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Abstract

Global equivariant homotopy theory is often motivated as the study of com-
patible collections of equivariant objects for some family of compact Lie
groups. In this thesis we make this heuristic precise, by exhibiting the ∞-
categories of global spaces and global spectra as a partially lax limit of a
diagram of equivariant spaces and spectra respectively. An object of such a
partially lax limit is precisely a compatible collection of equivariant objects.
We in fact present two approaches to this result. The first is of a direct and
calculational nature, and works for arbitrary families of compact Lie groups.
This method has the advantage of working in related situations, for example
we also obtain a description of proper equivariant homotopy theory as a limit.
It is the content of joint work [LNP22] of the author with Denis Nardin and
Luca Pol, reproduced in this thesis. The second is of a more categorical na-
ture, but only works for families of finite groups. In this generality it provides
an interpretation of the partially lax limits above as a cocompletion proce-
dure for∞-categories parametrized over the global indexing∞-category. We
then identify a parametrized enhancement of global spaces and spectra with
cocompletions of parametrized categories of equivariant spaces and spec-
tra, using results of Bastiaan Cnossen, Tobias Lenz and the author [CLL23a;
CLL23b]. Additionally, we deduce a new universal property for Fin-global
spectra, as the “representation stabilization” of global spaces at the represen-
tation spheres.
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Introduction

Global homotopy theory studies objects which have a “compatible" action of
all (compact Lie) groups within a designated family.1 For instance, the reader
may consider (G-)equivariant K-theory, equivariant (stable) bordism, stable
cohomotopy, and Borel cohomology. Each of these G-equivariant cohomology
theories admits a definition which is in some sense uniform in the group G.
As such each cohomology theory should, and in fact does, define a global
stable homotopy type, that is an object of the∞-category Spgl of global spectra
in the sense of [Sch18]. In the unstable setting one studies Sgl, the category
of global spaces as originally defined by [GH07] (where they are called Orb-
spaces). Once again the objects of Sgl should be spaces which are equipped
with a collection of compatible actions. Examples of such spaces include the
classifying space ofΠ-principal bundles, whereΠ is a compact Lie group. This
admits an enhancement to a G-space BGΠ, which classifies G-equivariant Π-
bundles, for every compact Lie group G. Once again these enhancements are
all compatible in some, not yet well-defined, sense.
In fact the precise definition of neither global spaces nor global spectra is
obviously an implementation of this initial motivation, that a global object
should be a compatible family of equivariant objects.
As mentioned, the original definition of the ∞-category of global spaces is
due to [GH07]. To define it let us first define an ∞-category Glo. Its objects
are indexed by compact Lie groups, which we denote by BglG. The space of
morphisms from BglH to BglG is equivalent to hom(H,G)hG; the homotopy
orbits of the conjugation G-action on the space of continuous group homo-
morphisms from H to G. The composition is induced by the composition
of group homomorphisms. Formally we may define Glo as the ∞-category
associated to a category enriched in topological groupids. We then define Sgl
to be the presheaf∞-category PSh(Glo).
In particular, we see that a global space X consists of the data of a “fixed
point" space XG for every compact Lie group G which is functorial in all
continuous group homomorphisms. Furthermore, the conjugation actions on
these fixed point spaces have been trivialized, reflecting the fact that spaces
of isotropy are insensitive to inner automorphisms. An alternative definition
in terms of orthogonal spaces is given in [Sch18]. These two definitions agree
by a combination of results in [Sch20] and [K1̈8].

1A family is a subset of all compact Lie groups closed under isomorphisms, subgroups
and quotients.
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CHAPTER 0. INTRODUCTION 3

Models for the ∞-category Spgl of global spectra have been considered by
various authors, for example [Boh14; GM97; Len20; Len22] and [Lew+86,
Chapter II]. More recently, in [Sch18] Schwede has constructed a model struc-
ture on the category of orthogonal spectra, called the global model structure.
Passing to the∞-category underlying this model category we obtain our defi-
nition of Spgl. Contained in this work is abundant evidence that Spgl is a good
setting in which to study global spectra.
For example, in both cases one can construct a forgetful functor resG : Spgl →
SpG and resG : Sgl → SG, which extracts the underlying equivariant homotopy
type from a global homotopy type. However in neither case is it immediately
clear what the additional compatibility contained in a global object amounts
to. As the main contribution of this thesis we provide new models for the
∞-categories of global spaces and spectra which do make this explicit. The
question is in what way we can capture and make precise the notion of a
“compatible action". Schwede in fact conjectured that this is precisely provided
by the notion of partially lax limits, which we introduce now.

partially lax limits

Let I be an ∞-category and consider a functor F : I → Cat∞. Intuitively, the
lax limit of F is the∞-category laxlim F whose objects consist of the data of

• objects Xi ∈ F(i) for each i ∈ I;

• and compatible morphisms fα : F(α)(Xi) → X j for every arrow α : i → j
in I.

A morphism {Xi , fα} → {X′i , f ′α} is a suitably natural collection of maps
{gi : Xi → X′i}. More formally, one may define laxlim F to be the∞-category
of sections of the cocartesian fibration associated to F. Next we fix a collection
of morphisms W ⊂ I, which contains all the equivalences in I and which is
stable under homotopy and composition. The partially lax limit of F, denoted by
laxlim† F, is the subcategory of laxlim F spanned by those objects ({Xi}, { fα})
for which the canonical map fα is an equivalence for all edges α ∈ W . Note
that if W contains only equivalences, then we recover the lax limit of F. On
the other hand, if W contains all edges, we recover the usual notion of the
limit of F. In particular we obtain canonical functors

lim F→ laxlim† F→ laxlim F,

which indicates that a partially lax limit interpolates between the limit and the
lax limit of a diagram. Let us also note that partially lax limits admit a universal
property, analogous to the universal property of a limit. More specifically, a
partially lax limit of the diagram F : I → Cat∞ represents partially lax cones
under the diagram F.
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For simplicity, we have only defined the partially lax limit of a functor with
values in Cat∞, but there are similar definitions if we replace Cat∞ with Cat⊗∞,
the∞-category of symmetric monoidal∞-categories.

the main theorems

With the notion of partially lax limits in hand, we can state the main theorems
of this thesis. We will write (Gloop)† for the marked category (Gloop ,Orbop),
where Orbop is the wide subcategory of Gloop spanned by those maps which
admit a representation by an injective group homomorphism.

Theorem A. There exists a functor S• : Gloop → Cat⊗∞ which sends a compact Lie
group G to the ∞-category of G-spaces SG endowed with the cartesian symmetric
monoidal structure, and a continuous group homomorphism α : H → G to the
restriction-inflation functors. Furthermore, there is a symmetric monoidal equivalence

Sgl ≃ laxlim†
G∈(Gloop)†

SG

between the ∞-category of global spaces with the cartesian monoidal structure and
the partially lax limit over Gloop of the diagram S•.

By the previous theorem, a global space X consists of the following data:

• a G-space resGX for each compact Lie group G,

• an H-equivariant map fα : α∗resGX → resH X for each continuous group
homomorphism α : H → G.

• the maps fα are functorial, so that fβ◦α ≃ fβ ◦ β∗( fα) for all composable
maps α and β, and fid � id;

• fα is an equivalence for every continuous injective homomorphism α.

• a homotopy between the map fcg induced by the conjugation isomor-
phism and the map lg : c∗gresGX → resGX given by left multiplication
by g.

• higher coherences for the homotopies.

This shows that a global space X is precisely a compatible collection of G-
spaces resGX. However we must interpret compatibility as structure, given
by the existence of the maps fα with the required properties.
Similarly there is a stable statement.

Theorem B. There exists a functor Sp• : Gloop → Cat⊗∞ which sends a compact Lie
group G to the symmetric monoidal∞-category of G-spectra Sp⊗G, and a continuous
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group homomorphism α : H → G to the restriction-inflation functor. Furthermore,
there is a symmetric monoidal equivalence

Spgl ≃ laxlim†
G∈(Gloop)†

SpG

between Schwede’s ∞-category of global spectra and the partially lax limit over
(Gloop)† of the diagram Sp•.

Once again we may unravel the theorem above and obtain a concrete descrip-
tion of the data contained in a global spectrum, just as we did before for global
spaces. Let us note that the definition of global spectra is not intrinsically ∞-
categorical, and instead it is given by passing to the ∞-category underlying
a specific model category. One upshot of the previous result is an alternate
definition of global spectra using the modern language of homotopy theory:
higher category theory.
In this thesis we provide two approaches to these theorems. The first is con-
tained in Part II, and proceeds via universal properties in parametrized homo-
topy theory. We may term this the parametrized approach. The second is the
content of [LNP22], joint work of Denis Nardin, Luca Pol and the author. This
work is reproduced in Appendix A. We term this the calculational approach,
because the approach proceeds by first explicitely computing the partially
lax limit and then constructing an equivalence to the ∞-categories of global
spaces and global spectra.
Before we discuss either approach in more detail, let us note some advantages
and disadvantages of either approach. Recall that global homotopy theory
studies compatible equivariant phenomena across compact Lie groups. In
fact there often exists phenomena which only exist for some specified sub-
collection of compact Lie groups. Therefore the precise definitions of global
spaces and global spectra are made with reference to some family of compact
Lie groups. The calculational approach has the benefit that it works for arbi-
trary families of compact Lie groups. Moreover, the methods are flexible and
more generally applicable. For example they give calculations in related but
different settings: as an example let us note that we obtain a description of
proper equivariant spectra as a limit of the diagram G/H 7→ SpH defined on
the proper orbit∞-category of G, see Theorem 7.7.11.
The parametrized approach proceeds by enhancing the partially lax limits
of the theorem to parametrized categories, and then endows them with a
universal property in this context. Because it is fundamentally parametrized,
it has the pleasant consequence that it immediately provides a generalization
of both theorems to G-global spaces and G-global spectra. It also allows us to
conclude a new universal property for the parametrized category of global
spectra in terms of a property we dub representation stability. Unfortunately all
of these benefits do require us to restrict to the family of finite groups.
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GLOBAL HOMOTOPY THEORY AS A HOMOTOPY THEORY FOR
STACKS

We have motivated global homotopy theory via its connection to equivariant
homotopy theory. However, there is a more intrinsic motivation for global
homotopy theory, which proceeds by connecting it to the geometry of objects
which are locally modelled on quotients of group objects. This is the original
motivation of [GH07] for example. There are very many ways of encoding such
geometric objects, such as orbifolds, seperated stacks, topological groupoids
and topological stacks. For the culture of the reader we will explain one
manner in which to make precise the connection of global homotopy theory
to the geometry of such objects. The material in this section is not strictly
connected to the contents of this thesis, and so can safely be ignored.
We begin with an informal, ahistorical and idiosyncratic discussion of classical
algebraic topology. We will then use this perspective to motivate equivariant,
and then global, homotopy theory. We take for granted a well-behaved formal-
ism with which to do homotopy theory. In other words, we take for granted
the theory of ∞-categories. Included in this theory is the ∞-category S of
spaces, which is characterized as the free∞-category generated from the point
under (higher categorical) colimits.
The origins of algebraic topology is found in the study of manifolds2 un-
dertaken by Henri Poincaré in [Poi95]. Already in this work one finds the
fundamental insights of algebraic topology: one can extract out of a manifold
combinatorial and algebraic invariants, such as its Betti numbers or funda-
mental group, which still remember a surprising amount about the original
manifold in question. From a modern perspective, we recognize these invari-
ants as shadows of a more fundamental object, its homotopy type. This is built
by observing that a smooth manifold M is glued together out of simple pieces,
which are all homeomorphic to Euclidean space. The homotopy type of M
remember the combinatorics of this gluing, while forgetting everything about
the local structure of Euclidean space.
To make this intuition precise we appeal to a second fundamental observation
of algebraic topology: the process of passing from a manifold to its homotopy
type, is obtained by identifying smooth maps of manifolds f , g : M → N
which are equivalent up to deformation. Such a deformation is the data of a
map H : M × [0, 1] → N which restricts to f and g at the two end points of
the interval, also known as a homotopy from f to g.
To implement this identification we begin with the category Mfld of manifolds.
We then pass from this to the universal∞-category Mfld∞ in which homotopic
maps are equivalent. The image of a manifold M in Mfld∞ is our definition
of the homotopy type of M, which we denote Π∞M.

2Which we will always assume are smooth.
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Let us explain in what way this encodes the combinatorics of how M was
glued out of euclidean space. Moreover, the fact that one can glue maps (and
even homotopies) of manifolds along an open cover implies that, for any cover
of a manifold M by two open subsets U,V the square

U ∩ V V

U M

is sent to a pushout square in Mfld∞. This is one version of the Siefert–van
Kampen theorem. One can make similar statements for a general cover of
a manifold. Because one can cover a manifold by open balls in such a way
that any finite intersection is either empty or again an open ball, we obtain a
computation for the homotopy type of a manifold as an iterated pushouts of
the homotopy type of open balls in Rn . However each open ball has the same
homotopy type as the point, and so we in fact obtain a computation of the
homotopy type of M as an interated pushout of the point. The only remaining
data is the shape over which one takes the colimit, which encodes the manner
in which M is glued out of open balls.
Let us note that Mfld∞ unfortunately does not have all colimits. For example
it fails to have the pushout of the span S1 ← ∗ → S1. Since it is often benefi-
cial to be in a categorical context in which we have all colimits, we shall do
this. We first add all colimits to the category of manifolds, while imposing
the Mayer–Vietoris property. What we obtain is the ∞-category Shv(Mlfd)
of space valued sheaves on the 1-category Man of manifolds equipped with
the open cover topology. We now pass to homotopy classes of maps, by con-
tracting the interval. More formally, we consider the localization of sheaves on
manifolds at the projection morphisms [0, 1]×M → M. This is identified with
a subcategory of Shv(Mfld), spanned by those sheaves F of spaces such that
F(pr1) : F(M) → F(M × R) is an equivalence for every manifold M. We call
such sheaves homotopy invariant, and denote the subcategory by Shvhtp(Mfld).
There exists a functor Lhtp : Shv(Mfld) → Shvhtp(Mfld), and one can show that
the essential image of Mfld ⊂ Shv(Mfld) under Lhtp is equivalent to Mfld∞.
The key result is that there is an equivalence

S ≃ Shvhtp(Mfld)

between the∞-category of spaces and the∞-category of homotopy invariant
sheaves on manifolds. We refer the reader to [ADH21, Theorem I.1] for a proof
of this equivalence.
As a result of this theorem, the homotopy type of a manifold is canonically a
space. This expresses a remarkable fact because, as mentioned, the∞-category
of spaces is freely generated under colimits by the point and therefore is a
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fundamental object of higher category theory. Therefore by passing from
manifolds to homotopy types we crystalizes a (relatively) computable part of
the theory of manifolds which we can attack with the diverse set of tools of
homotopy theory.
As mentioned, some of the fundamental invariants encoded by the homo-
topy type of a manifold M are its Betti numbers. These are nowadays under-
stood to be decategorifications of more structured invariants, the homology
and cohomology H∗(M) and H∗(M) of M. Beyond homotopy invariance and
Mayer-Vietoris properties, these groups satisfy an extremely useful property,
the suspension isomorphism, which gives an equivalence H∗+1(ΣM) ≃ H∗(M).
Recall thatΣM is the suspension of M, the pushout of the diagram ∗ ← M → ∗
in S. This relation definitely does not hold for all of the invariants of a homo-
topy type, such as its homotopy groups. In fact the suspension isomorphism
drastically simplifies many calculations. For example one might compare the
homology of spheres, for which one sees a complete calculation in a first
topology course, to the homotopy groups of spheres, which are essentially
impossible to completely calculate.
We may construct an∞-category of objects which represent invariants which
satisfy the suspension isomorphism. Formally, this is done by passing from
the ∞-category of pointed spaces to the initial ∞-category in which the op-
eration of suspension is an equivalence. The resulting∞-category is denoted
Sp, and is called the∞-category of spectra. The following consequence of the
suspension isomorphism is of crucial importance for geometric applications.
Given a manifold M, one can extend the integer grading of H∗(M) and H∗(M)
to a grading on formal differences E − F of vector bundles E, F over M. Using
this one can prove another fundamental property of homology and cohomol-
ogy: there is an equivalence between the groups HV (M) and HV−TM(M). In
fact this is nothing but a nonstandard expression of Poincaré duality3.
From the example of classical algebraic topology spawned the area of homo-
topy theory. This is the study of mathematical objects which come equipped
with a natural notion of homotopy between maps. At this point there is an in-
exhaustable list of examples, of various different flavours. One which is impor-
tant for the story of this thesis is the theory of G-spaces for a compact Lie group
G. We motivate this in precisely the same way as before. We begin once again
from a purely geometric category, smooth manifolds with an action of the
group G. We say two maps f , g : M → N between G-manifolds are equivari-
antly homotopic if there exists a map H : M × [0, 1] → N of G-manifolds which
restricts to f and g at the boundary of [0, 1]. In this definition [0, 1] is equipped
with the trivial G-action. Once again we may cocomplete and identify equiv-
ariantly homotopic maps to obtain the ∞-category SG B Shvhtp(MfldG) of
homotopy invariant sheaves on G-manifolds. In the case of smooth manifold

3Or more properly Atiyah Duality.
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we observed that all of the local structure of a manifold was forgotten by pass-
ing to its associated homotopy type. The crucial reason for this was the fact
that every manifold is locally Euclidean. Intuitively, it is clear that contracting
the interval will therefore forget all local structure.
We may wonder if the same is the case for manifolds with a G-action. How-
ever here one has to be careful what one means when one says that manifolds
with a G-action are locally euclidean. For example, a G-manifold is clearly not
covered by open subsets of the form Rn , where Rn is endowed with the triv-
ial G-action. However, by a non-trivial theorem in equivariant differentiable
topology, the existence of linear slices [Die87, Theorem 5.6], it is the case that
given a point x with isotropy H ⊂ G, x admits a G-equivariant neighbor-
hood of the form G ×H D(V), where H is a closed subgroup and D(V) is
the open disk in a H-representation V . Because the disk D(V) is contractible,
we see that this neighborhood is equivariantly homotopic to the G-manifold
G ×H ∗ � G/H. This G-space is characterized as the “free" G-space generated
by a single point with isotropy H. This suggests that isotropy is the only local
property of a G-manifold which is not forgotten by working up to homotopy.
This is precisely the case, and the following theorem makes this precise. To
state it we first fix some notation. First we note that there exists a left adjoint
to the inclusion of homotopy invariant sheaves into all sheaves, which we
denote Lhtp. We then write OrbG for the full subcategory of SG spanned by
the objects LhtpG/H for H a closed subgroup.

Theorem. There exists an equivalence of∞-categories

Shvhtp(MfldG) ≃ PSh(OrbG).

Under this equivalence, a G-manifold is sent to the diagram LhtpG/H 7→
Π∞MH which sends LhtpG/H to the homotopy type of MH . The previous
theorem seems to also have been folklore, we direct the reader to [Cno23b,
Theorem 4.4.16] for a proof. By this theorem, Shvhtp(MfldG) is equivalent to
the∞-category of G-spaces, which is traditionally defines as the localization
of the category of G-CW complexes at the equivariant homotopy equiva-
lences, or equivalently the localization of all G-spaces at the weak homotopy
equivalences. It is a consequence of Elmendorff’s theorem [Elm83] that SG is
equivalent to the presheaf ∞-category on OrbG, and therefore equivalent to
Shvhtp(MfldG) by the theorem above.
Just as in the nonequivariant case, it is of crucial importance to study coho-
mology theories on G-spaces. One attempt is to naively extend the notion of
cohomology theory from non-equivariant to equivariant spaces. In modern
terminology, this would amount to passing from the∞-category of G-spaces
to its stabilization Sp(SG). Objects of this∞-category are often called naive G-
spectra. This is to distinguish them from more refined notions of cohomology
theories one may consider. The need for these more refined theories is the fact
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that, unlike in the non-equivariant situation, cohomology theories indexed
on naive G-spectra do not extend to cohomology theories indexed on formal
differences of equivariant vector bundles. In particular such theories fail to
satisfy equivariant Poincaré duality. Already at the point we can see the ob-
struction to extending to a theory graded on vector bundles. Note that a vector
bundles over the point is precisely a G-representation. The extended grading
on a G-representation V should be obtained by taking the zeroth cohomol-
ogy on the one point compactification SV B V ∪ {∞} of a G-representation
V . This is not generally an invertible object in Sp(SG), and so it is not possible
to extend the grading to 0 − V , the formal inverse of V .
However this example also inspires the construction of an improved theory,
analogous to our construction of Sp. Namely, we may formally pass to the
initial ∞-category under pointed G-spaces for which the suspension functor
ΣV (−) B SV∧− is an equivalence for all representations V of G. One can show
that an object of this ∞-category is a representing object for a cohomology
theories which does admit an extended grading in equivariant vector bunldes.
The resulting ∞-category is denoted SpG, and referred to as the ∞-category
of (genuine) G-spectra. Time has shown this to be a very good context within
which to study equivariant cohomology theories: on the one hand, most coho-
mology theories of interest do naturally admit this extended grading. Exam-
ples include equivariant topological K-theory, equivariant bordism theories,
equivariant cohomotopy, equivariant elliptic cohomology, Swan K-theory, as
well as many others. On the other hand, working in genuine G-spectra one
has all of the properties one hopes for, such as an equivariant generalization
of Poincaré/Atiyah duality.
The use of G-spaces and G-spectra to study the geometry of manifolds with
a G-action has a long and profitable history, see for example [Was69], [Die87],
[Bre72], and [CF64] for some classic references. The study of G-spectra has
also been an integral part of many developments in homotopy theory. For
example, one may cite the Atiyah–Segal Completion theorem and its gener-
alizations [AS69], [GM97], Carlsson’s proof of the Segal conjecture [Car84]
and work on the Sullivan conjecture [Car91]. More recently, we may cite the
resolution of the Kervaire invariant one problem [HHR16], the resolution of
the triangulation conjecture by Manolescu [Man16], as well as applications to
descent in chromatically localized algebraic K-theory [Cla+20].
Finally, we introduce the ∞-category of global spaces. Once again we will
motivate this as the homotopical shadow for a interesting class of geometric
objects. These geometric objects are seperated stacks: geometric objects which
in some sense locally look like the quotient of a manifold by a compact Lie
group.
The study of this class of geometric objects is less classical than that of equiv-
ariant manifolds. There are many different motivations for there study, here
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we provide one. We begin with the following observation: when studying
some geometric structure, it is often to consider the moduli space M of such
structures. This is defined so that the points of M correspond to a choice of
the relevant geometric structure. Historically, one of the first examples is the
moduli space of Riemann structures on a surface Σ of genus g. When g � 1
we obtain the moduli space of elliptic curves.
However in the study of such moduli spaces one encounters a problem, which
is that these spaces are themselves very rarely smooth. This is slightly surpris-
ing, since typically the points of the moduli space M are locally parametrized
by open subsets of euclidean space. For example elliptic curves are given by
lattices inC, and so naturally admits a parametrization by points in the upper
half plane. However this is precisely where the problem lies: the objects rep-
resented by the moduli space are often invariant under reparametrizations.
This reflects the fact that certain choices of the geometric structure of inter-
est may have non-trivial automorphisms. In the case of elliptic curves these
reparametrizations consist precisely of the Mobius transformations. More
concretely, what this implies is that the actual moduli space looks locally like
D/G, the quotient of a local chart D by the group G of reparametrizations.
Any point of D with non-trivial isotropy gives a singular point of the moduli
space, and so obstructs the existence of a smooth structure.
The solution to this problem is to improve our moduli spaces to moduli stacks.
One way to do this is precisely to remember all of the charts which we used
to parametrize our moduli space, together with the action on each chart by
the relevant group of reparametrizations. In this context the moduli space is
smooth in a suitable sense, and amenable to geometric analysis. An additional
benefit is that as a moduli stack, M in fact solves the moduli problem for fami-
lies of objects in M fibered over manifolds. This allows one to apply powerful
descent-theoretic methods to the study of such moduli stacks. As an example
of this, we note that there is a moduli stack BG for any Lie group G such that
maps M → BG from a manifold M into BG precisely encode the groupoid of
principal G-bundles on M. To continue to emphasize the distinction between
moduli stacks and spaces we note that the underlying moduli space of BG
is always simply a point, and so not very interesting. However as a stack BG
represents prinicpal G-bundles, and so is very interesting. Restricting to those
moduli stacks whose isotropy at every point is a compact Lie group, we obtain
the (2, 1)-category SepStk of seperated stacks. Objects of this category appear
naturally in many other areas, such as foliation theory, symplectic topology
and mathematical physics.
Beyond this, one important and basic source of seperated stacks is from
equivariant differential geometry. Namely, given a manifold M with an action
of a compact Lie group G, we naturally obtain a seperated stack M � G, the
global quotient stack of M. The moduli space underlying this example is given by
the quotient M/G. The G-equivariant local charts of M naturally induce charts
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for the quotient M/G, and so enhance the quotient to a seperated stack. In
fact, one can show that essentially any seperated stack coming from geometry
is equivalent to a global quotient stack, see for example [Par22, Corollary 1.3].
In particular, there is a strong connection between the theories of seperated
stacks and equivariant manifolds. Nevertheless, the passage from equivariant
manifolds to seperated stacks is a drastic one. Morally it involves replacing
global symmetries, encoded by actions of compact Lie groups on manifolds,
by local symmetries, encoded by the data of isotropy groups for each point.
This is reflected by the fact that for any injective group homomorphism G→
K, (X×G K)�K is equivalent as a seperated stack to X �G: a simple calculation
shows that (X ×G K)/K ≃ X/G and that under this equivalence each point
has isomorphic isotropy. As a second point we note that the groupoid of
morphisms between seperated stacks M � G and N � G is very different from
the set of maps M → N of G-manifolds. For example, when M and N are
G/H and G/K respectively, the components of the former are given by group
homomorphisms from H to K up to conjugation by elements of K, while the
latter is just those maps obtained by conjugating by an element of G.
To study seperated stacks from a homotopical perspective, we may consider
seperated stacks up to homotopy equivalence. The previous examples suggest
a very natural way in which to do this. Namely, we may consider sheaves of
spaces on SepStk, where the covers are given by a suitable generalization
of open covers, and then contract the interval. Doing this we obtain the ∞-
category Shvhtp(SepStk) of homotopy invariant sheaves on seperated stacks.
Just as in the equivariant case, one can show that the only local structure in
a seperable stack which survives the process of contracting the interval is the
isotropy data at each point. The diagram of such “isotropy spaces" is naturally
encoded by a global space, as shown by the following theorem.

Theorem ([CCL24]). There exists an equivalence of∞-categories

Sgl ≃ Shvhtp(SepStk).

As this theorem shows, the study of global spaces is naturally motivated
by the geometry of seperated stacks. The study of global spaces is in its
relative infancy, and its uses for studying the geometry of stacks is less well
understood then in the equivariant and non-equivariant cases. Nevertheless,
for one application of global homotopy theory to the geometry of stacks we
refer the reader to [Par23].
Of course we are also interested in studying cohomology theories on global
spaces. Just as in the equivariant case, there is a distinction between naive
and genuine variants of such cohomology theories. Once again the crucial
additional structure encoded by genuine cohomology theories is an extension
of the grading to vector bundles of global spaces. By work of [Sch18], the
objects of Spgl canonically represent such genuine cohomology theories on
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seperated stacks. This makes Spgl an extremely useful setting in which to
analyse such global cohomology theories. We may highlight [Sch22], [Hau22]
and [LV24] for the use of global methods in the study of stable orbifold
bordism.



1. The parametrized approach

We now provide more details on the parametrized approach to Theorem A
and Theorem B. Because this method is currently only viable for the family of
finite groups1, in this chapter we let Glo denote the global indexing family for
the family of finite groups. We note that this is equivalent to the (2, 1)-category
of finite connected groupoids.
The parametrized approach to these theorems begins with the observation
that the partially lax limit in Theorem B universally solves a defect of the
diagram Sp• of equivariant spectra. Explaining this defect is most convenient
from the perspective of global categories, which we recall now.
In mathematics one often wants to study objects which come equipped with
an action of a group. Typically these collections of G-equivariant objects as-
semble into an ∞-category, which becomes the main object of study. In the
process of understanding such categories one crucially uses their functori-
ality in the group G ; i.e. the fact that one can restrict actions along group
homomorphisms. Thinking systematically about this functoriality leads to
the definition of a global category, which is roughly the data of

1. an∞-category CG for every finite group G ;

2. a restriction functor α∗ : C(G) → C(H) for every group homomorphism
α : H → G ;

3. higher structure, which in particular witnesses that conjugate mor-
phisms induce the same restriction functor.

More precisely we define a global category to be a functor

C : Gloop → Cat∞ , BG 7→ CG .

The study of global categories is the study of the abstract representation theory
of finite groups, understood in a very broad sense. This study of course has a
long history, but in this exact formalism was begun in [CLL23a]. The perspec-
tive taken there was that of parametrized/internal higher category theory, in
the sense of [Bar+16] and [MW21] respectively. This is a robust generalization
of higher category theory, which comes with its own notions of adjunctions,
colimits and so on. Applying these notions to global categories one recovers

1With minor additional work one can also extend to an arbitrary family of finite groups.

14
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properties familiar from representation theory. For example a global category
C admitting certain parametrized colimits, which we call equivariant colimits,
if each category CG admits colimits preserved by restriction, and there exist
induction functors indG

H : CH 7→ CG left adjoint to the restriction i∗ : CG → CH
along an inclusion i : H → G, which furthermore satisfy an analogue of the
classical double coset formula. Having all parametrized colimits implies the
further existence of a quotient functor (−)/N : CG → CG/N which is left adjoint
to the inflation functor p∗ : CG/N → CG for every surjective homomorphism
p : G→ G/N of finite groups.
With this background we can consider the diagram

Sp• : Gloop → Cat∞ , G 7→ SpG

sending the group G to SpG, the∞-category of genuine G-spectra. The crucial
observation is that as a global category it suffers from one defect: it does not
admit all parametrized colimits. This is a consequence of the fact that the
restriction functor α∗ : SpG → SpH does not admit a left adjoint when α is a
non-injective group homomorphism, see Example 3.1.18. In other words, it is
not possible to construct a quotient functor (−)/N : SpG → SpG/N left adjoint
to inflation. Nevertheless it does admit equivariant colimits, in the sense of
the previous paragraph.
In this part we will show that one can freely add the missing parametrized
colimits to a nice global category which admits equivariant colimits, and
moreover that the value of the resulting global category at a group G admits
an explicit formula in terms of partially lax limits. Motivated by examples, we
call this process globalization. To connect this to Theorem B, we note that the
category Spgl admits a canonical parametrized enhancement

Sp•-gl : Gloop → Cat∞ , BG 7→ SpG-gl

given by sending the groupoid BG to the ∞-category of G-global spectra,
as defined by [Len20]. We call this the global category of globally equivariant
spectra. As the main result of this part we will prove that this is equivalent to
the globalization of Sp•, which is an improved version of Theorem B. To state
the theorems we require some notation; careful definitions will be given later.

Definition 1.0.1. A global category C is called equivariantly presentable if

• C : Gloop → Cat∞ factors through the subcategory PrL ⊂ Cat∞ of pre-
sentable∞-categories;

• the functor resG
H : CG → CH admits a left adjoint indG

H : CH → CG for
every subgroup inclusion H ⊂ G;

• and these left adjoints satisfy a categorified double coset formula, also
known as the Beck–Chevalley condition.



CHAPTER 1. THE PARAMETRIZED APPROACH 16

A global category C is called globally presentable if, moreover, the restriction
functors along surjective group homomorphisms also admits left adjoints,
which again satisfy the Beck–Chevalley condition.
We define PrOrb

Glo and PrL
Glo to be the categories of equivariantly presentable

and globally presentable global categories respectively.

Definition 1.0.2. Let C be a global category, then we define a functor

Glob(C) : Gloop → Cat∞ ,

called the globalization of C, via the assignment

Glob(C)G � laxlim†((Glo/G)op → Gloop C−→ Cat∞),

where an edge is marked in Gloop
/G is marked if its projection to Gloop is a

faithful functor of groupoids, i.e. lands in Orbop. The functoriality of this
assignment in Gloop is induced by the contravariant functoriality of partially
lax limits applied to the pushforward functoriality of the slices Glo/G.

Theorem C. Suppose C is an equivariantly presentable global category. Then
Glob(C) is a globally presentable global category. Furthermore the restriction

Glob: PrOrb
Glo → PrL

Glo

is left adjoint to the (non-full) inclusion PrL
Glo → PrOrb

Glo .

See Theorem 3.3.10 for a more precise statement, which is stated in the gen-
erality of a suitable pair (T, S) of an ∞-category T and a subcategory S ⊂ T.
More precisely we require T to be an orbital ∞-category and S to be an or-
bital subcategory of T. To prove this result we require a long list of results
about partially lax limits, which we collect in Section 3.2. For example we give
sufficient conditions for the existence of (co)limits in a partially lax limit of
categories, and give two criteria via which one obtains adjunctions between
two partially lax limits.
We can now apply this to the global category Sp•. Using the main results of
previous joint work [CLL23a] and [CLL23b] of Bastiaan Cnossen, Tobias Lenz
and the author we prove:

Theorem D. There exists an equivalence

Sp•-gl ≃ Glob(Sp•)

of global categories.

This theorem is however much more then just a consistency check. For exam-
ple it has the following significant non-parametrized consequence.
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Corollary E. Let G be a finite group. There exists an equivalence

SpG-gl ≃ laxlim†
(Glo/G)op

Sp•.

In particular applied to G � e we obtain a second proof of Theorem B for the
family of finite groups.
By previous work [CLL23a], the global category Sp•-gl has the advantage that
it admits a universal property: it is the free globally presentable equivariantly
stable global category on a point. Informally, an equivariantly presentable
global category is equivariantly stable if each category CG is stable, and the
functors indG

H are also right adjoint to restriction. This universal property is
in fact the crucial ingredient for the previous result. By [CLL23b], Sp• is itself
the free equivariantly presentable equivariantly stable global category on a
point. Therefore the theorem above follows from the fact that globalization
preserves equivariant stability, as we show in Proposition 4.1.13.

REPRESENTATION STABILITY

Having recognized the global category Sp•-gl of globally equivariant spectra
as the globalization of the global category Sp• of equivariant spectra, we can
immediately deduce universal properties for the former from universal prop-
erties of the latter. One such universal property is very close to the definition
of genuine equivariant spectra: SpG is given by inverting the representations
spheres in SG,∗, the category of pointed G-spaces. To discuss this systemati-
cally, we recall that an equivariantly presentable global category C is pointed
if CG is pointed for all BG ∈ Glo. In this case one can construct a tensoring
of C by S•,∗, the global category of pointed equivariant spaces. Given this we
can formulate the following definition.

Definition 1.0.3. We say a pointed equivariantly presentable global category
C is Rep-stable if for every G ∈ Glo and every G-representation V the functor

SV ⊗ − : CG → CG

is an equivalence. We write PrOrb
Glo,rep-st for the full subcategory of PrOrb

Glo spanned
by the Rep-stable equivariantly presentable global categories.

Now consider an arbitrary pointed equivariantly presentable global category
C. As we make precise in Definition 4.2.16, inverting the action of the repre-
sentation spheres pointwise defines a new global category, which we denote
by StabOrb(C).
One can show that StabOrb(C) is a Rep-stable equivariantly presentable global
category, and furthermore that the functor

StabOrb : PrOrb
Glo → PrOrb

Glo,rep-st
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defines a left adjoint to the inclusion of Rep-stable equivariantly presentable
global categories into PrOrb

Glo . In particular we conclude that Sp• is the free
Rep-stable equivariantly presentable global category generated by a point.
We note that the fact that StabOrb(C) is again equivariantly presentable is not a
formality. To emphasize this we observe that while S•,∗ is globally presentable,
Sp• ≃ StabOrb(S•,∗) is not. So the process of stabilizing pointwise can in general
destroy the existence of certain parametrized colimits. This makes the Rep-
stabilizations of globally presentable global categories much more complicated
in general. We can nevertheless prove the following theorem.

Theorem F. The globalization of a Rep-stable global∞-category is again Rep-stable.
In particular Sp•-gl is the free Rep-stable globally presentable global category on a
single generator.

Such a universal property for global spectra was first suggested by David
Gepner and Thomas Nikolaus [Nik15]. In the setting of global model categories,
a similar universal property was proved in [LS23].
Finally, note that a partially lax limit of symmetric monoidal categories is
canonically symmetric monoidal. Therefore Sp•-gl is canonically a symmetric
monoidal global category. We also prove a symmetric monoidal analogue of
the previous theorem.

Corollary G. The global ∞-category Sp•-gl of globally equivariant spectra is the
initial Rep-stable globally presentable symmetric monoidal global category.



2. The calculational approach: an
overview of Appendix A

In this chapter we provide a detailed overview of the contents of [LNP22].
The reader can find the original article in its entirety as Part A. As discussed
before, in this article we construct equivalences between the∞-categories Spgl
and Sgl of global spaces/spectra and certain partially lax limits of equivariant
spaces/spectra for arbitrary families of compact Lie groups.
The method is fundamentally calculational. It proceeds by first explicitly cal-
culating the partially lax limits in question, and then constructs an equivalence
to the∞-categories of global spaces and global spectra. To accomplish both of
these steps requires translating the definitions of both equivariant and global
spaces/spectra into terms more suitable for higher categorical manipulation.
Much of the article is spent carefully making these translations.
We now begin with our detailed review of the contents of [LNP22]. The
reader may benefit by first reading Chapter 5, the introduction of Appendix
C. Specifically we suggest the detailed overview of the proof strategy for
Theorem 7.1.17 and Theorem 7.6.10, which will give context for the discussion.

Chapter 6: Partially lax limits, promonoidal∞-categories and Day convolution

In this chapter we introduce the necessary technical machinery and back-
ground with which to state and prove our main theorems.
Recall that Spgl is defined as the associated ∞-category of a model category.
For this reason we recall in Section 6.1 the basic properties of this passage. We
recall that the∞-category associated to a symmetric monoidal model category
inherits a symmetric monoidal structure. As a general theme, we will often
show that contructions on the level of model categories are equivalent to
certain constructions on the level of∞-categories. In Section 6.1.3 we already
see the first instance of this philosophy; there we explain in what sense passing
to categories of pointed/module objects commutes with the passage to ∞-
categories.
In Section 6.2 we recall the notion of O⊗-promonoidal ⊗-categories for an ar-
bitrary∞-operad O⊗. These form a particular subcategory of∞-operads over
O⊗ spanned by those∞-operads C⊗ overO⊗ for which, as we explain, Day con-
volution Fun(C⊗ ,−)Da y is well-defined as an endofunctor of operads over O⊗.

19
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We then collect various results about Day convolution which will be impor-
tant. For example we compute the multi-mapping spaces for Day convolution,
as well as its fibers. Using this we show that if D⊗ ∈ (Op∞)/O⊗ is compatible
with colimits, in the sense of Definition 6.2.26, then Fun(C⊗ ,D⊗)Da y is again
an O⊗-monoidal∞-category compatible with colimits. In the case that O⊗ is
the commutative∞-operad, we identify the resulting tensor product with the
typical coend formula for Day convolution. Next we discuss the functoriality
of Day convolution in the source, focusing on when the canonical restriction
functoriality admits O⊗-monoidal adjoints.
In Section 6.2.1 we prove that any closed symmetric monoidal structures
on the∞-category Fun(I , S) of copresheafs is equivalent to Day convolution
with respect to some promonoidal structure on I. We use this in the following
subsection to give a symmetric monoidal∞-categorical Elmendorf’s theorem,
which identifies any cocomplete closed symmetric monoidal∞-category with
enough completely compact objects as a presheaf∞-category equipped with
Day convolution.
Next we turn to discuss partially lax limits and colimits in Section 6.3. We begin
by providing a definition of partially lax (co)limits in an arbitrary∞-category
(co)tensored by Cat∞. We then focus in on the case of Cat∞, which is tensored
over itself by the cartesian product. We recall the description due to [Ber20]
of the partially lax colimit of F as a localization of Unco(F), the cocartesian
unstraightening of F, at the cocartesian edges over marked edges. This also
implies that the partially lax limit of F is equivalent to the ∞-category of
sections of Unco(F)which send marked edges in the base to cocartesian edges.
Using this we obtain some basic properties of partially lax limits. For example,
we exhibit the commutativity of lax limits with taking functor categories, and
explain when a partially lax limit of Bousfield localizations is again a Bousfield
localization.
In Section 6.4 we specialize the definition of partially lax limits to the ∞-
category of symmetric monoidal categories. The main result of this section is
an equivalence between the lax limit of a diagram F : I → Cat⊗∞ and a particu-
lar construction NI⨿C⊗. The right hand side is a symmetric monoidal analog
of the ∞-category of sections from before, and so this result is analogous to
the description of partially lax limits in terms of sections of the Grothendieck
construction. We then use this description to prove that partially lax limits
commute with the taking commutative algebra and module objects. To make
this identification symmetric monoidal we require an additional technical re-
sult about the tensor product on∞-categories of modules, which we prove in
Section 6.5. This final section is the content of appendix A of [LNP22].
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Chapter 7:∞-categories of global objects as partially lax limits

In this chapter we prove that various ∞-categories of global objects admit
descriptions as partially lax limits of equivariant objects.
The first section of the chapter contains a complete proof of Theorem A. We
begin by recalling the definition of global spaces as a presheaf ∞-category
on the global indexing ∞-category. We then explain that any orthogonal
factorization system on an∞-categoryC exhibitsCop as the partially lax colimit
of its partial slices, see Proposition 7.1.10. We then show that the injective and
surjective group homomorphisms give an orthogonal factorization system on
the global indexing category, and that the partial slice over BglG is equivalent
to the orbit category of G. Combined with the previous proposition, we
conclude Theorem A.
The remainder of the chapter is devoted to proving the stable result. In section
Section 7.2 we recall the model categories of equivariant and global spectra
which we use. Here the analysis in the equivariant and global situation is
very similar, and so for simplicity we will focus on the equivariant case.
Let G be a Lie group, then the ∞-category of G-spectra is presented by the
category of orthogonal G-spectra equipped with the stable model structure.
Recall we write SpG for the associated ∞-category. Before we can address
the stable model structure, begin with a review of the level model structure
on orthogonal G-spectra. We write PSpG for the∞-category associated to the
level model structure, and call its objects G-prespectra. While the details of this
construction are well-recorded in the literature, we repeat it to emphasize how
the level model structure on orthogonal (G-)spectra is induced from the level
model structure on the category I−GT , enriched functors from the category
of linear isometries to the category of G-spaces, by passing to pointed and
then module objects. In particular, because these operations commute with
the passage to∞-categories we obtain a symmetric monoidal equivalence

PSpG ≃ModSG (I−GT [W−1
lvl]).

of∞-categories, see Proposition 7.2.22. This is the main result of this section.
Next we discuss how the stable model structure is a Bousfield localization
of the level model structure. As we show, this implies that SpG is an ∞-
categorical Bousfield localization of PSpG. We give an explicit collection of
morphisms in the∞-category of equivariant and global prespectra which test
if a prespectrum is a spectrum, see Proposition 7.2.30. As mentioned, a global
analog of these results hold. We obtain a description of Spfgl as an explicit
Bousfield localization of the∞-category PSpfgl associated to the faithful level
model structure on orthogonal spectra. Once again we obtain a symmetric
monoidal equivalence

PSpfgl ≃ModSfgl(I−T [W−1
f−lvl]).
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In Section 7.3 we use the generalized symmetric monoidal Elmendorf’s theo-
rem from Section 6.2.1 to identify the∞-categories

I−GT [W−1
lvl] and I−T [W−1

f−lvl]

with ∞-categories of functors into spaces, equipped with a Day convolution
symmetric monoidal structure. More precisely we obtain symmetric monoidal
equivalences

I−GT [W−1
lvl] ≃ Fun(ORG , S) and I−T [W−1

f−lvl] ≃ Fun(ORfgl , S).

The∞-category ORfgl is defined to be the associated∞-category of a topologi-
cally enriched category. It has as objects pairs (G,V)where G is a compact Lie
group and V is a faithful G-representation. Its morphism spaces are defined
to be

ORgl((G,V), (H,W)) � |(Hom(H,G) × I(V,W))H � G |
where | − �G | is the geometric realization of the action groupoid of G on
I(V,W), the space of linear isometries from V to W .
Combining this with the identifications before, we obtain a purely∞-categorical
and concrete description of the∞-categories of faithful global and equivariant
prespectra:

PSpfgl ≃ModSfgl(Fun(ORfgl , S)) and PSpG ≃ModSG (Fun(ORG , S)).

To foreshadow the remainder of this chapter, let us state that using these
descriptions we will be able to explicitly calculate the partially lax limit of the
diagram PSp• : Gloop → Cat⊗∞, and then exhibit the partially lax limit of Sp•
as a Bousfield localization thereof. This we will then compare to Spgl, which
we know is also an explicit localization of PSpfgl.
However before we can do this we have to actually construct the diagram
PSp• in a manner which will allow us to calculate the partially lax limit ex-
plicitly. This is the content of Section 7.4. By the previous results it (essentially)
suffices to exhibit the ∞-categories ORG as functorial in the global indexing
∞-category. To do this we construct another category ORgl which lives over
Glo. As we show this is a cocartesian fibration which classifies the required
functor. From this one can construct the functoriality of equivariant prespec-
tra and immediately give an explicit presentation of the partially lax limit of
PSp•, which we denote by PSp†gl. Finally we construct a natural transforma-
tion Σ∞• : S• → PSp• which agrees pointwise with the standard equivariant
suspension prespectrum functor.
In the following section we first show that the functor PSp• : Gloop → Cat⊗∞
induces a functor Sp• by passing to Bousfield localizations pointwise. In
particular we obtain a natural transformation L• : PSp• ⇒ Sp•. In this section
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we also compare the functor Sp• to the usual functoriality of G-spectra by
appealing to the universal property of equivariant spectra given in [GM23,
Appendix C]. Finally we compute the partially lax limit of Sp• as a Bousfield
localization of PSpgl.

