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Summary

Motivated by the famous Rogers-Ramanujan identities, Nahm asked which generalisations
of the Rogers-Ramanujan functions are modular. We define a Nahm sum for A ∈ Qr×r

positive definite and symmetric, b ∈ Qr, and c ∈ Q by

fA,b,c(q) =
󰁛

n∈Zr
≥0

q
1
2
nTAn+bTn+c

(q)n1 · · · (q)nr

,

where (q)n =
󰁔n

i=1 1− qi is the q-Pochhammer symbol. Nahm sums appear, for example,
as characters of conformal field theory, as knot invariants, and as the generating function
of classes of partitions.

Based on asymptotic computations, Nahm conjectured that the modularity of Nahm
sums is related to the vanishing of the images of the solutions of

1−Qi =

r󰁜

j=1

Q
Aij

j , for i = 1, . . . , r

in the Bloch group. A precise formulation by Zagier turned out to be wrong according
to counterexamples given by Vlasenko-Zwegers. We will present generalised asymptotics
of Nahm sums fA,b,c(e

−h) as h → 0 on a ray on the right half-plane. Based on these
asymptotics, we will discuss the examples given by Vlasenko-Zwegers and explain how
they can be explained in the context of Nahm’s observation. Moreover, we will refine the
correspondence between the modularity of Nahm sums and the Bloch group by study-
ing the vector-valued modularity of Nahm sums under SL2(Z). More precisely, we will
describe which b ∈ Qr and c ∈ Q have to be chosen such that fA,b,c(q) is modular.

We also discuss applications of generalised Nahm sums.
The tail of the coloured Jones polynomial ΦK(q) for an alternating knot K is a q-series

knot invariant that arises as a limit of the coloured Jones polynomials. For several knots,
ΦK(q) is known to be a product of (partial) theta functions and thus “modular”. The
main result of part II of this thesis is a general formula for ΦK(q) in terms of (partial)
theta functions for a class of knots.

Part III deals with an application of q-series to the theory of partitions. There, we
prove a conjecture of Andrews concerning the sign pattern of coefficients of a q-series
from Ramanujan’s “lost” notebook. This part is based on a preprint that is joint work
with Amanda Folsom, Joshua Males, and Larry Rolen.





Acknowledgements

I am very grateful for having Don Zagier as a supervisor, and I enjoyed learning mathe-
matics from him. His passion for mathematics is motivating, and every discussion leads
to numerous new ideas. It has been a privilege to work with him as a supervisor.

Moreover, I would like to thank Amanda Folsom, Robert Osburn, and Larry Rolen for
their encouragement during my PhD studies. In particular, Larry for hosting me as a
visitor during my research stay at Vanderbilt University in 2022.

I am grateful to Campbell Wheeler for introducing me to several fascinating topics and
sharing his insights with me. I would also like to thank Stavros Garoufalidis and Michael
Ontiveros for enlightening discussions.

I would like to thank Valentin Blomer for his work as a referee, as well as Claude Duhr
and Catharina Stroppel for their work as members of my PhD committee. I am also
thankful to Arunima Ray for her support as my PhD mentor. Moreover, I am grateful
for the support of my MSc supervisors, Jan Bruinier and Nils Scheithauer, during my
undergraduate studies in Darmstadt.

My work has been supported by the Max Planck Gesellschaft, and I am thankful to
the Max Planck Institute for Mathematics in Bonn, including the non-academic staff, for
the great working environment.

Lastly, I would like to express my gratitude to my family, in particular my siblings and
my parents, for their ongoing support.





Contents

1. Introduction 1
1.1. Nahm sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Knots and q-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Partitions and q-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I. Nahm sums and their modularity 9

2. Background 11
2.1. The dilogarithm function . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. The Bloch group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. The q-Pochhammer symbol and q-series identities . . . . . . . . . . . . . . 18
2.4. Modular forms and functions . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Nahm sums and Nahm’s conjecture 23
3.1. The Rogers-Ramanujan functions . . . . . . . . . . . . . . . . . . . . . . . 23
3.2. Nahm sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Nahm’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4. Nahm sums for half-symplectic matrices . . . . . . . . . . . . . . . . . . . 29
3.5. Generalisations of Nahm sums . . . . . . . . . . . . . . . . . . . . . . . . . 32

4. Asymptotics of Nahm sums 35
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3. Asymptotics of Nahm sums on rays in the upper half-plane . . . . . . . . 37
4.4. Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5. Vector-valued modularity 47
5.1. Representation for SL2(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2. Quantum modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6. Nahm’s observation revisited 59
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2. Integral “counterexamples” . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3. Modular combinations of non-modular Nahm sums . . . . . . . . . . . . . 62

II. Knots and q-series 69

7. The tail of the coloured Jones polynomial 71
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2. Knots, links, and the (coloured) Jones polynomial . . . . . . . . . . . . . 71
7.3. Stability properties of the coloured Jones polynomial . . . . . . . . . . . . 76
7.4. Computation of the tail of the coloured Jones polynomial . . . . . . . . . 77



Contents

8. Arborescent knots and links 81
8.1. The construction of arborescent links . . . . . . . . . . . . . . . . . . . . . 81
8.2. Arborescent tangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3. Moves on weighted planar trees . . . . . . . . . . . . . . . . . . . . . . . . 84

9. The modularity of the tail of the coloured Jones polynomial 87
9.1. The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2. Examples and corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.3. The Tait graphs for arborescent links and tangles . . . . . . . . . . . . . . 92
9.4. Non-modularity of ΦK(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

III. Partitions and q-series 101

10.Partitions 103
10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.2. A sign pattern conjecture of Andrews . . . . . . . . . . . . . . . . . . . . 105

11.Proofs 113
11.1. Proof of Theorem 10.2.2: The asymptotics of v1(q) . . . . . . . . . . . . . 113
11.2. Proof of Theorem 10.2.3: The asymptotics of V1(n) . . . . . . . . . . . . . 127

Bibliography 136



1. Introduction

In order to study abstract mathematical objects, invariants of the object are important.
For example, the character of a vertex operator algebra (VOA) is a q-series invariant
and the coloured Jones polynomial of a knot is a polynomial invariant. Those invariants
contain information about the abstract object and can be useful to distinguish different
objects. The q-series invariants associated to “nice” objects often have modular behaviour,
meaning they are either ordinary modular forms or have mock, quasi, or quantum modular
behaviour.

I will illustrate the interactions between different objects and q-series using the Rogers-
Ramanujan functions

G(q) =
󰁛

n≥0

qn
2

(q)n
, H(q) =

󰁛

n≥0

qn
2+n

(q)n
(1.1)

where (q)n =
󰁔n

i=1(1 − qi) is the q-Pochhammer symbol. They satisfy the Rogers-
Ramanujan identities

G(q) =
󰁜

n=±1 (mod 5)

(1− qn)−1, H(q) =
󰁜

n=±2 (mod 5)

(1− qn)−1
(1.2)

which were discovered independently by Rogers and Ramanujan and are sometimes con-
sidered the “most beautiful pair of formulas in all of mathematics” [Zag19]. The Rogers-
Ramanujan functions G(q) and H(q) and their identities appear in numerous different
fields of mathematics. Examples include partitions, VOAs, and knot theory:

1. Partitions: The series G(q), H(q) can be interpreted as generating functions for
certain partitions. The identity for G(q) implies that the number of partitions such
that the parts differ by at least 2 is equal to the number of partitions with parts
congruent to ±1 mod 5. A similar interpretation is true for H(q) and the second
identity.

2. VOAs: The graded dimension of one of the easiest rational VOAs, the (2, 5)–minimal

model, is given by q
11
60H(q) and the graded dimension for its unique module given is

by q−
1
60G(q). By counting the graded dimensions in two different ways, Lepowsky-

Wilson [LW82] obtained the identities (1.2).

3. Knots: It is known [AD11] that the coloured Jones polynomials for some knots K
stabilise to a q-series, ΦK(q), the tail of the coloured Jones polynomial. For the
knot K = 51, Morton [Mor95] showed that ΦK(q) is equal to the product-expansion
of H(q), while Armond-Dasbach’s work [AD11] implies that ΦK(q) is equal to the
sum-expansion of H(q). This establishes the second Roger-Ramanujan identity for
H(q) using knot theory. We discuss more results concerning ΦK(q) for general knots
K in Part II of this thesis.

An important consequence of the Rogers-Ramanujan identities in combination with the
Jacobi triple product formula is that the functions q−1/60G(q) and q11/60H(q) are modular

1



1. Introduction

functions in τ , where q = e2πiτ . In two of the mentioned examples, the modularity of (1.1)
has a reason within the object: By Zhu’s modularity theorem, the graded dimension of
a rational VOA are modular functions and so are q−

1
60G(q) and q

11
60H(q) as the graded

dimension of the rational (2, 5)–minimal model. In the context of knot theory, the fact
that K = 51 is a 2–bridge knot ensures that ΦK(q) = H(q) is, up to rational powers of q,
a theta function and thus modular (cf. Theorem 9.1.3).

This thesis concerns generalisations of the Rogers-Ramanujan functions, their modu-
larity properties, and applications. Part I concerns a family of q-series generalising the
Rogers-Ramanujan functions, so-called Nahm sums and their modularity properties. In
Part II, we consider q-series associated to knots and study their modularity. In Part III,
we present some applications of q-series to the theory of partitions.

1.1. Nahm sums

In the context of conformal field theory, Nahm [Nah07] noticed that generalisations of
the Rogers-Ramanujan functions appear and studied their modularity properties. For a
symmetric, positive definite matrix A ∈ Zr×r, b ∈ 1

2Z
r and c ∈ Q, the Nahm sum fA,b,c(q)

is defined by

fA,b,c(q) =
󰁛

n∈Zr
≥0

q
1
2
nTAn+bTn+c

(q)n1 · · · (q)nr

∈ qcZ[[q
1
2 ]] (1.3)

where q = e2πiτ and τ ∈ H = {z ∈ C : Im(z) > 0}. Generalisations of Nahm sums are also
of great interest, cf. Sections 3.4 and 3.4, but are omitted here for the sake of simplicity.

It turns out that the modularity of Nahm sums is closely related to algebraic K-theory,
more precisely to the vanishing of certain elements in the Bloch group. In this thesis, we
will present our contributions to a better understanding of this relationship.

1.1.1. Modularity of Nahm sums and the Bloch group

The Rogers-Ramanujan identities, as well as several examples from conformal field theory,
motivated Nahm to ask for which triples (A, b, c) the function fA,b,c is modular for some
congruence subgroup. In [Nah07], he observes that if Q = (Q1, . . . , Qr) ∈ Cr is a solution
of

1−Qi =

r󰁜

j=1

Q
Aij

j , i = 1, . . . , r, (1.4)

then [Q] =
󰁓r

i=1[Qi] ∈ Z[C] is an element in the Bloch group

B(C) ⊂ Z[C]/([X] + [1−X], . . .). (1.5)

For a fixed A as above, we write QA for the set of solutions of (1.4). Based on asymptotic
computations and several examples coming from conformal field theory, Nahm [Nah07]
made the following remarkable but unprecise prediction: The modularity of (1.3) is con-
nected to the vanishing of the images of some solutions Q ∈ QA of (1.4) in the Bloch
group B(C). A precise theorem for r = 1 was proved by Zagier in [Zag07] by classifying
all modular Nahm sums.

Theorem 1.1.1 (Zagier, 2006). The function fA,b,c for (A, b, c) ∈ Q>0×Q×Q is modular
for some congruence subgroup exactly in 7 cases and only for A ∈ {1

2 , 1, 2}.

2



1.1. Nahm sums

As one can show, the images of the solutions of 1−Q = QA vanish in B(C) if and only
if A ∈ {1

2 , 1, 2}. Hence, Zagier’s Theorem proves a rigorous version of Nahm’s prediction
for r = 1. To motivate Nahm’s observation, we consider the asymptotics of fA,b,c(τ) as
τ → 0 on the upper half-plane. Different versions of the following result can be found in
[GZ21, Mei54, VZ11, Zag07].

Theorem 1.1.2. Let A, b, c be as above. Then as h ↘ 0,

fA,b,c(e
−h) = eV (Q(1))/hΦ

(Q(1))
A,b,c (h) (1 +O(hL)) (1.6)

for all L > 0, where Q(1) ∈ QA is the unique solution of (1.4) in (0, 1)r, Φ
(Q(1))
A,b,c (h) ∈ Q[[h]]

is a power series with algebraic coefficients, and V (Q(1)) ∈ R is essentially the linear
extension of the Rogers-dilogarithm of Q(1).

If f(q) is modular in τ of weight k ∈ Z where q = e2πiτ , then the asymptotics as h → 0
has the special form

f(e−h) = a0h
−keα/h(1 + o(hL)), (1.7)

for all L > 0 and some a0 ∈ C, α ∈ 4π2Q. Hence, if f = fA,b,c, we conclude that

k = 0, the power series Φ
(Q(1))
A,b,c (h) is constant, and V (Q(1)) ∈ 4π2Q. The last condition

is expected to be equivalent to the vanishing of [Q(1)] in B(C). This suggests that the
following statement, which was part of Nahm’s observations and was recently proved by
Calegari, Garoufalidis, and Zagier, is true.

Theorem 1.1.3 ([CGZ23]). If fA,b,c is modular, then [Q(1)] vanishes in B(C).
It is known from [Zag07] that the vanishing of [Q(1)] in B(C) is not sufficient for the

modularity. Hence, a reasonable guess would be that for a fixed matrix A, the modularity
of fA,b,c for some b, c is equivalent to the vanishing of all solutions of (1.4) in B(C). This
was conjectured in [Zag07], but Vlasenko and Zwegers gave counterexamples in [VZ11].
We discuss one of these examples in more detail below.

1.1.2. Asymptotics of Nahm sums on rays in the upper half-plane

Similar to the contribution for Q(1) in Theorem 3.2.5, we can compute the formal asymp-
totic contributions corresponding to all solutions Q ∈ QA of (1.4). In Chapter 4, we
associate to any Q ∈ QA a volume V (Q) ∈ C, essentially given by a continuation of the

Rogers-dilogarithm, and a power series Φ
(Q)
A,b (h) ∈ Q[[h]].

Instead of considering the radial asymptotics h ↘ 0 as in Theorem 1.1.2, it turns out
to be helpful to consider the asymptotics of fA,b(e

−h) as h → 0 on rays in the right half-

plane. Then some of the power series eV (Q)/hΦ
(Q)
A,b (h) associated to Q ∈ QA occur in the

asymptotic expansion.

Theorem (Theorem 4.3.1). As h → 0 on a ray in the right half-plane, we have

fA,b(e
−h) =

󰁛

Q∈QA

eV (Q)/hΦ
(Q)
A,b (h) (1 +O(hL)). (1.8)

for all L > 0.

Here, the sum in the asymptotic expansion should be interpreted as a sum of formal
asymptotic contributions and only the leading terms with Re(V (Q)/h) maximised are
relevant for the asymptotics. In Section 5.2, we will consider an example where the sub-
leading contributions are numerically visible. This is related to the quantum modularity
of Nahm sums studied by Wheeler in his thesis [Whe23].

3



1. Introduction

1.1.3. Vector-valued modularity

Even though Theorem 1.1.1 seems to solve the problem for r = 1, it is not completely
enlightening for which b’s and c’s fA,b,c is modular. Furthermore, it only claims modu-
larity for some congruence subgroup. It turns out that it is helpful to consider fA,b,c

as a component of a vector-valued modular function for SL2(Z). For instance, for
the Rogers-Ramanujan functions (1.1) it is well known that the vector-valued function

F2(τ) = (q−
1
60G(q), q

11
60H(q))t, where q = e2πiτ , is a modular function for the full modular

group SL2(Z):

F2(τ + 1) =

󰀣
ζ−1
60 0

0 ζ1160

󰀤
F2(τ), F2

󰀕
−1

τ

󰀖
=

2√
5

󰀣
sin 2π

5 sin π
5

sin π
5 − sin 2π

5

󰀤
F2(τ), (1.9)

where ζ60 = e2πi/60.

For simplicity, we assume in the following that A is an even matrix and b ∈ Zr. If we
compute hidden terms, either numerically or formally, in the asymptotic expansion for a
general Nahm sum fA,b(e

−h) as h → 0 in (1.8), we see contributions from all solutions

Q ∈ QA. Moreover, for every solution, there is an attached q̃-series, where q̃ = e−4π2/h,

fA,b,c(e
−h) ∼

󰁛

Q∈QA

Φ
(Q)
A,b,c(h) q̃

c(Q)(1 + aQ,1q̃ + aQ,2q̃
2 + . . .)

where c(Q) = −V (Q)/4π2. It turns out that the q̃-series have the form fA,b(Q),c(Q)(q̃) for
some known b(Q) ∈ Zr.

If fA,b,c(q) is modular (of weight 0), then fA,b,c(q̃) is a power series in fractional powers

of q̃, so that all power series Φ
(Q)
A,b,c(h) that contribute in the expansion should be constant.

This indicates that the vector-valued function

FA(q) =
󰀃
fA,b(Q),c(Q)(q)

󰀄
Q∈QA

(1.10)

is a vector-valued modular function for SL2(Z). The transformation of FA under ( 1 1
0 1 ) is

easy (the Q-component is simply multiplied by e2πic(Q)), and the transformation under󰀃
0 −1
1 0

󰀄
can be given in terms of the solutions Q ∈ QA of equation (1.4).

We illustrate the observation in the following example.

Example 1.1.4. We consider again the Rogers-Ramanujan functions, i.e., A = 2 and F2

defined as above. The equation (1.4) has the two solutions Q(1) = −1+
√
5

2 and Q(2) =
−1−

√
5

2 with Rogers-dilogarithms 1
604π

2 and −11
604π

2. They coincide with the values for
−4π4c ∈ π2Q such that f2,b,c is modular. Moreover, we can compute the matrix in (1.9)
using

2√
5
sin

󰀕
2π

5

󰀖
=

1󰁳
2−Q(1)

=
−Q(2)

󰁳
2−Q(2)

,

2√
5
sin

󰀓π
5

󰀔
=

1󰁳
2−Q(2)

=
Q(1)

󰁳
2−Q(1)

.

(1.11)

We discuss more details concerning the vecor-valued modularity in Chapter 5.

4



1.1. Nahm sums

1.1.4. Nahm’s conjecture revisited

We consider the four-dimensional Nahm sum for

A =

󰀕
3 1 1 0
1 3 0 1
1 0 1 0
0 1 0 1

󰀖
, b =

1

2

󰀕
1
−1
1
1

󰀖
, c =

1

15

from [VZ11]. It is known that fA,b,c is modular. Equation (1.4) for A has in total eight
solutions, four of the form

󰀕
u, u,

1

1 + u
,

1

1 + u

󰀖
, with 1− u2 = u4 (1.12)

whose images vanish in B(C) and four solutions of the form

󰀕
u,−u,

1

1 + u
,

1

1− u

󰀖
, with 1− u2 = −u4, (1.13)

i.e., u is a root of unity of order 12, whose images do not vanish in B(C). In view of

Theorem 4.3.1, we can associate a completed power series eV (Q)/hΦ
(Q)
A,b (h) to the above so-

lutions. For the solutions Q as in (1.13) corresponding to u = ±eπi/6 (resp. u = ±eπi5/6),

we find that they have an asymptotic contribution ±eV (Q)/hΦ
(Q)
A,b (h) and thus they cancel

each other in the asymptotic expansion. Hence, the contributions corresponding to all
solutions with non-vanishing class in B(C) are not relevant for the modularity. We discuss
this example in more detail in Section 6.2.

Using the refined asymptotics of Nahm sums for τ → 0 on a fixed ray in the upper
half-plane, we can prove a conditional result.

Theorem (Theorem 4.3.4). Assume that V (Q) ∕= V (Q′) for all Q,Q′ ∈ QA. If fA,b,c is
modular, then [Q] = 0 for all Q ∈ QA.

The idea of the proof is that if fA,b,c(q) is modular, then Im(V (Q)) = 0 for all Q ∈ QA.
Because Im(V (Q)) is the Bloch-Wigner dilogarithm of Q, this implies that [Q] = 0 for all
Q ∈ QA (see Theorem 2.2.3).

1.1.5. Modular combinations of Nahm sums

If for a given matrix A the Nahm sums fA,b,c are not modular for any b ∈ Qr, c ∈ Q, it is
still possible that a linear combination of fA,b,c’s is modular. In agreement with Nahm’s
observation, this can happen if [Q] = 0 for some but not necessarily all Q ∈ QA.

In Section 6.3, we provide new examples of this phenomenon and discuss them in the
context of Nahm’s conjecture. For instance, for A = ( 8 5

5 4 ) the solutions QA have both
vanishing and non-vanishing images in B(C) and fA,b,c is never modular. However, the
linear combination

q−1/60

󰀕
f
( 8 5
5 4 ),

󰀓−1
−1

󰀔(q) − f
( 8 5
5 4 ),

󰀓
−1
0

󰀔(q) + f( 8 5
5 4 ),(

0
0 )
(q)

󰀖
= q−1/60G(q) (1.14)

with q = e2πiτ is a modular function in τ . We end with a possible version of Nahm’s
conjecture in Section 6.3: For a given A as above, the vanishing of the image of some
solutions Q ∈ QA in B(C) implies the modularity of a linear combination of Nahm sums.

5



1. Introduction

1.2. Knots and q-series

Part II of this thesis concerns q-series that appear in the context of knot theory and their
modularity properties.

The coloured Jones polynomials of a knot are important quantum knot invariant. For
instance, the Kashaev invariant can be defined in terms of the coloured Jones polynomial
and according to the quantum modularity conjecture, the Kashaev invariant is believed
to posses quantum modular behaviour [GZ23, GZ24, Zag10]. The quantum modularity
conjecture is in fact related to the asymptotics of Nahm sums discussed in Part I.

In addition, properties of a limit of the coloured Jones polynomial for some knots
have been studied. For alternating knots, it is known [AD11] that the coloured Jones
polynomials stabilise, after multiplying by suitable powers of q, to a q-series ΦK(q), called
the tail of the coloured Jones polynomial, so that the first N coefficients of the N -th
coloured Jones polynomial agree with the first N coefficients of ΦK(q). In this case, the
q-series ΦK(q) can be written as an explicit q-hypergeometric series that can be seen as
a generalisation of Nahm sums [GL15].

In [GL15, Appendix D], Garoufalidis and Lê with Zagier recognised that the tails of the
coloured Jones polynomial for almost all knots with up to 8 crossings can be written as
products of the functions hb(q) =

󰁓
n∈Z 󰂃b(n)q

bn(n+1)/2−n, 󰂃b(n) ∈ {±1}. These functions
are, up to a rational power of q, theta functions if b is odd and partial theta functions
if b is even. These identities have been proven by Andrews [And13] and Keilthy-Osburn
[KO16] and generalised to knots with up to 10 crossings by Beirne-Osburn [BO17].

The main result in Part II is Theorem 9.1.3, a general formula for the tail of the
coloured Jones Polynomial in terms of hb(q) for classes of alternating arborescent knots.
This result, which is the author’s work, will also appear in a paper with Osburn [OS24].

Following [BS10], we can associate a knot K to any weighted tree (V, E , w), w : V → Z,
and any knot that is constructed in this way is called arborescent. For example, the knot
K = 52 and an associated graph are given by

TME
3 −2

(1.15)

We assume that Γ has no vertices with degree ≤ 2 of weight 0, which implies that K
is a prime knot. If there exists a bipartition V = V+ ∪ V− with ±w(V±) ≥ 0, then K is
alternating and we call the weighted tree alternating.

Theorem (Theorem 9.1.3). Let (V, E , w) be an alternating, weighted tree and K the
associated alternating knot. If 0 /∈ w(V−), then

ΦK(q) =
󰁜

v∈V+

hw(v)+e(v)(q) (1.16)

where e(v) denotes the number of edges adjacent to v ∈ V.

For example, for K = 52 as in (1.15), Theorem 9.1.3 implies

ΦK(q) = h4(q) = 1− q + q3 − q6 + q10 − q15 +O(q20). (1.17)

The first example where it is unknown whether the tail of the coloured Jones polynomial
has a representation as a product of hb’s is K = 85. A knot diagram for 85 and an

6
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associated weighted tree are given by

⑮W
−03 3

2

Because 0 ∈ w(V−), Theorem 9.1.3 is not applicable. It is easy to check that (1.16) is
not true for Φ85(q) and numerical computations presented in Section 9.4 strongly suggest
that Φ85(q) cannot be written in terms of hb’s. This leads to the following problem.

Question 1.2.1. Does Theorem 9.1.3 classify all modular tails of the coloured Jones
polynomials? In other words, for alternating, arborescent knots K, is it true that ΦK(q)
is a product of (partial) theta functions if and only if there exists an associated weighted
tree with 0 /∈ w(V−)?

1.3. Partitions and q-series

Part III of this thesis deals with applications of generalised Nahm sums and more general
q-series to the theory of partitions.

As illustrated with the Rogers-Ramanujan functions, one-dimensional Nahm sums are
the generating function for certain partitions. By modifying the sum slightly, the coeffi-
cients will count the partitions in a slightly different way. I will present an example that
deals with a problem posed by Andrews concerning a generating function for partitions
that I recently solved in joint work with Folsom, Males, and Rolen [FMRS23].

In 1986, Andrews [And86] considers the coefficients of the function

v1(q) =
󰁛

n≥0

q
1
2
n(n+1)

(−q2; q2)
=:

󰁛

n≥0

V1(n)q
n

(1.18)

from Ramanujan’s lost notebook [And84]. They count the difference between odd-even
partitions (i.e., partitions in which the parity of the parts alternates with the smallest
part odd) with rank congruent to 0 mod 4 and 2 mod 4. Andrews notes that they have “a
lengthy sign change pattern that alters fairly infrequently” and makes some conjectures.
For example, he conjectures that “for almost all n, V1(n), V1(n+1), V1(n+2), and V1(n+3)
are two positive and two negative numbers”.

We are able to solve the problem using the asymptotics of generalised Nahm sums like
v1 and an adapted circle method. More precisely, we obtain as n → ∞

V1(n) = (−1)⌊
n
2
⌋(γ1 ± γ2)

ec
√
n

√
n

󰀃
cos(c

√
n)± sin(c

√
n)
󰀄
+O

󰀕
ec

√
n

n3/2

󰀖
, (1.19)

where ± = (−1)n, c =
󰁳

2Im(Li2(eπi/3))/8 = 0.50372 · · · , and γ1, γ2 are explicit real
numbers. This explains Andrews’ observations and proves some of his conjectures.

Theorem (Theorem 10.2.4). Two of Andrews’s conjectures are true:

1. We have |V1(n)| → ∞ as n → ∞ away from a set of density 0.

2. For almost all n, V1(n), V1(n+1), V1(n+2), and V1(n+3) are two positive and two
negative numbers.

Moreover, using the asymptotics of the coefficients, we can predict when their sign
pattern changes.
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2. Background

2.1. The dilogarithm function

The two main players in this thesis are Nahm sums and the Bloch group. The dilogarithm
function will play the role of the intermediary between them. In this section, we will
discuss the dilogarithm, as well as the polylogarithms, and discuss their basic properties.
Most of the results recalled here are presented in a nice way in [Zag07].

For m ∈ Z, the m-th polylogarithm is definded for z ∈ C with |z| < 1 via the power
series

Lim(z) :=

∞󰁛

n=1

zn

nm
. (2.1)

The polylogarithms fulfil the relation

d

dz
Lim(z) =

1

z
Lim−1(z). (2.2)

For m = 1, we obtain the logarithm

Li1(z) = − log(1− z) (2.3)

and for m = 2 the dilogarithm function. Since log(1− z) has an analytic continuation to
C󰄀 [1,∞), we can continue Li2 analytically as well via

Li2(z) = −
󰁝 z

0

1

t
log(1− t)dt for z ∈ C󰄀 [1,∞), (2.4)

where the contour is given as in Figure 2.1. Since log(1− z) jumps by 2πi when z crosses
the cut at [1,∞), Li2(z) jumps by 2πi log(z) when z crosses the cut at [1,∞). More
generally, we have

Lim(z) =

󰁝 z

0

1

t
Lim−1(t)dt for m ∈ Z. (2.5)

For m ≤ 0, the polylogarithm Lim(z) is a rational function in z with poles of order
−m+ 1 at z = 1. For example,

Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, Li−2(z) =

z(1 + z)

(1− z)3
. (2.6)

We also consider the function

F (v) = Li2(1− ev) (2.7)

for ∈ C. Because its derivative v
e−v−1

is meromorphic with poles at v = 2πin ∈ 2πiZ and

residues −2πin, the function F is a well defined function modulo 4π2Z.

11



2. Background ·T ↑
-

Figure 2.1.: The contour of integration in (2.4) and (2.5)

2.1.1. Functional equations

The dilogarithm function fulfils several functional equations, for example the reflection
properties

Li2

󰀕
1

z

󰀖
+ Li2(z) = −π2

6
− 1

2
log2(−z),

Li2 (1− z) + Li2 (z) =
π2

6
− log(z) log(1− z)

(2.8)

for z ∈ C avoiding the branch cuts. Moreover, the dilogarithm function fulfils the 5–term
relation for x, y ∈ C with xy ∕= 1

Li2(x) + Li2(y) + Li2

󰀕
1− x

1− xy

󰀖
+ Li2 (1− xy) + Li2

󰀕
1− y

1− xy

󰀖

=
π2

6
− log(x) log(1− x)− log(y) log(1− y) + log

󰀕
1− x

1− xy

󰀖
log

󰀕
1− y

1− xy

󰀖
.

(2.9)

The dilogarithm also fulfils the duplication property

Li2(z) + Li2(−z) =
1

2
Li2

󰀃
z2
󰀄
, (2.10)

as well as the distribution property

Li2(x) = n
󰁛

zn=x

Li2(z). (2.11)

2.1.2. Variants of the dilogarithm function

We also consider different variants of the dilogarithm function.

The Bloch-Wigner dilogarithm

From the branching of Li2, it follows that the Bloch-Wigner dilogarithm, defined by

D(z) := Im(Li2(z)) + arg(1− z) log |z|, (2.12)

12
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-4 -2 2 4

-1

1

2

3

Figure 2.2.: The Rogers dilogarithm L(x) for x ∈ (−5, 5)

is well defined and real analytic on C 󰄀 {0, 1}. Moreover, the Bloch-Wigner dilogarithm
satisfies clean versions of the functional equations (2.8) and (2.9), meaning

D

󰀕
1

z

󰀖
+D(z) = D (1− z) +D(z) = 0,

D(x) +D(y) +D

󰀕
1− x

1− xy

󰀖
+D (1− xy) +D

󰀕
1− y

1− xy

󰀖
= 0.

(2.13)

The Rogers dilogarithm

The Rogers dilogarithm is defined for x ∈ (0, 1) by

L(x) := Li2(x) +
1

2
log(x) log(1− x) (2.14)

and can be extended with L(0) = 0 and L(1) = π2

6 to all of R by setting

L(x) =

󰀫
2L(1)− L

󰀃
1
x

󰀄
if x > 1,

−L
󰀓

x
x−1

󰀔
if x < 0.

(2.15)

Then L is a continuous function on R that is analytic on R󰄀{0, 1}. The limits as x → ±∞
are given by

lim
x→∞

L(x) =
π2

3
, lim

x→−∞
L(x) = −π2

6
. (2.16)

The function L(x) for x ∈ (−5, 5) is depicted in Figure 2.2.

2.2. The Bloch group

In this section, we introduce the Bloch group. The Bloch group occurs in the context
of algebraic K-theory, hyperbolic geometry, polylogarithms, and, as we will see, modular
functions.

For a formal linear combination [z1] + . . .+ [zn] with z1, . . . , zn ∈ C󰄀 {0, 1}, we define
the operation

13



2. Background

d : Z[C] → ∧2(C󰄀 {0})
󰁛

i

[zi] 󰀁→
󰁛

i

zi ∧ (1− zi) .
(2.17)

Here, ∧2(C 󰄀 {0}) denotes the set of formal linear combinations of the form x ∧ y for
x, y ∈ C󰄀{0}, together with the relations (x∧y)+(y∧x) = 0 and (x1x2)∧y = x1∧y+x2∧y.
For (x, y) ∈ P 1(C)2 󰄀 {(0,∞), (∞, 0), (1, 1)}, set

s(x, y) = [x] + [y] +

󰀗
1− x

1− xy

󰀘
+

󰀗
1− y

1− xy

󰀘
+ [1− xy] ∈ Z[C], (2.18)

where we use the convention [0] = [∞] = 0. Then it is easy to see that s(x, y) ∈ ker d.
Let S be the submodule generated by elements of the form s(x, y) as above. We define
the Bloch group as the quotient

B(C) = ker(d)/S. (2.19)

There are numerous relations in the Bloch group coming from the 5-term relation (2.18).
We illustrate some relations in the next example.

Example 2.2.1. 1. By setting (x, y) = (1,∞) in (2.18), we obtain 2[1] = 0.

2. With (x, y) = (x, 0), resp. (x, y) = (x,∞), for x ∈ C, we obtain from (2.18)

[x] + [1− x] = [x] +

󰀗
1

x

󰀘
= 0. (2.20)

We deduce that 2[12 ] = [2] + [12 ] = 0 ∈ B(C).

3. Let Q = −1±
√
5

2 be a solution of 1−Q = Q2. Then

Q ∧ (1−Q) = Q ∧Q2 = 2(Q ∧Q) = 0 (2.21)

and the image [Q] of Q lies in B(C). Furthermore, we have with x = y = Q in (2.18)

s(Q,Q) = [Q] + [Q] +

󰀗
1−Q

1−Q2

󰀘
+

󰀗
1−Q

1−Q2

󰀘
+
󰀅
1−Q2

󰀆
= 5[Q] (2.22)

and thus 5[Q] = 0 in B(C). We will see below that [Q] even vanishes in B(C).

4. We also construct a new relation that will appear in Section 3.4. If we apply the
5-term relation (2.18) to the elements 1 − x and 1 − y for x, y ∈ C \ {0, 1} with
(1− x)(1− y) ∕= 1, we obtain

0 = [1− x] + [1− y] +

󰀗
x

x+ y − xy

󰀘
+ [x+ y − xy] +

󰀗
x

x+ y − xy

󰀘
(2.23)

and thus, from (2.20) by adding [x] + [y] on both sides,

[x] + [y] =

󰀗
x

x+ y − xy

󰀘
+

󰀗
y

x+ y − xy

󰀘
+ [x+ y − xy]. (2.24)
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Comparing the elements in equation (2.18) with the functional equations of the Bloch-
Wigner dilogarithm in (2.13), we see that D extends to a well-defined linear map on
B(C). For ξ =

󰁓
j [Qj ] ∈ B(C) we write D(ξ) =

󰁓
j D(Qj). If Qj ∈ R, the 5-term

relation (2.9) implies that L(ξ) =
󰁓

j L(Qj) is a well-defined real number, where L is the
Rogers dilogarithm defined in (2.14).

One can also define the Bloch group B(F ) of a number field F by replacing C in the
construction by F . Then B(F ) agrees, up to torsion, with the algebraic K3-group of F
([Sus90]). Since this aspect is not relevant to this thesis, we will only consider B(C) here.
A theorem by Merkurjev and Suslin [SM91] states that if for a number field F an element
ξ ∈ B(F ) is torsion, then ξ vanishes in B(F ′) for a number field F ′ containing F and
sufficiently many roots of unity. This implies the following result.

Theorem 2.2.2. The Bloch group B(C) is torsion-free.

Relations between dilogarithm-values of elements in the Bloch group usually correspond
to relations between these elements. For example, we have Borel’s theorem [Bor77] that
relates the vanishing of elements in the Bloch group to their values under the Bloch-
Wigner dilogarithm. See [NY95, §2] for Borel’s theorem stated in terms of the Bloch
group.

Theorem 2.2.3 (Borel’s theorem). Let ξ ∈ B(C) with algebraic coefficients. Then ξ = 0 if
and only if D(σ(ξ)) = 0 for all complex embeddings σ(ξ) of ξ. In this case, L(σ(ξ)) ∈ 4π2Q
for all real embeddings σ.

It is expected that the converse of the last statement is also true. In other words, if
ξ ∈ B(C) with L(ξ) ∈ π2Q, it is believed that ξ vanishes in B(C). Moreover, if ξ ∈ B(C)
is totally real, then Borel’s theorem implies ξ = 0.

Next, we will study explicit examples of elements in B(C).

2.2.1. Half-symplectic matrices

Examples of elements in the Bloch group come from solutions of certain equations asso-
ciated to so-called half-symplectic matrices.

