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Abstract

Presently, lattice quantum chromodynamics is the only available tool that allows for the calculation of
hadron properties in terms of their constituents, quarks and gluons, incorporating the non-perturbative
nature of the strong interaction in the low-energy regime. However, information about few-hadron
dynamics is not directly accessible. Instead, the finite-volume energy spectra, determined in lattice
calculations, have to be related to the infinite-volume scattering- and decay-amplitudes.
In this thesis, by application of non-relativistic effective field theory techniques, methods for the

analysis of data from lattice quantum chromodynamics are developed that allow for the extraction
of three-body scattering- and decay properties. The fundamental concepts of lattice quantum
chromodynamics, focusing on the methods of hadron spectroscopy, are outlined. The framework of
non-relativistic effective field theories is introduced and the role of relativistic invariance is discussed.
A relation between finite volume decay matrix elements and infinite volume decay amplitudes is

derived at the leading order in the non-relativistic effective field theory power counting for the weak
decay of a scalar particle into three identical likewise scalar particles. This equation establishes a
generalization of the Lellouch-Lüscher formalism to the three-body sector.

Furthermore, a novel formulation of the non-relativistic effective field theory formalism is suggested,
which is devoid of some shortcomings of the existing approaches related to the explicit non-covariance
of the three-particle propagator. The three-particle quantization condition, relating the finite-volume
energy spectra to the infinite-volume scattering matrix elements, is written down in a manifestly
relativistic-invariant form within this modified formalism, such that data from different moving frames
can be combined in a global analysis.
Finally, the three-body analog of the Lellouch-Lüscher equation is generalized to higher orders

and the systematic inclusion of higher partial waves is discussed. In contrast to the leading order
expression derived in an earlier chapter, it is expressed in a manifestly relativistic-invariant form. This
setup is of particular importance, since in practice the extraction of weak decay amplitudes from
lattice calculations requires the inclusion of data from different moving frames.
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CHAPTER 1

Introduction

History of the Strong Interaction With the discovery that nuclei consist of protons and neutrons,
the presence of a strong force was postulated, compensating the electromagnetic repulsion and allowing
the formation of bound states. Experiments in the 1950s revealed a variety of particles subject to the
strong interaction, called hadrons. Due to the sheer amount of newly discovered particles, not all of
these could be fundamental. In the Eightfold Way, Ne’eman and Gell-Mann [9, 10] systematically
organized hadrons, having similar properties such as mass, in groups. The emerging patterns resembled
the representations of an underlying approximate SU(3) symmetry. Considering the breaking of this
symmetry perturbatively the mass splitting in the multiplets [10, 11] could be explained. This led to
the prediction of the mass of the, up-to-then, unknown Ω−-particle, which was confirmed a fey years
after [12].
In 1964 Gell-Mann [13] and Zweig [14] proposed the existence of spin-1/2 constituent particles

occurring in three flavors, the quarks. The observed baryons, hadrons of half-integer spin, are
described as bound states of three quarks, while mesons, the bosonic hadrons, are formed by a
quark-antiquark pair. However, the wave functions of some baryons, constructed within the quark
constituent model, seemed to violate the spin-statistics theorem. For example, the wave function
of the Ω− baryon, composed out of three strange quarks with parallel spin, would be completely
symmetric, in contradiction to the Pauli exclusion principle. The problem was resolved by introducing
an additional SU(3) symmetry, such that the quarks occur in one of three states. This new quantum
number was later referred to as color.

Although free quarks could never be observed directly, the deep inelastic scattering experiments of
the late 1960s and early 1970s [15–17], probing the short-range structure of hadrons, provided an
experimental evidence for their existence. The measured cross sections, compared to the Mott cross
section, display an approximate scale invariance, i.e. do not depend on the transferred momentum.
As pointed out by Bjorken [18], this feature should be observed if the nucleons contain point-like
particles. Further analysis confirmed that these constituents carry the postulated spin of the quarks
[19], as well as their fractional charge [20]. On the other hand, the experiments could rule out a simple
three-quark model of the proton, but showed consistency with more elaborate models [21], including
a “sea” of quark-antiquark pairs and neutral gluons that mediate the force.
In 1973, Politzer [22] and independently Gross and Wilczek [23], demonstrated that Yang-Mills

theories obey asymptotic freedom, causing the interaction to become weaker at higher energies and
leading to a scaling behavior consistent with the deep inelastic scattering experiments. Fritzsch,
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Chapter 1 Introduction

Leutwyler and Gell-Mann considered this as an argument in favor of describing the strong interactions
by promoting the SU(3)-color group to a non-abelian gauge symmetry [24], a concept that has
already been discussed earlier by Han and Nambu [25, 26]. This theory, referred to as Quantum
Chromodynamics (QCD), became an essential component of the Standard Model. QCD exhibits
a fundamental difference to the electroweak theory, as its degrees of freedom, quarks and gluons,
are not present in the observable spectrum. They are subject to color confinement, the phenomenon
that color-charged particles can not be isolated. Nevertheless, using the fact that the strong coupling
constant αs is small at high energies allows for application of perturbative techniques. This provides
a rich testing ground for QCD. Several experiments quantitatively support QCD as underlying field
theoretic description of the strong interactions [27].
However, in the infrared regime, i.e. at low energies, the coupling strength increases such that

perturbation theory is not reliable anymore. In order to gain access to a description of processes at
the hadronic scale, where perturbation theory breaks down, alternative techniques are required. This
thesis will focus on two of these methods: the formulation of Effective Field Theories (EFTs) and
Lattice QCD (LQCD). Within the scope of this thesis, a EFT framework will be established, that
allows for the interpretation of LQCD data in the three-particle sector. In particular, a formalism
will be derived that enables to determine three-body decay amplitudes from LQCD transition matrix
elements.

Lattice Quantum Chromodynamics Lattice QCD is a non-perturbative approach, based on the
path integral formulation of QCD in finite, discretized Euclidean space-time. In its simplest realization
this space-time lattice is a (four-dimensional) hypercube of length L and spacing a, the distance
between neighboring lattice sites. This discretization naturally introduces an ultraviolet (UV) cutoff
Λ ∼ 1/a, while the finite volume leads to a quantization of momenta. Thus the path integral indeed
reduces to a finite-, but tremendously high-dimensional usual integral, rendering an explicit evaluation
impossible. Instead, correlation functions are calculated using numerical methods, such asMarkov
chain Monte Carlo, generating samples of (gauge) field configurations according to the probability
distribution determined by the path integral.
Establishing a relation of these correlators, contaminated by discretization and other artifacts, to

real continuum QCD observables is a highly non-trivial task. Essentially, three limits have to be
taken: the continuum limit, a→ 0, the thermodynamic limit, L →∞, as well as an extrapolation to
physical quark masses. In order to reduce computational cost, lattice calculations are often performed
at much higher than physical quark masses. Although at present LQCD calculations are practicable
at physical quark masses also in the multi-particle sectors [28, 29], simulations beyond the physical
point, performing the chiral extrapolation subsequently, might remain beneficial in certain cases as
discussed in [30].

Although hadron masses, space-like form factors and similar observables can be obtained straight-
forwardly, the extraction of scattering information from LQCD turns out to be rather obscure at
a first glance. For example, while scattering amplitudes acquire a non-zero imaginary part above
threshold, correlation functions calculated in Euclidean space-time are entirely real. Indeed, as proven
by Maiani and Testa [31], in general it is not possible to simply recover on-shell amplitudes, defined in
Minkowski-space-time, from infinite-volume Euclidean space-time correlation functions, which are
dominated by off-shell contributions. Nevertheless, LQCD still provides access to physical scattering
amplitudes. It turns out, that the volume dependence of the correlation functions does not only
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represent an unpleasant relic of lattice regularization, but rather a key to the extraction of scattering
properties. As shown by Lüscher [32, 33], the finite-volume dependence of the two-particle spectrum,
obtained from the four point correlation function, encodes information of the infinite-volume scattering
amplitude. The method developed by Lüscher allows for the a direct calculation of the scattering
phase shift from two-particle energy levels in the finite volume. With subsequent generalizations to
moving frame [34, 35], non-identical particles with spin [36–38] and coupled channel interactions
[39–42] this method developed into a well established formalism that has been extensively applied to
various systems, see the following reviews [43, 44].

Lüscher and Lellouch [45], further extended this formalism in order to relate two-particle weak
decay amplitudes to the corresponding finite-volume transition matrix elements, obtained from lattice
calculations (see also [35, 41, 46–48] for generalizations). Finally, with the inclusion of external
currents [47–54], the two-particle sector is well understood.

The results above rely on the fact that, utilizing unitarity, a closed form of the two-particle scattering
amplitude can be found. On the contrary, in the three-particle sector, such a remarkable simple
relation between spectra and observables is not to be expected. Nevertheless, after it was shown that
also the finite-volume three-particle spectrum can be solely determined by S-matrix elements [55,
56], the last decade has seen a lot of progress in the derivation of an analog of Lüschers method in
the three-body sector. Currently three different frameworks have been developed: the Relativistic
Field Theory (RFT) [57, 58], Finite Volume Unitarity (FVU) [59] and Non-relativistic Field Theory
(NREFT) [60, 61] approaches. Within all these conceptually equivalent formalism, a quantization
condition is derived, allowing to fix certain parameters by a fit to the finite-volume spectrum in the
three-particle sector. In return, infinite-volume observables can be calculated by solving pertinent
integral equations using these parameters in a second step. Equivalence between these formalisms
was shown in specific setups [61–64]. Both, the RFT and FVU quantization conditions have been
applied to π+π+π+-scattering from LQCD data [28, 65, 66]. The RFT formalism has been also
applied to the ππK- and KKπ-systems [67], while the FVU approach was used for the analysis of the
KKK-system [29]. Furthermore, the pole position and branching ratio of the a1(1260) resonance has
been determined using the FVU approach [68]. An empirical comparison of these two formalisms
was carried in a study of lattice ϕ4-theory, showing good agreement for various coupling strength [69].

The lack of applications of the NREFT formalism for the study of LQCD data in the three-body
sector can be also traced back to the absence of explicit Lorentz-invariance. Preferably, data from
various spectra that were measured with different values of total three-momentum each, referred to
as different moving frames, should be analyzed together. In order to derive a quantization condition
capable of performing a global fit to spectra in different moving frames, a Lorentz-invariant setup is
required. Thus, a major aim of the research project, that has been partially summarized in this thesis,
is the derivation of a Lorentz invariant formulation of the NREFT approach in the three-body sector.

However, it should be pointed out that rendering the quantization condition relativistically invariant
is a subtle issue in all different formulations. The reason is that, in order to yield a relation to physical
observables, infinite-volume amplitudes and their finite-volume counterparts, entering the quantization
condition, must be on-shell. As a consequence, the integral equations for the amplitudes in the infinite
volume and similarly the quantization condition are inherently three-dimensional. Obtaining an
explicit Lorentz-invariant form thus requires additional effort. A solution to this problem was proposed
in the RFT formalism and could be straightforwardly adapted. On the other hand, achieving manifest
relativistic invariance in such a way is not unproblematic. As will be shown later, the modifications
applied in this framework lead to a violation of unitarity in the infinite- and spurious energy levels in a
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Chapter 1 Introduction

finite volume. Therefore, a different procedure has been developed during the research project that is
free from these issues.

Furthermore, despite growing interest of studying electroweak three-particle decays on the lattice,
an analog of the Lellouch-Lüscher formula has not been available for a long time. Another aim of the
research project was to close this gap. Here, once again, a relativistic-invariant setup proves to be
essential.

Effective Field Theory Effective Field Theories serve as an approximation of their underlying model
in the low-energy regime. By utilizing the separation of low- and high-energy scales, EFTs only
include those degrees of freedom which are relevant at the chosen scale. The short distance effects on
the other hand are absorbed in the EFTs parameters, the Low-Energy Constants (LECs). Instead of
quarks and gluons, effective theories of QCD are formulated in terms of baryons and mesons directly.
An EFT contains all possible operators, constructed out of the fields corresponding to the relevant
degrees of freedom, obeying the same symmetries as the underlying model. In principle, there is an
infinite number of those terms, which seems to render actual calculations impossible. On the other
hand, employing an ordering scheme, that identifies the relevance of the individual contributions,
allows for an perturbative procedure, that can be improved systematically. This scheme is referred to
as power counting. A pedagogical and comprehensive introduction into effective field theories can be
found in [70].
Probably the most prominent example of an EFT for low-energy hadron dynamics is chiral

perturbation theory (ChPT) [71–73]. It is constructed based on the global SU(Nf )L × SU(Nf )R chiral
symmetry of QCD in the limit of vanishing Nf quark masses. Indeed the three lightest quarks are
almost massless. The observed spectrum of hadrons on the other hand, implies that invariance under
the subgroup of axial SU(Nf )A transformations, is not realized in the QCD vacuum. This indicates
spontaneous symmetry breaking of SU(Nf )L × SU(Nf )R → SU(Nf )V , noting that the SU(Nf )V
subgroup is protected by the Vafa-Witten theorem [74]. According to Goldstone’s theorem [75, 76],
there are eight massless pseudoscalar particles, corresponding to the number of broken generators,
that can be identified with the low lying octet mesons. In reality, the lightest quark masses are
small but non-zero. Chiral symmetry is approximate but explicitly broken, such that the Goldstone
bosons acquire a mass, that can be related to the quark masses using the Gell-Mann-Oakes-Renner
relation [77]. Chiral perturbation theory is formulated in terms of the Goldstone boson fields, such
that the resulting Lagrangian obeys all symmetries of QCD, including the spontaneously broken
chiral symmetry. Explicit breaking of chiral symmetry due to the nonzero quark masses can be
systematically included in this approach. A general construction of effective Lagrangians in the
presence of spontaneous symmetry breaking, based on group-theoretical consideration, was developed
by Callan, Coleman, Wess and Zumino (CCWZ) [78, 79]. The momentum p ∼ Mπ ∼ 140 MeV of the
low lying octet mesons provides a soft scale compared to Λχ ∼ 1 GeV, the scale of the next heavier
hadrons. Expansion of observables in p/Λχ thus yields a reliable power counting scheme.
Nucleons can be straightforwardly included, following the construction by CCWZ. In contrary

to the pure mesonic sector, a power counting scheme as described above is invalid, as the nucleon
mass, which is of the order of the hard scale, appears explicitly. One approach to define an consistent
power counting is given by heavy baryon ChPT [80, 81], where the nucleon momentum is split into a
large, of the order of the nucleon mass, and small residual component. The components of the field,
corresponding to the large momentum, are integrated out, while for the residual components one can
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impose a power counting scheme in terms of the small momenta. A similar strategy was applied
to render the NREFT formalism in the three-body sector Lorentz-invariant. Other approaches that
solve the power counting problem are given by, e.g. the infrared regularization [82] and extended
on-mass-shell scheme [83, 84].

Chiral perturbation theory also plays an important role in the analysis of LQCD data. As pointed out
above, results of lattice calculations can not directly be related to real QCD observables due to finite
volume and lattice spacing effects, as well as unphysical large quark masses. As the quark masses
represent input parameters of ChPT, it allows to study the pion mass dependence of observables1.
Thus ChPT serves as a framework in order to study the chiral extrapolation to physical quark masses
in LQCD. This is only true naively as ChPT is formulated in the continuum limit. On the other hand,
it is possible to account for non-zero lattice spacing effects using modified version of ChPT [85–87].
Moreover, also volume dependence can be studied [88–90]. In return, the parameters in the chiral
Lagrangian, can be extracted by fitting to lattice data, see Ref. [91] for a review of recent results.
Studying nuclear processes with all external momenta well below the mass of the pion, it is

advantageous to consider an EFT without pions. In this regime the nucleon can be treated non-
relativistically. Guided by the proposal of obtaining nuclear forces from chiral Lagrangians [92, 93],
non-relativistic pionless EFTs have been elaborated that describe nucleon-nucleon scattering [94–96].
A major advantage of non-relativistic EFTs is that the contributions to the four-point function can be
summed up to all orders, such that one arrives at a closed form for the scattering amplitude. This
allows for an direct matching of the low-energy constants to the effective range expansion parameters,
which are physical observables.

The framework was subsequently extended to the study of three-nucleon and -boson systems
[97–100] and allowed for a quantitative description of neutron-deuteron scattering. An analysis of the
volume dependence of the three-body bound state spectrum was carried out in [101–104] by solving
the scattering equations, obtained in the EFT formalism, numerically. These studies paved the way for
the NREFT approach to the three-particle quantization condition.

Outline This thesis is devoted to a development of a systematic approach to analyze LQCD data in
the three-particle sector, based on the use of NREFT methods. In particular the relativistic invariance
of the NREFT is addressed. An important result is the derivation of a three-body analog of the
relativistic-invariant Lellouch-Lüscher equation.

The thesis is organized as follows: Chapter 2 and 3 provide a short introduction into the methods of
LQCD and the NREFT formalism. Here the role of relativistic invariance will be discussed in detail.
In Chapter 4 a three-body analog of the Lellouch-Lüscher formalism, restricted to the rest frame, is
derived within the covariant NREFT framework at the leading order. Chapter 5 pays special attention
to the relativistic-invariance of the NREFT quantization condition. A modified version is established
that is valid in moving frames. Chapter 6 represents a generalization of the relativist-invariant NREFT
quantization condition to arbitrary partial waves. Lorentz invariance is proven explicitly. Finally a
three-body analog of the Lellouch-Lüscher formula in moving frames is derived.

1 Note that the the quark masses can not be tuned arbitrary large as the applicability of ChPT has to be guaranteed.
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CHAPTER 2

Lattice Quantum Chromodynamics

In this chapter the features of quantum chromodynamics will be discussed. Outlining the necessity of
a non-perturbative treatment, the basic concepts of lattice quantum chromodynamics will be presented.
Special attention will be paid to hadron spectroscopy, the framework to extract physical properties of
hadrons from LQCD. While it turns out to be quite simple to determine quantities of stable particles,
accessing scattering and resonance properties represents a non-trivial task. Therefore a major part of
this chapter will focus on the relation between the finite-volume two-body energy spectra, measured in
LQCD and infinite-volume S-matrix elements. The generalization to the three-body sector is discussed
briefly.

2.1 Continuum QCD

Quantum Chromodynamics is a quantum field theoretical description of the strong interaction in terms
of quarks and gluons. It is formulated as a SU(3)-gauge theory, defined by the Lagrangian1

LQCD = −
1

2g2 Tr
[
FµνFµν]

+
∑
f

ψ̄f

(
iγµDµ − m f

)
ψf , (2.1)

where the spinors ψf (x) represent the quark fields, that couple to the gluon field Aµ(x) via the
gauge-covariant derivative

Dµ = ∂µ + iAµ . (2.2)

Furthermore, Fµν is the field strength tensor of the gluon field:

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν] . (2.3)

While for each flavor f = 1, . . . , N , the quark field consists of a SU(3) triplet, with charges referred
to as colors, the gluon field transforms according to the adjoint representation. The Lagrangian is

1 The Lagrangian displayed here does not contain the θ-term and gauge-fixing terms, which are not relevant for the following
discussion.
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invariant under local SU(3) gauge-transformations of the fields:

ψ(x) → ψ ′(x) = Ω(x)ψ(x) ,

ψ̄(x) → ψ̄ ′(x) = ψ̄(x)Ω†(x) ,

Aµ(x) → A′µ(x) = Ω(x)Aµ(x)Ω
†
(x) + i(∂µΩ(x))Ω

†
(x) , (2.4)

where Ω(x) ∈ SU(3).
For vanishing quark masses m f = 0, f = 1, . . . , N , the Lagrangian contains a single dimensionless

parameter, the strong coupling g or equivalently αs = g2
/4π. On the other hand, the renormalization

procedure required to remove ultraviolet divergences arising from loop integrals in the perturbative
expansion, introduces an artificial scale µ. As a consequence, physical observables, calculated in
perturbation theory, explicitly depend on the renormalization scale µ. Consider a dimensionless
observableR, describing a process at some energy scaleQ. By dimensional analysis,R ≡ R(Q2

/µ2, αs)

only depends on the ratio Q2
/µ2 and the dimensionless quantity αs. As the renormalization scale was

added by hand, R indeed must be independed of µ. Thus, the coupling must be scale dependent, such
that the explicit µ-dependence of R gets canceled:

0 = µ
d

dµ
R(Q2

/µ2, αs) =

(
µ
∂

∂µ
+ µ

dαs
dµ

∂

∂αs

)
R(Q2

/µ2, αs) . (2.5)

This scale dependence of the running coupling αs(µ) is described by the β-function which, at one-loop
level, is given by [105]:

µ
dαs
dµ
= β(αs) = −β0

α2
s

2π
, β0 =

(
11
3

Nc −
2
3

N
)
, (2.6)

where Nc = 3 denotes the number of colors. For the observed number of quark flavors, N = 6, the
β-function is negative, crucial for asymptotic freedom. Increasing the energy scale leads to a reduction
of the coupling strength. Solving the differential equation above, and choosing µ = Q, at the energy
scale of the process considered:

αs(Q) =
2π

β0 ln(Q/ΛQCD)
, ΛQCD = µ exp

(
−

1
β0

2π
αs(µ)

)
. (2.7)

The quantity ΛQCD introduced above is the QCD scale2. It describes the energy, at which the coupling
diverges. The emergence of a intrinsic, dimensionful parameter from a scaleless theory is known as
dimensional transmutation. Perturbation theory is only reliable at energies well above this scale3.
Due to the non-perturbative nature of QCD in the low-energy regime, analytic access to properties of
hadrons is very limited. However, lattice QCD provides an approach to study the low energy region
directly from first principles of QCD.

Furthermore QCD is subject to color confinement. Quarks and gluons are not observed as isolated
particles, but rather form color neutral bound states, the hadrons. This is in contrast to the electroweak

2 Note that ΛQCD is indeed scale independent.
3 The value of ΛQCD is depending on the renormalization scheme and the number of quarks. In the MS-scheme for N = 3
one finds ΛQCD = (332 ± 17)MeV [105]
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2.1 Continuum QCD

interaction, where leptons and gauge-bosons represent the fundamental degrees of freedom which
appear in the measurable spectrum at the same time.

As can be seen from the Lagrangian, QCD possesses a global SU(Nf ) flavor symmetry if the masses
of a certain group of quarks is equal, m f = m for f = 1, . . . , Nf . That is, the Lagrangian is invariant
under the transformation

ψ = (ψ1, . . . , ψN f
)
T , ψ → Uψ , U ∈ SU(Nf ) . (2.8)

In nature the masses of u- and d-quark are close to zero4, such that an approximate SU(2) symmetry,
referred to as isospin symmetry, emerges. Despite the complicated nature of the interaction of
quarks and gluons, this symmetry should be inherited to the hadronic level. The observed hadronic
spectrum should be classifiable by irreducible representations (irreps) of the isospin symmetry group.
Furthermore, one may also include the s-quark as it is much lighter than the typical scale of hadronic
masses enlarging the symmetry group to SU(3). Indeed such a classification in terms of SU(3)
multiplets turned out to be successful, actually predating the formulation of the strong interactions in
terms of QCD as described in the introductory part. Moreover, predictions of scattering properties,
such as ratios of cross sections, using these symmetry arguments are in a good agreement with
experiments. Including isospin-breaking effects, the Gell-Mann-Okubo formula [10, 11] explains the
mass splitting of hadrons within a multiplet and reproduces the measured values on the percentage
level.
Another important property of QCD is the invariance under a global chiral symmetry in case of

massless quarks. Organizing the N quarks in a field ψ = (ψ1, . . . , ψN )
T and decomposing into left-

and right-handed components

ψL/R = PL/Rψ , PL/R =
1
2
(1 ∓ γ5) , P2

L/R = PL/R , PL + PR = 1 , (2.9)

the fermionic Lagrangian can be rewritten as:

L f = ψ̄L

(
iγµDµ

)
ψL + ψ̄R

(
iγµDµ

)
ψR − ψ̄L M ψR − ψ̄R M ψL , (2.10)

where M = diag(m1, . . . ,mN ) is the quark mass matrix. For Nf vanishing quark masses, the
Lagrangian is invariant under a global UL(Nf ) × UR(Nf ) symmetry:

ψL/R → gL/RψL/R , gL/R ∈ UL/R(Nf ) . (2.11)

This seems to be a reasonable assumption for the u−, d− and s−quarks, such that Nf = 3 in nature. The
corresponding left- and right-handed currents might be decomposed into axial- and vector-components.
While the singlet vector current gives rise to the conservation of baryon number density, it can be
shown that the conservation of the singlet axial current is violated by the axial anomaly. Moreover,
the observed spectrum of hadrons implies that the non-singlet axial symmetry can not be realized
on the ground state. Otherwise meson and baryon multiplets would come in pairs with opposite
parity. Thus, QCD is subject to spontaneous symmetry breaking5 SU(Nf )L × SU(Nf )R → SU(Nf )V ,

4 As compared to the mass scale of hadrons, which, in the chiral limit m f → 0 is determined solely by ΛQCD.
5 The SU(Nf )V subgroup is protected by the Vafa-Witten theorem [74] under certain assumptions.
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where the residual vector subgroup SU(Nf )V corresponds to the flavor symmetry discussed in the
preceding paragraph. This process results in the appearance of N2

f − 1 massless Goldstone modes.
In nature these can be identified with the members of the lightest meson octet, pions, kaons and the
eta-particle. Due to the explicit symmetry breaking effects of non-zero quark masses, these pseudo
Goldstone bosons do not remain massless. The construction of an effective field theory in terms of
these particles, also coupling to other hadrons and sources, is known as chiral perturbation theory and
serves as a low-energy description of QCD dynamics for hadrons.

Since spontaneous symmetry breaking requires a non-perturbative treatment, this once again
indicates that lattice methods are necessary for a description of hadronic interaction in terms of its
fundamental components, quarks and gluons. However, it should be pointed out that in contrast to
the long-ranged nature of the interaction between quarks and gluons, the interaction of hadrons, the
nuclear force, is naturally short-ranged. Qualitatively, the reason is that hadrons are colorless bound
states, preventing them to couple via the strong force of quarks and gluons at large separations. Only
in close proximity, at the scale of a few femtometer, a residual effect of the interacting quarks and
gluons can be observed. This is in analogy to van der Waals forces that emerge between neutral atoms
or molecules via interactions of their charged constituents.

As pointed out above, in order to study QCD in terms of its fundamental building blocks, a
non-perturbative treatment such as lattice QCD is required. Lattice QCD is based on the path integral
formulation of QCD. After performing analytic continuation to Euclidean space-time by a Wick
rotation, within this approach vacuum expectation values of operators O are calculated according to

〈O〉 =
1
Z

∫
DψDψ̄DA O[ψ, ψ̄, A] e−SE [ψ,ψ̄,A] , Z =

∫
DψDψ̄DA e−SE [ψ,ψ̄,A] (2.12)

where SE is the Euclidean QCD action6:

SE =
∫

d4x
 1

2g2 Tr
[
Fµν(x)Fµν(x)

]
+

∑
f

ψ̄f (x)
(
γµDµ + m f

)
ψf (x)

 . (2.13)

In principle the reconstruction of physical observables by analytical continuation of Euclidean
correlation function, obtained form Eq. (2.12), back to Minkowski space is guaranteed [106, 107].
Indeed Eq. (2.12) is related to a stochastic process with probability weight factor exp{−SE } and can
be evaluated by numerical methods. Nevertheless, the path integral is ill-defined if no regularization
is imposed. In the perturbative regime, the exponential is expanded in powers of the small coupling
constant. The resulting functional integration leads to divergent loop integral which can be tamed,
using dimensional regularization for example. Lattice regularization provides a different approach,
which allows for the application of Monte Carlo methods. This scheme will be discussed in the
following.

6 For the sake of compact notation subscripts denoting Euclidean quantities are dropped. The Euclidean metric is given
by δµν = diag(1, 1, 1, 1), so that raising and lowering of indices is trivial. The gamma matrices obey the relation
{γµ, γν} = 2δµν .
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2.2 Discretization of the Euclidean Path Integral

Uµ(x)

Uν(x + a µ̂)

U†µ(x + aν̂)

U†ν (x) Uµν(x)

ψ̄f (y)

ψf ′(z)

µ̂

ν̂
a

a

Figure 2.1: Plaquette operator Uµν(x), as given in Eq. (2.22), and parallel transporter connecting the fermion
fields ψ̄f (y) and ψf (z), Eq. (2.20), on a lattice with spacing a. The blue dots represent the lattice points, while
the gray lines connect neighboring sites. The yellow arrows denote a link field in the directions defined by the
unit vectors in the lower left corner.

2.2 Discretization of the Euclidean Path Integral

In lattice regularization the Euclidean space-time is usually discretized in a hypercubic lattice of
spatial and temporal extend, L = aN and T = aNT respectively. Here, a denotes the lattice spacing
between neighboring sites which is considered to be the same in all directions for simplicity, while N
and NT denote the number of lattice sites in spatial and temporal directions, respectively. Also note
that elongation of different spatial direction can be considered. On the other hand, when studying the
effects of the finite spatial volume in the subsequent chapters, a uniform extent will be assumed. The
set of lattice sites can then be written as

Λ =
{
x ∈ R4 �� xµ = anµ , nµ = 0, 1, . . . , Nµ − 1 , µ = 1, 2, 3, 4

}
, (2.14)

where N4 ≡ NT and Ni ≡ N for i = 1, 2, 3. Quark fields ψf and ψ̄f are placed only on these lattice
sites and transform according to Eq. (2.4). The fields placed on the lattice are subject to a certain
boundary condition. A common choice is given by periodic boundary conditions, where the endpoints
of the lattice are identified, forming a 4-torus.

Maintaining gauge invariance is crucial when lattice regularization is used. Note that in the
continuum theory, as the coordinates in color space are position dependent, the gauge field emerges
necessarily. It accounts for the change of the inherently different gauge reference frames of fields
ψf (x) and ψf (x + ε), with ε → 0, when taking the derivative. In general, “comparing” quark fields at
different space-time points, x and y, requires parallel transport of the field ψf (x) to the gauge frame
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at y along a path γx,y connecting these two points:

ψf (y) = Γ(γx,y)ψf (x) , Γ(γx,y) = P exp

(
−i

∫
γx,y

A · ds

)
. (2.15)

Here Γ ∈ SU(3) is called parallel transporter and P denotes the path ordered product. With the
transformation properties of the parallel transporter

Γ(γx,y) → Γ
′
(γx,y) = Ω(y)Γ(γx,y)Ω(x)

† , (2.16)

indeed the field ψf (y) = Γ(γx,y)ψf (x) → Ω(y)ψf (y) transforms according to a field located at y. As
due to lattice regularization the notion of arbitrary close space-time points is abandoned, instead of
gauge fields lattice QCD is formulated in terms of link variables Uµ(x) given as parallel transporter of
neighboring sites in the direction of the unit vector µ̂:

Uµ(x) = Γ(γx+aµ̂,x) = P exp
(
i
∫ a

0
A(x + t µ̂)dt

)
. (2.17)

According to Eq. (2.16) the link variables transform as

Uµ(x) → U ′µ(x) = Ω(x)Uµ(x)Ω(x + a µ̂)† . (2.18)

In lattice regularization the path integral measure reduces to a well-defined integration over a finite set
of field variables ∫

DψDψ̄DA→
∫ ∏

x∈Λ

dψ(x) dψ̄(x)
∏
µ

dUµ(x) , (2.19)

where dU denotes the invariant Haar-measure of SU(3). Since SU(3) is compact, integration over link
variables Uµ(x) ∈ SU(3) makes gauge fixing unnecessary when determining physical obervables.

2.2.1 Discretization of the Gauge Action

The remaining steps address the discretization of the Euclidean action. This is a rather non-trivial
task as the use of link variables prevents a direct relation to the continuum version. The fundamental
building blocks, used to assemble a lattice version of the QCD action, need to be gauge invariant.
Due to the transformation properties of the gauge links and quark fields, there are only two distinct
invariant quantities. The former consist out of gauge links connecting two quark fields, forming a
lattice version of the gauge transporter:

ψ̄f (x1)Pγ[U]ψf ′(x2) = ψ̄f (x1)


∏
(y,µ)∈γ

Uµ(y)

 ψf ′(x2) , (2.20)
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2.2 Discretization of the Euclidean Path Integral

where γ describes a path from x2 to x1. The latter is given by a trace over link variables along a closed
loop:

L`[U] = Tr


∏
(y,µ)∈`

Uµ(y)

 , (2.21)

where ` is a closed path. The simplest version of this quantity is the plaquette:

Uµν(x) = Uµ(x)Uν(x + a µ̂)U†µ(x + aν̂)U†ν (x) . (2.22)

Schematically the plaquette, as well as the lattice version of the gauge transporter as defined in
Eq. (2.20), are depicted in Fig. 2.1.

A suitable lattice version of the pure gauge part of the Euclidean action is given by [108]

SG = −
2
g2

∑
x∈Λ

∑
µ<ν

Re Tr
[
Uµν(x)

]
. (2.23)

Inserting Uµ(x) = exp(iaAµ(x)), equivalent to Eq. (2.17) up to O(a) (up to an irrelevant constant), the
continuum action can be recovered when taking the limit a→ 0:7

SG =
a4

2g2

∑
x∈Λ

∑
µ,ν

Tr
[
Fµν(x)

2
]
+ O(a2

)
a→0
−→

1
2g2

∫
d4x Tr

[
Fµν(x)

2
]
. (2.24)

2.2.2 Fermions on the Lattice

In an naive approach, the fermionic action could be discretized according to

SF = a4
∑
x∈Λ

∑
f

ψ̄f (x)
(
D[U] + m f

)
ψf (x) , D[U] =

1
2
γµ(∇µ + ∇

∗
µ) (2.25)

where ∇µ and ∇
∗
µ denote the covariant forward and backward difference operators respectively:

a∇µψf (x) = Uµ(x)ψf (x + a µ̂) − ψf (x) , a∇∗µψf (x) = ψf (x) −U†µ(x − a µ̂)ψf (x − a µ̂) . (2.26)

Indeed the continuum action is obtained up to discretization effects of O(a2
). However this lattice

action leads to an inflation of the number of quark states. These doublers appear as, due to periodicity,
the lattice version of the free quark propagator has additional poles apart from the physical one.
Fermion doubling inevitably arises in lattice regularization of theories that possess “continuum-like”
chiral symmetry, if locality, translation invariance and hermiticity are imposed [109]. Removing the
unphysical doublers one necessarily has to violate one of these assumptions. This leads to a variety of
different formulations.
Wilson fermions [108] explicitly break chiral symmetry by adding an extra term to the naive

action, that decouples the fermion doublers in the continuum limit. The Dirac operator in the naive
7 Note that the left-hand side explicitly displays the sum over indices µ and ν, which is taken implicit on the right-hand side
in the summation convention.
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discretization is replaced with the Wilson-Dirac operator:

D[U] −→ DW [U](x) = D[U] − a
r
2
∇
∗
µ∇µ , (2.27)

where r is the Wilson parameter. While the physical pole in the propagator stays unaffected, the
doublers acquire a mass of 2r/a. In the continuum limit they become infinitely heavy, such that they
decouple. Note that due to the extra term, discretization effects enter at O(a).
Besides staggered fermions [110, 111], other prominent approaches are overlap [112, 113] and

domain-wall discretization [114, 115]. In the latter two, the corresponding Dirac operator obeys the
Ginsparg-Wilson relation {

γ5,D[U]
}
= a D[U]γ5D[U] .

Chiral symmetry again is explicitly broken in order to evade fermion doubling. However, the relation
implies the existence of a lattice version of chiral transformations [116] that reduce to the continuum
symmetry in the limit a→ 0. Moreover the measure of Girnsparg-Wilson fermions explicitly breaks
the lattice axial singlet transformation, resembling the axial anomaly.

2.2.3 Improved Action

As pointed out above, the lattice regularized action is subject to discretization effects. LQCD calculation
thus require a continuum extrapolation, typically achieved by performing multiple simulations on
lattices with decreasing spacing. In order to keep the volume constant, it is necessary to increase the
number of lattice points, thus making calculations numerically expensive. On the other hand, the
Symanzik improvement program [117, 118] provides a way to systematically reduce discretization
effects.

In order to achieve the improvement one considers a continuum effective field theory of the lattice
action. Here the inverse spacing naturally serves as a momentum cutoff. The operators entering the
effective action are then multiplied by orders of powers of a according to their mass dimension. This
yields a systematic way to organize the effective theory into powers of the lattice spacing. Adding
suitable counterterms to the lattice action these correction terms can be canceled exactly, leading to an
improvement in terms of the spacing. For an order O(a) improvement of the Wilson fermion action
SW it is sufficient to add a single operator [119]:

SW ′ = SW + cswa5
∑
x∈Λ

∑
µ<ν

∑
f

ψ̄f (x)
σµν

2
F̂µν(x)ψf (x) , (2.28)

where σµν = −i[γµ, γν]/2 and F̂µν(x) is defined in terms plaquettes as

F̂µν(x) = −
i

8a2 (Qµν(x) −Qνµ(x)) ,

Qµν(x) = Uµν(x) +Uν,−µ(x) +U−µ,−ν(x) +U−ν,µ(x) . (2.29)

The Sheikoleslami-Wohlert coefficient csw must be tuned appropriately [120–122].
Furthermore, an O(a2

) improvement of the pure gluonic action can be achieved by adjusting SG
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according to [123–125]

SG′ = −
2
g2

∑
x∈Λ

(
b0

∑
µ<ν

Re Tr
[
Uµν(x)

]
+ b1

∑
µ,ν

Re Tr
[
U1×2
µν (x)

] )
. (2.30)

Above U1×2
µν (x) denotes a 1 × 2 loop in the µ and ν directions respectively, analogous to the definition

of the plaquette. Explicit values of b0 and b1 can be found in, for example [123, 126]. While this
procedure is already sufficient for an improvement of on-shell quantities, in general also interpolating
operators have to be adjusted.

2.3 Hadron Spectroscopy

After having outlined the lattice regularization of QCD, the following section will focus on the
extraction of physical properties of hadrons from LQCD. Access to observables is gained from
calculating correlation functions of suitable interpolating fields, owing the quantum numbers of the
hadrons of interest. For example, a choice of interpolators having non-zero overlap with the pion
states is given by

π+(x) = d̄(x)γ5u(x) ,

π−(x) = ū(x)γ5d(x) ,

π0
(x) =

1
√

2

(
ū(x)γ5u(x) − d̄(x)γ5d(x)

)
, (2.31)

where q(x) ≡ ψq(x) and q̄(x) ≡ ψ̄q(x) for quarks of flavor f = q in favor of compact notion.
Correlation functions are then calculated according to the lattice regularized version of Eq. (2.12).
For O ≡ O[ψ, ψ̄,U], applying Wick’s theorem

〈O〉 =
1
Z

∫
DU 〈O〉F [U] e

−SG [U] det D[U] , Z =
∫
DU e−SG [U] det D[U] , (2.32)

where det D[U] =
∏

f det D f [U] is the determinant of the lattice Dirac operator and DU =∏
x∈Λ

∏
µ dUµ(x) for abbreviation. Furthermore 〈O〉F denotes the Wick contraction of the op-

erator O, which is the sum of all possible partitionings into pairs of quark- antiquark-fields with each
pairing replaced by its corresponding Dirac propagator. Note that some of these partitionings might
trivially vanish, as the Dirac propagator is diagonal in flavor space.

If det D[U] =
∏

f det D f [U] > 0 is positive definite

dP[U] =
1
Z

e−SG [U] det D[U]DU , (2.33)

defines a probability measure and the integration in Eq. (2.32) can be performed using Monte Carlo
methods. Expectation values are estimated by averaging over N independent samples

〈O〉 =
1
N

N∑
i

〈O〉F [Ui] + O(N
−1/2
) , (2.34)
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x y
u

d̄

ū

d
x y

u d̄

ū d

Figure 2.2: Left: connected contribution to the π+ two-point function. Right: disconnected contribution to the
π0 two-point function as in the third line of Eq. (2.38). The lines with arrows depict quark propagators.

where gauge configurations Ui are drawn according to the distribution defined by Eq. (2.33) using
importance sampling. Modern LQCD calculations typically apply Hybrid Monte Carlo [127], which
is a Markov chain Monte Carlo method that combines Hamiltonian dynamics with a subsequent
Metropolis-Hastings accept-reject step [128, 129].

In hadron spectroscopy O usually is given by a product of hadron interpolators. For example, the
mass of the positively charged pion, see section 2.3.1, can be obtained from the expectation value

〈Oπ+(x, y)〉 = 〈π
+
(x)(π+(y))†〉 = 〈π+(x)π−(y)〉 , (2.35)

with interpolators given as in Eq. (2.31). Performing the Wick contractions

〈Oπ+(x, y)〉F [U] = −Tr
[
γ5D−1

u [U](x, y)γ5D−1
d [U](y, x)

]
, (2.36)

where D−1
f [U](x, y) is the quark propagator with flavor f , given by the inverse of the corresponding

Dirac operator. If instead the expectation value

〈O
π0(x, y)〉 = 〈π0

(x)(π0
(y))†〉 (2.37)

is considered, there exist more (non-trivial) contractions as O
π0 contains quarks and anti-quarks of the

same flavor:

〈O
π0(x, y)〉F [U] = −

1
2

Tr
[
γ5D−1

u [U](x, y)γ5D−1
u [U](y, x)

]
+

1
2

Tr
[
γ5D−1

u [U](x, x)
]

Tr
[
γ5D−1

u [U](y, y)
]

−
1
2

Tr
[
γ5D−1

u [U](x, x)
]

Tr
[
γ5D−1

d [U](y, y)
]
+ u↔ d . (2.38)

In contrast to the connected contributions in the first line, here additional types of contractions in
the second and third line are referred to as disconnected, diagrammatically displayed in Fig. 2.2.
Calculation of the latter typically demand much more numerical effort and higher statistics. On the
other hand, in the isospin symmetric case mu = md, the disconnected pieces in Eq. (2.38) cancel and
the correlator reduces to that of the charged pions. This implies the degeneracy of the isospin triplet
pion states. Nevertheless, the full spectrum of hadrons also include isospin singlet states such as the η
meson that require the calculation of disconnected pieces even in the isospin limit.
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2.3.1 Spectrum of Stable Hadrons

One of the most easily accessible quantities is the spectrum of stable hadrons, i.e. those that do not
decay within the strong interactions. For Nf = 3, these include the light octet pseudoscalars π and
K , the octet baryons N , Λ, Σ and Ξ as well as the Ω particle of the baryon decuplet. The masses of
these particles can be obtained by considering two-point functions of the pertinent interpolating fields.
With suitable interpolators Oh the correlator for the hadron h is given by, assuming t > 0:

Ch(t) =
1
L3

∑
x
〈0|Oh(t, x)O

†

h
(0, 0)|0〉 . (2.39)

Here and in the following a lattice with an infinite temporal extend, T → ∞, is considered. Actual
calculations on the other hand are performed at finite T . Imposing periodic boundary conditions this
leads to pollution by thermal states8 [130] that vanish in the limit T →∞.
Inserting a full set of eigenstates of the lattice Hamiltonian in the expression above and using

translation invariance the correlation function is given by

Ch(t) =
∑
n

Zn

2En(0)
e−En(0)t , (2.40)

where Zn = |〈0|Oh(0, 0)|n〉|
2
≡ |〈0|Oh |n〉|

2 is the probability that the state |n〉 is created by the operator
Oh and En(0) is the energy of this state with total momentum pn = 0. The stable hadron corresponds
to the lightest state, denoted by n = 0, the interpolator has overlap with. Since E0 < E1 < . . . , the
contribution of exited states die out exponentially in time. In order to extract the mass of the hadron
one defines the effective mass:

aMeff(t) = log
(

Ch(t)
Ch(t + a)

)
, (2.41)

reducing to the ground state energy for large values of time, Meff(t) → E0(0) for t � a. Plotting
Meff(t) as a function of time, the mass of the stable hadron is obtained by a constant fit to the region
where the data shows a plateau. The fit range, [tmin, tmax], can be quite narrow mainly due to two
effects. Usually tmax is limited by a low signal-to-noise ratio at large times [131, 132]. On the other
hand, tmin is determined by the excited state contamination to the correlation function.
An improvement can be achieved if the interpolating fields are chosen such that the overlap to

the ground state is maximized. Thus, in practice, rather than using the naive operators in Eq. (2.31)
directly, smearing is applied to the quark fields. Here an average over spatially separated quarks is
taken, intuitively corresponding to a more realistic spatial wave function. One of the most wildly
used techniques is Gaussian or Jacobi smearing [133–135]. Moreover the noise can be reduced
by smoothing the gauge configurations, typically subject to violent UV fluctuations. Prominent
algorithms are provided by APE- [136], HYP- [137] and stout smearing [138].
In order to extract the energies of exited states a variational analysis can be deployed. In this

8 In this case the expectation value in the correlator would not only contain the vacuum state |0〉 as in Eq. (2.39). Rather a
sum over all lattice Hamiltonian eigenstates |n〉 has to be taken into account. Using the time evolution of the operator
Oh(t, x) = e−H(T−t)Oh(0, x)e

−Ht the contribution of exited states |n〉 , |0〉 vanishes as exp(−En(T − t)) for T → ∞.
However, these thermal states can lead non-negligible artifacts in general (multi-particle) correlation functions.
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Figure 2.3: Masses of the light hadrons from LQCD compared to experimental values from [105]. Data (blue
dots) is taken from [140], where dark and light blue bars denote statistical and systematic errors respectively.
Yellow dots indicate the particles that were used as input. Black horizontal bars represent experimental values,
with gray boxes specifying the width of resonances. Long gray vertical line separate different mutiplets.

approach a basis of different interpolators for the same hadron is constructed and the matrix of
correlators is calculated. The energies can be determined by solving the generalized eigenvalue
problem (GEVP) [139]: C(t)vn = λn(t)C(t0)vn, where C(t) denotes the correlator matrix and
λn(t) = exp(−Ent)(1 + O(exp(−∆Ent))) with ∆En = minm,n |En − Em |.
Fig. 2.3 shows the hadron spectrum obtained by the BMW collaboration [140] for Nf = 2 + 1

flavors, i.e. approximate physical strange quark and degenerate light quark masses extrapolated to
the physical point of Mπ ≈ 135 MeV. Simulations were performed using a stout averaged, Symanzik
improved gauge action and Wilson fermions. Finite-volume effects to the stable hadron masses M,
resulting from virtual pion exchange [141], were taken into account by fitting

ML = M +
c

(MπL)3/2
exp

(
−MπL

)
(2.42)

to the measured masses ML , for three different box length L. In order to determine the masses of
resonances, also displayed within the plot, a more elaborate formalism is needed, that will be discussed
in the following section.