We have so far shown that laxlim† Sp• is a Bousfield localization of a ∞-
category PSp†gl, while Spgl is a Bousfield localization of PSpfgl. These two
∞-categories of prespectra are very closely related; the only difference is
that the first is indexed on all representation while the second is indexed on
faithful representations. In Section 7.6 we finish the proof of Theorem B by
constructing an adjunction between PSp†gl and PSpfgl, which we then show
induces an equivalence on spectrum objects on each side.
Finally, in Section 7.7 we apply the techniques from previous sections to prove
another reconstruction result, which identifies the ∞-category of proper G-
spectra with the limit of Sp• over the proper orbit category of G.
Let us end this technical overview of Part A by clarifying the contribution of
the author to [LNP22]. The project was truly collaborative, and each coauthor
contributed to each chapter, each section and each result. However, on bal-
ance, the author may take credit for Section 6.1, Section 7.1, Section 7.5 and
Section 7.6.



Part II

Globalization and stabilization
of global categories
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3. Globalization

In this part we present the first approach to theorems A and B. Crucial to this
approach is the perspective of parametrized higher category theory; specifi-
cally the notion of partial preentability from [CLL23b]. We therefore begin with
some recollections.

3.1 PARTIAL PRESENTABILITY

In this section we recall some basic definitions from parametrized category
theory, and introduce the notion of partial presentability. This section is rather
terse, and the reader may benefit from consulting [CLL23b, Section 2].

Notation 3.1.1. Given a category1 T we define FT , the finite coproduct comple-
tion of T, as the smallest full subcategory of PSh(T) which is closed under
coproducts and contains the image of the Yoneda embedding.

Definition 3.1.2. We define CatT B Fun×(Fop
T ,Cat), the category of T-categories,

as the∞-category of finite product preserving functors from Fop
T to Cat.

Remark 3.1.3. The objects of CatT are referred to as T-categories, and mor-
phisms in CatT are called T-functors. Note that restriction along the inclusion
Top ⊂ Fop

T induces an equivalence

CatT
∼−→ Fun(Top ,Cat).

Notation 3.1.4. Given a T-category C we will typically denote C(X) by CX
and C( f ) by f ∗. If f ∗ has a left or right adjoint, we will denote it by f! and f∗
respectively. We will write the component of a T-functor F : C → D at X by
FX : CX → DX .

Remark 3.1.5. CatT admits an enhancement to a T-parametrized category
CatT via the assignment CatT(X) B CatT/X .

We fix a wide subcategory inclusion S ⊂ T. Note that the inclusion S ⊂ T
induces a functor FS → FT , which exhibits FS as a wide subcategory of FT .

Definition 3.1.6. We say S ⊂ T is an orbital subcategory if the pullback of a
morphism in FS along any morphism in FT exists in FT and is again in FS. We
say T is orbital if it is an orbital subcategory of itself. We say (T, S) is an orbital
pair if T is orbital and S is an orbital subcategory of T.

1In this part we will use category synonymously with∞-category
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Example 3.1.7. We define Glo to be the (2, 1)-category of finite connected
groupoids BG and Orb the subcategory spanned by the faithful functors. We
claim that (Glo,Orb) is an orbital pair. Observe that FGlo is equivalent to the
(2, 1)-category of finite groupoids, which admits all homotopy pullbacks. The
subcategory FOrb is the wide subcategory on the faithful maps of groupoids,
and thus the orbitality of Orb is equivalent to the observation that pullbacks
of faithful maps of groupoids are again faithful.

Example 3.1.8. The orbit category OrbG of a finite group G is orbital.

Example 3.1.9. Suppose (T, S) is an orbital pair. Then (T/X , π−1
X (S)) is again an

orbital pair, where π−1
X (S) is the preimage of S under the functor πX : T/X → T.

Before we state the definition of S-presentability we recall the following cate-
gorical notion:

Definition 3.1.10. Consider a commutative square

C C′

D D′
F′ F

G′

G

in Cat such that both F and F′ are right adjoints, with left adjoints L and
L′ respectively. We say such a square is left adjointable if the Beck-Chevalley
transformation

L′G′
η
��⇒ L′G′FL

∼
��⇒ L′F′GL

ϵ
�⇒ GL

is an equivalence. If F and F′ are instead left adjoints then we can dually
define the notion of right adjointability.

We now introduce the notion of S-presentability for T-categories.

Definition 3.1.11. Let (T, S) be an orbital pair. We say a T-category C is S-
presentable if

1. C is fiberwise presentable, i.e. lifts to a functor C : Fop
T → PrL;

2. p∗ has a left adjoint for all p ∈ FS;

3. For every pullback square

X′ X

Y′ Y

g′

p′

g

p
⌟
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in FT such that p (and therefore p′) is in FS the square

CY CY′

CX CX′

g∗

(p)∗
(g′)∗

(p′)∗

is left adjointable. We may refer to this condition by saying thatC satisfies
base-change for morphisms in FS.

We say a functor F : C → D between S-presentable categories is S-cocontinuous
if for all X ∈ FT the functor FX admits a right adjoint and the square

CY DY

CX DX
FX

FY

p∗ p∗

is left adjointable for all p : X → Y in FS.
We define the category of S-presentable T-categories PrS

T as the subcategory
of CatT spanned by the S-presentable T-categories and S-cocontinuous func-
tors. One can show that the assignment PrS

T(X) B Prπ
−1
X (S)

T/X
is a parametrized

subcategory of CatT .

Remark 3.1.12. The notion of S-presentability has been previously introduced
by [CLL23b] in the generality of a cleft category S ⊂ T [CLL23b, Definition
3.2]. In certain ways cleft categories are less general than an orbital pair, but in
others ways they are much more general. For example in a cleft category we
only require that pullbacks of maps in S along maps in T land in the image
of PSh(S) in PSh(T), instead of in FS. We expect that the results of this section
are true in a generality which encompasses cleft categories, but have been
unable to show this so far.
We note that for a S ⊂ T which is both a cleft category and an orbital pair, a
T-category C is S-presentable in our sense if and only if it is S-presentable in
the sense of [CLL23b, Definition 4.3].

Remark 3.1.13. PrT
T is equivalent to the category PrL

T of presentable categories
internal to the presheaf topos PSh(T) in the sense of [MW22], see Theorem A
of loc. cit. Therefore we will denote PrT

T by PrL
T . By the parametrized adjoint

functor theorem [MW22, Proposition 6.3.1] a T-cocontinuous functor between
T-presentable categories is equivalent to a parametrized left adjoint, which
we may define as an adjunction in the 2-category Fun(Top ,Cat)2.

2Here Fun(Top ,Cat) inherits a 2-categorical structure from that of Cat
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Remark 3.1.14. Let f : X → Y be a map in FT , and consider the adjunction

f! : FT/X ⇄ FT/Y : f ∗.

Note that both functors are coproduct preserving, and so induce an adjunction

f ∗ : CatT/Y ⇄ CatT/X : f∗ ,

where f ∗ and f∗ are given by precomposing by f! and f ∗ respectively. By
[CLL23a, Lemma 2.3.14] Conditions (2) and (3) of the previous definition
together are equivalent to the claim that for all p : X → Y in FS, the unit
functor

π∗YC
p∗

−→ p∗p∗π∗YC

of T/Y-categories admits a parametrized left adjoint, which we will denote by
p

!
.

Example 3.1.15. Applying the previous definitions to the pair (Glo,Orb) we
recover the notion of equivariant presentability from the introduction, first
defined in [CLL23b]. Applied to (Glo,Glo) we obtain the notion of global
presentability.

Example 3.1.16. We define the T-category ST
• B PSh(T)/• of T-spaces, where

ST
• is functorial in pullback. We define SS

• as the full T-subcategory of ST
•

which at X ∈ T is given by the smallest full category closed under colimits
and containing those maps Z → X which are in S. Because S is orbital this
forms a parametrized subcategory. By [MW21, Remark 7.3.4] this is the free
S-presentable T-category on a point: for every S-presentable T-∞-category
there exists an equivalence

HomPrS
T
(SS
• , C) ≃ core(ΓC),

where ΓC B limTop C and core(ΓC) is the subcategory of ΓC spanned by the
equivalences. Applied to S � T we find that ST

• is the free T-presentable
T-category on a point.

Example 3.1.17. In the special case of (T, S) � (Glo,Orb), SOrb
• is equivalent

to the global category S•, which sends BG to the category of G-spaces. See
[CLL23b, Theorem 5.3] for a proof of this fact. Similarly SGlo

• is equivalent to
the category of globally equivariant spaces, which sends BG to the category
of G-global spaces in the sense of [Len20], see [CLL23a, Theorem 3.2.2].

Our key motivation for introducing the notion of S-presentability is to have a
convenient formalism to engage with the following example.
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Example 3.1.18. We define the global category of equivariant spectra Sp• by
sending BG,BG 7→ SpG. Formally one may define it as the initial functor
C : Gloop → CAlg(PrL) under the functor

S•,∗ : Gloop → CAlg(PrL), BG 7→ SG,∗ ,

such that the representation spheres are pointwise invertible. Such a functor
exists by results of [Rob15]; we refer the reader to Section 4.2 for more details.
We can compare this to more classical definitions, including those used in
Part A. Namely, because the representation spheres are invertible in the cat-
egory of genuine G-spectra, we obtain, by the universal property of C, a
comparison natural transformation from C to the global category of equiv-
ariant spectra Sp•, given by applying Dwyer–Kan localization pointwise to
the diagram of relative categories sending BG to orthogonal G-spectra to-
gether with the stable equivalences. The latter is the definition of the global
category of equivariant spectra given in [CLL23b, Section 9.1]. The resulting
natural transformation is pointwise an equivalence by the results of [GM23,
Appendix C], and so we conclude that our definition agrees with the usual
definition of genuine equivariant spectra.
To connect to the discussion of partial presentability, we observe that Sp•
is equivariantly presentable. While this is nothing more then a collection of
classical statements about equivariant spectra which are surely well-known to
experts, it is also a special case of Theorem 4.2.17. However Sp• is not globally
presentable: the restriction functor q∗ : SpG → SpH does not have a left adjoint
whenever q : H → G is a non-injective group homomorphism. The existence
of such a left adjoint is obstructed by the tom Dieck splitting, which implies
that q∗ does not preserve compact objects when q is not injective. By [BDS16,
Theorem 3.3] this implies that q∗ cannot preserve all limits.

3.2 PARTIALLY LAX LIMITS

One of the main goals of this part is to give a construction of the relative
cocompletion of S-presentable T-categories using partially lax limits. In this
section we will recall the definition of partially lax limits of categories, origi-
nally due to [Ber20] in the higher categorical context. Then we will collect a
variety of facts about them which we require to provide a formula for rela-
tive cocompletion. For example in Section 3.2.1 we consider the question of
when partially lax limits admit limits and colimits, and how they are com-
puted. Then in Section 3.2.2 we give two methods for constructing adjunctions
between partially lax limits.

Definition 3.2.1. A marked category (I ,W) consists of a category I equipped
with a replete subcategory W . We write Cat† for the category of marked
categories and marking preserving functors.
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Definition 3.2.2. Let (I ,W) be a marked category and let F : I → Cat be a
functor. Then we view the cocartesian unstraightening Unco(F) canonically as
a marked category by marking all of the cocartesian morphisms which live
over morphisms in W .

Definition 3.2.3. Given two marked categories C and D we write Fun†(C ,D)
for the full subcategory of Fun(C ,D) spanned by those functors which pre-
serve marked morphisms. Suppose C and D both admit a functor F and G
respectively to a category I. Then we define FunI(C ,D) to be the pullback

Fun†I(C ,D) Fun†(C ,D)

{F} Fun(C , I)

G∗
⌟

Definition 3.2.4. Given a marked category (I ,W) and a functor F : I → Cat,
we define the partially lax limit of F with respect to W

laxlim†
(I ,W)

F B Fun†I(I ,Unco(F))

as the category of sections of the cocartesian unstraightening Unco(F) → I
of F which preserve marked edges, i.e. send morphisms in W to cocartesian
edges of Unco(F).

We will sometimes drop the reference to the marking on I when it is either
implicit or clear from context.

Remark 3.2.5. Consider a section s : I → Unco(F). Note that for every i ∈ I,
s(i) lives in the fiber of Unco(F) over i and so may view Xi B s(i) as an object of
F(i). Next we may consider the map s(α) : Xi → Xi′ associated to a morphism
α : i → i′ in I. Once again because s is a section, s(α) lives over α. Factoring
s(α) into a cocartesian edge followed by a map living in the fiber over i′

gives a morphism sα : F(α)Xi → Xi′. Note that s is an object of the partially
lax limit with respect to W if and only if sα is an equivalence for all edges
α ∈ W . The remaining data contained in the section s encodes compatibility
and coherence data for the collection of morphisms sα.

First we state two simple results, which together will imply that the relative
cocompletion preserves T-categories.

Proposition 3.2.6. Consider a diagram F : I → Cat and write IΠ for the finite
product completion of I and F̃ : IΠ → Cat for the extension of F to IΠ. Then the
canonical map

laxlim†
WΠ⊂IΠ

F̃→ laxlim†
W⊂I

F

is an equivalence.
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Proof. A simple computation shows that relative right Kan extension, in the
sense of [Lur09, Definition 4.3.2.2], provides an inverse.

Suppose J• : I → Cat† is a diagram in marked categories, and that I is itself
marked. Then we will canonically consider the unstraightening Unco(J•) as
a marked category by marking both the cocartesian edges in Unco(J•) which
lie over marked edges of I, as well as the marked edges in each fiber. Recall
that there exists a functor Unco(J•) → colimJ• which exhibits the target as a
localization of the source at the cocartesian edges.

Proposition 3.2.7. Consider a diagram J− : I → Cat† in marked categories and a
cocone {Fi : Ji → Cat}i∈I , which induces a functor F : Unco(J•) → colimJi →
Cat. Then there exists an equivalence

laxlim†
Unco(J•)

F ≃ laxlim†
I

laxlim†
Ji

Fi

is an equivalence.

Proof. This follows from the following chain of equivalences:

laxlim†
Unco(J•)

F B FunW−cocart
Unco(J•) (Unco(J•),Unco(F))

≃ laxlim†
I

FunWi−cocart
Unco(J•) (Ji ,Unco(F))

≃ laxlim†
I

FunWi−cocart
Ji

(Ji ,Unco(Fi)) C laxlim†
I

laxlim†
Ji

Fi ,

where the first equivalence is justified by [LNP22, Proposition 4.15].

Remark 3.2.8. Suppose that a functor G : I → Cat sends a collection of
edges V to equivalences, and that I is marked by another collection of edges
W . Writing G̃ : I[V−1] → Cat for the functor induced by G, we obtain an
equivalence

laxlim†
I

G B FunW−cocart
I (I ,Unco(G)) ≃ FunW′−cocart

I[V−1] (I[V−1],Unco(G̃)) C laxlim†
I[V−1]

G̃,

where W′ is the image of W in I[V−1]. The functor F from the previous
proposition is by definition of this form, and so in the left-hand side of the
equivalence stated by the previous proposition we may pass to the localization
of Unco(F) at the cocartesian edges which lie over marked edges in I. In the
extreme case that every edge of I is marked, we obtain an equivalence

laxlim†
colimJi

F→ lim
I

laxlim†
Ji

Fi .
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3.2.1 Limits and colimits in partially lax limits

In this subsection we give two propositions which respectively provide suffi-
cient conditions for the existence of limits and colimits in partially lax limits.
We begin by considering the case of fully lax limits.

Proposition 3.2.9. Let F : I → Cat be a functor such that each category F(i) admits
limits of shape J for all i ∈ I. Then laxlim F admits limits of shape J , and a section
s : I → Unco(F) living over a J -shaped diagram {s j} j∈J is a limit if and only if
s(i) ≃ limJ s j(i) for all i ∈ I.

Proof. Recall that laxlimI F B FunI(I ,Unco(F)). Therefore this is the dual of
[Lur09, Proposition 5.1.2.2].

Recall that we write CatL for the wide subcategory of Cat spanned by the left
adjoint functors.

Proposition 3.2.10. Let F : I → CatL be a functor such that each category F(i)
admits colimits of shape J for all i ∈ I. Then laxlim F admits colimits of shape J
and a section s : I → Unco(F) living under a J -shaped diagram {s j} j∈J is a colimit
if and only if s(i) ≃ colim s j(i) for all i ∈ I.

Proof. Because F( f ) is a left adjoint for all f : i → i′ in I, Unco(F) is also a
cartesian fibration by [Lur09, Corollary 5.2.2.5]. Therefore the result follows
from [Lur09, Proposition 5.1.2.2].

Suppose I is a marked category. We will now give a criteria for the inclusion
laxlim† F ⊂ laxlim F to preserve limits and colimits. We begin with some
preparation.

Notation 3.2.11. Consider a cocartesian fibration Unco(F) → I. Given a mor-
phism f : xi → x j in X which lives over the morphism α : i → j in I, we write
fα : F(α)xi → x j for the morphism obtained by factoring f into a cocartesian
followed by a fiberwise edge.

Lemma 3.2.12. Let Unco(F) → I be a cocartesian fibration. Consider a pair of
composable morphisms

xi
f
−→ x j

g
−→ xk

in X which lives over the morphisms

i
α−→ j

β
−→ k

in I. Then the induced map (g f )βα : F(βα)xi → xk is equal to the composite

F(β)F(α)xi F(β)x j xk
gβF(β)( fα)
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Proof. This follows immediately from the commutative diagram

xi F(α)xi F(β)F(α)xi

x j F(β)x j

xk .

gβ

F(β)( fα)
f

g

fα

in Unco(F) which lives over the triangle i → j → k in I as suggested by the
notation, and whose tailed morphisms are cocartesian.

Remark 3.2.13. We would like to understand the structure maps in a limit of
sections. To this end we suppose X is a cocartesian fibration over [1] classifying
a functor F : C → D. Then we observe that the inclusion D ↪→ X given by
including the fiber over {1} into X preserves limits: given an object C ∈ C,

HomX(C, lim D j) ≃ HomD(F(C), lim D j)
≃ lim HomD(F(C),D j)
≃ lim HomX(C,D j).

Now suppose that C and D both admit J -shaped limits, and consider a J -
shaped diagram {s j : [1] → X} j∈J of sections. By Proposition 3.2.9, the limit
of this diagram exists in Fun[1]([1],X), and is given by lim s j(0) → lim s j(1).
Since lim s j(1) is a limit in X, the map lim s j(0) → lim s j(1) is induced by the
cone

lim s j(0) → s j(0) → s j(1).
Factoring this through a cocartesian edge lim s j(0) → F(lim s j(0)) over 0→ 1,
we obtain a cone F(lim s j(0)) → s j(1), which induces a map F(lim s j(0)) →
lim s j(1). Furthermore the equivalence constructed above shows that the com-
posite of these two maps is equivalent to the map lim s j(0) → lim s j(1). Now
applying Lemma 3.2.12 we find that the cone F(lim s j(0)) → s j(1) is equivalent
to the composite

F(lim s j(0)) → F(s j(0)) → s j(1).
In particular the map F(lim s j(0)) → lim s j(1) factors as a composite

F(lim s j(0)) → lim F(s j(0)) → lim s j(1),

where the first map is the canonical limit comparison map, and the second
map is the limit of the maps F(s j(0)) → s j(1) induced by the maps s j(0) →
s j(1). In particular suppose each of the maps s j(0) → s j(1) was cocartesian.
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Then this second map is an equivalence, and so we conclude that the map
lim s j(0) → lim s j(1) is cocartesian if and only if F preserves J -limits.
We note that the dual analysis applies to colimits in cartesian fibrations over
[1].

We can now give a sufficient condition for the inclusion of the partially lax
limit into the lax limit to preserve limits.

Proposition 3.2.14. Consider a marked category (I ,W), and a diagram F : I →
Cat. Suppose that the value of F on every i admits limits of shape J and that for
every α ∈ W the functor F(α) preserves limits of shape J . Then laxlim† F admits
limits of shape J , and they are preserved by the inclusion laxlim† F ⊂ laxlim F.

Proof. Consider a J -shaped diagram {s j : I → Unco(F)} in laxlim† F. We
have to show that the limit of this diagram in laxlim F is again in laxlim† F.
I.e. given an edge α : i → i′, we have to show that the map lim s j(i) → s j(i′) is
cocartesian. However this can be checked by first pulling back along α : [1] →
I, where the analysis of Remark 3.2.13 gives the conclusion.

Remark 3.2.15. Under the assumptions of the previous proposition we have
shown, using the informal description of objects in a lax limit from Re-
mark 3.2.5, that

lim{Xi , sα} � {lim Xi , lim sα ◦ ϕ},
in laxlim F, where ϕ : F(α) lim Xi → lim F(α)(Xi) is the canonical limit com-
parison map.

Similarly we can provide sufficient conditions for the inclusion of the partially
lax limit to preserve colimits.

Proposition 3.2.16. Consider a marked category (I ,W), and a diagram F : I →
CatL. Suppose that the value of F on every i ∈ I admits colimits of shape J .
Then laxlim† F admits colimits of shape J , and they are preserved by the inclusion
laxlim† F ⊂ laxlim F.

Proof. Write G : Iop → CatR for the diagram of right adjoint associated to F.
Applying the dual analysis of Remark 3.2.13, we find that given a J -shaped
diagram {s j : I → Unco(F)} in laxlim† F and a map α : i → i′ in W , the
induced map colim s j(i) → colim s j(i′) factors as the map

ϕ : colim s j(i) → colim G(α)(s j(i′)) → G(α)(s j(i′))

followed by a cartesian edge in Unco(F) over α. The map F(α) colim s j(i) →
colim s j(i′) given by instead factoring colim s j(i) → colim s j(i′) through a
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cocartesian edge is adjoint to ϕ. In particular we compute that it is given by
the composite

F(α)(colim s j(i))
∼−→ colim F(α)(s j(i)) → colim s j(i′).

Because the original maps s j(i) → s j(i′) were cocartesian, this is an equiva-
lence. We conclude that colim s j(i) → colim s j(i′) is again cocartesian.

Remark 3.2.17. Under the assumptions of the previous proposition we have
shown, using the informal description of objects in a lax limit, that

colim{Xi , sα} � {colim Xi , colim sα ◦ ϕ−1},

where ϕ : colim F(α)Xi → F(α) colim Xi is the canonical colimit comparison
map.

3.2.2 Adjunctions of partially lax limits

Let (I ,W) be a relative category, and consider two functors F,G : I → Cat.
Suppose that one has a commutative diagram

Unco(F) Unco(G)

I

H

p q

such that H preserves cocartesian edges which lie over an edge in W . We call
such a commutative diagram a partially lax transformation from F to G.

Remark 3.2.18. Note that if H in fact preserves all cocartesian edges then it cor-
responds via straightening to an honest natural transformation. By weakening
this condition we obtain laxly commuting naturality squares, explaining the
terminology. For further justification see [Hau+23].

Observe that H induces a functor

laxlim†
(I ,W)

F B FunW-co
I (I ,Unco(F)) H∗−→ FunW-co

J (I ,Unco(G)) C laxlim†
(I ,W)

G.

To summarize, partially lax limits are functorial in partially lax natural trans-
formations. Furthermore we note that partially lax limits are also clearly
functorial in natural transformations H ⇒ H′ of partially lax natural trans-
formations Unco(F) → Unco(G) which lie over the identity of I. We will now
give a sufficient condition for the functor H∗ constructed above to admit a
right adjoint, for which we first recall the following result.
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Lemma 3.2.19. Suppose F,G : I → Cat are two diagram, and consider a natu-
ral transformation η : F ⇒ G which is pointwise a left adjoint. Then the functor
H : Unco(F) → Unco(G) encoding η is a left adjoint. The associated right adjoint
J : Unco(G) → Unco(F) is again a functor over I and is given on the fiber over i ∈ I
by the right adjoint of ηi . Furthermore the unit and counit of the adjunction H ⊣ J
live over the identity natural transformation on idI . Finally J preserves cocartesian
edges over f : i → j if and only if the commutative square

F(i) F( j)

G(i) G( j)

ηi

F( f )

G( f )
η j

is left adjointable.

Proof. This is the dual of [Lur16, Proposition 7.3.2.6].

Remark 3.2.20. The condition that the right adjoint J of H again lies over I and
that the unit and counit natural transformations of the adjunction H ⊣ J live
over the identity natural transformation of I can be summarized by saying
that H is a left adjoint in the 2-category Cat/I with right adjoint J. This is
called a relative left adjoint in [Lur16].

Remark 3.2.21. the unstraightening of a parametrized left adjoint L : C → D
of T-categories is a relative left adjoint over T. This follows from the fact that
the unstraightening equivalence Cocart(FT) ≃ Fun(FT ,Cat) is an equivalence
of 2-categories, see [Hau+23]*Theorem 5.3.1.

From the previous result we immediately obtain the following proposition.

Proposition 3.2.22. Consider a marked category (I ,W), two diagrams F,G : I →
Cat, and a natural transformation L : F ⇒ G such that each Li : F(i) → G(i) is a
left adjoint and the square

F(i) G(i)

F( j) G( j)

Li

F( f ) G( f )

L j

is left adjointable for f ∈ W . Then the functor L∗ : laxlim† F → laxlim† G is a
left adjoint, with right adjoint given by postcomposing by the partially lax natural
transformation given by passing to right adjoints pointwise, as in Lemma 3.2.19.

Proof. By Lemma 3.2.19 the unstraightening of L is a left adjoint in Cat/I ,
whose right adjoint preserves cocartesian edges over W . By applying the
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functoriality of partially lax limits in partially lax natural transformations we
obtain the required adjunction.

Next we introduce the contravariant functoriality of partially lax limits. Con-
sider a functor of marked categories h : (I ,W) → (J ,W′) and a functor
F : J → Cat. Given a section s : J → Unco(F) we may precompose with
the functor h to obtain a functor I → Unco(F), which we may interpret as a
section t : I → Unco(F) ×J I of the pullback Unco(F) ×J I → I. Recall that
Unco(F) ×J I → I is a cocartesian fibration which classifies the functor F ◦ h.
Furthermore an edge in Unco(F) ×J I is cocartesian if it is in Unco(F), and so
we conclude from the fact that h is a functor of marked categories that if s
sent edges in W′ to cocartesian edges of Unco(F) then t sends edges of W to
cocartesian edges of Unco(F ◦ h). In total we obtain a functor

Fun†J (J ,Unco(F)) h∗−→ Fun†J (I ,Unco(F)) ≃ Fun†I(I ,Unco(Fh)).

Summarizing, partially lax limits are contravariantly functorial in functors of
marked categories. We will again give a sufficient condition for the functor
h∗ : laxlim† F→ laxlim† Fh constructed above to have a left and right adjoint.
To do this we begin with a general categorical result.

Proposition 3.2.23. Consider a diagram

X Y

I J

p q
L

R

L

R

⊣
⊣

of categories such that p and q are cartesian fibrations, both possible squares commute,
and p and q map the unit and counit of L ⊣ R to that of L ⊣ R. Suppose X classifies
the functor G : Iop → Cat. Then given an object i ∈ I, the functor L : Xi → YL(i)
admits a right adjoint given by the composite

YL(i)
R−→ XRL(i)

G(η)
−−−→ Xi .

Proof. Suppose x , y are objects of Xi and YL(i) respectively. By assumption the
bottom square of the following diagram commutes:

HomYL(i)(L(x), y) HomXi (x ,G(η)R(y))

HomY(L(x), y) HomX(x ,R(y))

HomJ (L(i), L(i)) HomI(i , RL(i))

qp

∼

∼
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By [Lur09, Proposition 2.4.4.2], the fiber over idL(i) and η of p and q respectively
are given by the top two spaces of the diagram, and therefore we obtain the
dashed equivalence.

Example 3.2.24. Consider an adjunction L : C ⇄ D :R between two categories
admitting pullbacks. Applying the previous proposition to the square

Ar(C) Ar(D)

C D

ev1 ev1
L

R

Ar(L)

Ar(R)

⊣
⊣

we conclude that L : C/x → D/L(x) admits a right adjoint, given by the compos-
ite

D/L(x)
R−→ C/RL(x)

η∗

−→ C/x .

This is a well-known fact, proven as [Lur09, Proposition 5.2.5.1] for example.

We also record the dual proposition:

Proposition 3.2.25. Consider a diagram

X Y

I J

p q
L

R

L

R

⊣
⊣

of categories such that p and q are cocartesian fibrations and both possible squares
commute. Suppose q classifies the functor F : J → Cat. Then given an object j ∈ J ,
the functor R : Yj → XR( j) admits a left adjoint given by the composite

XR( j)
L−→ YLR( j)

F(ϵ)−−−→ Yj .

Example 3.2.26. Applying the previous proposition to the situation of Exam-
ple 3.2.24 we conclude that R : D/x → C/R(x) admits a left adjoint, given by the
composite

C/R(x)
L−→ C/LR(x)

ϵ!−→ C/x .

We now apply these results to construct adjoints to the contravariant functo-
riality of partially lax limits.

Proposition 3.2.27. Consider a functor F : I → CatL together with an adjunction
L : I ⇄ J :R. Then R∗ : laxlim F→ laxlim FR is a left adjoint.
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Proof. We can build the square

Fun(I ,Unco(F)) Fun(J ,Unco(F))

Fun(I , I) Fun(J , I).

p∗ p∗
R∗

L∗

L∗

R∗

⊣
⊣

By [Lur09, Corollary 5.2.2.5] the cocartesian fibration p : Unco(F) → I clas-
sifying F is also a cartesian fibration. By [Lur09, Proposition 3.1.2.1(1)] the
functors p∗ are both also cartesian fibrations, and therefore this square is of
the form required to apply Proposition 3.2.23. In particular considering the
object idI in Fun(I , I)we obtain an adjunction

R∗ : FunI(I ,Unco(F))⇄ FunI(J ,Unco(F)) :Θ(η∗)L∗ ,

whereΘ refers to the functor classified by p∗. Note that the left hand category is
equal to sections of Unco(F)while the right-hand side is equivalent to sections
of Unco(FR). These are equivalent to laxlim F and laxlim FR respectively, and
so we conclude.

Remark 3.2.28. We continue to use the same notation as in the proposition
above, and further write G : Iop → CatR for the diagram of right adjoints
associated to F. It is potentially illuminating to informally summarize the ad-
junction constructed above using the notation of Remark 3.2.5. In this notation,
the functor R∗ sends the object

{i 7→ Xi ∈ F(i) α 7→ fα : F(α)Xi → X′i}

in laxlim F to the object

{ j 7→ XR( j) ∈ F(R(i)) β 7→ fR(β) : F(R(β))XR(i) → XR( j)}

in laxlim FR. The right adjoint sends the object

{ j 7→ Yj ∈ FR( j), β 7→ fβ : FR(β)Yj → Yj′}

to the object

{i 7→ G(ηi)YL(i) ∈ F(i), α 7→
[
F(α)G(ηi)YL(i)

BC−−→ G(ηi′)F(RL(α))YL(i)
G(ηi′) fL(α)−−−−−−−→ G(ηi′)YL(i′)

]
},

where BC denotes the Beck–Chevalley transformation. This description will
become clear from the proof of the next proposition.

This informal description suggests when the adjunction constructed above re-
stricts to one between partially lax limits. We make this precise in the following
proposition.
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Proposition 3.2.29. In the situation of Proposition 3.2.27, suppose further that I
and J are marked by W and W′ respectively, that L and R both preserve marked
edges, and that the square

Ci CRL(i)

Ci′ CRL(i′)

F(RL(α))

F(ηi)

F(ηi′)

F(α)

induced by the naturality square of η is left adjointable whenever α is marked, Then
R∗ and its adjoint restrict to an adjunction between partially lax limits.

Proof. Recall that we have constructed an adjunction

R∗ : laxlim F ⇄ laxlim FR :Θ(η∗)L∗.

We want to show that both functors restrict to partially lax limits. In the
case of R∗ this is clear, because R is a functor of marked categories. However
showing that Θ(η∗)L∗ restricts appropriately is more subtle. We fix an object
s ∈ laxlim† FR, i.e. a functor s : J → Unco(F) living over R which sends edges
in W′ to cocartesian edges. Recall that by [Lur09, Proposition 3.1.2.1(2)] a
morphism in Fun(I ,Unco(F)) is p∗-cartesian if and only if each component is
p-cartesian, and therefore the value of Θ(η∗)s(L(i)) at i is equal to the source
of the essentially unique cartesian arrow G(ηi)s(L(i)) ↠ s(L(i)) which lives
over η : i → LR(i), i.e. the image of Y(L(i)) under the functor G(ηi). Similarly
given a map α : i → i′ in I, the map Θ(η∗)L∗s(α) is homotopic to the unique
dotted map

G(ηi)s(L(i)) s(L(i))

G(η j)s(L(i′)) s(L(i′))
ϕ

for which the resulting square commutes and lives over the square

i RL(i)

i′ RL(i′).ηi′

ηi

RL( f )f
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in I. However we can build the following commutative diagram

G(ηi)s(L(i)) s(L(i))

F(α)G(ηi)s(L(i))

G(ηi′)F(RL(α))s(L(i)) F(α)s(L(i))

G(ηi′)s(L(i′)) s(L(i′))

fL(α)G(ηi′) fL(α)

BC

in X which lives over
i RL(i)

i′

i′ RL(i′)

i′ RL(i′).

RL(α)

α

In this diagram the two-headed arrows are cartesian and the tailed arrows
are cocartesian. By conclude that the composite along the left hand side is
homotopic to ϕ. The identification of the map

F(α)G(ηi)s(L(i)) → G(ηi′)F(RL(α))s(L(i))

with the Beck–Chevalley transformation of the square

CRL(i) Ci

CRL(i′) Ci′

F(RL(α))

F(ηi)

F(ηi′)

F(α)

is given in [Hau+23, Proposition 3.2.7]. Our assumptions on L and R imply
that this map, as well as the map G(ηi′) fL(α), are equivalences. Therefore
the map ϕ is cocartesian, and we conclude that Θ(η∗)L∗ preserves partially
cocartesian sections.

We can also give a sufficient condition for the contravariant restriction along
a functor of marked categories to admit a left adjoint.
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Proposition 3.2.30. Consider a functor F : J → Cat and an adjunction L : I ⇄
J :R. Then L∗ : laxlim F→ laxlim FL is a right adjoint. If we furthermore suppose
that I and J are marked and the functors L and R preserve the markings, then L∗ and
its right adjoint preserve objects of the partially lax limit. In particular they restrict
to an adjunction between partially lax limits.

Proof. We can build the square

Fun(I ,Unco(F)) Fun(J ,Unco(F))

Fun(I ,J ) Fun(J ,J ).

p∗ p∗
R∗

L∗

L∗

R∗

⊣
⊣

Note this square is of the form required by Proposition 3.2.25. In particular
considering the object idJ in Fun(J ,J )we obtain an adjunction

Γ(ϵ∗)R∗ : FunL(I ,Unco(F))⇄ FunJ (J ,Unco(F)) :L∗ ,

where Γ is the functor associated to the cocartesian fibration p∗. Note that the
right-hand side is equal to sections of Unco(F)while the left-hand side is equiv-
alent to sections of Unco(FL). These are equivalent to laxlim F and laxlim FL
respectively, and so we conclude the first statement. The second statement
follows from an analysis of the functor Γ(ϵ∗)R∗, as in Proposition 3.2.29.

Remark 3.2.31. Similarly to before one can show that the left adjoint to L∗

sends an object of the form

{i 7→ Yi ∈ FL(i), α 7→ fα : FL(α)Yi → Yi′}

in laxlim FL to an object of the form

{ j 7→ F(ϵ j)YR( j) ∈ F( j), β 7→
[
F(β)F(ϵi)YR( j) ≃ F(ϵ j′)F(LR(β))YR( j)

F(ϵ j′) fL(β)−−−−−−−→ F(ϵ j′)YL(i′)
]
}.

in laxlim F.

3.3 RELATIVE COCOMPLETION AND GLOBALIZATION

We fix an orbital pair (T, S) for the remainder of the section. Note that there
is an obvious forgetful functor

fgt : PrL
T → PrS

T

which exhibits PrL
T as a non-full subcategory of PrS

T . In this section we will
construct the S-relative cocompletion PT

S (C) of an S-presentable T-category C,
and exhibit PT

S as a left adjoint to fgt : PrL
T → PrS

T .
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Definition 3.3.1. We define a functor

PT
S : CatT → Fun(Fop

T ,Cat)

via the assigment PT
S (C)X � laxlim†(π∗XC), where π∗XC denotes the functor

π∗XC : (FT/X)op πX−−→ Fop
T

C−→ Cat

and an edge in (FT/X)op is marked if and only if its projection to Fop
T lands in

F
op
S . The functoriality of this assignment in Fop

T is induced by the contravariant
functoriality of partially lax limits applied to the postcomposition functoriality
of the slices FT/X .

Remark 3.3.2. Note that there is a functor

(FT/−)op : FT → Cat†/Fop
T
, X 7→ (FT/X)op ,

where (FT/X)op is marked by the subcategory of edges whose projection to
F

op
T lies in Fop

S . Then one can equivalently define PT
S (C) as the composite of

(FT/−)op and the contravariant functor

Fun†
F

op
T
(−,Unco(C)) : Cat†/Fop

T
→ Cat,

where Unco(C) is marked as usual by the cocartesian edges living over edges
of Fop

S .

Remark 3.3.3. Consider X ∈ FT and note that FT/X is the finite coproduct
completion of T/X , the category of elements of X ∈ PSh(T). Therefore by
Proposition 3.2.6 we obtain that

PT
S (C)X ≃ laxlim†((T/X)op → Top C−→ Cat).

We will make use of all three descriptions of PT
S (C)X throughout this section.

Let us begin by showing that PT
S restricts to a functor from S-presentable

T-categories to T-presentable T-categories.

Lemma 3.3.4. The functor PT
S factors through CatT ⊂ Fun(Fop

T ,Cat).

Proof. Note that T/⨿ Xi �
⨿

T/Xi . Therefore Remark 3.2.8, together with the
previous remark, implies the desired result.

Remark 3.3.5. Recall that CatT is canonically a 2-category. We observe that
PT

S is a functor of 2-categories. This is easily seen from the description of
Remark 3.3.2.
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Theorem 3.3.6. PT
S restricts to a functor

PT
S : PrS

T → PrL
T .

Proof. Let C be an S-presentable T-category. We have to show thatPT
S (C) is a T-

presentable T-category. As a first step we show that PT
S (C) : F

op
T → Cat factors

through PrL. We first note that by the proof of [Lur09, Proposition 5.5.3.17]
each category PT

S (C)X is presentable. By Proposition 3.2.16 we conclude that
colimits in laxlim† π∗XC are computed fiberwise for all X ∈ FT . In particular
the restriction functors

laxlim† π∗XC → laxlim† π∗YC

clearly preserve colimits. By the adjoint functor theorem, proven as [Lur09,
Corollary 5.5.2.9], f ∗ : PT

S (C)Y → PT
S (C)X admits a right adjoint, and so PT

S (C)
factors through PrL.
Next we show that the functors f ∗ : PT

S (C)Y → PT
S (C)X admit left adjoints for

all morphisms f : X → Y in FT , and that the squares in Definition 3.1.11(3) are
left adjointable. However by Proposition 3.2.14 the functors f ∗ also preserves
limits for every f : X → Y in FT , and so another application of the adjoint
functor theorem implies that it admits a left adjoint. Therefore all that remains
is to prove that the required squares are left adjointable. To do this we will
explicitly describe the right adjoint of f ∗. First we observe that because T is
orbital, the functor

( f!)op : (FT/X)op → (FT/Y)op

has a left adjoint ( f ∗)op given by pulling back, and that both ( f!)op and ( f ∗)op

preserve marked edges. Furthermore by the pasting law for pullbacks the
square

Z ×Y X Z

Z′ ×Y X Z′

π1

g×Y X

π1

g

is a pullback square in FT for all g : Z→ Z′ in FT . This implies that the square

CZ CZ×Y X

CZ′ CZ′×Y X

(π1)∗

(g×Y X)∗
(π1)∗

g∗

is left adjointable whenever g is in FS because C is S-presentable. Therefore
Proposition 3.2.29 gives an explicit description of the right adjoint f∗ of the
restriction functor

f ∗ : laxlim†(π∗YC) → laxlim†(π∗XC).
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Informally, f∗ sends the object

{h : Z→ X 7→ Ch ∈ CZ , [g : h → h′] 7→ λg : g∗Ch′ → Ch}

to the object

{h : Z→ Y 7→ (π1)∗Ch×Y X ∈ CZ ,

[g : h → h′] 7→
[
g∗(π1)∗Ch′×Y X

BC−−→ (π1)∗(g ×X Y)∗Ch′×Y X
(π1)∗λg×X Y
−−−−−−−−→ (π1)∗Yh×X Y

]
}.

We can now show that the required squares are left adjointable: Given a
pullback square

X′ X

Y′ Y

f ′

g
f

g′

in FT it suffices by passing to total mates to prove that the Beck-Chevalley
transformation filling the square

PT
S (C)X′ PT

S (C)X

PT
S (C)Y′ PT

S (C)Y

( f ′)∗ f ∗

(g′)∗

g∗

is an equivalence. However unwinding the definition of the Beck–Chevalley
transformation we find that on a section s : (FT/Y)op → Unco(π∗Y C) it is given
at h : Z→ X by applying (π1)∗ to the map β∗(s( f h ×Y Y′)) ∼−→ s( f ′ ◦ (h ×X X′))
induced by the base-change equivalence β : f h×Y Y′

∼−→ f ′ ◦ (h×X X′), i.e. the
morphism witnessing the equivalence of f h ×Y Y′ and f ′ ◦ (h ×X X′) in the
slice FT/Y . In particular the Beck-Chevalley transformation is an equivalence.
Altogether we have shown that PT

S (C) is an object of PrL
T .

Next we will show that PT
S sends S-cocontinuous functors to T-cocontinuous

functors. To this end fix a functor L : C → D in PrS
T and write L : Unco(C) →

Unco(D) for its unstraightening. Because the naturality squares in L are left
adjointable for maps in FS, Proposition 3.2.22 implies that L admits a right
adjoint R : Unco(D) → Unco(C) in Cat/I which preserves cocartesian edges
over FS. Now consider the description of PT

S (−) from Remark 3.3.2. From this
it is clear that postcomposition R gives a T-functor PT

S (D) → PT
S (C) which is

right adjoint to PT
S (L). Therefore we conclude that PT

S (L) is a T-cocontinuous
functor, see Remark 3.1.13. In total we have shown that PT

S : PrS
T → CatT

restricts to the subcategory PrL
T .
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Having shown that PT
S restricts appropriately, we now turn to showing that

it is left adjoint to the forgetful functor fgt : PrS
T → PrL

T . To do this we define
the unit and counit of the putative adjunction.

Construction 3.3.7. Let C ∈ PrS
T be an S-presentable T-category. We define a

T-functor
I : C → PT

S (C)
as follows. First observe that because each category (FT/X)op admits a final
object we obtain a natural equivalence lim π∗XC ≃ CX , given by evaluating at
the final object. After identifying these two categories, we claim that including
the limit into the partially lax limit lim π∗XC → laxlim† π∗XC gives a natural
S-cocontinuous T-functor I : C → PT

S (C).
To see that I is in fact S-cocontinuous we first note that by Proposition 3.2.30,
each functor IX admits a right adjoint given by evaluating an object s : FT/X →
Unco(π∗XC) of laxlim† π∗XC at the object idX : X → X in FT/X . Next we consider
the left adjointability of naturality squares for maps in FS. By passing to total
mates, it suffices to show that given any map f : X → Y in FT , the Beck–
Chevalley transformation filling the square

PT
S (C)X CX

PT
S (C)Y CY

α∗ α∗

evidY

evidX

is an equivalence. One can compute that it is given at s : FT/Y → Unco(F) by
the lax structure map sα : α∗s(id) → s(α). Because the objects of PT

S (C)X are
strict on FS ⊂ FT , we conclude that this is an equivalence whenever α is a
map in FS. We conclude that I is a morphism in PrS

T .

Construction 3.3.8. Next we construct the counit of the desired adjunction.
Given an object C in PrL

T we have to construct a functor

L : PT
S (C) → C

in PrL
T . We will do this by showing that the functor I : C → PT

S (C) has a
parametrized left adjoint when C is T-presentable. To do this we first observe
that by Proposition 3.2.14, IX preserves all limits. Therefore each functor IX
has a left adjoint LX by another application of the adjoint functor theorem.
To show that I in fact has a left adjoint as a T-functor, it now suffices by [MW21,
Lemma 3.2.7] to show that the Beck–Chevalley transformation

CX PT
S (C)X

CY PT
S (C)Y

f∗

IX

IY

f∗
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filling the square above is an equivalence for all f : X → Y in FT . Unwinding
the definition of the Beck–Chevalley transformation, we find that it is given
at h : Z→ Y by the Beck–Chevalley transformation filling the square

CX CX×Y Z

CY CZh∗

(π1)∗

(h×Y X)∗

f∗

This is an equivalence because C is an object of PrL
T and so satisfies base-

change with respect to all pullback squares in FT . In total we conclude that L
is a functor in PrL

T .

We will prove that PT
S is a left adjoint by showing that both triangles identities

hold for the putative unit and counit. To do this it will be useful to have a
different description of the composite PT

S P
T
S (C).

Lemma 3.3.9. There exists an equivalence

PT
S (PT

S (C))X ≃ laxlim†
Ar(FT /X)op

π∗XC ◦ s ,

where s : Ar(FT/X)op → (FT/X)op is the source projection and Ar(FT/X)op is marked
by those natural transformations for which both maps are in FS. Moreover this
equivalence is natural in both C and X.

