c 1
kPCk

z(w, c 1
k))

.

Now, summing over all samples x P Y, normalizing with |Y| and taking the additive
inverse yields the desired result.

When using mixup, the right hand side of the last equation needs to be re-
placed with a weighted sum of two terms, each corresponding to one of the
two classes that are mixed-up, because there are i1, i2 P t1, ...,Nclassesu such that
lab(x)i1 ‰ 0 ‰ lab(x)i2 . Otherwise, the proof is exactly the same. In conclusion,
the proven result still holds for mixed-up samples but includes two similar terms
instead of one term.

58 anomalous sound detection system design

Note that this theorem explicitly shows that the intra-class compactness losses
belonging to different sub-clusters of the same class are weighted with softmax
probabilities that indicate to which sub-cluster an embedding belongs to. This
allows that embeddings belong to a single sub-cluster by setting the probability
belonging to one sub-cluster close to one and all other probabilities close to zero.
Without these probabilistic weights, each embedding would be pulled towards the
mean of all sub-clusters of the corresponding class to minimize the mean distance,
which essentially means that only a single sub-cluster, i.e. one center, would be
used for each class.

Using Theorem 3.5, a short proof for Corollary 3.3 will now be provided.

Proof of Corollary 3.3. The proof of Theorem 3.5 does not depend on the exact
structure of the dynamically adaptive scale parameter and thus also holds for the
standard AdaCos loss by replacing ŝ with s̃ and using only a single sub-cluster for
each class.

3.4.3 Comparison of backends

According to Lemma 3.1, the cosine distance is equivalent to using a Gaussian
with a spherical covariance matrix. Hence, using a GMM with a full covariance
matrix and possibly multiple components is a generalization of using the cosine
distance and may perform better in case the distribution of the normal samples
is not spherical. This is illustrated in Figure 10. Note that this illustration is
exaggerated because, by definition, an angular margin loss tries to ensure that the
distribution for each class is roughly spherical. However, the resulting distributions
may still be more complex, especially in higher-dimensional spaces.

Next, the choice of a suitable backend shall be investigated experimentally. For
all experiments with Gaussians or GMMs, the implementation provided by scikit-
learn [176] is used.

The performances obtained with different backends can be found in Table 6.
As expected, using the softmax output of the embedding model instead of the
cosine distance performs worst. The reason is that a softmax function models a
posterior distribution over the normal classes and thus is not aiming at detecting
out-of-distribution samples, i.e. anomalies. PLDA, as implemented in [208], per-
forms slightly better but still worse than all the other backends. Since they are
strongly related to each other or even equivalent, all backends using cosine dis-
tance or Gaussians with a spherical or diagonal covariance matrix perform very
similarly. When using full covariance matrices, an improvement in performance
can be observed and thus Gaussians or GMMs with full covariance matrices are
used as a backend in the following experiments.

3.4 sub-cluster adacos 59

normal samples of class 1
anomalous samples of class 1
normal samples of class 2
anomalous samples of class 2

Figure 10: Scatter plot of normal and anomalous data belonging to two different classes.
Both classes can be easily separated by measuring the distance to the respec-
tive class means. For class 1, anomalies can also be detected reasonably well.
However, for class 2 only measuring the distance to the mean does not work
well because the data is not distributed spherically. © 2021 IEEE

Table 6: Arithmetic means of AUC-ROCs and pAUCs for different machine types ob-
tained with different backends. © 2021 IEEE

backend development set evaluation set
AUC-ROC pAUC AUC-ROC pAUC

softmax output of embedding model 87.20% 81.70% 89.55% 83.79%
log-likelihood ratio of two-covariance PLDA 88.25% 82.18% 90.90% 84.32%
cosine distance to mean 88.71% 82.12% 91.13% 84.40%
mean of cosine distances to 10 closest samples 88.69% 82.12% 91.10% 84.38%
Gaussian (spherical covariance) 88.69% 82.12% 91.11% 84.38%
Gaussian (diagonal covariance) 88.71% 82.16% 91.12% 84.39%
Gaussian (full covariance) 89.13% 82.59% 91.43% 84.47%

60 anomalous sound detection system design

Table 7: Arithmetic means of AUC-ROCs and pAUCs obtained with mixup and the sub-
cluster AdaCos loss using only a single center per class. © 2021 IEEE

mixup loss development set evaluation set
AUC-ROC pAUC AUC-ROC pAUC

AdaCos 86.96% 80.68% 89.63% 82.47%
sub-cluster AdaCos diverges diverges diverges diverges

✗ AdaCos 89.13% 82.59% 91.43% 84.47%
✗ sub-cluster AdaCos 91.60% 85.01% 91.64% 83.93%

3.4.4 Utilizing mixup

Mixup is known to be very effective for CSC tasks. However, it is not clear whether
the same benefits carry over to ASD. In addition, the definition of the dynamically
adaptive scale parameter of the sub-cluster AdaCos loss, which depends on using
mixup, still needs to be justified. Therefore, the effect of using mixup for ASD
with angular margin losses is investigated by comparing the performances obtained
with and without mixup. The results can be found in Table 7 and the following
three observations can be made: First, using mixup improves the performance
regardless of the angular margin loss being used. As applying mixup is simple
yet effective, there appears to be no reason to not use it for ASD. Second, the
dynamically adaptive scale parameter of sub-cluster AdaCos loss performs better
than the original one of the AdaCos loss, which justifies the particular definition
of the scale parameter. Third, when not using mixup, the sub-cluster AdaCos loss
diverges. The reason is given in the following lemma.

Lemma 3.6. When not using mixup, the dynamically adaptive scale parameter
ŝ(t) of the sub-cluster AdaCos loss grows exponentially.

Proof. After a few training iterations without mixup, i.e. for t ą t0 P N, most
training samples will have a very small angle to the centers of their correspond-
ing class and therefore

ř

cPCi
sim(ϕ(x,w(t)), c) ą 1 for all i P t1, ...,Nclassesu

and x P Y(t) X Yi. Furthermore, as empirically shown in [274], on average
α(ϕ(x,w(t)), c) ă π

2
and thus sim(ϕ(x,w(t)), c) ą 0 for most x P Y and c P RD.

3.4 sub-cluster adacos 61

Hence, by using the fact that the logarithm is a concave function and applying
Jensen’s inequality it holds that

ŝ(t) =
sim(t)

max + log B̂(t)
avg

cos
(
min(π

4
, α̂

(t)
med)

) ě sim(t)
max + log B̂(t)

avg

= log
(

1

Nbatch

ÿ

xPY(t)

Nclasses
ÿ

j=1

ÿ

cPCj

exp
(
ŝ(t´1) sim(ϕ(x,w(t)), c)

))

ě
1

Nbatch

ÿ

xPY(t)

Nclasses
ÿ

j=1

ÿ

cPCj

ŝ(t´1) sim(ϕ(x,w(t)), c)

ą ŝ(t´1)

(
1+

1

Nbatch

ÿ

xPY(t)

Nclasses
ÿ

j=1
lab(x)j‰1

ÿ

cPCj

sim(ϕ(x,w(t)), c)

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

ą0

)

showing that ŝ(t) grows exponentially when not using mixup. Note that this in-
equality does not hold if only mixed-up samples are used for training. The reason
is that the mixed-up samples do not have a very high cosine similarity with all of
their corresponding class centers because they are positioned between classes and
AdaCos increases the margin between classes.

3.4.5 Determining the number of sub-clusters

In Table 8, the effect of using a different number of sub-clusters is investigated ex-
perimentally. It can be seen that using multiple sub-clusters significantly improves
the performance, especially on the evaluation set. This justifies the definition of
the sub-cluster AdaCos loss. Overall, the best results are obtained with 32 sub-
clusters and using more sub-clusters degrades performance. Hence, the optimal
number of sub-clusters is neither too high nor too low and thus is an additional
hyperparameter to be tuned. Another observation is that using a GMM with com-
ponents equal to the number of sub-clusters leads to slightly better performance
than using a single Gaussian because the underlying distribution can be better
represented. Note that using sub-clusters also allows the model to handle poten-
tial outliers or noisy samples contained in the training set by assigning them to
small sub-clusters as done with the sub-center ArcFace loss [37].

3.4.6 Replacing embeddings with input data statistics

An alternative to training an embedding model with the goal of obtaining simple
representations of the data is to compute statistics over the input features such as
the temporal mean or temporal maximum. These statistics have the advantage that
they do not require any training, yet, they may still contain useful information

62 anomalous sound detection system design

Table 8: Arithmetic means of AUC-ROCs and pAUCs obtained with the sub-cluster
AdaCos loss for different numbers of centers per class. © 2021 IEEE

number of backend development set evaluation set
sub-clusters AUC-ROC pAUC AUC-ROC pAUC

1 Gaussian 91.60% 85.01% 91.64% 83.93%
2 Gaussian 90.97% 82.54% 92.08% 85.08%
4 Gaussian 91.54% 83.53% 92.62% 84.31%
8 Gaussian 91.61% 85.24% 92.99% 85.74%
16 Gaussian 91.85% 85.61% 93.98% 88.27%
32 Gaussian 92.22% 85.69% 94.56% 87.51%
64 Gaussian 91.39% 83.58% 93.85% 85.43%
1 GMM 91.60% 85.01% 91.64% 83.93%
2 GMM 91.07% 82.70% 92.20% 85.60%
4 GMM 91.67% 83.70% 92.64% 84.35%
8 GMM 91.85% 85.46% 93.13% 86.07%
16 GMM 92.10% 85.84% 94.08% 88.59%88.59%88.59%
32 GMM 92.57%92.57%92.57% 86.37%86.37%86.37% 94.69%94.69%94.69% 87.90%
64 GMM 92.03% 84.06% 94.16% 86.19%

for detecting anomalous samples. The main difference to trained embeddings is
that the information contained in these representations is not necessarily useful to
discriminate between the classes of the auxiliary task. This may have a positive
or negative impact on detecting anomalous samples and will now be investigated
experimentally. To this end, statistics of all features belonging to individual data
samples are calculated and treated as if they were trained embeddings. To compute
an anomaly score, a GMM with a single Gaussian component is used as using more
components did not improve the performance.

The experimental results can be found in Table 9. It can be seen that the overall
performance of the statistical representations is much worse than the one obtained
with trained embeddings. This is also to be expected as using an auxiliary classifica-
tion task allows the embeddings to ignore the background noise whereas statistical
representations are more strongly affected by noise. However, these statistical rep-
resentations lead to surprisingly good performance. The temporal maximum works
well for the machine type “valve” and the temporal mean works well for the two
machine types “ToyCar” and “ToyConveyor”. For “ToyConveyor”, the performance
is even much better than the learned embeddings. A likely reason is that the aux-
iliary classification task is too simple meaning that the machines of this machine
type are easily recognized and thus the embeddings do not capture enough infor-

3.4 sub-cluster adacos 63

Table 9: Mean AUC-ROCs and pAUCs per machine type obtained with different repre-
sentations. When using the combined representations, only the learned repre-
sentations are used, except for machine type ToyConveyor where the temporal
mean is used instead. © 2021 IEEE

representation machine type development set evaluation set
AUC-ROC pAUC AUC-ROC pAUC

temporal mean fan 80.73% 66.16% 95.32% 80.62%
temporal maximum fan 64.59% 51.48% 78.98% 57.70%
learned fan 87.61%87.61%87.61% 77.93%77.93%77.93% 97.60%97.60%97.60% 93.24%93.24%93.24%

temporal mean pump 82.99% 68.50% 88.24% 70.36%
temporal maximum pump 70.13% 59.17% 68.96% 55.08%
learned pump 94.71%94.71%94.71% 88.91%88.91%88.91% 96.76%96.76%96.76% 88.30%88.30%88.30%

temporal mean slider 87.46% 63.95% 72.16% 53.08%
temporal maximum slider 93.69% 76.69% 90.55% 70.65%
learned slider 99.55%99.55%99.55% 97.63%97.63%97.63% 97.61%97.61%97.61% 89.46%89.46%89.46%

temporal mean valve 55.59% 50.23% 54.86% 52.09%
temporal maximum valve 98.54% 93.08% 96.35% 88.18%
learned valve 98.63%98.63%98.63% 94.62%94.62%94.62% 98.81%98.81%98.81% 95.80%95.80%95.80%

temporal mean ToyCar 94.10% 80.94% 91.54% 76.87%
temporal maximum ToyCar 68.36% 53.85% 70.31% 54.90%
learned ToyCar 96.37%96.37%96.37% 91.64%91.64%91.64% 95.99%95.99%95.99% 91.93%91.93%91.93%

temporal mean ToyConveyor 85.78%85.78%85.78% 67.76%67.76%67.76% 91.74%91.74%91.74% 78.13%78.13%78.13%
temporal maximum ToyConveyor 57.51% 50.39% 65.40% 53.06%
learned ToyConveyor 73.89% 61.22% 81.37% 68.64%

temporal mean all 80.91% 66.19% 82.31% 68.52%
temporal maximum all 76.25% 64.71% 78.42% 63.26%
learned all 92.57% 86.37% 94.69% 87.90%
combined all 94.21%94.21%94.21% 87.13%87.13%87.13% 96.42%96.42%96.42% 89.24%89.24%89.24%

mation to discriminate between normal and anomalous samples. For the machine
types for which one statistic works well, the other statistic performs very poorly.
Hence, while these statistical representations may lead to a good performance,
they need to be carefully chosen for each machine type. To obtain the best possi-
ble performance, a combined model is designed by using the learned embeddings
for each machine type except “ToyConveyor” for which the temporal mean is used

64 anomalous sound detection system design

instead. This approach of using statistics of input features as representations was
later extended in [70] by using global weighted ranking pooling [109], i.e. applying
a geometric sequence of weights to time frames of a log-Mel spectrogram sorted
according to their energy over all frequency bins. Global weighted ranking pooling
is a generalization of both statistics used above and led to a good overall per-
formance without training any model except for choosing the weights. However,
note that determining these weights for individual machine types requires access
to anomalous data for each machine type and thus is highly impractical for any
given application and in fact not possible in a truly semi-supervised setting. This
is the reason why no additional experiments with this approach are carried out in
this thesis.

3.4.7 Comparison to other published systems

To show that the presented ASD system performs well, its performance is com-
pared to the five top-performing systems of the DCASE2020 Challenge in Fig-
ure 11. It can be seen that the system outperforms all other systems and thus
reaches a new state-of-the-art performance. Since all systems except the one sub-
mitted by Primus [183] are ensembles, an ensemble was also created here to allow
for a fair comparison. The ensemble is obtained by training seven variations of
the single model, each with a different number of sub-clusters ranging from 20 to
26, and using the sum of the anomaly scores obtained with each system as the en-
sembeled anomaly score. As a result, the ensembled system reaches an AUC-ROC
of 97% and a pAUC of 91.24% and thus performs even better than the proposed
single model system.

3.5 summary

In this chapter, different loss functions for training an embedding model were com-
pared theoretically and empirically. More concretely, the compactness loss and the
AdaCos loss as representatives of one-class and angular margin losses were com-
pared. It was shown that both are very closely related as minimizing an angular
margin loss minimizes the intra-class compactness losses for each class while also
maximizing all inter-class compactness losses. Additionally, it was shown exper-
imentally that the ASD performance is much better when using a classification
task in a joint embedding space instead of not using meta information as classes
or individual embedding spaces learned with one-class losses. This helps to closely
monitor the target sounds to detect anomalous signal components and largely
ignore the background noise.

The other main content of this chapter has been the presentation of the sub-
cluster AdaCos loss, which has a similar relation to the compactness loss as the
AdaCos loss. The sub-cluster AdaCos loss is an extension of AdaCos that uses
multiple centers for each class to enable the embedding model to utilize sub-classes

3.5 summary 65

fan pump slider valve ToyCar ToyConveyor mean
0.85

0.9

0.95

1
A

U
C

-R
O

C
AUC-ROCs

Giri et al. [61] Daniluk et al. [33] Primus [183] Vinayavekhin et al. [221]
Hayashi et al. [76] single model ensemble

fan pump slider valve ToyCar ToyConveyor mean
0.7

0.75

0.8

0.85

0.9

0.95

1

pA
U

C

pAUCs

Figure 11: Comparison of the AUC-ROCs and pAUCs obtained on the evaluation set
with the top five highest-ranked systems submitted to the DCASE2020 Chal-
lenge task 2, the proposed approach and an ensemble. The ensemble consists
of the sum of all log-probabilities given by GMMs belonging to trained mod-
els of the proposed approach with a different number of sub-clusters, ranging
from 20 to 26. © 2021 IEEE

and learn more complex distributions for the normal data than simple Gaussian
distributions. Using the sub-cluster AdaCos loss, mixup and a GMM with a full
covariance matrix were all shown to significantly improve the ASD performance.
As a result, the proposed ASD system and an ensemble reached a new state-of-the-
art performance on the DCASE2020 dataset. In a last experiment, it was shown
that using statistics of the input data, as for example the temporal mean of time-
frequency representations, instead of learning embeddings yields surprisingly good
results. Still, the performance is worse than when using the learned embeddings.

In total, the presented ASD system reached an AUC-ROC of 97% on the
DCASE2020 dataset, which is close to optimal performance. Hence, the difficulty
of the ASD task needs to be increased in order to obtain additional findings. This
will be done in Chapter 5 by utilizing datasets for acoustic machine condition mon-

66 anomalous sound detection system design

itoring recorded in domain-shifted conditions. But before increasing the difficulty
of the task, it will be investigated how to estimate good decision thresholds.

4
DECIS ION THRESHOLD EST IMATION

When using an ASD system in practice, decision thresholds need to be applied
to the anomaly scores to distinguish between normal and anomalous samples. As
stated in Section 2.11, several methods are available for estimating decision thresh-
olds in a semi-supervised setting. The reader shall be reminded that only normal
training data can be used for estimating the decision thresholds as already stated
in Section 2.11. The reason is that anomalous training samples are not available
and that test samples should be treated independently, i.e. one cannot utilize all
(unlabeled) normal and anomalous test samples for estimating a threshold based
on their assumed binary class distribution. Because of this, all estimation methods
are based on the assumption that a threshold, which separates the extreme values
of the anomaly scores belonging to normal training samples from the moderate
values, is also a good choice for separating anomalous and normal samples. The
goal of this chapter is to investigate how to robustly estimate good decision thresh-
olds and how to take the difficulty of estimating a threshold into account when
evaluating the performance of an ASD system.

This chapter is structured as follows: First, multiple methods for estimating
a decision threshold will be compared experimentally. In a second section, the
threshold-independent evaluation metric F1-EV, which in contrast to AUC-ROC
also measures the difficulty of estimating a good decision threshold, will be pre-
sented and compared to other evaluation metrics.

4.1 contributions of the author

The sections of this chapter are largely based on the following key publications:

• Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “On choosing decision
thresholds for anomalous sound detection in machine condition monitoring.”
In: 24th International Congress on Acoustics. The Acoustical Society of Ko-
rea, 2022.

• Kevin Wilkinghoff and Keisuke Imoto. “F1-EV Score: Measuring the Like-
lihood of Estimating a Good Decision Threshold for Semi-Supervised
Anomaly Detection.” In: International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2024, pp. 256–260. doi: 10 . 1109 /
ICASSP48485.2024.10446011.

For publications that are not single-authored, individual contributions of the the-
sis author and all co-authors to these publications are stated in Section A.1. If
not stated otherwise, the content listed in the following paragraph is the sole
contribution of the thesis author.

67

https://doi.org/10.1109/ICASSP48485.2024.10446011
https://doi.org/10.1109/ICASSP48485.2024.10446011

68 decision threshold estimation

Section 4.2 is based on [252]. Alessia Cornaggia-Urrigshardt helped to imple-
ment the different approaches for estimating decision thresholds. Section 4.3 is
based on [260]. Keisuke Imoto proposed to include Section 4.3.4 including Fig-
ure 20. Furthermore, he provided the anomaly scores and decision thresholds of
the systems submitted to the DCASE2023 ASD Challenge, which are used as a
dataset as described in Section 4.3.2.

4.2 estimating a decision threshold

In Section 2.11, multiple methods for estimating a decision threshold were pre-
sented. However, when designing an ASD system two questions remain: “Which
of these methods should be used?” and “To which anomaly scores should such a
method be applied?”. The goal of this section is to answer both questions. For all
estimation methods evaluated in this section, 90th percentiles and the hyperpa-
rameter settings βSD = 1.28, βMAD = 2, βIQR = 0.5, νSVM = 0.1 as well as two
iterations for MST were used as similar settings are also used in the literature and
these particular settings led to reasonable results.

4.2.1 Performance comparison of different estimation methods

To compare the performance of the estimation methods, the F1 score resulting
from applying an estimation method to the anomaly scores obtained with the same
ASD system as presented in Section 3.2.2 is used. To reduce the variance of the
results, each experiment is repeated five times by retraining the ASD system and
estimating a decision threshold with each method. In addition to the estimation
methods, optimal decision thresholds are determined by manually varying them to
optimize the performance on the test splits of the development and evaluation set.
These optimal thresholds are used to analyze how close the performance obtained
with an estimated decision threshold is to the best possible performance.

The F1 scores obtained on the test split of the development set and of the
evaluation set can be found in Table 10 and Table 11, respectively.

Depending on the machine type, one can observe that the absolute performances
are strongly varying. This is also true for the optimum performance and therefore
drawing conclusions by analyzing the absolute F1 scores is difficult. A better ap-
proach is to measure how close the performance of an estimated decision threshold
is to the performance obtained with an optimal decision threshold. This was done
in a second experiment by calculating the ratio between both performances. The
results are depicted in Figure 12. It can be observed that most estimation meth-
ods perform equally well except for GESD, which led to worse performance on
the development and evaluation set, and GDP as well as MST-GDP, which led
to slightly worse performance on the development set. Furthermore, the iterative
approaches (GESD, cleverSD and MST) perform slightly better than their non-

4.2 estimating a decision threshold 69

Table 10: Comparison of F1 scores obtained with different threshold estimation methods
on the development set of the DCASE2020 dataset. Means of F1 scores taken
over all machine IDs belonging to single machine types obtained with five
independent trials are shown. Highest F1 score among different methods for
each machine type is highlighted in bold.

method machine type
fan pump slider ToyCar ToyConveyor valve mean

GDP 0.832 0.823 0.911 0.808 0.618 0.879 0.812
HP 0.753 0.837 0.951 0.848 0.673 0.898 0.827
SD 0.751 0.839 0.951 0.850 0.672 0.900 0.827
MAD 0.762 0.844 0.951 0.854 0.670 0.9020.9020.902 0.830
IQR 0.790 0.843 0.939 0.837 0.677 0.897 0.831
OCSVM 0.753 0.837 0.950 0.849 0.673 0.898 0.827
GESD 0.662 0.816 0.9680.9680.968 0.8640.8640.864 0.594 0.870 0.796
cleverSD 0.836 0.835 0.919 0.821 0.663 0.885 0.826
MST-GDP 0.8640.8640.864 0.810 0.888 0.773 0.611 0.865 0.802
MST-HP 0.816 0.836 0.926 0.814 0.663 0.888 0.824
MST-SD 0.827 0.833 0.919 0.806 0.659 0.882 0.821
MST-MAD 0.797 0.8490.8490.849 0.940 0.847 0.6760.6760.676 0.898 0.8350.8350.835
MST-IQR 0.833 0.834 0.916 0.806 0.659 0.883 0.822
MST-OCSVM 0.816 0.836 0.927 0.815 0.663 0.887 0.824

optimum 0.926 0.889 0.985 0.892 0.689 0.919 0.883

Table 11: Comparison of F1 scores obtained with different threshold estimation methods
on the evaluation set of the DCASE2020 dataset. Means of F1 scores taken
over all machine IDs belonging to single machine types obtained with five
independent trials are shown. Highest F1 score among different methods for
each machine type is highlighted in bold.

method machine type
fan pump slider ToyCar ToyConveyor valve mean

GDP 0.900 0.861 0.889 0.601 0.635 0.671 0.759
HP 0.938 0.892 0.9230.9230.923 0.584 0.597 0.656 0.765
SD 0.937 0.893 0.921 0.577 0.600 0.656 0.764
MAD 0.939 0.890 0.919 0.572 0.598 0.651 0.761
IQR 0.941 0.8940.8940.894 0.920 0.600 0.619 0.665 0.773
OCSVM 0.938 0.892 0.923 0.583 0.596 0.656 0.765
GESD 0.910 0.882 0.900 0.513 0.496 0.616 0.719
cleverSD 0.941 0.874 0.909 0.618 0.643 0.679 0.777
MST-GDP 0.907 0.852 0.885 0.6380.6380.638 0.6630.6630.663 0.6920.6920.692 0.773
MST-HP 0.943 0.885 0.915 0.618 0.636 0.676 0.779
MST-SD 0.943 0.879 0.911 0.624 0.642 0.683 0.7800.7800.780
MST-MAD 0.941 0.892 0.919 0.592 0.619 0.664 0.771
MST-IQR 0.9430.9430.943 0.875 0.910 0.626 0.643 0.684 0.780
MST-OCSVM 0.943 0.885 0.915 0.618 0.636 0.676 0.779

optimum 0.965 0.944 0.959 0.759 0.725 0.784 0.856

70 decision threshold estimation

development set evaluation set

0.8

0.85

0.9

0.95

1

n
or
m
al
iz
ed

F
1
sc
o
re GDP MST-GDP

HP MST-HP
SD MST-SD

MAD MST-MAD
IQR MST-IQR

OCSVM MST-OCSVM
GESD cleverSD

Figure 12: Normalized F1 scores obtained with different threshold estimation methods
on the DCASE2020 dataset. Means of normalized F1 scores taken over all
machine IDs belonging to single machine types obtained with five independent
trials are shown.

iterative counterparts and thus should be the preferred choice when estimating
decision thresholds.

4.2.2 Choosing a set of observed anomaly scores

Only the normal training samples are available to calculate anomaly scores and
thus the same scores that have been used to train the ASD system need to be
used to estimate a decision threshold. However, an alternative is to first divide
the normal training samples into two disjoint sets and use one set to train the
ASD system and the other set to estimate a decision threshold. The idea is to
use previously unseen samples when estimating the decision thresholds as this
may generate less optimistic and thus more realistic anomaly scores, which are
expected to be more similar to the anomaly scores of the test samples than the
ones used for training the model.

When using only a subset of the normal training samples to train the ASD
system, it is expected that the performance will degrade because less information
is provided. As a first experiment, it will be investigated how much normal data
should at least be used to train the system and how much data can be used for
estimating thresholds. This is done by computing the optimal F1 score for models
that have only been trained with a subset of the normal training samples. The
results, depicted in Figure 13, show that the degradation of performance is far less
severe as one would expect and is only noticeable when using less than 60% of
the data for training. Moreover, even when using only 5% of training samples the
degradation in performance is relatively small. A possible explanation is that the
variation of fully-functioning machine sounds is not very strong when ignoring the
background noise and not changing any parameter settings and thus their normal
behaviour can be captured with relatively few data samples.

4.2 estimating a decision threshold 71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.82

0.84

0.86

0.88

0.9

percentage of normal data samples not used for training the ASD system

op
ti

m
al

F
1

sc
or

e

development set
evaluation set

Figure 13: Optimal F1 scores obtained on the DCASE2020 dataset when using a varying
percentage of normal data samples not used for training the ASD system.
Means of optimal F1 scores taken over all machine IDs belonging to single
machine types obtained with five independent trials are shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.7

0.8

0.9

1

percentage of data samples not used for training the ASD system

no
rm

al
iz

ed
F
1

sc
or

e GDP MST-GDP
HP MST-HP
SD MST-SD

MAD MST-MAD
IQR MST-IQR

OCSVM MST-OCSVM
GESD cleverSD

Figure 14: Normalized F1 scores obtained with different threshold estimation methods
on the development set of the DCASE2020 dataset when using a varying
percentage of normal data samples not used for training the ASD system.
Means of normalized F1 scores taken over all machine IDs belonging to single
machine types obtained with five independent trials are shown.

In a second experiment, the normalized F1 scores were calculated for different
partitions of the normal training samples into a set used for training the system
and a set for estimating the thresholds. The results are depicted in Figure 14 and
Figure 15.

The following observations can be made: First, most methods have a relatively
stable performance except for GDP, MST-GDP and GESD. Second, iterative ap-
proaches perform slightly better than non-iterative estimation methods. All of
these observations are consistent with the findings of the previous subsection.
Thirdly and most importantly, there is no clearly visible improvement in per-
formance when using only a subset of the normal samples for training the model.
Actually, the absolute performance is decreasing because the optimal F1 scores are
also decreasing (cf. Figure 13). As a last observation, the difference in performance
between the estimation methods increases the less data is used for training the
system. In conclusion, only using a part of the normal samples for training and

72 decision threshold estimation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.7

0.8

0.9

1

percentage of data samples not used for training the ASD system

no
rm

al
iz

ed
F
1

sc
or

e GDP MST-GDP
HP MST-HP
SD MST-SD

MAD MST-MAD
IQR MST-IQR

OCSVM MST-OCSVM
GESD cleverSD

Figure 15: Normalized F1 scores obtained with different threshold estimation methods on
the evaluation set of the DCASE2020 dataset when using a varying percentage
of normal data samples not used for training the ASD system. Means of
normalized F1 scores taken over all machine IDs belonging to single machine
types obtained with five independent trials are shown.

the other part for estimating the decision threshold has no benefits and one can
simply use all data for training the model.

4.3 F1 -EV score

An AUC-ROC score equal to one means that an optimal decision threshold per-
fectly separating the anomaly scores of all normal samples from the ones of the
anomalous samples exists (see Theorem 2.10). Despite having such a maximal
AUC-ROC score, the cardinality of the set of optimal decision thresholds and thus
also the difficulty of estimating this optimal threshold may strongly vary for dif-
ferent sets of anomaly scores. This is illustrated with toy examples in Figure 16.
In practice, estimating a good decision threshold is important to be able to sepa-
rate normal and anomalous samples. Therefore, the difficulty of estimating such
a threshold should be included to fully measure the performance of an ASD sys-
tem. A naïve solution to this problem is to use an additional threshold-dependent
performance measure such as the F1 score. However, threshold-dependent metrics
depend on the specific choice of a threshold and thus are subjective. Furthermore,
an objective comparison of ASD systems requires a well-defined ranking of per-
formances, which is difficult to define when using multiple performance metrics
at once. This motivates the definition of the F1-EV score, which is a threshold-
independent performance measure that incorporates the difficulty of estimating a
good decision threshold.

4.3.1 Definition

The idea of the F1-EV score is to calculate the expected value (EV) of a random
variable that models the F1 score of an ASD system for varying decision thresholds.

4.3 F1 -EV score 73

anomaly score s(x)

p
ro
b
ab

il
it
y
d
en
si
ty

small margin

scores belonging to normal samples scores belonging to anomalous samples

anomaly score s(x)

large margin

θ0

anomaly score s(x)

no margin

Figure 16: Toy examples of perfectly separable anomaly score distributions, each with an
AUC-ROC equal to 1. On the left, the margin between normal and anomalous
scores is small. In the center, the margin between the distributions is large and
thus estimating a good decision threshold is much easier. On the right, the
only optimal decision threshold is θ = θ0, which is a null set with measure
zero, and thus estimating this threshold also has a likelihood of zero when
assuming a continuous distribution with uncountable support for estimated
thresholds. Note that when estimating a decision threshold, only a finite num-
ber of anomaly scores belonging to the distribution of normal samples are
available and usually both distributions are more complex and overlap. This
is the reason why estimating a good decision threshold is highly non-trivial.
© 2024 IEEE

θ(1) θ(2) θ(3) θ(4) θ(5) θ(6) θ(7) θ(8)
0

0.2

0.4

0.6

0.8

1

decision threshold θ(n)

F
1

sc
or

e

Figure 17: Example of computing F1-EV. For illustration purposes only very few decision
thresholds are shown. © 2024 IEEE

This is done by calculating the F1 score for all possible thresholds and thus choosing
a specific decision threshold is not required, i.e. the F1-EV score is threshold-
independent. A finite Riemann sum is used to calculate the EV given by the area
under the F1 score function as illustrated in Figure 17. Note that according to [35],
computing the area under the precision-recall curve by using linear interpolations
such as the trapezoidal rule leads to over-optimistic approximations. The F1 score

74 decision threshold estimation

is the harmonic mean of precision and recall, which is the reason why a Riemann
sum is used instead of the trapezoidal rule. Since the F1 score function is piece-
wise constant with respect to the decision threshold, using more points than the
anomaly scores of the provided samples when computing the area does not improve
the accuracy of the approximation. The F1-EV score will now be formally defined.

Definition 4.1 (F1-EV score). Let (θsorted(k))k=1,...,|Xtest| Ă R denote a monoton-
ically increasing sequence of decision thresholds, which correspond to the sorted
anomaly scores obtained with the test samples. Define the normalized distance
between two decision thresholds as

∆diffθsorted(k) –
θsorted(k+ 1) ´ θsorted(k)

θsorted(|Xtest|) ´ θsorted(1)
. (48)

Then, the F1-EV score is defined as

F1-EV(Xtest, score, θsorted) –

|Xtest|´1
ÿ

k=1

F1(Xtest, score, θsorted(k))∆diffθsorted(k) P [0, 1]

(49)

with higher values indicating better performance.

Remark. When assuming a uniform distribution for randomly choosing decision
thresholds in the interval [θsorted(1), θsorted(|Xtest|)], ∆diffθsorted(k) corresponds to
the likelihood of choosing a decision threshold yielding the same F1 score as
θsorted(k). Hence, the F1-EV curve is indeed the expected value of a random vari-
able modeling the F1 score of an ASD system.

To calculate the F1-EV score, one has to provide a range [θmin, θmax] Ă R to
which all possible estimated decision thresholds belong to. Otherwise, it would
always be equal to zero for a finite set of anomaly scores. In the previous definition,
this range was defined by using the values θsorted(1) and θsorted(|Xtest|) as lower
and upper bounds, respectively. However, many values contained in this interval
are unlikely to be chosen as decision thresholds. This is particularly true if the
anomaly scores belonging to the test set contain a few outliers that strongly skew
the results. Hence, robustly chosen boundaries may be beneficial to improve the
F1-EV score as a performance metric. To this end, the lower bound θmin P R is
chosen to be close to the mean of the normal test samples, assuming that one
would not estimate a decision threshold that is much smaller than this value. The
upper bound θmax P R is more difficult to choose because some large anomaly
scores may be outliers having very high values. Instead the upper bound is chosen
to be close to the center θopt P R of the set of all empirically optimal decision
thresholds, assuming that ideally one would not estimate a decision threshold
much larger than this value. Note that these boundaries are based on the anomaly
scores belonging to the normal test samples to be independent from a particular
set of training samples. Although one may argue that this leads to over-optimistic

4.3 F1 -EV score 75

results, it needs to be assumed that the normal samples of the training and test set
follow the same distribution to be able to estimate a suitable decision threshold
anyway. Furthermore, as shown in Section 4.2.2, holding back a few normal training
samples to estimate better decision thresholds does not improve the performance
indicating that this assumption is valid. Formally, the bounded F1-EV score is
defined as follows.

Definition 4.2 (Bounded F1-EV score). Let (θsorted(k))k=1,...,|Xtest| Ă R denote
a monotonically increasing sequence of decision thresholds, which correspond to
the sorted anomaly scores obtained with the test samples. Let βF1-EV P R+ and
θopt P R denote the center of all empirically optimal decision thresholds. Define

θmin : = mean((θsorted(k))k=1,...,|Xtest|) ´βF1-EV ¨ std((θsorted(k))k=1,...,|Xtest|)

θmax : = θopt +βF1-EV ¨ std((θsorted(k))k=1,...,|Xtest|)
(50)

and set kmin – arg mink=1,...,|Xtest|
tθsorted(k) : θsorted(k) ą θminu and

kmax – arg maxk=1,...,|Xtest|
tθsorted(k) : θsorted(k) ă θmaxu. Furthermore, set

Kvalid – kmax ´ kmin + 3 and

θbounded(k) –

$

’

’

’

&

’

’

’

%

θmin if k = 1

θsorted(k+ kmin ´ 2) if 2 ď k ď Kvalid ´ 1

θmax if k = Kvalid

(51)

for k = 1, ..., Kvalid. Then, the bounded F1-EV score is defined as

F1-EVbounded(Xtest, score, θbounded)

–

Kvalid´1
ÿ

k=1

F1(Xtest, score, θbounded(k))∆diffθbounded(k) P [0, 1]
(52)

with

∆diffθbounded(k) –
θbounded(k+ 1) ´ θbounded(k)

θbounded(Kvalid) ´ θbounded(1)
. (53)

4.3.2 Experimental setup

To experimentally evaluate the F1-EV score, the anomaly scores and decision
thresholds of all systems submitted to the ASD task of the DCASE2023 Chal-
lenge [44] were used. A detailed description of the DCASE2023 dataset can be
found in Section 5.2. For the experiments conducted in this section, it is sufficient
to know that the dataset contains recordings of 14 different machine types. Each
machine type is recorded under two different acoustic conditions, called source
and target domain. During testing, it is unknown to which of these two domains

76 decision threshold estimation

a given sample belongs to. Evaluations are done independently for each machine
type using a single decision threshold for both domains. To compare the perfor-
mances of ASD systems submitted to this challenge, the harmonic mean of the
AUC-ROCs and pAUCs belonging to all 14 machine types was used. Therefore,
choosing a decision threshold is not necessary and was entirely optional, which is
the reason why some participants did not provide a decision threshold. For the
experimental evaluations done here, only the F1 scores of all submitted systems
belonging to individual machine types that are greater than zero were used to not
use invalid submissions. Furthermore, βF1-EV = 0.2 is used for the bounded F1-EV
score.

4.3.3 Experimental comparison with existing evaluation metrics

Figure 18 and Figure 19 depict comparisons of different evaluation metrics in
terms of the Pearson correlation coefficient (PCC). The following observations
can be made: First of all, AUC-ROC has a low to moderate correlation with the
F1 scores resulting from the estimated (PCC = 0.503) and the optimal decision
thresholds (PCC = 0.497). This affirms the motivation for introducing F1-EV as a
new performance measure. Second, the F1-EV score has a very low correlation with
AUC-ROC (PCC = 0.199) and a low correlation with the F1 scores (PCC = 0.380

and PCC = 0.306). Third, the bounded F1-EV score has a high correlation with
AUC-ROC (PCC = 0.748) and both F1 scores (PCC = 0.696 and PCC = 0.732).
This shows that the bounded F1-EV score works as intended and properly defined
bounds for the F1-EV score are needed to obtain useful results. Although most
estimation methods lead to decision thresholds with similar performance as shown
in Section 4.2, it shall be emphasized that for some submissions the estimated
decision thresholds may be far from optimal. For these submissions, the correlation
between the bounded F1-EV and the F1 score obtained with the estimated decision
thresholds can be increased when using better estimates.

When inspecting Figure 18, one can see clusters looking similar to horizontal
lines in all sub-figures belonging to F1 scores of approximately two-thirds. To give
an example, in sub-figure (a) this horizontal line ranges from an AUC-ROC of 0.4
to an AUC-ROC of 0.9. These lines look suspiciously wrong but can in fact be
explained by the following: Since the recordings for each machine type belong to
two different domains, it is possible that the provided decision thresholds yield
almost perfect results for one domain while performing very poorly for the other
domain. This means that either precision or recall are almost equal to 1 for both
domains. Then the other value is close to 1 for only one domain while being close
to 0 for the other domain and thus is approximately equal to 0.5 for both domains
when assuming that both domains have approximately the same number of test
samples. Since the F1 score is the harmonic mean of precision and recall, this yields
an F1 score equal to two-thirds.

4.3 F1 -EV score 77

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC

F
1-
sc
or
e
(a
s
su
b
m
it
te
d
)

a) AUC-ROC vs. F1-score (as submitted), PCC=0.503

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EV

F
1-
sc
or
e
(a
s
su
b
m
it
te
d
)

b) F1-EV vs. F1-score (as submitted), PCC=0.380

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EVbounded

F
1-
sc
or
e
(a
s
su
b
m
it
te
d
)

c) F1-EVbounded vs. F1-score (as submitted), PCC=0.696

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC

op
ti
m
al

F
1-
sc
or
e

d) AUC-ROC vs. optimal F1-score, PCC=0.497

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EV

op
ti
m
al

F
1-
sc
or
e

e) F1-EV vs. optimal F1-score, PCC=0.306

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EVbounded

op
ti
m
al

F
1-
sc
or
e

f) F1-EVbounded vs. optimal F1-score, PCC=0.732

Figure 18: Comparison of several different performance measures computed on the
evaluation set of task 2 of the DCASE2023 Challenge. In the top row,
threshold-independent performance measures are compared to the F1 score
obtained with the submitted decision threshold. In the bottom row, threshold-
independent performance measures are compared to the F1 score obtained
with an optimal decision threshold. © 2024 IEEE

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC

F
1-
E
V

a) AUC-ROC vs. F1-EV, PCC=0.199

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC

F
1-
E
V

b
o
u
n
d
ed

b) AUC-ROC vs. F1-EVbounded, PCC=0.748

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EV

F
1-
E
V

b
o
u
n
d
ed

c) F1-EV vs. F1-EVbounded, PCC=0.495

Figure 19: Comparison of threshold-independent performance measures computed on the
evaluation set of task 2 of the DCASE2023 Challenge. © 2024 IEEE

4.3.4 Choosing the hyperparameter βF1-EV

In Figure 20, the PCCs between the bounded F1-EV score and other performance
metrics are depicted for varying values of the hyperparameter βF1-EV. This allows
to investigate the sensitivity with respect to βF1-EV and to provide recommenda-
tions for setting this hyperparameter. It can be seen that for βF1-EV ą 0.2 the

78 decision threshold estimation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.4

0.5

0.6

0.7

0.8

0.9

1

βF1-EV

P
C
C

w
it
h
b
ou

n
d
ed

F
1-
E
V

AUC-ROC optimal F1-score F1-score (as submitted)

Figure 20: Sensitivity of the bounded F1-EV score with respect to βF1-EV. © 2024 IEEE

PCC between the F1-EV score and AUC-ROC decreases. This verifies once more
that both performance metrics are indeed different. Furthermore, the PCC be-
tween the F1-EV score and optimal F1 score increases for βF1-EV ă 1 and slightly
decreases for βF1-EV ą 1 but still has a high correlation. Last and most impor-
tantly, the PCC between the F1-EV score and submitted F1 scores decreases for
βF1-EV ą 0.2. However, the decrease is to less degree than it is the case for the
PCC with AUC-ROC and therefore is relatively stable. Using a relatively small
value for βF1-EV such as setting βF1-EV = 0.2 seems to be a good choice to have
a threshold-independent performance measure that is similar to AUC-ROC score
but also includes the difficulty of estimating a good decision threshold.

4.4 summary

In this chapter, it was investigated how to choose a good decision threshold for
semi-supervised ASD systems. For this purpose, the threshold estimation methods
presented in Section 2.11 were compared experimentally. It was shown that most
methods perform equally well and yield a performance between 90% to 95% of the
theoretically optimal performance. More detailed comparisons revealed that MST
approaches perform slightly better than non-iterative approaches, especially when
less data is used for training the system. Hence, MST yields more robust decision
thresholds and thus is identified as the preferred threshold estimation method.
Furthermore, it was shown that not using all normal training samples for training
the embedding model with the goal of obtaining more realistic anomaly scores
for estimating the threshold does not improve the performance. Hence, all normal
samples that are available should be used for training the embedding model.

In a second section, it was shown that AUC-ROC does not include the difficulty
of estimating a good decision threshold because a maximal AUC-ROC only shows
that a single optimal decision threshold exists. Moreover, the AUC-ROC score
has a low correlation with the F1 score and thus only using the AUC-ROC score

4.4 summary 79

for evaluating the performance of an ASD system is not sufficient. To solve this
issue, the threshold-independent F1-EV was proposed, which has a high correlation
with the AUC-ROC score as well as with the estimated and optimal F1 scores.
However, it was also shown that F1-EV requires properly defined bounds to yield
meaningful results. Still, F1-EV has a strong potential to replace the AUC-ROC
as the standard evaluation metric for semi-supervised ASD.

5
DOMAIN ADAPTATION AND GENERAL IZAT ION

A domain shift is a change of the underlying distribution of the data. There are
several reasons for such a domain shift to occur. Examples are changing locations of
acoustic sensors, changing the time at which data is collected, adding or removing
other sound sources or modifying the monitored sound sources. The subset of the
data space that has initially been of interest is called source domain Xsource Ă X

and the domain shifted subset is called target domain Xtarget Ă X. Usually, there
are only very few training samples available for the target domain, i.e. |Xtarget X

Xtrain| ăă |Xsource X Xtrain|. Due to this data scarcity, it is difficult to estimate
the distribution of the normal data in the target domain. To still have a well-
defined ASD task, one needs to make sure that shifting the domain of normal data
still results in normal data and that anomalous data is mapped onto anomalous
data. Thus, in the context of this thesis a domain shift is formally defined as
any mapping shiftdomain : Xsource Ñ Xtarget such that shiftdomain(xn) P Xnormal and
shiftdomain(xa) P Xanomalous for all xn P Xnormal and all xa P Xanomalous.

The main difficulty of handling domain shifts is that normal and anomalous
data belonging to the target domain may both be viewed as weakly anomalous by
a system trained on the source domain due to a mismatch between the underlying
distributions of both domains. Note that, depending on the application, precisely
defining the sets Xsource and Xtarget may be very challenging. This is the reason why
the formal definition of a domain shift as presented above is rather vague and will
not be further specified. In the context of acoustic machine condition monitoring,
which remains to be the application considered in this chapter, a domain shift
corresponds to changing the acoustic environment, e.g. modifying the background
noise or changing any parameter settings of fully-functioning machines such as the
speed they are operating with.

Modifying an ASD system trained on the source domain to perform well on
the target domain for which only very limited training data is available, is called
domain adaption [96]. Ideally, this enables users to adapt the system without too
much effort to react to possible changes of the acoustic environment or the mon-
itored sound sources themselves. A possible method for domain adaption is to
estimate different distributions for each domain using a jointly trained embedding
space and use different backends to decide whether a sample is normal or anoma-
lous [240]. However, adapting a system for each possible domain shift is highly im-
practical and costly because it requires trained personnel to collect at least some
additional data belonging to the target domain, fine-tune parameters and re-train
or even change entire components of an ASD system. Furthermore, normal data of
the original source domain will likely not be considered normal after adapting the
system to the target domain. It would be much better if the same system yields

81

82 domain adaptation and generalization

reasonable performance regardless of domain shifts without needing to adapt the
system. Achieving this goal of developing a domain-independent system is called
domain generalization [225]. Hence, the main difference to domain adaptation is
that the same models and the same backend with the same decision threshold are
used for the source and all possible target domains. This makes domain general-
ization inherently more difficult but solving this problem automatically solves all
domain adaptation problems.

To learn embeddings that are robust to domain shifts, [225] distinguishes be-
tween the two main categories domain-invariant representation learning [15] and
feature disentanglement [271]. The idea of domain-invariant learning is to ex-
plicitly reduce the variability between multiple different source domains in the
embedding space as this will also reduce the variability to arbitrary target do-
mains. Disentangled feature learning aims at learning embeddings as combina-
tions of domain-invariant features, which are robust to domain shifts, and domain-
dependent features, which capture the variability between different domains. In
[46], these two main categories were described as a domain-mixing-based approach,
where a domain-invariant model is used for both domains [10, 219, 243], and a
domain-classification-based approach with different models for the source and tar-
get domain, whose domain-specific anomaly scores are combined appropriately.
Evidence has been provided that using a combination of domain-dependent mod-
els or distributions [269] or using a classifier for the domains [115] leads to better
performance than a domain-mixing approach. The most likely reason is that a
domain-invariant training requires to remove at least some potential classes and
thus simplifies the classification task, which leads to less informative embeddings.
Note that classifying between different meta information, as done in [218], corre-
sponds to a disentangled feature learning approach because each combination of
provided meta information that defines a class may also define a specific domain
shift.

The goal of this chapter is to present an embedding-based ASD system that
reliably detects anomalous sounds regardless of the domain a given audio recording
belongs to. As this task is much more difficult than an ASD task without domain
shifts, re-using the system presented in Chapter 3 alone will not suffice and thus the
system must be modified accordingly. To this end, several techniques for improving
the performance will be presented.

This chapter is structured as follows: First, two datasets used for the experi-
mental evaluations in domain-shifted conditions will be presented. Then, an ASD
system specifically focusing on domain generalization will be designed and individ-
ual design choices will be experimentally evaluated. The decisions obtained with
differently trained systems will be explained in the third section by visualizing
the influence of specific regions of the input samples and the embedding space. In
the fourth section, the performance obtained with this ASD system is compared
to systems based on pre-trained embeddings. The loss function AdaProj, which
is a generalization of the sub-cluster AdaCos loss, will be presented in the fourth

5.1 contributions of the author 83

section. Then, it will be investigated whether utilizing SSL improves the perfor-
mance of an ASD system. The chapter is concluded by combining all techniques
of the previous sections into a single system and comparing its performance to the
state-of-the-art systems.

5.1 contributions of the author

The sections of this chapter are largely based on the following key publications:

• Kevin Wilkinghoff. “Design Choices for Learning Embeddings from Auxil-
iary Tasks for Domain Generalization in Anomalous Sound Detection.” In:
International Conference on Acoustics, Speech and Signal Processing. IEEE,
2023. doi: 10.1109/ICASSP49357.2023.10097176.

• Kevin Wilkinghoff and Frank Kurth. “Why do Angular Margin Losses work
well for Semi-Supervised Anomalous Sound Detection?” In: IEEE/ACM
Transactions on Audio, Speech and Language Processing 32 (2024), pp. 608–
622. doi: 10.1109/TASLP.2023.3337153

• Kevin Wilkinghoff and Fabian Fritz. “On Using Pre-Trained Embeddings for
Detecting Anomalous Sounds with Limited Training Data.” In: 31st Euro-
pean Signal Processing Conference. IEEE, 2023, pp. 186–190. doi: 10.23919/
EUSIPCO58844.2023.10290003.

• Kevin Wilkinghoff. “AdaProj: Adaptively Scaled Angular Margin Subspace
Projections for Anomalous Sound Detection with Auxiliary Classification
Tasks.” Submitted to 9th Workshop on Detection and Classification of Acous-
tic Scenes and Events (DCASE), arXiv:2403.14179. 2024. doi: 10.48550/
arXiv.2403.14179.

• Kevin Wilkinghoff. “Self-Supervised Learning for Anomalous Sound Detec-
tion.” In: International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2024, pp. 276–280. doi: 10.1109/ICASSP48485.2024.
10447156.

For publications that are not single-authored, individual contributions of the the-
sis author and all co-authors to these publications are stated in Section A.1. If
not stated otherwise, the content listed in the following paragraph is the sole
contribution of the thesis author.

The contents of the following sections were published as papers by the thesis
author: Section 5.3.2 is based on [245], 5.4 is based on [262], Section 5.5 is based on
[258], Section 5.6 is based on [248] and Section 5.7 is based on [250]. Frank Kurth
proposed to include Table 21. Fabian Fritz helped with the experimental evalua-
tions in Section 5.5 by writing wrapper functions for the pre-trained embeddings.
The experimental results presented in Section 5.8 are an extended version of Fig.

https://doi.org/10.1109/ICASSP49357.2023.10097176
https://doi.org/10.1109/TASLP.2023.3337153
https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.48550/arXiv.2403.14179
https://doi.org/10.48550/arXiv.2403.14179
https://doi.org/10.1109/ICASSP48485.2024.10447156
https://doi.org/10.1109/ICASSP48485.2024.10447156

84 domain adaptation and generalization

Table 12: Structure of the DCASE2022 ASD dataset. The dataset contains recordings of
7 machine types and is divided into sections, which contain recordings of the
same machine type and are used for evaluation.

number of sections number of recordings (per section)
subset (per machine type) split source domain target domain

normal anomalous normal anomalous

development set 3
training 990 0 10 0

test 50 50 50 50

evaluation set 3
training 990 0 10 0

test 100 normal and 100 anomalous samples

3 from [248], which also includes results using the SSL approaches presented in
Section 5.6.

5.2 machine condition monitoring in domain-shifted condi-
tions

All experiments in this chapter related to domain generalization for ASD use the
following datasets for acoustic machine condition monitoring.

5.2.1 DCASE2022 ASD dataset

Table 12 contains a summary of the DCASE2022 ASD dataset [46]. Overall,
the dataset has a similar structure as the DCASE2020 dataset described in Sec-
tion 3.2.1 but also includes the difficulty of domain generalization. The dataset
contains recordings of seven different machine types, namely “ToyCar” and “Toy-
Train” from ToyAdmos2 [74] and “fan”, “gearbox”, “bearing”, “slide rail” and “valve”
from MIMII-DG [45]. All recordings have a length of 10 s and a sampling rate of
16 kHz. For each machine type, there are six different sections, each corresponding
to a subset of the dataset with one specific domain shift, that are used to compute
the performance. Thus, there are 42 sections in total. It is important to emphasize
that, in contrast to the DCASE2020 dataset, the sections do not correspond to
individual machines but may contain a mixture of several machines of a known
type. This makes the dataset more realistic because it should be possible to use the
same ASD system for multiple machines. However, the task is also more difficult
because the variability between different recordings contained in the same section
is increased.

The dataset is divided into a development and an evaluation split, each contain-
ing three sections of each machine type. Both splits consist of a training subset
containing only normal training samples and a test split containing normal and

5.2 machine condition monitoring in domain-shifted conditions 85

Table 13: Structure of the DCASE2023 ASD dataset. The dataset contains recordings of
14 machine types and is divided into sections, which contain recordings of the
same machine type and are used for evaluation.

number of sections number of recordings (per section)
subset (per machine type) split source domain target domain

normal anomalous normal anomalous

development set 1
training 990 0 10 0

test 50 50 50 50

evaluation set 1
training 990 0 10 0

test 200 samples

anomalous samples. Furthermore, each section is divided into a source domain with
990 normal training samples and a target domain that differs from the source do-
main by modifying machine parameter settings or the noise conditions and for
which only ten normal training samples are available. In addition to the section
and machine type, so-called attribute information are provided for each normal
training sample as for example the speed of a toy car, different machine IDs or
noise levels. For all files of both test splits, only machine types and sections are
provided. Combining machine types, sections and attribute values present in the
development and evaluation split of the dataset into a single label, which thus
encodes the meta information for each file, results in 342 classes.

The performance obtained on this dataset is measured by calculating the
AUC-ROC and pAUC with p = 0.1 for each section and computing the harmonic
mean over all individual performance metrics. Using the harmonic mean instead
of the arithmetic mean ensures that bad scores penalize the total performance
result more severely to favor ASD systems that perform equally well for all sec-
tions, which is favorable for practical applications. The AUC-ROCs and pAUCs
are calculated independently of the domain, i.e. using only a single ROC curve for
both domains.

5.2.2 DCASE2023 ASD dataset

The DCASE2023 ASD dataset [44] summarized in Table 13 is similar to the
DCASE2022 ASD dataset but differs in the following aspects: The major dif-
ference is that the DCASE2023 dataset is designed for so-called first-shot ASD
meaning that there are different machine types for the development and evalua-
tion split. This makes it impossible to fine-tune the hyperparameters of the system
to individual machine types by evaluating the performance, which indirectly uses
the anomalous samples of the development set as additional training samples and
thus should not be allowed in a semi-supervised anomaly detection setting. For

86 domain adaptation and generalization

neural network (jointly trained)
frontend

backend

raw waveform
(160000)

compute
magnitude
spectrogram
(311 × 513)

apply tem-
poral mean

normalization
(311 × 513)

compute
magnitude
spectrum
(80000)

extract
embbeding
with neural
network for
spectrograms

(128)

extract
embbeding
with neural
network

for spectra
(128)

concatenate
embeddings

(256)
evaluate cosine
distances with
all samples of
target domain

(10)

evaluate cosine
distances

with means
(k-means) of
source domain

(16)
return

minimum of
distances as

anomaly score
(1)

Figure 21: Structure of the proposed anomalous sound detection system for domain-
shifted conditions. Representation size in each step is given in brackets. ©
2023 IEEE

the development split, the same machine types as for the DCASE2022 dataset are
used. For the evaluation split, the machine types “ToyTank”, “ToyNscale” and “Toy-
Drone” from ToyAdmos2+ [73] and “vacuum”, “bandsaw”, “grinder” and “shaker”
from MIMII-DG [45] are used. A second major change is that there is only a
single section for each machine type. This increases the difficulty by making the
classification task imposed by discriminating between provided meta information
less challenging and thus resulting in less informative embeddings. As a third in-
crease in difficulty, the length of the recordings belonging to different machine
types varies between 6 s and 18 s.

5.3 designing an ASD system for domain generalization

In this section, an ASD system specifically designed to work well in domain-shifted
conditions will be presented and evaluated. The main idea is to use a single
domain-independent embedding model that extracts embeddings of the source
and target domains. Then, domain-dependent distances to normal data samples
can be combined into a single domain-independent anomaly score yielding similar
performance for both domains.

5.3.1 System description

The ASD system presented in Chapter 3 yields state-of-the-art performance for
ASD without domain shifts and thus serves as a basis for developing an ASD
system in domain-shifted conditions. A modified version is depicted in Figure 21.
As before, the system consists of three main blocks, namely a frontend for com-
puting feature representations, a neural network for extracting embeddings and a
backend for computing anomaly scores. All three blocks will now be presented in
detail. Individual design choices will be investigated experimentally in the follow-
ing subsection using the DCASE2022 dataset.

The frontend uses two branches extracting different feature representations of
the raw waveforms: A short-time Fourier transform (STFT) and a discrete Fourier

5.3 designing an ASD system for domain generalization 87

Table 14: Sub-network architecture for DFT feature branch. © 2023 IEEE

layer name structure output size

input - 80000

1D convolution 256, stride= 64 1250 ˆ 128

1D convolution 64, stride= 16 40 ˆ 128

1D convolution 16, stride= 4 10 ˆ 128

flatten - 1280

dense - 128

dense - 128

dense - 128

dense - 128

dense (embedding) no activation 128

transform (DFT) based feature. For the STFT based feature branch, magnitude
spectrograms extracted with Hanning-weighted windows with a size of 1024 and a
hop size of 512 are extracted. In contrast to the system presented in Section 3.2.2,
no Mel filterbank is used and no logarithm is applied. The spectrograms are fur-
ther pre-processed with temporal mean normalization (TMN), which essentially
removes all constant frequency information while also denoising the data similar to
cepstral mean normalization [192]. The main reason to apply TMN is to make both
feature representations more different. For the second feature branch, DFTs are
computed to capture all constant frequencies with the highest possible frequency
resolution. Since machine sounds are very structured with highly repetitive pat-
terns, utilizing as much frequency information as possible may be beneficial to
detect anomalous sounds.

The neural network used to learn an embedding space utilizes another sub-
network for each feature branch: A one-dimensional CNN for the DFT features
(see Table 14) and a modified version of the ResNet architecture shown in Table 4
(see Table 15). The learned embeddings of both sub-networks are concatenated
into a single embedding. In contrast to taking a weighted sum of both embeddings
or combining them with a trainable layer, the network has no possibility to only
utilize a single embedding that is most useful for solving the auxiliary task and
ignore the other embedding. This ensures a higher sensitivity of the system for
detecting anomalous data as anomalies may only be detectable for one of the
input features. In each convolutional or dense layer of both sub-networks, batch
normalization [86] and the activation function ReLU are used. The entire network
is jointly trained for ten epochs with a batch size of 64 by minimizing the sub-
cluster AdaCos loss with 16 sub-clusters for each class using adam [101]. Mixup
[272] with a uniformly sampled mixing coefficient is used to randomly augment the

88 domain adaptation and generalization

Table 15: Modified ResNet architecture for STFT feature branch. © 2023 IEEE

layer name structure output size

input TMN 311 ˆ 513

2D convolution 7 ˆ 7, stride= 2 156 ˆ 257 ˆ 16

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 77 ˆ 128 ˆ 16

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 39 ˆ 64 ˆ 32

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 20 ˆ 32 ˆ 64

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 10 ˆ 16 ˆ 128

max pooling 10 ˆ 1, stride= 1 1 ˆ 16 ˆ 128

flatten - 2056

dense (embedding) no activation 128

data during training. The classes used for training the model consist of all possible
combinations of machine types, sections and different values for provided attribute
information present in the training datasets of the development and evaluation set
resulting in a total of 342 classes for the DCASE2022 dataset. Note that this
training paradigm corresponds to a feature disentanglement approach for learning
embeddings that are robust to domain-shifts. It is also possible to use multiple
losses for different classification tasks instead of a single one [218, 240]. However,
this did not lead to a noticeable difference in performance and thus only a single
classification task is used for the sake of simplicity. Since it is possible that the
network learns trivial solutions for a few classes that are very easy to identify, the
strategies to prevent one-class models from learning trivial solutions are applied.
More concretely, this means that no bounded activation functions, no trainable
class centers, and no bias terms are used for both sub-networks. All centers are
randomly initialized on the unit sphere and thus are pairwise orthogonal with very
high probability.

The backend employs different strategies to compute an anomaly score in both
domains. For the source domain, k-means with 16 clusters is applied to all normal
training samples of the source domain. An anomaly score for the source domain is
obtained by computing the minimum cosine distance to all resulting clusters. For
the target domain, the minimum cosine distance to all normal training samples
of the target domain is used as an anomaly score. As the final step, a domain-

5.3 designing an ASD system for domain generalization 89

Table 16: Comparison between using or not using trainable cluster centers and bias terms
on the DCASE2022 dataset. © 2023 IEEE

trainable cluster centers non-trainable cluster centers
dataset domain AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%)

using bias terms

dev source 81.65 ˘ 0.85 70.25 ˘ 1.31 82.75 ˘ 0.95 75.22 ˘ 0.78

dev target 77.18 ˘ 0.88 62.05 ˘ 1.10 76.84 ˘ 1.39 61.66 ˘ 1.09

dev mixed 77.73 ˘ 0.90 64.09 ˘ 1.40 79.79 ˘ 0.50 64.89 ˘ 0.41

eval source 74.21 ˘ 1.14 62.84 ˘ 1.38 76.45 ˘ 0.71 65.12 ˘ 0.66

eval target 71.13 ˘ 1.24 59.54 ˘ 0.86 69.19 ˘ 0.56 59.08 ˘ 1.15

eval mixed 71.91 ˘ 0.98 58.84 ˘ 0.88 73.04 ˘ 0.58 59.18 ˘ 0.90

not using bias terms

dev source 82.88 ˘ 0.68 71.44 ˘ 0.96 84.19 ˘ 0.7584.19 ˘ 0.7584.19 ˘ 0.75 76.45 ˘ 0.9076.45 ˘ 0.9076.45 ˘ 0.90

dev target 77.68 ˘ 1.11 62.82 ˘ 1.1762.82 ˘ 1.1762.82 ˘ 1.17 78.51 ˘ 0.9078.51 ˘ 0.9078.51 ˘ 0.90 62.54 ˘ 0.87

dev mixed 78.15 ˘ 0.77 64.86 ˘ 0.52 81.36 ˘ 0.6681.36 ˘ 0.6681.36 ˘ 0.66 66.55 ˘ 0.8666.55 ˘ 0.8666.55 ˘ 0.86

eval source 74.34 ˘ 0.96 63.49 ˘ 0.38 76.81 ˘ 0.7976.81 ˘ 0.7976.81 ˘ 0.79 65.84 ˘ 0.2265.84 ˘ 0.2265.84 ˘ 0.22

eval target 71.30 ˘ 0.3371.30 ˘ 0.3371.30 ˘ 0.33 59.94 ˘ 0.8159.94 ˘ 0.8159.94 ˘ 0.81 69.80 ˘ 0.53 59.67 ˘ 1.14

eval mixed 72.15 ˘ 0.50 58.90 ˘ 0.42 73.43 ˘ 0.5473.43 ˘ 0.5473.43 ˘ 0.54 59.78 ˘ 0.8359.78 ˘ 0.8359.78 ˘ 0.83

independent anomaly score is given by the minimum of both domain-specific
anomaly scores.

5.3.2 Experimental investigations of individual design choices

To show that the design choices of the proposed ASD system actually improve the
performance, multiple experiments have been conducted and will now be discussed.
Each experiment was repeated five times and the mean and standard deviation of
the harmonic means computed over all sections belonging to the development and
evaluation split of the DCASE2022 dataset are shown.

In the first experiment it is evaluated whether applying the same strategies
used to prevent the embedding model to learn trivial solutions when using one-
class losses also has a positive impact on the performance when using an angular
margin loss. The results presented in Table 16 show that the overall performance
is significantly improved when not using bias terms and not adapting the centers
during training. It is worth noting that the performance improves on the target
domain but degrades on the source domain when using trainable centers. This
indicates that for some classes of the source domain the embedding model indeed

90 domain adaptation and generalization

Table 17: Comparison between different input feature representations and ways of com-
bining them on the DCASE2022 dataset. © 2023 IEEE

individual input feature representations
magnitude spectrum log-Mel magnitude spectrogram magnitude spectrogram

dataset domain AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%)

dev source 80.75 ˘ 0.92 71.09 ˘ 1.14 70.91 ˘ 2.10 63.21 ˘ 1.10 79.18 ˘ 1.07 70.38 ˘ 0.43

dev target 73.95 ˘ 1.25 61.31 ˘ 1.40 65.78 ˘ 1.48 57.05 ˘ 0.76 76.59 ˘ 1.59 60.59 ˘ 1.50

dev mixed 76.81 ˘ 0.94 63.09 ˘ 1.23 68.93 ˘ 1.52 57.79 ˘ 0.55 77.60 ˘ 1.02 62.31 ˘ 1.10

eval source 68.42 ˘ 1.02 59.06 ˘ 0.89 67.59 ˘ 1.01 59.96 ˘ 0.65 74.65 ˘ 0.83 64.04 ˘ 1.23

eval target 63.46 ˘ 1.39 56.90 ˘ 0.95 62.09 ˘ 0.61 56.60 ˘ 0.79 69.67 ˘ 1.14 58.95 ˘ 0.74

eval mixed 66.00 ˘ 1.11 57.11 ˘ 0.58 65.04 ˘ 0.68 57.00 ˘ 0.50 72.10 ˘ 0.81 58.87 ˘ 0.33

combining magnitude spectrum and magnitude spectrograms
concatenate embeddings add embeddings concatenate embeddings

after training while training while training
dataset domain AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%)

dev source 84.68 ˘ 0.8684.68 ˘ 0.8684.68 ˘ 0.86 74.51 ˘ 0.26 83.12 ˘ 1.18 73.25 ˘ 1.11 84.19 ˘ 0.75 76.45 ˘ 0.9076.45 ˘ 0.9076.45 ˘ 0.90

dev target 78.78 ˘ 0.7878.78 ˘ 0.7878.78 ˘ 0.78 63.00 ˘ 0.3663.00 ˘ 0.3663.00 ˘ 0.36 77.96 ˘ 1.37 62.02 ˘ 1.11 78.51 ˘ 0.90 62.54 ˘ 0.87

dev mixed 81.17 ˘ 0.66 65.23 ˘ 0.39 80.21 ˘ 0.73 64.40 ˘ 1.20 81.36 ˘ 0.6681.36 ˘ 0.6681.36 ˘ 0.66 66.55 ˘ 0.8666.55 ˘ 0.8666.55 ˘ 0.86

eval source 75.27 ˘ 0.96 63.93 ˘ 0.63 75.54 ˘ 0.83 64.85 ˘ 0.73 76.81 ˘ 0.7976.81 ˘ 0.7976.81 ˘ 0.79 65.84 ˘ 0.2265.84 ˘ 0.2265.84 ˘ 0.22

eval target 69.31 ˘ 0.90 59.45 ˘ 0.67 69.71 ˘ 0.39 59.08 ˘ 1.15 69.80 ˘ 0.5369.80 ˘ 0.5369.80 ˘ 0.53 59.67 ˘ 1.1459.67 ˘ 1.1459.67 ˘ 1.14

eval mixed 72.18 ˘ 0.67 59.45 ˘ 0.46 72.48 ˘ 0.53 59.22 ˘ 0.66 73.43 ˘ 0.5473.43 ˘ 0.5473.43 ˘ 0.54 59.78 ˘ 0.8359.78 ˘ 0.8359.78 ˘ 0.83

learns solutions that are closely resembling trivial solutions making it difficult to
discriminate between normal and anomalous embeddings.

In Table 17, different input feature representations and approaches for combin-
ing them are compared. The following observations can be made: First, magnitude
spectrograms perform much better than log-Mel magnitude spectrograms that are
used in many other ASD systems (cf. Section 2.2). The most likely reason is that
high frequencies are more important than low frequencies for detecting anoma-
lous sounds of machines [140] and using the logarithmically scaled Mel-filterbank
decreases the resolution for high frequencies. Furthermore, only using the DFT-
based magnitude spectra leads to surprisingly good results that are better than
the ones obtained with log-Mel spectrograms but worse than when using spectro-
grams. Hence, a high frequency resolution is highly beneficial to detect anomalous
sounds for machine condition monitoring. Not surprisingly, combining both feature
branches improves the performance as providing different views on the data gives
a more complete picture of the input data. Thirdly, concatenating the embeddings
of the sub-networks while training leads to the best performance. Again, the rea-
son is that the network is forced to encode as much information as possible for
each individual feature branch and thus results in more informative embeddings.

In Table 18, it is experimentally verified whether applying TMN to the magni-
tude spectrograms improves peformance or not. It can be seen that applying TMN
leads to very similar performance when only using the magnitude spectrograms.
But, when utilizing both feature branches there is an improvement in performance.

5.3 designing an ASD system for domain generalization 91

Table 18: Effect of temporal normalization in domain-shifted conditions. © 2023 IEEE

without temporal normalization with temporal normalization
dataset domain AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%)

magnitude spectrogram

dev source 79.93 ˘ 0.71 70.98 ˘ 1.38 79.18 ˘ 1.07 70.38 ˘ 0.43

dev target 76.18 ˘ 0.85 60.35 ˘ 1.23 76.59 ˘ 1.59 60.59 ˘ 1.50

dev mixed 77.69 ˘ 0.47 62.52 ˘ 1.09 77.60 ˘ 1.02 62.31 ˘ 1.10

eval source 75.53 ˘ 1.19 64.31 ˘ 1.08 74.65 ˘ 0.83 64.04 ˘ 1.23

eval target 69.52 ˘ 0.73 59.67 ˘ 0.7159.67 ˘ 0.7159.67 ˘ 0.71 69.67 ˘ 1.14 58.95 ˘ 0.74

eval mixed 72.19 ˘ 0.77 59.39 ˘ 0.91 72.10 ˘ 0.81 58.87 ˘ 0.33

magnitude spectrum + magnitude spectrogram

dev source 83.18 ˘ 1.68 74.66 ˘ 0.71 84.19 ˘ 0.7584.19 ˘ 0.7584.19 ˘ 0.75 76.45 ˘ 0.9076.45 ˘ 0.9076.45 ˘ 0.90

dev target 76.95 ˘ 0.97 62.26 ˘ 0.62 78.51 ˘ 0.9078.51 ˘ 0.9078.51 ˘ 0.90 62.54 ˘ 0.8762.54 ˘ 0.8762.54 ˘ 0.87

dev mixed 80.04 ˘ 0.76 64.84 ˘ 0.51 81.36 ˘ 0.6681.36 ˘ 0.6681.36 ˘ 0.66 66.55 ˘ 0.8666.55 ˘ 0.8666.55 ˘ 0.86

eval source 76.41 ˘ 0.48 65.39 ˘ 0.68 76.81 ˘ 0.7976.81 ˘ 0.7976.81 ˘ 0.79 65.84 ˘ 0.2265.84 ˘ 0.2265.84 ˘ 0.22

eval target 68.89 ˘ 0.96 59.46 ˘ 0.68 69.80 ˘ 0.5369.80 ˘ 0.5369.80 ˘ 0.53 59.67 ˘ 1.1459.67 ˘ 1.1459.67 ˘ 1.14

eval mixed 72.85 ˘ 0.61 59.91 ˘ 0.7559.91 ˘ 0.7559.91 ˘ 0.75 73.43 ˘ 0.5473.43 ˘ 0.5473.43 ˘ 0.54 59.78 ˘ 0.83

92 domain adaptation and generalization

The reason is that both features better complement each other as the constant
frequency information is removed from the spectrograms, which is exactly the in-
formation being captured by the DFT features, and thus both features provide a
more detailed view on the data than when not applying TMN.

In Table 19, the performances obtained with different backends for computing
anomaly scores are compared. More concretely, using a GMM is compared to using
the cosine distance and different ways of combining the anomaly scores of both
domains are evaluated. The following observations can be made. Unsurprisingly,
using only domain-specific anomaly scores leads to the best performance on the
domain they belong to. When comparing ways of computing anomaly scores, a
domain-specific GMM leads to better performance than cosine distance on the
source domain, which is consistent with the findings presented in Section 3.4.3. For
the target domain, both approaches are in fact equivalent due to the small number
of training samples and thus lead to the exact same performance. However, the
focus of this chapter lies on generalizing to unseen domains while still performing
well on the source domain without the need of adapting the model. This requires
a single decision threshold for both domains. When investigating the performance
on the mixed domain, a joint model performs much better than individual models
or when using the sum of the individual scores. Interestingly, the joint model
even outperforms the sub-model specialized on the source domain showing once
more that some classes are too easily detected by this model, which leads to
embeddings without sufficient information to detect anomalies. Although a joint
model in combination with a GMM leads to better performance on the source
domain than when using cosine distance, the cosine distance performs better on
the target domain and also better in the mixed domain. As optimizing the domain-
independent performance is the aim of this chapter, using cosine similarity and
training a joint model is the preferred design choice.

Lastly, the optimized ASD system investigated in this section and the baseline
system presented in Section 3.2.2 are compared in Table 20. One can see that all
performance improvements resulting from the modifications add up and lead to a
strong difference in performance, clearly favoring the modified system in domain-
shifted conditions.

5.4 explaining the decisions

The goal of this section is to explain the decisions of the ASD system by vi-
sualizing the obtained results. Explaining the decisions of data-driven models is
important for practical applications to increase the acceptance and trust in the re-
sults (explainable artificial intelligence (xAI) [84]). It also provides the possibility
to detect potential errors and gain additional insights about possible reasons that
caused these errors. For acoustic machine condition monitoring, localizing anoma-
lous temporal regions or frequency bands is crucial to help users to find the cause
of mechanical failure and thus simplifies the maintenance process. Previous work

5.4 explaining the decisions 93

Table 19: Comparison between different backends on the DCASE2022 dataset. © 2023
IEEE

GMM cosine distance
dataset domain AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%)

using scores from source domain model only

dev source 82.97 ˘ 0.97 77.36 ˘ 0.38 83.10 ˘ 1.02 76.87 ˘ 0.26

dev target 66.52 ˘ 0.42 59.63 ˘ 0.70 71.66 ˘ 1.25 61.45 ˘ 0.83

dev mixed 71.48 ˘ 0.26 58.86 ˘ 0.38 76.72 ˘ 0.78 63.37 ˘ 0.71

eval source 77.46 ˘ 1.16 66.73 ˘ 0.56 76.68 ˘ 0.85 66.25 ˘ 0.51

eval target 44.23 ˘ 3.67 54.87 ˘ 0.46 57.90 ˘ 1.17 55.62 ˘ 1.24

eval mixed 63.83 ˘ 0.62 55.74 ˘ 0.33 67.24 ˘ 0.70 56.83 ˘ 0.92

using scores from target domain model only

dev source 62.41 ˘ 2.80 60.54 ˘ 1.44 62.42 ˘ 2.80 60.55 ˘ 1.44

dev target 79.93 ˘ 0.9279.93 ˘ 0.9279.93 ˘ 0.92 62.19 ˘ 1.05 79.92 ˘ 0.9279.92 ˘ 0.9279.92 ˘ 0.92 62.18 ˘ 1.06

dev mixed 70.84 ˘ 1.13 58.36 ˘ 1.38 70.84 ˘ 1.13 58.36 ˘ 1.38

eval source 52.82 ˘ 3.40 56.27 ˘ 1.17 52.80 ˘ 3.41 52.26 ˘ 1.17

eval target 71.15 ˘ 0.5071.15 ˘ 0.5071.15 ˘ 0.50 60.72 ˘ 0.9560.72 ˘ 0.9560.72 ˘ 0.95 71.15 ˘ 0.5071.15 ˘ 0.5071.15 ˘ 0.50 60.72 ˘ 0.9560.72 ˘ 0.9560.72 ˘ 0.95

eval mixed 62.55 ˘ 0.79 54.66 ˘ 0.92 62.55 ˘ 0.79 54.65 ˘ 0.92

using sum of scores from both domain models

dev source 75.94 ˘ 2.70 70.34 ˘ 2.69 79.44 ˘ 1.95 73.29 ˘ 2.60

dev target 78.64 ˘ 1.12 63.28 ˘ 0.94 78.84 ˘ 1.23 62.67 ˘ 0.98

dev mixed 77.10 ˘ 1.59 65.12 ˘ 1.63 77.83 ˘ 1.56 66.11 ˘ 1.61

eval source 64.57 ˘ 1.35 60.96 ˘ 1.21 68.96 ˘ 1.11 63.09 ˘ 0.87

eval target 66.69 ˘ 0.54 58.73 ˘ 0.97 67.84 ˘ 0.48 58.80 ˘ 1.33

eval mixed 65.70 ˘ 0.91 57.26 ˘ 0.77 67.98 ˘ 0.64 58.12 ˘ 0.71

using scores from joint model for both domains

dev source 84.57 ˘ 0.7084.57 ˘ 0.7084.57 ˘ 0.70 77.57 ˘ 0.4177.57 ˘ 0.4177.57 ˘ 0.41 84.19 ˘ 0.75 76.45 ˘ 0.90

dev target 77.26 ˘ 1.02 63.12 ˘ 1.2463.12 ˘ 1.2463.12 ˘ 1.24 78.51 ˘ 0.90 62.54 ˘ 0.87

dev mixed 80.06 ˘ 0.35 64.67 ˘ 0.70 81.36 ˘ 0.6681.36 ˘ 0.6681.36 ˘ 0.66 66.55 ˘ 0.8666.55 ˘ 0.8666.55 ˘ 0.86

eval source 78.15 ˘ 0.9578.15 ˘ 0.9578.15 ˘ 0.95 67.55 ˘ 0.6367.55 ˘ 0.6367.55 ˘ 0.63 76.81 ˘ 0.79 65.84 ˘ 0.22

eval target 65.17 ˘ 0.48 58.59 ˘ 0.79 69.80 ˘ 0.53 59.67 ˘ 1.14

eval mixed 71.35 ˘ 0.53 59.32 ˘ 0.83 73.43 ˘ 0.5473.43 ˘ 0.5473.43 ˘ 0.54 59.78 ˘ 0.8359.78 ˘ 0.8359.78 ˘ 0.83

94 domain adaptation and generalization

Table 20: Effect of the presented design choices for improving the performance in domain-
shifted conditions. © 2023 IEEE

standard design choices presented design choices
dataset domain AUC-ROC (%) pAUC (%) AUC-ROC (%) pAUC (%)

dev source 71.65 ˘ 1.07 62.71 ˘ 0.74 84.19 ˘ 0.7584.19 ˘ 0.7584.19 ˘ 0.75 76.45 ˘ 0.9076.45 ˘ 0.9076.45 ˘ 0.90

dev target 63.63 ˘ 1.11 55.28 ˘ 0.84 78.51 ˘ 0.9078.51 ˘ 0.9078.51 ˘ 0.90 62.54 ˘ 0.8762.54 ˘ 0.8762.54 ˘ 0.87

dev mixed 67.72 ˘ 0.79 55.94 ˘ 0.54 81.36 ˘ 0.6681.36 ˘ 0.6681.36 ˘ 0.66 66.55 ˘ 0.8666.55 ˘ 0.8666.55 ˘ 0.86

eval source 69.11 ˘ 1.05 58.46 ˘ 0.42 76.81 ˘ 0.7976.81 ˘ 0.7976.81 ˘ 0.79 65.84 ˘ 0.2265.84 ˘ 0.2265.84 ˘ 0.22

eval target 61.33 ˘ 0.70 54.82 ˘ 0.78 69.80 ˘ 0.5369.80 ˘ 0.5369.80 ˘ 0.53 59.67 ˘ 1.1459.67 ˘ 1.1459.67 ˘ 1.14

eval mixed 64.59 ˘ 0.74 55.22 ˘ 0.66 73.43 ˘ 0.5473.43 ˘ 0.5473.43 ˘ 0.54 59.78 ˘ 0.8359.78 ˘ 0.8359.78 ˘ 0.83

on explaining the decision of ASD systems for acoustic machine condition moni-
toring exists but is rather limited. In [50], uniform manifold approximation and
projection (UMAP) [144] was used to visualize stacked consecutive frames of log(-
Mel) magnitude spectrograms or openL3 embeddings [32] as dimension-reduced
representations in a vector space. In [140], it has been shown that high frequency
information is much more important than low frequency information for detecting
anomalous machine sounds by using local interpretable model-agnostic explana-
tions (LIME) [191] applied to sounds (SLIME) [151]. This verifies the choice of
applying a high-pass filter to the input data representations (cf. Section 3.2.2).

