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1. Abstract 

Throughout this thesis, we examine the complex interplay between genetic factors, 

namely polygenic risk scores (PRS), rare pathogenic variants, and the impact of family 

history on the risk of complex diseases (e.g., breast and prostate cancer). Using their 

combined effect on cancer prevalence and lifetime incidence, we aim to demonstrate 

how they can be used to personalize cancer risk assessment. 

For the analyses conducted in this thesis, we have leveraged the large data of UK 

Biobank. At the time of these analyses, there were 200,643 samples available with both 

whole exome sequencing and genotyping data. This comprehensive dataset allowed us 

to classify individuals based on the carrier status of rare pathogenic variants in cancer 

susceptibility genes, if they have a high or low PRS (defined by 90th and 10th percentile 

thresholds), and whether they have a family history of cancer. Cox proportional hazards 

models were used to compute lifetime cumulative incidence of cancer, and multivariate 

logistic regression was used to compare odds ratios (ORs) across these groups. 

Based on genetic profiles of the individuals, the incidences of breast and prostate 

cancers have shown a distinct variation. For instance, compared to Individuals with 

lower PRS and absence of rare pathogenic variants, those with rare pathogenic variants 

and higher PRS exhibit a significantly higher cumulative incidence of cancer by age 70. 

Further, a family history of respective cancer increases the risk regardless of PRS. 

The findings of this thesis highlight the potential use of PRS in risk stratification 

approaches not only in the general population but also among individuals who carry rare 

pathogenic mutations. Breast and prostate cancer risks were shown to be influenced 

both independently and cumulatively by rare pathogenic variants, polygenic 

background, and family history. The thesis also highlights the urgent need for 

generalizability of PRS models across diverse ethnic backgrounds to enable more 

tailored and precise strategies for disease and cancer prevention. 
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2. Introduction and aims  

2.1 Background 

Different genetic inheritance models were proposed to explain the contribution of 

genetics to human traits such as disease status and normal phenotypic variations. Such 

models can be categorized into two main categories: rare and complex (Rahim et al. 

2008). Rare and high heritable traits are usually determined by the presence or absence 

of a single gene mutation directly causing the observed trait. On the other hand, complex 

traits which usually account for the majority of phenotypic variations, are driven by a 

large contribution of polygenic effect where many common variants work together to 

develop the observed trait (Price et al. 2015).  

In genetic studies, the differentiation of common and rare variants is crucial as it is 

influenced by both technical factors and biological factors. Historically, because of 

financial limitations in sequencing technology, there was a prioritization of identifying 

common variants with a frequency of more than 1% in the population (Uffelmann et al. 

2021). This focus on common variants was driven by the financial constraints of 

sequencing compared to genotyping arrays (Bhérer et al. 2024). However, it has several 

setbacks as the effect sizes for majority of the polymorphisms identified in genome-wide 

association studies (GWAS) are small and typically they are not the disease-causing 

variants but rather are in linkage with a disease-causing variant. At the same time, rare 

variant analysis was limited to moderate to high risk genes that are usually identified 

through linkage analysis in affected families (Povysil et al. 2019). Taking aside the 

financial barriers, modelling the risk associated with common variants with small effect 

sizes, needs summation and integration due to limited cohort’s size. This is indirectly 

linked to frequency. The reason of why high-risk variants are rare can be simply 

explained by evolutionary selection, where selective pressures tend to push these 

variants towards lower frequencies (Lee et al. 2014). Therefore, understanding and 

distinguishing between rare and common variants is crucial for a comprehensive 

assessment of genetic risk factors (Kachuri et al. 2024). 

However, many explanations have been proposed a more complex model regarding 

what is called “missing heritability” (Eichler et al. 2010). With GWAS primarily 

considering common variants, latest studies showed that investigating low-frequency 
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and rare variants could explain further trait or disease risk variability, suggesting a much 

more sophisticated genetic basis, involving multiple genetic variations (Gibson 2012). 

In particular, multiple studies showed that both common genetic variants with small 

additive effects and rare variants with larger effects contribute to the genetic risk of 

common psychiatric disorders, such as schizophrenia, bipolar disorder, and autism ( 

Weiner et al. 2017; Toma et al. 2018). In the same context, research studies on cancers 

with strong familial inheritability patterns have shown that the overall genetic risk can be 

referred to the combined effects of both common variants and rare pathogenic mutations 

(Lee et al. 2019).  Previously, it  had been thought that  in rare monogenic variants  in 

disorders like neurodevelopmental disorders show complete penetrance, However, 

recent studies revealed that polygenic effects can also contribute to the phenotypic 

variance, disease onset age and symptom severity (Niemi et al. 2018; Kurki et al. 2019). 

In other words, the genetic architecture of complex diseases is more complex than 

previously thought, and both common and rare genetic variants play an important role 

in their etiology (Dornbos et al. 2022; Kessler et al. 2022; Fiziev et al. 2023; Ghouse et 

al. 2024). 

In particular, cancer shows a remarkable global health challenge, with far-reaching 

consequences for both individual patients and society as a whole. Breast, prostate, and 

colorectal cancers are among the most widespread types of cancer diagnoses (Siegel 

et al. 2023; Palshof et al. 2024). The importance of such diseases is emphasized by 

their widespread occurrence, as well as the complex interplay of genetic susceptibility 

and environmental factors that drive their development. The high incidence of these 

cancers determines the urgent need for a deeper understanding of their pathogenesis, 

as well as the development of more effective interventions. To address this challenge, 

it is essential to investigate the complex genetic architecture and environmental 

interactions that contribute to the development and progression of these diseases. This 

extensive approach is essential to better understand, prevent, and treat these pervasive 

and life-altering diseases (Gao et al. 2021). 
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2.2 Common variants and rare variants 

Recently, cancer research has contributed toward a significant progress in terms of 

understanding the genetic determinants of these diseases. Specifically, the two genetic 

components have been of particular interest: Common variants, and rare pathogenic 

variants (Mars et al. 2020b; Darst et al. 2021).  

2.2.1 Common variants and polygenic risk scores 

The Polygenic Risk Score (PRS) has been proposed as a potential tool in genetic 

epidemiology, especially in common diseases such as cancer. PRS involves the 

integration of the effect size of multiple genetic variants typically taken from GWAS 

studies to generate a comprehensive risk score (Roberts et al. 2023; Tamlander et al. 

2024). This score may be used to provide a more precise assessment of susceptibility 

to disease. Compared to traditional single-gene approaches, PRS considers the 

cumulative effects of several genetic variants, each with a small effect size but 

collectively contributing to the overall risk of disease development (Khera et al. 2018; 

Mars et al. 2020a). 

To identify and validate these significant genetic variants, GWAS has a crucial role in 

performing large-scale association research and utilizing advanced genomic techniques 

(Uffelmann et al. 2021). These variants are then integrated into a PRS algorithm, which 

specifies every variant with a weighted score indicating its individual contribution to the 

overall risk. This cumulative score allows for the stratification of individuals into distinct 

risk categories, enabling personalized risk assessments (Choi and O’Reilly 2019). 

2.2.2 Rare variants 

Rare pathogenic variants have a large effect and significant impact on developments of 

various cancers (Susswein et al. 2016). Several genes have been identified to be 

significantly associated with cancer risk and progression. Taking breast cancer as an 

example, both BRCA1 and BRCA2 genes are characterized as high-risk genes, and 

have been extensively investigated in the context of hereditary breast cancer research 

due to their significant impact on disease development (Kuchenbaecker et al. 2017; 
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Breast Cancer Association Consortium 2022). Individuals carrying rare variants in these 

genes are at a significantly higher risk of developing breast cancer, hence classifying 

them as hereditary or familial cases. In addition, other genes like PALB2, CHEK2, and 

ATM have been identified as intermediate or moderate-risk genes (Easton et al. 2015). 

The presence of such rare pathogenic variants in breast cancer susceptible genes can 

substantially contribute towards the risk of developing the disease, classifying them as 

hereditary or familial cases. 

2.3 Combining common and rare variants along with family history for complex diseases 

risk prediction 

The impact of the combined effect of both rare pathogenic and common variants in the 

form of PRS, and their individual contributions to cancer risk have become a subject of 

intense investigation (Gao et al. 2021). The aim of this thesis was to investigate the joint 

contribution of common pathogenic variants to cancer susceptibility, and further to 

compare this risk quantified by PRS to the risk posed by single rare pathogenic variants 

in genes associated with high to moderate cancer predisposition. Furthermore, the role 

of family history in breast cancer risk has also been a matter of study (Mars et al. 2022). 

A family history of for instance breast cancer is recognized as an important risk factor, 

suggesting a potential shared genetic predisposition. Providing a better understanding 

of family history role along with other genetic components is crucial for comprehensive 

cancer risk assessment (Figure 1). 

2.4 Generalizability of PRS across diverse ethnicities 

Apart from studying the role of rare pathogenic variants and PRS, generalizing the 

findings across diverse ethnic groups is still a challenging concern (Graham et al. 2021). 

Many of the genetic risk models and PRS are developed using data primarily from 

European populations. This poses several concerns in terms of accuracy and 

effectiveness when it comes to applying these models on non-European populations 

where genetic backgrounds can differ substantially (Duncan et al. 2019). Ancestry-

specific genetic differences in linkage disequilibrium, risk variants, effect sizes, and 

allele frequencies can hinder the applicability of PRS derived from one population to 

another (Martin et al. 2017). Such a  limitation has been a subject of concern, as most 
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large-scale GWAS have primarily focused on individuals of European ancestry, 

potentially limiting the usefulness of these PRS in non-European populations (Privé et 

al. 2022). 

One such example of underrepresented population in genetic studies is South Asians 

(SAS), even though they constitute a substantial portion of the global population (Huang 

et al. 2022). SAS individuals are known to have an increased susceptibility to coronary 

artery disease (CAD), obesity, and type 2 diabetes (T2D). There are two potentials 

approaches to address this problem: 1) Generate more diverse genetic data sets 

including individuals from SAS population (Wang et al. 2020), or 2) Develop statistical 

methods to make use of the PRSs derived from European population (Ge et al. 2019). 

In the short term, the second option is more feasible and cost-effective. Further, similar 

to the European population. Further, understanding the utility of PRS in SAS individuals 

and exploring their interplay with family history in disease risk prediction are critical 

research areas (Hujoel et al. 2022).  

2.5 Aims of the thesis 

In this thesis, we investigate two major aspects of genetics research: 

1. The complex interplay between rare pathogenic variants, polygenic background, and 

family history in breast, prostate, and colorectal cancers. Investigating the cumulative 

and independent contributions of these factors to cancer risk will help us understand 

their combined impact. 

2. Transferability of PRS between different ancestral populations in clinical settings as 

it remains a significant concern. The purpose of this study is to assess whether 

European-derived-PRSs can be transferred to different ethnic groups, including South 

and East Asians, and to evaluate feasibility of implementating the PRS in clinical 

settings. 
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Figure 1  An illustrative example of complex genetic architecture of breast cancer 
showing the role of various genetic risk factors and family history in developing the 
disease. 
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risk genes. Family history was always associated with an increased cancer odds ratio.
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Introduction

Breast cancer and prostate cancer represent 2 of the most
common cancers in women and men, respectively. Within
the UK Biobank (UKB) cohort, breast cancer is the most
prevalent cancer diagnosis in females, and prostate cancer is
the most prevalent cancer diagnosis in males (https://
biobank.ctsu.ox.ac.uk/~bbdatan/CancerSummaryReport.
html). Along with several other factors, predisposing genetic
variants (constitutional/germline variants) play a crucial role
in the risk of developing breast cancer and prostate cancer.

Both breast cancer and prostate cancer are characterized
by a high heritability, estimated to be around 31% for breast
cancer1 and 58% for prostate cancer.2 Within breast cancer
cases, approximately 5% to 10% are monogenic forms
caused by moderate to high penetrant pathogenic germline
variants.3 Similarly, in prostate cancer familial subtypes
following a Mendelian inheritance have been identified.4 It
is noteworthy that in 17% of the patients with family history
for prostate cancer, who were referred for genetic testing, a
pathogenic germline variant could be identified.5 Breast
cancer and prostate cancer share some susceptibility genes
suggesting a potential shared genetic predisposition between
the 2 cancer types.6 It has also been observed that family
history in first-degree relatives for prostate cancer increases
women’s risk of developing breast cancer by 14%.7 Simi-
larly, having a first-degree relative with breast cancer in-
creases the chance of developing prostate cancer by 18%,8

which further underpins the hypothesis of shared genetic
risk factors.

Several studies have shown the crucial role of predis-
posing germline variants in the etiology of breast cancer:
rare high-risk variants in BRCA1 and BRCA29; rare inter-
mediate-/moderate-risk variants in PALB2, CHEK2, and
ATM10; and various common low risk variants.11 In partic-
ular, BRCA1/2 pathogenic variants are most commonly
linked to monogenic breast cancer, usually designated as
hereditary breast cancer and ovarian cancer.3

In addition to the risk conferred by rare pathogenic var-
iants in the strongly associated genes, different genome-
wide association studies (GWAS) have identified hundreds
of single-nucleotide variations associated with breast cancer
risk. Although each single-nucleotide variation has a
negligible effect size, their cumulative effect calculated as
polygenic risk score (PRS) contributes significantly to the
cancer risk, and it can improve disease risk stratification in
the general population.12 Although it is well-established that
both rare and common constitutive variants are associated
with breast cancer, only few studies have explored their
combined effect and specifically to what extent the poly-
genic background acts as a risk modifier of monogenic
variants of breast cancer.

For instance, the Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm model is a
comprehensive breast cancer prediction tool incorporating
BRCA1, BRCA2, PALB2, ATM, and CHEK2 variants, along

with other risk factors such as family and medical history,
lifestyle, and, recently, also PRS.13 In a recent study, the
impact of PRS on the penetrance of the breast cancer risk
variants was assessed for NM_024675.3:c.1592del
(rs180177102) in PALB2 and NM_007194.3:c.1100del
(rs555607708) in CHEK2 in Finnish population14 and for
BRCA1/2 cancer-associated variants in a previous release of
UKB including a smaller cohort of 49,960 individuals with
exome-sequencing data.15

Similarly, different genes are associated with the eti-
ology of prostate cancer, in particular BRCA1/2, ATM,
CHEK2, and HOXB13.16-18 Moreover, several studies
have shown that for prostate cancer also the cumulative
risk driven by the presence of common variants as sum-
marized by PRS models is strongly associated with the
cancer risk.19 Few studies showed the effect of PRS
stratification among heterozygotes for p.G84E in
HOXB13,20 and heterozygotes for BRCA1/2 pathogenic
variant.21 However, those studies focused only on specific
variants or genes.

In this work, we compared the prevalence and the life-
time risk of breast cancer and prostate cancer among
200,643 individuals from the UKB. Individuals were cate-
gorized into heterozygotes and nonheterozygotes of rare
pathogenic or likely pathogenic (P/LP) variants (hereafter
defined as PV) in moderate or high susceptibility genes;
low, intermediate, and high PRS; and with or without a
family history for the respective cancer.