2.3.2 Two-Particle Scattering and Resonance Properties from Lattice QCD

The previous section showed that the masses of stable hadrons can be determined by a calculation
of two-point functions on the lattice, extracting the lowest energy levels. As shown by Lüscher [32]
their volume dependence is regular, i.e. coincides with the infinite-volume masses up to exponentially
suppressed corrections. This method can be generalized in order to extract more complicated quantities
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2.3 Hadron Spectroscopy

as long as the corresponding infinite-volume S-matrix elements contain a single particle in the in-
and out states only. Prominent examples are the space-like electromagnetic form factors of various
hadrons.
On the other hand, the method fails when applied to processes that involve more in- and outgoing

particles, such as scattering. This statement is formulated in the Maiani-Testa no-go theorem, that
was first proven in the context of time-like form factors [31] and will be outlined in the following
paragraph with respect to two-particle scattering.

The Maiani-Testa No-Go Theorem

Considering the process π+(p1)π
+
(p2) → π+(q1)π

+
(q2) in infinite Euclidean space-time, the scattering

amplitude is related to the four-point function

Cp1,p2;q1,q2
(x0

1, x0
2 ; y0

2, y
0
1) = 〈0|π

+
q1
(x0

1)π
+
q2
(x0

2)π
−
p2
(y0

2)π
−
p1
(y0

1)|0〉 , (2.43)

where the limits x0
i → ∞ and y0

i → −∞ are implicit assuming x0
1 � x0

2 and y0
1 � y0

2 . The pion
interpolators are momentum-projected according to

π±k (x
0
) =

∫
d3x e±ikx π±(x0, x) . (2.44)

Taking the limits for x0
1 and y0

1 first, the correlation function is given by

Cp1,p2;q1,q2
(x0

1, x0
2 ; y0

2, y
0
1) =

Zπ
2Eπ(p1)2Eπ(q1)

e−Eπ (q1)x
0
1+Eπ (p1)y

0
1 C̃p1,p2;q1,q2

(x0
2 ; y0

2) , (2.45)

where, with |k〉 denoting a π+-state with momentum k,

C̃p1,p2;q1,q2
(x0

2 ; y0
2) = 〈q1 |π

+
q2
(x0

2)π
−
p2
(y0

2)|p1〉

=
∑
n,m

〈q1 |π
+
q2
(0)|n; out〉〈m; in|π−p2

(0)|p1〉

2En(Qn)2Em(Pm)
e−(En(Qn)−Eπ (q1))x

0
2 e−(Eπ (p1)−Em(Pm))y

0
2

× (2π)3δ3
(q1 + q2 −Qn)(2π)

3δ3
(p1 + p2 − Pm) 〈n; out|m; in〉 . (2.46)

Here full set of in- and out eigenstates have been inserted, according to the boundary conditions
x0

2 → ∞ and y0
2 → −∞. In Eq. (2.46) the matrix element 〈n; out|m; in〉 is the amplitude to be

extracted. Now since x0
2 → ∞ and y0

2 → −∞, the states with the lowest energy will dominate the
sum. As can be read off from the matrix elements 〈q1 |π

+
q2
(0)|n; out〉 and 〈m; in|π−p2

(0)|p1〉, these are
the π+π+ states with total momenta Qn = q1 + q2 and Pm = p1 + p2 respectively. For the sake of
simplicity let q1 + q2 = 0 = p1 + p2. While the energy of the in- and outgoing pion pairs considered
in the scattering process is equal to 2Eπ(p1), the lowest contributing intermediate states correspond to
the two-pion states at rest, En(Qn) = Em(Pm) = 2Mπ . Thus, the correlation function is dominated
by matrix elements, 〈n; out|m; in〉, that do not correspond to the on-shell scattering process. Only at
threshold, where all momenta vanish, a direct relation can be established.
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Lüscher’s Method

The preceding paragraph showed that a simple extraction of scattering parameters, thus also resonance
properties and similarly decay amplitudes from Euclidean correlation functions remains flawed due to
off-shell contributions9. That is, the correlation functions are dominated by matrix elements that do
not correspond to the physical scattering process as described above. This statement is only strictly
true in the infinite volume, where a continuum of intermediate states exists above threshold. In a finite
box of length L with periodic boundary conditions, on the other hand, the momentum is quantized
according to

p =
2π
L

n , n ∈ Z3 . (2.47)

Therefore, the energy spectrum is discrete. For example, the non-interacting two-pion energies in the
rest frame, as considered above, are given by

En = 2

√
M2
π +

4π2

L2 n2 , n ∈ Z3 . (2.48)

Due to interactions, these energies will be shifted. The existence of such a discrete energy spectrum in
principle allows for the extraction of on-shell amplitudes from the correlation function in Eqs. (2.45)
and (2.46) if sufficiently high energy levels are reached. However, singling out the correct matrix
element remains a difficult task.

Nevertheless, the discrete energy spectrum of the finite-volume enables access to scattering
parameters. With the pioneering perturbative calculations [143, 144] of the finite-volume energy shift
of the n-Bosons ground state, the scattering length could be obtained by a fit to the energy spectrum.
Proceeding work [32, 33] by Lüscher showed that the two-particle finite-volume energy spectrum is
uniquely determined by on-shell S-matrix elements, when corrections that are exponentially small in
the box length L are neglected. This framework, coined as Lüscher method, is formulated in terms
of a quantization condition, relating the finite-volume energy levels En to the infinite-volume phase
shifts δ`(s). In the particular case of two identical bosons of mass M , it takes the form

det A = 0 ,
A`m,`′m′ = δ``′δmm′ cot δ`(s) −M`m,`′m′(s,P; L) , (2.49)

where `m, `′m′ denotes the angular momentum space, over which the determinant is taken. The matrix
M depends on the total momentum P of the center of mass system (CMS) explicitly, as well as due to
s = E2

− P2, where E is the energy. FurthermoreM does not depend on the short-ranged interactions.

9 Note that with the method described in [142], amplitudes above threshold can be extracted by measuring the proposed
modified Euclidean correlators and fitting them for large but finite times.
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These are completely described by the phase shift. Components of the matrixM are given by

M`m,`′m′(s,P; L) =
(−1)`

π3/2γ

`+`′∑
j= |`−`′ |

j∑
s=−j

i j

η j+1 C`m, js,`′m′Z
d
js(1; s) ,

C`m, js,`′m′ = (−1)m
′

i`−j+`
′
√
(2` + 1)(2 j + 1)(2`′ + 1)

(
` j `′

m s −m′

) (
` j `′

0 0 0

)
, (2.50)

where

d =
L

2π
P , η =

L
2π

q∗ , γ =
E
√

s
(2.51)

with q∗ =
√

s/4 − M2 the relative momentum in the CMS and

Zd
`m(1; s) =

∑
r∈Pd

Ỳ m(r)
r2
− η2 , Pd =

{
r ∈ R3�� r‖ = γ−1

(n‖ − |d|/2), r⊥ = n⊥, n ∈ Z3
}

(2.52)

is the Lüscher Zeta-function. The parallel and perpendicular components in the sum are taken with
respect to the CMS momentum. The functions Ỳ m(k) = |k|

`Ỳ m(k̂) are related to the usual spherical
harmonics. The appearance of the Lüscher Zeta-function leads to an irregular, i.e. non-exponential,
L dependence of the finite-volume energy spectrum. Diagrammatically such contributions emerge
from loops where the particles can go on-shell. A derivation of the quantization condition within the
non-relativistic field theory approach will be given in section 3.2.2.
Solutions E = En that satisfy Eq. (2.49) yield the finite-volume energy spectrum for given input

phase shifts δ`(s). These are related to the infinite-volume scattering amplitude T`(s) in the partial
wave ` due to unitarity:

T(s, cos θ) =
∞∑̀
=0
(2` + 1)P`(cos θ)T`(s) , T`(s) =

16π
√

s
q∗ cot δ`(s) − iq∗

. (2.53)

Here, T(s, cos θ) is the total scattering amplitude and θ denotes the CMS angle. The formula above is
only valid below the first inelastic threshold, which thus defines an upper bound for the validity of
Lüscher’s method in this simple form. Generalizations to coupled two-particle channels were provided
by [37, 39–42], such that the range of applicability can be extended up to the three- or more10-particle
threshold.

Of course, in order to determine scattering amplitudes from LQCD, the direction is reversed. The
lattice energy spectra for given volumes in various frames with total momentum characterized by d are
determined from suitable correlation functions. Then one uses the quantization condition Eq. (2.49)
in order to perform a fit to these energy spectra, such that the optimal parameters of cot δ`(s) are
found that minimize the residual sum of squares. Parameterizing the phase shift is a subtle issue, there
exist several forms. For example, in case of short-range interactions, using that in the vicinity of the
elastic threshold (q∗)2 = 0, the function (q∗)2`+1 cot δ`(s) is analytic and, by unitarity, real above the

10 Certain symmetries may restrict the possible interactions. For example, the process ππ → πππ is forbidden by G-parity.
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threshold, leads to the effective-range expansion (ERE) [145]:

(q∗)2`+1 cot δ`(s) = −
1
a`
+

1
2

r`(q
∗
)
2
+ O(q∗4) , (2.54)

with the coefficients a` and r` are referred to as scattering length and effective range respectively.
It should be pointed out that the generalization of Lüscher’s method, originally formulated for the
two-particle system at rest, to moving frames represents a big advantage, as numerically expensive
calculations in large volumes can be avoided while keeping the number of extracted energy levels
fixed.

2.3.3 Symmetries of the Finite Volume

Rotational invariance is explicitly broken in a finite-volume box. As a consequence the quantization
condition as displayed in Eq. (2.49) is non-diagonal in angular momentum and different partial waves
are mixed. Formally the matrix A is infinite-dimensional since all partial waves contribute11 and it is
necessary to impose an angular momentum cutoff. Such a truncation can be justified as T`(s) ∼ (q

∗
)
2`

in the vicinity of threshold, provides a hierarchy of partial waves in the expansion as displayed in
Eq. (2.53).
As rotational invariance, O(3) � SO(3) × Z2, is not broken completely in a finite volume, further

simplification can be achieved by partially diagonalizing the quantization condition into the irreps
of the residual symmetry group. In case of a cubic lattice with vanishing total momentum d = 0
this group corresponds to the octahedral group12 Oh, containing the symmetry transformations of a
cube. The group Oh contains 48 elements in total, build from 24 proper rotations and space inversion.
Elements that are combinations of rotation and space inversion will be referred to as improper rotations
in the following.
In contrast to the infinite volume, where infinitely many irreps of O(3) exists, labeled by angular

momentum and parity13 `P (` ∈ N, P = ±), there is only a finite number of irreps of the octahedral
group. These are denoted by Γ = A±1 , A±2 , E

±,T±1 ,T
±
2 and are of dimensions 1, 1, 2, 3, 3 respectively.

The superscript denotes the behavior under space inversion. Explicitly the matrix representations
TΓ(g) for each group element g ∈ Oh are given in [146, 147]. For example, A+1 labels the trivial
representation, T A+1 (g) = 1 for all g ∈ Oh, while A−1 acts as T A−1 (g) = ±1 if g is in a proper (+1)
or improper (−1) rotation. Since Oh is a subgroup of O(3), all angular momentum representations
`P of the infinite volume split into linear combinations of the ten irreps of the octahedral group.
Applying the orthogonality of characters14, the decomposition of representations `P into the irreps of
the octahedral group can be performed as displayed up to ` = 4 in Tab. 2.1. The mixing of partial
waves is evident now: while `P = 0± is completely described by the representation A±1 , the latter is

11 If rotational symmetry were exact, still all partial waves contribute, but the matrix A would be diagonal in ` and m, such
that the quantization condition reduces to a product of one dimensional equations for each angular momentum separately.

12 Taking into account fermions, in the infinite volume one considers the double cover SU(2) of the rotation group SO(3).
Similarly in a finite volume the double cover of the octahedral group 2Oh should be considered.

13 The parity of a physical states is determined by its internal parity and the parity of the angular momentum state P` = (−1)` .
For example, while a system of three scalar particles in ` = 0 has parity P = +, for three pseudoscalar particles in ` = 0
one has P = −.

14 The relevant character tables can be found in [36]
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Table 2.1: Decomposition of irreps of O(3) into irreps of Oh and C4v . In the decomposition into irreps of C4v
the occurrence of A1 and A2 depend on the parity. Below, the notation Ai/j is used, where for P = 1 (P = −1)
Ai/j = Ai (Ai/j = Aj).

`P decomposition into irreps of
Oh C4v

0± A±1 A1/2
1± T±1 A2/1 ⊕ E
2± E± ⊕ T±2 A1/2 ⊕ B1 ⊕ B2 ⊕ E
3± A±2 ⊕ T±1 ⊕ T±2 A2/1 ⊕ B1 ⊕ B2 ⊕ 2E
4± A±1 ⊕ E± ⊕ T±1 ⊕ T±2 2A1/2 ⊕ A2/1 ⊕ B1 ⊕ B2 ⊕ 2E

Table 2.2: Contributions of irreps of Oh and C4v to irreps of O(3). Note the irreps A1 and A2 of C4v both
contribute to 4+ as well as 4−, other than the pattern of alternating parties may suggest.

irreps of Oh contribution to `P

A±1 0±, 4±, 6±, 8±, . . .
A±2 3±, 6±, 7±, 9±, . . .
E± 2±, 4±, 5±, 6±, . . .
T±1 1±, 3±, 4±, 5±, . . .
T±2 2±, 3±, 4±, 5±, . . .

irreps of C4v contribution to `P

A1 0+, 1−, 2+, 3−, . . .
A2 0−, 1+, 2−, 3+, . . .
B1 2±, 3±, 4±, 5±, . . .
B2 2±, 3±, 4±, 5±, . . .
E 1±, 2±, 3±, 4±, . . .

also contained within the decomposition of the `P = 4± state. Tab. 2.2 shows the contributions of the
different irreps of Oh to various angular momenta.

For moving frames, the symmetry is further reduced to the stabilizer group G of the total momentum
d , 0:

G =
{
g ∈ Oh | gd = d

}
. (2.55)

For example, for d = (0, 0, 1) the stabilizer group C4v contains 8 elements, corresponding to
transformations leaving an oriented rectangular prism invariant. Note that space inversion is
not a symmetry anymore as it reverses the direction of d. The irreps of C4v are labeled by
Γ = A1, A2, B1, B2, E and are of dimensions 1, 1, 1, 1, 2 respectively. Decomposition of angular
momentum representations `P into these irreps as well as the inverse problem can be found in Tabs. 2.1
and 2.2.
In order to ease the notation, in the following states without internal parity will be considered.

Partial diagonalization of the quantization condition is achieved if it is expanded in the basis of the
irreducible representations of the symmetry group G. For a given representation Γ of dimension dΓ,
these basis vectors will be denoted by |Γt, `, α〉, where α = 1, . . . , dΓ. Furthermore, t = 1, . . . , NΓ
denotes the multiplicity of the irrep Γ for a given angular momentum `. These basis states can be
expressed as a linear combination of angular momentum states:

|Γt, `, α〉 =
∑̀
m=−`

cΓtα
`,m
|`m〉 . (2.56)
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The coefficients cΓtα
`,m

are tabulated in [36, 147, 148] for low values of `. They can be found by letting
the operator

Π
Γ
α =

dΓ
G

∑
g∈G

(
TΓαα(g)

)∗
g (2.57)

act on the angular momentum states |`m〉, projecting them on the invariant subspaces of the irreducible
representations. Here Ti j(g)

Γ denotes the matrix representations of the element g in the irrep Γ and
G = |G| is the order of the stabilizer group. Furthermore, the action of the group element g on the
state |`m〉 is given by

g |`m〉 =
∑̀

m′=−`

D(`)
m′m
(g)|`m′〉 , (2.58)

where D(`) denote the Wigner-matrices. The resulting rows and columns of matrices 〈`m′ |ΠΓα |`m〉
contain the (unnormalized) basis vectors |Γt, `, α〉 as a linear combination of |`m〉. The rank of the
matrix corresponds to the multiplicity t of the irrep Γ.

The operator A in the quantization condition can then be expressed as

A
Γ
t
, Γ′

t′

`α,`′α′
= 〈Γ

t
, `, α |A|Γ′

t′
, `′, α′〉 =

∑̀
m=−`

`′∑
m′=−`′

(
c
Γ
t
α

`,m

)∗
c
Γ
′

t′
α′

`′,m′
A`m,`′m′ . (2.59)

Since the operator A transforms trivially under the symmetry group G, according to the orthogonality
of irreps it follows that

A
Γ
t
, Γ′

t′

`α,`′α′
= 〈Γ

t
, `, α |A|Γ′

t′
, `′, α′〉 = δΓΓ′δαα′A

Γ

`t,`′t′ . (2.60)

Therefore the quantization condition det A = 0 falls apart into separate conditions for each irrep Γ:

det AΓ = 0 ,

AΓ`t,`′t′ = δ``′δtt′ cot δ`(s) −M
Γ

`t,`′t′(s,P; L) ,

M
Γ

`t,`′t′(s,P; L) =
∑̀
m=−`

`′∑
m′=−`′

(
c
Γtα

`,m

)∗
c
Γt′α

`′,m′
M`m,`′m′ . (2.61)

This represents a practical advantage, as the dimensions of matrices entering the quantization condition
are drastically reduced.

At the end of this paragraph, the quantization condition will be used to generate the finite-volume
spectra in two toy models. Considering ` = 0, only the A(+)1 representation contributes in the rest
frame as well as the frame with d = (0, 0, 1). The determinant equation simplifies to a usual one:

cot δ0(s) −
1

π3/2γη
Zd

00(1, s) = 0 . (2.62)
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Figure 2.4: Finite-volume CMS energy spectra in the rest frame and moving frame irrep for elastic S-wave
scattering. Non-interacting levels are indicated by gray dashed lines. Yellow lines denote the energy spectrum
for attractive interaction (a < 0). In case of repulsive interaction (a > 0), represented by blue lines, a bound
state exists with infinite-volume energy indicated by the dotted blue line. The left and middle panel show the
spectrum in the A+1 irrep in the rest frame and A1 irrep in a moving frame, with d = (0, 0, 1), respectively. The
right panel shows the phase shift δ0(s), with q∗ cot δ0(s) = −1/a, as a function of

√
s for a < 0 (yellow line) and

a > 0 (blue line). Note that here the
√

s-axis is vertical.

The first model considers elastic S-wave scattering of two identical bosons of mass M , described by

q∗ cot δ0(s) = −
1
a

(2.63)

to lowest order in the effective range expansion. Choosing a = ±1.5M (in natural units) the quantization
in Eq. (2.62) can be used to produce the energy spectra in the A(+)1 representations of the rest and
d = (0, 0, 1) frame. These are shown in Fig. 2.4 for the case of attractive (a < 0) and repulsive
(a > 0) interaction and compared to the non-interacting levels. For convenience the CMS energies
√

s =
√

E2
n − P2 are plotted. In the attractive case the energy levels are shifted downwards as compared

to the non-interacting levels, while in the repulsive case they are shifted upwards15. Note that for
a > 0 a bound state exists, the corresponding binding energy in the infinite volume is indicated by the
blue dotted line.

The second model considers a S-wave resonance. It can be described by a Breit-Wigner phase shift

q∗ cot δ0(s) =
6π
g2

√
s

M2
R

(M2
R − s) , (2.64)

where MR denotes the mass of the resonance and g controls its coupling. Choosing MR = 3M and
g = 1.333 the energy spectra in the rest and moving frames for the A(+)1 irreps are depicted in Fig. 2.5.
The energy of the resonance is indicated by a yellow line. It can be seen that the energies closely follow
the non-interacting levels, but bend away to the next one in the vicinity of the resonance crossing a
level. This phenomenon is known as avoided level crossing [149].

15 In the moving frame some non-interacting levels are close to each other, such that the energy level of the repulsive
potential might almost overlap with the next energy level of the attractive potential in the figure.
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Figure 2.5: Finite-volume CMS energy spectra in the rest frame and moving frame irrep for a S-wave resonance.
Non-interacting levels are indicated by gray dashed lines, while the resonance energy is represented by a yellow
dashed line. The left and middle panel show the spectrum in the A+1 irrep in the rest frame and A1 irrep in
a moving frame, with d = (0, 0, 1), respectively. The right panel shows the resonance phase shift δ0(s) as a
function of

√
s. Note that here the

√
s-axis is vertical.

An important remark is in order. This concerns the levels that lie in between two narrowly separated
non-interacting energies that appear in the moving frame16. An example of such an occurrence can be
observed in Fig. 2.5 between the third and fourth non-interacting levels17. The small gap between such
neighboring non-interacting energies can be attributed to relativistic effects, the levels are degenerate
in the non-relativistic limit. For example, the third and fourth non-interacting levels in the middle
panel of Fig. 2.5 correspond to pairs of particles with momenta (representatives18) p1 = 2π/L (0, 0, 2),
p2 = 2π/L (0, 0,−1) and p1 = 2π/L (1, 1, 1), p2 = 2π/L (−1,−1, 0) respectively. In the interacting
case, there will always lie a “pinched” level in between such two non-interacting energies. The
problem with these energy level arises when considering the non-relativistic limit, in which the two
non-interacting energies approach and from a degenerate level. Naively one would expect that the
“pinched” level thus turns into an unphysical solution which lies exactly at the non-interacting energy.
On the other hand, as shown in App. A.1, the residue of such a “pinched” level vanishes in the
non-relativistic limit, such that the expected unphysical solution indeed disappears from the spectrum.

Furthermore, for practical applications of the Lüscher method one should treat “pinched” energy
levels with caution as these are rather insensitive to changes of the form and strength of the interactions.
Moreover, fitting the quantization condition to the finite-volume spectrum in order to determine the
parameters of the phase shift, error bands on the energies of the extracted “pinched” levels result in
extremely large error bands on the phase shift, due to the steep form of the Lüscher Zeta-function in
that region. A similar discussion can also be found in [150] where states of the same characteristic,
appearing in finite volumes subject to elongation, have been observed.

16 Such levels can also be seen in the toy model spectra of Ref. [43], where the figures above have been inspired from.
17 The same behavior can be found in Fig. 2.4 but due to cluttered presentation identifying these levels might be difficult.
18 The energy level corresponds to the state, build from these momenta, that transforms in the A1 irrep. It can be obtained by

applying the projection operator Eq. (2.57) on the state |p1, p2〉, where the group element acts as g |p1, p2〉 = |gp1, gp2〉.
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2.3.4 Determination of Two-Particle Energy Spectra

As discusses in the preceding paragraphs, scattering information in the two-particle sector can be
determined from the corresponding energy spectrum. The extraction of two-particle energy levels
proceeds similarly as described in Sec. 2.3.1. First one has to find a suitable choice of interpolators.
Application of Lüscher’s method in moving frames P = 2π/Ld as stated in Eq. (2.61) requires
operators that only have non-vanishing overlap with states |P; Γ, α〉 in a irreducible representation Γ
of the stabilizer group of P. Focusing on the S-wave scattering of two positively charged pions again
provides a simple example that can be generalized easily.

An operator that has overlap with a two π+-state with total momentum P is given by

Oππ(P, q; t) = π+P−q(t)π
+
q (t) , (2.65)

where

π+k (t) =
∑

x
eikx π+(x, t) . (2.66)

This operator can then be projected onto an irrep Γ of the stabilizer group G of P using the projection
operator defined in Eq. (2.57). A simpler version can be obtained by using the projector defined by
[36]

Π
Γ
=

dΓ
G

∑
g∈G

(
χΓ(g)

)∗
g , (2.67)

where χ(g)Γ denotes the character of the element g in the irrep Γ. The projected operator then reads as

OΓππ(P, q; t) = ΠΓOππ(P, q; t)

=
dΓ
G

∑
g∈G

(
χΓ(g)

)∗ ∑
x1,x2

eiPx1+iq(x2−x1)g(π+(x1, t)π
+
(x2, t)) . (2.68)

The action of the group element on the two pion fields is given by

g(π+(x1, t)π
+
(x2, t)) = (−1)P(g)π+(g−1x1, t) (−1)P(g)π+(g−1x2, t)

= π+(g−1x1, t)π
+
(g−1x2, t) , (2.69)

where the factors of (−1)P(g), with P(g) = −1 (P(g) = 1) if the element g corresponds to an improper
(proper) rotation, arise as pions are pseudoscalars. Note that in case of an odd19 number of pions this
factor is not canceled. Moreover, the sums over sites xi can be exchanged by sums over yi = g−1xi as

19 This can be nicely illustrated by the construction of single pion operators with momentum k in a definite irrep of the
corresponding stabilizer group. Repeating the steps presented above this interpolator can be written as:

π+Γk (t) =
dΓ
G

∑
g∈G

(
χΓ(g)

)∗
(−1)P(g)π+k (t) .

Thus, only one dimensional irreps that are odd under improper rotations contribute. For Oh this is the A−1 irrep, while for
C4v only the A2 irrep yields a non-vanishing result. This is in agreement with Tab. 2.2 as the pions are `P = 0− states.

27



Chapter 2 Lattice Quantum Chromodynamics

these points represent the same lattice. Finally using that k(gyi) = (g
−1k)yi as well as g

−1P = P one
arrives at

OΓππ(P, q; t) =
dΓ
G

∑
g∈G

(
χΓ(g)

)∗ ∑
x1,x2

eiPx1+i(g−1q)(x2−x1)π+(x1, t)π
+
(x2, t) . (2.70)

For (at least) one particle at rest, i.e. q = 0, as a consequence of
∑

g χ
Γ
(g) = 0 for non-trivial Γ, the

result simplifies to:

O
A
(+)

1
ππ (P, 0; t) =

∑
x1,x2

eiPx1π+(x1, t)π
+
(x2, t) , OΓππ(P, 0; t) = 0 , Γ , A(+)1 . (2.71)

In order to extract the energy levels corresponding to states in a given irrep Γ the following
correlator20 is considered

CΓππ(P, q; t) = 〈0|OΓππ(P, q; t)(OΓππ(P, q; 0))† |0〉 . (2.72)

Indeed, inserting a full set of states and using translation invariance

CΓππ(P, q; t) =
∑
n

|〈0|OΓππ(P, q; 0)|n; P; Γ〉|2

2EΓn (P)
e−E

Γ
n(P)t , (2.73)

where |n; P; Γ〉 denote states with total momentum P, transforming in the irrep Γ that have the quantum
numbers of two positively charged pions. For convenience, also a superscript Γ is attached to the
energy, emphasizing that the corresponding spectrum describes only states transforming within this
representation. The ground state energy could be determined by a fit to the effective mass as defined
in Sec. 2.3.1. On the other hand, using Lüscher’s method also exited states should be extracted. This
can be achieved by solving a GEVP as described previously in Sec. 2.3.1. Using the quantization
condition in the corresponding irrep as formulated in Eq. (2.61) the phase shifts δ`(s) and thus the
infinite-volume scattering amplitudes T`(s) can be determined by a fit to the energy spectrum.

2.3.5 Two-Particle Decays from LQCD

In the context of QCD, decays fall into two categories. The first one describes QCD resonances where
the decay is mediated via strong interactions, such as ρ → ππ. The second class includes decays,
where the decay products, as well as the initial state are stable particles in pure QCD. Electroweak
processes fall into this category, with the probably most prominent decays of a kaons K → ππ. In this
case the decay can be considered in first order perturbation theory, as the electroweak coupling is
small as compared to the strong interactions. This also applies to processes that proceed via symmetry
violation, such as ω→ ππ, where the amplitude is proportional to the isospin-breaking term md −mu .

A formalism introduced by Lellouch and Lüscher [45], see also [35, 41, 46], based on the quantization
condition, allows the study of two-particle decays that fall into the second category described above.
As an example, the following paragraph will introduce the formalism in the context of the K+ → π+π0

20 Note that if the correlator would be constructed with interpolators in different irreps, the result would vanish due to the
orthogonaliy theorem.
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decay in the isospin symmetric case. Restricting to S-wave interactions, it can be shown that the
infinite-volume decay amplitude can be written as

T(K+ → π+π0
) = 〈π+(p1)π

0
(p2); out|Hw(0)|K

+
(P); in〉 = Aeiδ I=2

0 (s) , (2.74)

whereHw is a Hamiltonian (density) describing the weak interactions and δI=2
0 (s) is the S-wave phase

shift of isospin21 I = 2. A finite-volume version of the decay amplitude can be calculated from the
Euclidean correlator

〈0|π+p1
(t)π0

p2
(t)Hw(K

+
P (t
′
))
†
|0〉

〈0|π+p1
(t)π0

p2
(t)(π+p1

(t ′))†(π0
p2
(t ′))† |0〉〈0|K+P (t)(K

+
P (t
′
))
†
|0〉

t→∞
−→

t′→−∞
〈n; P|Hw |K

+; P〉 , (2.75)

where |K+; P〉 denotes a one-kaon states with momentum P and |n; P〉 corresponds to a state with
quantum numbers of π+π0. In the expression above, it is implicitly assumed that the volume is tuned
so that the energy of the state n coincides with the one-kaon state if the weak interactions are turned
off. As the energy of the kaon in a finite volume only receives exponentially small corrections, that
will be dropped throughout, the condition reads as E (0)n = EK , E2

K = M2
K + P2. Now turning on the

electroweak interaction, which can be treated perturbatively, most of the energy levels will remain
unchanged to first order as Hw only couples states of different strangeness. On the other hand, the
degeneracy of the states |n; P〉 and |K+; P〉 is lifted. To first order in gw , where Hw = O(gw)

En = E (0)n ± 〈n; P|Hw |K
+; P〉 + O(g2

w) . (2.76)

In the infinite volume, the amplitude T(π+π0
→ π+π0

) receives a contribution of order O(gw)
from π+π0

→ K+ → π+π0. Denoting the momentum of the pion pair by Pµ = (En,P) and using
Eqs. (2.74) and (2.76), this contribution is given by

∆T =
1

P2
− M2

K

|A|2e2iδ I=2
0 (s)

= ±
|A|2

2E (0)n 〈n; P|Hw |K
+; P〉

e2iδ I=2
0 (s)

+ O(g2
w) . (2.77)

The phase shift δ̃I=2
0 in the presence of the weak interaction can be calculated in first order perturbation

theory from the well known analytic form (Eq. (2.53) without the symmetry factor of 2) of the S-wave
two-pion scattering amplitude T = T (0) + ∆T :

δ̃I=2
0 (s) = δ

I=2
0 (s) ±

q∗

16π
√

sE (0)n

|A|2

〈n; P|Hw |K
+; P〉

+ O(g2
w) . (2.78)

Since the energy level En corresponds to a solution of the quantization condition (in the presence of
weak interaction), the phase shift can be replaced by

δ̃I=2
0 (sn) = kπ − φd

(sn) , k ∈ Z , cot φd
(s) = −

1
π3/2γη

Zd
00(1; s) , (2.79)

21 Two pion states with I = 1 do not exists for pure S-wave interaction due to Bose symmetry. The isospin I = 0 channel is
excluded by charge conservation.
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for sn = E2
n − P2. Further, one may expand the functions φd

(sn) and δ(sn) in a Taylor series around
q∗n = q∗(0)n :

φd
(sn) = φ

d
(s(0)n ) + (φ

d
)
′
(s(0)n )∆q∗n + O(g

2
w)

δI=2
0 (sn) = δ

I=2
0 (s

(0)
n ) + (δ

I=2
0 )

′
(s(0)n )∆q∗n + O(g

2
w) , (2.80)

where s(0)n = E (0)n

2
− P2

= M2
K and

∆q∗n = q∗n − q∗(0)n = ±
1
4

E (0)n

q∗(0)n

〈n; P|Hw |K
+; P〉 + O(g2

w) , (2.81)

as obtained form Eq. (2.76). Now using that E (0)n is a solution to δI=2
0 (s

(0)
n ) = k ′π − φd

(s(0)n ), the
quantization condition in absence of weak interaction, Eq. (2.74) can be rearranged in order to find:

|A|2 = 4πMK

(
E (0)n

q∗(0)n

)2 (
(δI=2

0 )
′
(M2

K ) + (φ
d
)
′
(M2

K )

)
〈n; P|Hw |K

+; P〉2 . (2.82)

This equation establishes a relation between the absolute value of the infinite-volume decay matrix
element A and the finite-volume transition matrix element 〈n; P|Hw |K

+; P〉 that can be extracted from
LQCD by considering a correlator as in Eq. (2.75). These two quantities are proportional to each
other, the proportionality constant is called the Lellouch-Lüscher (LL) factor. The phase of the decay
amplitude coincides with the phase shift δI=2

0 (s), see Eq. (2.74). It is worth mentioning that the LL
factor does not depend on the kaon interactions but is solely described by the rescattering of the final
pion states, which can be determined by Lüscher’s method as described in the previous section. Based
on this framework, a comprehensive lattice study of the K → ππ decays has been performed by the
RBC and UKQCD collaborations [151–153]

2.3.6 Three-Particle Scattering and Decays from Lattice QCD

Having established the principles of hadron spectroscopy in the two-particle sector in the preceding
sections, this paragraph should close this chapter by giving an overview of the strategies that allow
the study of three-body interactions from three-particle LQCD spectra, which is the main scope of
this thesis. The urgency of introducing such a formalism is twofold. First, many QCD resonances
have a significant decay rate into three-particles. Moreover, Lüscher’s method is invalid above the
three-particle threshold in general, but numerical simulations are already probing this regime. Thus the
inclusion of three-particle channels represent a major improvement in the study of hadron properties
from LQCD.
From the perspective of simulations, despite the fast growing computational complexity, the

examination of three- or more-particle energy levels may be regarded as a simple generalization of
the strategy outlined before. Namely, although the number of contractions grows factorial like22, as
depicted in Fig. 2.6 for the scattering of three positively charged pions, from a technical point of view
the construction of appropriate three-particle operators proceeds as discussed as in Sec. 2.3.4.
Nevertheless, establishing a relation to physical observables is a highly non-trivial task. Use of

22 For example, for the scattering of N charged pions, the number of possible contractions is (N!)2.
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+5 similar contractions +17 similar contractions +11 similar contractions

Figure 2.6: Contractions of the π+π+π+ correlator. Pions are indicated by grey solid blobs, blue and yellow
fermion lines indicate the u- and d-quark propagator respectively. There are three different topologies of graphs
as depicted, each with a multiplicity as noted below the diagrams.

perturbative expansions of energy shifts for the three-particle ground state [4, 6, 143, 144, 154–156]
and exited states [157] in powers of 1/L is rather limited as these fail in the presence of resonances
or shallow bound states. As systems featuring such properties are of great interest, establishing an
analog of the Lüscher equation in the three-particle sector is highly desirable.

It should be pointed out that the simplicity of Lüschers framework, relating the finite-volume energy
spectrum to the physically observable phase shift directly, relies on the explicitly known analytic
form of the two-particle scattering amplitude as formulated in Eq. (2.53). Contrary, the three-particle
scattering amplitude obeys integral equations, that usually can be solved only iteratively or numerically.
A three-particle quantization condition, that allows for the extraction of physical observables directly
is not to be expected in 3+1 dimensions23.

Nevertheless, triggered by the proof that the finite-volume energy spectra can be solely determined
by three-body S-matrix elements [55], the last decade has shown increasing progress in the formulation
of a three-particle quantization condition. Nowadays three alternative approaches are available, the
Relativistic Field Theory (RFT) [57, 58], Finite Volume Unitarity (FVU) [59] and Non-relativistic
Field Theory (NREFT) [60, 61] formulation. Conceptually all these formalisms are similar: Replacing
the integrals in the equations of the infinite-volume three-particle scattering amplitude by finite-volume
sums, the quantization condition is obtained in the form of a vanishing determinant of this system
of equations. Having chosen an appropriate parametrization of the two- and three-body short-range
interactions, their corresponding parameters can be determined by using the quantization condition
in order to perform a fit to the energy spectrum obtained from LQCD. In return, infinite-volume
observables can be calculated solving the three-particle scattering integral equations with the set of
extracted parameters.
The RFT approach was subsequently generalized to the inclusion of 2 ↔ 3 channels [159],

resonant sub-channels [160], the different isospin-channels for the scattering of three pions [161],
non-degenerate scalars [162, 163] and the treatment of fermions [164]. However, despite growing
interest, the determination of three-particle decay amplitudes from LQCD remained inaccessible
until recently only. The following chapters will present the derivation of a relativistic-invariant,
three-particle analog of the Lellouch-Lüscher formalism within the NREFT approach.

23 Note that the authors of [158] derived a quantization condition in 1+1 dimensions containing the three-body scattering
amplitude explicitly.
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CHAPTER 3

Three Particle Quantization Condition in the
Non-Relativistic Field Theory Approach

As already pointed out in the introductory section, effective field theories play an essential role in
the analysis of lattice data, which has to be corrected for discretization effects and unphysical large
pion masses as well as finite-volume contributions. The scope of this chapter is the introduction
of the concepts of non-relativistic effective field theories, that will be used in the derivation of the
three-particle analog of the Lellouch-Lüscher equation, in order to study the latter effects.
In order to emphasize the benefits of NREFTs it should be pointed out that the irregular L

behavior of the two-particle scattering matrix elements, described by the Lüscher Zeta-function,
stem from diagrams that are singular in the physical region, i.e. below the inelastic threshold. These
singularities emerge in s-channel two-particle loops. On the other hand, diagrams involving creation
and annihilation of particles and antiparticles exhibit an analytic behavior. These will only generate
exponentially suppressed corrections as guaranteed by the Poisson summation formula. Clearly,
creation and annihilation only play a subordinated role in that context. This situation is exactly
recovered in NREFT where only particles correspond to the relevant degrees of freedom. Due
to particle number conservation and the absence of antiparticles, NREFTs accomplish a drastic
simplification in the calculation of amplitudes. Indeed, in NREFTs, the two-body scattering amplitude
is completely described by a tower of s-channel bubbles that reproduce the irregular L behavior in the
finite volume, while the regular contributions are included in the LECs implicitly. Thus, in the NREFT
treatment of the two-body system a quantization condition can be derived with significant less effort.

3.1 Non-Relativistic Effective Field Theories

Relativistic theories possess a natural scale that separates particles from antiparticles, given by the
mass gap, equal to twice the particles mass. If the kinematics under consideration are such that the
three-momenta of the particles involved are small as compared to their mass, due to the separation of
scales, antiparticles can be disregarded. Thus, a formulation in terms of an EFT, where antiparticles
are integrated out explicitly and their effects are absorbed into the LECs, represents an equally good
description of the process. As will be shown later, the restriction to the particles three-momenta being
non-relativistic can be relaxed, such that the relativistic dispersion law can be reproduced. In that
sense, the dynamical aspect that creation and annihilation of antiparticles can be disregarded is more
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important. Nevertheless the following section will focus on the non-relativistic kinematics.
A NREFT could be obtained from a relativistic theory by separating particle- and antiparticle

degrees of freedom and integrating out the latter explicitly in the path integral formalism. As this might
be a rather complicated task, instead one may write down the most general Lagrangian containing
all possible operators that respect the symmetries of the underlying model. In the non-relativistic
setup, particles are the only degree of freedom. Therefore, in contrast to relativistic theories, fields
entering the Lagrangian only contain creation- or annihilation-operators exclusively. The LECs,
i.e. the couplings in the Lagrangian, remain undetermined in this process, but can be matched to
physical observables. In this procedure a set of observables is calculated in the NREFT up to a certain
order in some suitable power counting scheme. Afterwards, the LECs entering the expressions for
these obervables can be expressed in terms of those. For the non-relativistic kinematical setup, where
three-momenta p are small compared to the particle mass M , the expansion in powers of |p|/M = O(ε)
provides a power counting scheme, that identifies the relevance of operators. Considering the temporal
component, the quantity p0

− M should be counted as O(ε2
).

To lowest order, a NREFT for scalar particles of mass M obeying a Z2-symmetry that allows
interactions with an even number of particles initial- and finial state only reads [70]:

L = φ†

(
i∂t − M +

∇
2

2M

)
φ + C0 φ

†φ†φ φ + D0 φ
†φ†φ†φ φ φ + . . . , (3.1)

where

φ(x) =
∫

d3k
(2π)3

a(k) e−ikx , k0
= M +

k2

2M
, (3.2)

annihilates a particle. The ellipsis contains operators with a higher number of fields as well as
operators with derivative couplings. Furthermore, as the field φ is not hermitian, all interactions will
contain an equal number of creation and annihilation operators. As a consequence particle number is
conserved at each vertex.
Unlike the constants C0 and D0, the LEC associated with the kinetic term ∇2

/(2M) is fixed to
unity by reparametrization invariance [81, 165]. This is a consequence of the Lorentz symmetry
of the underlying relativistic theory. Indeed, after matching, S-matrix elements in the NREFT are
Lorentz-invariant, up to a given order in the power counting. For the kinetic terms, this guarantees
that the relativistic dispersion law is recovered order by order.
As indicated by the ellipsis, the leading order Lagrangian actually contains an infinite tower of

vertices with an arbitrary number of fields, seemingly preventing any practical use of NREFT on a
first glance. On closer analysis, there exists a hierarchy of the different n-particle sectors, rendering
the problem manageable. This specific ordering of interactions is due to particle number conservation
at each vertex, in combination with the fact that only particles traveling forwards in time yield a
non-vanishing contribution: The non-relativistic propagator

D(x − y) = i〈0|Tφ(x)φ†(y)|0〉 =
∫

d4k

(2π)4
1

M + k2

2M − k0
− iε

e−ik(x−y) , (3.3)

vanishes for x0 < y0 since there is only a pole in the lower half-plane. Also closed single-particle
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loops vanish, as can be seen from the above equation at x = y by performing the k0 integral explicitly1

and using the fact that the remaining three-momentum integral vanishes in dimensional regularization.
As a consequence the propagator in Eq. (3.3) remains valid up to all orders in perturbation theory,
when relativistic corrections of the kinetic term are neglected. Any contribution of vertices to the
two-point function demands particles moving backwards in time or looping back to themselves. Only
the inclusion of kinetic terms that are of higher order in the power counting will alter the form of the
propagator, shifting the pole position to k0

= w(k) =
√

M2
+ k2

= M +k2
/(2M)−k4

/(8M3
)+ . . . By

the same arguments, it can be seen that in general, interactions from higher sectors do not contribute
to processes which involve a lower number of particles. That is, three-particle scattering at leading
order is completely described by the Lagrangian in Eq. (3.1) and any interactions of n > 3 particles
can be disregarded. Similarly, in order to describe the two-particle sector, all three- or more-particle
vertices can be dropped. This property allows for a compact derivation of Lüscher’s equation, that
will be discussed in the following sections.

3.2 The Two-Particle Sector

3.2.1 Matching in the Two-Particle Sector and Covariant NREFT

In this section the infinite-volume two-particle scattering amplitude for the process φ(q1) + φ(q2) →

φ(p1) + φ(p2) is considered. This analysis should be carried out to all orders in the power counting.
As discussed above it is sufficient to include two-particle interactions only. The NREFT Lagrangian
can be written as

L = φ†

(
i∂t − M +

∇
2

2M
+
∇

4

8M3 + . . .

)
φ + L2 , (3.4)

where the terms in brackets reproduce the relativistic energy-momentum relation order by order.
Furthermore, L2 = L

(0)
2 + L

(2)
2 + . . . is the Lagrangian in the two-particle sector, where the

superscript denotes the order in the power counting. For example, L(0)2 is the two-body term given in
Eq. (3.1). In order to determine higher order terms, it should be pointed out that, due to the reduction
of Poincare symmetry to conservation of total three-momentum P = p1 + p2 = q1 + q2 and rotational
invariance in the NREFT setup, the two-particle amplitude can depend on six2 invariants, which may
be chosen as:

P2, p2, q2, Pp, Pq, pq . (3.5)

Here q = (q1 − q2)/2 and p = (p1 − p2)/2 denote the relative momentum of the in- and out-going
states. Since identical bosons are considered here the three last most operators can only appear in
even powers. For example, while for φ(p1) ↔ φ(p2) the relative momentum acquires a sign, p→ −p,
the total momentum remains unchanged, P→ P. Furthermore, hermiticity constraints the operators
constructed from the set of invariants Eq. (3.5) to be symmetric with respect to the exchange of p↔ q.

1 Here the limit x0
→ y0 with x0 > y0 should be considered. For x0 < y0 the integral is vanishing as discussed before.

2 The 12 degrees of freedom from the four three-momenta pi and qj are reduced by the three generators of space translation
(corresponding to the conservation of total three-momentum P) and another three from the generator of rotations.
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Hence, at next-to-leading order (NLO), the two-particle Lagrangian can be written as

L
(2)
2 = C1

(
φ†φ†

(
φ
↔

∇
2
φ

)
+ h.c.

)
+ C2

(
φ†φ†∇2

(φ φ) + h.c.
)
, (3.6)

where
↔

∇ = (
→

∇ −
←

∇)/2 is the Galilean invariant derivative, with arrows indicating the derivatives
acting on the left or right field. The construction of the higher order Lagrangian proceeds in a similar
manner by building polynomials in terms of the operators defined in Eq. (3.5), which are generated by
derivatives in position space.

At order O(ε4
) also off-shell terms can be written down:

O(4)off-shell = φ
†φ†

(
φ
↔

∇
4
φ

)
−

(
φ†
↔

∇
2
φ†

) (
φ
↔

∇
2
φ

)
+ h.c. (3.7)

The corresponding momentum space expression is given by

(p2
− q2
)
2 , (3.8)

which clearly vanishes if the momenta are taken on-shell, as for P0
= Ep1

+ Ep2
= Eq1

+ Eq1
, where

Ek = M + k2
/(2M):

p2
= q2

= (q∗)2 = M

(
P0
− 2M −

P2

4M

)
. (3.9)

Therefore, at tree-level off-shell operators do not contribute. In fact this statement is true to all orders,
as can be seen by evaluating the following loop integral

I =
∫

dDk

(2π)Di
(k2
− q2
)
2(

E P
2 +k −

P0

2 − k0
− iε

) (
E P

2 −k −
P0

2 + k0
− iε

) , (3.10)

that corresponds to a two-particle loop with one insertion of the off-shell vertex. Above dimensional
regularization is used and D denotes the number of space-time dimensions. Performing the k0

integration explicitly

I = m
∫

ddk

(2π)d
(k2
− q2
)
2

k2
− q∗2

, (3.11)

where d = D − 1 and (q∗)2 is given as in Eq. (3.9). Clearly, if the external momentum is on-shell,
q2
= (q∗)2, the denominator is canceled and the integral vanishes in dimensional regularization. As

the result is scheme-independent, indeed off-shell terms do not contribute even at loop-level.

