Das Risiko für hepatische Enzephalopathien und Mortalität bei gleichzeitigem Vorhandensein von Sarkopenie und großen spontanen portosystemischen Shunts im Rahmen der Leberzirrhose

Identifizierung von Hochrisikopatienten aus Routine CT-Bildgebungen

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Hohen Medizinischen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität

Bonn

Jasmin Abu-Omar

aus Düsseldorf 2024 Angefertigt mit der Genehmigung der Medizinischen Fakultät der Universität Bonn

- 1. Gutachter: PD Dr. Johannes Chang
- 2. Gutachter: Prof. Dr. Sebastian Zimmer

Tag der Mündlichen Prüfung: 26.08.2024

Aus der Medizinischen Klinik und Poliklinik I für Gastroenterologie, Hepatologie, Infektiologie, Nephrologie, Endokrinologie, Diabetologie Direktor: Prof. Dr. med. Christian P. Strassburg

Inhaltsverzeichnis

	Abkürzungsverzeichnis	4
1.	Deutsche Zusammenfassung	6
1.1	Einleitung	6
1.2	Material und Methoden	8
1.3	Ergebnisse	10
1.4	Diskussion	13
1.5	Zusammenfassung	17
1.6	Literaturverzeichnis der deutschen Zusammenfassung	19
2.	Veröffentlichung	24
	Abstract	25
	Introduction	26
	Materials and Methods	27
	Results	28
	Discussion	30
	References	34
	Supplementary Materials	36
3.	Danksagung	40

Abkürzungsverzeichnis

ALT	Alanin-Aminotransferase (Alanine transaminase)				
AST	Aspartat Aminotransferase (Aspartate transaminase)				
AUC	Fläche unter der Kurve (Area under the curve)				
CLIF-C-AD	Chronic-liver-failure Consortium Acute Decompensation Score				
CRP	C-reaktives Protein				
СТ	Computertomographie				
DGVS	Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten				
EASL	Europäische Vereinigung der Leberwissenschaften (<i>European</i> Association for the Study of the Liver)				
FFMF	Fettfreie Muskelfläche				
FFMI	Fettfreier Muskelindex (Fat-free muscle index)				
НСС	Hepatozelluläres Karzinom (Hepatocellular carcinoma)				
HE	Hepatische Enzephalopathie				
H-FFMI	hoher fettfreier Muskelindex (<i>High fat-free muscle index</i>)				
HR	Hazard-Verhältins (Hazard Ratio)				
HU	Hounsfield Einheiten (Hounsfields Unit)				
INR	International normalized ratio				
кі	Konfidenzintervall				
L-FFMI	tiefer fettfreier Muskelindex (Low fat-free muscle index)				
L-TSA	große totale Shuntfläche (Large Total Shunt area)				
MELD-Score	Model for End-Stage Liver Disease Score				

ROC	Beobachter-Operationscharakterisitik <i>Characteristics</i>)	(Receiver-Operating				
SMI	Skelettmuskelflächenindex					
SPSS	Spontane Portosystemische Shunts					
S-TSA	kleine totale Shuntfläche (Small Total Shunt Area)					
ТРМІ	Totaler Psoasmuskelindex					
TSA	Totale Shuntfläche (Total Shunt Area)					
WBC	Leukozytenzahl (White Bloodcell Count)					

1. Deutsche Zusammenfassung

1.1 Einleitung

Die Leberzirrhose ist vor allem aufgrund der schweren Komplikationen, bedingt durch portale Hypertension und Leberfunktionsverschlechterung, mit einer hohen Morbidität und Mortalität der Betroffenen verbunden (GBD 2017 Cirrhosis Collaborators, 2020; Volk et al., 2012).

Eine dieser Komplikationen ist die hepatische Enzephalopathie (HE), bei der es zu Bewusstseinsveränderungen, Dysarthrie und Asterixis, bis hin zum Koma kommen kann und welche mit einer erhöhten Mortalität und mit Re-Hospitalisierungen einhergeht (Rahimi et al., 2021). Dies führt zu einer erheblichen Einschränkung der Lebensqualität der Betroffenen (Vilstrup et al., 2014). Pathophysiologisch kommt es aufgrund der Leberzelldysfunktion zur ungehinderten Weiterleitung von neurotoxischen Substanzen, insbesondere von Ammoniak, aus dem portalen über den systemischen Blutkreislauf zum Zentralnervensystem. Außerdem behindert der fibrotische Umbau den Blutfluss aus dem portalen in das systemische Gefäßsystem. Durch den daraus entstehenden erhöhten Druck im portalen Blutkreislauf, kommt es zur Bildung von portosystemischen Kurzschlüssen, den sogenannten spontanen portosystemischen Shunts (SPSS). Über diese wird Blut aus dem portalen Einstromgebiet ungefiltert an der Leber vorbei in den systemischen Kreislauf geleitet. Dies erhöht die systemische Konzentration neurotoxischer Substanzen zusätzlich.

In einer großen multizentrischen, multinationalen Studie konnte dazu passend gezeigt werden, dass eine große Totale Shuntfläche (TSA) der SPSS ein unabhängiger Risikofaktor für die Entwicklung einer HE - Episode ist (Praktiknjo et al., 2020; Simón-Talero et al., 2018) und auch unabhängig von der Leberfunktion, mit einer erhöhten Mortalität einhergeht (Simón-Talero et al., 2018).

Eine weitere Komplikation der Leberzirrhose ist die Sarkopenie. Die Verbindung zwischen Sarkopenie und erhöhter Mortalität wurde, wie schon für andere Erkrankungen, auch bei der Leberzirrhose belegt (Montano-Loza et al., 2012). Zudem scheint der Abbau der quergestreiften Muskulatur zu einem höheren Risiko für hepatische Enzephalopathie zu führen

(Merli et al., 2013). Die Bedeutung der Sarkopenie zeigt sich in der Aufnahme der Sarkopeniebehandlung in die Ernährungsrichtlinien der Europäischen Vereinigung der Leberwissenschaften (European Association of the Science of the Liver, EASL) (Merli et al., 2019).

In diesem Zusammenhang konnte gezeigt werden, dass SPSS einen direkten Einfluss auf das Schwinden von Skelettmuskulatur haben. Dabei führen die höheren Ammoniakkonzentrationen im systemischen Blutkreislauf, bedingt durch die Umgehung der Leber, zu einer Autophagie der Myozyten (Dasarathy und Merli, 2016). Zudem werden beim Ammoniakabbau in den Muskelzellen Aminosäuren verbraucht, welche für die Instandhaltung der Muskelzellen notwendig sind (Chen und Dunn, 2016).

1.1.2 Zielsetzung

Trotz dieser pathophysiologischen Zusammenhänge ist das klinische Zusammenspiel der beiden Risikofaktoren bei Patienten mit Leberzirrhose noch nicht näher beforscht oder quantifiziert.

Ziele dieser Studie sind dementsprechend (I) die Ermittlung eines möglichen synergistischen Effektes von SPSS-Fläche und Sarkopenie in der Entwicklung von Hepatischer Enzephalopathie bei Patienten mit Leberzirrhose. Und (II) die Klärung der Frage, ob eine Bestimmung dieser Parameter in der routinemäßigen Bildgebung zu einer Verbesserung der Prognosegenauigkeit in dieser Patientengruppe führt.

Dafür werden retrospektiv aus CT-Aufnahmen von Leberzirrhosepatienten Sarkopenie und Shuntfläche quantifiziert und zunächst einzeln und danach in Kombination ihr Einfluss auf das Risiko für HE-Entwicklung und Mortalität statistisch untersucht, auch im Kontext anderer klinischer Faktoren. In einem zweiten Schritt wird aus den erhobenen Daten ein Diagnostikalgorithmus entwickelt, der eine Zuordnung zu Risikogruppen erlaubt. Dies soll helfen eine möglichst effiziente weiterführende Diagnostik frühzeitig einleiten zu können und gegebenenfalls prophylaktische Maßnahmen zielgerichtet einzusetzen.

1.2 Material und Methoden

Studienpopulation

Im Rahmen unserer Studie werteten wir retrospektiv Daten von Leberzirrhose-Patienten aus, welche sich zwischen 2010 und 2015 in der hepatologischen Ambulanz des Uniklinikums Bonn vorstellten. Die Einschlusskriterien der Studie waren Volljährigkeit und eine leitliniengerecht durch Bildgebung oder Histologie gesichert Leberzirrhose. Da die Erhebung der SPSS- und Sarkopenie-Parameter anhand einer, aus klinischen Gründen durchgeführten, Computertomografie erfolgen sollte, war das Fehlen von qualitativ ausreichenden CT-Bildern ein Ausschlusskriterium. Für alle übrigen Patienten wurden klinische Daten erhoben: Zum Ausgangszeitpunkt, den wir auf den Tag des Index-CT setzten, wurden unter anderem generelle Charakteristika, Laborwerte, Komplikationsanamnese und Risiko-Scores erhoben. Die Patienten wurden über einen Zeitraum von einem Jahr nachbeobachtet. Dabei war die Entwicklung einer Episode von hepatischer Enzephalopathie der primäre und 1-Jahres Mortalität der sekundäre Endpunkt. Eine HE-Episode wurde dabei durch die in einer ärztlichen Untersuchung gestellte und als solche dokumentierte Diagnose definiert.

Die Studie wurde nach den Grundsätzen der Helsinki-Erklärung durchgeführt und durch eine Ethikkomission zugelassen (Lfd. Nr. 095/16). Letztere verzichtete auf die Notwendigkeit unterschriebener Einverständniserklärungen, da es sich um eine monozentrische und retrospektive Studie handelte.

Erhebung der SPSS-Parameter

Die Erhebung der Shuntparameter wurde durch, in abdomineller Bildgebung erfahrene, Radiologen anhand der Index CT-Bildgebung durchgeführt. Diese maßen den größten Durchmesser der eingeschlossenen Shuntgefäße (r) und berechneten damit den maximalen Shuntdurchmesser mithilfe der Formel:

Shuntdurchmesser = $\pi * r^2$

Diese wurden miteinander addiert, um die TSA zu berechnen. Als portosystemische Shunts wurden alle zusätzlichen Gefäße gewertet, die aus der oberen oder unteren Mesenterialvene, der Vena splenica, renalis, portalis oder der Vena cava inferior entspringen und sich sowohl in sagittaler als auch koronarer Ebene darstellen lassen. Wie auch in ähnlichen Studien, wurden hier gastrische, anale und ösophageale Varizen aus der TSA-Berechnung ausgenommen, da sie als Gefäßgeflecht gewertet wurden und somit eine exakte Flächenberechnung nicht möglich war (Praktiknjo et. al., 2020).

Erhebung der Muskelparameter

Zur Berechnung der Muskelparameter wurde die parasternale Skelettmuskulatur im Intervertebralraum zwischen L3 und L4 ausgemessen und deren fettfreie Muskelfläche (FFMF) berechnet. Dafür wurde die Skelettmuskelfläche anhand densiometrischer Schwellenwerte in fettfreie und fettreiche Anteile unterteilt. Muskelanteile die sich im CT mit einer Dichte zwischen -30 bis 29 Hounsfield Einheiten (Hounsfield Units, HU) darstellten, wurden als fettreich gewertet und solche zwischen 30 bis 100 HU als fettfrei. Die dadurch berechnete fettfreie Muskelfläche wurde für die jeweilige Körpergröße normalisiert, um den fettfreien Muskelindex (FFMI) zu erhalten.