Material and Methods

Data source

This study was performed using genetic and phenotypic data
from UKB (application number 52446). UKB is a long-term
prospective population-based study, and the volunteers are
being recruited mainly from England, Scotland, and Wales;
it involves more than 500,000 participants aged between 40
and 69 years at recruitment. An abundant diversity of
phenotypic and health-related information is available on
each participant; for 487,410 samples, genotyping data are
available, and for 200,643 individuals, exome sequencing
(ES) data are also available. The data set is accessible for
research purposes, and all participants provided documented
consent.22

Study participants

Breast cancer cases were defined on the basis of self-
reported code 1002 (in data field 20001), International
Classification of Diseases (ICD)-10 code C50.X, or ICD-9
code 174.X in hospitalization records. For prostate cancer,
cases with self-reported code 1044 (in data field 20001),
ICD 10 code C61 and D075, or ICD-9 code 185 in

E. Hassanin et al. 577
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hospitalization records were included. The remaining sam-
ples with no other cancer diagnosis were considered as
controls. Individuals of all ancestries were included in the
analysis. Only individuals with both genotyping and ES data
were included (N = 200,643). On the basis of the available
genotype data, we excluded outliers for heterozygosity or
genotype missing rates, putative sex chromosome aneu-
ploidy, and discordant reported sex vs genotypic sex. In the
analysis, we included only females for breast cancer and
only males for prostate cancer. We excluded 1 from each
pair of related individuals if the genetic relationship was
closer than the second degree, defined as kinship coefficient
> 0.0884 as calculated by the UKB (https://biobank.ctsu.ox.
ac.uk/crystal/crystal/docs/ukbgene_instruct.html).

Variant selection

Annovar23 was used to annotate the variant call format files
per chromosome from the 200,643 ES data. Variant fre-
quencies were retrieved from the Genome Aggregation
Database (gnomAD),24 whereas ClinVar25 annotations were
considered to interpret the pathogenicity of germline
variants.

The following inclusion criteria were applied to select rare
PV in the UKB data: (1) only variants in protein-coding re-
gions of the BRCA1/2, CHEK2, ATM, and PALB2 genes for
breast cancer and BRCA1/2, CHEK2, ATM, and HOXB13
genes for prostate cancer; (2) allele frequency < 0.005 in at
least 1 ethnic subpopulation of gnomAD and also allele fre-
quency < 0.005 in gnomAD overall; (3) not annotated as
synonymous, nonframeshift deletion, and nonframeshift
insertion; and (4) annotated as P/LP on the basis of ClinVar,
ie, if the variant is consistently classified as such or, in case of
a conflicting interpretation, if at least 3 P/LP annotations were
available without any benign/likely benign classification. A
similar variant filtering approach has been applied in a recent
analysis aimed at identifying disease causing monogenic
variants.15 Individuals carrying any of the identified variants
in the moderate to high penetrant genes in heterozygous or
homozygous state were classified as PV heterozygotes. We
use the term nonheterozygote to refer to individuals who are
not heterozygous for a PV variant.

PRS

To generate the PRS, we used a previously validated PRS
for breast cancer and prostate cancer containing 313 and
103 variants, respectively.21,26 The PRS was calculated
from the UKB genotype data using the PLINK 2.027

scoring function. We applied a previous approach to
minimize variance in PRS distributions across genetic
ancestries.28 Specifically, we fit linear regression model
using the first 4 ancestry principal components (PCs) in
the controls (PC_PRS = PC1 + PC2 + PC3 + PC4). The

derived model was applied to predict the PC_PRS over
the entire data set. The PC adjusted PRS was calculated
by subtracting PC_PRS from the raw PRS (ie, the re-
sidual PRSs were computed) and used for the subsequent
analyses.

Statistical analysis

Individuals were stratified on the basis of the PRS percen-
tile, presence or absence of PV (ie, heterozygous or non-
heterozygous), and family history. We considered the
corresponding family history of cancer in parents and sib-
lings as reported by participants (UKB Data-fields: 20110,
20107, 20111). We assigned individuals to low (<10%),
intermediate (10%-90%), and high (>90%) PRS where the
definition of a high PRS (above the 90th percentile) fol-
lowed a previous study.18 The rationale to stratify PRS into
3 risk classes was in line with the hypothesis that PRS is
associated with a nonlinear decrease of risk for extremely
low PRS and nonlinear increase of risk for extremely high
PRS as observed in other studies.12

Intermediate PRS, nonheterozygote, and an absent family
history corresponded to the large majority of individuals
(69.9% and 72.1% for breast cancer and prostate cancer,
respectively); therefore, this group was used as a reference
to assess cancer prevalence in the population (ie, to compute
the odds ratios [ORs]). We performed the analysis consid-
ering all genes (ie, heterozygotes of variants in any of the
susceptibility genes) and also performed gene-specific
analysis. For breast cancer, we stratified between PV het-
erozygotes in genes characterized by moderate/intermediate
penetrance (ie, ATM, CHEK2, PALB2, in the following
summarized as moderate) and heterozygotes in highly
penetrant genes (ie, BRCA1/2) to assess the effect of PRS in
the 2 risk groups. In contrast, for prostate cancer, we defined
only a single group because there is no clear difference in
the penetrance of the included genes. For each group, we
computed the OR using a logistic regression model adjusted
for age at recruitment and the first 4 PCs. We then predicted
the cancer ORs across PRS percentiles from a logistic
regression model by considering nonheterozygotes without
family history with intermediate PRS as reference
and conditioning on the mean of covariates (age and the first
4 PCs).

We estimated the lifetime risk by age 70 years resulting
from PV status and the PRS. We fit a Cox proportional
hazards model using the R package survival. We used age as
the time scale representing the time-to-event, considering
age at diagnosis in cases and age of last assessment in
controls. The model included PV heterozygote status, PRS
strata (ie, low, intermediate, high), age, and the first 4
ancestry PCs, whereas adjusted survival curves were plotted
with the R package survminer. For all statistical analyses,
we used R 3.6.3.

578 E. Hassanin et al.
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Results

Stratification of UKB cohort individuals for cancer
prevalence, family history, and genetic risk factors

Within the 200,643 UKB individuals with available geno-
typing and exome data, we identified 6288 breast cancer
cases (3838 prevalent cases and 2450 incident cases) with a
mean age at diagnosis of 55.6 years. The remaining 85,903
women with no other cancer diagnosis were considered as
controls, and the mean age at last visit was 56.8 years
(Supplemental Table 1).

For prostate cancer, a total of 4021 cases (1331 prevalent
cases and 2690 incident cases) were identified with a mean
age at diagnosis of 64.4 years. The remaining 73,053 men
with no other cancer diagnosis were considered as controls,
and the mean age at last visit was 57.0 years (Supplemental
Table 2).

It is noteworthy that both in breast cancer and prostate
cancer, there was a significantly higher proportion of in-
dividuals with a family history for cancers not only among
heterozygotes of PV in the selected cancer susceptibility
genes (OR = 2.09 and 1.62, P < .01) but also among in-
dividuals with high-PRS (OR = 1.38 and 1.37, P < .01)
(Tables 1 and 2).

Distribution of PV heterozygotes within the UKB
cohort

We identified 1622 heterozygotes of 309 PV in the 5
analyzed breast cancer susceptibility genes ie, BRCA1/2,
PALB2, CHEK2, and ATM.

In addition, 1492 heterozygotes of 259 PV were found in
the 5 considered prostate cancer susceptibility genes, ie,
BRCA1/2, ATM, CHEK2, and HOXB13. The list of the
considered variants, annotations, and number of heterozy-
gotes are available in the Supplementary File 2.

Among the study participants, homozygous PVs were not
identified either in breast cancer or in prostate cancer.

PRS distribution within the UKB cohort

The breast cancer and prostate cancer PRSs followed a
normal distribution (raw and PC-adjusted PRS are shown in
Supplemental Figure 1) and were significantly higher in
cases than in controls (P < .01) (Supplemental Figure 2).

We observed a nonlinear increase of cancer risk for in-
dividuals in the extreme right tail of the PRS distribution
and a less evident nonlinear decrease in the left tail
(Supplemental Figure 3–disease prevalence by PRS
percentile for both breast and prostate cancer). This cor-
roborates the hypothesis that PRS can be used to stratify
individuals into risk classes according to a liability threshold
model29 (ie, low, intermediate, and high risk).

Interplay between PV heterozygosity and PRS

None of the selected PV was included in the PRS, and thus,
they represent an independent genetic signal. We observed
that the mean and median of PRS was significantly higher in
affected heterozygotes than in unaffected heterozygotes
(Supplemental Figure 4).

For breast cancer, we performed a separate analysis for
the high-risk genes BRCA1/2 and the moderate-risk genes
PALB2, CHEK2, and ATM. We estimated how breast cancer
risk is influenced by PRS and the heterozygous status for PV
in cancer susceptibility genes by computing the ORs for
cancer across groups with respect to nonheterozygotes with
intermediate PRS because they represent the major group in
the population. Heterozygotes with intermediate PRS
represent the heterozygotes population, and therefore, they
are designated as heterozygotes for simplicity. The high-risk
genes PV heterozygotes had a higher OR than individuals
with only a high PRS (5.9 vs 2.0, Figure 1A). Instead, PV
heterozygotes in the moderate risk genes had an OR com-
parable with the OR in case of nonheterozygotes with high
PRS (OR = 2.2 vs 2.0), but the number of nonheterozygote
women with high PRS was considerably larger than the
number of heterozygotes (Figure 1A). Notably, women
heterozygous for PV in moderate risk genes
(ie, ATM, CHEK2 and PALB2) with low PRS had a lower
risk than nonheterozygote women with only high PRS (OR
1.2 vs 2.0).

In general, PRS modifies the penetrance of PVs in both
moderate- and high-risk genes. Of note, PV heterozygote
women with low PRS in case of both high-risk and
moderate-risk genes had lower ORs (ie, 2.9 and 1.2,
respectively), whereas heterozygote women with high PRS
had the largest absolute ORs (OR = 8.6 and 3.3, respec-
tively; Figure 1A).

For prostate cancer, PV heterozygotes with intermediate
PRS had OR comparable with that of nonheterozygotes with
high-PRS (OR = 2.3 vs 2.2) and even lower in case of low
PRS (OR = 1.6). Notably, similar to the number observed in
women for breast cancer, the number of nonheterozygote
men with high PRS was considerably larger than the number
of heterozygotes (Figure 1C). As expected, among PV
heterozygotes, men with low PRS had the lowest ORs and
the men with high PRS had the highest ORs (1.6 and 6.1,
respectively, Figure 1C).

Similarly, analysis of the lifetime cancer risk showed a
joint effect of PV and PRS. The cumulative incidence by
age 70 years in heterozygotes was the lowest in case of low
PRSs and the highest in the case of high PRS. In breast
cancer, values ranged from 51% to 74% for high-risk genes
and from 20% to 48% for moderate-risk genes (Figure 1B),
whereas for prostate cancer the incidence ranged from 30%
to 59% (Figure 1D). Notably, for nonheterozygotes the
cumulative incidence ranged between 9% and 32% for
breast cancer and between 9% and 35% for prostate cancer.
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Inclusion of family history on the cancer risk
stratification

A family history of the corresponding cancer was present in
19% and 16% of cases and 10.7% and 7.8% of controls
(OR = 2.0 and 2.3, P < .01) for breast cancer and prostate
cancer, respectively (Supplemental Tables 1 and 2).
Considering individuals with no family history and inter-
mediate PRS as reference, we found that both family history
and PRS were associated with higher risk (see ORs in
Supplemental Figures 5 and 6). The risk was lowest for low
PRS and no family history (ORs of 0.45 and 0.42 for breast
cancer and prostate cancer, respectively) and the highest in
the presence of both family history and high PRS (ORs of
3.5 in breast cancer and 4.6 in prostate cancer).

The full models considering the underlying continuous
distribution of PRS by computing the predicted ORs across
PRS percentiles in individuals stratified for family history
and PV status in moderate-risk and high-risk genes showed
that the cancer risk is strongly influenced by PRS in all
groups (Figure 2). Considering the nonheterozygotes with
no family history and median PRS percentile group as
reference, the predicted breast cancer ORs in the lower tail
of PRS was 0.36 for nonheterozygotes with no family his-
tory, whereas in the upper tail of PRS, for PV heterozygotes
with family history, the OR reached 6.6 and 10.3 in

moderate-risk and high-risk genes, respectively. A similar
trend was observed for prostate cancer in which the lowest
predicted OR of 0.3 was reached for PV nonheterozygotes
without family history and OR of 13.1 for heterozygotes
with family history and high PRS.

The effect of PRS in single gene heterozygotes

We estimated how PRS influences breast cancer prevalence
among PV heterozygote women in each of the analyzed
susceptibility genes.

The gene-specific analysis revealed a strong variability in
risk conferred by rare PV in different genes. In particular,
for breast cancer, the largest effect sizes were attributable to
BRCA1/2, a comparably lower effect size was present for
PALB2 and ATM, and the lowest effect size was observed
for CHEK2 (Supplemental Figure 7). Gene-specific analysis
in prostate cancer also showed heterogeneity across gene
effect sizes with the largest effect observed for HOXB13 and
the smallest effect observed for BRCA1 (Supplemental
Figure 8). Despite having single genes, both breast and
prostate cancers were characterized by different effect sizes,
and the PRS modifies the relative risk across all genes.

Similar to the overall analysis, the gene-specific analysis
showed that family history, PV, and PRS are associated with
increased cancer risk. Despite the genes characterized by

Table 2 Characteristics of the participants by PV heterozygosity status and PRS strata in breast cancer

Heterozygote
and High PRS

Heterozygote
and

Intermediate
PRS

Heterozygote
and Low PRS

Nonheterozygote
and High PRS

Nonheterozygote
and Intermediate

PRS
Nonheterozygote
and Low PRS

222 1279 121 8997 72,473 9099
56 (25.23) 241 (18.84) 16 (13.22) 1068 (11.87) 4634 (6.39) 273 (3)
166 (74.77) 1038 (81.16) 105 (86.78) 7929 (88.13) 67,839 (93.61) 8826 (97)

55.51 (8.83) 56.03 (8.7) 54.74 (9.52) 56.52 (8.35) 56.75 (8.4) 57.08 (8.31)

Participants, n
Cases, n (%)
Controls, n
Age,a mean (SD)
Family history of

breast cancer, n (%)
56 (25.23) 260 (20.33) 20 (16.53) 1317 (14.64) 8023 (11.07) 710 (7.8)

PRS, polygenic risk score; PV, pathogenic variant.
aAge at diagnosis for cases and age at last visit for controls.