Definition 2.2.4. A matrix (A|B) ∈ Zr×2r is half symplectic if it is the upper part of a
symplectic matrix. In other words, if there exists (C|D) ∈ Zr×2r such that

󰀃
A B
C D

󰀄
∈ Z2r×2r

is symplectic, i.e., if one of the following equivalent conditions is fulfilled

• the matrices ATC and BTD are symmetric and ATD − CTB = 1, or

• the matrices ABT and CDT are symmetric and ADT −BCT = 1.

The inverse of a symplectic matrix is given by

󰀣
A B

C D

󰀤−1

=

󰀣
DT −BT

−CT AT

󰀤
. (2.25)

We have the following equivalent characterisation of half-symplectic matrices that does
not require the completion to a symplectic matrix. The equivalence follows immediately
from the definition.

Proposition 2.2.5. A matrix (A|B) ∈ Zr×2r is half symplectic if and only if
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• the matrix ATB is symmetric, and

• the 2r columns of (A|B) span Zr over Z.

From half-symplectic matrices we can construct elements in B(C).

Example 2.2.6. Let (A|B) ∈ Zr×2r be a half-symplectic matrix. IfQ = (Q1, . . . , Qr) ∈ Cr

is a solution of the equations

r󰁜

j=1

(1−Qj)
Bij =

r󰁜

j=1

Q
Aij

j , i = 1, . . . , r, (2.26)

then [Q] =
󰁓r

i=1[Qi] is an element in B(C). To see this, let
󰀃
A B
C D

󰀄
∈ Z2r×2r be the

symplectic completion of (A|B). We compute, using ATD − CTB = I,

d([Q]) =

r󰁛

i=1

Qi ∧ (1−Qi)

=

r󰁛

i,j=1

((ATD)ij − (CTB)ij) (Qi ∧ (1−Qj))

=

r󰁛

i,j=1

(ATD)ij (Qi ∧ (1−Qj))− (CTB)ij (Qi ∧ (1−Qj))

=

r󰁛

k,j=1

Dkj

󰀣
r󰁜

i=1

QAki
i ∧ (1−Qj)

󰀤
−

r󰁛

k,i=1

Cki

󰀳

󰁃Qi ∧
r󰁜

j=1

(1−Qj)
Bkj

󰀴

󰁄 .

(2.27)

We apply the relations in (2.26) to obtain

d([Q]) =

r󰁛

k,j=1

Dkj

󰀣󰀣
r󰁜

i=1

(1−Qi)
Bki

󰀤
∧ (1−Qj)

󰀤
−

r󰁛

k,i=1

Cki

󰀣
Qi ∧

󰀣
r󰁜

j=1

Q
Akj

j

󰀤󰀤

=

r󰁛

i,k,j=1

DkjBki((1−Qi) ∧ (1−Qj))−
r󰁛

j,k,i=1

CkiAkj (Qi ∧Qj)

=

r󰁛

i,j=1

(BTD)ij((1−Qi) ∧ (1−Qj))−
r󰁛

j,i=1

(ATC)ji(Qi ∧Qj)

= 0 ,
(2.28)

because the matrices BTD and ATC are symmetric.
For a given half-symplectic matrix (A|B), we will denote by Q(A|B) ⊂ C the set of

solutions of (2.26).

The equations in (2.26) appear in the context of ideally triangulated hyperbolic 3–
manifolds as gluing equations and are known as Neumann-Zagier equations [NZ85].

The most relevant case in this thesis will be the case where B is the identity matrix
Ir. Then (A|Ir) is half symplectic with symplectic completion

󰀃
A Ir

−Ir 0

󰀄
and the equations

in (2.26) reduce to

1−Qi =

r󰁜

j=1

Q
Aij

j , i = 1, . . . , r. (2.29)

In this case, we write QA ⊂ Cr for the set of solutions. These equation were discovered
by Nahm in the context of Nahm sums, see below, and are thus called Nahm equations.
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2.2.2. The extended Bloch group

Following [GZ07, GZ24, Neu04, Zic15], we introduce the extended Bloch group. Elements
in the extended Bloch group will correspond to choices of log(zj) and log(1 − zj) for󰁓

j [zj ] ∈ B(C). For this, consider the abelian cover of C× 󰄀 {0, 1}

󰁥C = {(u, v) ∈ C2 | eu + ev = 1} (2.30)

via z = eu = 1 − ev. As in (2.17), we define the map 󰁥d : Z[󰁥C] → ∧2(C) and define the
extended Bloch group as the quotient

󰁥B(C) = ker 󰁥d/󰁥S, (2.31)

where 󰁥S is the subgroup generated by elements of the form
󰁓5

j=1(−1)j [uj , vj ] for (u, v) ∈ 󰁥C5

satisfying the lifted 5-term relation

(u2, u4) = (u1 + u3, u3 + u5), (v1, v3, v5) = (u5 + v2, v2 + v4, u1 + v4). (2.32)

Elements 󰁥ξ =
󰁓

j [uj , vj ] ∈ 󰁥B(C) in the extended Bloch group can be projected to elements
ξ =

󰁓
j [e

uj ] ∈ B(C) in the Bloch group. Moreover, the regulator map is defined by

󰁛

j

[uj , vj ] 󰀁→
󰁛

j

L([uj , vj ]) ∈ C/4π2Z, (2.33)

for
󰁓

j [uj , vj ] ∈ 󰁥B(C), where, with F defined in (2.7),

L(u, v) = F (v) +
1

2
uv − π2

6
. (2.34)

2.2.3. The volume

Let (A|B) be a half-symplectic matrix as in Definition 2.2.4. Choose µ ∈ 1
2 diag(B

TA)+Zr

and let Q ∈ Q(A|B) ⊂ Cr be a solution of the equations (2.26) as in Example 2.2.6.

Proposition 2.2.7. For Q,µ as above, let u, v ∈ Cr be choices of (log(Qj))j, resp.
(log(1−Qj))j, such that Au−Bv = 2πiµ. The volume of Q (with respect to µ) is defined
by

V (u, v) =
1

2
uT v +

1

2
(Au−Bv)T (Cu−Dv)− r

π2

6
+

r󰁛

j=1

F (vj), (2.35)

with F as in (2.7). Then V (u, v) is a well-defined complex number modulo 4π2Z. More-
over, Im(V (u, v)) is a well-defined complex number and equals the Bloch-Wigner diloga-
rithm

󰁓
j D(Qj), where Qj = euj = 1− evj .

Proof. We prove that V (u, v) does not change modulo 4π2Z if u, resp. v, changes by 2πik,
resp. 2πil, for some k, l ∈ Zr. The condition Au−Bv = 2πiµ implies that Ak = Bl. We
complete (A|B) to a symplectic matrix

󰀃
A B
C D

󰀄
∈ Z2r×2r such that

󰀃
A B
C D

󰀄 󰀃−k
l

󰀄
= ( 0

n ) for
some n ∈ Zr. Using (2.25), we see that

󰀣
DT −BT

−CT AT

󰀤󰀣
0

n

󰀤
=

󰀣
−k

l

󰀤
(2.36)
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and thus k = BTn and l = ATn. We compute

V (u+ 2πik, v + 2πil)

= V (u+ 2πiBTn, v + 2πiATn)

=
1

2
uT v +

1

2
2πi(nTBv + nTAu)− 4π2nTBATn

+
1

2
(Au−Bv + 2πi(ABT −BAT )n)T (Cu−Dv + 2πi(CBT −DAT )n)

− r
π2

6
+

󰁛

j

F (vj)− 2πinTATu

= V (u, v) + πinT
󰀃
Bv +Au−Au+Bv − 2Au+ 2πiBATn

󰀄

= V (u, v)− 4π2nTµ+ 2π2nTBTAn

∈ V (u, v) + 4π2Z,

(2.37)

because µ ∈ 1
2 diagAB

T + Zr. This proves the claim.

The function V is called volume because it also appears as the hyperbolic volume of
ideally triangulated hyperbolic 3-manifolds [NZ85]. The relation between the volume and
the regulator map in equation (2.33) is given by

V (u, v) = L([u, v]) + 1

2
(Au− v)T (Cu−Bv). (2.38)

If B = Ir is the identity matrix, then V (u, v) reduces to

V (u, v) =
1

2
uTAu− r

π2

6
+

r󰁛

j=1

F (vj) (2.39)

and is independent of the choice of v. In the context of the asymptotics of Nahm sums, we
will encounter the principal branch of V (u, v). Therefore, we write V (Q) = V (u, v) where
u, v are the principal branches of log(Q), resp. log(1 − Q). In particular, if Q ∈ (0, 1)r,

we have V (Q) =
󰁓

j L(Qj)− r π2

6 , where L is the Rogers Dilogarithm, defined in (2.14).

2.3. The q-Pochhammer symbol and q-series identities

We define the q-Pochhammer symbol

(a; q)n :=

n−1󰁜

i=0

1− aqi (2.40)

for n ∈ Z≥0 ∪ {∞}. The identity

(a; q)n =
(a; q)∞
(aqn; q)∞

(2.41)

suggests to define the q-Pochhammer symbol at −n by setting

(a; q)−n =
(a; q)∞

(aq−n; q)∞
=

1

(aq−n; q)n
. (2.42)
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A simple computation shows that we have the relation

(a; q)−n = q
1
2
(n(n−1)) (−q/a)n

(q/a; q)n
. (2.43)

For later use, we also recall some basic q-series identities.

Proposition 2.3.1 ([Zag07, Prp. 2]). For x, q ∈ C with |x|, |q| < 1 we have

(x; q)−1
∞ =

∞󰁛

n=0

xn

(q)n
,

(x; q)∞ =

∞󰁛

n=0

xnqn(n−1)/2

(q)n
.

(2.44)

Proposition 2.3.2 (q-binomial theorem, [Zag07, (13)]). For |q| < 1 and m,n ∈ Z≥0 we
have

1

(q)n(q)m
=

min(m,n)󰁛

r=0

q(m−r)(n−r)

(q)r(q)m−r(q)n−r
. (2.45)

2.4. Modular forms and functions

Modular forms are important objects in number theory and have many fascinating con-
nections to other fields of mathematics, such as algebraic geometry, mathematical physics,
knot theory and combinatorics. We will discuss some of these connections later in this
thesis. The book [BVdGHZ08] gives a nice overview of the theory of modular forms.

In the following, we denote by H := {τ ∈ C : Im(τ) > 0} the upper half-plane. The
group SL2(Z) = {

󰀃
a b
c d

󰀄
∈ Z2×2 : ad− bc = 1} acts on H via

󰀣
a b

c d

󰀤
τ :=

aτ + b

cτ + d
. (2.46)

The group SL2(Z) is generated by the elements S =
󰀃
0 −1
0 1

󰀄
and T = ( 1 1

0 1 ).

Definition 2.4.1. Let Γ ⊆ SL2(Z) be a subgroup of finite index and χ : Γ → C be a
character. A function f : H → C is called weakly modular for Γ and χ of weight k ∈ Z if
it fulfils the transformation

f

󰀕
aτ + b

cτ + b

󰀖
= χ

󰀃󰀃
a b
c d

󰀄󰀄
(cτ + d)kf(τ) (2.47)

for all τ ∈ H and all
󰀃
a b
c d

󰀄
∈ Γ.

Assume that f is holomorphic and weakly modular with subexponential growth at
infinity, meaning that

f(x+ iy) = O(eCy) as y → ∞,

f(x+ iy) = O(eC/y) as y → 0,
(2.48)

for all C > 0. Then we say that f is a modular form of weight k ∈ Z for Γ and χ.

For Γ = SL2(Z), it is enough to consider the transformation of f under the generators
S and T of SL2(Z).

For a given Γ, χ and k as above, the corresponding vector space of modular forms is
finite dimensional ([Miy06, §2.5]). It follows from Liouville’s theorem that there are no
modular forms of weight 0.
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2. Background

Definition 2.4.2. A modular function for Γ and χ is a meromorphic, weakly modular
function of weight k = 0 with exponential growth at infinity, meaning the asymptotics
in (2.48) hold for some C > 0.

Let Γ ⊆ SL2(Z) be a subgroup of finite index. This implies that
󰀃
1 N
0 1

󰀄
∈ Γ for

some N ∈ Z≥1. Therefore, if f is weakly modular for Γ, f is N -periodic , meaning
f(τ +N) = f(τ) for all τ ∈ H, and has a Fourier expansion

f(τ) =
󰁛

n≫−∞
anq

n/N , q = e2πiτ (2.49)

with an ∈ C. The Fourier coefficients an are usually of interest in other areas of mathe-
matics.

Throughout, we say that a function f is modular whenever f is a modular function for
some subgroup Γ ⊆ SL2(Z) of finite index and some character.

Via τ 󰀁→ q = e2πiτ for τ ∈ H, we can identify q-series that converge for |q| < 1 as
functions on the upper half-plane and study their modular behaviour. For such a q-series
f(q), we use the convention that f̃(τ) = f(e2πiτ ) is the corresponding function on the
upper half-plane.

2.4.1. Examples: theta functions and Dedekind eta-function

One of the most important examples of modular forms are theta functions. We will use
the Jacobi theta function to obtain their modular behaviour. Here and throughout, we
write e(x) for e2πix for x ∈ C.

Proposition 2.4.3. Define the Jacobi theta function for τ ∈ H, z ∈ C by

ϑ(τ, z) :=
󰁛

n∈Z
(−x)nq

1
2
n(n+1), q = e2πiτ , x = e2πiz. (2.50)

Then ϑ(τ, z) satisfies the transformations

ϑ(τ + 1, z) = ϑ(τ, z),

ϑ(τ, z + 1) = ϑ(τ, z),

ϑ(τ, z + τ) = −q−1x−1ϑ(τ, z),

e

󰀕
−1

8τ
+

z

2τ

󰀖
ϑ

󰀕
−1

τ
,
z

τ

󰀖
= τ

1
2 e

󰀕
z2

2τ
− 3

8

󰀖
e
󰀓τ
8
+

z

2

󰀔
ϑ(τ, z).

(2.51)

The transformations of the Jacobi theta function in (2.51) mean that θ(τ, z) is es-
sentially a Jacobi form ([EZ85]) of weight 1

2 and index 1
2 . In combination with growth

conditions, the transformations imply that ϑ(τ,α+βτ) is a modular form for all α,β ∈ Q.
We can relate the Jacobi theta function to the q-Pochhammer symbol defined in (2.40).

Theorem 2.4.4 (Jacobi triple product identity). For τ ∈ H, z ∈ C we have

ϑ(τ, z) = (q; q)∞ ( 1x ; q)∞ (xq; q)∞, q = e2πiτ , x = e2πiz. (2.52)

An elementary proof of the Jacobi triple product identity is given by Andrews [And65].
Replacing (x, q) by (q−1, q3) in the Jacobi triple product identity implies that the Dedekind
eta-function, defined by

η(τ) := q1/24(q; q)∞ =
󰁛

n∈Z
(−1)nq(6n+1)2/24, q = e2πiτ , (2.53)
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2.4. Modular forms and functions

is a modular form of weight 1
2 for SL2(Z) in the sense that

η(τ + 1) = e

󰀕
−1

24

󰀖
η(τ), η

󰀕
−1

τ

󰀖
=

√
−iτη(τ). (2.54)

Here, the branch of the square root is chosen such that | arg
√
−iτ | < π

2 . More generally,
if
󰀃
a b
c d

󰀄
∈ SL2(Z), we have

η

󰀕
aτ + b

bτ + c

󰀖
= 󰂃(a, b, c, d)(cτ + d)

1
2 η(τ), (2.55)

where

󰂃(a, b, c, d) =

󰀫
e
󰀃

b
24

󰀄
if c = 0, d = 1,

e
󰀃
a+d
24c − 1

2s(d, c)−
1
8

󰀄
if c > 0,

(2.56)

with the Dedekind sum

s(d, c) =

c−1󰁛

n=1

n

c

󰀕
dn

c
−

󰀙
dn

c

󰀚
− 1

2

󰀖
. (2.57)

2.4.2. The asymptotics of modular forms and functions

The asymptotics of a modular function or form as τ → 0, resp. q = e2πiτ → 1 can be
obtained from its modular transformation. The following result is a slight generalisation
of [VZ11, Lemma 3.1] where we allow that τ goes to 0 on any ray in the upper half-plane.
The proof stays the same.

Proposition 2.4.5 ([VZ11, Lemma 3.1]). If f : H → C is a modular form or function of
weight k ∈ Z then as h → 0 on a ray in the right half-plane

f(e−h) = eαπ
2/h

󰀓
a0h

−k +O
󰀃
hN

󰀄󰀔
(2.58)

for all N ≥ 0 and some α ∈ Q and a0 ∈ C.

2.4.3. Vector-valued modular forms

For a modular function for some subgroup Γ ⊂ SL2(Z), it can be helpful to consider it as
a component of a vector-valued modular function for SL2(Z).

We say that a holomophic function F : H → Cn is a vector-valued modular function for
SL2(Z) and a representation ρ of SL2(Z) on Cn if

F
󰀓aτ + b

cτ + d

󰀔
= ρ(

󰀃
a b
c d

󰀄
)F (τ) (2.59)

for all τ ∈ H,
󰀃
a b
c d

󰀄
∈ SL2(Z) and each component fulfils the same growth conditions

as a modular function. As for scalar-valued modular function, we only need to give the
transformation under S =

󰀃
0 −1
1 0

󰀄
and T = ( 1 1

0 1 ). The most important example for vector-
valued modular functions in this thesis comes from a specialisation of the Jacobi theta
function.
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2. Background

Example 2.4.6. If we substitute τ 󰀁→ 5τ and z 󰀁→ −2τ , resp. z 󰀁→ −τ , in (2.50), we
obtain the functions

θ5,1(τ) := q1/40ϑ(5τ,−2τ) =
󰁛

n≡1 mod 10

(−1)[n/10]qn
2/40,

θ5,2(τ) := q9/40ϑ(5τ,−1τ) =
󰁛

n≡3 mod 10

(−1)[n/10]qn
2/40.

(2.60)

The transformation in (2.51) implies that the vector-valued function

θ5(τ) :=

󰀣
θ5,1(τ)

θ5,2(τ)

󰀤
for τ ∈ H (2.61)

fulfils the transformations

θ5(τ + 1) =

󰀣
ζ40 0

0 ζ940

󰀤󰀣
θ5,1(τ)

θ5,2(τ)

󰀤
, θ5

󰀓
−1

τ

󰀔
=

󰁵
τ

i

2√
5

󰀣
sin 2π

5 sin π
5

sin π
5 − sin 2π

5

󰀤
θ5(τ), (2.62)

where ζ40 = eπi/20. In combination with (2.54), this implies that the vector-valued func-
tion

F̃2(τ) :=
θ5(τ)

η(τ)
(2.63)

is a vector-valued modular function for SL2(Z), satisfying

F̃2(τ + 1) =

󰀣
ζ−1
60 0

0 ζ1160

󰀤
F̃2(τ), F̃2

󰀓
−1

τ

󰀔
=

2√
5

󰀣
sin 2π

5 sin π
5

sin π
5 − sin 2π

5

󰀤
F̃2(τ), (2.64)

where ζ60 = eπi/30. The name of F̃2 will become clear in the context of Nahm sums below.
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3. Nahm sums and Nahm’s conjecture

3.1. The Rogers-Ramanujan functions

Recall from equation (1.1) that the Rogers-Ramanujan functions are defined by

G(q) =
󰁛

n≥0

qn
2

(q)n
, H(q) =

󰁛

n≥0

qn
2+n

(q)n
. (3.1)

They fulfil the Rogers-Ramanujan identities

G(q) =
󰁜

n=±1 (mod 5)

(1− qn)−1, H(q) =
󰁜

n=±2 (mod 5)

(1− qn)−1
(3.2)

that were proved by Rogers in 1894 [Rog94] and later rediscovered by Ramanujan. Ra-
manujan proved the identities by showing that both sides in both equations in (3.2),
with an additional parameter, fulfil the same recurrence relations. See [Hir17, §15] for a
historical discussion.

The Jacobi triple product (Proposition 2.52) implies that the functions q−1/60G(q) and
q11/60H(q) are modular functions for Γ0(5) = {

󰀃
a b
c d

󰀄
∈ SL2(Z) : c = 0 (mod 5)} because

they can be written as a quotient of a theta function and the Dedekind eta-function

q−1/60G(q) =
q−1/60

(q; q)∞

󰁛

n∈Z
(−1)nq(5n

2+n)/2 =
θ5,1(τ)

η(τ)
,

q11/60H(q) =
q11/60

(q; q)∞

󰁛

n∈Z
(−1)nq(5n

2+3n)/2 =
θ5,2(τ)

η(τ)
,

(3.3)

where q = e2πiτ and θ5,j(τ) is defined in (2.60). From Example 2.4.6, we know that the
vector-valued function

F̃2(τ) :=

󰀣
q−1/60G(q)

q11/60H(q)

󰀤
, where q = e2πiτ , (3.4)

is a vector-valued modular function satisfying the transformations

F̃2(τ + 1) =

󰀣
ζ−1
60 0

0 ζ1160

󰀤
F̃2(τ), F̃2

󰀓
−1

τ

󰀔
=

2√
5

󰀣
sin(2π5 ) sin(π5 )

sin(π5 ) − sin(2π5 )

󰀤
F̃2(τ),

(3.5)
where ζ60 = eπi/30. As discussed in Chapter 1, the Rogers-Ramanujan functions appear in
numerous areas of mathematics, such as partitions, VOAs, and quantum knot invariants.
In 2019, Zagier gave a lecture at ICTP in Trieste [Zag19] on the Rogers-Ramanujan
functions, where he lists even more connections to other fields of mathematics.

The fact that q−1/60G(q) and q11/60H(q) are modular functions often has a meaning
coming from these applications. For example, as characters of the rational (2, 5)-minimal
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3. Nahm sums and Nahm’s conjecture

model VOA, they are modular functions by Zhu’s modularity theorem ([Zhu96], see also
[Gan06, §5.3.5]). In the context of the tail of the coloured Jones polynomial, the fact that
the (2, 5)-torus knot is a rational knot ensures that ΦK(q) = H(q) is modular up to a
rational power of q (cf. Theorem 9.1.3).

3.2. Nahm sums

In the context of conformal field theory, Nahm [Nah07] noticed that several q-series ap-
pearing there have a similar form as the Roger-Ramanujan functions. For example, the
functions

󰁛

n≥0

q
1
2
n2− 1

48

(q)n
=

η(τ)2

η( τ2 )η(2τ)
,

󰁛

n≥0

q
1
2
n(n+n)+ 1

24

(q)n
=

η(2τ)

η(τ)
, (3.6)

where q = e2πiτ , have a similar shape and are also modular functions. Functions of this
form and generalisations thereof are sometimes called fermionic forms in physics or basic
q-hypergeometric series. Motivated by these examples, Nahm asked the question, which
generalisations of the Rogers-Ramanujan functions are modular functions or forms. We
make the following general definition but we will consider different restrictions in different
sections.

Definition 3.2.1. Let A ∈ Qr×r be a symmetric, positive definite matrix, b ∈ Qr and
c ∈ Q . The Nahm sum for A, b, and c is defined by

fA,b,c(q) :=
󰁛

n∈Zr
≥0

q
1
2
nTAn+bTn+c

(q)n1 · · · (q)nr

∈ Z((q
1
N )), (3.7)

where N is the denominator of the quadratic forn 1
2n

TAn+ btn+ c.

As for the Rogers-Ramanujan functions, Nahm sums and their generalisations occur
in several fields of mathematics. For example, as characters of VOAs [CMP16, MP12,
AvEH23], as quantum knot invariants [AD11, GZ21, GZ23, GL15, Whe23], in the context
of cluster algebras [Miz21], and as generating functions of partitions [Mei54, BMRS23].
In Part II of this thesis, we will study the tail of the coloured Jones polynomial for alter-
nating knots. This q-series knot invariant has an explicit representation as a generalised
Nahm sum. In Part III, we will discuss a Nahm-type sum v1(q) from Ramanujan’s “lost”
notebook [And84, p.57, (1.10)] that counts a class of partitions. Andrews [And86] noticed
that the coefficients of v1(q) have an almost regular sign pattern. In Part III, we explain
his observations and prove some of his conjectures.

Nahm made the fascinating observation that the modularity of fA,b,c(q) in τ , where
q = e2πiτ , for a given matrix A as above and some b, c is related to the vanishing of the
images of the solutions of the Nahm equation

1−Qi =

r󰁜

j=1

Q
Ai,j

j , i = 1, · · · , r (3.8)

in the Bloch group B(C). Recall that we have already seen equation (3.8) in (2.29) as a
specialisation of Example 2.2.6. In particular, the element

󰁓
j [Qj ] is in the Bloch group

B(C). The motivation behind this connection comes from the asymptotics of Nahm sums,
in which solutions of the Nahm equation and their dilogarithm values appear. Comparing
this to the asymptotics of general modular forms or functions suggests that the modularity
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3.2. Nahm sums

of a given Nahm sum and the vanishing of [Q] ∈ B(C) are connected. We discuss this in
detail in Section 3.3 below.

In the applications mentioned above, the corresponding Nahm equation (3.8) usually
plays a role as well. In the context of knot theory, equation (3.8) and its generalisations
are the glueing equations for the knot complement of a hyperbolic knot. In the context of
VOAs, equation (3.8) is related to the TBA equation and the fusion rules [NRT93, Ter94].

We remark that equation (3.8) can explicitly be solved in terms of hypergeometric
functions, see [Vil11].

3.2.1. A functional equation for Nahm sums

Nahm sums fulfil the following functional equation. We often ommit the c in the index
of a Nahm sum fA,b,c(q), because fA,b,c(q) = qcfA,b(q).

Proposition 3.2.2. Let A ∈ Qr×r be as above. For j = 1, . . . , r, the Nahm sums for A
fulfil the recursion

fA,b(q)− fA,b+ej (q) = q
1
2
Ajj+bjfA,b+Aej (q) (3.9)

where ej = (0, . . . , 0, 1, 0, . . . , 0) denotes the vector with 0 on all but the j-th entry.

Proof. We denote the summands in (3.7) by

bn(q) =
q

1
2
nTAn+bTn

(q)n1 · · · (q)nr

, n = (n1, · · · , nr) ∈ Zr
≥0. (3.10)

Then for j = 1, . . . , r, the quotient of two consecutive summands is given by

bn+ej (q)

bn(q)
= q

1
2
Ajj+bj

qe
T
j Ajn

1− qnj+1 .
(3.11)

In other words, we have

bn+ej (q)(1− qnj+1) = q
1
2
Ajj+bj bn(q)q

eTj Ajn. (3.12)

Summing both sides over n ≥ 0 gives

fA,b(q)− fA,b+ej (q) = q
1
2Ajj
+

bjfA,b+Aej (q)
(3.13)

as claimed.

The previous proposition implies that for integral matrices A, the Z[q±1]-module

NA,b0+Zr := 〈fA,b(q) : b ≡ b0 mod Zr〉 (3.14)

is finitely generated.

3.2.2. Modular Nahm sums

Using the asymptotics of Nahm sums, Zagier [Zag07] classified all modular one-dimensional
Nahm sums.

Theorem 3.2.3 ([Zag07]). For r = 1, the Nahm sum fA,b,c(q) is only modular in the
following 7 cases.
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3. Nahm sums and Nahm’s conjecture

A b c fA,b,c(q)

2 0 −1/60 θ5,1(τ)/η(τ)

1 11/60 θ5,2(τ)/η(τ)

1 0 −1/48 η(τ)2/η(τ/2)η(2τ)

1/2 1/24 η(2τ)/η(τ)

−1/2 1/24 η(2τ)/η(τ)

1/2 0 −1/40 θ5,1(τ/4)η(2τ)/η(τ)η(4τ)

1/2 1/40 θ5,2(τ/4)η(2τ)/η(τ)η(4τ)

Based on numerical experiments, Zagier [Zag07, Table 2 and 3] also gives several two-
and three-dimensional matrices for which some corresponding Nahm sums seem modu-
lar. For two-dimensional Nahm sums, all examples from Zagier’s table are proven to be
modular functions [CRW23, VZ11, Wan22]. The modularity for several three-dimensional
Nahm sums listed by Zagier are proven [MW24, Wan22]. For higher-dimensional sums,
apart from infinite families, only a few modular Nahm sums are known.

3.2.3. Asymptotics of Nahm sums

We will use the asymptotics to compare Nahm sums with modular forms and functions.
For this, we need the following statement, see for example [VZ11, Lemma 2.1].

Proposition 3.2.4. Let A ∈ Qr×r be a positive definite, symmetric matrix. Then the
Nahm equations (3.8) have a unique solution Q(1) ∈ QA in (0, 1)r.

Different versions of the following result about the asymptotics of Nahm sums can be
found in [GZ21, Mei54, VZ11, Zag07]. We will prove a slight generalisation of the result
in Theorem 4.3.1 below.

Theorem 3.2.5. Let A, b, c be as above. Then as h ↘ 0,

fA,b,c(e
−h) ∼ eV (Q(1))/h Φ

(Q(1))
A,b,c (h) (3.15)

where

1. Q(1) ∈ QA is the unique solution of (3.8) in (0, 1)r,

2. Φ
(Q(1))
A,b,c (h) ∈ Q[[h]] is an explicit power series with algebraic coefficients, and

3. V (Q(1)) denotes the volume of Q(1), defined after Proposition 2.2.7.

We sketch the proof because it explains how the solutions of the Nahm equation (3.8)
appear.

Idea of the proof. We expand the summands

bn(q) =
q

1
2
nTAn+bTn

(q)n1 · · · (q)nr

, n = (n1, · · · , nr) ∈ Zr
≥0

(3.16)
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Figure 3.1.: bn(q) from (3.16) for A = 4, b = 0, and h = 1
100 .

around their maximum. Heuristically, the summands bn(q) are maximised when

1 ≈
bn+ej (q)

bn(q)
= q

1
2
Ajj+bj

qe
T
j Ajn

1− qn+1
, for j = 1, . . . , r. (3.17)

With Q = (qn1 , . . . , qnr) and q → 1 the previous equation can be written as

1−Qj ≈
r󰁜

k=1

Q
Akj

k , for j = 1, . . . , r. (3.18)

Since q = e−h ∈ R, the summands bn(q) are maximised for qnj = Qj , j = 1, . . . , r, where

Q is the unique solution of (3.8) in (0, 1)r. In other words, we have n = − log(Q)
h .

The values bn(q) for A = 4, b = 0, h = 1
100 , and n ≤ 60 are plotted in Fig-

ure 4.1. There, the summands bn(q) are maximised for n = − log(Q)
h = 32.22846 · · · ,

where Q = 0.7244920 · · · with 1−Q = Q4.

Remark 3.2.6. The quotient taken in (3.17) is the same as the one in (3.11), which
leads to the functional equation in Proposition 3.2.2. Therefore, we can guess the equation
for maxima of the summands, and thus the corresponding Nahm equation, from a given
functional equation: For each summand, the shift in bj by 1 corresponds to a term Qj.

3.3. Nahm’s conjecture

We will use the asymptotics from Theorem 3.2.5 to motivate Nahm’s conjecture. Recall
from Proposition 2.4.5 that if a function f(q) is modular in τ of weight k ∈ Z, where
q = e2πiτ , then the asymptotics as τ = ih

2π → 0 has the special form

f(e−h) ∼ a0h
−keα/h, (3.19)

for some a0 ∈ C and α ∈ 4π2Q. Hence, if f = fA,b,c is a Nahm sum, we conclude

1. k = 0, i.e., f is a modular function,
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3. Nahm sums and Nahm’s conjecture

2. the power series Φ
(Q(1))
A,b,c (h) is constant, and

3. V (Q(1)) ∈ 4π2Q.

From Section 2.2 we know that the last condition suggests the vanishing of [Q(1)] in B(C).
This provides evidence that the modularity of fA,b,c is connected to the vanishing of [Q(1)]
in B(C). Indeed, the following result, which was part of Nahm’s original conjecture, was
recently proven by Calegari-Garoufalidis-Zagier.

Theorem 3.3.1 ([CGZ23]). If fA,b,c is modular, then [Q(1)] vanishes in B(C).

In the proof, Calegari-Garoufalidis-Zagier use the asymptotics of Nahm sums fA,b(q)
as q approaches a root of unity as well as results from algebraic K-theory.

On the other hand, the vanishing of [Q(1)] is not sufficient for the modularity of fA,b,c(q),
as the following examples show.

Example 3.3.2. 1. Let A =
󰀓

4 0
0 1

4

󰀔
. Then, the solutions of the corresponding Nahm

equation are of the form 1 − Q1 = Q4
1, (1 − Q2)

4 = Q2. In other words,
Q1, 1−Q2 ∈ Q4. In particular, if Q1 = 1 − Q2 = 0.7244920 · · · is the unique
solution in (0, 1), then [Q1] + [1 − Q1] = 0, cf. Example 2.2.1. However, for other
values of (Q1, Q2) with Q1 ∕= 1−Q2, we have [Q1]+ [Q2] ∕= 0 and the corresponding
Nahm sum

fA,b,c(q) = qcf4,b1(q)f1/4,b2(q) (3.20)

is not modular for any b ∈ Q2, c ∈ Q. This can be proven following the ideas from
subsection 4.3.2.

2. We also give an integral, non-diagonal example. For A = ( 4 3
3 3 ), the Nahm equations

1−Q1 = Q4
1Q

3
2, 1−Q2 = Q3

1Q
3
2, (3.21)

can be reduced to

0 = (4Q2
1 − 2Q1 − 1)(2Q2

1 − 2Q1 + 1), Q2 = 2−Q−1
1 , (3.22)

with explicit solutions

󰀳

󰁃Q1

Q2

󰀴

󰁄 ∈

󰀻
󰀿

󰀽

󰀳

󰁃
1+

√
5

4

3−
√
5

󰀴

󰁄 ,

󰀳

󰁃
1−

√
5

4

3 +
√
5

󰀴

󰁄 ,

󰀳

󰁃
1−i
2

1− i

󰀴

󰁄 ,

󰀳

󰁃
1+i
2

1 + i

󰀴

󰁄

󰀼
󰁀

󰀾 . (3.23)

The images of
󰀃
1±

√
5

4 , 3∓
√
5
󰀄T

vanish in B(C) because they are totally real, while

the images of
󰀃
1±i
2 , 1 ± i

󰀄T
do not because their images under the Bloch-Wigner

dilogarithm do not vanish (Theorem 2.2.3). Moreover, there is no b ∈ Q2, c ∈ Q
such that fA,b,c(q) is modular. We will prove this statement in subsection 4.3.2 using
the asymptotics of Nahm sums on rays in the upper half-plane.

More examples of matrices in Z2×2 such that [Q(1)] vanishes in B(C) but the images of
other solutions do not are listed in [Zag07, p.46]. We will discuss some of these examples
in Section 6.3 below.

These observations motivated Zagier to state the following conjecture.
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3.4. Nahm sums for half-symplectic matrices

Zagier’s version of Nahm’s conjecture 3.3.3. For a given A ∈ Qr×r as above, the
modularity of fA,b,c(q) for some b ∈ Qr, c ∈ Q is equivalent to the vanishing of [Q] for all
solutions Q ∈ QA of the Nahm equation (3.8).

As one can show ([Zag07]), for r = 1, the images of the solutions of 1−Q = QA vanish
in B(C) if and only if A ∈ {1

2 , 1, 2}. Hence, Zagier’s classification in Theorem 3.2.3 proves
this conjecture for r = 1.

This conjecture is sometimes referred to as “Nahm’s conjecture”. It should be noted,
however, that Nahm never made this conjecture. He only conjectured that modularity
of Nahm sums cannot occur unless the unique solution in (0, 1)r of the Nahm equation
vanishes in B(C) (as was confirmed by Theorem 3.3.1 stated above). Prediction 3.3.3 was
stated by Zagier in [Zag07] as a potential precise formulation of Nahm’s insight.

In [VZ11], Vlasenko and Zwegers gave counterexamples to this conjecture: There exist
matrices A ∈ Qr×r (and even A ∈ Zr×r) such that fA,b,c(q) is modular for some b ∈ Qr,
c ∈ Q even though [Q] ∕= 0 for some Q ∈ QA. In other words, only some solutions Q ∈ QA

seem to be important for the modularity of fA,b,c. We will discuss these examples in
Section 6.2.