Proof. This result follows immediately from Proposition 3.2.7, combined with
the fact that by definition Ar(FT/X)op → (FT/X)op is the cocartesian unstraight-
ening of the slice functor (FT/X)

op
/• .

Theorem 3.3.10. The functor PT
S : PrS

T → PrL
T is left adjoint to fgt : PrL

T → PrS
T .

Proof. We show that I and L satisfy the triangle identities, and so are a unit and
counit exhibiting PT

S ⊣ fgt as an adjunction. First we consider the composite

C
I−→ PT

S (C)
L−→ C.

Recall that IX is a fully faithful right adjoint to LX . Therefore the counit gives a
natural equivalence from the composite to the identity. For the other triangle
identity we consider the composite

PT
S (C)

PT
S (I)−−−−→ PT

S (PT
S (C))

L−→ PT
S (C).

We may equivalently show that the composite

PT
S (C)X

PT
S (evid)
←−−−−−− PT

S (PT
S (C))X

I←− PT
S (C)X
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given by passing to right adjoints is naturally homotopic to the identity. At
this point we apply Lemma 3.3.9 to rewrite PT

S (PT
S (C))X as the partially lax

limit of π∗XC ◦ s over Ar(FT/X)op. One can easily show that under this iden-
tification I and PT

S (evid) are given by restricting along the source projection
s : Ar(FT/X)op → (FT/X)op and the identity section c : (FT/X)op → Ar(FT/X)op

respectively. Therefore there is a natural equivalence between the composite
I ◦ PT

S (evid) and restriction along s ◦ c � id.

As an example of the process of freely adding colimits we obtain the following
result:

Corollary 3.3.11. PT
S (SS
• ) ≃ ST

• .

Proof. This follows immediately by comparing universal properties: by Exam-
ple 3.1.16 both PT

S (SS
• ) and ST

• represent the functor C 7→ core(ΓC).

We note that the proof of the previous theorem did not require any knowledge
about the left adjoint of f ∗ : PT

S (C)Y → PT
S (C)X , beyond their existence. In fact

the author does not know a general explicit description of the left adjoint of
f ∗ : PT

S (C)Y → PT
S (C)X for an arbitrary map f : X → Y. Nevertheless, we now

show that when f is in FS such a description is in fact possible. Therefore,
rather fittingly, it is only the left adjoints which we have freely adjoined which
will remain mysterious. For this we require the concept of marked finality.

Definition 3.3.12. A functor F : I → J of marked categories is marked final
if for every functor G : J → Cat, restriction along F induces an equivalence

laxlim†
J

G→ laxlim†
I

GF.

The following criteria allows us to recognize marked final functors. Before
stating it we recall some notation. Given a functor F : I → J and an object
j ∈ J , we write I/ j for the comma category F ↓ { j}. If J is marked, then we
enhance this to a marked category by marking all the edges whose projection
to J is marked. Furthermore given a marked category J we write L(J ) for
the (Dwyer–Kan) localization of J at the marked edges.

Proposition 3.3.13 ([AG22, Proposition 5.6op]). F : I → J is marked final if and
only if for all j ∈ J the canonical functor F : I/ j → J/ j induces an equivalence

L(I/ j)
∼−→ L(J/ j)

after localization.

Proposition 3.3.14. Let I and J be marked categories. Suppose L : I ⇄ J :R is
an adjoint pair such that both L and R preserve the marking. Then the following are
equivalent:
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1. The unit η : i → RL(i) is marked for all i ∈ I;

2. The counit ϵ : LR( j) → j is marked for all j ∈ J ;

3. The adjunction equivalence

HomI(L(i), j) ≃ HomJ (i , R( j))

preserves marked morphisms.

Proof. Since identities are always marked, (3) clearly implies (1) and (2). Let
us now show that (3) implies (1). Recall that the adjunction equivalence is
given by the following composite

HomI(L(i), j) → HomJ (RL(i), R( j))
η∗

−→ HomJ (i , R( j))

The first map preserves marked morphisms because R was assumed to be
a marked functor, and the second because the unit is marked and marked
morphisms form a subcategory. That (3) implies (2) is similar.

Definition 3.3.15. We say L : I ⇄ J :R is a marked adjunction if the equiva-
lent conditions of the previous proposition holds.

Proposition 3.3.16. Let L : I ⇄ J :R be a marked adjunction, then L is marked
final.

Proof. Let j ∈ J and consider the functor

L : I/ j → J/ j .

This admits a right adjoint given by sending f : j′→ j to the pair

(R( j′), LR( j′)
f
−→ LR( j) ϵ−→ j).

One computes that the unit and counit are given by the maps

η : i → RL(i) and ϵ : LR(i) → i.

respectively. In particular both are marked by Proposition 3.3.14. We conclude
that after localizing at the marked morphisms this adjunction is an adjoint
equivalence, and so we conclude by Proposition 3.3.13.

Proposition 3.3.17. Let (T, S) be an orbital pair and let f : X → Y be a map in FS.
Then

f! : FT/X ⇄ FT/Y : f ∗

is a marked adjunction, where as always both categories are marked by those mor-
phisms which lie in FS.
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Proof. We have previously observed already that both f! and f ∗ preserve
marked edges. The counit of the adjunction is given on an object Z → Y by
the map π1 in the pullback square

X ×Y Z Z

X Y

π1

f

⌟

In particular as a pullback of f it is again in FS.

Construction 3.3.18. We will now give a description of the left adjoint of the
restriction functor f ∗ : PT

S (C)Y → PT
S (C)X when f is in FS. First we note that to

simplify notation we may pass to slices and assume that Y is the final object.
Now recall that the restriction functor f ∗ : PT

S (C)Y → PT
S (C)X is given by the

functor
( f!)∗ : laxlim†

F
op
T

C → laxlim†
(FT /X)op

f ∗C.

To understand the left adjoint of this functor we may postcompose by the
functor

( f ∗)∗ : laxlim†
(FT /X)op

f ∗C → laxlim†
F

op
T

f∗ f ∗C , (3.3.18.1)

which is an equivalence by combining Propositions 3.3.16 and 3.3.17, and
instead construct a left adjoint of the composite ( f! f ∗)∗. This functor can again
be reinterpreted. Note that the counit transformation ϵ : f! f ∗ ⇒ id induces
a natural transformation from the identity on Fun†

F
op
T
(id, p) to ( f! f ∗)∗. Eval-

uating this natural transformation on a section s in laxlim† C we find that
γ is pointwise cocartesian: at an object Z ∈ FT , the natural transformation
γ : s → s ◦ f! f ∗ is given by applying s to the map π1 : X ×Y Z→ Z, which as a
pullback of f is in FS. This implies that when restricted to laxlim† C, the func-
tor ( f! f ∗)∗ is naturally equivalent to cocartesian pushforward along the counit
ϵ : f! f ∗ ⇒ id. However this is in turn equivalent to postcomposition by the
functor f ∗ : Unco(C) → Unco( f∗ f ∗C). We conclude that f ∗ : PT

S (C)Y → PT
S (C)X

is homotopic to the functor

laxlim†
F

op
T

C B FunFop
T
(Fop

T ,Unco(C))
(

f ∗
)
∗−−−−→ FunFop

T
(Fop

T ,Unco( f∗ f ∗C)) ≃ laxlim†
F

op
T

f∗ f ∗C.

In this form, we can make the left adjoint of the functor explicit. Namely, the
functor f ∗ : Unco(C) → Unco( f∗ f ∗C) iteslf admits a relative left adjoint f

!
given

by the unstraightening of the parametrized left adjoint from Remark 3.1.14.
By Proposition 3.2.22, postcomposition by f

!
defines a left adjoint to f ∗.
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3.3.1 Globalization

We are most interested in the previous results when T is Glo and S is Orb. For
example we immediately obtain a proof of Theorem A.

Theorem 3.3.19. There is an equivalence PGlo
Orb(S•) ≃ S•-gl of global categories. In

particular evaluating this at BG we obtain an equivalence

laxlim†
(Glo/G)op

S• ≃ SG-gl.

Proof. This follows immediately from Corollary 3.3.11, after making the iden-
tifications of Example 3.1.17.

We have shown that the Orb-relative cocompletion of the global category
of equivariant spaces is given by the global category of globally equivariant
spaces. In other words, in this case PGlo

Orb sends a global category of “equiv-
ariant objects" to a global category of “globally equivariant objects". Another
example of this phenomena is given by equivariant spectra, whose relative
cocompletion is given by globally equivariant spectra as we will show. For
this reason we introduce the following notation.

Notation 3.3.20. We will refer to PGlo
Orb(C) as the globalization of C and denote

it by Glob(C).



4. Stabilization

4.1 EQUIVARIANT STABILITY

We will now lead up to a proof of Theorem D of the introduction. To do
this we begin by recalling the notion of P-semiadditivity and P-stability for
T-categories introduced in [CLL23a]. When (T, P) � (Glo,Orb)we obtain the
notions of equivariant semiadditivity and equivariant stability for global cat-
egories. We then recall the main results of [CLL23a; CLL23b], which identify
the universal globally presentable and equivariantly presentable equivari-
antly stable global categories with globally equivariant spectra and equivari-
ant spectra respectively.
Finally, as the new results of this section, we show that for a orbital pair (T, S),
PT

S (−)preserves P-semiadditivity and P-stability whenever P is a subcategory
of S. Combining this with the main results of [CLL23a; CLL23b] we conclude
Theorem D, which identifies the global category of globally equivariant spec-
tra as the globalization of the global category of equivariant spectra.

4.1.1 Recollection

We begin with a recollection of the relevant material from [CLL23a].

Definition 4.1.1. An orbital subcategory P ⊂ T is called an atomic orbital
subcategory if every map in P that admits a section in T is an equivalence.

Throughout this section, we fix an orbital pair (T, S) and an atomic orbital
subcategory P of T such that P ⊂ S.

Definition 4.1.2. We say an S-presentable T-category C is pointed if for all
X ∈ FT , CX is pointed. We define PrS

T,∗ to be the full subcategory of PrS
T

spanned by the pointed global categories.

Construction 4.1.3. Let C be a pointed S-presentable T-category. For any map
p : A → B in FP ⊂ FT , [CLL23a, Construction 4.6.1] defines an adjoint norm
map

Nmp : p∗p! ⇒ id.

Definition 4.1.4. A S-presentable T-category C is called P-semiadditive if it is
pointed and the adjoint norm map Nmp : p∗p! ⇒ id is a counit transformation
exhibiting p∗ as a left adjoint of p! for every p ∈ FP .

52
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Remark 4.1.5. This definition is equivalent to [CLL23a, Definition 4.5.1] by
Lemma 4.5.4 of op. cit. By these results, one can furthermore show that an
S-presentable T-category C is P-semiadditive if and only if it is pointed,
and for all p : X → Y in FP a natural transformation Nmp : p∗p

!
⇒ id,

defined analogously to Construction 4.1.3, is a counit transformation ex-
hibiting p

!
: Unco( f∗ f ∗π∗YC) → Unco(C) as a right adjoint of p∗ : Unco(C) →

Unco( f∗ f ∗π∗YC).
Example 4.1.6. When P ⊂ T equals OrbG ⊂ OrbG, the notion of semiadditivity
obtained agrees with G-semiadditivity as defined in [Nar17], see [CLL23a,
Proposition 4.6.4].

Definition 4.1.7. We write PrS
T,P-⊕ for the full subcategories of PrS

T spanned
by the P-semiadditive T-categories.

We may additionally impose a fiberwise stability condition.

Definition 4.1.8. We say a S-presentable T-category C is fiberwise stable if CX
is stable for all X ∈ FT . We say a S-presentable T-category C is P-stable if it is
P-semiadditive and fiberwise stable. We write PrS

T,P-st for the full subcategory
of PrS

T spanned by the P-stable T-categories.

We also specialize the notions above to the setting of global categories.

Definition 4.1.9 ([CLL23a]). We say an equivariantly presentable global cat-
egory C is equivariantly semiadditive or equivariantly stable if it is is Orb-
semiadditive or Orb-stable respectively.

The main results of [CLL23a] and [CLL23b] allow us to identify the free
equivariantly presentable and globally presentable equivariantly stable global
categories on a point.

Definition 4.1.10. We define Sp•-gl, the global category of globally equivariant
spectra, to be diagram which sends BG to the category of G-global spectra, in
the sense of [Len20]. This in turn is defined to be the localization of the cate-
gory of symmetric G-spectra at the G-global weak equivalences. See [CLL23a,
Section 7.1] for precise definitions.

Theorem 4.1.11 ([CLL23a, Theorem 7.3.2]). Sp•-gl is the free globally presentable
equivariantly stable global category on a point. That is, given any globally presentable
equivariantly stable global category C, evaluating at the global sphere spectrum Sgl ∈
Spgl gives an equivalence

FunL(Sp•-gl , C) ≃ C ,
where the left hand side denotes the global category of cocontinuous functors. Evalu-
ating at Be and taking groupoid cores we obtain an equivalence

HomPrLGlo
(Sp•-gl , C) ≃ core(C(Be)).
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Similarly we have an equivariantly presentable version of the previous theo-
rem.

Theorem 4.1.12 ([CLL23b, Theorem 9.4]). Sp• is the free equivariantly presentable
equivariantly stable global category on a point. That is, given any equivariantly
presentable equivariantly stable global category C, evaluation at the sphere spectrum
S ∈ Sp gives an equivalence

Funeq-cc(Sp• , C) ≃ C ,

where the left hand side denotes the global category of equivariantly cocontinuous
functors. Evaluating at Be and taking groupoid cores we obtain an equivalence

HomPrOrb
Glo
(Sp• , C) ≃ core(C(Be)).

4.1.2 Globalizing equivariantly semiadditive and stable categories

We now show that relative cocompletion preserves P-semiadditivity and P-
stability. We then conclude Theorem D.

Proposition 4.1.13. Let (T, S) be an orbital pair and suppose P is an atomic orbital
subcategory of T such that P ⊂ S. The functor PT

S : PrS
T → PrL

T restricts to functors

PrS
T,P-⊕ → PrL

T,P-⊕ and PrS
T,P-st → PrL

T,P-st.

Proof. Let C be a P-semiadditive S-presentable T-category. First we note that
since limits and colimits are computed pointwise in PT

S (C)X for all X ∈ FT ,
it is again pointed. Now consider p : X → Y in FP . By passing to slices we
may assume Y is the final object of FT . We have to show that the adjoint norm
map Nmp : p∗p! ⇒ id is the counit of an adjunction. However recall that by
Construction 3.3.18 the adjunction p! ⊣ p∗ can be identified up to equivalence
with the adjunction

(p
!
)∗ : laxlim† C ⇄ laxlim† C ◦ p!p∗ : (p∗)∗.

Because C is P-semiadditive, by Remark 4.1.5 there exists a natural transforma-
tion Nm: p∗p

!
⇒ id which is the counit of an adjunction. By the 2-functoriality

of Fun†FT
(FT ,−), this induces a counit witnessing (p

!
)∗ as a right adjoint to (p∗)∗.

A tedious diagram chase shows that this transformation agrees, after applying
suitable equivalences, with the adjoint norm map Nmp ofPT

S (C). We conclude
that PT

S (C) is P-semiadditive.
Finally we note that because colimits and limits in PT

S (C) are computed point-
wise, PT

S clearly preserves fiberwise stable global categories.

Applying this in the global context we obtain the parametrized analog of
Theorem B.
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Theorem 4.1.14. There is an equivalence

Sp•-gl ≃ Glob(Sp•).

Proof. Note that by Proposition 4.1.13, Glob(Sp•) is again equivariantly stable.
Therefore the result follows immediately from Theorem 4.1.11 and Theo-
rem 4.1.12 by comparing universal properties.

As an immediate corollary we obtain a description of G-global spectra in the
sense of [Len20] as a partially lax limit for every finite group G.

Corollary 4.1.15. Let G be a finite group. Then there is an equivalence

SpG-gl ≃ laxlim†
(Glo/G)op

Sp•.

Remark 4.1.16. There are equivariantly semiadditive analogues of the state-
ments above. To avoid testing the readers patience we summarize them in
this remark. One can define the global categories ΓSspc

•-gl and ΓSspc
• of spe-

cial global Γ-spaces and special equivariant Γ-spaces respectively. Evaluating
these global categories at the groupoid BG one obtains the category of special
G-global Γ-spaces and the category of special Γ-G-space, as defined in [Len20]
and [Shi89] respectively.
By [CLL23a, Theorem 5.3.1], ΓSspc

•-gl is the free globally presentable equiv-
ariantly semiadditive global category on a point, while ΓSspc

• is the free
equivariantly presentable equivariantly semiadditive on a point by [CLL23b,
Theorem 7.17]. Therefore by comparing universal properties we obtain an
equivalence

ΓSspc
•-gl ≃ Glob(ΓSspc

• )
of global categories. Evaluating at the groupoid BG, we find that

ΓSspc
G-gl ≃ laxlim†

(Glo/G)op
ΓSspc
• .

4.2 REPRESENTATION STABILITY

We now switch gears and prove a consequence of the fact that Sp•-gl is the
globalization of Sp•. Namely, in this section we show that Sp•-gl is the initial
globally presentable global category on which the representation spheres act
invertibly. This universal property of global spectra was first suggested by
David Gepner and Thomas Nikolaus, see [Nik15]. An analogous universal
property has since been proven in the context of global model categories by
[LS23]. Our strategy for proving this universal property is first to observe that
the condition that representation spheres act invertibly in fact already makes
sense for pointed equivariantly presentable global categories, and therefore
first consider the analogous question in this context.
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Lemma 4.2.1. Let C be an object of PrOrb
Glo . Then C admits a unique colimit preserving

tensoring by S•. In particular there exists a canonical T-functor

S• × C → C

which preserves Orb-colimits in each variable, in the sense of [MW22, Defini-
tion 8.1.1]. Similarly if C is in PrOrb

Glo,∗, then it is uniquely tensored over the global
category of pointed equivariant spaces S•,∗, defined by the assignment BG 7→ SG,∗ B
(SG)∗.

Proof. By [MW22, Corollary 8.2.5] the category of S•-cocomplete global cat-
egories CatOrb-cc

Glo admits a symmetric monoidal structure − ⊗ − such that
Orb-cocontinuous global functors C ⊗ D → E are equivalent to global func-
tors C × D → E which are Orb-cocontinuous in each variable. Moreover
by [MW22, Remark 8.2.6] S• is the unit of this category, and therefore every
object in PrOrb

Glo inherits a tensoring by S•. This shows the first statement. The
second statement follows analogously to [Lur16, Proposition 4.8.2.11].

Remark 4.2.2. The tensoring of C byS• implies in particular that each category
CX is tensored by SX . Furthermore given a map f : X → Y in Fgl B FGlo, the
functor f ∗ : CY → CX is canonically SY-linear, where CX is tensored over SY
by restricting along the functor f ∗ : SY → SX .
An analogous statement holds for the tensoring of a pointed equivariantly
presentable global categories C by S•,∗.

Remark 4.2.3. Now suppose that f : X → Y in FOrb is a faithful functor. Given
a equivariantly presentable global category C, the left adjoint f! : CX → CY of
f ∗ canonically inherits the structure of an oplax SY-linear functor. Contained
in the statement that the tensoring preserves Orb-colimits in each variable is
the fact that f! with this oplax SY-linear structure is in fact a strong SY-linear
functor. Informally this means that the projection formula holds. Given this
one can compute that the tensoring of SG on CG is given by colimit extending
the assignment

OrbG × CG → CG , (ι : H ↪→ G, C) 7→ ι!ι
∗(C).

Once again an analogous statement holds for pointed equivariantly pre-
sentable global categories.

Definition 4.2.4. We define a parametrized subcategory Srep of S• by letting
S

rep
G be the full subcategory spanned by the representation spheres SV �

V ∪ {∞}, where V is any finite dimensional orthogonal representation of G.

Definition 4.2.5. We define PrOrb
Glo,rep-st to be the full subcategory of PrOrb

Glo,∗
spanned by the objects C such that SV ⊗ (−) : CG → CG is an equivalence for
all BG ∈ Glo and all SV ∈ Srep

G . We call such global categories Rep-stable.
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4.2.1 Formal Inversions

Given a equivariantly presentable global category C we would like to con-
struct the initial global category under C which is Rep-stable. In other words,
we would like to understand the process of (Rep-)stabilizing equivariantly
presentable global categories. Just as stabilizing ordinary categories is given
by inverting the action of S1, the topological sphere, the stabilization of an
equivariantly presentable global category will be obtained by inverting the
action of the representation spheres pointwise. We first recall the relevant
definitions.

Definition 4.2.6. Let D ∈ ModC(PrL) be a presentable category tensored over
another presentable symmetric monoidal category C. Furthermore fix a col-
lection of objects S ∈ C. We say a C-module D is S-local if for every X ∈ S the
functor X ⊗ − : D→ D is an equivalence. We write ModC(PrL)S-loc for the full
subcategory of ModC(PrL) spanned by the S-local objects.

Proposition 4.2.7 ([Rob15, Proposition 4.10]). The inclusion ModC(PrL)S-loc ⊂
ModC(PrL) admits a symmetric monoidal left adjoint, which we denote by D 7→
D[S−1].

To invert the action of representation spheres pointwise in a global category,
requires that inverting the action of a collection of objects is suitably functorial
as the category we are tensored ober changes. To capture this functoriality we
make the following definitions.

Definition 4.2.8. We define Cat∞,aug to be the full subcategory of Fun([1],Cat)
spanned by the fully faithful functors S ↪→ C such that S is a small category.
The pair (C , S) is called an augmented category.

Definition 4.2.9. We define the category CAlg(PrL)aug of augmented pre-
sentable symmetric monoidal categories as the following pullback:

CAlg(PrL)aug CAlg(PrL)

Cat∞,aug Cat∞

Definition 4.2.10. We write Mod(PrL) for the cartesian unstraightening of the
functor

Mod•(PrL) : CAlg(PrL)op → Cat, C 7→ModC(PrL).
Objects of Mod(PrL) consist of a pair (C ,D) of a presentable symmetric
monoidal category C and a presentable category D tensored over C.
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Definition 4.2.11. We define Mod(PrL)aug to be the pullback

Mod(PrL)aug Mod(PrL)

CAlg(PrL)aug CAlg(PrL).

We define Mod(PrL)aug−1 to be the full subcategory of Mod(PrL)aug spanned
by those triples (C , S,D) such that for every X ∈ S, X ⊗ − : D → D is an
equivalence.

Theorem 4.2.12. The inclusion Mod(PrL)aug−1 ↪→ Mod(PrL)aug admits a left
adjoint

I : Mod(PrL)aug →Mod(PrL)aug−1 .

Furthermore this left adjoint sends a triple (C , S,D) to the triple (C , S,D[S−1]).

Proof. Note that both Mod(PrL)aug and Mod(PrL)aug−1 are the total category
of a cartesian fibration over CAlg(PrL)aug: The first because it is a pullback of
Mod(PrL) and the second because Mod(PrL)aug−1 is clearly a full subcategory of
Mod(PrL)aug closed under cartesian pushforward, and so a cartesian fibration
again.
This also shows that the inclusion Mod(PrL)aug−1 → Mod(PrL)aug is a map
of cartesian fibrations. Given this, the statement is an application of [Lur16,
Proposition 7.3.2.6], where the fiberwise left adjoints are given by Proposi-
tion 4.2.7. The final statement is clear.

The following proposition shows that I preserves products, in a suitable sense.

Proposition 4.2.13. Consider a set of objects (Ci , Si ,Di) in Mod(PrL)aug. Then
there is an equivalence

I(
∏

Ci ,
∏

Si ,
∏

Di) ≃ (
∏

Ci ,
∏

Si ,
∏

Di[S−1
i ]).

Proof. This follows immediately from the pair of equivalences

Mod∏
Ci (PrL) ≃

∏
ModCi (PrL)

and
Mod∏

Ci (PrL)
∏

Si−loc ≃
∏

ModCi (PrL)Si−loc.
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4.2.2 Equivariantly presentable Rep-stabilization

We are now ready to construct the Rep-stabilization of an equivariantly pre-
sentable global category. First we note that the observations of Remark 4.2.2
extend to a coherent statement:

Proposition 4.2.14. Let C be a pointed equivariantly presentable global category.
The functor C : Fop

gl → PrL extends to a functor

C : Fop
gl →Mod(PrL), X 7→ (SX,∗ , CX).

Proof. By Lemma 4.2.1, C is canonically an object in ModS•,∗(CatGlo). We note
that CatGlo, as a functor category on Gloop, is in particular an oplax limit of the
constant Glo-shaped diagram on Cat. Therefore [LNP22, Theorem 5.10op] im-
plies that C gives an object in oplaxlim ModS•,∗ Cat. This is in turn equivalent to
a functor Gloop →Mod(Cat) by [LNP22, Theorem 4.13op], where Mod(Cat) is
defined analogously to Mod(PrL). For this functor to factor through Mod(PrL)
is a property, guaranteed by Lemma 4.2.1. We then limit extend this to a
functor from Fop

gl .

Remark 4.2.15. Note that Definition 4.2.4 specifies a lift of the functor

S•,∗ : F
op
gl → CAlg(PrL)

to a functor into CAlg(PrL)aug. This also lifts the functor C : Fop
gl → Mod(PrL)

of Proposition 4.2.14 to a functor into Mod(PrL)aug.

Definition 4.2.16. LetC be a pointed equivariantly presentable global category.
Postcomposing the lift of C to a functor into Mod(PrL)aug with the functor
I : Mod(PrL)aug → Mod(PrL)aug−1 and then forgetting down to PrL we obtain
a new functor

StabOrb(C) : Fop
gl → PrL , X 7→ CX[(Srep

X )
−1].

By Proposition 4.2.13 this is again a global category. Therefore StabOrb defines
a functor PrOrb

Glo,∗ → CatGlo.

Theorem 4.2.17. The functor StabOrb lands in the subcategory PrOrb
Glo,rep-st, and is a

left adjoint to the inclusion PrOrb
Glo,rep-st ⊂ PrOrb

Glo,∗.

Proof. The functor C → StabOrb(C) induced by the unit of I is by definition the
initial natural transformation of left adjoints such that StabOrb(C) is fiberwise
presentable and the action of the representation spheres on StabOrb(C) is
invertible. Therefore it suffices to show that StabOrb(C) is in PrOrb

Glo and that
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the extension of F : C → D to F′ : StabOrb(C) → D preserves all equivariant
colimits whenever F does.
First we show that for every map ι : X → Y in FOrb the functor

ι∗ : StabOrb(C)Y → StabOrb(C)X

admits a left adjoint. For this the crucial input is the following property of Srep:
the restriction of the regular representation of G to a subgroup H is a multiple
of the regular representation of H, and so every H-representation is a sum-
mand of the restriction of enough copies of the regular G-representation. This
is obviously also true for more general maps ι : X → Y in FOrb. By [Cno23a,
Lemma 2.22] we conclude that there exists an equivalence CX[(Srep

Y )−1] ≃
CX[(Srep

X )−1] of SY,∗-modules. By Remark 4.2.3 ι! is a SY,∗-module map and so
induces a functor

ι! : StabOrb(C)X → StabOrb(C)Y .
Furthermore because ι! ⊣ ι∗ is an adjunction in CX-modules, both the unit and
counit are canonicallySY,∗-linear natural transformations. These therefore also
lift to natural transformations witnessing

ι! : StabOrb(C)X → StabOrb(C)Y

as a left adjoint to ι∗ : StabOrb(C)Y → StabOrb(C)X in SY,∗[(Srep
Y )−1]-modules.

Next we show the required left adjointability conditions. Consider a square

CY′[(Srep
Y′ )−1] CX′[(Srep

X′ )−1]

CY[(Srep
Y )−1] CX[(Srep

X )−1]

g∗ f ∗

j∗

i∗

induced by a pullback square in Fgl such that i and j are faithful maps of
groupoids. We have to show this square is left adjointable. We first note
that because all of the functors in this diagram preserve colimits, it suffices
by [AI22, Lemma 1.5.1] to prove that the Beck-Chevalley transformation is an
equivalence on objects of the form S−V ⊗Z for Z ∈ CX′ and SV ∈ Srep

X′ . Because
j∗ induces a cofinal map between the augmentations we immediately see that
it in fact suffices to prove this for objects of the form S− j∗V ⊗Z, where V is now
a Y′-representation. One can show that the Beck-Chevalley transformation on
S− j∗V ⊗ Z is given by tensoring the Beck-Chevalley transformation of X by
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S− j∗V . More precisely we claim that the following diagram commutes:

g∗ j!(S− j∗V ⊗ Z) i!i∗g∗ j!( j∗S−V ⊗ Z) i! f ∗ j∗ j!( j∗S−V ⊗ Z) i! f ∗(S− j∗V ⊗ Z)

i!(S− f ∗ j∗V ⊗ f ∗Z)

g∗(S−V ⊗ j!Z) i!(S−i∗g∗V ⊗ f ∗Z)

S−g∗V ⊗ g∗ j!Z S−g∗V ⊗ i!i∗g∗ j!Z S−g∗V ⊗ i! f ∗ j∗ j!Z S−g∗V ⊗ i! f ∗Z.

ϵ∼η

∼

∼
S−g∗V⊗ η

∼ ∼

S−g∗V⊗∼ S−g∗V⊗ ϵ

∼

∼

∼

The proof of this claim is a tedious diagram chase which we omit. From this
we conclude that it suffices to check that the Beck-Chevalley transformation
is an equivalence on objects in the image of the functor CX′ → CX′[(Srep

X′ )−1].
However on such objects the Beck-Chevalley transformation is simply given
by the image of the Beck-Chevalley transformation for C• and so an equiv-
alence. In exactly the same way one shows that if F : C → D is a functor
between pointed equivariantly presentable global categories which preserves
Orb-colimits then StabOrb(F) again preserves Orb-colimits.

Proposition 4.2.18. StabOrb(S•) ≃ Sp•.

Proof. By definition the diagram Sp• is given by pointwise stabilizing the
diagram S• at the representation spheres, see Example 3.1.18.

4.2.3 Globally presentable Rep-stabilization

We now repeat the previous definitions for PrL
Glo.

Definition 4.2.19. We say a globally presentable global category C is pointed
if each CG is pointed. Given a pointed globally presentable global category C
we say it is Rep-stable if it is Rep-stable as an equivariantly presentable global
category. We define PrL

Glo,∗ and PrL
Glo,rep-st to be the full subcategory of PrL

Glo,∗
spanned by the pointed and Rep-stable global categories respectively.

Definition 4.2.20. Consider a morphism F : C → C′ in PrL
Glo,∗. We say F exhibits

C′ as the globally presentable Rep-stabilization of C if the map

HomPrLGlo,∗
(C′,D) → HomPrLGlo,∗

(C ,D)

is an equivalence for every D ∈ PrL
Glo,rep-st.
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The construction of globally presentable Rep-stabilizations is significantly
more subtle then the analogous story of equivariantly presentable Rep-stabiliz-
ations. In particular the construction of globally presentable Rep-stabilizations
cannot be as simple as pointwise inverting the action of representation spheres.
For example we remind the reader that while S• is globally presentable, Sp•
is not.
Nevertheless, imitating arguments of [Rob15, Section 2] one can show that
globally presentable Rep-stabilizations always exist. We will not consider
the finer aspects of this construction, but instead content ourselves with the
observation that when the globally presentable global category C is presented
as the globalization of some other global category, we can obtain an explicit
description of StabGlo(C).
Theorem 4.2.21. Let C be an object of PrOrb

Glo,∗. The globally presentable global category
Glob(StabOrb(C)) is the globally presentable Rep-stabilization of Glob(C).

Proof. We claim that Glob(−) preserves Rep-stable global categories. To this
end fix a D ∈ PrOrb

Glob,rep-st. First note that because colimits and limits are
computed pointwise in Glob(D), it is again a pointed global category. Now
consider SV ∈ Srep

G . We compute that the tensoring of SV on Glob(D)G is given
by

{X f } f : BH→BG 7→ { f ∗(SV ) ⊗ X f } f : BH→BG ≃ {S f ∗(V) ⊗ X f } f : BH→BG .

Because each S f ∗(V) acts invertibly on DH , we conclude that tensoring by
SV on Glob(D)G is an equivalence. Therefore Glob restricts to a functor
PrOrb

Glo,rep-st → PrL
Glo,rep-st. The result now follows from the following series

of natural equivalences:

HomPrLGlo,rep-st
(Glob(StabOrb(C)),D) ≃ HomPrOrb

Glo,rep-st
(StabOrb(C),D)

≃ HomPrOrb
Glo,∗
(C ,D)

≃ HomPrLGlo,∗
(Glob(C),D).

Corollary 4.2.22. The global category of globally equivariant spectra Sp•-gl is the
free globally presentable Rep-stable global category on a point.

Proof. Apply the previous result to C � S•, using Proposition 4.2.18.

Remark 4.2.23. We expect that both localizations PrL
Glo → PrL

Glo,rep-st and
PrL

Glo → PrL
Glo,Orb-st are smashing. This would imply, among other things,

that because they agree on the unit S•-gl they in fact agree as functors. In
particular we would conclude that a globally presentable global category is
equivariantly stable if and only if it is representation stable.
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4.2.4 Symmetric monoidal structures

Observe that the partially lax limit of symmetric monoidal categories is canoni-
cally symmetric monoidal by taking the tensor product pointwise, see [LNP22,
Section 3] for a more detailed discussion. This gives a lift of Sp•-gl : F

op
gl → PrL

to a functor into CAlg(PrL). We will write Sp⊗•-gl for this functor.

The goal of this subsection is to show that Sp⊗•-gl is the initial globally pre-
sentably symmetric monoidal Rep-stable global category. To elaborate on
this we recall that by [MW22, Proposition 8.2.9], PrL

Glo admits a symmetric
monoidal structure given by a parametrized version of the Lurie tensor prod-
uct. As usual functors out of the tensor product corepresent functors out of
the product which preserve global colimits in both variables. We call an ob-
ject C of the category CAlg(PrL

Glo) a globally presentably symmetric monoidal
global category. To understand this it is useful to be more explicit about the
structure and properties implicit in presentable symmetric monoidality. We
will do this in the generality of an arbitrary orbital category T.

Definition 4.2.24. A symmetric monoidal T-category is a finite product pre-
serving functor Fop

T → Cat⊗. We define Cat⊗T to be the functor category
Fun×(Fop

T ,Cat⊗).

Definition 4.2.25. We define PML
T to be the subcategory of Cat⊗T spanned on

objects by those C such that

1. the functor C lifts to a functor C : Fop
T → CAlg(PrL);

2. for all f : X → Y in FT , the functor f ∗ has a further left adjoint f!;

3. the square obtained by applying C to a pullback square in FT is left
adjointable.

On morphisms PML
T is spanned by those functors F : C → D in Cat⊗T such that

each functor FG admits a right adjoint and the square

CX DX

CY DY
FX

FY

f ∗ f ∗

is left adjointable for all f ∈ T.

Proposition 4.2.26. There exists a fully faithful forgetful functor CAlg(PrL
T) ⊂ PML

T ,
with essential image those C : Fop

T → CAlg(PrL) which satisfy the left projection
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formula, i.e. those C ∈ PML
T such that for all morphisms f : X → Y in FT , the

canonical natural transformation

f!( f ∗X ⊗ Y) → f! f ∗X ⊗ f!Y
ϵ⊗Y−−−→ X ⊗ f!Y

is an equivalence.

Proof. Both CAlg(PrL
T) and PML

T are subcategories of Cat⊗T , and therefore it
suffices to compare the images. For this we note that an object C ∈ Cat⊗T is in
CAlg(PrL

T) if and only if C is presentable and the tensor product commutes
with fiberwise and T-groupoid indexed colimits in each variable. The first
two statements are equivalent to the claim that C factors through CAlg(PrL),
while the final statement is equivalent to the claim that the left projection
formula holds.

Write CAlg(PrL
Glo)rep-st for the full subcategory of CAlg(PrL

Glo) spanned by
those C which are representation stable. Recall that our goal is to show that
Sp⊗•-gl is the initial object of this∞-category. To do this we will take a slightly
circuitous route. We define PML

Glo,rep-st via the pullback

PML
Glo,rep-st PML

Glo

PrL
Glo,rep-st PrL

Glo.

⌟

Lemma 4.2.27. The symmetric monoidal global category Sp⊗•-gl admits a unique map
to any object D ∈ CAlg(PrL

Glo)rep-st.

Proof. This is proven by simply repeating all of the constructions and argu-
ments in Sections 3.3 and 4.2, but now for objects C : Fgl → PrL which addition-
ally lift to CAlg(PrL). For example one shows that the functor PT

S : PrS
T → PrL

T
refines to a left adjoint PMS

T → PML
T , where the definition of PMS

T is analogous
to that of PML

T . Because partially lax limits of symmetric monoidal categories
are computed underlying, the proofs of Theorem 3.3.6 and Theorem 3.3.10
go through unchanged. Similarly for all other steps leading to the theorem.
Given this, the results follows immediately from the fact that S• is an initial
object of CAlg(PrL

Glo)), see [MW22, Remark 8.2.6].

Theorem 4.2.28. Sp⊗•-gl is the initial globally presentable symmetric monoidal Rep-
stable global category.

Proof. By the previous lemma, it suffices to prove that Sp⊗•-gl is actually an
object of CAlg(PrL

Glo). By Proposition 4.2.26 this amounts to proving that
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Sp⊗•-gl satisfies the left projection formula. Pick a morphism f : X → Y in
Fgl. Consider the functor Σ∞• : S•-gl,∗ → Sp•-gl exhibiting Sp•-gl as the globally
presentable Rep-stabilization of S•-gl,∗. The source is the unit of PrL

Glo,∗ and
so satisfies the left projection formula. Because Σ∞+ is strong monoidal and
commutes with global colimits, we conclude that suspension spectra in SpX-gl
and SpY-gl satisfy the left projection formula for f . That is, the map

f!( f ∗E ⊗ F) → E ⊗ f!F

is an equivalence when E and F are in the image of Σ∞+ . Now we note that
the collection of objects which satisfy the left projection formula for f is
closed under desuspensions and colimits in both CX and CY . Because Sp•-gl
is generated as a fiberwise stable global category under fiberwise colimits
by suspension spectra, we conclude that Sp•-gl satisfies the left projection
formula.



Appendix A

Global spectra via partially lax
limits
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This appendix is a reproduction of [LNP22], joint work of Denis Nardin, Luca
Pol and the author. It will appear in Geometry and Topology.
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Abstract

We provide new ∞-categorical models for unstable and stable global
homotopy theory. We use the notion of partially lax limits to formalize
the idea that a global object is a collection of G-objects, one for each
compact Lie group G, which are compatible with the restriction-inflation
functors. More precisely, we show that the ∞-category of global spaces
is equivalent to a partially lax limit of the functor sending a compact
Lie group G to the ∞-category of G-spaces. We also prove the stable
version of this result, showing that the ∞-category of global spectra is
equivalent to the partially lax limit of a diagram of G-spectra. Finally,
the techniques employed in the previous cases allow us to describe the
∞-category of proper G-spectra for a Lie group G, as a limit of a diagram
of H-spectra for H running over all compact subgroups of G.



5. Introduction

It has been noted since the beginning of equivariant homotopy theory that
there are equivariant objects which exist uniformly and compatibly for all
compact Lie groups in a certain family, and which exhibit extra functoriality.
For example given compact Lie groupsΠ and G, there exists a construction for
the classifying space of G-equivariant Π-principal bundles which is uniform
on the group G and which is functorial on all continuous group homomor-
phism, [Sch18, Remark 1.1.29]. Similarly, there are uniform constructions for
many equivariant cohomology theories, such as K-theory, cobordism and sta-
ble cohomotopy, just to mention a few. The objects exhibiting such a “global”
behaviour are the subject of study of global homotopy theory.
In this paper we provide a new∞-categorical model for global homotopy the-
ory by formalizing the idea that a global stable/unstable object is a collection
of G-objects, one for each compact Lie group G, which are compatible with
the restriction-inflation functors. The key categorical construction that we will
use to make this slogan precise is that of a partially lax limit, which we recall
below. The main result of our paper is that this construction agrees with the
models of global homotopy theory considered in the literature. Specifically
we will compare to the models of [GH07] and [Sch18] in the unstable and
stable case respectively. We first present our result in the simpler context of
unstable global homotopy theory, and then consider the stable analogue of
our main result. Finally we discuss an application of the techniques developed
in this paper to proper equivariant homotopy theory.

Unstable global homotopy theory

Global spaces were first proposed in [GH07] as a powerful framework for
studying the homotopy theory of topological stacks and topological groupoids,
which in turn generalize orbifolds and complexes of groups. This homotopy
theory records the isotropy data of such objects as a particular diagram of
fixed points spaces. To make this precise, [GH07] defined the ∞-category of
global spaces as the presheaf∞-category

Sgl � Fun(Gloop , S).

Here Glo is the∞-category whose objects are all compact Lie groups G, and
whose morphism spaces are given by hom(H,G)hG; the homotopy orbits of
the conjugation G-action on the space of continuous group homomorphisms.
In particular, a global space X consists of the data of a fixed point space XG
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for every compact Lie group G which are functorial in all continuous group
homomorphisms. Furthermore, the conjugation actions have been trivialized,
reflecting the fact that spaces of isotropy are insensitive to inner automor-
phisms.
This definition is motivated by Elmendorf’s theorem in equivariant homotopy
theory which states that the ∞-category of G-spaces SG is equivalent to the
presheaf ∞-category on the G-orbit category OG. Here SG is defined as the
∞-categorical localization of G-CW-complexes at the homotopy equivalences,
and OG is the full subcategory of G-spaces spanned by the transitive G-spaces
G/H for a closed subgroup H ⊆ G.
There is in fact a strong connection between equivariant and global homotopy
theory. Let Orb denote the wide subcategory of Glo spanned by the injective
group homomorphisms. Gepner-Henriques [GH07] observed that the slice
∞-category Orb/G is equivalent to the G-orbit category OG. In particular, this
allows us to define a restriction functor

resG : Sgl → Fun(Oop
G , S) ≃ SG

by precomposing with forgetful functor OG ≃ Orb/G → Glo. Thus a global
space has an associated underlying G-space for all compact Lie groups G. Fur-
thermore, that all these G-spaces come from the same global object imposes
strong compatibility conditions among them.
We would like to understand how to recover a global space X from its re-
strictions resGX to all compact Lie groups G, together with the previously
mentioned compatibility conditions. The precise sense in which this is possi-
ble requires the notion of a (partially) lax limit, which we now recall follow-
ing [GHN17] and [Ber20].

Partially lax limits

Let I be an ∞-category and consider a functor F : I → Cat∞. Intuitively, the
lax limit of F is the∞-category laxlim F whose objects consist of the following
data

• an object Xi ∈ F(i) for each i ∈ I;

• and compatible morphisms fα : F(α)(Xi) → X j for every arrow α : i → j
in I.

A morphism {Xi , fα} → {X′i , f ′α} is a suitably natural collection of maps
{gi : Xi → X′i}. More precisely, laxlim F is the ∞-category of sections of the
cocartesian fibration associated to F. For our description we will require that
for certain arrows α in I, the map fα is an equivalence. We therefore fix a
collection of edgesW ⊂ I, which contains all equivalences and which is stable
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under homotopy and composition, and denote by I† the resulting marked∞-
category. The partially lax limit of F is then the subcategory of laxlim F spanned
by those objects ({Xi}, { fα}) for which the canonical map fα is an equivalence
for all edges α ∈ W . Note that if W contains only equivalences, then we
recover the lax limit of F. On the other hand, if W contains all edges, we
recover the usual notion of the limit of F. In particular we obtain canonical
functors

lim F→ laxlim† F→ laxlim F,

which indicates that a partially lax limit interpolates between the limit and the
lax limit of a diagram. For exposition’s sake, we have only defined the partially
lax limit of a functor with values in Cat∞, but there are similar definitions if we
replace Cat∞with Cat⊗∞, the∞-category of symmetric monoidal∞-categories.
We refer the reader to Section 6.3 for more details on this construction.
As mentioned, in this paper we show that a global space can be thought of
as a compatible collection of G-spaces. We can formalize what “compatible”
means using the language of partially lax limits. To this end, let (Gloop)†
denote the∞-category Gloop where we marked all the edges in Orbop ⊆ Gloop,
i.e. all the injective edges. We prove the following theorem, which summarizes
the main result of Section 7.1.

Theorem (7.1.17). There exists a functor S• : Gloop → Cat⊗∞ which sends a
compact Lie group G to the ∞-category of G-spaces SG endowed with the
cartesian symmetric monoidal structure, and a continuous group homomor-
phism α : H → G to the restriction-inflation functors. Furthermore, there is a
symmetric monoidal equivalence

Sgl ≃ laxlim†
G∈(Gloop)†

SG

between the ∞-category of global spaces with the cartesian monoidal struc-
ture and the partially lax limit over (Gloop)† of the diagram S•.

By the above theorem a global space X consists of the following data:

• a G-space resGX for each compact Lie group G,

• an H-equivariant map fα : α∗resGX → resH X for each continuous group
homomorphism α : H → G.

• the maps fα are functorial, so that fβ◦α ≃ fβ ◦ β∗( fα) for all composable
maps α and β, and fid � id;

• fα is an equivalence for every continuous injective homomorphism α.

• a homotopy between the map fcg induced by the conjugation isomor-
phism and the map lg : c∗gresGX → resGX given by left multiplication
by g.
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• higher coherences for the homotopies.

This is a precise formulation of the compatibility conditions encoded in a
global space.