Table 1 Characteristics of the participants categorized by PV heterozygosity status and PRS strata in prostate cancer

Heterozygote
and High PRS

Heterozygote
and

Intermediate
PRS

Heterozygote
and Low PRS

Nonheterozygote
and High PRS

Nonheterozygote
and Intermediate

PRS
Nonheterozygote
and Low PRS

187 1185 120 7520 60,474 7588
42 (22.46) 118 (9.96) 8 (6.67) 728 (9.68) 2971 (4.91) 154 (2.03)
145 (77.54) 1067 (90.04) 112 (93.33) 6792 (90.32) 57,503 (95.09) 7434 (97.97)

57.89 (8.92) 57.19 (8.68) 56.31 (8.41) 57.31 (8.73) 57.43 (8.7) 57.31 (8.75)

Participants, n
Cases, n (%)
Controls, n
Age,a mean (SD)
Family history of

prostate cancer, n (%)
33 (17.65) 135 (11.39) 19 (15.83) 798 (10.61) 4880 (8.07) 455 (6)

PRS, polygenic risk score; PV, pathogenic variant.
aAge at diagnosis for cases and age at last visit for controls.
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different risk levels, family history lead to larger ORs, and this
trendwas observed across different PRS strata (Figure 3A and
B for breast and prostate cancer, respectively).

Discussion

In this study, we analyzed how breast and prostate cancer
prevalence and cumulative incidence within the UKB cohort
is affected by genetic susceptibility and family history. We
considered both the genetic component driven by rare PV in
genes associated with hereditary forms of cancer and the
polygenic background present in all individuals.

Our results support the hypothesis of cumulative genetic
risks caused by both rare PV and the polygenic background.
We observed a higher prevalence of cancer in PV hetero-
zygotes with high PRS (ie, individuals with suspected he-
reditary forms of breast cancer and prostate cancer). This
result corroborates the role of the polygenic background as a
modifier of the breast cancer and prostate cancer risk among
PV heterozygotes unselected for specific clinical criteria (as
the UKB cohort), and this is in line with that observed in
other studies focused on specific genes or variants.14,15

Lifetime risk analysis of breast cancer and prostate cancer
indicated that the cumulative disease incidence can be
jointly influenced by the presence of PV and the polygenic
contribution over the course of life.

Figure 1 Cancer odds ratio and cumulative incidence among individuals categorized according to the presence of PV heterozygotes
and PRS. Heterozygotes and nonheterozygotes were categorized into 3 strata on the basis of their PRS: low (<10 percentile), intermediate
(10-90 percentile), or high (>90 percentile) PRS. The odds ratio was calculated from a logistic regression model with age, and the first 4
principal components of ancestry as covariates for breast cancer (A), and prostate cancer (C). The reference group was nonheterozygotes with
intermediate PRS. The adjusted odds ratio is indicated by the colored boxes. The numbers next to the odds ratios indicate the sample size of
the corresponding group. The 95% CI are indicated by the vertical lines around the boxes. Cumulative incidence was estimated from a Cox
proportional hazards model using age, and the first 4 ancestry principal components for breast cancer (B), and prostate cancer (D). PRS,
polygenic risk score; PV, pathogenic variant.

E. Hassanin et al. 581



20 

Single-gene analysis revealed heterogeneous effects
across genes, and therefore, the modifier role exerted by
PRS should be framed within the absolute risk attributable
to individual genes. This is in line with a recent study
suggesting that PRS inclusion in risk stratification may
prevent excess of surveillance for breast cancer in PV het-
erozygotes in moderate-risk genes such as CHEK2 and
ATM, whereas the cancer risk for PV heterozygotes in high-
risk genes such as BRCA1/2 is clinically relevant irre-
spective of the PRS.30 Another recent work showed that
there is a wide-range of absolute risks for breast cancer and
prostate cancer in PV heterozygotes in terms of different
genes and across PRS stratification.31

Our results showed that the PRS acts as a risk modifier
for breast cancer and prostate cancer among both the general
population and PV heterozygotes in all the well-known
cancer susceptibility risk genes. PRS can define a signifi-
cant proportion of the general population that is at a risk
comparable with PV heterozygotes for moderate-risk genes
or even more when considering family history. According to
these findings, there should be a potential benefit including
PRS in health care prevention policies for both the general
population and at-risk individuals carrying PVs because
risk-stratified surveillance might improve early disease
detection and prevention.32,33

In particular, we observed that women with PVs in
moderate-risk genes ATM, CHEK2, or PALB2 with a high
PRS had a cumulative incidence comparable with women
with PV in high-risk genes BRCA1/2 with a low PRS. On
the contrary, women heterozygous for PV in moderate-risk
genes with a low PRS had a cumulative incidence compa-
rable to the general population. These results suggest that
for women with PV in moderate-risk genes, the addition of
PRS can optimize the risk stratification, which is often based

on the life-time risk. Therefore, especially in the presence of
PV in moderate-risk genes for breast cancer, intense sur-
veillance programs and potential preventive measures can
be better assessed when including the modifier role of PRS.

Moreover, with increasing population-based cohort sizes,
PRS can better define a small group of very high-risk
nonheterozygote individuals in the extreme tail of the PRS
distribution characterized by even larger ORs and cumula-
tive incidences than the ones observed in the current
analysis.

In addition, our results showed that the inclusion of
family history can further and independently improve the
risk stratification along with genetic factors. Previous
studies have discussed that family history is mainly asso-
ciated with monogenic variants and minimally with
PRS.34,35 However, the PRS predictions are affected by
estimation errors in variant effect sizes from the reference
GWAS; thus, it can be expected that more accurate PRS
models will be developed with the increased availability of
population-based data.36 Moreover, the additional effect of
family history can be caused by unconsidered variants in the
genetic risk models (eg, copy number variations), but it can
also capture nongenetic contributors such as environmental/
lifestyle factors.

Our study has different limitations. First, there is evi-
dence of a healthy volunteers selection bias of the UKB
cohort, and thus, the results might not be generalizable in
terms of effect sizes.37 Second, our risk assessment was
based solely on genetic variants and family history and did
not include other risk factors. Previous studies with UKB
showed that lifestyle modifiable risk factors play a pivotal
role in cancer prevalence,38 and a shared lifestyle within
families could influence family history with the disease.39

This might explain the additional effect of family history

Figure 2 Interplay of PV, family history, and polygenic risk score (PRS). Predicted odds ratios for cancer were estimated from logistic
models adjusted for age and first 4 ancestry principal components for breast cancer (A), and for prostate cancer (B). Nonheterozygotes with
median PRS and no family history served as the reference group. PRS, polygenic risk score; PV, pathogenic variant.
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of cancer with respect to the genetic risk. Finally, although
we performed the analysis on the whole UKB cohort, we
could not test the risk stratification generalizability across
different populations because of the limited sample size.
PRS could be biased toward the European population
because PRS was constructed on the basis of European
reference GWAS. Thus, PRS might be a worse predictor in
non-European or admixed individuals, as previously dis-
cussed in different studies.40

In conclusion, we showed the significant role of PRS in
both general population and heterozygotes of rare patho-
genic germline variants in moderate to high-risk cancer
genes. PRS strongly alters the penetrance of moderate-risk
and high-risk variants and influences the lifetime disease
risk. The data suggest that stratification of individuals based
solely on the PRS can reach ORs comparable with those
associated with heterozygotes of PV in moderate-risk genes
that are currently subject to risk-adapted tailored surveil-
lance programs. Consequently, PRS can identify a relatively
large group of individuals within the general population for
whom intense surveillance measures such as those offered
to heterozygotes of moderate-risk genes should be consid-
ered. These findings highlight the potential usefulness of
PRS in the context of cancer risk stratification. Our analysis
shows that family history along with rare PV and PRS
represents an additional stratification level to the
cancer risk.

Data Availability

Genome-wide genotyping data, exome-sequencing data, and
phenotypic data from the UK Biobank are available upon
successful project application (http://www.ukbiobank.ac.uk/
about-biobank-uk/).

Restrictions apply to the availability of these data, which
were used under license for the current study (Project ID:

52446). Summary statistics are available from the Polygenic
Score Catalog (pgs-info@ebi.ac.uk): for breast cancer at
https://www.pgscatalog.org/score/PGS000007/ and for
prostate cancer at https://www.pgscatalog.org/score/
PGS000049/.
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Abstract 

Background and aims Summarised in polygenic risk scores (PRS), the effect of common, low penetrant genetic vari-
ants associated with colorectal cancer (CRC), can be used for risk stratification.

Methods To assess the combined impact of the PRS and other main factors on CRC risk, 163,516 individuals from 
the UK Biobank were stratified as follows: 1. carriers status for germline pathogenic variants (PV) in CRC susceptibility 
genes (APC, MLH1, MSH2, MSH6, PMS2), 2. low (< 20%), intermediate (20–80%), or high PRS (> 80%), and 3. family his-
tory (FH) of CRC. Multivariable logistic regression and Cox proportional hazards models were applied to compare odds 
ratios and to compute the lifetime incidence, respectively.

Results Depending on the PRS, the CRC lifetime incidence for non-carriers ranges between 6 and 22%, compared to 
40% and 74% for carriers. A suspicious FH is associated with a further increase of the cumulative incidence reaching 
26% for non-carriers and 98% for carriers. In non-carriers without FH, but high PRS, the CRC risk is doubled, whereas 
a low PRS even in the context of a FH results in a decreased risk. The full model including PRS, carrier status, and FH 
improved the area under the curve in risk prediction (0.704).

Conclusion The findings demonstrate that CRC risks are strongly influenced by the PRS for both a sporadic and 
monogenic background. FH, PV, and common variants complementary contribute to CRC risk. The implementation 
of PRS in routine care will likely improve personalized risk stratification, which will in turn guide tailored preventive 
surveillance strategies in high, intermediate, and low risk groups.
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Background
Colorectal cancer (CRC) is the fourth leading cancer-
related cause of death worldwide. Major established 
exogenous risk factors are summarized as Western life-
style [1]. However, an inherited disposition contributes 
significantly to the disease burden since up to 35% of 
interindividual variability in CRC risk has been attrib-
uted to genetic factors [2, 3].

Around 5% of CRC occur on the basis of a mono-
genic, Mendelian condition (hereditary CRC), in 
particular Lynch syndrome (LS) and various gastro-
intestinal polyposis syndromes. Here, predisposing 
rare, high-penetrance pathogenic variants (PV, con-
stitutiona/germline variants) result in a considerable 
cumulative lifetime risk of CRC and a syndrome-spe-
cific spectrum of extracolonic tumors. The autosomal 
dominant inherited LS is by far the most frequent type 
of hereditary CRC with an estimated carrier frequency 
in the general population of 1:300–1:500 [4–6]. It is 
caused by a heterozygous germline PV in either of the 
mismatch repair (MMR) genes MLH1, MSH2, MSH6 
or PMS2 or, in few cases, by a large germline deletion 
of the EPCAM gene upstream of MSH2. The most fre-
quent Mendelian polyposis syndrome is the autoso-
mal dominant Familial Adenomatous Polyposis (FAP) 
caused by heterozygous germline PV in the tumor sup-
pressor gene APC, followed by the autosomal recessive 
MUTYH-associated polyposis (MAP) which is based 
on biallelic germline PV of the base excision repair 
gene MUTYH [7, 8]. However, even in such monogenic 
conditions, the inter- and intrafamilial penetrance and 
phenotypic variability is striking, pointing to modifying 
exogenous or endogenous factors. Heterozygous (mon-
oallelic) MUTYH germline PV may be associated with 
a slightly increased CRC risk [9, 10]; the carrier fre-
quency in northern European populations is estimated 
to be 1:50–1:100 [4].

Approximately 20–30% of CRC cases are characterized 
by a suspicious, but unspecific familial clustering of CRC 
(familial CRC). Around 25% of CRC cases occur before 
50 years of age (early-onset CRC); in around one quarter 
of those a hereditary type (mainly LS) has been identified 
[11]. Although further high-penetrance candidate genes 
have been proposed [12–14], the majority of familial and 
early-onset cases cannot be explained by monogenic sub-
types and instead are supposed to result from a multifac-
torial/polygenic etiology including several moderate-/
intermediate penetrance risk variants and shared envi-
ronmental/lifestyle factors. A positive family history (FH) 
in first- and second-degree relatives increases the risk of 
developing CRC by 2- to ninefold [15, 16], which under-
pins the hypothesis of shared genetic and non-genetic 
risk factors.

A variety of models to predict CRC risk has been devel-
oped and evaluated, which include clinical data, FH, 
lifestyle factors, and genetic information [17].For more 
than a decade, genome-wide association studies (GWAS) 
in large unselected CRC cohorts identified an increas-
ing number of common, low-penetrance risk variants, 
mainly single nucleotide polymorphisms (SNPs), which 
are significantly associated with CRC risk [18–21]. Each 
SNP risk allele individually contributes only little to CRC 
risk (OR 1.05 to 1.5), however, summarised in quantita-
tive polygenic risk scores (PRS), the combined effect 
might explain a substantial fraction of CRC risk variabil-
ity and can identify individuals at several times lower and 
greater risk than the general population [22–24].

As such, it is expected that the genetic background 
defined by the common risk variants may not only influ-
ence the occurrence of late-onset sporadic cases, but also 
modulate the risk of familial, early-onset, and hereditary 
CRC [25]. Recent studies demonstrated that high PRS 
values are associated with an increased risk of CRC and 
other common cancers in the general population up to 
an order of magnitude that is almost similar to hereditary 
tumor syndromes [26, 27].

Based on these data, it can be hypothesized, that the 
identification of common genetic CRC risk variants not 
only provides deep insights into the biological mecha-
nisms and pathways of tumorigenesis, but could improve 
personalized risk stratification for sporadic, familial/
early-onset, and hereditary CRC in the future by the 
implementation of SNP-based PRS screening in routine 
patient care, which will in turn guide tailored preventive 
strategies in high, moderate, and low risk groups.

However, even if previous studies provide promising 
results for a clinical benefit of a PRS-based personalized 
risk stratification, the impact of common risk factors and 
their interplay with high-penetrance variants and other 
unspecified factors, captured partly by the FH, still has to 
be improved and validated in additional patient cohorts.

In the present work, we compare the prevalence 
and the lifetime risk of CRC among 163,516 individu-
als from a population-based European repository (UK 
Biobank, UKBB). Individuals were stratified according 
to three major risk factors 1) their carrier status of rare, 
high-penetrance.

Methods
Data source
UK Biobank (UKBB) genetic and phenotypic data were 
used in this study. UKBB is a long-term prospective pop-
ulation-based cohort study that has recruited volunteers 
mostly from England, Scotland, and Wales, with over 
500,000 participants aged 40 to 69  years at the time of 
recruitment. For each participant, extensive phenotypic 
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and health-related data is available; genotyping data is 
accessible for 487,410 samples, and exome sequencing 
data is available for 200,643 people. All participants gave 
written consent, and the dataset is available for research. 
UKBB provided follow-up information by linking health 
and medical records [28].

Study participants
CRC cases were defined based on self-reported code 
of 1022 or 1023 (in data field 20,001), or ICD-10 code 
of C18.X or C20.X, D01.[0,1,2], D37.[4, 5], or ICD-9 of 
153.X or 154.[0,1] (in hospitalization records). Control
samples were those that had no previous diagnosis of any
cancer. The study includes people of all ethnicities. Outli-
ers for heterozygosity or genotype missing rates, putative
sex chromosome aneuploidy, and discordant reported
sex versus genotypic sex were excluded. Only individu-
als (n = 200,643) who had both genotyping and whole-
exome sequencing (WES) data were considered. If the 
genetic relationship between individuals was closer than 
the second degree, defined as kinship coefficient > 0.0884 
as computed by the UK Biobank, we removed one from 
each pair of related individuals (cases were retained if 
exist).