5.4.1 Visualizing the input as viewed by the model

To visualize how using an auxiliary classification task affects the decision making
of the ASD system based on specific regions, randomized input sampling for ex-
planation (RISE) [181] is used. RISE applies random binary masks to the input
and evaluates the performance with the masked input. Then, so-called importance
maps are generated by repeating both steps many times for the same input sample
and summing all masks weighted with the corresponding performance. Finally, the
importance maps are normalized with the expected value of a random binary mask.
As a result, such an importance map visualizes the importance of specific regions
on the resulting performance. For the experiments conducted in this section, only
the sub-model based on magnitude spectrograms of the ASD system described in
Section 5.3.2 is used because these time-frequency representations allow to detect
and visualize temporal patterns and frequency bands of interest.

The spectrograms used by the ASD system have a very high dimension with
a temporal dimension of Dtime = 311 and a frequency dimension of Dfreq = 513.
Hence, there are 2T ¨F = 2159543 possible binary masks for these spectrograms and
thus too many iterations for RISE would be required. To reduce the dimension
of the search space, the following strategies were employed: First, the temporal

5.4 explaining the decisions 95

(a) Spectrogram of an anomalous gearbox
sound.

(b) Importance map of an anomalous gear-
box sound when using sub-cluster Ada-
Cos.

(c) Importance map of an anomalous gearbox
sound when using compactness loss.

(d) Spectrogram of a normal valve sound. (e) Importance map of a normal valve sound
when using sub-cluster AdaCos.

(f) Importance map of a normal valve sound
when using compactness loss.

Figure 22: Log-scaled spectrograms (left column), importance maps obtained with RISE
when training with the sub-cluster AdaCos loss and classifying between differ-
ent machine types, sections and attribute information (middle column), and
importance maps obtained with RISE when training with an intra-class com-
pactness loss and without an auxiliary classification task (right column) for
two different recordings belonging to the test split of the development set
(rows). For the importance maps, blue colors indicate normal regions and yel-
low colors indicate regions that are found to be anomalous by the model. All
subfigures use individual color scales to improve visual appearance for differ-
ently scaled importance maps and thus colors of different subfigures cannot
be compared to each other. © 2024 IEEE

and frequency dimension were treated individually by masking individual time
frames and frequency bands with a probability of 0.25 and combining both masks
by multiplying them. This results in a reduction from 2T ¨F to 2T+F possibilities.
Note that for machine condition monitoring, such an approach is not too restric-
tive because machine sounds are highly structured, meaning that they are mostly
constant over time (e.g. fans), are constant for some duration (e.g. slider rails) or
consist of short sound events over a wide frequency range (e.g. valves). A further
reduction of the search space was achieved by up-sampling and cropping small
binary masks as also proposed for the original RISE algorithm [181]. For the time
masks a size of 20 and for frequency masks a size of 34 were used, resulting in a
search space of 254, which is still huge but much smaller than the original space.
In all experiments, 640, 000 iterations were used to generate a single importance
map.

96 domain adaptation and generalization

Figure 22 contains log-scaled magnitude spectrograms of two samples and impor-
tance maps resulting from a model trained by minimizing the sub-cluster AdaCos
loss and from a model trained by minimizing an intra-class compactness loss. Note
that the results of the ASD system are not perfect and thus specific regions as
visualized by the model do not need to be correct. Moreover, there are only single
binary labels available for each recording, stating whether the sample is normal or
anomalous. Hence, there is no ground truth about specific regions of the spectro-
grams available for further inspection. Manual inspection is not economical as the
author of this thesis does not have the required application-dependent expertise to
do this. Still, for the purpose of comparing a model trained with an auxiliary clas-
sification task and a one-class model, these visualizations are sufficiently detailed.
The results obtained for both samples will now be discussed in detail.

For the first sample, which is an anomalous sound of a gearbox, the model
trained with an auxiliary classification task monitors specific frequency bands that
are found to be normal (blue horizontal lines in Figure 22(b)). Interestingly, these
monitored regions correspond to the frequency bands that contain high energy and
thus can also be found in Figure 22(a). The frequency band that is considered to be
most anomalous by this model is located between the bottom two normal frequency
bands and contains only low energy. Therefore, a normal sound is expected to have
more or even less energy there. In contrast, the one-class model whose importance
map is depicted in Figure 22(c) does not seem to monitor specific frequencies.
Moreover, there are two anomalous temporal locations present (vertical lines in
yellow). These do not seem to correspond to specific sound events in the recording
because, when comparing it to the spectrogram, there are no visually noticeable
events at these temporal locations. Thus, these seem to be errors made by the
one-class model.

Similar results can be seen for the second sample containing a normal valve
sound. Here, four sound events of very short durations can be seen in the spectro-
gram depicted in Figure 22(d). The importance map of the model trained with an
auxiliary classification task considers these events to be normal since there are four
vertical blue lines present in Figure 22(e). However, these events are not clearly
visible in the importance map of the one-class model as shown in Figure 22(f).
Here, the importance map looks almost completely random except for a frequency
band that is considered to be normal but does not correspond to any region of
the spectrogram with higher energy. Overall, these results support the claim that
using an auxiliary classification task leads to more meaningful embeddings as the
importance maps are noticeably more structured than the ones obtained for a
one-class model.

5.4.2 Visualizing the embedding space

Another approach to explain the results of the ASD system is to visually inspect
the embedding space using t-distributed stochastic neighbor embeddings (t-SNEs).

5.4 explaining the decisions 97

(a) intra-class compactness loss
with single class (1)

normal sample anomalous sample

(b) intra class compactness loss
with machine types as classes (7)

(c) intra class compactness loss
with machine types and sections as classes (42)

(d) intra class compactness loss
with machine types and sections as classes,

models trained individually (1)

(e) intra class compactness loss
with machine types, sections and

attribute information as classes (342)

(f) sub-cluster AdaCos loss
with machine types, sections and

attribute information as classes (342)

Figure 23: Visualizations of the test split of the development set in the learned embedding
space for different loss functions and auxiliary tasks using t-SNE. Numbers
in brackets denote the number of different classes used for the auxiliary task.
© 2024 IEEE

Note that, according to Lemma 3.1, using Euclidean and cosine distance to mea-
sure the similarity of embeddings are equivalent approaches on the unit sphere
and thus a standard implementation of t-SNE based on the Euclidean distance, as
provided in scikit-learn [176], can be used. The results are depicted in Figure 23.
Similar to the experimental results obtained on the DCASE2020 dataset that were
presented in Section 3.3.3, it can be seen that using more classes helps to separate
normal and anomalous samples (Figure 23(b), (c), (e) and (f)). In contrast, there
is no visual difference between normal and anomalous samples when using a single
or individual one-class losses (Figure 23(a) and (d)). It shall be noted that the
model has also not learned a trivial solution as this would result in a uniformly
distributed t-SNE embedding space. Therefore, the regularization techniques ap-
plied to the one-class losses prevented the embedding space from collapsing to a
single point. All of these visual impressions are verified in Table 21 by measuring
the distance between each anomalous sample and the closest normal sample. As
stated in Chapter 3, the most likely reason for this significant difference in per-
formance obtained with different loss functions is the same as before, namely the
background noise. Teaching the model to discriminate between different classes
enables it to closely monitor target machine sounds and more robustly detect de-

98 domain adaptation and generalization

Table 21: Mean and standard deviation of the average Euclidean distance between the
t-SNE projections of each anomalous sample and the closest normal sample
over five trials for different losses and using different auxiliary tasks. © 2024
IEEE

loss classes of auxiliary task (number of classes) average distance

intra-class compactness loss none (1) 0.485 ˘ 0.007

intra-class compactness loss machine types (7) 1.636 ˘ 0.037

intra-class compactness loss machine types and sections (42) 2.175 ˘ 0.075

intra-class compactness loss machine types and sections, models trained individually (1) 0.559 ˘ 0.002

intra-class compactness loss machine types, sections and attribute information (342) 2.646 ˘ 0.045

sub-cluster AdaCos loss machine types, sections and attribute information (342) 2.947 ˘ 0.022

viations from normal behavior by mostly ignoring the background noise. As shown
in Figure 23, this is not the case for individual one-class losses.

5.5 comparison to pre-trained embeddings

Without a sufficient amount of training data, using pre-trained embeddings is a
promising approach for many closed-set classification tasks. Since there are only
a few normal training samples available for the target domain, this motivates to
compare the performance of the ASD system presented in the previous section
to a system based on pre-trained embeddings. To this end, the four pre-trained
embeddings VGGish, OpenL3, PANN and Kumar presented in Section 2.5 will be
evaluated.

5.5.1 System design for pre-trained embeddings

To utilize the pre-trained embeddings for ASD, a shallow classifier is trained as
proposed in [32, 67, 162]. Similar to a directly trained model, this classifier predicts
the correct meta information using the pre-trained embeddings as input. Before
inserting the embeddings as input, they are standardized using batch normaliza-
tion [86] as this has been shown to improve performance [32]. The model consists
of three layers with 512, 128 and 128 neurons. For the first two layers, ReLU is
used as an activation function and batch normalization is applied. Prior to the last
layer, dropout [81] is applied with a probability of 50%. The last layer consists
of a linear transformation and a projection onto the hypersphere by using the
sub-cluster AdaCos loss with 16 sub-clusters per class. The model is trained for
100 epochs with a batch size of 64 using Adam [101]. As for the directly trained
model, mixup [272] is applied, no bias terms are used and the randomly initialized
centers are not adapted during training to avoid learning trivial solutions for easily
recognizable classes. Anomaly scores are obtained by estimating the distribution
of the normal training samples belonging to single sections of the dataset with a

5.5 comparison to pre-trained embeddings 99

Table 22: Harmonic means of AUC-ROCs obtained with different ways to handle the
temporal dimension of pre-trained embeddings. © 2023 IEEE

dataset embeddings mean of embeddings mean of scores native
before training during training after training

dev set VGGish 65.78 ˘ 0.3765.78 ˘ 0.3765.78 ˘ 0.37 64.98 ˘ 0.25 58.47 ˘ 0.58 59.27 ˘ 0.58 not available
dev set OpenL3 70.94 ˘ 1.3670.94 ˘ 1.3670.94 ˘ 1.36 70.83 ˘ 0.93 59.85 ˘ 0.49 62.67 ˘ 1.36 not available
dev set PANN 64.80 ˘ 0.25 66.30 ˘ 0.5566.30 ˘ 0.5566.30 ˘ 0.55 59.66 ˘ 0.32 60.47 ˘ 0.17 64.21 ˘ 0.17

dev set Kumar 66.04 ˘ 0.7666.04 ˘ 0.7666.04 ˘ 0.76 65.85 ˘ 0.83 58.94 ˘ 1.00 62.22 ˘ 0.98 60.97 ˘ 0.52

eval set VGGish 64.69 ˘ 0.3464.69 ˘ 0.3464.69 ˘ 0.34 63.91 ˘ 0.73 58.30 ˘ 0.98 59.78 ˘ 0.53 not available
eval set OpenL3 69.06 ˘ 0.4269.06 ˘ 0.4269.06 ˘ 0.42 68.70 ˘ 0.94 62.44 ˘ 0.46 65.02 ˘ 1.04 not available
eval set PANN 63.55 ˘ 0.27 65.29 ˘ 0.3965.29 ˘ 0.3965.29 ˘ 0.39 58.57 ˘ 1.07 60.34 ˘ 0.62 63.33 ˘ 0.36

eval set Kumar 63.56 ˘ 0.59 64.05 ˘ 0.2764.05 ˘ 0.2764.05 ˘ 0.27 56.95 ˘ 0.86 61.04 ˘ 0.44 60.13 ˘ 0.24

GMM and computing the log-likelihood of individual test samples. For the openL3
embeddings, the model pre-trained on environmental sounds is used because these
are more closely related to machine sounds than music.

5.5.2 Experimental results

In the following, multiple experiments are conducted to investigate how to design
an ASD system based on pre-trained embeddings. The networks for extracting
OpenL3 and VGGish embeddings use a sliding window resulting in embeddings
with a temporal dimension, i.e. multiple vector-sized embeddings per sample. To
obtain a single anomaly score for a given file, a proper strategy for handling all em-
beddings belonging to this file needs to be chosen. Possible choices are to compute
the mean of the embeddings before, during or after training or to compute the
mean of the individual anomaly scores. An experimental comparison of the perfor-
mances obtained with these strategies can be found in Table 22. For PANN and
Kumar embeddings, which do not have a temporal dimension, a sliding window
with a length of 960ms is used to artificially create a temporal dimension allowing
to also evaluate the same strategies for these embeddings. In contrast to the results
presented in [67], the best results are obtained when combining the embeddings
before or during training and not after training, which led to significantly worse
results. Interestingly, artificially creating a time-dimension for PANN and Kumar
embeddings increases the performance. This shows that some information impor-
tant for detecting anomalous samples is lost when using the pre-trained models to
full extent.

As discussed in Section 2.6 and experimentally investigated for directly trained
ASD systems, there are several possible backends for computing an anomaly score.
One can directly estimate the distribution with a GMM, apply PCA or LDA
before estimating the distribution or train a shallow classifier using different loss
functions. In Table 23, the performances obtained with different backends are

100 domain adaptation and generalization

Table 23: Harmonic means of AUC-ROCs for different backends and considered embed-
dings. Only deviations from the standard system are stated in the header of
the table. © 2023 IEEE

without trained shallow classifier with trained shallow classifier
dataset embeddings - PCA LDA - CXE as loss cosine distance

as backend

dev set VGGish 60.22 ˘ 0.25 60.25 ˘ 0.43 62.90 ˘ 0.13 64.45 ˘ 0.60 65.40 ˘ 0.55 65.78 ˘ 0.3765.78 ˘ 0.3765.78 ˘ 0.37

dev set OpenL3 66.82 ˘ 0.19 66.33 ˘ 0.12 64.66 ˘ 0.24 67.83 ˘ 1.24 68.99 ˘ 0.61 70.94 ˘ 1.3670.94 ˘ 1.3670.94 ˘ 1.36

dev set PANN 60.36 ˘ 0.09 61.48 ˘ 0.18 60.09 ˘ 0.45 64.39 ˘ 0.75 63.82 ˘ 0.56 66.30 ˘ 0.5566.30 ˘ 0.5566.30 ˘ 0.55

dev set Kumar 61.47 ˘ 0.26 61.92 ˘ 0.29 61.82 ˘ 0.26 64.22 ˘ 0.63 64.08 ˘ 1.54 65.85 ˘ 0.8365.85 ˘ 0.8365.85 ˘ 0.83

eval set VGGish 57.48 ˘ 0.36 57.47 ˘ 0.18 61.47 ˘ 0.20 62.00 ˘ 1.26 63.77 ˘ 0.63 64.69 ˘ 0.3464.69 ˘ 0.3464.69 ˘ 0.34

eval set OpenL3 63.76 ˘ 0.23 62.62 ˘ 0.22 64.65 ˘ 0.33 67.18 ˘ 0.43 67.69 ˘ 0.89 69.06 ˘ 0.4269.06 ˘ 0.4269.06 ˘ 0.42

eval set PANN 56.18 ˘ 0.13 60.08 ˘ 0.08 57.83 ˘ 1.01 63.11 ˘ 0.48 61.63 ˘ 0.48 65.29 ˘ 0.3965.29 ˘ 0.3965.29 ˘ 0.39

eval set Kumar 60.00 ˘ 0.12 60.56 ˘ 0.13 61.56 ˘ 0.27 61.27 ˘ 0.30 63.42 ˘ 0.48 64.05 ˘ 0.2764.05 ˘ 0.2764.05 ˘ 0.27

Table 24: Harmonic means of AUC-ROCs for different input representations. © 2023
IEEE

dataset VGGish OpenL3 PANN Kumar no embedding

dev set 65.78 ˘ 0.37 70.94 ˘ 1.36 66.30 ˘ 0.55 65.85 ˘ 0.83 81.36 ˘ 0.6681.36 ˘ 0.6681.36 ˘ 0.66

eval set 64.69 ˘ 0.34 69.06 ˘ 0.42 65.29 ˘ 0.39 64.05 ˘ 0.27 73.43 ˘ 0.5473.43 ˘ 0.5473.43 ˘ 0.54

compared. It can be seen that training a shallow classifier results in significantly
better performance than when not doing so. As for the directly trained system,
sub-cluster AdaCos in combination with using the cosine distance leads to the best
results for all four pre-trained embedding types.

As a last experiment, the best performances obtained with pre-trained embed-
dings are compared to the previously presented ASD system that is directly trained
on the input data. The experimental results can be found in Table 24 and the fol-
lowing observations can be made: First of all, training a model directly on the
data leads to much better results than using pre-trained embeddings. The most
likely reason is that pre-trained embeddings do not capture subtle differences be-
tween normal and anomalous samples similar to embeddings obtained with one-
class losses. This is also supported by the findings in [67], stating that very noisy
recordings are a problem for models that have not been trained on the same dataset.
Second, OpenL3 embedding perform second best and VGGish, PANN and Kumar
embeddings perform worse while having very similar results. A possible explana-
tion may be that these three embeddings are trained using a supervised training
objective and OpenL3 embeddings are the only embeddings resulting from SSL.
This observation has also been made in [67].

Overall, the results indicate that using pre-trained models does not help to im-
prove the performance for ASD tasks as the underlying models are too general

5.6 adaproj 101

even when only a few data samples are available. However, using a sufficient num-
ber of training samples for the source domain results in an embedding space that
also yields a reasonable performance on the target domain. In Section 5.5, more
experiments with pre-trained embeddings will be conducted for few-shot OSC.

5.6 adaproj

In Section 3.4, it was shown that the sub-cluster AdaCos loss, which allows the
embedding model to learn less restrictive distributions by utilizing multiple centers
for each class, improves the resulting ASD performance. The idea of the AdaProj
loss, which will be presented in this section, is to further generalize the sub-cluster
AdaCos loss by enlarging the space of optimal solutions. More concretely, the
distance to linear subspaces spanned by the centers, which act as basis vectors,
instead of the distance to the centers themselves is measured when training the
embedding model. This extends the set of of optimal solutions from a few points,
namely the sub-clusters, to entire linear sub-spaces for each class and allows the
network to learn more complex distributions of the normal data samples. As a
result, it is expected that this helps to identify anomalies in the embedding space.
Another advantage is that the embedding model has more freedom to solve mul-
tiple classification tasks at once imposed by different types of meta information,
which may be related to very different characteristics of the input space and thus
should also not manifest in the same geometric properties in the embedding space.
For example, one would expect that recordings belonging to different machine
types are more different to each other than recordings of the same machine with
different parameter settings.

Other works also use orthogonal projections onto sub-spaces when learning em-
beddings for related applications. In [268], two different orthogonal sub-spaces for
normal and anomalous data are explicitly enforced through a loss function when
training an autoencoder for detecting anomalous images. For semi-supervised im-
age classification, class-specific subspace projections are learned by using a recon-
struction loss in combination with a discriminative loss to ensure that these sub-
spaces are different [125]. Still, both approaches are very different from AdaProj
as autoencoders need to also reconstruct the noise and non-target sound events,
which degrades the performance of an ASD system and thus should be avoided.

5.6.1 Definition

Before defining the AdaProj loss, additional notation will be introduced.

Definition 5.1 (Projection onto linear span). Let e P RD be an embedding and let
C Ă RD denote basis vectors. Then, the projection Pspan(C) onto the linear span

102 domain adaptation and generalization

of the embedding space, denoted by span(C) Ă RD, containing all finite linear
combinations of the basis vectors is defined as

Pspan(C) : RD
Ñ span(C)

Pspan(C)(e) –
ÿ

cPC

xe, cyc. (54)

Using this notation, the formal definition of the AdaProj loss is as follows.

Definition 5.2 (AdaProj). Using the same notation as introduced in Definitions
3.2 and 3.4, define the logit for class k P t1, ...,Nclassesu measuring the distance
between an embedding and its projection to a linear subspace as

dproj : RD
ˆ P(RD) Ñ R+

dproj(ϕ(x,w), Ck) – ŝ ¨ ∥PSD´1(ϕ(x,w)) ´ PSD´1(Pspan(Ck)(ϕ(x,w)))∥22.
(55)

Then, the AdaProj loss is defined as

Lproj : P(X) ˆ P(P(RD)) ˆ Φ ˆ W ˆ Λ(Nclasses) Ñ R+

Lproj(Y,C, ϕ,w, lab) – ´
1

|Y|

ÿ

xPY

Nclasses
ÿ

j=1

lab(x)j log(softmax(ŝ ¨ dproj(ϕ(x,w), Cj)))

(56)

where s̃ P R+ is the dynamically adaptive scale parameter of the AdaCos loss. For
the AdaProj loss, the centers C are called basis vectors.

Remark. Since all embeddings and the linear subspaces are projected onto the unit
sphere, Lemma 3.1 implies that

∥PSD´1(x) ´ PSD´1(Pspan(Ck)(x))∥22 = 2(1 ´ sim(PSD´1(x), PSD´1(Pspan(Ck)(x)))).

This is the reason why the AdaProj loss is an angular margin loss.
The following Lemma formally proves the claim that the space of optimal solu-

tions for the AdaProj loss is indeed larger than the solution space of the sub-cluster
AdaCos loss.

Lemma 5.3. Let e P RD and let C Ă RD contain pairwise orthonormal elements.
If e P span(C) X SD´1, then

∥PSD´1(e) ´ PSD´1(Pspan(C)(e))∥22 = 0. (57)

Proof. Let e P span(C)X SD´1 Ă RD with |C| = Ncenters. Therefore, ∥e∥2 = 1 and
there are λj P R such that e =

řNcenters
j=1 λjcj. Hence, it holds that

e =
Ncenters

ÿ

j=1

λjcj =
Ncenters

ÿ

j=1

Ncenters
ÿ

i=1

λixci, cjycj =
Ncenters

ÿ

j=1

x

Ncenters
ÿ

i=1

λici, cjycj

=
Ncenters

ÿ

j=1

xe, cjycj = Pspan(C)(e),

(58)

which finishes the proof.

5.6 adaproj 103

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0.5

0.55

0.6

0.65

0.7

0.75

subspace dimension |Ck|

h
ar
m
on

ic
m
ea
n
of

A
U
C
-R

O
C
s/
p
A
U
C
s

AUC-ROC - development set pAUC - development set
AUC-ROC - evaluation set pAUC - evaluation set

Figure 24: Domain-independent performance obtained on the DCASE2023 dataset with
different subspace dimensions for the AdaProj loss. The means over ten inde-
pendent trials are shown. © 2024 IEEE

For each class-specific subspace, the randomly sampled basis vectors are approx-
imately orthogonal with very high probability [65]. Therefore, each subspace has a
dimension of |C| with very high probability and thus |C| ă D needs to be ensured
to not allow the entire embedding space as a solution. Still, the size of the solution
space for the AdaProj loss is much higher than for the sub-cluster AdaCos loss,
for which only the sub-clusters themselves are optimal solutions.

5.6.2 Choosing a sub-space dimension

The impact of altering the subspace dimension of the AdaProj loss on the resulting
performance is depicted in Figure 24. For all experimental evaluations in this and
the next subsection, the ASD system presented in Section 5.3.2 with a few modi-
fications is used. Most importantly, the sub-cluster AdaCos loss is replaced with
AdaProj when training the embedding model. Additionally, the embedding dimen-
sion of the sub-networks is increased from 128 to 256 and 32 instead of 16 clusters
are used when applying k-means to the embeddings belonging to the normal train-
ing samples of the source domain. The reason for increasing the dimensions of the
sub-spaces is to grant the embedding model more freedom in learning class-specific
distributions.

When inspecting the experimental results contained in Figure 24, it can be seen
that for low to medium subspace dimensions the performance is approximately
constant on the development set. On the evaluation set, medium subspace dimen-
sions lead to slightly better performance than low subspace dimensions. For both
dataset splits, the performance starts to degrade when being higher than approxi-

104 domain adaptation and generalization

mately 48. In conclusion, the chosen subspace dimension should be neither too high
nor too low. Therefore, a dimension of 32 was used in the following experiments.

5.6.3 Performance evaluation

As a next step, the AdaProj loss is compared to other loss functions on the
DCASE2022 and the DCASE2023 dataset by only replacing the loss function of
the embedding model and keeping all other components of the system the same.
The results can be found in Table 25. Overall, the AdaProj loss outperforms all
other loss functions, especially on the evaluation split of the DCASE2023 dataset.
A possible explanation is that the classification task on the DCASE2023 dataset
is simpler than on the DCASE2022 dataset due to the reduced number of classes
and thus the embedding model may be able to learn solutions that are almost
trivial for certain classes. This means that for these classes the embeddings do
not contain enough information to be able to discriminate between embeddings of
normal and anomalous samples. Since the solutions spaces of the AdaProj loss are
much larger, a trivial solution only needs to be contained in a sub-space but the
learned distribution may have a very complex structure inside this space, which
allows to still be able to detect anomalies.

As a second observation, one can see that the sub-cluster AdaCos performs worse
than AdaCos, which seems to contradict the results presented in Section 3.4. How-
ever, in the experiments conducted in Section 3.4 the centers have been adapted
during training, which is not the case in these experiments. Without adapting
the centers, all sub-clusters have approximately the same distance to each other
because they are very likely to be orthogonal regardless of whether they belong
to the same target class or not. This has two consequences: First, the sub-cluster
AdaCos loss is actually more restrictive than the AdaCos loss and results in learn-
ing more compact distributions for each class to ensure low inter-class similarity to
all sub-clusters of the other classes. This makes it difficult to distinguish between
normal and anomalous samples. Second, in most cases only a single sub-cluster
for each class is utilized by the model to ensure high intra-class similarity while
still ensuring low inter-class similarity. This favors learning even more compact
distributions for the normal samples.

5.7 self-supervised learning

Throughout this thesis, it has been shown that the performance of an ASD system
degrades when decreasing the amount of meta information used for training the em-
bedding model. This difficulty is one focus of the task imposed by the DCASE2023
ASD dataset, which contains only a single section for each machine type. To still be
able to learn informative embeddings yielding a good performance, the difficulty
of the auxiliary classification task needs to be increased. Self-supervised learning
(SSL) [132] is a type of unsupervised learning that does not require any class labels

5.7 self-supervised learning 105

Table 25: ASD performance obtained with different loss functions on the DCASE2022
and DCASE2023 datasets. Harmonic means of all AUC-ROCs and pAUCs
over all sections of each dataset are depicted in percent. Arithmetic mean and
standard deviation of the results over ten independent trials are shown. Best
results in each column are highlighted with bold letters. © 2024 IEEE

DCASE2022 development set

loss function source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

intra-class compactness loss 81.8 ˘ 1.6 74.9 ˘ 1.7 75.3 ˘ 1.0 63.4 ˘ 0.663.4 ˘ 0.663.4 ˘ 0.6 79.2 ˘ 0.9 64.7 ˘ 1.1

intra-class compactness loss + CXE 82.5 ˘ 1.8 75.5 ˘ 0.9 75.5 ˘ 0.7 61.6 ˘ 0.9 79.0 ˘ 0.8 65.0 ˘ 0.7

AdaCos loss 82.6 ˘ 1.4 76.0 ˘ 1.1 76.5 ˘ 1.2 62.3 ˘ 1.4 79.8 ˘ 0.7 65.5 ˘ 0.965.5 ˘ 0.965.5 ˘ 0.9

sub-cluster AdaCos loss 83.2 ˘ 2.1 75.9 ˘ 1.3 77.6 ˘ 1.077.6 ˘ 1.077.6 ˘ 1.0 62.1 ˘ 1.5 80.0 ˘ 1.4 65.2 ˘ 1.1

AdaProj loss 84.3 ˘ 1.184.3 ˘ 1.184.3 ˘ 1.1 76.3 ˘ 1.176.3 ˘ 1.176.3 ˘ 1.1 77.2 ˘ 1.2 62.2 ˘ 1.1 80.6 ˘ 0.880.6 ˘ 0.880.6 ˘ 0.8 65.5 ˘ 1.365.5 ˘ 1.365.5 ˘ 1.3

DCASE2022 evaluation set

loss function source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

intra-class compactness loss 74.7 ˘ 0.9 64.2 ˘ 1.3 65.9 ˘ 0.8 57.8 ˘ 0.9 70.3 ˘ 0.8 58.9 ˘ 0.8

intra-class compactness loss + CXE 75.6 ˘ 0.7 66.9 ˘ 0.8 69.3 ˘ 0.7 59.3 ˘ 0.7 72.6 ˘ 0.4 60.3 ˘ 0.7

AdaCos loss 77.2 ˘ 0.5 65.9 ˘ 1.4 68.6 ˘ 1.1 58.6 ˘ 0.7 73.0 ˘ 0.4 59.7 ˘ 0.6

sub-cluster AdaCos loss 77.0 ˘ 0.7 66.5 ˘ 0.9 68.3 ˘ 0.8 58.8 ˘ 0.6 72.9 ˘ 0.6 59.5 ˘ 0.5

AdaProj loss 77.4 ˘ 1.077.4 ˘ 1.077.4 ˘ 1.0 67.0 ˘ 0.667.0 ˘ 0.667.0 ˘ 0.6 69.7 ˘ 0.669.7 ˘ 0.669.7 ˘ 0.6 59.6 ˘ 0.659.6 ˘ 0.659.6 ˘ 0.6 73.6 ˘ 0.773.6 ˘ 0.773.6 ˘ 0.7 60.5 ˘ 0.760.5 ˘ 0.760.5 ˘ 0.7

DCASE2023 development set

loss function source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

intra-class compactness loss 67.0 ˘ 2.1 62.4 ˘ 1.0 69.1 ˘ 1.4 56.4 ˘ 1.156.4 ˘ 1.156.4 ˘ 1.1 67.7 ˘ 1.2 56.9 ˘ 0.9

intra-class compactness loss + CXE 70.6 ˘ 1.8 64.1 ˘ 1.8 71.2 ˘ 1.4 55.5 ˘ 1.6 70.4 ˘ 1.0 57.4 ˘ 1.157.4 ˘ 1.157.4 ˘ 1.1

AdaCos loss 70.7 ˘ 1.370.7 ˘ 1.370.7 ˘ 1.3 64.3 ˘ 1.164.3 ˘ 1.164.3 ˘ 1.1 71.2 ˘ 1.1 55.4 ˘ 1.3 70.9 ˘ 0.9 56.8 ˘ 0.9

sub-cluster AdaCos loss 68.3 ˘ 1.7 62.0 ˘ 1.5 71.8 ˘ 1.5 55.6 ˘ 1.5 70.4 ˘ 0.9 56.3 ˘ 0.8

AdaProj loss 70.3 ˘ 1.7 61.8 ˘ 1.6 72.2 ˘ 1.472.2 ˘ 1.472.2 ˘ 1.4 55.1 ˘ 1.1 71.4 ˘ 1.071.4 ˘ 1.071.4 ˘ 1.0 56.2 ˘ 0.7

DCASE2023 evaluation set

loss function source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

intra-class compactness loss 73.5 ˘ 1.8 63.4 ˘ 1.8 58.8 ˘ 2.5 55.7 ˘ 1.3 64.0 ˘ 1.5 55.8 ˘ 0.9

intra-class compactness loss + CXE 74.3 ˘ 1.5 64.0 ˘ 1.664.0 ˘ 1.664.0 ˘ 1.6 61.6 ˘ 2.0 55.7 ˘ 0.9 67.5 ˘ 0.8 57.5 ˘ 1.0

AdaCos loss 74.7 ˘ 1.574.7 ˘ 1.574.7 ˘ 1.5 63.8 ˘ 1.8 61.6 ˘ 3.4 57.1 ˘ 1.4 68.0 ˘ 1.6 58.0 ˘ 1.1

sub-cluster AdaCos loss 73.2 ˘ 1.9 61.6 ˘ 1.4 62.0 ˘ 2.2 55.8 ˘ 1.3 66.5 ˘ 1.6 56.2 ˘ 1.0

AdaProj loss 74.2 ˘ 1.8 62.9 ˘ 1.0 64.4 ˘ 2.064.4 ˘ 2.064.4 ˘ 2.0 57.7 ˘ 0.857.7 ˘ 0.857.7 ˘ 0.8 69.8 ˘ 1.369.8 ˘ 1.369.8 ˘ 1.3 60.0 ˘ 0.560.0 ˘ 0.560.0 ˘ 0.5

arithmetic mean over all datasets

loss function source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

intra-class compactness loss 74.3 66.2 67.3 58.3 70.3 59.1

intra-class compactness loss + CXE 75.8 67.667.667.6 69.4 58.0 72.4 60.1

AdaCos loss 76.3 67.5 69.5 58.4 72.9 60.0

sub-cluster AdaCos loss 75.4 66.5 69.9 58.1 72.5 59.3

AdaProj loss 76.676.676.6 66.3 70.970.970.9 58.758.758.7 73.973.973.9 60.660.660.6

106 domain adaptation and generalization

but augments the data in specific ways and trains the network to recognize these
augmentations. To be able to correctly recognize specific augmentations, the em-
bedding model needs to learn the structure of the original data resulting in more
information being captured that may also be useful to detect anomalous data.
Other applications of SSL are to learn representations for speech-related [152] or
general-purpose audio tasks [165, 167].

As already stated in Section 2.7, there are also several works applying SSL
to ASD using different data augmentation techniques. Examples are detecting
pitch-shifted and time-stretched recordings [85], recognizing linear combinations
of similar target sounds [134] generated with mixup [272], mixing first- and second-
order statistics of time-frequency representations [26] and pre-training an autoen-
coder using a modified version of variance-invariance-covariance regularization [12].
Some works on ASD denote auxiliary classification tasks based on meta informa-
tion [43, 60] as SSL. However, since SSL tasks do not require any manually anno-
tated labels, training paradigms completely relying on meta information should
be called supervised tasks instead.

As seen in Section 5.5, openL3 embeddings, which are the only embeddings
based on SSL, performed best of the investigated pre-trained embeddings. This
can be seen as additional evidence that applying SSL when directly training an
embedding model on the data may improve the performance. Investigating this is
the goal of this section.

5.7.1 Approaches

In this section, different SSL approaches for ASD will be presented. The first ap-
proach, called statistics exchange (StatEx) [26], was proposed to simulate anoma-
lous samples that are used for training a discriminative ASD system. The anoma-
lies are simulated by exchanging first and second order statistics over the time
or frequency axis of the time-frequency representations of two random training
samples. The following definition formalizes this.

Definition 5.4 (Statistics exchange (original)). Let x1, x2 P RTˆF with T, F P N
denote the time-frequency representations of two random training samples. Let
µ1, µ2 denote the first-order statistics over the time or frequency dimension of x1
and x2, respectively, and σ1, σ2 denote the corresponding second-order statistics.
Then, the augmented sample xnew(x1, x2) and its categorical label lab(xnew(x1, x2))
are given by

xnew(x1, x2) –
x1 ´ µ1

σ1

σ2 + µ2 P RTˆF

lab(xnew(x1, x2)) –
(
lab(x1)1 ¨ lab(x2), ..., lab(x1)Nclasses ¨ lab(x2)

)
P [0, 1]N

2
classes .

(59)

If the statistics over the time axis are used, this approach is called frequency StatEx.
If the statistics over the frequency axis are used, it is called temporal StatEx.

5.7 self-supervised learning 107

Remark. For the original definition of StatEx, frequency bands or temporal re-
gions smaller than the selected maximum size imposed by the dimensions of the
spectrogram are used. For the sake of simplicity, the entire signals are used in this
work as the difference in performance is neglectable.

When using StatEx, another anomaly is simulated for each normal training
sample contained in a batch. Both versions are used for training the embedding
model, essentially doubling the batch size. For the normal training samples, the
original classes are used. For the simulated anomalies, the number of classes in-
creases quadratically. Depending on the number of original classes, training an
embedding model may therefore quickly become infeasible. Because of this, the
following variant of StatEx is proposed.

Definition 5.5 (Statistics exchange (variant)). Using the same notation as in Def-
inition 5.4 and the same definition of the augmented sample xnew(x1, x2) P RTˆF,
the categorical label of xnew is set to

lab(xnew(x1, x2)) = (0, 0.5 ¨ lab(x1), 0.5 ¨ lab(x2)) P [0, 1]3Nclasses (60)

where 0 = (0, ..., 0) P [0, 1]Nclasses .

This StatEx variant has the advantage that only three times as many classes are
needed instead of increasing the number of classes quadratically. Another modifi-
cation is that a probability of 50% is used to decide whether to apply StatEx or
not during training instead of using all original samples and their augmented ver-
sion. This ensures that the batch size does not increase when using StatEx. When
not applying StatEx, i.e. using an original training sample xnew(x1, x2) = x1 the
categorical label is set to

lab(xnew(x1, x2)) – (lab(x1),0,0) P [0, 1]3Nclasses . (61)

Applying TMN sets the temporal mean of each sample to zero and thus impedes
using frequency StatEx. Therefore, only temporal StatEx is applied when training
the embedding model while using TMN to pre-process the input features.

As a second SSL approach, feature exchange (FeatEx), which is inspired by the
training procedure of the OpenL3 embeddings [6, 7, 32], will be presented. The
reader is reminded that these embeddings are trained by comparing video frames
to audio clips with a length of 1 s and training the network to predict whether
the embeddings extracted from a frame and a clip belong together or not (cf.
Section 2.5). Since the ASD system only utilizes audio data, directly applying
this approach is impossible. Instead, the embeddings belonging to both feature
branches are used. Formally, FeatEx is defined as:

Definition 5.6 (Feature exchange). For embedding model ϕ = (ϕSTFT, ϕDFT) P

Φ with parameter settings w = (wSTFT, wDFT) P W and two random training sam-
ples x1, x2 P Xtrain, let ϕ(x1, w) = (ϕSTFT(x1, wSTFT), ϕDFT(x1, wDFT)) P RD and

108 domain adaptation and generalization

neural networkfrontend
backend

raw waveform
(288000)

mixup compute
magnitude
spectrogram
(561 × 513)

apply tem-
poral mean

normalization
(561 × 513)

compute
magnitude
spectrum
(144000)

extract em-
bedding

with neural
network for
spectrograms

(128)

StatEx

extract em-
bedding with
neural network
for spectra

(128)

concatenate
embeddings

(256)

FeatEx

evaluate cosine
distances with
all samples of
target domain

(10)

evaluate cosine
distances

with means
(k-Means) of
source domain

(16)
return min-
imum of

distances as
anomaly score

(1)

Figure 25: Illustration of an ASD system utilizing multiple SSL approaches. The baseline
system is colored in blue and the SSL approaches are colored in red. Repre-
sentation size in each step is given in brackets. © 2024 IEEE

ϕ(x2, w) = (ϕSTFT(x2, wSTFT), ϕDFT(x2, wDFT))) P RD denote the concatenated
embeddings of both sub-networks ϕSTFT, ϕDFT belonging to these samples. Then,
an augmented embedding enew(x1, x2, ϕ,w) P RD and its categorical label are set
to

enew(x1, x2, ϕ,w) = (ϕSTFT(x1, wSTFT), ϕDFT(x2, wDFT))) P RD

lab(enew(x1, x2, ϕ,w)) = (0, 0.5 ¨ lab(x1), 0.5 ¨ lab(x2)) P [0, 1]3Nclasses
(62)

where 0 = (0, ..., 0) P [0, 1]Nclasses .

As for the StatEx variant, the number of classes is tripled when applying FeatEx
and a probability of 50% is used to decide whether to apply FeatEx or not.

5.7.2 Combining multiple approaches

Each SSL approach forces the embedding model to capture more information in
the embeddings by increasing the difficulty of the classification task the model
needs to solve. Therefore, multiple SSL approaches can all be used for training
a single system. The system presented in Section 5.3.1 using the StatEx variant,
FeatEx as well as mixup [272] (see Section 2.7.3) is illustrated in Figure 25. For
the experimental evaluations in the following section, mixup is only used with a
probability of 50% when also using any other SSL approach. If the model is trained
without StatEx or FeatEx, mixup is applied with a probability of 100% to each
training sample. The model is trained with a combined loss function consisting
of two classification losses. The first loss is the standard classification task based
on provided meta information and uses the mixed-up labels for training. The
second loss is based on the sequentially applied SSL approaches and thus uses
9 ¨ Nclasses total classes. Both losses are realized with sub-cluster AdaCos losses
with 16 sub-clusters for each class. As before, non-trainable class centers are used
for the standard classification task. For the SSL loss, trainable class centers are
used as the embedding model should learn to detect augmented samples as pseudo-

5.7 self-supervised learning 109

anomalies close to the distributions of the normal, non-augmented samples to refine
the boundary of these distributions.

Note that, although mixup utilizes class labels, it also imposes an additional self-
supervised task of needing to estimate the mixing coefficient of linear interpolations
between random training samples. Hence, it can be seen as a label-dependent SSL
approach. In theory, mixup could also be applied without using class labels and
teaching the model to only estimate the mixing coefficient. But as previously
shown, utilizing meta information is important to effectively handle the noise and
thus a classification task should be used.

5.7.3 Performance evaluation

As a first experiment, the performances obtained with individual SSL approaches
and the combined approach are compared to the baseline performance obtained
when not using any SSL. The results can be found in Table 26. Overall, it can be
seen that the SSL approaches significantly improve the performance of the base-
line system. Furthermore, one can observe that, in general, FeatEx performs better
than StatEx. When only using StatEx without the standard classification task, the
performance decreases as opposed to only using FeatEx, which slightly improves
the performance. This indicates that the proposed FeatEx approach is superior
to StatEx. When combining any SSL approach with the regular classification loss,
both approaches, FeatEx and StatEx, perform better compared to only using
the baseline system, which shows that applying SSL is highly beneficial. More-
over, combining both SSL approaches seems to marginally improve performance
over only applying one of them. Another observation is that the performance im-
provements are much bigger on the DCASE2023 dataset than on the DCASE2022
dataset. This is consistent with the experimental findings for the AdaProj loss.
Once more, the most likely reason is that a less difficult classification task caused
by less available meta information leads to less informative embeddings. Therefore,
essential information needed to discriminate between embeddings of normal and
anomalous data is not captured, which degrades performance.

In a second experiment, whose results can be found in Table 27, three design
choices are investigated: 1) using class labels based on the meta information for the
SSL losses, 2) using non-trainable centers for the SSL losses and 3) not applying
TMN but also using temporal StatEx. Comparing the performances obtained when
altering any of these design choices to the performance obtained with the original
system, one can see that all changes lead to worse performance, especially on the
evaluation set. This justifies the proposed design of the ASD system and the SSL
approaches.

110 domain adaptation and generalization

Table 26: Harmonic means of AUC-ROCs and pAUCs taken over all machine IDs ob-
tained when using different SSL approaches. Highest AUC-ROCs and pAUCs
in each column are highlighted in bold letters. Arithmetic mean and standard
deviation over five independent trials are shown. © 2024 IEEE

DCASE2022 development set

SSL approach source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

baseline 84.2 ˘ 0.8% 76.5 ˘ 0.9% 78.5 ˘ 0.9% 62.5 ˘ 0.9% 81.4 ˘ 0.7% 66.6 ˘ 0.9%
StatEx variant 80.5 ˘ 1.8% 69.5 ˘ 1.9% 75.3 ˘ 1.7% 60.0 ˘ 0.9% 76.4 ˘ 1.5% 62.4 ˘ 1.2%
FeatEx 82.1 ˘ 0.9% 72.8 ˘ 0.8% 77.2 ˘ 1.0% 62.8 ˘ 0.6% 78.5 ˘ 0.6% 65.2 ˘ 0.6%
regular and StatEx variant 85.2 ˘ 0.9% 77.5 ˘ 1.2% 78.9 ˘ 0.9%78.9 ˘ 0.9%78.9 ˘ 0.9% 63.2 ˘ 1.6% 82.2 ˘ 0.6% 67.0 ˘ 1.0%
regular and FeatEx 85.1 ˘ 0.9% 76.3 ˘ 1.8% 77.9 ˘ 0.9% 62.7 ˘ 0.8% 81.6 ˘ 0.7% 67.0 ˘ 0.9%
combined approach 86.0 ˘ 0.9%86.0 ˘ 0.9%86.0 ˘ 0.9% 77.6 ˘ 0.8%77.6 ˘ 0.8%77.6 ˘ 0.8% 78.2 ˘ 0.7% 64.4 ˘ 1.1%64.4 ˘ 1.1%64.4 ˘ 1.1% 82.5 ˘ 0.8%82.5 ˘ 0.8%82.5 ˘ 0.8% 68.2 ˘ 1.1%68.2 ˘ 1.1%68.2 ˘ 1.1%

DCASE2022 evaluation set

SSL approach source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

baseline 76.8 ˘ 0.8% 65.8 ˘ 0.2% 69.8 ˘ 0.5% 59.7 ˘ 1.1% 73.4 ˘ 0.5% 59.8 ˘ 0.8%
StatEx variant 74.2 ˘ 0.6% 61.6 ˘ 1.4% 70.6 ˘ 0.5% 59.0 ˘ 0.7% 72.2 ˘ 0.3% 58.2 ˘ 0.7%
FeatEx 76.3 ˘ 0.9% 64.5 ˘ 1.2% 72.3 ˘ 0.6%72.3 ˘ 0.6%72.3 ˘ 0.6% 61.0 ˘ 0.7% 73.9 ˘ 0.5% 60.0 ˘ 0.9%
regular and StatEx variant 76.9 ˘ 0.4% 65.8 ˘ 0.9% 71.2 ˘ 0.3% 60.3 ˘ 0.7% 73.9 ˘ 0.3% 59.9 ˘ 0.6%
regular and FeatEx 78.1 ˘ 0.4%78.1 ˘ 0.4%78.1 ˘ 0.4% 67.0 ˘ 1.1%67.0 ˘ 1.1%67.0 ˘ 1.1% 72.2 ˘ 0.4% 61.3 ˘ 0.5%61.3 ˘ 0.5%61.3 ˘ 0.5% 74.9 ˘ 0.4%74.9 ˘ 0.4%74.9 ˘ 0.4% 61.5 ˘ 0.6%61.5 ˘ 0.6%61.5 ˘ 0.6%
combined approach 77.7 ˘ 0.8% 67.0 ˘ 0.5%67.0 ˘ 0.5%67.0 ˘ 0.5% 71.6 ˘ 1.0% 61.2 ˘ 0.9% 74.2 ˘ 0.3% 61.2 ˘ 0.3%

DCASE2023 development set

SSL approach source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

baseline 69.8 ˘ 1.8% 60.9 ˘ 0.9% 72.3 ˘ 1.8% 55.6 ˘ 0.9% 71.3 ˘ 0.6% 56.1 ˘ 0.8%
StatEx variant 67.8 ˘ 1.5% 59.2 ˘ 0.8% 69.7 ˘ 1.7% 54.7 ˘ 1.1% 69.0 ˘ 1.2% 55.7 ˘ 1.0%
FeatEx 68.4 ˘ 1.0% 60.2 ˘ 0.5% 74.4 ˘ 0.7% 57.6 ˘ 1.0%57.6 ˘ 1.0%57.6 ˘ 1.0% 71.7 ˘ 0.4% 57.5 ˘ 0.7%
regular and StatEx variant 70.3 ˘ 1.8% 62.0 ˘ 1.6% 72.2 ˘ 1.4% 56.2 ˘ 1.2% 71.2 ˘ 0.7% 57.0 ˘ 1.4%
regular and FeatEx 72.9 ˘ 2.0%72.9 ˘ 2.0%72.9 ˘ 2.0% 63.0 ˘ 1.3%63.0 ˘ 1.3%63.0 ˘ 1.3% 75.7 ˘ 0.8%75.7 ˘ 0.8%75.7 ˘ 0.8% 57.0 ˘ 1.6% 74.4 ˘ 1.0%74.4 ˘ 1.0%74.4 ˘ 1.0% 58.0 ˘ 1.4%58.0 ˘ 1.4%58.0 ˘ 1.4%
combined approach 71.2 ˘ 1.6% 62.7 ˘ 1.3% 75.0 ˘ 1.5% 56.1 ˘ 1.4% 73.1 ˘ 0.9% 57.3 ˘ 0.6%

DCASE2023 evaluation set

SSL approach source domain target domain domain-independent
AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

baseline 72.5 ˘ 0.8% 62.4 ˘ 1.2% 63.1 ˘ 2.6% 57.5 ˘ 0.8% 67.9 ˘ 1.0% 58.8 ˘ 0.8%
StatEx variant 70.0 ˘ 1.2% 59.7 ˘ 0.9% 66.7 ˘ 1.8% 58.4 ˘ 0.7% 65.8 ˘ 0.6% 57.1 ˘ 0.8%
FeatEx 69.3 ˘ 2.0% 59.3 ˘ 1.2% 69.1 ˘ 1.3%69.1 ˘ 1.3%69.1 ˘ 1.3% 59.0 ˘ 1.3% 68.1 ˘ 1.2% 58.1 ˘ 0.9%
regular and StatEx variant 72.4 ˘ 2.4% 62.4 ˘ 1.3% 65.9 ˘ 1.9% 59.0 ˘ 1.4% 69.5 ˘ 1.8% 60.7 ˘ 0.9%
regular and FeatEx 75.9 ˘ 1.0%75.9 ˘ 1.0%75.9 ˘ 1.0% 62.9 ˘ 1.3% 66.5 ˘ 1.9% 58.3 ˘ 1.0% 71.1 ˘ 1.1% 60.1 ˘ 1.3%
combined approach 75.5 ˘ 0.8% 64.5 ˘ 0.6%64.5 ˘ 0.6%64.5 ˘ 0.6% 68.7 ˘ 2.2% 59.3 ˘ 0.7%59.3 ˘ 0.7%59.3 ˘ 0.7% 72.6 ˘ 0.7%72.6 ˘ 0.7%72.6 ˘ 0.7% 61.6 ˘ 0.5%61.6 ˘ 0.5%61.6 ˘ 0.5%

5.8 putting it all together 111

Table 27: Harmonic means of AUC-ROCs and pAUCs taken over all machine types ob-
tained on the DCASE2023 dataset by modifying design choices of the proposed
SSL-based system. Arithmetic mean and standard deviation over five indepen-
dent trials are shown. © 2024 IEEE

SSL loss without class labels non-trainable class centers no TMN and full StatEx
split domain AUC-ROC pAUC AUC-ROC pAUC AUC-ROC pAUC

dev source 70.8 ˘ 1.5% 63.2 ˘ 1.1% 71.5 ˘ 0.9% 64.8 ˘ 1.9% 70.9 ˘ 0.7% 61.0 ˘ 1.5%
dev target 74.7 ˘ 1.5% 58.1 ˘ 1.6% 74.0 ˘ 2.0% 56.7 ˘ 1.0% 72.1 ˘ 1.4% 55.2 ˘ 1.0%
dev mixed 72.3 ˘ 1.2% 57.9 ˘ 1.3% 71.6 ˘ 1.1% 57.7 ˘ 0.7% 71.3 ˘ 0.7% 55.6 ˘ 0.9%

eval source 73.5 ˘ 2.4% 63.8 ˘ 0.6% 74.2 ˘ 0.7% 63.9 ˘ 1.3% 73.8 ˘ 1.3% 62.4 ˘ 1.5%
eval target 62.1 ˘ 1.5% 57.7 ˘ 0.9% 58.2 ˘ 3.3% 57.3 ˘ 0.9% 66.9 ˘ 2.4% 58.5 ˘ 1.9%
eval mixed 68.6 ˘ 1.2% 59.1 ˘ 0.7% 65.0 ˘ 0.9% 57.7 ˘ 0.6% 70.9 ˘ 0.8% 59.9 ˘ 0.8%

50

55

60

65

70

75

80

70
.5

6%
69

.3
5%

67
.5

7%
66

.9
7%

66
.3

9%
65

.4
0%

64
.9

1%
64

.1
0%

63
.6

4%
63

.5
0%

61
.7

7%
61

.0
5%

59
.5

4%
54

.0
17

2%

offi
ci

al
sc

or
e

in
pe

rc
en

t

with SSL and AdaProj
with SSL

with AdaProj
rank 1 [93]
rank 2 [137]
rank 3 [89]

own baseline (rank 4 [246])
rank 5 [264]
rank 6 [277]
rank 7 [215]
rank 8 [226]
rank 9 [72]
rank 10 [88]

challenge baseline [72]

Figure 26: Comparison between the performances of the presented systems and official
scores of the ten top-performing systems of the DCASE2023 Challenge. For
the evaluations, ensembles consisting of ten sub-systems were used.

5.8 putting it all together

The goal of this section is to compare the performance obtained with the pre-
sented systems of this chapter to the state-of-the-art performance. Furthermore,
the AdaProj loss and SSL are combined in a single system by replacing both sub-
cluster AdaCos losses of the system used in Section 5.7 with AdaProj losses to
see if this improves performance. For all evaluated systems, ensembles are used by
taking the sum of the anomaly scores belonging to 10 individually trained versions
of the same system. A comparison between the systems presented in this chapter
and the ten top-performing systems of the DCASE2023 Challenge can be found
in Figure 26. It can be seen that the baseline system presented in Section 5.3.1

112 domain adaptation and generalization

reached rank 4 and thus yields good but the best performance. When only replac-
ing the loss functions with the AdaProj loss, the system slightly outperforms all
other systems and thus yields state-of-the-art performance. However, the perfor-
mance improvements obtained when applying the SSL approaches are significantly
greater and the resulting system outperforms all other published systems by a large
margin. Moreover, when combining AdaProj and SSL into a single system the re-
sulting performance is even better. In conclusion, all approaches presented in this
chapter are highly beneficial to improve the performance of a semi-supervised ASD
system in domain-shifted conditions.

5.9 summary

In this chapter, the ASD system presented in Chapter 3 was modified to be robust
to domain shifts from a source to a target domain, which are any changes of the
distribution of normal data caused by altering the target sounds or the background
noise. It was shown that many design choices of the system have an impact on the
resulting performance. More concretely, it was shown that 1) preventing trivial
solutions by not using bias terms or trainable centers, 2) utilizing STFT- and
DFT-based input feature representations in combination with TMN with two sub-
networks, whose embeddings are combined by concatenating them, as well as 3)
using the cosine similarity as a backend all significantly improve the performance
in domain-shifted conditions.

Further investigations were aimed at explaining the results obtained with the
presented ASD system. To this end, the impact of specific regions of the input
features on the ASD performance using RISE and visualizing the resulting em-
bedding spaces using t-SNE were investigated. Here, it could be seen that the
embeddings obtained when using an auxiliary classification task capture more
meaningful structures and thus normal embeddings can be much better separated
from anomalous ones. This verifies the findings presented in Chapter 3. In contrast
to the source domain, there are only very few training samples provided for the
target domain in domain-shifted conditions. Although pre-trained embeddings are
a promising approach in settings with limited training data, the experiments con-
ducted in this chapter showed that directly training the embedding model leads
to significantly better performance than using pre-trained embeddings as input to
a shallow classifier.

In case only little meta information is available for training an embedding model
with an auxiliary classification task, the ASD performance decreases. Two addi-
tional modifications of the ASD system were presented to improve the performance
in such a setting. First, the angular margin loss AdaProj for learning class-specific
sub-spaces was proposed. This loss is a generalization of the sub-cluster AdaCos
loss and enables the model to learn class-specific distributions that are more com-
plex than a combination of Gaussians. Using AdaProj increased the ability of the
system to distinguish between embeddings belonging to normal and anomalous

5.9 summary 113

samples. Second, multiple SSL approaches were used to increase the difficulty of
the classification task and thus force the embedding model to capture more infor-
mation. To this end, FeatEx, which randomly exchanges the embeddings of both
sub-networks between different training samples, was presented. It was shown that
combining FeatEx with StatEx, which exchanges first- and second-order statistics
of two random training samples, significantly improved performance when training
the embedding model with an auxiliary classification task. Utilizing AdaProj and
SSL together, led to an even better performance outperforming all other published
systems with a significant margin. As a result, the system presented in this chapter
reached a new state-of-the-art performance on the DCASE2023 dataset.

6
FEW-SHOT OPEN -SET CLASS IF ICAT ION

The goal of this chapter is to investigate open-set classification (OSC) as another
application of ASD than acoustic machine condition monitoring, which has been
extensively studied in the previous chapters. As mentioned in the introduction of
this thesis, OSC can be separated into two sub-tasks: closed-set classification (CSC)
and anomaly detection (AD) [238]. In the previous chapters, it has been shown
that angular margin losses are an excellent choice for detecting anomalous sounds.
Furthermore, angular margin losses are specifically designed for CSC and thus
angular margin losses are expected to also be an excellent choice to train models for
OSC. Because of this, the difficulty of the OSC tasks investigated in this chapter
will be increased by only considering settings in which only very few training
samples are provided. For many applications, this is a more realistic scenario than
having access to many training samples for each class because it substantially
simplifies the data collection and labeling process. Furthermore, keyword spotting
will be used as an application for sound event detection (SED), which demands to
not only recognize the correct keyword class but also to determine the precise on-
and offset of each sound event.

This chapter is structured as follows. First, the ASD system presented in Sec-
tion 5.3.1 will be evaluated for few-shot OSC. Similar to the experiments conducted
in Section 5.5, the resulting performance will be compared to performances ob-
tained with pre-trained embeddings. Second, the loss function TACos, which is a
modification of the AdaCos loss capable of learning embeddings with a temporal
structure, will be presented and evaluated for few-shot keyword spotting.

6.1 contributions of the author

The sections of this chapter are largely based on the following key publications:

• Kevin Wilkinghoff and Fabian Fritz. “On Using Pre-Trained Embeddings for
Detecting Anomalous Sounds with Limited Training Data.” In: 31st Euro-
pean Signal Processing Conference. IEEE, 2023, pp. 186–190. doi: 10.23919/
EUSIPCO58844.2023.10290003.

• Kevin Wilkinghoff, Alessia Cornaggia-Urrigshardt, and Fahrettin Gökgöz.
“Two-Dimensional Embeddings for Low-Resource Keyword Spotting Based
on Dynamic Time Warping.” In: 14th ITG Conference on Speech Communi-
cation. VDE-Verlag, 2021, pp. 9–13.

• Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “TACos: Learning
Temporally Structured Embeddings for Few-Shot Keyword Spotting with

115

https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.23919/EUSIPCO58844.2023.10290003

116 few-shot open-set classification

Dynamic Time Warping.” In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2024, pp. 9941–9945. doi: 10.1109/
ICASSP48485.2024.10445814.

For publications that are not single-authored, individual contributions of the the-
sis author and all co-authors to these publications are stated in Section A.1. If
not stated otherwise, the content listed in the following paragraph is the sole
contribution of the thesis author.

Section 6.2 is based on [258]. Fabian Fritz helped with the experimental evalua-
tions by writing wrapper functions for the pre-trained embeddings. Section 6.3 is
mostly based on [254], which is an extension of [256]. Thus, [256] is only indirectly
covered. Alessia Cornaggia-Urrigshardt helped with creating the dataset presented
in Section 6.3.2 and applied DTW to the embeddings. Additionally, she evaluated
the HFCC-based model presented in Section 6.3.7 and conducted the experiments
related to the global and individual decision thresholds contained in Table 31.

6.2 few-shot open-set classification

Before conducting any experiments, the terms open-set classification and few-shot
learning will be formalized. OSC tasks can be characterized by the so-called open-
ness [200], which quantifies how open a specific OSC task is by measuring the
relation between known and unknown classes and is defined as follows:

Definition 6.1 (Openness). Let Ntrain
classes, N

test
classes P N denote the number of classes

of the training subset and the test subset, respectively. Then the openness of an
OSC task is defined as

openness(Ntrain
classes, N

test
classes) – 1 ´

d

2 ¨ Ntrain
classes

Ntrain
classes +Ntest

classes
P [0, 1]. (63)

Remark. Ntrain
classes denotes the number of known target classes and known non-

target classes (known unknowns), for which training samples are provided. Ntest
classes

not only contains the same known target and non-target classes but may also
contain additional non-target classes not encountered during training (unknown
unknowns). These unknown unknowns correspond to the anomalies of a semi-
supervised anomaly detection task and are the essential difference between closed-
set and open-set problems. In case no unknown unknowns exist, the OSC task is
in fact a CSC task because all classes are known during training. Note that for
realistic applications it is usually impossible to provide training samples that fully
capture the space of unknown classes as it is also the case in a supervised anomaly
detection setting. For the same reason, even counting Ntest

classes for a realistic applica-
tion is impossible. Because of this, Ntest

classes denotes the number of classes contained
in a specific set of test samples, which is always less or equal than the real number
of classes of the target application.

https://doi.org/10.1109/ICASSP48485.2024.10445814
https://doi.org/10.1109/ICASSP48485.2024.10445814

6.2 few-shot open-set classification 117

Since the openness is such an essential characteristic of an OSC task, it can be
used to describe a task or serve as a metric to compare similar tasks. A higher
openness indicates more unknown classes relative to the number of known classes.
An openness of 0 corresponds to a CSC task and an openness of 1 corresponds to
a finite number of known classes and an infinite number of unknown non-target
classes, since Ntrain

classes ‰ 0.
Few-shot learning [227] describes a task for which only K P N training samples

are available for each class (K-shot learning). Hence, the size of the training dataset
is very limited, making it difficult to train a model such that it generalizes well to
unseen data. The most popular loss function for few-shot classification [227] is a
prototypical loss [209] defined as follows:

Definition 6.2 (Prototypical loss). Let d : XˆX Ñ R+ denote a metric and Y Ă X

be finite. For training step t P N0, let S(t),Q(t) Ă Y with S(t)XQ(t) = H denote ran-
domly sampled subsets called support set and query set, respectively. Furthermore,
define the prototypes C(t) = tc

(t)
1 , ..., c

(t)
Nclasses

u Ă RD as the means of the embed-
dings computed from all x P S(t) belonging to the same class i P t1, ...,Nclassesu,
i.e. for embedding model ϕ P Φ with parameters w P W set

c
(t)
i (ϕ,w, S(t)) – mean(tϕ(x,w) P RD : x P S(t), class(x) = iu). (64)

Then, using the same notation as used in Definition 2.7, the prototypical loss at
training step t is defined as

L
(t)
prot : P(X) ˆ P(RD) ˆ Φ ˆ W ˆ Λ(Nclasses) Ñ R+

L
(t)
prot(Q

(t), C(t), ϕ,w, lab, d)

– ´
1

|Q(t)|

ÿ

xPQ(t)

Nclasses
ÿ

j=1

lab(x)j log(softmax(d(ϕ(x,w), c
(t)
j)))

(65)

When choosing the Euclidean distance as a metric for the prototypical loss, i.e.

d(ϕ(x,w), c
(t)
j) – ∥ϕ(x,w) ´ c

(t)
j ∥22, (66)

Theorem 3.5 and Corollary 3.3 show that angular margin losses such as the AdaCos
loss can also be viewed as prototypical losses or angular prototypical losses [30]
with a margin between classes. The main difference between these types of loss
functions is that for a prototypical loss the centers are re-calculated during training
by randomly sampling a support set whereas, for an angular margin loss, they are
treated as trainable parameters or not adapted at all. The similarity of the loss
functions is the reason why using an angular margin loss in a few-shot open-set
classification setting is a viable option. However, as the number of training samples
is very limited, learning more complex distributions than Gaussians for each class
is not feasible and thus extensions of standard angular margin losses such as the

118 few-shot open-set classification

presented sub-cluster AdaCos loss (see Section 3.4) or AdaProj (see Section 5.6)
should not be used. In addition, the CSC classification sub-task is challenging by
itself and thus for OSC avoiding trivial solutions is less of a problem than for ASD
alone.

In theory, the very limited number of training samples available for few-shot
classification should favor pre-trained embeddings over training a system directly
on the dataset. This motivates the goal of this section, which is to evaluate the
previously proposed ASD system for few-shot OSC and compare its performance
to performances obtained with pre-trained embeddings.

6.2.1 Dataset

The few-shot OSC dataset used in this section aims at detecting and correctly
classifying acoustic alarms in domestic environments [162]. In total, the dataset
contains 34 classes with 24 known alarm sounds and 10 unknown sounds belonging
to one of the classes “car horn”, “clapping”, “cough”, “door slam”, “engine”, “keyboard
tapping”, “music”, “pots and pans”, “steps” and “water falling”. For each class, there
are 40 recordings, each with a length of 4 s and a sampling rate of 16 kHz. There are
several different versions of this dataset defined by the number of shots available
for each class (1, 2 or 4) and the openness (0, 0.04 or 0.09). Each version of
the dataset is divided into a training and a test subset by using cross-validation.
An overview can be found in Table 28. The performance of a trained system is
evaluated by using the weighted accuracy (cf. Section 2.10, Equation 27) with
βACC = 0.5 as a performance measure.

6.2.2 System design

To evaluate the performance on this few-shot OSC dataset, the ASD systems using
pre-trained embeddings or the directly trained system presented in Section 5.5 were
slightly modified. First of all, only a single sub-cluster per class was used for the
sub-cluster AdaCos loss because only very few training samples are available for
each class. Depending on the specific version of the dataset, some hyperparameters
of the system were adapted to obtain more robust decision thresholds, which were
needed to compute the performance of an ASD system with a threshold-dependent
evaluation metric. More concretely, the number of training epochs was set to 100

times the number of shots and the batch size was set to 8 times the number
of shots. Furthermore, the decision threshold was set to 0.6, 0.65 or 0.75 for low,
medium or high openness settings, respectively. As a last modification, the openL3
embeddings pre-trained on the music subset instead of the environmental subset
were used because acoustic alarms are more similar to music than environmental
sound events.

6.2 few-shot open-set classification 119

Table 28: Structure of the few-shot OSC dataset for acoustic alarm detection in domestic
environments.

number of classes

openness shots validation known known unknown
folds unknown unknown

low (0) 1 40 24 10 0
low (0) 2 20 24 10 0
low (0) 4 10 24 10 0

middle (0.04) 1 40 24 5 5
middle (0.04) 2 20 24 5 5
middle (0.04) 4 10 24 5 5

high (0.09) 1 40 24 0 10
high (0.09) 2 20 24 0 10
high (0.09) 4 10 24 0 10

6.2.3 Experimental results

A comparison of the performances obtained with different systems and different
pre-trained embeddings can be found in Table 29. As expected, using more shots
or having a lower openness leads to a better mean performance and a smaller vari-
ance as more training data should improve the performance and CSC is an easier
problem than OSC. Furthermore, all proposed systems significantly outperform
the two baseline systems proposed in [162] showing once more that the systems
presented in this thesis are well designed. However, there is a strong difference in
how well the systems perform. Overall, VGGish performs worst, followed by PANN,
OpenL3 and Kumar embeddings and the directly trained system performs best.
Moreover, all of the proposed systems have different stengths and weaknesses. The
system based on OpenL3 embeddings performs best in the low openness setting,
which is in fact a CSC task. In general, the directly trained model performs best
for middle or high openness settings. An exception is the high openness setting
when only a single shot is available for each class where Kumar embeddings per-
form best. The relative degradation of the performance caused by decreasing the
number of shots is smaller when using pre-trained embeddings than with a directly
trained model. This is expected since most parameters of the pre-trained systems
belong to the embedding models, which are trained using external data, and thus,
in total, only a few parameters need to be trained with the shots belonging to the
application-dependent OSC dataset.

120 few-shot open-set classification

Table 29: Weighted accuracies (in percent) obtained with different systems and input
representations for various openness settings and number of shots per class.
Mean and standard deviation of five independent trials are shown. © 2023
IEEE

baselines [162] proposed system using different input representations
openness shots OpenL3 YAMNet VGGish OpenL3 PANN Kumar directly

trained

low 1 56.8 80.1 90.0 ˘ 2.2 98.1 ˘ 1.098.1 ˘ 1.098.1 ˘ 1.0 95.6 ˘ 1.4 96.5 ˘ 1.3 97.4 ˘ 1.1

low 2 90.3 88.2 95.6 ˘ 1.6 99.6 ˘ 0.399.6 ˘ 0.399.6 ˘ 0.3 97.7 ˘ 0.8 98.5 ˘ 0.9 99.1 ˘ 0.7

low 4 97.2 94.9 98.4 ˘ 0.7 99.9 ˘ 0.199.9 ˘ 0.199.9 ˘ 0.1 98.9 ˘ 0.5 99.6 ˘ 0.4 99.7 ˘ 0.4

middle 1 74.1 78.3 88.7 ˘ 2.1 97.0 ˘ 2.397.0 ˘ 2.397.0 ˘ 2.3 94.9 ˘ 1.7 96.1 ˘ 1.6 96.8 ˘ 1.4

middle 2 86.7 85.6 93.4 ˘ 1.8 99.2 ˘ 0.699.2 ˘ 0.699.2 ˘ 0.6 95.7 ˘ 1.9 97.8 ˘ 1.3 98.7 ˘ 0.8

middle 4 91.3 91.9 96.2 ˘ 1.6 99.3 ˘ 0.5 97.8 ˘ 1.1 98.6 ˘ 1.3 99.8 ˘ 0.299.8 ˘ 0.299.8 ˘ 0.2

high 1 49.9 57.1 84.0 ˘ 2.6 88.8 ˘ 5.3 92.1 ˘ 2.6 94.8 ˘ 2.494.8 ˘ 2.494.8 ˘ 2.4 92.6 ˘ 4.5

high 2 58.3 61.1 87.8 ˘ 2.6 94.0 ˘ 3.2 92.9 ˘ 2.9 97.0 ˘ 1.7 97.5 ˘ 1.797.5 ˘ 1.797.5 ˘ 1.7

high 4 60.5 64.3 87.8 ˘ 2.5 96.1 ˘ 1.5 96.0 ˘ 2.1 98.4 ˘ 1.3 99.1 ˘ 1.199.1 ˘ 1.199.1 ˘ 1.1

arithmetic mean 73.9 77.9 91.3 96.9 95.7 97.5 97.997.997.9

Once more, these results show that using pre-trained embeddings for detecting
anomalies is not an optimal choice. Although the gap in performance is smaller
for this few-shot OSC task than for the pure ASD (cf. Section 5.5) task and the
dataset used here does not consist of noisy audio recordings, directly training a
system leads to better performance. For CSC tasks, the situation is different and
pre-trained embeddings such as OpenL3 embeddings may slightly outperform a
directly trained system. However, CSC tasks are not the focus of this thesis.

6.3 sound event detection application: keyword spotting

Keyword spotting (KWS) is the task of detecting all occurrences of a small set of
pre-defined words, so-called keywords, with precise on- and offsets in audio signals
of possibly long duration [136]. Applications are activating voice assistants [150,
199], querying large databases [157] or monitoring audio streams such as radio
communication transmissions [147]. All KWS tasks are inherently OSC problems
since each keyword defines another class and the keywords are only a small subset
of the entire search space, which may contain arbitrary speech, silence or com-
pletely different sounds not related to speech. As strongly labeled training data,
i.e. samples with annotated on- and offsets of the keywords is difficult and thus
costly to obtain, often only a few training samples can be provided making it a
few-shot task. The main difference to the previously presented few-shot open-set
classification task is the need for detecting on- and offsets during inference, which
adds another layer of difficulty.

6.3 sound event detection application: keyword spotting 121

As it is the case for ASD systems, state-of-the-art KWS systems are based
on learning discriminative embeddings [94, 138]. For few-shot KWS, these em-
beddings are also learned using a prototypical loss [98, 142, 175]. The same is
true when using pre-trained embeddings [103] or for similar applications such as
bio-acoustic event detection [169] or sound event detection in general [229, 230].
However, all of these networks require to choose a fixed input size resulting in the
following dilemma: If the input size is too small, then insufficient information may
be contained in the input data to classify correctly and the same instance may be
detected multiple times. If the input size is too large, then too much irrelevant
or contradicting information may be contained, which degrades the performance.
Furthermore, multiple instances may be detected only once and precisely detecting
on- and offsets of events is difficult. In practice, finding a balanced size is difficult
and still results in severely degraded performance when dealing with keywords of
different lengths.

6.3.1 Related work

In the following, existing approaches to tackle this problem will be discussed. For
bio-acoustic event detection, it has been proposed to use multiple models with
different sizes [141]. However, when increasing the number of classes this quickly
becomes highly impractical. Another approach for bio-acoustic event detection
is to use individual frames for classification [131]. While this may work for dis-
criminating between animal calls belonging to different species, which may in fact
be very short and often sound very differently, individual frames of short-time
cepstral features do not carry enough information to correctly detect spoken key-
words. The reason is that very short audio signals containing speech corresponding
to individual frames all are very similar to each other if different keywords largely
consist of the same phonemes. For ASR [122], a sequence-to-sequence loss such as
the connectionist temporal classification (CTC) loss [66] is used, which can handle
sequences of words with different lengths. However, training such a model requires
enormous amounts of data with the same acoustic conditions as the expected data
for the application. This problems persists when using pre-trained ASR systems
[97, 145]. Furthermore, using an ASR system for KWS leads to a large computa-
tional overhead and thus is impractical when needing a very fast inference time or
detecting keywords locally on sensors with very limited computational resources.
For some applications where only the first instance of a keyword is of interest,
computational power can be saved by using spiking neural networks and stopping
the search process after finding a single keyword [87]. Still, choosing a fixed input
size is required. An approach that can handle arbitrary sizes is to apply dynamic
time warping (DTW) to keyword templates created by concatenating classical
short-time cepstral features such as Mel-frequency cepstral coefficients (MFCCs)
or human factor cepstral coefficientss (HFCCs) [116, 222]. For these, the main
problem is that the performance quickly degrades in noisy conditions or for short

122 few-shot open-set classification

words. In [146], the same approach was used to collect samples of individual key-
words that are later used as training data for an embedding model. Although this
may help to improve the performance obtained with the final KWS model, it does
not solve any of the previously mentioned problems both involved approaches are
suffering from. Apart from presenting an embedding-based KWS system, the goal
of this section is to present a loss function that solves the problem of needing to
choose a fixed input size.

6.3.2 Dataset

Conventional KWS datasets such as SpeechCommands [231] do not aim at detect-
ing specific keywords in sentences but focus only on classifying isolated words or
phrases. Since this eliminates one of the major difficulties of KWS, namely the
need for detecting on- and offsets of keywords, the few-shot open-set dataset KWS-
DailyTalk will now be introduced. This dataset is based on the ASR dataset Dai-
lyTalk [118] containing high-quality speech recordings without noise from scripted
conversations. KWS-DailyTalk is divided into a training split, a validation split
and a test split. The training split of KWS-DailyTalk has a length of only 39 s and
consists of five isolated samples for each of the following 15 keywords: “afternoon”,
“airport”, “cash”, “credit card”, “deposit”, “dollar”, “evening”, “expensive”, “house”,
“information”, “money”, “morning”, “night”, “visa” and “yuan”. The validation and
test split have a length of approximately 10min each and consist of 156 and 157

sentences, respectively. Each sentence contains any number of the keywords to
be detected including none of them. As a result, each keyword appears roughly
12 times. Their on- and offsets are manually annotated and the training samples
stem from other conversations as the sentences contained in the validation and
test splits. As an evaluation metric, the micro-averaged F1-score (cf. Section 2.10)
as implemented in [148] is used. All hyperparameters are set to optimize the per-
formance on the validation split.

6.3.3 System overview

The embedding based few-shot KWS system depicted in Figure 27 has a simi-
lar structure as the previously used ASD systems. First, the waveforms are pre-
processed using a frontend. Then embeddings are extracted with a neural network
and a backend is applied to compute scores and output the detected keywords.
One of the major differences to the previous OSC application is that individual in-
stances of different keywords or even the same keyword may have strongly varying
lengths. Moreover, a stream of arbitrary length needs to be handled during infer-
ence and may contain several acoustic events that are of interest. To be able to do
this, the embeddings are designed to have a temporal dimension. All recordings
are divided into small segments of a fixed size before computing embeddings with a
temporal resolution. After that, the embeddings of individual segments belonging

6.3 sound event detection application: keyword spotting 123

backend

neural networkfrontend

obtain
keyword label

obtain raw
waveform

pre-process
waveform

divide into
segments

encode
positional
information

revert along
temporal axis

compute
magnitude
log-Mel

spectrograms

apply data
augmentation

train neural
network

extract
embeddings
with neural
network

compute
cost matrices

apply sub-
sequence
dynamic

time warping
(DTW)

post-process
potential
matches

return
keyword

matches with
on- and offsets

Figure 27: Structure of the proposed KWS system. Blocks colored in blue are only used
for training the system, blocks colored in yellow are only used for inference
and blocks colored in red are used for training and inference. © 2024 IEEE

to the same recording are combined again into a single embedding. Individual key-
words are detected by searching their instances provided by the training samples
in test recordings using sub-sequence DTW. The details of all components will be
presented in the following sections.

6.3.4 Extracting embeddings

The frontend applied to obtain input features representations for the embedding
model is the following. First, the raw waveforms are re-sampled to 16 kHz, high-
pass filtered with a cutoff frequency of 50Hz and the amplitude is normalized
by dividing with the maximum value. For training samples, a segment length
Lseg = 0.25 s and an overlap of Lseg

5
are used. Any segments shorter than Lseg

are padded with zeros. During inference, the same segment length in combination
with an overlap of 256

16000Hz is used to obtain a higher temporal resolution. Fur-
thermore, samples are padded with

XLseg¨16000

2

\

zeros such that their center aligns
with the position in the original recording. After all these pre-processing steps,
log-Mel magnitude spectrograms with 64 Mel bins are extracted using a STFT
with Hanning-weighted windows of size 1024 and a hop size of 256. This results
in a temporal dimension of T –

P

Lseg ¨ 16000
256

T

P N.
The architecture of the embedding model is similar to the one used for ASD

(see Table 4) and is provided in Table 30. Apart from the differently sized input
representations, the differences are that no temporal max-pooling and padding
is applied to retain the original temporal dimension of the input data. Further-
more, dropout with a probability of 20% is used after each residual block. The
model is trained for for 1000 epochs with a batch size of 32 using adam [101] to
minimize the temporal AdaCos (TACos) loss, which will be presented in Section
6.3.5. During training, random oversampling is applied to balance the number of
segments belonging to different keyword classes resulting from the varying lengths

124 few-shot open-set classification

Table 30: Modified ResNet architecture used for extracting embeddings with temporal
dimension. © 2024 IEEE

layer name structure output size

input - 16 ˆ 64

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 ˆ 1 16 ˆ 64 ˆ 16

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 ˆ 2 16 ˆ 32 ˆ 32

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 ˆ 2 16 ˆ 16 ˆ 64

residual block

(
3 ˆ 3

3 ˆ 3

)
ˆ 2, stride= 1 ˆ 2 16 ˆ 8 ˆ 128

max pooling 1 ˆ 8, stride= 1 ˆ 1 16 ˆ 128

dense (embedding) linear 16 ˆ 128

of the original keyword recordings. To avoid overfitting, mixup [272] with a uni-
formly distributed mixing coefficient and SpecAugment [173] are applied for data
augmentation purposes. In addition, the background recordings from SpeechCom-
mands [231] are used as additional class “no speech” to reduce the number of false
positives detected in segments not containing any speech.