FFMI = FFMF / (Körpergröße in [m])²

Statistische Analyse

Für alle Variablen führten wir deskriptive Statistik durch. Vergleiche zwischen den Untersuchungsgruppen wurden mithilfe von nicht parametrischen Tests gezogen. Metrische Variablen wurden mittels Spearmans Rangkorrelations-Koeffizienten korreliert. Durch Receiver-operating characteristics (ROC) mit HE-Entwicklung innerhalb eines Jahres als Endpunkt, wurden Grenzwerte für hohen und tiefen fettfreien Muskelindex (FFMI) ermittelt. Um den Einfluss von TSA und FFMI auf die Entwicklung von hepatischer Enzephalopathie und Mortalität zu ermitteln, führten wir eine Kaplan-Meier Analyse mit log-rank Test durch. Uni- und multivariable Risikoanalyse wurde für Variablen mit potenziellem Einfluss auf das klinische Ergebnis (Alter, Laborwerte zum Ausgangspunkt, Patientenhistorie, Chronic-liver-failure Consortium Acute Decompensation Score (CLIF-C-AD-Score), TSA und Sarkopenieparameter) durchgeführt. Hierfür nutzten wir die Cox-Regression mit Mortalität und HE-Entwicklung als Ereignissvariablen. In die multivariablen Analysen wurden alle Werte mit p < 0,05 in der univariablen Analyse aufgenommen. Kontinuierliche Variablen werden im weiteren Text als Median (Spannweite) angegeben, kategoriale Variablen als absolute Zahlen und Anteile in Prozent. Die gesamte Datenanalyse wurde mittels SPSS (Version 25, IBM, NY, USA) durchgeführt. Ein p-Wert < 0,05 wurde als statistisch signifikant gewertet.

1.3 Ergebnisse

Patientenkohorte

Im Studienzeitraum wurden 301 Patienten mit Leberzirrhose in der hepatologischen Ambulanz gesehen. Bei 88 Patienten gab es entweder kein oder kein qualitativ ausreichendes CT und weitere 57 schieden aufgrund fehlender Verlaufsdaten aus. Letztendlich konnten 156 Patienten in unsere Studie aufgenommen werden. (Abb. 1A, Seite 27)

Von diesen eingeschlossenen Patienten waren 92 (51 %) Männer. Das mediane Alter lag bei 58 (31 - 85) Jahren und die Ätiologie der Zirrhose war größtenteils alkoholisch (n = 82, 53 %), gefolgt von viraler Genese (n = 31, 21 %). Zum Beginn des Beobachtungszeitraumes befand sich der Großteil der Patienten in einem dekompensierten Zirrhosestadium nach Child Pugh (55 % in Child-Pugh Stadium B/C). Im Median lag der Model-of-End-Stage Liver Disease Score (MELD-Score) bei 12 (6-40) und der CLIF-C-AD-Score (Chronic-liver-failure Consortium Acute Decompensation Score) bei 47 (31-78). In der Patientenhistorie fanden sich bei einem knappen Drittel der Patienten gastrointestinale Blutungen (n = 47, 30 %) und bei über der Hälfte Aszites (n=78, 53 %). Zum Zeitpunkt des Index-CT wurde bei 92 Personen (58 %) ein Aszites diagnostiziert. 18 (12 %) erlitten zu diesem Zeitpunkt eine gastrointestinale Blutung.

Hepatische Enzephalopathie und Mortalität

Zum Ausgangszeitpunkt wurde bei 36 (23 %) Patienten eine HE festgestellt und 21 (14 %). erlitten schon vor Studienbeginn mindestens eine HE-Episode. Innerhalb von einem

10

Jahr nach Index-CT wurde bei 40 (26 %) Personen der untersuchten Kohorte mindestens einmal eine HE diagnostiziert. Diese Personen waren im Vergleich zum Rest der Studienteilnehmer signifikant älter und öfter weiblich. Auch befanden sie sich zum Zeitpunkt der Index-Bildgebung signifikant häufiger in einem dekompensierten Stadium nach Child-Pugh (50 % versus 71 % in Stadium B/C) und zeigten höhere MELD und CLIF-C-AD Scores. Zudem wurde bei diesen Patienten signifikant häufiger Aszites in der Vorgeschichte angegeben und wahrscheinlicher schon zum Ausgangszeitpunkt eine HE diagnostiziert. (Tab. 1, Seite 29)

Im Beobachtungszeitraum starben 26 (16 %) Patienten. Die meisten verstarben an einem Akut-auf-chronischem Leberversagen (n = 13, (89 %)), die restlichen drei (11 %) an malignen Tumoren (Zusatztab. 1, Seite 37).

Charakterisierung von Sarkopenie und TSA

Die TSA klassifizierten wir nach schon in anderen Studien validierten Grenzwerten mit einem Grenzwert von 83 mm² (Simón-Talero et al., 2018). Dabei ließen sich 58 (37 %) der Patienten in die Gruppe der L-TSA (large-TSA, Patienten mit großer Shuntfläche) zuordnen und 98 (63 %) in die Gruppe mit kleiner Shuntfläche (S-TSA, small-TSA).

In der Sarkopeniediagnostik zeigte sich der Mittelwert des FFMI signifikant kleiner bei Patienten, welche eine HE-Episode innerhalb des Beobachtungszeitraumes entwickelten, im Vergleich zur Restkohorte (24,8 versus 32,1 cm²/m, p = 0,042). Um einen Grenzwert zu finden, nutzten wir eine ROC-Analyse mit HE-Entwicklung innerhalb eines Jahres als Endpunkt. Die Fläche unter der Kurve (AUC, Area under the curve) lag dabei 0,623 (p = 0,023, CI 0,522 - 0,724), sodass wir mittels Yourden-Index den optimalen Grenzwert bei 17,6 cm²/m ermittelten (Sensitivität 78 %, Spezifität 47 %). Damit wurden 96 (62 %) Patienten als sarkopen und 60 (38 %) als nicht sarkopen klassifiziert.

Interaktion von Sarkopenie und TSA in Bezug auf HE-Entwicklung und Mortalität

Die Kaplan Meier Analyse zeigte, dass als sarkopen klassifizierte Patienten innerhalb eines Jahres signifikant häufiger HE-Episoden entwickelten (32 % versus 15 %, p = 0,004)

und eine höhere Mortalität (24 % versus 5 %, p = 0,002) aufwiesen (Abb. 2A und 2B, Seite 30). Auch die Patienten, welche der L-TSA Gruppe zugeordnet wurden, wiesen im Beobachtungszeitraum signifikant wahrscheinlicher HE-Episoden (45 % vs. 30 %, p = 0,003) und eine höhere Mortalität (31 % vs. 20 %, p = 0,003) auf (Abb. 2C und 2D, Seite 30).

In der univariablen Cox-Regressionsanalyse zeigte sich ein signifikant höheres Risiko sarkopener Patienten für die Entwicklung einer HE (Hazard Ratio (HR) = 2,685, 95 % Konfidenzintervall (KI) 1,215 - 5,932) und ein höheres Sterberisiko (HR = 7,683, 95 % KI 1,749 - 33,743). Auch eine große Shuntfläche erhöhte signifikant das Risiko im ersten Jahr des beobachteten Zeitraums eine HE-Episode zu entwickeln (HR = 2,500, 95 % KI 1,324 -4,718) und zu sterben (HR = 3,050, 95 % KI 1,323 – 7,035).

Wir führten mittels Cox-Regression weitere univariable Risikoanalysen mit möglicherweise prognosebeeinflussenden Variablen, wie Alter, Laborwerte, Prognose-Scores und klinischer Vorgeschichte durch, und schlossen diejenigen, bei denen sich eine signifikante Auswirkung auf Mortalität oder HE-Risiko im ersten Jahr des Beobachtungszeitraumes zeigte, in die multivariable Analyse ein. Letztendlich verblieben L-TSA, L-FFMI und CLIF-C-AD als unabhängige Risikofaktoren für die Ein-Jahres Mortalität (Tab. 3, Seite 31). Bei der HE-Entwicklung kam außerdem noch eine bestehende Historie von HE-Episoden dazu (Tab. 4, Seite 32). Mithilfe von Korrelationsanalyse konnte eine signifikante Korrelation zwischen FFMI und TSA ausgeschlossen werden (Zusatzabb. 2, Seite 36).

Um die Interaktion von Sarkopenie und SPSS zu beurteilen, bildeten wir drei Prognosegruppen (gute, mittlere und schlechte Prognose) (Abb. 1C, Seite 27). Dabei umfasst die gute Prognosegruppe (hoher FFMI und niedrige TSA) 37 Personen (24 %) und die mittlere 84 (54 %) (hoher FFMI und hohe TSA n = 23 (15 %), sowie niedriger FFMI und kleine TSA n = 61 (39 %)), während 35 (22 %) Patienten zur schlechten Prognosegruppe gehörten (niedriger FMI und hohe TSA) (Abb. 3A, Seite 31). Sowohl HE-Entwicklung als auch Mortalität innerhalb eines Jahres fanden sich in der Kaplan-Meier Analyse signifikant häufiger bei Patienten, die der schlechten Prognosegruppe zuzuordnen waren und am seltensten bei solchen der guten (Abb. 3B und 3C, Seite 31). Auch in der Risikoanalyse mittels erst uni- dann multivariabler Coxregression zeigte sich die gleichzeitige Anwesenheit von niedrigem FFMI und hoher TSA, zusammen mit vorheriger HE-Episode, als einziger unabhängiger Risikofaktor für die Entwicklung einer HE-Episode innerhalb eines Jahres (HR = 12,790, 95 % KI 2,928 – 55,864, p = 0,001, Tab. 4, Seite 32). Zusammen mit CLIF-C-AD (HR = 1,085, 95 % KI 1,019 – 1,155, p = 0,011) war auch für die Ein-Jahres Mortalität die Zugehörigkeit zur schlechten Prognosegruppe (geringes FFMI und große TSA) ein unabhängiger Risikofaktor (HR = 13,660, 95 % KI 1,752-106,495, p = 0,013, Tab. 5, Seite 32). Diese Daten lassen darauf schließen, dass die gleichzeitige Anwesenheit beider Parameter sowohl das Risiko einer hepatischen Enzephalopathie als auch das Risiko zu sterben unabhängig von anderen Risikofaktoren exponentiell steigert.

Zur praktischen Anwendung dieser Ergebnisse erstellten wir einen diagnostischen Algorithmus in Form eines Entscheidungsbaumes, welcher anhand eines CT-Bildes die Möglichkeit zur Einordnung in die Prognosegruppen erlaubt. Zuerst wird die Gruppe dabei anhand der TSA unterteilt und danach aufgrund des FFMI in die Prognosegruppen gespalten (Abb. 1B, Seite 27).

1.4 Diskussion

Das Ziel dieser Studie war es, das Zusammenwirken von SPSS und der Sarkopenie bei Patienten mit Leberzirrhose im Hinblick auf die HE-Entwicklung und Mortalität zu untersuchen. In unserer Patientenkohorte stellten sich TSA und FFMI einzeln, als unabhängige Risikofaktoren, sowohl für HE-Entwicklung als auch für Mortalität dar. Interessanter noch: lagen beide zusammen vor so erhöhte sich das Risiko für HE und auch das Sterberisiko exponentiell. Der auf diesen Ergebnissen fußende Algorithmus lässt sich einfach anhand von Routine CT-Bildern anwenden und stellt damit ein zusätzliches Tool zur Identifizie-rung von Risikopatienten dar.