Global stable homotopy theory

Our discussion so far has been limited to the homotopy theory of global spaces,
but there are also numerous examples of equivariant cohomology theories
exhibiting a global behaviour. These cohomology theories are represented by
global spectra, and their study is called global stable homotopy theory.
The consideration of “global spectra" grew out of the literature on equivari-
ant stable homotopy theory, and was considered in works such as [GM97].
Morally, a global spectrum models a compatible family of equivariant spectra
for all compact Lie groups at once. Our main result makes this moral precise,
and provides the same description as in the unstable case.
There are multiple models for the homotopy theory of global spectra. In this
paper we will use the framework developed by Schwede in [Sch18]. His ap-
proach has the advantage of being very concrete; the category of global spectra
is modelled by the usual category of orthogonal spectra but with a finer notion
of equivalence, the global equivalences. The category of orthogonal spectra
with the global stable model structure of [Sch18, Theorem 4.3.17] underlies a
symmetric monoidal∞-category Spgl. As any orthogonal spectrum is a global
spectrum, this approach comes with a good range of examples. For instance,
there are global analogues of the sphere spectrum, cobordism, topological
and algebraic K-theory spectra, Borel cohomology, symmetric product spec-
tra and many others. Global spectra have also been shown to give cohomology
theories on orbifolds and topological stacks in [Jur20], thereby establishing
them as a natural home for (genuine) cohomology theories on topological
stacks. As part of the framework developed by Schwede, the ∞-category of
global spectra comes with symmetric monoidal restriction functors

resG : Spgl → SpG

into the ∞-category of G-spectra, for all compact Lie groups G. As a first
indication that a global spectrum should consist of just this data, together with
various comparison maps, note that the functors resG are jointly conservative
by the very definition of global equivalences.
However, not all equivariant spectra admit global refinements. In fact being a
“global” object forces strong compatibility conditions between the underlying
G-spectra for different G. For example, resGX is always a split G-spectrum
by [Sch18, Remark 4.1.2] and its G-homotopy groups for all G together admit
the structure of a global functor, see [Sch18, Example 4.2.3]. We can again
formalize how a global spectrum is determined by its restrictions for all
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compact Lie groups using the language of partially lax limits. Recall that
(Gloop)† denotes the∞-category Gloop, marked by all the edges in Orbop, i.e.
the injective group homomorphisms.

Theorem (7.6.10). There exists a functor Sp• : Gloop → Cat⊗∞ which sends a
compact Lie group G to the symmetric monoidal ∞-category of G-spectra
Sp⊗G, and a continuous group homomorphism α : H → G to the restriction-
inflation functor. Furthermore, there is a symmetric monoidal equivalence

Spgl ≃ laxlim†
G∈(Gloop)†

SpG

between Schwede’s ∞-category of global spectra and the partially lax limit
over (Gloop)† of the diagram Sp•.

Proper equivariant stable homotopy theory

The techniques employed in the proof of Theorem 7.6.10 can also be used in
other settings. Given a (not necessarily compact) Lie group G, we can consider
the∞-category of proper G-spectra SpG,pr. This is the∞-category underlying
the category of orthogonal G-spectra with the proper stable model structure
of [Deg+23], in which a map f : X → Y is a weak equivalence if and only
if for all compact subgroups H ≤ G, the map induced on homotopy groups
πH
∗ ( f ) : πH

∗ (X) → πH
∗ (Y) is an isomorphism. Write OG,pr for the proper G-

orbit category, which is defined to be the subcategory of OG spanned by the
cosets G/H, where H a compact subgroup of G. Our techniques allow us to
prove:

Theorem (7.7.11). Let G be a Lie group. There is a symmetric monoidal
equivalence

SpG,pr ≃ lim
H∈Oop

G,pr

SpH

between the∞-category of proper G-spectra and the limit of the functor Sp•
restricted along the canonical functor ιG : Oop

G,pr → Gloop sending G/H to H.

Having introduced the main theorems of this article. We continue the intro-
duction by discussing the proof strategy for each in some detail.

The proof strategy for Theorem 7.1.17

We begin with a discussion of the proof of the unstable result. Implicit
in [Rez14] is the following crucial observation (see also Proposition 7.1.13):
the space of factorizations of any map α : H → G in Glo into a surjective fol-
lowed by an injective group homomorphism is contractible. In fewer words,
the surjective and injective maps form an orthogonal factorization system on
Glo. This is the main ingredient in the proof of Theorem 7.1.17, and moreover,
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we would like to argue it is at the core of the relationship between global and
G-equivariant homotopy theory.
This claim is justified by the following two facts. The first is that the functo-
riality under the restriction-inflation functors of the different∞-categories of
equivariant spaces is equivalent to the previous observation. The second is
that the observation formally implies that one can recover a global space X
from the Gloop-indexed diagram of G-spaces resGX.
Let us first explain how the∞-categories of equivariant spaces are functorial
in the category Gloop. Due to the existence of a non-trivial topology on the
morphism spaces, this is not immediate. For example, note that exhibiting
this functoriality also entails giving a homotopy coherent trivialization of
the conjugation action on SG. The key is that the existence of the orthogonal
factorization system allows one to define functors

α! : Orb/H → Orb/G , (K ↪→ H) 7→ (α(K) ↪→ G).

On objects α! factorizes the composite K ↪→ H → G into a surjection followed
by an injection, and then only remembers the injective part. The fact that
such factorizations are unique is equivalent to the fact that this functor is
well-defined. Precomposing with α

op
! gives the standard restriction functor

α∗ : SG → SH . Furthermore given this description of the individual restriction
functors, it is clear that they are functorial in Gloop.
Next we explain how the observation implies that one can recover a global
space from its restrictions. When one takes an object ({resGX}, { fα}) of the
partially lax limit over Glo† of the diagram S•, the functoriality of the associ-
ated global space in injections is recorded by restricting to each resGX, and
the functoriality in surjections is given by the morphisms fα. One recovers the
functoriality in all morphisms in Glo by factorizing an arbitrary morphism
into an injection followed by a surjection. The ability to split the functoriality
in this way again reduces to the observation that the surjective and injective
maps form an orthogonal factorization system. We make precise all of the
ideas sketched here in Section 7.1.

The proof strategy for Theorem 7.6.10

The proof of Theorem 7.6.10 is considerably more involved than its unstable
analogue, and takes up the majority of the second half of the paper. Therefore
we now give an overview of the proof as a roadmap for the reader.
Firstly, we discuss the existence of the functor Sp•. Recall that a G-spectrum
can be thought as a pointed G-space together with a compatible collection
of deloopings for all representation spheres. With modern tools we can give
this construction a universal property: as a symmetric monoidal ∞-category
SpG is obtained from the∞-category of pointed G-spaces by freely inverting
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the representation spheres SV for every G-representation V , see [GM23, Ap-
pendix C]. This universal property, combined with the unstable functor S• of
Theorem 7.1.17, immediately gives the functoriality of G-spectra in Gloop as
in our theorem.
Unfortunately, constructing the functor Sp• via the universal property of
equivariant spectra is unhelpful for our purposes, as it is too inexplicit for
calculating the partially lax limit. For example, note that for a surjective group
homomorphism α : H → G and G-spectrum E, to obtain the H-spectrum α∗E
one has to freely add deloopings with respect to representation spheres not
in the image of α∗ : Rep(G) → Rep(H). This is a process which one cannot
easily control.
Therefore, pivotal to our proof is an explicit construction of the functor Sp•.
The calculation of the partially lax limit of Sp• will then follow from this by a
long series of nontrivial formal arguments. The crucial idea is construct and
calculate with a functoriality on prespectrum objects rather than at the level
of spectrum objects. In this setting, we are able to built the functoriality of
equivariant prespectra explicitly using the functoriality of the ∞-categories
OG and Rep(G), the category of representations and linear isometries.
To make this precise, let us first specify our model of G-prespectra. We define
an∞-category ORG, naturally fibred over Oop

G , whose objects are pairs (H,V),
where H is a closed subgroup of G and V is a H-representation, see Defini-
tion 7.3.5. This is canonically symmetric promonoidal and so the∞-category
of functors Fun(ORG , S∗) is symmetric monoidal via Day convolution. There
is a functor SG : ORG → S∗ which sends the object (H,V) to the pointed space
(SV )H . This is a commutative algebra object in Fun(ORG , S∗) via the universal
property of Day convolution. The first ingredient of the proof is the following:

Step 1. The∞-category SpG is equivalent to an explicit Bousfield localization
of the∞-category

PSpG :� ModSG Fun(ORG , S∗).

We obtain this description by reinterpreting the construction of G-spectra as
a Bousfield localization of the level model structure on orthogonal G-spectra
internally to ∞-categories. This identification is the culmination of Sections
7.2 and 7.3, and the reader can find a precise statement as Proposition 7.2.30
and Corollary 7.3.14.
Having obtained this identification, we can build the functoriality of equivari-
ant prespectra by exhibiting the pairs (ORG , SG) as functorial in Gloop. In fact
the categories ORG will only be (pro)functorial in Gloop, but this is a subtlety
which we choose to gloss over in this introduction. To exhibit this functorial-
ity, we build a global version of the category ORG and the algebra object SG,
which we denote by ORgl and Sgl , see Definition 7.4.2. The∞-category ORgl
is naturally fibred over Gloop and has objects (G,V), where G is a compact
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Lie group and V is a G-representation, and Sgl : ORgl → S∗ sends (G,V) to
the pointed space (SV )G.
There is a precise sense in which the pair (ORgl , Sgl) contain all of the functo-
riality of the pairs (ORG , SG) in Glo. For the group direction this stems from
the fact that the surjections and injections form an orthogonal factorization
system on Glo, while for the representation direction this follows from the ob-
servation that ORgl is a cocartesian fibration over Gloop classifying the functor
Rep(−) : Gloop → Cat∞ which sends a compact Lie group G to its category of
G-representations, with functoriality given by restriction. These observations
allow us to prove the following result, see Proposition 7.4.16.

Step 2. There exists a functor

PSp• : Gloop → Cat⊗∞ , G 7→ PSpG .

Furthermore the partially lax limit of PSp• over (Gloop)† is given by the ∞-
category ModSgl Fun(ORgl , S∗).

We have shown in Step 1 that SpG is a Bousfield localization of PSpG. We call a
map in PSpG a stable equivalence if it is inverted by the functor PSpG → SpG.

Step 3. The diagram PSp• preserves stable equivalences, and therefore in-
duces a diagram Sp•. Furthermore, as indicated by the notation, this diagram
is equivalent to the functoriality of equivariant spectra built at the beginning
of this section using the universal property of SpG.

In particular, on morphisms this diagram gives the standard restriction-
inflation functors on equivariant spectra, see Corollary 7.5.6. The following
result follows formally from this.

Step 4. The partially lax limit of Sp• is given by an explicit Bousfield localiza-
tion of the∞-category

ModSgl Fun(ORgl , S∗).

Finally, we compare this ∞-category to Schwede’s model of global spectra,
Spgl. Once again we do this by first translating his construction into one
internal to ∞-categories. We define an ∞-category ORfgl as the subcategory
of ORgl spanned by the objects (G,V), where V is a faithful G-representations.
Restricting Sgl we obtain a commutative algebra object Sfgl in Fun(ORfgl , S∗).
We then show:

Step 5. Spgl ⊂ ModSfgl(Fun(ORfgl , S∗)) is an explicit Bousfield localization.
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The precise statement is obtained by combining Proposition 7.2.27 and Corol-
lary 7.3.23. Finally we show in Section 7.6 that the canonical inclusion j : ORfgl →
ORgl induces an adjunction

j! : ModSfgl(Fun(ORfgl , S∗))⇆ ModSgl (Fun(ORgl , S∗)) : j∗

on prespectrum objects. Then we show that this adjunction descends to an
adjunction on the corresponding Bousfield localizations of Steps 4 and 5.
Finally we prove that the fibrancy conditions imposed by these localizations
cancel out the difference between all and faithful representations, so that we
obtain an equivalence

Spgl ≃ laxlim† Sp• ,

concluding the proof of Theorem 7.6.10.
Finally let us note that to fill in all of the details of this argument requires a long
list of technical results about the relationship between various constructions
applied to model categories and ∞-categories, Day convolution monoidal
structures induced by promonoidal categories, and partially lax limits of
symmetric monoidal categories. We have included these in Part I to make the
paper self-contained, and because we failed to find a convenient reference for
many of these facts.

Related work

There are many models of global unstable homotopy theory. The first was
given in [GH07], and since then others have been obtained in [Sch18] and
[Sch20]. The second of these papers, together with [K1̈8], proves that all these
models induce the same ∞-category. Finally, we would like to mention the
unpublished manuscript [Rez14], which contains many of the ideas we exploit
in Section 7.1.
There has been a lot of work towards finding a good framework for the study
of global stable homotopy theory, see [Boh14; GM97] and [Lew+86, Chapter II].
Schwede’s model [Sch18] has so far being the most successful one, in part be-
cause of its numerous applications to equivariant stable homotopy theory, see
for example [Sch17] and [Hau22]. Hausmann [Hau19] gave a model for global
homotopy theory for the family of finite groups by endowing the category
of symmetric spectra with a global model structure. There is also a model
for G-global homotopy theory [Len20] which is a synthesis between classical
equivariant homotopy theory and Schwede’s global homotopy theory. This
specializes to global homotopy theory by setting G to be the trivial group.
Recently, Lenz [Len22] gave an ∞-categorical model for global stable homo-
topy theory for the family of finite groups using spectral Mackey functors.
However to the best of our knowledge, our model is the first ∞-categorical
model for global stable homotopy theory for the family of all compact Lie
groups and not just the finite ones.
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Future directions

In this paper we focused only on global and proper equivariant homotopy
theory, but it is quite natural to wonder if we can recover our two results
as a special case of a more general one. For any Lie group G, we can in fact
consider G-global homotopy theory which is a generalization of global and G-
equivariant homotopy theory. We conjecture that G-global stable homotopy
theory is equivalent to the partially lax limit of the functor Sp• restricted along
the canonical functor Gloop

/G → Gloop.

Organization of the paper

The paper is divided into three main parts.
In the first part we first discuss the relationship between model and ∞-
categories. Then we recall the concept of a promonoidal ∞-category and
use this to define the Day convolution product on functor categories. We then
introduce the notions of partially lax (co)limits and collect various useful re-
sults that we will need throughout the paper. We finish Part I by describing
the lax limits of symmetric monoidal ∞-categories in terms of the operadic
norm functor.
The second part of the paper contains the proofs of our main results. In
Section 7.1 we introduce the ∞-category of global spaces and prove Theo-
rem 7.1.17. This is an unstable version of Theorem 7.6.10, and serves as a
warm up for the considerably more involved proof of the stable case. We
therefore recommend the reader to read this section before moving forward.
In Section 7.2 we recall various model structures on the categories of orthogo-
nal G-spectra for a Lie group G, and hence define the underlying∞-categories
of proper G-spectra and of global spectra. In Section 7.3 we apply a variant
of Elmendorf’s theorem and use this to provide specific models for the ∞-
categories of proper G-prespectra and global prespectra. In Section 7.4 we
construct the functor Sp• from the introduction, and in Section 7.6 we iden-
tify the partially lax limits with the ∞-category of global spectra. Finally
in Section 7.7, we apply the same techniques to describe the ∞-category of
proper G-spectra as a limit, proving Theorem 7.7.11.
The third part of the paper contains an appendix on the tensor product of
modules in an∞-category.
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6. Partially lax limits,
promonoidal∞-categories and
Day convolution

In this part of the paper we introduce the necessary machinery to state and
prove our main results. In the first section we give references for the pas-
sage from topological/model categories to∞-categories. We then discuss the
Day convolution product for functor ∞-categories, where the source is only
assumed to be a promonoidal∞-category. Finally we recall the notion of par-
tially lax limits of ∞-categories and symmetric monoidal ∞-categories, and
proof some useful properties about them.

6.1 FROM TOPOLOGICAL/MODEL CATEGORIES TO∞-CATEGORIES

In this paper we will often need to pass from topological categories (or op-
erads) and (symmetric monoidal) model categories to ∞-categories. In this
section we recall how this is done, and provide relevant references. After this
section we will largely leave these identifications implicit for the rest of the
paper.

6.1.1 Topological categories and operads

We can promote a topological category C to an ∞-category by first apply-
ing the singular functor to the mapping spaces (see [Lur09, Section 1.1.4])
and then applying the coherent (also called simplicial) nerve functor [Lur09,
Corollary 1.1.5.12]. This defines a functor

TopCat→ Cat∞

from topological categories to ∞-categories. Importantly, applying this func-
tor to a topologically enriched category C preserves the set of objects and
the weak homotopy type of the mapping space between any two objects,
see [Lur09, Theorem 1.1.5.13]. Throughout this paper we will not distinguish
between the topological category and its∞-categorical counterpart.
There is a similar functorial construction between topological operads and∞-
operads, which we now recall. Given a topological coloured operad O, we let
O⊗ denote the topological category whose objects are pairs (I+ , (Ci)i∈I)where

80
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I+ ∈ Fin∗ and Ci are colours in O. Given a pair of objects C � (I+ , {Ci}i∈I) and
D � (J+ , {D j} j∈ J) in O⊗, the morphism space O⊗(C,D) is given by⨿

α : I+→J+

∏
j∈ J

O({Ci}α(i)� j ,D j).

Composition is defined in the obvious way. This is the topological analogue
of [Lur16, Notation 2.1.1.22]. Note that O⊗ admits a functor to Fin∗. By the
process before, this induces a functor of∞-categories O⊗ → Fin∗.

Lemma 6.1.1. Let O be a topological coloured operad. Then the forgetful functor
p : O⊗ → Fin∗ defines an∞-operad. Moreover this construction is functorial in the
sense that it sends maps of topological coloured operads to maps of∞-operads.

Proof. Recall that a topological category is seen as an∞-category by applying
the singular functor on mapping spaces and then by applying the coherent
nerve functor to the resulting simplicial category. Since the singular functor
preserves products and sends every object to a fibrant one, it sends the topolog-
ical coloured operad O to a fibrant1 simplicial operad Os . Moreover by direct
inspection, the singular functor sends the topological category O⊗ defined
above to O⊗s as defined in [Lur16, Notation 2.1.1.22]. Applying the coherent
nerve to O⊗s → Fin∗ we obtain an ∞-operad by [Lur16, Proposition 2.1.1.27],
proving the first claim. A simple check shows that the formation of the topo-
logical categoryO⊗ is functorial in maps of topological operads. Applying the
singular functor and the coherent nerve then gives a functor of∞-categories
over Fin∗. Furthermore the cocartesian edges over inert edges are explicitly
constructed in the proof of [Lur16, Proposition 2.1.1.27], and the functor
constructed clearly preserves these edges.

6.1.2 Model categories and∞-categories

We will very often pass from model categories to∞-categories. Therefore we
explain and give references for this passage.
Let M be a model category with class of weak equivalences denoted by W .
We always assume that M has functorial factorizations. The model category
M presents an ∞-category which we denote by M[W−1]. We may define
M[W−1] as the Dwyer-Kan localization of N(M) at the weak equivalences
of M, i.e. as the initial ∞-category with a functor from M which inverts
the morphisms in W . Write M f , Mc , and M◦ for the full subcategories of
M spanned by the fibrant, cofibrant and bifibrant objects respectively. The
composite

N(M f ) → N(M) →M[W−1]
1Recall that a simplicial operad is fibrant if each multispace is a fibrant simplicial set, see

[Lur16, Definition 2.1.1.26].
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is a Dwyer-Kan localization at the restriction of W to M f , and similarly for
the case of cofibrant and bifibrant objects. See for example the discussion
in [Lur16, Remark 1.3.4.16].
IfM is a topological model category, then the enriched structure gives another
construction ofM[W−1]. In this case,M[W−1] is equivalent to the∞-category
associated to the topologically enriched category M◦ as in the previous sec-
tion, see [Lur16, Theorem 1.3.4.20]. Throughout our paper it will be necessary
to use all these different constructions of M[W−1].
We note that if the model categoryM is cofibrantly generated and the underly-
ing category is locally presentable, then M[W−1] is a presentable∞-category,
see [Lur16, Proposition 1.3.4.22]. Also we note that any Quillen adjunction
of model categories F : M0 ⇄ M1 :G induces an adjunction of underlying
∞-categories F : M0[W−1

0 ]⇄ M1[W−1
1 ] :G by [Hin16, Proposition 1.5.1].

Next we may consider symmetric monoidal model categories. By [Lur16,
Proposition 4.1.7.6], if M is a symmetric monoidal model category then the
∞-category M[W−1] admits a symmetric monoidal structure such that the lo-
calization functor Mc →M[W−1] is strong monoidal, and if F is a symmetric
monoidal left Quillen functor then F is again symmetric monoidal.
Once again we obtain a different construction of the symmetric monoidal
∞-category M[W−1] when M is topological. Namely one can first restrict to
bifibrant objects and then form the topological coloured operad N⊗(M)with
colors X ∈M◦ and multi-morphism spaces

MulN⊗(M◦)({X1 , . . . ,Xn},Y) � MapM◦(X1 ⊗ · · · ⊗ Xn ,Y).

This then gives an∞-operad by Lemma 6.1.1. By [Lur16, Proposition 4.1.7.10]
this is in fact a symmetric monoidal∞-category whose underlying∞-category
is equivalent to M[W−1]. Furthermore, by [Lur16, Corollary 4.1.7.16], these
two methods of obtaining a symmetric monoidal structure on M[W−1] are
equivalent.

6.1.3 Pointed categories

Many of the typical constructions one applies to model categories admit
an analogue internally to ∞-categories. Furthermore, in many cases these
constructions are not only analogous but in fact equivalent.
For example we may consider the formation of pointed objects. Given a model
categoryMwith final object ∗, we can equip the slice categoryM∗ � M∗/with
a model structure in which fibrations, cofibrations and weak equivalences are
detected by the forgetful functor M∗ → M, see [Hov99, Proposition 1.1.8].
If M is cofibrantly generated with set of generating cofibrations I and set of
generating acyclic cofibrations J, then M∗ is also cofibrantly generated by the
sets I+ and J+, see [Hov99, Lemma 2.1.21]. If M is symmetric monoidal with
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cofibrant unit given by ∗, then the slice categoryM∗with the smash product is
again a symmetric monoidal model category with cofibrant unit, see [Hov99,
Proposition 4.2.9].
Let us now discuss the same construction for ∞-categories. Given a pre-
sentable symmetric monoidal ∞-category (C , ⊗), we can endow the slice
C∗ � C∗/ with a symmetric monoidal structure ∧⊗ given as follows: for all
(∗ → C), (∗ → D) ∈ C∗, we define C ∧⊗ D by the following pushout in C:

C ⊗ ∗ ⊔ ∗ ⊗ D C ⊗ D

∗ ⊗ ∗ C ∧⊗ D.

⌟

The existence of such symmetric monoidal structure on C∗ is a formal conse-
quence of [Lur16, Proposition 4.8.2.11] as we now explain. Indeed the cited ref-
erence shows that the functor (−)∗ : PrL → PrL

∗ from presentable∞-categories
to pointed presentable ∞-categories is a smashing localization, so it induces
a functor on commutative algebras CAlg(PrL) → CAlg(PrL

∗ ) showing that
a symmetric monoidal structure on C∗ exists. Furthermore [Lur16, Propo-
sition 4.8.2.11] implies that this symmetric monoidal structure is uniquely
determined by the condition that the tensor product on C∗ commutes with
colimits on each variable and makes the functor (−)+ : C → C∗ into a symmet-
ric monoidal functor. From this one obtains the concrete description of ∧⊗ as
given above.

Example 6.1.2. Applying this construction to S with the cartesian product
returns S∗, the category of pointed spaces with the smash product. We write
S× for the∞-operad giving the former, and S∧∗ for the latter.

We now give a result that connects these two constructions.

Proposition 6.1.3. Let M be a symmetric monoidal model category with cofibrant
final object, which is also the monoidal unit. Suppose that the underlying∞-category
M[W−1] is presentable. Then the functor (−)+ : M → M∗ induces a symmetric
monoidal equivalence

(M[W−1])∗ ≃M∗[W−1].

Proof. First we note that the underlying ∞-category M∗[W−1] models the ∞-
categorical slice (M[W−1])∗, see for example [Cis19, Corollary 7.6.13]. Note
also that (−)+ : M →M∗ is left Quillen and strong monoidal, and therefore
we obtain a strong monoidal colimit preserving functor

(−)+ : M[W−1] →M∗[W−1]
which is equivalent to the standard left adjoint (−)+ under the equivalence
M∗[W−1] ≃ M[W−1]∗ by inspection. Also, M∗[W−1] is automatically pre-
sentable and closed monoidal. Now we can conclude the result, because there
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is a unique closed symmetric monoidal structure on M[W−1]∗ such that (−)+
is strong monoidal.

Next we consider the formation of module categories. Recall that given a
symmetric monoidal ∞-category C and a commutative algebra object S ∈
CAlg(C), the category of S-modules in C, ModS(C) is a symmetric monoidal
category via the relative tensor product, constructed in [Lur16, Section 4.5.2].
We will always consider ModS(C) as symmetric monoidal in this way.

Proposition 6.1.4. Let M be a symmetric monoidal and cofibrantly generated model
category with weak equivalences W , generating cofibrations I and generating acyclic
cofibrations J, and let A be a commutative algebra object in M whose underlying
object is cofibrant. Suppose that ModA(M) admits a symmetric monoidal and cofi-
brantly generated model structure where fibrations and weak equivalences are tested
on underlying objects, and the sets A ⊗ I and A ⊗ J form a set of generating cofibra-
tions and generating acyclic cofibrations respectively. Write Wm for the class of weak
equivalences in ModA(M). Then applying ModA to the functor Mc →M[W−1]
induces a symmetric monoidal equivalence

ModA(M)[W−1
m ] ≃ModA(M[W−1]).

Proof. This is essentially [Lur16, Theorem 4.3.3.17]. However since the state-
ment there does not literally apply, let us spell out the argument. We need to
show that there exists a symmetric monoidal equivalence

θ : N(ModA(M)c)[W−1
m ]

≃−→ModA(N(Mc)[W−1]).

We start by noting that the forgetful functor U : ModA(M) → M is left
Quillen. One can verify this by observing that U sends the generating (acyclic)
cofibrations to (acyclic) cofibrations, using that A is cofibrant and that M
satisfies the pushout-product axiom. Since a cofibrant A-module is then also
cofibrant in M, there exists a symmetric monoidal functor

N(ModA(M)c) → N(ModA(Mc)) ≃ModA(N(Mc)).

Postcomposing with the symmetric monoidal functor N(Mc) → N(Mc)[W−1]
and using the universal property of symmetric monoidal localization we ob-
tain a symmetric monoidal functor θ as claimed. To show that θ is an equiv-
alence, we apply [Lur16, Corollary 4.7.3.16] to the diagram

N(ModA(M)c)[W−1
m ] ModA(N(Mc)[W−1])

N(Mc)[W−1].

θ

U U′

We need to check:
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(a) The∞-categories N(ModA(M)c)[W−1
m ] and ModA(N(Mc)[W−1]) admit

geometric realization of simplicial objects. In fact, both categories admit
all colimits. For N(ModA(M)c)[W−1

m ] this is [BHH17, Theorem 2.5.9].
For ModA(N(Mc)[W−1]), we note that N(Mc)[W−1] admits all colimits
by the previous reference and that these can be calculated as homotopy
colimits in the model category by [BHH17, Remark 2.5.7]. Since A is
cofibrant, the functor A ⊗ − : M→M is left Quillen and so it induces
a colimit preserving functor N(Mc)[W−1] → N(Mc)[W−1] by [Hin16,
Proposition 1.5.1]. Finally, we can invoke [Lur16, Proposition 4.3.3.9] to
deduce the existence of all colimits in ModA(N(Mc)[W−1]).

(b) The functors U and U′ admits left adjoints F and F′. The existence of a
left adjoint to U follows from the fact that U is determined by a right
Quillen functor. The existence of a left adjoint to U′ follows from [Lur16,
Corollary 4.3.3.14].

(c) The functor U′ is conservative and preserves geometric realizations of
simplicial objects. This follows from [Lur16, Corollary 4.3.3.2, Proposi-
tion 4.3.3.9].

(d) The functor U is conservative and preserves geometric realizations of
simplicial objects. The first assertion is immediate from the definition of
the weak equivalences in ModA(M), and the second follows from the
fact that U is also a left Quillen functor.

(e) The natural map U′ ◦ F′ → U ◦ F is an equivalence. Unwinding the
definitions, we are reduced to proving that if N is a cofibrant object of
M, then the natural map N → A ⊗ N induces an equivalence F′(N) ≃
A ⊗ N . This follows from the explicit description of F′ given in [Lur16,
Corollary 4.3.3.13].

Remark 6.1.5. Suppose M is a symmetric monoidal cofibrantly generated
model category. If M is locally presentable, then the existence of the model
structure on ModA(M) as in Proposition 6.1.4 holds by [SS00, Remark 4.2].

6.2 PROMONOIDAL∞-CATEGORIES AND DAY CONVOLUTION

We start this section by recalling the notion of a promonoidal∞-category. We
recall the definition of the operadic norm functor and use this to define the
Day convolution product on a functor category. We then collecting various
important results about the Day convolution product which will be impor-
tant later. We finish the section by giving a symmetric monoidal recognition
criteria for presheaf categories, inspired by Elmendorf’s theorem.
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We start off by recalling the following useful notion from [AF20, Definition
0.7].

Definition 6.2.1. A functor p : C → B between∞-categories is an exponentiable
fibration if the pullback functor p∗ : Cat∞/B → Cat∞/C admits a right adjoint
p∗, which we call the pushforward.

Example 6.2.2. Both cocartesian and cartesian fibrations are exponentiable,
see [AF20, Lemma 2.15].

Example 6.2.3. Exponentiable fibrations are stable under pullbacks, see [AF20,
Corollary 1.17]

For any ∞-operad O⊗, we let O⊗act B O⊗ ×Fin∗ Fin ⊆ O⊗ denote the sub-
category of active arrows. We recall the following definition from [Sha21,
Definition 10.2].

Definition 6.2.4. Let O⊗ be an ∞-operad. A map of ∞-operads p : C⊗ → O⊗
defines aO⊗-promonoidal∞-category if the restricted functor pact : C⊗act → O⊗act
is exponentiable. A functor of O⊗-promonoidal∞-categories is simply a map
of O⊗-operads.

Example 6.2.5. Any O⊗-symmetric monoidal∞-category is O⊗-promonoidal
by Example 6.2.2.

Example 6.2.6. Let C be an ∞-category. Then the ∞-operad C⨿ → Fin∗ of
[Lur16, Construction 2.4.3.1] is a symmetric promonoidal∞-category. In fact

C⨿ ×Fin∗ Fin→ Fin

is the cartesian fibration which classifies the functor sending I to Fun(I , C).

Example 6.2.7. Consider a cartesian fibration p : C → I. Similarly to Exam-
ple 6.2.6, one can show that the induced map p⨿ : C⨿ → I⨿ exhibits C⨿ as a
I⨿-promonoidal∞-category.

The key property of promonoidal ∞-categories is that they induce operadic
norm functors.

Definition 6.2.8. Let p : C⊗ → O⊗ be a O⊗-promonoidal ∞-category. Then
the functor

p∗ : (Op∞)/O⊗ → (Op∞)/C⊗
has a right adjoint by [Sha21, Theorem/Construction 10.6], which we denote
by Np and call the norm along p. Note that p∗ also has a left adjoint p! which
is given by postcomposition with p.

The norm interacts well with pullbacks along maps of∞-operads.
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Lemma 6.2.9. Let p : C⊗ → O⊗ be aO⊗-promonoidal∞-category and let f : P⊗ →
O⊗ be a map of∞- operads. Write p′ : C⊗×O⊗ P⊗ → P⊗ and f ′ : C⊗×O⊗ P⊗ → O⊗
for the functors obtained via basechange. Then there is a natural equivalence of functors

f ∗Np ≃ Np′( f ′)∗ : (Op∞)/C⊗ → (Op∞)/P⊗ .

In other words, for every D⊗ ∈ (Op∞)/C⊗ there is an equivalence of ∞-operads over
P⊗

Np(D⊗) ×O⊗ P⊗ ≃ Np′(D⊗ ×O⊗ P⊗) .

Proof. To check that two right adjoint functors are equivalent it is enough to
check that the left adjoints are equivalent. But the left adjoint of f ∗ is just
postcomposition with f , so the thesis is equivalent to the fact that for every
E⊗ ∈ (Op∞)/P⊗ , there is a natural equivalence

E⊗ ×O⊗ C⊗ ≃ E⊗ ×P⊗ (P⊗ ×O⊗ C⊗)

and this is clear.

Remark 6.2.10. In a similar vein we observe that because q∗p∗ ≃ (pq)∗, also
Npq ≃ Np Nq .

Remark 6.2.11. Recall that passing to underlying∞-categories gives a functor
U : Op∞ → Cat∞ which admits a left adjoint F with essential image precisely
those∞-operads q : P⊗ → Fin∗ such that the functor q factors through Triv ⊆
Fin∗, see [Lur16, Proposition 2.1.4.11]. In particular for any∞-operad O⊗, we
obtain an adjunction on overcategories:

F : (Cat∞)/O → (Op∞)/O⊗ :U,

see [Lur09, Proposition 5.2.5.1] Let p : C⊗ → O⊗ be a O⊗-promonoidal ∞-
category; we will now describe the effect of Np on underlying ∞-categories.
Observe that the underlying map U(p) on ∞-categories is exponentiable,
as it can be described as the pullback of p along O ⊆ O⊗, compare with
Example 6.2.3. One can compute that the following diagram of left adjoints

(Op∞)/C⊗ (Op∞)/O⊗

(Cat∞)/C (Cat∞)/O

F

p∗

U(p)∗

F

commutes. Therefore the associated diagram of right adjoints

(Op∞)/C⊗ (Op∞)/O⊗

(Cat∞)/C (Cat∞)/O

U

Np

U(p)∗

U
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also commutes, and we conclude that on underlying categories Np is given
by the pushforward U(p)∗.

We can now define the Day convolution functor.

Definition 6.2.12. Let p : C⊗ → O⊗ be a O⊗-promonoidal ∞-category. The
Day convolution functor

FunO(C ,−)Da y : (Op∞)/O⊗ → (Op∞)/O⊗

is the right adjoint of the functor

p!p∗ � − ×O⊗ C⊗ : (Op∞)/O⊗ → (Op∞)/O⊗ .

This is a composite of right adjoints, and so we conclude that FunO(C ,−)Da y ≃
Np p∗(−). This also shows the existence of FunO(C ,−)Da y . When O � Fin∗, we
will omit it from the notation.

Remark 6.2.13. Recall that AlgC⊗ (D⊗) is defined to be the full subcategory of
Fun/Fin∗(C⊗ ,D⊗) spanned by the maps of operads, and that taking the maximal
sub ∞-groupoid of this category gives the mapping spaces Op∞(C⊗ ,D⊗).
Therefore we may view Alg(−)(−) as constituting an enrichment of Op∞ in
Cat∞. A standard argument shows that the adjunction equivalence

Op∞(P⊗ , Fun(J ⊗ , C⊗)Da y) ≃ Op∞(P⊗ ×Fin∗ J ⊗ , C⊗)

improves to an equivalence

AlgP⊗ (Fun(J ⊗ , C⊗)Da y) ≃ AlgP⊗×Fin∗J ⊗
(C⊗).

Example 6.2.14. Recall from Example 6.2.6 that for any ∞-category C, the
∞-operad C⨿ → Fin∗ is promonoidal. For every ∞-operad D⊗, the Day con-
volution ∞-operad Fun(C⨿ ,D⊗)Da y is equivalent to the pointwise operad
structure on Fun(C ,D). Indeed they corepresent the same functor by [Lur16,
Theorem 2.4.3.18].

The description of Day convolution combined with Remark 6.2.11 implies
that on underlying categories FunO(C⊗ ,−)Da y is given by U(p)∗U(p)∗. We can
describe the fibres of this category explicitly.

Construction 6.2.15. Let p : C → B be an exponentiable fibration of ∞-
categories and q : D → B any functor. Fix an arrow f : b0 → b1 in B and
let us write Cbi and Dbi for the fibres of p and q over bi . The unit of the adjunc-
tion (p∗ , p∗) gives a canonical functor p∗p∗D → B whose fibre over bi can be
identified with

(p∗p∗D)bi ≃ FunB({bi}, p∗p∗D) ≃ FunC(C ×B {bi}, C ×B D) ≃ Fun(Ci ,Di) .
(6.2.15.1)
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Remark 6.2.16. One should be careful to note that, if the underlying ∞-
category O of O⊗ is not contractible, then the underlying ∞-category of
FunO(C⊗ ,D⊗)Da y is not the same as the∞-category of functors overO. Rather,
it is a fibration over O whose global sections are Fun/O(C ,D). Compare also
with the previous construction.

We would like to have a formula for the multimapping spaces for the Day
convolution. We will achieve this in Lemma 6.2.25 below. In preparation for
this result, we compute the mapping spaces in a pushforward. To state the
result we recall the definition of twisted arrow ∞-categories, and the notion
of coends.

Definition 6.2.17. Let ϵ : ∆ → ∆ be the functor [n] 7→ [n]⋆ [n]op ≃ [2n + 1].
Let I be an∞-category. The twisted arrow∞-category Tw(I) is the associated
∞-category of the simplicial set ϵ∗NI. By definition, we have

Tw(I)n � Map(∆n ⋆ (∆n)op , I).

The natural transformations ∆• and (∆•)op → ∆• ⋆ (∆•)op induce a functor
(s , t) : Tw(I) → I × Iop.

Remark 6.2.18. There are two possible conventions for defining Tw(−). In this
paper we follow that of Lurie [Lur16, Section 5.2.1]. This is the opposite of the
convention used in [Bar17].

Example 6.2.19. The objects of Tw(I) are given by edges of I. An edge from
f : x → y to f ′ : x′→ y′ in Tw(I) is represented by a diagram

x x′

y y′
f f ′

Remark 6.2.20. The twisted arrow category is insensitive to taking opposites,
meaning that Tw(Iop) ≃ Tw(I). However under this equivalence (s , t) is sent
to (t , s).

Definition 6.2.21. Given a functor F : C × Cop → S , we define the coend∫ x∈C
F(x , x) to equal the colimit of the functor

Tw(C) (s ,t)−−−→ C × Cop F−→ S .

Dually for a functor F : Cop × C → C , we define the end
∫

x∈C F(x , x) to be the
limit of the functor

Tw(C)op (s ,t)
op

−−−−→ Cop × C F−→ S .
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We are now ready to state the formula for multimapping spaces in the Day
convolution.

Lemma 6.2.22. Suppose we are in the setting of Construction 6.2.15. Let Fi : Ci →
Di be two objects of (p∗p∗D)bi , viewed as such via the equivalence (6.2.15.1). Then
there is an equivalence

Map f
p∗p∗D(F0 , F1) ≃

∫
Map(Map f

C (x0 , x1),Map f
D(F0x0 , F1x1)) (6.2.22.1)

where the left hand side denotes the fibre over f : b0 → b1 of the canonical map
Mapp∗p∗D(F0 , F1) →MapB(b0 , b1).

Proof. Let us write f as a map ∆1 → B. Then, by the definition of p∗ there is
an equivalence

MapB(∆1 , p∗p∗D) ≃MapC(∆1 ×B C , C ×B D) ≃Map
∆1(∆1 ×B C ,∆1 ×B D) .

Therefore we have an equivalence

Map f
p∗p∗D(F0 , F1) ≃ {(F0 , F1)} ×MapB(∂∆1 ,p∗p∗D) MapB(∆1 , p∗p∗D)

≃ {(F0 , F1)} ×Map(C0 ,D0)×Map(C1 ,D1) Map
∆1(∆1 ×B C ,∆1 ×B D) .

Now from the proof of [AF20, Lemma 4.2] it follows that the map

Cat∞/∆1 → Cat∞ × Cat∞ [C → ∆1] 7→ (C ×∆1 {0}, C ×∆1 {1}) ,

is a right fibration classified by the functor Cat∞ ×Cat∞ → S sending (C0 , C1)
to Map(Cop

0 × C1 , S). Therefore

{(F0 , F1)} ×Map(C0 ,D0)×Map(C1 ,D1) Map
∆1(∆1 ×B C ,∆1 ×B D)

≃Map(F0 ,F1)
Cat∞/∆1

(∆1 ×B C ,∆1 ×B D)

≃Map(Cat∞/∆1 )(C0 ,C1)
(∆1 ×B C , (F0 , F1)∗(∆1 ×B D))

≃MapFun(Cop
0 ×C1 ,S)(Map f

C (−,−),Map f
D(F0−, F1−)) .

But this is exactly the thesis, thanks to [GHN17, Proposition 5.1].

Remark 6.2.23. In the setting of Lemma 6.2.22, suppose that q is equal to
the projection D × B → B and that D is cocomplete. Then we can interpret
formula 6.2.22.1 as saying that p∗p∗D is a cocartesian fibration and that given
f : i → j, the induced functor

f! : Fun(Ci ,D) → Fun(C j ,D)
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evaluated on a functor F : Ci → D gives the functor

C j → D, x j 7→
∫ xi∈Ci

MapCi j
(xi , x j) × F(xi),

where Ci j :� C ×B, f [1]. That is, f!F is computed by left Kan extending F along
the inclusion Ci ⊆ Ci j and then restricting to C j ⊆ Ci j . In particular, if Ci j → [1]
is a cartesian fibration we have f!F ≃ F ◦ f ∗ where f ∗ : C1 → C0 is the pullback.

Recall the following notion of multimapping spaces.

Definition 6.2.24. Let C⊗ → O⊗ be a map of∞-operads and let ϕ : {xi} → y
be an active morphism of O⊗ with target in O B (O⊗)1+ . For every {ci} ∈
(C⊗){xi} ≃

∏
i Cxi and d ∈ Cy , objects of C⊗ over the source and target of ϕ, we

define the ϕ-multimapping space in C⊗ as the space of morphisms {ci} → d
above ϕ:

MulϕC⊗ ({ci}, d) B MapC⊗ ({ci}, d) ×MapO⊗ ({xi},y) {ϕ} .

We say that C⊗ is representable if for every active morphism ϕ and objects {ci},
the functor

MulϕC⊗ ({ci},−) : C → S

is corepresentable. In this case we write
⊗

ϕ{ci} for the corepresenting object
and we call it the ϕ-tensor product of {ci}. This is equivalent to the functor
C⊗ → O⊗ being a locally cocartesian fibration.

We are ready to prove the formula for the multimapping spaces in the Day
convolution.

Lemma 6.2.25. Let O⊗ be an∞-operad, C⊗ be an O⊗-promonoidal∞-category and
D⊗ be an ∞-operad over O⊗. Then the multimapping spaces in FunO(C⊗ ,D⊗)Da y

are given by the following natural equivalence

MulϕFunO(C⊗ ,D⊗)Da y ({Fi},G) ≃
∫

c′∈Cy

∫
{ci}∈(

∏
i Cxi )op

Map
(
MulϕC ({ci}, c′),MulϕD({Fi ci},Gc′)

)
for all active morphisms ϕ : {xi} → y, and objects {Fi} ∈

∏
i Fun(Cxi ,Dxi ),

G ∈ Fun(Cy ,Dy).

Proof. We will use [Lur16, Proposition 2.2.6.6]. However the cited result has
the hypothesis that C⊗ is a O⊗-monoidal∞-category. We note that this is only
used to ensure the existence of the norm (after replacing the appeal to [Lur09,
Proposition 3.3.1.3] with [Lur16, Proposition B.3.14]). Therefore, in view of
[Sha21, Theorem-Construction 10.6] we can safely apply this result when C⊗
is only O⊗-promonoidal.
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Then, arguing as in the proof of [Lur16, Proposition 2.2.6.11], we obtain an
equivalence

MulϕFunO(C⊗ ,D⊗)Da y ({Fi},G) ≃ {(F,G)}×Fun/O⊗ (∂∆1×O⊗C⊗ ,D⊗)Fun/O⊗ (∆1×O⊗C⊗ ,D⊗)

where ∆1 → O⊗ picks out the active arrow ϕ and F : C⊗{xi} → D⊗{xi} is the
functor sending {ci} to {Fi ci}. Let Cact B C⊗×O⊗Oact andDact B D⊗×O⊗Oact

be the subcategories of active arrows. Since ∆1 → O⊗ factors through Oact ,
we have an equivalence

MulFun(C⊗ ,D⊗)Da y ({Fi}i∈I ,G) ≃ {(F,G)} ×Fun/Oact (∂∆1×Oact Cact ,Dact ) Fun/Oact (∆1 ×Fin Cact ,Dact)
≃Map(pact )∗(pact )∗Dact (F,G)

where the last equality makes sense since pact is an exponentiable fibration.
Therefore the thesis follows from Lemma 6.2.22.

Definition 6.2.26. We say that an O⊗-monoidal ∞-category D⊗ → O⊗ is
compatible with colimits if for every object x ∈ O the fibre Dx has all small
colimits, and if for every active arrow ϕ, the ϕ-tensor product commutes with
all small colimits separately in each variable (see [Lur16, Definition 3.1.1.18]
for a more precise formulation). If each fibre is moreover presentable, then
we say D⊗ is a presentably O⊗-monoidal∞-category.

Example 6.2.27. The underlying∞-category of a symmetric monoidal model
category is compatible with colimits as the tensor product is a left Quillen
bifunctor by the pushout-product axiom.

Remark 6.2.28. Recall that every cocomplete∞-category C is canonically ten-
sored over S. Namely for every X ∈ S and C ∈ C, we define X × C to equal
colim(constC : X → C), the colimit over X of the constant functor at C.

Corollary 6.2.29. Fix an ∞-operad O⊗. Let C⊗ be a small O⊗-promonoidal ∞-
category and let D⊗ be a O⊗-monoidal∞-category which is compatible with colimits.

(a) Then FunO(C⊗ ,D⊗)Da y is an O⊗-monoidal ∞-category which is again com-
patible with colimits.

Suppose furthermore that O⊗ ≃ Fin∗ is the commutative∞-operad.