After training, the trained embedding model is used to extract embeddings for
the segmented recordings belonging to the entire dataset. Then, embeddings of
individual segments are combined by taking the mean of all frames that belong
to the same time frame in the original file, resulting in a single embedding with a
temporal resolution for the entire file matching the original length in time. This
is illustrated in Figure 28.

6.3.5 TACos

The idea of the TACos loss is to have two training objectives for each segment.
First, the correct keyword should be detected with a supervised loss function Lkw.
Second, the correct position of a segment within the keyword should be detected
with a self-supervised loss Lpos. Without learning the position of segments, the
resulting embeddings are often constant for regions where the same keyword is
contained because embeddings of segments only need to carry information about
the keyword. In these cases, applying DTW is similar to directly classifying indi-
vidual frames with a classifier and therefore using the embeddings as templates
does not significantly improve the performance. Using Lpos as one of the training
objectives, forces the embedding model to include positional information into the

6.3 sound event detection application: keyword spotting 125

T

D

embeddings
of segments:

𝜙(𝑥 𝑖𝑠𝑒𝑔 , 𝑤)

take
average

embedding of
entire recording 𝑥

t

D

Figure 28: Illustration of combining the embeddings belonging to different segments of
a single recording.

embeddings and thus varying the combined embeddings for entire recordings over
time.

Processing keyword instances with strongly varying lengths with the same dis-
criminative loss function requires a relative instead of an absolute encoding of the
positions, which is defined as follows:

Definition 6.3 (Categorical encoding of relative position). Let Nseg(x) P N de-
note the number of segments belonging to training sample x P Xtrain and define
Npos – maxxPXtraintNseg(x)u. For x P Xtrain and segment iseg P t1, ...,Nseg(x)u, set
the interval of active positions to

Iactive(x, iseg) =
[
1+

R

(iseg ´ 1) ¨ Npos

Nseg(x)

V

,

R

iseg ¨ Npos

Nseg(x)

V]
Ă R. (67)

Then, the categorical encoding of the relative position labpos(x, iseg) P [0, 1]Npos of
segment iseg P t1, ...,Nseg(x)u belonging to training sample x P Xtrain is defined by
setting

labpos(x, iseg)ipos =
1Iactive(x,iseg)(ipos)

řNpos
jpos=1 1Iactive(x,iseg)(jpos)

(68)

where ipos P t1, ..,Nposu and 1I : R Ñ t0, 1u denotes the characteristic function
for the interval I Ă R.

These positional encodings are used as labels for a self-supervised classification
task. Note that for all instances of keywords shorter than the longest one present

126 few-shot open-set classification

𝑙𝑎𝑏𝑝𝑜𝑠(𝑥, 𝑖𝑠𝑒𝑔)

𝑖𝑝𝑜𝑠𝑖𝑝𝑜𝑠+1

𝑙𝑎𝑏𝑘𝑤(𝑥, 𝑖𝑠𝑒𝑔)

𝑖𝑘𝑤

segment of spectrogram 𝑥(𝑖𝑠𝑒𝑔)

𝑇

64

embedding 𝜙(𝑥(𝑖𝑠𝑒𝑔), 𝑤)

𝑇

𝐷

centers for 𝑖𝑝𝑜𝑠 and 𝑖𝑘𝑤

Pairwise similarity

take mean

take max

sim(𝜙(𝑥(𝑖𝑠𝑒𝑔), 𝑤), 𝐶𝑖𝑘𝑤,𝑖𝑝𝑜𝑠)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

ℒ𝑘𝑤

ℒ𝑝𝑜𝑠

+

Figure 29: Illustration of the TACos loss function. © 2024 IEEE

in the training set, multiple positions of the encoding are set to “active” with equal
target probability. The position of segments not containing any speech is encoded
with a uniform target distribution meaning that each position of this segment is
equally (un)likely.

Now, the actual TACos loss function used for training the embedding model will
be defined. A graphical illustration of the loss function can be found in Figure 29.

Definition 6.4 (TACos). Using the notation introduced in Definition 6.3, let
Y Ă X be finite and let x(j) P RTˆD denote the j-th segment generated from
sample x P X. Furthermore, let Nkw P N denote the number of keyword classes
and let Cikw,ipos P P(RD) with |Cikw,ipos | = Ncenters denote the trainable centers for
keyword ikw P t1, ...,Nkwu and position ipos P t1, ...,Nposu. Define the similarity
between embedding ϕ(x(iseg), w) = (ϕ(x(iseg), w)1, ..., ϕ(x(iseg), w)T) P RTˆD

and the centers Cikw,ipos as

sim(ϕ(x(iseg), w), Cikw,ipos)

– mean(t max
cPCikw,ipos

sim(ϕ(x(iseg), w)t, c) P RD : t = 1, ..., Tu). (69)

The corresponding softmax probability of embedding ϕ(x(iseg), w) belonging to
keyword ikw and position ipos is defined as

softmax(ŝ ¨ sim(ϕ(x(iseg), w), Cikw,ipos))

–
exp(ŝ ¨ sim(ϕ(x,w), Cikw,ipos))

řNkw
jkw=1

řNpos
jpos=1 exp(ŝ ¨ sim(ϕ(x(iseg), w), Cjkw,jpos))

(70)

6.3 sound event detection application: keyword spotting 127

where ŝ P R+ is the dynamically adaptive scale parameter as defined for the
sub-cluster AdaCos loss in 3.4. The probability of embedding ϕ(x(iseg), w) be-
longing to keyword ikw is set to

řNpos
jpos=1 softmax(ŝ ¨ sim(ϕ(x(iseg), w), Cikw,jpos))

and the probability of embedding ϕ(x(iseg), w) belonging to position ipos is set to
řNkw

jkw=1 softmax(ŝ ¨ sim(ϕ(x(iseg), w), Cjkw,ipos)). Therefore, the loss functions for a
single embedding ϕ(x(iseg), w) are equal to

Lkw : X ˆ t1, ...,Nkwu ˆ P(P(RD)) ˆ Φ ˆ W ˆ Λ(Nkw) Ñ R+

Lkw(x, iseg,C, ϕ,w, labkw)

–

Nkw
ÿ

ikw=1

labkw(x, iseg)ikw log
(Npos

ÿ

ipos=1

softmax(ŝ ¨ sim(ϕ(x(iseg), w), Cikw,ipos))
) (71)

and
Lpos : X ˆ t1, ...,Nposu ˆ P(P(RD)) ˆ Φ ˆ W ˆ Λ(Npos) Ñ R+

Lpos(x, iseg,C, ϕ,w, labpos)

–

Npos
ÿ

ipos=1

labpos(x, iseg)ipos log
(Nkw

ÿ

ikw=1

softmax(ŝ ¨ sim(ϕ(x(iseg), w), Cikw,ipos))
) (72)

where C P P(P(RD)) with |C| = Nkw ¨ Npos. The TACos loss includes both loss
functions and is defined as

Ltac : P(X) ˆ P(P(RD)) ˆ Φ ˆ W ˆ Λ(Nkw) ˆ Λ(Npos) Ñ R+

Ltac(Y,C, ϕ,w, labkw, labpos)

– ´
1

|Y|

ÿ

xPY

1

Nseg(x)

Nseg(k)
ÿ

iseg=1

Lkw(x, iseg,C, ϕ,w, labkw) + Lpos(x, iseg,C, ϕ,w, labpos).

(73)

For all experiments in this section, the hyperparameters D = 128 and
Ncenters = 16 were used.

To further improve the performance obtained with the KWS system, a second
SSL task is used when training the embedding model. More concretely, the model
is taught to recognize temporally reversed segments by creating a temporally re-
versed copy of each segment and creating labels in the following ways: For each
keyword class, an additional class for all temporally reversed segments belonging
to this keyword class is introduced, almost doubling the total number of classes.
The position of temporally reversed segments is encoded with a uniform target
distribution as done for the segments not containing any speech. Introducing tem-
porally reversed segments as difficult out-of-distribution samples that still contain
speech, makes the training objective much more challenging. This results in more
information about the temporal structure of the speech contained in the embed-
dings and is expected to improve the performance by reducing the number of false
alarms.

128 few-shot open-set classification

6.3.6 DTW backend

To actually detect appearances of keywords with their on- and offsets, sub-sequence
DTW is applied in the following way: First, cost matrices are computed using the
pairwise cosine distances between the embeddings belonging to test sentences and
the embeddings of training samples. Using Fréchet means instead of using the
individual samples, obtained by applying the dynamic time warping barycenter
averaging (DBA) [180], degrades the runtime but also degrades the performance.
Since DTW can be parallelized by sweeping diagonally over cost matrices, the
computational overhead is still manageable and the processing times are much
faster than real-time if the number of keywords and shots is not too high. Therefore,
the individual samples were used for the experimental evaluations. To accumulate
the costs of all cost matrices, the DTW step sizes (1, 1), (1, 2) and (2, 1) were
used. After this, a warping path is computed for each temporal position and its
associated cost is normalized by the length of the corresponding path. Then, the
normalized accumulated costs is used as a matching score and a decision threshold,
tuned on the validation set, can be applied to find the matches. The on- and offsets
of a detected keyword are given by the start and end of the warping paths, whose
matching scores are below the decision threshold. For post-processing, overlapping
detections are shortened such that they do not overlap and detections shorter than
half the duration of the training sample are removed.

6.3.7 Baseline systems

To justify the design of the proposed KWS system, the following two baseline
systems were used for comparison: A classical HFCC-based approach and a system
using vector-sized embeddings by applying a sliding window. The HFCCs are
extracted using spectrograms with a window size of 40ms and a step size of 10ms.
In contrast to the well-known MFCCs, HFCCs use a triangular filterbank with
perceptually motivated bandwidths based on the Bark-scale instead of the center
frequencies resulting in filters with less overlap. This was shown to improve the
performance for DTW-based KWS [222]. For the baseline system, the same sub-
sequence DTW algorithm as used for the trained embeddings is applied.

For the sliding window based system, a slightly modified embedding model ar-
chitecture as used for the embeddings with the temporal dimension is applied to
obtain vector-sized embeddings. One modification is to also apply the max-pooling
operation in the residual blocks to the temporal dimension. Another modification
is to apply a flattening operation before linearly projecting the hidden represen-
tation of the network onto the embedding space. The AdaCos loss is utilized for
training the embedding model. To detect keywords with on- and offsets, the follow-
ing procedure is used: First, the cosine similarities between all temporally sorted
embeddings of a target sentence and the keyword-specific centers of the embedding
network are computed. Then, these values are compared to a decision threshold

6.3 sound event detection application: keyword spotting 129

Table 31: Event-based, micro-averaged F-score, precision and recall obtained on KWS-
DailyTalk with different KWS systems. Highest F1-scores for each feature rep-
resentation are highlighted with bold letters, overall highest F1-scores are un-
derlined. © 2024 IEEE

feature representation reversed segments threshold obtained performance
validation split test split

F1-score precision recall F1-score precision recall

HFCCs not applicable global 60.52% 63.25% 58.01% 56.97% 61.54% 53.04%
HFCCs not applicable individual 64.71%64.71%64.71% 69.18% 60.77% 57.74%57.74%57.74% 62.58% 53.59%

embeddings (sliding) not used global 39.76% 43.71% 36.46% 38.35% 41.14% 35.91%
embeddings (sliding) not used individual 46.96% 49.39% 44.75% 40.44% 40.00% 40.88%
embeddings (sliding) used global 44.13% 62.00% 34.25% 44.83% 59.63% 35.91%
embeddings (sliding) used individual 55.43%55.43%55.43% 54.55% 56.35% 50.42%50.42%50.42% 51.14% 49.72%

embeddings (Lkw) not used global 56.04% 52.40% 60.22% 54.25% 53.80% 54.70%
embeddings (Lkw) not used individual 58.38% 57.14% 59.67% 53.04% 53.04% 53.04%
embeddings (Lkw) used global 64.58% 74.64% 56.91% 61.30%61.30%61.30% 69.72% 54.70%
embeddings (Lkw) used individual 66.12%66.12%66.12% 64.89% 67.40% 60.53% 57.79% 63.54%

embeddings (Ltac) not used global 62.78% 75.78% 53.59% 64.65% 82.76% 53.04%
embeddings (Ltac) not used individual 63.36% 63.19% 63.54% 63.31% 68.15% 59.12%
embeddings (Ltac) used global 65.78% 82.50% 54.70% 70.47%70.47%70.47% 89.74% 58.01%
embeddings (Ltac) used individual 69.44%69.44%69.44% 75.00% 64.64% 69.16% 79.29% 61.33%

resulting in another binary time-series for each keyword containing possible detec-
tions. These time-series are post-processed by applying median filters with lengths
equal to the nearest odd number of the mean number of frames to all shots of the
corresponding keyword. As a result, boxes indicating detections of keywords are
obtained, whose start- and endpoints are shifted by ´

Lseg
2

and +
Lseg
2

, respectively.

6.3.8 Experimental comparison

A comparison of the performance on KWS-DailyTalk obtained with different KWS
systems can be found in Table 31. The following observations can be made: First
and foremost, the embeddings obtained with the TACos loss perform best, which
is especially apparent on the test split of the dataset. Second, the embeddings
based on a sliding window perform worse while the embeddings with a temporal
dimension perform better than classical HFCCs. This shows that using a sliding
window is highly sub-optimal and justifies utilizing a temporal dimension. Third,
using temporally reversed embeddings for training improves the performance for
all embeddings. Since this simple SSL approach is applied in addition to other
powerful data augmentation techniques such as mixup and SpecAugment, this
shows that doing so is highly beneficial. Last but not least, individually tuned
decision thresholds do not improve the performance of the embeddings with a
temporal dimension on the test split. Therefore, an extensive tuning of decision
thresholds is not necessary and can be omitted.

130 few-shot open-set classification

6.4 summary

In this chapter, OSC and SED were investigated as additional ASD applications
in few-shot settings, meaning that only very few training samples were provided.
For OSC, a dataset for acoustic alarm detection in domestic environments and,
for SED, a KWS application were considered. Similar to the results presented in
Section 5.5, it was shown that directly training a model for the few-shot OSC task
leads to better results than using pre-trained embeddings. For a sufficiently high
number of shots used for training, the results obtained with the presented system
were close to optimal performance. However, the gap in performance decreased
the less training samples were available and for an openness equal to zero, i.e. a
CSC task, the pre-trained embeddings performed slightly better.

For the KWS task, a novel loss function, named TACos, and a few-shot KWS
dataset were presented. The TACos loss aims at learning embeddings with a tem-
poral structure and consists of a supervised task for predicting the keyword and a
self-supervised task for predicting the position of a short audio segment. Addition-
ally, a few-shot KWS system utilizing these embeddings as features for DTW was
presented. Utilizing these embeddings has the advantage that the system is able
to detect keywords of strongly varying lengths when monitoring audio streams
because a fixed window size for processing the data is not necessary. In experi-
mental evaluations, it was shown that also predicting the position when training
the embedding model significantly improves the performance because the model is
forced to learn embeddings that change over time, which makes them much better
suited as features for DTW. As a result, it was shown that the performance of
the proposed KWS system is better than the performance obtained with models
based on hand-crafted speech features or when using an embedding model based
on a sliding window. Furthermore, an SSL approach using temporally reversed
segments as negative examples during training was proposed and it was shown
that this approach improves the performance regardless of the model.

7
CONCLUS ION

7.1 summary

Reliably detecting anomalous sounds is important for various applications ranging
from monitoring machines for predictive maintenance, entire acoustic scenes for
security or the health of persons to acoustic open-set classification where anoma-
lies correspond to unknown classes. However, training an automatic ASD system
is difficult because for most applications anomalous samples are not available for
training. Additional challenges in a semi-supervised setting are the high dimen-
sionality of audio data and unwanted variations resulting from changing properties
of the sensors or the sound sources themselves. Furthermore, there is no inherent
property that is different for normal and anomalous sounds as defining these terms
entirely depends on the application. To solve all these issues, the goal of this thesis
was to investigate how to obtain a mapping from the audio signal space to a rel-
atively low-dimensional vector space, called embedding space, where normal and
anomalous sounds can be distinguished easily. For the experimental evaluations,
acoustic machine condition monitoring served as the main application throughout
the thesis.

First, the structure of a state-of-the-art ASD system based on audio embed-
dings was presented by reviewing the existing literature. Such a system consists of
a frontend, an embedding model and a backend. In the frontend, the audio signals
are pre-processed and their dimension is reduced by converting them into time-
frequency representations. Depending on the training objective, there are three
different types of embedding models, each with different strengths and weaknesses.
The model can be trained by using one-class losses such as the reconstruction or
the compactness loss, by solving auxiliary classification tasks with angular margin
losses based on provided meta information or SSL, or by using models pre-trained
on large datasets. To improve the performance, data augmentation techniques and
ensembling can be applied. The goal of the backend is to compute an anomaly score
by measuring the distance to normal embeddings or estimating their distribution
and computing the likelihood of test embeddings. In addition to discussing the
structure of an ASD system, threshold-dependent and threshold-independent eval-
uation metrics that measure the performance of a system as well as methods for
estimating a decision threshold were discussed.

In the third chapter, one-class embeddings were compared to auxiliary task
embeddings. To this end, it was shown that learning a joint embedding space by
utilizing a classification task, which incorporates as much meta information as pos-
sible, yields much better results than one-class models. The reason is that solving
a classification task enables the embedding model to closely monitor target sounds

131

132 conclusion

and ignore the background noise resulting in a stronger sensitivity to anomalous
deviations from normal sounds, which may be very subtle. As a theoretical result,
it was proven that the AdaCos loss minimizes intra-class compactness losses while
also maximizing inter-class compactness losses. This shows that both loss func-
tions are strongly related and explains why angular margin losses lead to a good
performance. Furthermore, the sub-cluster AdaCos loss was presented. It general-
izes the AdaCos loss by using multiple centers for each class to learn less restrictive
distributions leaving more space for anomalous samples between the normal sam-
ples. The theoretical results obtained for the AdaCos loss were also extended to
the sub-cluster AdaCos loss. An ensemble using this loss function as well as mixup
for training and a GMM as a backend reached a new state-of-the-art performance
on the DCASE2020 dataset with an AUC-ROC of 97%, which is close to optimal.

When using an ASD system in a specific application, decision thresholds need to
be specified to decide between normal and anomalous samples. Different methods
for estimating a decision threshold from normal data only were compared experi-
mentally. It was shown that most methods lead to similar results that lie between
90% and 95% of the performance obtained with an optimal decision threshold and
that multi-stage approaches perform slightly better. Furthermore, holding back
samples to obtain more realistic anomaly scores for estimating a threshold did
not improve performance and thus is not needed. To also include the difficulty
of estimating a good decision threshold, which is not captured by the AUC-ROC
score, the threshold-independent evaluation metric F1-EV was presented. In exper-
imental evaluations, it was shown that this metric has a high correlation with the
AUC-ROC score as well as with the F1 score and thus has the potential to replace
the AUC-ROC score as the standard metric for semi-supervised ASD.

The fifth chapter dealt with domain generalization for ASD, i.e. designing the
system in such a way that it is robust to potential changes of the distribution
of normal data. The designed system consists of two sub-networks using DFT
and STFT based features as input, concatenating the resulting embeddings and
calculating the cosine distance as an anomaly score. Trivial solutions for individual
classes were prevented by not using any bias terms and non-trainable class centers.
By visualizing the embedding space using t-SNE and utilizing RISE to explain the
decisions of the proposed system, it was shown that learning a joint embedding
space with multiple classes helps to capture more relevant information with the
embeddings than using multiple embedding models. In comparison to systems
based on pre-trained embeddings, the performance obtained with the system was
significantly better despite having only very few samples for the target domains.
To further improve the performance of the system, the AdaProj loss was proposed.
This loss generalizes the sub-cluster AdaCos loss by learning arbitrary distributions
in linear sub-spaces for each class. Additionally, it was shown that applying SSL
approaches in the form of StatEx and a novel FeatEx approach, which randomly
exchanges the embeddings of the two sub-networks, significantly improves the
performance. An ensemble based on multiple presented systems outperformed all

7.2 outlook and future work 133

other published systems on the DCASE2023 dataset by a large margin and thus
reached a new state-of-the-art performance.

To cover a broader range of ASD applications than acoustic machine condition
monitoring, few-shot OSC and few-shot KWS applications were investigated. It
was shown that the previously developed ASD system also performs well for few-
shot OSC and that this system outperforms systems using pre-trained embeddings
even in case only very few training samples are available for every normal class.
For few-shot KWS, TACos, a novel loss function was presented. Here, embeddings
with a temporal resolution are learned that can be used as templates for DTW
to effectively deal with varying lengths of keywords. Besides the supervised task
of predicting the correct keyword a short segment of a spectrogram belongs to,
TACos utilizes two SSL approaches: Namely, also predicting the position of each
segment inside a keyword sample and detecting temporally reversed segments as
challenging negative samples. In experiments on a novel few-shot KWS dataset,
it was shown that both SSL approaches significantly improve the performance
and that a system utilizing the TACos loss outperforms systems that classify
individual segments using a sliding window or use hand-crafted speech features
such as HFCCs.

7.2 outlook and future work

As stated in the previous section, many improvements for designing a semi-
supervised ASD system based on audio embeddings were achieved. Still, the prob-
lem is far from being solved, especially in challenging conditions, and thus is
expected to be an interesting research question for many years to come. In the
following, possible directions for future research will be discussed.

One possible direction is to further improve the performance of ASD systems for
acoustic machine condition monitoring by finding more efficient methods to handle
the noise and non-target sound events other than using meta information, which
may not always be available. Apart from using additional SSL approaches, apply-
ing source separation to isolate the machine sounds is a very promising approach
[22, 100, 178, 203]. Although it is very difficult to achieve, one could aim for sep-
arating signals into three source: One source containing the noise and non-target
sound components, another source containing the normal signal components and
a third source containing the anomalous signal components. Reaching this goal
would not only lead to much better performance but also greatly improve the
explainability of the results, which is an important goal on its own. An addi-
tional way to improve the performance may be to investigate more sophisticated
methods than randomly initializing the centers of the presented angular margin
loss functions. Furthermore, the methods presented in this thesis can be applied
to strongly related fields such as time series analysis [120] or structural health
monitoring [13, 14] to exchange ideas developed in different research communities.
Extensive knowledge of subject matter experts working in different fields may also

134 conclusion

help to introduce additional evaluation metrics such as the presented F1-EV score
that capture all practical demands placed upon an ASD systems.

Another topic for future research is to extend the presented systems for few-shot
SED to zero-shot learning [117]. This means that one is interested in detecting
sound events belonging to classes for which no audio samples can be provided,
which enables users to search for arbitrary sound events. State-of-the-art zero-
shot learning systems are taught to project pre-trained embeddings of an audio
embedding space and a second embedding space utilizing another data type into
a joint embedding space. This allows to compare the embedding of an arbitrary
audio recording to pre-trained embeddings obtained with textual input [49, 263] or
images [41]. In [130], so-called sound attribute vectors describing the sounds were
introduced that enable users to define new sound classes by creating corresponding
sound attribute vectors. To obtain general-purpose audio embeddings, the pre-
trained models presented in Section 2.5 as well as more specialized embeddings
such as wav2vec embeddings [8] or other embeddings pre-trained on a large ASR
dataset [18, 103] can be used.

As a third research direction, the semi-supervised ASD setting investigated in
this thesis can be extended to detecting anomalous sound events in a continuous
audio stream, which can be seen as a combination of ASD and SED. The difference
to ASD is that anomalous sounds need to be localized in time and not only be
provided as results for isolated sounds. The difference to SED is that one does not
have any training data for the anomalous sound events that are of actual interest.
In conclusion, solving this task appears to be difficult. Still, in any monitoring
application one usually encounters continuous audio streams and the interesting
events needing immediate attention are the ones that are anomalous. Furthermore,
developing such a system could also be used for active learning of unknown sound
events [204, 229, 275].

A
APPENDIX

a.1 key publications

In this section, the key publications that contain substantial parts of this thesis
are attached for inspection of the doctoral committee. For each publication,
individual contributions of co-authors are stated explicitly. The remaining content
of each publication is the sole contribution of the thesis author. Publications
protected by the copyright of IEEE are subject to the following: In reference
to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of University of Bonn’s products or services. Internal
or personal use of this material is permitted. If interested in reprinting/re-
publishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink.

a.1.1 Key publication 1

Kevin Wilkinghoff. “Sub-Cluster AdaCos: Learning Representations for Anoma-
lous Sound Detection.” In: International Joint Conference on Neural Networks.
IEEE, 2021. doi: 10.1109/IJCNN52387.2021.9534290.
© 2021 IEEE.

135

https://doi.org/10.1109/IJCNN52387.2021.9534290

Sub-Cluster AdaCos: Learning Representations for
Anomalous Sound Detection

Kevin Wilkinghoff
Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE

Fraunhoferstraße 20, 53343 Wachtberg, Germany
kevin.wilkinghoff@fkie.fraunhofer.de

Abstract—When training a model for anomalous sound detec-
tion, one usually needs to estimate the underlying distribution
of the normal data. By doing so, anomalous data has a lower
probability in view of this distribution than normal data and
thus can easily be detected. However, audio data is very high-
dimensional making it difficult to have a good estimate of the
true distribution. To have more accurate estimates, the dimension
of the data can be reduced first. One way to do this is to train
discriminative neural networks for extracting lower-dimensional
representations of the data. Particularly, neural networks trained
with angular margin losses as AdaCos have been shown to
perform well for this task. In this work, a modified AdaCos
loss called sub-cluster AdaCos specifically designed for detecting
anomalous data is presented. In multiple experiments conducted
on the DCASE 2020 dataset for “Unsupervised Detection of
Anomalous Sounds for Machine Condition Monitoring”, these
design choices are empirically justified. As a result, a conceptually
simple system for anomalous sound detection is presented that
significantly outperforms all other published systems on this
dataset.

Index Terms—machine listening, anomaly detection, represen-
tation learning, angular margin loss

I. INTRODUCTION

Anomalous sound detection has various applications such
as detecting traffic accidents in road surveillance systems
[1], [2], detecting terrorist attacks in subway stations [3]
or machine condition monitoring [4]. Furthermore, all open-
set classification problems include anomaly detection as a
subtask since not all classes are known a priori when training
the system. Hence, anomalous sound detection is of special
interest for many machine listening applications. One can
distinguish three major branches of anomaly detection: super-
vised, semi-supervised and unsupervised [5]. For supervised
anomaly detection, two labeled datasets consisting of normal
data and anomalous data are used. Although the space of
anomalies is huge because it consists of everything that
is not considered normal and thus can never be captured
exhaustively, samples of anomalies can simplify the training
process. This is especially true, when all expected anomalies
sound roughly alike as for example when detecting accidents
with traffic surveillance systems. In contrast to unsupervised
anomaly detection where the training dataset can also include
anomalous data and it is not known whether a data sample
is normal or not, semi-supervised anomaly detection consists
of a clean training dataset containing only normal data. Note
that in most practical applications it is much easier to collect

normal data than anomalous data. The main reasons are that
anomalous events occur only rarely and can sound much more
diverse than recordings of the normal condition. Using the
traffic example again, large amounts of audio data belonging
to regular road traffic can be collected much easier than
recordings of accidents i.e. anomalous data. When considering
terrorist attacks, this is even more evident. Therefore, not
needing anomalous data for training a system is more suitable
for realistic applications and thus a semi-supervised setting is
considered in this work.

Usually, semi-supervised or unsupervised anomaly detection
boils down to estimating the true underlying distribution of the
known data without the aid of sample outliers. Afterwards, one
can utilize this distribution to compute the log-probability of
the test data or an approximation of it and decide whether
this data is an inlier or an outlier using a threshold. However,
raw data e.g. waveforms is mostly very high-dimensional
making it challenging to estimate the corresponding distribu-
tion with limited training data resources. To circumvent this
problem, one can train a model for extracting suitable, lower-
dimensional representations of the data, which capture enough
information such that representations belonging to outliers
strongly deviate from inliers. One way to train such a model
is to discriminate among all known classes in a supervised
manner and utilize the output of an intermediate layer as a
feature extractor for a lower-dimensional representation of the
data. The assumption is that in order to be able to discriminate
among the known classes, all representations need to capture
enough information of the raw data and this information is
also sufficient to detect outliers. In particular, angular margin
losses such as ArcFace [6] and AdaCos [7] have been shown
to work well for this task. The reason is that they enforce
a low intra-class variability and a high inter-class variability
by minimizing the cosine angle of a known class to a learned
mean value and ensuring a margin for angles between different
classes.

The aim of this work is to investigate specific design
choices for an anomalous sound detection system based on
an angular margin loss function. The contributions are the
following: First, several changes for the AdaCos loss function
are proposed leading to a novel loss function called sub-cluster
AdaCos. The proposed changes are 1) taking into account
the use of mixup to augment the samples, 2) utilizing sub-
clusters to learn a less restrictive distribution than standard

AdaCos and 3) using Gaussian distributions or more generally
Gaussian mixture models (GMMs) as a backend. In various
experiments, it is shown that all of these changes lead to signif-
icant improvements in performance when detecting anomalous
sounds. As a result, a conceptually simple anomalous sound
detection system is presented that significantly outperforms
all other published systems on the DCASE 2020 dataset for
“Unsupervised Detection of Anomalous Sounds for Machine
Condition Monitoring” [4].

II. RELATED WORK

Recent work on machine listening is heavily promoted
through the annual “Detection and Classification of Acoustic
Scenes and Events (DCASE) Workshop” and the associated
challenges. Anomalous sound detection is not an exception.
Of particular interest for this work is task 2 “Unsupervised
Detection of Anomalous Sounds for Machine Condition Mon-
itoring” [4] of DCASE 2020. The baseline system of this
task consists of class-dependent autoencoders for encoding
and decoding consecutive frames of log-Mel spectrograms and
utilizing the reconstruction error as an anomaly score. The
underlying assumption is that normal data, which has also
been used for training the autoencoders, can be reconstructed
much better than anomalous data. This fundamental approach
of using autoencoders for detecting anomalous data has been
extended by utilizing autoencoders conditioned on the machine
ids i.e. the class labels [8], [9]. The main idea is that a single
autoencoder is used instead of a separate one for each class
and trained to have a low reconstruction error when being
conditioned on the correct class and a high reconstruction error
when being conditioned on another class.

A completely different approach is to train a neural network
to discriminate among all known classes. By essentially treat-
ing the other classes as anomalous data, decision boundaries
are learned for the normal data of each class. Several systems
following this approach have been developed independently
in the DCASE challenge 2020, most of which use neural
networks with a suitable loss function that also reduces intra-
class variability to extract lower-dimensional representations
of the data. Inoue et al. [10] use center loss [11], Lopez
et al. [12] an additive margin softmax layer [13] and Giri
et al. [14] as well as Zhou [15] use ArcFace [6] for this
purpose. After training such a discriminative network, these
lower dimensional representations are utilized in different
ways to obtain anomaly detection scores. In most cases, the
direct output of the trained representation model or the cosine
similarity are used. Another method is to train an additional
backend model as for example probabilistic linear discriminant
analysis (PLDA) [16] as done in [17].

III. METHODOLOGY

The purpose of this section is to first give a short review on
angular margin losses, particularly AdaCos, and then propose
a modified AdaCos loss that results in significantly better
anomalous sound detection performance.

A. Standard AdaCos loss function

For many years the softmax function in combination with
the categorical crossentropy as a loss function has been the
standard output layer for classification tasks solved by neural
networks. To avoid any confusion, within this work the term
“class” corresponds to one of the known classes for which
normal training data is available. This means that each ma-
chine id is treated as another class. But when training a neu-
ral network for the purpose of extracting lower-dimensional
representations of the data, so-called embeddings, the softmax
function only leads to representations that are linearly sep-
arable without explicitly reducing intra-class and increasing
inter-class distance of samples. To address this issue, losses
based on the Euclidean distance as for example triplet loss [18]
and center loss [11] were proposed. Triplet loss uses an anchor
input whose distance to a positive and a negative input sample
belonging to the same and to another class is minimized
and maximized, respectively. Center loss avoids constructing
these triplets as input by minimizing the distance to learned
center vectors for each class. Recently, angular margin loss
functions such as ArcFace [6] have been shown to have better
generalization capabilities than losses based on the Euclidean
distance by enforcing a margin between angles of samples
belonging to different classes. However, the performance in
a particular task obtained with angular margin losses heavily
relies on fine-tuning their hyperparameters, namely the scale
parameter s and the angular margin parameter m. Therefore,
AdaCos [7], which uses an adaptive scale parameter and
does not depend on any manually set hyperparameters, was
developed. Since both losses, ArcFace and AdaCos, lead to
similar performance and tuning additional parameters is time
consuming, this work focuses entirely on AdaCos.

Let us now formally introduce AdaCos. For AdaCos, the
probability of sample xi ∈ RD belonging to class j of the
C ∈ N classes is given by

Pi,j ∶= exp(s̃ ⋅ cos θi,j)∑C
k=1 exp(s̃ ⋅ cos θi,k) (1)

where θi,j ∈ [0, π] is defined through the cosine similarity
cos θi,j = ⟨xi,Wj⟩/∥xi∥∥Wj∥ for a learned class center Wj ∈
RD. The dynamically adaptive scale parameter s̃(t) at training
step t ∈ N0 is defined as

s̃(t) ∶= ⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2 ⋅ log(C − 1) if t = 0

logB(t)avg

cos(min(π4 ,θ
(t)
med)) else (2)

where θ
(t)
med ∈ [0, π] denotes the median of all angles θi,yi

belonging to a mini-batch of size N ∈ N with yi being the
class of xi and

B(t)avg ∶= 1

N
∑

i∈N (t)
C∑

k=1
k≠yi

exp (s̃(t−1) ⋅ cos θi,k) (3)

with N (t) denoting all indices of the samples belonging to the
mini-batch of size N ∈ N.

B. Sub-Cluster AdaCos loss function

The data augmentation technique “mixup” [19] is known
to significantly improve the classification performance, since
overfitting of a model to specific training data is prohibited.
This is done by linearly interpolating between two samples
xi, xj ∈ RD contained in a mini-batch and their corresponding
one-hot encoded class labels ȳi, ȳj ∈ [0,1]C

xmixed ∶= λxi + (1 − λ)xj

ȳmixed ∶= λȳi + (1 − λ)ȳj (4)

where the mixing coefficient λ ∈ [0,1] is drawn at random
from a suitable distribution. But if one uses mixup, standard
AdaCos is not well-defined since most mixed-up samples do
not belong to a single class but multiple ones and thus do not
have a well-defined class mean. Even when both mixed-up
samples belong to the same class and thus have a well-defined
class mean, these samples can be treated as anomalies when
updating the AdaCos parameters to have a sharper boundary
around the support of the distribution of the normal, non-mixed
samples of this particular class. To incorporate these changes
into the AdaCos function, only mixed-up samples are used
for training with mixing coefficients drawn from the uniform
distribution. Furthermore, θ̂(t)med is the median of the mixed-up
angles and B̂

(t)
avg is computed using all angles present in a mini-

batch, not only the angles of the non-corresponding classes.
The details will follow below.

When using AdaCos, only a single cluster is formed for each
class and this enforces a single Gaussian distribution for the
learned representations after projecting them to the unit sphere
by normalizing their lengths. However, anomalous data is eas-
ier to detect when a more general, less restrictive distribution is
learned for the representations. Gaussian mixture models can
approximate any given smooth probability density function.
Therefore, a canonical choice to relax the restriction on the
distribution imposed by the AdaCos loss is to allow multiple
sub-clusters. The same idea of automatically finding subclasses
is also used in subclass discriminant analysis and has been
shown to outperform other discriminant analysis approaches
without subclasses [20], [21]. Note that Deng et al. proposed a
very similar approach for the ArcFace loss, namely sub-center
ArcFace that uses multiple learned sub-centers for each class
instead of only one to efficiently handle label noise present in
the training data [22]. This is done by first training the model
and then dropping all samples belonging to small sub-clusters,
so called non-dominant sub-centers. However, there is a subtle
but important difference between sub-center ArcFace and sub-
cluster AdaCos. For sub-center ArcFace, only the closest sub-
center is considered by taking the maximum cosine similarity.
Here, all softmax scores of all sub-clusters of any given class
are later summed up to encourage the usage of multiple sub-
clusters and thus modeling a more complex distribution.

To avoid numerical issues of large arguments inside the
exponential function, which frequently arose in the conducted
experiments due to the changes from above, a re-scaling trick
that is also used in many implementations of the softmax

function is applied. More concretely, the maximum value of
the logits is determined

f (t)max ∶= max
i∈N (t)

CS
max
j=1 (s̃(t−1) ⋅ cos θi,j) (5)

where S ∈ N denotes the number of sub-clusters and inserted
appropriately into the formulas for B̂(t)avg and ŝ(t).

Using the same notation as before, Sub-Cluster AdaCos with
all proposed changes is now defined as follows. The modified
adaptive scale parameter ŝ(t) is defined as

ŝ(t) ∶= ⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2 ⋅ log(CS − 1) if t = 0
f(t)max+log B̂(t)avg

cos(min(π4 ,θ̂
(t)
med)) else (6)

where

B̂(t)avg ∶= 1

N
∑

i∈N (t)
CS∑
k=1 exp (ŝ(t−1) ⋅ cos θi,k − f (t)max) (7)

and θ̂
(t)
med is the median of the mixed-up angles θmixed

k,yk
. For a

mixed-up sample xmixed
k = λxi + (1 − λ)xj of the mini-batch

with λ fixed, this means

θmixed
k,yk

∶= λθi,yi + (1 − λ)θj,yj . (8)

Finally, the probabilities of sample xi belonging to class j are
given by

P̂i,j ∶= ∑
l∈M(j)

exp(ŝ ⋅ cos θi,l)∑CS
k=1 exp(ŝ ⋅ cos θi,k) (9)

where M(j) denotes all sub-clusters belonging to class j.

C. Outlier detection backend

When training a neural network to extract representations
for anomaly detection, there are multiple ways of how to
obtain scores and reach a final decision. Now, by using an
angular margin loss, the most natural choice to calculate a
score besides using the model itself, is to use the cosine
similarity of a sample to the center of the corresponding class.
A Gaussian distribution can also be seen as an alternative
version of the cosine similarity, since the representations are
trained such that they are scattered around a learned mean
value after projecting them onto the unit sphere by normalizing
their lengths, and the unit sphere is locally Euclidean as a
manifold. Moreover, Gaussian distributions are more general
than the cosine similarity as a scoring method because the
cosine similarity is equivalent to using a Gaussian distribution
with a spherical covariance matrix i.e. a diagonal matrix with
all entries being equal. This is not a problem when doing
closed-set classification because only the closest class mean is
important. But for anomaly detection, this assumption does not
need to be true as illustrated in Fig. 1. Therefore, a Gaussian
distribution with full covariance matrix can more accurately
estimate the distribution of the normal samples, in case it
slightly deviates from a spherical distribution. This makes the
detection of anomalies slightly more robust and thus a full
covariance matrix is more suitable for the task. When using
sub-cluster AdaCos, one can use a GMM with multiple modes

normal samples of class 1
anomalous samples of class 1
normal samples of class 2
anomalous samples of class 2

Fig. 1. Scatter plot of normal and anomalous data belonging to two different
classes after projecting 3 dimensional representations onto the unit sphere and
locally embedding the unit sphere into the 2 dimensional space. Both classes
can be easily separated by measuring the distance to the mean. For class 1,
anomalies can also be detected reasonably well, but for class 2 only measuring
the distance to the mean does not work well because the data is not distributed
spherically. In this case, a Gaussian with full covariance matrix would perform
much better. Note that this plot is exaggerated for illustration purposes because
an angular margin loss ensures that the distribution for each class is roughly
spherical. Still, the distribution can slightly deviate from that making a full
covariance matrix more suitable, especially in higher-dimensional spaces.

equal to the number of sub-clusters and initialize the means
of the modes as the learned sub-cluster centers. After training,
the highest log-probability among all the modes can be utilized
as an anomaly detection score.

IV. EXPERIMENTAL RESULTS

A. Dataset

For all experiments in this work the dataset belonging to
task 2 “Unsupervised Detection of Anomalous Sounds for
Machine Condition Monitoring” [4] of the DCASE challenge
2020 is used. As the name already implies, the task is to
tell whether a recording is normal i.e. belongs to a fully
functioning machine or not. The dataset consists of Wav files,
each of length 10s and a sampling rate of 16kHz. Each file
belongs to one of six different machine types, namely “fan”,
“pump”, “slider”, “valve” from MIMII [23] and “ToyCar”
and “ToyConveyor” from ToyADMOS [24]. For each of the
6 machine types there are 7 different machine ids except
for “ToyConveyor”, which has recordings from 6 different
machines. When training and testing it is known to which
of the total 41 machines a given audio file belongs to.
Furthermore, the dataset is divided into a training set, only
consisting of around 1000 normal samples of all machine ids,
and a development set and an evaluation set, both consisting of
a few hundred normal and anomalous samples from mutually
exclusive sets of 3 or 4 machine ids for each machine type.
It is not allowed to use any of the files from the development
or evaluation set for training. Hence, only normal data is
available to train the system and it is known that the training
dataset consists of normal samples only. Therefore, despite its
name, the anomaly detection task is actually semi-supervised
instead of unsupervised. The evaluation metrics for the dataset

TABLE I
MODIFIED RESNET ARCHITECTURE USED FOR ALL EXPERIMENTS.

layer name structure output size

input - 313 × 128
2D convolution 7 × 7, stride= 2 157 × 64 × 16
residual block (3 × 3

3 × 3) × 2, stride= 1 78 × 31 × 16
residual block (3 × 3

3 × 3) × 2, stride= 1 39 × 16 × 32
residual block (3 × 3

3 × 3) × 2, stride= 1 20 × 8 × 64
residual block (3 × 3

3 × 3) × 2, stride= 1 10 × 4 × 128
max pooling 10 × 1, stride= 1 4 × 128
flatten - 512
dense (representation) linear 128
AdaCos - 41

are the area under the receiver operating characteristic (ROC)
curve (AUC) and the partial AUC (pAUC) with p = 0.1. The
metric pAUC is the AUC computed under a low false-positive-
rate range, namely [0, p], which is used because a high true-
positive-rate is desirable under this conditions in practical
applications to avoid frequent false alarms. For more details
about the dataset, the reader is referred to [4].

B. Input features and neural network architecture

Using the dataset described above a neural network archi-
tecture for extracting lower-dimensional representations of the
data as well as their input features need to be defined. Doing
so is the purpose of this section. First, the raw waveforms
are converted into log-Mel spectrograms to initially reduce
their dimension. More concretely, log-Mel spectrograms with
128 Mel bins, a window size of 1024 and a hop size of
512 are computed, which results in a time dimension of 313.
Before inserting them as features into the neural network,
all log-Mel spectrograms are normalized by subtracting the
temporal mean and dividing by the temporal standard deviation
of all files belonging to the training dataset. It has also
been experimented with using openL3 embeddings [25] as
intermediate representations instead of directly using the log-
Mel spectrograms as done in [17], [26], but this degraded the
performance.

The network architecture used in this work is a modified
version of the ResNet architecture [27] with only a few layers
and extracts 128-dimensional representations of the data. In
each residual block, the leaky ReLU activation function [28]
and batch normalization [29] are used. A detailed description
of the model can be found in Tab I. It is worth noting that
increasing the number of sub-clusters S used for AdaCos also
increases the number of parameters significantly. A model
without sub-clusters has 772,192 trainable parameters and
when using 64 sub-clusters, which results in the largest model
used in the conducted experiments, this number increases to
1,102,816. Still, the number of parameters is relatively small.
When training the model, the training data belonging to all 41
machine ids is used. Using L2-regularization applied to the

TABLE II
MEAN AUCS AND PAUCS OBTAINED WITH DIFFERENT BACKENDS ON

THE DEVELOPMENT AND EVALUATION SET.

backend development set evaluation set
AUC pAUC AUC pAUC

representation model output 87.20% 81.70% 89.55% 83.79%
cosine similarity to mean 88.71% 82.12% 91.13% 84.40%
cosine similarity to top 10 88.69% 82.12% 91.10% 84.38%
two-covariance PLDA 88.25% 82.18% 90.90% 84.32%
Gaussian (spherical covariance) 88.69% 82.12% 91.11% 84.38%
Gaussian (diagonal covariance) 88.71% 82.16% 91.12% 84.39%
Gaussian (full covariance) 89.13% 82.59% 91.43% 84.47%

weights, the model is trained for 400 epochs with a batch-
size of 64 to discriminate among these classes by minimizing
different versions of the AdaCos loss with Adam [30] and
is implemented in Tensorflow [31]. Unless stated otherwise,
“mixup” [19] with a mixing coefficient drawn from a uniform
distribution and no other data augmentation technique is used.

C. Comparison of different backends

First, the performance obtained with different backends will
be compared. For that purpose, a neural network with the
standard AdaCos loss and using mix-up is trained to extract
the representations. Using the same extracted embeddings,
multiple backends are evaluated: the output of the model itself,
the cosine similarity to the mean of each machine id, the
mean of the cosine similarities to the 10 closest representations
from the training set belonging to the same machine id, the
log-likelihood ratios of a two-covariance PLDA model as
implemented in [32] and Gaussian distributions, each trained
for a single machine id, with a spherical, diagonal or full
covariance matrix as implemented in scikit-learn [33]. The
results can be found in Tab. II.

There are four observations to be made. First, the direct
angular softmax output of the model performs significantly
worse than all other scoring techniques. Second, PLDA per-
forms better than the direct output but still worse than the
remaining backends. Third, as expected, the cosine similarity
based backends and the Gaussians with spherical or diagonal
covariance matrix all lead to very similar results supporting
the claim from before that they are equivalent. And fourth, a
Gaussian with a full covariance matrix outperforms all other
backends. Hence, in all remaining experiments only Gaussians
with full covariance matrix will be used as backends.

D. Interplay of mixup and AdaCos

Next, it is investigated whether including mixup for training
the model and the proposed changes of the AdaCos loss
function to properly work with mixup improve the perfor-
mance. The results are depicted in Tab. III. One can see
that the performance decreases significantly, when not using
mixup, even when the standard AdaCos loss is used as it is.
Furthermore, the proposed changes to the AdaCos loss lead to
significant improvements in terms of AUC and pAUC on the
development set. For the evaluation set, AUC slightly increases
and pAUC slightly decreases. A possible explanation for this

TABLE III
MEAN AUCS AND PAUCS OBTAINED WITH MIXUP AND THE MODIFIED

ADACOS LOSS, BUT WITHOUT USING SUB-CLUSTERS, ON THE
DEVELOPMENT AND EVALUATION SET.

mixup modified development set evaluation set
AdaCos AUC pAUC AUC pAUC

86.96% 80.68% 89.63% 82.47%
✗ diverges diverges diverges diverges

✗ 89.13% 82.59% 91.43% 84.47%
✗ ✗ 91.60% 85.01% 91.64% 83.93%

TABLE IV
MEAN AUCS AND PAUCS OBTAINED WITH THE MODIFIED SUB-CLUSTER

ADACOS LOSS ON THE DEVELOPMENT AND EVALUATION SET.

number of backend development set evaluation set
sub-clusters AUC pAUC AUC pAUC

1 Gaussian 91.60% 85.01% 91.64% 83.93%
2 Gaussian 90.97% 82.54% 92.08% 85.08%
4 Gaussian 91.54% 83.53% 92.62% 84.31%
8 Gaussian 91.61% 85.24% 92.99% 85.74%

16 Gaussian 91.85% 85.61% 93.98% 88.27%
32 Gaussian 92.22% 85.69% 94.56% 87.51%
64 Gaussian 91.39% 83.58% 93.85% 85.43%
1 GMM 91.60% 85.01% 91.64% 83.93%
2 GMM 91.07% 82.70% 92.20% 85.60%
4 GMM 91.67% 83.70% 92.64% 84.35%
8 GMM 91.85% 85.46% 93.13% 86.07%

16 GMM 92.10% 85.84% 94.08% 88.59%
32 GMM 92.57% 86.37% 94.69% 87.90%
64 GMM 92.03% 84.06% 94.16% 86.19%

behavior is the randomness involved in training a neural
network. Overall, the modifications still seem to improve the
performance. When using the modified AdaCos loss and no
mixup, the loss diverges because ŝ(t) grows exponentially. A
proof can be found in the appendix.

E. Using sub-clusters for AdaCos

Now, further experiments are conducted to show that using
sub-clusters inside the AdaCos loss improves the outlier de-
tection performance. For this purpose, the neural network is
trained with an increasing number of sub-clusters and evalu-
ated with a single Gaussian and a GMM with modes equal
to the number of sub-clusters as backends. The corresponding
AUCs and pAUCs obtained on the development and evaluation
set are shown in Tab. IV.

One can draw two main conclusions from the experimental
results. First, using sub-clusters is highly beneficial, especially
to increase the performance on the evaluation set. Note that
by doing so, it is also possible to exclude potential outliers
from the training data by removing small sub-clusters as done
in [22]. Thus, this procedure is also well-suited for truly
unsupervised anomaly detection problems instead of semi-
supervised ones. A second conclusion is that using a GMM
instead of a single Gaussian always improves the results
because it can be fitted more accurately to the individual sub-
clusters of the distribution.

TABLE V
MEAN AUCS AND PAUCS PER MACHINE TYPE OBTAINED WITH

DIFFERENT REPRESENTATIONS ON THE DEVELOPMENT AND EVALUATION
SET. WHEN USING THE COMBINED REPRESENTATIONS, ONLY THE

LEARNED REPRESENTATIONS ARE USED, EXCEPT FOR MACHINE TYPE
TOYCONVEYOR WHERE THE MEAN IS USED INSTEAD.

representation machine type development set evaluation set
AUC pAUC AUC pAUC

mean fan 80.73% 66.16% 95.32% 80.62%
max fan 64.59% 51.48% 78.98% 57.70%
learned fan 87.61% 77.93% 97.60% 93.24%

mean pump 82.99% 68.50% 88.24% 70.36%
max pump 70.13% 59.17% 68.96% 55.08%
learned pump 94.71% 88.91% 96.76% 88.30%

mean slider 87.46% 63.95% 72.16% 53.08%
max slider 93.69% 76.69% 90.55% 70.65%
learned slider 99.55% 97.63% 97.61% 89.46%

mean valve 55.59% 50.23% 54.86% 52.09%
max valve 98.54% 93.08% 96.35% 88.18%
learned valve 98.63% 94.62% 98.81% 95.80%

mean ToyCar 94.10% 80.94% 91.54% 76.87%
max ToyCar 68.36% 53.85% 70.31% 54.90%
learned ToyCar 96.37% 91.64% 95.99% 91.93%

mean ToyConveyor 85.78% 67.76% 91.74% 78.13%
max ToyConveyor 57.51% 50.39% 65.40% 53.06%
learned ToyConveyor 73.89% 61.22% 81.37% 68.64%

mean all 80.91% 66.19% 82.31% 68.52%
max all 76.25% 64.71% 78.42% 63.26%
learned all 92.57% 86.37% 94.69% 87.90%
combined all 94.21% 87.13% 96.42% 89.24%

F. Utilizing simple representations

Instead of learning representations of the data by training
a neural network, one can also use simple representations
directly derived from the data. These representations have the
advantage that extracting them does not require any training
and they possibly contain useful information about the data
that is not needed to discriminate among the classes and thus
not contained in the trained representations. On the other hand,
it is by no means ensured that these representations contain any
useful information for detecting anomalous data at all. In this
work, the mean and maximum of the log-Mel frequency bins
over time are investigated as alternative representations. For
this purpose, their performance is evaluated by estimating their
distribution with a single Gaussian component each and using
the resulting log-probabilities to detect outliers. The results
can be found in Tab. V.

First, it can be seen that for most machine types, except
“ToyConveyor”, the trained representations perform best. But
for some cases, the simple representations work surprisingly
well. Examples are the maximum values for machine type
“valve” and mean value for “ToyConveyor”, which even
outperforms the learned representation. The reason is that the
performance of the learned representation is much worse for
“ToyConveyor” than for all other machine types. This behavior
can be found for many of the submitted systems e.g. [12],
[15] and the exact reasons are still unclear. Koizumi et al.
[4] speculate that the normal samples belonging to different
machine ids of “ToyConveyor” are very similar and thus

discriminative approaches have difficulties in finding decision
boundaries. The other way around, i.e. using the mean value
for “valve” and the maximum values for “ToyConveyor” leads
to very poor performance, close to random guessing, in both
cases. This is the reason why one cannot simply concatenate
all three representations to obtain a single representation for
all machine types because it would significantly degrade the
performance. The best overall performance is achieved, by
using the mean representations for “ToyConveyor” and the
learned representations for the other machine types.

G. Comparing the performance to other published systems

Last but not least, the presented approach is compared to the
five highest-ranked systems submitted to task 2 of the DCASE
challenge 2020. To our best knowledge, no more recent work
has been published and thus these systems represent the state-
of-the-art. The results can be found in Fig. 2 and Fig. 3. First
and foremost, the presented system significantly outperforms
every other published system, both in terms of AUC and
pAUC. This can easily be seen by comparing its performance
to the one of the winning system of the challenge [34]. The
proposed approach has a higher score for every machine
type, except “slider” where the performance is the same.
Furthermore, for most systems there is at least one machine
type where the performance drops significantly, compared to
the other systems, whereas the presented approach performs
reasonably well for all machine types.

Note, that all systems but the one submitted by Primus
[36] consist of an ensemble of multiple, very different models
whereas the presented system consists of just a single model.
Thus, for completeness an ensemble consisting of multiple
versions of the proposed approach, each trained with another
number of sub-clusters, ranging from 20 to 26, is also included.
The ensemble is realized by summing the log-probabilities
of all GMMs belonging to the subsystems. As expected, this
ensemble significantly outperforms the system based on a
single model and reaches a mean AUC of 97% and a mean
pAUC of 91.24%.

V. CONCLUSIONS AND FUTURE WORK

In this work, multiple changes to the standard AdaCos
loss specifically aimed at learning lower-dimensional rep-
resentations for anomalous sound detection are proposed.
In experiments conducted on the DCASE 2020 dataset for
“Unsupervised Detection of Anomalous Sounds for Machine
Condition Monitoring”, it is shown that Gaussians or more
generally GMMs outperform other widely used backends,
namely the direct output of the trained model, cosine similarity
and PLDA. Furthermore, using mixup in combination with
modified parameter computations for AdaCos further improves
the obtained results. By also using multiple learned sub-
clusters instead of a single one for each class, less restrictive
distributions than a single Gaussian for the representations of
the data are learned. As a result, an even higher anomalous
sound detection performance is achieved. In an additional
experiment, the learned representation is compared to simple

fan pump slider valve ToyCar ToyConveyor mean
0.85

0.9

0.95

1

A
U

C

Giri et al. [34]
Daniluk et al. [35]

Primus [36]
Vinayavekhin et al. [37]

Hayashi et al. [38]
proposed approach

ensemble

Fig. 2. Comparison of the AUCs obtained on the evaluation set with the top five highest-ranked systems submitted to the DCASE 2020 challenge task 2, the
proposed approach and an ensemble. The ensemble consists of the sum of all log-probabilities given by GMMs belonging to trained models of the proposed
approach with a different number of sub-clusters, ranging from 20 to 26.

fan pump slider valve ToyCar ToyConveyor mean
0.7

0.8

0.9

1

pA
U

C

Giri et al. [34]
Daniluk et al. [35]

Primus [36]
Vinayavekhin et al. [37]

Hayashi et al. [38]
proposed approach

ensemble

Fig. 3. Comparison of the pAUCs obtained on the evaluation set with the top five highest-ranked systems submitted to the DCASE 2020 challenge task 2, the
proposed approach and an ensemble. The ensemble consists of the sum of all log-probabilities given by GMMs belonging to trained models of the proposed
approach with a different number of sub-clusters, ranging from 20 to 26.

representations, namely the temporal mean and maximum of
the log-Mel spectograms, and is shown to outperform them
except for the machine type “ToyConveyor” where using the
mean leads to the best results. Last but not least, the pre-
sented approach is shown to significantly outperform all other
published systems on this dataset even when not ensembling
multiple subsystems.

There are still some open questions to be answered. For the
machine type “ToyConveyor”, the performance of the learned
representations is worse than simply taking the temporal mean
of the log-Mel spectrogram. This shows that there is still room
for improving the training process of the learned represen-
tations. One way to accomplish this could be using a self-
supervised learning paradigm instead of training discrimina-
tively among the known classes as done in [14]. Additionally,
future work should also be aimed at clarifying why the
performance for this particular class is worse to gain insights
that may also be helpful for anomalous sound detection in
general. Another way to further improve the performance of
the presented model is to use more sophisticated approaches
to mix samples than plain mixup. A collection of ways to mix
samples can be found in [39].

REFERENCES

[1] Pasquale Foggia, Nicolai Petkov, Alessia Saggese, Nicola Strisciuglio,
and Mario Vento, “Audio surveillance of roads: A system for detecting
anomalous sounds,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 1, pp. 279–288, 2016.

[2] Yanxiong Li, Xianku Li, Yuhan Zhang, Mingle Liu, and Wucheng Wang,
“Anomalous sound detection using deep audio representation and a
BLSTM network for audio surveillance of roads,” IEEE Access, vol.
6, pp. 58043–58055, 2018.

[3] Tomoki Hayashi, Tatsuya Komatsu, Reishi Kondo, Tomoki Toda, and
Kazuya Takeda, “Anomalous sound event detection based on wavenet,”
in 26th European Signal Processing Conference (EUSIPCO). 2018, pp.
2494–2498, IEEE.

[4] Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto, Toshiki Nakamura,
Yuki Nikaido, Ryo Tanabe, Harsh Purohit, Kaori Suefusa, Takashi Endo,
Masahiro Yasuda, and Noboru Harada, “Description and discussion on
DCASE2020 challenge task2: Unsupervised anomalous sound detection
for machine condition monitoring,” in Detection and Classification of
Acoustic Scenes and Events Workshop (DCASE), 2020, pp. 81–85.

[5] Charu Aggarwal, Outlier Analysis, Springer, 2nd edition, 2017.
[6] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou, “Ar-

cFace: Additive angular margin loss for deep face recognition,” in
Conference on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 4690–4699, IEEE.

[7] Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and Hongsheng Li,
“AdaCos: Adaptively scaling cosine logits for effectively learning deep
face representations,” in Conference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 10823–10832, IEEE.

[8] Sławomir Kapka, “ID-conditioned auto-encoder for unsupervised
anomaly detection,” in Detection and Classification of Acoustic Scenes
and Events Workshop (DCASE), 2020, pp. 71–75.

[9] Koichi Miyazaki, Tatsuya Komatsu, Tomoki Hayashi, Shinji Watanabe,
Tomoki Toda, and Kazuya Takeda, “Conformer-based sound event
detection with semi-supervised learning and data augmentation,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2020, pp. 100–104.

[10] Tadanobu Inoue, Phongtharin Vinayavekhin, Shu Morikuni, Shiqiang
Wang, Tuan Hoang Trong, David Wood, Michiaki Tatsubori, and Ryuki
Tachibana, “Detection of anomalous sounds for machine condition mon-
itoring using classification confidence,” in Detection and Classification

of Acoustic Scenes and Events Workshop (DCASE), 2020, pp. 66–70.
[11] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao, “A discrimi-

native feature learning approach for deep face recognition,” in European
Conference on Computer Vision (ECCV). Springer, 2016, pp. 499–515.

[12] Jose A. Lopez, Hong Lu, Paulo Lopez-Meyer, Lama Nachman, Georg
Stemmer, and Jonathan Huang, “A speaker recognition approach to
anomaly detection,” in Detection and Classification of Acoustic Scenes
and Events Workshop (DCASE), 2020, pp. 96–99.

[13] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu, “Additive margin
softmax for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[14] Ritwik Giri, Srikanth V. Tenneti, Fangzhou Cheng, Karim Helwani,
Umut Isik, and Arvindh Krishnaswamy, “Self-supervised classification
for detecting anomalous sounds,” in Detection and Classification of
Acoustic Scenes and Events Workshop (DCASE), 2020, pp. 46–50.

[15] Qiping Zhou, “ArcFace based sound mobilenets for DCASE 2020 task
2,” Tech. Rep., DCASE2020 Challenge, 2020.

[16] Simon J.D. Prince and James H. Elder, “Probabilistic linear discriminant
analysis for inferences about identity,” in 11th International Conference
on Computer Vision. ICCV. IEEE, 2007, pp. 1–8.

[17] Kevin Wilkinghoff, “Using look, listen, and learn embeddings for
detecting anomalous sounds in machine condition monitoring,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2020, pp. 215–219.

[18] Kilian Q. Weinberger and Lawrence K. Saul, “Distance metric learning
for large margin nearest neighbor classification.,” Journal of machine
learning research, vol. 10, no. 2, 2009.

[19] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-
Paz, “Mixup: Beyond empirical risk minimization,” in International
Conference on Learning Representations (ICLR), 2018.

[20] Manli Zhu and Aleix M. Martinez, “Subclass discriminant analysis,”
IEEE transactions on pattern analysis and machine intelligence, vol.
28, no. 8, pp. 1274–1286, 2006.

[21] Kateryna Chumachenko, Alexandros Iosifidis, and Moncef Gabbouj,
“Robust fast subclass discriminant analysis,” in 28th European Signal
Processing Conference (EUSIPCO). IEEE, 2020, pp. 1397–1401.

[22] Jiankang Deng, Jia Guo, Tongliang Liu, Mingming Gong, and Stefanos
Zafeiriou, “Sub-center ArcFace: Boosting face recognition by large-
scale noisy web faces,” in European Conference on Computer Vision
(ECCV). Springer, 2020, pp. 741–757.

[23] Harsh Purohit, Ryo Tanabe, Takeshi Ichige, Takashi Endo, Yuki Nikaido,
Kaori Suefusa, and Yohei Kawaguchi, “MIMII Dataset: Sound dataset
for malfunctioning industrial machine investigation and inspection,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE). 2019, pp. 209–213, New York University.

[24] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and
Keisuke Imoto, “ToyADMOS: A dataset of miniature-machine operating
sounds for anomalous sound detection,” in Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2019,
pp. 313–317.

[25] Jason Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello,
“Look, listen, and learn more: Design choices for deep audio embed-
dings,” in International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 3852–3856.

[26] Sascha Grollmisch, David Johnson, Jakob Abeßer, and Hanna Luka-
shevich, “IAEO3 - combining OpenL3 embeddings and interpolation
autoencoder for anomalous sound detection,” Tech. Rep., DCASE2020
Challenge, 2020.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 770–778, IEEE.

[28] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng, “Rectifier nonlin-
earities improve neural network acoustic models,” in 30th International
Conference on Machine Learning (ICML), 2013.

[29] Sergey Ioffe and Christian Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in 32nd
International Conference on Machine Learning (ICML), 2015, vol. 37,
pp. 448–456.

[30] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning Represen-
tations (ICLR), Yoshua Bengio and Yann LeCun, Eds., 2015.

[31] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al., “Tensorflow: A system for large-scale machine

learning,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016, pp. 265–283.

[32] Aleksandr Sizov, Kong Aik Lee, and Tomi Kinnunen, “Unifying proba-
bilistic linear discriminant analysis variants in biometric authentication,”
in Proc. S+SSPR. Springer, 2014, pp. 464–475, Software available at
https://sites.google.com/site/fastplda/.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] Ritwik Giri, Srikanth V. Tenneti, Karim Helwani, Fangzhou Cheng,
Umut Isik, and Arvindh Krishnaswamy, “Unsupervised anomalous
sound detection using self-supervised classification and group masked
autoencoder for density estimation,” Tech. Rep., DCASE2020 Chal-
lenge, 2020.

[35] Pawel Daniluk, Marcin Gozdziewski, Slawomir Kapka, and Michal
Kosmider, “Ensemble of auto-encoder based systems for anomaly
detection,” Tech. Rep., DCASE2020 Challenge, 2020.

[36] Paul Primus, “Reframing unsupervised machine condition monitoring as
a supervised classification task with outlier-exposed classifiers,” Tech.
Rep., DCASE2020 Challenge, 2020.

[37] Phongtharin Vinayavekhin, Tadanobu Inoue, Shu Morikuni, Shiqiang
Wang, Tuan Hoang Trong, David Wood, Michiaki Tatsubori, and Ryuki
Tachibana, “Detection of anomalous sounds for machine condition
monitoring using classification confidence,” Tech. Rep., DCASE2020
Challenge, 2020.

[38] Tomoki Hayashi, Takenori Yoshimura, and Yusuke Adachi, “Conformer-
based id-aware autoencoder for unsupervised anomalous sound detec-
tion,” Tech. Rep., DCASE2020 Challenge, 2020.

[39] Cecilia Summers and Michael J. Dinneen, “Improved mixed-example
data augmentation,” in Winter Conference on Applications of Computer
Vision (WACV). 2019, pp. 1262–1270, IEEE.

APPENDIX

Remark. The adaptive scale parameter ŝ(t) of the modified
AdaCos loss grows exponentially when not using mixup.

Proof. After a few training iterations without mixup i.e. for
t > t0 ∈ N, most training samples will have a very small angle
to their associated class, i.e. θi,yi ≈ 0. Therefore, cos θi,yi ≈ 1
and thus also cos θ̂

(t)
med ≈ 1. Furthermore, as empirically shown

in [7], on average θi,k < π
2

and thus cos θi,k > 0 for most
k ≠ yi. Hence, by using the fact that the logarithm is a concave
function and applying Jensen’s inequality we obtain

ŝ(t) = f
(t)
max + log B̂(t)avg

cos (min(π
4
, θ̂
(t)
med))

≈ log(1

N
∑

i∈N (t)
CS∑
k=1 exp (ŝ(t−1) ⋅ cos θi,k))

≥ 1

N
∑

i∈N (t)
CS∑
k=1 ŝ

(t−1) ⋅ cos θi,k
≈ ŝ(t−1)(1 + 1

N
∑

i∈N (t)
CS∑
k=1
k≠yi

cos θi,k

´¹¹¹¸¹¹¹¶>0

)
(10)

showing that ŝ(t) grows exponentially when not using mixup.
Note that this inequality does not hold if only mixed-up
samples are used for training. The reason is that most samples
belong to multiple classes and thus do not have an angle of
approximately 0 to their corresponding class mean because
AdaCos increases the margin between classes.

144 appendix

a.1.2 Key publication 2

Kevin Wilkinghoff, Alessia Cornaggia-Urrigshardt, and Fahrettin Gökgöz. “Two-
Dimensional Embeddings for Low-Resource Keyword Spotting Based on Dynamic
Time Warping.” In: 14th ITG Conference on Speech Communication. VDE-Verlag,
2021, pp. 9–13.
© 2021 VDE, published with IEEE.
The co-authors of this publication contributed in the following ways: Alessia
Cornaggia-Urrigshardt applied voice activity detection (VAD) as pre-processing
and DTW to the resulting embeddings. She also wrote Sections 2.3, 2.4, 2.5 and
3.3, and created Figures 1 and 2. Fahrettin Gökgöz collected and prepared the
dataset used for the experiments.

Two-Dimensional Embeddings for Low-Resource Keyword Spotting Based on
Dynamic Time Warping
Kevin Wilkinghoff 1, Alessia Cornaggia-Urrigshardt 1, Fahrettin Gökgöz
Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Wachtberg, Germany
Email: {kevin.wilkinghoff,alessia.cornaggia-urrigshardt,fahrettin.goekgoez}
@fkie.fraunhofer.de

Abstract
State-of-the-art keyword spotting systems consist of neu-
ral networks trained as classifiers or trained to extract dis-
criminative representations, so-called embeddings. How-
ever, a sufficient amount of labeled data is needed to train
such a system. Dynamic time warping is another keyword
spotting approach that uses only a single sample of each
keyword as patterns to be searched and thus does not re-
quire any training. In this work, we propose to combine
the strengths of both keyword spotting approaches in two
ways: First, an angular margin loss for training a neu-
ral network to extract two-dimensional embeddings is pre-
sented. It is shown that these embeddings can be used as
features for dynamic time warping, outperforming cepstral
features even when very few training samples are available.
Second, dynamic time warping is applied to cepstral fea-
tures to turn weak into strong labels and thus provide more
labeled training data for the two-dimensional embeddings.

1 Introduction
The goal of keyword spotting (KWS) is to detect specific
keywords from a small application-dependent set of words
in audio recordings. Therefore, large parts of the audio
recordings are not of interest because they do not contain
these keywords. In contrast to large-vocabulary continu-
ous speech recognition systems that transcribe all words
being spoken and thus are also able to detect a specified
subset of keywords, keyword spotting systems require less
labeled training data and less computational power. This
is advantageous for speech recognition applications with a
restricted vocabulary where only limited resources in terms
of data and computational power are available. Examples
are rarely spoken languages for which only insufficient la-
beled data is available [1], and difficult (acoustic) environ-
ments where labeled data recorded under the same acoustic
conditions and also computational power is restricted [2].

An unsupervised approach to detect keywords in audio
recordings is to use dynamic time warping (DTW) [3, 4].
Its fundamental idea is to search for a set of provided key-
words represented as features that do not require any train-
ing in an audio file. This is called query-by-example KWS
and has the advantage that no training is needed and it thus
works with very limited amounts of data. When at least
some labeled data is available, many KWS systems are
trained to extract discriminative representations, so-called
embeddings, from audio recordings. In [5], it has been
shown that supervised embeddings extracted with linear
discriminant analysis and graph embeddings outperform
unsupervised embeddings and DTW-based KWS systems.
Other works utilize different types of neural networks to
extract embeddings, for example (Siamese) convolutional
neural networks (CNNs) [6], CNNs trained by minimiz-

1These authors contributed equally.

ing an additive angular margin loss [7] or long-short term
memory networks (LSTMs) [8, 9]. Using a simple sliding
window in combination with these discriminative embed-
dings has been shown to outperform unsupervised DTW-
based approaches. However, most of these systems, es-
pecially LSTM-based ones, require much labeled training
data in order to work well. In [9], 1115 hours of speech
and in [8] 2500 hours of speech are used for training the
LSTM-based embeddings. To circumvent this problem,
Menon et al. used only 34 minutes of labeled speech to
generate labels with a DTW-based approach for a larger
unlabeled dataset, which then was used to train a CNN [1].
Another drawback of using supervised embeddings is that
a fixed-sized sliding window is less accurate than DTW
when prediciting the exact on- and offset of detections.
This is especially problematic for applications where se-
quences of keywords and their order need to be recognized.
Examples are telephone numbers, PINs or more generally
passwords or -phrases, coordinates or spelled words.

The goal of this work is to combine the strengths of
both KWS approaches. To this end, an angular margin
loss for learning two-dimensional embeddings and a DTW-
based system utilizing these embeddings for spotting se-
quences of keywords are proposed. The presented sys-
tem is evaluated on an internal dataset recorded at Fraun-
hofer FKIE consisting of spoken coordinates in German
and a very small training set of less than 7 minutes. It
is shown that the presented two-dimensional embeddings
outperform cepstral features, more precisely human factor
cepstral coefficients (HFCC-ENS) [4]. In additional ex-
periments, cepstrum-based DTW is used to automatically
convert weak into strong labels by predicting on- and off-
set of keywords that are known to be present in a record-
ing. When providing these automatically labeled data as
additional training data, the performance obtained with the
two-dimensional embeddings is significantly improved.

2 Methodology
2.1 Two-dimensional AdaCos loss
Embeddings obtained by minimizing an angular margin
loss function such as ArcFace [10] have been shown to out-
perform other embeddings and yield state-of-the-art clas-
sification performances. The angular margin loss Ada-
Cos [11] does not depend on any hyperparameters to be
tuned but uses an adaptive scale parameter while perform-
ing equally well as ArcFace. Thus, we propose to modify
AdaCos to learn two-dimensional embeddings suitable for
being used with DTW.

Let xi ∈RTi×D be an embedding belonging to keyword
k of the K ∈N keywords with time dimension Ti and fea-
ture dimension D. In standard one-dimensional AdaCos,
mean values are learned for each class such that the co-
sine similarities of all samples to their corresponding class

means are maximized while the cosine similarities to other
class means are minimized. Moreover, a margin between
the classes is ensured. For two-dimensional AdaCos, a set
of T ∈ N embeddings Ek ⊂ RD instead of a single mean
embedding is learned for each keyword. Then, the cosine
angle θi,k ∈ [0,π] between xi and Ek is defined through

cosθi,k = 1
Ti

Ti∑
t=1

max
ej∈Ek

⟨xi,t,ej⟩∥xi,t∥2∥ej∥2
. (1)

This definition of the angle is the only difference of the
two-dimensional AdaCos to the regular one-dimensional
loss. Therefore, the probability of sample xi belonging to
keyword j is still given by

Pi,j ∶= exp(s̃ ⋅cosθi,j)∑K
k=1 exp(s̃ ⋅cosθi,k) (2)

with the standard adaptive scale parameter s̃ (see [11]).
To ensure that all audio samples of keywords used to

train the neural network are of length 0.5 seconds, shorter
samples are zero-padded and a sliding window of size 0.5
seconds and a step size of 0.1 seconds is used for longer
samples. To obtain two-dimensional embeddings for the
test sentences, which are much longer than 0.5 seconds,
first a sliding window of size 0.5 seconds with a hop size of
1/T is used to compute another embedding for each win-
dow position. Then, all embeddings belonging to a single
test recording are combined into one longer embedding by
taking the mean of all 1×D-dimensional vectors of the
embeddings for which their corresponding windows over-
lap at a given position.

To obtain a database consisting of a single represen-
tation for each keyword, the DTW barycenter averaging
(DBA) algorithm [12] as implemented in [13] is used. In-
stead of computing a regular Euclidean mean of all sam-
ples belonging to a single keyword, which minimizes the
Euclidean distance, this algorithm estimates the more gen-
eral Fréchet mean that minimizes the distance implied by
DTW. As a result, the examples stored in the keyword
database are more similar to corresponding keyword sam-
ples when searching for a keyword with DTW and thus the
performance is improved.

2.2 Network architecture
The architecture of the neural network used for extract-
ing two-dimensional embeddings is shown in Tab. 1. It
consists of a modified ResNet architecture [14] in combi-
nation with the 2D AdaCos loss and, except for the loss
function, strongly resembles the architecture used in [15].
Each residual block includes batch normalization layers
[16] and LeakyReLu [17] with α = 0.1 as nonlinearities.
As input to the neural network, log-Mel spectrograms with
64 Mel-bins, a window size of 1024 and a hop size of 256
are extracted from raw waveforms of length 0.5 seconds,
resulting in features of size 32×64. To avoid overfitting of
the model to the limited amount of training data, two data
augmentation techniques are used: 1) SpecAugment [18],
which consists of frequency masking, time masking and
time warping, and 2) mixup [19], more precisely manifold
mixup [20], for random linear interpolations between hid-
den representations of training data. To take the usage of
mixup into account when minimizing the two-dimensional
AdaCos loss while training, the extension presented in [15]
is used. In all experiments, the network, implemented in

layer name structure output size

input - 32×64

residual block (3×3
3×3)×2, stride= 1×1 32×64×16

residual block (3×3
3×3)×2, stride= 1×2 32×32×32

residual block (3×3
3×3)×2, stride= 1×2 32×16×64

residual block (3×3
3×3)×2, stride= 1×2 32×8×128

max pooling 1×8, stride= 1×1 32×128
dense (representation) linear 32×32
2D AdaCos - 38

Table 1: Modified ResNet architecture used for extracting
two-dimensional embeddings.

Tensorflow [21], is trained for 1000 epochs with a batch
size of 32 using Adam [22] for optimization.

2.3 Voice activity detection (VAD)
A pre-processing step for analyzing long audio recordings
or a post-processing step to refine the results of the pro-
posed KWS system (cf. Sec. 2.4) is a Voice Activity De-
tection (VAD) algorithm. We propose a VAD based on a
combination of spectral energy and two particular audio
features, namely spectral flux and spectral flatness. The
use of energy is restricted to pre-defined frequency sub-
bands, one for low frequencies in the range of 100-1000 Hz
focusing on the tonal components of speech and neglecting
low-frequency noise, and one for higher frequencies in the
range of 5500-8000 Hz to consider e.g. sibilants. In ad-
dition, two audio features, which have been successfully
used for speech detection tasks ([23–25]), are used to cap-
ture the particular characteristics of speech signals. These
features are combined by thresholding the corresponding
feature curves. Thresholds were fixed empirically by eval-
uating the training data. The performance of the VAD eval-
uated on manually labeled training data has a TP-rate of
99.46% and a FP-rate of 0.77%.

2.4 DTW-based keyword spotting (KWS)
In the proposed query-by-example approach, every key-
word and target sentence is represented by a sequence of
feature vectors, a 2D-feature matrix, obtained from the pre-
viously derived embeddings, allowing a frame-wise com-
parison of the target signal with the trained keyword pat-
terns. Let Ki ∈K be the feature representation of keyword
i from the keyword set K and S ∈ S be the corresponding
feature representation of a target signal. To account for
the different lengths of keyword utterances Ki and the se-
quences S, we apply sub-sequence DTW [26, 27] to align
keywords with sub-sequences of the target signal. In clas-
sical DTW approaches, two sequences of feature vectors
are time-aligned by calculating a pair-wise similarity be-
tween all the feature vectors, thus obtaining a cost matrix
C, which is transformed into an accumulated cost matrix D
following pre-defined step size conditions. Sub-sequence
DTW applies the same technique but returns several possi-
ble matchings by extracting local maxima of the resulting
accumulated cost matrix. As opposed to diagonal match-
ing, the step size condition of classical DTW is extended
to larger steps, in our case to {(2,1),(1,1),(1,2)}, to ac-
count for faster and slower speakers. C is calculated us-
ing the inner product of any two feature vectors j and k,

Figure 1: DTW-KENS-KWS: Dynamic Time Warping Keyword Energy Normalized Statistics Keyword Spotting showing
(a) the spectrogram of a target signal (with VAD results indicated by black boxes), (b) the score matrix SDTW , (c) the
enhanced KENS matrix, (d) a manually generated ground truth annotation, and (e) the keyword spotting results.

i.e. SimKi,S(j,k) ∶= ⟨vKij ,vSk⟩/∥vKij ∥2∥vSk∥2, where vKij de-
notes the jth feature vector of a keyword Ki and vSk the kth

the one of a target sentence (cf. [4]). Then C = 1−SimKi,S.

2.5 DTW-KENS-KWS
Instead of extracting paths on the basis of an accumulated
cost matrix for each keyword Ki, we only consider the last
row of D, which can be interpreted as a cost curve and,
by reverting the negation, as a score function si

DTW for a
keyword Ki. All si

DTW are concatenated to a score matrix
SDTW for all Ki ∈K and a given signal S ∈ S, where high
values indicate likely matchings. An example of SDTW is
given in Fig. 1 (b), where red colors indicate a high score.
The y-axis shows the index of the keywords (cf. 3.1).

To enhance the high score regions, we apply a tech-
nique from music processing used to calculate CENS fea-
tures [28, 29], which has also been adopted for keyword
spotting [4] (cf. Sec. 3.2), consisting of normalization and
quantization, smoothing, and downsampling. These op-
erations are applied to the DTW-based score matrix repre-
senting keywords. Hence we refer to the resulting sequence
of post-processed feature vectors by Keyword Energy Nor-
malized Statistics (KENS). An example of this KENS ma-
trix is shown in Fig. 1 (c).