Die SPSS-Evaluation anhand von CT-Scans als Goldstandard wurde schon in früheren Studien zur Identifizierung von Risikopatienten vorgeschlagen (Guillaume und Bureau, 2018; Renzulli et al., 2022). Eine große portosystemische Shuntfläche gilt als Risikofaktor für erhöhte Mortalität und verschiedenste Komplikationen, auch unabhängig von der Leberfunktion (Praktiknjo et al., 2020; Simón-Talero et al., 2018). Besonders bei der Entwicklung von HE gehört das portosystemische Shunting zum Pathomechanismus, da neurotoxische Substanzen dadurch die Verstoffwechselung in der Leber umgehen und in größeren Konzentrationen im zentralen Nervensystem ankommen. Dementsprechend kann HE auch ein Symptom von portosystemischen Shunts sein, selbst wenn keine hepatische Grunderkrankung vorliegt (Vilstrup et al.. 2014). Auch bei der HE-Entwicklung korreliert die Größe der Shuntfläche mit dem Risiko und die Verkleinerung dieser Fläche durch Embolisationen wurde in klinischen Studien und Fallberichten zur Rezidivprophylaxe validiert (Praktiknjo et al., 2020; Patil et al., 2017; Mukund et al., 2012; Nardelli et al., 2018; Elshobary et al., 2017). In den DGVS-Leitlinien (Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten) wird der Shuntverschluss dominanter SPSS zur Rezidivprophylaxe bei HE empfohlen (Gerbes et al., 2019). Dabei korreliert der typische Grenzwert der Shuntfläche von ca. 80 mm², den auch wir in unserer Studie genutzt haben, mit dem kleinsten symptomatischen Shunt, der im Rahmen einer Publikation embolisiert wurde (Simón-Talero et al., 2018; Sakurabayashi et al., 1997).

In unserer Patientenkohorte zeigte sich die TSA von über 83 mm² als unabhängiger Risikofaktor für eine HE-Entwicklung und/ oder Tod im Beobachtungszeitraum. Da sich dies mit den Ergebnissen anderer, größerer Studien deckt (Praktiknjo et al., 2020; Simón-Talero et al., 2018), unterstreicht dies die Robustheit unserer Daten.

Die Sarkopenie beschreibt den stetigen und fortschreitenden Verlust von Skelettmuskelmasse und -funktion, der sowohl im Laufe des Alterungsprozesses als auch im Rahmen chronischer Krankheiten, wie der Leberzirrhose, auftreten kann. Lange vernachlässigt, wurde diese Komplikation in den letzten Jahren stärker beforscht. Sarkopene Patienten mit Leberzirrhose haben eine niedrigere Lebensqualität, ein höheres Risiko für Komplikationen, und eine erhöhte Mortalität (Norman et al., 2006; Zeng et al., 2021; Tantai et al., 2022). Im Kontext der vorliegenden Studie ist besonders interessant, dass die Sarkopenie das Risiko zur Entwicklung einer HE zu erhöhen scheint (Merli et al., 2013; Nardelli et al., 2019). Diesen Ergebnissen wird auch in den aktuellen Leitlinien der EASL Rechnung getragen, welche für Patienten mit Leberzirrhose im Allgemeinen und für Leberzirrhotiker mit einer Historie von HE im Besonderen, die Diagnostik und Therapie der Sarkopenie empfiehlt (Vilstrup et al., 2014; Merli et al., 2019).

14

Eine Sarkopeniediagnostik wird in der Regel in der Schnittbildgebung durchgeführt. Bei der computertomografischen Muskeluntersuchung, erfolgt die Identifizierung des Muskelgewebes anhand der Densitometrie mittels Hounsfield-Skala, welche jedoch durch Flüssigkeitseinlagerung, insbesondere durch Aszites, verfälscht sein kann. Deswegen wurde die paraspinale Muskulatur auf Höhe L3-L4 als Referenzmuskulatur verwendet, welche sich schon in anderen Studien als vergleichsweise unbeeinflusst durch Muskelaktivität und Wassereinlagerung zeigten (Merli et al., 2019).

Myosteatose stellt einen unabhängigen Risikofaktor sowohl für Mortalität als auch für HE-Entwicklung dar (Nardelli et al., 2019; Bhanji et al., 2018). Um ihren Effekt auf unsere Berechnungen einzuschränken, nutzten wir die fettfreie Muskelmasse und normierten diese, wie bei anderen Muskelparametern üblich, entsprechend der Größe. (Cruz-Jentoft et al., 2019; Praktiknjo et al., 2018).

Gerade für Patienten in dekompensierten Stadien der Leberzirrhose ist eine Risikostratifizierung wichtig, um frühzeitig durch gezielte Therapien die vielfältigen lebenseinschränkenden Komplikationen zu vermeiden. Dabei boten sich von den bekannten Risikofaktoren für Mortalität und hepatische Enzephalopathie, Sarkopenie und die SPSS besonders an: So lassen sich beide Parameter nicht-invasiv mittels CT- Bildgebung erheben. Vor allem bei Patienten in fortgeschrittenen Stadien, werden CT-Aufnahmen regelhaft durchgeführt, zum Beispiel im Rahmen der Transplantationslistung oder des regelmäßigen HCC-Screenings. Außerdem bieten beide Faktoren auch mögliche Therapieansätze. In einer Studie von 2022 zeigten Patienten deren Sarkopenie vor TIPS-Anlage erfolgreich behandelt wurde eine signifikant geringere Mortalität (Liu et al., 2022). Moderates Muskeltraining stellte sich in einigen Studien als sichere Intervention zur Verbesserung prognostisch relevanter Größen, wie der 6-Minuten Gehstrecke, der maximalen Sauerstoffauslastung und des hepatovenösen Druckgradienten, heraus (Macías-Rodríguez et al., 2016; Locklear et al., 2018; Román et al., 2014). Die Embolisation von SPSS nach HE war in mehreren Studien mit einer Risikoreduktion für erneute HE-Episoden und Mortalität assoziiert (Sakurabayashi et al., 1997; Philips et al., 2020; An et al., 2014).

In unserer Studie waren Sarkopenie und portosystemische Shunts voneinander und von der Leberfunktion unabhängige Risikofaktoren für Mortalität und HE-Entwicklung. Als weitere unabhängige Risikofaktoren für HE-Entwicklung stellte sich die Leberfunktion und frühere HE-Episoden dar, was sich mit dem aktuellen Forschungsstand deckt und damit die Robustheit unserer Daten unterstützt.

Der Einfluss von Sarkopenie und portosystemischen Shunts auf HE-Entwicklung und Mortalität war in unserer Studie ähnlich groß. Interessanterweise führte ein gleichzeitiges Vorliegen beider Risikofaktoren zu einem noch erheblicheren Anstieg des Risikos. Der daraus ableitbare synergetische Effekt deckt sich mit neueren Studien, die Sarkopenie vor TIPS-Anlage mit erhöhtem Risiko von postinterventioneller HE-Entwicklung und Mortalität in Verbindung bringen (Liu et al., 2022; Ronald et al., 2020; Bhatia Kapoor et al., 2023).

Anhand der vorliegenden Studie kann aus mehreren Gründen eine Empfehlung für ein Screening für SPSS und FFMI bei Leberzirrhose Patienten ausgesprochen werden: Zum einen lassen sich Risikopatienten identifizieren, welche vermehrter Aufmerksamkeit bedürfen, unabhängig ihrer Leberfunktion. Zudem können mögliche Angriffspunkte für Therapien (Shuntembolisation, Muskeltraining, Ernährungstherapie etc.) identifiziert werden, welche die Überlebensrate und die Lebensqualität steigern könnten. Die Möglichkeit der Datenerhebung anhand aus anderen Indikationen durchgeführter CT-Bildgebungen wirkt sich positiv auf die Nutzen-Risiko Abwägung aus.

Limitiert wurden die Ergebnisse durch den monozentrischen und retrospektiven Studienaufbau, weshalb die Allgemeingültigkeit der Ergebnisse nicht garantiert werden kann. Hierfür sind weitere Studien mit einer Validierungskohorte für den hier vorgestellten Algorithmus vonnöten.

Auch wurden keine Daten zur Muskelfunktionalität erhoben, wie es in den aktuellen EASL-Guidelines empfohlen wird (Merli et al., 2019). Jedoch ist ein Vorteil des vorgeschlagenen Untersuchungsalgorithmus für den klinischen Alltag, dass keine zusätzliche Diagnostik vonnöten ist, sondern lediglich aus vorhandenen Bildern Berechnungen durchgeführt werden, an die weitere Funktionsdiagnostik individuell angeschlossen werden kann. Sicherlich ist und bleibt eine klinische Korrelation der Daten zum Patienten ein wichtiger weiterer Bestandteil. Aufgrund der geringen Probandenanzahl und großen Diversität innerhalb der Kohorte konnten wir den Einfluss von Sarkopenie und portosystemischem Shunting nicht nach Ätiologie aufgeteilt bewerten. Dies wäre besonders interessant, da deren Auftretenswahrscheinlichkeit auch mit der jeweiligen Ursache der Zirrhose zusammenhängen könnte: Beispielsweise weisen Patienten mit cholestatischer oder alkoholischer Zirrhose ein höheres Risiko für Sarkopenie auf (Merli et al., 2019). Des Weiteren führen nichtvirale Leberzirrhosen häufiger zu großen SPSS als solche viraler Genese.

Anders als bei anderen Sarkopeniemaßen wie SMI und TPMI (Totaler Psoasmuskelindex) erbrachten geschlechtsspezifische Grenzwerte für FFMI keine stärkere Korrelation. Dies könnte auch eine Auswirkung der geringen Kohortengröße sein und bedarf einer Überprüfung in größeren Validierungsstudien.

Wie bei anderen retrospektiven Studien kann ein Selektions-Bias nicht ausgeschlossen werden. Die Hauptgründe für den Ausschluss waren fehlende Folgeuntersuchungen und zu schlechte Bildqualität. Auch wenn sich die ausgeschlossenen Patienten in den meisten Charakteristika nicht von der inkludierten Kohorte unterschieden, zeigten sie zum Baseline-CT eine signifikant schlechtere Leberfunktion in Child-Pugh und MELD-Score und hatten tendenziell wahrscheinlicher eine alkoholische Genese ihrer Leberzirrhose. Dementsprechend sollten unsere Ergebnisse für Patienten mit fortgeschrittener Lebererkrankung in weiteren Studien validiert werden.

Abschließend ist hervorzuheben, dass die in der vorliegenden Studie dargestellten Sarkopeniedefinitionen und Prognose-Scores zum jetzigen Zeitpunkt, die bestehenden Scores, nämlich SMI/TPMI und MELD-Sarcopenia-Score nicht ersetzen können. Sie sollen lediglich als komplementäre Hilfestellungen die bisherige Diagnostik ergänzen.

1.5 Zusammenfassung

Die Fragestellungen dieser Studie waren einerseits, ob es bei Patienten mit Leberzirrhose einen synergistischen Effekt von Sarkopenie und spontanen portosystemischen Shunts auf das Risiko zur Entwicklung der hepatischen Enzephalopathie und die Mortalität gibt.

17

Und andererseits, ob die routinemäßige Bestimmung dieser Parameter zu einer verbesserten Prognosebestimmung beitragen könnte.

Um dies zu beantworteten schlossen wir 156 Patienten mit Leberzirrhose in unsere Studie ein, bei denen aus einer CT-Untersuchung die Fläche der spontanen portosystemischen Shunts und Muskelparameter erhoben. Zudem wurden klinische Daten für ein Jahr ab der Index CT-Aufnahme gesammelt. Die Auswertung geschah retrospektiv.

Eine SPSS-Fläche von größer als 83 mm² wurde als große totale Shuntfläche gewertet. Sarkopenie war definiert als auf die Körpergröße relativierte fettfreie Muskelmasse paraspinaler Muskulatur unter 17,6 cm²/m.

Zusammenfassend zeigten sich in der vorliegenden Studie eine große totale Shuntfläche und Sarkopenie bei Patienten mit Leberzirrhose als unabhängige Risikofaktoren für die Entwicklung von hepatischer Enzephalopathie und Sterblichkeit innerhalb von einem Jahr nach Index-CT unabhängig von der Leberfunktion. Beim gleichzeitigen Vorliegen beider Faktoren stiegen hepatisches Enzephalopathierisiko und Mortalität noch einmal um ein Vielfaches an.

Aus den Ergebnissen wurde ein Algorithmus zur Risikostratifizierung erstellt, der durch weitere Studien validiert werden sollte.