Variant selection
We used ANNOVAR [29] to annotate the VCF files from 
the 200,643 WES samples. The Genome Aggregation 
Database (gnomAD) [30] were used to retrieve variant 
frequencies from the general population. We focused on 
rare PV for hereditary CRC (Lynch syndrome, polypo-
sis) and considered the same variant filtering approach 
that was used in a recent study aiming at selecting rare 
PV [31]. The following inclusion criteria were used: (1) 
only APC, MUTYH, MLH1, MSH2, MSH6, PMS2 vari-
ants in protein-coding regions were included since PV 
in other genes associated with hereditary CRC are too 
rare or even absent in the study population; (2) allele fre-
quency (AF) < 0.005 in at least one ethnic subpopulation 
of gnomAD; (3) not annotated as “synonymous,” “non-
frameshift deletion” and “non-frameshift insertion”; (4) 
annotated as “pathogenic” or “likely pathogenic” based 
on ClinVar [32]. We did not include MUTYH in the 
pooled analysis since no biallelic (i.e. high penetrance) 
case was identified in the cohort; however, we included 
the heterozygous (monoallelic) carriers in the single gene 
analysis to compare the effect size with the other genes.

Polygenic risk scores (PRS)
We applied a previously validated PRS for CRC with 
95 variants to calculate the PRS [18]. The PRS was 
estimated using the PLINK 2.0 [33] scoring func-
tion through UKB genotype data. To reduce PRS 

distributions variance among genetic ancestries, we used 
a previous approach [34]. We used the first four ances-
try principal components (PCs) to fit a linear regres-
sion model to predict the PRS across the full dataset 
(pPRS ~ PC1 + PC2 + PC3 + PC4). Adjusted PRS (aPRS)
were calculated by subtracting pPRS from the raw PRS 
and used for the subsequent analysis.

In addition, we calculated the PRS using 140 SNPs 
[18] and another PRS based on 50 SNPs that were repli-
cated in the meta-analyzed GWAS after excluding UKBB
samples [35]. Thus, in total three PRS models were com-
puted: (1) 95 SNPs (95 PRS); (2) 140 SNPs (140 PRS); (3)
50 SNPs (50 PRS).

Statistical analysis
Individuals were divided into groups depending on (1) 
carrier status of PV, (2) PRS, and (3) FH. For FH, we con-
sidered participants’ reports of CRC in their parents and 
siblings (data fields: 20,110, 20,107, 20,111). For PRS, 
individuals were assigned into three groups: low (< 20% 
PRS), intermediate (20–80% PRS), and high (> 80% PRS) 
where the definition of a high PRS (above the 80th per-
centile) corresponding to OR >  = 2.

We conducted both an analysis specific to single genes 
and a combined analysis (i.e., carriers of PV in APC, 
MLH1, MSH2, MSH6 and PMS2). First, we estimated 
the OR for each carrier group based on a logistic regres-
sion adjusting for age at recruitment, sex, CRC screening 
status, and the first four ancestry PCs. Afterwards, we 
additionally incorporated interactions between PV carri-
ers and FH with PRS by introducing an interaction term 
within the logistic regression model.

We calculated the lifetime risk by age 75 from carrier 
status of rare PV and the PRS and hazard ratios (HRs) 
based on a Cox proportional hazards model. Individual’s 
age served as the time scale, representing the time to 
event, for observed cases (age at diagnosis), and censored 
controls (age at last visit); age 0 was used as index time. 
Carrier status, PRS category, FH, age, sex, CRC screen-
ing status, and the first four ancestry PCs were incor-
porated in the model, and adjusted survival curves were 
produced. The information about FH and CRC screening 
is based on interviews at the time of study recruitment. 
However, information about the timing or result of CRC 
screening was not available. We therefore included this 
information as a binary covariate to account for both 
effects.

Model performance was assessed via the area under 
the receiver operating characteristic curve (AUC), 
Nagelkerke’s Pseudo-R2, and the C-index for time-to-
event data. R 3.6.3 with the corresponding add-on pack-
ages survival and survminer was used for all statistical 
analyses.
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Additional file 2: Table S2. No individual with a homozy-
gous PV was identified. In other known genes associated 
with hereditary CRC (BMPR1A, POLE, POLD1, RNF43, 
SMAD4, STK11), the number of (L)P variant carriers was 
extremely low or no variant carrier was present at all, so 
that these genes were not considered in the analysis.

PRS distribution within the UKBB cohort
CRC PRS follow a normal distribution both regard-
ing raw and PC-adjusted PRS (Additional file 2: Fig. S1) 
and is significantly higher in cases compared to controls, 
regardless of which PRS model is used (95 PRS, 140 PRS 
or 50 PRS), the PRS is significantly higher in cases com-
pared to controls (Additional file 2: Fig. S2). The OR for 
50 PRS (1.74 [1.57–1.92]) is slightly lower than that of 95 
PRS (1.98 [1.79–2.19]), or 140PRS (1.92 [1.74–2.12]); that 
might be due to overfitting.

Since we included only individuals with both genotyp-
ing and WES data, we investigated the distribution of the 
PRS and age in the whole cohort and compared it to the 
subcohort with WES data. Density plots show that the 
distribution of PRS and age was similar between both 
groups (Additional file 2: Fig. S3).

The prevalence of CRC according to PRS percentiles 
demonstrates that values in the extreme right tail of the 
PRS distribution are associated with a non-linear increase 
of CRC risk, whereas in the left tail a less evident non-lin-
ear decrease can be observed (Additional file 2: Fig. S4). 
This supports the hypothesis of using PRS to stratify indi-
viduals into risk classes (i.e., low, intermediate, and high 
risk) according to a liability threshold model.

Interplay between PV and PRS
There was no overlap between the selected rare high pen-
etrance PV and the common SNPs used for PRS calcula-
tion, and thus, the PRS represents an additional genetic 
signal. Notably, the PRS distributions showed that the 
mean of PRS is significantly higher in affected carriers 

Results
Stratification of UKBB individuals for CRC prevalence, FH, 
and PV carrier status
We identified 1,902 CRC cases (894 prevalent cases and 
1,008 incident cases) among the 163,516 UKBB individu-
als that retained after exclusion criteria, with a mean age 
at diagnosis of 60.9 years. The remaining 161,614 individ-
uals with no previous diagnosis of any cancer were con-
sidered as controls, with a mean age of 56.9 years at last 
visit (Table 1). The European population represents 92% 
of the analyzed cohort.

The fraction of individuals with a positive FH of CRC 
is significantly higher in cases (19%) compared to con-
trols (11%) (OR = 1.95 [1.73–2.19], P < 0.01) and ranges 
between 9 and 23% in the subgroups (Table 2). There is a 
significantly higher proportion of individuals with a FH of 
CRC not only among carriers of PV in the selected can-
cer susceptibility genes (OR = 1.96 [1.72–2.20], P < 0.01), 
but also among non-carriers with high PRS (OR = 1.60 
[1.31–1.94], P < 0.01).

In the analyzed CRC susceptibility genes APC, MLH1, 
MSH2, MSH6, PMS2, we identified 399 heterozygous 
carriers of 111 PV. They were present in 30 (1.57%) cases 
and 369 (0.23%) controls, which is in line with pub-
lished data. A list of the considered variants and annota-
tions is shown in Additional file 1: Table S1, a summary 
of the number of PV carriers per gene is provided in 

Table 1 Characteristics of the 163,516 UK Biobank participants 
by colorectal cancer (CRC) status

Cases Controls

Participants, n 1902 161,614

Male, n (%) 1017 (53.47) 73,979 (45.78)

Female, n (%) 885 (46.53) 87,635 (54.22)

60.96 (8.56) 56.91 (8.51)

30 (1.58) 369 (0.23)

Age, mean (SD)

Carriers, n (%)

Family history of colorectal 
cancer, n (%)

368 (19.35) 17,696 (10.95)

Table 2 Characteristics of the UK Biobank participants by carrier status and polygenic risk score (PRS) strata

Carrier status Carrier Non carrier

PRS strata High Intermediate Low High Intermediate Low

74 247 78 32,628 97,863 32,626

11 (14.86) 16 (6.48) 3 (3.85) 686 (2.1) 1004 (1.03) 182 (0.56)

63 (85.14) 231 (93.52) 75 (96.15) 31,942 (97.9) 96,859 (98.97) 32,444 (99.44)

36 (48.65) 110 (44.53) 35 (44.87) 14,824 (45.43) 45,115 (46.1) 14,876 (45.6)

38 (51.35) 137 (55.47) 43 (55.13) 17,804 (54.57) 52,748 (53.9) 17,750 (54.4)

57.12 (8.89) 56.16 (9.15) 57.35 (8.42) 56.93 (8.52) 56.97 (8.51) 56.96 (8.53)

Participants, n

Cases, n (%)

Controls, n (%)

Male, n (%)

Female, n (%)

Age at assessment, mean (SD)

Family history of colorectal cancer, n (%) 17 (22.97) 53 (21.46) 18 (23.08) 4300 (13.18) 10,671 (10.9) 3005 (9.21)
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compared to unaffected carriers (P < 0.01) (Additional 
file 2: Fig. S5).

We assessed how CRC risk is influenced by PRS and 
carrier status for PV in high penetrant CRC susceptibility 
genes (APC, MLH1, MSH2, MSH6, PMS2) by calculating 
the ORs for CRC across groups compared to non-carriers 
with intermediate PRS as reference group. Non-carriers 
with a low or high PRS are estimated to have a 0.5-fold 
or 2.1-fold change in the odds for CRC, respectively. We 
observed that the PRS also alters the penetrance of PV in 
susceptibility genes considerably as PV carriers with high 
PRS had four times higher OR than carriers with low PRS 

(OR = 17.5 and 3.9, respectively; Fig. 1A; and correspond-
ing HR in Additional file 2: Table S3). We did not observe 
a significant interaction between PV carrier status and 
PRS (p = 0.87). In addition, we performed a sensitivity
analysis including only the incident cases (n = 1,008). We 
observed the same trend, that PRS provides an OR risk 
gradient in the general population and among carriers of 
pathogenic variants in CRC susceptibility genes (Addi-
tional file 2: Table S4).

The high PRS, which is by definition present in 20% 
of the non-carriers, is associated with an almost dou-
bled CRC risk (Fig. 1A, Table 2). Since the vast majority 

Fig. 1 Colorectal cancer odds ratio and cumulative incidence stratified by carrier and family history status. Individuals stratified for PV carrier status 
(A + B), and family history (first-degree relative with CRC) (C + D) into three strata based on their polygenic risk score (PRS): Low (< 20% percentile), 
intermediate (20–80% percentile), or high (> 80% percentile) PRS. The odds ratio (OR) was calculated from a logistic regression model with age, sex, 
CRC screening status, and the first four principal components of ancestry as covariates. The reference group was non-carriers with intermediate PRS 
(A), and no family history with intermediate PRS (C). The adjusted OR is indicated by the colored boxes. The numbers next to the ORs indicate the 
sample size of the corresponding group. The 95% confidence intervals are indicated by the vertical lines around the boxes. Cumulative incidence 
was estimated from a cox-proportional hazard model using age, sex, family history, CRC screening status, and the first four ancestry principal 
components as covariates
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(97.9%) of non-carriers are controls (= healthy), almost 
the same percentage results if only healthy non-carriers 
are considered. We performed the same analysis using 
the 140 PRS and 50 PRS. All the three PRS models had 
comparable performance in the UKBB cohort (Addi-
tional file 2: Fig. S6).

Similarly, the lifetime cancer risk analysis shows a com-
bined impact of PV and PRS: Among carriers, the esti-
mated cumulative incidence by age 75 increased from 
40% in case of a low PRS to 74% in case of a high PRS 
compared to 6% to 22% for non-carriers (Fig. 1B, Addi-
tional file 2: Table S3).

Inclusion of family history on cancer risk stratification
Taking individuals with no FH and intermediate PRS as a 
reference, both FH and PRS are associated with a higher 
CRC risk (Fig. 1C, Additional file 2: Table S5). The CRC 
risk for individuals having low PRS and no FH (OR 0.6) is 
five times lower than for individuals having both positive 
FH and high PRS (OR 3.1). We did not observe a signifi-
cant interaction between FH status and PRS (p = 0.12). 
Noteworthy, individuals without FH and high PRS and 
individuals with FH and intermediate PRS both have sim-
ilar CRC risks with an OR of around 2, whereas the CRC 
risk of individuals having low PRS even in the context of 
a FH is decreased compared to the reference group.

Among individuals with FH, the cumulative CRC inci-
dence by age 75 increases threefold from 8% in case of a 
low PRS to 26% in case of a high PRS (Fig. 1D). Notewor-
thy, the cumulative CRC incidence of individuals with a 
positive FH and an intermediate PRS is lower (16%) than 
for individuals with negative FH and a higher PRS cate-
gory (21%), respectively.

The full model integrating PRS, FH, and PV status 
shows that the CRC risk is strongly influenced by PRS 
in all groups (Fig.  2, Additional file  2: Table  S6). Con-
sidering the non-carriers with no FH and intermedi-
ate PRS group as reference, the CRC OR in low PRS is 
0.6 for non-carriers with no FH, while it is estimated 
more than 60 times higher (OR 40) for carriers with 
FH and high PRS (Fig.  2A). The corresponding cumu-
lative CRC incidences are 6% and 98%, respectively 
(Fig.  2B). Although all PV carriers showed a signifi-
cantly increased CRC risk, both the PRS and FH mod-
ify these risks considerably: depending on the FH and 
PRS, the OR in PV carriers vary between 4 and 40 and 
the cumulative incidence between 35 and 98%. Despite 
the CRC screening status is a key predictor for CRC 
risk (Additional file 2: Fig. S7), the main findings of the 
analysis were maintained irrespective of the screening 
status.

PRS improved model discrimination over carrier sta-
tus and FH of CRC in first-degree relatives. The AUC 
derived from PRS (0.688) was higher compared to those 
derived using FH (0.654) and carrier status (0.646). 
The full model including PRS, carrier status, and FH 
improved the AUC (0.704) in risk prediction by 1.6%, 
5%, and 5.8%, respectively, and was also better than any 
combination of two factors (Table  3, Additional file  2: 
Fig. S8a). We also performed an analysis in which age 
and sex were excluded. The AUCs demonstrate that the 
PRS still has a high discriminative power for CRC risk 
prediction (Additional file 2: Fig. S8b).

Fig. 2 Interplay of pathogenic variant carrier status, family history, and polygenic risk score. A Colorectal cancer (CRC) odds ratios (ORs) were 
estimated from logistic models adjusted for age, sex, CRC screening status, and first four ancestry principal components. Non-carriers with 
intermediate PRS and no family history served as the reference group. B Cumulative incidence was estimated from a cox-proportional hazard model 
using age, sex, family history, CRC screening status and the first four ancestry principal components as covariates
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The impact of polygenic risk in single gene mutation 
carriers
The gene-specific analysis revealed a strong variability 
in risk conferred by rare heterozygous PV in the dif-
ferent genes. The largest effect sizes are attributable 
for MLH1 and APC, those for MSH2 and MSH6 are a 
bit less, while the effect size for PMS2 is considerably 
lower (Fig.  3). When heterozygous MUTYH variants 
are included in this analysis, the risks are very similar 
to the PMS2-related risks. Both the PMS2 and het-
erozygous MUTYH risks show a broad overlap with 
the non-carrier risks, while there is no overlap between 
the risks of non-carriers and those with PVs in MLH1, 
MSH2, MSH6, and APC.