The unknown LECs, appearing as coupling constants in the Lagrangian L2, must be expressed
in terms of physical obervables in order to obtain a meaningful theory. This could be achieved by
matching the amplitude obtained in the NREFT to the relativistic one of the underlying model. The
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3.2 The Two-Particle Sector

matching condition for the (on-shell) two-body scattering amplitudes reads as

TNR(p1, p2; q1, q2) =

2∏
i=1

(
2w(pi)2w(qi)

)−1/2 TR(p1, p2; q1, q2) , (3.12)

where TNR and TR denote the non-relativistic and relativistic amplitude respectively. The factors
containing the relativistic energy of the particles arise due to the different normalizations of one-particle
states:

〈p|q〉 = (2π)3δ3
(p − q), non-relativisitc ,

〈p|q〉 = (2π)3 2w(p) δ3
(p − q), relativisitc . (3.13)

The matching proceeds by adjusting the LECs, appearing in the explicit expression of the non-
relativistic amplitude, such that Eq. (3.12) is obeyed up to a given order, expanding both left- and
right-hand side in a series of the three-momenta. Although this procedure allows to take into account
relativistic effects systematically, at higher orders the matching in an arbitrary moving frame is rather
inconvenient as the matching condition is explicitly frame dependent.

In the two-particle sector, explicit Lorentz-covariance can be restored within a slightly modified
non-relativistic framework [148, 166, 167]. In order to achieve this, first of all, relativistic insertions
should be summed up to all orders. Moreover, to account for the different normalizations of the
particle states, a rescaling of the non-relativistic fields is performed: φ(x) →

√
2w(x)φ(x), where

w(x) =
√

M2
− ∇

2. The equivalence theorem [168–171] guarantees that the S-matrix elements
obtained from the redefined field theory coincide with the original ones. Due to the modification
above, in this covariant NREFT approach, the matching condition takes a Lorentz-invariant form,
TNR(p1, p2; q1, q2) = TR(p1, p2; q1, q2).

After summing up relativistic insertions to all orders, the Lagrangian describing the two-particle
sector is given by

L = φ†2w(i∂t − w)φ + L2 , (3.14)

where L2 = L
(0)
2 + L

(2)
2 + . . . contains all Lorentz-invariant four-particle operators of different orders

O(ε i) in the power counting scheme. Up to NLO

L2 = C0φ
†φ†φ φ + C2

(
(wµφ)

†
(wµφ)†φ φ − M2φ†φ†φ φ + h.c.

)
, (3.15)

where wµ = (w, i∇) and w =
√

M2
− ∇

2.

As a consequence of the resummation of relativistic corrections, the hard scale M is present in the
propagator. In order to avoid the breaking of the counting rules introduced in the preceding section,
calculations of loop diagrams require choosing an additional renormalization prescription. Within the
particular prescreption chosen here, referred to as the threshold expansion [172], the integrand of
a generic loop integral is expanded in a series of inverse powers of the hard scale M in a first step.
These terms are integrated individually in dimensional regularization and the result is summed up to
all orders afterwards.
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Chapter 3 Three Particle Quantization Condition in the Non-Relativistic Field Theory Approach

For the two-body loop integral3 in a reference frame with CM momentum Pµ

I(P) =
∫

ddk1

(2π)d2w(k1)

ddk2

(2π)d2w(k2)

(2π)dδd(P − k1 − k2)

w(k1) + w(k2) − P0
− iε

=

∫
ddk

(2π)d
1

4w(k)w(P − k)
1

w(k) + w(P − k) − P0
− iε

, (3.16)

this procedure can be carried out practically using the identity4

1
4w1w2

{
1

w1 + w2 − P0 −
1

w1 + w2 + P0 +
1

w1 − w2 + P0 −
1

w1 − w2 − P0

}
=

1
2P0

1
k2
− (kP/P0

)
2
− (q∗)2

, (3.17)

where w1 = w(P/2 + k) and w2 = w(P/2 − k), while (q∗)2 = s/4 − M2 and s = P2
= (P0

)
2
− P2.

Expanding the last three terms on the left hand side of Eq. (3.17) in inverse powers of M only gives a
polynomial in momenta. Therefore, after shifting the integration variable, k→ k + P/2, adding and
subtracting these terms to Eq. (3.16), the threshold expansion allows to rewrite the loop integral in a
form without explicit dependence on the hard scale M:

I(P) =
1

2P0

∫
ddk

(2π)d
1

k2
− (kP/P0

)
2
− (q∗)2

. (3.18)

Introducing parallel and perpendicular components of the integration momentum with respect to P:

k =
P
|P|

k ‖ + k⊥ , k ‖ =
kP
|P|

, (3.19)

the remaining integral can be evaluated and yields:

I(P) =
iq∗

8π
√

s
. (3.20)

Indeed the result is of order O(ε) in agreement with the naive counting rules and coincides with the
imaginary part of its relativistic counterpart. Furthermore, it can be seen that applying the threshold
expansion, the loop function I(P) ≡ I(P2

) is given by a Lorentz-invariant expression. Moreover, it
should be pointed out that only the absorptive part of the integral survives, the replacement

1
w1 + w2 − P0

− iε
→ iπδ

(
w1 + w2 − P0

)
(3.21)

is thus justified.
As discussed in the last paragraph of the preceding section, due to the properties of NREFTs all loop

3 The k0
i integrations have already been performed here.

4 For notational convenience the iε prescription may be used implicitly.
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T = V + V T

= V + V V + V V V + . . .

Figure 3.1: Diagrammatic representation of the Lippmann-Schwinger equation for the amplitude T in the
non-relativistic EFT. The second line represents the Born series of the amplitude, summed to all orders. The
two-particle scattering amplitude is merely given by the bubble sum over elementary loops I(P) with an
interaction given by the potential V at each vertex.

diagrams in the two-particle sector can be expressed in terms of the elementary bubble integral I(P)
given in Eq. (3.16). This leads to drastic simplifications in the calculation of the two-body scattering
amplitude TNR ≡ T , which obeys the Lippmann-Schwinger equation of the form:

T(p1, p2; q1, q2) = − V(p1, p2; q1, q2) −
1
2

∫
ddk1

(2π)d2w(k1)

ddk2

(2π)d2w(k2)

× V(p1, p2; k1, k2)
(2π)dδd(p1 + p2 − k1 − k2)

w(k1) + w(k2) − P0
− iε

T(k1, k2; q1, q2) , (3.22)

where P0
= w(q1) + w(q2). Diagrammatically this can be represented as in Fig. 3.1. The potential V

is given by the matrix elements of the interaction Hamiltonian

(2π)dδd(p1 + p2 − q1 − q2)V(p1, p2; q1, q2) = 〈p1, p2 |HI |q1, q2〉 (3.23)

and is a Lorentz-invariant polynomial. For instance, using Eq. (3.15), up to NLO the potential is given
by:

−V(p1, p2; q1, q2) = 4C0 + 4C2

(
(p1 · p2) + (q1 · q2) − 2M2

)
, (3.24)

with on-shell four-momenta pi and qj .
Defining the CM and relative four-momenta P = p1 + p2 = q1 + q2, p = (p1 − p2)/2 and

p = (q1 − q2)/2, the partial wave expansion of the potential V can be performed in the rest frame:

V(p1, p2; q1, q2) = 4π
∑̀
m

Ỳ m(p
∗
)v`(|p

∗
|, |q∗ |)Y∗`m(q

∗
) , (3.25)

where

p∗ = p + P

(
(γ − 1)

pP
P2 − γv

p0

|P|

)
,

q∗ = q + P

(
(γ − 1)

qP
P2 − γv

q0

|P|

)
, (3.26)
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with v = |P|/P0 and γ = (1 − v2
)
−1/2, denote the relative three-momenta boosted into the rest frame

respectively and Ỳ m(p) = |p|
`Ỳ m(p̂) is given in terms of the spherical harmonics Ỳ m. Applying a

similar expansion to the scattering amplitude, the Lippmann-Schwinger equation in the partial wave `
is given by:

t`(|p
∗
|, |q∗ |) = − v`(|p

∗
|, |q∗ |) −

1
2

∫
ddk1

(2π)d2w(k1)

ddk2

(2π)d2w(k2)
4πỲ m(k

∗
)Y
∗
`m(k

∗
)

× v`(|p
∗
|, |k∗ |)

(2π)dδd(P1 − k1 − k2)

w(k1) + w(k2) − P0
− iε

t`(|k
∗
|, |q∗ |) , (3.27)

where k∗ is the relative three-momentum k = (k1 − k2)/2 boosted into the rest frame. As discussed
above, only the absorptive part of the integrand contributes when using dimensional regularization in
combination with the threshold expansion. One may replace

δd(p1 + p2 − k1 − k2)

w(k1) + w(k2) − P0
− iε
→ iπδD(P − k1 − k2) = iπδD(P∗ − k∗1 − k∗2) . (3.28)

Moreover, since the integral measures in the above equation are also Lorentz-invariant, the integrals
might be evaluated in the CM frame. Using the properties of the delta-distribution and spherical
harmonics the Lippmann-Schwinger equation reduces to an algebraic relation for the partial-wave
scattering amplitudes:

t`(|p
∗
|, |q∗ |) = −v`(|p

∗
|, |q∗ |) − i

(q∗)2`+1

16π
√

s
v`(|p

∗
|, q∗) t`(q

∗, |q∗ |) , (3.29)

where (q∗)2 = s/4 − M2 amd s = P∗2 = P2. Thus, on the energy shell where |q∗ | = |p∗ | = q∗, the
non-relativistic two-body scattering amplitude t`(s) = t`(q

∗, q∗) is given by:

t`(s) =
16π
√

s(q∗)−2`

−16π
√

s(q∗)−2`v−1
` (s) − iq∗

. (3.30)

This amplitude should be matched to its relativistic counterpart, which allows to fix the values of the
LECs Ci , appearing in the potential v`(s) = v`(q

∗, q∗). As the relativistic amplitude obeys the unitarity
condition5 Eq. (2.53), demanding that it should be equal to the NREFT amplitude t`(s) yields the
condition

v`(s) = −
16π
√

s

(q∗)2`+1 tan δ`(s) . (3.31)

Therefore the LECs are completely determined by the phase shifts δ` of the underlying model. In
the vicinity of the threshold s = 4M2, where the NREFT is applicable, it is advantageous to make
use of the effective range expansion Eq. (2.54). Expanding the right hand side of Eq. (3.31) around
threshold will lead to a polynomial in s − 4M2. As v`(s) is a polynomial in the same argument, the
matching of the LECs can be performed conveniently by comparing the expansion coefficients. For

5 Note the different normalization in the partial wave expansions, due to Ỳ m(p) = |p|
`Ỳ m(p̂).
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example, up to NLO only ` = 0 contributes:

v0(s) = −4C0 − 4C2 (s − 4M2
) + . . . ,

−
16π
√

s
q∗

tan δ0(s) = −32πa0M − 4πa2
0 M

(
r0 +

1
a0M2

)
(s − 4M2

) + . . . . (3.32)

One can read off:

C0 = 8πa0M , C2 = πa2
0 M

(
r0 +

1
a0M2

)
. (3.33)

The advantages of the covariant formulation of the NREFT approach become clear now. Not only
does it relax the condition of the scattering particles moving non-relativistically. It further provides
an explicitly Lorentz-invariant matching condition that allows to express the LECs in terms of the
parameters of the underlying model in a very convenient way. In order to stress this point, one may
define the relativistic K-matrix

K(p1, p2; q1, q2) = 4π
∑̀
m

Ỳ m(p)k`(s)Y
∗
`m(q) , k`(s) = −

16π
√

s

(q∗)2`+1 tan δ`(s) . (3.34)

The matching condition Eq. (3.31) implies that

K(p1, p2; q1, q2) = V(p1, p2; q1, q2) . (3.35)

Repeating a similar derivation in the original NREFT formalism on the other hand gives

K(p1, p2; q1, q2) =

2∏
i=1

(
2w(pi)2w(qi)

)1/2 VNR(p1, p2; q1, q2) . (3.36)

Again, the appearance of factors containing the relativistic energy is related to the different normaliza-
tions of relativistic and non-relativistic particle states. In Eq. (3.35), both K and the potential V in the
covariant NREFT are Lorentz-invariant polynomials in the variables s and (p · q). This allows to relate
the LECs, appearing in V , in a one-to-one correspondence to the parameters of the underlying model,
present in the expansion of K . This is not the case in Eq. (3.36), as VNR is not a Lorentz-invariant
quantity, for which the factors

(
2w(pi)2w(qi)

)−1/2 account for. Instead it is a polynomial in the
variables build from the invariants defined in Eq. (3.5), such that hermiticity and Bose-symmetry is
obeyed in case of three identical bosons. This leads to an inflation of couplings. Hence the original
approach leads to the inclusion of redundant parameters, obeying certain constraints.

Now one should keep in mind that the aim is to extract the parameters of QCD, governing the
finite-volume spectra obtained from lattice calculations, using a quantization condition derived in a
NREFT framework. Without performing the matching Eq. (3.36), in the original NREFT formalism
the quantization condition contains superfluous parameters, deteriorating the quality of the fit to the
energy spectrum. As the number of redundancies will grow fast when going to higher orders and the
matching becomes tedious at the same time, using the modified covariant approach represents a great
advantage. As described above, here the number of fit parameters, the LECs in V , are in a one-to-one
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Chapter 3 Three Particle Quantization Condition in the Non-Relativistic Field Theory Approach

correspondence with the parameters of the underlying model, the coefficients in the K-matrix that
describes the QCD process under consideration. Finally, a quantization condition that is valid in
arbitrary moving frames at the same time, which is of practical importance for lattice calculations, can
not be established in a non-covariant framework. Therefore in the next section, such a quantization
condition will be derived in the modified covariant NREFT formalism.

3.2.2 Derivation of Lüscher’s Equation in the NREFT Formalism

The general idea of applying the NREFT approach to the analysis of LQCD data is to derive
quantization conditions that determine the finite-volume energy spectra. Here the unknown LECs
appear as parameters that can be fixed by a fit to the spectra, measured in lattice calculations. In
return, using the values of the LECs found in this manner, allows for the calculation of infinite-volume
quantities from the NREFT Lagrangian. This procedure enables the extraction of infinite-volume QCD
observables from LQCD data. As discussed in the previous paragraph, the covariant NREFT approach
provides a convenient matching condition between the LECs and the physical observables of the
underlying model that appear in the ERE. Moreover the effective range parameters fully determine the
two-body scattering amplitude. Therefore, in the two-particle sector, the calculation of infinite-volume
observables from the NREFT Lagrangian can be skipped.
However, the lattice must obey certain conditions such that an EFT treatment can be utilized. In

the following a Euclidean lattice with extend L in all spatial directions and large temporal elongation
T is considered. Assuming periodic boundary conditions, the momenta are quantized according
to Eq. (2.47). Furthermore, the lattice spacing a and the box length L should be chosen such that
1/L � Λ � 1/a, where Λ is the hard scale of the process under consideration. This condition allows
to study finite-volume effects, that are of characteristic scale 1/L, independently from other lattice
artifacts: Since 1/L � 1/a one can effectively work in the continuum limit a → 0. Moreover, as
1/L � Λ, the EFTs in the finite and infinite volume coincide; the LECs encoding the UV dynamics at
the scale Λ or higher are not effected by the IR effects of order 1/L. Such a lattice setup is crucial in
order to apply the EFT approach to the study of finite-volume effects.

The derivation of the quantization condition presented here closely follows Refs. [50, 70]. Formally
a scattering amplitude does not exists in a finite volume, since asymptotic states can not be defined.
However, the LQCD correlation functions used to determine the finite-volume energy spectra, see
e.g. Eq. (2.72), can be calculated in an EFT framework. Considering identical particles, one may
define the following two-particle interpolator6:

O(P, q; t) =

L/2∫
−L/2

d3x1d3x2 e−i(P−q)x1−iqx2 φ(t, x1)φ(t, x2) . (3.37)

In NREFT, the correlator7 to extract energy levels can be evaluated diagrammatically as represented

6 In the EFT analysis of LQCD data the continuum limit is applied, such that spatial integrals appear in the definition of the
interpolating fields.

7 The calculation here is performed in Minkowski space. One may use a Wick rotation in order to relate the result to the
LQCD correlator.
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〈0|O(P, k; t)O(P, k; 0)† |0〉 = + TL

TL = V + V TL

Figure 3.2: Correlation function in the NREFT. Black dots denote two-particle interpolators, while the lines
correspond to a particle propagator. The amplitude TL obeys the Lippmann-Schwinger equation with potential
V as displayed in the second line. The two-particle loop should be understood to be evaluated as a finite-volume
sum.

in Fig. 3.2:

〈0|O(P, q; t)O(P, q; 0)† |0〉 =
∫

dP0

2πi
e−iP0t

{
L6
(1 + δq,P−q)

4w(q)w(P − q)(w(q) + w(P − q) − P0
− iε)

+
L3TL

(q,P − q; q,P − q)
(4w(q)w(P − q)(w(q) + w(P − q) − P0

− iε))2

}
. (3.38)

Here the amplitudeTL obeys a similar Lippmann-Schwinger equation as its infinite-volume counterpart
T . The only difference comes from the two-body loop function, where the infinite volume integration
should be replaced by a sum over the qunatized finite-volume momenta. Thus TL will be referred to
as the finite-volume scattering amplitude.
Following the preceding discussion, the potential V is an infinite-volume quantity since it is fully

determined by the LECs of the EFT that coincide8 in the infinite and finite volume. Thus the partial
wave expansion in Eq. (3.25) still holds. On the other hand, as rotational symmetry is explicitly broken
in the finite volume, the expansion of the scattering amplitude takes the form

TL
(p1, p2; q1, q2) = 4π

∑̀
m

Ỳ m(p
∗
)t`m,`′m′(|p

∗
|, |q∗ |; P)Y∗`m(q

∗
) . (3.39)

In the finite volume, using the Feynman rules, on the energy shell the Lippmann-Schwinger equation
for the finite-volume scattering amplitudes reads as

t`m,`′m′(s; P) = −δ``′δmm′v`(s) −
1
2

4π
∑
`′′,m′′

v`(s)χ`m,`′′m′′(s; P)t`′′m′′,`′m′(s; P) , (3.40)

where

χ`m,`′m′(s; P) =
1
L3

∑
k1=2π/Ln

Y
∗
`m(k

∗
)Ỳ ′m′(k

∗
)

4w(k1)w(P − k1)(w(k1) + w(P − k1) − P0
)
, (3.41)

8 The LECs coincide up to exponentially small corrections of order O(e−ΛL) which will be dropped due to the assumption
1/L � Λ.
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is the finite-volume version of the bubble integral (including the spherical functions from the partial
wave projections). Above, k∗ denotes the relative three-momentum boosted into the CMS. Making
use of the identity Eq. (3.17) it can be seen that, up to exponentially suppressed terms

χ`m,`′m′(s; P) =
1

2P0
1
L3

∑
k=k1−P/2

Y
∗
`m(k

∗
)Ỳ ′m′(k

∗
)

k2
− (kP/P0

)
2
− (q∗)2

. (3.42)

The validity of the equation above can be confirmed by noting that the last three terms on the left hand
side of Eq. (3.17) are analytic in the physical region. Therefore, by Poissons summation formula, the
sum over k1 of thee three individual terms is equal to the corresponding integral up to exponential
corrections in the volume L. Applying the threshold expansion, in dimensional regularization these
integrals vanish. To further simplify the expression one may define parallel and perpendicular
components of the momentum with respect to P:

k∗ = (k∗‖, k
∗
⊥) , k∗‖ = (γ

∗
)
−1k ‖ , k∗⊥ = k⊥ , γ∗ = (1 − (v∗)2)−1/2 , v∗ =

|P|
E∗

, (3.43)

where E∗ = 2w(k∗). On-shell E∗ = P0, such that k∗ = (γ−1k ‖, k⊥) ≡ r with γ = (1−(|P|/P0
)
2
)
−1/2
=

P0
/
√

s. Thus

χ`m,`′m′(s; P) =
1

2P0
1
L3

∑
r∈Pd

Y
∗
`m(r)Ỳ ′m′(r)
r2
− (q∗)2

, (3.44)

where Pd =
{
r ∈ R3�� r‖ = γ−1

(n‖ − |d|/2), r⊥ = n⊥, n ∈ Z3
}
with d = L/(2π)P. Using the well

known multiplication rules for spherical harmonics

Y
∗
`m(r)Ỳ ′m′(r) =

1
√

4π

`+`′∑
j= |`−`′ |

j∑
s=−j

ij−`−`
′

|r|`+`
′
−jC`m, js,`′′m′′Y

∗
js(r) , (3.45)

where C`m, js,`′′m′′ is expressed in terms of the Wigner 3 j-symbol, see Eq. (2.50). Now noting that
|r|`+`

′
−j
− (q∗)`+`

′
−j
= (|r|2 − (q∗)2) × (polyomial in |r|2) in Eq. (3.45), canceling the denominator in

Eq. (3.44), one may replace |r|`+`
′
−j
→ (q∗)`+`

′
−j , as the difference is only exponentially small in the

volume L. After some rearrangement one arrives at the expression

χ`m,`′m′(s; P) =
(q∗)`+`

′
+1

32π2√s
i`−`

′

M`m,`′m′(s; P) ,

M`m,`′m′(s,P; L) =
(−1)`

π3/2γ

`+`′∑
j= |`−`′ |

j∑
s=−j

ij

η j+1 C`m, js,`′m′Z
d
js(1; s) ,

C`m, js,`′m′ = (−1)m
′

i`−j+`
′
√
(2` + 1)(2 j + 1)(2`′ + 1)

(
` j `′

m s −m′

) (
` j `′

0 0 0

)
, (3.46)
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where η = q∗L/(2π) and

Zd
`m(1; s) =

∑
r∈Pd

Ỳ m(r)
r2
− η2 , Pd =

{
r ∈ R3�� r‖ = γ−1

(n‖ − |d|/2), r⊥ = n⊥, n ∈ Z3
}

(3.47)

is the Lüscher Zeta-function.
The energy levels in the finite volume correspond to poles in the amplitudes t`m,`′m′(s; P) given

as in Eq. (3.40). Expressing the potential in terms of the infinite-volume phase shift, see Eq. (3.31),
these poles correspond to solutions of the equation

det A = 0 ,
A`m,`′m′ = δ``′δmm′ cot δ`(s) −M`m,`′m′(s,P; L) . (3.48)

In summary, the modified NREFT framework enables a derivation of the two-body quantization
condition that is valid in arbitrary moving frames in a very transparent way, keeping the bookkeeping
of the Feynman diagrams trivial. Only the bubble diagram leading to the same non-regular L behavior
as the relativistic s-channel loop is kept explicitly, while contributions of diagrams in the relativistic
theory exhibiting an exponential L dependence are included in the values of the LECs from the
beginning. These exponentially small corrections to the infinite-volume quantities are usually dropped
throughout. Due to these convenient properties, the formulation in terms of a covariant NREFT seems
to be suitable also for the analysis of more complicated processes. For example, further applications
in the two-particle sector can be found in [50], deriving the Lellouch-Lüscher equation as well as
providing a formalism that allows to extract matrix element of resonances coupling to an external field.
The analysis of three-body LQCD data in a NREFT approach is the main scope of this thesis and will
be discussed in the following sections. As it will turn out, further adjustments are required in order to
derive a Lorentz-invariant three-particle quantization condition.

3.3 The Three-Particle Sector

3.3.1 Introduction of Dimer Fields

Having discussed the description of two-body dynamics within the NREFT formalism, the following
section will turn towards the three-particle sector, aiming to derive a quantization condition.
Extracting the three-particle finite-volume energy levels in general requires a non-perturbative

treatment of the three-body scattering amplitude. This especially applies to (the most interesting)
processes where shallow bound states or resonances are present, such that a perturbative expansion,
e.g. in the scattering length, fails. In that case a full resummation of the two-body sub-processes
entering the expression for the three-body amplitude is needed. Such a treatment was already
performed in the previous section, but a further simplification can be achieved by introducing auxiliary
dimer fields [98, 173].
To keep the discussion simple, only the leading order should be considered first, where the

Lagrangian for the three-body sector reads

L = φ†2w(i∂t − w)φ + C0 φ
†φ†φ φ + D0 φ

†φ†φ†φ φ φ . (3.49)
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= + + . . .

Figure 3.3: Graphical representation of the Dyson equation for the full dimer propagator (blue double line). The
grey double line denotes the free dimer propagator σ while the blue dots represent the particle-dimer conversion
vertex.

Instead, one might write down the following particle-dimer Lagrangian:

Ld = φ
†2w(i∂t − w)φ + σT†T +

f0
2
(T†φφ + h.c.) + h0T†Tφ†φ, (3.50)

where T(x) denotes the dimer field and σ = σ−1
= ±1 for reasons seen below. The dimer field can be

integrated out int the path integral formalism:∫
DTDT† exp

{
i
∫

d4x
(
T†(σ + h0φ

†φ)T +
f0
2

T†φφ +
f0
2
φ†φ†T

)}
= exp

{
−i

∫
d4x f 2

0
φ†φ†φφ

4(σ + h0φ
†φ)

}
. (3.51)

The resulting expression can be expanded in powers of fields. Due to the separation of the different
particle sectors, it is sufficient to drop terms of eight and more fields

− f 2
0

φ†φ†φφ

4(σ + h0φ
†φ)
= −σ

f 2
0
4
φ†φ†φ φ +

h0 f 2
0

4
φ†φ†φ†φ φ φ + . . . (3.52)

Indeed, if the conditions

C0 = −σ
f 2
0
4
, D0 =

h0 f 2
0

4
, (3.53)

are fulfilled, the two theories are equivalent at tree level, i.e. the generating functional coincides

Z( j, j†) =
∫
DφDφ† exp

{
i
∫

d4x
(
L + j†φ + φ† j

)}
=

∫
DφDφ†DTDT† exp

{
i
∫

d4x
(
Ld + j†φ + φ† j

)}
, (3.54)

such that the correlation functions, obtained by functional differentiation with respect to j and j†, are
the same. Due to the matching of f0 to C0 the role of σ = σ−1

= ±1 becomes clear. While f 2
0 is

always positive, C0 which can be further matched to the S-wave scattering length, that can have a
positive or negative sign.

The introduction of the dimer field represents a major simplification in the bookkeeping of diagrams
in the three-particle sector, as it essentially incorporates the whole two-body dynamics. The fully
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T =

Figure 3.4: Two-particle scattering amplitude in terms of the full dimer propagator (blue double line). The blue
dots represent the particle-dimer conversion vertex.

resummed dimer propagator is given by

i〈0|T (T(x)T†(y))|0〉 =
∫

d4P

(2π)4
e−iP(x−y) D(P) , (3.55)

where D(P) obeys the Dyson equation, see Fig. 3.3:

D(P) = −σ − σ
f 2
0
2

I(P)D(P) . (3.56)

Here I(P) is the two-particle bubble integral, given in Eq. (3.16). Using the previous results for this
loop one finds that indeed D(P) ≡ D(P2

) with

D(P2
) =

16π
√

s f −2
0

−16π
√

sσ f −2
0 − iq∗

. (3.57)

Finally, in order to obtain the two-particle scattering amplitude it suffices to attach the vertices
converting the dimer back into two-particle pairs, as depicted in Fig. 3.4. The resulting expression at
the leading order is given by:

T(p1, p2; q1, q2) = τ(P
2
) = f0 D(P2

) f0 =
16π
√

s

−16π
√

sσ f −2
0 − iq∗

, (3.58)

which coincides with Eq. (3.30) for ` = 0, taking into account the matching condition Eq. (3.53).

3.3.2 Inclusion of Higher Partial Waves

Since effects due to partial wave mixing in a finite volume can be significant, the inclusion of higher
partial waves is crucial in order to analyze LQCD data. In the NREFT framework these enter as
higher order operators. Keeping the discussion restricted to identical particles, P-wave contributions
are absent and the first contribution from the D-wave enters at next-to-next-to leading order (N2LO),
O(p4
). At the same order, another S-wave operator can be constructed in addition to those given in

Eq. (3.15). In the usual two-particle picture these can be written as

L
(4),D
2 =

5
2

C ′4

(
3(wµφ)

†
(wνφ)

†
(wµφ)(wνφ) − (wµφ)

†
(wµφ)†(wνφ)(w

νφ)

−
M2

2

(
(wµφ)

†
(wµφ)†φφ + h.c.

)
− M4φ†φ†φφ

)
,

L
(4),S
2 = C4

(
(wµφ)

†
(wµφ)† − M2φ†φ†

) (
(wνφ)(w

νφ) − M2φφ
)
, (3.59)
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respectively. By construction, the potential up to N2LO is given by

−V(p1, p2; q1, q2) = 4C0 + 16C2 (q
∗
)
2
+ 16C4 (q

∗
)
4
+ 4C ′4 (q

∗
)
4 5P2(cos θ) , (3.60)

where q∗ is the magnitude of the relative momentum and θ is the scattering angle in the CMS. Note
that the coefficients in L(4),D2 , especially the factor of three in the first term, are chosen such that
P2(cos θ) = (3 cos2 θ − 1)/2 is obtained. Expanding in spherical harmonics according to Eq. (3.25) it
can be read off that:

v0(s) = −4C0 − 16C2 (q
∗
)
2
− 16C4 (q

∗
)
4 , v2(s) = −4C ′4 . (3.61)

The inclusion of higher partial wave interactions can also be applied in the particle-dimer picture in
a simple manner. Neglecting three-body interactions first, one might couple a set of 2` + 1 spin-`
dimer fields T`m, where m = −`, . . . , `, to two-particle operators O`m in the same representation:

Ld = φ
†2w(i∂t − w)φ +

∑̀
m

σ`T
†

`mT`m +
∑̀
m

(T†`mO`m + h.c.) . (3.62)

Integrating out the auxiliary dimer fields in the path integral formalism, the resulting two-body
interaction Lagrangian reads as:

LI = −
∑̀
m

σ`O
†

`mO`m . (3.63)

By virtue of the potentials partial wave expansion Eq. (3.25) the two-particle operators should obey:

〈0|O`m |q1, q2〉 =
√

4π f`(s)Y
∗
`m(q

∗
) , (3.64)

where q∗ is the relative momentum in the center of mass frame and f`(s) = f (0)
`
+ f (2)

`
(s/4−M2

)+ . . .

are polynomials in (q∗)2 = s/4 − M2, such that

v`(s) = σ` f`(s)
2 . (3.65)

The actual expressions for these operator in position space

O`m =
√

4π φ f`

(
−
↔

∇
∗2)
Y
∗
`m

(
i
↔

∇
∗
)
φ,

↔

∇
∗

=
1
2

(
→

∇
∗

−
←

∇
∗
)

(3.66)

are rather complicated and highly non-local as they depend on the Lorentz transformation Λµν(P) into
the CMS, where the total momentum Pµ should be expressed in terms of the differential operators
wµ = (w, i∇) itself:(

i
→

∇
∗
) i
= Λ

i
µ(P)

→
w
µ
, Λi

0(P) = −γ
Pi

P0 , Λ
i
j(P) = δ

i j
+ (γ − 1)

P jPi

P2 ,

γ =

(
1 −

(
P
P0

)2
)−1/2

, Pµ =
→
w
µ
+
←
w
µ
. (3.67)
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Again, in the expressions above, arrows denote the direction the derivatives are acting on.
Despite these rather inconvenient representations of operators, the calculation of the two-body

scattering amplitude turns out to be simple. Considering the second diagram in Fig. 3.3 contributing
to the full dimer propagator i〈0|T (T

`m
(x)T†

`′m′
(y))|0〉 one obtains the following loop integral:

I`m,`′m′(P) =
∫

ddk1

(2π)d2w(k1)

ddk2

(2π)d2w(k2)

4π f`(k
∗2
)Y
∗
`m(k

∗
)Ỳ ′m′(k

∗
) f`′(k

∗2
)

w(k1) + w(k2) − P0
− iε

×

× (2π)dδd(P − k1 − k2) . (3.68)

Noting that the numerator is a low energy polynomial and using the properties of dimensional
regularization, together with the threshold expansion, only the absorptive part of the denominator
contributes. Furthermore, as the measure is Lorentz-invariant, the integral can be solved in the CMS.
Due to the orthogonality of the spherical harmonics, the integral reduces to

I`m,`′m′(P) = δ``′δmm′ f
2
` ((q

∗
)
2
)(q∗)2` I(P2

) , (3.69)

with I(P2
) the generic bubble integral, given in Eq. (3.20). Therefore the full dimer propagator is

given by:

i〈0|T (T
`m
(x)T†

`′m′
(y))|0〉 = δ``′δmm′

∫
d4P

(2π)4
e−iP(x−y) D`(P) , (3.70)

where

D`(P) = −σ` − σ` f 2
` ((q

∗
)
2
)(q∗)2`

1
2

I(P2
)D`(P) . (3.71)

Finally, attaching the vertices that convert the dimer into two-particle pairs, one arrives at the expression
for the on shell two-body scattering amplitude

T(p1, p2; q1, q2) = 4π
∑̀
m

Ỳ m(p
∗
) τ`(s)Y

∗
`m(q

∗
) , (3.72)

where

τ`(s) = f`(s)D`(P) f`(s) =
16π
√

s(q∗)−2`

−16π
√

sσ` f −2
` (s)(q

∗
)
−2`
− iq∗

. (3.73)

A comparison with Eq. (2.53) yields the matching condition9

−16π
√

sσ` f −2
` (s) = (q

∗
)
2`+1 cot δ`(s) . (3.74)

Both sides being Lorentz-invariant quantities that can be expanded in a series around threshold
again guarantees a one-to-one correspondence between the number of effective couplings f (i)

`
and

parameters appearing in the ERE of the underlying model. In practice one may just replace the

9 Here, again, the different normalizations in the partial wave expansion, due to the use of Ỳ m(p) = |p|
`Ỳ m(p̂), should be

taken into account.
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expression −16π
√

sσ` f −2
` (s) appearing in the dimer propagator in favor of the ERE:

τ`(s) =
16π
√

s

− 1
a`
+ 1

2r`(q
∗
)
2
+ · · · − i(q∗)2`+1 . (3.75)

In a finite volume, due to the lack of rotational invariance, the full dimer propagator is non-diagonal
in angular momentum:

i〈0|T (T
`m
(x)T†

`′m′
(y))|0〉 =

∫
dP0

2π
1
L3

∑
P

e−iP(x−y) DL
`m,`′m′(P) , (3.76)

where

DL
`m,`′m′(P) = −δ``′δmm′σ` − σ`

1
2

∑
`′′m′′

IL`m,`′′m′′(P)D
L
`′′m′′,`′m′(P) . (3.77)

Here, IL`m,`′′m′′(P) denotes the finite-volume version of the loop integral in Eq. (3.68) and is given by

IL`m,`′m′(P) =
1
L3

∑
k1=2π/Ln

4π f`(k
∗2
)Y
∗
`m(k

∗
)Ỳ m(k

∗
) f`′(k

∗2
)

4w(k1)w(P − k1)(w(k1) + w(P − k1) − P0
)
. (3.78)

The similarity to Eq. (3.41) is obvious. The expressions only differ by the factor of 4π f`(k
∗2
) f`′(k

∗2
).

Following the discussion below Eq. (3.41), the loop sum can be calculated completely analogous.
Especially, using the properties of dimensional regularization, the replacement k∗2 → (q∗)2 = s/4−M2

only amounts to exponentially corrections. Thus

IL`m,`′m′(P) = 4π f`(s) χ`m,`′m′(s; P) f`′(s) . (3.79)

Since poles in the dimer propagator correspond to two-particle energy levels due to the trivial relation
to the two-body scattering amplitude, the quantization condition can be read off from Eq. (3.77). After
some simple rearrangements and using the matching condition Eq. (3.74) one arrives at the Lüscher
equation Eq. (3.48).

3.3.3 The Three-Body Force in the Particle-Dimer Picture

Having concluded the two-particle sector in the particle-dimer picture it is now time to include the
three-body short range interaction. Keeping in mind that the auxiliary dimer field does not represent a
physical particle in general, it seems advantageous to start the discussion in the pure particle picture.
For the scattering of three on-shell identical scalars φ(q1) + φ(q2) + φ(q2) → φ(p1) + φ(p2) + φ(p3)

the following Lorentz-invariants can be defined [174]:

s = (p1 + p2 + p3)
2
= (q1 + q2 + q3)

2 ,

si j = (pi + pj)
2 , s′i j = (qi + qj)

2 , i, j = 1, 2, 3 , i , j

ti j = (pi − qj)
2 , i, j = 1, 2, 3 . (3.80)
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In order to apply a consistent power counting, it is convenient to define the following quantities:

∆ = s − 9M2 , ∆
i
p = sjk − 4M2 , ∆

i
q = s′jk − 4M2 , (3.81)

where (i, j, k) are cyclic permutations of (1, 2, 3). Owing to the imposed counting rule of |k| = O(ε)
for a generic momentum k, the quantities above as well as ti j are of order O(ε

2
).

This set of operators is still overcomplete. Due to Poincare invariance, three-body scattering should
be described in total by eight10 independent variables. Indeed the sixteen quantities above are subject
to eight constraints [174]:

3∑
i=1
∆
i
p =

3∑
i=1
∆
i
q = ∆ ,

3∑
j=1

ti j = ∆
i
p − ∆ ,

3∑
j=1

tji = ∆
i
q − ∆ , i = 1, 2, 3 . (3.82)

Due to the short ranged nature of hadronic interactions, the (tree-level) three-body force K3 can be
expanded in a series with respect to the variables ∆,∆ip,∆

i
q and ti j .

Considering identical particles leads to further constraints due to Bose symmetry: The three-particle
amplitude, and therefore also the corresponding three-body short range interaction, must be invariant
under the exchange of any two incoming or outgoing particles. Furthermore, time-reversal allows for
the interchange of incoming and outgoing states. The operators defined above transform according to:

pi ↔ pj : ∆
i
p ↔ ∆

j
p , tik ↔ tjk ,

qi ↔ qj : ∆
i
q ↔ ∆

j
q , tki ↔ tk j ,

pi ↔ qi : ∆
i
q ↔ ∆

i
q , ti j ↔ tji , (3.83)

where the last line should be understood for all i, j = 1, 2, 3 at the same time. At O(ε2
) there exists

only one11 independent invariant operator ∆. Therefore up to NLO:

K3(∆) = z0 + z2∆ + O(ε
4
) . (3.84)

Due to unitarity, the coefficients are real.
Now turning to the particle-dimer picture, the dynamics are effectively those of a two-body

system. Letting p, q and P,Q denote the momenta of the incoming and outgoing particles and dimers
respectively, the following Lorentz-invariants can be defined:

s = K2
= (p + P)2 = (q +Q)2 , t = (p − q)2 = (P −Q)2 . (3.85)

Here Kµ
= (p + P)µ denotes the total four-momentum. Furthermore, since the auxiliary dimer does

10 The counting is as follows: The six on-shell momenta are constraint by total four-momentum conservation due to
translation invariance. Lorentz-invariance further reduces the number of degrees of freedom, e.g. one can always perform
a boost into the center of mass frame, where the total three-momentum is vanishing. Finally, rotational invariance can be
used. For a general n→ m scattering process, the number N of degrees of freedom is given by:

N = 3 × (n + m) − 10 ,

due to the 10 generators of Poincare symmetry.
11 Applying the transformations Eq. (3.83), three operators are invariant: O1 = ∆, O2 =

∑
i(∆

i
p + ∆

i
q) and O3 =

∑
i j ti j .

This set can be reduced using the kinematical constraints Eq. (3.82).
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not correspond to a physical particle in general and thus should not be considered on-shell (in contrast
to the particles), the following variables are included:

σ2
p = P2 , σ2

q = Q2 . (3.86)

Counting rules can be imposed on the variables12:

∆ = s − 9M2
= O(ε2

) , t = O(ε2
) ,

∆p = σ
2
p − 4M2

= O(ε2
) , ∆q = σ

2
q − 4M2

= O(ε2
) . (3.87)

In the CMS, Kµ
= (
√

s, 0), the particle-dimer short-range interactionsV`m,`′m′

pd (t, s, σ2
p, σ

2
q) obtained

from 〈p, (`m)|HI |q, (`
′m′)〉 can be expanded into partial waves:

V`m,`′m′

pd (t, s, σ2
p, σ

2
q) = −4π

∑
JM

∑
LL′

Y
L`
JM (p,m)H

``′

JLL′
(∆,∆p,∆q) (Y

L′`′

JM (q,m
′
))
∗ , (3.88)

where (`m) and (`′m′) denotes the angular momentum of the dimers. The functions13 YL`
JM (k,m) are

given by

Y
L`
JM (k,m) = 〈L(M − m), `m|JM〉 YL(M−m)(k) (3.89)

and p and q denote the particle momenta in the particle-dimer CMS. By momentum conservation:

p2
=
λ(s, σ2

p, M2
)

4s
, q2

=
λ(s, σ2

q, M2
)

4s
, (3.90)

where λ(a, b, c) = a2
+ b2

+ c2
− 2(ab + bc + ca) is the Källén-function. Finally H``′

JLL′
(∆,∆p,∆q)

is a polynomial in its arguments. The appearance of different angular momenta can be understood
qualitatively. While J, M describes the total angular momentum L ′ and L can be interpreted as the
orbital momentum between the incoming and outgoing particles-dimer pairs respectively.

It is now a straightforward task to write down a Lagrangian that leads to such a potential:

LI = 4π
∑̀
m

∑
`′m′

∑
JM

∑
LL′

T†`m
(
Y

L`
JM (i∇,m)φ

†
)

H``′

JLL′
(∆,
←

∆T ,
→

∆T )

(
(Y

L′`′

JM (i∇,m
′
))
∗φ

)
T`′m′ . (3.91)

In the above expression, the differential operator ∆ acts on the particle-dimer pairs and can be replaced
by s − 9M2 in momentum space. On the other hand

←

∆T and
→

∆T only act on the dimers to the left and
right respectively, leading to the expressions ∆p and ∆q in momentum space.

12 The use of similar symbols is deliberate. This, as well as the counting rules will become clear later.
13 The appearance of these functions emerges when expressing the matrix element in the total spin. First, inserting a full set

of states, the incoming and outgoing states can be rewritten as

|k, (`m)〉 =
∑
LM

〈L, M |k〉 |LM, `m〉 =
∑
LM

Y
∗
LM (k) |LM, `m〉 .

Then, inserting another full set of states
∑

JN = |JN〉〈JN | for the total spin, these functions appear.
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K3 =

Figure 3.5: Graphical representation of the relation between the three-body force and the particle-dimer
short-range interaction. Gray double lines denote the dimer propagator at tree level, while the blue dots
correspond to the particle-dimer conversion vertices. The orange rectangle represents the particle-dimer
potential.

In the case of a shallow two-particle bound state, the dimer corresponds to a physical particle.
Thus, a matching to the effective range parameters of the particle-dimer scattering can be performed.
However, a key observation is that the couplings appearing in H``′

JLL′
(∆,
←

∆T ,
→

∆T ) are not independent
if a physical dimer, i.e. bound state, does not exist. While the description of the three-body sector in
terms of the particle-dimer picture should in principle lead to an equivalent theory, as can be seen in
the path integral formalism, solely writing down the most general particle-dimer interactions does
not guarantee that the theories coincide. Instead a matching should be performed. Similarly to the
two-body sector, cf. the step from Eq. (3.57) to Eq. (3.58) or form Eq. (3.71) to Eqs. (3.72) and (3.73),
the tree-level three-body force can be easily obtained from the (tree-level) particle-dimer interaction
by attaching the vertices converting dimers back into particles14. Diagrammatically this is shown in
Fig. 3.5.

An instructive example can be given at NLO. Here only the S-wave dimer is present. Inspection of
the particle-dimer potential Eq. (3.88), owing to the fact thatYL`

JM (k,m) = O(ε
L
), only15 J, L, L ′ = 0, 1

contribute at this order. Thus, up to NLO, dropping the ` = m = 0 = `′ = m′ superscripts, the
particle-dimer potential is given by:

Vpd(t, s, σ
2
p, σ

2
q) = −H0(∆,∆p,∆q) − 3 p q H2(∆,∆p,∆q) + O(ε

4
) ,

H0(∆,∆p,∆q) = h(0)0 + h(1)0 ∆ + h(2)0 (∆p + ∆q) , H2(∆,∆p,∆q) = h(0)2 . (3.92)

The symmetric combination of ∆p and ∆q appears due to time-reversal invariance. Moreover

p q =
1
2

t − M2
+
(s + M2

− σ2
p)(s + M2

− σ2
q)

4s
=

1
2

t +
2
9
∆ −

1
6
(∆p + ∆q) + O(ε

4
) . (3.93)

Now attaching the conversion vertices, this potential has to be multiplied by f0(σ
2
) = f (0)0 +

f (2)0 (σ
2
/4 − M2

) with σ2
= σ2

q , σ
2
p for the incoming and outgoing dimer respectively. As any two of

the particles can combine into a dimer, those quantities have to be equipped with indices. Denoting
the spectator particle with the index i, one may define:

∆
i
p = σ

2
pi
− 4M2 , ∆

i
q = σ

2
qi
− 4M2 , ti j = (pi − qj) , (3.94)

where σ2
pi
= P2

i = (pj + pk)
2 for (i, j, k) cyclic permutations of (1, 2, 3) and similarly for σ2

qj
. These

variables now coincide with those in the three-body system defined in Eq. (3.80) and obey similar
14 This is equivalent to integrating out the dimer fields at tree level.
15 As ` = `′ = 0 the Clebsch-Gordan coefficient implies L = L′ = J. This further excludes the appearance of L = 2.
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M = +

+ M + M

Figure 3.6: Graphical representation of the Faddeev equation for the particle-dimer scattering amplitude. Blue
double lines denote a fully resummed dimer propagator, while the particle is depicted as a single black line.
Orange boxes and blue dots represent particle-dimer interaction and dimer-conversion vertices respectively.

constraints as in Eq. (3.82). Finally, in order to obtain the full amplitude one has to sum over
i, j = 1, 2, 3. The matching condition reads:

K3(∆) = z0 + z2∆ =
∑
i j

f0(σ
2
pi
)Vpd(ti j, s, σ

2
pi
, σ2

qj
) f0(σ

2
qj
) . (3.95)

Indeed using the constraints Eq. (3.82), this equation is fulfilled. Therefore, without loss of generality,
one may set h(2)0 = h(0)2 = 0 from the beginning.
On the contrary, if a physical S-wave dimer exists, the variables σ2

p and σ2
q are not independent

anymore. Instead they correspond to the mass squared of the corresponding bound state. Thus, the
relations Eq. (3.82) are not valid anymore. In the particle-dimer potential Eq. (3.92) the coefficients
in H0 should be matched to the S-wave scattering length and effective range parameter, while h(0)2 can
be related to the P-wave scattering length.
It should be pointed out once again, that, similar to the two-particle sector, an actual matching

of the three-body couplings to the underlying model will not be performed. Instead a three-particle
quantization condition will be derived, that allows to fix the values of the three-body LECs by a fit to
the energy spectrum obtained from LQCD. Having determined these parameters, the Lagrangian can
then be used in order to calculate infinite-volume observables. Most commonly these quantities, such
as resonance masses and decay width, are directly derived from the three-particle scattering amplitude.