(b) The unit of Fun(C⊗ ,D⊗)Da y is given by 1Da y B MulD(∅,−) × 1D, and the
tensor product is given by

(F ⊗Da y G)(−) ≃
∫ (c1 ,c2)∈C2

MulC({c1 , c2},−) × (F(c1) ⊗ G(c2)) .
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In particular, when D is the∞-category of spaces with the cartesian symmetric
monoidal structure, we have

MapC(x ,−) ⊗Da y MapC(y ,−) ≃MulC({x , y},−)

for every x , y ∈ C.

Proof. If D⊗ is O⊗-monoidal, it follows from the formula of Lemma 6.2.25 that
Fun(C⊗ ,D⊗)Da y is representable and that the ϕ-tensor product is given by⊗

ϕ

{Fi}i∈I ≃
∫ {ci}∈

∏
i∈I Coi

MulϕC⊗ ({ci}i∈I ,−) ×
⊗
ϕ

{Fi(ci)}i∈I .

This shows the existence of locally cartesian edges in Fun(C⊗ ,D⊗)Da y . Because
the tensor product functors in D⊗ commutes with colimits in each variable,
one can calculate that the composite of locally cartesian edges is locally carte-
sian, and therefore FunO(C⊗ ,D⊗)Da y is a O⊗-monoidal∞-category. The fibres
are clearly cocomplete, and from the formula for the tensor product it follows
that the tensor in Fun(C ,D)⊗ commutes with colimits in each variable.
Finally the statement for the tensor product of corepresentable functors fol-
lows from the formula above and the Yoneda lemma.

Notation 6.2.30. Suppose we are in the situation of the previous corollary,
and suppose that O⊗ ≃ Fin∗. In the case that both C⊗ and D⊗ are canonically
(pro)monoidal, then we write C−D for the symmetric monoidal category
given by the ∞-operad Fun(C⊗ ,D⊗)Da y . The two examples which will arise
constantly are C−S and C−S∗, where S is symmetric monoidal via the carte-
sian product, and S∗ via the smash product. Nevertheless when we refer to
the ∞-operad inducing the symmetric monoidal structure on C−D, we will
continue to write Fun(C⊗ ,D⊗)Da y . While this distinction is mathematically
meaningless, we find it notationally convenient.

We next turn to the functoriality of Day convolution.

Construction 6.2.31. Let O⊗ be an ∞-operad and suppose f : I⊗ → J ⊗ is a
map of O⊗-promonoidal∞-categories. Then for every two∞-operads C⊗ and
P⊗ over O⊗ we have a natural transformation

AlgP⊗/O⊗ (FunO⊗ (J ⊗ , C⊗)Da y) ≃ AlgP⊗×O⊗J ⊗ (C
⊗) → AlgP⊗×O⊗I⊗ (C

⊗) ≃ . . .
. . . ≃ AlgP⊗/O⊗ (FunO⊗ (I⊗ , C⊗)Da y) , (6.2.31.1)

given by precomposition along P⊗×O⊗ I⊗ → P⊗×O⊗ J ⊗. Since this is natural
in P⊗, it induces a map in (Op∞)/O⊗

f ∗ : FunO⊗ (J ⊗ , C⊗)Da y → FunO⊗ (I⊗ , C⊗)Da y .
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Definition 6.2.32. Consider C⊗ ,D⊗ ∈ (Op∞)/O⊗ . An operadic adjunction be-
tween C⊗ and D⊗ is a relative adjunction over O⊗ in the sense of [Lur16,
Definition 7.3.2.2] such that both functors are maps of∞-operads. This notion
is equivalent to an adjunction in the (∞, 2)-category of∞-operads, see [RV16,
Observation 4.3.2].

Remark 6.2.33. Note that if C⊗ andD⊗ are bothO⊗-monoidal then an operadic
left adjoint f : C⊗ → D⊗ is automaticallyO⊗-monoidal by [Lur16, Proposition
7.3.2.6].

Proposition 6.2.34. Let O⊗ be an ∞-operad and let f : I⊗ → J ⊗ a map of O⊗-
promonoidal ∞-categories. Suppose C⊗ is a presentably O⊗-monoidal ∞-category.
Let us consider the lax O⊗-monoidal functor

f ∗ : FunO⊗ (J ⊗ , C⊗)Da y → FunO⊗ (I⊗ , C⊗)Da y .

(a) Suppose that for every active arrow ϕ : {ti}i → t in O⊗ the natural map

( ft)! MulϕI ({xi}i ,−) →MulϕJ ({ fti xi}i ,−)

adjoint to
MulϕI ({xi}i ,−) →MulϕJ ({ fti xi}i , ft(−))

is an equivalence for every family of objects {xi}i . Then f ∗ has a left operadic
adjoint f! that is O⊗-monoidal;

(b) Suppose f has an operadic right adjoint g : J ⊗ → I⊗. Then there is a natural
equivalence of maps of ∞-operads f! ≃ g∗, and moreover this functor is O⊗-
monoidal.

Proof. We will use [Lur16, Proposition 7.3.2.11] applied to the functor f ∗ over
O⊗. Since on the fibre over ti ∈ O this is just given by precomposition by fti ,
the functor on the fibre over {ti}i∏

i

Fun(Jti , Cti ) →
∏

i

Fun(Iti , Cti )

has a left adjoint, given by the left Kan extension ( fti )! on every component.
In particular, this collection of left adjoints commutes with the pushforwards
along inert maps. So it suffices to show that this collection of left adjoints
commute with the pushforwards along active maps. Let ϕ : (ti)i → t be an
active map. Then we need to show that the map

( ft)!

( ϕ⊗
i

Fi

)
→

ϕ⊗
i

( fti )!Fi
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is an equivalence. But then this follows from our hypothesis together with the
description of Corollary 6.2.29.
Suppose now that f has an operadic right adjoint g. Since g∗ is an operadic
left adjoint to f ∗, it follows immediately that f! � g∗. So it remains only to
check the two final conditions. But we have

( ft)! MulϕI ({xi}i ,−) ≃MulϕI ({xi}i , gt−) ≃MulϕJ ({ fti xi}i ,−)
since g is an operadic right adjoint of f .

Remark 6.2.35. Note that if O⊗ � Fin∗ and I⊗ and J ⊗ are both symmetric
monoidal, then the conditions ensuring the symmetric monoidality of f! are
equivalent to f being a symmetric monoidal functor (since f! restricts to f
on representables). Thus the above proposition gives an alternative proof of
[BMS23, Proposition 3.6].

6.2.1 Symmetric monoidal structures on copresheaf categories

We finish this section by classifying all possible closed symmetric monoidal
structures on the copresheaf ∞-category Fun(I , S) in terms of symmetric
promonoidal structures on I, see Theorem 6.2.37.

Lemma 6.2.36. Let I be a small∞-category and let us suppose that the presheaf cat-
egory Fun(I , S) is equipped with a symmetric monoidal structure Fun(I , S)⊗ which
is compatible with colimits. Equip I with the full suboperad structure I⊗ induced by
the Yoneda embedding I ⊆ Fun(I , S)op. Then I⊗ is symmetric promonoidal.

Proof. For brevity let us write D⊗ � Fun(I , S)⊗. Recall from Definition 6.2.4
that I⊗ is promonoidal if the functor I⊗ → Fin∗ is exponentiable over Fin ≃
(Fin∗)act . By the characterization of exponentiablility in [AF20, Lemma 1.10.(c)],
we need to show that for every map f : I → J in Fin, every x ∈ I I and every
z ∈ I the map∫ y∈I J

MulI({y j} j∈ J , z) ×
∏
j∈ J

MulI({xi}i∈ f −1 j , y j) →MulI({xi}i∈I , z)

is an equivalence. Using that I ⊆ Dop is a full suboperad, this is equivalent to
asking that the map∫ y∈I J ∏

j∈ J

MapD(y j ,
⊗
i∈ f −1 j

xi) ×MapD(z ,
⊗

j∈ J

y j) →MapD(z ,
⊗

i∈I

xi)

is an equivalence of spaces. But since MapD(z ,−) commutes with all colimits
(as z ∈ I is tiny) it is enough to show that the map∫ y∈I J ©­«

∏
j∈ J

MapD(y j ,
⊗
i∈ f −1 j

xi)ª®¬ ⊗
⊗

j∈ J

y j →
⊗

i∈I

xi ,
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is an equivalence. Since the tensor product in D commutes with colimits in
each variable, we can bring all the colimits inside (using that Tw(I J) ≃ Tw(I)J).
We are reduced to proving that the map⊗

j∈ J

∫ y j∈C
MapD(y j ,

⊗
i∈ f −1 j

xi) ⊗ y j →
⊗

i∈I

xi

is an equivalence. But this follows from the fact that for any j ∈ J and w ∈ D,
the map ∫ y j∈C

Map(y j , w) × y j ≃ colim
y j∈C/w

y j → w

is an equivalence, which is just another form of the Yoneda lemma.

We are ready to prove our classification result.

Theorem 6.2.37. Let I be a small ∞-category and suppose Fun(I , S) is equipped
with a symmetric monoidal structure Fun(I , S)⊗ which is compatible with col-
imits. Equip I⊗ with the ∞-operad structure induced by the Yoneda embedding
I ⊆ Fun(I , S)op. Then I⊗ is symmetric promonoidal and the symmetric monoidal
structure on Fun(I , S) is equivalent to the one induced by Day convolution with the
symmetric promonoidal structure on I⊗.

Proof. It follows from Lemma 6.2.36 that I⊗ is symmetric promonoidal. Con-
sider the composite

I⊗ ×Fin∗ Fun(I , S)⊗ → (Fun(I , S)op)⊗ ×Fin∗ Fun(I , S)⊗ → S×

of lax symmetric monoidal functors, where the first functor is induced by the
Yoneda embedding and the second is the lax symmetric monoidal enhance-
ment of the mapping space functor constructed in [Gla16, Section 3]. By the
universal property of the Day convolution, we obtain a map of∞-operads

Fun(I , S)⊗ → Fun(I⊗ , S×)Day

which is the identity on underlying ∞-categories. Therefore to prove our
thesis it will suffice to show that this functor is symmetric monoidal. Since
Fun(I , S) is generated under colimits by the corepresentable functors and
both tensor products commute with colimits in each variable, it is enough to
check that the maps MulI(∅,−) ≃ 1→ 1Day and

MulI({x , y},−) ≃MapI(x ,−) ⊗MapI(y ,−) →MapI(x ,−) ⊗Day MapI(y ,−)

are equivalences for all x , y ∈ I. But this follows from Corollary 6.2.29.
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Recall that the ∞-category of pointed objects in a presentably symmetric
monoidal ∞-category is canonically symmetric monoidal. For later use we
also record how taking pointed objects in a category of diagram spaces inter-
acts with the Day convolution symmetric monoidal structure.

Proposition 6.2.38. Consider a small promonoidal∞-category I, and a presentably
symmetric monoidal∞-category C. There exists a symmetric monoidal equivalence

(I−C)∗ ≃ I−C∗

Proof. Consider the lax monoidal functor I−C → I−C∗ induced by the uni-
versal property of Day convolution by the composite

Fun(I⊗ , C⊗) ×Fin∗ I⊗ → C⊗
(−)+−−−→ (C∗)∧⊗ .

Because (−)+ is strong monoidal and colimit preserving, one calculates that
this functor is in fact strong monoidal. By [Lur16, Proposition 4.8.2.11] we
obtain an induced strong monoidal functor (I−C)∗ → I−C∗, which is easily
seen to be the identity on underlying categories.

6.2.2 A symmetric monoidal Elmendorf’s theorem

In this subsection we give a general ∞-categorical version of Elmendorf’s
theorem. We then enhance this to a symmetric monoidal equivalence.

Theorem 6.2.39 (Elmendorf). Let C be a cocomplete∞-category and let i : C0 → C
be the inclusion of a small full subcategory satisfying the following conditions:

(a) The objects of C0 are tiny: for all c ∈ C0, the functor MapC(c ,−) preserves
small colimits;

(b) The collection of objects {c0 ∈ C0} is jointly conservative: an arrow f in C is
an equivalence if and only if MapC(c0 , f ) is so for all c0 ∈ C0.

Then the restricted Yoneda functor induces an equivalence j : C ≃ P(C0) of ∞-
categories.

Proof. By the universal property of the category of presheaves [Lur09, Theo-
rem 5.1.5.6], there exists a colimit preserving functor L : P(C0) → C such that
L j0 ≃ i where j0 : C0 → P(C0) denotes the Yoneda embedding. By the adjoint
functor theorem [NRS20, Corollary 4.1.4], the functor L admits a right adjoint
R : C → P(C0)which is defined via the formula

Rc(c0) � MapC(L j0(c0), c) ≃MapC(i(c0), c)
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for all c ∈ C and c0 ∈ C0. Therefore R can be identified with the restricted
Yoneda functor j : C → P(C0). We note that the functor j preserves all small
colimits since for all c0 ∈ C0, the functor

MapC(c0 ,−) : C
j
−→ P(C0)

evc0−−−→ C0

does so by condition (a). As equivalences in P(C0) are detected pointwise, the
same argument as above using condition (b) then shows that j is conservative.
Note that the unit map η : 1 → jL is an equivalence on all objects in the
image of j0 as by construction jL j0 ≃ ji � j0. It follows that the unit map
is an equivalence on all objects as P(C0) is generated under colimits by the
representable functors and all the functors involved preserve colimits. Using
the triangle identities of the adjunction we then find that j(ϵ) is an equivalence
and so the counit map ϵ : L j → 1 is an equivalence by conservativity of j. Thus
j and L are inverse equivalences.

Example 6.2.40. Let G be a topological group and let GT be a convenient cat-
egory of G-spaces. There is a model structure on GT where a map f : X → Y
of G-spaces is a weak equivalence (resp., fibration) if f H : XH → YH is a weak
homotopy equivalence (resp., Serre fibration) for all closed subgroups H ≤ G,
see [Sch18, Proposition B.7]. Let SG denote the underlying∞-category of this
model category, which is cocomplete by [BHH17, Theorem 2.5.9]. Moreover
colimits in SG of projective cofibrant diagrams can be calculated as homotopy
colimits in GT by [BHH17, Remark 2.5.7]. Let OG ≤ SG be the full subcat-
egory of G-spaces spanned by the cosets G/H where H runs over all closed
subgroups of G. Note that G/H ∈ SG corepresents the H-fixed points functors
so the collection of cosets {G/H | H ≤ G} is jointly conservative by definition
of weak equivalences in GT . The fact that G/H ∈ SG is tiny then follows from
the fact that the H-fixed points functor commutes with all small homotopy
colimits [Sch18, Proposition B.1, (i) and (ii)]. Then the theorem above gives an
equivalence Oop

G −S ≃ SG. Therefore the previous theorem is a generalization
of the classical Elmendorf’s theorem [Elm83].

Under suitable assumptions we now enhance this to a symmetric monoidal
equivalence, where we endow the presheaf category with Day convolution
for a promonoidal structure on subcategory of tiny objects.

Corollary 6.2.41. Suppose we are in the setting of Theorem 6.2.39 and that further-
more the following holds:

(a) C admits a symmetric monoidal structure C⊗ which is compatible with colimits;

(b) C0 admits an∞-operad structure C⊗0 ;

(c) i : C0 → C lifts to a fully faithful functor of∞-operads i⊗ : C⊗0 → C⊗.
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Then C⊗0 is a symmetric promonoidal∞-category and the restricted Yoneda embedding
induces a symmetric monoidal equivalence P(C0)Da y ≃ C⊗.

Proof. By Theorem 6.2.39 there is a commutative diagram

C0 C

P(C0) .

i

j0 j
∼

We can equip P(C0) with a symmetric monoidal structure P(C0)⊗ induced
by C⊗ via j, and hence obtain a symmetric monoidal equivalence j⊗ : C⊗ →
P(C0)⊗. Combining this with condition (c) we obtain another commutative
diagram

C⊗0 C⊗

P(C0)⊗

i⊗

j⊗0 j⊗
∼

of ∞-operads. It is only left to note that by Theorem 6.2.37, the ∞-category
C⊗0 is symmetric promonoidal and that the symmetric monoidal structure on
P(C0)⊗ coincides with the Day convolution product.

6.3 PARTIALLY LAX LIMITS

In this section we recall the necessary background on (partially) lax (co)limits
and collect some important properties that we will use throughout the paper.
The main references for this material are [GHN17; Ber20].
The notion of a partially lax limit over an∞-category I is defined with refer-
ence to a collection of edges of I. To make this precise we make the following
definition.

Definition 6.3.1. A marked ∞-category is an ∞-category C along with a col-
lection of edges W ⊆ Map(∆1 , C) which contains all equivalences and which
is stable under homotopy and composition. Given two marked∞-categories C
and D, we write Fun†(C ,D) for the subcategory spanned by marked functors;
those functors that preserve marked edges. We write Cat†∞ for the∞-category
of marked∞-categories. For the existence see [Lur16, Construction 4.1.7.1].

Example 6.3.2. Let C be an∞-category.

(a) There is a maximal marking C♯ where all morphisms are marked;

(b) There is a minimal marking C♭ where only the equivalences are marked;
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(c) Given a (co)cartesian fibration p : C → I† over a marked ∞-category,
there is a marking Cp in which the (co)cartesian morphisms living over
marked edges are marked.

Partially lax limits in an ∞-category C are also defined with reference to a
cotensoring of C by Cat∞. For the purposes of this paper, this is nothing but
a functor [−,−] : Catop

∞ × C → C. The following examples are all naturally
cotensored over Cat∞.

Example 6.3.3. In the following I is an∞-category.

(a) Clearly Cat∞ is cotensored over itself with cotensor given by [I , C] �
Fun(I , C).

(b) The ∞-category Cat†∞ is cotensored over Cat∞ by considering [I , C†] �
Fun(I , C†), where we mark all those natural transformations whose
components are all marked in C†.

(c) The ∞-category of symmetric monoidal categories Cat⊗∞ is cotensored
over Cat∞ by endowing the ∞-category Fun(I , C) with the pointwise
symmetric monoidal structure q : Fun(I , C)⊗ → Fin∗ which is defined
as follows. If p : C⊗ → Fin∗ is the cocartesian fibration witnessing the
symmetric monoidal structure of C, then we construct the following
pullback

Fun(I , C)⊗ Fin∗

Fun(I , C⊗) Fun(I , Fin∗).

q

const
p∗

Note that by construction we have Fun(I , C)⊗⟨n⟩ ≃ Fun(I , C⊗⟨n⟩) for all
⟨n⟩ ∈ Fin∗. From this we immediately see that q satisfies the Segal
conditions. The map p∗ is a cocartesian fibration by the dual of [Lur09,
Proposition 3.1.2.1] and so by base-change [Lur09, Proposition 2.4.2.3] q
is too. Therefore q gives a symmetric monoidal structure on Fun(I , C).

(d) We can generalize the previous example as follows. LetO⊗ → Fin∗ be an
∞-operad. The ∞-category of ∞-operads Op∞ is cotensored over Cat∞
by endowing the ∞-category Fun(I ,O) with the pointwise operadic
structure induced by the map Fun(I ,O⊗) ×Fun(I ,Fin∗) Fin∗ → Fin∗.

Similarly partially lax colimits in C are defined with reference to a tensoring of
C by Cat∞. Once again, while more structured tensorings are typically useful,
for our purposes it suffices for this to be a functor (−) ⊗ (−) : Cat∞ × C → C.
The most important example will be Cat∞, for which the cartesian product
gives a tensoring.
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We now move on to the definition of partially lax (co)limits. For this we need
to recall some categorical constructions. Recall the following result.

Lemma 6.3.4 ([Lur16, Proposition 4.1.7.2]). The minimal functor (−)♭ : Cat∞ →
Cat†∞ admits a left adjoint denoted by | − |.

The∞-category |C† | is obtained from C by adjoining formal inverses to all the
marked morphisms, and so we call | − | the localization functor.

Example 6.3.5. Given a model category M, we may view it as a marked
∞-category by marking the weak equivalences in M. Then |M| ≃M[W−1].

Next we define marked slice categories.

Construction 6.3.6. Let C be an∞-category. There is a functor C/− : C → Cat∞
sending x ∈ C to the slice category C/x . This is obtained by straightening the
cocartesian fibration given by the target map t : Ar(C) B Fun(∆1 , C) → C.
One checks that a diagram

f0 g0

f1 g1

f g

is a t-cocartesian edge if the top horizontal arrow is an equivalence. If C† is
marked, then C†/x has an induced marking where a morphism is marked if
its image under the forgetful functor C†/x → C† is a marked morphism. It is
easy to see that this construction is functorial on x, and so we obtain a functor
C†/− : C → Cat†∞.

We are finally ready to introduce the notion of partially lax (co)limit. Recall
the definition of the twisted arrow∞-category from Definition 6.2.17.

Definition 6.3.7. Consider a functor F : I → C and choose a marking I†.

(a) If C is cotensored over Cat∞, then the partially lax limit of F is the limit
of the composite

Tw(I)op (s ,t)
op

−−−−→ Iop × I
|I†/− |×F
−−−−−→ Catop

∞ × C
[−,−]−−−→ C.

We abbreviate this by laxlim† F.

(b) If C is tensored over Cat∞, then the partially lax colimit of F is the colimit
of the composite

Tw(I) (s ,t)−−−→ I × Iop
F×|(Iop)†/− |−−−−−−−−→ C × Cat∞

−⊗−−−−→ C.

We abbreviate this by laxcolim† F.
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Remark 6.3.8. If we choose the minimal marking I♭, then we recover the
notion of lax (co)limit of [GHN17]. If we choose the maximal marking I ♯,
then we recover the usual notion of (co)limit, see [Ber20, Proposition 3.6].

In some cases we have a concrete description of the partial lax (co)limit.

Theorem 6.3.9 ([Ber20, Theorem 4.4]). Let I† be a small marked∞-category and
let F : I → Cat∞ be a functor. Consider the source of the (co)cartesian fibrations
Unct(F) → Iop and Unco(F) → I as marked via Example 6.3.2(c).

a) The partially lax limit of F is equivalent to the ∞-category of marked sections
of p : Unco(F) → I†. In other words we have

laxlim† F ≃ Fun†/I†(I
† ,Unco(F))

(b) The partially lax colimit of F is equivalent to the localization of Unct(F) at the
marked edges. In other words we have

laxcolim† F ≃ |Unct(F)|.

Remark 6.3.10. The previous result gives a more explicit description of the
partially lax limit of F. Recall that informally the Grothendieck construction
Unco(F) is the ∞-category whose objects are pairs (X, i) where i ∈ I and
X ∈ F(i). A morphism from (X, i) to (Y, j) is a pair (φ, f ) where f : i → j is a
morphism in I and φ : F( f )(X) → Y is a morphism in F( j). Then the previous
result informally implies that laxlim† F is equivalent to the∞-category whose
objects are coherent collections of objects (Xi ∈ F(i))i∈I together with maps
φ f : F( f )(Xi) → X j for every arrow f : i → j in I, such that the map φ f is an
equivalence whenever f is marked.

We record some useful properties of partially lax (co)limits.

Proposition 6.3.11. Let I† be a marked ∞-category and let F : I → Cat∞ be a
functor. Given any other∞-category C, we have an equivalence

Fun(laxcolim†
I

F, C) ≃ laxlim†
Iop

Fun(F(−), C).

Proof. The partially lax colimit of F : I → Cat∞ is by definition calculated via
the formula

laxcolim† F � colim
Tw(I)

F × |(Iop)†/− |

Postcomposing by the limit preserving functor Fun(−, C) : Catop
∞ → Cat∞, we

deduce that the∞-category Fun(laxcolim† F, C) is the limit of the diagram

Tw(I)op (s ,t)
op

−−−−→ Iop × I
(F,|(Iop)†/− |)

op

−−−−−−−−−−→ Catop
∞ × Catop

∞
−×−−−−→ Catop

∞
Fun(−,C)−−−−−−→ Cat∞

(6.3.11.1)
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By adjunction, we find that the composite of the final three functors is equiv-
alent to

Fun(−,−) ◦ (|(Iop)†/− |, Fun(F(−), C)) ◦ σ : Iop × I → Cat∞ ,

where σ is the symmetry isomorphism of the product. As indicated in Re-
mark 6.2.20, the following triangle commutes:

Tw(I)op Tw(Iop)op

Iop × I
(s ,t)op (t ,s)op

∼

These two observations allow us to rewrite Equation (6.3.11.1) and conclude
that Fun(laxcolim† F, C) is the limit of the functor

Tw(Iop)op (s ,t)
op

−−−−→ I × Iop
(|(Iop)†/− |,Fun(F(−),C))
−−−−−−−−−−−−−−−−→ Catop

∞ × Cat∞
Fun(−,−)−−−−−−→ Cat∞ ,

which is exactly the definition of the partially lax limit of Fun(F(−), C) : Iop →
Cat∞.

We finish this section by discussing how (partially) lax limits interact with
localizations. Later on we will use these results to pass from (partially) lax
limits of prespectra to that of spectra.

Lemma 6.3.12. Let I be an∞-category and let F : I → Cat∞ be a functor. Suppose
that for every i ∈ I we are given a reflexive subcategory Gi ⊆ Fi with left adjoint
Li : Fi → Gi. If for every arrow f : i → j of I, the pushforward functor f∗ : Fi → F j
sends Li-equivalences to L j-equivalences, then there is a functor G : I → Cat∞ and
a natural transformation L : F⇒ G whose i-th component is given by Li : Fi → Gi.
Furthermore, the functor

laxlim
I

L : laxlim
I

F→ laxlim
I

G

has a fully faithful right adjoint.

Proof. Let us consider the Grothendieck construction Unco(F) → I of F. This
is the cocartesian fibration classified by F under the unstraightening equiv-
alence, so in particular the fibre over i ∈ I can be canonically identified
with Fi. Let E ⊆ Unco(F) be the full subcategory spanned by the objects of
Gi ⊆ Unco(F) for all i ∈ I.
We claim that E → I is a cocartesian fibration whose cocartesian edges are
those that can be factored in Unco(F) as a cocartesian edge of Unco(F) followed
by a Li-equivalence in the fibre over i. More precisely if f : i → j is an arrow of
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I and x ∈ Gi, then the cocartesian lift of f starting from x is the composition
x → f∗x → L j( f∗x)where the first arrow is the cocartesian lift of f in Unco(F).
Indeed for every z ∈ G j, we have

Map f
E (x , z) ≃MapF j( f∗x , z) ≃MapG j(L j f∗x , z)

and so those edges are locally cocartesian. Furthermore it is easy to see
they are stable under composition (using the fact that L-equivalences are
stable under pushforward), therefore they are cocartesian arrows by [Lur09,
Lemma 2.4.2.7].
The inclusion ι : E ⊆ Unco(F) has a relative left adjoint which is a map of
cocartesian fibrations by [Lur16, Proposition 7.3.2.11]. Therefore there is a
functor G : I → Cat∞ and a natural transformation L : F⇒ G such that E can
be identified with Unco(G) in such a way that the induced map L : Unco(F) →
Unco(G) agrees with Li : Fi → Gi on each fibre.
Finally by Theorem 6.3.9 the lax limit of F and G are computed by the ∞-
categories of sections of the respective cocartesian fibrations and laxlimI L is
given by postcomposition with L. Therefore postcomposition with ι gives a
fully faithful right adjoint to laxlimI L.

Lemma 6.3.13. Suppose we are in the situation of Lemma 6.3.12, and suppose I is
equipped with a marking I† such that for every marked edge f : i → j the pushforward
functor f∗ : Fi → F j sends Gi into G j. Then the functor

laxlim
I†

L : laxlim
I†

F→ laxlim
I†

G

has a fully faithful right adjoint. In particular laxlimI† L is a localization functor.

Proof. It suffices to show that the right adjoint of Lemma 6.3.12 restricts to a
functor from laxlimI† G to laxlimI† F. Recall that the partially lax limit can be
calculated as the subcategory of sections spanned by those sending marked
edges to cocartesian arrows. Thus, we ought to show that the right adjoint
preserves cocartesian arrows lying over marked edges. But the right adjoint
is given by postcomposing a section with the inclusion Unco(G) → Unco(F),
and so by the description of cocartesian edges given in Lemma 6.3.12 and by
our hypothesis, it sends cocartesian arrows over marked edges to cocartesian
arrows (here we are implicitly using that an Li-equivalence between objects
of Gi is automatically an equivalence in Fi and so in particular a cocartesian
arrow).

For later reference we record the following corollary of Lemma 6.3.12.

Corollary 6.3.14. Let I be an ∞-category and let F : I → Cat∞ be a functor.
Suppose that for every i ∈ I, we are given a reflexive subcategory Gi ⊆ Fi with left
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adjoint Li : Fi → Gi which is compatible with the symmetric monoidal structure in
the sense of [Lur16, Definition 2.2.1.6]. Suppose furthermore that for every arrow
f : i → j in I, the pushforward functor f∗ : Fi → F j sends Li-equivalences to L j-
equivalences. Then there exists a functor G : I → Cat⊗∞ and a symmetric monoidal
natural transformation L : F⇒ G whose ith component is given by Li : Fi → Gi.

Proof. Since Cat⊗∞ embeds as a subcategory of Fun(Fin∗ ,Cat∞)we can consider
the functor F̃ : Fin∗ × I → Cat∞ induced by F, so that F̃(A+ , i) ≃ (Fi)A (the
fibre over A of Fi → Fin∗). If we let G̃(A+ , i) � (Gi)A ⊆ F̃(A+ , i), we can apply
Lemma 6.3.12 to F̃. To see that the pushforwards respect local equivalences,
it suffices to prove this separately for maps of the form (σ, id) and (id, f )
in Fin∗ × I. However both of these cases are ensured by our assumptions.
Therefore there exists a functor

G̃ : Fin∗ × I → Cat∞

and a natural transformation L̃ : F̃ ⇒ G̃ as desired. By construction G̃ satis-
fies the Segal conditions, and so it induces a functor G : I → Cat⊗∞ with a
symmetric monoidal natural transformation L : F⇒ G as desired.

6.4 PARTIALLY LAX LIMITS OF SYMMETRIC MONOIDAL
∞-CATEGORIES

Recall that Op∞ is canonically cotensored over Cat∞ by Example 6.3.3. There-
fore we immediately obtain a definition of partially lax limits of diagrams in
Op∞. In this section we will collect some important properties of partially
lax limits of symmetric monoidal ∞-categories and ∞-operads. In particular
the calculations of Proposition 6.4.8, and Theorem 6.4.10 are used repeatedly
in part two. The first is analogous to the calculation of the (partially) lax
limit of a diagram of ∞-categories, and as such it is stated in terms of an
unstraightening equivalence for symmetric monoidal categories, which we
recall in Proposition 6.4.5.

Remark 6.4.1. If P⊗ is another ∞-operad, it follows from the definition and
[Lur16, Remark 2.1.3.4] that there is a natural equivalence

AlgP⊗ (laxlim
i∈I

O⊗i ) ≃ laxlim
i∈I

AlgP⊗ (O⊗) .

Such a natural equivalence then also uniquely determines the lax limit. Since
Cat⊗∞ ⊆ Op∞ is a subcategory closed under limits and cotensoring, it is also
closed under partially lax limits. In particular we conclude that for every
family of symmetric monoidal∞-categoriesC• and every symmetric monoidal
∞-category D, there is a natural equivalence

Fun⊗(D, laxlim
i∈I

Ci) ≃ laxlim
i∈I

Fun⊗(D, Ci) .
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We note that the underlying ∞-category functor U : Op∞ → Cat∞ preserves
limits and commutes with cotensoring, and therefore preserves partially lax
limits. Therefore the previous construction equips the partially lax limit of
a family of symmetric monoidal ∞-categories with a canonical symmetric
monoidal structure, which satisfies the expected universal property.

Remark 6.4.2. Note that there is always a canonical map laxlim†O⊗i →
laxlimO⊗i . This functor is induced on limits by a natural transformation which
is pointwise given by the inclusion of a fully faithful suboperad. Therefore
we conclude that the partially lax limit is always a fully faithful suboperad of
the lax limit. In practice this means that we can determine which suboperad
by considering the induced map on underlying categories.

In the second part of the paper we will build diagrams of symmetric monoidal
∞-categories indexed on Gloop. Central to our constructions of these diagrams
is an operadic variant of straightening/unstraightening, which we will recall
now.

Notation 6.4.3. Recall from [Lur16, p. 2.4.3.5] that for every ∞-category I
there is a functor of ∞-operads c : I × Fin∗ → I⨿ sending (x ,A+) to the
constant family {x}a∈A ∈ I⨿A+

.

Construction 6.4.4. Let I be an ∞-category and let C⊗ be an I⨿-monoidal
∞-category. Then the commutative diagram of cocartesian fibrations

C⊗ ×I⨿ (I × Fin∗) I × Fin∗

I

pr2

prI pr1

is classified by a functor C• : I → (Cat∞)/Fin∗ which lands in Cat⊗∞. We refer
to C• as the family of symmetric monoidal∞-categories classifying C⊗.

Proposition 6.4.5. The previous construction furnishes an equivalence between the
∞-category of I⨿-monoidal categories and Fun(I ,Cat⊗∞).

Proof. This is [DG22, Corollary A.12].

Definition 6.4.6. Consider a map of ∞-operads p : O⊗ → I⨿. Any object
i ∈ I induces a functor

{i} × Fin∗ ↪→ I × Fin∗
c−→ I⨿ ,

see Notation 6.4.3. Equivalently, the map above can be obtained by applying
(−)⨿ to the map ∆0 → I defined by i ∈ I. Inspired by the equivalence of
Proposition 6.4.5 we will refer to the pullback O⊗ ×I⨿ Fin∗ as the operadic fibre
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of p at i ∈ I. If p is an I⨿-monoidal∞-category, then its operadic fibre at i is a
symmetric monoidal∞-category, and corresponds to the value of the functor
C• at i.

The following example will be crucial for later applications.

Example 6.4.7. Let p : C⊗ → I⨿ be a I⨿-promonoidal ∞-category and let
D⊗ → I⨿ be a map of ∞-operads which is compatible with colimits. Then
the operadic fibre of the Day convolution FunI(C⊗ ,D⊗)Da y over i ∈ I is given
by the symmetric monoidal∞-category Ci−Di , where Ci ,Di are the operadic
fibres over i of C⊗ and D⊗ respectively. To see this, first recall that Ci−Di
is defined to be Fun(Ci ,Di) with the Day convolution symmetric monoidal
structure. Then the claim follows from the following computation using
Lemma 6.2.9

(Np p∗D⊗) ×I⨿ Fin∗ ≃ Npi (p∗D⊗ ×C⊗ C⊗i ) ≃ Npi p
∗
iD
⊗
i � Ci−Di .

Recall that the lax limit of a diagram of∞-categories was calculated by taking
sections of the associated cocartesian fibration. Similarly, we can describe the
lax limit of C• in terms of (suitable) sections of the∞-operad C⊗.

Proposition 6.4.8. Let C⊗ → I⨿ be a I⨿-monoidal ∞-category, and denote by
C• : I → Cat⊗∞ the associated diagram of symmetric monoidal ∞-categories. Then
there is a natural equivalence of symmetric monoidal∞-categories

laxlim C• ≃ NI⨿C⊗

where the right hand side is the norm along I⨿ → Fin∗, which is well defined by
Example 6.2.6.

Proof. We will show that the right hand side has the universal property of
the lax limit. By the universal property of the norm, for any∞-operad P⊗ we
have an equivalence

AlgP⊗ (NI⨿C⊗) ≃ AlgP⊗×Fin∗I⨿/I⨿(C
⊗) .

By [Lur16, Theorem 2.4.3.18], we can write

AlgP⊗×Fin∗I⨿/I⨿(C
⊗) ≃ AlgP⊗×Fin∗I⨿

(C⊗) ×AlgP⊗×Fin∗I⨿
(I⨿) {pr2}

≃ Fun(I ,AlgP⊗ (C⊗)) ×Fun(I ,AlgP⊗ (I⨿)) {pr2} .

where pr2 : P⊗×Fin∗ I⨿ → I⨿ is the projection. In other words, we have shown
that AlgP⊗ (NI⨿C⊗) is the∞-category of sections of the functor

AlgP⊗ (C⊗) ×AlgP⊗ (I⨿) I → I

which is exactly the cocartesian fibration classified by i 7→ AlgP⊗ (C⊗i ). Our
thesis then follows from Theorem 6.3.9.
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Remark 6.4.9. Let p : C⊗ → I⨿ be an I⨿-monoidal ∞-category, and write
C• : I → Cat⊗∞ for the associated diagram of symmetric monoidal∞-categories.
Then by the discussion in Remark 6.2.11, the underlying category of NI⨿C⊗ is
given by Fun/I(I , C). Therefore the proposition above is an operadic analogue
of Theorem 6.3.9(b). Since we know that the partially lax limit of a diagram
of∞-operads is a fully faithful suboperad of the lax limit, the previous result
also allows us to calculate the partially lax limit of C•. Namely it is the fully
faithful symmetric monoidal subcategory of NI⨿C⊗ determined by the fully
faithful subcategory laxlim† C• ⊂ laxlim C•.

We finish this section by proving that the formation of (partially) lax limits of
symmetric monoidal categories commutes with taking modules, in a precise
sense. This will be a key observation for the second part of the paper, and
crucially uses the equivalence NI⨿C⊗ ≃ laxlim C•.

Theorem 6.4.10. Let C⊗ → I⨿ be a I⨿-monoidal∞-category which is compatible
with colimits, and write C• : I → Cat⊗∞ for the associated diagram of symmetric
monoidal ∞-categories. Let S ∈ CAlg(laxlim C•) be an algebra in the lax limit,
which corresponds to a (partially lax) family of algebras Si ∈ Ci . Then there is a
functor

ModS•(C•) : I → Cat⊗∞ , i 7→ModSi (Ci)
and an equivalence of symmetric monoidal∞-categories

laxlim ModS•(C•) ≃ModS(laxlim C•) .

Moreover, there is a natural transformation C• → ModS•(C•) sending x ∈ Ci to the
free Si-module Si ⊗ x, which induces the functor S ⊗ − on the lax limit.

The proof of the previous result will require some preparation and some
results from the following section. For this reason we recommend the reader
to skip this part on a first reading.
We start our journey by studying how the lax limit interacts with the tensor
product of algebras.

Construction 6.4.11. By [Lur16, Proposition 3.2.4.6] there is an equivalence
of ∞-operads I⨿ ⊗BV Fin∗ ≃ I⨿, where ⊗BV is the Boardmann-Vogt tensor
product, and so there exists a unique bifunctor of∞-operads I⨿ ×Fin∗ → I⨿.
For any∞-operad O⊗ we obtain a bifunctor of∞-operads mO, which is given
by the composition

I⨿ ×O⊗ → I⨿ × Fin∗ → I⨿ .

Thus, for every map of ∞-operad C⊗ → I⨿ [Lur16, Construction 3.2.4.1]
produces a map of∞-operads

AlgO⊗/I⨿(C)⊗ → I⨿
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whose operadic fibre over i ∈ I is given by AlgO⊗ (Ci)⊗. Suppose that C⊗ is a
I⨿-monoidal category. Then by [Lur16, Proposition 3.2.4.3.(3)] AlgO⊗ (Ci)⊗ is
also a I⨿-monoidal∞-category. In this case, Proposition 6.4.5 gives a functor
I → Cat⊗∞ sending i ∈ I to AlgO⊗ (Ci)⊗. We will now compute the lax limit of
this functor.

Lemma 6.4.12. Let I be an∞-category, C⊗ → I⨿ a map of∞-operads and O⊗ an
∞-operad. Then there is a natural equivalence of∞-operads

AlgO⊗ (NI⨿C⊗)⊗ ≃ NI⨿ AlgO⊗/I⨿(C)⊗ .

In particular if C⊗ is I⨿-symmetric monoidal we have a natural equivalence of
∞-operads

AlgO⊗ (laxlim
i∈I

Ci)⊗ ≃ laxlim
i∈I

AlgO(Ci)⊗ .

Proof. We will prove that both sides represent the same functor in the ∞-
category of∞-operads. Let P⊗ an∞-operad. Then

AlgP⊗ NI⨿ AlgO⊗/I⨿ C
⊗ ≃ AlgP⊗×Fin∗I⨿/I⨿

(
AlgO⊗ (C)⊗ ×AlgO⊗ (I)⊗ I

⨿
)

≃ AlgP⊗×Fin∗I⨿/AlgO⊗ (I)⊗
(AlgO⊗ (C)⊗)

≃ AlgP⊗×Fin∗I⨿
(AlgO⊗ (C)⊗) ×AlgP⊗×Fin∗I⨿

(AlgO⊗ (I)⊗) {pr2}

≃ Alg(P⊗⊗BVO⊗)×Fin∗I⨿
(C⊗) ×Alg(P⊗⊗BVO⊗)×Fin∗I⨿

(I⨿) {pr2}

≃ Alg(P⊗⊗BVO⊗)×Fin∗I⨿/I⨿(C)
⊗

≃ AlgP⊗
(
AlgO⊗ (NI⨿C)⊗

)
.

Here ⊗BV denotes the Boardman-Vogt tensor product of ∞-operads con-
structed in [Lur16, Section 2.2.5].

We are ready to prove the main result of this section.

Proof of Theorem 6.4.10. Note that by the definition of the norm we have an
equivalence

CAlg(NI⨿C⊗) ≃ AlgI⨿/I⨿(C⊗) ≃ AlgI⨿(AlgFin∗/I⨿(C)
⊗)

therefore we can also consider S as a section of AlgFin∗/I⨿(C)
⊗ → I⨿ in Op∞.

By Theorem 6.5.10 and Lemma 6.4.12 there is an equivalence

ModS(NI⨿C⊗)⊗ ≃ AlgCM(NI⨿C)⊗ ×CAlg(NI⨿C)⊗ Fin∗

≃ NI⨿
(
AlgCM/I⨿(C)⊗ ×AlgFin∗/I⨿ (C)

⊗ I⨿
)



CHAPTER 6. PARTIALLY LAX LIMITS, . . . , DAY CONVOLUTION 110

where I⨿ → AlgFin∗/I⨿(C)
⊗ is the section corresponding to S. Moreover note

that by Lemma 6.5.9

AlgCM/I⨿(C)⊗ ×AlgFin∗/I⨿ (C)
⊗ I⨿ → I⨿

is an I⨿-monoidal ∞-category. Then Theorem 6.5.10 shows that the corre-
sponding family of symmetric monoidal∞-categories is exactly

i 7→ModSi (Ci) ,

and so our thesis follows from Proposition 6.4.8.
Finally let us construct the symmetric monoidal functor C⊗i → ModSi (Ci)⊗.
There is a map of I⨿-monoidal∞-categories

AlgCM⊗/I⨿(C)⊗ → AlgFin∗/I⨿(C)
⊗ ×I⨿ C⊗

induced by the map of ∞-operads Fin∗ ⊞ Triv⊗ → CM⊗ picking the algebra
and the underlying object of the module. By [Lur16, Corollary 4.2.4.4] this has
a left adjoint on every fibre which is compatible with the pushforwards by
[Lur16, Corollary 4.2.4.8], and so by [Lur16, Corollary 7.3.2.12] it has a relative
left adjoint F which is an I⨿-monoidal functor. Then the functor we want is
the composite

C⊗
(S,id)−−−−→ AlgFin∗/I⨿(C)

⊗ ×I⨿ C⊗
F−→ AlgCM⊗/I⨿(C)⊗ .

This induces the desired functor on the lax limit since applying NI⨿ preserve
operadic adjunctions.

6.5 TENSOR PRODUCT OF MODULES IN AN∞-CATEGORY

The goal of this section is to provide a proof of Theorem 6.5.10 below, which
will be useful when studying lax limits of∞-categories of modules. This sec-
tion uses some technical results about the theory of∞-operads as developed
in [Lur16] and so it should be skipped on a first reading.

Definition 6.5.1. We define CM⊗ to be the ∞-operad corresponding to the
symmetric multicategory with two objects a and m with

Mul({xi}, a) �
{
∗ if ∀i , xi � a
∅ otherwise

Mul({xi},m) �
{
∗ if |{i | xi � m}| � 1
∅ otherwise.

We know by [Gla14, Proposition 7] or [Hin15, Lemma B.1.1] that for every
∞-operad C⊗ there is a natural equivalence of∞-categories

ModFin∗(C) ≃ AlgCM⊗ (C) .
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Our goal is to give a similar description of the tensor product of modules over
a commutative algebra, that is of the family of∞-operads Mod(C)⊗. In order
to do so we will introduce a variant of CM⊗ which parametrizes finite sets of
modules.

Construction 6.5.2. Let C̃M
⊗

be the category whose objects consist of triples
(⟨n⟩, ⟨m⟩, {Si}i�1,...,n), where ⟨n⟩, ⟨m⟩ ∈ Fin∗ and {Si} is a family of pairwise
disjoint subsets of ⟨m⟩. A map (⟨n⟩, ⟨m⟩, {Si}) → (⟨n′⟩, ⟨m′⟩, {S′i}) is a pair of
maps f : ⟨n⟩ → ⟨n′⟩ and g : ⟨m⟩ → ⟨m′⟩ in Fin∗ such that

• for every i ∈ ⟨n⟩◦, we have g(Si) ⊆ S′f (i) ∪ {∗} (where S′∗ � ∅)

• for every i ∈ f −1⟨n′⟩◦ and every s′ ∈ S′f (i) there is exactly one s ∈ Si

such that g(s) � s′.

Lemma 6.5.3. The projection C̃M
⊗ → Fin∗ × Fin∗ that forgets the subsets {Si} is

a Fin∗-family of ∞-operads in the sense of [Lur16, Definition 2.3.2.10], with inert
arrows exactly those arrows that are sent to an equivalence by the first projection and
to an inert arrow by the second projection.

Proof. The inert arrows are the arrows

(id⟨n⟩ , f ) : (⟨n⟩, ⟨m⟩, {Si}) → (⟨n⟩, ⟨m′⟩, { f (Si) ∩ ⟨m′⟩◦})

where f : ⟨m⟩ → ⟨m′⟩ is an inert arrow in Fin∗. It is easy to check that they
satisfy all necessary properties.