We estimated how PRS and FH influence CRC prev-
alence among PV carriers in each of the five suscep-
tibility genes (Additional file  2: Table  S7). Despite the 
different effect sizes, the PRS and FH modifies the rela-
tive risk across all genes; however, the effect of PRS and 

FH is conversely related to the penetrance of the gene 
with the smallest effects in MLH1 PV carriers.

As for the overall analysis, in the gene-specific analysis 
a positive FH, a PV in a cancer risk gene, and a high PRS 
are associated with an increased CRC risk. As such, an 
individual with a low-penetrance PMS2 PV, but high PRS 
and/or positive FH ends up with an estimated CRC risk 
similar to a MSH6 PV carrier without FH and/or low PRS 
(Additional file 2: Fig. S9, Table S7).

Discussion
Recent studies demonstrated that the polygenic back-
ground, defined as PRS based on disease-associated 
SNPs, modifies the risks for several cancers of the general 
population including CRC considerably, both in terms 
of age at onset and cumulative lifetime risks [12, 23, 27, 
36–38]. In line with this, the risk alleles of those SNPs 
are found to also accumulate in unexplained familial and 
early-onset CRC cases [25, 39]. Whereas a low polygenic 
burden decreases the CRC risk down to one quarter on 
average, individuals with a high PRS (> 80%) doubles and 
those with a very high PRS (99%) almost quadruplicate 
their risk and thus, reach a CRC risk in an order of mag-
nitude almost comparable to carriers of hereditary CRC 
with low PRS [31]. In a pervious study, Jia et  al. found 
that the risk of CRC is significantly associated with its 
PRS: Compared with individuals in the lowest PRS quin-
tile those in the highest quintile had a greater than three-
fold risk (during a 5.8-year follow-up period). Hazard 
Ratios estimated with the middle quintile as the reference 
resulted in a risk between 0.56 and 1.71, a threefold risk 
in those in the top 1% of PRS, and a 70% reduced CRC 
risk for individuals in the bottom 1% of the PRS [38].

To extend these studies on how the CRC prevalence is 
influenced by genetic susceptibility using, we used the 
sufficiently larger, more robust dataset of the most recent 
UKBB cohort, incorporate the family history (FH) as an 
additional factor for risk stratification, and include a sin-
gle gene analysis. We considered both the genetic com-
ponent driven by rare high-penetrance PV associated 
with hereditary CRC and common low-penetrance vari-
ants captured by the PRS.

Firstly, our results confirm that the polygenic back-
ground strongly modulates CRC risk in the general 
population. Compared to the average polygenic bur-
den, individuals with a low (< 20%) or high (> 80%) PRS 
are estimated to have a 0.5-fold or 2.1-fold change in 
the odds for CRC, respectively. The additional time-
to-event analysis revealed a corresponding cumulative 
lifetime risk of 6% and 22% by age 75. Hence, when 
the PRS is included in risk calculation, around 20% of 
healthy individuals of the general population with no 
FH of CRC have a doubled CRC risk, which is similar 

Table 3 Model discrimination assessed for combinations of 
polygenic risk score, family history of CRC and carrier

AUC (C.I 95%) C-index Nagelkerke’s 
Pseudo-R2

PRS + FH + carrier 0.704 (0.68–0.73) 0.657 0.055

PRS + FH 0.698 (0.67–0.72) 0.652 0.052

PRS + carrier 0.693 (0.66–0.71) 0.646 0.051

PRS 0.688 (0.66–0.71) 0.640 0.049

FH + carrier 0.660 (0.64–0.68) 0.580 0.032

FH 0.654 (0.63–0.68) 0.574 0.031

Carrier 0.646 (0.62–0.67) 0.556 0.030

Fig. 3 Interplay of pathogenic variant carrier status, family history, 
and polygenic risk score in single genes. Odds ratios (ORs) for 
colorectal cancer (CRC) were estimated from logistic models adjusted 
for age, sex, CRC screening status, and first four ancestry principal 
components. Non-carriers with intermediate PRS and no family 
history served as the reference group
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to those with a first degree relative affected by CRC 
[40]. These so far unknown and otherwise unrecog-
nisable at-risk individuals might need surveillance 
10–15 years earlier than usually recommended [41]. On 
the other hand, the around 20% of individuals with low 
PRS and no FH might need less surveillance than the 
general population due to a considerably lowered risk, 
while even those with low PRS and positive FH might 
not need a more intense surveillance than the general 
population.

A concern in evaluating CRC PRS using 95 or 140 SNPs 
[18] in UKBB studies is that the calculation is based on
summary statistics derived from a GWAS meta-analysis
that included findings from the UKBB. Previous studies
have also used 95 or 140 SNPs, but it is uncertain if this
could result in overfitting of models. A recent study [35]
addressed this issue using stringent inclusion criteria,
only including 50 SNPs that reached GWAS significant
(p < 5 ×  10–8) in the meta-analysis after excluding UKBB
samples. The effect sizes from meta-analysis of these 50 
SNPs were then used to conduct the 50 PRS. The slightly 
lower OR of the 50 PRS in the present study compared to 
the 95 and 140 PRS might be due to overfitting; however, 
by comparing the PRS calculations, we could show that 
all three PRS models had a comparable performance in 
the UKBB cohort (Additional file 2: Figs. S2 and S6).

It is well known that among patients with hereditary 
CRC syndromes, the age of onset and cumulative CRC 
incidence is very heterogeneous, even within PV carri-
ers of the same family. The estimated gene-specific, indi-
vidual CRC lifetime risks of LS patients with MLH1 or 
MSH2 PV can be lower than 10% but as high as 90–100% 
in a considerable fraction. In the past, the analysis of 
modifying effects based on common CRC-associated 
variants in LS and other high-risk groups has been 
restricted to selected cohorts and small subsets of SNPs 
[42, 43]. A recent study demonstrated that the polygenic 
background also substantially influences the CRC risk 
in LS using UKBB data, even though the ORs for CRC 
risks could only be predicted due to the small sample 
sizes [31]. In the present work, ORs could be calculated 
directly from the model since over three times more 
UKBB individuals have been included with six times 
more CRC cases, and five times more PV carriers.

So secondly, we were able to show that the PRS modi-
fies the CRC risks not only in the general population 
considerably, but also in carriers of a MMR gene PV 
identified in the general population. For the first time we 
demonstrated, that this is also true for APC PV. Depend-
ing on the PRS, the cumulative CRC lifetime incidence 
in PV carriers ranged between 40 and 74%, and thus, the 
PRS is able to explain parts of the interindividual varia-
tion in CRC risk among PV carriers.

However, the single-gene analysis revealed heteroge-
neous effects across genes and therefore the modify-
ing role of the polygenic background should be framed 
within the absolute risk attributable to individual genes. 
As expected, the effect of the PRS seems to be relevant in 
particular in less penetrant CRC risk genes such as PMS2 
where the OR ranges between 0.94 and 5.43 respectively 
(Additional file 2: Table S6). This is in line with findings 
in moderate breast cancer risk genes such as CHEK2, 
PALB2 and ATM [44–46] and suggests that PRS inclu-
sion in risk stratification may in particular be relevant to 
prevent excess of surveillance measures in PV carriers of 
those genes.

In addition, our results provide evidence that the 
inclusion of FH can further and independently improve 
the risk stratification in both carriers and non-carriers. 
Including PRS and FH in risk assessment, the cumula-
tive CRC lifetime incidence ranged between 8 and 26%, 
and in PV carriers between 30 and 98%, and thus, out-
performed the consideration of a single risk factor. This 
suggests that familial clustering points to additional risk 
factors besides those captured by common low-risk SNPs 
(PRS) and rare PV [47, 48]. These might be common and 
rare structural genetic alterations including copy number 
variants, rare non-coding variants, or other intermediate 
and low-impact risk variants not included routinely in 
PRS models, and non-genetic contributors such as envi-
ronmental/lifestyle factors.

Only few PRS studies considered the FH. In line with 
our results, Jenkins et  al. found no correlation between 
SNP-based and FH-based risks and an improved risk 
stratification when both PRS and FH are considered [47]. 
In the analyses by Jia et  al., the AUC derived from PRS 
(0.609) was substantially higher compared to the one 
derived using FH (0.523). Adding PRS and FH of cancer 
in first-degree relatives improved the model’s discrimi-
natory performance (AUC 0.613) [17, 49]. Our AUC cal-
culations point in the same direction with a higher AUC 
(0.704) when all three risk factors (PRS, FH, carrier sta-
tus) are considered.

Interestingly and in apparent contrast to our results 
and those of others, a study using 826 European-descent 
carriers of PV in the DNA MMR genes MLH1, MSH2, 
MSH6, PMS2, and EPCAM (i.e. LS carriers) from the 
Colon Cancer Family Registry (CCFR) did not find evi-
dence of an association between the PRS and CRC risk, 
irrespective of sex or mutated gene, although an almost 
identical set of SNPs was used for PRS calculations [50]. 
A reason which might partly explain different risk esti-
mates between studies using individuals from a popula-
tion-based repository such as the UKBB and those using 
curated clinical data registries, where patients/families 
with suspected hereditary disease are included (e.g.  the 
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CCFR), is a potentially different risk composition across 
cohorts recruited in different ways (recruitment bias). 
That way, a familial clustering of CRC might reflect the 
existence of several genetic and non-genetic risk factors 
as outlined above, which are not captured by the PRS and 
which may superimpose the polygenic impact.

In particular, the composition of cases and controls 
is different between the Jenkins et  al. study on the one 
hand and the Fahed et al. and present study on the other 
hand. In the Jenkins et al. study, obviously both cases (i.e., 
PV carriers with CRC) and controls (healthy PV carri-
ers) derived from the same LS families, while the UKBB 
controls are PV carriers not apparently related to the PV 
cases. This is also reflected by the different ratio between 
cases and controls (7.5% CRC cases among PV carriers 
in the present study, but 61% in the Jenkins et al. study). 
Hence, the controls in the Jenkins et al. study are relatives 
of the cases and thus, it is likely that they share parts of 
the polygenic background and other risk factors of their 
affected relatives (cases) to a certain extent which may 
explain the observed missing effect of the PRS. The com-
parison between population-based and registry-based 
predictions indicates that the study design and recruit-
ment strategy may strongly influence the results and con-
clusions. Consequently, the application of PRS in clinical 
practice should consider the familial background and 
ascertainment of the patient.

Our data analyses provide evidence that the PRS acts as 
a relevant risk modifier for CRC among both the general 
population and population-based PV carriers in genes 
causing hereditary CRC. The findings of us and others 
qualify the PRS as important component of risk stratifi-
cation and resulting risk-adapted surveillance strategies 
in terms of age of onset and frequency. Given the risk dis-
tribution across PRS groups, the PRS can define a consid-
erable proportion of the general population at a CRC risk 
level which is considered sufficient for a more or a less 
intensive surveillance. Importantly, the non-carriers with 
high PRS are a much larger target group compared to PV 
carriers and thus might generate an even higher preven-
tive effect form a healthcare perspective. A small group 
of non-carriers with positive FH and high PRS even has 
CRC risks almost in the same order of magnitude as LS 
carriers without additional risk factors and thus may 
need similar intensive surveillance measures.

According to these findings, there should be a poten-
tial benefit for both the general population and at-risk 
individuals carrying PV, from the inclusion of PRS in 
healthcare prevention policies, as risk-stratified surveil-
lance improves early disease detection and prevention. A 
recent study demonstrated that individuals with a higher 
genetic risk benefited more substantially from preventive 
measures than those with a lower risk: CRC screening 

was associated with a significantly reduced CRC inci-
dence and more than 30% reduced mortality among 
individuals with a high PRS high PRS [51, 52]. Prelimi-
nary calculations indicate that polygenic-risk-stratified 
CRC screening could become cost-effective under certain 
conditions including an AUC value above 0.65 which was 
reached in our analyses [53].

Based on the striking different penetrance between 
individual hereditary CRC genes, very recent guidelines 
start to recommend a more gene-specific surveillance 
intensity in LS and polyposis [54, 55]. Given the strong 
modifying effect, the inclusion of additional risk factors 
will result in a more appropriate, clinically relevant risk 
stratification. Our results demonstrate that a combined 
risk assessment including FH and PRS will likely improve 
precise risk estimations and tailored preventive measures 
not only in the general population, but also in patients 
with hereditary disease.

Our study has some limitations. Firstly, there is evi-
dence of a “healthy volunteers” selection bias of the 
UKBB population (UKBB participants tend to be health-
ier than the general population), and thus the results 
might not be completely generalizable in terms of effect 
sizes [56]. Secondly, we cannot exclude that few carriers 
of APC PV who were classified as controls, are affected 
by a polyposis but have not been recognized as such or 
did not develop CRC due to intensive surveillance and/
or prophylactic surgery, so that the calculated CRC risk 
of APC PV might be slightly underestimated. As in other 
similar studies, the presence of colorectal polyps could 
not be considered due to the lack of appropriate data. 
Thirdly, to increase the power of the analysis, our risk 
assessment was based solely on genetic variants and FH 
and did not include other risk factors. Previous studies on 
UKBB cohorts showed that lifestyle modifiable risk fac-
tors play a pivotal role in cancer prevalence, and a shared 
lifestyle within families could influence FH with the dis-
ease [49, 57]. That might explain the partly independ-
ent association of the FH and the genetic risk. Finally, 
although we performed the analysis on the whole UKBB 
cohort, we could not test the risk stratification general-
izability across different populations due to the limited 
sample size. PRS could be biased towards the European 
population as PRS was constructed based on European 
reference GWAS. Thus, these PRS might be a worse pre-
dictor in non-European or admixed individuals, as previ-
ously discussed in different studies [58].

Conclusion
In conclusion, we show the important role of PRS and 
FH on CRC risk in both the general population and pop-
ulation-based carriers of a monogenic predisposition 
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for CRC. The combined effect of common variants can 
strongly alter the age-related penetrance and life-time 
risk of CRC. Thus, the PRS represents an additional, 
independent stratification level to cancer risk besides 
the FH and lifestyle factors and likely increase the accu-
racy of risk estimation. Consequently, PRS can define a 
relevant proportion within the general population as a 
risk group, which should be considered as subjects for 
more intense surveillance measures, and in addition 
point to a striking risk variability even among carriers 
of hereditary CRC, which requires more personalized, 
risk-adapted surveillance strategies. As expected, the 
modifying effect of the PRS seems to be relevant in par-
ticular for moderate penetrant CRC risk genes. When 
important modifiers such as polygenic background, 
FH, and non-genetic factors are included in risk assess-
ment, the dichotomous risk division between sporadic 
and hereditary CRC will be partly replaced by a more 
continuous risk distribution.
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Abstract
Background & aims We aimed to assess the performance of European-derived polygenic risk scores (PRSs) for 
common metabolic diseases such as coronary artery disease (CAD), obesity, and type 2 diabetes (T2D) in the South 
Asian (SAS) individuals in the UK Biobank. Additionally, we studied the interaction between PRS and family history (FH) 
in the same population.