It is still believed that the converse is true: The vanishing of [Q] in B(C) for all Q ∈ QA

is sufficient for the modularity of fA,b,c(q) for some b ∈ Qr, c ∈ Q.
Even though Theorem 3.2.3 seems to solve the problem for r = 1, it is not completely

enlightening for which b’s and c’s the Nahm sum fA,b,c is modular. Furthermore, it only
claims modularity for some congruence subgroup. It turns out to be helpful to consider
fA,b,c as a component of a vector-valued modular function for SL2(Z). In Chapter 5, we
will study the vector-valued modular behaviour of modular Nahm sums. In particular,
we will see that the solutions QA will not only determine whether fA,b,c is modular, but
also for which b’s and c’s the Nahm sum is modular and how these functions transform
as a vector-valued modular function under SL2(Z).

3.4. Nahm sums for half-symplectic matrices

Nahm sums as defined in (3.7) can be generalised to Nahm sums for half-symplectic
matrices, cf. Definitione 2.2.4. They are also of great interest and appear for example in
the context of knot invariants [GZ24]. For a half-symplectic matrix (A|B) ∈ Zr×2r with
detB ∕= 0 and a vector b ∈ Qr, we define the generalised Nahm sum by

f(A|B),b(q) :=
󰁛

n∈Zr

q
1
2
nTABTn+bTBn

(q)(BTn)1 · · · (q)(BTn)r

. (3.24)

The corresponding Nahm equation is then given by

r󰁜

j=1

(1−Qj)
Bi,j =

r󰁜

j=1

Q
Ai,j

j , i = 1, . . . , r (3.25)

as in (2.26). The Nahm sums defined in (3.7) correspond to B = Ir. If B ∈ Zr×r is
invertible over Z, we obtain f(A|B),b(q) = fB−1A,B−1b(q) by substituting n 󰀁→ B−Tn in the
summation.

3.4.1. Relations between Nahm sums

We present an identity between Nahm sums for half-symplectic matrices such that the
solutions of the corresponding Nahm equations (3.25) have the same image in B(C). This
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3. Nahm sums and Nahm’s conjecture

provides further evidence that Nahm sums and the Bloch group are closely related. This
result has been discovered for Nahm sums with B = Ir independendly by Zwegers and
Ontiveros in unpublished work. See also [Zag20, Lecture 7] as well as [DG13] for similar
results.

Proposition 3.4.1. For a half-symplectic matrix (A|B) ∈ Zr×2r write A = (A1|A2|A′),
where A1, A2 denote the first two columns of A and similarly B = (B1|B2|B′). We define
the matrices

Ã =

󰀣
0 −1 −1 0

A1 +A2 A1 +B2 A2 +B1 A′

󰀤
, B̃ =

󰀣
1 −1 −1 0

0 B1 B2 B′

󰀤
. (3.26)

Then ( 󰁨A| 󰁨B) ∈ Z(r+1)×(2r+2) is also a half-symplectic matrix and

f(A|B),b(q) = f
( 󰁨A| 󰁨B),󰁨b(q) (3.27)

where b̃ = (0, b)T . Moreover, z = (z1, . . . , zr) ∈ Cr satisfies the Nahm equation for (A|B)
if and only if

z̃ =
󰀓
z1 + z2 − z1z2,

z1
z1 + z2 − z1z2

,
z2

z1 + z2 − z1z2
, z3, . . . , zr

󰀔
∈ Cr+2

(3.28)

satisfies the Nahm equation for ( 󰁨A| 󰁨B).

By relation (2.24) in the Bloch group, we have [z] = [z̃] ∈ B(C).
If we apply the previous proposition to Nahm sums with B = Ir, we obtain the following

corollary for Nahm sums as defined in (3.7).

Corollary 3.4.2. For A ∈ Qr×r symmetric and positive definite and b ∈ Qr, set

Ā =

󰀳

󰁃A11 + 2A12 +A22 (A1 +A2)
T

A1 +A2 A+ e1,2 + e2,1

󰀴

󰁄 ,

b̄ = (b1 + b2, b1, . . . , bn)
T .

(3.29)

Then we have

fA,b(q) = fĀ,b̄(q). (3.30)

Moreover, if z ∈ Cr satisfies the Nahm equation for A, then z̃ as in (3.28) satisfies the
Nahm equation for Ā.

Proof of Proposition 3.4.1. It can easily be checked that ÃB̃T = B̃ÃT . Moreover, the
columns of (Ã|B̃) span Zr+1 over Z if the columns of (A|B) span Zr over Z. Hence,
(Ã|B̃) is half symplectic.

We apply the q-binomial theorem (Proposition 2.3.2)

1

(q)n1(q)n2

=
󰁛

r+t=n1, s=t=n2

qrs

(q)r(q)s(q)t
for all n1, n2 ∈ Z (3.31)
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3.4. Nahm sums for half-symplectic matrices

to to first two q-Pochhammer symbols to obtain

f(A|B),b(q) =
󰁛

n∈Zr

q
1
2
nTABTn+bTn

(q)(BTn)1 · · · (q)(BTn)r

=
󰁛

n∈Zr

󰁛

r=(BTn)1−t,

s=(BTn)2−t

q
1
2
ntABtn+btn+rs

(q)r(q)s(q)t(q)(BTn)3 · · · (q)(BTn)r

=
󰁛

n∈Zr,t∈Z

q
1
2
nTABTn+bTn+((BTn)1−t)((BTn)2−t)

(q)(BTn)1−t(q)(BTn)2−t(q)t(q)(BTn)r · · · (q)(BTn)r

.

(3.32)

If we write m = ( t
n ) ∈ Zr+1, we have

1

2
nTABTn+ bTn+ ((BTn)1 − t)((BTn)2 − t)

=
1

2
mT

󰀳

󰁃

󰀳

󰁃0 0

0 ABT

󰀴

󰁄+

󰀳

󰁃 2 (−B1 −B2)
T

−B1 −B2 BT
1 B2 +BT

2 B1

󰀴

󰁄

󰀴

󰁄m

=
1

2
mT

󰀳

󰁃

󰀳

󰁃 0 0

A1 +A2 A

󰀴

󰁄+

󰀳

󰁃0 −1 −1 0 . . . 0

0 B2 B1 0 . . . 0

󰀴

󰁄

󰀴

󰁄

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0

−1 BT
1

−1 BT
2

0 B′T

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
m

=
1

2
mT 󰁨A 󰁨BTm.

(3.33)

Hence, we have

f(A|B),b(q) =
󰁛

m

qm
T 󰁨A 󰁨BTm/2+bm

(q)
( 󰁨BTm)1

· · · (q)
( 󰁨BTm)r

= f
( 󰁨A| 󰁨B),󰁨b(q) (3.34)

as claimed.
If 󰁨z = (󰁨z1, . . . , 󰁨zr) is given as in (3.28), then

z =
󰀓
1− 1− 󰁨z1

󰁨z2
, 1− 1− 󰁨z2

󰁨z1
, 󰁨z3, . . . , 󰁨zr

󰀔
=

󰀓
󰁨z1󰁨z3, 󰁨z1󰁨z3, 󰁨z3, . . . , 󰁨zr

󰀔
. (3.35)

In particular, z fulfils (3.25) for (A|B) if

󰀓1− 󰁨z1
󰁨z2

󰀔Bi1
󰀓1− 󰁨z2

󰁨z1

󰀔Bi2
r󰁜

j=3

(1− 󰁨zi)Bij =
󰀃
󰁨z1󰁨z3

󰀄Ai1
󰀃
󰁨z2󰁨z3

󰀄Ai2

r󰁜

j=3

󰁨zAij

i , i = 1, . . . , r.

(3.36)
Multiplying both sides by 󰁨zBi1

1 󰁨zBi2
2 gives

(1− 󰁨z1)Bi2 (1− 󰁨z2)Bi1

r󰁜

j=3

(1− 󰁨zi)Bij = 󰁨zAi1+Bi1
1 󰁨zAi2+Bi2

2 󰁨zAi1+Ai1
3

r󰁜

j=3

󰁨zAij

i (3.37)

for i = 1, . . . , r. Moreover, we have

󰁨z3 = 1− (1− z1)(1− z2) (3.38)

such that 󰁨z satisfies the Nahm equation (3.25) for ( 󰁨A| 󰁨B). Since the argument also works
the other way around, this completes the proof.
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3. Nahm sums and Nahm’s conjecture

3.5. Generalisations of Nahm sums

We briefly discuss other generalisations of Nahm sums.

3.5.1. Mock theta functions

A few months before his death, Ramanujan wrote his last letter to Hardy, where he
described a new class of functions he had found and called them “mock theta function”.
Without giving a definition, Ramanujan lists 17 examples, for instance,

f0(q) =
󰁛

n≥0

qn
2

(−q; q)n
, f1(q) =

󰁛

n≥0

qn
2+n

(−q; q)n
. (3.39)

Nearly a century after Ramanujan’s death, Zwegers [Zwe02] discovered in his Phd thesis
that Ramanujan’s mock theta functions are the holomorphic parts of harmonic Maass
forms. This means that their completion by a non-holomorphic function transforms like
a modular form [BFOR17, Zag09, Zwe02].

All of Ramanujan’s mock theta functions are q-hypergeometric series and can be seen
as modified Nahm sums. For example, the functions f0(q) and f1(q) from (3.39), can be
seen as modified versions of the Rogers-Ramanujan functions (3.1) with (q; q)n replaced
by (−q; q)n. While the summation in (3.1) could be over n ∈ Z, because 1/(q; q)n = 0 for
n < 0, it is important to restrict the summation in (3.39) to n ≥ 0 since 1/(−q; q)n ∕= 0
for n < 0. The sums over n < 0 in (3.39) are the mock theta functions

󰁛

n<0

qn
2

(−q; q)n
= 2

󰁛

k≥0

q(k+1)(k+2)/2(−q; q)k = 2ψ0(q),

󰁛

n<0

qn
2+n

(−q; q)n
= 2

󰁛

k≥0

qn(n+1)/2(−q; q)k = 2ψ1(q),

(3.40)

also listed by Ramanujan.
Theorem 3 in [Whe23] provides a connection between the mock theta functions f0 and

f1 and the modular functions G and H by proving that the vector-valued function

g(x, q) =
(xq; q)∞
(q; q)∞

󰀣
󰁛

n∈Z

qn
2− 1

60x2n

(xq; q)n
,
󰁛

n∈Z

qn
2+n+ 11

60x2n+1

(qx; q)n

󰀤T

(3.41)

is a Jacobi form. By restricting g(x, q) to x = 1, we obtain the Rogers-Ramanujan
functions f2,0,−1/60(q), f2,1,11/60(q). The restriction x = −1 yields a modular combination
of the mock theta functions

q−1/60 (−q; q)

(q; q)
((f0(q) + 2φ0(q)), q11/60

(−q; q)

(q; q)
(f1(q) + 2φ1(q))), (3.42)

cf. [Wat37, p.279]. A similar construction seems to work for all mock theta functions
listed by Ramanujan, provided that the sum over the non-positive integers converges. If
the sum does not converge, [Whe23, Chapter 7] suggests a resummation that preserves
the modularity.

The similarities between modular Nahm sums and Ramanujan’s mock theta functions
suggest that the modularity of mock theta functions is also related to the vanishing of
elements in the Bloch group, and it would be desirable to study this connection further.
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3.5. Generalisations of Nahm sums

3.5.2. Nahm sums for symmetrisable matrices

In their PhD studies, Kanade and Russel numerically found several sum-product identities
between q-series generalising the Rogers-Ramanujan identities (1.2). For example, the
“modulo 9 conjecture” states that

󰁛

m,n≥0

qm
2+3mn+3n2

(q; q)m(q3; q3)n

?
= (q, q3, q6, q8; q9)−1

∞ . (3.43)

While most of their conjectures have been proven, the “modulo 9 conjecture” is still open.
Motivated by these (conjectured) identities and examples coming from cluster algebras
[Miz21], Mizuno [Miz23] studies Nahm sums for symmetrisable matrices of the form

󰁛

n∈Zr
≥0

q
1
2
nTA diag(d)n+bTn

(qd1 ; qd1)n1 · · · (qdr ; qdr)nr

(3.44)

where A ∈ Zr×r, d ∈ Zr, b ∈ Qr such that A diag(d) is symmetric and positive definite. As
for ordinary Nahm sums, we can associate a generalised Nahm equation to symmetrisable
matrices. Then the modularity of Nahm sums for symmetrisable matrices is conjectured
to be related by the vanishing of the classes of these solutions in the Bloch group. For
example, Mizuno [Miz23] proves a theorem similar to Theorem 3.3.1.

The following proposition shows that Nahm sums for symmetrisable matrices can be
reduced to Nahm sums as defined in (3.7). The statement generalises Theorem 4.1 in
[VZ11], and the proof uses the following identity from there: For all n,m ∈ Z≥0 we have

1

(q; q)n
=

󰁛

k∈Zm
≥0

k1+···+km=n

q
m
2
kT k+ml(m)T k

(qm; qm)k1 · · · (qm; qm)km (3.45)

where l(m) = (2i−m−1
2m )i=1,...,m ∈ Qm.

Proposition 3.5.1. Let A, d, b be as above and f ∈ Z≥1 a common multiple of d. We set

mj =
f

dj
∈ Z≥1, r′ =

r󰁛

i=1

mi. (3.46)

Moreover, define the matrix

A′ = Ir′ +
1

f
M(A) ∈ Zr′×r′ , (3.47)

where M(A) = (M(A)i,j)i,j=1,...,r is a block matrix of the form

M(A)i,j = Emi×mj ((A diag(d))ij − δi,jdi) ∈ Zmi×mj . (3.48)

Here, Emi×mj denotes the matrix of size mi ×mj with 1’s in every entry. Moreover, set
b′ = (b′j)j=1,··· ,r with b′j ∈ Qmj given by b′j = bjE1×mj + l(mj). Then

󰁛

n∈Zr
≥0

q
1
2
nTA diag(d)n+bTn

(qd1 ; qd1)n1 · · · (qdr ; qdr)nr

= fA′,b′(q
f ). (3.49)

33



3. Nahm sums and Nahm’s conjecture

Proof. We apply identity (3.45) to each Pochhammer symbol (qdj ; qdj )nj for j = 1, . . . , r
in the left-hand side of (3.49) with q 󰀁→ qdj , m 󰀁→ mj . Then we obtain that the sum is
equal to

󰁛

n∈Zr
≥0

q
1
2
nTA diag(d)n+bTn

r󰁜

j=1

q−
dj
2
n2
j

󰁛

k(j)∈Z
mj
≥0󰁓

l k
(j)
l =nj

q
mj
2

dj(k
(j))T k(j)+ej l

T
ej
k(j)

(qf ; qf )
k
(j)
1

· · · (qf ; qf )
k
(j)
mj

.
(3.50)

We replace nj by
󰁓

l k
(j)
l in the first term and concatenate the vectors k(j) for j = 1, . . . , r

into a vector k ∈ Zr′ . Then we obtain that the sum equals

󰁛

k∈Zr′
≥0

q
1
2
kTM(A)k+ f

2
kT k+fb′T k

(qf ; qf )k1 · · · (qf ; qf )kr′
= fA′,b′(q

f ) (3.51)

which completes the proof.

Example 3.5.2. The sum in the “modulo 9 conjecture” in equation (3.43) can be written
as a Nahm sum for symmetrisable matrices as in equation (3.44) with

A =

󰀣
2 1

3 2

󰀤
, d = (1, 3), b = (0, 0). (3.52)

Applying Proposition 3.5.1 with m = (3, 1), f = 3, we obtain with

M(A)11 =

󰀳

󰁅󰁅󰁅󰁃

1 1 1

1 1 1

1 1 1

󰀴

󰁆󰁆󰁆󰁄
, M(A)21 = M(A)T12 =

󰀳

󰁅󰁅󰁅󰁃

3

3

3

󰀴

󰁆󰁆󰁆󰁄
, M(A)22 = (3),

(3.53)
that the sum-side in (3.43) is equal to fA′,b′(q

3) where

A′ = I4 +
1

3

󰀣
M(A)11 M(A)12

M(A)21 M(A)22

󰀤
=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

4
3

1
3

1
3 1

1
3

4
3

1
3 1

1
3

1
3

4
3 1

1 1 1 2

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
, b′ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

−1
3

0

1
3

0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
. (3.54)
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4. Asymptotics of Nahm sums

4.1. Introduction

We have seen in Section 3.3 that the asymptotics of Nahm sums motivate Nahm’s obser-
vation that the modularity of Nahm sums is related to the vanishing of elements in the
Bloch group. Theorem 3.2.5 gave the asymptotics of fA,b(e

−h) as h ↘ 0. In this chapter,
we will provide a slight generalisation of this result by considering the asymptotics of
fA,b(e

−h) for h → 0 on any ray in the right half-plane. These asymptotics will be crucial
for understanding “counterexamples” for Nahm’s conjecture, as stated in [Zag07]. The
proof of the generalised theorem will closely follow the proof of the known case. The
idea of considering asymptotics on rays in the upper half-plane was motivated by similar
asymptotic results by Garoufalidis-Zagier [GZ23].

4.2. Setup

We recall formal Gaussian integration and define power series that will appear in the
asymptotics of Nahm sums.

4.2.1. Formal Gaussian integration

We define a formal version of Gaussian integration, see also [DG13, GSW23, GZ21]. If
Re(a) > 0, recall that the Gaussian integral evaluates to

󰁝

R
xne−

1
2
ax2

dx =

󰀫
a−

n
2 (n− 1)!! if n is even,

0 if n is odd,
(4.1)

where k!! for k ∈ Z≥0 denotes the double factorial, defined by

k!! :=

⌈ k
2
⌉−1󰁜

i=1

(k − 2i) = k(k − 2)(k − 4) · · · (k − 2⌈k2⌉+ 2). (4.2)

If Re(a) ≤ 0, convergence of the integral is not guaranteed. However, (4.1) motivates to
define the formal Gaussian integral for any a ∈ C and n ∈ Z by

〈xn〉x,a :=

󰀫
a−

n
2 (n− 1)!! n even,

0 n odd
(4.3)

and 〈f(x)〉x,a via linearity for any polynomial f(x) ∈ C[x]. Then 〈xn〉x,a =
󰁕
R xne−

1
2
ax2

dx
if Re(a) > 0.

We also define a higher-dimensional formal Gaussian integral for any polynomial in r
variables f(x) ∈ C[x], x = (x1, . . . , xr) and any A ∈ Cr×r with detA ∕= 0 via

〈f(x)〉x,A :=

󰁵
(2π)n

detA
exp

󰀳

󰁃1

2

r󰁛

i,j=1

(A−1)i,j
∂

∂xi

∂

∂xj

󰀴

󰁄 f(x)

󰀏󰀏󰀏󰀏󰀏󰀏
x=0

. (4.4)
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4. Asymptotics of Nahm sums

Then

〈f(x)〉x,A =

󰁝

Rr

f(x)e−
1
2
xTAxdx (4.5)

if A is positive definite. The formal Gaussian integration fulfils the same basic properties
as ordinary Gaussian integration, see e.g.,[GSW23].

Lemma 4.2.1. 1. For all invertible matrices P ∈ Cr×r, we have

〈f(Px)〉x,PTAP = 〈f(x)〉x,A . (4.6)

2. For b ∈ C, we have

〈exp(−bTAx)f(x+ b)〉x,A = exp

󰀕
1

2
bTAb

󰀖
〈f(x)〉x,A. (4.7)

4.2.2. Definition of Φ(Q)
A,b (h)

For a solution Q ∈ QA of the Nahm equation we define the integral

󰁥Φ(Q)
A,b (h) = (q; q)−r

∞

󰁝
exp

󰀓
−h

2
tTAt− hbT t

󰀔 r󰁜

j=1

(e−htjq; q)∞dt (4.8)

where the integral goes over a small neighbourhood of t = − log(Q). We remark that
this resembles Nahm sums with the sum replaced by an integral. We will give an explicit

description of Φ
(Q)
A,b (h) as a power series. Therefore, recall that the Bernoulli polynomials

are defined for p ∈ Z≥0 by

Bp(x) =

p󰁛

k=0

󰀕
p

k

󰀖
Bkx

p−k, (4.9)

whereB0 = 1, B1 = −1
2 , B2 =

1
6 , · · · are the Bernoulli numbers. We define for t = (t1, . . . , tr)

the power series

Ψ
(Q)
A,b (t, h) =

r󰁛

i=1

󰀕
bi +

1

2

Qi

1−Qi

󰀖
tih

1/2 −
󰁛

p≥3

1

p!
Bp

󰀕
ti

h1/2

󰀖
Li2(Qi)h

p−1 ∈ C[[t, h1/2]],

(4.10)
and a matrix

󰁨A(Q) = A+ diag
󰀓 Qj

1−Qj

󰀔

j
, (4.11)

then 󰁥Φ(Q)
A,b (h) has an explicit representation as power series.

Lemma 4.2.2. With the power series

Φ
(Q)
A,b (h) = (2π)−r/2

r󰁜

i=1

Qbi
i

1−Qi
〈exp(Ψ(Q)

A,b (t, h))〉t,Ã(Q) ∈ C[[h]] (4.12)

we have
󰁥Φ(Q)
A,b (h) = eV (Q)/hΦ

(Q)
A,b (h), (4.13)

where V (Q) denotes the principal branch of the volume defined after Proposition 2.2.7.
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4.3. Asymptotics of Nahm sums on rays in the upper half-plane

We will proof the Lemma alongside with Theorem 4.3.1 in subsection 4.4.3 by expanding
the q-pochhamer symbol in (4.8).

For a fixed A, the power series Φ
(Q)
A,b (h) fulfil the same recursion as the corresponding

Nahm sums in Proposition 3.2.2.

Proposition 4.2.3. We have for j = 1, . . . , r

Φ
(Q)
A,b (h)− Φ

(Q)
A,b+ej

(h) = e−( 1
2
Aj,j+bj)h Φ

(Q)
A,b+Aj

(h). (4.14)

Proof. The proof can be seen as a continuous version of the proof of Proposition 3.2.2.
In (4.8), we use the recursion

(e−htjq; q)∞ = (1− e−htjq)(e−htjq2; q)∞ (4.15)

for the q-Pochhammer symbol. Then the substitution t 󰀁→ t+ ej in the integral yields the
claimed functional equation.

One can also prove (4.14) using the representation in (4.10) and the symmetries of the
Bernoulli polynomials.

The power series defined in (4.12) and generalisations thereof also appear in the context
of topological invariants [DG13] and are believed to agree with the asymptotic expansion
appearing in the Volume conjecture for the Kashaev invariant for knots, cf. Conjec-
ture 7.2.8 in Part II of this thesis. In a paper with Garoufalidis and Wheeler [GSW23],
we prove that these h-series fulfil relations that correspond to relations in the Bloch group
for Q ∈ QA. This implies that the series defined there are topological invariants, i.e., are
independent of the chosen triangulation of a cusped hyperbolic 3-manifold. The identi-

ties proven there can be seen as an analogue for the h-series Φ
(Q)
A,b (h) of the identities in

Proposition 3.4.1 for the q-series fA,b(q).

4.3. Asymptotics of Nahm sums on rays in the upper half-plane

The following is a generalisation of the asymptotics of Nahm sums in Theorem 3.2.5. It
extends the asymptotics by allowing h to be on any ray in the right half-plane, and thus
τ = ih

2π in the upper half-plane.

Theorem 4.3.1. As h → 0 on a ray in the right half-plane, we have

fA,b(e
−h) =

󰁛

Q∈QA

eV (Q)/hΦ
(Q)
A,b (h) (1 +O(hL)). (4.16)

for all L > 0.

The asymptotics should be interpreted as a sum over several contributions where only
the leading ones are relevant. In other words, only the contributions that maximise
|eV (Q)/h| are leading should be taken into consideration. However, in order to emphasise
that the subleading contributions do exist, but are just hidden, we include all solutions in
the sum. In Section 5.2, we will see examples where the non-leading contributions become
numerically visible.

For arg h = 0, we obtain the asymptotics given in Theorem 3.2.5, corresponding to the
unique solution Q = Q(1) ∈ QA of (3.8) in (0, 1)r.
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4. Asymptotics of Nahm sums

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.5

0.5

1.0

Figure 4.1.: equations (4.20) and (4.21) for θ ∈ (−π
2 ,

π
2 )

4.3.1. Examples

Numeric computations for the asymptotics in Theorem 4.3.1 can be done with Zagier’s
asymptotic method [GMZ08, Zag22]. We illustrate the asymptotics in Theorem 4.3.1 with
A = 4.

Example 4.3.2. Denote the solutions of (3.8) for A = 4 by

Q4 = {Q ∈ C : 1−Q = Q4}. (4.17)

We enumerate the solutions Q4 by

Q(1) = 0.7244920 · · · ,
Q(2) = −1.220744 · · · ,
Q(3) = 0.2481261 · · ·− 1.033982 · · · i,

Q(4) = 0.2481261 · · ·+ 1.033982 · · · i = Q(3)

(4.18)

with volumes
V1 = V (Q(1)) = 0.5049814 · · · ,
V2 = V (Q(2)) = −17.20284 · · · ,
V3 = V (Q(3)) = −3.165607 · · ·+ 0.9813688 · · · i,
V4 = V (Q(4)) = −3.165607 · · ·− 0.9813688 · · · i.

(4.19)

The values of

ε log
󰀏󰀏f4,0

󰀃
e−heiϑ

󰀄󰀏󰀏 (4.20)

for ε = .001 and several θ ∈ (−π
2 ,

π
2 ), as well as their asymptotic approximations

Re
󰀓
Vke

iθ
󰀔
, k = 1, 2, 3, 4, (4.21)

are plotted in Figure 4.1. The figure shows that for all θ ∈ (−π
2 ,

π
2 ) the expression (4.20) is

asymptotically equal to the maximum of the 4 values in (4.21). The asymptotics depends
on θ = arg(h) and we distinguish three different cases:
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4.3. Asymptotics of Nahm sums on rays in the upper half-plane

1. If |θ| < atan Re(V1−V3)
Im(V3)

= 1.309547 · · · , the contribution for the unique solution

Q(1) ∈ (0, 1) is the leading one. With δ4(Q
(1)) = 4 − 3Q(1) = 1.826524 · · · the

asymptotics is as in Theorem 3.2.5, namely

f4,0(e
−h) = eV1/h 1󰁳

δ4(Q(1))

󰀕
1 +

−10304− 31384Q(1) + 10422Q(1)2 + 26919Q(1)3

961068
h

+
−5211524 + 36879952Q(1) − 41646809Q(1)2 − 58173507Q(1)3

6527573856
h2 +O(h3)

󰀖

= eV1/h (0.7399243 · · ·− 0.01334570 · · ·h− 0.002547545 · · ·h2 +O(h3)).
(4.22)

2. If θ > 1.309547 · · · , the contribution coming from Q(3) is the leading one and we
have

f4,0(e
−h) = eV3/h((0.4378251 · · ·− 0.1751854 · · · i)

+ (−0.01316992 · · ·+ 0.03260324 · · · i)h
+ (0.004246714 · · ·− 0.007143060 · · · i)h2 +O(h3))

(4.23)

and an algebraic formula as in equation (4.22) with Q(1) replaced by Q(3).

3. If θ < −1.309547 · · · , the contribution corresponding toQ4 is the leading one and the
asymptotic expansion is the complex conjugate of the expansion in (4.23) or (4.22)
with Q(1) replaced by Q(4).

The contribution for the negative solution Q(2) is never the leading one. However, one can
imagine that the non-leading contributions still exist but are hidden behind the leading
one. In Section 5.2, we will make them numerically visible.

4.3.2. Consequences

The refined asymptotics provide a new tool of proving the non-modularity of Nahm sums.
Assume that f is a modular function. By Proposition 2.4.5, as h → 0 along any ray in
the right half-plane we have

f(e−h) = eα/h(a+O(hL)) (4.24)

for all L > 0, some a ∈ C, and some α ∈ π2Q ⊂ R. Let g(q) be a function on the unit
disc. Equation (4.24) implies that if g(e−h) = eV/h(a+O(h)) for some a ∈ C with V /∈ R
as h → 0 on a ray in the right half-plane, then g cannot be modular. We will use this
idea to prove non-modularity of some Nahm sums.

Example 4.3.3. In Example 4.3.2, we saw that for h on a ray in the right half-plane
with arg h = .12π = 1.507964 · · · we have

f4,b(e
−h) = eV3/h 1󰁳

4− 3Q(3)
(1 + O(h)) (4.25)

with V3 = −3.165607 · · · + 0.9813688 · · · i /∈ R. Hence, f4,b(q) is not modular for any
b, c ∈ Q.

Recall from Proposition 2.2.7 that the imaginary part of V (Q) equals the Bloch-Wigner
dilogarithm of Q, which is related to the vanishing of [Q] ∈ B(C) by Theorem 2.2.3. This
idea can be used to prove the following result.
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4. Asymptotics of Nahm sums

Theorem 4.3.4. Let A ∈ Zr×r be as above and assume that V (Q) ∕= V (Q′) for all
Q,Q′ ∈ QA. If fA,b,c(q) is modular for some b ∈ Qr, c ∈ Q, then [Q] = 0 for all Q ∈ QA.

Proof. If fA,b,c(q) is modular, the asymptotic of fA,b,c(e
−h) as h → 0 on any ray in the

right half-plane is given as in equation (4.24) for some α ∈ π2Q ⊂ R. Comparing this
with the asymptotic in Theorem 4.3.1 implies that Im(V (Q)) = D(Q) = 0 for all Q ∈ QA.
All solutions Q ∈ QA appear in the asymptotic expansion, because they have different
exponential terms eV (Q)/h by assumption. Since this includes all Galois conjugates of a
solution Q ∈ QA, this implies [Q] = 0 by Theorem 2.2.3.

The proof of the theorem already gives hints as to why the modularity does not require
all solutions of the Nahm equation to vanish in B(C). Two (or more) solutions Q ∈ QA

might have the same volume V (Q) and thus the same exponential term eV (Q)/h. If, in
addition to this, the asymptotic contributions associated to these solutions add up to
zero, these solutions are not relevant for the asymptotics and the modularity. We discuss
the phenomenon in Section 6.2 in more detail.

4.4. Proof of Theorem 4.3.1

In this section we prove Theorem 4.3.1. Therefore, we need some standard asymptotic
results.

4.4.1. Asymptotics of (wq; q)∞

We prove an asymptotic expansion of the q-Pochhammer symbol. This is a refinement of
Lemma 2.1 in [GZ21] following Lemma 4 in [Whe23].

Therefore, we need a version of the dilogarithm (Section 2.1) with rotated branch

cuts. For ϕ ∈ C, |ϕ| = 1, | argϕ| < π
2 let 󰁩log be a version of the logarithm such that

Liϕ1 (e
−iv) = −󰁩log(1− e−iv) has branch cuts whenever Re((v + 2πn)/ϕ) = 0 for some

n ∈ Z and Re(v) > 0. In other words, the principal branch cuts are rotated by ϕ, cf.
Figure 4.2.

For v ∈ C not on a branch cut we define a version of the dilogarithm by

Liϕ2 (e
−iv) =

󰁝 ∞

0
Liϕ1

󰀃
e−ϕx−iv

󰀄
dx, (4.26)

where we avoid the branch cuts of Liϕ1
󰀃
1− e−ϕx−iv

󰀄
in the contour, cf. Figure 4.2. Then

Liϕ2 (e
−iv) has the same branch cuts as Liϕ1 (e

−iv) and jumps by 2πv when v crosses a
branch cut, see Section 2.1.

As in subsection 2.1, the polylogarithm Liϕm for m ∈ Z≤0 can de defined inductively by

Liϕm(z) :=
1

z

d

dz
Liϕm+1(z), (4.27)

where we note that Liϕm form ≤ 0 is independent of ϕ and the branching of Liϕ1 . Therefore,
Liϕm for m < 0 agrees with the polylogarithm Lim defined in (2.1).

Lemma 4.4.1. Let w = eiv ∈ C such that if Re(v) > 0 then Re((v + 2πn)/ϕ) ∕= 0 for all
n ∈ Z. Moreover, let ζ ∈ C be a root of unity of order m ∈ N. Then we have as h → 0
on a ray in the right half-plane, i.e., q = ζe−h/m → ζ

(wq; q)∞ = exp

󰀣
−Liϕ2 (w

m)

mh
− 1

2
Liϕ1 (w

m) +

m󰁛

t=1

t

m
Liϕ1 (ζ

tw) + ψw,ζ(h)

󰀤
, (4.28)
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R
2π 4π−2π−4π

iR
Re(v/ϕ) = 0 Re((v − 2π)/ϕ) = 0 Re((v − 4π)/ϕ) = 0Re((v + 2π)/ϕ) = 0

v

−iϕx+ v

Figure 4.2.: The branch cuts of Liϕs (e
−iv), s = 1, 2 and −iϕx+ v for x ≥ 0

where ψζ(h;w) ∈ C[[h]] has an asymptotic expansion as h → 0

ψζ(h;w) = −
N󰁛

s=2

m󰁛

t=1

Bs

󰀕
1− t

m

󰀖
Li2−s(ζ

tw)
hs−1

s!
+O(hN ) (4.29)

for all N > 0.

Proof. Throughout the proof we write h = ϕ|h| where ϕ ∈ C with |ϕ| = 1, | arg(ϕ)| < π
2 .

We have

󰁩log(wq; q)∞ =
󰁛

n≥1

󰁩log(1− wqn) =

m−1󰁛

t=0

󰁛

k≥1

󰁩log
󰀓
1− ζ−twe−ϕ|h|(km−t)/m

󰀔
(4.30)

and apply the Euler-Maclaurin summation formula [Zag06, p.13] to obtain for everyN ∈ N

󰁩log(wq; q)∞ =

m−1󰁛

t=0

1

|h|

󰁝 ∞

0

󰁩log
󰀓
1− ζ−twe−ϕ(x−t|h|/m)

󰀔
dx

+

N󰁛

n=0

(−1)nBn+1

(n+ 1)!

dn

dxn
󰁩log

󰀓
1− ζ−twe−ϕ(x−t|h|/m)

󰀔
dx|x=0 |h|n + Et,N

(4.31)
with

Et,N := |h|N
󰁝 ∞

0
Li1−N

󰀓
ζ−twe−ϕ(x−t|h|/m)

󰀔 BN (x)

N !
dx. (4.32)

The Euler-Maclaurin summation formula applies in this case, as the function defined by
x 󰀁→ 󰁩log

󰀃
1− ζ−twe−ϕ(x−t|h|/m)

󰀄
and all of its derivatives

dn

dxn
󰁩log

󰀓
1− ζ−twe−ϕ(x−t|h|/m)

󰀔
= −(−1)nϕn Liϕ1−n(ζ

−twe−ϕx+ht/m) (4.33)

are of rapid decay as x → ∞.
We have

1

|h|

󰁝 ∞

0

󰁩log
󰀓
1− ζ−twe−ϕ(x−t|h|/m)

󰀔
dx = − 1

z
Liϕ2 (e

ht/mζ−tw)

= − 1

z

󰁛

l≥0

Liϕ2−l(ζ
−tw)

l!

󰀕
ht

m

󰀖l (4.34)
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4. Asymptotics of Nahm sums

where 󰁨Liϕs are the polylogarithms defined in (4.27). Evaluating the derivatives (4.33) at
x = 0 gives

dn

dxn
󰁩log

󰀓
1− ζ−twe−ϕ(x−t|h|/m)

󰀔
|x=0 = − (−1)nϕn Liϕ1−n(ζ

−tweht/m)

= − (−1)nϕn
󰁛

k≥0

Liϕ1−n−k(ζ
−tw)

k!

󰀕
ht

m

󰀖k

.
(4.35)

Hence, (4.31) can be written as

log(wq; q)∞ = −
m−1󰁛

t=0

1

h

󰁛

l≥0

Liϕ2−l(ζ
−tw)

l!

󰀕
ht

m

󰀖m

−
m−1󰁛

t=0

N󰁛

n=0

Bn+1

(n+ 1)!

󰁛

k≥0

Liϕ1−n−k(ζ
−tw)

k!

󰀕
t

m

󰀖k

hk+n + Et,N

(4.36)

by using the distribution property (2.11) of the dilogarithm. Moreover, shifting n 󰀁→ n−1
and summing over s = n+ k = 1, . . . , N + 1 shows that log(wq; q)∞ is equal to

− Liϕ2 (w
m)

mh
−

m−1󰁛

t=0

N+1󰁛

s=1

s󰁛

n=0

󰀕
s

n

󰀖
Bn

󰀕
t

m

󰀖s−n

Liϕ2−s(ζ
−tw)

hs−1

s!
+ Et,N +O(hN )

= − Liϕ2 (w
m)

mh
−

m−1󰁛

t=0

Liϕ1 (ζ
−tw)

󰀕
t

m
− 1

2

󰀖
−

m−1󰁛

t=0

󰁛

s≥2

Bs

󰀕
t

m

󰀖
Li2−s(ζ

−tw)
hs−1

s!