Insgesamt lässt sich aus den Studienresultaten eine Empfehlung zum Screening von Leberzirrhosepatienten für spontane portosystemische Shunts und Sarkopenie ableiten. Dies kann nicht nur helfen Risikopatienten zu identifizieren, sondern auch Therapieansätze zu finden.

Die Evaluation von Effektivität und Einfluss der Therapie von Sarkopenie und großer portosystemischer Shunts ist ein spannendes Thema, was in zukünftigen Studien erforscht werden sollte. 1.6 Literaturverzeichnis der deutschen Zusammenfassung

An J, Kim KW, Han S, Lee J, Lim Y-S. Improvement in survival associated with embolisation of spontaneous portosystemic shunt in patients with recurrent hepatic encephalopathy. Aliment Pharmacol Ther 2014; 39: 1418–1426

Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, Montano-Loza AJ. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int 2018; 12: 377–386

Bhatia Kapoor P, Benjamin J, Tripathi H, Patidar Y, Maiwall R, Kumar G, Joshi YK, Sarin SK. Post-transjugular Intrahepatic Portosystemic Shunt Hepatic Encephalopathy: Sarcopenia Adds Insult to Injury. Turk J Gastroenterol 2023

Chen H-W, Dunn MA. Muscle at Risk: The Multiple Impacts of Ammonia on Sarcopenia and Frailty in Cirrhosis. Clin Transl Gastroenterol 2016; 7: e170

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16–31

Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016; 65: 1232–1244

Elshobary M, Shehta A, Salah T, Sultan AM, Shiha U, Elghawalby AN, Monier A, Elsadany M, AmrYassen, Fathy O, Wahab MA. Ligation of huge spontaneous porto-systemic collaterals to avoid portal inflow steal in adult living donor liver transplantation: A case-report. Int J Surg Case Rep 2017; 31: 214–217

GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2020; 5: 245–266

Gerbes AL, Labenz J, Appenrodt B, Dollinger M, Gundling F, Gülberg V, Holstege A, Lynen-Jansen P, Steib CJ, Trebicka J, Wiest R, Zipprich A. Aktualisierte S2k-Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) "Komplikationen der Leberzirrhose". Z Gastroenterol 2019; 57: 611–680

Guillaume M, Bureau C. Should the Presence of Spontaneous Portosystemic Shunts Be Implemented to the Model for End-Stage Liver Disease Score for a Better Prediction of Outcome? Gastroenterology 2018; 154: 1569–1571

Liu J, Ma J, Yang C, Chen M, Shi Q, Zhou C, Huang S, Chen Y, Wang Y, Li T, Xiong B. Sarcopenia in Patients with Cirrhosis after Transjugular Intrahepatic Portosystemic Shunt Placement. Radiology 2022; 303: 711–719

Locklear CT, Golabi P, Gerber L, Younossi ZM. Exercise as an intervention for patients with end-stage liver disease: Systematic review. Med 2018; 97: e12774

Macías-Rodríguez RU, Ilarraza-Lomelí H, Ruiz-Margáin A, Ponce-de-León-Rosales S, Vargas-Vorácková F, García-Flores O, Torre A, Duarte-Rojo A. Changes in Hepatic Venous Pressure Gradient Induced by Physical Exercise in Cirrhosis: Results of a Pilot Randomized Open Clinical Trial. Clin Transl Gastroenterol 2016; 7: e180

Merli M, Berzigotti A, Zelber-Sagi S, Dasarathy S, Montagnese S, Gentom L, Plauth M, Parés A. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol 2019; 70: 172–193

Merli M, Giusto M, Lucidi C, Giannelli V, Pentassuglio I, Di Gregorio V, Lattanzi B, Riggio O. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis 2013; 28: 281–284

Montano-Loza AJ, Meza-Junco J, Prado CMM, Lieffers JR, Baracos VE, Bain VG, Sawyer MB. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 2012; 10: 166-73, 173.e1

Mukund A, Rajesh S, Arora A, Patidar Y, Jain D, Sarin SK. Efficacy of balloon-occluded retrograde transvenous obliteration of large spontaneous lienorenal shunt in patients with severe recurrent hepatic encephalopathy with foam sclerotherapy: initial experience. J Vasc Interv Radiol: JVIR 2012; 23: 1200–1206

Nardelli S, Gioia S, Ridola L, Riggio O. Radiological Intervention for Shunt Related Encephalopathy. J Clin Exp Hepatol 2018; 8: 452–459

Nardelli S, Lattanzi B, Merli M, Farcomeni A, Gioia S, Ridola L, Riggio O. Muscle Alterations Are Associated With Minimal and Overt Hepatic Encephalopathy in Patients With Liver Cirrhosis. Hepatology (Baltimore, Md.) 2019; 70: 1704–1713 Norman K, Kirchner H, Lochs H, Pirlich M. Malnutrition affects quality of life in gastroenterology patients. World J Gastroenterol 2006; 12: 3380–3385

Patil R, Rassameehiran S, Patel R, Balakrishnan M, Sood GK. Embolization for Closure of Spontaneous Porto-Systemic Shunts in Patient with Cirrhosis and Refractory Hepatic Encephalopathy : A Systematic Review and Meta-Analysis. Gastroenterology 2017; 152: S1140

Philips CA, Rajesh S, George T, Ahamed R, Mohanan M, Augustine P. Early, late, or no shunt embolization in patients with cirrhosis- and portosystemic shunt-related hepatic encephalopathy. Indian J Gastroenterol: official journal of the Indian Society of Gastroenter-ology 2020; 39: 377–387

Praktiknjo M, Book M, Luetkens J, Pohlmann A, Meyer C, Thomas D, Jansen C, Feist A, Chang J, Grimm J, Lehmann J, Strassburg CP, Abraldes JG, Kukuk G, Trebicka J. Fatfree muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology (Baltimore, Md.) 2018; 67: 1014–1026

Praktiknjo M, Simón-Talero M, Römer J, Roccarina D, Martínez J, Lampichler K, Baiges A, Low G, Llop E, Maurer MH, Zipprich A, Triolo M, Maleux G, Fialla AD, Dam C, Vidal-González J, Majumdar A, Picón C, Toth D, Darnell A, Abraldes JG, López M, Jansen C, Chang J, Schierwagen R, Uschner F, Kukuk G, Meyer C, Thomas D, Wolter K, Strassburg CP, Laleman W, La Mura V, Ripoll C, Berzigotti A, Calleja JL, Tandon P, Hernandez-Gea V, Reiberger T, Albillos A, Tsochatzis EA, Krag A, Genescà J, Trebicka J. Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis. J Hepatol 2020; 72: 1140–1150

Rahimi RS, Brown KA, Flamm SL, Brown RS. Overt Hepatic Encephalopathy: Current Pharmacologic Treatments and Improving Clinical Outcomes. Am J Med 2021; 134: 1330–1338

Renzulli M, Dajti E, Ierardi AM, Brandi N, Berzigotti A, Milandri M, Rossini B, Clemente A, Ravaioli F, Marasco G, Azzaroli F, Carrafiello G, Festi D, Colecchia A, Golfieri R. Validation of a standardized CT protocol for the evaluation of varices and porto-systemic shunts in cirrhotic patients. Eur J Radiol 2022; 147: 110010

Román E, Torrades MT, Nadal MJ, Cárdenas G, Nieto JC, Vidal S, Bascuñana H, Juárez C, Guarner C, Córdoba J, Soriano G. Randomized pilot study: effects of an exercise programme and leucine supplementation in patients with cirrhosis. Dig Dis Sci 2014; 59: 1966–1975

Ronald J, Bozdogan E, Zaki IH, Kappus MR, Choi SS, Martin JG, Suhocki PV, Smith TP, Kim CY, Bashir MR. Relative Sarcopenia With Excess Adiposity Predicts Survival After Transjugular Intrahepatic Portosystemic Shunt Creation. AJR Am J Roentgonol 2020; 214: 200–205

Sakurabayashi S, Sezai S, Yamamoto Y, Hirano M, Oka H. Embolization of portal-systemic shunts in cirrhotic patients with chronic recurrent hepatic encephalopathy. Cardiovasc Intervent Radiol 1997; 20: 120–124

Simón-Talero M, Roccarina D, Martínez J, Lampichler K, Baiges A, Low G, Llop E, Praktiknjo M, Maurer MH, Zipprich A, Triolo M, Vangrinsven G, Garcia-Martinez R, Dam A, Majumdar A, Picón C, Toth D, Darnell A, Abraldes JG, Lopez M, Kukuk G, Krag A, Bañares R, Laleman W, La Mura V, Ripoll C, Berzigotti A, Trebicka J, Calleja JL, Tandon P, Hernandez-Gea V, Reiberger T, Albillos A, Tsochatzis EA, Augustin S, Genescà J. Association Between Portosystemic Shunts and Increased Complications and Mortality in Patients With Cirrhosis. Gastroenterol 2018; 154: 1694-1705.e4

Tantai X, Liu Y, Yeo YH, Praktiknjo M, Mauro E, Hamaguchi Y, Engelmann C, Zhang P, Jeong JY, van Vugt JLA, Xiao H, Deng H, Gao X, Ye Q, Zhang J, Yang L, Cai Y, Liu Y, Liu N, Li Z, Han T, Kaido T, Sohn JH, Strassburg C, Berg T, Trebicka J, Hsu Y-C, IJzermans JNM, Wang J, Su GL, Ji F, Nguyen MH. Effect of sarcopenia on survival in patients with cirrhosis: A meta-analysis. J Hepatol 2022; 76: 588–599

Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, Weissenborn K, Wong P. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the European Association for the Study of the Liver and the American Association for the Study of Liver Diseases. J Hepatol 2014; 61: 642–659

Volk ML, Tocco RS, Bazick J, Rakoski MO, Lok AS. Hospital readmissions among patients with decompensated cirrhosis. Am J Gastroenterol 2012; 107: 247–252

Zeng X, Shi Z-W, Yu J-J, Wang L-F, Luo Y-Y, Jin S-M, Zhang L-Y, Tan W, Shi P-M, Yu H, Zhang C-Q, Xie W-F. Sarcopenia as a prognostic predictor of liver cirrhosis: a multi-centre study in China. J Cachexia Sarcopenia Muscle 2021; 12: 1948–1958

2. Veröffentlichung

Combination of Fat-Free Muscle Index and Total Spontaneous Portosystemic Shunt Area Identifies High-Risk Cirrhosis Patients

OPEN ACCESS

Edited by:

Pedro M. Baptista, Health Research Institute of Aragon (IIS Aragon), Spain

Reviewed by:

Moris Sangineto, Università di Foggia, Italy Yong Lv, Fourth Military Medical University, China

*Correspondence:

Michael Praktiknjo michael.praktiknjo@ukbonn.de

[†]These authors have contributed equally to this work and share first authorship

[‡]These authors have contributed equally to this work and share last authorship

Specialty section:

This article was submitted to Gastroenterology, a section of the journal Frontiers in Medicine

Received: 07 December 2021 Accepted: 22 February 2022 Published: 12 April 2022

Citation:

Faron A, Abu-Omar J, Chang J, Böhling N, Sprinkart AM, Attenberger U, Rockstroh JK, Luu AM, Jansen C, Strassburg CP, Trebicka J, Luetkens J and Praktiknjo M (2022) Combination of Fat-Free Muscle Index and Total Spontaneous Portosystemic Shunt Area Identifies High-Risk Cirrhosis Patients. Front. Med. 9:831005. doi: 10.3389/fmed.2022.831005 Anton Faron^{1†}, Jasmin Abu-Omar^{2†}, Johannes Chang², Nina Böhling², Alois Martin Sprinkart¹, Ulrike Attenberger¹, Jürgen K. Rockstroh², Andreas Minh Luu³, Christian Jansen², Christian P. Strassburg², Jonel Trebicka^{4,5}, Julian Luetkens^{1‡} and Michael Praktiknjo^{2*‡}

¹ Department of Radiology, University Hospital Bonn, Bonn, Germany, ² Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany, ³ Department of Surgery, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany, ⁴ Department of Internal Medicine I, University of Frankfurt, Frankfurt, Germany, ⁵ European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain

Background: Sarcopenia and spontaneous portosystemic shunts (SPSSs) are common complications of liver cirrhosis, and both are associated with higher rates of hepatic encephalopathy (HE) development in these patients. This study aimed to evaluate the simultaneous impact of skeletal muscle mass and spontaneous portosystemic shunting, measured from routine diagnostic CT on outcomes in patients with liver cirrhosis.