Methods To calculate the PRS, we used a previously published model derived from the EUR population and 
applied it to the individuals of SAS ancestry from the UKB study. Each PRS was adjusted according to an individual’s 
genotype location in the principal components (PC) space to derive an ancestry adjusted PRS (aPRS). We calculated 
the percentiles based on aPRS and stratified individuals into three aPRS categories: low, intermediate, and high. 
Considering the intermediate-aPRS percentile as a reference, we compared the low and high aPRS categories and 
generated the odds ratio (OR) estimates. Further, we measured the combined role of aPRS and first-degree family 
history (FH) in the SAS population.

Results The risk of developing severe obesity for SAS individuals was almost twofold higher for individuals with high 
aPRS than for those with intermediate aPRS, with an OR of 1.95 (95% CI = 1.71–2.23, P < 0.01). At the same time, the risk 
of severe obesity was lower in the low-aPRS group (OR = 0.60, CI = 0.53–0.67, P < 0.01). Results in the same direction 
were found in the EUR data, where the low-PRS group had an OR of 0.53 (95% CI = 0.51–0.56, P < 0.01) and the high-
PRS group had an OR of 2.06 (95% CI = 2.00-2.12, P < 0.01). We observed similar results for CAD and T2D. Further, we 
show that SAS individuals with a familial history of CAD and T2D with high-aPRS are associated with a higher risk of 
these diseases, implying a greater genetic predisposition.

Conclusion Our findings suggest that CAD, obesity, and T2D GWAS summary statistics generated predominantly 
from the EUR population can be potentially used to derive aPRS in SAS individuals for risk stratification. With future 
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Background
Several genome-wide association studies (GWAS) for 
more than 5000 traits in GWAS Catalog [1] have been 
conducted to date, and very few of the GWASs have had 
significant success translating into the clinical setting [2]. 
Hence, it is a significant milestone to translate GWAS 
findings to clinical settings, particularly for traits with 
high heritability. One of the drawbacks of the GWAS 
findings is that the identified genome-wide significant 
SNPs do not have such a large effect size in most cases. 
However, a current approach of combining those SNPs 
to a single score known as a polygenic risk score (PRS) 
has become popular to enhance the accuracy of predict-
ing individuals at risk and has thus shifted the focus of 
the genetic community towards the use of GWAS find-
ings again [3]. PRS can be a precious tool for risk strati-
fication, particularly in identifying groups of people with 
extremely high or low genetic risk of developing a spe-
cific disease or trait. Moreover, based on our recent work 
and others, it has become clear that for certain traits, 
high PRS, along with rare disease-causing variants, can 
further increase the individuals’ risk of developing a dis-
ease compared to carriers without a high PRS [4–7].

Identifying the risk SNPs using GWAS requires a con-
siderable sample size as even most disease-related SNPs 
have relatively small effect sizes. So far, most of the 
larger GWASs have been mainly conducted in individu-
als with European (EUR) ancestries. One of PRS limita-
tions is that it may not be transferable between different 
ancestries [8]. Due to both potential gene-environment 
interactions and population structure the application of 
EUR GWAS derived PRS can be problematic in non-EUR 
populations as it often results in shifted PRS distribution 
[8]. This lack of portability of PRS is due to differences 
in linkage disequilibrium (LD), risk variants, effect sizes, 
and allele frequencies. Further, methods to genotype or 
impute the missing SNPs initially developed with samples 
of EUR ancestry can increase those differences [9]. The 
critical demand to advance polygenic prediction in non-
European populations is not being met, as South Asian 
(SAS) groups, which form the largest ancestry group 
encompassing 23% of the world’s population [10], remain 
significantly underrepresented in existing GWAS studies. 
This underscores the imperative to substantially increase 
their participation in genetic research [11].

Despite ongoing efforts to increase global genetics 
research diversity, it will take still some time to attain suf-
ficient GWAS sample sizes to identify population-specific 
risk SNPs. As mentioned earlier, PRS is a potent tool to 

identify the sub-populations at risk. However, this inabil-
ity to use it across populations with different ancestries is 
an important research topic. Several studies were being 
performed to study the portability of EUR-derived PRSs 
into other ancestries and an SAS specific PRS has been 
developed for CAD using previously published GWAS 
statistics [10]. However, the majority of them had limited 
success [12–14]. The PRS derived from EUR performed 
poorly in African population [15] and similar results were 
observed in a Latino/Hispanic population for some traits 
[16]. While EUR-derived PRSs showed similar results 
for quantitative traits like blood count and anthropo-
metric features, it performed poorly for blood pressure 
traits [17]. Others have shown a connection between PRS 
and genetic ancestry [12, 18]. In other words, the stud-
ies show that applying PRSs derived from the EUR pop-
ulation directly on other ancestries might not be ideal. 
However, few studies used an approach to developing an 
ancestry-adjusted PRS (aPRS) that is mainly derived from 
EUR and can be transferred to other ethnicities [19]. For 
example, a study showed a compromised solution where 
they found a minimal decrease in the prediction power of 
the PRS in SAS compared to EUR [20].

Recently, it has been shown that in breast cancer, the 
PRS derived from EURs with an ancestry correction per-
formed well in the SAS population [14]. However, it is 
still unclear to what extent populations of EUR and SAS 
ancestry share the same genetic underpinnings of such 
cardiometabolic/lifestyle traits, and such an assessment 
is still missing. It is of utmost importance to perform this 
assessment because compared to other ethnicities, SAS 
individuals have an increased susceptibility to coronary 
artery disease (CAD), obesity, and type 2 diabetes (T2D) 
[21]. The interplay between PRS and family history (FH) 
in predicting the risk of various diseases has been a topic 
of interest in recent years [5, 22–24]. Although previous 
studies have examined the independent effects of FH and 
PRS, there is a lack of systematic research on the relative 
contributions and overlap of these factors across different 
types of familial risk in SAS.

Here, we systematically assessed the portability of the 
aPRS derived from EUR ancestry for obesity, CAD, and 
T2D to the SAS population and the interplay of FH and 
PRS in the same individuals. Hence, we used a published 
list of SNPs derived from the PGS catalog [25], then gen-
erated the aPRS and applied it to the EUR and SAS sam-
ples from the UK Biobank (UKB).

GWAS recruiting more SAS participants and tailoring the PRSs towards SAS ancestry, the predictive power of PRS is 
likely to improve further.

Keywords Type 2 diabetes, Family History, South Asians, Polygenic risk, Coronary artery disease
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Methods
Data source
The UKB is a prospective study that collects data over 
a long period and recruits volunteers aged between 40 
and 69, mostly from Scotland, Wales, and England, total-
ing over 500,000 individuals. All participants have pro-
vided written consent and collected data is available for 
research purposes. The UK Biobank Axiom Array was 
used to generate genotyping data, which included around 
850,000 variants and the imputation of over 90  million 
variants [26].

Study cohort
CAD and T2D diagnoses were based on self-reported 
illness codes and international Classification of Dis-
eases (ICD)-10 and ICD-9 diagnosis codes, and Office of 
Population Censuses and Surveys (OPCS-4) procedure 
codes [3]. CAD was defined using ICD-10 codes (I21.X, 
I22.X, I23.X, I24.1, or I25.2), ICD-9 codes (410.X, 411.0, 
412.X, or 429.79), OPCS-4 codes (K40.[1–4], K41.[1–4],
K45.[1–5], K49.[1–2], K49.[8–9], K50.2, K75.[1–75.4],
or K75.[8–0.9]), and self-reported illness codes 1075.
T2D was defined using ICD-10 code E11.X, and self-
reported illness codes 1223. Diagnosis of obesity was
based on body mass index (BMI), with individuals having
a BMI > 25 considered obese.

We then estimated genetic ancestries (EUR, and SAS) 
by projecting the samples in the 1000 genome project 
(1KGP) principal component (PC) spaces, while consid-
ering 1KGP superpopulations as a reference. The UKB 
conducted quality control for the genetic data, and the 
UKB processed files were used in downstream analysis. 
We analyzed individuals of EUR and SAS ancestry, and 
samples with discordant genotypic versus reported sex, 
sex chromosome aneuploidy, and high heterozygosity 
or missing genotype rates were considered as outliers 
(coded as “YES” in the fields 22,001, 22,019, and 22,027 
respectively) and excluded from further analysis. We 
included only individuals who are unrelated up to the 
second degree, and from each pair of related individu-
als, one member was randomly retained (kinship coeffi-
cient > 0.0884, according to the UKB).

Polygenic risk score analysis
PRSs were calculated using panels of SNPs identi-
fied in the previous studies [3, 27] and the effect sizes 
were downloaded from PGS catalog [21] using the ids 
PGS000027, PGS000013, PGS000014 for BMI, CAD 
and T2D respectively. PRSice-2 was used to generate the 
PRS, which account automatically for allele-flipping and 
removing ambiguous SNPs [28]. Strand-ambiguous SNPs 
are the ones with A/T or C/G alleles. Since many GWAS 
studies do not report the strand assignments, it is a stan-
dard practice in PRS calculations to exclude ambiguous 

SNPs. Since we already obtained the list of SNPs for the 
PRS calculation, we utilized the ‘–no clumping’ and ‘–no 
regress’ parameters along with the other default param-
eters, to bypass the time-consuming steps of regression 
and clumping. PRS values were standardized using the 
mean and standard deviation for the whole data.

Adjustment of PRS
Based on an previously applied approach [5, 19] to 
reduce the variation in the PRS distribution due to 
genetic ancestry, we calculated an adjusted PRS (aPRS). 
A linear regression model was fitted using the PRS as the 
outcome variable and the first four PC derived from UKB 
as covariates (PRS ~ PC1 + PC2 + PC3 + PC4). A predicted 
PRS was calculated based on this model. Finally, the aPRS 
was calculated by subtracting the predicted PRS from the 
raw PRS and standardized using the mean and standard 
deviation.

Statistical analysis
To investigate the association of aPRS and disease risk, 
we used logistic regressions with the occurrence of the 
disease as an outcome, i.e., separate logistic regressions 
for CAD, T2D, and obesity, respectively. All analyses 
were done for SAS and EUR populations separately.

First, we used aPRS as a continuous variable and 
adjusted the model for age, sex, and the first four PCs 
corresponding to the model

logit (P (Y = 1)) = β0 + βaPRSaPRS + βsexsex

+βageage +
4∑

k=1
βPCk

PCk

with Y = 1 corresponding to the occurrence of the dis-
ease (CAD, T2D or obesity). Adjusted odds ratios (ORs) 
were calculated as OR = exp (βaPRS).

Second, we categorized the aPRS into three groups: low 
aPRS, intermediate aPRS, and high aPRS. We used the 
percentiles of the aPRS distribution in the SAS and EUR 
populations, respectively. SAS individuals were assigned 
to the “low” aPRS group if their aPRS fell below the 20th 
percentile (“< 20%”) of the aPRS distribution in the SAS 
population and to the “high” aPRS group if their aPRS fell 
above the 80th percentile (“> 80%”) of the aPRS distri-
bution in the SAS population. The remaining SAS indi-
viduals were assigned to the “intermediate” aPRS group 
(“20%-80%”). The same was done for EUR individuals 
based on the aPRS distribution in the EUR population.

Then we replaced the continuous aPRS variable in the 
logistic regression by the aPRS group using the “interme-
diate” aPRS group as the reference category, i.e., we used 
the model
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logit (P (Y = 1)) = β0 + βaPRSlow
aPRSlow

+βaPRShigh
aPRShigh + βsexsex

+βageage +
4∑

k=1
βPCk

PCk

with aPRSlow = 1 , if the individual is in the low aPRS 
group and 0 otherwise (analogous for aPRShigh ). 
Adjusted ORs for disease occurrence when being in the 
low or high aPRS group compared to the intermediate 
aPRS grou were calc)ulated as OR = exp

(
βaPRSlow

)
 and

OR = exp
p (

βaPRShigh
 respectively.

Finally, to determine the combined effect of aPRS 
and family history (FH), we reclassified the three aPRS 
groups into six groups based on FH status. FH was 
defined as positive (and encoded as FH = pos ) or nega-
tive (encoded as FH = neg) whether the individual has FH 
of the corresponding disease in parents or siblings. For 
example, individuals with high aPRS and positive family 
history are encoded as aPRShighFHpos. We then fitted the 
logistic regression model

logit (P (Y = 1)) = β0 + βaPRSlowFHposaPRSlowFHpos

+βaPRSlowFHnegaPRSlowFHneg

+βaPRSintFHposaPRSintFHpos

+βaPRShighFHnegaPRShighFHneg

+βaPRShighFHposaPRShighFHpos

+βsexsex + βageage +
4∑

k=1
βPCk

PCk.

The reference category is then given by individuals with 
intermediate aPRS and without positive FH. The adjusted 
OR for the occurrence of disease of individuals with, e.g., 
high aPRS and positive FH compared t(o the referenc)e 
category is then estimated by OR = exp βaPRShighFHpos

.

Model performance
For assessing the performance of the different models, 
the area under the curve (AUC) was used. The R pack-
age pROC was used to compute the AUC with 95% con-
fidence intervals (CIs), and AUC. We randomly divided 
the data into (75%) training and (25%) testing datasets. 
Logistic regression models were fitted on the training 
data set, and model prediction and AUC calculations 
were made using the testing data set by applying the cor-
responding models. Additionally, we measured the area 
under Precision-Recall (PR) curve (AUPRC) using the R 
package PRROC to address the challenge of imbalanced 
datasets. Since case-controls ratios for T2D, and CAD 
were substantially higher in the SAS than EUR samples, 
for additional validation of our models we performed 
down sampling for SAS population to achieve the same 

case-control ratios. While for obesity, case-control ratio 
was roughly the same between both populations.

Survival analysis
To calculate the cumulative lifetime risk based on aPRS 
strata and FH status, a Cox proportional hazard model 
was used. Again, separate models were fitted for each 
phenotype (CAD, T2D, and obesity) respectively. The 
occurrence of the disease was considered as the event 
variable. At the same time, age served as the time scale, 
i.e., the age at diagnosis was considered as event time
for observed cases and the age at the most recent visit
for censored control. Adjusted survival curves were pro-
duced considering the aPRS group, age, sex, FH, and the
first four ancestry PCs. We used the Schoenfeld individ-
ual test to test the proportional hazard assumption for
each variable. R packages survival and survminer were
used to perform Cox proportional hazard models and
test the proportional hazard assumption, and R 4.2.2 was
used for all statistical calculations.

Results
UK biobank dataset description
We identified a total of 24,156 CAD cases among indi-
viduals of EUR ancestry and 822 SAS cases, with a mean 
age of 61.51 and 58.71 years at recruitment, respectively. 
The remaining individuals were considered controls. For 
T2D, we identified 25,526 cases among EUR individu-
als and 1,718 cases among SAS individuals, with a mean 
age of 60.39 and 57.42 years, respectively. For obesity 
(BMI > 25), we identified 301,385 EUR and 5,690 SAS 
cases, with a mean age of 55.73 and 53.80 years, in EUR 
and SAS, respectively (Table 1).