+ Et,N +O(hN ),
(4.37)

where we collect all terms with s ≥ N in O(hN ). Replacing t by m− t ∈ {1, . . . ,m} yields

− Liϕ2 (w
m)

mh
+

m󰁛

t=1

Liϕ1 (ζ
tw)

󰀕
t

m
− 1

2

󰀖
−

m−1󰁛

t=0

󰁛

s≥2

Bs

󰀕
1− t

m

󰀖
Li2−s(ζ

tw)
hs−1

s!
+ Et,N

= −Liϕ2 (w
m)

mh
− 1

2
Liϕ1 (w

m) +

m−1󰁛

t=0

t

m
Liϕ1 (ζ

tw) + ψw,ζ(h) +O(hN ),

(4.38)
where we used

m󰁛

t=1

Liϕ1 (ζ
tw) =

m󰁛

t=1

󰁩log(1− ζtw) = 󰁩log
󰀣

m󰁜

t=1

1− ζtw

󰀤
= 󰁩log(1− wm) = Liϕ1 (w

m).

(4.39)
Note that Li1−N (z) ∈ (1−z)NC[z] for N > 0. Our assumption implies that we−ϕx|h| ∕= 1.
There exists C > 0 such that

|Li1−N (we−ϕ(|h|x+t|h|/m))| < C|we−ϕ(|h|x+t|h|/m)| < C|we−ϕx|h|)|.
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4.4. Proof of Theorem 4.3.1

We obtain for some D > 0

|EN,t| ≤ |h|N

N !
C

󰁝 ∞

0
|we−ϕx|h||BN (x)dx

=
|h|N

N !
C

∞󰁛

x0=0

󰁝 ∞

0
|we−ϕ|h|(x0+x)|BN (x)dx

=
|h|N

N !
C|w|

∞󰁛

x0=0

|e−ϕ|h|x0 |
󰁝 1

0
|e−ϕ|h|x|BN (x)dx

=
|h|N

N !

C|w|
1− |e−ϕ|h||

D = O(|h|N ),

(4.40)

since |e−ϕ|h|| < 1. In particular, ψw,ζ(h) has the claimed asymptotic expansion. This
completes the proof.

4.4.2. Miscellaneous asymptotic results

Moreover, we require some basic asymptotic estimates. Therefore, recall the convention
e(x) = e2πix for x ∈ C.

Lemma 4.4.2. The following are true.

1. Let α ∈ R. As |t| → ∞ for t on a ray in C we have with ± = sign(Re(t))

sin (α(it− n0)) = ± 1

2i
exp (±α(t− n0i)) (1 + o(t−L)) (4.41)

for all L > 0.

2. Let ζ = e( r
m) be a root of unity of order m ∈ N. As h → 0 on a ray in the right

half-plane, i.e., q = ζe−h → ζ, we have

(q; q)∞ = exp

󰀕
− π2

6m2h
+

h

24

󰀖󰁵
2π

mh
e

󰀕
s(−r,m)

2

󰀖
(1 + o(hL)) (4.42)

for all L > 0. Here, s(r,m) is the Dedekind sum defined in (2.57).

3. Assuming the notation above, if m is even, we have

(−q; q)∞ = e−
π2

6m2h
+ h

12Q(ζ)(1 + o(hL)) (4.43)

as h → 0 in the right half-plane for all L > 0, where

Q(ζ) = e

󰀕
s(−r, m2 )− s(−r,m)

2

󰀖
. (4.44)

Proof. We prove each part of the Lemma separately as follows.

1. We have

sin(α(it− n0)) =
e−α(t+in0) − eα(t+in0)

2i

=

󰀫
1
2iexp (α(t+ in0))

󰀃
1− e−α(2t+2in0)

󰀄
, if Re(t) > 0,

− 1
2iexp (−α(t+ in0))

󰀃
1− eα(2t+2in0)

󰀄
, if Re(t) < 0.

(4.45)

In each case, the second exponential becomes exponentially small as t → ∞.
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4. Asymptotics of Nahm sums

2. From (2.53), we know that the eta function

η(τ) = q
1
24 (q; q)∞, (4.46)

where q = e2πiτ and τ ∈ H satisfies the modular transformation formula

η

󰀕
aτ + b

cτ + d

󰀖
= e

󰀕
a+ d

24c
− s(d, c)

2
− 1

8

󰀖
(cτ + d)

1
2 η(τ) (4.47)

for all
󰀃
a b
c d

󰀄
∈ SL2(Z) with c > 0. Hence, for r

m ∈ Q with (r,m) = 1 we choose
a, b ∈ Z such that

󰀃−a −b
m −r

󰀄
∈ SL2(Z). Then we obtain for all τ ∈ H with q = e2πiτ

(q; q)∞ = q−
1
24 η(τ) = q−

1
24 (mτ − r)−

1
2 e

󰀕
a+ r

24m
+

s(−r,m)

2
+

1

8

󰀖
η

󰀕
aτ + b

−mτ + r

󰀖
.

(4.48)

Setting τ = r
m − h

2πi , we have mτ − r = −mh
2πi and

aτ + b

−mτ + r
= 2πi

ar + bm

m2h
− a

m
=

2πi

m2h
− a

m
. (4.49)

Because h is in the right half-plane, we have τ ∈ H and we obtain

η

󰀕
aτ + b

−mτ + r

󰀖
= η

󰀕
2πi

m2h
− a

m

󰀖

= e

󰀕
1

24

󰀕
2πi

m2h
− a

m

󰀖󰀖 󰁜

n≥1

󰀕
1− e

󰀕
n

󰀕
2πi

m2h
− a

m

󰀖󰀖󰀖

= exp

󰀕
− π2

6m2h

󰀖
e

󰀕
−a

24m

󰀖 󰁜

n≥1

󰀕
1− exp

󰀕
−4π2n

m2h
− 2πian

m

󰀖󰀖
.

(4.50)

As h → 0 on a ray in the right half-plane we have

󰁜

n≥1

󰀕
1− exp

󰀕
−4π2n

m2h
− 2πian

m

󰀖󰀖
= (1 + o(hL)) (4.51)

for all L > 0. Hence, we obtain with q = e2πiτ = e2πi
r
m e−h

(q; q)∞ = exp

󰀕
− π2

6m2h
+

h

24

󰀖󰁵
2π

mh
e

󰀕
s(−r,m)

2

󰀖
(1 + o(hL)) (4.52)

as claimed.

3. The claim follows from the previous statement and the identity (−q; q)∞ = (q2;q2)∞
(q;q)∞

.

4.4.3. Proof of Theorem 4.3.1

Proof of Theorem 4.3.1. Consider

fA,b(q) =
󰁛

n∈Zr

q
1
2
nTAn+bTn

(q)n1 · · · (q)nr

= (q; q)−r
∞

󰁛

n∈Zr

q
1
2
nTAn+bTn

r󰁜

j=1

(qnjq; q)∞

(4.53)
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4.4. Proof of Theorem 4.3.1

Following the methods from [Zag07], we can use the Euler-Maclaurin formula to replace
the sum in (4.53) by an integral, without changing the asymptotic behaviour of the Nahm
sum. Therefore, we have that fA,b(e

−h) as h → 0 is asymptotically equal to

(q; q)−r
∞

󰁝

Rr

q
1
2
nTAn+bTn

r󰁜

j=1

(qnjq; q)∞dn

= (q; q)−r
∞

󰁝

Rr

e−h 1
2
nTAn−hbTn

r󰁜

j=1

(e−hnjq; q)∞dn n =
t

h

= (h(q; q)∞)−r

󰁝

Rr

e−
1
2h

tTAt−bT t
r󰁜

j=1

(e−tq; q)∞dt.

(4.54)

As q = e−h → 1, i.e., h → 0 we write using Lemma 4.4.1 and Lemma 4.4.2

fA,b(e
−h) =

󰀕
eπ

2/6h−h/24

√
2πh

󰀖r 󰁝

Rr

exp
󰀓g(t)

h

󰀔
R(t;h)dt (4.55)

where

g(t) := − 1

2
tTAt−

r󰁛

j=1

Li2(e
−tj )

R(t;h) := exp

󰀗
−bT t+

r󰁛

j=1

1

2
Li1(e

−tj ) + ψ1(e
−tj ;h)

󰀘 (4.56)

with ψ1 defined in Lemma 4.4.1. For the derivatives of g we have

g′(t) = −At− (log(1− e−t1), . . . , log(1− e−tr))T ,

g′′(t) = A+ diag(Li0(e
−tj ))j) = − 󰁨A(Q),

g(k)(t) = Li2−k(e
−tj ) for k ≥ 3,

(4.57)

cf. (4.11). Hence, the stationary points t0 ∈ Cr of g are given by

g′(t0) = 0 ⇔ log(1− e−ti) = −
r󰁛

j=1

Ai,jt0,j , i = 1, . . . r. (4.58)

Exponentiating yields the Nahm equations

1−Qi =

r󰁜

j=1

Q
Ai,j

j , Qi = e−t0,i (4.59)

for i = 1, · · · , r, as in (3.8). The maximal exponential contribution is then given by
t0,i = − log(Qi), where Q maximises Re(V (Q)/h) and we choose the principal branch of
the logarithm. We expand around t 󰀁→ t0 + t for t ∈ (−ε, ε) for some ε > 0 and note that
the contribution for large t can be neglected. Then we obtain

fA,b(q) =

󰀕
eπ

2/6h−h/24

√
2πh

󰀖r

exp
󰀓g(t0)

z

󰀔
exp(−bT t0)

󰁝

(−ε,ε)r
exp

󰀗
− tT 󰁨At

2z
− bT t−

r󰁛

j=1

󰁛

k≥3

Li2−k(Qj)
(−t)k

zk!
+

1

2
Li1(Qje

−tj )

−
󰁛

s≥2

Bs Li2−s(Qje
−tj )

zs−1

s!

󰀘
dt.

(4.60)
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4. Asymptotics of Nahm sums

Expanding the polylogarithms using (2.1) and substituting t 󰀁→ th1/2 gives

fA,b(q) =

󰀕
eπ

2/6h−h/24

√
2π

󰀖r

exp
󰀓g(t0)

h

󰀔
exp

󰀓
−bT t0 −

1

2
log(1−Q)

󰀔

󰁝

(−ε,ε)r
exp

󰀗
− tT 󰁨At

2
− bT th1/2 −

r󰁛

j=1

󰁛

k≥3

Li2−k(Qj)
(−t)khk/2

hk!

+
󰁛

l≥1

1

2
Li2−1−l(Qj)

(−tj)
lhl/2

l!
−

󰁛

s≥2

󰁛

ν≥0

Bs Li2−s−ν(Qj)
hs+ν/2−1(−tj)

ν

s!ν!

󰀘
dt.

(4.61)
Reorganising the summands yields

fA,b(q) =

󰀕
eπ

2/6h−h/24

√
2π

󰀖r

exp

󰀕
g(t0)

h

󰀖
exp

󰀓
−bT t0 −

1

2
log(1−Q)− h

12

r󰁛

j=1

Qj

1−Qj

󰀔

󰁝

(−ε,ε)r
exp

󰀥
− tT 󰁨At

2
−

r󰁛

j=1

󰀓
bj +

1

2
Li0(Qj)

󰀔
th1/2

−
r󰁛

j=1

󰁛

s≥2,ν≥0:
p=s+ν≥3

Bs Li2−s−ν(Qj)
hs+ν/2−1(−tj)

ν

s!ν!

󰀦
dt,

(4.62)
which can be written as

(2π)−
r
2 exp

󰀕
r π2

6 + g(t0)

h

󰀖
exp

󰀕
−bT t0 −

1

2
log(1−Q)− h

24

r󰁛

j=1

1 +Qj

1−Qj

󰀖

󰁝

(−ε,ε)r
exp

󰀥
− tT 󰁨At

2
−

r󰁛

j=1

󰀕
bj +

1

2
Li0(Qj)

󰀖
th1/2

−
r󰁛

j=1

󰁛

p≥3

Bs

󰀕
− t

h1/2

󰀖
Li2−s−ν(Qj)

hp−1

p!

󰀦
dt.

(4.63)

We note that

r
π2

6
+ g(t0) = r

π2

6
+

r󰁛

j=1

Li2(Qj) + log(Qj) log(1−Qj) = V (Q), (4.64)

where V (Q) is the volume defined after Proposition 2.2.7 and

exp

󰀕
−bT t0 −

1

2

r󰁛

j=1

log(1−Qr)

󰀖
=

r󰁜

j=1

Q
bj
j󰁳

1−Qj

. (4.65)

Moreover, because ε > 0 is arbitrary small, the integral can be written as a formal
Gaussian integral as defined in (4.4). This establishes

fA,b(e
−h) = eV (Q)/z Φ

(Q)
A,b (h) (1 +O(zL)) = 󰁥Φ(Q)

A,b (h) (1 +O(zL)) (4.66)

for all L > 0 and completes the proof.
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5. Vector-valued modularity

In this Chapter, we discuss “Nahm’s conjecture”, assuming that the images of all Q ∈ QA

vanish in B(C). As discussed in Section 3.3, this is believed to imply the modularity
of fA,b,c(q) for some b ∈ Qr, c ∈ Q and some congruence subgroup. We refine this
expectation by giving predictions of which b’s and c’s have to be taken and how the
vector of modular Nahm sums transforms under SL2(Z). A similar approach was also
proposed in [Nah23].

5.1. Representation for SL2(Z)

Assume that (f1(q), · · · , fn(q)) is a vector-valued modular function for SL2(Z). Then the
transformation under τ 󰀁→ − 1

τ is given by

fj(q) =

n󰁛

k=1

aj,k fk(q̃), (5.1)

where q = e2πiτ and q̃ = e−2πi/τ , for some aj,k ∈ C. We can suppose that fk(q̃) ∈
q̃αk(1+ q̃Z[[q̃]]) for some αk ∈ Q. Then each summand in (5.1) with q = e−h, q̃ = e−4π2/h

leads to a summand in the (formal) asymptotics

fj(e
−h) =

n󰁛

k=0

aj,k e
−4π2αk/h (1 + o(e−4π2αk/h)), (5.2)

as h → 0 on a ray in the right half-plane. The asymptotics of Nahm sums (Theorem 4.3.1)

fA,b,c(e
−h) =

󰁛

Q∈QA

eV (Q)/hΦ
(Q)
A,b,c(h) (5.3)

suggests that, if fA,b,c(q) is modular as part of a vector-valued modular function as
above, the components fk(q) of the vector-valued modular function correspond to the

solutions Q ∈ QA such that αk = −V (Q)
4π2 ∈ Q. (Recall that [Q] = 0 ∈ B(C) implies

that V (Q) ∈ π2Q and indeed, this observation was the original motivation for Nahm’s
conjecture.)

Moreover, we expect that the coefficients aj,k in (5.1) are given by the power series

Φ
(Q)
A,b,c(h) in (5.3) that are, in fact, constant in this case, i.e.,

Φ
(Q)
A,b,c(h) = Φ

(Q)
A,b,c(0) =

󰁔r
j=1Q

bj
j󰁳

δA(Q)
, (5.4)

where

δA(Q) = det

󰀣
A+ diag

󰀕
Qi

1−Qi

󰀖

i=1,...,r

󰀤
r󰁜

i=1

(1−Qi), Q ∈ QA. (5.5)
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5. Vector-valued modularity

Recall that V (Q) denotes the principal branch of the volume and that V (logQ, log(1−Q))
is only defined modulo 4π2. In the proof of Theorem 4.3.1, we only took the leading
contributions for each Q ∈ QA into consideration. The different shifts of V (Q) by 4π2

lead to factors of e−4π2/h = q̃ in (5.3). Collecting all terms, we obtain a q̃-series attached
to each contribution. If we (formally) keep track of the different branches, these q̃-series
turn out to be Nahm sums for the same A and different b’s.

5.1.1. Example: The Rogers-Ramanujan functions

We illustrate this behaviour using the Rogers-Ramanujan functions from Chapter 1, i.e.,
A = 2, and then summarise our observations and general expectations in subsection 5.1.2.

If we denote the solutions of (3.8), here 1−Q = Q2, by Q1 =
−1+

√
5

2 and Q2 =
−1−

√
5

2 ,
we have

V (Q1) =
1

60
4π2, V (Q2) = −11

60
4π2.

By Theorem 4.3.1, as h → 0

f2,0(e
−h) = eV (Q1)/h Φ

(Q1)
2,0 (h) (5.6)

asymptotically to all orders, where the power series turns out to be

Φ
(Q1)
2,0 (h) =

1√
2− 2Q1 +Q1

e−h/60 =
2√
5
sin

󰀕
2π

5

󰀖
e−h/60. (5.7)

Hence,

f2,0,− 1
60
(e−h) = eV (Q1)/h 2√

5
sin

󰀕
2π

5

󰀖
+O(hN )

for all N ≥ 0. We can compute the asymptotics of the difference between the left and the
right hand side and obtain (numerically or using modularity)

f2,0,− 1
60
(e−h)− eV (Q1)/h 2√

5
sin

󰀕
2π

5

󰀖
= eV (Q2)/h Φ

(Q2)

2,0,− 1
60

(h)

asymptotically, where

Φ
(Q2)

2,0,− 1
60

(h) =
2√
5
sin

󰀓π
5

󰀔
. (5.8)

The asymptotics of the difference in this equation is given by

f2,0,− 1
60
(e−h)− eV (Q1)/h 2√

5
sin

󰀕
2π

5

󰀖
− eV (Q2)/h 2√

5
sin

󰀓π
5

󰀔

= e(V (Q1)+4π2)/h 2√
5
sin

󰀕
2π

5

󰀖
.

By repeating this procedure we find the expansion

f2,0,− 1
60
(e−h) = eV (Q1)/h 2√

5
sin

󰀕
2π

5

󰀖
(1 + q̃ + q̃2 + q̃3 + 2q̃4 + 2q̃5 + 3q̃6 + · · · )

+ eV (Q2)/h 2√
5
sin

󰀓π
5

󰀔
(1 + q̃ + q̃2 + q̃3 + q̃4 + q̃5 + 2q̃6 + · · · ),

where q̃ = e−4π2/h. This is exactly the modular transformation from equation (3.5)

f2,0,− 1
60
(q) =

2√
5

󰀕
sin

󰀕
2π

5

󰀖
f2,0,− 1

60
(q̃) + sin

󰀓π
5

󰀔
f2,1, 11

60
(q̃)

󰀖
.
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5.1. Representation for SL2(Z)

Similarly, the asymptotics for f2,1, 11
60

gives rise to its modular transformation

f2,1, 11
60
(q) =

2√
5

󰀓
sin

󰀓π
5

󰀔
f2,0,− 1

60
(q̃) − sin

󰀓π
5

󰀔
f2,1, 11

60
(q̃)

󰀔
.

5.1.2. The components of the vector-valued modular function

Throughout we assume that A ∈ Zr×r is an even, symmetric and positive definite matrix.
Moreover, we assume that [Q] vanishes in the Bloch group for all solutions Q ∈ QA. Then
it is believed that fA,b,c(q) is a modular function for some b ∈ Qr, c ∈ Q. We make the
following predictions.

1. For every solution Q ∈ QA let v be the principal branch of log(1−Q). Then there
exists a choice of u = log(Q) such that with

b(Q) := (Au− v)/2πi ∈ Zr,

c(Q) := − V (u, v)/4π2 ∈ Q,
(5.9)

the function fA,b(Q),c(Q)(q) is a modular function.

2. For all Q,Q′ ∈ QA, the power series Φ
(Q′)
A,b(Q),c(Q)(h) are constant

Φ
(Q′)
A,b(Q),c(Q)(h) = Φ

(Q′)
A,b(Q),c(Q)(0) =

󰁔r
j=1Q

′b(Q)j
j󰁳

δA(Q′)
, (5.10)

with δA(Q
′) defined in (5.5).

3. Define the vector-valued function

FA(q) =
󰀃
fA,b(Q),c(Q)(q)

󰀄
Q∈QA

. (5.11)

Then the vector-valued function F̃A(τ) = FA(e
2πiτ ) with components

f̃A,b(Q),c(Q)(τ) = fA,b(Q),c(Q)(e
2πiτ ), τ ∈ H, (5.12)

is a vector-valued modular function for SL2(Z). The transformation under τ 󰀁→ τ+1
is (trivially) given by

f̃A,b(Q),c(Q)(τ + 1) = e2πic(Q) f̃A,b(Q),c(Q)(τ), (5.13)

since fA,b(Q),c(Q)(q) ∈ qc(Q)Z[[q]], and the transformation under τ 󰀁→ − 1
τ is by

f̃A,b(Q),c(Q)

󰀓
−1

τ

󰀔
=

󰁛

Q′∈QA

Q′b(Q)

󰁳
δA(Q′)

f̃A,b(Q′),c(Q′)(τ), (5.14)

for a square-root of δA(Q
′) ∈ C, defined in (5.5).

In particular, the map induced by (5.12) and (5.14) for the generators T = ( 1 1
0 1 ) and

S =
󰀃
0 −1
1 0

󰀄
is a representation of SL2(Z) on C|QA|.

We will see below that sometimes the set QA ⊂ C is not enough, and we also have to
include formal solutions of the Nahm equation containing ±∞.
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5. Vector-valued modularity

5.1.3. More examples

Example 5.1.1. We illustrate the idea from subsection 5.1.2 using the matrix A = ( 4 2
2 2 ).

The Nahm equation (3.8) for A can be written as

1−Q1 = Q4
1Q

2
2, 1−Q2 = Q2

1Q
2
2 (5.15)

and has explicit solutions

Q(k) :=

󰀣
1−

sin2((2k − 1)π7 )

sin2((4− l)(2k − 1)π7 )

󰀤

l=1,2

(5.16)

for k = 1, 2, 3. Sine all solutions are totally real, their images vanish in B(C) (Theo-
rem 2.2.3) and thus we expect that fA,b,c(q) is a modular function for some b ∈ Q2, c ∈ Q.
Indeed, according to the Andrews-Gordon identities [And74], we have

f
A,( 00 )

(q) =
󰁜

n≥1
n=0,±3 mod 7

(1− qn) =
1

(q)∞

󰁛

n∈Z
q7n

2/2+n/2,

f
A,( 10 )

(q) =
󰁜

n≥1
n=0,±2 mod 7

(1− qn) =
1

(q)∞

󰁛

n∈Z
q7n

2/2+3n/2,

f
A,( 21 )

(q) =
󰁜

n≥1
n=0,±1 mod 7

(1− qn) =
1

(q)∞

󰁛

n∈Z
q7n

2/2+5n/2.

(5.17)

As in Example 2.4.6, one can show that the function

F̃A(τ) := FA(q) :=

󰀳

󰁅󰁅󰁅󰁅󰁃

f
A,( 00 ),−

1
42
(q)

f
A,( 10 ),

5
42
(q)

f
A,( 21 ),

17
42
(q)

󰀴

󰁆󰁆󰁆󰁆󰁄
, q = e2πiτ (5.18)

is a vector-valued modular function fulfilling the transformations

F̃A(τ + 1) =

󰀳

󰁅󰁅󰁅󰁃

ζ−1
42 0 0

0 ζ542 0

0 0 ζ1742

󰀴

󰁆󰁆󰁆󰁄
F̃A(τ), ζ42 = eπi/21, (5.19)

F̃A

󰀕
−1

τ

󰀖
=

2√
7

󰀳

󰁅󰁅󰁅󰁃

cos( π
14) cos(3π14 ) cos(5π14 )

cos(3π14 ) − cos(5π14 ) − cos( π
14)

cos(5π14 ) − cos( π
14) cos(3π14 )

󰀴

󰁆󰁆󰁆󰁄
F̃A(τ). (5.20)

We will construct the components of FA as well as the modular transformation by means
of subsection 5.1.2. With the logarithms
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5.1. Representation for SL2(Z)

k Q(k) log(Q(k)) log(1−Q(k))

1

󰀣
0.8019377 · · ·

0.6920215 · · ·

󰀤 󰀣
−0.2207243 · · ·

−0.3681383 · · ·

󰀤 󰀣
−1.619174 · · ·

−1.177725 · · ·

󰀤

2

󰀣
−0.5549581 · · ·

−4.048917 · · ·

󰀤 󰀣
−0.5888626 · · · + πi

1.398450 · · · − πi

󰀤 󰀣
−1.619174 · · ·

−1.177725 · · ·

󰀤

3

󰀣
−2.246980 · · ·

0.3568959 · · ·

󰀤 󰀣
0.8095869 · · · + πi

−1.030311 · · ·

󰀤 󰀣
−1.619174 · · ·

−1.177725 · · ·

󰀤

we compute, following (5.9),

b(Q(1)) =

󰀣
0

0

󰀤
, c(Q(1)) = − 1

42
,

b(Q(2)) =

󰀣
1

0

󰀤
, c(Q(2)) =

5

42
,

b(Q(3)) =

󰀣
2

1

󰀤
, c(Q(3)) =

17

42
.

(5.21)

Indeed, the computed values for b(Q) and c(Q) match with the values for b, c such that
fA,b,c(q) is modular. This provides the 1:1 correspondence between the solutions Q ∈ Q
and the components of FA(q).

The transformation for τ 󰀁→ τ + 1 in (5.19) follows from the fact that

f( 4 2
2 2 ),b,c

(q) ∈ qc(1 + Z[[q]])

for b ∈ Z. In view of (5.14), we compute the coefficients

Φ
(Q)
A,b (0) =

󰁔r
j=1Q

bj
j󰁳

δA(Q)
, (5.22)

where δA(Q) is defined in (5.5)

b Φ
(Q(1))
A,b (0) Φ

(Q(2))
A,b (0) Φ

(Q(3))
A,b (0)

󰀣
0

0

󰀤
2√
7
cos( π

14)
2√
7
cos(3π14 )

2√
7
cos(5π14 )

󰀣
1

0

󰀤
2√
7
cos(3π14 ) − 2√

7
cos(5π14 ) − 2√

7
cos( π

14)

󰀣
2

1

󰀤
2√
7
cos(5π14 ) − 2√

7
cos( π

14)
2√
7
cos(3π14 )
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5. Vector-valued modularity

We note that the values agree with the coefficients in the matrix in (5.20).

Next, we consider the example A =
󰀃

2 −1
−1 2

󰀄
to illustrate two phenomena:

1. The Nahm equation (3.8) for A has solutions in C2, as well as formal solutions
with entries ±∞. Hence, the ideas from subsection 5.1.2 are not directly applicable.
Nevertheless, we will see that the philosophy still works and the formulas there will
lead to the right result.

2. We will construct a vector-valued modular function following subsection 5.1.2 that
includes all fA,b,c(q) with integral b. However, this will not cover all modular func-
tions fA,b,c(q) with b ∈ Qr. Instead, the Nahm sums fA,b,c(q) with b ∈ Qr will form

a vector-valued modular function together with Nahm sums including (−1)b
tn in

the summation. We discuss this behaviour in the context of non-even matrices in
subsection 5.1.4.

Example 5.1.2. Let A =
󰀃

2 −1
−1 2

󰀄
. From [VZ11, Table 2], it is known that fA,b,c is

modular for the following values of b ∈ Q2, c ∈ Q

b c fA,b,c(q)
󰀣

β

−β

󰀤
β2

4
− 1

24
β ∈ Q

1

η(τ)

󰁛

n∈Z+β
2

qn
2

1

2

󰀣
−1

−1

󰀤
1

48

2

η(τ)

󰁛

n∈Z+ 1
4

qn
2

󰀣
0

1

󰀤
and

󰀣
1

0

󰀤
5

24

1

2η(τ)

󰁛

n∈Z+ 1
2

qn
2

We have the obvious relations

2f
A,( 10 ),

5
24
(q) = 2f

A,( 01 ),
5
24
(q) = f

A,
󰀓

β
−β

󰀔
, b

2

4
− 1

24

(q) if β ∈ Z is odd,

f
A,( 00 ),

5
24
(q) = f

A,
󰀓

β
−β

󰀔
, b

2

4
− 1

24

(q) if β ∈ Z is even,

f
A, 1

2

󰀓−1
−1

󰀔
, 1
48

(q) = 2f
A,

󰀓
β
−β

󰀔
, b

2

4
− 1

24

(q) if β ∈ 1

2
+ Z.

(5.23)

Since we focus on Nahm sums with b ∈ Zr, we can restrict ourselves to the functions

F̃A(τ) = FA(q) =

󰀳

󰁅󰁃
f
A,( 00 ),−

1
24
(q)

f
A,

󰀓
1
−1

󰀔
, 5
24

(q)

󰀴

󰁆󰁄 , q = e2πiτ . (5.24)

Then F̃A(τ) = FA(e
2πiτ ) is a vector-valued modular function with

F̃A(τ + 1) =

󰀣
ζ−1
24 0

0 ζ524

󰀤
F̃A(τ), F̃A

󰀕
−1

τ

󰀖
=

1√
2

󰀣
1 1

1 −1

󰀤
F̃ (τ), (5.25)

where ζ24 = e2πi/12. We will describe the 1:1 correspondence between the components of
FA and the solutions of the Nahm equation

1−Q1 = Q2
1Q

−1
2 , 1−Q2 = Q2

2Q
−1
1 . (5.26)
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5.1. Representation for SL2(Z)

The only complex solution of equation (5.26) is given by Q = (12 ,
1
2) and we have

c(Q) = −V (Q)
4π2 = − 1

24 . Moreover, for the principal branches of the logarithm we have

b(Q) =
1

2πi

󰀣
A

󰀣
log 1

2

log 1
2

󰀤
−

󰀣
log 1

2

log 1
2

󰀤󰀤
=

󰀣
0

0

󰀤
. (5.27)

Hence, the solution Q = (12 ,
1
2) corresponds to the first entry f

A,( 00 ),−
1
24
(q) of FA(q).

Therefore, we cannot construct all components of FA(q) from the set of solutionsQ ⊂ C.
However, in addition to this solution, equation (5.26) also has the formal solutions

Q “ = ” lim
x→∞

±(x, 1− x) = ±(∞,−∞)

with volume V (Q) = −5
24 4π

2 and c(Q) = −V (Q)
4π2 = 5

24 . The formal computation, cf. (5.9),

lim
x→∞

󰀣
A

󰀣
log(x)

log(1− x)

󰀤
−
󰀣
log(1− x)

log(x)

󰀤󰀤
= lim

x→∞
2

󰀣
log(x)− log(1− x)

log(1− x)− log(x)

󰀤
= 2πi

󰀣
−1

1

󰀤

(5.28)
justifies b(±(∞,−∞)) = ±(−1, 1). Therefore, the solutions Q = ±(∞,−∞) correspond
to the second component of FA(q) = f

A,±
󰀓

1
−1

󰀔
, 5
48

(q).

We can compute the transformation under τ 󰀁→ −1
τ using equation (5.14). For the

solution Q′ = (12 ,
1
2), we have δA(Q

′) = 2 which gives the first column in (5.25).
For Q′ = ±(∞,−∞), a formal computation suggests with Q′ = limx→∞(x, 1 − x) that
δA(Q

′) = 2 which gives the second column in (5.25).

5.1.4. Vector-valued modularity for non-even matrices

We briefly discuss how the vector-valued transformation from subsection 5.1.2 generalises
to Nahm sums associated with non-even matrices. For this, we also have to take gener-
alised Nahm sums into consideration. For a symmetric, positive definite matrix A ∈ Qr×r,
b ∈ Qr, c ∈ Q, and a vector δ ∈ Cr consisting of roots of unity, we define the generalised
Nahm sum

f δ
A,b,c(q) :=

󰁛

n∈Zr
≥0

δn1
1 · · · δnr

r

q
1
2
nTAn+bTn+c

(q)n1 · · · (q)nr

. (5.29)

Moreover, for A and δ as above we define the generalised Nahm equation

1−Qi = δi

r󰁜

j=1

QAij
j , i = 1, . . . , r, (5.30)

and write Q(δ)
A for the set of solutions.

If the generalised Nahm sum f̃ δ
A,b,c(τ) = f δ

A,b,c(e
2πiτ ) is a modular function, it can be

considered as a component of a vector-valued modular function for SL2(Z). In this case,
the components are in 1:1 correspondence with the solutions of the corresponding Nahm
equations (5.30). Then, we have

f̃ δ
A,b,c

󰀓
−1

τ

󰀔
=

󰁛

Q∈Qδ
A

󰁔
j Q

bj
j

δA(Q)
f̃
e(b)
A,b(Q),c(Q)(τ) (5.31)

where e(b) denotes the vector (e2πibi)i=1,...,r.
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5. Vector-valued modularity

Example 5.1.3. We consider the Nahm sum for A = 1. It is known that f1,b,c is exactly
modular if (b, c) ∈ {(0,− 1

48), (±
1
2 ,

1
24)}. However, the space spanned by these function is

not invariant under the action of SL2(Z). Only if we include the signed Nahm sum

f−
1,0,− 1

48

(q) =
󰁛

n≥0

(−1)n
q

1
2
n2− 1

48

(q)n
, (5.32)

the vector-valued function

F̃1(τ) = F1(q) =

󰀳

󰁅󰁅󰁅󰁃

f1,0,− 1
48
(q)

f1, 1
2
, 1
24
(q)

f−
1,0,− 1

48

(q)

󰀴

󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁃

η(τ)2

η(τ/2)η(τ)

η(2τ)
η(τ)

η(τ/2)
η(τ)

󰀴

󰁆󰁆󰁆󰁄
, q = e2πiτ (5.33)

is invariant under the action of SL2(Z). We remark that the function F̃1(τ) consists of the
well-known Weber modular functions ([YZ97]). More precisely, F̃1(τ) transforms under
SL2(Z) via

F̃1(τ + 1) =

󰀳

󰁅󰁅󰁅󰁃

0 0 ζ−1
48

0 ζ248 0

ζ−1
48 0 0

󰀴

󰁆󰁆󰁆󰁄
F̃1(τ), F̃1

󰀕
−1

τ

󰀖
=

󰀳

󰁅󰁅󰁅󰁃

1 0 0

0 0 1√
2

0
√
2 0

󰀴

󰁆󰁆󰁆󰁄
F̃1(τ), (5.34)

where ζ48 = eπi/24.
In order to obtain the 1:1 correspondence, first note that the ordinary Nahm equation

1−Q = Q has a unique solution Q = 1
2 . With c(Q) = −V (Q)

4π2 = − 1
48 , the solution Q = 1

2
corresponds to the Nahm sums f±

1,0,− 1
48

(q). The generalised Nahm equation (5.32) is given

by

1−Q = −Q (5.35)

with no solution in C but two formal solutions ±∞. If we compute the volume of ±∞,
we obtain

c(±∞) =
−V (±∞)

4π2
=

1

24
(5.36)

and b(±∞) = ±1
2 . Then the functions f1,± 1

2
,c(q) are indeed modular. The modular

transformation given in (5.34) can be computed using (5.31).

This and other examples suggest that if the matrix A is integral but not even, the
appropriate collection of b’s that we must take to find associated modular Nahm sums is
given by choosing bi ∈ Z if Aii is even and bi ∈ 1

2Z and δi = ±1 if Aii is odd.

5.2. Quantum modularity

In the context of quantum knot invariants, Garoufalidis-Zagier noticed that certain q-
series associated to knots possess modular properties, even though they are not modular
in a classical sense [GZ23, GZ24]. The new concept of modularity they discovered is called
(holomorphic) quantum modularity.

Since there is no uniform definition of this concept, and quantum modular forms occur
in different shapes, we will only explain the idea. Recall that for a modular function
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5.2. Quantum modularity

f : H → C for SL2(Z), the quotient f(τ)/f(− 1
τ ) is constant. Quantum modularity

of a function f means that the failure of modularity f(τ)/f(− 1
τ ) is not required to be

constant but more analytic than f itself. For example, if f is defined on Q, the failure of
modularity can have an analytic continuation to R. For a holomorphic function f : H → C
holomorphic quantum modularity means that the failure of modularity is more analytic
than f itself, meaning that it has a holomorphic continuation to some bigger domain than
H.

In his thesis, Wheeler [Whe23] proves that all one-dimensional Nahm sums are vector-
valued holomorphic quantum modular forms. This means that a holomorphic extension
property holds even if the sums fA,b(q) are not modular. We expect that the same is true
for higher-dimensional Nahm sums.