The following section will focus on the description of three-particle scattering in the infinite volume.
This is a rich field of research itself and besides the NREFT framework that is discussed here two
other main formalisms have been developed that have been applied to physical systems extensively:
the RFT approach [58, 159, 160, 175, 176] and unitarity approaches [177, 178] as well as [179–181]

3.3.4 Faddeev Equations for the Particle-Dimer Scattering Amplitude

The dynamics of a three-body system are governed by the so called Faddeev equations [182]. In the
particle-dimer picture the three-particle scattering amplitude can be straightforwardly related to the
particle-dimer amplitude. Diagrammatically the scattering of a particle and a dimer can be represented
as in Fig. 3.6, which should be understood to be solved self-consistently. Since the particle-dimer
amplitude will be related to the scattering of three particles in the end, the dimer fields should be
considered off-shell in general. The following calculation will be performed in the three-particle rest
frame only. The generalization to moving frames represents a major subject of this thesis and will be
addressed in Chapters 5 and 6. Assigning on-shell momenta qµ and pµ to the incoming and outgoing

54



3.3 The Three-Particle Sector

particles respectively and denoting the total four momentum by Kµ
= (E, 0), the particle-dimer

scattering amplitude obeys the following integral equation:

M`m,`′m′(p, q; E) = Z`m,`′m′(p, q; E) +
∑
`′′m′′

∫
dk0

2πi

Λ∫
d3k
(2π)3

Z`m,`′′m′′(p, k; E)D`′′((K − k)2)

×
1

2w(k)(w(k) − k0
− iε)

M`′′m′′,`′m′(k, q; E) , (3.96)

where `′m′ and `m denote the spin of the incoming and outgoing dimers. Moreover, Λ is a cutoff on
the three-momentum of the spectator particle in the loop that renders the equation UV finite. Above,
the integral kernel Z corresponds to the sum of the first two diagrams, which can be read off from the
particle-dimer Lagrangian. The expression is rather clumsy and will be given below.
In order to perform the k0 integral, it is sufficient to consider the pole structure of the integrand.

The kernel Z contributes a pole at w(p + k) + w(p) − E + k0
− iε = 0, stemming from the particle

propagating in the exchange diagram, which is located in the upper half plane. Going back to the
derivation of the dimer propagator D`(P

2
), restoring the the factor of iε in the two-body loop diagram

Eq. (3.16) in the result Eq. (3.20), i.e. P0
→ P0

+ iε, it can be seen that also the poles in D`((K − k)2)
are located in the upper half plane. Therefore the k0 contour can be chosen, such that only the pole
at k0

= w(k) − iε contributes. Thus the integral equation above reduces to a three-dimensional one,
where all particles are on-shell, i.e. k0

= w(k):

M`m,`′m′(p, q; E) = Z`m,`′m′(p, q; E)

+
∑
`′′m′′

Λ∫
d3k

(2π)32w(k)
Z`m,`′′m′′(p, k; E)D`′′((K − k)2)M`′′m′′,`′m′(k, q; E) .

(3.97)

This equation is referred to as the Faddeev equation for the particle-dimer scattering amplitude.
Furthermore, the kernel is given by

Z`m,`′m′(p, q; E) =
4πY∗`m(k

∗
p) f`(sp) f`′(sq)Ỳ ′m′(k

∗
q)

2w(p + q)(w(p) + w(q) + w(p + q) − E − iε)

+ 4π
∑
JM

∑
LL′

Y
L`
JM (p,m)H

``′

JLL′
(∆,∆p,∆q) (Y

L′`′

JM (q,m
′
))
∗ . (3.98)

Here

sp = (k + q)2 , sq = (k + p)2 ,

kµp =
1
2
(q − k)µ , kµq =

1
2
(p − k)µ , (3.99)

with kµ = (w(p + q), −p − q). Variables with an asterix superscript are defined in the respective
two-body center of mass frame.

One may express the quantities in the numerator of the first term in Eq. (3.98) also in terms of the
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T3 = + M

Figure 3.7: Three-particle scattering in terms of the particle-dimer amplitude.

off-shell dimer momenta. In order to do so note that the difference of s2
p and σ2

p = (K − p)2 is given by

σ2
p − s2

p = (E − w(p))
2
− (w(p + q) + w(q))2

= (E − w(p) − w(q) − w(p + q)) (E − w(p) + w(q) + w(p + q)) , (3.100)

exactly canceling the denominator. Thus one may replace f`(sp) → f`(σ
2
p) by modifying the regular

second part on the right hand side of Eq. (3.98). The same argument holds for the replacement
f`(sq) → f`(σ

2
q). Furthermore, defining p̃µ = (p− (K − p− q))µ/2 and q̃µ = (q − (K − p− q))µ/2, it

can be seen that

p̃0
− k0

p = w(p) + w(q) + w(p + q) − E , p̃ − kp = 0 , (3.101)

and similarly for q̃µ − kµq , such that the spherical functions can be expressed in terms of p̃∗ and q̃∗.
The on-shell three-particle scattering amplitude is finally obtained by equipping the particle-dimer

amplitude with the external vertices, see Fig. 3.7. Furthermore, a disconnected piece should be
included, where only a two-particle subsystem is interacting. As each particle can be the spectator, in
the total amplitude a sum over all different combinations of spectators should be performed:

T3(p1, p2, p3; q1, q2, q3) = Tdisc
3 + Tconn

3 ,

Tdisc
3 =

3∑
α,α′=1

∑̀
m

(2π)32w(pα)δ
3
(pα − qα′) 4π Ỳ m(p

∗
βγ) τ`((K − pα)

2
)Y
∗

`′m′(q
∗

β′γ′) ,

Tconn
3 =

3∑
α,α′=1

∑̀
m

∑
`′m′

4π Ỳ m(p
∗
βγ) τ`((K − pα)

2
) f −1
` ((K − pα)

2
)M`m,`′m′(pα, qα′)

× f −1
` ((K − qα′)

2
)τ`′((K − qα′)

2
)Y
∗

`′m′(q
∗

β′γ′) . (3.102)

Here, (α, β, γ) and (α′, β′, γ′) are permutations of (1, 2, 3). Furthermore pµβγ = (pβ − pγ)
µ
/2 is the

relative momentum of the two-body subsystem of the particles β and γ. Moreover, K = p1 + p2 + p3 =

q1 + q2 + q3 is implicit.
An important remark is in order. In contrast to the two-particle sector, where dimensional

regularization was used in the calculation of the elementary bubble diagram, the particle-dimer
amplitude is evaluated using cutoff regularization. The reason is that due to the non-perturbative
treatment and the complex diagrammatic structure, the amplitude should be obtained by solving the
integral equation Eq. (3.97) self-consistently. Usually a solution must be obtained numerically, which
can be done conveniently in cutoff regularization. Since physical quantities like the particle-dimer
scattering amplitude are cutoff-independent, the introduction of a UV cutoff necessarily leads to a
cutoff-dependence of the couplings h(0)0 , h(1)0 , h(2)0 , h(0)2 , . . . , compensating the explicit dependence on
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Λ.
Another important observation is that the dimer propagator entering the Faddeev equation is

evaluated at momenta that typically exceed the range of applicability of the NREFT framework in the
two-body sector. Removing the cutoff on the spectator momentum, Λ→∞, the CM energy square
of the dimer (K − k)2 can take arbitrary negative values and thus requires knowledge of the whole
subthreshold behavior of the two-body scattering amplitude. Clearly the NREFT is not expected to give
any meaningful description of that region. However, due to the decoupling of low- and high-energy
regimes, three-body observables should not depend on the details of the interactions in this region.
Integrating out the high-energy degrees of freedom consistently, the details of the two-body scattering
amplitude in the far subthreshold region should not be resolved by the particle-dimer scattering
amplitude as the high-energy behavior of the three-body short-range interaction should compensate
any dependence.

However, the exact form of the two-particle amplitude is not known and has to be parametrized by an
ERE in the NREFT formalism. While in the region of applicability of the NREFT this is expected to
yield a good approximation of the exact amplitude, severe discrepancies can arise outside the vicinity
of threshold. This can lead to practical problems if the NREFT amplitude is subject to spurious
poles. Considering the S-wave ERE up to NLO, the NREFT two-particle scattering amplitudes has
subthreshold poles κ = iq∗ at

κ1,2 =
1 ∓

√
1 − 2r0/a0

r0
. (3.103)

If16 r0 > 0 and a0 � r0, the pole κ1 corresponds to a existing (shallow) bound state, while κ2 is an
unphysical spurious pole with negative residue that lies far below threshold. Nevertheless, using this
form of ERE in the Faddeev equation, this spurious pole will lead to a violation of unitarity in the
particle-dimer amplitude. Following the discussion in the previous paragraph, the pole was only
artificially introduced using the ERE and it should be possible to cancel its influence by adjusting
the renormalization prescription of the three-body short range interactions. Such a formalism was
developed in [183] in the infinite volume and in [5] for the finite volume.

3.3.5 The Three-Particle Quantization Condition

In a finite volume, following the discussion in Sec. 3.2.2, an analog of the particle-dimer scattering
amplitude can be defined, obeying the Faddeev equations as depicted in Fig. 3.6 with loop integrals
replaced by finite-volume sums. Taking into account that the finite-volume dimer propagator, Eq. (3.77),
is non-diagonal in angular momentum space, the finite-volume particle-dimer amplitude in the rest
frame Kµ

= (E, 0) is given by the solution of the equations

ML
`m,`′m′(p, q; E) = Z`m,`′m′(p, q; E)

+
∑
jn, j′n′

1
L3

Λ∑
k

1
2w(k)

Z`m, jn(p, k; E)DL
jn, j′n′(K − k)ML

j′n′,`′m′(k, q; E) ,

(3.104)

16 This setup is relevant in the two-nucleon problem. Here, κ1 corresponds to the binding momentum of the deuteron.
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where k0
= w(k) is on-shell and the three-momentum sum is equipped with an UV cutoff Λ.

The finite-volume three-particle scattering amplitude is again obtained from the particle-dimer
amplitude as in the infinite volume. Since the expression will be rather voluminous, only an abbreviated
from will be given in order to describe the pole structure qualitatively. Such an analysis should be
carried out, since the particle-dimer scattering amplitude explicitly involves poles from both, the
kernel Z at the non-interacting levels E = w(p) + w(q) + w(p + q) as well as the dimer propagator
DL , corresponding to the two-particle energy levels. Thus, in that perspective it is not clear from the
beginning that the three-particle amplitude only contains three-particle energy levels. One may define

T̃L
3 (E) = DL

(E) + DL
(E)ML

(E)DL
(E) , (3.105)

where DL and ML are operators in the space of spectator momentum and dimer angular momentum
for a given total momentum Kµ

= (E, 0):

〈p, (`m)|DL
(E)|q, (`′m′)〉 = 2w(p)L3δp,q DL

`m,`′m′(K − p) ,

〈p, (`m)|ML
(E)|q, (`′m′)〉 = ML

`m,`′m′(p, q; E) . (3.106)

Similarly the Faddeev equation for the particle-dimer amplitude can be written in operator form:

ML
(E) = Z(E) + Z(E)DL

(E)ML
(E) , (3.107)

where 〈p, (`m)|Z(E)|q, (`′m′)〉 = Z`m,`′m′(p, q; E). The quantity T̃L
3 defined in this way corresponds

to the finite-volume three-particle scattering amplitude with the vertices converting dimers into
particles amputated. The absence of poles from the kernel and the dimer propagator in T̃L

3 was
observed in [55, 56, 59, 146] and can be traced back to cancellations in the definition of this amplitude,
as shown below.

Considering the poles in Z`m,`′m′(p, q; E) at the non-interacting levels first, it can be seen from the
solution to the Dyson-Schwinger equation for the dimer propagator Eq. (3.77) that DL

`m,`′m′(K − p)
exactly vanishes at these energies, since the finite-volume loop IL`m,`′m′(K − p) diverges. Therefore
T̃L

3 (E), where ML
(E) is multiplied by the dimer propagator from the left and right, also vanishes at

these energies.

For the second class of poles from DL
(E) at the two-particle energy levels in the finite volume one

may write the solution to Eq. (3.107) in the form

ML
(E) =

(
DL
(E)

)−1
[(

DL
(E)

)−1
− Z(E)

]−1
Z(E) . (3.108)

It can be seen that, with the inclusion of the disconnected piece, these poles get canceled in T̃L
3 .

Following the preceding discussion, a three-particle quantization condition can be derived from the
finite-volume Faddeev equation of the particle-dimer amplitude directly. This is a system of equations
in the space of on-shell spectator momenta pµ and qµ, as well as angular momenta `,m and `′,m′.
The finite-volume energy levels correspond to poles in the particle-dimer amplitude, these emerge at
energies E where the system of equations Eq. (3.104) is singular. Ignoring the singularities stemming
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from the kernel, these energies are determined by17

det B = 0 ,

B`m,`′m′(p, q; E) = 2w(p)L3δp,q

(
DL
`m,`′m′(K − p)

)−1
− Z`m,`′m′(p, q; E) . (3.109)

Here, in contrast to the two-particle quantization condition, the determinant is not only taken over
angular momentum, but also the space of on-shell spectator momenta. Due to the cutoff, these are
restricted by |p|, |q| ≤ Λ.
The three-particle quantization condition is the key element that allows to relate LQCD data to

three-body infinite-volume QCD observables. The procedure of extracting these physical parameters
is as follows: In a first step, based on power counting arguments, the expansion of the NREFT
Lagrangian that is tailored to describe the process under consideration must be truncated. This yields
a cutoff on the spin of the dimer fields and the number of LECs. Now the two-particle quantization
condition can be used in order to determine the values of the two-body couplings by performing a fit
to the corresponding energy spectrum, obtained in a LQCD calculation. Since these LECs can be
directly related to the effective range parameters and thus correspond to physical quantities, no further
step is required here. Having fixed a cutoff Λ, the quantization condition Eq. (3.109) can be used to
fix the values of the remaining three-body LECs by a fit to the three-particle energy spectrum in the
rest frame. Establishing a relation to physical observables directly for these parameters was not yet
successful. However, the NREFT is complete now in the sense that all couplings are known. Once
again it should be pointed out that for a sufficient lattice setup, the LECs are guaranteed to exhibit
exponentially small finite-volume corrections. Therefore, in a final step the Lagrangian can be used in
order to calculate infinite-volume observables from the three-body scattering amplitude. This requires
solving the Faddeev equations (3.97), where, due to the cutoff-dependence of the three-particle LECs,
the same cutoff Λ as chosen in the quantization condition has to be used.

3.3.6 Towards Relativistic Invariance and a Description of Three-Particle Decays

One major challenge is to establish a relativistically invariant three-particle quantization condition,
that allows for the application in different moving frames defined by the total three-momentum K
of the three-body system. Unfortunately, the infinite-volume Faddeev equations and similarly the

17 The same quantization condition may also be derived from the amplitude T̃L
3 . Plugging Eq. (3.107) into Eq. (3.105) and

regrouping terms, a Faddeev equation for T̃L
3 can be derived:

T̃L
3 (E) = DL

(E) + DL
(E) Z(E) T̃L

3 (E) .

The solution to this equation formally is given by:

T̃L
3 (E) =

[(
DL
(E)

)−1
− Z(E)

]−1
.

The three-particle energy levels correspond to poles of T̃L
3 (E), i.e. to energies where

(
DL
(E)

)−1
− Z(E) is not invertable:

det
((

DL
(E)

)−1
− Z(E)

)
= 0 .
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three-particle quantization condition given in the form above turn out to be frame-dependent. Although
a precise scrutiny of the covariance of all quantities entering the kernel is needed, which will only be
discussed in one of the following chapters, the failure of invariance can be primarily attributed to the
three-particle propagator

1
2w(K − p − q)(w(p) + w(q) + w(K − p − q) − K0

− iε)
, (3.110)

entering the expression of the kernel via the exchange diagram. Due to the explicit non-covariance, the
particle-dimer scattering amplitude will be frame dependent, also rendering the use of the quantization
condition in different frames at the same time impossible. Fortunately, it can be shown that modifying
the NREFT approach slightly, relativistic covariance can be restored also in the three-particle sector.
In this approach, inspired by heavy quark EFT and heavy baryon ChPT, the NREFT is quantized
in an arbitrary frame with four-velocity vµ, v2

= 1. That is, the momentum pµ⊥ = pµ − vµ(v · p),
“perpendicular” to vµ, is considered to be small. The revision of the NREFT framework under this
adjustment and a derivation of a Lorentz-invariant three-particle quantization condition represents one
of the central topics of the subsequent parts of this thesis.

Another substantial part concerns the derivation of a three-particle analog of the Lellouch-Lüscher
formula in the NREFT framework. Conceptually the basic idea is quite simple. The Lagrangian is
extended in order to describe the initial decay process, while the two- and three-body interactions
cause the rescattering of the decay products. While the latter couplings can be fixed form LQCD
data by a fit to the corresponding energy spectra, the LECs multiplying the operators that describe
the initial decay remain undetermined. Nevertheless, as the initial decay process is considered to
be perturbative, to fist order these coefficients enter the infinite- and finite-volume decay elements
both linearly only. Therefore the dependence on these LECs can be eliminated completely in the end,
yielding a linear relation between the infinite-volume decay amplitude in terms of finite-volume decay
matrix elements.

It is important to note that, in contrast to the two-particle decays where the magnitudes of momenta
of the decay products are fixed, the decay Lagrangian in the three-particle sector consists out of
an infinite tower of operators. Eliminating the dependence on more than one of the corresponding
LECs one has to extract finite-volume decay amplitudes in different moving frames. Thus a general
three-particle analog of the Lellouch-Lüscher formalism turns out to rely on a Lorentz-invariant
formulation. However the lack of Lorentz invariance is not an issue at the leading order, where
derivative couplings are absent and the decay process is completely described by a single operator.

The remaining chapters of this thesis are excerpts of publications, organized as follows: In Chapter
4 an analog of the Lellouch-Lüscher formalism is derived in the three-particle sector at the leading
order for three identical spinless particles in the rest frame. As discussed above, for a general treatment
of three-body decays in the NREFT approach a relativistic-invariant formalism is inevitable which will
be derived in Chapter 5. The three-particle quantization condition is rederived in a Lorentz-invariant
form and examined numerically. Finally in Chapter 6 the three-particle Lellouch-Lüscher formalism is
generalized to arbitrary moving frames, allowing the determination of three-particle decay amplitudes
from LQCD data at higher orders.
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CHAPTER 4

On the Three-Particle Analog of the
Lellouch-Lüscher Formula

The content of this chapter following this prologue is based on the publication

• F. Müller and A. Rusetsky, On the three-particle analog of the Lellouch-Lüscher formula, JHEP
03 (2021) 152, arXiv: 2012.13957 [hep-lat]

Using non-relativistic effective field theory, in this chapter a three-particle analog of the Lellouch-
Lüscher formula in the three-body center of mass frame is derived at the leading order in the NREFT
power counting. This formula relates the three-particle decay matrix elements in a finite volume to
their infinite-volume counterparts and, hence, can be used to study three-particle decays on the lattice.
Such a method was not available before. The generalization of the approach to higher orders is briefly
discussed.

For typical hadronic three-body decay processes, the momenta of the decay products are not small
as compared to their mass. An application of the original NREFT setup, where relativistic corrections
are treated perturbatively, thus proves inappropriate. Although not being wrong in principle, achieving
relativistic invariance in the two-particle sector order by order is cumbersome and rather intransparent.
Instead the use of the covariant form of NREFT, actually introduced in [166, 167] in the context of the
decay K → 3π, reproduces the singularity structure in the two-body subsystem directly. In the context
of finite-volume three-body dynamics the modified NREFT framework was not applied before. Thus,
in a first step, the author of this thesis rederived the three-particle quantization condition for three
identical bosons in the covariant NREFT at the leading order in the particle-dimer picture.
In order to keep the derivation of the three-particle analogue of the Lellouch-Lüscher formula as

simple as possible, although not describing a physical process, the decay of a spinless particle into
three identical likewise spinless particles was considered. Accordingly the three-particle Lagrangian
was augmented with an operator that describes the initial decay process. As the decay is considered to
be perturbative, the resulting infinite- and finite-volume decay matrix elements should be proportional
to the coupling that describes the initial decay to the first order. Therefore it should be possible to
derive a linear relation between the infinite-volume decay amplitude in terms of the finite-volume
decay matrix element, where the proportionality factor, referred to as Lellouch-Lüscher factor, only
depends on the LECs that describes the rescattering of the final-state particles. Furthermore, it should
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contain the non-regular volume dependence that arises due to the dynamics of the final-state particles
in a finite volume.

For the actual derivation of the LL factor the author of this thesis closely followed Ref. [50], where
a derivation of the LL factor in the two-particle sector was derived within the covariant NREFT
formulation. Using the Feynman rules of the effective theory, the author derived an expression
for the infinite-volume decay amplitude in terms of the particle-dimer scattering amplitude first.
The calculation of the corresponding decay matrix element in a finite volume then proceeded by
considering the correlation function of a three-body annihilation operator with a source operator
describing the initial decay. Within the NREFT treatment the author calculated this correlator to first
order perturbation theory in the decay coupling, while the final state interactions were summed up to
all orders. Furthermore, if the overlap of the three-body annihilation operator with a three-particle
state at the energy of the initial particle is known, the finite-volume decay matrix element can be
determined. An expression for this overlap can be obtained by calculating the finite-volume six-point
correlation function from the three-body operator in the NREFT. Comparing the expressions for the
infinite- and finite-volume decay matrix elements the author was finally able to derive the three-particle
LL factor.

Although the leading order result of this chapter will probably be sufficient for actual applications,
considering the present status of lattice calculations in the three-body sector, a complete description
of three-body decays requires the inclusion of higher derivative couplings. This is in contrast to
the two-body sector, where the absolute values of the momenta of the final particles are fixed by
kinematics. Nevertheless this chapter introduces the fundamental techniques that will be similarly
applied in the derivation of the LL equation at higher orders.

4.1 Introduction

Back in 2000, Lellouch and Lüscher [45] derived a formula, which related the matrix element of
the weak K → 2π decay in a finite volume to its infinite-volume counterpart. These two quantities
turn out to be proportional with a factor (Lellouch-Lüscher (LL) factor), depending on the size L
of a cubic box and on the elastic two-body pion-pion scattering phase shift. The result of Ref. [45]
paved the way to the systematic studies of various two-body decays on the lattice. Later, different
generalizations of the method emerged, e.g., for moving frames [35, 46], or for the case of coupled
two-body channels [41]. A simple and transparent derivation of the LL formula with the use of the
non-relativistic effective Lagrangians has been given in [50]. For the application of the formalism, we
refer here, e.g., to a comprehensive study of the K → ππ decays, which has been carried out recently
by the RBC and UKQCD Collaborations [152]. From the related work, we mention the study of the
matrix elements of currents, corresponding to the 1→ 2 transition [47, 184], and of the timelike pion
form factor [185], which all feature the similar factor in a finite volume. Generally, in the LL type
formulae, this L-dependent factor emerges from the multiple rescattering of two particles in the final
state (pions), and the phase shift, which also enters the expression, should be measured on the same
lattice, simultaneously with the measurement of the decay matrix element. It can be done by using the
Lüscher formula that relates the phase shift to the volume-dependent spectrum in the two-particle
sector.
To summarize, the two-body problem is completely understood from the conceptual point of

view – both the scattering, as well as two-body decays. On the contrary, the three-body formalism
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is still in development. Recently, three physically equivalent forms of the quantization condition
have been proposed [55, 58–61], which relate the three-body spectrum in a finite volume with the
infinite-volume parameters in the three-body sector. However, in contrast to the two-body case, where
the Lüscher equation enables one to extract the two-body phase shift from the measured spectrum in
one step, the procedure in the three-particle sector is more complicated. To start with, the three-body
quantization condition becomes tractable only if the three-body interactions are expressed in terms
of few parameters. In the approach of Refs. [60, 61], such a parameterization naturally emerges,
when the three-body interactions are evaluated from the effective Lagrangian at tree level that allows
one to impose a consistent power counting. Similarly, the three-body kernels in the approaches of
Refs. [55, 58] and Ref. [59] can be expanded in the external momenta (up to a given order) in the
vicinity of the threshold. Thus, the fit of the quantization condition to the three-particle spectrum,
which is measured on the lattice, enables one to extract few parameters (the effective three-particle
couplings, or the coefficients in the expansion of the three-particle kernel). These can be substituted
into the infinite-volume equations to calculate observables in the three-particle sector. Consequently,
extracting the three-particle observables from data necessarily involves an intermediate step, and
cannot be done directly, as in case of two particles.
It should be mentioned that the above theoretical developments have largely boosted the study of

three (and more particles) on the lattice, be this in QCD or other field-theoretical models [28, 29, 65,
157, 186–190]. In view of these activities, the need for the three-particle analog of the LL formula,
which should be used for the extraction of the matrix elements, becomes obvious. Such a formula,
however, was not available in the literature so far. Moreover, bearing in mind the above discussion,
it is not even clear, whether the relation between the finite- and infinite-volume matrix elements,
which one is after, should contain a single overall factor (a counterpart of the LL factor), or should
be more complicated. On the other hand, recent years have seen a growing interest to the study of
three-particle decays. The most obvious candidates for this study in the beginning are provided by the
three-pion decays of low-mass light-flavored mesons K → 3π, η→ 3π and ω→ 3π. The decays of
the heavier pseudovector mesons a1(1260) → ρπ → 3π and a1(1420) → f0(980)π → 3π are also
very interesting1. Further, the candidates for exotica, X(3872) and X(4260), decay largely into the
three-particle final states as well. Last but not least, the extraction of the parameters of the Roper
resonance on the lattice has proven to be very challenging. That might be, in part, related to the lack
of proper treatment of the three-particle decay channel in a finite volume. Our paper intends to make
the first step towards the creation of a systematic finite-volume framework for the study of three-body
decays on the lattice that will contribute to the solution of the above-mentioned problems2.
Note that the resonances, which are studied in lattice QCD, fall into two categories. To the first

category belong the ones, which are stable in pure QCD, like kaons that decay throughweak interactions.
Further, the η-mesons are not stable in QCD. However, the decay amplitude is proportional to the
u- and d-quark mass difference mu − md and thus vanishes in the isospin limit. So, if one wants to
know this amplitude only at the first order in mu − md (this completely suffices for practical reasons),
one could also formally categorize this decay into the first group and treat the final state interactions
in the isospin-symmetric QCD, where the η-mesons are stable. The second, larger group consists

1 As one will see later, in the lattice study of all these decays, a prior knowledge of the three-pion amplitude is necessary.
The total isospin of the decay products in the above processes is different, but neither of them equals the maximal possible
isospin I = 3, available in the system of three pions. It is important to note that the three-body finite-volume formalism,
which enables one to explore the systems with an arbitrary isospin, has become available only very recently [4, 161].

2 After the present paper was submitted to the archive, Ref. [191], which deals with the same issue, has appeared.
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of the genuine QCD resonances. In this paper, like in the original paper by Lellouch and Lüscher,
we concentrate our effort on the first group. The treatment of the QCD resonances is a more subtle
issue that includes, in particular, analytic continuation into the complex energy plane to the resonance
pole. In the case of two-body decays, this procedure is discussed, in particular, in Refs. [50, 51,
192–194]. We postpone the discussion of a similar procedure in the three-particle sector to our future
investigations.
The layout of the paper is as follows: In Sect. 4.2, we display the lowest-order non-relativistic

effective Lagrangian and write down the quantization condition in a finite volume. In Sect. 4.3, we
derive the LL equation at leading order. The extension of the approach to higher orders is discussed in
Sect. 4.4. Section 4.5 contains our conclusions.

4.2 Non-Relativistic Framework

The non-relativistic EFT framework, which was tailored to study the singularity structure of the
amplitudes in three-body decays, was proposed in Ref. [166]. It has been successfully used in the
study of the three-body decays of charged and neutral kaons, as well as ω, η and η′ mesons [195–199].
A brief review of the essential points of the approach is given in Ref. [167]. The main difference
of this approach from the conventional ones consists in the treatment of the relativistic corrections
to the internal particle lines. Whereas in the conventional approach, these corrections are treated
perturbatively, in the new one they are summed up to all orders, ensuring the correct relativistic
dispersion law. As a result, the location of singularities in the decay amplitude stays fixed to all orders
and coincides with the singularity structure of the relativistic amplitude. There is a price to pay for
this, however: the resummed propagators feature the hard scale – the particle mass – explicitly. This,
as known, leads to the breakdown of the naive counting rules. In order to rectify the counting rules,
one then has to amend the procedure for the calculation of the Feynman integrals – dimensional
regularization plus minimal subtraction does not suffice. The modification of the procedure, which is
equivalent to the change of the renormalization prescription, is described in detail in [167], and we
refer an interested reader to that article.
To purify the problem from the inessential details as much as possible, we shall consider below

a decay of a spinless particle (“kaon”) into three likewise spinless particles (“pions”). Isospin and
other quantum numbers are discarded. We also assume that there exists some discrete symmetry (like
G-parity), which forbids transitions with an odd number of the external pion legs. The non-relativistic
fields K(x) and φ(x) describe kaons and pions, respectively, and M,m denote their masses. The
lowest-order Lagrangian, which describes the decay, is given by

L = K†2W(i∂t −W)K + φ†2w(i∂t − w)φ

+
C0
4
φ†φ†φφ +

D0
36
φ†φ†φ†φφφ +

G0
6

(
K†φφφ + h.c.

)
, (4.1)

where W =
√

M2
− ∇

2 and w =
√

m2
− ∇

2.
In the above Lagrangian, the constant G0 describes the elementary act of the kaon decay into three

pions. It is proportional to the weak coupling constant and enters the amplitudes, by definition, only at
the first order. If the weak interactions are switched off, the kaon is stable. Further, the constants C0
and D0 describe the strong final state interactions in the system of two and three pions respectively.
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TL = + ML

Figure 4.1: Expressing the three-particle scattering amplitude through the particle-dimer scattering amplitude,
see Eq. (4.13). The single and double lines are the particle and the dimer propagators, respectively, and the
filled circle denotes the two-particle-dimer vertex.

Unlike the constant G0, these enter the expression of the amplitude at all orders. The matching at the
two-pion threshold relates the constant C0 to the pion-pion scattering length a:

C0 = −32πam . (4.2)

In Eq. (4.1), only the leading-order terms are displayed. The power counting at the Lagrangian level
is defined by the (formal) requirement that all three-momenta count at O(p), whereas the kinetic
energies of the individual pions, as well as the quantity M − 3m count at O(p2

). The higher-order
Lagrangians would contain an even number of spatial derivatives, acting on all fields. Below, we shall
concentrate on the derivation of the LL formula at the leading order, using the Lagrangian in Eq. (4.1).
The inclusion of the higher-order terms will be considered briefly in Sect. 4.4.

Moreover, in order to write down the equation that determines the three-particle scattering amplitude,
we shall switch to the particle-dimer picture. It is well-known that this formulation, which is equivalent
to the original one, enables one to drastically simplify the bookkeeping of Feynman diagrams and
arrive at the result with a surprising ease [95, 98, 173]. The Lagrangian in the particle-dimer picture
in our case is given by:

L = K†2W(i∂t −W)K + φ†2w(i∂t − w)φ + σd†d

+
f0
2

(
d†φφ + h.c.

)
+ h0d†dφ†φ + g0

(
K†dφ + h.c.

)
. (4.3)

Here, d denotes the dimer field, and σ = ±1, depending on the sign of the constant C0. Integrating
out the field d in the path integral and expanding in the powers of fields, one arrives at the Lagrangian,
given in Eq. (4.1), if the following relations are fulfilled:

σ f 2
0 = −C0, 9 f 2

0 h0 = D0, 3σ f0g0 = −G0 . (4.4)

We would like to stress here that the validity of the particle-dimer picture does not imply that a
two-body bound state really exists. As one sees, the dimer field is introduced in the path integral as a
dummy integration variable and, hence, the resulting formulation is mathematically equivalent to the
initial one without a dimer field. If a dimer (or a narrow low-lying resonance) indeed exists, this may
affect only the convergence of the expansion. In this case, the bulk of the two-particle interaction will
be described by the dimer exchange in the s-channel, and the contribution from the higher orders will
be small.
The Lagrangian (4.3) will be used for the calculation of the Feynman diagrams in a finite volume

– as it is well-known, the sole change is the replacement of the infinite-momentum integrals by the
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sums over the discrete three-momenta of particles in a finite cubic box3. The propagator of the
non-relativistic field φ(x) in a finite volume is given by:

i〈0|Tφ(x)φ†(y)|0〉 =
∫

dp0
2π

1
L3

∑
p

e−ip0(x0−y0)+ip(x−y)

2w(p)(w(p) − p0 − iε)
, w(p) =

√
m2
+ p2 . (4.5)

The dimer propagator is obtained by summing pion loops to all orders:

i〈0|Td(x)d†(y)|0〉 =
∫

dP0
2π

1
L3

∑
P

e−iP0(x0−y0)+iP(x−y) DL(P; P0) . (4.6)

Here DL obeys the following equation:

DL(P; P0) = −
1
σ
−

f 2
0

2σ
JL(P; P0)DL(P; P0) , (4.7)

where JL denotes a single pion loop:

JL(P; P0) =
1
L3

∑
k

1
4w(k)w(P − k)(w(k) + w(P − k) − P0 − iε)

=
p∗

8π5/2√sγη
Zd

00(1; s) , (4.8)

and

s = P2
0 − P2, γ =

P0
√

s
, p∗ =

√
s
4
− m2, η =

p∗L
2π

, d =
PL
2π

. (4.9)

Further, in Eq. (4.8), Zd
00(1; s) is the usual Lüscher zeta function, boosted to the moving frame defined

by the vector d. For a general (lm), this function is given by:

Zd
lm(1; s) =

∑
r∈Pd

Ylm(r)
r2
− η2 , Pd =

{
r ∈ R3

����r‖ = γ−1
(
n‖ − |d|/2

)
, r⊥ = n⊥ , n ∈ Z3

}
,

(4.10)

where Ylm(r) = |r|
lYlm(r̂), and Ylm(r̂) denotes the usual spherical function that depends on the unit

vector r̂ . Finally, after using the matching condition, for the dimer propagator one obtains:

DL(P; P0) =
σ
√

s/(2am)

−
√

s/(2am) + p∗ cot φd
(s)
, cot φd

(s) = −
Zd

00(1; s)

π3/2γη
. (4.11)

In the non-relativistic limit,
√

s/(2m) → 1, γ → 1, and we arrive at the expression displayed in
Refs. [60, 61]. At higher orders, the expression −1/a both in the numerator and the denominator gets

3 For simplicity, below we display all formulae in the Minkowski space. The final results, obtained with the use of Wick
rotation, are identical.
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ML = +

+ ML + ML

Figure 4.2: The Faddeev equation for the particle-dimer scattering amplitude. The red shaded squares denote
the particle-dimer coupling.

replaced by p∗ cot δ(p∗) = −1/a + rp∗2/2 + . . .. Further, the infinite-volume counterpart of Eq. (4.11)
reads:

D(P; P0) =
σ
√

s/(2am)
−
√

s/(2am) − ip∗
. (4.12)

The finite-volume energy levels in the three-particle system coincide with the location of the poles
of the three-particle scattering amplitude. In the particle-dimer picture, this quantity can be directly
related to the particle-dimer scattering amplitude [60, 61, 146], see Fig. 4.1. At the lowest order, the
relation is given by:

TL({p}, {q}; P0) =

3∑
α,β=1

[
τL(−pα; P0)2w(pα)L

3δpαqβ

+ τL(−pα; P0)ML(−pα,−qβ; P0)τL(−qβ; P0)

]
, (4.13)

where {p} stands for the set of all three particle momenta pα with α = 1, 2, 3. In the center-of-mass
frame, the dimer momenta are equal to −pα. The sets {q}, {k} are defined similarly. Further,

τL(p; P0) = f 2
0 DL(p; P0 − w(p)) . (4.14)

In the infinite volume, the relation between the quantities τ(p; P0) and D(p; P0) takes a similar form.
Further, ML(p, q; P0) denotes the particle-dimer scattering amplitude, which obeys the Faddeev
equation in a finite volume, see Fig. 4.2:

ML(p, q; P0) = Z(p, q; P0) +
1
L3

Λ∑
k

Z(p, k; P0)
τL(k; P0)

2w(k)
ML(k, q; P0) , (4.15)

where Λ denotes an ultraviolet cutoff and

Z(p, q; P0) =

[
1

2w(p + q)(w(p + q) + w(p) + w(q) − P0 − iε)
+

h0

f 2
0

]
. (4.16)
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In the infinite volume, the Faddeev equation becomes the integral equation with the same kernel Z
and cutoff Λ:

M(p, q; P0) = Z(p, q; P0) +

∫ Λ d3k
(2π)3

Z(p, k; P0)
τ(k; P0)

2w(k)
M(k, q; P0) . (4.17)

The quantization condition in a finite volume takes the form:

det(A) = 0 , Apq = 2w(p)τ−1
L (p; P0)L

3δpq − Z(p, q; P0) . (4.18)

The discrete solutions P0 = En of the quantization condition determine the finite-volume spectrum of
the three-particle system. Further, in the vicinity of a pole P0 = En, the residue of the particle-dimer
amplitude factorizes:

ML(p, q; P0)

����
P0→En

=
ψ
(n)
L (p)ψ

(n)
L (q)

En − P0
+ regular . (4.19)

The particle-dimer wave function obeys a homogeneous equation:

ψ
(n)
L (p) =

1
L3

Λ∑
k

Z(p, k; En)
τL(k; En)

2w(k)
ψ
(n)
L (k) . (4.20)

The normalization condition for the finite-volume wave function ψ(n)L (p) can be derived in a standard
manner by using Eqs. (4.17), (4.19) and (4.20). Since both Z and τL are energy-dependent, ψL(p) is
not merely normalized to unity. Instead, the normalization condition takes the form:

1
L6

Λ∑
p,k

ψ(n)(p)
τL(p; En)

2w(p)
dZ(p, k; En)

dEn

τL(k; En)

2w(k)
ψ
(n)
L (k)

+
1
L3

Λ∑
p
ψ(n)(p)

1
2w(p)

dτL(p; En)

dEn

ψ
(n)
L (p) = 1 . (4.21)

The three-particle scattering amplitude factorizes as well:

TL({p}, {q}; P0)

����
P0→En

=
Ψ
(n)
L ({p})Ψ

(n)
L ({q})

En − P0
+ regular , (4.22)

where

Ψ
(n)
L ({p}) =

3∑
α=1

τL(−pα; En)ψ
(n)
L (−pα) . (4.23)

Up to the change to the relativistic normalization and the use of the relativistic kinematics in the dimer
propagator, these equations are equivalent to the ones displayed in Refs. [60, 61, 146]. The numerical
solution of similar equations in a finite volume has been considered also, e.g., in Refs. [101–104].
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4.3 Derivation of the Three-Particle Analog of the LL Formula at the
Leading Order

The derivation of the counterpart of the LL formula in the three-particle sector proceeds along the
path already used in the two-particle case [50]. The main idea can be formulated in few words. The
non-relativistic effective Lagrangians, used to describe physics in the infinite and in a finite volume,
are the same. At the leading order, the only unknown, which can be extracted from the measured
K → 3π decay matrix element on the lattice, is the coupling G0 (other couplings, C0 and D0, can be
independently determined by measuring the two- and three-body energy levels). Hence, the only thing
that one has to do is to calculate the decay matrix elements in the effective theory twice: in a finite
and in the infinite volume. Since at the leading order this matrix element is merely proportional to G0,
in the ratio of the results of the two calculations, which is the three-particle analog of the LL factor we
are looking for, this constant drops out. Thus, the final answer is expressed solely in terms of known
constants C0 and D0.

The crucial point in this derivation is to concentrate on G0 which, by definition, is the same in a finite
and in the infinite volume, up to the exponentially suppressed corrections. In these corrections, the
hard scale of the effective theory appears in the argument of the exponent (in our case, this hard scale
is given by the pion mass m). On the contrary, the measured matrix element contains a non-trivial,
power-law L-dependence, which emerges via the final state interactions. Hence, no regular L →∞
limit exists for this matrix element.

After this introductory remark, we proceed with the calculation of the decay matrix element.
Following Ref. [50], first, one has to calculate the wave function renormalization constant for the
composite operator O(x0; {k}), which creates three pions with momenta k1, k2, k3, acting on the
vacuum bra-vector 〈0|:

O(x0; {k}) =
∫

d3x1d3x2d3x3 e−ik1x1−ik2x2−ik3x3φ(x0, x1)φ(x0, x2)φ(x0, x3) . (4.24)

Assume now that x0 > y0. Inserting a complete set of the intermediate states, for the two-body
correlator one gets:

〈0|O(x0; {k})O†(y0; {k})|0〉 =
∑
n

|〈0|O(0; {k})|n〉|2 e−iEn(x0−y0) . (4.25)

On the other hand, one can evaluate this correlator in the perturbation theory. Summing up all
diagrams, one obtains:

〈0|O(x0; {k})O†(y0; {k})|0〉 =
∫

dP0
2πi

e−iP0(x0−y0)

×

{ L9
(
1 + δk1k2

+ δk1k3
+ δk2k3

+ 2δk1k2
δk2k3

)
8w(k1)w(k2)w(k3)(w(k1) + w(k2) + w(k3) − P0 − iε)

+
L3TL({k}, {k}; P0)(

8w(k1)w(k2)w(k3)(w(k1) + w(k2) + w(k3) − P0 − iε)
)2

}
. (4.26)
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FL = + ML

Figure 4.3: The amplitude of the K → 3π decay in the particle-dimer picture. The notations are the same as in
Figs. 4.1 and 4.2. The cross denotes the vertex, which correspond to the decay of a kaon into a particle-dimer
pair. This vertex comes with the coupling g0.

Using Eq. (4.22) and performing contour integration by means of the Cauchy theorem, one gets:

〈0|O(x0; {k})O†(y0; {k})|0〉 =
∑
n

e−iEn(x0−y0)L3
(
Ψ
(n)
L ({k})

)2(
8w(k1)w(k2)w(k3)(w(k1) + w(k2) + w(k3) − En)

)2 .

(4.27)

From this, we finally obtain:

|〈0|O(0; {k})|n〉| = L3/2

���Ψ(n)L ({k})
�����8w(k1)w(k2)w(k3)(w(k1) + w(k2) + w(k3) − En)

�� . (4.28)

In the above derivation, it was assumed that the free-particle singularities, emerging from the energy
denominators in Eq. (4.26), cancel in the full expression for the correlator. This statement, which is
evident on general grounds, was verified (in threshold kinematics) in Ref. [55]. We refer an interested
reader to that paper for more details.
Next, we calculate the decay matrix element. First, note that the kaon interaction term in the

particle-dimer Lagrangian (4.3) can be rewritten in a form J†K (x)K(x) + h.c., where

J†K = g0d†φ† . (4.29)

Consequently, on the one hand, assuming x0 > 0, one gets:

〈0|O(x0; {k})J†K (0)|0〉 =
∑
n

e−iEnx0 〈0|O(0; {k})|n〉〈n|J†K (0)|0〉 . (4.30)

On the other hand, using perturbation theory and summing up pertinent diagrams results in:

〈0|O(x0; {k})J†K (0)|0〉 =
∫

dP0
2πi

e−iP0x0 FL({k}; P0)

8w(k1)w(k2)w(k3)(w(k1) + w(k2) + w(k3) − P0 − iε)
,

(4.31)

where (see Fig. 4.3):

FL({k}; P0) =
g0
f0

3∑
α=1

τL(−kα; P0)

[
1 +

1
L3

Λ∑
q

ML(−kα,−q; P0)
1

2w(q)
τL(−q; P0)

]
. (4.32)
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Further, using Eq. (4.19) and performing Cauchy integration in Eq. (4.31), one gets:

L3/2
|〈n|J†K (0)|0〉| =

����g0
f0

1
L3

Λ∑
q
ψ
(n)
L (−q)

1
2w(q)

τL(−q; En)

���� . (4.33)

Now, carrying out the calculations in the infinite volume, we get:

〈π(k1)π(k2)π(k3); out|J
†

K (0)|0〉

=
g0
f0

3∑
α=1

τ(−kα; P0)

[
1 +

∫ Λ d3q
(2π)3

M(−kα,−q; P0)
1

2w(q)
τ(−q; P0)

]
, (4.34)

where the particle-dimer scattering amplitude M is the solution of Eq. (4.17).
Finally, comparing Eqs. (4.33) and (4.34), one gets:

〈π(k1)π(k2)π(k3); out|J
†

K (0)|0〉 = Φ3({k}) · L
3/2
〈n|J†K (0)|0〉 , (4.35)

where the leading-order three-particle LL factor is given by:

Φ3({k}) = ±

3∑
α=1

τ(−kα; P0)

[
1 +

∫ Λ d3q
(2π)3

M(−kα,−q; P0)
1

2w(q)
τ(−q; P0)

]
1
L3

Λ∑
q
ψ
(n)
L (−q)

1
2w(q)

τL(−q; En)

. (4.36)

The above equation implies that in the lattice measurement the box size L was adjusted so that
P0 = En = M is exactly fulfilled in the rest frame of the kaon. Note also that the numerator in
Eq. (4.36) is a complex quantity and the Eq. (4.35) predicts both the real and imaginary parts of
the infinite-volume matrix element, up to an overall sign. The phase of the infinite-volume decay
amplitude is determined by what can be termed the Watson theorem in the three-body case.

The equations (4.35) and (4.36) describe our final result. As seen, all quantities in Eq. (4.36) can be
expressed through the couplings C0 and D0 which, in their turn, can be extracted from the independent
measurement of the two- and three-particle spectra. The analogy with the two-body LL formula is
now complete.