Keyword spotting is performed by picking the column-
wise maxima of the KENS matrix and extracting subblocks
satisfying predefined lengths. Larger blocks are divided
into consecutive matches of the same keyword by consider-
ing personalized average lengths. In addition, the proposed
VAD (Sec. 2.3) is used to adjust the start and end times of
the detected keywords. The VAD results are indicated by
the black boxes in Fig. 1 (a). Furthermore, the results can
be post-processed by using knowledge about the data such
as in the given case of spoken coordinates where letters
only appear at the beginning of blocks of numbers.

3 Experimental Results
3.1 Dataset
The dataset used for all evaluations contained in this pa-
per is an internal dataset recorded by Fraunhofer FKIE.
The corpus consists of read coordinates in the German lan-
guage. All recordings are downsampled to 16kHz and the
annotations have been manually verified twice. The train-
ing subset of the dataset consists of 37 keywords and an
additional class Silence consisting of all six background
noise files of Google Speech Commands [30]. The key-
words are: Acht, Alpha, Bravo, Charlie, Delta, Drei, Echo,
Eins, Foxtrot, Fünf, Fünnef, Golf, Hotel, Ich berichtige,
India, Juliett, Kilo, Korrektur, Korrigiere, Lima, Mike, Mi-
nus, Neun, November, Null, Plus, Quebec, Sechs, Sieben,
Sierra, Tango, Victor, Vier, Whiskey, X-ray, Yankee, Zwo.
These keywords are all read at most once by 12 male and 7
female speakers, 3 of which are non-native. The recordings
were done in different office rooms using standard sound
pressure microphones. As a result, there are 16 to 19 ver-
sions of each keyword for training with a total duration of
less than 7 minutes. For validation and testing, the same
speakers read up to 201 sentences each, resulting in a vali-
dation set with a duration of 179 minutes containing 1723
sentences and a test set with a duration of 240 minutes con-
taining 2090 sentences.

3.2 Comparison of features
As a first experiment, it is shown that the proposed two-
dimensional embeddings outperform classical cepstral fea-
tures. HFCC-ENS features have been shown to outperform
Mel-frequency cepstral coefficients (MFCCs) when detect-
ing keywords with DTW [4]. Therefore, we only consider
the former. HFCC-ENS are computed by applying par-
ticular filterbanks optimized for human audio perception
to spectral feature vectors and then post-processed by nor-

feature loss WER
validation set test set

HFCC-ENS – 0.2533 0.2660
embedding flatten + softmax 0.3118 0.3115
embedding 2D AdaCos 0.2213 0.2100

Table 2: Word error rates obtained with different features.

malization, quantization, smoothing, and downsampling –
a technique applied also in our proposed KWS algorithm
(Sec. 2.5). In our evaluation, we use these features together
with sub-sequence DTW to extract keywords. The results
are post-processed by exploiting domain knowledge, in par-
ticular using keyword lengths and allowing letters only at
the beginning of number clusters. As opposed to the KENS
embeddings approach, several examples of the same per-
sonalized keyword are used for the DTW KWS method.

The resulting WERs can be found in Tab. 2. Recall
that the training dataset is very small and only consists of
less than 7 minutes of speech. Still, the two-dimensional
embeddings extracted with the proposed 2D AdaCos result
in significantly lower WERs than HFCC-ENS features. To
verify that the loss is actually important, the network archi-
tecture was altered by replacing the 2D AdaCos loss with
a flattening operation in combination with a softmax loss.
This led to a much higher WER, even higher than the one
obtained with HFCC-ENS features.

3.3 Turning weak into strong labels
When using data-driven models such as neural networks,
their true power comes from using as much high-quality
training data as possible. Creating weak labels for an un-
labeled dataset is much less time-consuming than strong
labeling because experts can simply listen once and write
down all words while listening instead of stopping for each
word and marking the precise start- and endpoints. How-
ever, weakly labeled data cannot be used to train the pre-
sented neural network because it is only known what is
being said in a sentence but not when the actual words be-
gin or end. Hence, we propose to use DTW with cepstral
features to automatically convert weak into strong labels
and thus create additional training data. Since prior knowl-
edge in the form of weak labels is available, this procedure
should lead to training data of higher quality than when
creating strong labels from scratch as done in [1].

To this end, all the keywords Ki, given by a fixed fea-
ture representation F(Ki) – in our case HFCC-ENS, are
concatenated in the order they appear in a given training
sentence S, also transformed into the corresponding fea-
ture representation F(S), resulting in a super-feature ma-
trix F(K). This matrix is then aligned with the sequence
of feature vectors of S, providing a global start and end
time of the best alignment of the super-keyword K. Know-
ing the length of each sub-keyword Ki allows to sub-divide
the matching result. In order to evaluate the performance
of the automatic segmentation, which is shown in Fig. 2,
we consider the overlap between each resulting segment
and its ground truth. This overlap can be interpreted as a
percentage of the result interval (x-axis) and of the ground
truth (y-axis). The colors indicate the percentage of seg-
ments which are considered correct (in %/100). One ex-
ample is the white point on Fig. 2: 90% of the segments
can be seen as correct, if we require the overlap of a ground
truth segment with the corresponding result segment to be

Figure 2: Performance of the automatic segmentation.

automatically labeled data used for: WERneural network Fréchet mean

0.2100
7 0.1841

7 0.0724
7 7 0.0720

Table 3: Word error rates obtained on the test set using
automatically labeled data as additional training data.

at least 70% of the length of the ground truth and 60% of
the length of the result segment – which for the purpose of
data augmentation may be sufficient. As a result, the total
length of the training dataset is increased from less than 7
minutes to 95 minutes.

The effects of using automatically labeled data as ad-
ditional training data can be found in Tab. 3. As expected,
the WER decreases significantly when using more data for
training. This is especially true for the neural network,
where the WER is reduced by a factor of 3. Hence, the
two-dimensional embeddings improve in representing the
keywords as features when more training data is available.

4 Conclusions and Future Work
In this work, a keyword spotting system capable of de-
tecting sequences of keywords in low-resource settings has
been presented. The system is based on two-dimensional
embeddings obtained by training a neural network with a
novel 2D AdaCos loss and utilizes these embeddings as
features for DTW-based keyword spotting. In experiments
conducted on a coordinate recognition dataset in German
with a training set of less than 7 minutes, it has been shown
that the features lead to a lower WER than HFCC-ENS fea-
tures. Furthermore, a procedure for converting weak into
strong labels has been proposed and shown to significantly
improve the performance of the two-dimensional embed-
dings by generating more training data.

For future work, it can be investigated whether using
soft-DTW [31] inside the AdaCos layer leads to an im-
proved performance of the two-dimensional embeddings
when using DTW. Furthermore, it is planned to conduct
experiments where the two-dimensional embeddings are
used in combination with prototypical networks [32] for
few-shot learning.

References
[1] R. Menon, H. Kamper, J. Quinn, and T. Niesler, “Fast ASR-

free and almost zero-resource keyword spotting using DTW
and CNNs for humanitarian monitoring,” in 19th Annual
Conference of the International Speech Communication As-
sociation (Interspeech), pp. 2608–2612, ISCA, 2018.

[2] H.-C. Schmitz, F. Kurth, K. Wilkinghoff, U. Müller-
schkowski, C. Karrasch, and V. Schmid, “Towards robust
speech interfaces for the ISS,” in International Conference
on Intelligent User Interfaces (IUI) Companion, pp. 110–
111, ACM, 2020.

[3] M. D. Wachter, M. Matton, K. Demuynck, P. Wambacq,
R. Cools, and D. V. Compernolle, “Template-based contin-
uous speech recognition,” IEEE Trans. Speech Audio Pro-
cess., vol. 15, no. 4, pp. 1377–1390, 2007.

[4] D. Von Zeddelmann, F. Kurth, and M. Müller, “Perceptual
audio features for unsupervised key-phrase detection,” in
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 257–260, IEEE, 2010.

[5] K. Levin, K. Henry, A. Jansen, and K. Livescu, “Fixed-
dimensional acoustic embeddings of variable-length seg-
ments in low-resource settings,” in Workshop on Automatic
Speech Recognition and Understanding (ASRU), pp. 410–
415, IEEE, 2013.

[6] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional
acoustic word embeddings using word-pair side informa-
tion,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4950–4954, IEEE, 2016.

[7] H. Ma, Y. Bai, J. Yi, and J. Tao, “Hypersphere embedding
and additive margin for query-by-example keyword spot-
ting,” in Asia-Pacific Signal and Information Processing As-
sociation Annual Summit and Conference (APSIPA ASC),
pp. 868–872, IEEE, 2019.

[8] G. Chen, C. Parada, and T. N. Sainath, “Query-by-example
keyword spotting using long short-term memory networks,”
in International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 5236–5240, IEEE, 2015.

[9] J. Hou, L. Xie, and Z. Fu, “Investigating neural network
based query-by-example keyword spotting approach for
personalized wake-up word detection in mandarin chinese,”
in 10th International Symposium on Chinese Spoken Lan-
guage Processing, (ISCSLP), pp. 1–5, IEEE, 2016.

[10] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Ad-
ditive angular margin loss for deep face recognition,” in
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4690–4699, IEEE, 2019.

[11] X. Zhang, R. Zhao, Y. Qiao, X. Wang, and H. Li, “Ada-
Cos: Adaptively scaling cosine logits for effectively learn-
ing deep face representations,” in Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10823–10832,
IEEE, 2019.

[12] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global aver-
aging method for dynamic time warping, with applications
to clustering,” Pattern recognition, vol. 44, no. 3, pp. 678–
693, 2011.

[13] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. An-
droz, C. Holtz, M. Payne, R. Yurchak, M. Rußwurm, K. Ko-
lar, and E. Woods, “Tslearn, a machine learning toolkit for
time series data,” Journal of Machine Learning Research,
vol. 21, no. 118, pp. 1–6, 2020.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 770–778, IEEE,
2016.

[15] K. Wilkinghoff, “Sub-cluster AdaCos: Learning represen-
tations for anomalous sound detection,” in International
Joint Conference on Neural Networks (IJCNN), IEEE,

2021.
[16] S. Ioffe and C. Szegedy, “Batch normalization: accelerat-

ing deep network training by reducing internal covariate
shift,” in 32nd International Conference on Machine Learn-
ing (ICML), pp. 448–456, 2015.

[17] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlin-
earities improve neural network acoustic models,” in 30th
International Conference on Machine Learning (ICML),
2013.

[18] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data
augmentation method for automatic speech recognition,”
in 20th Annual Conference of the International Speech
Communication Association (Interspeech), pp. 2613–2617,
ISCA, 2019.

[19] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“Mixup: Beyond empirical risk minimization,” in Inter-
national Conference on Learning Representations (ICLR),
2018.

[20] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas,
D. Lopez-Paz, and Y. Bengio, “Manifold mixup: Better rep-
resentations by interpolating hidden states,” in 36th Inter-
national Conference on Machine Learning (ICML), vol. 97
of Proceedings of Machine Learning Research, pp. 6438–
6447, PMLR, 2019.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “Ten-
sorflow: A system for large-scale machine learning,” in 12th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), pp. 265–283, 2016.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations (ICLR), 2015.

[23] Y. Ma and A. Nishihara, “Efficient voice activity detec-
tion algorithm using long-term spectral flatness measure,”
EURASIP Journal on Audio, Speech, and Music Process-
ing, vol. 2013, no. 1, pp. 1–18, 2013.

[24] S. Urrigshardt, S. Kreuzer, and F. Kurth, “General detection
of speech signals in the time-frequency plane,” in ITG Sym-
posium on Speech Communication, pp. 1–5, VDE, 2016.

[25] S. Lee, J. Kim, and I. Lee, “Speech/audio signal classifi-
cation using spectral flux pattern recognition,” in Workshop
on Signal Processing Systems, pp. 232–236, IEEE, 2012.

[26] F. Kurth and D. von Zeddelmann, “An analysis of mfcc-
like parametric audio features for keyphrase spotting appli-
cations,” ITG Symposium on Speech Communication, 2010.

[27] D. von Zeddelmann, F. Kurth, and M. Müller, “Vergleich
von Matching-Techniken für die Detektion gesprochener
Phrasen,” Deutsche Jahrestagung für Akustik, pp. 257–260,
2010.

[28] M. Müller, F. Kurth, and M. Clausen, “Chroma-based sta-
tistical audio features for audio matching,” in Workshop on
Applications of Signal Processing to Audio and Acoustics
(WASPAA), pp. 275–278, IEEE, 2005.

[29] M. Müller, F. Kurth, and M. Clausen, “Audio matching via
chroma-based statistical features,” in 6th International Con-
ference on Music Information Retrieval (ISMIR), pp. 288–
295, 2005.

[30] P. Warden, “Speech commands: A dataset for
limited-vocabulary speech recognition,” CoRR,
vol. abs/1804.03209, 2018.

[31] M. Cuturi and M. Blondel, “Soft-DTW: a differentiable loss
function for time-series,” in 34th International Conference
on Machine Learning, (ICML), pp. 894–903, PMLR, 2017.

[32] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical net-
works for few-shot learning,” in Annual Conference on Neu-
ral Information Processing Systems (NIPS), pp. 4077–4087,
2017.

150 appendix

a.1.3 Key publication 3

Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “On choosing decision
thresholds for anomalous sound detection in machine condition monitoring.” In:
24th International Congress on Acoustics. The Acoustical Society of Korea, 2022.
© 2022 The Acoustical Society of Korea.
The co-author of this publication contributed in the following ways: Alessia
Cornaggia-Urrigshardt assisted with reviewing literature and implemented some
of the evaluation methods. She also wrote parts of Section 3.

On choosing decision thresholds for anomalous sound detection in machine
condition monitoring

Kevin WILKINGHOFF1, Alessia CORNAGGIA-URRIGSHARDT2

1Fraunhofer FKIE, Germany, kevin.wilkinghoff@fkie.fraunhofer.de
2Fraunhofer FKIE, Germany, alessia.cornaggia-urrigshardt@fkie.fraunhofer.de

ABSTRACT
Most anomalous sound detection (ASD) systems output a score for each audio sample presented to the system.
Ideally, these anomaly scores differ for normal and anomalous samples such that one can determine whether a
given sample is normal or anomalous by comparing the scores to predefined thresholds. However, determining
these thresholds is non-trivial, especially when no anomalous samples are provided as training data. In this
work, several methods for finding such decision thresholds are evaluated and compared to each other when
acoustically monitoring the condition of machines in noisy environments. To this end, the state-of-the-art in
ASD for machine condition monitoring will be reviewed first. Using a state-of-the-art ASD system, experi-
mental evaluations are conducted on the DCASE 2020 ASD dataset to evaluate differently attained decision
thresholds.

Keywords: anomalous sound detection, decision threshold, machine listening

1 INTRODUCTION
Anomaly detection [1, 2] is the task of identifying samples substantially differing from normal samples that are
frequently encountered. Collecting these anomalous samples is difficult because by definition anomalies occur
only rarely and often are very costly to produce artificially. For example, when acoustically monitoring the
condition of machines, creating anomalous samples of machine sounds translates to damaging potentially costly
machines in very specific ways whereas recording fully functioning machines is much less costly. Furthermore,
for many applications anomalies are very diverse making it practically impossible to sufficiently cover the space
of anomalous samples by collecting as many as possible of them. Hence, in many cases anomaly detection
takes place in a semi-supervised setting meaning that only normal samples are available for training a system.

Evaluating and comparing different systems for anomaly detection or sound detection should be independent
of the choice of decision thresholds to allow for a more objective comparison [1, 3]. Because of this, metrics
such as the area under the receiver-operating characteristic curve (ROC-AUC) that do not utilize any decision
threshold are usually used. However, when setting up a system for practical applications detection thresholds
are still needed to distinguish between normal and anomalous test samples. But without access to anomalous
training samples, it is impossible to determine decision thresholds by simply testing multiple values and picking
the best-performing one. Hence, estimating these thresholds is highly non-trivial and requires sophisticated
techniques.

Anomalous sound detection (ASD) for machine condition monitoring is highly promoted through the annual
DCASE challenge [4, 5, 6]. The baseline systems of the ASD tasks utilize the 90th percentile of a gamma
distribution estimated from the histogram of the anomaly scores belonging to the normal training samples as
a decision threshold. For all systems that participated in the DCASE challenge 2021 either no procedure for
automatically estimating the decision thresholds is explicitly mentioned or the same (or a very similar) procedure
as used by the baseline system is applied [7, 8, 9, 10, 11, 12]. The most likely reason for a lack of focus on
techniques for choosing decision thresholds is that the evaluation of the ASD systems is based on the AUC

score and thus no decision thresholds are needed. This is done to have an objective comparison between the
ASD performance of the systems and to prevent participants from cheating by utilizing anomalous samples of
the development set for estimating thresholds. Furthermore, challenges are usually carried out only for research
purposes without the goal of obtaining a fully functioning ASD system for a real-world application that would
inevitably need a sophisticated technique for determining a decision threshold.

The goal of this work is to investigate multiple techniques for estimating decision thresholds in the context
of anomalous sound detection for machine condition monitoring. For this purpose, first the state-of-the-art in
ASD including a specific system for experimental evaluations is briefly reviewed. Second, multiple methods for
estimating a decision threshold are presented. In experimental evaluations on the DCASE 2020 ASD dataset
[4], these techniques are applied and compared to each other.

2 STATE-OF-THE-ART OF ANOMALOUS SOUND DETECTION
2.1 Review
First, the state-of-the-art in ASD will be reviewed. For this purpose, we will mainly follow [5]. There are two
general state-of-the-art ASD paradigms for machine condition monitoring. Both rely on deep learning. The first
one consists of using an autoencoder trained on normal data only. Here, it is assumed that the autoencoder can
reconstruct normal data better than anomalous data due to deviations from the normal data used for training the
model and thus the reconstruction error can be used as an anomaly score. Many different autoencoder architec-
tures have been used for this purpose, e.g. class-conditioned autoencoders [13] or group masked autoencoders
[14]. This approach of directly estimating the distribution of normal data is also more generally called inlier
modelling (IM).

The second approach is to train a discriminative model to learn meaningful embeddings of the data. Here, it
is assumed that the information needed to discriminate among predefined classes also captures the information
needed to detect anomalous samples. This approach is called outlier exposure (OE) [15]. In machine condition
monitoring, most models are trained to discriminate among different machine types or even finer subdivisions
of the data such as different machine states or noise types [11]. To train an OE model, usually angular margin
losses such as ArcFace [16] or AdaCos [17] are used [18, 19]. These losses ensure that not only inter-class
similarity is minimized but simultaneously maximize intra-class similarity using an angular margin in combina-
tion with the cosine distance. Thus after training, embeddings belonging to normal samples of a specific class
are concentrated around a learned mean embedding and anomalous samples are expected to have a larger angle
than normal samples to this mean enabling the detection of anomalies.

Many state-of-the-art systems utilize both ASD paradigms. As noted in [5], there are two different ways to
combine both approaches: a parallel and a sequential approach. The parallel approach is simply an ensemble of
multiple OE and IM models [20, 21, 22] and the sequential approach consists of first applying an OE model as
a feature extractor and then using an IM model for these features [23, 11]. Compared to a parallel approach,
a sequential approach has the advantage that the system consists of fewer hyperparameters. However, when
training a discriminative model to extract features some information needed to detect anomalous data may be
lost if this information is not important for identifying the pre-defined classes.

2.2 Used system
For all experimental evaluations in this work, the system presented in [24] is used. The system is a sequential
approach consisting of a neural network trained to extract discriminative audio embeddings from log-mel spec-
trograms using the sub-cluster AdaCos loss and a GMM for IM. The sub-cluster AdaCos loss is an extension
of the AdaCos loss specifically designed for ASD. This means that the loss is also an angular margin loss with
an adaptive scale parameter. The major difference to the standard AdaCos loss is that instead of learning a
single class center for each class, the loss learns multiple sub-clusters for each class to learn more complex dis-
tributions. In this case, the classes are defined as specific machines recorded in noisy environments (see Section
4.1). More details about the sub-cluster AdaCos loss can be found in [24]. For all experiments, 32 sub-clusters
for each class are used. When computing the log-mel spectrograms 128 mel bins, a window size of 1024 and
a hop size of 512 are used.

Table 1. Modified ResNet architecture used for extracting discriminative embeddings.

layer name structure output size

input - 313×128

2D convolution 7×7, stride= 2 157×64×16

residual block

3×3

3×3

×2, stride= 1 78×31×16

residual block

3×3

3×3

×2, stride= 1 39×16×32

residual block

3×3

3×3

×2, stride= 1 20×8×64

residual block

3×3

3×3

×2, stride= 1 10×4×128

max pooling 10×1, stride= 1 4×128

flatten - 512

dense (representation) linear 128

sub-cluster AdaCos 32 sub-clusters 41

The neural network has a modified ResNet architecture [25] as shown in Table 1 and is implemented in
Tensorflow [26]. The model is trained for 400 epochs with a batch size of 64 using Adam [27]. For data
augmentation, mixup [28] with a uniformly sampled mixing coefficient is used to randomly generate additional
data and prevent overfitting of the model. After training, the model is used to extract embeddings, which are
length-normalized by projecting them to the unit sphere. The only exception is the machine type “ToyConveyor”
for which the temporal means of the log-mel spectrograms are used instead of the embeddings because these
representations yield a much better ASD performance for this machine type [24]. For each pre-defined class
i.e. for each specific machine of a given machine type, the distributions of the resulting embeddings are then
estimated with Gaussian mixture models (GMMs) with 32 Gaussian components and a full covariance matrix,
which is regularized by adding 0.001 to the diagonal as implemented in scikit-learn [29]. To obtain anomaly
scores, the corresponding log-likelihood values of the GMMs are used.

3 FINDING DECISION THRESHOLDS
There are many different approaches for finding decision thresholds [30, 31]. For arbitrary anomaly scores ob-
tained with supervised classifiers potentially being biased, these anomaly scores can be calibrated by converting
them into (pseudo-)probabilities for which thresholds can be determined [32, 33]. Usually, a probability of 0.5
is used as a threshold for these calibrated scores. Since the anomaly scores of the used system already are
log-likelihood values, a mapping to probabilities is not necessary. For multivariate data or scores, a threshold
can be determined by using the empirical distribution function of the squared Mahalanobis distance and using a
critical value such as a small quantile of the chi-squared distribution, which is the theoretical distribution func-
tion, as a threshold. [34]. An extension of this approach uses an adaptive threshold [35]. However, anomaly
scores are usually univariate and thus multivariate approaches are not suitable. When continuously monitoring
data streams for anomalies, these data streams themselves consist of sequential samples of which most samples
are normal and only a few are anomalous. Therefore, thresholds can utilize previously encountered samples and
need to adapt to changes occurring in the data stream [36, 37, 38]. This is very different from the ASD setting
investigated in this work where individual recordings are either entirely normal or anomalous.

Now, several techniques for automatically estimating decision thresholds using only scores obtained with
normal data will be reviewed. The general idea of all methods is to estimate a threshold that separates the
extreme values of the training scores from the rest. Most of these methods are based on the assumption that
the considered data, i.e. the anomaly scores, follow some specific distribution, typically a normal distribution.
As this is not true for anomaly scores in general, the considered methods may work only to some extent.

3.1 Gamma distribution percentile (GP)
The strategy used by the baseline systems of the DCASE challenge [5, 6] is to fit a gamma distribution to the
scores obtained with the normal training samples and use the inverse of the 90th percentile of the cumulative
distribution function as the decision threshold. Test scores larger than this threshold are marked as anomalous;
otherwise they are considered normal.

3.2 Histogram percentile (HP)
One can also directly use the histogram of the scores without fitting a distribution first. Note that this silently
assumes a uniform distribution. We used the 90th percentile of the histogram of the scores as the decision
threshold as done in [11].

3.3 Standard Deviation (SD)
One of the most commonly used approaches is to fit a normal distribution to the scores. All values exceeding
the range µ ±α ∗σ are marked as anomalous, where µ and σ are the mean and standard deviation of the
normal scores. Note, that technically this implies the usage of two thresholds. Since the anomaly scores in
this work consist of negative log-likelihoods and thus scores belonging to normal and anomalous samples are
assumed to be linearly separable, only the upper threshold is used. To have a consistent evaluation with the
previous two approaches, we used α = 1.28, which approximately corresponds to the 90th percentile.

3.4 Median Absolute Deviation (MAD)
Following the assumption that the median is more robust against outliers than the mean, decision thresholds
may be obtained by x̃±α ∗MAD, where MAD is given by MAD = β ∗median(|x− x̃|) and x̃ is the median
value of the score values x. [31] proposes α = 3 and β = 1.4826 following [39], [30] uses α = 2, which is also
the value we used.

3.5 Interquartile Range (IQR)
This approach is based on the division of the score values x into subsets by setting Q1 and Q3 such that
x ≥ Q1 for 75% and x ≥ Q3 for 25% of x. Then IQR = Q3−Q1. Values outside the range Q1−α ∗ IQR
and Q3+α ∗ IQR are considered anomalous. Typically, α = 1.5 is assumed [39]. We used, α = 0.5 as this
significantly improved the performance. This approach is also known as boxplot [30].

3.6 One-class support vector machine (OCSVM)
To estimate the support of a distribution, a one-class support vector machine [40], which learns to discriminate
between regions of high and low density using a hypersphere in high-dimensional space, can also be used. We
used the implementation of scikit-learn [29] with a linear kernel. For the hyperparamter ν , we used a value of
0.1 i.e. 10% of the normal training scores are treated as anomalous.

3.7 Generalized Extreme Studentized Deviate (GESD)
GESD [41] is an iterative approach based on the Grubbs’s test (GRUBBS) [42]. This statistical test, named
after Grubbs , assumes a normal distribution and is calculated on the so-called Grubbs statistic

G =
|max(x)−µ|

σ
(1)

with mean µ and standard deviation σ . G is evaluated against a critical value of the student’s t-distribution
with a significance level α , set to 0.05 as default, and data size N:

G >
N −1√

N

√√√√ t2
α/(2N),N−2

N −2+ t2
α/(2N),N−2

. (2)

GRUBBS only tests for a single anomalous sample. For GESD, GRUBBS is thus repeated iteratively until no
further anomalies are detected.

3.8 Clever Standard Deviation (cleverSD)
CleverSD [43] is another iterative approach. The idea is to repeatedly eliminate a single sample with the highest
score from the training scores in case it is found to be anomalous by applying SD (α = 2). This is done until
no additional anomaly is found. We used the last score removed by this approach as the decision threshold.

3.9 Two-stage Thresholding (-x2)
Generalizing cleverSD, [31] suggests yet another iterative anomaly detection method called multi-stage thresh-
olding. The main idea is to simply apply a non-iterative method multiple times to remove anomalies from
the training scores. The difference to cleverSD is, that not only one anomaly but all anomalies detected are
removed in each iteration. Experiments have shown that two stages are sufficient and thus we only used two
iterations. When applying this technique to non-iterative approaches, we use the name of the method with the
suffix -x2 to denote its two-stage version.

4 EXPERIMENTS
4.1 Dataset
For all experiments in this work, the DCASE 2020 ASD dataset [4] has been used. It consists of record-
ings from six different machine types, namely “ToyCar” and “ToyConveyor” from ToyAdmos [44], and “fan”,
“pump”, “slider” and “valve” from MIMII [45]. Each recording contains a specific machine sound as well as
factory noise and has a length of 10 seconds with a sampling rate of 16 kHz. There are six to seven different
machine ids per machine type that correspond to a specific machine of that type and a total of 42 machine ids.
These machine ids are used as classes when training the discriminative model described in Section 2.2.

The dataset is divided into a training set, a development set and an evaluation set. The training set consists
of approximately 1000 normal sounds for each machine id. The development set consists of 100 to 200 normal
sounds and 100 to 200 anomalous sounds for each of one half of the machine ids belonging to each machine
type. The evaluation set consists of approximately 400 recordings containing both normal and anomalous sounds
for each of the other half of machine ids.

4.2 Comparison of the decision methods
The scores obtained with the normal training data are used to estimate thresholds for ASD scores for each
machine type and each machine id individually. These thresholds or the models representing them are evaluated
both on the development and the evaluation set by applying them to the corresponding test sets containing a
mixture of normal and anomalous samples. F1 scores are then calculated for each machine id individually and
the mean is calculated for each machine type. For comparison, the performance obtained with a single optimal
threshold is evaluated as an additional method denoted by optimum. These optimal thresholds are calculated
by simply trying multiple values as decision thresholds, calculating the corresponding F1-scores and denoting
the highest achieved F1-score for each machine type. To have a more robust estimation of all results, the
ASD system is trained five times and the whole evaluation procedure is repeated five times for each method.
Then, the mean of the five resulting F1 scores is calculated as the final performance. The final results for
development and evaluation set are listed in Table 2 and Table 3, respectively. The best method for estimating
decision thresholds per machine type is underlined. Additionally, average F1 scores computed over all machines
types are provided. The results show that different threshold detection methods yield varying performances for
distinct machine types.

To compare the different methods while reducing the influence of the difference in performance for individ-
ual machine types, we used the ratio between F1-score of a method and the best possible F1-score obtained
with a single threshold, i.e. the results obtained with optimum, instead of the F1-scores themselves. Therefore,
these values show how close an estimated threshold is to the optimal threshold and allows a better comparison
between the methods regardless of the actual ASD performance of the used system for different machine types.

The results are depicted in Figure 1. The following observations can be made. First, most approaches
result in a very similar ASD performance. The only exceptions are GESD, which performs worse on both the
development and evaluation set, and GP/GPx2, which performs slightly worse on the development set, than

Table 2. Mean of F1 scores among all machine ids belonging to single machine types obtained with five
independent trials on the development dataset. Highest F1 score among different methods for each machine
type is underlined.

fan pump slider ToyCar ToyConveyor valve mean

GP 0.83204 0.82253 0.91109 0.80763 0.61818 0.87869 0.81169

HP 0.75288 0.83735 0.95056 0.84823 0.67279 0.89828 0.82668

SD 0.75055 0.83927 0.95147 0.85007 0.67236 0.89985 0.82726

MAD 0.76191 0.84408 0.95138 0.85412 0.66953 0.90171 0.83046

IQR 0.78953 0.84310 0.93899 0.83723 0.67722 0.89694 0.83050

OCSVM 0.75288 0.83735 0.95049 0.84907 0.67265 0.89794 0.82673

GESD 0.66239 0.81641 0.96752 0.86416 0.59373 0.86991 0.79569

cleverSD 0.83559 0.83511 0.91850 0.82063 0.66289 0.88529 0.82633

GPx2 0.86353 0.80954 0.88840 0.77259 0.61148 0.86485 0.80173

HPx2 0.81633 0.83612 0.92617 0.81426 0.66316 0.88786 0.82398

SDx2 0.82656 0.83333 0.91861 0.80603 0.65868 0.88201 0.82087

MADx2 0.79681 0.84887 0.94039 0.84690 0.67556 0.89848 0.83450

IQRx2 0.83306 0.83445 0.91598 0.80581 0.65856 0.88336 0.82187

OCSVMx2 0.81573 0.83616 0.92650 0.81474 0.66307 0.88739 0.82393

optimum 0.92574 0.88895 0.98461 0.89175 0.68857 0.91896 0.88310

development set evaluation set
0.8

0.85

0.9

0.95

1

no
rm

al
iz

ed
F1

sc
or

e GP GPx2
HP HPx2
SD SDx2

MAD MADx2
IQR IQRx2

OCSVM OCSVMx2
GESD cleverSD

Figure 1. Comparison of decision methods based on the mean of the normalized F1 scores taken over all
machine types.

all other methods. Second, the two-stage versions of the approaches, yield about the same performace on the
development set and a slightly better performance on the evaluation set. Furthermore, the iterative approach
cleverSD has approximately the same F1 score as the two-stage approaches. In conclusion, these experiments
indicate that one should use a two-stage approach (or cleverSD) when estimating decision thresholds for ASD
and the particular choice for the underlying one-stage method is not that important.

Table 3. Mean of F1 scores among all machine ids belonging to single machine types obtained with five
independent trials on the evaluation dataset. Highest F1 score among different methods for each machine type
is underlined.

fan pump slider ToyCar ToyConveyor valve mean

GP 0.89956 0.86065 0.88863 0.60121 0.63508 0.67127 0.75940

HP 0.93845 0.89173 0.92304 0.58433 0.59703 0.65612 0.76512

SD 0.93675 0.89318 0.92132 0.57726 0.59974 0.65573 0.76399

MAD 0.93878 0.88953 0.91896 0.57180 0.59806 0.65103 0.76136

IQR 0.94128 0.89359 0.92027 0.59976 0.61941 0.66482 0.77319

OCSVM 0.93832 0.89185 0.92321 0.58277 0.59607 0.65587 0.76468

GESD 0.90994 0.88218 0.89995 0.51314 0.49565 0.61057 0.71857

cleverSD 0.94124 0.87428 0.90940 0.61826 0.64311 0.67869 0.77749

GPx2 0.90652 0.85206 0.88491 0.63815 0.66252 0.69189 0.77267

HPx2 0.94287 0.88472 0.91462 0.61838 0.63550 0.67583 0.77865

SDx2 0.94289 0.87921 0.91107 0.62399 0.64169 0.68273 0.78026

MADx2 0.94149 0.89154 0.91883 0.59180 0.61854 0.66447 0.77111

IQRx2 0.94292 0.87495 0.90981 0.62575 0.64314 0.68402 0.78010

OCSVMx2 0.94283 0.88521 0.91462 0.61806 0.63553 0.67594 0.77870

optimum 0.96516 0.94371 0.95913 0.75889 0.72512 0.78359 0.85593

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.82

0.84

0.86

0.88

0.9

percentage of data samples not used for training the ASD system

op
tim

al
F1

sc
or

e

development set
evaluation set

Figure 2. Mean of optimal F1 scores among machine types obtained with varying percentage of data samples
not used for training the ASD system on the development set.

4.3 Dividing normal samples in disjoint sets for training ASD system and estimating decision threshold
To avoid a degraded ASD performance due to overfitting resulting from using the normal samples for estimating
the decision threshold and training the ASD system, a commonly applied strategy is to only use a part of the
normal samples for training the model and use the remaining samples for extracting more realistic scores. By
using this strategy, the training scores and test scores are more similar and thus the decision threshold is ex-
pected to be more accurate. However, it is clear that using less data for training the ASD system also degrades
the ASD performance since less information is incorporated into the model. In the following experiments, we
investigate whether this strategy actually improves the ASD performance.

First, we evaluated the ASD performance obtained with a single optimal decision threshold for a varying
number of data samples used for training the ASD system. The resulting F1 scores can be found in Figure 2. As

expected, the F1 scores decrease when using less data for training. However, the degradation in performance is
much less severe than anticipated and is not noticeable before using less than 40% of normal training samples.
Even when using only 5% of normal training samples, the F1 scores are only slightly worse than when using all
samples. The most likely reason for this is that, ignoring the background noise, the variability of sounds emitted
by machines is relatively low and thus their acoustic behavior can be captured with only a few recordings.
Since this opens the possibility to train an ASD system for machine condition monitoring with much fewer
computational and data resources, this observation is interesting on its own.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.7

0.8

0.9

1

percentage of data samples not used for training the ASD system

no
rm

al
iz

ed
F1

sc
or

e GP GPx2
HP HPx2
SD SDx2

MAD MADx2
IQR IQRx2

OCSVM OCSVMx2
GESD cleverSD

Figure 3. Mean of normalized F1 scores among machine types obtained with different methods for estimating
decision thresholds and varying percentage of data samples not used for training the ASD system on the devel-
opment set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.7

0.8

0.9

1

percentage of data samples not used for training the ASD system

no
rm

al
iz

ed
F1

sc
or

e GP GPx2
HP HPx2
SD SDx2

MAD MADx2
IQR IQRx2

OCSVM OCSVMx2
GESD cleverSD

Figure 4. Mean of normalized F1 scores among machine types obtained with different methods for estimating
decision thresholds and varying percentage of data samples not used for training the ASD system on the evalu-
ation set.

Next, we evaluated the ASD performance obtained with different methods for estimating a decision threshold
for a varying number of data samples used for training the ASD system. The results for the development set
and evaluation set can be found in Figure 3 and Figure 4, respectively. It can be seen that using fewer samples
for training the system and using these samples to estimate more realistic anomaly scores for estimating the
decision threshold does not significantly improve the ASD performance. Moreover, since the absolute F1 score
is actually slightly decreasing (see Figure 2) the performance is actually worse. When comparing individual
methods, one can see that in general the gaps in performance get wider the less data is used for training

the ASD system. Once more, iterative approaches, namely SDx2, IQRx2, OCSVMx2 and cleverSD, perform
best. Furthermore, their relative performance is relatively stable, making them a robust choice for estimating
decision thresholds for ASD. Note that OCSVMx2 does not assume an underlying distribution but only linear
separability of the anomaly scores. Hence, it appears to be likely that these methods, especially OCSVMx2, also
work well in other settings with other ASD systems and different anomaly scores. One noticeable exception is
GP, for which GPx2 the results are very noisy and much worse than every other method. Since this degraded
performance is not visible to this extend when using all samples for training the ASD system, this indicates
that in general the other iterative methods may be preferable.

5 CONCLUSIONS
In this work, multiple techniques for estimating decision thresholds have been reviewed and applied for detecting
anomalous sounds in machine condition monitoring. In experiments conducted on the DCASE 2020 dataset,
these techniques have been compared using the anomaly scores obtained with a state-of-the-art ASD system.
For this particular experimental setup, the following observations have been made: First, most techniques for
estimating a decision threshold perform equally well and yield approximately 90% to 95% of the F1 score
obtained with an optimally tuned decision threshold. Hence, there is still a gap in performance but this gap is
relatively small. Second, iterative approaches such as multi-stage thresholding [31] slightly improve the overall
ASD performance and therefore are to be preferred over single-stage techniques. This is especially true when
using less data for training the ASD system indicating that iterative approaches are more robust. Last but not
least, holding back normal training samples (i.e. not using them for training the ASD system) for the sole
purpose of obtaining more realistic anomaly scores from these samples and using the resulting scores when
estimating a decision threshold does not improve the ASD performance and thus can be omitted.

Although this work is not and cannot be exhaustive in listing and comparing all methods for automatically
estimating decision thresholds, it shall serve as an initial investigation on applying these techniques for practi-
cal ASD applications such as machine condition monitoring. For future work, further studies using other ASD
systems for calculating the anomaly scores, other ASD datasets and additional techniques for estimating deci-
sion thresholds are to be carried out. In addition, it is planned to evaluate all mentioned methods for finding
decision thresholds when dealing with domain shifts [5] and when generalizing models for multiple domains
[6]. Furthermore, additional investigations on choosing decision thresholds can be led for open-set classification
problems such as acoustic scene classification [46] or speaker recognition [47].

REFERENCES
[1] Aggarwal CC. Outlier Analysis. Springer; 2017.

[2] Zimek A, Filzmoser P. There and back again: Outlier detection between statistical reasoning and data
mining algorithms. WIREs Data Mining Knowl Discov. 2018;8(6).

[3] Ebbers J, Haeb-Umbach R, Serizel R. Threshold Independent Evaluation of Sound Event Detection Scores.
In: Proc International Conference on Acoustics, Speech and Signal Processing; 23-27 May 2022; Virtual
and Singapore, China. IEEE; 2022. p. 1021-5.

[4] Koizumi Y, Kawaguchi Y, Imoto K, Nakamura T, Nikaido Y, Tanabe R, et al. Description and Discus-
sion on DCASE2020 Challenge Task2: Unsupervised Anomalous Sound Detection for Machine Condition
Monitoring. In: Proc Detection and Classification of Acoustic Scenes and Events Workshop; 2-4 November
2020; Tokyo, Japan; 2020. p. 81-5.

[5] Kawaguchi Y, Imoto K, Koizumi Y, Harada N, Niizumi D, Dohi K, et al. Description and Discussion on
DCASE 2021 Challenge Task 2: Unsupervised Anomalous Detection for Machine Condition Monitoring
Under Domain Shifted Conditions. In: Proc Detection and Classification of Acoustic Scenes and Events
Workshop; 15-19 November 2021; Online; 2021. p. 186-90.

[6] Dohi K, Imoto K, Harada N, Niizumi D, Koizumi Y, Nishida T, et al. Description and Discussion on
DCASE 2022 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Moni-
toring Applying Domain Generalization Techniques. In arXiv e-prints: 220605876. 2022.

[7] Bai J, Wang M, Chen J. Dual-Path Transformer For Machine Condition Monitoring. In: Proc Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference; 14-17 December 2021;
Tokyo, Japan. IEEE; 2021. p. 1144-8.

[8] Li R, Gu X, Lu F, Song H, Pan J. Unsupervised Adversarial domain adaptive abnormal sound detection for
machine condition monitoring under Domain Shift Conditions. DCASE2021 Challenge; Tech Rep; 2021.

[9] Narita H, Tamamori A. Unsupervised Anomalous Sound Detection Using Intermediate Representation of
Trained Models and Metric Learning Based Variational Autoencoder. DCASE2021 Challenge; Tech Rep;
2021.

[10] Pham L, Jalali A, Dinica O, Schindler A. DCASE Challenge 2021: Unsupervised Anomalous Sound
Detection of Machinery with LeNet Architecture. DCASE2021 Challenge; Tech Rep; 2021.

[11] Wilkinghoff K. Combining Multiple Distributions based on Sub-Cluster AdaCos for Anomalous Sound
Detection under Domain Shifted Conditions. In: Proc Detection and Classification of Acoustic Scenes and
Events Workshop; 15-19 November 2021; Online; 2021. p. 55-9.

[12] Zhang C, Yao Y, Qiu R, Li S, Shao X. Unsupervised Anomalous Sound Detection Using Denoising-
Detection System Under Domain Shifted Conditions. DCASE2021 Challenge; Tech Rep; 2021.

[13] Kapka S. ID-Conditioned Auto-Encoder for Unsupervised Anomaly Detection. In: Proc 5th Workshop
on Detection and Classification of Acoustic Scenes and Events; 2-4 November 2020; Tokyo, Japan (full
virtual); 2020. p. 71-5.

[14] Giri R, Cheng F, Helwani K, Tenneti SV, Isik U, Krishnaswamy A. Group Masked Autoencoder Based
Density Estimator for Audio Anomaly Detection. In: Proc 5th Workshop on Detection and Classification
of Acoustic Scenes and Events; 2-4 November 2020; Tokyo, Japan (full virtual); 2020. p. 51-5.

[15] Hendrycks D, Mazeika M, Dietterich TG. Deep Anomaly Detection with Outlier Exposure. In: Proc 7th
International Conference on Learning Representations; 6-9 May 2019; New Orleans, LA, USA. OpenRe-
view.net; 2019. p. 1-18.

[16] Deng J, Guo J, Xue N, Zafeiriou S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
In: Conference on Computer Vision and Pattern Recognition; 16-20 June 2019; Long Beach, CA, USA.
IEEE; 2019. p. 4690-9.

[17] Zhang X, Zhao R, Qiao Y, Wang X, Li H. AdaCos: Adaptively Scaling Cosine Logits for Effectively
Learning Deep Face Representations. In: Proc Conference on Computer Vision and Pattern Recognition;
16-20 June 2019; Long Beach, CA, USA. IEEE; 2019. p. 10823-32.

[18] Zhou Q. ArcFace Based Sound Mobilenets for DCASE 2020 task 2. DCASE2020 Challenge; Tech Rep;
2020.

[19] Lopez JA, Lu H, Lopez-Meyer P, Nachman L, Stemmer G, Huang J. A Speaker Recognition Approach
to Anomaly Detection. In: Proc 5th Workshop on Detection and Classification of Acoustic Scenes and
Events; 2-4 November 2020; Tokyo, Japan (full virtual); 2020. p. 96-9.

[20] Lopez JA, Stemmer G, Lopez-Meyer P, Singh P, del Hoyo Ontiveros JA, Cordourier HA. Ensemble Of
Complementary Anomaly Detectors Under Domain Shifted Conditions. In: Proc Detection and Classifica-
tion of Acoustic Scenes and Events Workshop; 15-19 November 2021; Online; 2021. p. 11-5.

[21] Kuroyanagi I, Hayashi T, Adachi Y, Yoshimura T, Takeda K, Toda T. An Ensemble Approach to Anoma-
lous Sound Detection Based on Conformer-Based Autoencoder and Binary Classifier Incorporated with
Metric Learning. In: Proc Detection and Classification of Acoustic Scenes and Events Workshop; 15-19
November 2021; Online; 2021. p. 110-4.

[22] Sakamoto Y, Miyamoto N. Combine Mahalanobis Distance, Interpolation Auto Encoder and Classification
Approach for Anomaly Detection. DCASE2021 Challenge; Tech Rep; 2021.

[23] Morita K, Yano T, Tran K. Anomalous Sound Detection Using CNN-Based Features By Self Supervised
Learning. DCASE2021 Challenge; Tech Rep; 2021.

[24] Wilkinghoff K. Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection. In: Proc
International Joint Conference on Neural Networks; 18-22 July 2021; Shenzhen, China. IEEE; 2021. p.
1-8.

[25] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: Proc Conference on
Computer Vision and Pattern Recognition; 27-30 June 27-30 2016; Las Vegas, NV, USA. IEEE; 2016. p.
770-8.

[26] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A system for large-scale
machine learning. In: Proc 12th USENIX Symposium on Operating Systems Design and Implementation;
2-4 November 2016; Savannah, GA, USA; 2016. p. 265-83.

[27] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: Proc 3rd International Conference
on Learning Representations; 7-9 May 2015; San Diego, CA, USA; 2015. p. 1-15.

[28] Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. Mixup: Beyond empirical risk minimization. In: Proc
International Conference on Learning Representations; 30 April - 3 May 2018; Vancouver, BC, Canada;
2018. p. 1-13.

[29] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011;12:2825-30.

[30] Reimann C, Filzmoser P, Garrett RG. Background and threshold: critical comparison of methods of deter-
mination. Science of the total environment. 2005;346(1-3):1-16.

[31] Yang J, Rahardja S, Fränti P. Outlier detection: How to threshold outlier scores? In: Proc International
Conference on Artificial Intelligence, Information Processing and Cloud Computing; 19-21 December 2019;
Sanya, China. ACM; 2019. p. 37:1-37:6.

[32] Gao J, Tan P. Converting Output Scores from Outlier Detection Algorithms into Probability Estimates.
In: Proc 6th International Conference on Data Mining; 18-22 December 2006; Hong Kong, China. IEEE;
2006. p. 212-21.

[33] Gebel M. Multivariate calibration of classifier scores into the probability space [Ph.D. thesis]. University
of Dortmund; 2009.

[34] Rousseeuw PJ, Van Zomeren BC. Unmasking multivariate outliers and leverage points. Journal of the
American Statistical association. 1990;85(411):633-9.

[35] Filzmoser P. A multivariate outlier detection method. In: Proc 7th International Conference on Computer
Data Analysis and Modeling; Minsk, Belarus; 2004. p. 18-22.

[36] Clark J, Liu Z, Japkowicz N. Adaptive Threshold for Outlier Detection on Data Streams. In: Proc 5th
International Conference on Data Science and Advanced Analytics; 1-3 October 2018; Turin, Italy. IEEE;
2018. p. 41-9.

[37] Gökcesu K, Neyshabouri MM, Gökcesu H, Kozat SS. Sequential Outlier Detection Based on Incremental
Decision Trees. IEEE Trans Signal Process. 2019;67(4):993-1005.

[38] Zhang M, Li X, Wang L. An Adaptive Outlier Detection and Processing Approach Towards Time Series
Sensor Data. IEEE Access. 2019;7:175192-212.

[39] Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. Journal of the American Statistical
association. 1993;88(424):1273-83.

[40] Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the Support of a High-
Dimensional Distribution. Neural Comput. 2001;13(7):1443-71.

[41] Rosner B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics.
1983;25(2):165-72.

[42] Grubbs FE. Sample Criteria for Testing Outlying Observations. The Annals of Mathematical Statistics.
1950;21(1):27 58.

[43] Buzzi-Ferraris G, Manenti F. Outlier detection in large data sets. Computers & chemical engineering.
2011;35(2):388-90.

[44] Koizumi Y, Saito S, Uematsu H, Harada N, Imoto K. ToyADMOS: A Dataset of Miniature-Machine Op-
erating Sounds for Anomalous Sound Detection. In: Proc Workshop on Applications of Signal Processing
to Audio and Acoustics; October 20-23, 2019; New Paltz, NY, USA. IEEE; 2019. p. 313-7.

[45] Purohit H, Tanabe R, Ichige T, Endo T, Nikaido Y, Suefusa K, et al. MIMII Dataset: Sound Dataset for
Malfunctioning Industrial Machine Investigation and Inspection. In: Proc Detection and Classification of
Acoustic Scenes and Events Workshop; 25-26 October 2019; New York, NY, USA; 2019. p. 209-13.

[46] Mesaros A, Heittola T, Virtanen T. Acoustic Scene Classification in DCASE 2019 Challenge: Closed and
Open Set Classification and Data Mismatch Setups. In: Proc Workshop on Detection and Classification of
Acoustic Scenes and Events; 25-26 October 2019; New York, USA; 2019. p. 164-8.

[47] Shon S, Dehak N, Reynolds DA, Glass JR. MCE 2018: The 1st Multi-Target Speaker Detection and
Identification Challenge Evaluation. In: Proc 20th Annual Conference of the International Speech Commu-
nication Association; 15-19 September 2019; Graz, Austria. ISCA; 2019. p. 356-60.

A.1 key publications 163

a.1.4 Key publication 4

Kevin Wilkinghoff. “Design Choices for Learning Embeddings from Auxiliary
Tasks for Domain Generalization in Anomalous Sound Detection.” In: Interna-
tional Conference on Acoustics, Speech and Signal Processing. IEEE, 2023. doi:
10.1109/ICASSP49357.2023.10097176.
© 2023 IEEE.

https://doi.org/10.1109/ICASSP49357.2023.10097176

DESIGN CHOICES FOR LEARNING EMBEDDINGS FROM AUXILIARY TASKS FOR
DOMAIN GENERALIZATION IN ANOMALOUS SOUND DETECTION

Kevin Wilkinghoff

Fraunhofer FKIE, Fraunhoferstraße 20, 53343 Wachtberg, Germany
kevin.wilkinghoff@fkie.fraunhofer.de

ABSTRACT

Emitted machine sounds can change drastically due to a
change in settings of machines or varying noise conditions
resulting in false alarms when monitoring machine conditions
with a trained anomalous sound detection (ASD) system. In
this work, a conceptually simple state-of-the-art ASD system
based on embeddings learned through auxiliary tasks gener-
alizing to multiple data domains is presented. In experiments
conducted on the DCASE 2022 ASD dataset, particular de-
sign choices such as preventing trivial projections, combining
multiple input representations and choosing a suitable back-
end are shown to significantly improve the ASD performance.

Index Terms— anomalous sound detection, representa-
tion learning, domain generalization, machine listening

1. INTRODUCTION

Semi-supervised anomalous sound detection (ASD) for ma-
chine condition monitoring is the task of training an ASD sys-
tem to distinguish normal from anomalous machine sounds
using only normal training samples [1, 2]. To avoid the need
to repeatedly collect data and retrain the ASD system in case
acoustic conditions or machine attributes change, domain
generalization (DG) [3] techniques can be applied. For DG,
there are two data domains with somehow different acoustics:
a source domain with many training samples and a target do-
main with only a few training samples. The goal is to obtain
an ASD system that correctly detects anomalies regardless of
whether sounds belong to the source or target domain.

The most popular state-of-the-art approach for ASD is to
train a neural network to extract discriminative embeddings
through auxiliary tasks, also called outlier exposed ASD [4],
using angular margin losses such as ArcFace [5], AdaCos [6]
or sub-cluster AdaCos [7]. Examples of auxiliary tasks are
to discriminate between different machine types or among
other acoustic characteristics such as different machine set-
tings or noise conditions. The assumption is that the informa-
tion needed for correctly classifying the sounds is also suffi-
cient to detect anomalous sounds. In contrast to directly mod-
eling the distribution of the data (inlier modeling), e.g. by
using autoencoders, the model learns to ignore other sound

events and thus to handle noise more effectively whereas a
model trained on a single class cannot tell the difference be-
tween important and irrelevant components of the signal.

The main contributions of this work are the following:
First and foremost, a state-of-the-art ASD system with strong
domain generalization capabilities in machine condition mon-
itoring is presented1. The system is conceptually simple since
its architecture and all hyperparameter settings are the same
for each machine type and no external data resources are used
for training the system. Furthermore, in ablation studies sev-
eral design choices are shown to have a significant impact
on the performance in the source and target domain. These
design choices are 1) preventing trivial projections to hyper-
spheres, 2) combining multiple input feature representations
by jointly training sub-networks and 3) choosing a suitable
backend for generalizing to multiple data domains.

2. SYSTEM DESCRIPTION

An overview of the ASD system is shown in Fig. 1. The
system is an improved version of the one described in [8].

2.1. Frontend

The system uses two different feature representations derived
from raw waveforms of 10 seconds length and a sampling
rate of 16kHz as input. First, magnitude spectrograms with
a Hanning-windowed DFT length of 1024 and a hop size of
512. Second, magnitude spectra of entire signals are used to
have the highest possible frequency resolution for better cap-
turing stationary sounds. To reduce acoustic differences be-
tween source and target domains, sample-wise temporal mean
normalization similar to cepstral mean normalization [9] is
applied to the magnitude spectrograms.

2.2. Neural network architecture

The neural network for extracting the embeddings consists of
two different sub-networks for each input representation. To
capture as much information as possible, the entire network

1An open-source implementation of the proposed system is available at:
https://github.com/wilkinghoff/icassp2023

neural network: jointly trained to discriminate among
machine ids and different attribute information of all

machine types by minimizing the sub-cluster AdaCos loss

frontend backend

raw waveform
(160000)

compute
magnitude

spectrogram
(311 × 513)

apply tem-
poral mean

normalization
(311 × 513)

compute
magnitude
spectrum
(80000)

extract
embbeding
with neural
network for

spectrograms
(128)

extract
embbeding
with neural

network
for spectra

(128)

concatenate
embeddings

(256)
evaluate cosine
distances with
all samples of
target domain

(10)

evaluate cosine
distances

with means
(k-means) of

source domain
(16)

return min-
imum of

distances as
anomaly score

(1)

Fig. 1. Structure of the proposed anomalous sound detection system. Representation size in each step is given in brackets.

Table 1. Modified ResNet architecture for spectrograms.
layer name structure output size

input BN (temporal axis) 311× 513
2D convolution 7× 7, stride= 2 156× 257× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 77× 128× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 39× 64× 32

residual block
(
3× 3
3× 3

)
× 2, stride= 1 20× 32× 64

residual block
(
3× 3
3× 3

)
× 2, stride= 1 10× 16× 128

max pooling 10× 1, stride= 1 1× 16× 128
flatten BN 2056
dense (embedding) linear 128

is trained to discriminate between all machine types, sections
and different attribute information about the machines result-
ing in a total of 342 classes by minimizing the sub-cluster
AdaCos loss [7] with 16 sub-clusters for each class. In con-
trast to [10], where multiple networks and loss functions have
been used for different classification tasks, this training strat-
egy is much simpler. The sub-network used for the spectro-
grams is based on a modified ResNet architecture [11] as also
used in [7,8,10] and is described in Tab. 1. For the spectra, the
sub-network consists of three one-dimensional convolutions
and five dense layers as shown in Tab. 2. Note that improving
the results for the auxiliary task does not necessarily imply
a better ASD performance and thus adjusting the number of
layers and their parameter size is not critical for improving the
ASD capabilities. However, both sub-network architectures
are carefully designed to avoid learning trivial mappings to
hyperspheres for specific classes as done in networks for deep
one-class classification [12]. This means that 1) no bounded
non-linearities, 2) no bias terms and 3) no trainable hyper-
sphere centers are used. Instead, for 1) we only use rectified
linear units as non-linearities and for 3) we randomly initial-
ize the cluster centers of the sub-cluster AdaCos loss without
adapting them during training. A random initialization of the
cluster centers is not a problem, since embeddings and cluster
centers live in a relatively high-dimensional space and thus
are very likely to be pairwise orthogonal.

The output of both sub-networks, which can both be in-
terpreted as embeddings by themselves, are concatenated to
obtain a single embedding for each file. This concatenation

Table 2. Network architecture for spectra.
layer name structure output size

input - 80000
1D convolution 256, stride= 64 1250× 128
1D convolution 64, stride= 16 40× 128
1D convolution 16, stride= 4 10× 128
flatten - 1280
dense BN, ReLU 128
dense BN, ReLU 128
dense BN, ReLU 128
dense BN, ReLU 128
dense (embedding) linear 128

ensures that both networks capture all information needed to
discriminate between the classes present in their respective
feature representations. Therefore, the embeddings are more
sensitive to anomalous sounds than when giving the network
the freedom to utilize only a single feature representation (e.g.
by taking the sum) because specific anomalies may be appar-
ent in only one of the two input representations.

The entire network is implemented using Tensorflow [13]
and is trained for 10 epochs with a batch size of 64 using
Adam [14]. For data augmentation, only mixup [15] with a
uniformly distributed mixing coefficient is used.

2.3. Backend

To obtain an anomaly score for a test sample, for each do-
main a different strategy is applied. For the source domain,
k-means with 16 clusters is applied to the embeddings ob-
tained with all source samples and the cosine distance be-
tween the test embedding and all these means is calculated.
For the target domain, the cosine distance between the test
embedding and the embeddings of all target samples is calcu-
lated. Finally, the minimum over all distances is returned as
an anomaly score with higher scores indicating anomalies.

3. EXPERIMENTAL SETUP

For all experiments, the DCASE 2022 ASD dataset [2] was
used. This dataset consists of sounds from the machine types
“bearing”, “fan”, “gearbox”, “slider”, “valve” from MIMII
DG [16], and “ToyCar”, “ToyTrain” from ToyADMOS2 [17].
For each machine type, there are 6 different subsets of the

Table 3. Comparison between using or not using trainable
cluster centers and bias terms.

trainable cluster centers non-trainable cluster centers
dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

using bias terms

dev source 81.65± 0.85 70.25± 1.31 82.75± 0.95 75.22± 0.78
dev target 77.18± 0.88 62.05± 1.10 76.84± 1.39 61.66± 1.09
dev mixed 77.73± 0.90 64.09± 1.40 79.79± 0.50 64.89± 0.41

eval source 74.21± 1.14 62.84± 1.38 76.45± 0.71 65.12± 0.66
eval target 71.13± 1.24 59.54± 0.86 69.19± 0.56 59.08± 1.15
eval mixed 71.91± 0.98 58.84± 0.88 73.04± 0.58 59.18± 0.90

not using bias terms

dev source 82.88± 0.68 71.44± 0.96 84.19± 0.7584.19± 0.7584.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 77.68± 1.11 62.82± 1.1762.82± 1.1762.82± 1.17 78.51± 0.9078.51± 0.9078.51± 0.90 62.54± 0.87
dev mixed 78.15± 0.77 64.86± 0.52 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 74.34± 0.96 63.49± 0.38 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 71.30± 0.3371.30± 0.3371.30± 0.33 59.94± 0.8159.94± 0.8159.94± 0.81 69.80± 0.53 59.67± 1.14
eval mixed 72.15± 0.50 58.90± 0.42 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

dataset called sections, of which three belong to a develop-
ment set and the other three belong to an evaluation set, cor-
responding to different types of domain shifts. For each sec-
tion, there are 990 normal training samples belonging to the
source domain, 10 normal training samples belonging to a tar-
get domain and 200 test samples each belonging to one of the
domains. Furthermore, some attribute information defining
states of the machines or different types of noise are given for
training samples. All recordings include real factory noise,
have a length of 10 seconds and a sampling rate of 16 kHz.
For training the network, all machine types, sections and dif-
ferent attribute information about the machines belonging to
the development and evaluation set (in each case both do-
mains) are used as classes for the auxiliary task.

In each experiment, each system was trained five times
and the arithmetic mean and standard deviation of the har-
monic means of all AUCs and pAUCs obtained for all 42 ma-
chine ids are shown. Highest AUCs and pAUCs for each com-
bination of dataset and domain are highlighted in bold letters.

4. EXPERIMENTAL RESULTS

4.1. Preventing trivial projections to hyperspheres

In Tab. 3, the performance obtained with trainable and non-
trainable class centers, and when using or not using bias terms
are compared. Although non-trainable class centers decrease
the performance on the target domain, not using bias terms or
trainable class centers improves the overall performance.

4.2. Input feature representations

Next, different input feature representations and their com-
binations are compared. The results are shown in Tab. 4
and show that magnitude spectrograms perform better than
magnitude spectra and log-mel magnitude spectrograms with
128 mel bins. When combining a spectrogram with the full
spectrum, the performance is even better since the model also
has access to the whole frequency resolution instead of only
a time-frequency representation. Moreover, the best way to

Table 4. Comparison between different input feature repre-
sentations and ways of combining them.

individual input feature representations
magnitude spectrum log-mel magnitude spectrogram magnitude spectrogram

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%) AUC (%) pAUC (%)

dev source 80.75± 0.92 71.09± 1.14 70.91± 2.10 63.21± 1.10 79.18± 1.07 70.38± 0.43
dev target 73.95± 1.25 61.31± 1.40 65.78± 1.48 57.05± 0.76 76.59± 1.59 60.59± 1.50
dev mixed 76.81± 0.94 63.09± 1.23 68.93± 1.52 57.79± 0.55 77.60± 1.02 62.31± 1.10

eval source 68.42± 1.02 59.06± 0.89 67.59± 1.01 59.96± 0.65 74.65± 0.83 64.04± 1.23
eval target 63.46± 1.39 56.90± 0.95 62.09± 0.61 56.60± 0.79 69.67± 1.14 58.95± 0.74
eval mixed 66.00± 1.11 57.11± 0.58 65.04± 0.68 57.00± 0.50 72.10± 0.81 58.87± 0.33

combining magnitude spectrum and magnitude spectrograms
concatenate embeddings add embeddings concatenate embeddings

after training while training while training
dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%) AUC (%) pAUC (%)

dev source 84.68± 0.8684.68± 0.8684.68± 0.86 74.51± 0.26 83.12± 1.18 73.25± 1.11 84.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 78.78± 0.7878.78± 0.7878.78± 0.78 63.00± 0.3663.00± 0.3663.00± 0.36 77.96± 1.37 62.02± 1.11 78.51± 0.90 62.54± 0.87
dev mixed 81.17± 0.66 65.23± 0.39 80.21± 0.73 64.40± 1.20 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 75.27± 0.96 63.93± 0.63 75.54± 0.83 64.85± 0.73 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 69.31± 0.90 59.45± 0.67 69.71± 0.39 59.08± 1.15 69.80± 0.5369.80± 0.5369.80± 0.53 59.67± 1.1459.67± 1.1459.67± 1.14
eval mixed 72.18± 0.67 59.45± 0.46 72.48± 0.53 59.22± 0.66 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

Table 5. Effect of temporal normalization.
without temporal normalization with temporal normalization

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

magnitude spectrogram

dev source 79.93± 0.71 70.98± 1.38 79.18± 1.07 70.38± 0.43
dev target 76.18± 0.85 60.35± 1.23 76.59± 1.59 60.59± 1.50
dev mixed 77.69± 0.47 62.52± 1.09 77.60± 1.02 62.31± 1.10

eval source 75.53± 1.19 64.31± 1.08 74.65± 0.83 64.04± 1.23
eval target 69.52± 0.73 59.67± 0.7159.67± 0.7159.67± 0.71 69.67± 1.14 58.95± 0.74
eval mixed 72.19± 0.77 59.39± 0.91 72.10± 0.81 58.87± 0.33

magnitude spectrum + magnitude spectrogram

dev source 83.18± 1.68 74.66± 0.71 84.19± 0.7584.19± 0.7584.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 76.95± 0.97 62.26± 0.62 78.51± 0.9078.51± 0.9078.51± 0.90 62.54± 0.8762.54± 0.8762.54± 0.87
dev mixed 80.04± 0.76 64.84± 0.51 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 76.41± 0.48 65.39± 0.68 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 68.89± 0.96 59.46± 0.68 69.80± 0.5369.80± 0.5369.80± 0.53 59.67± 1.1459.67± 1.1459.67± 1.14
eval mixed 72.85± 0.61 59.91± 0.7559.91± 0.7559.91± 0.75 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.83

combine these representations is by concatenating the corre-
sponding embeddings while training.

In Tab. 5, the effect of using temporal normalization for
the magnitude spectrograms is investigated. It can be seen
that temporal normalization improves the performance on the
target domain as intended while slightly but not significantly
degrading the performance on the source domain when using
only magnitude spectrograms. But when combining spectra
and spectrograms, temporal normalization also improves the
performance on the source domain. The reason is that both
input representations complement each other more effectively
because stationary frequency information are removed from
the spectrograms but are clearly contained in the spectra.

4.3. Backends

In Tab. 6, different backends, namely cosine distance and a
GMM with 16 Gaussian components and a full covariance
matrix regularized by adding 10−3 to the diagonal (for more
details, see [8]), are compared. The following observations
can be made: As expected, specialized models for individual
domains perform better on the domain they are trained on and
much worse on the other domain. For the source domain,
the GMM model has a slightly higher performance than the
cosine similarity, which is consistent with the findings in [7].
For the target domain, both backends are equivalent.

Table 6. Comparison between different backends.
Gaussian mixture model (GMM) cosine distance

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

using scores from source domain model only

dev source 82.97± 0.97 77.36± 0.38 83.10± 1.02 76.87± 0.26
dev target 66.52± 0.42 59.63± 0.70 71.66± 1.25 61.45± 0.83
dev mixed 71.48± 0.26 58.86± 0.38 76.72± 0.78 63.37± 0.71

eval source 77.46± 1.16 66.73± 0.56 76.68± 0.85 66.25± 0.51
eval target 44.23± 3.67 54.87± 0.46 57.90± 1.17 55.62± 1.24
eval mixed 63.83± 0.62 55.74± 0.33 67.24± 0.70 56.83± 0.92

using scores from target domain model only

dev source 62.41± 2.80 60.54± 1.44 62.42± 2.80 60.55± 1.44
dev target 79.93± 0.9279.93± 0.9279.93± 0.92 62.19± 1.05 79.92± 0.9279.92± 0.9279.92± 0.92 62.18± 1.06
dev mixed 70.84± 1.13 58.36± 1.38 70.84± 1.13 58.36± 1.38

eval source 52.82± 3.40 56.27± 1.17 52.80± 3.41 52.26± 1.17
eval target 71.15± 0.5071.15± 0.5071.15± 0.50 60.72± 0.9560.72± 0.9560.72± 0.95 71.15± 0.5071.15± 0.5071.15± 0.50 60.72± 0.9560.72± 0.9560.72± 0.95
eval mixed 62.55± 0.79 54.66± 0.92 62.55± 0.79 54.65± 0.92

using sum of scores from both domain models

dev source 75.94± 2.70 70.34± 2.69 79.44± 1.95 73.29± 2.60
dev target 78.64± 1.12 63.28± 0.94 78.84± 1.23 62.67± 0.98
dev mixed 77.10± 1.59 65.12± 1.63 77.83± 1.56 66.11± 1.61

eval source 64.57± 1.35 60.96± 1.21 68.96± 1.11 63.09± 0.87
eval target 66.69± 0.54 58.73± 0.97 67.84± 0.48 58.80± 1.33
eval mixed 65.70± 0.91 57.26± 0.77 67.98± 0.64 58.12± 0.71

using scores from joint model for both domains

dev source 84.57± 0.7084.57± 0.7084.57± 0.70 77.57± 0.4177.57± 0.4177.57± 0.41 84.19± 0.75 76.45± 0.90
dev target 77.26± 1.02 63.12± 1.2463.12± 1.2463.12± 1.24 78.51± 0.90 62.54± 0.87
dev mixed 80.06± 0.35 64.67± 0.70 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 78.15± 0.9578.15± 0.9578.15± 0.95 67.55± 0.6367.55± 0.6367.55± 0.63 76.81± 0.79 65.84± 0.22
eval target 65.17± 0.48 58.59± 0.79 69.80± 0.53 59.67± 1.14
eval mixed 71.35± 0.53 59.32± 0.83 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

Table 7. Effect of the presented design choices.
standard design choices presented design choices

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

dev source 71.65± 1.07 62.71± 0.74 84.19± 0.7584.19± 0.7584.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 63.63± 1.11 55.28± 0.84 78.51± 0.9078.51± 0.9078.51± 0.90 62.54± 0.8762.54± 0.8762.54± 0.87
dev mixed 67.72± 0.79 55.94± 0.54 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 69.11± 1.05 58.46± 0.42 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 61.33± 0.70 54.82± 0.78 69.80± 0.5369.80± 0.5369.80± 0.53 59.67± 1.1459.67± 1.1459.67± 1.14
eval mixed 64.59± 0.74 55.22± 0.66 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

For domain generalization, it is necessary to use a single
decision threshold for both domains and thus a single ASD
score is required. It can be seen that training a joint model
has a significantly higher performance than adding the ASD
scores of individually trained models. However, for the target
domain the joint model is worse than a specialized model. For
the source domain, the joint GMM model has a better perfor-
mance than using cosine distance again and interestingly even
outperforms the specialized model. But when jointly evaluat-
ing both domains, using the cosine distance as a backend has
a higher performance than using a GMM. The most proba-
bly reason is that in contrast to a GMM the cosine distance
requires no training and thus the resulting ASD scores are
scaled more consistently among both domains.

4.4. Putting it all together

To show the strong impact of the design choices on the ASD
performance, we compared a system with standard design
choices to the presented ones. The standard design choices
are using log-mel magnitude spectrograms, trainable cluster
centers, bias terms, and GMMs as backend and are for exam-
ple used in the ASD system [10] ranked third in the DCASE
challenge 2021. The results are shown in Tab. 7. It can be

50

60

70

80

70
.9

74
6%

68
.2

23
1%

68
.0

37
3%

67
.9

79
2%

67
.6

23
6%

67
.5

65
3%

67
.1

22
4%

66
.8

25
1%

63
.9

48
6%

63
.8

31
3%

63
.7

24
4%

54
.0

17
2%

of
fic

ia
ls

co
re

in
pe

rc
en

t

rank 1 [18]
rank 2 [19]
rank 3 [20]
our system
rank 4 [21]
rank 5 [22]
rank 6 [23]
rank 7 [24]
rank 8 [25]
rank 9 [26]
rank 10 [8]
baseline [2]

Fig. 2. Comparison between presented, baseline and 10 top-
performing systems of the DCASE challenge 2022.

seen that the presented design choices led to a significant per-
formance improvement for all domains and dataset splits.

4.5. Comparison to other systems

Last, we compared the performance of our system (see Fig. 1)
to the baseline and 10 top-performing systems of the DCASE
challenge 2022. For these experiments, we trained the pre-
sented system five times and created an ensemble by adding
the corresponding anomaly scores. The results can be found
in Fig. 2. Our system would have obtained rank 4, perform-
ing close to the rank 3 system [20], and thus can be considered
state-of-the-art. Note that the rank 1 system [18] used manu-
ally customized band-pass filters for each machine type with-
out stating the details in the report and monitored the AUC
score on the development set while training to find the best
performing model parameters and thus also indirectly used
anomalous samples for training. Both do not allow a fair com-
parison between performances and are a possible explanation
for the large performance gap to all other systems.

5. CONCLUSIONS

In this work a conceptually simple ASD system based on
learning embeddings through auxiliary tasks for domain gen-
eralization was presented. In various experiments conducted
on the DCASE 2022 ASD dataset, it was shown that several
design choices, namely preventing trivial projections, utiliz-
ing multiple input feature representations and choosing a suit-
able backend, significantly improve the performance and that
the presented system achieves state-of-the-art performance.
For future work, it is planned to carry out additional exper-
iments to verify whether the presented design choices also
improve the performances when using other ASD systems.

6. REFERENCES

[1] Yohei Kawaguchi et al., “Description and discussion on
DCASE 2021 challenge task 2: Unsupervised anoma-
lous detection for machine condition monitoring under
domain shifted conditions,” in DCASE, 2021, pp. 186–
190.

[2] Kota Dohi et al., “Description and discussion on
DCASE 2022 challenge task 2: Unsupervised anoma-
lous sound detection for machine condition monitoring
applying domain generalization techniques,” in DCASE.
2022, pp. 26–30, Tampere University.

[3] Jindong Wang, Cuiling Lan, Chang Liu, Yidong
Ouyang, and Tao Qin, “Generalizing to unseen do-
mains: A survey on domain generalization,” in IJCAI.
2021, pp. 4627–4635, ijcai.org.

[4] Dan Hendrycks, Mantas Mazeika, and Thomas G. Diet-
terich, “Deep anomaly detection with outlier exposure,”
in ICLR. 2019, OpenReview.net.

[5] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou, “ArcFace: Additive angular margin loss for
deep face recognition,” in CVPR. 2019, pp. 4690–4699,
IEEE.

[6] Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and
Hongsheng Li, “AdaCos: Adaptively scaling cosine log-
its for effectively learning deep face representations,” in
CVPR. 2019, pp. 10823–10832, IEEE.

[7] Kevin Wilkinghoff, “Sub-cluster AdaCos: Learning
representations for anomalous sound detection,” in
IJCNN. 2021, IEEE.

[8] Kevin Wilkinghoff, “An outlier exposed anomalous
sound detection system for domain generalization in
machine condition monitoring,” Tech. Rep., DCASE
Challenge, 2022.

[9] Aaron E. Rosenberg, Chin-Hui Lee, and Frank K.
Soong, “Cepstral channel normalization techniques for
HMM-based speaker verification,” in ICSLP. 1994,
ISCA.

[10] Kevin Wilkinghoff, “Combining multiple distributions
based on sub-cluster AdaCos for anomalous sound de-
tection under domain shifted conditions,” in DCASE,
2021, pp. 55–59.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
CVPR. 2016, pp. 770–778, IEEE.

[12] Lukas Ruff et al., “Deep one-class classification,” in
ICML. 2018, vol. 80, pp. 4390–4399, PMLR.

[13] Martı́n Abadi et al., “Tensorflow: A system for large-
scale machine learning,” in OSDI, 2016, pp. 265–283.

[14] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” in ICLR, 2015.

[15] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz, “Mixup: Beyond empirical risk min-
imization,” in ICLR, 2018.

[16] Kota Dohi et al., “MIMII DG: Sound dataset for mal-
functioning industrial machine investigation and inspec-
tion for domain generalization task,” in DCASE. 2022,
pp. 31–35, Tampere University.

[17] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Ya-
sunori Ohishi, Masahiro Yasuda, and Shoichiro Saito,
“ToyADMOS2: Another dataset of miniature-machine
operating sounds for anomalous sound detection under
domain shift conditions,” in DCASE, 2021, pp. 1–5.

[18] Ying Zeng, Hongqing Liu, Lihua Xu, Yi Zhou, and
Lu Gan, “Robust anomaly sound detection framework
for machine condition monitoring,” Tech. Rep., DCASE
Challenge, 2022.

[19] Ibuki Kuroyanagi, Tomoki Hayashi, Kazuya Takeda,
and Tomoki Toda, “Two-stage anomalous sound de-
tection systems using domain generalization and spe-
cialization techniques,” Tech. Rep., DCASE Challenge,
2022.

[20] Feiyang Xiao et al., “The dcase2022 challenge
task 2 system: Anomalous sound detection with self-
supervised attribute classification and gmm-based clus-
tering,” Tech. Rep., DCASE Challenge, 2022.

[21] Yufeng Deng, Jia Liu, and Wei-Qiang Zhang, “Aithu
system for unsupervised anomalous detection of ma-
chine working status via sounding,” Tech. Rep., DCASE
Challenge, 2022.

[22] Satvik Venkatesh, Gordon Wichern, Aswin Subrama-
nian, and Jonathan Le Roux, “Disentangled surrogate
task learning for improved domain generalization in un-
supervised anomalous sound detection,” Tech. Rep.,
DCASE Challenge, 2022.

[23] Yuming Wei, Jian Guan, Haiyan Lan, and Wenwu
Wang, “Anomalous sound detection system with self-
challenge and metric evaluation for dcase2022 chal-
lenge task 2,” Tech. Rep., DCASE Challenge, 2022.

[24] Kazuki Morita, Tomohiko Yano, and Khai Tran, “Com-
parative experiments on spectrogram representation for
anomalous sound detection,” Tech. Rep., DCASE Chal-
lenge, 2022.

[25] Jisheng Bai, Yafei Jia, and Siwei Huang, “Jless submis-
sion to dcase2022 task2: Batch mixing strategy based
method with anomaly detector for anomalous sound de-
tection,” Tech. Rep., DCASE Challenge, 2022.

[26] Sergey Verbitskiy, Milana Shkhanukova, and Viacheslav
Vyshegorodtsev, “Unsupervised anomalous sound de-
tection using multiple time-frequency representations,”
Tech. Rep., DCASE Challenge, 2022.

A.1 key publications 169

a.1.5 Key publication 5

Kevin Wilkinghoff and Fabian Fritz. “On Using Pre-Trained Embeddings for De-
tecting Anomalous Sounds with Limited Training Data.” In: 31st European Signal
Processing Conference. IEEE, 2023, pp. 186–190. doi: 10.23919/EUSIPCO58844.
2023.10290003.
© 2023 IEEE (CC-BY license).
The co-author of this publication contributed in the following ways: Fabian Fritz
implemented wrapper functions for using the pre-trained embbedings.

https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.23919/EUSIPCO58844.2023.10290003

On Using Pre-Trained Embeddings for Detecting
Anomalous Sounds with Limited Training Data

Kevin Wilkinghoff , Fabian Fritz
Fraunhofer FKIE

Fraunhoferstraße 20, 53343 Wachtberg, Germany
{kevin.wilkinghoff, fabian.fritz}@fkie.fraunhofer.de

Abstract—Using embeddings pre-trained on large datasets
as input representations is a popular approach for classifying
audio data in case only a few training samples are available.
However, for anomalous sound detection pre-trained embeddings
usually perform worse than directly training a model because
subtle changes indicating anomalous data are not captured
sufficiently well. In this paper, the potential of using pre-trained
embeddings for detecting anomalous sounds with limited training
data is investigated. In experiments conducted on datasets for
anomalous sound detection with domain shifts and few-shot open-
set classification, it is shown that with increasing openness directly
training a model on the original data leads to better performance
than using pre-trained embbedings as input. Regardless of the
input representation, the presented system achieves a new state-
of-the-art performance for few-shot open-set classification in all
pre-defined openness settings and is made publicly available.

Index Terms—anomalous sound detection, domain generaliza-
tion, open-set classification, few-shot learning, transfer learning,
representation learning, machine listening

I. INTRODUCTION

Semi-supervised anomalous sound detection (ASD) is the
task of identifying anomalous sounds while only having access
to normal data when training a system. There are several
applications for ASD such as machine condition monitor-
ing for predictive maintenance. Many recent developments
have been promoted by the annual DCASE challenge [1]–
[3]. For acoustic open-set classification (OSC) problems [4]–
[6], normal and anomalous samples have to be distinguished
but normal samples also have to be correctly classified as
belonging to one of several known classes. Both tasks, ASD
and OSC, are especially challenging when only few training
samples are available. Examples are few-shot learning [7]
for OSC with only k training samples per class (k-shot
classification) [5] and ASD under domain shifts [8] between
an acoustic source domain with many training samples and a
target domain with only very few training samples [2], [3].