Theorem 5.2.1 ([Whe23], Theorem 5). For A ∈ Z>0, the function

F̃A(τ) = FA(q) :=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

fA,0(q)

fA,1(q)
...

fA,A−1(q)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
(5.37)

is a vector-valued holomorphic quantum modular form, in the sense that

F̃A

󰀓
−1

τ

󰀔
= ΩA(τ)F̃A(τ), (5.38)

for all τ ∈ H and a function ΩA(τ) ∈ Hol(C󰄀 (−∞, 0))A×A.

If F̃A(τ) is a vector-valued modular function on SL2(Z), then of course the matrix ΩA(τ)
is constant up Laurent polynomials in rational powers of q and q̃. However, in cases where
we expect modularity from Nahm’s conjecture, Wheeler’s proof does not show that ΩA(τ)
is essentially constant.

5.2.1. Example: A = 4

We will illustrate how the vector-valued quantum modularity of the non-modular Nahm
sum f4,b(q) can be seen numerically by making subleading terms in the asymptotics of
f4,b(q), cf. Example 4.3.2, visible. We present computations for the Nahm sum for f4,0(q)
but similar computations can certainly be done with all Nahm sums.

For a divergent power series, the Padé approximation gives a rational function that
approximates the given series to any desired degree of accuracy. With 120 coefficients

of the power series Φ
(Q)
4,b (h) as algebraic numbers let s(Φ4,b(h)) denote the [60/60] Padé

approximation of Φ4,b(h) ∈ C[[h]].

Numerical Observation 5.2.2. Set

h =
e.48πi

4
= 0.01569763 · · · + 0.2495067 · · · i,

q = e−h = 0.95394 · · · − 0.24308 · · · i.
(5.39)
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5. Vector-valued modularity

We enumerate the solutions of 1−Q = Q4 as in equation (4.18). The values of the Padé

approximations of Φ
(Q)
4,0 (h) are given by

s(Φ
(Q1)
4,0 )(h) ≈ 0.3612519− 0.0005132i, s(Φ

(Q2)
4,0 )(h) ≈ 0.7398696− 0.0033125i,

s(Φ
(Q3)
4,0 )(h) ≈ 0.4293409− 0.1774570i, s(Φ

(Q4)
4,0 )(h) ≈ 0.4454061 + 0.1710354i.

(5.40)

The first approximation of f4,0(q) ≈ 10.15883 − 1.542461i is given by eV3/hs(Φ
(Q3)
4,0 )(h)

and we have

|f4,0(q)− eV3/hs(Φ
(Q3)
4,0 )(h)| ≈ 0.8398995123, (5.41)

see also Example 4.3.2. Figure 4.1 suggests that the next contribution comes from the
solutionQ2. Indeed, we can make a better approximation by substracting the contribution
for Q2

|f4,0(q)− eV3/hs(Φ
(Q3)
4,0 )(h)− eV2/hs(Φ

(Q2)
4,0 )(h)| ≈ 0.004801327866. (5.42)

Similarly, we see subleading terms corresponding to the solutions Q1 and Q2 leading to
an even better approximation

|f4,0(q)− eV3/hs(Φ
(Q3)
4,0 )(h)− eV2/hs(Φ

(Q2)
4,0 )(h)

− eV1/hs(Φ
(Q1)
4,0 )(h)− e(V4−4π2)/hs(Φ

(Q1)
4,0 )(h)|

≈ 2.049142874× 10−9.

(5.43)

The next term again corresponds to Q2, but now with a different lift of the volume V2,
i.e., a different branch of the dilogarithm shifted by 4π2

|f4,0(q)− eV3/hs(Φ
(Q3)
4,0 )(h)− e(V2−8π2)/hs(Φ

(Q2)
4,0 )(h)

− eV1/hs(Φ
(Q1)
4,0 )(h)− e(V4−4π2)/hs(Φ

(Q1)
4,0 )(h)|

≈ 1.238513219× 10−12.

(5.44)

With e−4π2/h = q̃ = (4.2814 + 2.4652i)× 10−5, we can continue like this until we end up
with the approximation

f4,0(q) ≈ eV1/hs(Φ
(Q1)
4,0 )(h)(1 + q̃4 + q̃5)

+ eV2/hs(Φ
(Q2)
4,0 )(h)(1 + q̃2 + q̃3 + q̃4 + q̃5 + q̃6)

+ eV3/hs(Φ
(Q3)
4,0 )(h)(1 + q̃3 + q̃4 + q̃5 + q̃6)

+ eV4/hs(Φ
(Q3)
4,0 )(h)q̃(1 + q̃5)

(5.45)

with an error of size 7.507881× 10−29. We recognise the first coefficients of the (formal)
expansion of

f4,0(q)
?
= eV1/hs(Φ

(Q1)
4,0 )(h)f4,2(q̃) + eV2/hs(Φ

(Q2)
4,0 )(h)f4,0(q̃)

+ eV3/hs(Φ
(Q3)
4,0 )(h)f4,1(q̃) + eV4/hs(Φ

(Q3)
4,0 )(h)q̃f4,3(q̃).

(5.46)
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5.2. Quantum modularity

It is believed that the components of matrix-valued holomorphic function ΩA,b(
ih
2π ) from

Theorem 5.2.1 agree with the resummations s(Φ
(Q)
A,b (h)) for Q ∈ QA and b = 0, · · · , A− 1.

Hence, with the notation

F4(q) =

󰀳

󰁃
f4,0(q)
f4,1(q)
f4,2(q)
f4,3(q)

󰀴

󰁄 , (5.47)

equation (5.46) can be interpreted as an asymptotic version of the holomorphic quantum
modularity F̃4(− 1

τ ) = Ω4(τ)F̃4(τ) of F̃4(τ) from Theorem 5.2.1.
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6. Nahm’s observation revisited

6.1. Introduction

As discussed in Section 3.3, “Nahm’s conjecture” as formulated in [Zag07] states that for
a given symmetric, positive definite matrix A, the Nahm sum fA,b,c(q) is modular for some
b ∈ Qr, c ∈ Q if and only the images of all solutions QA of the Nahm equation vanish in
B(C). In [VZ11], Vlasenko-Zwegers gave counterexamples to this conjecture. They show
that the Nahm sum for

A =
1

2

󰀣
3 1

1 3

󰀤
, b =

1

2

󰀣
−2 + β

2 + β

󰀤
(6.1)

can be written as a one-dimensional Nahm sum

f 1
2(

3 1
1 3 ),

1
2

󰀓−2+β
2+β

󰀔
, c
2

(q2) = f2,β,c(q) (6.2)

and is thus modular for (β, c) ∈ {(0,− 1
60), (1,

11
60)}. The same, of course, is true for

b = 1
2

󰀓
2+β
−2+β

󰀔
. However, solutions of the corresponding Nahm equation are given by 2[x],

where x satisfies

0 = (x2 + x− 1)(x2 − x+ 1). (6.3)

While the elements 2[x] corresponding to x = −1±
√
5

2 vanish in B(C), the elements corre-

sponding to x = 1±
√
−3

2 do not vanish. This can be proved using the values of 2[x] under
the Bloch-Wigner dilogarithm and Theorem 2.2.3. In other words, this is a counterexam-
ple to the conjecture mentioned above.

Since the matrix A = 1
2 (

3 1
1 3 ) is not integral, the Nahm equation involves choices of

roots. We discuss a related example with an integral matrix A that was also given by
Vlasenko-Zwegers.

We will see that for all known counterexamples the corresponding Nahm sums have a
representation as a lower-dimensional Nahm sum. This will play a role in the following.

6.2. Integral “counterexamples”

We consider the integral example from [VZ11, p.18], which is modular but whose Nahm
equation has some non-torsion solutions in the Bloch group.

We consider the matrix

A =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

3 1 1 0

1 3 0 1

1 0 1 0

0 1 0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
. (6.4)
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6. Nahm’s observation revisited

In [VZ11] it has been shown that for b = 1
2(−1 + 2β, 1 + 2β, 1, 1)T , β ∈ Q

fA,b(q) =
(q2; q2)2∞
(q; q)2∞

f 1
2(

3 1
1 3 ),

1
2

󰀓−2+β
2+β

󰀔(q2) =
(q2; q2)2∞
(q; q)2∞

f2,β(q), (6.5)

where the second equality is equation (6.2). Because A is invariant under permuting the
first and the second, as well as the third and fourth, rows and columns, the same identity
is true for b = 1

2(1 + 2β, −1 + 2β, 1, 1)T , β ∈ Q. In particular, fA,b,c(q) is modular for
the following values

b c fA,b,c(q)

1
2(−1, 1, 1, 1)T 1

15
η(2τ)2

η(τ)3
θ5,1(τ)

1
2(1, −1, 1, 1)T 1

15
η(2τ)2

η(τ)3
θ5,1(τ)

1
2(1, 3, 1, 1)

T 4
15

η(2τ)2

η(τ)3
θ5,2(τ)

1
2(3, 1, 1, 1)

T 4
15

η(2τ)2

η(τ)3
θ5,2(τ)

where θ5,j(τ) is defined in (2.60).
The Nahm equation (3.8) for A as in (6.4) has eight solutions in two Galois orbits. The

first Galois orbit is of cardinality four and given by

󰀓
u, u,

1

1 + u
,

1

1 + u

󰀔
, 1− u2 = u4. (6.6)

The second Galois orbit, also of cardinality four, is given by

󰀓
u,−u,

1

1 + u
,

1

1− u

󰀔
, 1− u2 = −u4, (6.7)

i.e., u is a primitive 12th root of unity. The images of the solutions of the form (6.7) do not
vanish in B(C) because their Bloch-Wigner dilogarithm D(u)+D(−u)+D( 1

1+u)+D( 1
1−u)

= ±1.014942 · · · do not vanish, cf. Theorem 2.2.3.
In view of the asymptotics of Nahm sums on rays in the upper half-plane (Theo-

rem 4.3.1), we consider V (Q) as well as Φ
(Q)
A,b (h) for the solutions Q ∈ QA of type (6.7)

with [Q] ∕= 0 ∈ B(C). For u = eπi/6, we define the solutions

Q =
󰀓
u,−u,

1

1 + u
,

1

1− u

󰀔
, Q′ =

󰀓
−u, u,

1

1− u
,

1

1 + u

󰀔
(6.8)

from (6.7). Since Q can be transformed into Q′ by permuting the first and second as well
as the third and fourth entry and A is invariant under the corresponding row and column
permutations, we have

V (Q) = V (Q′) = −5π2

12
−D(ζ212)i = −4.1123 · · · − 1.0149 · · · i. (6.9)

Moreover, we can compute for b = 1
2(1,−1, 1, 1)T

Φ
(Q)
A,b (h) =

1󰁳
3−

√
−3

󰀓
1 +

−3 +
√
−3

432
h+O(h2)

󰀔
,

Φ
(Q′)
A,b (h) =

−1󰁳
3−

√
−3

󰀓
1 +

−3 +
√
−3

432
h+O(h2)

󰀔 (6.10)
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up to order 1 in h. This suggests that

Φ
(Q)
A,b (h)

?
= −Φ

(Q′)
A,b (h), (6.11)

and if this is true, then it means that these asymptotic contributions cancel each other
out and do not contribute in the asymptotic expansion of fA,b,c(q) near q = 1. In fact, we
know that (6.11) must hold since the corresponding fA,b,c(q)’s are known to be modular.
However, it would be desirable to find a direct proof.

We can make a start as follows. Since Q′ can be obtained from Q′ by permuting the
entries, we can reduce the equality in (6.11). Let P be the permutation matrix (1, 2)(3, 4)
then Q′ = PQ. Since PAP = A, we also have PÃ(Q′)P = Ã(Q). With the change of
variables t 󰀁→ Pt we obtain

Ψ
(Q′)
A,b (Pt, h) = Ψ

(Q)
A,Pb(t, h), (6.12)

where Ψ
(Q)
A,b (t, h) is defined in (4.10). Then, equation (6.11) is equivalent to

Φ
(Q)
A,b (h)

?
= −Φ

(Q)
A,Pb(h) = −Φ

(Q)
A,b+e(h) (6.13)

with btP = b+ (−1, 1, 0, 0)T =: b+ e.

Functional equations We also discuss a different approach for explaining why some
solutions are not relevant for the modularity of fA,b,c(q). From (6.5), we see that, in
addition to the functional equations in Proposition 3.2.2, elements in the Z[q±]-submodule

󰁇
fA,b(q) : b =

󰀓
−1

2
+ β,

1

2
+ β,

1

2
,
1

2

󰀔T
, β ∈ Z

󰁈
(6.14)

fulfil the additional equations

fA,b(q)− fA,b+e1+e2(q) =
(q2; q2)2∞
(q; q)∞

󰀃
f2,β(q)− f2,β+1(q)

󰀄

=
(q2; q2)2∞
(q; q)∞

q1+βf2,β+2(q)

= q1+βfA,b+2e1+2e2(q).

(6.15)

A similar functional equation holds for elements in the Z[[q±]]-submodule

󰁇
fA,b(q) : b =

󰀓1
2
+ β, −1

2
+ β,

1

2
,
1

2

󰀔T
, β ∈ Z

󰁈
. (6.16)

As discussed in Remark 3.2.6, the functional equation suggests that we should also con-
sider the additional Nahm equation

1−Q1Q2 = Q2
1Q

2
2. (6.17)

The solutions of the form (6.6) fulfil this equation while the solutions of the form (6.7) do
not. This suggests that the Nahm equations associated with the submodule (6.14) have
to be completed by equation (6.17).

The main ingredient for the functional equation (6.15) is that the four-dimensional
Nahm sum for A as in (6.4) can be written in terms of a one-dimensional Nahm sum
in (6.5).
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6.3. Modular combinations of non-modular Nahm sums

Even if a Nahm sum fA,b,c(q) for a given matrix A is not modular for any b and c, it is
still possible that a linear combination of Nahm sums is modular. Given the functional
equation (3.9) of Nahm sums, it is obvious how to construct trivial combinations of
modular Nahm sums, namely the constant function 0. Therefore, we are only interested
in non-trivial linear combinations of Nahm sums. Several examples of modular linear
combinations of non-modular (generalised) Nahm sums are known [AvEH23, KR19]. We
prove a new family of examples of such Nahm sums and discuss them in the context
of Nahm’s problem. Similar to the examples from Section 6.2, we will see that the h-
series corresponding to the solutions that do not vanish in B(C) will not appear in the
asymptotic expansion.

6.3.1. An example

We consider the Nahm sum corresponding to A = ( 8 5
5 4 ). The Nahm equation (3.8) for A

is given by
1−Q1 = Q8

1Q
5
2, 1−Q2 = Q5

1Q
4
2 (6.18)

and these equations have eight solutions in two Galois orbits. The first Galois orbit
consists of four solutions and is given by

0 = Q4
1 +Q3

1 + 3Q2
1 − 3Q1 − 1,

Q2 =
1

5
(37− 25Q1 − 6Q2

1 − 9Q3
1).

(6.19)

These solutions, as well as their volumes, are explicitly given as follows.

Q1 −V (Q)

4π2

1
4

󰀓
−1 +

√
5 +

󰁳
14

√
5− 26

󰀔

= 0.88483 · · ·
− 1

60

1
4

󰀓
−1 +

√
5−

󰁳
14

√
5− 26

󰀔

= −0.26680 · · ·
59

60

1
4

󰀓
−1−

√
5− i

󰁳
26 + 14

√
5
󰀔

= −0.80902 · · ·− 1.8925 · · · i
11

60

1
4

󰀓
−1−

√
5 + i

󰁳
26 + 14

√
5
󰀔

= −0.80902 · · ·+ 1.8925 · · · i
11

60

(6.20)

Recall that the imaginary parts of the volume V (Q) is given by the Bloch-Wigner
dilogarithm. Hence, with Theorem 2.2.3, we conclude that the images of these solutions
vanish in B(C).

The second Galois orbit also consists of four solutions and is given by

0 = Q4
1 −Q3

1 + 3Q2
1 − 3Q1 + 1

Q2 = 3Q1 +Q3
1.

(6.21)

The solutions of this form and their volumes are given by
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6.3. Modular combinations of non-modular Nahm sums

Q1 −V (Q)
4π2

0.5520379 · · · ± 0.2422745 · · · i 0.0560814 · · · ± 0.0301351 · · · i

−0.052037 · · · ± 1.657938 · · · i 0.4855853 · · · ± 0.0428794 · · · i

(6.22)

Because Im(V (Q)) ∕= 0, we deduce that the images of these solutions do not vanish in
B(C).

To sum up, the Nahm equation has both trivial and non-trivial solutions in the Bloch
group. While the Nahm sum fA,b(q) is not modular for any b ∈ Q2 (this can be proven
using the ideas from subsetcion 4.3.2), the linear combinations

q−1/60

󰀕
f
( 8 5
5 4 ),

󰀓−1
−1

󰀔(q) − f
( 8 5
5 4 ),

󰀓
−1
0

󰀔(q) + f( 8 5
5 4 ),(

0
0 )
(q)

󰀖

= f2,0,− 1
60
(q) =

θ5,1(τ)

η(τ)
,

q11/60
󰀕
f( 8 5

5 4 ),(
1
0 )
(q) − f( 8 5

5 4 ),(
1
1 )
(q) + f( 8 5

5 4 ),(
2
1 )
(q)

󰀖

= f2,1, 11
60
(q) =

θ5,2(τ)

η(τ)
,

(6.23)

where q = e2πiτ , are modular, see Example 2.4.6. The equations can be deduced from
the following theorem with α = 2, δ = 1, and β = 0, 1. We will discuss the vector-valued
modularity of the linear combinations in subsection 6.3.1.

Theorem 6.3.1. For α ∈ Q>0, let A =
󰀃

4α 2α+1
2α+1 α+2

󰀄
. Then for any β ∈ Q and any root

of unity δ ∈ C,

f δ
α,β(q) = f

(1,δ)

A,
󰀓
2β−1
β−1

󰀔(q) − f
(1,δ)

A,
󰀓
2β−1
β

󰀔(q) + f
(1,δ)

A,
󰀓
2β
β

󰀔(q), (6.24)

where the Nahm sums f δ
A,b(q) are defined in (5.29).

Proof. We write

f
(1,δ)

A,
󰀓
2β−1
β−1

󰀔(q) − f
(1,δ)

A,
󰀓
2β−1
β

󰀔(q) + f
(1,δ)

A,
󰀓
2β
β

󰀔(q)

=
󰁛

n,m≥0

δm
q2αn

2+(α
2
+1)m2+nm(2α+1)+(β−1)(2n+m)

(q)n(q)m
(qn − qn+m + q2n+m).

(6.25)

Using 2αn2 + (α2 + 1)m2 + nm(2α+ 1) = αk2

2 + n(k − 2n) + (k − 2n)2 with k = 2n+m
we obtain that the combination is equal to

󰁛

n,k∈Z
δk

qα
k2

2
+n(k−2n)+(k−2n)2+(β−1)k

(q)n(q)k−2n
(qn − qk−n + qk)

=
󰁛

k∈Z
δkqα

k2

2
+(β−1)k

󰁛

n∈Z

qn(k−2n)+(k−2n)2

(q)n(q)k−2n
(qn − qk−n + qk).

(6.26)
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It remains to prove that

S(k) :=
󰁛

n∈Z

qn(k−2n)+(k−2n)2

(q)n(q)k−2n
(qn − qk−n + qk) =

qk

(q)k
(6.27)

for all k ∈ Z. Using the qZeil package in mathematica [PR97] with the line

qZeil[q^((k-n)*(k-2*n))/qPochhammer[q,q,n]/qPochhammer[q,q,k-2*n]

*(q^n+q^k-q^(k-n)),{n,0,Infinity},k,1]

gives the recursion

S(k) =
q

1− qk
S(k − 1). (6.28)

One easily checks S(0) = 1 = 1/(q)0 and thus S(k) = qk

(q)k
.

Asymptotic explanation

We discuss the asymptotic interpretation of the modularity of these linear combination as
we did for the “counterexamples” to Nahm’s conjecture in Section 6.2. Let A = ( 8 5

5 4 ) as
above. As h → 0 on a ray in the right half plane with arg(h) = .44π, we have according
to Theorem 4.3.1

fA,b(e
−h) = eV (Q)/hΦ

(Q)
A,b (h) (6.29)

for Q ≈ (0.55204− 0.24227i, 1.7271− 0.93410i) as in (6.22), where

V (Q) = −2.214005098 · · · + 1.189682374 · · · i, (6.30)

and Φ
(Q)
A,b (h) ∈ Q[[h]] is defined in (4.12). The first coefficients can be computed explicitly

and are given by

Φ
(Q)

A,
󰀓−1
−1

󰀔(h) = β
A,( 00 )

󰀓
−Q3

1 +Q2
1 − 3Q1 + 2

+
−38850547Q3

1 + 14170261Q2
1 − 114564270Q1 + 20496762

227174412
h

+
9021651825252Q3

1 − 2650242944696Q2
1 + 25438498486713Q1 − 1890461619879

450726755175072
h2 + · · ·

󰀔
,

−Φ
(Q)

A,
󰀓−1

0

󰀔(h) = β
A,( 00 )

󰀓
Q3

1 −Q2
1 + 3Q1 − 3

+
52595190Q3

1 − 19114411Q2
1 + 149238792Q1 − 27615300

227174412
h

+
−13567527940846Q3

1 + 136730502036Q2
1 − 34949018477942Q1 − 258421848539

450726755175072
h2 + · · ·

󰀔
,

Φ
(Q)

A,( 00 )
(h) = β

A,( 00 )

󰀓
1

+
−13744643Q3

1 + 4944150Q2
1 − 34674522Q1 + 7118538

227174412
h

+
4545876115594Q3

1 + 2513512442660Q2
1 + 9510519991229Q1 + 2148883468418

450726755175072
h2 + · · ·

󰀔
,

(6.31)
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6.3. Modular combinations of non-modular Nahm sums

where

β
A,( 00 )

=
1󰁳

11− 12Q1 − 3Q3
1

= 0.4018796 · · · − 0.1474356 · · · i. (6.32)

The coefficients of Φ
(Q)
A,b (h) for other Q as in (6.22) are the algebraic conjugates of the

coefficients in (6.31), so need not be given explicitly. We see that, at least up to order 3,
the sum of these three series vanishes, i.e.,

Φ
(Q)

A,
󰀓−1
−1

󰀔(h)− Φ
(Q)

A,
󰀓
−1
0

󰀔(h) + Φ
(Q)

A,( 00 )
(h)

?
= 0. (6.33)

This equation, if true, implies that the solutions Q as in (6.21) do not appear in the
asymptotics of the linear combinations in (6.23) and therefore do not prevent the modu-
larity.

But in fact, as in Section 6.2, equation (6.33) follows from the modularity of the linear
combination in (6.23). In order to understand the modularity, it would be desirable to
find a proof of the relation (6.33) without using the modularity of the corresponding linear
combination.

Vector-valued modularity

From the representation in (6.23), we see that the vector-valued function

F̃A(τ) = FA(q) =

󰀳

󰁅󰁃
q−1/60

󰀕
f
A,

󰀓−1
−1

󰀔(q)− f
A,

󰀓
−1
0

󰀔(q) + f
A,( 00 )

(q)

󰀖

q11/60
󰀓
f
A,( 10 )

(q)− f
A,( 11 )

(q) + f
A,( 21 )

(q)
󰀔

󰀴

󰁆󰁄

=

󰀣
f2,0,−1/60(q)

f2,1,11/60(q)

󰀤
=

1

η(τ)

󰀣
θ5,1(τ)

θ5,2(τ)

󰀤
, q = e2πiτ ,

(6.34)

is a vector-valued modular function under SL2(Z). According to (3.5), the transformation
is given by

F̃A(τ + 1) =

󰀣
ζ−1
60 0

0 ζ1160

󰀤
F̃A(τ), F̃A

󰀕
−1

τ

󰀖
=

2√
5

󰀣
sin 2π

5 sin π
5

sin π
5 − sin 2π

5

󰀤
F̃A(τ),

(6.35)
where ζ60 = eπi/30.

Following (5.9), we have c = − 1
60 = −V (Q)

4π2 mod 1 for the first solutions from (6.19).
This suggest that the first two solutions Q given there correspond to the first component of
the vector-valued function FA(q), because the power of q in front of the linear combination
is given by c = − 1

60 . Similarly, the last two solutions Q in (6.21) correspond to the second

component of FA(q) with c = 11
60 = −V (Q)

4π2 .
Therefore, we have a 2:1 correspondence between the solutions of the Nahm equation

of the form (6.19) and the components of the vector-valued modular function FA(q).

Functional equations

Recall the identity

f
(1,δ)

A,
󰀓
2β−1
β−1

󰀔(q) − f
(1,δ)

A,
󰀓
2β−1
β

󰀔(q) + f
(1,δ)

A,
󰀓
2β
β

󰀔(q) = f δ
α,β(q) (6.36)
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from Theorem 6.3.1 with A =
󰀃

4α 2α+1
2α+1 α+2

󰀄
. From the one-dimensional functional equation

f δ
α,β(q)− f δ

α,β+1(q) = δq
1
2
α+βf δ

α,β+α(q) (6.37)

it follows that, in addition to the standard functional equation of Nahm sums from Propo-
sition 3.2.2, the linear combination of two-dimensional Nahm sums fulfils the recursion

f
(0,δ)

A,
󰀓
2β−1
β−1

󰀔(q) − f
(1,δ)

A,
󰀓
2β−1
β

󰀔(q) + f
(1,δ)

A,
󰀓
2β
β

󰀔(q)

−
󰀕
f
(1,δ)

A,
󰀓
2β+1
β

󰀔(q) − f
(1,δ)

A,
󰀓
2β+1
β+1

󰀔(q) + f
(1,δ)

A,
󰀓
2β+2
β+1

󰀔

󰀖

= δq
1
2
α+β

󰀕
f
(1,δ)

A,
󰀓
2β−1+2α
β−1+α

󰀔(q) − f
(1,δ)

A,
󰀓
2β−1+2α

β+α

󰀔(q) + f
(1,δ)

A,
󰀓
2β+2α
β+α

󰀔(q)

󰀖
.

(6.38)

Following Remark 3.2.6, the shifts in the b’s in the previous equation suggest that we
have to take the additional Nahm equation

1−Q2
1Q2 = Q2α

1 Qα
2 (6.39)

into consideration.
For the case α = 2 and A = ( 8 5

5 4 ) considered above, the previous equation is given by

1−Q2
1Q2 = Q4

1Q
2
2. (6.40)

One checks that the solutions of the form (6.19) fulfil this equation while the solutions
of the form (6.21) do not. This suggests that for the submodule generated by linear
combinations as in Theorem 6.3.1, namely

f
A,

󰀓
2β−1
β−1

󰀔(q) − f
A,

󰀓
2β−1
β

󰀔(q) + f
A,

󰀓
2β
β

󰀔(q), β ∈ Q, (6.41)

the additional Nahm equation (6.40) should be taken into consideration as well.
As for the example discussed above, the functional equation in (6.38) is based on the

fact that the linear combination of two-dimensional Nahm sums in (6.24) can be written
as a one-dimensional Nahm sum.

6.3.2. More examples

In [Zag07, p.46], Zagier gives a list of two-dimensional matrices for which the image of
the unique solution of the Nahm equation in (0, 1)2 vanishes in B(C). The matrices with
other solutions whose images do not vanish in B(C) are

󰀣
4 3

3 3

󰀤
,

󰀣
8 3

3 2

󰀤
,

󰀣
8 5

5 4

󰀤
,

󰀣
11 9

9 8

󰀤
,

󰀣
24 19

19 16

󰀤
,

󰀣
5
2 2

2 2

󰀤
,
1

3

󰀣
8 1

1 2

󰀤
, (6.42)

three infinite families, as well as their permutations and inverses. For these matrices,
there are numerically no b ∈ Q2, c ∈ Q such that fA,b,c is modular.

From Theorem 6.3.1, we obtain modular linear combination for α ∈ {1/2, 1, 2}, i.e.,

A =

󰀣
4α 2α+ 1

2α+ 1 α+ 2

󰀤
∈

󰀻
󰀿

󰀽

󰀣
2 2

2 5
2

󰀤
,

󰀣
4 3

3 3

󰀤
,

󰀣
8 5

5 4

󰀤󰀼
󰁀

󰀾 . (6.43)
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Similarly, Andrews-van Ekeren-Heluani [AvEH23] show that for the matrix A = ( 8 3
3 2 ),

the linear combination

f
A,( 00 )

(q)− f
A,( 10 )

(q) + f
A,( 11 )

(q) =
󰁛

m≥0

q2m
2

(q)2m
(6.44)

is modular up to a rational power of q. Hence, there are modular linear combinations
for four of the “individual” matrices. The matrices for which there is no known modular
combinations yet are

󰀣
11 9

9 8

󰀤
,

󰀣
24 19

19 16

󰀤
,
1

3

󰀣
8 1

1 2

󰀤
, (6.45)

the infinite families, and their inverses and permutations. Based on these examples we
make the following guess.

Guess 6.3.2. Let A be a positive definite, symmetric matrix such that some solutions
of the Nahm equation (3.8) vanish in B(C). Then there exist non-trivial modular linear
combinations of Nahm sums fA,b,c(q).

The idea behind this expectation is that if, for a given matrix A as above, the solutions
of the Nahm equation have different Galois orbits, the Z[q±]-module of Nahm sums is
expected to have submodules corresponding to the different Galois orbits. If the classes
of the corresponding Galois orbit vanish in B(C), the associated submodule is expected
to contain modular functions, e.g., as linear combinations of Nahm sums. However, the
submodules corresponding to Galois orbits should also exist if no class of Galois orbits
vanishes in B(C). These ideas are being developed in a paper in preparation with Don
Zagier.
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Knots and q-series
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7. The tail of the coloured Jones polynomial

7.1. Introduction

If we intertwine a string and glue the ends together, we obtain a knot. Knots appear
in the arts and have several applications in science, for example in the study of DNA,
chemistry, and statistical mechanics. The mathematical study of knots began at the end
of the nineteenth century and turned out to be crucial for modern physics.

To study knots, knot invariants are helpful. Classical examples include polynomials,
such as the Alexander or Jones polynomial, or q-series. In some cases, these q-series turn
out to have modular properties. In this part of the thesis, we study a q-series ΦK(q)
associated with an alternating link K, called the tail of the coloured Jones polynomial.
The main result of this part is presented in Section 9.1 and is a general formula for ΦK(q)
for a class of links in terms of (partial) theta functions. The results presented here, which
are the author’s work, will also appear in a paper with Robert Osburn [OS24].

In this Chapter, we recall the background on knots, the coloured Jones polynomial and
the tail of the coloured Jones polynomial.

7.2. Knots, links, and the (coloured) Jones polynomial

We will give some background on knot theory. References include [Ada94, Lic97].

Definition 7.2.1. A link of m ∈ Z≥1 components is an embedding of m copies of S1 into
R3. A link with one component is a knot. We say that two links are equivalent if there
exists an orientation-preserving piecewise linear homeomorphism h : R3 → R3 that maps
the former in the latter link.

We will represent knots, resp. links, using knot, resp. link, diagrams, i.e., projections
to R2. Examples of knot diagrams are given in Figure 7.1. &&

Figure 7.1.: Two diagrams of the unknot and the trefoil knot 31

For two link diagrams, the correspong links are equivalent if the diagrams can be
transformed into each other by a sequence of Reidemeister moves as depicted in Figure 7.2.
For example, in Figure 7.1 the second knot diagram can be deformed into the unknot.

A fundamental problem in knot theory is to distinguish knots and links from each other.
For example, for the trefoil knot K = 31, the third knot in Figure 7.1, it is not obvious
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Figure 7.2.: Reidemeister Moves

whether K is equivalent to the unknot. To distinguish knots from each other one can use
knot invariants, i.e., maps from knot diagrams such that two equivalent diagrams have
the same image. For instance, in Example 7.2.3 we will use the Jones polynomial to show
that the trefoil knot is not the unknot.

Knots were first tabulated by Tait [Tai00] and Little [Lit00]. It is common to use the
notation Cl for the l-th knot with minimal crossing number C ∈ Z≥2 according to a
historic (no-canonical) ordering. For example, the trefoil knot, the third example in (7.1)
is denoted by 31. Another way of tabulating knots is Conway’s notation [Con70].

We say that a link diagram is alternating if the crossings alternate between over and
under crossings along each component of the link. For example, in Figure 7.1 the first
and the last diagram are alternating but the second one is not. A link is alternating if it
has an alternating diagram. As we saw for the unknot in Figure 7.1, an alternating link
can also have a non-alternating diagram.

Given two links L1, L2, an obvious way to create a new link is by taking the disjoint
union of them, denoted by L1 ⊔L2. For two knots K1,K2 we can form their composition
or connected sum K1#K2 by removing a small unknotted arc at each knot and connecting
each endpoint of a string with one from the other knot. We say that a knot or link is
prime if it cannot be written as a composition K1#K2 for K1,K2 not equivalent to the
unknot. Usually, studying invariants reduces to prime knots and links.

7.2.1. The (coloured) Jones polynomial

We will introduce an important link polynomial called the Jones polynomial that was
introduced by Jones in 1985 [Jon85] using von Neumann algebras. The Jones polynomial
has been used to prove old conjectures in knot theory and is important for quantum field
theory. References include [Lic97, MY18].

We say that a link is oriented if every component has an orientation that we indicate
by an arrow in the diagram.

Definition 7.2.2. The Jones polynomial JK(q) ∈ Z[q±1/2] is an invariant for oriented
links K that satisfies the following.

1. J©(q) = 1, where © denotes the unknot.

2. JK(q) satisfies

(q−1/2 − q1/2)JK0(q) = qJK−(q)− q−1JK+(q), (7.1)

where K0,K± are link diagrams that differ at one crossing by

K+ K− K0
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7.2. Knots, links, and the (coloured) Jones polynomial

Equation (7.1) implies that the Jones polynomial is computable in finitely many steps
from a given link diagram. One can show that JL(q) ∈ Z[q±1] if L is a link with an odd
number of components, e.g., a knot. From (7.1) it follows that JL(q) does not change if
we reverse the orientation of every component of L.

Example 7.2.3. 1. Let L be the link consisting of two disjoint unknots. With L = L0

we consider the “crossing” in the following diagrams

·

&
I
:X & (7.2)

where L± corresponds to the two possible crossings. We note that the associated
knots L± are both unknots and thus JL±(q) = 1 such that

JL(q) =
qJL−(q)− q−1JL+(q)

q−1/2 − q1/2
= −q−1/2 − q1/2. (7.3)

2. Let K = 31 be the trefoil knot, see Figure 7.1. Applying the relation to the links
K+ = K,K0, and K−

O· 8j
k
+

k
-

Ko

(7.4)

we obtain
JK+(q) = q2JK−(q)− q(q−1/2 − q1/2)JK0(q)

= q2 − (q1/2 − q3/2)JK0(q).
(7.5)

The relation (7.1) for K0 implies JK0(q) = −q1/2 − q5/2. Therefore, we have

JK(q) = q2 + (q1/2 − q3/2)(q1/2 + q5/2)

= q + q3 − q4.
(7.6)

In particular, JK(q) ∕= 1 and we deduce that K = 31 is not the unknot.

The Jones polynomial has the following properties.

Proposition 7.2.4. 1. If L = L′ ⊔ ©, where © denotes the unknot, then JL(q) =
(−q−1/2 − q1/2)JL′(q). More generally, if L = L1 ⊔ L2 for links L1, L2, then
JL1⊔L2(q) = (−q−1/2 − q1/2)JL1(q)JL2(q).

2. For knots K1,K2, we have JK1#K2(q) = JK1(q)JK2(q).
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7. The tail of the coloured Jones polynomial

3. Denote by L∗ the mirror of L, i.e., the link obtained by inverting all crossings of L.
Then JL(q) = JL∗(q−1).

Proof. Parts 1. and 2. follow by applying the relation (7.1) first to one component and
then to the other component. For part 3., note that if we invert each crossing, the roles
of L+ and L− in (7.1) will interchange.

In Example 7.2.3, we computed the Jones polynomial for the trefoil knot 31. In par-
ticular, we have J31(q) ∕= J31(q

−1) = J3∗1(q), which shows that 31 is not equivalent to its
mirror 3∗1.

Even though the Jones polynomial can be used to distinguish knots from each other, it
is not a full knot invariant. That means that two links with the same Jones polynomial
are not necessarily equivalent. However, it is conjectured that the unknot is the only knot
with JK(q) = 1.