4.4 Higher Orders

For a two-particle system, the LL formula contains a single factor to all orders. This is not the case for
three particles anymore. The situation is completely similar to the three-particle quantization condition.
In this section, we would like to briefly discuss the generalization of the approach, described above, in
the case when the higher-order (derivative) couplings are included in the effective Lagrangian.
We start our discussion from the two-body decays. Suppose, the particle with a mass M decays

in the CM frame into two identical particles with the mass m. In the infinite volume, the physical
back-to-back momenta are then fixed by energy conservation M = 2

√
m2
+ k2. On the lattice, let us

fix the momenta, say, along the third axis, assuming k1 = (0, 0, n) and k2 = (0, 0,−n) in the units of
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2π/L. Here, n is an integer number (the choice of the direction does not matter, due to the rotational
invariance). For a fixed n, one may adjust L so that the energy of the two-particle state equals to the
mass of the decaying particle. One then measures the finite-volume decay matrix element exactly at
this value of L, applies the LL formula and finally extracts the infinite-volume matrix element one is
looking for. What remains veiled in this discussion is that one could choose different values of n and
L, so that the total energy stays the same. In practice, this corresponds to considering the different
(ground and excited) states. The matrix elements, measured in these states, are different, and so are
the pertinent LL factors. The crucial point is that these two quantities are always correlated, so that
one always extracts the same physical infinite-volume amplitude out of the different measurements.
The mathematical reason for this correlation is that there exists only one independent two-body decay
coupling at all orders, and the finite-volume decay amplitudes in different states should be expressed
in terms of this single coupling.
It becomes now crystal clear, what changes in case of three-particle decays. The distribution of

energies between three decay products is not fixed by the energy conservation anymore. This results
in a non-trivial momentum dependence of the decay amplitude, which is conveniently described
by a tower of the effective couplings G0,G1,G2, . . . in the Lagrangian, multiplying the operators
containing more and more spatial derivatives. Truncating the expansion at a given order, one gets
N independent couplings, which should be fixed by the measurement of N linearly independent
finite-volume amplitudes. Consequently, in general, the LL factor is not a single function. It is
rather a N × N matrix, depending of the pion interaction parameters in the two-body (C0, . . .) and
three-body (D0, . . .) sectors. Using this matrix enables one to map the results of the measurements
of the matrix elements in different states onto the couplings G0,G1,G2, . . . (note that the states n
implicitly depend on the momenta k1, k2, k3, which enter the source/sink operator). At the next step,
using the infinite-volume scattering equations, it is possible to calculate pion rescattering in the final
state and express the physical decay matrix element in arbitrary kinematics. The above discussion also
shows that the extraction of the effective couplings represents a convenient strategy in the analysis of
the lattice data.

The second question, which emerges during the generalization of the approach to higher orders, is
predominantly of a technical nature. Namely, in the present formulation, the final-state rescattering
corrections in the three-particle states at higher orders are not given in an explicitly Lorentz-invariant
form. Albeit there is nothing wrong with this in principle, an explicitly Lorentz-invariant setting in
the three-particle sector would provide a far nicer and more compact framework at higher orders,
containing less effective couplings from the beginning (nothing will change at the leading order we are
working in). Note that such a technical modification has already been considered within an alternative
formulation of the three-body quantization condition. The modification, which boils down to the
replacement of the energy denominators by the explicitly Lorentz-invariant expressions that coincide
with the former on the energy shell, has been discussed in detail in Refs. [159, 174, 200, 201]. It
remains to be seen, how (and whether) the similar idea can be implemented within our approach.

4.5 Conclusions

i) In the present paper, using the non-relativistic effective Lagrangian approach, we have derived
the leading-order counterpart of the LL formula for three-particle decays. As in the two-particle
case, the LL factor depends on the parameters of the pion interactions only (both in the two- and
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three-particle sectors), which can be measured independently from the decay matrix element in
the same lattice setup.

ii) At higher orders, the LL factor becomes a N × N matrix, where N denotes the number of
independent couplings that describe the elementary act of the three-particle decay at this order.
These couplings provide a convenient parameterization of the decay amplitude for the extraction
on the lattice. The infinite-volume amplitudes (in an arbitrary continuum kinematics) can be
calculated a posteriori, solving the scattering equations in the infinite volume.

iii) Some technical issues remain to be solved in higher orders. For example, an explicitly Lorentz-
invariant framework would be more convenient (albeit not obligatory) to carry out the extraction,
because the invariance puts stringent constraints on the possible form of the amplitude, reducing
the number of the effective couplings needed at a given order. At the leading order, where the
pertinent operator in the Lagrangian does not contain derivatives at all, this issue is not relevant.
Other technical modifications concern the decays of particles with spin, partial wave mixing,
moving frames, etc. The work in this direction is already in progress, and the results will be
reported elsewhere.

iv) As noted already, the above-mentioned modifications do not affect our result, obtained at the
leading order in the non-relativistic EFT. Taking into account the present state of lattice studies
in the three-particle sector, one expects that in the beginning, all these higher-order effects will
be of mainly academic interest, and the leading-order formula will completely suffice in the
applications.
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CHAPTER 5

Relativistic-Invariant Formulation of the NREFT
Three-Particle Quantization Condition

The content of this chapter following this prologue, including Appendix A.2 is based on the publication

• F. Müller, J.-Y. Pang, A. Rusetsky and J.-J. Wu, Relativistic-invariant formulation of the NREFT
three-particle quantization condition, JHEP 02 (2022) 158, arXiv: 2110.09351 [hep-lat]

Deriving a three-particle quantization condition that can be used in order to analyze data from
different moving frames collectively remained an unsolved problem in the context of the NREFT
treatment. This necessarily raised questions about the Lorentz-covariance of the approach, which is
rather obscure in the three-body sector. The benefits of working in a manifestly Lorentz-invariant
framework are obvious. A similar issue was discussed in the last chapter, regarding the generalization
of the three-particle analogue of the Lellouche-Lüscher equation to higher orders.

This problem is addressed in this chapter. In a modified framework, the NREFT is reformulated in
an arbitrary frame, characterized by a timelike unit vector vµ. Introducing an external frame explicitly
breaks Lorentz-invariance. However amplitudes are rendered invariant, if vµ is expressed in terms of
the incoming- and outgoing momenta of the particles, such that these quantities transform in the same
way. The method presented here is inspired by formulating scattering for an arbitrary quantization
axis [202] where a covariant form of time-order perturbation theory is utilized [203]. In the context
of effective field theories, the quantization with respect to an arbitrary moving frame is used in the
description of heavy quarks and heavy baryons.
Within the modified framework a three-particle quantization condition is written down in a

manifestly relativistic-invariant form by using this generalization of the non-relativistic effective
field theory approach. The inclusion of the higher partial waves is explicitly addressed. A partial
diagonalization of the quantization condition into the various irreducible representations of the (little
groups of the) octahedral group has been carried out both in the center-of-mass frame and in moving
frames. Furthermore, producing synthetic data in a toy model, the relativistic invariance is explicitly
demonstrated for the three-body bound state spectrum.
The project started by revisiting the pure two-body sector in the infinite volume under the

modifications. Using dimensional regularization and the threshold expansion it was possible to show
that the two-body scattering amplitude is independent of the quantization axis vµ. Indeed upon a
change in the renormalization prescription, the modified framework is equivalent to the covariant
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NREFT approach. Based on these observations the author of this thesis derived a three-particle
quantization condition at the leading order, contributing a calculation for the two-body amplitude in a
finite volume. This leading order result was later used in order to explore the relativistic invariance of
the new approach numerically.

The author of this article subsequently was involved with the numerical studies of the three-particle
system that were independently performed by Jin-Yi Pang. A first check of the modified framework
was conducted by calculating the bound-state spectrum of the infinite-volume particle-dimer scattering
amplitude. In the unitary limit a→∞, the spectrum of non-relativistic particles consists out of an
infinite number of Efimov states [173, 176, 204, 205] that exhibit a universal scaling property. This
behavior should be reproduced also in the relativistic setup in the vicinity of the threshold, since
the particles momenta are small in this region such that non-relativistic kinematics can be assumed.
On the other hand, unlike in the non-relativistic case, the Efimov states are not expected to reach
arbitrarily deep energies. Indeed, close to threshold, an Efimov spectrum could be observed.
The author of this thesis further implemented a routine to determine the three-body finite-volume

energy spectra in different moving frames above and below threshold. The relativistic invariance of
the quantization condition was then tested by considering the bound state spectrum in a finite volume
in the following procedure: For a given value of the scattering length and cutoff, the leading order
three-body coupling was chosen such that there exists a deep bound state of an input binding energy.
Another shallow bound state close to threshold was observed. The cutoff here was chosen such that
no significant dependence on this parameter was observed. Namely, the cutoff was raised at least
until the resulting spectrum did not show any significant changes when further increasing the cutoff.
Since bound states correspond to one-particle states, their finite-volume energy levels should obey the
relativistic energy-momentum dispersion law up to exponentially suppressed corrections. This was
confirmed in various moving frames.

5.1 Introduction

Recent years have witnessed a rapid growth of interest to the three-body problem on the lattice. This
interest dates back to 2012, when it was shown, for the first time, that the three-body spectrum in a
finite volume is determined solely by the three-body S-matrix elements [55]. In the next years, three
different but conceptually equivalent settings emerged that allow to study the three-body problem in a
finite volume: the so-called Relativistic Field Theory (RFT) [57, 58], Non-Relativistic Effective Field
Theory (NREFT) [60, 61] and Finite Volume Unitarity (FVU) [59, 206] approaches. Besides this,
much work has been done, see, e.g., [56, 63, 64, 66, 101–104, 146, 158–163, 174, 200, 201, 207–226].
The finite-volume spectrum has been also studied in perturbation theory. In fact, these investigations
go back to the 1950’s and have been re-activated recently with the use of the modern technique of the
non-relativistic effective Lagrangians [4, 143, 144, 154, 155, 157, 210, 222, 227–229]. Furthermore,
in quite a few recent papers, the theoretical approaches mentioned above have been successfully used
to analyze data from lattice calculations [28, 29, 65, 66, 157, 186–190, 230–232]. Last but not least, a
three-body analog of the Lellouch-Lüscher formula for the finite-volume matrix elements [45] has
been recently derived in two different settings [1, 191]. These developments are extensively covered
in the latest reviews on the subject, to which the reader is referred for further details [30, 62].
In this paper, we put the issue of the relativistic invariance of the quantization condition under a

detailed scrutiny. The reason for this is obvious. Typical momenta of light particles (most notably,
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pions), which are studied on the lattice, are not small as compared to their masses. Albeit the four-
and more particle channels might be closed, or contribute very little, a purely kinematic effect of the
relativistic invariant treatment could be still sizable, especially, if data from the moving frames are
considered. For this reason, providing a manifestly relativistic invariant framework for three particles
is extremely important1.

On the other hand, in the derivation of the quantization condition in a field theory one faces a dilemma
(this problem concerns all formulations, albeit it is treated differently in different formulations). The
amplitudes that enter the quantization condition should be on mass shell – otherwise, these will not
be observables and there will be little use of such a quantization condition. Hence, the quantization
condition is inherently three-dimensional (i.e., it involves integrations/sums over three-momenta, with
the fourth component fixed on mass shell), and further effort is needed to rewrite it in the manifestly
invariant form.
It is natural to ask the question why the manifest invariance of the setting is important. The

(three-dimensional) Faddeev equation, which is obeyed by the infinite-volume amplitude, contains
what can be termed as a short-range three-body force (this quantity enters the finite-volume quantization
condition as well, and its name is different in different approaches). In principle, choosing this
three-body force properly, it should be always possible to achieve the invariance of the amplitude
(because the true amplitude is invariant and obeys the same equation). However, implementing this
program in practice represents a very difficult task. Namely, finding an explicit parameterization
of the three-body force that renders the solution of the Faddeev equations invariant most probably
will prove impossible. Furthermore, making the tree-level kernel of the Faddeev equation relativistic
invariant order by order in the effective field theory expansion will not suffice – without further ado –
to ensure the invariance of the amplitude at the same order, because the cutoff regularization, which is
used in Faddeev equation, breaks counting rules. All this results in a very cumbersome and obscure
treatment of the problem that one should better avoid. On the contrary, in case of a manifestly invariant
formulation, the three-body force can be readily parameterized in terms of Lorentz-invariant structures
only, see, e.g., a nice discussion in Ref. [174]. The couplings appearing in front of these structures are
mutually independent and the expansion of the short-range part can be organized in accordance with
the well-defined counting rules. Hence, the advantages of having a manifestly invariant formulation
are evident.

As mentioned above, additional effort is needed to rewrite the three-dimensional Faddeev equations
(infinite volume) and the quantization condition (finite volume) in the manifestly invariant form. As
we shall see later, the problem arises because the three-particle propagator, which originally appears in
these equations, is non-invariant. As a cure to the problem, within the RFT approach, it was proposed
to modify the three-body propagator, bringing it to a manifestly invariant form (the pertinent formulae
are given, e.g., in Ref. [65], see also Ref. [177]) 2. We shall briefly consider this prescription below, in
Sect. 5.3. It can be however shown that the modified propagator breaks unitarity at low energies (in
the infinite volume) and leads to the spurious energy levels below three-particle threshold (in a finite
volume), if the cutoff on the spectator momentum exceeds some critical value of order of the particle
mass itself. As a result, if one uses the modified propagator, one cannot choose an arbitrarily high
cutoff. This is a limitation of the RFT method.

1 This statement, obviously, refers to the three-particle system in the infinite volume. In a finite volume, the relativistic
invariance is anyway broken by the presence of a box.

2 Note that the same technique could be used, without any modification, in the NREFT approach as well.
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The aim of the present paper is to close the above gap. Our method is based on the “covariant”
version of the NREFT, considered in Refs. [166, 167, 195–197]. We modify that framework, choosing
the quantization axis along arbitrary timelike unit vector vµ and demonstrate an explicit relativistic
invariance of the obtained Faddeev equations with respect to the Lorentz boosts (the original framework
corresponded to the choice vµ = v

µ
0 = (1, 0)). The explicit relativistic invariance of the framework

emerges if the vector vµ is fixed in terms of the initial and final momenta in the three-particle system
(an obvious choice is to take vµ proportional to the total four-momentum). It is further shown that
there is no restriction on the cutoff within our approach, no breaking of unitarity and no spurious poles
for high values of the cutoff.

Last but not least, we carry out a full group-theoretical analysis of the quantization condition both
in the center-of-mass (CM) frame and in moving frames. Namely, the quantization condition is
diagonalized into the various irreducible representations (irreps) of the pertinent point groups. The
theoretical constructions are verified numerically, solving the quantization condition for a toy model.

To simplify the argument as much as possible, we consider the case of three identical bosons with
a mass m and assume that all Green functions with odd number of external legs identically vanish.
These simplifications are of purely technical nature and can be straightforwardly relaxed. The layout
of the paper is the following. In Sect. 5.2 we consider the two-body sector of the theory and the
introduction of auxiliary dimer fields. The three-body sector is considered in Sect. 5.3, where it is
shown that the obtained Faddeev equation for the particle-dimer scattering is explicitly relativistic
invariant. In this section, we also derive the relativistic invariant quantization condition and carry out
a partial diagonalization of this condition into different irreps. In Sect. 5.4 we investigate the synthetic
three-particle spectrum, obtained in a toy model with the use of the novel quantization condition.
Sect. 5.5 contains our conclusions.

5.2 Two-Body Sector

5.2.1 Threshold Expansion

The non-relativistic approach treats time and space directions differently that leads to an inherent
non-covariance. A trick which allows one to rewrite all expressions in an explicitly covariant manner
is to introduce an arbitrary unit timelike vector vµ and to consider the time evolution along the axis
defined by this vector. The choice of the “rest frame” vµ = v

µ
0 = (1, 0) corresponds to the “standard”

NREFT. According to the Lorentz invariance, all choices of vµ are physically equivalent and describe
the time evolution as seen by different moving observers. Note also that a similar trick (albeit in a
slightly different physical context) is also used in the Heavy Quark Effective Theory and the Heavy
Baryon Chiral Perturbation Theory.
Of course, indroducing the vector vµ alone does not solve the problem of the non-covariance – it

just allows to recast it fancier. The presence of an external vector vµ signals non-covariance. The
situation however changes, if it is possible to express vµ through the momenta that characterize a
given process. Then, if the latter are boosted, vµ is boosted as well, rendering the amplitudes explicitly
Lorentz-covariant. This provides exactly the solution we are looking for. In the discussion below, we
keep vµ arbitrary in the beginning, and fix it in terms of the physical momenta at a later stage.
We start with the construction of the non-relativistic Lagrangians. In the “rest frame,” these are

written down, e.g., in Refs. [166, 167] on the basis of the following considerations:
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+ + · · ·+

Figure 5.1: Two-body amplitude in the non-relativistic theory. The filled dots denote the full four-particle vertex
that can be read off from the interaction Lagrangian. This vertex is a low-energy polynomial.

• The nonrelativistic theories do not include the creation and annihilation of particles and
antiparticles explicitly (the latter can be barred from the theory altogether, if one considers the
processes with only particles in the initial/final states). The effects of creation and annihilation
are not neglected but consistently included in the effective couplings. Hence, the non-relativistic
Lagrangian is linear in the time derivative, and the propagators feature only particle or only
antiparticle pole.

• No approximation is made in the energy of the free particle w(k) =
√

m2
+ k2. This ensures

that the low-energy singularities of the Feynman diagrams are located exactly at the right place
at all orders of the non-relativistic expansion.

• The normalization of the non-relativistic field is chosen so that the normalization of the
one-particle states in the relativistic and non-relativistic theories is the same.

Below, the Lagrangians derived in Refs. [166, 167] are rewritten in an arbitrary frame defined by the
vector vµ. The kinetic part then takes the form

Lkin = φ
†2wv(i(v∂) − wv)φ . (5.1)

Here, φ(x) is the non-relativistic field, describing the particle and wv denotes the differential operator

wv =

√
m2
+ ∂2

− (v∂)2 . (5.2)

The free non-relativistic propagator is given by

i〈0|T[φ(x)φ†(y)]|0〉 =
∫

d4k

(2π)4
e−ik(x−y)D(k) ,

D(k) =
1

2wv(k)(wv(k) − vk − iε)
, (5.3)

where wv(k) =
√

m2
− k2

+ (vk)2. In case of vµ = v
µ
0 , the above formulae coincide with the ones

from Refs. [166, 167].
Next, let us consider the interactions in the two-particle sector. The full Lagrangian consists of an

infinite tower of terms with zero, two,. . . derivatives in the interaction part

L = Lkin + L0 + L2 + · · · . (5.4)
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The lowest-order term is given by

L0 = C0φ
†φ†φφ . (5.5)

The coupling C0 can be easily related to the two-body S-wave scattering lengths a0 through the
matching condition.

As usual, calculating the two-particle scattering amplitude for the process p1 + p2 → q1 + q2 with
this Lagrangian amounts to summing up all bubble diagrams, see Fig. 5.1. In the S-wave amplitude,
this gives:

T0 = (4C0) + (4C0)
2 1

2
I + (4C0)

3 1
4

I2
+ · · · =

1
(4C0)

−1
− 1

2 I
. (5.6)

Here, I denotes a loop integral

I =
∫

dDk

(2π)Di

1
2wv(k)(wv(k) − vk − iε)

1
2wv(P − k)(wv(P − k) − v(P − k) − iε)

, (5.7)

and P = p1 + p2 = q1 + q2 is the total CM momentum of a particle pair.
Before the evaluation of the above integral the following remarks are in order. First of all, the

integrals are ultraviolet-divergent and should be regularized. We use dimensional regularization
throughout this paper. This is however not sufficient for ensuring the preservation of counting rules in
the loops. To this end, the so-called threshold expansion (see, e.g., [172]) should be applied to the
loops. One namely first uses the identity

1
2wv(k)(wv(k) − vk − iε)

=
wv(k) + vk

2wv(k)(m
2
− k2
− iε)

=
1

m2
− k2
− iε
−

1
2wv(k)(wv(k) + vk − iε)

, (5.8)

and a similar identity for the second propagator. Substituting these expression in Eq. (5.7), one gets four
terms. Furthermore, the threshold expansion is applied in the vicinity of the particle poles, vk = wv(k)
and v(P− k) = wv(P− k), respectively. Moreover, it is assumed that the “three-momenta” with respect
to the quantization axis vµ, defined as kµ⊥ = kµ − vµvk and (P − k)µ⊥ = (P − k)µ − vµv(P − k) are
small as compared to the particle mass m.3 This means that the second term in the above expression

3 In the standard formulation of the threshold expansion (in the “rest frame”), it is assumed that the components of
the three-momentum are small, k2

� m2. More precisely, one introduces a generic small parameter ε and counts
k = O(ε), k0

= O(1). Now, assumming (formally) that v = O(ε), one immediately sees that the components of the
vector kµ⊥ = kµ − vµvk are of order ε as well. This counting holds, even if kµ is an integration momentum. In this
case, it is understood merely as a prescription that generates threshold expansion in the Feynman integrals. It should be
further stressed that ε is just a parameter that is used in bookkeeping of various contributions. In actual calculations,
this parameter may turn out not to be too small. A nice example is provided by the three-particle decays of kaons and
η-mesons, where the decay products move with the momenta that are not so small as compared to their masses. Despite
this fact, the approach works very well [166, 167]. Note also that the results of the present paper (a derivation of the
relativistically invariant quantization condition, see below) are exact (to all orders in ε) and do not use a particular
numerical value of ε . They simply rely on the fact that one can expand the integrand in powers of ε , carry out the
integration in dimensional regularization and resum the final result again.
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can be expanded as

−
1

2wv(k)(wv(k) + vk − iε)
= −

1
4w2

v(k)
−
wv(k) − vk

8w3
v(k)

+ · · ·

= −
1

4m2 +
k2
⊥

4m4 + · · · −
m − vk

8m3 + · · · , (5.9)

where the relation w2
v(k) = m2

− k2
⊥ has been used. A similar expansion can be written down for the

second propagator. It is now immediately seen that only one term contributes to I after the threshold
expansion since, in the other terms, the integrand becomes a low-energy polynomial that leads to a
vanishing integral in dimensional regularization. Hence, after performing the threshold expansion, we
get:

I = I(s) =
∫

dDk

(2π)Di

1
(m2
− k2
)(m2
− (P − k)2)

= const +
σ

16π2 ln
(
σ − 1
σ + 1

)
, (5.10)

where

s = P2 , σ =

(
1 −

4m2

s + iε

)1/2

. (5.11)

The renormalization prescription is chosen so that I(s) vanishes at the two-particle threshold s = 4m2.
The expression of the loop function, given in Eq. (5.10), is explicitly Lorentz-invariant (depends on

the variable s only). It also differs from the expression used in Refs. [166, 167, 195–197]. Namely,
the imaginary parts of these two expressions coincide above elastic threshold that ensures two-body
unitarity. Moreover, their difference is a low-energy polynomial with real coefficients and, hence, the
choice of the loop function in a form given by Eq. (5.10) is as legitimate as the choice made earlier in
Refs. [166, 167, 195–197] – these two correspond to a different renormalization prescription in the
effective theory. Below, we shall stick to the definition given in Eq. (5.10). It has the advantage that
the loop function is real and non-singular below threshold, whereas the original definition leads to a
spurious singularity at s = 0 and to an imaginary part below this value (we remind the reader that the
point s = 0 lays already outside the region of the applicability of the NREFT, so the question about
the consistency of the approach does not arise here).

Note also that the original derivation given in the above papers was much shorter – there, one first
integrated over the variable k0 and then manipulated the integrand, depending on the three-momenta
only. In case of arbitrary vµ, the dependence of the integrand on k0 is more complicated. In principle,
in the infinite volume, one could first perform a Lorentz boost that brings the vector vµ to v

µ
0 and then

repeat the steps outlined in these papers. The result will of course be the same. We however stick to
this derivation that can be applied in a finite volume without much ado.

In the following, it will be useful to rewrite the loop function as

I(s) = J(s) +
iσ

16π
. (5.12)

Here, as mentioned before, the function J(s) is a low-energy polynomial with real coefficients.
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5.2.2 Terms with Higher Derivatives

The terms with higher derivatives, present in the Lagrangian, are of two types. The terms of the first
type correspond to the effective-range expansion in a given partial wave (S-wave, in our case), and the
terms of a second type describe higher partial waves.

Let us start with the former. The Lagrangian

L2 = C2

{(
(wµφ)

†
(wµφ)†φφ − m2φ†φ†φφ

)
+ h.c.

}
(5.13)

encodes the term related to the S-wave effective range r0. Here,

wµ = vµwv + i∂µ⊥ , ∂
µ
⊥ = ∂

µ
− vµv∂ . (5.14)

Furthermore, the tree amplitude in a theory consists of the contributions from L0 , L2 , . . ., see
Eqs. (5.4), (5.2.1) and (5.13):

Ttree = T (0)tree + T (2)tree + · · · . (5.15)

As we already know, at lowest order,

T (0)tree = 4C0 . (5.16)

Using now Eq. (5.13), it is straightforward to derive that, on mass shell,

T (2)tree = 4C2
(
s − 4m2) , (5.17)

where s = (p̃1 + p̃2)
2
= (q̃1 + q̃2)

2, and p̃µi = vµwv(pi) + pµi⊥ (similarly for q̃µi and any other vector).
On the mass shell, where wv(pi) = vpi, wv(qi) = vqi and, consequently, p̃i = pi, q̃i = qi, it also
follows that s = (p1 + p2)

2
= (q1 + q2)

2.
It is now crystal clear, how things proceed at higher orders. The tree-level amplitude in the S-wave

represents a Taylor series in s − 4m2:

TS−wave
tree = 4C0 + 4C2(s − 4m2

) + 4C4(s − 4m2
)
2
+ · · · , (5.18)

All this is fine at tree level, on the mass shell. In the bubble sum, however, the intermediate particles are
off the mass shell. Consider, for example the process p1 + p2 → k1 + k2, where p2

i = m2 and k2
i , m2.

Then, sp = (p̃1+ p̃2)
2 is not equal to sk = (k̃1+ k̃2)

2, even if the relation p1+ p2 = k1+ k2 always holds.
Furthermore, the difference between sp and sk is proportional to wv(p1) + wv(p2) − wv(k1) − wv(k2).
Carrying out now the contour integration, one can straightforwardly ensure that such a term in the
numerator cancels exactly with the denominator. One is left with a low-energy polynomial, and the
integral over this polynomial vanishes in dimensional regularization. Therefore, replacing sk by
sp = s everywhere in the numerator is justified. One may finally conclude that one could consistently
pull out the numerator from the integral and evaluate it on shell. This results in the following S-wave
amplitude:

T0(s) =
1

(TS−wave
tree )

−1
− 1

2 I(s)
. (5.19)
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Just above threshold, s > 4m2, one may rewrite this expression as

T0(s) =
16π
√

s

16π
√

s((TS−wave
tree )

−1
− 1

2 J(s)) − ip(s)
, p(s) =

√
s
4
− m2 . (5.20)

Thus, just above threshold, the tree amplitude can be related to the S-wave scattering phase shift

16π
√

s((TS−wave
tree )

−1
−

1
2

J(s)) = p(s) cot δ0(s) . (5.21)

Expanding both sides in powers of (s − 4m2
), one may carry out the matching of the constants

C0,C2, . . . and the effective-range parameters in the S-wave a0, r0, . . .. The lowest-order relation
C0 = −8πma0 is the same as in Refs. [166, 167] – the modifications emerge, starting from the second
order only.

Considering higher partial waves is a bit more subtle because the pertinent amplitudes depend
on the directions of momenta as well. In the simple model considered, there is no P-wave. The
lowest-order contribution of the D-wave is captured by the Lagrangian

L4 = L
S
4 + L

D
4 ,

L
S
4 = 4C4

( (
(wµφ)

†
(wµφ)† − m2φ†φ†

) (
(wνφ)(w

νφ) − m2φφ
) )
,

L
D
4 =

5
2

D4

(
3(wµφ)

†
(wνφ)

†
(wµφ)(wνφ) − (wµφ)

†
(wµφ)†(wνφ)(w

νφ)

−
m2

2
(
(wµφ)

†
(wµφ)†φφ + h.c.

)
− m4φ†φ†φφ

)
. (5.22)

The contribution from LS
4 in the S-wave amplitude is already shown in Eq. (5.18). The contribution

of the second term contributes to the on-shell tree amplitude in the D-wave:

TD−wave
tree =

5
2

D4

(
6
(
(p̃1q̃1)(p̃2q̃2) + (p̃1q̃2)(p̃2q̃1)

)
− 4(p̃1 p̃2)(q̃1q̃2)

− 2m2 (
(p̃1 p̃2) + (q̃1q̃2)

)
− 4m4

)
+ · · ·

= 4D4p4
(s)(2 · 2 + 1)P2(cos θ) + · · · , (5.23)

where P`(cos θ) stand for the Legendre polynomials, and

cos θ =
t − u

s − 4m2 . (5.24)

Here s, t, u denote usual Mandelstam variables. Note that we have already used Lorentz invariance –
the above expression does not depend on the vector vµ.

Next, let us consider summing up all bubble diagrams in the D-wave amplitude. The second
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iteration, for example, can be written as

second iteration =

∫
dDk1

(2π)Di

dDk2

(2π)Di
(2π)DδD(p1 + p2 − k1 − k2)

× TD−wave
tree (p̃1, p̃2; k̃1, k̃2)D(k1)D(k2)T

D−wave
tree (k̃1, k̃2; q̃1, q̃2) . (5.25)

Here, D(k) denotes the free propagator, see Eq. (5.3).

Furthermore, since pi, qi are on the mass shell, p̃µi = pµi and q̃µi = qµi . On the contrary,
k̃µi = kµi + v

µ
(wv(ki) − vki) , kµi . The additional term cancels with the denominator in D(ki), leaving

us, after performing the contour integral, with an integral over the low-energy polynomial that vanishes
in the dimensional regularization. Hence, a replacement k̃µi → kµi in the numerator is justified. Next,
using Eq. (5.8), we may rewrite the above equation as:

second iteration =

∫
dDk1

(2π)Di

dDk2

(2π)Di
(2π)DδD(p1 + p2 − k1 − k2)

×
TD−wave

tree (p1, p2; k1, k2)T
D−wave
tree (k1, k2; q1, q2)

(m2
− k2

1 − iε)(m2
− k2

2 − iε)
. (5.26)

It is seen that this integral is written down in a completely Lorentz-invariant form. In order to evaluate
it, we perform the boost to the center-of-mass frame of two particles. In this system, the angular
integral can be readily done, yielding the Legendre polynomial. Pulling again the numerator out from
the integral, we finally get:

second iteration = (4D4p4
(s))2

1
2

I(s)(2 · 2 + 1)P2(cos θ) . (5.27)

Now, it is easy to write down the result for the D-wave amplitude, summing up the bubbles at all
orders:

T2(s) =
p4
(s)

(4D4)
−1
− 1

2 p4
(s)I(s)

. (5.28)

Furthermore, it is already clear that, if higher-order terms are taken into account, the D-wave amplitude
takes the form

T2(s) =
p4
(s)

(TD−wave
tree )

−1
− 1

2 p4
(s)I(s)

, TD−wave
tree = 4D4 + 4D6(s − 4m2

) + · · · . (5.29)

The matching condition in the D-wave is given by:

16π
√

s
(
(TD−wave

tree )
−1
−

1
2

p4
(s)J(s)

)
= p5
(s) cot δ2(s) . (5.30)
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We are now in a position to write down the expression of the complete amplitude:

T(s, t) =
∑̀
(2` + 1)P`(cos θ)T`(s) , T`(s) =

p2`
(s)

(T`tree)
−1
− 1

2 p2`
(s)I(s)

, (5.31)

where T`tree represents a low-energy polynomial in the variable (s − 4m2
). The matching condition

16π
√

s
(
(T`tree)

−1
−

1
2

p2`
(s)J(s)

)
= p2`+1

(s) cot δ`(s) (5.32)

allows one to perform the matching of the couplings in the low-energy effective Lagrangian to the
parameters of the effective-range expansion in all partial waves.
In conclusion, we would like to note that, albeit we have started with an explicitly non-covariant

Lagrangian, the physical amplitudes are relativistic invariant, i.e., do not depend on the vector vµ.
This statement is by no means trivial4. The relativistic invariance could be achieved, because a) the
interaction Lagrangian of four pions has a particularly simple form – it is a bunch of local vertices,
and b) the threshold expansion has been applied in the calculation of Feynman integrals. In the
three-particle sector, neither of these conditions hold. The result depends on vµ and the relativistic
invariance is achieved, when vµ is fixed in terms of the external momenta. Below, in Sect. 5.3, we
shall consider this issue in detail.

5.2.3 Introducing Dimers

As in Refs. [60, 61], we shall introduce dimer fields in the Lagrangian in order to trade four-particle
interactions in favor of particle-dimer vertices. This will lead to a significant simplification in the
description of the three-particle systems, since the bookkeeping of different diagrams is made much
easier in the particle-dimer picture. Note also that, according to our philosophy, introducing a dimer
does not necessarily mean that a physical dimer (two-particle bound state) should exist, albeit this may
still be the case. Thus, the particle-dimer formalism is not an approximation – rather, it is a different
choice of variables in the path integral, equivalent to the original formulation. Note also that, instead
of a single dimer field, we in fact have to introduce an infinite bunch of dimer fields with different
spin, corresponding to different angular momenta ` in the two-particle system.

Let us again start with the S-wave, and consider the Lagrangian

LS = φ†2wv(i(v∂) − wv)φ + σT†T

+

(
1
2

T†
(
f0φφ + f2

(
(wµφ)(w

µφ) − m2φφ
)
+ · · ·

)
+ h.c.

)
+ · · · . (5.33)

Here, T denotes a (scalar) dimer field which does not possess a kinetic term, and σ = ±1, depending
on the sign of the coupling C0. It is easily seen that, integrating out the dimer field in the path integral,
we arrive at the four-particle local coupling one has started with. It is then a simple algebraic exercise
to express the new couplings f0, f2, . . . through the C0,C2, . . . and σ.
The inclusion of the dimers with higher spins proceeds similarly – one has to merely reformulate

the construction of Ref. [61] in the present relativistic setting. To this end, we introduce the tensor

4 In Refs. [166, 167], the invariance was demonstrated for a particular choice vµ = v
µ
0 .
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dimer fields Tµ1, · · · ,µ`
, corresponding to the angular momentum `. These fields are symmetric under

the permutation of each pair of indices, traceless in each pair of indices and obey the constraints5:

vµiTµ1, · · · ,µ`
= 0 , i = 1, · · · , ` . (5.34)

These constraints leave the correct number of independent degrees of freedom, equal to 2` + 1.. The
Lagrangian in the two-particle sector can be written as:

L = φ†2wv(i(v∂) − wv)φ +

∞∑̀
=0
σ`T

†
µ1, · · · ,µ`

Tµ1, · · · ,µ` +
1
2

∞∑̀
=0

(
T†µ1, · · · ,µ`

Oµ1, · · · ,µ` + h.c.
)
, (5.35)

where σ` = ±1 and Oµ1, · · · ,µ` are the relativistic two-particle operators, corresponding to the orbital
momentum `. These operators can be easily constructed, based on the explicit expression of the
spherical functions. For example, the lowest-order operator in the D-wave is given by:

Oµν
= g0

(
3
2
(φ(w̄

µ
⊥w̄

ν
⊥φ) − (w̄

µ
⊥φ)(w̄

ν
⊥φ))

−
1
2
(gµν − vµvν)(φ(w̄λ⊥w̄⊥λφ) − (w̄

λ
⊥φ)(w̄⊥λφ))

)
, (5.36)

where w̄µ⊥ = w̄µ − vµ(vw̄) and w̄µ denotes the operator wµ which is boosted in the CM system of two
particles with respect to the vector vµ. Under this, we mean that the boosted total momentum of two
particles on mass shell is parallel to the vector vµ. Needless to say that, in a particular case vµ = v

µ
0 ,

we get the usual definition of the two-particle CM frame.
The transformation of wµ to w̄µ is given through the matrix

w̄µ = Λµνw
ν . (5.37)

It is easier to work in the momentum space. Let p̃1,2 be the on-mass shell momenta of individual
particles. Then, P = p̃1 + p̃2 is the total on-mass shell momentum of the pair. The boost makes the
vector Pµ parallel to vµ, that is6

P̄µ = ΛµνPν =
√

P2vµ , Λ
−1µ
ν v

ν
=

1√
P2

Pµ . (5.38)

This leads to

v2P̄ = v(vP̄) , |v|P̄0
= v0
|P̄| . (5.39)

5 It should be noted out that Tµ1, · · · ,µ`
does not correspond do the standard definition of a massive tensor field. For example,

a massive vector field obeys a constraint ∂µTµ = 0 instead of vµTµ = 0. However, on the mass shell, these two definitions
are related by the Lorentz boost that makes the four-momentum of the dimer parallel to vµ .

6 It is important to mention here that one can always find such a boost, because both particles are on mass shell, i.e.,
P2
≥ 4m2. This is different, e.g., in the RFT formalism [57, 58], where the square of the total momentum can have any

sign. However, as mentioned in Refs. [233–235], there exists an ambiguity in the definition of Lorentz-transformed
quantities for the off-shell amplitudes, and the possibility that was described above represents one of the options. In the
context of the RFT formalism, this option was explored in detail in Ref. [201].
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The above identities suffice to express the matrix elements of Λµν in terms of the vectors vµ, Pµ.
Substituting back into the Lagrangian, one should replace the components of Pµ by the operators wµ,
acting on the φ fields. The resulting explicit expression is rather voluminous and non-local. It is
always implicitly assumed that, in actual calculations, the pertinent expressions are expanded in the
inverse powers of the mass m, the result is integrated in dimensional regularization and summed up
back to all orders. Also, we do not display here the explicit expression of the matrix Λµν , because it
will never be needed.

In the momentum space, the lowest-order D-wave two-particle-dimer vertex is given by

Γ
µν
(p) = −4g0

(
3
2

p̄µ⊥ p̄ν⊥ −
1
2
(gµν − vµvν)(p̄⊥)

2
)
, (5.40)

where p̄µ = 1
2 (p̄

µ
1 − p̄µ2 ). Now, integrating out the dimer field Tµν, we arrive at

Γ
µν
(p)Γµν(q) = 16g2

0

(
9
4
(p̄⊥q̄⊥)

2
−

3
4
(p̄⊥)

2
(q̄⊥)

2
)
. (5.41)

Furthermore,

p̄µ⊥ = p̄µ − vµ(v p̄) = p̄µ − vµ(Λ−1v)νpν = p̄µ −
1

2
√

P2
vµ((p̃1 + p̃2)(p̃1 − p̃2)) = p̄µ . (5.42)

Using Lorentz invariance, one can transform back to the laboratory frame:

Γ
µν
(p)Γµν(q) = 24g2

0

(
3
2
(pq)2 −

1
2

p2q2
)
=

3
2
g2

0

(
3
2
(t − u)2 −

1
2
(s − 4m2

)
2
)

= 24g2
0 p4
(s)P2(cos θ) . (5.43)

This result is similar to Eq. (5.23) and gives a matching condition for the variable g0. Inclusions of
higher orders in the effective-range expansion, as well as higher partial waves is now straightforward
and will not be written down in detail. The only difference to the “conventional” case with vµ = v

µ
0 is

that all momenta are boosted to the CM frame with respect to vµ, i.e., the total momentum is parallel to
vµ after the boost. Further, instead of three-momenta in the boosted frame, the transverse components
p⊥ are considered, and the covariant expression vµvν − gµν replaces the three-dimensional Kronecker
delta in the boosted frame. Last but not least, we wish to reiterate that, unlike the original formulation
of the RFT formalism, the boost is always well defined in the NREFT framework. This happens
because we work with the on-shell particles.

Finally note that the two-body on-shell amplitude, given in Eq. (5.31) can be rewritten in the
following form

T(s, t) = 4π
∑̀
m

Y`m(p̃)
1

(T`tree(s))
−1
− 1

2 p2`
(s)I(s)

Y ∗`m(q̃) , (5.44)
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where

p̃ = p̄ − v
p̄v
v2 + v

p̄0

v2 , q̃ = q̄ − v
q̄v
v2 + v

q̄0

v2 , p̃q̃ = −p̄µ q̄µ , (5.45)

and

Y`m(k) = |k|
`Ỳ m(k̂) , k̂ =

k
|k|

. (5.46)

Note that, in case of vµ = v
µ
0 , the above definition of the boosted amplitude coincides with the boost

introduced in [233–235]. Within this prescription the boosted three-momenta are always well-defined,
even for s < 0.

5.3 Three-Body Sector

5.3.1 Particle-Dimer Lagrangian

The construction of the particle-dimer Lagrangian that describes short-range three-particle interactions,
proceeds analogously to the case of the two-particle Lagrangian, except three differences. First,
a dimer and φ are not identical particles and hence all (not only even) partial waves are allowed.
Second, in difference with φ, dimers have spin. And third, in the particle-dimer system one cannot use
equations of motion in order to reduce the number of the independent terms in the Lagrangian. The
dimers, in general, are unphysical “particles” and do not have a fixed mass.
Let us again start with a scalar dimer. The tree-level particle-dimer scattering amplitude depends

on the following kinematic variables:

s = (p + P)2 = (q +Q)2 , t = (p − q)2 = (P −Q)2 , σ2
p = P2 , σ2

q = Q2 , (5.47)

where p, q and P,Q are the momenta of incoming/outgoing particles and incoming/outgoing dimers,
respectively. Consistent counting rules can be imposed, for example, assuming:

∆ = s − 9m2
= O(ε2

) , t = O(ε2
) ,

∆p = σ2
p − 4m2

= O(ε2
) , ∆q = σ

2
q − 4m2

= O(ε2
) , (5.48)

where ε is a generic small parameter, and all transverse momenta count as p⊥ = O(ε).
Expanding the tree amplitude in Taylor series, we get:

T tree
d (s, t, σ

2
p, σ

2
q) = x0 + x1(s − 9m2

) + x2t + x3(σ
2
p + σ

2
q − 8m2

) +O(ε4
) . (5.49)

Here, we have additionally used the invariance under time reversal that implies the interchange of the
initial and final momenta. In the tree-level amplitude all coefficients x0, x1, . . . are real due to unitarity.

Furthermore, the couplings x0, x1, . . . , determined from the tree-level matching, are not all indepen-
dent. Indeed, the particle-dimer Lagrangian is used to calculate the three-particle amplitude, and the
matching is performed for the latter. The couplings (or the linear combinations thereof), which do not
contribute to the on-shell three-particle amplitude, are redundant and can be dropped. In order to
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obtain the three-particle scattering amplitude from the particle-dimer scattering amplitude, one has to
equip the external dimer legs with two-particle-dimer vertices and sum up over all permutations in the
initial as well as final state. At order ε2, it suffices to consider the vertex f = f0 +

1
2 f2(σ

2
− 4m2

), see
Eq. (5.33). Here, σ2 stands for the four-momentum square of a dimer. Since any of the initial or final
particles can be a spectator, one has to equip the quantities ∆p,q and t by indices i, j = 1, 2, 3 that label
spectator particles, and sum over these indices. Thus, one has to define:

∆
i
p = P2

i − 4m2 , ∆
i
q = Q2

i − 4m2 , ti j = (pi − qj)
2 . (5.50)

These obey the following kinematic identities on mass shell, see also Ref. [174]:

3∑
i=1
∆
i
p =

3∑
i=1
∆
i
q = ∆ ,

3∑
j=1

ti j = ∆ip − ∆ ,
3∑
i=1

ti j = ∆j
q − ∆ . (5.51)

The three-particle amplitude is given by

T tree
3 =

3∑
i, j=1

f (σi
p

2
)T tree

d (s, t
i j, σi

p

2
, σ j

q

2
) f (σ j

q

2
) +O(ε4

) . (5.52)

Taking into account the above identities, it is straightforward to ensure that only two independent
terms survive in the tree-level three-particle amplitude at this order:

T tree
3 = z0 + z1∆ +O(ε2

) . (5.53)

This agrees with the result of Ref. [174]. Moreover, as shown in [236], in the particle-dimer formalism
it is possible to trade the terms of the type ∆p + ∆q and ∆ for each other7. Thus our result confirms
the findings of Ref. [236] as well. To summarize, only one coupling out of x1, x2, x3 is independent
and, without the loss of generality, one may assume, say, x2 = x3 = 0 (Note also that in Refs. [60, 61]
we have written down an energy-independent next-to-leading order driving term containing p2

+ q2.
In the present context, it corresponds to the choice x1 = x2 = 0 and x3 , 0.). Finally, note that a
similar analysis can be carried out at higher orders. We do not consider here this rather straightforward
exercise which, at order ε4, again reproduces the result of Ref. [174].
Here one should however note that all the above analysis was limited to the case when a physical

dimer does not exist. In case this is not true, the following line of reasoning can be applied. Let us go
back to Eq. (5.49). In this case, σ2

p and σ2
q are not independent kinematic variables anymore, being

fixed to the dimer mass squared. On the contrary, the derivative couplings x1, x2 can be independently
matched to the S-wave effective range and the P-wave scattering length of the particle-dimer scattering.
Furthermore, note that all discussions up to now were restricted to the tree level. Owing to the

fact that the use of the cutoff regularization in the Faddeev equation leads to the breakdown of naive
counting rules that can be rectified only by adjusting the renormalization prescription, studying the
independence of x1, x2, x3 in general is a more subtle issue. In this case, we find it safe to include all
couplings – after all, using (possibly) an overcomplete set of operators in the Lagrangian is certainly

7 Ref. [236] considers the non-relativistic limit and the CM frame only. Hence, strictly speaking, this paper discusses the
elimination of the next-to-leading contact interaction, proportional to p2

+ q2, in favor of the linear function of the total
CM energy E .
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not a mistake.
A final remark here concerns the situation, where the low-lying three-particle resonances exist. In

this case, the assumption that the short-range part of the particle-dimer interaction is a low-energy
polynomial in s − 9m2 might prove to be too restrictive, since the pertinent expansion has a very
small radius of convergence, caused by a nearby resonance. A Laurent expansion of the short-range
interaction, featuring a simple pole ∼ (s − s0)

−1 with an unknown parameter s0, describes the system
in a more adequate fashion in this case.
Next, let us briefly dwell on the partial-wave expansion of the particle-dimer short-range tree

amplitude. As seen, the O(ε2
) amplitude contains only an S-wave contribution. At higher orders, one

can define the scattering angle θ, according to

t − 2m2
=
(s + m2

− σ2
p)(s + m2

− σ2
q)

4s
−
λ1/2
(s,m2, σ2

p)λ
1/2
(s,m2, σ2

q)

4s
cos θ . (5.54)

Then, the expansion of the tree particle-dimer amplitude in the series of Legendre polynomials can be
written down straightforwardly. Note that, at a given order in ε , this expansion always contains a finite
number of Legendre polynomials.
Having considered the scattering of a particle and a scalar dimer in a great detail, we now sketch

the construction in case of a dimer with arbitrary integer spin. To this end, it is convenient to use a
different basis for the dimer fields Tµ1, · · · ,µ`

, removing the redundant components. In order to achieve
this, consider first the Lorentz transformation8

Λ
µ
ν v

ν
= v

µ
0 , Tµ1, · · · ,µ`

= Λ
ν1
µ1
· · ·Λ

ν`
µ`

Tν1, · · · ,ν`
. (5.55)

The transformed field T is zero, if one of the indices µ1, . . . , µ` is equal to zero, see Eq. (5.34). The
space components can be directly related to the dimer field components T`m with m = −`, . . . , `:

Tµ1, · · · ,µ`
=

∑̀
m=−`

c`mµ1, · · · ,µ`
T`m . (5.56)

The coefficients c`mµ1, · · · ,µ`
are pure numbers and can be read off from the explicit expressions of the

spherical functions. They are zero, if one of the µi is equal to zero.
A generic matrix element can be also boosted to the rest frame:

〈p, (P, µ′1, · · · , µ
′

`′)|T
tree
d |q, (Q, µ1, · · · , µ`)〉 = (Λ

−1
)
ν′1
µ′1
· · · (Λ

−1
)
ν′
`′

µ′
`′
(Λ
−1
)
ν1
µ1
· · · (Λ

−1
)
ν`
µ`

×

`′∑
m′=−`′

∑̀
m=−`

c`
′m′

ν′1, · · · ,ν
′

`′
c`mν1, · · · ,ν`

〈p, (`′m′)|T tree
d |q, (`m)〉 , (5.57)

where pµ, qµ are the Lorentz-transformed momenta:

pµ = Λµν pν , qµ = Λµν qν , (5.58)

8 Note that this transformation is different from Λµν , considered in the previous section.
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and we anticipated that the total momentum of the system Kµ is proportional to vµ, so that the same
Lorentz boost brings the considered matrix element to the CM frame.