One possibility to overcome the difficulties imposed by
limited training data is to use embeddings extracted with a
neural network pre-trained on other very large datasets [9].
There are several ASD systems [10], [11] based on pre-trained
audio embeddings and studies comparing these embeddings
for ASD [12] or audio classification tasks [13] in settings
with sufficient training data. However, all these systems do
not achieve the same state-of-the-art performance as systems
directly trained on the data. For acoustic open-set classifica-
tion, the systems presented in [5], [14] use pre-trained audio

embeddings. Another approach is to use image embeddings
for ASD [15] or apply them for zero-shot audio classification
[16]. In [17], it is shown that combining multiple hidden
representations of pre-trained neural networks improves the
performance. Hence, there is a substantial interest in using pre-
trained embeddings for classifying audio data. Yet, evaluations
in ASD settings with limited training data, which intuitively
favor using pre-trained embeddings, are still missing. The goal
of this work is to fill this knowledge gap.

The contributions of this work are the following. First and
foremost, the ASD performance of using pre-trained audio
embeddings, namely VGGish [18], openL3 [19], PANN [20]
and Kumar [21] embeddings, are evaluated on the DCASE
2022 ASD dataset with domain shifts [3] and a few-shot OSC
dataset [5]. It is shown that only in closed-set classification
or with very few unknown classes these embeddings perform
better than a model directly trained on the data whereas for
more unknown classes the contrary is true even if only very
few training samples are available. In conclusion, directly
training a model on the data is a better approach for detect-
ing anomalous or unknown samples. Last but not least, the
proposed system1 achieves a new state-of-the-art performance
on the few-shot OSC dataset for any of the investigated input
representations.

II. PRE-TRAINED AUDIO EMBEDDINGS

For the experimental evaluations in this paper, four different
audio embeddings pre-trained on large datasets have been
used. These embeddings will now be briefly reviewed.

VGGish [18] is a modified version of the VGG network
[22] with a similar architecture. The network is pre-trained
in a supervised manner on a prelimary version of YouTube-
8M [23], which consists of 2.6 billion audio segments from
Youtube videos belonging to a total of 3628 classes. The
resulting embeddings have a feature dimension of 128 with
an additional time dimension resulting from a sliding window
of 960 ms with no overlap applied to the waveforms.

OpenL3 [19] is a network trained to extract Look, Listen,
and Learn (L3) embbedings [24], [25]. There are multiple
versions of the network: One is pre-trained on a music and the
other on an environmental subset of AudioSet [26] consisting

1An open-source implementation of the system is available at: https:
//github.com/wilkinghoff/few-shot-open-set-eusipco2023

2D CNN

1D CNN

Waveform

Spectrogram

Spectrum

concatenate
Embeddings

Fig. 1. Structure of the audio embedding model for direct training [28].

of 296K and 195K Youtube videos, respectively. The network
is trained in a self-supervised manner to check whether a video
frame and an audio clip with a length of one second do or do
not belong together using an audio and a video subnetwork.
After training, only the audio subnetwork is needed to extract
embeddings from audio data. The resulting embeddings have
a feature dimension of 512 with an additional time dimension
resulting from a sliding window of one second with a hop size
of 0.1 seconds applied to the waveforms.

PANN [20] is a combination of a one-dimensional sub-
network applied to waveforms (Wavegram-CNN) and a two-
dimensional subnetwork applied to log-mel spectrograms.
Both output representations are concatenated and further pro-
cessed with another two-dimensional subnetwork. The entire
network is pre-trained in a supervised manner on AudioSet
[26] using a total of 1, 934, 187 audio clips from Youtube
videos belonging to 527 sound classes. As the difference in
performance between including and not including Wavegram-
CNN is relatively small, we only used the subnetwork with
a VGG-like architecture pre-trained on log-mel spectrograms
(CNN14). The resulting embeddings have a feature dimension
of 2048 with no time dimension because of a global temporal
pooling operation inside the network.

Kumar embeddings [21] are extracted using a CNN with
a VGG-style architecture [22]. The network is pre-trained
in a supervised manner on the balanced subset of AudioSet
[26] that consists of around 22, 000 audio clips from Youtube
videos belonging to 527 sound classes. The resulting embed-
dings have a feature dimension of 1024 and no time dimension
because of a global temporal pooling operation inside the
network.

III. SYSTEM DESCRIPTIONS

Different input representations and datasets with different
tasks also require different models for further processing.
These models will be described in the following subsections.
All models are implemented using Tensorflow [27].

A. Anomalous sound detection systems

When directly training a model on the data, i.e. not us-
ing pre-trained embeddings, the state-of-the-art ASD system
described in [28] is used. This system utilizes two different
submodels that use magnitude spectrograms and magnitude

spectra as input representations and are jointly trained to
learn embeddings by discriminating among known classes
using the sub-cluster AdaCos (scAdaCos) loss [29] with 16
sub-clusters as depicted in Fig. 1. For data augmentation,
mixup [30] with a mixing coefficient drawn from a uniform
distribution is used. The model is trained for 10 epochs
using a batch size of 64 via adam [31]. After training the
model, disciminative embeddings are extracted and compared
to embeddings belonging to normal training data using cosine
similarity (CS). For the source domain, k-means with 16 mean
vectors is applied to obtain these normal embeddings and for
the target domain, which consists of much fewer samples than
the source domain, the embeddings belonging to the training
samples themselves are used. Throughout the network, no bias
terms and no trainable cluster centers are used as this has been
shown to improve the ASD performance. Additional details
about the system can be found in [28].

When using pre-trained audio embeddings as input repre-
sentations, the classification model of the system is replaced
with a shallow neural network for transfer learning, whose
architecture is very similar to the ones used in [5], [13],
[19]. More concretely, the network architecture consists of
three hidden layers with dimensions of 512, 128 and 128.
Prior to all other operations, all pre-trained embeddings are
standardized by using batch normalization as this significantly
improves the performance [19]. For the first two hidden layers
ReLU is used as an activation function and batch normalization
[32] is applied. The last layer does not have an activation
function because it serves as the embedding layer. Prior to the
last layer dropout [33] with a probability of 50% is applied.
Furthermore, mixup [30] with a mixing coefficient drawn from
a uniform distribution is applied to the input representations.
The network is trained for 100 epochs using a batchsize of 64
by minimizing the scAdaCos loss [29] with 16 sub-clusters
using adam [31]. Again, no bias terms or trainable cluster
centers are used throughout the network. For the openL3
embeddings, the network pre-trained on the environmental
subset has been used.

B. Few-shot open-set classification systems

For OSC, the same systems as used for ASD with only
minor modifications are used. This is reasonable because the
auxiliary task for training the ASD system is to discriminate
among the known classes, which, in addition to detecting
anomalies, is exactly the problem to be solved in OSC. All
following modifications are used for both models, the model
directly trained on the data and the model using pre-trained
embeddings as input representations. One modification is using
a single sub-cluster for each class because in a few-shot
setting only very few training samples are available for each
class. Another modification is using a decision threshold for
identifying anomalous samples because a threshold-dependent
evaluation metric is used for the experiments. A decision is
derived as follows. First, the CSs between the embeddings
of a test sample and the embeddings of all training samples
are computed. Then, the test sample is considered anomalous

if the most similar training sample is one of the known
unknown samples or if the highest CS is below a fixed decision
threshold. This decision threshold is set to 0.6, 0.65 and 0.75
for an openness of 0 (low), 0.04 (medium) and 0.09 (high),
respectively. Following [34], openness is defined as

1−
√

2 · Ctrain

Ctrain + Ctest
∈ [0, 1] (1)

where Ctrain, Ctest ∈ N denote the total number of classes
used for training and testing, respectively. Higher openness
values indicate less known or more unknown classes and a
value of 0 corresponds to a closed-set classification prob-
lem. Furthermore, each model is trained using 100 times
the number of shots available for training as the number of
epochs and a batch size equal to eight times the number of
shots. Using these adaptive hyperparameter settings depending
on the size of the training dataset results in a more stable
decision threshold across all openness and few-shot settings
and thus improves performance. For the openL3 embeddings,
the network pre-trained on the music subset has been used.

IV. EXPERIMENTAL RESULTS

A. Datasets

For the experimental evaluations in this paper, two different
datasets have been used. The first dataset is the DCASE
2022 ASD dataset [3] for domain generalization in machine
condition monitoring. The dataset consists of recordings of
machines with real factory background noise each having a
length of ten seconds and a sampling rate of 16 kHz, and is
split into a training set, a validation set and an evaluation set.
The training dataset consists of only normal recordings from
seven different machine types: “fan”, “gearbox”, “bearing”,
“slide rail”, “valve”, “ToyCar”, and “ToyTrain”. For each
machine type, there are six different sections with 990 normal
training data samples from the source domain and 10 samples
from the target domain with a specific, unknown domain shift
meaning that some acoustical characteristics differ for both
domains. In addition to these information, there are some
attribute information for each training sample that describe
the state of machines or noise. Three of the sections belong to
the validation set and the other three belong to the evaluation
set, each having 100 normal and 100 anomalous samples
belonging to the source domain and 100 normal and 100
anomalous samples belonging to the target domain. For none
of these test samples, additional information such as attribute
information or the domain they belong to are provided. The
performance metrics for this dataset are the area under the
receiver operating characteristic curve (AUC) and the partial
AUC (pAUC) [35], which is the AUC for a low false positive
rate ranging from 0 to 0.1 in this case. Both of these metrics
are evaluated for each combination of machine type and
section regardless of the domain, and the harmonic mean of
all derived performance metrics is used as the final result.

The second dataset is a few-shot OSC dataset [5] for acous-
tic alarm detection in domestic environments. The dataset
consists of 24 different alarm sounds and 10 unknown sounds,

TABLE I
HARMONIC MEANS OF AUCS OBTAINED WITH DIFFERENT WAYS TO

CONTRACT THE TEMPORAL DIMENSION OF MULTIPLE EMBEDDINGS. FOR
PANN AND KUMAR EMBEDDINGS, A SLIDING WINDOW OF 960 MS HAS

BEEN APPLIED TO OBTAIN A TIME DIMENSION.

dataset embeddings mean of embeddings mean of scores nativebefore training during training after training

dev set VGGish 65.78± 0.3765.78± 0.3765.78± 0.37 64.98± 0.25 58.47± 0.58 59.27± 0.58 not available
dev set OpenL3 70.94± 1.3670.94± 1.3670.94± 1.36 70.83± 0.93 59.85± 0.49 62.67± 1.36 not available
dev set PANN 64.80± 0.25 66.30± 0.5566.30± 0.5566.30± 0.55 59.66± 0.32 60.47± 0.17 64.21± 0.17
dev set Kumar 66.04± 0.7666.04± 0.7666.04± 0.76 65.85± 0.83 58.94± 1.00 62.22± 0.98 60.97± 0.52

eval set VGGish 64.69± 0.3464.69± 0.3464.69± 0.34 63.91± 0.73 58.30± 0.98 59.78± 0.53 not available
eval set OpenL3 69.06± 0.4269.06± 0.4269.06± 0.42 68.70± 0.94 62.44± 0.46 65.02± 1.04 not available
eval set PANN 63.55± 0.27 65.29± 0.3965.29± 0.3965.29± 0.39 58.57± 1.07 60.34± 0.62 63.33± 0.36
eval set Kumar 63.56± 0.59 64.05± 0.2764.05± 0.2764.05± 0.27 56.95± 0.86 61.04± 0.44 60.13± 0.24

namely “car horn”, “clapping”, “cough”, “door slam”, “en-
gine”, “keyboard tapping”, “music”, “pots and pans”, “steps”
and “water falling”. For each of these 34 sound classes, there
are 40 different samples with a duration of four seconds and
a sampling rate of 16 kHz. There are three different openness
[34] settings (“low”, “medium” and “high” where training
samples are provided for ten, five or none of the unknown
classes, thus corresponding to an openness of 0, 0.04 and 0.09,
respectively) and three different numbers of shots (one, two or
four) to be used when training the OSC system. For evaluation,
the dataset is divided into a different number of validation
folds, depending on the number of shots to be used, by using
cross-validation. When using one, two or four shots, 40, 20
or 10 validation folds are used, respectively. The performance
metric for this dataset is the weighted accuracy with a weight
of 0.5, which is the mean of the multiclass accuracy for
the known classes and the accuracy for the unknown classes
considering only the labels “known” and “unknown”.

Each experiment conducted in this paper is repeated five
times and the arithmetic mean and standard deviation are
determined as results. Highest values in each row of the tables
containing the results are highlighted in bold letters.

B. Anomaly detection in domain-shifted conditions

Some embedding models utilize a sliding window for audio
data of arbitrary length and thus consist of multiple em-
beddings, one for each window position. Therefore, multiple
ways of combining pre-trained embeddings belonging to a
single recording among the temporal axis are compared first.
The results are shown in Tab. I. In contrast to the results
obtained in [13], fusing the frame-wise embeddings before
or during training leads to significantly better results than
fusing the results after training when detecting anomalous
data. Furthermore, the fact that using a sliding window for
Kumar and PANN embeddings to artificially produce a time
dimension improves the performance, shows that temporal
structure of the original data needed to detect anomalies is
not captured sufficiently well in the pre-trained embeddings.

Next, the following backends for using pre-trained em-
beddings as input representations are compared: 1) length
normalization (LN) and a Gaussian mixture model (GMM),
2) principal component analysis (PCA), LN and a GMM, 3)
linear discriminant analysis (LDA), LN and a GMM, 4) a deep
neural network (DNN) with categorical cross-entropy (CXE),

LN and a GMM, 5) a DNN with scAdaCos, LN and a GMM,
and 6) a DNN with scAdaCos and cosine distance (CD). As
shown in Tab II, for both dataset splits and all embedding
types, using a shallow classifier as done in [5], [13], [19]
significantly improves the performance. Moreover, using the
scAdaCos loss function with CS performs best.

Last but not least, the results obtained with pre-trained em-
beddings are compared to directly training a model on the data
as done in [28]. The results can be found in Tab. III. It can be
seen that the directly trained model significantly outperforms
the shallow classifiers using pre-trained audio embeddings.
The most probable reason for this is that the pre-trained
embeddings are not designed to and thus do not preserve subtle
differences between normal and anomalous samples present in
the original data. Another reason is that the recordings are very
noisy, which is problematic for the embeddings that have not
been exposed to the same noise conditions when being trained
on the large datasets (see also [13]). A second observation to
be made is that openL3 embeddings perform better than all
other pre-trained embeddings, which all have a very similar
performance. The most likely reason for this is that these are
the only embeddings that are pre-trained in a self-supervised
rather than a supervised manner. This is also consistent with
the findings in [13].

C. Few-shot open-set classification

The experimental results obtained on the few-shot open-set
classification dataset can be found in Tab. IV. The first obser-
vation to be made is that regardless of the system, the more
shots are available for training and the lower the openness,
the higher the mean performance and the smaller the variance
gets. This is to be expected because more meaningful training
data should always improve the results especially in settings
with limited training data. Second, for all openness settings
and number of shots all proposed systems outperform both
baseline systems presented in [5] by a large margin and thus
achieve a new state-of-the-art performance. However, there
is a huge difference in performance between different input
representations. On average, VGGish embeddings perform
worst followed by PANN, OpenL3, Kumar and directly using
the data. But interestingly, the best performing input repre-
sentations have different strengths and weaknesses. OpenL3
embeddings perform best for low openness settings, which
is in fact a closed-set classification task. Again, the reason
could be that they are obtained by training in a self-supervised
rather than a supervised manner. Directly using the data for
training performs best in middle or high openness settings,
which in contrast to the low openness setting include a semi-
supervised ASD subtask. Kumar embeddings have a much
higher performance than the system not using any embeddings
in a high openness setting when using a single shot per class
but perform worse in all other cases. One possible explanation
could be the high variance for all performances in this training
setting. A last observation to be made is that using pre-trained
embeddings tends to be less severely effected when less shots
are available for training than when directly using the data to

train the system, which seems reasonable because this is the
point of using pre-trained embeddings.

V. CONCLUSIONS

In this work, using pre-trained embeddings for ASD with
limited training data has been investigated. In several exper-
iments conducted on the DCASE 2022 ASD dataset and a
recently published few-shot OSC dataset, it has been shown
that directly training a model leads to better ASD performance
than training a shallow classifier with pre-trained audio em-
beddings. On the OSC dataset, this effect was only evident
for middle and high openness settings and the performance
gap was not as great as for the ASD dataset. The most likely
explanation is that the ASD dataset is very noisy for which
pre-trained audio embeddings are known to perform worse
whereas the OSC dataset is clean. Moreover, although there
are only a few samples for each target domain, there are
many training samples belonging to the source domains of the
ASD dataset, which seem to provide enough information to
also learn meaningful representations of the data in the target
domains. The proposed system substantially improves upon
the baseline systems of the OSC dataset thus achieves a new
state-of-the-art performance and is made publicly available.

REFERENCES

[1] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tan-
abe, H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada,
“Description and discussion on DCASE2020 challenge task2: Unsuper-
vised anomalous sound detection for machine condition monitoring,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2020, pp. 81–85.

[2] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, D. Niizumi, K. Dohi,
R. Tanabe, H. Purohit, and T. Endo, “Description and discussion on
dcase 2021 challenge task 2: Unsupervised anomalous detection for
machine condition monitoring under domain shifted conditions,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2021, pp. 186–190.

[3] K. Dohi, K. Imoto, N. Harada, D. Niizumi, Y. Koizumi, T. Nishida,
H. Purohit, R. Tanabe, T. Endo, M. Yamamoto, and Y. Kawaguchi, “De-
scription and discussion on DCASE 2022 challenge task 2: Unsupervised
anomalous sound detection for machine condition monitoring applying
domain generalization techniques,” in 7th Workshop on Detection and
Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022.

[4] A. Mesaros, T. Heittola, and T. Virtanen, “Acoustic scene classification
in DCASE 2019 challenge: Closed and open set classification and
data mismatch setups,” in Workshop on Detection and Classification
of Acoustic Scenes and Events (DCASE), 2019, pp. 164–168.

[5] J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello, A. M. Torres, J. J.
Lopez, F. J. Ferri, and M. Cobos, “An open-set recognition and few-shot
learning dataset for audio event classification in domestic environments,”
Pattern Recognition Letters, 2022.

[6] S. Shon, N. Dehak, D. A. Reynolds, and J. R. Glass, “MCE 2018: The 1st
multi-target speaker detection and identification challenge evaluation,”
in 20th Annual Conference of the International Speech Communication
Association (Interspeech). ISCA, 2019, pp. 356–360.

[7] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,
no. 3, pp. 63:1–63:34, 2021.

[8] J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin, “Generalizing to unseen
domains: A survey on domain generalization,” in Thirtieth International
Joint Conference on Artificial Intelligence (IJCAI). ijcai.org, 2021, pp.
4627–4635.

[9] T. Reiss, N. Cohen, L. Bergman, and Y. Hoshen, “PANDA: adapting
pretrained features for anomaly detection and segmentation,” in Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Computer
Vision Foundation / IEEE, 2021, pp. 2806–2814.

TABLE II
HARMONIC MEANS OF AUCS FOR DIFFERENT BACKENDS AND CONSIDERED EMBEDDINGS.

dataset embedding LN+GMM PCA+LN+GMM LDA+LN+GMM DNN(CXE)
+LN+GMM

DNN(scAdaCos)
+LN+GMM

DNN(scAdaCos)
+CD

dev set VGGish 60.22± 0.25 60.25± 0.43 62.90± 0.13 65.40± 0.55 64.45± 0.60 65.78± 0.3765.78± 0.3765.78± 0.37
dev set OpenL3 66.82± 0.19 66.33± 0.12 64.66± 0.24 68.99± 0.61 67.83± 1.24 70.94± 1.3670.94± 1.3670.94± 1.36
dev set PANN 60.36± 0.09 61.48± 0.18 60.09± 0.45 63.82± 0.56 64.39± 0.75 66.30± 0.5566.30± 0.5566.30± 0.55
dev set Kumar 61.47± 0.26 61.92± 0.29 61.82± 0.26 64.08± 1.54 64.22± 0.63 65.85± 0.8365.85± 0.8365.85± 0.83

eval set VGGish 57.48± 0.36 57.47± 0.18 61.47± 0.20 63.77± 0.63 62.00± 1.26 64.69± 0.3464.69± 0.3464.69± 0.34
eval set OpenL3 63.76± 0.23 62.62± 0.22 64.65± 0.33 67.69± 0.89 67.18± 0.43 69.06± 0.4269.06± 0.4269.06± 0.42
eval set PANN 56.18± 0.13 60.08± 0.08 57.83± 1.01 61.63± 0.48 63.11± 0.48 65.29± 0.3965.29± 0.3965.29± 0.39
eval set Kumar 60.00± 0.12 60.56± 0.13 61.56± 0.27 63.42± 0.48 61.27± 0.30 64.05± 0.2764.05± 0.2764.05± 0.27

TABLE III
HARMONIC MEANS OF AUCS FOR DIFFERENT INPUT REPRESENTATIONS.

dataset VGGish OpenL3 PANN Kumar no embedding [28]

dev set 65.78± 0.37 70.94± 1.36 66.30± 0.55 65.85± 0.83 81.36± 0.6681.36± 0.6681.36± 0.66
eval set 64.69± 0.34 69.06± 0.42 65.29± 0.39 64.05± 0.27 73.43± 0.5473.43± 0.5473.43± 0.54

TABLE IV
WEIGHTED ACCURACIES OBTAINED WITH DIFFERENT SYTEMS AND INPUT

REPRESENTATIONS FOR VARIOUS OPENNESS SETTINGS AND NUMBER OF
SHOTS PER CLASS. FOR ALL PRE-TRAINED EMBEDDINGS, INDIVIDUAL
SETTINGS IDENTIFIED TO PERFORM BEST FOR ASD IN SEC. IV-B ARE

USED.

openness shots baselines [5] proposed system using different input representations
OpenL3 YAMNet VGGish OpenL3 PANN Kumar no embedding

low 1 56.8 80.1 90.0± 2.2 98.1± 1.098.1± 1.098.1± 1.0 95.6± 1.4 96.5± 1.3 97.4± 1.1
low 2 90.3 88.2 95.6± 1.6 99.6± 0.399.6± 0.399.6± 0.3 97.7± 0.8 98.5± 0.9 99.1± 0.7
low 4 97.2 94.9 98.4± 0.7 99.9± 0.199.9± 0.199.9± 0.1 98.9± 0.5 99.6± 0.4 99.7± 0.4

middle 1 74.1 78.3 88.7± 2.1 97.0± 2.397.0± 2.397.0± 2.3 94.9± 1.7 96.1± 1.6 96.8± 1.4
middle 2 86.7 85.6 93.4± 1.8 99.2± 0.699.2± 0.699.2± 0.6 95.7± 1.9 97.8± 1.3 98.7± 0.8
middle 4 91.3 91.9 96.2± 1.6 99.3± 0.5 97.8± 1.1 98.6± 1.3 99.8± 0.299.8± 0.299.8± 0.2

high 1 49.9 57.1 84.0± 2.6 88.8± 5.3 92.1± 2.6 94.8± 2.494.8± 2.494.8± 2.4 92.6± 4.5
high 2 58.3 61.1 87.8± 2.6 94.0± 3.2 92.9± 2.9 97.0± 1.7 97.5± 1.797.5± 1.797.5± 1.7
high 4 60.5 64.3 87.8± 2.5 96.1± 1.5 96.0± 2.1 98.4± 1.3 99.1± 1.199.1± 1.199.1± 1.1

arithmetic mean 73.9 77.9 91.3 96.9 95.7 97.5 97.997.997.9

[10] S. Grollmisch, D. Johnson, J. Abeßer, and H. Lukashevich, “IAEO3-
combining OpenL3 embeddings and interpolation autoencoder for
anomalous sound detection,” Tech. Rep., DCASE2020 Challenge, 2020.

[11] K. Wilkinghoff, “Using look, listen, and learn embeddings for detecting
anomalous sounds in machine condition monitoring,” in Detection and
Classification of Acoustic Scenes and Events Workshop (DCASE), 2020,
pp. 215–219.

[12] R. Müller, S. Illium, F. Ritz, and K. Schmid, “Analysis of feature rep-
resentations for anomalous sound detection,” in 13th International Con-
ference on Agents and Artificial Intelligence (ICAART). SCITEPRESS,
2021, pp. 97–106.

[13] S. Grollmisch, E. Cano, C. Kehling, and M. Taenzer, “Analyzing the
potential of pre-trained embeddings for audio classification tasks,” in
28th European Signal Processing Conference (EUSIPCO). IEEE, 2020,
pp. 790–794.

[14] K. Wilkinghoff, “On open-set classification with L3-net embeddings for
machine listening applications,” in 28th European Signal Processing
Conference (EUSIPCO). IEEE, 2020, pp. 800–804.

[15] R. Müller, F. Ritz, S. Illium, and C. Linnhoff-Popien, “Acoustic anomaly
detection for machine sounds based on image transfer learning,” in
13th International Conference on Agents and Artificial Intelligence
(ICAART). SCITEPRESS, 2021, pp. 49–56.

[16] D. Dogan, H. Xie, T. Heittola, and T. Virtanen, “Zero-shot audio classi-
fication using image embeddings,” in 30th European Signal Processing
Conference (EUSIPCO). IEEE, 2022, pp. 1–5.

[17] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino,
“Composing general audio representation by fusing multilayer features
of a pre-trained model,” in 30th European Signal Processing Conference
(EUSIPCO). IEEE, 2022, pp. 200–204.

[18] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. W. Wilson, “CNN architectures for large-scale audio

classification,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2017, pp. 131–135.

[19] A. Cramer, H. Wu, J. Salamon, and J. P. Bello, “Look, listen, and learn
more: Design choices for deep audio embeddings,” in International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 3852–3856.

[20] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,
“PANNs: Large-scale pretrained audio neural networks for audio pattern
recognition,” IEEE ACM Trans. Audio Speech Lang. Process., vol. 28,
pp. 2880–2894, 2020.

[21] A. Kumar, M. Khadkevich, and C. Fügen, “Knowledge transfer from
weakly labeled audio using convolutional neural network for sound
events and scenes,” in International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp. 326–330.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations (ICLR), 2015.

[23] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, and S. Vijayanarasimhan, “Youtube-8m: A large-scale
video classification benchmark,” CoRR, vol. abs/1609.08675, 2016.
[Online]. Available: http://arxiv.org/abs/1609.08675

[24] R. Arandjelovic and A. Zisserman, “Look, listen and learn,” in Interna-
tional Conference on Computer Vision (ICCV). IEEE Computer Society,
2017, pp. 609–617.

[25] ——, “Objects that sound,” in 15th European Conference on Computer
Vision (ECCV), ser. Lecture Notes in Computer Science, vol. 11205.
Springer, 2018, pp. 451–466.

[26] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp.
776–780.

[27] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016, pp. 265–283.

[28] K. Wilkinghoff, “Design choices for learning embeddings from auxiliary
tasks for domain generalization in anomalous sound detection,” in
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023.

[29] ——, “Sub-cluster AdaCos: Learning representations for anomalous
sound detection,” in International Joint Conference on Neural Networks
(IJCNN). IEEE, 2021.

[30] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup:
Beyond empirical risk minimization,” in 6th International Conference
on Learning Representations (ICLR), 2018.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations (ICLR),
2015.

[32] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” in 32nd International
Conference on Machine Learning (ICML), vol. 37, 2015, pp. 448–456.

[33] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” CoRR, vol. abs/1207.0580, 2012.

[34] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 7, pp. 1757–1772, 2013.

[35] D. K. McClish, “Analyzing a portion of the ROC curve,” Medical
decision making, vol. 9, no. 3, pp. 190–195, 1989.

A.1 key publications 175

a.1.6 Key publication 6

Kevin Wilkinghoff. “AdaProj: Adaptively Scaled Angular Margin Subspace Pro-
jections for Anomalous Sound Detection with Auxiliary Classification Tasks.” Sub-
mitted to 9th Workshop on Detection and Classification of Acoustic Scenes and
Events (DCASE), arXiv:2403.14179. 2024. doi: 10.48550/arXiv.2403.14179.
© 2024 Kevin Wilkinghoff.

https://doi.org/10.48550/arXiv.2403.14179

AdaProj: Adaptively Scaled Angular Margin
Subspace Projections for Anomalous Sound

Detection with Auxiliary Classification Tasks
Kevin Wilkinghoff

Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE
Fraunhoferstraße 20, 53343 Wachtberg, Germany

kevin.wilkinghoff@ieee.org

Abstract—One of the state-of-the-art approaches for semi-
supervised anomaly detection is to first learn an embedding
space and then estimate the distribution of normal data. This
can be done by using one-class losses or by using auxiliary
classification tasks based on meta information or self-supervised
learning. Angular margin losses are a popular training objective
because they increase intra-class similarity and avoid learning
trivial solutions by reducing inter-class similarity. In this work,
AdaProj a novel loss function that generalizes upon angular
margin losses is presented. In contrast to angular margin losses,
which project data of each class as close as possible to their
corresponding class centers, AdaProj learns to project data onto
class-specific subspaces. By doing so, the resulting distributions
of embeddings belonging to normal data are not required to be as
restrictive as other loss functions allowing a more detailed view
on the data. This enables a system to more accurately detect
anomalous samples during testing. In experiments conducted on
the DCASE2022 and DCASE2023 datasets, it is shown that using
AdaProj to learn an embedding space significantly outperforms
other commonly used loss functions achieving a new state-of-the-
art performance on the DCASE2023 dataset.

Index Terms—machine listening, anomaly detection, represen-
tation learning, angular margin loss, domain generalization

I. INTRODUCTION

Semi-supervised anomaly detection is the task of training a
system to differentiate between normal and anomalous data
using only normal training samples [1]. For many appli-
cations, it is much less costly to collect normal data than
anomalous samples for training a system because anomalies
occur only rarely and intentionally generating them is often
costly. Therefore, for these applications a semi-supervised
anomaly detection setting is often a realistic assumption. An
example application is acoustic machine condition monitoring
for predictive maintenance, which is largely promoted through
the anomalous sound detection (ASD) tasks of the annual
DCASE Challenge [2]–[5] and will serve as the running
example in this work. Here, normal data corresponds to sounds
of fully functioning machines whereas anomalous sounds in-
dicate mechanical failure. The goal is to develop a system that
detects anomalous recordings using only normal recordings as
training data.

One of the main difficulties to overcome is that it is
practically impossible to record isolated sounds of a target
machine. Instead, recordings also contain many other sounds

emitted by non-target machines or humans. Compared to this
complex acoustic scene, anomalous signal components of the
target machines are very subtle and hard to detect without
utilizing additional knowledge. Another main difficulty is that
a system should also be able to reliably detect anomalous
sounds when changing the acoustic conditions or machine
settings without needing to collect large amounts of data in
this changed conditions or to re-train the system (domain
generalization [6]). One possibility to simultaneously over-
come both difficulties is to learn mapping audio signals into
a fixed-dimensional vector space, in which representations
belonging to normal and anomalous data, called embeddings,
can be easily separated. Then, by estimating the distribution
in the embedding space of normal training samples, one can
compute an anomaly score for an unseen test sample by
computing the likelihood of this sample being normal or
simply measuring the distance to normal samples. To train
such an embedding model, the state-of-the-art is to utilize an
auxiliary classification task using provided meta information
or self-supervised learning. This enables the embedding model
to closely monitor target signals and ignore other signals
and noise [7]. For machine condition monitoring, possible
auxiliary tasks are classifying between machine types [8]–[10]
or, additionally, between different machine states and noise
settings [11]–[13], recognizing augmented and non-augmented
versions of normal data [8], [14] or predicting the activity of
machines [12]. Using an auxiliary task to learn embeddings is
also called outlier exposure (OE) [15] because normal samples
belonging to other classes than a target class can be considered
proxy outliers [16].

The contributions of this work are the following. First
and foremost, AdaProj, a novel angular margin loss function
that learns class-specific subspaces for training an embedding
model, is presented. Second, it is proven that AdaProj has
arbitrarily large optimal solution spaces allowing to relax the
compactness requirements of the class-specific distributions in
the embedding space. Last but not least, AdaProj is compared
to other commonly used loss functions. In experiments con-
ducted on the DCASE2022 and DCASE2023 ASD datasets it
is shown that AdaProj outperforms all other loss functions. As
a result, a new state-of-the-art performance is achieved on the

DCASE2023 dataset1.

A. Related Work

When training a neural network to solve a classification
task, usually the softmax function in combination with the
categorical cross-entropy (CCE) is used. However, directly
training a network this way only reduces inter-class similarity
without explicitly increasing intra-class similarity [17]. When
training an embedding model for anomaly detection, high
intra-class similarity is a desired property to cluster normal
data and be able to detect anomalous samples. To address
this issue, losses should also explicitly increase intra-class
similarity.

There are several loss functions to achieve this. [18] pro-
posed a compactness loss to project the data into a hypersphere
of minimal volume for one-class classification. However, for
machine condition monitoring in noisy conditions it is known
that one-class losses perform worse than losses that also
discriminatively solve an auxiliary classification task [7]. [19]
did this by simultaneously using a so-called descriptiveness
loss consisting of a CCE on another arbitrary dataset than
the target dataset, to be able to learn a better structured
embedding space in case no meta information are available
on the target dataset. For machine condition monitoring, often
meta information is available as it can at least be ensured
which machine is being recorded when collecting data. [10]
used center loss [20], which minimizes the distance to learned
class centers for each class. Another choice are angular margin
losses that learn an embedding space on the unit sphere
while ensuring a margin between classes leading to better
generalization capabilities than losses that utilize the whole
Euclidean space. Specific examples are the additive margin
softmax loss [17] as used by [9], [21] and ArcFace [22] as
used by [8], [13], [23]. [24], [25] use the AdaCos loss [26],
which essentially is ArcFace with an adaptive scale parameter,
or the sub-cluster AdaCos loss [27], which utilizes multiple
sub-clusters instead of a single one.

As stated above, the goal of this work is to further extend
these loss functions to learning class-specific linear subspaces
to relax the compactness requirements and allow more flexi-
bility for the network when learning to map audio data into an
embedding space. There are also other works utilizing losses
to learn subspaces based on orthogonal projections to learn
embedding spaces for other applications in different ways.
[28] used orthogonal projections as a constraint for training
an autoencoder based anomaly detection system. Another
example is semi-supervised image classification by using a
combination of class-specific subspace projections with a
reconstructions loss and ensure that they are different by also
using a discriminative loss [29]. Our work focuses on learning
an embedding space through an auxiliary classification task
that is well-suited for semi-supervised anomaly detection.

1The source code will be made available after the review process to not
reveal the identity of the authors.

II. METHODOLOGY

A. Notation

Let ϕ : X → RD denote a neural network where X denotes
some input space, which consists of audio signals in this
work, and D ∈ N denotes the dimension of the embedding
space. Define the linear projection of x ∈ RD onto the sub-
space span(Ck) ⊂ RD as Pspan(Ck)(x) :=

∑
ck∈Ck

⟨x, ck⟩ck.
Furthermore, let SD−1 = {y ∈ RD : ∥y∥2 = 1} ⊂ RD denote
the D-sphere and define PSD−1(x) := x

∥x∥2
∈ SD−1 to be the

projection onto the D-sphere.

B. AdaProj loss function

Similar to the sub-cluster AdaCos loss [27], the idea of the
AdaProj loss is to enlarge the space of optimal solutions to
allow the network to learn less restrictive distributions of the
normal samples. This may help to differentiate between normal
and anomalous data after training. The reason is that for some
auxiliary classes a strong compactness may be detrimental
when aiming to learn an embedding space that separates nor-
mal and anomalous data since both may be mapped onto the
same compact distribution making it impossible to distinguish
them. This relaxation is achieved by measuring the distance to
class-specific subspaces while training the embedding model
instead of measuring the distance to a single or multiple
centers as done for other angular margin losses.

Formally, the definition of the AdaProj loss is as follows.

Definition 1 (AdaProj loss). Let Ck ⊂ RD with |Ck| = J ∈ N
denote class centers for class k ∈ {1, ..., Nclasses}. Then for the
AdaProj loss the logit for class k ∈ {1, ..., Nclasses} is defined
as

L(x, Ck) := ŝ · ∥PSD−1(x)− PSD−1(Pspan(Ck)(x))∥22
where ŝ ∈ R+ is the so-called dynamically adaptive scale
parameter of the AdaCos loss [26]. Inserting these logits into
a softmax function and computing the CCE yields the AdaProj
loss function.

Remark. Note that, by Lemma 5 of [7], it holds that

∥PSD−1(x)− PSD−1(Pspan(Ck)(x))∥22
=2(1− ⟨PSD−1(x), PSD−1(Pspan(Ck)(x))⟩),

which is equal to the cosine distance in this case. This explains
why the AdaProj loss can be called an angular margin loss.

As for other angular margin losses, projecting the em-
bedding space onto the D-sphere has several advantages
[7]. Most importantly, if D is sufficiently large randomly
initialized centers are with very high probability approximately
orthonormal to each other [30], i.e. distributed equidistantly,
and sufficiently far away from 000 ∈ RD. Therefore, one
does not need to carefully design a method to initialize the
centers. Another advantage is that a normalization may prevent
numerical issues, similar to applying batch normalization [31].

The following Lemma shows that using the AdaProj loss,
as defined above, indeed allows the network to utilize a larger
solution space.

Lemma 2. Let x ∈ RD and let C ⊂ RD contain pairwise
orthonormal elements. If x ∈ span(C) ∩ SD−1, then

∥PSD−1(x)− PSD−1(Pspan(C)(x))∥22 = 0.

Proof. Let x ∈ span(C) ∩ SD−1 ⊂ RD with |C| = J . There-
fore, ∥x∥2 = 1 and there are λj ∈ R with x =

∑J
j=1 λjcj .

Thus, it holds that

x =
J∑

j=1

λjcj =
J∑

j=1

J∑

i=1

λi⟨ci, cj⟩cj =
J∑

j=1

⟨
J∑

i=1

λici, cj⟩cj

=
J∑

j=1

⟨x, cj⟩cj = Pspan(C)(x).

Hence, we obtain

∥PSD−1(x)− PSD−1(Pspan(C)(x))∥22 = 0.

Remark. If C contains randomly initialized elements of the unit
sphere and D is sufficiently large, then the elements of C are
approximately pairwise orthonormal with very high probability
[30]. Hence, this Lemma is likely to hold for the AdaProj loss.

When inserting the projection onto the D − 1-sphere as an
operation into the neural network, this Lemma shows that the
solution space for the AdaProj loss function is increased to the
whole subspace span(C), which has a dimension of |C| with
very high probability. Because of this, it should be ensured
that |C| < D. Otherwise the whole embedding space may
be an optimal solution and thus the network cannot learn a
meaningful embedding space. In comparison, for the AdaCos
loss only the class centers themselves are optimal solutions
and for the sub-cluster AdaCos loss each sub-cluster is an
optimal solution [7].

III. EXPERIMENTAL RESULTS

To experimentally evaluate the proposed AdaProj loss, first
the experimental setup is presented by describing the datasets
and the ASD system. After that, experimental results regarding
the performance obtained with different loss functions, the
impact of the subspace dimension and the relation to state-
of-the-art systems are presented and discussed.

A. Datasets and performance metrics

For the experiments, two ASD datasets, namely the
DCASE2022 ASD dataset [4] and the DCASE2023 ASD
dataset [5] for semi-supervised machine condition monitoring,
were used. Both datasets consist of a development set and an
evaluation set that are divided into a training split containing
only normal data and a test split containing normal as well
as anomalous data. Furthermore, both tasks explicitly capture
the problem of domain generalization [6] by defining a source
and a target domain, which differs from the source domain
by altering machine parameters or noise conditions. The task
is to detect anomalous samples regardless of the domain a
sample belongs to by training a system with only normal
data. As meta information, the target machine type of each

sample is known and for the training samples, also the domain
and additional parameter settings or noise conditions, called
attribute information, are known and thus can be utilized to
train an embedding model.

The DCASE2022 ASD dataset [4] consists of the machine
types “ToyCar” and “ToyTrain” from ToyAdmos2 [32] and
“fan”, “gearbox”, “bearing”, “slide rail” and “valve” from
MIMII-DG [33]. For each machine type, there are six different
so-called sections, indicating different machine IDs of these
types of which three belong to the development set and three
belong to the test set. These IDs are known for each recording
and can also be utilized as meta information to train the
system. For the source domain of each section, there are
1000 normal audio recordings with a duration of 10 s with
a sampling rate of 16 kHz belonging to the training split
and 50 normal and 50 anomalous samples belonging to the
test split. For the target domain of each section, there are
also approximately 50 normal and 50 anomalous samples
belonging to the test split but only 10 normal audio recordings
belonging to the training split.

The DCASE2023 ASD dataset [5] is similar to the
DCASE2022 ASD dataset with the following modifications.
First of all, the development set and the evaluation set
contain mutually exclusive machine types. More concretely,
the development set contains the same machine types as
the DCASE2022 dataset and the evaluation set contains
the machine types “ToyTank”, “ToyNscale” and “ToyDrone”
fromToyAdmos2+ [34] and “vacuum”, “bandsaw”, “grinder”
and “shaker” from MIMII-DG [33]. Furthermore, there is
only a single section for each machine type, which makes
the auxiliary classification task much easier resulting in less
informative embeddings for the ASD task. Last but not least,
the duration of each recording has a length between 6 s and
18 s. Overall, all three modifications make this task much more
challenging than the DCASE2022 ASD task.

To measure the performance of the ASD systems the
threshold-independent area under the receiver operating char-
acteristic (ROC) curve (AUC) metric is used. In addition, the
partial area under the ROC curve (pAUC) [35], which is the
AUC for low false positive rates ranging from 0 to p = 0.1
in this case, is used. The reason for incorporating the pAUC
is that, for machine condition monitoring, one is interested
in ensuring a low false alarm rate to not lose the trust of
users in taking alarms seriously. Both performance metrics are
computed domain-independent for every previously defined
section of the dataset and the harmonic mean of all resulting
values is the final score used to measure and compare the
performances of different ASD systems.

B. Anomalous sound detection system

For all experiments conducted in this work, the state-of-the-
art ASD system presented in [25] is used. An overview of the
system can be found in Figure 1. The system consists of three
main components: 1) a feature extractor, 2) an embedding
model and 3) a backend for computing anomaly scores.

embedding model: jointly trained to discriminate
between machine types and attribute information

input feature representations
computing anomaly scores using only the normal

samples of the same machine type as the test samples

raw waveform
(288000)

compute magnitude
spectrogram
(561 × 513)

apply temporal
mean normalization

(561 × 513)

compute magnitude
spectrum
(144000)

extract embbeding
with neural network

for spectrograms
(256)

extract embbeding
with neural

network for spectra
(256)

concatenate
and normalize
embeddings

(512) evaluate cosine
distances with
all samples of
target domain

(10)

evaluate cosine
distances with

means (k-Means)
of source domain

(32) return minimum
of distances as
anomaly score

(1)

Fig. 1. Structure of the ASD system, adapted from Figure 1 in [36]. Representation size in each step is given in brackets.

In the first processing block, two different feature rep-
resentations are extracted from the raw waveforms, namely
magnitude spectrograms and the full magnitude spectrum. To
make both feature representations a bit more different the
temporal mean is subtracted from the magnitude spectrograms,
essentially removing static frequency information that are
captured with the highest possible resolution in the magnitude
spectrums. Utilizing both of these representations was shown
to significantly improve the performance [25] despite their
close relation.

For each of the two feature representations, another con-
volutional subnetwork is trained and the resulting embeddings
are concatenated and normalized with respect to the Euclidean
norm to obtain a single embedding. In contrast to the original
architecture, the embedding dimension is doubled from 256
to 512. More details about the subnetwork architectures can
be found in [25]. The network is trained for 10 epochs
using a batch size of 64 using adam [37] by utilizing meta
information such as machine types and the provided attribute
information as an auxiliary classification task. Different loss
functions can be used for this purpose and will be compared
in the next subsection. All loss functions investigated in this
work require class-specific center vectors, which are initialized
randomly using Glorot uniform intialization [38]. To improve
the resulting ASD performance, the randomly initialized class
centers are not adapted during training and no bias terms are
used as proposed in [18] for deep one-class classification.
Furthermore, mixup [39] with a uniformly distributed mixing
coefficient is applied to the waveforms.

As a backend, k-means with 32 means is applied to the
normal training samples of the source domain. For a given
test sample, the smallest cosine distance to these means and
the ten normal training samples of the target domain is used
as an anomaly score. Thus, smaller values indicate normal
samples whereas higher values indicate anomalous samples.

C. Performance evaluation

The first and most important experiment is to compare
different loss functions for training the embedding extractor of
the ASD system presented in the previous subsection. For this
purpose, we used 1) individual class-specific IC compactness
losses jointly trained on all classes, as proposed for one-
class classification in [18], 2) an additional discriminative

CCE loss, similar to the descriptiveness loss used in [19]
but trained on the same dataset, 3) the AdaCos loss [26],
4) the sub-cluster AdaCos loss [27] with 32 sub-clusters
and 5) the proposed AdaProj loss. The experiments were
conducted on the development and evaluation split of the
DCASE2022 and the DCASE2023 ASD dataset and each
experiment was repeated ten times to reduce the variance of the
resulting performances. Furthermore, the arithmetic means of
the performances obtained on the different datasets are shown
to be able to directly compare the overall performance. The
results can be found in Table I.

The main observation to be made is that the proposed
AdaProj loss clearly outperforms all other losses on both
datasets. Especially on the DCASE2023 dataset, there are
significant improvements to be observed. The most likely
explanation is that for this dataset the classification task is
less difficult and thus a few classes may be easily identified
leading to embeddings that do not carry enough information
to distinguish between embeddings belonging to normal and
anomalous samples of these classes.

Another interesting observation is that, in contrast to the
original results presented in [27], the sub-cluster AdaCos loss
actually performs slightly worse than the AdaCos loss despite
having a higher solution space. A possible explanation is that
in [27], the centers are adapted during training whereas, in
our work, they are not as this has been shown to improve
the resulting performance [25]. Since all centers have approx-
imately the same distance to each other when being randomly
initialized, i.e. the centers belonging to a target class and the
other centers, the network will likely utilize only a single
center for each class that is closest to the initial embeddings
of the corresponding target class. Moreover, a low inter-
class similarity is more difficult to ensure due to the higher
total number of sub-clusters belonging to other classes. This
leads to more restrictive requirements when learning class-
specific distributions and thus actually reduces the ability to
differentiate between embeddings belonging to normal and
anomalous samples.

D. Investigating the impact of the subspace dimension on the
performance

As an ablation study, different choices for the dimension
of the subspaces have been compared experimentally on the

TABLE I
ASD PERFORMANCE OBTAINED WITH DIFFERENT LOSS FUNCTIONS. HARMONIC MEANS OF ALL AUCS AND PAUCS OVER ALL PRE-DEFINED SECTIONS
OF THE DATASET ARE DEPICTED IN PERCENT. ARITHMETIC MEAN AND STANDARD DEVIATION OF THE RESULTS OVER TEN INDEPENDENT TRIALS ARE

SHOWN. BEST RESULTS IN EACH COLUMN ARE HIGHLIGHTED WITH BOLD LETTERS.

DCASE2022 development set [4]

loss function source domain target domain domain-independent
AUC pAUC AUC pAUC AUC pAUC

intra-class (IC) compactness loss [18] 81.8± 1.6 74.9± 1.7 75.3± 1.0 63.4± 0.663.4± 0.663.4± 0.6 79.2± 0.9 64.7± 1.1
IC compactness loss + CCE [19] 82.5± 1.8 75.5± 0.9 75.5± 0.7 61.6± 0.9 79.0± 0.8 65.0± 0.7
AdaCos loss [26] 82.6± 1.4 76.0± 1.1 76.5± 1.2 62.3± 1.4 79.8± 0.7 65.5± 0.965.5± 0.965.5± 0.9
sub-cluster AdaCos loss [27] 83.2± 2.1 75.9± 1.3 77.6± 1.077.6± 1.077.6± 1.0 62.1± 1.5 80.0± 1.4 65.2± 1.1
proposed AdaProj loss 84.3± 1.184.3± 1.184.3± 1.1 76.3± 1.176.3± 1.176.3± 1.1 77.2± 1.2 62.2± 1.1 80.6± 0.880.6± 0.880.6± 0.8 65.5± 1.365.5± 1.365.5± 1.3

DCASE2022 evaluation set [4]

loss function source domain target domain domain-independent
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss [18] 74.7± 0.9 64.2± 1.3 65.9± 0.8 57.8± 0.9 70.3± 0.8 58.9± 0.8
IC compactness loss + CCE [19] 75.6± 0.7 66.9± 0.8 69.3± 0.7 59.3± 0.7 72.6± 0.4 60.3± 0.7
AdaCos loss [26] 77.2± 0.5 65.9± 1.4 68.6± 1.1 58.6± 0.7 73.0± 0.4 59.7± 0.6
sub-cluster AdaCos loss [27] 77.0± 0.7 66.5± 0.9 68.3± 0.8 58.8± 0.6 72.9± 0.6 59.5± 0.5
proposed AdaProj loss 77.4± 1.077.4± 1.077.4± 1.0 67.0± 0.667.0± 0.667.0± 0.6 69.7± 0.669.7± 0.669.7± 0.6 59.6± 0.659.6± 0.659.6± 0.6 73.6± 0.773.6± 0.773.6± 0.7 60.5± 0.760.5± 0.760.5± 0.7

DCASE2023 development set [5]

loss source domain target domain domain-independent
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss [18] 67.0± 2.1 62.4± 1.0 69.1± 1.4 56.4± 1.156.4± 1.156.4± 1.1 67.7± 1.2 56.9± 0.9
IC compactness loss + CCE [19] 70.6± 1.8 64.1± 1.8 71.2± 1.4 55.5± 1.6 70.4± 1.0 57.4± 1.157.4± 1.157.4± 1.1
AdaCos loss [26] 70.7± 1.370.7± 1.370.7± 1.3 64.3± 1.164.3± 1.164.3± 1.1 71.2± 1.1 55.4± 1.3 70.9± 0.9 56.8± 0.9
sub-cluster AdaCos loss [27] 68.3± 1.7 62.0± 1.5 71.8± 1.5 55.6± 1.5 70.4± 0.9 56.3± 0.8
proposed AdaProj loss 70.3± 1.7 61.8± 1.6 72.2± 1.472.2± 1.472.2± 1.4 55.1± 1.1 71.4± 1.071.4± 1.071.4± 1.0 56.2± 0.7

DCASE2023 evaluation set [5]

loss source domain target domain domain-independent
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss [18] 73.5± 1.8 63.4± 1.8 58.8± 2.5 55.7± 1.3 64.0± 1.5 55.8± 0.9
IC compactness loss + CCE [19] 74.3± 1.5 64.0± 1.664.0± 1.664.0± 1.6 61.6± 2.0 55.7± 0.9 67.5± 0.8 57.5± 1.0
AdaCos loss [26] 74.7± 1.574.7± 1.574.7± 1.5 63.8± 1.8 61.6± 3.4 57.1± 1.4 68.0± 1.6 58.0± 1.1
sub-cluster AdaCos loss [27] 73.2± 1.9 61.6± 1.4 62.0± 2.2 55.8± 1.3 66.5± 1.6 56.2± 1.0
proposed AdaProj loss 74.2± 1.8 62.9± 1.0 64.4± 2.064.4± 2.064.4± 2.0 57.7± 0.857.7± 0.857.7± 0.8 69.8± 1.369.8± 1.369.8± 1.3 60.0± 0.560.0± 0.560.0± 0.5

arithmetic mean over all datasets

loss source domain target domain domain-independent
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss [18] 74.3 66.2 67.3 58.3 70.3 59.1
IC compactness loss + CCE [19] 75.8 67.667.667.6 69.4 58.0 72.4 60.1
AdaCos loss [26] 76.3 67.5 69.5 58.4 72.9 60.0
sub-cluster AdaCos loss [27] 75.4 66.5 69.9 58.1 72.5 59.3
proposed AdaProj loss 76.676.676.6 66.3 70.970.970.9 58.758.758.7 73.973.973.9 60.660.660.6

DCASE2023 ASD dataset. The results can be found in Fig-
ure 2. It can be seen, that, on the development set, the results
are relatively stable while a larger dimension slightly improves
the performance on the evaluation set without any significant
differences. For subspace dimensions greater than 48 the
performances seem to slightly degrade again. In conclusion,
the subspace dimension should be neither too high nor too low
and a dimension of 32 as used for the other experiments in
this works appears to be a reasonable choice.

E. Comparison to other published systems
As a last experiment, the performance of the proposed

system using AdaProj is compared to the ten top-performing
systems of the DCASE2023 Challenge. As many systems

utilize ensembles of models, the mean of the anomaly scores
belonging to ten independent trials was used to create an
ensemble of ten systems allowing a fair comparison. The
results can be found in Figure 3. It can be seen that the
proposed system outperforms all other published systems and
thus achieves a new state-of-the-art performance. This adds
confidence to the benefits of the AdaProj loss function.

IV. CONCLUSIONS AND FUTURE WORK

In this work, AdaProj a novel angular margin loss function
specifically designed for semi-supervised anomaly detection
with auxiliary classification tasks was presented. It was proven
that this loss function learns an embedding space with class-
specific subspaces of arbitrary dimension. In contrast to other

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0.5

0.55

0.6

0.65

0.7

0.75

subspace dimension |Ck|

ha
rm

on
ic

m
ea

n
of

A
U

C
s/

pA
U

C
s

AUC - development set pAUC - development set
AUC - evaluation set pAUC - evaluation set

Fig. 2. Domain-independent performance obtained on the DCASE2023 dataset with different subspace dimensions. The means over ten independent trials
are shown.

50

60

70 67
.5

67
1%

66
.9

68
7%

66
.3

86
2%

65
.4

03
1%

64
.9

11
5%

64
.1

04
3%

63
.6

44
9%

63
.5

03
2%

61
.7

65
5%

61
.0

50
8%

59
.5

39
5%

of
fic

ia
l

sc
or

e
in

pe
rc

en
t

proposed system
rank 1 [40]
rank 2 [41]
rank 3 [42]
rank 4 [36]
rank 5 [43]
rank 6 [44]
rank 7 [45]
rank 8 [46]
rank 9 [47]

rank 10 [48]

Fig. 3. Comparison of the proposed system to the ten top-performing systems
of the DCASE2023 Challenge. The official evaluation script was used to
compute the score.

angular margin losses, which try to project data to individual
points in space, this relaxes the requirements of solving the
classification task and allows for less compact distributions
in the embedding space. In experiments conducted on the
DCASE2022 and DCASE2023 ASD datasets, it was shown
that using AdaProj results in better performance than other
commonly used loss functions. In conclusion, the resulting
embedding space has a more desirable structure than the
other embedding spaces for differentiating between normal
and anomalous samples. As a result, a new state-of-the-art
performance outperforming all other published systems could
be achieved on the DCASE2023 ASD dataset. For future work,
it is planned to evaluate AdaProj on other datasets and using
other auxiliary classification tasks, e.g. tasks imposed by self-
supervised learning.

REFERENCES

[1] C. Aggarwal, Outlier Analysis, 2nd ed. Springer, 2017.
[2] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tan-

abe, H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada, “De-
scription and discussion on DCASE2020 challenge task2: Unsupervised

anomalous sound detection for machine condition monitoring,” in 5th
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2020, pp. 81–85.

[3] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, D. Niizumi, K. Dohi,
R. Tanabe, H. Purohit, and T. Endo, “Description and discussion on
DCASE 2021 challenge task 2: Unsupervised anomalous detection for
machine condition monitoring under domain shifted conditions,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2021, pp. 186–190.

[4] K. Dohi, K. Imoto, N. Harada, D. Niizumi, Y. Koizumi, T. Nishida,
H. Purohit, R. Tanabe, T. Endo, M. Yamamoto, and Y. Kawaguchi, “De-
scription and discussion on DCASE 2022 challenge task 2: Unsupervised
anomalous sound detection for machine condition monitoring applying
domain generalization techniques,” in 7th Workshop on Detection and
Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022, pp. 26–30.

[5] K. Dohi, K. Imoto, N. Harada, D. Niizumi, Y. Koizumi, T. Nishida,
H. Purohit, R. Tanabe, T. Endo, and Y. Kawaguchi, “Description and
discussion on DCASE 2023 challenge task 2: First-shot unsupervised
anomalous sound detection for machine condition monitoring,” in 8th
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE). Tampere University, 2023, pp. 31–35.

[6] J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin, “Generalizing to unseen
domains: A survey on domain generalization,” in Thirtieth International
Joint Conference on Artificial Intelligence (IJCAI). ijcai.org, 2021, pp.
4627–4635.

[7] K. Wilkinghoff and F. Kurth, “Why do angular margin losses
work well for semi-supervised anomalous sound detection?” 2023,
arXiv:2309.15643.

[8] R. Giri, S. V. Tenneti, F. Cheng, K. Helwani, U. Isik, and A. Kr-
ishnaswamy, “Self-supervised classification for detecting anomalous
sounds,” in Detection and Classification of Acoustic Scenes and Events
Workshop (DCASE), 2020, pp. 46–50.

[9] J. A. Lopez, H. Lu, P. Lopez-Meyer, L. Nachman, G. Stemmer, and
J. Huang, “A speaker recognition approach to anomaly detection,” in 5th
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2020, pp. 96–99.

[10] T. Inoue, P. Vinayavekhin, S. Morikuni, S. Wang, T. Hoang Trong,
D. Wood, M. Tatsubori, and R. Tachibana, “Detection of anomalous
sounds for machine condition monitoring using classification confi-
dence,” in 5th Detection and Classification of Acoustic Scenes and
Events Workshop (DCASE), 2020, pp. 66–70.

[11] S. Venkatesh, G. Wichern, A. S. Subramanian, and J. L. Roux, “Im-

proved domain generalization via disentangled multi-task learning in
unsupervised anomalous sound detection,” in 7th Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022, pp. 196–200.

[12] T. Nishida, K. Dohi, T. Endo, M. Yamamoto, and Y. Kawaguchi,
“Anomalous sound detection based on machine activity detection,” in
30th European Signal Processing Conference EUSIPCO. IEEE, 2022,
pp. 269–273.

[13] Y. Deng, A. Jiang, Y. Duan, J. Ma, X. Chen, J. Liu, P. Fan, C. Lu,
and W. Zhang, “Ensemble of multiple anomalous sound detectors,” in
7th Workshop on Detection and Classification of Acoustic Scenes and
Events (DCASE). Tampere University, 2022.

[14] H. Chen, Y. Song, Z. Zhuo, Y. Zhou, Y.-H. Li, H. Xue, and I. McLough-
lin, “An effective anomalous sound detection method based on represen-
tation learning with simulated anomalies,” in International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

[15] D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep anomaly
detection with outlier exposure,” in 7th International Conference on
Learning Representations, (ICLR). OpenReview.net, 2019.

[16] P. Primus, V. Haunschmid, P. Praher, and G. Widmer, “Anomalous
sound detection as a simple binary classification problem with careful
selection of proxy outlier examples,” in 5th Workshop on Detection and
Classification of Acoustic Scenes and Events 2020 (DCASE), 2020, pp.
170–174.

[17] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for
face verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp.
926–930, 2018.

[18] L. Ruff, N. Görnitz, L. Deecke, S. A. Siddiqui, R. A. Vandermeulen,
A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,”
in 35th International Conference on Machine Learning (ICML), ser.
Proceedings of Machine Learning Research, vol. 80. PMLR, 2018, pp.
4390–4399.

[19] P. Perera and V. M. Patel, “Learning deep features for one-class
classification,” IEEE Transactions on Image Processing, vol. 28, no. 11,
pp. 5450–5463, 2019.

[20] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature
learning approach for deep face recognition,” in European Conference
on Computer Vision (ECCV). Springer, 2016, pp. 499–515.

[21] J. A. Lopez, G. Stemmer, P. Lopez-Meyer, P. Singh, J. A. del Hoyo On-
tiveros, and H. A. Cordourier, “Ensemble of complementary anomaly
detectors under domain shifted conditions,” in 6th Workshop on Detec-
tion and Classification of Acoustic Scenes and Events (DCASE), 2021,
pp. 11–15.

[22] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2019, pp. 4690–4699.

[23] I. Kuroyanagi, T. Hayashi, Y. Adachi, T. Yoshimura, K. Takeda, and
T. Toda, “An ensemble approach to anomalous sound detection based
on conformer-based autoencoder and binary classifier incorporated with
metric learning,” in 6th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE), 2021, pp. 110–114.

[24] K. Wilkinghoff, “Combining multiple distributions based on sub-cluster
adacos for anomalous sound detection under domain shifted conditions,”
in Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2021, pp. 55–59.

[25] ——, “Design choices for learning embeddings from auxiliary tasks for
domain generalization in anomalous sound detection,” in International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2023.

[26] X. Zhang, R. Zhao, Y. Qiao, X. Wang, and H. Li, “AdaCos: Adaptively
scaling cosine logits for effectively learning deep face representations,”
in Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2019, pp. 10 823–10 832.

[27] K. Wilkinghoff, “Sub-cluster AdaCos: Learning representations for
anomalous sound detection,” in International Joint Conference on Neu-
ral Networks (IJCNN). IEEE, 2021.

[28] Q. Yu, M. S. Kavitha, and T. Kurita, “Autoencoder framework based
on orthogonal projection constraints improves anomalies detection,”
Neurocomputing, vol. 450, pp. 372–388, 2021.

[29] L. Li, Y. Zhang, and A. Huang, “Learnable subspace orthogonal projec-
tion for semi-supervised image classification,” in 16th Asian Conference
on Computer Vision (ACCV), ser. Lecture Notes in Computer Science,
vol. 13843. Springer, 2022, pp. 477–490.

[30] A. N. Gorban, I. Y. Tyukin, D. V. Prokhorov, and K. I. Sofeikov, “Ap-
proximation with random bases: Pro et contra,” Information Sciences,
vol. 364-365, pp. 129–145, 2016.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in 32nd International
Conference on Machine Learning (ICML), vol. 37, 2015, pp. 448–456.

[32] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, M. Yasuda, and S. Saito,
“ToyADMOS2: Another dataset of miniature-machine operating sounds
for anomalous sound detection under domain shift conditions,” in 6th
Workshop on Detection and Classification of Acoustic Scenes and Events
2020 (DCASE), 2021, pp. 1–5.

[33] K. Dohi, T. Nishida, H. Purohit, R. Tanabe, T. Endo, M. Yamamoto,
Y. Nikaido, and Y. Kawaguchi, “MIMII DG: sound dataset for mal-
functioning industrial machine investigation and inspection for domain
generalization task,” in 7th Workshop on Detection and Classification
of Acoustic Scenes and Events 2020 (DCASE). Tampere University,
2022, pp. 26–30.

[34] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, and M. Yasuda,
“ToyADMOS2+: New toyadmos data and benchmark results of the
first-shot anomalous sound event detection baseline,” in 8th Detection
and Classification of Acoustic Scenes and Events Workshop (DCASE).
Tampere University, 2023, pp. 41–45.

[35] D. K. McClish, “Analyzing a portion of the ROC curve,” Medical
decision making, vol. 9, no. 3, pp. 190–195, 1989.

[36] K. Wilkinghoff, “Fraunhofer FKIE submission for task 2: First-shot
unsupervised anomalous sound detection for machine condition mon-
itoring,” DCASE2023 Challenge, Tech. Rep., 2023.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations (ICLR),
Y. Bengio and Y. LeCun, Eds., 2015.

[38] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), ser. JMLR Proceedings,
vol. 9. JMLR.org, 2010, pp. 249–256.

[39] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup:
Beyond empirical risk minimization,” in 6th International Conference
on Learning Representations, (ICLR). OpenReview.net, 2018.

[40] W. Junjie, W. Jiajun, C. Shengbing, S. Yong, and L. Mengyuan, “Anoma-
lous sound detection based on self-supervised learning,” DCASE2023
Challenge, Tech. Rep., 2023.

[41] Z. Lv, B. Han, Z. Chen, Y. Qian, J. Ding, and J. Liu, “Unsuper-
vised anomalous detection based on unsupervised pretrained models,”
DCASE2023 Challenge, Tech. Rep., 2023.

[42] A. Jiang, Q. Hou, J. Liu, P. Fan, J. Ma, C. Lu, Y. Zhai, Y. Deng, and W.-
Q. Zhang, “Thuee system for first-shot unsupervised anomalous sound
detection for machine condition monitoring,” DCASE2023 Challenge,
Tech. Rep., 2023.

[43] J. Yafei, B. Jisheng, and H. Siwei, “Unsupervised abnormal sound
detection based on machine condition mixup,” DCASE2023 Challenge,
Tech. Rep., 2023.

[44] Y. Zhou and Y. Long, “Attribute classifier with imbalance compensation
for anomalous sound detection,” DCASE2023 Challenge, Tech. Rep.,
2023.

[45] J. Tian, H. Zhang, Q. Zhu, F. Xiao, H. Liu, X. Mei, Y. Liu, W. Wang,
and J. Guan, “First-shot anomalous sound detection with gmm clustering
and finetuned attribute classification using audio pretrained model,”
DCASE2023 Challenge, Tech. Rep., 2023.

[46] L. Wang, F. Chu, Y. Zhou, S. Wang, Z. Yan, S. Xu, Q. Wu, M. Cai,
J. Pan, Q. Wang, J. Du, T. Gao, X. Fang, and L. Zou, “First-shot
unsupervised anomalous sound detection using attribute classification
and conditional autoencoder,” DCASE2023 Challenge, Tech. Rep., 2023.

[47] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, and M. Yasuda, “First-
shot anomaly detection for machine condition monitoring: A domain
generalization baseline,” in 31st European Signal Processing Conference
EUSIPCO. IEEE, 2023.

[48] W. JiaJun, “Self-supervised representation learning for first-shot unsu-
pervised anomalous sound detection,” DCASE2023 Challenge, Tech.
Rep., June 2023.

A.1 key publications 183

a.1.7 Key publication 7

Kevin Wilkinghoff. “Self-Supervised Learning for Anomalous Sound Detection.” In:
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2024, pp. 276–280. doi: 10.1109/ICASSP48485.2024.10447156.
© 2024 IEEE.

https://doi.org/10.1109/ICASSP48485.2024.10447156

SELF-SUPERVISED LEARNING FOR ANOMALOUS SOUND DETECTION

Kevin Wilkinghoff

Fraunhofer FKIE, Fraunhoferstraße 20, 53343 Wachtberg, Germany
kevin.wilkinghoff@ieee.org

ABSTRACT

State-of-the-art anomalous sound detection (ASD) systems are of-
ten trained by using an auxiliary classification task to learn an em-
bedding space. Doing so enables the system to learn embeddings
that are robust to noise and are ignoring non-target sound events but
requires manually annotated meta information to be used as class
labels. However, the less difficult the classification task becomes,
the less informative are the embeddings and the worse is the result-
ing ASD performance. A solution to this problem is to utilize self-
supervised learning (SSL). In this work, feature exchange (FeatEx),
a simple yet effective SSL approach for ASD, is proposed. In ad-
dition, FeatEx is compared to and combined with existing SSL ap-
proaches. As the main result, a new state-of-the-art performance for
the DCASE2023 ASD dataset is obtained that outperforms all other
published results on this dataset by a large margin.

Index Terms— self-supervised learning, anomalous sound de-
tection, domain generalization, machine listening

1. INTRODUCTION

In contrast to supervised learning, self-supervised learning (SSL) [1]
does not require manually annotated class labels. Instead, data is
augmented in different, specifically chosen ways, each defining an-
other artificially created class and a model is taught to discriminate
between these classes. The underlying assumption is that the model
needs to understand the structure of the data to correctly predict the
artificially introduced classes. SSL is a type of unsupervised learn-
ing and has been successfully applied to learning speech representa-
tions [2] or general purpose audio representations [3, 4] using large
datasets of unlabeled data.

SSL has also been applied to anomalous sound detection (ASD):
In [5], combinations of pitch-shifting and time-stretching are used
to create additional classes. [6] uses linear combinations of similar
target sounds, created by applying mixup [7], as pseudo-anomalous
classes. Statistics exchange (StatEx) [8] is an SSL approach that
mixes first- and second-order statistics of time-frequency represen-
tations to create new classes. In [9], a modified version of variance-
invariance-covariance regularization [10], called domain generaliza-
tion mixup, is used to pre-train autoencoders. Note that some works
on ASD use the term SSL for supervised learning of embeddings
with auxiliary classification tasks [11, 12]. Since classification tasks
require manually labeled data whereas SSL does not require any
manual annotations, we will use two different terms.

In [13], it was shown that class labels alone are very beneficial
to detect anomalous sounds in noisy conditions as the model learns
to closely monitor the target sounds. When not using class labels,
many non-target sounds contained in an acoustic scene have a much
stronger impact than subtle changes of the target sounds that need
to be detected in order to identify anomalous sounds. However, as

the available classes become less similar to each other, the embed-
dings acquired through the discrimination of these classes capture
less meaningful information. In these cases, also utilizing SSL is a
very promising approach to increase the degree of information being
captured and thus is expected to improve the ASD performance.

The goal of this work is to investigate different approaches of
using SSL for ASD. The contributions are the following: First,
two existing SSL approaches for ASD, namely mixup and StatEx,
are reviewed. Second, feature exchange (FeatEx), a novel SSL ap-
proach for ASD, and a combination with the other two SSL ap-
proaches are proposed. In experimental evaluations conducted on
the DCASE2022 ASD dataset and the DCASE2023 ASD dataset, it
is shown that the proposed approach improves the performance over
a baseline system not using any SSL. As a result, a new state-of-
the-art performance significantly outperforming all published ASD
results is obtained on the DCASE2023 ASD dataset1.

2. STATE-OF-THE-ART BASELINE SYSTEM

Throughout this work, the ASD system presented in our prior work
[15], which is trained in a supervised manner by using an auxil-
iary classification task, is used as a baseline system. Our goal is
to improve the performance obtained with this system by applying
SSL approaches. This system ranked 4th in the DCASE2023 Chal-
lenge [14] and the winning team of the challenge [16] extended this
system by adding an attention mechanism to the embedding model.
This shows that the ASD system can be considered state-of-the-art,
which justifies choosing it as a baseline system.

An overview of the baseline system can be found in Figure 1.
The system is based on learning discriminative embeddings by us-
ing all available meta information, in this case all combinations of
machine types, machine IDs and attribute information, as classes. To
this end, two convolutional sub-networks are used and their outputs
are concatenated to obtain a single embedding. One sub-network
utilizes the full magnitude frequency spectrum as an input repre-
sentation to ensure the highest possible frequency resolution. The
other sub-network uses magnitude spectrograms while subtracting
the temporal mean to remove static frequency information and make
the input representation more different from the other one. The neu-
ral network is trained for 10 epochs using a batch size of 64 by min-
imizing the angular margin loss sub-cluster AdaCos [17] with 16
sub-clusters. To improve the resulting ASD performance, no bias
terms are used in any layer of the networks and the cluster centers
are randomly initialized and not adapted during training. Apart from
mixup, no other data augmentation technique is used. As a back-
end, k-means is applied to the embeddings obtained with the normal
training samples of the source domain, for which many training sam-

1An open-source implementation of the system is available at: https:
//github.com/wilkinghoff/ssl4asd

neural network: jointly trained to discriminate between
machine types and different attribute information

by minimizing the sub-cluster AdaCos loss

input feature representations
computing anomaly scores using

only the normal samples of the same
machine type as the test samples

raw waveform
(288000)

mixup

compute magnitude
spectrogram
(561 × 513)

apply temporal
mean normalization

(561 × 513)

compute mag-
nitude spectrum

(144000)

extract embbeding
with neural network

for spectrograms
(128)

StatEx

extract embbeding
with neural

network for spectra
(128)

concatenate
embeddings

(256)

FeatEx

evaluate cosine
distances with
all samples of
target domain

(10)

evaluate cosine
distances with

means (k-Means)
of source domain

(16) return minimum
of distances as
anomaly score

(1)

Fig. 1. Structure of the baseline system (blue boxes). SSL approaches are colored in red. Representation size in each step is given in brackets.
This figure is adapted from [14] and originally adapted from [15].

ples are available. The smallest cosine distance to these means and
all samples of the target domain, which differs from the target do-
main and for which only very few training samples are available, is
used as an anomaly score. More details about this baseline system
can be found in [15].

3. SELF-SUPERVISED LEARNING APPROACHES

In this section, two SSL approaches for training ASD systems are
reviewed, namely mixup [7] and StatEx [8]. Furthermore, a third
approach, called FeatEx, is proposed and described in detail. Last
but not least, a combined SSL approach, which jointly uses all three
discussed approaches, is presented.

3.1. Mixup

The data augmentation technique mixup [7], which uses linear in-
terpolations between two training samples and their corresponding
categorical labels, is widely applied for ASD [14, 16, 18–20]. When
applying mixup, two randomly chosen training samples x1, x2 and
their corresponding categorical class labels y1, y2 ∈ [0, 1]Nclasses with
Nclasses ∈ N denoting the number of classes are combined by setting

xnew = λx1 + (1− λ)x2

ynew = λy1 + (1− λ)y2

using a random mixing coefficient λ ∈ [0, 1]. Although mixup is just
a data augmentation technique that does not introduce new classes,
it can also be seen as a form of SSL that requires class labels be-
cause the supervised training objective is essentially extended to also
predicting the mixing coefficient in addition to the original classes.
In [8, 14], mixup was used to create additional pseudo-anomalous
classes by treating mixed-up samples as belonging to other classes
as non-mixed samples, similar to the approach proposed in [5]. In
our experiments, this approach did not improve the ASD perfor-
mance over applying mixup regularly but even degraded the perfor-
mance for some machine types. It is also possible to only predict
the mixing coefficient by ignoring the class labels, making mixup a
purely self-supervised approach. However, for noisy audio data it is
highly beneficial to utilize all available meta information for classi-
fication in order to teach the system to closely monitor the machine
sounds of interest and ignore the background noise and other non-
target events [13]. Throughout this work, we used a probability of
100% for applying mixup when training the baseline system, and a
probability of 50% when also applying any other SSL approach.

3.2. Statistics exchange

The idea of StatEx [8] is to artificially create new classes of pseudo
anomalies by exchanging the first- and second-order statistics of the
time-frequency representations of two training samples x1, x2 along
the temporal or frequency dimension. Mathematically, this corre-
sponds to generating a new sample xnew ∈ RT×F by setting

xnew =
x1 − µ1

σ1
σ2 + µ2

where x1, x2 ∈ RT×F denote the time-frequency representations of
two random training samples. µ1, µ2 denote the first-order statistics
of these samples along the time or frequency dimension, and σ1, σ2

denote the second-order statistics along the same dimension. Each
possible combination of classes defines a new class, increasing the
original number of classes Nclasses ∈ N by a quadratic term N2

classes.
In this work, we used a variant of StatEx with the following

modifications: For the sake of simplicity, we always use the com-
plete frequency band and all time steps to calculate the statistics
whereas in the original definition subbands are used [8]. Third, we
teach the model to predict the class of the original sample x1 and the
class of the other sample x2, whose statistics are used. For categori-
cal class labels y1, y2, we do this by concatenating the labels:

ynew = (0, 0.5 · y1, 0.5 · y2) ∈ [0, 1]3Nclasses

where 0 = (0, ..., 0) ∈ [0, 1]Nclasses . Hence, the number of classes
is only tripled and thus the number of parameters, which, due to the
cluster centers, proportionally increases with the number of classes,
does not explode. Furthermore, this enables a simple combination
with other data augmentation techniques, for which more than a sin-
gle class are assigned to each sample, such as mixup. In [15], it has
been shown that removing the temporal mean from the spectrograms
improves the resulting ASD performance. Thus, in the variant used
in this paper, we applied StatEx to the frequency axis, i.e. we only
used temporal StatEx. Furthermore, two feature branches are used
in the baseline system. Hence, only temporal StatEx has been ap-
plied to the spectrogram representations. Throughout this work, we
used a probability of 50% for applying StatEx during training and
also applied mixup. In case StatEx is not applied, the new label of
training sample xnew = x1 is set to

ynew = (y1, 0, 0) ∈ [0, 1]3Nclasses .

In addition, we used trainable cluster centers for the newly intro-
duced classes. These particular choices are also justified through
ablation studies carried out in subsection 4.3.

Table 1. Harmonic means of AUCs and pAUCs taken over all machine IDs obtained when using different SSL approaches. Highest AUCs
and pAUCs in each row are highlighted in bold letters. Arithmetic mean and standard deviation over five independent trials are shown.

baseline [15] StatEx [8] variant FeatEx regular and StatEx [8] variant regular and FeatEx proposed approach
dataset split domain AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

DCASE2022 dev source 84.2± 0.8% 76.5± 0.9% 80.5± 1.8% 69.5± 1.9% 82.1± 0.9% 72.8± 0.8% 85.2± 0.9% 77.5± 1.2% 85.1± 0.9% 76.3± 1.8% 86.0± 0.9%86.0± 0.9%86.0± 0.9% 77.6± 0.8%77.6± 0.8%77.6± 0.8%
DCASE2022 dev target 78.5± 0.9% 62.5± 0.9% 75.3± 1.7% 60.0± 0.9% 77.2± 1.0% 62.8± 0.6% 78.9± 0.9%78.9± 0.9%78.9± 0.9% 63.2± 1.6% 77.9± 0.9% 62.7± 0.8% 78.2± 0.7% 64.4± 1.1%64.4± 1.1%64.4± 1.1%
DCASE2022 dev mixed 81.4± 0.7% 66.6± 0.9% 76.4± 1.5% 62.4± 1.2% 78.5± 0.6% 65.2± 0.6% 82.2± 0.6% 67.0± 1.0% 81.6± 0.7% 67.0± 0.9% 82.5± 0.8%82.5± 0.8%82.5± 0.8% 68.2± 1.1%68.2± 1.1%68.2± 1.1%

DCASE2022 eval source 76.8± 0.8% 65.8± 0.2% 74.2± 0.6% 61.6± 1.4% 76.3± 0.9% 64.5± 1.2% 76.9± 0.4% 65.8± 0.9% 78.1± 0.4%78.1± 0.4%78.1± 0.4% 67.0± 1.1%67.0± 1.1%67.0± 1.1% 77.7± 0.8% 67.0± 0.5%67.0± 0.5%67.0± 0.5%
DCASE2022 eval target 69.8± 0.5% 59.7± 1.1% 70.6± 0.5% 59.0± 0.7% 72.3± 0.6%72.3± 0.6%72.3± 0.6% 61.0± 0.7% 71.2± 0.3% 60.3± 0.7% 72.2± 0.4% 61.3± 0.5%61.3± 0.5%61.3± 0.5% 71.6± 1.0% 61.2± 0.9%
DCASE2022 eval mixed 73.4± 0.5% 59.8± 0.8% 72.2± 0.3% 58.2± 0.7% 73.9± 0.5% 60.0± 0.9% 73.9± 0.3% 59.9± 0.6% 74.9± 0.4%74.9± 0.4%74.9± 0.4% 61.5± 0.6%61.5± 0.6%61.5± 0.6% 74.2± 0.3% 61.2± 0.3%

DCASE2023 dev source 69.8± 1.8% 60.9± 0.9% 67.8± 1.5% 59.2± 0.8% 68.4± 1.0% 60.2± 0.5% 70.3± 1.8% 62.0± 1.6% 72.9± 2.0%72.9± 2.0%72.9± 2.0% 63.0± 1.3%63.0± 1.3%63.0± 1.3% 71.2± 1.6% 62.7± 1.3%
DCASE2023 dev target 72.3± 1.8% 55.6± 0.9% 69.7± 1.7% 54.7± 1.1% 74.4± 0.7% 57.6± 1.0%57.6± 1.0%57.6± 1.0% 72.2± 1.4% 56.2± 1.2% 75.7± 0.8%75.7± 0.8%75.7± 0.8% 57.0± 1.6% 75.0± 1.5% 56.1± 1.4%
DCASE2023 dev mixed 71.3± 0.6% 56.1± 0.8% 69.0± 1.2% 55.7± 1.0% 71.7± 0.4% 57.5± 0.7% 71.2± 0.7% 57.0± 1.4% 74.4± 1.0%74.4± 1.0%74.4± 1.0% 58.0± 1.4%58.0± 1.4%58.0± 1.4% 73.1± 0.9% 57.3± 0.6%

DCASE2023 eval source 72.5± 0.8% 62.4± 1.2% 70.0± 1.2% 59.7± 0.9% 69.3± 2.0% 59.3± 1.2% 72.4± 2.4% 62.4± 1.3% 75.9± 1.0%75.9± 1.0%75.9± 1.0% 62.9± 1.3% 75.5± 0.8% 64.5± 0.6%64.5± 0.6%64.5± 0.6%
DCASE2023 eval target 63.1± 2.6% 57.5± 0.8% 66.7± 1.8% 58.4± 0.7% 69.1± 1.3%69.1± 1.3%69.1± 1.3% 59.0± 1.3% 65.9± 1.9% 59.0± 1.4% 66.5± 1.9% 58.3± 1.0% 68.7± 2.2% 59.3± 0.7%59.3± 0.7%59.3± 0.7%
DCASE2023 eval mixed 67.9± 1.0% 58.8± 0.8% 65.8± 0.6% 57.1± 0.8% 68.1± 1.2% 58.1± 0.9% 69.5± 1.8% 60.7± 0.9% 71.1± 1.1% 60.1± 1.3% 72.6± 0.7%72.6± 0.7%72.6± 0.7% 61.6± 0.5%61.6± 0.5%61.6± 0.5%

3.3. Feature exchange

Look, listen and learn (L3) embeddings [21–23] are trained by using
an audio and a video subnetwork, and predicting whether a video
frame and an audio segment with a length of one second belong to-
gether or not. In [24], it was shown empirically that using these
pre-trained embeddings does not lead to a better ASD performance
than directly training an embedding model. When comparing mul-
tiple pre-trained embeddings, self-supervised embeddings such as
L3-embeddings appear to outperform supervised embeddings. This
motivates to develop a similar SSL approach for learning embed-
dings using only audio data.