We will introduce a generalisation of the Jones polynomial, the coloured Jones poly-
nomial [KM91, MY18]. Therefore, define the Chebyshev polynomials of the second kind
SN (x) ∈ Z[x] for N ∈ Z≥1 recursively by S1(x) = 1, S2(x) = x and for i ≥ 2 via
Si(x) = xSi−1(x)− Si−2(x). For instance,

S3(x) = x2 − 1, S4(x) = x3 − 2x, S5(x) = x4 − 3x2 + 1. (7.7)

We write SN (x) =
󰁓N−1

j=0 sN,jx
j for N ∈ Z≥1. For a link L denote by L(i) the i-cabling

of L, i.e., the link where we replace each component by N copies of the component. For

example, a diagram of 3
(2)
1 is given as follows

D (7.8)

Definition 7.2.5. For N ∈ Z≥1, the N -th coloured Jones polynomial JK(q;N) ∈ Z[q±1/2]
for an oriented link K is defined by

JK(q;N) :=
q − q−1

qN/2 − q−N/2

N−1󰁛

j=0

sN,j JK(j)(q) (7.9)

with the convention JK(0)(q) = −1
q−1/2+q1/2

.

We have JK(q; 1) = 1 as well as JK(q; 2) = JK(q). Moreover, in our normalisation we
have J©(q;N) = 1 for all N ∈ Z≥1. This can be checked using J©(j) = (−q−1/2−q1/2)j−1

in combination with some well-known identities for the Chebyshev polynomials SN (x).

Equivalently, the coloured Jones polynomial can be defined for links withm components
and a colouring of the components [Gar18] or via braid representations of L and the trace
of so-called R-matrices [MY18].

Example 7.2.6. For K = 31, we have JK(q) = q + q3 − q4, cf. Example 7.2.3. With
(7.8) or using KnotFolio [Mil24], one can compute

JK(2)(q) = −q−
23
2 + q−

21
2 + q−

17
2 − q−

9
2 − q−

5
2 − q−

1
2 . (7.10)
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7.2. Knots, links, and the (coloured) Jones polynomial

Thus, we have with S3(x) = x2 − 1

JK(q; 3) =
q + q−1

q3/2 − q−3/2
(JK(2)(q)− JK(0)(q))

= q−11 − q−10 − q−9 + q−8 − q−7 + q−5 + q−2.

(7.11)

The coloured Jones polynomial fulfils similar properties as the Jones polynomial. The
proofs are similar to the proofs in Proposition 7.2.4 or follow directly from them.

Proposition 7.2.7. 1. We have JL1⊔L2(q;N) = (−q−1/2 − q1/2)JL1(q;N)JL2(q;N)
for links L1, L2 and all N ≥ 1.

2. For knots K1, K2 we have JK1#K2(q;N) = JK1(q;N)JK2(q;N) for all N ∈ Z≥1.

3. We have JL(q;N) = JL∗(q−1;N) for all N ∈ Z≥1.

The coloured Jones polynomial is a stronger invariant than the Jones polynomial. For
example, for K = 10a669 the Jones polynomial

JK(q) = − q−6 + 2q−5 − 4q−4 + 6q−3 − 7q−2 + 9q−1 − 9 + 9q − 7q2 + 6q3 − 4q4 + 2q5 − q6

= JK(q−1) = JK∗(q)
(7.12)

is palindromic, meaning it cannot distinguish K from its miror K∗. However, the third
coloured Jones polynomial [Gar11]

JK(q; 3) =
1

q17
− 2

q16
+ · · ·− 2q18 + q19 ∕= JK(q−1;N) = JK∗(q; 3) (7.13)

is not palindromic and thus K ∕= K∗.
It is well-known that several other knot invariants are encoded in the coloured Jones

polynomial. According to the now proven Melvin-Morton-Rozansky Conjecture [BNG96],
the Alexander polynomial ∆K(q) ∈ Z[q] of a knot K is determined by its coloured Jones
polynomials: With the expansion

JK(eh;N)

J©(eh;N)
=

󰁛

i≥j≥0

aK,ijn
jhi ∈ Q[[n, h]] (7.14)

we have
∞󰁛

i=0

aK,ijh
i =

1

∆K(eh)
∈ Q[[h]]. (7.15)

Moreover, the coloured Jones polynomial JK(q;N) specialised to q = ζN = e2πi/N

equals another knot invariant, the Kashaev invariant 〈K〉N ∈ Z[[ζN ]]. According to
the famous Volume conjecture, it is believed that the Kashaev invariant, and thus the
coloured Jones polynomial, contains information about the hyperbolic structure of the
knot complement [Kas97, MM01, MMO+02].

Conjecture 7.2.8 (Volume conjecture). For any knot K we have

lim
N→∞

2π
log JK(e2πi/N ;N)

N
= v(K) (7.16)

where v(K) denotes the complexified volume of S3 󰄀K.
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7. The tail of the coloured Jones polynomial

The complexified volume is the volume as defined in Proposition 2.2.7 for an element
in the Bloch group associated to the knot K.

The Volume conjecture is only known to be true for a few knots. It has been refined to
higher terms in the asymptotic expansion in (7.16), cf. [DG13, DGLZ09, Gar08, Zag10].
By setting q = e2πi/N in equation (7.16), we can rewrite (7.16) as

JK(q;N) = q̃v(K)i/4π2
(a+O( 1

N )), N → ∞ (7.17)

for some a ∈ C and q̃ = e−2πiN which resembles the asymptotics of a modular function
cf. Proposition 2.4.5. Recently, Garoufalidis-Zagier [GZ24] refined the asymptotics by
including subleading exponential terms. This sheds light on the underlying modular
behaviour of the Kashaev invariant and thus the coloured Jones polynomial. Moreover,
Garoufalidis-Zagier [GZ23] relate the Jones polynomial to q-series that are generalised
Nahm sums for half-symplectic matrices.

In the following, we will examine further modular behaviour of limits of JK(q,N) as
N → ∞, with a fixed variable q. This limit is slightly different than the one in the Volume
conjecture. We will compare them in subsection 9.4.3.

7.3. Stability properties of the coloured Jones polynomial

We say that a sequence of polynomials pn(q) ∈ Z[q±] stabilises to a q-series p(q) ∈ 1 + Z[[q]]
if the first n terms in pn(q) agree with the first n terms in p(q).

Theorem 7.3.1 ([Arm14, GL15]). Let K be an alternating link. Then the sequence of
coloured Jones polynomials (JK(q;N))N stabilises to a q-series ΦK(q) ∈ 1 + Z[[q]], the
tail of the coloured Jones polynomial.

For a link L we denote by (󰁦JK(q;N))N the normalised coloured Jones polynomial,

meaning 󰁦JK(q;N) = qcNJK(q;N) ∈ 1 + qZ[q] for some cN ∈ 1
2Z. Then it follows that

limN→∞ 󰁦JK(q;N) = ΦK(q)

Higher order stability, e.g., stability of the sequence (󰁦JK(q;N) − ΦK(q))N , was dis-
cussed by Garoufalidis-Lê [GL15] and stability for a more general class of knots, so-called
adequate knots, was proven in [Arm13]. In the following we will assume that K is alter-
nating.

Example 7.3.2. For K = 52, the coloured Jones polynomials are given by ([LO19])

JK(q,N) = qN−1
󰁛

0≤n1≤n2≤N−1

qN(N−1−n2)+n1(n1+1) (q
1+N ; q)n2(q

N−n2 ; q)n2(q; q)n2

(q; q)n1(q; q)n1(q; q)n2−n1

(7.18)
and the normalised coloured Jones polynomials are thus given by

󰁦JK(q,N) = q1−NJK(q,N). (7.19)

For instance, we have
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7.4. Computation of the tail of the coloured Jones polynomial

󰁦JK(q, 1) = 1,

󰁦JK(q, 2) = 1− q + 2q2 − q3 + q4 − q5,

󰁦JK(q, 3) = 1− q + 0q2 + 3q3 − 2q4 − q5 + 4q6 − 3q7 − q8 + · · ·+ q15,

󰁦JK(q, 4) = 1− q + 0q2 + q3 + 2q4 − 2q5 − 2q6 + 2q7 + 4q8 + · · ·+ q30,

󰁦JK(q, 5) = 1− q + 0q2 + q3 + 0q4 + 2q5 − 3q6 − q7 + 2q8 + · · ·+ q50,

󰁦JK(q, 6) = 1− q + 0q2 + q3 + 0q4 + 0q5 + q6 − 2q7 − q8 + · · ·+ q75,

󰁦JK(q, 7) = 1− q + 0q2 + q3 + 0q4 + 0q5 − q6 + 2q7 − 2q8 + · · ·+ q105.

(7.20)

In (7.18), we see that only the summands with n2 = N − 1 do not vanish as N → ∞ and
thus the (normalised) coloured Jones polynomials stabilise to the q-series

ΦK(q) = lim
N→∞

󰁦JK(q,N) = (q; q)∞
󰁛

n1≥0

qn1(n1+1)

(q; q)2n1

=
󰁛

k≥0

(−1)kqk(k+1)/2

= 1− q + q3 − q6 + q10 − q15 + q21 − q28 + q36 − q45 +O(q50)

(7.21)

where the last equality in the first line follows from Entry 9 in [Ber91].

It follows directly from Proposition 7.2.7 that for links L1, L2 we have

ΦL1⊔L2(q) = (−q−1/2 − q1/2)ΦL1(q)ΦL2(q) (7.22)

and for knots K1,K2

ΦK1#K2(q) = ΦK1(q)ΦK2(q). (7.23)

7.4. Computation of the tail of the coloured Jones polynomial

The tail of the coloured Jones polynomial for an alternating link diagram has an ex-
plicit representation as a q-hypergeometric series. We will recall this representation from
[GL15].

7.4.1. Tait graphs

A sign-coloured diagram is a diagram where the faces are coloured with + or −, subject
to

++

−

−

at each crossing. In other conventions, sign-coloured diagrams are called checkerboard-
coloured diagrams and the +-coloured, resp. −-coloured, faces correspond to black, resp.
white, faces. If a link K is alternating, then it has a sign-coloured diagram.

The Tait graphs T± of a sign-coloured diagram D are the graphs with vertices corre-
sponding to the ±-coloured faces of D. Two vertices form an edge if the corresponding
faces share a crossing. The +–Tait graph for K is the −–Tait graph for the mirror K∗ of
K and vice versa.
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7. The tail of the coloured Jones polynomial

7.4.2. The tail of the coloured Jones polynomial

Let F be the faces of T+ and W be the vertices of T+. For a face f ∈ F denote by v(f)
the number of adjacent vertices and for vertices v, w ∈ W we write e(v, w) for the number
of edges from v to w. Moreover, we write v ∈ f for v ∈ W and f ∈ F if v is at the
boundary of the face f .

We define a quadratic, integral matrix Q, indexed by F ∪W, in block form

Q =

󰀳

󰁃QFF QFW

QWF QWW

󰀴

󰁄 , (7.24)

where for f, g ∈ F and v, w ∈ V

QFF
f,g =

󰀫
0 if i ∕= j,

v(f) if f = g,
QFW

fv =

󰀫
0 if v /∈ f ,

1 if v ∈ f ,

QWF
vf = QFW

fv , QWW
vw = e(v, w).

(7.25)

Moreover, we define a vector b ∈ 1
2Z

|F|+|W| indexed by F ∪ V with entries

bf =
v(f)

2
− 1 for f ∈ F , bv = 1 for v ∈ W. (7.26)

We will assign a variable to each face and each vertex of T . Therefore, we will
use the names of the vertices and faces as variable names. In other words, we write
s = (sF , sW) ∈ Zr+s with entries sF = (f)f∈F , s

W = (v)v∈W .
Moreover, we pick v0 ∈ W with v0 ∈ f∞ and set v0 = f∞ = 0 where f∞ denotes

the unbounded face. We say that s ∈ Zr+s as above is admissible if f + v ≥ 0 for all
(f, v) ∈ F × V with v ∈ f . In particular, we require v ≥ 0 whenever v ∈ f∞. We denote
the set of admissible elements by Λ ⊂ Zr+s.

Theorem 7.4.1. [GL15, Theorem 1.10] Let K be an alternating link diagram with c
crossings. Then the tail of the coloured Jones polynomial of K is given by

ΦK(q) = (q)c∞
󰁛

s∈Λ
(−1)2b

T s q
sTQs/2+bT s

󰁜

v∈f
(q)v+f

,
(7.27)

where the product is over all pairs (f, v) ∈ F ×W with v ∈ f .

The tail of the Jones polynomial of an alternating link K is already determined by the
reduced Tait graph T+ of K ([GL15, GV15]).

Since ΦK only depends on the (reduced) Tait graph T+ of K we also write ΦT+ for ΦK .
We illustrate this construction of ΦK(q) for K = 52 and K = 5∗2.

Example 7.4.2. A sign-colouring of K = 52 and the corresponding Tait graphs are given
by

−−

+

−

−
+

+
T+ =

v1

v2

v3

v4

f2f1 f∞ T− = v1 v2

v3

f1

f2

f3

f∞
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7.4. Computation of the tail of the coloured Jones polynomial

• For K = 52, the matrix Q ∈ Z7×7 and the vector b ∈ Z7 are indexed corresponding
to the faces and vertices of T+ by (f1, f2, f∞, v1, v2, v3, v4) and given by

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

4 0 0 1 1 1 1

0 2 0 1 0 0 1

0 0 4 1 1 1 1

1 1 1 0 1 0 2

1 0 1 1 0 1 0

1 0 1 0 1 0 1

1 1 1 2 0 1 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, b =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1

0

1

1

1

1

1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (7.28)

With f∞ = v1 = 0, an element s = (f1, f2, f∞, v1, v2, v3, v4) ∈ Z7 is admissible if
f1, f2, v2, v3, v4 ≥ 0 and according to Theorem 7.4.1 we have

ΦK(q) = (q)5∞
󰁛

s∈Λ
(−1)2b

T s q
sTQs/2+bT s

󰁜

v∈f
(q)sv+sf

= (q)5∞
󰁛

f1,f2≥0
v2,v3,v4≥0

q2f
2
1+f1v2+f1v3+f1v4+f2

2+f2v4+v2v3+v3v4+f1+v2+v3+v4

(q)f1(q)f1+v2(q)f1+v3(q)f1+v4(q)f2(q)f2+v4(q)v2(q)v3(q)v4

= 1− q + q3 − q6 + q10 − q15 + q21 +−q28 + q36 − q45 +O(q55).
(7.29)

• For K∗ = 5∗2, the matrix Q ∈ Z7×7 and the vector b ∈ Z7 are indexed corresponding
to the faces and vertices of T− by (f1, f2, f3, f∞, v1, v2, v3) and given by

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

3 0 0 0 1 1 1

0 2 0 0 1 1 0

0 0 2 0 1 1 0

0 0 0 3 1 1 1

1 1 1 1 0 3 0

1 1 1 1 3 0 1

1 0 0 1 1 1 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, b =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1
2

0

0

1
2

1

1

1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (7.30)

With f∞ = v1 = 0, an element s = (f1, f2, f3, f∞, v1, v2, v3) ∈ Z7 is admissible if
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7. The tail of the coloured Jones polynomial

f1, f2, f3, v2, v3 ≥ 0 and Theorem 7.4.1 yields

ΦK∗(q) = (q)5∞
󰁛

s∈Λ
(−1)2b

T s q
sTQs/2+bT s

󰁜

v∈f
(q)sv+sf

= (q)5∞
󰁛

f1,f2,f3≥0
v2,v3≥0

(−1)f1q
3
2
f2
1+f1v2+f1v3f2

2+f2v2+f2
3+f3v2+v2v3+

1
2
f1+v2+v3

(q)f1(q)f1+v2(q)f1+v3(q)f2(q)f2+v2(q)f3(q)f3+v2(q)v2(q)v3

= 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 + q40 +O(q51).
(7.31)
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8. Arborescent knots and links

8.1. The construction of arborescent links

Following [BS10, AFH+21], we will introduce a class of links, called arborescent links, that
are constructed from a weighted tree. The construction of arborescent links is equivalent
to Conway’s construction [Con70] of algebraic links. In Section 9.1, we will find a closed
formula for the tail of the coloured Jones polynomial for a class of arborescent links.

Definition 8.1.1. A section-weighted tree Γ = (V, E , w) is a planar embedding of a tree
(V, E) together with weights w(w, v, w′) for neighbouring vertices w,w′ adjacent to v ∈ V.

For a given section-weighted tree, the weights are depicted as numbers written in the
sections around the vertices. We use the convention that we omit all weights 0.

Let Γ = (V, E , w) be a section-weighted tree. For every vertex, we will associate a
twisted ribbon and the structure of the tree will define how the surfaces are plumbed to
each other. The boundary of the constructed surface is a link, called the link associated
to Γ.

1. Let v ∈ V be a vertex with n ∈ Z≥0 adjacent vertices v1, . . . , vn ∈ V in counterclock-
wise order around v. The ribbon associated to v has nmarked squares corresponding
to vi, i = 1, . . . , n, and between the squares for vi and vi+1 there are w(vi, v, vi+1)

half twists, see Figure 8.1. We use the convention that vn+1 = v1 and that is

a positive half-twist. The ribbon has two orientations: a horizontal core orientation

v1

w(v1, v, v2)

v2

w(v2, v, v3)

vn

w(vn, v, v1)

. . . . . . . . . . . .c
n

Figure 8.1.: The ribbon associated to v

(c) and a vertical normal orientation (n).

2. For every edge (v, v′) ∈ E , we plumb the ribbons for v and v′ along the squares for
v′ and v in such a way that the core orientation of v matches the normal orientation
of v′ and vice versa, cf. Figure 8.2.

3. The plumbed ribbons define a surface and the boundary of this surface is a link L.
We say that L is the link associated to Γ.

We consider explicit examples to illustrate the construction.
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8. Arborescent knots and links

..n
-

... I·V n V

·

Figure 8.2.: The plumbing of v and v′

Example 8.1.2. 1. For the section-weighted tree

−2
v1

3
v2

(8.1)

we construct two ribbons associated to the vertices

-- -+ 3V,:- : ↳
- 2

yI -

- /

L Ival -- In22-

Plumbing the two ribbons yields the arborescent link K = 52 that we have already
seen in Example 7.4.2.

-- -

& -En S--
i n- f Y
- -

- -Gr Es-- -
-

-

SW -
2. We consider the section-weighted tree

v3

3 v0 −3

12

2
v1

3 v2

(8.2)

The ribbons corresponding to the vertices v0, . . . , v3 are given byP-
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8.2. Arborescent tangles

According to the tree, the plumbed ribbons are given by

MTheir surface can be transformed into the knot M 2
that can be transformed into the knot K = 85 using a sequence of Reidemeister
moves into the knot

⑮W (8.3)

We will see another description of 85 as arborescent knot in (8.7). We will see how
to transform the corresponding trees into each other in Lemma 8.3.1.

8.2. Arborescent tangles

A tangle is defined as a region of a knot or link diagram with exactly 4 emerging strings
in the directions NW, NE, SE, and SW. Two tangles are considered to be the same if
they are connected via a sequence of Reidemeister moves.

We define the tangle associated to a section-weighted rooted tree. A section-weighted,
rooted tree is a section-weighted tree with a marked vertex, the root, which has an ema-
nating germ in one direction (here depicted by ). For a given section-weighted, rooted
tree with root v0 we define the associated tangle as the boundary of the associated surface
where the ribbon corresponding to v0 is cut at the place corresponding to the germ leaving
4 emanating strings.

Example 8.2.1. We consider the weighted tree from Example 8.1.2 with root v1

−2
v1

3
v2
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8. Arborescent knots and links

The corresponding tangle is given by

O

↑ - -

-
-

~- &- S-- fi2 I& ->
- -C - -Gr E-- &
-

-

-

W S

(8.4)

The ±–Tait graphs for a tangle are defined similarly with the addition of marked
vertices corresponding to the North and South faces or the East and West faces. They

are depicted by 󰂏 .

The reduced Tait graphs T ′
± of a tangle are obtained from the regular Tait graphs by

replacing multiple edges with single edges and removing loops.

Example 8.2.2. 1. Consider the tangle corresponding to the section-weighted, rooted

tree
v
. With ± = sign(v), the Tait graphs are given by

T± = · · ·󰂏 󰂏 T∓ =

󰂏

· · ·

󰂏

(8.5)

with |w| vertices, resp. |w| edges.

2. The Tait graphs for the tangle in (8.4) are given by

T+ =

󰂏

󰂏

T− = 󰂏 󰂏 (8.6)

In the following figures we depict tangles by circles, arborescent trees by squares, and
Tait graphs by hexagons.

8.3. Moves on weighted planar trees

There are moves that change a section-weighted (rooted) tree without changing its as-
sociated link or tangle. We mention the following two moves which follow from the
construction, see e.g., [BS10, §12.3].

Lemma 8.3.1. In a section-weighted (rooted) tree we can replace

. . . a

b
. . . by . . .a∓ 1

b± 1
. . . without changing the corresponding tangle if we reverse

the order of all vertices lying on the right of the vertex with odd distance.
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8.3. Moves on weighted planar trees

Hence, we can assume that for every vertex only one weight is non-zero. In this case, we
write w(v) for the unique non-zero weight of v ∈ V. In particular, each section-weighted
tree can be deformed into a weighted tree, meaning that each vertex has at most one
non-zero weight.

Lemma 8.3.2. We can apply the following moves to a section-weighted tree without
changing the associated links.

1. A subgraph of the form a±1 . . . can be replaced by a∓ 1. . . .

2. A subgraph of the form
b

0a . . .. . . can be replaced by a+ b. . .. . . .

3. A subgraph of the form ba0 . . . can be replaced by b . . . .

These moves also appear as Kirby-Neumann moves in the context of Dehn surgery and
plumbing graphs for 3-manifolds [Neu81].

For example, the tree in (8.2) can be transformed into the tree

3 0 2

3

(8.7)

giving directly the representation (8.3) of the knot 85 .

8.3.1. Alternating weighted trees

Let Γ be a weighted tree such that there exists a bipartition V+∪V+ of V with±w(V±) ≥ 0.
We call a weighted graph with this property alternating and it is easy to show that the
corresponding link is alternating.

8.3.2. Unsplittable and prime arborescent links

Recall that a link is unsplittable if there is no 2–dimensional sphere that splits K. More-
over, a link K is prime if it cannot be written as the connected sum of two links. The
following Proposition follows from [AFH+21, §17.5.3].

Proposition 8.3.3. Let Γ = (V, E , w) be a reduced, weighted tree, meaning it has no
vertex with degree ≤ 1 of weight 0. Then the associated link K is prime and unsplittable.
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9. The modularity of the tail of the
coloured Jones polynomial

9.1. The main result

In this chapter we present the main result of this part: A formula for the tail of the
coloured Jones polynomial in terms of (partial) theta functions for a class of arborescent
links.

In [GL15, Appendix D], Garoufalidis and Lê with Zagier conjectured representations
of ΦK(q) for several knots with up to 8 crossings in terms of products of the functions

hb(q) =
󰁛

n∈Z
󰂃b(n)q

bn(n+1)/2−n, b ∈ Z≥1 (9.1)

where

󰂃b(n) =

󰀻
󰁁󰀿

󰁁󰀽

(−1)n if b is odd,

1 if b is even and n ≥ 0,

−1 if b is even and n < 0.

(9.2)

The functions q(2−b)2/8bhb(q) are theta functions if b is odd and partial theta functions if
b is even. For example, we have

h1(q) = 0, h2(q) = 1, h3(q) = (q)∞, (9.3)

h4(q) =
󰁛

k≥0

(−1)kqk(k+1)/2, h5(q) = ϑ5,2(τ), (9.4)

see (7.21) and (3.2). As in Example 2.4.6, one can show that the theta function hb(q) for
odd b are modular forms. Partial theta functions are known to be related to mock theta
functions and possess (quantum) modular behaviour [BM15, Bri21, GO21, Zag09].

The identities for 31, 41, and 63 have been proven by Andrews [And13] and all other
identities by Keilthy and Osburn [KO16]. Beirne and Osburn [BO17, Bei20] extended the
list to several knots with up to 10 crossings. Some identities are tabulated in Table 9.1.
However, identities for a few knots such as K = 85 are missing, marked with “?” in the
table.

As discussed above, ΦK(q) is already uniquely determined by the (reduced) Tait graph
T ′ of K. The most important planar graphs are polygons. The associated q-series were
computed in [AD11, Theorem 3.7] using the Andrews-Gordon identities [And74].

Proposition 9.1.1. Let PN be a N–gon, N ∈ Z>0. Then

ΦPN
(q) = hN (q). (9.5)

The tail of the coloured Jones polynomial is multiplicative with respect to gluing poly-
gons to Tait graphs.
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9. The modularity of the tail of the coloured Jones polynomial

K ΦK(q) ΦK∗(q) K ΦK(q) ΦK∗(q)

31 h3(q) 1 85 ? h3

41 h2(q) h2(q) 818 ? ?

51 h5(q) 1 916 h4(q)
2h3(q) h4(q)

52 h4(q) h3(q) 11a250 ? h3(q)
2

Table 9.1.: Some identities for ΦK(q).

Theorem 9.1.2 ([GV15, Lemma 1.5]). Let T be the edge connected sum of a graph T1
and a N -gon PN . Then

ΦT (q) = ΦT1(q)ΦPN
(q) = ΦT1(q)hN (q). (9.6)

So far, the modularity of ΦK(q) has only been shown for examples of alternating knots.
The main result in this section is a general formula for the tail of the coloured Jones
polynomial for a class of arborescent links in terms of the functions hb(q).

With the construction of arborescent links from Chapter 8, we have the following main
theorem.

Theorem 9.1.3. Let Γ = (V, E , w) be a reduced, alternating weighted tree with associated
link K. If 0 /∈ w(V−), then we have

ΦK(q) =
󰁜

v∈V+

hw(v)+e(v)(q), (9.7)

where e(v) for v ∈ V denotes the number of edges adjacent to v.

Remark 9.1.4. 1. Given a link K with associated weighted tree Γ, the mirror link
K∗ of K can be constructed by flipping the signs of the weights of Γ. Hence, if
0 /∈ w(V+), we have

ΦK∗(q) =
󰁜

v∈V−

h−w(v)+e(v)(q). (9.8)

2. The number of vertices of weight 0 can be reduced using the moves on weighted trees
from Lemma 8.3.2 without changing the associated link. We note that the moves
discussed there do not affect the formula in Theorem 9.1.3, because h2(q) = 1.

3. The fact that Γ is reduced implies that K and K∗ are prime and unsplittable. Other-
wise the tail of the coloured Jones Polynomial can be computed from the components
of K using (7.22) and (7.23).

We study the Tait graph for arborescent links in Section 9.3 and prove the following
proposition. In particular, in combination with Theorem 9.1.2, this implies Theorem 9.1.3.

Proposition 9.1.5. Let Γ and K be as in Theorem 9.1.3 and assume that |V| ≥ 2. Then
the Tait graph T+ of K consists of polygons of sizes |w(v)|+ e(v), v ∈ V+ glued together.

The assumption 0 /∈ w(V−) assures that the Tait graph T of K has no interior vertices
and Theorem 9.1.2 is applicable.
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9.2. Examples and corollaries

The first knot K for which the modularity properties of ΦK(q) are unknown is K = 85.
It is easy to check that the formula from Theorem 7.4.1 does not hold for 85. There exists
a representation of Φ85(q) as a 2–fold sum which makes numerical experiments efficient.
Based on asymptotic experiments, we give strong asymptotic evidence in Section 9.4 that
Φ85(q) cannot be written as a product of the (partial) theta functions hb(q). This leads
to the question whether the criterion 0 /∈ w(V−) in Theorem 9.1.3 classifies arborescent
links K for which ΦK(q) can be written as a product of (partial) theta functions.

The first knot that is not arborescent is K = 818 and there is no known theta-series
representation for ΦK(q) or ΦK∗(q). We discuss this knot in subsection 9.4.2.

Moreover, we remark that the q-series occurring as the tail of the coloured Jones poly-
nomial also occur as characters of VOAs [BKM19, BM17, HK03, Kan23, Kan24].

9.2. Examples and corollaries

We give examples and consequences of Theorem 9.1.3.

9.2.1. 2–bridge knots

A 2–bridge knot can be constructed from a tree given by

−dn +dn−1 −dn−2 . . .
(−1)nd1

for d1, . . . , dn ∈ Z>0. Then K is given in Conway’s notation by the sequence [d1 d2 . . . dn].
In Conway’s terminology, 2–bridge knots are called rational.

We denote the vertices by their weights di and partition them into two parts {di : i odd}
and {di : i even}. We have v(ei) = 1 if i = 1, n and v(ei) = 2 otherwise. With the vector

b = (di + e(vi))i = d+ (1, 2, 2, . . . , 2, 1)T , (9.9)

Theorem 9.1.3 immediately implies the following result.

Corollary 9.2.1. If K is a 2–bridge knot as above, then

ΦK(q) =
󰁜

i even

hbi(q), ΦK∗(q) =
󰁜

i odd

hbi(q). (9.10)

Example 9.2.2. 1. We have seen in Example 8.1.2 that the knot K = 52 is con-
structed from the weighted tree given in (8.1). Hence, we have

ΦK(q) = h4(q), ΦK∗(q) = h3(q). (9.11)

This also follows from the Tait graphs of K = 52 given in Example 7.4.2.

2. Let K = 76 = [2 2 1 2]. An associated graph is given by

−2 +1 −2 +2

and thus, we have

ΦK(q) = h2+1(q)h1+2(q) = h23(q),

ΦK∗(q) = h2+2(q)h2+1(q) = h3(q)h4(q).
(9.12)

The reduced Tait graphs T± of K are given by
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9. The modularity of the tail of the coloured Jones polynomial

T+ = T− =

Since the Tait graph T+, resp. T−, consists of two edge-connected triangle and a
square, resp. of a triangle and a square, (9.12) also follows from Theorem 9.1.2.

9.2.2. Montesinos links

A Montesinos link K can be constructed by a star-shaped tree ([AFH+21, §17.6.2]) of
the form

−k

+d
(1)
n1

−d
(1)
n1−1 · · ·

±d
(1)
1

+d
(2)
n2

−d
(2)
n2−1 · · ·

±d
(2)
1

+d
(m)
nm

−d
(m)
nm−1 · · ·

±d
(m)
1

...
...

...

with m ∈ Z≥1 rays of length ni ∈ Z≥1 and d
(i)
1 , d

(i)
2 , · · · d(i)ni ∈ Z≥1 for i = 1, . . . ,m. The

centre of the star has weight −k. The Conway notation of K is given by

[d(1); d(1); . . . ; d(m)+k] (9.13)

where

d(i) = [d
(i)
1 d

(i)
2 . . . d(i)ni

]. (9.14)

The number of edges for a vertex v ∈ V is given by

e(v) =

󰀻
󰁁󰀿

󰁁󰀽

m if v is the center,

1 if v is a leaf,

2 otherwise

(9.15)

and we define for i = 1, . . . ,m the vectors

b(i) = d(i) + (1, 2, 2, . . . , 2, 1)T . (9.16)

Corollary 9.2.3. Let K be a Montesinos knot as above. Then we have

ΦK∗ = hm±k

m󰁜

i=1

󰁜

j ∕≡ni mod 2

h
b
(i)
j

(q) (9.17)

and if k ∕= 0

ΦK =

m󰁜

i=1

󰁜

j≡ni mod 2

h
b
(i)
j

(q). (9.18)
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Example 9.2.4. As an example we consider the Montesinos Knot K = 916 with Conway
notation [3; 3; 2+]. The knot and an associated graph are given byB

3 −1 3

2

Since no vertex has weight 0, Theorem 9.1.3 is applicable for both ΦK(q) and ΦK∗(q) and
we have

ΦK(q) = h24(q)h3(q), ΦK∗ = h4(q). (9.19)

Both identities also follow from Theorem 9.1.2, since the Tait graphs of K are given by

T+ = T− =

and consist of edge-connected polygons.

9.2.3. More examples

Lastly, we consider the knot K = 11a250 with Conway notation [(3; 2)1(3; 2)] which is not
a Montesinos knot. The knot and an associated graph ([Cau82, p.38]) are given by

P
L

+2

+3

−0 +1 −0

+2

+3

(9.20)

Hence, Theorem 9.1.3 is not applicable to K but to K∗ and claims that

ΦK∗(q) = h0+3(q)h0+3(q) = h23(q). (9.21)

The Tait graphs of K are given by

T+ =
T− =

which also imply the formula for ΦK∗(q).
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9. The modularity of the tail of the coloured Jones polynomial

9.3. The Tait graphs for arborescent links and tangles

In this section we prove Proposition 9.1.5 and Theorem 9.1.3. Therefore, we need a
recursive construction for the Tait graphs of arborescent tangles.

9.3.1. A recursive construction of the Tait graphs

We can construct the Tait graph for arborescent tangles using the following proposition.

Proposition 9.3.1. Let Γ be an alternating, weighted tree with root v0 and associated
tangle T . We assume that v0 ∈ Vε for ε ∈ {1,−1} and that v0 is connected to the subgraphs
Γ1, . . . ,Γn via the vertices v1, . . . , vn ∈ V−ε. Let T 1

± , . . . , T n
± denote the Tait graphs of the

tangles corresponding to the tree Γi with root vi. Then the Tait graph Tε of Γ is given by

Tε = T
1 ε T
2 ε . . . T
n ε . . . 󰂏󰂏

|w(v0)|
(9.22)

with |w(v0)|+ 1 additional vertices. Moreover, the Tait graph T−ε of Γ is given by

T−ε = T 1
−ε

. . . T n
−ε

. . .

󰂏

󰂏

(9.23)

with |w(v0)| additional edges from the top to the bottom vertex.

We obtain the Tait graphs of a link K by picking a root v0 among the vertices and
inductively applying the previous proposition to the corresponding tangles.

If v0 ∈ V±, then the Tait graph T± of K is obtained from the ±–Tait graph of the
corresponding tangle by identifying the marked points. The Tait graph T∓ of K is equal
to the ∓–Tait graph of the tangle.

Proof. We consider the ribbon corresponding to v0 with gluing points for v1, . . . , vn fol-
lowed by w(v0) half-twists. Without loss of generality, we assume that v0 ∈ V+, i.e.,
w(v0) ≥ 0. If the tangles Ti correspond to Γi, the ribbon for v0 has the following form.
In the plumbing constructions the tangles Ti are flipped and T ∗

i denotes the tangle Ti

flipped along the NW and SE axis.

T∗
1 T∗

2 · · · T∗
n

−

−
+ + + + +++ ++ . . . (9.24)

The ±-coloured faces of the tangles of T ∗
i are exactly the ±-coloured faces of the tangles

of Ti. Therefore, the ±–Tait graph of T ∗
i is equal to the ±–Tait graph of Ti. Hence, the

Tait graphs T± have the claimed form.
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9.3. The Tait graphs for arborescent links and tangles

Example 9.3.2. We consider the rooted, weighted tree

−2 3 (9.25)

from Example 8.2.1 with root v0 = −2. According to Example 8.2.2, the Tait graphs for

−3
are given by

T 1
+ = 󰂏 󰂏 T 1

− =

󰂏

󰂏

(9.26)

Proposition 9.3.1 implies that the Tait graphs for the tree in (9.25) are given by

T+ = T 1
+

󰂏

=

󰂏

󰂏

󰂏

(9.27)

T− = T
1 −󰂏 󰂏 = 󰂏 󰂏 (9.28)

in accordance with (8.6).

9.3.2. Proof of Theorem 9.1.3 and Proposition 9.1.5

For |V| = 1, Theorem 9.1.3 can be checked directly. If |V| ≥ 2, Theorem 9.1.3 follows
directly with Theorem 9.1.2 (see [AD11, Theorem 3.7] and [GV15, Lemma 1.5]) from
Proposition 9.1.5. For the proof of Proposition 9.1.5 we need the following lemma.

Lemma 9.3.3. Let Γ = (V, E , w) be an alternating, reduced, weighted tree with |V| ≥ 2
and 0 /∈ w(V−). For any v0 ∈ V− the reduced Tait graph T ′

+ of the tree Γ with root v0
consists of edge-connected polygons of sizes {w(v)+e(v), v ∈ V+} and has an edge between
the two marked vertices.

Proof. We prove the claim via induction over |V|. First assume that |V| = 2 with
V± = {v±}. Since by assumption Γ has no leaf of weight 0, we have w(v+) ∕= 0. It
follows from Example 8.2.2 that T ′

+ is a polygon of size w(v+) + 1.
Now assume that the claim is true for all graphs with less than |V| vertices. Let v0 ∈ V−

be connected to w1, . . . , wn ∈ V+ and wi be connected to the subgraphs Γi,j (with vertices
Vi,j) via the vertices xi,j ∈ V− for j = 1, . . . ,mi and i = 1, . . . ,m.

v0

w1 wm

Γ1,1

x1,1

Γ1,m1

x1,m1

Γn,mn

xn,mn

Γn,1

xn,1

. . .