In the SAS population, CAD cases were more com-
mon in individuals a positive FH of CAD than individuals 
without FH of CAD with OR 1.98 [1.70–2.31], P < 0.01. 
Moreover, T2D was diagnosed significantly more fre-
quently in individuals with a positive FH of T2D than in 
individuals without FH of T2D (OR = 2.09 [1.86–2.34], 
P < 0.01).

Ancestry correction and PRS distribution within the UKBB 
cohort
When studying individuals of a particular ancestry, it is 
crucial to apply ancestry correction using principal com-
ponents (PCs) derived from the reference population. 
Figure 1 illustrates the effect of this step; while the PRS 
distributions are shifted horizontally for EUR and SAS 
populations, the ancestry correction ensures zero-cen-
tered aPRS distributions for each population. However, 
when using only PRS without ancestry correction, we 
observed a striking difference in the number of individ-
uals assigned to high PRS (where high PRS was defined 
as an individual belonging to a PRS percentile > 80%). 
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Specifically, there were significant variations between 
ethnic groups (EUR and SAS). In cases where matched 
reference controls are available, ancestry correction 
might not be necessary. However, due to the underrep-
resentation of SAS populations in current genetic stud-
ies, it is crucial to explore alternative approaches when 
ancestry-matched reference controls are not accessible. 
This will ensure more accurate and applicable results for 
diverse populations. For example, 18.5% of EUR samples 
(83,955/452,766) had a high PRS, while almost all SAS 
samples (96.2%, 8,331/8,664) showed a high PRS. How-
ever, applying aPRS reduced this variation. For instance, 
20% of EUR samples (90,627/452,766) and 19.2% of SAS 
samples (1,659/8,664) had a high aPRS, leading to a more 
comparable distribution of PRS across ethnic groups. 
Similar results have been observed for CAD and obesity 
as well (Table 2). Our findings are in line with a previous 
study where they showed that ancestry correction is cru-
cial to place an individual in the correct aPRS percentile 
for disease risk prediction [20].

Performance of aPRS on SAS individuals and association 
with disease development
Our analysis revealed that the models incorporating both 
adjusted polygenic risk scores (aPRS) and covariates have 
improved performance compared to the models based 
solely on covariates. This was evident from the higher 
AUC values for all three conditions -  obesity, coronary 
artery disease (CAD), and type 2 diabetes (T2D) - when 
aPRS was included in covariates models. Specifically, for 
obesity, the AUC increased from 0.56 (95% CI, 0.55–0.57) 
to 0.63 (95% CI, 0.62–0.86); for CAD, it rose from 0.76 
(95% CI, 0.75–0.78) to 0.79 (95% CI, 0.77–0.8); and for 
T2D, it increased from 0.67 (95% CI, 0.66–0.68) to 0.69 
(95% CI, 0.68–0.7) (Fig. 2). These improvements in AUC 
values suggest that incorporating aPRS into the mod-
els enhances their ability to discriminate between cases 
and controls for obesity, CAD, and T2D. Following the 
downsampling process outlined in the methods section, 
we did not identify any substantial differences in the per-
formance of the model Supplementary Fig. 1.

Additionally, we observed improvements in the Area 
Under the Precision-Recall Curve (AUPRC) values for 
all three conditions when aPRS was incorporated into 
the models. The detailed AUPRC values can be found 
in Supplementary Fig. 2, which highlights the enhanced 
precision-recall balance achieved by including aPRS in 
the models. This further supports the conclusion that 
aPRS is a valuable addition to the models for predicting 
the risk of obesity, CAD, and T2D. AUROC and AUPRC 
values are provided in Supplementary Fig. 2. The models 
performance in EUR and SAS showed similar trends for 
AUROC Supplementary Fig. 3 and AUPRC Supplemen-
tary Fig. 4.Ta

bl
e 

1 
C

ha
ra

ct
er

is
tic

s 
of

 th
e 

pa
rt

ic
ip

an
ts

 b
y 

C
A

D
, T

2D
, a

nd
 O

be
si

ty
 d

ia
gn

os
is

. C
or

on
ar

y 
ar

te
ry

 d
is

ea
se

 (C
A

D
), 

ty
pe

 2
 d

ia
be

te
s 

(T
2D

), 
Eu

ro
pe

an
 (E

U
R)

, S
ou

th
 A

si
an

 (S
A

S)
CA

D
T2

D
O

be
si

ty
Et

hn
ic

ity
EU

R
SA

S
EU

R
SA

S
EU

R
SA

S

D
ia

gn
os

is
Ca

se
s

Co
nt

ro
ls

Ca
se

s
Co

nt
ro

ls
Ca

se
s

Co
nt

ro
ls

Ca
se

s
Co

nt
ro

ls
Ca

se
s

Co
nt

ro
ls

Ca
se

s
Co

nt
ro

ls
Pa

rt
ic

ip
an

ts
, N

24
,1

56
42

8,
61

0
82

2
78

42
25

,5
26

42
7,

24
0

17
18

69
46

30
1,

38
5

14
9,

88
9

56
90

27
73

M
al

e,
 N

 
(%

)
18

,5
14

18
,5

14
 (

18
8,

83
5

(4
4.

06
)

69
0 

(8
3.

94
)

39
59

39
59

 (5
0

15
,7

56
15

,7
56

 (
19

1,
59

3 
(4

4.
84

)
10

55
 

(6
1.

41
)

35
94

35
94

 (5
1

15
4,

90
8 

(5
1.

39
)

51
,7

03
51

,7
03

 (
29

93
 

(5
2.

60
)

14
93

 
(5

3.
84

)

Fe
m

al
e,

 N
 

(%
)

56
42

 (2
3.

36
)

23
9,

77
5 

(5
5.

94
)

13
2 

(1
6.

06
)

38
83

38
83

 (4
9

97
70

97
70

 (3
8

23
5,

64
7 

(5
5.

16
)

66
3 

(3
8.

59
)

33
52

33
52

 (4
8

14
6,

47
7 

(4
8.

61
)

,1
86

 (
898

,1
86

9
26

97
 

(4
7.

40
)

12
80

 
(4

6.
16

)

Ag
e,

 m
ea

n 
(S

D
)

61
.5

1 
(6

.1
9)

56
.5

3 
(8

.0
3)

58
.7

1 
(7

.6
9)

53
.0

5 
(8

.3
5)

60
.3

9 
(6

.7
7)

56
.5

8 
(8

.0
4)

57
.4

2 
(7

.7
9)

52
.6

4 
(8

.3
4)

55
.7

3 
(7

.6
4)

56
.8

1 
(8

.0
2)

53
.8

 
(8

.3
6)

53
.1

 
(8

.6
5)

Fa
m

ily
 h

ist
or

y 
of

 C
AD

, N
 (%

)
14

,7
59

14
,7

59
 

18
8,

34
0 

(4
3.

94
)

45
7 

(5
5.

6)
31

93
31

93
 (4

0
13

,1
31

13
,1

31
 (

18
9,

96
8 

(4
4.

46
)

75
4 

(4
3.

89
)

28
96

28
96

 (4
1

13
8,

18
5 

(4
5.

84
)

64
,2

59
64

,2
59

 (
24

11
 

(4
2.

37
)

11
59

 
(4

1.
79

)

Fa
m

ily
 h

ist
or

y 
of

 T
2D

, N
 (%

)
52

90
 (2

1.
9)

90
,0

86
 (2

1.
02

)
43

1 
(5

2.
43

)
41

44
41

44
 (5

2
10

,1
20

10
,1

20
 (

85
,2

56
85

,2
56

 (
11

13
 

(6
4.

78
)

34
62

34
62

 (4
9

68
,7

94
68

,7
94

 (
26

,2
67

26
,2

67
 (

30
59

 
(5

3.
76

)
14

30
 

(5
1.

56
)



43 

Page 6 of 11Hassanin et al. BMC Medical Genomics          (2023) 16:164 

Disease association with aPRS categorization in South 
Asians
Our investigation into the performance of aPRS on 
SAS individuals revealed an increasing in the risk of 

developing coronary artery disease (CAD) based on 
aPRS categorization. Individuals with a low aPRS dem-
onstrated significantly reduced odds of developing CAD, 
with an odds ratio (OR) of 0.56 (95% CI: 0.45–0.7), indi-
cating a lower risk than the reference group. Conversely, 
those with a high aPRS exhibited an elevated CAD risk, 
with an OR of 1.72 (95% CI: 1.44–2.05).

Similarly, in the SAS population, the association 
between aPRS categorization and obesity risk showed 
similar results. Individuals in the high aPRS group had 
an OR of 1.95 (95% CI = 1.71–2.23) compared to those in 
the intermediate aPRS group. Regarding type 2 diabetes 
(T2D), the high aPRS group in the SAS population had 
an OR of 1.55 (95% CI, 1.36–1.77) (Fig.  3). While com-
paring with the EUR individuals a similar trend has been 
observed Supplementary Fig. 5.

Association of CAD and T2D with family history and aPRS
Individuals with a positive FH and high aPRS showed a 
higher risk of developing CAD than those with no FH 

Table 2 Comparison of the distribution of high (a) PRS (defined 
as PRS percentile > 80%). Coronary artery disease (CAD), type 2 
diabetes (T2D), European (EUR), South Asian (SAS), Adjusted (a) 
polygenic risk scores (PRS)

Ancestry 
correction

EUR samples 
with High PRS

SAS samples 
with High 
PRS

T2D PRS
adjusted PRS 
(aPRS)

CAD PRS
adjusted PRS 
(aPRS)

Obesity PRS
adjusted PRS 
(aPRS)

83,955 (18.5%) 8331 (96.2%)

90,627 (20%) 1659 (19.2%)

89,438 (19.8%) 2,848 (32.9%)

90,440 (20%) 1,846 (21.3%)

85,853 (19%) 6433 (74.3%)

90,794 (20.1%) 1492 (17.2%)

Fig. 1 The distribution of PRSs before and after ancestry corrections across the various diseases. European (EUR), South Asian (SAS), coronary artery dis-
ease (CAD), type 2 diabetes (T2D), and adjusted polygenic risk scores (aPRS).
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and intermediate aPRS (Fig. 4). In SAS, those with both 
positive FH and high aPRS had a more than three-fold 
increased chance of developing CAD compared to those 
with intermediate aPRS and no FH, while individuals 
with a low aPRS and no FH showed a reduced chance of 
developing CAD with an OR of 0.63 (95%,0.48–0.91). No 
significant interaction was observed between FH status 
and PRS p = 0.11, respectively) (Fig.  4). Notably, in both 
SAS and EUR, individuals with negative FH and high 
aPRS had comparable risks of developing CAD as those 
with positive FH and intermediate aPRS (2-fold risk) 
Supplementary Fig. 6. The same trend was also shown in 
T2D.

Cox-proportional hazard analysis
For the cox-proportional hazard, the Schoenfeld tests 
conducted on each covariate and the global test do not 
yield statistically significant results. Consequently, we 
can reasonably conclude that the assumption of propor-
tional hazards is not violated Supplementary Table 1.

The cumulative CAD incidence among SAS with posi-
tive FH increased from 46% with low aPRS to 75% with 
high aPRS by age 70 (Fig.  5). Notably, SAS individu-
als with an intermediate aPRS and a positive FH had a 
cumulative CAD incidence by age 70 (65%) comparable 
to those with a high aPRS and a negative FH (63%). The 
cumulative incidence of T2D among SAS individuals 
ranges from 58% with a negative FH and low aPRS to 95% 
with a positive FH and high aPRS (Fig. 5). The cumulative 

Fig. 2 Comparison of different models and their corresponding AUCs among South-Asian (SAS) population. Ancestry adjusted PRS (aPRS), First degree 
family history (FH) and covariates (age, sex, first four principal components). European (EUR), coronary artery disease (CAD), type 2 diabetes (T2D).
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Fig. 3 Odds ratio for CAD, and T2D based on the categorization of based 
on the adjusted polygenic risk scores (aPRS) percentile in the South Asian 
(SAS) population of the UK Biobank. Coronary artery disease (CAD), type 2 
diabetes (T2D). If a p-value is less than 0.01, it is flagged with two stars (**)

incidence of T2D among individuals with high aPRS of 
SAS ancestry (95%) was higher than EUR individuals 
(70%) in the corresponding aPRS groups Supplementary 
Fig. 7.

Discussion
Extending the previous studies, we aimed to assess the 
performance of EUR-derived PRSs in the SAS population 
and explore the relationship between PRS and FH in con-
tributing to the burden of CAD, T2D, and obesity. The 
results of this study, utilizing UK Biobank data, suggest 
that an aPRS derived from a large-scale GWAS of car-
diometabolic diseases in individuals of European (EUR) 
ancestry could potentially identify those with an elevated 
risk of disease predisposition in the South Asian (SAS) 

population, albeit with a reduced performance observed 
in the EUR ancestry group. Additionally, the aPRS may 
identify SAS individuals with increased risk for T2D and 
CAD independent of their FH.  Among high aPRS indi-
viduals with positive FH, we noticed an increased cumu-
lative incidence in individuals of SAS ancestry compared 
to EUR individuals stratified by PRS (Fig. 5).

It has been shown that the UKB is a valuable resource 
for evaluating the utility of PRS, as it provides both phe-
notypic and genotypic data [29]. While most UKB partic-
ipants have EUR ancestry, the dataset involves more than 
20,000 participants of self-reported non-EUR.

However, a major challenge with using PRS in clini-
cal settings is that the distribution of genetic variants 
can vary widely among different ethnic populations [8]. 
This can result in inaccurate disease risk predictions and 
hinder the validation of PRS in diverse populations (see 
Fig. 1). The observed dissimilarity between the distribu-
tions for EURs and SASs highlights the need to adjust for 
the correct ancestral background to accurately assign an 
individual to their respective percentile within the refer-
ence distribution.

We have used population structure adjustment [20] to 
address this issue, accounting for the genetic differences 
between different populations when calculating PRS. By 
adjusting for population structure, we minimized the 
impact of genetic variability on the accuracy of PRS pre-
dictions and facilitate the validation of PRS in diverse 
populations.

The generalizability of the study’s findings is subject 
to limitations stemming from several factors. The study 
participants were recruited exclusively within the UK, 
including individuals of EUR and SAS ancestry. Thus, 
healthcare access and non-genetic risk factors may be 
more comparable among these ethnic groups as they 
would be expected using two cohorts recruited in EUR 
and SAS separately. Nevertheless, it is important to 
acknowledge that socioeconomic determinants, lifestyle 
choices, and health disparities may differ across various 
ethnic groups, even living in the same region. Although 
certain risk variants are likely specific to certain popula-
tions, the findings indicating the similar performance of 
the PRS across ancestry groups suggest that non-EUR 
groups, including SAS, may share some of the identified 
risk variants found in EUR-based GWAS for cardiometa-
bolic disorders.