As the baseline system also consists of two sub-networks, both
utilizing different input feature representations, a similar SSL ap-
proach can be used, which we will call feature exchange (FeatEx).
Let e1 = (e11, e

2
1), e2 = (e12, e

2
2) ∈ R2D with D = 128 denote the

concatenated embeddings of both sub-networks belonging to two
random training samples x1 and x2, and let y1, y2 denote their cor-
responding categorical class labels. Then, define a new embedding
and its label by setting

enew = (e11, e
2
2) ∈ R2D

ynew = (0, 0.5 · y1, 0.5 · y2) ∈ [0, 1]3Nclasses

where Nclasses ∈ N denotes the number of the original classes and
0 = (0, ..., 0) ∈ [0, 1]Nclasses . Hence, as for the StatEx variant, the
number of classes is tripled. When applying FeatEx, the network
also needs to learn whether the embeddings of the sub-networks be-
long together or not resulting in more information being captured.
Again, a combination with mixup, a probability of 50% for apply-
ing FeatEx during training and trainable cluster centers for the newly
introduced classes have been used throughout this work.

3.4. Combining supervised and self-supervised losses

In [15], it was shown that not adapting randomly initialized clus-
ter centers during training improves the resulting ASD performance.
Experimentally, we found that the SSL approaches performed better
with trainable cluster centers. To ensure that only the cluster centers
of the SSL loss belonging to the original classes are non-trainable,
we also used the regular supervised loss of the baseline system with
non-trainable cluster centers as an equally weighted loss. Since the
classes introduced by the SSL approaches are dividing the original
classes into sub-classes, this can also be seen as a form of disentan-
gled learning [25]. Furthermore, we propose to use a combination of
mixup with the regular loss as well as StatEx and FeatEx in a single
loss function since all SSL approaches are different. Hence, the total

loss Ltotal(x, y) of a sample x with categorical label y is given by

Ltotal(x, y) = L(x, y) + L(xnew, ynew)

with xnew and ynew being defined by sequentially applying all the
SSL approaches as described in the previous sections and L denoting
the categorical crossentropy. As a result, the number of classes is
increased multiplicatively by a factor of 3 · 3 = 9. In the following,
this is called the proposed approach.

4. EXPERIMENTAL RESULTS

4.1. Datasets

For all experiments conducted in this work, the DCASE2022 [26]
and the DCASE2023 ASD dataset [27] are used. Both datasets are
designed for semi-supervised ASD in machine condition monitor-
ing and contain noisy recordings of machine sounds of various types
taken from ToyAdmos2 [28] and MIMII-DG [29]. For training, only
normal sounds and additional meta information such as the machine
types and parameter settings of the machines, called attribute infor-
mation, are available. Furthermore, both datasets are designed for
domain generalization and thus consist of data from a source domain
with 1000 training samples for each machine id and a target domain
with only 10 training samples that somehow differs by changing a
parameter setting of the target machine or the background noise. The
task is to discriminate between normal and anomalous samples re-
gardless of the domain a sample belongs.

Both datasets are divided into a development and an evaluation
set, each consisting of a training subset with only normal data sam-
ples and a test subset containing normal and anomalous samples.
The DCASE2022 ASD dataset consists of recordings belonging to
seven different machine types, each with three different machine IDs
contained in the development set and another three machine IDs con-
tained in the evaluation set. For the DCASE2023 ASD dataset, there
are 14 different machine types. The machine types belonging to the
development and evaluation set are mutually exclusive, and there is
only one machine ID for each machine type. Hence, the classifica-
tion task is much easier than for the DCASE2022 dataset and thus
learning informative embeddings by solving an auxiliary classifica-
tion task is much more difficult for the DCASE2023 dataset, which
motivates to also utilize SSL for training the ASD system.

4.2. Comparison of SSL approaches

As a first experiment, different SSL approaches are compared to the
baseline performance obtained by not using additional SSL losses.
The results can be found in Table 1 and the following observations

Table 2. Harmonic means of AUCs and pAUCs taken over all ma-
chine types obtained on the DCASE2023 dataset by modifying de-
sign choices of the proposed approach. Arithmetic mean and stan-
dard deviation over five independent trials are shown.

SSL loss without class labels non-trainable class centers no TMN and full StatEx
split domain AUC pAUC AUC pAUC AUC pAUC

dev source 70.8± 1.5% 63.2± 1.1% 71.5± 0.9% 64.8± 1.9% 70.9± 0.7% 61.0± 1.5%
dev target 74.7± 1.5% 58.1± 1.6% 74.0± 2.0% 56.7± 1.0% 72.1± 1.4% 55.2± 1.0%
dev mixed 72.3± 1.2% 57.9± 1.3% 71.6± 1.1% 57.7± 0.7% 71.3± 0.7% 55.6± 0.9%

eval source 73.5± 2.4% 63.8± 0.6% 74.2± 0.7% 63.9± 1.3% 73.8± 1.3% 62.4± 1.5%
eval target 62.1± 1.5% 57.7± 0.9% 58.2± 3.3% 57.3± 0.9% 66.9± 2.4% 58.5± 1.9%
eval mixed 68.6± 1.2% 59.1± 0.7% 65.0± 0.9% 57.7± 0.6% 70.9± 0.8% 59.9± 0.8%

can be made: First, it can be seen that the proposed FeatEx loss
performs significantly better than the StatEx loss on both datasets.
Second, only using a loss based on StatEx leads to slightly worse
performance than the performance obtained with the baseline sys-
tem while only using the FeatEx loss lead to slightly better perfor-
mance than the baseline system for most dataset splits. However,
combining the regular loss with one of the SSL losses improves per-
formance over both individual losses, especially on the DCASE2023
dataset. As stated before, the most likely reason is that, compared to
the DCASE2022 dataset, there is only one specific machine for each
machine type and thus the classification task is much easier result-
ing in less informative embeddings that are less sensitive to anoma-
lies. Hence, SSL is required as a form of regularization to learn non-
trivial mappings for each class resulting in more informative embed-
dings that enable the system to detect subtle deviations from normal
data. As a last observation, it can be seen that combining all SSL
approaches into a single loss, slightly improves the resulting perfor-
mance for some dataset splits while decreasing the performance for
other dataset splits. Overall, the positive effects seem to be slightly
greater than the negative ones but are only marginal.

4.3. Ablation studies

To show that the design choices of the proposed approach actually
optimize the ASD performance, three ablation studies have been
conducted on the DCASE2023 dataset. More concretely, it was ver-
ified whether 1) not using the class labels for the SSL losses, 2)
using non-trainable class centers for the SSL losses or 3) not using
temporal mean normalization (TMN) but also applying StatEx to the
temporal axis improves the performance. When comparing the re-
sults, as shown in Table 2, to the original ones contained in Table 1,
it can be seen that altering the proposed approach in any of the three
ways degrades ASD performance, especially on the evaluation set.
This adds confidence to the design of the proposed SSL approach.

4.4. Comparison to other published systems

As a last experiment, the proposed system was compared to the ten
top-performing systems submitted to the DCASE2023 Challenge.
To have a fair comparison, we used an ensemble obtained by re-
training the system five times and taking the mean of all anomaly
scores. The results can be found in Figure 2. It can be seen that our
proposed system outperforms all other published systems by a sig-
nificant margin and thus reaches a new state-of-the-art performance.
Note that the system ranked fourth [14] in the DCASE2023 Chal-
lenge is actually the same system as the baseline system of this work
and the system ranked first [16] is a modified version of this baseline
system.

50

60

70

80

70
.9

3%

66
.9

7%

66
.3

9%

65
.4

0%

64
.9

1%

64
.1

0%

63
.6

4%

63
.5

0%

61
.7

7%

61
.0

5%

59
.5

4%

of
fic

ia
ls

co
re

in
pe

rc
en

t

proposed system
rank 1 [16]
rank 2 [30]
rank 3 [31]
rank 4 [14]
rank 5 [18]
rank 6 [32]
rank 7 [33]
rank 8 [19]
rank 9 [34]

rank 10 [20]

Fig. 2. Comparison between presented and ten top-performing sys-
tems of the DCASE Challenge 2023.

5. CONCLUSION

In this work, applying SSL to ASD was investigated. To this end,
mixup and StatEx were reviewed, and a novel SSL approach for
ASD, called FeatEx was proposed. All three approaches were com-
bined into a single loss function for training an outlier exposed
ASD system. In experiments conducted on the DCASE2022 and
DCASE2023 ASD datasets, it was shown that FeatEx outperforms
the existing SSL approaches, and that applying SSL to ASD is
highly beneficial. As a result, a new state-of-the-art performance on
the DCASE2023 ASD dataset was obtained outperforming all other
published systems by a large margin.

6. ACKNOWLEDGMENTS

The author would like to thank Fabian Fritz, Lukas Henneke and
Frank Kurth for their valuable feedback.

7. REFERENCES

[1] Shuo Liu, Adria Mallol-Ragolta, Emilia Parada-Cabaleiro,
Kun Qian, Xin Jing, Alexander Kathan, Bin Hu, and Björn W.
Schuller, “Audio self-supervised learning: A survey,” Patterns,
vol. 3, no. 12, pp. 100616, 2022.

[2] Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt,
Jakob D. Havtorn, Joakim Edin, Christian Igel, Katrin Kirch-
hoff, Shang-Wen Li, Karen Livescu, Lars Maaløe, Tara N.
Sainath, and Shinji Watanabe, “Self-supervised speech rep-
resentation learning: A review,” IEEE J. Sel. Top. Signal Pro-
cess., vol. 16, no. 6, pp. 1179–1210, 2022.

[3] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru
Harada, and Kunio Kashino, “BYOL for audio: Self-
supervised learning for general-purpose audio representation,”
in IJCNN. 2021, pp. 1–8, IEEE.

[4] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru
Harada, and Kunio Kashino, “BYOL for audio: Exploring pre-
trained general-purpose audio representations,” IEEE/ACM
Trans. Audio Speech Lang. Process., vol. 31, pp. 137–151,
2023.

[5] Tadanobu Inoue, Phongtharin Vinayavekhin, Shu Morikuni,
Shiqiang Wang, Tuan Hoang Trong, David Wood, Michiaki
Tatsubori, and Ryuki Tachibana, “Detection of anomalous
sounds for machine condition monitoring using classification
confidence,” in DCASE, 2020, pp. 66–70.

[6] Jose A. Lopez, Hong Lu, Paulo Lopez-Meyer, Lama Nachman,
Georg Stemmer, and Jonathan Huang, “A speaker recognition
approach to anomaly detection,” in DCASE, 2020, pp. 96–99.

[7] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David
Lopez-Paz, “Mixup: Beyond empirical risk minimization,” in
ICLR, 2018.

[8] Han Chen, Yan Song, Zhu Zhuo, Yu Zhou, Yu-Hong Li, Hui
Xue, and Ian McLoughlin, “An effective anomalous sound de-
tection method based on representation learning with simulated
anomalies,” in ICASSP. IEEE, 2023.

[9] Ismail Nejjar, Jean Meunier-Pion, Gaëtan Frusque, and Olga
Fink, “DG-Mix: Domain generalization for anomalous sound
detection based on self-supervised learning,” in DCASE. 2022,
Tampere University.

[10] Adrien Bardes, Jean Ponce, and Yann LeCun, “VI-
CReg: Variance-invariance-covariance regularization for self-
supervised learning,” in ICLR. 2022, OpenReview.net.

[11] Ritwik Giri, Srikanth V. Tenneti, Fangzhou Cheng, Karim
Helwani, Umut Isik, and Arvindh Krishnaswamy, “Self-
supervised classification for detecting anomalous sounds,” in
DCASE, 2020, pp. 46–50.

[12] Kota Dohi, Takashi Endo, Harsh Purohit, Ryo Tanabe, and
Yohei Kawaguchi, “Flow-based self-supervised density esti-
mation for anomalous sound detection,” in ICASSP. 2021, pp.
336–340, IEEE.

[13] Kevin Wilkinghoff and Frank Kurth, “Why do angular margin
losses work well for semi-supervised anomalous sound detec-
tion?,” IEEE/ACM Trans. Audio Speech Lang. Process, vol.
32, pp. 608–622, 2024.

[14] Kevin Wilkinghoff, “Fraunhofer FKIE submission for task
2: First-shot unsupervised anomalous sound detection for ma-
chine condition monitoring,” Tech. Rep., DCASE2023 Chal-
lenge, 2023.

[15] Kevin Wilkinghoff, “Design choices for learning embeddings
from auxiliary tasks for domain generalization in anomalous
sound detection,” in ICASSP. 2023, IEEE.

[16] Wang Junjie, Wang Jiajun, Chen Shengbing, Sun Yong, and
Liu Mengyuan, “Anomalous sound detection based on self-
supervised learning,” Tech. Rep., DCASE2023 Challenge,
2023.

[17] Kevin Wilkinghoff, “Sub-cluster AdaCos: Learning represen-
tations for anomalous sound detection,” in IJCNN. 2021, IEEE.

[18] Jia Yafei, Bai Jisheng, and Huang Siwei, “Unsupervised ab-
normal sound detection based on machine condition mixup,”
Tech. Rep., DCASE2023 Challenge, 2023.

[19] Lei Wang, Fan Chu, Yuxuan Zhou, Shuxian Wang, Zulong
Yan, Shifan Xu, Qing Wu, Mingqi Cai, Jia Pan, Qing Wang,
Jun Du, Tian Gao, Xin Fang, and Liang Zou, “First-shot un-
supervised anomalous sound detection using attribute classifi-
cation and conditional autoencoder,” Tech. Rep., DCASE2023
Challenge, 2023.

[20] Wang JiaJun, “Self-supervised representation learning for first-
shot unsupervised anomalous sound detection,” Tech. Rep.,
DCASE2023 Challenge, June 2023.

[21] Relja Arandjelovic and Andrew Zisserman, “Look, listen and
learn,” in ICCV. 2017, pp. 609–617, IEEE Computer Society.

[22] Relja Arandjelovic and Andrew Zisserman, “Objects that
sound,” in ECCV. 2018, vol. 11205 of Lecture Notes in Com-
puter Science, pp. 451–466, Springer.

[23] Aurora Cramer, Ho-Hsiang Wu, Justin Salamon, and
Juan Pablo Bello, “Look, listen, and learn more: Design
choices for deep audio embeddings,” in ICASSP. 2019, pp.
3852–3856, IEEE.

[24] Kevin Wilkinghoff and Fabian Fritz, “On using pre-trained em-
beddings for detecting anomalous sounds with limited training
data,” in EUSIPCO. 2023, pp. 186–190, IEEE.

[25] Satvik Venkatesh, Gordon Wichern, Aswin Shanmugam Sub-
ramanian, and Jonathan Le Roux, “Improved domain gener-
alization via disentangled multi-task learning in unsupervised
anomalous sound detection,” in DCASE. 2022, Tampere Uni-
versity.

[26] Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi,
Yuma Koizumi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe,
Takashi Endo, Masaaki Yamamoto, and Yohei Kawaguchi,
“Description and discussion on DCASE 2022 challenge task
2: Unsupervised anomalous sound detection for machine con-
dition monitoring applying domain generalization techniques,”
in DCASE. 2022, Tampere University.

[27] Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi,
Yuma Koizumi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe,
Takashi Endo, and Yohei Kawaguchi, “Description and discus-
sion on DCASE 2023 challenge task 2: First-shot unsupervised
anomalous sound detection for machine condition monitoring,”
in DCASE. 2023, pp. 31–35, Tampere University.

[28] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori
Ohishi, Masahiro Yasuda, and Shoichiro Saito, “Toy-
ADMOS2: Another dataset of miniature-machine operating
sounds for anomalous sound detection under domain shift con-
ditions,” in DCASE, 2021, pp. 1–5.

[29] Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe,
Takashi Endo, Masaaki Yamamoto, Yuki Nikaido, and Yohei
Kawaguchi, “MIMII DG: sound dataset for malfunctioning in-
dustrial machine investigation and inspection for domain gen-
eralization task,” in DCASE. 2022, pp. 26–30, Tampere Uni-
versity.

[30] Zhiqiang Lv, Bing Han, Zhengyang Chen, Yanmin Qian, Ji-
awei Ding, and Jia Liu, “Unsupervised anomalous detec-
tion based on unsupervised pretrained models,” Tech. Rep.,
DCASE2023 Challenge, 2023.

[31] Anbai Jiang, Qijun Hou, Jia Liu, Pingyi Fan, Jitao Ma,
Cheng Lu, Yuanzhi Zhai, Yufeng Deng, and Wei-Qiang Zhang,
“Thuee system for first-shot unsupervised anomalous sound
detection for machine condition monitoring,” Tech. Rep.,
DCASE2023 Challenge, 2023.

[32] Yifan Zhou and Yanhua Long, “Attribute classifier with im-
balance compensation for anomalous sound detection,” Tech.
Rep., DCASE2023 Challenge, 2023.

[33] Jiantong Tian, Hejing Zhang, Qiaoxi Zhu, Feiyang Xiao,
Haohe Liu, Xinhao Mei, Youde Liu, Wenwu Wang, and Jian
Guan, “First-shot anomalous sound detection with gmm clus-
tering and finetuned attribute classification using audio pre-
trained model,” Tech. Rep., DCASE2023 Challenge, 2023.

[34] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori
Ohishi, and Masahiro Yasuda, “First-shot anomaly detection
for machine condition monitoring: A domain generalization
baseline,” in EUSIPCO. 2023, pp. 191–195, IEEE.

A.1 key publications 189

a.1.8 Key publication 8

Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “TACos: Learning Tempo-
rally Structured Embeddings for Few-Shot Keyword Spotting with Dynamic Time
Warping.” In: International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2024, pp. 9941–9945. doi: 10.1109/ICASSP48485.2024.
10445814.
© 2024 IEEE.
The co-author of this publication contributed in the following ways: Alessia
Cornaggia-Urrigshardt assisted with creating the dataset. She also applied DTW,
tested the HFCC-based approach and evaluated global and individual decision
thresholds.

https://doi.org/10.1109/ICASSP48485.2024.10445814
https://doi.org/10.1109/ICASSP48485.2024.10445814

TACOS: LEARNING TEMPORALLY STRUCTURED EMBEDDINGS FOR FEW-SHOT
KEYWORD SPOTTING WITH DYNAMIC TIME WARPING

Kevin Wilkinghoff 1 and Alessia Cornaggia-Urrigshardt 1

1Fraunhofer FKIE, Fraunhoferstraße 20, 53343 Wachtberg, Germany
kevin.wilkinghoff@ieee.org, alessia.cornaggia-urrigshardt@fkie.fraunhofer.de

ABSTRACT

To segment a signal into blocks to be analyzed, few-shot keyword
spotting (KWS) systems often utilize a sliding window of fixed size.
Because of the varying lengths of different keywords or their spoken
instances, choosing the right window size is a problem: A window
should be long enough to contain all necessary information needed to
recognize a keyword but a longer window may contain irrelevant in-
formation such as multiple words or noise and thus makes it difficult
to reliably detect on- and offsets of keywords. We propose TACos, a
novel angular margin loss for deriving two-dimensional embeddings
that retain temporal properties of the underlying speech signal. In
experiments conducted on KWS-DailyTalk, a few-shot KWS dataset
presented in this work, using these embeddings as templates for dy-
namic time warping is shown to outperform using other representa-
tions or a sliding window and that using time-reversed segments of
the keywords during training improves the performance.

Index Terms— keyword spotting, representation learning, an-
gular margin loss, few-shot learning

1. INTRODUCTION

Keyword spotting (KWS) [1] is the task of detecting spoken in-
stances of a few pre-defined keywords in audio recordings of pos-
sibly long duration. All other audio content should be ignored and
thus KWS is inherently an open-set classification task. Addition-
ally, for many KWS applications only very few training samples are
available (few-shot classification [2]) and it is important to detect
on- and offsets of detected keywords for further (manual) analysis
of the content. Typical KWS applications are activating voice assis-
tants [3,4], searching for content in large databases [5] or monitoring
audio streams such as (radio) communication transmissions [6].

Many state-of-the-art KWS systems rely on segmenting audio
signals and applying a neural network to extract discriminative em-
beddings for each segment that can be used to detect keywords [7,8].
For few-shot KWS, neural networks with a prototypical loss [9] are
often used to learn an embedding function [10–12]. Similar ap-
proaches are used for few-shot detection of bioacoustic events [13]
or sound events in general [14, 15]. Usually, a sliding window is
applied to segment the signal into blocks of fixed size, in which
keywords are searched. The chosen window size needs to be long
enough to capture sufficient information for identifying a keyword.
However, longer windows are likely to contain multiple keywords or,
in case of a short keyword, too much irrelevant information thus de-
grading the performance. Additionally, precisely estimating on- and
offsets of detected keywords is much more difficult with longer win-
dows. Furthermore, the length of different keywords can strongly
vary making it difficult to determine a suitable, fixed, window length.

In automatic speech recognition (ASR) [16], this problem is
solved by using sequence-to-sequence losses such as the connec-
tionist temporal classification loss [17]. However, training with such
losses requires sufficient amounts of data making them unsuitable
for a few-shot classification task. Although it is also possible to use
a pre-trained ASR system [18, 19] or pre-trained ASR embeddings
[20], this requires collecting many hours of training data recorded
in similar acoustic environments and creates a large computational
overhead. In [21], it has been proposed to save computational power
by providing the network the ability to spike once a keyword is
detected and immediately stop analyzing the remaining part of the
input sequence. Classically, hand-crafted speech features such as
human factor cepstral coefficients (HFCCs) [22] are used as two-
dimensional templates for dynamic time warping (DTW). However,
the performance of these unsupervised approaches quickly degrades
for very short words or in difficult acoustic conditions. It is also
possible to combine multiple KWS approaches: In [23], DTW and
hand-crafted speech features are used to obtain training data for a
neural network-based KWS system. In our prior work [24], two-
dimensional embeddings, to be used as features for DTW, are trained
using a neural network applied to windowed segments of audio sig-
nals. Still, the obtained embeddings are mostly constant over time
and thus many problems resulting from using a sliding window per-
sist.

The contributions of this work are the following: First and fore-
most, TACos, a novel loss function for learning embeddings that also
capture the temporal structure, and a DTW-based few-shot KWS
system are proposed. Second, the few-shot KWS dataset KWS-
DailyTalk1 based on the ASR dataset DailyTalk [25] is presented. In
contrast to existing KWS datasets such as SpeechCommands [26],
KWS-DailyTalk is an open-set classification dataset with isolated
keywords as training data and complete spoken sentences as valida-
tion and test data. The proposed KWS system is shown to outper-
form systems using hand-crafted speech features, a sliding window
or other KWS embeddings. Furthermore, it is shown that teaching
the model to distinguish between regular and temporally reversed
segments improves the performance.

2. METHODOLOGY

This work is based on prior work on learning two-dimensional em-
beddings for KWS with DTW [24]. A KWS system using these
embeddings can be divided into a frontend for pre-processing the
data, a neural network for extracting embeddings, and a backend for
computing scores and finding keywords using DTW. To improve
the quality of the embeddings, we propose 1) TACos, a novel an-
gular margin loss that also considers the position of a segment in

1https://github.com/wilkinghoff/kws-dailytalk

backend
neural networkfrontend

obtain key-
word label

obtain raw
waveform

pre-process
waveform

divide into
segments

encode positional
information

revert along
temporal axis

compute mag-
nitude log-Mel
spectrograms

apply data
augmentation

train neu-
ral network

extract em-
beddings with
neural network

compute cost
matrices

apply sub-
sequence DTW

post-process
potential matches

return keyword
matches with

on- and offsets

Fig. 1. Structure of the proposed KWS system. Blocks colored in blue are only used for training the system, blocks colored in yellow are
only used for inference and blocks colored in red are used for training and inference.

a keyword, and 2) recognizing temporally reversed segments dur-
ing training. In the following, each component of the KWS system
will be reviewed and afterwards both proposed improvements will
be presented. An overview of the resulting KWS system is depicted
in Figure 1.

2.1. Review of embeddings for KWS with DTW

Frontend: First, all waveforms are converted to single-channel, nor-
malized to an amplitude of 1, resampled to 16 kHz and high-pass
filtered at 50Hz. For the training samples containing isolated key-
words, the waveforms are divided into overlapping segments with
a length of Lseg = 0.25 s and an overlap of Lseg

5
. During infer-

ence, a segment overlap of 256
16 000Hz

is used to increase the temporal
resolution of the resulting embeddings. Furthermore, samples are
padded with

⌊Lseg·16000
2

⌋
zeros on both sides to ensure that the cen-

ters of the extracted segments align with their temporal position in
the audio signal. Segments shorter than Lseg are padded with zeros.
From these, log-Mel magnitude spectrograms with 64 Mel bins are
extracted using an STFT with Hanning-weighted windows of size
1024 and a hop size of 256.

Neural network: To extract two-dimensional embeddings, the
modified ResNet architecture from [24] is used. This model consists
of four times two residual blocks [27], each using convolutional lay-
ers with filters of size 3 × 3, max-pooling for the frequency dimen-
sion and dropout with a probability of 20%, followed by a global
max-pooling operation over the frequency dimension and a dense
layer without activation function. Throughout the network, the same
time dimension is kept by padding appropriately and not applying
temporal pooling operations. The model, without the loss function,
has only 713, 486 trainable parameters. As a loss function, the Ada-
Cos loss [28], which is an angular margin loss for classification with
a dynamically adaptive scale parameter, is used to discriminate be-
tween different keywords. Additional details can be found in [24].

The network is trained for 1000 epochs with a batch size of 32
using Adam [29]. Most keywords have different lengths resulting
in a class imbalance due to a different total number of segments for
each keyword class. To handle this, random oversampling is applied.
For data augmentation, Mixup [30] with a mixing coefficient drawn
from a uniform distribution and SpecAugment [31] are used. During
training, random segments of the background noise recordings from
SpeechCommands [26] are used as an additional “no speech” class.

Backend: The backend consists of applying sub-sequence
DTW [32]. All embeddings belonging to different segments of the

same audio signal are combined by taking the mean of all individual
frames of the time-frequency representation that overlap in time re-
sulting in DTW templates. In a next step, cost matrices are computed
by applying the pairwise cosine distance between the templates of
test sentences and the templates extracted from individual training
samples. We also experimented with computing Fréchet means of all
templates belonging to the same keyword with the DTW barycenter
averaging (DBA) algorithm [33] but this led to worse performance
than using the templates of the individual training samples. To
compute accumulated cost matrices, the DTW step sizes (2, 1),
(1, 1) and (1, 2) are used. Note that computing the accumulated
cost matrices can be parallelized by sweeping diagonally over the
cost matrix. In total, the presented KWS approach is much faster
than real-time. For each temporal position, a warping path is cal-
culated and the corresponding accumulated cost is normalized with
respect to the path length. The negative accumulated costs serve as
matching scores that can be compared to a pre-defined threshold.
Scores exceeding the threshold are considered as valid detections of
a keyword and the start and end positions of the corresponding paths
are returned as on- and offsets, respectively. If multiple detections
overlap in time, all detections are shortened such that, at each posi-
tion in time, only the single detection with the highest score is kept.
Detections with less than half the duration of the training sample
belonging to the detected keyword are discarded.

2.2. TACos loss function

𝑦𝑝𝑜𝑠(𝑒)

𝑖𝑝𝑜𝑠𝑖𝑝𝑜𝑠+1

𝑦𝑘𝑤(𝑒)

𝑖𝑘𝑤

segment of spectrogram

𝑇

64

embedding 𝑒

𝑇

𝐷𝑒𝑚𝑏

centers for 𝑖𝑝𝑜𝑠 and 𝑖𝑘𝑤

Pairwise similarity

take mean

take max

𝜃(𝑒, 𝑖𝑘𝑤, 𝑖𝑝𝑜𝑠)

𝑠(𝑒, 𝑖𝑘𝑤 , 𝑖𝑝𝑜𝑠)

ℒ𝑘𝑤(𝑒)

ℒ𝑝𝑜𝑠(𝑒)

Fig. 2. Illustration of the TACos loss function.

The TACos loss function, illustated in Figure 2, consists of a
supervised loss Lkw for predicting the keyword a given audio seg-
ment belongs to, which is the same loss as defined in [24], and a
self-supervised loss Lpos for predicting the relative position of this
segment within a keyword. When only using a supervised loss, the
resulting embeddings are mostly constant over time. The idea of
introducing a positional loss is to force the network to learn two-
dimensional embeddings that are changing over time and thus are
more suitable to be used as templates for DTW.

Since the length of different keywords may vary substantially,
the absolute position of a segment within a keyword has to be en-
coded relative to the length of the keyword to be able to use a fixed
number of position classes for all keywords. Let K ∈ N be the
total number of training samples, Nseg(k) ∈ N denote the num-
ber of segments belonging to the kth training sample and define
Npos := maxk∈{1,...,K}{Nseg(k)}. Then, the relative positional en-
coding ypos(ek,iseg) ∈ [0, 1]Npos of embedding ek,iseg belonging to
segment iseg ∈ {1, ..., Nseg(k)} of keyword sample k is obtained
by setting

ypos(ek,iseg , ipos) =
1Iactive(k,iseg)(ipos)∑Npos

jpos=1 1Iactive(k,iseg)(jpos)

with Iactive(k, iseg) =
[
1 +

⌈ (iseg−1)·Npos
Nseg(k)

⌉
,
⌈ iseg·Npos

Nseg(k)

⌉]
. Thus, for

keyword samples shorter than the longest training sample, multiple
positions may be set as active with equal probability resulting in soft
labels for the position.

Let Nkw ∈ N denote the number of different keywords in the
dataset and let ykw(e, ikw) ∈ [0, 1] denote the categorical keyword
labels of the samples. Let T :=

⌈
Lseg · 16000

256

⌉
∈ N be the time di-

mension and Demb ∈ N be the embedding dimension of an embed-
ding e ∈ RT×Demb belonging to a single segment. Then, we define
the cosine similarity of embedding e to keyword ikw ∈ {1, ..., Nkw}
and position ipos ∈ {1, ..., Npos} as a temporal mean given by

θ(e, ikw, ipos) :=
1

T

T∑

t=1

max
icluster

⟨e(t), c(icluster, ikw, ipos)⟩
∥e(t)∥2∥c(icluster, ikw, ipos)∥2

for trainable cluster centers c ∈ RNcluster×Nkw×Npos×Demb with
Ncluster ∈ N, which do not have a temporal dimension. The corre-
sponding softmax probability of embedding e belonging to keyword
ikw and position ipos is defined as

s(e, ikw, ipos) :=
exp(ŝ · θ(e, ikw, ipos))∑Nkw

jkw=1

∑Npos
jpos=1 exp(ŝ · θ(e, jkw, jpos))

where ŝ ∈ R+ is the dynamically adaptive scale parameter as de-
fined for the sub-cluster AdaCos loss in [34]. The probability of em-
bedding e belonging to keyword ikw is set to

∑Npos
jpos=1 s(e, ikw, jpos)

and the probability of embedding e belonging to position ipos is set
to

∑Nkw
jkw=1 s(e, jkw, ipos). Therefore, the loss functions for a single

embedding e are equal to

Lkw(e) :=

Nkw∑

ikw=1

ykw(e, ikw) log
(Npos∑

ipos=1

s(e, ikw, ipos)
)

Lpos(e) :=

Npos∑

ipos=1

ypos(e, ipos) log
(Nkw∑

ikw=1

s(e, ikw, ipos)
)

and the TACos loss used for training the network is

LTAC := − 1

K

K∑

k=1

1

Nseg(k)

Nseg(k)∑

iseg=1

(Lkw(ek,iseg) + Lpos(ek,iseg)).

Note that the cluster centers c significantly increase the total number
of trainable parameters of the model. For all experiments in this
work, Demb = 128 and Ncluster = 16 were used.

2.3. Using temporally reversed segments

As a second modification, we propose to utilize temporally reversed
versions of all keyword segments as additional training samples
when training the embedding model. The idea is that the network
has to be able to recognize the correct temporal order, i.e., we en-
force that the reverse keyword is considered to be different from the
non-reversed version. By doing so, the model has a harder task in
correctly predicting the corresponding keyword and position of the
segments. This leads to more informative embeddings and reduces
the number of false detections. For each keyword class except for
“no speech”, an additional unique label for the reversed keyword
segments is introduced, almost doubling the number of different
keyword classes. The position of the reversed segments and the
segments not containing any speech are both encoded by using a
uniform posterior probability over the position classes.

3. EXPERIMENTS

3.1. Dataset

For all experimental evaluations, KWS-DailyTalk based on the ASR
dataset DailyTalk [25] was used. KWS-DailyTalk is a five-shot
KWS dataset aimed at detecting 15 different keywords, namely
“afternoon”, “airport”, “cash”, “credit card”, “deposit”, “dollar”,
“evening”, “expensive”, “house”, “information”, “money”, “morn-
ing”, “night”, “visa” and “yuan”. The dataset consists of a training
set with five isolated samples for each keyword and a duration of 39
seconds, as well as a validation and a test set, with an approximate
duration of 10 minutes each, containing 156 and 157 sentences taken
from dialogues, respectively. These sentences contain either none,
a single, or multiple occurrences of the keywords as well as several
other words that are not of interest but may cause false alarms. All
keywords appear about 12 times each in the validation and the test
set. The on- and offset of each keyword were manually annotated.
Furthermore, it is ensured that a keyword sample used for training
and the sentences of the validation and test set that also contain this
keyword do not belong to the same conversation to make the KWS
task more realistic and slightly more difficult. For all experimental
evaluations, the event-based F-score (micro-averaged) as imple-
mented in the sed eval toolbox [35] was used. All hyperparameters
of the KWS systems were tuned to maximize the performance on
the validation set.

3.2. Baseline approaches

For comparison, the embeddings from [24] reviewed in subsec-
tion 2.1 and the following two baseline systems are used.

HFCCs: Instead of applying sub-sequence DTW to trained em-
beddings, HFCCs [22, 32] based on spectrograms with a window
of 40ms and a step size of 10ms are used. These features were
shown to outperform Mel-frequency cepstral coefficients in query-
by-example KWS approaches. The DTW algorithm is the same as
stated in subsection 2.1.

Table 1. Event-based, micro-averaged F-score, precision and recall obtained on KWS-DailyTalk with different KWS systems. Highest F-
scores for each feature representation are highlighted with bold letters, overall highest F-scores are underlined.

KWS feature representation reversed segments threshold obtained performance
validation set test set

F-score precision recall F-score precision recall

HFCCs not applicable global 60.52% 63.25% 58.01% 56.97% 61.54% 53.04%
HFCCs not applicable individual 64.71%64.71%64.71% 69.18% 60.77% 57.74%57.74%57.74% 62.58% 53.59%

embeddings (sliding) not used global 39.76% 43.71% 36.46% 38.35% 41.14% 35.91%
embeddings (sliding) not used individual 46.96% 49.39% 44.75% 40.44% 40.00% 40.88%
embeddings (sliding) used global 44.13% 62.00% 34.25% 44.83% 59.63% 35.91%
embeddings (sliding) used individual 55.43%55.43%55.43% 54.55% 56.35% 50.42%50.42%50.42% 51.14% 49.72%

embeddings (Lkw) [24] not used global 56.04% 52.40% 60.22% 54.25% 53.80% 54.70%
embeddings (Lkw) [24] not used individual 58.38% 57.14% 59.67% 53.04% 53.04% 53.04%
embeddings (Lkw) used global 64.58% 74.64% 56.91% 61.30%61.30%61.30% 69.72% 54.70%
embeddings (Lkw) used individual 66.12%66.12%66.12% 64.89% 67.40% 60.53% 57.79% 63.54%

embeddings (Lkw + Lpos) not used global 62.78% 75.78% 53.59% 64.65% 82.76% 53.04%
embeddings (Lkw + Lpos) not used individual 63.36% 63.19% 63.54% 63.31% 68.15% 59.12%
embeddings (Lkw + Lpos) used global 65.78% 82.50% 54.70% 70.47%70.47%70.47% 89.74% 58.01%
embeddings (Lkw + Lpos) used individual 69.44%69.44%69.44% 75.00% 64.64% 69.16% 79.29% 61.33%

Sliding window: As a third system, a sliding window based
approach using a neural network trained with the standard AdaCos
loss [28] is used. The network architecture is the same as presented
in subsection 2.1 with the following modifications: For each residual
block, the max-pooling operation is also applied to the temporal di-
mension and a flattening operation is applied before projecting onto
the embedding space. To detect on- and offsets of keywords, the
cosine distance of the resulting embeddings to each of the keyword-
specific centers is calculated first. Then, these cosine distances are
compared to a pre-defined threshold and a median filter with a size
equal to the average number of segments over all training samples
belonging to the corresponding keyword, rounded to the nearest odd
natural number, is applied to the Boolean decision results. Start and
end points of the resulting positive regions are adjusted by adding
−Lseg

2
and +

Lseg
2

, respectively, and indicate on- and offsets of de-
tected keywords.

3.3. Experimental results

The experimental results obtained on KWS-DailyTalk can be found
in Table 1. First, it can be seen that using the proposed TACos
loss leads to significantly better performance than when only using
Lkw, as done in [24], or using a sliding window based approach,
particularly so on the test set. Moreover, both embeddings per-
form better than HFCCs despite having only 39 seconds of audio
recordings available for training. A second major observation is
that using temporally reversed segments for training the embedding
model always improves the performance regardless of the chosen
KWS approach. We want to emphasize that this can be observed al-
though very powerful data augmentation techniques, namely Mixup
and SpecAugment, are applied. Furthermore, tuning individual de-
cision thresholds for each keyword class only improves the test per-
formance when using a sliding window but not for the proposed ap-
proach for which the performance actually slightly decreases. Thus,
another advantage is that one does not have to tune individual deci-
sion thresholds, which would be very impractical.

4. CONCLUSIONS

In this paper, TACos, a novel loss function for training neural net-
works to extract discriminative embeddings with temporal structure
and a few-shot KWS-system based on DTW utilizing this loss were
proposed. TACos consists of two components for learning the corre-
sponding keyword of small speech segments as well as their relative
position within a given keyword. To evaluate the performance of the
KWS system, KWS-DailyTalk, an open-source dataset for few-shot
keyword spotting based on DailyTalk, was presented. In experiments
conducted on this dataset, it was shown that the proposed approach
outperforms KWS systems based on other representations or a sys-
tem using a sliding window. Last but not least, it was shown that
exploiting temporally reversed segments of provided training sam-
ples improves the performance regardless of the embedding type.
For future work, the proposed method will be evaluated in noisy
conditions and for zero-shot KWS by pre-training the embeddings
on a large ASR dataset as done in [20] and/or using pre-trained ASR
embeddings instead of spectrograms as input representations.

5. ACKNOWLEDGMENTS

The authors would like to thank Paul M. Baggenstoss, Fabian Fritz,
Lukas Henneke and Frank Kurth for their valuable feedback.

6. REFERENCES

[1] Iván López-Espejo, Zheng-Hua Tan, John H. L. Hansen, and
Jesper Jensen, “Deep spoken keyword spotting: An overview,”
IEEE Access, vol. 10, pp. 4169–4199, 2022.

[2] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M.
Ni, “Generalizing from a few examples: A survey on few-shot
learning,” ACM Comput. Surv., vol. 53, no. 3, pp. 63:1–63:34,
2021.

[3] Johan Schalkwyk, Doug Beeferman, Françoise Beaufays, Bill
Byrne, Ciprian Chelba, Mike Cohen, Maryam Kamvar, and
Brian Strope, ““Your word is my command”: Google search

by voice: A case study,” Advances in Speech Recognition: Mo-
bile Environments, Call Centers and Clinics, pp. 61–90, 2010.

[4] Assaf Hurwitz Michaely, Xuedong Zhang, Gabor Simko, Car-
olina Parada, and Petar S. Aleksic, “Keyword spotting for
google assistant using contextual speech recognition,” in
ASRU. 2017, pp. 272–278, IEEE.

[5] Ami Moyal, Vered Aharonson, Ella Tetariy, and Michal
Gishri, Phonetic Search Methods for Large Speech Databases,
Springer Briefs in Electrical and Computer Engineering.
Springer, 2013.

[6] Raghav Menon, Armin Saeb, Hugh Cameron, William Kibira,
John A. Quinn, and Thomas Niesler, “Radio-browsing for de-
velopmental monitoring in Uganda,” in ICASSP. 2017, pp.
5795–5799, IEEE.

[7] Herman Kamper, Weiran Wang, and Karen Livescu, “Deep
convolutional acoustic word embeddings using word-pair side
information,” in ICASSP. 2016, pp. 4950–4954, IEEE.

[8] Haoxin Ma, Ye Bai, Jiangyan Yi, and Jianhua Tao, “Hyper-
sphere embedding and additive margin for query-by-example
keyword spotting,” in APSIPA ASC. 2019, pp. 868–872, IEEE.

[9] Jake Snell, Kevin Swersky, and Richard S. Zemel, “Prototyp-
ical networks for few-shot learning,” in NeurIPS, 2017, pp.
4077–4087.

[10] Mark Mazumder, Colby R. Banbury, Josh Meyer, Pete Warden,
and Vijay Janapa Reddi, “Few-shot keyword spotting in any
language,” in Interspeech. 2021, pp. 4214–4218, ISCA.

[11] Archit Parnami and Minwoo Lee, “Few-shot keyword spotting
with prototypical networks,” in ICMLT. 2022, pp. 277–283,
ACM.

[12] Byeonggeun Kim, Seunghan Yang, Inseop Chung, and
Simyung Chang, “Dummy prototypical networks for few-shot
open-set keyword spotting,” in Interspeech. 2022, pp. 4621–
4625, ISCA.

[13] Inês Nolasco, Shubhr Singh, E. Vidaña-Villa, E. Grout, J. Mor-
ford, M. G. Emmerson, F. H. Jensen, Ivan Kiskin, H. White-
head, Ariana Strandburg-Peshkin, Lisa F. Gill, Hanna Pamula,
Vincent Lostanlen, Veronica Morfi, and Dan Stowell, “Few-
shot bioacoustic event detection at the DCASE 2022 chal-
lenge,” in DCASE, 2022, pp. 136–140.

[14] Yu Wang, Justin Salamon, Nicholas J. Bryan, and Juan Pablo
Bello, “Few-shot sound event detection,” in ICASSP. 2020, pp.
81–85, IEEE.

[15] Yu Wang, Mark Cartwright, and Juan Pablo Bello, “Active
few-shot learning for sound event detection,” in Interspeech.
2022, pp. 1551–1555, ISCA.

[16] Jinyu Li et al., “Recent advances in end-to-end automatic
speech recognition,” APSIPA Transactions on Signal and In-
formation Processing, vol. 11, no. 1, 2022.

[17] Alex Graves, Santiago Fernández, Faustino J. Gomez, and
Jürgen Schmidhuber, “Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural net-
works,” in ICML. 2006, pp. 369–376, ACM.

[18] Byeonggeun Kim, Mingu Lee, Jinkyu Lee, Yeonseok Kim, and
Kyuwoong Hwang, “Query-by-example on-device keyword
spotting,” in ASRU. 2019, pp. 532–538, IEEE.

[19] Li Meirong, Zhang Shaoying, Cheng Chuanxu, and Xu Wen,
“Query-by-example on-device keyword spotting using convo-
lutional recurrent neural network and connectionist temporal
classification,” in ICSP, 2021, pp. 1291–1294.

[20] R. Kirandevraj, Vinod Kumar Kurmi, Vinay P. Namboodiri,
and C. V. Jawahar, “Generalized keyword spotting using ASR
embeddings,” in Interspeech. 2022, pp. 126–130, ISCA.

[21] Alan Jeffares, Qinghai Guo, Pontus Stenetorp, and Timoleon
Moraitis, “Spike-inspired rank coding for fast and accurate
recurrent neural networks,” in ICLR. 2022, OpenReview.net.

[22] Dirk Von Zeddelmann, Frank Kurth, and Meinard Müller,
“Perceptual audio features for unsupervised key-phrase detec-
tion,” in ICASSP. IEEE, 2010, pp. 257–260.

[23] Raghav Menon, Herman Kamper, John A. Quinn, and Thomas
Niesler, “Fast ASR-free and almost zero-resource keyword
spotting using DTW and CNNs for humanitarian monitoring,”
in Interspeech. 2018, pp. 2608–2612, ISCA.

[24] Kevin Wilkinghoff, Alessia Cornaggia-Urrigshardt, and
Fahrettin Gökgöz, “Two-dimensional embeddings for low-
resource keyword spotting based on dynamic time warping,”
in ITG Speech. 2021, pp. 9–13, VDE-Verlag.

[25] Keon Lee, Kyumin Park, and Daeyoung Kim, “DailyTalk:
Spoken dialogue dataset for conversational text-to-speech,” in
ICASSP. 2023, IEEE.

[26] Pete Warden, “Speech commands: A dataset for limited-
vocabulary speech recognition,” CoRR, vol. abs/1804.03209,
2018.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in CVPR.
2016, pp. 770–778, IEEE.

[28] Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and Hong-
sheng Li, “AdaCos: Adaptively scaling cosine logits for effec-
tively learning deep face representations,” in CVPR. 2019, pp.
10823–10832, IEEE.

[29] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2015.

[30] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David
Lopez-Paz, “Mixup: Beyond empirical risk minimization,” in
ICLR, 2018.

[31] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu,
Barret Zoph, Ekin D. Cubuk, and Quoc V. Le, “SpecAugment:
A simple data augmentation method for automatic speech
recognition,” in Interspeech. 2019, pp. 2613–2617, ISCA.

[32] Frank Kurth and Dirk von Zeddelmann, “An analysis of
MFCC-like parametric audio features for keyphrase spotting
applications,” in ITG Speech. 2010, VDE.

[33] François Petitjean, Alain Ketterlin, and Pierre Gançarski, “A
global averaging method for dynamic time warping, with ap-
plications to clustering,” Pattern recognition, vol. 44, no. 3, pp.
678–693, 2011.

[34] Kevin Wilkinghoff, “Sub-cluster AdaCos: Learning represen-
tations for anomalous sound detection,” in IJCNN. 2021, IEEE.

[35] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen,
“Metrics for polyphonic sound event detection,” Applied Sci-
ences, vol. 6, no. 6, pp. 162, 2016.

A.1 key publications 195

a.1.9 Key publication 9

Kevin Wilkinghoff and Keisuke Imoto. “F1-EV Score: Measuring the Likelihood
of Estimating a Good Decision Threshold for Semi-Supervised Anomaly De-
tection.” In: International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2024, pp. 256–260. doi: 10 . 1109 / ICASSP48485 . 2024 .
10446011.
© 2024 IEEE.
The co-author of this publication contributed in the following ways: Keisuke Imoto
provided the dataset used for the experiments. He also proposed to include Section
3.3 and Figure 5.

https://doi.org/10.1109/ICASSP48485.2024.10446011
https://doi.org/10.1109/ICASSP48485.2024.10446011

F1-EV SCORE: MEASURING THE LIKELIHOOD OF ESTIMATING A GOOD DECISION
THRESHOLD FOR SEMI-SUPERVISED ANOMALY DETECTION

Kevin Wilkinghoff 1 and Keisuke Imoto2

1Fraunhofer FKIE, Fraunhoferstraße 20, 53343 Wachtberg, Germany
2Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, Japan

kevin.wilkinghoff@ieee.org, keisuke.imoto@ieee.org

ABSTRACT
Anomalous sound detection (ASD) systems are usually compared by
using threshold-independent performance measures such as AUC-
ROC. However, for practical applications a decision threshold is
needed to decide whether a given test sample is normal or anoma-
lous. Estimating such a threshold is highly non-trivial in a semi-
supervised setting where only normal training samples are avail-
able. In this work, F1-EV a novel threshold-independent perfor-
mance measure for ASD systems that also includes the likelihood
of estimating a good decision threshold is proposed and motivated
using specific toy examples. In experimental evaluations, multiple
performance measures are evaluated for all systems submitted to the
ASD task of the DCASE Challenge 2023. It is shown that F1-EV
is strongly correlated with AUC-ROC while having a significantly
stronger correlation with the F1-score obtained with estimated and
optimal decision thresholds than AUC-ROC.

Index Terms— performance measure, anomaly detection, deci-
sion threshold, domain generalization

1. INTRODUCTION

There are several performance measures for sound event detection
[1, 2] and anomalous sound detection (ASD) systems or binary clas-
sifiers in general [3, 4, 5, 6]. Usually, threshold-independent perfor-
mance measures such as the area under the receiver operating char-
acteristic curve (AUC-ROC) are used because they are more objec-
tive [7, 8] compared to threshold-dependent measures such as the
F1-score, which rely on a single chosen decision threshold. How-
ever, it has been shown that the AUC-ROC has a few weaknesses
[9] as for example that AUC-ROC does not work well for imbal-
anced class distributions since equal weight is given for positive and
negative samples [9, 10]. Moreover, for practical applications a de-
cision threshold is needed to be able to decide whether a test sample
is normal or anomalous. In semi-supervised ASD settings, estimat-
ing this threshold boils down to separating the extreme values of the
anomaly scores, e.g. scores larger than the 90th percentile, belong-
ing to normal samples from the rest and hoping that the estimated
decision threshold also works well for separating the scores of nor-
mal samples from the ones obtained with anomalous samples [11].
Hence, it is implicitly assumed that the anomaly scores belonging
to the normal training and test samples follow the same distribution.
Estimating a good decision threshold is a difficult task that is vital
when developing a system for a practical ASD application. If only
AUC-ROC is used as a performance measure, this difficulty is not
explicitly captured by the resulting score.

A naı̈ve solution to this problem is to use multiple performance
measures, for example a threshold-independent and a threshold-

dependent measure such as the AUC-ROC and the F1-score. How-
ever, a single threshold-independent measure is much more favor-
able to objectively compare the performance of multiple systems. In
this work, we propose the F1-expected value (EV) score for measur-
ing the performance of an ASD system. Similar to AUC-ROC, F1-
EV is a threshold-independent performance measure but also takes
the likelihood of estimating a good decision threshold into account.

The contributions of this work are the following: First, it is
shown experimentally and through toy examples that AUC-ROC
alone is not a sufficient performance measure for ASD. Second,
F1-EV1 a threshold-independent performance measure for anomaly
detection is presented. Furthermore, multiple performance measures
are evaluated and compared using all systems submitted to the ASD
task of the DCASE 2023 Challenge. It is shown that bounding the
F1-EV score is important and F1-EV is strongly correlated with
AUC-ROC while also having a significantly higher correlation with
the F1-score than AUC-ROC. As a last contribution, fine-tuning the
bounds of F1-EV score is investigated in an ablation study.

2. PERFORMANCE MEASURES

Throughout this work, anomaly scores are positive scalar values, and
their magnitude corresponds to the degree of anomaly.

2.1. AUC-ROC

First, we will recall the definition of the AUC-ROC score. For a set
of N ∈ N threshold values θ(n) ∈ R indexed by n ∈ {1, ...,N}, let
x(n), y(n) ∈ [0,1] be the monotone increasing sequences of sorted
false positive rates (FPRs) and sorted true positive rates (TPRs) of
the receiver operating characteristic (ROC)-curve resulting from the
anomaly scores, respectively. Define

∆x(n) ∶= x(n + 1) − x(n).
More concretely, the sequence (θ(n))n=1,...,N is set to all sorted
anomaly score values belonging to the evaluation samples because
these are the points where the intermediate statistics, i.e. TPR and
FPR, change. Compared to linearly scaled thresholds, which re-
quire an infinitesimal resolution to yield exact results, this particular
choice of evaluation thresholds has two advantages [8]: improved
computational efficiency and improved accuracy of the ROC curve.
Then, using the trapezoidal rule, the AUC-ROC score can be approx-
imated by calculating

AUC-ROC(x, y) ≈ N−1∑
n=1

y(n + 1) + y(n)
2

⋅∆x(n)
1An open-source implementation of F1-EV is available at: https://

github.com/wilkinghoff/f1-ev

anomaly score s(x)

pr
ob

ab
ili

ty
de

ns
ity

separable distributions with small margin

scores belonging to normal samples scores belonging to anomalous samples

anomaly score s(x)

separable distributions with large margin

θ0

anomaly score s(x)

separable distributions with no margin

Fig. 1: Three toy examples of perfectly separable anomaly score distributions, each with an AUC-ROC equal to 1. On the left, the margin
between normal and anomalous scores is small. In the center, the margin between the distributions is large and thus estimating a good decision
threshold is much easier. On the right, the only optimal decision threshold is θ = θ0, which is a null set with measure zero, and thus estimating
this threshold also has a likelihood of zero when assuming a continuous distribution with uncountable support for estimated thresholds. Note
that when estimating a decision threshold, only a finite number of anomaly scores belonging to the distribution of normal samples are available
and usually both distributions are more complex and overlap. This is the reason why estimating a good decision threshold is highly non-trivial.

θ(1) θ(2) θ(3) θ(4) θ(5) θ(6) θ(7) θ(8)0

0.2

0.4

0.6

0.8

1

decision threshold θ(n)

F1
sc

or
e

Fig. 2: Example of computing F1-EV using only very few decision
thresholds for illustration purposes.

as implemented in [12].
AUC-ROC does not require a specifically chosen decision

threshold. This allows for objective comparisons between different
ASD systems but does not take into account the difficulty of esti-
mating a good decision threshold. The AUC-ROC score is equal
to the probability that the anomaly score of a random normal sam-
ple is smaller than the anomaly score of a random anomalous sam-
ple [7, 13]. Hence, even when AUC-ROC equals 1, the results can
look very different because such a value only shows that there exists
a threshold that perfectly separates the anomaly scores belonging
to normal and anomalous samples as illustrated in Figure 1. This
motivates the definition of other threshold-independent performance
measures as proposed in the following two subsections.

2.2. F1-EV

The idea of F1-EV is to calculate the expected value of a random
variable that models the F1-score of an anomaly detection system.
This is realized by calculating the F1-score for all possible thresh-
old values θ(n) and computing the area under the resulting piece-
wise constant F1-score function. In [14], it has been shown that
computing the AUC-ROC of the precision-recall curve by using lin-
ear interpolations between samples as done by the trapezoidal rule
leads to over-optimistic results. Since the F1-score is the harmonic
mean of precision and recall, it thus makes more sense to also not
use the trapezoidal rule. We utilize a finite Riemann sum instead
as illustrated in Figure 2. Since the empirical F1-score function
is piece-wise constant with respect to the decision threshold, using
more threshold values than the number of samples does not improve
the accuracy of the Riemann sum.

Let us now formally introduce F1-EV. Define the normalized

distance between thresholds as

∆θ(n) ∶= θ(n + 1) − θ(n)
θ(N) − θ(1) .

Further, let F1(θ(n)) denote the F1-score obtained when applying
the decision threshold θ(n). Then, the F1-EV score is defined as

F1-EV(θ) ∶= N−1∑
n=1 F1(θ(n)) ⋅∆θ(n).

When assuming a uniform distribution for estimating a threshold
in the interval [θ(1), θ(N)], the value ∆θ(n) corresponds to the
likelihood of estimating the decision threshold θ(n). In conclusion,
F1-EV is the expected value of a random variable that models the
obtained F1-score of an anomaly detection system, as intended, and
thus yields a score between 0 and 1 with higher values indicating
better performance.

2.3. Bounded F1-EV

When setting the range of possible thresholds, one has to define
a smallest and a largest value of possible thresholds to compute a
performance measure. For F1-EV, these values have been set to
the smallest and largest anomaly scores of a given set of test sam-
ples. However, many of these thresholds are very unlikely to be
estimated. One can expect that estimated decision thresholds lie in a
certain range that depends on the estimation method. Furthermore,
if there are a few outliers in the anomaly score samples that are much
smaller or much larger than all the other scores, this will skew the
final performance measure drastically. Therefore, we propose to de-
fine more robust boundaries for the interval of possible thresholds
by only utilizing the anomaly scores belonging to the normal test
samples. Hence, the evaluation is independent of the particular set
of normal training samples, which are assumed to follow the same
distribution as the validation and test samples when estimating a de-
cision threshold. Furthermore, in [11] it has been shown that holding
back a few normal training samples when training the system to ob-
tain more realistic anomaly scores from these samples for estimating
a decision threshold does not increase the resulting F1-score. This
indicates that the assumption made about the distributions is valid.

We set the lower bound of the decision threshold, denoted by
θmin ∈ R, to be close to the sample mean µ of the anomaly scores
belonging to the normal test samples. Here we assume that, ideally,
one would not estimate a decision threshold that is much smaller
than this value. An upper bound θmax ∈ R is more difficult to choose

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC

F1
-s

co
re

(a
s

su
bm

itt
ed

)

a) AUC-ROC vs. F1-score (as submitted), PCC=0.503

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EV
F1

-s
co

re
(a

s
su

bm
itt

ed
)

b) F1-EV vs. F1-score (as submitted), PCC=0.380

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EVbounded

F1
-s

co
re

(a
s

su
bm

itt
ed

)

c) F1-EVbounded vs. F1-score (as submitted), PCC=0.696

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC

op
tim

al
F1

-s
co

re

d) AUC-ROC vs. optimal F1-score, PCC=0.497

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EV

op
tim

al
F1

-s
co

re
e) F1-EV vs. optimal F1-score, PCC=0.306

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EVbounded

op
tim

al
F1

-s
co

re

f) F1-EVbounded vs. optimal F1-score, PCC=0.732

Fig. 3: Comparison of several different performance measures computed on the evaluation set of task 2 of the DCASE2023 Challenge. In the
top row, threshold-independent performance measures are compared to the F1-score obtained with the submitted decision threshold. In the
bottom row, threshold-independent performance measures are compared to the F1-score obtained with an optimal decision threshold.

because the largest value of the anomaly scores may be an outlier and+∞ is definitely too large. Instead, we propose to utilize an upper
bound close to the empirically optimal decision threshold θopt ∈ R,
which is chosen as the center of the interval of possible thresholds
yielding optimal results. Again, the underlying assumption is that,
in an ideal world, one would not estimate a threshold much larger
than this upper bound. More concretely, we set

θmax ∶= θopt + α ⋅ σ and θmin ∶= µ − α ⋅ σ
where σ ∈ R denotes the sample standard deviation belonging to
the normal test samples and α ∈ R is a hyperparameter to be
set. For the experiments conducted in this work, we manually
set α = 0.2. More details on choosing an appropriate value for
α can be found in subsection 3.3. Now, for k = 1, ...,K with
K = 2 + ∣{n ∈ {1, ...,N} ∶ θmin < θ(n) < θmax}∣ we set

θbounded(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θmin if k = 1
θ(k − 1) if θmin < θ(k − 1) < θmax

θmax if k =K .

The normalized distances between thresholds are adapted from the
distances used for the basic F1-EV score

∆θbounded(k) ∶= θbounded(k + 1) − θbounded(k)
θbounded(K) − θbounded(1)

and the bounded F1-EV score is set to

F1-EVbounded(θbounded) ∶= K−1∑
k=1 F1(θbounded(k)) ⋅∆θbounded(k).

Again, this results in a score between 0 and 1 with higher values
indicating better performance.

3. EXPERIMENTAL EVALUATIONS

3.1. Experimental setup

To compare different performance measures, we computed Pearson
correlation coefficients (PCCs) using all systems submitted to the
ASD task of the DCASE2023 Challenge for machine condition mon-
itoring [15, 16, 17, 18]. This dataset consists of noisy audio record-
ings with a length between 6 and 18 seconds belonging to 14 dif-
ferent machine types that are split into a development set and an
evaluation set. For each machine type contained in one of the sets,
there is a source domain with 990 normal training samples and a
target domain with 10 normal training samples that differs from the
source domain by changing machine parameters or the background
noise. The test splits of the development and evaluation set consist
of 100 and 200 samples for each machine type, respectively. Any
test sample is either normal or anomalous and belongs to the source
or target domain. The task is to predict whether a given test sam-
ple is normal or anomalous by using a single decision threshold for
each machine type regardless of the domain the sample belongs to
(domain generalization [19]). To determine the ranking of the sys-
tems in the challenge, the harmonic mean of AUC-ROC and partial
AUC-ROC [20] over all machine types was used. Therefore, esti-
mating a proper decision threshold to obtain a good F1-score is only
optional and some participants abstained from doing this. To not
skew the results in this work, we only included the submissions with
an F1-score greater than 0 for the experimental evaluations. Fur-
thermore, we used the performance measures of all submitted sys-
tems for each machine type independently because another decision
threshold is used for each machine type.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC

F1
-E

V

a) AUC-ROC vs. F1-EV, PCC=0.199

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC-ROC
F1

-E
V

bo
un

de
d

b) AUC-ROC vs. F1-EVbounded, PCC=0.748

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1-EV

F1
-E

V
bo

un
de

d

c) F1-EV vs. F1-EVbounded, PCC=0.495

Fig. 4: Comparison of threshold-independent performance measures computed on the evaluation set of task 2 of the DCASE2023 Challenge.

3.2. Comparison of performance measures

The experimental results are depicted in Figure 3 and Figure 4. The
following observations can be made: First, AUC-ROC has only a
low to moderate correlation with the F1-scores belonging to the es-
timated decision thresholds (PCC=0.503) and the optimal F1-scores
(PCC=0.497), which experimentally justifies the motivation for F1-
EV as a performance measure. Second, the basic F1-EV score has
only very low correlation with AUC-ROC (PCC=0.199) and also
low correlation with the F1-scores (PCC=0.380 and PCC=0.306)
showing that it is necessary to define proper bounds. Third and
most importantly, the bounded F1-EV score, has a strong correla-
tion with AUC-ROC (PCC=0.748) and both F1-scores (PCC=0.696
and PCC=0.732). Hence, F1-EV better incorporates the difficulty of
finding a good decision threshold than AUC-ROC and thus may also
be a more suitable performance measure for ASD. Note that some
of the submissions may have estimated improper decision thresh-
olds and thus the correlation between the bounded F1-EV score and
the F1-scores belonging to the estimated decision thresholds may be
higher when only suitable estimation techniques are applied.

The clusters shaped as horizontal lines in Figure 3 at an F1-
score of approximately two-thirds, for example ranging from an
AUC-ROC of 0.4 to 0.9 in Subfig. a), look odd but can be explained
as follows: It is possible that a chosen decision threshold works very
well for the source domain but particularly bad for the target domain
or vice versa. This means that precision or recall is close to 1 for both
domains and the other value is close to 0 for one domain and close
to 1 for the other domain, thus in total close to 0.5 for both domains
assuming that both domains have approximately the same number of
samples. Since the F1-score is the harmonic mean of precision and
recall, this results in an F1-score of approximately two-thirds.

3.3. Choosing the hyperparameter α

As an ablation study, the sensitivity of the bounded F1-EV score
with respect to the parameter α was investigated. The results, de-
picted in Figure 5, show that the PCC between the bounded F1-EV
and AUC-ROC decreases for α > 0.2 showing that both measures are
indeed different. Furthermore, the PCC between the bounded F1-EV
and the optimal F1-score increases for α < 1 and slightly decreases
for α > 1 but keeps having a high correlation. Lastly and most im-
portantly, the PCC between the bounded F1-EV and the F1-score
obtained with the submitted decision thresholds slightly increases
for α < 0.2 and slightly decreases for α > 0.2 but to much less de-
gree as it is the case for AUC-ROC. In conclusion, the bounded F1-
EV is relatively stable with respect to α when considering estimated

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.4

0.6

0.8

1

α

PC
C

w
ith

bo
un

de
d

F1
-E

V

AUC-ROC optimal F1-score F1-score (as submitted)

Fig. 5: Sensitivity of the bounded F1-EV score with respect to α.

decision thresholds. As the purpose of F1-EV is to have a threshold-
independent performance measure that is similar to AUC-ROC but
also incorporates the difficulty of estimating a good decision thresh-
old, we propose to use a relatively small value for α, e.g. α = 0.2, as
done in the other experiments of this work.

4. CONCLUSION

In this work, the threshold-independent performance measure F1-EV
for ASD systems that combines the advantages of both the threshold-
independent AUC-ROC and threshold-dependent F1-score by cor-
relating well with both of them was proposed. In experiments
conducted on the predictions of all systems submitted to the
DCASE2023 ASD Challenge, it was shown that a bounded F1-EV
has a strong correlation with AUC-ROC while having a much higher
correlation with the F1-scores based on estimated and optimal de-
cision thresholds. In conclusion, this performance measure has the
potential to replace AUC-ROC as the de facto standard performance
measure for ASD. For future work, it is planned to conduct addi-
tional experiments on other datasets and further optimize the upper
and lower bound of F1-EV. In particular, choosing other distribu-
tions than a uniform distribution for estimating a decision threshold
in the allowed range may be a promising direction. Other exper-
iments may focus on evaluating F1-EV for settings with a strong
imbalance between normal and anomalous samples and investigate
specific machine types or domains individually.

5. ACKNOWLEDGMENTS

The authors would like to thank Fabian Fritz and Frank Kurth for
their valuable feedback.

6. REFERENCES

[1] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen,
“Metrics for polyphonic sound event detection,” Applied Sci-
ences, vol. 6, no. 6, pp. 1–17, 2016.

[2] Giacomo Ferroni, Nicolas Turpault, Juan Azcarreta, Francesco
Tuveri, Romain Serizel, Çagdas Bilen, and Sacha Krstulovic,
“Improving sound event detection metrics: Insights from
DCASE 2020,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2021, pp. 631–635,
IEEE.

[3] Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Raviku-
mar, and Inderjit S. Dhillon, “Consistent binary classification
with generalized performance metrics,” in Advances in Neu-
ral Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems (NeurIPS), 2014, pp.
2744–2752.

[4] John Paparrizos, Paul Boniol, Themis Palpanas, Ruey Tsay,
Aaron J. Elmore, and Michael J. Franklin, “Volume under the
surface: A new accuracy evaluation measure for time-series
anomaly detection,” Proc. VLDB Endow., vol. 15, no. 11, pp.
2774–2787, 2022.

[5] Kendrick Boyd, Kevin H. Eng, and C. David Page Jr., “Area
under the precision-recall curve: Point estimates and confi-
dence intervals,” in Machine Learning and Knowledge Dis-
covery in Databases - European Conference (ECML/PKDD).
2013, vol. 8190 of Lecture Notes in Computer Science, pp.
451–466, Springer.

[6] Gurol Canbek, Tugba Taskaya-Temizel, and Seref Sagiroglu,
“PToPI: A comprehensive review, analysis, and knowl-
edge representation of binary classification performance mea-
sures/metrics,” SN Comput. Sci., vol. 4, no. 1, pp. 1–30, 2023.

[7] Charu Aggarwal, Outlier Analysis, Springer, 2nd edition,
2017.

[8] Janek Ebbers, Reinhold Haeb-Umbach, and Romain Serizel,
“Threshold independent evaluation of sound event detection
scores,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2022, pp. 1021–1025, IEEE.

[9] Jorge M Lobo, Alberto Jiménez-Valverde, and Raimundo Real,
“AUC: A misleading measure of the performance of predictive
distribution models,” Global ecology and Biogeography, vol.
17, no. 2, pp. 145–151, 2008.

[10] Takaya Saito and Marc Rehmsmeier, “The precision-recall plot
is more informative than the ROC plot when evaluating binary
classifiers on imbalanced datasets,” PloS one, vol. 10, no. 3,
e0118432, 2015.

[11] Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt, “On
choosing decision thresholds for anomalous sound detection
in machine condition monitoring,” in 24th International
Congress on Acoustics (ICA). 2022, The Acoustical Society
of Korea.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011.

[13] James A. Hanley and Barbara J. McNeil, “The meaning and
use of the area under a receiver operating characteristic (roc)
curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[14] Jesse Davis and Mark Goadrich, “The relationship between
precision-recall and ROC curves,” in Twenty-Third Interna-
tional Conference on Machine Learning (ICML). 2006, vol.
148 of ACM International Conference Proceeding Series, pp.
233–240, ACM.

[15] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori
Ohishi, Masahiro Yasuda, and Shoichiro Saito, “Toy-
ADMOS2: Another dataset of miniature-machine operating
sounds for anomalous sound detection under domain shift con-
ditions,” in 6th Workshop on Detection and Classification of
Acoustic Scenes and Events, 2021, pp. 1–5.

[16] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori
Ohishi, and Masahiro Yasuda, “First-shot anomaly detection
for machine condition monitoring: A domain generalization
baseline,” in 31st European Signal Processing Conference
(EUSIPCO). 2023, pp. 191–195, IEEE.

[17] Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe,
Takashi Endo, Masaaki Yamamoto, Yuki Nikaido, and Yohei
Kawaguchi, “MIMII DG: sound dataset for malfunctioning in-
dustrial machine investigation and inspection for domain gen-
eralization task,” in 7th Workshop on Detection and Classifi-
cation of Acoustic Scenes and Events, 2022, pp. 26–30.

[18] Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi,
Yuma Koizumi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe,
Takashi Endo, and Yohei Kawaguchi, “Description and dis-
cussion on DCASE 2023 challenge task 2: First-shot unsuper-
vised anomalous sound detection for machine condition moni-
toring,” in 8th Detection and Classification of Acoustic Scenes
and Events Workshop (DCASE), 2023, pp. 31–35.

[19] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, and
Tao Qin, “Generalizing to unseen domains: A survey on do-
main generalization,” in Thirtieth International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2021, pp. 4627–4635,
ijcai.org.

[20] Donna Katzman McClish, “Analyzing a portion of the ROC
curve,” Medical decision making, vol. 9, no. 3, pp. 190–195,
1989.

A.1 key publications 201

a.1.10 Key publication 10

Kevin Wilkinghoff and Frank Kurth. “Why do Angular Margin Losses work well
for Semi-Supervised Anomalous Sound Detection?” In: IEEE/ACM Transactions
on Audio, Speech and Language Processing 32 (2024), pp. 608–622. doi: 10.1109/
TASLP.2023.3337153.
© 2024 IEEE (CC-BY license).
The co-author of this publication contributed in the following ways: Frank Kurth
contributed through scientific supervision and improving the quality of the paper
in general. He also proposed to include Table III and Figure 1.

https://doi.org/10.1109/TASLP.2023.3337153
https://doi.org/10.1109/TASLP.2023.3337153

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 1

Why do Angular Margin Losses work well for
Semi-Supervised Anomalous Sound Detection?

Kevin Wilkinghoff , Student Member, IEEE, and Frank Kurth , Senior Member, IEEE

Abstract—State-of-the-art anomalous sound detection systems
often utilize angular margin losses to learn suitable representa-
tions of acoustic data using an auxiliary task, which usually is a
supervised or self-supervised classification task. The underlying
idea is that, in order to solve this auxiliary task, specific infor-
mation about normal data needs to be captured in the learned
representations and that this information is also sufficient to
differentiate between normal and anomalous samples. Especially
in noisy conditions, discriminative models based on angular
margin losses tend to significantly outperform systems based
on generative or one-class models. The goal of this work is to
investigate why using angular margin losses with auxiliary tasks
works well for detecting anomalous sounds. To this end, it is
shown, both theoretically and experimentally, that minimizing
angular margin losses also minimizes compactness loss while
inherently preventing learning trivial solutions. Furthermore,
multiple experiments are conducted to show that using a related
classification task as an auxiliary task teaches the model to
learn representations suitable for detecting anomalous sounds
in noisy conditions. Among these experiments are performance
evaluations, visualizing the embedding space with t-SNE and
visualizing the input representations with respect to the anomaly
score using randomized input sampling for explanation.

Index Terms—representation learning, anomaly detection, an-
gular margin loss, compactness loss, machine listening, domain
generalization, explainable artificial intelligence

I. INTRODUCTION

SEMI-SUPERVISED anomalous sound detection (ASD) is
the task of reliably detecting anomalous sounds while

only having access to normal sounds for training a model [1].
Since anomalies occur only rarely by definition and usually
are very diverse, collecting realistic anomalous samples for
training a system is much more difficult and thus more costly
than collecting normal data. Hence, a semi-supervised ASD
setting is more realistic than a supervised ASD setting, for
which anomalous sounds are available for training, because
it substantially simplifies the data collection process. There
are also unsupervised ASD settings, for which the training
dataset may also contain anomalous samples and it is unknown
whether a training sample is normal or anomalous. But for
many applications, it can be ensured that only normal samples
are collected for training and thus a semi-supervised setting
can be assumed.

The authors are with Fraunhofer FKIE, Fraunhoferstraße 20,
53343 Wachtberg, Germany (e-mail: kevin.wilkinghoff@ieee.org,
frank.kurth@fkie.fraunhofer.de).

Manuscript received March 27, 2023; revised September 19, 2023 and
November 20, 2023, accepted for publication November 23, 2023.

ASD has many applications. Examples are machine con-
dition monitoring [2]–[4], medical diagnosis [5], [6], bioa-
coustic monitoring [7], [8], intrusion detection in smart home
environments [9] and detecting crimes [10], [11] or acci-
dents [12], [13]. Furthermore, detecting anomalous samples
can also be understood as a subtask in acoustic open-set
classification [14]–[16]. Throughout this work, we will use
machine condition monitoring in domain-shifted conditions
as an application example [4]. Here, the audio signals may
contain one or several of the following three components: 1)
normal machine sounds, 2) anomalous machine sounds and
3) background noise consisting of a mixture of many other
sound events. The major difficulty of this ASD application
is that anomalous components of machine sounds can be
very subtle when being compared to the background noise
making it difficult to reliably detect anomalous signal com-
ponents. Furthermore, machine sounds and background noise
can change substantially for different domain shifts, which we
define as alterations in the (acoustic) environment or changes
in parameter settings of the machines. The ASD system still
needs to only detect anomalous signal components without
frequently raising false alarms caused by any domain shift.

There are several strategies to train an ASD system for
machine condition monitoring using only normal data. Among
these strategies are generative models such as autoencoders
[17]–[22] or normalizing flows [23], [24] that directly try
to model the probablity distribution of normal data, which
is also called inlier modeling (IM) [3]. Another strategy is
to use an auxiliary task, usually a classification task, for
training a model to learn meaningful representations of the
data (embeddings) that can be used to identify anomalies.
Possible auxiliary tasks for machine condition monitoring are
classifying between machine types [25]–[29] or, additionally,
between different machine states and noise settings [30]–[33],
recognizing augmented and not augmented versions of normal
data (self-supervised learning) [25] or predicting the activity of
machines [32]. Using an auxiliary task to learn embeddings is
also called outlier exposure (OE) [34] because normal samples
belonging to other classes than a target class can be considered
as proxy outliers [35]. Often an angular margin loss such as
SphereFace [36], CosFace [37] or ArcFace [38] is utilized for
training an OE model. Systems based on embeddings pre-
trained on very large datasets [39]–[41] can be used, too.
However, it has been shown that directly training a system
on the data yields better ASD results, even when only very
limited training data is available [42]. In addition, different

0000–0000/00$00.00 © 2021 IEEE

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 2

strategies can be combined by using an ensemble of multiple
models [43]–[45].

Different strategies to train an ASD system have different
strengths and weaknesses. Using an auxiliary task for training
relies on additional meta-information to generate labels for a
classification task whereas IM-based models do not need any
labels. Furthermore, autoencoders can localize anomalies in
the input space by visualizing an element-wise reconstruction
error as done in [19], [21]. However, training ASD models by
using an auxiliary task usually enhances their performance
[46]. Even for IM-based models, performance can be sig-
nificantly improved when utilizing meta information such as
machine types. In [21] a class-conditioned autoencoder is used,
in [44] not only spectral features but also the machine ID is
encoded and decoded, and in [23] a normalizing flow is trained
to assign lower likelihood to sounds of other machines and a
higher likelihood to sounds of the target machine. As suspected
in [32], [33], the most likely reason for the difference in
performance is that, as stated before, recordings for machine
condition monitoring are very noisy because of factory back-
ground noise. This is a problem for IM-based models because
they cannot tell the difference between arbitrary sound events
not emitted by a monitored machine and normal or anomalous
sounds emitted by the machine. Both are considered equally
important by the model. Moreover, anomalies present in these
noisy audio recordings are usually very subtle when being
compared to the noise or other sound events present in a
recording making it even more difficult to detect potential
anomalies. When being trained with an auxiliary task, a model
learns to ignore noise, which can be assumed to be similar
for all considered classes, and therefore to isolate the target
machine sound by ignoring the uninformative background
sound events. As a result, these models are more sensitive
to changes of the machine sounds and have better anomaly
detection capabilities.

Localizing and visualizing frequencies or temporal regions
of recordings that are being considered anomalous is important
for practical applications because users can better understand
the decisions of the ASD system (explainable artificial in-
telligence (xAI) [47]). Furthermore, this may help to find
the cause of mechanical failure and thus can simplify the
maintenance process. As stated before, autoencoders can easily
localize anomalies by using an element-wise reconstruction
error. Additional investigations on visualizing and explain-
ing ASD decisions include showing that decisions of ASD
systems for machine condition monitoring largely rely on
high-frequency information [48]. This has been visualized
using local interpretable model-agnostic explanations (LIME)
[49] applied to sounds (SLIME) [50]. Furthermore, uniform
manifold approximation and projection (UMAP) [51] has been
used to visualize representations of the data such as stacked
consecutive frames of log magnitude spectrograms, log-mel
magnitude spectrograms, or openL3 embeddings [46].

The goal of this work is to explain why angular margin
losses work well for anomalous sound detection. To achieve
this goal, the following contributions are made: First and
foremost, it is theoretically proven that, after normalizing the
embedding space, training an ASD model by minimizing an

angular margin loss using an auxiliary task can be considered
as minimizing a regularized one-class loss while being less
affected by noise or non-target sound events present in the
data. Moreover, it is experimentally verified that using an
angular margin loss for training a model to discriminate
between classes of an auxiliary task also leads to better ASD
performance and thus is a better choice for an ASD task
than minimizing a one-class loss such as an intra-class (IC)
compactness loss with a single or multiple classes. Last but
not least, a procedure for visualizing normal and anomalous
regions of the input representations based on randomized input
sampling for explanation (RISE) is presented. Using these
visualizations, it is shown that normal and anomalous sounds
cannot be distinguished from the highly complex background
noise when training with a one-class loss. In contrast, when
using an auxiliary task with multiple classes the model learns
to ignore noise and isolate the targeted machine sound for
monitoring their condition.