. . . . . .
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9. The modularity of the tail of the coloured Jones polynomial

Let T i,j
+ be the reduced Tait graphs for Γi,j with roots xi,j . By assumption, T i,j

+ consists
of edge-connected polygons of size {w(v)+e(v), v ∈ (Vi,j)+} and has an edge between the
poles.

Applying Proposition 9.1.5 twice implies that the reduced Tait graph T ′
+ for Γ with

root v0 has the form as depicted in Figure 9.1 with an edge between the marked vertices
because w(v0) ∕= 0.

In particular, T ′
+ consists of edge-connected polygons of sizes

󰁞

i,j

{w(v) + e(v) : v ∈ (Vi,j)+} ∪
n󰁞

i=1

{w(wi) +mi} = {w(v) + e(v) : v ∈ V+}

since mi = e(wi).

T 1,1
+

...

T 1,m1
+

...

T n,1
+

...

T n,m1
+

...

. . .

. . .

󰂏

󰂏

Figure 9.1.: The Tait graph T+

Proof of Proposition 9.1.5. Pick v0 ∈ V+ and assume that v0 is connected via w1, . . . , wn ∈
V− to the subgraphs with vertices V i. By Proposition 9.3.1, T ′

+ has the form as in equa-
tion (9.22) with ± = +.

By assumption, Γ has no leaf of weight 0 and the previous lemma implies that T i
+ for

i = 1, . . . , n consists of polygons of size {w(v) + e(v), v ∈ V i
+} and the two poles are

connected by an edge. This implies that T+ consists of polygons of sizes

n󰁞

i=1

{w(v) + e(v), v ∈ V i
+} ∪ {w(v0) + e(v0)} = {w(v) + e(v), v ∈ V+}.
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9.4. Non-modularity of ΦK(q)

9.4. Non-modularity of ΦK(q)

The condition 0 /∈ w(V−) in Theorem 9.1.3 implies that the Tait graph T+ of K is the
edge-connected sum of polygons.

In this case, the known formulas for the tails ΦK(q) are applicable. However, Theo-
rem 9.1.3 does not apply to any case where a formula for ΦK(q) is not known, e.g., the
entries with “?” in Table 9.1.

The first arborescent knot with this property is 85 and it is easy to check that the
suggested identity ΦK(q) = h4(q)

2h3(q) from Theorem 9.1.3 does not hold. We give
numerical evidence that the tail Φ85 is not modular and cannot be written as a product
of hb(q)’s. This leads to the question of whether the criterion 0 ∈ w(V−) classifies all
arborescent knots such that ΦK(q) can be written as a product of hb’s.

Theorem 7.4.1 gives a representation for Φ85 as an 8–fold sum and it is possible to
reduce the sum to a 2–fold-sum (see Theorem 9.4.1 below). Using this representation,
the tail can be computed efficiently. Then we can compare the asymptotics of Φ85(q) and
hb(q) as q → 1 as we did for ordinary Nahm sums in Part I of this thesis.

It is easy to prove that

hb(e
−h) ∼

󰀫
e−π2/2bh

󰁴
2π
bh cos(2π(14 − 1

2b)) if b is odd,
2
b if b is even

(9.29)

as h → 0 on any ray in the right half-plane. Hence, if a function f with asymptotics
f(e−h) ∼ eV/hhkβ as h → 0 for some V,β ∈ C and k ∈ 1

2Z can be written as a product of
hb(q)’s, the asymptotics in (9.29) would imply that V ∈ π2Q. Even though this condition
cannot be verified numerically, numerical computation can suggest if V ∈ π2Q is likely.
For example, if numerics suggest that V is not even real, then V /∈ π2Q is very likely. Note
that the asymptotics would also exclude that ΦK can be written as a linear combination
of products of theta functions with coefficients in qαC[q±], α ∈ Q.

9.4.1. Examples: Pretzel knots

A pretzel knot P (n1, . . . , nl) is an arborescent knot associated with a star-shaped tree
with l rays of length 1 where the leafs have weight n1, . . . , nl. The tail of the coloured
Jones polynomial for pretzel knots of the form K = P (2k+1, 2, 2u+1) for k, i ∈ Z≥1 can
be computed explicitly.

Theorem 9.4.1 ([EH17]). The tail of the coloured Jones polynomials for a pretzel knot
of the form K = P (2k + 1, 2, 2u+ 1) for k, u ∈ Z≥1 is given by

ΦK(q) = (q; q)2∞
󰁛

l1≥0

· · ·
󰁛

lk≥0

󰁛

p1≥0

· · ·
󰁛

pu≥0

qL
2
1+...+L2

k+L1+···Lk

(q)l1 · · · (q)lk−1
(q)2lk

qP
2
1+...+P 2

u+P1+···Pu

(q)p1 · · · (q)pu−1(q)
2
pu

(q)lk+pu ,

(9.30)
where

Lj = lj + · · ·+ lk, Pj = pj + · · ·+ pu. (9.31)

The first case is given by k = u = 1 corresponding to the knot K = 85 as in (8.3).
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9. The modularity of the tail of the coloured Jones polynomial

Example 9.4.2. We consider the tail ΦK(q) for K = 85 with Conway notation [3; 2; 3].
A knot diagram and an associated weighted tree are given by

⑮W
3 −0 3

2

(9.32)

see also (8.3) and (8.7). According to Theorem 9.4.1, we have

Φ85(q) = (q)2∞
󰁛

a,b≥0

qa
2+a+b2+b

(q)2a(q)
2
b

(q)a+b

= 1− 2q + q2 − 2q4 + 3q5 − 3q8 + q9 +O(q10).

(9.33)

As h ↘ 0 and q = e−h ↗ 1, numerics suggest that we have

Φ85(e
−h)(q)−2

∞ ∼ eV1/h

󰁵
1

hπβ
(9.34)

where with X ≈ 0.5436890 a root of x3 + x2 + x− 1

V1 = −4Li2(X) + Li2(X
2)− 2 log(X)2 +

π2

6
= −1.352936859 · · ·

β = 3 + 4X +X2.

(9.35)

This can presumably be proven similar to the asymptotics of usual Nahm sums in Sec-
tion 4. Computing V1 to a higher precision, it seems very unlikely that V1 ∈ π2Q is true.
This suggests that qcΦ85(q) for any c ∈ Q is not a modular form/function and cannot
be written as a product of the functions hb(q), b ∈ Z≥1. Computing the asymptotics as
h → 0 on a fixed ray in the right half-plane as in Theorem 4.3.1 with arg h = .45π is even
more convincing: Numerics suggest that

Φ85(e
−h)(q)−2

∞ ∼ eV2/h

󰁶
h

πβ
(9.36)

where with X ≈ −0.7718445− 1.115143i a root of x3 + x2 + x− 1

V2 = −4Li2(X) + Li2(X
2)− 2 log(X)2 − 4πi log(X) +

π2

2
= −10.83807 . . .+ 3.177293 . . . i,

β = 12 + 16X + 4X2

(9.37)

and V2 /∈ π2Q because it is not even real.

If we replace the weight 0 by −1 in the weighted tree for 85, we obtain the knot 916.
We have seen in Example 9.2.4 that both Φ916(q) and Φ9∗16

(q) can be written as products
of hb’s.

Similar computations have been performed for pretzel knots of the form K = P (2k +
1, 2, 2u+ 1) with k, u ≤ 5 using equation (9.30). These computations suggest that for all
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9.4. Non-modularity of ΦK(q)

these pretzel knots the asymptotics is given by ΦK(e−h) ∼ ahkeV/h as h ↗ 0 for some
a ∈ C, k ∈ 1

2Z, and V /∈ π2Q. Therefore, we suspect that ΦK(q), cannot be written as
a product of the functions hb(q). It would be desirable to consider more examples where
Theorem 9.1.3 is not applicable to obtain more evidence for an answer to the following
question.

Question 9.4.3. Does Theorem 9.1.3 classify arborescent, alternating links K such that
ΦK(q) is a product of (partial) theta functions? In other words, is ΦK(q) a product
of (partial) theta functions if and only if there exists an associated weighted tree with
0 /∈ w(V−)?

9.4.2. Non-arborescent knots

So far we have only discussed the modularity of the tail of the coloured Jones polynomial
for arborescent knots. The first knot that is not arborescent is K = 818 and we discuss
the tail of the coloured Jones polynomial for K next.

Even thoughK = 818 cannot be constructed from a weighted tree, K can be constructed
from the weighted graph ([Cau82, Con70]) given by an octagon

j &
AI SY-&

2

−2

2

−22

−2

2

−2

(9.38)

Following Theorem 7.4.1, the tail of the coloured Jones polynomial for 818 can be
written as an explicit 8-fold sum. The Tait graphs of K = 818 are given by

T± =

a

b

c

d

g

hi

f

j
(9.39)

With respect to the variables a, b, c, d, e, f, g, h, i, j, we define

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

3 0 0 0 0 1 1 0 0 1

0 3 0 0 0 0 1 1 0 1

0 0 3 0 0 0 0 1 1 1

0 0 0 3 0 1 0 0 1 1

0 0 0 0 4 1 1 1 1 0

1 0 0 1 1 0 1 0 1 1

1 1 0 0 1 1 0 1 0 1

0 1 1 0 1 0 1 0 1 1

0 0 1 1 1 1 0 1 0 1

1 1 1 1 0 1 1 1 1 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, b =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1
2

1
2

1
2

1
2

1

1

1

1

1

1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (9.40)
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9. The modularity of the tail of the coloured Jones polynomial

We set e = 0, as well as f = 0, and require that all of the following are non-negative

e+ f = 0 f + d = d f + a = a g + b h+ c

e+ g = g j + d g + a h+ b i+ c

e+ h = h i+ d j + a j + b j + c

e+ i = i

(9.41)
Then, using 1/(q)n = 0 for n < 0, we have

ΦK(q)

= (q)8∞
󰁛

s∈Z10

s5=s6=0

(−1)2b
T s qs

TQs/2+bT s

󰁔
si∈sj (q)si+sj

= (q)8∞
󰁛

a,b,c,d,g,h,i,j∈Z
(−1)a+b+c+d q

3a2/2+ag+aj+a/2+3b2/2+bg+bh+bj+b/2+3c2/2+ch+ci+cj+c/2

(q)g(q)h(q)i(q)d(q)a(q)j+d(q)i+d

× q3d
2/2+di+dj+d/2+gh+gj+g+hi+hj+h+ij+i+j

(q)g+a(q)j+a(q)g+b(q)h+b(q)j+b(q)h+c(q)i+c(q)j+c

= 1− 4q + 2q2 + 9q3 − 5q4 − 8q5 − 14q6 + 10q7 + 21q8 + 14q9 +O(q10)

where we identified s = (a, b, c, d, e = 0, f = 0, g, h, i, j).

Given the first terms of Φ810(q), one easily checks that a result similar to Theorem 9.1.3
is not true, i.e., Φ818(q) ∕= h3(q)

4. In addition to that, one can check numerically that
Φ818(q) is not a product of hb(q)’s for b ≤ 10. A computable representation of Φ818(q)
would be desirable in order to make any precise conjectures about the modularity of
Φ818(q).

9.4.3. Modularity and the Bloch-group

The q–series representation of ΦK(q) in equation (7.27) can be seen as a generalisation
of Nahm sums as discussed in Part I of this thesis. Since the modularity of (generalised)
Nahm sums is believed to be related to elements in the Bloch group, we expect something
similar to hold here. As in the context of Nahm sums, the conjectured non-modularity of
Φ85(q) in Example 9.4.2 relies on the non-vanishing of [X] ∈ B(C).

Recall that the Volume conjecture (Conjecture 7.2.8) provides a different connection
between the (quantum) modularity of the coloured Jones polynomial for a knot K and
certain elements in the Bloch group. Recently, Garoufalidis-Zagier [GZ23, GZ24] refined
the Volume conjecture providing more evidence for the quantum modularity related to
the coloured Jones polynomial. However, the element in the Bloch group 2[X] appearing
in Example 9.4.2 seems to be different to the one Garoufalidis and Zagier consider. For
example, the knot K = 41 is hyperbolic and thus the q-series studied by Garoufalidis-
Zagier is not modular in a classical sense. However, 41 is a 2–bridge knot with Conway
notation [2 2] and we have seen in Section 9.2 that q

1
24ΦK(q) = q

1
24h3(q) = η(τ) is modular,

where q = e2πiτ .

Even though the asymptotics in the Volume conjecture look similar to the asymptotics
for ΦK(q) (e.g., in (9.34)), they are quite different. See also the discussion in [Gar18,
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9.4. Non-modularity of ΦK(q)

§7]. In the limit in (7.17) for the Volume conjecture we consider simultaneously N → ∞
and q = e2πi/N → 1 on the unit disc. In the context of the tail of the coloured Jones
polynomial, we first take the limit of the normalised coloured Jones polynomial to obtain
its tail before considering q → 1 in the unit disk in (9.34).
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Partitions and q-series
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10. Partitions

10.1. Introduction

In this part of the thesis, we will use q-series to study classes of partitions and related
questions. The main focus lies on a conjecture of Andrews [And86] concerning the sign
pattern of coefficients of a function from Ramanujan’s “lost” notebook. This part is
mainly based on the preprint [FMRS23] that is joint work with Amanda Folsom, Joshua
Males, and Larry Rolen. The main contribution of the author of this thesis to the preprint
is the proof of Theorem 4.3.1 presented in subsection 11.1. We summarise the proofs of
Theorem 10.2.3 and Theorem 10.2.4 in Section 11.2, following [FMRS23].

A partition of n ∈ Z≥0 is a sequence of non-decreasing integers λ1 ≤ λ2 ≤ · · · ≤ λl for
l ∈ Z≥1 with

󰁓l
i=1 λi = n. For example, all partitions of 4 are given by

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. (10.1)

Denote by p(n) the number of partitions of n. For example, (10.1) gives p(4) = 5. We
define the partition function

P (q) =
󰁛

n≥0

p(n)qn = 1 + q + 2q2 + 3q3 + 5q4 + · · ·+ 3972999029388q200 + · · · .

(10.2)
The advantage of considering the series P (q) is that the properties of the function q 󰀁→ P (q)
reveal information about the coefficients p(n). The function P (q) can be written as

P (q) =
󰁛

l≥0

󰁛

λ1≤λ2≤···≤λl

qλ1+λ2+···+λl . (10.3)

If we expand λ1 = k1 ≥ 0, λi = λi−1 + k2 for some ki ≥ 0 and i = 1, . . . , l, we obtain by
computing each sum as a geometric sum

P (q) =
󰁛

n≥0

󰁛

k1≥0

· · ·
󰁛

kn≥0

qk1+2k2+···+nkn =
󰁜

i≥1

1

(1− qi)
= (q; q)−1

∞ , (10.4)

with the q-Pochhammer symbol defined in (2.40). Recall that q−1/24(q; q)∞ = η(η) for
q = e2πiτ is the Dedekind eta-function, see (2.53).

Hardy-Ramanujan developed the circle method to prove the asymptotic expansion

p(n) ∼ 1

4
√
3n

e
π
󰁴

2n
3 as n → ∞ (10.5)

using the asymptotics of P (q) for q near a root of unity. Rademacher [Rad43] refined the

circle method and made use of the modularity of q
1
24P (q) = η(τ)−1, where q = e2πiτ in

order to find an exact formula for the coefficients p(n) of P (q).

We will briefly describe the heuristics behind the circle method, since we will use an
adapted version in Section 10.2 below.
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10. Partitions

10.1.1. The circle method

Let f(q) =
󰁓

n≥0 a(n)q
n be a holomorphic function with coefficients a(n) ∈ Z. The idea

behind the circle method is to use Cauchy’s integral formula to write

a(n) =
1

2π

󰁝

C

f(q)

qn+1
dq, (10.6)

where C is a circle going counterclockwise around 0 near the unit disc. We will split up
the integral into major arcs, meaning the most significant parts of the integral, and minor
arcs, containing the rest of the integral. Assume that the most significant contribution in
the integral comes from the part where q is near a root of unity ζ ∈ C with

f(ζe−h) ∼ eV/hhkλ, as h → 0 (10.7)

for some V, k,λ ∈ R with V > 0. Then for some small ε > 0, the integral in (10.6) can
heuristically be estimated by the part where q is near ζ, suggesting

a(n) ∼ 1

2π

󰁝

C

f(q)

qn+1
dq ∼ λ

2πζnn(k+1)/2

󰁝

(−ε,ε)
e
√
n(V/z+z)zkdz. (10.8)

Bounding the error terms of course takes more care. After expanding the integral around
the saddle point of the integral z =

√
V , we expect

a(n) ∼ λ

2
√
πζn

V
k
2
+ 1

4

n
k
2
+ 3

4

exp(2
√
V n) (10.9)

as n → ∞.

For example, for P (q) as in (10.2) we know that the major contribution in the inte-
gral (10.6) comes from q near ζ = 1, see Lemma 4.4.2, with

P (e−h) ∼ eπ
2/6h h

1/2

√
2π

(10.10)

and the heuristics discussed above with V = π2

6 , k = 1
2 , and λ = 1√

2π
suggest the

asymptotic formula (10.5) found by Hardy-Ramanujan.

10.1.2. Nahm sums and generating functions for partitions

In the one-dimensional case, Nahm sums, studied in Part I of this thesis, are the generating
functions for classes of partitions. For simplicity, we assume that A ∈ Z≥1 and b ∈ A

2 +Z,
meaning that the quadratic form 1

2An2 + bn has no denominator.

Proposition 10.1.1. For n ∈ Z≥0, the summand bn(q) = q
1
2An2+bn

(q)n
is the generating

function for partitions 1 ≤ λ1 ≤ . . . ≤ λn with

λ1 ≥
A

2
+ b, λi ≥ λi−1 +A for i = 2, . . . , n. (10.11)

Moreover, the Nahm sum fA,b(q) as defined in (3.7) is the generating function for parti-
tions satisfying (10.11) for some n ∈ Z≥0.
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10.2. A sign pattern conjecture of Andrews

Proof. If we expand each factor in the q-Pochhammer symbol as a geometric series, we
obtain

bn(q) =
q

1
2
An2+bn

(q)n
= q

1
2
An2+bn

󰁛

l1≥0

· · ·
󰁛

ln≥0

q1l1+2l2+···+nln . (10.12)

By substituting kj = l1 + · · ·+ lj for j = 1, . . . , n, we obtain with n2 =
󰁓n

i=1(2i− 1)

bn(q) = q
1
2
An2+bn

󰁛

0≤k1≤···≤kn

qk1+...+kn

=
󰁛

0≤k1≤···≤kn

q
󰁓n

i=1(
A
2
(2i−1)+bi+ki).

(10.13)

If we set

λi =

󰀕
1

2
A(2i− 1) + bi + ki

󰀖
, i = 1, . . . , n, (10.14)

then λ1 ≤ · · · ≤ λn is a partition satisfying (10.11). In other words,

bn(q) =
󰁛

λ

q
󰁓n

i=1 λi , (10.15)

where the sum is over partitions λ satisfying (10.11). This proves the first claim. Summing
over all n ≥ 0 gives the second claim.

For example, for A = 2 and b = 0, the Rogers-Ramanujan function G(q) = f2,0(q),
cf. (3.1), is the generating function for partitions whose parts differ by at least 2.

The ideas from Proposition 10.1.1 can be used to examine more classes of partitions and
their properties. For example, in a project with Bringmann, Man, and Rolen [BMRS23],
we examine the parity bias of partitions with distinct parts following questions posed by
Kim, Kim, and Lovejoy [KKL20]. If dodd(n) denotes the number of partitions of n into
distinct parts with more odd than even parts, then the generating function of dodd(n) is
given by

󰁛

n≥0

dodd(n)q
n =

󰁛

n1>n2≥0

qn1(n1+1)+n2
2

(q2; q2)n1(q
2; q2)n2

. (10.16)

Moreover, let deven(n) be the number of partitions of n into distinct parts with more even
than odd parts. Using the asymptotics of (10.16) for q near roots of unity, we show in
[KKL20] that

dodd(n)− deven(n) ∼ eπ
√

n/3

8
√
6n

(10.17)

as n → ∞. In particular, dodd(n) > deven(n) for n large enough.

10.2. A sign pattern conjecture of Andrews

In the study of Ramanujan’s “lost” notebook, Andrews found several q-series with inter-
esting behaviour. For instance, Andrews [And86] notices that, while the coefficients of
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most q-series either “tend to infinity in absolute value or are bounded”, the coefficients
of the function

σ(q) :=
󰁛

n≥0

q
1
2
n(n+1)

(−q; q)n
=

󰁛

n≥0

S(n)qn

= 1 + q − q2 + 2q3 − 2q4 + q5 + q7 − 2q8 + · · ·
+ 2q4962 + 4q4963 + 8q4967 − 2q4968 − 4q4980 + · · · .

behave differently: Even though they seem to grow very slowly, it seems that we have
lim sup |S(n)| = ∞. This behaviour was later explained by Andrews-Dyson-Hickerson
[ADH88] by relating the coefficients S(n) to solutions of quadratic equations and estab-
lishing a relation to indefinite theta functions. In [Coh88], Cohen constructs a Maass
waveform from σ(q), relating its coefficients to the arithmetic of Q(

√
6).

Besides σ(q), Andrews also considers the function

v1(q) :=
󰁛

n≥0

q
1
2
n(n+1)

(−q2; q2)n
=

󰁛

n≥0

V1(n)q
n

= 1 + q + q6 − q7 − q8 + q9 + q10 + · · ·
+ 762q700 + 8365q701 − 273q702 − 8550q703

− 224q704 + 8716q705 + 761q706 − 8832q707 + · · ·

(10.18)

from Ramanujan’s “lost” notebook [And84]. Andrews notes that, even though the “growth
of |V1(n)| is not very smooth”, there appears to be “great sign regularity in V1(n)”. He
also makes some conjectures.

Conjecture 10.2.1 ([And86, Conjectures 3-6]). 1. |V1(n)| → ∞ as n → ∞ for al-
most all n ∈ Z≥0.

2. For almost all n ∈ Zn≥0, four consecutive coefficients V1(n), V1(n + 1), V1(n + 2),
and V1(n+ 3) consist of two positive and two negative numbers.

3. For n ≥ 5 there is an infinite sequence N5 = 293, N6 = 410, N7 = 545, N8 = 702, . . .,
Nn ≥ 10n2, . . . such that V1(Nn), V1(Nn+1) and V1(Nn+2) all have the same sign.

4. The numbers |V1(Nn)|, |V1(Nn + 1)|, |V1(Nn + 2)| contain a local minimum of the
sequence (V1(j))j≥0.

We remark that part 1 of Andrews’s conjecture originally reads “|V1(n)| → ∞ as n → ∞”.
Based on computations and theoretic examinations, we have modified the conjecture
slightly.

The coefficients V1(n) for n ≤ 1000 are plotted in Figure 10.1. From Figure 10.1, we see
that the asymptotics of V1(n) appear to depend on n (mod 4). Moreover, the sequence
can be divided into 4 reoccurring sections with the following patterns for sign(V1(n)),
where n ≡ n0 mod 4.

n0 0 1 2 3

Section 1 + − − +

Section 2 + + − −

Section 3 − + + −

Section 4 − − + +
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10.2. A sign pattern conjecture of Andrews

Figure 10.1.: V1(n) for n ≤ 1000

For example, in Figure 10.1 and (10.18), we see the sign pattern +−−+ between n = 546
and n = 702 (Section 1), the sign pattern + + −− between n = 703 and n = 877
(Section 2), etc. We ultimately establish the sign regularity of V1(n) in Theorem 10.2.3
below.

The coefficients V1(n) have a combinatorial interpretation: A partition is called odd-
even if the parity of the parts alternates with the smallest part odd. The rank of a
partition is defined as the difference between the largest part and the number of parts.
For example, the rank of the partition 9 + 4 + 1 is 9− 3 = 6. It is easy to show that the
rank of an odd-even partition is always even. The coefficients V1(n) count the difference
between the number of odd-even partitions of n with rank congruent to 0 (mod 4) and
congruent to 2 (mod 4).

We explain Andrews’s conjecture following the circle method described above: In The-
orem 10.2.2, we give the asymptotics of v1(q) as q approaches a root on unity. This leads
to the asymptotics of the coefficients V1(n) in Theorem 10.2.3.

Similar to the asymptotics of ordinary Nahm sums (Theorem 4.3.1), a solution of the
modified Nahm equation and their dilogarithm value appear in the asymptotics of v1(q).
For v1(q), the modified Nahm equation is given by

(1−Q)2 = −Q (10.19)

with solutions Q = e±πi/3 = 1±
√
3i

2 . In contrast to the case of ordinary Nahm sums,
there is no solution in (0, 1). The fact that the solutions consist of a pair of complex
conjugated complex numbers will produce oscillation in the asymptotics of v1(q). This
will lead to oscillation in the asymptotics of the coefficients V1(n), explaining the sign
pattern of V1(n).

Similar to the asymptotics in Theorem 4.3.1, the different asymptotic contributions in
v1(q), corresponding to Q = e(±1/6), will be visible when considering the asymptotics
q = ±ie−z, z → 0 on different rays in the right half-plane. Depending on arg z, one
contribution will be exponentially big while the other one will be exponentially smaller.
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Recall the convention e(x) = e2πix for x ∈ C.

Theorem 10.2.2. Let ζ = e(α) ∈ C be a root of unity of order m ∈ N0.

1. If 4 ∤ m, then v1(ζe
−z) = O(1) as z → 0 along any ray in the right half-plane.

2. If 4|m, then as z → 0, on a ray in the right half-plane with 0 ∕= | arg z| < π
2 , we

have

v1(ζe
−z) = exp

󰀕
16V

zm2

󰀖 󰁵
2πi

z
γ+(α)(z)(1 +O(zL))

+ exp

󰀕
−16V

zm2

󰀖 󰁵
2πi

−z
γ−(α)(z)(1 +O(zL))

(10.20)

for all L > 0, where V is given in terms of the Bloch-Wigner dilogarithm D,
see (2.12), by

V = D(e(1/6))
i

8
= 0.1268677 · · · i, (10.21)

and the power series γ±(α)(z) ∈ C[[z]] are defined in subsection 11.1.3.

3. In particular, for ζ = ±i, the power series are explicitly defined in (11.33) and
(11.42) and the first terms are given by

γ+
(1/4)(z) = γ−

(3/4)(z) = γ+

󰀕
1 +

󰀕
1

3
− 77

216

√
3

󰀖
iz +

󰀕
−89449

31104
+

647

648

√
3

󰀖
z2 +O(z3)

󰀖
,

γ−
(1/4)(z) = γ+

(3/4)(z) = γ−
󰀕
1 +

󰀕
1

3
+

77

216

√
3

󰀖
iz +

󰀕
−89449

31104
− 647

648

√
3

󰀖
z2 +O(z3)

󰀖
,

where

γ+ := γ+(1/4)(0) = γ−(3/4)(0) =
1

2 4

󰁴
3(2−

√
3)

= 0.5280518 · · · ,

γ− := γ−(1/4)(0) = γ+(3/4)(0) =
1

2 4

󰁴
3(2 +

√
3)

= 0.2733397 · · · .

The proof of the previous theorem is given in Section 11.1. By applying an adapted
version of the circle method to v1(q) with major arc corresponding to q near the roots of
unity ±i, we will establish the asymptotics of V1(n) as n → ∞.

Theorem 10.2.3. As n → ∞, the coefficients V1(n) are asymptotically equal to

(−1)⌊
n
2
⌋ e

√
2|V |n
√
n

(γ+ + (−1)nγ−)
󰀓
cos(

󰁳
2|V |n)− (−1)n sin(

󰁳
2|V |n)

󰀔󰀓
1 +O

󰀓
n− 1

2

󰀔󰀔

+O

󰀕
n− 1

2 e

󰁴
|V |n
2

󰀖
.

(10.22)

We give the proof in Section 11.2 below. The sequence V1(n)e
−
√

2|V |n√n is plotted in
Figure 10.2. Using these results we are able to prove parts of Andrews’s conjecture.

Theorem 10.2.4. Part 1 and 2 in Andrews’s Conjectures 10.2.1 are true.
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Figure 10.2.: V1(n)e
−
√

2|V |n√n for 0 ≤ n ≤ 2000

We will prove the theorem after discussing and explaining Andrews’s Conjectures 10.2.1.
For this, we use the asymptotics of V1(n) from Theorem 10.2.3 and note that

(−1)⌊
n
2
⌋ =

󰀫
1 if n = 0, 1 mod 4,

−1 if n = 2, 3 mod 4.
(10.23)

Hence, as long as the term

F±(n) :=
󰀓
cos(

󰁳
2|V |n)± sin(

󰁳
2|V |n)

󰀔
(10.24)

in (10.22) is large enough, four consecutive terms of the sequence V1(n) will consist of
two positive and two negative numbers, explaining part 2 of Andrews’s conjecture 10.2.1.
When the functions F±(x), x ∈ R, become 0, the sign pattern will change. Note that the
zeros of the functions F± are given by

ϑj =
󰀓
j +

1

2

󰀔2 π2

8|V | , j ∈ Z≥0. (10.25)

Therefore, the sign pattern changes whenever n = ⌊ϑj⌋ for some j ∈ Z≥0. If the sign
pattern changes, three consecutive numbers in the sequence will have the same sign. Note
that these three numbers can already start before the sign pattern changes. Hence, the
numbers Nj from Conjecture 10.2.1 should fulfil |Nj − ⌊ϑj⌋| ≤ 3. The first values for Nj

and ⌊ϑj⌋ are listed in the following table.

j 5 6 7 8 9 10 11 12 13 14

Nj 293 410 545 702 877 1072 1285 1518 1771 2044

⌊ϑj⌋ 294 410 546 702 877 1072 1286 1519 1772 2044

A natural related question is when the coefficients V1(n) vanish. After checking the first
five million coefficients of v1(q), it appears that V1(n) vanishes only finitely often and
exactly if

n ∈ {2, 3, 4, 5, 11, 13, 15, 17, 19, 21, 25, 29, 31, 39, 47, 58, 60, 62, 64, 101, 111, 123, 129, 198}.
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It is reasonable to expect that the leading term in (10.22) becomes the most significant
term as n → ∞. This leading term is zero whenever n = ϑj (cf. (10.25)), which can only
happen for n ∈ Z if |V | ∈ π2Q. This suggests that the vanishing of V1(n) is related to the
rationality of |V |/π2. Values of the dilogarithm are known to be related to zeta-values,
see e.g., [Zag07]. Here, we have

|V | =
ImD(eπi/3)

8
=

9
√
3ζQ(

√
−3)(2)

16π2
(10.26)

where ζK(s) for s ∈ C with Re(s) > 1 is the Dedekind zeta function associated with the
number field K (see e.g., [Neu99]). The rationality of zeta-values is an important question
in number theory. For totally real fields K, the Siegel-Klingen theorem ([Kli62, Sie80,

Sie69]) implies that ζK(2k) ∈ | disc(K)|−
1
2π2k[K:Q] Q for k ∈ Z≥1. Hecke [Hec20] already

gave the result for real quadratic fieldsK. However, for imaginary quadratic fields it seems
currently not possible to make any general statements about the rationality of ζK(2).

Zagier [Zag86] generalised Euler’s theorem (ζQ(2) =
π2

6 ) to number fields K by proving

a formula that relates ζK(2) to powers of π,
󰁳

disk(K), and integrals of the form

A(x) =

󰁝 x

0

1

1 + t2
log

4

1 + t2
dt. (10.27)

Nevertheless, Zagier’s result does not imply anything about the rationality of |V |
π2 . Nu-

merical computations suggest that |V | /∈ π2Q, which is in agreement with the numerical
observation that V1(n) vanishes only finitely often.

Proof of Theorem 10.2.4. Following [FMRS23], we prove Theorem 10.2.4, which states
that the followind parts of Andrews’s conjceture 10.2.1 are true.

1. |V1(n)| → ∞ as n → ∞ for almost all n ∈ Z≥0.

2. For almost all n ∈ Z≥0, four consecutive coefficients V1(n), V1(n+1), V1(n+2), and
V1(n+ 3) consist of two positive and two negative numbers.

We denote the main term in (10.22) by

M(n) = (−1)⌊
n
2
⌋ e

√
2|V |n
√
n

(γ+ + (−1)nγ−)
󰀓
cos(

󰁳
2|V |n)− (−1)n sin(

󰁳
2|V |n)

󰀔

(10.28)
and collect the rest in an error term, denoted by E(n). We need to prove that the main
term M(n) is bigger than the error term E(n) for almost all n ∈ Z≥0. The inequality

M(n) > E(n) occurs when F±(n) > e
√

|V |n/2, i.e.,

|n− ϑj | > e−
√

|V |n/2+ε
√
n (10.29)

for all j ∈ Z≥0 and some ε > 0. A result of Schoißengeier [Sch81] states that for the
discrepancy of the sequence 1

2π

󰁳
2|V |n for n = 1, . . . , N we have

sup
0≤c≤d≤1

󰀏󰀏󰀏󰀏󰀏
|{ 1

2π

󰁳
2|V |n mod 1 : n = 1 . . . , N} ∩ [c, d]|

N
− (d− c)

󰀏󰀏󰀏󰀏󰀏 ≪ O(N− 1
2 ). (10.30)

It follows that the number of points n ∈ Z≥0 not satisfying M(n) > E(n) is bounded
below by 1 − O(n−1/2). In other words, the numbers n ∈ Z≥0 for which M(n) > E(n)
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is at least 1 − O(n−1/2), which converges to 1 as n → ∞. This implies |V1(n)| → ∞
for almost all n, proving part 1 in Andrews’s conjecture 10.2.1. Moreover, this implies
that for almost all n, four consecutive numbers V1(n),V1(n+ 1),V1(n+ 2), and V1(n+ 3)
will consist of two positive and two negative numbers. This proves part 2 in Andrews’s
conjecture 10.2.1.
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11. Proofs

11.1. Proof of Theorem 10.2.2: The asymptotics of v1(q)

We will prove each part in Theorem 10.2.2 separately. We will provide details for the
proof for ζ = i and only sketch the steps for the general case.

11.1.1. Proof of Theorem 10.2.2, (1)

We begin by showing that at any root of unity with order not divisible by 4, v1(q)
converges.

Lemma 11.1.1. Let ζ = e( l
m) with gcd(l,m) = 1 and 4 ∤ m. Then Theorem 10.2.2,

Part (1) is true and we have as z → 0 on a ray in the right half-plane

v1(ζe
−z) → v1(ζ) = 2

m−1󰁛

s=0

ζs(s+1)

(−ζ2; ζ2)s
. (11.1)

Proof. For ζ as above, we compute

v1(ζ) =
󰁛

n≥0

ζn(n+1)/2

(−ζ2; ζ2)n
=

m−1󰁛

s=0

󰁛

l≥0

ζs+mk(s+mk+1)/2

(−ζ2; ζ2)s+mk
, (11.2)

where we substituted n = s+mk. From (−ζ2; ζ)s+mk = 2(−ζ2; ζ2)s we deduce

v1(ζ) =

m−1󰁛

s=0

󰁛

l≥0

ζs+mk(s+mk+1)/2

2k(−ζ2; ζ2)s
= 2

m−1󰁛

s=0

ζs(s+1)/2

(−ζ2; ζ2)s
(11.3)

which is finite. Moreover, as z → 0 on a ray in the right half-plane, z will eventually be in a
Stolz sector and Abels theorem (see e.g., [Ahl78, §2.5]) implies that v1(ζe

−z) → v1(ζ).

11.1.2. Proof of Theorem 10.2.2, (3)

Throughout, we assume that ϕ ∈ C with |ϕ| = 1 and 0 ∕= | arg(ϕ)| < π
2 and write z = ϕh.

We will present the case q = ie−z → i for z = ϕh → 0 on a fixed ray in the right half-plane
in detail. The case q → −i is analogous, and we omit the proof for brevity.

We split up the sum defining v1(q) depending on n (mod 2), i.e., consider separately

v
[0]
1 (q) =

󰁛

n≥0 even

qn(n+1)/2

(−q2; q2)n
=

1

(−q2; q2)∞

󰁛

n≥0 even

(−i)n/2e−zn(n+1)/2 (−e−2nzq2; q2)∞,

v
[1]
1 (q) =

󰁛

n≥0 odd

qn(n+1)/2

(−q2; q2)n
=

1

(−q2; q2)∞

󰁛

n≥0 odd

i(n+1)/2e−zn(n+1)/2 (e−2nzq2; q2)∞,

(11.4)
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as we have

in(n+1)/2 =

󰀫
(−i)n/2, if n is even,

i(n+1)/2, if n is odd.