The findings of our study reveal that a higher PRS was 
associated with an increase in obesity, T2D, and CAD 
cases among individuals of SAS ancestry. However, the 
performance of the EUR-based PRSs was less effective in 
the African (AFR) population, suggesting the existence 
of ancestry-specific differences [30]. Hence, PRSs should 
be evaluated carefully by ancestry groups to assess their 
transferability across ancestries and diseases. Whenever 
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Fig. 5 Cumulative incidence of CAD, T2D, and obesity based on the categorization of based on the adjusted polygenic risk scores (aPRS) percentile and 
family history (FH) status in the South Asian (SAS) population of the UK Biobank. Coronary artery disease (CAD), type 2 diabetes (T2D).

Fig. 4 Odds ratio for CAD, and T2D based on the categorization of based on the adjusted polygenic risk scores (aPRS) percentile and family history (FH) 
status in the South Asian (SAS) and European (EUR) population of the UK Biobank. Coronary artery disease (CAD), type 2 diabetes (T2D), and adjusted 
polygenic risk scores (aPRS). If a p-value is less than 0.01, it is flagged with two stars (**)
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possible, PRS should be constructed based on GWAS 
based on the same ancestry group [31].

PRS derived from EUR GWAS may not be optimal for 
all diseases in non-EUR populations, but they can still 
offer some value in risk assessments for specific condi-
tions [32]. Postponing implementation until ancestry-
specific GWAS or multi-ancestry meta-analyses become 
available could unintentionally widen health disparities 
across various populations. In the meantime, while larger 
non-European cohorts are being established, our study 
illustrates that employing an adjusted PRS based on a 
EUR GWAS population can provide a limited level of risk 
categorization for metabolic traits in SAS individuals. 
However, additional validation is required to ascertain its 
efficacy.

The increasing availability of data from larger and more 
diverse populations, coupled with technological advance-
ments, has spurred interest in the clinical adoption of 
PRS. Recent research has demonstrated that combin-
ing clinical risk scores with PRS can help identify more 
people at risk of developing T2D, especially in SAS 
populations. Our study provides a potential model for 
laboratories and health systems seeking to utilize a EUR-
derived PRS in SAS populations. Additionally, our study 
contributes to the literature that supports using PRS and 
FH as complementary measures in assessing inherited 
disease susceptibility for T2D and CAD [5].

One of the key findings of our study is the potential 
improvement in risk prediction when combining family 
history with PRS [33]. Several theoretical bases support 
this notion. Family history might reflect the presence of 
rare genetic variants that are not included in PRS as they 
are typically constructed from common genetic variants. 
Additionally, family members often share similar envi-
ronments and lifestyles, which can contribute to disease 
risk and may be captured by family history. This shared 
environment can also influence gene-environment inter-
actions, another potential risk factor for disease. Fur-
thermore, the disease penetrance, or the likelihood that 
an individual carrying a particular genetic variant will 
manifest the disease, can also be impacted by family his-
tory. Integrating PRS and family history can offer a more 
holistic estimate of disease risk, encompassing additional 
genetic and environmental factors. However, the degree 
to which this combination improves risk estimation 
depends on the disease and populations under study.

Conclusion
Taken together, our study provides preliminary evidence 
that EUR-derived PRSs might be useful to identify indi-
viduals at high risk of T2D, obesity, and CAD in the SAS 
populations. With future GWAS recruiting more SAS 
participants and tailoring the PRSs towards SAS ances-
try, the predictive power of PRS is likely to improve 

further. Further, we explored the importance of consid-
ering both polygenic risk and family history in assessing 
disease risk in clinical practice. Such an integration could 
potentially improve risk prediction and provide personal-
ized prevention and management strategies for the com-
mon non-communicable diseases. Further research is 
needed to assess the clinical utility and cost-effectiveness 
of implementing these measures in diverse populations.
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4. Discussion and Conclusion

In this thesis, an in-depth analysis of the UK Biobank cohort is conducted to investigate 

the interplay of genetic susceptibility, and family history in the prevalence and risk of 

breast, prostate, and colorectal cancers. The study uncovers the contributions of rare 

pathogenic variants, polygenic background, and family history to cancer risk, shedding 

light on the complex interplay between these factors and their implications for risk 

stratification and preventive measures. 

However, one of the significant challenges in implementing PRS in clinical settings is 

their potential lack of transferability between different ancestral populations. Hence, we 

aim to assess the generalizability of PRS across different ethnic populations, including 

the South and East Asian populations, and to evaluate the potential challenges in 

implementing PRS in clinical settings due to population-specific differences. 

4.1 Impact of polygenic risk scores 

Recent studies have consistently demonstrated that the polygenic background, as 

represented by PRS, significantly modifies the risks for various cancers within the 

general population (Hsu et al. 2015; Mavaddat et al. 2019). Taking breast cancer as an 

example, a lower polygenic burden correspond with a substantial lower cancer risk 

(approximately one quarter of women participants on average), while a high PRS (above 

80%) associated with a two-fold risk increase, and a very high PRS (99%) associated 

with  almost quadruple cancer risk, reaching a magnitude comparable to that of carriers 

of hereditary breast cancer (Khera et al. 2018). Extending these findings, the present 

thesis utilizes the UK Biobank cohort, and the results confirm the strong modulation of 

breast cancer risk in the general population by the polygenic background. Specifically, 

individuals with low or high PRS exhibit a 0.5-fold or 2-fold change, respectively, in 

breast cancer odds compared to the average polygenic burden. Time-to-event analysis 

further reveals corresponding cumulative lifetime risks, highlighting the impact of PRS 

in identifying individuals at high risk. Additionally, the results underscore the 

heterogeneous nature of breast risk within patients with hereditary causes, emphasizing 

the need for a comprehensive understanding of genetic and polygenic influences in risk 

assessment (Lee et al. 2019). 
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4.1.1 Combining rare pathogenic variants, polygenic background, and family history 

The findings reveal that both rare pathogenic variants and polygenic background factors 

contribute to the development of cancer. Specifically, the research suggests that 

individuals with suspected hereditary breast cancer are at a higher risk of developing 

breast cancer if they are carriers for rare pathogenic variants and have a higher PRS, 

those findings are consistent with other studies (Kuchenbaecker et al. 2017; Mavaddat 

et al. 2019; Mars et al. 2020b). However, there was not a significant interaction between 

rare pathogenic variant carrier status and PRS observed. The study also found that the 

lifetime risk of cancer is higher among individuals with rare pathogenic variants and a 

high PRS, highlighting the joint impact of both factors on cumulative disease incidence 

over an individual's lifetime. 

The single-gene analysis revealed heterogeneous effects across genes, suggesting that 

the impact of PRS should be considered when assessing the absolute risk associated 

with individual genes. The findings suggest that incorporating PRS into risk stratification 

may help prevent unnecessary surveillance for breast cancer in individuals with 

moderate-risk genes, such as CHEK2, PALB2 and ATM, while high-risk genes like 

BRCA1/2 remain clinically relevant irrespective of PRS (Gallagher et al. 2020, 2021). 

Specially women with rare pathogenic variants in those moderate-risk genes and high 

PRS have a cumulative incidence of cancer that is comparable to that of women with 

rare pathogenic variants in high-risk genes (BRCA1/2) and low PRS. These findings 

support the inclusion of PRS in healthcare prevention policies, as it can identify a 

significant portion of the general population with risks comparable to those of rare 

pathogenic variants, particularly for moderate-risk genes (Kuchenbaecker et al. 2017). 

Additionally, further incorporating family history into risk stratification models improves 

predictive accuracy, particularly when combined with genetic factors (Plym et al. 2022; 

Ho et al. 2023). This comprehensive approach outperformed the consideration of a 

single risk factor, highlighting the importance of accounting for both genetic and familial 

elements in predictive models (Gao et al. 2021). Moreover, the added impact of family 

history may arise from unidentified genetic variants, including copy number variations, 

as well as non-genetic factors such as environmental and lifestyle influences. 
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4.2 Generalizability of European polygenic risk scores to South Asians 

In the third study of the thesis, we examined the utility of European-based PRSs in the 

South Asian population, building on previous studies (Wang et al. 2020; Graham et al. 

2021; Huang et al. 2022). The focus was on assessing how well PRSs from individuals 

with European heritage could predict CAD, T2D, and obesity in South Asians. Using UK 

Biobank data, our results suggest that a PRS from a large study of cardiometabolic 

diseases in Europeans could potentially help identify higher disease risks in South 

Asians. Nonetheless, it's important to note the decreased accuracy compared to the 

European group. 

Our study involved adjusting for population structure to account for differences in genetic 

variants among ethnic populations (Privé et al. 2022), aiming to improve the accuracy 

of PRS predictions and their validation in diverse populations (Wang et al. 2020; Hao et 

al. 2022). While EUR-derived PRSs may have value in assessing risks in non-European 

populations, caution is needed due to recruitment limitations in the UK Biobank cohort. 

Variations in healthcare access, lifestyle, and non-genetic factors among ethnic groups 

highlight the importance of careful interpretation of results (Graham et al. 2021). 

This study also looked at the combined effect of PRS and family history to evaluate 

disease risk in South Asians. The results indicate that combining PRS and family history 

could provide a more comprehensive understanding of disease risk, that considering 

both genetic and environmental factors (Mars et al. 2022). This is important for traits 

such as CAD, T2D, and obesity, especially in South Asians, where family environments 

and lifestyles can play a major role in disease risk. However, the success of this 

approach majorly depends on the disease and population being studied. 

4.3 Clinical utility and challenges of PRS 

PRSs have been extensively studied and demonstrated strong associations with 

disease risk. PRS may be used in modelling genetic risk and estimating life span an 

individual’s disease risk (Lewis and Vassos 2020). PRS may play a role in therapeutic 

interventions either to prevent developing disease, like the use of statins in 

atherosclerosis prevention (Natarajan et al. 2017), or treating disease, like the use of 
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specific pathway PRS to augment chemotherapy dose for certain Leukemia patients 

(Elsayed et al. 2022). Many companies have been recently providing packages of 

informed life planning based on PRS, in the context of adopting lifestyle habits, 

recommendations for nutrition and sport (Torkamani et al. 2018). 

However, the clinical utility of PRS is challenging and not yet established. There are 

number of challenges and shortcomings of translating PRS to clinics, ranging from 

ethical, technical, and practical concerns (Wang et al. 2022). The poor generalizability 

of PRS and attenuation of performance across diverse ancestries and cohorts is a 

significant challenge, which limit their clinical applicability (Peterson et al. 2019). This is 

obviously due to majority of genetic data sets are European-based cohorts, which may 

increase healthcare disparities.  This issue is not unique to PRS, clinical models for risk 

factors in other areas of medicine as well as genetics context can lead to over and 

underestimation the risk for certain populations. 

One challenge also is the lack of consensus for clinical guidelines for PRS use of 

different diseases (Hao et al. 2022). PRSs do not provide absolute risk for developing a 

disease but rather a probability of disease risk and trait likelihood. This difference in risk 

interpretation can lead to confusion for healthcare providers and communication of such 

scores with patients. PRS might be useful as an adjunct tool for modelling disease risk, 

rather than a definitive diagnosis.  

Moreover, using millions of SNPs in calculating PRS, even many of those SNPS have 

minimal impact, raises a number of questions about the meaningfulness of including 

those SNPs in modelling risk prediction (St. -Pierre et al. 2022). Many studies showed 

that the performance achieved using a smaller set of significant genome-wide variants 

did not change significantly by using thousands or millions of SNPs, as the contribution 

of each SNP to the overall risk is often small (Mavaddat et al. 2019). Lastly, the 

interpretation and communicating of PRS results can be challenging due to the number 

of SNPs involved, potentially leading to confusion regarding the actual genetic 

predisposition to diseases. The use of a smaller set of genome-wide significant variants 

may provide a more manageable and interpretable risk prediction tool for both clinicians 

and patients. 
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4.4 Limitations 

Limitations in our study include the selection bias towards "healthy volunteers" in the 

UK Biobank cohort, suggesting that the findings may not be fully applicable in terms of 

effect sizes (Fry et al. 2017). Furthermore, our risk assessment was based solely on 

genetic variations and family history, disregarding other established risk factors (Al Ajmi 

et al. 2020). For example, lifestyle-related elements, which have been highlighted as 

important in earlier UK Biobank studies, could have a substantial impact on cancer 

rates, while familial shared behaviors may affect the accuracy of reported family medical 

history (Kachuri et al. 2020). The impact of how common variants possibly interacting 

with rare variants on disease risk etiology remains an unanswered question. Lastly, 

while we examined the entire UK biobank cohort, the ability to apply risk stratification 

across diverse populations was hindered by the small sample size. The polygenic risk 

scores (PRS) may be skewed towards individuals of European descent, potentially 

reducing their predictiveness in non-European or mixed ancestry individuals, as shown 

in previous research (Fatumo et al. 2022; Privé et al. 2022). 

4.5 Future work 

We plan to extend this analysis of combining common and rare variants for other 

diseases, specially Parkinson’s disease and epilepsy. The aim is to investigate the 

combined contribution of both common and ultra-rare genetic variants (URV) on the 

development of genetic generalized epilepsy (GGE) and GGE-sub phenotypes. A 

cohort with genotyping and whole-exome sequencing data from individuals with 

epilepsy and ancestry-matched controls will be analyzed. We plan to compute an 

individual risk score (IRS) that combines both common and rare variants risk scores. 

For rare risk score, the aim is to employ different allele frequency cutoffs and functional 

genomic annotations, to evaluate the impact of the IRS on epilepsy stratification within 

genes associated with GGE and GGE-sub phenotypes.  The study will investigate the 

potential of using common and rare genetic variations to improve the classification and 

stratification of individuals with epilepsy. 

Another study will involve the use of the latest epilepsy ILAE GWAS data (Stevelink et 

al. 2023), along with the available genotype cohorts from ILAE genetics and Epi25, and 
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defined gene-sets (Koko et al. 2021). This project will employ two approaches for 

polygenic assessment: pathway-PRS and multi-PRS. Pathway-specific PRSs will be 

utilized to provide more biological insights based on the genetic variants involved in 

specific epilepsy-related biological pathways (Choi et al. 2023). On the other hand, the 

multi-PRS framework will be used to generate many PRSs from publicly available 

GWAS data. As increasing the sample size for a specific phenotype is expensive and 

takes time. Multi-PRS approach can effectively increase the sample size by using 

genetically correlated phenotypes. The multi-PRS has demonstrated increased 

prediction accuracy over single PRS by exploiting the joint power of multiple discovery 

GWASs (Krapohl et al. 2018; Albiñana et al. 2023). 

4.6 Conclusion 

In conclusion, this thesis makes a significant contribution to our understanding of the 

complex factors impacting cancer susceptibility. It supports the careful inclusion of PRS 

in risk assessment models, taking into account familial, other genetic and non-genetic 

components. These results support the inclusion of PRS in Breast cancer prediction 

tools such as BODICEA and pave the way for its future integration in other cancers like 

prostate and colorectal cancer. The findings presented in the thesis underscore and 

showcase the clinical relevance of enhancing risk prediction approaches for 

personalized prevention and management strategies across different cancer types. 

Besides, personalizing PRSs based on specific ancestral backgrounds is essential for 

enhancing precision medicine.  
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