The paper is structured as follows: In Section II, various
one-class losses and angular margin losses are reviewed.
Section III presents our main theoretical results about the
relation between these loss functions. Section IV contains a
description of the experimental setup and all experimental
evaluations consisting of performance evaluations, a compar-
ison between losses during training, visualizing normal and
anomalous regions of input representations as perceived by
the system and visualizing the resulting embedding spaces.
Section V consists of the conclusions of this work.

II. LOSS FUNCTIONS

In this section, a unified presentation and discussion of
several loss functions that are needed for presenting one of
the main results of this work in Sec. III will be given. The
following notation will be used throughout the paper: X
denotes the space of input data samples, N ∈ N the number of
classes defined for an auxiliary task and D ∈ N the dimension
of the embedding space.

A. One-Class Classification Losses

When training a model for ASD while only having access to
normal data i.e. a single class, this is referred to as one-class
classification and is some form of IM. The compactness loss
[52], whose goal it is to project the data into a hypersphere of
minimum volume, will serve as a representative of losses for
one-class classification and is defined as follows.

Definition 1 (Compactness loss). Let Y ⊂ X be finite.
Let P denote the power set, Φ denote the space of network
architectures for extracting embeddings and W (ϕ) denote the
parameter space of ϕ ∈ Φ, i.e. ϕ : X ×W (ϕ) → RD. Then,
the compactness loss is defined as

Lcomp : P(X)× RD × Φ×W → R+

Lcomp(Y, c, ϕ, w) :=
1

|Y |
∑

x∈Y

∥ϕ(x,w)− c∥22. (1)

The vector c ∈ RD is called center.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 3

After training, the (squared) Euclidean distance between the
embedding of a given sample and the center can be utilized
as an anomaly score: A greater distance indicates a higher
likelihood for the sample to be anomalous. A trivial solution
for minimizing the compactness loss with center c ∈ RD is
a parameter setting wc ∈ W (ϕ) such that ϕ is the constant
function ϕ(x,wc) = c for all x ∈ X . It is of utmost importance
to prevent that the model to be trained is able to learn such
a trivial solution. Otherwise it is impossible to differentiate
between normal and anomalous samples.

There are several strategies to prevent a model from learning
a trivial solution. First of all, it needs to be ensured that
c ̸= c0 ∈ RD where c0 = ϕ(x,w0) is defined as the output
of the network obtained by setting the weight parameters of
model ϕ to zero. This is because we have ϕ(x,w0) = c0 for
all x ∈ X as long as the model uses only linear operators, e.g.
dense or convolutional layers, and all activation functions have
zero as a fixed point, which is the case for most commonly
used activation functions. In [52], is has been shown that using
bias terms, bounded activation functions or a trainable center
all enable the model to learn a constant function when using
an additive weight decay regularization term and thus must
also be avoided.

Another possibility to avoid trivial solutions is to impose
additional tasks, so-called auxiliary tasks, not directly related
to the ASD problem while training. Autoencoders [53], which
are trained to first encode and then decode the input again
and have many interesting applications by themselves such as
denoising data [54], can also be viewed as a way to regularize
one-class models. Here, the encoder is the one-class model
mapping the input to an embedding space. Learning a constant
function is not a (trivial) solution for the task because all
necessary information for being able to completely reconstruct
the input needs to be encoded. However, noise including
other sound sources present in the input audio data needs
to be encoded as well because otherwise the input cannot
be reconstructed. Therefore, the noise heavily influences the
embeddings and thus the embeddings can also be considered
noisy. Depending on the complexity of the noise, most infor-
mation contained in the embeddings is only related to the noise
and not to the target sound to be analyzed and thus detecting
anomalies using an autoencoder may be difficult. Moreover,
in [52] it has been shown that using compactness loss, even
for clean datasets, outperforms commonly used autoencoder
architectures when detecting anomalies.

A second choice of an auxiliary task to prevent the model
from learning a constant function as a trivial solution is a clas-
sification task. Defining multiple classes through an auxiliary
task inherently prevents learning a constant function as this
would not be a (trivial) solution to the imposed classification
problem. In [55], an additional descriptiveness loss is used
whose goal is to reduce inter-class similarity between classes
of an arbitrary, external multi-class dataset, which is only
used to regularize the one-class classification task. This is
done by minimizing the standard categorical cross-entropy
(CCE) loss for classification on this additional dataset as an
auxiliary task. For each of the two tasks, another version of
the same network with identical structure and tied weights is

used. During training, both losses are jointly minimized using
a weighted sum ensuring that the so-called reference network
associated with the compactness loss does not learn a constant
function because this would prevent the secondary network to
be able to classify correctly.

Remark. The original definition of the compactness loss [52]
also includes an additional weight decay term. Such a weight
decay term can be used to complement any loss function and
does not prevent the model from learning trivial solutions as
it is still possible that the model learns to map everything
to the center. Furthermore, all theoretical results presented in
this work are valid regardless of whether this specific weight
decay term is included or not. The proof of the main theorem
can easily be modified to including the same weight decay
term because it is just an additional additive term. Therefore,
we omitted this term in the theoretical investigations of this
work for the sake of simplicity while still using it in our
experiments. However, we did not notice any significant effect
on the performance.

For the remainder of this work, we propose to normalize
all representations in the embedding space RD, meaning that
∥c∥2 = 1 = ∥ϕ(x,w)∥2 for all x ∈ X,w ∈ W (ϕ) and
centers c ∈ RD. This can easily be achieved by dividing
the embeddings by their corresponding Euclidean norms. A
normalization of the embedding space essentially reduces the
dimension by one as evident by using stereographic projection.
But doing so does not degrade the ASD performance because
the dimension of the embedding space usually is larger than
it needs to be.

Normalizing the embedding space has several advantages.
Most importantly, the initialization of the centers is sub-
stantially simplified. In high-dimensional vector spaces i.i.d.
random elements are almost surely approximately orthogonal
[56]. Hence, all class centers can be randomly initialized by
sampling from a uniform random distribution as also done in
[33] and a careful strategy for initializing the class centers
is not needed. This does not cause any problems e.g. by
accidentally using class centers that are very similar to each
other in terms of cosine similarity whereas the corresponding
acoustic classes are very dissimilar or vice versa. Moreover,
normalizing the centers ensures that all centers are distributed
equidistantly and sufficiently far away from zero to avoid
learning a trivial solution. Last but not least, normalizing the
embeddings may even prevent numerical issues while training
similar to when using batch normalization [57].

B. Angular Margin Losses

We will review the definition of ArcFace [38] as a repre-
sentative of angular margin losses.

Definition 2 (ArcFace). Let Y ⊂ X be finite and
lj(x) ∈ {0, 1} denote the jth component of the categorical
class label function l ∈ L where L denotes the space of all
functions l : X → {0, 1}N with

∑N
j=1 lj(x) = 1 for all

x ∈ X . Let P denote the power set, Φ denote the space of
network architectures for extracting embeddings and W (ϕ) de-

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 4

note the parameter space of ϕ ∈ Φ, thus ϕ : X×W (ϕ) → RD.
Let smax : RN → [0, 1]N denote the softmax function, i.e.

smax(x)i =
exp(xi)∑N
j=1 exp(xj)

. (2)

Then, the ArcFace loss is defined as

Lang : P(X)× P(RD)× Φ×W × L× R+ × [0,
π

2
] → R+

Lang(Y,C, ϕ,w, l, s,m)

:=− 1

|Y |
∑

x∈Y

N∑

j=1

lj(x) log(smax(s · cosmar(ϕ(x,w), cj ,m)))

(3)
where |C| = N and, in this case,

smax(s · cosmar(ϕ(x,w), ci,m))

:=
exp(s · cosmar(ϕ(x,w), ci,m))

∑N
j=1 exp(s · cosmar(ϕ(x,w), cj ,m · lj(x))

(4)

with

cosmar(x, y,m) := cos(arccos(cos(x, y)) +m) (5)

for cosine similarity

cos(x, y) :=
⟨x, y⟩

∥x∥2∥y∥2
∈ [−1, 1]. (6)

The vectors cj ∈ RD are called class centers, m ∈ [0, π
2] is

called margin and s ∈ R+ is called scale parameter.

Remark. When using mixup [58] for data augmentation, the
definition of the class label function needs to be generalized
to l : X → [0, 1]N with

∑N
j=1 lj(x) = 1 for all x ∈ X . In

the experimental evaluations of this work, mixup will be used
when training a model as this improves the ASD performance
[29]. Furthermore, the theoretical results presented in this work
still hold when using mixup but in the proofs only binary labels
will be used for the sake of simplicity.

In [59], it has been shown that the choice of both hyperpa-
rameters, the scale parameter s and the margin m, can have
a significant impact on the resulting performance. Strongly
varying the magnitude of one of the individual parameters has
a similar effect on the sensitivity of the posterior probabilities
with respect to the angles as varying the other parameter. Both
a scale parameter that is too large and a margin that is too small
lead to very high posterior probabilities for the target class,
approximately equal to one, even for relatively large angles.
Therefore, the loss function is insensitive to changing the
angle. A scale parameter that is too small limits the maximum
posterior probability of the target class that can be achieved.
Similarly, a margin that is too large also leads to relatively
small posterior probabilities. Thus, in both cases the model still
tries to adapt its parameters even when the angles are already
small, which hinders convergence. Due to the similar behavior
of both parameters, a single appropriately chosen parameter is
sufficient for controlling the posterior probabilities and it has
even been shown that an adaptive scale parameter outperforms
using two tuned but fixed parameters. Therefore, we will
assume that s is adaptive as specified for the AdaCos loss

in [59] and set m = 0, i.e. cosmar(x, y, 0) = cos(x, y) for the
remainder of this work. Formally, the definition of the AdaCos
loss is the following.

Definition 3 (AdaCos). Using the same notation as in
Definition 2, let Y (t) ⊂ Y denote all samples belonging
to a mini-batch of size B ∈ N, i.e. |Y (t)| = B. Let
θx,i := arccos(cos(ϕ(x,w), ci)) ∈ [0, π] and the dynamically
adaptive scale parameter s̃(t) ∈ R+ at training step t ∈ N0

be set to

s̃(t) :=

√
2 · log(N − 1) if t = 0

logB(t)
avg

cos
(
min(π

4 ,θ
(t)
med)
) else

(7)

where θ
(t)
med ∈ [0, π] denotes the median of all angles θx,i(x)

with x ∈ X(t) and i(x) ∈ {1, ..., N} such that li(x) = 1 and

B(t)
avg :=

1

B

∑

x∈Y (t)

N∑

j=1
lj(x) ̸=1

exp
(
s̃(t−1) · cos(ϕ(x,w), cj)

)
(8)

is the sample-wise average over all summed logits belonging
to the non-corresponding classes. Then, the AdaCos loss is
defined as

Lada : P(X)× P(RD)× Φ×W × L → R+

Lada(Y,C, ϕ,w, l) := Lang(Y,C, ϕ,w, l, s̃, 0).
(9)

Remark. When using mixup [58] for data augmentation,
θ
(t)
med ∈ [0, π] needs to be replaced with the median of the

mixed-up angles as specified in [29].

The AdaCos loss can also be extended to using multiple
centers for each class, called sub-clusters, instead of a single
one. The idea of using these sub-clusters is to allow the
network to learn more complex distributions than a normal
distribution for each class enabling the model to have a
more differentiated view on the embeddings when using the
cosine similarity as an anomaly score. This has been shown
to improve the ASD performance [29] and thus helps to
differentiate between normal and anomalous samples.

Definition 4 (Sub-cluster AdaCos). Using the same notation
as in Definitions 2 and 3, let Cj ∈ P(RD) with |Cj | = M
denote all centers belonging to class j ∈ {1, ..., N}. Let the
dynamically adaptive scale parameter ŝ(t) ∈ R+ at training
step t ∈ N0 be set to

ŝ(t) :=

√
2 · log(N ·M − 1) if t = 0
f(t)

max+log B̂(t)
avg

cos
(
min(π

4 ,θ
(t)
med)
) else

(10)

with

B̂(t)
avg :=

1

B

∑

x∈Y (t)

N∑

j=1

∑

c∈Cj

exp
(
ŝ(t−1) cos(ϕ(x,w), c)− f (t)

max

)

(11)
and

f (t)
max := max

x∈Y (t)

N
max
j=1

max
c∈Cj

ŝ(t−1) · cos(ϕ(x,w), c). (12)

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 5

Then, the sub-cluster AdaCos loss is defined as

Lsc-ada : P(X)× P(P(RD))× Φ×W × L → R+

Lsc-ada(Y,C, ϕ,w, l)

:=− 1

|Y |
∑

x∈Y

N∑

j=1

lj(x) log(smax(ŝ · cos(ϕ(x,w), Cj)))

(13)
where |C| = N and, in this case,

smax(ŝ · cos(ϕ(x,w), Cj))

:=
∑

cj∈Cj

exp(ŝ · cos(ϕ(x,w), cj))∑N
k=1

∑
ck∈Ck

exp(ŝ · cos(ϕ(x,w), ck))
(14)

Remark. As shown in [29], for the sub-cluster AdaCos loss
as defined above mixup [58] needs to be used. Otherwise, the
dynamically adaptive scale parameter ŝ(t) grows exponentially.

For the compactness loss, there is no benefit of using sub-
clusters. The reason is that an optimal solution of this sub-
cluster compactness loss would correspond to the mean of
the sub-clusters or, in case all embeddings are normalized, to
its projection onto the unit sphere. Hence, there would be a
single global optimum and this sub-cluster compactness loss
would behave as if only a single sub-cluster is used. For the
sub-cluster AdaCos loss, the situation is completely different
because the softmax function is applied to all individual sub-
clusters and the sum over the resulting scores is taken. This
makes the resulting softmax probability, and thus also the loss
function, symmetric with respect to the corresponding sub-
clusters of an individual class. Therefore, the loss is invariant
to changing the position of an embedding on the hypersphere
as long as the sum of the distances to the sub-clusters is the
same. Hence, also the space of optimal solutions grows with
respect to the number of sub-clusters. However, due to the
dependence on the sub-clusters of the other classes caused by
the softmax function, this invariance is a simplification and
the real situation is more complex.

III. RELATION BETWEEN ONE-CLASS LOSSES AND
ANGULAR MARGIN LOSSES

For the proof of the main theoretical result of this work, the
following basic identity is needed.

Lemma 5. For x, y ∈ RD with ∥x∥2 = ∥y∥2 = 1, it holds
that

cos(x, y) = 1− ∥x− y∥22
2

. (15)

Proof. See Appendix.

Remark. This lemma also shows that for normalized embed-
dings using Euclidean distance and using cosine distance,
which in this case is equal to the standard scalar product,
are equivalent for computing an anomaly score.

Now, the theorem itself follows.

Theorem 6. Let Yj := {x ∈ Y : lj(x) = 1}. Then minimizing
Lsc-ada(Y,C, ϕ,w, l) with gradient descent minimizes all IC
compactness losses with weighted gradients given by

ŝ

2

N∑

i=1

1

|Yi|
∑

x∈Yi

∑

ci∈Ci

P (τ(ϕ(x,w)) = ci|τ(ϕ(x,w)) ∈ Ci)

· ∂

∂w
∥ϕ(x,w)− ci∥22

(16)
while maximizing all inter-class compactness losses with
weighted gradients given by

− ŝ

2

N∑

i=1

1

|Yi|
∑

x∈Yi

N∑

k=1

∑

ck∈Ck

P (τ(ϕ(x,w)) = ck)

· ∂

∂w
∥ϕ(x,w)− ck∥22

(17)

where
P (τ(ϕ(x,w)) = ci|τ(ϕ(x,w)) ∈ Ci)

:=
exp(ŝ · cos(ϕ(x,w), ci))∑

c′i∈Ci
exp(ŝ · cos(ϕ(x,w), c′i))

(18)

and
P (τ(ϕ(x,w)) = ck)

:=
exp(ŝ · cos(ϕ(x,w), ck))∑N

k=1

∑
c′k∈Ck

exp(ŝ · cos(ϕ(x,w), c′k))
(19)

with a cluster assignment function τ : RD → RD given by

τ(z, C) = argmax
c∈C

cos(z, c). (20)

Proof. Let x ∈ Y , ϕ ∈ Φ and ŝ ∈ R+ be fixed and
i ∈ {1, ..., N} such that li(x) = 1 and lj(x) = 0 for j ̸= i. To
simplify notation, define e(w, c) := exp(ŝ · cos(ϕ(x,w), c)).
Using Lemma 5, we see that

∂

∂w
log

(∑

ci∈Ci

e(w, ci)

)

=

∑
ci∈Ci

e(w, ci) · ŝ · ∂
∂w cos(ϕ(x,w), ci))∑

c′i∈Ci
e(w, c′i)

=− ŝ

2

∑

ci∈Ci

e(w, ci) · ∂
∂w∥ϕ(x,w)− ci∥22∑

c′i∈Ci
e(w, c′i)

and similarly

∂

∂w
log

(N∑

k=1

∑

ck∈Ck

e(w, ck)

)

=

∑N
k=1

∑
ck∈Ck

e(w, ck) · ŝ · ∂
∂w cos(ϕ(x,w), ck))∑N

k=1

∑
c′k∈Ck

e(w, c′k)

=− ŝ

2

N∑

k=1

∑

ck∈Ck

e(w, ck) · ∂
∂w∥ϕ(x,w)− ck∥22∑N

k=1

∑
c′k∈Ck

e(w, c′k)

=− ŝ

2

∑

ci∈Ci

e(w, ci) · ∂
∂w∥ϕ(x,w)− ci∥22∑N

k=1

∑
c′k∈Ck

e(w, c′k)

− ŝ

2

N∑

k=1
k ̸=i

∑

ck∈Ck

e(w, ck) · ∂
∂w∥ϕ(x,w)− ck∥22∑N

k=1

∑
c′k∈Ck

e(w, c′k)
.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 6

Using both identities, we obtain

∂

∂w

N∑

j=1

lj(x) log(smax(ŝ · cos(ϕ(x,w), Cj)))

=
∂

∂w
log

(∑

ci∈Ci

e(w, ci)∑N
k=1

∑
ck∈Ck

e(w, ck)

)

=
∂

∂w
log

(∑

ci∈Ci

e(w, ci)

)
− ∂

∂w
log

(N∑

k=1

∑

ck∈Ck

e(w, ck)

)

=− ŝ

2

∑

ci∈Ci

e(w, ci) · ∂
∂w∥ϕ(x,w)− ci∥22∑

c′i∈Ci
e(w, c′i)

+
ŝ

2

∑

ci∈Ci

e(w, ci) · ∂
∂w∥ϕ(x,w)− ci∥22∑N

k=1

∑
c′k∈Ck

e(w, c′k)

+
ŝ

2

N∑

k=1
k ̸=i

∑

ck∈Ck

e(w, ck) · ∂
∂w∥ϕ(x,w)− ck∥22∑N

k=1

∑
c′k∈Ck

e(w, c′k)

=− ŝ

2

(∑

ci∈Ci

e(w, ci) ·
∂

∂w
∥ϕ(x,w)− ci∥22

·
(

1∑
c′i∈Ci

e(w, c′i)
− 1
∑N

k=1

∑
c′k∈Ck

e(w, c′k)

)

−
N∑

k=1
k ̸=i

∑

ck∈Ck

e(w, ck) · ∂
∂w∥ϕ(x,w)− ck∥22∑N

k=1

∑
c′k∈Ck

e(w, c′k)

)

=− ŝ

2

(∑

ci∈Ci

e(w, ci) ·
∂

∂w
∥ϕ(x,w)− ci∥22

·
(N∑

k=1
k ̸=i

∑

ck∈Ck

e(w, ck)

(
∑

c′i∈Ci
e(w, c′i))(

∑N
k=1

∑
c′k∈Ck

e(w, c′k))

)

−
N∑

k=1
k ̸=i

∑

ck∈Ck

e(w, ck) · ∂
∂w∥ϕ(x,w)− ck∥22∑N

k=1

∑
c′k∈Ck

e(w, c′k)

)

=− ŝ

2

N∑

k=1
k ̸=i

∑

ck∈Ck

e(w, ck)∑N
k=1

∑
c′k∈Ck

e(w, c′k)

·
(∑

ci∈Ci

e(w, ci)∑
c′i∈Ci

e(w, c′i)
· ∂

∂w
∥ϕ(x,w)− ci∥22

− ∂

∂w
∥ϕ(x,w)− ck∥22

)

=− ŝ

2

N∑

k=1

∑

ck∈Ck

e(w, ck)∑N
k=1

∑
c′k∈Ck

e(w, c′k)︸ ︷︷ ︸
=P (τ(ϕ(x,w))=ck)

·
∑

ci∈Ci

e(w, ci)∑
c′i∈Ci

e(w, c′i)︸ ︷︷ ︸
=P (τ(ϕ(x,w))=ci|τ(ϕ(x,w))∈Ci)

·
(

∂

∂w
∥ϕ(x,w)− ci∥22 −

∂

∂w
∥ϕ(x,w)− ck∥22

)

where we used that
1∑

c′i∈Ci
e(w, c′i)

− 1
∑N

k=1

∑
c′k∈Ck

e(w, c′k)

=

∑N
k=1

∑
ck∈Ck

e(w, ck)−
∑

ci∈Ci
e(w, ci)

(
∑

c′i∈Ci
e(w, c′i))(

∑N
k=1

∑
c′k∈Ck

e(w, c′k))

=
N∑

k=1
k ̸=i

∑

ck∈Ck

e(w, ck)

(
∑

c′i∈Ci
e(w, c′i))(

∑N
k=1

∑
c′k∈Ck

e(w, c′k))
.

Now, summing over all samples x ∈ Y , normalizing with |Y |
and taking the additive inverse yields the desired result.

When using mixup, the right hand side of the last equa-
tion needs to be replaced with a weighted sum of two
terms, each corresponding to one of the two classes that
are mixed-up, because there are i1, i2 ∈ {1, ..., N} such that
li1(x) ̸= 0 ̸= li2(x). Otherwise, the proof is exactly the same.
In conclusion, the proven result still holds for mixed-up sam-
ples but includes two similar terms instead of one term.

Corollary 7. Minimizing Lada(Y,C, ϕ,w, l) with gradient
descent is equivalent to minimizing

− s̃

2

N∑

k=1

smax(ŝ · cos(ϕ(x,w), ck))

·
(

∂

∂w
∥ϕ(x,w)− ci∥22 −

∂

∂w
∥ϕ(x,w)− ck∥22

)
.

(21)

Proof. The proof of Theorem 6 does not depend on the exact
structure of the dynamically adaptive scale parameter and thus
also holds for the standard AdaCos loss by replacing ŝ with
s̃ and using only a single sub-cluster for each class.

This theorem shows that using an angular margin loss
such as the AdaCos loss is essentially the same strategy as
proposed in [55] and applied to ASD in [27], i.e. using a
compactness loss for increasing IC similarity, as defined in
Definition 1, and a so-called descriptiveness loss to decrease
inter-class similarity. However, there are differences between
both approaches. When minimizing an angular margin loss,
inter-class compactness losses are used to decrease inter-class
similarity instead of a standard CCE loss. Second, when using
two loss functions one usually has to tune a weight parameter
to create a weighted sum of both loss terms, which is not
needed for an angular margin loss and impossible without
access to anomalous samples. Furthermore, the gradients
belonging to individual samples are weighted with specific
softmax probabilities giving more emphasis the closer the sub-
clusters are. As these weights are non-uniform in general,
this explicitly shows why using multiple sub-clusters is not
equivalent to using a single sub-cluster given by the projection
of the mean of the sub-clusters onto the hypersphere as it is
the case for an IC compactness loss with multiple sub-clusters.
Last but not least, an angular margin loss explicitly ensures
a margin between classes, as illustrated in Fig. 1, whereas
a combination of compactness losses and a CCE loss only
implicitly does this by increasing intra-class similarity. Note
that, in [55], inter-class similarity is decreased on another
dataset using less relevant classes because only a single class

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 7

c1

c2

shifted decision
boundary for class c2

shifted decision
boundary for class c1

unaltered
decision boundary

intra-class loss

intra-class loss

Fig. 1. Illustration of IC compactness losses and the angular margin to be
ensured between the classes for D = 2, N = 2,M = 1. Intra-class losses are
computed by summing all distances of samples to their corresponding class
centers (blue and red areas). Inter-class losses are computed by summing all
distances of samples to their corresponding decision boundaries. An unaltered
decision boundary is exactly the midpoint between the class centers. When
using an angular margin loss, the decision boundaries to the other classes are
essentially shifted closer to the class center for which the inter-class loss is
computed (see Fig. 1 in [60]). This explicitly ensures a margin between the
classes, which is depicted by the green area.

is available on the target dataset. Because of these differences,
directly minimizing an angular margin loss leads to a different
solution than minimizing a combination of IC losses and a
descriptiveness loss.

Note that the IC compactness loss with multiple classes can
also be considered a prototypical loss [61] or angular proto-
typical loss [62] as used for few-shot classification [63], which
defines settings where only very few training samples, called
shots, are available for each class. The only difference between
these prototypical losses and an angular margin loss is that,
for prototypical losses, the center vectors are re-calculated as
the means of embeddings belonging to corresponding classes
by using a so-called support set during training while, for an
angular margin loss, the class centers are fixed or adaptable
parameters of the network. Hence, this theorem also shows
that angular margin losses are a suitable choice for few-shot
classification as shown for open-set sound event classification
[42] and few-shot keyword spotting [64].

Choosing a classification task as an auxiliary task prevents
learning a constant function as a trivial solution. The reason
is that, for such a classification task, an optimal solution
is a classifier that maps each sample to its corresponding
class center and thus corresponds to jointly learning multiple
trivial solutions, one for each class, instead of only learning
a constant function. As long as each anomalous sample
belongs to a well-defined normal class used during training,
this optimal solution would yield representations not suitable
for detecting anomalies as they would not be distinguishable
from representations obtained with normal samples. However,
obtaining such a perfect classifier is much more difficult than
learning a constant mapping for a single class and thus training

TABLE I
STRUCTURE OF THE DCASE2022 ASD DATASET

number of recordings (per section)
subset split source domain target domain

normal anomalous normal anomalous

development training 990 0 10 0
development test 50 50 50 50
evaluation training 990 0 10 0
evaluation test 50 50 50 50

a single model to classify between multiple classes already
prevents trivial solutions as long as the classification problem
itself is not trivial e.g. by consisting of only a single class.
Still, in [33] it has been shown that the ASD performance can
be improved by applying the same three strategies as used for
the compactness loss [52], namely 1) not using bias terms,
2) not using bounded activation functions and 3) not using
trainable class centers. The most likely reason is that these
strategies prevent the model to learn trivial solutions, leading
to less informative embeddings, for individual classes that are
easily recognized.

IV. EXPERIMENTAL RESULTS

Using one-class losses and angular margin losses for ASD
will now be compared experimentally.

A. Dataset

For most experiments conducted in this work, the
DCASE2022 ASD dataset [4] of the task titled “Unsupervised
Anomalous Sound Detection for Machine Condition Monitor-
ing Applying Domain Generalization Techniques” has been
used. The dataset consists of recordings of machine sounds
with background factory noise. Each recording has a single
channel, a length of ten seconds and a sampling rate of 16
kHz and belongs to one of the seven machine types “fan”,
“gearbox”, “bearing”, “slide rail”, “valve” from MIMII DG
[?] and “toy car”, “toy train” from ToyADMOS2 [65]. For
each machine type, there are six different so-called sections
each of which is dedicated to a specific type of domain shift.
A domain shift means that the characteristics of a machine
sound differ in some way between a source domain with many
training samples and a target domain with only few training
samples. These shifts can be caused by physical changes of
the machines e.g. caused by replacing parts for maintenance,
or changes in the acoustical environment e.g. a different
background noise or using different recording devices. Ideally,
the ASD system is able to reliably detect anomalies despite
these domain shifts without the need for adapting the system
(domain generalization [66]).

The dataset is divided into a development and an evaluation
split each containing recordings of 21 sections, three for
each machine type. For each recording, information about the
machine type and section are given. For the training datasets,
domain information (“source” or “target”) and additional at-
tribute information such as states of machine types or noise
conditions are given for each recording. For the test datasets,
no domain information and no additional attribute information

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 8

are given. The exact structure of the dataset can be found
in Tab I. The task of an ASD system is to reliably detect
anomalous samples regardless of whether a sample belongs to
a source or target domain, i.e. using a single decision threshold
for both domains of a section.

Some of the experiments have also been conducted on
the DCASE2023 ASD dataset [67], [68] belonging to the
task “First-Shot Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring”. Similar to the DCASE2022
ASD dataset, this dataset is also aimed at domain gener-
alization for ASD with the following differences. First and
foremost, the development and evaluation split of the dataset
contain different machine types. The development set contains
the same machine types as the DCASE2022 dataset, namely
“fan”, “gearbox”, “bearing”, “slide rail”, “valve” from MIMII
DG [?] and “toy car”, “toy train” from ToyADMOS2 [65]. The
evaluation set contains seven completely different machine
types, namely “toy drone”, “n-scale toy train”, “vacuum”, and
“toy tank” from [69] and “bandsaw”, “grinder”, “shaker” from
[?]. Furthermore, for each machine type there is only a single
section. This lowers the difficulty of the auxiliary classification
task and thus makes it more difficult to extract embeddings,
which are sensitive to anomalous changes of the target sounds.

For the DCASE ASD datasets, two performance measures
are used to evaluate the performance of individual ASD
systems. One metric is the area under the receiver operating
characteristic (ROC) curve (AUC), the other metric is the
partial area under the ROC curve (pAUC) [70], which is the
AUC calculated over a low false positive rate ranging from
0 to p with p = 0.1 in this case. The pAUC is used as
an additional metric because decision thresholds for machine
condition monitoring are usually set to a value that gives a low
number of false alarms and thus this area of the ROC curve is
of particular interest. Both are threshold-independent metrics
allowing a more objective comparison between different ASD
systems than threshold-dependent metrics [1], [71].

B. System Description

The focus of this work is to explain why angular margin
losses work well for ASD. This requires using different loss
functions for training an ASD system. To this end, the concep-
tually simple state-of-the-art system presented in [33], which
only consists of a single model and uses the same settings for
all machine types, is utilized. For all experiments conducted in
this work, only the loss function used for training the system
is altered. The system utilizes a magnitude spectrogram as
well as the whole magnitude spectrum as input representations
and uses two different convolutional sub-models for handling
these, resulting in two different embeddings. Then, both
embeddings are concatenated to obtain a single embedding
and the sub-cluster AdaCos loss [29] is applied with 16 sub-
clusters, which are initialized uniformly at random, for training
the model. For the magnitude spectrogram, temporal mean nor-
malization is applied to reduce the effect of different acoustic
domains and make both input feature representations a bit
more different by removing constant frequency information
from the spectrograms. Furthermore, the model does not use

bias terms or trainable clusters as this improves the ASD
performance by avoiding trivial solutions as discussed before.
The model is trained for 10 epochs with a batch size of 64
using mixup [58] with a uniform distribution for sampling the
mixing coefficient and is implemented in Tensorflow [72].

After training the model using an auxiliary classification
task, embeddings are extracted for the recordings. For each
section of the dataset, k-means with k = 16 is applied to
all normal training samples belonging to the source domain
of this section. The goal is to represent the distribution of
the normal embeddings and be able to compute an anomaly
score by taking the minimum cosine distance to the mean
embeddings belonging to the same section as a given test
sample. Note that these means do not correspond to the sub-
clusters as some sub-clusters may not have been used by the
network during training. It is possible that the embeddings
are clustered between the sub-clusters due to the complex
dependence between the sub-clusters of the other classes. Still,
it has been shown taking the same number of clusters usually
performs best [29]. Since there are only 10 normal samples
available for the target domain, the minimum over the direct
cosine distances to the corresponding embeddings is used. As
a last step, the minimum of the minimum cosine distances
belonging to both domains is used to have an ASD system that
generalizes to both domains. Hence, a higher anomaly score
indicates anomalous sounds whereas a smaller value indicates
normal sounds. More details about the system including a
hyperlink to an open-source implementation can be found in
[33].

C. Performance Evaluations

Regardless of the loss function, training the ASD model
without using anomalous samples is not directly targeting
the ASD performance but only indirectly since the auxiliary
task is aimed at obtaining embeddings suitable for ASD.
Although, there is a strong relation between the auxiliary and
the ASD task, as otherwise training an ASD model by using
an auxiliary task would not lead to usable representations, the
actual ASD performance needs to be evaluated experimentally
and cannot be investigated theoretically because there are no
anomalous samples available during training. Therefore, the
resulting ASD performances obtained by minimizing both
types of loss functions, angular margin losses and one-class
losses, using individual auxiliary classification tasks will be
evaluated first. Furthermore, a combined loss consisting of
the sum of the mean of the IC compactness losses and an
additional softmax layer with a CCE loss for classification,
as proposed in [55], is evaluated. The results can be found in
Tab. II. Note that it is also possible to divide the classification
task into several different classification tasks as for example
one task for the machine type and other ones for all or specific
attributes [30], [31]. However, in our experience this does not
improve performance unless weights for the losses belonging
to different machine types are manually tuned to improve the
ASD performance. Since this requires access to anomalous
samples, tuning these weights is impossible in a truly semi-
supervised setting.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 9

TABLE II
ASD PERFORMANCE OBTAINED WITH DIFFERENT LOSSES USING DIFFERENT AUXILIARY TASKS. HARMONIC MEANS OF ALL AUCS AND PAUCS OVER

ALL PRE-DEFINED SECTIONS OF THE DATASET ARE DEPICTED IN PERCENT. ARITHMETIC MEAN AND STANDARD DEVIATION OF THE RESULTS OVER FIVE
INDEPENDENT TRIALS ARE SHOWN. BEST RESULTS IN EACH COLUMN ARE HIGHLIGHTED WITH BOLD LETTERS.

DCASE2022 development set

loss classes of auxiliary task (number of classes) source domain target domain both domains
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss (Def. 1) none (1) 56.4± 1.4 53.9± 0.6 53.6± 0.9 52.6± 0.3 55.1± 1.2 52.6± 0.4
IC compactness loss (Def. 1) machine types (7) 66.5± 2.9 60.6± 0.6 63.6± 2.2 57.1± 0.9 65.0± 1.7 57.8± 0.6
IC compactness loss (Def. 1) machine types and sections (42) 77.6± 1.7 70.5± 0.9 75.3± 0.9 63.3± 0.8 76.4± 0.9 63.5± 0.6
IC compactness loss (Def. 1) machine types and sections, models trained individually (1) 50.0± 2.3 52.1± 0.6 51.7± 1.8 52.2± 0.4 51.8± 1.8 51.4± 0.4
IC compactness loss (Def. 1) machine types, sections and attribute information (342) 80.7± 1.9 73.7± 1.0 74.5± 0.9 62.1± 1.2 78.1± 0.8 63.3± 0.9
IC compactness loss (Def. 1) + CCE machine types, sections and attribute information (342) 82.5± 0.7 75.2± 0.7 75.5± 0.6 61.2± 1.6 79.0± 0.6 64.8± 0.9
AdaCos loss (Def. 3) machine types, sections and attribute information (342) 83.0± 1.3 75.2± 1.8 75.4± 1.0 60.9± 0.8 79.2± 0.9 64.3± 0.7
sub-cluster AdaCos loss (Def. 4) machine types, sections and attribute information (342) 84.2± 0.884.2± 0.884.2± 0.8 76.5± 0.976.5± 0.976.5± 0.9 78.5± 0.978.5± 0.978.5± 0.9 62.5± 0.962.5± 0.962.5± 0.9 81.4± 0.781.4± 0.781.4± 0.7 66.6± 0.966.6± 0.966.6± 0.9

DCASE2022 evaluation set

loss classes of auxiliary task (number of classes) source domain target domain both domains
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss (Def. 1) none (1) 49.9± 0.8 50.6± 0.4 51.0± 0.4 51.0± 0.7 50.9± 0.5 50.3± 0.4
IC compactness loss (Def. 1) machine types (7) 59.6± 1.3 56.9± 0.5 57.6± 1.8 53.8± 0.9 59.3± 1.5 54.6± 0.6
IC compactness loss (Def. 1) machine types and sections (42) 70.8± 1.2 62.1± 0.7 61.7± 0.8 55.4± 1.0 66.3± 0.6 56.5± 0.4
IC compactness loss (Def. 1) machine types and sections, models trained individually (1) 52.9± 1.4 51.7± 0.5 54.5± 0.6 51.6± 0.3 54.2± 0.8 51.2± 0.3
IC compactness loss (Def. 1) machine types, sections and attribute information (342) 73.7± 0.5 63.4± 0.7 67.9± 1.0 57.8± 1.3 70.9± 0.6 58.5± 0.9
IC compactness loss (Def. 1) + CCE machine types, sections and attribute information (342) 74.7± 0.7 64.9± 1.1 69.2± 0.7 59.8± 1.3 71.9± 0.6 59.5± 1.0
AdaCos loss (Def. 3) machine types, sections and attribute information (342) 76.3± 1.0 66.0± 0.566.0± 0.566.0± 0.5 69.9± 0.869.9± 0.869.9± 0.8 59.9± 1.559.9± 1.559.9± 1.5 73.2± 0.4 60.1± 0.960.1± 0.960.1± 0.9
sub-cluster AdaCos loss (Def. 4) machine types, sections and attribute information (342) 76.8± 0.876.8± 0.876.8± 0.8 65.8± 0.2 69.8± 0.5 59.7± 1.1 73.4± 0.573.4± 0.573.4± 0.5 59.8± 0.8

DCASE2023 development set

loss classes of auxiliary task (number of classes) source domain target domain both domains
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss (Def. 1) none (1) 50.7± 3.5 52.6± 0.3 45.3± 1.9 50.1± 0.5 48.9± 1.4 50.9± 0.4
IC compactness loss (Def. 1) machine types (14) 67.3± 2.7 63.0± 1.4 67.8± 1.2 58.6± 1.158.6± 1.158.6± 1.1 67.4± 1.4 59.4± 1.159.4± 1.159.4± 1.1
IC compactness loss (Def. 1) machine types, models trained individually (1) 46.7± 1.9 51.7± 0.6 45.9± 3.2 50.4± 0.8 47.6± 2.1 50.7± 0.6
IC compactness loss (Def. 1) machine types and attribute information (186) 67.6± 2.5 61.6± 1.2 70.0± 2.4 56.4± 1.9 68.3± 1.9 57.1± 1.3
IC compactness loss (Def. 1) + CCE machine types and attribute information (186) 70.1± 1.570.1± 1.570.1± 1.5 63.3± 1.363.3± 1.363.3± 1.3 71.0± 1.3 55.5± 1.1 70.4± 1.0 56.7± 0.8
AdaCos loss (Def. 3) machine types and attribute information (186) 69.8± 1.5 62.8± 1.3 72.1± 1.2 55.4± 1.7 71.2± 0.771.2± 0.771.2± 0.7 56.8± 1.2
sub-cluster AdaCos loss (Def. 4) machine types and attribute information (186) 69.4± 1.5 61.4± 1.5 72.4± 1.672.4± 1.672.4± 1.6 55.3± 1.2 71.0± 1.2 56.3± 1.1

DCASE2023 evaluation set

loss classes of auxiliary task (number of classes) source domain target domain both domains
AUC pAUC AUC pAUC AUC pAUC

IC compactness loss (Def. 1) none (1) 51.8± 2.1 51.4± 1.2 50.0± 1.9 50.5± 0.7 51.6± 0.9 50.8± 0.6
IC compactness loss (Def. 1) machine types (14) 59.3± 1.9 54.4± 0.6 54.3± 2.1 51.2± 0.5 56.7± 1.2 52.0± 0.6
IC compactness loss (Def. 1) machine types, models trained individually (1) 51.3± 0.7 51.9± 0.7 54.7± 1.7 52.3± 0.8 53.2± 1.0 51.5± 0.6
IC compactness loss (Def. 1) machine types and attribute information (186) 73.0± 1.973.0± 1.973.0± 1.9 62.1± 1.4 58.9± 2.7 55.1± 1.4 64.1± 1.8 55.6± 0.8
IC compactness loss (Def. 1) + CCE machine types and attribute information (186) 72.6± 1.4 62.5± 1.962.5± 1.962.5± 1.9 62.2± 2.6 56.2± 0.8 67.2± 0.7 58.0± 0.958.0± 0.958.0± 0.9
AdaCos loss (Def. 3) machine types and attribute information (186) 72.3± 1.7 62.1± 1.4 61.6± 3.1 56.4± 1.156.4± 1.156.4± 1.1 67.0± 1.5 57.4± 0.9
sub-cluster AdaCos loss (Def. 4) machine types and attribute information (186) 72.1± 1.9 61.3± 1.5 62.3± 2.762.3± 2.762.3± 2.7 56.0± 0.7 67.3± 1.367.3± 1.367.3± 1.3 57.4± 0.7

It can be seen that for both datasets the ASD performance
improves with the number of classes being used for the
auxiliary task. When using only a single class for all data or
for individual machine types and sections, the AUC is close
to 50%, which corresponds to randomly guessing whether a
sample is anomalous or not. The most likely reason for this
is the factory background noise contained in the recordings,
which is highly diverse and contains many sound sources other
than the target machine. A model trained with a one-class
loss does not know the difference between the sound events
emitted by the machines to be monitored and any other sounds
contained in the recordings. The more complex (in terms of
numbers of classes) the chosen auxiliary task is, the more
information needs to be captured inside the embeddings for
solving this task. Additionally, the background noise does not
contain any helpful information for learning to discriminate
between the classes defined by the auxiliary task assuming
the noise is not class-specific. As a result, the model learns
to monitor specific frequencies or temporal patterns important
for specific machine types with specific settings and thus also
learns to ignore the background noise and to isolate sounds
emitted by the targeted machines. Furthermore, it can be

observed that using an explicit classification task improves
performance on all dataset splits. Ensuring an angular margin
between the classes slightly improves the overall performance,
but not significantly, often leading to very similar results. The
most likely reason is that by increasing intra-class similarity
implicitly introduces a margin between different classes. Still,
using an angular margin loss does not have any drawbacks
over using a compactness and a descriptiveness loss. As a
last observation, the sub-cluster AdaCos loss performs slightly
better than the AdaCos loss on the development split of the
DCASE2022 dataset while yielding a similar performance on
the other dataset splits. A possible explanation that there are no
significant improvements on the DCASE2023 datasets when
using an angular margin loss is that the auxiliary classification
task is not as difficult as for the DCASE2022 dataset because
there is only one section for each machine type. Slight im-
provements in performance when using multiple sub-clusters
for the AdaCos loss have been observed on the DCASE2020
dataset [2] in [29]. Note that the DCASE2020 dataset only
contains machine recordings with a single parameter setting
for each section and no domain shifts, i.e. consists of a single
source domain, and thus the task is very different from the

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 10

20 40 60 80 100

0.125

0.25

0.5

1

2

4

epoch

lo
ss

train splits of development and evaluation set

sub-cluster AdaCos loss
mean of intra-class compactness losses
mean of inter-class compactness losses

20 40 60 80 100

0.125

0.25

0.5

1

2

4

epoch

test split of development set (normal data)

Fig. 2. Different losses after each epoch when training by minimizing sub-
cluster AdaCos with a single sub-cluster per class and using mixup.

much more difficult task considered here. In conclusion, an
angular margin loss for ASD in combination with an auxiliary
classification task that uses as many meaningful classes as
possible is an excellent choice when training an ASD system
based on audio embeddings.

In the previous paragraph, we made the assumption that the
noise is not class-specific. However, if there is a single class
with very specific noise that is only present for this particular
class or, even worse, if this is the case for all classes, then an
auxiliary classification task will very likely not improve the
results. The reason is that the model does not learn to closely
monitor the machine sound because also the background
noise contains useful information for discriminating between
the classes. Therefore, assuming that the noise is not class-
specific is essential and intuitively makes sense for machine
condition monitoring as one would expect that at least some
machines share the same noise distribution when running in
the same factory or acoustic environment. Moreover, as shown
in Theorem 6, minimizing an angular margin loss using an
auxiliary classification task also explicitly increases intra-class
similarity. Hence, even if the noise is class-specific and thus
the auxiliary classification task does not aid the ASD task,
the performance is still as least as good as when not using
a classification task at all but only minimizing the intra-class
compactness losses and there should not be a disadvantage.

D. Minimizing Compactness Loss by Minimizing an Angular
Margin Loss

In Theorem 6, it has been shown that minimizing an angular
margin loss also minimizes all IC compactness losses and
maximizes all inter-class compactness losses. This fact is now
verified experimentally by training a model using the sub-
cluster AdaCos loss while also monitoring all compactness
losses. The results are depicted in Fig. 2 and Fig. 3. Regardless
of the dataset splits and regardless of using or not using mixup,
the angular margin loss and the mean of the IC compactness
losses are decreasing during training. The mean of the inter-
class compactness loss is constantly equal to 2, even without
training. The reason is that all sub-cluster centers in this work
are constant, randomly initialized and projected to the unit
sphere. Hence, By Lemma 5, a squared Euclidean distance of
2 corresponds to an angle of π

2 , i.e. orthogonality. The most

20 40 60 80 100

0.125

0.25

0.5

1

2

4

epoch

lo
ss

train splits of development and evaluation set

AdaCos loss
mean of intra-class compactness losses
mean of inter-class compactness losses

20 40 60 80 100

0.125

0.25

0.5

1

2

4

epoch

test split of development set (normal data)

Fig. 3. Different losses after each epoch when training by minimizing AdaCos
and not using mixup.

likely reason is that the randomly initialized center vectors are
approximately orthogonal with very high probability because
of the high dimension D = 256 of the embedding space.
Thus, samples that are similar to the center of one class will
be approximately orthogonal to the centers of the other classes.
Overall, this is exactly the expected behavior as predicted by
Theorem 6 and therefore verifies the theoretical results. Note
that smaller loss values do not correspond to a better ASD
performance because minimizing these losses only optimizes
the performance for the auxiliary task, which is not the same
as the ASD task.

E. Visualizing Normal and Anomalous Regions in Input Rep-
resentations as Perceived by the System

To further investigate the effect of using an auxiliary task
with multiple classes, another experiment using RISE [73] is
carried out. RISE highlights regions of the input representa-
tions that are considered normal or anomalous by the ASD
system. Our goal is to show that utilizing an auxiliary classifi-
cation task for training the system, as done when minimizing
an angular margin loss, enables the system to closely monitor
specific machine sounds by focusing on regions belonging
to specific patterns of the input data. Although the ASD
performance is worse when only using spectrograms as input
representations [33], for these experiments a model using only
spectrograms as input has been trained. The reason is that these
representations are visually more appealing for the human eye
than waveforms or spectra and thus more suitable to visually
highlight normal and anomalous regions.

To visualize areas of the input representation responsible for
a decision, RISE masks random entries of the spectrograms
using binary masks and evaluates the ASD score using the
masked spectrogram. This step is repeated for many iterations.
Then, the sum of the masks weighted with the corresponding
ASD scores is taken and normalized with the expected value
of a random binary mask, which depends on the chosen
sampling distribution. The result is called an importance map
and visualizes the impact of specific regions of a spectrogram
on the resulting anomaly score.

The problem is that the dimension of the spectrograms
is very high because a time dimension of T = 311 and a
frequency dimension of F = 513 is used. Thus, there are

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 11

(a) Spectrogram of an anomalous gearbox sound. (b) Importance map of an anomalous gearbox sound when using sub-cluster AdaCos. (c) Importance map of an anomalous gearbox sound when using compactness loss.

(d) Spectrogram of a normal valve sound. (e) Importance map of a normal valve sound when using sub-cluster AdaCos. (f) Importance map of a normal valve sound when using compactness loss.

Fig. 4. Log scaled spectrograms (left column), importance maps obtained with RISE when training with the sub-cluster AdaCos loss and classifying between
different machine types, sections and attribute information (middle column), and importance maps obtained with RISE when training with an IC compactness
loss and no auxiliary classification task (right column) for two different recordings belonging to the test split of the development set (rows). For the importance
maps, blue colors indicate normal regions and yellow colors indicate regions that are found to be anomalous by the model. All subfigures use individual color
scales to improve visual appearance for differently scaled importance maps and thus colors of different subfigures cannot be compared to each other.

2T ·F = 2159543 possible binary masks and thus RISE requires
clearly too many iterations. To significantly reduce the search
space from 2F ·T to 2F+T , individual time and frequency
masks are randomly generated with a probability of 0.25 for
a time step or frequency bin to be masked and both masks
are combined by element-wise multiplication. This restriction
is not too severe because most sounds emitted by machines
are relatively stable over time with specific frequencies (e.g.
fans), consist of multiple stable sound events with on- and
offsets (e.g. slide rails) or only consist of short sound events
over a wide frequency range with a specific temporal structure
(e.g. valves). For further reduction of the search space, small
binary masks are generated and then up-sampled and randomly
cropped to match the dimension of the spectrogram to be
masked as proposed in [73]. More concretely, we used time
masks of size 20 and frequency masks of size 34 resulting
in a search space of 254, which is still very large but much
smaller than before. For generating a single importance map,
640, 000 iterations have been used.

Magnitude spectrograms (visualized in log scale) and corre-
sponding importance maps belonging to two different samples
using i) a model trained with an IC compactness loss without
an auxiliary task, and ii) a model trained with the sub-cluster
AdaCos loss and an auxiliary task for classifying between
different machine types, sections and attribute information
are depicted in Fig. 4. For the depicted importance maps,
blue colors indicate normal regions and yellow colors indicate
anomalous regions as perceived by the system. Note that, since
the system does not yield perfect results, these regions do not

need to really belong to normal and anomalous regions. As
there are only binary labels, indicating normal or anomalous
samples, available for each entire audio recording and we are
no subject matter experts for machine condition monitoring,
we do not know which regions are normal or anomalous. Still,
for the purpose of showing that utilizing meta information
when training a model, as done by angular margin losses, helps
the system to have a better understanding of the structure of the
data these plots are sufficient. There are several observations
to be made. Comparing the representations depicted in Fig. 4b
and 4e with the ones depicted in Fig. 4c and 4f, we suggest
that using sub-cluster AdaCos, i.e. Fig. 4b and 4e, more
clearly shows time and frequency structures at a resolution
correlating with the structures resp. acoustic events visible in
the spectrograms depicted in Fig. 4a and 4d.

For the anomalous gearbox example (Fig. 4a), the impor-
tance map depicted in Fig. 4b shows that specific frequencies
are monitored and considered to be normal or anomalous.
Interestingly, the normal frequency regions (in blue) in Fig.
4b exactly correspond to the frequencies containing high
energy (Fig. 4a) showing that the model expects a gearbox
sound from this section to have high energy in these regions.
The frequencies that are considered most anomalous, which
mostly corresponds to the frequency range between the bottom
two normal frequency bands, only contain some energy. This
indicates that a normal machine sound should either contain
no energy or much more energy for these frequencies. In
contrast to this, the importance map depicted in Fig. 4c does
not monitor specific frequencies and the only clearly visible

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 12

(a) intra-class compactness loss
with single class (1)

normal sample anomalous sample

(b) intra class compactness loss
with machine types as classes (7)

(c) intra class compactness loss
with machine types and sections as classes (42)

(d) intra class compactness loss
with machine types and sections as classes,

models trained individually (1)

(e) intra class compactness loss
with machine types, sections and

attribute information as classes (342)

(f) sub-cluster AdaCos loss
with machine types, sections and

attribute information as classes (342)

Fig. 5. Visualizations of the test split of the development set in the learned embedding space for different loss functions and auxiliary tasks using t-SNE.
Numbers in brackets denote the number of different classes used for the auxiliary task.

structures are two vertical lines indicating anomalous regions
(in yellow). Although we cannot guarantee that the regions in
the spectrogram corresponding to these vertical lines are not
anomalous, at least visually there is no energy present in these
locations. Since the recordings of the machine sounds do not
start and end at the same fixed time steps, it does not make
sense that the model expects temporal patterns at exactly these
time steps that are missing and to thus consider such patterns
to be anomalous. Therefore, it seems that these structures are
errors of the model.

The importance maps belonging to the normal valve ex-
ample (Fig. 4d) show a similar behavior but for temporal
patterns in addition to specific frequencies. Here, the main four
normal vertical patterns in the importance map shown in Fig.
4e correspond the four high energy patterns of the spectrogram
showing that the system views these temporal patterns as
normal for a valve sound. In contrast, the importance map
depicted in Fig. 4f does not show that the system has learned
to detect these patterns and looks almost random.

Overall, the depicted results add further confidence to the
claim that training a model with an auxiliary classification
task with many classes enables the model to learn much
more meaningful embeddings, also leading to much better
capabilities for detecting anomalous sound events than a model

TABLE III
MEAN AND STANDARD DEVIATION OF THE AVERAGE EUCLIDEAN

DISTANCE BETWEEN THE T-SNE PROJECTIONS OF EACH ANOMALOUS
SAMPLE AND THE CLOSEST NORMAL SAMPLE OVER FIVE TRIALS FOR

DIFFERENT LOSSES AND USING DIFFERENT AUXILIARY TASKS.

loss classes of auxiliary task (number of classes) average distance

IC compactness loss none (1) 0.485± 0.007
IC compactness loss machine types (7) 1.636± 0.037
IC compactness loss machine types and sections (42) 2.175± 0.075
IC compactness loss machine types and sections, models trained individually (1) 0.559± 0.002
IC compactness loss machine types, sections and attribute information (342) 2.646± 0.045
sub-cluster AdaCos loss machine types, sections and attribute information (342) 2.947± 0.022

trained with only a single class.

F. Visualizing the Resulting Embedding Spaces Using t-SNE

As a last experiment, the embedding spaces resulting from
using different loss functions and auxiliary tasks are visualized
in Figure 5 using t-SNE [74]. Note that by Lemma 5 it does
not matter whether t-SNE is evaluated with the cosine distance
or the Euclidean distance because both are equivalent when
determining the degree of similarity between samples on the
unit sphere. It can be seen that using more classes for the
auxiliary task helps to separate normal and anomalous samples
(Fig. 5b,c,e,f). When only using a single class (Fig. 5a) or indi-
vidually trained models (Fig. 5d), there is no visual difference

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 13

between normal and anomalous samples. However, it can also
be seen that the model has not learned a trivial solution as the
embedding spaces did not collapse to a single fixed point,
which would correspond to a uniformly distributed t-SNE
embedding space. Moreover, the ASD performance would be
very close to 50% as normal and anomalous samples would
be indistinguishable in the embedding space. Therefore, the
applied regularization strategies, namely not using trainable
centers and not using bias terms, work and a completely
failed regularization is not the main underlying problem. These
visual impressions are verified by computing the average
Euclidean distance between each anomalous sample and the
closest normal sample in the t-SNE embedding space. The
results can be found in Tab. III and also agree with the
performance results shown in Table II. Note that the distance
in the original embedding space is implicitly captured by the
ASD performance given in II because the anomaly score is
computed by taking the distance to the closest normal sample
in the target domain and the closest mean in the source
domain. Again, the most likely explanation for the strong
differences between the embedding spaces in terms of ASD
capabilities is that using multiple classes enables the model to
focus less on or even ignore the background noise and isolate
the targeted machine sounds. This helps the model to more
robustly detect deviations from normal machine sounds despite
the acoustically noisy recording conditions and thus results in
better ASD performance.

V. CONCLUSIONS

In this work, it has been investigated why using angular
margin losses works well for semi-supervised ASD. To this
end, it has been shown, both theoretically and experimentally,
that reducing an angular margin loss also minimizes the IC
compactness loss while simultaneously maximizing the inter-
class compactness loss. Therefore, angular margin losses in
combination with an auxiliary classification task can be viewed
as regularized one-class losses preventing the model to learn
trivial solutions. In experiments conducted on the DCASE2022
and DCASE2023 ASD datasets for machine condition mon-
itoring, it has been shown that using an auxiliary task with
as many meaningful classes as possible and using an angular
margin loss leads to significantly better ASD performance
than using a one-class loss such as the IC compactness loss.
Furthermore, RISE has been applied to create importance maps
for different losses and t-SNE has been used to visualize the
resulting embedding spaces. All the conducted experiments
show that by using an angular margin the model used for
extracting the embeddings learns to monitor relevant frequency
bins and learns machine-specific temporal patterns. This en-
ables the model to isolate machine sounds and effectively
ignore background noise present in the recording explaining
why angular margin losses with an auxiliary task are a good
choice for training an ASD system.

For future work, is is planned to investigate whether using
auxiliary tasks based on self-supervised learning to obtain
suitable representations of the data improves the resulting
ASD performance. In addition, sophisticated methods for

visualizing anomalous regions of input representations should
be developed as being able to localize these regions is very
useful for practical applications and theoretical analysis of
ASD systems.

ACKNOWLEDGMENTS

We would like to thank Paul M. Baggenstoss and Lukas
Henneke as well as the anonymous reviewers for their valuable
comments that improved the quality of this work.

APPENDIX

PROOF OF LEMMA 5

Using only basic definitions, we obtain

∥x− y∥22 =
D∑

i=1

(xi − yi)
2

=

D∑

i=1

x2
i +

D∑

i=1

y2i − 2

D∑

i=1

xiyi

= ∥x∥22 + ∥y∥22 − 2⟨x, y⟩

= 2

(
1− ⟨x, y⟩

∥x∥2∥y∥2

)

= 2(1− cos(x, y)),

which finishes the proof.

REFERENCES

[1] C. Aggarwal, Outlier Analysis, 2nd ed. Springer, 2017.
[2] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tan-

abe, H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada,
“Description and discussion on DCASE2020 challenge task2: Unsuper-
vised anomalous sound detection for machine condition monitoring,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2020, pp. 81–85.

[3] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, D. Niizumi, K. Dohi,
R. Tanabe, H. Purohit, and T. Endo, “Description and discussion on
DCASE 2021 challenge task 2: Unsupervised anomalous detection for
machine condition monitoring under domain shifted conditions,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2021, pp. 186–190.

[4] K. Dohi, K. Imoto, N. Harada, D. Niizumi, Y. Koizumi, T. Nishida,
H. Purohit, R. Tanabe, T. Endo, M. Yamamoto, and Y. Kawaguchi, “De-
scription and discussion on DCASE 2022 challenge task 2: Unsupervised
anomalous sound detection for machine condition monitoring applying
domain generalization techniques,” in 7th Workshop on Detection and
Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022, pp. 26–30.

[5] S. N. Murthy and E. Agu, “Deep learning anomaly detection methods
to passively detect COVID-19 from audio,” in International Conference
on Digital Health (ICDH). IEEE, 2021, pp. 114–121.

[6] T. Dissanayake, T. Fernando, S. Denman, S. Sridharan, H. Ghaem-
maghami, and C. Fookes, “A robust interpretable deep learning classifier
for heart anomaly detection without segmentation,” IEEE J. Biomed.
Health Informatics, vol. 25, no. 6, pp. 2162–2171, 2021.

[7] S. Ntalampiras and I. Potamitis, “Acoustic detection of unknown bird
species and individuals,” CAAI Transactions on Intelligence Technology,
vol. 6, no. 3, pp. 291–300, 2021.

[8] T. Cejrowski and J. Szymanski, “Buzz-based honeybee colony finger-
print,” Comput. Electron. Agric., vol. 191, p. 106489, 2021.

[9] C. Zieger, A. Brutti, and P. Svaizer, “Acoustic based surveillance system
for intrusion detection,” in Sixth International Conference on Advanced
Video and Signal Based Surveillance (AVSS). IEEE, 2009, pp. 314–319.

[10] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento, “Audio
surveillance of roads: A system for detecting anomalous sounds,” IEEE
Trans. Intell. Transp. Syst., vol. 17, no. 1, pp. 279–288, 2016.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 14

[11] Y. Li, X. Li, Y. Zhang, M. Liu, and W. Wang, “Anomalous sound
detection using deep audio representation and a BLSTM network for
audio surveillance of roads,” IEEE Access, vol. 6, pp. 58 043–58 055,
2018.

[12] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti,
“Scream and gunshot detection and localization for audio-surveillance
systems,” in Fourth International Conference on Advanced Video and
Signal Based Surveillance (AVSS). IEEE, 2007, pp. 21–26.

[13] T. Hayashi, T. Komatsu, R. Kondo, T. Toda, and K. Takeda, “Anomalous
sound event detection based on wavenet,” in 26th European Signal
Processing Conference (EUSIPCO). IEEE, 2018, pp. 2494–2498.

[14] S. Shon, N. Dehak, D. A. Reynolds, and J. R. Glass, “MCE 2018: The 1st
multi-target speaker detection and identification challenge evaluation,”
in 20th Annual Conference of the International Speech Communication
Association (INTERSPEECH). ISCA, 2019, pp. 356–360.

[15] A. Mesaros, T. Heittola, and T. Virtanen, “Acoustic scene classification
in DCASE 2019 challenge: Closed and open set classification and
data mismatch setups,” in Workshop on Detection and Classification
of Acoustic Scenes and Events (DCASE), 2019, pp. 164–168.

[16] J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello, A. M. Torres, J. J.
Lopez, F. J. Ferri, and M. Cobos, “An open-set recognition and few-shot
learning dataset for audio event classification in domestic environments,”
Pattern Recognition Letters, 2022.

[17] E. Marchi, F. Vesperini, S. Squartini, and B. W. Schuller, “Deep recur-
rent neural network-based autoencoders for acoustic novelty detection,”
Comput. Intell. Neurosci., vol. 2017, pp. 4 694 860:1–4 694 860:14, 2017.

[18] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada, “Un-
supervised detection of anomalous sound based on deep learning and
the neyman-pearson lemma,” IEEE ACM Trans. Audio Speech Lang.
Process., vol. 27, no. 1, pp. 212–224, 2019.

[19] K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. Endo, and
Y. Kawaguchi, “Anomalous sound detection based on interpolation deep
neural network,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2020, pp. 271–275.

[20] R. Giri, F. Cheng, K. Helwani, S. V. Tenneti, U. Isik, and A. Krish-
naswamy, “Group masked autoencoder based density estimator for audio
anomaly detection,” in 5th the Workshop on Detection and Classification
of Acoustic Scenes and Events (DCASE), 2020, pp. 51–55.

[21] S. Kapka, “Id-conditioned auto-encoder for unsupervised anomaly de-
tection,” in 5th the Workshop on Detection and Classification of Acoustic
Scenes and Events (DCASE), 2020, pp. 71–75.

[22] G. Wichern, A. Chakrabarty, Z. Wang, and J. L. Roux, “Anomalous
sound detection using attentive neural processes,” in Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA).
IEEE, 2021, pp. 186–190.

[23] K. Dohi, T. Endo, H. Purohit, R. Tanabe, and Y. Kawaguchi, “Flow-
based self-supervised density estimation for anomalous sound detection,”
in International Conference on Acoustics, Speech and Signal Processing,
ICASSP. IEEE, 2021, pp. 336–340.

[24] K. Dohi, T. Endo, and Y. Kawaguchi, “Disentangling physical pa-
rameters for anomalous sound detection under domain shifts,” in 30th
European Signal Processing Conference EUSIPCO. IEEE, 2022, pp.
279–283.

[25] R. Giri, S. V. Tenneti, F. Cheng, K. Helwani, U. Isik, and A. Kr-
ishnaswamy, “Self-supervised classification for detecting anomalous
sounds,” in 5th Workshop on Detection and Classification of Acoustic
Scenes and Events (DCASE), 2020, pp. 46–50.

[26] J. A. Lopez, H. Lu, P. Lopez-Meyer, L. Nachman, G. Stemmer, and
J. Huang, “A speaker recognition approach to anomaly detection,” in
5th the Workshop on Detection and Classification of Acoustic Scenes
and Events (DCASE), 2020, pp. 96–99.

[27] T. Inoue, P. Vinayavekhin, S. Morikuni, S. Wang, T. H. Trong, D. Wood,
M. Tatsubori, and R. Tachibana, “Detection of anomalous sounds for
machine condition monitoring using classification confidence,” in 5th
the Workshop on Detection and Classification of Acoustic Scenes and
Events (DCASE), 2020, pp. 66–70.

[28] Q. Zhou, “ArcFace based sound mobilenets for DCASE 2020 task 2,”
DCASE2020 Challenge, Tech. Rep., 2020.

[29] K. Wilkinghoff, “Sub-cluster AdaCos: Learning representations for
anomalous sound detection,” in International Joint Conference on Neu-
ral Networks (IJCNN). IEEE, 2021.

[30] ——, “Combining multiple distributions based on sub-cluster AdaCos
for anomalous sound detection under domain shifted conditions,” in
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE), 2021, pp. 55–59.

[31] S. Venkatesh, G. Wichern, A. S. Subramanian, and J. L. Roux, “Im-
proved domain generalization via disentangled multi-task learning in

unsupervised anomalous sound detection,” in 7th Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022, pp. 196–200.

[32] T. Nishida, K. Dohi, T. Endo, M. Yamamoto, and Y. Kawaguchi,
“Anomalous sound detection based on machine activity detection,” in
30th European Signal Processing Conference EUSIPCO. IEEE, 2022,
pp. 269–273.

[33] K. Wilkinghoff, “Design choices for learning embeddings from auxiliary
tasks for domain generalization in anomalous sound detection,” in
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023.

[34] D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep anomaly
detection with outlier exposure,” in 7th International Conference on
Learning Representations (ICLR). OpenReview.net, 2019.

[35] P. Primus, V. Haunschmid, P. Praher, and G. Widmer, “Anomalous sound
detection as a simple binary classification problem with careful selection
of proxy outlier examples,” in 5th the Workshop on Detection and
Classification of Acoustic Scenes and Events 2020 (DCASE), 2020, pp.
170–174.

[36] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface:
Deep hypersphere embedding for face recognition,” in Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer
Society, 2017, pp. 6738–6746.

[37] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recognition,”
in Conference on Computer Vision and Pattern Recognition (CVPR).
Computer Vision Foundation / IEEE Computer Society, 2018, pp. 5265–
5274.

[38] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2019, pp. 4690–4699.

[39] S. Grollmisch, D. Johnson, J. Abeßer, and H. Lukashevich, “IAEO3-
combining OpenL3 embeddings and interpolation autoencoder for
anomalous sound detection,” DCASE2020 Challenge, Tech. Rep., 2020.

[40] K. Wilkinghoff, “Using look, listen, and learn embeddings for detecting
anomalous sounds in machine condition monitoring,” in Detection and
Classification of Acoustic Scenes and Events Workshop (DCASE), 2020,
pp. 215–219.

[41] R. Müller, F. Ritz, S. Illium, and C. Linnhoff-Popien, “Acoustic anomaly
detection for machine sounds based on image transfer learning,” in
13th International Conference on Agents and Artificial Intelligence
(ICAART). SCITEPRESS, 2021, pp. 49–56.

[42] K. Wilkinghoff and F. Fritz, “On using pre-trained embeddings for
detecting anomalous sounds with limited training data,” in 31st European
Signal Processing Conference (EUSIPCO). IEEE, 2023.

[43] J. A. Lopez, G. Stemmer, P. Lopez-Meyer, P. Singh, J. A. del Hoyo On-
tiveros, and H. A. Cordourier, “Ensemble of complementary anomaly
detectors under domain shifted conditions,” in 6th Workshop on Detec-
tion and Classification of Acoustic Scenes and Events (DCASE), 2021,
pp. 11–15.

[44] I. Kuroyanagi, T. Hayashi, Y. Adachi, T. Yoshimura, K. Takeda, and
T. Toda, “An ensemble approach to anomalous sound detection based
on conformer-based autoencoder and binary classifier incorporated with
metric learning,” in 6th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE), 2021, pp. 110–114.

[45] Y. Deng, A. Jiang, Y. Duan, J. Ma, X. Chen, J. Liu, P. Fan, C. Lu,
and W. Zhang, “Ensemble of multiple anomalous sound detectors,” in
7th Workshop on Detection and Classification of Acoustic Scenes and
Events (DCASE). Tampere University, 2022, pp. 21–25.

[46] A. Fernandez and M. D. Plumbley, “Using UMAP to inspect audio data
for unsupervised anomaly detection under domain-shift conditions,” in
6th Workshop on Detection and Classification of Acoustic Scenes and
Events (DCASE), 2021, pp. 165–169.

[47] A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek, “Explain-
able AI methods - A brief overview,” in xxAI - Beyond Explainable AI
- International Workshop, Held in Conjunction with ICML 2020, ser.
Lecture Notes in Computer Science, vol. 13200. Springer, 2020, pp.
13–38.

[48] K. T. Mai, T. Davies, L. D. Griffin, and E. Benetos, “Explaining the
decision of anomalous sound detectors,” in 7th Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022.

[49] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should I trust you?”:
Explaining the predictions of any classifier,” in 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 1135–1144.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2021 15

[50] S. Mishra, B. L. Sturm, and S. Dixon, “Local interpretable model-
agnostic explanations for music content analysis,” in 18th International
Society for Music Information Retrieval Conference (ISMIR), 2017, pp.
537–543.

[51] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
approximation and projection for dimension reduction,” 2018. [Online].
Available: https://arxiv.org/abs/1802.03426

[52] L. Ruff, N. Görnitz, L. Deecke, S. A. Siddiqui, R. A. Vandermeulen,
A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,”
in 35th International Conference on Machine Learning (ICML), ser.
Proceedings of Machine Learning Research, vol. 80. PMLR, 2018, pp.
4390–4399.

[53] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[54] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, 2010.

[55] P. Perera and V. M. Patel, “Learning deep features for one-class
classification,” IEEE Transactions on Image Processing, vol. 28, no. 11,
pp. 5450–5463, 2019.

[56] A. N. Gorban, I. Y. Tyukin, D. V. Prokhorov, and K. I. Sofeikov, “Ap-
proximation with random bases: Pro et contra,” Information Sciences,
vol. 364-365, pp. 129–145, 2016.

[57] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in 32nd International
Conference on Machine Learning (ICML), vol. 37, 2015, pp. 448–456.

[58] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup:
Beyond empirical risk minimization,” in 6th International Conference
on Learning Representations (ICLR), 2018.

[59] X. Zhang, R. Zhao, Y. Qiao, X. Wang, and H. Li, “AdaCos: Adaptively
scaling cosine logits for effectively learning deep face representations,”
in Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2019, pp. 10 823–10 832.

[60] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for
face verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp.
926–930, 2018.

[61] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-
shot learning,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems
(NIPS), 2017, pp. 4077–4087.

[62] J. S. Chung, J. Huh, S. Mun, M. Lee, H. Heo, S. Choe, C. Ham,
S. Jung, B. Lee, and I. Han, “In defence of metric learning for speaker
recognition,” in 21st Annual Conference of the International Speech
Communication Association (Interspeech). ISCA, 2020, pp. 2977–2981.

[63] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,
no. 3, pp. 63:1–63:34, 2021.

[64] K. Wilkinghoff and A. Cornaggia-Urrigshardt, “TACos: Learning tem-
porally structured embeddings for few-shot keyword spotting with
dynamic time warping,” 2023, arXiv:2305.10816.

[65] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, M. Yasuda, and S. Saito,
“ToyADMOS2: Another dataset of miniature-machine operating sounds
for anomalous sound detection under domain shift conditions,” in 6th
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE). Tampere University, 2021, pp. 1–5.

[66] J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin, “Generalizing to unseen
domains: A survey on domain generalization,” in Thirtieth International
Joint Conference on Artificial Intelligence (IJCAI). ijcai.org, 2021, pp.
4627–4635.

[67] K. Dohi, K. Imoto, N. Harada, D. Niizumi, Y. Koizumi, T. Nishida,
H. Purohit, R. Tanabe, T. Endo, and Y. Kawaguchi, “Description and
discussion on DCASE 2023 challenge task 2: First-shot unsupervised
anomalous sound detection for machine condition monitoring,” in 8th
Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE). Tampere University, 2023, pp. 31–35.

[68] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, and M. Yasuda, “First-
shot anomaly detection for machine condition monitoring: A domain
generalization baseline,” in 31st European Signal Processing Conference
(EUSIPCO). IEEE, 2023.

[69] ——, “ToyADMOS2+: New toyadmos data and benchmark results of the
first-shot anomalous sound event detection baseline,” in 8th Detection
and Classification of Acoustic Scenes and Events Workshop (DCASE).
Tampere University, 2023, pp. 41–45.

[70] D. K. McClish, “Analyzing a portion of the ROC curve,” Medical
decision making, vol. 9, no. 3, pp. 190–195, 1989.

[71] J. Ebbers, R. Haeb-Umbach, and R. Serizel, “Threshold independent
evaluation of sound event detection scores,” in International Conference
on Acoustics, Speech and Signal Processing, (ICASSP). IEEE, 2022,
pp. 1021–1025.

[72] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016, pp. 265–283.

[73] V. Petsiuk, A. Das, and K. Saenko, “RISE: Randomized input sampling
for explanation of black-box models,” in British Machine Vision Con-
ference (BMVC). BMVA Press, 2018, p. 151.

[74] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, vol. 9, no. 11, pp. 2431—-2456,
2008.

Kevin Wilkinghoff received his B.Sc. degree in
Mathematics at the University of Münster, Germany,
and his M.Sc. degree in Computer Science at the
University of Bonn, Germany, in 2014 and 2017,
respectively. Since 2017 he is a research associate at
Fraunhofer FKIE. Currently, he is working towards a
Ph.D. degree in Computer Science at the University
of Bonn. His research interests include anomaly
detection, open-set classification and representation
learning for machine listening applications. In 2021,
he received the DCASE Best Paper Award.

Frank Kurth studied Computer Science and Math-
ematics at Bonn University, Germany, where he
recieved both a masters degree in Computer Science
and the degree of a doctor of natural sciences (Dr.
rer. nat.) in 1997 and 1999, respectively. From 1997-
2007 he was with the Multimedia Signal Processing
group at Bonn University where he finished his
Habilitation in Computer Science in 2004 and was
subsequently appointed apl. Professor in 2013. Since
2007 he is with Fraunhofer FKIE, Germany, where
he currently heads a research group focused on

physical layer signal analysis in the area of communications. His research
interests include the application of pattern recognition and machine learning
techniques to audio, speech and communication signal processing. Dr. Kurth
has recieved the 2000 Dissertation Award of the German Informatics Society
(GI) and a 2000 Multimedia Award of the German Department of Economy
and Technology. He is co-author of more than 100 publications and holds
several patents. Dr. Kurth is a senior member of the IEEE.