Methods: Retrospective analysis of patients with cirrhosis. Skeletal muscle mass [including fat-free muscle index (FFMI) as a surrogate for sarcopenia] and total cross-sectional spontaneous portosystemic shunt area (TSA) were quantified from CT scans. The primary endpoint was the development of HE, while the secondary endpoint was 1-year mortality.

Results: One hundred fifty-six patients with liver cirrhosis were included. Patients with low (L-) FFMI and large (L-)TSA showed higher rates of HE development. In multivariable analysis, L-FFMI and L-TSA were independent predictors of HE development (L-FFMI HR = 2.69, CI 1.22–5.93; L-TSA, HR = 2.50, CI = 1.24-4.72) and 1-year mortality (L-FFMI, HR = 7.68, CI 1.75–33.74; L-TSA, HR = 3.05, CI 1.32–7.04). The simultaneous presence of L-FFMI and L-TSA exponentially increased the risk of HE development (HR 12.79, CI 2.93–55.86) and 1-year mortality (HR 13.66, CI 1.75–106.50). An easy sequential algorithm including FFMI and TSA identified patients with good, intermediate, and poor prognoses.

Conclusion: This study indicates synergy between low skeletal muscle mass and large TSA to predict exponentially increased risk of HE development and mortality in

1

liver cirrhosis. Simultaneous screening for sarcopenia and TSA from routine diagnostic CT may help to improve the identification of high-risk patients using an easy-to-apply algorithm.

Clinical Trial registration: [ClinicalTrials.gov], identifier [NCT03584204].

26

Keywords: sarcopenia, cirrhosis, spontaneous portosystemic shunt, fat-free muscle index, hepatic encephalopathy, acute decompensation, acute-on-chronic liver failure, ACLF

INTRODUCTION

Liver cirrhosis is a major health care burden, particularly due to its variety of severe complications caused by portal hypertension, such as variceal bleeding, ascites, and hepatic encephalopathy (HE), leading to high hospitalization rates and increased morbidity and mortality in these patients (1).

Portal hypertension is known to precipitate the development of spontaneous portosystemic shunts (SPSSs), which is frequently found in advanced stages of liver cirrhosis. Interestingly, a recently large international study showed that, although the prevalence of portosystemic shunts increased with deteriorating liver function, the presence of portosystemic shunts was associated with an increased risk for complications and also death in patients with preserved liver function (2). Accordingly, in another report, the TSA as a quantitative measure of portosystemic shunting was shown to predict HE and mortality development, independent of liver function (3).

Another increasingly recognized complication of liver cirrhosis is a continuous decline of skeletal muscle mass and function, commonly termed sarcopenia, which was shown to be frequent among patients with decompensated stages of disease (4, 5). Recently, an increasing number of studies demonstrated its negative impact on the outcome, especially with respect to the development of HE, waitlist mortality, and overall survival (5–11). This has led to the inclusion of sarcopenia in the current nutrition guidelines of the European Association of the Study of the Liver (EASL) (12).

In this context, it has been suggested that portosystemic shunting may directly contribute to muscle wasting (12, 13). Circulating blood can bypass the hepatic perfusion *via* collaterals, which may lead to increased ammonia levels in skeletal muscles and has been suggested to mediate myocyte autophagy. Moreover, muscular ammonia metabolism is known to deplete amino acids, which are crucial for the maintenance of muscle cells (14). Both skeletal muscles and portosystemic shunts can be reliably quantified from routine cross-sectional imaging and,

hence, may be used to determine sarcopenia and the amount of portosystemic shunting, respectively (15).

However, the clinical interplay of these conditions, as well as their joint impact on the outcome in patients with liver cirrhosis, is not fully understood yet. Hence, this study aimed to explore (I) the synergetic impact of sarcopenia and portosystemic shunting on outcomes in patients with liver cirrhosis and (II) to determine whether quantification of these parameters from routine diagnostic imaging may help to improve the risk stratification for deleterious outcomes in these patients.

MATERIALS AND METHODS

Study Population

For this study, consecutive patients, who presented to our centre from 2010 through 2015 due to liver cirrhosis, were retrospectively evaluated (**Figure 1A**). The included patients were at least 18 years old. Diagnosis of liver cirrhosis was made by clinical, histological, or imaging criteria. Patients were excluded if no diagnostic CT scan was available or if the image quality precluded an adequate assessment of portosystemic shunts and skeletal muscle mass. The baseline was set at the time of the CT scan. The clinical data and laboratory parameters were reviewed for baseline and a follow-up period of 1 year.

The primary endpoint was the development of HE (assessed by West-Haven criteria and neuropsychometric tests) and the secondary endpoint was 1-year survival. The study was performed in accordance with the Declaration of Helsinki. The study was approved by the institutional review board, and the necessity for written informed consent was waived due to its retrospective and monocentric character (ClinicalTrials.gov Identifier: NCT03584204).

Assessment of TSA

Radiologists with an expertise in abdominal diagnostic imaging screened available CT scans [all with an indication for Hepatocellular Carcinoma (HCC) screening] for the presence of SPSS. Portosystemic shunts were identified as additional vessels originating from the superior and inferior mesenteric vein, the splenic vein, the portal vein, the renal veins, and the inferior vena cava and were verified from sagittal and coronal reformations. As it was reported previously, the largest short-axis diameter of the relevant shunt vessel was measured to obtain the maximal vessel diameter and to calculate the TSA (3).

Abbreviations: (O)HE, (overt) hepatic encephalopathy; HRS, hepatorenal syndrome; ACLF, acute-on-chronic liver failure; CLIF-C, European Foundation for the study of chronic liver failure consortium;, AD, acute decompensation; TPMT, transversal psoas muscle thickness; MRI, magnetic resonance imaging; CT, computed tomography; ROC, receiver operating characteristics; AUC, area under the curve; HU, Hounsfield unit; MELD, model of end-stage liver disease; INR, international normalized ratio; WBC, white blood cell count; HR, hazard ratio; 95% CI, 95% confidence interval; EASL, European Association of the Study of the Liver; SMI, skeletal muscle index; IT, liver transplantation; FFMI, Fat-free muscle index; SPSS, spontaneous portosystemic shunt.

FIGURE 1 | (A) A flowchart of patient inclusion. (B) A decision tree algorithm for hepatic encephalopathy (HE) development and mortality, sequentially, including total spontaneous portosystemic shunt (SPSS) Area (TSA) and Fat-Free Muscle Index (FFMI). (C) Prognostic groups and their respective rates of 1-year HE development and 1-year mortality.

As it was done in previous studies, gastric, esophageal, and anal varices were excluded from the calculation of TSA, as these are rather considered vessel networks and, therefore, do not allow for exact determination of vessel diameter and, thereby, vessel area (16). patient and was normalized for the patient's height to obtain fat-free muscle index (FFMI) using the equation:

$$FFMI = FFMA [cm2] / height [m].$$
(1)

Assessment of Fat-Free Muscle Index

All patients underwent routine diagnostic multislice CT imaging of the abdomen in a supine position with the administration of iodinated contrast on a clinical CT-scanner (iCT, Philips Healthcare, Amsterdam, Netherlands). The typical imaging parameters were slice thickness of 1 or 2 mm, tube current (exposure time product) of 100 mAs, and tube voltage of 120 kVp.

Skeletal muscle areas of the paraspinal skeletal muscles at the intervertebral disc space level, between the third and fourth lumbar vertebra, were previously demonstrated to be highly correlated with total compartment volume and, therefore, were used for the estimation of skeletal muscle mass in this study (15).

To determine muscle quality, the skeletal muscle area was separated into areas of fatty and lean muscles based on densitometric thresholds. Fatty and lean muscle tissues were identified by ranges of low [-30 to 29 Hounsfield units (HU)] and high attenuation (30–100 HU), respectively. Skeletal muscle index (SMI) was measured as proposed in a previous study (12). Moreover, fat-free muscle area (FFMA) was calculated for each

Statistical Analysis

We performed descriptive statistics for all variables. A nonparametric testing was used to compare different groups when suitable. The correlation of metric variables was performed using Spearman's rank correlation coefficient. For the selection of cutoff values to determine low and high FFMI, a receiver-operating characteristics (ROC) analysis with the development of HE within a 1-year follow-up was calculated using the Youden index. The cut-off for TSA was used as previously reported in a large multicentre cohort (3).

The Kaplan–Meier analysis with the log-rank test was used to determine the impact of TSA and FFMI/SMI on the development of HE and mortality. Univariate and multivariate risk analyses were performed, including factors with the potential impact of outcome [age, baseline laboratory values, history of HE episodes, Chronic-liver-failure Consortium Acute Decompensation score (CLIF-C AD), as well as measurements of portosystemic shunt area and sarcopenia] with the Cox regression for 1-year mortality and occurrence of HE. A multivariate analysis included all values with p < 0.05 from univariate Cox regression. Prognostic scores with overlapping parameters (CLIF-C AD, MELD, and Child-Pugh score) were not entered simultaneously in multivariate

regression analyses due to collinearity. The number of liver transplantation (LT) as competing events was low (8%). Thus, LT was censored, and competing risk analysis was not performed.

Continuous variables are presented as median (range). Categorical variables are presented as absolute cases or percentages. All data were analysed using statistics software SPSS (version 25, IBM, Armonk, NY, United States). The p-value < 0.05 was considered a statistically significant difference.

RESULTS

General Patient Characteristics

Of the 301 evaluated patients, automated muscle measurement was not possible in 88 patients, which were therefore excluded. Of the remaining 213 patients, a clinical follow-up was available in 156 patients (**Figure 1A**). In this cohort, the median age at baseline was 58 (31–85) years and 92 (59%) patients were male. The majority had alcoholic cirrhosis (82, 53%). Thirty-one (21%) patients had viral liver cirrhosis and 43 (28%) had other causes of cirrhosis.

Seventy-eight patients (53%) had a history of ascites, 47 (30%) had gastrointestinal bleeding, and 21 (14%) had reported prior episodes of HE. At baseline, 92 (59%) patients exhibited ascites and 36 (23%) had an episode of HE. Seventeen patients (11%) were diagnosed with hepatic cellular carcinoma (within Milan criteria) at baseline.

At baseline, most patients had decompensated liver cirrhosis according to the Child-Pugh classification (55% with Child-Pugh class B/C). The median MELD and CLIF-C-AD scores were 12 (6–40) and 47 (31–78), respectively. Further general characteristics are detailed in **Table 1**.

Median follow-up was 19 (0–97) months. Within 1-year follow-up, 40 patients (26%) developed at least one episode of HE. These patients were significantly older, were predominantly female, and showed worse prognostic scores (**Table 1**). Compared to the 116 patients who did not develop HE in the 1-year follow-up, they were more likely to have ascites in their prior clinical history (ascites: 72 vs. 42%, p = 0.001) and HE at baseline (HE: 35 vs. 19%; p = 0.002). Moreover, baseline serum albumin levels were significantly lower in patients who experienced episodes of HE (29 g/l vs. 32 g/l, p = 0.014, **Table 1**).