Notation 6.5.4. For every∞-category X → Fin∗ with a functor to Fin∗ we will
write C̃M

⊗
X for the X-family of ∞-operads X ×Fin∗ C̃M

⊗
, where we pullback

along the composite

C̃M
⊗ → Fin∗ × Fin∗

pr1−−→ Fin∗.

Note that C̃M
⊗
⟨1⟩ is equivalent to CM⊗. Intuitively the fibre C̃M

⊗
⟨n⟩ is the ∞-

operad controlling pairs (A, {Mi}) where A is a commutative algebra and
{Mi} is an n-tuple of A-modules.
Write an for the object (⟨n⟩, ⟨1⟩, {∅}) and m j,n for the object (⟨n⟩, ⟨1⟩, {Si})
where Si � ∅ for i , j and S j � {1}. It’s easy to see these are all the objects of
the underlying category of the generalized operad

C̃M
⊗ → Fin∗ × Fin∗

pr2−−→ Fin∗

First we will prove a generalization of [Gla14, Proposition 7] that shows how
C̃M

⊗
controls the tensor product of modules over commutative algebras.
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Proposition 6.5.5. Let X ∈ (Cat∞)/Fin∗ be an ∞-category over Fin∗ and let C⊗ ∈
Op∞ be an∞-operad. Then there is a natural equivalence

AlgC̃MX
(C⊗) ≃ Fun/Fin∗(X,ModFin∗(C)⊗).

Proof. Let K ⊆ Ar(Fin∗) be the full subcategory of semi-inert arrows [Lur16,
Notation 3.3.2.1]. Consider the pullback

X ×Fin∗ K X

K Fin∗

Fin∗.

s

t

We will say that an arrow ( f , g) in X ×Fin∗ K is inert if f is an equivalence and
t(g) is an inert edge of Fin∗(this is different from the convention in [Lur16],
but it is more suited to the current proof). Then recall that by [Lur16, Con-
struction 3.3.3.1] the∞-category Mod(C)⊗ is defined so that there is a natural
fully faithful inclusion

Fun/Fin∗(X,ModFin∗(C)⊗) → Fun/Fin∗(X ×Fin∗ K, C⊗),

where X×Fin∗K lives over Fin∗ by the vertical composite in the diagram above,
with essential image those functors sending inert arrows of X ×Fin∗ K to inert
arrows.
There is a functor K → C̃M sending a semi-inert arrow [s : ⟨n⟩ → ⟨m⟩] to
(⟨n⟩, ⟨m⟩, {{s(i)} ∩ ⟨m⟩◦}i). It identifies K with the full subcategory of C̃M
spanned by those triples (⟨n⟩, ⟨m⟩, {Si}) where |Si | ≤ 1 for every i ∈ ⟨n⟩◦.
Moreover an arrow in X×Fin∗ K is inert if and only if its image in C̃MX is inert.
Therefore restricting along this inclusion induces a natural transformation

AlgC̃MX
(C⊗) → Fun/Fin∗(X,ModFin∗(C)⊗) .

Our goal now is to prove this is an equivalence of∞-categories. This follows
from [Lur09, Proposition 4.3.2.15] together with the following two statements,
where we write p : C⊗ → Fin∗ for the structure map of C⊗:

1. Every map F : X ×Fin∗ K→ C⊗ over Fin∗ that sends inert arrows to inert
arrows admits a right p-Kan extension to C̃MX that sends inert arrows
to inert arrows;

2. A functor F : C̃MX → C⊗ which sends inert arrows to inert arrows is
the right p-Kan extension of its restriction to X ×Fin∗ K.
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Let (x , ⟨m⟩, {Si}) be an object of C̃MX and write S �
⨿

i Si ⊆ ⟨m⟩◦. Let us
consider the functor

P(S)op → C̃MX

sending a subset A ⊆ S to (x , ⟨m⟩/(S ∖ A), {A ∩ Si}) and all arrows to inert
arrows. This induces a functor

P(S)op → (C̃MX)(x ,⟨m⟩,{Si})/ ,

which sends A to the inert morphism collapsing all elements of S not in A to
the basepoint. If we let Q(S) ⊆ P(S) be the subposet of those elements A such
that |A ∩ Si | ≤ 1 for every i we obtain a functor

Q(S)op → (X ×Fin∗ K)(x ,⟨m⟩,{Si})/

to the comma category, which has a right adjoint given by

[
( f , g) : (x , ⟨m⟩, {Si}) → (x′, ⟨m′⟩, {S′i})

]
7→ g−1

(⨿
i

S′i

)
∩ S ,

and therefore is coinitial. Thus, by [Lur09, Proposition 4.3.1.7] and [Lur09,
Lemma 4.3.2.13] it suffices to show the following two conditions

1. Let F : X ×Fin∗ K → C⊗ sending inert arrows to inert arrows, then the
composition

Q(S)op → X ×Fin∗ K→ C⊗

has a p-limit diagram sending all edges to inert edges.

2. Let F : C̃MX → C⊗ sending inert arrows to inert arrows, then the
composition

(Q(S)op)◁ → P(S)op → C̃MX → C⊗

is a p-limit diagram, where the first functor sends the cone point to
S ⊆ S.

Both of them are now an immediate consequence of the characterization of
p-limit diagrams in terms of mapping spaces [Lur09, Remark 4.3.1.2] and the
definition of∞-operads.

Now we will identify the inert and cocartesian arrows of ModFin∗(C)⊗ in terms
of the model of Proposition 6.5.5.

Construction 6.5.6 (Bar construction). There is a functor

B : (∆op)▷ → C̃M
⊗
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sending [n] to (⟨2⟩,Hom∆([n], [1])+ , {{r0}, {r1}}) where ri is the constant
arrow at i, and the point at ∞ to m1,1 � (⟨1⟩, ⟨1⟩, {1}). Concretely this sends
[n] to the object (m2,1 , a , . . . , a ,m2,2) in the fibre over ⟨n + 2⟩ of the∞-operad
C̃M

⊗
⟨2⟩ (and so it encodes the bar construction in C̃M

⊗
⟨2⟩).

Lemma 6.5.7. Let e : ∆1 → ModFin∗(C)⊗ be an arrow, and let e0 : ⟨n⟩ → ⟨n′⟩ be
the image of e in Fin∗. Write

Fe : C̃M
⊗
∆1 → C⊗

for the functor corresponding to e via the isomorphism of Proposition 6.5.5.

1. The arrow e is inert if and only if e0 is inert and Fe sends the arrows an → an′

and mi ,n → me0 i ,n′ to cocartesian arrows.

2. Suppose that C⊗ is a symmetric monoidal∞-category compatible with geomet-
ric realizations, and that e0 is the unique active arrow from ⟨2⟩ to ⟨1⟩. Then e
is cocartesian if and only if Fe sends the arrow a2 → a1 to a cocartesian arrow
and the composition

(∆op)▷ B−→ C̃M
⊗
∆1

Fe−→ C⊗

is an operadic colimit diagram.

Proof. This is immediate from the proofs of [Lur16, Proposition 3.3.3.10 and
Theorem 4.5.2.1] and the identification of Proposition 6.5.5.

Construction 6.5.8. There is a square of∞-categories

Fin∗ × Fin∗ Fin∗ × Fin∗

Fin∗ × CM⊗ C̃M
⊗

(1,∧)

j1 j2

ϕ

where

• The top horizontal arrow sends (⟨n⟩, ⟨m⟩) to (⟨n⟩, ⟨n⟩ ∧ ⟨m⟩);

• The arrow j1 sends (⟨n⟩, ⟨m⟩) to (⟨n⟩, (⟨m⟩,∅)) ∈ Fin∗ × CM⊗;

• The arrow j2 sends (⟨n⟩, ⟨m⟩) to (⟨n⟩, ⟨m⟩, {∅}) ∈ C̃M⊗
;

• The arrow ϕ sends (⟨n⟩, (⟨m⟩, S)) ∈ Fin∗×CM⊗ to (⟨n⟩, ⟨n⟩∧⟨m⟩, {{i}×
S}).
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Since each of these functors sends inert arrows to inert arrows, it induces for
every X ∈ (Cat∞)/Fin∗ a natural square

Fun/Fin∗(X,ModFin∗(C)⊗) ≃ AlgC̃M
⊗
X
(C⊗) Fun/Fin∗(X,AlgCM⊗ (C)⊗)

Fun/Fin∗(X, Fin∗ × CAlg(C)) ≃ AlgX×Fin∗(C
⊗) Fun/Fin∗(X,CAlg(C)⊗)

and therefore a natural square of∞-categories over Fin∗

ModFin∗(C)⊗ AlgCM⊗ (C)⊗

Fin∗ × CAlg(C) CAlg(C)⊗
(6.5.8.1)

Our goal now is to show that the square (6.5.8.1) is cartesian. To do so we
will show that the right vertical arrow is a cocartesian fibration in favourable
situations.

Lemma 6.5.9. Let I be an∞-category and C⊗ → I⨿ be an I⨿-monoidal∞-category
compatible with geometric realizations. Then the map of∞-operads

pI : AlgCM⊗/I⨿(C)⊗ → AlgFin∗/I⨿(C)
⊗

is a cocartesian fibration.

Proof. Note that by [Lur16, Proposition 3.2.4.3.(3)] this is a map of cocartesian
fibrations over I⨿. Moreover the fibre over {x j} j∈ J ∈ I⨿ is given by∏

j∈ J

Mod(Cx j ) →
∏
j∈ J

CAlg(Cx j )

and therefore it is a cocartesian fibration by [Lur16, Theorem 4.5.3.1]. There-
fore by [Lur09, Proposition 2.4.2.11] pI is a locally cocartesian fibration with
locally cocartesian arrows those given by the composition of a fibrewise co-
cartesian arrow and a cocartesian arrow over I⨿. In order to prove it is a
cocartesian fibration it suffices to show then that the composition of two lo-
cally cocartesian arrow is locally cartesian, that is that fibrewise cocartesian
arrows are stable under pushforward along arrows in I⨿. Unwrapping the
various cases it suffices to show that for every x , y ∈ I and arrow f : x → y
the squares

Mod(Cx) ×Mod(Cx) Mod(Cx)

CAlg(Cx) × CAlg(Cx) CAlg(Cx)

⊗

⊗

and
Mod(Cx) Mod(Cy)

CAlg(Cx) CAlg(Cy)

f∗

f∗
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are maps of cocartesian fibrations. That is that for every two maps of commu-
tative algebras A→ A′, B→ B′, A-module M, and B-module N , the canonical
maps

(M⊗N)⊗A⊗B (A′⊗B′) ≃ (M⊗A A′)⊗(N⊗B B′) and f∗(M⊗A B) ≃ f∗M⊗ f∗A f∗B .

are equivalences. This is easily seen to be true since f∗ is symmetric monoidal
and commutes with geometric realization, and the tensor product commutes
with geometric realization in each variable.

Finally we arrive at the main result of this section.

Theorem 6.5.10. The square (6.5.8.1) is cartesian for every∞-operad C⊗.

Proof. Let us do first the case where C⊗ is a symmetric monoidal∞-category
compatible with geometric realizations. Then both vertical arrows are co-
cartesian fibrations by [Lur16, Theorem 4.5.3.1] and Lemma 6.5.9. Moreover
the description of cocartesian arrows in Lemma 6.5.7 and [Lur16, Proposi-
tion 3.2.4.3.(4)] shows that

ModFin∗(C)⊗ → (Fin∗ × CAlg(C)) ×CAlg(C)⊗ AlgCM⊗ (C)⊗

is a map of cocartesian fibrations over Fin∗. So it suffices to show that it induces
an equivalence on fibres. Since it is a map of generalized operads, it suffices
to show it induces an equivalence on the fibres over ⟨0⟩ and ⟨1⟩. But this is
immediate by Proposition 6.5.5.
Now let us show the result for small ∞-operads C. Indeed, it is clear by
inspection that if the square (6.5.8.1) is cartesian for an ∞-operad, then it
is cartesian for any full suboperad. But every small ∞-operad embeds as a
full suboperad of a symmetric monoidal ∞-category compatible with small
colimits. Indeed this is just the composition C⊗ → Env C⊗ → P(Env C)⊗where
Env C⊗ is the symmetric monoidal envelope of C⊗, and the second arrow is
the Yoneda embedding.
Finally, since every∞-operad is a sufficiently filtered union of small suboper-
ads, the thesis is true for any∞-operad.



7.∞-categories of global objects
as partially lax limits

In this second part of the paper we prove that various∞-categories of global
objects admit a description using (partially lax) limits. In Theorem 7.1.17, we
show that the ∞-category of global spaces is equivalent to the partially lax
limit of the functor sending a compact Lie group G to the ∞-category of G-
spaces. Our main result is Theorem 7.6.10 which describes the ∞-category
of global spectra as a partially lax limit of G-spectra where G runs over all
compact Lie groups G. Finally, the techniques employed in the previous cases
allow us to prove that for any Lie group G, the∞-category of proper G-spectra
is a limit of H-spectra for H running over all compact subgroups of G. The
precise statement can be found in Theorem 7.7.11.

Remark. To not burden the notation even more, we have decided to state
Theorem 7.1.17 and Theorem 7.6.10 for the family of all compact Lie groups.
However, the proofs hold verbatim for any family of compact Lie groups
which is closed under isomorphisms, finite products, passage to subgroups
and passage to quotients (i.e., any multiplicative global family in the language
of [Sch18]). If the family is not closed under finite products, then the equiva-
lences of the two theorems still hold without symmetric monoidal structures.
This is due to the fact that the model structure constructed in [Sch18] is only
shown to be symmetric monoidal for a multiplicative global family. We note
that our result in fact allows us to define a symmetric monoidal structure
on global spectra with respect to any global family, as a partially lax limit of
symmetric monoidal categories is automatically symmetric monoidal.

7.1 GLOBAL SPACES AS A PARTIALLY LAX LIMIT

In this section we show that the ∞-category of global spaces is equivalent
to a certain partially lax limit of the functor which sends a group G to the
∞-category of G-spaces SG. This is an unstable version of our main result,
and serves as a warm up for the considerable more details involved in that
proof. We start off by recalling a few relevant definitions.

Definition 7.1.1. The global category Glo is the ∞-category associated to the
topological category whose objects are compact Lie groups and whose map-

117
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ping spaces are given by

MapGlo(H,G) :� |Hom(H,G) � G |

the geometric realization of the action groupoid of G acting on the space of
continuous group homomorphisms Hom(H,G) by conjugation. Composition
is induced by the composition of group homomorphisms.
We define Orb and Glosur to be the wide subcategory of Glo whose hom-spaces
are given by those path-components of MapGlo(H,G) spanned by the injective
and surjective group homomorphisms respectively. For later applications it
will be convenient to mark all the edges in the full subcategory Orb ⊆ Glo;
we denote this marking by Glo†. Finally, we let Rep denote the homotopy
category of Glo, that is the category whose objects are compact Lie groups
and whose morphisms are given by conjugacy classes of continuous group
homomorphisms.

Remark 7.1.2. The definition of Glo agrees with the definition given in Section
4 of [GH07] restricted to compact Lie groups, up to one difference. We apply
thin geometric realization to the action groupoids to obtain a topologically
enriched category, while the original definition uses fat geometric realization.
Up to a technical condition, the two conventions define Dwyer-Kan equivalent
topological categories. See [K1̈8, Remark 3.10] for a more detailed discussion.
Note as well that [GH07] uses the name Orb for both Glo and what we call
Orb.

Key to the main properties of Glo is the following description of the mapping
spaces.

Proposition 7.1.3. Let G,H be two compact Lie groups. Then

Hom(H,G) ≃
⨿

[α]∈Rep(H,G)
αG and Glo(H,G) ≃

⨿
[α]∈Rep(H,G)

BC(α)

where αG denotes the orbit of α under the G-conjugation action, and C(α) denotes
the centraliser of the image of α.

Proof. See [K1̈8, Proposition 2.4, 2.5] for a proof of the first and second state-
ment respectively.

Proposition 7.1.4. Let f : H → G be a map in Glo. The induced map on mapping
spaces f∗ : Glo(K,H) → Glo(K,G) correspond under the equivalences of Proposi-
tion 7.1.3 to the composite of the map⨿

[α]∈Rep(H,G)
B f :

⨿
[α]∈Rep(K,H)

BC(α) →
⨿

[α]∈Rep(K,H)
BC( f α)
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with the map ⨿
[α]∈Rep(K,H)

BC( f α) →
⨿

[β]∈Rep(K,G)
BC(β)

which is the identity on individual path-components, and acts on π0 by the map
f∗ : Rep(K,H) → Rep(K,G).

Proof. The statement on π0 follows from the fact that Rep is the homotopy
category of Glo. Therefore, it suffices to restrict to one path component, and
analyse the effect of f . The relationship f∗(chα) � c f (h) f α implies that f∗ acts
as f when restricted to a map αH → f αG. This implies that the induced map
BC(α) → BC( f α) equals B f .

Definition 7.1.5. The∞-category of global spaces Sgl is the category of functors
from Gloop to S. This admits a symmetric monoidal structure by pointwise
product. This is equivalent to the symmetric monoidal category (Gloop)⨿−S.

Remark 7.1.6. In [Sch20], the author proves that the underlying ∞-category
of orthogonal spaces equipped with the positive global model structure
of [Sch18, Proposition 1.2.23] is equivalent to presheafs on a topologically
enriched category Ogl . Furthermore, in [K1̈8] it is shown that Ogl is Dwyer-
Kan equivalent to Glo. Therefore the two models of global spaces define
the same ∞-category. In fact, the two ∞-categories are symmetric monoidal
equivalent since they are both endowed with the cartesian monoidal structure,
see [Sch18, Theorem 1.3.2].

Before stating and proving the main result of this section, we need some
preparation. In the following we fix an ∞-category C with an orthogonal
factorization system (CL , CR). For a detailed discussion and a definition of
orthogonal factorization systems on ∞-categories, the reader may consult
[Lur09, Section 5.2.8]. We write CL for the left class of maps and CR for the
right class. We will denote edges in CL by ↠ and edges in CR by ↣.

Proposition 7.1.7. Let C be an∞-category equipped with an orthogonal factorization
(CL , CR). Write ArR(C) for the full subcategory of the arrow category of C spanned by
the edges in CR. Then the target projection t : ArR(C) → C is a cocartesian fibration.
Furthermore an edge in ArR(C) is t-cocartesian if and only if it is of the form

X Y

X′ Y′.

(7.1.7.1)

Proof. Consider an edge in ArR(C):
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X Y

X′ Y′.

This is cocartesian if and only if, given a 2-simplex in C and a (2,0)-horn
in ArR(C), there is a contractible choice of extensions. This corresponds to
showing that given a diagram in C

X Y Z

X′ Y′ Z′,

its extensions to a 2-simplex in ArR(C) form a contractible space. However,
completing this diagram is equivalent to supplying an edge Y → Z which
makes the diagram

X Z

Y Z′

commute. There is a contractible choice of such factorizations if and only if
X → Y is in CL. This shows that an edge is t-cocartesian if and only if it is of
the form of Equation (7.1.7.1). Next, fix an edge in C and a lift of its source in
ArR(C). This corresponds to a diagram

X

X′ Y′.

Factorizing the composite X → Y′ extends this to an edge

X Y

X′ Y′

in ArR(C), which is t-cocartesian.

We record the following fact for later reference.

Lemma 7.1.8. The constant functor s0 : C → ArR(C) is a fully faithful left adjoint
to the source functor s : ArR(C) → C.



CHAPTER 7. GLOBAL OBJECTS VIA PARTIALLY LAX LIMITS 121

Construction 7.1.9. Suppose we are in the setting of Proposition 7.1.7. Straight-
ening the cocartesian fibration t : ArR(C) → C gives a functor

CR
/− : C → Cat∞.

To justify our notation let us unravel the effect of this functor. By definition,
the evaluation of CR

/− at an object X ∈ C is given by ArR(C)X ; the fibre of t at
X. By construction this is the full subcategory of C/X on the objects C ↣ X in
CR. A priori an edge in this full subcategory is given by a diagram

X X′

Y.

However the edge X → X′ is necessarily also in CR by [Lur09, Proposi-
tion 5.2.8.6(3)], and therefore ArR(C)X is in fact equivalent to CR

/X . Next con-
sider an edge f : Y → Y′. Then the induced map f∗ : CR

/Y → CR
/Y′ sends an

object X ↣ Y to an object X′ ↣ Y′ such that the following diagram com-
mutes:

X X′

Y Y′.
f

In particular if f ∈ CR this is nothing but the standard functoriality of the
slices CR

/−. Therefore the functor CR
/− : C → Cat∞ extends the functoriality of

the slices of CR to all of C.

Proposition 7.1.10. Let C be an ∞-category equipped with a factorization system
(CL , CR). The partially lax colimit of (−)op ◦ CR

/− : C → Cat∞ with respect to the
marking CR ⊂ C is equivalent to Cop.

Proof. Recall that the partially lax colimit of a functor F : C → Cat∞ is the
localization of Unct(F) at the cartesian edges which live above marked edges,
see Theorem 6.3.9(b). In the case F � (−)op ◦ CR

/−, we observe that Unct(F) ≃
Unco(CR

/−)
op and so we conclude that the partially lax colimit of F is equal to

the opposite of ArR(C) localized at the edges of the form

X X′

Y Y′.
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However note that because edges in CR are left cancellable, X → X′ is not
only in CL but also in CR. Therefore X → X′ is in fact an equivalence. We will
write M for this collection of edges. We claim that localizing at the edges of
M is equivalent to localizing at the larger class of edges M′ of the form

X X′

Y Y′,

∼

where we do not impose any conditions on the edge Y → Y′. To see this note
that such an edge in M′ fits into the following diagram:

X X′ X′

X′ Y Y′.

∼

∼

Both the first edge and the composite are in M, and so therefore M′ is con-
tained in the two-out-of-three closure of M. So it is enough to calculate the
localization of ArR(C) at M′. Note that the source functor s : ArR(C) → C sends
an edge to an equivalence if and only if it is in M′. Then Lemma 7.1.8 implies
that C is a Bousfield colocalization of ArR(C) at M′. So we conclude that the
partially lax colimit of op ◦ CR

/− is equivalent to Cop, finishing the proof.

Example 7.1.11. There are two extreme cases of the previous result. If CR �

C , CL � ιC, then
colim((C/−)op : C → Cat∞) � Cop

If CR � ιC , CL � C, then

laxcolim(ιC/− : C → Cat∞) � Cop.

Now that we have introduced the main tools we need, we can build our functor
and compute its partially lax limit. This relies on two important observations.
The first key insight is the following, which was first stated in [GH07] and
originally proven as [Rez14, Example 3.5.1].

Lemma 7.1.12. For all compact Lie group G, the assignment G/K 7→ (K ↪→ G)
defines an equivalence OG ≃ Orb/G.

Proof. We observe that the spaces OG(G/H,G/K) are homeomorphic to the
space {g ∈ G | cg(H) ⊆ K}/K. The latter space is equivalent to the homotopy
orbits {g ∈ G | cg(H) ⊆ K}hK as the K-space is free, see for example [K1̈8, The-
orem A.7]. Therefore we can define a functor F′ : OG → Glo, which sends G/H



CHAPTER 7. GLOBAL OBJECTS VIA PARTIALLY LAX LIMITS 123

to H, and on mapping spaces acts as homotopy orbits of the K-equivariant
inclusion

{g ∈ G | cg(H) ⊆ K} → hom(H, K), g 7→ [cg : H → K].

Note that the∞-category OG has a final object G/G, and therefore F′ induces
a functor OG → Glo/G, which in fact factors through Orb/G. We claim that
the induced functor F : OG → Orb/G is an equivalence of ∞-categories. First
note that F is clearly essentially surjective. To deduce that the functor is fully
faithful pick two objects G/H and G/K which we identify with inclusions
i : H ↪→ G and j : K ↪→ G. Recall that the mapping space between G/H
and G/K is empty if and only if H is not subconjugate to K. In this case the
mapping space in Orb/G between i and j is also empty. Now suppose that
this is not the case. Consider the square

{g ∈ G | cg(H) ⊆ K}hK Hom(H, K)hK

∗ Hom(H,G)hG .

To prove F is fully faithful it suffices to prove that this square is homotopy
cartesian. For every K-space X, (G ×K X)hG ≃ XhK , so that the above square is
equivalent to(

G ×K {g ∈ G | cg(H) ⊆ K}
)
hG (G ×K Hom(H, K))hG

GhG Hom(H,G)hG .

Because taking homotopy orbits preserves homotopy pullback diagrams, it
suffices to show that the square

G ×K {g ∈ G | cg(H) ⊆ K} G ×K Hom(H, K)

G Hom(H,G)

is homotopy cartesian. In fact it is easily shown to be a pullback square of
topological spaces, and the bottom horizontal arrow is a Serre fibration. To see
this we note that the map G → Hom(H,G) factors through one component
of the decomposition of Proposition 7.1.3, and therefore is equivalent to the
quotient map G→ G/C(H)which is a fibration by [K1̈8, Theorem A.9].

The second insight is the following, which was also observed in [Rez14].
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Proposition 7.1.13. The subcategories Glosur and Orb are the left and right classes
respectively of an orthogonal factorization system on Glo.

Proof. We will apply [Lur09, Proposition 5.2.8.17] to the subcategories Glosur

and Orb. Clearly these subcategories contain all the equivalences and are
closed under equivalences in Ar(Glo). Therefore it suffices to prove that given
a diagram:

H J

G K,

f g

the space of dotted diagonal fillers is contractible. As noted in [Lur09, Re-
mark 5.2.8.3], this is equivalent to the map

MapGloH/
(H

f
→ G,H → J)

g
−→MapGloH/

(H
f
→ G,H → K)

being a weak homotopy equivalence for every lift of g to a map in GloH/ from
H → J to H → K. Proposition 7.1.4 shows that when f is surjective the map

MapGlo(G, J)
f ∗
→MapGlo(H, J)

is an inclusion of path-components for every J.

Therefore the space MapGloH/
(H

f
→ G,H → J), being the homotopy fibre of

this map, is either empty or contractible. Translating back this reduces our
task to simply proving the existence of a lift in the square above. This is a
simple exercise in group theory.

Remark 7.1.14. When we restrict to finite groups, Glo is equivalent to the
full subcategory of S given by the connected 1-truncated spaces. In this case
the orthogonal factorization system constructed above is a restriction of the
standard mono/epi factorization system of any ∞-topos. However in the
generality of compact Lie groups no such description applies.

We are finally ready to construct the functor.

Construction 7.1.15. We apply Construction 7.1.9 to the orthogonal factor-
ization system (Glosur ,Orb) to obtain a functor Orb/− : Glo → Cat∞. Post-
composing the opposite of this functor with Fun((−)op , S) : Catop

∞ → Cat∞
gives the desired functor

S• : Gloop → Cat∞.
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Also note that S• clearly factors through product preserving functors, and so
enhances to a functor

S• : Gloop → Cat⊗∞ ,

where each category (Orb/G)op−S is given the cartesian monoidal structure.

Lemma 7.1.12 and Elmendorf’s theorem for G-spaces, see Example 6.2.40,
imply that the value of S• at the object G is equivalent to the ∞-category of
G-spaces SG. However we owe the reader the following consistency check,
which implies that the functor S• also has the expected functoriality.

Proposition 7.1.16. Let α : H → G be a continuous group homomorphism. Then
the following diagram commutes:

Fun((Orb/G)op , S) SG

Fun((Orb/H)op , S) SH .

≃

Sα α∗

≃

Here the horizontal equivalences are obtained by applying Lemma 7.1.12 and Example
6.2.40.

Proof. It is enough to check that the analogous diagram where the vertical
maps are replaced with left adjoints commutes. For this, let us denote by
Lα and α! the left adjoints of Sα and α∗ respectively. Note that the inclusion

ιH : Orb/H ↪→ Glo/H has a left adjoint LH which on objects sends K
β
−→ H to

β(K) ↪→ H. By the universal property of the presheaf categories there exists a
unique cocontinuous functor (the left Kan extension along ιH)

(ιH)! : Fun((Orb/H)op , S) → Fun((Glo/H)op , S)

which agrees with ιH on representables. In a similar fashion, we define func-
tors (LG)! and (α∗)! where α∗ : Glo/H → Glo/G is postcomposition by α. We
claim that the following diagram commutes:

Fun((Orb/H)op , S) Fun((Glo/H)op , S)

Fun((Orb/G)op , S) Fun((Glo/G)op , S).

(ιH )!

Lα (α∗)!

(LG)!

This is easily seen by comparing the result on generators, and using that all
the functors in the diagram commute with all colimits. Using this diagram we
can reduce to a statement on the level of model categories. Namely all three
functors which make up the long way around in the diagram above can be
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modelled by left Quillen functors between enriched functor categories with
the projective model structure. Indeed, the right adjoint of (ιH)! is given by re-
striction along ιH which is clearly a right Quillen functor. A similar argument
also works for (LG)! and (α∗)!. After pre-composing and post-composing with
the equivalences

TH ≃ Funtop((Orb/H)op , T ) and Funtop((Orb/G)op , T ) ≃ TG

constructed in [Rez14, Proposition 3.5.1] (which agree with the equivalences
constructed by [GM23] by inspection), we can apply the explicit description
for (LG)! and (ιH)! given in [Rez14, Section 5.3] (where (LG)! is denoted by
ΠG and (ιH)! by ∆H) to deduce that the functor Lα : TH → TG is equivalent to
induction of H-spaces.

We have now constructed our functor. Therefore we are left to prove that the
partially lax limit is given by the∞-category of global spaces.

Theorem 7.1.17. Let Glo† denote the marked ∞-category from Definition 7.1.1.
Then the partially lax limit over (Glo†)op of the diagram from Construction 7.1.15

Gloop → Cat⊗∞ , G 7→ SG

is equivalent to the∞-category of global spaces, equipped with the cartesian monoidal
structure.

Proof. Recall that SG � Fun(Oop
G , S) and that OG ≃ Orb/G. First we prove the

result on underlying categories. Proposition 6.3.11 implies that it suffices to
prove an equivalence between the partially lax colimit of (Orb/−)op and Gloop.
However this follows from Proposition 7.1.10 applied to the factorization sys-
tem (Glosur ,Orb) on Glo. Now we deduce the symmetric monoidal statement.
First observe that the equivalence constructed before trivially lifts to a symmet-
ric monoidal equivalence, where both sides are given the cartesian symmetric
monoidal structure. Then note that the subcategory of Op∞ spanned by the
cartesian operads is closed under partially lax limits. This implies that Sgl is
equivalent to the partially lax limit of the diagram S• : Gloop → Cat⊗∞, but
now taken in symmetric monoidal∞-categories.

7.2 ∞-CATEGORIES OF EQUIVARIANT PRESPECTRA

In this section we define the∞-categories of G-(pre)spectra for a Lie group G,
and we introduce the∞-category of global (pre)spectra. We will do this by first
defining the relevant level model structures, which present the∞-categories of
prespectra objects, and then defining the stable model category as a Bousfield
localization. This will then present the ∞-categories of spectra objects. The
material in this section is classical, and largely well-known. Nevertheless we
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include the details of the model structures, mainly to emphasize that the level
model structure on SpO

G is induced formally from the level model structure
on I−GT . While not a deep statement, it is crucial to our proof strategy. In
particular this observation will allow us to interpret the construction of the
level model structure∞-categorically, as will be explained in this section.

Definition 7.2.1. LetI denote the topological category whose objects are finite
dimensional inner product spaces V , and morphisms space I(V,W) given by
the space of linear isometric isomorphisms from V to W .

Definition 7.2.2. Let G be a Lie group (not necessarily compact). We write
I−GT for the enriched category of continuous functors from I into G-spaces,
and call this the category of I-G-spaces. When G is the trivial group, we
simply write I−T and refer to it as the category of I-spaces.

Remark 7.2.3. As discussed in [Boh14, Section 5], the category of I-G-spaces
(as defined above) is equivalent as a topological category to the category of
IG-spaces as defined by Mandell-May in [MM02, Chapter II, Definition 2.3].

Remark 7.2.4. The category I−GT has a symmetric monoidal structures
given by enriched Day convolution, see [MM02, Chapter II, Proposition 3.7].
Given X,Y ∈ I−GT we have the formula

(X ⊗ Y)(V) :�
∫ (W,W′)∈I×I

I(W ⊕W′,V) × X(W) × Y(W′).

Remark 7.2.5. Given any I-G-space X and an inner product space V , the
value X(V) admits a G × O(V)-action. If V is given the structure of an H-
representation ρ : H → O(V), then we can equip X(V) with an H-action by
restricting along

H
∆−→ H × H

i×ρ
−−→ G × O(V).

We will always consider the value X(V)with this H-action in the following.

Construction 7.2.6 (Free I-G-space). For every H-representation V , there is
an evaluation functor

evV : I−GT → HT , X 7→ X(V).

This functor admits a left adjoint G ×H IV , given by the formula

G ×H IV A � G ×H (I(V,−) × A).

When A � ∗, we simply write G ×H IV and when G � H, we write IV (−). By
construction, the I-G-space G ×H IV corepresents the functor X 7→ X(V)H .
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For all compact subgroups H and K of G, all H-representations V and all
K-representations W , there is an isomorphism of I-G-spaces

(G ×H IV ) ⊗ (G ×K IW ) � ∆∗(G × G ×H×K IV⊕W ) (7.2.6.1)

where∆ : G→ G×G is the diagonal embedding. This can be checked directly
by applying the formula of the Day convolution product from Remark 7.2.4
and using that induction commutes with colimits.

We will now proceed to equip the category of I-G-spaces with the level
model structure. The following will be the weak equivalences, fibrations and
cofibrations of this model structure.

Definition 7.2.7. Let G be a Lie group and let f : X → Y be a morphism in
I−GT .

(a) We say f is a level equivalence if for any compact subgroup H ≤ G and
any H-representation V , the map f (V)H : X(V)H → Y(V)H is a weak
homotopy equivalence of spaces.

(b) We say f is a level fibration if for any compact subgroup H ≤ G and
any H-representation V , the map f (V)H : X(V)H → Y(V)H is a Serre
fibration.

(c) We say f is a level cofibration if for every m ≥ 0, the map f (Rm) : X(Rm) →
Y(Rm) is a Com-cofibration of (G × O(m))-spaces, see [Deg+23, Defini-
tion 1.1.2], and moreover the O(m)-action is free away from the image
of f (Rm).

For all m ≥ 0, we let CG(m) denote the family of compact subgroups Γ of
G ×O(m) such that Γ∩ (1×O(m)) consists only of the neutral element. These
are precisely the graph subgroups of a continuous homomorphism to O(m)
defined on some compact subgroup of G. The category of G×O(m)-spaces ad-
mits a CG(m)-projective model structure by [Sch18, Proposition B.7]. We have
the following useful characterization of the level equivalences, cofibrations
and fibrations.

Lemma 7.2.8. Let G be a Lie group and let f : X → Y be a morphism in I−GT .
The following are equivalent:

(a) the map f : X → Y is a level equivalence (resp., level fibration);

(b) the map f (Rm) : X(Rm) → Y(Rm) is a weak equivalence (resp., fibration) in
the CG(m)-projective model structure for all m ≥ 0.

Furthermore, the following are equivalent:
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(c) the map f : X → Y is a level cofibration;

(d) the map f (Rm) : X(Rm) → Y(Rm) is a cofibration in the CG(m)-projective
model structure for all m ≥ 0.

Proof. Let H ≤ G be a compact subgroup and let V be an H-representation.
Choose a linear isometric isomorphism φ : V � Rm and define a group homo-
morphism

ρ : G→ O(m), g 7→ φ ◦ (g · −) ◦ φ−1.

The homeomorphism X(φ) : X(V) ≃ X(Rm) restricts to a homeomorphism

X(V)H ≃ X(Rm)Γ(ρ)

where Γ(ρ) � {(h , ρ(h)) ∈ H × O(m)} by the definition of the H-action given
in Remark 7.2.5. From this description, it is clear that (b) implies (a). Conversely
given Γ ∈ CG(m), we can always find a continuous group homomorphism
α : H → O(m) for H ≤ G compact such that Γ � Γ(α). By definition of the
H-action, we have X(Rm)H � X(Rm)Γ showing that (a) implies (b). Finally,
that (c) and (d) are equivalent follows from (the topological version of) [Ste16,
Proposition 2.16].

Theorem 7.2.9. Let G be a Lie group. The category I−GT admits a cofibrantly
generated and topological model structure in which the weak equivalences are the
level equivalences, the fibrations are the level fibrations and the cofibrations are the
level cofibrations. The set of generating cofibrations IG and acyclic cofibrations JG are
given by

IG �{G ×H IV∂Dn → G ×H IV Dn | H ≤ G, n ≥ 0}
JG �{G ×H IV (Dn × {0}) → G ×H IV (Dn × [0, 1]) | H ≤ G, n ≥ 0}

where H runs over all compact subgroups of G and V runs over all H-representations.
We call this the (proper) level model structure.

Proof. We observe that the category I−GT is equivalent to
∏

m≥0(G×O(m))T .
We can endow this latter category with the product of the CG(m)-projective
model structures on G × O(m)-spaces. By Lemma 7.2.8, the induced model
structure on I−GT has weak equivalences, fibrations and cofibrations as in
the theorem. Also we note that the right lifting property against the sets IG
and JG detect the level fibrations and level acyclic fibrations respectively, by
the adjunction isomorphism

HomI−GT (G ×H IV A,X) ≃ HomT (A,X(V)H)

for A a non-equivariant space. Finally we observe that resulting model struc-
ture is again topological by [Sch18, Proposition B.5].
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As discussed in [Deg+23, Proposition 1.1.6], a continuous homomorphism
α : K → G between Lie groups gives rise to adjoint functors between the
associated category of equivariant spaces

GT KTα∗
G×α−

Mapα(G,−)

which by levelwise application gives rise to an adjoint triple

I−GT I−KT .α∗

G×α−

Mapα(G,−)

Proposition 7.2.10. Let α : K → G be a continuous group homomorphism between
Lie groups.

(a) Then α∗ preserves level fibrations and level equivalences. Thus the adjoint pair
(G ×α −, α∗) is Quillen.

(b) If α has closed image and compact kernel, then the adjoint pair (α∗ ,Mapα(G,−))
is also Quillen with respect to the level model structure.

Proof. Part (a) follows from [Deg+23, Proposition 1.1.6(ii)]. Suppose that α has
closed image and compact kernel and note that by (a), it suffices to check that
α∗ preserves level cofibrations. We start by noting that the image of α ×O(m)
is closed in G×O(m) since the image of α is closed in G. Moreover, the kernel
of α×O(m) is ker(α)×1, which is compact by hypothesis. So restriction along
α × O(m) takes Com-cofibrations of (G × O(m))-spaces to Com-cofibrations
of (K × O(m))-spaces by [Deg+23, Proposition 1.1.6(iii)]. Now let i : A → B
be a level cofibration of I-G-spaces so that i(Rm) is a Com-cofibration of
(G×O(m))-spaces. By the previous discussion, α∗(i(Rm)) is a Com-cofibration
of (K × O(m))-spaces. Moreover, the O(m)-action is unchanged, so it still
acts freely off the image of α∗i. This shows that α∗ preserves cofibrations as
required.

Proposition 7.2.11. The level model structures on I−GT is symmetric monoidal
with cofibrant unit object.

Proof. Let us show that the pushout-product axiom holds. By a standard re-
duction [Hov99, Corollary 4.2.5], it suffices to check that the pushout product
f□g is

(i) a cofibration if f and g belong to the set of generating cofibrations;
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(ii) an acyclic cofibration if furthermore f or g is a generating acyclic cofi-
bration.

In this case we may assume f � G ×H IV f ′ and g � G ×K IW g′ and so
f□g � ∆∗(G×G×H×KIV⊕W f ′□g′)by Equation (7.2.6.1). SinceT is a symmetric
monoidal model category, the pushout-product f ′□g′ satisfies conditions (i)
and (ii) above. By Proposition 7.2.10 we see that the functors

∆∗ : I−(G × G)T → I−GT

are left Quillen. Moreover, it is clear from the definition of the model structures
that evV⊕W : I − (G × G)T → (H × K)T is right Quillen, and therefore (G ×
G) ×H×K IV⊕W is left Quillen. From these observations it follows that the
pushout-product axiom holds for I−GT too. Finally, the unit axiom holds
since the unit object ∗ � G ×G I0 is cofibrant.

In Section 6.1.3 we discussed how to induce a model structure on pointed
objects. We will apply these results to the category I−GT with the level
model structure. Note first that the category of pointed objects in I−GT is
equivalent to I−GT∗, the category of continuous functors from I to GT∗, the
category of based G-spaces.

Proposition 7.2.12. Let G be a Lie group. The category I−GT∗ admits a proper
level model structure in which the weak equivalences, fibrations and cofibrations
are detected by the forgetful functor I−GT∗ → I−GT . This model structure is
topological, cofibrantly generated by the sets (IG)+ and (JG)+, symmetric monoidal and
the unit object is cofibrant. Moreover, there exists a symmetric monoidal equivalence
of∞-categories

I−GT∗[W−1
lvl] ≃ (I−GT [W−1

lvl])∗.

Proof. The first part follows from the discussion in Section 6.1.3 and [Sch18,
Proposition B.5]. For the final claim apply Proposition 6.1.3 together with the
fact that I−GT [W−1

lvl] is presentable by Theorem 7.3.9.

We now change gears and consider the global analogue of the previous dis-
cussion. Recall that for any G-representation V and I-space X, the value
X(V) admits a natural G-action by restricting along the canonical morphism
G→ O(V), see Remark 7.2.5.

Definition 7.2.13. Let f : X → Y be a morphism in I−T .

(a) We say f is a faithful level equivalence if for every compact Lie group G
and every faithful G-representation V , the map f (V) : X(V) → Y(V) is a
G-weak equivalence: for all closed subgroups H ≤ G, the induced map
f (V)H : X(V)H → Y(V)H is a weak homotopy equivalence of spaces.
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(b) We say f is a faithful level fibration if for every compact Lie group G and
every faithful G-representation V , the map f (V) : X(V) → Y(V) is a
fibration in the projective model structure of G-spaces.

The following result is a reformulation of [Sch18, Lemmas 1.2.7, 1.2.8] to our
context.

Lemma 7.2.14. Let f : X → Y be a morphism in I−T . Then the following are
equivalent:

(a) the map f (V) : X(V)G → Y(V)G is a weak homotopy equivalence (resp., Serre
fibration) for every compact Lie group G and every G-representation V ;

(b) the map f : X → Y is a faithful level equivalence (resp., faithful level fibration);

(c) the map f (Rm) : X(Rm) → Y(Rm) is a O(m)-weak equivalence (resp., O(m)-
fibration) for every m ≥ 0.

Proof. It is clear that (a) implies (b), which implies (c). Suppose that (c) holds
and let V be a G-representation. As in the proof of Lemma 7.2.8 we can
choose a linear isometric isomorphism φ : V ≃ Rm and define a group homo-
morphism ρ : G→ O(m) such that

X(V)G ≃ X(Rm)ρ(G)

showing that (c) implies (a).

Construction 7.2.15 (semifree I-space). For every G-representation V , there
is an evaluation functor

evG,V : I−T → GT , X 7→ X(V)

which admits a left adjoint IG,V given by the formula IG,V (A) � I(V,−) ×G
A. When A � ∗, we simply write IG,V . For all H-representations V and K-
representations W , there is an isomorphism of I-G-spaces

IH,V ⊗ IK,W � IH×K,V⊕W . (7.2.15.1)

One can check this using the formula in Remark 7.2.4 or by mimicking the
proof of [Sch18, Example 1.3.3].

The next result is an analogue of [Sch18, Proposition 1.2.10], adapted to our
context.

Theorem 7.2.16. The category I−T admits a topological, cofibrantly generated
model structure in which the weak equivalences are the faithful level equivalences
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W f−lvl and the fibrations are the faithful level fibrations. The set of generating cofi-
brations I and acyclic cofibrations J are given by

I �{IG,V (∂Dn) → IG,V (Dn)}
J �{IG,V (Dn × {0}) → IG,V (Dn × [0, 1])}

where G runs over all compact Lie groups, V over all faithful G-representations and
n ≥ 0. This is a symmetric monoidal model category with cofibrant unit object. We
call this the faithful level model structure.

Proof. We can identify I−T with the category
∏

m≥0 O(m)T and endow the
latter category with the product of the standard model structures on O(m)-
spaces. The induced model structure on I−T has weak equivalences and
fibrations as in the theorem by Lemma 7.2.14. We note that the right lifting
property against the sets I and J detect the level fibrations and level acyclic
fibrations respectively, by the adjunction isomorphism

HomI−T (IH,V A,X) ≃ HomT (A,X(V)H)

for A a non-equivariant space. Let us next show that the pushout-product
axiom holds. As explained in the proof of Proposition 7.2.11, it suffices to check
that the pushout product f□g is an (acyclic) cofibration if f and g belong to
the set of generating (acyclic) cofibrations. In any case we have f � IG,V f ′ and
g � IH,W g′. But then f□g � IG×H,V⊕W f ′□g′ by Equation (7.2.15.1). Since GT
is a symmetric monoidal model category, it suffices to check that the functor
IG×H,V⊕W is left Quillen. This is clear since evG×H,V⊕W is right Quillen by
definition of the faithful level model structure. The pushout-product axiom
then follows. Finally, the unit axiom holds since the unit object ∗ � Ie ,0 is
cofibrant and the model structure is topological by [Sch18, Proposition B.5].

As before we obtain an induced model structured on pointed objects.

Proposition 7.2.17. The category I−T∗ admits a faithful level model structure in
which the weak equivalences, fibrations and cofibrations are detected by the forgetful
functor I−T∗ → I−T . This model structure is topological, cofibrantly generated by
the set I+ and J+, symmetric monoidal and the unit object is cofibrant. Finally, there
exists a symmetric monoidal equivalence of∞-categories

I−T∗[W−1
f−lvl] ≃ (I−T [W

−1
f−lvl])∗.