The matrix element in the right-hand side can be expanded in partial waves:

〈p, (`′m′)|T tree
d |q, (`m)〉 = 4π

∑
JM

∑
L′L

Y L′`′

JM (p,m
′
)TJL′L(∆,∆p,∆q)

[
Y L`
JM (q,m)

]∗
. (5.59)

Here,

Y L`
JM (k,m) = 〈L(M − m), `m|JM〉YL(M−m)(k) (5.60)

is the spherical function with spin `, which is given by an ordinary spherical function multiplied
with the pertinent Clebsch-Gordan coefficient. Note that, for a generic vµ, the above expansion has a
more complicated form, since an additional boost is needed to bring the matrix element to the CM
frame first9. Also, the above expressions show that in the partial-wave expansion of the three-particle
amplitude one encounters two orbital momenta: 1) the orbital momentum of pairs which in the
particle-dimer approach are represented by the dimer spin `, and 2) the orbital momentum between
a pair and a spectator, which corresponds to the quantum number L. The introduction of dimers
allows one to neatly separate the partial-wave expansion in these two orbital momenta. The quantity J
corresponds to a sum of these orbital momenta and is conserved.
Furthermore, the quantities TJL′L(∆,∆p,∆q) are the low-energy polynomials10, expanded up to a

given order in ε . Like in the case of a scalar dimer, some on-shell constraints will emerge between
various low-energy couplings at a given order in ε . We shall make no attempt here to write down these
constraints in a general form. When needed, this can be most easily done on the case-by-case basis.

A further remark is due at this place, concerning the expression of the most general Lorentz-invariant
short-range amplitude. Namely, in the construction of the invariant kinematic structures we have never
used the vector vµ which should be also included on general grounds. The excuse is provided by the
fact that, at the end, we shall relate vµ to the external momenta (in particular, we shall take it parallel
to the total momentum of the three-particle system). In this case, all invariants that can be constructed
with the use of vµ can be expressed in terms of the already considered ones. Anticipating this fact, we
did not write down such invariants at all.
This concludes the construction of a short-range tree-level particle-dimer scattering amplitude

with initial and final dimers having any spins `, `′. Construction of such an amplitude is equivalent
to the construction of the particle-dimer Lagrangian. We do not make an attempt to display such a
Lagrangian explicitly, because it is far more convenient to work directly with the momentum space
amplitudes.

5.3.2 Faddeev Equation for the Particle-Dimer Amplitude

Now, we are ready to write down the Faddeev equation, describing the particle-dimer scattering, in an
explicitly Lorentz-invariant form. In order to avoid cumbersome expressions that will only render the
basic idea obscure, we shall first restrict ourselves to the S-wave interactions in both orbital momenta.

9 The pertinent boost is given byU(Λ̃)|P`m〉 =
∑̀

m′=−`

D(`)
m′m
(W(Λ̃, P))|(Λ̃P)`m′〉, whereW(Λ̃, P) denotes the corresponding

Wigner rotation and Λ̃ is the transformation that brings the particle-dimer system to the rest frame.
10 As already mentioned, the low-lying three-body resonances may lead to the poles in the variable ∆.
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p

q

K − q

K − p

K − p K − q

p q

Figure 5.2: The kernel of the Faddeev equation. Double and single lines denote the dimers and particles,
respectively. The dark blob describes a dimer-two-particle vertex, and a shaded box corresponds to the
short-range part of the particle-dimer scattering.

As follows from the discussion above, including higher partial waves merely amounts to adding indices
to some of the quantities in the expressions. This procedure can be readily carried out.

Let us start from the scalar dimer propagator:

i〈0|T[T(x)T†(y)]|0〉 =
∫

d4P

(2π)4
e−iP(x−y)S(P2

) , (5.61)

where

S(P2
) =

(
−

1
σ

)
+

(
−

1
σ

)2
Σ(P2
) + · · · = −

1
σ + Σ(P2

)
, (5.62)

and

Σ(P2
) =

∫
dDk

(2π)Di

1
2 f 2
(P̄2
)

2wv(k)(wv(k) − vk − iε) 2wv(P − k)(wv(P − k) − v(P − k) + iε)
,

(5.63)

with

P̄2
= (wv(k) + wv(P − k))2 + P2

⊥ , f (u) = f0 +
1
2

f2(u − 4m2
) + · · · . (5.64)

Performing the threshold expansion and evaluating the expression in dimensional regularization, one
gets:

Σ =
1
2

f 2
(P2
)I(P2

) , (5.65)

where I(P2
) is given in Eq. (5.10).

Next, let us consider the tree-level particle-dimer scattering amplitude, which consists of two
diagrams shown in Fig. 5.2. These are diagrams describing one-particle exchange and the local
particle-dimer interaction. Furthermore, vertices in each diagram consist of an infinite number of
terms, corresponding to the derivative operators in the Lagrangian. Thus, the tree-level amplitude is

92



5.3 Three-Body Sector

given by11

T tree
=

f (sp) f (sq)

2wv(K − p − q)(wv(p) + wv(q) + wv(K − p − q) − vK − iε)
+ T tree

d . (5.66)

Here, p, q are the four-momenta of the external particles, and K is a total momentum of a particle-dimer
pair. Hence, the four momenta of dimers are P = K − p and Q = K −q. The short-range particle-dimer
amplitude is given by Eq. (5.49). Furthermore, the kinematic variables sp, sq are given by

sp = (wv(p) + wv(K − p − q))2 + (K − q)2⊥ ,

sq = (wv(q) + wv(K − p − q))2 + (K − p)2⊥ , (5.67)

and, for any vector aµ, we have aµ⊥ = aµ − vµ(va).
Furthermore, let us consider the difference:

sp − σ
2
q = sp − (K − q)2 = (wv(p) + wv(K − p − q))2 − (wv(p) − v(K − p − q))2

= (wv(p) + wv(K − p − q) + wv(q) − vK)(wv(p) + wv(K − p − q) − wv(q) + vK) . (5.68)

A similar relation holds for the sq −σ
2
p = sq − (K − p)2. Taking into account the fact that the function

f (u) is a low-energy polynomial in the variable u − 4m2, it is seen that the arguments sp, sq in these
functions can be replaced by σ2

q, σ
2
p. In the difference, the denominator cancels and hence, it only

modifies the regular part T tree
d . The fact that the modified short-range part now depends on the vector

vµ, does not lead to any problem. One could merely ignore such v-dependent terms since, at the end,
vµ will be chosen proportional to Kµ. Thus, one could write

T̃ tree
=

f (σ2
p) f (σ

2
q)

2wv(K − p − q)(wv(p) + wv(q) + wv(K − p − q) − vK − iε)
+ T̃ tree

d . (5.69)

Note that the separate terms in Eqs. (5.66) and (5.69) are manifestly invariant, if the vector vµ is also
boosted along with all other vectors. This is different from the standard formulation, where vµ is
chosen along v

µ
0 and does not transform under Lorentz transformations.

Graphically, the Faddeev equation for the particle-dimer scattering amplitude is depicted in Fig. 5.3.
Denoting this amplitude by T̃ , we have:

T̃(p, q) = T̃ tree
(p, q) +

∫ Λv d3k⊥
(2π)32wv(k)

T̃ tree
(p, k)S((K − k)2)T̃(k, q) , (5.70)

11 In the “rest system” vµ = v
µ
0 , this expression can be obtained with the use of the time-ordered perturbation theory. For

arbitrary vµ , one considers instead the evolution in direction of the vector vµ . The role of the Hamiltonian in this case is
played by H = vµP

µ , where Pµ denotes the operator of the full four-momentum. The four-momentum of a free particle
obeys the mass-shell condition vk = wv(k). It is then clear that, in the frame defined by the vector vµ , the one-particle
exchange diagram takes the form given in Eq. (5.66). An alternative derivation of the same expression starts from the
Bethe-Salpeter equation and performs the “equal-time projection” of this equation by integrating over the component of
the relative momentum, parallel to the vector vµ .
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= +

+ +

M

M M

Figure 5.3: Faddeev equation for the particle-dimer scattering amplitude.

where ∫ Λv d3k⊥
(2π)32wv(k)

F(k) =
∫

d4k

(2π)3
δ(k2
− m2
)θ(Λ2

+ k2
− (vk)2)F(k) . (5.71)

Defining now

T̃(p, q) = f (σ2
p)M(p, q) f (σ

2
q) ,

T̃ tree
(p, q) = f (σ2

p)Z(p, q) f (σ
2
q) , (5.72)

we may finally rewrite the Faddeev equation as

M(p, q) = Z(p, q) +
∫ Λv d3k⊥

(2π)32wv(k)
Z(p, k)τ((K − k)2)M(k, q) . (5.73)

Here, τ(z) is the physical two-body scattering matrix

τ(z) = f 2
(z)S(z) =

1
−σ f −2

(z) − 1
2 I(z)

= T0(z) , (5.74)

with T0(z) defined in Eq. (5.19).
The three-particle amplitude can be expressed through the particle-dimer amplitude

T3(p1, p2, p3; q1, q2, q3) = Tdisc
3 + Tconn

3 ,

Tdisc
3 =

3∑
i, j=1
(2π)3δ3

(pi⊥ − qj⊥)2wv(pi)τ((K − pi)
2
) ,

Tconn
3 =

3∑
i, j=1

τ((K − pi)
2
)M(pi, qj)τ((K − qj)

2
) . (5.75)

Symbolically, this relation is depicted in Fig. 5.4.
Up to this point, all expressions are manifestly Lorentz invariant, if the vector vµ is also Lorentz-
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T3 += M

Figure 5.4: Expressing three-particle amplitude in terms of a particle-dimer amplitude. Summing up over all
possible choices of spectator particles is implicit.

boosted along with other vectors. This means that, for instance, the particle-dimer amplitudeM,
which implicitly depends on the choice of the quantization axis vµ, is invariant under arbitrary Lorentz
boosts

M(Λp;Λq;Λv) =M(p; q; v) . (5.76)

In other words, after fixing vµ in terms of the external momenta pi, qj (the most natural choice is,
as already mentioned above, to choose vµ along the total four-momentum Kµ of the three-particle
system), the particle-dimer amplitude becomes manifestly Lorentz-invariant. Thus, the goal stated
in the beginning has been achieved. We would like to stress here that this happens because the
two-particle scattering amplitude after using the threshold expansion depends only on the pertinent
Mandelstam variable s for a given subsystem and does not depend on vµ. If it were not the case, one
would be forced to fix the direction of the quantization axis for each subsystem separately, as well
as for the whole system, and this cannot be done simultaneously. It is also clear that this approach
will face difficulties in the study of the four-particle system, which contains different three-particle
subsystems.

In conclusion, note that if the dimers with higher spin are taken into account, both the dimer
propagator S in Eq. (5.61) and the tree-level amplitude T tree become matrices in the space of Lorentz
indices, e.g., S → Sµ1...µ`′,ν1...ν`

� Sn`′n` and T tree
→ T tree

µ1...µ`′,ν1...ν`
� T tree

n`′n`
. All further steps can

be performed in a direct analogy to the case of the scalar dimer. Namely, replacing sp by σ2
q and sq by

σ2
p is straightforward. This leads to a system of equations (cf. with Eq. (5.70)):

T̃n`′n`
(p, q) = T̃ tree

n`′n`
(p, q)

+
∑

n`′′n`′′′

∫ Λv d3k⊥
(2π)32wv(k)

T̃ tree
n`′n`′′

(p, k)Sn`′′n`′′′ ((K − k)2)T̃n`′′′n`
(k, q) . (5.77)

Note that the matrix S is diagonal in `′, ` in the infinite, but not in a finite volume. Furthermore,

∑
n`

(· · · ) =

`max∑̀
=0

∑
µ1, · · · ,µ`

(· · · ) . (5.78)
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Next, one may define:

T̃n`′n`
(p, q) = f`′(σ

2
p)Mn`′n`

(p, q) f`(σ
2
q) ,

T̃ tree
n`′n`
(p, q) = f`′(σ

2
p)Zn`′n`

(p, q) f`(σ
2
q) ,

τn`′n`
((K − k)2) = f`′(σ

2
k )Sn`′n` ((K − k)2) f`(σ

2
k ) ,

σ2
k = (K − k)2 − 4m2 . (5.79)

In the infinite volume, the matrix τ is also diagonal and contains the on-shell two-body partial-wave
amplitudes.

The three-body amplitude is given by (cf. with Eq. (5.75)

T3(p1, p2, p3; q1, q2, q3) = Tdisc
3 + Tconn

3 ,

Tdisc
3 =

3∑
i, j=1
(2π)3δ3

(pi⊥ − qj⊥)2wv(pi)

×
∑
n`′n`

Yn`′ (p̄
(i)
)(τn`′n`

((K − pi)
2
)Yn` (q̄

(j)
) ,

Tconn
3 =

3∑
i, j=1

∑
n`′′′n`′′n`′n`

Yn`′′′ (p̄
(i)
)τn`′′′n`′′

((K − pi)
2
)Mn`′′n`′

(pi, qj)

× τn`′n`
((K − qj)

2
)Yn` (q̄

(j)
) . (5.80)

The vectors p̄(i), q̄(j) are defined through the Lorentz boost similar to one in Eq. (5.38). Namely, say, pµ3
is a four-momentum of a spectator in the final state. Define now the boost Λµν , which brings the total
on-shell momentum of a pair Pµ12 = p̃µ1 + p̃µ2 parallel to the vector vµ. Then, p̄(3)µ = 1

2 Λ
µ
ν (p̃

ν
1 − p̃ν2). It

can be also shown that p̄(i)µ = p̄(i)µ⊥ = p̄(i)µ − vµ(v p̄(i)). The quantity q̄(j) is defined similarly. Finally,

Yn` (p̄
(i)
) � Yµ1, · · · ,µ`

(p̄(i)) =
(

s
4
− m2

)−`/2
Yµ1, · · · ,µ`

(p̄(i)) , (5.81)

where the tensor Yµ1, · · · ,µ`
describes a particle with a spin `:

Y = 1 ,

Yµ = pµ ,

Yµν =
3
2

pµpν −
1
2
(gµν − vµvν)p

2 ,

· · · (5.82)

and s = (p̃1 + p̃2)
2.
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5.3.3 Quantization Condition

In order to avoid the clutter of indices, we shall write down the quantization condition in case of the
S-wave interactions only. We start by rewriting the Faddeev equation for the particle-dimer amplitude
in a finite cubic box of size L with periodic boundary conditions, where it takes the form:12

ML(p, q) = Z(p, q) +
1
L3

∑
k

1
2w(k)

θ(Λ2
+ m2

− (vk)2)Z(p, k)τL(K − k)ML(k, q) . (5.83)

Here, kµ = (w(k), k) and w(k) =
√

m2
+ k2, and the summation is carried out over the discrete values

k = 2π
L n, n ∈ Z3. Furthermore,

τL(P) =
16π
√

s

p(s) cot δ0(s) −
2
√
πLγ

Zd
00(1; q2

0)

, (5.84)

where s = P2, γ =

(
1 −

P2

P2
0

)−1/2

, d =
PL
2π

, q2
0 =

L2

4π2

( s
4
− m2

)
, and

Zd
00(1; q2

0) =
1
√

4π

∑
r∈Pd

1
r2
− q2

0
,

Pd = {r = R3
|r‖ = γ

−1
(
n‖ −

1
2
|d|

)
, r⊥ = n⊥ , n ∈ Z3

} . (5.85)

A crucial point in the above expressions is that the two-body amplitude τL does not depend on vµ even
in a finite volume. In order to see this, note first that the expression p(s) cot δ0(s) is the same in the
infinite and in finite volume and is vµ-independent. Furthermore, in the infinite volume, the loop is
given by Eq. (5.10) and is explicitly Lorenz-invariant. In a finite volume, the three-momentum integral
in this expression has to be replaced by a sum. The discretization is performed in the rest frame of a
box. The result is given by the Lüscher zeta-function, which explicitly depends on the components of
the vector Pµ (i.e., is not explicitly Lorentz-invariant) but not on vµ, which does not appear at any
stage. A detailed derivation of Eq. (5.84) along these lines can be found in appendix A.2.

Next, the above expression is written down in the assumption that s > 0. In case of s < 0, the τL(P)
is replaced by τ(P2

) – as one knows, these two quantities below the two-particle threshold differ only
by the exponentially suppressed terms. The latter is a perfectly well-defined Lorentz-invariant quantity
and can be written down in terms of invariant kinematic variables, without performing any boost.

The quantization condition has the form det A = 0, where

Apq = L32w(p)δpqτ
−1
L (K − p) − Z(p, q) , (5.86)

12 Note that w(k) appears in the denominator in Eq. (5.83). This happens because we carry out the discretization of the
three-momenta in the rest frame of the box. To this end, first the Lorentz-invariant integration measure (in the infinite

volume)
d3k⊥

2wv(k)
is rewritten as

d3k
2w(k)

and the discretization is performed in the latter expression.
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and the momenta p, q obey the condition Λ2
+m2

− (vp)2 ≥ 0, Λ2
+m2

− (vq)2 ≥ 0. The zeros of the
determinant determine the finite-volume spectrum in an arbitrary reference frame.

As it is well known, the symmetries of a cubic box allow one to partially diagonalize the quantization
condition. Below, we mainly follow the procedure described in [146] and generalize it to the case
of the moving frame. In the CM frame, the rotational symmetry is reduced to the octahedral group
Oh, containing 48 elements. In case of the moving frame, K , 0, the symmetry is further reduced to

different subgroups (little groups) of Oh, each element g of which leaves the vector d =
LK
2π

invariant:
gd = d. These symmetry groups and their irreps are described in Refs. [36, 148], where the matrices
of the different irreps are explicitly given.

In order to carry out the diagonalization of the quantization condition into various irreps, one has

first to introduce the notion of shells in the space of the discretized momenta p =
2π
L

n, n ∈ Z3. In
the CM frame, a shell is defined as a set of momenta that can be transformed into each other by the
elements of the group Oh [146]. All the elements of a given shell have the same length n2 but not
all vectors with the same length belong to the same shell. In case of a moving frame, the shells are
defined by two invariants n2, nd instead of one.

Following Ref. [146], we may project the driving term in the quantization condition onto various
irreps Γ,Γ′:

Z
ΓΓ′
λσ,ρδ(r, s) =

∑
g,g′∈G

(TΓ
σλ(g))

∗
Z(gp0(r), g

′q0(s))T
Γ′
δρ(g

′
)

=
G
sΓ
δΓΓ′δσδ

∑
g∈G

(TΓ
ρλ(g))

∗
Z(gp0(r), q0(s))

�
G
sΓ
δΓΓ′δσδZ

Γ
λρ(r, s) . (5.87)

Here, r, s label various shells, p0(r) and q0(s) denote the pertinent reference momenta, and TΓ
σλ(g)

are the matrices of a given irrep of a group G (which coincides with the group Oh or one of its little
groups). Furthermore, G is the number of the elements in this group, and sΓ is the dimension of the
irrep Γ.

The quantization condition can be diagonalized into various irreps. It has the form det AΓ
= 0,

where

AΓ
ρσ(r, s) = δrs2wrδρστL(s)

−1
−

√
ν(r)ν(s)

GL3 Z
Γ
σρ(r, s) , (5.88)

where ν(s) denotes the multiplicity of the shell s, i.e., the number of the independent vectors in it,
and wr = w(p) with vector p belonging to the shell r . We have further used the fact that the quantity
τL(K − k) is invariant under the group G and, hence, its projection onto an irrep Γ produces Kronecker
symbols only.
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5.3.4 Comparison with the RFT Approach

Below, we shall briefly compare the relativistic quantization condition, written down in the present
paper, to the one known in the literature, see, for instance, Ref. [174]. Following the original derivation
given in Refs. [57, 58], one ends up with an equation that closely resembles Eq. (5.83) with the
quantization axis chosen at vµ = v

µ
0 . It is easy to see that a sole manifestly non-invariant ingredient of

this equation is the one-particle exchange part contained inZ (in Refs. [57, 58, 174], this corresponds
to the three-particle propagator G). In order to render the formalism Lorentz-invariant, the following
approach was used. The three-particle propagator was replaced by

1
2w(l)

1
w(p) + w(q) + w(l) − K0

→
1

2w(l)
1

w(p) + w(q) + w(l) − K0 −
1

2w(l)
1

w(p) + w(q) − w(l) − K0

=
1

m2
− b2 , (5.89)

where bµ = pµ + qµ −Kµ and l = K− p− q. It can be easily seen that the added piece is a low-energy
polynomial and it can be removed by adjusting the renormalization prescription in the short-range
three-particle interaction.
This approach is, however, problematic if applied to any formalism in which the cutoff on loop

momenta can be raised arbitrarily high. The problem arises because the additional term did not emerge
from a Feynman integral and thus does not have correct analytic properties. In particular, it can be
seen that the contribution, coming from the integration region where both momenta p and q are large
(of order of m), violates the unitarity in the infinite volume even in the low-energy region. This can be
easily verified looking for the zeros of the expression w(p) + w(q) − w(l) − K0 for K0

− 3m = E � m.
In other words, the decoupling of the low- and high-momentum regimes, which is intimately related to
the analytic properties of the amplitudes does not occur. In a finite volume, by the same token, it can
be straightforwardly verified that the above modification of the three-particle propagator will result in
a bunch of spurious subthreshold energy levels which have nothing to do with the real spectrum of a
system in question.

All the above effects emerge, if the integration momentum exceeds some critical value, of order of
the particle mass itself. In all analysis carried out within the RFT approach so far, the cutoff is kept
lower than this value and, hence, the above-mentioned deficiency did not surface. However, this also
means that the cutoff cannot be made arbitrary large in a framework with the modified three-particle
propagator. On physical grounds, one may consider such a purely kinematic restriction on the cutoff
rather counter-intuitive, since a cutoff is usually associated with the massive degrees of freedom that
one intends to shield away. Moreover, one might be concerned of the fact that the maximal allowed
value of the cutoff turns out to be of order of the particle mass. It is however likely that, by adapting
the methodology introduced here, the cutoff in the RFT approach could be raised arbitrarily high
while maintaining relativistic invariance, and in particular the Lorentz invariance of the three-particle
amplitude Kdf,3.

In addition, we would like to mention that in the RFT approach13, imposing a low cutoff can be also
13 It should be noted that the similar arguments apply, with minor modifications, to the FVU approach as well.
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justified by the necessity of staying above the cross-channel cut in the two-body amplitude, as well
as avoiding the pseudothreshold singularity in the Källen function (in the equal-mass case which is
considered here, both, this singularity, as well as the beginning of the left-hand cut, are located at s = 0,
where s is the pertinent Mandelstam variable in the two-body system). Analogous singularities could
lead to Kdf,3 becoming complex-valued if the definition were modified by allowing for a higher cutoff
function. In short, both the additional pole in the relativistic analog of the three-particle propagator G
and the cross-channel cut must be carefully considered in order to modify the cutoff function in the
RFT method. This might be a formidable task in practice which the lower cutoff helps to avoid. The
NREFT approach, in its turn, allows one to circumvent all these problems in a systematic fashion,
since the two-body amplitudes constructed here possess the right-hand cut only, the three-body force,
encoded in the effective couplings, is real by construction for all values of the cutoff function, and
the three-particle propagator has only one pole. A simple physical explanation for this is that the
antiparticle degrees of freedom, which are responsible for the additional (unwanted) singularities,
are hidden in the couplings of the non-relativistic Lagrangian, both in the two- and three-particle
sector. As one knows, this is justified only for momenta which are much smaller than the particle
mass – for momenta of order of the mass both the two-body amplitude and the three-body potential
are modified as compared to the relativistic theory. However, according to the decoupling theorem, the
modification of the high-energy behavior of the amplitudes can be fully compensated at low energies
by adjusting the renormalization prescription and thus does not lead to observable consequences.
Loosely speaking, extending NREFT to describe amplitudes for momenta of order of the particle
mass and beyond can be considered as a kind of a regularization, which consistently removes all
singularities that emerge due to the presence of the antiparticles, and the cutoff is present solely to
tame the ultraviolet behavior. Since all low-energy singularities are associated with particles only, the
modified NREFT correctly reproduces the singularity structure of the amplitudes, and unitarity in the
two- and three-particle sectors is obeyed at low energies. Furthermore, a finite-volume counterpart of
this statement is that the quantization condition, based on the improved NREFT approach, neglects only
exponentially suppressed volume effects at mL � 1, but makes no other approximations associated
with the non-relativistic system. The choice to drop exponentially suppressed volume effects is
common to all methods.

Last but not least, we would like to stress once more that the discussion of the distant singularities
of different diagrams, which is given above, does not address the main question – namely, at which
energies these singularities become physically important and cannot be brushed under the carpet
anymore. This problem is common for all approaches since, as already mentioned, in order to derive
the quantization condition, one is forced to restrict amplitudes on the mass shell and suppress explicit
antiparticle degrees of freedom. At this moment, we do not have an answer to this very difficult
question, which will also depend on a particular physical system considered. The perturbative studies
might provide a clue on this issue. This, however forms a separate subject of investigations.

5.4 Exploring the Relativistic Invariant Quantization Condition in a Toy
Model

We have used the relativistic invariant quantization condition, derived within the NREFT approach in
the previous section, for producing synthetic data within a toy model. The aim of this investigation is
to verify that the spectrum, obtained in this manner, indeed obeys the requirements, imposed by the
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Table 5.1: Binding energies of the five deepest states for Λ = 104 and H0(Λ) = 0 in the unitary limit.

n Bn

√
Bn/Bn+1

1 3.32333 × 10−1 21.93
2 6.90973 × 10−4 22.70
3 1.34132 × 10−6 22.69
4 2.60432 × 10−9 22.69
5 5.05640 × 10−12

Lorentz invariance. In this section, we shall always used the choice for the vector vµ parallel to the
total four-momentum of the three-particle system Kµ.

In the toy model, we consider the lowest-order S-wave interactions only, both in the two-particle as
well as in the particle-dimer channels. This means that we have only two LECs: the non-derivative
4-particle coupling that is parameterized by the two-body scattering length a and the dimensionless
non-derivative particle-dimer coupling H0 = H0(Λ). The driving term in the Faddeev equation is
written down as

Z(p, q) =
1

2wv(K − p − q)(wv(p) + wv(q) + wv(K − p − q) − vK − iε)
+

H0(Λ)

Λ
2 , (5.90)

and the two-body propagator is given by

τ(s) =
16π
√

s

− 1
a − 8π

√
sJ(s) − ip(s)

. (5.91)

In the non-relativistic limit, the first equation reduces to its non-relativistic counterpart displayed in
Refs. [60, 61]. Furthermore, the finite-volume modification of the second equation, which enters
the quantization condition, is defined according to Eq. (5.84). In addition to a,H0, there are two
more parameters in the model: the mass of the particle m and the cutoff Λ. In total, this yields
three dimensionless parameters that describe the model completely – we measure all dimensionful
parameters in the units of m and assume m = 1 in the following.
As the first quick check of our approach, we have calculated the spectrum of the so-called Efimov

states in the infinite volume. An (infinite) tower of such shallow states, condensing towards the
three-particle threshold, emerges in the non-relativistic theory in the unitary limit a→∞. Since in the
vicinity of the threshold the particles should carry very low three-momenta, this non-relativistic result
should be readily reproduced in the relativistic framework. Moreover, it is known that the binding
energies of the neighboring Efimov states, Bn = 3m − En, fulfill the relation:√

Bn/Bn+1 = exp
(
π/s0

)
≈ 22.69 , s0 = 1.00624 . (5.92)

This scaling has to be reproduced by the relativistic approach, providing a check for the latter.
In the relativistic theory, we have fixed the remaining parameters in the unitary limit as Λ = 104 and

H0(Λ) = 0. The results, listed in Table 5.1, are completely in line with our expectations and confirm
that our approach possesses a correct non-relativistic limit in the infinite volume.
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Next, the calculations in a finite volume are carried out where we go beyond the unitary limit. The
scattering length and the cutoff in the toy model are chosen as a = 5 and Λ = 3, respectively (in the
units of particle mass)14. For this value of the scattering length, a shallow dimer with the energy
Ed = 1.94725 emerges in the infinite volume and the particle-dimer threshold lies at E1d = 2.94725,
close to the three-particle threshold. Furthermore, requiring the existence of a three-particle bound
state at E1 = 2.6 in the infinite volume fixes the value of the coupling H0 = −0.1182689. Another
shallow three-particle bound state is found in the infinite volume at E2 = 2.94671, very close to the
particle-dimer-threshold. All energies are given in the rest frame.
Figure 5.5 shows the volume dependence of the energy spectrum in the rest frame and moving

frames, d = (0, 0, 1), d = (0, 1, 1) and d = (1, 1, 1), obtained for the above choice of the parameters,
above and below the three-particle threshold. The energy spectra are given in terms of Md

= Md
(L) =√

K2
0 − (2π/L)

2d2, where K0 = K0(L) are the energies in a finite volume that fulfill the quantization
condition. The lowest two levels in these figures, shown in blue and red, correspond to the deep and
shallow bound states, respectively. As seen from these figures, the shallow bound state converges to
its infinite-volume limit very slowly, as expected. Namely, for smaller L, the finite-volume energy
is larger than the exact infinite-volume value. With the increase of L it crosses the exact result and
then approaches it from below very slowly, as L → ∞. A similar behavior was observed in the
non-relativistic case, see Ref. [146], so the present result does not come as a surprise. As we shall see,
such an irregular behavior complicates the numerical study of the large-L limit of the shallow binding
energy considerably, especially in the moving frames where the crossing emerges at larger values of L.
In order to check the relativistic invariance, we concentrate on the three-particle bound states.

Indeed, it suffices to show that the quantity Md
i − Ei, i = 1, 2, where the quantity Md was defined

above, decreases exponentially for large values of L. In this case, it can be seen that the one-particle
states, obtained by solving the quantization condition, obey the relativistic dispersion law up to the
exponentially suppressed corrections. This is exactly the result one is looking for.

The result of the calculations is shown in Fig. 5.6. In case of the deep state, everything works fine.
The logarithmic plot for the difference is almost a perfect straight line that is compatible with an
exponential decrease ∼ exp(−κdeepL) and κdeep ' 0.7 for all frames15. The situation with the shallow
state is different. As mentioned above, the finite- and infinite-volume energies coincide at some L.
This is manifested by the dips in the curves presented on the right panel. After the dip, it takes very
large values of L for the curves to stabilize and show a linear behavior. In case of the rest frame, the
curve becomes almost linear after L ' 12 − 15, see Fig. 5.7 (here, large values of L are shown). This
behavior is consistent with the exponential decrease ∼ exp(−κshallowL) and κshallow ' 0.11, 0.03 for
the frames d = (0, 0, 0), (0, 0, 1). Note that the arguments of the exponent can be different in different
frames, because the Lorentz symmetry is broken in a finite volume. Furthermore, the dips in the
d = (0, 1, 1), (1, 1, 1) frames occur at much larger values of L. Since carrying out calculations on such
large grids is very time-consuming, we display here the results for two reference frames only. Note

14 It can be seen that this cutoff is high enough. At a lower cutoff, one may observe some small numerical irregularities
(cusps) in the energy spectrum which represent cutoff artifacts. These irregularities are completely absent in the figures
presented in this section. Also, we have checked that the low-energy spectrum is independent of Λ to a very good
accuracy, if H0(Λ) is re-adjusted in the infinite volume to keep, e.g., the particle-dimer scattering length or the energy of
the (shallow) bound state constant.

15 The irregularities in the case d = (1, 1, 1) for large L are caused by the fact that the cutoff is not high enough. However,
since increasing the cutoff becomes quite challenging, we have refrained from doing this. The exponential falloff of the
corrections is anyway clearly observed for moderate values of L.
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also that here we did not make an attempt to predict the values of κ in different frames. Albeit such a
theoretical prediction is possible in principle, it is not relevant in the context of the problem considered
in the present paper.
To summarize, in this section it was explicitly checked that the three-particle bound states,

obtained from the solution of the quantization condition, obey the relativistic dispersion law up
to the exponentially suppressed corrections. Recall now that the analysis of the lattice data in the
three-particle sector proceeds in two steps. At the first step, the quantities having a short-range nature
(like the coupling H0) are extracted from data. These quantities, like the bound-state energies, can
receive only exponentially suppressed corrections and, hence, up to such corrections, one may use the
same values of these quantities in the fit of data coming from different moving frames. This is exactly
the manifestation of the Lorentz-invariance in a finite box. At the end, as usual, one uses an explicitly
Lorentz-invariant infinite-volume formalism to express physical observables through the couplings
H0, . . ., extracted from data.

5.5 Conclusions

i) In this paper, we have proposed a manifestly relativistically invariant formulation of the three-
particle quantization condition within the NREFT approach. It is shown that the higher partial
waves can be consistently included in the formulation. The suggested framework can be readily
used for the global analysis of lattice spectra, measured in different moving frames. This was
already done in case of RFT and FVU approaches.

ii) The method, described in this paper, is very well known for decades in the literature and is
based on the formulation of the three-particle problem with an arbitrary chosen quantization
axis defined by a unit timelike vector vµ (see, e.g., Ref. [202]). At the end, the vector vµ is fixed
in terms of the external momenta that renders the framework manifestly invariant. The most
obvious choice is to take that vector parallel to the total three-momentum of the system, and we
stick to this choice. It should be also mentioned that this construction relies on the fact that the
scattering amplitudes in the various two-particle subsystems, which are calculated by using the
dimensional regularization and threshold expansion, are explicitly invariant (i.e., do not depend
in vµ) even before fixing it in terms of the external momenta. For instance, this property is lost
if the cutoff regularization is used for the two-particle subsystems as well. By the same token, a
similar approach will encounter difficulties when applied to the four-particle problem, which
features three-particle subsystems. This issue, however, lies beyond the scope of the present
paper.

iii) The choice of the quantization axis along an arbitrary timelike vector vµ does not affect the
analytic properties of the non-relativistic amplitudes. Hence, there is no violation of unitarity in
this approach, and spurious poles do not emerge from the quantization condition.

iv) The proposed framework has been tested within a toy model. It has been shown that the
three-particle bound spectrum is explicitly Lorentz-invariant, i.e., the finite-volume corrections
to the three-particle binding energies, obtained in different moving frames, are exponentially
suppressed in L.
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Figure 5.5: Dependence of the energy levels on the box size L in the rest frame and moving frames. Blue and
red dotted curves correspond to the energy of the deep and shallow bound states, respectively, and the green
dotted curves denote the so-called scattering states. The solid black lines and the gray dashed lines represent the
energies of three free particles and a free particle-dimer system in a finite volume, respectively. Horizontal blue
and red dashed lines indicate the energies of the infinite-volume deep and shallow bound states. One observes
an avoided level crossing (related, presumably, to the crossing of the free particle-dimer levels) in the frame
d = (1, 1, 1) but not in the other frames. Thus, this is a purely kinematic effect.
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Figure 5.6: The difference between the finite- and infinite-volume binding energies for the deep (left panel) and
shallow (right panel) bound states. Note that for a better visibility, we have divided the energy shift of the deep
bound state, corresponding to d = (1, 1, 1), by a factor 25. Otherwise, the data for d = (0, 1, 1) and d = (1, 1, 1)
would nearly overlap.
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Figure 5.7: The differences between the finite- and infinite-volume binding energies for the shallow bound state
at larger values of L. The straight lines show the results of the exponential fit.
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v) In our opinion, it will be rather straightforward to adapt the proposedmethod for other approaches
used in the literature (RFT and FVU). An alternative method, proposed within the RFT approach,
can also be used. Within this method, a cutoff on the three-momenta cannot be moved beyond
some maximal value of order of a particle mass, albeit all results obtained by using the cutoffs
less than this value are still valid.
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CHAPTER 6

Three-Particle Lellouch-Lüscher Formalism in
Moving Frames

The content of this chapter following this prologue, including Appendices A.3 to A.6 is based on the
publication

• F. Müller, J.-Y. Pang, A. Rusetsky and J.-J. Wu, Three-particle Lellouch-Lüscher formalism in
moving frames, JHEP 02 (2023) 214, arXiv: 2211.10126 [hep-lat]

This chapter presents the generalization of the Lellouch-Lüscher equation for three-body decays
which was derived in Chapter 4 at the leading order only. As stressed in the discussion of that chapter,
including higher order decay couplings, the three-particle analogue of the Lellouch-Lüscher formula
will turn into a matrix-like equation. Conceptually the infinite-volume decay amplitude is given by a
linear combination of finite-volume decay matrix elements, where the pertinent LL factors account
for an undetermined decay coupling each. The benefits of using an manifestly Lorentz-invariant
formalism are obvious when working at higher orders since due to the invariance the number of these
effective couplings can be reduced as compared to a non-covariant framework.

Another drawback of the formalism derived in Chapter 4 is its restriction to the rest frame. However,
from a practical point of view, the use of a relativistic invariant setup might become inevitable. The
reason is that, for a given frame, the box length L at which the finite-volume matrix elements are
extracted, are fixed due to the condition that the three-particle states must have the energy of the
decaying particle. Although there are higher exited states that satisfy this constraint in the same frame,
the corresponding values of L might turn out to be impracticable for an actual calculation of the matrix
element. Therefore a generalization valid to arbitrary frames is needed.
This chapter attempts to close this gap by proposing a manifestly relativistic-invariant Lellouch-

Lüscher formalism for the decays into three spinless identical particles with no two-to-three transitions.
Similarly to Chapter 4, the formalism is based on the use of the non-relativistic effective Lagrangians.
Manifest Lorentz invariance is guaranteed, as in Chapter 5, by choosing the quantization axis along
the total four-momentum of the three-particle system. A systematic inclusion of the higher-order
derivative couplings, as well as higher partial waves is addressed.
In the first half of this chapter, the relativistic invariant formulation of the NREFT framework

is revisited. For sake of notational simplicity, the quantization condition derived in Chapter 5 is
restricted to S-wave interactions in the three- as well as in the two-body sector. In order to derive a
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general quantization condition, incorporating the partial-wave mixing present in a finite volume, the
dimer fields are preferably expressed in a basis of definite angular momentum rather then the tensor-
representation used in Chapter 5. The author contributed a relation between these two bases. After
including interactions of arbitrary angular momentum, the relativistic covariance of the particle-dimer
Faddeev equations is shown explicitly. Finally the quantization condition is derived for dimer fields
with arbitrary angular momentum and the partial diagonalization into the irreducible representations
of the little groups in the moving frames is carried out.
In the second half, three-particle decays are described including higher derivative couplings. As

discussed, the formalism developed in Chapter 5 provides a convenient framework to generalize
the Lellouch-Lüscher equation to higher orders. The derivation conceptually follows the procedure
outlined in Chapter 4. Here, the author of this thesis calculated the infinite-volume decay amplitude,
as well as the finite-volume decay matrix elements within the NREFT perturbation theory. Again, the
initial decay process and therefore the pertinent couplings are considered perturbatively while the final
state rescattering is summed up to all orders. The dependence of the infinite-volume decay amplitude
on the unknown decay couplings can be eliminated in favor of finite-volume decay matrix elements
multiplied by LL factors if the number of these measured matrix elements matches the number of
unknown decay coefficients. Applying the NREFT counting rules the author of this thesis derived a
formula for these LL factors. These merely depend on the final state short-range interactions which
can be determined by a fit to the two- and three-particle spectra.

6.1 Introduction

The study of the three-particle systems on the lattice has attracted much attention in the recent
decade [2, 4, 28, 29, 55–61, 63–66, 68, 69, 101–104, 146, 157–163, 174, 178, 186–190, 200, 201, 206,
208–211, 213–226, 230–232, 237]. These studies imply, first and foremost, the measurement of the
three-body spectrum which is further analyzed by using the quantization condition (an equation that
connects the finite-volume energy spectrum with the infinite-volume observables in the three-particle
system). The parameters, characterizing the three-body interactions in the infinite volume, could
be extracted in a result of this analysis. In the literature, one finds three conceptually equivalent
formulations of the three-body quantization condition: the so-called RFT [57, 58], NREFT [60, 61]
and FVU [59, 206] approaches. Note that a Lorentz-invariant formulation of the NREFT approach
was suggested recently [2]. We shall be using this approach in what follows. For more information on
the subject, we refer the reader to the two recent reviews on the subject [30, 62].
Furthermore, a three-body analog of the Lellouch-Lüscher (LL) formula, which relates the three-

body decay amplitudes, measured in a finite and in the infinite volume, has been derived [1, 191] in the
NREFT and RFT settings, respectively. The Ref. [1] was more a proof of principle where the relation
between the three-body decay amplitudes in a finite and in the infinite volume has been worked out
only at the leading order in the EFT expansion. The technical details have been left for future work.
The aim of the present paper is to complete the derivation, given in Ref. [1], in order to obtain a
general three-body LL formula, and to carry out the comparison with the findings of Ref. [191]. A
number of non-trivial issues have to be addressed to fill this gap. Namely,

i) Only S-wave contributions were allowed in the formula given in Ref. [1]. In some cases, the
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contributions from higher partial waves may be essential.1 A systematic inclusion of the higher
partial waves has to be performed.

ii) The role of the derivative couplings could be substantial, especially if one considers decays
into light particles (for example, pions). As already mentioned in [1], if the derivative vertices
describing the three-particle decays are included, one does not end up with a single LL factor
(in difference to the two-body case). Albeit a relatively straightforward task, an explicit form of
the LL relation in this case should be still worked out.

iii) Even if the formula given in Ref. [1] has the relativistic appearance (for example, the single-

particle energies are given by the relativistic expression w(p) =
√

m2
+ p2), it is valid only

in the center-of-mass (CM) frame and at the leading order in the EFT expansion. Including
higher-dimensional operators in the Lagrangian leads to the proliferation of the number of the
effective couplings that have to be determined from the fit to the lattice data. To this end, it
would be useful to use data from the sectors with different total momenta. This is however
possible, if and only if the approach is manifestly Lorentz-invariant.2

In order to achieve the goal stated above, we merge the NREFT derivation of the LL framework,
given in Ref. [1], with the manifestly invariant three-particle setting of Ref. [2]. The layout of the
paper is as follows. In Sect. 6.2 we list the main relations that define a Lorentz-invariant three-particle
quantization condition. Here, we also display the effective Lagrangian that describes the three-particle
decays at tree level in a relativistic-invariant fashion. We remind the reader that the decays are assumed
to proceed via a different mechanism (e.g., through the weak or electromagnetic interactions) than the
formation of the colorless bound states from quarks and gluons. For this reason, the masses of all
particles (hadrons) are real, and the effective Lagrangian can be written down in terms of the fields of
all hadrons, participating the reaction.3 Furthermore, in Sect. 6.3 we give a detailed derivation of the
LL framework in a manifestly Lorentz-invariant setting. Finally, Sect. 6.4 contains our main result
and conclusions.

6.2 Relativistic Invariant Framework in the Three-Particle Sector

6.2.1 The Lagrangian

In the non-relativistic effective theory time and space coordinates are treated differently. For this
reason, this theory is not manifestly Lorentz-invariant. In Ref. [2] the invariance was achieved by
using the following trick. At the first stage, the quantization axis was chosen along the arbitrary unit
four-vector vµ. Using this vector, all expressions can be rewritten in a manifestly invariant form. This
however does not suffice, since the presence of an “external” vector vµ signals the breakdown of the
1 An obvious example here is the decay ω→ 3π. The decay width of this resonance is rather small, and the pole lies very
close to the real axis. Hence, the formalism considered in this paper can be directly applied to this case.

2 Here, we would like to mention that the manifest relativistic invariance of the RFT approach comes at the cost of imposing
a cutoff on the spectator momentum in the three-body equation, which is of order of the particle mass. Increasing the
cutoff beyond some critical value is not allowed as it would lead to the spurious singularities in the amplitude. For a more
detailed discussion of the issue, we refer the reader to [2].

3 Note that this differs from the case of the QCD resonances, like a1(1260) or the Roper resonance, which correspond to a
pole in the complex energy plane.
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Lorentz invariance. Only at the next stage, when vµ is fixed in terms of the external momenta in a
given process, the relativistic invariance is restored.4

Below, we shall briefly sketch the formalism of Ref. [2]. It is convenient to work in the particle-
dimer picture, which has proven to be very useful for the derivation of the Faddeev equation in the
infinite as well as in a finite volume. A dimer corresponds to an auxiliary field (an integration variable)
introduced in this Lagrangian and, thus, not necessarily to a physical bound state of two particles,
which may or may not exist in a channel with given quantum numbers. The Lagrangian that describes
the three-particle system in question is written down in a following compact form (more details and
derivation can be found in Ref. [2]):

L = φ†2wv(i(v∂) − wv)φ +
∑̀
m

σ`T
†

`mT`m +
∑̀
m

(T†`mO`m + h.c.)

+ 4π
∑̀
m

∑
`′m′

∑
LL′

∑
JM

T†
`′m′

(
Y L′`′

JM (w,m
′
)φ†

)
T`
′`

JL′L
(∆,
←

∆T ,
→

∆T )

(
(Y L`

JM (w,m))
∗φ

)
T`m .