Sarcopenia and TSA Classification

The mean FFMI was significantly lower in patients who developed episodes of HE compared to patients without episodes of HE within the follow-up period (24.8 vs. 32.1 cm²/m, p = 0.042). With the receiver operating characteristics (ROC) analysis, with an HE development within 1-year follow-up as an outcome, an area under the curve (AUC) of 0.623 (p = 0.023, CI 0.522–0.724) was observed for FFMI. The optimal cut-off value was found at 17.6 cm²/m (sensitivity 78%, specificity 47%) *via* the Youden index. Analysing sex-specific cut-offs did not improve performance. Therefore, sarcopenia was defined by a cut-off value of 17.6 cm²/m with patients having a lower FFMI classified as being sarcopenic (L-FFMI). In total,

96 (62%) patients were defined as sarcopenic and 60 (38%) as not sarcopenic.

To quantify the amount of portosystemic shunting, a previously validated cut-off value was used with patients having a TSA above 83 mm² defined as having large TSA (L-TSA) (3).

Association of Sarcopenia and TSA With HE and Mortality

The Kaplan-Meier analysis showed that patients with sarcopenia exhibited significantly higher rates of HE development (32 vs. 15%, p = 0.004) and a higher 1-year mortality (24 vs. 5%, p = 0.002) (**Figures 2A,B**). Also, the patients with L-TSA were more likely to develop episodes of HE (45 vs. 30%, p = 0.003) and showed significantly higher 1-year mortality (31 vs. 20%, p = 0.003) (**Figures 2C,D**).

Acute-on-chronic liver failure (ACLF) was the most common cause of death (89%). Only three patients (11%) died of other causes (all malignancy) within 12 months follow-up (**Supplementary Table 1**). Of note, a patient stratification by L3-SMI (gender-specific cut-off values of 38.5 kg/m² for women and 52.4 kg/m² as validated in previous studies) did not show a significant difference for the development of HE and a 1year mortality in this cohort (**Supplementary Figures 1A,B**). Therefore, L3-SMI was not used for further stratification.

To identify risk factors for the occurrence of HE, risk factor stratifications using Cox-regression analyses were performed. In a multivariate analysis, including all factors that were significantly associated with HE and 1-year mortality on the respective univariate analysis, large TSA, low FFMI, history of HE episodes, and CLIF-C AD remained as independent predictors for developments of HE within 1-year follow-up (Table 2). Similarly, large TSA, low FFMI, and CLIF-C AD were independent predictors of 1-year mortality (Table 3). Patients with sarcopenia (low FFMI) exhibited a distinctly higher risk to develop episodes of HE [hazard ratio (HR) = 2.685, 95% CI 1.215-5.932] and showed markedly increased risk of 1-year mortality (HR = 7.683, 95% CI 1.749-33.743). Similarly, individuals with L-TSA exhibited a higher risk to develop HE (HR 2.500, 95% CI 1.324-4.718) and to die within this time period (HR 3.050, 95% CI 1.323-7.035).

Combination of FFMI and TSA for the Prediction of HE Development and Mortality

To assess dependency between muscle mass (FFMI) and TSA, we performed a correlation analysis. This showed no significant correlation of FFMI with TSA (**Supplementary Figure 2**).

Using a decision tree algorithm, sequentially including FFMI and TSA, an easy to assess prognostic algorithm was developed (Figure 1B). First, the CT scans are assessed for the presence of L-TSA and, then, further stratified by the presence of L-FFMI. With this algorithm, patients were stratified into three risk groups: good, intermediate, and poor prognoses (Figure 1C).

	Parameter median (range) or absolute (%)	All (<i>n</i> = 156)	Patients without 1-year HE development (<i>n</i> = 116)	Patients with 1-year HE development (<i>n</i> = 40)
Baseline General	Age (in years)	58 (31–85)	57 (31–85)	62 (39–79)**
	Sex (male/-female)	92/64 (59/41%)	70/40 (64/36%)	22/24 (48/52%)*
	Etiology of cirrhosis (alcoholic/viral/others)	82/31/43 (53/20/28%)	65/22/29 (56/19/25%)	17/9/14 (43/23/35%)
	Height (in m)	1.72 (1.5-1.92)	1.73 (1.52–1.9)	1.70 (1.5–1.92)
	Weight (in kg)	77 (39–147)	78 (49–147)	79 (39–110)
Historical Clinical Events	Ascites	78 (53%)	49 (42%)	29 (72%)**
	Hepatocellular carcinoma	17 (11%)	14 (12%)	3 (8%)
	Hepatic encephalopathy	21 (14%)	12 (10%)	9 (23%)
	Spontaneous bacterial peritonitis	9 (6%)	6 (6%)	3 (8%)
	Hepatorenal syndrome	19 (12%)	12 (10%)	7 (18%)
	Gastrointestinal bleeding	47 (30%)	39 (34%)	8 (21%)
Baseline Clinical Events	Ascites	92 (59%)	64 (55%)	28 (70%)
	Hepatic encephalopathy	36 (23%)	22 (19%)	14 (35%)**
	Spontaneous bacterial peritonitis	16 (10%)	10 (9%)	6 (15%)
	Hepatorenal syndrome	22 (14%)	14 (12%)	8 (20%)
	Gastrointestinal bleeding	18 (12%)	16 (14%)	2 (7%)
Baseline Scores	MELD	12 (6–40)	11 (6–33)	13 (6–24)*
	MELD-Na	13 (6–40)	12 (6–33)	14 (7–28)
	Child-Pugh score	7 (5–13)	6 (5–13)	7 (5–10)**
	Child-Pugh (class A/B/C)	65/69/12 (45/47/8%)	54/45/9 (50/42/8%)	11/24/3 (29/63/8%)**
	CLIF-C-AD	47 (31–78)	45 (31–78)	49 (37–71)**
Baseline Laboratory	Sodium (mmol/l)	138 (122–147)	138 (122–147)	138 (127–144)
	Creatinine (mg/dl)	0.9 (0.3-5.1)	0.9 (0.3–3.3)	1.1 (0.6–5.1)
	Bilirubin (mg/dl)	1.7 (0.2–34.8)	1.5 (0.2–12)	1.8 (0.2–13.1)
	AST (U/I)	50 (12–387)	48 (12–300)	56 (14–190)
	ALT (U/I)	32 (8–282)	33 (8–187)	32 (11–282)
	Albumin (g/l)	31 (3–49)	32 (3–45)	29 (3–44)*
	INR	1.2 (0.9–3)	1.2 (0.9–3)	1.2 (1-2.4)
	WBC (10 ³ /µl)	5.7 (1–35.1)	5.2 (1.6-35.1)	5.7 (1.5–18.8)
	CRP (mg/dl)	9.5 (0.2–172)	7.9 (0.2–172)	11.4 (0.9–148)
	Platelets (×10 ⁹ /L)	111 (24–440)	109 (29–440)	126 (36–272)

TABLE 1 | General characteristics stratified for 1-year hepatic encephalopathy (HE) development.

p < 0.05, p < 0.01, p < 0.01

MELD(-Na) Score, Model of End-Stage Liver Disease (Natrium) Score; CLIF-C-AD, chronic-liver-failure Consortium Acute Decompensation Score; AST, aspartat transaminase; ALT, alanine transaminase; INR, internationale normalized ratio (of prothrombin time); WBC, white blood cells; CRP, C-reactive protein.

Accordingly, the cohort was subdivided into these three subsets [Good prognosis: high FFMI and small TSA, n = 37 (24%); Intermediate prognosis: high FFMI and large TSA, n = 23 (15%) plus low FFMI and small TSA, n = 61 (39%); Poor prognosis: low FFMI and large TSA, n = 35 (22%); Figure 3A]. In the Kaplan-Meier analysis, comparing these subcohorts, the highest and lowest rates of HE development was observed for poor and good prognoses groups, respectively (Figure 3B). This result was confirmed in competing risk analysis for HE, with death and LT as competing events (Supplementary Figure 3). Similarly, the poor prognosis group had the highest 1-year mortality, while the good prognosis group had the lowest (Figure 3C).

According to these data, additional risk factor analyses for the development of HE and mortality were performed, comparing good and poor prognoses groups. In a multivariate Cox regression analysis, the simultaneous presence of L-FFMI and L-TSA (poor prognosis group), alongside the history of HE episodes, was the only independent predictor for the development of HE within 1-year follow-up (HR 12.790, 95% CI 2.928–55.864, p = 0.001, **Table 4**). Regarding 1-year mortality, the simultaneous presence of L-FFMI and L-TSA (poor prognosis group, HR 13.660, 95% CI 1.752–106.495, p = 0.013), CLIF-C-AD (HR 1.085, 95% CI 1.019–1.155, p = 0.011) were independent predictors (**Table 5** and **Figure 3D**). These data suggest an exponentially increased risk of the development of HE and of mortality in patients with L-FFMI and L-TSA.

FIGURE 2 | (A) Cumulative incidence of development HE in the 1-year follow-up, stratified by FFMI. H-FFMI (high FFMI, blue line); L-FFMI (low FFMI, red line). P by log-rank. (B) Kaplan–Meier survival plot for 1-year survival, stratified by FFMI. H-FFMI (high FFMI, blue line); L-FFMI (low FFMI, red line). P by log-rank. (C) Cumulative incidence of development HE in the 1-year follow-up, stratified by TSA. S-TSA (small TSA, blue line); L-TSA (large TSA, red line). P by log-rank. (D) Kaplan-Meier survival plot for 1-year survival, stratified by TSA. S-TSA (small TSA, blue line); L-TSA (large TSA, red line). P by log-rank. (D) Kaplan-Meier survival plot for 1-year survival, stratified by TSA. S-TSA (small TSA, blue line); L-TSA (large TSA, red line). P by log-rank.

Parameters		univariate	Cox-Regression		multivariate Cox-Regression				
	р	HR	CI Lower	CI Upper	р	HR	CI Lower	CI Upper	
L-FFMI	0.006	2.809	1.336	3.908	0.015	2.685	1.215	5.932	
L-TSA	0.005	2.460	1.318	4.591	0.005	2.500	1.324	4.718	
Previous HE	< 0.001	1.848	1.344	2.542	< 0.001	2.001	1.425	2.809	
CLIF-C-AD	0.003	1.050	1.017	1.085	0.023	1.039	1.005	1.073	
MELD	0.042	1.049	1.002	1.098					
Child-Pugh	0.007	1.221	1.056	1.413					
Age	0.007	1.048	1.013	1.084	0.090				
Bilirubin	0.034	1.132	1.009	1.269	0.402				
Platelets	0.690	0.999	0.996	1.003					
CRP	0.444	1.004	0.993	1.016					

TABLE 2 | Univariate/multivariate Cox regression analysis for 1-year HE-development.

L-FFMI, low fat-free muscle index; L-TSA, large total shunt area; CLIF-C-AD, chronic-liver-failure Consortium Acute Decompensation Score; MELD, model for end-stage liver disease; CRP, C-reactive protein.

DISCUSSION

The present study describes the interplay of sarcopenia and TSA/SPSS in patients with liver cirrhosis. The L-FFMI and

L-TSA as measures of sarcopenia and large portosystemic shunting, respectively, were identified as independent predictors for deleterious outcomes in patients with liver cirrhosis (3, 8, 10). Notably, these factors were observed not to be

Parameters		univariate	Cox-Regression		multivariate Cox-Regression				
	Р	HR	CI Lower	CI Upper	р	HR	CI Lower	CI Upper	
L-FFMI	0.006	5.460	1.639	18.191	0.007	7.683	1.749	33.743	
L-TSA	0.005	3.069	1.391	6.772	0.009	3.050	1.323	7.035	
CLIF-C-AD	< 0.001	1.083	1.045	1.122	0.004	1.061	1.019	1.105	
MELD	< 0.001	1.149	1.087	1.215					
Child-Pugh	< 0.001	1.724	1.414	2.102					
Age	0.062	1.040	0.998	1.083					
Bilirubin	< 0.001	1.168	1.084	1.259	0.023	1.144	1.018	1.285	
Platelets	0.211	0.997	0.992	1.002					
CRP	0.004	1.014	1.004	1.023	0.096				

31

L-FFMI, low fat-free muscle Index; L-TSA, large total shunt area; CLIF-C-AD, chronic-liver-failure Consortium Acute Decompensation Score; MELD, model for end-stage liver disease; CRP, C-reactive protein.

interrelated with one another in our cohort. If, however, both L-FFMI and L-TSA were present simultaneously, the risk for the development of HE and mortality within 1year follow-up increases exponentially, independent of liver function. As both factors can be easily quantified from routine diagnostic CT-imaging, they may represent promising new imaging biomarkers for outcome stratification. In this context, an easy-to-apply prognostic algorithm is proposed by this study to complement the established methods of risk stratification.