Proof. The first two claims follows from the discussion in Section 6.1.3 and
[Sch18, Proposition B.5]. For the final claim apply Proposition 6.1.3, using the
fact that I−T [W−1

f−lvl] is presentable. We will show this in Theorem 7.3.19.
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We now pass from pointed objects to pre-spectrum objects. Observe that the
category of pointed I-G-spaces has a commutative algebra object SG given
by the functor sending V to its one-point compactification SV equipped with
the trivial G-action. If we are thinking of the category of I-spaces with the
faithful level model structure, we will write S f gl for Se , to emphasize that the
sphere should be thought of as evaluated on all faithful representations of all
groups ( f gl stands for faithful global).

Definition 7.2.18. Let G be a Lie group. Following [MM02, Chapter II, Propo-
sition 3.8], we define the topological category SpO

G of orthogonal G-spectra
to be the category of SG-modules in I−GT∗. These categories inherit induced
model structures:

(a) The category of orthogonal G-spectra admits a (proper) level model struc-
ture whose weak equivalences and fibrations are created by the forgetful
functor SpO

G → I−GT∗where the target is endowed with the level model
structure. This is a cofibrantly generated, proper, topological model cat-
egory, see the proof of [Deg+23, Theorem 1.2.22]. We also obtain that a
set of generating cofibrations and acyclic cofibrations are given by the
maps SG ⊗ IG and SG ⊗ JG where SG ⊗ − denotes the left adjoint to the
forgetful functor SpO

G → I−GT∗.

(b) The category of orthogonal spectra admits a faithful level model structure
whose weak equivalences and fibrations are created by the forgetful
functor SpO → I−T∗ where the target is endowed with the faithful level
model structure, see [Sch18, Propositions 4.3.5]. From this result we
obtain that the faithful level model structure is cofibrantly generated and
topological, with a set of generating cofibrations and acyclic cofibrations
given by Sfgl ⊗ I and Sfgl ⊗ J, where Sfgl ⊗ − denotes the left adjoint to
the forgetful functor SpO → I−T∗.

Remark 7.2.19. By combining straightforward generalizations of [MM02,
Theorem 4.3] and [Sch18, Remark 3.1.8] to Lie groups, we conclude that
SpO

G is equivalent to the category of orthogonal spectra defined in [Deg+23,
Definition 1.1.9].

As discussed in [MM02, Chapter II Section 3], the category of orthogonal
G-spectra admits a closed symmetric monoidal structure.

Proposition 7.2.20. Let G be a Lie group.

(a) The level model structure on SpO
G is symmetric monoidal.

(b) The faithful level model structure on SpO is symmetric monoidal.
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Proof. The proof that the pushout product axiom holds for SpO
G is similar

to that given in Proposition 7.2.11 for I-G-spaces. The explicit argument for
cofibrations can be found in [Deg+23, Proposition 1.2.28(i)] and we note that a
slight modification of that argument then also gives the statement for acyclic
cofibrations. The argument that the faithful level model structure satisfies
the pushout-product axiom is similar to that given in Theorem 7.2.16. The
argument for cofibrations can also be found in [Sch18, Proposition 4.3.23] and
a slight modification of that argument also gives the statement for acyclic
cofibrations.

Definition 7.2.21. We define the ∞-category PSpG of G-prespectra to be the
symmetric monoidal∞-category associated to the symmetric monoidal model
category SpO

G with the level model structure. Similarly, we define PSpfgl of
faithful global prespectra to be the symmetric monoidal ∞-category associated
to the symmetric monoidal model category SpO with the faithful level model
structure.

We have emphasized how the level model structures on SpO
G and SpO are in-

duced by the level model structure on I−GT∗ and I−T∗ respectively by taking
modules. This allows us to reinterpret the passage to modules internally to
∞-categories.

Proposition 7.2.22. There are symmetric monoidal equivalences

PSpG ≃ModSG (I−GT [W−1
lvl]∗) and PSpfgl ≃ModSfgl(I−T [W−1

f−lvl]∗).

Proof. Apply Proposition 6.1.4.

Finally we pass from the level model structure to the stable model struc-
ture, which will present the categories of global and genuine G-spectra. Fix
a complete G-universe UG and write s(UG) for the poset, under inclusion, of
finite dimensional G-subrepresentations of UG. The G-equivariant homotopy
groups of an orthogonal G-spectrum X are given by

πG
k (X) �


colim

V∈s(UG)
[Sk+V ,X(V)]G∗ for k ≥ 0

colim
V∈s(UG)

[SV ,X(R−k ⊕ V)]G∗ for k ≤ 0

where the connecting maps in the colimit system are induced by the structure
maps, and [−,−]G∗ means G-equivariant homotopy classes of based G-maps.
Note that the same definition works even if X is an orthogonal spectrum
since the value X(V) admits a G-action as discussed before Definition 7.2.13.
Moreover, everything is functorial with respect to morphisms of orthogonal
(G-)spectra. We finally note that the definition above a priori depends on a
choice of complete G-universe. However the functors associated to different
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complete G-universes are naturally isomorphic, and so the choice is immate-
rial.

Definition 7.2.23. Let G be a Lie group.

• A morphism f : X → Y of orthogonal G-spectra is a π∗-isomorphism if
πH
∗ ( f ) : πH

∗ (X) → πH
∗ (Y) is an isomorphism for all compact subgroups

H ≤ G. The π∗-isomorphisms are part of a cofibrantly generated, topo-
logical, stable and symmetric monoidal model structure on the category
of orthogonal G-spectra [Deg+23, Theorem 1.2.22], called the G-stable
model structure.

• A morphism f : X → Y of orthogonal spectra is a global equivalence if
πH
∗ ( f ) : πH

∗ (X) → πH
∗ (Y) is an isomorphism for all compact Lie groups

H. The global equivalences are part of a cofibrantly generated, topolog-
ical, proper, stable and symmetric monoidal model structure on the cat-
egory of orthogonal spectra [Sch18, Theorem 4.3.17, Proposition 4.3.24],
called the global model structure.

Definition 7.2.24. We define the symmetric monoidal ∞-category SpG of G-
spectra to be the underlying ∞-category of orthogonal G-spectra with the
G-stable model structure. Similarly, we define the symmetric monoidal ∞-
category Spgl of global spectra to be the underlying ∞-category of orthogonal
spectra with the global model structure.

We now make precise the observation that SpG and Spgl are Bousfield lo-
calizations of PSpG and PSpfgl respectively at an explicit collection of weak
equivalences. We begin with global spectra.

Construction 7.2.25. Given a compact Lie group G and a G-representation V ,
we can consider the adjoint pairs

SpO I−T∗ GT∗ .
forget

Sgl⊗−

evG,V

IG,V

Following [Sch18, Construction 4.1.23], we denote the composite Sgl ⊗IG,V by
FG,V . Note that the adjoint pairs above are Quillen with respect to the global
level structure and so they yield corresponding adjoint pairs of underlying
∞-categories. As discussed before [Sch18, Theorem 4.1.29], there are maps in
SpO

λG,V,W : FG,V⊕W SV → FG,W S0

for all compact Lie groupw G and G-representations V and W . Note that we
can view these maps in PSpgl since the domain and codomain of λG,V,W are
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bifibrant. Consider the following diagram

GT∗(S0 ,X(W)) GT∗(SV ,X(V ⊕W))

SpO(FG,W S0 ,X) SpO(FG,V⊕W SV ,X),

σ̃G,V,W

∼∼

where the vertical maps are the adjunction isomorphisms and the top map is
the adjoint structure map of X. The bottom map is equal to precomposition
by λG,V,W . In particular, taking X � FG,W S0, we may define λG,V,W as the
image of the identity of FG,W S0 under the bottom map. Note also that λG,V,W
is equivalent to FG,W S0 ⊗ λG,V,0, and that λG,V,0 is adjoint to the identity.

Remark 7.2.26. Observe that both characterizations of λG,V,W given above
also uniquely specify the map on the level of∞-categories.

Proposition 7.2.27. Spgl is a Bousfield localization of PSpfgl. Furthermore, an object
in PSpfgl lies in Spgl if and only if it is local with respect to the morphisms {λG,V,W }
for all compact Lie groups G and G-representations V and W with W faithful.

Proof. LetΛdenote the set of maps λG,V,W for G, V and W as in the proposition.
We write SpO

lvl and SpO
gl for the category of orthogonal spectra endowed with

the faithful level model structure and the global stable model structure re-
spectively. We will show that SpO

gl is a left Bousfield localization (in the model
categorical sense) of SpO

lvl at the set Λ, that is LΛSpO
lvl � SpO

gl . Because both
can be checked on underlying homotopy categories, Bousfield localizations of
model categories present Bousfield localizations of ∞-categories. Therefore
the claim in the proposition will follow by passing to underlying∞-categories.
By definition X ∈ SpO

lvl is Λ-local (and so fibrant in the Bousfield localization)
if and only if X is fibrant in SpO

lvl (which always holds in this case), and the
canonical map of homotopy function complexes

λ∗G,V,W : Map(FG,W S0 ,X) →Map(FG,V⊕W SV ,X)

is an equivalence for all λG,V,W ∈ Λ. By adjunction this is equivalent to
asking that X(W)G → ΩV (X(V ⊕W))G is an equivalence for all G,V and W
as in the proposition. In other words X is a global Ω-spectrum, see [Sch18,
Definition 4.3.8]. By [Sch18, Theorem 4.3.17] these are precisely the fibrant
objects SpO

gl . Since LΛSpO
lvl and SpO

gl have the same cofibrations and fibrant
objects, the two model structure coincide by [Joy08, Proposition E.1.10].

We repeat this analysis for SpG and PSpG.
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Construction 7.2.28. Let H be a compact subgroup of a Lie group G, and let
V be an H-representation. We have a sequence of adjoint pairs

SpO
G I−GT∗ HT∗

forget

SG⊗−

evV

G+∧HIV

which are Quillen with respect to the proper level model structure, and so
they define adjoint pairs at the level of underlying ∞-categories. The com-
posite SG ⊗ (G+ ∧H IV ) will also be denoted by G ⋉H FV following [Deg+23,
Example 1.1.15]. This notation is justified by the fact that G ⋉H FV is also
equivalent to the induction of the H-prespectrum FV as one can easily verify.
For all pairs of H-representations V and W , there are maps in SpO

G

G ⋉H λV,W : G ⋉H FV⊕W SV → G ⋉H FW ,

see [Deg+23, Equation 1.2.19]. We can view these maps in PSpG as the domains
and codomains are bifibrant. Similarly to before, G ⋉H λV,W is determined by
the property that the map

SpO
G (G ⋉H FW ,X) → SpO

G (G ⋉H FV⊕W SV ,X),

defined so that the diagram

HT∗(S0 ,X(W)) HT∗(SV ,X(V ⊕W))

SpO
G (G ⋉H FW ,X) SpO

G (G ⋉H FV⊕W SV ,X)

resG
H (σ̃V,W )

∼∼

commutes, is equal to precomposition by G⋉HλH,V,W . Also note that G⋉λV,W
is equal to G ⋉H FW S0 ⊗ λV,0 and that λV,0 is adjoint to the identity on SV .

Remark 7.2.29. Once again, observe that the characterizations of G ⋉H λV,W
given above also uniquely specify the map on the level of∞-categories.

Proposition 7.2.30. Let G be a Lie group. Then SpG is a Bousfield localization of
PSpG. Furthermore, an object in PSpG lies in SpG if and only if it is local with
respect to the morphisms {G ⋉H λV,W } for all compact subgroups H ≤ G and H-
representations V and W . Equivalently, X ∈ PSpG lies in SpG if and only if for
all compact subgroups H ≤ G, the object resG

H X ∈ PSpH is local with respect to
morphisms {λV,W } for all H-representations V and W .

Proof. The proof is similar to that of Proposition 7.2.27 but now we use the
characterization of fibrant objects in the proper stable model structure given
in [Deg+23, Theorem 1.2.22 (v)]. The second claim follows from the first one
by adjunction.
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7.3 MODELS FOR∞-CATEGORIES OF EQUIVARIANT PRESPECTRA

In the previous section we introduced the ∞-categories of equivariant and
global (pre)spectra, and exhibited the spectrum objects as local objects in the
relevant category of prespectra with respect to an explicit class of weak equiv-
alences. Furthermore, we observed that the construction of PSpG admitted a
reinterpretation internal to ∞-categories, by first passing to pointed objects
in I−GT [W−1

lvl] and then taking modules over SG. Similarly, we observed that

PSpfgl ≃ModSfgl(I−T [W−1
f−lvl]∗).

Furthermore these equivalences were symmetric monoidal.
However this is only part of the story, because the∞-categories I−GT [W−1

lvl]
and I−T [W−1

f−lvl] are still too inexplicit for our arguments. Luckily we can give
explicit models of these ∞-categories. Consider the case of I−GT [W−1

lvl]. By
construction this ∞-category records the fixed point spaces X(V)H for every
(compact) subgroup H of G and every H-representation V of an I-G-space X.
By functoriality, these different fixed point spaces are related by subconjugacy
relationships in H and equivariant linear isometries in V . We will prove that
the∞-category I−GT is in fact freely generated under these properties. More
precisely, we will exhibit an equivalence

I−GT [W−1
lvl] ≃ ORG−S ,

where the ∞-category ORG indexes pairs (H,V), each one of which records
one of the fixed point spaces X(V)H of an I-G-space X. Similarly we will
prove that

I−T [W−1
f−lvl] ≃ ORfgl−S ,

where the ∞-category ORfgl indexes pairs (G,V), where G is a compact Lie
group and V is a faithful G-representation.
In total we will obtain equivalences

PSpG ≃ModSG (ORG−S∗) and PSpfgl ≃ModSfgl(ORfgl−S∗).

It will be in this guise that we will think of the ∞-category of G-prespectra
and global prespectra for the remainder of the paper.
Finally, to make future constructions symmetric monoidal it will be important
to understand how the symmetric monoidal structures transfer under the
equivalences

I−GT [W−1
lvl] ≃ ORG−S and I−T [W−1

f−lvl] ≃ ORfgl−S .

We may immediately apply Theorem 6.2.37 to conclude that the monoidal
structure on I−GT [W−1

lvl] and I−T [W−1
f−lvl] are induced by Day convolu-

tion from the restricted promonoidal structure on ORG. We will make these
promonoidal structures explicit.
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To show that I−GT [W−1
lvl] and I−T [W−1

lvl] are equivalent to categories of
copresheafs on an explicit set of generators, we will apply a version of El-
mendorf’s theorem, see Corollary 6.2.41. The application of this theorem to
I−GT [W−1

lvl] and I−T [W−1
f−lvl] has a similar flavour, but are logically distinct.

Therefore we treat each case separately.

7.3.1 I-G-spaces and ORG-spaces

We begin with I−GT [W−1
lvl].

Remark 7.3.1. Let G be a Lie group and consider a map φ : G/K → G/H in
the orbit category OG. Giving φ is equivalent to giving gH ∈ (G/H)K , that
is an element gH ∈ G/H such that cg(K) � g−1Kg ⊆ H. When we need to
emphasize this correspondence between gH and φ we will use subscripts φg
and gφ. Note that gψ◦φH � gφgψH so composition of maps corresponds to
multiplication with reverse order.

Definition 7.3.2. For a Lie group G, the proper G-orbit category OG,pr is the full
subcategory of OG spanned by those cosets G/H with H ≤ G compact.

Let G be a Lie group and H, K ≤ G be compact subgroups. Given an H-
representation V and a K-representation W , we can consider the space G ×H
I(V,W)where H acts on G by right translation, and onI(V,W)via h.φ � φh−1.
Note that K acts diagonally on G ×H I(V,W) via G and W . We have the
following helpful criterion.

Lemma 7.3.3. An element [g , φ] ∈ G×H I(V,W) is K-fixed if and only if cg(K) ⊆
H and k.φ(v) � φ(cg(k)v) for all k ∈ K and v ∈ V .

Proof. An element [g , φ] ∈ G ×H I(V,W) is K-fixed if and only if [k g , k.φ] �
[g , φ] for all k ∈ K. This means that there exists h ∈ H such that k g � gh
and k.φ � φh for all k ∈ K. In other words g is such that cg(K) ⊆ H and φ is
K-equivariant in the sense that k.φ � φcg(k) for all k ∈ K.

Lemma 7.3.4. Let G be a Lie group and H, K, L ≤ G be compact subgroups. Let V
be an H-representation, W a K-representation and U an L-representation. Then the
map

◦ : (G ×K I(W,U))L × (G ×H I(V,W))K → (G ×H I(V,U))L

given by ([g′, ψ], [g , φ]) 7→ [g′g , ψφ] is well-defined and continuous. Furthermore,
upon varying the objects, the collection of maps so obtained is associative and unital.

Proof. Let us first show that the map does not depend on the chosen represen-
tatives. For h ∈ H and k ∈ K we have [g , φ] � [gh , φh] and [g′, ψ] � [g′k , ψk]
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so we ought to check that [g′g , ψφ] � [g′k gh , ψkφh]. Using that cg(K) ⊆ H
and φ is K-equivariant with respect to the cg-twisted action, we can write

[g′k gh , ψkφh] � [g′g cg(k)h︸ ︷︷ ︸
∈H

, ψkφh] � [g′g , ψkφh(cg(k)h)−1]

� [g′g , ψkφcg (k−1)] � [g′g , ψφ]

as required. We verify that [g′g , ψφ] is K-fixed using the criterion from
Lemma 7.3.3. Using that cg′(L) ⊆ K and cg(K) ⊆ H we immediately see
that cg′g(L) ⊆ H. Using the twisted equivariance of ψ and φ we see that

l.ψφ � ψ cg′(l)︸︷︷︸
∈K

φ � ψφcg(cg′(l)) � ψφcg′g(l)

for all l ∈ L. Therefore ψφ is twisted equivariant and [g′g , ψφ] is indeed
K-fixed. Finally the map is associative, unital and continuous since multipli-
cation and composition maps are so.

We now formally define the∞-category ORG.

Definition 7.3.5. Let G be a Lie group. We define a topological category
ORG whose objects are pairs (H,V) of a compact subgroup H ≤ G and an
H-representation V . The morphism spaces are given by

ORG((H,V), (K,W)) � (G ×H I(V,W))K .

Composition is given by the maps

◦ : ORG((K,W), (L,U)) ×ORG((H,V), (K,W)) → ORG((H,V), (L,U))

defined in Lemma 7.3.4. Note that there is a projection map

ORG((H,V), (K,W)) → (G/H)K � OG,pr(G/K,G/H), [g , φ] 7→ [gH].

which extends to a functor πG : ORG → Oop
G,pr.

Example 7.3.6. Let G � e be the trivial group. Then the topological category
ORG is equivalent to I.

Example 7.3.7. By definition ORG((H,V), (e ,W)) � G ×H I(V,W), which is a
space with an action of

ORG((e ,W), (e ,W)) � G × O(W).

One can identify the functor ORG((H,V), (e ,−)) : I → GT with the free I-G-
space G ×H IV .
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Definition 7.3.8. We let ORG−S denote the∞-category of ORG-spaces, given
by the∞-category of functors ORG → S.

We are finally ready to prove the main result of this subsection.

Theorem 7.3.9. Let G be a Lie group. Then there is an equivalence of∞-categories

I−GT [W−1
lvl] ≃ ORG−S .

Proof. The discussion in Example 7.3.7 shows that there exists a functor of
topological categories (and so of∞-categories)

ORop
G → I−GT , (H,V) 7→ ORG((H,V), (e ,−)) � G ×H IV .

This is fully faithful by definition of ORG. Since the I-G-spaces G ×H IV are
bifibrant in the level model structure, the composite

L : ORop
G → I−GT → I−GT [W−1

lvl], (H,V) 7→ G ×H IV

is also fully faithful. We apply Theorem 6.2.39 to the functor L. We note that
the I-G-space G ×H IV corepresents the functor X 7→ X(V)H . This functor
commutes with small homotopy colimits since:

• the H-fixed points functor preserves small homotopy colimits as dis-
cussed in Example 6.2.40;

• and the evaluation functor X 7→ X(V) preserves small homotopy col-
imits. Indeed this functor preserves all colimits (as they are calculated
pointwise), level equivalences by definition, and (acyclic) cofibrations
(as one can verify by checking on the generating (acyclic) cofibrations).

Finally, the collection of objects {G ×H IV | (H,V) ∈ ORG} is jointly conser-
vative by definition of the level equivalences. Thus the required equivalence
follows from Theorem 6.2.39.

Next we explain how to upgrade the equivalence above to an equivalence of
symmetric monoidal∞-categories.

Construction 7.3.10. We enhance the topological category ORG to a topolog-
ical coloured operad as follows. The colours are simply the objects of ORG,
and the space of multi-morphisms from {(Hi ,Vi)}i∈I to (K,W) is given by

ORG({(Hi ,Vi)}i∈I , (K,W)) �
((∏

i∈I

G

)
×(∏i∈I Hi) I

(⊕
i∈I

Vi ,W

))K

.

By Lemma 7.3.3, a point of this space is equivalent to the following data:
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• For all i ∈ I, an element giHi ∈ G/Hi such that cgi (K) ⊆ Hi ;

• A linear isometry φ �
∑

i φi :
⊕

i Vi →W such that for all v ∈ Vi , k ∈ K
and i ∈ I, k.φi(v) � φi(cgi (k)v).

For every map I → J of finite sets with fibres {I j} j∈ J , every finite collections
of objects {(Hi ,Vi)})i∈I and {(K j ,W j)} j∈ J , and every (L,U) ∈ ORG we have a
composition map∏

j∈ J

ORG({(Hi ,Vi)}i∈I j , (K j ,W j))×ORG({(K j ,W j)} j∈ J , (L,U)) → ORG({(Hi ,Vi)}i∈I , (L,U))

which is defined by the formulas

(
⊕
i∈I j

Vi →W j ,
⊕

j∈ J

W j → U) 7→ (
⊕

i∈I

Vi �
⊕

j∈ J

⊕
i∈I j

Vi →
⊕

j∈ J

W j → U)

and
((giHi)i∈I j , (g jK j) j∈ J) 7→ (g j giHi) j∈ J,i∈I j .

Note that for any colour (H,V) ∈ ORG, there is an identity element [eH, 1V ] ∈
ORG((H,V), (H,V)). Using Lemma 7.3.3 one can check that this composition
is continuous, associative and unital and so that ORG is indeed a topological
coloured operad. We leave the details to the interested reader.

Remark 7.3.11. We can endow the topological category Oop
G,pr with a topo-

logical coloured operad structure whose colours are the objects of OG,pr, and
whose multimorphism spaces are given by

OG,pr({G/Hi}i∈I ,G/K) � OG,pr(G/K,
∏
i∈I

G/Hi) � (
∏
i∈I

G/Hi)K

with composition defined in the obvious way. The associated∞-operad mod-
els the cocartesian monoidal structure. There is a canonical projection functor
of topological coloured operads

πG : ORG → Oop
G,pr.

By Lemma 6.1.1, we can lift πG to a map of ∞-operads OR⊗G → (O
op
G,pr)⨿,

which by abuse of notation we still denote by πG.

Recall that because I−GT is a symmetric monoidal topological model cate-
gory, we can construct a topological coloured operad whose colors are given
by the bifibrant objects of I−GT and the multimorphism spaces are given by

MulN⊗((I−GT ◦)op)({Xi},Y) � I−GT (Y,
⊗

i∈I

Xi).

Furthermore the associated∞-operad models the symmetric monoidal struc-
ture on (I−GT [W−1

lvl])
op.
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Lemma 7.3.12. The functor L of Theorem 7.3.9 lifts to a fully faithful functor of
topological coloured operads.

Proof. We define a functor between coloured operads by

ORG → (I−GT ◦)op , {(Hi ,Vi)} 7→ ORG(
⊗
(Hi ,Vi), (e ,−)).

Using Equation 7.2.6.1 we can rewrite this functor in more familiar terms as

ORG({(Hi ,Vi)}, (e ,−)) � (
∏

i

G) ×(∏i Hi) I(
⊕

i

Vi ,−) ≃
⊗

i

(G ×Hi IVi ).

By construction this functor defines a coloured operad map which lifts L.
Using this description of the functor and the fact that G ×H IW corepresents
the functor X 7→ X(W)K , we also see that the map induced on multimorphism
spaces

ORG({(Hi ,Vi)}i∈I , (K,W)) → I−GT (G ×K IW ,
⊗

i∈I

G ×Hi IVi )

is a homeomorphism. Therefore the functor of coloured operads is fully faith-
ful.

The map L of topological coloured operads constructed above induces a func-
tor L : OR⊗G → (I−GT [W−1

lvl]
⊗)op of ∞-operads. Furthermore this functor is

again fully faithful.

Corollary 7.3.13. The functor L : OR⊗G → (I−GT∗[W−1
lvl]
⊗)op induces a symmetric

monoidal equivalence
I−GT [W−1

lvl] ≃ ORG−S ,
where the right hand side is equipped with the Day convolution product.

Proof. This follows from Corollary 6.2.41, where we argue as in Theorem 7.3.9
and use Lemma 7.3.12.

As a convenient reference, let us summarize the final description of G-pre-
spectrum objects obtained by combining all of the identifications obtained.

Corollary 7.3.14. Let G be a Lie group. Then there is a symmetric monoidal equiva-
lence

PSpG ≃ModSG (ORG−S∗).

Proof. Combine Theorem 7.3.13, Corollary 7.2.22 and Proposition 6.2.38.

Remark 7.3.15. We will often implicitly identify PSpG with ModSG (ORG−S∗)
for the remainder of the paper.
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7.3.2 I-spaces and ORfgl-spaces.

We now undertake a similar analysis for the∞-category of I-spaces localized
at the faithful level equivalences. Because many of the details are similar, we
will be briefer in this section than the previous one.

Definition 7.3.16. We define a topological category ORfgl whose objects
are pairs (G,V) where G is a compact Lie group and V is a faithful G-
representation. The morphism spaces are given by

ORfgl((G,V), (H,W)) � (I(V,W)/G)H .

There is a composition map

◦ : ORfgl((H,W), (L,U)) ×ORfgl((G,V), (H,W)) → ORfgl((G,V), (L,U))

given by ([ψ], [φ]) 7→ [ψ ◦ φ]. Similarly to Lemma 7.3.4, one may verify this
composition is well-defined, associative, unital and continuous.

Example 7.3.17. By definition ORfgl((G,V), (e ,W)) � I(V,W)/G. Thus we
can identify the functor

ORfgl((G,V), (e ,−)) : I → T

with the semifree I-space IG,V from Construction 7.2.15. Recall this I-space
corepresents the functor X 7→ X(V)G.

Definition 7.3.18. We let ORfgl−S denote the ∞-category of ORfgl-spaces
which is the ∞-category of functors ORfgl → S. We also write ORfgl−S∗ for
the∞-category of functors ORfgl → S∗.

We now prove the main result of this subsection.

Theorem 7.3.19. There is an equivalences of∞-categories

I−T [W−1
f−lvl] ≃ ORfgl−S .

Proof. The discussion in Example 7.3.17 shows that there exists a functor of
topological categories (and so of∞-categories)

(ORfgl)op → I−T , (G,V) 7→ ORfgl((G,V), (e ,−)) � IG,V .

This is fully faithful by definition of ORfgl. Since the I-spaces IG,V are bifibrant
in the faithful level model structure, the composite

(ORfgl)op → I−T → I−T [W−1
f−lvl]

is also fully faithful. We note that the semifree I-space IG,V corepresents
the functor X 7→ X(V)G, which commutes with small homotopy colimits.
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Indeed the G-fixed points functor commutes will small homotopy colim-
its by the discussion in Example 6.2.40, and so does the evaluation functor
X 7→ X(V) since it preserves all colimits (as they are calculated pointwise),
faithful level equivalences by definitions and cofibrations (as one can verify
by checking on the set of generating cofibrations). Finally, the collection of
objects {IG,V | (G,V) ∈ ORfgl} is jointly conservative by definition of the
faithful level equivalences. Thus the claimed equivalence follows by applying
Theorem 6.2.39.

We now discuss how the symmetric monoidal structure on I−T c[W−1
f−lvl]

translates to ORfgl−S∗.

Lemma 7.3.20. The topological category ORfgl is symmetric monoidal with unit
object (e , 0) and tensor product given by (G,V) ⊗ (H,W) � (G × H,V ⊕ W). In
particular, the ∞-category of ORfgl-spaces admits a symmetric monoidal structure
given by Day convolution.

Proof. The first claim is a straightforward verification. The second claim then
follows from Corollary 6.2.29.

Write OR⊗fgl for the ∞-operad associated to symmetric monoidal topological
category ORfgl.

Lemma 7.3.21. The functor Lgl : ORfgl → (I−T [W−1
f−lvl])

op given by (G,V) 7→
IG,V lifts to a fully faithful symmetric monoidal functor

Lgl : ORfgl → (I−T [W−1
f−lvl])

op

of∞-categories.

Proof. It suffices to observe that Equation (7.2.15.1) implies that Lgl : ORfgl →
I−T is a strong monoidal functor.

Corollary 7.3.22. There is a symmetric monoidal equivalence

I−T [W−1
lvl] ≃ ORfgl−S ,

where the right hand side is symmetric monoidal via Day convolution.

Proof. This follows from Corollary 6.2.41, where we argue as in Theorem 7.3.19
and use Lemma 7.3.21.

Summarizing all of the identifications made, we have the following descrip-
tion of the symmetric monoidal∞-category of faithful global prespectra.
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Corollary 7.3.23. Let G be a Lie group. Then there is a symmetric monoidal equiva-
lence

PSpfgl ≃ModSfgl(ORfgl−S∗).

Proof. Combine Corollary 7.2.22, Theorem 7.3.22 and Proposition 6.2.38.

Remark 7.3.24. We will often implicitly identify PSpfgl with ModSfgl(ORfgl−S∗).

7.4 FUNCTORIALITY OF EQUIVARIANT PRESPECTRA

The goal of this section is to construct a functor PSp• : Gloop → Cat⊗∞ sending a
compact Lie group G to the symmetric monoidal∞-category of G-prespectra
of Definition 7.2.18, and to compute its (partially) lax limit. By Corollary 7.3.14,
the∞-category of G-prespectra can be identified with the category of modules
over a certain object SG in ORG−S∗. Therefore our first step is to construct a
functor sending a compact Lie group G to the∞-category ORG−S∗.
In the unstable case we observed that the relevant functoriality was induced by
the functoriality of the partial slices Orb/G in Glo. Formally, the functoriality
of the categories ORG−S∗ is induced by a (pro)functoriality of the categories
ORG, and we will see that this is once again given by "passing to the slices"
of a global analogue ORgl of the individual equivariant categories ORG. The
category ORgl will be fibred over Glo and its objects will consist of pairs
(G,V), where G is a compact Lie group and V is an arbitrary G-representation.
Furthermore we will see that restricting to faithful representations, we recover
ORfgl.

Construction 7.4.1. Let G,H be compact Lie groups and V and W be orthog-
onal G and H-representations respectively. We equip the topological space

Hom(H,G) × I(V,W)
with the right G-action and the left H-action given by

(α, φ) · g � (cgα, φg−1) and h · (α, φ) � (α, hφα(h)−1) .
Since the G and H-actions commute, there is a residual G-action on the fixed
points (Hom(H,G) × I(V,W))H . By definition, the fixed points space can be
characterized as the space of pairs (α, φ) where α : H → G is a Lie group
homomorphism and φ : V → W is an H-equivariant isometry (where H
acts on V via α). If K is another compact Lie group and U is an orthogonal
K-representation, we define a composition map

(Hom(H,G)×I(V,W))H×(Hom(K,H)×I(W,U))K → (Hom(K,G)×I(V,U))K

via the assignment (α, φ) · (β, ψ) � (αβ, φψ). This is compatible with the
various actions, so that it induces an associative and unital composition map
on the respective action groupoids:

Hom(H,G) × I(V,W))H�G×(Hom(K,H)×I(W,U))K�H → (Hom(K,G)×I(V,U))K�G .
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Definition 7.4.2. Let ORgl be the topological category whose objects are
pairs (G,V) where G is a compact Lie group and V is an orthogonal G-
representation. Its morphism spaces are defined to be

ORgl((G,V), (H,W)) � |(Hom(H,G) × I(V,W))H � G |

where | − �G | is the geometric realization of the action groupoid of G on
I(V,W) (as in Definition 7.1.1). As in Lemma 7.3.20, one sees that ORgl admits
a symmetric monoidal structure given by (G,V) ⊗ (H,W) ≃ (G × H,V ⊕W).
We write OR⊗gl for the associated∞-operad.

The next result tells us that the ∞-category ORfgl from Definition 7.3.16 is
equivalent to the subcategory of ORgl spanned by the faithful representations.

Lemma 7.4.3. Let C be the symmetric monoidal subcategory of ORgl spanned by
(G,V) where V is a faithful G-representation. Then there is a symmetric monoidal
functor of topological categories C → ORfgl sending (G,V) to (G,V), which in-
duces a homotopy equivalence on mapping spaces (and so it is an equivalence of the
underlying∞-categories).

Proof. The functor is the identity on objects, so it suffices to define it on
mapping spaces. For any (G,V), (H,W) ∈ C, let us consider the map

p : (Hom(H,G) × I(V,W))H → (I(V,W)/G)H

sending (α, φ) to [φ]. We claim that this map exhibits the target as the quotient
of the source by G. Firstly, note that the map is G-equivariant. Let us show
that its fibres are exactly the G-orbits. Suppose we have a point [φ] in the
target and let us choose a representative φ : V → W . Then we know that for
every h ∈ H h · [φ] � [hφ] � [φ]. Then necessarily there exists α(h) ∈ G such
that hφ � φα(h)−1. Note that the element α(h) is unique since V is a faithful
G-representation. Then the map h 7→ α(h) is a Lie group homomorphism
and its graph is closed in H × G (since it is a fibre of the continuous map
H ×G→ I(V,W) sending (h , g) to hφg−1), so it is continuous. Then it is clear
that (α, φ) is a preimage of [φ], and so p is surjective.
On the other hand, if (α, φ) and (α′, φ′) have the same image under p, then
there is some g ∈ G so that φ′ � φg. A simple computation as before shows
that this forces α′ � cgα (since the G-action on I(V,W) is faithful, α′ is
determined by φ′). Moreover, the action of G on (Hom(H,G) × I(V,W))H is
free and proper, and so p is a principal G-bundle. In particular it induces a
natural equivalence of topological groupoids

(Hom(H,G) × I(V,W))H � G ≃ (I(V,W)/G)H

and so a homotopy equivalence��(Hom(H,G) × I(V,W))H � G
�� ≃ (I(V,W)/G)H
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Finally, it is easy to check that p is compatible with composition and sends the
identity to the identity. Therefore it induces an equivalence of ∞-categories
C → ORfgl. We leave to the reader to check that the above can be given the
structure of a symmetric monoidal equivalence.

Remark 7.4.4. There is a pair of functors of topological categories

s0 : Gloop → ORgl , πgl : ORgl → Gloop

given by s0(G) � (G, 0) and πgl(G,V) � G on objects. Note that s0 and
πgl are both symmetric monoidal, where Glo is symmetric monoidal under
the cartesian product (and therefore Gloop is equipped with the cocartesian
symmetric monoidal structure). This implies that the functors πgl and s0
lift to maps of ∞-operads πgl : OR⊗gl → (Gloop)⨿ and s0 : (Gloop)⨿ → OR⊗gl
respectively.

Lemma 7.4.5. Let {(Gi ,Vi)}, (H,W) be objects of OR⊗gl, and consider the map

πgl : MulORgl({(Gi ,Vi)}, (H,W)) →MulGloop({Gi},H).

The homotopy fibre of this map over a group homomorphism α : H → ∏
i Gi ∈

(Gloop)⨿ is equivalent to the space of H-equivariant isometries
⊕

i Vi → W where
H acts on

⊕
i Vi via α.

Proof. Put V �
⊕

i Vi and G �
∏

i Gi so that α : H → G and we can rewrite
the map induced by πgl as

MapORgl
((G,V), (H,W)) →MapGloop(G,H) � MapGlo(H,G).

We recall from Proposition 7.1.3 that the G-space Hom(H,G) decomposes as
a disjoint union of orbits

Hom(H,G) ≃
⨿
(α)

G/C(α),

where α is a conjugacy class of homomorphisms and C(α) is the centralizer
of the image of α. Therefore we have a decomposition

MapORgl
((G,V), (H,W)) ≃

(
(Hom(H,G) × I(V,W))H

)
hG ≃

⨿
(α)

I(V,W)HhC(α) ,

depending on the choice of an α in each conjugacy class. This lies above the
decomposition

MapGlo(H,G) ≃
⨿
(α)

BC(α)

from Proposition 7.1.3 via the canonical maps I(V,W)H → ∗. Therefore the
homotopy fibre over α is precisely I(V,W)H .
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Lemma 7.4.6. The functor πgl : OR⊗gl → (Gloop)⨿ is a cocartesian fibration, and
therefore exhibits OR⊗gl as a (Gloop)⨿-monoidal∞-category.

Proof. Consider {(Gi ,Vi)}i∈I ∈ OR⊗gl, and let us set V �
⊕

i Vi and G �
∏

i Gi

so that V is naturally a G-representation. Since πgl is a map of ∞-operads,
it is enough to find cocartesian lifts over active morphisms whose target is
in Gloop. A multimorphism from {Gi} to H in (Gloop)⨿ is the datum of a
continuous group homomorphism α : H → G. Consider the multimorphism
f ∈ OR⊗gl({(Gi ,Vi)}, (H, α∗V)) lying over the map α which is represented by
the element

[α, 1V ] ∈ |(Hom(H,G) × I(V, α∗V))H � G |.
We claim that this is a cocartesian edge. This follows from the fact that for all
(L,W) ∈ OR⊗gl, the square

MulORgl((H, α∗V), (L,W)) MulORgl({(Gi ,Vi)}, (L,W))

MulGloop(H, L) MulGloop({Gi}, L)

f ∗

πgl πgl

α∗

is a homotopy pullback of spaces. We can verify this by checking that the
vertical fibres are equivalent. This is now a consequence of Lemma 7.4.5.

Definition 7.4.7. We define Rep: Gloop → Cat⊗∞ to be the functor correspond-
ing to OR⊗gl under the equivalence of Proposition 6.4.5.

Remark 7.4.8. Rep(G) is the ∞-category corresponding to the topologically
enriched category with objects V a G-representation, and morphism spaces
Rep(V,W) � I(V,W)G, the space of G-equivariant linear isometries from V to
W . This is a symmetric monoidal category via direct sum. The functoriality in
Glo is given by restriction of representations along group homomorphisms.

Recall from Remark 7.3.11 that there is a map of ∞-operads πG : OR⊗G →
(Oop

G,pr)⨿. Also note that there is a canonical functor OG,pr → Glo which sends
an object G/H to H and acts as

OG,pr(G/H,G/K) ≃ {g ∈ G | cg(H) ⊆ K}hK → hom(H, K)hK , g 7→ [cg : H → K].

This is an immediate generalization of the functor used in Lemma 7.1.12 to
(not necessarily compact) Lie groups. We denote the opposite of this functor
by ιG. It induces a map of cocartesian∞-operads which we denote by ι⨿G . We
are now ready to state the next result.
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Lemma 7.4.9. Let G be a Lie group. Then there is a canonical map of ∞-operads
νG : OR⊗G → OR⊗gl and a cartesian square of∞-operads

OR⊗G OR⊗gl

(Oop
G,pr)⨿ (Gloop)⨿.

νG

πG πgl

ι⨿G

Proof. It will suffice to construct the map νG at the level of topological coloured
operads and then apply Lemma 6.1.1. Recall from Definition 7.3.5 that

ORG((H,V), (K,W)) � (G ×H I(V,W))K

where G ×H I(V,W) is the quotient of G × I(V,W) by the right H-action
(g , φ) · h � (gh , φh). Since the H-action is free, we can identify the quotient
with the homotopy quotient (see [K1̈8, Theorem A.7] for example) and so
there is a canonical identification

ORG((H,V), (K,W)) � |(G × I(V,W))K � H |

that respects composition. Moreover under this identification, the multilinear
spaces of the coloured operad structure are given by

ORG({(Hi ,Vi)}i , (K,W)) � |(
∏

i

G × I(
⊕

i

Vi ,W))K � ∏
Hi |.

Therefore we may define a functor of topological coloured operads ORG →
ORgl by sending (H,V) to (H,V) and on the multimorphism spaces we take
the map which is induced by the map of topological groupoids

(
∏

i

G×I(
⊕

i

Vi ,W))K �∏
i

Hi → (Hom(K,
∏

i

Hi)×I(
⊕

i

Vi ,W))K �∏
i

Hi

which sends ({gi}, φ) to ((cgi |K)i , φ). A tedious but simple calculation shows
that these maps respect composition. This defines a map νG : OR⊗G → OR⊗gl
as required.
Another tedious calculation shows that the square in the lemma commutes
(already as a square of topological operads) and that it is a pullback on 0-
vertices. Therefore it is enough to show that every induced square

MulORG ({(Hi ,Vi)}, (K,W)) MulORgl({(Hi ,Vi)}, (K,W))

MulOop
G,pr
({G/Hi},G/K) MulGloop({Hi}, K)

πG

νG

πgl

ιG
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of multimorphism spaces is a homotopy pullback. It suffices to check that the
vertical homotopy fibres are equivalent. A morphism φ : G/K → ∏

G/Hi in
OG,pr amounts to giving elements gi ∈ G such that cgi (K) ⊆ Hi . The homotopy
fibre of πG over φ is given by the space of K-equivariant isometries

⊕
i Vi →

W where K acts on each Vi via cgi . The map ιG sends φ to (cgi : K → Hi) and
the homotopy fibre over this is again the space of K-equivariant isometries
as above by Lemma 7.4.5. As the vertical homotopy fibres are equivalent, the
square is a pullback of∞-operads.

We write Arinj(Glo) for the full subcategory of Ar(Glo) spanned by the injective
group homomorphisms.

Definition 7.4.10. We define OR⊗ via the following pullback of∞-operads

OR⊗ OR⊗gl

(Arinj(Glo)op)⨿ (Gloop)⨿.

πinj πgl

sop

Thus an object of OR, the underlying ∞-category of OR⊗, is a pair (α : H →
G,V)where α is injective and V is a H-representation.

Lemma 7.4.11. The composition

π : OR⊗
πinj−−→ (Arinj(Glo)op)⨿ top

−−→ (Gloop)⨿

gives OR⊗ the structure of a (Gloop)⨿-promonoidal∞-category, whose operadic fibre
over G is exactly OR⊗G .

Proof. We will show that each of the two maps in the defining composite is
promonoidal in turn. Note that both are maps of ∞-operads. The map πinj
is a pullback of a cocartesian fibration, and therefore again cocartesian. The
second map is then promonoidal by Example 6.2.7.
Finally we note that the operadic fibre of top over G is (Oop

G )⨿ by Lemma 7.1.12
and the observation that (−)⨿ preserves pullbacks. Therefore, the calculation
of the operadic fibre follows from Lemma 7.4.9 and the observation that the
composite (Oop

G )⨿ → (Arinj(Glo)op)⨿ top
−−→ (Gloop)⨿ is equivalent to ι⨿G .

Because π is a promonoidal category over (Gloop)⨿ with operadic fibre OR⊗G,
morally it represents a profunctor of promonoidal ∞-categories. Therefore
we can extract an honest symmetric monoidal functor by taking copresheafs.
This will be the functor Gloop → Cat⊗∞ sending G to ORG−S∗.
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Definition 7.4.12. The Day convolution FunGloop(OR⊗ , S∧∗ × (Gloop)⨿)Da y is a
(Gloop)⨿-monoidal∞-category, whose operadic fibre over G ∈ Glo equals

FunGloop(OR⊗ , S∧∗ × (Gloop)⨿)Da y ×(Gloop)⨿ Fin∗ ≃ Fun(OR⊗ ×(Gloop)⨿ Fin∗ , S∧∗ )Da y

≃ ORG−S∗

by Example 6.4.7 and Lemma 7.4.11. We define OR•−S∗ : Gloop → Cat⊗∞ to
be the functor associated to it under the equivalence of Proposition 6.4.5.

Lemma 7.4.13. Let OR be the underlying category of the∞-operad OR⊗. Then the
projection map

π : OR→ Gloop

is cartesian over Orbop, and an edge (σ, ϕ) ∈ OR is π-cartesian if and only if sop(σ)
and ϕ are equivalences.

Proof. Suppose we have an injection α : H → G, and an object (β : K →
H,V) ∈ OR. As noted before, the map top : Arinj(Glo)op → Gloop is a cartesian
fibration. Furthermore over an injection α : H → G, cartesian lifts with target
β : K → H are given by squares σ

K K

G H.

αβ β

∼

α

In particular, we note that cartesian lifts of injections are sent to equivalences
by the source functor sop : Arinj(Glo)op → Gloop. Lifting sop(σ) to an equiva-
lence ϕ ∈ ORgl with target (K,V), we obtain an edge (σ, ϕ) which lies over
α and ends at (β,V). Because both components of the edge (σ, ϕ) in OR are
π-cartesian, the edge (σ, ϕ) is itself π-cartesian. This shows that there are
enough cartesian edges in OR over injections, and that they are exactly of the
form claimed.