(6.1)

The notations in the above (rather compact) formula should be explained in detail. This is done in
what follows. First, φ denotes a non-relativistic field operator for the scalar field with the mass m,
and ∂µ = (∂0,∇) (we remind the reader that in this paper we consider a system that consists of three
identical spinless particles only and assume that the transitions between the sectors with a different

number of particles are forbidden). The quantity wv =

√
m2
+ ∂2

− (v∂)2 corresponds to the on-shell
energy of this particle in the quantization scheme defined by the vector vµ and reduces to a familiar
expression w =

√
m2
− ∇2 in the rest frame. For simplicity, we shall assume from the beginning that

the unit vector vµ is directed along the total four-vector Kµ of the three-particle system.
Furthermore, T`m is a dimer field with a spin ` and projection m = −`, · · · , `. This field is

constructed as follows. One starts from the tensor fields with ` indices Tµ1 · · ·µ`
. These fields are

symmetric under a permutation of each two indices, traceless in each pair of indices and obey the
constraint

vµiTµ1 · · ·µ`
= 0 , i = 1, · · · , ` . (6.2)

Next, let Λ be a matrix of Lorentz transformation that transforms vµ into v
µ
0 :

Λ(v)00
= v0 , Λ(v)0i = −Λ(v)i0 = vi , Λ(v)i j = −δi j −

viv j

v0
+ 1

, (6.3)

or,

Λ(v)µν = gµν −
vµvν

1 + (vv0)
−

v
µ
0 v

ν
0

1 + (vv0)
+
vµvν0 + v

µ
0 v

ν

1 + (vv0)
(vv0) − (v

µvν0 − v
µ
0 v

ν
) . (6.4)

4 With the choice of an arbitrary quantization axis vµ , one has to define, what does one now mean under time and space
coordinates. Let Λ be the Lorentz transformation Λv = v0, where v

µ
0 = (1, 0). Further, let Λx = x′. Then, x′0 and x′ are

set to play the role of time and space coordinates.
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Then,

T`m =
∑
µ1 · · ·µ`

(c−1
)
`m
µ1 · · ·µ`

Λ
µ1
ν1
· · ·Λ

µ`
ν`

Tν1 · · ·ν` , (6.5)

see Eqs. (3.9) and (3.10) of Ref. [2].5 The matrix elements of c, which can be trivially derived, are
purely of group-theoretical origin (see Appendix A.3). A general expression for an arbitrary ` is
rather clumsy and will not be displayed in the main text. Note also that in Ref. [2] the Lagrangian was
written down in terms of the tensor fields Tµ1 · · ·µ`

. Owing to the orthogonality of the matrices c and
Λ, the sum over the indices µ1, · · · , µ` in the Lagrangian can be readily rewritten as a sum over the
indices `,m.

The second term in the Lagrangian describes the “free dimer.” The value of the parameter σ` = ±1
is fixed by the sign of the two-body scattering length. The third term describes the interaction of a
dimer with a spin ` coupled to a pair of particles in the state with an angular momentum ` (the sum
over all ` is carried out at the end). The two-particle operators O`m take the form, similar to Eq. (6.5):

O`m =
∑
µ1 · · ·µ`

(c−1
)
`m
µ1 · · ·µ`

Λ
µ1
ν1
· · ·Λ

µ`
ν`

Oν1 · · ·ν` . (6.6)

Here, the fully symmetric operators Oµ1 · · ·µ` are traceless in each of two indices and obey the relation

vµiOµ1 · · ·µ`
= 0 , i = 1, · · · , ` . (6.7)

These operators are constructed of two fields φ and the vector w̄µ⊥ = w̄µ − vµ(vw̄), where w̄µ = Λµνw
ν

and the differential operator wµ is given by wµ = vµwv + i∂µ⊥ , where ∂
µ
⊥ = ∂

µ
− vµ(v∂). Note also that

the Λµν differs from Λµν , which was introduced above. Namely, Λµν is the Lorentz boost that renders
the total four-momentum of the pair parallel to the vector vµ. Thus, once one has chosen vµ along the
total four-momentum of the system, in the coordinate space Λµν becomes a differential operator. For
` = 0, 2, . . . the explicit form of the operator Oµ1 · · ·µ` (up to an inessential overall normalization) is
given by

O =
1
2

f̂0φ
2

Oµν
=

3
2

f̂2(φ(w̄
µ
⊥w̄

ν
⊥φ) − (w̄

µ
⊥φ)(w̄

ν
⊥φ))

−
1
2

f̂2(g
µν
− vµvν)(φ(w̄λ⊥w̄⊥λφ) − (w̄

λ
⊥φ)(w̄⊥λφ)) , (6.8)

and so on. Here, f̂` is a differential operator which can be formally expanded in the Taylor series. For
example, for ` = 0,

f̂0φ
2
= f (0)0 φ2

+
1
2

f (2)0 (φ(w̄
µ
⊥w̄⊥µφ) − (w̄

µ
⊥φ)(w̄⊥µφ)) + · · · . (6.9)

5 Note that, despite manifestly covariant notations used in Eq. (6.4), the quantity Λ is not a second-rank Lorentz tensor,
since under the Lorentz transformations, the vector v0 stays put.
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The coefficients f (0)
`
, f (2)
`
, . . . are related to the effective-range expansion parameters in the two-body

system (the scattering length, effective range and so on).

The construction for higher values of ` proceeds straightforwardly (for identical particles, only even
values of ` are allowed). Namely, in the free field theory, the matrix element of the operator Oµ1 · · ·µ`

between the vacuum and the two-particle state is given by

〈0|Oµ1 · · ·µ` |p1, p2〉 =

√
2` + 1 f`(−p̄2

⊥)

N`
Õµ1 · · ·µ` (p̄⊥) ,

√
2` + 1 f`(−p̄2

⊥)

N`
= f (0)

`
− f (2)

`
p̄2
⊥ + · · · , N−1

` =
2`/2`!

A−`,`−1 · · · A
−
`,0

. (6.10)

where the quantities A−`,m are defined in Appendix A.3. For ` = 0, 2, . . ., we have

Õ(p̄⊥) = 1 ,

Õµν
(p̄⊥) =

3
2

p̄µ⊥ p̄ν⊥ −
1
2
(gµν − vµvν)p̄2

⊥ , (6.11)

and so on. Here, p̄µ⊥ = p̄µ − vµ(v p̄) and p̄µ = Λµν pν = 1
2 Λ

µ
ν (p1 − p2)

ν (we remind the reader that
p2

1 = p2
2 = m2). Note also once more that Λµν depends on the total momentum of the two-particle

system p1 + p2. In order to write down the expression for a generic Oµ1 · · ·µ`
(p̄⊥), one may define the

tensors in the three-space (the Latin indices in run from 1 to 3):

Pi1 · · ·i`
(k) = N`

√
4π

2` + 1
c`mi1 · · ·i`

(
Y`m(k)

)∗
. (6.12)

Here, Y`m(k) = k`Ỳ m(θ, ϕ), Ỳ m(θ, ϕ) denotes the spherical function, and the coefficients c can be
found in Appendix A.3. For ` = 0, 2 one has

P(k) = 1 , Pi j(k) =
3
2

kik j −
1
2
δi jk

2 , · · · (6.13)

The general pattern is clear. The operators Õ(p̄⊥), Õµν
(p̄⊥) are constructed in analogy with P(k),

Pi j(k), and so on. Namely, one replaces ki by pµ⊥, k2 by −pµ⊥p⊥µ and δi j by −g
µν
+ vµvν. This

prescription is valid for all values of `. Finally, the operator Oµ1 · · ·µ` in the coordinate space can
be immediately read off from the momentum-space expression. The prescription for the off-shell
momenta is set by the replacement of a generic pµ by the differential operator wµ.

The last term of the Lagrangian describes the particle-dimer scattering at tree level. For any vector
aµ, we have aµ = Λµν aν. Next,

Y JM
L` (k,m) = 〈L(M − m), `m|JM〉YL(M−m)(k) , (6.14)

and 〈L(M − m), `m|JM〉 denotes the pertinent Clebsh-Gordan coefficient. Furthermore, the quantity
T`
′`

JL′L
is a low-energy polynomial of its arguments, and the coefficients of the expansion are the

low-energy couplings. The operator ∆T is a differential operator acting on the dimer field (the arrow
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shows, on which one it does act). In the momentum space,

∆TT`m(P) = (P
2
− 4m2

)T`m(P) , (6.15)

where P denotes the four-momentum of the dimer. It can be expressed as P = K − p, where K is the
total momentum of the particle-dimer system and p denotes the momentum of the spectator, which is
assumed to be on shell, i.e., p2

= m2. Finally, in the momentum space, the operator ∆ can be replaced
by K2

− 9m2 and, thus, does not depend on the spectator momenta.

6.2.2 Matching of the Couplings Describing Particle-Dimer Scattering

Matching in the dimer framework is a very delicate issue. We have briefly touched on the issue in our
previous paper [2], and here we would like to extend this discussion. This will hopefully help to avoid
misunderstandings related to the above problem.

To start with, the dimer field in this framework is introduced as a dummy integration variable in the
path integral. At the first glance, a one-to-one mapping of the effective couplings in the particle-dimer
picture and the three-particle picture is guaranteed. Furthermore, carrying out a perturbative matching
of the three-particle S-matrix elements imposes certain constraints on the independent effective
couplings, as discussed in Ref. [2]: for example, at the next-to-leading order, as a consequence of the
Bose-symmetry, only one independent coupling out of three survives in the local vertex that describes
particle-dimer scattering. The number of independent couplings agrees with the findings of Refs. [174,
237], see also [163].

Does this result change, if a shallow physical bound state (a dimer) exists in some channel? On the
one hand, it should not, because introducing a dummy field does not change the number of relevant
parameters. On the other hand, one has more data to fit now: the S-matrix elements both in the
three-particle sector and in the particle-dimer sector. If these two data sets are independent, there will
be less constraints and more independent couplings in the Lagrangian, see again Ref. [2].
As can be seen from the above discussion, the difference boils down to a question, whether the

data from three-particle scattering and particle-dimer scattering are independent from each other.
This is a dynamical question, and one knows examples of either sort in Nature. For instance, the
properties of a deuteron are very well determined by the low-energy NN scattering amplitude in the
pertinent channel. In other words, the deuteron is a beautiful example of a hadronic molecule (One
arrives at the same result, considering Weinberg’s quantization condition [238].). In such a case, the
particle-dimer scattering data are determined by the input from the three-particle sector and there is
no need to consider them separately.

On the other hand, there are resonances, whose existence can be hardly attributed to the rescattering.
Take the extreme case: if the weak interactions are turned on, the kaon will be seen as a (very narrow)
resonance in the ππ scattering (for a full analogy with the deuteron, by adjusting quark masses one
can even tune the kaon mass to be slightly below the two-pion threshold). However, the formation of
the kaon has nothing to do with the rescattering of pions. The ππ scattering K-matrix will contain a
pre-existing pole on the real axis, which will be eventually dressed by the pion loops. In such a case,
the data from the three-particle sector and the particle-dimer sector are independent, and one needs
more parameters in the Lagrangian to describe the S-matrix elements in all sectors. Expanding the
pole term in the two-body K matrix will lead to the formulae that are formally the same as in the case
of a molecule. The price to pay for this will be however a very small convergence radius. This case
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= + + . . .

Figure 6.1: Full dimer propagator, obtained by summing up self-energy insertions to all orders. The double,
dashed and single lines denote the full dimer propagator, the free dimer propagator given by −σ−1

` , and the
particle propagator.

resembles Chiral Perturbation Theory with/without the ∆-resonance – integrating out the ∆ leads to
the unnaturally large effective couplings that are almost saturated by the ∆-exchange.
To summarize, the particle-dimer picture provides a very flexible framework that can be used

both in the presence or absence of physical dimers. Furthermore, when the (shallow) dimers are
present, the case of molecular states should be distinguished from the one of tightly bound compounds
(pre-existing resonances). In the particle-dimer picture, these two cases are merely described by a
different number of the independent effective couplings, because additional parameters are needed
to fix the position and the residue of the pre-existing pole in the two-body K-matrix. One could of
course use the same (overcomplete) set of couplings in all cases, bearing in mind that if there are no
dimers, or the dimers are predominantly molecules, flat directions emerge in the parameter space,
when the fit to the finite-volume levels is performed.

Last but not least, the above discussion directly applies to the bound states in the three-particle
channel (the trimers). These can also have either molecular nature, or represent tight compounds
defined by a different dynamics. In the latter case, it could be again advantageous to introduce an
elementary trimer field that will allow one to circumvent the problem with unnaturally large low-energy
couplings.

6.2.3 Faddeev Equation

Now, we are in a position to write down the Faddeev equation for the particle-dimer scattering and
derive the relativistic invariant quantization condition. We start from the infinite-volume case. After
summation of the self-energy insertions (see Fig. 6.1), the dimer propagator can be written down as
follows [2]:

i〈0|T[T`m(x)T
†

`′m′
(y)]|0〉 = δ``′δmm′

∫
d4P

(2π)4
e−iP(x−y)S`(P

2
) , (6.16)

where

S`(s) = −
1

σ` − f 2
` (s)

1
2 p2`
(s)I(s)

, s = P2
= 4(p2

(s) + m2
) . (6.17)

Furthermore,

16π
√

s
[
σ` f −2

` (s) −
1
2

p2`
(s)J(s)

]
= p2`+1

(s) cot δ`(s) , (6.18)
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and

I(s) =
σ(s)

16π2 ln
σ(s) − 1
σ(s) + 1

, σ(s) =
(
1 −

4m2

s + iε

)1/2
,

f`(s) = f (0)
`
+ f (2)

`

(
s
4
− m2

)
+ · · · , (6.19)

and δ`(s) denotes the phase shift in a given partial wave. Finally, if s ≥ 4m2,

I(s) = J(s) +
iσ(s)
16π

. (6.20)

The scattering amplitude in a given partial wave T` is obtained by equipping the dimer propagator with
the endcaps corresponding to the decay of a dimer into a particle pair. For the process p1+p2 → p3+p4
with the on-shell particles, the scattering amplitude is written as follows:

T (p1, p2; p3, p4) = 4π
∑̀
m

Y`m(p̃)Y
∗
`m(q̃)

(T`tree)
−1
(s) − 1

2 p2`
(s)I(s)

, (6.21)

where [2]

p̃ = p̄ − v
p̄v − p̄0

v2 , q̃ = q̄ − v
q̄v − q̄0

v2 , (6.22)

and

p̄µ =
1
2
Λ
µ
ν (v, u)(p3 − p4)

ν , q̄µ =
1
2
Λ
µ
ν (v, u)(p1 − p2)

ν . (6.23)

Here, Λ(v, u) takes the form:

Λ(v, u)µν = gµν −
uµuν

1 + (uv)
−

vµvν

1 + (uv)
+

uµvν + vµuν

1 + (uv)
(uv) − (uµvν − vµuν) . (6.24)

We remind the reader that uµ = Pµ/
√

P2 is the unit vector in the direction of the CM momentum
of the pair. Also, the quantity Λ(v, u)µν, in difference to Λ(v)µν, is a second-rank Lorentz-tensor,
because both vµ and uµ transform like Lorentz-vectors. Note also that Λ(v)µν = Λ(v0, v)

µν.
The expression (6.22) for the vectors p̃, q̃ looks very complicated but, in fact, have a very transparent

physical meaning. In order to show this, note that (v p̄) = (vq̄) = 0. Taking this into account, it is easy
to rewrite Eq. (6.22) in the following form:

p̃ = p̄ + v
p̄v

1 + v0 − p̄0v , q̃ = q̄ + v
q̄v

1 + v0 − q̄0v . (6.25)

This gives p̃µ = Λµν(v)p̄
ν and q̃µ = Λµν(v)q̄

ν . Furthermore, it can be straightforwardly checked that
p̃0 = q̃0 = 0.
The full scattering amplitude is obtained by summing T` over all `. This summation renders the

amplitude relativistic invariant – the result depends on the Mandelstam variables s, t only.
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Next, let T`′m′,`m(p, q) be the particle-dimer scattering amplitude. The indices `m/`′m′ denote
the dimer spin and magnetic quantum number in the initial/final states, respectively. The Faddeev
equation takes the matrix form:

T`′m′,`m(p, q) = Z`′m′,`m(p, q)

+
∑
`′′m′′

∫ Λv d3k⊥
(2π)32wv(k)

Z`′m′,`′′m′′(p, k)S`′′((K − k)2)T`′′m′′,`m(k, q) . (6.26)

Here, the “covariant” cutoff is defined as∫ Λv d3k⊥
(2π)3

F(k) =
∫

d4k

(2π)3
δ(k2
− m2
)θ(Λ2

+ k2
− (vk)2)F(k) , (6.27)

and

Z`′m′,`m(p, q) =
4π

(
Y`′m′(p̃)

)∗ f`′(sp) f`(sq)Y`m(q̃)
2wv(K − p − q)(wv(p) + wv(q) + wv(K − p − q) − vK − iε)

+ 4π
∑
LL′

∑
JM

Y L′`′

JM (p,m
′
)T`

′`
JL′L
(∆,∆p,∆q)

(
Y L`
JM (q,m)

)∗
. (6.28)

In the above expression, p̃, q̃ are defined as follows:

p̃µ =
1
2
Λ
µν
(v)Λνα(v, up)(q̂ − k̂)α , q̃µ =

1
2
Λ
µν
(v)Λνα(v, uq)(p̂ − k̂)α ,

kµ = Kµ
− pµ − qµ , sp = (q̂ + k̂)2 , sq = (p̂ + k̂)2 ,

uµq = (p̂ + k̂)µ/
√

sq , uµp = (q̂ + k̂)µ/
√

sp , (6.29)

and, for any four-vector aµ, one has

âµ = aµ − vµ(av) + vµwv(a) . (6.30)

Furthermore,

∆ = (K2
− 9m2

) , ∆p = (K − p̂)2 − 4m2 , ∆q = (K − q̂)2 − 4m2 , (6.31)

and the function f`(s) is related to the scattering phase, according to Eq. (6.18).

6.2.4 Relativistic Invariance

In order to establish the relativistic invariance of the above infinite-volume framework,6 one has
to perform an arbitrary Lorentz-boost on all external momenta: p = pΩ 7→ Ωp, q = qΩ 7→ Ωq,

6 It is clear that the notion of relativistic invariance applies to the infinite-volume case only. In a finite volume, the invariance
is broken by a box. Hence, in a finite volume, the statement boils down to a frame-independence of the couplings extracted
from the fit to the energy levels, up to exponential corrections.
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K = KΩ 7→ ΩK and v = vΩ 7→ Ωv. The integration variable undergoes the same boost k = kΩ 7→ Ωk.
All functions depending on Lorentz-scalars are, of course, manifestly Lorentz-invariant. Hence, the
question boils down to the transformation of the three-vectors p, q and p̃, q̃.

Let us first consider the four-vector p = Λ(v)p̂, whereΛ(v) is defined from the conditionΛ(v)v = v0.
In the boosted frame, one has Λ(vΩ)vΩ = v0. This gives

Λ(vΩ) = RΛ(v)Ω−1 , (6.32)

where R is a pure rotation that does not depend on the choice of the four-vector p. If Ω is a pure
rotation itself, then R = Ω. Hence,

p
Ω
= Λ(vΩ)p̂Ω = RΛ(v)Ω−1

Ωp̂ = Rp . (6.33)

The same line of reasoning holds for the four-vector p̃ = Λ(v)Λ(v, u)p̂, since the vector Λ(v, u)p̂ 7→
ΩΛ(v, u)p̂ transforms exactly as the vector p̂ (we remind the reader that Λ(v, u), in difference of Λ(v),
is the Lorentz-tensor). The transformation matrix R = R(Ω, v, u), which depends on the parameters of
the Ω, as well as on the vectors v and u in a non-linear manner, is the same in both cases.7

To summarize, it is seen that the Lorentz transformations, acting on the three-vectors p̃, p, . . ., result
in the SO(3) transformations whose parameters can be expressed through the parameters of the initial
Lorentz transformations as well as the vectors v and u. The transformation of the various quantities
that enter the kernel of the Faddeev equation can be defined through the transformation properties of
spherical functions, entering this expression:

Y`m(Rp) =
∑
m′

(
D (`)

mm′
(R)

)∗
Y`m′(p) , (6.34)

where D (l)
mm′
(R) denote Wigner D-functions. Furthermore, The kernel of the equation Z = Zex + Zloc

consists of two parts, corresponding to the exchange diagram and the local particle-dimer interaction,
see the first and the second terms in Eq. (6.28), respectively. The transformation of the first term is
straightforwardly defined by Eq. (6.34):(

Zex
)
`′m′,`m (Ωp,Ωq) =

∑
m′′′m′′

D (`
′
)

m′m′′′
(R)

(
Zex

)
`′m′′′,`m′′ (p, q)

(
D (`)

mm′′
(R)

)∗
. (6.35)

Establishing the transformation properties of the local term is a bit trickier and will be considered
in Appendix A.5. Here, we simply state that Zloc transforms exactly in the same way as Zex. Hence,
their sum has the same property. Furthermore, the propagator S` is invariant under the Lorentz
transformations. From this, one finally concludes that the particle-dimer scattering amplitude, which
is a solution of the Faddeev equation (6.26), has the same transformation property as the kernel Z:

T`′m′,`m(Ωp,Ωq) =
∑

m′′′m′′

D (`
′
)

m′m′′′
(R)T`′m′′′,`m′′(p, q)

(
D (`)

mm′′
(R)

)∗
. (6.36)

This is nothing but the statement about the manifest Lorentz invariance of the framework.

7 The rotation R is related to the Thomas-Wigner rotation [239, 240].
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6.2.5 Faddeev Equation in a Finite Volume and the Quantization Condition

In a finite volume, the integration over three-momenta is replaced by the sums. In this course, the
Faddeev equations, displayed above, undergo some modifications. As in the infinite volume, we start
from the propagator of a dimer

i〈0|T[T`′m′(x)T
†

`m(y)]|0〉 =
∫

dP0

2π
1
L3

∑
P

e−iP(x−y)SL
`′m′,`m(P) . (6.37)

Here, the dimer three-momentum runs over the discrete values P =
2π
L

n , n ∈ Z3. Note that, owing
to the lack of the rotational invariance in a finite volume, the propagator is no more diagonal in the
indices `m and `′m′. It obeys the Dyson-Schwinger equation

SL
`′m′,`m(P) = −

1
σ`′

δ`′`δm′m −
1
σ`′

∑
`′′m′′

Σ
L
`′m′,`′′m′′(P)S

L
`′′m′′,`m(P) , (6.38)

where

Σ
L
`′m′,`m(P) = f`′(P

2
) f`(P

2
)

∫
dq0

2πi
1

2L3

∑
q

(
Y`′m′(q̃)

)∗
Y`m(q̃)

(m2
− q2
− iε)(m2

− (P − q)2 − iε)
, (6.39)

where

q̃µ =
1
2
Λ
µν
(v)Λνα(v, u)(q̂ − q̂′)α , uµ =

(q̂ + q̂′)µ

(q̂ + q̂′)2
, q′ = P − q . (6.40)

Carrying out the integration over q0 in Eq. (6.39), one obtains

Σ
L
`′m′,`m(P) = f`′(P

2
) f`(P

2
)

1
2L3

∑
q

(
Y`′m′(q̃)

)∗
Y`m(q̃)

2w(q)2w(P − q)(w(q) + w(P − q) − P0
)
. (6.41)

Note that the propagator still implicitly depends on vµ, since vµ enters the definition of any on-mass-
shell vector âµ. This dependence comes however only from the numerator and can be worked out
explicitly. We relegate this task to Appendix A.4 where, in particular, it will be shown how does
one systematically factor out this dependence. Moreover, already at this stage it is seen that the
v-dependence disappears in the S-wave, as claimed in Ref. [2].

The Faddeev equation in a finite volume can be written as

TL
`′m′,`m(p, q) = Z`′m′,`m(p, q) +

∑
`′′′m′′′,`′′m′′

1
L3

Λv∑
k

1
2w(k)

Z`′m′,`′′′m′′′(p, k)

× SL
`′′′m′′′,`′′m′′(K − k)TL

`′′m′′,`m(k, q) , (6.42)
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where

Λv∑
k

f (k) �
∑

k
θ(Λ2

+ k2
− (kv)2) f (k) . (6.43)

The three-body quantization condition takes the form det A = 0, where A is a matrix both in the
spectator momenta p, q, as well as the partial-wave indices `m, `′m′:

A`′m′,`m(p, q) = 2w(p)δpq

(
SL
`′m′,`m(K − p)

)−1
−

1
L3 Z`′m′,`m(p, q) . (6.44)

Here, (
SL
`′m′,`m(K − p)

)−1
= −δ`′`δm′mσ`′ − Σ

L
`′m′,`m(K − p) . (6.45)

6.2.6 Reduction of the Quantization Condition

Using symmetry under the octahedral group (or the little groups thereof), one may achieve a partial
diagonalization of the quantization condition. Namely, let G be a subgroup of the octahedral group
Oh that leaves the vector K invariant. Since vµ is chosen to be parallel to Kµ, the vector v is invariant
under G as well. Hence, under the transformations from the group G, the matrix A from Eq. (6.44)
transforms as

A`′m′,`m(gp, gq) =
∑

m′′′m′′

D (`
′
)

m′m′′′
(g)A`′m′′′,`m′′(p, q)

(
D (`)

mm′′
(g)

)∗
, g ∈ G . (6.46)

It is well known that the linear space, in which the irreducible representation (irrep) of the SO(3) group
with the angular momentum ` is realized, falls into different orthogonal subspaces, corresponding to
the irreducible representations of the octahedral group or the little groups thereof. The basis vectors
of the irreps of two groups are related by a linear transformation

Y `
λ(t∆) =

∑
m

c`mλ(t∆)Y`m . (6.47)

Here, ∆ denotes an irrep of the group G, t labels different copies of the same irrep ∆, and λ is an index,
corresponding to different basis vectors of a given irrep. The coefficients c`mλt∆ are well known an, for
small values of `, are tabulated, e.g., in Ref. [36]. These coefficients obey the orthogonality conditions∑

m

(
c`m
λ′(t′∆′)

)∗
c`mλ(t∆) = δt′tδ∆′∆δλ′λ ,∑

t∆λ

(
c`m

′

λ(t∆)

)∗
c`mλ(t∆) = δmm′ . (6.48)

Besides this, we shall need to define the Clebsch-Gordan coefficients for the group G. Note that the
octahedral group Oh as well as the little groups C4v,C2v,C3v, corresponding to a different choice
of the center-of-mass momentum, are simply reducible. Since all the representations are unitary,
these Clebsch-Gordan coefficients can be chosen to be real. The orthogonality condition for the
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Clebsch-Gordan coefficients takes the form∑
Γα

〈Σρ,∆λ |Γα〉〈Σρ′,∆λ′ |Γα〉 = δρρ′δλλ′ ,∑
ρλ

〈Σρ,∆λ |Γα〉〈Σρ,∆λ |Γ′α′〉 = δΓΓ′δαα′ , (6.49)

where capital and small Greek letters label the irreps and the basis vectors in a given irrep, respectively.

Defining now

A `′`
λ′(t′∆′),λ(t∆)

(p, q) =
∑
m′m

(
c`
′m′

λ′(t′δ′)

)∗
A`′m′,`m(p, q)c

`m
λ(t∆) , (6.50)

it is easy to show that this quantity transforms as

A `′`
λ′(t′∆′),λ(t∆)

(gp, gq) =
∑
λ′′′λ′′

T (∆
′
)

λ′λ′′′
(g)A `′`

λ′′′(t′∆′),λ′′(t∆)
(p, q)T (∆)

λ′′λ
(g−1
) . (6.51)

Here, T (∆)(g) denotes the matrix of an irreducible representation ∆.

At the next step, we define a projection

A `′Γ′α′,`Γα

σ′(t′∆′)Σ′,σ(t∆)Σ
(pr, qs) =

sσ′
G

sΣ
G

∑
g′,g∈G

∑
λ′ρ′,λρ

〈Σ
′ρ′,∆′λ′ |Γ′α′〉T (Σ

′
)

ρ′σ′
(g′)

× A `′`
λ′(t′∆′),λ(t∆)

(g′pr, gqs)〈Σρ,∆λ |Γα〉
(
T (Σ)ρσ (g)

)∗
. (6.52)

Here, pr and qs denote reference momenta in the shells r and s, respectively, sΣ, sΣ′ are the dimensions
of the pertinent irreps, and G is the total number of the elements in the group G (for a detailed
discussion, see, e.g., Ref. [146]). It can be seen (see Appendix A.6) that this matrix is diagonal in the
irreps Γ, Γ′:

A `′Γ′α′,`Γα

σ′(t′∆′)Σ′,σ(t∆)Σ
(pr, qs) =

sΣ′sΣ
GsΓ

δΓ′Γδα′αA `′`;Γ
σ′(t′∆′)Σ′,σ(t∆)Σ

(pr, qs) , (6.53)

where

A `′`;Γ
σ′(t′∆′)Σ′,σ(t∆)Σ

(pr, qs) =
∑
g∈G

∑
λ′λ

∑
σ′′γ

〈Σ
′σ′′,∆′λ′ |Γγ〉〈Σσ,∆λ |Γγ〉

× T (Σ
′
)

σ′′σ′
(g)A `′`

λ′(t′∆′),λ(t∆)
(gpr, qs) . (6.54)

This means that the quantization condition det A = 0 diagonalizes in different irreps Γ, taking the
form det A Γ

= 0, where the matrix A Γ is defined by Eq. (6.54).
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6.2 Relativistic Invariant Framework in the Three-Particle Sector

6.2.7 Three-Particle Decays

In the following, for brevity, we shall refer to the heavy and light particles to as “kaons” and “pions,”
respectively, bearing in mind the weak decays of kaons into three pions (of course, this analogy is not
full since it does not take into account the isospin.). The Lagrangian that describes the decay of the
“kaon” into a “pion”-dimer pair can be written as

LG =
√

4π
∑̀
m

(−1)`
√

2` + 1

(
K†G`(∆T )

(
(Y`,−m(w))

∗φ
)

T`m + h.c.
)
. (6.55)

Here, G` is a low-energy polynomial

G`(∆T ) = G(`)0 + G(`)1 ∆T + · · · . (6.56)

Here, ∆T is defined in Eq. (6.15). The coefficients of the Taylor expansion G(`)0 ,G(`)1 , . . . play the role
of the effective couplings, and ∆T is of order p2 in the NREFT power counting. It is assumed that
G(`)0 ,G(`)1 , . . . are proportional to an intrinsically small coupling (an analog of the Fermi coupling
in weak kaon decays). All terms in the decay amplitude at the second and higher orders in these
couplings are neglected. Furthermore, integrating out the dimer field, one arrives at the Lagrangian
that describes decays of “kaons” into three “pions” at tree level, analogous to the one displayed
in Refs. [166, 167]. The Bose-symmetry in the final state imposes constraints on the couplings
G(`)0 ,G(`)1 , . . .. An exact number of these constraints however depends on the details of the final-state
interactions, see the discussion in Sect. 6.2.2.8

This Lagrangian should be supplemented by the Lagrangian describing the free “kaon”

LK = K†2wK
v (iv∂ − w

K
v )K . (6.57)

Here, wK
v =

√
M2
+ ∂2

− (v∂)2 and M denotes the mass of the “kaon”. The full Lagrangian of the
system is given by L +LG +LK , where the individual terms are given by Eqs. (6.1), (6.55) and
(6.56), respectively.

6.2.8 Convergence of the NREFT Approach

The convergence of the NREFT approach is a subtle issue which comprises several distinct aspects
of the problem in question. Below, we wish to put this issue under scrutiny. To start with, a rule of
thumb requiring p/m � 1, where p denotes the magnitude of a characteristic three-momentum in
the process seems too restrictive, say, in kaon decays. From the point of view of kinematics, this
restriction is not relevant: all low energy singularities in the amplitudes appear exactly at the right
place [166, 167]. So, everything finally boils down to a question, whether the real part of the decay
amplitude can be well approximated by a low-energy polynomial. Were this not the case, one would
conclude that the contributions which are not explicitly taken into account in NREFT (say, all kinds
of the t- and u-channel diagrams, multi-particle intermediate states and so on), play an important
role and NREFT is not applicable. Fortunately, one can check this assumption experimentally in the

8 The expansion Eq. (6.56) is an analog of the expansion of the quantity APV
K3π from Ref. [191] in the particle-dimer

formalism. The constraints imposed by the Bose-symmetry are already taken into account in that paper.
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real kaon decays, since the decay amplitudes are measured very accurately. The experiment neatly
confirms the conjecture: the real part of the amplitude can be indeed fitted by a polynomial in the
Mandelstam variables si of a rather low order in the whole region of the Dalitz plot (see, e.g. [241]).
This justifies the use of the NREFT approach for the description of the kaon decays into three pions,
despite the fact that characteristic momenta of pions are of order of the pion mass itself.

Two remarks are in order. The first one concerns the choice of the expansion point. The “standard”
version of the NREFT implies the expansion of the amplitudes in the external three-momenta. For
example, in case of the two-particle scattering, this corresponds to the effective-range expansion
which is performed around threshold. The convergence of such an expansion in some cases might
be affected by the presence of the subthreshold singularities in the initial relativistic theory (for
instance, effective-range expansion in the vicinity of the ρ-meson fails due to the left-hand cut in the
ππ amplitude). In such cases, choosing the expansion point somewhere above threshold allows one to
circumvent the problem, if the effect of the inelastic channels is still small. The NREFT framework is
flexible enough and can be adapted to the change of the expansion point with a minor modification
only. We do not display a modified Lagrangian here, because this issue is not directly related to the
main problem considered in the present paper.

The second remark is general. One may ask, whether NREFT is applicable to study of the generic
three-particle decays beyond K → 3π. There exists no unique answer to this (very difficult) question. It
should be therefore should be addressed on the case-to-case basis: for example, it would be conceivable
that NREFT is still valid, if it is a priori known that the inelastic channels are not important for a
process in question.

6.3 Derivation of the Three-Particle LL Formula in the
Relativistic-Invariant Framework

6.3.1 The Wick Rotation

In the derivation of the 3-particle LL formula we closely follow the path outlined in Ref. [1]. There
are, however, some differences caused by an explicit Lorentz invariance. These differences will be
highlighted in the following.
We start with discussing the Wick rotation in case of a quantization axis chosen parallel to an

arbitrary timelike unit vector vµ. To be specific, we consider the simplest possible choice of the
three-particle source/sink operator O(x) = φ3

(x). As the first step in the derivation, we would like to
extract the finite-volume matrix element 〈0|O |n〉, where |n〉 denotes a (discrete) eigenstate of the total
Hamiltonian in a finite volume. To this end, we consider the two-point function

G(x − y) = 〈0|TO(x)O†(y)|0〉 . (6.58)

Using the translational invariance and the closure relation, in the Minkowski space we get

G(x − y) =
∑
n

e−iPn(x−y) |〈0|O(0)|n〉|2 . (6.59)

The three-momentum of the intermediate state is quantized, Pn =
2π
L

n, n ∈ Z3. The time component
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of the four vector is given by P0
n, where it is assumed that P0

n > |P|. In order to define the Wick rotation
in the frame moving with the four-velocity vµ, one defines the parallel and transverse components:

(x − y)‖ = v(x − y) , (x − y)
µ
⊥ = (x − y)µ − vµ(x − y)‖ ,

Pn, ‖ = vPn , Pµn,⊥ = Pµn − v
µPn, ‖ , (6.60)

so that

Pµ(x − y)µ = Pn, ‖(x − y)‖ + Pµn,⊥(x − y)⊥,µ . (6.61)

The Wick rotation in the moving frame is defined through the analytic continuation

(x − y)‖ → −i(x − y)‖ , (x − y)
µ
⊥ → (x − y)

µ
⊥ . (6.62)

Furthermore, since P0
n > |Pn |, then

Pn, ‖ = v0P0
n − vPn ≥ v0P0

n − |v| |Pn | > 0 . (6.63)

Thus, in the limit (x − y)‖ →∞, all exponentials are damping in the Euclidean space and one gets

G(x − y) =
∑
n

e−Pn, ‖ (x−y)‖−iPn,⊥(x−y)⊥ |〈0|O(0)|n〉|2 , (6.64)

where the same matrix elements as in Eq. (6.59) appear in the right-hand side. It should be noted
however that, on the lattice, one does not need calculate the Green functions, in which the continuation
to the Euclidean space is performed in moving frames. This is a purely theoretical construction that
will merely help us to derive 3-particle LL formula in all frames.

6.3.2 The Matrix Element

Next, let us evaluate the two-point function G(x − y) in NREFT, starting from the infinite volume. It
will be useful to use the components (a‖, a

µ
⊥) instead of (a

0, a) for all four vectors aµ. For simplicity,
we shall work in the Minkowski space and perform the Wick rotation only at the very end. The
Feynman diagrams, contributing to the above two-point function, can be summed up, resulting in a
compact expression

G(x − y) = 32
∫ dK‖

2πi
d3K⊥
(2π)3

e−iK‖ (x−y)‖−iK⊥(x−y)⊥G(K) , (6.65)
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G(x − y) = + g

g = + T

Figure 6.2: Two-point function, calculated in the effective field theory. The solid and double lines stand for the
one-particle propagator and the full dimer propagator, respectively. The quantity T denotes the particle-dimer
scattering amplitude.

where G(k) = G0(K) + G1(k) and

G0(K) =
2
3

∫ d3q1,⊥

(2π)32wv(q1)

d3q2,⊥

(2π)32wv(q2)

1
2wv(K − q1 − q2)

×
1(

wv(q1) + wv(q2) + wv(K − q1 − q2) − K‖ − iε
) ,

G1(K) = 4π
∑

`m,`′m′

∫ d3q1,⊥

(2π)32wv(q1)

d3q2,⊥

(2π)32wv(q2)

d3k1,⊥

(2π)32wv(k1)

d3k2,⊥

(2π)32wv(k2)

×
Y`′m′(q̃1) f`′((K − k1)

2
)

2wv(K − q1 − k1)
(
wv(q1) + wv(k1) + wv(K − q1 − k1) − K‖ − iε

)
× g`′m′,`m(k1, k2; K)

×
f`((K − k2)

2
)
(
Y`m(q̃2)

)∗
2wv(K − q2 − k2)

(
wv(q2) + wv(k2) + wv(K − q2 − k2) − K‖ − iε

) . (6.66)

Furthermore,

g`′m′,`m(k1, k2; K) = 2wv(k1)δ
3
(k1,⊥ − k2,⊥)δ``′δmm′S`(K − k1)

+ S`′(K − k1)T`′m′,`m(k1; k2)S`(K − k2) . (6.67)

Here, q̃1 and q̃2 are relative momenta of particle pairs, boosted to the CM frames of pertinent dimers.
Graphically, the sum of all diagrams is displayed in Fig. 6.2.

The spectral representation of the particle-dimer scattering amplitude T`′m′,`m(k1, k2) (again, in the
infinite volume), can be written as follows

T`′m′,`m(k1, k2) =
∑
n

ψ(`
′m′)

n (k1)ψ̄
(`m)
n (k2)

Pn, ‖ − K‖ − iε
. (6.68)
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Here, the index n labels the eigenvalues of the Hamiltonian in a given channel, and ψ(`
′m′)

n (k1),
ψ̄(`m)n (k2) stand for the wave function and its conjugate, respectively.

In order to write down a finite-volume counterpart of the above equations, one has first to boost the
integration momenta to the rest frame (because the discretization is done always in the rest frame).
This can be achieved by using

d3qi,⊥
(2π)32wv(qi)

=
d3qi

(2π)32w(k)
, and similarly for ki , (6.69)

while
d3K⊥

(2π)32
√

P2
n − K2

⊥

=
d3K

(2π)32
√

P2
n +K2

. (6.70)

Note also that one has adjusted the volume of the box so that P0
n =

√
M2

K + P2
n. Consequently, the

four-momentum of the state |n〉 transforms similarly to the four-momentum of a single particle that is,
generally, not the case for the multi-particle states in a finite volume.

Writing down Eq. (6.66) in a finite volume, using Eqs. (6.67) and (6.68), and carrying out the
contour integration over K‖ , one arrives at

G(x − y) = 32
∑

`m,`′m′,`′′m′′,`′′′m′′′

4π
L15

×
∑

q1q2k1k2

e−iPn, ‖ (x−y)‖−iK⊥(x−y)⊥

√
M2

K − K2
⊥

2w(q1)2w(q2)2w(k1)2w(k2)

√
M2

K +K2

×
Y`′m′(q̃1) f`′((K − k1)

2
)SL
`′m′,`′′′m′′′(K − k1)ψ

(`′′′m′′′)
n (k1)

2wv(K − q1 − k1)
(
wv(q1) + wv(k1) + wv(K − q1 − k1) − Pn, ‖

)
×

ψ̄(`
′′m′′)
(k2)S

L
`′′m′′,`m(K − k2) f`((K − k2)

2
)
(
Y`m(q̃2)

)∗
2wv(K − q2 − k2)

(
wv(q2) + wv(k2) + wv(K − q2 − k2) − Pn, ‖

) + . . . , (6.71)

where

K0
⊥ = −

v2

v0 Pn, ‖ +
vK
v0 , K⊥ = K − vPn, ‖ . (6.72)

In the equation above, we have explicitly singled out the contribution from a pole that emerges at
K‖ = Pn, ‖ with P2

n = M2
K for a given total three-momentum K (or, equivalently, for a fixed K⊥, as

seen from Eq. (6.72)). The ellipsis stands for other single-pole contributions, K‖ = Pn, ‖ , emerging in
the spectral decomposition of particle-dimer amplitude. The individual amplitudes feature many more
singularities in this variable. However, we also take into account the fact that, in the rest frame, all
these singularities cancel. This property should persist in moving frames as well, since the position of
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the poles in our framework is Lorentz-invariant.

Now, continuing to the Euclidean space and comparing Eq. (6.64) with Eq. (6.71), one may finally
read off the matrix element one is looking for:

|〈0|O(0)|n〉| =
3
√

4π
L3/2

©«
MK√

M2
K +K2

ª®®¬
1/2 ���� ∑

`m,`′m′

1
L6

Λv∑
qk

Y`′m′(q̃)
2w(q)2w(k)

×
f`′((K − k)2)SL

`′m′,`m(K − k)ψ(`m)n (k)

2wv(K − q − k)
(
wv(q) + wv(k) + wv(K − q − k) − Pn, ‖

) ���� . (6.73)

Here a cutoff on the momenta, which has been implicit in all previous expressions, is displayed. We
also remind the reader that |n〉 denotes an eigenstate with the momentum K (no summation over K).
The components of the four-vector Kµ are:

Kµ
=

(
1
v0 (Pn, ‖ + vK),K

)
. (6.74)

Furthermore, since there is no more summation in K, we may fix the vector vµ along Kµ that leads to
Kµ
⊥ = 0. Finally, in a finite volume, |n〉 is a basis vector of some irreducible representation Γ of some

little group, or of an octahedral group (in case of K = 0). Particular values of `, `′ contribute to this
sum, if and only if Γ is contained in the pertinent irreducible representation of the rotation group.

6.3.3 Faddeev Equation for the Wave Function

The wave function, which was introduced in Eq. (6.68), obeys the homogeneous Faddeev equation
both in the infinite and in a finite volume, which can be straightforwardly obtained by substituting the
ansatz defined by Eq. (6.68) into the equation for the particle-dimer scattering amplitude (6.42) and
identifying pole terms on the both sides of this equation. In a finite volume, this equation takes the
form

ψ(`
′m′)

n (p) =
∑

`m,`′′m′′

1
L3

Λv∑
k

1
2w(k)

× Z`′m′,`′′m′′(p, k)SL
`′′m′′,`m(K − k)ψ(`m)n (k) . (6.75)

The infinite-volume analog of the above equation can be written as

ψ(`
′m′)

n (p) =
∑̀
m

∫ Λv d3k⊥
(2π)32wv(k)

Z`′m′,`m(p, k)S`(K − k)ψ(`m)n (k) . (6.76)
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GK (x) = g

Figure 6.3: Contributions to the two-point function GK (x). The single and double lines denote the particle
propagator and the full dimer propagator, respectively. The quantity T stands for the particle-dimer scattering
amplitude. The difference between GK (x) and the two-point function G(x − y), shown in Fig. 6.2, boils down
to the different sink operators used (these correspond to the utmost right vertices in the pertinent diagrams).

Since these are inhomogeneous equations, the normalization of the wave function should be fixed
independently. Using the standard technique (see, e.g., [242, 243]), in a finite volume one obtains

1 =
∑

`′m′,`m

1
L3

Λv∑
p

1
2w(p)

ψ̄(`
′m′)

n (p)
(

d
dK‖

SL
`′m′,`m(K − p)

)
ψ(`m)n (p)

����
K‖=Pn, ‖

+
∑

`m,`′m′,`′′m′′,`′′′m′′′

1
L6

Λv∑
p,q

1
2w(p)2w(q)

ψ̄(`
′m′)

n (p)SL
`′m′,`′′′m′′′(K − p)

×

(
d

dK‖
Z`′′′m′′′,`′′m′′(p, q)

)
SL
`′′m′′,`m(K − q)ψ(`m)n (q)

����
K‖=Pn, ‖

. (6.77)

The infinite-volume counterpart of the above equation is

1 =
∑̀
m

∫ Λv d3p⊥
(2π)32wv(p)

ψ̄(`m)n (p)
(

d
dK‖

S`(K − p)
)
ψ(`m)n (p)

����
K‖=Pn, ‖

+
∑

`′m′,`m

∫ Λv d3p⊥
(2π)32wv(p)

d3q⊥
(2π)32wv(q)

ψ̄(`
′m′)

n (p)S`′(K − p)

×

(
d

dK‖
Z`′m′,`m(p, q)

)
S`(K − q)ψ(`m)n (q)

����
K‖=Pn, ‖

. (6.78)

6.3.4 The Decay Matrix Element

Let us now consider the two-point function GK (x) = 〈0|TO(x)J†K (0)|0〉, where J†K (y) =
δLG

δK(y)
is a

source operator for the field K(y).
Applying the Feynman rules of the NREFT, in the infinite volume, the two-point function, shown in

Fig. 6.3, can be expressed as

GK (x) = 3
∫ dK‖

2πi
d3K⊥
(2π)3

e−iK‖x‖−iK⊥x⊥GK (K) , (6.79)

127



Chapter 6 Three-Particle Lellouch-Lüscher Formalism in Moving Frames

where

GK (K) = 4π
∑

`m,`′m′

(−1)`
√

2` + 1

∫ d3q1,⊥

(2π)32wv(q1)

d3k1,⊥

(2π)32wv(k1)

d3k2,⊥

(2π)32wv(k2)

×
f`′((K − k1)

2
)Y`′m′(k̃1)g`′m′,`m(k1, k2; K)Y`,−m(k2)G`((K − k2)

2
)

2wv(K − q1 − k1)
(
wv(q1) + wv(k1) + wv(K − q1 − k1) − K‖ − iε

) , (6.80)

with G` defined by Eq. (6.56). Again, the corresponding expression in the finite-volume is obtained
by boosting the integration momenta into the rest frame of the box, according to Eq. (6.69). Using the
spectral decomposition of the particle-dimer amplitude and carrying out the K‖ integration:

GK (x) = 3
∑

`m,`′m′,`′′m′′,`′′′m′′′

4π
L12

(−1)`
√

2` + 1

∑
q1k1k2

e−iPn, ‖x‖MK

2w(q1)2w(k1)2w(k2)

√
M2

K +K2

×
f`′((K − k1)

2
)Y`′m′(k̃1)S

L
`′m′,`′′′m′′′(K − k1)ψ

(`′′′m′′′)
n (k1)

2wv(K − q1 − k1)
(
wv(q1) + wv(k1) + wv(K − q1 − k1) − Pn, ‖

)
× ψ̄(`

′′m′′)
n (k2)S

L
`′′m′′,`m(K − k2)Y`,−m(k2)G`((K − k2)

2
) + . . . . (6.81)

Similar to Eq. (6.71), we only display the contribution of the pole that emerges at K‖ = Pn, ‖ with
P2
n = M2

K for a given three-momentum K.