Sarcopenia is generally accepted as a major risk factor for worsened outcomes in chronic diseases (16–18). As it was also

7

1-year HE development		univariate	Cox-Regression					
	р	HR	CI Lower	CI Upper	p	HR	CI Lower	CI Upper
L-FFMI & L-TSA	<0.001	9.013	2.615	31.064	0.001	12.790	2.928	55.864
Previous HE	< 0.001	1.848	1.344	2.542	0.006	1.842	1.194	2.841
CLIF-C-AD	0.003	1.050	1.017	1.085	0.086			
Age	0.007	1.048	1.013	1.084	0.180			
Bilirubin	0.034	1.132	1.009	1.269	0.184			
CRP	0.444	1.004	0.993	1.016				

TABLE 4 | Univariate/multivariate Cox regression analysis for 1-year HE development comparing lower fat-free muscle index (L-FFMI) and large-total portosystemic shunt area(L-TSA) classification with high fat-free muscle index (H-FFMI) and small-TSA (S-TSA) classification.

32

L-FFMI, low fat-free muscle Index; H-FFMI, high fat free muscle index; S-TSA, small total shunt area; L-TSA, large total shunt area; CLIF-C-AD, chronic-liver-failure Consortium Acute Decompensation Score; CRP, C-reactive protein.

TABLE 5 | Univariate/multivariate Cox-Regression for 1-year mortality comparing L-FFMI and L-TSA classification with H-FFMI and S-TSA classification.

1-year mortality		univariate	Cox-Regression					
	р	HR	CI Lower	CI Upper	р	HR	CI Lower	CI Upper
L-FFMI and L-TSA	0.004	20.312	2.666	154.774	0.013	13.660	1.752	106.495
CLIF-C-AD	< 0.001	1.083	1.045	1.122	0.011	1.085	1.019	1.155
Age	0.062	1.040	0.998	1.083				
Bilirubin	< 0.001	1.168	1.084	1.259	0.110	1.172	0.965	1.424
CRP	0.004	1.014	1.004	1.023	0.350			

L-FFMI, low fat-free muscle Index; H-FFMI, high fat free muscle index; S-TSA, small total shunt area; L-TSA, large total shunt area; CLIF-C-AD, chronic-liver-failure Consortium Acute Decompensation Score; CRP, C-reactive protein.

shown to be related to adverse outcomes in patients with liver cirrhosis, it was recently included in international guidelines such as the Clinical Practice Guidelines of the European Association for the Study of the Liver (EASL) (12). Several studies dealt with the association of sarcopenia with clinical outcomes and mortality in patients with cirrhosis. One study showed that patients with sarcopenia were more likely to have a minimal HE and a higher risk of developing an episode of overt HE (OHE) (8). In other studies, sarcopenia was shown to predict complication rates and waiting-list mortality in patients prior to liver transplantation (9, 19). Studies on the outcomes following liver transplantation evaluated pre-transplant sarcopenia and showed poorer 1-year survival rates for sarcopenic recipients of liver transplants (11).

A CT-derived assessment of muscle areas is based on densitometric thresholds. Therefore, particularly in patients with liver disease, a distortion of anatomical composition and, thereby, precision of body compartment measurements due to fluid overload is a real concern. To mitigate the impact of ascites on the accuracy of muscle measurements, we decided to quantify skeletal muscles from the paraspinal compartment, as this site is distant from the abdominal cavity and was recently shown to allow for the estimation of skeletal muscle mass (15). Moreover, previous studies indicated that myosteatosis is an independent risk factor for HE development (20) and that, beyond mere muscle mass, a fat-free muscle fraction as another indicator of muscle quality seems to be of prognostic value, particularly in patients with liver disease (5, 10, 21, 22). Hence, the lean muscle fraction normalized for body height as an objective and comparable indicator of muscle quality, which

can be opportunistically derived from diagnostic imaging, was investigated in this study.

Spontaneous portosystemic shunting is not only a risk factor for poor clinical outcomes on its own (2, 3). Moreover, patients with SPSS in combination with transjugular intrahepatic portosystemic shunt (TIPS) have been shown to have a higher risk of developing episodes of HE (23). However, the interplay of SPSS with other risk factors has not been studied, so far. In the presented study, the prognostic value of SPSS/TSA was complemented by adding FFMI, opportunistically measured from the same CT scans.

Particularly in patients with decompensated liver cirrhosis, adequate risk stratification and identification of high-risk patients (24, 25) are crucial due to a plethora of severe resulting complications.

Among the available risk factors, sarcopenia and portosystemic shunting particularly appeared suitable for evaluation as these factors were not only shown to predict severe complications and increased mortality but also represent potential therapeutic targets (26–28). Shunt embolization was shown to significantly decrease the risk of developing OHE (23, 29), while amelioration of sarcopenia prior to TIPS was demonstrated to enhance the clinical outcome, and a muscular activity has been shown to improve portal hypertension (10, 30, 31). Importantly, previous episodes of HE could be confirmed as a strong independent predictor of HE development and, thus, underlines the robustness of our data.

Although some previous studies indicated a potential interrelation between portosystemic shunts and sarcopenia (2, 13), these factors were observed to predict fatal outcomes

independent from one another in liver cirrhosis, as well as independent from liver function in our study. According to the survival analysis conducted in our study, both factors seemed to contribute to an increased risk for HE development at a similar rate; the risk exponentially increased when both factors were present simultaneously. This observation may indicate a potentially synergetic impact on the outcome for these factors and, therefore, may imply an additional predictive value by simultaneous measurement. It should be pointed out that this study does not aim to replace existing algorithms for sarcopenia screening and treatment, like the one presented in the current EASL Clinical Practice Guidelines (12), but rather complements them by adding SPSS/TSA as another aspect that can be easily measured opportunistically from the same scans.

The present study, therefore, warrants active screening for both sarcopenia and portosystemic shunting in patients with liver cirrhosis for several reasons. First, screening for these factors may help to facilitate the identification of high-risk patients, who may require intensified monitoring. Beyond that, early detection of sarcopenia and relevant portosystemic shunting ensure punctual therapeutic interventions and may contribute to a more precise and individualized treatment approach in these patients. A diagnostic CT is performed for several indications in patients with liver cirrhosis, such as evaluation for liver transplantation, TIPS, or hepatocellular carcinoma. Here, both sarcopenia and portosystemic shunts may be opportunistically quantified from available imaging and do not require additional efforts for assessment.

We acknowledge several limitations of this study. As with other monocentric retrospective investigations, the generality of the observation cannot be warranted, and validation studies are needed. Additionally, the impact of etiology could not be explored due to the small sample size and the diverse cohort, even though risk factors for sarcopenia and shunting vary depending on the cause of cirrhosis. Our results should be validated to define the relevance in specific etiologies.

Moreover, the retrospective character precluded functional assessment of muscle function. However, our results indicate that both sarcopenia and portosystemic shunting, which are frequent among patients with liver cirrhosis in various stages of the disease, may have a substantial impact on outcomes in these patients, independent from liver function. As these factors can be easily quantified from routine diagnostic CT imaging, our findings, therefore, are legitimately larger and have especially prospective investigations, which ultimately may reinforce the utility of our findings for clinical routine.

Due to the retrospective design, a selection bias cannot be ruled out. The reasons for patient exclusion were mainly missing follow-up data or poor image quality. Also, even though the main characteristics did not differ significantly between the included and the excluded patients, those who were eliminated from the study had significantly higher MELD- and Child-Pugh-Scores, as well as slightly less alcoholic liver disease. Therefore, our findings need further validation, especially in patients with advanced liver disease, but this was beyond the scope of our study.

It should also be noted that despite the presented prognostic value of our algorithm, liver function is still the main predictor of

clinical outcomes, including HE development and mortality. Due to the lack of a validation cohort, we were not able to establish and properly calibrate a combined score like the MELD-sarcopenia score (32). This could be researched in future.

In conclusion, this study may indicate a synergistic impact of sarcopenia and portosystemic shunting on the outcome with an exponential risk increase for HE development and mortality, when both factors are present. Underlining the strength of our data, the role of sarcopenia and portosystemic shunting as biomarkers for deleterious outcomes in patients with liver cirrhosis was confirmed. This may suggest a great value of opportunistic screening for both sarcopenia and portosystemic shunts, from a routine diagnostic CT in patients with liver cirrhosis, in identifying high-risk patients with an easy-to-apply prognostic algorithm.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available because the dataset is restricted by GDPR. Requests to access the datasets should be directed to MP, michael.praktiknjo@ukbonn.de.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Ethikkommission der Medizinischen Fakultät der Universität Bonn. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

AF and JA-O: acquisition of data, analysis and interpretation of data, drafting of the manuscript, and statistical analysis. JC, NB, AS, and CJ: acquisition of data, analysis and interpretation of data. UA, AL, JR, and JT: administrative support, interpretation of data, and critical revision of the manuscript regarding important intellectual content. JL and MP: study concept and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript regarding important intellectual content intellectual content, funding recipient, administrative, technical and material support, and study supervision. All authors contributed to the article and approved the submitted version.

FUNDING

MP was funded by the Ernst-und-Berta Grimmke Foundation (No. 5/19) and BONFOR research program of the University of Bonn (grant ID 2020-2A-07 and 2021-2A-07) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC2151 – 390873048. JC is supported by Else-Kröner Fresenius Foundation and BONFOR research program. JT received funding by the European Union's Horizon 2020 Research and Innovation program's GALAXY study (No. 668031), LIVERHOPE (No. 731875), MICROB-PREDICT (No. 825694), the Cellex Foundation. The funders had no influence on study design, data collection and analysis, decision to publish or preparation of the manuscript.

ACKNOWLEDGMENTS

We thank Nadine Köstlmeier for her excellent technical assistance.