To state our next result, recall that for n ≥ 0 the q-Pochhammer symbol satisfies the
classical formula

(a; q)n =
(a; q)∞
(aqn; q)∞

,

meaning that we may extend the definition of the q-Pochhammer symbol to−n by defining

(a; q)−n :=
(a; q)∞

(aq−n; q)∞
=

1

(aq−n; q)n
.

Then the q-Pochhammer symbol satisfies

(a; q)−n = qn(n−1)/2 (−q/a)n

(q/a; q)n
. (11.5)

We will prove the following proposition which implies (3) in Theorem 10.2.2.

Proposition 11.1.2. As z → 0 in the right half-plane on a ray with arg z ∕= 0, we have
with q = ie−z

v
[0]
1 (q) = e−

V
z

󰁵
2πi

−z
γ−(1/4)(z)(1 +O(zL)) + φ

[0]
(1/4)(z)(1 +O(zL)), (11.6)

v
[1]
1 (q) = e

V
z

󰁵
2πi

z
γ+(1/4)(z)(1 +O(zL)) + φ

[1]
(1/4)(z)(1 +O(zL)) (11.7)

for all L > 0, where γ±(1/4)(z) ∈ C[[z]] are defined in (11.33), resp. (11.42) and power

series φ
[0]
(1/4)(z),φ

[1]
(1/4)(z) ∈ C[[z]] with

φ
[0]
(1/4)(z) =

󰁛

n<0:
n≡0 mod 2

qn(n+1)/2

(−q2; q2)n
= −4i z − 48 z2 +

2878

3
i z3 + 26704 z4 +O(z5),

φ
[1]
(1/4)(z) =

󰁛

n<0:
n≡1 mod 2

qn(n+1)/2

(−q2; q2)n
= 2 + 8i z − 96 z2 − 5708

3
i z3 + 52640 z4 +O(z5).

(11.8)

Watson’s contour integral

Using Watson’s contour integral ([GR11, 4.2], [Wat10]), we establish the following integral

representation for v
[0]
1 (q) and v

[1]
1 (q).

Lemma 11.1.3. For q = ie−z with Re(z) > 0, we have

v
[0]
1 (q) =

−1

2i

1

(−q2; q2)∞

󰁝

L∞

eπis/4e−zs(s+1)/2(−e−2szq2; q2)∞
1

2 sin (πs/2)
ds, (11.9)

v
[1]
1 (q) =

eπi3/4

2

1

(−q2; q2)∞

󰁝

L∞

e−πis/4e−zs(s+1)/2(e−2szq2; q2)∞
1

2 cos (πs/2)
ds, (11.10)

where L∞ is the contour depicted in Figure 11.1 as R → ∞ for some small ε > 0.
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π
4

− arg ϕ
2

− ε

π
4

+ arg ϕ
2

− ε

R

iR

poles at 2Z

CR

LRLR

Figure 11.1.: Contours LR and CR

Proof. We will prove the statement for v
[0]
1 (q) in detail. The proof for v

[1]
1 (q) follows

analogously.

As mentioned above, we write z = ϕh ∈ C where h ∈ R>0 and ϕ ∈ C with |ϕ| = 1 and
| argϕ| < π

2 . The function 1
sin(πs/2) has poles at s ∈ 2Z with residues (−1)s/2 2

π . Hence,

with (−i)s/2(−1)s/2 = is/2 = eπis/4 for s ∈ 2Z, we obtain by Cauchy’s theorem - if the
subsequent integrals are convergent - using the contours from Figure 11.1

−1

2i

1

(−q2; q2)∞
lim

R→∞

󰁝

LR+CR

eπis/4e−zs(s+1)/2(−e−2szq2; q2)∞
1

2 sin (πs/2)
ds

=
1

(−q2; q2)∞

󰁛

n≥0 even

Res
s=n

󰀣
(−i)s/2e−zs(s+1)/2(−e−2szq2; q2)∞

π(−1)s/2

2 sin (πs/2)

󰀤

=
1

(−q2; q2)∞

󰁛

n≥0 even

(−i)n/2e−zn(n+1)/2 (−e−2nzq2; q2)∞

= v
[0]
1 (q).

(11.11)

It remains to prove the following 2 claims.

1. The integral over L∞ converges.

2. The integral over the arc CR vanishes as R → ∞.

Before proving (1) and (2), we make some initial observations. If we parameterise
LR and CR away from the indention around 0 by s = reiθ with 0 < r ≤ R and
θ ∈

󰀅
−π

4 − argϕ
2 + ε, π4 − argϕ

2 − ε
󰀆
, then we have −zs2 = −hr2ei(argϕ+2θ) because we

have argϕ+ 2θ ∈ [−π
2 + 2ε, π2 − 2ε] for ε > 0, i.e., Re(−zs2) < 0. Similarly, one checks

Re(−zs) < 0.
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In particular, the Pochhammer symbol can be uniformly bounded by

󰀏󰀏(−e−2szq2; q2)∞
󰀏󰀏 ≤

󰁜

j≥1

1 + |e−2sz||q2j |

=
󰁜

j≥1

1 + |e−2Re(sz)||e−2jRe(z)|

<
󰁜

j≥1

1 + |e−2jRe(z)|,

(11.12)

since −Re(sz) < 0. Hence, we have

󰀏󰀏󰀏󰀏󰀏

󰁝

L′
R+CR

eπis/4e−zs(s+1)/2(−e−2szq2; q2)∞
1

2 sin (πs/2)

󰀏󰀏󰀏󰀏󰀏

≤
󰁜

j≥1

(1 + |e−2jRe(z)|)
󰁝

L′
R+CR

eRe(πis/4−zs(s+1)/2)

󰀏󰀏󰀏󰀏
1

2 sin (πs/2)

󰀏󰀏󰀏󰀏 ds,

(11.13)

where L′
R denotes the part of LR away from the indention around 0.

As Im|s| → ∞, we have for all L ∈ N

| sin(πs/2)| = 1

2
eπ|Im(s)|/2(1 + o(|s|−L)

and with s = reiθ we compute

Re

󰀕
πis

4
− zs(s+ 1)

2

󰀖
− π|Im(s)|

2

= Re

󰀕
πireiθ

4
− heiargϕr2e2iθ

2
− heiargϕreiθ

2

󰀖
− π|Im(s)|

2

= − πr sin(θ)

4
+ Re

󰀣
−hr2ei(argϕ+2θ)

2
− hrei(argϕ+θ)

2

󰀤
− π|Im(s)|

2

= − πr sin(θ)

4
− r2h2 cos(argϕ+ 2θ)

2
− rh cos(argϕ+ θ)

2
− rπ| sin θ|

2

= − r2h2 cos(argϕ+ 2θ)

2
− r

󰀕
π sin(θ)

4
+

h cos(argϕ+ θ)

2
− π| sin θ|

2

󰀖
.

(11.14)

Hence, as R → ∞, the exponent in the integrand in (11.13) is eventually negative, since
argϕ+ 2θ ∈ (−π

2 ,
π
2 ) and thus cos(argϕ+ 2θ) > δ > 0 for some δ.

More precisely, we have for some constant M > 0, uniformly in θ,

− r2h2 cos(argϕ+ 2θ)

2
− r

󰀕
π sin(θ)

4
+

h cos(argϕ+ θ)

2
− π| sin θ|

2

󰀖

< −r2h2δ

2
+ r

󰀕
π

4
+

h

2
− π

2

󰀖
< −Mr2

(11.15)

for R and r large enough.

Therefore, it is sufficient to prove both claims for the integral

󰁝
e−Mr2 ds. (11.16)
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Claim (1): The integral over L∞ converges.
We consider the integral along the contour {reiθ± , r ∈ R>0} with θ± = ±π

4 − argϕ
2 . By

the discussion above, the integral is

O

󰀕󰁝 R

0
e−Mr2 dr

󰀖
, (11.17)

which converges as R → ∞.

Claim (2): The integral over the arc CR vanishes as R → ∞.
Similarly, we wee that the integral over CR is eventually bounded by a constant times

󰁝

(−π
4
− argϕ

2
,π
4
− argϕ

2 )
e−MR2

dθ → 0 (11.18)

as R → ∞.

Sum over even integers

We will prove the statement for v
[0]
1 in detail. As the proof for v

[1]
1 follows mutatis

mutandis, we will only sketch it in subsection 11.1.2.

Proof of (11.6). We use the integral representation from Lemma 11.1.3 with q = ie−z and
substitute s = iv/z to obtain

v
[0]
1 (q) =

−1

2z(−q2; q2)∞

󰁝

−izL∞

e−πv/4zev
2/2z−iv/2(−e−2ivq2; q2)∞

1

sin
󰀃
πiv
2z

󰀄dv, (11.19)

where the contour −izL∞ is depicted in Figure 11.2.

π
4 − φ

2 π
4 + φ

2

R

iR

poles at 2izZ

−iϕL∞

Figure 11.2.: The Contour −iϕL∞

We consider the integral representation (11.19) of v
[0]
1 and change the contour −izL∞

to a contour S with fixed minimum distance from 0 and passing through − π
12 . The poles
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of the integrand in (11.19) are at v ∈ i2zZ, and as z → 0 they accumulate at 0. Hence, if
we integrate along the contour S, all poles at i2zZ<0 eventually get shifted to the other
side of the contour (cf. Figure 11.3). In other words the integral (11.19) can be written
as

−1

2z(−q2; q2)∞

󰁝

S
e−πv/4zev

2/2z−iv/2(−e−2ivq2; q2)∞
1

sin
󰀃
πiv
2z

󰀄dv

+
−1

2z(−q2; q2)∞

󰁛

n<0:
|2zn|<d0

Res
v=−2izn

󰀣
e−πv/4zev

2/2z−iv/2(−e−2ivq2; q2)∞
1

sin
󰀃
πiv
2z

󰀄
󰀤

(11.20)

for some d0 > 0, which is the distance from 0 to where the contour crosses the line of
poles. The residue of 1

sin(πiv
2z )

at v = −2izn is given by −(−1)n2z and thus

Res
v=−2izn

󰀣
e−πv/4zev

2/2z−iv/2(−e−2ivq2; q2)∞
1

sin
󰀃
πiv
2z

󰀄
󰀤

= (−i)ne−(2n2−n)z(−e−4nzq2; q2)∞.

(11.21)
As z → 0 the residues can be collected in

φ
[0]
(1/4)(z) :=

−1

2z(−q2; q2)∞

󰁛

n<0

Res
v=−2izn

󰀣
e−πv/4zev

2/2z−iv/2(−e−2ivq2; q2)∞
1

sin
󰀃
πiv
2z

󰀄
󰀤

=
1

(−q2; q2)∞

󰁛

n<0

(−i)ne−(2n2−n)z(−e−4nzq2; q2)∞.

(11.22)
Using the q-Pochhammer symbol for negative indices, this implies with q = ie−z

φ
[0]
(1/4)(z) =

󰁛

n<0:
n≡0 mod 2

qn(n+1)/2

(−q2; q2)n

=
󰁛

l>0:
l≡0 mod 2

q−l(l−1)/2(−1; q2)l

= 2
󰁛

m>0:
m≡1 mod 2

q−m(m+1)/2(−q2; q2)m.

(11.23)

We have

(−q2; q2)m =

m󰁜

j=1

1 + (−1)je−2jz ∈ z⌈m/2⌉C[[z]] (11.24)

since 1+ (−1)je−2jz ∈ zC[[z]] for j = 1, . . . ,m odd. Hence, φ
[0]
(1/4)(z) ∈ C[[z]] and the first

terms are given by

φ
[0]
(1/4)(z) = −4i z − 48 z2 +

2878

3
i z3 + 26704 z4 − 28574401

30
i z5 +

5643616

5
z6

− 106567268641

1260
i z7 +

2071812944

105
z8 − 289882093403521

90720
i z9 +O(z10).

(11.25)
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R

iR

poles at 2izZ

S

Figure 11.3.: A contour S (before applying Lemma 4.4.2).

We apply Lemmas 4.4.2 and 4.4.1 to the integrands in (11.20), to obtain that v
[0]
1 (q) is

asymptotically equal to

ieπ
2/48z−z/12

2z

󰁝

S
sign(Re(v/ϕ)) exp

󰀕
−Liϕ2 (e

−4iv) + 4v2 − 2πv − 4 sign(Re(v/ϕ))πv

8z

󰀖

exp

󰀕
− iv

2
+

Liϕ1 (−e−2iv)

2
+ ψ−1(4z;−e−2iv)

󰀖
dv + φ

[0]
(1/4)(z)

(11.26)
which can be rewritten with

f(v) = −Liϕ2 (e
−4iv)

8
+

v2

2
− πv

4
− sign(Re(v/ϕ))

πv

2
,

g(z; v) = sign(Re(v/ϕ)) exp

󰀕
− iv

2
+

Liϕ1 (−e−2iv)

2
+ ψ−1(4z;−e−2iv)

󰀖
,

(11.27)

as

v
[0]
1 (q) =

i

2z
eπ

2/48z−z/12

󰁝

S
ef(v)/zg(z; v)dv (1 +O(zL)) + φ

[0]
(1/4)(z)(1 +O(zL))

(11.28)
for all L > 0. Note that both f and g are holomorphic functions on the domain

C󰄀

󰀳

󰁃{ϕiR<0}
󰁞

0 ∕=n∈Z
{n+ ϕiR>0}

󰀴

󰁄 (11.29)

as Liϕ2 (z) jumps by 2πi log z when z crosses the cut on Re(z/ϕ) = 0,Re(z) > 0. Moreover,

e
Li1(−e−2iv)

2 changes the sign when v crosses the line Re(z/ϕ) = 0, Re(z) > 0. The contour
and the branch cuts of f are plotted in Figure 11.4.
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R

iR Re((v − π
2
)/ϕ) = 0Re(v + π

2
)/ϕ) = 0

Re(v/ϕ) = 0

γ′γ

− π
12

Figure 11.4.: The contours S, parameterised by γ, γ′ (after applying Lemma 4.4.2).

We compute

f ′(v) = − i

2
log(1− e−4iv) + v − π

4
− sign(Re(v/ϕ))

π

2

f ′′(v) =
1 + e−4iv

1− e−4iv

and thus the critical points v0 of f satisfy

(1− e−4iv0)2 = −e−4iv0 , (11.30)

in other words e−4iv0 = e(±1
6). Using this along with the condition f ′(v) = 0 at saddle

points, one may classify all saddle points of f .
Using Cauchy’s theorem, we choose an explicit contour (see [FMRS23] for details)

passing through v = − π
12 . By a specific parametrisation of the contour, in combination

with the maximum modulus principle, one can show that all cases can be estimated using
the case for ϕ = i. This implies that the chosen contour passing through v0 = − π

12 is
indeed a stationary point.

We write Q := e−4iv0 = e(1/6) = 1+
√
3i

2 . If we parameterise S as v = − π
12 + is

√
z in

a small neighbourhood around v0 we obtain that the contribution corresponding to the
stationary point v0 = − π

12 is given by

−1

2
√
z
eπ

2/48z+f(v0)/z−z/12

󰁝
exp

󰀕
−f ′′(− π

12 )
s2

2
+
󰁛

l≥3

f (l)(Q)

l!
(is)lzl/2−1

󰀖
g
󰀓
− π

12
+ is

√
z; z

󰀔
ds

=

󰁵
2πi

−z
eπ

2/48z+f(v0)/z γ−
(1/4)(z),

(11.31)

where

π2

48
+ f(v0) =

π2

48
− Li2(e

−4iv0)

8
+

v20
2

+
πv0
4

=
D(e(1/6))i

8
= −V = −0.1268677 · · · i.

(11.32)
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With the definition of ψ−1(4z;−e−2iv) from Lemma 4.4.1, the power series γ−(1/4)(z) ∈ C[[z]]
is defined as a formal Gaussian integration by

γ−(1/4)(z) =
1

2
√
−2πi

e−πi/24−z/12

×
󰁝

exp

󰀕
−
√
3i
s2

2
+

is
√
z

2
+

1

8

󰁛

l≥3

Li2−l(Q)
(4s

√
z)l

zl!

−
2󰁛

t=1

󰁛

k≥1,r≥0

Bk

󰀕
1− t

2

󰀖
Li2−k−r(−(−1t)

󰁳
Q)

(2s
√
z)r(4z)k−1

r!k!

󰀖
ds.

(11.33)
The first coefficients are given by

γ−(1/4)(z) =
1

2 4

󰁴
3(2−

√
3)

󰀕
1 +

󰀕
1

3
+

77

216

√
3

󰀖
iz −

󰀕
89449

31104
+

647

648

√
3

󰀖
z2 +O(z3)

󰀖
.

(11.34)
Putting everything together, we obtain the asymptotic expansion

v
[0]
1 (q) =

󰁵
2πi

−z
e−V/z γ−(1/4)(z)(1 +O(zL)) + φ

[0]
(1/4)(z)(1 +O(zL)) (11.35)

for all L > 0. If argϕ > 0, the exponential contribution is the biggest term in (11.6) and

for argϕ < 0, the power series φ
[0]
(1/4)(z) has the largest contribution.

Sum over odd parts

Proof of (11.7). The asymptotics of v
[1]
1 (q) as defined in (11.46) as q → i is similar.

We change the contour in the integral representation in Lemma 11.1.3 to a stationary
contour S. After applying the asymptotics from Lemma 4.4.2 and Lemma 4.4.1 and fol-

lowing a similar argument as in subsection 11.1.2, we obtain that v
[1]
1 (q) is asymptotically

equal to

−eπi3/4+π2/48z−z/12

2z

󰁝

S
sign(Re(v/ϕ)) exp

󰀕
−Li2(e

−4iv) + 4v2 + 2πv − 4 sign(Re(v/ϕ))πv

8z

󰀖

exp

󰀕
− iv

2
+

Liϕ1 (e
−2iv)

2
+ ψ−1(4z; e

−2iv)

󰀖
dv + φ

[1]
(1/4)(z),

(11.36)
where

φ
[1]
(1/4)(z) =

󰁛

n<0
n≡1 mod 2

qn(n+1)/2

(−q2; q2)n
=

󰁛

l>0:
l≡1 mod 2

q−l(l−1)/2(−1; q2)l

= 2
󰁛

m≥0:
m≡0 mod 2

q−m(m+1)/2(−q2; q2)m

= 2 + 8iz − 96 z2 − 5708

3
i z3 + 52640 z4 +

28056121

15
i z5 − 405909568

5
z6

− 2622584263067

630
i z7 +

5171242573856

21
z8 +

748741881749741041

45360
i z9 +O(z10).

(11.37)
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We define

f(v) = −Liϕ2 (e
−4iv)

8
+

v2

2
+

πv

4
− sign (Re (v/ϕ))

πv

2
,

g(z; v) = sign(Re(v/ϕ)) exp

󰀕
− iv

2
+

Liϕ1 (e
−2iv)

2
+ ψ−1(4z; e

−2iv)

󰀖
,

(11.38)

where f and g are holomorphic functions on the domain defined in (11.29) for the same
reason as in subsection 11.1.2. Then

v
[1]
1 (q) =

−eπi3/4

2z
eπ

2/48z−z/12

󰁝

S
ef(v)/zg(z; v)dv(1 +O(|z|L)) + φ

[0]
(1/4)(z)(1 +O(zL))

(11.39)
for all L > 0 and we compute

f ′(v) = − i

2
log(1− e−4iv) + v +

πv

4
− sign (Re (v/ϕ))

πv

2

f ′′(v) =
1 + e−4iv

1− e−4iv

(11.40)

such that the unique stationary point of f is v0 = π
12 . Similar arguments as above using

the saddle-point method imply that the contribution corresponding to the stationary point
v0 =

π
12 is given by

eπ
2/48z+f(v0)/z−z/12

󰁝
exp

󰀕
−f ′′( π

12)
s2

2
+

󰁛

l≥3

f (l)(Q)

l!
(is)lzl/2−1

󰀖
g
󰀓 π

12
+ is

√
z; z

󰀔
ds

= eV/z
󰁵

2πi

z
γ+(1/4)(z)

(11.41)
where

γ+(1/4)(z) =
1

2
√
2π

e−πi/24−z/12

×
󰁝

exp

󰀕√
3i
s2

2
+

is
√
z

2
+

1

8

󰁛

l≥3

Li2−l(Q)
(4s

√
z)l

zl!

−
2󰁛

t=1

󰁛

k≥1,r≥0

Bk

󰀕
1− t

2

󰀖
Li2−k−r((−1t)

󰁳
Q)

(2s
√
z)r(4z)k−1

r!k!

󰀖
ds.

(11.42)
The first coefficients are given by

γ+(1/4)(z) =
1

2 4

󰁴
3(2−

√
3)

󰀕
1 +

󰀕
1

3
− 77

216

√
3

󰀖
iz +

󰀕
−89449

31104
+

647

648

√
3

󰀖
z2 +O(z3)

󰀖
.

(11.43)
Putting everything together, we obtain the asymptotic expansion

v
[1]
1 (q) =

󰁵
2πi

z
eV/z γ+(1/4)(z)(1 +O(|z|L)) + φ

[1]
(1/4)(z)(1 +O(zL)) (11.44)

for all L > 0 which completes the proof.
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11.1.3. Proof of Theorem 10.2.2, (2)

Throughout, let ζ = e(α) = e(r/m) be a root of unity of order m divisible by 4. As in
subsection 11.1.2, we split up the sum defining v1(q) depending on n mod m

v1(q) =

m
2
−1󰁛

n0=0

v
[n0]
1 (q), (11.45)

where

v
[n0]
1 (q) =

󰁛

n≥0

n≡n0 mod
m
2

qn(n+1)/2

(−q2; q2)n
. (11.46)

for n0 ∈ {0, . . . , m2 − 1}. We start with the following lemma.

Lemma 11.1.4. Let ζ = e(α) = e
󰀃
r
m

󰀄
be as above.

1. Choose r ∈ Z with r = r mod 4. If n = n0 mod m
2 then

ζn(n+1)/2 = ζn0(n0+1)/2e

󰀕
n− n0

4
+ (−1)n0

r

2

n− n0

m

󰀖
. (11.47)

2. Let r = ±1 such that r = r mod 4. Then for all n = n0 mod m
2

ζn(n+1)/2(−1)2(n−n0)/m = ζn0(n0+1)/2e
󰀓
(−1)m/4+n0+1 r

n− n0

2m

󰀔
. (11.48)

Proof. We begin by proving part (1).

1. We write with n = km/2 + n0, k = 2n−n0
m ,

ζn(n+1)/2 = e (αn(n+ 1)/2)

= e
󰀃
α
󰀃
km
2 + n0

󰀄 󰀃
km
2 + n0 + 1

󰀄
/2

󰀄

= e
󰀓
α
󰀃
km
2 + n0

󰀄2
/2 + α

󰀃
km
2 + n0

󰀄
/2

󰀔

= e
󰀓
α
󰀓
k2m2

8 + kmn0
2 +

n2
0
2 + km

4 + n0
2

󰀔󰀔
.

(11.49)

Note that αm2

8 ∈ 1
2Z and thus e(αk2m2

8 ) = e(αkm2

8 ) as k2 = k mod 2. Hence, we
obtain

ζn(n+1)/2 = e

󰀕
αk

󰀕
m2

8
+

mn0

2
+

m

4

󰀖󰀖
e

󰀕
α
n0(n0 + 1)

2

󰀖

= e

󰀕
αkm

󰀕
m

8
+

n0

2
+

1

4

󰀖󰀖
ζn0(n0+1)/2.

(11.50)

Moreover, we compute

e

󰀕
αkm

󰀕
m

8
+

n0

2
+

1

4

󰀖󰀖
= e

󰀕
α
km

4

󰀓m
2

+ 2n0 + 1
󰀔󰀖

(11.51)
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and note that the denominator of αkm
4 is either 1 or 4. If n0 is even, 2n0 is di-

visible by 4 and e(αkm
4 2n0)) = 1. Otherwise, 2n0 + 2 is divisible by 4 and thus

e(αkm
4 (2n0 + 1)) = e(−αkm

4 ). In other words,

e

󰀕
α
km

4

󰀓m
2

+ 2n0 + 1
󰀔󰀖

=

󰀫
e
󰀃
αkm

4

󰀃
m
2 + 1

󰀄󰀄
, if n0 is even,

e
󰀃
αkm

4

󰀃
m
2 − 1

󰀄󰀄
, if n0 is odd,

= e

󰀕
α
km

4

󰀓m
2

+ (−1)n01
󰀔󰀖

= e

󰀕
α
km2

8

󰀖
e

󰀕
(−1)n0α

mk

4

󰀖
.

(11.52)

Note that αkm2

8 ∈ 1
2Z, hence

e

󰀕
α
km2

8

󰀖
= e

󰀕
km

8

󰀖
= e

󰀕
n− n0

4

󰀖
. (11.53)

Moreover, we note that αmk
4 has denominator 4 such that

e
󰀓
(−1)n0α

mk

4

󰀔
= e

󰀓
(−1)n0r

k

4

󰀔
= e

󰀓
(−1)n0

r

2

n− n0

m

󰀔
. (11.54)

This proves the first part of the lemma.

2. To prove part (2), we choose r with r = r + 4l, l ∈ Z such that

(−1)n02l +
m

4
− 1 =

󰀫
0, if m

4 is odd,

−(−1)n0r, if m
4 is even.

(11.55)

We continue with the notation from above with (−1)2(n−n0)/m = e(−k
2 ):

e
󰀃
km
8

󰀄
e
󰀃
(−1)n0 rk

4

󰀄
e
󰀃
−k

2

󰀄
= e

󰀃
km
8 + (−1)n0 rk

4 − k
2

󰀄

= e
󰀃
k
󰀃
m
4 + (−1)n0 r

2 − 1
󰀄
/2

󰀄

= e
󰀓
k
󰀓
m
4 + (−1)n0 r+4l

2 − 1
󰀔
/2

󰀔

= e
󰀓
k
󰀓
m
4 + (−1)n0 r

2 + (−1)n02l − 1
󰀔
/2

󰀔
.

(11.56)

Using the choice of r, the last expression becomes
󰀻
󰀿

󰀽

e
󰀓
k (−1)n0 r

4

󰀔
, if m

4 is odd,

e
󰀓
k
󰀓
(−1)n0 r

2 − (−1)n0r
󰀔
/2

󰀔
, if m

4 is even,
(11.57)

which in both cases is equal to

e

󰀕
k (−1)m/4−1+n0

r

4

󰀖
= e

󰀕
(−1)m/4−1+n0 r

n− n0

2m

󰀖
. (11.58)

From now on we write

δ := (−1)m/4+n0+1 r (11.59)

with r = ±1 as in the previous lemma.
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Integral representation

Lemma 11.1.5. Let L∞ be the contour depicted in Figure 11.1. Then with q = ζe−z,

v
[n0]
1 (q) =

−ζn0(n0+1)/2e(δ n0
2m)

m(−q2; q2)∞

󰁝

L∞

eπδt/mezt
2/2e−izt/2 (−ζ2n0e−2zitq2; q2)∞

sin(π2(s− n0)/m)
dt.

(11.60)

Proof. First, note that we have

v
[n0]
1 (q) =

ζn0(n0+1)/2

(−q2; q2)

󰁛

n≥0
n=n0 mod m

2

e(δ n−n0
2m )e−hn(n+1)/2 (−ζ2n0e−h2nq2; q2)∞ (11.61)

using Lemma 11.1.4, (2). The function 1
sin(2π(s−n0)/m) has poles at s ∈ Z with s = n0 mod m

2

and residues (−1)2(n−n0)/m m
2π . Hence, we write with Cauchy’s residue theorem

v
[n0]
1 (q) =

−1

2πi

1

(−q2; q2)∞

lim
R→∞

󰁝

LR+CR

ζs(s+1)/2e−hs(s+1)/2(−ζ2n0e−2hsq2; q2)∞
2π(−1)2(s−n0)/m

m sin(π2(s− n0)/m)
ds

=
−ζn0(n0+1)/2e(δ n0

2m)

im(−q2; q2)∞
lim

R→∞

󰁝

LR+CR

eπiδs/me−hs(s+1)/2 (−ζ2n0e−2hsq2; q2)∞
sin(π2(s− n0)/m)

ds.

The convergence follows analogously to Lemma 11.1.3.

Proof of Theorem 10.2.2, (2)

The proof of Theorem 10.2.2, (2) and the asymptotics of v1(q) follow from the following

proposition by summing v
[n0]
1 (q) over n0 = 0, . . . , m2 −1 as in (11.45) and setting

γ±(α) =
󰁛

n0=0,...,m
2

δ=±1

γ
[n0]
(α) .

(11.62)

Proposition 11.1.6. Let ζ = e(α) be a root of unity of order m. For n0 ∈ {0, . . . , m2 −1},
we have

v
[n0]
1 (q) = eδ

16V
zm2

󰀓 z

2πi

󰀔−1/2
γ
[n0]
(α) (z)(1 +O(|z|L)) + φ

[n0]
(α) (z)(1 +O(|z|L)) (11.63)

for all L > 0 as q = ζe−z → ζ, where γ
[n0]
(α) (z)∈ C[[z]] is defined in (11.72) and

φ
[n0]
(α) (z) =

󰁛

n<0
n≡n0 mod m

2

qn(n+1)/2

(−q2; q2)n
.

(11.64)

Proof. Throughout, we write z = ϕh where ϕ ∈ C with |ϕ| = 1 and 0 ∕= | arg(ϕ)| < π
2 .

We substitute s = iv/z in the integral representation from Lemma 11.1.5 to obtain

v
[n0]
1 (q) =

−ζn0(n0+1)/2e(δ n0
2m)

mh(−q2; q2)∞

󰁝

−ihL∞

eπδv/mzev
2/2ze−iv/2 (−ζ2n0e−2ivq2; q2)∞

sin(π2(iv/z − n0)/m)
dv.

(11.65)
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Changing the contour of integration to a stationary contour S, we include the poles at
−2izZ<0 whose residues give a power series

φ
[n0]
(α) (z) =

󰁛

n<0
n≡n0 mod m

2

qn(n+1)/2

(−q2; q2)n
.

(11.66)

Applying the asymptotics from Lemma 4.4.2 and Lemma 4.4.1 to the integrands, we

obtain that v
[n0]
1 (q) is equal to

−ζn0(n0+1)/2e(δ n0
2m)

mhQ(ζ2)

󰁝

S
ef(v)/zg(z; v)dv + φ

[n0]
(α) (z) (11.67)

to all orders where Q(ζ2) is defined in (4.44) and

f(v) = −2Liϕ2 (e
−miv)

m2
+

v2

2
− πδv− sign (Re (v/ϕ)) 2πv

m
,

g(z; v) = sign(Re(v/ϕ)) exp

󰀣
− iv

2
− sign(Re(v/ϕ))2πimn0 −

Liϕ1 (e
−miv)

2

+

m/2󰁛

t=1

2t

m
Liϕ1 (−ζ2t+2n0e−2iv)+ψζ2(mz;−ζ2n0e−2iv)

󰀤
.

(11.68)
We recall that Liϕ2 (e

−miv) jumps by 2πmv when v crosses the branch cut at Re(v/ϕ) = 0.
Hence, the function f(v) is holomorphic on the domain defined in (11.29). A similar
argument shows that g(v) is holomorphic on the same domain.

The stationary points v0 of f are given by

f ′(v0) = −2i log(1− e−miv0)

m
+ v0 −

πδ − sign (Re (v0/ϕ)) 2π

m
= 0. (11.69)

This implies in particular (1− e−iv0m)2 = −e−iv0m, i.e., e−miv0 = e(±1/6) and it can be
checked that v0 = δ π

3m is the unique stationary point.

Applying the saddle-point method and using π2

3m2 + f(v0) = δ 16V
m2 implies that the

contribution coming from the saddle point is given by

−ζn0(n0+1)/2e(δ n0
2m)

mhQ(ζ2)
√
z

eδ16V/m
2z−z/12

󰁝
exp

󰀕
−f ′′(v0)

s2

2
+
󰁛

l≥3

f (l)(e−miv0)

l!
(is)lzl/2−1

󰀖

g
󰀓
v0 + is

√
z; z

󰀔
ds

= e
δV
zm2

󰁵
2π

δz
γ
[n0]
(α) (z)

(11.70)
where the integral goes through a small neighbourhood of v0. In other words, we have
the asymptotic expansion

v
[n0]
1 (q) = e

δV
zm2

󰀕
δz

2π

󰀖−1/2

γ
[n0]
(α) (z)(1 +O(|z|L)) + φ

[n0]
(α) (z)(1 +O(|z|L)) (11.71)

for all L > 0 where

γ
[n0]
(α) = −

ζn0(n0+1)/2e(δ n0
2m)2g(v0)

mQ(ζ2)
󰁳

f ′′(v0)
(11.72)

126



11.2. Proof of Theorem 10.2.3: The asymptotics of V1(n)

with

f ′′(v0) =
1 + e−miv0

1− e−miv0
. (11.73)

This completes the proof.

11.2. Proof of Theorem 10.2.3: The asymptotics of V1(n)

We summarise the proof of Theorem 10.2.3, following [FMRS23].

Proof of Theorem 10.2.3. Following the circle method, we use Cauchy’s integral formula
to write

V1(n) =
1

2πi

󰁝

C

v1(q)

qn+1
dq, (11.74)

where C denotes a circle of radius < 1 going counterclockwise around 0. We split up C

into C+, C−, and C ′, where C± = {±ie−λ+iθ, θ ∈ (−δ, δ)} for λ =

󰁴
|V |
n and some δ > 0

and C ′ = C 󰄀 C±.
We parameterise C+ as q = ie−z where z is between λ+ iδ and λ− iδ. Then

1

2πi

󰁝

C+

v1(q)

qn+1
dq =

(−i)n

2πi

󰁝 λ+iδ

λ−iδ
v1(ie

−z)ezndz. (11.75)

Recall from Theorem 10.2.2 that we have

v1(ie
z) = eV/z

󰀓 z

2πi

󰀔−1/2
γ+(1 +O(z)) + e−V/z

󰀕
−z

2πi

󰀖−1/2

γ−(1 +O(z)) (11.76)

as z → 0 in the right half-plane. Therefore, the integral in (11.75) with δ = λ =

󰁴
|V |
n is

asymptotically equal to

(−i)n√
2πi

󰁝 λ+iδ
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(11.77)
with an error of order O(n−1). If we change the contour of integration through a saddle
point ±

√
V , i.e., a zero of the derivative of ±V

z + z, we can make the change of variables

z 󰀁→ ±
√
V + izn−1/4. If we expand the integral near z = 0, we obtain that the first term

in (11.76) is asymptotically equal to

γ+
i(−i)n√

2in
e2

√
V n (1 +O(n− 1

2 )). (11.78)

Similar computations show that the second term in (11.76) is asymptotically equal to

γ−
i(−i)n√

2in
e2

√
−V n (1 +O(n− 1

2 )). (11.79)

Summing up, we note that the integral in (11.75) is asymptotically given by

V1(n) =
1
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(11.80)
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Similarly, the contribution coming from C− is given by
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(11.81)

Combining (11.80) and (11.81), we see that
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(11.82)
Using

√
±V = (1± i)

󰁳
|V |, we can rewrite the expression as
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Note that
√
i in((−1)n− i) =

√
2(−1)⌊

n
2
⌋ and

√
i in(i(−1)n−1) = −

√
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n
2
⌋(−1)n such

that we can rearrange the terms to obtain that
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2|V |n)− (−1)n sin(
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which agrees with the leading term in the asymptotics in (10.22).
It remains to estimate the integral over C ′. According to Theorem 10.2.2, the largest

contributions of the integral over C ′ come from the roots of unity of order 8. Hence, we
can bound the complete integral over C ′ by the contribution coming from the roots of
unity of order 8 times the length of the integral. Applying the same ideas as for the major
arcs, we obtain that the contribution in the integral near a root of unity ζ of order m > 4
with 4|m is given by

1√
2πiζn

󰁝 λ+iδ

λ−iδ
e±

16V
m2z

+nzz−
1
2dz. (11.85)

This leads to a contribution of

e
2
󰁴

± 16nV
m2 n− 1

2

󰀓
1 +O

󰀓
n− 1

2

󰀔󰀔
, (11.86)

up to a multiplicative factor. We can estimate the integral over C ′ by the contribution
coming from the roots of unity of order m = 8 and thus

1

2πi
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v1(q)
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dq ≪ |e

√
±nV n− 1

2 | = O

󰀕
e
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2 n− 1

2

󰀖
. (11.87)

This gives the error term in (10.22) which completes the proof.
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