On the other hand, by inserting a full set of states, we obtain

GK (x) =
∑
n

e−iPn, ‖x‖−iPn,⊥x⊥ 〈0|O(0)|n〉〈n|J†K (0)|0〉 . (6.82)

Comparing this expression for GK with Eq. (6.81) and using the form of the matrix element in
Eq. (6.73), we can read off

L3/2
〈n|J†K (0)|0〉 = ±

√
4π

©«
MK√

M2
K +K2

ª®®¬
1/2 ∑

`m,`′m′

(−1)`
√

2` + 1

×
1
L3

Λv∑
k

1
2w(k)

ψ̄(`
′m′)

n (k)SL
`′m′,`m(K − k)Y`,−m(k)G`((K − k)2) . (6.83)

Note that, due to the fact that the finite volume decay matrix element is real-valued, its phase is merely
given by an undetermined sign. The choice of this sign is a delicate issue and is discussed in detail, say,
in Ref. [191]. In brief, as argued in that paper, the phase of the eigenvector |n〉 is arbitrary, and one
can always choose it in a way that the sign of the (real-valued) matrix element 〈0|O(0)|n〉 is positive.
In the following we shall stick to this convention, which amounts to choosing “+” sign in the above
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〈π(k1)π(k2)π(k3); out|J†K (0)|0〉 = g

Figure 6.4: Contributions to the infinite volume decay matrix element. The single and double lines denote the
particle propagator and the full dimer propagator, respectively.

equation.9

In the infinite volume the decay matrix element is given by, see Fig. 6.4:

〈π(k1)π(k2)π(k3); out|J
†

K (0)|0〉

= 4π
∑

`m,`′m′

(−1)`
√

2` + 1

3∑
α=1

∫
d3k⊥

(2π)32wv(k)

× f`′((K − kα)
2
)Y`′m′(k̃α)g`′m′,`m(kα, k; K)Y`,−m(k)G`((K − k)2) . (6.84)

Indeed this quantity is Lorentz invariant. The transformation property of g`′m′,`m exactly cancels
those of the spherical functions entering the expression.

6.3.5 The Three-Particle LL Formula

At a given order O(ε2n
) in the NREFT power counting, where ε is a generic small parameter and

p⊥ = O(ε), only a finite number of effective decay couplings G(`)i have to be taken into account.
Noting that Y`,−m(k) = O(ε`) and ∆T = O(ε2

), for a given angular momentum ` (even only):

G`(∆T ) = G(`)0 + G(`)1 ∆T + · · · + G(`)
n−`/2∆

n−`/2
T (6.85)

Therefore, at order O(ε2n
), there are N = (n + 1)(n + 2)/2 undetermined10 couplings G(`)i .

Let xα denote the finite volume decay matrix element extracted in some lattice setup α, with total
momentum K = Kα and box length L = Lα. Expanding the low-energy polynomial G`((K − k)2), xα

9 In case of three weakly interacting particles in the final state, such a choice is a natural one, since the matrix element
〈0|O(0)|n〉, calculated in perturbation theory, starts with 3!〈0|φ(0)|k〉3, where |k〉 denotes a state containing one free
particle which is moving with a momentum k. Furthermore, the sign of the one-particle matrix element does not depend
on L and k. Thus, if the perturbative corrections are small and do not exceed the leading term, the set of matrix elements
〈0|O(0)|n〉, corresponding to the different L, n and the total three-momentum K, will have a positive relative sign. Note
also that in the case of strong final-state interactions (i.e., when the two-particle resonances are present), the above
argument is not a priori applicable and the question requires further scrutiny. We choose, however, not to elaborate
further on this issue.

10 Symmetry arguments could lower the number of independent couplings
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can be written as a linear combination of the effective couplings:

xα = L3/2
α 〈n|J

†

K (0)|0〉α =
2n∑̀
=0

n−`/2∑
i=0

a(`)i (Kα, Lα)G
(`)
i ≡

N∑
I=1

aαI GI , (6.86)

where the amplitudes a(`)i (Kα, Lα) can be read off from Eq. (6.83). A similar expression can be found
for the infinite volume decay matrix element:

〈π(k1)π(k2)π(k3); out|J
†

K (0)|0〉 =
2n∑̀
=0

n−`/2∑
i=0

A(`)i (K)G
(`)
i ≡

N∑
I=1

AI (K)GI , (6.87)

where A(`)i (K) can be read off from Eq. (6.84) and K is the total momentum of the three-particle system.
Measuring N finite volume decay matrix elements in different lattice setups and using Eq. (6.86),
interpreted as a matrix equation, we can eliminate the dependence on the coupling constants G`

i of the
infinite volume matrix element:

〈π(k1)π(k2)π(k3); out|J
†

K (0)|0〉 =
N∑
α=1
(Φ3)α · L

3/2
α |〈n|J

†

K (0)|0〉|α , (6.88)

where the LL-factor (Φ3)α is given by

(Φ3)α =

N∑
I=1

AI (K) (a
−1
)Iα (6.89)

and a−1 is the inverse of the matrix

a =
©«

a(0)0 (K1, L1) a(0)1 (K1, L1) . . . a(0)n (K1, L1) . . . a(2n)0 (K1, L1)
...

. . .
...

a(0)0 (KN, LN ) a(0)1 (KN, LN ) . . . a(0)n (KN, LN ) . . . a(2n)0 (KN, LN )

ª®®®¬ , (6.90)

while
AI (K) =

(
A(0)0 (K) A(0)1 (K) . . . A(0)n (K) . . . A(2n)0 (K)

)
. (6.91)

In the equations above it is assumed that the box sizes Lα were adjusted, such that K0
=

√
M2

K +K2
α,

for each α.

The Eqs. (6.88)-(6.91) display our finial result, resembling the LL equation for the three-particle
sector. As in the two-particle sector, the LL factors merely depend on the short-range pion interactions.
Fixing the parameters of the two- and three-particle scattering sector by a fit to the corresponding
energy-spectra by using the quantization conditions fully determines the amplitudes A(`)i (K) and
a(`)i (K, L). One then extracts the finite volume decay matrix element in various different moving
frames. Here one has to ensure that the energy of the three-particle eigenstate coincides with an
energy level of the moving kaon. This is done by choosing the box length L appropriately. One can
finally use Eqs. (6.88)-(6.91) to obtain the infinite volume decay amplitude. Note also that the above
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expressions are very similar in form to the three-particle LL equation derived in the RFT formalism
(see, e.g., Eq. (2.43) in Ref. [191]). For example, the eigenvector v in that paper can be related to the
particle-dimer wave function ψ(`m)n from our paper and so on. We did not attempt, however, to carry
out a detailed comparison with Ref. [191].
Note that Eq. (6.88) is manifestly relativistic-invariant. The infinite volume decay amplitude is a

linear combination of invariant amplitudes A(`)i (K).

6.4 Conclusions

i) In the present paper we have derived a manifestly relativistic-invariant counterpart of the LL
formula in the three-particle sector, describing the decay of a spinless particle into three likewise
spinless, identical particles. Our result represents a generalization of the formula derived in
Ref. [1], which is reproduced at the leading order and at a vanishing total three-momentum. The
importance of having an explicitly invariant framework lies, first and foremost, in the possibility
to use the data from different moving frames for performing a global fit. This possibility is
extremely valuable, especially beyond the leading order.

ii) A major technical modification in this paper consisted in the inclusion of all partial waves in
the pair interactions as well as in the particle-dimer interactions. This renders the proof of
the Lorentz-invariance a highly non-trivial issue, due to the necessity to take into account the
Thomas-Wigner rotation. A solution of this problem has been found in the present paper.

iii) Another technical complication was related to the necessity of the diagonalization of the
quantization condition in various irreps of the octahedral group and various subgroups thereof.
In this paper we explicitly write down the quantization condition, projected onto different irreps,
in the presence of an arbitrary number of partial waves.

iv) The LL factors, relating the infinite volume decay matrix elements to its counterparts in various
different moving frames, depend on the local two- and three-particle interactions that emerge
due to the rescattering in the final state. The corresponding parameters in the three-particle
sector can be fixed by a fit to the energy spectrum. Furthermore, as the quantization condition,
derived in the present paper, is valid in an arbitrary moving frame, the energy spectra of the
same lattice setups can be used, in which the finite volume decay amplitudes were determined.

v) The framework can be further generalized in a number of ways. Namely, in order to describe
decays of particles with an arbitrary spin, the LL formula can be straightforwardly modified
by an appropriate choice of source operators for the decaying particle and the three-particle
final states, replacing J†K and O respectively. Furthermore, one may consider the case of the
non-identical particles in the final state and include fermions (note that three pions carrying
isospin have been already considered in Ref. [191]). It can be expected that all these actions are
pretty straightforward and can be performed by using the same methods as in the present article.
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CHAPTER 7

Conclusion and Outlook

Unraveling the complex nature of the strong force requires examining the spectrum of hadrons and their
interactions. However, the non-perturbative aspects of quantum chromodynamics at the hadronic scale
prevent the application of standard, i.e. perturbative, quantum field theoretic techniques. Nevertheless,
lattice qunatum chromodynamics provides a method to study multi-hadron dynamics in the low-energy
regime. Information about hadron interactions can be inferred from the finite-volume energy spectra,
extracted from lattice simulations. One of the most remarkable features of the strong interactions is
the intriguing abundance of resonances and bound states. However, especially in the presence of
such hadronic resonances and bound states, the extraction of scattering and resonance properties
is impeded, as simple perturbative calculations of the finite-volume energy spectra exhibit a poor
convergence. In the two-body sector, the Lüscher formalism provides a framework that allows to
map the finite-volume energy spectra to S-matrix elements, even in the case of resonant scattering.
Applications of this framework and its various generalizations is a well-established praxis for hadron
spectroscopy in the two-body sector nowadays.

In recent years the focus of lattice studies on multi-hadron systems has gradually shifted form two
to three particles. This development is accompanied by a rapid progression in the generalization of
the Lüscher formalism to the three-particle sector, which is essential in order to determine three-body
observables from the finite-volume energy spectra. Utilizing the framework of non-relativistic effective
field theories, the purpose of this thesis is to push the boundaries of the three-body finite-volume
formalism further.

In that context, the formulation of a relativistic-invariant three-particle quantization condition, in the
sense that it is valid in different moving frames at the same time, is of particular importance. Primarily,
when determining scattering properties from finite-volume spectra, such a relativistic-invariant form
of the quantization condition allows to avoid computational expensive simulations in big volumes.
The number of data points used in the fitting procedure can be kept constant by including data
of different total three-body momentum instead. Furthermore, the stringent constraints that are
imposed by relativistic invariance effectively lower the number of couplings that are needed to
describe the process under consideration. Within the non-relativistic effective field theory approach a
generalization to a relativistic-invariant form of the three-particle quantization condition represents a
highly non-trivial task due to the inherent explicit non-covariance of the framework. Thus, an important
objective of the research project, that has been summarized in this thesis, is the implementation of a
relativistic-covariant version of the non-relativistic effective field theory framework, enabling practical
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applications of the non-relativistic effective field theory approach for the analysis of lattice QCD data
in the three-body sector.

Furthermore, despite the considerable progress in the general treatment of the three-particle systems
in a finite-volume, a framework that establishes a relation between finite-volume decay matrix elements
and infinite-volume decay amplitudes was not available, such that studies of three-body decays from
lattice QCD remained inaccessible. Another aspect of the research project was to derive such an
analog of the Lellouch-Lüscher equation in the three-particle sector.

A first step towards the general description of three-particle decays in a finite-volume was presented
in Chapter 4, where a three-body analog of the Lellouch-Lüscher formalism was derived in the rest
frame at the leading order in the covariant form of non-relativistic effective field theory. At this
order, the infinite-volume decay amplitude only depends on a single coupling that describes the decay
of the initial particle, which can be eliminated by substituting the expression for the finite-volume
decay matrix element, exhibiting the same dependence on that coupling. The resulting linear relation
between these two quantities only depends on the rescattering of the particles in the final state, which is
purely described by parameters that can be fixed by measurements of the two- and three-body spectra.
While an explicitly Lorentz-invariant framework is favorable for the extraction of three-body decay
amplitudes from lattice QCD in general, working at the leading order where the effective Lagrangian
does not contain any derivative interactions, all issues related to the explicit non-covariance of the
framework are irrelevant. The derivation in this chapter thus serves as a proof of concept.

The relativistic covariance of the non-relativistic effective field theory approach is addressed in
Chapter 5. The explicit relativistic non-covariance of the infinite-volume particle-dimer scattering
amplitude in the original framework can be primarily traced back to the three-particle propagators
lack of invariance. Thus, a modified formalism has been developed in which the quantization axis
in the non-relativistic effective Lagrangian is chosen according to the velocity of three-body system.
This modification renders the three-particle propagator Lorentz-invariant and was used in order to
derive a manifestly relativistic invariant three-particle quantization condition.
In contrast to the RFT approach, where invariance was achieved by explicitly altering the form of

the three-particle propagator, the approach developed here is arguably advantageous: Due to the pole
structure of the low-energy polynomial, representing the antiparticle contribution, that is added to
the three-particle propagator in the RFT approach, the cutoff on the spectator-momenta can not be
taken arbitrarily high, as this would lead to a violation of unitarity in the infinite- and emergence of
spurious poles in the finite volume. In contrast, the antipartical degrees of freedom are integrated out
systematically in the non-relativistic effective field theory approach, such that all singularities related
to these are removed explicitly and only affect the actual values of the couplings entering the effective
Lagrangian. Therefore, the cutoff function in the non-relativistic effective field theory approach only
acts as an ultraviolet regulator.

The relativistic invariance of the quantization condition has been tested numerically in a toy model
at the leading order, restricted to S-wave interactions, by elaborating the finite-volume energy spectra
in various moving frames. As the implementation of a fitting routine possibly requires only little
effort, the framework developed here can be applied for the global analysis of three-particle lattice
simulations at different total three-body momenta in the foreseeable future.

The advances presented in Chapter 6 are twofold. First of all, the restriction to S-wave interactions in
the derivation of the relativistic invariant quantization condition outlined in Chapter 5 was lifted by the
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inclusion of dimer fields with arbitrary angular momentum. Despite the complicated transformation
behavior of the interactions that arise due to the generalization to higher partial waves, explicit
Lorentz-covariance of the particle-dimer scattering amplitude could be proven. Taking into account
all partial waves, the framework fully describes a system of three identical spinless scalar bosons in a
finite volume. Moreover, the quantization condition can be trivially adapted for the description of
pseudoscalar mesons by taking into account their internal parity when projecting onto the several
irreducible representations of the cubic group and its stabilizers in case of non-vanishing total
three-body momentum. Therefore, the formalism established here, serves as a tool for the analysis of
lattice QCD data of, e.g., the three-pion and three-kaon systems at maximal isospin.
Secondly, the leading order expression for the analog of the Lellouch-Lüscher formula derived in

Chapter 4 was generalized to higher orders. No restrictions on the possible form of the Lagrangian,
describing the initial decay of a scalar spinless boson into three identical likewise spinless bosons,
was assumed. Most importantly, the derivation utilizes the relativistic-invariant formulation of the
non-relativistic field theory approach. This does not only reduce the number of effective couplings
needed to describe the initial decay, such that less finite-volume decay matrix elements have to
be measured in the lattice simulation, it also enables to combine matrix elements that have been
determined for different total three-body momentum.
With rising computational power and improved algorithms, simulations of three-body decays in

lattice QCD are in prospect. Although a systematic strategy for the extraction of three-body decay
amplitudes from lattice QCD has been established in this work, due to the restriction to identical
particles, the framework is not yet applicable to real physical decays. Additional steps are required.
Serving as test for CP-violation in the standard model, an obvious candidate for a lattice study of
decays in the three-body sector is provided by the electroweak process of the positively charged kaon
into three pions. In order to describe this decay that appears in the two channels, K+ → π+π+π− and
K+ → π0π0π+, the different isospin contributions for the system of three pions have to be included in
the rescattering process. Due to the multi-channeled nature of the decay, even at the leading order
where derivative couplings are absent, the Lellouch-Lüscher factor is not a solely described by a single
number. This problem is covered in a current project [7].

Besides the progress in the non-relativistic effective field theory treatment of the three-particle
sector that has been reported in this thesis, the research project has also contributed perturbative
calculations of the energy shifts for the three-pion ground in the isopsin I = 1 channel [4], as
well as the three-nucleon ground state [6], up-to-and-including effects of the order O(L−6

). The
resulting expressions enable a convenient way to extract the three-body threshold amplitude, by
performing a fit to the measured ground state energy levels. However, the applicability of perturbation
theory for three-nucleon scattering is problematic. As expected, the perturbative expansion exhibits
a poor convergence for physical values of the S-wave nucleon-nucleon scattering lengths, due to
their unnatural large size. As discussed in the literature [244–247], it is possible that, in nature,
the quark masses are close to a critical values where the scattering lengths diverge, corresponding
to an infrared limit cycle of QCD in the three-nucleon sector [248, 249]. On the other hand, the
perturbative calculation of the three-nucleon energy shift might be still valuable for the analysis of
lattice simulations performed away from the physical quark masses.
Furthermore, the influence of unphysical singularities in the two-body amplitude that can emerge

when using the effective range expansion to the three-particle energy spectrum has been investigated
in [5]. Including effective-range effects, the two-particle scattering amplitude may develop a spurious
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pole with negative residue, as described in 3.3.4. This unphysical singularity usually lies at large
negative energies, well below the range of applicability of the effective field theory, so that such
an inconsistent parametrization can be accepted when describing the low-energy two-body sector.
However, in the Faddeev equation for the three-body amplitude, the center-of-mass energy of the
two-body amplitude can take large negative values, such that an unphysical two-body singularity
affects three-body unitarity even in the low-energy regime. Using a toy model, in [5] it was observed
that, in the presence of such a spurious pole, the three-body energy spectrum exhibits an unphysical
behavior with merging and disappearing energy levels. Furthermore, it was shown that a procedure to
remove these spurious poles without imposing any restrictions on the spectator momentum cutoff,
proposed in [183], can be adapted to the finite-volume calculations.

The research project has contributed to the further development of the three-body finite-volume
formalism. These advances are not only restricted to the non-relativistic effective field theory approach.
Problems that arise due to the modifications in order to render the RFT formulation relativistic invariant
may be evaded by adapting the formalism established here, e.g. by making use of a covariant form
of time-ordered perturbation theory. Furthermore, an three-body analogue of the Lellouch-Lüscher
formula has been derived for the first time.
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APPENDIX A

Appendix

A.1 Pinched Energy Levels in the Non-Relativistic Limit

This appendix discusses the role of “pinched” energy levels in the non-relativistic limit. As can be
read off from Eq. (3.41), the Lüscher Zeta-function has poles at those energies, that correspond to the
energy levels in the non-interacting case. Thus, in the vicinity of a “pinched” energy-level that lies in
the narrow region in between two consecutive non-interacting energy levels, that are non-degenerate
due to relativistic effects, the quantization condition for ` = 0, Eq. (2.62), can be approximated by:

A(s; P) = cot δ0(s) −
1

π3/2γη
Zd

00(1, s) = c −
r1

E ′1 − E
−

r2

E ′2 − E
= 0 , (A.1)

where c is a constant and E ′i denote the free energy levels with ri > 0 the corresponding residue of the
Lüscher Zeta-function (multiplied by the prefactor). The non-interacting energies obey

E ′i =

√
M2
+

(
2π
L

ni

)2
+

√
M2
+

(
2π
L

mi

)2
, (A.2)

with ni ∈ Z
3, mi = d − ni and n2

1 +m2
1 = n2

2 +m2
2, such that

E ′i = Enr − δE ′i , (A.3)

where

Enr = 2M −
(
2π
L

)2 1
2M

(
n2
i +m2

i

)
, (A.4)

corresponds to the (degenerate) non-interacting level in the non-relativistic case. The solutions to
Eq. (A.1) are given by

E1/2 = Enr −
1
2
(δE ′1 + δE ′2) −

1
2c
(r1 + r2) ±

1
2c

√
4r1r2 + (r1 − r2 + c(δE ′1 − δE ′2))

2 . (A.5)
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Taking the non-relativistic limit for which δE ′i → 0:

E1 → Enr , E2 → Enr −
1
2c
(r1 + r2) . (A.6)

Obviously the solution at E1 = Enr does not correspond to a physical result.
In order to show that this is indeed the case, the two-body amplitude in the finite volume can be

considered. For pure S-wave interactions it can be written as, see Eq. (3.40):

t(s; P) =
16π
√

s
q∗

A(s; P)−1 . (A.7)

The residues1 at the energies E1/2 that solve the quantization condition A(s; P) are given by:

res1/2 =
16π√s1/2

q∗1/2

1
2c2

©«(r1 + r2) ∓
(r1 + r2)

2
+ c(r1 − r2)(δE ′1 − δE ′2)√

4r1r2 + (r1 − r2 + c(δE ′1 − δE ′2))
2

ª®®¬ , (A.8)

where si = E2
i − P2 and q∗i =

√
si/4 − M2. It can be seen that in the non relativistic limit

res1 → 0 , res2 →
16π√s1

q∗1

r1 + r2

c2 . (A.9)

Thus, while the energy level at E2 has a well behaved non-relativistic limit, the energy level that is
pinched between the two consecutive non-interacting levels will disappear from the spectrum.

A.2 Two-Body Amplitude in a Finite Volume

This appendix proves the vµ-independence of the finite volume two-body amplitude by providing an
explicit derivation of Eq. (5.84). Calculating the two-particle scattering amplitude in a finite volume
amounts to replacing the loop integral I defined in Eq. (5.7) by its finite volume counterpart IL .

IL =
1
L3

∑
k

∫
dk0
2πi

1
2wv(k)(wv(k) − vk − iε)

1
2wv(P − k)(wv(P − k) − v(P − k) − iε)

.

(A.10)

At this stage, one uses Eq. (5.8). Adding and subtracting the real part of the same quantity, calculated
in the infinite volume, one gets:

IL = Re(I(s)) +

[
1
L3

∑
k
−P

∫
d3k
(2π)3

]
×

∫
dk0
2πi

{
1

(m2
− k2
− iε)(m2

− (P − k)2 − iε)
+ ∆

}
. (A.11)

1 Here the convention of the residue follows from t(s; P) = resi/(Ei − E) + regular.
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Here, the quantity I(s) and the real part thereof are given by Eqs. (5.10)-(5.12). Furthermore, the
quantity ∆ is equal to

∆ =
1

m2
− k2
− iε

1
2wv(P − k)(wv(P − k) + v(P − k) − iε)

+
1

m2
− (P − k)2 − iε

1
2wv(k)(wv(k) + vk − iε)

+
1

2wv(k)(wv(k) + vk − iε)
1

2wv(P − k)(wv(P − k) + v(P − k) − iε)
. (A.12)

The energy denominators in the above expression can be expanded, according to Eq. (5.9). The last
term turns then into a low-energy polynomial. The first two terms contain a single low-energy pole in

k0 each, at k0
=

√
m2
+ k2 and k0

= P0
−

√
m2
+ (P − k)2, respectively. Integrating over k0 leads to a

low-energy polynomial again2. In the infinite volume, such low-energy polynomials do not contribute
to the integrals over spatial components of momenta in dimensional regularization. In a finite volume,
the sum minus integral over spatial components of momenta gives a contribution that is exponentially
suppressed in the box size L. Neglecting these exponential terms, it is seen that the contribution from
∆ vanishes completely, and one can finally write:

IL = J(s) +

[
1
L3

∑
k
−P

∫
d3k
(2π)3

] ∫
dk0
2πi

1
(m2
− k2
− iε)(m2

− (P − k)2 − iε)
. (A.13)

The explicit vµ-dependence disappears already at this stage. The subsequent steps are pretty standard.
Evaluating the integral over k0 gives:

IL = J(s) +

[
1
L3

∑
k
−P

∫
d3k

(2π)3

]
1

2w(k)w(P − k)
w(k) + w(P − k)

(w(k) + w(P − k))2 − P2
0

= J(s) +

[
1
L3

∑
k
−P

∫
d3k

(2π)3

]
1

4w(k)w(P − k)(w(k) + w(P − k) − P0)

= J(s) +
1

4π3/2Lγ
√

s
Zd

00(1; q2
0) . (A.14)

The integrands in the first and second line differ by
[
4w(k)w(P − k)(w(k)+ w(P − k)+ P0)

]−1. Since
this is a low-energy polynomial in the three-momenta, it gives rise only to the exponentially suppressed
corrections. Finally, following Ref. [148], the sum minus integral in the fourth line can be expressed
through the Lüscher zeta-function, as defined in Eq. (5.85).
Noting that the tree-level amplitude is the same in the infinite and finite volume, the resulting

2 Certain care should be taken carrying out integrations in k0 over the low-energy polynomials. Strictly speaking, these
integrals do not exist because of the divergence arising at |k0

| → ∞. In the present papers, we consistently put all such
integrals to zero that can be justified, for instance, by using split dimensional regularization [250].
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two-body S-wave scattering amplitude in a finite volume reads as

τL(P) =
1

(TS−wave
tree )

−1
− 1

2 IL(P)
=

16π
√

s

p(s) cot δ0(s) −
2
√
πLγ

Zd
00(1; q2

0)

, (A.15)

where p(s) cot δ0(s) is given by Eq. (5.21).

A.3 A Dimer Field with the Spin `

We define a dimer field with the spin ` and projection m = −`, · · · , ` from the tensor field Tµ1 · · ·µ`
.

There are three constraints on Tµ1 · · ·µ`
:

• Permutation symmetry in all indices

Tµ1 · · ·µi · · ·µ j · · ·µ`
= Tµ1 · · ·µ j · · ·µi · · ·µ`

, for all i, j . (A.16)

• The tensor Tµ1 · · ·µ`
is traceless in each pair of indices

gµiµ jTµ1 · · ·µi · · ·µ j · · ·µ`
= 0 , for all i, j . (A.17)

• For all i, the field obeys the constraint (6.2).

By considering the Lorentz transformation Λ that boosts vµ to v
µ
0 = (1, 0), one can define the

“rest-frame” tensor Tµ1 · · ·µ` as

Tµ1 · · ·µ` = Λ
µ1
ν1
· · ·Λ

µ`
ν`

Tν1 · · ·ν` . (A.18)

Due to the constraint (6.2), the field Tµ1 · · ·µ` vanishes, when any of the indices is equal to 0. For
simplicity of the notations, we will use spatial indices, i1, · · · , i` , instead of the Lorentz indices
µ1, · · · , µ` .
We begin with the case ` = 1, and write down a transformation that relates the matrix T in the

Cartesian and spherical bases

T i
= ci1mT1m , i = 1, 2, 3, m = −1, 0,+1 . (A.19)

Here, ci1m is given by

ci1,±1 =
1
√

2
©«
∓1
−i
0

ª®¬i , ci1,0 =
©«
0
0
1

ª®¬i . (A.20)

The above result is obtained by postulating

〈0|T i
| j〉 = δi j , 〈0|T1m |1n〉 = δmn , (A.21)
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and using the known relation between the basis vectors | j〉 and |1n〉 (the Condon-Shortley phase
convention is adopted throughout this paper).

Inversely, one can find that

T1m =
(
c−1

) i
1m

T i, (A.22)

where (
c−1

) i
1m
=

(
ci1m

)∗
. (A.23)

The spin-` field is build up by the direct product of ` spin-1 fields, i.e.,

T`m = C `m
m1 · · ·m`

T1m1
⊗ · · · ⊗ T1m`

= C `m
m1 · · ·m`

(ci11m1
)
∗
· · · (ci`1m`

)
∗T i1
⊗ · · · ⊗ T i`

≡

(
c−1

) i1 · · ·i`
`m

T i1 · · ·i`
. (A.24)

Here we are using the following notations:(
c−1

) i1 · · ·i`
`m

= C `m
m1 · · ·m`

(ci11m1
)
∗
· · · (ci`1m`

)
∗, (A.25)

T i1 · · ·i`
= T i1

⊗ · · · ⊗ T i`
. (A.26)

The coefficient C `m
m1 · · ·m`

for m1 = · · · = m` = 1 can be read off directly, since the highest-weight state
takes the form

|`, `〉 = |1,m1 = 1〉 ⊗ · · · ⊗ |1,m` = 1〉︸                                  ︷︷                                  ︸
`

≡ | 1, · · · , 1︸   ︷︷   ︸〉
`

. (A.27)

From the above equation it follows that C ``
1· · ·1 = 1. For the lower-weight states, we can use the ladder

operator

J− | j,m + 1〉 = A−j,m | j,m〉, A−j,m =
√
( j − m)( j + m + 1). (A.28)

Acting on the state with maximum weight, one gets

J− |`, `〉 = A−`,`−1 |`, ` − 1〉. (A.29)

At the same time, we have,

J− | 1, 1, · · · , 1︸      ︷︷      ︸〉
`

= A1,0 | 0, 1, · · · , 1︸      ︷︷      ︸〉
`

+ A1,0 | 1, 0, · · · , 1︸      ︷︷      ︸〉
`

+ · · · A1,0 | 1, 1, · · · , 0︸      ︷︷      ︸〉
`

. (A.30)

141



Appendix A Appendix

This means that

C `,`−1
0,1, · · · ,1 = C `,`−1

1,0, · · · ,1 = · · · = C `,`−1
1,1, · · · ,0 =

A−1,0
A−`,`−1

. (A.31)

Continuing to act with the ladder operator, one gets

(J−)2 |`, `〉 = A`,`−1 A`,`−2 |`, ` − 2〉. (A.32)

On the other hand,

(J−)2 |1, 1, · · · , 1〉

= J−
(
A−1,0 |0, 1, · · · , 1〉 + A−1,0 |1, 0, · · · , 1〉 + · · · + A−1,0 |1, 1, · · · , 0〉

)
=

2!
1!1!0! · · · 0!︸        ︷︷        ︸

`

(
A−1,0

)2
(|0, 0, · · · , 1, 1〉 + · · · + |1, 1, · · · , 0, 0〉)

+
2!

2!0! · · · 0!︸     ︷︷     ︸
`

A−1,0 A−1,−1 (|1, 1, · · · ,−1〉 + · · · + |1, 1, · · · ,−1〉) . (A.33)

The first bracket in the above equation contains ` terms, in which −1 stands in the first position, in the
second position, and so on. The second bracket contains 1

2 `(` − 1) terms, in which two zeros stand in
arbitrary positions. Hence,

|`, ` − 2〉 =
1

A`,`−1 A`,`−2

(
2!

1!1!0! · · · 0!︸        ︷︷        ︸
`

(
A−1,0

)2
[
|0, 0, 1, · · · , 1, 1〉 + · · · + |1, 1, 1, · · · , 0, 0〉

]

+
2!

2!0! · · · 0!︸     ︷︷     ︸
`

(
A−1,0 A−1,−1

) [
| − 1, 1, · · · , 1〉 + · · · + |1, 1, · · · ,−1〉

] )
. (A.34)

From this, we can read off that

C `,`−2
0,0,1, · · · ,1,1 = C `,`−2

1,0,0, · · · ,1,1 = · · · = C `,`−2
1,1, · · · ,0,0 =

2!
1!1!0! · · · 0!︸        ︷︷        ︸

`

(
A−1,0

)2

A`,`−1 A`,`−2
,

C `,`−2
−1,1, · · · ,1 = C `,`−2

1,−1, · · · ,1 = · · · = C `,`−2
1,1, · · · ,−1 =

2!
2!0! · · · 0!︸     ︷︷     ︸

`

A−1,0 A−1,−1

A`,`−1 A`,`−2
. (A.35)

This procedure can be continued in a straightforward manner. Recalling that A−1,−1 = A−1,0 =
√

2,
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generic expression for the coefficients C is given by

C `m
m1 · · ·m`

=
(
√

2)`−m

A−`,`−1 · · · A
−
`,m

(` − m)!
(1 − m1)! · · · (1 − m`)!

. (A.36)

To summarize, T`m and Tµ1 · · ·µ` are related by

T`m =
(
c−1

)µ1 · · ·µ`

`m
T µ1 · · ·µ`

, (A.37)

and, inversely,

Tµ1 · · ·µ` = cµ1 · · ·µ`
`m

T`m, (` not summed) (A.38)

Here the matrix c matrix is given by

cµ1 · · ·µ`
`m

=

{
C `m
m1 · · ·m`

(ci11m1
) · · · (ci`1m`

), (µ1 = i1, · · · , µ` = i`) ,

0, if at least one of µi = 0 .
(A.39)

The matrix c−1 is complex conjugate of c:(
c−1

)µ1 · · ·µ`

`m
=

(
cµ1 · · ·µ`
`m

)∗
. (A.40)

Moreover, it obeys the constraints that are imposed by Eqs. (A.16)-(A.17), namely

c
µ1 · · ·µi · · ·µ j · · ·µ`
`m

= c
µ1 · · ·µ j · · ·µi · · ·µ`
`m

, (A.41)

gµiµ j
c
µ1 · · ·µi · · ·µ j · · ·µ`
`m

= 0. (A.42)

The constraint from Eq. (6.2) is obeyed automatically, owing to Eq. (A.39).

A.4 The Dimer Propagator in a Finite Volume

In this appendix, we briefly sketch the calculation of the finite-volume self energy, displayed in
Eq. (6.39). The on-shell momenta in Eq. (6.40) are defined as

q̂µ = qµ − vµ(vq − wv(q)) , q̂′µ = (P − q)µ − vµ(v(P − q) − wv(P − q)) . (A.43)

Furthermore, for any four-momentum,

p̃ = Λ(v0, v)Λ(v, u)p̂ =
(
Λ(v0, v)Λ(v, u)Λ

−1
(v0, u)

)
Λ(vo, u)p̂ . (A.44)

The product of three matrices in the brackets is a pure rotation:(
Λ(v0, v)Λ(v, u)Λ

−1
(v0, u)

)µν
= Rµν(v, u) , (A.45)
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where

R00
= 1 , R0i

= Ri0
= 0 ,

Ri j
= −δi j −

(1 − v0
)uiu j

(1 + (uv))(1 + u0
)
−

(1 − u0
)viv j

(1 + (uv))(1 + v0
)
−

uv(viu j
+ uiv j)

(1 + (uv))(1 + u0
)(1 + v0

)

+
(1 + u0

+ v0
+ uv)(viu j

− uiv j)

(1 + (uv))(1 + u0
)(1 + v0

)
. (A.46)

Below the elastic threshold P2 < 4m2, one can merely replace the sum by an integral in Eq. (A.48) – the
corrections to the infinite-volume limit are exponentially suppressed. Therefore, we concentrate on the
case P2

≥ 4m2 here. In this case, the expression for the self-energy can be further simplified. Namely,
the quantities q̂, q̂′ in the numerator in Eq. (6.39) can be expanded in Taylor series in (vq − wv(q)) and
(v(P − q) − wv(P − q)). All terms, except the first one, obviously vanish in this expansion, since after
the integration over q0 one gets a low-energy polynomial and the sum vanishes, if the dimensional
regularization is used (we remind the reader that, by implicit convention, the infinite-volume limit is
already subtracted in this sum). This expansion, in particular, leads to the replacement uµ → Pµ/

√
s,

where Pµ = (
√

s + P2,P). Hence, uµ becomes independent of the summation momentum and, after
integration over q0, the expression of the self-energy simplifies to

Σ
L
`′m′,`m(P) =

∑
m′′′m′′

D (`
′
)

m′m′′′
(R(u, v))Σ̄L`′m′′′,`m′′(P)

(
D (`

′
)

mm′′
(R(u, v))

)∗
. (A.47)

where

Σ̄
L
`′m′,`m(P) = f`′(P

2
) f`(P

2
)

1
2L3

∑
q

(
Y`′m′(k)

)∗
Y`m(k)

2w(q)2w(P − q)(w(q) + w(P − q) − P0
)
, (A.48)

where

k = l − u
lu

u0
(u0
+ 1)

, l = q −
1
2

P , (A.49)

At this point it is seen that the dependence of vµ is trivially factored out and is contained in the Wigner
D-functions only.
Next, we shall use the well-known addition property of the spherical functions

Y ∗`′m′(k)Y`m(k) = (−1)m
′

√
(2`′ + 1)(2` + 1)

4π

×
∑
js

(−1)j
√

2 j + 1|k|`
′
+`−j

(
`′ ` j
−m′ m −s

) (
`′ ` j
0 0 0

)
Yjs(k) . (A.50)

Here,
(
`′ ` j
−m′ m −s

)
and

(
`′ ` j
0 0 0

)
denote the Wigner 3 j symbols. Note that `′ + ` − j should be

an even integer – otherwise, the second of the 3 j symbols would vanish.
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Furthermore, we shall use the following identity (see, e.g., [50]):

1
2w(q)2w(P − q)(w(q) + w(P − q) − P0

)
=

1
2P0

1

l2 −
(lP)2

P02 − q2
0

+ · · · , (A.51)

where q2
0 =

√
s
4
− m2 and the ellipses stand for the terms that are low-energy polynomials and thus do

not contribute.
It is immediately seen that the denominator in the r.h.s of the above relation is equal to k2

− q2
0 .

Taking into account that `′ + ` − j is even, Eq. (A.48) can be rewritten as follows

Σ̄
L
`′m′,`m(P) =

π2

LP0 f`′(P
2
) f`(P

2
)q`

′
+`−j

0

√
(2`′ + 1)(2` + 1)

4π

×
∑
js

(−1)j+m
√

2 j + 1
(
`′ ` j
−m′ m −s

) (
`′ ` j
0 0 0

)
Zd
js(1; s) , (A.52)

where

Zd
js(1; s) =

∑
r∈Pd

Yjs(r)

r2
− η2 ,

Pd =

{
r ∈ R3

|r‖ = γ
−1
(n‖ −

1
2
|d|), r⊥ = n⊥, n ∈ Z3

}
, (A.53)

and

d =
L

2π
P , η =

L
2π

q0 , γ =
P0

√
s
. (A.54)

Final remark is in order. As mentioned already, our calculations concern the finite-volume corrections
only. The infinite-volume part has to be added by hand at the end of the day. In our case, the real part
of the loop function J(s) should be added, see Eq. (6.20). Once this is done, the finite-volume loop
function below threshold smoothly converges to the infinite-volume result, when L →∞.

A.5 Lorentz Transformations for Zloc

In order to establish the properties of Zloc under Lorentz transformations, we shall use the following
well-known properties of the Wigner functions:

D (j)mn(R)D
(j′)

m′n′
(R) =

j+j′∑
J= | j−j′ |

〈 jm, j ′m′ |J(m + m′)〉〈 jn, j ′n′ |J(n + n′)〉D (J)
(m+m′)(n+n′)

(R) ,

D (j)
mm′
(R) = (−1)m−m

′
(
D (j)
(−m)(−m′)

(R)
)∗
. (A.55)
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Now, taking into account the fact that TJL′L are invariant under Lorentz transformations, one may
write(

Zloc
)
`′m′,`m (Ωp,Ωq) = 4π

∑
JLL′

∑
MM′

TJLL′δM′M 〈L
′
(M ′ − m′), `′m′ |JM ′〉YL′(M′−m′)(Rp)

× 〈L(M − m), `m|JM〉
(
YL(M−m)(Rq)

)∗
. (A.56)

In the above equation, one may use the transformation law, given in Eq. (6.34). In addition, one may
replace the Kronecker-delta δM′M by

δM′M =
∑
N

D (J)
M′N
(R)

(
D (J)MN (R)

)∗
. (A.57)

Using now the second equation in (A.55), the local contribution can be rewritten as follows(
Zloc

)
`′m′,`m (Ωp,Ωq) = 4π

∑
JLL′

∑
MM′

TJLL′

∑
N

∑
nn′

D (J)
M′N
(R)

(
D (J)MN (R)

)∗
× 〈L ′(M ′ − m′), `′m′ |JM ′〉YL′n′(p)(−1)M

′
−m′−n′D (L

′
)

(m′−M′)(−n′)
(R)

× 〈L(M − m), `m|JM〉
(
YLn(q)

)∗
(−1)M−m−n

(
D (L)
(m−M)(−n)

(R)
)∗
. (A.58)

Next, one uses addition theorem, given in Eq. (A.55) and performs the sum over M ′, M afterwards.
The addition theorem gives

D (L
′
)

(m′−M′)(−n′)
(R)D (J)

M′N
(R)

=
∑
j′

〈L ′(m′ − M ′), JM ′ | j ′m′〉〈L ′(−n′), JN | j ′(N − n′)〉D (j
′
)

m′(N−n′)
(R) , (A.59)

and the same for the “unprimed” indices. Furthermore, the summation with M ′, M is carried out by
using the symmetry properties for the Clebsch-Gordan coefficients. For example,∑

M′

(−1)M
′
−m′−n′

〈L ′(m′ − M ′), JM ′ | j ′m′〉〈L ′(M ′ − m′), `m′ |JM ′〉

=
∑
M′

(−1)J−n
′
−`′

√
2J + 1
2`′ + 1

〈L ′(m′ − M ′), JM ′ | j ′m′〉〈L ′(m′ − M ′), JM ′ |`m′〉

= (−1)J−n
′
−`′

√
2J + 1
2`′ + 1

δj′`′ , (A.60)
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and, similarly, for the “unprimed” indices. Substituting this expression into the original formula gives(
Zloc

)
`′m′,`m (Ωp,Ωq) = 4π

∑
JLL′

∑
n′n

∑
j′ j

∑
N

TJLL′

× (−1)−n
′
+J−`′

√
2J + 1
2`′ + 1

δj′`′ 〈L
′
(−n′), JN | j ′(N − n′)〉YL′n′(p)D

(j′)

m′(N−n′)
(R)

× (−1)−n+J−`
√

2J + 1
2` + 1

δj` 〈L(−n), JN | j(N − n)〉
(
YLn(q)

)∗ (
D (j)

m(N−n)
(R)

)∗
. (A.61)

Using the symmetries of the Clebsch-Gordan coefficients again, we get:(
Zloc

)
`′m′,`m (Ωp,Ωq) = 4π

∑
JLL′

∑
n′n

∑
N

TJLL′

× 〈L ′n′, `′(N − n′)|JN〉YL′n′(p)D
(j′)

m′(N−n′)
(R)

× 〈Ln, `(N − n)|JN〉
(
YLn(q)

)∗ (
D (j)

m(N−n)
(R)

)∗
. (A.62)

Finally, one arrives at(
Zloc

)
`′m′,`m (Ωp,Ωq) =

∑
m′′′m′′

D (`
′
)

m′m′′′
(R)

(
Zloc

)
`′m′′′,`m′′ (p, q)

(
D (`)

mm′′
(R)

)∗
. (A.63)

A.6 Projection Onto the Various Irreps

In this appendix, we give a detailed derivation of Eqs. (6.53) and (6.54). To this end, we shall transform
Eq. (6.52) by using the transformation property of A , manifested in Eq. (6.51):

A `′Γ′α′,`Γα

σ′(t′∆′)Σ′,σ(t∆)Σ
(pr, qs) =

sσ′
G

sΣ
G

∑
g′,g∈G

∑
λ′ρ′,λρ

∑
λ′′′λ′′

〈Σ
′ρ′,∆′λ′ |Γ′α′〉T (Σ

′
)

ρ′σ′
(g′)T (∆

′
)

λ′λ′′′
(g)

×A `′`
λ′′′(t′∆′),λ′′(t∆)

(g−1g′︸︷︷︸
=g′′

pr, qs)T
(∆)

λ′′λ
(g−1
)T (Σ)σρ (g

−1
)〈Σρ,∆λ |Γα〉

=
sΣ′
G

sΣ
G

∑
g,g′′∈G

∑
λ′ρ′,λρ

∑
λ′′′λ′′σ′′

〈Σ
′ρ′,∆′λ′ |Γ′α′〉T (Σ

′
)

ρ′σ′′
(g)T (Σ

′
)

σ′′σ′
(g′′)T (∆

′
)

λ′λ′′′
(g)

×A `′`
λ′′′(t′∆′),λ′′(t∆)

(g′′pr, qs)T
(∆)

λ′′λ
(g−1
)T (Σ)σρ (g

−1
)〈Σρ,∆λ |Γα〉 . (A.64)
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In what follows, we shall use the relation∑
ρ′λ′

〈Σ
′ρ′,∆′λ′ |Γ′α′〉T (Σ

′
)

ρ′σ′′
(g)T (∆

′
)

λ′λ′′′
(g)

=
∑
ρ′λ′

〈Σ
′ρ′,∆′λ′ |Γ′α′〉

∑
Ξβ′γ′

〈Σ
′ρ′,∆′λ′ |Ξ′β′〉〈Σ′σ′′,∆′λ′′′ |Ξ′γ′〉T (Ξ

′
)

β′γ′
(g)

=
∑
γ′

〈Σ
′σ′′,∆′λ′′′ |Γ′γ′〉T (Γ

′
)

α′γ′
(g) . (A.65)

A similar relation holds also for the product T (Σ)(g−1
) × T (∆)(g−1

). With the use of these relations, the
original expression simplifies to

A `′Γ′α′,`Γα

σ′(t′∆′)Σ′,σ(t∆)Σ
(pr, qs) =

sσ′
G

sΣ
G

∑
g,g′′∈G

∑
γγ′

∑
λ′′′λ′′σ′′

〈Σ
′σ′′,∆′λ′′′ |Γ′γ′〉T (Γ

′
)

α′γ′
(g)

×T (Σ
′
)

σ′′σ′
(g′′)A `′`

λ′′′(t′∆′),λ′′(t∆)
(g′′pr, qs)〈Σσ,∆λ

′′
|Γγ〉T (Γ)γα (g

−1
) . (A.66)

Carrying out the summation over g with the use of the orthogonality condition of the matrices of the
irreps, we finally arrive at Eqs. (6.53) and (6.54).
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