L I ST OF F IGURES

Figure 1 Histograms of anomaly scores and corresponding decision
thresholds. 2

Figure 2 Illustration of different anomaly detection settings. 3
Figure 3 Illustration of an ideal embedding function for ASD. 5
Figure 4 Essential building blocks of a general ASD system based

on audio embeddings . 9
Figure 5 Ensuring an angular margin between classes i and j by

shifting the decision boundaries. 21
Figure 6 Effects of varying the margin and the scale parameter of

an angular margin loss on the relationship between angle
and posterior probability. 23

Figure 7 Illustration of the three different data augmentation tech-
niques used when applying SpecAugment. 29

Figure 8 Examples of ROC- and DET-curves. 35
Figure 9 Temporal development of different losses obtained on the

DCASE2020 dataset when training by minimizing the Ada-
Cos loss. 51

Figure 10 Scatter plot of normal and anomalous data belonging to
two different classes. 59

Figure 11 Comparison of the AUC-ROCs and pAUCs obtained on
the evaluation set with the top five highest-ranked systems
submitted to the DCASE2020 Challenge task 2, the pro-
posed approach and an ensemble. 65

Figure 12 Normalized F1 scores obtained with different threshold es-
timation methods on the DCASE2020 dataset. 70

Figure 13 Optimal F1 scores obtained on the DCASE2020 dataset
when using a varying percentage of normal data samples
not used for training the ASD system. 71

Figure 14 Normalized F1 scores obtained with different threshold esti-
mation methods on the development set of the DCASE2020
dataset when using a varying percentage of normal data
samples not used for training the ASD system. 71

Figure 15 Normalized F1 scores obtained with different threshold esti-
mation methods on the evaluation set of the DCASE2020
dataset when using a varying percentage of normal data
samples not used for training the ASD system. 72

Figure 16 Toy examples of perfectly separable anomaly score distri-
butions, each with an AUC-ROC equal to 1. 73

Figure 17 Example of computing F1-EV. 73

217

218 List of Figures

Figure 18 Comparison of several different performance measures com-
puted on the evaluation set of task 2 of the DCASE2023
Challenge. 77

Figure 19 Comparison of threshold-independent performance mea-
sures computed on the evaluation set of task 2 of the
DCASE2023 Challenge. 77

Figure 20 Sensitivity of the bounded F1-EV score with respect to βF1-EV. 78
Figure 21 Structure of the proposed anomalous sound detection sys-

tem for domain-shifted conditions. 86
Figure 22 Log-scaled spectrograms and importance maps obtained

with with RISE using and not using an auxiliary classi-
fication task. 95

Figure 23 Visualizations of the test split of the development set in
the learned embedding space for different loss functions
and auxiliary tasks using t-SNE. 97

Figure 24 Domain-independent performance obtained on the
DCASE2023 dataset with different subspace dimensions
for the AdaProj loss. 103

Figure 25 Illustration of an ASD system utilizing multiple SSL ap-
proaches. 108

Figure 26 Comparison between the performances of the presented
systems and official scores of the ten top-performing sys-
tems of the DCASE2023 Challenge. For the evaluations,
ensembles consisting of ten sub-systems were used. 111

Figure 27 Structure of the proposed KWS system. 123
Figure 28 Illustration of combining the embeddings belonging to dif-

ferent segments of a single recording. 125
Figure 29 Illustration of the TACos loss function. 126

L I ST OF TABLES

Table 1 Overview of different anomaly detection settings. 2
Table 2 Advantages and disadvantages of different types of audio

embeddings. 30
Table 3 Structure of the DCASE2020 ASD dataset. 47
Table 4 Modified ResNet architecture used as the baseline model. . 47
Table 5 Arithmetic means of all AUC-ROCs and pAUCs obtained

with different losses using different auxiliary tasks over all
sections of the DCASE2020 dataset. 52

Table 6 Arithmetic means of AUC-ROCs and pAUCs for different
machine types obtained with different backends. 59

Table 7 Arithmetic means of AUC-ROCs and pAUCs obtained with
mixup and the sub-cluster AdaCos loss using only a single
center per class. 60

Table 8 Arithmetic means of AUC-ROCs and pAUCs obtained with
the sub-cluster AdaCos loss for different numbers of centers
per class. 62

Table 9 Mean AUC-ROCs and pAUCs per machine type obtained
with different representations. 63

Table 10 Comparison of F1 scores obtained with different thresh-
old estimation methods on the development set of the
DCASE2020 dataset. 69

Table 11 Comparison of F1 scores obtained with different thresh-
old estimation methods on the evaluation set of the
DCASE2020 dataset. 69

Table 12 Structure of the DCASE2022 ASD dataset. 84
Table 13 Structure of the DCASE2023 ASD dataset. 85
Table 14 Sub-network architecture for DFT feature branch. 87
Table 15 Modified ResNet architecture for STFT feature branch. . . 88
Table 16 Comparison between using or not using trainable cluster

centers and bias terms on the DCASE2022 dataset. 89
Table 17 Comparison between different input feature representations

and ways of combining them on the DCASE2022 dataset. . 90
Table 18 Effect of temporal normalization in domain-shifted condi-

tions. 91
Table 19 Comparison between different backends on the

DCASE2022 dataset. 93
Table 20 Effect of the presented design choices for improving the

performance in domain-shifted conditions. 94

219

220 List of Tables

Table 21 Mean and standard deviation of the average Euclidean dis-
tance between the t-SNE projections of each anomalous
sample and the closest normal sample over five trials for
different losses and using different auxiliary tasks. 98

Table 22 Harmonic means of AUC-ROCs obtained with different
ways to handle the temporal dimension of pre-trained em-
beddings. 99

Table 23 Harmonic means of AUC-ROCs for different backends and
considered embeddings. 100

Table 24 Harmonic means of AUC-ROCs for different input repre-
sentations. 100

Table 25 ASD performance obtained with different loss functions on
the DCASE2022 and DCASE2023 datasets. 105

Table 26 Harmonic means of AUC-ROCs and pAUCs taken over all
machine IDs obtained when using different SSL approaches. 110

Table 27 Harmonic means of AUC-ROCs and pAUCs taken over
all machine types obtained on the DCASE2023 dataset by
modifying design choices of the proposed SSL-based system. 111

Table 28 Structure of the few-shot OSC dataset for acoustic alarm
detection in domestic environments. 119

Table 29 Weighted accuracies (in percent) obtained with different
systems and input representations for various openness set-
tings and number of shots per class. 120

Table 30 Modified ResNet architecture used for extracting embed-
dings with temporal dimension. 124

Table 31 Event-based, micro-averaged F-score, precision and recall
obtained on KWS-DailyTalk with different KWS systems. . 129

L I ST OF ACRONYMS

AD anomaly detection

ASD anomalous sound detection

AUC-ROC area under the receiver operating characteristic curve

ASR automatic speech recognition

CD cosine distance

CNN convolutional neural network

CSC closed-set classification

CTC connectionist temporal classification

CXE categorical crossentropy

DBA dynamic time warping barycenter averaging

DET detection error tradeoff

DFT discrete Fourier transform

DTW dynamic time warping

EER equal error rate

EV expected value

FeatEx feature exchange

FN false negatives

FNR false negative rate

FP false positives

FPR false positive rate

GAN generative adversarial network

GDP gamma distribution percentile

GESD generalized extreme studentized deviate

221

222 List of Acronyms

GMM Gaussian mixture model

HFCC human factor cepstral coefficients

HP histogram percentile

IQR interquartile range

k-NN k-nearest neighbors

KWS keyword spotting

L3 look, listen, and learn

LDA linear discriminant analysis

LIME local interpretable model-agnostic explanations

LOF local outlier factor

MADE masked autoencoder for distribution estimation

MAD mean absolute deviation

MFCC Mel-frequency cepstral coefficient

MSE mean squared error

MST multi-stage thresholding

OCSVM one-class support vector machine

OE outlier exposure

OSC open-set classification

PANN pre-trained audio neural network

pAUC partial area under the receiver operating characteristic curve

PCA principal component analysis

PCC Pearson correlation coefficient

PLDA probabilistic linear discriminant analysis

PSD polyphonic sound detection

ReLU rectified linear unit

RISE randomized input sampling for explanation

List of Acronyms 223

ROC receiver operating characteristic

SD standard deviation

SED sound event detection

SMOTE synthetic minority over-sampling technique

SSL self-supervised learning

StatEx statistics exchange

STFT short-time Fourier transform

SVDD support vector data description

TACos temporal AdaCos

TMN temporal mean normalization

TN true negatives

TNR true negative rate

TP true positives

TPR true positive rate

t-SNE t-distributed stochastic neighbor embedding

UMAP uniform manifold approximation and projection

VAD voice activity detection

VAE variational autoencoder

xAI explainable artificial intelligence

L I ST OF SYMBOLS

1I characteristic function for the interval I 125
¨ linear operator 17
α angle between two embeddings on the hyper-

sphere 20
α̂
(t)
med median of all mixed-up angles and all class centers

at training step t 54
α
(t)
med median of all angles belonging to the training sam-

ples and their corresponding class centers at train-
ing step t 23

βacc accuracy metric weight 36
βF1-EV hyperparameter for F1-EV 75
λ mixing coefficient of mixup 27
Λ space of all categorical class label functions 20
ϕ neural network for obtaining embeddings 16
Φ space of permissible neural network architectures

for obtaining embeddings 8
Φsimple space of permissible neural network architectures

only consisting of fully-connected or convolu-
tional layers 16

φ autoencoder 14
φd decoder 14
φe encoder 14
σl activation function for layer l 17
θ decision threshold 1
Apred predicted anomalies 33
B
(t)
avg sample-wise average over all summed logits of the

AdaCos loss belonging to the non-corresponding
classes at training step t 23

Beta beta distribution 27
B̂
(t)
avg sample-wise average over all summed logits of the

sub-cluster AdaCos loss at training step t 54
bl bias term of layer l 17

224

List of Symbols 225

c center of a hypersphere, class center, prototype
16, 20, 117

Cj all hypersphere centers belonging to class j 53
class class index function 8
C

(i)
pred all data samples classified as class i 36

d metric 117
D embedding dimension 5
dproj metric measuring distance between embedding

and its projection onto a linear span 102
Ei subset of the embedding space containing only

normal samples 5
emb ideal embedding function 5
F frequency dimension 106
Grubbs Grubbs statistic 41
Hl hidden representation space for layer l 16
hl(x) hidden representation at layer l for input sample

x 17
Iactive interval of active positions 125
Im image of a function 17
ipos index of an encoded relative position 125
iseg index of a segment 125
K number of shots for few-shot learning 117
Lada AdaCos loss 24
Lang angular margin loss, ArcFace 20
Lcomp compactness loss 16
Lkw keyword classification loss 127
Lpos position classification loss 127
Lproj AdaProj loss 102
L

(t)
prot prototypical loss at training step t 117

Lrec reconstruction loss 14
Lsc-ada sub-cluster AdaCos loss 54
Ltac TACos loss 127
lab categorical class label function 8
labpos categorical encoding of the relative position 125
L(ϕ) number of layers for neural network ϕ 16
Lseg segment length of input waveforms in seconds 123
m angular margin 20

226 List of Symbols

mean arithmetic mean of a dataset 40
median median of a dataset 41
mixlab label mixing function of mixup 28
mixx sample mixing function of mixup 28
Nbatch batch size 23
Ncenters number of centers for a single class 53
Nclasses number of classes 8
Ntest

classes number of test classes 116
Ntrain

classes number of classes used for training 116
Nkw number of keyword classes 126
Npos maximum number of segments belonging to any

training sample 125
Nseg number of segments belonging to a training sam-

ple 125
openness openness of an open-set task 116
P power set 8
predclass classifier function 36
PSD´1 projection onto D-sphere 49
Pspan(C) projection onto the linear span of C 102
Q(t) query set at training step t 117
R+ positive real numbers including zero 14
s scale parameter 20
S(t) support set at training step t 117
score anomaly score function 1
scoreemb anomaly score function in the embedding space

26
SD´1 D-sphere, unit sphere 49
ŝ(t) dynamically adaptive scale parameter of the sub-

cluster AdaCos loss at training step t 53
shiftdomain domain shift 81
sim cosine similarity 20
simmar cosine similarity with angular margin 20
sim(t)

max stability term of the sub-cluster AdaCos loss at
training step t 54

softmax softmax function 20
sort sort function sorting real values from low to high

35

List of Symbols 227

span(C) linear span of elements in C 102
std standard deviation of a dataset 40
s̃ dynamically adaptive scale parameter 24
s̃(t) dynamically adaptive scale parameter of the Ada-

Cos loss at training step t 23
t training step 23
T time dimension 106
U normal distribution 28
W parameter space of a neural network 8
w0 parameter setting with all weights equal to zero

17
w(l) weight parameters of layer l (excluding bias term)

17
x a data sample 1
X data space containing raw waveforms or pre-

processed feature representations 1, 13
Xanomalous anomalous data samples 1
Xnormal normal data samples 1
X
(i)
normal normal data samples belonging to class i 36

Xsource source domain 81
Xtarget target domain 81
Xtrain training samples 2
Y finite subset of the data space 14
Yj subset of the data space containing only samples

of class j 55
Y(t) batch at training step t 23

B IBL IOGRAPHY

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. “Tensorflow: A system for large-scale machine learning.” In:
12th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI). 2016, pp. 265–283.

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George
Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan.
“YouTube-8M: A Large-Scale Video Classification Benchmark.” In: CoRR
abs/1609.08675 (2016).

[3] Charu Aggarwal. Outlier Analysis. 2nd. Springer, 2017.

[4] Samet Akcay, Amir Atapour Abarghouei, and Toby P. Breckon.
“GANomaly: Semi-supervised Anomaly Detection via Adversarial Train-
ing.” In: 14th Asian Conference on Computer Vision (ACCV). Vol. 11363.
Lecture Notes in Computer Science. Springer, 2018, pp. 622–637.

[5] Guillaume Alain and Yoshua Bengio. “What regularized auto-encoders
learn from the data-generating distribution.” In: J. Mach. Learn. Res. 15.1
(2014), pp. 3563–3593.

[6] Relja Arandjelovic and Andrew Zisserman. “Look, Listen and Learn.” In:
International Conference on Computer Vision (ICCV). IEEE Computer
Society, 2017, pp. 609–617.

[7] Relja Arandjelovic and Andrew Zisserman. “Objects that Sound.” In: 15th
European Conference on Computer Vision (ECCV). Vol. 11205. Lecture
Notes in Computer Science. Springer, 2018, pp. 451–466.

[8] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.
“wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Rep-
resentations.” In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems (NeurIPS).
2020.

[9] Jisheng Bai, Jianfeng Chen, Mou Wang, Muhammad Saad Ayub, and Qingli
Yan. “SSDPT: Self-supervised dual-path transformer for anomalous sound
detection.” In: Digit. Signal Process. 135 (2023), p. 103939.

[10] Jisheng Bai, Yafei Jia, and Siwei Huang. JLESS Submission to DCASE2022
Task2: Batch Mixing Strategy Based Method With Aanomaly Detector for
Anomalous Sound Detection. Tech. rep. DCASE Challenge, 2022.

229

230 bibliography

[11] Jisheng Bai, Mou Wang, and Jianfeng Chen. “Dual-Path Transformer For
Machine Condition Monitoring.” In: Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA). IEEE,
2021, pp. 1144–1148.

[12] Adrien Bardes, Jean Ponce, and Yann LeCun. “VICReg: Variance-
Invariance-Covariance Regularization for Self-Supervised Learning.” In:
10th International Conference on Learning Representations ICLR. Open-
Review.net, 2022.

[13] Yacine Bel-Hadj and Wout Weijtjens. “Population-Based SHM Under En-
vironmental Variability Using a Classifier for Unsupervised Damage De-
tection.” In: 14th International Workshop on Structural Health Monitoring.
2023, pp. 1479–1488.

[14] Yacine Bel-Hadj, Wout Weijtjens, and Francisco de Nolasco Santos.
“Anomaly detection and representation learning in an instrumented rail-
way bridge.” In: 30th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN). 2022.

[15] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira.
“Analysis of Representations for Domain Adaptation.” In: Advances in Neu-
ral Information Processing Systems 19: Twentieth Annual Conference on
Neural Information Processing Systems (NIPS). MIT Press, 2006, pp. 137–
144.

[16] Çagdas Bilen, Giacomo Ferroni, Francesco Tuveri, Juan Azcarreta, and
Sacha Krstulovic. “A Framework for the Robust Evaluation of Sound Event
Detection.” In: International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 61–65.

[17] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. “Deep
Generative Modelling: A Comparative Review of VAEs, GANs, Normal-
izing Flows, Energy-Based and Autoregressive Models.” In: IEEE Trans.
Pattern Anal. Mach. Intell. 44.11 (2022), pp. 7327–7347.

[18] Holger Severin Bovbjerg and Zheng-Hua Tan. “Improving Label-Deficient
Keyword Spotting Through Self-Supervised Pretraining.” In: International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE,
2023.

[19] Andrew P. Bradley. “The use of the area under the ROC curve in the
evaluation of machine learning algorithms.” In: Pattern recognition 30.7
(1997), pp. 1145–1159.

[20] Guido Buzzi-Ferraris and Flavio Manenti. “Outlier detection in large data
sets.” In: Computers & chemical engineering 35.2 (2011), pp. 388–390.

bibliography 231

[21] Xinyu Cai, Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang,
Zhiyong Wu, and Yujun Wang. “A Contrastive Semi-Supervised Learning
Framework For Anomaly Sound Detection.” In: 6th Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE). 2021, pp. 31–
34.

[22] Estefanía Cano, Johannes Nowak, and Sascha Grollmisch. “Exploring sound
source separation for acoustic condition monitoring in industrial scenarios.”
In: 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017,
pp. 2264–2268.

[23] Tymoteusz Cejrowski and Julian Szymanski. “Buzz-based honeybee colony
fingerprint.” In: Comput. Electron. Agric. 191 (2021), p. 106489.

[24] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. “SMOTE: Synthetic Minority Over-sampling Technique.” In:
J. Artif. Intell. Res. 16 (2002), pp. 321–357.

[25] Han Chen, Yan Song, Li-Rong Dai, Ian McLoughlin, and Lin Liu. “Self-
Supervised Representation Learning for Unsupervised Anomalous Sound
Detection Under Domain Shift.” In: International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 471–475.

[26] Han Chen, Yan Song, Zhu Zhuo, Yu Zhou, Yu-Hong Li, Hui Xue, and
Ian McLoughlin. “An Effective Anomalous Sound Detection Method Based
on Representation Learning with Simulated Anomalies.” In: International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2023.

[27] Rewon Child. “Very Deep VAEs Generalize Autoregressive Models and Can
Outperform Them on Images.” In: 9th International Conference on Learn-
ing Representations (ICLR). OpenReview.net, 2021.

[28] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. “On the properties of neural machine translation: Encoder–decoder
approaches.” In: 8th Workshop on Syntax, Semantics and Structure in
Statistical Translation (SSST). Association for Computational Linguistics
(ACL). 2014, pp. 103–111.

[29] Kateryna Chumachenko, Alexandros Iosifidis, and Moncef Gabbouj. “Ro-
bust Fast Subclass Discriminant Analysis.” In: 28th European Signal Pro-
cessing Conference (EUSIPCO). IEEE. 2020, pp. 1397–1401.

[30] Joon Son Chung, Jaesung Huh, Seongkyu Mun, Minjae Lee, Hee-Soo Heo,
Soyeon Choe, Chiheon Ham, Sunghwan Jung, Bong-Jin Lee, and Icksang
Han. “In Defence of Metric Learning for Speaker Recognition.” In: 21st
Annual Conference of the International Speech Communication Association
(Interspeech). ISCA, 2020, pp. 2977–2981.

232 bibliography

[31] James Clark, Zhen Liu, and Nathalie Japkowicz. “Adaptive Threshold for
Outlier Detection on Data Streams.” In: 5th International Conference on
Data Science and Advanced Analytics (DSAA). IEEE, 2018, pp. 41–49.

[32] Aurora Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello.
“Look, Listen, and Learn More: Design Choices for Deep Audio Embed-
dings.” In: International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2019, pp. 3852–3856.

[33] Pawel Daniluk, Marcin Gozdziewski, Slawomir Kapka, and Michal Kos-
mider. Ensemble of Auto-Encoder Based Systems for Anomaly Detection.
Tech. rep. DCASE2020 Challenge, 2020.

[34] Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

[35] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall
and ROC curves.” In: Twenty-Third International Conference on Machine
Learning (ICML). Vol. 148. ACM International Conference Proceeding Se-
ries. ACM, 2006, pp. 233–240.

[36] Steven Davis and Paul Mermelstein. “Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sentences.”
In: IEEE Trans. Acoust. Speech Signal Process 28.4 (1980), pp. 357–366.

[37] Jiankang Deng, Jia Guo, Tongliang Liu, Mingming Gong, and Stefanos
Zafeiriou. “Sub-center ArcFace: Boosting face recognition by large-scale
noisy web faces.” In: European Conference on Computer Vision (ECCV).
Springer. 2020, pp. 741–757.

[38] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. “ArcFace:
Additive Angular Margin Loss for Deep Face Recognition.” In: Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019,
pp. 4690–4699.

[39] Yufeng Deng, Anbai Jiang, Yuchen Duan, Jitao Ma, Xuchu Chen, Jia
Liu, Pingyi Fan, Cheng Lu, and Wei-Qiang Zhang. “Ensemble of Multiple
Anomalous Sound Detectors.” In: 7th Workshop on Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE). Tampere University, 2022.

[40] Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Sridha Srid-
haran, Houman Ghaemmaghami, and Clinton Fookes. “A Robust Inter-
pretable Deep Learning Classifier for Heart Anomaly Detection With-
out Segmentation.” In: IEEE J. Biomed. Health Informatics 25.6 (2021),
pp. 2162–2171.

[41] Duygu Dogan, Huang Xie, Toni Heittola, and Tuomas Virtanen. “Zero-Shot
Audio Classification using Image Embeddings.” In: 30th European Signal
Processing Conference (EUSIPCO). IEEE, 2022, pp. 1–5.

bibliography 233

[42] Kota Dohi, Takashi Endo, and Yohei Kawaguchi. “Disentangling physical
parameters for anomalous sound detection under domain shifts.” In: 30th
European Signal Processing Conference (EUSIPCO). IEEE, 2022, pp. 279–
283.

[43] Kota Dohi, Takashi Endo, Harsh Purohit, Ryo Tanabe, and Yohei
Kawaguchi. “Flow-Based Self-Supervised Density Estimation for Anoma-
lous Sound Detection.” In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021, pp. 336–340.

[44] Kota Dohi, Keisuke Imoto, Noboru Harada, Daisuke Niizumi, Yuma
Koizumi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, and
Yohei Kawaguchi. “Description and Discussion on DCASE 2023 Challenge
Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine
Condition Monitoring.” In: 8th Detection and Classification of Acoustic
Scenes and Events Workshop (DCASE). Tampere, Finland, 2023, pp. 31–
35.

[45] Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo,
Masaaki Yamamoto, Yuki Nikaido, and Yohei Kawaguchi. “MIMII DG:
Sound Dataset for Malfunctioning Industrial Machine Investigation and
Inspection for Domain Generalization Task.” In: 7th Workshop on Detec-
tion and Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022, pp. 1–5.

[46] Kota Dohi et al. “Description and Discussion on DCASE 2022 Challenge
Task 2: Unsupervised Anomalous Sound Detection for Machine Condi-
tion Monitoring Applying Domain Generalization Techniques.” In: 7th
Workshop on Detection and Classification of Acoustic Scenes and Events
(DCASE). Tampere University, 2022, pp. 26–30.

[47] Jiaxin Du, Guangjie Han, Chuan Lin, and Miguel Martínez-García. “ITrust:
An Anomaly-Resilient Trust Model Based on Isolation Forest for Underwa-
ter Acoustic Sensor Networks.” In: IEEE Trans. Mob. Comput. 21.5 (2022),
pp. 1684–1696.

[48] Janek Ebbers, Reinhold Haeb-Umbach, and Romain Serizel. “Threshold In-
dependent Evaluation of Sound Event Detection Scores.” In: International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2022, pp. 1021–1025.

[49] Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming
Wang. “CLAP Learning Audio Concepts from Natural Language Supervi-
sion.” In: International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2023.

234 bibliography

[50] Andres Fernandez and Mark D. Plumbley. “Using UMAP to Inspect Au-
dio Data for Unsupervised Anomaly Detection Under Domain-Shift Condi-
tions.” In: 6th Workshop on Detection and Classification of Acoustic Scenes
and Events (DCASE). 2021, pp. 165–169.

[51] Giacomo Ferroni, Nicolas Turpault, Juan Azcarreta, Francesco Tuveri, Ro-
main Serizel, Çagdas Bilen, and Sacha Krstulovic. “Improving Sound Event
Detection Metrics: Insights from DCASE 2020.” In: International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021,
pp. 631–635.

[52] Peter Filzmoser. “A multivariate outlier detection method.” In: 7th Interna-
tional Conference on Computer Data Analysis and Modeling. 2004, pp. 18–
22.

[53] Pasquale Foggia, Nicolai Petkov, Alessia Saggese, Nicola Strisciuglio, and
Mario Vento. “Audio Surveillance of Roads: A System for Detecting Anoma-
lous Sounds.” In: IEEE Trans. Intell. Transp. Syst. 17.1 (2016), pp. 279–
288.

[54] M. A. Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer,
and Ponnuthurai N. Suganthan. “Ensemble deep learning: A review.” In:
Eng. Appl. Artif. Intell. 115 (2022), p. 105151.

[55] Jing Gao and Pang-Ning Tan. “Converting Output Scores from Outlier De-
tection Algorithms into Probability Estimates.” In: 6th International Con-
ference on Data Mining (ICDM). IEEE Computer Society, 2006, pp. 212–
221.

[56] Martin Gebel. “Multivariate calibration of classifier scores into the proba-
bility space.” Ph.D. thesis. University of Dortmund, 2009.

[57] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. “Audio
Set: An ontology and human-labeled dataset for audio events.” In: Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2017, pp. 776–780.

[58] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle.
“MADE: Masked Autoencoder for Distribution Estimation.” In: 32nd Inter-
national Conference on Machine Learning (ICML). Vol. 37. JMLR Work-
shop and Conference Proceedings. JMLR.org, 2015, pp. 881–889.

[59] Ritwik Giri, Fangzhou Cheng, Karim Helwani, Srikanth V. Tenneti, Umut
Isik, and Arvindh Krishnaswamy. “Group Masked Autoencoder Based Den-
sity Estimator for Audio Anomaly Detection.” In: 5th the Workshop on De-
tection and Classification of Acoustic Scenes and Events (DCASE). 2020,
pp. 51–55.

bibliography 235

[60] Ritwik Giri, Srikanth V. Tenneti, Fangzhou Cheng, Karim Helwani, Umut
Isik, and Arvindh Krishnaswamy. “Self-Supervised Classification for Detect-
ing Anomalous Sounds.” In: Detection and Classification of Acoustic Scenes
and Events Workshop (DCASE). 2020, pp. 46–50.

[61] Ritwik Giri, Srikanth V. Tenneti, Karim Helwani, Fangzhou Cheng, Umut
Isik, and Arvindh Krishnaswamy. Unsupervised Anomalous Sound Detec-
tion Using Self-Supervised Classification and Group Masked Autoencoder
for Density Estimation. Tech. rep. DCASE2020 Challenge, 2020.

[62] Tobias Glasmachers. “Limits of End-to-End Learning.” In: 9th Asian Con-
ference on Machine Learning, ACML. Vol. 77. Proceedings of Machine
Learning Research. PMLR, 2017, pp. 17–32.

[63] Kaan Gökcesu, Mohammadreza Mohaghegh Neyshabouri, Hakan Gökcesu,
and Suleyman Serdar Kozat. “Sequential Outlier Detection Based on In-
cremental Decision Trees.” In: IEEE Trans. Signal Process. 67.4 (2019),
pp. 993–1005.

[64] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[65] Alexander N. Gorban, Ivan Yu. Tyukin, Danil V. Prokhorov, and Kon-
stantin I. Sofeikov. “Approximation with random bases: Pro et Contra.” In:
Information Sciences 364-365 (2016), pp. 129–145.

[66] Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmid-
huber. “Connectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks.” In: 23rd International Con-
ference on Machine Learning (ICML). ACM, 2006, pp. 369–376.

[67] Sascha Grollmisch, Estefanía Cano, Christian Kehling, and Michael Taen-
zer. “Analyzing the Potential of Pre-Trained Embeddings for Audio Classifi-
cation Tasks.” In: 28th European Signal Processing Conference (EUSIPCO).
IEEE, 2020, pp. 790–794.

[68] Sascha Grollmisch, David Johnson, Jakob Abeßer, and Hanna Lukashevich.
“IAEO3-combining OpenL3 embeddings and interpolation autoencoder for
anomalous sound detection.” In: Tech. Rep., DCASE2020 Challenge (2020).

[69] Frank E. Grubbs. “Sample Criteria for Testing Outlying Observations.” In:
The Annals of Mathematical Statistics 21.1 (1950), pp. 27–58.

[70] Jian Guan, Youde Liu, Qiaoxi Zhu, Tieran Zheng, Jiqing Han, and Wenwu
Wang. “Time-Weighted Frequency Domain Audio Representation with
GMM Estimator for Anomalous Sound Detection.” In: International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

[71] James A. Hanley and Barbara J. McNeil. “The meaning and use of the area
under a receiver operating characteristic (ROC) curve.” In: Radiology 143.1
(1982), pp. 29–36.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

236 bibliography

[72] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, and
Masahiro Yasuda. “First-Shot Anomaly Detection for Machine Condition
Monitoring: A Domain Generalization Baseline.” In: 31st European Signal
Processing Conference (EUSIPCO). IEEE, 2023, pp. 191–195.

[73] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, and
Masahiro Yasuda. “ToyADMOS2+: New Toyadmos Data and Benchmark
Results of the First-Shot Anomalous Sound Event Detection Baseline.” In:
8th Detection and Classification of Acoustic Scenes and Events Workshop
(DCASE). Tampere University, 2023, pp. 41–45.

[74] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi,
Masahiro Yasuda, and Shoichiro Saito. “ToyADMOS2: Another Dataset
of Miniature-Machine Operating Sounds for Anomalous Sound Detection
under Domain Shift Conditions.” In: 6th Workshop on Detection and Clas-
sification of Acoustic Scenes and Events (DCASE). 2021, pp. 1–5.

[75] Tomoki Hayashi, Tatsuya Komatsu, Reishi Kondo, Tomoki Toda, and
Kazuya Takeda. “Anomalous Sound Event Detection Based on WaveNet.”
In: 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018,
pp. 2494–2498.

[76] Tomoki Hayashi, Takenori Yoshimura, and Yusuke Adachi. Conformer-
Based ID-Aware Autoencoder for Unsupervised Anomalous Sound Detec-
tion. Tech. rep. DCASE2020 Challenge, 2020.

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition.” In: Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2016, pp. 770–778.

[78] Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. “Deep
Anomaly Detection with Outlier Exposure.” In: 7th International Confer-
ence on Learning Representations (ICLR). OpenReview.net, 2019.

[79] Hynek Hermansky. “Perceptual linear predictive (PLP) analysis of speech.”
In: The Journal of the Acoustical Society of America 87.4 (1990), pp. 1738–
1752.

[80] Shawn Hershey et al. “CNN architectures for large-scale audio classifica-
tion.” In: International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2017, pp. 131–135.

[81] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Improving neural networks by preventing co-
adaptation of feature detectors.” In: CoRR abs/1207.0580 (2012).

[82] Geoffrey Everest Hinton and Ruslan Salakhutdinov. “Reducing the Di-
mensionality of Data with Neural Networks.” In: Science 313.5786 (2006),
pp. 504–507.

bibliography 237

[83] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In:
Neural computation 9.8 (1997), pp. 1735–1780.

[84] Andreas Holzinger, Anna Saranti, Christoph Molnar, Przemyslaw Biecek,
and Wojciech Samek. “Explainable AI Methods - A Brief Overview.” In:
xxAI - Beyond Explainable AI - International Workshop, Held in Con-
junction with ICML 2020. Vol. 13200. Lecture Notes in Computer Science.
Springer, 2020, pp. 13–38.

[85] Tadanobu Inoue, Phongtharin Vinayavekhin, Shu Morikuni, Shiqiang
Wang, Tuan Hoang Trong, David Wood, Michiaki Tatsubori, and Ryuki
Tachibana. “Detection of Anomalous Sounds for Machine Condition Moni-
toring using Classification Confidence.” In: Detection and Classification of
Acoustic Scenes and Events Workshop (DCASE). 2020, pp. 66–70.

[86] Sergey Ioffe and Christian Szegedy. “Batch normalization: accelerating deep
network training by reducing internal covariate shift.” In: 32nd Interna-
tional Conference on Machine Learning (ICML). Vol. 37. 2015, pp. 448–
456.

[87] Alan Jeffares, Qinghai Guo, Pontus Stenetorp, and Timoleon Moraitis.
“Spike-inspired rank coding for fast and accurate recurrent neural net-
works.” In: 10th International Conference on Learning Representations
(ICLR). OpenReview.net, 2022.

[88] Wang JiaJun. Self-Supervised Representation Learning for First-Shot Un-
supervised Anomalous Sound Detection. Tech. rep. DCASE2023 Challenge,
June 2023.

[89] Anbai Jiang, Qijun Hou, Jia Liu, Pingyi Fan, Jitao Ma, Cheng Lu, Yuanzhi
Zhai, Yufeng Deng, and Wei-Qiang Zhang. THUEE System for First-Shot
Unsupervised Anomalous Sound Detection for Machine Condition Monitor-
ing. Tech. rep. DCASE2023 Challenge, 2023.

[90] Anbai Jiang, Wei-Qiang Zhang, Yufeng Deng, Pingyi Fan, and Jia Liu.
“Unsupervised Anomaly Detection and Localization of Machine Audio: A
GAN-Based Approach.” In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2023.

[91] Yulei Jiang, Charles E. Metz, and Robert M. Nishikawa. “A receiver oper-
ating characteristic partial area index for highly sensitive diagnostic tests.”
In: Radiology 201.3 (1996), pp. 745–750.

[92] Justin M. Johnson and Taghi M. Khoshgoftaar. “Survey on deep learning
with class imbalance.” In: J. Big Data 6 (2019), p. 27.

[93] Wang Junjie, Wang Jiajun, Chen Shengbing, Sun Yong, and Liu Mengyuan.
Anomalous Sound Detection Based on Self-Supervised Learning. Tech. rep.
DCASE2023 Challenge, 2023.

238 bibliography

[94] Herman Kamper, Weiran Wang, and Karen Livescu. “Deep convolutional
acoustic word embeddings using word-pair side information.” In: Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2016, pp. 4950–4954.

[95] Slawomir Kapka. “ID-Conditioned Auto-Encoder for Unsupervised
Anomaly Detection.” In: Detection and Classification of Acoustic Scenes
and Events Workshop (DCASE). 2020, pp. 71–75.

[96] Yohei Kawaguchi, Keisuke Imoto, Yuma Koizumi, Noboru Harada, Daisuke
Niizumi, Kota Dohi, Ryo Tanabe, Harsh Purohit, and Takashi Endo. “De-
scription and Discussion on DCASE 2021 Challenge Task 2: Unsupervised
Anomalous Detection for Machine Condition Monitoring Under Domain
Shifted Conditions.” In: Detection and Classification of Acoustic Scenes
and Events Workshop (DCASE). 2021, pp. 186–190.

[97] Byeonggeun Kim, Mingu Lee, Jinkyu Lee, Yeonseok Kim, and Kyuwoong
Hwang. “Query-by-Example On-Device Keyword Spotting.” In: Automatic
Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019,
pp. 532–538.

[98] Byeonggeun Kim, Seunghan Yang, Inseop Chung, and Simyung Chang.
“Dummy Prototypical Networks for Few-Shot Open-Set Keyword Spot-
ting.” In: 23rd Annual Conference of the International Speech Communica-
tion Association (Interspeech). ISCA, 2022, pp. 4621–4625.

[99] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali
Eslami, Dan Rosenbaum, Oriol Vinyals, and Yee Whye Teh. “Attentive
Neural Processes.” In: 7th International Conference on Learning Represen-
tations (ICLR). OpenReview.net, 2019.

[100] Jaechang Kim, Yunjoo Lee, Hyun Mi Cho, Dong Woo Kim, Chi Hoon Song,
and Jungseul Ok. “Activity-Informed Industrial Audio Anomaly Detection
Via Source Separation.” In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2023.

[101] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization.” In: 3rd International Conference on Learning Representations
(ICLR). 2015.

[102] Diederik P. Kingma and Max Welling. “An Introduction to Variational
Autoencoders.” In: Found. Trends Mach. Learn. 12.4 (2019), pp. 307–392.

[103] R. Kirandevraj, Vinod Kumar Kurmi, Vinay P. Namboodiri, and C. V.
Jawahar. “Generalized Keyword Spotting using ASR embeddings.” In: 23rd
Annual Conference of the International Speech Communication Association
(Interspeech). ISCA, 2022, pp. 126–130.

bibliography 239

[104] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. “Why Nor-
malizing Flows Fail to Detect Out-of-Distribution Data.” In: Advances in
Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems (NeurIPS). 2020.

[105] Ivan Kobyzev, Simon J. D. Prince, and Marcus A. Brubaker. “Normalizing
Flows: An Introduction and Review of Current Methods.” In: IEEE Trans.
Pattern Anal. Mach. Intell. 43.11 (2021), pp. 3964–3979.

[106] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and
Keisuke Imoto. “ToyADMOS: A dataset of miniature-machine operating
sounds for anomalous sound detection.” In: Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA). IEEE. 2019, pp. 313–
317.

[107] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Yuta Kawachi, and
Noboru Harada. “Unsupervised Detection of Anomalous Sound Based on
Deep Learning and the Neyman-Pearson Lemma.” In: IEEE ACM Trans.
Audio Speech Lang. Process. 27.1 (2019), pp. 212–224.

[108] Yuma Koizumi et al. “Description and Discussion on DCASE2020 Chal-
lenge Task2: Unsupervised Anomalous Sound Detection for Machine Con-
dition Monitoring.” In: Detection and Classification of Acoustic Scenes and
Events Workshop (DCASE). 2020, pp. 81–85.

[109] Alexander Kolesnikov and Christoph H. Lampert. “Seed, Expand and Con-
strain: Three Principles for Weakly-Supervised Image Segmentation.” In:
14th European Conference on Computer Vision (ECCV). Vol. 9908. Lec-
ture Notes in Computer Science. Springer, 2016, pp. 695–711.

[110] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and
Mark D. Plumbley. “PANNs: Large-Scale Pretrained Audio Neural Net-
works for Audio Pattern Recognition.” In: IEEE ACM Trans. Audio Speech
Lang. Process. 28 (2020), pp. 2880–2894.

[111] Anurag Kumar, Maksim Khadkevich, and Christian Fügen. “Knowledge
Transfer from Weakly Labeled Audio Using Convolutional Neural Network
for Sound Events and Scenes.” In: International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 326–330.

[112] Ibuki Kuroyanagi, Tomoki Hayashi, Yusuke Adachi, Takenori Yoshimura,
Kazuya Takeda, and Tomoki Toda. “An Ensemble Approach to Anomalous
Sound Detection Based on Conformer-Based Autoencoder and Binary Clas-
sifier Incorporated with Metric Learning.” In: 6th Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE). 2021, pp. 110–
114.

240 bibliography

[113] Ibuki Kuroyanagi, Tomoki Hayashi, Kazuya Takeda, and Tomoki Toda.
“Anomalous Sound Detection Using a Binary Classification Model and
Class Centroids.” In: 29th European Signal Processing Conference (EU-
SIPCO). IEEE, 2021, pp. 1995–1999.

[114] Ibuki Kuroyanagi, Tomoki Hayashi, Kazuya Takeda, and Tomoki Toda.
“Improvement of Serial Approach to Anomalous Sound Detection by In-
corporating Two Binary Cross-Entropies for Outlier Exposure.” In: 30th
European Signal Processing Conference (EUSIPCO). IEEE, 2022, pp. 294–
298.

[115] Ibuki Kuroyanagi, Tomoki Hayashi, Kazuya Takeda, and Tomoki Toda.
Two-stage anomalous sound detection systems using domain generalization
and specialization techniques. Tech. rep. DCASE Challenge, 2022.

[116] Frank Kurth and Dirk von Zeddelmann. “An Analysis of MFCC-like Para-
metric Audio Features for Keyphrase Spotting Applications.” In: ITG Sym-
posium on Speech Communication (ITG Speech). VDE, 2010.

[117] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. “Zero-data Learning
of New Tasks.” In: Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI). AAAI Press, 2008, pp. 646–651.

[118] Keon Lee, Kyumin Park, and Daeyoung Kim. “DailyTalk: Spoken Dialogue
Dataset for Conversational Text-to-Speech.” In: International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

[119] Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas.
“Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced
Datasets in Machine Learning.” In: J. Mach. Learn. Res. 18 (2017), 17:1–
17:5.

[120] Bin Li and Emmanuel Müller. “Contrastive Time Series Anomaly Detec-
tion by Temporal Transformations.” In: International Joint Conference on
Neural Networks, (IJCNN). IEEE, 2023.

[121] Haoyuan Li and Yifan Li. “Anomaly detection methods based on GAN: a
survey.” In: Appl. Intell. 53.7 (2023), pp. 8209–8231.

[122] Jinyu Li et al. “Recent advances in end-to-end automatic speech recogni-
tion.” In: APSIPA Transactions on Signal and Information Processing 11.1
(2022).

[123] Kai Li, Quoc-Huy Nguyen, Yasuji Ota, and Masashi Unoki. “Unsupervised
Anomalous Sound Detection for Machine Condition Monitoring Using Tem-
poral Modulation Features on Gammatone Auditory Filterbank.” In: 7th
Workshop on Detection and Classification of Acoustic Scenes and Events
(DCASE). Tampere University, 2022.

bibliography 241

[124] Kai Li, Dung Kim Tran, Xugang Lu, Masato Akagi, and Masashi Un-
oki. “Data-driven Non-uniform Filterbanks Based on F-ratio for Machine
Anomalous Sound Detection.” In: 31st European Signal Processing Confer-
ence (EUSIPCO). IEEE, 2023, pp. 201–205.

[125] Lijian Li, Yunhe Zhang, and Aiping Huang. “Learnable Subspace Orthog-
onal Projection for Semi-supervised Image Classification.” In: 16th Asian
Conference on Computer Vision (ACCV). Vol. 13843. Lecture Notes in
Computer Science. Springer, 2022, pp. 477–490.

[126] Renjie Li, Xiaohua Gu, Fei Lu, Hongfei Song, and Jutao Pan. Unsupervised
Adversarial domain adaptive abnormal sound detection for machine condi-
tion monitoring under Domain Shift Conditions. Tech. rep. DCASE2021
Challenge, 2021.

[127] Yanxiong Li, Xianku Li, Yuhan Zhang, Mingle Liu, and Wucheng Wang.
“Anomalous Sound Detection Using Deep Audio Representation and a
BLSTM Network for Audio Surveillance of Roads.” In: IEEE Access 6
(2018), pp. 58043–58055.

[128] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network.” In:
2nd International Conference on Learning Representations, (ICLR). Ed.
by Yoshua Bengio and Yann LeCun. 2014.

[129] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár.
“Focal Loss for Dense Object Detection.” In: IEEE International Confer-
ence on Computer Vision (ICCV). IEEE Computer Society, 2017, pp. 2999–
3007.

[130] Yihan Lin, Xunquan Chen, Ryoichi Takashima, and Tetsuya Takiguchi.
“Zero-Shot Sound Event Classification Using a Sound Attribute Vector
with Global and Local Feature Learning.” In: International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

[131] Haohe Liu, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Wenwu Wang, and
Mark D. Plumbley. “Segment-Level Metric Learning for Few-Shot Bioacous-
tic Event Detection.” In: 7th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE). Tampere University, 2022.

[132] Shuo Liu, Adria Mallol-Ragolta, Emilia Parada-Cabaleiro, Kun Qian, Xin
Jing, Alexander Kathan, Bin Hu, and Björn W. Schuller. “Audio self-
supervised learning: A survey.” In: Patterns 3.12 (2022), p. 100616.

[133] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le
Song. “SphereFace: Deep Hypersphere Embedding for Face Recognition.”
In: Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE Computer Society, 2017, pp. 6738–6746.

242 bibliography

[134] Jose A. Lopez, Hong Lu, Paulo Lopez-Meyer, Lama Nachman, Georg Stem-
mer, and Jonathan Huang. “A Speaker Recognition Approach to Anomaly
Detection.” In: Detection and Classification of Acoustic Scenes and Events
Workshop (DCASE). 2020, pp. 96–99.

[135] Jose A. Lopez, Georg Stemmer, Paulo Lopez-Meyer, Pradyumna Singh,
Juan A. del Hoyo Ontiveros, and Héctor A. Cordourier. “Ensemble Of Com-
plementary Anomaly Detectors Under Domain Shifted Conditions.” In: 6th
Workshop on Detection and Classification of Acoustic Scenes and Events
(DCASE). 2021, pp. 11–15.

[136] Iván López-Espejo, Zheng-Hua Tan, John H. L. Hansen, and Jesper Jensen.
“Deep Spoken Keyword Spotting: An Overview.” In: IEEE Access 10 (2022),
pp. 4169–4199.

[137] Zhiqiang Lv, Bing Han, Zhengyang Chen, Yanmin Qian, Jiawei Ding, and
Jia Liu. Unsupervised Anomalous Detection Based on Unsupervised Pre-
trained Models. Tech. rep. DCASE2023 Challenge, 2023.

[138] Haoxin Ma, Ye Bai, Jiangyan Yi, and Jianhua Tao. “Hypersphere Embed-
ding and Additive Margin for Query-by-example Keyword Spotting.” In:
Asia-Pacific Signal and Information Processing Association Annual Sum-
mit and Conference (APSIPA ASC). IEEE, 2019, pp. 868–872.

[139] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. “Rectifier nonlin-
earities improve neural network acoustic models.” In: 30th International
Conference on Machine Learning (ICML). 2013.

[140] Kimberly T. Mai, Toby Davies, Lewis D. Griffin, and Emmanouil Benetos.
“Explaining the Decision of Anomalous Sound Detectors.” In: 7th Workshop
on Detection and Classification of Acoustic Scenes and Events (DCASE).
Tampere University, 2022.

[141] John Martinsson, Martin Willbo, Aleksis Pirinen, Olof Mogren, and Maria
Sandsten. “Few-Shot Bioacoustic Event Detection Using an Event-Length
Adapted Ensemble of Prototypical Networks.” In: 7th Workshop on Detec-
tion and Classification of Acoustic Scenes and Events (DCASE). Tampere
University, 2022.

[142] Mark Mazumder, Colby R. Banbury, Josh Meyer, Pete Warden, and Vijay
Janapa Reddi. “Few-Shot Keyword Spotting in Any Language.” In: 22nd
Annual Conference of the International Speech Communication Association
(Interspeech). ISCA, 2021, pp. 4214–4218.

[143] Donna Katzman McClish. “Analyzing a portion of the ROC curve.” In:
Medical decision making 9.3 (1989), pp. 190–195.

[144] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger.
“UMAP: Uniform Manifold Approximation and Projection.” In: J. Open
Source Softw. 3.29 (2018), p. 861.

bibliography 243

[145] Li Meirong, Zhang Shaoying, Cheng Chuanxu, and Xu Wen. “Query-by-
Example on-Device Keyword Spotting using Convolutional Recurrent Neu-
ral Network and Connectionist Temporal Classification.” In: 6th Interna-
tional Conference on Intelligent Computing and Signal Processing (ICSP).
2021, pp. 1291–1294.

[146] Raghav Menon, Herman Kamper, John A. Quinn, and Thomas Niesler.
“Fast ASR-free and Almost Zero-resource Keyword Spotting Using DTW
and CNNs for Humanitarian Monitoring.” In: 19th Annual Conference of
the International Speech Communication Association (Interspeech). ISCA,
2018, pp. 2608–2612.

[147] Raghav Menon, Armin Saeb, Hugh Cameron, William Kibira, John A.
Quinn, and Thomas Niesler. “Radio-browsing for developmental monitoring
in Uganda.” In: International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2017, pp. 5795–5799.

[148] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. “Metrics for
polyphonic sound event detection.” In: Applied Sciences 6.6 (2016), p. 162.

[149] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. “Acoustic Scene
Classification in DCASE 2019 Challenge: Closed and Open Set Classifica-
tion and Data Mismatch Setups.” In: Workshop on Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE). 2019, pp. 164–168.

[150] Assaf Hurwitz Michaely, Xuedong Zhang, Gabor Simko, Carolina Parada,
and Petar S. Aleksic. “Keyword spotting for Google assistant using con-
textual speech recognition.” In: Automatic Speech Recognition and Under-
standing Workshop (ASRU). IEEE, 2017, pp. 272–278.

[151] Saumitra Mishra, Bob L. Sturm, and Simon Dixon. “Local Interpretable
Model-Agnostic Explanations for Music Content Analysis.” In: 18th In-
ternational Society for Music Information Retrieval Conference (ISMIR).
2017, pp. 537–543.

[152] Abdelrahman Mohamed et al. “Self-Supervised Speech Representation
Learning: A Review.” In: IEEE J. Sel. Top. Signal Process. 16.6 (2022),
pp. 1179–1210.

[153] Veronica Morfi, Inês Nolasco, Vincent Lostanlen, Shubhr Singh, Ariana
Strandburg-Peshkin, Lisa F. Gill, Hanna Pamula, David Benvent, and
Dan Stowell. “Few-Shot Bioacoustic Event Detection: A New Task at the
DCASE 2021 Challenge.” In: 6th Workshop on Detection and Classification
of Acoustic Scenes and Events (DCASE). 2021, pp. 145–149.

[154] Kazuki Morita, Tomohiko Yano, and Khai Tran. Anomalous Sound De-
tection Using CNN-Based Features By Self Supervised Learning. Tech. rep.
DCASE2021 Challenge, 2021.

244 bibliography

[155] Kazuki Morita, Tomohiko Yano, and Khai Tran. Comparitive Experiments
on Spectrogram Representation for Anomalous Sound Detection. Tech. rep.
DCASE Challenge, 2022.

[156] Mary M. Moya and Don R. Hush. “Network constraints and multi-objective
optimization for one-class classification.” In: Neural Networks 9.3 (1996),
pp. 463–474.

[157] Ami Moyal, Vered Aharonson, Ella Tetariy, and Michal Gishri. Phonetic
Search Methods for Large Speech Databases. Springer Briefs in Electrical
and Computer Engineering. Springer, 2013.

[158] Robert Müller, Steffen Illium, Fabian Ritz, and Kyrill Schmid. “Analy-
sis of Feature Representations for Anomalous Sound Detection.” In: 13th
International Conference on Agents and Artificial Intelligence (ICAART).
SCITEPRESS, 2021, pp. 97–106.

[159] Robert Müller, Fabian Ritz, Steffen Illium, and Claudia Linnhoff-Popien.
“Acoustic Anomaly Detection for Machine Sounds based on Image Trans-
fer Learning.” In: 13th International Conference on Agents and Artificial
Intelligence (ICAART). SCITEPRESS, 2021, pp. 49–56.

[160] Shreesha Narasimha Murthy and Emmanuel Agu. “Deep Learning Anomaly
Detection methods to passively detect COVID-19 from Audio.” In: Inter-
national Conference on Digital Health (ICDH). IEEE, 2021, pp. 114–121.

[161] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Görür, and
Balaji Lakshminarayanan. “Do Deep Generative Models Know What They
Don’t Know?” In: 7th International Conference on Learning Representa-
tions (ICLR). OpenReview.net, 2019.

[162] Javier Naranjo-Alcazar, Sergi Perez-Castanos, Pedro Zuccarello, Ana M.
Torres, Jose J. Lopez, Francesc J. Ferri, and Maximo Cobos. “An open-set
recognition and few-shot learning dataset for audio event classification in
domestic environments.” In: Pattern Recognition Letters (2022).

[163] Hiroki Narita and Akira Tamamori. Unsupervised Anomalous Sound De-
tection Using Intermediate Representation of Trained Models and Metric
Learning Based Variational Autoencoder. Tech. rep. DCASE2021 Challenge,
2021.

[164] Ismail Nejjar, Jean Meunier-Pion, Gaëtan Frusque, and Olga Fink. “DG-
Mix: Domain Generalization for Anomalous Sound Detection Based on Self-
Supervised Learning.” In: 7th Workshop on Detection and Classification of
Acoustic Scenes and Events 2022 (DCASE). Tampere University, 2022.

[165] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and
Kunio Kashino. “BYOL for Audio: Self-Supervised Learning for General-
Purpose Audio Representation.” In: International Joint Conference on Neu-
ral Networks (IJCNN). IEEE, 2021.

bibliography 245

[166] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and
Kunio Kashino. “Composing General Audio Representation by Fusing Mul-
tilayer Features of a Pre-trained Model.” In: 30th European Signal Process-
ing Conference (EUSIPCO). IEEE, 2022, pp. 200–204.

[167] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and
Kunio Kashino. “BYOL for Audio: Exploring Pre-Trained General-Purpose
Audio Representations.” In: IEEE/ACM Trans. Audio Speech Lang. Pro-
cess. 31 (2023), pp. 137–151.

[168] Tomoya Nishida, Kota Dohi, Takashi Endo, Masaaki Yamamoto, and
Yohei Kawaguchi. “Anomalous Sound Detection Based on Machine Activity
Detection.” In: 30th European Signal Processing Conference (EUSIPCO).
IEEE, 2022, pp. 269–273.

[169] Inês Nolasco et al. “Few-Shot Bioacoustic Event Detection at the DCASE
2022 Challenge.” In: 7th Workshop on Detection and Classification of Acous-
tic Scenes and Events 2022 (DCASE). 2022, pp. 136–140.

[170] Stavros Ntalampiras and Ilyas Potamitis. “Acoustic detection of unknown
bird species and individuals.” In: CAAI Transactions on Intelligence Tech-
nology 6.3 (2021), pp. 291–300.

[171] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. “WaveNet: A Generative Model for Raw Audio.” In: The 9th
ISCA Speech Synthesis Workshop (SSW). ISCA, 2016, p. 125.

[172] George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir
Mohamed, and Balaji Lakshminarayanan. “Normalizing Flows for Proba-
bilistic Modeling and Inference.” In: J. Mach. Learn. Res. 22 (2021), 57:1–
57:64.

[173] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D. Cubuk, and Quoc V. Le. “SpecAugment: A Simple Data Augmen-
tation Method for Automatic Speech Recognition.” In: 20th Annual Confer-
ence of the International Speech Communication Association (Interspeech).
ISCA, 2019, pp. 2613–2617.

[174] Jihwan Park and Sooyeon Yoo. “DCASE 2020 Task2: Anomalous Sound
Detection using Relevant Spectral Feature and Focusing Techniques in the
Unsupervised Learning Scenario.” In: 5th Workshop on Detection and Clas-
sification of Acoustic Scenes and Events (DCASE). 2020, pp. 140–144.

[175] Archit Parnami and Minwoo Lee. “Few-Shot Keyword Spotting With Pro-
totypical Networks.” In: 7th International Conference on Machine Learning
Technologies (ICMLT). ACM, 2022, pp. 277–283.

[176] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

246 bibliography

[177] Pramuditha Perera and Vishal M. Patel. “Learning Deep Features for One-
Class Classification.” In: IEEE Transactions on Image Processing 28.11
(2019), pp. 5450–5463.

[178] Ricardo Falcón Pérez, Gordon Wichern, François G. Germain, and
Jonathan Le Roux. “Location as Supervision for Weakly Supervised Multi-
Channel Source Separation of Machine Sounds.” In: Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2023.

[179] Sergi Perez-Castanos, Javier Naranjo-Alcazar, Pedro Zuccarello, and Max-
imo Cobos. “Anomalous Sound Detection using Unsupervised and Semi-
Supervised Autoencoders and Gammatone Audio Representation.” In: 5th
Workshop on Detection and Classification of Acoustic Scenes and Events
(DCASE). 2020, pp. 145–149.

[180] François Petitjean, Alain Ketterlin, and Pierre Gançarski. “A global aver-
aging method for dynamic time warping, with applications to clustering.”
In: Pattern recognition 44.3 (2011), pp. 678–693.

[181] Vitali Petsiuk, Abir Das, and Kate Saenko. “RISE: Randomized Input Sam-
pling for Explanation of Black-box Models.” In: British Machine Vision
Conference (BMVC). BMVA Press, 2018, p. 151.

[182] Lam Pham, Anahid Jalali, Olivia Dinica, and Alexander Schindler. DCASE
Challenge 2021: Unsupervised Anomalous Sound Detection of Machinery
with LeNet Architecture. Tech. rep. DCASE2021 Challenge, 2021.

[183] Paul Primus. Reframing Unsupervised Machine Condition Monitoring as a
Supervised Classification Task with Outlier-Exposed Classifiers. Tech. rep.
DCASE2020 Challenge, 2020.

[184] Paul Primus, Verena Haunschmid, Patrick Praher, and Gerhard Widmer.
“Anomalous Sound Detection as a Simple Binary Classification Problem
with Careful Selection of Proxy Outlier Examples.” In: 5th Workshop on
Detection and Classification of Acoustic Scenes and Events 2020 (DCASE).
2020, pp. 170–174.

[185] Simon J.D. Prince and James H. Elder. “Probabilistic linear discriminant
analysis for inferences about identity.” In: 11th International Conference
on Computer Vision (ICCV). IEEE. 2007.

[186] Harsh Purohit, Takashi Endo, Masaaki Yamamoto, and Yohei Kawaguchi.
“Hierarchical Conditional Variational Autoencoder Based Acoustic
Anomaly Detection.” In: 30th European Signal Processing Conference (EU-
SIPCO). IEEE, 2022, pp. 274–278.

[187] Harsh Purohit, Ryo Tanabe, Takashi Endo, Kaori Suefusa, Yuki Nikaido,
and Yohei Kawaguchi. “Deep Autoencoding GMM-Based Unsupervised
Anomaly Detection in Acoustic Signals and its Hyper-Parameter Optimiza-
tion.” In: 5th Workshop on Detection and Classification of Acoustic Scenes
and Events (DCASE). 2020, pp. 175–179.

bibliography 247

[188] Harsh Purohit, Ryo Tanabe, Takeshi Ichige, Takashi Endo, Yuki Nikaido,
Kaori Suefusa, and Yohei Kawaguchi. “MIMII Dataset: Sound Dataset for
Malfunctioning Industrial Machine Investigation and Inspection.” In: Detec-
tion and Classification of Acoustic Scenes and Events Workshop (DCASE).
New York University, 2019, pp. 209–213.

[189] Clemens Reimann, Peter Filzmoser, and Robert G. Garrett. “Background
and threshold: critical comparison of methods of determination.” In: Sci-
ence of the total environment 346.1-3 (2005), pp. 1–16.

[190] Tal Reiss, Niv Cohen, Liron Bergman, and Yedid Hoshen. “PANDA: Adapt-
ing Pretrained Features for Anomaly Detection and Segmentation.” In:
Conference on Computer Vision and Pattern Recognition (CVPR). Com-
puter Vision Foundation / IEEE, 2021, pp. 2806–2814.

[191] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I
Trust You?": Explaining the Predictions of Any Classifier.” In: 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. ACM, 2016, pp. 1135–1144.

[192] Aaron E. Rosenberg, Chin-Hui Lee, and Frank K. Soong. “Cepstral channel
normalization techniques for HMM-based speaker verification.” In: The 3rd
International Conference on Spoken Language Processing (ICSLP). ISCA,
1994.

[193] Bernard Rosner. “Percentage Points for a Generalized ESD Many-Outlier
Procedure.” In: Technometrics 25.2 (1983), pp. 165–172.

[194] Peter J. Rousseeuw and Christophe Croux. “Alternatives to the median ab-
solute deviation.” In: Journal of the American Statistical association 88.424
(1993), pp. 1273–1283.

[195] Peter J. Rousseeuw and Bert C. Van Zomeren. “Unmasking multivariate
outliers and leverage points.” In: Journal of the American Statistical asso-
ciation 85.411 (1990), pp. 633–639.

[196] Lukas Ruff. “Deep one-class learning: a deep learning approach to anomaly
detection.” PhD thesis. Technical University of Berlin, Germany, 2021.

[197] Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert
A. Vandermeulen, Alexander Binder, Emmanuel Müller, and Marius Kloft.
“Deep One-Class Classification.” In: 35th International Conference on Ma-
chine Learning (ICML). Vol. 80. Proceedings of Machine Learning Research.
PMLR, 2018, pp. 4390–4399.

[198] Yuya Sakamoto and Naoya Miyamoto. Combine Mahalanobis Distance, In-
terpolation Auto Encoder and Classification Approach for Anomaly Detec-
tion. Tech. rep. DCASE2021 Challenge, 2021.

248 bibliography

[199] Johan Schalkwyk, Doug Beeferman, Françoise Beaufays, Bill Byrne,
Ciprian Chelba, Mike Cohen, Maryam Kamvar, and Brian Strope. ““Your
word is my command”: Google search by voice: A case study.” In: Ad-
vances in Speech Recognition: Mobile Environments, Call Centers and Clin-
ics (2010), pp. 61–90.

[200] Walter J. Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Ter-
rance E. Boult. “Toward Open Set Recognition.” In: IEEE Trans. Pattern
Anal. Mach. Intell. 35.7 (2013), pp. 1757–1772.

[201] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-
Erfurth, and Georg Langs. “Unsupervised Anomaly Detection with Gener-
ative Adversarial Networks to Guide Marker Discovery.” In: 25th Inter-
national Conference on Information Processing in Medical Imaging(IPMI).
Vol. 10265. Lecture Notes in Computer Science. Springer, 2017, pp. 146–
157.

[202] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J.
Smola, and Robert C. Williamson. “Estimating the Support of a High-
Dimensional Distribution.” In: Neural Comput. 13.7 (2001), pp. 1443–1471.

[203] Kanta Shimonishi, Kota Dohi, and Yohei Kawaguchi. “Anomalous Sound
Detection Based on Sound Separation.” In: 24th Annual Conference of
the International Speech Communication Association (Interspeech). ISCA,
2023, pp. 2733–2737.

[204] Stepan Shishkin, Danilo Hollosi, Simon Doclo, and Stefan Goetze. “Active
Learning for Sound Event Classification using Monte-Carlo Dropout and
PANN Embeddings.” In: 6th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE). 2021, pp. 150–154.

[205] Suwon Shon, Najim Dehak, Douglas A. Reynolds, and James R. Glass.
“MCE 2018: The 1st Multi-Target Speaker Detection and Identification
Challenge Evaluation.” In: 20th Annual Conference of the International
Speech Communication Association (Interspeech). ISCA, 2019, pp. 356–360.

[206] Robert H. Shumway and David S. Stoffer. Time series analysis and its
applications. Vol. 3. Springer, 2000.

[207] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition.” In: 3rd International Conference
on Learning Representations (ICLR). 2015.

[208] Aleksandr Sizov, Kong Aik Lee, and Tomi Kinnunen. “Unify-
ing Probabilistic Linear Discriminant Analysis Variants in Bio-
metric Authentication.” In: Proc. S+SSPR. Software available at
https://sites.google.com/site/fastplda/. Springer. 2014, pp. 464–475.

bibliography 249

[209] Jake Snell, Kevin Swersky, and Richard S. Zemel. “Prototypical Networks
for Few-shot Learning.” In: Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems
(NIPS). 2017, pp. 4077–4087.

[210] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and San-
jeev Khudanpur. “X-Vectors: Robust DNN Embeddings for Speaker Recog-
nition.” In: International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2018, pp. 5329–5333.

[211] Stanley Smith Stevens, John Volkmann, and Edwin Broomell Newman. “A
scale for the measurement of the psychological magnitude pitch.” In: The
Journal of the Acoustical Society of America 8.3 (1937), pp. 185–190.

[212] Kaori Suefusa, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo,
and Yohei Kawaguchi. “Anomalous Sound Detection Based on Interpolation
Deep Neural Network.” In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 271–275.

[213] Cecilia Summers and Michael J. Dinneen. “Improved Mixed-Example Data
Augmentation.” In: Winter Conference on Applications of Computer Vision
(WACV). IEEE, 2019, pp. 1262–1270.

[214] Yanmin Sun, Andrew K. C. Wong, and Mohamed S. Kamel. “Classification
of Imbalanced Data: a Review.” In: Int. J. Pattern Recognit. Artif. Intell.
23.4 (2009), pp. 687–719.

[215] Jiantong Tian, Hejing Zhang, Qiaoxi Zhu, Feiyang Xiao, Haohe Liu, Xin-
hao Mei, Youde Liu, Wenwu Wang, and Jian Guan. First-shot Anomalous
Sound Detection with GMM Clustering and Finetuned Attribute Classifi-
cation using Audio Pretrained Model. Tech. rep. DCASE2023 Challenge,
2023.

[216] Giuseppe Valenzise, Luigi Gerosa, Marco Tagliasacchi, Fabio Antonacci,
and Augusto Sarti. “Scream and gunshot detection and localization for
audio-surveillance systems.” In: Fourth International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS). IEEE, 2007, pp. 21–
26.

[217] Satvik Venkatesh, Gordon Wichern, Aswin Subramanian, and Jonathan
Le Roux. Disentangled surrogate task learning for improved domain gen-
eralization in unsupervised anomalous sound detection. Tech. rep. DCASE
Challenge, 2022.

[218] Satvik Venkatesh, Gordon Wichern, Aswin Shanmugam Subramanian, and
Jonathan Le Roux. “Improved Domain Generalization via Disentangled
Multi-Task Learning in Unsupervised Anomalous Sound Detection.” In: 7th
Workshop on Detection and Classification of Acoustic Scenes and Events
(DCASE). Tampere University, 2022, pp. 196–200.

250 bibliography

[219] Sergey Verbitskiy, Milana Shkhanukova, and Viacheslav Vyshegorodtsev.
Unsupervised Anomalous Sound Detection Using Multiple Time-Frequency
Representations. Tech. rep. DCASE Challenge, 2022.

[220] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis
Mitliagkas, David Lopez-Paz, and Yoshua Bengio. “Manifold Mixup: Bet-
ter Representations by Interpolating Hidden States.” In: 36th International
Conference on Machine Learning (ICML). Vol. 97. Proceedings of Machine
Learning Research. PMLR, 2019, pp. 6438–6447.

[221] Phongtharin Vinayavekhin, Tadanobu Inoue, Shu Morikuni, Shiqiang
Wang, Tuan Hoang Trong, David Wood, Michiaki Tatsubori, and Ryuki
Tachibana. Detection of Anomalous Sounds for Machine Condition Mon-
itoring using Classification Confidence. Tech. rep. DCASE2020 Challenge,
2020.

[222] Dirk Von Zeddelmann, Frank Kurth, and Meinard Müller. “Perceptual au-
dio features for unsupervised key-phrase detection.” In: International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2010,
pp. 257–260.

[223] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. “Additive Margin
Softmax for Face Verification.” In: IEEE Signal Processing Letters 25.7
(2018), pp. 926–930.

[224] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao
Zhou, Zhifeng Li, and Wei Liu. “CosFace: Large Margin Cosine Loss for
Deep Face Recognition.” In: Conference on Computer Vision and Pattern
Recognition (CVPR). Computer Vision Foundation / IEEE Computer So-
ciety, 2018, pp. 5265–5274.

[225] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, and Tao Qin.
“Generalizing to Unseen Domains: A Survey on Domain Generalization.” In:
Thirtieth International Joint Conference on Artificial Intelligence (IJCAI).
ijcai.org, 2021, pp. 4627–4635.

[226] Lei Wang et al. First-Shot Unsupervised Anomalous Sound Detection
Using Attribute Classification and Conditional Autoencoder. Tech. rep.
DCASE2023 Challenge, 2023.

[227] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. “Gener-
alizing from a Few Examples: A Survey on Few-shot Learning.” In: ACM
Comput. Surv. 53.3 (2021), 63:1–63:34.

[228] Yu Wang, Nicholas J. Bryan, Mark Cartwright, Juan Pablo Bello, and
Justin Salamon. “Few-Shot Continual Learning for Audio Classification.”
In: International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 321–325.

bibliography 251

[229] Yu Wang, Mark Cartwright, and Juan Pablo Bello. “Active Few-Shot Learn-
ing for Sound Event Detection.” In: 23rd Annual Conference of the In-
ternational Speech Communication Association (Interspeech). ISCA, 2022,
pp. 1551–1555.

[230] Yu Wang, Justin Salamon, Nicholas J. Bryan, and Juan Pablo Bello. “Few-
Shot Sound Event Detection.” In: International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 81–85.

[231] Pete Warden. “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition.” In: CoRR abs/1804.03209 (2018).

[232] Yuming Wei, Jian Guan, Haiyan Lan, and Wenwu Wang. Anomalous
Sound Detection System with Self-challenge and Metric Evaluation for
DCASE2022 Challenge Task 2. Tech. rep. DCASE Challenge, 2022.

[233] Kilian Q. Weinberger and Lawrence K. Saul. “Distance metric learning
for large margin nearest neighbor classification.” In: Journal of machine
learning research 10.2 (2009).

[234] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. “A discriminative
feature learning approach for deep face recognition.” In: European Confer-
ence on Computer Vision (ECCV). Springer. 2016, pp. 499–515.

[235] Gordon Wichern, Ankush Chakrabarty, Zhong-Qiu Wang, and Jonathan
Le Roux. “Anomalous Sound Detection Using Attentive Neural Processes.”
In: Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA). IEEE, 2021, pp. 186–190.

[236] Kevin Wilkinghoff. “General-Purpose Audio Tagging by Ensembling Con-
volutional Neural Networks based on Multiple Features.” In: Detection and
Classification of Acoustic Scenes and Events Workshop (DCASE). Tampere
University of Technology, 2018, pp. 44–48.

[237] Kevin Wilkinghoff. “On Open-Set Classification with L3-Net Embeddings
for Machine Listening Applications.” In: 28th European Signal Processing
Conference (EUSIPCO). IEEE, 2020, pp. 800–804.

[238] Kevin Wilkinghoff. “On Open-Set Speaker Identification with I-Vectors.”
In: Odyssey - The Speaker and Language Recognition Workshop (Odyssey).
ISCA, 2020, pp. 408–414.

[239] Kevin Wilkinghoff. “Using Look, Listen, and Learn Embeddings for De-
tecting Anomalous Sounds in Machine Condition Monitoring.” In: Detec-
tion and Classification of Acoustic Scenes and Events Workshop (DCASE).
2020, pp. 215–219.

[240] Kevin Wilkinghoff. “Combining Multiple Distributions based on Sub-
Cluster AdaCos for Anomalous Sound Detection under Domain Shifted
Conditions.” In: Detection and Classification of Acoustic Scenes and Events
Workshop (DCASE). 2021.

252 bibliography

[241] Kevin Wilkinghoff. “Sub-Cluster AdaCos: Learning Representations for
Anomalous Sound Detection.” In: International Joint Conference on Neural
Networks. IEEE, 2021. doi: 10.1109/IJCNN52387.2021.9534290.

[242] Kevin Wilkinghoff. “Sub-Cluster AdaCos: Learning Representations for
Anomalous Sound Detection.” In: International Joint Conference on Neural
Networks (IJCNN). IEEE, 2021.

[243] Kevin Wilkinghoff. An outlier exposed anomalous sound detection system
for domain generalization in machine condition monitoring. Tech. rep.
DCASE Challenge, 2022.

[244] Kevin Wilkinghoff. “Design Choices for Learning Embeddings from Aux-
iliary Tasks for Domain Generalization in Anomalous Sound Detection.”
In: International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2023. doi: 10.1109/ICASSP49357.2023.10097176.

[245] Kevin Wilkinghoff. “Design Choices for Learning Embeddings from Aux-
iliary Tasks for Domain Generalization in Anomalous Sound Detection.”
In: International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023.

[246] Kevin Wilkinghoff. Fraunhofer FKIE submission for Task 2: First-Shot Un-
supervised Anomalous Sound Detection for Machine Condition Monitoring.
Tech. rep. DCASE2023 Challenge, 2023.

[247] Kevin Wilkinghoff. “AdaProj: Adaptively Scaled Angular Margin Subspace
Projections for Anomalous Sound Detection with Auxiliary Classification
Tasks.” Submitted to 9th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE), arXiv:2403.14179. 2024. doi: 10.
48550/arXiv.2403.14179.

[248] Kevin Wilkinghoff. “AdaProj: Adaptively Scaled Angular Margin Subspace
Projections for Anomalous Sound Detection with Auxiliary Classification
Tasks.” Submitted to 9th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE), arXiv:2403.14179. 2024.

[249] Kevin Wilkinghoff. “Self-Supervised Learning for Anomalous Sound Detec-
tion.” In: International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2024, pp. 276–280. doi: 10.1109/ICASSP48485.
2024.10447156.

[250] Kevin Wilkinghoff. “Self-Supervised Learning for Anomalous Sound Detec-
tion.” In: International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2024, pp. 276–280.

[251] Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “On choosing deci-
sion thresholds for anomalous sound detection in machine condition mon-
itoring.” In: 24th International Congress on Acoustics. The Acoustical So-
ciety of Korea, 2022.

https://doi.org/10.1109/IJCNN52387.2021.9534290
https://doi.org/10.1109/ICASSP49357.2023.10097176
https://doi.org/10.48550/arXiv.2403.14179
https://doi.org/10.48550/arXiv.2403.14179
https://doi.org/10.1109/ICASSP48485.2024.10447156
https://doi.org/10.1109/ICASSP48485.2024.10447156

bibliography 253

[252] Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “On choosing deci-
sion thresholds for anomalous sound detection in machine condition moni-
toring.” In: 24th International Congress on Acoustics (ICA). The Acousti-
cal Society of Korea, 2022.

[253] Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “TACos: Learn-
ing Temporally Structured Embeddings for Few-Shot Keyword Spotting
with Dynamic Time Warping.” In: International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 9941–9945. doi:
10.1109/ICASSP48485.2024.10445814.

[254] Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt. “TACos: Learn-
ing Temporally Structured Embeddings for Few-Shot Keyword Spotting
with Dynamic Time Warping.” In: International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 9941–9945.

[255] Kevin Wilkinghoff, Alessia Cornaggia-Urrigshardt, and Fahrettin Gökgöz.
“Two-Dimensional Embeddings for Low-Resource Keyword Spotting Based
on Dynamic Time Warping.” In: 14th ITG Conference on Speech Commu-
nication. VDE-Verlag, 2021, pp. 9–13.

[256] Kevin Wilkinghoff, Alessia Cornaggia-Urrigshardt, and Fahrettin Gökgöz.
“Two-Dimensional Embeddings for Low-Resource Keyword Spotting Based
on Dynamic Time Warping.” In: 14th ITG Conference on Speech Commu-
nication (ITG Speech). VDE-Verlag, 2021, pp. 9–13.

[257] Kevin Wilkinghoff and Fabian Fritz. “On Using Pre-Trained Embeddings
for Detecting Anomalous Sounds with Limited Training Data.” In: 31st
European Signal Processing Conference. IEEE, 2023, pp. 186–190. doi: 10.
23919/EUSIPCO58844.2023.10290003.

[258] Kevin Wilkinghoff and Fabian Fritz. “On Using Pre-Trained Embeddings
for Detecting Anomalous Sounds with Limited Training Data.” In: 31st
European Signal Processing Conference (EUSIPCO). IEEE, 2023, pp. 186–
190.

[259] Kevin Wilkinghoff and Keisuke Imoto. “F1-EV Score: Measuring the Like-
lihood of Estimating a Good Decision Threshold for Semi-Supervised
Anomaly Detection.” In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2024, pp. 256–260. doi: 10.1109/
ICASSP48485.2024.10446011.

[260] Kevin Wilkinghoff and Keisuke Imoto. “F1-EV Score: Measuring the Like-
lihood of Estimating a Good Decision Threshold for Semi-Supervised
Anomaly Detection.” In: International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2024, pp. 256–260.

https://doi.org/10.1109/ICASSP48485.2024.10445814
https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.23919/EUSIPCO58844.2023.10290003
https://doi.org/10.1109/ICASSP48485.2024.10446011
https://doi.org/10.1109/ICASSP48485.2024.10446011

254 bibliography

[261] Kevin Wilkinghoff and Frank Kurth. “Why do Angular Margin Losses work
well for Semi-Supervised Anomalous Sound Detection?” In: IEEE/ACM
Transactions on Audio, Speech and Language Processing 32 (2024), pp. 608–
622. doi: 10.1109/TASLP.2023.3337153.

[262] Kevin Wilkinghoff and Frank Kurth. “Why do Angular Margin Losses work
well for Semi-Supervised Anomalous Sound Detection?” In: IEEE/ACM
Trans. Audio Speech Lang. Process. 32 (2024), pp. 608–622.

[263] Huang Xie and Tuomas Virtanen. “Zero-Shot Audio Classification Via Se-
mantic Embeddings.” In: IEEE/ACM Trans. Audio Speech Lang. Process.
29 (2021), pp. 1233–1242.

[264] Jia Yafei, Bai Jisheng, and Huang Siwei. Unsupervised Abnormal Sound De-
tection Based on Machine Condition Mixup. Tech. rep. DCASE2023 Chal-
lenge, 2023.

[265] Peng Yan, Ahmed Abdulkadir, Paul-Philipp Luley, Matthias Rosenthal,
Gerrit A. Schatte, Benjamin F. Grewe, and Thilo Stadelmann. “A Com-
prehensive Survey of Deep Transfer Learning for Anomaly Detection in
Industrial Time Series: Methods, Applications, and Directions.” In: IEEE
Access 12 (2024), pp. 3768–3789.

[266] Hanfang Yang, Kun Lu, Xiang Lyu, and Feifang Hu. “Two-way partial AUC
and its properties.” In: Statistical methods in medical research 28.1 (2019),
pp. 184–195.

[267] Jiawei Yang, Susanto Rahardja, and Pasi Fränti. “Outlier detection: how
to threshold outlier scores?” In: International Conference on Artificial In-
telligence, Information Processing and Cloud Computing (AIIPCC). ACM,
2019, 37:1–37:6.

[268] Qien Yu, Muthu Subash Kavitha, and Takio Kurita. “Autoencoder frame-
work based on orthogonal projection constraints improves anomalies detec-
tion.” In: Neurocomputing 450 (2021), pp. 372–388.

[269] Ying Zeng, Hongqing Liu, Lihua Xu, Yi Zhou, and Lu Gan. Robust Anomaly
Sound Detection Framework for Machine Condition Monitoring. Tech. rep.
DCASE Challenge, 2022.

[270] Chenxu Zhang, Yao Yao, Rui Qiu, Shengchen Li, and Xi Shao. Unsupervised
Anomalous Sound Detection Using Denoising-Detection System Under Do-
main Shifted Conditions. Tech. rep. DCASE2021 Challenge, 2021.

[271] Hanlin Zhang, Yi-Fan Zhang, Weiyang Liu, Adrian Weller, Bernhard
Schölkopf, and Eric P. Xing. “Towards Principled Disentanglement for Do-
main Generalization.” In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2022, pp. 8014–8024.

https://doi.org/10.1109/TASLP.2023.3337153

bibliography 255

[272] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz.
“Mixup: Beyond empirical risk minimization.” In: 6th International Con-
ference on Learning Representations (ICLR). Openreview.net, 2018.

[273] Minghu Zhang, Xin Li, and Lili Wang. “An Adaptive Outlier Detection and
Processing Approach Towards Time Series Sensor Data.” In: IEEE Access
7 (2019), pp. 175192–175212.

[274] Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and Hongsheng Li. “Ada-
Cos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face
Representations.” In: Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE, 2019, pp. 10823–10832.

[275] Shuyang Zhao, Toni Heittola, and Tuomas Virtanen. “Active Learning for
Sound Event Detection.” In: IEEE/ACM Trans. Audio Speech Lang. Pro-
cess. 28 (2020), pp. 2895–2905.

[276] Qiping Zhou. ArcFace Based Sound Mobilenets for DCASE 2020 Task 2.
Tech. rep. DCASE2020 Challenge, 2020.

[277] Yifan Zhou and Yanhua Long. Attribute Classifier with Imbalance Compen-
sation for Anomalous Sound Detection. Tech. rep. DCASE2023 Challenge,
2023.

[278] Manli Zhu and Aleix M. Martinez. “Subclass discriminant analysis.” In:
IEEE Trans. Pattern Anal. Mach. Intell. 28.8 (2006), pp. 1274–1286.

[279] Christian Zieger, Alessio Brutti, and Piergiorgio Svaizer. “Acoustic Based
Surveillance System for Intrusion Detection.” In: 6th International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS). IEEE,
2009, pp. 314–319.

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Semi-supervised anomaly detection
	1.2 Audio embeddings
	1.3 Example applications
	1.4 Main contributions
	1.5 Thesis outline
	1.6 Notation and Preliminaries

	2 Audio Embeddings for Anomaly Detection
	2.1 Contributions of the author
	2.2 Input feature representations
	2.2.1 Pre-processing audio signals
	2.2.2 Spectral features
	2.2.3 Normalization

	2.3 One-class embeddings
	2.3.1 Autoencoders
	2.3.2 Compactness loss

	2.4 Auxiliary task embeddings
	2.4.1 Angular margin losses
	2.4.2 Handling imbalanced data

	2.5 Pre-trained embeddings
	2.6 Computing an anomaly score
	2.7 Data augmentation
	2.7.1 Mixup
	2.7.2 SpecAugment
	2.7.3 Simulating anomalies

	2.8 Comparison of different embedding types
	2.9 Ensembling
	2.10 Evaluation metrics
	2.10.1 Anomaly detection
	2.10.2 Open-set classification
	2.10.3 Sound event detection

	2.11 Decision threshold estimation
	2.12 Summary

	3 Anomalous sound detection system design
	3.1 Contributions of the author
	3.2 Example application: Machine condition monitoring
	3.2.1 Experimental setup
	3.2.2 Baseline model for extracting embeddings

	3.3 Relation between one-class and angular margin losses
	3.3.1 Compactness loss on the unit sphere
	3.3.2 Relation between the compactness loss and AdaCos
	3.3.3 Performance evaluation

	3.4 Sub-cluster AdaCos
	3.4.1 Definition
	3.4.2 Relation to the compactness loss
	3.4.3 Comparison of backends
	3.4.4 Utilizing mixup
	3.4.5 Determining the number of sub-clusters
	3.4.6 Replacing embeddings with input data statistics
	3.4.7 Comparison to other published systems

	3.5 Summary

	4 Decision threshold estimation
	4.1 Contributions of the author
	4.2 Estimating a decision threshold
	4.2.1 Performance comparison of different estimation methods
	4.2.2 Choosing a set of observed anomaly scores

	4.3 F1-EV score
	4.3.1 Definition
	4.3.2 Experimental setup
	4.3.3 Experimental comparison with existing evaluation metrics
	4.3.4 Choosing the hyperparameter F1-EV

	4.4 Summary

	5 Domain Adaptation and Generalization
	5.1 Contributions of the author
	5.2 Machine condition monitoring in domain-shifted conditions
	5.2.1 DCASE2022 ASD dataset
	5.2.2 DCASE2023 ASD dataset

	5.3 Designing an ASD system for domain generalization
	5.3.1 System description
	5.3.2 Experimental investigations of individual design choices

	5.4 Explaining the decisions
	5.4.1 Visualizing the input as viewed by the model
	5.4.2 Visualizing the embedding space

	5.5 Comparison to pre-trained embeddings
	5.5.1 System design for pre-trained embeddings
	5.5.2 Experimental results

	5.6 AdaProj
	5.6.1 Definition
	5.6.2 Choosing a sub-space dimension
	5.6.3 Performance evaluation

	5.7 Self-supervised learning
	5.7.1 Approaches
	5.7.2 Combining multiple approaches
	5.7.3 Performance evaluation

	5.8 Putting it all together
	5.9 Summary

	6 Few-shot open-set classification
	6.1 Contributions of the author
	6.2 Few-shot open-set classification
	6.2.1 Dataset
	6.2.2 System design
	6.2.3 Experimental results

	6.3 Sound event detection application: Keyword spotting
	6.3.1 Related work
	6.3.2 Dataset
	6.3.3 System overview
	6.3.4 Extracting embeddings
	6.3.5 TACos
	6.3.6 DTW backend
	6.3.7 Baseline systems
	6.3.8 Experimental comparison

	6.4 Summary

	7 Conclusion
	7.1 Summary
	7.2 Outlook and future work

	A Appendix
	A.1 Key publications
	A.1.1 Key publication 1
	A.1.2 Key publication 2
	A.1.3 Key publication 3
	A.1.4 Key publication 4
	A.1.5 Key publication 5
	A.1.6 Key publication 6
	A.1.7 Key publication 7
	A.1.8 Key publication 8
	A.1.9 Key publication 9
	A.1.10 Key publication 10

	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Bibliography