REFERENCES

- Volk ML, Tocco RS, Bazick J, Rakoski MO, Lok AS. Hospital re-admissions among patients with decompensated cirrhosis. *Am J Gastroenterol.* (2012) 107:247–52.
- Simón-Talero M, Roccarina D, Martínez J, Lampichler K, Baiges A, Low G, et al. Association between portosystemic shunts and increased complications and mortality in patients with cirrhosis. *Gastroenterology*. (2018) 154:1694– 705.e4. doi: 10.1053/j.gastro.2018.01.028
- Praktiknjo M, Simón-Talero M, Römer J, Roccarina D, Martínez J, Lampichler K, et al. Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis. *J Hepatol.* (2020) 15:1140–50. doi: 10.1016/j.jhep.2019.12.021
- Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. *PLoS One.* (2017) 12:e0186990. doi: 10.1371/journal.pone.0186990
- Praktiknjo M, Clees C, Pigliacelli A, Fischer S, Jansen C, Lehmann J, et al. Sarcopenia is associated with development of acute-on-chronic liver failure in decompensated liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. *Clin Transl Gastroenterol.* (2019) 10:e00025. doi: 10. 14309/ctg.00000000000025
- Montano-Loza AJ, Meza-Junco J, Prado CMM, Lieffers JR, Baracos VE, Bain VG, et al. Muscle wasting is associated with mortality in patients with cirrhosis. *Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc.* (2012) 10:166–73. doi: 10.1016/j.cgh.2011.08.028
- American Association for the Study of Liver Diseases, European Association for the Study of the Liver. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the european association for the study of the liver and the american association for the study of liver diseases [Internet]. J Hepatol. (2014) 60:715–35. doi: 10.1016/j.jhep.2014.0 5.042
- Nardelli S, Lattanzi B, Merli M, Farcomeni A, Gioia S, Ridola L, et al. Muscle alterations are associated with minimal and overt hepatic encephalopathy in patients with liver cirrhosis. *Hepatol Baltim Md.* (2019) 70:1704–13. doi: 10.1002/hep.30692
- Engelmann C, Schob S, Nonnenmacher I, Werlich L, Aehling N, Ullrich S, et al. Loss of paraspinal muscle mass is a gender-specific consequence of cirrhosis that predicts complications and death. *Aliment Pharmacol Ther*. (2018) 48:1271–81. doi: 10.1111/apt.15026
- Praktiknjo M, Book M, Luetkens J, Pohlmann A, Meyer C, Thomas D, et al. Fat-free muscle mass in magnetic resonance imaging predicts acuteon-chronic liver failure and survival in decompensated cirrhosis. *Hepatology*. (2018) 67:1014–26. doi: 10.1002/hep.29602
- 11. Golse N, Bucur PO, Ciacio O, Pittau G, Sa Cunha A, Adam R, et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. *Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc.* (2017) 23:143–54. doi: 10.1002/lt.24671
- Merli M, Berzigotti A, Zelber-Sagi S, Dasarathy S, Montagnese S, Genton L, et al. EASL clinical practice guidelines on nutrition in chronic liver disease. J Hepatol. (2019) 70:172–93. doi: 10.1016/j.jhep.2018.06.024

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed. 2022.831005/full#supplementary-material

Supplementary Figure 1 | (A) Cumulative incidence of development HE in the 1-year follow-up, stratified by L3-SMI. No sarcopenia (blue line); sarcopenia (red line). P by log-rank. (B) Kaplan–Meier survival plot for 1-year survival, stratified by L3-SMI. No sarcopenia (blue line); sarcopenia (red line). P by log-rank.

Supplementary Figure 2 | Correlation plot for FFMI and TSA.

Supplementary Figure 3 Competing risk analysis for HE and death/liver transplantation (LT).

- Bhanji RA, Montano-Loza AJ, Watt KD. SARCOPENIA IN CIRRHOSIS: looking beyond the skeletal muscle loss to see the systemic disease. *Hepatology*. (2019) 70:2193–203. doi: 10.1002/hep.30686
- Chen H-W, Dunn M. Muscle at risk: the multiple impacts of ammonia on sarcopenia and frailty in cirrhosis. *Clin Transl Gastroenterol [Internet]*. (2016) 7:e170. doi: 10.1038/ctg.2016.33
- Faron A, Luetkens JA, Schmeel FC, Kuetting DLR, Thomas D, Sprinkart AM. Quantification of fat and skeletal muscle tissue at abdominal computed tomography: associations between single-slice measurements and total compartment volumes. *Abdom Radiol N Y.* (2019) 44:1907–16. doi: 10.1007/ s00261-019-01912-9
- Chang S-F, Lin P-L. Systematic literature review and meta-analysis of the association of sarcopenia with mortality. *Worldviews Evid Based Nurs.* (2016) 13:153–62. doi: 10.1111/wvn.12147
- Joglekar S, Nau PN, Mezhir JJ. The impact of sarcopenia on survival and complications in surgical oncology: a review of the current literature. J Surg Oncol. (2015) 112:503–9. doi: 10.1002/jso.24025
- Liu P, Hao Q, Hai S, Wang H, Cao L, Dong B. Sarcopenia as a predictor of allcause mortality among community-dwelling older people: a systematic review and meta-analysis. *Maturitas*. (2017) 103:16–22. doi: 10.1016/j.maturitas.2017. 04.007
- Durand F, Buyse S, Francoz C, Laouénan C, Bruno O, Belghiti J, et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. *J Hepatol.* (2014) 60:1151–7. doi: 10.1016/j.jhep. 2014.02.026
- Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. *Hepatol Int.* (2018) 12:377–86. doi: 10.1007/s12072-018-9875-9
- Faron A, Sprinkart AM, Pieper CC, Kuetting DLR, Fimmers R, Block W, et al. Yttrium-90 radioembolization for hepatocellular carcinoma: outcome prediction with MRI derived fat-free muscle area. *Eur J Radiol.* (2020) 125:108889. doi: 10.1016/j.ejrad.2020.108889
- Faron A, Pieper CC, Schmeel FC, Sprinkart AM, Kuetting DLR, Fimmers R, et al. Fat-free muscle area measured by magnetic resonance imaging predicts overall survival of patients undergoing radioembolization of colorectal cancer liver metastases. *Eur Radiol.* (2019) 29:4709–17. doi: 10.1007/s00330-018-5976-z
- 23. He C, Lv Y, Wang Z, Guo W, Tie J, Li K, et al. Association between non-variceal spontaneous portosystemic shunt and outcomes after TIPS in cirrhosis. *Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver*. (2018) 50:1315–23. doi: 10.1016/j.dld.2018.05.022
- Praktiknjo M, Monteiro S, Grandt J, Kimer N, Madsen JL, Werge MP, et al. Cardiodynamic state is associated with systemic inflammation and fatal acute-on-chronic liver failure. *Liver Int Off J Int Assoc Study Liver*. (2020) 40:1457–66. doi: 10.1111/liv.14433
- Monteiro S, Grandt J, Uschner FE, Kimer N, Madsen JL, Schierwagen R, et al. Differential inflammasome activation predisposes to acute-on-chronic liver failure in human and experimental cirrhosis with and without previous decompensation. *Gut.* (2020) 70:379–87. doi: 10.1136/gutjnl-2019-320170

- Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. (2016) 65:1232–44. doi: 10.1016/j.jhep.2016.07.040
- Butterworth RFL-. Ornithine L-aspartate for the treatment of sarcopenia in chronic liver disease: the taming of a vicious cycle. *Can J Gastroenterol Hepatol.* (2019) 2019:8182195. doi: 10.1155/2019/8182195
- Sinclair M, Gow PJ, Grossmann M, Angus PW. Review article: sarcopenia in cirrhosis-aetiology, implications and potential therapeutic interventions. *Aliment Pharmacol Ther.* (2016) 43:765–77. doi: 10.1111/apt.13549
- Laleman W, Simon-Talero M, Maleux G, Perez M, Ameloot K, Soriano G, et al. Embolization of large spontaneous portosystemic shunts for refractory hepatic encephalopathy: a multicenter survey on safety and efficacy. *Hepatol Baltim Md.* (2013) 57:2448–57. doi: 10.1002/hep.26314
- Tsien C, Shah SN, McCullough AJ, Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. *Eur J Gastroenterol Hepatol.* (2013) 25:85–93. doi: 10.1097/MEG. 0b013e328359a759
- Berzigotti A, Albillos A, Villanueva C, Genescá J, Ardevol A, Augustín S, et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. *Hepatol Baltim Md.* (2017) 65:1293–305. doi: 10.1002/hep.28992
- Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JXQ, et al. Inclusion of sarcopenia within MELD

(MELD-Sarcopenia) and the prediction of mortality in patients with cirrhosis. *Clin Transl Gastroenterol.* (2015) 6:e102. doi: 10.1038/ctg.20 15.31

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Faron, Abu-Omar, Chang, Böhling, Sprinkart, Attenberger, Rockstroh, Luu, Jansen, Strassburg, Trebicka, Luetkens and Praktiknjo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Supp. Fig.1: A Cumulative incidence of development HE in the 1-year follow-up, stratified by L3-SMI. No sarcopenia (blue line); sarcopenia (red line). P by log-rank. (B) Kaplan–Meier survival plot for 1-year survival, stratified by L3-SMI. No sarcopenia (blue line); sarcopenia (red line). P by log-rank.

Supp. Fig. 2: Correlation plot for FFMI and TSA

36

Supp. Tab. 1: Causes of death during 1-year follow up stratified by prognosis groups.

Causes of death	Good prognosis	Intermedi- ate prog- nosis	Poor progno- sis
Acute-on-chronic liver fail- ure	1 (100%)	10 (91%)	12 (86%)
Malignancy	0 (0%)	1 (9%)	2 (14%)
Other	0 (0%)	0 (0%)	0 (0%)

Supp. Tab. 2: General Characteristics of excluded patients

	Parameter median (range) or	all
-	absolute (%)	(n=145)
-e-	Age (in years)	57 (28-84)
Gel	Sex (male/-female)	77/68 (53/47%)
a C	Etiology of cirrhosis (alco-	92/29/25
L L	holic/viral/others)	(63/20/17%) *
ISe	Height (in m)	1.73 (1.51-1.98)
B	Weight (in kg)	84 (41-140) *
cal	Ascites	65 (49%)
ini	Hepatocellular carcinoma	13 (9%)
It C	Hepatic encephalopathy	26 (19%)
rical Ever	Spontaneous bacterial peritoni- tis	11 (8%)
sto	Hepatorenal syndrome	11 (8%)
Ĩ	Gastrointestinal bleeding	38 (29%)
-ic	Ascites	102 (70%) *
Clir St	Hepatic encephalopathy	42 (29%)
line (Ever	Spontaneous bacterial peritoni- tis	16 (11%)
ise cal	Hepatorenal syndrome	27 (19%)
Ba	Gastrointestinal bleeding	30 (21%) **
	MELD	14 (6-39) **
e "	MELD-Na	16 (6-39) **
elir Pres	Child-Pugh score	7 (5-13) **
3ase Sco	Child-Pugh (class A / B / C)	38/74/22
		(20/00/10%)
	Sodium [mmol/l]	49 (23-05)
`	Creatining [mg/dl]	1.046
O D	Bilirubin [mg/dl]	1(0.4-0)
rat		(0.4-40)
p o q		33(10-000)
La		20(0-349)
ne		31(3-49)
eli		1.3 (0.9-4.0)
las		0.0(1.3-31.2)
		14.8 (1-160) ***
	Platelets [x10 ^v /L]	98 (11-653)

*p < 0.05, ** p < 0.01, *** p < 0.001 vs. included cohort

MELD(-Na) Score: Model of End-Stage Liver Disease (Natrium) Score CLIF-C-AD: Chronic-liver-failure Consortium Acute Decompensation Score AST: Aspartat transaminase ALT: Alanine transaminase INR: Internationale normalized ratio (of prothrombin time) WBC: White blood cells

CRP: C-reactive protein

3. Danksagung

An dieser Stelle möchte ich mich bei all den Leuten bedanken, die mich bei der Verfassung dieser Promotionsschrift unterstützt haben.

An erster Stelle ist dabei mein Betreuer Priv.-Doz. Dr. med. Michael Praktiknjo zu nennen, der diese Dissertation erst möglich gemacht hat. Wie auch schon bei anderen wissenschaftlichen Arbeiten konnte ich stets auf seine zuverlässige und zielführende Hilfe zählen. Auch bei meinem Doktorvater Priv.-Doz. Dr. med. Johannes Chang möchte ich mich für seine freundliche Unterstützung, vor allem im Feinschliff der Arbeit, bedanken. Nicht zu vergessen ist auch meine Arbeitsgruppe "Portale Hypertension" der Uniklinik Bonn, ohne die der ganze Prozess nur halb so viel Spaß gemacht hätte.

Zuletzt bedanke ich mich bei meiner Familie und meinen Freunden, die mir bei allen Problemen und Hürden stets sowohl sachlichen als auch moralischen Beistand geleistet haben.