Lemma 7.4.14. The projection map

OR⊗ → OR⊗gl

induces a fully faithful symmetric monoidal functor

ORgl−S∗ → OR−S∗

via restriction, with essential image those functors F : OR→ S∗ that send cartesian
arrows over Orbop to equivalences.
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Proof. Recall from Lemma 7.1.8 that the source projection Arinj(Glo) → Glo
has a fully faithful left adjoint Glo → Arinj(Glo) given by the diagonal em-
bedding. Therefore, by the functoriality of the cocartesian operad [Lur16,
Proposition 2.4.3.16], it follows that the source projection

(Arinj(Glo)op)⨿ → (Gloop)⨿

has a fully faithful operadic right adjoint. Since Bousfield localizations are
stable under basechange, it follows that the projection

OR⊗ → OR⊗gl

again has a fully faithful operadic right adjoint. Therefore OR → ORgl is
a Bousfield localization on underlying ∞-categories and moreover the fully
faithful functor

ORgl−S → OR−S∗
is symmetric monoidal by Proposition 6.2.34(b). Finally, because OR→ ORgl
is a Bousfield localization, the essential image of the functor Fun(ORgl , S∗) →
Fun(OR, S∗) is given by those functors which send the edges inverted by the
map OR→ ORgl to equivalences. But these are exactly the cartesian arrows
over the injections by Lemma 7.4.13.

Lemma 7.4.15. There are symmetric monoidal equivalences

laxlim
G∈Gloop

ORG−S∗ ≃ OR−S and laxlim†
G∈Gloop

ORG−S∗ ≃ ORgl−S∗

where the lax limit is marked over the subcategory Orb ⊆ Glo of all objects and
injective maps.

Proof. By Proposition 6.4.8 there is a symmetric monoidal equivalence

laxlim
G∈Gloop

ORG−S∗ ≃ Np FunGloop(OR⊗ , S∧∗ × (Gloop)⨿)Da y

where p : (Gloop)⨿ → Fin∗ is the structure morphism of (Gloop)⨿. Applying
the formula of Day convolution twice (see Definition 6.2.12), and the transi-
tivity of norms of operads, we obtain

laxlim OR•−S∗ ≃ Np Nππ
∗(S∧∗ × (Gloop)⨿)

≃ Nπp(π∗p∗S∧∗ )
≃ Fun(OR⊗ , S∧∗ )Da y

� OR−S∗

To compute the partially lax limit we appeal to Remark 6.4.2 to reduce to a state-
ment on underlying categories. Combining Remarks 6.2.11 and 6.4.9, we con-
clude that the underlying∞-category of the∞-operad Np FunGloop(OR⊗ , S∧∗ ×
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(Gloop)⨿)Da y is given by sections of the cocartesian fibration π∗π∗(S∗ ×Gloop),
where by slight abuse of notation we write π � U(π). Therefore we may
calculate

Fun/Gloop(Gloop , π∗π
∗(S∗ ×Gloop)) ≃ Fun/Gloop(OR, S∗ ×Gloop) ≃ Fun(OR, S∗)

using the definition of the left adjoints π∗ and π!. Now by Theorem 6.3.9
the partially lax limit of the diagram in question is given by the full subcate-
gory of the left-most category spanned by those sections which map edges in
Orbop to cocartesian arrows. We now apply [Lur09, Corollary 3.2.2.13] (with
p : OR ×Gloop Orbop → Orbop, q : S∗ × Orbop → Orbop and T � π∗π∗(S∗ ×
Gloop) ×Gloop Orbop) together with Lemma 7.4.13, to see that these sections
corresponds to those functors in Fun/Gloop(OR, S∗ × Gloop) which send carte-
sian edges over Orbop to cocartesian edges of S∗ × Orbop → Orbop. These
are exactly those maps which are equivalences in the first component, and
therefore such sections corresponds to functors F : OR → S∗ which map
cartesian edges over Orb to equivalences. Therefore we conclude by applying
Lemma 7.4.14.

Proposition 7.4.16. There exists a functor PSp• : Gloop → Cat⊗∞ sending G to
PSpG. Moreover, there is a symmetric monoidal equivalence

laxlim†
G∈Gloop

PSpG ≃ModSgl (ORgl−S∗).

Proof. There is a lax symmetric monoidal topologically enriched functor
Sgl : ORgl → S∗ sending (G,V) to (SV )G. This induces a lax symmetric
monoidal functor of ∞-operads, which uniquely specifies a commutative
algebra in OR−S∗ by [Lur16, Example 2.2.6.9], where we view ORgl−S∗ as
a symmetric monoidal subcategory of OR−S∗ using Lemma 7.4.14. Applying
Theorem 6.4.10 to the lax limit of Lemma 7.4.15 shows that there is a functor
sending G to ModSG (ORG−S∗) ≃ PSpG (see Corollary 7.3.14) whose lax limit
is ModSgl (OR−S∗).
Finally, we have to calculate the subcategory corresponding to the partially
lax limit. Because the natural transformation PSpG → ORG−S∗ is point-wise
conservative, we can check that an object lies in the partial lax limit of PSpG
by checking that its image lies in the partially lax limit of ORG−S∗. In other
words, we have a pullback square of symmetric monoidal∞-categories

laxlim†G PSpG laxlimG PSpG

laxlim†G ORG−S∗ laxlimG ORG−S∗ .
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Therefore, by Lemma 7.4.15 and the previous paragraph we have a symmetric
monoidal equivalence

laxlim†
G∈Gloop

PSpG ≃ModSgl (Fun(OR, S∗)) ×Fun(OR,S∗) Fun(ORgl , S∗)

Finally, since Sgl ∈ Fun(ORgl , S∗) this implies that

laxlim†
G∈Gloop

PSpG ≃ModSgl (ORgl−S∗) .

Notation 7.4.17. We write PSp†gl for the ∞-category ModSgl (ORgl−S∗), and
identify it with laxlim† PSp•.

Recall the definition of the diagram S• : Gloop → Cat⊗∞ given in Construc-
tion 7.1.15, which sends a group G to the∞-category of G-spaces. We would
like to construct a natural transformation Σ∞ : S• → PSp•, whose component
at G is given by an analogue of the suspension prespectrum functor. Morally,
this sends a G-space X to the SG-module (H,V) 7→ (X ∧ SV )H . We make this
precise in the next construction. Let us first fix some notation; we write S•,∗
for the composite (−)∗ ◦ S• of S• with the functor which sends a presentably
symmetric monoidal category to the∞-category of pointed objects.

Construction 7.4.18. We will construct natural transformations of functors
Gloop → Cat⊗∞

S• → S•,∗ → PSp•

The first natural transformation is simply given by postcomposing S• with
the natural transformation (−)+ : id→ (−)∗ of functors (PrL)⊗ → (PrL)⊗.
For the second natural transformation, we will construct it as a composite

S•,∗ → OR•−S∗ → PSp•.

For the latter transformation OR•−S∗ → PSp•, we simply note that the free
module functors

SG ⊗ − : ORG−S∗ →ModSG (ORG−S∗) ≃ PSpG

are symmetric monoidal and fit into a natural transformation by the second
half of Theorem 6.4.10.
For the first, it will be technically convenient to construct the natural trans-
formation S∧•,∗ → OR•−S∗ as a map of (Gloop)⨿-monoidal ∞-categories and
then to use Proposition 6.4.5.
For this, we need to pin down the (Gloop)⨿-monoidal ∞-category which
corresponds to S•,∗ under Proposition 6.4.5. Note that the map

top : (Arinj(Glo)op)⨿ → (Gloop)⨿
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exhibits Arinj(Glo)op as a (Gloop)⨿-monoidal category, see Example 6.2.7. We
claim that S•,∗ corresponds to the Day convolution

FunGloop((Arinj(Glo)op)⨿ , S∧∗ × (Gloop)⨿)Da y .

To see this, we first note that

FunGloop((Arinj(Glo)op)⨿ , S× × (Gloop)⨿)Da y

classifies S×• , because it does so on underlying categories (combine Remark
6.2.11 and [GHN17, Proposition 7.3]) and the forgetful functor Cat⊗∞ → Cat∞
is faithful when restricted to cartesian monoidal ∞-categories. Now we ob-
serve that the (Gloop)⨿-monoidal functor

((−)+)∗ : FunGloop(Arinj((Gloop)⨿ , S××(Gloop)⨿)Da y → FunGloop(Arinj((Gloop)⨿ , S∧∗ ×(Gloop)⨿)Da y

agrees pointwise with (−)+, and therefore by the universal property of taking
pointed objects (see [Lur16, Proposition 4.8.2.11]) FunGloop(Arinj((Gloop)⨿ , S∧∗ ×
(Gloop)⨿)Da y must classify S•,∗.
Now we can construct the (Gloop)⨿-monoidal functor which will induce
S•,∗ → OR•−S∗. Pulling back the functor s0 of Remark 7.4.4 along top we
obtain a commutative diagram

Arinj(Glo)op)⨿ OR⊗

(Gloop)⨿
top

s0,inj

π

where top and π exhibit the sources as (Gloop)⨿-promonoidal ∞-categories
by Lemma 7.4.11, so that s0,inj is a map of (Gloop)⨿-promonoidal∞-categories.
One can then verify that s0,inj satisfies the hypotheses of Proposition 6.2.34(a),
and there exists a (Gloop)⨿-monoidal functor

(s0,inj)! : FunGloop((Arinj(Glo)op)⨿ , S∧∗ ×(Gloop)⨿)Da y → FunGloop(OR⊗ , S∧∗ ×(Gloop)⨿)Da y

which then induces the required natural transformation. This description
shows as well that the component at G coincides with I0, and so the compos-
ite functor SG,∗ → PSpG is analogous to the usual suspension prespectrum
functor F0(−). We will formulate a precise statement to this effect as Proposi-
tion 7.5.5.

7.5 FUNCTORIALITY OF EQUIVARIANT SPECTRA

In the previous section we have constructed the functor

PSp• : Gloop → Cat⊗∞ ,



CHAPTER 7. GLOBAL OBJECTS VIA PARTIALLY LAX LIMITS 158

and calculated its partially lax limit. In this section we will show that this
functor descends to a diagram Sp• where on every level we restrict to the sub-
category of spectrum objects. Furthermore, we will prove that the functorial-
ity obtained in this way agrees with the standard functoriality of equivariant
spectra under the restriction-inflation functors. Finally, we will compute the
partially lax limit of Sp• as a Bousfield localization of PSp†gl � laxlim† PSp•.
Given a continuous group homomorphism α : H → G between compact Lie
groups, we write

α∗ : ORG−S∗ → ORH−S∗
for the symmetric monoidal functor induced by α. Our goals require a better
understanding of α∗. We start by studying the interaction between α∗ and the
Quillen adjunction of Construction 7.2.6

IV : GT ⇆ I−GT : evV

for a given G-representation V . However before we do this, we first need
to understand how these adjunctions manifest themselves under the equiva-
lences

SG ≃ OG−S and ORG−S ≃ I−GT

of Example 6.2.40 and Theorem 7.3.9.

Remark 7.5.1. Consider X ∈ I−GT and a G-representation V . Then the G-
space X(V) corresponds to the presheaf

G/H 7→ X(V)H ≃MapI−GT (G ×H IV |H ,X) .

Note that G ×H IV |H is the image of (H,V |H) under the embedding L of
Theorem 7.3.9. Therefore, if we let sV : Oop

G → ORG be the cocartesian section
of πG sending G/G to (G,V), we have s(G/H) ≃ (H,V |H), so we can identify
evV with

s∗V : ORG−S → SG X 7→ X ◦ sV

and similarly for the pointed version. It follows that the derived functor
associated to IV is given by the left Kan extension functor (sV )!. Finally, we
can compute that this is given by

(IV X)(H,W) ≃ I(V,W)H × XH ,

by the following Lemma.

Lemma 7.5.2. Let π : E → B be a cocartesian fibration of∞-categories and s : B→
E be a cocartesian section. For every functor F : B → C where C is a cocomplete
∞-category, we can compute the left Kan extension along s by

(s!F)(e) ≃Mapπ−1(πe)(sπ(e), e) × F(π(e))

for all e ∈ E.
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Proof. By the usual formula for left Kan extensions we have that

(s!F)(e) ≃ colim
b∈B×EE/e

F(b) .

We claim that the projection B ×E E/e → B/πe is a left fibration with fibre over
f : b → πe given by Map f

E (s(b), e). In particular, since F is constant along the
fibres of this fibration and B/πe has a final object, we have

colim
b∈B×EE/e

F(b) ≃ colim
[ f : b→πe]∈B/πe

Map f
E (s(b), e) × F(b)

≃Mapπ−1(πe)(sπ(e), e) × F(π(e)) .

It only remains to prove that the functor B ×E E/e → B/πe is a left fibration.
That is, we need to show that for every diagram

Λn
i B ×E E/e

∆n B/πe

with 0 ≤ i < n there exists a dotted arrow completing the diagram. Using the
definition of slice ∞-categories, this is equivalent to finding a dotted arrow
completing the dotted diagram

Λn
i ⋆∆

0 E

∆n ⋆∆0 ≃ ∆n+1 B

F

π

G

where F restricted toΛn
i ⊆ Λn+1

i is given by the restriction of sG. This diagram
is a diagram of marked simplicial sets when we give B the total marking, E
the cocartesian marking and on the left column the marking (Λn

i )♯ ⋆ ∆0 →
(∆n)♯ ⋆ ∆0. Since the left vertical arrow is left marked anodyne by [Sha18,
Lemma 4.10], the lift exists.

Having understood the adjunction IV ⊣ evV , we now discuss how this inter-
acts with the functor α∗.

Proposition 7.5.3. Let us fix an arrow α : H → G in Glo.

1. Given a pointed G-space X, there is a natural equivalence

α∗IV X ≃ Iα∗V (α∗X)



CHAPTER 7. GLOBAL OBJECTS VIA PARTIALLY LAX LIMITS 160

2. Given a pointed ORG-space Y, there is a natural equivalence

α∗evV Y ≃ evα∗Vα∗Y

3. Under the two previous identifications, the counit natural transformation

IVevV X → X

is sent by α∗ to
Iα∗Vevα∗V(α∗X) → α∗X

the counit natural transformation for α∗V applied to α∗X.

Proof. Write Oα ≃ Arinj(Glo) ×Glo [1] (using the target map t : Arinj(Glo) →
Glo) and let i0 : OH → Oα, i1 : OG → Oα be the inclusions of the fibres over 0
and 1 respectively. Similarly, write ORα for the pullback ORgl ×Gloop Oop

α and
j0 , j1 : ORH ,ORG → ORα for the inclusion of the fibre of ORα → [1]op over 0
and 1 respectively.
By Remark 6.2.23 we can identify

α∗ ≃ i∗0(i1)! : SG,∗ → SH,∗ α∗ ≃ j∗0( j1)! : ORG−S∗ → ORH−S∗ .

Let sV : Oop
G → ORG be the cocartesian section of πG : ORG → Oop

G which
sends G/G to (G,V). Similarly let s : Oop

α → ORα be the cocartesian section
sending the initial object i1(G/G) of Oop

α to j1(G,V). Then s restricts to sV on
Oop

G and to sα∗V on Oop
H , since a cocartesian section is determined by where it

sends the initial object. Therefore by Remark 7.5.1 we obtain

α∗IV X ≃ α∗(sV )!X ≃ j∗0( j1sV )!X ≃ j∗0s!(i1)!X

for every pointed G-space X. Using the formula for s! described in Lemma 7.5.2
we see that the above can be identified with (sα∗V )!i∗0(i1)!X, thus proving the
first statement.
Now let Y be an ORG-space. Then we claim that s∗( j1)!Y is left Kan ex-
tended from Oop

G . In fact this happens if and only if s∗( j1)!Y sends the arrows
(G, αL) → (H, L) in Oop

α to equivalences. But the arrow

[s(G, αL) → s(H, L)] ≃ [(G, αL,V) → (H, L, α∗V)]

is a terminal object of ORG ×ORα (ORα)/(H,L,α∗V) and so it is sent to an equiva-
lence by ( j1)!Y. This implies that

evα∗Vα∗Y ≃ s∗α∗V ( j1)!Y ≃ j∗0s∗( j1)!Y ≃ j∗0( j1)!(sV )∗Y ≃ α∗evV Y,

proving the second statement.
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Finally we consider for every ORG-space Y, the natural transformation

s!s∗( j1)!Y → ( j1)!Y,

and note that this is a natural transformation of functors left Kan extended
from ORG, which restricts to

(sV )!s∗V Y → Y and (sα∗V )!s∗α∗Vα∗Y → α∗Y

on the fibres over 0 and 1 respectively. Thus α∗ sends the former to the latter,
showing the third statement.

With this result we can show that PSp• restricts to a functor on spectrum
objects.

Proposition 7.5.4. There exists a functor Sp• : Gloop → Cat⊗∞ and a natural
transformation of functors

L• : PSp• → Sp•
whose component for a fixed G is the spectrification functor LG : PSpG → SpG.

Proof. Consider a group homomorphism α : H → G. We claim that the func-
tor PSpα : PSpG → PSpH preserves stable equivalences. It suffices to show
that it preserves the generating equivalences G ⋊K λV,W of Proposition 7.2.30.
Moreover, since G is compact, we can restrict to the cofinal set W of K-
representations that are extended from G.
First note that λV,W ≃ (G⋊K FV (S0))⊗λ0,W . Since PSpα is symmetric monoidal
by construction and stable equivalences are stable under tensor product, it
suffices to show that PSpα(λ0,W ) is a stable equivalence. We claim it is equiv-
alent to λ0,α∗W . In fact λ0,W is exactly the counit of the adjunction FW ⊣ evW
of Construction 7.2.28 applied to SG. Therefore we can factor it as

(FWevW )SG ≃ (SG ⊗ −)IWevW USG → (SG ⊗ −)USG → SG

where (SG⊗−) ⊣ U is the free-forgetful adjunction between PSpG and ORG−S∗,
and the arrows are the counits of the respective adjunctions. Then our claim
follows from Theorem 6.4.10 and Proposition 7.5.3.
Knowing that PSpα preserves stable equivalences, we can combine Construc-
tion 7.4.18 and Corollary 6.3.14, to obtain Sp• and the natural transformation
L• : PSp• → Sp•.

Recall that we constructed a natural transformation Σ∞• : S•,∗ → PSp• in Con-
struction 7.4.18, which pointwise was our analogue of the suspension pre-
spectrum functor. We may compose this with the natural transformation L•
to obtain a new natural transformation, which we again denote by Σ∞• .
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Proposition 7.5.5. The component of Σ∞• : S•,∗ → Sp• at the group G is equivalent
to the standard suspension spectrum functor.

Proof. Considering the component at G, we observe that the functor Σ∞G is
defined as the composition

SG,∗ → ORG−S∗ →ModSG (ORG−S∗) ≃ PSpG → SpG

where the first functor is I0 (i.e. precomposition along ORG → Oop
G ), the

second functor is the free SG-module functor (SG ⊗ −) and the third functor
is the localization functor. These functors are all modeled by left Quillen
functors

GT∗ → I−GT∗ → SpO
G → SpO

G

given by the constant I-G-space, the free SG-module and the identity respec-
tively. Therefore Σ∞G is modelled by their composition, which is exactly the
suspension spectrum functor constructed in [MM02].

This suffices for us to conclude that the functoriality of Sp• agrees morphism-
wise with the functoriality of equivariant spectra in restriction, by the univer-
sal property of G-spectra.

Corollary 7.5.6. The functor Sp• : Gloop → Cat⊗∞ sends a compact Lie group G to
SpG and a continuous group homomorphism α : H → G to the restriction functor
α∗ : SpG → SpH .

Proof. Consider the commutative diagram

SpG SpH

SG,∗ SH,∗

SG SH

Spα

Σ∞G

Sα∗

Σ∞H

(−)+

Sα

(−)+

of symmetric monoidal functors. By the universal property of G-spectra given
in [GM23, Corollary C.7], the functor Spα is uniquely determined by Sα,∗, and
this is completely determined by Sα by [Lur16, Proposition 4.8.2.11]. Finally,
Proposition 7.1.16 identifies the functor Sα with α∗.

Remark 7.5.7. Note that the argument of Corollary 7.5.6 in facts shows that
the natural transformation Σ•,∗ : S•,∗ → Sp• admits a universal property. This
forces Sp• to coincide with the construction of [BH21, Section 9] on the subcat-
egory of Glo spanned by finite groups. This suggests a possible comparison
between ultracommutative Fin-global ring spectra in the sense of [Sch18] and
normed spectra in the sense of [BH21].
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We have now constructed Sp• and shown that it agrees with the standard
functoriality of equivariant spectra. We will write Sp†gl for the partially lax
limit laxlim† Sp•. We would like to describe Sp†gl as a Bousfield localization
of PSp†gl by applying Lemma 6.3.13. To do this requires the following two
lemmata.

Proposition 7.5.8. Let α : H → G be an injective group homomorphism. Then
the functor α∗ : ORG−S → ORH−S has a left adjoint α!. Moreover, under the
identification of Theorem 7.3.9 the adjunction α! ⊣ α∗ corresponds to the Quillen
adjunction G ×H − ⊣ α∗ of Proposition 7.2.10.
In particular for X ∈ ORH−S and Y ∈ ORG−S the comparison map

α!(X ⊗ α∗Y) → α!X ⊗ Y

adjoint to X ⊗ α∗Y → α∗α!X ⊗ α∗Y is an equivalence.

Proof. From the description of Remark 6.2.23 and Lemma 7.4.13 it follows
that the functor α∗ : ORH−S → ORG−S is given by precomposition along
the functor pα : ORH → ORG obtained by basechange from Oop

H → Oop
G . In

particular it has a left adjoint α! given by left Kan extension along pα.
In the proof of Theorem 7.3.9 we have constructed a functor LH : ORop

H →
I−HT [W−1

lvl] sending (K,W) to H ×K IW . We claim there is a commutative
diagram

ORop
H ORH−S I−HT [W−1

lvl]

ORop
G ORG−S I−GT [W−1

lvl]

pα

LH

Yoneda

α!

∼

G×H−

LG

Yoneda
∼

where the horizontal equivalences are given by Theorem 7.3.9. The diagram
on the left commutes by the universal property of presheaf categories and the
outer square commutes by direct verification using the formulas of LG and LH .
Therefore a generation argument using that all the functors preserve colimits,
shows that the rightmost diagram commutes too. The right most vertical
functor can be modelled by a left Quillen functor by Proposition 7.2.10 so the
first claim follows.
Finally, since the map

G ×H (X ⊗ Y) → (G ×H X) ⊗ Y

is an isomorphism in I−GT , it follows that the derived formula holds as
well.
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Lemma 7.5.9. Let α : H → G be an injective homomorphism of compact Lie groups.
Then PSpα : PSpG → PSpH sends SpG into SpH .

Proof. Note that PSpα sends X to SH ⊗α∗SG α
∗X ≃ α∗X, since α is injective.

Therefore PSpα preserves all small limits and colimits, since α∗ does, and so
it has a left adjoint Lα. Moreover, by Lemma 7.5.8 there is an equivalence

Lα(X ⊗ PSpαY) ≃ Lα(X) ⊗ Y .

To prove that α∗(SpG) ⊆ SpH it suffices to show that Lα preserves stable
equivalences. By confinality the stable equivalences in SpH are generated by
those of the form H ×M λV,W |M where M < H is a closed subgroup, V is an
M-representation and W is a G-representation. But then

Lα(H ×M λV,W |M ) ≃ Lα((H ×M FV S0) ⊗ α∗λ0,W |H ) ≃ Lα(H ×M FV S0) ⊗ λ0,W .

Since stable equivalences are stable under tensoring and λ0,W is a stable
equivalence, this proves the thesis.

Given a compact Lie group G ∈ Glo, we denote by Ugl
G : PSp†gl → PSpG the

canonical functors associated to the universal cone.

Proposition 7.5.10. The ∞-category Sp†gl is a Bousfield localization of PSp†gl. We
denote the associated left adjoint by Lgl : PSp†gl → Sp†gl. Furthermore, the following
conditions are equivalent for an object X ∈ PSp†gl:

(a) X is in Sp†gl;

(b) for every compact Lie group G, the G-prespectrum Ugl
G (X) is in SpG;

(c) for every compact Lie group G, the G-prespectrum Ugl
G X is local with respect

to the maps λV,W defined in Construction 7.2.28 for any G-representations V
and W .

Proof. Recall that Sp• was constructed in Proposition 7.5.4 by localizing the
functor PSp• using Lemma 6.3.13. Combining this with Lemma 7.5.9, we
conclude that Sp†gl is a Bousfield localization and that conditions (a) and
(b) are equivalent. By Proposition 7.2.30, condition (b) is equivalent to the
condition that for every compact Lie group G and closed subgroup H ≤ G,
the H-prespectrum resG

HUgl
G X is local with respect to the maps {λV,W } where

V and W over all H-representations. By construction we have Ugl
H � resG

H ◦Ugl
G

so (b) and (c) are equivalent.
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7.6 GLOBAL SPECTRA AS A PARTIALLY LAX LIMIT

Recall the two functors PSp• , Sp• : Gloop → Cat⊗∞. These were constructed in
Propositions 7.4.16 and 7.5.4 respectively. We also defined

PSp†gl :� laxlim†
Gloop

PSpG and Sp†gl :� laxlim†
Gloop

SpG .

The goal of this section is to show that Sp†gl is symmetric monoidally equivalent
to Schwede’s ∞-category of global spectra Spgl, whose definition is recalled
in Definition 7.2.23. Our proof will go roughly as follows:

• We will first construct a symmetric monoidal adjunction

j! : PSpfgl ≃ModSfgl(ORfgl−S∗)⇆ ModSgl(ORgl−S∗) ≃ PSp†gl : j∗

between prespectra objects, where the equivalences are given by Propo-
sition 7.4.16 and Corollary 7.3.23.

• We note that there are Bousfield localizations Spgl ⊂ PSpfgl and Sp†gl ⊂
PSp†gl. We denote by Lgl : PSp†gl → Sp†gl the localization functor.

• We will then check that j∗ preserves spectrum objects, and therefore
obtain an induced adjunction

Lgl ◦ j! : Spgl ⇆ Sp†gl : j∗

between the respective localizations.

• We will show that this adjunction is in fact an equivalence, by showing
that j∗ is conservative on spectrum objects, and that the unit of the
adjunction (Lgl ◦ j! , j∗) is an equivalence.

We start by constructing an adjunction between prespectrum objects. By
Lemma 7.4.3 we can identify ORfgl with the full subcategory of ORgl spanned
by (G,V), where V is a faithful G-representation. Then the canonical inclusion
j : ORfgl ↪→ ORgl induces an adjunction

j! : ORfgl−S∗ ⇆ ORgl−S∗ : j∗.

Note that j! is fully faithful as it is given as a left Kan extension along a fully
faithful functor. Moreover the functor j! is strong monoidal by Proposition
6.2.34.

Proposition 7.6.1. The inclusion j : ORfgl ↪→ ORgl admits a right adjoint q, which
is given on objects by

(G,V) 7→ (G/ker(V),V) ,
where ker(V) < G is the subgroup of g ∈ G acting trivially on V . In particular the
left Kan extension j! is equivalent to the functor q∗ given by precomposition by q.
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Proof. The G/ker(V)-representation V is clearly faithful, so to prove the thesis
it is enough to show that for every (H,W) ∈ ORfgl the map (G/ker(V),V) →
(G,V) induces an equivalence on mapping spaces

MapORgl
((H,W), (G/ker V)) ∼−→MapORgl

((H,W), (G,V)) .

By Definition 7.4.2, this means we need to show that the map

(Hom(G/ker V,H) × I(W,V))G/ker V
hH → (Hom(G,H) × I(W,V))GhH

given by precomposition with G → G/ker V on the first coordinate, is a
homotopy equivalence. In fact we will show that

(Hom(G/ker V,H) × I(W,V))G/ker V → (Hom(G,H) × I(W,V))G

is a homeomorphism. Since it is a continuous map of compact Hausdorff topo-
logical spaces, it suffices to show that it is bĳective. As Hom(G/ker V,H) →
Hom(G,H) is injective, so is the above map. Therefore to conclude we need
to show it is surjective.
Concretely this means that if we have a map α : G → H and an isometry
φ : W → V that is G-equivariant, we need to show that α is trivial when
restricted to ker V . But if g ∈ ker V , then g acts as the identity on V , and
therefore α(g) acts as the identity on W (since φ is G-equivariant). Since W is
a faithful H-representation this implies that α(g) � 1, as required.

Note that it is clear from the definitions that j∗Sgl ≃ Sfgl as commutative
algebra objects. As an application of the previous proposition we find:

Corollary 7.6.2. The counit map ϵ : j!Sfgl → Sgl is an equivalence of commutative
algebra objects. In particular the functors j! ⊣ j∗ induce an adjunction

j! : PSpfgl ≃ModSfgl(ORfgl−S∗)⇆ ModSgl(ORgl−S∗) ≃ PSp†gl : j∗

Proof. Because j is strong monoidal, the counit is canonically a map of com-
mutative algebra objects. Therefore for all (G,V) ∈ ORgl we compute

j!(Sfgl)(G,V) ≃ Sfgl(q(G,V)) � (SV )G/ker(V) ≃ (SV )G � Sgl(G,V).

Because j! and j∗ are strong and lax monoidal respectively and they swap
the two algebra objects, they induce functors as in the statement which are
evidently adjoint.

We will now use the adjunction

j! : PSpfgl ⇆ PSp†gl : j∗
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to induce an adjunction at the level of spectrum objects. To do this we need to
see how the adjunction ( j! , j∗) interacts with the full subcategories of spectrum
objects. To this end we briefly rephrase the discussion of local objects in PSpfgl
given at the end of Section 7.2.

Remark 7.6.3. Recall from Proposition 7.2.27 that Spgl is a Bousfield localiza-
tion of PSpfgl at the morphisms {λG,V,W }where G is a compact Lie group and
V and W are G-representations with W faithful. Because j! : PSpfgl → PSp†gl
is fully faithful, we can equivalently require that j!X is local with respect to
the maps j!(λG,V,W ), where W is a faithful representation. These maps again
corepresent the G-fixed points of the adjoint structure map σ̃G,V,W , and there-
fore we will denote them by λ†G,V,W , and similarly we will write F†G,V for
j!FG,V .

We have seen in Construction 7.2.25 that for any compact Lie group G and G-
representation V , there is a functor evG,V : PSpfgl → SG,∗ that sends a faithful
global prespectrum X to the G-space X(V). Under the equivalence

PSpfgl ≃ModSfgl(ORfgl−S∗)

this functor can be modelled as follows. Consider the cocartesian section
sV : Oop

G → ORG which is determined by the object (G,V) ∈ ORG and write
kV for the composite Oop

G
sV−→ ORG

νG−−→ ORgl. If V is faithful then kV lands in
ORfgl and so we can define evG,V as the following composite of right adjoints

ModSfgl(ORfgl−S∗)
fgt
−−→ ORfgl−S∗

k∗V−−→ SG,∗.

Similarly, as discussed in Construction 7.2.28, there is a functor evV : PSpG →
SG,∗ sending a G-prespectrum X to the G-space X(V). Under the equivalence

PSpG ≃ModSG (ORG−S∗)

this functor is modelled by the composite

ModSG (ORG−S∗)
fgt
−−→ ORG−S∗

s∗V−→ SG,∗ ,

see also Remark 7.5.1.
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Remark 7.6.4. From the previous discussion we conclude that there is a
commutative diagram of right adjoints:

PSpfgl PSp†gl PSpG

ModS f gl (ORfgl−S∗) ModS†gl
(ORgl−S∗) ModSG (ORG−S∗)

ORfgl−S∗ ORgl−S∗ ORG − S∗

SG,∗ .

∼ ∼

j∗ U gl
G

∼

fgt

j∗

fgt

ν∗G

fgt

k∗W

j∗

k∗W

ν∗G

s∗W

Using that the corresponding diagram of left adjoints commute, we see that for
all X ∈ PSp†gl and G-representations V and W with W faithful, the following
diagram commutes

SG,∗(S0 ,X(W)) SG,∗(SV ,X(V ⊕W))

PSpG(FW S0 ,Ugl
G (X)) PSpG(FV⊕W SV ,Ugl

G (X))

PSpfgl(FG,W S0 , j∗X) PSpfgl(FG,V⊕W SV , j∗X)

PSp†gl(F†G,W S0 ,X) PSp†gl(F†G,V⊕W SV ,X)

σ̃V,W

∼∼
λ∗V,W

∼∼
λ∗G,V,W

∼∼
(λ†G,V,W )

∗

(7.6.4.1)

so all the various λ-maps correspond to each other under the various adjunc-
tions.

Given any compact Lie group G and any faithful G-representation W , we
define a functor

Ufgl
G,W : PSpfgl → PSpG

as the composite

PSpfgl
j!−→ PSp†gl

Ugl
G−−→ PSpG

shW−−−→ PSpG

where shW denotes the shift W-functor, given by cotensoring by FW S0.
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Theorem 7.6.5. An object X ∈ PSpfgl is in Spgl if and only if for every compact Lie

group G and faithful G-representation W , the object Ufgl
G,W (X) is in SpG. Furthermore,

the functors {Ufgl
G,W }(G,W) are also jointly conservative.

Proof. By Remark 7.6.3, we know that X ∈ PSpfgl is in Spgl if and only if
j!X ∈ PSp†gl is local with respect to the set of maps {λ†G,V,W }where G runs over
all compact Lie groups and V and W are G-representations with W faithful.
The commutative diagram (7.6.4.1) (together with the fact that j∗ j!X ≃ X)
shows that this is equivalent to asking that for all compact Lie groups G, the
object U gl

G ( j!X) is local with respect to {λG,V,W } where V and W are as above.
We next note that by definition, given an abitrary G prespectrum Y, the map

λ∗U,V : PSpG(FV S0 , shW Y) → PSpG(FU⊕V SU , shW Y)

is equivalent to λ∗U,V⊕W . Also recall that given a faithful G-representation W ,
W ⊕ U is also faithful for any G-representation U.

These two observations combine to imply that U gl
G ( j!X) is local with respect

to {λV,W } for G,V and W as above if and only if for all compact Lie groups
G and faithful G-representations W , the object shW U gl

G j!(X) � U f gl
G,W X is local

with respect to {λV,U} for arbitrary G-representations V and U.

On the other hand by Proposition 7.2.30, U f gl
G,W X is in SpG if and only if for

all closed subgroups H ≤ G, the H-prespectrum resG
HU f gl

G,W X � U f gl
H,resG

HW
X

is local with respect to {λV,U} for arbitrary H-representations V and U, and
W a faithful G-representation. Varying these statements over all compact Lie
groups, we find that Ufgl

G,W X is in SpG for all compact Lie groups G and
all faithful G-representations W if and only if for all G and all faithful G-
representations W , the G-prespectrum Ufgl

G,W X is {λV,U}-local for arbitrary
G-representation V and U. This is identical to the condition of the previous
paragraph, and so we obtain the first claim in the theorem. For the second
statement, note that after forgetting module structures, the functor Ufgl

G,W is
given by restriction along the functor

shW : ORG → ORfgl , (G/H,U) 7→ (H,U ⊕ resG
H(W)).

The claim then follows from the fact that the functors {shW }(G,W) where G
runs over all compact Lie groups and W all faithful G-representations, are
jointly essentially surjective.

The following is the key fact about the right adjoint j∗.

Proposition 7.6.6. Let G be a compact Lie group and let W be a faithful G-
representation. Then the following square commutes:
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PSpG PSp†gl

PSpG PSpfgl.

shW

Ugl
G

j∗

Ufgl
G,W

Proof. The unit of the adjunction j! ⊣ j∗ provides a natural transformation

Ufgl
G,W j∗ � shW Ugl

G j! j∗ → shW Ugl
G

which we claim is a natural equivalence. This follows from the fact that on
underlying objects shW U gl

G is given by restriction along the functor ORG →
ORgl , (H,V) 7→ (H, resG

H(W) ⊕ V). This only sees levels in the image of ORfgl,
where the unit is an equivalence.

Corollary 7.6.7. Suppose X ∈ Sp†gl. Then j∗(X) ∈ Spgl. In particular we obtain a
functor

j∗ : Sp†gl → Spgl ,

which admits a left adjoint given by Lgl ◦ j!.

Proof. Because X is in Sp†gl, we obtain that Ugl
G (X) is a G-spectrum by Propo-

sition 7.5.10. Note that the functor shW preserves G-spectra for every G-
representation W . We deduce using Proposition 7.6.6 that Ufgl

G,W j∗(X) is a
G-spectrum for every G and W faithful. Therefore by Theorem 7.6.5 j∗(X) is
contained in Spgl.

Proposition 7.6.8. j∗ : Sp†gl → Spgl is conservative.

Proof. Let f : X → Y be a map in PSp†gl such that j∗( f ) is an equivalence.
This implies that f(G,W) is an equivalence of spaces for every faithful G-
representation W . We finish the argument by proving that if f is in fact a map
between objects in Sp†gl, then f(G,V) is an equivalence for every G-representation
V if and only if it is an equivalence for faithful G-representations. The forward
direction is trivial. For the converse, note that because PSp†gl is a partially

lax limit, the collection of functors {Ugl
G }G is jointly conservative. Now our

assumptions tell us that Ugl
G ( f )(G,W) is an equivalence for every faithful G-

representation W . But because f is in fact in Sp†gl, both the source and target

of Ugl
G ( f ) are G-spectra. Therefore our claim reduces to the fact that a map

between G-spectra which is an equivalence on faithful levels, is already an
equivalence. The collection of faithful representations is cofinal in all repre-
sentations, and so this is clear.
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Theorem 7.6.9. The unit of the adjunction

Lgl ◦ j! : Spgl ⇆ Sp†gl : j∗

is an equivalence.

Proof. Consider X ∈ Spgl. Let ηX : X → j∗Lgl j!X be the unit of the adjunction
Lgl ◦ j! ⇆ j∗ evaluated at X. This adjunction is given as a composite of two
adjunctions and so the unit is given by the composite

X
η′

−→ j∗ j!X
j∗(γ)
−−−→ j∗Lgl j!X,

where η′ is the unit of the adjunction j! ⊣ j∗ and γ exhibits Lgl j!X as the
localization of j!X in PSp†gl. However recall that j! is fully faithful and therefore
the first of the two maps is an equivalence. So it suffices to prove that the
second map is also an equivalence.

The functors Ufgl
G,W are jointly conservative, and so it suffices to prove that

Ufgl
G,W ( j∗(γ)) is an equivalence for every (G,W), where W is faithful. Applying

Proposition 7.6.6 we conclude that Ufgl
G,W ( j∗(γ)) is equivalent to

shW Ugl
G (γ) : shW Ugl

G j!X → shW Ugl
G Lgl j!X.

By Proposition 7.5.10, Ugl
G (γ) is equivalent to

γG : Ugl
G j!X → LGUgl

G j!X,

where γG exhibits LGUgl
G j!X as the localization of Ugl

G j!X in PSpG. Spectri-
fication of G-prespectra commutes with shW , and therefore shW (γG) gives
the localization of Ufgl

G,W (X) � shW Ugl
G j!X in PSpG. Recall that X ∈ Spgl, and

so Ufgl
G,W (X) is a G-Ω-spectrum by Theorem 7.6.5. Therefore shW (γG) is an

equivalence, concluding the proof.

Theorem 7.6.10. There is a symmetric monoidal equivalence

j∗ : Sp†gl :� laxlim†
G

SpG → Spgl.

Proof. We have proven that j! ⊣ j∗ is an adjunction in which the right adjoint is
conservative, and the unit is a natural equivalence. Therefore the functors are
an adjoint equivalence. Moreover j! is strong monoidal, which implies that j∗,
as its inverse, is also strong monoidal.
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7.7 PROPER EQUIVARIANT SPECTRA AS A LIMIT

The goal of this section is to exhibit the ∞-category of genuine proper G
spectra SpG as a limit over the proper orbit category Oop

G,pr of a diagram

Sp(−) : Oop
G,pr → Cat∞ , G/H → SpH .

In contrast to the case of global spectra, once the diagram has been constructed,
the identification of the limit will be almost immediate. In fact even the general
strategy for constructing the diagram is essentially identical. For this reason
we will be brief and refer to Section 7.4 for the relevant details.
Recall from Lemma 7.4.9 that the∞-operad OR⊗G fits into a pullback

OR⊗G OR⊗gl

(Oop
G,pr)⨿ (Gloop)⨿.

νG

πG πgl

ι⨿G

Because OR⊗gl → (Gloop)⨿ is a cocartesian fibration which by definition clas-
sifies the functor Rep(−), we immediately obtain:

Proposition 7.7.1. For every Lie group G, the forgetful functor πG : OR⊗G →
(Oop

G,pr)⨿ is a cocartesian fibration which classifies the functor

Oop
G,pr → Cat⊗∞ , G/H 7→ Rep(H).

Definition 7.7.2. We define ÕR
⊗
G via the following pullback of operads:

ÕR
⊗
G OR⊗G

(Ar(OG,pr)op)⨿ (Oop
G,pr)⨿

πAr

sop

We consider ÕR
⊗
G as living over OG,pr via the composite

π : ÕR
⊗
G

πAr−−→ (Ar(OG,pr)op)⨿ top
−−→ (Oop

G,pr)
⨿.

Just as in Lemma 7.4.11, we can show that ÕR
⊗
G is a pro-(OG)⨿-monoidal

category.

Proposition 7.7.3. The functor π : ÕRG → (Oop
G,pr), given by restricting π to

underlying categories, is a cartesian fibration. Furthermore an edge ( f , g) ∈ ÕRG is
cartesian if and only if sop( f ) and g are equivalences.
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Proof. The proof is analogous to Lemma 7.4.13.

Proposition 7.7.4. ÕR
⊗
G ×(Oop

G )⨿
{G/H} ≃ OR⊗H .

Proof. The pullback P � ÕR
⊗
G ×(Oop

G )⨿
{G/H} fits into the following diagram

P ÕRG OR⊗G OR⊗gl

(Oop
H )⨿ (Ar(OG,pr)op)⨿ (Oop

G,pr)⨿ (Gloop)⨿

{G/H} (Oop
G,pr)⨿

in which every square is a pullback. One can show by direct computation that
the middle composite (Oop

H )⨿ → (Gloop)⨿ is equivalent to ι⨿H . Therefore the
result follows from Lemma 7.4.9.

Definition 7.7.5. Consider the Day convolution operad

FunOG,pr(ÕR
⊗
G , S∧∗ × (O

op
G,pr)

⨿)Da y .

Just as in Section 7.4, this is an (Oop
G,pr)⨿-monoidal category. We define

OR•−S∗ : Oop
G,pr → Cat⊗∞

to be the functor associated to it by the equivalence of Proposition 6.4.5. By
Proposition 7.7.4, the value of OR•−S∗ at G/H is equivalent to ORH−S∗.

Proposition 7.7.6. The projection map ÕR
⊗
G → OR⊗G induces a fully faithful

symmetric monoidal functor ORG−S∗ → ÕRG−S∗, given by restriction. A functor
F : ÕRG → S∗ is in its essential image if and only if F sends π-cartesian edges to
equivalences.

Proof. The argument is identical to that of Lemma 7.4.14.

Lemma 7.7.7. There is a symmetric monoidal equivalence

lim
Oop

G,pr

OR•−S∗ ≃ ORG−S∗.

Proof. The calculation at the beginning of the proof of Lemma 7.4.15 shows
that the lax limit of the diagram OR•−S∗ is equivalent to the symmetric



CHAPTER 7. GLOBAL OBJECTS VIA PARTIALLY LAX LIMITS 174

monoidal category ÕRG−S∗ To compute the actual limit, we can once again
argue on underlying categories by appealing to Remark 6.4.2. Note that by Re-
mark 6.2.11, the underlying category of ÕRG−S∗ is equivalent to Fun(ÕRG , S∗).
The analysis of the second half of the proof of Lemma 7.4.15 implies that the
limit is equivalent to the full subcategory spanned by the functors which
send π-cartesian edges to equivalences. By Proposition 7.7.6 this subcategory
is equivalent to Fun(ORG , S∗).

Recall from Definition 7.2.18 that ORG-spaces admit an algebra object SG,
whose restriction to ORH-spaces for H a compact subgroup of G is equivalent
to SH .

Corollary 7.7.8. There exists a functor PSp• : Oop
G,pr → Cat⊗∞, and one calculates

lim
Oop

G,pr

PSp• ≃ModSG (ORG−S)

Proof. Once again PSp• is defined as ModS•(OR•−S∗), using Theorem 6.4.10.
An argument as in Proposition 7.4.16 allows us to calculate the limit.

So far we have constructed and computed the limit of the diagram PSp•.
Given a map α : H ↪→ K ⊂ G in OG,pr, the induced map PSpK → PSpH is
by construction equivalent to the global functoriality constructed in Section
7.4 evaluated at α. Therefore the results there imply that PSpα preserves spec-
trum objects, and so we obtain a diagram Sp• : Oop

G,pr → Cat⊗∞. Furthermore,
Corollary 7.5.6 implies that Spα : SpK → SpH agrees with the standard re-
striction functor between equivariant spectra. To calculate the limit of Sp•, we
apply Lemma 6.3.13 to conclude:

Corollary 7.7.9. limOop
G,pr

Sp• is a Bousfield localization of ModSG (ORG−S∗) at the
objects X whose restriction to ModSH (ORH−S∗) is an H-spectrum for every compact
subgroup H of G.

Recall from Section 7.3 that the category of genuine proper G-spectra is also a
Bousfield localization of ModSG (ORG−S∗). Therefore it remains to show that
the two subcategories agree.

Proposition 7.7.10. An object X ∈ ModSG (ORG−S∗) is a G-spectrum if and only
if for every compact subgroup H ≤ G, the restriction of X to ModSH (ORH−S∗) is a
H-spectrum.

Proof. Recall from Proposition 7.2.30 that an object X ∈ PSpG is a G-spectrum
if and only if for all compact subgroups H ≤ G, the object resG

H X is local with
respect to λH,V,W . Now by definition resG

H X is a G-spectrum if and only if
resH

K resG
H X is local with respect to λK,V,W . However because resH

K resG
H � resG

K ,
we conclude that the two conditions of the theorem agree.
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Thus we can conclude the main theorem of this section:

Theorem 7.7.11. The category of proper G-spectra is equivalent to the limit of the
diagram Sp• : Oop

G,pr → Cat⊗∞, in symbols

SpG ≃ lim
Oop

G,pr

Sp•.
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